

Practicing
Software Engineering

in the 21st Century

edited by

Joan Peckham
University of Rhode Island, USA

and

Scott J. Lloyd
University of Rhode Island, USA

IRM Press
Publisher of innovative scholarly and professional

information technology titles in the cyberage

Hershey • London • Melbourne • Singapore • Beijing

Acquisitions Editor: Mehdi Khosrow-Pour
Senior Managing Editor: Jan Travers
Managing Editor: Amanda Appicello
Typesetter: Jennifer Wetzel
Copy Editor: Heidi J. Hormel
Cover Design: Michelle Waters
Printed at: Integrated Book Technology

Published in the United States of America by
IRM Press (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033-1240
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.irm-press.com

and in the United Kingdom by
IRM Press
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 3313
Web site: http://www.eurospan.co.uk

Copyright © 2003 by IRM Press. All rights reserved. No part of this book may be
reproduced in any form or by any means, electronic or mechanical, including photocopy-
ing, without written permission from the publisher.

Library of Congress Cataloging-in-Publication Data

Peckham, Joan, 1948-
 Practicing software engineering in the 21st century / Joan Peckham and
Scott J. Lloyd.
 p. cm.
Includes bibliographical references and index.
 ISBN 1-931777-50-0 -- ISBN 1-931777-66-7
 1. Software engineering. I. Lloyd, Scott J. II. Title.
 QA76.758.P42 2003
 005.1--dc21
 2002156236
ISBN: 1-931777-50-0
eISBN: 1-931777-66-7

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

Other New Releases from IRM Press

Excellent additions to your institution’s library!
Recommend these titles to your Librarian!

To receive a copy of the IRM Press catalog, please contact
(toll free) 1/800-345-4332, fax 1/717-533-8661,

or visit the IRM Press Online Bookstore at: [http://www.irm-press.com]!

Note: All IRM Press books are also available as ebooks on netlibrary.com as well as other ebook
sources. Contact Ms. Carrie Stull Skovrinskie at [cstull@idea-group.com] to receive a complete

list of sources where you can obtain ebook information or
IRM Press titles.

• Multimedia and Interactive Digital TV: Managing the Opportunities Created by
Digital Convergence/Margherita Pagani

 ISBN: 1-931777-38-1; eISBN: 1-931777-54-3 / US$59.95 / © 2003
• Virtual Education: Cases in Learning & Teaching Technologies/ Fawzi Albalooshi

(Ed.), ISBN: 1-931777-39-X; eISBN: 1-931777-55-1 / US$59.95 / © 2003
• Managing IT in Government, Business & Communities/Gerry Gingrich (Ed.)
 ISBN: 1-931777-40-3; eISBN: 1-931777-56-X / US$59.95 / © 2003
• Information Management: Support Systems & Multimedia Technology/ George Ditsa

(Ed.), ISBN: 1-931777-41-1; eISBN: 1-931777-57-8 / US$59.95 / © 2003
• Managing Globally with Information Technology/Sherif Kamel (Ed.)
 ISBN: 1-931777-42-X; eISBN: 1-931777-58-6 / US$59.95 / © 2003
• Current Security Management & Ethical Issues of Information Technology/Rasool

Azari (Ed.), ISBN: 1-931777-43-8; eISBN: 1-931777-59-4 / US$59.95 / © 2003
• UML and the Unified Process/Liliana Favre (Ed.)
 ISBN: 1-931777-44-6; eISBN: 1-931777-60-8 / US$59.95 / © 2003
• Business Strategies for Information Technology Management/Kalle Kangas (Ed.)
 ISBN: 1-931777-45-4; eISBN: 1-931777-61-6 / US$59.95 / © 2003
• Managing E-Commerce and Mobile Computing Technologies/Julie Mariga (Ed.)
 ISBN: 1-931777-46-2; eISBN: 1-931777-62-4 / US$59.95 / © 2003
• Effective Databases for Text & Document Management/Shirley A. Becker (Ed.)
 ISBN: 1-931777-47-0; eISBN: 1-931777-63-2 / US$59.95 / © 2003
• Technologies & Methodologies for Evaluating Information Technology in Business/

Charles K. Davis (Ed.), ISBN: 1-931777-48-9; eISBN: 1-931777-64-0 / US$59.95 / © 2003
• ERP & Data Warehousing in Organizations: Issues and Challenges/Gerald Grant

(Ed.), ISBN: 1-931777-49-7; eISBN: 1-931777-65-9 / US$59.95 / © 2003
• Practicing Software Engineering in the 21st Century/Joan Peckham & Scott J. Lloyd

(Eds.),
 ISBN: 1-931777-50-0; eISBN: 1-931777-66-7 / US$59.95 / © 2003
• Knowledge Management: Current Issues and Challenges/Elayne Coakes (Ed.)
 ISBN: 1-931777-51-9; eISBN: 1-931777-67-5 / US$59.95 / © 2003
• Computing Information Technology: The Human Side/Steven Gordon (Ed.)
 ISBN: 1-931777-52-7; eISBN: 1-931777-68-3 / US$59.95 / © 2003
• Current Issues in IT Education/Tanya McGill (Ed.)
 ISBN: 1-931777-53-5; eISBN: 1-931777-69-1 / US$59.95 / © 2003

Practicing Software Engineering in
the 21st Century

Table of Contents

Preface .. vii
Joan Peckham, University of Rhode Island, USA
Scott J. Lloyd, University of Rhode Island, USA

Section I: System Design

Chapter I. Integrating Patterns into CASE Tools 1
Joan Peckham, University of Rhode Island, USA
Scott J. Lloyd, University of Rhode Island, USA

Chapter II. Petri Nets with Clocks for the Analytical Validation of
Business Process ... 11

Gabriel Vilallonga, Universidad Nacional de San Luis, Argentina
Daniel Riesco, Universidad Nacional de San Luis, Argentina
Germán Montejano, Universidad Nacional de San Luis, Argentina
Roberto Uzal, Universidad Nacional de San Luis, Argentina

Chapter III. Software and Systems Engineering:
Conflict and Consensus ... 26

Rick Gibson, American University, USA

Chapter IV. Lean, Light, Adaptive, Agile and Appropriate Software
Development: The Case for a Less Methodical Methodology 42

John Mendonca, Purdue University, USA
Jeff Brewer, Purdue University, USA

Chapter V. How to Elaborate a Use Case .. 53
D. C. McDermid, Edith Cowan University, Australia

Chapter VI. A Rigorous Model for RAISE Specifications
Reusability ... 63

Laura Felice, Universidad Nacional del Centro de la Provincia de
Buenos Aires, Argentina

Daniel Riesco, Universidad Nacional de San Luis, Argentina

Chapter VII. The Application of FOOM Methodology to IFIP
Conference Case Study ... 82

Judith Kabeli, Ben-Gurion University, Israel
Peretz Shoval, Ben-Gurion University, Israel

Section II: Managing Software Projects

Chapter VIII. A Quantitative Risk Assessment Model for the
Management of Software Projects ... 97

Dan Shoemaker, University of Detroit Mercy, USA

Chapter IX. Software Metrics, Information and Entropy 116
Jana Dospisil, Monash University, Australia

Chapter X. Temporal Interaction Diagrams for Multi-Process
Environments .. 143

T. Y. Chen, Swinburne University of Technology, Australia
Iyad Rahwan, University of Melbourne, Australia
Yun Yang, Swinburne University of Technology, Australia

Section III: Applications and Implementations

Chapter XI. Toward an Integrative Model of Application-Software
Security .. 157

Vijay V. Raghavan, Northern Kentucky University, USA

Chapter XII. Learning Systems and their Engineering:
A Project Proposal .. 164

Valentina Plekhanova, University of Sunderland, UK

Chapter XIII. Towards Construction of Business Components: An
Approach to Development of Web-Based Application Systems 178

Dentcho N. Batanov, Asian Institute of Technology, Thailand
Somjit Arch-int, Khon Kaen University, Thailand

Chapter XIV. An OO Methodology Based on the Unified Process for
GIS Application Development .. 195

Jesús D. Garcia-Consuegra, Universidad de Castilla-La Mancha,
 Spain

Chapter XV. A Framework for Intelligent Service Discovery 210
Robert Bram, Monash University, Australia
Jana Dospisil, Monash University, Australia

Chapter XVI. A Service-Based Approach to Components for Effective
Business-IT Alignment ... 230

Zoran Stojanovic, Delft University of Technology, The Netherlands
Ajantha Dahanayake, Delft University of Technology, The Netherlands

Chapter XVII. One Method for Design of Narrowband Lowpass
Filters ... 258

Gordana Jovanovic-Dolecek, National Institute of Astrophysics Optics
 and Electronics (INAOE), Mexico
Javier Diaz-Carmona, Technology Institute of Celaya, Mexico

Chapter XVIII. Design of Narrowband Highpass FIR Filters Using
Sharpening RRS Filter and IFIR Structure .. 272

Gordana Jovanovic-Dolecek, National Institute of Astrophysics Optics
and Electronics (INAOE), Mexico

About the Authors .. 295

Index .. 304

Preface

vii

Software engineering is a term that has a very broad definition. This process
includes the logical design of a system; the development of prototypes, the auto-
mated generation of computer code for the system; the testing, validation and
benchmarking of the code and the final implementation of the system. Once a new
system is up and running, the software engineering process is used to maintain the
system, evaluate its operation, keep track of new versions and refactor and/or reuse
the code for other projects.

Over the past 30 years the discipline of software engineering has grown. In
some cases, a specific programming paradigm, such as object-oriented, evolved into
a broad discipline encompassing design and programming processes, tools and tech-
niques. Several universities offer degrees as well as courses in software engineer-
ing. Standards for software engineering have been incorporated and formalized in
England, Canada, Australia and the United States. Additionally, software engineer-
ing has received recognition from licensing and standards boards such as the Asso-
ciation of Computing Machinery (ACM) Institute of Electrical Engineering (IEEE),
ISO 9000 and the Institute for Certification of Computing Professionals (ICCP).

Although many current design practices are focused on object-oriented tech-
niques, this does not limit us to using object-oriented languages. It is quite possible to
adopt the methods whether one writes in Fortran, C++ or writes scripts in Perl. In
recent times the concept of software engineering has expanded to include not only
code generation and system design, but a set of standards and methods that the
software engineer should practice.

The practice of software engineering rightfully begins in the requirements phase
of any system project, where the problem to be solved is well defined. Once this is
captured, the design phase starts. In an effort to avoid the problem of “reinventing
the wheel” a good designer decides what methods and patterns can be drawn from
the existing software engineering “body of knowledge.” Reusable generic design
and code is only one advantage that has been realized today as the libraries of
functions, patterns, and frameworks continue to grow.

Automated support for the application and integration of these reusable units
with newly defined designs and modules using a Computer Aided Software Engi-
neering (CASE) tool has created a new lexicon in this field. “Lower CASE” tools
now refer to code generation while “higher CASE” tools are those tools used in the

viii

construction and diagramming of proposed computer systems. There have recently
been proposals to integrate these two capabilities into a single tool, so that once a
system is proposed and analyzed using standard tools, such as Data Flow Diagrams
(DFD), Entity Relationship Diagrams, and Unified Modeling Language (UML), this
information is passed to another module of the tool to generate code consistent with
these diagrams.

As previously mentioned in this preface, during the past 30 years a generalized
body of knowledge about design as other aspects of software engineering pro-
cesses has emerged with some generally accepted standards. The reader should
refer to the “Guide to Software Engineering Body of Knowledge; SWEBOK” from
IEEE Computer Society for an excellent description of this body of common knowl-
edge and standards.

This book begins with a discussion of software patterns that are used to facili-
tate the reuse of object-oriented designs. While most CASE tools support the use of
UML to extract the design from the software engineer and to assist in the develop-
ment, most do not provide assistance in the integration and code generation of soft-
ware patterns. In this chapter, the authors analyze the Iterator software pattern for
the semantics that would be used in a CASE design tool to help the software engi-
neer integrate this pattern into a design and then generate some of the code needed
to implement the pattern. This work is based on semantic data modeling techniques
that were previously proposed for the design of active databases.

The next chapter introduces a theoretical frame for processes definition vali-
dation in workflow processes with temporal restrictions. Workflow Interface 1 pro-
vides the process definition of the Work Flow Reference Model. This interface
combines PNwC to provide the formalization and verification of systems based on
the Petri Net theory with an extension. This extension allows the specification of
temporal requirements via clock specification, using temporal invariants for the places
and temporal conditions in the transitions. This chapter presents a technique to
validate the process definition (PD) using Petri Nets with Clocks (PNwC). The
algorithm for the analysis of a PNwC allows for the correction of errors in the
modeling of the time variable. The algorithm generates information about temporal
unreachable states and process deadlocks with temporal blocks. It also corrects
activity invariants and transition conditions.

The third chapter identifies the key aspects of software engineering and sys-
tems engineering in an effort to highlight areas of consensus and conflict. The goal
is to support current efforts by practitioners and academics in both disciplines to
redefine their professions and bodies of knowledge. By using the Software Engi-
neering Institute’s Capability Maturity Model-Integrated (CMMISM) project, which
combines best practices from the systems and software engineering disciplines, it
can be shown that significant points of agreement and consensus are evident.
Nevertheless, valid objections to such integration remain as areas of conflict. It is
hoped that this chapter will provide an opportunity for these two communities to
resolve unnecessary differences in terminology and methodologies that are reflected

ix

in their differing perspectives and entrenched in their organizational cultures.
Historically the approach to software engineering has been based on a search

for an optimal (ideal) methodology— the identification and application of a set of
processes, methods and tools that can consistently and predictably lead to software
development success. The fourth chapter presents the basis for pursuing a more
flexible, adaptive approach. Less methodical techniques under a variety of names
take what is described as a contingency-oriented approach. Because of the limita-
tions in the nature of methodology, the high failure rate in software development, the
need to develop methodology within an environmental context and the pressures of
fast-paced “E” development, the authors argue that further exploration and defini-
tion of an adaptive, contingency-based approach to methodology is justified.

Chapter V challenges the established wisdom with respect to use cases. Use
cases are classically elaborate to capture the functional requirements of the system
by directly identifying objects, methods and data. Several authors of system analysis
and design books advocate this approach. However the research reported in this
paper indicates that there are better constructs for modeling use cases, at least
initially. Further objects are not a particularly good medium for discussing require-
ments with users. This paper rehearses the arguments leading up to these conclu-
sions and identifies some implications of these conclusions.

The theme of system development is continued in Chapter VI. Using the
RAISE specification development process, a variety of components and infrastruc-
tures are built. These components are not independent and are related to each
other, when the authors specify different systems into the same infrastructure. The
RAISE method is based on the idea that software development is a stepwise, evo-
lutionary process of applying semantics-preserving transitions. Reuse is crucially
impacted in all the stages of the development, but there is no explicit reference to
the specification of reusability in this development process. This chapter presents a
rigorous process for reusability using RSL (RAISE Specification Language) com-
ponents. The authors provide the mechanism to select a reusable component in
order to guide RAISE developers in the software specification and construction
process.

The section on system development concludes with Chapter VII. This chap-
ter introduces the Functional and Object-Oriented Methodology (FOOM) . This is
an integrated methodology for information systems analysis and design that com-
bines two essential software-engineering paradigms: the functional/data approach
(or process-oriented) and the object-oriented (OO) approach. FOOM has been
applied to a variety of domains. This chapter presents the application of the method-
ology to the specification of the “IFIP Conference” system with focus on the analy-
sis and design phases. The FOOM analysis phase includes data modeling and func-
tional analysis activities, and produces an initial Class Diagram and a hierarchy of
OO Data Flow Diagrams (OO-DFDs). The products of the design phase include:
(a) a complete class diagram; (b) object classes for the menus, forms and reports
and (c) a behavior schema, which consists of detailed descriptions of the methods

x

and the application transactions expressed in pseudocode and message diagrams.
Section II discusses methods to evaluate and manage the system development

process. Chapter VIII presents a comprehensive quantitative management model
for information technology. This methodology is assessment based and can be easily
implemented without imposing an unacceptable organizational change. It supplies
detailed information about the functioning of processes that allows managers to both
effectively oversee operations and assess their prospective and ongoing execution
risks. This offers a consistent risk reward evaluation.

Continuing with the theme of measurement and risk assessment Chapter IX
describes the foundation and properties of specific object-oriented software mea-
sures. Many measures for object-oriented applications have been constructed and
tested in development environments. However, the process of defining new mea-
sures is still alive. The reason for this lies in the difficulties associated with under-
standing and maintaining object-oriented applications. It is still difficult to relate the
measures to the phenomena that need to be improved. Do current measurements
indicate problems in reliability, maintenance or the unreasonable complexity of some
portions of the application?

In order to reduce the complexity of software, new development methodolo-
gies and tools are being introduced. The authors talk about a new approach to
development called separation of concern. Tools, such as Aspect/J or Hyper/J, fa-
cilitate the development process, but there does not seem to be a sound metrics suite
to measure complexity and efficiency of applications developed and coded with
Aspect/J or Hyper/J. In this chapter, the authors attempt to review the current
research into object-oriented software metrics and suggest theoretical framework
for complexity estimation and ranking of compositional units in object-oriented appli-
cations developed with Hyper/J.

Chapter X concludes the managing projects section by introducing a novel
notion of temporal interaction diagrams that can be used for testing and evaluating
distributed and parallel programming. An interaction diagram is a graphic view of
computation processes and communication between different entities in distributed
and parallel applications. It can be used for the specification, implementation and
testing of interaction policies in distributed and parallel systems. Expressing interac-
tion diagrams in a linear form, known as fragmentation, facilitates automation of
design and testing of such systems. Existing interaction diagram formalisms lack the
flexibility and capability of describing more general temporal order constraints. They
only support rigid temporal order, hence have limited semantic expressiveness. The
authors propose an improved interaction diagram formalism in which more general
temporal constraints can be expressed. This enables the capture of multiple valid
interaction sequences using a single interaction diagram.

Section III discusses specific applications and implementations that are best
solved by the principles of software engineering. Chapter XI begins this section
with relevant security issues that must be considered in any software implementa-
tion. While academicians and industry practitioners have long recognized the need

xi

for securing information systems and computer architectures, there has recently
been a heightened awareness of information technology (IT) management on com-
puter-related security issues. IT managers are increasingly worried about possible
attacks on computer facilities and software, especially for mission critical software.
There are many dimensions to providing a secure computing environment for an
organization, including computer viruses, Trojan horses, unauthorized accesses and
intrusions and thefts to infrastructure. This complexity and multidimensional nature
of establishing computer security requires that the problem be tackled on many
fronts simultaneously. Research in the area of information systems security has
traditionally focused on architecture, infrastructure and systems level security.
Emerging literature on application-level security, while providing useful paradigms,
remain isolated and disparate. The current study focuses on single, albeit an impor-
tant, dimension of providing a safe and secure computing environment — applica-
tion-software security.

The book progresses to a specific proposal for learning systems. Chapter XII
presents a project proposal for future work utilizing software engineering concepts
to produce learning processes in cognitive systems. This project outlines a number
of directions in the fields of systems engineering, machine learning, knowledge engi-
neering and profile theory that lead to the development of formal methods for the
modeling and engineering of learning systems. This chapter describes a framework
for formalization and engineering of the cognitive processes and is based on applica-
tions of computational methods. The work proposes the studies of cognitive pro-
cesses in software development process, and considers a cognitive system as a
multi-agent system of human cognitive agents. It is important to note that this frame-
work can be applied to different types of learning systems. There are various tech-
niques from different theories (e.g., system theory, quantum theory, neural networks)
that can be used for the description of cognitive systems, which, in turn, can be
represented by different types of cognitive agents.

Web-based applications are highlighted by Chapter XIII. Global competition
among today’s enterprises forces their business processes to evolve constantly, lead-
ing to changes in corresponding Web-based application systems. Most existing ap-
proaches that extend traditional software engineering to develop Web-based appli-
cation systems are based on OO methods. Such methods emphasize modeling indi-
vidual object behaviors rather than system behavior. This chapter proposes the Busi-
ness Process-Based Methodology (BPBM) for developing such systems. It uses a
business process as a unified conceptual framework for analyzing relationships be-
tween a business process and associated business objects, identifying business ac-
tivities and designing OO components called business components. The authors
propose measures for coupling and cohesion measurement in order to ensure that
these business components enable the potential reusability. These business compo-
nents can more clearly represent semantic system behaviors than linkages of indi-
vidual object behaviors. A change made to one business process impacts some
encapsulated atomic components within the respective business component without

affecting other parts of the system. A business component is divided into parts
suitable for implementation of multi-tier Web-based application systems.

Geographic Information Systems (GIS) are presented in Chapter XIV. This
chapter introduces an OO methodology for GIS development. It argues that a COTS-
based development methodology combined with the UML can be extended to sup-
port the spatio-temporal peculiarities that characterize GIS applications. The au-
thors suggest that by typifying both enterprises and developments, and, with a thor-
ough knowledge of the software component granularity in the GIS domain, it will be
possible to extend and adapt the proposed COTS-based methodologies to cover the
full lifecycle. Moreover, some recommendations are outlined to translate the meth-
odology to the commercial iCASE Rational Suite Enterprise and its relationships
with tool kits proposed by some GIS COTS vendors.

Chapter XIV makes the claim of improved efficiency and reliability of net-
working technology, providing a framework for service discovery where clients
connect to services over the network. It is based on a comparison of the client’s
requirements with the advertised capabilities of those services. Many service direc-
tory technologies exist to provide this middleware functionality, each with its own
default set of service attributes that may be used for comparison and its own default
search algorithms. Because the most expressive search ability might not be as im-
portant as robustness for directory services, the search algorithms provided are
usually limited when compared to a service devoted entirely to intelligent service
discovery.

To address the above problems, the authors propose a framework of intelligent
service discovery running alongside a service directory that allows the search ser-
vice to have a range of search algorithms available. The most appropriate algorithm
may be chosen for a search according to the data types found in the search criteria.
A specific implementation of this framework is presented as a Jini service, using a
constraint satisfaction problem solving architecture that allows different algorithms
to be used as library components.

Although component-based development (CBD) platforms and technologies,
such as CORBA, COM+/.NET and enterprise Java Beans (EJB) are now de facto
standards for implementation and deployment of complex enterprise distributed sys-
tems, according to the authors of Chapter XVI, the full benefit of the component
way of thinking has not been gained. Current CBD approaches and methods treat
components mainly as binary-code implementation packages or as larger grained
business objects in system analysis and design. Little attention has been paid to the
potential of the component way of thinking in filling the gap between business and
IT issues. This chapter proposes a service-based approach to the component con-
cept representing the point of convergence of business and technology concerns.
The approach defines components as the main building blocks of business-driven
service-based system architecture that provides effective business IT alignment.

The book now focuses its attention on specific issues of software engineering
as applied to telecommunications networks. Chapter XVII describes the design of

xii

a narrowband lowpass finite impulse response (FIR) filter using a small number of
multipliers per output sample (MPS). The method is based on the use of a fre-
quency-improved recursive running sum (RRS) called the sharpening RRS filter
and the interpolated finite impulse response (IFIR) structure. The filter sharpening
technique uses multiple copies of the same filter according to an amplitude change
function (ACF), which maps a transfer function before sharpening to a desired form
after sharpening. Three ACFs are used in the design as illustrated in examples
contained in this chapter.

The book closes with Chapter XVIII, which describes another telecommuni-
cation application. This chapter presents the design of narrowband highpass linear-
phase FIR filters using the sharpening RRS filter and the IFIR structure. The nov-
elty of this technique is based on the use of a sharpening RRS filter as an image
suppressor in the IFIR structure. In this way the total number of multiplications per
output sample is considerably reduced.

The purpose of this book is to introduce new and original work from around
the world that we believe expands the body of common knowledge in software
engineering. The order of this book attempts to tell a story, beginning with the
software process, including reusable code and specific design methodologies and
the methods associated with this formalized structure. The book then proceeds to
chapters that propose models to measure the system analysis and design process
and to direct the successful development of computer systems. The chapters then
progress to the next step in any system project — the implementation phase. This
section includes various aspects of using and integrating the engineered software
into a computer system. Its chapters address security and systems capable of
learning. The book then concludes with specific examples of Web-based and tele-
communication applications.

xiii

Acknowledgments

The editors would like to acknowledge the help of all involved in the collation
and review process of the book without whose support the project could not have
been satisfactorily completed. A further special note of thanks goes also to all the
staff at Idea Group Inc., whose contributions throughout the whole process from
inception of the initial idea to final publication have been invaluable. In particular, we
thank Amanda Appicello who continuously prodded via e-mail to keep the project on
schedule and Mehdi Khosrow-Pour whose enthusiasm motivated us to accept the
invitation to take on this project.

Obviously in any project of this size it is impossible to remember, let alone
mention, everyone who had a hand in this work becoming what it is today. Various
graduate students and support staff from The University of Rhode Island were
critical in creating this final product. Their support was vital in achieving what we
hope is a well-edited publication. The authors deserve the greatest credit because
their contributions were essential, giving us great material with which to work.

In closing, we again wish to thank all of the authors for their insights and
excellent contributions to this book. We also want to thank all of the people who
assisted us in the reviewing process. Of course our families deserve credit for
simply putting up with us and supporting us. Our thanks to all these people!

Joan Peckham, Ph.D.
Scott J. Lloyd, Ph.D.
Kingston, RI, USA
September 2002

xiv

Section I

System Design

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Integrating Patterns into CASE Tools 1

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter I

Integrating Patterns into
CASE Tools

Joan Peckham
University of Rhode Island, USA

Scott J. Lloyd
University of Rhode Island, USA

ABSTRACT
Software patterns are used to facilitate the reuse of object-oriented designs.
While most Computer Aided Software Engineering (CASE) tools support the use
of Unified Modeling Language (UML) (Alhir & Oram, 1998) to extract the
design from the software engineer and assist in development, most do not
provide assistance in the integration and code generation of software patterns.
In this chapter, we analyze the Iterator software pattern (Gamma et al., 1995)
for the semantics that would be used in a CASE-design tool to help the software
engineer to integrate this pattern into a design and then generate some of the
code needed to implement the pattern. This work is based on semantic data
modeling techniques that were previously proposed for the design of active
databases (Brawner, MacKellar, Peckham & Vorbach, 1997; Peckham,
MacKellar & Doherty, 1995).

2 Peckham & Lloyd

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTRODUCTION
One of the intents of the object-oriented (OO) programming paradigm is to

assist in the reuse of code through the use of classes that bundle data structures and
procedures in such a way that they could more easily be moved from one
implementation to another. When OO languages were first introduced, code libraries
were developed to permit the sharing of objects and classes. At the same time,
Object-Oriented Analysis and Design (OOAD) techniques were being developed
(Booch, 1994; Coad & Yourdon, 1991; Jacobson, 1992; Rumbaugh et al., 1991;
Wirfs-Brock, Wilkerson & Weiner, 1990). This gave us a set of notations for
expressing the design of OO applications. The libraries also became a vehicle for the
reuse of the OO designs and led to the capture of software patterns or designs that
are frequently reused in software applications but are somewhat independent of
particular application types. One of the most often cited book archives is Design
Patterns: Elements of Reusable Object-Oriented Software (Gamma, Helm,
Johnson, Vlissides & Booch, 1995). A combination of text, UML and code samples
is used to communicate the patterns.

Early industrial experience indicates that patterns speed the development of
systems but are hard to write (Beck et al., 1996). So a few CASE tools provide
computer assistance to the programmer in choosing and integrating automatically
generated code for the patterns in their applications. Tools that support the use of
software patterns include those by Budinsky, Finnie, Vlissides and Yu (1996), Florijn,
Meijers and van Winsen (1997) and Paulisch (1996). While these tools are just
beginning to emerge, none have integrated code generation and general design in a
generic way that permits seamless code specification with patterns. For example,
the techniques are not generally language independent and are unable to generate
code in more than one language. Some existing tools generate code but into a
different workspace from the general software specification and coding environ-
ment, requiring the cutting and pasting of code from the pattern code space.

All software patterns have alternative implementations. These are typically
explained using text and sample code. Software engineers are then expected to use
this information to construct their own implementation of the pattern. Our goal here
is to capture the semantics of patterns well enough that they can be presented to the
software engineer via named choices in the CASE tool and then be used to generate
the code. In Peckham and MacKellar (2002) we began to elaborate the choices in
the Observer pattern of Gamma et al. (1995). In this paper we look at the Iterator
pattern from the same source.

CASE TOOLS
CASE tools are used to assist software engineers in all aspects of the software

lifecycle. These tools can help a team to manage, design, implement, test and

Integrating Patterns into CASE Tools 3

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

maintain a software project. They are believed to improve the documentation,
correctness and consistency of software systems, especially large systems. They
were developed to address the current “software crisis” (Sommerville, 2001) in
which software projects are frequently over budget, error prone and delivered late
(if at all). The CASE tools of interest here are those such as Rational Rose (Boggs
& Boggs, 2002) that permit the design of software using UML.

While the design of software using a CASE tool and UML is helpful, we believe
the software designer will get more help when higher level patterns can be used to
compose the design (as opposed to the more fine-grained UML). Most case tools
provide the designer with a set of UML constructs with which to design the software,
but this design is on the level of software modules and the relationships between
them. If patterns are used as the building blocks of the software design, then well
understood collections of modules could be used to compose a design. This raises the
level on which the software is being designed and can assist in more rapid design and
development of the software.

Most CASE tools of Rational Rose’s ilk also generate code from the UML
design. Most existing pattern tools simply assist in a “cut and paste” process whereby
the designer selects a pattern and is given a piece of code in the appropriate language
to paste into the implementation. The programmer then needs to tailor the code to the
implementation. There are several things wrong with this process:
1. The developer has to write the code. If we can extract the meaning and

semantics of the patterns, and if we have an internal representation of these
semantics, we can generate much of the code for the developer.

2. If the developer wishes to change the design, it can become time consuming and
confusing to carry out and to keep track of all changes. If the CASE tool can
provide the programmer with alternative pattern implementations, then much
of the code can be generated once an alternative is selected. This is faster than
having to modify the code “by hand.”

As the reader can see from above, if the system can generate the code instead
of providing a unit of code to cut and paste, the development and modification
processes will be quicker and less error prone.

A PATTERNS PRIMER
As laid out in Gamma et al. (1995), patterns are described using diagrams,

textual descriptions and, sometimes, with examples using a pseudolanguage or
pseudocode. Included in each pattern description are:

Name - The name of the pattern;
Classification - The type of pattern based upon the author’s classification
system (there are three: creational, structural and behavioral);

4 Peckham & Lloyd

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Intent - The purpose of the pattern or what it does;
Also known as - Other used or known names for the pattern;
Motivation - A concrete example to help you understand the general pattern;
Applicability - Where to use the pattern;
Structure - A graphical representation of the pattern using a UML-like
notation;
Participants - Description of the participating objects and classes;
Collaborations - How the participants interact;
Consequences - How the pattern carries out its goals and the results (positive
and negative);
Implementation - Tips, possible pitfalls and language specific issues;
Sample code - Some examples in a specific language;
Known uses - Where the pattern has been used in widely known commercial
or research software.

These pattern characteristics help the reader to understand the nature of the
pattern. From these descriptions we can extract the alternative semantics for the
pattern and use them to generate the code. Patterns can be thought of as providing
notations for fairly sophisticated software implementations. These are language
independent in that they can be implemented in any language, so the languages used
for their implementation can be of any type. Although the conceptual models of
patterns are usually OO in nature, this can just be thought of as employing the
prevalent language type of the era. However the patterns can be mapped to any
programming language if it supports the organization of code into modules and
relationships among the modules. The relationships among the modules can be
thought of as representing procedural activity along the relationship paths.

The above concepts are so fundamental to programming that they are present
in most language types, including procedural and scripting, as well as object-oriented
languages. So an application in which there are many language types used for
implementation can be designed using patterns. It is not out of the question to include
languages such as Perl, C, C++, Java, Python, etc.

To illustrate the meaning that a pattern can convey independent of the
implementation language, consider “client-server.” This term conjures up an
arrangement between two software components that quickly conveys a structure
and a communications approach. A software engineer choosing this architecture
need only mention the term to a software team to convey a lot of meaning. It is this
expressive power that makes patterns so attractive. However, as we will point out
more clearly below, there are many implementation details that have yet to be chosen
after a pattern, such as client-server, is decided upon. Here we will talk about such
issues with the Iterator pattern.

Integrating Patterns into CASE Tools 5

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

THE ITERATOR PATTERN
 In Gamma et al. (1995), the Iterator pattern is described. The purpose of this

pattern is to “provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation.” The intent here is to
permit transparency in the access and use of the aggregate object. This permits the
user of the aggregate to traverse it without having to know the details of its structure
and implementation. This is a primary OO design principle that permits the
encapsulation of particular modules of code to reduce errors and permit easy code
maintenance. This decouples the aggregate object from the rest of the code and
makes it easier to export to other applications. At the same time, the aggregate is
still usable by the application.

The basic structure of the Iterator pattern is shown in Figure 1. The client (the
code that uses the Iterator) is shown in light print. There are two roles in this pattern
known as Aggregate and Iterator. The client must know of the existence of both.
It calls the CreateIterator method in Aggregate to create Iterator, which then assists
it to traverse Aggregate. But since this method is a part of the Aggregate class, the
details of how to iterate and, thus, create the Iterator are hidden from the client. The
client, however, also knows that the methods First, Next, IsDone, and CurrentItem
will be available once the Iterator is created.

Notice that the pattern makes use of abstract and concrete classes in the
definition of the Iterator and Aggregate. An abstract class is used to describe the
characteristics, structure and methods that subclasses in an implementation may
have in common. Each of the subclasses are said to inherit these characteristics and
may have additional structure and behavior. An abstract class cannot be instantiated
in a given program. It is used only to convey these structures and behaviors. The more
specialized concrete classes are instantiated in the implementation as objects.

Figure 1. Iterator Pattern, Basic Structure

ClientAggregate

First()
Next()
ISDone()
CurrentItem()

Iterator

CreateIterator()

CreateIterator()

Concrete IteratorConcrete Aggregate

6 Peckham & Lloyd

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The use of abstract and concrete classes here permits, for example, the creation
of method signatures in the abstract class that are generic enough to be reused in a
variety of applications and a concrete version with the elaborated code to be used
in a specific application.

To implement the Iterator pattern the software engineer must normally read a
textual description in a book, develop a refined design and implement “by hand” the
features of the pattern that are important for the intended application. For example:

Delete iterators: To prevent “memory leaks” caused by objects that are
created and then not deleted once they are no longer needed in the program, there
needs to be a means for the client to delete the Iterator object. This is especially
important in C++ where memory management is not supplied by the run-time
program. Gamma et al. (1995) suggest that an IteratorPtr class is created to simplify
the code needed to access the Aggregate object and to assure that a destructor is
called to remove the object when it is no longer used. Most of the code can be
generated when the Iterator pattern is chosen. Thus, the software engineer saves
time and prevents errors by not having to code this feature each time the pattern is
used.

The above is a feature that should always be used when coding the pattern in
C++. In the next example, we look at pattern options that would need alternative
implementations for the same feature (iteration). In some cases, different code can
be generated; therefore, the CASE tool provides the software engineer with a means
to choose the specifics of a particular implementation.

List Iteration Choices
There are two choices for iterating over the aggregate object — internal (II) and

external (EI). If the client controls the iteration by explicitly requesting the next
element from the iterator, then this is EI. In this mode the client requests an element,
does some processing with the returned element and then contacts the aggregate
object again for the next object. The other alternative is that the iterator carries out
the whole iteration once the client begins the process. In this mode, the aggregate
object will return a list (or other multi-valued) result. The intended application will of
course determine this choice, and the software engineer should merely implement the
appropriate method.

Once II or EI is chosen, there are additional alternatives for implementation of
the Iterator pattern. Another challenge here is that we are planning a technique to
generate code to iterate over an aggregate object without knowing in advance its type
and thus the functions needed to iterate over it. For example, if generating code in
a language that does not have adequate support for the parameterization of the
functions used to iterate, then the internal iteration alternative can be clumsy to
implement. There are two choices available to the software engineer: (1) Pass a
pointer to the function needed to be applied iteratively, or (2) Use inheritance to

Integrating Patterns into CASE Tools 7

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

resolve the particular functions needed. Again the software engineer can select the
best choice.

Some of the examples above bring up an important point: The choices provided
to the software designer will sometimes be dependent on the language to which the
pattern is mapped. So different strategies will need to be used when generating code
in different languages. Similarly the software design interface will sometimes need
to be asked different questions depending on the implementation language intent. The
designer of the pattern interface will need to separate the language independent and
dependent alternatives of the patterns.

The code for applying the internal Iterator is given in Gamma et al. (1995),
although knowing the type of aggregate object on which the iteration is being carried
out and the type of activity performed during iteration is needed. In the example given,
the aggregate object was a list of employees and the operator applied upon iteration
was PrintEmployees. The code generation facility in the CASE tool can generate the
code and leave the specific aggregate and operators blank with instructions for the
software engineer to fill in. For example, here is a passage of C++ code needed to
implement an internal Iterator:

template <class Item>
class ListTraverser {
public:
 ListTraverser (List <Item>* aList);
 Bool Traverse ();
protected:
 Virtual bool ProcessItem (const Item&) = 0;
 private: ListIterator<Item> _iterator;
 };

This code can be generalized and given slots to be filled in for the particular
application in question. For example the software engineer can be presented with the
following that includes a legend that annotates the code with a guide of how to fill in
the italicized code:

template <class AggItem>
class AggTraverser {
public:
 AggTraverser (Agg <AggItem>* AggType);
 Bool Traverse ();
protected:
 Virtual bool ProcessAggItem (const AggItem&) = 0;
 private: AggIterator<AggItem> _iterator;
 };

8 Peckham & Lloyd

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In some cases, the implementation choices are not very specific and very little
code can be generated. But, even if only class and method headers are generated,
this can assist the programmer in making sure that all of these necessary features
are present.

FUTURE WORK
At this point in time, we have only analyzed a few patterns for their semantics.

In the future we plan to continue analyzing other patterns and soon look for underlying
structures that are similar or the same in collections of patterns. Then we will devise
an internal language to represent these constructs. This will be used to store the
software designer’s software specification with patterns and then used to generate
the code. Similarly, while there is a UML to specify the design of an application, we
might augment the notation of UML with the ability to specify the patterns that are
integrated within the design and to clearly and precisely indicate the alternative
pattern implementations.

A means is needed to integrate various patterns within a design and to integrate
the patterns with other software. For example, the pattern books outline how specific
patterns can be used with each other in a system design. The CASE tool can use
this information to offer assisting and cooperating patterns to the designer and begin
to generate the code. It can also provide checking assistance in identifying problems
or errors that are frequently made when specific patterns or combinations of patterns
are selected.

Some preliminary ideas for a pattern wizard to be integrated into a CASE tool
and for a pattern code generation system have been outlined in Qin (2002).

CONCLUSIONS
Software patterns can be very useful in preventing software designers and

developers from “reinventing the wheel” for every new utilization of a specific
pattern. This can lower the cost of software development and maintenance,
providing more robust and error-free code. In addition, applications employing
patterns are more likely to have a shorter development period. Currently software
patterns have not been integrated into CASE tools in a robust manner. In this paper
we have shown how we envision the integration of patterns into CASE design tools
to assist in the selection of the proper patterns and to partially generate the code to
implement the Iterator pattern. As is pointed out in the previous section, there are
numerous other applications for this type of software tool and these will be explored
in future research.

Integrating Patterns into CASE Tools 9

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ACKNOWLEDGMENT
Thank you to Heng Chen, Chen Gu and Mingsong Zheng of Professor

Peckham’s CSC 509 (Software Engineering) class for beginning to outline the
semantics of this pattern in a classroom exercise for us.

REFERENCES
Alhir, A., & Oram, A. (1998). UML in a nutshell: A desktop quick reference

(nutshell handbook). Sebastapol, CA: O’Reilly and Associates.
Beck, D., et al. (1996). Industrial experience with design patterns. Proceedings of

ICSE-18 (International Conference on Software Engineering) (pp. 103-
113) Technical University of Berlin, Germany.

Boggs, W., & Boggs, M. (2002). Mastering UML with rational rose 2002.
Almeda, CA: Sybex.

Booch, G. (1994) Object oriented analysis and design (2nd ed.). San Francisco,
CA: Benjamin Cummings.

Brawner, J., MacKellar, B., Peckham, J., & Vorbach, J. (1997). Automatic
generation of update rules to enforce consistency constraints in design
databases’. In Spaccapietra & Maryanski (Eds.), Proceedings of the 7th
IFIP 2.6 Working Conference on Database Semantics (DS-7) Searching
for Semantics: Data mining, reverse engineering, etc. Chapman and Hall.

Budinsky, F., Finnie, M., Vlissides, J., & Yu, P. (1996). Automatic code generation
from design patterns. IBM Systems Journal 35(2), 151-171.

Coad, P., & Yourdon, E. (1991). Object-oriented analysis (2nd ed.). Upper Saddle
River, NJ: Yourdon Press.

Florijn, G., Meijers, M., & van Winsen, P. (1997). Tool support for object-oriented
patterns. Proceedings of ECOOP (European Conference on Object-
Oriented Programming) ’97, Jyväskylä, Finland.

Gamma, Helm, Johnson, Vlissides, & Booch. (1995). Design patterns: Elements
of reusable object-oriented software. New York: Addison-Wesley.

Jacobson, I. (1992). Object-oriented software engineering. New York: Addison-
Wesley.

Paulisch, F. (1996). Tool support for software architecture. SIGSOFT (Special
Interest Group on Software Engineering) ’96 Workshop. San Francisco, CA
(pp. 98-100). Joint Proceedings of the second international software architec-
ture workshop (ISAW-2) and international workshop on multiple perspectives
in software development (Viewpoints ’96) on SIGSOFT ’96 workshops. San
Francisco, CA. New York: ACM Press.

Peckham, J., & MacKellar, B. (2001, April). Generating code for engineering design
systems using software patterns. Artificial Intelligence in Engineering,
15(2), 219-200.

10 Peckham & Lloyd

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Peckham, J., MacKellar, B., & Doherty, M. (1995). A data model for the extensible
support of explicit relationships in design databases. VLDB (Very Large
Databases) Journal, 4(2), 157-159.

Qin, Y. (2002) Use of design patterns in case tool environment. Unpublished
master’s thesis, University of Rhode Island, Kingston.

Rumbaugh, J., et al. (1991). Object oriented analysis and design. Upper Saddle
River, NJ: Prentice-Hall.

Sommerville, I. (2001). Software engineering (6th ed., p. 4). Addison Wesley.
Wirfs-Brock, Wilkerson, & Weiner, L. (1990). Designing object-oriented soft-

ware. Upper Saddle River, NJ: Prentice-Hall.

Petri Nets with Clocks 11

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter II

Petri Nets with Clocks for
the Analytical Validation of

Business Process
Gabriel Vilallonga

Universidad Nacional de San Luis, Argentina

Daniel Riesco
Universidad Nacional de San Luis, Argentina

Germán Montejano
Universidad Nacional de San Luis, Argentina

Roberto Uzal
Universidad Nacional de San Luis, Argentina

ABSTRACT
This chapter introduces a theoretical frame for the Process Definition (PD)
validation in Workflow or in those processes with temporal restrictions. The
Interface 1 of Workflow makes the PD of the Work Flow Reference Model. This
interface combined with Petri Nets with Clocks (PNwC) allows the formalization
and verification of systems, based on the Petri Net theory and the extension.
This extension allows the specification of temporal requirements via clocks
specification, using temporal invariants for the places and temporal conditions
in the transitions.

12 Vilallonga, Riesco, Montejano & Uzal

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In this chapter we present a technique to validate the Process Definition (PD)
by means of PNwC. The algorithm for the analysis of a PNwC allows correction
of errors in the modeling of the time variable. The algorithm generates
information about temporal unreachable states and process deadlocks with
temporal blocks. Also, it corrects activities invariants and transitions conditions.

INTRODUCTION
Recently, Business Process Reengineering (BPR) has become one of the most

popular topics at conferences on business management and information-systems
design. BPR is the fundamental rethinking and radical redesign of business processes
to achieve dramatic improvement in critical, contemporary measures of perfor-
mance, such as cost, quality, service and speed. BPR implies taking a comprehensive
view of the entire existing operation, analyzing and trying to redesign it in a way that
uses new technology to better serve the customers (Jacobson, Ericsson & Jacobson,
1995).

Workflow is an important and valuable technology in BPR. It is a discipline,
practice and concept. Most workflow engines can handle very complex series of
processes with a workflow system. Workflow is normally comprised of a number of
logical steps, each of which is known as an activity. An activity can involve manual
interaction with a user or a workflow participant, or the activity might be executed
using machine resources. Delivering work to users does increase efficiency.
Automating the actual work provides huge increases in efficiency and provides
managers with the facilities to create a virtual organization and participate effectively
in the e-commerce revolution (Allen, 2000).

Petri Net (PN) is a tool for studying and modeling systems. PN theory allows
system modeling and obtaining a mathematical representation of the system
(Peterson, 1981). An important part of these system requirements are the temporal
ones. The growing complexity and critical nature of these systems have motivated
the search for verification methods (Alur, Courcoubetis & Dill, 1990; Ghezzi,
Mandrioli, Morascas & Pezze, 1991). The PN models use an efficient method of
analysis of network behavior. More networks are analyzed by simulations than by
the generation of the state space. This does not guarantee that the states with very
low probability happen in long runs. The analysis of these states with low probability
can be the object of a serious analysis, for example, the loss of a message in a
communication network. The systematic analysis of the state space takes all the
events into account, even those that are improbable.

The PNwC proposed in Montejano, Riesco, Vilallonga, Dasso and Favre (1998)
and Riesco, Montejano, Vilallonga, Dasso and Uzal (1999) has a high expressive
power in the concurrent and asynchronous process modeling and allows modeling
real-time systems. PNwC includes additional temporal elements, clocks, which are

Petri Nets with Clocks 13

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

not taken into consideration in the literature concerning the extensions of PN with
time (Ghezzi, et al., 1991; Zuberek, 1991; Ghezzi, Mandrioli, Morascas & Pezze,
1989; Buy & Sloan, 1994). In addition to the power of structure analysis and system
behavior that PN has, there has been an added structure of an algorithm that allows
for the temporal analysis of the extended PN (Montejano, 1998). This algorithm
detects deadlock and temporal blockings as well as the consistency of the restric-
tions.

We present here a technique for a temporal validation of the workflow PD using
PNwC, allowing for the study of the models through a theory like PNwC.

WORKFLOW
Workflow is the automation of a business process, in whole or part, during which

documents, information or tasks are passed from one participant to another for
action, according to a set of procedural rules (Allen, 2000). A Workflow Manage-
ment System (WMS) is a system that defines, creates and manages the execution
of workflow through the use of software, running on one or more workflow engines,
which are able to interpret the process definition, interact with workflow participants
and, where required, invoke the use of information technology (IT) tools and
applications.

The definition of a WMS is that it can often interpret a workflow definition
produced separately, manage triggers, alarms, and interoperate with external
systems. It is important to note that while this definition covers the spectrum of
workflow systems, it excludes simple relational database systems and e-mail with
programmable delivery mechanisms.

All workflow systems are process oriented. A process definition, a represen-
tation of what should happen, is created, and it typically is comprised of some
subprocess. This process would be split into a number of different sub processes.
Each process and subprocess is comprised of some activities. An activity is a single
logical step in the process. It is sometimes not practical to automate all activities
during a single project. Therefore, workflow executes automated activities while
process definition will describe all activities whether they are automatic or manual.

Interface 1: PD
The WRM that describes five interfaces represents the Workflow Engine

Interoperability. We will focus on Interface 1 and PD tools to work on the definition
of processes (Workflow Management Coalition, 1999b). The Interface 1 definition
deals with passing PD from external tools to the workflow engine where it is enacted.
The interface also defines a formal separation between the development and run-
time environments, enabling a PD, generated by one modeling tool, to be used as input
to a number of different workflow run-time products. This meets the often-

14 Vilallonga, Riesco, Montejano & Uzal

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

expressed user’s requirement for the independence of modeling and workflow run-
time products.

A PD is defined as “the representation of a business process in a form that
support automated manipulation, such as modeling, or enactment by a workflow
management system. The process definition consist of a network of activities and
their relationships, criteria to indicate the start and termination of the process, and
information about the individual activities, such as participants, associated IT
applications, and data, etc.” (Workflow Management Coalition, 1999a).

The PD is interpreted by the workflow engine, acting as a template for the
creation and control of that process enactment. The PD may contain references to
sub-processes, separately defined, which make up part of the overall PD. An initial
PD will contain the minimal set of objects and attributes necessary to initiate and
support process execution.

The Interface 1 supports PD Import and Export. This interface includes a
common Meta-Model for describing the PD (this specification), also a textual
grammar for the interchange of PDs (Workflow Process Definition Language
(WPDL)) and APIs for the manipulation of PD data.

The WPD describes the process itself. The Meta-Model describes the top-level
entities contained within a WPD, their relationships and attributes (Figure 1). These
entities provide header information for the PD and are therefore related to all other
entities in that process. For each top-level entity there is an associated set of
attributes, some mandatory and others optional, which describe the characteristics
of the entity.

Figure 1. Metamodel Top-Level Entities

Petri Nets with Clocks 15

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In this section we will concentrate on the relationship between different
activities, Transition Information and their implementation.

Workflow Process Activity
A PD consists of one or more activities, each comprised of a logical, self-

contained unit of work within the PD. An activity represents work, which will be
processed by a combination of resource and/or computer applications. The scope of
an activity is local to a specific PD.

An activity may be atomic and, in this case, is the smallest unit of self-contained
work, which is specified within the process. An activity may generate several
individual work items for presentation to a user invoking, such as different IT tools.

The Workflow Activity Definition is used to define each elementary activity that
makes up a workflow process. This workflow has attributes that may specify activity
control information, implementation alternatives, performer assignment, run-time
relevant information like priority, and data used in BPR and simulation situations.

Entity Type Relationship for Different Activity Types
The activity description is used to describe several different activity types. All

these activities share the same general activity attributes, but the usage of other
attributes, particularly participant and applications assignment and the use of
workflow-relevant data, may be specific to the activity type.

Figure 2. Activity Structure and Transition Conditions

16 Vilallonga, Riesco, Montejano & Uzal

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In general normal transition restrictions may be declared at the level of the
activity boundary within the surrounding process, whereas specialized flow condi-
tions (subflow, loops or internal parts of a route activity) operate “internal” to the
activity (but may reference activities within the surrounding PD). Figure 2 is used to
illustrate the generic structure of an activity and the above variants.

An activity may be implemented in one of four ways: No Implementation — this
activity is implemented by manual procedures; Application — the implementation is
supported by, one or more applications; Subflow — the activity is refined as a
subprocess. This subprocess may be executed synchronously or asynchronously and
a Loop — a loop control and the loop body. The loop body is connected with the Loop
Control Activity by the corresponding Loop connecting Transitions.

The Transition Restriction has special attributes like JOIN and SPLIT descrip-
tion. A JOIN describes the semantic if multiple incoming Transitions exist for an
activity. There are two possible ways to express a JOIN: AND JOIN and XOR
JOIN. The AND JOIN can be treated as a “rendezvous precondition” of the activity.
The activity is not initiated until the transition conditions on all incoming routes are
TRUE. The XOR JOIN initiates the activity when the transition conditions of any of
the incoming transitions are True.

A SPLIT describes the semantics of multiple outgoing transitions for an activity.
There are two possible ways to express a SPLIT: AND SPLIT and XOR SPLIT.
An AND SPLIT with transition conditions may be referred to as “conditional AND,”
“multiple-choice OR” or “nonexclusive OR.”. The XOR-SPLIT has a list of
identifiers of outgoing transition activity, representing alternatively executed transi-
tions.

Activities are related to one another via flow control conditions (transition
information). The Transition Information describes possible transition between
activities and the conditions, which enables or disables during the workflow
execution.

A PD is seen as a network of edges between the activity nodes and as a
workflow process diagram. All edges are directed and given by a pair of activities
(From <node>, To <node>). The edge of the activity net may be labelled by transition
conditions. Transition from one activity to another may be conditional (involving
expressions that are evaluated to permit or inhibit the transition) or unconditional. A
transition condition for a specific edge enables that transition if the condition is
TRUE. If no routing condition is specified, the transition behaves as if the condition
with a value TRUE is present. If there are multiple incoming or outgoing transition
activities, then further options, expressing control flow restrictions and condition
evaluations semantics, are provided in the activity entity definition (AND/XOR
variants of SPLIT/JOIN).

There are two possible transitions: “regular” and loop-connecting. For “regular”
transitions, it is possible to define or synchronize multiple, concurrent or alternative,
control threads, JOIN, SPLIT, and sequence transitions between activities, cascad-

Petri Nets with Clocks 17

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ing transition/conditions, and blocking restrictions. The transitions within a process
may result in the sequential or parallel operation of individual activities within the
process. The information related to associated SPLIT or JOIN conditions is defined
within the appropriate activity with split a form of “post-activity” processing in the
to-activity. Loops-connecting transitions allow the expression of cycles in the
transitions network. They connect the body of a Loop with the Loop Activity that is
implemented by this body.

PETRI NETS WITH CLOCKS
PN is limited in its modeling and design power when used for systems where

time is part of the system specification. Timed Graphs (TG) (Sifakis & Yovine, 1996;
Olivero, 1994; Yovine, 1993; Daws, Olivero, Tripakis & Yovine, 1996), on the other
hand, are a useful tool to specify system time constraints.

The power inherent of TG and PN has motivated us to extend PN theory with
temporal requisites using TG. In addition to the power of structure analysis and
system behavior that PN has, we have added an algorithm structure that allows the
temporal analysis of the extended PN (Riesco, 1999).

With the extension of PN using TG, we get the advantage in modeling systems
with asynchronous and concurrent behavior (PN) and the possibilities of formalizing
systems with temporal requisites. The PNwC described in this paper is Timed Place
PN, since the time is associated in the places. This time is specified by means of a
place invariant using clocks. The invariants represent deadlines. When the time
reaches the deadline, a transition that has this place, like an input place, must be
executed.

A transition is enabled when the input places have the necessary number of
tokens and, also, the values of the system clocks satisfy the invariants of each input
place. The firing of a transition takes place if this is enabled and, using the system
clocks, has to satisfy the condition associated with this one. This new firing causes
the creation of tokens in outputs place and the update of the system clocks.
Definition 1.

A Clock x: Clock x is a positive real variable, i.e., x ±±±±± R+0 = { z / z ±±±±± R+ ½½½½½
z = 0}; where R+ are all real positives.

Definition 2.
Set of all Clocks X: X = {x1, …, xk} is the set of all Clocks.

Definition 3.
Restricted predicates :::::X: :::::X is a set of restricted predicates on the places
defined as a Boolean combination of atoms that take the form x # c, where x
± ± ± ± ± X, # is a binary relation on the set {<, >, =, �����, �����} and c ±±±±± R+0.

Definition 4.
Restricted predicates <<<<<X: <<<<<X is a set of restricted predicates on the
transitions defined as a Boolean combination of atoms that take the form c #

18 Vilallonga, Riesco, Montejano & Uzal

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

x # c’ or the form x # c’ where x ± ± ± ± ± X, # is a binary relation on the set {<, =,
�����}, c, c’ ±±±±± R+0. Every clock in <<<<<x must have an upper limit c’.

Definition 5.
Valuation VaL: VaL is a set of all vectors of dimension k, where k is the
cardinality of set X, and each element of the vector belong to R+0,
VaL = {v / v = (v1, …, vk) ¼¼¼¼¼ k = | X | ¼¼¼¼¼ �����j, 1����� j ����� k · vj ±±±±± R+0}.

Definition 6.
PNwC: A PNwC is a PN extended based on TG with a finite set of clocks
whose values are incremented uniformly with time. The restrictions associated
with the system are expressed by invariants on places and the association of
an enabling condition with each transition. A clock can be reset in each
transition. Also the firing of a transition shall be an instantaneous action that
does not consume time. Time runs only at places and for no more than what is
established by the associated invariant. Formally the structure of a PNwC is a
t-uple:
PNwC = < P, T, I, O, X, Inv, C, A >, where:
• P = { p1, p1, …, pn } is a finite set of places, n ����� 0.
• T = { t1, t1, …, tm } is a finite set of transitions, m ����� 0, P ªªªªª T = ©©©©©.
• I: T ����� P�����, is the input function and a mapping from transitions to bags of
places.
• O: T ����� P�����, is the output function and a mapping from transitions to bags of
places.
• X is in Definition 2.
• Inv: P � :� :� :� :� :, associates to each place pi ±±±±± P, a restricted predicate ::::: ± :± :± :± :± :X
(Definition 3) called place invariant.
• C: T � <� <� <� <� <, associates to each transition t ±±±±± T, a restricted predicate < ±< ±< ±< ±< ±
<<<<<X (Definition 4) called transition condition.
• A: T � � � � � w, set of clocks of the transition that are initialized to zero w °°°°° X.

Definition 7.
Affectation D D D D D: An affectation DDDDD is a function DDDDD: VaL x T ����� VaL
DDDDD(v, t) = v’ iff �����xi ± ± ± ± ± X · [xi ±±±±± A(t) ÁÁÁÁÁ v’(i) = 0 ¼¼¼¼¼ xi ²²²²² A(t) ÁÁÁÁÁ v’(i) = v(i)].

Definition 8.
Marked Timed Petri Net (MPNwC):A MPNwC is defined as MPNwC =
< P, T, I, O, X, Inv, C, A, PPPPP > where P, T, I, O, X, Inv, C and A are in
Definition 6, and P ±P ±P ±P ±P ± M.
The marking PPPPP is as an n-vector PPPPP = (PPPPP1, PPPPP2 … PPPPPn), with n = | P | and PPPPPi ± ± ± ± ± Nat0
with 1����� i ����� n.
The set of all marking M is the set of all vectors of dimension n, M °°°°° Nat0

n.,
M = {PPPPP = (PPPPP1, …, PPPPPn) ¼¼¼¼¼ n = | P | ¼¼¼¼¼ �����i, 1 ����� i ����� n · PPPPPi ±±±±± Nat0}

Petri Nets with Clocks 19

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Definition 9.
Invariant of the Marking InvM(PPPPP): Invariant of the Marking InvM(PPPPP) is the
conjunction of the invariants of the places where the number of tokens is
greater than zero.
InvM(PPPPP) iff ///// Inv(pi) where pi ±±±±± P ¼ P¼ P¼ P¼ P¼ P(pi) > 0

Definition 10.
A Predicate applied to Valuation)))))[v]:)))))[v] iff ((x i # c) is in)))))) ÁÁÁÁÁ v(i)
c holds, where x i ±±±±± X, # is a binary relation on the set {<, >, =, �����, �����}, c ±±±±±
R+0.

Definition11.
A State q: A state of a PNwC is a pair q = (P, v), P ± M and v ± VaL, where
the valuation v of the clocks satisfy the invariants of the net’s places, i.e.,
InvM(P)[v] holds.

Definition 12.
The set of all states Q: The set of all possible states of a PNwC is represented
by Q °°°°° M x VaL such that Q = {(PPPPP, v) | P ±P ±P ±P ±P ± M ¼¼¼¼¼ InvM(PPPPP)[v] holds }
Execution of MPNwC
The execution of the MPNwC is done using the successor marking and the
system state changes.

Definition 13.
Enabled Transition in MPNwC E(t, q): Let q = (PPPPP, v) be a possible state
of a PNwC, where PPPPP is a marking and v the valuation of the clocks. In q, the
valuation of the clocks satisfies the associated invariants to each place in the
marking by Definition 11 A transition t ±±±±± T in a MPNwC is enabled E(t, q) in
the state q = (PPPPP, v), E(t, q) iff ����� pi ±±±±± I(t) · PPPPP(pi) ����� #(pi, I(pi)) ¼¼¼¼¼ C(t)[v] holds
(Definitions 6 and 10).

Definition 14.
System State Changing ����� : The System State Changing is represented by
the following expression:
SC = Ä 4, � Ô,
where Q is the set of all states.
The changing relation � °� °� °� °� ° Q x (T ««««« R+) x Q has two types of changing:
temporal and instantaneous. The notation is q �����time q’ for temporal changing
and q �����t q’ for instantaneous changing, where q, q’ ± ± ± ± ± Q and time, t ±±±±± T «««««
R+.

Definition 15.
Temporal State Changing �����time: Temporal state changing represents the
elapse of time by a changing labeled time from the state (PPPPP, v) to (PPPPP, v+time),
(PPPPP, v) ±±±±± Q, time ± ± ± ± ± R+0.
(PPPPP, v) �����time (PPPPP, v+time) iff �����y, y ±±±±± R+0 · 0 � y � time ÁÁÁÁÁ InvM(PPPPP)[v+y] holds
(Definition 9).

20 Vilallonga, Riesco, Montejano & Uzal

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Definition 16.
Instantaneous or discrete State Changing (by transition) �����t: An
instantaneous state changing is given by the execution of a transition t ±±±±± T,
where the changing is labeled t, from the state (PPPPP, v) to state (PPPPP’, v’) as
Definition 14.
(PPPPP, v) �����t (PPPPP’, v’) iff E(t, (PPPPP, v)) ¼¼¼¼¼ DDDDD(v, t) = v’ (Definitions 7 and 14).

Analysis Method
Analysis of a PNwC is based on the exploration of the symbolic execution of

the system being analyzed. This execution is studied using the PN reachability graph
(Definition 12). When the reachability graph is constructed, each graph node
represents a symbolic state. The previous definitions are necessary for formalizing
the process model that employs PNwC. The analysis algorithm allows model
checking to detect errors in the structure as well as modeling of the time variable.
In contrast to the algorithm described in (Henzinger, Nicollin, Sifakis & Yovine,
1994), this algorithm allows the analysis of concurrent and asynchronous processes
as well as the time variable.

WPD AND THE PNwC
This section shows the relation between Meta-Model entities and the PNwC.

As expressed previously, the activities are single logical steps. An activity represents
work that will be processed by a combination of resource and/or computer
applications. Also, an activity may be atomic and, in this case, is the smallest unit of
self contained work that is specified within the process.

The motivations behind this work are the validation of the WPD about to the time
variable. By means of the validation that is made with the PNwC, the simulation tests
are avoided, keeping the usual benefits. In some cases, the networks are analyzed
by means of simulations rather than by the generation of the state space. This does
not guarantee that the states with very low probability happen in the long run. The
analysis of these states with low probability can be an object of a serious analysis.
The systematic analysis of the state space takes all the events into account, even
those improbable ones.

Semantic Interpretation of Workflow Activities Using
PNwC

This section shows the relation between the activities in WPD using PNwC.
This allows that the activities definition may be translated to PNwC. This PNwC can
be validated avoiding the simulation phase. In the following, each one of the
structures of activities, with their attributes, is related to a PNwC.

Petri Nets with Clocks 21

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Workflow Activity Definition is used to define each elementary activity that
make up a workflow process. The attributes are defined with the necessary
information to correct the relationships with the other activities.

The place notation in a PNwC is the following, Pi, place name and Invi
(Definitions 3, 6 and 9), invariant associated to Pi. A Transition, Tj, is the transition
name, Cj (Definitions 4 and 6), the condition associated to Cj, and Aj (Definitions 6
and 7) is the affectation, reset clocks, associated to Cj.

The general attribute of an activity is LIMIT, an integer that expresses the
expected duration for time management purposes in DURATION_UNIT. In a
PNwC it is expressed by the condition associated to the activity shown in Figure 1.
This attribute is local to the activity and may be expressed by a clock, but the potential
of PNwC allows expression of more complex conditions and invariants. These
expressions can check the activity limit and other temporal specifications by means
of Boolean expressions (Definitions 3 and 4).

The incoming and outgoing transitions are used in the same way for all the
activities as shown in Figure 3. The incoming transitions — JOIN elements — are
described by restriction transitions like AND JOIN or XOR JOIN. In contrast, the
outgoing transitions — SPLIT elements — are described by means of AND SPLIT
and XOR SPLIT restrictions. In PNwC both are represented by a place, which join
all conditions, temporal restrictions, associated to the transitions by means of the
invariant and Boolean combination.

The Generic Activity in Figure 3, I1 and I2 is represented by the transition T1,
and the limit is expressed by the condition C1. If there exists any new measurement,
it can be initiated by the affectation A1.

The ROUTE Activity in Figure 3, II1 and II2 is a “dummy” activity that permits
the expression of cascading transition condition; this activity does not consume time.
For this activity, the corresponding transition in the PNwC representation is TRUE.
This transition always fires (Definitions 13).

The Loop Activity in Figure 3, III1 and III2 is refined as a loop and controls the
execution of the loop repetition and loop body. In PNwC the transition T1 is the loop’s
beginning transition and, in P2, Inv2 evaluates the loop expression and loop control.
If it’s true, execute the loop body. They are represented by P2, T2, P3, and T3. T4
represents the loop-end transition.

The SUBFLOW Activity in Figure 3, IV1 and IV2 is refined as a subprocess.
This subprocess may be executed synchronously or asynchronously. The nature of
PN is to model asynchronous and concurrent systems. The SUBFLOW Activity is
represented perfectly by a subnet or by a place, P2, representing the abstraction of
this process.

Using these equivalencies, once the model is translated to a PNwC, it may be
validated by the algorithm presented in Riesco et al. (1999). The algorithm is oriented
to the verification and correction of errors in the modeling of the time variable. The

22 Vilallonga, Riesco, Montejano & Uzal

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

analysis is based on the exploration of the symbolic execution (Definitions 13, 15 and
16) of the system. This generates information about temporal unreachable states and
processes with temporal blocks. Also it suggests corrections for place invariants and
transition conditions.

EXAMPLE
Figure 4 shows a process to make the loss by resignation, death or retirement

or hours chairs of an educationor (Process Manual, 1997). This process was
implemented in the Ministry of Education of the San Juan province, Argentina. This
process must be not exceed eight working days. In the process, different adminis-
trative units take part.

The tasks involved in the process are: Specific time of work, i´ ; and Time
of transfer average j´ . These numbers represent the time, expressed in minutes,
for specific work.

Figure 3. Semantic of WF Activities Using PNwC

I1 - Generic Activity

I2 - Equivalent PNwC

II1 - ROUTE Activity

II2 - Equivalent PNwC

III1 - LOOP Activity

III2 - Equivalent PNwC

(Each transition and place have
their owns restrictions)

IV1 - SUBFLOW Activity

IV2 – Equivalent PNWC

(Join
Element)

Activity
Body

(Split
Element)

P1 – Inv1

T1 – C1 – A1

P2 – Inv2

(Join
Element)

NULL

(Split
Element)

P1 – Inv1

T1 – TRUE – A1

P2 – Inv2

(Join
E.)

Loop
Ctrol.

(Split
E.)

Loop
Body

loop
begin
trans.

loop
end

trans.

Abstraction
of a PNwC

P1 – Inv1

T1 – C1 – A1

P2 – Inv2

T2 – C2 – A2

P3 – Inv3

(Join
Elem.)

Sub-
Flow

(Split
Elem.)

call

Sub-
Process

return

(Join
Element)

Activity
Body

(Split
Element)

Petri Nets with Clocks 23

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the following diagram, we express places with a circle. Associated to this, the
text Pi, place name, simply means P, Place, and i is the number of tasks in the original
diagram. Next to the place name is expressed the Invariant, an expression,
associated to this place /* def 3, 6 */.

The transitions have the names, the condition, (Definitions 4 and 6) and the
affectation (Definitions 6 and 7).

Once the translation is made (see Figure 5), the validation algorithm is executed
on the PNwC. This will give the information about the model.

CONCLUSIONS
We have presented a technique to translate WPD to a PNwC. We believe this

is very important for the verification of the system integrity, regarding its structure
and its temporal specifications. Deadlock detection and temporal blockings, as well
as the consistency of the restrictions, have been proposed in previous work. PNwC
has highly expressive power in the concurrent and asynchronous process modeling
and has the possibility to model the temporal facets of the WPD. PNwC includes
additional temporal elements and clocks, which are not taken into consideration in the
literature, concerning the extensions of PN with time.

Modeling and analysis of business organizations is required for the purpose of
redesigning an enterprise’s business process to make the organization more effective
(Business Process Reengineering), as well as to establish advanced coordination
technology. We presented an abstract frame of WPD translation to a PNwC.

Our work proposes the application of the PNwC for the WPD, covering the
deficit of modeling and the validation of the time variable in the activities and

Figure 4. Process for the Loss by Resignation, Death or Retirement or Hours
Chairs of an Educational

Docente

Unidad
Educativa

Oficina de
Personal

Unidad de
Despacho

Unidad de
Ministerio de y

Educación

Poder

Ejecutivo

Completar solicitud
de Baja

3´

�������������
�������������19´

1500´
1

16´

Actualizar Legajo
Actualizar

Legajo

�������������
�������������

10´

1500´

����������
����������
����������7´

2 8

Confec. Proyecto de Resolución
Ad-Referendum y Decreto

Archivar Resolución de
Baja

Archivar copia de
Decreto

�����������
�����������90´

500´

�������������
�������������19´ 3 5 7

Aprobar
Resolución de

Baja 16´ 16´
4

Aprobar Decreto de
Baja

1440´ 6

�������������
�������������10´

�����������
�����������20´

24 Vilallonga, Riesco, Montejano & Uzal

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

transitions avoiding the simulation phase. This work allows modeling business with
the variable time. This technique allows the qualitative analysis of WPD by means
of PNwC. This technique was successfully applied in the process reengineering in
the Ministry of Education of the San Juan province in Argentina.

REFERENCES
Allen, R. (2000). The Workflow Handbook 2001. Workflow Management

Coalition (WfMC). Retrieved from http://www.wfmc.org.
Alur, R., & Courcoubetis, A. D., & Dill, D. L. (1990). Model checking for real-time

systems. Proceedings of the Fifth Symposium on Logic in Computer
Science. IEEE C.S.P. (pp. 414-425) Los Alamitos, CA.

Buy, U. & Sloan, D. (1994, August). Analysis of real-time programs with simple
time. In Proceedings of the 1994 International Symposium on Software
Testing and Analysis (pp. 228-239) Seattle, WA: ACM.

Daws, C., Olivero, A., Tripakis, S., & Yovine, S. (1996). The tool Kronos. In Hybrid
Systems III: Verification and Control. (LCNS 1066, pp. 208-219) Springer
Verlag.

Education Ministry of San Juan Province. (1997). Diligenciar baja por renuncia,
fallecmiento o jubilacion (Process Manual Versión No. 2.1) San Juan,
Argentina.

Ghezzi, C., Mandrioli, D., Morascas, S., & Pezze, M. (1989). A general way to put
time in Petri Nets. Proceeding of the 5th International Workshop on

Figure 5. Process for the Loss by Resignation Translated to PNwC

Docente

Unidad

Educativa

Oficina de
Personal

Unidad de
Despacho

Unidad de

Ministerio de
Educación

Poder

Ejecutivo

Completar solicitud de Baja,
TRUE,
{ x:=0, Total:=0 }

P4, x <= 26

Confec. Proyecto de Resolución
Ad-Referendum y Decreto,
x <= 1590, { x:= 0 }.

Doc, TRUE
Llena Solicitus de Baja,
TRUE.

P1, TRUE

P2, x <= 1510

Actualizar Legajo,
x <= 1510, { x:= 0 }. P8, x <= 1507

Actualizar Legajo,
x <= 1507, { x:= 0 }.

P3, x <= 590 Archivar Resolución de Baja,
x <= 35, { x:= 0 }.

P7, x <= 35

Archivar copia de Decreto,
x <= 35, { x:= 0 }.

Aprobar Resolución de Baja,
x <= 26, { x:= 0 }.

P5, x <= 35

P6, x <= 1460

Aprobar Resolución de Baja,
x <= 1460, { x:= 0 }.

Petri Nets with Clocks 25

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Software Specification and Design, (pp. 60-67) Pittsburgh, PA: IEEE
Computer Society Press.

Ghezzi, C., Mandrioli, D., Morascas, S., & Pezze, M. (1991). A unified high-level
Petri Net model for time critical system. IEEE Transactions on Software
Ingeniering 17(2), 160-172.

Henzinger, T., Nicollin, X., Sifakis, J., & Yovine S. (1994). Symbolic model checking
for real-time systems. Information and Computation, 111(2), 193-244.

Jacobson, I., Ericsson, M., & Jacobson A. (1995). The object advantage. Business
process reengineering with object technology. Reading, MA: Addison
Wesley.

Montejano, G., Riesco, D., Vilallonga, G., Dasso, A., & Favre, L. (1998). An analysis
algorithm for timed Petri Nets. Software Engineering (SE’98) (pp. 271-274).
IASTED. Las Vegas, ACTA Press.

Olivero, A. (1994). Modélisation et analyse de systémes temporisés et hybrides.
Unpublished thesis Institut National Polytechnique de Grenoble, France.

Peterson, J. (1981). Petri Net theory and the modelling of systems. Englewood
Cliffs, NJ: Prentice Hall.

Riesco, D., Montejano, G., Vilallonga, G., Dasso, A., & Uzal, R. (1999). Underlying
formalism for a timed Petri Net algorithm. Proceedings of the IASTED
International Conference Software Engineering and Applications (pp.
348-352) Scottsdale, AZ: ACTA Press.

Sifakis, J., & Yovine, S. (1996). Compositional specifications of timed systems. In
13th Annual Symposium on Theoretical Aspects of Computer Science,
STACS ’96 (February, pp. 347-359) Grenoble, France. Lecture notes in
Computer Science 1046, Springer-Verlag.

Workflow Management Coalition. (1999a, February). Terminology & glossary
(Doc. No. WFMC-TC-1011, Version 3.0).

Workflow Management Coalition. (1999b, October). Interface 1: Process defini-
tion interchange process model. (Doc. No. WfMC TC-1016-P Version 1.1).
Retrieved from http://www.wfmc.org.

Yovine, S. (1993). Méthodes et outils pour la vérification symbolique de systémes
temporizes. Unpublished doctoral dissertation Institut National Polytechnique
de Grenoble, France.

Zuberek, M. (1991). Timed Petri Nets: Definitions, properties, and applications.
Microelectronics and Reliability, 31(4), 627-644.

26 Gibson

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter III

Software and Systems
Engineering: Conflict

and Consensus
Rick Gibson

American University, USA

ABSTRACT
This chapter will identify the key aspects of software engineering and systems
engineering in an effort to highlight areas of consensus and conflict to support
current efforts by practitioners and academics in both disciplines in redefining
their professions and bodies of knowledge.
By using the Software Engineering Institute’s Capability Maturity Model –
Integrated (CMMISM) project, which combines best practices from the systems
and software engineering disciplines, it can be shown that significant point of
agreement and consensus are evident. Nevertheless, valid objections to such
integration remain as areas of conflict. This chapter will provide an opportunity
for these two communities to resolve unnecessary differences in terminology
and methodologies that are reflected in their different perspectives and
entrenched in their organizational cultures.

Software and Systems Engineering 27

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTRODUCTION
With software an increasingly significant component of most products, it is vital

that teams of software and systems engineers collaborate effectively to build cost-
effective and reliable products. This chapter will identify the key aspects of software
engineering and systems engineering in an effort to highlight areas of consensus and
conflict to support current efforts by practitioners and academics in the both
disciplines in redefining their professions and bodies of knowledge.

BACKGROUND
In response to increasing concerns about software development failures, the

Software Engineering Institute (SEI) pioneered a software process improvement
model in 1988, with the fully developed version of the Capability Maturity Model for
Software (SW- CMMâ) appearing in 1993. The key processes were identified as
(Paulk, Curtis, Chrissis & Weber, 1993): Requirements Management; Integrated
Software Management; Software Project Planning; Software Product Engineering;
Software Project Tracking and Oversight; Intergroup Coordination; Software
Subcontract Management; Peer Reviews; Software Quality Assurance; Quantita-
tive Process Management; Software Configuration Management; Software Quality
Management; Organization Process Focus; Defect Prevention; Organization Pro-
cess Definition; Technology Change Management; and Training Program.

Since the early 1990s, there have been comparable improvement models
introduced in the system engineering community as well, some of which have been
published and widely accepted: Systems Engineering Capability Maturity Model
(SE-CMM) also known as the Electronic Industries Alliance Interim Standard (EIA/
IS) 731, Systems Engineering Capability Model (SECM) and the Integrated Product
Development Capability Maturity Model (IPD-CMM). In 1995, SEI recognized 18
process areas in systems engineering. The processes fell into three categories:
engineering process, project process and organizational process (Bates Kuhn, Wells,
Armitage & Clark, 1995). The resulting avalanche of models and standards has been
described by Sarah Sheard (Software Productivity Consortium) as a “Framework
Quagmire.” In December of 2000, the SEI initiated CMMISM project, which
combines best practices from the systems and software engineering disciplines.
(Note: CMMÅ and CMMISM are copyrights and service marks of the Software
Engineering Institute.)

ISSUES AND CONTROVERSIES
There is great hope that the SEI initiative will provide the impetus to overcome

some long-standing discipline boundaries. The nature of the systems and software

28 Gibson

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

engineering work has led to terminology differences rooted in the very descriptions
of the disciplines.

Issues and concerns regarding such integration were articulated by Barry
Boehm and Fred Brooks as early as 1975. Boehm suggested that the adoption of
systems engineering reliability techniques by software engineers was counterpro-
ductive. Moreover, Brooks’ Law suggests that a common system engineering
solution to schedule slippage (add more people) only makes a late software project
even later.

More recently, Boehm (1994) expressed concerns that, in spite of the central
function of software in modern systems, the two engineering disciplines have not
been well integrated. Boehm articulated the similarities and differences shown in
Table 1.

Software engineering as defined by the Institute of Electrical and Electronics
Engineers (IEEE Computer Society/Association for Computing Machinery, 2001) is:
(1) the application of a systematic, disciplined and quantifiable approach to the
development, operation and maintenance of software that is the application of
engineering to software; (2) the study of approaches as in (1) and further identifies
the body of knowledge for software engineering to be: software requirements,
software design, software construction, software testing, software maintenance,
software configuration management, software engineering management, software
engineering process, software quality and software engineering tools and methods.

Table 1. Software and System Engineering Similarities and Differences

Similarities Differences
Definition and analysis involves manipulation
of symbols

Software is not subject to physical wear or
fatigue

Highly complex aggregation of functions,
requiring satisfying (though not optimizing)
among multiple criteria

Copies of software are less subject to
imperfections or variations

Decisions driven by need to satisfy quality
attributes such as reliability, safety, security,
and maintainability

Software is not constrained by the laws of
physics

Easy and dangerous to suboptimize solutions
around individual subsystem functions or
quality attributes

Software interfaces are conceptual, rather than
physical — making them more difficult to
visualize

Increasing levels of complexity and
interdependency

Relative to hardware, software testing involves
a larger number of distinct logic paths and
entities to check

 Unlike hardware, software errors arrive
without notice or a period of graceful
degradation

 Hardware repair restores a system to its
previous condition; repair of a software fault
generally does not

 Hardware engineering involves tooling,
manufacturing, and longer lead times, while
software involves rapid prototyping and fewer
repeatable processes

Software and Systems Engineering 29

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A useful definition of systems engineering resides in an in process body-of-
knowledge document by the International Council on Systems Engineers (Leibrandt,
2001) that defines systems engineering in terms of product and process: “…product
oriented engineering discipline whose responsibility is to create and execute an
interdisciplinary process to ensure that customer and stakeholder needs are satisfied
in a high quality, trustworthy, cost effective and schedule compliant manner
throughout a system’s lifecycle.” The process starts with customer needs and
consists of stating the problem, investigating alternatives, modeling, integrating,
launching the system and assessing performance. Moreover, the system engineer
is responsible for pulling together all the disciplines to create a project team to meet
customers’ needs. The complete systems engineering process includes perfor-
mance, testing, manufacturing, costing, scheduling, training and support, and dis-
posal. The body of knowledge recognizes that systems engineering processes often
appear to overlap software and hardware development processes and project
management. Thus, systems engineering is a discipline that focuses on processes,
developing structure and efficient approaches to analysis and design to solve
complex engineering problems. In response to concerns about integrated develop-
ment of products, the system engineer plans and organizes technical projects and
analyzes requirements, problems, alternatives, solutions and risks. Systems engi-
neering processes are not specific to a particular discipline; they can be applied in any
technical or engineering environment.

In short, software engineering is defined by IEEE Standard 610.12 as the
application of a systematic, disciplined, quantifiable approach to the development,
operation and maintenance of software — that is, the application of engineering to
software. The International Council on Systems Engineering (INCOSE) defines
systems engineering as an interdisciplinary approach and means to enable the
realization of successful systems. The following are definitions of the two disciplines
from the CMMISM:
Systems Engineering — The systems engineering discipline covers the develop-

ment of total systems, which may or may not include software. Systems
engineers focus on transforming customer needs, expectations and constraints
into product solutions and supporting those product solutions throughout the
product life cycle.

Software Engineering —The software engineering discipline covers the develop-
ment of software systems. Software engineers focus on applying systematic,
disciplined and quantifiable approaches to the development, operation and
maintenance of software.

When different process models are in place within developer groups, such as
for systems engineering and software engineering of an organization, the organiza-
tions will have communication problems, be unable to improve their processes and
the combined performance another advances beyond the other in capability, then the
problems are even more profound (Johnson & Dindo, 1998).

30 Gibson

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In 2002, the SEI released a single integrated capability model for systems
engineering and software engineering, integrated product and process development,
and supplier sourcing. The new model, CMMISM, is intended to improve organiza-
tions’ development and maintenance of products. The CMMISM will eventually
replace the SEI’s Software Capability Maturity Model (Phillips, 2002). In the
integrated model (Software Engineering Institute, 2002), CMMISM, the categories
and processes are:

Process Management
• Organizational Process Focus
• Organizational Process Definition
• Organizational Training
• Process Performance
• Organizational Innovation and Deployment

Project Management
• Project Planning
• Project Monitoring and Control

Supplier Agreement Management Organizational
• Integrated Product Management
• Risk Management
• Qualitative Project Management

Integrated Teaming

Engineering
• Requirements Management
• Requirements Development
• Technical Solution
• Product Integration
• Verification
• Validation

Support
• Configuration Management
• Process and Product Quality Assurance
• Measurement and Analysis
• Causal Analysis and Resolution
• Decision Analysis and Resolution
• Organizational Environment for Integration

Software and Systems Engineering 31

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

One purpose of the CMMISM was to evolve the software CMM®, while
integrating the best features of the systems engineering capability models. The
combination of the practices of the models into one single framework required more
than just combining practices because of differences in interpretation, focus and
terminology. Compromises and intentional inefficiencies were required in order to
integrate these models. For example, the CMMISM was released with two
representations, continuous and staged (Table 2), to allow systems and software
groups, respectively, to continue using the model representation with which they
were already familiar.

With the CMMISM there is significant coverage provided for the engineering
dimension, more detailed coverage of risk management and measurement and
enhanced analysis that was less specific in the Software CMM. Moreover, the
CMMISM (continuous representation) process areas are grouped by the categories:
Process Management, Project Management, Support and Engineering. The Engi-
neering category includes the process areas shown in Table 3, which are intended
to integrate software and systems engineering by targeting product-oriented busi-
ness objectives.

RECOMMENDATIONS BASED ON INTEGRATED
PROCESS MODEL BENEFITS

Rassa (2001) summarizes the benefits of the CMMISM project as follows:
• Common, integrated vision of improvement for all organizational elements;
• Means of representing new discipline-specific information in a standard,

proven process improvement context;

Systems Engineering — Continuous Software Engineering — Staged

Migration path from EIA/IS 731 Migration path from SW-CMM
Encourages a focus on process areas to address
business objectives — avoids the maturity
plateau trap.

Encourages a proven sequence of
improvements beginning with basic
management practices and progressing through
successive levels.

Encourages comparisons across organizations
by process areas.

Encourages comparisons among organizations
using maturity levels.

Provides increased visibility into capability
achieved within a process area. Can measure
below Level 2.

Cases studies and empirical data show return
on investment for process improvement.

Provides a focus on risks specific to each
individual process areas.

Summarizes process improvement results in a
single maturity level number.

Encourages the generic practices from higher
capability levels be more evenly and
completely applied to all process areas.

Table 2. Continuous and Staged Representations

32 Gibson

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Efficient, effective assessment and improvement across an organization’s
multiple process disciplines;

• Reduced training and assessment costs.

According to the SEI, “The CMMISM effort is intended to support process and
product improvement and to reduce redundancy and eliminate inconsistency when
using separate stand-alone models. The goal is to improve efficiency, return on
investment and effectiveness by using models that integrate disciplines such as
systems engineering and software engineering that are inseparable in a systems
development endeavor” (Software Engineering Institute, 2001). With the arrival of
the CMMISM, a wider continuum of the product life cycle has been targeted for
possible enhancement, no longer limiting process improvement only to the develop-
ment of software. This integrated approach provides a reduction in the redundancy
and intricacy resulting from the use of multiple, separate process improvement
models. For organizations that wish to assess their process improvement efforts
against multiple disciplines, the CMMISM provides some economies of scale in model
training and assessment training. This one evaluation method can provide separate
or combined results for the fields of software and system engineering. Furthermore,
software organizations can also focus on the amplifications for software engineering
within the engineering shared process areas and take advantage of any systems
engineering amplifications that are helpful. Although still subject to debate, a
distinction is made between base and advanced engineering practices as model
constructs. The CMMISM provides the groundwork for enterprise-wide process

Table 3. Engineering Process Areas
Process Areas Purpose
Requirements Management Manage the requirements of the project’s

products and product components and to
identify inconsistencies between those
requirements and the project’s plans and work
products.

Requirements Development Produce and analyze customer, product, and
product components.

Technical Solution Develop, design, and implement solutions to
requirements.

Product Integration Assemble the product from the product
components, ensure that the product, as
integrated, functions properly, and deliver the
product.

Verification Assure that selected work products meet their
specified requirements.

Validation Demonstrate that a product or a product
component fulfills its intended use when
placed in its intended environment.

Software and Systems Engineering 33

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

improvement with a new emphasis on products and services as well as process. This
emphasis is on both organizational maturity and process capability because the
CMMISM directs increased attention to measurement and analysis.

EVIDENCE OF SIMILARITIES:
 CMMISM GENERIC PRACTICES

As explained by Ahren, Turner and Clouse. (2001), the CMMISM draws a
distinction between model components that are required for process improvement
(i.e., satisfied goals) and components that are expected to play an essential role as
indicators that the required components are in place and institutionalized as common
features of the organization’s culture. A practice is a statement of an expected
component; and it may be unique to a single process area (specific practice) or may
apply across all process areas (generic practice). In short, generic practices (see
Table 4) imply a bridge across the disciplines of software and systems engineering.

THE NEED TO AVOID THE RATING GAME
In many ways, the philosophy of process maturity levels is much like Maslow’s

hierarchy, which suggests that before one can address higher-level needs like self-
actualization, the needs from lower in the hierarchy, such as food and shelter, need

Table 4. Generic Practices

Generic Practice Maturity Level Common Feature
Establish an Organizational Policy 2 Commitment
Establish Requirements and Plan the Process 2 Ability
Provide Resources 2 Ability
Assign Responsibility 2 Ability
Train People 2 Ability
Manage Configurations 2 Directing

Implementation
Identify and Involve Relevant Stakeholders 2 Directing

Implementation
Monitor and Control the Process 2 Directing

Implementation
Objectively Evaluate Adherence 2 Verifying

Implementation
Review Status with Higher-Level Management 2 Verifying

Implementation
Establish a Defined Process 3 Ability
Collect Improvement Information 3 Directing

Implementation
Establish Quality Objectives 4
Stabilize Subprocess Performance 4
Ensure Continuous Process Performance 5
Correct Common Cause of Problems 5

34 Gibson

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to be met. The CMMISM-staged approach provides organizations with a very
structured approach to becoming a more mature institution. The definition of these
maturity levels provides organizations with milestones of achievement. It also allows
organizations to establish where they are in the software process improvement
continuum. For the past decade, the Software CMM® levels provided a structure
and gave organizations milestones in the process of becoming more mature, but also
had the unintended effect of creating a competitive rating scale between software
organizations. An assessed process may be adequate in one environment but may
not suffice for a new project in a different environment (Paulk, Weber & Chrissis,
1999). Organizations that use maturity levels to assess contractors run the risk of
neglecting many of other factors that would help determine the most appropriate
contractor to work on a specific project.

The existence of maturity levels also introduces the risk of organizations setting
maturity level goals instead of focusing on improving software/systems to address
business goals. With all of the claims of return on investment surrounding process
improvement efforts, it is easy to understand why management may strive to reach
specific maturity levels for all the wrong reasons. A communication of this concept
must be made to all stakeholders who would be affected by the implementation of
process improvement. The implementation of a process improvement program
needs to be a part of the means to achieve the business goals. Businesses can easily
become preoccupied in reaching a specific maturity level and forget the ends that
they are trying to accomplish. As a result, organizations may end up taking shortcuts
in order to be assessed sooner at a certain level even though more attention to a
specific process would have been beneficial in reaching a specific business goal.

In contrast, the systems engineering community adopted an alternative ap-
proach to visualizing process improvement: A continuous representation based on
individual process areas. The continuous representation evaluates organizations
based on capability levels instead of maturity levels. The main difference is that
capability levels apply to an organization’s process-improvement achievement in
individual process areas. These capability levels are 0 (not performed) to 5
(optimizing). Maturity levels apply to an organization’s overall process-improvement
achievement using the staged model. Using the continuous representation, an
organization would have a capability profile, consisting of a list of process areas and
their corresponding capability levels. One of the clear benefits of continuous
representation is that it provides organizations with the ability to select the order and
grouping of improvement areas that best complement their business objectives
(Shrum, 1999).

Adopting the continuous representation of CMMISM not only forces software
organizations to define business goals and choose process areas that should be
implemented first to focus on these goals, but it also forces companies who are
choosing a new subcontractor to do the same. One of the claimed benefits of a staged
representation is that it facilitates comparisons among organizations (Shrum, 1999).

Software and Systems Engineering 35

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

While it may simplify comparisons, it does so at the loss of additional details. By using
a continuous representation, the comparison can be done based on the process areas
that are judged important by the organization rather than simply comparing the
organization’s maturity score. When using a continuous representation, there is less
likelihood that organizations will try to attain a specific maturity level without reasons
to do so. It provides an incentive to address processes that would have the greatest
impact on their business goals.

Since the continuous representation of the CMMISM implicitly encourages
organizations to base process improvements on defined business goals, these
organizations are less likely to ignore possible improvements outside the scope of the
CMMISM model. If the CMMISM model does not provide them with the means to
work toward succeeding on a specific business model, organizations will need to find
alternative process-improvement methods. Importantly, there are several areas that
are completely ignored within the CMMISM. Examples include strategic-level
processes, such as business strategic planning, architecture definition and strategic
planning and control. This group of processes focuses on the adjustments needed
over time to meet the changing conditions and requirements of the environment
(Purvis, Santiago & Sambamurthy, 1999). Since strategic level processes may have
a greater impact on the core business goals than improved quality, it may be more
beneficial for an organization to focus of these areas before moving forward with
CMMISM processes.

THE NEED TO OVERCOME
THE DIFFERENCES

Despite anticipated problems bringing systems engineering best practices into
the established software process, improvement models are expected to be very
beneficial. Boehm (1994) reminds us that an important reason to overcome or bridge
these differences is to establish an adequate supply of people who can deal with
complex systems problems. The Bureau of Labor Statistics’ (1997) estimates of

Type of Job 1996 Employment 2006 Employment % Change
Database
Administrators and
Computer Support

212,000 461,000 118%

Computer Engineers 216,000 451,000 109%
Systems Analysts 506,000 1,025,000 103%
Data Processing
Equipment Repair

80,000 121,000 52%

Engineering, Science,
and Computer Systems
Managers

343,000 498,000 45%

Table 5. Anticipated Employment Growth 1996-2006

36 Gibson

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

anticipated growth in information technology jobs, shown in Table 5, provides further
support for this concern.

The final job type, managers, is a significant concern addressed by Jerry
Weinberg in an interview (Layman, 2001). Weinberg explains that the software
development problems are growing faster than individuals’ levels of competence.
Moreover, he asserts that the current state of practice is one where we need to apply
a few fundamentals (e.g., requirements, reviews, configuration management), that
is things known to be useful, but not adopted in the sense of consistent application.

It has been suggested that the systems engineering — hardware engineering
interfaces have matured nicely over many years, but that the systems engineering
— software engineering interface is not as mature.

Meanwhile, the dependency on the systems engineering-software engineering
interface has increased faster than it has matured. Concerns on the state of systems
engineering include:
• Most successful projects rely on expertise established with similar systems.
• Lack of documented processes makes repeatability difficult.
• Development efforts for unprecedented or significantly different systems often

encounter problems.

Concerns on the state of systems engineering include:
• The brief history of software development has been filled with problems of cost

overruns, schedule slippage and failure to achieve performance goals.
• Systems are increasingly dependent on software, yet hardware typically gets

the most visibility.

Although, many software-only organizations remain adamant that they do not
do systems engineering, all software must run on a computer system and interface
with others. This perceived separation of concerns exacerbates the difficulties
associated with hardware/software/system tradeoff decisions, which are further
complicated by terminology differences and disparate mental models.

However the integration potential of the CMMISM can allow the system and
software engineering communities to get the most out of their similarities. The
CMMISM allows organizations to tailor the model to mesh with their own mission and
goal statements as well as their business objectives. Each individual project can use
CMMISM models for individual disciplines and discipline combinations because the
architecture of the CMMISM does not force the employment of every discipline.
Before the CMMISM, the systems engineering models shared many of the same
principles as the software version of CMM®, but were written to address the needs
and terminology of the systems engineering community. Because the CMMISM

includes the common and shared elements and best features of both software and
system engineering together with discipline specific elements, an organization can
generate integrated capability maturity models or discipline specific capability

Software and Systems Engineering 37

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

models. With CMMISM an organization can still capitalize on these similarities and
improve the efficiency of and the return on investment for process improvement. The
resulting integrated capability models will adapt to an organization’s business
purposes.

FUTURE TRENDS IN ENGINEERING
EDUCATION

Software engineering education is receiving increased scrutiny. Parnas (1999)
asserts that the current educational system for software professionals fails to satisfy
employers. A recent survey (Lethbridge, 2000) found that some of the topics that
surveyed professionals thought were most important were not taught at most
universities. He found knowledge-education gaps in vital software engineering
process areas such as configuration management, release management and human-
computer interfaces. The survey also found that respondents needed to acquire
software engineering skills such as testing, quality assurance, verification and project
management in the workplace.

The ranked list of knowledge gaps from the survey were:
1. Negotiation
2. Human-computer interface
3. Leadership
4. Real-time systems design
5. Management
6. Software cost estimation
7. Software metrics
8. Software reliability and fault tolerance
9. Ethics and professionalism
10. Requirements gathering and analysis.

Parnas (1999) advocated that software engineering be placed in the engineering
departments of universities so that students remain focused on the fact that the goal
of software engineers, like other engineering disciplines, is to apply knowledge to
build products. A different solution comes from Meyer (2001), who recommends
a software curriculum that covers principles, practices, applications, tools and
mathematics. By practices, he refers to configuration management, project
management, metrics, ergonomics and user interfaces, documentation, user interac-
tion, and high level systems analysis and debugging. Denning (2001) developed a
framework for IT schools designed to meet a professional performance level for an
entry-level programmer. He claims that few undergraduate programs prepare
students at this level. His curriculum calls for team projects every spring semester.
Entry-level professional skills include ability to design systems of hundreds of
modules, programming, testing and documentation.

38 Gibson

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Carnegie Mellon’s Working Group on Software Engineering Education and
Training has developed guidelines for software engineering education (Bagert,
Hilburn, Hilsop, Lutz, McCracken & Mengel, 1999). The guidelines describe the
body of knowledge for software engineering education and contain model curricula.
Core topics are requirements, design, construction, project management and soft-
ware evolution (maintenance, extensibility and reengineering). Recurring topics in
each course are professionalism, process, quality, modeling, metrics, tools and
environment, and documentation.

A joint endeavor of Association for Computing Machinery (ACM) and IEEE-
CS published their accreditation and model curricula for software engineering
education in 1998. According to an IEEE-ACM task force on computer science
curriculum (IEEE/ACM, 2001), an undergraduate degree in computer science
should require 31 hours in the core knowledge areas of software engineering:
software design, process, requirements and specifications, validation and software
evolution. Per the task force (IEEE/ACM, 2001), advanced courses are: Advanced
Software Development, Software Engineering, Software Engineering and Formal
Specification, Empirical Software Engineering, Software Process Improvement,
Component Based Computing, Programming Environments and Safety Critical
Systems.

The Software Engineering Institute (Bagert et al., 1999) recommends that a
software engineering curriculum have five content areas: computer science
fundamentals, mathematics, natural sciences, software engineering and general
engineering. In addition they identify modules of software engineering that should
be presented, in separate courses or included in others: introduction to computer
science for software engineers (i and ii), professionalism and ethics, software
requirements, software design, software quality, software construction and evolution
(issues, methods and techniques), and software project design.

Systems Engineering Education
Similarly, systems engineering education is being evaluated. Asbjornsen and

Hamann (2000) explored four concepts in systems engineering education, including
creating a new department or discipline, offering graduate education to degreed
engineers, practical on-the-job training and integrated engineering. They recom-
mend that systems engineering be integrated into all educational programs for all
types of engineering. This matches the recommended solution for software
engineering educational reform.

A review of systems engineering curricula suggests that systems engineering
is a management process; systems engineers unite and manage technical people
from many different disciplines to create systems, thus courses relating to project
management are required.

On the other hand, software engineering is a specific engineering domain. All
of the software engineering programs, whether undergraduate or advanced degrees,

Software and Systems Engineering 39

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

limited their required coursework to software engineering and computer science as
specified by organizations such as SEI, IEEE and ACM.

The two domains are different and the curricula reflect the differences.
Software engineering is about the systematic approach to development, operation,
and maintenance of software. Systems engineering is about integrating engineering
disciplines. It appears from the curriculum comparisons that a software engineering
major would be less prepared to be a part of multi-disciplinary team than the graduate
from a systems engineering program.

CONCLUSION
The ongoing process improvement efforts centered on integration of software

and systems engineering, as initiated by the SEI’s CMMISM project, has highlighted
two key issues for researchers and practitioners:
1. A renewed focus on products and business objectives as drivers of process

improvement;
2. Opportunities for high-leverage process improvements.

The concept of architecture continues to serve as a theoretical link for both the
software-system tradeoffs and the integration of process improvement efforts.
While respecting the legitimate differences in areas, such as reliability testing, it is
important to sustain the hope that overlapping or underlying theories will emerge
regarding areas of common concern such as: requirements, security, safety and
performance.

In order to achieve true integration of software and system engineering
practices into one process improvement model, the remaining differences of
terminology and model construction have to be addressed. These two communities
have well-developed disparate languages and methodologies that are reflected in
their different origins, models and perspectives, differences that have become
entrenched in their organizational cultures. With the adoption of an integrated
process improvement model, an organization can assess both software and systems
engineering functions, reduce conflict and increase consensus.

REFERENCES
Ahern, D., Turner, R. & Clouse, A. (2001). CMMI(SM) distilled: A practical

introduction to integrated process improvement. Boston, MA: Addison-
Wesley.

Asbjornsen, O.A., & Hamann, R. (2000). Towards a unified systems engineering
education. IEEE transactions on systems, man, and cybernetics — Part C:
Applications and reviews, 30(2), 223-243.

40 Gibson

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bagert, D., Hilburn, T., Hilsop, G., Lutz, M., McCracken, M. & Mengel, S. (1999,
October). Guidelines for software engineering education, Version 1.
(Tech. Rep. CMU/SEI99-TR-032). Retrieved October 12, 2002 from the
World Wide Web: http://www.sei.cmu.edu/pub/documents/99.reports/pdf/
99tr032.pdf.

Bates, R., Kuhn, D., Wells, C., Armitage, J., & Clark, G. (1995). A systems
engineering capability maturity model, Version 1. [Handbook SECMM-
95-01]. Carnegie Mellon University.

Boehm, B. (1994). Integrating software engineering and system engineering. The
Journal of INCOSE, I(I).

Davies, J.K. (2001). Systems engineering: the ubiquitous unicorn. Proceedings of
the INCOSE UK Symposium.

Denning, P. (2001). The IT schools movement. Communications of the ACM,
44(8), 19-22.

IEEE Computer Society/Association for Computing Machinery (IEEE/ACM).
(2001). Computing curricula 2001. (Computer Science Final Report). Joint
Task Force on Computing Curricula.

International Council on Systems Engineering (INCOSE). Retrieved February 2002
from the World Wide Web: http://www.incose.org/.

Johnson, K.A., & Dindo, J. (1998, October). Expanding the focus of software
process improvement to include systems engineering. CROSSTALK The
Journal of Defense Software Engineering, 13-19.

Layman, B. (2001). An Interview With Jerry Weinberg. Software Quality Profes-
sional, 3(4), 6-11.

Leibrandt, R. (2001, April 22). A guide to the systems engineering body of
knowledge (SEBoK). Retrieved February 2002 from the International Council
on Systems Engineering (INCOSE) Web site: http://www.incose.org/orlando/
sebok/attach/sebok_text.doc.

Lethbridge, T.C. (2000). What knowledge is important to a software professional?
IEEE Computer, 33(5), 44-50.

Meyer, B. (2001, May). Software engineering in the academy. IEEE Computer,
28-35.

Parnas, D. (1999, May). Software engineering programs are not computer science
programs. IEEE Software, 19-30.

Paulk, M., Curtis, B., Chrissis, M., & Weber, C. (1993, February). The capability
maturity model for software, Version 1.1. (CMM/SEI-93-TR-24 DTIC ADA
263403). Pittsburgh, PA: Software Engineering Institute.

Paulk, M.C., Weber, C.V., & Chrissis, M.B. (1999). The capability maturity model
for software. In K. El Emam & N. H. Madhavji (Eds.), Elements of software
process assessment and improvement (pp. 3-22). Los Alamitos, CA: IEEE
Computer Society.

Phillips, M. (2002, February) CMMI, Version 1.1: What has changed. CROSSTALK
The Journal of Defense Software Engineering, 4-6.

Software and Systems Engineering 41

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Purvis, R.L., Santiago, J., & Sambamurthy, V. (1999). An analysis of excluding IS
processes in the Capability Maturity Model and their potential impact (pp.
31-46). Hershey, PA: Idea Group Inc..

Rassa, B. (2002). Beyond CMMI-SE/SW v1.0. Retrieved March 13, 2001, from
the Software Engineering Institute Web site: http://www.sei.cmu.edu/cmmi/
publications/sepg01.presentations/beyond.pdf.

Shrum, S. (1999, December). Choosing a CMMI model representation. Re-
trieved July 17, 2001, from the SEI Interactive Web site: http://
www.stsc.hill.af.mil/crosstalk/2000/jul/shrum.asp.

Software Engineering Institute (SEI) (2001). CMMI frequently asked questions.
Retrieved March 2001 from the Software Engineering Institute Web site: http:/
/www.sei.cmu.edu/cmmi/comm/cmmi-faq.html.

Software Engineering Institute (SEI) (2001, March). Capability maturity model
integrated (CMMI), Version 1.1. (CMM/SEI-2002-TR-012). Pittsburgh, PA:
Software Engineering Institute.

US Department of Labor, Bureau of Labor Statistics (1997). Employment and
Earnings.

42 Mendonca & Brewer

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IV

Lean, Light, Adaptive,
Agile and Appropriate
Software Development:

The Case for a Less
Methodical Methodology

John Mendonca
Purdue University, USA

Jeff Brewer
Purdue University, USA

ABSTRACT
Historically, the approach to software engineering has been based on a search
for an optimal (ideal) methodology — that is, the identification and application
of a set of processes, methods and tools that can consistently and predictably
lead to software development success. This chapter presents the basis for
pursuing a more flexible and adaptive approach to methodology. Less
methodical methodologies, under a variety of names, take a contingency-
oriented approach. Because of the limitations in the nature of methodology,
the high failure rate in software development, the need to develop methodology
within an environmental context and the pressures of fast-paced “e-
development,” the authors argue that further exploration and definition of an
adaptive, contingency-based approach to methodology is justified.

The Case for a Less Methodical Methodology 43

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTRODUCTION
Despite the high rate of failure in software development, the fundamental

strategy for achieving quality in software engineering continues to be methodology
— that is, discovery and application of that ideal set of processes and practices that
lead to software products that are accurate, effective, delivered on time and within
budget. The path to an optimal methodology leads theorists and practitioners toward
increasingly refined sets of concepts, models, rules, project management strategies,
descriptions of deliverables, tools, testing standards, test-case constructs and the
many other components of a well-defined methodology. Perhaps because of its
close identity with the “engineering” paradigm, ubiquitous failure seems not to have
shaken faith in the methodical approach to software development. In fact, the
response to failure seems often to be more methodology.

In recent years, due to the increasing complexity of the information technology
(IT) arena and the furious pace of e-commerce and e-business development, a less
methodical approach to software development management has gained attention.
This approach has often been linked with Extreme Programming (XP) and has been
called by a variety of names, including “lean” and “light” methodology (Yourdon,
2000b). Highsmith (2000) used the term “adaptive” in his book describing the basic
concepts, but he and others prominent in XP theory and practice seem to have settled
on “agile” as the preferred term. Earlier this year, with the support of XP proponents
and others, the “Manifesto for Agile Software Development” (2001) was developed
and published.

Regardless of the name, the approach embodies two characteristics. The first
characteristic is that it is less methodical. It is not fixated on the search for an optimal
methodology but is contingency oriented, allowing for adaptation and flexibility
depending on environmental issues. The second characteristic is that it incorporates
a concept of appropriateness. A methodology must not only adapt to its environment,
it must also reflect an appropriate level of rigidity, the “just-right” level between no
methodology and a heavily restrictive one that suffocates rather than informs.

This paper argues that because of the inherent limits to methodology, unrealized
expectations and the fast-paced, complex and unpredictable environment, a less
methodical contingency approach to software engineering is justified.

METHODOLOGY:
 EXPECTATIONS AND LIMITATIONS

As noted above, a software development methodology is a set of processes and
techniques for the management of software development. The numerous formal
documented methodologies and many more informal ones vary based on the many
paradigms and variables that are part of the software development landscape. Ivaria,
Hirschheim and Klein (2000/2001) suggest there are more than 1,000 information
systems development methodologies and offers a schema for their characterization

44 Mendonca & Brewer

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and evaluation. All methodologies have the common characteristics of being a
defined set of activities and are based on the concepts of quality and engineering in
software development. In addition, there are two very significant aspects of the
nature of methodology itself: First, it is defined, developed and verified only through
experience, after development has occurred; and second, methodology is itself a
system.

Pressman (1997) suggests that a methodology is composed of three parts:
processes, methods and tools. Processes provide the framework for activities. At
the highest level they prescribe guiding principles, the use of resources, a definition
and hierarchy of sub-processes, the sequential order of activities and other con-
straints. Methods provide the implementation techniques within the framework of
processes. Examples of methods include requirements analysis procedures, design
paradigms, testing strategies and program construction procedures. Tools, such as
computer-aided software engineering (CASE) and project management software,
support processes and methods.

Methodology is at the core of the concept of “software engineering” (SE).
IEEE (1993) defines SE as the application of a “systematic, disciplined, quantifiable
approach to the development, operation and maintenance of software.” The
engineering paradigm is thus predicated on well-defined processes within a generally
predictable environment with well-defined outcomes and roles, sequential project
(phased) development and historical information for a “best practices” approach. SE
is tightly coupled to quality software development via methodology, the means by
which quality is achieved. Anyone who has worked with a methodology is acutely
aware that it is no guarantee of quality. It does provide a framework for proceeding,
for organizing and understanding the tasks ahead, so it is a good base from which
development can proceed.

However, every methodology is limited in several significant ways. First, a
useful methodology is developed only after systems have been implemented, both
successfully and unsuccessfully, and successful processes and methods (“best
practices”) are identified. It took a large body of experimentation, knowledge and
practice, for example, before the parameters of the Systems Development Life
Cycle (SDLC) were well defined and stabilized. The object paradigm embodied in
object-oriented (OO) analysis, design and programming had a profound impact on
systems development methodology (Capper & Colgate, 1994). OO methodologies
continue to undergo rigorous experimentation, testing and proof (see the CETUS
links website [“18,452 Links”] for information and links to over 50 documented OO
methodologies). This “lagging” characteristic of methodology is especially signifi-
cant because developers working in the latest paradigms, such as Internet and
middleware development, cannot rely on well-defined methodologies for structure
and guidance.

Another significant way in which methodologies are limited is that a methodol-
ogy is itself a system. Nicholas (2001) defines a system as “an organized or complex

The Case for a Less Methodical Methodology 45

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

whole; an assemblage of things or parts interacting in a coordinated way.” All
systems are affected by events in their environment either internal and under the
organization’s control or external and not controllable by the organization. A “one-
size-fits-all” approach to software development cannot work. Certain processes are
appropriate for some conditions and inappropriate for others. Processes differ
because environmental factors differ — factors such as the experience of people
involved, goals, project scope, time to market, technologies used, government
decisions and many others. Grady Booch, one of the principle developers of the
Unified Modeling Language and now a chief scientist at Rational Software Corp.,
argues that the rise of new adaptive methodologies is due in large part to its ability
to address the social dynamics of small teams (Betts, 2002). He goes on to say that
the heavier more traditional methodologies like his company’s Rational Unified
Method have a difficult time meeting these needs. The Rational methodology is not
sufficiently adaptive to allow for these small development teams. This concept is
significant because it recognizes the responsibility of developers for selecting an
appropriate methodology, or even appropriate sub-components of many different
methodologies, in order to support and promote development success. It also
highlights the flexible and adaptive nature of appropriate methodology, especially in
dynamic, emerging environments where change is a dominant characteristic.

McConnell (1996) supports this idea by stating that organizations must master
the ability to select the most appropriate and effective processes and practices that
have been identified from other successful or not so successful projects. He goes
on to point out that organizations must choose practices that are specific to achieving
their unique project goals and schedule objectives.

The basic philosophy of how people are viewed and valued by many organiza-
tions is another significant issue for a “heavy” methdology. Ambler (2002) points
out that these methodologies attempt to lay out a prescriptive set of processes —
follow each step exactly as predetermined and a successful project will be the result.
The idea that the process steps are more important than the individuals carrying them
out may be a recipe for disaster. The theory is that if you follow the rules, it does
not matter who carries them out. If key people leave the project or the organization,
the project should go on as scheduled because everything is documented. By
experience this does not appear to be the case. Regardless of how well the system
is documented, if key people leave, the project suffers. Organizations need to use
methodologies that appropriately factor in people issues in addition to process ones.
Adaptive methodologies consider not only the technology involved and the type of
application but also the number and experience of the people involved.

METHODOLOGY APPLIED
The case for a less methodical methodology is based on three assertions: (1) the

failure of methodology to provide consistent success in SE; (2) the lack of well-

46 Mendonca & Brewer

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

developed, well-defined methodologies applicable to a fast-paced, innovative, emer-
gent systems development environment; and (3) the need for using an appropriate
approach to SE that balances the demands of effectiveness with efficiency — a level
of methodology that is “just right.”

On Failure and Methodology
In the introduction to his widely used text on software engineering, software

quality guru Roger Pressman (1997) refers to what he calls a three-decades long
“chronic affliction,” that affliction being the ongoing problems associated with
software development and the continuing high rate of failure. Despite investments
in software engineering, management frameworks and development methodologies,
failures still litter the IT landscape. The reasons for failure are numerous (see Lientz
& Rea [2001] for an excellent annotated list) and the application of methodology per
se certainly should not be universally offered as the only critical factor in success or
failure. In fact, defining failure is not a simple task. For example, is a six-month
project that comes in two weeks late a failure; or one that returns its investment in
36 months instead of the expected 32?

Popular estimates that claim a 50 percent or greater failure rate are not easily
verified but anecdotal evidence is abundant. The Standish Group’s CHAOS survey
(Johnson, 1999), for example, claims that only 26 percent of 1998 projects were
deemed “successful” by survey respondents. In a review of a Standish Group
survey, conducted in 2000, Berinato (2001) points out that although some numbers
have improved we have a long way to go. Outright failures of software projects
declined from 40 percent to 23 percent but “challenged” projects rose from 33
percent to 49 percent. “Challenged” in this context represents projects that had one
or more of the following issues: cost overruns, time overruns or delivery of a system
with fewer features than were promised. When you look at the total picture, 75
percent of all software development projects could be classified as “challenged.”
Whatever the true failure rate is, most executives and information technologists
would probably agree that failure is significantly more common than one should
expect considering the great investment in software engineering concepts and
discipline over the past decades. The point is that methodology, as a quality
assurance construct that is expected to ameliorate development problems, if not
eliminate them, has regularly failed to do so.

Methodology’s role in failure may be the result of several kinds of errors. One
explanation for failure might be an inappropriate selection of methodology among the
variations available — a mismatch between the methodology and the characteristics
of the development environment. In addition to this selection failure, another
possibility is the misapplication of an appropriate methodology. A third possibility, one
that is increasingly common in an emergent technical environment, is the situation in
which there is no appropriate methodology on which developers can rely. This

The Case for a Less Methodical Methodology 47

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

lagging characteristic of methodology may contribute to failure, or at least does not
assist in the avoidance of failure, because in an innovative technical environment
proven methodologies are not defined and documented. The beginning points of large
software development paradigm shifts are especially susceptible to this kind of
failure.

Software development for enterprise integration is arguably a current example
of this problem. In the past five years the pressure to integrate existing processes
and systems (rather than building new ones) or to implement packaged software
(rather than developing in-house versions) has grown tremendously. A survey by
Morgan Stanley states that 35 percent of Fortune 500 companies list integration as
their top objective (Sullivan, 2001). Other listed objectives, such as e-business and
Customer Relationship Management, also have a critical integration component and
when included would tend to increase that percentage significantly. The Boston
Consulting Group (Dickel & Sirkin, 2000), in a survey of more than 100 CEOs and
CIOs involved in enterprise-wide systems implementations, reported that only 33
percent of integration projects were viewed as “positive” in terms of value creation,
cost effectiveness and financial impact. Based on investment and expectations, this
is an arena in which successful methodologies are needed but are sorely lacking.

Methodology in a Fast-Paced, Emergent Environment
IT is arguably the most disruptive force to organizations in the past century,

being both a driver and an object of organizational change. In its role as chief enabler
of better-faster-cheaper for the organization, IT is a critical factor in delivering
competitive advantage within the rapidly changing business environment. E-
commerce and e-business place a particular strain on methodology, requiring “trade-
offs between schedule, functionality, resources and quality” (Yourdon, 2000a) in an
extremely demanding environment. A contemporary software development meth-
odology, therefore, will be required to operate in an environment with the following
characteristics (adapted from Mendonca, 2000; Yourdon, 2002):
• A rapid pace in introduction of new technologies (software and hardware);
• A demand for expeditious development and implementation, leading to new

rapid development and implementation techniques;
• Telecommunications integrated into, and inseparable from, the computing

environment;
• Modularization of hardware and software, emphasizing object assembly and

processing;
• Integration of seemingly incompatible and diverse technologies.
• More demanding users and managers, who have high expectations for the

business value and investment return of Internet-based commerce;
• Exacerbated peopleware issues, for example finding or developing appropri-

ately prepared information technology workers;

48 Mendonca & Brewer

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• High risk projects, due to innovation and expectations of quick delivery and high
investment return, require a methodology that incorporates rigorous risk
assessment and control.

In this kind of emergent, unformed, somewhat chaotic environment, a traditional
approach to using an optimal methodology — predictable, tested and proven — has
no application. There is no doubt that, even in environments where the pace is not
so rapid and change not so prevalent, methodology is viewed by business proponents,
users and some IT non-managerial staff to be overly rigorous, bureaucratic and
burdensome to the point of being a hindrance rather than an enabler. It is viewed as
being even more so in a fast-paced, emergent environment.

Appropriate Methodology: Just Enough
There are numerous ways to judge the success or failure of any one particular

software development effort. Measurements commonly identified include: effec-
tiveness (Does the product function as expected?); value (Does the product meet its
financial and other value-enhancing goals?); cost (Is the cost justified by the benefits
accrued?; Is the project within budget?); and timeliness (Was the project delivered
on time?). As noted, these parameters play against each other — that is, as we
increase resources to ensure factors such as effectiveness and timeliness, we
increase costs associated with the project and, therefore, erode efficiency valuations.
Recognition of this tension in the business environment is important to IT and non-
IT staff alike.

Having no methodology at all risks chaos and possible delivery of a product that
does not adequately respond to user needs, is over budget or has taken too long to
implement. On the other hand, a highly structured, rigid methodology, what James
Highsmith very descriptively calls a “monumental” methodology (Highsmith, 2000),
may be too costly because of the use of unnecessary resources and time delays.
Organizations faced with time-sensitive e-business projects that demand quick
implementation for competitive advantage must carefully consider the options. The
challenge is, of course, to identify how much is “just right.” Under some circum-
stances, a less rigid methodology may be more appropriate, while under other
circumstances, for example in a well-defined environment with known deliverables,
a more rigid methodology is a good choice.

The SDLC model, as embodied in formal commercially available methodologies
developed by consulting companies, is certainly an example of the optimized,
monumental approach to methodology. Another example, arguably, is the Software
Engineering Institute’s Capability Maturity Model for Software (CMM), which has
become widely recognized within the IT industry. It includes a detailed description
of processes in the context of software development process improvement (Paulk,
1995). Although it is presented primarily as a framework for improvement, rather

The Case for a Less Methodical Methodology 49

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

than a methodology per se, CMM defines multiple “key process areas” (methods)
that organizations adopt to develop full capability in quality software development.
However its formal procedures, detailed documentation and heavy resource require-
ments have come under for inapplicability to small and medium-sized projects and
development in fluid environments. The result has been that some proponents are
now advocating using “CMM with good judgment” to soften its inflexibility (Paulk,
1999).

A systems approach to methodology considers environmental factors that
determine not only the appropriate selection of processes, methods and tools but also
the appropriate level of formality to be applied. These factors include:
1. Technology factors: What technologies are being used and by whom? Are they

new or mature? Have successful appropriate methodologies been developed
that provide a good fit for the technology?

2. People factors: What methodologies are developers experienced with? Is there
a good expectation of strong developer/user collaboration? Are users available,
and committed to a high level of involvement?

3. Project definition factors: Is the project well defined in scope and objectives
or will it require definition as it unfolds? What is the expected development
timeline? Can the project be subdivided in mini-projects with smaller deliverables?
What are the customer expectations with respect to performance, memory use,
robustness and reliability?

4. Processes: Are business processes stable or does the project require process
re-engineering?

Yourdon (2000a) calls this approach a “risk/reward” approach to defining an
appropriate level of resource investment in methodology. A chaotic nonmethodology
development environment oriented to “code and fix” is not an acceptable alternative
but neither is an inflexible monumental methodology in many circumstances. Fowler
(2000) suggests that a flexible, less methodical approach to methodology attempts a
“useful compromise between no process and too much process, providing just
enough to gain a reasonable payoff.”

TOWARD A LESS-METHODICAL
METHODOLOGY

What does a less methodical methodology look like and how does it respond to
the requirements described above? Indeed, is a light, lean, extreme, adaptive, agile,
appropriate methodology a methodology at all? A contingency approach to method-
ology recognizes the limitations of methodology, the experience of failure and the
inherent difficulty in creating optimized methodologies in a rapidly changing emergent
environment. Its approach is to choose the processes and techniques appropriate to

50 Mendonca & Brewer

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a given environment, to take advantage of the capabilities of any and all formalized
methodologies and to apply guidelines for developing processes that may not have
been fully defined.

The definition of this approach to software development continues to evolve,
with many participants from the project management, quality assurance and
software engineering disciplines joining together to contribute. Developers of the XP
concepts, notably Kent Beck and Martin Fowler, have played an important role by
way of adopting similar principles for flexible, adaptive programming techniques.
Other development frameworks, such as Crystal methods, Scrum, Adaptive Soft-
ware Development and Dynamic Systems Development Methodology, have also
contributed (Highsmith, Cockburn & Boehm, 2001). Highsmith’s book on adaptive
software development, recent writing on “agile” development and the Manifesto
form the core of these principles and guidelines.

Fowler (2000) very accurately describes these related methodologies as
fundamentally “adaptive rather than predictive” and “people-oriented rather than
process-oriented.” While it is not the objective here to fully define the nature of these
methodologies, basic principles include:
• Agile/simpler processes that continuously respond to changes in the environ-

ment;
• Appropriate selection of process components that reflect efficiency in addition

to effectiveness;
• An adaptive approach (frameworks) rather than adherence to pre-defined

process rules;
• Frequent, rapid delivery of smaller software components to achieve faster

more accurate feedback;
• A collaborative approach to development;
• An expectation of change during the development process;
• Outcomes are emergent, rather than fixed;
• Creativity in problem solving;
• Dynamic re-prioritization — at appropriate intervals, the team should reevalu-

ate the current effectiveness of processes and adjust as necessary.

Berinato (2001) makes these suggestions on ways to become “agile”:
• Slash the budget, enforcing smaller and simpler projects that are better defined

and more easily achievable.
• If it does not work, kill it. Project teams need to build in critical reviews of the

project at predetermined short-time intervals. These review need to access two
things — does the system work and does it fulfill a needed purpose.

• Keep requirements to a minimum. Each implementation iteration of a system
should deliver a subset of the requirements and be budgeted separately.

The Case for a Less Methodical Methodology 51

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Build on demonstrated and documented success, not hope.
• Keep development teams small, so effective communication between team

members is more easily accomplished.

The principles and guidelines of a flexible, less methodical methodology
continue to be described and defined. It is clear that this is a genuinely different
approach than the optimized one inherent in a fixed and fully defined methodology.
Practices such as continuous feedback and incremental product delivery will form
the core of techniques for implementation of this approach. However, there clearly
needs to be further work in identifying those frameworks and practices that support
the concept and can support successful delivery of quality software. Ironically, like
any other methodology, it will need to be tested and proven. Considering the
limitations of methodology and the increasing complex environment in which
software is engineered; however, it has good potential and is worthy of our attention.

REFERENCES
Ambler, S.W. (2002). Agile modeling: Effective practices for eXtreme program-

ming and the unified process. New York: John Wiley & Sons, Inc.
Berinato, S. (2001, July). The secret to software success. CIO Magazine.
Betts, M. (2002, May 20). The future of software development. Computerworld,

36(21), 271.
Capper, N.P., & Colgate, R.J. (1994). The impact of object-oriented technology on

software quality. IBM Systems Journal, 33(2), 284-286.
Dickel, K., & Sirkin, H. (2000). Getting value from enterprise initiatives: A survey

of executives. Boston Consulting Group, Inc. Retrieved from the World Wide
Web: http://www.bcg.com/publications/files/Enterprise_computing_report.pdf.
18,452 Links on Objects and Components. Retrieved from http://www.cetus-
links.org.

Fowler, M. (2000). Put your process on a diet. Software Development.
Highsmith, J.A. (2000). Adaptive software development: A collaborative ap-

proach to managing complex systems. Dorset House.
Highsmith, J.A., Cockburn, A., & Boehm, B. (2001, September). Agile software

development: The business of innovation. Computer.
IEEE. (1993). Standards collection: software engineering. IEEE Standard, 610, 12-

1990.
Ivari, J., Hirschheim, R., & Klein, H.K. (2000/2001, Winter). A dynamic framework

for classifying information systems development methodologies and approaches.
Journal of Management Information Systems.

Johnson, J. (1999, December). Turning chaos into success. Software Magazine.
Lientz, B.P., & Rea, K.P. (2001). On time technology implementation. London:

Academic Press.

52 Mendonca & Brewer

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Manifesto for agile software development (2001). Retrieved from the World Wide
Web: http://www.agilealliance.org.

McConnell, S. (1996). Rapid development: Taming wild software schedules.
Redmond, WA: Microsoft Press.

Mendonca, J. (2000). Educating the business information technologist: Developing
a strategic IT perspective. In M. Khosrow-Pour (Ed.), Information Technol-
ogy Education in the New Millenium. Hershey, PA: Idea Group Inc.

Nicholas, J. M. (2001). Project Management for Business and Technology.
Upper Saddle River, NJ: Prentice Hall, Inc.

Paulk, M., et al. (1995). The capability maturity model: Guidelines for improving
the software process. Pittsburgh, PA: Carnegie Mellon University, Software
Engineering Institute.

Paulk, M.C. (1999, June). Using the CMM with good judgment. Software Quality
Professional.

Pressman, R. S. (1997). Software engineering: A practitioner’s approach. New
York: McGraw-Hill Companies, Inc.

Sullivan, T. (2001, August). Take your medicine. Infoworld, August 10.
Yourdon, E. (2000a, August). Success in e-projects. Computerworld, August 21.
Yourdon, E. (2000b, September). The ‘light’ touch. Computerworld, September

18.
Yourdon, E. (2002). Managing high-intensity Internet projects. NJ: Prentice

Hall, Inc.

How to Elaborate a Use Case 53

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter V

How to Elaborate a
Use Case

D.C. McDermid
Edith Cowan University, West Australia

ABSTRACT
This paper challenges established wisdom with respect to use cases. Use cases
are classically elaborated by directly identifying objects, methods and data.
The research reported in this paper indicates that there are other better
constructs for modeling use cases, at least initially, and that objects are not a
particularly good medium for discussing requirements with users. This paper
rehearses the arguments leading up to these conclusions and identifies some
implications of these conclusions.

INTRODUCTION
This paper describes conclusions from two action research studies concerned

with modeling use cases. Because an alternative structure of a use case is proposed,
the term business rule will be used throughout to signal that a different structure
for a use case (though not purpose) is implied. At this point, however, the reader may
regard the terms business rule and use case as synonymous. Initially in these action
research studies, the classical process of elaborating use cases was followed
(Jacobson, Christerson, Jonsson & Overgaard, 1992). That is, business objects were

54 McDermid

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

used as a means of capturing and documenting the requirements of the information
system, so the ability of business objects to describe requirements in the early stages
of developing a system was tested. It was found that business objects did not contain
constructs that were directly conducive to requirements gathering from users and
neither did they facilitate presentation and discussion of requirements at an appro-
priate level of abstraction. It was found that a more appropriate vehicle for analyzing
requirements at this stage was brought about by (customizing) the notion of a
business rule.

This paper attempts to explain the relationship between business objects and
business rules. In doing so, it highlights some inadequacies of business objects as a
medium for gathering and expressing requirements at any early stage of develop-
ment, and, most importantly, it demonstrates how all analysts who work with use
cases can improve requirements specification. Some of this discussion relates to how
users prefer to conceptualize their world; other parts of this discussion relate to the
pragmatics of conceptual modeling.

The paper proceeds as follows. The remainder of this section introduces the
idea of a business rule and some of its history in the literature. It then details the action
research studies so the reader can appreciate the ensuing discussion. This is followed
by a discussion of certain inadequacies of business objects that arose from the
research.

There has been a continued and active discussion of business rules in both the
practitioner and academic literature. With regard to the practitioner literature,
especially in North America, there has been a concern of insufficient treatment of
and insufficient focus on business rules generally (Chikofsky, 1990; Sandifer & Von
Halle, 1991a, 1991b; Jones, 1991; Lucas, 1993; Moriarty, 1993a, 1993b, 1993c,
1993d; Von Halle, 1994; Baum, 1995). The discussion in the practitioner literature
is wide ranging. For example, it covers questions of how a DBMS environment can
deal with business-rule implementation options (Von Halle, 1994) through to Joint
Application Design (Lucas, 1993). Much of the discussion, however, quite naturally
focuses on immediate solutions to existing problems, such as illustrating how business
rules could be integrated into data dictionaries (Sandifer & Von Halle, 1991a) or how
CASE tools could improve the documentation of business rules (Baum, 1995), rather
than exploring the conceptual basis for modeling business artifacts.

As regards the academic literature, there are a number of examples of authors
actively using the term business rule in their work (Feuerlicht & Blair, 1990; Ross,
1994; Sandy, 1994; Herbst, 1996). However there are difficulties in identifying work
in this area because there are a wide variety of names given to diagrams, which model
business rules or, at least, some aspects of a business rule. While there is, as yet, no
standardization of terminology in this area, the work of Kung and Solvberg (1986),
Kappel and Schrefl (1989) and Tsalgatidou and Loucopoulos (1991a, 1991b) could
be regarded as synonymous with business rules modeling. The Business Rule

How to Elaborate a Use Case 55

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Diagram discussed here, though it would broadly be considered in the same category
as the above, has a number of unique aspects.

The definition of a business rule provided here suggests something of the
context and nature of a business rule as well as identifying its constructs. It is defined
as “…an explicit state change context in an organization which describes the states,
conditions and signals associated with events that either change the state of a human
activity system so that subsequently it will respond differently to external stimuli or
reinforce the constraints which govern a human activity system’ (McDermid, 1998,
p. 20).

The definition contains four explicit constructs: states, events, conditions and
signals. States reflect the status of an object of interest at any given time, so, for
example, a manufacturing work order might occupy the states planned, in progress
or completed. Events are actions carried out internally by the organization that
change the state of one object. They are considered to be instantaneous occurrences
that reflect the organization’s policy on what should happen in a particular circum-
stance, e.g., cancel work order. One important role of the event is to avoid specifying
processing detail. This was seen as a pitfall at this early stage. Events differ from
methods in that methods may not change states (for example, a method may simply
reveal data in response to a service request). Conditions define the criteria by
which objects of interest in the business move from one state to the next as events
take place. Sometimes many conditions must be met in order for an event to take
place, increasing complexity. It is argued that modeling conditions without the
context of states and events (and vice versa) is far less powerful or useful. Lastly
signals either enter or leave the human activity system. Signals that enter the system
will typically initiate activity within the system and so these are called triggers.
Triggers may be external such as a customer sending an order or internal such as one
department sending a document to another department, which then triggers off some
activity. Further a trigger may be a time trigger — an activity beginning at the start
of the day or the end of the month. Those signals which leave the system serve the
purpose of informing those outside the system of what has occurred inside the system
and are referred to as messages. Though some might argue that the idea of a
condition is at the heart of a business rule (Loosley, 1992), the related constructs of
state, event and signal provide a context for the business rule. So, as an aid to memory
we might say:

Business Rules = States + Events + Conditions + Signals

The abstraction of these constructs is shown diagrammatically in Figure 1.
The action research studies were performed in two organizations (McDermid,

1998). In the first organization, the researcher worked with a systems analyst on an
existing system. The outcome of this study was the production of an initial definition
of a business rule and a means of diagramming it. It was in this study that most of

56 McDermid

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the technical limitations of a business object was observed. In the second
organization, an analyst and users were studied using this Business Rules Diagram
(BRD). In this study, although to large degree a confirmation of many of the technical
aspects, aspects of how users prefer to conceptualize their world were observed.

Over the course of the action research studies, six different versions of a
(structured) BRD were developed. Earlier versions contained fewer constructs, and,
as each version was evaluated, it was concluded that there was a need for additional
constructs to ensure completeness in the description of a business rule. The four
major constructs identified were seen as the minimum for holding a reasoned
discussion with users at this stage. Observe that data was not one of the four
constructs and neither was method, although there is some overlap between the
event construct and method. By the end of the studies, a methodology for
constructing the BRD had been developed. The main steps in producing a BRD are:
• Identify candidate business rules;
• Identify candidate business events and signals;
• Identify candidate business objects in problem situation;
• Construct object life history for each candidate object identified;
• Construct User Business Rules Diagrams;
• Construct Business Rules Diagram.

Candidate business rules at this stage are brainstormed with users as simple
narrative statements (Table 1). Later the business rule will be expressed more
rigorously in a diagram. Similarly candidate business events and signals are
brainstormed at this point (Table 2). Notice that rows are categorised into events,
triggers and messages.

The purpose of these two steps is to establish enough context about a problem
situation to begin to identify business objects and their associated life histories. While
there is necessarily considerable organization required at this point in sorting out the
objects and life histories, the actual process is well-known and familiar to object and
data modellers alike. At this stage the User Business Rules Diagram (UBRD) can

Figure 1. Abstraction of Key Constructs of a Business Rule

Business
Rule

state event condition signal

How to Elaborate a Use Case 57

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

be constructed. As indicated earlier, for the purposes of this paper, an UBRD can
be considered a use case, i.e., a discrete meaningful episode of work in the mind of
a user.

Figure 2 shows an example of an UBRD representing one business rule which
would become part of a complete BRD. States are represented by circles, events
by rectangles, conditions by diamonds and signals by thick arrows. The softbox is
a Harel blob (Harel, 1988), which acts as an encapsulator of constructs. The example
in Figure 2 is the most complex state change context so far modelled; the vast majority
of business rules are much simpler involving typically no more than five or six
constructs. While a full description of the BRD is outside the scope of this paper,
Figure 2 illustrates the potential complexity of a state change context.

In this particular example, a single business rule may result in different events
taking place (since events are tied to a single object). For example, if the order ends
up being rejected, only event 2 is executed. On the other hand, it is possible for an
order to be accepted but some of its items held as outstanding items until sufficient
stock is available. In this case, event 3 (create new order) takes place but also event
5 (create outstanding item) is executed. Also two state changes occur in this
scenario. So it can be seen that a state-change context has to be able to describe
all potential events that may occur, and it requires a sufficiently rich notation to
support this.

Table 1. Example of Candidate Business Rules

- Orders sent by mail or telephone
- Omission on order line leads to deletion of that order line
- Credit balance >= order value to accept order, otherwise reject
- Stock qty >= order qty for normal order, otherwise outstanding
- One invoice for one order
- Sum of payments = order value - sum of credit notes
- One order may have many credit notes
- Many payments per invoice possible

Table 2. Candidate List of Events and Signals

Receive customer order T
Delete line E
Reject order E
Create new order E
Send invoice M
Generate credit note E

58 McDermid

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

THE IMPORTANCE OF STATE IN
DESCRIBING A USE CASE

One unique aspect in the definition of a business rule (use case) is the idea of
being a state-change context. Most other definitions of a business rule focus on
conditions and do not involve the state as a construct (e.g., Appleton, 1988). In the
definition used here, however, states are those anchors upon which the business rule
is modelled. Without states it is much more difficult to put a boundary on a business
rule so discussion with stakeholders is harder. The state-change context makes
business rules modeling more tractable and potentially reduces the number of states
that have to be modelled at this level, i.e., working with users to establish the
requirements of a system. For example, within the process of accepting an order,
there may be a number of “sub-states,” such as order received and copied to standard
order form, credit status checked and acceptable, stock availability checked, etc.
However a customer does not necessarily get involved with these internal matters.
From a customer perspective, the order is either accepted or rejected, yet an order
processing clerk is likely to perceive the same process from a lower level of
abstraction. Unless there is a standard for this, two different analysts could well
model related problems at different levels of abstraction resulting in confusion.
Worse still is the possibility that one level of abstraction is not simply an elaboration
of the other. This may happen if there is overlap between abstraction by function
and abstraction by geography, for example. By insisting that state changes must be
detectable by an observer external to the human activity system, the unit of
abstraction is defined in a way that can be externally validated, reducing inconsis-
tency.

Figure 2. User Business Rules Diagram

How to Elaborate a Use Case 59

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

This has profound implications for accepted wisdom in use cases generally and
in business objects in particular. It is suggested that for business objects the first
formal construct identified should be the state (as opposed to method or data).
Further identifying states can be seen as a precursor to identifying methods and data
as follows. Suppose a business object (called order) has the states ordered, invoiced
and paid. Data typically associated with the object order is more strongly coupled
to its states than to the object itself. For example, data such as order-no and order-
date might be associated with the object when it is put into the ordered state, while
invoice-no and invoice-date might be associated with the object when it is moved to
the invoiced state and so on. Similarly the identification of methods follows from
having identified the states, although it is a moot point. Nevertheless this discussion
does raise the question as to whether the traditional view of immediately identifying
data and methods is appropriate for business objects, especially when it is argued that
states provide a better basis for establishing data.

THE RELATIONSHIP BETWEEN
USES CASES AND OBJECTS

The research conducted also highlighted a more general problem with object
modeling. There is an incongruence between what may be termed “system” events
and “object” events. In Figure 2 a number of events may fire depending on the result
of executing conditions. For instance there were events concerned with accepting
an order outright, rejecting an order and even a scenario in which most of the order
is accepted but some items are kept as outstanding order items until stock is available.
Now each event relates to one object and one object only. Yet in a use case (or
business rule), many objects may be changed in some way. In other words, a
business rule is a better and more convenient unit of abstraction to review business
policy than an event (or method) in a business object. While on balance it is still
appropriate and overall desirable to decompose a system into business objects in
order to “divide and conquer,” business objects do not appear to be a useful vehicle
for exploring business policy. This is because some business rules affect many
business objects.

It can also be observed in Figure 2 that conditions and signals are more directly
related to the business rule than the business object (though it may often be the case
that individual conditions and signals relate only to one business object). In Figure 2
there are a number of conditions that are tested. The first condition is whether a
customer is in good status. If not the order request will be rejected at that point; if
so further conditions will be tested to establish whether or not the whole order will
be accepted or whether part of it will be made outstanding. The point of this
illustration is to demonstrate that conditions are not directly related to one event;
rather they contribute to the business rule as a whole and through that to perhaps

60 McDermid

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

several events (or methods). Indeed it would be possible for the same event to be
executed within different business rules, for example, where there were different
procedures (i.e., business rules) for removing a customer object. This same logic also
holds for signals. For instance, in Figure 2, the trigger of either a mail or phone order
applies to the whole business rule and not any one single event or state change within
the rule.

In summary, it can be concluded that there is a many-to-many relationship
between business objects and business rules; or one business object may be affected
by many business rules and one business rule may affect many business objects.
What is new in this paper is that the constructs of state, event, condition and signal
are asserted as intermediate linchpins connecting business objects with business
rules.

BUSINESS OBJECTS AND
 COMPUTER OBJECTS

The implications of the assertions in this paper are far reaching. The two main
assertions are that, at the early stages of systems development, the more primitive
construct of state is a more immediate and appropriate way of conceptualizing
objects and, secondly, that the role of the business object as the central unit of
abstraction is somewhat diminished by the business rule (or use case, if you will).
While it is true that some have argued for the dominance of the use case (Jacobson
et al., 1994), there has been relatively little structural discussion on how or whether
constructs, such as trigger, conditions, messages, states and events, play a role as
better constructs for modeling purposes.

The tenets of object modeling are built on seamless integration and reduction of
the semantic gap between models (Jacobson et al., 1994), yet, if business rules
displace (to some extent) the role of the business object as the prime unit of
abstraction in the early stages of requirements engineering, then this calls into
question the validity of using business objects to generate so-called “computer”
object models (which may contain many additional types of objects such as interface
and control objects). Here the needs of business modelers and computer-based
object modelers (seeking, for example, to optimize reusability) are more different
than previously imagined. Given the above discussion, an alternative would be to
consider using business rules as the prime medium for seamless integration
throughout the development life cycle.

REFERENCES
Appleton, D. (1988, February). Second generation applications. Database Pro-

gramming and Design, 54.

How to Elaborate a Use Case 61

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Baum, D. (1995, March). The right tools for coding business rules. Datamation, 36-
38.

Chikofsky, J. (1990, May). The database as a business road map. Database
Programming and Design, 62-67.

Feuerlicht, G., & Blair, A. (1990). Development of a prototype system for the
management of business rules and integrity constraints in database applica-
tions. Expert Systems for Information Management, 5(2), 79-93.

Harel, D. (1988). On visual formalisms. Communications of the ACM, 31(5), 514-
530.

Herbst, H. (1996). Business rules in systems analysis: a meta-model and repository
system. Information Systems, 21(2), 147-166.

Jacobson, I., Christerson, M., Jonsson, P., & Overgaard, G. (1992). Object-
Oriented Software Engineering: A Use Case Driven Approach. Wokingham,
England: Addison-Wesley.

Jones, B. (1991, November). Letter to editor. Database Programming and
Design, 9.

Kappel, G., & Schrefl, M. (1989). A behavior integrated entity-relationship approach
for the design of object-oriented databases. In C. Batini (Ed.), Entity-
relationship approach (pp. 311-328). North Holland: Elsevier Science.

Kung, C. H., & Solvberg, A. (1986). Structural and behavioural modeling. In T. Steel
& R. Meersman (Eds.), Database semantics (pp. 205-221). North Holland:
Elsevier Science.

Loosley, C. (1992). Separation and integration in the Zachman Framework. Data
Base Newsletter, 20(1).

Lucas, M. (1993, September). Getting down to business. Informatics, 41-45.
McDermid, D. C. (1998). The development of the business rules diagram. Unpub-

lished doctoral dissertation, Curtin University of Technology.
Moriarty, T. (1993a, April). Business rules analysis. Database Programming and

Design, 66-69.
Moriarty, T. (1993b, June). Losing the business. Database Programming and

Design, 66-69.
Moriarty, T. (1993c, February). The next paradigm. Database Programming and

Design, 66-68.
Moriarty, T. (1993d, May). Where’s the business? Database Programming and

Design, 68-69.
Ross, R. (1994). The business rules book: Classifying, defining and modeling

rules. Database Research Group.
Sandifer, A., & Von Halle, B. (1991a, January). Designing by the rules. Database

Programming and Design, 11-14.
Sandifer, A., & Von Halle, B. (1991b, February). A rule by any other name.

Database Programming and Design, 11-13.
Sandy, G. A. (1994). Nice models but where’s the business. Proceedings of the 5th

Australian Conference on Information Systems, Melbourne, Australia.

62 McDermid

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Tsalgatidou, A., & Loucopoulos, P. (1991). Rule-base behaviour modelling: Speci-
fication and validation of information systems dynamics. Information and
Software Technology, 33(6), 425-431.

Von Halle, B. (1994, January). Making business rules real. Informatics, 48-49.

A Rigorous Model for RAISE Specifications Reusability 63

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VI

A Rigorous Model for
RAISE Specifications

Reusability
Laura Felice

Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

Daniel Riesco
Universidad Nacional de San Luis, Argentina

ABSTRACT
During the RAISE specification development process, a variety of components
and infrastructures are built. All of these components are not independent, but
they are related to each other, especially when we specify different systems in
the same infrastructure. The RAISE method is based on the idea that software
development is a stepwise, evolutionary process of applying semantics-
preserving transitions. So, the reuse process is crucial in all stages of the
development, but there is not explicit reference to the specification reusability
in this development process.
This chapter presents a rigorous process for reusability for RAISE Specification
Language (RSL) components. We provide the mechanism to select a reusable
component in order to guide RAISE developers in software specification and
construction.

64 Felice & Riesco

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTRODUCTION
Software components are typically very rich in information, making the task to

characterize them and capture their relevant properties difficult. However this is not
the only reason that makes software reuse difficult.

Information retrieval methods based on analyses of natural-language documen-
tation have been proposed for constructing software libraries (Helm & Maarek,
1991; Maarek, Berry & Kaiser, 1991). Software components represented by natural
language can make the retrieval process a task with ambiguity, incompleteness and
inconsistency. All of these problems can be minimized by using a rigorous method
in the retrieval of a component.

The RAISE method (D. Bjorner, lecture notes, Technical University of
Denmark, 2000) is based on the idea that software development is a stepwise,
evolutionary process of applying semantics-preserving transitions.

Based on this observation, we propose to introduce a Reusable Component
(RC) model for the definition of the reusable component structure into RAISE.

In this work we propose the RC model for the definition of the structure of a
reusable component that integrates specifications in RSL (George, Haff, Havelund,
Haxthausen, Milne, Nielson, et al., 1992) and object-oriented code.

The RC model describes object-oriented classes at different levels of abstrac-
tion:
• Specialization — hierarchies of RSL implicit specifications related by formal

specialization relation;
• Realization — hierarchies of RSL complete algebraic specifications related by

realization relations;
• Code — hierarchies of imperative RSL schemes related by implementation

relations and linked to object-oriented code.

We define a rigorous process for reusability of RC components. Its manipula-
tion, by means of specification building operators (Rename, Extend, Combine, Hide),
is the basis for the reusability.

Our approach allows that the properties of components formally specified can
be characterized by giving a functional (RSL specification) description. Therefore
they may be useful to someone searching for a particular component.

Different possible classes of existing RC components may be retrieved using
a formal reasoning technique: an exact match to the query specification, a component
more general than the query, or a component more specific than the query. An
illustrative example presents a reusable component classification and a specification
matching.

RELATED WORKS
Different approaches to specifying reusable components functionalities have

A Rigorous Model for RAISE Specifications Reusability 65

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

been proposed. The way in which the components can be used with others can play
a critical role in the reuse implementation.

Related to the RAISE method, we emphasize the work of Beltaifa and Moore
(2001) where they propose an infrastructure to support reuse which improves both
the ease and efficiency of reusing software components. The main difference with
our work is the integrated process defined for all stages of the development method.

As a typical related work, we can mention Hennicker and Wirsing (Lecture
notes, 1992) who presented a model for reusable component definition. A reusable
component is defined as an unordered tree of specifications where any two
consecutive nodes are related by the implementation relation, and the leaves are
different implementations of the root. The work of Chen and Cheng (1997) is another
approach that provides a formalism to register components properties to reuse them
based on the architecture and integration of the system. They are related to LOTOS
tools that facilitate the retrieval of the reusable component.

On the other hand, the work of Zaremski and Wing (1997) is related to
specification matching. It is very important to emphasize this proposal has been
referenced by a lot of authors.

The survey paper by Krueger (1992) discussed a different approach for
software reuse. Eight categories, such as high-level languages, source code
components, application generators, etc., were discussed.

Carma-McClure (1995) gives a detailed explanation of how to make reuse work
in practice. The purpose of this survey is to fill in the missing details about how to
practice software reuse. It is a step-by-step guide that empowers the reader to infuse
reuse into the software development process (both object-oriented and traditional
structured/nonobject-oriented processes) and to attain the maximum benefits it can
offer.

Penix (1998) proposes automated component retrieval and adaptation using a
heuristic based on specification semantics for approximating specification matches
that indicate component reusability. He gives a formal model of architectures using
algebraic theories to specify relationships between the system and component
specifications.

THE RAISE METHOD
There are two main activities in the method: writing an initial specification and

developing into something that can be implemented in a programming language
(George, 2002). Writing the initial specification is the most critical task in software
development. If it is wrong, i.e., if it fails to meet the requirements, the following work
will be largely wasted. It is well known that mistakes made in the life cycle are
considerably more expensive to fix than those made later.

What kinds of errors are made at the beginning? The main problem is that we
may not understand the requirements. The requirements are written in a natural

66 Felice & Riesco

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

language and, as a result, are likely to be ambiguous. The aim of the initial
specification is to capture the requirements in a formal, precise manner. Formality
means that our specification has just one meaning. It should:
• Be abstract and leave out as much detail as possible. The requirements may

demand that identifiers have a certain format, but we try to extract the essential
information.

• Use users’ concepts. For instance, if the requirements say that each customer
has an account, and an account is a record of all the customers’ transactions,
then that is what the specification should say.

• Make it readable. Specifications are intended to be read by others: by those who
check that they correspond to requirements, by those who implement them, by
those who write test plans, by those who later maintain the system, etc.

• Look for problems. What we want to do is avoid mistakes or find them quickly.
So we concentrate on the things that appear difficult, strange or novel, and we
ignore or defer things that are straightforward.

• Minimize the state. This means in particular that we try hard not to include in
the state dependent information — information that can be calculated from
other information in the state.

• Identify consistency conditions. Consistency conditions are needed if some
possible state values cannot correspond to reality — two users of a library
borrowing the same copy of a book simultaneously, perhaps.

Kinds of Modules
RAISE identifies two kinds of modules: global objects and state components.

Global objects are objects declared at the top level in a separate file. In general, they
are not advised because they have too wide a scope. But there are typically
collections of types that we need in many places, such as identifiers for various kinds
of entity, and it is convenient to collect these in one global object. A guide to when
types should be in a global object is that types visible to users, i.e., types that occur
as parameters to user functions or in the results of user functions, should generally
be defined in one.

Most modules will contain a type modeling (a part of) the state, together with
functions to observe it and generate values of it, and we name these state
components. Generators usually include functions to change state values and
perhaps also to create them. The type is often called the type of interest of the
module. Such modules are usually defined as schemes and typically instantiated
within others. Modules should have only one type of interest. We write separate
modules for each state component because we can then enforce a discipline that the
part of the state within the module is only accessed through the functions defined for
it. This enables us to change the way that part is modeled without affecting anything
else, as long as we maintain the original properties. Such a technique is known as

A Rigorous Model for RAISE Specifications Reusability 67

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

encapsulation through information hiding. Object-oriented approaches to program
design follow the same ideas: They are typically called the observers and generators
methods.

There are various ways of writing modules according to the way in which the
type of interest is defined.

THE RSL
The aim of the project RAISE was to develop a language, techniques and tools

that would enable industrial use of formal methods. The results of this project include
RSL, which allows us to write formal specifications. In addition to this, a method to
carry out developments based on such specifications and a set of tools to assist in
edition, checking, transforming and reasoning about specifications are provided.

RSL is a “wide spectrum” language that can be applied at different levels of
abstraction as well as stages of development. It includes several definition styles,
such us model-based, property-based, applicative, imperative, sequential or concur-
rent.

A specification in RSL is a collection of modules. Modules allow the decompo-
sition of a specification into more understandable and reusable units. A module is
basically a named collection of declarations, and it can be a scheme or object. Each
module should have only one type of interest. However, the kernel module concept
is that of a class expression. A basic class expression is a collection of declarations
enclosed by the keywords class and end and represents a class of models. Objects
and schemes are defined using class expressions. An object is a named model chosen
from the class of models represented by some class expression. Objects can be
global, embedded or parameters for sharing. They allow one to express the
dependency of a module on other modules. In some situations it is convenient to be
able to manipulate a class expression before defining objects. So a name should be
given to the class expression. The named class expression is called a scheme.

An applicative class expression contains type, value and some axiom defini-
tions. Axioms may be used to constrain the values.

A type is a collection of logically related values, and it may be specified by an
abstract or concrete definition. An abstract type, also referred to as a sort, has only
a name. A concrete type can be defined as being equal to some other type or, using
a type expression, formed from other types.

There are some type constructors that allow the definition of composite types:
• products (X),
• total functions (->) and partial functions (~->),
• sets (-set for finite sets) and -infset for infinite ones,
• lists (* for finite lists and w for infinite ones),
• maps (m-> for finite maps and m~-> for infinite ones).

68 Felice & Riesco

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Sets, lists and maps define collections of values of the same type. A set is an
unordered collection of distinct values, while a list is a sequence of values of the same
type. A set is an unordered collection of distinct values, while a list is a sequence of
values, possibly including duplicates. A map is a table-like structure that maps values
of one type into values of another type.

RC Model Description
RC describes object classes at three different conceptual levels: specialization,

realization and code. These names refer to the relations used to integrate specifica-
tions in the three levels. A more detailed description can be found in Felice, Leonardi,
Favre and Mauco (2001).

RC Components
The specialization level describes a hierarchy of incomplete RSL specifica-

tions as an acyclic graph. The nodes are related by specialization relations. In this
context, it must be verified that if P(x) is a property provable about objects x of type
T, then P(y) must be verified for every object y of type S, where S is a specialization
of T.

Specialization level reconciles the need for precision and completeness in
abstract specifications with the desire to avoid over specification.

Every leaf in the specialization level is associated with a subcomponent at the
realization level. A realization subcomponent is a tree of complete specifications in
RSL:
• The root is the most abstract definition.
• The internal nodes correspond to different realizations of the root.
• Leaves correspond to subcomponents at the implementation level.

If E1 and E2 are specifications, then E1 can be realized by E2 if E1 and E2 have
the same signature and every model of E2 is a model of E1 (Hennicker & Wirsing,
1992).

Adaptation of reusable components, which consumes a large portion of
software cost, is penalized by over dependency of components on the physical
structure of data.

The realization level allows us to distinguish these decisions linked with the
choice of data structure. In RAISE there are four main specification style options.
They are applicative sequential, imperative sequential, applicative concurrent and
imperative concurrent (George, Haxthausen, Hughes, Milne, Prehn & Pedersen,
1995). Associated with them, we can also distinguish between abstract and concrete
styles. Imperative and concrete styles use variables, assignments, loops, channels (in
concurrent specifications), etc. that are related to design decisions about data
structures. Every specification at the realization level is linked to subcomponents at
the code level.

A Rigorous Model for RAISE Specifications Reusability 69

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The code level groups a set of schemes in RSL associated with code. RAISE
method provides translation processes, which start with a final RSL specification,
and produce a program in some executable language, for example C++ using the
translation tool component of the RAISE toolset (George, 2002).

RC Relationships
It is worth considering that the three relations (specialization, realization and

code) form the “RAISE implementation relation” (George, Haff, Havelund,
Haxthausen, Milene, Nielsen, et al., 1992). Any formal system that aims to provide
a means of specification and development must provide a notion of implementation.
That is, if specification E1 is related to specification E2 in the model, then we need
to know if E1 and E2 are in the “RAISE implementation relation.” The following
properties must be satisfied:
• Properties preservation — all properties that can be proved about E1 can also

be proved for E2 (but not vice versa in general).
• Substitutivity — an instance of E1 in a specification can be replaced by an

instance E2, and the resulting new specification should implement the earlier
specification.

RAISE DEVELOPMENT PLAN:
 APPLYING A REUSE MODEL

Engineers usually proceed from applicative to imperative specifications. We
propose to introduce the RC model for the definition of the reusable component
structure into RAISE method. Where to introduce this model? RAISE developers
start with the module scheme specification, define an abstract applicative module and
develop a sequence of concrete applicative modules and corresponding set of
imperative modules from the final applicative modules. Summarizing, we can picture
them as in Figure 1.

Figure1. Overview of the RAISE Method

Requirements

Module
Scheme

types

attributes
Abstract

applicative
Module

functions

axioms,
invariants

Concrete
applicative

modules

efficiency
improvements

global Objects

new modules of
components

Requirements

Concrete
efficient

applicative
modules

CODE

translation to target
language

70 Felice & Riesco

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

During the first stages of development, when the interaction with the stakehold-
ers is crucial, the use of client-oriented engineering techniques seems to be necessary
in order to enhance the communication between the stakeholders and the software
engineers. It has been proposed a systematic reuse approach that integrates natural
language requirement specifications with formal specifications in RSL. Some
heuristics develop a formal specification in RSL starting from models that belong to
the Requirements Baseline (Mauco & George, 2000).

The objective is that engineers can make reuse in all development stages. We
propose to introduce an RC model in all the development steps in order to include
abstraction, selection, specialization and integration of software artifacts in the
RAISE method.

Suppose that as part of a system implementation we need a component that we
have specified with an abstract applicative module specification SQ (query). Further
suppose that there is an abstract module in our library with specification SL(library) and
its implementation has been verified to be correct with respect to the specification
of SQ. If we can show that SQ is matched by SL under generalized module match, then
it is known that we can use the library module, and the behavior will be consistent
with that specified by SQ. We are using specification match to check that using a
library component will not “break” our system.

Thus, when we apply the mechanism to a concrete applicative module, we are
selecting an abstract applicative specification adapted to the system requirements
having a translation to the concrete specification in the library.

THE REUSE PROCESS
Formal specifications are used to model the problem requirements and the

function of the library components. The specifications are written in RSL language.
The classification scheme consists of a collection of formal definitions representing
possible component features in the domain. The formalization of the scheme permits
automated classification of the specifications. The retrieval mechanism is based on
syntactic comparison of feature sets. The components returned by the retrieval
mechanism are passed on to a more detailed evaluation that uses specification
matching to determine reusability.

The results of specification matching determine the relationship that exists
between the retrieved components and the requirements specification. The adapta-
tion phase allows for the determination of whether a mechanism exists to adapt or
combine the retrieved components to solve the problem.

There is evidence that specification matching to determine component reusabil-
ity can be carried out using automated theorem proving (Zaremski & Wing, 1997).
Attempting specification matching over a large library of components is not a
practical retrieval mechanism. The idea is to work by classifying components in a
way so that components likely to match for reusability will be assigned similar

A Rigorous Model for RAISE Specifications Reusability 71

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

features. By formally defining the classification features and the feature assignment
process, classification could be automated.

The main idea is to transform the incomplete RSL specification into complete
imperative specification by reusing existing components. The method has the
following steps: decomposition, identification, adaptation and composition depicted in
Figure 2.

In the decomposition step, the decomposition of a goal specification Eg into
subspecifications E1, E2, En is formalized.

In the identification step, for each specification Ei, a component Ci (in the
specialization level) and a sequence s1, s2,..., sn of RSL specifications must be
identified, verifying the implementation relation. A node in Ci must be selected as a
candidate to be transformed. The identification of a component is correct if it can be
modified by rename, hide and extend operators to match the query Ei.

In the adaptation step, a leaf in the subcomponent associated in the realization
level and a sequence of operators used in the previous steps are applied. Then a
scheme in the code level is selected, and the same operators in the selected leaf are
applied. Finally, in the composition step, the subspecifications Ei and their implemen-
tations are composed. Here we are concentrating on the identification step.

RC Identification
In this section the use of specification matching to identify RC components is

described. In the identification process, we search for all RC components that satisfy
a given query.

It must be able to find the component faster than the user could build it. To
address this problem, it is necessary to provide a classification scheme and then
manual or automated retrieval techniques.

Our classification components are described by a set of features. Each feature
represents a property or an attribute of the component. Features can be refined to
give them a more precise meaning. Our objective is to support effective retrieval of
the component. In order to be useful in practice, the component specifications should

Figure 2. The Method

Identification
Stepset of

Incomplete
RSL

components
Ci

Complete
Imperative RS L

Specification

Specialization
Level

UserReuse
S-Operators

set of
identified

components
Ci

Adaptation
Step

Realization
Level

 set of
implemented

components Ci

Reuse
R-

Operators

Composition
Step

Code Level
Reuse

I-Operators Composition Constructors

Decomposition
Step

Composition Constructors

Incomplete
RSL

Specification

72 Felice & Riesco

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

be independent of the kind of component, allowing the storage of different kinds of
them, e.g., requirements definitions, designs, documentation, etc.

Being an RSL specification’s collection of modules and basically a named
collection of declarations either as a scheme or an object — objects and schemes
defined using class expressions — we propose a classification based on feature
orientation.

Each feature describes a property of the component and is characterized by:
a. kind of component — describing the function of different kinds of components

like requirements specifications, designs specifications, systems specifica-
tions, documentation, etc.;

b. operations performed;
c. component structure — modules involved (schemes and objects);

- granularity of each module — list of objects related with the class;
d. relationships to another component — “implements” relations and composition

of components);
e. component specification style — applicative sequential, imperative sequential,

imperative sequential, applicative concurrent or imperative concurrent and
abstract and concrete styles.

When the possible components are localized, the objective is to compare a
component with the query. This process has two essential steps: signature matching
and semantic matching. The signature matching enables a syntactic comparison of
a query specification with specifications existing in RC reusable components. The
semantic matching compares the specifications dynamic behavior. The bases of the
signature matching come from Zaremski and Wing (1997), even though they were
adapted to the identification of RC components.

The signature of a specification consists of a set of sorts and a set of operations,
each operation being equipped with a particular functionality.

Let L=<SL, FL> be the signature of a library specification and Q=<SQ, FQ>
the signature of a query specification where SL and SQ are sets of sorts and FL and
FQ are sets of operation symbols. The signature matching is defined in Table 1.

This means that given a query specification Q, an RC library C and a predicate
P gives back the RC components that satisfy P. The signature matching is based on
operations matching. Different kinds of operations matching can be applied. They
are the exact, generalized and specialized matchings of operations. This matching
requires a specifications signature matching (sorts and operations) and the axioms
proofs between pairs of operations.

Signature–Matching:

 Query-Signature X RC-Library X Match-Predicate �Set-of RC-Components

 Signature-Matching(Q,C,P) = { c ± C/ P(Q,C)}

Table 1.

A Rigorous Model for RAISE Specifications Reusability 73

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Searching for a Reusable Candidate
RC library is a fundamental piece to the engineering because it contains existing

components that will be reused later in the large systems constructions. The
appropriate use of it requires:
• the organization of the library in order to facilitate the search of the components

and to improve the efficiency retrieval;
• the comparison between the descriptions of the library component with the

description of the new description.

The identification consists of: a syntactic comparison between a library
component in RSL language and the user query one, and a semantic comparison of
the library component behavior with the query specification behavior both expressed
by axioms. The former description corresponds to the syntactic matching, and the
latter corresponds to the semantic matching.

A very important factor to consider is the granularity levels of components. The
granularity levels of components are the list of objects that belong to a RSL module.
The component can modify its size from construct operations of the language to
modules for big software systems. To describe and to reuse components they must
be encapsulated.

It is very common in RAISE specifications to decompose the systems in levels.
For example, functions in a first level are as well decomposed in subfunctions that
will be calculated in second and following level modules. Thus, these two granularity
levels allow users to reuse components in both levels.

On the other hand, axioms allow more precise expression and detailed
relationships between two components. For example, functions like strcpy: String x
String � String and strcat: String x String � String have the same functionality but
it would be inadequate to substitute one for the other. If a query specification of String
could be a candidate, then it would be necessary to compare the axioms of strcpy and
strcat functions to conclude which of the functions has the desired behavior.

Types of Matching
A RAISE component is a set of “module structure.” Furthermore a component

can be related with others by means of the implement, refine and compose
relationships.

Different matchings can be applied to both the component modules and the
values of a scheme. We consider signature specification matching and axioms proof
of the values, being the specification matching.

The signature operations matching expresses whether transformations can be
applied to a pair of operations signatures.

The axiom’s proof is defined by means of a logical-mathematics relationship
among axioms (e.g., the imply).

74 Felice & Riesco

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The specification signature matching implies a matching between sorts and the
matching of operations signature. Different kinds of operations matching are
described:

Be OL(Library component): TL1 x TL2 x� TLm and
OQ(query): TQ1 x TQ2 x� TQm,
two operations.

The exact matching is defined:

Exact Operation Matching E(OL, OQ) = � a sequence of TLI renaming
R/R OL = OQ

The exact matching is a good starting point but very restrictive. There must be
useful functions in the library so located users can adapt them by means of the reuse
operators. The relaxed matchings, specialized and generalized, are defined:

Generalized Matching: MatchG (OL, OQ) = OL � OQ

where OL � OQ expresses that OL is “more general ” than OQ. It means that the
argument types in OQ are specializations of associated types in OL.

Specialized Matching: Matchs (OL, OQ) = OL � 2Q

where OL � 2Q expresses that OL is “more specific” than OQ. It means that the
argument types in OL are specializations of associated types in OQ.

The exact, generalized and specialized operations matchings can be extended
to RSL specifications signature:

S-Exact Matching
S-Exact Match E (L, Q) = � a mapping AF: FQ � FL/AF is one-to-one
and � OQ ± FQ: Matchf (AF(OQ), OL)

The exact matching requires that the specifications match exactly the rename.
It would be necessary for the user to construct a partial query specification that

contains a subset of operations reflecting the main behavior and matching a more
general specification. This kind of matching is known as generalized matching:

S-Generalized Matching
S-Match G (L, Q) = � a mapping AF: FQ � FL/ � OQ ± FQ:
Matchf (AF(OQ), OL)

A Rigorous Model for RAISE Specifications Reusability 75

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The specialized matching matches the query specification with an RC specifi-
cation more specific:

S-Specialized Matching
S-Match S (L, Q) = S-Match G (Q, L)

The signature acts like a filter that excludes obvious “no” matchings before the
semantic matching. Thus, to the correct component reuse, it is necessary to check
if the semantic requirements of the objective specification expressed by axioms are
satisfied by a component.

ILLUSTRATIVE EXAMPLE
There are several suggested principles in creating a collection of modules to

model a system:
• Each module should have only one type of interest and define functions to

create, modify and observe values of the type.
• The modules should as far as possible form a hierarchy. Each module below

the top one should be instantiated in only one other — its parent — as an
embedded object, and its functions should only be called from its parent.

This leads naturally to a top-down style of specification and development. As
we decide on the concrete type for a module, perhaps involving several components,
then as long as these component types are nontrivial, we define new modules for
them as children of the original.

In this section we present an example of a reusable software component
classification (Mauco & George, 2000) and a specification query matching it. The
Milk Production System is a reusable component belonging to the Agricultural
System Infrastructure and its complete definition can be found in Mauco and George
(2000).

Figure 3 shows the partial classification of the reusable component.
According to the classification, we can classify this component by the following

shown in Table 2.

Outline of the System
Basically the aim of an Agriculture Production component is to produce farming

and to obtain a rent by its use in the Agricultural System Infrastructure.
This component is divided into three main components: Farmings_Groups,

Animal_Groups and Fields.
Figure 4 shows part of the Agriculture System Module structure named

Agriculture.

76 Felice & Riesco

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Looking at the different component classifications, we can determine that
Dairy_Farm is the appropriate reusable component for our requirement. When the
reusable component has been identified, it is passed on to a more detailed evaluation
that uses specification matching to determine reusability.

The results of specification matching determine the relationship that exists
between each of the retrieved components and the requirements specification.

The process goes on with each module using the same classification for the
component. It is clear that in this example there are analogous modules like Fields
and Field modules, having the same name in both structures. Also, we can consider
that this structure branch is the same branch in the Milk Production component. Thus,

Figure 3. Milk Production System Module Structure

DAIRY_FARMER

DAIRY_FARM

COW_GROUP DAIRY_FARMERS BULLS FIELDS

BULL FIELD

PLOTS

PLOT

COWS COW GROUP

COW GH

HISTORY

GE

GROUP EVENT

CH

CE

COW EVENT

EVENT INFO

(a) kind of component: System specification describing a Milk Production System
(b) operations: records the events where animals participate. E.g.: births,

milking, feedings,etc.
(c) component structure:

 schemes: {Dairy_Farm Cow_Groups, Fields, Bulls, Dairy_Farmers, Cow_Groups, Cows, Field, Bull,
Dairy_Farmer ,Cow, Plots, Plot, History, Event_Info, Gropu_Event, Cow_Event....}
 objects: {GH, GE, CH, CE, K, GT, D}

 granularity: Dairy_Farm: {Bulls, Fields, Cow_Groups,
 Dairy_Farmers}

(d) relationship: related with Meat Production System

(e) specification style: concrete applicative sequential

Table 2.

A Rigorous Model for RAISE Specifications Reusability 77

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the process of reuse is obvious and we can talk about the exact matching of
signatures. In this case, it is not necessary to apply the rename operator.

As explained previously, a search query can be based on the structural
properties of the software component.

Animals_Groups in our structure will match with Cow_Groups as in Cow_Groups
specification (Figure 5) and the Animals_Groups specification (Figure 6). Like the
component classification, we can classify these specifications analogously:

Cow_Groups Classification
a. kind of component — Cow_Groups specification. Classify the cow groups into

different types;
b. operations: list of values

add-cow-group,
is calf-group,
define-range,

Figure 4. Agriculture System Module Structure

AGRICULTURE

FARMING_GROUPS ANIMAL_GROUPS FIELDS

FARMING-GROUP ANIMAL_GROUP FIELD

PLOTS

PLOT

scheme COW_GROUPS(CS:COWS)=
 class
 object CG: COW_GROUP
type Cow_group=GT.Group-type� CG.Cow_group
 m
 value
 add-cow-group:
 GT.Group-type x Cow-groups � Cow-groups
 add-cow-group (gt,cgs) �
 cgs † [gt ? CG. make-cow-group()]
 pre gt ²cgs ¼ ~ is-calf-group(gt),
 is calf-group: GT.Group-type � Bool
 define-range: GT.Cow-id x Cow-group � Nat x Nat,
 define-calf-group: Nat x Nat x Cow-groups
 ~� Cow-groups
 has –produced-milk:
 GT.Group-type x D.Period x Cow-groups x
 CS.Cows � Bool

scheme ANIMAL_GROUPS(AS:ANIMALS)=
 class
 object AG: ANIMAL_GROUP
 typeAnimal_group=GT.Group-type� AG.Animal_group
 m

 value
 add-animal-group:
 GT.Group-type x Animal-groups �
 Animal-groups
 add-animal-group (gt,ags) �
 ags † [gt ? AG. make-animal-group()]
 pre gt ²ags ¼ ~ is-calf-group(gt),
 is calf-group: GT.Group-type � Bool
 define-range: GT.Animal-id x Animal-group �
 Nat x Nat,
 define-calf-group: Nat x Nat x Animal-groups
 ~� Animal-groups
 #-resources: Animal-group � Nat,

 associated-field: GT. Animal-id � Field

Figure 5. Reusable Scheme Figure 6. Query Scheme

78 Felice & Riesco

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

has-produced-milk;
...

c. component structure
scheme: Cow-group
object: CG
- granularity: {CG}
scheme: Cows
object:CS;

d. relationship: -;
e. specification style: concrete applicative sequential.

Animal-Groups Classification
a. kind of component — Animal_Groups specification. Classify the animal groups

in different types and define some features of interest in Agriculture System;
b. Operations — list of values

add-animal-group,
is calf-group,
define-range,
#-resources,
associated-field, ...;

c. component structure
scheme: Animal-group
object: AG, F (Field)
- granularity: {AG,F};

d. relationship: -;
e. specification style — concrete applicative sequential.

There are several features to take into account when a reusable component has
been selected to be reused. One of the most important points to analyze is whether
the component has been designed to be generic or abstract or for a specific software
system. Thus, in the first case, it is necessary to apply the specialization and
instantiations mechanisms of the component; and, in the second case, the role of pre-
and postconditions and properties expressed by axioms is crucial.

In the next paragraph, we will analyze the list of values of two specifications and
the corresponding matching among them.

Both components have been designed for a specific system belonging to the
same infrastructure. The first step in the domain matching consists of verifying the
arity of functions. The domain of a query operation must coincide in the number of
arguments with the number of argument of the operation domain of the library
specification.

When we obtain the operation matchings in image and in domain argument
numbers, different types of matching are applied. For example:

A Rigorous Model for RAISE Specifications Reusability 79

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Exact Matching: We verify that the sorts and the order of domain arguments
of the query operation coincide with the sorts of the domain of the component
operation.
- is calf-group: GT.Group-type � Bool is a particular case because it is the
same function used in both specifications and it derived from the analysis of the
requirements. In this case it is not necessary to apply the rename operator.

• Specialized Matching: for query operations more general than library opera-
tions in a domain.
- add-animal-group: GT.Group-type x Animal-groups � Animal-groups

add-animal-group (gt,ags) � ags † [gt AG. make-animal-group()]
pre gt ²ags ¼ ~ is-calf-group(gt);

- add-cow-group: GT.Group-type x Cow-groups � Cow-groups
add-cow-group (gt,cgs) � cgs † [gt CG. make-cow-group()]
pre gt ²cgs ¼ ~ is-calf-group(gt),
Model(Animal-groups)Model (Cow-groups);

- the same reasoning occurs with
• define-range:GT.Animal-id x Animal-group� Nat x Nat,
• define-calf-group:Nat x Nat x Animal-groups~� Animal-groups
Model(Animal-groups)Model (Cow-groups).

When the operation matching is made, we proceed with the matching of
specification signatures. Also, it is possible to make the semantic verification by
means of axiom proofs. This proof uses not only the axioms of the user specification
but also the preconditions, giving implications among the preconditions of operations
in which we make the syntactic matching.

From the example given above, which is a description of a real system situation,
we observe that the signature query is more general than the signature library. Thus,
the library is an implementation of the query because its signature match and
Mod((Animal-groups)Mod(Cow-groups) and Mod(Cow-groups) is the class of
models in which the axioms of Animal-groups are satisfied.

In particular, we can observe both in query scheme specification and in library
scheme specification specific functions do not have meaning in the other specifica-
tion. The manipulation of these operations will be by means of specification building
operator Hide.

CONCLUSIONS AND FUTURE WORK
In this chapter a strategy to classify and select a reusable component has been

presented. We defined the RC model for the description of reusable components and
a transformational process with reuse from RSL specifications to code, which is the
main direction for our current work.

80 Felice & Riesco

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Here, we presented only one variety of matches for signatures and specifica-
tions of functions and models, but we have developed various matches to show how
they are used for a variety of applications. Also, the component classification
provides the starting point for the analysis of the component type.

Our goal was to solve a problem that is a weakness of RAISE formal method.
Therefore, the proposal was to apply not only the software component reuse but also
a domain specification reuse, i.e., in the confines of the domain engineering.

REFERENCES
Beltaifa, R., & Moore, R. (2001, May). A software reuse infrastructure for an

efficient reuse practice (Tech. Rep. No. 230). Retrieved from http://
www.iist.unu.edu.

Bjorner, D. (2000). Software Engineering: A New Approach. Lecture Notes,
Technical University of Denmark.

CarmaMcClure. (1995). Software reuse — recent papers. Retrieved 2002 from
http://www.reusability.com/papers.

Chen, Y., & Cheng, B. (1997, March). Formally specifying and analyzing architec-
tural and functional properties of components for reuse. Proceedings of 8th

Annual Workshop on Software Reuse, Columbus, OH.
Felice, L., Leonardi, C., Favre, L., & Mauco, V. (2001, May). Enhancing a rigorous

reuse process with natural language requirement specifications. Proceedings
of 2001 Information Resources Management Association International
Conference (pp. 271-275) Toronto, Canada.

George, C. (2001). RAISE tools user guide. (Tech. Rep. No. 227). Retrieved from
http://www.iist.unu.edu.

George, C. (2002). Introduction to RAISE. (Tech. Rep. No. 223). Retrieved April
2002 from http://www.iist.unu.edu.

George, C., Haff, P., Havelund, K., Haxthausen, A., Milne, R., Nielsen, C., et al.
(1992). The RAISE specification language. Prentice Hall.

George, C., Haxthausen, A., Hughes, S., Milne, R., Prehn, S., & Pedersen, J. (1995).
The RAISE Development Method. BCS Practitioner Series. Denmark:
Prentice Hall.

Helm, R. & Maarek, Y. S. (1991). Integrating information retrieval and domain
specific approach for browsing and retrieval in object-oriented class libraries.
Proceedings of OOSPLA91,. 47-61.

Hennicker, R., & Wirsing, M. (1992). A Formal Method for the Systematic Reuse
of Specifications Components. Lecture Notes in Computer Science 544,
Springer-Verlag.

Krueger, C. (1992, June). Software Reuse. ACM Computing Surveys, 24(2).
Maarek, Y. S., Berry, D. M., & Kaiser, G. E. (1991). An information retrieval

A Rigorous Model for RAISE Specifications Reusability 81

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

approach for automatic constructing software libraries. IEEE Trans. Soft-
ware Engineering, 17(8), 800-813.

Mauco, V., & George, C. (2000). Using requirements engineering to derive a formal
specification. (Tech. Rep. No. 223). Retrieved December 2000 from http://
www.iist.unu.edu.

Penix, J. (1998). Unpublished doctoral dissertation, University of Cincinnati,
Cincinnati, OH.

Zaremski, A., & Wing, J. (1997). Specification matching of software components.
ACM Transactions on Software Engineering and Methodology (TOSEM),
6(4), 333-369.

82 Kabeli & Shoval

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VII

The Application of FOOM
Methodology to IFIP

Conference Case Study
Judith Kabeli

Ben-Gurion University, Israel

Peretz Shoval
Ben-Gurion University, Israel

ABSTRACT
FOOM (Functional and Object-Oriented Methodology) is an integrated
methodology for information systems’ analysis and design, which combines
two essential software-engineering paradigms: the functional/data approach
(or process-oriented) and the object-oriented (OO) approach. Having applied
FOOM in a variety of domains, this chapter presents the application of the
methodology to the specification of the IFIP Conference system. We focus on
the analysis and design phases. FOOM-analysis phase includes data modeling
and functional analysis activities and produces an initial Class Diagram and
a hierarchy of OO data flow diagrams (OO-DFDs). The products of the design
phase include: (a) a complete class diagram; (b) object classes for the menus,

The Application of FOOM Methodology 83

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

forms and reports and (c) a behavior schema, which consists of detailed
descriptions of the methods and the application transactions, expressed in
pseudocode and message diagrams.

INTRODUCTION
This chapter provides a brief description of FOOM methodology, along with its

application to IFIP Conference case study. A more detailed description of FOOM
can be found in Shoval and Kabeli (2001). The description of the IFIP Conference
case study is provided in Mathiasssen, Munk-Madsen, Axel Nielsen and Stage
(2000), who demonstrate the application of their OOA&D to the IFIP case. The
objective is to show how the FOOM methodology, which combines the process and
object-oriented paradigms, is suitable for analyzing and designing business-oriented
information systems.

BACKGROUND
Many paradigms for system analysis and design have been proposed over the

years. Early approaches have advocated the functional approach (DeMarco, 1978;
Yourdon & Constantine, 1979). The development of OO programming languages
gave rise to a new approach that maintains that in order to develop information
systems in such languages, it is recommended to perform OO analysis and design.
Many OO methodologies were developed (e.g., Booch, 1991; Coad & Yourdon,
1990, 1991; Jacobson, 1992; Martin & Odell, 1992; Rumbaugh, Blaha, Premerlani,
Eddy & Lorensen, 1991; Shlaer & Mellor, 1988, 1992; Wirfs-Brock, Wilkerson &
Wiener, 1990), and the area is still evolving. The multiplicity of diagram types in the
OO approach has been a major motivation for developing the Unified Modeling
Language (UML) (see Booch, Rumbaugh & Jacobson, 1999; Clee & Tepfenhart,
1997; Larman, 1998; Maciaszek, 2001; UML Rose, 1998). UML was developed in
order to produce a standard (unified) modeling language. It consists of several types
of diagrams with well-defined semantics and syntax, which enables the presentation
of a system from different point of views.

Information systems development is a multiphase process in which the analysis
and design are of primary importance. Therefore it is vital to examine which
approaches and methods are appropriate to perform each of these phases. On the
one hand, those who adopt the OO approach claim that using data abstraction at the
analysis phase, producing a model of reality by means of classes, is preferable to
producing a functional model, because the real world consists of objects. However,
as far as we know, no such study has shown that the OO approach is more effective
than the functional/data approach in the development of business-oriented informa-
tion systems.

84 Kabeli & Shoval

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

OO methodologies tend to neglect the functionality aspect of system analysis
and do not clearly show how to integrate the system functions, or transactions, with
the object schema. One sometimes gets the impression that the functionality of the
system is expressed solely by means of methods that are encapsulated within objects,
thus disregarding functional requirements that cannot be met by simple methods. In
contrast, based on vast experience in performing functional analyses with DFDs, we
have encountered no problems with them as a means to express the functionality of
the system; the only problem was how to continue from them to the next phases of
development.

In our opinion, since process and object are both fundamental building blocks of
reality, the analysis phase must cover both the functional and the data aspects. The
functional approach, using DFDs, is suitable for describing the functionality of the
system, while Class Diagrams are suitable for modeling the data structure. Since the
OO approach is the one most appropriate for performing the design phase, we
suggest performing data modeling by creating an initial Class Diagram. It seems
more effective to produce an initial Class Diagram at the analysis phase and then to
use it as input in the design phase. (The term initial Class Diagram will be clarified
later on.)

For the design phase it is crucial to provide a smooth and seamless transition to
system implementation. Since there is an agreement on the advantages of OO
programming, it is also desirable to design the system with methods and tools that
belong to the OO family. Therefore, we conclude that, in order to perform each of
those development phases with its most appropriate method, there is a need to
integrate the OO and functional-oriented approaches.

Dori’s Object-Process Methodology (OPM) (Dori, 1996, 2001) integrates the
two approaches. It utilizes a single graphic tool Object-Process Diagram (OPD) at
all development phases. Since OPD defines a new notation that combines DFD and
OO diagrams, it includes a great number of symbols and rules. It seems to us that
such diagrams are not easy to construct and comprehend for large-scale systems and
that reality has to be modeled by means of simple notations, which are easy to learn,
comprehend and utilize. A single hybrid notation, like OPM, must be very rich in order
to elicit all these points of view, thus leading to a complex, perhaps distorted, model
of reality. On the other hand, multiplicity of models and corresponding diagramming
tools, as found in UML, may be too complicated. Too many diagram types (even
standard ones) can hamper coherent understanding and lead to the production of
erroneous models and systems.

We are looking for an optimal way to integrate the process and object
approaches. Since users express their information needs in a functional and data
manner, and not by means of an object structure and behavior, an appropriate
(natural) method to carry out the analysis task is by functional/data analysis. On the
other hand, the design should be made through the OO approach to facilitate the
transition of the design to OO programming, which has proved to be a better approach
to implementing software. The integration of the two approaches is made possible

The Application of FOOM Methodology 85

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

because it applies principles and techniques taken from the ADISSA methodology,
especially transaction designs. A transaction is a process that supports a user who
performs a business function and is triggered as a result of an event. A transaction
in a DFD consists of elementary functions that are chained through data-flows and
data-stores and external-entities that are connected to those functions. The transac-
tion designs enable the transition from functional analysis DFDs to an OO model that
consists of object and behavior schemas. [More details can be found in the ADISSA
references Shoval (1988, 1990, 1991).]

FOOM METHODOLOGY
The Analysis Phase

The analysis phase consists of two main activities: data modeling and functional
modeling. The products of this stage are a data model, in the form of an initial Class
Diagram, and a functional model, in the form of hierarchical OO-DFDs (supported
by a data-dictionary).

The initial Class Diagram consists of “data” classes (also termed “entity”
classes), namely classes that are derived from the application requirements and
contain “real-world” data (Other classes will be added at the design stage.). Each
class includes attributes of various types (e.g., atomic, multi-valued and tupels of
attributes, keys, sets, and reference attributes). Association types between classes
include “regular” (namely 1:1, 1:N and M:N) relationships, with proper cardinalities,
generalization-specialization (is-a or inheritance) links between super- and sub-
classes, and aggregation-participation (is-part-of) links. Note that in our model,
relationships are signified not only by links between respective classes but also by
reference attributes to those classes. However, the initial Class Diagram does not
include methods; these will be added at the design phase. The initial class diagram
of the IFIP Conference case study is shown in Figure 1.

The OO-DFDs specify the functional requirements of the system. Each OO-
DFD consists of general or elementary functions, external entities (mostly user-
entities, but also time and real-time entities), object-classes (instead of the “tradi-
tional” data-stores) and the data flows among them. Figures 2 through 4 show three
OO-DFD examples. Note that a general function is represented as a double circle,
meaning that its subfunctions are described in a separate sub-OO-DFD. Classes
within the OO-DFDs correspond to classes that exist in the initial Class Diagram.

The Design Phase
Defining Basic Methods

Basic methods of classes are defined according to the initial Class Diagram. We
distinguish between two types of basic methods: elementary methods and relation-
ship/integrity methods.

86 Kabeli & Shoval

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Elementary methods include: (a) construct (add) object; (b) delete (drop)
object; (c) get (find) object and (d) set (change) attributes of object. Elementary
methods actually belong to a general (basic) class from which all the classes inherit.

Relationship/integrity methods are derived from structural relationships be-
tween classes. They are intended to perform referential integrity checks, depending
on the relationship types between the classes and on cardinality constraints on those
relationships. For each relationship, which is also expressed in terms of reference
attributes, the involved classes include appropriate integrity methods, which will fire
whenever an object of a respective class is added, deleted or changed. [Note that
additional, application-specific methods will be added in the stage of behavior design
(see Design of the Behavior System).]

Top-Level Design of the Application Transactions
This stage is performed according to ADISSA methodology, where the

application transactions are derived from OO-DFDs. [For more details, see Shoval
(1988).] Note that here the transactions include classes rather than data-stores.

The products of this stage include transaction diagrams, which are extracted
from the OO-DFDs, top-level descriptions of the transactions and a new class —
“transactions class.” This virtual class will not contain objects — only the transaction
methods (as will be elaborated in Design of the Behavior System).

Title
Set Keywords
Paper text
Status (Sub, Ass, Rev, Rej, Acc)
Set Reviewers{[Reviewer], Status (Ass,
Rev), Deadline, Review}
Set Authors [Author]

ID

N
am

e
A

ddress
Phone#
Em

ail

P
erson

Set Papers{[Paper], Status(Ass,
Rev), Deadline, Review}
Set Skills
Set Interests

Reviewer

Regular Participant

Set LectureAt [Lecturer]

Speaker
Set Participate [Panel]

Panelist
Set Control [Session]

Chair

Papers Presentation

Name
Topic
Date
Hour {Start, End}
Hall Name
ControlledBy [Chair]
Set Facilities
BelongTo [Program]

Session

{} Tuple of attributes
[] Reference attribute
Key attribute
Default value

Is a

Is a

Controlling

Participating

Consist
of

W
riting

Reviewing

Presenting

Lecturing

Is a

Participate In

(0,m) (1,n)

(0,m)

(0,m)

(1,m)

(1,1) (1,n)

(0,m)

(0,m)

(1,1)

(1,2)

(0,m)

(2,4)

(1,n)

(1,m)

(1,1)

Sub=Submit, Sug=Suggest, Ass=Assign, Rev=Review,
Acc=Accept, Rej=Reject

Set Write [Paper]
Set PresentAt [Accepted Paper]

Author

Set Participants [Panelist]
Description

Panel

PresentedBy [Speaker]
Abstract

Lecture

Status (Sug, Ass, Acc, Rej)
Set Skills
Set Interests
AssDate

Performing
Participant

Paper

Name
Location
Time {start date, end date}
PrelimDescription
Set SocActivity
Set Session [Session]
Set Participant [Person]
Call for Papers
Call for Participants and Roles
Final Program

Program

Time Present {start, end}
Set PresentedBy [Author]
Present in [Papers Presentation]

(1,n) (1,1)
Set Present [Accepted Paper]

Accepted Paper

Presented At

Is a

Figure 1. Initial Class Diagram of IFIP Conference

The Application of FOOM Methodology 87

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A top-level transaction description is provided in a structured language (e.g.,
pseudo-code or flowchart), and it refers to all components of the transaction: every
data-flow from or to an external entity is translated to an “Input from ...” or “Output
to ...” line; every data-flow from or to a class is translated to a “Read from ...” or
“Write to ...” line; every data flow between two functions translates to a “Move from

Figure 2. OO-DFD-0: The IFIP Conference

88 Kabeli & Shoval

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

... to ...” line and every function in the transaction translates into an “Execute
function...” line. The process logic of the transaction is expressed by standard
structured programming constructs (e.g., if... then ... else ...; do-while ...). The
analyst and the user, who presents the application requirements, determine the
process logic of each transaction. This cannot be deducted “automatically” from the
transaction diagrams alone, because a given diagram can be interpreted in different
ways, and it is up to the user to determine the proper interpretation.

FIgure 3. OO-DFD-1: Program Management

The Application of FOOM Methodology 89

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The top-level transaction descriptions will be used in further stages of design,
namely input/output design and behavior design, to provide detailed descriptions of
the application-specific class methods (in addition to the basic methods), as well as
the application programs.

Figures 5 and 6 show examples of two transaction diagrams. One (Figure 5) is
a “simple” transaction consisting of one elementary function, one class and one user
entity; this transaction is derived from OO-DFD-1 (Figure 3). The other (Figure 6)
is a more “complex” transaction consisting of several elementary functions, classes
and user-entities; this transaction is derived from OO-DFD-2 (Figure 4).

Figure 4. OO-DFD-2: Papers Selection

90 Kabeli & Shoval

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Design of the Interface: The Menus Class
This stage is performed following the ADISSA methodology (Shoval, 1988,

1990). A menu-tree interface is derived in a semialgorithmic way from the hierarchy
of OO-DFDs. Note the correspondence of the menus and menu items to the
respective general functions and elementary functions in the OO-DFDs. The menu
tree is translated into a new class — the “Menus class.” The instances (objects) of
the Menus class are the individual menus, and the attribute values of each object are
the menu items. Note that some of the selections within a given menu may call
(trigger) other menu objects, signified by S (selection) while other selections may
trigger transactions, signified by T. Transactions will be implemented as methods of
the Transactions class (as will be detailed later). Hence, at run time, a user who
interacts with the menu of the system actually works with a certain menu object. He/
she may select a menu item that will cause the presentation of another menu object,
or invoke a transaction, which is a method of the Transactions class. Figure 7 shows
the Menus class and some of its objects.

Design of the Inputs and Outputs: The Forms and Reports Classes
This stage too is performed according to ADISSA methodology and is based on

the input and output lines appearing in each of the transaction descriptions. Hence,
for each “Input from ...” line, an input screen/form will be designed, and for each
“Output to ...” line an output screen/report will be designed. Depending on the
process logic of each transaction, some or all of its input or output screens may be
combined. Eventually two new classes are added to the Class Diagram: “Forms
class” for the inputs and “Reports class” for the outputs. Obviously the instances
(objects) of each of these class types are the input screens and output screens/
reports, respectively. Such classes are usually defined in OO-programming lan-
guages and can be reused.

1.1
Create Initial

Program

E1
Organization
Commitee
Member

initial program details
initial program

details Program

Begin transaction “1.1”
/* derived from the OO-DFD */
Input from E1: Organization Committee Member – initial program details.
Execute Function 1.1 – Create Initial Program
Write to Class: Program – initial details of Program.
End transaction.

Figure 5. Top-Level Description of Transaction “1.1”

The Application of FOOM Methodology 91

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Design of the System Behavior
In this stage we have to convert the top-level descriptions of the transactions

into detailed descriptions of the application programs and application-specific
methods. A detailed description of a transaction may consist of procedures that can
be handled as a certain procedure may be identified as a basic method of some class.
Another procedure may be defined as a new, application-specific method to be
attached to a proper class. Remaining procedures (which are not identified as basic
methods or defined as specific methods) will become a Transactions method, which
is actually the “main” part of the transaction’s program. Hence, every transaction
is represented as a Transactions method of the Transaction class. Once triggered by
the user via proper menus selections, it may call (namely, send messages to) other
methods of respective classes, depending on the process logic of the transaction.

We can categorize the application transactions according to their complexity —
depending on how many classes and methods they refer to. For example, a simple
transaction (e.g., one that finds a certain object and displays its state or that updates
attributes of an object) may be implemented as a small procedure (namely a
Transactions method) that simply sends a message to a basic method of a certain

2.2
Present

Paper and
Reviewer
Details

2.3
Assign

Reviewers
for papers

E2
Program
Com m itee
M em ber

appropriate reviewers details
for papers details

Paper

Reviewer

paper
details

reviewers
details

paper and
reviewer
details

E2
Program
Com m itee
M em ber

reviewers
details E6

Reviewerassigned paper details

 papers review
status=Ass

reviewers
review status=Ass

Begin transaction “2.2-2.3”
For each paper that is not assigned:
{Read from Class: Paper - paper details
 For each reviewer
 {Read from class: Reviewer
 Execute Function 2.2 – Present Paper and reviewer details
 Output to E2: Program Committee Member - appropriate reviewers details for papers
 }
 move to Function 2.3
 Input from E2: Program Committee Member – selected reviewers details for the paper
 For each selected reviewer
 { Execute Function 2.3 – Assign reviewers for papers
 Write to Class : Paper – reviewers details and update paper status to Assigned
 Write to Class : Reviewer – paper details and update reviewer status to Assigned
 Output to E6: Reviewer - assigned paper details
 }
}
End transaction.

Figure 6. Top-Level Description of Transaction “2.2-2.3”

92 Kabeli & Shoval

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

<menu object>
Conference System

A1: Program Administration (S)
A2: Papers Selection (S)
A3: Sessions Handling (S)
A4: Final Program Creation (S)

Menus Class

NumOfLines
WinColor
TreePos
Set MenuItems {ItemId, Description, Coordinates, Type}
:

Choose (ItemId)
Display()

<menu object>
Program Administration

A1: Create initial program (T)
A2: Produce “call for papers” (T)
A3: Produce “call for participants and roles (T)
:

Figure 7. The Menus Class and Objects

 Menu-0.Display; Menu-0.Choose(A1)
Transaction 1.1()
{
Program=Input_Program.Display /* Input_Program is a form, which enable the user to fills in details
on Program. When the user finish to fill the form it returns the filled Program object */
Program.Add(Program)
}

Figure 8. Pseudo-Code of Transaction_1.1

class. A complex transaction (e.g., one that finds and displays objects that belong to
different classes, that updates objects that belong to different classes or that both
retrieve and update various objects) may be implemented as a more complex
procedure that sends messages to basic methods and specific methods of various
classes. Generally an application may consist of many transactions with different
levels of complexity. Note that at run time, when a user wants to “run” any
transaction, he/she actually approaches the Menus class and makes proper item
selections within the menu objects until a menu item that actually fires the desired
Transactions method is selected. From here, the execution of a transaction depends
on the process logic of the Transactions method, and the other methods it calls.

The detailed description of a transaction is expressed in two complementing
forms: pseudo-code and message diagram. A pseudo-code (Figure 8) is a structured
description that details the process logic of the Transactions method as well as any
other class method. The transition from a top-level description of a transaction to its
detailed pseudo-code description is done as follows: Every “Input from ...” and
“Output to ...” line in the top-level description is translated to a message calling an

The Application of FOOM Methodology 93

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Data

Program

Construct (Prog)

Forms

Input Program

Prog =Display
()

Begin
Transact

End
Transact

Prog <>

Prog = NULL

Transaction_1.1()

Figure 9. Message Diagram of Transaction_1.1

appropriate method of the Forms/Reports class. Every “Read from ...” or “Write to
...” line is translated to a message calling a basic method (e.g., “Get,” “Const,” “Set,”
and “Del”) of the appropriate class. Every “Execute-Function ...” line is translated
to messages calling one or more basic methods of certain classes, to new, specific
methods that will be attached to proper classes, or to procedures that remain as part
of the Transactions method.

A Message Diagram (Figure 9) shows the classes, methods and messages
included in a transaction, in the order of their execution. A message diagram is
actually a partial class diagram that shows only the classes involved in the transaction
(including Data, Menus, Forms, Reports and Transactions classes), the method
names (and parameters) included in that transaction, and message links from calling
to called classes. Message diagrams supplement the pseudo-code descriptions of
transactions.

To summarize, the products of the design phase are: (a) a complete class
diagram, including Data, Menus, Forms, Reports and Transactions classes, each with
various attribute types and method names (and parameters), and various associations
among the classes; (b) detailed menu objects of the Menus class, each menu listing
its items (selections); (c) detailed form and report objects of the Forms and Reports
classes, each detailing its titles and data fields; (d) detailed transactions descriptions
in pseudo-code and (e) message diagrams at least for nontrivial transactions.

FUTURE RESEARCH
Our further research and development agenda includes development of a set of

CASE tools to support the methodology and evaluation of the methodology by means
of experimental comparisons with other methodologies on various dimensions, e.g.,
comprehension of schemas by users, quality (i.e., correctness) of designed schemas,
ease of learning the methods, etc.

94 Kabeli & Shoval

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CONCLUSION
The advantages of FOOM are that system analysis (i.e., specification of user

requirements) is performed in functional terms via OO-DFDs — a natural way for
users to express their information needs — and in data terms via an initial class
diagram. System design follows the analysis and uses its products. The class diagram
is augmented with a Menus class, which is derived from the menu-tree that was
designed earlier from the OO-DFDs, and with Inputs and Outputs classes, which are
derived from the input forms and the outputs of the system (earlier products of the
design stage). The class methods and the application programs are generated from
the transaction descriptions, which are also derived from the OO-DFDs.

REFERENCES
Booch, G. (1991). Object-Oriented design with applications. Benjamin/Cummings.
Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The unified modeling language

user guide. Longman, MA: Addison-Wesley.
Clee, R., & Tepfenhart, W. (1997). UML and C++: A practical guide to Object-

Oriented development. Englewood Cliffs, NJ: Prentice Hall.
Coad, P., & Yourdon, E. (1990). Object-Oriented analysis. Englewood Cliffs, NJ:

Prentice Hall.
Coad, P., & Yourdon, E. (1991). Object-Oriented design. Englewood Cliffs, NJ:

Prentice Hall.
DeMarco, T. (1978). Structured analysis and system specification. New York:

Yourdon Press.
Dori, D. (1996). Object-Process Methodology: the analysis phase. Proceedings of

TOOLS USA’96.
Dori, D. (2001). Object-Process Methodology applied to modeling credit card

transactions. Journal of Database Management, 12(1), 4-14.
Jacobson, I. (1992). Object-Oriented software engineering: A use case driven

approach. ACM Press.
Larman, C. (1998). Applying UML and patterns — An introduction to Object

Oriented analysis and design. Upper Saddle River, NJ: Prentice Hall.
Maciaszek, L.A. (2001). Requirements analysis and system design — Develop-

ing information systems with UML. Addison-Wesley.
Martin, J., & Odell, J. (1992). Object-Oriented analysis & design. Englewood

Cliffs, NJ: Prentice Hall.
Mathiasssen, L., Munk-Madsen, A., Axel Nielsen. P., & Stage, J. (2000). Object

Oriented analysis and design. Aalborg, Denmark: Marko Publishing ApS.
Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1991). Object-

Oriented modeling and design. Englewood Cliffs, NJ: Prentice Hall.
Shlaer, S., & Mellor, S. (1988). Object-Oriented analysis: Modeling the world in

data. Englewood Cliffs, NJ: Yourdon Press.

The Application of FOOM Methodology 95

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Shlaer, S., & Mellor S. (1992). Object life cycles: Modeling the world in states.
Englewood Cliffs, NJ: Yourdon Press.

Shoval, P. (1988). ADISSA: Architectural design of information systems based on
structured analysis. Information System, 13(2), 193-210.

Shoval, P. (1990). Functional design of a menu-tree interface within structured
system development. Int’l Journal of Man-Machine Studies, 33, 537-556.

Shoval, P. (1991). An integrated methodology for functional analysis, process design
and database design. Information Systems, 16(1), 49-64.

Shoval, P., & Kabeli, J. (2001). FOOM: Functional- and Object-Oriented analysis
& design of information systems — An integrated methodology. Journal of
Database Management, 12(1), 15-25.

UML Rose (1998). Unified Modeling Language, Vol. 4. Retrieved from http://
www.rational.com.

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. (1990). Designing Object-Oriented
software. Englewood Cliffs, NJ: Prentice Hall.

Yourdon, Y., & Constantine, L.L. (1979). Structured design. Englewood Cliffs, NJ:
Prentice Hall.

96 Kabeli & Shoval

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Section II

Managing
Software Projects

A Quantitative Risk Assessment Model 97

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VIII

A Quantitative Risk
Assessment Model for

the Management of
Software Projects

Dan Shoemaker
University of Detroit Mercy, USA

ABSTRACT
This chapter presents a comprehensive quantitative management model for
information technology (IT). It is assessment based and can be easily implemented
without imposing an unacceptable organizational-change solution. It supplies
detailed information about the functioning of processes, which will allow
managers to both effectively oversee operations, as well as assess their
prospective and ongoing risks of execution.

INTRODUCTION
The first point that must be understood is that quantitative management is not

process improvement. The professional consensus is that the proper role of

98 Shoemaker

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

quantitative management is to insure the stability of software processes (Paulk,
1999). According to Paulk (1999), quantification makes the process “repeatable.”
That is a critical requirement because an organization that does not embody
repeatable outcomes cannot adequately gauge its effort and cannot estimate the time
or cost of its products (Humphrey & Watts, 1994). With repeatable processes, the
organization can plan its work and monitor its projects. Thus, according to Paulk
(2000), quantifying an undefined and ad-hoc process leads to decreased cost of
production. More importantly, quality cost, and schedule are predictable (Humphrey
& Watts, 1994).

Quantitative management fulfills two fundamental requirements of IT
governance’s best practice: the necessity to foster common understanding of the
process and the responsibility to evaluate performance. Embodied within a strategic
infrastructure it lets an organization “strategically align” its IT processes with its
business goals, as well as to evaluate and economically justify each of its projects on
a risk-adjusted basis. This assures that the overall mix of projects will best utilize the
company’s resources and special abilities.

THE PROBLEM
Because it supports the execution of stable repeatable processes, quantitative

management looks like the best answer to any concern about efficient operation. The
problem lies in its consistent application. When IT processes are not implemented or
measured as consistently as they should be, an element of unacceptable variability
is induced. This is the most common complaint when arguing that quantitative
management cannot be applied to software (Ould, 1996). In fact, according to Ould
(1996), the only significant roadblock to an organization achieving a quantitative
management capability lies in insuring reliable communication: “It is crucial to have
a fully defined process and understand the context of the data when doing cross-
project comparisons.” Thus, according to Ould (1996), businesses interested in
implementing a successful quantitative management capability must concentrate on
four “understanding” factors:
1. Universally understood and accepted operational definitions;
2. Clear and unambiguous (business) contextual definitions and associations;
3. The ability to trace from data back to that original context;
4. Consistent measurement of stable well-defined organizational variables.

So a single practical control framework is an absolute necessity. That is because
definition entails the consistent identification of the elements that constitute the entity
under study (ISACA, 2000). The problem with IT is that most of its operational
variables are intangible, continuously changing or widely dispersed. For instance, the
range of capital assets that should be accounted for in an ordinary IT operation span
the gamut from facilities, personnel, hardware/system assets, software applications

A Quantitative Risk Assessment Model 99

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to such intangibles as information and data, interfaces, business relationships and
agreements (ISACA, 2000). With the exception of personnel, hardware and
facilities, none of these is easily describable, let alone measurable. The organization
can rarely account for the exact status of its software applications, enumerate its
information and data assets or precisely describe its organizational interfaces and
agreements. This is unfortunate because the information outcomes of technical
work, across organizational boundaries as defined by agreement, are the basic
mission and primary justification for IT investment (ISACA, 2000).

Moreover, without some kind of objective information based system, there is
almost a direct correlation between the level of experience of the individual manager
and project success. As a result, according to Jones and Capers (1997), inexperi-
enced or inadequately trained managers are noted with distressing frequency on
canceled projects and projects that experience cost overruns and missed schedules.
Inadequate management training is also commonly associated with the problems of
low productivity, low quality, and, of course, management malpractice. According to
Humphrey and Watts (1994), without prior experience, it is practically impossible to
assess the prospects of a prospective project or monitor its execution once the
commitment has been made.

THE SOLUTION: STANDARD BEST PRACTICE
The alternative to individual virtuosity is systematization, which in IT is based

on universally understood “best practice.” A body of knowledge in best practice has
always existed within the industry. This is captured and promulgated in a wide range
of professional standards. These standards create and maintain the consistent policy
and procedure framework necessary to satisfy Ould’s (1996) requirements for
achieving a successful quantitative management capability.

The essence of successful day-to-day control of the IT function lies in the ability
to measure performance. Practically, managers must have precise insight into the
operation of their areas in order to do this effectively. Yet managers never know as
much about what is going on as the technical people they oversee. But individually,
they are the ones who are responsible for the ultimate success or failure of each
product (Humphrey & Watts, 1994). As Jones and Capers (1997) point out, without
prior experience it is practically impossible to estimate in advance the prospects for
success or failure of a software project, or to monitor its execution once that
commitment has been made. This is particularly true where the requirements are
highly complex. According to an exhaustive study of 8,000 software projects, where
projects failed the most common cause cited was a lack of project management
(execution) and an inability to oversee project activity on the part of the project
manager (KPMG, 2001).

This leads to the inescapable conclusion that any organization, large or small,
simple or complicated, functions better with a formally defined standard-based

100 Shoemaker

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

management infrastructure that will insure that the organization’s people, equipment
and financial resources are utilized effectively in the fulfillment of its business goals.
That is why the quantitative management aims of level four CMM are so attractive
to software managers. Those KPAs allow them to use the systematic data provided
by the key practices installed at that level (and the prior two) to evaluate potential
commitments and monitor performance as the project unfolds. This in turn helps
managers to identify and overcome the inevitable problems in production as they
occur and minimize the risks of project failure.

Nevertheless, the problem with level four is that the prior two levels force the
organization to change in ways that are often unacceptable to the people doing the
work. In fact, one of the primary stumbling blocks to the implementation of any
externally imposed process improvement framework (be it CMM or ISO 9000) is
that IT workers must adjust their current (and sometimes highly valued) work habits
to meet the model requirements.

While the methodology we are about to discuss achieves the same purposes as
level four CMM (to improve organizational performance and increase productivity
using focused management data), it is based on assessment rather than change.
Thus, instead of being forced to follow a staged, lockstep implementation scheme that
can require considerable behavior change and generate unproductive resistance,
organizational capability can be evolved within the unique culture and norms of the
business itself.

ASSESSMENT-BASED RISK ESTIMATION:
A SHORTCUT TO LEVEL FOUR

This methodology is based in principle on the determination of the capability of
a given set of required processes. It provides information about the effectiveness of
each of these processes in meeting business goals, whether those have been set for
a project, or the organization as a whole. The primary difference between this model
and the way CMM Level Four defines capability is that our model assesses each
process directly (based on a set of management attributes similar to the common
features of CMM) to find out how capable it is. As a result this approach does not
require an organizational change. Instead it simply provides specific information
about the functioning and effectiveness of the target processes. It is assumed that
managers can then use that information to evolve each process to a higher level of
productivity and efficiency within the context of the business culture. The key
element to keep in mind is that this information is obtained in a noninvasive way (e.g.,
one that is acceptable to the organizational culture as a whole).

The approach centers on the assessment of the level of adherence to commonly
understood best practice. Over the past several years, it has become manifestly clear
that the only reference on which to base such an assessment is the lifecycle process
definitions contained in the ISO 12207 (or IEEE 12207.0) international standard (the

A Quantitative Risk Assessment Model 101

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

best evidence of that might be the mass harmonization of the IEEE Software
Engineering Standards Collection to 12207 starting in 1995 in Moore (1998)). The
complete set of defined processes derived from 12207 constitutes a coherent
definition of best practice in software work.

Consequently any assessment that is carried out using this standard as a point
of reference provides a picture of current status with respect to best practice, as well
as a profile that can be used as a roadmap to achieve business goals (and evolve the
desired level of capability for each process). Functionally this assumes that a correct
organization is one that performs the proper (to its purpose) primary processes of the
standard along with all of the necessary supporting and organizational processes
independent of intricate phasing (as is the case with CMM). This means that
information derived from an assessment, such as we are about to describe, can help
managers to both prioritize and plan for improvements in the functioning of each
process based on the realities and constraints of their business situation (Shoemaker,
2001).

OVERVIEW: THE ASSESSMENT PROCESS
The primary purpose of this assessment is to develop information about the

ongoing status of the organization’s processes with the aim of better resource
deployment and utilization. The model supports strategic management in that purpose
by determining the current and potential capability of a software process. It supports
project management by identifying priority processes for further development. In
effect it pinpoints the potential risks associated with a given required capability. This
enables managers to put in place appropriate controls for risk containment. It also
establishes a quantified basis for evaluating project requirements against current unit
capability.

This approach provides a structured methodology for the ongoing assessment
of software processes. It addresses the adequacy of the execution of the process
as well as the capability of the management of the process. It allows the organization
to factor in the context in which the assessed process operates for both of these
dimensions. The assessment model relates the practices and capabilities of the
process instance to its defined purpose1. In that respect the ratings of a given process
should be repeatable by different qualified assessors. The assessment process
compares an organizational unit’s processes against a common reference model. As
we said earlier, this is most commonly based on the lifecycle process definitions
provided by the ISO 12207 Standard (in the U.S. IEEE 12207.0) or alternatively the
process reference model contained in ISO 15504, Part 2 (Base Practices Guide).
Either common framework describes the complete set of best practices considered
essential for effective software engineering work performance.

102 Shoemaker

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

THE ASSESSMENT PROCESS:
BASE AND GENERIC PRACTICES

The presence or absence of requisite (as defined by the reference mode) base
practices allows the assessor to make judgments about the state of a given process.
Each process is describable by its base practices, which in a practical sense are just
the activities that should correctly be performed in order to achieve a given purpose.

A base practice is a software engineering or management action that addresses
the purpose of a particular process. It is assumed that consistently performing the
base practices of a process will aid in consistently achieving its purpose. The base
practices (from whichever reference model is selected) are tailored (e.g., individu-
ally determined) for each assessment target. This is normally highly context sensitive
and depends primarily on the organization’s interest in a critical software engineering
process, the need to address some particular area of management concern or the
need to determine whether the unit can meet a defined level of risk/capability for a
prospective enterprise. Within either one of the common reference models (e.g.,
12207 or 15504), the processes that are defined and assessed fit into one of five
categories:
• Customer-Supplier;
• Engineering;
• Management;
• Support;
• Organization.

The Customer-Supplier category consists of processes that directly impact
the customer/supplier relationship, and the Engineering process category consists
of software engineering practices that specify, implement or maintain a software
item. The Management category consists of processes that establish the project
and manage its resources. The Support process category consists of processes that
may be employed by other processes that include such common elements of best
practice as configuration management, SQA, and peer reviews. The Organization
process category consists of processes that establish the business purposes and
goals, such as process definition and improvement, training and reuse.

The model also specifies a set of generic management practices that are
embodied in all of these base practices and determine their capability (e.g., the
management capability of each of the base practices can be assessed in terms of the
presence or absence of these features). These may be used to characterize a given
level of capability maturity for that particular process. There are 11 of these
“common features,” which embrace 26 generic management practices, and are
grouped into five levels of increasing capability.

A Quantitative Risk Assessment Model 103

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The first level of maturity is the “Performed Informally” level (level one). This
level is composed of a single common feature and one generic practice: Perform the
Base Practice (the base practice is performed).

The second level is called “Planned and Tracked.” This level is composed of
four common features characterized by 12 generic practices: Planning Performance
(allocate resources, assign responsibility, document the process, provide tools,
ensure training, plan the process); Disciplined Performance (use plans/standards and
do configuration management); Verifying Performance (verify process compliance,
audit work products) and Tracking Performance (track with measurement, take
corrective action).

The third level of maturity is the “Well Defined” level. This level is composed
of two common features embodied in five generic practices: Define a Standard
Process (standardize the process and tailor the solution) and Perform the Defined
Process (employ a well-defined process, perform peer reviews, use well-defined
data).

The fourth level of maturity is the “Quantitatively Controlled” level. This level
is composed of two common features characterized by three generic practices:
Establish Measurable Quality Goals (establish quality goals) and Objectively Man-
age Performance (determine and use process capability).

Finally, the fifth level of maturity is the “Continuously Improving Level.” This
level is composed of two common features and five generic practice characteristics:
Improve Organizational Capability (establish process effectiveness goals, continu-
ously improve the standard process) and Improve Process Effectiveness (perform
causal analysis, eliminate defect causes, continuously improve the defined process).

THE ASSESSMENT PROCESS:
PERFORMING THE ASSESSMENT

The assessment process is intended to characterize both the persistence of the
process and its level of capability. Processes are always defined in terms of three
things: Purpose, Practices and Capabilities.

Purpose Statements. Each process must be described in terms of a purpose
statement. These statements specify the unique practices of the process when
instantiated in a particular environment. The purpose statement also includes how the
existence of that process will be confirmed.

The Process Dimension. The process dimension assures that the process is
performed in accordance with standard best practice. Neither 12207 nor 15504
define how or in what order a process purpose should be achieved. They simply
dictate the characteristics that must be present. However, they do stipulate that this

104 Shoemaker

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

must be done through activities and tasks that they specify for the processes that they
embody. Performance of these tasks and characteristics of the work products are
the indicators that demonstrate that a process purpose has been met.

The Capability Dimension. In addition the model specifies a set of generic
common features (e.g., this set applies to ALL processes). These are grouped by
capability level. The assessment output consists of a set of process capability level
ratings for each process instance. In the aggregate, these ratings are the basis for
the determination of overall organizational capability. Each process instance can
potentially be rated at one of five capability levels. That rating is dependent on how
many of the common feature characteristics of a given level of maturity are
embodied in that process instance. The capability of a unique instance can be
estimated by determining the degree to which it performs the generic management
practices that make up the common features.

There are essentially two aspects involved in the assessment. First, the process
dimension, which is characterized by process purpose statements and the base
practices (that address that purpose), is assessed to determine whether the specified
(by the reference model) best practices are being performed. Then the capability
dimension, which is characterized by the common feature attributes that describe a
given level of capability, is assessed to determine the level of capability maturity of
a process instance.

Depending on the overall strategic goals of the organization the assessment can
actually be carried out in two different ways: self-assessment: which can be both
team based and/or continuous, and independent audit (e.g., third party). The typical
assessment comprises seven stages:
1. Reviewing the Assessment Input;
2. Selecting the Process Instances;
3. Preparing the Assessment;
4. Collecting and Verifying Information on Practices;
5. Determining the Ratings for Process Instances;
6. Validating the Ratings;
7. Presenting the Assessment Output.

Stage One: Reviewing Assessment Inputs
At a minimum, purpose, scope, constraints, responsibilities of the assessors,

required practices not in the common reference model and any other information to
be collected must be defined prior to the assessment.

Stage Two: Selecting the Process Instances
The first substantive step in the assessment process requires the organization

to select the process instances and map them to the reference model (e.g., the

A Quantitative Risk Assessment Model 105

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

processes to be assessed are mapped to the corresponding processes defined in the
reference model). Instances targeted for assessment must fit within the assessment
scope for that process, and there must be at least one documented instance for all
processes identified in the assessment scope.

Stage Three: Preparing the Assessment
This step involves selecting and orienting the assessment team. The size of this

team will depend on scope, size of the organizational unit, skills and experience of the
available resources, as well as cost/benefit. It is necessary to ensure that the team
has understanding of assessment inputs, purpose, constraints, output and processes
and has identified all of the risk factors. For example, the assessment team should
identify any significant risk factors that may cause the assessment to fail including:
• Changes in commitment of the sponsor;
• Unplanned changes in the assessment team;
• Organization change;
• Changeover to a new standard process;
• Changes in assessment purpose or scope;
• Organizational resistance;
• Lack of financial or other resources;
• Lack of confidentiality.

Once it is formed and briefed the team selects the assessment technique that
suits the purpose, scope and style of the organization, as well as an assessment
instrument. Elements that need to be considered include the type of instrumentation
required, the level of support for security and confidentiality, the level and detail of
reporting required and the level of organizational commitment to the rating and
analysis function.

Following this, the team develops an assessment plan that details the assess-
ment inputs, the roles and responsibilities of the assessors, estimates of schedule, cost
and resources, the control mechanisms and checkpoints, the interface between the
team and the unit, the expected outputs, the identified risk factors and any logistical
requirements. Also the organizational unit being assessed needs to appoint a
coordinator to represent it in the assessment. That coordinator is responsible for
determining and supporting all of the various logistical issues raised for the
organizational unit, as well as interfacing with the assessment team and establishing
the environment and conditions necessary to facilitate the assessment activities
themselves.

Stage Four: Collecting and Verifying Information on Practices
The assessment team has to capture information on every base and generic

practice defined as required for each process instance to be assessed. Therefore, the

106 Shoemaker

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

organizational unit must designate participants to be interviewed who can best
represent the process instances. In addition the unit must insure that the appropriate
internal expertise is available as required by the assessment team.

The assessment team may also require access to support documentation and
records. This may be particularly important for a third-party assessment. Partici-
pants or the organizational unit coordinator have to ensure that these are available.
Usually the access requirements are specified in the assessment plan.

The actual process of information collection is always iterative (e.g., it involves
a series of information collection and analysis stages). General categories of
information collected focus on confirming the existence/adequacy of the base
practice and the adequacy of the common features. Typically an assessment
instrument is used to collect information about all of this. Support documentation and
records are then used to verify the information collected. The amount required
normally depends on the assessment team’s knowledge of the organizational unit.

Stage Five: Determining the Ratings
Each base practice within each assessed process must be given a validated

rating for both its existence and the adequacy of its performance. In addition base
practice ratings of a process instance must be explicitly traceable to the reference
model. This is usually accomplished through a unique (coded) label that links the
assessed and documented base practice to the reference model process category for
each uniquely defined process instance. Base practice existence is rated based on
the nominal scale of nonexistent (the base practice is either not implemented or does
not produce any recognizable work products) or existent (the base practice produces
identifiable work products). Base practice adequacy is rated based on the following
scale:
• Not adequate;
• Partially adequate — the base practice contributes little to the process

purpose;
• Largely adequate — the base practice largely satisfies the process purpose;
• Fully adequate — the base practice satisfies the process purpose.

The level of capability of the performance of the management of the base
practice is rated using the common feature rating scale in the manner described
earlier. It is possible that an individual base practice though fully implemented is not
satisfying its process purpose. Thus the process capability rating provides insight into
the effectiveness of the process. A present process capability level rating must be
determined for each base practice within every process instance. For broader
management purposes an aggregated capability rating can be derived from the
assessment of the capability of each process instance. This provides a capability
rating for the organizational unit as a whole.

A Quantitative Risk Assessment Model 107

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Stage Six: Validating the Ratings
The base and generic practice adequacy ratings are validated by comparing

results to those from previous assessments, looking for consistencies between
connected or related processes, or looking at proportional ratings across capability
levels.

Stage Seven: Presenting the Assessment Output
The assessor must ensure that all information specified in the assessment output

is archived and that ratings for the assessed instances are recorded in a process
profile. The presentation of this may simply be in the form of a single presentation.
It may also be in the form of a detailed report with action plans. The presentation may
be in absolute terms (e.g., numbers) or relative terms (since last assessment).

A THREE-PHASE IMPLEMENTATION MODEL
This model is implemented in three organic phases. In the first phase, the

reference model is popularized within the organization. This involves selecting an
appropriate standard and defining the degree to which it should be applied (e.g., how
thoroughly the base practices will be assessed). It does not involve forcing anybody
to change behavior. It is simply a planning function. Essentially the organization
undertakes a process of deciding which reference model best fits its situation and
philosophy.

The next phase begins once a foundational set of best practices has been
defined and agreed on. In this “structural” phase, a process is employed to install
quantifiable, repeatable processes and the measures to assess them. Project

Portfolio and Project
Risk Estimates

Continuous Assessment

Base Practices
Work Products a nd
Pro ject Types

Initiation Planning Execution Closure

Ongoing
Project Monitoring

Executive
Management

Project Control

Figure 1. Phase One: The Foundation Model

108 Shoemaker

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

launches and workshops are the means to accomplish this. The reader should note
here that this is an educational rather than a change activity. The procedures and
measures are introduced to the work force as a whole through training, in-house
consulting (by designated champions) and mentoring, not by requiring adoption of a
procedure as a condition of compliance.

The assessment outputs provide management with performance ratings that let
them judge how adequately base practices are instituted. And it is this “adequacy”
rating that allows them to assess the prospective and ongoing risks associated with
the execution of the project. Essentially, nobody is forced to change but the “risks”
of not performing base practices can be evaluated. This gives executives the
freedom to decide future courses of action in the case of “high risk” projects (e.g.,
those where the base practices are not being followed). Furthermore, since these
assessments are ongoing managers can respond appropriately to the known situation
as it evolves.

In the third phase the organization builds an enterprise project management
architecture. Projects are assessed within its framework. As a consequence every
project is monitored and continuously assessed throughout its execution cycle.

THE RISK ANALYSIS REPORT
Any project can be characterized at any point in its functioning using the

integration model. As a result, it is possible to nail down the level of risk associated
with a project at any point in its lifecycle. From that understanding the risk can be
identified, mitigated and controlled. This allows the organization to monitor the
ongoing risks associated with the entire portfolio, thus providing all of the information

Project Launches
and Workshops

Measurement

Project PerformanceProject Control

Executive
Management

Ongoing
Project Monitoring

Initiation Planning Execution Closure
Base Practices
Work Products a nd
Pro ject Types

Continuous Assessment

Portfolio and Project
Risk Estimates

Figure 2. Phase Two: The Structural Model

A Quantitative Risk Assessment Model 109

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

necessary to allow decision makers to guide the organization as effectively as
possible. The total project risk is determined using the following inputs:
1. The expected, or target, rating for the project;
2. The actual assessed rating for the project (e.g., Fully, Largely, Partly, Not);
3. The gap between the target and actual ratings (as a percent);
4. The probability for problems occurring because of that gap (as a percentage);
5. The risk of potential impacts from problems occurring.

This is captured and presented in a Project Risk Analysis Report. What is
reported is the level of performance of the process instance with respect to current
and targeted levels of capability. In accordance with the rating scale discussed in the
prior section, the potential levels of performance of these base practices is Fully (F),
Largely (L), Partly (P) and Not (N). The other dimension is capability. Because the
assessment model is based on a six-level classification structure (e.g., level 0 through
5), capability is expressed on a six-point ordinal scale. The scale represents
increasing capability from performance that is not capable of achieving its goals
(level 0: Incomplete) to performance that is capable of meeting relevant process and
improvement goals explicitly derived from the organization’s business plan (level 5:
Optimizing). This can also be expressed on a percentage scale and, therefore,
provide a more detailed insight into the specific aspects of a project. This scale is
shown in Table 1.

The following examples represent possible assessments of three different
projects. The first column presents the degree of performance of the base practices
(from Not performed to Fully performed) and the third column reports the level of
assessed capability (from nonexistent to optimizing). Columns two and four provide

Project PerformanceProject Control

Improvement Opportunities

Historical Data Measurement

Project Launches
and Workshops

Portfolio and Project
Risk Estimates

Base Practices
Work Products a nd
Pro ject Types

Continuous Assessment

Ongoing
Project Monitoring

Initiation Planning Execution Closure

Executive Management

Figure 3. Phase Three: The Integration Model

110 Shoemaker

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a visual readout of the same information. For instance, the first example shows the
rating for a medium-risk project. The first cell states that the base practices are
assessed as Largely (L) fulfilled whereas the target is Fully (F), which produces a
minor gap and a slight probability of failure. Thus the risk associated with that would
be medium. The other cells can be read in the same fashion.

In the second project the base practices are assessed as Fully (F) carried out.
Since the target is F there is no gap and the probability of failure is accordingly very
slight. Thus the risk associated with that would be relatively nonexistent.

A more likely set of outcomes is shown in the third project. In this example the
base practices are assessed as Partly (P) carried out (in the sense that they can be
confirmed as understood and executed but not in a systematic fashion). Since the
target is Fully (F) there is a Major gap and the probability of failure is accordingly
Substantial. Thus the risk associated with that would be very High. With respect to
their assessed capability, the fact that they are understood is not represented in the
documentation and, therefore, the assessed capability level is 1 (not capable), and
there would be a significant probability of failure attached to this project and the
likelihood of failure would be high.

The entire portfolio of projects can be represented in such a fashion and easily
understood by busy executives. Notwithstanding the potential “heads-up” that this
would provide for them, the detailed assessment information embodied in this

PROCESS ATTRIBUTE RATINGS

Fully Achieved 86-100% F

Largely Achieved 51-85% L

Partially Achieved 16-50%

���
���
���P

���
���
���

���
���
���

Not Achieved 0-15% N

Table 1. Percentage Scale Showing Process Attribute Ratings

Figure 4. Project One: A Medium Risk Project

 Base Practice N P L F Capability 1 2 3 4 5 6
Target F 4
Assessed L 3
Gap Minor Minor
Probability Low Low
Risk Medium Medium

A Quantitative Risk Assessment Model 111

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

provides the elaboration sufficient to allow for their staff to make informed
corrections.

CONCLUSIONS
Organizations cannot be effectively managed without information. Yet the very

nature of IT work makes it hard for decision makers to get effective oversight. This
is the case because of the unique nature of software work. Organizations, be they
software shops or the Prussian general staff function on three mutually supporting
hierarchical levels. The diagram in Figure 7 outlines these.

In theory a few policy makers are the captains, who decide where the ship is
going. This decision is delegated to a larger set of individual managers who are kings
in their functional areas but who do not set overall policy. They implement that
decision by supervising the hoisting of the sails. The role of the operations people is
to do the heaving. They should not be deciding anything more long term than
whatever it takes to get the canvas up the mast. Of course, this all presupposes that
the captain can see where the ship’s going and the managers can actually oversee

Figure 5. Project Two: A Low Risk Project

 Base Practice N P L F Capability 1 2 3 4 5 6
Target F 4
Assessed F 4
Gap None None
Probability None None
Risk None None

Figure 6. Project Three: A High Risk Project

 Base Practice N P L F Capability 1 2 3 4 5 6
Target F 4
Assessed P 1
Gap Major Significant
Probability Substantial Significant
Risk High High

112 Shoemaker

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

whatever task is delegated to them. In fact, since the development and maintenance
of software involves highly complex creative and abstract (meaning conceptual)
behavior, the only people who actually know what’s going on with the product are
the people who are making it, which creates an organizational disconnect something
like what is shown in Figure 8.

That is why software infrastructure is notoriously flat, meaning (in essence)
completely unmanaged. And it is also summarizes the whole purpose of most popular
process improvement models, which is to enforce a monitoring and control function
that looks like Figure 9.

In essence the point of these ideal frameworks is to let the appropriate decision
maker see what’s going on in the process so that they can actually enforce control
over their areas of responsibility. Ideally, the point of this is to ensure that every
decision maker in the organization has sufficient focused information in front of them
when they are required to make decisions that affect their functional areas. This will
allow them to deploy resources efficiently, maximize coordination and react effec-
tively to any and all contingencies as they arise in the day-to-day process of
development and maintenance. Moreover it is the specific lack of sufficient
management vision (as represented by that lack of information) that has created the
current cost and performance problems in the IT business.

Of course a lot of software projects get run very well, but the evidence is also
manifestly clear that this happens where the project manager has sufficient
experience with similar projects to allow them to steer around the rocks. The

Figure 7. Diagram of the Functions of Organizations on Three Hierarchical
Levels

Operational Activity – 85%

Policy Decision Making – 5% of the organization

Management Decision Making – 15%

Figure 8. Organizational Disconnect

Policy

Management

Operations (development)

Decisions about budget and staff

All substantive decisions about
what’s produced

Decisions about Corporate Vision”

A Quantitative Risk Assessment Model 113

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

evidence is also unmistakable that in the case of new development (e.g., something
outside of the experience of the manager) or inexperienced project managers the
results are consistently abysmal.

So the question remains, is there a systematic way to manage software projects
without resorting to climbing up a very steep and costly learning curve, or even worse
bringing in a guru who will cost the organization an arm an a leg just to assure that
the project will be delivered close to budget and schedule? The answer is that the only
way to insure that projects will be consistently managed effectively is for project and
executive managers to have systematic access to pertinent, reliable, accurate and
quantifiable information. This means that it has to be possible to measure and report
on the performance of each project in the company’s portfolio throughout its
lifecycle. Thus as each IT project moves through concept to development to eventual
use, the information system will be able to provide up-to-date tracking telemetry
about project functioning as well as the level of technical and financial risk to the
people responsible for guiding it.

Creating such a system is a relatively simple process. It entails the establishment
of a measurement-based management system targeted specifically at generating
relevant and focused decision support information. In turn it implies the requirement
for a scientifically defined enterprise-oriented project management architecture,
where methodology is the driving force (rather than the individual experience of
employees). Only a standard methodology can reliably guarantee that information
will be systematically derived and reported, which in turn implies the absolute
requirement for quantitative data. This is obtained by measuring project performance
on an ongoing basis. And it is the only way to make certain that the right resources
are available to deliver the projected benefit as well as ensure that historical data,
known risks and organizational best practices are used as inputs to project planning.
Finally, and most importantly, a systematic methodology is the only way to reliably
ensure the necessary monitoring and control over all projects. That is the purpose of
the quantitative management model.

As can be seen, any software project can be managed using this approach. The
organization’s (or its suppliers’) capacity to successfully deliver the project is
estimated based on the performance of best practices. The risk associated with
committing to a project, or selecting a certain supplier, can then be translated into an

Figure 9. Illustration of a Monitoring and Control Function

Organizational Monitoring Organizational Control

114 Shoemaker

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

objective index, which the organization can use to account for and control its ongoing
functioning. The Risk Assumed report enumerates the management capability of
the project, which is assigned based on the management practices that are embodied
in the overall conduct of the project. One important point needs to be noted, the risks
identified are at the overall organizational management level, and they should be
considered separate from software engineering risks that are identified and mitigated
during the project lifecycle. Thus the information derived from this model can
objectively identify which projects are at risk before the project starts. This enables
an organization to focus on and manage the risks identified as most likely to cause
the project to fail during its lifecycle, which is immeasurably valuable.

REFERENCES
Boehm, B. (1987, September). Improving software productivity. Computer, 20(9),

43-57.
Card, D., & Comer, E. (1994, September). Why do so many reuse programs fail?

IEEE Software, 11(5), 114-115.
Construx Software Builders. (2001). Retrieved August 2001 from http://

www.construx.com.
Curtis, W. (1995). Building a cost-benefit case for SPI. Proceedings from the 7th

SEPG Conference. Boston, MA: DACS.
Dion, R. (1993, July). Process improvement and the corporate balance sheet. IEEE

Software.
Dorofee, A.J., Walker, J.A., & Williams, R.C. (1997, April). Risk management in

practice. Crosstalk, 10(4).
Fenton, N. (1993). How effective are software engineering methods. Journal of

Systems and Software, 22.
Humphrey, W. (1994). Managing the Software Process. Reading, MA: Addison-

Wesley.
Humphrey, W. (1995). A Discipline for Software Engineering. Reading, MA:

Addison-Wesley.
International Organization For Standards. (1995). ISO/IEC 12207. Geneva, Swit-

zerland.
International Organization for Standards. (1998). TR- 15504. Geneva, Switzerland.
ISACA (2000). Framework, CobiT (3rd Ed.). Rolling Meadows, IL: The Informa-

tion Systems Audit and Control Association and Foundation.
Jones, C. (1997). Assessment and control of software risks. Englewood Cliffs, NJ:

Prentice-Hall.
KPMG Technology and Services Group. (2001). Retrieved September 2001 from

http://www.kpmg.ca.
Laker Consulting. (2000). Retrieved August 2000 from http://www.laker.com.au.
Lee, E. (1997). Software inspections: How to diagnose problems and improve the

A Quantitative Risk Assessment Model 115

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

odds of organizational acceptance. Crosstalk, 10(8).
McGarry, F., & Jeletic, K. (1993). Process improvement as an investment:

Measuring its worth (Report No. SEL-93-003). NASA Goddard Space Flight
Center.

McGibbon & Thomas (199). A business case for software process improvement
revised. DoD Data Analysis Center for Software (DACS).

Moore, J. W. (1998). Software Engineering Standards: A User’s Road Map.
Los Alamitos, CA: IEEE Computer Society.

Office of Management and Budget Evaluating Information Technology Invest-
ments. Retrieved August 2001 from http://www.itmweb.com.

Ould & Martyn, A. (1996, December). CMM and ISO 9001. Software Process
Improvement and Practice, 2(4) 281-289.

Paulk & Mark, C. (1999). Toward quantitative process management with explor-
atory data analysis. Proceedings from the International Conference on
Software Quality,

Paulk, M.C., Goldenson, D., David, & M., White. (2000). Survey of high maturity
organizations. (Special Rep. CMU/SEI-2000-SR-002).

Rozum, J. (1993). Concepts on measuring the benefits of software process
improvement. (Rep. No. CMU/SEI-93-TR-09, ESC-93-TR-186).

Shoemaker, D. (2001). Requirements Based Estimation. Proceedings from the
Decision Sciences International Conference. San Francisco, CA.

Software Engineering Institute. Retrieved 1998 from http://www.sei.cmu.edu.
Strassman, P.A. (1990). The business value of computers. New Canaan, CT: The

Information Economics Press.
Violino, R. (1997, June 30). Measuring value: Return on investment. Information

Week, (637), 36-44.
Yamamura, G., & Wigle, G.B. (1997, August). SEI CMM Level Five: For the right

reasons. Crosstalk, 10(8), 3-6.

ENDNOTES
1 For the purposes of this discussion, a process instance is defined as a singular

instantiation of a process that is uniquely identifiable and about which informa-
tion can be gathered in a repeatable manner.

116 Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IX

Software Metrics,
Information and Entropy

Jana Dospisil
Monash University, Australia

ABSTRACT
This chapter describes the foundation and properties of object-oriented
software measures. Many software measures for object-oriented applications
have been developed and tested in the development environment. However, the
process of defining new measures is still alive. The reason for such development
lies in difficulties associated with understanding and maintaining object-
oriented applications. It is still difficult to relate the measures to the phenomena
we want to improve. Do our measurements indicate problems in reliability,
maintenance, or too much complexity of some portions of the application?
In order to reduce the complexity of software, new development methodologies
and tools are being introduced. An example of the new approach to development
is separation of concern. The tools, such as Aspect/J (Kiezales et al., 1997) or
Hyper/J (Ossher & Tarr, 1998), facilitate the development process. There does

Software Metrics, Information and Entropy 117

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

not seem to be a sound metrics suite to measure complexity and efficiency of
applications developed and coded with Aspect/J or Hyper/J. In this chapter,
we attempt to review the current research into object-oriented software metrics
and suggest theoretical framework for complexity estimation and ranking of
compositional units in object-oriented applications developed with Hyper/J.

INTRODUCTION
Software metrics is a term used to describe a wide range of techniques

concerned with measurement of the quality of software products. These techniques
range from collecting quantitative aspects of code (e.g., Lines Of Code) to models
used for prediction of software quality. The objectives of software engineering are
to improve the quality of developed software and provide tools for reducing software
complexity. These objectives can lead to reduced cost for software development,
facilitate maintenance and allow evolution and extension of the software.

For some time it has been estimated that over 70 percent of software
development is spent in testing and maintenance of software (Zuse, 1994). The
reports from large commercial projects, which utilize the object-orientated tech-
niques, indicate that the expected cost savings in maintenance have not been
delivered. The increased complexity and size of software projects have led to the
development of many different concepts for breaking a system into less complex and
manageable modules (Dijkstra, 1976).

The principle of separation of concerns also made its way into object-oriented
design. The source of the problem in software development is that some kinds of
behavior or functionality cross cut or are orthogonal to classes in many object-
oriented components, and they are not easily modularized to a separate class.
Examples of such behavior include the following: synchronization and concurrency,
performance optimization, exception handling and event monitoring, coordination and
interaction protocols, and object views.

Recent research at Xerox PARC in aspect-oriented programming (AOP) and
a multidimensional separation project at IBM seek to alleviate this. This new
programming model language constructs and compiles interleave components and
aspects or concern definitions (programs) appropriately to formulate a unified and
executable program. The objective is to reduce the complexity and promote easy
maintenance.

The chapter is organized as follows: The chapter begins with an introduction
of object-oriented structures and provides an overview of established metrics. Then,
it introduces the notion of complexity and entropy-based metrics for complexity.
It is followed by a section that deals with the concept of separation of concern, and
provides the theoretical underpinning of Hyper/J. Furthermore, the proposed metric
suite for Hyper/J is presented.

118 Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

OBJECT-ORIENTED METRICS
There is a growing concern that software metrics should have a solid base.

Measurement theory has been suggested for translating mathematical properties of
measures to empirical (intuitive) properties. Rigorous approach to object-oriented
metrics has been suggested by a number of researches. In literature, more than 100
software measures for object-oriented applications can be found.

Object-Oriented Structures
Object-oriented development methods have their own terminology to reflect the

structural concepts. The main concept is classification meaning that the elements
containing similar attributes and operations are encapsulated in a template called
class. Each class can have subclasses that inherit the attributes and methods of the
superclass. Class instance is an object which contains concrete data or information.
Adhering to the principle of encapsulation, message passing is the only means to
access an object’s state. Object A is coupled with another object B if, and only if,
A sends a message to B. Cohesion describes the binding of the elements (attributes
and methods) within the same class while ignoring instance variables and inherited
methods.

Brief Overview of Established Metrics
Since 1995 the trend towards incorporating measurement theory into all

software metrics has led to identification of scales for measures, providing some
perspective on dimensions. When we consider measurement units, we need to
understand the different measurement scale types implied by the particular unit. The
most common scale types based on measurement theory (Roberts, 1979), and the
applied approach explanation in Henderson-Sellers (1996) and Kitchenham (1996)
are:
• Ordinal — an order set of categories (often used for adjustment factors in cost

models based on a fixed set of scale points);
• Interval — numerical values where the difference between each consecutive

pair of numbers is an equivalent amount, but there is no ‘real’ zero value;
• Ratio — similar to interval scale, but it includes an absolute zero;
• Nominal — a set of categories into which an item is classified.

The unit’s scale type determines the admissible transformations and statistics
we can use to analyze measures. Fetchke (1995) and Zuse (1991) analyzed the
properties of object-oriented software metrics on the basis of measurement theory.
The underlying notion of measurement theory is based on intuitive or empirical
existence of relationships among objects within our Universe of Discourse. These
relationships then can be formally described in a mathematically derived formal
relational system. Zuse (1991) also investigated how and under what conditions the

Software Metrics, Information and Entropy 119

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

software measures may be viewed as ordinal, ratio, nominal and interval. He admits
that these scale types present very little meaning with regard to maintainability and
error proneness of the application.

Zuse’s object-oriented model allows four levels of abstraction: class, method,
inheritance tree and delegation (uses hierarchies). They defined a set of empirical
relations (1994) considering concatenation operations on class level and method
level. In addition to Chidamber and Kemerer’s (1994) concatenation operations,
Zuse’s quantitative criteria for software measures are based on the theory of
extensive structure and a set of empirical conditions (axioms). The approach of
extensive structure can also be applied to cost estimation models, design and
maintainability measure. Zuse also proved that with the dynamic nature of object-
oriented software we need to consider quantitative and qualitative probabilities and
belief structures (e.g., Dempster-Shafer Function of Belief, the Kolmogoroff axioms
and others).

The goal of Zuse’s new axiom system is briefly described in Figure 1. The
relations defined by Fetchke and Zuse include the following operations: Class
unification C=CUNI(A,B) results in a new class C, which combines the properties
of the classes A and B. The implication of the concatenation on inheritance
relationship whether the unification is applied to classes with the same root class
(father) or the classes with separate father are subject of unification. Class
intersection CINT(A,B) is not a simple combination of methods to build a new
class. In addition, it allows the definition of an empty class and associated metrics.
The same definitions were applied to methods. The following is the equation for class
unification and empty class:

CINT(A, B) = ©
P(©) = 0 (1)

Krantz, Luce, Suppes and Tversky (1971) suggest that significant effort in
designing and analyzing measurement goes into finding a good axiom system. They
argue that at least one axiom is required to construct a representation. One of the
odd axioms is the Archimedean axiom: for any positive number x, no matter how
small and any number y, no matter how large, there exists an integer n such that:

nx � y (2)

With regards to scale type, Zuse argues that in an object-oriented environment
the behavior of measures relevant to concatenation operations do not assume
extensive structure, and consequently they cannot be used as a (additive) ratio scale.
Some other measures assume indempotency, which is the concatenation rule defined
as:

a ± A- ! a D a = a (3)

120 Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The implication is that they do not meet the Archimedean axiom.
The contribution of Zuse and Fetchke’s work (also in Fenton & Pfleger [1997])

is an introduction of a specific perspective of measures. They emphasize precise-
ness for the definition of scales as well as a definition of the attribute that is measured.

An axiomatic approach was proposed by Weyuker (1988). This framework is
based on a set of nine axioms listed in Table 1 against which software could be
formally evaluated. The notations used are as follows: Classes P, Q, R, P+Q denote
a combination of classes P and Q, and m denotes the chosen metric. We denote m(P)
as the value of this metric for the class P. If two classes P and Q provide the same
functionality, then P º Q. The description and criticism can be found in Henderson-
Sellers (1996).

In this metric proposal we observe the formalization of structural inheritance
complexity metrics. The property 9 means that splitting one class into two classes can
reduce the complexity. From the practical point of view and as argued by Chidamber
and Kemerer (1994), the complexity of interaction may even increase when classes
are divided.

Figure 1. From Ordinal Scale to Extensive Structure

Ratio ScaleOrdinal Scale Extensive StructureFunction of Belief

Table 1. Weyuker’s Axioms

Axiom Name Description

1 Noncoarseness

2 Granularity Let c be non-negative number. Then there is finite number of class

complexity = c
3 Nonuniquesniss There is distinct number of classes P and Q such that P(P) = P(Q)
4 Design detail

matter
5 Monotonicity

6 Non-equivalence

of of of interaction
� �� �� � � � � � � � � �RQRPandQPRQPa ��� ��� PPPP)

� �� �� � � � � � � � � �QRPRandQPRQPb ��� ��� PPPP)

7 Interaction among
statements

Not considered among objects

8 No change on
renaming

If P is renaming of Q then � � � �QP PP

9 Interaction can
increase complexity

� �� � � � � �� �QQPQP PP ���

� �� � � � � �� �QPQandPQP PP ����

� �� � � � � � � � � �� �QPQandQPPQP ������ PPPP

� �� � � � � � � �� �QPQPQP ����� PPP

Software Metrics, Information and Entropy 121

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Fenton and Pfleger (1997) use the term software metrics to describe the
following artifacts:
• A number which is derived, usually empirically, from a process or code (for

example, Lines of Code (LOC) or number of function points);
• A scale of measurement (an example is used in Fenton’s book is nominal scale

or classification);
• An identifiable attribute that is used to provide specific functionality (an

example is “portability” or class coupling metric);
• Theoretical or data-driven model describing a dependent variable as a function

of independent variables (an example can be the functional relationship
between maintenance effort and program size).

These descriptions typically lead to a wide spread confusion between models
and their ability to predict desired software characteristics thus their suitability to be
used for estimation purposes.

The metrics of Chidamber and Kemerer (1994) summarized in Table 2 have a
foundation in measurement theory. The authors do not base their investigation on the
extensive structure [see Roberts (1979) for more details]. The criticism by Churcher
and Shepperd (1994) points to the ambiguity of some metrics, particularly WMC.
Hitz and Montazeri (1996) and Fetchke (1995) show that CBO does not use a sound
empirical relation system because it is not based on extensive structures. Further-
more, LCOM allows representation of equivalent cases differently, thus introducing
an additional error.

Coupling measures form the important group of measures in assessment of
dynamic aspects of design quality. Coupling among objects is loosely defined as the
measure of the strength of the connection from one object to another. The stronger
the coupling is the more inter-related the objects are. Consequently, understanding
and maintenance become more complex.

Table 2. Chidamber and Kemerer Metrics (1994)

Weighted Methods per Class (WMC),

where ci is the static complexity of each of the
n methods.

Depth of Inheritance Tree (DIT), With multiple inheritance the max DIT is the
length from the node to the root

Number of Children (NOC), Number of immediate subclasses
Coupling Between Object Classes (CBO), Number of other classes to which a particular

class is coupled. CBO maps the concept of
coupling for a class into a measure

The Response for a Class (RFC), The size of response set for a particular class
The Lack of Cohesion Metric (LCOM).

È

n

i
icWMC

1

otherwiseQPifQPLCOM 0 !�

122 Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The approaches of different authors mostly differ in definition of the measured
attribute — coupling among classes. Table 3 provides the summary of differences
in definitions [modified from Briand, Daly and Wurst (1999)]. However, some of the
attributes involved in coupling may be known only after the implementation is
completed. We believe that the CASE tools such as Rational RoseÇ provide the
environment for designers to identify coupling of classes during the design phase and
possibly make changes to avoid unnecessary complexity of the implementation.

Two aspects impact coupling between classes: the frequency of messaging
between classes and the type of coupling. The discussion in Eder, Kappel and Schrefl
(1994) distinguishes among three types: interaction coupling, component coupling
and inheritance coupling. The degree of coupling (strength) is based on defining a
partial order on the set of coupling types. The low end is described by small and
explicit inter-relationships and high end of the scale is assigned to large, complex and
implicit inter-relationships. The definition is subjective and requires empirical
assignment of values in order to be used as a software quality indicator.

Table 3 provides the summary of attributes and indicates the suite of metrics by
the author in which particular attribute is considered.

Many metrics deal predominantly with static characteristics of code. Hitz and
Montazeri (1995) clearly distinguish between static and dynamic class method
invocation: number of methods invoked by a class compared to frequency of method
invocation. A concise survey and discussion of coupling including critique of current
metrics can be found in Briand et al. (1999) and Yacoub, Ammar and Robinson
(1999).

Metrics suites capable of capturing the dynamic behavior of objects with regard
to coupling and complexity have been presented by Yacoub et al. (1999). Dynamic

Table 3. Comparison of Attribute Definition for Coupling

Attribute definition Eder et al.

Hitz &
Montazeri

Briandt et al.

Public attribute visibility X
Method references attribute X
Method invokes method X X X
Aggregation X X
Class type as a parameter
in method signature or return
type

X X

Method’s local variable is
a class type

X

A method invoked from within
method passes class type
as a parameter

X

Inheritance X
Method receives pointer to
method

 X

Software Metrics, Information and Entropy 123

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

behavior of an implementation is described by a set of scenarios. The Export and
Import Object Coupling metrics are based on percentage of messages exchanged
between class instances (objects) to the total number of messages. The Scenario
Profiles introduce the estimated probability of the scenario execution. The complex-
ity metrics are aimed predominantly at assessment of stability of active objects as
frequent sources of errors.

Cohesion is defined as a degree to which elements in a class belong together.
The desirable property of a good design is to produce highly cohesive classes.
Comparison of different frameworks and a thorough discussion can be found in
Briandt, Daly and Wurst’s work (1997). We have to distinguish between class
cohesion and method cohesion. Eder et al. (1994) provide a comprehensive
framework that requires semantic analysis of classes and methods. This approach
represents a problem in the automatic collection of data. The metrics of Chidamber
and Kemerer (1994) define LCOM as the number of disjoint sets created by the
intersection of the n sets. The definition in (4) does not state how inheritance of
methods and attributes is treated with regard to method override and overload and
the depth of inheritance tree:

á
à
ß

Ñ
Ð
Ï !�

otherwise

QPifQP
LCOM

,0
,

 . (4)

In Henderson-Sellers (1996) the cohesion measure is based on number of
attributes reference by a method:

� �
m

mA
a

LCOM

a

j
j

�

�

È

1

1
1

P
 , (5)

where a is number of attributes, and P(Aj) is the measure which yields 0 if each
method in the class references all attributes and 1 if each method in a class references
only single attribute. Obvious criticism is again how should we treat inheritance?

Discussion
One of the criticisms of many proposed metrics is the lack of theoretical basis.

Many metrics show dimensional inconsistencies, or their results are derived from
correlative or regression analysis (Henderson-Sellers, 1996). As reported in
Gurasaran and Gurdev (2001), experienced object-oriented designers found memory
management and run-time errors are more problematic and difficult to deal with.
With regard to complex Java applications, our experience is that concurrency and
multithreaded architectures are often to blame for difficult maintenance and hidden
run-time errors.

124 Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-oriented middleware and Interface Definition Language (IDL) repre-
sent further complexity impacting the testing process, reliability and maintenance of
distributed software. The object-oriented metrics discussed above do not provide
either sufficient theoretical background or experimental framework for such appli-
cations.

Class size problems represent a confusing effect with regard to validity of
object-oriented metrics. The confounding effect of class size has been reported by
Khaled, Saida, Nishith and Shesh (2001), provoking some doubts with regard to the
validity of software metrics currently being used as early quality indicators. The
relationship of high coupling factor to faults proneness seems to support the
hypothesis that large class size may have a negative impact on quality and the
occurrence of faults. The author’s suggestion is to pay attention to class size in
design.

Effective testing relies on selection of testing techniques and a well-defined set
of test scenarios. Software metrics as the quantitative indicators of software
complexity could be used in the selection process. There are some approaches
relevant to risk management suggested by Khaled. These approaches, mostly built
on historical data collections, include classification models, rank models and thresh-
olds.

COMPLEXITY MEASURES
When studying the software development process, we are interested in certain

measurable quantities, e.g., occurrence of faults and code maintainability, that we
want to predict and control. Any large software application can be composed of
many elementary entities, each one of them behaving according to its own
parameters. They form a dynamic system. In theory we could describe any system
by a set of differential equations each describing one of the entities, perhaps some
1020 degrees of freedom. We are interested in two related phenomena:
• Observables arising from their average behavior, such as correct interactions,

error-handling aspects and unexpected behavior. Observables are obtained via
well-defined testing suites.

• Impact of evolutionary changes caused by introducing additional methods,
attributes, subclasses, etc. These changes typically result in increased
disorders and consequently in increased complexity.

Sometimes the evolutionary (mostly maintenance-based) changes may intro-
duce some degree of randomness and thus contribute to the unpredictable behavior
of an application. We often say that the application is too “complex” and its
maintenance too difficult. If we define complexity as the relationship between the
observer and the application, then the complexity becomes a subjective property. If
the observer is satisfied with a simple model and its accuracy, then the application

Software Metrics, Information and Entropy 125

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is not complex and well-defined test suites uncover possible unreliability. On the
contrary, if the observer requires high degree of reliability, the application then
represents a complex system with many degrees of freedom.

The attempts to measure the complexity of code are numerous. McCabe (1976)
defined cyclomatic complexity measures of software modules based on the topology
(connected graph of the module).

Cyclomatic complexity CC = E-N + p, (6)

where E is the number of edges, N is the number of nodes and p is the number of
connected components.

In order to automate and consistently count the elements, tools have been
developed. The common application of cyclomatic complexity is to compare
measures to a set of thresholds. Table 4 shows results of our experiment for method
complexity. Typically methods for “set” and “get” are low risk (some computations
add complexity and concurrent code or remote procedures) and distributed objects
using middleware are high risk.

Halstead’s (1977) complexity measures were developed to measure a module’s
complexity directly from source code. The suite of Halstead’s measures is
composed of four measures that emphasize computational complexity of a module.
Table 5 provides the summary and relevant formulas.

Halstead’s suite of measures, introduced in 1977, has been used and experi-
mented with extensively. These measures are simple to calculate. However, in order
to automate the calculation process, strong rules for identifying the operators and
operands have to be established.

Entropy and Information
From the brief survey of complexity measures presented earlier in the chapter,

we can see that object-oriented metrics are considered from different perspectives.
Cognitive complexity is measured by coupling and cohesion metrics, for example.

Table 4. Cyclomatic Complexity for Methods

Complexity value for a method Risk thresholds
1-5 Simple, low risk of defects

5-20 Complex, moderate risk

21-60 Complex, possibly high risk

60 and higher Consider unstable

126 Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Dynamic behavior metrics are related to export and import object coupling and
execution scenarios (Yacoub et al., 1999). Furthermore, we can view software
metrics at multiple levels, such as system level or class level.

Statistical entropy is a probabilistic measure of uncertainty or ignorance.
Information is a measure of a reduction in that uncertainty. Entropy and information
are fundamental quantitative measures in cybernetics, which extend the more
qualitative concepts of variety and constraint to the probabilistic domain. Variety and
constraint can be measured by introducing probabilities. Let’s assume that we do
not know the precise state of i of a system. But we know the probability of distribution
P(i) that the system would have in state i. Variety V then can be expressed as entropy
H1:

� � 1
1

 È

N

i
ip

� � � � � �iPiPPH
Ii

logÈ
±

� (7)

H (P) reaches its maximum value if all states are equiprobable, that is we cannot
assume that one state is more probable than another. In this case entropy H is
reduced to variety V. The H reaches value 0 (H=0) if, and only if, the probability of
certain state is 1 (and all other states are 0). It that case we have complete
information about what state the system is in. Let’s define constraint as the
difference between maximal and actual uncertainty. If we obtain some information
about the state of the system through observations, then this will reduce uncertainty
about the system’s state by reducing the probability of occurrence of these states.
The degree to which the uncertainty is reduced is given by (8):

Table 5. Halstead’s Complexity Measures

Measure type Formula Note
Program length N = N1 + N2 N1 = total number of operators

N2 = total number of operands
Vocabulary n = n1 + n2 n1 is number of distinct operators

n2 is number of distinct operands
Volume

Difficulty

Effort E = D*V

nNV 2log*

ÚÚÛ

Ù
ÊÊË

É
Ú
Û
ÙÊ

Ë
É

2

21 *
2 n

NnD

Software Metrics, Information and Entropy 127

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

I = Hbefore - Hafter (8)

We also note that there are other methods of weighting the state of a system
which do not adhere to probability theory’s “additivity” condition. These theories
involve concepts from fuzzy systems theory and possibility theory.

Entropy-Based Complexity Measures
Entropy-based complexity measures are based on theory of information. The

approach taken by Davis and LeBlanc (1988) who quantify the differences between
anded and neted structures using Shannon’s (1949) concept of information entropy.
It is an unbiased estimate of the probability of occurrence of event m. This
measurement is based on chunks of FORTRAN and COBOL code (represented by
nodes in the DAG) with the same in-degree and the same out-degree to assess
syntactic complexity.

In 1976, Belady and Lehman (1976) elaborated on the law of increasing entropy:
the entropy of a system (level of its “unstructuredness”) increases with time, unless
specific work is executed to maintain or reduce it. Entropy can result in severe
complications when a project has to be modified and is generally an obstacle to
maintenance.

The use of entropy as a measure of information content has been around since
1992 when it was introduced by Harrison (1992). He assessed the performance of
his entropic metrics in two commercial applications with the total number of lines of
code more than 130,000. He also claims good performance in terms of associating
modules with their error span2. Harrison’s software complexity metric is based on
empirical program entropy. A special symbol, reserved word or a function call is
considered an operator [It is assumed that they have certain natural probability
distribution (Zweben & Halstead, 1979).] The probability pi of ith most frequently
occurring operator is defined as:

i

i
i N

fp , (9)

where fi is the number of occurrences of the ith operator and Ni is the total number
of “nonunique” operators in the program.

Then the complexity is defined as:

 i

Ni

i
i ppH 2

1

logÈ

� . (10)

128 Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Average Information Content Classification (AICC) measure is defined as:

i

i
Ni

i i

i

N
f

N
fAICC 2

1

logÈ

� . (11)

This metric is intended to order programs according to their complexity and was
tested on C code. However, it does not indicate the “distance” between two
programs. It provides only the ordinal position thus restricting its usage.

The work of Bansiya, Davis and Etzkorn (1999) introduces similar complexity
measure — Class Definition Entropy (CDE) replaces the operators of Harrison with
name strings used in a class. The assumption that all name strings represent
approximately equal information is related to the possible error insertion by misusing
the string. The metric has been validated on four large projects in C++ and results
have been used to estimate Class Implementation Time Complexity measure.

Single-valued measure of complexity is appealing to managers as the simple
indicator of development complexity. However, as discussed in Fenton and Pfleger’s
(1997) book single value cannot be used for the assessment of quality of the entire
product. The measures are bound to a single product attribute (e.g., comprehensi-
bility or reliability, etc.). Therefore the results cannot be used as prediction models
or as guidance for improving the quality of the product.

MULTIDIMENSIONAL SEPARATION OF
CONCERNS (MDSOC)

Separation of concerns is often referred to as the ability to identify, encapsulate
and manipulate those software entities that are relevant to a particular concept or
purpose. Concern is a primary element of decomposition. In an object-oriented
context, it may represent a class, exception handling policy, object interaction
protocol, synchronization constraints in multithreaded system and optimizations
techniques (caching). The resulting code, instead of being well modularized, contains
fragments of different concerns (cross-cutting) thus increasing “chaos” and reduc-
ing “understandability” and maintainability of the application. At present, the
following are the solutions to this problem: Hyper/J [IBM product (Tarr, Ossher,
Harrison & Sutton, 1999)] and Aspect/J [Xerox Palo Alto (Kiczales et al., 1997)].

Hyper/J. Tarr et al. (1999) assert that the separation of concerns is at the core
of software engineering and aspect-oriented programming, which has sparked the
development of many tools and approaches to modularization of software. There is
now widespread realization in the software engineering community that a design and
implementation that is solely based on class components has its limitations. This is
because object-oriented languages, such as C++, Smalltalk and Java, are not capable

Software Metrics, Information and Entropy 129

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of expressing certain aspects of applications in a reusable way. Tarr et al. (1999)
state that “Done well, separation of concerns can provide many software engineer-
ing benefits, including reduced complexity.” To measure the quality of separation
either in N-dimensional space or even the orthogonal separation only as seen in
Aspect/J, the new set of metrics is required.

Aspect/J. Aspects tend not to be units of system’s functional decomposition,
but rather the properties that impact the performance of semantics of components
(Kiczales & Lopes, 1997). The examples include synchronization of concurrent
objects and memory access patterns. The objective is to alleviate some of the
complexity and tangled code that results due to cross-cutting/orthogonal behavior.
This behavior is inevitable in any real application. Aspect Weaverth provides
compositional service based on the concept of join points.

So far, there have been no metrics or measures to clearly indicate that the
complexity of the code has been reduced, and improvements in maintainability have
been achieved. This paper deals with theoretical underpinning of proposed metrics
to measure the complexity of modules in Hyper/J.

Overview of Hyper/J Concepts
Software is a collection of artifacts that describe the composition and function-

ality of an application. In Hyper/J, a unit is defined as a syntactic construct within
the programming language definition. A unit might be a declaration, statement, class,
method or interface. Primitive units include methods and instance variables.
Primitive units are treated as atomic. Compound units, such as a class or a package,
group primitive units together.

The term MDSOC denotes the separation of multiple, arbitrary kinds (dimen-
sions) of concerns simultaneously, having no single dimension of concern predomi-
nantly decomposed. A clean separation of concerns allows isolation and encapsu-
lation of all concerns, which then promotes traceability and reduces complexity.
Concerns are defined as the primary entities for decomposing software into
manageable and comprehensible modules (Ossher & Tarr, 1998), such as classes,
features, aspects and roles. The prevalent kind of concern is a class (data type). A
hyperspace describes the following properties of concerns: identification, encapsu-
lation and mutual relationships. The concern matrix organizes units according to
dimensions and concerns. The encapsulation of concerns is accomplished by
introducing mechanism of hyperslices (a set of declaratively complete units). A
hypermodule comprises a set of hyperslices being integrated and a set of relation-
ships, which determine mutual dependency between hyperslices. The level of mutual
dependency is an important parameter.

Formally, hyperspace is a tuple {U, M, H}, where U is a set of units (methods
are primitive units; classes are modules), M is a concern matrix and H is a set of
hypemodules. Hypermodule is a tuple (HS, CR), where HS is a set of hyperslices
and CR is a set of composition relationships. A hyperslice is a declaratively complete

130 Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

concern (hs ± C). A concern is modeled as a predicate, c, over units U. It indicates
whether a unit addresses that concern. The unit set is then defined as:

U(c) = {u ± U c(u)}. (12)

Concerns are said to overlap if their unit sets are not disjoint. A dimension of
concern is a set of concerns whose unit sets partition U. It implies that the concerns
within a dimension cannot overlap and must cover all the units. This leads to the
declarative completeness constraint.

Declarative completeness in Hyper/J is defined as: Software artifacts are
subject to a completeness constraint in which each declaration unit in a system must
correspond to compatible definition or implementation in some hyperslice. Declara-
tive completeness serves as a mechanism to reduce high coupling in interrelated units
(methods). In order to make hyperslice declaratively complete, we have to at least
declare units from other hyperslices (thus allowing later binding). For example, the
unit u1 ± hs1 calls unit u2 ± U, then � u2 ± hs2 and it must be implemented in some
other hyperslice. We have to use the declaration u2decl to satisfy the completeness
constraint.

Hyper/J also defines the Implementation set as:

I(hs) = {u ± hs »decl(u)}. (13)

A Composition Relationship is a tuple (I, r, f, o), where I is a tuple of input units,
r is a correspondence relationship characterizing the relationship of units in I and o
is an output unit produced using f, which is the composition function defined as:

� � UrIf 6�: . (14)

This property means that the hyperslice is self-contained providing we define
the association called correspondence and provide corresponding units udecl .

Entropy Based Metrics Suite for Separation of Concerns
(MDSOC)

Figure 2 shows graphically conceptual representation of overlapping
hypermodules, concerns matrix (concern map c1, concern map c2 and concern map
c3) and self-contained hyperslices. The hypermodules H2 and H3 overlap through
hyperslices hsH3

2 and hsH2
2. The units (called operations in Hyper/J syntax) u1 and

u2 are present in both hypermodules.
In each hyperspace, we define the set of composable classes together with

mapping these implemented classes. Uncomposable classes are those classes that
do not take part in separation. The example in shows units u1 and u2, which represent

Software Metrics, Information and Entropy 131

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

methods in hyperslices hsH3
2 and hsH2

2. When the developer creates the concerns
matrix, these units will be associated with specific a feature dimension [see Hyper/
J tool manual for details (Ossher & Tarr, 1998)]. Reusability and maintenance
advantages are achieved by isolating overlapping parts in hyperslices. Our hypoth-
esis is that by establishing a suite of complexity metrics we are able to find
“overloaded” hyperslices (with high entropic numbers) and elaborate on dependency
between all units and composable only units.

Proposed Metrics Suite
Hyperslice is a set of concerns that are declaratively complete. It contains units

that can be related in many different ways. We consider the hyperslice text to be
a message in which the special symbol carrying the information is a unit ui. We define
a unit of information u (primitive unit) as a class method (called operation in Hyper/
J), class variable or interface definition. In addition, Hyper/J distinguishes other units
such as functions, classes and UML diagrams. These units are not included in our
metrics.

In a complex system, the invocation of a unit ui is not deterministic; it depends
on the occurrence of outside events — execution scenarios. From the written code
we can only obtain the static measures.

Hyperslice Complexity Ranking
We propose that the complexity of a hyperslice is inversely proportional to the

average information content of its units. Let the unit space U be a discrete random
variable that occurs with the probability mass function p(ui.) The static measure of

Figure 2. Hyperspace and Overlapping Hypermodules

C oncerns m ap C 1

C oncerns m ap C 2

U3

C oncerns m ap C 3

H yperspace

H 1

 H 2

H 3

H ypermodule
H yperslice

hs1
H 3

hs 1
H 1 hs2

H 1 hs 3
H 1

hs2
H 2hs 1

H 2

hs 3
H 2

hs 2
H 3

hs3
H 3

u1, u 2

u1, u2

132 Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

uncertainty of U (entropy) is defined as:

� � � � � �i
M

i
i upupUH 2

1
logÈ

� . (15)

The entropy depends only on the probabilities. The probability p(ui) of the most
occurring unit is defined as percentage

� �
all

ui
i N

fup ,

where fui is the number of occurrences of the unit ui and Nall is total number of
nonunique unit uses in the hyperslice. Nonunique unit uses means that we are also
counting the units that are only declared in a hyperslice in order to comply with
declarative completeness.

Concerns Matrix Ranking per Hypermodule
Concerns are defined in the concern mapping files (Figure 3). This set of

dimensions and classes defines how the classes, interfaces and methods treat
concerns. It is important for clarity and maintenance purposes that the concern files
should not be overly complex.

We can assess the complexity of the concern matrix defined over the set of
composable units U as the entropy:

� � � � � �i
M

i
i cpcpCH 2

1
logÈ

� ; (16)

� �
Call

ic
i N

f
cp , where fci is the frequency of occurrence the unit ui (operation

Operation_name) using the concern ci (Feature.Concern_name) and NCall is the
number of all nonunique units encapsulated by the hypermodule with no regard to

Figure 3. Concern File (Ossher & Tarr, 1998)

package demo.ObjectDimension : Feature.Kernel

operation check : Feature.Check
operation display : Feature.Display
operation eval : Feature.Eval

operation check_process : Feature.Check
operation display_process : Feature.Display
operation eval_process : Feature.Eval
operation process : Feature.None

Software Metrics, Information and Entropy 133

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

which hyperslice they belong. (Note that operation Operation_name and
Feature.Concern_name indicate that all methods named Operation_name in the
hyperspace, with no regard to class or interface, to what they belong to or their
signature address the same concern Feature.Concern_name.)

These two measures (hyperslice and concern ranking metrics) are ordinal
measures and enable only ranking of hyperslices and concerns within hypermodules
with regard to their entropic complexities of hyperslices and concerns. This measure
indicates design differences among hyperslices and concern matrixes.

Weighted Entropy Measure
Sometimes we deal with units where it is necessary to take into account their

importance and some qualitative characteristics. We need to associate an elemen-
tary unit with both the probability with which it occurs and its qualitative weight. A
criterion for a qualitative differentiation of the units of a given scenario is represented
by the relevance, the significance, or the utility of the information they carry with
respect to an outcome and a qualitative characteristic. The occurrence of a unit
removes a double uncertainty: the qualitative one, related to the probability with
which it occurs, and qualitative one, related to a given qualitative characteristic. For
instance, a unit of small probability can have a great utility with respect to
concurrency aspects; likewise, a unit of great probability can have small impact on
maintainability (we shall relate this observation to utility). Therefore, the assignment
of a weight to every elementary unit is not a simple decision. These weights may have
either objective or subjective character. Thus, the weight of one unit may express
some qualitative objective characteristics but also may express the subjective utility
of the respective unit with respect to the software complexity. The weight ascribed
to an elementary unit may also be related to the subjective probability with which
respective units are used, and it does not always coincide with the objective
probability.

In order to include dynamics in our metrics, we need to distinguish two
measures: “number of method invocations” [dynamic measure in Yacoub, et al.
(1999)] in contrast to “number of methods invoked” [static, derived from method
signatures in Briand, et al. (1999)].

Consider the scenario of guarded waits (Lee, 2000) shown in Figure 4.

Figure 4. Guarded Class Example
public class GuardedClass {
 protected boolean cond = false;
public GuardedClass() {
 super();
}
protected void awaitCond() throws java.lang.InterruptedException {
 while(!cond) wait();}
public synchronized void guardedAction() {
 try {
 awaitCond();
 } catch (InterruptedException ie) {
 System.out.println("failed");
 }
 System.out.println("actions");
 }
}

134 Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

This code could fail just because the unrelated object invoked notify() or
notifyAll() on the target object by mistake. Errors like this one are difficult to find
with static evaluation of the code. GuardedClass is a concern used by objects in many
hyperslices and implemented in a single hyperslice. It is difficult to design a suite of
tests that would safely discover where and when code starts failing (and often in
peculiar ways), due to some unpredicted temporal conditions. In this case, we deal
with units where it is necessary to take into account their importance and some
qualitative characteristics. We need to associate the elementary unit with both the
probability with which its invocation occurs and its qualitative weight (expected
participation in failure).

Case 1: Static Evaluation of the Code Derived from Method Signatures
A criterion for a qualitative differentiation of the units of a given code segment

represented by the relevance, the significance, or the utility of the information they
carry with respect to an outcome and to a qualitative characteristic. The occurrence
of a unit removes a double uncertainty: the quantitative one, related to the probability
with which it occurs (it is found in the code), and the qualitative one, related to a given
qualitative characteristic (anticipated failure risk factor). For instance, a unit of a
small probability (coded just a few time in an inheritance tree) can have a great utility
with respect to concurrency aspects; likewise, a unit of great probability can have
a small impact on maintainability (we shall relate this observation to utility). The
weights may have either objective or subjective character. Thus, the weight of one
unit may express some qualitative objective characteristics, but also may express the
subjective utility of the respective unit with respect to the software complexity.

In order to distinguish the units u1, u2, u3, … un in the unit space U, according
to their importance with respect to a given qualitative characteristics of implemented
or referred to concern, we assign each unit a non-negative weight proportional to its
importance and significance:

� � È

�
n

i
ieiiii uququwuquwH

1
)(log)()()(;)((17)

� � � �
all

ui
iii N

fuquqq . (18)

In the case shown in (19), weights of every elementary occurrence of this unit
have an objective character representing the ratio of the objective probability of
occurrence of this unit to the amount of information it supplies:

� � � �
� �ie

i
i uq

uquw
log

� . (19)

Software Metrics, Information and Entropy 135

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In this case we obtain the following expression for weighted entropy:

� � � �
2

1
È

n

i
ii uquH . (20)

Weighted entropy of hyperslice calculated from (20)
 assesses the static complexity of a component. It does not account for dynamic

situations.

Case 2: Dynamic Evaluation
In dynamic evaluation, we consider a probabilistic experiment whose elemen-

tary events (method invocations vk) have the objective probabilities (derived from the
code) q1….qn and subjective probabilities p1….pn (derived from the test suite). If we
ascribe to every elementary event the subjective weight based on the probability of
participation in failure:

k

k
k p

qw ,

representing the ratio of the objective probability to subjective probability of the
event vk, then we obtain the following formula for dynamic entropy:

� � ke

n

k
kkn pquH log

1
È

� . (21)

Based on test suite coverage of all possible scenarios, we can compare
objective entropy H(ui) with dynamic entropy Hn(uk) within every hyperslice
exposed to concurrency.

Similarly, we can compute the entropy values for hypermodules and produce a
table of ordered hypermodules, thus exposing the ones of highest failure risk.

Example Calculation
We have used the modified example from Hyper/J toolkit - DemoSEE. The

code for this example has been extended and new capabilities have been added. The
UML diagram is in Figure 5. Some concerns and hyperslices have been preserved
from the original example (Table 6). We have extended the example using multiple
threads running in class Driver_n and several methods for GUI presentation.

Figure 7 and Figure 8 show the graphical representation of entropy and weighted
entropy of hyperslices sorted by composable unit count and all unit counts () in a
hyperslice. In all cases the weighted entropy shows lower complexity than entropy.

136 Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The entropic values follow the trend in number of composable and all unit counts in
a hyperslice, respectively.

Figure 9 shows unit distribution and trends in probability of occurrence of units

� �
all

ui
i N

fup in Features Kernel, Check and Display sorted by number of composable

units in the given Feature. Weighted entropy for Feature Display shows increase due
to possible overloading by implementing concurrent access for multiple threads (see
for details).

Figure 5. UML Diagram of DemoSEE Example

Table 6. Hyperlices and Concerns in DemoSEE

Operations Features Hyperslice encapsulation Hypermodule
process None DemoSEE
 Kernel Kernel (H3)
check Check Check (H2)
display Display Display (H1)
eval Eval Eval (H4)
check_process Check
display_process Display
eval_process Eval
Additional concerns for Guarded access
access Access Access (H5)
Guarded_access Access

Software Metrics, Information and Entropy 137

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Hyperspace Demo
 composable class demo.ObjectDimension.*;
 composable class demo.ObjectDisplay.Driver_n;
 composable class demo.ExpressionComputation

hypermodule ExpressionSEE
 hyperslices:
 Feature.Kernel,
 Feature.Check,
 Feature.Display,
 Feature.Eval,
 Feature Access
relationships:
 mergeByName;
 equate operation Feature.Kernel.process,
 Feature.Check.check_process,
 Feature.Display.display_process,
 Feature.Eval.eval_process;
 Feature.Access.guarded_access;
end hypermodule;
//concern.cm ->concerns file
package demo.ObjectDimension : Feature.Kernel
operation check : Feature.Check
operation display : Feature.Display
operation eval : Feature.Eval
operation check_process : Feature.Check
operation display_process : Feature.Display
operation eval_process : Feature.Eval
operation guarded_access : Feature.Accessoperation process : Feature.None

Figure 6. Hyper/J Project Specification

Figure 7. Comparison of Entropy and Weighted Entropy per Hyperslice (Hn)

Figure 10 depicts the dependency of the ratio (probability) � �
all

ui
i N

fup in each

hyperslice. The hyperslices H1 and H5 have highest weighted entropy due to the
impact of concurrent access implementation.

Future Work
The theoretical underpinning of the entropy-based complexity metrics for

applications developed with the tool for multidimensional separation of concerns —
Hyper/J — has been presented. We have proposed a suite of complexity metrics for

Complexity sorted by composable units

0.443

2.234 2.2375

0.8644

0.4119

3.578

2.4456 2.4277

2.9991

5.8154

0

1

2

3

4

5

6

7

H4 H5 H1 H2 H3
Hyperlice

Entropy

Weighted Entropy

Entropy

138 Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ordering of concerns and hyperslices. We have proposed the following complexity
measures for development with Hyper/J:
• Hyperslice complexity ranking,
• Concerns matrixes ranking per hypermodule,
• Weighted entropy for ranking units and concerns according to their contribution

to utility.
We acknowledge that some aspects of data collection and validation have to be

addressed in our future research:
• Data collection rules and measurement framework are being constructed and

tested to allow automatic data collection and consistent evaluation in Java
classes and Hyper/J. For data collection, we have used the original source code
files as well as Hyper/J by-products called unparsed files (*.unp);

Figure 8. Entropy and Weighted Entropy Sorted by all Units Count (Nall)

Entropy and weighted entropy of hyperslices
sorted by all units count

0
5

10
15
20
25
30
35
40
45
50

H5 H4 H1 H2 H3

Hyperlice

Entropy

Weighted Entropy
Entropy
Nall

Features Kernel, Display, Check - units distribution with entropy and
weighted entropy

-1

-1

0

0

0

0

0

1

1

1

1

0.044 0.044 0.067 0.067 0.067 0.089 0.111 0.111 0.111 0.156 0.156 0.178 0.222 0.222 0.244 0.333

units

p*
lg

Entropy -Kernel

Weighted entropy -Kernel

Entropy - Display

Weighted entropy -
Display
Entropy - Check

Weighted Entropy - Check

Figure 9. Features Kernal, Check and Display and Unit Occurrence Distribution

Software Metrics, Information and Entropy 139

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Validation study on a larger scale must be conducted covering at least two
comparative applications:
- Case 1: The application is designed and coded without separation of concerns
concept in mind;
- Case 2: The application is designed and coded specifically for Hyper/J.

We also need to produce a clearer approach to the meaning of each entropy-
based metric and its impact on application design.

USABILITY REMARKS ON METRICS
This chapter has provided an overview of metrics in used object-oriented

software development. Several aspects should be noted, as follows.
For data collection and evaluation process, many metrics presented in this

chapter lack a measurement framework, which would allow a consistent comparison
and prediction process. Such a framework must contain a precise description (or
tool) for the data collection mechanism and metrics explanation (meaning). The
entropy-based metrics we have proposed also lack satisfactory framework.

In entropy of class hierarchies, software applications, in particular distributed
ones, undergo frequent maintenance change that may lead to chaotic development
and, consequently, to disorder. This phenomenon can be expressed as entropy.
Object-oriented code is characterized by class hierarchies, which are shared
structures. Very often some additional subclassing, modification to existing classes,
restructuring of the hierarchy itself, and changes in visibility of attributes and
sometimes even methods is needed. Given these changes and possibly lack of
comprehensive documentation and time constraints, we assume that class hierar-

Dependency on ratio composable units/Nall

0
1
2
3
4
5
6
7

H5 H4 H1 H2 H3 Hyperslice

E
nt

ro
py

/r
at

io

Ratio comp/Nall
Entropy
Weighted Entropy

Figure 10. Dependency on Ratio Composable Units/Nall

140 Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

chies will become a subject of disorder and exhibit entropic tendencies in the actual
code as well as in content. Content entropy is caused by increasing inconsistency in
subclassing in the deeper end of the hierarchy. We have observed that the probability
that a subclass will not consistently extend the content of its superclass is increasing
with the depth of hierarchy. The tools like Hyper/J and Aspect/J support the
separation of concerns, thus allowing a different approach to evolving the content
rather than extending the class hierarchies.

REFERENCES
Bansiya, J., Davis, C., & Etzkorn, L. (1999). An entropy-based complexity measure

for object-oriented designs. Theory and Practice of Object Systems, 5(2), 11-
118.

Baumer, D., Riehle, D., Siberski, W., & Wolf, M. (1997). Role object. Proceedings
of the Fourth Annual Conference on the Pattern Languages Of Program-
ming (PLOP) ’97, (September 2-5, pp. 353-369) Monticello, IL.

Belady, L. A., & Lehman, M. M. (1976). A model of a large program development.
IBM Systems Journal, 15(3), 225-252.

Bieman, J. M., & Byung-Kyoo, K. (1998, February). Measuring design-level
cohesion. IEEE Transactions on Software Engineering, 24(2), 111-124.

Briand, L., Daly, J., & Wurst, A. (1997). A unified framework for cohesion
measurement in object oriented systems. (Tech. Rep. ISERN-97-05) Re-
trieved from the WWW on January 15, 2003 at www.iese.fhg.de/network/
ISERN/pub/isern_biblio_tech.html#97.

Briand, L., Daly, J., & Wurst, A. (1999, January/February). A unified framework for
coupling measurement in object oriented systems. IEEE Transactions on
Software Engineering, 25(1), 99-121.

Chidamber, S., & Kemerer, C. (1994, June). A metric suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6), 476-449.

Churcher, N., & Shepperd, M. (1994, June). A metric suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6), 476-449.

Cover, T. M., & Thomas, J. A. (1991). Elements of Information Theory. (Wiley
Series in Telecommunications). New York: John Wiley & Sons.

Davis, J. S., & LeBlanc, R. J. (1988). A study of the applicability of complexity
measures. IEEE Transactions on Software Engineering, 14(9), 1366-1371.

Dijkstra, E.W. (1976). A discipline of programing. Englewood Cliffs, NJ: Prentice
Hall.

Eder, J., Kappel, G., & Schrefl, M. (1994). Coupling and cohesion in object
oriented systems. (Tech. Rep.) University of Klagenfurt.

Fenton, N., & Pfleger, S. L. (1997). Software metrics: A rigorous & practical
approach. London: International Thomson Computer Press.

Software Metrics, Information and Entropy 141

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Fetchke, T. (1995). Software Metriken bei der Objectorientierten
Programmierung. Unpublished diploma thesis. GMD, St. Augustin.

Gray, R. M. (1990). Entropy and information theory. New York: Springer-Verlag.
Groth, B., Herman, S., Jahnichen, S. & Koch, W. (1995, April). Project integrating

reference object library (PIROL): An object-oriented multiple-view SEE.
Proceedings of 7th Conference on Software Engineering Environments
(SEE’95) (pp. 184-193). IEEE Computer Society Press.

Gursaran & Gurdev, R. (2001, April). On the applicability of weyuker property 9 to
object oriented structural inheritance complexity metrics. IEEE Transactions
on Software Engineering, 27(4), 381-384.

Halstead, M. H. (1977). Elements Of Software Science. New York: Elsevier
North-Holland.

Harrison, W. (1992, November). An entropy-based measure of software complex-
ity. IEEE Transactions of Software Engineering (18)(11), 1025-1029.
Henderson-Sellers, B. (1996). Object-oriented metrics measures of com-
plexity. Prentice Hall PTR.

Harrison, W., & Osher, H. (1993, September). Subject-oriented programming (a
critique of pure objects). Proceedings of the Conference on Object
Oriented Programming: Systems, Languages, and Applications (pp. 4111-
428). Washington, D.C.

Hitz, M., & Montazeri, B. (1995). Measuring product attributes of object-oriented
systems. Proceedings 5th European Software Engineering Conference
(ESEC’95) (pp. 124-136). Barcelona, Spain.

Hitz, M., & Montazeri, B. (1996, April). Chidamber & Kemerer’s metric suite: a
measurement theory perspective. IEEE Transactions on Software Engi-
neering, 22(4), 270-276.

Khaled, E. E., Saida, B., Nishith, G., & Shesh, N. R. (2001, July). The confounding
effect of class size on validity of object-oriented metrics. IEEE Transactions
on Software Engineering, 27(7).

Khaled, E. E. (DATE NEEDED). A primer on Object-Oriented measurement.
IEEE Software, 185-187.

Kiczales, G., & Lopes, C. (2001, October). Tutorial: aspect-oriented program-
ming w/AspectJ™. Retrieved January 15, 2003 from Xerox PARC Web site:
http://www.parc.xerox.com/aop.

Kiczales, G., Ashley, J. M., Rodriguez, L., Vanhdat, A., & Bobrow, D. G. (1993).
Metaobject protocols: Why we want them and what else they can do. In A.
Paepcke (Ed.), Object oriented programming: the CLOS perspective (pp.
101-118). MIT Press.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
& Irwin, J. (1997). Aspect oriented programming. Retrieved Xerox Corp.
Web site: http://www.parc.xerox.com/spl/projects/aop/.

Kim, E. M., Chang, O. B., Kusumoto, S., & Kikuno, T. (1994). Analysis of metrics

142 Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

for object-oriented program complexity. Proceedings of 18th COMPSAC
(pp. 201-207) Computer Society Press.

Kitchenham, B. (1996). Software metrics. Oxford, UK: Blackwell.
Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of

measurement. In Additive and Polynomial Representation (Vol. 1). New
York: Academic Press.

Lee, D. (2000). Concurrent programming in Java. In Design Principles and
Patterns (2nd Ed.). Addison-Wesley.

McCabe, T. (1976, December). A complexity measure. IEEE Transactions on
Software Engineering, SE-2(4), 308-320.

Ossher, H., & Tarr, P. (1998). Multi-dimensional separation of concerns and the
hyperspace approach (Tech. Rep.). New York: IBM T.J. Watson Research
Center.

Ossher, H., & Tarr, P. (1998). Multi-dimensional separation of concerns in
hyperspace (Position paper). New York: IBM T.J. Watson Research Center.

Roberts, F. S. (1979). Measurement theory with applications to decision making,
utility, and social sciences. In Encyclopedia of mathematics and its
applications. Addison Wesley Publishing Co..

Shannon, C. E. (1949). A mathematical theory of communication. Illinois: Univer-
sity of Illinois Press.

Tarr, P., Ossher, H., Harrison, W., & Sutton, Jr. (1999). N degrees of separation:
multi-dimensional separation of concerns. Proceedings Of the 21st Interna-
tional Conference on Software Engineering.

Weyuker, E. J. (1988, September). Evaluating software complexity measures. IEEE
Transactions on Software Engineering, 14(9), 1357–1365.

Yacoub S. M., Ammar, H. H., & Robinson, T. (1999, November 4-6). Dynamic
metrics for object oriented designs. Proceedings of 6th International Sympo-
sium on Software Metrics (METRICS’99) (pp. 50-61). Boca Raton, FL.

Zuse, H. (1994). Software complexity metrics/analysis. In J. Marciniak (Ed.),
Encyclopedia of software engineering (Vol. I, pp. 131-166). John Wiley&
Sons, Inc.

Zuse, H. (1991). Software complexity measures and methods. Berlin, Germany:
De Gruyter Publisher.

Zweben, S., & Hasltead, M. (1979, March). The frequency distribution of operators
in PL/I programs. IEEE Transactions of Software Engineering, SE-5, 91-
95.

ENDNOTES
1 It was derived from Boltzmann’s statistical mechanics, 2nd termodynamic law.
2 Average number of tokens between error occurrences.

Temporal Interaction Diagrams for Multi-Process Environments 143

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter X

Temporal Interaction
Diagrams for

Multi-Process Environments
T. Y. Chen

Swinburne University of Technology, Australia

Iyad Rahwan
University of Melbourne, Australia

Yun Yang
Swinburne University of Technology, Australia

ABSTRACT
This chapter introduces a novel notion of temporal interaction diagrams for
distributed and parallel programming. An interaction diagram is a graphical
view of computation processes and communication between different entities
in distributed and parallel processes. It can be used for the specification,
implementation and testing of interaction policies in distributed and parallel
systems. Expressing interaction diagrams in a linear form, known as

144 Chen, Rahwan & Yang

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

fragmentation, facilitate automation of design and testing of such systems.
Existing interaction diagram formalisms lack the flexibility and capability of
describing more general temporal order constraints. They only support rigid
temporal order, and, hence, have limited semantic expressiveness. We propose
an improved interaction diagram formalism in which more general temporal
constraints can be expressed. This enables us to capture multiple valid
interaction sequences using a single interaction diagram.

INTRODUCTION
Various attempts have been made to formalize interaction among computational

entities, such as distributed, parallel, object-oriented and multi-agent systems (Hoare,
1985; Magee, Dulay, Eisenbach & Kramer, 1995; Ronnquist & Low, 1996;
Koskimies, Männistö, Systä & Tuomi, 1996; Kinny, 1998; Chen, Rahwan & Yang,
2002; Bauer, 1999; Bauer, Müller & Odell, 2001). Traditionally, the system design
stage involves a description of the steps taken in processing a particular task. In
distributed systems, however, the implementation requires a clear picture of the
separate computational threads of different processes. In parallel systems, it would
be very helpful to be able to express the computation flow descriptions for different
processes. Interaction diagrams are designed to support the representation and
processing of these mingling activities. The linear representation of these diagrams
facilitates the automation of the processes of diagram manipulation for design, report
generation and testing. In particular, testing can be performed by comparing
execution traces against specifications expressed in terms of interaction diagrams.

However, existing interaction diagram formalisms support quite rigid temporal
order constraints only. An execution trace is said to be valid if it satisfies the
interaction diagram. In other words, there is no way of specifying multiple valid traces
without writing multiple versions of fixed execution traces. This can become a
difficult job, especially in systems with sophisticated interactions. In such systems,
the number of valid interactions can be quite large, and there is a demand to more
concisely express such flexibility in a single interaction diagram. Our research is a
step towards achieving this goal.

In this chapter, we give an overview of existing interaction diagram formalisms
and present an enhancement of a particular framework in such a way as to support
more flexible interaction specification. The chapter is organized as follows. In the
next section, we present an overview of an existing interaction diagram framework
and introduce the basic notation to be used throughout this chapter. Then we
introduce our novel extension. After that, an example demonstrating the merit of our
framework is presented. Then we discuss current and future trends in interaction
diagram frameworks. Finally, we conclude and summarize our ideas and results.

Temporal Interaction Diagrams for Multi-Process Environments 145

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

BACKGROUND
In this section, we present a particular interaction diagram model proposed in

Ronnquist and Low (1996). The work described in this chapter is an extension of this
framework. An interaction diagram is a graphical representation of the computation
threads and communications in a distributed system and the like. It is a graph showing
each process symbolically as one or more vertical bars and the messaging between
processes as horizontal arrows between these bars. A sample interaction diagram
is shown in Figure 1, describing three processes A, B and C and the message
sequences among them. There are a number of properties that are worth mentioning
with respect to the meaning of this interaction diagram according to the formalism
in Ronnquist and Low (1996).

A fragmentation is an algebraic representation of an interaction diagram. In
order to convert an interaction diagram into a fragmentation, we need to decompose
it into its graphical elements, which correspond to fragments. Figure 2 shows some
types of these fragments. These fragments include the beginning of a process, the
end of a process, a process sending a message and a process receiving a message.
Underneath every fragment is its corresponding algebraic form. Algebraic atoms
can be used (forming a fragmentation) to describe a particular interaction diagram.

There are two types of fragmentation, however, we are only interested in
computation flow fragmentation (Ronnquist & Low, 1996), which orders the
fragments by grouping those of the same process together. Each process’ fragments
are ordered according to a top-to-bottom sequence (or temporal sequence). This
represents the computation flow of a process. The computation flow fragmentations
for Figure 1 are as follows:
For process A: <beg(A), snd(A,m1), rcv(A,m4), end(A)>;
For process B: <beg(B), rcv(B,m1), snd(B,m2), rcv(B,m3), snd(B,m4), end(B)>;
For process C: <beg(C), rcv(C,m2), snd(C,m3), end(C)>.

Figure 1. Simple Interaction Diagram

146 Chen, Rahwan & Yang

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

According to Ronnquist and Low (1996), when actions concern a single
process, the order of actions has significance for the interpretation of the diagram.
The meaning of a single process computation flow is that the order in which the
fragments occur reflects the order in which the corresponding actions take place. In
other words, they state the exact temporal order in which the fragments or messages
should take place. There is no mechanism to express the temporal constraints
between different fragments. This is a severe limitation to the expressiveness of the
framework. What we would like to achieve is a formal framework for supporting
more flexibility in the temporal constraints.

In order to explain the limitation more clearly, we will give a simple example of
one process. Suppose we would like to express the following temporal order
constraints on the events of the diagram in Figure 3, where an event may be send
(snd) or receive (rcv).

We use a coffee-making machine as an example for an illustration. Suppose one
process needs to perform the following tasks:
• First, send a message to the resources process requesting sugar and coffee

(call this event a1).

Figure 2. Graphical Elements (Fragments)

Figure 3. Single-Process Diagram

Temporal Interaction Diagrams for Multi-Process Environments 147

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Then, receive a message from the resources process indicating sugar is ready
(call this event a2). Also receive another message from the resources process
indicating coffee is ready (call this event a3). It does not matter which of these
acknowledgments occurs first, but they both need to be completed before
moving to the next step.

• Now, send a message to the water process requesting hot water to be poured
in the cup (call this event a4).

More abstractly, we have the following constraints:
• a1 must be before a2, a3 and a4;
• the order of a2 and a3 is not important;
• a4 must take place after both a2 and a3.

In fact, we can see the problem as follows. In a parallel system design and
communication specification stage, instead of specifying a single valid execution
sequence that must be followed, we may like to specify a number of valid sequences.
Recall that interaction diagrams can be used for checking execution traces against
specified order. In the example above, the designer’s intention is to treat both event
sequences a1, a2, a3, a4 and a1, a3, a2, a4 as valid. Using the old formalism, we need
to provide two different (rigid) interaction diagrams. If the execution trace satisfies
one of these diagrams, then the trace is correct. This technique becomes less
practical in more complex settings where the number of possible valid sequences of
event is large. In such a situation, a separate interaction diagram needs to be provided
for each valid sequence and checking needs to be carried out against all interaction
diagrams until one (or none) matches. In the next section, we present an extension
to the existing framework, which supports more general and flexible constraints.

PROPOSED ENHANCEMENTS
In this section, we propose the enhancement of the current interaction diagram

formalism as follows. We would like to distinguish between two types of temporal
order constraints: namely, groups of events among which the order is important, and
groups of events among which the order is not important.

We will extend the set of graphical elements by including the fragments shown
in Figure 4. A couple of fragments, corresponding to the “<” and “>” symbols (we
will call them angular brackets), represent the start and end of a group of fragments
among which the top-to-bottom order is the actual temporal order (that is as in the
original formalism). This temporal order also states that, in addition to the specified
temporal order, no external event is allowed to interleave with the enclosed events.
The other couple of fragments, corresponding to the “[” and “]” symbols (we call
them square brackets), represent the start and end of a group of fragments among

148 Chen, Rahwan & Yang

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

which the top-to-bottom order does not necessarily reflect the actual temporal order.
Throughout this chapter, we will use the term “bracket” to refer to all types of
brackets.

A sample interaction diagram using some of the proposed fragments is shown
in Figure 5. This interaction diagram expresses the temporal constraints mentioned
in the previous section, which the previous formalism failed to express. Simply, the
temporal order of the events within the square brackets is not important. However
event a1 must precede this group, and a4 must take place after it. The following is
the corresponding modified computation flow fragmentation. (Note that a1, a2, etc.,
are placeholders for normal fragments, such as snd and rcv):

< beg(A), a1, [a2, a3], a4, end(A) >.

Note that this fragmentation is semantically equivalent to the following frag-
mentation (that is, changing the order of events inside the square brackets does not
affect the meaning of the diagram):

< beg(A), a1, [a3, a2], a4, end(A) >.

Figure 4. Ordering Fragments

Figure 5. Extended Single-Process Diagram

Temporal Interaction Diagrams for Multi-Process Environments 149

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

These fragmentations have the following properties:
• An opening fragment of a particular type should appear before any closing

fragment of that type.
• At any stage of parsing the fragmentation, the number of opening fragments

must be greater than or equal to the number of corresponding closing fragments
of the same type.

• At the end of the interaction diagram (or the corresponding fragmentation), the
number of opening and closing fragments should be equal (that is each opening
fragment should have a corresponding closing fragment).

• Overlapping groups are not permitted, that is, if a bracket of group g1 opens,
and within that a bracket of group g2 opens, then the closing bracket of group
g2 must close before the closing bracket of group g1 does. This means that each
bracket is matched with the nearest corresponding bracket.

• An entity is either an atomic event or a group of entities enclosed within a
matched pair of brackets. All entities are treated the same with respect to the
higher level group to which they belong.

• The temporal relation between any two events is determined by the type of the
nearest complete pair of brackets (angular or square) that contains them.

EXAMPLE AND OBSERVATIONS
In this section, we show another example to further illustrate our notation. We

will exploit the supply chain automation domain. This domain is a typical example of
situations in which there is a need for flexible specification of multiprocess
interactions. Suppose we have five processes:
• Process A: Representative of a personal computer (PC) manufacturing

company. This company does not manufacture all computer parts, but rather
purchases them from known partners (shown below). There are partners from
whom this party purchases motherboards, hard disks and computer cases.

• Processes B, C1 and D: Representatives of manufacturers for PC motherboard,
hard disks, and computer cases, respectively.

• Process C2: Representative of the manufacturing plant associated with
process C1.

Figure 6 shows the interactions between the different processes, that is
different messages passed between them. For simplicity we do not include angular
brackets at the beginning and the end of every process. The intuition behind the
diagram with respect to process A is that, before sending the order for computer
cases, A first needs to order and receive motherboards and hard disks. This may be
because it is very costly to store computer cases, so it would be more efficient to order
them after all other components have been received. This way computer assembly

150 Chen, Rahwan & Yang

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

would take place as soon as the cases arrive. Intuitively no deliveries should take
place unless an order has been placed. This is reflected in the fact that no
confirmation message can be received before the order. Moreover ordering
motherboards and ordering hard disks can take place in any order. It does not matter
which order process is performed first since assembly will not take place until the
receipt of cases.

Now let us consider processes C1 and C2. After receiving a request for hard
disk delivery through message m3, C1 must submit the order information to its
manufacturing plant. C1 also needs to send additional technical specifications
circulated internally from its design team (also represented by C1). It does not matter

Figure 6. PC Manufacturing Example

Temporal Interaction Diagrams for Multi-Process Environments 151

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

in what order these requests take place, but it is only after receiving both messages
that the manufacturing plant can start manufacturing. This is why m9 can only be sent
after receiving both m7 and m8. Note that according to the diagram, there is nothing
to prevent messages m7 and m8 from being sent in one order and received in another.
For example, C1 might send m7 followed by m8, but, due to network latency, C2 might
receive m8 before m7. Processes B and D only need to receive orders before they
confirm delivery. The computation flow fragmentations of the system in Figure 6 are
as follows:

<beg(A), [<snd(A,m1), rcv(A,m2)>, <snd(A,m3), rcv(A,m4)>], snd(A,m5),
 rcv(A,m6), end(A)>
<beg(B), rcv(B,m1), snd(B,m2), end(B)>
<beg(C1), rcv(C1,m3), [snd(C1, m7), snd(C1, m8)], rcv(C1, m9, snd(C1,m4),
 end(C1)>
<beg(D), rcv(D,m5), snd(D,m6), end(D)>
<beg(C2), [rcv(C2,m7), rcv(C2, m8)], snd(C2,m9), end(C2)>.

Observation 1
Recall that the power of our framework stems from its ability to capture multiple

valid execution or interaction sequences in a single diagram. Following are some
interaction sequences that satisfy the diagram presented in Figure 6.
1. beg(A), beg(B), beg(C1), beg(C2), beg(D), snd(A, m1), rcv(B, m1), snd(B,

m2), rcv(A, m2), snd(A, m3), rcv(C1, m3), snd(C1, m7), rcv(C2, m7),
snd(C1, m8), rcv(C2, m8), snd(C2, m9), rcv(C1, m9), snd(C1, m4), rcv(A,
m4), snd(A, m5), rcv(D, m5), snd(D, m6), rcv(A, m6), end(A), end(B),
end(C1), end(C2), end(D).

2. beg(A), beg(B), beg(C1), beg(C2), beg(D), snd(A, m1), rcv(B, m1), snd(B,
m2), rcv(A, m2), snd(A, m3), rcv(C1, m3), snd(C1, m7), snd(C1, m8),
rcv(C2, m7), rcv(C2, m8), snd(C2, m9), rcv(C1, m9), snd(C1, m4), rcv(A,
m4), snd(A, m5), rcv(D, m5), snd(D, m6), rcv(A, m6), end(A), end(B),
end(C1), end(C2), end(D).

3. beg(A), beg(B), beg(C1), beg(C2), beg(D), snd(A, m1), rcv(B, m1), snd(B,
m2), rcv(A, m2), snd(A, m3), rcv(C1, m3), snd(C1, m8), snd(C1, m7),
rcv(C2, m7), rcv(C2, m8), snd(C2, m9), rcv(C1, m9), snd(C1, m4), rcv(A,
m4), snd(A, m5), rcv(D, m5), snd(D, m6), rcv(A, m6), end(A), end(B),
end(C1), end(C2), end(D).

4. beg(A), beg(B), beg(C1), beg(C2), beg(D), snd(A, m3), rcv(C1, m3), snd(C1,
m8), snd(C1, m7), rcv(C2, m7), rcv(C2, m8), snd(C2, m9), rcv(C1, m9), snd(C1,
m4), rcv(A, m4), snd(A, m1), rcv(B, m1), snd(B, m2), rcv(A, m2), snd(A, m5),
rcv(D, m5), snd(D, m6), rcv(A, m6), end(A), end(B), end(C1), end(C2),
end(D).

Interaction sequences 2 and 3 differ from sequence 1 in the relative order for
messages m7 and m8, which is highlighted in bold. Sequence 4 differs from sequence

152 Chen, Rahwan & Yang

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

3 in the relative order for messages m1 and m3 (that is in the order of the processes
for ordering motherboards and hard disks), which is highlighted in italic. Note that the
above are only examples of some valid sequences. Other valid sequences include all
other combinations of orderings of interaction between processes A and C1 with the
interaction between C1 and C2. Also, processes can start and terminate in different
orders as long as each process is created before it starts sending or receiving
messages and terminates at the very end. For example, it does not matter which of
beg(C2) or beg(D) takes place first.

We have just seen that using the relatively simple diagram presented in Figure
6, we are able to specify a large variety of valid interaction sequences among
processes (or objects or agents). We do not have to specify multiple separate
interaction diagrams to cater for all these sequences. This results in significant saving
of time and space.

Observation 2
Note that in the above fragmentation for process A, the process of ordering

motherboards must completely finish (the request as well the reply must both take
place) before the process of ordering hard disks starts or vice versa. This seems
unnatural. One alternative approach is to replace the following notation:

[<snd(A,m1), rcv(A,m2)>, <snd(A,m3), rcv(A,m4)>]

with the following:

< [snd(A,m1), snd(A,m3)], [rcv(A,m2), rcv(A,m4)] >.

This means that sending out the first two orders can happen in any order, and
receiving the corresponding responses may also happen in any order with the only
condition being that both orders should be sent out before any order gets received.
On the other hand, we might want to express that they can both happen in any order
as long as no reply occurs before a request without disallowing a response to be
received before the second order is sent. This is one of the limitations of this
formalism. This is due to the fact that we do not allow interleaving between events
belonging to different bracket pairs. We treat all events within a bracket pair as a
single entity with respect to all other events outside that pair.

CURRENT AND FUTURE TRENDS
Software engineering practitioners face many challenges in the 21st century.

With the rate at which software systems are scaling up and with the necessity of
extensive interaction among distributed software and computer systems, there is an
urgent need for sound software engineering frameworks that allow people to deal

Temporal Interaction Diagrams for Multi-Process Environments 153

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

with such complexity. In distributed systems, it is very important to have efficient
tools for the design, manipulation, deployment and testing of distributed computa-
tional entities. In Koskimies, Männistö, Systä and Tuomi (1996), for example,
“scenario diagrams” have been used to study the interactions among object-oriented
systems in dynamic object models. SCED (Koskimies, Männistö, Systä & Tuomi,
1998) is a tool for using scenario diagrams for specifying object systems and
generating state machines for describing the behavior of each object from the
scenario diagram specification.

Low, Ronnquist and Chen (1997) presented the interaction diagram framework
on which this work was based. They have built a tool for specifying interaction
diagrams among multiple computational threads. They showed how an interaction
diagram may be represented in different types of symbolic notations (called
fragmentations). They presented a tool for translating an interaction diagram into
fragmentations and vice versa.

Interaction diagrams also have many important applications in multi-agent
systems (Jennings, 2001; Wooldridge, Jennings & Kinny, 2000; Wooldridge, 1999).
Jennings and Wooldridge (1998) proposed that an intelligent agent is capable of social
behavior. That is, it is capable of communicating with other agents in the system. In
this context, there is a need for formalizing such interaction in multi-agent systems.
Such formalization would be useful for designing and testing multi-agent systems, as
well as visualizing the computation flow of each agent and communication among
agents.

Bauer, Müller and Odell (2001) presented an extension of the unified modeling
language (UML), a de facto standard for object-oriented analysis and design, by
adapting it for modeling protocols in multi-agent interaction, resulting in the Agent
UML framework. Huget (in press, a) used this framework to specify interaction in
a supply chain management domain. Furthermore, Huget (in press, b) presented a
framework for communicating UML interaction protocol diagrams among agents
using an XML-based language.

We envision many important developments in the field of interaction frame-
works in the next few years. Frameworks will emerge that facilitate different levels
of interaction among computer systems. There is an urgent need for standardizing
methodologies for specifying interaction such that interaction specifications become
more portable. Algorithms need to be put into place for manipulating interaction
diagrams and for checking the validity of interaction traces. Furthermore, there will
be a need for formal verification of the computational properties of those algorithms.

CONCLUSION
Existing interaction diagram formalisms and their corresponding linear notations

(known as fragmentations) require different strict interaction diagrams for different
execution sequences. This is because each interaction diagram is capable of

154 Chen, Rahwan & Yang

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

expressing only a single, strict valid execution sequence. In this chapter, we have
presented a formalism for describing flexible interaction diagrams that are able to
express many possible execution sequences using one interaction diagram. Our
formalism describes interaction diagrams that have a mix of two types of temporal
relationships between events in a process — ordered and unordered temporal
relationships. An ordered temporal relationship means that events should take place
in the order specified, while an unordered temporal relationship means that the order
of executing two events is irrelevant. We have shown how combinations of these two
types of relationships could be used to represent more complicated scenarios through
a linear fragmentation.

REFERENCES
Bauer, B. (1999). Extending UML for the specification of agent interaction

protocols. (OMG Publication No. ad/99-12-03). Analysis and Design Task
Force (ADTF) Concord, CA: FIPA.

Bauer, B., Müller, J. P., & Odell, J. (2001). Agent UML: A formalism for specifying
multi-agent software systems. International Journal of Software Engineer-
ing and Knowledge Engineering, 11(3), 207-230.

Chen, T. Y., Rahwan, I., & Yang Y. (2002). Temporal interaction diagrams.
Proceedings of the 2002 Information Resource Management Association
International Conference (pp. 843-846). Seattle, WA. Hershey, PA: Infor-
mation Resources Management Association.

Hoare, A. (1985). Communicating sequential processes. Englewood Cliffs, NJ:
Prentice Hall.

Huget, M. P. (in press, a). An application of agent UML to supply chain manage-
ment. In P. Giorgini, Y. Lesperance, G. Wagner, and E. Yu (Ed.), Proceedings
of Agent Oriented Information System. Bologna, Italy, iCue Publishing,
Berlin.

Huget, M. P. (in press, b). Extending agent UML protocol diagrams. Proceedings
of Agent Oriented Software Engineering. Lecture Notes in Computer
Science. Bologna, Italy. Springer.

Jennings, N. R. (2001). An agent-based approach for building complex software
systems. Communications of the ACM, 44(4), 35-41.

Jennings, N. R., & Wooldridge, M. (1998). Applications of intelligent agents. In N.R.
Jennings & M. Wooldridge (Eds.), Agent Technology: Foundations, Appli-
cations, and Markets (pp. 3-28). Berlin, Germany: Springer-Verlag.

Kinny, D. (1998). The AGENTIS agent interaction model. Proceedings of the 5th
International Workshop on Agent Theories, Architectures, and Lan-
guages (pp. 331-344) Lecture Notes in Artificial Intelligence, Vol. 1555, 1999.
Paris, France. Berlin, Germany: Springer.

Temporal Interaction Diagrams for Multi-Process Environments 155

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Koskimies, K., Männistö, T., Systä, T., & Tuomi, J. (1996). On the role of scenarios
in object-oriented software design. Proceedings of Nordic Workshop on
Programming Environment Research (pp. 53-57). Denmark, Aalborg Uni-
versity. Aalborg: Computer Science Departmentat Aalbrog University.

Koskimies, K., Männistö, T., Systä, T., & Tuomi, J. (1998). Automated support for
modeling of OO software. IEEE Software, 15(1), 87-94.

Low, C. K., Ronnquist, R., & Chen, T. Y. (1997). An automated tool (IDAF) to
manipulate interaction diagrams and fragmentations for multi-agent systems.
International Journal of Software Engineering and Knowledge Engi-
neering, 9(1), 127-149.

Magee, J., Dulay, N., Eisenbach S., & Kramer J. (1995). Specifying distributed
software architectures. Proceedings of EsEC’95, Lecture Notes in Com-
puter Science, 989, 137-153.

Ronnquist, R., & Low, C. K. (1996). Formalisation of interaction diagrams.
Proceedings of the 3rd Asia-Pacific Software Engineering Conference
(pp. 318-327). Seoul, Korea. Boston, MA: IEEE.

Wooldridge, M. (1999). Intelligent agents. In G. Weiss (Ed.), Multiagent systems
(pp. 27-78). MIT Press.

Wooldridge, M., Jennings, N. R., & Kinny, D. (2000). The Gaia methodology for
agent-oriented analysis and design. Journal of Autonomous Agents and
Multi-Agent Systems, 3, 285-312. Cambridge, MA.

156 Chen, Rahwan & Yang

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Section III

Applications and
Implementations

Toward an Integrative Model of Application-Software Security 157

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XI

Toward an Integrative
Model of Application-

Software Security
Vijay V. Raghavan

Northern Kentucky University, USA

ABSTRACT
Populist approaches to studying information systems security include
architectural, infrastructure-related and system-level security. This study
focuses on software security implemented and monitored during systems
development and implementation stages. Moving away from the past checklist
methods of studying software security, this study provides a model that could
be used in categorizing checklists into meaningful clusters. Many constructs,
such as principle of least privilege, execution monitoring, social engineering
and formalism and pragmatism in security implementations, are identified in
the model. The identification of useful constructs to study can form the basis of
evaluating security in software systems as well as provide guidelines of
implementing security in new systems developed.

158 Raghavan

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTRODUCTION
While academicians and industry practitioners have long recognized the need

for securing information systems and computer architectures, there has recently
been a heightened awareness of information technology (IT) management on
computer-related security issues (Hulme, 2001). IT managers are increasingly
worried about possible attacks on computer facilities and software, especially for
mission critical software. There are indeed many dimensions to providing a secure
computing environment for an organization, including computer viruses, Trojan
horses, unauthorized accesses and intrusions and thefts to infrastructure. This
complexity and multidimensional nature of establishing computer security require
that the problem be tackled at many fronts simultaneously. Research in the area of
information systems security has traditionally focused on architectural-, infrastruc-
ture- and systems-level security (Oppliger, 1997; Nelson, 1997). Emerging literature
on application-level security, while providing useful paradigms, remains isolated and
disparate (James, Joshi Walid, Aref & Spafford, 2001; Schneider, 2000; Bakersville
1993; Landerwehr, 1981). The current study focuses on a single, albeit an important,
dimension of providing a safe and secure computing environment — application-
software security.

THEORETICAL FOUNDATIONS
One of the difficulties in specifying data security requirements for an application

is its complexity. Ting (1993) states that the characteristics of application-dependent
security policies and requirements have not been clearly understood due to this
complexity. Bellovin (2001) affirms that we cannot have “secure computer systems
until we can build correct systems” and points out that “we don’t know how to
accomplish this, and probably never will.” Schneider (2000) supports this view by
highlighting the need for application-dependent special-purpose security policies.
Current notions of architectural and infrastructure security do provide checklist items
that could be transformed to an application-security context. A clear understanding
as well as synthesizing current paradigms of computer security and transplanting
relevant ideas to an application-development context is essential to move toward an
integrative model of application-software security. Landwehr (1981) argues that
formal models of computer security help designers decide exactly what “secure”
means for their particular needs. In addition security regulations written in plain
English tend to be “descriptive” rather than being “prescriptive” as in formal models.

Bakersville (1993), in his seminal exposition of application-development related
security issues, finds the metaphor of “generations” useful in identifying the evolution
of computer security paradigms. His exposition is akin to Nolan’s stage hypothesis
that is well known to the IS community. Bakersville identifies three major phases of
evolution in computer security literature: the early checklist methods, second
generation mechanistic-engineering methods and a third generation logical-transfor-

Toward an Integrative Model of Application-Software Security 159

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

mational method. Checklist methods provide a set of guidelines for computer
security audits. Mechanistic-engineering methods are founded on the belief that a
detailed examination of the functional requirements of the system will lead to security
specification details of the system. Third generation logical transformational methods
rely on modeling essential security attributes of a system. While there cannot be a
great deal of disagreement on these “phases” of our understanding of security
concerns, we cannot discard checklist methods as obsolete and, hence, not useful in
the software-development context. A model of software security that uses checklists
as not simply an unrelated collection of items but clusters of items identifying well-
known concepts evolving from security literature would form the core of our
integrative model of application-software security. Bakersville (1993) claims that
published security checklists were designed as guidelines for evaluating software
systems and not for specifying its security attributes. However it is not entirely clear
from his discussion as to why the criteria established for evaluation of security cannot
be used in specifying security during the design stage. It is only beneficial if designers
and developers of software systems are made aware of the criteria for a later
security assessment of the system. A premise of the current endeavor of developing
an integrative model is that a checklist based on sound theoretical constructs as
elicited from prior studies would provide practical guidelines for application-software
development. There are three major security checklists available: SAFE: Security
audit and field evaluation for computer facilities developed by Krauss (1972, 1980);
Computer Security Handbook (Hoyt, 1973; Hutt, Bosworth & Hoyt, 1988) and a
checklist for computer center self-audits compiled by Browne (1979). These
checklists concern themselves with all forms of security including architectural and
software related. Cohen (1999) provides a list of guidelines to follow during systems
development that will make the systems more secure.

Our immediate goal is to first identify the concepts that will enable us to view
these checklists as identifying useful security constructs rather unrelated clusters of
items dealing with different processes. We use the framework presented by Webster
and Watson (2002) to synthesize the past work in the area of computer security in
an effort to identify the constructs. An important contribution for security design has
been made by Saltzer and Schroeder (1975). In spite of its date, many modern writers
(Bace, 1999; Morales, 2000) have recognized the power of the fail-safe security
design principles enumerated by them. They are: (1) Least privilege. Relinquish
access when it is not required; (2) Fail-safe defaults. When the power goes off, the
lock should be closed; (3) Economy of mechanism. Keep things as small and simple
as possible; (4) Complete mediation. Check every access to every object; (5) Open
design. Do not attempt “security by obscurity,” as Bace (1999) puts it; assume the
adversary can find your hiding places; (6) Separation principle. Do not make privilege
decisions based only on a single criterion; use the onion-skin model; (7) Least
common mechanism. Minimize shared channels and (8) Psychological acceptability.
Make security painless, transparent and ubiquitous (Saltzer & Schroeder, 1975).

160 Raghavan

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A useful method of establishing security in software is to allow and disallow
performing operations on critical resources based on users and their roles. In this
role-based security, Nelson (1997) identifies two distinct approaches to security
research: Formalist school that focuses on correctness and universality by attempting
to ensure system-independent methods (notably, access control) and pragmatist
stream that focuses on attacks on and countermeasures for real systems (notably
intrusion detection). Nelson (1997) has argued for integration of these two schools
of research. Nelson is also of the opinion that traditional research on security methods
has been divorced from mainstream systems design, development and operation.
The present study attempts to evaluate current practices of software security of
Custom Software Applications. Security issues relating to the two major streams of
security research will be identified and evaluated. The concept of Run-Time Security
Evaluation (RTSE) proposed by Serban and McMillin (1996) highlights the need to
provide an ongoing security evaluation after the system is operational. They advocate
RTSE in addition to securities implemented during developmental life cycles of a
CSA.

Formalist Issues of Software Security: In order for a software application to
be secure, a group of valid users must be designated. The responsibility for
maintaining this list of valid users must be accounted for in the design of the system.
It is also conceivable that the application must have distinct components, which are
open to users with different levels of security. These different modules must have
distinct entry points that can be controlled. Multiple entry points for different modules
must be clearly identified and checks must be performed before users are allowed
to enter those modules. A matrix list of valid users and the components that they are
allowed to access must be an integral part of the security model for the application.
The location of this matrix, whether it is part of a secure database that is accessed
by the application or hard coded into the application, may determine the security level
of the application.

Authors Constructs Goal of work
Saltzer and Schroeder (1975). Least privilege, Fail-safe

defaults, Economy of
mechanism, Complete
mediation, Open design,
Separation of principle, Least
common mechanism,
Psychological acceptability

General Application
Dependent Security

Schneider (2000) Access Control, Information
Flow, Availability, Execution
Monitoring, Least Privilege

Developing Enforceable
Security Policies

Morales (2000) Social Engineering (fraudulent
deceptive requests for
confidential information)

Intrusion Detection

Nelson (1997) Formalism, Pragmatism Architectural Security

Table 1.

Toward an Integrative Model of Application-Software Security 161

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Pragmatist Issues of Software Security: The set of issues under the pragma-
tist school focus on deliberate intrusion into the system after it is built. Even in cases
where the application designers have exercised sufficient care in implementing a
security model of the system, once the system is operational there is potential for
security breaches through the infrastructure where the application is running. As an
example, if a list of valid users and modules are maintained in a database, there is still
a potential for security breaches if access to databases is not sufficiently controlled.
Although this is often outside the responsibility of application developers, it still
presents a potential security problem for the system. The location of the application
code and the physical security of the code are critical for the security level of the
CSA. In addition, if the infrastructure (access to operating system, servers and
database servers) in which the application is running is not secure, it will compromise
the security of the CSA as well.

Although formalism and pragmatism have been identified as two distinct
streams of security research, the degree of security that a CSA enjoys is a function
of formalist and pragmatist security concerns. It is imperative that they both are
considered during System Development Life Cycle (SDLC), and security research
must attempt to integrate them (Nelson, 1997).

Figure 1. An Integrative Model of Software Security

Formalist Issues
Who are valid users?

Are system modules clearly delineated?
Is security formally implemented for accessing different

modules of the systems?
Where is the list of valid users maintained (in a database or

within the application code)?

Pragmatist Issues
Can the list of valid users be changed?

How easy is it for someone other than valid developers to
modify the code?

How many users have access to databases, servers and other
infrastructure for the application?

Operating System Software (OS)

Off-the-shelf Application software

Custom Application Software
(CAS)

DEGREE OF SECURITY
OF A CUSTOM
APPLICATION
SOFTWARE

162 Raghavan

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CONCLUSION
This model allows us to progress from a purely checklist approach to specifying

and evaluating security requirements of custom-software applications. It provides a
structured way of categorizing software requirements that can lend itself to better
monitoring of security requirements during application development and implemen-
tation stages. It can also lead to development of instruments to measure the rigor of
security in applications enforced during systems development process and later on
in the implementation of those systems.

REFERENCES
Bakersville, R. (1993). Information systems security design methods: Implications

for information systems development. ACM Computing Surveys, 25(4), 375-
414.

Bellovin, S.M. (2001). Computer Security — An End State? Communications of
ACM, 44(3), 131-132.

Browne, P. (1979). Security: Checklist for computer center self audits.
Arlington, VA: AFIPS Press.

Cohen, F. (1999, October). Achieving airtight code. Software Development.
Retrieved May 28, 2002, from http://www.sdmagazine.com/print/
documentID=11278.

Department of Defense Trusted Computer Security Evaluation Criteria (1985,
December). DoD 5200-28-STD, National Computer Security Center.

Hoyt, D. (1973). Computer Security Handbook. New York: MacMillan.
Hutt, A., Bosworth, S., & Hoyt, D. (Eds.). (1988). Computer security handbook

(2nd ed.). New York: Macmillan.
Hulme, G. V. (2001). Management takes notice. Information Week, 28-34.

September 3.
James, B. D., Joshi W. G., Aref, A. G., & Spafford, E. H. (2001, February). Security

models of web-based applications. Communications of the ACM, 44(2), 38-
44.

Krauss, L. (1972). SAFE: Security audit and field evaluation for computer facilities
and information (revised ed.). New York: Amacon.

Krauss, L. (1980). SAFE: Security audit and field evaluation for computer facilities
and information. New York: Amacon.

Landwehr, C. E. (1981). Formal model of computer security. Computing Surveys,
13(3), 247-278.

Meadows, C. (1997).
Morales, A. W. (2000, April). Intrusion detection. Software Development.

Retrieved May 28, 2002 from http://www.sdmagazine.com/print/
documentID=11202.

Toward an Integrative Model of Application-Software Security 163

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Nelson, R. (1997). Integration formalism and pragmatism: architectural security.
New Security Paradigms Workshop, Langdale, Cumbria, UK.

Oppliger, R. (1997). Internet security: Firewalls and beyond. Communications of
the ACM, 40(5), 92-102.

Saltzer, J. H., & Shroeder, M. D. (1975, September). The protection of information
in computer systems. Proceedings of the IEEE, 63, (9).

Schneider, F. B. (2000). Enforceable security policies. ACM Transactions on
Information and System Security, 3(1), 30-50.

Serban, C. & McMillin, B. (1996). Run-time security evaluation: Can we afford it?
ACM – New Security Paradigms Workshop, Lake Arrowhead, CA.

Ting, T. C. (1993). Modeling security requirements for applications. Proceedings
of the eighth annual conference on Object-oriented programming sys-
tems, languages, and applications (p. 305). Washington United States.

Webster, J., & Watson, R. T. (2002, June). Analyzing the past to prepare for the
future: writing a literature review. MIS Quarterly, 26(2), xii-xxii.

QUESTIONNAIRE
• The extent to which your application uses external programs to provide

enhanced functionality?
• The extent to which your application uses executable content (such as Java and

Active X)?
• The extent to which an independent security protection audit is implemented

before release?
• The extent to which mechanisms are in place to ensure that your users are using

the correct version of your application? (Cohen, 1999).

164 Plekhanova

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XII

Learning Systems and
Their Engineering:
A Project Proposal

Valentina Plekhanova
University of Sunderland, UK

ABSTRACT
This chapter presents a project proposal that defines future work in engineering
the learning processes in cognitive systems. This proposal outlines a number
of directions in the fields of systems engineering, machine learning, knowledge
engineering and profile theory, that lead to the development of formal methods
for the modeling and engineering of learning systems. This chapter describes
a framework for formalization and engineering the cognitive processes, which
is based on applications of computational methods. The proposed work studies
cognitive processes in software development process and considers a cognitive
system as a multi-agents system of human-cognitive agents. It is important to
note that this framework can be applied to different types of learning systems,
and there are various techniques from different theories (e.g., system theory,
quantum theory, neural networks) can be used for the description of cognitive
systems, which in turn can be represented by different types of cognitive
agents.

Learning Systems and their Engineering 165

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 BACKGROUND
It is recognized that most software development tasks are cognitively driven and

the focus on people quality and their management may provide considerable
software process improvement (Curtis, 1981; Kellner & Hansen, 1989; Kellner&
Rombach, 1991; Sommerville & Rodden, 1996). However, most existing process
models and conventional project management approaches do not consider cognitive
processes (Plekhanova, 1999a) and human resource quality (Sommerville & Rodden,
1996). Instead, they over emphasize the technical components. For this reason, their
practical application is restricted to those projects where human resources are not
a critical variable. Formal representation and incorporation of cognitive processes
(Plekhanova, 1999a) and human aspects in modeling frameworks is seen as very
challenging for software engineering research (Kellner & Hansen, 1989; Kellner &
Rombach, 1991; Rombach, 2001).

The proposed project brings together work in systems engineering, knowledge
engineering and machine learning for modeling cognitive systems and cognitive
processes. We consider engineering the cognitive processes as the application of
mathematical techniques and engineering methods to cognitive processes. We
believe that the establishment of engineering methods with a sound theoretical basis
can lead to the improvement of cognitive processes in software projects. We also use
a synthesis of formal methods and heuristic approaches to engineering tasks for the
evaluation, comparison, analysis, evolution and improvement of processes.

In this work we consider human resources as a cognitive system. The aims of
the project are to develop a formal method for the modeling and engineering of a
cognitive system in order to support the required learning processes.

In order to define learning processes, we engineer cognitive processes via a
study of knowledge capabilities of cognitive systems. We are not interested in chaotic
activities and interactions between cognitive agents, nor interested in detailed tasks
descriptions, detailed steps of performance of the tasks and internal pathways of
thoughts. Rather, we are interested in how available knowledge/skills of cognitive
agents satisfy required knowledge/skills for the performance of the cognitive tasks.

We address the problem of cognitive system formation with respect to the given
cognitive tasks and consider the cognitive agent’s capabilities and compatibilities
factors as critical variables, because these factors have an impact on the formation
of cognitive systems — the performance processes and different learning methods.

We recognize that different initial knowledge capabilities of the cognitive
system define different performance and require different hybrid learning methods.
We study how human-cognitive agents utilize their knowledge and skills for learning
the cognitive tasks. Learning methods lead the cognitive agent to the solution of
cognitive problems/tasks. We consider a learning method as a guider to the
successful performance. That is, we correlate initial knowledge capabilities of
human agents with learning methods that define cognitive processes. We analyze

166 Plekhanova

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

impact of different cognitive processes on the performance (or behavior) of human
agents.

We will provide support for a solution to resource-based problems in knowledge
integration and scheduling of cognitive processes to form a capable cognitive system
for learning the required tasks.

In the proposed project, we use the profile theory (Plekhanova, 1999a, 2000b)
for formalization of cognitive systems and cognitive processes and for the identifi-
cation of critical areas in software development where improvement should be taken
(Plekhanova, 1999a, 2002b). In particular, we consider engineering the cognitive
processes to provide improvement of software development by means of integrating
adaptive machine learning into the profile theory. In order to model cognitive
processes in software projects, we combine the profile theory, which is used for
knowledge engineering (analysis, integration, scheduling) and machine learning
methods, which are applied to the initial available knowledge capabilities of the
cognitive system to define learning methods for the tasks. (It is expected that
different initial knowledge capabilities of the cognitive system require different
hybrid learning methods.)

Therefore, the adventure in our research is that cognitive processes will be
incorporated into system development of agents by a synthesis of systems engineer-
ing with knowledge engineering and machine learning methods. The combination of
adaptive machine learning methods with profile theory will provide a more flexible
adaptive framework for software system development. That is, the proposed method
for the modeling and engineering of cognitive systems and cognitive processes can
be used in software/systems engineering and machine learning for a formalization of
cognitive processes, cognitive systems, and capability and compatibility aspects.

AIMS AND OBJECTIVES
The aims of the project are to develop a formal method for the modeling and

engineering of cognitive processes in software development. In order to support the
formation of a cognitive system that will be capable of learning the required tasks
within the given constrains, we consider the knowledge integration and scheduling
for cognitive system modeling, taking into account critical capability and compatibility
factors. In this work, we study conditions for learning in cognitive systems.

The proposed project is based on work in systems engineering, software
engineering, knowledge engineering and machine learning for modeling of cognitive
processes that define a unique integration of methods in these fields. In particular,
• Profile theory (Plekhanova & Offen, 1997; Plekhanova, 1999a, 2000b) will be

used to formalize cognitive processes and tasks, and knowledge of human and/
or nonhuman agents.

• Heuristics and hybrid machine learning will be used to model and adapt profiles
of agents in a flexible manner.

Learning Systems and their Engineering 167

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Knowledge integration and scheduling problems will be addressed in learning
of cognitive systems.

In particular, we will study cognitive processes and knowledge capabilities of
cognitive systems to ensure the required level of the learning and performance of the
cognitive systems. We address the problem of the formation of cognitive systems
with respect to the given tasks and consider the capabilities and compatibilities
factors of cognitive agents as critical variables because these factors have an impact
on the formation of cognitive systems — the performance processes and define
different learning methods.

The individual measurable objectives are:
1. Evaluation of knowledge integration and scheduling approaches in cognitive

systems;
2. Evaluation of existing machine-learning approaches in cognitive systems;
3. Determination of the impact of capability and compatibility factors on the

formation of cognitive systems;
4. Development of knowledge integration metrics;
5. Development of knowledge integration models for the formation of the

cognitive systems;
6. Development of scheduling models for learning of cognitive systems; and
7. Development of a software prototype for modeling the cognitive processes.

METHODOLOGY AND JUSTIFICATION
In order to identify the best learning processes, we analyze the cognitive

processes. The scenario for engineering the cognitive processes is based on the
following steps where we (Plekhanova, 1999a):
1. model learning tasks;
2. measure and analyze the agent’s knowledge capabilities and compatibilities

with respect to the tasks;
3. use an integration model to form a cognitive system which consists of

knowledge-interdependent agents;
4. match learning tasks, capable (cognitive and noncognitive) agents and learning

methods that can be used for the learning of cognitive tasks;
5. identify critical areas for improvement of the learning processes;
6. schedule/allocate resources (agents) and machine-learning methods to the

specific tasks;
7. measure results of the learning processes with respect to the required artefact

(e.g., software product);
8. repeat step 1, if new tasks and/or requirements are identified.

168 Plekhanova

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the proposed project, we:

a. Use the profile theory for the formalization of the cognitive agents capabilities;
measurement of their capabilities and compatibilities; measurement of knowl-
edge integration in order to form a cognitive system. This system will be capable
of learning the cognitive tasks (Plekhanova, 1999a).

b. Use the profile theory for the development of an approach to knowledge
scheduling to ensure learning processes that satisfy performance and learning
constraints (Plekhanova, 1999a);

c. Analyze and apply machine-learning methods (e.g., Boosting, Lazy Learning,
Associative Networks, Incremental Decision Tree Learning, Support Vector
Machine) with respect to the initial knowledge capabilities of the available
cognitive system. In order to find the learning method suitable for a certain
application, we need to identify not only the formal task [e.g., Reinforcement
Learning (Sutton & Barto, 1998), Clustering] that covers the learning problem
(as in traditional machine-learning approaches), but also we need to define the
initial capabilities of the cognitive agents and the system. (Note that different
initial knowledge capabilities require different hybrid learning methods.) That
is, it is necessary to determine initial conditions for learning.

The methodology of the proposed project is based on the following new
theoretical basis.

Profile Theory and Machine Learning
There are a number of real-world examples when an object factor cannot be

described by just one characteristic. As opposed to a classical set, which consists of
factors (elements or objects), a profile describes an object by a set of (homogeneous
and/or heterogeneous) factors that are, in turn, defined by factor importance, time
and internal characteristics in an object representation. A profile is considered a
method for describing and registering multifaceted knowledge about homogeneous
and heterogeneous objects. There are important practical applications of the profile
theory. For instance, internal properties of the system elements, such as capability
and compatibility factors, are critical variables in modeling, design, integration,
development and management of most modern complex systems and their structure.
As an example, let us consider capability and compatibility problems of technical and
soft systems.

In technical systems the internal characteristics of technical elements are
described in specifications, standards and formal documents (i.e., are known a-
priori) from which it is not difficult to conclude whether combinations of technical
elements are capable and compatible or not, and whether they can be used for
technical system design, development and construction. There is no emphasis on

Learning Systems and their Engineering 169

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

capability and compatibility aspects in such system modeling and/or construction.
Each capability and compatibility factor can be represented by one characteristic.

We consider such systems as human resources, software, information systems,
cognitive agents, where the internal multifaceted properties can be changed with
time, and capability and compatibility factors cannot be defined by one characteristic
alone and cannot be explicitly defined and measured. These systems are termed soft
systems. At the present time, there are problems in the formal definition of
specifications, standards and metrics that allow one to determine the capability and
compatibility of elements of such complex systems. For this reason, heuristic
approaches are used for soft complex system modeling.

For formal modeling of cognitive agents/systems, we utilize the profile theory
(Plekhanova, 1999a, 2000b). Internal factors of the cognitive agents are defined by
multiple characteristics, such as weight of factor importance, time or factor
existence/nonexistence and other specific internal multifaceted properties. Profile
theory is used since existing mathematical theories are limited. Contemporary
mathematical theories describe objects where each internal factor is represented by
one meaningful piece (e.g., set theory — an element) or two pieces of meaningful
information (e.g., fuzzy set theory — an element and a membership function).

Knowledge factors are considered as basic factors in the modeling of cognitive
agents, since agents must have particular knowledge capabilities to perform and
learn their tasks. In a description of the knowledge of cognitive agents, we identify
the importance of the factor for the performance of the task, the property (level,
grade, degree) and existence or nonexistence of the factor.

Knowledge of the cognitive agent is described by a set of knowledge factors;
each factor is defined by multiple characteristics. A set of such factors forms a
knowledge profile (Plekhanova & Offen 1997; Plekhanova, 1999a, 2000b). We
represent a factor by qualitative and quantitative information. Quantitative descrip-
tion of the ith knowledge factor is defined by an indicator characteristic, property and
weight. To give a simplified illustration in this proposal, we define a profile b as a set

of factors b1, b2, �, bn: b = {bi, i = 1,n }, where the ith factor bi is represented by
a pair = (bi = Li, ei) with:

• n — a number of factors;
• Li — an identification of the ith factor, i.e., a name or label or type of the ith

factor;
• ei — the 3-tuple of the ith factor as the Cartesian product: ei = <Hi, vi, wi>, where
• Hi — indicator characteristic that indicates and expresses, by factor presence

in the description of a cognitive agent, the existence of certain conditions. In
particular,
- Hi may be defined as a time characteristic of the ith factor Hi = Hi(t);
- Hi may also represent a number of times of factor utilization ;
- Hi may represent a binary case;

170 Plekhanova

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• vi — property of the ith factor, vi � 0. Since property may be changed with time,
vi can be defined as a function of time vi = vi(t);

• wi — weight of a factor, which defines either the factor importance or the factor
priority, wi � 0. Factor weights can vary, and, therefore, wi can be also
considered as a function of time wi = wi(t).

Machine-learning methods are used for formalization and modeling of learning
processes via applications of the profiles. It allows consideration of dynamics in
learning processes (i.e., modeling of the ith profile factor ei(t) = <Hi(t), vi(t), wi(t)>
in the profile b). We will analyze existing machine-learning methods, match them to
learning tasks with relevance to available knowledge capabilities of cognitive agents
and consider cognitive processes. A profile is considered as a model for the
description of cognitive system behavior (or cognitive processes). That is, a new
machine-learning method will be developed and incorporated into an engineering
framework for cognitive processes.

In this research we consider knowledge/skill factors as critical variables in
learning processes and address problems in the formation of a cognitive system,
which can be capable of learning. In particular, we study a complex system as a
cooperation of knowledge-interrelated cognitive agents. We define a cognitive
system by knowledge capabilities of cognitive agents, cognitive structure and
cognitive processes. We address the problems of knowledge integration and analysis
of knowledge capabilities of the cognitive system in order to provide a better
opportunity for learning. A challenge for learning is to ensure the existence of a
desired level of performance of a cognitive system. There is a need to make a formal
analysis of the available knowledge of cognitive agents in order to ensure the learning
of the tasks at a desired performance level, while utilizing the available knowledge
capabilities effectively and efficiently (Plekhanova & Offen, 1997; Plekhanova,
1999a).

In a cognitive system, we address the problem of agent allocation, where we
consider not only task scheduling as in traditional approaches but also scheduling
machine-learning methods and knowledge of cognitive agents. That is we will
develop a new scheduling approach where the agent-allocation problem has specific
emphasis on the following aspects (Plekhanova, 1998b, 1998c): Cognitive agents are
allocated to tasks according to their multiple knowledge capabilities; the agent’s
knowledge capabilities must satisfy the particular combination of knowledge required
for a task; agents of the cognitive systems should be compatible with each other and
learning methods are relevant to the available knowledge capabilities of the cognitive
agents and system. The consideration of all these aspects defines a problem of
knowledge integration in cognitive software systems. We will use methods for an
integration of cognitive capabilities and compatibilities, and an analysis of how system
capabilities satisfy the learning of the tasks.

Learning Systems and their Engineering 171

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Capability and compatibility factors have considerable impact on the process of
system integration (Plekhanova, 1998b). We determine an integration model, which
encompasses integration criteria (e.g., with respect to capability and compatibility
and/or performance factors), priorities of the knowledge profiles and knowledge
integration goals. Knowledge integration goals are the improvement of available
knowledge or generation of new/novel knowledge for better performance and/or
problem solutions. We may identify different requirements (e.g., integration criteria,
priorities) for integration models that define a set of integration models. We will
develop knowledge integration models using integration metrics and representing
different integration criteria. The goal of knowledge integration is to define the
satisfaction of available knowledge from the cognitive system to the required
knowledge for the performance of the task (Plekhanova, 2000b, 2002a).

PROGRAM OF WORK
The following tasks will be undertaken within the proposed project in order to

achieve the research objectives:
1. Evaluation of integration and scheduling problems in cognitive systems;
2. Analysis of contemporary knowledge integration and scheduling approaches in

cognitive systems, i.e., human resources in software projects, planning methods
and machine learning from artificial intelligence;

3. Analysis of existing machine-learning techniques [e.g., Schapire (1999), Aha
(1997), Utgoff (1989) and Vapnik (1998)] and evaluation of learning problems
in cognitive systems;

4. Investigation of the impact of the capability and compatibility factors on the
formation of cognitive systems. This task will include: identification of critical
factors and their interrelation; data collection on knowledge capability and
compatibility of agents and condition analysis for learning in cognitive systems;

5. Development of knowledge integration metrics: Existing techniques (Plekhanova,
1999a, 2000b) will be extended to measure knowledge integration of cognitive
agents. We will also develop new evaluation techniques for definition of agents
(knowledge/skill, learning) capability and compatibility in order to provide
support for effective solutions to resource integration;

6. Development of knowledge integration models for the formation of a cognitive
system: The existing approach (Plekhanova, 2000b) will be extended by using
new integration metrics. We will develop knowledge integration models for
learning in a cognitive system representing different integration criteria. The
goal of knowledge integration is to define how available knowledge from the
cognitive system satisfies the required knowledge for the performance of the
task.

172 Plekhanova

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

7. Development of scheduling models for the learning of a cognitive system: The
existing approach (Plekhanova, 1998c, 1999a, 2000d) will be extended by using
new knowledge integration models;

8. Application of supervised and unsupervised learning methods to cognitive
tasks;

9. Development of Demonstration System: We will develop a software prototype
to provide support for a solution to resource-based problems in knowledge
integration and scheduling of cognitive processes, which will incorporate a new
formal approach (based on the profile theory) and machine-learning methods
to the modeling of cognitive systems. This tool will provide the means for
analysing human resource quality and its impact(s) on the system’s perfor-
mance.

NOVELTY
The proposed project is particularly novel in its approach to learning processes

that incorporate a synthesis of systems engineering, knowledge engineering and
machine-learning methods. There are no formal methods for knowledge integration
and scheduling for learning of cognitive systems where capability and compatibility
factors are critical variables. Existing machine-learning approaches do not address
scheduling problems in learning methods. We will develop a new scheduling
approach where we consider scheduling machine-learning methods and knowledge
of cognitive agents vs. task scheduling in traditional approaches. A new machine-
learning method will be developed and incorporated into an engineering framework
for cognitive processes (see Methodology and Justification section). Moreover, the
proposed project brings together work in cognitive systems, systems engineering,
knowledge engineering and machine learning for the modeling of cognitive pro-
cesses.

The proposed project is timely because of the availability of new formal methods
for engineering cognitive systems. The work is highly topical at present as demon-
strated by a large interest in academia and great needs of industry and academia
(Rombach, 2001). In particular in:

Software/systems engineering: Project resource capability and compatibil-
ity aspects have become the focus of software process improvement activities.
However, most contemporary approaches to the formation of project resources do
not examine their capability and compatibility factors. There is a need to develop
evaluation techniques for people’s capability, resource capability and compatibility
in order to provide support for effective solutions to project resource integration
management in cognitive systems. In particular, methods of particular merit are those
that incorporate a comparison of cognitive processes, resource capabilities and
compatibilities, and an analysis of how resources fit the project need.

Learning Systems and their Engineering 173

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Scheduling: Contemporary approaches to resource scheduling (Plekhanova,
1998b) are based on the detailed description of tasks assuming that a resource pool
is given and defined by a manager, and resources are capable of performing any
project task. Existing resource scheduling methods, both heuristic and optimization,
address the issues of resource availability and utilization and are not concerned with
the capability and compatibility of project resources. Furthermore, in traditional
scheduling approaches, the objectives for the allocation of limited resources are to
determine the allocation of resources that maximize total benefits subject to the
limited resource availability (Plekhanova, 1998b). Contemporary approaches to
resource allocation are founded on the assumption that different tasks require equal
capability resources, and only one skill is involved. Hence, they cannot be success-
fully used for software projects where different software tasks require changing
different sets of multiple knowledge and skill capabilities in an overall system
(Plekhanova, 1998b).

Software tools for resource scheduling: There are many scheduling tools
that provide different approaches: event-oriented (PERT), activity-oriented (CPM),
actions-oriented (TASKey PERSONAL) or offer a wide variety of scheduling
options (SAP). Nevertheless, there are no tools that support an analysis of people
(knowledge/skill, learning) capabilities, resource compatibilities and their impact on
project scheduling (Plekhanova, 1998c, 2000c). Most existing tools (Microsoft
Project, SAP, Up and Running) have facilities for entering new resources, but do not
deal with an analysis of cognitive processes and resource quality based on which
resources can be added to the resource pool. Therefore, the existing scheduling tools
cannot be effectively used for management of software development processes
where human resources are a critical variable.

Theory/tools in machine learning: Existing machine-learning methods [e.g.,
Boosting (Schapire, 1999), Lazy Learning (Aha, 1997), Neural Nets, Incremental
Decision Tree Learning (Utgoff, 1989), Support Vector Machine (Vapnik, 1998)]
and contemporary machine-learning tools (e.g., WEKA, AutoClass, mySVM) have
not examined an agent’s capability/compatibility and scheduling problems.

There is a direct relationship between the representation and the learning
mechanisms. In many cases the underlying representations in machine learning have
been of limited structure (e.g., vectors, trees). A hybrid integration of various
machine-learning mechanisms for software engineering of structured objects is
novel and will be examined in this project in the context of the profile theory.

174 Plekhanova

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

RELEVANCE TO BENEFICIARIES
Engineering the Complex Systems: Research in engineering of complex

systems will provide insight into new methods and approaches to learning in cognitive
systems. Research in machine learning will deliver adaptiveness to knowledge
integration and scheduling of learning methods. Scientists in cognitive systems
research will receive a formal method for modeling cognitive processes. By
developing (knowledge) integration metrics, using the profile theory, we can provide
analysis, development, integration, modeling and management of complex systems
and their elements where weight, time and other internal multifaceted properties are
critical variables. Further development of the profile theory will establish a new
branch in mathematics and extend its applications.

Another benefit would be the training of an expert in the combined fields of
systems engineering, software engineering, knowledge engineering and machine
learning at the end of the project.

Industry: New evaluation techniques could provide support for a solution to the
resource-based problems in cognitive processes in software and IT projects, such as
team formation and integration in connection with process tasks.

The application of a new approach could provide learning IT and software
development organisations with:
• superior management of resource capabilities and compatibilities;
• streamlining of process development through better management of project

resources and tasks;
• increased opportunities for organizations to implement process improvement

based on the constructive criticism derived from self analysis.

It is apparent that there is a worldwide interest in the application of this research.
Since most modern processes are cognitively driven, our method can be used for the
formal modeling of cognitive systems. It is important for the future competitiveness
of the software and IT industry to employ a scientific (vs. heuristic) approach to the
engineering of cognitive processes.

Technology: The capability/compatibility-based approach assures a virtual
prototyping of system development within different environment settings. An
important application of this approach is that it gives the means of providing systemic
methods of study, analysis, prediction, improvement, control and management of a
system development. Moreover, this technology demonstrates a modeling flexibility
that permits one to represent a fine granularity of system components, as well as to
generate different system models of a wide diversity of system development

Learning Systems and their Engineering 175

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

processes. Thus, any traditional system model becomes a special case of the
capability- and compatibility-based modeling framework.

Formal modeling of the capability and compatibility of cognitive systems
ensures the automation in cognitive system modeling. It leads to development of new
technologies in system modeling. Some of the enhancements that we intend to offer
through this method are to provide support for development and engineering of new
knowledge capabilities of cognitive systems, i.e., innovative technologies.

ACKNOWLEDGMENT
I would like to thank my colleagues from the University of Sunderland for their

valuable comments on this proposal.

REFERENCES
Abdel-Hamid, T., & Madnick, S.E. (1991). Software project dynamics: An

integrated approach. Prentice-Hall.
Aha, D. (Ed.). (1997). Lazy learning. Dordrecht: Kluwer Academic Publisher.
Bergadano, F., & Gunetti, D. (1995). Inductive logic programming: From

machine learning to software engineering (logic programming). MIT
Press.

Curtis, B. (Ed.). (1981). Human factors in software development. Los Angeles,
CA: IEEE Computer Society.

Kellner, M. I., & Hansen, G. A. (1989). Software process modeling: A case study.
Proceedings of the 22nd Annual Hawaii International Conference on
System Sciences, II, (pp. 175-188).

Kellner, M. I., & Rombach, H. D. (1991). Session summary: Comparisons of
software process descriptions. Proceedings of the 6th International Soft-
ware Process Workshop, IEEE Computer Society, Washington, (pp. 7-18).

Plekhanova, V. (1998a). A formal approach to the integration of CASE tools.
Proceedings of the World Multiconference on Systemics, Cybernetics and
Informatics (SCI’98) and the 4th International Conference on Information
Systems Analysis and Synthesis (ISAS’98), (pp. 371-373) Orlando, Florida,
USA, 1.

Plekhanova, V. (1998b). On project management scheduling where human resource
is a critical variable. Proceedings of the Sixth European Workshop on
Software Process Technology (EWSPT-6), (Lecture Notes in computer
science series, pp. 116-121). London, UK: Springer-Verlag.

Plekhanova, V. (1998c). A framework for people-centred approach to software
process constraints scheduling. Proceedings of the International Workshop

176 Plekhanova

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

on Software Process Simulation and Modelling (ProSim’98), Portland,
USA.

Plekhanova, V. (1999a). A capability- and compatibility-based approach to
software process modelling. Unpublished doctoral thesis, Macquarie Univer-
sity, Sydney, Australia, and the Institute of Information Technologies and
Applied Mathematics, Russian Academy of Sciences.

Plekhanova, V. (1999b). Capability and compatibility measurement in software
process improvement. Proceedings of the 2nd European Software Mea-
surement Conference - FESMA’99 (pp. 179-188) Technological Institute
Publications, Antwerp, Belgium, Amsterdam, the Netherlands.

Plekhanova, V. (2000a). Profile theory and its applications. Proceedings of the
international conference on information society on the 21st century:
Emerging technologies and new challenges (IS2000) (pp. 237-240). The
University of Aizu, Fukushima, Japan.

Plekhanova, V. (2000b). Applications of the profile theory to software engineering
and knowledge engineering. Proceedings of the 12th International Confer-
ence on Software Engineering and Knowledge Engineering (SEKE’2000),
(pp. 133-141). Chicago.

Plekhanova, V. (2000c). On the compatibility of contemporary project management
tools with software project management. Proceedings of the 4th World
Multiconference on Systemics, Cybernetics and Informatics (SCI’2000)
and the 6th International Conference on Information Systems Analysis
and Synthesis (ISAS’2000), (pp. 71-76) Orlando, FL, USA, I.

Plekhanova, V. (2000d). Towards modelling the scheduling processes for
software projects. Paper presented at the 2nd International Workshop on
Planning, Scheduling, and Control in Manufacturing: Putting the Human back
in Control, Zurich, Switzerland.

Plekhanova, V. (2002a). Concurrent engineering: Cognitive systems and knowledge
integration. Proceedings of the 9th European Concurrent Engineering
Conference, Modena, Italy (pp. 26-31). SCS Europe (Society for Computer
Simulation).

Plekhanova, V. (2002b). Engineering the cognitive processes in software projects:
Machine learning, knowledge integration and scheduling. Proceedings of
2002 Information Resources Management Association International
Conference: Issues and Trends of Information Technology Management
in Contemporary Organizations, Seattle, WA, USA, Volume 2, 1076-1077.

Plekhanova, V., & Offen, R. (1997). Managing the human-software environment.
Proceedings of the 8th International Workshop on Software Technology
and Engineering Practice (STEP’97) (pp. 422-432). London, UK: IEEE
Computer Society Press.

Rombach, D. (2001). Experimental software engineering: Building a research
community. Australian Software Engineering Conference (ASWEC), Austra-
lia.

Learning Systems and their Engineering 177

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Rombach, H. D., & Verlage, M. (1995). Directions in software process research.
By M. V. Zelkowitz, Advantages in computers (Vol. 41, pp. 1-62) Boston,
MA: Academic Press, Inc.

Schapire, R. (1999). Theoretical views of boosting and applications. In O. Watanabe
& T. Yokomori (Eds.), Proceedings of the 10th International Conference
on Algorithmic Learning Theory, (pp. 13-25).

Sommerville, I., & Rodden, T. (1996). Human, social and organisational influences
on the software processes. In A. Fuggetta & A. Wolf (Eds.), Software
Process, Vol. 4 of Trends in Software (pp. 89-100) New York: J. Wiley.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction.
Cambridge, MA: MIT Press.

Turner, M., & Austin, J. (1998). Graph matching by neural relaxation. Neural
Computing and Applications, 7, 238-248.

Utgoff, P. E. (1989). Incremental induction of decision trees. Machine Learning,
4, 161-186.

Vapnik, V.N. (1998). Vladimir, statistical learning theory. Chichester, UK:
Wiley.

Wooldridge, M., & Jennings, N. (1995). Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2), 115-152.

Young, J., Lees, K., & Austin, J. (1999). Performance comparison of correlation
matrix memory implementations. Proceedings of 6th International Confer-
ence on Neural Information Processing.

178 Batanov & Arch-int

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XIII

Towards Construction of
Business Components: An
Approach to Development
of Web-Based Application

Systems
Dentcho N. Batanov

Asian Institute of Technology, Thailand

Somjit Arch-int
Khon Kaen University, Thailand

ABSTRACT
Global competition among today’s enterprises forces their business processes
to evolve constantly, leading to changes in corresponding Web-based
application systems. Most existing approaches that extend the traditional
software engineering to develop Web-based application systems are based on
object-oriented methods. Such methods emphasize modeling individual object
behaviors instead of system behavior. This chapter proposes the Business
Process-Based Methodology (BPBM) for developing such systems. It uses a
business process as a unified conceptual framework for analyzing relationships

Towards Construction of Business Components 179

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

between a business process and associated business objects and for identifying
business activities and designing object-oriented components called business
components. We propose measures for coupling and cohesion measurement in
order to ensure that these business components enable the potential reusability.
These business components can more clearly represent semantic system
behaviors than linkages of individual object behaviors. A change made to one
business process impacts some encapsulated atomic components within the
respective business component without affecting other parts of the system. A
business component is divided into parts suitable for implementation of
multitier Web-based application systems.

INTRODUCTION
The increasing competition caused by worldwide businesses forces the

enterprise’s strategies to evolve frequently. Whenever a strategy has been changed,
the associated business processes must also be remodeled which in turn requires that
the corresponding Web-based application systems also be re-implemented and
installed quickly.

Web applications are software-intensive systems based on the typical three-tier
Web application architecture, which should be centered on not only presentation
modeling, but also business logic and business-state modeling (Conallen, 1999).
Further, Frolund and Guerraoui (2002) described that “a typical application, distrib-
uted or not, usually includes elements that handle presentation, logic, and data” (p.
378). With this knowledge, a typical application can be modeled based on the well-
known Model-View-Controller (MVC) architecture (Grasner & Pope, 1988). That
is, centralized systems, client/server systems and multitier distributed systems
including Web-based application systems can be modeled with respect to the MVC
architecture, which make the presentation (i.e., View) component independent of the
other components. Based on this aspect, a Web-based application system can be
modeled into three component types corresponding to the Model, View and
Controller components. Such components are modeling regardless of presentation
components (e.g., browsers for Web-based systems or Windows for client/server or
distributed systems), communication protocol (e.g., stateless (HTTP) for Web-
based systems or stateful for the other) and data source types (e.g., relational/object-
oriented database or XML document). In software-intensive Web-computing
environment, the most important issue is how to model the primary element (i.e.,
Model) of a Web-based application system to be a rigorous and flexible enough in
order to be adaptable according to such dynamic and global businesses. Moreover,
the elements of the Model component should also be a seamless transformation to
other components. Based on the notion of a Web-based system is a software-
intensive system.

The expanding traditional software engineering is an alternative solution in
modeling Web-based application systems.

180 Batanov & Arch-int

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Most existing approaches that extend the traditional software engineering to
develop Web-based application systems are based on object-oriented methods.
Although the object orientation provides powerful mechanisms, such as encapsula-
tion, inheritance and reusability (Booch, 1994; Jacobson et al., 1995), the use of
objects as building blocks in the early phase of the development result in individual
object behaviors instead of system behavior. Further, since Web-based application
systems emphasize both business logic and presentation, the traditional software-
implementation model does not fit to the Web-implementation model (Puc-Rio, &
Rossi, 2000). Therefore such existing approaches (Chen & Heath, 2001; Huang &
Mak, 2001) need further enhancement in order to master dynamic and sophisticated
systems.

BPBM blends advantages of the structured (Agarwal, De & Sinha, 1999) and
object-oriented paradigms (Booch, 1994; Jacobson, Ericsson & Jacobson, 1994;
Jacobson et al., 1995; Jacobson, Griss & Jonsson, 1997) for identifying and designing
business components based on the notion that a business process consists of a
function-oriented part (activities) representing object behavior and a process-
oriented part acting as a collaboration of these activities (Snoeck-S & Dedene, 2000).
The benefits of the proposed business component model are not only taking
advantage of the structural approach, which itself meets naturally related functional
requirements, but the model also conforms to the powerful MVC architecture in its
implementation in a Web-based environment.

The remainder of this chapter is organized as follows. Application systems on
the Web are reviewed and basic definitions are described in the next section. The
proposed approach for business components and Web-implementation modeling are
described. Finally, conclusions are outlined.

APPLICATION SYSTEMS ON THE WEB
Growth of Internet technology has allowed modern enterprise to move business

systems onto the Internet (Kocharekar, 2001). That environment requires electronic
data interchange (EDI) between enterprises to be a prime feature for providing a
variety of Internet applications, e.g., E-commerce (B2B or B2C), including Web-
based application systems. Making the move to the EDI Web environment raises the
need to address two additional requirements, heterogeneous data sources and
universal client accessibility:
1. Heterogeneous data sources used within one or across several distinct

application platforms prevent interoperability. To gain the ability to provide data
exchanges between enterprises, including decoupling the accessing of data
from different tiers, such systems should have a mediator as a handling
interface.

2. Clients should not be required to have high performance machines. Moreover,
a client’s presentation method should support a variety of output formats (e.g.,

Towards Construction of Business Components 181

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

HTML, PDF, etc.) and support various client devices (e.g., Personal Digital
Assistants (PDAs), wireless phones, etc.).

An appropriate solution for these challenges is the use of Extensible Markup
Language (XML)-based technologies (W3C-XML, 2000). XML is a “metalanguage”
that provides metadata for describing other data in a document. An XML document
uses semantics tags that are validated with their XML Document Type Definition
(XML DTD) to describe the document’s content, which enables communication
across platforms. Based on such semantic tags, XML allows developers to design
their own customized markup languages for limitless different types of documents.

An XML document acts as a middle-tier distributed object to interface multitier
Web application systems components through the HTTP protocol. An XML
document produced by a variety of proprietary database vendors can be distributed
either to other distinct application platforms for EDI-enabled applications or to a
requesting client. In addition to the second challenge, XML documents combined
with a variety of XSL stylesheets (W3C-XSL, 2000) can also support various client
devices and requirements.

BASIC DEFINITIONS
Business Objects

A business object (BO) is an object with well-defined boundaries and an identity
that encapsulates a business state and behavior. A business state is a structural
property represented by attributes or instance variables, while a behavior is a
behavioral property represented by methods that operate on the attributes. More
details on the formal definition of this notion by the Object Management Group can
be found in (OMG, 1999).

Let BO be a business object composed of m attributes, A={a1, a2, …, am}, and
n methods, M={M1, M2, …, Mn}. In terms of overall behaviors, BO can be defined
as:

BO � {M1(A1), M2(A2), …, Mn(An)},

where Ai ° A, for all i = 1, 2, …, n. Mi operates on a set of attributes Ai.

Business Components
A business component (BC) defined by Herzum and Sims (2000) is a software

unit that implements a business concept. Such a business component is large grained,
which means it consists of all software artifacts necessary to represent, implement
and deploy a given business concept as an autonomous, reusable element of a larger
distributed application system. A business component is a kind of component that has

182 Batanov & Arch-int

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

some basic characteristics, e.g., self-contained software construct and well-defined
and well-known run-time interface (Brown & Wallnau, 1998).

Our approach in developing business components focuses on identifying
business activities instead of on business objects as in, for example, component-
based software development (CBSD) (Herzum & Sims, 2000) and Business Object
Component Architecture (BOCA) (Digre, 1998). The associated atomic compo-
nents with respective activities are then composed to build a larger component —
business component.

CONSTRUCTION OF BUSINESS COMPONENTS
Business Process-Based Methodology: An Approach for
Business Components Modeling

The key of the BPBM approach in modeling business components is the use of
business process as a unified conceptual framework for analyzing relationships
between a business process and associated business objects, for identifying business
activities and for designing business components. A business system is decomposed
into a set of business processes and each business process is then decomposed into
business activities resulting in a two-level hierarchy of the business processes model.

A business process is performed by participation/co-operation of a number of
business resources called business objects, which can be either activator or business
state. Activators represent actors who initiate a business process when a business
process event occurs. Business states (business data or data objects) are created
and/or consumed by a business process while performing the process. Each business
activity of a particular business process requires business objects as generations of
input and output data, and, therefore, it can be represented as a set of interactions
between business objects.

A business activity is composed of interactions among related business objects.
More specifically, a business activity may require a business object to interact with
one or more business objects. In Figure 1, for example, BO1 interacts with BO2 and
BO3 in a particular sequence. BO1 may interact with both business objects by using
a respective method. It is more convenient to separate such interactions into two
different pairs of interactions, I1(BO1, BO2) and I2(BO1, BO3), as shown in Figure
1(b).

Figure 1. Details of Interactions of a Business Activity

BO1

BO2

BO3

(a)

BO1 BO2

BO1 BO3

(b)

Towards Construction of Business Components 183

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Let a business process, BP, be decomposed into four business activities BAi (i
= 1, 2, …, 4), involving five BOi (i = 1, 2, …, 5), in different ways (Figure 2 with omitted
explicit operation labels).

Using the example in Figure 2, BA1 and BA2 can be defined as follows:

BA1 � { I(BO1, BO4) } and BA2 � { I(BO4, BO5) }

In general, a business activity consists of a set of interactions between business
objects as formulated below:

BA � {I1(BO1, BO2), I2(BO3, BO4), …, In(BOp, BOq) },

where Ik(BOi, BOj) is a given interaction representing a public method invocation of
business objects BOi and BOj. A more formal and precise definition of the interaction
is defined as follows.

Postulate 1: Interaction
Let mi±BO1 and mk±BO2 be two methods of different business objects, bo1 and

bo2. An interaction between the two business objects, denoted I(BO1, BO2) if
�mi±BO1, mk±BO2) such that (mi invokes mk) v (mk invokes mi).

In high-level design, conceptual dependencies between business objects due to
accessing operations can be determined using static analysis. We classify the degree
of operations into three levels, Creation(C) and Deletion(D) (instance level),
Update(U) (attribute level) and Retrieve(R) (read-only operation). Given these
three kinds of operations, there are six possible interaction patterns between business
objects: C-C1, C-U or U-C, C-R or R-C, U-U, U-R or R-U and R-R. For example,
the R-C interaction pattern requires one business object to retrieve business state and
another business object to create a new instance. In addition, such an interaction

Figure 2. Two-Level Interaction Model of a Business Process

Business Activity
Level

Business Process
Level

BO1

BO2

BO3
BA1

BA3 BA2
BA4

BO4

BO5

BO1

BO2
BO4

BP

BO3
BO5

184 Batanov & Arch-int

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

includes the case that a business object operates itself without interacting with others.
This kind of interaction occurs due to the business activity, which needs to manipulate
the business state of individual business objects.

The six interaction patterns are classified into three groups depending on the
direction of interaction:
1. Two directions: This group consists of C-C, C-U and U-U interaction patterns

and requires both associated business objects to create instances or to update
the business state. Business objects involving in such interactions are masters.

2. One direction: This group consists of R-C or R-U interaction pattern. Such an
interaction requires only one business object, which is the master while the
other is the slave. The master business object, in this case, creates instances
or updates business state.

3. No direction: This group consists of R-R interaction pattern. Such an interaction
requires both associated business objects to be slaves.

A business activity consists of interactions among associated business objects.
The result of one interaction can be an input for other interactions. Such a result can
be either a new instance or updated business state of business objects, due to C or
U operation, respectively, or singly data, due to R operation. Hence, an interaction
between two business objects is represented as bidirectional regardless of its
belonging to any direction group of interactions.

Analysis Model Representation
To make the analysis model simple and precise in identifying business activities

and business components, using coupling and cohesion measures, the interactions
between business objects are represented using an undirected graph (Hitz &
Montazeri, 1996; Kenneth, 1999) called a business object interaction graph, which
is similar to the input/output dependence graph (Bieman & Kang, 1998).

Definition 1: Business Object Interaction Graph (BOIG). Let OP={C, U,
R} be the set of operations and IP={C-C, C-U2, C-R3, U-U, U-R4, R-R} the set of
interaction patterns between two particular business objects.

BOIG of a business activity BA is an undirected graph G
BA

(V, E), where V is the
set of associated business objects, and E is the set of edges connected (interacted)
between vertices (business objects) such that E = {<x, y>±VxV �i±IP: (x and y
interaction through i operation)}.

The loop graph (Kenneth, 1999) is used to represent interactions that involve
only one business object such that E = {<x>±V �op±OP: (x operates on its
business state with op operation)}.

In Figure 2, there are four business activities, each one of which can be
represented using BOIGs, for example, BA1 and BA2:

Towards Construction of Business Components 185

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• GBA1(V, E) represents the business activity BA1, where V = {BO1, BO4} and
E = {<BO1, BO4>}.

• GBA2(V, E) represents the business activity BA2, where V = {BO4, BO5} and
E = {<BO4, BO5>}.

Every business activity consists of at least one interaction. Further, a business
activity should not be isolated and should have at least one interaction with the outside
world. Hence, |E| is greater than zero.

Business Activity Identification and Measurement
An associated business object must be identified explicitly by the business

activities to which it should belong. An identified business activity is viewed as a
modular unit with respect to an atomic software component. To be considered as a
component, the functionality of a respective business activity should be in correspon-
dence with requirements for high cohesion within the component and low coupling
with the rest of components of the system (Chidamber & Kemerer, 1994).

Definition 2: Coupling between Business Objects-Business Object Inter-
action (CBO-BOI) is the number of interactions between two business objects,
which operate on their business state with various kinds of operations.

Let a conceptual BA involve n business objects, BO
BA

={BO1, BO2, …, BOn}. For
BOi and BOj±BO

BA
, it will belong to the BA if CBO-BOI(BA) = E

I
 + E

J
 > 0 such

that
1. E

I
 = {<BOi, BOj>±VxV (�op±OP): (BOi operates on its own business state

with C operation) ̂ (BOj operates on its own business state with op operation)}
and

2. E
J
 = {<BOi>±V: (BOi operates on its own business state with C operation)}.

More specifically, the business objects with a high degree of interactions should
be encapsulated in a module to reduce an interbusiness object coupling. If CBO-
BOI(BA) = 0, there is no business object belonging to the BA. This BA is called an
independent business activity. On the other hand, a business activity that requires
business objects to operate on business states with the C operation is the main
business activity of a particular business process. These business objects, therefore,
are represented as the core business objects of the business process.

Definition 3: Coupling between Business Activity-Interaction-based (CBA-
I) of an identified business activity is the proportion of the number of internal
interactions (II) and the number of external interactions (EI).

186 Batanov & Arch-int

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Let an identified BA consist of n member business objects, BO
BA

={BO1, BO2,
…, BOn}. Given a BOi±BO

BA
,

1. BOi interacts with other business objects belonging to the same BA (II) if there
exist edges E

II
 (E

II
 > 0) such that

E
II
 = {<BOi, BOj>±VxV (�BOj±BO

BA
)(�i±IP): (BOi and BOj interact through

an i interaction)}. The greater E
II
 implies the higher quality of the internal

relationships in the BA.
2. BOi interacts with other business objects, which belong to different business

activities if there exist edges E
EI
 (E

EI
 > 0) such that

E
EI
 = {<BOi, BOj>±VxV (�BOj²BO

BA
)(�i±IP): (BOi and BOj interact through

an i interaction)}. The more E
EI
 implies the higher coupling of the BA with

other business activities.

The CBA-I(BA) value is calculated in interval [0, 1]:

CBA-I(BA) =
 EEI

+ EII EEI

The higher the CBA-I(BA) value, the higher coupling of the BA. The numerical
value n in interval [0, 1] is the critical point specified for determining the low or high
coupling. The exact value is left for developers, who model the business components,
which are flexible, varying from business system to business system.

For example, if the critical point is set to 0.5, the business activity BA regarding
the CBA-I metric is expected to gain the number of internal interactions more than
or equal to the number of external interactions. Hence,
• If CBA-I(BA) > 0.5, there exist more external than internal interactions. This

implies that the BA should be split into two or more business activities. A
technique for breaking up is to split the functionality and their responsive
business objects.

• In contrast, if E
EI
 < E

II
 or the CBA-I(BA) is close to 0.0, there is a large

number of internal interactions that need not be split up.

Definition 4: Lack of Cohesion of Business Activity (LCBA). In theory, for
any identified business activity, which has been constructed as an independent
component, the number of internal method invocations should represent the degree
of cohesion. In practice, however, these interactions may enable business object
“clusters,” operating on disjointed sets of business objects.

The LCBA measure is a refinement of the notion of the Lack of Cohesion in
Methods (LCOM) (Chidamber & Kemerer, 1994) to determine the number of
business-object clusters. Let BA denote an identified business activity and BO

BA
 the

set of member business objects. Let G
BA

(V, E) be an undirected graph with V = BO
BA

.

Towards Construction of Business Components 187

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

To obtain an inverse measure of cohesion, LCBA(BA) = E
C
 is defined as the

number of cohesion clusters of business objects within the same BA so that:

E
C
 = {<x, y>±VxV �z±BO

BA
 : »((�<x, z>±VxV) ½ (�<y, z>±VxV))}.

If LCBA(BA)>n, then this implies that BA should be split into n sub-business
activities, each containing a cluster of business objects and their responsive
functionality. On the other hand, if LCBA(BA)=0, then BA does not need to be split.

In summary, an identified BA should satisfy both criteria so that CBA-I(BA)<0.5
and LCBA(BA)=0.

Business Component Identification and Measurement
A business component is composed of identified business activities that satisfy

both coupling and cohesion measurements. The first step of the technique is to
combine a set of identified business activities with high coupling into a single business
component with the objective of reducing coupling between identified business
components. Then, the identified business component is evaluated for possible
splitting into more business components based on the cohesion measurement.

Definition 5: Coupling between Business Activity-Business Object Inter-
action (CBA-BOI) is the number of interactions between business objects of the
two business activities.

Let BO
BA1 and BO

BA2 be the set of business objects belonging to two identified
business activities BA1 and BA2, respectively, and BOi±BO

BA1 and BOj±BO
BA2. There

are two kinds of interactions between two business activities, direct and indirect
interactions.
1. There is a direct interaction between BA1 and BA2, if there exists E

D
 such that

E
D
 = {<BOi, BOj>±VxV �k±IP: (BOi and BOj interact through a k

interaction)}.
2. There is an indirect interaction between BA1 and BA2, if there exists E

ID
 such

that E
ID
 = {<BOi, BOj>±VxV (�BOp±BO

BAX
) such that <BOi, BOp> >0 and

 <BOp, BOj> >0 }. That is, there is a business object BOp, which enables two
interactions BOi and BOp, and BOp and BOj.

The CBA-BOI measure is used to identify business components as follows. Let
IP

CC
={C-C} be the highest coupling degree of interaction patterns. Two identified

business activities, BA1 and BA2, should be encapsulated as an identified business
component, if CBA-BOI(BA1, BA2) > 0, such that:

CBA-BOI(BA1, BA2) = ED + EID

where ED > 0, if �k±IP
CC and EID > 0, if �l, m±IP

CC
.

188 Batanov & Arch-int

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

From the underlying object-oriented perspective, we can define coupling and
cohesion measurements of business components as they are defined for business
activities.

Definition 6: Coupling between Business Component-Interaction-based
(CBC-I) of an identified business component (BC) is the proportion of the
number of II and the number of EI.

By using the same criterion as CBA-I(BA), we can define CBC-I(BC), a larger
scope, to measure the coupling between business components for creating indepen-
dent business components.

Let an identified BC consist of n member business objects, BO
BC

={BO1, BO2,
…, BOn}. Given a BOi±BO

BC
,

1. BOi interacts with other business objects belonging to the same BC (II), if there
exist edges E

II
 (E

II
 > 0), such that

E
II
 = {<BOi, BOj>±VxV (�i±IP): (BOi and BOj interact through an i

interaction)}.
The more E

II
 implies the higher quality of the internal relationships in the BC.

2. BOi interacts with other business objects, which belong to different business
activities, if there exist edges E

EI
 (E

EI
 > 0), such that

E
EI
 = {<BOi, BOj>±VxV (�BOj²BO

BC
)(�i±IP): (BOi and BOj interact through

an i interaction)}.
The more E

EI
 implies the higher coupling of the BC with other business

activities.

The CBC-I(BC) value is calculated in interval [0, 1]:

CBC-I(BC) =
 EEI

+ EII EEI

The higher CBC-I(BC) value, then the higher coupling of the BC. The
interpretation of an arbitrary critical point value is describable as expressed in the
Metric 2 (CBA-I). For example, if the critical point is 0.5, the interpretation is
described as follows:
• If CBC-I(BC) > 0.5, then there exist more external than internal interactions.

This implies that the BC should be split into two or more business activities. A
technique for breaking up is to split the functionality and their responsive
business objects, which enables the maximum external relationships to be a new
business activity.

• In contrast, if E
EI
 < E

II
 or the CBC-I(BC) is close to 0.0, then there is a large

number of internal interactions, which need not be split.

Towards Construction of Business Components 189

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Since business components can be assembled into a larger grained component,
the properties of an ideal business component are low coupling and high cohesion,
using the previous defined measurements. More specifically, a required business
component should satisfy both criteria so that CBC-I(BC)<0.5 and LCBC(BC)=0.

Definition 7: Lack of Cohesion of Business Component (LCBC). In addition
to the LCBC(BC), it can also be defined by extending scope of the LCBA(BA) for
measuring lack of cohesion in business components.

Let BC denote an identified business component, BO
BC

, the set of member
business objects. Let G

BC
(V, E) be an undirected graph with V = BO

BC
.

To obtain an inverse measure of cohesion, LCBC(BC) = E
C
 is defined as the

number of cohesion clusters of business objects within the same BC, such that:

E
C
 = {<x, y>±VxV �z±BO

BC
: »((�<x, z>±VxV) ½ (�<y, z>±VxV))}.

If LCBC(BC)>n, then BC should be split into n new business components, each
containing a cluster of business objects and their responsive functionality. On the
other hand, if LCBC(BC)=0, then BC does not need to be split.

Regarding business component-level metrics, an expected business component
should satisfy both criteria so that CBC-I(BC)<n, where n is a critical point value and
LCBC(BC)=0.

Business Component Services
Another consideration of modeling is the architecture. Layering the architec-

ture is a design technique used to classify business component functions that allows
each layer to do specific tasks and provides services for upper layers.

Business components are classified based on the notion of service-based
measurement (Briand & Morasca, 1999) into two layers: common business compo-
nent (CBC) layer, which provides general purposes services, and application
business component (ABC) layer that does more specific tasks. The service-based
measurement measures a general software module (procedure-based software unit)
in terms of export services.

Export services are represented using EI with ordered pair interactions, R-C,
R-U, R-R and U-U. For example, R-C interaction provides a service that forces a
business object within the business component to operate on a business state with R
operation, and another business object of the request service operates on its business
state with C operation.

Representation of the Business Component Model
The primary elements of a business component are business activities that

specify required business objects. Moreover, a business component may provide

190 Batanov & Arch-int

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

services for other components so that there is an optional component element —
interface.

Since XML is a standard language, XML-based representation is helpful and
meaningful for exchanging design information with other developers on different
platforms and with varying development tools. Moreover, an XML-based model
provides information about a business component that is easy to bundle and deploy
in a particular commercial business components environment, such as Enterprise
JavaBeans (Sun Microsystems, 2000). The business component model is repre-
sented by using an XML-based description in order to be applied efficiently to Web
computing environments. The respective XML DTD is shown in Figure 3.

Figure 3. XML DTD of Business Components

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE BusinessComponent[
<!ELEMENT BusinessComponent (BusinessObject+, BusinessActivity+, Interface*)>
<!ATTLIST BusinessComponent name ID #REQUIRED>
<!ELEMENT BusinessObject (Structure, Behavior)+>
<!ATTLIST BusinessObject id ID #REQUIRED>
<!ELEMENT Structure (Attribute)+>
<!ELEMENT Behavior (Method)+>
<!ELEMENT Attribute #PCDATA>
<!ATTLIST Attribute id ID #REQUIRED

type CDATA #REQUIRED>
<!ELEMENT Method #PCDATA>
<!ATTLIST Method name CDATA #REQUIRED

input ((BusinessDataUnit*, Attribute*)*)
output ((BusinessDataUnit*, Attribute*)*)>

<!ELEMENT BusinessActivity (BusinessObjectList, BusinessDataUnit+, Interaction+)
<!ATTLIST BusinessActivity id ID #REQUIRED>
<!ELEMENT BusinessObjectList (BusinessObjectRef)+>
<!ATTLIST BusinessObjectRef BC_name IDREF #REQUIRED

BO_id IDREF #REQUIRED >
<!ELEMENT BusinessObjectRef #PCDATA>
<!ELEMENT BusinessDataUnit (AttributeId)+>
<!ATTLIST BusinessDataUnit id ID #REQUIRED

BO_id IDREF #REQUIRED >
<!ELEMENT AttributeId #PCDATA>
<!ATTLIST AttributeId id IDREF #REQUIRED
<!ELEMENT Interaction (Method1, Method2*)+>
<!ATTLIST Interaction name ID #REQUIRED>
<!ELEMENT Method1 #PCDATA>
<!ATTLIST Method1 name IDREF #REQUIRED>
<!ELEMENT Method2 #PCDATA>
<!ATTLIST Method2 name IDREF #REQUIRED>
<!ELEMENT Interface (BusinessActivityList*, PublicMethodList*)*>
<!ELEMENT BusinessActivityList (BusinessActivityId)*>
<!ELEMENT PublicMethodList (MethodName)*>
<!ELEMENT BusinessActivityId #PCDATA>
<!ATTLIST BusinessActivityId name IDREF #REQUIRED
<!ELEMENT MethodName #PCDATA>
<!ATTLIST MethodName name IDREF #REQUIRED
]>

Towards Construction of Business Components 191

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In addition to requiring that business activities be processed correctly in a well-
defined sequence, every business component should have one controller called a
business process controller (BPC) to control and manage the collaboration of its
business activities. More specifically, a set of main business activities has to be
controlled by the BPC for collaborating in the required sequences.

WEB IMPLEMENTATION MODELING
Based on the MVC architecture, the elements of the business component model

can be mapped into the elements of the MVC architecture as below:
• Business activities and business objects are represented as models in the

architecture. The model can be shared across all clients of the application. It
should be consistent regardless of the type of client accessing the data.

• A BPC is represented as a controller using a main-SPT (M-SPT) Page.
Business activities (business method invocations) represent a part of applica-
tion behavior that is implemented as a subcontroller (sub SPT pages) within the
M-SPT using elements of SPT page.

• A Business Data Unit is represented as a view embodied with its functions
through HTML/XML interface (a Web interface). This interface is generated
dynamically using SPT page.

The MVC abstraction prevents Web-page designers from interacting with an
application developer’s code and vice versa. Furthermore, the same model (BA&BO)
can be used with other types of clients, for example, a CORBA client, with very few
changes to the component. The following describes how the proposed business
component model can be modeled regarding the Web-application systems.

The primitive elements of Web-application systems are Web pages derived
from business data units of business objects, which are the dynamic contents of the
Web pages. The links (navigations) among these Web pages are derived using the
sequence of interactions between these business objects. A sequence of these links
is governed and implemented using BPC. The implementation of primary component
elements of the model on the Web follows the model described below.
• Each business component has only one main Web page (M-WP) containing a

set of sub-Web pages (sub-WPs), which represent the main business activities
of the business component. In addition to the CBC, the independent Web pages
(I-WPs), which implement the independent business activities, can be con-
structed and deployed independently of the M-WP and will be linked to other
Web pages (see Figure 4(a)).

• Every business activity can be represented with a set of interactions involving
one or more business objects. Such interactions are implemented with different
component elements of Web applications and suppose that:

192 Batanov & Arch-int

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

BA1 � {I(BO1, BO2)} � {I(MBO1(BDUi), MBO2(BDUj)} and
BA2 � {I(BO3)} � {I(MBO3(BDUk)} .

These two business activities can be implemented by Web-application compo-
nents that support different tasks (see Figure 4(b)). BA1, for example, requires the
interaction that involves BO1 and BO2. Since BO1 and BO2 operating with their
respective BDUs enable creation of their own Web pages, the interaction between
BO1 and BO2 within the BA1 represents an interaction between business activities.
However an interaction between two business components may have no user
interfaces (Web pages).

CONCLUSION
The primary contributions of this chapter are the business component modeling

technique and the measures defined using graph theory. The former enhances the
advantages of both process- and data-oriented modeling methods. The proposed
modeling method can capture both business processes and business data by using a
uniform concept driven by the business processes in a more natural approach. The
basic idea is that components relate primarily to business processes and activities,
instead of to objects as constituent parts. As a result, the business components
modeled using such a method can precisely represent business requirements.
Secondly, the measures defined formally using graph theory can not only be used to
ensure the business components satisfy the low coupling and high cohesion
requirements, but also allow development tools to measure the coupling and cohesion
automatically.

XML with its metadata description capabilities is used for representation of and
working with the suitable business component model to support the software

Figure 4. Implementation of (a) ABC and CBC and (b) Interactions

An ABC

Controlled
by the BPC

Main Web Page
(M-WP)

 Sub-WP1(BA1)

Sub-WP2(BA2)

Sub-WP3(BA3)

Main Web Page
(M-WP)

 Sub-WP1(BA1)

Sub-WP2(BA2)

Sub-WP3(BA3)

I-WP1(BA4)

I-WP2(BA5)

A CBC

BA2 � {I(MBO3(BDUk))}

Web Page2(BA2)

BDUk(BO3)

BA1 � {I(MBO1(BDUi), MBO2(BDUj)}

Web Page1(BA1)

BDUi(BO1)

Web Pagej(BAj)

BDUj(BO2)

(b) Two Kinds of Interactions

(a) Implementation of an ABC and CBC (b) Two Kinds of Interactions

Towards Construction of Business Components 193

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

development processes. Such a representation allows convenient and functionally
flexible adaptation to a Web-based computing environment for developing multitier
distributed applications.

In accordance with enormous efforts toward transition to a new generation
Web, we accept the proposed XML-based model description as a good basis for
extension to not only structural but semantic representation and processing of
business components.

REFERENCES
Agarwal, R., De, P., & Sinha, A.P. (1999). Comprehending object and process

models: an empirical study. IEEE Trans. Software Eng., 25(4), 541-555.
Bieman, J.M., & Kang, B-K. (1998). Measuring design-level cohesion. IEEE Trans.

Software Eng., 24(2), 111-124.
Briand, L.C., & Morasca, S. (1999). Defining and validating measures for object-

based high-level design. IEEE Trans. Software Eng., 25(5), 722-743.
Booch, G. (1994). Object-oriented analysis and design with applications (2nd

ed.). Redwood City, CA: Benjamin/Cummings.
Brown, A.W., & Wallnau, K.C. (1998, September/October). The current state of

CBSE. IEEE Software, 15(5), 37-46.
Chen, J.Q., & Heath, R.D. (2001, Winter). Building web applications: Challenges,

architectures, and methods. Information Systems Management, 68-79.
Chidamber, S.R., & Kemerer, C.F. (1994). A metric suite for object oriented design.

IEEE Trans. Software Eng., 20(6), 476-493.
Digre, T. (1998). Business object component architecture. IEEE Trans. Software,

15(5), 60-69.
Frolund, S., & Guerraoui, R. (2002). E-transaction: End-to-end reliability for three-

tier architectures. IEEE Trans. Software Eng., 28(4), 378-395.
Grasner, G., & Pope, S. (1988). A cookbook for using the model-view-controller user

interface paradigm in Smalltalk-80. Journal of Object-Oriented Program-
ming, 1(3).

Herzum, P., & Sims, O. (2000). Business component factory: A comprehensive
overview of component-based development for the enterprise. NJ: John Wiley
& Sons, Inc.

Hitz, M., & Montazeri, B. (1996). Correspondence of Chidamber and Kemerer’s
metric suite: A measurement theory perspective. IEEE Trans. Software Eng.,
22(4), 267-271.

Huang, G. Q., & Mak, K. L. (2001). Issues in the development and implementation
of Web applications for product design and manufacture. International
Journal Computer Integrated Manufacturing, 14(1), 125-135.

194 Batanov & Arch-int

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Jacobson, I., et al. (1995). Object-oriented software engineering (OOSE): A use
case driven approach (Rev. ed.). Boston, MA: Addison-Wesley Publishing
Company.

Jacobson, I., Ericsson, M., & Jacobson, A. (1994). THE OBJECT ADVANTAGE:
Business process reengineering with object technology. Boston, MA:
Addison-Wesley Publishing Company.

Jacobson, I., Griss, M., & Jonsson, P. (1997). Software reuse: Architecture,
process and organization for business success. Boston, MA: Addison-
Wesley Publishing Company.

Kenneth, H. R. (1999). Discrete mathematics and its applications (4th ed).
McGraw-Hill International.

Kocharekar, R. (2001). K-commerce: knowledge-based commerce architecture
with convergence of e-commerce and knowledge management. Information
Systems Management, Spring.

OMG (1999). Business object concepts (white paper, OMG document no. bom/99-
01-01). (Object Management Group) OMG-Business Object Domain Task
Force.

Puc-Rio & Rossi, G. (2000). Web Engineering: Introduction to Minitrack. Proceed-
ings of the 33rd Hawaii International Conference on System Sciencem, 6,
(January 4-7, p. 6065).

Snoeck-S, M., & Dedene, G. (2000). An architecture for bridging OO and
Business Process Modelling. IEEE Int’l Conference on Technology of
Object-Oriented Language and System (TOOLS’00).

Sun Microsystems. (2000). Enterprise JavaBeans specification version 1.1. Sun
Microsystems Inc. Found at: http://java.sun.com/products/ejb/docs.html.

W3C-XML (2000, October 6). Extensible markup language (XML) 1.0 (2nd ed.),
W3C recommendation, Retrieved from http://www.w3.org/TR/2000/REC-
xml-20001006.

W3C-XSL (2000, November 21). Extensible stylesheet language (XSL) version
1.0. W3C candidate recommendation. Retrieved from http://www.w3.org/
TR/xsl/.

ENDNOTES
1 This included D operation.
2 C-U interaction pattern covers U-R pattern.
3 C-R interaction pattern covers R-C pattern.
4 U-R interaction pattern covers R-U pattern.

An OO Methodology Based on the Unified Process 195

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XIV

An OO Methodology Based
on the Unified Process for

GIS Application
Development

Jesús D. Garcia-Consuegra
Universidad de Castilla-La Mancha, Spain

ABSTRACT
This chapter introduces an object-oriented methodology for Geographical
Information Systems (GIS) development. It argues that a COTS-based
development methodology combined with the UML, can be extended to support
the spatiotemporal peculiarities that characterize GIS applications. The author
hopes that by typifying both enterprises and developments, and, with a
thorough knowledge of the software component granularity in the GIS domain,
it will be possible to extend and adapt the proposed COTS-based methodologies
to cover the full lifecycle. Moreover, some recommendations are outlined to
translate the methodology to the commercial iCASE Rational Suite Enterprise
and its relationships with tool kits proposed by some GIS COTS vendors.

196 Garcia-Consuegra

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTRODUCTION
As in other domains, the development of GIS follows the new trends in

technology (i.e., Microsoft .NET, WEB services, etc.) and in methodology (Compo-
nent Based Development (CBD)). The object-oriented paradigm has also been
adopted in the GIS developments. For example, object-oriented modeling languages,
such as UML, have been extended to support spatiotemporal characteristics. New
proposals to extend, adapt or complement previous solutions in areas, such as
requirements engineering, modeling languages, methodologies, patterns, and so on,
are continually appearing in the scientific community. However, from the enterprise
point of view, the use of these proposals is not a straightforward matter.

On the other hand, the market offers new alternative software products or new
versions, with the interoperable capability based on the current standards (Opengis,
FGDC, ISO, etc.). However the capability to integrate these new software products
at the same rate as they emerge is often lacking, when the methodology used does
not contemplate this kind of change. So GIS application developments, particularly
those carried out in small and medium enterprises, face the same risks or problems
as the software developed in other domains:
• inaccurate understanding of end-user needs;
• inability to deal with changing requirements;
• modules that do not fit together;
• software that is hard to maintain or extend;
• late discovery of serious project flaws;
• poor software quality;
• unacceptable software performance;
• team members are in each other’s way, making it impossible to reconstruct who

changed what, when, where and why;
• an untrustworthy build-and-release process;
• businesses’ demand for increased productivity, improved quality with faster

development and deployment and the building of software in a repeatable and
predictable fashion.

In this chapter, we outline a methodology that covers the full lifecycle of the
software engineering process in the GIS domain. Software engineering addresses a
wide diversity of domains (e.g., banking, transportation, manufacturing), tasks (e.g.,
administrative support, decision support, process control) and environments (e.g.,
human organisations, physical phenomena). The scientific community agrees that a
specific domain/task/environment may require some specific focus and dedicated
techniques. This is the case with GIS due to its spatiotemporal peculiarities. In
particular, activities like domain analysis as well as requirement elicitation and
specification are the main topics of research carried out in the GIS domain. This

An OO Methodology Based on the Unified Process 197

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

methodology attempts to integrate the currently available methodologies with the
trends, capabilities and limitations imposed by the technology.

In particular, this chapter focuses on those developments based on COTS
components.In order to make an OO Methodology proposal to solve the aforemen-
tioned problems, GIS enterprises and their developments have been studied. Those
OO methodologies proposed by software engineering as a solution to software
development processes have also been identified. Finally, some modifications and
extensions needed to cover the GIS development have been proposed. Thus, our
methodology makes full use of the best ideas currently available in software
engineering as a foundation, extending them to take into account the peculiarity of
the GIS domain.

BACKGROUND
GIS

Currently a great number of applications need modeling capabilities of spatial,
temporal and spatiotemporal data for the complex object description. Solutions to
these requirements can be found in GIS, in some database management systems with
spatial extensions (such as Oracle, IBM, etc.) or in research forums.

The space and time combination is implicit in a wide range of needs. One of
these is to observe a moving object and to predict its future locations. For example,
the location of a moving car changes over time, and its location must be captured at
given instants. Another need is to observe objects that do not change their position,
but whose attributes change over time. Finally, there are objects in which both
attributes and spatial characteristics can change over time (Worboy, 1994).

GIS applications fall into the “data intensive applications” category, often
referred to as “non-standard,” including, among others, multimedia and VLSI design.
The peculiarities of this kind of spatiotemporal application are centred on the support
of complex objects and relationships between them and long transactions. Further-
more, spatiotemporal applications deal with three types of objects: those whose
position in space can change in time; those whose characteristics and position (shape
change) can change in time; and both of the above, simultaneously. These matters
have to be dealt with in several stages of the software lifecycle: in the analysis
(modeling the business logic and the user interface), requirements specifications, etc.

GIS Enterprise and Application Classification
In the last few years, the software enterprise has been moving very swiftly

towards component-based development. This trend, far from being unified and
coherent, is the result of many trends, some of them complementary, others oriented
to reinforce forgotten aspects and still others that are totally independent.

198 Garcia-Consuegra

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For this reason, this study distinguishes between methodologies oriented
towards the development of components (custom components or in-home compo-
nents) and those involved in the integration of pre-existing software components
(COTS). This approach allows us to make a good approximation to the typology of
developments in GIS domains, shown below. Although both are component-based
systems, the development process in the first case is called Component Based
Development (CBD), and in the second is called COTS Based Development
(COTSBD) throughout this work. As in the majority of domains, the software
developments in GIS can be divided into two categories:

Software Component Development. ESRI (ESRI) and Intergraph
(INTERGRAPH) would be two enterprise examples. They develop generic soft-
ware components (COTS). Software engineering (SE) proposes methodologies like
Catalysis (D’Souza & Wills, 1999), Business Component Factory (Herzum & Sims,
2000) or Unified Process (Kruchten, 2000).

Developments based on previous software components. This category can
be divided into two new subcategories:
• Developments that basically focus on component integration.
• Developments that focus on building new components and are highly dependent

on previous COTS, either because they are not on the market or they are their
business case.

In Spain, TAO, GIM or Absys are good examples of enterprises involved in this
kind of development. Methodologies, such as Off-The-Shelf Option (OTSO)
(Kontio, 1995), COTS-based Integrated Systems Development (COTS CISD)
(Tran & Liud, 1997), Infrastructure Incremental Development Approach (IIDA)
(Fox, Marcom, & Lantner, 1997), IusWare (Morision, Seaman, Basili, Parra, Kraft
& Condon, in press), Procurement-Oriented-Requirements Engineering (PORE)
(Ncube, 2000) or COTS-Aware Requirements Engineering Technique (CARE)
(Chung, Cooper & Huynh, 2001), provide them with a solution.

OOMGIS
When the challenge to identify a methodology for fast application development

in the GIS domainn was faced, several important questions arose. As the fast
development of GIS applications was the major goal, the COTSBD approach was
selected as paradigm for the application construction. COTSBD gives the chance to
develop applications using pre-existing software components, thereby reducing cost
and delivery time. The application construction is mainly reduced to selected
software components integration, previously looked up (using repositories or traders)
and purchased. This is, moreover, the current situation in the GIS domain, where a
group of enterprises is offering components that support the basic functionality with

An OO Methodology Based on the Unified Process 199

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

architectures given, as shown in the previous section. Furthermore, our intention is
that applications that are developed should not be attached to specific components,
to a specific technology and to a given enterprise. This means that the possibility of
selecting components according to the requirements of every system has to be
considered.

On the other hand, a methodology must treat the root causes of the problems
of software development in order to eliminate these symptoms. That is, the
methodology must be a conjunction of the best software practices. This involves
developing software iteratively, managing requirements, using component-based
architectures, visually modeling software, continuously verifying software quality,
controlling changes to software, etc.

As can be seen in Figure 1, OOMGIS is an iterative and evolutionary process
that takes the best ideas of COTSBD methodologies [such as, CARE (Ncube, 2000)
and PORE (Chung et al., 2001)], as a foundation. OOMGIS plays particular attention
to those matters relating to the iterative Requirements Acquisition and Product
Evaluation/Selection process. Furthermore, those OOMGIS parts that have to be
adapted to support the peculiarities of the GIS domain (The European Commission,
2000), like requirement specification and system modeling, have been identified.

There is a lot of research taking place in the GIS domain. In general, the
research is focused on providing solutions for particular problems or limitations,
instead of proposing a full lifecycle software engineering process. OOMGIS tries to
cover this gap. Thus, OOMGIS covers the basic activities associated with a
COSTBD methodology.

The requirements, marketplace and architecture and design activity sets
operate concurrently and in co-operation with one another in order to obtain a
compromise in the COTS selection.

The requirements activity set defines, prioritizes, and constrains the CBS to be
fielded, accounting for functional and nonfunctional requirements, end-user pro-
cesses, business drivers, the operational environment and constraints (such as,
policies, schedules and budgets). This consists of requirements gathering and

Figure 1. The OO Methodology (OOMGIS) for COTS-Based Development in
the GIS Domain

Marketplace

Requirements

Architecture
& Design

Compromise

MarketplaceMarketplace

RequirementsRequirements

Architecture
& Design

Architecture
& Design

Compromise Evaluation
& Selection
Evaluation
& Selection

Implementation
& Test

Implementation
& Test

Deployment
& Maintenance

Deployment
& Maintenance

Configuration ManagementConfiguration Management

200 Garcia-Consuegra

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

analysis. The initial requirements must be gathered with a high-abstraction level. The
objective is to define the context in which the system will operate and the main
functions the system will provide. In this phase, the requirements, which will be used
to establish the bases for selecting the suitable COTS candidates, are determined.
Likewise, in this phase the following activities will be performed: to determine and
prioritize (correct) the negotiable or non-negotiable elements of the requirements; to
understand the essential elements of the user processes before studying the COTS
market; to modify user processes as needed after the available products are known;
to negotiate requirement changes and to restudy COTS products in order to optimize
user processes.

The marketplace activity set bounds the COTS marketplace elements. Here, a
search in the COTS market must be carried out to determine what components are
suitable for the proposed requirement and architecture. The following tasks are
performed: creation and maintenance of our knowledge of the actual (and emerging)
market possibilities for the system and market re-exploration; the definition of new
or modified requirements from the selected components in the next iteration and
alerting the development team to promising new technologies. As in the previous
activity, this activity takes place simultaneously with the requirements and architec-
ture definition. Those products whose capabilities best cover the needs established
by requirements and the architecture are the candidate products. It is also possible
not to find suitable COTS in the market, such as a number of iterations requirements
can render the candidate product unsatisfactory. Then, the make vs. buy decision —
the best candidate or a great effort in coding and integrating — must be reconsidered.

The architecture and design activity set captures decisions about the structure
of the components, interfaces and relationships of a system’s components and the
principles and guidelines governing their design and evolution. The architecture must
allow efficient evolution of the system, although this is almost always a topic related
to the selected COTS. Other aspects to be considered are its compatibility,
configurability and integrability. Although some parts of the design are performed in
the architecture definition, here these activities are repeated at a much greater level
of detail, taking into account the product variants selected. This phase is also
concerned with the definition of the integration of COTS and newly developed
software. This activity is especially important due to the fact that in COTSBD the
effort is shifted from the programming software to the composition (assembling of
components) (Voas, 1998). Several COTS can be involved, each one with possibly
different architectural styles, constraints, different vendors, and so on.

The evaluation and selection activity set examines and selects COTS products
and technologies. The selection of the “best” from among the packages available
depends on the assessment of their compatibility with the requirements specification
and the prioritization of these requirements. Selection is not static. The purpose of
evaluation is to examine COTS products and technologies, to gather information

An OO Methodology Based on the Unified Process 201

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

about them and to appraise them in support of making COTS-based system
decisions.

Its activities are, among others: to plan and to design the evaluation, to locate
potentially relevant candidates, to perform appropriate analyses for selection of
appropriate technologies or products and to document and to share acquired
information for use in decision making.

The implementation and test activity set addresses implementation of custom
components, COTS integration (parameterizing and writing glue and wrapper code)
and system integration and test. This stage composes and integrates a COTS-based
system from available parts.

The deployment and maintenance-activity set encompasses initial and continu-
ing delivery of a COTS-based system to end users and system maintenance.

The configuration management activity set establishes and maintains system
artefact integrity and traceability throughout the CBS’s lifetime.

There are several proposals to define the software component definition and its
granularity. According to Herzum and Sims (2000), these can be classified into:
• Distributed component: This is the lowest granularity of a component. It fits

the usual concept of component in industry. (For example, it may be imple-
mented as an Enterprise JavaBean, as a CORBA or a DCOM component.) It
is normally, but not necessarily, built using an object-oriented programming
language (OOPL).

• Business component: This implements a single autonomous business con-
cept. It usually consists of one or more distributed components, which cover its
distribution aspects. That is, the business component is a single artefact that
may physically be distributed across two or more computers. The business
component is built using the software component technology, like a composition
of distributed components. It is a component, not only at deployment and run-
time, but also during the development life cycle. It is a medium-grained
component. It represents those that are relatively autonomous in the problem
space.

• Business component system: This makes up the largest grained compo-
nent. It corresponds to an information system or “application” (for example, an
e-mail system or a cadastral GIS application). The business component system
concept can be defined as: “a set of co-operating business components
assembled together to deliver a solution to a specific business problem.”

In the GIS domain, there are two main vendors (ESRI and Intergraph) whose
components are the most frequently used in desktop and Web-application develop-
ments. ESRI provides two options: MapObjects and ArcObjects, the last and more
complete collection of software components. On the other hand, Intergraph has
Geomedia Objects, a collection consisting of 17 ActiveX controls (OCX), nine data

202 Garcia-Consuegra

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

servers and more than 90 programmable ActiveX Automation objects. One of the
major capabilities of Geomedia 4 is its interoperability with other systems. Both
ArcObjects and Geomedia Objects have been developed with Microsoft technology
based on the COM protocol. Basically, the foundations for their development have
been the same. They are fully incorporated into the standardization train imposed by
the several international organizations (Opengis, ISO, FGDC, etc.). Both allow
customization using the built-in VBA scripting capabilities or a COM-compliant
programming language, such as Visual Basic, Visual C++ or Delphi. Their differ-
ences are centred on their capabilities and their object models.

These technologies provide a set of classes that implement spatial character-
istics, which can be extended to integrate new behavior or new attributes to the
geographical entities modeled. Temporal properties are usually implemented by the
capabilities of the DBMS used in each case.

Thus, we can conclude that the granularity of the software components offered
in the GIS marketplace is equivalent to the distributed and business components
(Herzum & Sims, 2000). Furthermore, considering our market analysis and studying
the pros and cons of both, the granularity suitable for COTSBD must be thought of
in terms of a business component, since using their distributed components involves
a high integration effort. Other problems solved by this selection are those associated
with evolution. To integrate distributed software components from different vendors
requires a great effort. In this sense, the marketplace must consider the creation and
maintenance of a sound knowledge of the components to provide an accurate
foundation for candidate component selection and foreign requirements definition
(Chung et al., 2001), to understand the impact on the architecture and design and,
finally, to implement and configure the component management. Furthermore, a
team must be well trained in all selectable components. Emergent components, new
versions or a change of components can involve serious modifications mainly in the
architecture and design as well as in the implementation activities.

At present, the iCASE tool that supports a methodology is as important as the
methodology itself. So, when we were working on the definition of a methodology
to develop GIS applications, we also considered developing an iCASE or adapting an
existing iCASE. iCASE complexity demands a great effort for its development and
maintenance. The extension or adaptation of an existing iCASE is the most suitable
option. In this case, the Rational Enterprise Suite has been selected to implement
OOMGIS. This selection takes advantage of the Software Component Develop-
ment, which is covered due to Rational Enterprise Suite implements Rational Unified
Process (RUP) (Kruchten, 2000). It provides the mechanisms to extend and modify
the process. It supports UML as the modeling language as well as the mechanisms
to extend it. Finally, like every commercial package, its evolution involves OOMGIS
evolution as well.

To carry out the OOMGIS implementation on Rational Suite Enterprise,
methodologies like Model-Base Architecting and Software Engineering (MBASE)

An OO Methodology Based on the Unified Process 203

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(Boehm, Port, Abi-Antoun & Egyed, 1998) or Information Technology Solutions
Evolution Process (ITSEP) (Albert, 2002) are taken into account. The MBASE
approach is a unified approach that considers four types of models for a system:
success, process, product and property. MBASE extends the spiral model for the
integrated product and process development. It uses four guiding principles to
develop value-driven, shared-vision-driven, change-driven and risk-driven require-
ments. MBASE is compatible with Integrated Capability Maturity Model (CMMI)
and RUP. ITSEP relies on the A/A PCS Process, a framework for COTS-based
engineering and on the RUP. The A/A PCS Process supports simultaneous trade
offs among requirements, preferences, marketplace offerings, architecture, design
and business processes. The process is a spiral approach where the incremental
accumulation of knowledge is used to reduce the risk.

In addition to a methodology, a modeling language with a sufficiently large
expressive wealth for supporting the model elements is needed. For the chosen
environment (OO paradigm and Rational Suite Enterprise), UML is the most suitable
modeling language. As proposed in Faria, Medeiros and Nascimento (1998), using
the core constructs of UML, spatial and temporal properties can be added to an
object class definition by associating it with temporal and spatial object classes. To
accomplish this task, each spatiotemporal attribute of a class is promoted to a
separate, but associated, class with the appropriate time stamps and spatial extents
as attributes. Temporal classes and associations are treated similarly, by adding
timestamp attributes to the class or to the association class, respectively, in the latter
case after promoting the association to an association class. In Price, Tryfona and
Jensen (1999), this approach is reported as not suitable for representing temporal or
spatial variation at the attribute level as the timestamp and spatial locations are
defined only at the object-component level. Furthermore, these diagrams, when
presented in this fashion, are visually highly complex, which gives them an unnatural
feel and makes them difficult to follow.

The alternative solution is to extend the UML-class diagram in order to model
the spatiotemporal characteristics without discarding the simplicity of diagrams.
UML provides the “stereotypes” as the usual way to make domain-specific
extensions to its core constructs, which can be used as if they were of UML’s original
metamodel or definition.

In the scientific community, different temporal, spatial and spatiotemporal
models can be found: TEMPOS (TEMPOS, 1999), MADS (Parent, Spaccapietra &
Zimanyi, 1999), TOOBIS (TOOBIS, 1999), RDNSAAE (Böhleny, Jensen &
Skjellaug, 1998), ScanGIS (Renolen, 1997), EGSV (Erwing, Güting, Schneider &
Vazirgiannis, 1999), STER (Hadzilacos & Tryfona, 1998), GeoOOA (Kösters, Pagel
& Six, 1997), Fuzzy-UML (Yazici, Zhu & Sun, 2001) and ST-UML (Price et al.,
1999). The majority of these were proposed from the database perspective. The ST-
UML is the best model to cover GIS needs, since it integrates the spatial and temporal
aspects. However, for our purposes, ST-UML suffers from certain limitations:

204 Garcia-Consuegra

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• It does not cover its implementation. This stage can follow the EGSV or
TOOBIS models.

• Temporal aspects are not completely supported as in TEMPOS or TOOBIS.
• Its syntax can, in some models, be complex.
• It only covers the class diagram.
• The UML extension in Rational Rose that implements ST-UML is not

straightforward.

In Rational Rose, add-ins allow customizations and automation of several Rose
features included in one package through the Rose Extensibility Interface (REI). An
add-in is a collection of certain characteristics. In this case, our interest is focused
on the following characteristics:
• Properties: Rose model properties allow us to extend Rose model elements

through additional properties and their values. This characteristic is used to
implement the Specification Box (Price et al., 1999), since it involves a set of
properties to be added to the elements of the model.

• Stereotypes: Rose stereotypes allow us to customize the look of different
model elements according to the requirements of your add-in. This is the natural
way to add the characteristics proposed in ST-UML.

• Functionality: Some code can be programmed in order to provide the dialog
boxes and other functionality desired. It is used to adapt the code to cover our
interests.

In the COTS and CBD methodologies, a technology change (for example, a
ESRI COTS new version or a change to Intergraph technology) involves a high cost
(model evolution and/or increment of the glue or wrap code) in the maintenance of
the models. The way in which this extension is carried out gives it an important
advantage when dealing with this problem. It can provide the mechanisms through
which the model may achieve maximum independence from its implementation with
a specific technology. At present, following ST-UML, our proposal consists of
extending the UML Class Diagram by defining a set of class stereotypes with their
corresponding tag values. New stereotypes to model specific application domains
can be defined as subclasses. Once the model is complete, the stereotypes are
translated into a standard UML Class Diagram, following the guidelines and
observing the restrictions of each technology. The resulting standard UML Class
Diagram can be processed with the specific tools provided by each vendor (i.e.,
ArcGIS). Thus, modeling is carried out in a canonical way, regardless of the final
technology to be used. At this point, we are engaged in defining stereotypes for
covering the spatial, temporal and spatiotemporal GIS peculiarities.

An OO Methodology Based on the Unified Process 205

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

RESULTS
Our experience shows that most of the small and medium enterprises involved

in GIS applications development cannot pay for the costs arising from the software
component study in marketplace activity. Thus, they introduce a simplification in the
software development process defined (see Figure 2).
• The compromise activity remains as is. Nevertheless, the marketplace is

reduced to creation and maintenance of the knowledge of the chosen COTS;
the definition of new or modified requirements to fit the capabilities of the
COTS used and alerting the development team to new versions.

• The evaluation and selection activity is erased since only a business component
is considered.

In the COTSBD process, one of the key lifecycle aspects is the early evaluation
and selection of the candidate COTS products. Its success depends, principally, on
the correct understanding of the capabilities and constraints shown by individual
product candidates. In order to achieve success, the evaluation and selection of
software product candidates must start at the same time as the client requirements
elicitation activity. To obtain a reasonable level of security from the product
evaluation and selection, rigorous methodologies are needed to guide this activity and
the client requirements elicitation activity (Ncube, 2000).

An erroneous requirements identification and acquisition can seriously affect
the resulting system. Furthermore, in COTSBD, the successful selection of candi-
date products also largely depends on requirements. These products are selected
according to their degree of compliance to customer requirements. Most current

Figure 2. The Reduced OO Methodology

Implementation
& Test

Implementation
& Test

Deployment
& Maintenance

Deployment
& Maintenance

Configuration ManagementConfiguration Management

Requirements

Architecture
& Design

Compromise

Requirements

Architecture
& Design

Compromise

Marketplace

206 Garcia-Consuegra

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

research focuses on integration of selected COTS products (Shaw & Garlan, 1996),
selection and integration processes and, in the last few years, also on how
requirements must be acquired to make the COTS evaluation and selection
processes easier.

In the requirements elicitation phase in the GIS domain, user requirements, GIS
peculiarities, capabilities offered by and the inherent constrains on the selected, or
selectable COTS must be taken into account. The latter is frequently forgotten,
involving high wrapper-code developments. The impact of the use of COTS on the
requirements specification has established the distinction between native and foreign
requirements (Chung et al., 2001). The former refer to the set of requirements
defined regardless of whether the development is based on COTS components or
not. COTS capabilities make up the foreign requirement. So, in a COTSBD, the
requirements for the system are composed of a mix of foreign and native require-
ments. Likewise, RE must consider the dependencies, overlaps and associations
between products in the market, user requirements and the system architecture,
because they influence each other (Thomas, 1999).

In that sense, there are some guidelines, such as those provided by the European
Commission (ESPRIT Programs) that can be consulted in Best-GIS The European
Commission. They should be used in the requirement specification phase of any
COTS-based development methodology in the GIS domain (as in this case). These
requirements are opened for possible extensions as experience dictates. The user
interface has great importance in the GIS domain. Requirements elicitation and
analysis ought to take them into account, considering proposals such as those in
Lozano, González & Ramos, 2001).

COSTBD is an iterative process with the compromise and evaluation/selection
activities making up the main loop (Figure 3). In order to reduce the development cost
and time, thereby increasing productivity, the number of iterations must be reduced

Figure 3. The Iterative Process of the Requirement Acquisition and the Product
Evaluation/Selection Activities

An OO Methodology Based on the Unified Process 207

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

as far as possible. At the same time, mechanisms to automate the compromise
activity must be defined or even implemented as tools to contribute to the previous
aims. Possible fields of research are:
• to automate COTS candidate impact on architecture and foreign requirements

specifications, model definition in a UML spatiotemporal extension and test
cases definition, paying particular attention to the patterns;

• to define user interfaces and automate their implementation;
• to define and use metrics in order to evaluate quality aspects;
• to make reuse aspects easier.

CONCLUSIONS
GIS applications are sufficiently large, complex and important to warrant SE

skills being set to work on their development. In this chapter, research in progress
to develop an OOMGIS for COTSBD in the GIS domain, has been discussed.
OOMGIS makes the maximum possible use of the best ideas of currently available
methodologies, especially those based on COTSBD, as a foundation. This chapter
also outlines some research fields that can contribute to reducing the development
cost and time in this domain. On the other hand, the extension of a commercial iCASE
like Rational Suite Enterprise and UML to support the methodology and the
spatiotemporal GIS peculiarities, respectively, are also depicted. The selection of
Rational Suite Enterprise is based on its support of Unified Process and their
capabilities for adaptation, as well as their strong component in SQA, especially in
the management of configuration, a critical part of the COTSBD.

REFERENCES
Albert, C. (2002, February). Meeting the challenges of commercial off-the-shelf

(COTS) products: The information technology solutions evolution process
(ITSEP). International Conference on COTS-Based Software Systems
ICCBSS2002, Orlando, FL, USA, (February, 2002).

Boehm, B., Port, D., Abi-Antoun, M., & Egyed, A. (1998). Guidelines for the life
cycle objectives (LCO) and the life cycle architecture (LCA) deliverables
for model-based architecting and software engineering (MBASE) (Tech.
rep. USC-CSE-98-519). Los Angeles, CA: USC-Center for Software Engi-
neering.

Böhleny, M., Jensen, C. S., & Skjellaug, B. (1998). Spatio-temporal database support
for legacy applications. Proceedings Of the ACM symposium on Applied
Computing, Atlanta, GA (pp. 226-234) New York.

Chung, L., Cooper K., & Huynh, D. T. (2001). COTS-aware requirements
engineering techniques. Proceedings of The 2001 Workshop on Embedded

208 Garcia-Consuegra

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Software Technology (WEST’01). Found at http://www.utdallas.edu/~kcooper/
research/WEST.pdf.

D’Souza, D. F., & Wills, A. (1999). Objects, components and frameworks with
UML. Addison-Wesley.

Erwing, M., Güting, R. H., Schneider, M., & Vazirgiannis, M. (1999). Spatio-
temporal data types: An approach to modelling and querying moving objects in
databases. GeoInformatica 3(3), 269-296.

ESRI (2003). Retrieved from http://www.esri.com.
The European Commission. (2000). BEST-GIS: best practice in software engineer-

ing and methodologies for developing GIS applications (Project no. 21580).
ESPRIT Programme. Retrieved January 2003 from http://www.gisig.it/best-
gis/guides/main.htm.

Faria, G., Medeiros, C. B., & Nascimento, N. A. (1998). An extensible framework
for spatio-temporal database applications (Tech. rep. TR-27, pp. 1-15). Time
Center. Found at www.cs.auc.dk/research/DP/tdb/TimeCenter/
TimeCenterPublications/TR-27.ps.gz.

Fox, G., Marcom, S., & Lantner, K. (1997). A software development process for
COTS-based information system infrastructure. Proceedings of the 5th

International Symposium on Assessment of Software Tools and Technolo-
gies (SAST’97), (pp. 133-143).

Hadzilacos, T., & Tryfona, N. (1998, September). Evaluation of database modelling
methods for Geographic Information Systems. Australian Journal of Infor-
mation Systems 6(1), 15-26.

Herzum, P., & Sims, O. (2000). Business component factory. New York: John
Wiley & Sons Inc.

INTERGRAPH, Retrieved from http://www.intergraph.com/gis.
Kontio, J. (1995). OTSO: A systematic process for reusable software component

selection (Tech. rep. CS-TR-3478). College Park, MD: University of Mary-
land.

Kösters, G., Pagel, B.-U., & Six, H.-W. (1997). GIS-application development with
GeooAA. International Journal Geographical Information Science 11(4),
307.

Kruchten, P. (2000). The rational unified process an introduction (2nd. Ed.).
Addison-Wesley.

Lozano, M., González P., & Ramos, I. (2001). User interface generation: current
trends. Informatik/informatique, No. 2. Swiss Informatics Society, Abril.

Morision, M., Seaman, C. B., Basili, C. R., Parra, A. T., Kraft, S. E., & Condon, S.
E. (in press). COTS-based software development: Processes and open issues.
Journal of Systems and Software.

Ncube, C. (2000). A requirements engineering method for COTS-Based systems
development. Centre for Human-Computer Interaction Design, Londres.

An OO Methodology Based on the Unified Process 209

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Parent, C., Spaccapietra, S., & Zimanyi, E. (1999) Spatio-temporal conceptual
models: data structures + space + time. Proceedings of the 7th ACM
Symposium on Advances in GIS, Kansas City, Kansas.

Price, R., Tryfona, N., & Jensen, C. S. (1999). A conceptual modelling language
for spatio-temporal applications (Tech. rep. CH-99-20).

Renolen, A. (1997). Conceptual modelling and spatio-temporal information systems:
How to model the real world. ScanGIS’97 (June 1-3, 1997).

Shaw, M., & Garlan, D. (1996). Software architecture—perspectives on an
emerging discipline. Prentice Hall Inc.

Temporal Object-Oriented Databases in Information Systems (TOOBIS). (1999,
June). EEC-funded project of the ESPRIT-IV framework. Retrieved 2002
from http://www.mm.di.uoa.gr/~toobis/.

TEMPOS. (1999). A temporal database model seamlessly extending ODMG.
Retrieved from http://citeseer.nj.nec.com/21283.html.

Thomas, B. (1999). Meeting the challenges of requirements engineering, spotlight.
SEI Interactive, 2(1).

Tran, V., & Liud, D. (1997) A procurement-centric model for engineering compo-
nent-based software systems. Proceedings of the 5th International Sympo-
sium on Assessment of Software Tools and Technologies (SAST’97) (pp.
70-80).

Voas, J. (1998, July/August). Maintaining component-based systems. IEEE Soft-
ware, 15(14), 22-27.

Worboy, M. S. (1994). A unified model for spatial and temporal information. The
Computer Journal, 37, 26-34.

Yazici, A., Zhu, O., & Sun, N. (2001, July). Semantic data modelling of spatio-
temporal database applications. International Journal of Intelligent Systems
16(7), 881-904.

210 Bram & Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XV

A Framework for
Intelligent Service

Discovery
Robert Bram

Monash University, Australia

Jana Dospisil
Monash University, Australia

ABSTRACT
The claim of improved efficiency and reliability of networking technology
provides for a framework of service discovery, where clients connect to
services over the network based on a comparison of the client’s requirements
with the advertised capabilities of those services. Many service directory
technologies exist to provide this middleware functionality; each with their own
default set of service attributes that may be used for comparison and each with
their own default search algorithms. Because the most expressive search ability
might not be as important as robustness for directory services, the search
algorithms provided are usually limited when compared to a service devoted
entirely to intelligent service discovery.

A Framework for Intelligent Service Discovery 211

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

This paper proposes a framework of intelligent service discovery running
alongside a service directory that allows the search service to have available
a range of search algorithms. The most appropriate algorithm may be chosen
for a search according to the data types found in the search criteria. A specific
implementation of this framework will be presented as a Jini service, using a
constraint satisfaction problem-solving architecture that allows different
algorithms to be used as library components.

INTRODUCTION
The availability, speed and reliability of networking technology validates a

service discovery framework, where clients connect to services over the network
based on the advertised capability descriptions (Pascoe, 2000) of those services.
Services in this framework are computer-based interfaces to devices, applications,
objects or resources that a client uses.

The key challenge for such systems is to enable clients to locate the service that
best suits their needs, where best will be defined by the client using infrastructure
provided by the framework’s implementation. The client’s requirement description
must be compared with the advertised capability descriptions of the services to find
the best match (Pascoe, 2000).

Comparison of a client’s requirement description with a service’s capability
description requires an infrastructure with a language for describing service
attributes. Descriptions can be formed using this language and used as search
criteria. Descriptions might include service attributes, such as type of service, or
quality of service in terms of cost, speed or accuracy of results.

Service discovery frameworks may be classified according to where the
comparison takes place. The locality could be: at the client site, at the server site or
at a third party search service called a lookup. Lookup is typically a directory-based
process of locating or looking up a specific service or activating an agent capable of
doing the job (McGrath, 2000). Each of these styles has a different profile in terms
of network traffic and a combination of all three is possible (Pascoe, 2000).

When using a lookup, the client must be able to provide the lookup process with
enough detail for the service to be located. This detail may be a specific address or
identification or it may be data to form some matching criteria with which the lookup
process may search and build a satisfier set of services that match the search criteria.

This paper begins by giving a useful definition of a directory service with an
attribute language and search language. Most directory services are either distrib-
uted file system or networked file sharing mechanisms. This paper then expands
upon that definition to form the concept of a service directory that allows sharing of
electronic services by electronic clients. Java’s Jini technology is explored as a
perfect example of a service directory that uses capability descriptions and
requirement descriptions with exact pattern matching as part of its search language.

212 Bram & Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Exact pattern matching is found to be insufficient for some advanced search types
that could be modeled as constraint satisfaction problems (CSP), and a definition of
a CSP is given as part of a linear system and then defined as an object model. A
process description is then given, showing at a high level of detail the general pattern
of usage this system of intelligent searching is expected to fall under. Finally a
conclusion and indication of future work are given.

DIRECTORY SERVICES
Directory services allow electronic resources to be shared, usually across

homogenous networks. Directories may be subdivided into smaller lists or categories
and may even be indexed by categories — subdirectories are the easiest way to
achieve categorization. An operating system uses a directory structure to organize
its resources into a single directory hierarchy. The hierarchy provides a reference
to enable users and applications to access resources in the file system
(Webopaedia.com, 2000). A directory is any searchable list of entries containing at
least two things:
• A reference to a resource of some type that a client searcher may use to access

that resource. The reference may be an identification, such as a name, or it may
be a path or address formatted to the appropriate protocol, perhaps a network
or file system protocol.

• A set of attributes that describe the resource in some way. If the entry contains
a reference to a service, then the set of attributes will form the service’s
capability description.

The list exhibits properties that define how it may be manipulated through the
infrastructure provided. These properties can include:
• whether elements of the list may be duplicated;
• whether elements of the list are naturally ordered. Possible ordering systems

are: alphabetic, chronological and hierarchical;
• whether elements of the list are categorized. Categorization systems could be

based upon: access rights, service type and any ordering system that allows
grouping of multiple references;

• whether the list is indexed. Indexing allows elements in the list to be accessed
arbitrarily, rather than having to traverse the list to find the desired element. A
list may have more than one index.

All directory services maintain some form of descriptive attribute language to
name services and/or define the attributes of services. The level of detail provided
for by this language is reflected often in the expressive power offered by the search
language allowed for by the directory. It is in the best interest of a service directory

A Framework for Intelligent Service Discovery 213

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to limit the expressive power of a search to provide better performance (Newmarch,
2001b).

Simple attribute languages provide only a small set of predefined attributes that
cannot be changed with values from a limited type system: character, numeric or
Boolean. Complex attribute languages allow new attributes to be created from a
variety of types, even object types, that may exhibit behavior as well as store data.
Simple search languages provide exact pattern matching or the selection of different
indexes in a GUI. Complex search languages will provide mechanisms such as
regular expression searches and comparative pattern matching.

Distributed file systems or peer-to-peer file sharing utilities (Newmarch, 2001b)
usually have simple attribute language, defining a static set of file attributes to be
searched with a substring search and allowing the results to be ordered by attribute
values. Another type of directory service is one with resources that are other
services.

SERVICE DIRECTORIES
Services find directories useful because it increases their exposure to potential

clients. A directory service may increase the expressive power granted to services
in the formulation of capability descriptions by the provision of a complex attribute
language. The more complex an attribute language is, then the more detailed, varied
and potentially useful information a service can provide about itself.

Clients find directories useful because they can search many references from
one list, choosing the best reference for their purpose, according to the attributes for
each reference recorded by the directory. A directory service may increase the
expressive power granted to clients in the formulation of requirement descriptions by
the provision of a complex search language. The search language allows clients to
specify rules or relationships between attributes that must be satisfied for a search
to succeed.

The service providers who wish to “sell” their services must register the
services with the directory. The client searches available directories to find a set of
suitable services by comparing their requirements with details about each service
provided by the directory. The references registered with the service provides a
pointer to the service or a proxy.

At a minimum, the client provides nothing more than a single-string service
name or description, an object reference or some form of unique service identifica-
tion (RMI). On the other end, a client can provide an open set of attribute values to
be mapped to whatever services meet the description (Jini). This could still involve
nothing more than a pattern match between service attributes in a capability
description and attribute values provided in a requirements description; or it might
involve the formulation of some mathematical model to be solved in order find a
satisfier set.

214 Bram & Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

JINI: A JAVA DIRECTORY SERVICE
In a peer-to-peer environment, directories are central repositories for informa-

tion. Directory information software can be scalable, granular and independent of
location and able to present and store metadata (Bowstreet, 2001).

Jini is a set of Java API’s defining a directory service listing references to
electronic services. There are four main components in a typical Jini scenario: three
actors connected via a network as illustrated in Figure 1.

In Jini terminology, a directory service is a lookup (or registry). References
stored in the directory are service items registered with the lookup that generally
include proxies for computer-based service providers. Clients are computer-based
entities who wish to access the services listed in the Jini lookup. They must search
the Jini lookup for the service or services they want

There is a general pattern for how clients and service providers use the Jini
service directory, which is shown below.

Services providers
1. Discover the Jini lookup directory. This makes use of the Jini discovery

protocols.
2. Register a service item with the directory. This makes use of the Jini join

protocols.

Clients
1. Discover the Jini lookup directory. This makes use of the Jini discovery

protocols.
2. Provide a service template to the directory, which represents a clients’ search

criteria. This makes use of the Jini join protocols.

Figure 1. Actors in a Jini Scenario

A Framework for Intelligent Service Discovery 215

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

3. Clients receive a satisfier set containing all service items that matched the
search criteria contained in the service template.

4. Assuming the satisfier set returned to the client is not empty, the client chooses
the most appropriate service item to make use of.

5. The client accesses the service item to perform whatever task they need done.

CAPABILITY DESCRIPTIONS AND
REQUIREMENT DESCRIPTIONS

When service providers register with the lookup service, their capability
descriptions are provided as ServiceItem objects sent to the lookup. When clients
look up a service, their requirement descriptions are provided as ServiceTemplate
objects sent to the lookup.

ServiceTemplates provide matching criteria for each field that appears in a
ServiceItem. ServiceID is guaranteed to be globally unique for each Jini registered
service. Clients may search for a specific service ID. The service object is an
instance of a Java type and clients may search for a service object whose type list
includes all elements of a particular array of Java types. Entry attributes describe the
service in some way. At their most basic, Entry attributes represent name-value
pairs; clients may search for services that are described by a specific set of attributes.

Table 1 shows the contents of a service provider’s capability description as a
ServiceItem against the content of a client’s requirements description as a
ServiceTemplate.

When the client submits a ServiceTemplate to the lookup service, a search is
performed on all three criteria, then an exact pattern match will be performed first
on the ServiceID, then on the object types and lastly on the Entry attributes.

The service item includes a service object. This object may be a proxy for the
service provider or it may be self-contained. The Jini specification does not define
any of this detail, including how the client and service provider must communicate
if the service object is a proxy.

Entry Attributes
Entry objects describe the service object. Clients search by attributes that a

service provider has registered with the lookup service along with the service object
itself.

Table 1. Capability and Requirement Descriptions

ServiceItem ServiceTemplate
ServiceID ServiceID
service object array of object types
array of Entry objects array of Entry objects

216 Bram & Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There are a number of ready-made Entry objects, all of which extend
AbstractEntry, which implements Entry. Entry objects cannot hold primitive types.

Direct Known Subclasses of Entry are:
• Address;
• Comment;
• Location;
• Name;
• ServiceInfo;
• ServiceType;
• Status.

Objects of these types will be used most frequently to describe Jini standard
service objects. However Entry objects can easily be extended to include GUI
components and, as this work shows, dynamic attributes.

Entry objects are specialized serial objects designed to be compared with each
other in a very simple way. They are stored and compared in serial form. An Entry
object cannot have any of the primitive types as fields; they must be contained in an
object wrapper class, if needed. This makes it easier to compare Entry objects. A
null field matches any value as a wildcard, while a non-null value must match exactly.
Additionally, Entry classes must have a no argument constructor and ensure that the
only fields that will be compared must be public, nonstatic, nontransient and nonfinal
(Newmarch, 2001a).

Exact Pattern Matching
An attribute in the ServiceTemplate is matched by an attribute in the ServiceItem,

if all fields of the attribute that are non-null match exactly their corresponding field
in the ServiceItem. A null field in the ServiceTemplate will match any value of the
corresponding attribute in the ServiceItem. This is the exact pattern match imple-
mented by Jini (Edwards, 2001). The attributes are kept serialized even for
comparison. The value of two fields are considered matched, if they have the same
sequence of bytes according to the Java serialization scheme (Edwards, 2001). This
form of pattern matching keeps the mechanism quite simple. It also means that code
need not be deserialized to allow for custom compare functions (Venners, 2000).

If a client wishes to conduct a more advanced search, they need to define a
ServiceTemplate that will match the broadest category of services they are
interested in and implement an advanced search on that set. This scenario does not
represent a good separation of concerns. Clients should be free to perform the tasks
they are assigned without having to manage specialized service discovery code that
could involve a great deal of calculation to find the correct service, such as a client
searching for the Solution Engine for a Constraint Satisfaction Problem (Tsang). This
specialized code belongs in a service of its own and for use by clients in need of the
same.

A Framework for Intelligent Service Discovery 217

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTELLIGENT SEARCH SERVICE
FRAMEWORK

An intelligent search service should be able to conduct a comparative search
upon the terms handed to it. For example, the service could be designed to accept
a predicate logic expression (Hughes, Barbeau & Bordeleau, 2001) or predicate
object that could be evaluated to form a satisfier set (Hughes et al., 2001) for the client
to choose from.

Constraint Satisfaction as a Search
When a lookup service is given a ServiceTemplate, it attempts service

discovery on behalf of the client by searching a domain for a solution. The domain
of the search is the list stored by the directory. The solution is a satisfier set — a set
of references that have satisfied the search criteria. This suggests that searching for
a service could be described as a Constraint Satisfaction Problem (CSP). A CSP is
any problem that can (Crescenzi, 2000):
a. be defined by

- a set of variables: V = {v1, v2, … vm},
- a set of domains that define what values each variable can take:
D = {d1, d2, … dm},
- a set of constraints defining all relationships between variables:
C = {c1, c2, … cn};

b. be solved by determining a set of variable-value pairs satisfying all constraints
(a solution).

The domains may not be continuous; they may not even be numeric. This
depends on the expressive power of the problem description language. The solution
is the set of values for each variable where all constraints are satisfied. A solution
set may consist of:
• just one solution, arbitrarily chosen;
• all possible solutions;
• an optimal solution given some objective function that maps to a variable which

can be minimized or maximized;
• an empty set, if no solution can be found.

Computing a solution to a CSP means finding a set of value assignments for each
variable such that all constraints are satisfied, and any objective function is achieved.
The basic process is iterative; instantiate variables and check if all constraints are
satisfied. If they are, you have a solution. If they are not, instantiate a different set
of values and try again until either a solution is found, or it can be concluded that there

218 Bram & Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is no solution. Decisions are made by the heuristics of an algorithm. These decisions
include: what variable is to be instantiated next or what constraint should be evaluated
next.

Intelligent Attributes Measure and Describe
How can Jini, as a service directory, provide for the requirements of a more

advanced search service? It can by providing a standard method of service discovery
that can be expanded to include attributes that measure a service and, thus, be used
in an intelligent search service that uses a wide variety of search techniques, such
as constraint satisfaction through ILOG — a high level mathematical solver.

Attributes of a service are by definition descriptive. The standard set of
attributes mentioned in the section on Entry attributes contains descriptive string
information about a service, but they are only used in exact pattern matching.
Comparative pattern matching could use descriptive measures of a service. Any
measurable quality can be compared with the inequality operators, < and > as well
as the equality operator, =, and can be used to build expressions, such as constraints
and an objective.

Potential candidates for intelligent attributes include:
• size of the service proxy to be downloaded;
• bandwidth of the service provider;
• expected minimum, maximum and median processing time needed to run

service (or maybe a formula for the calculation of expected processing time);
• queue length for service;
• cost of the service.

Finding a solution to a CSP means finding a set of value assignments for each
variable such that all constraints are satisfied, and the objective function is achieved.
From this description of a CSP provided above, any search implemented as a CSP
must model variables, domains, constraints, objectives and heuristics.

Search criteria in the Entry array are variables; object data members of the
ServiceTemplate. Java primitive types have a primary domain automatically speci-
fied by type, and Java object types may use code to specify a more complex domain
via the inclusion of a method that outputs the next value in the domain’s sequence.
A collection of Java primitive and object types can, thus, form a set of variables with
domains.

Constraint Satisfaction Problem — Object Model
In Java, new data types can be written to provide a framework that can be used

in many situations. A constraint type will represent a relation between variables and
have a method to return Boolean true, if the constraint is satisfied; false otherwise.
An objective type may also represent a relation between variables, defining the

A Framework for Intelligent Service Discovery 219

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

expression that must be minimized or maximized. A CSP type should also exist,
maintaining references to the constraints, objective and any other supporting classes,
such as heuristics and expression objects. An example of such a model is shown in
Figure 2. Importantly, shows that variables may participate in multiple relationships,
which is needed in CSPs.

A single CSP model should contain any number of constraint and heuristic
objects and only one objective. Variable objects are implicitly part of the model
through the objective and constraints, but the model must have a way to access the
set of all variables.

Heuristics should be able to control the order in which constraints are evaluated.
If each constraint is modeled as an individual object, the set of all constraints may be
stored in an array and ordered to suit. The processing of a set of heuristics in between
iterations of a constraint problem-solving exercise involves modifying the order in
which variables are assigned values and constraints are evaluated. The collections
of variables and constraints can be stored in their own arrays, made available to a
Java object encapsulating heuristic logic, which can order the variables and
constraints as it sees fit, and ready for the next iteration.

The following is a specification of the methods required for a variable object that
also acts as an Entry object. This specification deals with Java double values but
could be implemented as integer values, if needed. The public double data item allows
the variable to be matched by Jini’s exact pattern matching.

public interface Variable implements net.jini.core.Entry
{
 // Public object wrapped by implementing class
 public Double value;
 // Get name of this variable

Figure 2. Constraint Satisfaction Problem Object Model

220 Bram & Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 public String getName();
 // Change state to first value in domain. Return new value.
 public double first();
 // Change state to previous value in domain. Return new value.
 public double previous();
 // Get current value
 public double currentValue();
 // Change state to next value in domain. Return new value.
 public double next();
 // Change state to last value in domain. Return new value.
 public double last();
}

A similar format can be applied to another class for constant values.

public interface Constant implements net.jini.core.Entry
{
 // Public object wrapped by implementing class
 public Double value;
 // Get name of this variable
 public String getName();
 // Get value
 public double getValue();
}

The specification for constraints, objective and heuristics are quite open. They
do not need to inherit the Entry interface, because they will not be searched for; only
variables need be searched for.

interface Constraint
{
 public boolean satisfied();
}

interface Objective
{
 public double value();
}

interface Heuristic
{

A Framework for Intelligent Service Discovery 221

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 public void processHeuristics
 (Variable [] attributes, Constraint [] constraints);
}

Expressions
Constraints and objective functions represent relationships between variables.

There must be control over what sort of relations are accepted. Variables and
constants should be added in some ordered way to an expression object capable of
enforcing an accepted grammar. Many CSP-solving engines are capable of solving
linear problems. A linear expression class could be used as a base with extensions
available to cover more advanced relationships, if a solving engine can work with
them.

Characteristics of a Linear Integer Expression
A linear expression could be built, using the basic arithmetic operators, and allow

for bracketed expressions to be “nested expressions.” This grammar could allow
division by constant values, but not of variables, to keep the degree of the expression
as one. Such an expression has:
• Width: the number of operands in the first level of the expression, where

operands may be expressions or nonexpressions;
• Maximum width: the maximum number of operands in the first level of an

expression;
• Depth: the number of levels of nested expressions;
• Maximum depth: the maximum number of levels of nested expressions. This

limits the number of expressions that may be used as operands;
• Population: the number of nonexpression operands in the entire expression

and all child expressions;
• Maximum population: the maximum number of nonexpression operands in

the entire expression and all child expressions;
• Expression population: the number of expression operands in all levels of the

expression;
• Base operand: the base operand is the first operand in the expression. It is

special because no operator may be applied to it, although an implicit addition
operator may be assumed;

• Solution: any expression can be solved for its current set of values. An
expression is not an equality or inequality and, thus, does not consist of =, � or
�. The solution to an expression as defined by this grammar might also be
noninteger, since it is possible to divide by constants.

The example expression shown in Figure 3 will serve to illustrate these
characteristics.

222 Bram & Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Assume these values for demonstration purposes: a = 1, b = 2, c = 3, d = 4, e
= 5 and f = 6. Table 2 shows the characteristics of the expression shown in with these
values.

The expression object needs to make sure a number of rules are enforced, such
as nonduplication of an expression within itself, nondivision by a variable as well as
the limits of width, depth and population.

The revised object model would be as shown in Figure 4.
Each expression object may only be part of one constraint or objective, but

variables may be shared between any of them. An implementation detail is how to
model expressions and variables. A binary or n-ary tree may be the most suitable.

PROCESS DESCRIPTION
This section shall provide a process overview at a relatively high level of detail,

describing the chronological order of events between entities in the system modeled
by this work.

The discovery and registration stages are shown in Figure 5.

Figure 3. An Example Expression

Table 2. Expression Characteristics

Expression Base
Operand Width Depth Population Expression

Population Solution

expression 1 a 3 3 6 2 -5.25
expression 2 c 3 2 4 1 8.25
expression 3 e 2 1 2 0 11

A Framework for Intelligent Service Discovery 223

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

One
All service providers must discover the Jini Service Directory and then register

their capability descriptions with it.

Two
The intelligent search service (ISS) must discover the Jini Service Directory and

register its capability description with it.

Three
The client must discover the Jini Service Directory and perform a search to find

the ISS.

Four
The client will receive a satisfier set from the Jini lookup service. It will either

contain reference to an ISS or contain nothing. If it does contain reference to an ISS,
the client will move on the next step, shown in Figure 6.

Five
The client will initiate a second search, this time on the ISS. The client actually

calls a method on the ISS proxy it received from the Jini lookup. This proxy object
uses RMI to forward the request to a remote service object on the ISS machine that
also implements the proxy’s interface. The proxy will do nothing more than return
to the client whatever the remote object returns to it.

Figure 4. CSP Object Model

224 Bram & Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5. Discovery and Registration

Figure 6. Client — ISS Search Process

A Framework for Intelligent Service Discovery 225

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A decomposition of this process is shown in Figure 7.
The client actually sends the requirement description to the local proxy object

it received from the Jini lookup’s ServiceRegistrar object. The proxy forwards the
requirement description to the remote service object, which examines it. Upon
finding a scenario object, it forwards the requirement description to the module
capable of dealing with the given scenario.

Six
The ISS, having received the requirement description from a client, will examine

that description to decide which search module to activate. If a capable module is
found, it will be activated and passed the client’s requirement description.

Seven
The search module processes the requirement descriptions and will use a subset

of the client’s requirement description to form a new requirement description. The
new requirement description is sent to the Jini lookup as the broadest possible search
criteria, forming a superset of all services that have the correct attributes.

Eight
The ISS will receive a satisfier superset from the Jini lookup service. It will

either contain references to a number of service providers or contain nothing. If it
does contain references to services, the ISS will have a superset of capability
descriptions for all services that have the required attributes. The ISS will then move
on the next step, shown in Figure 8.

Figure 7. Decomposition of Client to ISS Requirement Description

226 Bram & Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Nine
The ISS now computes a CSP model. This model will be independent of any

particular solver but will consist of the elements detailed in the framework. This ISS
search module will now choose a solver-specific module, one specialized for a
particular solving engine. The general CSP model will be sent to it and shall convert
the generic CSP model, shown in Figure 8, into the same thing but specialized for the
solving engine.

A decomposition of this process is shown in Figure 9, where ILOG is assumed
to be the solving engine of choice.

The CSP created by the Search Module is not specific to any particular solver,
meaning that the solving service could be brokered to any solving engine capable of
doing the job. The price of this independence is a measure of double handling. The
generic model must be specialized to a solver at some point. This process shows that
an ILOG-specific search module is responsible for this job. It turns the model into an
IloCplex object, which is solved by the ILOG solver.

Ten
The specific solving engine will return a solution to the search module. The

search module must map this solution onto the superset of references obtained in step
eight.

Figure 8. Solve and Return Process

A Framework for Intelligent Service Discovery 227

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Eleven
If the solver return shows that no result has been found, a null satisfier set shall

be built. Otherwise a satisfier set shall be built consisting of those services the solver
found to match the client’s requirement description.

ServiceTemplate for Simple and Complex Searches
The search service will receive a ServiceTemplate and should be able to

discriminate between attributes to be used in the search for a superset of services
and those that should not. Two arrays of variables could be sent or some could be
marked in some other way.

A Generic Framework of Service Discovery
The application will provide a search service for other Jini services, but there

is no reason why it cannot be designed to facilitate a client connecting directly to the
search service, without the knowledge of Jini.

The most important aspect is to ensure that a communication protocol is in place,
using either XML or Java objects, to contain the service template and results.
Wrappers could be written for RMI or SOAP, with the wrapping class incorporating
the appropriate transmission protocol, such as sockets.

CONCLUSION AND FUTURE WORK
This paper represents the current state of research. A framework of intelligent

service discovery has been outlined using a generic constraint satisfaction problem-

Figure 9. Decomposition of ILOG Solving Process

228 Bram & Dospisil

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

solving architecture that allows different algorithms to be used as library compo-
nents. A prototype has been built to these specifications and is being tested.

The addition of ISS would undoubtedly increase the complexity of an already
complex notion. The benefits of such a search service are that clients in a large
system would have the power to select the service that is right for them based on
attributes that describe measurable aspects of the service, rather than just describe
the service (i.e., the basic Jini attributes act more as keywords for a service). This
power to discriminate is useful in any scenario, where there are a large number of
services with similar attributes. An example is a market place driven by competition
for client patronage or a pool of solvers that all solve CSPs but with different specialist
algorithms.

The client must be sure such a service is worth their while. A search service
would undoubtedly increase the time it takes to link the client to a service, so it must
be proportionately important to the client to find the right service.

In addition to increasing the client’s time to connect to a search service, there
is the possibility that bottlenecks will hamper the performance of any central
directory service. However, ISS splits the work of service discovery into two tiers:
simple discovery and complex discovery. The search service, being specialized, will
not receive lookup requests that Jini’s native lookup service can handle.

Another load balancing issue has to do with dynamic attributes, and the fact that
service discovery is not an atomic action. The time delay in using a search service
could mean that a critical variable, used to make a decision based on its current value,
could have quite a different value when the client finally connects to the service. This
warning applies to any dynamic attribute. One method of dealing with dynamic or
volatile attributes, whose values change often, is to include a field rating of the
volatility of an attribute. Highly volatile attributes might be considered to have a lower
priority than nonvolatile attributes. These functions can be relegated to the reasoning
implemented by a Heuristic object.

Backtracking and constraint propagation are the two main categories of
algorithms used to solve CSPs (Crescenzi, 2000). An important question that needs
to be answered by this investigation is: will the framework outlined in this paper be
capable of allowing a wide variety of established CSP algorithms to run?

Future work will involve further completion of the test bed and development of
an extended suite of standard classes to allow a variety of search algorithms to be
used “out of the box,” without the client having to get their hands dirty, except for
filling in a few values. The ISS will be evaluated according to how successfully it
discovers the best services for a client as defined by the collection of CSP objects.

REFERENCES
Bowstreet. (2001). Directory services markup language. Retrieved October 3,

2001, from http://www.dsml.org/about.html.

A Framework for Intelligent Service Discovery 229

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Crescenzi, P. (2000). On the hamming distance of constraint satisfaction
problems. Retrieved from the Università di Firenze Web site: http://
gdn.dsi.unifi.it/~rossig/Papers/TCS1/tcs.html.

Edwards, K. (2001). Core Jini (2nd ed.). Upper Saddle River, NJ: Prentice Hall
PTR.

Hughes, E., Barbeau, M., & Bordeleau, F. (2001, June). Service recommendation
using SLP (Service Location Protocol). Paper presented at the meeting of
the IEEE International Conference on Telecommunications (ICT), Bucharest,
Hungary.

McGrath, E. R. (2000, April 5). Discovery and its discontents: Discovery
protocols for ubiquitous computing. Retrieved October 1, 2001, from http:/
/www.ncsa.uiuc.edu/People/mcgrath/Discovery/dp.html.

Newmarch, J. (2001a, June 12). Jan Newmarch’s guide to JINI technologies, v
2.08. Retrieved May 20, 2002, from http://jan.netcomp.monash.edu.au/java/
jini/tutorial/Jini.xml.

Newmarch, J. (2001b, September). A Survey of some recent Internet services.
Retrieved April 7, 2002, from: http://jan.netcomp.monash.edu.au/services/
presentation.html.

Pascoe, R. (2000). Dynamic networking requires comprehensive service dis-
covery. Retrieved October 1, 2001, from: http://
www.serverworldmagazine.com/hpchronicle/2000/10/discovery.shtml.

Tsang, E. (1996). Mapping constraint satisfaction problems to algorithms and
Heuristics. Department of Computer Science, University of Essex.

Venners, B. (2000, February). Finding services with the Jini lookup service—
discover the power and limitations of the ServiceRegistrar interface.
Retrieved from the JavaWorld, a division of Web Publishing, Inc., Web site:
http://www.javaworld.com/javaworld/jw-02-2000/jw-02-jiniology.html.

Webopaedia.com. (2000, May 30). Definition of directory. [Webpage] Retrieved
April 7, 2002, from the Internet.com Web site: http://www.webopaedia.com/
TERM/d/directory.html.

230 Stojanovic & Dahanayake

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XVI

A Service-Based Approach
to Components for Effective

Business-IT Alignment
Zoran Stojanovic

Delft University of Technology, The Netherlands

Ajantha Dahanayake
Delft University of Technology, The Netherlands

ABSTRACT
Although Component-Based Development (CBD) platforms and technologies,
such as CORBA, COM+/.NET and Enterprise Java Beans (EJB), are now de
facto standards for implementation and deployment of complex enterprise
distributed systems, the full benefit of the component way of thinking has not
yet been gained. Current CBD approaches and methods treat components
mainly as binary-code implementation packages or as larger grained business
objects in system analysis and design. Little attention has been paid to the
potential of the component way of thinking in filling the gap between business
and information technology (IT) issues. This chapter proposes a service-based
approach to the component concept representing the point of convergence of
business and technology concerns. The approach defines components as the
main building blocks of business-driven service-based system architecture that
provides effective business-IT alignment.

A Service-Based Approach to Components 231

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTRODUCTION
The main challenges enterprises face today are how to manage complexity of

systems being developed, effectively utilize the power of the Internet and be able to
rapidly adapt to changes in both technology and business. The new paradigm of CBD
has been introduced as an excellent solution for building complex Internet-enabled
enterprise information systems (Szyperski, 1998; Brown & Wallnau, 1998). The
basic idea of CBD originates from the strategy successfully applied in other
engineering disciplines that a system developed from components is more flexible
and easier to develop. CBD provides higher productivity in system development
through reusability, more effective system maintenance, higher quality of solutions
and the possibility for parallel work. Moreover, it provides better system adaptability
through replaceability of parts, localization and better control of changes, system
scalability and the possibility of using legacy assets.

The CBD paradigm has often been presented as a new silver bullet for complex,
enterprise-scale system development in the Internet age (Udell, 1994). However
CBD inherits many concepts and ideas from the earlier encapsulation and
modularization — “divide-and-conquer” initiatives in information technology (IT).
The NATO Conference in 1968 recognized that producing software systems should
be treated as an engineering discipline providing system assembling from software
components (McIlroy, 1968). Parnas (1972) defines concepts and requirements for
decomposing system into modules. These principles of separation of concerns,
encapsulation and plug-and-play building blocks have been applied in different ways
through the concepts of functions, subroutines, modules, units, packages, sub-
systems, objects and now components.

The CBD paradigm was been first introduced at the level of implementation and
deployment. CBD middleware technologies, such as CORBA Components (Siegel,
2000), Enterprise Java Beans (Sun Microsystems, 2002), and COM+/.NET (Microsoft,
2002), are now used as standards for the development of complex enterprise-
distributed systems. While the technology solutions are necessary in building the
system, one cannot simply program and deploy components using a component
middleware, without any prior plan to follow from business requirements towards
implementation. For the effective use of the CBD paradigm and in order to gain real
benefits of it, the component way of thinking must be applied in earlier phases of the
development lifecycle, such as system analysis and design. CBD methods and
approaches proposed so far do not provide a complete and consistent support for
various component concepts. Components are often treated as implementation
concepts — packages of binary or source code that can be deployed over the
network nodes. During the system analysis and design, components, if used, are often
represented as larger grained business objects. This suggests using components
mainly at the system implementation and deployment as software code packages,
while still following the principles of object-oriented (OO) modeling, analysis and
design.

232 Stojanovic & Dahanayake

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

At the same time, the role and usefulness of the component concept as a bridge
between business and technology issues have not been truly recognized. Compo-
nents can be identified very early in the system lifecycle, namely derived from
business requirements, and then used as central artefacts of the whole development
process. In this way, the whole process would be structured and organized around
the same set of component concepts. That can provide a necessary alignment and
traceability from business services to implementation assets. The benefit from the
separation of concerns using components will be gained at all levels of system
development.

This chapter proposes a service-based approach to components that provides
a consistent and integrated support for the model-driven system development, using
components as the central concept. The approach provides that the same component
way of thinking and the same consistent set of technology-independent component
concepts can be effectively applied in different aspects and phases of enterprise
systems development, from autonomous business services to distributed software
components. In this way, the service-based component concept represents the point
of integration of business and technology concerns, the common ground between
them and the effective way for business-IT alignment. The service-based approach
proposed here can be equally applied in modeling and specifying the system
developed to use Web services over the Internet.

In the remainder of the chapter, the state-of-the-art of CBD is presented.
Various approaches to components and component-based design and development
proposed so far are outlined. In describing the most relevant CBD approaches, we
mainly focus on the way they define, identify and handle components. In the next
section, we propose a new view on the component concept, defining important
component properties and elements, as well as different component granularity
levels. In the sequel, we present the way of identifying components and briefly
illustrate it using the example of the Internet-based travel agency. In the following
section of the chapter, we propose the way of specifying single business components
as well as complete business-driven service-based component architecture of the
system. This architecture can serve as a point of negotiation between different actors
in the component-based development process.

THE STATE-OF-THE-ART OF COMPONENT-
BASED DEVELOPMENT

Component technologies are now widely used in the development of complex
Internet-enabled systems. First, VBX controls, DCOM/COM, CORBA and Java
Beans, and now COM+/.NET (Microsoft, 2002), CORBA Components (Siegel,
2000) and Enterprise Java Beans (EJB) (Sun Microsystems, 2002) represent the
standard component-based implementation solutions. Based on them, component-

A Service-Based Approach to Components 233

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

based frameworks and architectures have been developed to speed-up the applica-
tion development, such as IBM San Francisco framework based on EJB (Carey,
Carlson & Graser, 2000) and the TINA architecture for building telecommunication
systems based on CORBA (TINA, 2002).

The physical perspective on components as binary packages of software is still
predominant. The standard Unified Modeling Language (UML) treats components
as packages of binary code and uses them in describing system implementation
through component and deployment diagrams (Booch, Rumbaugh & Jacobson,
1999). Components in UML represent physical things that can be deployed over
network nodes. The Catalysis approach defines a component as a package of
software code as well as other software artefacts (D’Souza & Wills, 1999). In
Szyperski (1998), a software component is a unit of composition with contractually
specified interfaces and explicit context dependencies. A software component can
be deployed independently and is subject to composition by third parties. Gartner
Group (1997) defines a runtime software component as a dynamically bindable
package of one or more programs managed as a unit and accessed through
documented interfaces that can be discovered at runtime.

Definition of a business-oriented component concept can be found in Herzum
and Sims (2000), where a business component is the software implementation of an
autonomous business concept or business process, and in Accenture (1998), where
a business component is a means for modeling real-world concepts in the business
domain. When introducing components, questions about similarities and differences
between objects and components naturally arise. In Udell (1994), components
represent a new silver bullet for system development in the Internet age, while
objects have failed to provide higher level of reusability. In the UML, components
are nothing other than larger grained objects deployed on the network nodes. In
Szyperski (1998), a component comes to life through objects and, therefore, it would
normally contain one or more classes, as well as traditional procedures and even
global variables. In a debate over this topic (Henderson-Sellers, Szyperski, Taivalsaari
& Wills, 1999), granularity has been seen as the main issue in distinguishing
components and objects. By Catalysis, components are often larger grained than
traditional objects and can be implemented as multiple objects of different classes.
Components can use persistent storage, while objects typically work only within the
main memory.

Academia and industry have just started to recognize the importance of new
CBD methods, processes, techniques and guidelines. The methods and approaches
are often greatly influenced by the OO concepts, constructs and principles, dictated
by the use of the standard UML. The Rational Unified Process (RUP) (Jacobson,
Booch & Rumbaugh, 1999), Catalysis and the Select Perspective (Allen & Frost,
1998) can be considered as the first generation of the CBD methods (Stojanovic,
Dahanayake & Sol, 2001a). RUP does not specifically target component-based
development. Rather it offers a general framework for OO design and construction.
Components are implementation units that package other software artefacts and are

234 Stojanovic & Dahanayake

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

deployed over network nodes. The Select Perspective was originally an OO method
with the later addition of component - modeling principles. The Select defines a
component as a service or implementation packages. The method is not that
sophisticated; rather it combines best-of-breed techniques and tools. The Catalysis
approach originates from several OO methods and approaches, with the component
concepts added afterwards. Therefore, object and component concepts are inter-
leaved in Catalysis to some extent. The Catalysis provides remarkable CBD support
and a lot of valuable concepts and principles for understanding components but not
a systematic roadmap and ease of use.

The Business Component Factory (BCF) (Herzum & Sims, 2000), the UML
Components approach (Cheesman & Daniels, 2000) and the KobrA approach
(Atkinson et al., 2001) represent the second generation of the CBD methods. These
methods are more focused on components concepts than previous ones. They
provide a comprehensive support to CBD throughout the system lifecycle and
represent remarkable achievements in the field. On the other hand, there are certain
shortcomings. The BCF approach defines business components as representation of
autonomous business concepts and business processes in the domain. By separating
entities and behavior, this approach does not provide a uniform view on components.
On the other hand, the role and importance of service-based interfaces are
diminished. The UML components approach does not take into account potentially
different levels of component granularity and importance of using the separation of
concerns in defining them. The approach proposes mainly a data-driven way of
component identifying that does not fit well into the advanced service-driven
computing initiatives. The KobrA method describes components by using UML class
and object diagrams without extensions. A KobrA component has, at the same time,
properties of a class and a package. On the other hand, the role of component
interface is not emphasized enough. The composition of components is defined
mainly through containment trees, instead of collaboration between component
interfaces.

One of the most important activities in practicing component-oriented develop-
ment is how to start with components, i.e., how to identify components and place
them properly in the development lifecycle. The way of identifying components is
closely related to how components are defined and treated. In Booch et al. (1999),
components are identified during the implementation and deployment phases as a
way of packaging and deploying software code artefacts. In the Business Compo-
nent Factory, business components are identified as important business concepts that
are relatively autonomous in the problem space. In the UML Components approach,
components are identified through the core business types. These core types result
in business component interfaces that manage instances of those types. In addition
system interfaces interacting with those components are derived from use cases. In
RUP components are represented as subsystems in component-based design but
without further details about their identification. There is no strict prescription for
identifying components in Catalysis. The emphasis in Catalysis is on component

A Service-Based Approach to Components 235

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

collaboration in the form of the framework, and components are represented through
the type analysis. The KobrA approach does not offer strict rules about how to
identify components (Atkinson et al., 2001). Rather the approach treats important
business domain concepts as components and follows OO analysis and design on
them. In Jain, Chalimeda, Ivaturi and Reddy (2001), an algorithmic approach is
proposed for treating components as containers of classes. It uses a clustering
algorithm on the domain model that represents significant domain classes, together
with the sets of managerial and technical goals in component-based system design.

A NEW VIEW ON COMPONENTS
The use of components as implementation artefacts is already well established

in the enterprise system development practice. Software systems are built from
components in easier and more effective way. Components can be built in-house
from scratch or by wrapping existing legacy assets. Furthermore, components can
be bought as Commercial Off-The-Shelf (COTS) components from the component
marketplace, such as ComponentSource (ComponentSource, 2002), or invoked over
the Internet in the form of Web services (IBM, 2002).

At the same time little attention has been paid to applying the component
concepts and component way of thinking in earlier phases of the system lifecycle,
i.e., system analysis and design. In our opinion, the component concept becomes
more useful when used as an architectural-level artefact to model the logical
architecture of the technical or business/domain infrastructures. In this chapter, we
are interested in how components can help in more effective building of flexible,
business-driven system architecture. After the complete distributed system architec-
ture is precisely specified in the component-oriented manner, we can decide on
concrete realization of specified components in one of the ways mentioned above.
In this way the precise system specification is a durable result than can be
implemented afterwards in different ways, using different algorithms, platforms and
technologies. This strategy is now the mainstream of the Object Management
Group’s (OMG) Model-Driven Architecture (MDA) (OMG-MDA, 2002). MDA
proposes first designing a Platform Independent Model (PIM), using modeling
standards, such as the UML, Meta Object Facility (MOF) and Common Warehouse
Metamodel (CWM), then specifying the Platform Specific Model (PSM) of the
system using, for example, the UML Profiles for EJB or CORBA, and finally
implement the system in the target middleware technology.

Our main goal is to propose an approach to defining business-driven, truly
component-oriented PIM that will rapidly respond to changes in the business
environment and, at the same time, will be easily transferable to code and
middleware. The component concept is the focus and the main artefact of this PIM.
In this way, the component architecture specified by the PIM can provide a bridge
between business and implementation issues.

236 Stojanovic & Dahanayake

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Basic Component Concepts and Definitions
For years system developers and integrators have struggled to translate and

interpret business requirements into system implementation that fulfill business goals,
delineate business structure and provide efficient development of adaptable solu-
tions. In our opinion, component-based development can represent a link between
different perspectives on the system, making a common ground for business and
technical concerns. Regardless of the context of usage, the essence of the
component-based approach is the explicit separation between the outside and the
inside of the concepts being addressed. This means that only the question what is
considered (what useful services are provided by the particular building block to the
context of its existence), not the how (how these services are actually implemented).
Since components can be of different forms — granularity and nature — any attempt
to provide a single, general definition of a component covering all its possible aspects
may be insufficient. Examining essential properties of a component can be more
appropriate.

In order to use the consistent component way of thinking at different levels of
abstraction, from business to system distribution, we propose a general, implemen-
tation-independent concept of the component. In our opinion, a component defined
mainly as an autonomous provider of necessary services to its environment
represents the point of integration of business and system concerns (Stojanovic &
Dahanayake, 2002). The concept of services is equally useful and precise in both
business and technical terms. Instead of providing a “one-size-fits-all” definition of
a component, we will define a set of essential component concepts and properties
uniformly applicable for all component types and variants:
• A component represents a self-contained concept in the context of its

existence. A component is a part of the context but as independent as possible
from the rest. It must be possible to precisely define what a component can
offer (promise to do) to its context, under what constraints and rules and what
kind of support a component can expect from the context in order to behave
properly.

• A component represents an autonomous concept but does not exist in isolation.
It always participates in a composition with other components to form a higher-
level component. At the same time every component can be represented as a
composition of lower level components. This recursive composition is an
important property of the component concept.

• A component is an encapsulated unit with a completely hidden interior behind
the interface. The interface provides an explicit separation between the outside
and the inside of the component, answering the question what but not how. The
component interface, precisely defined in a contract-based manner, allows for
the use of the component services without knowing and taking care how they
are actually realized.

A Service-Based Approach to Components 237

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In order to use the component, it is necessary to know its interface. All the
component shows to its context is its interface. The interface is usually represented
as a set of operations that the component provides and requires (Siegel, 2000). Here
we propose a wider definition of the interface representing all the necessary
information about the component that its context should know about and rely on in
order to collaborate with the component properly. We divide the component interface
into the following parts (Figure 1):

Component identifier: A component is identified in the context by its unique
name (or identification) in the naming space and its purpose. The purpose of a
component is the intended effect of the component in the context or an aim of its
existence. The purpose of a component determines component behavior in order to
reach that goal.

Component behavior: A component is a behavioral unit. It is mainly a
provider of services. It plays certain role(s) in the given context. According to its
roles, a component exposes certain behavior through providing and requiring services
to/from its environment according to certain constraints and conditions. A compo-
nent often needs some services, called required services, from other components in
order to behave properly according to its contract. The behavior of component
services is specified using preconditions, postconditions and guarantees.

Component information: A component must handle, use, create or simply be
aware of certain information in order to provide its services properly. The interface
must define what types of information are of interest to the component, as well as
constraints and rules on them. This does not necessarily mean that the component
owns or contains that information; it only defines what information the component
needs for exposing proper behavior. In its simplest form, that information can be
considered as input/output parameters of component services. The behavior of
defined information is specified using invariants — conditions that must always be
true.

Figure 1. Component and its Interface

238 Stojanovic & Dahanayake

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Context-aware parameters: A component is often dependent on the context
of its existence. Beside the services a component needs from other components, in
order to provide flexible services and adapt to certain changes in the context, the
component interface can define some context-aware parameters, be able to reason
about them and adapt its services to varying requirements. These parameters can be,
for example: different required Quality-of-Service (QoS), necessity for synchroni-
zation with other services in the context, different profiles of component consumers,
as well as different component locations in time and space. By defining these
parameters, the component is able to “survive” ever-changing requirements that
come from the context and provide appropriate services in a dynamic way.

Context-aware parameters can influence preconditions, postconditions and
invariants on services and information types, respectively, by relaxing or modifying
their criteria. The reason for introducing context-aware parameters into the speci-
fication of the component interface is that interfaces capable of supporting many
different levels of services are more flexible than interfaces that only support a single
strict service level. Components capable of providing services at many different
levels can be reused in many different contexts. Systems built using such interfaces
and components are inherently more adaptable.

Defined elements of the component interface are mutually related in the
following manner. The name and the purpose of the component denotes its roles and
behavior, i.e., what services the component should provide to fulfill its mission in the
context of existence. Services, as a part of component behavior, use component
information as parameters. Invariants, static and dynamic conditions defined by
information, based on the business rules, put particular constraints on the component

Figure 2. Metamodel of the Component Concepts

A Service-Based Approach to Components 239

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

behavior. Preconditions and postconditions defined by services cross-reference
information types. Context-aware parameters adapt both component information
and component behavior according to the changing requirements of the context.

All defined segments of the component interface must be fully and precisely
defined using concepts of the contract-based theory (Meyer, 1997). Such contrac-
tually defined interface actually forms a contract between a component (provider of
services) and components (consumers of those services). Precise and formal
specification of the component and its interface is used to properly assemble and
integrate the component into an overall solution for a given problem, to substitute the
component with a compatible component, if necessary, to browse the component
catalog in order to find a component that matches the needed specification or to reuse
the component in a different context. A fully specified component at the level of
specification architecture is normally implemented by one or many software
components at the implementation level (e.g., CORBA, COM+ components or EJB).
A metamodel of the main component concepts is presented in Figure 2.

Component Granularity
In the enterprise system development, depending on the level of abstraction

(from business to system distribution), several levels of component granularity can
be defined (Figure 3). All of them follow the general set of component concepts and
properties defined above.

At the highest level of abstraction, the whole enterprise can be considered as
a collaboration of components. Components of the enterprise are business actors
(people, systems, departments, companies, etc.) in the enterprise that have goals and
responsibilities, fulfill roles, provide services, handle necessary information, and work
in collaboration to achieve the common business goals. All of these actors actually
have a component-like structure. Their interior is hidden and is not important as long
as they provide contractually specified services to others, according to their roles in
the enterprise. One of the components of the enterprise is the IT system being
developed, which normally represents a composition of lower level components that
we call business components.

Business Components: Business components are defined by considering
business processes and tasks for which automated system support is required. They
provide business and/or business-oriented technical services for the business
processes in which the system participates, i.e., they add perceived and measurable
value to the business actors interacting with the system. At this level, it is not

Figure 3. Different Levels of Component Granularity

240 Stojanovic & Dahanayake

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

important how these services of the system are implemented as long as they, in
collaboration, provide expected behavior of the system in the enterprise. A business
component represents a composition of system components.

System Components: Opposite of business components, system components
provide lower grained services, which have more technical than business meaning
and therefore do not add meaningful business value to the actors around the system.
Several system components in collaboration actually provide services defined by
business components. A system component can be represented by one or by the
composition of many distributed components.

Distributed Components: Distributed components are actually distribution-
aware system components. These components in collaboration provide necessary
business and technical services, but, at the same time, depending on their roles in
collaboration, they can be placed on particular tiers of the multitier system architec-
ture. In this way, some distributed components support users in working with the
system; some components are responsible for managing permanent data storage,
while others represent the realization of the business logic.

The concept of components of the enterprise can be used in enterprise modeling
to provide better adaptability and management of the complexity at the business
process level, but it is out of scope of this chapter. The concepts of business
components, system components and distributed components represent fundamental
specification elements of the system at different levels of abstraction and will be
further elaborated in the sequel of the chapter. Depending on the scale of the problem
being solved, inside each of these basic levels of component granularity particular
sublevels can be defined, for example, higher grained and lower grained business
components or higher and lower grained system components. Defined specification
components as building blocks of the system architecture are normally implemented
using one or many software components (COM+/.NET components, CORBA
components or EJBs). A software component is a unit of software that is
independently developed, deployed and maintained.

Component Modeling and Specification Notation
Regarding the notation for modeling components, the natural approach is the use

of the standard UML as a standard OO-modeling notation. The UML provides
component notation only at the physical level through implementation and deployment
diagrams and does not provide a support for various component concepts at the
logical level. Therefore, the component at more conceptual level can be represented
as a UML package, the <<subsystem>> stereotype of the package, or a particular
stereotypes of a class, for example, <<business component>>. For representing the
interface, the standard lollipop notation can be used as well as the extended version
through the <<interface>> stereotype of a class. Information used and handled by
the component can be represented using particular stereotypes of a class, such as
<<business concept>> or <<information type>>. Collaboration among components

A Service-Based Approach to Components 241

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

can be represented using sequence or collaboration diagrams. We hope that the next
major version of the UML 2.0 will provide a more comprehensive support to various
component concepts.

For more formal, contract-based specification of components of different
granularity, collaboration and complete system architecture, a dedicated Component
Specification Language (CSL) can be defined. In order represent sufficient all
component concepts presented above, the CSL should represent a superset of the
following:
• Interface Definition Language (IDL) (Siegel, 2000) for specifying services and

functions;
• Object Constraint Language (OCL) (Warmer & Kleppe, 1999) for specifying

constraints on services and information;
• Object Definition Language (ODL) (Cattell et al., 2000) for specifying

information types or XML Schema Definition (W3C, 2002);
• A specification constructs for defining context-aware component parameters

and rules for adapting component behavior based on them.

IDENTIFYING AND SPECIFYING
COMPONENTS

One of the crucial decisions in practicing component-based development is how
to start the process of using components, i.e., how to identify components and define
them through different granularity levels. The way and time of identifying compo-
nents depend a lot on the way of defining and treating components. In order to provide
smooth transition of business requirements into the system solution, first-cut business
components should be defined as early as possible in the development lifecycle. This
strategy ensures that the whole development process is structured in a component-
oriented manner and organized around the same set of component concepts.

Use Case Driven Component Identifying
Components by our definition are primarily behavioral, service-based building

blocks, providing useful services to its environment. Considering the system in the
given business context, the main task is to define and encapsulate the behavior of the
system that supports business processes (or their parts) in which the system
participates. Therefore, the right place for starting with components is, in our opinion,
use case analysis. While moving from the use case model to the class/object system
model is not a straightforward and easy process (Dobing & Parsons, 2000;
Cockburn, 2001; Jacobson, Christerson, Jonsson & Overgaard, 1992), the use case
model represents the right starting point for identifying components. Use case
analysis should help in defining the place of the system inside the business domain,
actors using the system as well as business and technical services realized by the

242 Stojanovic & Dahanayake

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

system. The participation of the system in existing business processes is defined
through one or more use cases that the system provides.

Our basic idea is to identify and define components as building blocks of the
system responsible for the realization of particular use cases. In this way our
component concept corresponds to the concept of collaboration as defined by the
UML (Booch et al., 1999). The further consideration of semantic relationships
between the component concept defined here and the UML collaboration will be
presented in another paper. Following the given assumption, components should
provide services to fulfill business and/or technical goals defined by use cases. The
following important characteristics of use cases justify our choice of using use cases
for identifying components. Use cases capture the intended behavior of the system
without having to specify how that behavior is implemented (Jacobson et al., 1992).
Use cases are technology independent; they are not tied to any technology and any
methodology including object-orientation.

For the purpose of identifying components we use a goal-oriented approach to
use case analysis proposed by Cockburn (2001). In this approach, a use case is
described in terms of a goal-oriented sequence of business or work steps. Both the
goals and the interactions in a use case scenario can be unfolded into finer and finer
grained goals and interactions. Cockburn (2001) defines three levels of use cases as
three named goal levels:
• User goal is the goal the primary actor has in trying to get work done or the one

the user has in using the system, e.g., Place Order, Create Invoice, Pay Bill, etc.
• Summary-level goals involve multiple user goals. They represent higher level

goals that show the context in which the user goals operate, e.g., Order,
Advertise, Rent, etc.

• Subfunction-level goals are those that carry out user goals. They represent
lower level goals that participate in fulfilling user goals, e.g., Find a Product,
Compose a Query, Save a Change, and Browse a Catalog, etc.

Furthermore, we use white-box use case description that, besides the activities
directly visible to the external actor, includes some details of the behavior of the
system in responding to the actor’s activities and requests. For example, the white-
box description of the “customer withdraw money” use case includes the following:
the account is accessed to determine the balance, the money is debited from the
account, the report about the transaction details is issued, and so on. We also adopt
some principles of the robustness analysis, as defined by Jacobson et al. (1992).
Robustness analysis is used to identify a first-guess set of objects and classify them
into boundary objects (which actors use in communicating with the system), entity
objects (usually objects from the domain model) and control objects (which embody
much of the application logic).

Based on the goal-oriented use case analysis, the white-box representation of
use cases and the robustness analysis, we propose an algorithm for identifying

A Service-Based Approach to Components 243

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

components at different levels of granularity. The following algorithm steps are
defined:
• Based on defined primary-goals use cases, high-level business components are

identified as parts of the system that support the realization of these primary
goals.

• Business components, as the main building blocks of the business-driven
component architecture, are identified as service providers responsible for the
realization of user-goals use cases.

• In defining a business component through a given use case we can define
several types of component services responsible for realizing different aspects
of the use case:
- services that support the user in interacting with the system while performing
the use case;
- services that perform different computing as a part of the business logic
related to the use case;
- services that manage the information handled in different ways during
performance of the use case.
These services are actually responsible for realizing the steps of the user-goal
use case and can be mapped to system components.

• Realization of the steps of “user goal” use cases is under the responsibility of
system components. Some system components support interactions of the user
with the system, some of them perform particular processing, while some of
them provide managing of data and data transactions.

• After taking distribution settings into account, we can place particular system
components in different tiers of a distributed multitier architecture and define
distributed components accordingly. In this way, we have components attached
to the user-tier, components providing business logic, and components respon-
sible for managing data and permanent storage.

• If one use case extends the other use case, the component responsible for that
extension can be considered a subcomponent of the component realizing the
main use case. The “extension” component is obviously lower grained than the
main one, and it belongs completely to the main component.

• If one use case includes the other use case, this can be considered as
collaboration between components, where the first component uses services of
the other one. Usually, the used component is lower grained and exists
independently, since it can be used by many higher grained components of the
system. That component can be considered as a “subroutine” of some larger
grained components that need its services.

• If one use case is a generalization/specialization of the other use case, this
denotes that the first use case represents a generalization/specialization of the
later one.

244 Stojanovic & Dahanayake

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

This approach for identifying components is actually top down, starting from
business requirements and use cases. Instead of treating components as static data
containers, i.e., business entity objects that offer CRUD operations, we define
components basically as service providers. The approach preserves the unity of data
and behavior but in a slightly different way and at the higher level of abstraction. In
identifying classes/objects in object orientation, first an important domain entity is
identified and represented by a class (object) through the list of attributes, and then
operations for managing these attributes are defined as methods of the class. By our
component approach, a component is identified as a provider of services that support
particular business needs. Then, the information needed by these services in order
to perform their tasks properly is specified.

At the conceptual level, it is only important what information types a component
should be aware of, assuming that instances of these types will be available to the
component during the run time. The decision whether the component should own the
instances of particular information types and in what way the permanent storage
should be organized, is related to the detailed system design. Generally, if the
component is supposed to create, update or delete information type instances, it
should own that information type, or better said it is responsible for managing all
aspects of the information type. If the component only reads the information type
instances, then it should only “know” how to find and use that information, when
necessary. An additional solution is the introduction of the Data Manager component
that is responsible for delivering information type instances to components when they
need it. These are already an implementation decision and out of scope of the
chapter.

This approach to components actually closes the known semantic gap between
use cases as requirement analysis tool on one side, and objects and classes in OO
system analysis, design and implementation, on the other side (Dobing & Parsons,
2000; Meyer, 1997). Components are now directly identified by use-case analysis;
and, after components and their collaboration at all granularity levels are specified,
objects and classes can be used for their interior realization. The approach defines
the component concept at the higher level of abstraction than the concept of object
in object orientation and places components between use cases and classes/objects.

Travel Agency Example
The approach for identifying and defining components of different granularity

will be illustrated in this section by the example of the Internet-based travel agency.
The agency offers travel arrangements through its Web site. The customer can
create his profile and further manage it using the facilities of the Web site. The
customer can browse the catalog of trip offerings, examine detailed information
about them, check their availability and prices and choose what he wants. The
customer then can make a reservation for the chosen trip. He can afterwards change
the reservation or cancel it, if necessary. The customer can realize the reservation

A Service-Based Approach to Components 245

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

by paying it with the credit card via the Web site, or, on arrival, in cash. Based on the
given problem description and the typical scenario of system usage, the use-case
diagram presented in Figure 4 can be defined.

The conceptual information model of the system is shown in Figure 5. This
model contains the main information types that represent the concepts of the business
domain that should be handled by the system. Each information type has the list of
attributes and constraints and invariants defined on them.

Following the algorithm for identifying components based on the use-case
analysis presented above, we can define the first-cut business components of the
system. These components are responsible for supporting the realization of the main
use cases of the system. They are:
• Profile Manager: to control log in and password information, enable creating

and modifying user profiles, and ensure security;
• Catalog Browser: to provide browsing and querying of trip catalog informa-

tion based on different criteria;
• Reservation Manager: to manage activities relating to trip reservations,

from making a reservation to confirming a reservation;
• Payment Manager: to support the customer payment.

Figure 4. The Use Case Diagram of the System

Manage a Profile

Browse a Catalogue

Pay a Bill

Customer

Make a Reservation

Change a Reservation

Realize a Reservation

Reserve a Trip

Cancel a Reservation

Browse by Destination

Browse by Date

Pay on Arrival

Credi t Card not validCredi t Card Payment

<<extend>>

246 Stojanovic & Dahanayake

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Some of these components can be further specialized into more concrete
components. For example, Catalog Browser can be specialized into the Browser by
Destination component and the Browser by Date component, based on the given
selection criteria. Similarly, the Payment Manager component can be further
specialized into the Payment by Credit Card component and the Payment on Arrival
component depending on the type of payment. On the other hand, the component
Reservation Manager represents an aggregation of lower level components respon-
sible for different activities related to the process of the reservation.

Business services defined for each business component now cross-reference
the given information model to decide what information types are needed by a
particular component to provide its services, and how on these services are defined
using information types. By following given business rules, services that each
component should offer are precisely specified using preconditions and postconditions
and defined constraints on information types. These services correspond to steps in
use cases that were previously used for identifying higher level business components.
Each of the steps by Cockburn has its own lower level goal, and the goals of system
components are to provide realization of these lower level use-case goals. The
provisional specification of two components of the system, Reservation Manager
and Profile Manager, together with information types they should handle, is shown
in Figure 6.

Services of business components are actually realized by particular system
components (or, in the case, of a large-scale application with several component
recursive levels, by lower level business components). Again, the main characteristic

Figure 5. Conceptual Information Model

Traveling Agency
Name : string
Adress : string

<<business concept>>

Customer
Name : string
Address : string

<<bus iness concept>>

Trip
Destination : string
Price : double

<<business concept>>

1..*

Reservation
Owner : Customer
Property : Trip

<<business concept>>

*1

1

*

Account
Number : integer
Status : double

<<bus iness concept>>
0..1

Bill
Amount : double
Date : string

<<business concept>>

1

0..1

*1

A Service-Based Approach to Components 247

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of a business component that distinguishes it from a system component is that a
business component provides some meaningful services, i.e., it adds some value to
the user of the system. In the case of the Reservation Manager component, we can
define the following lower level business components: Reservation Maker, Reserva-
tion Canceller, Reservation Modifier and Reservation Realization Manager. Further-
more, the Reservation Maker component can be represented as collaboration of the
following system components: Reservation Composer, Reservation Processor and
Result Presenter. Similarly, in the case of the component Profile Manager, we can
define the following system components that belong to it: Login & Password
Manager, Profile Handler and Menu Manager. System components use or are simply
aware of the same types of information (or their subset) as business components they
belong to.

When system distribution and multitier system architecture are taken into
account, defined system components can be transferred to corresponding distributed
components. Some system components are related to the user interface (UI) tier,
some to the business logic tier and some to the data storage tier. For example,
Reservation Composer and Result Presenter are attached to the UI tier; Reservation
Processor is attached to the business logic tier, and Reservation Storage Handler is
placed in the data storage tier.

Figure 6. Specification of the Reservation Manager and Profile Manager
Components

Customer
Name : string
Address : string

<<business concept>>
Trip

Destination : string
Price : double

<<business concept>>

Reservation
Owner : Customer
Property : Trip

<<business concept>>

*

1 1

*

Account
Number : integer
Status : double

<<business concept>>

Customer
Name : string
Address : string

<<business concept>>

0..1

Reservation Manager

MakeReservation()
ModifyReservation()
CancelReservation()
RealizeReservation()

<<business component>>

*

IReserveMgr

Profile Manager

ManageLogin()
HandleProfile()
ShowMenu()

<<business component>>

*

IProfileMgr

248 Stojanovic & Dahanayake

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Initial component-oriented architecture of the Internet travel agency system
representing the main business components of the system and dependencies
between them is shown in Figure 7. Further steps in the approach include precise
specification of all business, system and distributed components using the approach
that will be described in the sequel of the chapter. The complete system architecture
specification can then be realized using particular component implementation.

BUSINESS-DRIVEN SERVICE-BASED
COMPONENT ARCHITECTURE

In this section we will focus on the way to provide complete component-oriented
specification for the system architecture, based on the given business requirements.
Enterprise distributed systems being developed are potentially very complex and
demanding. That raises the need for using some form of separation of concerns in
specifying system architecture as an effective general strategy for managing the
problem of complexity.

Separation of Concerns
In order to manage complexity and ensure completeness in the specification of

components and component-oriented system architecture, we use the ISO standard
Reference Model of Open Distributed Processing (RM-ODP) as an underlying idea
(ODP, 1996). RM-ODP defines a framework for specifying architectures for
distribution, interoperability and portability of applications based on OO technology.

Figure 7. Initial Component-Oriented System Architecture

Reservation Manager

MakeReservation()
ModifyReservation()
CancelReservation()
RealizeReservation()

<<business component>>

IReserveMgr

Profile Manager

ManageLogin()
HandleProfile()
ShowMenu()

<<business component>>

IProfileMgr

CatalogueBrowser

SelectCriteria()
ShowResult()
CheckAvailability()

<<business component>>

IBrowser

PaymentManager

CheckState()
ChargeCard()
IssueBill()

<<business component>>

IPayMgr

A Service-Based Approach to Components 249

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

It is widely recognized as offering the most complete and internally consistent
specification framework. The RM-ODP specification of a system consists of five
different specifications, corresponding to five separate, but related and consistent
viewpoints: enterprise, information, computational, engineering and technology.

We use the concepts and principles of the RM-ODP specification framework
at two different levels:
1. for complete specification of a single business component (possible, but less

important for a system component);
2. for complete specification of the whole component architecture.

The single business component is specified through the five viewpoints in the
following way (Figure 8).
• The enterprise viewpoint specification of the business component defines

purpose, scope and policies of the component in the context of its existence.
The exact place of the component in the context is defined as the component’s
goal, the way it communicates with other components towards a common goal,
as well as the set of rules, constraints and policies applicable to the component.

• The information viewpoint specification of the business component defines
types, constraints and semantics of information handled by the component, as
well as the possible ways of information processing. The information specifi-
cation of the business component is a model and dynamics of the information
that the business component holds, uses or remembers.

Figure 8. Specification of the Business Component Using the RM-ODP
Viewpoints

250 Stojanovic & Dahanayake

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The computational viewpoint specification of the business component specifies
the services of the component and how they collaborate to produce a cohesive
set of functionality provided by that component. Based on this, subcomponents
of the business component and their collaboration are specified as well as what
system services are available through the interface of the business component
and what services are used for internal collaboration.

• The engineering viewpoint specification of the business component specifies in
details how services of the business component (or better said its subcompo-
nents) are placed on the network tiers, when distribution aspects are taken into
account.

• The technology viewpoint specification of the business components defines
some technology constraints and requirements, regarding the future implemen-
tation of the business component.

At the next level, we use the RM-ODP as an underlying framework for the
complete specification of component-oriented system architecture. Based on ODP
viewpoints, we propose the following three architectural models:
• Business Architecture Model (BAM);
• System Architecture Model (SAM);
• Distribution Architecture Model (DAM).

These different, but consistent and correlated architectural models, provide us
a way of separating of concerns through different architectural views (Stojanovic,
Dahanayake & Sol, 2000; Stojanovic, Dahanayake & Sol, 2001b). We use the RM-
ODP viewpoints as a basis for defining our architectural models. The relation
between our architectural models and the RM-ODP viewpoints as well as the main

Figure 9. Proposed Architecture Models and RM-ODP Viewpoints

A Service-Based Approach to Components 251

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

relations between the models are shown in Figure 9. Our main idea is to incorporate
the component concept into each of the RM-ODP viewpoints (Stojanovic et al.,
2000). In this way we can define component-oriented viewpoints on the system,
completely focused on the component concept and organized around it, as powerful
means for specifying component architecture. The same consistent set of component
concepts used by different viewpoints represents the point of consistency and
integration between them (Stojanovic et al., 2001b).

Proposed models are defined as following:
BAM specifies the behavior of the system in the context of the business for

which it is implemented. It represents business context and processes in which the
system should participate, services that must be offered by the system to fulfill
business purposes, business domain concepts and information that must be handled
by the system, and business rules that must be satisfied and supported by the system.
Defined services are the basis for identification of higher level business components
as we have seen in the previous section. Each business component, as well as their
collaboration, must be specified in the business architecture model, through the
common set of component properties. Business domain conceptual information
should be defined and cross-referenced by the specification of business services
offered by components. This shows how conceptual information types are used and
handled by particular business components in providing services. Each business
component is typically a collaboration of several system components. This means
that identified business components are used as an entry for defining business-driven
system architecture and correspondent system components.

SAM defines the structure of the system in terms of configurations of system
services and the interactions among them to provide necessary business services
related to the business requirements on the system. This model defines information
that should be handled by the system including rules for information dynamics, and
information processing that should be performed by the system. SAM takes as an
entry the higher level components identified in the previous model. This model further
specifies system components that in collaboration realize required business services.
Components of different granularity are defined and fully specified. This model also
specifies information managed by the system, i.e., by each of its components.
Collaboration of components inside the system architecture is specified as a potential
for future distribution of components. System components provide lower grained
services that in collaboration actually realize business services. Each system service
component actually represents one, or a collaboration of several, distributed compo-
nents.

DAM specifies a distributed infrastructure of the system in terms of the
distribution of system services, their allocation and communication over the tiers in
the n-tier architecture. This model defines in what way information is distributed over
the network nodes, as a basis for future data storage and user-interface design. It
describes the distribution of the enterprise, for example, so-called virtual enterprises.

252 Stojanovic & Dahanayake

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DAM uses collaboration of components inside the specified architecture as a starting
point, and uses particular distributed settings to precisely define complete compo-
nent-based multitier system architecture. Distributed components are actually
system components in the distribution context. Typically, business and system
components can have user interface, business logic and permanent storage facets
(one, two or all three of them), so that they can be represented as a collaboration of
their subcomponents (i.e., distributed components) attached to different architecture
tiers.

All three models are consistent and mutually integrated, providing a complete
business-driven system architecture specification. The specification of the models
should not be performed in a simple sequential order, rather in incremental and
iterative way. This approach will ensure completeness and consistency of the
models. The traceability between the architectural models and the three types of
components are shown in Figure 10. The specification process takes as an entry the
business (process) modeling (the top of Figure 10) and ends in the specification of
the complete component-oriented system architecture (bottom-right corner of
Figure 10). This specification actually represents a component-oriented PIM that
can be mapped to a PSM and realized using particular component implementation
technology.

Negotiation Architecture
Defined component architecture actually represents a point of negotiation

between different actors in component-based system development (Figure 11). It
provides a clear connection to the business processes and business domain that are

Figure 10. Types of Components and Traceability Between Them

A Service-Based Approach to Components 253

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the basis for the requirements of the system being developed. At the same time, this
architecture provides an easy and effective mapping into appropriate implementation
architecture of the system.

The higher level component architecture, not overloaded with unnecessary
details, can be used for the purpose of negotiation between the business user as the
user of the component system and the system architect as the assembler of
components. At this level, it should be decided how business requirements should be
mapped into the system solution in the best and most effective manner. It is possible
to exactly determine what system parts are responsible for satisfying particular
business needs, and, therefore, be able to replace/improve/change those parts if the
business is changed. Business users can easily recognize and articulate their needs
through the business component architecture that hides implementation details from
them.

On the other hand, the completely specified component architecture can serve
as a point of negotiation between a system architect on one side, and a component
developer, a provider of COTS components or a provider of Web services, on the
other side. At this level, the decision about an appropriate implementation solutions
for components specified in the architecture should be made. The way of concrete
realization of the component specification is not important as long as the contract
between the component and its context is completely fulfilled.

Figure 11. A Role of Component Architecture in a Dialogue Between Actor
Roles

254 Stojanovic & Dahanayake

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CONCLUSION AND FUTURE TRENDS
Although component-based platforms and technologies such as CORBA,

COM+/.NET and EJB are widely used as a standard for implementation and
deployment of complex systems, the component way of thinking is not mature
enough. Current CBD best practices, approaches and methods do not provide a full
support for various component concepts, and therefore, are not able to provide a full
benefit of the CBD paradigm. Handling components mainly at the implementation
level and treating them as binary-code packages actually limits the usefulness of the
same separation of concerns in requirements elicitation, system analysis and design.
At the conceptual level, components are mainly represented as larger grained objects
that are more data driven than service driven. The real power of using the service-
based component way of thinking as a bridge between business and technology
concerns has not been recognized yet.

The main goal of the chapter is to define a service-based approach to
components that provides a comprehensive support to a model-driven development
of Internet-enabled enterprise systems, from business to implementation. The
approach applies the same component way of thinking and the same consistent set
of technology-independent component concepts in different aspects and phases of
enterprise systems development, from autonomous business services to distributed
components. Defined service-based component concepts provide greater ability to
model business services and requirements at a higher level, in a domain-specific, but
implementation-independent, way. On the other hand, the application developers
map business-driven system models into complete applications using advanced
component middleware.

In this way, component architecture is flexible enough to be easily adapted
according to frequent changes in the business. On the other hand, the architecture
is minimally affected by the underlying technology choice, providing a durable
solution that can survive the changes in technology. Furthermore, the presented
component architecture represents a point of negotiation between different actors
in a development process: the user, assembler and provider of component services.

The approach presented in this chapter is in line with the current OMG strategy
in establishing the MDA that suggests first creating a high-level UML description of
how applications will be structured and integrated, independently of any implemen-
tation details (PIM), then moving toward more constrained UML design (PSM), and
finally converting it into language code for a specific platform. Our service-based
component approach actually aims at fully specified component-oriented PIM that
can be easily mapped first to component-oriented PSM and then to a particular
component middleware.

By defining components as providers of services, our approach can be
effectively applied for modeling, analysis and design of systems, using the new
paradigm of Web services (IBM, 2002; Microsoft, 2002). Web services are self-
contained, self-describing modular units providing a location independent of business

A Service-Based Approach to Components 255

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

or technical services that can be published, located and invoked across the Web.
From a technical perspective, of course, the Web service is essentially an extended
and enhanced component interface construct. They are a natural extension of
component thinking and further convergence of business and technology. By using
the approach presented here, Web services become just one way of possible
realization of service-based component specification. In this way, the approach
provides a smooth transition from the standard object orientation- to the advanced
Web-service way of thinking.

Finally, our approach is in line with the principles of new Agile Modeling and
Development initiatives (Ambler & Jeffries, 2002; Cockburn, 2002). The approach
is agile, if it is effective, flexible, lightweight, iterative and responds to changes. The
approach presented here can be considered as a service-based agile approach for
designing component architecture, since it provides an effective way for specifying
components and component-based solutions that can be easily adapted to changes
in the business environment.

ACKNOWLEDGMENTS
The authors would like to thank Professor Dr. Henk Sol for his support and

valuable suggestions in writing this chapter. The authors also gratefully acknowl-
edges the support of the BETADE research project (http://www.betade.tudelft.nl)
and its members.

REFERENCES
Accenture (formerly Andersen Consulting Co.). (1998, September 20). Under-

standing components (White paper, Eagle project). Retrieved September 20,
1998 from http://www.ac.com.

Allen, P., & Frost, S. (1998). Component-based development for enterprise
systems: Applying the select perspective. Cambridge, UK: Cambridge
University Press.

Ambler, S. W., & Jeffries, R. (2002). Agile modeling: Effective practices for
extreme programming and the unified process. New York: John Wiley &
Sons.

Atkinson, C., et al. (2001). Component-based product line engineering with
UML. Boston, MA: Addison-Wesley Publishing.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The unified modeling language
user guide. Boston, MA: Addison-Wesley.

Brown, A. W., & Wallnau, K. C. (1998, September/October). The current state of
component-based software engineering. IEEE Software, 15(5), 37-47.

Carey, J., Carlson, B., & Graser, T. (2000). San Francisco design patterns:
Blueprints for business software. Boston, MA: Addison-Wesley.

256 Stojanovic & Dahanayake

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cattell, R., et al. (2000). The object data standard: ODMG 3.0. San Francisco,
CA: Morgan Kaufmann.

Cheesman, J., & Daniels, J. (2000). UML components: A simple process for
specifying component-based software. Boston, MA: Addison-Wesley.

Cockburn, A. (2001). Writing effective use cases. Boston, MA: Addison-Wesley.
Cockburn, A. (2002). Agile software development. Boston, MA: Addison-Wesley.
ComponentSource. (2002, July 12). Retrieved July 17, 2002 from http://

www.componentsource.com.
D’Souza, D. F., & Wills, A. C. (1999). Objects, components, and frameworks

with UML: The catalysis approach. Addison-Wesley.
Dobing, B., & Parsons, J. (2000). Understanding the role of use cases in UML: A

review and research agenda. Journal of Database Management, 11(4), 28-
36.

Gartner Group. (1997, December 5). Componentware: categorization and cata-
loging (Research note). Retrieved December 5, 2001 from Applications
Development and Management Strategies Web site: http://
www.gartnergroup.com.

Henderson-Sellers, B., Szyperski, C., Taivalsaari, A., & Wills, A. (1999). Are
components objects? OOPSLA’99 - Panel Discussion.

Herzum, P., & Sims, O. (2000). Business component factory: A comprehensive
overview of business component development for the enterprise. John
Wiley & Sons.

IBM. (2002, July 17). Web services. Retrieved July 17, 2002 from http://www.ibm/
com/webservices.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unified software develop-
ment process. Reading, MA: Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P., & Overgaard, G. (1992). Object-
oriented software engineering: A use case driven approach. Reading,
MA: Addison-Wesley.

Jain, H., Chalimeda, N., Ivaturi, N., & Reddy, B. (2001). Business component
identification - a formal approach. Fifth IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2001) (pp. 183-187)
Los Alamitos, CA.

McIlroy, M. D. (1968, October). Mass produced software components. Report
NATO Conference on Software Engineering.

Meyer, B. (1997). Object-oriented software construction. Upper Saddle River,
NJ: Prentice Hall.

Microsoft. (2002, July 17). COM technologies and .NET Web service platform.
Retrieved July 17, 2002 from http://www.microsoft.com/.

Object Management Group (OMG). (2002, July 17). Object Management Group,
the source for UML, CWM, and MOF. Retrieved from http://www.omg.org.

Object Management Group-Model Driven Architecture (OMG_MDA). (2002, July

A Service-Based Approach to Components 257

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

17). Object Management Group, MDA-Model Driven Architecture. Re-
trieved July 17, 2002 from http://www.omg.org/mda/.

ODP. (1996). International Standard Organization (ISO). Reference model of
open distributed processing: Overview, foundation, architecture and
architecture semantics (Rep. no. ISO/IEC JTC1/SC07. 10746-1 to 4. ITU-
T; recommendations X.901 to 904).

Parnas, D.L. (1972). On the criteria to be used in decomposing systems into modules.
Communication of the ACM, 15(12), 1053-1058.

Siegel, J. (2000). CORBA 3: Fundamentals and programming. OMG Press, John
Wiley & Sons.

Sol, H. G. (1988). Information system development: A problem solving approach.
Proceedings of 1988 INTEC Symposium Systems Analysis and Design: A
Research Strategy, Atlanta, GA.

Stojanovic, Z., & Dahanayake, A. N. W. (2002). A new approach to components.
IRMA 2002 International Conference, Seattle, WA, USA.

Stojanovic, Z., Dahanayake, A. N. W., & Sol, H. G. (2000). Integrated component-
based framework for effective and flexible telematics application devel-
opment (Tech. Rep. ISBN: 90-76412-13-8). The Netherlands: Delft Univer-
sity of Technology.

Stojanovic, Z., Dahanayake, A. N. W. & Sol, H. G. (2001a). A methodology
framework for component-based system development support. Sixth Work-
shop on Evaluation of Modeling Methods in System Analysis and Design
(EMMSAD’01), Interlaken, Switzerland (pp. XIX-1 – XIX-14).

Stojanovic, Z., Dahanayake, A. N. W., & Sol, H. G. (2001b). Integration of
component-based development concepts and RM-ODP viewpoints. First
Workshop on Open Distributed Processing WOODPECKER 2001, Setubal,
Portugal (pp. 98-109).

Sun Microsystems. (2002, July 17). Enterprise JavaBeans; The source for JavaTM

technology. Retrieved from http://java.sun.com.
Szyperski, C. (1998). Component software: Beyond object-oriented program-

ming. ACM Press, Addison-Wesley.
Telecommunications Information Networking Architecture (TINA)(2002, July 17).

Service Architecture 4.0. Retrieved from TINA Consortium Web site: http:/
/www.tinac.com.

Udell, J. (1994, May). Cover story: Componentware. Byte Magazine.
Warmer, J. B., & Kleppe, A. G. (1999). The object constraint language: Precise

modeling with UML. Reading, MA: Addison-Wesley.
World-Wide-Web Consortium (W3C). (2002, July 17). eXtensible markup lan-

guage (XML). Retrieved from http://www.w3c.org/xml.

258 Jovanovic-Dolecek & Diaz-Carmona

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XVII

One Method for Design of
Narrowband Lowpass

Filters
Gordana Jovanovic-Dolecek

National Institute of Astrophysics Optics and Electronics (INAOE), Mexico

Javier Diaz-Carmona
Technology Institute of Celaya, Mexico

ABSTRACT
This chapter describes a design of a narrowband lowpass finite impulse
response (FIR) filter using a small number of multipliers per output sample
(MPS). The method is based on the use of a frequency-improved recursive
running sum (RRS), called the sharpening RRS filter, and the interpolated finite
impulse response (IFIR) structure. The filter sharpening technique uses
multiple copies of the same filter according to an amplitude change function
(ACF), which maps a transfer function before sharpening to a desired form
after sharpening. Three ACFs are used in the design, as illustrated in the
accompanying examples.

One Method for Design of Narrowband Lowpass Filters 259

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INTRODUCTION
The digital filter design problem is concerned with finding a magnitude response

(or, equivalently, a gain) that meets the given specifications. These specifications are
usually expressed in terms of the desired passband and stopband edge frequencies
Zp and Zs, the permitted deviations in the passband (passband ripple) Rp, and the
desired minimum stopband attenuation As (Mitra, 2001). Here we consider the
specifications given in decibles (dB). Figure 1 illustrates a typical magnitude
specification for a digital lowpass filter.

Due to their complexity, narrowband lowpass FIR filters are difficult and
sometimes impossible to implement using conventional structures (Milic & Lutovac,
2002).

The IFIR filter proposed by Neuvo, Cheng and Mitra (1984) is one efficient
realization for the design of narrowband FIR filters. The IFIR filter H(z) is a cascade
of two filters:

)()()(zIzGzH M (1)

where G(zM) is an expanded shaping or model filter, I(z) is an interpolator or image
suppressor, and M is the interpolator factor. In this manner, the narrowband FIR
prototype filter H(z) is designed using lower order filters, G(z) and I(z). For more
details on the IFIR structure, see Neuvo, Cheng and Mitra (1984).

The interpolation factor M is chosen so that the orders of filters G(z) and I(z)
are equal or close to each other.

A linear increase of the interpolation factor results in the exponential growth of
the interpolation filter order, as well as in the decrease of the shaping filter order. Our
goal is to decrease the shaping filter order as much as possible and to efficiently
implement the high-order interpolator filter. To do so, in this chapter, we propose to
use RRS filter as an interpolator in the IFIR structure. Similarly, Pang, Ferrari and

Figure 1. Lowpass Filter Magnitude Specification

S

Rp

Z

Magnitude

passband stopband
Zp Zs

-Rp

$s

260 Jovanovic-Dolecek & Diaz-Carmona

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Sankar (1991) proposed a low order B-spline filter as an interpolator filter. More
details about RRS filters are given in Chapter XVIII.

The outline of the chapter is as follows. In the first section, a brief review of the
filter sharpening technique and the sharpening RRS filters is presented. The
following section illustrates the design procedure through three design examples.

SHARPENING RRS FILTER
The sharpening technique, which was first proposed by Kaiser and Hamming

(1984), attempts to improve both the passband and stopband of a linear FIR filter by
using multiple copies of the same filter. This technique is based on the use of
polynomial approximation of a piecewise constant desired amplitude change function
(ACF). The ACF maps a transfer function amplitude H(Z), before sharpening, to an
amplitude value after sharpening, P[H(Z)]. The method assumes that |H(Z)|
approximates unity in the passband and zero in the stopband.

Hartnett and Boudreaux (1995) proposed an extension of the method, giving a
more direct control over passband and/or stopband improvement. This generalization
is achieved by applying the following constraints to the approximating polynomial
P[H(Z)]:
• nth order tangency at {H(Z),P[H(Z)]}=(0,0) to the line of slope G.
• mth order tangency at {H(Z),P[H(Z)]}=(1,1) to the line of slope V.

The design parameters are illustrated in Figure 2. Recently, Samadi (2000)
derived a closed formula for P[H(Z)], for arbitrary values of design parameters. It
is given by:

� �> @ � � � � � �È
�

���
R

nj

j
jjj HbbbHHP

1
2,1,0, ZGVZGZ (2)

where

� �

� �

� �

.1
,....,1

1

11

1

1
2,

1
1,

1
0,

��
�

ÚÚÛ

Ù
ÊÊË

É
ÚÚÛ

Ù
ÊÊË

É
�

Ú
Û
ÙÊ

Ë
É �ÚÚÛ

Ù
ÊÊË

É
ÚÚÛ

Ù
ÊÊË

É
�

ÚÚÛ

Ù
ÊÊË

É
ÚÚÛ

Ù
ÊÊË

É
�

È

È

È

�

�

�

�

�

�

mnR
Rnj

N
i

i
j

j
R

b

N
i

i
j

j
R

b

i
j

j
R

b

j

ni

ij
j

j

ni

ij
j

j

ni

ij
j

 (3)

One Method for Design of Narrowband Lowpass Filters 261

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

As shown in Figure 2, a passband and stopband improvements using the smallest
order polynomial are obtained by applying these conditions:
1. Both slopes must be zero (design parameters V and G).
2. The tangency order in the point {H(Z),P[H(Z)]}=(0,0) must be one (design

parameter n).
3. The tangency order in the point {H(Z),P[H(Z)]}=(1,1) determines the pass-

band improvement (design parameter m).

Combining these conditions and the Equation (2), improved passband ACF’s
result, as given in the following expression:

� �> @ � � � �
� �

� �> @ � � � � � �
� �

� �> @ � � � � � � � �
� �.1,3,0,0

,4152010)3

.1,2,0,0

,386)2

.1,1,0,0

,23)1

5432

432

32

���

��

�

nm

HHHHHP

nm

HHHHP

nm

HHHP

GV

ZZZZZ

GV

ZZZZ

GV

ZZZ

 (4)

The plot for each one of these ACFs is shown in Figure 3. Note that the third
ACF has the best passband improvement and the smallest stopband attenuation. On
the other hand, the first ACF has the worst passband improvement but the best
stopband attenuation.

Figure 2. Filter Sharpening Parameters

1

1

0

mth order tangency to
the line of slope V

|H(Z)|

|P(H(Z))| nth order
tangency to
the line of

slope G

passband

Ñ
Ð
Ï

á
à
ß

stopband

262 Jovanovic-Dolecek & Diaz-Carmona

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3

The filter sharpening technique was applied with each one of the three ACFs
to a specific RRS filter (N = 8, L = 2). The resulting passband and stopband frequency
domain responses are shown in Figure 4 and Figure 5, respectively. One can observe
a significant improvement in the RRS magnitude function.

The three sharpened structures are presented in Figure 6, where the resulting
number of multipliers per output sample (MPS) is equal to three, four and five for the
first, second and third structure, respectively.

DESCRIPTION OF THE DESIGN PROCEDURE
In the previous section, we outlined a sharpening RRS filter technique. We now

consider the design of a narrowband lowpass filter using an IFIR structure, where
the interpolator filter is the sharpening RRS filter. In order to suppress the mirror

Figure 3. Plot of the Three ACFs

0 0.02 0.04 0.06 0.08 0.1 0.12
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

G
ai

n,
 d

B

ω/π

RRS 1 2 3

Figure 4. Passband Magnitudes for Sharpening RRS Filters

One Method for Design of Narrowband Lowpass Filters 263

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

images of the expanded model filter, the RRS frequency nulls must be centered at
each mirror image, as shown in Figure 7. This implies that the length of the RRS filter
must be equal to the interpolator factor M.

The specifications of the filter to be designed are: normalized passband edge at
Zp, normalized stopband edge at Zs, passband ripple Rp, and a minimum stopband
attenuation As in dB. The number of stages in the RRS filter L controls the resulting
filter stopband attenuation, and the filter sharpening technique controls the filter
passband width.

H2(z)

Delay

1) V =0, G =0, n =1, m =1

H(z)
-2

3

H2(z) H2(z)
3

-8
H(z)

Delay
6

+

+

+

H2(z) H3(z)
-4

15
H2(z)

+

+

Delay
10

-20
H(z) +

2) V =0, G =0, n =1, m =2

3) V =0, G =0, n =1, m =3

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-160

-140

-120

-100

-80

-60

-40

-20

0

G
ai

n,
 d

B

ω/π

RRS

1
2

3

Figure 5. Stopband magnitude for sharpening RRS filters

Figure 6. Sharpening Structures

264 Jovanovic-Dolecek & Diaz-Carmona

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The procedure for the filter design is outlined in the following steps:
1. Choose the interpolation factor M and design the model filter G(z), using the

specifications:

s

G
s

pG
p

s
G
sp

G
p

AA
R

R

MM

,
2

,, ZZZZ

(5)

where G
pZ and G

sZ are the passband and the stopband edge frequencies, G
pR

is the maximum passband ripple, and G
sA is the minimum stopband attenuation

of the filter G(z).
2. Design the L-stage RRS filter IRRS(z) of the length M.
3. Choose an ACF and apply the filter sharpening to the filter IRRS(z). The resulting

filter is denoted as IshRRS(z).
4. Cascade the model filter G(zM) and the sharpening RRS filter IshRRS(z).
5. If the stopband filter specification As is not satisfied, go to Step 2 and increase

the number of stages L.
6. If the passband filter deviation is higher than Rp, go to Step 3 and change ACF.

We illustrate the design procedure with three examples.
Example 1: A linear-phase narrowband lowpass FIR filter is designed with the

following specifications: normalized passband edge at Zp=0.01, normalized stopband

Figure 7. Mirror Images Suppression where k is an Integer 10 ��� Mk

S

1

Magnitude

Z

Sharpening
RRS Images

�S
0

�Sk
0

One Method for Design of Narrowband Lowpass Filters 265

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

edge at Zs = 0.015, maximum passband ripple Rp = 0.086dB, and minimum stopband
attenuation As = -60 dB.

The linear-phase FIR filter designed by Parks McClellan method would require
an order N = 1017. Using M = 18 in the IFIR structure, the orders of filters G(z) and
I(z), both designed by Parks McClellan method, are 66 and 69, respectively.

We choose the first ACF given in Equation (4), the interpolation factor M = 21,
and the number of the stages of RRS filter L = 2. The order of the filter G(z) is 57.
The resulting structure is shown in Figure 8. The magnitude responses of G(z21) and
IshRRS(z) are shown in Figure 9, where we can see that the mirror images are
suppressed by nulls of the sharpening RRS filter. The allband magnitude response
for the designed filter and the passband zoom are shown in Figure 10.

If the filter sharpening is applied using the second ACF in Equation (4), it would
be possible to use higher values for the interpolation factor M, for example we can
choose M = 31. In this case the RRS filter has an order 31, and the number of the
stages L is 3 (Figure 11).

As a consequence, the order of the filter G(z) is 40. The resulting allband
magnitude response as well as the passband zoom for this case are shown in Figure
12.

Figure 8. Resulting Structure in Example 1 with First ACF

G(z21) I2RRS(z) +
X(z) Y(z)

-2

3

I2RRS(z) I2RRS(z)

Delay

IshRRS(z)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

G
ai

n,
 d

B

ω/π

Figure 9. Allband Magnitude Responses for G(z21)(Dotted Line) and
IshRRS(z)(Solid Line)

266 Jovanovic-Dolecek & Diaz-Carmona

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A further order reduction of the filter G(z) is obtained using the third ACF in
Equation (4). Here the interpolation factor M is 37, and the number of the stages of
RRS filter L, is equal to four. As a result, the model filter order has an order 34. The
mirror image suppression and the final magnitude response are shown in Figures 13
and 14, respectively.

The design parameters for all three cases and the resulting number of MPS are
summarized in Table 1. Note that the number of MPS is decreased as a result of the
increase in the complexity of ACF.

Two additional examples are given below. Unlike Example 1, the next example
illustrates the design of a filter with a wider bandwidth than one given by Example
1.

Example 2: Design a linear-phase narrowband lowpass FIR filter in order to
meet the following specifications: normalized passband and stopband edges at Zp =
0.02 and Zs = 0.03, maximum passband ripple Rp = 0.086dB and minimum stopband
attenuation As = - 60 dB.

The direct application of the Parks McClellan algorithm results in a filter whose
order is equal to 509. Using an interpolator factor M = 11 in the IFIR structure, we

Table 1. Design Parameters and Number of MPS for Example 1

ACF M NG L MPS
1
2
3

21
31
37

57
40
34

2
3
4

31
24
22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

G
ai

n,
 d

B

ω/π

Figure 10. Magnitude Responses for Example 1 and First ACF

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

G
ai

n,
 d

B

ω/π

Passband Zoom

One Method for Design of Narrowband Lowpass Filters 267

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

can obtain the filters G(z) and I(z), both designed by Parks McClellan method, of the
orders 55 and 47, respectively. The design results for all three ACFs are summarized
in Table 2.

The magnitude responses for the first, second, and third cases are shown in
Figures 15, 16 and 17, respectively.

Example 3: This example considers the design of a very narrowband filter
having a normalized passband edge at Zp = 0.008 and a normalized stopband edge
at Zs = 0.012. Passband ripple is Rp = 0.1728dB, and the minimum stopband
attenuation is As = - 65 dB.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

G
ai

n,
 d

B

ω/π

Figure 11. Magnitude Responses for G(z31)(Dotted Line) and IshRRS(z)(Solid
Line)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

G
ai

n,
 d

B

ω/π

Figure 12. Magnitude Responses from Example 1 and Second ACF

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

G
ai

n,
 d

B

ω/π

Passband Zoom

268 Jovanovic-Dolecek & Diaz-Carmona

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

G
ai

n,
 d

B

ω/π

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

G
ai

n,
 d

B

ω/π

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

G
ai

n,
 d

B

ω/π

Passband Zoom

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

G
ai

n,
 d

B

ω/π

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

G
ai

n,
 d

B

ω/π

Passband Zoom

Figure 13. Magnitude Responses for G(z37) (Dotted Line) and IshRRS(z) (Solid
Line)

Figure 15. Magnitude Responses for Example 2 with First ACF

Figure 14. Magnitude Responses for Example 1 and Third ACF

One Method for Design of Narrowband Lowpass Filters 269

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

G
ai

n,
 d

B

ω/π

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

G
ai

n,
 d

B

ω/π

Passband Zoom

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

G
ai

n,
 d

B

ω/π

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

G
ai

n,
 d

B

ω/π

Passband Zoom

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

G
ai

n,
 d

B

ω/π

0 1 2 3 4 5 6 7 8

x 10
-3

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

G
ai

n,
 d

B

ω/π

Passband Zoom

Figure 16. Magnitude Responses for Example 2 with Second ACF

Figure 17. Magnitude Responses for Example 2 Using Third ACF

Figure 18. Magnitude Responses for Example 3 with First ACF

270 Jovanovic-Dolecek & Diaz-Carmona

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Parks McClellan method, such specifications require a filter of an order
of 1232. However, the model filter and the interpolator in the IFIR structure both have
an order of 72, when the interpolation factor M is equal to 20. Table 3 summarizes
the value of the parameters needed for each of the three ACFs. The corresponding
magnitude responses are plotted in Figures 18, 19, and 20.

CONCLUSION
A narrowband lowpass FIR filter design method with a small number of

multipliers per output sample (MPS) is described. The number of multipliers is
reduced by using a sharpening RRS filter as an interpolator in the IFIR structure. To
this end, three ACFs are obtained with the design parameters V, G, n and m. The

Table 2. Design Parameters and Number of MPS for Example 2

ACF M NG L MPS
1
2
3

11
17
19

55
37
33

2
3
4

30
22
21

ACF M NG L MPS
1
2
3

31
41
51

48
37
31

3
3
4

27
22
20

Table 3. Design Parameters and Number of MPS for Example 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

G
ai

n,
 d

B

ω/π

Figure 19. Magnitude Responses for Example 3 with Second ACF

0 1 2 3 4 5 6 7 8

x 10
-3

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

G
ai

n,
 d

B

ω/π

Passband Zoom

One Method for Design of Narrowband Lowpass Filters 271

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

design control parameters for a given ACF are the interpolation factor M and the
number of stages L of an RRS filter.

As the filter design examples presented in this chapter show, there is a notable
reduction in the number of MPS, using the proposed method.

REFERENCES
Hartnett, R. J., & Boudreaux, G. F. (1995, December). Improved filter sharpening.

IEEE Transactions on Signal Processing, 43, 2805-2810.
Hogenauer, E. B. (1981, April). An economical class of digital filters for decimation

and interpolation. IEEE Transactions on Acoustics Speech and Signal
Processing, 29, 155-162.

Kaiser, J. F., & Hamming, R. W. (1984, October). Sharpening the response of a
symmetric nonrecursive filter by multiple use of the same filter. IEEE
Transactions on Acoustics Speech and Signal Processing, ASSP-25, 415-
422.

Milic L. J., & Lutovac, M. (2002). Efficient multirate filtering (Chapter IV). In G.
J. Dolecek (Ed.) Multirate Systems: Design and Applications. Hershey, PA:
Idea Group Publishing.

Mitra, S. K. (2001). Digital signal processing: a computer-based approach. 2nd

ed. New York: McGraw-Hill.
Neuvo, Y., Cheng-Yu, D., & Mitra, S. (1984, June). Interpolated finite impulse

response filters. IEEE Transactions on Acoustics Speech and Signal
Processing, 32, 563-570.

Pang, D. L., Ferrari, A., & Sankar, P. V. (1991, September). A unified approach to
IFIR filter design using B-spline functions. IEEE Transactions on Signal
Processing, 39, 2115-2117.

Samadi, S. (2000, October). Explicit formula for improved filter sharpening polyno-
mial. IEEE Transactions on Signal Processing, 9, 2957-2959.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

G
ai

n,
 d

B

ω/π

Figure 20. Magnitude Responses for Example 3 with the Third ACF

0 1 2 3 4 5 6 7 8

x 10
-3

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

G
ai

n,
 d

B

ω/π

Passband Zoom

272 Jovanovic-Dolecek

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XVIII

Design of Narrowband
Highpass FIR Filters Using
Sharpening RRS Filter and

IFIR Structure
Gordana Jovanovic-Dolecek

National Institute of Astrophysics Optics and Electronics (INAOE), Mexico

ABSTRACT
This chapter presents the design of narrowband highpass linear-phase finite
impulse response (FIR) filters using the sharpening recursive running sum
(RRS) filter and the interpolated finite impulse response (IFIR) structure. The
novelty of this technique is based on the use of sharpening RRS filter as an
image suppressor in the IFIR structure. In that way, the total number of
multiplications per output sample is considerably reduced.

INTRODUCTION
FIR filters are often preferred to infinite impulse response (IIR) filters because

of their attractive properties, such as the linear phase, stability and the absence of the
limit cycle (Mitra, 2001). The main disadvantage of FIR filters is that they involve a

Design of Narrowband Highpass FIR Filters 273

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

higher degree of computational complexity compared to IIR filters with equivalent
magnitude response. In the past few years, many design methods have been
proposed to reduce the complexity of FIR filters, (Jou, Hsieh & Kou, 1997; Kumar
& Kumar, 1999; Webb & Munson, 1996; Lian & Lim, 1998; Bartolo & Clymer, 1996,
etc.).

We consider highpass (HP) linear-phase narrowband filters. As it is known, one
of the most difficult problems in digital filtering is the implementation of narrowband
filters. The difficulty lies in the fact that such filters require high-order design in order
to meet the desired frequency response specifications. In return, these high-order
filters need a large amount of computation and are difficult to implement. Here we
propose an efficient implementation of HP liner-phase narrowband digital filters
based on IFIR and RRS filter.

We first consider the transform of a lowpass filter (LP) into its HP equivalent.
We then describe the design of HP filters using an IFIR structure, separately
considering an even and an odd interpolation factor. We also review the basics of
RRS and sharpening RRS filters. Finally, we explain how to design an HP filter, using
the sharpening RRS-IFIR structure. Two methods are presented, but the choice
between the two depends on the parity of the RRS filter. Several examples
accompany the outlined procedures. All filters are designed using MATLAB.

TRANSFORM OF LP INTO HP FILTER
Instead of designing an HP filter by brute force, we can transform an LP filter

into an HP one. First we replace the desired cutoff frequencies of the HP filter, Zp
and Zs, with the corresponding LP specifications as follows:

ss

pp

ZSZ

ZSZ

�

�
'

'

(1)

Given these specifications, an LP-FIR filter can be designed. From this auxiliary
LP filter, the desired HP filter can be computed by simply changing the sign of every
other impulse response coefficient. This is compactly described in Equation 2:

)()1()(nhnh LP
n

HP � (2)

where hHP(n) and hLP(n) are the impulse responses of the HP and the LP filters,
respectively.

The following example illustrates the procedure.
Example 1: We consider the design of HP-FIR filter using Parks-McClellan

algorithm (Mitra, 2001) with these specifications: normalized passband edge Zp =

274 Jovanovic-Dolecek

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

0.8S, normalized stopband edge Zs = 0.7S, passband ripple Rp = 1dB, and minimum
stopband attenuation As = -60 dB. Using (1) we obtain the corresponding LP
specifications:

SSSZ

SSSZ

3.07.0

2.08.0
'

'

 �

 �

s

p
(3)

The order of the filter is N = 57. The magnitude and phase responses of the
designed LP filter are shown in Figure 1. Using Equation 2, we transform the LP filter
into the corresponding HP filter. The magnitude and phase responses of the resulting
HP filter are shown in Figure 2.

The impulse responses of the LP and the HP filter are shown in Figure 3.

Figure 1. LP Filter

Figure 2. HP Filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2000

-1500

-1000

-500

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-150

-100

-50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Lowpass filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-500

0

500

1000

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-150

-100

-50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Highpass filter

Design of Narrowband Highpass FIR Filters 275

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

IFIR STRUCTURE
The IFIR structure proposed by Neuevo, Dong and Mitra (1984) is an efficient

realization of a high-order liner-phase LP FIR filter. Instead of designing one high-
order liner-phase LP filter H (z), two lower order liner-phase LP filters are
computed. One of them is called the shaping filter G (z) and the other one is the
interpolator filter I (z). Suppose that the specifications of the original filter H (z) are:
normalized passband edge Zp, normalized stopband edge Zs, passband ripple Rp, and
minimum stopband attenuation As. The specification of the LP filter G (z) can then
be expressed as follows:

s
G
s

p
G
p

s
G
s

p
G
p

AA

RR

M

M

2/

ZZ

ZZ

(4)

where M is the interpolation factor and the upper index G denotes for the filter G (z).
The filter G (z) is expanded M times, and the filter G(zM) is obtained by replacing each
delay z -1 in the filter G (z) with the delay z -M. In the time domain, this is equivalent
to inserting M-1 zeros between two consecutive samples of the impulse response of
the filter G (z). The expansion of the filter G (z) introduces M-1 images in the range
[0, 2S], which have to be eliminated. This is why the filter interpolator I (z) is needed.
The general LP IFIR structure is given in Figure 4.

Figure 3. Impulse Responses

0 20 40 60
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Lowpass filter

n

Im
pu

ls
e

re
sp

on
se

0 20 40 60
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
Highpass filter

n
Im

pu
ls

e
re

sp
on

se

 (b)(a)

276 Jovanovic-Dolecek

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Finally, the HP filter can be designed by combining the transformation in Equation
(3) and the procedure for designing an LP filter described above.

Interpolation Factor M is Even
For even M there is an image at high frequency. If all other images, along with

the original spectrum are eliminated, the HP filter results. Figure 5 shows the
expanded filter for M = 2, 4, 6, 8. We notice that we can obtain the desired HP filter
by eliminating the original LP spectrum and all images except one at high frequency.
That means that the interpolator filter is an HP filter with these specifications:

s
I
s

p
I
p

ss
I
s

p
I
p

AA

RR
M

MM
M

�� ��

�

2/

)2(
2

22 ''

'

ZSZSZ

ZSZ

(5)

where upper index I stands for the interpolator I (z), and Z�
p and Z�

s are the lowpass
passband and stopband normalized edges of the filter G (z).

The procedure for the design of a HP-IFIR filter is outlined in the following
steps:
1. Design the LP filter G (z) using (4).
2. Expand the filter G (z) M times.
3. Design the HP interpolator I (z) with the specifications in Equation 5.
4. Cascade filters G(zM) and I (z).

This approach is illustrated in the Example 2.
Example 2: To clarify the design of an HP filter utilizing the IFIR structure with

the even interpolation factor M, we consider the design of a linear-phase FIR LP filter

Figure 4. IFIR Structure

 H(z)

)(MzG I(z)

Design of Narrowband Highpass FIR Filters 277

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

with the same specifications as given in Example 1, i.e., Zp = 0.8S, Zs = 0.7S, Rp =
1 dB, and AS = -60 dB. The interpolation factor M is 2. The detailed procedure of the
design is presented in the following steps:
1. Design an LP filter G (z) with these specifications:

dB60

dB2/1.0

3.0 2

2.0 2

�

º

º

s

p

G
s

G
p

A

R

SZ

SZ

(6)

The order of the filter G (z) is NG = 32. The filter is shown in Figure 6(a).
2. We expand the filter G (z), M = 2 times. Figure 6(b) depicts the filter.
3. Design an HP interpolator with the specifications:

SZZ

SSSZSZ

3.0

8.02.0
'

'

 � �

s
I
s

p
I
p

(7)

The interpolator filter has an order of NI =13, and it is plotted in Figure 7(a).
4. Cascade the expanded filter and the interpolator. The resulting HP filter is

shown in Figure 7(b).

Figure 5. Expanded Filter G(z) for Different Values of M

0 0.5 1
-150

-100

-50

0

50
M=2

ω/π

G
ai

n,
dB

0 0.5 1
-150

-100

-50

0

50
M=4

ω/π

G
ai

n,
dB

0 0.5 1
-150

-100

-50

0

50
M=6

ω/π

G
ai

n,
dB

0 0.5 1
-150

-100

-50

0

50
M=8

ω/π

G
ai

n,
dB

278 Jovanovic-Dolecek

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

As the previous example illustrates, we have designed two filters G (z) and I (z)
with the respective orders 32 and 13, instead of designing a prototype filter H (z) with
the higher order of 57 (see Example 1).

Interpolation Factor M is Odd
This section considers the IFIR design for an odd interpolation factor M. Figure

8 shows the expanded filters G (z) for M = 3, 5, 7 and 9.
As Figure 8 shows, there are no images at high frequency. In order to obtain the

LP filter, all images have to be eliminated using the interpolator filter, so that only the
original spectrum remains.

Figure 6. Shaping (a) and Expanded Shaping Filter, M = 2, (b)

Figure 7. The Interpolator (a) and the Resulting HP Filter (b)

 (a) (b)

 (b)(a)

0 0.5 1
-120

-100

-80

-60

-40

-20

0

20

ω/π

G
ai

n,
dB

The shaping filter G(z)

0 0.5 1
-120

-100

-80

-60

-40

-20

0

20

ω/π
G

ai
n,

dB

The expanded shaping filter G(z2)

0 0.5 1
-120

-100

-80

-60

-40

-20

0

20
The interpolator I(z)

ω/π

G
ai

n,
dB

0 0.5 1
-160

-140

-120

-100

-80

-60

-40

-20

0

20

ω/π

G
ai

n,
dB

The highpass filter H(z)

Design of Narrowband Highpass FIR Filters 279

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 The steps of the design are:
1. Design an LP filter G (z) using Equation 1.
2. Expand the filter G (z) M times.
3. Design the LP interpolator I (z) with the specifications:

.

2/

2 '

'

s
I
s

p
I
p

s
I
s

p
I
p

AA

RR
M

�

�

ZSZ

ZSZ

(8)

4. Transform the filters G (z) and I (z) into HP filters G� (z) and I� (z) using
Equation (2).

5. Cascade the filters G� (zM) and I� (z).

We illustrate the application of the above design in the following example.
Example 3: Consider the HP filter of Example 2 with an interpolation factor

M = 3. To this end we follow the steps described so far:

Figure 8. Expanded Filters for the Different Values M

0 0.5 1
-150

-100

-50

0

50
M=3

ω/π

G
ai

n,
dB

0 0.5 1
-100

-50

0

50
M=5

ω/π

G
ai

n,
dB

0 0.5 1
-150

-100

-50

0

50
M=7

ω/π

G
ai

n,
dB

0 0.5 1
-150

-100

-50

0

50
M=9

ω/π

G
ai

n,
dB

280 Jovanovic-Dolecek

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. Design an LP filter G (z) with the specifications:

dB60

0.05dBdB2/1.0

9.03.0 3

6.02.0 3

�

 º

 º

s

p

G
s

G
p

A

R

SSZ

SSZ

(9)

The filter G (z) has an order of NG = 21, and it is shown in Figure 9(a).
2. Expand the filter G (z), M = 3 times. The expanded filter is shown in Figure 9(b).
3. Design a LP interpolator I (z) with the specifications:

.33.0
3

2

2.0

'

'

SZSZ

SZZ

 �

s
I
s

p
I
p

 (10)

The filter has an order of NI = 34, and it is shown in Figure 10(a).
4. Cascade the expanded LP filter and the interpolator. The resulting LP filter is

shown in Figure 10(b).
5. Transform the resulting LP filter into its counterpart HP filter. The result is

shown in Figure 11.

Figure 9. The Shaping (a) and the Expanded Shaping Filter, M = 3, (b)

 (a) (b)

0 0.5 1
-100

-80

-60

-40

-20

0

20
The shaping filter G(z)

ω/π

G
ai

n,
dB

0 0.5 1
-100

-80

-60

-40

-20

0

20

ω/π

G
ai

n,
dB

The expanded shaping filter G(z)

Design of Narrowband Highpass FIR Filters 281

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 Note that the order of the filter G(z) is decreased, and the order of the filter I(z)
is increased as the result of the increased interpolation factor M.

RECURSIVE RUNNING SUM FILTER
 The simplest LP-FIR filter is the moving-average (MA) filter. Its impulse

response g(n) is given in Equation 11.

È
�

�

1

0
)(1)(

M

k
kng

M
ng (11)

Figure 10. The Interpolator (a) and the Resulting LP Filter (b)

Figure 11. The Resulting HP Filter

 (a) (b)

0 0.5 1
-100

-80

-60

-40

-20

0

20

ω/π

G
ai

n,
dB

The interpolator I(z)

0 0.5 1
-160

-140

-120

-100

-80

-60

-40

-20

0

20

ω/π
G

ai
n,

dB

The lowpass filter H(z)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-160

-140

-120

-100

-80

-60

-40

-20

0

20
The highpass filter H(z)

ω/π

G
ai

n,
dB

282 Jovanovic-Dolecek

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

All impulse response coefficients are equal to 1, which require no multiplication.
The corresponding transfer function is given by:

È
�

���� ���
1

0

)1(1 1]...1[1)(
M

k

kM z
M

zz
M

zG (12)

A more convenient form of the above transfer function for the realization
purpose is given by:

,
1

11)]([)(1

KM
K

RRS
z

z
M

zGzH
Ý
Ý
Þ

Ü

Í
Í
Î

Ì

�
� �

�
(13)

which is also known as a recursive RRS (Mitra, 2001), or a boxcar filter. The scaling
factor 1/M is needed to provide a dc gain of 0 dB, and K is the number of the cascaded
sections of the filter. The magnitude response of the filter can be expressed as

 .
)2/sin(
)2/sin()(

K
j

c M
MeH Ý

Þ

Ü
Í
Î

Ì

Z
ZZ

(14)

Figure 12. RRS Filters for Different Values M and K

0 0.5 1
-60

-40

-20

0
M=6,K=1

ω/π

G
ai

n,
dB

0 0.5 1
-150

-100

-50

0
M=6,K=2

ω/π

G
ai

n,
dB

0 0.5 1
-200

-150

-100

-50

0
M=6,K=3

ω/π

G
ai

n,
dB

0 0.5 1
-250

-200

-150

-100

-50

0
M=6,K=4

ω/π

G
ai

n,
dB

Design of Narrowband Highpass FIR Filters 283

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The magnitude response has nulls at integer multiples of (1/M)FS, where FS is
the sampling frequency. This provides natural alias-rejections introduced by expand-
ing the shaping filter G(z) by the factor M.

 The magnitude response of a RRS filter of the order M = 6 and varying number
of cascaded sections K is shown in Figure 12.

Note that the stopband attenuation is improved as a result of the increased
number of stages. However, this also downgrades the passband, as shown in Figure
13.

Therefore, the use of the RRS filter as an interpolator in the IFIR structure has
a limited application. The improvement of the RRS characteristics is considered in
the next section.

SHARPENING THE RRS FILTER
The improved RRS characteristics are based on a technique for sharpening the

response of a filter proposed by Kaiser and Hamming (1977) and Kwentus, Jiang and
Willson (1997). This technique improves both the passband and stopband of a RRS
filter, using multiple copies of the original filter. The simplest sharpened RRS filter
HshRRS(z) can be related to the original RRS filter as shown in Equation (15).

)(2)(3)(32 zHzHzH RRSRRSshRRS � (15)

where the RRS filter HRRS(z) is given in Equation 13.

Figure 13. Passband Details of RRS Filters

0 0.005 0.01
-0.1

-0.05

0

0.05

0.1
M=6,K=1

ω/π

G
ai

n,
dB

0 0.005 0.01
-0.1

-0.05

0

0.05

0.1
M=6,K=2

ω/π

G
ai

n,
dB

0 0.005 0.01
-0.1

-0.05

0

0.05

0.1
M=6,K=3

ω/π

G
ai

n,
dB

0 0.005 0.01
-0.1

-0.05

0

0.05

0.1
M=6,K=4

ω/π

G
ai

n,
dB

284 Jovanovic-Dolecek

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 14 illustrates how the sharpening RRS filter characteristics are improved
by increasing the number of stages K, using M = 6 and K = 1, 2, 3, and 4.

In Figure 14, the considerable improvements in the stopband can be observed.
In order to see the details of the passband, we plot the same diagrams for the range
of 0 to 0.04 of the relative frequency and the range of –0.01 to 0.01dB of the gain,
as shown in Figure 15.

Unlike the plots in Figure 13, where RRS filters have a passband droop, we note
that the sharpening RRS filter has flat response in the range of 0 to 0.01 of the relative
frequency. This result indicates that the sharpening RRS filter has improved
passband and stopband characteristics compared with to the ones of the RRS filter,
making it a good candidate for an interpolator in an IFIR structure. The corresponding
block diagram is shown in Figure 16. As previously noted, the sharpening RRS-IFIR
structure can be used for the design of an LP filter. How to design an HP filter
depends on whether the factor M is even or odd and is described in the next section.

Design of Sharpening HP-IFIR Filter for an Even M
As demonstrated so far, for an even interpolation factor M, the interpolator has

to eliminate the original spectrum and also all images except the one at high
frequency. As a result, the interpolator has to be an HP sharpening filter. The
following seven-step procedure may be used to design a sharpening HP-IFIR filter,
when M is an even number.
1. Transform the HP specifications into the LP ones.
2. Choose the value M.

Figure 14. Sharpening RRS Filters for Different M and K

0 0.5 1
-150

-100

-50

0
M=6,K=1

ω/π

G
ai

n,
dB

0 0.5 1
-250

-200

-150

-100

-50

0
M=6,K=2

ω/π

G
ai

n,
dB

0 0.5 1
-400

-300

-200

-100

0
M=6,K=3

ω/π

G
ai

n,
dB

0 0.5 1
-500

-400

-300

-200

-100

0
M=6,K=4

ω/π

G
ai

n,
dB

Design of Narrowband Highpass FIR Filters 285

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

3. Design the LP filter G (z).
4. Expand the filter G (z) M times.
5. Choose the value K and design the LP-RRS filter. Transform the LP-RRS filter

into an HP filter and design the corresponding sharpening HP-RRS filter. As
an example, Figure 17 shows the HP sharpening RRS filters for M = 10 and 14
and for K = 3 and 4.

6. Cascade the expanded filter G(zM) and the sharpening HP-RRS filter.
7. Check if the specification of the resulting filter is satisfied. If not, choose

different values for M and K and repeat the design.
We illustrate the above design in the following example.
Example 4: Consider an HP filter having passband edges at Zp = 0.991S, and

ZS = 0.98S, passband ripple Rp = 0.25 dB, and the minimum stopband attenuation AS
= -60 dB.

Figure 15. Passband Details for Different Values of M and K

Figure 16. Sharpening IFIR Structure

0 0.01 0.02 0.03 0.04
-0.1

-0.05

0

0.05

0.1
M=6,K=1

ω/π

G
ai

n,
dB

0 0.01 0.02 0.03 0.04
-0.1

-0.05

0

0.05

0.1
M=6,K=2

ω/π

G
ai

n,
dB

0 0.01 0.02 0.03 0.04
-0.1

-0.05

0

0.05

0.1
M=6,K=3

ω/π

G
ai

n,
dB

0 0.01 0.02 0.03 0.04
-0.1

-0.05

0

0.05

0.1
M=6,K=4

ω/π

G
ai

n,
dB

 H(z)

)(MzG)(zH shRRS

286 Jovanovic-Dolecek

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The HP filter, which satisfies the specification, designed by using Parks-
McClellan algorithm, has an order of NH = 446. Its magnitude response is shown in
Figure 18.

The next steps illustrate the design in more detail.
1. Transform the given HP specifications into the LP specifications:

Figure 17. Sharpening RRS Filter for M = 10 and 14 and for K = 3 and 4

Figure 18. The Prototype Filter H(z)

0 0.5 1
-300

-200

-100

0
M=10,K=3

ω/π

G
ai

n,
dB

0 0.5 1
-300

-200

-100

0
M=10,K=4

ω/π

G
ai

n,
dB

0 0.5 1
-300

-200

-100

0
M=14,K=3

ω/π

G
ai

n,
dB

0 0.5 1
-300

-200

-100

0
M=14,K=4

ω/π

G
ai

n,
dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-80

-60

-40

-20

0

20

ω/π

G
ai

n,
dB

H(z)

Design of Narrowband Highpass FIR Filters 287

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

.02.0

009.0
'

'

SZ

SZ

s

p
(16)

2. Choose M = 16.
3. Design the LP filter G (z). The order of the filter NG is 29.
4. Expand the filter G (z), M = 16 times. The corresponding magnitude response

is shown in Figure 19.
5. Choose K = 2 and design the LP-RRS filter. Transform it into the HP-RRS

filter. Design the corresponding HP sharpening RRS filter. The magnitude
response of the filter is shown in Figure 20.

6. Cascade the LP-expanded shaping filter and the HP sharpening RRS filter. The
resulting magnitude response is shown in Figure 21.

7. Check if the passband and the stopband specifications are satisfied. As Figures
22 and 23 show, both specifications are satisfied. In other case choose other
value for M and K.

It should be noted that instead of designing a filter with the order of 446, the
lower order filter G (z) that also satisfies the required specifications, but whose order
is only 16, could be designed. The filter I (z) is a sharpening filter, which is also a
simple filter and needs only three integer multiplications.

Design of HP-IFIR Sharpening RRS Filter for an Odd M
Unlike the previously described design, if the interpolation factor M is an odd

number, then both filters in the IFIR structure, the shaping and the interpolator filter
need to be transformed into HP filters. A detailed explanation of the design is
presented in the following steps.

Figure 19. Expanded Shaping Filter, M = 16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

ω/π

G
ai

n,
dB

Shaping filter G(zM)

288 Jovanovic-Dolecek

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. Transform the HP specifications into the LP ones.
2. Choose the value M.
3. Design the LP filter G (z).
4. Expand the filter G (z) M times.
5. Transform the expanded filter into the HP one.
6. Choose the value K and design the LP-RRS filter. Transform it into an HP-

RRS filter and design HP sharpening RRS filter.
7. Cascade the expanded HP shaping filter and the HP sharpening RRS filter.
8. Check if the specification is satisfied. If it is not, try with other values for M and

K and repeat the design.

We illustrate the procedure in the next example.

Figure 20. Sharpening RRS Filter, M = 16, K = 2

Figure 21. HP Sharpening RRS IFIR Filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-300

-250

-200

-150

-100

-50

0

ω/π

G
ai

n,
dB

HP Sharpening RRS filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

ω/π

G
ai

n,
dB

HP Sharpening RRS IFIR filter

Design of Narrowband Highpass FIR Filters 289

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example 5: Consider the design of an HP filter with the normalized passband
edges at Zp = 0.99S and ZS = 0.97S, passband ripple Rp = 0.25 dB, and the minimum
stopband attenuation AS = -60 dB.

Direct application of the Parks-McClellan algorithm results in an HP filter of an
order NH = 248. Figure 24 shows its magnitude response. The proposed design steps
are illustrated in the following.
1. Transform the HP specification into the LP ones.

.03.0

01.0
'

'

SZ

SZ

s

p
(17)

Figure 22. Passband Details

Figure 23. Stopband Details

0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

ω/π

G
ai

n,
dB

Passband zoom

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-300

-250

-200

-150

-100

ω/π

G
ai

n,
dB

Stopband zoom

290 Jovanovic-Dolecek

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2. Choose M = 15.
3. Design the LP filter G (z). The order of the filter NG is 19.
4. Expand the filter G (z), M = 16 times. The magnitude response is shown in

Figure 25.
5. Transform the expanded LP filter into the HP filter. This is illustrated in Figure

26.
6. Design the HP sharpening RRS filter, using K = 3. Figure 27 shows the

corresponding magnitude response.
7. Cascade the HP expanded shaping filter and the HP sharpening RRS filter. The

resulting magnitude response is shown in Figure 28.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-80

-60

-40

-20

0

20

ω/π

G
ai

n,
dB

H(z)

Figure 24. The Prototype Filter H(z)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

ω/π

G
ai

n,
dB

LP Shaping filter G(zM)

Figure 25. Expanded LP Shaping Filter, M = 16

Design of Narrowband Highpass FIR Filters 291

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

8. Check if the specifications are satisfied. Indeed, Figures 29 and 30 show that
this is the case.

This example also illustrates the efficiency of the proposed procedure. Instead
of having to design a filter of an order 248, the shaping filter, whose order is only 19,
has been designed. In addition, the interpolator is a sharpening RRS filter, which
needs only three integer multiplications.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

ω/π

G
ai

n,
dB

HP Shaping filter G(zM)

Figure 26. Expanded HP Shaping Filter, M = 16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-300

-250

-200

-150

-100

-50

0

ω/π

G
ai

n,
dB

Sharpening HP RRS filter

Figure 27. HP Sharpening RRS Filter, M = 15, K = 3

292 Jovanovic-Dolecek

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CONCLUSION
The design of HP narrowband FIR filters has been presented. The method is

based on the use of the IFIR structure, where the interpolator is the sharpening RRS
filter. The RRS filter has an advantage because it requires no multipliers and no
storage for the interpolation coefficients. The sharpening technique improves the
passband and the stopband characteristics of an RRS filter. The overall result is the
lower computational complexity of the resulting IFIR structure. The method is useful
for narrowband HP filter design.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

ω/π

G
ai

n,
dB

HP Sharpening RRS IFIR filter

Figure 28. HP Sharpening RRS-IFIR Filter

0.99 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

ω/π

G
ai

n,
dB

Passband zoom

Figure 29. Passband Details

Design of Narrowband Highpass FIR Filters 293

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

REFERENCES
Bartolo, A., & Clymer, B. D. (1996, August 8). An efficient method of FIR filtering

based on impulse response rounding. IEEE Transaction on Signal Process-
ing, 46, 2,243-2,248.

Jou, Y. D., Hsieh, C. H., & Kuo, C. M. (1997, August 4). Efficient Weighted Least-
Square Algorithm for the Design of FIR Filters. IEE Proc. Vis. Image
Processing, 144, 244-248.

Kaiser, J., & Hamming, R. (1977, October). Sharpening the response of a symmetric
nonrecursive filter by multiple use of the same filter. IEEE Transaction on
Acoustics, Speech, and Signal Processing, ASSP-25, 415-422.

Kumar, B., & Kumar, A. (1999, February 2). Design of efficient FIR filters for
amplitude response: 1/Z by using universal weights. IEEE Transaction on
Signal Processing, 47, 559-563.

Kwentus, A. Y., Jiang, Z., & Willson A. N. (1997, February 2). Application of filter
sharpening to cascaded integrator-comb decimation filters. IEEE Transaction
on Signal Processing, 45, 457-467.

Lian, Y., & Lim, Y. C. (1998, January 8). Structure for narrow and moderate
transition band FIR filter design. Electronic Letters, 34(1), 49-51.

Mitra, S. K. (2001). Digital signal processing: a computer-based approach.
New York: McGraw-Hill, Inc.

Neuevo, Y., Dong, C-Y., & Mitra, S. K. (1984, June). Interpolated impulse response
filters. IEEE Transaction on Acoustics, Speech, and Signal Processing,
ASSP-23, 301-309.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-300

-250

-200

-150

-100

ω/π

G
ai

n,
dB

Stopband zoom

Figure 30. Stopband Details

294 Jovanovic-Dolecek

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Webb, J. L., & Munson, D.C. (1996, August 8). A new approach to designing
computationally efficient interpolated FIR filters. IEEE Transaction on
Signal Processing, 44, 1923-1931.

About the Authors 295

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

About the Authors

Joan Peckham is a professor of Computer Science at the University of Rhode
Island, USA. In the 1990s she pursued semantic data modeling research in the
context of active databases. She is currently interested in the application of these
techniques to software engineering tools. She is concurrently working on a project
to develop learning communities for freshman, with the goal of encouraging women
and other underrepresented groups into the technical disciplines. She is also working
with colleagues in engineering and the biological sciences to apply computing
techniques to the fields of transportation and bioinformatics, respectively.

Scott J. Lloyd received his B.S. and M.S. in Management Information Systems
from Virginia Commonwealth University. After that he worked for the Department
of Defense for two years as a database analyst and designer. He then worked for
Cap Gemini consulting and as a private consultant for another two years. Scott then
received his Ph.D. in Information Systems from Kent State University. He then
worked for Roadway technologies as a senior technology consultant. He accepted
an assistant professor position from Eastern Illinois University and after three years,
Scott moved to the University of Rhode Island, USA, as an assistant professor in
Management Information Systems.

* * * *

296 About the Authors

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Somjit Arch-int received an M.Sc. degree in Computer Science from the National
Institute of Development Administration, Thailand, in 1990, and a Ph.D. in Computer
Science from the Asian Institute of Technology, Thailand in 2002. He is currently an
assistant professor in the Department of Computer Science, Khon Kaen University,
Thailand. His previous experience includes the development of several industry
systems and consulting activities. His research interests are business component-
based software development, object-oriented metrics, ontology-based e-business
modeling, knowledge-based representation, and semantic Web. He is a member of
IEEE Computer Society.

Dentcho N. Batanov received the M.Sc. and Ph.D. degrees from the Technical
University, Sofia, Bulgaria, in 1970, and 1975, respectively. He is currently an
associate professor in the Program of Computer Science and Information Manage-
ment at the Asian Institute of Technology, Thailand, where he was a coordinator of
the program from 1996 to 1999. His research interests are application of information
technologies in education, management, industrial engineering and manufacturing,
knowledge-based and expert systems, object-oriented software engineering, distrib-
uted systems and technologies, component and framework-based software develop-
ment, and e-business. He has published more than 100 papers in journals and
conference proceedings, as well as numerous textbooks and manuals. He is currently
a member of international board of several international journals and conferences.
He is a member of the IEEE, and the ACM.

Robert Mark Bram was born in Melbourne, Australia, in 1974. He has completed
a Network Computing Honors degree at Monash University, Melbourne, Australia,
and is planning on pursuing a Ph.D., further developing the ideas in this work. Areas
of particular interest are developing open source technologies with Java and Jini.

Jeff Brewer is an assistant professor in the School of Technology, Purdue
University, USA. His areas of interest include systems analysis and design,
computer-aided software engineering, rapid application development (RAD) and IT
project management. Prior to joining the faculty, he worked for 19 years as a systems
developer, manager and consultant in a variety of business environments.

T. Y. Chen is a professor of Software Engineering in the School of Information
Technology, Swinburne University of Technology, Melbourne, Australia, where he
is the director of Centre for Software Engineering (CSE). He received a Ph.D. in
Computer Science from the University of Melbourne. His current research interests
include software testing, maintenance and design.

Ajantha Dahanayake is an associate professor in the Department of Information
and Communication Technology at the Faculty of Technology, Policy and Manage-

About the Authors 297

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ment, Delft University of Technology, The Netherlands. She previously served as an
associate professor in the Department of Information Systems and Algorithms at the
Faculty of Information Technology and Systems. She received her B.Sc. and M.Sc.
in Computer Science from the University of Leiden and Ph.D. in Information
Systems from Delft University of Technology. She had served in a number of Dutch
research and academic institutions. Her research interests are distributed Web-
enabled systems, CASE, methodology engineering, component-based development
and m-business. She is the research director of the research program Building Blocks
for Telematic Applications Development and Evaluation (BETADE).

Javier Diaz-Carmona was born in México, on June 3, 1967. He received his B.S.
in Electronics Engineering in 1990 from the Instituto Tecnológico of Celaya (ITC),
Guanajuato, México; a Master of Science degree in Electronics in 1997 from the
National Institute of Astrophysics, Optics and Electronics (INAOE), Puebla,
México, where he is currently pursuing his doctoral studies. From 1990 to 1995 and
from 1998 to 1999, he worked as full time professor in the Department of Electronics
in the Instituto Tecnológico of Celaya. His main research interests are in digital signal
processing, especially in digital filter design, multirate processing systems and DSP
embedded applications.

Jana Dospisil is a lecturer at School of Network Computing, Monash University,
Melbourne, Australia where she is lecturing in the field of object oriented design and
programming in undergraduate and postgraduate courses. She holds a Ph.D. in
Engineering from the Royal Melbourne Institute of Technology, Australia. Her
research interests include object-oriented analysis and design, networked multimedia
and mobile agent technology. She has published several papers in the area of
separation of concerns concentrating on design and implementation of intelligent
mobile agents.

Laura Felice is an assistant professor and researcher at the Department of
Computer Science and Systems of the Universidad Nacional del Centro of Tandil,
Argentina. She is a member of the Software Technology project of INTIA (Instituto
de Investigación y Transferencia en Tecnología Informática Avanzada) of the same
university. Her research interest is focused on formal software development. In
particular, her work is oriented towards the definition of an integrated reuse process
defined for all stages of software development.

Jesús Garcia-Consuegra graduated as an Ingeniero de Telecomunicación (Tele-
communications Engineer) in 1992, and as a Doctor Ingeniero de Telecomunicación
(Ph.D. in Telecommunications) in 1999, both from the E.T.S. Ingenieros de
Telecomunicación of the University of Politécnica de Madrid, Spain. His research
activity focuses on software engineering and databases. Since 1994, he has been a

298 About the Authors

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

member of the Computer Science Department (Departamento de Informática) at the
Universidad de Castilla-La Mancha, Spain, and was made associate professor in
1999. He has also been head of the Research Group of Distributed Information
System since 1999. He is actively involved as member and technical director in
European and national projects, as well as contracts and agreements with private
companies and public administrations. He has been an organizer of different national
and international computer science events (congresses and workshops).

Rick Gibson has more than 20 years of software engineering experience using
structured, object oriented and cleanroom software development methodologies. He
is an authorized Software Engineering Institute (SEI) lead appraiser and an ASQ
certified software quality engineer. Dr. Gibson he has extensive domestic and
international experience in the conduct of SEI Capability Maturity Model evaluations
and development of process maturity improvement and corrective action plans for
evaluated organizations. He is currently an associate professor at American
University, Washington, D.C., and serving as chair of the Department of Computer
Science and Information Systems. His responsibilities, as a faculty member, include
teaching graduate courses in software engineering, database systems, and data
communication. He has published numerous books, book chapters and journal
articles on software development and quality assurance.

Gordana Jovanovic-Dolecek received a B.S. from the Department of Electrical
Engineering, University of Sarajevo, an M.Sc. from University of Belgrade, and a
Ph.D. degree from the Faculty of Electrical Engineering, University of Sarajevo. She
was with the Faculty of Electrical Engineering, University of Sarajevo, until 1993.
She served in various positions including as a research assistant, assistant professor,
associate professor full professor and chairman of the Department of Telecommu-
nication (1986-1991). From 1993-95, she was with the Institute Mihailo Pupin,
Belgrade, and then from 2001-2002 she was at the Department of Electrical &
Computer Engineering, University of California, Santa Barbara, USA. In 1995 she
joined the Institute INAOE, Department for Electronics, Puebla, México, where she
works as a professor and researcher. She is the author of three books, editor of one
book and author of more than 100 papers. Her research interests include digital signal
processing and digital communications. She is a member of IEEE and The National
Researcher System (SNI) Mexico.

Judith Kabeli is a doctoral student at the Department of Information Systems
Engineering at Ben-Gurion University, Israel, where she earned her B.Sc. and M.Sc.
degrees in Mathematics and Computer Science (1994). Prior to her Ph.D. studies,
Kabeli held professional and managerial position at the Israel Aircraft Industries.
Kabeli’s research interests include data modeling, information systems analysis and
design, and intelligent Web-based user interfaces. Her doctoral dissertation is

About the Authors 299

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

concerned with the development and testing of FOOM methodology that is described
in Chapter VII, which she authored under the supervision of Professor Peretz
Shoval.

D. C. McDermid has more than 10 years practical experience in the IT industry as
well as many more years as an academic. His main research interests are in the area
of systems modeling and systems thinking, particularly in how they can be applied to
capturing information systems specifications. He is also interested in how consultants
and other senior IT professionals can assist the discipline in terms of adding value to
IT business processes. He holds a bachelor’s degree with honors in Computing
Science and an M.B.A. from the University of Glasgow, UK, and a Ph.D. in
Information Systems from Curtin University of Technology in Australia and has links
and memberships with several professional bodies.

John Mendonca is an assistant professor in the School of Technology, Purdue
University, USA. He serves as the Computer Technology Department’s chair of the
graduate program and teaches graduate courses in information technology (IT)
leadership and management. Prior to his teaching career, he worked as a systems
developer, manager and consultant in the banking and insurance industries. His
interests include strategic IT, management of IT, organizational impact of IT and
software engineering.

Germán Montejano is a professor and researcher at the Universidad Nacional de
San Luis, Argentina. He holds a degree in Computer Science from the Universidad
Nacional de San Luis and is also a post-graduate student attending the university’s
M.Sc. Program in Software Engineering. He has experience in the information
technology area.

Valentina Plekhanova is a senior lecturer in Computing at the School of Computing,
Engineering and Technology at the University of Sunderland, UK. Plekhanova holds
an M.Sc./M.Phil. in Applied Mathematics and Theoretical Mechanics from the
Novosibirsk State University, Academgorodok, Russia. Her Ph.D. is in Application
of Computer Technology, Mathematical Modelling and Mathematical Methods in
Scientific Research, from the Institute of Information Technologies and Applied
Mathematics, Russian Academy of Sciences. She held a number of research and
lecturer positions in Russia and Australia. Plekhanova has international experience
in lecturing on such subjects as software engineering, knowledge engineering,
artificial intelligence, the theory of probability, computational science, and optimiza-
tion. She was a consultant with P-Quant, Sydney, Australia. She was a project
investigator in several international research and industrial projects in Russia and
Australia. Her research results were published in international journals and confer-
ence proceedings. Her research interests include engineering the cognitive pro-

300 About the Authors

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

cesses, learning processes, machine learning, knowledge engineering, modeling
intelligence in software systems, quantitative software project management, soft-
ware process analyses and process improvement.

Vijay V. Raghavan is currently an associate professor of Information Systems at
Northern Kentucky University, USA. His main research interests are in the areas
of software development process and personnel issues relating to software devel-
opers. He has published in the Journal of Information Technology Management
and Journal of Systems Management in addition to numerous presentations and
proceedings’ publications at national and international conferences. He has also
consulted with Fortune 100 companies in the greater Cincinnati area.

Iyad Rahwan is a Ph.D. student at the Intelligent Agent Laboratory, Department of
Information Systems, University of Melbourne, Australia. He received a Master of
Information Technology degree from Swinburne University of Technology, Austra-
lia, and a B.Sc. (1st Class Honors) in Computer Science from the UAE University.
His current research interests include multi-agent systems, electronic marketplaces
and automated negotiation.

Daniel Riesco is a professor and researcher at Universidad Nacional de San Luis
and Universidad Nacional de Río Cuarto, Argentina. Riesco holds a degree in
Computer Science from Universidad Nacional de San Luis, Argentina, and an M.Sc.
in Knowledge Engineering from Universidad Politécnica de Madrid, Spain. He is also
a professor of the M.Sc. Program in Software Engineering at Universidad Nacional
de San Luis, Universidad Nacional de Jujuy and Universidad Nacional de Catamarca,
Argentina. Riesco is the director of a project at the National University of San Luis.
He has made numerous research presentations in various national and international
conferences. He served as the program coordinator of the SCITeA’02 for the
International Association of Computer and Information Science (ACIS) and Central
Michigan University, USA, and as program committee member of different confer-
ences. Riesco is author or co-author of more than 60 publications in numerous
refereed journals and conference proceedings. He has been working on research
problems involving formal methods, UML, development process, workflow and
software quality assurance.

Dan Shoemaker is a professor and the academic coordinator in the Computer and
Information Systems program in the College of Business Administration at the
University of Detroit Mercy, USA. He has been in software work since 1968 and
he has had positions ranging from managing large IT operations to teaching. He
founded the software management master’s degree program (1991) at the Univer-
sity of Detroit Mercy. He is interested in all aspects of strategic process infrastruc-
ture and strategic management for IT.

About the Authors 301

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Peretz Shoval is a professor of Information Systems and head of the Department
of Information Systems Engineering at Ben-Gurion University, Israel. He earned his
B.Sc. in Economics (1970) and M.Sc. in Information Systems (1975) from Tel-Aviv
University, and Ph.D. in Information Systems (1981) from the University of
Pittsburgh, USA, where he specialized in expert systems for information retrieval.
In 1984 he joined Ben-Gurion University, where he started the Information Systems
Program at the Department of Industrial Engineering and Management. Prior to
moving to academia, he held professional and managerial positions in computer
companies and in the IDF. Shoval’s research interests include information systems
analysis and design methods, data modeling and database design, and information
retrieval and filtering. He has published numerous papers in journals and presented
his research in various conferences. Shoval has developed various methodologies
and tools for systems analysis and design, and for conceptual and logical database
design.

Zoran Stojanovic is currently a Ph.D. researcher at the Faculty of Technology,
Policy and Management, Delft University of Technology, The Netherlands. He
received his Dipl. Eng. and M.Sc. in Computer Science from the Faculty of
Electronic Engineering, University of Nis (Yugoslavia) in 1993 and 1998, respec-
tively. His research interests are in the areas of component-based development, Web
services and geographic information systems. He has been working since 1993 as
a researcher and a teaching assistant in the fields of computer science and software
engineering, with the University of Nis and then with the Delft University of
Technology. He has been an author of a number of publications.

Roberto Uzal is a part-time professor both of Software Engineering at Universidad
Nacional de San Luis (State University of San Luis) and of Information Technology,
at Universidad de Buenos Aires (University of Buenos Aires), both in Argentina. He
has been working on research problems involving software systems architecture,
real-time software and software projects management. Uzal is also the local
coordinator of the Master of Science Program on Software Engineering at Universidad
National de San Luis (this Master of Science Program is directed by Professor Dines
Bjorner of Denmark.). Uzal has made numerous teaching and research presenta-
tions in various national and international conferences, industries and teaching and
research institutions in Argentina, México and the United States. He also served as
session chair and tutorial chair at various international conferences. Uzal has
experience as general manager of very important software projects. Some of his
projects are mentioned as “success cases” in the Web pages of international
software firms. Uzal is a member of the Argentine Society of Information Technol-
ogy and Operational Research (SADIO) and the Software Engineering and
Information Technology Institute (SEITI).

302 About the Authors

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Gabriel Vilallonga is an assistant professor and researcher at the Universidad
Nacional de San Luis, Argentina. Vilallonga holds a degree in Computer Science
from the Universidad Nacional de San Luis and is also a post-graduate student
attending the university’s M.Sc. Program in Software Engineering.

Yun Yang is an associate professor in the School of Information Technology,
Swinburne University of Technology, Melbourne, Australia, where he is the director
of Centre for Internet Computing and E-Commerce (CICEC). He received a Ph.D.
in computer science from the University of Queensland, Australia, and a master’s
degree in Computer Science from the University of Science and Technology of
China. His current research interests include Internet- and Web-based computing
technologies and applications, workflow environments for software development
and e-commerce, and real-time CSCW and groupware systems.

Index 303

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Index

A

AbstractEntry 216
additivity condition 127
alphabetical ordering 212
amplitude change function (ACF) 258
application-software security 158
Archimedean axiom 120
aspect-oriented programming (AOP)

117
assessment process 101
atomic 20
attribute language 211
average information content classifica-

tion (AICC) 128

B

behavioral property 181
best practice 99
binary-code implementation package

230
business component (BC) 181, 201
business component factory (BCF) 234
business component system 201
business object component architecture

(BOCA) 182

business process reengineering (BPR)
12

business process-based methodology
(BPBM) 178

business rule 53
business rules diagram (BRD) 56

C

capability description 211, 213
capability dimension 104
capability maturity model – integrated

(CMMISM) 26
capability maturity model for software

(CMM) 48
chronological ordering 212
class definition entropy (CDE) 128
class intersection 119
class unification 119
client-server 4
clients 211
code level 69
cognitive processes 165
cohesion 123
commercial off-the-shelf (COTS) 235
complexity of code 125
component behavior 237
component granularity 239

304 Index

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

component identifier 237
component information 237
component-based development (CBD)

230
computer-aided software engineering

(CASE) 1, 44
computer-related security issues 158
constraint satisfaction problems (CSP)

212
context-aware parameters 238
continuous representation process 31
customer-supplier category 102
cyclomatic complexity 125

D

data intensive applications 197
data modeling 85
descriptive formal models 158
digital filter design problem 259
directory services 211
discovery protocols 214
distributed component 201
domain 217

E

e-development 42
Electronic Industries Alliance Interim

Standard (EIAIS) 27
end-user needs 196
engineering 30
engineering process category 102
enterprise distributed system 230
entity classes 85
entropy 126
entropy-based metrics 117
exact temporal order 146
external iteration 6
Extreme Programming (XP) 43

F

filter sharpening technique 262
finite impulse response (FIR) 258, 272
formalist school 160
fragmentation 145

function-oriented part 180
Functional and Object-Oriented Method-

ology (FOOM) 82
functional modeling 85

G

geographical information systems (GIS)
195

global objects 66

H

heterogeneous data sources 180
hierarchical ordering 212
highpass (HP) 273
human resource quality 165

I

ILOG 218
information technology (IT)

13, 43, 97, 231
information technology (IT) management

158
information technology solutions

evolution process 203
integrated capability maturity model

(CMMI) 203
integrated product development capabil-

ity maturity 27
interaction diagram 144, 149
interface definition language (IDL) 124
internal iteration 6
International Council on Systems

Engineering 29
interpolated finite impulse response

(IFIR) 258, 272
iterator pattern 5

J

join protocols 214

K

knowledge engineering 165
KobrA method 234

Index 305

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

L

lines of code (LOC) 121
lowpass filter (LP) 273

M

machine learning 165, 168
management category 102
mechanistic-engineering method 159
methodical methodology 45
middle-tier distributed object 181
model-view-controller (MVC) architec-

ture 179
module structure 73
multipliers per output sample (MPS)

258

O

object-oriented (OO) 82
object-oriented (OO) modeling 231
object-oriented (OO) programming 2
object-oriented analysis and design

(OOAD) 2
object-oriented applications 116
object-oriented development methods

118
object-oriented methodology 195
object-process diagram (OPD) 84
object-process methodology (OPM) 84
objective function 217
organization process category 102

P

Petri Net (PN) 12
Petri Nets with Clocks (PNwC) 11
pragmatist stream 160
predicate logic expression 217
prescriptive formal models 158
process definition (PD) 12
process dimension 103
process execution 101
process management 30, 101
process-oriented part 180
profile theory 166
project management 30

protocol 212
pseudo-code 92
pseudolanguage 3
purpose statement 103

Q

quantitative management 98

R

R-C interaction pattern 183
RAISE specification development

process 63
RAISE specification language (RSL) 63
Rational Unified Process (RUP)

202, 233
realization level 68
recursive running sum (RRS) 258
regular expression searches 213
rendezvous precondition 16
requirement description 211
requirements baseline 70
requirements description 213
risk/reward approach 49
Run-Time Security Evaluation (RTSE)

160

S

search criteria 211
search language 211
separation of concerns 117
serial form 216
service discovery 211
service provider 213
service-based approach 230
service-based system architecture 230
ServiceID 215
ServiceItem 215
ServiceTemplate 215
soft systems 169
software crisis 3
software development methodolog 43
software engineering (SE) 26, 42, 198
software metrics 117, 121
software process improvement model

27

306 Index

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

specialization level 68
state components 66
stopband 261
structural property 181
support process category 102
System Development Life Cycle (SDLC)

161
systems engineering 26, 165
Systems Engineering Capability Model

(SECM) 27

T

technical systems 169
transition conditions 16
transition information 16
transition restriction 16

U

Unified Modeling Language (UML)
1, 233

universal client accessibility 180
use cases 53

W

wide spectrum language 67
workflow 13
Workflow Management System (WMS)

13

InfoSci-Online

Database

www.infosci-online.com

Provide instant access to the latest offerings of Idea Group Inc. publications in the
fields of INFORMATION SCIENCE, TECHNOLOGY and MANAGEMENT

A product of:

INFORMATION SCIENCE PUBLISHING*
Enhancing Knowledge Through Information Science

http://www.info-sci-pub.com

*an imprint of Idea Group Inc.

During the past decade, with the advent of
telecommunications and the availability of
distance learning opportunities, more college and
university libraries can now provide access to
comprehensive collections of research literature
through access to online databases.

The InfoSci-Online database is the most
comprehensive collection of full-text literature
regarding research, trends, technologies, and
challenges in the fields of information science,
technology and management. This online
database consists of over 3000 book chapters,
200+ journal articles, 200+ case studies and over
1,000+ conference proceedings papers from
IGI’s three imprints (Idea Group Publishing, Information Science Publishing and IRM Press) that
can be accessed by users of this database through identifying areas of research interest and keywords.

Contents & Latest Additions:
Unlike the delay that readers face when waiting for the release of print publications, users will find
this online database updated as soon as the material becomes available for distribution, providing
instant access to the latest literature and research findings published by Idea Group Inc. in the field
of information science and technology, in which emerging technologies and innovations are
constantly taking place, and where time is of the essence.

The content within this database will be updated by IGI with 1300 new book chapters, 250+ journal
articles and case studies and 250+ conference proceedings papers per year, all related to aspects of
information, science, technology and management, published by Idea Group Inc. The updates will
occur as soon as the material becomes available, even before the publications are sent to print.

InfoSci-Online pricing flexibility allows this database to be an excellent addition to your library,
regardless of the size of your institution.

Contact: Ms. Carrie Skovrinskie, InfoSci-Online Project Coordinator, 717-533-8845
(Ext. 14), cskovrinskie@idea-group.com for a 30-day trial subscription to InfoSci-Online.

30-Day
free trial!

Information Resources
Management Journal (IRMJ)
An Official Publication of the Information Resources Management Association since 1988

Mission

The Information Resources Management Journal (IRMJ) is a refereed, international publication featuring the
latest research findings dealing with all aspects of information resources management, managerial and organiza-
tional applications, as well as implications of information technology organizations. It aims to be instrumental in
the improvement and development of the theory and practice of information resources management, appealing to
both practicing managers and academics. In addition, it educates organizations on how they can benefit from their
information resources and all the tools needed to gather, process, disseminate and manage this valuable resource.

Coverage

IRMJ covers topics with a major emphasis on the managerial and organizational aspects of information resource
and technology management. Some of the topics covered include: Executive information systems; Information
technology security and ethics; Global information technology Management; Electronic commerce technologies
and issues; Emerging technologies management; IT management in public organizations; Strategic IT manage-
ment; Telecommunications and networking technologies; Database management technologies and issues; End user
computing issues; Decision support & group decision support; Systems development and CASE; IT management
research and practice; Multimedia computing technologies and issues; Object-oriented technologies and issues;
Human and societal issues in IT management; IT education and training issues; Distance learning technologies and
issues; Artificial intelligence & expert technologies; Information technology innovation & diffusion; and other
issues relevant to IT management.

ISSN: 1040-1628; eISSN: 1533-7979
Subscription: Annual fee per volume (four issues): Individual
US $85; Institutional US $265

Editor:
Mehdi Khosrow-Pour, D.B.A.
Information Resources Management
Association, USA

An excellent addition to your library

It’s Easy to Order! Order online at www.idea-group.com or call our toll-
free hotline at 1-800-345-4332!

Mon-Fri 8:30 am-5:00 pm (est) or fax 24 hours a day 717/533-8661

Idea Group Publishing
Hershey • London • Melbourne • Singapore • Beijing

��������	��
�������

����������
�������

����������������

����

������
 !"
#�$
%

IDEA GROUP PUBLISHING
 Publisher in information science, education, technology and management

&��'())***$	+�������'$���

����������	�
��	��

�#,���
�-�,
�,,��(

�+	���	��
.������

Management and Organizational Issues for Decision Making Support Systems

��/	�*�+
.�'��
Demonstrating Value-Added Utilization of Existing Databases for Organizational
Decision-Support

Understanding Decision-Making in Data Warehousing and Related Decision
Support Systems: An Explanatory Study of a Customer Relationship
Management Application

Design and Implementation of a Web-Based Collaborative Spatial Decision
Support System: Organizational and Managerial Implications

A Comparison of Implementation Resistance Factors for DMSS Versus Other
Information Systems

The Impact of Expert Decision Support Systems on the Performance of New
Employees

The Effects of Synchronous Collaborative Technologies on Decision Making: A
Study of Virtual Teams

	TeamLiB
	Cover
	Table of Contents
	Preface
	Section I: System Design
	Chapter I. Integrating Patterns into CASE Tools
	Chapter II. Petri Nets with Clocks for the Analytical Validation of Business Process
	Chapter III. Software and Systems Engineering:Conflict and Consensus
	Chapter IV. Lean, Light, Adaptive, Agile and Appropriate Software Development: The Case for a Less Methodical Methodology
	Chapter V. How to Elaborate a Use Case
	Chapter VI. A Rigorous Model for RAISE Specifications Reusability
	Chapter VII. The Application of FOOM Methodology to IFIP Conference Case Study

	Section II: Managing Software Projects
	Chapter VIII. A Quantitative Risk Assessment Model for the Management of Software Projects
	Chapter IX. Software Metrics, Information and Entropy
	Chapter X. Temporal Interaction Diagrams for Multi-Process Environments

	Section III: Applications and Implementations
	Chapter XI. Toward an Integrative Model of Application-Software Security
	Chapter XII. Learning Systems and their Engineering:A Project Proposal
	Chapter XIII. Towards Construction of Business Components: An Approach to Development of Web-Based Application Systems
	Chapter XIV. An OO Methodology Based on the Unified Process for GIS Application Development
	Chapter XV. A Framework for Intelligent Service Discovery
	Chapter XVI. A Service-Based Approach to Components for Effective Business-IT Alignment
	Chapter XVII. One Method for Design of Narrowband Lowpass Filters
	Chapter XVIII. Design of Narrowband Highpass FIR Filters Using Sharpening RRS Filter and IFIR Structure

	About the Authors
	Index

