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PRBFACB 

This book grew out of lectures and the lecture notes generated 

therefrom by the first named author at UC Berkeley in 1980 and by 

the second named author at UCLA, also in 1980. We were motivated 

to develop these notes more fully by the urgings of our colleagues and 

friends and by the desire to make the general subject and the work of 

Alain Connes in particular more readily accessible to the mathematical 

public. The book develops a variety of aspects of analysis and 

geometry on foliated spaces which should be useful in many contexts. 

These strands are then brought together to provide a context and to 

expose Connes' index theorem for foliated spaces [C03] , a theorem 

which asserts the equality of the analytic and the topological index 

(two real numbers) which are associated to a tanaentially elliptic 

operator. The exposition, we believe, serves an additional purpose of 

preparing the way towards the more general index theorem of Connes 

and Skandalis [CS]. This index theorem describes the abstract index 
,.. . 

dass in KO(Cr(G(M))), the index group of the C -algebra of the 

foUated space, and is neceasarily substantially more abstract, while the 

tools used here are relatively elementary and strairhtforward, and are 

based on the heat equation method. 

We must thank several people who have aided us in the 

preparation of this book. The origins of this book are embedded in 

lectures and seminars at Berkeley and UCLA (respectively) and we 

wish to acknowledge the patience and assistance of our colleagues 

there, particularly Bill Arveson, Ed Effros, Marc Rieffel and Masamichi 

Takesaki. More recently, we have benefitted from conversations and 

help from Ron Douglas, Peter Gilkey, Jane Hawkins, Steve Hurder, 

Jerry Kaminker, John Roe, Jon Rosenberg, Bert Schreiber, George 

Skandalis. Michael Taylor, and Bob Zimmer. 

We owe a profound debt to Alain Connes, whose work on the 

index theorem aroused our own interest in the subject. This work 

would not exiat had we not been so stimulated by his results to try to 

understand them better. 
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INTRODUCTION 

Global analysis has as its primary focus the interplay between 

the local analysis and the global geometry and topology of a manifold. 

This is seen classicallv in the Gauss-Bonnet theorem and its 

generalizations. which culminate in the Ativah-Singer Index Theorem 

[ASI] which places constraints on the solutions of elliptic systems of 

partial differential equations in terms of the Fredholm index of the 

associated elliptic operator and characteristic differential forms which 

are related to global topologie al properties of the manifold. 

The Ativah-Singer Index Theorem has been generalized in 

several directions. notably by Atiyah-Singer to an index theorem for 

families [AS4]. 

elliptic operators 

F_M_B. 

L21p -llbl.dvollFll. 

The 

P = 
where 

In 

typical setting here 

(Pb) on the total 

Pb is defined 

this case there is 

is given by a family of 

space of a fibre bundle 

on the Hilbert space 

an abstract index class 

indlPI E ROIBI. Once the problem is properly formulated it turns out 

that no further deep analvtic information is needed in order to 

identify the class. These theorems and their equivariant counterparts 

have been enormously useful in topology. geometry. physics. and in 

representation theory. 

A smooth manifold Mn with an integrable p-dimensional 

subbundle F of its tangent bundle TM may be partitioned into 

p-dimensional manifolds called 1 ea. v es such that the restriction of F 

to the leaf is .iust the tangent bundle of the leaf. This structure is 

called a f 01 i at ion of M. Localiy a foliation has the form IRPXN. 

with leaves of the form IRPX(n). Locally. then. a foliation is a fibre 

bundle. However the same leaf may pass through a given coordinate 

patch infinitely often. 

complicated. 

So globally the situation is much more 

Foliations arise in the study of flows and dynamies. in group 

representations. automorphic forms. groups acting on spaces 

Icontinuously or even measurablyl. and in situations not easily modeled 

in classical algebraic topology. For instance. a diffeomorphism acting 

ergodicallv on a manifold M yields al-dimensional foliation on MXZIR 

with each leaf dense. The space of leaves of a foliation in these 



cases is not decent topologically levery point is dense in the example 

above) or even measure-theoretically (the space may not be a standard 

Borel spacel. Foliations carry interesting differential operators, such 

as signature operators along the leaves. Fo11owing the Atiyah-Singer 

pattern. one might hope that there would be an index c1ass of the 

type 

indlP) = Average indlP x), 

There are two difficulties. First of a11 , leaves of compact foliations 

need not be compact, so an elliptic operator on a leaf may weH have 

infinite dimensional kernel or cokernel. and thus "indIPx)" makes no 

sense. This problem aside, the fact that the space of leaves may not 

be even a standard Borel space suggests strongly that there is no way 

to average over it. There was thus no analytic index to try to 

compute for foliations. 

Alain Connes saw his way through these difficulties. He 

realized that the "space of leaves" of a foliation should be a 
• * non-commutative space -- that iso aC-algebra Cr(G(M». In the 

case of a foliated fibre bundle this algebra is stably isomorphic to the 

algebra of continuous functions on the base space. This suggests 

* KO(CrIGIM») as a home for an abstract index indlP) for tangentially 

elliptic operators. [Subsequentlv Connes and Skandalis proved [CS] 

an abstract index theorem which identifies this class.] 

Next Connes realized that in the fibre bundle case there is an 

invariant transverse measure v which corresponds to the volume 

measure on B. So we must assume given some invariant transverse 

measure in general. [These may not exist. If one exists it may not 

be unique up to scale.] An invariant transverse measure v gives 
* rise to a trace t6 v on C r IG(M)) and thus areal number 

ind vIP) = t6 v(ind(P» E lJi! 

which Connes declared to be the anallltic index. [Actually we 

are cheating here: the most basic definition of the analytic index is in 

terms of locally traceable operators as we sha11 explain below and in 



Chapters J and IV.] 

computed it. 

With an analytic index to compute, Connes 

Connes Index Theorem. Let M be a compact smooth manifold with an 

oriented foliation and let )I be an invariant transverse measure with 

associated RueUe-Sullivan current C)I' 

elliptic pseudodifferential operator. Then 

Let P be a tangentially 

Connes' theorem is very satisfying and its proof involves a tour 

of many areas of modern mathematics. The authors decided to expose 

this theorem and to use it as a centerpiece to discuss this region of 

mathematics. Along the way we realized that the setting of 

Jo li at ed spaces (local picture IRPXN with N not necessarily 

Euclidean) was at once simpler pedagogicallv and yielded a somewhat 

more general theorem, since foliated spaces which are not manifolds 

occur with some frequency. 

The local picture of a foliated space is simply aspace of the 

form IRPXN, where we regard sets of the form IRPXCn) as leaves 

and N is a transversal. 

N 

To such aspace is canonically associated a p-plane vector bundle 

F I RPXN with F (t,n) E! T(IRP). The global picture of a foliated space X 

is somewhat more complex. We stipulate that X be a separable 

metrizable space with coordinate patches Ux :!! IRPXNx and 

continuous change of coordinate maps of the form 

3 



t' = CPlt.nl 

n' = ",In) . 

which are smooth along the leaves, in the sense that a set in Ux of 

the form IRPXn is sent to a set of the form IRPX",lnl by a smooth 

map. This guarantees that the leaves in each coordinate patch 

coalesce to form leaves i. in X which are smooth p-manifolds. The 

bundles F I U. coalesce to form a p-plane bundle F over X such that 
1 

F Ii. ::! Tli.) for each leaf i.. 

Any foliated manifold is a foliated space. There are interesting 

examples of foliated spaces which are not foliated manifolds. For 

instance. a solenoid is a foliated space with leaves of dimension 1 and 

with Ni homeomorphic to Cantor sets. If Mn is a manifold which is 

foliated by leaves of dimension p and if N is a transversal of Mn then 

any subset of N determines a foliated subspace of M simply by ta king 

those leaves of Mn which meet the subset. This includes the 

laminat ions of much current interest in low dimensional topology. 

Finally, X may weIl be infinite dimensional: take n7s1 foliated by 

lines corresponding to algebraically independent irrational rotations. 

Then ( l) X n;sl is a transversal! 

If X is a foliated space then C;IXI is the ring of continuous 

functions on X which are smooth in the leaf directions. If E -!!... X 

is a foliated bundle ILe .. E is also foliated. 7f takes leaves to leaves. 

and 7f is smooth on each leaf) then r r(E) :: r rIX.E) denotes 

continuous tangentiaIly smooth sections of E. We let n~IX) = 
rrIAkF*) and define the ta.noentia.l cohomoloOll groups of a 

foliated space by 

where d: k 
nr(X) - n~ + 1 (XI is the analogue of the de R,ham 

differential obtained by differentiating in the leaf directions. Similar 

Ibut not the same) groups have been studied by many authors. 

Tangential cohomology groups are based upon forms which are 

4 



cont i nuous transversely (even if X is a foliated manifold.) It turns 

out that this small point has some major consequences. The groups 

may be described as 

where CX'T is the sheaf of germs of continuous functions which are 

constant along leaves. The tangential cohomology groups are functors 

from foliated spaces and leaf-preserving tangentially smooth maps to 

graded commutative IR-algebras. They vanish for k > p. There is the 

usual apparatus of long exact sequences, suspension isomorphisms, and 

a Thom isomorphism for oriented k-plane bundles. 

* The groups H'T(X) have a natural topology and are not 

necessarily Hausdorff; we let ii~(X) = H~(X)/CO} denote the 

maximal Hausdorff quotient. For example, if X is the irrational flow 

on the torus then H~(X) has infinite dimension but ii~(X) :!! IR. The 

parallel between de Rham theory and tangential cohomology theory 

extends to the existence of characteristic classes. Given a 

tangentially smooth vector bundle E _ X we construct tangential 

connections. curvature forms, and Chern classes. This leads to a 

tangential Chern character, a tangential Todd genus and hence a 

topological index 

where • denotes the tangential Thom isomorphism. 

Next we recall the construction of the groupoid of a foliated 

space; the idea is due to Ehresmann, Thom and Reeb and was 

elaborated upon by Winkelnkemper. If X is a foliated space then 

there is a natural equivalence relation: x N y if and only if x and y 

are on the same leaf. The resulting space CX(X) C X X X is not a 

well-behaved topological space. The holonomy groupoid G(X) of a 

foliated space is designed to by-pass this difficulty. It contains 

holonomy data not given by CX(X); holonom.v is essential for 

diffeomorphism and structural questions about the foliated space. The 

holonoml/ arou1)oid G(X) consists of tripIes (x,y,[a]) where x 

5 



and y lie on the same leaf 1 of X, a is a path from x to y in 1, 

and [a] denotes the holonomy class of the path a. The map 

GIX) _ lXIX) is simply Ix,y, [a]) _ Ix.y). The preimages of (x,y) 

correspond to holonomy classes of maps from x to y. The space G(X) 

is a (possibly non-Hausdorff) foliated space. If N is a complete 

transversal ILe. N is Borel and for each leaf 1, 

1 ~ iHNnl) ~ )(0) then G~ is the subgroupoid of GIXI consisting of 

tripies IX,y,[a]) with X.y E N. In a sense which we make quite 

precise, G~ is a good discrete model for G(X). 

Next we turn to a study of differential and pseudodifferential 

operators on X. Suppose that EO and E1 are foliated bundles over X 

and 0: r 7 (EO) _ r 7 (E1). D is said to be tanoential if D 

restricts to 0 1 : r(Eo 111 _ r1E1 11 ) for each 1. and 0 is 

t an q e n t i all J! e l l i pt i c if each operator D 1 is an elliptic 

operator. If 0 is a tangential. tangentially elliptic operator then 
* Ker D 1 and Ker 0 1 consist of smooth functions on 1. However 

these spaces may weil be infinite-dimensional. and hence expressions 

such as 

* dirn Ker 0 1 - dirn Ker 0 1 

make no sense. However there is some additional structure at our 

disposal. for Ker 0 1 and Ker 0 ~ are Coo(l)-modules. We shall 

show that these spaces are for each 1 locally finite dimensional in a 

sense that we now describe. 

Let Y be a locally compact space endowed with a measure (in 

the application to index theory Y = 1 is a leaf and the measure is a 

volume measure) and suppose that T is a positive operator on L2(Y,EI 

for some bundle E over Y. Then 

for every bounded positive function f. We define a measure 'uT by 

Trace (fl12Tfl/2) = f fd'uT 
y 
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and declare T to be loeallv traeeable with Iocal trace.ur 

provided that .ur/Vi) < 00 where the Vi are compact sets with union V. 

If T = 1: A.iTi with each Ti Iocallv traceable then T is Iocallv 

traceable with Iocal trace ,uT = ):A.i.uT.' We identifv a closed 
1 

subspace V with the ortho~onal pro.iection onto it and sav that the 

subspace is loeallv .finite dimensional if the pro.iection is 

Iocallv traceabie. Anv closed subspace of COO -functions is Iocally 

finite dimensional. 

If V is a COO manifold and D is an elliptic pseudodifferential 
I< I< 

operator on V then DD and D D are Iocallv traceable so Ker D and 
• Ker D are Iocally finite dimensional. The I 0 e a I i nd ex of D is 

defined to be 

t D = .uker D - .uKer D· 

If V is a compact manifold then f t D = ind(D). the classical 
y 

Fredholm index. 

The notion of Iocallv traceable operator makes it possible to 

discuss the index of an elliptic operator on a non-compact manifold. 

As we observed previousiv. if D is a tangential. tangentiallv elliptic 

operator on a compact foliated space X then D I. is an elliptic 

operator on the leaf I. and its Iocal index 

= .uKer D I. - .u Ker D; 

does make sense as a (signedl Radon measure on 1.. Write t ~ = 
t D for each x E 1.. Then t D = Ct~J is a tanqentia.1 

I. 
measur e; that iso a familv of Radon measures supported on Ieaves of 

X with suitable invariance properties (cf. 4.11). We regard t D as 

the index of D. If the foliation bundie F is oriented then a 

tangential measure determines a class in H~(XI. The task of an index 

theorem is to identifv that class. 

To proceed further along these Jines and because thev are of 

7 



substantial independent interest, we introduce transverse measures. 

For this we move temporarily to a measure-theoretic context. 

Suppose that (X.exl is a standard Borel equivalence relation. We 

assume that there is a complete Borel transversal (which holds easily 

in the setting of foliated spaces) and that we are given a one-cocycle 

6 E Zl(ex,lR\ A transverse measure of modulus 6 is a 

measure v on the a-ring of all Borel trans versals which is a-finite 

on each transversal and such that v 1 T is quasi-invariant with modulus 

61 T for the countable equivalence relation ex (\ (TxT) for each 

transversal T. If 6 :: 1 then v is an i n va r i an t transverse 

measure. For example. if X is the total space of a fibration 

1 _ X _ B foliated with fibres as leaves then an invariant 

transverse measure on X is precisely a a-finite measure on B. 

Recall that a tangential measure >.. is an assignment 1 ... 

>"1 of a measure to each leaf (or class of ex) which satisfies suitable 

Borel smoothness properties (cf. 4.11). For example. if D is a 

tangential, tangentially elliptic operator on X then the local index l D 

is a tangential measure. If we choose a coherent family of volume 

measures for each leaf 1 then these coalesce to a tangential measure. 

Given a tangential measure >.. and an invariant transverse 

measure v, we wish to describe an integration process which produces 

a measure >..dv on X and then a number r>..dv obtained by taking the . 
total mass of the measure. Choose a complete transversal N. There 

is a Borel map 0: X _ N with a(xl ~ x. Then a-1(n) is contained 

in the leaf containing n. Regard X as fibring measure-theoretically 

over N. Let >"n be the restriction of >"1 to a-1(n). Then 

f>"ndV(n) = >..dv is a measure on X. 
N 

This integration process is 

related to the pairing of currents with foliation cycles in Sullivan 

[Su]. 

How many invariant transverse measures are there? Let MT(XI 

be the vector space of Radon invariant transverse measures. The 

construction above provides a pairing 

MT/Xl X O;(X) _ IR 

8 



and hence a Ruelle-Sullivan map 

We prove a Riesz representation theorem: this map is an isomorphism. 

For example. if X is foliated by points then H~(X) = C(X) and an 

invariant transverse measure is .iust a measure. so our result reduces 

to the usual Riesz representation theorem. We see also that X has !1Q. 

invariant transverse measure if and only if H~(X) = O. 

With this machinery in hand we can state and prove the 

remarkable index theorem of A. Connes. Let D be a tangential. 

tangentially elliptic pseudodifferential operator on a compact oriented 

foliated space of leaf dimension p. As described above, we obtain the 

analytic index of D as a tangential measure t D' For any invariant 

transverse measure v the real number J t Ddv is the analytic 
X 

v-index indv(D) defined by Connes. The Connes index theorem states 

that for an.v invariant transverse measure v, 

where tto p 
D 

symbol of D. 

J tDdv = J t~OPdv 
= :t:.; 1 chT(D)TdTIX) is the topological index of the 

Using the Riesz representation theorem we reformulate 

Connes' theorem to read 

which. as is evident, does not involve invariant transverse measures. 

Of course if X has no invariant transverse measures then H~(X) ::: 0 

and tD E CO). 

There is a stronger form of the index theorem for foliated 

manifolds which is due to Connes and Skandalis. To state it we need 
• to introduce the reduced C -algebra of the foliated space. The 

compactly supported tangentially smooth functions on GIX) form a 

·-algebra under convolution. (If G(X) is not Hausdorff then a 

9 



modifieation is required.1 For eaeh leaf GX of G(XI with its natural 

volume measure there is a natural regular representation of lhis 

--algebra on (8(L2/Gx\l. Complete the --algebra with respeet to these 

* representations and one obtains C r IGIX)). This algebra enters into 

index theory beeause there is a natural pseudodifferential operator 

extension 

* -0 (1 -0_ Cr(G(X)) _ (;> _ f(S F,End(E)) _ 0 

and henee the tangential prineipal symbol of D yields an element of 
* KO(Cr(G(X))). Connes and Skandalis [CS2J identify this element 

and thereby obtain a sharper form of the index theorem whieh is 

useful in the Type III situation. Even in the presenee of an invariant 

transverse measure, if the symbol of an operator D has finite order in 

KO(C;(X)) then [l DJ = 0 in H~(X). 
We eonelude this introduction with a brief summary of the 

contents of eaeh ehapter. 

I. LOCALLY TRACEABLE OPERATORS 

Given an operator T on L2(Y.E) for a loeally eompaet spaee y, 

we explain the eoneept of loeal traeeability and we eonstruet the 

loeal traee .LtT of T. The loeal index l D of an elliptie operator on 

a noneompaet manifold is one motivating example. We also diseuss 

several situations outside the realm of foliations where loeally 

traeeable operators shed some light. In partieular. we interpret the 

formal degree of a representation of a unimodular loeally eompaet 

group in these terms. 

11. F'OLIATED SPACES 

Here we set forth the topologie al foundations of our study. 

We give man.v examples of foliated spaees and eonstruet tangentially 

smooth partitions of unity. Then follow smoothing results whieh 

enable us, for instanee. to assume freely that bundles over our spaces 

10 



are tangentially smooth. It is perhaps worth noting that KO(X) 

eoineides with the subgroup generated by tangentially smooth bundles. 

Next we explain holonomy and, following Winkelnkemper, introduee the 

holonomy groupoid of a foliated spaee. We eonsider the relationship 

between G(X) and its diserete madel G: and determine the strueture 

of G: in several examples. 

IlI. TANGBNTIAL COHOMOLOGY 

In this ehapter we define the tangential eohomology groups 
• • as the eohomology of the de Rham eomplex r T(A F ) and 

equivalently as the eohomology of X with eoefficients in the sheaf of 

germs of eontinuous funetions on X whieh are eonstant alonl leaves. 
* There is an analogous eompaetly supported theory HTC(X) and an 

* analogous tangential vertieal theory HTv(B) on bundles. We develop 

the properties parallel to the expeeted properties from de Rham 

theory. There is a Mayer-Vietoris sequenee (for open subsets) and a 

Künneth isomorphisID 

* • .::. * HT(X)8H (M) --=... HT(XXM) 

provided that M is a manifold foliated as one leaf and XXM is 

foliated with leaves IXM. We establish a Thom isomorphiam theorem 

(3.30) of the type 

for an oriente<! tangentially smooth n-plane bundle B _ X. Finally 

we indicate the definition of tangential homology theory. In an 

appendix we rephrase these eonstruetions in terms of Lie algebra 

eohomology. 

IV. TRANSVBRSB MBASURBS 

We develop here the general theory of groupoids, both in the 

measurable end topologie al eontexts, in order to give a proper home to 

1 1 



transverse measures. The prime examples are G(X) and G:, of course. 

We introduce transverse measures and their elementary properties. 

The proper integrands for transverse measures are tangential measures, 

as we have previously explained in the follation context. We carefully 

8Xplain the integration process 

(~,,,) ... ~d" ... I~d" 

and Indicate the necessary boundedness results. Specializing to 

topological groupoids and eontinuous Radon tangential measures, we 

recount the Ruelle-Sullivan construction of the eurrent 

C" E O~(X) associated to the transverse measure". The current Is 

a cycle if and only if " Ia invariant. We relate invariant transverse 

measures on X to invariant measures on a complete transversal N. 

Finally we establish the Riesz representation theorem: finite invariant 

transverse measures are exaetly the group Homcont(H~(X),IR). One 

useful consequenee of this result Is that a linear functional F on 

MT(X) is representable as F(,,) = I wet" for some w E H:(X) if 

and only if the functional Is continuous In the weak topololY on 

MT(X). 

V. CBARACTBRISTIC CLASSBS 

This chapter eontains the Chern-Weil development of tangential 

characteristic elasses. This eomes down to carefully I'eneralizing the 

usual constructions of connections, eurvature, and their c1asses. This 

results in tanl'ential Chern elasses e~ E H; n(X), tangential 

Pontrjagin eIasses P~ E Hin(X), and a tangential Euler eIass, as weIl 

as the now classical universal combinations of these. We eonstruet 

these classes at the level of forms, so that. for a fixed tangential 

Riemannian conneetion, the topological index is a uniquely defined 

form. We verify the necessary properties of the tangential Chern 

charaeter and the tangential Todd genus which relates the K-theory 

and tangential cohomololY Thom isomorphisms. 

12 



VI. OPBRATOR ALGBBRAS 
• Bach foliated space has associated to it the reduced C -algebra 

* . Cr(G(X)) mtroduced by A. Connes. In this chapter we present its 

basic properties. Central to our treatment is the HUsum-Skandalis 

isomorphism 

. . 
which shows that, at the level of C -alrebras, the fohated spaee 

"fb " • * N i res over a complete transversal N. The C -algebra Cr(GN) is the 

C· -algebra of the discrete model G: of G(X). An invariant transverse 
. * measure " mduces a trace fI" on Cr(G(X)) and one then may 

• construct the von Neumann alrebra W (G(X),U). The analogous 

splitting 

at the von Neumann algebra level 11 expected, of course. [n the 

ergodie setting this corresponds to the usual decomposition of a 1100 

factor into the tensor product of 111 and 100 factors. We conclude 

wlth abrief introduction to K-theory and the construction of a partial 

Chern character c: Ko(C;(G)) _ ii~(x). 

m. PSBUDODIPFBRBNTIAL OPBRATORS 

The usual theory of pseudodifferentlal operators takes place on 

a smooth manifold. In this ehapter we "parametrize" the theory to the 

setting of foliated spaces. This involves constructing the 

pseudoclifferential operator algebra and its closure, defining the 

tangential princlpal symbol, and showing that the analytic index dass 

l D depends only upon the homotopy class of the principal symbol. We 

construet the pseudodifferential operator extension whieh has the form 

* -0 • o _Cr(X) _ @ _ r(S F,End(E)) _ O. 

Turning to tangential differential operators, we introduee bounded 

13 



geometry and finite propagation techniques to demonstrate that l D is 

well-defined. We establish the McKean-Singer formula: for t > 0, 

where 6 is an associated self-adioint superoperator and .. ~ is the 

supertrace. Next we prove that as t _ 0 there is an asymptotic 

expansion 

A 

AJ~D)d)/ 

where each A J~6) i. a signed tangential measure independent of t. As 

ind )/(D) is independent of t, it is immediate that 

ind)/(D) = J wn(g,B)dv 

where wD is a tangentially smooth p-form which depends on the bundle 

B of D and upon the tangential Riemannian metric. 

VIII. THB INDBX THBORBM 

If D is a tangential, tangentially elliptic pseudodifferential 

operator on a compact foliated space with oriented foliation bundle of 

dimension p, then we have defined the analytic index l D and the 

topological index l ~oP a. tangential measures. We establish the 

Connes index theorem which asserts that for any invariant transverse 

measure v, 

We reformulate this result, in light of the Riesz representation 

theorem, as 
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Chapter VIII is devoted to the proof of the index theorem. We verify 

the theorem for tangential twisted signature operators and then argue 

on topologieal grounds that this suffiees. 

There are three appendiees to the book; eaeh applies the index 

theorem in conerete situations and so demonstrates some possible uses 

of the theorem. The first appendix, by Steven Hurder, develops some 

interesting examples and applieations of the theorem to the case when 

the leaves of the foliation have a eomplex structure. The second 

appendix, by the authors and Robert J. Zimmer, explores the use of 

the index theorem to demonstrate the existence of square-integrable 

harmonie forms on certain non-compact manifolds. The third appendix, 

by Robert J. Zimmer, diseusses the application of some of the 

Gromov-Lawson ideas regarding the existence of a tangential metric 

which has positive 8calar curvature aloße the leaves. These provide a 

eomplement to the general development. 
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CHAPTER I: LOCALLY TRACBABLE OPERATORS 

OUi' object in this chapter is to develop the notion of what we 

call locally traceable operators -- or, more or less equivalently, the 

notion of locally finite dimensional subspaces relative to an abelian 

von Neumann algebra 01. The underlying idea here is that certain 

operators, although not of trace cIass in the usual sense, are of trace 

class when suitably localized relative to 01. The trace, or perhaps 

better, the Z oca Z trace of such an operator is not aoy longer a 

number, but is rather a measure on a measurable space X associated 

to the situation with 01 = L oo(X). This measure is in general infinite 

but O'-finite, and it will be finite precisely when the operator in 

question is of trace class in the usual sense, and then [ts total mass 

will be the usual trace of the operator. Heuristically, the local trace, 

as a measure, will tell us how the total trace - infinite in amount -

is distributed over the space X. Once we have the notion of a locally 

traceable operator, and hence the notion of locally finite dimensional 

subspaces, one can define then the local index of certain operators. 

This will be the difference of local dimensions of the kernel and 

cokernel, and will therefore be, as the dlfference of two O'-finite 

measure, a O'-finite signed measure on X. One has to be slightly 

careful about expression. such a. 00 - 00 that arise, but this Is a 

minor matter and can be avoided easily by restricting conslderation to 

sets of finite measure. These ideas are developed to some extent in 

Atiyah CAt3J for a very similar purpose to what we have in mind 

here, and we are pleased to acknowledge our gratitude to him. 

To be more formal and more exact about this notion, we 

consider a separable Hilbert space H with an abelian von Neumann 

algebra 01 inside of I8(H), the algebra of all bounded operators on H. 

(We could dispense in part with this separability bypothesis, but it 

would make life unnecessarily difficult; an the examples and 

applications we have in mind are separable.) For example, suppose 

that X is a standard Borel space (cf. [Ar], [Z4, Appendix A] for 

definitions and properties of such spaces). It is a fact that X is 

isomorphic to either the unit interval CO,lJ with the usual O'-field 
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of Borel sets or i8 a countable set with every subset a Borel set; cf. 

[Ar] for details. Now let JJ be a a-finite measure on X and let 

Hn be a fixed n-dimensional Hilbert space where n = 1.2 ..... 00• Then 

H = L2(X.JJ.Hn). the set of equivalence classes of square integrable 

Hn-valued functions on X. is a separable Hilbert space. The algebra 

L oo(X.JJ) of equivalence classes of bounded measurable functions acts 

as a von Neumann algebra on H. We recall that an "n-valued 

function f on X is measurable if (f(· ). E) is measurable for each 

fixed E on "n and square integrability means that I f( • ) I 2 is 

integrable. 

This example is almost the most general such example of an 

abelian von Neumann algebra acting on a separable HUbert space. 

Indeed. let us choose standard measure spaces 

n = 1.2 ..... 00• with the understanding that some 

set and so will not contribute anything; 

(Xn.JJn). one for each 

Xn's may be the void 

then form H(n) = 
2 L (Xn.JJß.Hn) as we did before and finally form the direct sum 

H = IR n). The measure spaces (Xn,JJn) may be assembled by 

disjoint 

L oo(X,JJ). 

acts as 

union into a standard measure space (X,JJ) and then 

which is essentially the product of the spaces L oo(Xn.JJn). 

a von Neumann algebra on H by (f· ")n = f I X • "n where 
n 

f E L oo(X,U), " = ("n) E H. It i8 a standard theorem that if 7R is 

any abelian von Neumann algebra acting on a separable Hilbert space 

K, then there are (Xn,Un) as above and a unitary equivalence U of K 

with H = IL2(Xn,Un,Hn) such that U7RU-1 :!! L oo(X.U). (cf. Dixmier 

[Dil] p. 117.) 

Thus whenever we have an abelian subalgebra CI of Gi(H) , H 

may be regarded by this result as aspace of functions f on 

X = ",Xn with fIx) E Hn for x E Xn. It is often convenient to 

introduce the notation Hx = Hn for x E Xn so that (Hx) may be 

thought of as a "field" of Hilbert spaces or a Hilbert bundle; the 

functions f satisfy fIx) E "x and can be thought of as (square 

integrable) sections. The notion of measurability of such a function is 

clear: it should be measurable on each set Xn as a function into Hn = 
Hx' What we have in fact described is the dir e c tin t e Q r elf 

construction defined by the abelian subalgebra IX, and one writes 
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as the direct integral of the spaces Hx. In the sequel we will freely 

think of elements f of H in this situation as vector-valued functions. 

A more specific kind of example that we have in mind is 

described as folIows: X is a connected COO manifold, U is a 

o-finite measure absolutely continuous with respect to Euclidean 

measure on X, and E _ X is a Hermitian vector bundle on X -- that 

is, a complex vector bundle with each fibre given an Hermitian inner 

product which varies continuously from fibre to fibre. Denoting the 

fibre of E over x E X by Hx' we obtain a field of Hilbert spaces (Hx) 

of constant (finite) dimension. It is easy to find a Borel trivialization 

of E, that is, a field of unitary isomorphisms 'P. of ~ with a fixed 

Hilbert space ~ so that these maps define a Borel isomorphism of the 

total space E of the bundle with XXHn. With H the set of square 

integrable measurable sections of E, (equivalently H = J~du(x) or 

H = L2(X,Hn», and with C. = L oo(X,U) acting by multiplication on H, 

we obtain exactlv the kind of abstract structure described above. 

Given such a pair H,c., we want to define what it means for an 

operator T on H to be locally traceable relative to c.. To motivate 

this, consider a one dimensional subspllce V of Hand choose a unit 

vector 'P in V. Viewing H as a direct integral of a field Hx 

we can think of 'P as a function 'PhC) with 'P(x) E Hx and then 

form ''P(x) ,2. This Is an integrable function of norm one, or 

equivalently the measure I "(x) ,2du(x} is a probability measure which 

we denote up(V). Its measure class Is intrinsic to V and in particular 

does not depend on the choice of the measure JA. used to write C. = 
L oo(X,U). (Recall that U could be replaced by any measure equivalent 

to U in the sense of absolute contin\llity.) This measure Up(V} has 

u-total mass one -- the dimension of V -- and can be thought of as 
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describing how the dimension of V i. "spread out over" the space X or 

also how the dimension of V "localizes." More generally • if V i. any 

finite dimensional subspace of H. let us choose an orthonormal basis 

1P1 •...• lPn for V. Then it i. an elementary and well known calculation 

n 
that I IlPi(x) 12 is independent of the choice of the orthonormal 

1-1 
basis and consequently that the measure Up(V) defined by 

is independent of all choices. Ite total mass is n. the dimension of V. 

and a,ain Up(V) can be tbought of a. describing how the total 

dimension of V is di8tributed or localized over the 8pace X. 

In the same way we arllle that if T i8 any finite rank 

operator. and if 1P1 •...• lPn is any orthonormal basis for the range of T 

(or for the orthogonal complement of the kernel of T). then the 

measure ~ defined by 

where the inner ptoduct is taken pointwlse in Hx' is a signed measure 

of total mass equal to the trace of T and which again descrlbes how 

this total trace i8 distributed over the space X. If T = P(V) is the 

orthogonal projection onto a finite dimensional subspace V. then this 

clearly coincides with the previous definition as the notation itself 

suggest.. 

With these simple examples in mind. the path of development is 

fairly clear and leads us to consider operators T for which a suitably 

defined UT is a a-finite measure; or. if as in many examples X is 

naturally a locally compact space. then operatore T for which UT is 

aRadon measure (finite on compact sets). We begin with the trace 

function which we view as defined on a11 nonnegative operators on a 

Hilbert space H with values in the extended positive real numbere. 

Denote this cone of nonnegative operators by fi(H)+ and for T E 

fiCH)+ define Tr(T) = I(TE i'~} where Ei is any orthonormal basis for 

Hand where we define Tr(T) to be +00 if the series (of nonnegative 
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terms) diverges. It is elementary, using the positive square root S = 
T1/ 2 of T, to see that the sum is independent of the choice of basis. 

As a map from e(H)+ to i+, Tr satisfies 

(2) Tr(X T) = X Tr(T), 

(3) • • Tr(A A) = Tr(AA ), A E e(H) 

(4) For any increasing net T (1 in e(H)+ with T = lub T (1 

in the sense of the order on e(H)+, Tr(T) = lub Tr(T (1) 

(cf. Dixmier [Di2] p. 93 and p. 81). Such mappings defined on the 

positive co ne in any von Neumann algebra are called norma l 

t races. Condition (3) is equivalent to the condition 

(3') Tr(UTU-1) = Tr(T) for T in e(H)+ and U unitary. 

If one drops (3) alto.ether such functions are called no rma l 

wet ah t 3; in this connection see Haagerup [Haal] for a discussion 

of the continuity condition (4). 

Suppose now that IX is an abelian von Neumann algebra on H; 

then IX := L -(X,u) and for convenience we use the same symbol for a 

f\lnction and t.he corresponding operator. (We note parenthetically that 

for most of this IX could be any von Neumann algebra, but as we do 

not have any significant applications in mind except for abelian IX we 

shall not pursue this level of generality). Our first observation is the 

followinc. 

ProR08itiou 1.1. 

18(H)+. Then 

Let f E IX E!: L oo(X;U) and nonnegative, and let T E 

where fl12 and Tl12 are the nonnegative square roots of fand T. 
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ß:ggf. Let S = flI2Tl12; then S· = Tl12f l/2 and the formula of 
• the statement results immediately from the fact that Tr(AA) = 

• Tr(A A). 0 

This shows first of all that for fixed nonnegative T, the left 

hand side above is linear in f for f nonnegative. The continuity and 

additivity properties of the trace and the fact that g _ T1/ 2gT1I2 

i8 order preserving and weak operator continuous show that if we 

defined for any measurable subset E of X, 

where f E is the characteri8tic function of E, then .LlT Is a positive 

countably additive measure on X, absolutely continuous with respect to 

.Ll in that .Ll(E) = 0 implies .LlT(E) = O. The same reasoning and an 

approximation argument shows that for any f ~ 0 

Tr( fl12Tfl/2 ) = ffd.LlT' 
x 

The crucial problem, and this will lead us to the definition, Is that 

.LlT may and often does faH to be a-finite in the sense that 

00 

X = V X 1 where Xi is an increasing sequence of sets of finite .LlT 
i-I 

measure. At this point one has a choice of two closely related 

definitions of local traceability of T. On the one hand one could say 

that T is locally traceable if .LlT is a-finite, and this is perfectly 

satisfactory, but for applications we want something a bit different 

which reflects extra structure on X. Namely suppose we are given in 

X an increasinr family of subsets Xi whfch exhaust X. The idea is 

that .LlT should be not rost a-finite relative to any exhaustion of X, 

but that .LlT(Xi) < 00 for this particular choice of XI' We have in mind 

the example of X a locally compact second countable space with Xi a 

countable fundamental family of compact sets. The condition above 

rost means that .LlT is aRadon measure. 
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DofiDition 1.2. If (Xi) ia an exhaustion of X by increasing Borel seta, 

one says that a positive operator T on H is l oea l l1l t raeeab l e 

(relative to this exhaustion) if UT(Xi) < 00 for a11 i. The measure 

uT is ca11ed the l oea l t raee of T. 

Agreeing to ca11 a Borel subset of X b 0 und e d if it is 

contained in some ~, we can rephrase slightly the definition of local 

traeeability as fo11ows: a positive operator T is loeally traeeable iff 

fTf is trace elass for every nonnegative f in {X = L oo(X,U) of 

bounded support. 

It is evident from Proposition 1.1 and the continuity properties 

of the traee that we have the followln, properties for loeal traees 

whieh we state without proof. 

Propptltlen 1.3. 

(1) UT+S = ~ + US· 

(2) U~ T = ~UT· 
(3) if 0 ~ S ~ T and T is loeally traceable then so is S. 

(4) if T( «) Is a net eonverging upward to T then 

for every measurable set B. 

For non-positive operators one extends the notion of loeal 

traceability by linearity. 

DefinitiOD 1.4. If T le any operator on H, T ia I oea Il 11 

t raeeab l e (relative to a given exhaustion of X) if we can write 
n 

T = :r ~iP i where Pi are nonnegative loeally traeeable operators and 
1-1 

~i complex numbers. The l 0 e alt ra e e of such a T is by definition 

:r~iUp .. 
1 

This last statement requires a little explanation. First, the 

loeal traee is indeed well defined, for if T ean be written in two 
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different ways as a linear combination of positive locally traceable 

operators. it is easy to see usinr the additivity properties that tAT 

comes out to be the same. Second, the measure J.trr is not quite a 

standard kind of obiect. for as a "measure" defined on a11 Borel 

subsets of X, it is a11 too likely to involve inadmissible expressions 

like 00 - -. What we have is a complex valued measure defined on 

the a-ring of a11 Borel sets of X which are contained in some Xi (Le. 

the bounded Borel sets) for the given exhaustion and which is 

countably additive on the (relative) a-field of Borel subsets of each 

~. 
If an operator T is locally traceable. with 10cal trace J.trr' 

then for every positive f in IX of bounded support. fl/2Tfl/Z Is a 

trace class operator and we have 

where the integral on the right is well defined since f has bounded 

support. 

We record some elementary consequences of these definitions 

which extend the interral formula above. Par part two below note 

that the set of complex valued measures defined above is a 

(two-sided) module over ,. = L oo(X,tA) by multiplication of measures by 

functions with the left and right actlons being the same. 

Pro.poeitioa 1.5. 

(1) If P = (PCP Z) + i (P 3-P 4) is the canonical 

representation of an operator P in terms of positive operators (Le. Pt 

is the positive part of the real part of P, etc) then P Is locally 

traceable iff each Pi iso 

(2) The class of 10cally traceable operators is closed under 

ad.ioints and is a two-sided module over IX. Moreover the local trace 

is a two-sided module map. 

f.&:ggf. (1) If each Pi is locally traceable, then by definition P is 
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loeally traeeable. Conversely, if P is loeally traeeable so P = 

n * 
I ~lTi' Ti positive and loeally traeeable, then P has a simHar 

1-1 

expression with ii instead and 80 is loeally traeeable. Consequently 

the real and imaginary parts of P are loeally traeeable, and so it will 

suffiee to show that if P is self ad.ioint and loeally traeeable, then 

p'*', its positive and negative parts, are also. We may assume 

P = I~iTi with Ti positive loeally traeeable, ~i real; then by 

eombining terms, P = T r T 2' Ti positive loeally traeeable. Then P + 

T 2 = T 1 is a positive operator greater than P and henee P + T 2 = Tl 

~ p+. By (3' of Proposition 1.3 it follows that p+ is loeally 

traeeable, and then that P- is also. 

(2) We have already seen that the loeally traeeable 

operators are elosed under acUolnts. To see that this class is a 

two-sided module over (I, it suffiees, by taking linear eombinations, to 

show that gP is loeally traeeable when P is nonnerative loeally 

traceable, and g E (I. To do this we show that the self adjoint 

* * operators gP + Pg and UgP - Pg ) are loeally traceable. Writing P = 

Q2 and observlng that 

** * 2 2 2* 2* R = (Q + Qg ) (Q+Qr ) = Q + gQ + Q g + gQ r , 

* we see that rP + pg is a linear combinatlon of the positive operators 
* P, gPg • and R. The first is given as loeally traeeable. To see that 

the second ia also, let f be an element of bounded support in (I and 

observe that fgPg *f = g(fPf)g· is of trace elass sinee fPf iso Hence 
• gPg is loeally traceable. For the third, the definition of R shows 

• * • that gP + Pg Et P + gPg and henee that R , 2(P + gPg). By 
• monotonicity, R is locally traceable and it follows that gP + Pe is 

locally traceable. A simHar argument ean be used for the imadnary 

part of rP, establishing that rP Is loeally traceable. 

To see that the loeal trace is abimodule map, eonsider an 

operator S = hTk with T locally traceable, and h,k positive elements 

in (I. The loeal trace Us satisfies 
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for every positive f in IX of bounded support, and this property 

eharaeterizes "s 8inee ltS is uniquely determined by the interral8 

above. But now 

usilll the fact that f1/2Tf1l2 i8 traee class and the eommutativity 

pl'Operties of the traee. By the definition of ltT the last expression 

ean be written a8 the interral of the nonnerative funetion khf, whieh 

is of bounded 8Upport, arainst the measure ltT. Combining the8e 

equalitie8 we see that 

By unicity we find 

at lea8t for h end k positive. By linearity thi8 holds for an hand k 

and 80 the loeal traee i8 abimodule map. C 

We i80late a8 a 8eparate 8tatement a u8eful formula implieit in 

the above Pl'Oof. 

Corollarx 1.7. If T is loeally traeeable and h, k E IX are of 

bounded 8upport, then hTk i8 traeeable and 

The Ioeal trace has a further rather 8traighforward invariance 

property. Suppose that u is a unitary operator in the normalizer of 

the abelian alrebra IX; that is, uIXu -1 = IX. Then eon.iuration by u 
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defines a ·-isomorphism of IX = L oo(X,JJ) and by point realization 

theorems, cf. Mackey CMa2J, there is a Borel automorphism 9 of X 

with 9.JJ N JJ so that (ufu-1)(x) = f(9-1(x)) for f e L "(X,JJ) = 
IX. Recall that 9.JJ(B) = JJ(9-1(B)) for any Borel set B. Now if (~) 
is a liven exhaustion of X aa introduced earlier in this seetion, we 

know what bounded sets are and we want 9 to map bounded sets to 

bounded sets. Then the expected fact concerninl this situation is 

true, and we omit the short proof. 

Proposition 1.8. If u and 9 are aa above, and if T is a locally 

traceable operator with local trace ~, then uTu-1 ia locally 

traceable with local trace 9.(JJT)' [) 

Many of the most common examples of locally traceable 

operators are self acUoint projections. If V CHis a closed subspace 

and P(V) the orthogonal projection onto it, then we say that V Is 

locclllv finite dimensional if P(V) is locally traceable. The 

local trace JJp(V) is called the l 0 cal d i me ns ion and for brevity 

we will write it simply as JJV' 

Now let us suppose that X is a locally compact space 

denumerable at 00, and let the exhaustion ~ of X consist of a 

fundamental sequence of compact sets (every compact set K is 

eventually in some Xi)' Further suppose that ~ is a finite 

dimensional Hermitlan vector bundle over X and that the Hilbert space 

H is the space of (equivalence classes of) L2 sections of ~ relative 

to some Radon measure JJ on X, which without loss of generality we 

take to have support equal to a11 of X. Then it makes sense to talk 

about the continuous sections in H; this is the (dense) subspace C of 

H consisting of those equivalence classes (mod null sections) which 

contain a continuous section of ~ . If such a continuous section 

exists in a given elass, it is of eourse unique. We make the fo11owing 

definition. 

Definition 1.9. An operator 8 from H to H is smoo t h i na 0 f 

o r der zer 0 if 8(H) C C. the continuous sections. 

The following result will provide large classes of interesting 
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and important locally traceable operators -- the exhaustion here is 

understood to be by compact subsets of X. 

Theorem 1.10. Let Si' i = 1.. ... n be operators on H which are 

n 11 

smoothing of order zero. Then T = . L SiS i is locally traceable. 
1.-1 

Praof. It c1early suffices to consider one such S. If v E H, then 

the element S(v) of H lies in C and is represented hy a unique 

continuous seetion S(v)/·). Then for fixed x E X and for a fixed 
11 

vector (J in the dual space Ex of the fibre Ex of ( at x, we can 

define (J(S(v)(x)). By a standard argument in functional analysis using 

the c10sed graph theorem, this is a continuous linear functional b(x,(J) 

of v. Moreover, if (J(x) is a continuous seetion of the dual bundle 
* ( of (, it is c1ear that b(x, (J(x)) is a continuous function of x. From 

a11 of this it follows that we can find for each x E X, a measurable 

section Klx, • ) of the bundle End( () with I K(x, • ) I square 

integrable for each x such that 

S(v)(x) = fK(x,y)v(y)d/..t(y). 

It is an easy matter to choose this function K to be .iointly 

measurable in its two variables by the von Neumann selection theorem 

(cf. [Z4, p. 196]), and, by continuity in x, the L2 norm of I K(x,') I 

is bounded as x runs over compact sets. Since the Hilbert-Schmidt 

norm of K(x,y) is at most a constant multiple of its operator norm 

because the fibre is finite dimensional. the same statement holds for 

this norm. Thus if f is a bounded Borel function of compact support 

viewed both as a function and as the corresponding multiplication 

operator, the operator fS can be written as 

(fS)(v)(x) = f f(x)K(x,y)v(y)d/..t(y). 

The kernel f(x)K(x,y) has compact support in x and it fo11ows from our 

remarks above and the Fubini theorem that the Hilbert-Schmidt norm 

I f(x)K(x,y) I HS is an L2 function on X X X. This implies that fS is a 
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. .-
Hilbert Schmidt operator, and hence that (fS)(fS) = fSS f is a 

• traceable operator. This means by definition that SS is locally 

traceable, and we are done. 0 

As an example of this theorem, consider a closed subspace V of 

H which consists of continuous functions. Then it fo11ows immediately 

that the projection P(V) onto V is locally traceable and that V is 

locally finite dimensional. 

By far the most important example of this for us is the 

following: X a COO manifold which is !!Q1 necessarily compact, E an 

Hermitian vector bundle over X, and 0' a differential operator from E 

to E which we assume to be elliptic, (cf. Taylor [Tay]). We form 

the space H of square-integrable seetions of E and form the 

corresponding unbounded operator 0 on H. Thls is of course somewhat 

inexact, for one could form many such operators with different 

domains. The smallest such would be the dosure of the operator 0' 

acting on the space of compactly supported seetions. The largest 
• would be the Hilbert space aruoint of the formal aruoint (0') defined 

on the compactly supported sections. For our purposes here 0 can be 

any closed operator between these two. (As aremark for future 

chapters, we note that in the specific cases to be treated later these 

two extreme operators defined by 0' coincide [cf. (7.24)] so there is 

no ambiguity about the unbounded operator 0 on H). With such a 0 

we form its kernel V = Ker(O). The elements v of V will be by 

definition weak solutions of the differential equation O'v = 0 and 

hence by ellipticity actually COO seetions. By Theorem 1.10 and the 

comments following it, Ker(O) is locally finite dimensional; its local 
• dimension, which we write Uo' is aRadon measure on X. If 0 is the 

Hilbert space adjoint of 0, the same considerations apply and we can 
• form the local dimension U • of the kernel of 0 . 

o 

DefiDltiop 1.11. The l Dca lind ex lO of 0 is the difference 

Uo - uO·, a signed Radon measure on X. 

If X is compact, then of course these are a11 finite measures 

and the total mass of lO' necessarily an integer, is the usual index of 

O. The dassieal Atiyah-Singer index theorem provides a formula for 
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this in terms of topological invariants. The object of the Connes 

index theorem for foUations is to provide a similar formula in the 

following context: X a compact foliated space, D a differential 

operator assumed to be tangentially elliptic (see Chapter VII) so that 

for aoy leaf I, of the foUated space the differential operator D 11, :: 
D I, will be elliptic in the usual sense and will define a local index on 

each leaf 1,. The leaves I, are not necessarily compact and hence 

Ker(D ,) is not necessarily finite dimensional. The theorem then 

provides a formula for the average of these local indices, the average 

being taken over all leaves. This averaaing process is by no means 

straightforward and requires a whole subsequent chapter, Chapter IV, 

to explain. 

The framework of locally traceable operators provides a 

convenient bridge to the work of Atiyah [At3J on the index 

theorem for covering spaces. Let X be a manifold (not necessarily 

compact) and let X _ X be a covering space with fundamental 

domain U and eovering group r. Then 

where X is liven volume measure. X is aiven the pullback measure. 

and r aets by the left regular representation. With respeet to this 

decomposition the commutant of r is the von Neumann algebra 

where Gt is the algebra corresponding to the right regular 

representation. There is a natural trace r on Ä corresponding to 

the usual trace on e tensor with the canonieal trace on Gt. Suppose 

that T is a bounded operator on L2(X) which commutes with the action 

of r. Then T has the form 

with respect to the decomposition above. Atiyah defines 
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where f is the characteristic function of U. We may simplify this to 

read 

where T = Tidl8 I. 

Let A = L "(X) acting 

restriction, A acts on L2(U). 

upon L2(U) by multiplication. 

upon L 2de, by multiplication, and, by 

Then A is isomorphie to L" c(U) acting 

Write T = Tid acting upon L2(U). Then 

it is clear that indr('f) is precisely the integral of the local trace: 

indr (T) = J dUT . 
X 

Then Atiyah's theorem may be understood simply as relating UT to 

the lift of uT to X. 
The content of Theorem 1.10 can be rephrased somewhat with 

no reference to topology; namelv if H = L2(X,u) (or finite dimensional 

vector valued functions) on a measure space, let T be a bounded 

linear transformation on H to itself such that T(H) C L .. (X,U). 

That is, the image of T consists of bounded functions. Then we claim 

that 'fTa is locally traceable and that there is 8 very simple formula 

for the local trace. Actually the same idea would work if T(H) were 

contained in a suitably defined space of locally bounded functions too, 

but for simplicity let us stick to globally bounded functions. 

First we observe that an application of the closed graph 

theorem shows that T is bounded as a map of L2(X) into L "(X). 

Further it is an easily shown fact, (cf. Ounford-Schwartz (OS] p. 

499) that whenever T is a bounded linear map from a separable 

Banach M into L "eX), there is a measurable bounded function k(x) from 

X into the dual M- of M such that (Tm)x = k(x)(m) for m E M. 

Application of this yields a bounded map x _ k(x) from X to L2(X) 

which serves as a "kernei" for T. The following is proved in exactly 

the same way that Theorem 1.10 is. 
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Pro.RQsition .LU. If T maps L2(X,J.d into L oo(X,u) then TT* is 

locally traceable (relative to any exhaustion by sets of finite 

u-measure) and its local trace ls the measure , k(x) ,2dU(x) where 

k is as above. 

It is a standard fact that the L2 valued measure function can 

be written as k(x)(y) = K(x,y) for a jointly measurable function. Then 

(Tf)(x) = J K(x,y)f(y)du(Y) 

is, as we observed already, an integral kernel operator. 

Because the issue will come up in the construction of operator 

algebras associated with groupoids and foliations, we recall briefly 

some sufficient conditions for a kernel K(x,y) to define a bounded 

operator. 

DfiinitiOD 1.13. A kernel K(x,y) on X X X is i nt earab l e(with 

respect to a measure U on X) if 

ess s ~ p J 'K(x,y)' dU(Y) < 00 

ess s u p J 'K(x,y)' dU(x) < 00 • 

y 

One may define an operator T = TK from functions on X to functions 

on X formally by 

(Tf)(x) = J K(x,y)f(y)dU(y) . 

If f E LI n L 00 then the integral at least makes sense and the two 

conditions in the definition above show immediately that , Tf 'I is 

bounded by a constant times , f 'I and that , Tf '00 is bounded by 

a constant times , f I 00. It is an easy and standard interpolation 

result using the Riesz convexity theorem (cf. Uunford-Schwartz 

[DSJ, p. 525) that T defines a bounded operator on each LP to LP 

for each p with a norm no worse than the larger of the two bounds in 

the definition. 
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Proposition 1.14. If the kernel K is integrable, T = T K defines a 

bounded operator on L2(X). If in addition khd = [J I K(x,y) 12dy) 1/2 is 

essentially bounded in x, then T maps L2(X) to L oo(X) and the local 

trace of TT* is k2(x)du(x). 

The ideas developed above find other interesting applications 

and it is our purpose in the balance of this chapter to look at some 

of these. Specifically, let G be a locally compact second countable 

abelian group. Let H = L2(G'UG) with IX = L oo(G'UG) acting by 

multiplication, where UG is Haar measure. If E is any Borel subset of ... 
the dual group G, we construet the aubspace V(E) of H consisting of ... 
functions rp E H whose Fourier transform rp vanishes outside of E. 

We reeall that if ~ is any Haar measure on G, then there is a 

uniquely determined eholce of Haar measure U... on a with the 
G 

property that the Fourier inversion formula holds exaetly, not just up 

to a scalar, when UG and U ... are used. Specifleally if 
G 

~(a) = J (a. x)rp(x) dUG(x) 

and if 

~(x) = J Ca,x) "'Ca) dUa(a), 

then (~)'" = rp for auitable functions rp where C·,·) is the duality 

pairing ofaX G to the eircle group. ... 
Let us assume that the subset E of G has finite dual Haar 

measure. Then by the Fourier inversion theorem, the elements of V(E) 

are back transforms of elements of L2(E) C L2(a). But since E has 

finite measure, L2(E) C L1CE), and consequently the elements of VCE) 

are back transforms of intecrable functions on a. It follows that VCE) 

consists of continuous functions and so by Theorem LID, V(E) is 

locally finite dimensional. Let UE be the loeal dimension of V(E). 

The unitary operator u. induced by left translation leaves V(E) 

invariant and normalizes IX. Proposition 1.8 tells us then that UE is 

invariant under left translation by elements of G. Thus UE is a 

Haar measure; the only question is which one. Thls is not diffieult to 
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answer. 

ProROeition 1.15. Let UG be a Haar measure on G, let U... be its 
G 

... 
dual Haar measure on G, and let E be a subset of finite measure in 

a. Then the local dimension of V(E) is given by 

f.I:gg!. First we observe that the answer written above does not 

depend on the original cholce of UG in view of the way U .... 
G 

chanecs when we change UG' To obtain the result wo note that the 

projection operator PE unto V(E) is eiven as a convolution operator 

with the kerne I K(x,y) = I (xy-l,a) du ... (a). Now for f positive, 
S G 

bounded and of compact support, the operator PHfl/2 is given by 

convolution with the L2 kernel K(x,y)fl/2(y). Since P~ = PE' we have 

and is given as a convolution operator with kernel 

which is the convolution of K(x,y)f1/ 2(y) with its adJolnt. 

Consequently we can calculate the trace of fl/2PEfl/2 by integrating 

the kerne I on the diagonal x = y. So 

Tr(fl/2PSfl/2) = I(fl/2(x))2 K(x,x) dUG(x) 

= I f(x~ ! B (1, a)dUa( a) dUG(x) 

= ! f(x~ Ua(E~ dUG(x), 

Thus UE = u ... (E)uG as desired. 0 
G 

Let us continue this discussion a Httle further; suppose that G 

33 



is a unimodular locally compact second countable grouP. and let J( be 

a square integrable irreducible representation. This means that J( 

occurs as a summand of the left regular representat10n on L2(G). or 

that one (equivalently each) of its matrix coefficients is square 

integrable. Associated to such a representation is a number dJ( 

called the f 0 rma 1 d e Cl re e of J( (cf. Dixmier [Di2. 14.4]) which 

can be defined by the eQuation 

f 1 -(J(g)x.y) (J( (g) u • v) dlJG(td = d; (x.u)(y. v). 

Of course dJ( depends on the choice of Haar measure IJG' hut it is 

elear that the product dJ(IJG is intrinsic. This suggests, as we shall 

show in amoment. that the formal degree is not properly a number, 

but rather a Haar measure. 

Prmtotitio.n 1.16. Let G be unimodular. J( a square integrable 

irreduclble representation. and let V(J() be any irreducible subspace 

of the left regular rcpresentation eQuivalent to J(. Then V(J() has 

locally finite dimension; the local dimension is a multiple of Haar 

measure given by dJ(IJG where dJ( is usual formal degree. 

f.!:ggi. It follows from the usual discussion of square integrable 

representations that aoy subspace V(J() can always be realized as the 

set of matrix coefficients {(J(g)-ly•xo )} where X o is fixed and y 

varies over H(J(), the Hilbert space upon which J( is realized. This 

demonstrates immediately that V(J() consists of continuous functions 

and hence by Theorem 1.10 is locally finite dimensional. The same 

argument as in the abelian case shows that the local dimension is a 

multiple of Haar measure. In order to compute the multiple, we 

realize V(J() as the set of matrix coefficients CCx: x E H(J():> 

where cx = (J(g-l)x.x o)' By the orthogonality relations the square 

norm of Cx is d; 1 (xo,xo)(x.x). Normalizing X o by (xo.x o) = dJ(' 

we see that x _ Cx is an isometry. Now let Cei:> be an 

orthonormal basis in H(J() and let ci be the corresponding vectors in 

V(J(). Further let V n be the span of (c1 ..... cn). By the introductory 
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comments in the chapter, the local trace tAn of V n is given by 

As n tends to 00, the projection onto V n increases monotonically to the 

projection onto V. By (4) of Proposition 1.3, t-tn(E) increases upward 

to tA,,(E) where tA" is the 10cal dimension of VI,,). 

increases monotonically to the infinite sum 

It follows that dtA" = d"dtAG as desired. 0 

But i: 1 ci(g) 12 
1=1 

If the group G is non-unimodular the situation be comes more 

complicated as one might ,uess from Duflo-Moore [DM], Pukanszky 

[Puk]. Suppose 

representation of G. 

that " is an irreducible square integrable 

This means that " occurs as summand of the 

left regular representation, but now some, but not all matrix 

coefficient& are square integrable. Let P(,,) be the closed linear 

span of a11 irreducible summands of L2(G) eQuivalent to ". Then 

P(,,) is also invariant under rieht translation and as a G X G module is 

isomorphic to " X 7l where 7l is the contragredient of " (cf. Mackey 

[Ma6]). As 1t is also square integrable, and as PI,,) is primary for 

the left and the right actions, there are, once we fix a left Haar 

measure on G, two canonically defined formal degree operators on 

P(,,), D" for the 1eft action and D K for the right action [Ma6]. 

Each is an unbounded positive operator affiliated to the von Neumann 

algebras associated to the left and right actions respectively, and 

.emi-invariant under these actions. If we change Haar mea.ure by a 

.calar factor c, then D" and B" change by c-1 so that symbolica1ly 

the products D"dtJo and B"dtAG are intrinsic. We recall that both 

the left and right von Neumann algebras are isomorphie to (8(H), the 

algebra of all bounded operators, and so have canonically defined 

traces. 

Now 8uppose that V C PIK) ia a subspace of PI,,) invariant 
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under the right action. We would Iike to know when V is locally 

finite dimensional and in those cases we want a formula. As before, 

the local dimension. if it exists, is a multiple of left Haar measure. 

The subspace V. being left invariant, defines a projection Pv in the 

right von Neumann algebra on Phd as these two algebras are 

commutants of each other. We now try to make sense out of the 

expression d51(")1I2PV(DI(")1I2 as a bounded positive operator. In fact 

it will be a well-defined bounded operator precisely when the range of 

Pv is included in the domain of (DI(")1I2. When this happens and 

when in addition this bounded positive operator has a trace, we see 

that Pv or V itself is finite relative to 01("' Another way to say 

this very much in the spirit of Pedersen-Takesaki [PTJ is to 

observe that DI(" defines a weight '" on the von Neumann algebra of 

the right action given by T _ Tr(D!./2TD!./2) (cf. Moore CMrlJ) 

and the condition on Pv is that '" is finite on this element. Our 

result is the followilll. 

ProDOtitioQ 1.17. The subspace V of P(I(") haI locally finite dimension 

if and only if Pv is finite relative to 01("' The local dimension il 
~1/2 ~1/2 

then Tr(DI(" PVDI(" ) JJG' [] 

We omit the proof of this fact and simply remark that if G is 

unimodular, then DI(" and DI(" become sealar multiples of the identity, 

namely dl("·1 where dl(" is the ulual (scalar) formal degree. Then the 

statement above is exactly the same as in the unimodular ease. It is 

interelting that, eontrary to the unimodular eale, not a11 irredueible 

summands of P(I(") have finite local dimension, and moreover that there 

are irredueible subspaces of P(I(") with arbitrarily small local dimension. 

These special eases suggest the form of the general result 

which is as fo11ows: let JJG be left Haar measure on G. Then there 

are semi-finite normal weights semi-invariant for the modular functions 

'" on ~, the von Neumann algebra of the left regular representation, 
~ 

and '" on Gt, the von Neumann algebra of the richt regular 

representation. Normalize these so that Fourier transform be comes an 

isometry. Then if V is an invariant sublpace for the left re'111ar 

representation, the projeetion Pv onto it is in the algebra Gt of the 

36 



right regular representation. 

Ptgvoaltlon 1.18. The subspace V has finite local dimension if and 

only if ~(PV) < 00; in this case the local dimension is ~(PVh.tG' 
[J 

We again omit the proof of this result. 
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CHAPTBR II: FOLIATBD SPACBS 

In this chapter we introduce the basic definitions and 

elementary properties of foliated spaces. 

Definition 2.1. A f 0 l i a. ted s pa. c e X of dimension p i8 a 8eparable 

metrizable space X together with a co11ection of open sets (Ux I x E Xl 

with x E Ux and homeomorphisms 

with Lx open in IRP which satisfy the fo11owing conditions: 

11 Writing 'Px = (t,n), then coordinate changes are given by 

t' = 'P(t,n) 

n' = .p(n) for some local homeomorphism .p. 

2) If Ux " Uy is nonempty then the compo8ite 

n ... 'P y 'P; 1 ( • ,n) 

gives a continuous map Nx _ Coo(Lx'~)' 

Further, the co11ection CUx) is assumed maximal among such 

co11ections. 

Since coordinate changes 8moothly transform the level 8urface 

n = constant to n' = constant, the level surfaces coalesce to form 

maximal connected sets ca11ed l ea. v es, and the space X is foliated 

by these leaves. Bach lea! Is a smooth manifold of dimension p. 

The main examples of foliated spaces are, of course, foliated 

manifolds (cf. Lawson CL]), of class COO , or of class Coo,O as in 

Connes CCo3]. We pause to exhibit some simple examples of foliated 

manifolds. These are quite standard; our reference is Lawson CL] 

upon whom we have reUed heavily. 

The simple8t example of a foliated manifold is rost M = 
LP X Nil where Land N are smooth manifolds and M is foliated with 

leaves of the form L X (n). The projection map f: M _ N is a 

submersi on (i.e., dfx: TMx _ TNx is sur.iective for a11 xl. More 
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generally, if f: MP+q _ Nq is any submersion then M has a 

p-dimensional foliation with leaves corresponding to connected 

components of some r 1(n). For instance, suppose that 

is a fibre bundle in the category of smooth manifolds with F 

connected. Then MP+q is foliated by the inverse images F b :: r 1(b) = 
F. The Hopf fibration 

and a closed connected subgroup H of a Lie group G 

H _ G _ G/H 

yield foliations of S3 and of G respectively. 

A different sort of example arises by taking a connected Lie 

group G acting smoothly on a manifold M. Assume that the isotropy 

group at x, (g E G I gx = xl, has dimension independent of x. Then M 

is foliated by the orbits of G. (If H acts on G for H a closed 

connected subgroup then this coincides with the previous example.) 

Foliations mayaiso be described in terms of the foliation 

bundle FM. Let M = T2 = 1R2/Z2 and fix a smooth one-form w = 
a1dx1 + a2dx2 with a1a2 *' O. It is evident that dw = O. Let FM 

= (v E TM I w(v) = O}. This is an involutive sub-bundle and hence 

foliates the torus. If a1/a2 E ctl then each leaf is a circle. If 

a1/a2 E ctl then each leaf is dense, in fact a copy of IR sitting 

densely in the torus, which corresponds to an irrational flow on the 

torus. 

Next we construct bundles with discrete structural group. Let 

F be aspace, let BP be a manifold (connected for simplicity), and let 

B _ B denote the universal cover. Suppose given a homomorphism 

'P: 1\'1(B) _ Homeo(F). 
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Form the apace 

(2.2) M = B X J( (8) F 
1 

as a quotient of B X F by the action of J( 1 (8) determined by deck 

transformations on Band by lfJ on F. The action on B X F ia free 

and proper}Y discontinuous, hence M is a foliated space. It ia foliated 

by leaves Ix which are the images of BX{x) as x E F. There is a 

natural map M _ 8 and the composite Ix _ M _ 8 is a 

covering space. If F is a manifold and lfJ takes values in Diff{F) 

then M is a smooth manifold. 

A very special 

considerable importance. 

Homeo{F). Then J(l{Sl) 

results a bundle 

(2.3) 

case of the above construction is of 

Suppose given a single homeomorphism 9 E 

= Z acts on Homeo(F) via 9 and there 

M = IR X Z F _ Sl 

called the s us 11 e n si 0 n of 9. For instance. if 9 E Diff{lR) is 

the map 9(Y) = -y then IRXIR has a Z-action given by (x,y) _ 

(x+1,-y) and M = IRXZIR is the Mobius band 

(2.4) 

Bach leaf I y is a circle wrapping around twice except for the core 

circle 1 0 (corresponding to IR X {OH which wraps once. 

Finally we describe the Reeb foliation of S3. This is 

constructed in stages. First foHate the open strip IR X [-l,lJ as 

shown: 
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Then spin the strip about the x-axis to obtain a solid infinite cylinder 

(thought of a8 a collection of snakes, each eating the tail of the 

next): 

. . 
• 

\ 

\ 

\ 

Next identüy (x,y.z) with (x+l.y.z) to obtain a solid torus foUated by 

copies of 1R2 and the boundary leaf which is of course the torus. 

(2.5) 

(This is to be thought of as a collection of snskes, 8sch 8sting its 

own tail.) Finally. observe that 83 ma,.v be obtained by gluing two 

copies of a solid torus along the boundary torus. Tsking two COpi8S 
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of the solid torus above, one obtains S3 foliated by leaves of 

dimension two. Along the boundary of the two solid tori there is a 

closed leaf diffeomorphic to T2. All other leaves are copies of 1R2. 

No leaf is dense: the closure of a typical copy of (R2 is (R2 

together with the closed leaf T2. Note that each point p on the 

closed leaf is a sort of saddle point in the sense that curves in leaves 

nearby (above and below) have the following saddle property: 

(2.6) 

part of the 
c10sed leaf 

Curves y l' !i 1 are in the xz plane; curves Y 2,15 2 are in the yz 

plane. Curves Y 1,!i 2 lie in the same leaf; curves Y 2,!i 1 lie in the 

same leaf. Schematically the snake below the closed leaf is moving 

left to right whereas the snake above the closed leaf is moving 

towards the reader. This is important for the resulting holonomy 

property as we shall see. 

The notion of foliated space is strictly more general than that 

of a foliated manifold. A solenoid is 8 foliated space (p = 1) with 

each Nx homeomorphic to a subspace of a Cantor set. The infinite 

00 

torus Too = n 
j-l 

Tl has a flow aiven by 

irB· 
r ... Ao + n e J 

ror fixed algebraically independent numbers IB j } and hence is a 

foliated space of dimension 1. Each Nx is homeomorphic to a 

subspace of Too, thought of as 1XToo C T1XToo = Too• 

A continuous function f: X _ Y between foliated spaces of 
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possibly different dimensions which takes leaves to leaves is 

t an a e n t i al 111 s mo 0 t h if in local coordinates the function 

(t' ,n')I----. t' 

is smooth for every n o ' 

Each local patch Ux has a natural tangent bundle which is 

induced by IPx from the bundle TxXTxXNx _ TxXNx' The transition 

functions (IP x) pre8erve smoothness in the leaf direction and hence 

these coalesce to form a p-plane bundle over X, called the ta n a e n t 
bund I e or foliation bundle of the foliated space and denoted p: 

FX _ X. We frequently write F = FX and also write FX x :: F x = 
p-l(x) for the fibre over x E X. 

ProioILtion 2.7. a) A tangentiallv smooth map f: X _ Y induces a 

bundle map df: FX _ FY which over leaves corresponds to the usual 

differential. 

b) Let X 5 denote the disjoint union of the leaves of X 

(each leaf having its smooth manifold topology). Then Xli is a 

(usually non-separable) smooth manifold of dimension p, the identity 

map i: X5 _ X is tangentially smooth, and tFX = T(X 5), the 

tangent bundle of X 5 . 0 

A vector bundle p: E _ X of (real) dimension k over a 

foliated space X of dimension p is tanaential11l smooth if E has 

the structure of a foliated space of dimension p+k which is compatible 

with the local product structure of the bundle and if p:E _ X is 

tangentially smooth. The tangent bundle is tangentially smooth. We 

let C;(X) denote the ring of (real-valued or complex-valued) 

tangentially smooth functions on X and r T(I~) or r T(X,E) denote 

the C;(X)-module of tangentially smooth seetions of the bundle E _ 

X. 

43 



The following series of propositions (2.8 - 2.15) serves to let 

us assume freely that all bundles which arise in our study are 

tan,entially smooth. Transverse continuity is essential here; 

Proposition (2.8) is false if one assumes only transverse measurabillty. 

Proposition 2.8. Let X be a foliated space. Then every open cover 

of X has a subordinate tangentially smooth partition of unity. 

~: (Compare Hirsch [Hir. 2.2.1]) Let U = (Ui)iEI be an open 

cover of X. There is a locally finite atlas on X. (tp a'V a)' such 

that fV a) refines 'U; and we may aS8urne that each tp a(V a) C 

T aXN a C IRP X Na is bounded and each Va C X is compact. There 

is a shrinking (W a) aEJ of V = (Va) aEJ' and aach Wa eVa is 

compact. It suffices to find a tangentially smooth partition of unity 

subordinate to V. 

For each a. cover the compact set tp a(W a) C IRP X N a i 

by a finite number of closed balls 

B(a.1) •...• B(a.k(a)) 

contained in tp a(V a)' Choose maps 

ha,j: IRP X Na _ [O.lJ j = 1 •...• k(a) 

which are tangentially smooth (Le., maps Na _ Coo(IRP.c0.1J» 

such that 

Let 

Then 

ha,j(x) > 0 if and only if x EInt B(a.i). 

k(a) 
L 
j-l 
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Let mu: M _ [0,00) be defined by 

if x E Vu 

if x E x- Vu 

Then mu is tangentially smooth, mu > 0 on Vi u' and sUPP IBU C 

V U' Define ru = mulI mu' Then (ru) is a tangentially smooth 
u 

partition of unity subordinate to V. C 

For foHated spaces X and V, let Ci(X,V) denote the continuous 

functions from X to V which take leaves to leaves and let C;(X,V) 

denote the subset of tangentially smooth maps. We topolodze cj(X,V) 

by tbe .trong topology. Let. = (IPi'Ui)iEA and • = (Y,i,Vi)iEI 

be locally finite sets of charts on X and V respectively. Let 1< = 
(Ki)iEI be a family of compact subsets of X, with ~ C Ui, let E = 
(f:i)iEI a family of positive numbers, and let f E Ci(X,V) with f(~) C 

Vi' A strong basic netohborhood N°(f; ., ., 1<, E) is 

the set of maps g E Ci(X,V) such that g(Ki) C Vi for a11 i E land 

1I(y,llP~l)(x) - ("'illP~l)(X)1I < f: i for a11 x E lPi(Ki). The strong 

topology has a11 possible sets of this form for a base. If X is 

compact then this topology coincides with the weak (= compact-open) 

topology on Ci(X,Y). We refer the reader to Hirsch [Hir] from 

which we have freely borrowed. 

ProD08itioD Z.9. Let X = T X N and X' = T' X N' be trivial foUated 

spaces (with T C RP, T' C RP'). Then C;(X,X') is den.e in Ci(X,X'). 

~: Since a11 functions preserve leaves we may assume that X' = 
T' = ~, regarded as a foUated space with one leaf. We lBust show 

that C;(X,lRn) is dense in CO (X,lRn) in the strong topology. 

Let (V u
' 

be a loca11y finite open cover of X and for each u 

let f: u > O. Let f: X _ ~ be continuous, and suppose we want a 
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C; map g to satisfy I f-g I < E a on Va for all a. For each x E 

X, let W x C X be a neighborhood of x meeting only finitely many 

Va. Set 

Let Ux C W x be an open neighborhood of x so small that I f(y)-f(x) I 

< lix for all y E Ux. Define constant maps gx: Ux - IRn by gx(y) 

= fIx). Relabeling the cover (Ux) and the maps (gx)' we have shown: 

there is an open cover (Ui)iEI = U of X and C; maps gi: X _ IRn 

such that whenever y E Ui " Va then 

I gi(Y) - f(y) I < E a. 

Let (ri)iEI be a C; partition of unity subordinate to U. Define 
g: X _ !Rn by 

Hence if y EVa then 

The following relative approximation lemma allows us to 

globalize the preceeding proposition. 

Proposition 2.10. Let U = L X N C !RP X N and V = L' X N' C 

RP' X N' be open sets, K C U a clo8ed set, W C U an open set, and 

f E C;(U,V) such that f i8 tangentially 8mooth on a neighborhood of 
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K-W. Then every neighborhood N of f in Cj(U,V) contains a map h: 

U _ V which is tangentially smooth on a neighborhood of K and 

agrees with f on U - W. 

~: Since all maps are to send leaves to leaves and since 

CO(U,L') is open in CO(U,IRP) we may assume that V = L' =~. Let 

A C U be an open set containing the closed set K-W such that f lAis 

C;. Let Wo C U be open with 

Let (r o,rt) be a C; partition of unity for the open cover (W,U-W 0) 

of U. Define 

by 

G(g)(x) = r ° (x)g(x) + rt (x)f(x). 

Then 

and 

G(g) I U-W = f I u-w· 

Further, G(g) is C; on every open set on which both fand gare C;. 

and G is clearly continuous. 

Since G(f) = f, there is an open set No C CO(U,lRn) 

containing f such that G(N 0) C N. By Proposition 2.9 there is a C; 

map rEN ° (since C;(U,lRn) is dense in CO(U,lRn)). Then h = G(g) 

has the required properties. C 

We now prove the basic approximation theorem. 
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Theorelll 2.11. Let X and Y be foliated spaces. Then C;IX,Y) is 

dense in Ci(X,Y) with the strong topology. 

Corollary 2.12. Let X be a folia ted space and let M be a 

COO -manifold, regarded as a foliated space with one leaf. Then 

C;IX,M) is dense in CO(X.M). 

Proo!: Let f: X _ Y be in Ci. Let. = (IPi,Ui)iEI be a locally 

finite atlas for X and let t' = (~i,Vi)iEI be a family of charts for 

Y such that for all i E I. f(Ui) C Vi' Let e = (Ci)iEI be a closed 

cover of X. Ci C Ui. Let ~ = C ~i)cEA be a family of positive 

numbers and put N = N(f; .,~.e,~) C Ci(X,Y). We look for a gEN 

which is C;. The set I is countable; we therefore assume that I = 
n.2,3 .... ) or. if X is compact. I = n.2 ..... s). 

Let (Wi)iEI be a family of open sets in X such that Ci C Wi C 

Wi C Ui. We shall define by induction a family of C; maps gk E 

N. having the following properties: go = fand for k ~ 1. 

gk is C; on a neighborhood of V C j 

O~j~k 

Assuming for the moment that the gk exist. define g: X - Y 

by g(x) = g x(x)(x). where xIx) = max (k I x E Ük). Each x has a 

neighborhood on which g = g xIx)' This shows that g E C; and g E 

N. and the theorem is proved. 

It remains to construct the gk' Put go = f; then the 

hypotheses are true vacuously. Suppose that 0 < m and we have maps 

gk E N. 0 ~ k < m satisfying the inductive hypothesis. Define a 

space of maps 

Define T: .l1 _ Ci(X.Y) by 
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T(h) = { h 
gm_Ion 

It is evident that T is continuous, T(gm_ll Um) = gm-I' and hence 
T-I(N) ;t 0. 

Let K = Vk~mCknUm' Then K is a closed subset of Um and 

gm-I: Um - Vm is C; on a neighborhood of K-Wm. Since Um and 

V mare trivially foliated spaces we can apply the previous proposition 

to Ci(Um,V m)' We conclude that the maps in .tJ which are C; in a 

neighborhood of Kare dense in.tJ. Therefore T-1(N) contains such 

a map h. Define gm = T(h); then gm e N satisfies the inductive 

hypothesis at stage m, completing the proof. IJ 

Relative ADprgpmatioD Theorem 2.13. Let f e C,(X,Y) and suppose 

that f is tangentially smooth on some neighborhood of a (possibly 

empty) closed set A C X. Then every neighborhood N of f in 

Ci(X,Y) contains a map h e c;(x,y) with h = f on some neighborhood 

of A. 

Proof: If X and Y are product foliations then this follows from the 

relative approximation lemma 2.10. The local-global process is 

essentiallv the same as in the proof of Theorem 2.11 where we show 

that C;(X,Y) is dense in Ci(X,Y). In the construction of the maps 

(gk)' add the additional condition that gk = f on A. In the induction 

assume that every map in .tJ agrees with f on some neighborhood of A. 

The relative approximation lemma 2.10 allows the same argument to 

proceed. IJ 

~ 2.14. Let f e Ci(X,IRP X N), let A be a closed subset of X, 

and suppose that f is tangentially smooth on some neighborhood of A. 

Then there is a homotopy H e C ,(X X IR, IRP X N) such that 

1) { 
f (x) 

H(x, t) = H ( x • 1 ) 

f(x) 
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2) H(x,l) E C;(X,IRP x N) 

3) For each t, H(-,t) is arbitrarily close to f on compact 

subsets. 

Proof: Write f(x) = (f1(x),f2(x». By the previous theorem, there is a 

map g E C;(X,IRP X N) with g = f on some neighborhood of A and r 

arbitrarily close to f. We may assume that r = (gl,f2). Let Ii E 

Coo(IR,IR) be a monotone function with Ii(t) = 0 for t , 0 and Ii(t) 

= 1 for t ~ 1. Define H: X X IR _ IRP X N by 

H(x,t) = (f1(x)(1-Ii(t» + g(x) Ii (t), f2(x)). 

Then H has the required properties. [J 

Theorem 2.15. Let f E C;(X,Y) and suppose that f is tanrentially 

smooth on some neighborhood of a closed subset A. Then there Is a 

homotopy H E C; (X X IR, Y) such that 

1) { 

f (x) 

H(x,t) = H ( x • 1 ) 

fex) 

2) g = H(x,l) E C;(X,Y) 

for t , 0 

for t ~ 

for x E A 

3) H(-,t) is arbitrarily close to f on compact subsets. 

The function g E C;(X,Y) is unique up to tangentiaIly smooth 
• * * homotopy (rel A) and hence defines a unique map f : H.,.(Y) - H.,.(X). 

* Here H.,. is tangential cohomology which will be formally introduced in 

Chapter III. 

Proof: Let .. = (Vi) be a family of coordinate patches for Y and let • 

= (Ui, be a family of coordinate patches for X with r1(Vi) C Ui. Let 
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C = (Ci) be a elosed cover of X with Ci C Ui. Let E = (Ei) be a 

family of positive numbers, and let 

N = (b·,. X IR, • X IR, C, E) C Ci(X X IR,Y) 

where Il': X X IR _ X is the projectlon and • X IR is the pullback 

alonl Il' of.. Choose open sets Wi with Ci C Wi C Wi C Ui. 

We shall define by induction a family of maps Ik E 

C i(X X IR,Y) with the following properties: 

1) { 
f (x) 

Ik(x,t) = 8k ( x. 1 ) 

fex) 

for t ~ 0 

for t ~ 1 

for x E A 

2) Ik(x,l) is tangentially smooth on a neighborhood of 

the set (LlV ... VLk) X [1,00) 

3) gk(-,t) is elose to f on compact subsets 

5) gk = gk-l on (X X IR) - (Wk X IR). 

Suppose for the moment that the gk exist. Define H: X X IR - Y 

by 

H(x,t) = Ir x (x)(x,t) 

where xIx) = max(k I x E Ük}. Each point (x,t) has a neighborhood on 

which H(x,t) = gx(x)(x,t). Thus H(x,l) E C;(X,Y). The other 

conditlons on H are evident, so H has been constructed a8 required. 

Here is the construction of the gk' Set go (x,t) = fIx). 

Suppose that m > 0 and we have maps gk E N with 0 ~ k < m 

satisfying the inductive hypotheses. Define aspace of maps .., by 
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h = f on a neighborhood of (Um f\ A) X IR). 

Define T: I' _ C ;(X X IR,Y) by 

T(h) = { 
h on um X IR 

on (X-Um) X IR. 

It is evident that T is continuous and T(gm_11 U ) = gm-1' so T-1(N) 
m 

is non-empty. 

Let K = U 
k~m 

Then K is a closed subset of 

Um X IR and gm-1 E C ~(Um X IR, V m) is tangentially smooth on a 

neighborhod of K X (W m X IR'. Since Um X IR and V mare product 

foliated spaces, we may apply the previous proposition to 

cj(Um X IR,Vm'. We conclude that the maps in I' which are 

langentially smooth on some neighborhood of Kare dense in 1'. 

Therefore T-1(N) contains such a map h. Define gm = T(h'. Then im 

E N satisfies the inductive hypotheses at stage m. This completes the 

proof of the existence of the homotopy H. 

It remains to demonstrate that i = H(-,l) is unique up to 

tangentially smooth homotopy which fixes A. Suppose that g and i 

are both constructed by the above procedure with g = H(-,l) and g = 
H(-,l) and g = i on A. An obvious construction yields a homotopy M E 

cj(X X IR,Y) with 

Mlx,tI = { 
g(x) 

g(x) 

g(x) 

and M is close to g as 

t ~ 0 

t ~ 

x E A 

usual. Let A = 
X X [(-oo,O]V[1,oo)] V (AXIR). Apply the 

with X replaced by XXIR, f replaced by M, 

obtain a function M E C;(XXIR,Y) with 

first part of the theorem 

and A replaced by A. We 
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M(x,t) = { 

g(x) 

g(x) 

g(x) 

t , 0 

x E A 

and At is c10se to g as usual. Thus Ir is homotopic to g via a 

tangentially smooth homotopy fixing A. C 

We consider next the consequences of Theorem 2.15 for vector 

bundles. 

Propo!ition 2.16: Every continuous (real or complex) vector bundle E 

over a compact fo1iated space X has a compatible C; bundle 

structure; and such a structure is unique up t() C; isomorphism. 

~: Let g: X _ Gn be a classifyinc map for E _ X, where Gn = 
Gn(lRn+k) or Gn«;n+k) denotes a suitable compact Grassmann manifold 

with canonical smooth bundle En _ Gn. Then g can be approximated 

by, and so is homotopic to, a C; map h by Theorem 2.15. Then E is 
•• n 

equivalent to h En, and h En is a C;-bundle, since E is a smooth 

bundle and h is of class C;. 

If EO and EI are C; bundles that are isomorphic as 

C· -bundles then there is a continuous map H: X X I _ Gn such that 
* A Hi (En) = A~ i = 0,1. Approximate H by a map H in C; fixing HO and 

H1; then H'T(En) is a C; equivalence between EO and EI' C 

The proposition implies that tangentially amooth K-theory (i.e., 

K-theory defined via tangentially smooth bundles) on locally compact 

foliated spacel coincides with the usual K-theory. In the next 

chapter we shall introduce tangential de Rham cohomololY. This does 

not agree with ordinary de Rham cohomololY, al will become evident. 

Let X be a foliated space of dimension p. The next order of 

business Is the construction of the holonomy groupoid or graph of X, 

denoted G or G(X). Our construction follows that of Winkelnkemper 

CWiJ as c10sely as possible. 

Recall that a l' l aque is a component of Uni, where 1 il 

some leaf and U is some coordinate patch. Every point of X has a 
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neighborhood which consists of a union of plaques with respect to 

some U and, with respect to the same U, two different plaques "', 

",', can be on the same leaf. A reaular coverina is a covering 

of X by open coordinate patches Ui such that each plaque in Ui meets 

at most one plaque in Uj . We henceforth assume (without any loss of 

generality) that our covers are always regular. 

We recall the definition and elementary properties of the 

concept of ho lonolll1/. Let I. be a leaf of X and a an are in I. 

starting at a and ending at b. Subdivide the are a into small 

enough subares by means of points a = aO,a1, ... ,ak = b so that each 

point ai has a neighborhood Ui consisting entirely of plaques, so that 

if we choose a plaque "'0 of Uo then there is a unique plaque "'1 C 

U1 which intersects "'0' a unique plaque "'2 C U2 which intersects 

"'1' etc., and finally a unlque plaque "'k C Uk· 

Let Na and Nb be transversals X through a and b respectively. 

For points n E Na which are sufficiently close to a, we define H!b(n) 

E Nb by the above procedure. That is, find the unique plaque "'0 C 

Uo which contains n, follow the plaque to plaque "'k C Uk, and 

define H!b(n) to be the unique element in ~ n Nb' Then H!b is a 

homeomorphism from a neighborhood of a in Na to a neighborhood of b 

in Nb' and H!b(n) lies on the same leaf as n. Choosing the partition 

(~) and the neighborhoods (Ui) different1y changes H!b' but the new 

and old maps will coincide on some smaller neighborhood. Thus the 

germ of H:b does not depend on these choices. Altering a by a 

homotopy in I. which fixes endpoints preserves the germ of H!b' 

If a = band Na = Nb then composimr the germs i8 a 

well-defined operation under which the holonoMY lerms form a group 

G:. The natural map 1('1(1,a' _ G: given by a ... H:a is a 

suriective homomorphism, so if I. is simp1y connected then G: = CO) 

for each a E I. The group G: is the ho l 0801111/ group of the leaf 

I. at the point a. (The notation comes from groupoids and will 

become apparent.) The set Cx E X I G: = 0) is a dense G&, by 

Epstein, Millett, and Tischler [EMT] , so that in that sense at least 

trivial holonoDlY is generic. 

The set Cx E GIG: ~ 0) may have positive measure. For 

example, let K be a Cantor subset of the unit circle of positive 
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measure. Let (J be a homeomorphism of the circle which has K as its 

fixed point set. The associated foHation of the torus has closed 

leaves corresponding to each point of K and each of these leaves has 

non-trivial holonoDlY. 

For example, if we foliate the annulus as shown 

then G: = Z for each a E I. since with respect to the are a which 

traverses the leaf once clockwise the holonomy map H: I _ I is 

monotone decreasing and hence of infinite order in G:. Similarly, the 

other closed leaf has non-trivial holonoDlY. Each of the remaining 

leaves is homeomorphic to IR (end thus simply connected) and hence 

has trivial holonoDlY. 

Let X be the foliated space shown: 

(2.17) 

This is noncompact, of course, Every leaf is simply connected, so all 

of the holonoDlY groups are trivial. The exponential map yields a 

tangentially smooth map X _ X, and this is a covering space. 

Here are some more examples to illustrate the concept. 

Consider the torus, foliated as indicated: 
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A~~---------------------'A 

c 1========--------1 c 

(2.18) 

EI-------------fE 

A ~-----------------------JA 

There are closed leaves through A,B,C, and a family of closed leaves 

intercepting the line segment DA (with 'E as a typical closed leaf in 

this family). Each closed leaf I i8 a circle, with "'1 (l) = Z. The 

leaf 'E has trivial holonolllv, since a small transverse disk meets only 

the adjacent family of closed leaves which are plaque paths. The 

leaves I. A' I.B, 'C' and 'D each have holonolllY group Z. Note that 

for the leaf 'D a disk placed between D and E is aeted upon 

triviaIly; the disk must overlap the C-D area to see the holonolllY. 

The Reeb foliation of 83 has a unique closed leaf '0 

diffeomorphic to the torus T2 with "'1(1.0) = Z2. The holonolllY 

group G: for x E 1.0 is also Z2, generated by the images of the 

paths 51 and 52 in figure 2.6. 

The ease of a bundle M _ B with discrete struetural group 

(2.2) given by a homeomorphism 1,9: "'1(B) _ Homeo(F) is 

partieularly pleasing. For x E F, let 

r x = (g E "'1(B) I !p(g)x = x) 

be the isotropy group. The leaf Ix (whieh is the image of S X (x) 

in M) may be exprcssed as 'x = sir x where r x acts on S by deek 

transformations. The holonolllY group G: is the image of the 

homeomorphism 
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wherc Homeo(F,x) denotes the germs of homeomorphisms at x which fix 

x. 

For instance, consider the Mobius strip 

M = IR XZIR 

foliated by circles corresponding to the images of IR X (y} for various 

values of y E IR (cf. 2.4). If y ~ 0 then Pr 1 (ly) = Z acts 

triviallv upon Diff(lR,y), and henee GY = O. However, the holonomy 
o Y 

group Go of the core circle is the group Z/2, since the 

diffeomorphism 9(Y) = -y which creates M does lie in Diff(IR,O). and 

92 = 1. 

Holonomy is a criticallv important internal property of 

foliations. As evidence we cite a special ease of the Reeb stability 

theorem and refer the reader to Lawson [LJ for more information. 

Theorem 2.19 (Reeb). Let MP+q be a smooth foliated manifold with a 

compact leaf 1 with trivial holonomy. Then there exists a 

neighborhood U of 1 in M such that U is a union of leaves and a 

diffeomorphism 

which preserves leaves. 

Thus M has a familv of compact leaves neer 1. We see this 

theorem at work in example (2.18). The leaves 1 A,lB,lC,lD' and 

t B are all compact. Only I E has trivial holonomy; it does have a 

family of closed leaves ne ar it, of the form 

1 X (E-E, E+E). 

We next introduce the graph (or groupoid) of a foliation and 

verify its elementary properties. This is due to Ehresman [Eh], 
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Reeb, and Thom [Tho] and expounded by Winkelnkemper CWi]. 

See also Phillips [Ph] . A more systematie diseussion of groupoids 

will be found in Chapter IV. 

Definition 2.20. The ho l ° nOIllV araph or aroupo i d G(X) of the 

folia ted spaee X is defined to be the eolleetion of all tri pies 

(x,y,Ca]) where x and y lie on the same leaf " a is a 

(pieeewise-smooth) path from x to y in " and Ca] is the 

holonoMY equivalenee class of a: a is equivalent to 8 if a8-1 = 
1 'd' GY or 1 In y' 

There are eanonieal maps as follows: 

1) A: X _ G(X) by A(x) = (x,x,CO]), where 0 denotes 

the constant are at x. 

2) an involution i: G(X) _ G(X) liven by Ux,y,Ca]) = 
(y,x,Ca-1]) 

3) projeetions Pl,P2: G(X) - X defined by 

Pl(x,V,Cu]) = x 

P2(x,v,Cu]) = V· 

Frequently PI is written as r (= range) and P2 is written as s 

(= souree). Note that if 'x is the leaf through x in X, then p 11 (x) 

will turn out to be Ix' the eovering spaee of 'x eOlTesponding to 

the holonoMY kernel and l/G~ = 'x' Thus the eonstruction 

"'unwraps' all leaves of X simultaneouslv with respect to their eorrect 

topology as well as their holonomy." (Winkelnkemper eWiJ, 0.3) 

4) Let 

G(X) E9 G(X) = «u,v) E G(X) X G(X)I Pl(u) = Pl(v)). 

Then we have m: G E9 G _ G defined by 

m«x,y,[u]),(x,z,[8])) = (y,z,[8U-1]) 
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with m 0 diag = AP2' m(u.v) = i 0 m(v.u). and 

The foliation on X induees a 2p-dimensional foliation on G(X): 

the leaf in G(X) through the point (xo·yo·[a o ]) does not 

depend on [ao] and eonsists of all tripies (x.y.[a]) with x.y E 

lx = 'y with Ca] arbitrary. With the leaf topology it is 
0 0 

-1 -1 ~ N 

diffeomorphie to p 1 (x) X P2 (y) !!! lx X Jy 

Next we define the topology on G(X). Let z = (a.b. r a]) be a 

point in G(X). Choose a path a whieh represents [a]. a family 

'U = CU1 ..... Uk} of eoordinate patehes whieh implements the holonomy 

map H! band an open transversal N upon whieh H! b is defined. We 

may assume that the projeetion n: U1 _ N is sudeetive. Suppose 

that x is an element of U1. There is a path sx in the plaque of x 

(unique up to holonomy) from x to n(x). By the setup above. there is 

a eanonieal (up to holonomy) path ax from nIx) to H! b (n(x)). Let 

q(x) be the unique plaque in Uk whieh eontains H!b' Then for 

y E q(x) there is a path tyX in q(x) (unique up to holonomy) from 

H! b(n(x)) to y. As a subbase for the topology of G(X) we take the 

subsets 

Sinee eaeh leaf. bein, a smooth p-manifold. has eountably generated 

fundamental groups. it follows that this topology has a eountable base. 

Proposition 2.21. With the above topology G(X) is Hausdorff if and 

only if for aH x and Y. the holonomy maps along two arbitrary ares a 

and /J from x to y and with respeet to the same transversals Nx.Nv 
are already the same if they eoineide on an open subset of their 

domain whose closure eontains x. 

~: Sinee X is Hausdorff, it is enough to separate points z = 
(x.y.[a]) and z' = (x,y,[a']) in order to show that G(X) is Hausdorff. 
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Suppose any two neighborhoods of z and z' had a point z" = 
(x",b",[a"J) in eommon. Then 

z" E Vz,a n Vz',a' = 

I I 

where 'n = Sx V an V Sy ~ Sx V an V Sy' Since the short ares 

SX,Sy do not affeet holonomy, the holonomy along both a and a' 

would have to coincide with the holonomv defined bv a" on its 

domain. The domain of the holonomy of a" contains x in its closure. 

Conversely, if the holonomy along a and a' coincided on an 

open set, containing x in its closure, then from the definition of the 

sets V za above any neighborhood of z will intersect any neighborhood 

of z'. D 

Corollary 2.22. If G: = 0 for all x E X then G(X) is Hausdorff. 

This is the ease, for instance, if eaeh leaf is simply-connected. 

Consider the graph of Example (2.18). Is it Hausdorff? 

Following Proposition 2.21, it suffices to examine the foliation at 

leaves with non-trivial holonomy, in this case leaves l A,lB,lC' 

and '0' Intuitively the question is whether the holonomv is 

one-sided. Leaves la and IC cause no difficultv. However, leaves 

lA and 10 do indeed cause difficulty. Take I D' for example. Here 

is the picture: 

r.-----~~ 
Dr-------------------------______ ~D 

s~------------------------------~s 

Let a be the horizontal circle through D and Let IJ be the constant 

path at D. Let N be the transversal (r,s) and let N' be the 
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transversal (D,s). We have already determined that G~ = Z 

generated by Ca], and thus 

(D,n,[a]) ~ (D,D,[ß]) 

in the graph. However the transversal N' (which contains D in its 

c1osure) does not detect the presence of holonomy. Proposition 2.21 

implies that the points (D,D,[a]) and (D,D,[ß]) cannot be 

separated by disjoint open sets, so the graph is not Hausdorff. 

The graph of the Reeb foliation of 83 is also not Hausdorff, 

though this is for more subtle reasons. The point is that the 

holonomy corresponding to the spreading out in the Y 2 direction is 

seen by a closed path in the leaf parallel to Ii l' so that if one cuts 

the foliation a cross-section appears just as figure 2.6 and the same 

non-separation problem occurs. 

Proposition 2.23. Each point of G(X) has a neighborhood which is 

tangentially diffeomorphic to an open neighborhood of (R2p X Na' 

~: Pick (a,b,[a]) E G(X) and a representing Ca]. Choose 

neighborhoods U1"",Uk and tangential coordinate patches (ti'fit): Ui -

(RP X N corresponding to the path a. 

Let Na = nl(U1) and Nb = nk(Uk), After a possible shrinking of U1 

and Uk there results the holonomy map H~b: Na - Nb' 

Given x E U1, there is a unique plaque path relating nlx with 
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H~ b(n1x). If y E Uk with nk-v = H~ b(nlx) then the unique plaque 

path determines a path ß from x to y in ViUi . The path ß is not 

unique, but [ß] is unique, and of course H!y(n1x) = nkY' Let 

W = {(x,y,[ ß]) I x E U1,y E Uk, nkY = H~ b(nlx), ß 

determined as above). 

Note that if (x,y,[ß]) = (x,y,[ß']) in W then [ß] = [ß']. 

Define .: W _ IRP X IRP X N by 

We claim that • is a bUection. It is clear that • must be injective 

by our restriction on ß. Suppose that (rt,r2,r3) E IRP X IRP X N, 

(or an open subset if the ti and ~ are not sudective). Choose x E 

Ut with ttX = rt and ntx = r3' Choose y E Uk with tky = r2 and 

nkY = H~b(r3)' Since nkY = H~b(nlx), there is a leaf path ß in 

vUi from x to y. Then .(x,y, [ß]) = (rl,r2.r3)' so • is surjective. 

It is dear that • is tangentially smooth. 0 

Dur final topic in this chapter is a dose examination of the 

equivalence relation and (in anticipation of the Chapter IV discussion) 

the topological groupoid of a foliation in the ease of a foliated bundle 

with diserete structural group and the case of the Reeb foliation. 

Recall (2.2) that the initial data for a foliated bundle are a 

manifold BP with universal cover B. aspace Fand a homomorphism 

'P: Il't(B) - Homeo(F). The resulting space M = B Xll't(B)F is a 

foliated space of dimension p, and the natural map M .....!... B restricts 

to a covering space map BXCx} _ I. .....!... B. 

Let r be the image of Il't(B) in Homeo(F), and for each x E F 

let 

r x = Cy E r I Yx = x} 

denote the isotropy group at x and let 
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(2.24) 

r X = (y E r I Yy = Y for all y in some neighborhood of x in F) 

denote the stable isotroptl aroup at x. The stable isotropy 

group r X is anormal subgroup of the isotropy group r x and our 

previous results imply that r /rx 5!! G:. the holonoIDY group at x. 

Let b E 8 be a basepoint, let bEB be some preimage of b, 

and let N be the ima,e of bXF in M. The map bXF _ N is a 

homeomorphism since If 1 (8) acts freely on B, so N is a copy of F 

sitting as a complete transversal to the folia ted space. 

Let G: be the subgroupoid V G~, so that elements of G: 
m nEN 

are tripies (n,m,Ca]) with n,m E f.l and Ca] some holonoIDY class 

of a path in the leaf 'n of M from n to m. Regarding G as a 

category, then G: is the fuH subcategory with objects N. Results of 
• Hilsum-Skandalis CHS J (see Ch. VI) imply that the C -algebra of the 

foliation of M is determined by the C· -algebra of the groupoid G:. 

(In fact G: is Morita equivalent to G(X); see A4.1.) As G: is much 

simpler to understand than the fuH groupoid of the foliation, we 

explore its structure. 

~ 

Theorem 2.25. If M = 8 XIf /B) F is a folia ted bundle as above with 

complete transversal N 5!! F tten there is a natural homeomorphism of 

topological groupoids 

where (x,Y) ::s (y,l5) if and only if x = y, and 15-1y lies in the 

stable isotropy group r X • Thus G: is completely determined by the 

action of r = Imhl"l(B) _ Homeo(F)) on F. 

We note some consequences of the result. 

Corol1m 2.26. If the holonoIDY groups G ~ are trivial for aH x E F 

then 
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G~ 5! (FX[,)/~ 

where (X,y)N(y,li) if and only if x = y and 1i-1y lies in the isotropy 

group ['x (i.e., if and only if x = y and Yx = lix). 

The coro11ary is immediate from the identification G: E!! 

Note that the stable isotopy groups ['x vanish for a11 x if and 

only if for each Y E [' the fixed point set of Y has no interior. 

This condition is quite frequently satisfied in practice. For instance, 

if F is a Riemannian manifold Fq, [' acts as isometries and each 

non-zero element Y moves some element of F, then the fixed point set 

of each Y E [' is a manifold of dimension at most (q-l) and hence has 

no interior. Indeed, any real analytic action satisfies this condition. 

For an example where the condition is violated, see (2.28). 

Corollm 2.27. If for each Y E [' the fixed point set of Y has no 

interior then there is a natural isomorphism of topologie al groupoids 

GN :11_ FXr N • 

~: Bach stable isotropy group r X vanishes and so the result 

follows from Theorem 2.25. [] 

Proof ~ Theorem 2.25. We shall show that G: E!! (NX[')/~, which 

suffices. Define a map a: (NXr)/~ _ G: as fo11ows. Let (n,Y) E 

Nxr. Represent Y by some based loop a in B. Lift a to a path 

ft in the leaf 'n of n E M with ft(O) = n. Then ft(l) E N " 'n 

and (n,ft(1),CftJ) represents an element a(n,Y) E G:. We argue 

that a is well-defined as folIows. Independence of choice of lifts ft 

of a is clear. Suppose that (n,Y) ~ (n,Ii), so that 1i-1y E 

['n. Represent Y and Ii by loops a and 8 respectively, and lift 

these loops to paths 6 and ß in 'n with 6(0) = ß(O) = n. Then 

ß-106 is a loop in 'n whose holonomy class is trivial, since 1i-1y E 

['n. Thus a(n,Y) = a(n,li) and a is well-defined. 

The map a is obviously continuous. If a(n, Y) = a(n, Ii) 

64 



then & -ly must lift to a loop ß-lft with trivial holonomy in G~. 
This implies that 5 -ly E r n and hence a is a monomorphism. If 

(n.m,[a]) E G: then the composite [0,1] ....!!... M .....!!.... B is a loop 

(since Il'n = Il'm) and a(n,ll'a) = (n,m,[a]). Thus a is a 

homeomorphism. 

The groupoid structure on (NXr)/== is obtained as follows. 

The unit space is N, of course, and s(n,y) = n. The range map r is 

given by r(n, y) = ft(1) where ft is a lift of a realization of the loop Y 

as earlier in this proof. Thus (n, Y) and (m, 5) may be multiplied 

when ft lifts Y and ft(1) = m, and then 

(n,Y)·(m,5) = (n,5Y) 

With this structure it is clear that a is a homeomorphism of 

topologie al groupoids. 0 

In practice Theorem 2.25 is rather easy to use. Por instance, 

consider the Mobius strip M = IRXZIR (cf. 2.4). The equivalence 

relation is simply the union of the y = x and y = -x lines in the 

plane, a figure "X". The group r is Z/2 acting non-freely since r 
fixes 0 E IR. This is an isolated fixed point and certainly has no 

interior; thus G: 9! IRXZ/2 with the obvious structure of a (Hausdorff) 

smooth manifold by Corollary 2.27. The map G: _ C (x,y) I y = z x:> 

is a homeomorphism except at the origin, where it is two-to-one in 

the obvious way, corresponding to the fact that Gg 9! Z/2, G~ = 0 

for n ~ O. 

Next consider the manifold M constructed 8S the suspension of 

the action of Z on IR given by 8 where 

t > 0 

t , o. 

The element 8(1) fixes (-00,0] and hence the condition of Corollary 

2.27 is violated. The equivalence relation for G: has the form 
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(2.28) 

The groups r t are given by r t = Z for t ~ 0 and r t = 0 for t > 

0, and using Theorem 2.25 we have 

G: = (IRXZ)/== 

where 

(t,n) == (t,m) c=> m = n or t < 0 

and hence G: is the (path-connected) non-Hausdorff 1-manifold 

• 
• 

o (2.29) • 
• 
• 

Finally we move awa.v from foliated bundles and cODsider the 

Reeb foliation of S3 (cf. (2.5), (2.6)). Take 8 transversal N = [-l,1J 

which starts near the closed leaf, tunnels through the solid snake in 

time [-1,0), passes through the closed lem at time 0, ud tunnels 

through the other solid snake in (0,1], stopping near (but not at) the 

closed leaf. Then N is a complete transversal. The corresponding 

equivalence relation for C: is the following subset of the plane with 

the relative topology: 
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(2.301 

The point (0,0) corresponds to the point 0 E N which lies on the 

closed leaf 10, A sequence ((t,2Dt): t E N-(O)) corresponds to 

choosing a point t E N-(O), going around a corresponding holonomy 

path of degree n and returning to I t " [-l,1J. 

The map from G: to the equivalence relation is a bUection 

except that (0,0) has preimare Z2, corresponding to the fact that the 

closed leaf 10 has holonomy group Z2. So as a set fibred over the 

transversal N, G: has structure 

0 
(r,s) 

0 s ~ .. 0 0 

0 •••• 0 (2.31) 
0 ••••• 0 •••••• r 
0 •••• 0 

0 •• 0 

0 0 

Write the lines for t < 0 as (O,s,[-l,O)) and the lines for t > 0 as 

(r,O,(O,l ]). Then the set 

(o,s,[-l,O)) V C(r,s)) V (r,O,(O,lJ) 

is diffeomorphic to [-1,1] in the topology of G:. These sets serve 

as coordinate patches which exhibit G: as a (non-Hausdorff) smooth 

topolorical groupoid. As an exercise, the reader is invited to show 

that the fundamental group K 1(G:) is the free group on two 

generators. 
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CHAPTBR I1I: TANGBNTIAL COHOMOLOGY 

In this ehapter we diseuss certain cohomology groups associated 

with a foliated spaee. which we shall call tangential eohomology 

groups. It will be in these groups that invariants eonneeted with the 

index theorem shall live. Similar groups have been eonsidered before. 

for instance. by Kamber and Tondeur [KT2J. Molino [MoIJ. 

Vaisman [VJ. Sarkaria [SalJ. Heitsch [HeJ. BI Kaeimi-Alaoui 

[BIJ. and Haefliger [Hae3J (whose work we discuss at the end of 

chapter IV). These cohomology croups are also related to those 

introduced by Zimmer in [Z2J for foliated measure spaces. The 

similarities and differenees between the three situations are easy to 

deseribe; all involve differential forms whieh are smooth in the 

tangential direction of the foliation. The difference comes in the 

assumptions on the transverse behavior; for foliated manifolds, 

(Kamber-Tondeur. et al) forms are COO in the transverse direction. 

while for foliated spaces (the present treatment). the forms are to be 

eontinuous in the transverse directions as that is aIl that makes sense. 

and finally for foliated measure spaces (Zimmer). the forms are to be 

measurable in the transverse direetion. for again that is all that makes 

sense. 

Thus let X be a metrizable foliated space with tangent bundle 

FX _ X as defined in Chapter 11. The quiekest and simplest way to 

introduce the tangential cohomology is via sheaf theory and sheaf 

cohomology. but for those readers who are not familiar with such 

notions we show how to define the groups via a de Rham complex and 

also show in an appendix how to give a completely algebraic 

definition. For details coneerning sheaves and their cohomology, 

consult Godement [GomJ. Wells [WeJ. 

We eonsider the sheaf on X, IRr of germs of continuous real 

valued tangentially locally constant functions. Specifically' this sheaf 

assigns to eaeh open set U of X the set of continuous real-valued 

functions on U that are locally constant in the tangential direetion on 

the foliated spaee U (given the induced foliation from X). This is 

obviously a presheaf end it is immediate that the additional conditions 

defining a sheaf (Godement [GomJ p. 109) are satisfied. 
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Definition 3.1. The tanrlential cohomolorlll groups of the 

foliated space X are the cohomololY groups of the sheaf ~7' . ,.,. 
" (X'~7)' whlch we normally write as "7(X,IR» or simply H7(X). 

These cohomology groups can be defined by construction of 
v 

resolutions ([Gorn] p. 173) or perhaps more sirnply by the cech rnethod 

using cocycles defined on open covers of X ([Gorn] p. 203) but for 

us the most useful and transparent way of dealing with them Is via a 

de Rharn complex. 

Definition 3.2. A tanaent i a l d i f J erent tal k-form at x e X 

is an alternating k-form on the tangent space FXx at x i.e. an 

element of "k(F·Xx). These fit together to yield a vector bundle 

denoted AkF· on X which is just the kth exterior power of the 

cotangent bundle, and it is quite evidently tangentially smooth in the 

sense of the previous chapter. 

For each open set U, we assign to U the tangentiallv smooth 

sections r 7(~k(F·) (defined on U). Just as before this rives a sheaf 

which we denote by Ak(F·) the sheal 01 aerms 01 ..... 
tanaentiallll smooth h-Iorms. 

There Is an obvious differential from r 7(~k(F·») to 

r 7(~k+l(F·)) whicb can be defined in an elementary way in terms of 

local coordinates. If U :! LP X N is a local coordinate patch with 

xl' .. "xp coordinates on the open ball LP in IRP, then a tangential 

differential k-form is an obiect that can be written locally 88 

(3.3) w= 

with a and all of ita derivatives with respect to the Xi continuous in 

all variables. Then dw is defined mst as one does classically for a 

k-form with n playing the role of a parameter; 
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We evidently have d2 = 0 and so we have a sequence of sheaves with 

maps 

(3.5) 

where the first map is the natural inclusion of tangentially locally 

constant functions into tangentially smooth functions. The Poincare 

Lemma obviously holds in this context: 

PmDoeition 3.6. The sequence (3.5) is an exact sequence of sheaves; 

that is, for sufficientLy small open sets U, the kernel of each map on 

sections over U is the range of the map in one lower degree. 

Proof. On an open set of the form L X N, where L is a ball in (RP, 

a k-form in the kernel of d is an expression w(x,n) where for fixed n 

this is an ordinary closed k form with respect to the variable x E L. 

(The variable n pla..vs the role of a parameter with respect to which 

everything varies continuously.) Sy the usual Poincare Lemma, one 

finds a k-1 form «Pn, one for each n, so that d«Pn = w(· ,n) and 

what is at issue is that we can choose «P n to be continuous as n 

varies over N so that «Pn defines a section of Ak- 1(p·) over U. This 

is a routine exercise the details of which we omit. C 

Moreover, just as in the usual case, one sees that the sheaves 

Ak(P·) are fine [Gom, p. 157J and consequent}y by the general 
~ 

machinery of sheaf theory one can calculate the cohomology of the 

sheaf ~., from this resolution - a de Rham type theorem. Let 

denote the global tangentially smooth sections of the sheaf Ak(F\ 

ProRotition 3.7. There are isomorphisms 
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k k+l 
ker (OT - 0., ) 

~ ----~k~-~l~----~k--
Im <0., - 0T) 

o 

In partieular. if X = M foliated as one leaf then this is the 
• usual identifieation of the de Rham eohomology groups H (M;IR). The 

analogous result (and indeed the entire ehapter) holds with IR 

replaeed by f[ throughout. 

From this proposition it is evident that H~(X.IR) = 0 for k > p 

where p is the leaf dimension of the foliated spaee. However, these 

eohomoloeY Il'OUPS are in general going to be infinite dimensional, in 

eontrast to the ease of a compact manifold (with a foliation consisting 

of one leaf). Further, these Il'0UPS, which are veetor spaees, also 

inherit via the de Rham isomorphism the slructure of (generally non 

Hausdorff) topological veetor spaces. We topologize O~(X) by 

demanding that in a11 loeal coordinate patches we have uniform 

eonvergence of the functions a(x1, ... ,xp) of (3.3) together with a11 their 

derivatives in the tangential direetion on compact subsets of the 

coordinate patch. The differentials are clearly eontinuous with 

respect to these topologies and so H~(X,IR) is a topologie al vector 

.pace. 

In general the image of d will fail to be closed and 80 

H~(X,IR) will not be Hausdorff in these eases. It will beuseful 

oceasionally to replace the image of d by its closure, or equfvalently 

replaee H~(X,IR) by its quotient obtained from dividing by the closure 

of the identity; this is the largest Hausdorff quotient. We will denote 

this maximal Hau.dorff quotient of H~(X,IR) by ii~(X,IR). The point 

of this is first that we sha11 usually only care about the image of a 

cohomolorY class CwJ of H~(X,IR) in this Hausdorff quotient rather 

:'han the class itself sinee f wdv depends only on the class of w _i~ 
HP, and second one at least has a chance of computing the 1l'0UPS H., 

in eertain cases. 

The tangential eohomology groups are related via natural maps 

to the usual eohomolorY groups of the compaet metrizable spaee. 
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v 

Since Cech cohomology and sheaf cohomology agree for such spaces 
• ([Gom] p. 228) we shall simply write H (X,A) for this cohomology for 

coefficients in an abelian group A. Specifically, the sheaf cohomology 

is defined to be the cohomology of the sheaf ~ of germs of locally 

constant real valued functions. As a sheaf ~ assigns to each open 

set U the locally constant real valued functions on U. Thc 
• cohomology groups H (X,~) are wl'itten as we indicated above a8 

• H (X,IR). But now there i8 a natural inclusion map of the sheaf ~ 

into the sheaf ~.,. of tangentially locally constant functions and we 

can complete this to a short exact sequence 

(3.8) o - ~ ~ ~.,. _ ~)I _ 0 

where ~)I is defined as the quotient sheaf of ~.,. by ~. ([Gom] 

p. 117). We obtain in particular an induced homorphism 

(3.9) • • • * 
r.: H (X,IR) = H (X,~) _ H (X,~.,.) = H.,.(X,IR) 

which is a sort of "restriction" map from ordinary cohomology to 

tangential cohomology. Of course we also have a long exact sequence 

of cohomology corresponding to the short exact sequence of sheaves 

above, but we will not explore that further, and the sheaf ~)I will 

not play any further role. 

We should comment that the only reason for introducing 

sheaves was to obtain a natural definition of r.. For we could have 

• v 
defined H (X,IR) as either cech cohomology or equivalently 

Alexander-Spanier cohomology and we could have directLy defined 
* H.,.(X,IR) as the cohomology of the tangential de Rham complex with no 

mention of sheaves. But then it is not at all apparent that there is a 

map r. from the cohomology of X to the tangential cohomology of X. 

Actually as we have suggested before it is usually the composed map 
• -* f'. from H (X,IR) to H.,.(X,IR) that is of more significance than r •. 

It might be helpful to look at an example and the simplest one 

is that of the Kronecker foliation of a two torus TZ by parallel lines 

of a fixed irrational slope A relative to given co ordinate axes. The 
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leaves are given in parametrie form as ((eit• eiAte), t E IR} for 

some fixed e E T, Tangential zero forms are simply real-valued 

funetions whieh are tangentially smooth, Clearly the tangent bundle 

is a trivial bundle and in fact we ean find an essentially unique 

tangential one form w whieh is invariant under group translation on 

T2, Tben the most general tangential one form is easily seen to be 

of the type fw wbere f is aoy tangentially smooth funetion, If 9 is 

a group-invariant veetor field on T2 pointing in the tangential 

direetion. then the differential d: O~(F·) _ O~(F·) is given by d(,) 

= 9(g)w for a suitable normalization of 9, 

To investigate tbis more elosely we expand g in double Fourier 

seriee 

and for a seeond funetion f denote its Fourier eoeffieients by fn•m, 

Tbe eondition for a funetion g to be tangentially smooth is easily seen 

to be that gn,m(n+Am)k should be the Fourier eoeffieients of a 

eontinuous funetion. for eaeh k = 0.1.", The relation between fand 

g expressed by d(g) = fw is simply that 

(3,10) 

Quite elearly the kernel of d eonsists of eonstants so H~(X.IR) ~ 
IR, On the other hand if we are liven fw with f tangentially smooth. 

we have to find out wben we ean solve (3,10), An evident neeeesary 

eondition is that fO•O = 0 and indeed if fO•O = 0 and if f is a 

trigonometrie polvnomial. we ean find a trigonometrie polynomial I 

solvini the equation. a8 A i8 irrational and n + Am i8 not zero unle88 

n = m = 0, Sinee one ea8ily see8 that the 8et 

(fwl fO•O = 0, f a trigonometrie polynomial) 

i8 dense in a11 fw with fO•O = 0 in tbe topology de8eribed above. one 

ean eonelude immediately that ii~(x.lR) ~ IR, It i8 interesting to 
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-* note that the closed tangential cohomology H.,.(X,IR) in this case is 

the cohomology over IR of a circle. 
J -1 However H.,.(X,IR) ~ H.,.(X,IR) and the former is in fact infinite 

dimensional, for (3.10) results in a classic "small denominator problem." 

Indeed, choose a sequence (n(k). m(k» with n(k) + )"m(k) = t (k) a 

summable sequence. and define fn,m = 0 unless (n,m) = (n(k). m(k» and 

fn(k). m(k) any sequence in k asymptotic to t(k)-l. Then 

fn,m(n + )"m)k is the Fourier series of a continuous function for each 

k es it holds for k = 0 and as (n+)"m) is bounded (in fact tends to 

zero) where fn,m ~ O. But quite evidently fn•m(n+)"m)-l = gn.m is 

not the Fourier series of a continuous function as gn.m does not tend 

to zero. This shows that H~(X.IR) is infinite dimensional and of 

course non-Hausdorff since ii~(X;IR) is one dimensional. 

We remark that if one uses differential forms which also are 

required to be COO in the transverse direction then the result is quite 

different. Haefliger [Hae3] shows that for such forms the associated 

first cohomology groups of the Kronecker flow on the torus has either 

infinite dimension or dimension one, depending upon whether the 

irrational slope is Liouville or diophentine. 

Let 

L_X_B 

be a fibration with X compact and with leaves ~ corresponding to 

preimages of points beB assumed to be smooth. Then the tangential 

cohomology of X has a simple description. Form a vector bundle E 

over B with 

(It is locally trivial.) 

cross-sections of E. 

* Then H.,.(X) is isomorphie to the continuous 

(This suggests that for more general fibrations 

F _ X _ B of foliated spaces there should be a Serre spectral 

* * * d h' sequence of the type H.,.(B; H.,.(F)) ::) H.,.(X); we 0 not pursue t IS 

direction here.) 
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* The next order of business is a more thorough study of H.,(X). 

Let :f denote the eategory of metrizable, (henee paraeompaet) foliated 

spaees and tangentially smooth (leaf-preserving) maps. Let I< ::: IR 

or a:: we note onee and for all that our results hold in both eases and 

that IR ~ a: induees an isomorphism H~(X;IR)91ka: :! H~(X;a:). 
* * Let H.,(X) = H.,(X:II<). 

* fropoeition 3.11. H., is a contra variant functor from :f to 

Z-graded associative. graded-commutative topologie al IK-algebras and 

eontinuous homomorphisms. and H~/X) = 0 for k < 0 or k > P where p 

is the leaf dimension of X. 

~: The wedge-product of forms yields a natural continuous map 

which supplies the produet structure in the usual way. As n~/X) '" 0 

for k < 0 or k > p = dim X, the eohomology groups also vanish. Jf f: 

X _ Y then by proposition 2.15 we may assume that f is tangentially 

* * smooth. Thus the induced map 0T/Y) _ O.,(X) is continuous and 
• * * f : H.,(Y) _ H.,(X) is continuous. [J 

Prgposition 3.12. If X is the topological sum of {Xj } in :f, then 

rroPOSitiOD 3.13. H~(X) = (f E C;/X) 1 f 1, is a eonstant for any leaf 

I). In partieular, if X has a dense leaf then H~(X) 5! I<. [J 

DefiDitio..ll 3.14. Let f,g: X - Y in :f. An :f-homo t 01'11 h 

between f and g Is an :f-map h: X X IR - Y (where X X IR is 

foliated as (Leaf of Xl X IR) such that 

{ f (xl for t ~ 0 
h(x,t) = 

g(x) for t ~ 
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Homotopy in ':f i8 obviously an equivalence relation. The 

'" following technical proposition leads to homotopY-invariance of H.,.. 

Proposition 3.15. Let J t : X _ X )( IR by Jt(x) = (x,t). There is a 

I<-linear map 

with the following properties: 

1) 

2) 

L«(}~(X )( IR)) C (}~-l (X) 

'" '" dL + Ld = J 1 - J o 

That is, L is a chain-homotopy from J O to J 1. 

f.I:ggf: By a tangentially smooth partition of unity argument, we may 

assume that X = IRP )( N. Then any k-form in (}~(X )( IR) with 

k ~ 1 may be written uniquely as a sum of monomials of the form 

or 

Define L I (}~(X )( IR) :: 0, L(a) = 0, and 

Then L«(}~(X )( IR)) C (}~ - 1 (X). If f E (}~(X )( IR) then 

(dL + Ld)f = L(~t) + L[r Mi dxt] 

1 

= IM dt 
o 
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On forms of type a, 

(dL + Ld)a = Lda 

1 

= [I ~ dt]dX1 

= (J; - J~)a. 

* * On forms of type 8, J 18 = J 0 8 = 0 and 

This shows that dL + Ld * * = J 1 - J 0 on monomials and hence in 

general. C 

Theorem 3.16. If f,g: X _ Y are ~-homotopic, then 

• • * * f = I : H.,.(Y) - H.,.(X). 

This is immediatefrom Proposition 3.15. C 

CoroUarx 3.17. If f: X _ Y is a continuous leaf-preservinl map 
• * * then f induces a unique continuous map f : H.,.(Y) - H7 (X). 

~: Say f :::: g and f :::: g' where 1,1' E~. Then I· = I'· by 
• • Theorem 3.16, so declare f = g. C 

CoroUm 3.18. 

homeomorphism. 

Say X,Y E ~ and f: X _ Y is a leaf-preservinl 
• * Then f is an isomorphism. Thus H.,. is a 

leaf-preservinl toPololical invariant. 

fmgf: The map r 1 is also leaf-preserving. By Corollary 3.17 the 

maps f,r1 induce f·, c(1)·, and clearly (r1)· = (f·)-l. C 
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CorollarY 3.19. (Homotopy-type invarianee). Two foliated spaees 

having the same "Ieaf-preserving homotopy type" have isomorphie 

tangential eohomology. 

~: Let f: X _ Y be a leaf-preserving homotopy equivalenee with 

leaf-preserving homotopy inverse g, so that fg ~ l y ' gf ~ IX via 
•• • 1'-homotopies. By Corollary 3.17, fand g exist, and then f = 

(11'·)-1. 0 

Next we introduee eohomology with eompaet supports. The 

support of a form w E o~(X) is the closure of 

(x E X I w(x) 'f;. 0). Let O~c(X) C o~(X) denote the forms of eompaet 
k support. The groups 0.,. c (X) form a eomplex, as 

d: o~(X) _ o~ + 1 (X) deereases supports. Define t Cl n a e n t i Cl l 

cohomoloav with compact support by 

(3.20) 

* * The inelusion o.,.c(X) <+ O.,.IX) is the inclusion of a differential 

subalgebra, thus indueing a map of Z-graded IK-algebras 

(3.21) 

whieh i8 an i8omorphism if X i8 eompaet. The following proposition 

* summarizes the elementary properties of H.,. c . 

* PtoJlO!ition 3.22. 1) H.,.c is a contravariant funetor from l' and 

proper 1'-maps to Z-graded assoeiative, graded-eommutative 

topologie al l<-algebra8 and continuous homomorphisms. 

2) If X i8 the topologieal sum of (X j ) in 1', then there is 

a natural isomorphism 
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'" 3) H.,. c (X) is a unital algebra if and only if X is compact, 

'" '" in which case HT C (X) E!! H.,.(X) naturally. 

'" 4' H.,. C (X) i8 a covariant functor with respect to inclusions 

of open sets U C X. 

An 1"-homotopy h: X X IR _ Y is proper if h I X X I is 

proper. 

Proposition 3.23. Let 0x(X X IR, = (1.11 E 0T(X X IR) I supp(w' i8 

a compact projection}. Then there is a linear map 

'" * L: 0x(X X IR) _ O.,.c(X) such that 

and 

Theorem 3.24. If f,g are proper 1"-homotopic continuous maps then . . '" 
f = g on H.,.c. 0 

eoronm 3.25. Let h: X _ Y be a leaf-preserving homeomorphism. . . '" ". '" Then there is a map hand h : H.,.c(Y) ~ HTC(X). 0 

'" Note that H.r c is not an invariant of homotopy type. The 

space ~ has the homotopy type of the space IRP X ~ and 

lI~c(IRPXlRm) = 0, since no constant function on a leaf has compact 

support, but H~c(~) = C~(lRm). 
In preparation for the Thom isomorphism theorem, we introduce 

a third sort of cohomology which best suits the total space of vector 

bundles. (Bott-Tu [BT] is an excellent general reference.) Suppose 

that Ir: E _ X is a tangentially 8mooth real vector bundle over X 

with E foUated by leaves which locally are of the form 

(leaf of X) X Ex 
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Let O~v(B) be those forms IAI E O~(B) 
which are compactly supported on each fibre Bx. 

* 
* Then 0rv(B) is a 

subcomplex; let Hrv(E) be the associated cohomology groups. We 

shall refer to them as tanQential compact vertical or more 

simply as tanQential vertical cohomology groups. If X is 

* * * * compact then 0rv(B) = 0rc(E) and so Hrv(EI = Hrc(EI; in general 

these groups differ. 

Theorem 3.26. (Mayer-Vietoris) Let U. V be open subspaces of the 

foliated space X. Then the Mayer-Vietoris sequence (with usual maps) 

is exact. Hence there is a long exact sequence 

Similarlv. if 1t: E _ X is a tangentially smooth bundle over X. Xl 

and X2 are open sets in X with Xl V X2 = X. U = 1t-I (XI ). 

V = 1t-I (X2). then the sequence 

is exact and so there is a long exact sequence 

k k I Proof: Let IAIU E 0rlU). IAIV E 0r(Ul. and suppose that IAIU urw = 
wv I urw· Define IAI E O~(UvV) by 

""x) = { 
if x E U 

if x E V 

Then IAI maps to (IAIU.IAIV). This shows exactness of the first sequence. 

The other verifications are as trivial. 0 
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Proposition 3.27. There is a natural a8sociative continuous external 

product pairing 

and similarly 

* * respecting H1'c - H1" 

fi29f: 
Jl('x JI(' 

Let X _ X )( Y ---4 Y be the projections. Define the 

first pairing by 

* and similarly for H1' c' 0 

Proposition 3.28. Let X be a foliated space and let M be a smooth 

manifold. Foliate X )( M as (leaf of X) )( M. Then a induces 

natural continuous isomorphisms 

and 

~: There is a natural isomorphism of sheaves 

corresponding to the pairing a. This is elear since (on a local patch 

and hence globally) a function on X )( M which is constant on leaves 

corresponds uniquelv to a function on X which is constant on leaves 

and a constant function on M. This proves the first isomorphism. 
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For the second we regard X X IRn as a trivial bundle over X. The 

homotopy inverse to the Künneth pairing above is given by integration 

along the fibre 

Hk (X.o.lRn) Hk-n(X) :! H~-n(X).o._Hnc(...n) 'Tv ~ - 'T , "" I~-

as in Bott-Tu [BT] , page 61. 0 

Corollaa 3.29. Let un E H~(IR'l) :! IR be the canonical generator 

let u~ = a(1X8un) E and for a foliated space X, 

H~v(X X IRn). Then 

1) H;v(X X 1R'l) Is a free continuous H;(X)-module on u~. 

2) If f: X _ Y in '3 then 

3) a(u~8u!) = u~~! (explained below) 

The cla88 u~ i8 the Thom class of the trivial bundle X X IRn _ X. 

The map II is the comp08ition 

Hn+m(X X ~ X y X ~) 
'Tv 1 :! (t defined below) 

Hn+m(X X y X IRn+m) 
'Tv 

~: Apply Proposition 3.28 to X X IRn. Then 

As the class 
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H~~n(X X (Rn) as an H~(X)-module. This proves 1). 

For 2), we compute: 

x . d = un as reqUlre . 

For 3), consider the graded commutative diagram below, where t 

generically denotes twist maps: 

~ 

H~:m(X X ~ X Y X (Rm) ~ H~~m(X X Y X (Rn+m) 

Then 

- XXY 0 - un + m 
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nua IlOmorphisll Theorta (3.30'. For each compact foliated space X 

and for each tangentially smooth real oriented n-plane bundle 

p: B _ X there is a unique Thom eiass uE E H~c(B) with the 

followinr propertie.: 

1) If f: X _ X' in Y and B' is areal oriented bundle 

over X', then 

2) Let x E X and let Bx denote the fibre over X in B. 

Then the iuclusion Ex C Einduces a map 

H~ceB) - H~eBx) E! H~elRn) under which uB is 

sent to un0 

* * 'fhe I<-algebra HTceB) i. a free HTeX)-module on the Thom class uB; 

precisely, there is a continuous Thom isomorphism 

e3.31) 

given by 

e3.32) 

Further. if Band B' are bundles over X as above then 

fmslf: We shall establish the Thom theorem in somewhat greater 

generality than stated above. Let us say that a bundle E over X is 

r-trivial if there exist a finite open cover Xl .... '~ of X such that the 

bundle B is trivial when restricted to any Xi' We shall prove that the 

Thom theorem in the form 

k E! n+ke ) 
.T: HTeX) - HTV B 
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holds for X a foliated space (compact or not) and E _ X any 

oriented r-trivial bundle. This implies Theorem (3.30) since if X is 

compact then every vector bundle over X is r-trivial for some rand 
* * also H.,v(E) Ei! H.,e(E). 

We proceed by induction on r. If r = 1 then E is a trivial 

bundle. Corollary 3.29 establishes the existence and uniqueness of the 

cla88e8 u~ :: uE with the properties 1) and 2) compatible with 

orientation. Suppose inductively that for a11 bundle8 E' which are 

k-trivial for some k < r we have shown uniqueness of the Thom cla88 

uE' compatible with orientations. Let 1\': E _ Y be an oriented 

bundle which is oriented r-trivial, via open sets X1 •...• Xr. Let U = 
1\'-1(X1• v ... v Xr_1) and V = 1I"-1(Xr). Then U and V are open sets in 

E with E = UvV. The Mayer-Vietoris sequence (3.26) yields the long 

exact sequence 

Since U/W C 1\'-1(~), we have 

Thu8 Hn-1(U/W) = 0 by Corollary 3.25. .,v 
existence and uniqueness of the eIasses 

and each of these restrict to the eIass 

By induction we have 

u8ing uniqueness and orientability. Exactness of the Mayer-Vietoris 

sequence implies that there is a unique eIass uE E H~v(E) wblch 
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maps to (u~,u~). This establishes the existenee and uniQueness of the 

Thom clusses uE for all r-trivial bundles E. Define 

by +T(w) = uEw, This is a continuous isomorphism on trivial bundles, 

by Corollary 3.29. A Mayer-Vietoris argument whieh we omit (cf. 

Bott-Tu [BT], p. 64) implies that +T i8 an isomorphism for all 

r-trivial bundles. 0 

Remark: Let z: X _ E be the zero-seetion . 
• H~(X) by eT(E) = z uE' The class eT is the tangential Euler class. 

Similarly we may eonstruet Chern classes and the tangential Chern 

character in this manner. Sinee uE lies in cohomology with 

real! complex (but not integer) coefficients, characteristic classes 

cOIistructed in this mann er are not visibly integral classes. 

Dur final topie in this chapter is the intl'oduction of tangential 

homology. Recall that the tangential forllls O~(X) and O~c(X) have 

been topologized by demanding that in all coordinate patches we have 

ullüol'm convel'gence of the functions a(x1,.,xp,n) together with all 

their derivatives in the tangential direction on compact subsets of the 

cOOldhlate patch. The differential d is continuous. Define 

(~.33) O~(X) = hom(O~c(X),IR) 

wllere hom denotes ('ont i nuous homomorphisms. 

o~ ar'e called current s. The natural differential 

d 0 ., 
.: k-

i8 glvell by 

Elements c E 

where c E o~, w E O~ - 1, and < . > denotes the evaluation of a 

86 



current c e nr on a form w. (Our sign convention dictates that 

forms are placed on the left, currents on the right, in <w,c>.' It Is 

immediate that d~ = O. Let n{C c n{ be those currents which 

have compact support in the obvious sense. This is a differential 

submodule. Define tanaenttal hOJlloloav by 

(3.34' 

and similarly for Htc(X;IR'. 

Proposition 3.35. 

l' Each H{ i. a covariant functor from foliated ,paces and 

tangentially smooth maps to IR (resp. tt'-vector spaces and continuous 

homomorphisms. 

Z, If f and gare tangentially homotopic maps X _ Y then 

3' The pairings 

and 

induce continuous pairings 

and an isomorphism 
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H~ (X) ~ Homcont(H~ c (X),IR). 

4) If X = M foliated as one leaf then 

~: On1y 3) requires comment. Compactness (on one side or the 

other) gU8rantees that the pairings exist at the chain level. There is 

a natural continuous pairing 

(cocycles)8(cycles) _ IR 

given by evaluation. If w = dw' then 

<w,c> = <dw' ,c> 

d.c = 0 since c is a cycle 

= 0 

and similarly, if c is a boundary then 

<w,c> = <w,d.c'> 

= ± <dw.c'> (dw = 0) 

= O. 

Thus there are pairings a8 indicated. The i8omorphism comes on 

purely algebraic grounds from the fact that Homcont(-,IR) is an exact 

functor. 0 
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APPENDIX 

In this addendum we want to rephrase the construction of the 

tangential de Rham complex so as to make the algebraic essentials of 

the construction clear and to show the essential unity of this 

conatruction with ordinary Lie algebra cohomololY. In this we will be 

followill8 what ia folklore. We start with a pair consisting of a 

commutative associative algebra A over a field k and a Lie algebra L 

also over k. We assume that we have a representation of L as a Lie 

algebra of derivations of A, and we write the action of 8 E L on 

an element a E A as just 8(a). We further assume that L as a linear 

space is a module over A (but not that L Is a Lie algebra over A). 

Rather one assumes 

(3A.1) [e,b",] = b[8,"'] + 9(b)", 

where a", is left multiplication of a E A on '" E L. We call (A,L) 

a Lie-associative pa.ir. Note that if 9(b) = 0 for all 9 and 

b then L is a Lie algebra over A. A module M for the pair (A,L) is 

simply a vector space over k with a module structure for A and with 

a representation of L on M (as vector space) satisfying 

(3A.2) 9(am) = a· 8(m) + 9(a)· m 

(3A.3) (a8)(m) = a(e(m)) for a E A, 9 E L, m E M. 

where 8(m) is the Lie algebra action and b· m is the left module 

action. We observe the following fact. 

Proposition 3A.4. The algebra A ltaelf, given the structure of A 

module by left multiplicatlon, and the defining representation of L as 

derivations of A, is an (A,L) module. 

Proof: That the key identities (3A.2) and (3A.3) are satisfied in the 

first case is just the fact that L is given to act as derivations of A. 

C 
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As noted previouslv this structure already contains ordinary Lie 

algebras by taking for instance A = k in which case modules as 

defined above are ordinary L modules. However, the motivating 

example for this is given by a co. manifold X, with A = Co.(X) and 

L the co. vector fields. More generally X could be a foliated space 

with A the tangentially smooth functions C;(X) and L the tangentially 

smooth sections of the tangent bundle r T(FX). That L is a Lie 

algebra under commutator brackets is immediate. 
• The immediate point here is to define cohomology groups H (M) 

for any (A,L) module M so that in the first example above (A = k) one 

obtains usual Lie algebra cohomology while in the second example, one 

obtains the usual de Rham cohomology of X and in the third example 

one obtains the tangential cohomology. The construction is patterned 

exactly on the classical Koszul complex (cf. MacLane [Mac]) and the 

construction of differential forms. If M is an (A,L) module we let 

C~(L,M) or for short CP(M) denote the space of all alternating p 

linear, A-linear maps from L to M.· A differential CP(M) _ CP+l(M) 

is defined as usual by 

(3A.5) 

+ 

What requires checking is that djll is actuallv A linear since none of 

the individual terms on the right are A linear. Use of the basic 

identities (3A.l) and (3A.2) for A, L, and M produces the necessary 

cancellations. We omit the details. It is also evident that d2 = 0 

and so one as usual defines cohomoloiY groups H~(L,M) or for short 

HP(M) = ZP(M)/BP(M) where ZP(M) is the kernel of d in CP(M) and 

BP(M) is the image of d from Cp-l(M). 

It is an easy matter to check that in the case A = k, this 

yields the usual Lie algebra cohomology of the module M as the 

formulas (3A.5) are the standard ones. cf. MacLane [Mac]. It is 

equally easy to see that if A = Co.(X), and L the co. vector fjelds 
* • on X, then the cohomology HA (L,A) = H (A) is the usual de Rham 
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a 
cohomololrY of X because C (A) is visibly the de Rham complex of 

differential forms with its usual differential. In the same way. when 

A = C;(X) is the tangentially smooth functions on a foliated space and 

L is the COO tangentially smooth tangential vector fields. then Ha(A) is 

also visibly the tangential cohomology aa defined in Chapter IH. 
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CHAPTBR IV: TRANSVBRSB MBASURBS 

In this chapter we concentrate upon the measure theoretic 

aspects of foliated spaces, including especially the notion of 

transverse measures. 

We begin with a reneral study of groupoids, first in the 

measurable and later in the topological context. Our examples come 

from the holonomy groupoid of a foliated space (2.20) and a discrete 

version corresponding to a complete transversal. We introduce 

transverse measures )I with a given modulus and discuss when these 

are invariant. 

Next we look in the tanrential direction, defining a tangential 

measure A to be a collection of measures A x (one for each leaf in 

the case of a foliated space) which satisfies certain invariance and 

smoothness conditions. For instance, a tangential, tangentially elliptic 

operator D neIds a tangential measure I. D as follows. Restrict D to 
* a leaf I. . Then from Chapter I Ker D I. and Ker D I. are locally 

finite dimensional and hence the local index I. D is defined as a 
I. 

signed Radon measure on 1.. [A priori it would seem that I. 0 

depends on the domains :'llom(D 1.) but in Chapter VII we shall 

demonstrate that I. D is well-defined.] Then I. D = (I. D ) is a 
I. 

tangential measure. Tangential measures, suitably bounded, correspond 

to integrands: if A i8 a tangential measure and )I is an invariant 

transverse mea8ure then Ad)l i8 a measure on X and J Adv E IR is 

defined. 

Next we specialize to topological groupoids and continuous 

Radon tangential measures. In the case of a foliated space we 

recount the Ruelle-Sullivan construction of a current associated to a 

transverse measure and we show that the current is a cycle if and 

only if the transverse measure is invariant. 

Finally we prove a Riesz representation theorem for (signed) 

invariant transverse measures on a foliated space X; they correspond 

precisely to the topological vector space (ii~(X»·. 
A groupoid, whose main feature is a partially defined 

associative multiplication, is best understood by two extreme special 

cases - a group on the one hand, and an equivalence relation on the 
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other. We need say no more about groups, but if (R is an 

equivalence relation on a set X so that (R is a 8ubset of XXX, one 

can con8truct a partially defined a880ciative multiplication on (R so 

that it becomes a rroupoid. Specifically if u = (x,y) and v = (w,z) are 

two elements of (R, the product uv is defined exactly when y = w, and 

then uv = (x,z). It is surgestive to define the range of an element u 

= (x,y), denoted r(u), to be the first coordinate x and the source of u, 

denoted s(u) to be the second coordinate y. Then uv is defined 

precisely when r(v) = s(u). Intuitively one might think of the pair 

(x,y) as something starting at y and going to x so that multiplication 

is in some way a kind of composition. 

lf X Is a foliated space, there is an obvious equivalence 

relation on X defined by the leaves, but as we saw in Chapter II a 

foliated space has associated to it something more, namely its graph 

G(X) or as it is also called, the holonoDIY groupoid of X. This is but 

one example where a Borel or topololJical groupoid presents itself 

naturally - another Is when one has a topololrical group acting on a 

space where the action is not necessarily free. Thus we are led to 

the notion of a groupoid: 

DefinitioQ 4.1. Aar ° upo i d G with unit space X consists of the 

sets G and X together with maps 

(1) 4: X _ G (the diagonal or identity map) 

(2) An involution i: G _ G, called inversion and written i(u) 

= u-1 

(3) range and source maps 

r: G _ X and s: G _ X 

(4) an associative multiplication m defined on the set G' of 

pairs (u,v), u,v E G, with r(v) = s(u); one writes m(u,v) 

= u·v or just uv. 
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In addition to the properties already listed one needs the 

obvious extra eonditions 

(5) r(A(x)) = x, s(A(x)) = x and u • (A(s(u))) = u, 

A(r(u)) • u = u 

(6) and m(u,u-1) = A(r(u)) 

Alternatively, one eould define a groupoid as a small eategory 

where every map has an inverse. At all events, if X is redueed to a 

single point, G is simply a group with identity element A(x), X = 
C x) . In general the maps rand s to,ether yield a map 

.: u _ (r(u), s(u)) of G into XXX. The image of this map is an 

equivalenee relation on X in view of the axioms above. If this map is 

inieetive, then G as a groupoid is (isomorphie to) this equivalenee 

relation; G is ealled pr iRe i pa lifthis happens. In aoy ease this 

shows that assoeiated to aoy croupoid there is alwllYs a prineipal 

croupoid (i.e. an equivalenee relation). A general ,roupoid ean be 

viewed as a mixture or eombination of this equivalenee relation eR 

and the other extreme ease of a groupoid, namely a group. 

Speeifieally, we let 

Gx = Cu: s(u, = x), 

GY = Cu: r(u' = yl, 

GY = G "GY x x 

G~ = Culr(u) E Z, s(u) E Yl 

more generally. Then G: is immediately seen to be a croup with 

identity element A(x). The sets G; for (x,y) E (R are prineipal 

homogeneous spaees for G: and G~ with G~ actin, on the left and 

G~ aeting on the right. In partieular for (x,y) E (R, G~ and G~ 

are isomorphie. Thus the croupoid G appears as a kind of fibre spaee 

over the equivalenee relation (R as base and with the group-like 

objeets G~ as fibres. This is exaetly the geometrie strueture that the 

holonomy groupoid of Chapter II displayed. Indeed we will often refer 
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to the groups G: as holonomy groups. They can also be thought of 

as "isotropy groups" because of another important example of groupoids 

coming from group actions. If a group H acts as a group of 

transformations on aspace X, the set G = HXX becomes, as George 

Mackey has emphasized in his seminal papers [Ma3J, [Ma5J, a 

groupoid. The unit space is X; t.(x) = x; the range and source maps 

are s(h,x) = x, r(h,x) = h 0 x where h 0 x 18 the result of the group 

element h acting on the point x. The inverse of (h,x) is (h-1,hox). 

Two points (g,y) and (h,x) are multipliable when y = h o x and then 

(r,y) 0 (h,x) = (gh,x). Finally the holonomy rroup G: is visibly just the 

isotropy rroup eh: h 0 x = X) of the action at x. 

Now that the purely algebraic structure of groupoid8 has been 

described, we impose the extra conditions appropriate for the analytic 

and geometrical applications. 

Definition 4.2. A (standard) Borel aroupoid (cf. Mackey [Ma5J 

or Ramsay [Ra]) is a rroupoid G so that G and its unit space are 

Borel spaces - that is, come equipped with a a-field of sets - so 

that the defining maps 1., r, s, and mare Borel. 

The set X become8. via the diagonal map 1., a subset of G, 

and it will have the relative Borel structure because I. and rare 

Borel maps. (In principle it would not be necessary to separately 

assume that X was a Borel space.) The subset G' of GXG, where m 

is defined, is given the product Borel structure. We will be assuming 

throughout that the Borel space G is a standard Borel space. This 

means that G with its Borel a-field is isomorphie to a Borel subset of 

a complete and separable metric space given its Borel a-field. The 

reader is referred to Mackey [Ma5J, Arveson [ArJ, Bourbaki 

[BouJ for further discussion of this important and pervasive regularity 

condition for Borel spaces. It is a condition that can be easily 

checked in the examples to be treated. 

Proposition 4.3. The graph G(X) of a foliated space (cf. Definition 

2.20 in Chapter 11) with the a-field generated by the open sets is a 

standard Borel groupoid. 
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~: In case the graph G(X) il Hausdorff, this is obvious for it is a 

locallv compact Hausdorff second countable space and can be given a 

separable complete metric. In general G(X) may be covered by a 

countable number of open sets Ui each of which is locally compact, 

Hausdorff and second countable. It is easy to see that a subset E of 

G(X) is Borel if and only if E " Ui is Borel for all i. Since each Ui 
is standard as a Borel space, it follows easily that G(X) is standard. 

o 

We will impose two further conditions on our standard Borel 

groupoid G, both of which are very natural and immediate in the 

context of foliated spaces. First we shall assume that each 

holonomt! uroup GX is countable. The second condition x 

revolves around the notion of a transversal. 

Definition 4.4. If G is a standard Borel groupoid with unit space X 

and 88lociated equivalence relation 6\, a Borel lubset S of X is 

called a t ra n sv er s al if S intersects each equivalence dass of 6\ 

in a countable set. (For us countable shall mean finite or countably 

infinite.) A transversal is comp let e if it meets every equivalence 

class. 

If 6\ is a countable standard Borel equivalence relation in the 

sense of Feldman-Moore [FMIJ (that is, the equivalence classes are 

countable), then of course any Borel subset is a transversal. As we 

shall see, the existence of a complete Borel transversal for a general 

Gensures that it can be buHt up in a simple way from a countable 

standard equivalence relation. 

We shall now forthwith assume that 6\ al wall s ha s a 

complete (Borel) transversal. Note that for foliated spaces 

the existence of such sets is an immediate consequence of the 

definitions. In dealing anaLytically with transversals, we will have 

need of a very helpful result about Borel spaces that is not too well 

known. 

Theorem 4.5. Let X and Y be standard Borel spaces and let f be a 

Borel map from X into Y with property that r 1(y) is countable for 
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each y. Then X can be written as the dis.ioint union of Borel subsets 

Ui so that f is injective on each Ui. Moreover f(X) is a Borel subset 

of Y. 

We shall not include a proof. The reader is referred to the 

discussion in Kuratowski [Kur] in section 35,VII. A proof may be 

found in Hahn [Hah] p. 381. See also Purves [Pu]. 

We list some consequences of this result that will be relevant 

for uso 

Propo,itiOD 4.6. Let G be a standard Borel groupoid with countable 

holonomy groups. 

(1) The equivalence relation cSt is a Borel subset of XXX, hence a 

standard space. 

(2) If S is a Borel transversal, the saturation cSt(S) of S with 

respect to the equivalence relation cSt is a Borel subset of X. 

(3) If S is as in (2), there is a Borel map f from cSt(S) to S with 

f(x) ~ x. 

f.mgf: (1) The map G _ XXX given by u _ (r(u),s(u)) is Borel and 

countable to one. Hence its image cSt is Borel. 

(2) Reca11 that the saturation of a set S is the set of a11 

points equivalent to a member of S. Let W be the subset of XXX 

given by (SXX) "cSt. By (1) W is a Borel set. Now let p be the 

projection map to the second factor. The image of Wunder p is 

nothing else but cSt(S), and since S is a transversal p on W is 

countable to one. Hence p(W) is Borel by Theorem 4.5. 

(3) By the first part of the theorem, we may with a little 

cutting and pasting construct a subset U of W above so that p is 

iniective on U and p(U) = p(W) = cSt(S). Then define a map f of 

cSt(S) into S by the condition that f(x) is the unique point so that 

(f(x),x) E U. The graph of f is a Borel function, and it fo11ows (cf. 

Auslander-Moore eh. I [AM]) that f itself is Borel. This is the 

desired function. [J 
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The existence of a complete Borel transversal in a standard 

Borel groupoid G guarantees by part (3) of the proposition above that 

the equivalence relation ~ of G is buHt up in a very simple way from 

a countable standard equivalence relation. To see this note that a 

complete Borel transversal S in X defines a countable standard 

equivalence ~S on S itself; ~S = (SxS) n~. Then the map f 

guaranteed by (3) of Proposition 4.6 from X to S with f(x)"'x displays 

X as a fibre space over S so that ~ is also fibred over ~S in the 

sense that two points of X are ~-equivalent if and only if their 

images under f are ~s-equivalent. We shall exploit this structural 

representation heaviLy in our discussion of transverse measures. 

We observe that not every standard Borel groupoid ~ satisfies 

our condition on the existence of a complete Borel transversal. 

Indeed let X be a Borel subset of the plane 1R2 whose projection to 

the first axis is not a Borel set (Kuratowski [Kur]), and define an 

equivalence relation on X by deelaring that two points are equivalent 

if their first coordinates are the same. This Is clearly a standard 

Borel groupoid (with no holonomy), but there is no complete Borel 

transversal. For if S is such a transversal. it would follow by 

Theorem 4.5 that the projection of S to the first axis, which is the 

same as the projection of X to that axis, would be a Borel set. 

Mackey [Ma5J, followed by many others (cf. [Ra], 

[Ra2]), has introduced and studied the notion of a measured groupoid; 

these are by definition standard Borel groupoids with one more 

additional datum, namely a Borel measure or better an equivalence 

elass of Borel measures on the groupoid. This elass of measures has 

to satisfy an invariance property that reduces in the case of a 

principal groupoid (an equivalence relation) to the condition that 6.1J 

be equivalent to IJ where IJ is any measure in the elass, and 6 is 

the flip 6(x,y) = (y,x) on the equivalence relation and 6.1J is the 

image of the measure IJ under the map 6. The condition in general is 

somewhat more complicated but basically the same. 

DefinitiOQ 4.7. A measure IJ on a standard Borel groupoid G is 

quasi invariant if -.IJ is quasi invariant on ~ where ~ is the 
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principal groupoid associated to G and 11 is the projection map 

G _ 61 and if when U is disintegrated over II.(U) into measures 

U~ on the fibres G~ of the maps 11, then for almost an pairs (x,y) in 

6\, U~ should bc quasi invariant under the action of the groups G: 
and G~. 

In the present case when the holonoll\Y groups G: are 

countable this last condition can be rephrased more simply as the 

condition that for almost all (x,y) U~ gives positive mass to each 

point in the countable set G~. Note that r.(u) is equivalent to 

s.(U) and defines an equivalence c1ass of measures on the unit space 

of X. 

Although we have seen that a standard Borel groupoid may fail 

to have a complete transversal, an important result of Ramsay CRa] 

shows that a standard measure groupoid does have such a transversal 

up to null sets. 

Theorem 4.8. Let G be a standard measured Borel groupoid with unit 

space X. Then there is a Borel subset Y of X conull for the natural 

measure (c1ass) on X defined by the measure U on G and a subset T 

of Y which is a complete Borel transversal for the groupoid Gy = 
r-1(y) n s-l(y). That is, T is a transversal for the original 

equivalence relation on X and meets every equivalence class of that 

relation which has a non empty intersection with the conull subset Y. 

Thus while the results to follow concerning transverse measures 

which all assume the existence of a complete transversal on the 

groupoid do not strictly apply to a measured groupoid, they will apply 

after one deletes an inessential null set from the unit space. Our 

point of view in that discussion is that all the points count and that 

one cannot delete or ignore null sets, especially when one is dealing, 

as we shall later, with locally compact groupoids. 

The discussion to follow concerning transverse and tangential 

measures cu be interpreted as an analysis of a measure on a groupoid 

into a product (in a Fubini type sense) of a part tangential to the 

orbits of the groupoid times apart transverse to the orbits. The 

transverse part is thus in some vague sense a measure on the space 
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of orbits of the groupoid. 

Let us now turn to the erueial topie of transverse measures. 

If G is a standard Borel groupoid (or more partieularly an equivalence 

relation 6l on X) a transverse measure provides, at least intuitively, a 

method of integrating some kind of object over the set of equivalence 

classes of the principal groupoid 6l assoeiated to G - that is over 

the quotient space X/6l. This quotient space is in general a very 

pathological space from the point of view of measure theory, 

eontaining subsets like IR/Cl, the real numbers mod the rational 

numbers. If the quotient space X/6l with its quotient Borel structure 

were a standard or even analytic Borel space (e.g. if G were to come 

from a foliation given by the fibres of a fibre bundle' then transverse 

measures would be really just ordinary measures on X/6l. For 

,eneral foliations transverse measures suitably defined have played an 

important role for years. In addition, as Connes points out [C03J. 

one has to rethink one's concept of what sort of functions are 

suitable integrands for interrating arainst a transverse measure. 

We will treat something a bit more general than what 

traditionally in the theory of foliations is called a transverse measure; 

transverse measures here will involve a modular function analogous to 

the modular function on a locally compact group. When this modular 

function is identically one, as is traditional in foliation theory. the 

transverse measure will be called invariant. Rence what in foliations 

is called a traDSverse measure, we shall call an invariant transverse 

measure. 

The modular function in question above is simply a 

homomorphism from the croupoid to the group of positive real numbers 

IR+ under multiplieation. A homomorphism of a groupoid G to a group 

R (or indeed to another groupoid' is a map _ from G to R so that 

when uv is defined _(u'_(v' is defined and is equal to _luv'. When 

G and H are standard Borel groupoids, one insists naturally that _ 

be a Borel map. For the purposes at hand we fix a Borel 

homomorphism. denoted by 6. of G into the group IR+. We further 

assume tbat 6 is holonomy invariant in that 6(u' depends only on r(u' 

and s(u,. Put another way. there is a homomorphism 6' of the 

principal groupoid (equivalence relation) 6l associated to G so that 
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6(u) = 6'(p(u)) where p(u) = (r(u),s(u)) is the projeetion of G onto the 

equivalenee relation 6t 

Let us now consider the ease when G (or tRI has countable 

equivalence classes. Then in view of our standing hypothesis that all 

holonoDIY groups are countable, the range and source maps rand s are 

countable to one. In [Ma5] , the notion of a quasi invariant measure 

on X with given Radon-Nikodym derivative (or modulus) 6 is 

discussed, at least in the ease of trivial holonomy groups, see also 

[FMl]. The discussion extends without change; namely we start with 

a measure v on X quasi invariant under tR in the sense that a subset 

E of x is v-null if and onlv if its tR saturation - again a Borel aet 

by Proposition 4.6 - is also v-null. As r is countable to one, there is 

a unique measure )I r on 6t which is the integral of the eounting 

measures on the fibres of the map r over the base X. Specifically if 

I C I is the cardinality of C, then 

There is a similar measure )I s defined usinc the source map s instead 

of r. As in Feldman-Moore CFMlJ, these measoras are mutually 

absolutely continuous and the Radon-Nikodym derivative d)lld)ls = 6 

is called the 1110 d u l US of)l. This function on G is readily seen to 

depend only on the projection of G onto 6t As a function on G or tR 

the modulus 6 is a homomorphism up to null sets in that 6(uv) = 
6(u)6(v) for almost all u and v in tbe obvious sense. 

We return to the case of a general standard Borel groupoid 

with countable holonoDIY groups and a complete Borel transversal. We 

observe that the set of all Borel transversals J; is indeed a a-ring, 

but not in general a a-fiald, of subsets of X. A transverse measure 

will be simply a maasure on this a-ring. For each S E J; we can 

form tbe restriction of G to S, G~ = Cu E G, r(u),s(u) E Sl. 

This Is a groupoid with countable orbits and countable holonoDIY groups 

of the kind diseussed a moment ago. 

There is a subtle point here about whether 6 is or is not 

constant on the holonoDIY groups G:. There will be instances later on 

when we specifically will want to allow 6 to be non constant on 
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some holonomy groups G~; the point is that lhis cannot happen for too 

many x's, for it follows from lhe fact that t:. is equal almost 

evervwhere to the Radon-Nikodym derivative of )) I s on G~ and some 

null set manipulations, that for v I Salmost all x E S, t:. is constant 

on G:. 

Definition 4.9. A transverse measure with modulus t:. on a 

standard Borel groupoid is a measure )) on the o-ring of Borel 

transversals Ji so that )) I S is o-finite for each S E Ji and so that 

)) I S is quasi invariant on G~ with modulus equal to t:. almost 
s everyWhere on Gs ' If t:. = 1, one seys that )) is an invariant 

transverse measure. 

A transverse measure allows one to talk consistently about 

what it means for a set L of equivalence classes of the equivalence 

relation ~ to have measure zero. The condition is that the 

interseetion of the leaves in L with each Borel transversal S should 

be contained in a )) I S Borel null set, or equivalently that this should 

happen for a single complete Borel transversal. Since the modulus of 

a quasi invariant measure is constant on holonoIDY groups, we conclude 

from this discussion that t:. is constant on the holonomy groups of 

almost an leaves. 

As an example of a transverse measure we consider the 

Kronecker foliation on the two-torus T2 where the leaves are of the 

form 

C(exp(21l"i(x + xO))' exp(2Il"iAX), x E IID 

Airrational. Regard the two-torus as the square 

C(x,y) I 0 , x < 1, 0 , y < D, 

and far each IJ, -A < P , 1, let J p be the part of the line y = 

AX + p inside the square described above. 
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If 8 is aoy Borel transversal, then 8 must meet each I. p in at 

most a countable set. If n(p) is the cardinality of S " I. p ' then n 

is obviousLv a Borel function. We define )I by the formula 

1 
)1(8) = J n( p)d /.I. 

->.. 

It is not difficult to verify that this produces an invariant transverse 

measure for the graph of this foliation. If instead one defined 

1 
)1(9) = J n(p)f(p)d/.l 

-).. 

for some positive Borel fanction f. the result would be a transverse 

measure with modular function 

Recall that given a diffeomorphism , of F then one ma.v form 

its suspension M = IRXZP (cf. (2.3)) which is foliated with leaves of 

dimension 1. An invariant transverse measure for M corresponds to a 

'-invariant measure on F. More generalLv. in the situation (2.2) of a 

manifold with discrete structural group 

an invariant lransverse measure on M corresponds to a measure on F 

which is invariant under the action ""1(B) _ Homeo(F). 

Also let us consider the very special case when G = 6t is an 

equivalence relation coming from a Borel map p of X onto a standard 

Borel space B - in other words. a fibration. Here x N y if and only 

if p(x) = p(y). We let tJ. = 1 so we are looking for invariant 

transverse measures. If;:; is a measure on the base B then if N is 

transversal we define 
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It is clear that )I so defined on the C7-ring of transversals is an 

invariant transverse measure. Conversely we claim every such )I is 

of this form. To see this, observe that the assumed existence of a 

complete transversal yields by Proposition 4.6 the existence of a 

Borel cross section S for the map p. It follows that p maps S 

bUectively onto B; by Kuratowski [Kur] it is therefore a Borel 

isomorphism. If)l is an invariant transverse measure on X, )I gives 

in particular an ordinary measure on S. This may be transported to B 

via piS to give a measure v on B. Then it is an easy exercise to see 

that )I on any transversal N is given by the formula above in terms of 

v and IN" p-l(b) I. 

It is well to extend the remarks above a bit to observe that )I 

is determined by what happens on any complete transversal. 

ProDO!itiOD 4.10. For any standard Borel groupoid with countable 

holonoIDY and unit space X, a transverse measure )I of modulus 6 is 

completely determined by )I I N where N is any complete transversal. 

Conversely if )IN is a transverse measure on N with modulus 6 IN' 

then there exists a (unique) transverse measure on X with modulus 6. 

flmlf. By Proposition 4.6 we construct a Borel map t from X to N 

with fIx) N x. If S is any transversal, f restricted to S, fis' is a 

countable to one map of S to N; then assuming we know )11 N = )IN 

for some transverse measure, we can immediately calculate )I on S 

given the invariance properties in terms of 6(f(s),s) as folIows: 

where for each t the eum is taken over all s with fIs) = t. This 

shows that )I on N determines )I altogether. 

Conversely if we are given a transverse measure )IN on N, we 

use the same formula to extend )IN to all transversals. It is a 

simple calculation to show that the result is a transverse measure on 

X. [] 

104 



If X is a foliated manifold with oriented transverse bundle. we 

remark that there is a canonical transverse measure class given by the 

volume element on q-dimensional transverse submanifolds. This may or 

may not be an invariant transverse measure (elass). 

A transverse measure on a general groupoid in this formulation 

is rea11y an ordinary measure but is defined on a a-ring JJ instead 

of a a-field. The measure could of course be extended to the 

a-field generated by JJ but this extension would in general be 

impossibly non a-finite as a measure on the entire space. (If the 

entire groupoid has countable orbits then a transverse measure is rust 

an ordinary (a-finite) measure on the unit space.) These facts make a 

huge difference in the type of object that can be integrated in 

general against a transverse measure. 

We insert here several diverse examples of foUated spaces 

which Yield interesting elasses of (primarily Type 111) von Neumann 

algebras. In Chapter VI we sha11 consider the question of exactly 

which von Neumann algebras may be realized as the von Neumann 

algebras of foUated spaces. 

Let G = SL2(1R), let r be a discrete cocompact subgroup. and 

let M = G/r be the resulting compact 3-dimensional manifold. Foliate 

M by the left action of the triangular subgroup 

B= [
8 0 ] 
b 8- 1 

a > O. 

The orbits are two dimensional, hence this is a codimension 1 foliation 

of M. Each leaf is dense. In fact, if one lets 

act instead [this is called the horocycle flow] then each leaf is still 

dense. The foliation arising from N has an invariant transverse 

measure. However, there is no invariant transverse measure at a11 for 

the foliation which arises from the action of B. The associated 

von Neumann algebra is a Ul l factor: cf. Bowen [Bow]. 

Here is an example of a 1-dimensional foUation of a 
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3-dimensional manifold which is due to Furstenberg [Ful. It is buHt 

by first defining a Z action on a 2-manifold and then suspending it to 

make an IR action on a 3-manifold. 

Let M = lIX[ be the 2-torus and let t be an irrational 

number. Let 

jf(x.y) = (e2l\'it x.g(x)y) 

where x,y are complex numbers of absolute value 1 and where 

g: l[ - l[ is a function at our disposal. We construct g as follows 

by first defining 

h(x) = 

where nk is a sequence of integers tending to 00 at our disposal. 

Observe that 

k(x) = h(e2l\'it x) - h(x) = 

= 

Now pick t and nk such that, say. 

(*) some r < 1. 

This is possible for suitable t. but such t 's are not very common -

they are highlv Liouville; alternatively one could make 

(U) for all r > O. 

Then consider 

g(x) = eit(h(e2I\'it x) - h(x)) 

for suitable t as our g. First of all, if k(x) = h( tx) - h(x). then k is 

real anaLytic under (*) and co. under (U). Hence jf(x.y) is real 
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analytic, respectively COO • It is a theorem of Furstenberg [Fu] that 

for any " of the form above, 

(1) " i8 minimal iff one cannot factor any power of g as 

for a continuous function u: 11' - 11', and 

(2) " is ergodic with respect to Lebesgue measure if one cannot 

factor any power of r a8 

,m(x) = u(e2ldt x)/u(x) 

for a mea8urable function u: 11' - 11'. 

The proofs are not hard. 

Now the g is cooked up so that 

g(x) = eith(e21d t x) / eith(x) 

so that for all t the transformation is not ergodie, hence not unqiuely 

errodie. Rowever, if one could factor as above, then the factorization 

would be unique up to a constant, as t is irrational and rotation by t 
is errodie on 11'. So if one could factor r (or any power of r) then 

the faetorization would have the same form as above. Renee" will 

be minimal for given t provided that we can be assured that 

eith(x) 

is RO t continuous. If this ia continuous for an t, it is easy enough 

to see that hex) is continuous (and conversely, of course). But h is 

RO t continuous because the Fourier series of hex) would then be 

Cesaro summable to h for every x, by advanced calculus. Then WE': 

would have 
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h(1) = C.S. ~ l. 
k;t;O k 

which is nonsense, since this is a sum of positive terms. 

So (I is minimal - each orbit is dense, but (for suitable choice 

of g and r) (I is not er,odic. Now form the suspension of (I to 

obtain a one dimensional foliation of the 3-torus which has 

correspondin, properties. A transversal is of course M with the 

equivalence relation induced by powers of (I. This is areal analytic 

foliation. There are a continuum of ergodic invariant transverse 

measures of this foliation - in fact they are indexed by the circle. 

Bach is singular with respect to Lebesgue measure and in the foliation 

case live on a measurable but RO t topological 2-torus inside the 

manifold. Measure theoretically this foliation looks like a Kronecker 

foliation on the 2-torus with angle r crossed with a circle - nothing 

happening in the transverse direction here. The invariant ergodic 

transverse measures are .iust the measures on the copies of the 

Kronecker torus in this product structure. 

Here is an example given by Connes [Co2, p. 150] of a 

foliation whose von Neumann algebra is of type III>.. for some fixed >.. 

with 0 < >.. < 1. Let S be a circle of length s, let X = SL(2,1R)/r 

for a discrete cocompact subgroup r, and let Y = SxX. Act on Y 

by the group of matrices of the form 

for t,b E IR, where 

acts trivially on Sand by the horocycle action on X, and 

acts by a rotation of speed 1 on S by the geodesic flow on X. The 
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resulting foliation has a von Neumann algebra of type lilA where 

A = e-8 • If S is replaced by aspace K of dimension at least 2 with 

an ergodie action then a IHO factor results. 

With these examples in hand, we return to the general 

development. The next order of business is the introduction of 

appropriate integrands to pair with transverse measures. 

By way of motivation to see what the appropriate integrands 

are, we consider the case when G is an equivalence relation on X with 

each equivalence class consisting of one point. As noted. a transverse 

measure v is an ordinary measure; one uses a (non negative) Borel 

function f on X as integrand. Instead of looking at f as a function 

on X, we view f as an assignment to each equivalenee elass of G (i.e. 

each point of X), of a measure living on that equivalence elass. The 

measure attaehed to (x) is of eourse f(X)li x where lix is the Dirae 

measure at x. Moreover, we regard the process of integration as first 

p8Ssing from the integrand f to the measure f· v on X. where 

f·v(E) = I fdv, 
E 

and then passing to the total mass of f· v to obtain areal number 

- the integral of f. 

This point of view guides us in the general ease: the proper 

integrand for a transverse measure v on a standard Borel rroupoid G 

will be a family of measures (A I, ) one on eaeh "leaf" of the 

groupoid. If G is an equivalence relation this is simply an assirnment 

I, _ AI. of a (non negative, u-finite) measure }", on each 

equivalenee elass , of the equivalenee relation. This map 

I, _ AI, should be Borel in an obvious but tedious sense that we 

shall not write down. 

If for example G has countable orbits, there is a very natural 

such family of measures; namely, A' is counting measure on the 

(eountable) set 1,. For the Kronecker foliations diseussed above, each 

orbit is an affine real line; that is, the real line without an origin 

speeified. On such affine lines we can simultaneously normalize Haar 

measure to obtain a family (Al) of the type described. Finally if Gt 
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is any standard equivalence relation and if S is a Borel transversal, 

we can define a family 0,') by letting )..1 be the counting 

measure on the countable set T " I, viewed as a measure on I. 

Definition 4.11. A tanaential measure ).. = C)..I) for an 

equivalence relation ~ is an ass1gnment of (non-negative) measures 

I ... ).., as above. 

This was all for a principal groupoid (i.e. equivalence relation). 

The presence of holonolnY complicates matters a bit, 'but the 

complication is largely notational. Recall that the inverse images of 

the range map rare denoted GX = r-1(x). A tangential measure on G 

is first an assignment of a ((7-finite) measure ).. x on GX for each x 

in a Borel fashion 8ubject to an invariance condition. Por equivalence 

relations, when x ~ y, r-1(x) 18 actualLy the same as r-1(y) and we 

demanded ).. x = ).. y (= )..,) where , is the common equivalence class 

of x and y. In leneral the requirement is that 

for every u e G~ (= r-1(y) " s-l(x)) and every non negative Borel 

function f on G. Since the meaning of this formula is not immediately 

transparent, we rephrase it more geometrically. Each set GX is acted 

upon by the group G: which acts freely from the left by groupoid 

multiplication. The quotient space G:'Gx is canonically identified to 

the equivalence class ,(x) of the corresponding principal groupoid 

(equivalence relation) associated to G. If y ~ x with respect to ~, 

then each element of G~ defines a biiection of GX onto GY; moreover 

G~ is acted upon freely by G: on the right and G~ on the left again 

using groupoid muliplication. By associativity, the transformations of 

G~ intertwine the actions of G: on GX and G~ on GY so that the 

quotient spaces G:'Gx and G~'GY can be identified. The 

identification is independent of the element in G~ and when these two 

sets are further identified with ,(x) and I(Y) respectively, the 

mapping becomes the identity map between I = I(x) and I = 
I(y), the common equivalence classes of x and y under ~. 

The invariance condition expressed by the intelral formula 
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above says first of all that >.. x on GX is invariant under the left 

action of G~ for aH x. and furthermore that elements of G~, viewed 

as mappings from GX to GY, carry >..X onto >..Y. We see now that 

the standing hypothesis of countability of G: aHows us to simplify the 

situation. By a choice of cross section, GX can be viewed as the 

product G: X t(x), and using counting measure on G:, there is a 

biiection between measures on l(x) and G:-invariant measures on GX 

which is independent of the cross section. Thus if >.. x is a choice of 

G: invariant measures 

>;:x on l(x), the further 

means that >;:x = >;:Y 

xEX, with corresponding measures 

invariance und er G~ for a tangential measure 

if x N y. Hence >;:x = >;: t if x E t 

defines a tangential measure on Gt the associated principal groupoid. 

Summarizing, we obtain the following observation which allows us 

better to und erstand tangential measures in general. 

Proposition 4.12. If G is a standard Borel groupoid with countable 

isotropy groups and CR is the corresponding equivalence relation, then 

the map >.. _ >;: defined above is a bUection from tangential measures 

on G to tangential measures on CR. 0 

To illustrate further the notion of a tangential measure when 

there is holonomy, consider the example of a groupoid G coming from 

the action of a 10caHy compact group H on a Borel space X. RecaH 

that elements of G are pairs (h,x) and that the range map is r(h,x) = 

h· x. If we fix a point Xo E X, then r-l(Xo) can be represented as 

the set (h,h-lxO)' h E HJ, and we use the first coordinate to 

parametrize this set. If yO is equivalent to xo' so that YO = hO• xo' 

then r-1(yo) can be represented as the set (k,k-lyo)' k E HJ, 

Yo 
and elements of Gx are of the form (hOhl,xO) where hl Is in the 

o 
isotropy group of xO' Groupoid multiplication shows that the map from 

GXo to GYO is (h,h-lXo) _ (hOh1h, h-lh71h~lyO)' Hence in terms of 

the parameters on these spaces the map is left translation. Therefore 

a suitable choice of tangential measure would be >.. x equal to left 

Haar measure on H transported over to r-l(x) as indicated above. 
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There are evidentlv many other choices also. 

Ultimately we will want to consider tangential measures of 

mixed sign. In outline the notion is clear. but there are technical 

difficulties because generically the measures AI (or A x) will be 

infinite measures. Indeed one sees easily that for an equivalence 

relation Gt. the existence of a tangential measure with A I finite for 

each I implies that the equivalence relation Gt is smooth; that iso the 

quotient space X/Gt is an analytic Borel space. [Ar. p. 71]. Since 

infinite signed measures cause problems in this general context. one 

would only want to discuss tangential measures of mixed sign in the 

presence of some topological assumptions. 

Let us now turn to the integration process. which is related to 

the Ruelle-Sullivan pairing [RuS] . Begin with a standard Borel 

groupoid G together with a transverse measure v with modulus A 

and a tangential measure A. The integration process is going to 

produce first a measure u. written du = Adv. on the unit space X 

whose total volume u(X) = f Adv will be the integral of the tangential 

measure with respect to the transverse measure. To define these 

objects we first fix a complete Borel transversal S. which exists by 

our standing hypothesis. By Proposition 4.6 we find a Borel function f 

from X to S with fIx) ~ x. Next we observe by Proposition 4.12 that 

we ma.v as well assume that G = Gt is principal. Then for each point 

sES we define a measure Ps on r-1(s) as the restriction of AI(S) 

to r-1(s) C I(s). the equivalence class of s. The modular function A 

of v comes to us as a function on G ~. but we have observed that if 

we stay away from a v-null set of equivalence classes of the relation 

Gt. then A is constant on holonomy groups. and is almost everywhere 

really a function on Gt. In the present context. this means that there 

is a saturated null set N of S so that for sEN. A(s.x) is weIl 

defined. That is the meaning of the function which appears in the 

integral below which defines the measure U = J Adv on X. the 

result of integrating A against the transverse measure v: 
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for aoy Borel set B in X. The first remark is that this is 

independent of the choice of the complete transversal Sand of the 

function f from X to S. The prcsence of the modular function t:. in 

the above formula is exactly what is needed to achieve this, and we 

omit the simple calculation. 

The resulting measure u on X is thus weil defined and depends 

only on the data given, the transverse measure v of modulus t:. and 

the tangential measure~. Its total mass is written as 

u(X) = I~dv. 
X 

In the most primitive special case of an equivalence relation on 

X given by a fibration p of aspace X over a base space B, we have 

seen already that a transverse measure v with modulus t:. = 1 is 

exactly a measure on the base B, and that a tangential measure is a 

family of measures C~ b), one on each fibre p-l(b). Tbe integral ~dv 
is the usual construction of a measure on the total space X from a 

measure on the base and measures on the fibres. The formula given 

above in the leneral case makes the leneral situation very similar 

intuitively to the fibration case. Indeed the total space X is fibred 

measure theoretically over the transversal S, instead of a base space 

B; the picture is quite similar: 

--------------------------s 
s 

In accord witb the notion that a transverse measure v on G 

is in some sense a measure on the orbit space X/G, we have already 

remarked that it is possible to say what it means for a Borel set of 

orbits to be a null set of orbits. This is clear for a Borel set of 

orbits corresponds to a Borel set B in the unit space whicb is 

saturated or invariant with reapect to the equivalence relation R of G. 
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Definition 4.13. An invariant Borel set E in X is a )1- n u l l set if 

every transversal in E has )I measure zero. 

Using this definition it is easy to define an ergodic transverse 

measure; namely if X = E1 V E2 where Ei are invariant Borel sets, 

one of them is a )I-null set. In addition one has as usual a type 

classifieation of ergodie transverse measures into types I, H, and Ur. 

Indeed if N is a eomplete transversal then (eRN,N,)l1 N) is an ergodie 

eountable standard measured equivalenee relation whieh has a type 

elassifieation (Feldman-Moore (FMJ). In the type II ease, one may 

have different transversals where one is type II1 while another is type 

IIoo' Henee there is no meaningful distinction between these types 

and one has one class of type n transvel'se measures. As usual one 

may further divide the type III ease into the III},. 0 ~ A ~ 1 

subtypes by the type classifieation of the diserete versions 

(~N,N,)lIN). For some examples of type IIIA faetors, cf. Connes 

[Co2] , pp. 149-150. 

Further, a general transverse measure )I ean be displayed as a 

eontinuous sum of ergodie eomponents. To see this, one makes an 

ergodie deeomposition of (N,)l1 N) and then uses the projeetion map p of 

Proposition 4.6 of all of X on N to deeompose )I itself. By 

eonstruetion, all of the groupoids appearing as dis integration produets 

will have eomplete transversals. 

Throughout this entire diseussion the modular function ~ has 

remained fixed. [f we change the modular function to a new one ~. 

which is however in the same eohomology class, that is 

~'(u) = ~(u) b(r(u))b(s(u))-1 

where b is some Borel function on X into the strictly positive real 

numbers, then there is no essential difference betweon transverse 

measures of modulus ~ and transverse measures of modulus ~'. 

Indeod if )I is a transverse measure of modulus ~, then b·)I, 

where multiplication of a (transverse) measure by a positive Borel 

function has the usual meaning, is by a simple computation (cf. 

Feldman-Moore I [FM1J, p. 291) a transverse measure of modulus ~. 
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where 6' is as above, and eonversely. 

Sinee most of the groupoids we shall meet earry not .mst a 

Borel strueture, but also a topology, we shall now diseuss briefly the 

notion of a topologie al groupoid. Following Renault (RenIJ, we 

impose the following eonditions. 

Definition 4.14. A groupoid G with unit spaee X is a t 01'0 I oa i ca I 

aroupoi d if G and X are topologieal spaees and 

(1) The set where the partially defined multiplication is 

defined is closed in GXG and multiplication is 

continuous. 

(2) The range and source maps are open and continuous. 

(3) The inversion map is a homeomorphism. 

For our discussion G and X will be assumed to be locally compact in 

which case we will say that G is a loeally compact (topolorical) 

groupoid. Ordinarily one would automatically assume that G and X are 

Hausdorff and most of the time in the sequel we will have this as a 

standing assumption. However the reader should be aware that there 

are a number of interesting, natural, and significant examples where a 

non-Hausdorff strueture is forced upon one. The graph of the Reeb 

foliation discussed in Chapter II is one such example. All interestin, 

examples known to us satisb the following condition that could be 

used in place of the Hausdorff condition: 

(4) X is Hausdorff and G has a cover eonsisting of open 

sets each of which is Hausdorff. 

If (4) is satisfied we say that G is I oca II tI Hausdor f f. 

We remark that if G = IR is an equivalence relation, then IR is 

a subset of XXX; yet the topology of IR will not be the relative 

topology from XXX. For instance if we consider the Kronecker 

equivalenee relation IR on the circle "0'1 given by E 
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E exp(2KinA), n E TI, Airrational, then eR as a subset of ylXlI'l 

is a line of irrational slope in the two torus, To make it a locally 

compact groupoid one has to give eR the usual topology of the real 

line, 

The prime example we have in mind ia the graph of a foliation, 

at least when it is Hausdorff. as described in Chapter IL If H is a 

locally compact group acting as a topological transformation group on 

a locally compact Hausdorff space X, then the groupoid HXX described 

earlier in this chapter becomes a locally compact topological groupoid, 

Finally, the following simple example displays for us in a 

discrete context the need for introducing the graph of a foliation, On 

the real line IR consider the equivalence relation eR where x ~ 2-nx 

for an n E Z, In spite of the simplicity of this, the equivalence 

relation eR does not admit any reasonable locally compact topology, 

The trouble comes near (0,0) = Po where eR appears to have an 

infinite number of line segments all passing through this point. 

If however we introduce points Pn which are formally the limits of 

(x,2-nx) as x _ 0 with n fixed, then we can visualize this new object 

G as an infinite set of (parallel) real lines 

(x,s/2») 

(x,x» 

(x,2x») 

It is easy to see that G may be turned into a locally compact 
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topolorical groupoid. Indeed it is a discrete version of the graph 

construction for a foliation. We remark that if we modify the 

equivalence relation ~ by saying that x N x for x < 0 and x N 2-nx 

all n, for x ~ 0, then this construction leads to a non-Hausdorff 

graph-like object 

• (x.x» 

where a neighborhood of PI is a small interval containing PI and 

extending to the right of PI plus a small interval to the left of Po 

(but not inc1uding PO) which has already arisen in Chapter II (2.29). 

In both examples it is clear that Lebesgue measure is a quasi 

invariant measure. It would be natural to hope that the modular 

function li. could be fixed up to be continuous. A . simple calculation 

shows that on the n th horizontal line in these examples li. is almost 

everywhere equal to 2n. Hence in the first example we can make A 

continuous, but then over the point 0 it is non-constant on the 

holonomv group G g . This happens only on a null set-one point, in 

accord with our earlier discussion. In the second example we see that 

A cannot be constructed so as to be continuous. 

Another class of examples of interest of topological groupoids 

are ones that arise from the holonomv of a single leaf of a foliation. 

(Compare with the bundle construction in Chapter 11; cf. 2.25.) Let M 

be a manifold and let r be a quotient group of 7C 1 (M). Then there 

is a covering M of M with deck group r, and we identify M as the 

orbit space Mir. We form G = (MxM)/r where r Is acting 

diagonallv. Two r-orbits r· (x,y) and r· (z,w) are multipliable if 

r·y = r·z; we define their product to be r'(YIX, Y2 'w) 

where Y 1 and Y2 are elements of r so that Y1 'y = Y2 ·z. 

The unit space is the original manifold M, and the range and source 

maps are r(r· (x,y» = r· x E M, and s(r· (x,y» = r· y E M. It 

is not difficult to see that this produces a topological groupoid with r 
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as constant holonoUIY group. 

this groupoid is simply 

One easily sees that as a Borel groupoid 

the product of the group rand the 

equivalence relation on M where a11 points are equivalent, but it is 

not the product as a topological groupoid. 

In the context of topological groupoids, homomorphisms of a 

groupoid to a group or another groupoid should be assumed to be 

continuous. Transverse measures considered in this context will be 

assumed to have continuous modular functions. 

In the context of topological groupoids there is a special kind 

of tangential measure of interest. If we recall that tangential 

measures are objects to be integrated against transverse measures and 

hence are analogues of functions, it makes sense to try to define, in 

analogy with a continuous function, a continuous tangential measure. 

DefinitiOQ 4.15. We say that a tangential measure >.. is 

cont i nuous if each >..X is aRadon measure on r-1(x) C G and if 

f f(u)d>" x(u) 

is continuous in x for every continuous function f of compact support 

in G. This is appropriate if G is Hausdorff. If G is only locally 

Hausdorff we demand instead that the integral above be continuous in 

x when f is compactly supported inside some Hausdorff open set and is 

continuous there. Such a function f need not be even continuous on 

all of G. 

As an example consider the case of a G arising from a locally 

compact group H acting topologicallv on a locally compact space X. 

We saw earlier in this chapter that the assignment x _ >.. x where 

>.. x is Haar measure on H carried over to r -l(x) = ((h,h -lx» by the 

map h _ (h,h-Ix) is a tangential measure. Evidently this is also a 

continuous tangential measure. 

An obvious item of concern is to find conditions on a 

transverse measure v and a tangential measure >.. so that the 

integral >..dv produces a f i ni t e measure on X. Rather than taking 

this question up in this general context we shall take it up in the 
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more special context of primary interest when G is the graph of a 

foliation. We turn to that case now. 

So assume that X is a locally compact foliated space with G 

the graph of the foliation. which we assume is Hausdorff. Then G is 

itself a foliated space as described in Chapter II with leaves equal to 

the holonolDY groupoids of the leaves of the original foliation. All 

homomorphisms (J of G to a Lie group and in particular to IR+ will be 

assumed to be tangentially smooth on the foliated space G in the 

sense of Chapter 11. 

Now suppose that ]1 is a transverse measure on X of modulus 

6. As suggested previously. the notion of ]1 being aRadon measure. 

to the extent that this can be defined in general. would be a 

condition demanding that ]I be finite on some distinguished set of 

compact transversals. But in a foliated space there is a distinguished 

set of compact transversals given by the foliation structure. 

Definition 4.16. Call a transversal C open-reaular if there is an 

open set L in IRP. where p Is the dimension of the foliation. and an 

isomorphism 16 of foliated spaces of LxC onto an open subset of X. 

which is the identity on C. A transversal C is reaular if it is 

contained in an open-regular transversal. 

If Ux is one of the coordinate patches in the definition of the 

foliation so that Ux ~ LxXNx' Lx open in IRP, then an.v compact 

subset of Nx is a compact reaular transversal. Dur definition of a 

Radon transverse measure involves finiteness on these transversals. 

DefinitioQ 4.17. A transverse measure ]1 on a topological groupoid is 

Radon if ]1(C) is finite for every compact regular transversal. 

We observe that in order to check this condition. it will suffice 

to check finiteness on a much smaller family of compact regular 

transversals. For instance. let Ci be a family of such transversals 

with maps f6 j of LiXCi into X. and suppose that there are relatively 

open subsets of Ci' Ui C Ui C Vi C Ci so that the open sets 

f6i(4XUi) cover X. 
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PrvDOliijon 4.18. If vCCi) i8 finite for each i for such a family, then v 

is Radon. 

Proof: Let B be any compact regular transversal with a map _ of 

LXD into X with D :) B. By covering argument and by shrinking L if 

necessary we may aS8ume that _CLXB) lies inside some -iC4XVi) and 

has compact closure there. The projection mapping to the second 

coordinate of LiXV i give8 rise to a continuous map f of B to Vi 80 

that band fCb) He in the same plaque of the coordinate neighborhood 

4XVi' U8inl the geometry of this situation, we easily show that 

there is an integer n so that rieb) ha8 at most cardinality n. Now 

using the quasi-invariance properties of transver8e measures, we can 

calculate v(B) by the formula 

Since the modulu8 A is a continuous function, it is bounded and as 

(b,f(b)) b E Bl is compact, the intelrand is bounded. As f(B) C Vi C 

Ci' v(f(B)) is finite and we are done. C 

It is evident of course that aRadon transverse measure is 

completely determined by what it does on regular transversals. For 

instance, the union C = ViCi in the proposition above is a complete 

transversal and if v is known on Ci' it is known on the union C and 

then knowledge of v on a complete transversal determines the 

transverse measure entireLy. 

Up to now transverse measures have always been positive 

mea8ure8. However at this point we are in a position to consider 

signed or even complex transverse measure8. We simply take 

difference8 or complex linear combinations of (positive) RadoR 
transverse measures. Such an object cannot be defined on a11 

transversals, but clearly it can be defined on regular transvera18. 

Definition 4.19. A sianed or comple~ transverse Radon 
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111 ea s ure 0 f lIIO d u I us A is areal or complex linear combination of 

positive Radon transverse measures of modulus A defined on a11 finite 

unions of regular transversals. 

By our remarks above to the effect that a positive Radon 

transversal measure, viewed as a measure on a11 transversals, is 

completely determined by what it is on regular transversals, the 

domain we have specified for signed or complex Radon transverse 

measures is surely large enough. They can be expanded of course to 

a somewhat larger class of transversals without confronting expressions 

like 00 - 00, but not in general to all transversals. We shall make use 

of these objects only briefly in connection with the Riesz 

representation theorem (4.27) for compact foliated spaces. 

On the graph of a foliation of X we can construct tangential 

measures of particular interest. Each set r-1(x) is itself a COO 

manifold, and so has a unique equivalence class of measures, those 

equivalent to nonvanishing densities. As each set r-1(x) is a covering 

space of the leaf 'x of x in the foliation, and as tangential measures 

are invariant under the deck group, giving a tangential measure A x 

(as we have already noted in Proposition 4.11) is the same as giving 

measures i: I, one for each leaf I. 

To construct such measures, cover X by coordinate charts of 

the form LiXNi where Li is an open ball in IRP and let Ai be 

tangential measure on the foliated space ~XNi where A ~ is for n E 

Ni' normalized Lebesgue measure on~. Now choose a partitition of 

unity 9i subordinate to the covering and define i: to be the sum 

~ 9 i Ai. Then we lift i: 1 on each leaf I to a unique measure AXon 

r-1(x) using counting measure on the fibres of the covering map. 

Proposition 4.12 implies that A = tAx) satisfies the invariance 

properties required and thus is a tangential measure. 

ProD08itiOA 4.20. The tangential measure just constructed is a 

continuous tangential measure (G Hausdorff or locally Hausdorff). 

PJ:ggf: Wehave to check the continuity of 
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x ... J f(u)dA x(u) 

for each f of compact support on G for G Hausdorff. Using partitions 

of unity we may localize the support of f so that it lies within a 

subset K of G on which the map (r,s) is in.iective into a subset of 

XXX contained in SUPp(9i)XSuPp(9j) for suitable (i,j) where 9i is the 

original partition of unity used to define A. One easily verifies the 

continuity of the integral as a function of x for such f. One proceeds 

similarly in the locally Hausdorff case. C 

If we perform the construction using different coordinate 

charts, or using different partitions of unity, we obtain a tangential 

measure Al which is equivalent to A in the sense that A ~ is 

mutualiy absolutely continuous with respect to AXon r-l(x). The 

Radon Nikodym derivative dAl/dA is a continuous nonvanishing 

function on Gwhich one can check is bounded from 0 and 00 not just 

on compact subsets of G but also on any set r-l(C), C compact in X. 

In terms of this we may define local boundedness of a tangential 

measure. 

Dofioition 4.21. A tangential measure A' is locallll bounded 

(Lebesaue) if (A')X has a Borel density on r-l(x) for each x and if 

dA'/dA is bounded on any set r-l(C), C compact, for one (and hence 

any) tangential measure A of the kind constructed above by partitions 

of unity. If the unit space is compact, we will for simplicity call 

such a measure a bounded tanaential measure. 

With these definitions the desired finiteness result is quite 

straightforward. 

Proposition 4.22. If v is aRadon transverse measure on the graph G 

of a foliated space X, and if A is a locally bounded (Lebesgue) 

tangential measure, then for any compact set K of X the integral 

ulK) = f Adv is finite. 
K 
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Pl'oof: We eonsider eoordinate patehes Ui isomorphie as foliated 
I I I 

spaees via ofi to LiXNi so that ofi extends to Li XN i where Ni is 

eompaet and eontains Ni in its interior and where 4 is a relatively 
I 

eompaet open ball in the ball Li' The eompaet set K ean be eovered 

by a finite number of such sets Ui so it suffiees to show that t.t(Ui) 

is finite. But by the definition of t.t we ean evaluate t.t(Ui) by the 

formula 

where Xo is a fixed point of Li and ),10 is the transverse measure ),I 

restrieted to the transversal ofi(xO,Ni). As this transversal is 

eontained in a eompaet regular transversal, ),10 is a finite measure. 

Moreover the measures An on the plaques ofi(Li,n) have smooth 

densities whieh extend uniformly in n to a slightly larger "ball" and 

henee are bounded uniformly in n. The modular function !J. is 

eontinuous, and henee its values entering into the integrand are 

bounded. (Note that strietly speaking !J. is a funetion on the graph. 

It ean be transported loeallv down to the equivalenee relation ~ as 

we have done, sinee we are operating in eoordinate patehes with the 

plaques eontraetible). It now follows at onee that the integral above 

is finite, and we are done. 0 

We remark that one eould easily obtain finiteness results for 

tangential measures whieh do not have densities by imposing similar 

loeal boundedness eonditions. 

Our final goal now is to relate the previous diseussion, whieh 

has been mostly analytie, to more geometrie and topologieal aspeets of 

the foliation. We begin with a tangentially smooth homomorphism !J. 

of G into (R+, such as the modular function of a transverse measure on 

X. Tangential smoothness is with respeet to the foliation of G by the 

holonomy groupoids of the leaves of the original foliation. We 

eonsider log(!J.) as a real-valued function on G and form its 

differential. On eaeh set GX = r-1(x), the homomorphism property of l!. 

implies that 
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(log ~)(Yu) = 10g(~)(Y) + (log ~)(u) 

for Y in the holonolDY group G:. Hence the differential of the 

function log(~) becomes in a natural way a differential on the quotient 

or in other words the leaf I x of x. Again by the 

homomorphism property of ~, this differential on Ix is independent of 

x, and hence one has an intrinsically defined differential I-form on 

each leaf t. Moreover the tangential smoothness of ~ implies 

immediately that these I-forms on the leaves fit together continuously 

to what we have called in Chapter III a tangentially smooth I-form 

for the foliation; recall that t.his is a tangentially smooth section of 
• the dual F X of the foliation bundle. We denote this I-form by a 

(or a ~ if there is confusion). Summarizing; 

Proposition 4.23. For a tangentially smooth homomorphism ~ on G, 

the construction above yields a tangentially smooth I-form a ~ on 

X. The map ~ _ a ~ is iruective. 

~: If U :!! LXN is a coordinate patch with L a p-ball with 

coordinates (x,u) = (xl, ... ,xp,n), n E N, then locally Il caD be 

written as a function of pairs (x,n), (y,n), X,y E L 

~Ux,n), (y,n)) = f(x,y,n). 

Then the procedure for calculating a gives 

this expression is seen to be independent of XO. The desired 

properties of a follow from this explicit local formula. 

To see the final statement, we observe that for a point 

(x,y,[Y]) in G, we can obtain the value of ~ by integrating a~ 

along a smooth version of the path Y. Recall that Y is totally on 

a leaf so integration of tangential I-forms makes sense. Cl 
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Now suppose that 11 is the modular function of a transverse 

measure v, and suppose for simplicity that the bundle of the foliation 

FX is oriented. If 0 is the orientation, and if (I is a tangentially 

smooth p-form on FX (p = leaf dimension), then (11 = o· (I is a 

tangentially smooth volume form on FX. Then (11 restricted to any 

leaf l defines a signed measure with a COO density, and hence a 

(signed) tangential measure A. We can write (11 = (Ir - (11 

where (I~ have corresponding positive (negative) measures A~. Then 

assuming that v is aRadon transverse measure, we define the integral 

J.l = I Adv to be 

which by Proposition 4.22 is the difference of two Radon measures on 

X, and is therefore a signed Radon measure defined on bounded Borel 

sets in X. If we further assume that the form (I has compact 

support in X, then evidently J.l has compact support and is aRadon 

measure. 

The integral can therefore be viewed as a linear functional 

Cv on the space o:c of compactly-supported tangentially smooth 

p-forms on X, where 

Such an object is what we have called a tangential p-dimensional 

current in Chapter 111. This was first defined in Ruelle-Sullivan 

[RuSJ and is called the Ruelle-Sullivan current. The point 

of this discussion Is to determine the boundary of this current. The 

boundary is a p-1 dimensional current defined by 

where d is the differential on tangential forms. 

ProPOlJitiOD 4.24. For a compactlv supported p-1 tangential form (I, 
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we have 

where a is the tangential I-form associated to the modulus of the 

transverse measure v. 

It follows that if a = 0, or equivalently A = I, then C v is 

a closed current. Conversely ü Cv is closed, we can deduce that a 

= o. Thus whenever v is an invariant transverse measure Cv 
defines a tangential homololY class in the tangential homololY group 

H~(X,IR} of Chapter III (3.3U because the map a _ Cv(a) is 

continuous with respect to the natural topololY on O;c(X}. We 

denote this class by CCvJ. Summarizing, we have 

CoroUm 4.25. For aRadon transverse measure v with tangentially 

smooth modular function A, the following are equivalent: 

(1) The Ruelle-Sullivan current Cv is closed and so 

defines [CvJ E H~(X,IR) 

(2) The I-form a = 0 

(3) The modular function A = 1 

(4) The transverse measure v is an invariant transverse 

measure. 

The proof of Proposition 4.24 is a straightforward calculation 

which goes as folIows: first we may assume that a is supported 

inside of some coordinate patch U :l! LXN where we use coordinates 

(x,n) = (xl,x2 ... xp,n). The form a can be written as 

v 

a = I ai(x,n}dxl" ... "dxi ... "dxp' 

and we can represent the modular function locally as 
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A((x' ,u), (x.u)) = f(x' .x.u). 

The l-form a is L d~ log(f(xO,x,n))dxi, whieh does not depend on xO. 
i 

Now if Vo is the transverse measure on the transversal given by x = 

xo. h(x,n)dxl " ... "dxp is a p-form. and Ap the eorresponding 

tangential measure. the definitions yield 

f Adv = f (f h(x,n) f(Xo,X,n)dX] dvO(n). 
U N L 

Thus for our p-l form 0, 

On the other hand. we see that 

Integration by parts on L gives the desired result as the funetions ai 

vanish in a neighborhood of the boundary of L. 0 

Coroll!U'Y 4.26. If X is a eompaet oriented foliated spaee whieh has a 

non-zero invariant Radon transverse measure then H~(X) 'I- O. 

This is the ease, for instanee, when X has a elosed leaf. We 

improve this result signifieantly below (4.27). 

Haefliger [Hae3J has used tangential transversely smooth 

eohomology in eonneetion with the question of the existenee of a 

Riemannian metrie on M for whieh all the leaves are minimal (in the 

sense of area-minimizing) submanifolds. One eonsequenee of his work 

is that the group C;(N)H of eompaetly supported funetions on some 

eomplete transverse submanifold N modulo holonom..v maps onto the 

group H~(M). The map faHs to be an isomorphism (e.g., for the 
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Liouville-irrational flow on the torus). 

Recallinr the definition of a signed (or complex) Radon measure 

from 4.19 we see from 4.25 and 4.26 that aoy sirned Radon invariant 

transverse measure will define a continuous linear functional on H~(X) 

or equivalently ii~(X) - the topology on these spaces was defined in 

connection with Proposition 3.7. In the special case of a compact 

space X foliated by points, so p = 0, H~(X) = ii~(X) is the Banach 

space of continuous functions on X. An invariant Radon (signed) 

transverse measure is .iust aRadon (sirned) measure on X and the 

Riesz representation theorem says that these measures provide a11 the 
-0 continuous linear functionals on H.,.(X). More renerally, if the 

foliation on X arises from a fibre bundle structure on X as total 

space, a base Band fibre L which we take to be a p-dimensional 

oriented manifold, then as we have already remarked (Proposition 4.11), 

invariant transverse Radon measures for this foliated space can be 

viewed simply as Radon measures on B. On the other hand, we have 

seen in Chapter III that in that case H~(X) = ii~(X) can be identified 

topologically as C(B), the set of continuous functions on B. Again the 

usual Riesz representation theorem teUs us that aU continuous linear 

functionals on ii~(X) are riven by invariant transverse measures. We 

show that this is true in reneral. This result is clearly closely 

related to, but distinct from the CoroUary contained in section 3.3 of 

Haefliger [Hae3] and the work of Sullivan ([Su], cf. Prop. 1.8). 

Let MT(X) denote the vector space of Radon invariant 

transverse measures on X. 

Theorem 4.27 (Rieaz Representation Theorem'. If X is a compact 

oriented foliated space with leaf dimension p, then the set of 

continuous linear functionals on ii~(X) can be identified as the set of 

Radon invariant transverse measures. 

RueUe-Sullivan map 

More precisely, the 

MT(X) - Homcont(H~(X),IR) 

is an isomorphism. 
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Note that Homeont(H~(X),IR) is isomorphie to H~(X) for X 

eompaet by (3.32). 

Given the theorem it is easy sometimes to eompute the top 

tangential eohomology group. For example, an invariant transverse 

measure on the Kroneeker flow on the torus eorresponds by (4.10) to a 

measure on a transverse eircle whieh is invariant under rotation by an 

irrational angle, hence a 

MT(Kroneeker flow) öl! IR and 

interesting ease arises from 

multiple of Haar measure. 
-1 

so H1'(Kroneeker flow) öl! IR. 

the Reeb foliation of 83. 

Henee 

A more 

The only 

holonomy invariant measures are multiples of the eounting measure 

associated to the unique elosed leaf. Thus MT(Reeb) öl! IR and so 
-2 
H1' (Reeb) öl! IR. 

~. Let. be a continuous linear functional on Ü~(X). Now choose 

as in Definition 2.1 an open "eoordinate" ehart U around x E X with 

U öl! B X N where B = BP is an open ball in IRP and where N is 

loeally eompaet. Then the set N~ = C(~,n), n E N, ~ fixed in 

B) is a transversal and if D is a eompact subset of N. D~ = 
C(~.n), n E D) is a regular transversal in the sense of 4.12. We fix 

a tangentially smooth p-form rs which has eompaet support in B. Now 

if f is any eompaetly supported real valued function on N. f E Ce(N). 

the formula frs(~.n) = f(n)rs(~) defines a tangentially smooth p form of 

eompaet support on the foliated space U öl! B X N. If we extend it 

by zero outside U to X. it yields a tangentially smooth p-form on X, 

which we also denote by f rs. 

We now eonsider the map 'P: f _ ~frs) for fixed rs. By 

the definition of the topology on O~(X), it is evident that 'P is 

norm eontinuous on Ce(N). By the usual Riesz representation theorem, 

it must be represented by a finite Radon measure Urs on N. 

The orientation on leaves of X gives by restrietion an 

orientation on the ball B whieh is an open subset of a leu of X. and , 
henee we may integrate the forms rs on B. By the Poineare lemma 

two eompaetly supported forms rs1 and rs2 on B are cohomologous, 

that is, rsl - rs2 = dp on B if and only if their integrals are the 

129 



same. It follows that f0 1 and f02 as elements of O~(X) differ by 

a coboundary if 01 and 02 have the same integral. Now define U 

on N to be Uo for any 0 of integral one. Then c1early 

Moreover for any >.. we can identify N with N>.. by n _ (>..,n) and 

can transport H onto N>.., calling it u>... Then we can rewrite the 

above as 

Finallv if 0 is any tangentially smooth p-form on X with compact 

support inside U E!! B X N, it may by a kind of Stone-Weierstrass 

theorem be approximated in the topology of Oi(X) by linear 

combinations of forms of the type fo. By continuity of both sides 

of the formula above, 

holds for any >... 

Now each N>.. is a transversal and u>" is a measure on it; 

we have to see now that we can piece these together to construct a 

transverse measure. First we observe that our compact space X can 

be covered by a finite number of open sets of the form U E!! B X N, 

let U8 S8..V U1, ... ,Un with Ui E!! B X Ni. We identify each Ni with S8..V 

N ~ (b E B) and then N = VNi is a complete transversal; we can also 

arrange for simplicity that the Ni are all dis.ioint as subsets of X. 

Bach Ni carries aRadon signed measure denoted by ui from the 

construction above and we fit them together to give a (signed) 

measure on N. As we have observed before, the foliated structure on 

N gives rise to a countable standard equivalence relation on N in the 

sense of Feldman-Moore [FMJ. We want to show that U is 
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invariant under this equivalence relation. To see this, we observe 

that if Ui and Uj intersect, then the projection of their intersection 

onto the respective transversals Ni and Nj are open subsets NÜ and 

N.ii respectively of Ni and Nj . Clearly for each n E NÜ there is a 

unique x' in N.ii which 

map 'Pü taking x to x' 

It is further 

lies on the same leaf and it is evident that the 

is a homeomorphism of NÜ onto N.ii. 

evident that these partial homeomorphisms 

generate the equivalence relation on N in the obvious sense. To see 

that $.I is invariant under this equivalence relation, it suffices by 

Feldman-Moore [FM] to see that each ~j is measure preserving. 

(The fact that here we have signed measures, while in [FM] we have 

positive measures is of course irrelevant.) However the formulas 

above for .(0) when 0 is supported in Ui or Uj in terms of ui and 

uj show immediately that ~ ismeasure preserving, for we apply these 

formulas to o's which are supported in Ui n Uj . 

Thus we have an invariant measure $.I on the complete 

transversal N. To get transverse measures in the usual sense, we 

should first split $.I = $.1+ - $.1- into its positive and negative parts, 

each of which is automaticalLy invariant because u:t: are canonically 

defined. Then u:t: is extended to a11 transversals as in 4.10. Thus 

finally $.I is a signed Radon transverse measure in the sense of our 

definition. 

Let .$.1 be the corresponding linear functional on ii~(X). Then 

the integral formulas above when compared to the formulas of 

Proposition 4.19 show that .$.1(0) = .(0) for 0 supported in Ui. 

But then a partition of unity argument shows that these span and so • 

= .$.1 and we are done. [J 

This result identifies the dual of the topolorical vector space 

ii~(X) in an explicit fashion as the set of invariant Radon transverse 

measures MT(X). Then of course by duality, any 0 E ii~(X) defines 

a linear functional Fo on MT(X) by Fo(v) = J odv. It will be of 

considerable interest to us at several points to know which linear 

functionals F on MT(X) can be so represented. Of course there is DO 

problem in those cases when MT(X) and ii~(X) are finite dimensional, 

but it is a problem in general. Following standard techniques. we 
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introduce a "weak" topology on MT(X) with the result that those linear 

functionals representable as Fa are rost the ones continuous in this 

topology. For each open-regular transversal N (cf. 4.16) and each 

continuous real valued function on N of compact support, and for each 

v E MT(X), the integral I fdvN is well defined, where VN is the 

transverse measure v on the transversal N; Tbis defines a linear 

functional Ir on MT(X). 

Definition 4.28. The IDeale topoloav on MT(X) is the smallest 

topology making these linear functions continuous. 

Proposition 4.29. The weak topology so defined coincides with the 

weak-* topology on MT(X) as the dual of ii~(X) and consequentlv a 
-p 

linear function F on MT(X) is representable as Fa, 00 E H.,(X), if 

and onlv if it is continuous in the weak topology. 

fmgf. If N is an open-regular transversal, let B be a ball in IRP; 

then there is a tangentiallv smooth homeomorphism of B X N onto an 

open set U in X; we shall think of U = B X N as sitting inside X. If 

f is a compactly supported function on N, we can easily construct a 

tangentially smooth p-form 00 on X supported on U = 8 X N so that 

Ia(b,r) = f(n). 
B 

Then from our formulas for integration it is immediate that 

where [00] is the class of 00 in ii~(X). Hence the weak topology 

defined by the Ir is contained in the weak-* topology on MT(X) as the 

dual of ii~(X). Converselv we see by a partition of unity argument 

that a linear funclional v _ v([a]) for any 00 can be 

represented as a finite linear combination of Ir's. Hence the two 

topologies coincide and the result follows. 0 

We note that it would suffice in defining the weak topology to 
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restriet to any finite set of open-regular transversals Ni so that there 

are corresponding coordinate charts Ni X B, B a ball in IRP, which 

cover X. 

We cIose Chapter IV with two examples which iIIustrate the 

Riesz representation theorem 4.27. 

Suppose that T is a homeomorphism of a separable metrizable 

space N and that f is a positive continuous function on N. Then we 

may form the space XT obtained as the quotient of the space 

((t,n) E IR X Nlo ~ t ~ f(n») 

by the relation (f(n),n) ~ (O,T(n». If f :: 1 then XT is simply the 

suspension of the homeomorphism T (cf. 2.3). The space XT has a 

natural oriented foliation of dimension one corresponding to the action 

of IR on the first factor of IR X N. As f changes the topologie al 

foUated conjugacy cIass of XT remains the same; so in that sense at 

least the dependence of XT on f is minimal. Invariant transverse 

measures on XT correspond to T-invariant measures on N, denoted 
T -1 * T M(N) . Theorem 4.27 implies that HT(XT) O!: M(N) . 

Let us look at this example in more detail. The general 

tangential I-form a(t,n)dt is a tangential cocycle, since it is in the 

top degree. The function a must satisfy 

(*) a(f(n),n) = a(O,T(n» 

in order to be defined on XT. 

satisfy (*). Set b(O,n) = bo(n). 

- ab I If a(t,n)dt - -(t,n), then b must a so 
at 

Then 

and hence 

t 

b(t,n) = J a(t,n)dt + bo(n) 
o 

f(n) 

b(f(n),n) = J a(t,n)dt + bo(n). 
o 
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Now 

f(n} 

f a(t,n)dt = bo(T(n)) - bo(n) 
o 

and so any tangential 1-coboundary must be of the form (bo(T(n)) -

bo(n))dt. Thus 

and 

H~(XT) :! __ C..;.(_N.;..} __ 
(T-l}C(N) 

It is clear then that ii~(XT)* :! M(N)T, as is predicted by (4.27). 

This example generalizes to the case of bundles with discrete 

structural group, as follows. Let B be an oriented compact manifold 

of dimension p with r = 1'I'1(B) and B _ B the universal cover. 

Suppose that r acts on aspace F. Then the space X = BxrF is 

foliated by leaves of dimension p which are the images of B X (x) 

for x E F (cf. 2.2). We may regard differential forms on X as forms 

w(b,x) defined on B X F satisfying the invariance condition 

w(Yb, n) = w(b,x), Y Er. 

Fix a fundamental domain U in B. Let w be a p-form (necessarilv 

closed) and define fw(x) = J w(b,x). If II is an invariant transverse 
U 

measure on X, then ffwdll is independent of choice of U. If w is a 

coboundary, say w = dO', then 
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= !u a(b,x) by Stokes' theorem 

and 

= !u (1 a(b,x))dv 

= 0 

for any invariant transverse measure dv, since 1 a(b,x) is a periodic 

function and !u (periodic)dv = o. 

Suppose that U is sufficiently well-behaved so that au consists 

of 2k piecewise smooth hypersurfaces 

and there are elements Y i E r which reflect H; with H; and 

generate r. (This sort of decomposition is quite familiar in the theory 

of Riemann surfaces. In general one may assume that r acts by 

isometries. Let D be an open dense PL disk in Band let V be one 

component of its preimage. Then U = int(closure(V)) is an open disk 

in B with PL boundary au. The deck group r acts in a PL fashion 

on au which decomposes into smooth hypersurfaces. However, to 

ensure that r is generated by (y i ) which act as reflections on 

these hypersurfaces is a very delicate (and sometimes impossible) 

matter. The interested reader is referred to M. W. Davis [Da] for a 

taste of the difficulty.) Then 

135 



k r C7(b,x) = I f C7(b,x) + f C7(b,x) 
~U 1 + 

H 1 -H; 

where -H~ indicates H~ with the orientation reserved. Let lJi(X) = 

f C7(b,x). Then 

H+ 
1 

so that terms cancel in pairs under integration J( )dv. We see from 

this analysis that the p-coboundaries correspond to the algebraic sum 

in C(X) 

which is also 

k 
I(Yi - l)C(X) 
1 

(r - l)C(X) = I (Y - l)C(X). 
YEr 

Thus 

H~(X) l!! C(X) l!! C(X) 
(r - l)C(X) k 

I(Y 1 - l)C(X) 
1 

and 

ii~(X) l!! C(X) l!! C(X) 

<r - l)C(X) k 
I(Y 1 - l)C(X) 
1 

which is the predual of MT(X). 
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CHAPTBR V: CHARACTBRISTIC CLASSBS 

In this ehapter we mimie as closely as possible the 

Milnor-Stasheff [MS] expose of the Chern-Weil eonstruetion of 

characteristie classes in terms of eurvature forms. 

The Chern-Weil proeedure begins with a vector bundle with a 

certain struetural group G. In our situation we consider complex 

(tangentially smooth) bundles with structural group GL(n,a:), real 

vector bundles with struetural group GL(n,IR), and oriented real vector 

bundles with structural group SO(2n). Choose a tangential connection 

V, see below, that respects the structure. The associated curvature 

form K determines a elosed tangential 2-form whose tangential 

cohomololY class is independent of choiee of the connection. Then 

any polynomial or formal power series P which is G-invariant 

determines a characteristic form. In the ease X = M is a manifold 

with FX = TM then this neIds the usual characteristic classes in de 
• Rham cohomololY H (M). 

We shall assume throughout that all bundles over foliated 

spaces are tangentially smooth and that leaf-preserving maps between 

foliated spaces are also tangentially smooth; this is not areal 

restriction, in view of our smoothing results (2.16). We use the 

Milnor-Stasheff [MS] sign eonventions for charaeteristic elasses. 

Let E _ X be a (tangentially smooth) complex n-plane bundle 

* over the foliated space X, and let Fa: = HomlR(F,G:) be the 

complexified dual tangent bundle of the foliated space X. 

Definitiop 5.1. A tanaential connection on B _ X is a 

a:-linear mapping 

* V: r .,(B) - r .,(F 1t9E) 

which satisfies the Leibnitz formula 

V(fs) = df~ + fv(s) 

for every s E r .,(E) and every f E C;(X,It). The image V(s) is 
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called the tangential 9..ovar~.!l~ derivative of s. 

with 

and 

Equivalently, we may regard V as a bilinear map 

r .,.(F a:) X r .,.(E) - r .,.(E) 

v E F(; 

f.g E C;(X) 

8 E r.,.(E) 

One may regard V as a map between the Lie algebras 

r .,.(F (;) (with Lie bracket) and Hom(r .,.(E). r .,.(E)) (with bracket 

corresponding to AB-BA for matrices). Thus 

Note that V is not renerally a Lie algebra homomorphism. 

The correspondence s _ v(s) decreoses support s; that 

is. if the section s vanishes throurhout an open subset U C X. then 

V(s' vanishes throughout U also. For given x E U we can choose a 

tanrentially smooth function f which vanishes outside U and is 

identically 1 near x. The identity 

df8s + fV(s' = v(fs' = 0 

evaluated at x. shows that V(s' vanishes at x. 

Since a connection is a local operator (Le.. it decreases 

supports). it makes sense to talk about the restriction of V to an open 

subset of X. If a collection of open sets U a covers X. then a 

global tangential connection is uniquely determined by its restrictions 

to the various U a' 

If the open set is small enough so that B I U is trivial. then 

r .,.(B I U, is a free C;(X)-module with basis denoted. say. sl ..... sn· 
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Tangential connections may be constructed as follows. 

Proposition 5.2. Let CWü]l~i, j~n be an arbitrary n X n matrix of 

tangentially smooth complex I-forms on U. Then there is a unique 

tangential connection V on the trivial bundle EI U such that V(si) = 

IWij8sj' 

~: The connection V is determined uniquely by the formula 

v(I f.s.) = I (df·8s. + f.V(s.)). IJ 
i 11 i 11 1 1 

Henceforth, we assume that all tanaential connections 

are aiven locallll as differential operators, as in the 

above proposition. 

There is exactly one tangential connection on a coordinate 

patch such that the tangential covariant derivatives of the si are a11 

zero; or in other words so that the connection matrix is zero. It is 

given by 

v(I f.s.) = I df.8s .. 
i 11 i 11 

This particular "fiat" connection depends of course on the choice of 

basis (si)' 

Note that if VI and V 2 are tangential connections on E and g 

is a tangentially smooth complex-valued function on X, then the linear 

combination gVI+(1-g)V2 is again a well-defined tangential connection 

on E. 

Proposition 5.3. Every tangentially smooth vector bundle E _ X with 

paracompact foliated base space passesses a tangential connection. 

~: Choose open sets U a covering X with E IU a trivial, and 

choose a tangentially smooth partition of unity (r a) subordinate 

to (U a ) . Each restriction E I U a passesses a connection Va by 

Proposition 5.2. The linear combination Ü a Va is now a weIl 
a 
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defined global tangential connection. 0 

Given a tangentially smooth map g: X' _ X we can form the 
• induced vector bundle E' = g E. Note that there is a canonical 

C;(X,It)-linear map 

• g : r r(E) - r r(E'). 

Similarly. any tangentially smooth I-form on X pulls back to aI-form 

on X', so there is a canonical C;(X,a::)-linear mapping 

.... '''' 
g : r 1(F~E) - r r(Fa:: ®E'). 

Proposition 5.4. To each tangential connection V on E there 

corresponds one and onlv one tangential connection V' • • = g V on g E = 

E' so that the following diagram is commutative: 

V ... 
r r(E) - r r(F~E) 

Ig· Ig• 

V' '''' r r(E') - r r(Fa:: ®E') 

~: Let ( U a :> be an open cover and ( r a :> a tangentially 

smooth partition of unity subordinate to a locally finite refinement of 

Cg-I(Ua ):>. On a typical set Ua ' pick sections sI,,,,,sn with V(si) = 
• • Lift the I-forms wij to w i j = g Wjj and lift the 

I. -1 
seetions Si to Si = g Si over g (Un). If V' exists then 

(*) 

which shows uniqueness for V'. For existence. use (.) to define 

V'I and then define V' globally by V' 
g-I(Ua ) 
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o 

Given a tangential connection V, we proceed to construct its 

curvature. 

ProDOllitioo 5.5. Given a tangential connection V, there is one and 

only one &:-linear mapping 

A * 2 * V: r.,(F a;8E) _ r .,(h F a;8E) 

which satisfies the Leibnitz formula 

V(t8s) = dt8s - t ",v(s) 

A 

for every I-form t and every section s E r .,(E). Furthermore, V 

satisfies the identity 

~: In terms of a local basis sl, ... ,sn for the sections, we must 

have 

This formula specifies V uniquely. Existence follows from a 

(tangentially smooth) partition of unity argument. 0 

The ta lla ell ti a l cur va t ur e t ellSO r of the tangential 

connection V is defined by 

A 2 * K = VoV: r T(E) _ r .,(h Fa:8E). 

Promtion 5.6. The value of the section K(s) at x E X depends 

onlv upon sex), not on the values of s at other points of X. Hence 

the correspondence 

sex) _ K(s)(x) 
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defines a tangentially smooth section of the complex vector bundle 

Proof: Cisarly K is a local operator, and K(fs) = fK(s) by direct 

computation; K is C;(X,O:)-linear. Suppose that s(x) = s'(x). In terDHI 

of a local basis s1,.,sn for sections we have 

s'-s = L f.s· 
i 1 1 

near x, where f1(x) = = fn(x) = O. Hence 

K(s') - K(s) = L f.K(s.) 
i 1 1 

vanishes at x. This completes the proof. 0 

In terms of a basis s1,.,sn for the sections of 8 I U, with V(si) = 

LWij8sj' we have 
j 

= V(~ w··88·) 
j lJ J 

= L 0··88· 
j lJ J 

where 0 is the n X n matrix of 2-forms given by 

0·· = dw.· - L w· A Waj' lJ lJ a 1a 
or 

o = dw - WAW 

in matrix form. 

Recall that V may be regarded as a linear map 

V: rtF 0:) - Hom (r .,(8), r .,(8)). 

Then the curvature K may be regarded as 
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where KV is given by the formula 

Thus the curvature is the obstruction to V being a Lie algebra 

homomorphism: if the connection is flat then V is a Lie algebra 

homomorphism and K :: o. 
Starting with the tangential curvature tensor K, we construct 

tangential characteristic classes as follows. 

denotes the algebra consisting of all n X n complex matrices. 

Definition 5.7. 

function 

An invariant polllnomial on Mn(O::) is a 

which may be expressed as a complex polynomial in the entries of the 

matrix and satisfies 

P(XY) = P(YX) 

for all matrices X,Y, or equivalently 

for all X and for all non-singular matrices T. (The structural group 

is, of course, GL(n,O::).) 

The trace and determinant functions are well-known examples 

of invariant polvnomials on Mn(O::). 

If P is an invariant polynomial, then an exterior form P(K) E 
• * * r T(A F 0::) = $mr T(AmF 0::) is defined as follows. Choose a local basis 
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sI"" .sn for the sections in a neighborhood U of x, so that K(si) 

= L n. ·~s" The matrix 0 = [O}'J.J has entries in the commutative i --1.1 - J 

algebra over a: consisting of all exterior forms of even degree. It 

* makes good sense to form P(O). This lies apriori in 0T(U) but 

patches together to form PIK) E O;(X), since a change of basis will 

replace 0 by a matrix TOT- l and P(TOT- l ) = P(O). 

If P is a homogeneous polynomial of degree r then PIK) E 

0; r (X). If P is an invariant formal power series of the form 

P = Po + PI + .. , 

where each Pr is an invariant homogeneous polynomial of degree r, 

then PIK) is still well-defined since P r(K) = 0 for 2r > p (the leaf 

dimension). 

Pun4ament8.l LeDUDIl 5.8. For any invariant polynomial (or invariant 

formal power series) p. the exterior form P(K) is cl 0 se d; that is, 

dP(K) = O. Thus PIK) represents an element [PIK) J in the 

* tangential de Rham cohomology group HT(X;a:). 

Proof: We summarize the proof found in Milnor-Stasheff [MS, p. 

296-8J. Given any invariant polynomial or formal power series P(A) = 
P([AijJ) form the matrix [oP/oAij] of formal first derivatives and 

let P'(A) denote the transpose of this matrix. Let 0 = [Oij] be 

the curvature matrix with respect to some basis for the restriction of 

the bundle to U. Then 

dP(o) = L(oP/o0uldOij = Trace(P'(O)dO). 

Since 0 = dw - w"w, taking exterior derivatives yields the Bianchi 

identity 

The matrix P'(A) commutes with A, and hence 
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O .... P'(O) = P'(O) .... O. 

Now 

dP(O) = trace((P'(O) .... w) .... O - O .... (P'(O) .... w)) 

Since each (P'(O) .... w)ij commutes with the 2-form 0ji' this sum is 

zero, which proves the lemma. 0 

Corollarx 5.9. The cohomology elass [PIK)] E H;(X) is 

independent of the choice of tangential connection V. 

~: Let Vo and VI be two different tangential connections on E. 

Map X X IR to X by the projection (x,t) ..... x and form the 
I 

induced bundle E' over X X IR, the induced tangential connections V 0 
I 

and V land the linear combination 

I I 

V = tV l + (I-t)Vo' 

Thus P(Kv) is a tangential de Rham cocyele on X X IR (foliated of 

dimension p+l). 

Consider the map ic:: x ..... (x,c:) from X to X X IR, where c: 
• equals 0 or 1. Evidentlv the induced tangential connection (ic:) V on 

* (ic:)B' may be identified with the tangential connections V c: on B. 

Therefore 

But the mappings iO and il are homotopic and hence 

CP(KV )] = [P(Kv I]. o 1 
[J 

The polynomial P determines a tangential characteristic 
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* eohomology elass in HT(X;a:) whieh depends only upon the isomorphism 

elass of the veetor bundle E. 

g: X· _ X induees a bundle E' 

eonneetion V'. then elearly 

If a tangentially smooth map 
• = g E with indueed tangential 

Thus these eharaeteristie classes are weIl behaved with respeet to 

indueed bundles. 

The entire treatment may be repeated for real veetor bundles. 

and one obtains eharaeteristie eohomolorY elasses [P(K)] E 
* HT(X;IR) for aoy GL(n.IR)-invariant polynomial P on Mn(IR). 

For aoy square matrix A, let 0k(A) denote the k-th 

elementary symmetrie function of the eigenvalues of A, so that 

It is weIl known (Milnor-Stasheff [MS. p. 299]) that aoy invariant 

polynomial on Mn(a::) ean be expressed as a polynomial funetion of 

°l·····on· 

DefiDitiOll 5.10. Let E be a tangentially smooth eomplex veetor bundle 

with tangential eonneetion V. The tanQential ehern classes 

e~(E) are defined for m = 1.2 •... by 

The tangential Chern elasses do not depend on the ehoice of 

tangential eonneetion. by Corollary 5.9. The faet that aoy invariant 

polynomial on Mn(a:) ean be expressed as a polynomial funetion of 

0l •...• on implies that aoy eharaeteristie class e = [Q(K)] ean be 

expressed as a polynomial in the Chern elasses. If g: X· _ X is a 

tangentially smooth map then 
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by Proposition 5.4. If E has a flat tangential connection then all 

characteristic classes vanish and in particular c~(E) = o. 
If X = M is a compact smooth manifold foliated by one leaf 

then a tangential connection !§ a connection, tangential curvature i§ 

curvature, and c~(E) = cm(E) E H2m(M;G:); the tangential ehern 

classes are ehern classes. In general. however, this cannot be the 

case. If X is a compact foliated space with leaves of dimension p 

then H~(X;a:) = 0 for m > p, so c~(E) = 0 for 2m > p. On the other 

hand, the ordinary ehern classes cm(R) (defined topologically, since we 

do not assume that X is a manifold) need not vanish. The following 

proposition explains the relation between the cm and the c~. 

Proposition 5.10. Let E be a tangentially smooth complex vector 

bundle over a compact foliated space X. Then 

• * where r.: H (X;G:) _ H7 (X;G:) is the canonical map. 

~: Since X is compact there is a compact Grassmann manifold 

Gk(G:n+k) with universal n-plane bundle En and a continuous map g: X 

_ Gk(G:n+k) (which we may assume to be tangentially smooth) such 

that E = g. En. Let V be a connection on En, so that cm (En) = 
-_1~m[O'm(Kv)J E H2m(Gk(G:n+k); G:). If v' = g·v is the induced 
( 2",0 
tangential connection on X, then 

'1'0 complete the proof. then, we need only show that the diagram 
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r* 
H2m(Gk(a:n+k);a:) = H; m(Gk(a:n+k);a:) -

19a 19a 

H2m(X;a:) 
r* 

H;m(X;a:) -
commutes; this follows from the naturality of r. 0 

Corollm 5.11. 

properties: 

The tangential ehern classes satisfy the following 

1) If g: X· _ X is tangentially smooth then 

g a c~(E) = c:(g aE). 

2) 

3) If E is a line bundle then c~(E) = 1 and 

c~(E) = 0 for m > 1. 

4) If E is of dimension n then c~(E) = 0 for m > n. 

~: We have established 1) previously. The rest of the corollary 

follows from the analogous properties of ehern classes and the fact 
a * that ra: H (X;«:) _ HT(X;a:) is a ring map. 0 

There are several important combinations of ehern classes. 

Here are two of them. The t an a e n t i a 1 C her n eh ara c t er 

eh T (E) E $mH; m(X;a:) is the characteristic class associated to the 

invariant formal power series 

(5.12) eh T (A) = trace (eA/2Ki). 

The tanaential total Chern class of E is the formal 
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sum 

~5.13) 

whieh lies in Elm~ m(X;«:), and satisfies e T ~BeB') = e T ~B)e T (B'). 

It eorresponds to the invariant polynomial det (I + A/21l'i). 

Let ai be the elementary symmetrie polynomials and let si be 

the universal polynomials determined induetively by Newton's formula 

For example, 

Proposition 5.14. The tangential Chern eharaeter has the following 

properties: 

00 

1) eh T ~B) = n + ~ sk(e T ~B))/kl 
k-l 

where n = dim B. In partieular, if B is a line 

bundle, then 

eh T ~B) = ;: e I ~B)k /kl = exp~e I (B)). 
k-O 

2) eh T (BeB') = eh T ~E) + eh T (E'). 

3) eh T ~E8E') = eh T ~B)eh T (B'). 

4) eh T: KO~X) _ eH: m~x;«:) is a ring map. 
111 

c 

As an example we eompute the Chern elasses of the eanonieal 

bundles of «:pn (regarded as a foliated spaee with one leaf). Let E 
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be the canonical complex line bundle over Itpn and D its orthogonal 

complement, so that ,EEDD = ItpnXltn+1 (the trivial complex 

(n+1)-plane bundle.). A geometric argument, which we omit, implies 

that the tangent bundle of Itpn (a complex n-plane bundle, as Itpn is 

a complex manifold) satisfies T(ltpn) = Hom (E,D). Then 

where E is the conjugate bundle of E. In general we have ck(i~) = 
(-l)kck(E) for an.v bundle E. Thus 

(n+1 times) 

For example, if n = 1 so that Itpn = Itp1 = S2 then 

= 1 - 2c1 (E)). 

(The classes c1(E)k vanish for k > 1 since H2k(S2) = 0 for k > 1.) 

Thus cl (T(S2)) = -2c1 (E). Similarlv, 
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For real vector bundles we may use real tangential connections 

or else complexify. If E is areal tangentially smooth n-plane vector 

bundle with complexification Ej[' then ci(Ej[) = 0 in H2i(X;I:) for i 

odd (Milnor-Stasheff (MS], p. 174), and hence cI(Ej[) = 0 for i odd. 

Define the tanaenttal Pontrjaain classes pI(E) by 

(5.15) 

Define the tanaential total Pontrjaain class to be the 

unit 

(5.16) 

Note that pI(E) = 0 for i > n/2. We may regard pI(E) E H;i(X;IR) 

as (-1)ic2i(E) E H4i(X;Z) via the topological definition. The fo11owing 

properties of the tangential Pontrjagin classes follow immediately from 

the corresponding properties of tangential ehern classes. 

PropoJitiOD 5.17. For each tangentially smooth real vector bundle E 

over a compact foliated space X there are tangential Pontr,iagin 

classes pI (E) E H; i (X;IR) satisfying the fo11owing properties: 

1) If g: X' _ X is tangentially smooth then 

2) (p~ = 1). 

3) If E is of real dimension n then pI (E) = 0 for i > n/2. 

4) The total tangential Pontrjagin class 

p'T(E) = 1 + pI(E) + p~(E) + ... 

• 
corresponds to the invariant polynomial det(I + ~). 
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To eomplete our diseussion of eharaeteristie classes it remains 

to define the tangential Euler class. For this we need to assume that 

eaeh leaf of X is given a Riemannian strueture whieh varies 

eontinuousLy in the transverse direetion. 

PropositioQ 5.18. The dual tangent bundle F- possesses one and only 

one symmetrie tangential eonneetion whieh is eompatible with its 

metrie. 

This preferred tangential eonneetion V is ealled the 

Ri emanni an or Levi-Ci vi ta tanaent i al connect ion. A 

tangential eonneetion on F - is s lImm e tri c if the eomposition 

- V - -" 2 -r 1'(F ) - r 1'(F ~F ) - r 1'(A F ) 

is equal to the exterior derivative d. 

Proof: Let sl,.,sn be an orthonormal basis for r 1'(F-1 U), There is 

one and only one skew-symmetrie matrix [wk.iJ of 1-forms sueh 

that 

(See Milnor Stasheff [MS, p.302-3J). 

eonneetion V over U by 

V(sk) = ~ wk .~s· 
j J J 

Define the tangential 

and extend by partitions of unity to a11 of X. 0 

Let E be an 0 r i e n ted tangentiallv smooth real 2n-plane 

bundle with a tangentially smooth Euclidean metrie. Choose an 

oriented orthonormal basis for the seetions r l' (E I U) for some 

eoordinate pateh U. Then the tangential eurvature matrix Cl obtained 

from asymmetrie tangentia11y smooth eonneetion is skew-symmetrie. 

There is a unique polynomial with integer eoefficients on 
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skew-symmetric matrices called the P fa f f i an and written Pf with 

lhe property that 

Pf(A)2 = det(AI 

and 

Pf(diag(S,S, ... ,S)) = 1. 

The Pfaffian satisfies the invariance condition 

Pf(BABt ) = Pf(A)det(B) 

and is hence SO(2n)-invariant. (For the linear algebra we omit, see 

Milnor-Stasheff [MS, p.309-310J). Thus Pf(O) E o:n(U) makes 

sense. Choosing a different oriented orthonormal basis for the 

sections over U, this exterior form will be replaced by Pf(BOBt ) 

where the matrix B is orthogonal (B-1 = Bt ) and orientation-preserving 

(det(B) = 1). Thus these local forms coalesce to create aglobai 

2n-form 

Pf(K) E 0: n(X). 

As before. this class is a cocycle and hence represents a 

tangential characteristic cohomology class. It is convenient to 

normalize. Define the tanaentiat Euter ctass e1'(E) E 

H; n(X;IR) by 

(5.19) 

The tangential Euler class is well-defined and independent of 

choice of symmetric tangential connection. Here are its elementary 

properties. 

ProJ)O!itiOQ 5.20. To each 2n-dimensional oriented tangentially smooth 

real vector bundle E with a Euclidean metric over a compact foliated 

space X there is associated a tangential Euler class 
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which is of the form e l' (B) = [Pf(K)/2~ J and is independent of 

choice of symmetrie connection. Further , 

1) If g: X' _ X is tangentially smooth then 

g * e l' (B) = e l' (g *B). 

2) e l' (B$B') = e l' (B)e l' (B'). 

3) If B has a nowhere zero tangentially smooth section 

then e l' (B) = O. 

4) the tangential Pontriagin class P~ (B) is equal to 

the square of the tangential Buler class e l' (B): 

p~(B) = e1'(B)2. 

5) If B is classified by f: X _ Gk(~+k) then 

in H~ n(X;IR) 

e l' (E) = rl e(Bn) = reIB). 

Note: In topological treatments of characteristic classes matters 

are somewhat different. Classes take values in i n t e CI r a l 

cohomology and may very well be torsion classes. The resulting 

formulas are more complicated. (Our classes are the images of those 
* * under H ( ;Z) _ H (;IR)). (For example, in integral cohomology, 

formula 5.17(2) holds only mod 2.) In the Chern-Weil approach the 

classes take . values in cohomology with r ea l or camp lex 

coefficients, so torsion has been destroyed. There is apparently no 

way known of showing directlv from the Chern-Weil approach that 

Chern classes are integral cohomology classes; proofs known to us rely 

on the topolorical construction. 

Recall that for aoy compact folia ted space X we have defined 

the tangential Chern character 
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ch"': KO(X) _ EDH~ m(X;O::) 
m 

to be that map which. in the ehern-Weil setting. arises from the 

invariant polynomial trace(eA/2rri). It is not hard to show that ch'" 

is a ring map and that it extends to a natural transformation of 

Z/2-graded functors 

** where H.,. 

.,.. * * ch : K (X) _ H.,. (X;O::) 

is the Z/2-graded functor (EDH; m)ED(EDH; m+ 1). 
m m 

Proposition 5.21. If M is a compact smooth manifold then 

• •• ch81 : K (M)8O:: _ R (M;O::) 

is an isomorphism. 

We omit the proof of this proposition. The actual situation is 

the following: 

1) • v •• ch extends to K (X) _ H (X;O::) for aoy locally 
• compact Hausdorff space X. (Rere K (X) 

refers to K-theory with compact supports: 

KO(X) ;: i{°(X+).) 

2) The map 

ch81 • v •• K (X)8O:: _ H (X;O::) 

is an isomorphism on those spaces. 

3) In fact. there is an isomorphism 

• Va. ch81 K (X)8Q _ H (X;Q). 

To prove 3) one checks first that ch81 is an isomorphism for X a 
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sphere. Induetion (or a speetral sequenee argument) implies that eh81 

is an isomorphism for a11 finite eomplexes (and in partieular for a11 
• v •• 

eompaet smooth manifolds). Sinee K and H respeet inverse limits, 

eh81 is an isomorphism for X = 11 m X· the inverse limit of finite _ .1 

eomplexes. Any eompact metrie spaee arises in this manner (cf. 

Eilenberg-Steenrod CESJ), so (2) holds for eompaet metrie spaees. 

Finally, a one-point eompaetifieation argument implies the full result. 

Lest the reader fall into an obvious trap, we note that the 

natural map 

eh" 81 • ** K (X)8G: _ H., (X;G:) 

is not an isomorphism in general for foliated spaees, or even for 

foliated manifolds. In the diagram 

only eh81 is an isomorphism. Any bundle E for whieh ei(E) = 0 i = 
1, .... p will be in the kernel of eh" 81, even though CEJ ~ 0 in 

o ** general in K (X)8G:. On the other hand, H., (X;G:) is infinitely 

generated in some eases. So eh" 81 is neither inieetive nor 

surieetive in general. 

Next we eonsider Thom isomorphisms. Reeall (from 3.29) that if 

X is a eompaet foliated spaee and if E _ X is a tangentially smooth 

oriented real n-plane bundle then there is a unique Thom class uE E 

H~c(E) and a Thom isomorphism 

given by 
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The same result holds in ordinary cohomology. Precisely, there is a 

Thom ciass üB E H~(E) and a Thom isomorphism 

(5.22) 

given by 

The proof of this fact is essentially identical to the proof of the 

tangential Thom isomorphism (cf. Bott [Bo], H6,7). Further, the 
* * restriction map r.: Hc(E) _ HTc(E) respects Thom ciasses: 

and hence there is a commutative diagram 

There is also a Thom isomorphism in K-theory. To obtain it, 

however, it is necessary to assume that the structural group of the 

bundle reduces to the group spinc. (This is slightly more than 

orientability.) For instance, it suffices to assume that B _ X is a 

complex vector bundle (which is a11 we sha11 require). 

If E _ X is indeed a spinc-bundle (of even real dimension for 

convenience) then there is a K-theory Thom ciass u~ E KO(E). (This 

means K-theory with compact supports: KO(E) = j{°CB+).) Further, 

multiplication by this ciass induces an isomorphism 
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(5.23) 

liven by 

~(x) = u~x. 

(For the proof of this theorem the reader may consult Atiyah (AU J 

and Karoubi (KarJ.) All three Thom isomorphisms extend to the case 

X locally compact - see Karoubi (KarJ. 

lt would be natural to suppose that Thom isomorphisms commute 

with the Chern charactcr, i.e. that the dialram 

° eh ** K (E) -..!... ".,. e (E;IR) 

would commute. Let 1 E KO(X) denote the class of the complex 

one-dimensional trivial bundle over X, which is the identity of KO(X). 

Then 

Thus commutativity boils down to the relation between the cohomology 

Thom c1ass uE and the Chern character of the K-theory Thom class 

ch.,.(u~). Generally these classes are not equal. Define the 

tonaentiol Todd closs 

** Td.,.(E) E ".,. (X;IR) 

by the formula 
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(5.23) 

Thus 

Our definition is of course modeled after the classical Todd class 

which is defined by 

so that 

Td(E) = 1 (:;) üE = ch(u~). 

We list the elementary properties of the tangential Todd class. 

Propo,itioQ 5.24. 

properties: 

The tangential Todd class has the following 

1) • * r.Td(E) = TdT(E), where r.: H (X;IR) _ HT(X;IR) is 

the restriction map. 

3) If f: X _ Y is a tangentially smooth map and 

E _ Y is a tangentially smooth bundle then 

4) TdT is the tangental characteristic class associated with 

the invariant power series A _ Ä . 
1-e 

Proof: The first property follows from the fact that r.üE = uE. The 

remaining properties may be proved directly or deduced from the 

analogous properties of the classical Todd class as in Karoubi 
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[KarJ, p. 285. C 

•• Note that Td(E) is a unit in the ring H (X;IR). Let E' be a 

real bundle such that EEIlE' is a trivial bundle. Then 

1 = Td(EEIlE') since Td(1) = 1 

= Td(E)Td(E') by 1). 

It is customary to define the Tod d r1 e n U S of a smooth 

manifold M by 

Td(M) = Td(TM@It) 

and following custom we define the ta n f1 e n t i a l To d d f1 e n us of a 

foliated space X by 

(5.25) 

We emphasize that we may regard classes such as Td1'(X) as 

* tangential f 0 rms in Cl1'(X) given by certain universal polynomials in 

the tangential curvature form KE. Given a tangential connection, 

these forms are uniquely defined (not .iust up to cohomology class.) 

Changing the tangential connection changes the form but preserves the 

cohomology class of the form. 

We may see the Todd class very explicitly. The power series 

x _ x expands as 
l-e 

00 B8 1 + .! + :r (_l)s-l ___ x2s 
2 8-1 (28)1 

where Bs E Q is the s-th Bernoulli number (cf. the appendix of 

Milnor-Stasheff [MSJ): 
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81 = 1/6 85 = 5/66 

82 = 1/30 86 = 69112730 

83 = 1/42 87 = 7/6 

84 = 1130 88 = 3617/510. 

For example. if X is a folia ted space with leaf dimension p E; 8 then 

H~(X) = 0 for k > 8 and the polynomial has the form 

BI 2 8 2 4 
1+!:+-x --x = 

2 2 24 

= 1 + !: + _1_x2 __ 1_x4 
2 12 720 

Thus if E is a complex line bundle over X then 

Td (E) = 1 + lc" (E) + ..!....c" (E)2 - -..!....c" (E)4 
., 2 1 12 1 720 1 

Note that this is a non-homogeneous class sitting as is usual in the 

group 

H:V(X;IR) = $H~m(X;IR). 
m 

For instance. if X = M = u:p2 with canonical complex line 

bundle EI then write !AI =...!-.. Then 
2lri 

The ehern character and Todd c1ass are riven at the form level by 

and 

We follow the usual convention in interpreting expressions of 
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the type J wdv where w is a non-homogeneous form; take the part of w 

which lies in op and ignore the rest. For instance, 

J Td1'(E)dv 

is to be understood as follows: write Td1'(E) = I Td~(E) where 

Td~(E) E H~(X), and define 

I Td1'(E)dv ;: I Td~(E)dv. 
Finally, note that if M is a foliated manifold with tangent 

bundle TM and folialion bundle FM then the normal bundle to the 

foliation NM = TM/FM has a flat connection in the leaf direction and 

so its relevant characteristic classes vanish. 

tangential cohomology class, then 

Thus if w is any 

I wTd(M)dv ;: I wTd(TM)dv = I wTd(FM)dv 

and so we may use Td(M) and Td(FM) interchangeably in index 

formulas. 
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CHAPTBR VI: OPBRATOR ALGBBRAS 

We turn now to the discussion of operator algebras that can be 

associated with groupoids and in particular to the groupoid of a 

foliated space. For this discussion we start with a locally compact 

second countable topological groupoid G and we assume given a 

continuous tangential measure A. fsee Chapter IV for the definition). 

Thus for each x in the unit space X of G we have a measure A. x on 

GX = r-1(xl with certain invariance and continuity properties as 

described in Chapter IV. For the moment we do not need to assume 

that the groupoid has discrete holonomy groups as in Chapter IV, but 

all the examples and all the applications will satisfy this condition. If 

in addition the support of the measure A. x is equal to r-1(x), as is 

usual in our examples, then A. is called a Haar system . 
• In this chapter we construct the C -algebra of the groupoid 

and we determine this algebra in several important special cases. We 

describe the Hilsum-Skandalis stability theorem. Assuming a transverse 

measure, we construct the associated von Neumann algebra and 

develop its basic properties and important subalgebras. This leads us 

to the construction of the weight associated to the transverse 

measure; it is a trace if and only if the transverse measure is 

* invariant. Finally, we introduce the K-theory index group KO(Cr(G)) 

and construct a partial Chern character 

which is given explicitly as follows. 

is an invariant transverse measure with associated trace (J v then 

c([u] )(v) = (J~(e - f) 

where e and f are suitably chosen projections in C; (G(X))+ @~ whose 

difference represents u and (J~ = (J v@Tr. The partial Chern 

character applied to the symbol of a tangential, tangentially elliptic 

operator D yields the cohomology analytic index class 
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-p 
[ l D] E H.,/X). 

We sha11 first review * the eonstruetion of a C algebra 

assoeiated to the pair (G.>..) (cf. Connes [Co3]. Renault [Ren1]). 

Suppose first that G is Hausdorff. On the spaee Ce(G) of eontinuous 

eompaetly supported funetions on Gone defines a multiplieation and an 

involution 

(6.1) 

f*(u) = f ( u - I ). 

That these define an assoeiative algebra with involution on Ce(G) is a 

straightforward ealeulation para11eling the ease when G is a loeally 

eompaet group, (cf. Pedersen [Ped] , p. 233). The invarianee property 

of tangential measures a110ws one to rewrite the eonvolution as 

In the ease when G is an equivalenee relation R on aspace X. 

then a tangential measure is simpLy a measure >.. x for eaeh x such 

that >.. x = >.. y if x N y. Funetions on G = Rare viewed as partia11y 

defined funetions of two variables, and the formulas beeome 

(ftg)(x.z) = f f(x,y)g(y.z)d>.. x(y) 

f*(x,y) = f ( y • x ) 

where in the first formula >.. x eould be >.. y or >.. z as x. Y. and z in 

the formula are a11 in the same equivalenee class. 

There are two ways of norming the involutive algebra Ce(G). 

For the first way, there is for eaeh x E X a natural homomorphism 

Il'x of Ce(G) into the algebra of bounded operators on the Hilbert 

spaee L2(Gx,>.. x) defined essentially by eonvolution: 

(6.2) 
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The integral is elearly weil defined for rp E L2(Gx,>..x), f E Ce(G) 

and it yields a bounded operator "'x(f) on L2(Gx,>..x). That",x 

defines a ·-homomorphism is likewise easily eheeked. Note that the 

formula (6.2) above displays "' x(fI in effeet as right eonvolution by 

f' (= {*) where f'(u) = f(u- l ). 

One norms Ce/G) by 1 f 1 = s u pi", xlf) I; the eompletion of 
x 

• Ce(G) und er this norm is virtually by eonstruetion a C algebra. for we 

obtain it by embedding Ce(G) into bounded operators on a Hilbert 

spaee (the sum of the L2(Gx,>..x)) and elosing up the image . 

Definition 6.3. • The reduced C -alqebra of the groupoid G 

is the eompletion of Ce(GI with respeet to the norm 1 f 1 above; it 
* is denoted Cr/GI. 

This eonstruetion is analogous to the eonstruetion of the 
• redueed C algebra of a loeally eompaet group by c10sing up the image 

• of the regular representation. Therefore it is sensible to eall the C 
• * algebra above the redueed C algebra of the groupoid, Cr(G). Connes 

and his students write this algebra as C·(V,FI when G is the graph of 

a foliated manifold (V.F). 

• 
The seeond way of norming Ce(G) eorresponds to the full 

C -algebra of a group. Namely we first put a kind of an LI norm on 

1 f 11 = max(supxJ 1 f(u) 1 d>.. x(u), suPxI' f(u- l ) 1 d>" x(u)) 

so that it beeomes a normed ·-algebra . Then we form the 
• C -eompletion of this algebra using all bounded • representations. 

• • This is denoted C (G) and is ealled the f u l l C al q e b r a of the 

groupoid. As the representations "'x are among all bounded 
• * representations, it is evident that the redueed C algebra Cr (G) is a 

• quotient of C (G). 

As our eoneern here will be with analysis and differential 

operators on foliated spaees where the representations "'x play the 
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• * central role, it is evident that it is the reduced C algebra Cr (G) 
• rather than the full C algebra that will be the focus of attention. 

* • Of course the construction of both Cr(G) and C (G) presupposes a 

tangential measure or a Haar system on the groupoid G. These 

algebras can depend on this choice. and if one is being absolutely 

precise, the underlying Haar system should be included in the notation. 

The reader is referred to Renault [Ren!] for a more extended 

discussion on this point. This will not be an issue for us because in 

the first place if A is a tangential measure (resp. Haar system) and if 

A' = fA where f is a continuous everywhere positive function on G 

that is constant on the fibres of the map u _ (r(u),s(u» of G into 

X X X. then A' is also a tangential measure (resp. Haar system). In 
• * • this case it is easy to check that the C algebras Cr(G) and C (G) do 

not depend on whether one uses A or A'. Secondly, in the case of 

the graph of a foliated space, there is as we have already pointed out 

in Chapter IV (4.20 and remarks following) a choice of a class of Haar 

systems (each AX should have a continuous, or even tangentially COO , 

density on the leaves in local coordinates), any two of which differ 

like A and A' above. If the total space of the foliation is compact 

one can also ensure that the function relating A and A' is bounded 
* • above and below. At a11 events when we speak about Cr(G) or C (G) 

in the context of the graphs of foliations, we sha11 always understand 

that standard choice of Haar system. It is evident that the 
• * hypothesis that G be second countable makes the C algebra Cr (G) 

separable. 

All of this discussion has assumed that the groupoid G is 

Hausdorff, but we know that the groupoid of a foliation need not be 

Hausdorff. At all events the groupoid is locally Hausdorff so it may 

be covered by a family of open sets each one of which is Hausdorff. 

We still assume that the space is second countable. Then as one can 

take this family to be a countable family Ui' it is straightforward 

using standard techniques to see that G is at least a standard Borel 

groupoid. (A set E is Borel if and only if E f\ Ui is Borel for each 

i.) This will be useful later when we introduce von Neumann algebras 

associated with these groupoids. 
• It is still quite straightforward to introduce the C algebra in 
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the locally Hausdorff case. We gave a definition in /4.15) of what 

was meant by a continuous tangential measure A = CA I. :> in 

this situation. Now instead of considering a11 continuous compactly 

supported functions on G. let us consider instead the set of finite 

linear combinations of functions f = Lfi where each f i is a compactly 

supported function continuous on some open Hausdorff subset Ui of G 

extended to be zero on the rest of G. (Note that while fi is 

continuous on Ui its extension to G is not in general a continuous 

function on G.) These functions can be convolved using the same 

formulas as in the Hausdorff case to give an --algebra. Then one 

-fo11ows the same recipe for norming it and constructing a separable C 

* algebra Cr/GI. 

-The C algebra associated to the groupoid of a foliated space 

X plays a key role in the analysis and geometry of X as we shall see. 

* In particular its K-theory group KO/Cr(G)) is the natural place where 

indices for operators live (cf. Connes-Skandalis [CS1,CS2]). One may 

also think of il as a non-commutative replacement for the algebra of 

functions on the quotient space X/R where X is the unit space of G 

and R is the equivalence relation on X defined by R. For a foliated 

space this is the space of leaves. Indeed when X/R is a "good" space 

such as when G is the groupoid of a foliated space which is a 

* fibration, then Cr(GI looks very much like C(X/R), as we sha11 see 

presently; they are in fact stably isomorphie. The interpretation of 

* Cr/G) as functions on the leaf space is enhanced by the following 

result of Fack and Skandalis [FS]. 

Theorem 6.4. If G is the groupoid of a foliated space, then C;(G) is 

-simple as a C algebra if and only if every leaf of the foliated space 

is dense. 

We shall not prove this result except to remark that if I. is a 

proper closed leaf, then the representation "'x above for any x in I. 

* has a non-trivial kernel so that C r (G) is not simple. 

One of the most important classes of examples of topologie al 

groupoids comes from group actions. Suppose that a locallv compact 

group H acts as a topologie al transformation group on aspace X with 

h E H acting on a point x E X denoted h· x. The product space 
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G = x x H becomes in a natural way a groupoid where the product in 

G, (x,gl 0 (y,h), is defined if and only if go y = x and then 

(X,g) 0 (y.hl = (x,gh). 

X is the space of units and the range and source maps are given by 

r(x,h) = x, s(x,h) = h-1ox. Then GX = (h,x), x fixed, h arbitrary in 

H) := H. If u = (g,y) is an element of Gwhich can multiply GX on 

the left, that is s(u) = s(y,g) = g-ly = x, then left multipIication by u 

maps GX onto GY, y = IPX and the map is (x.h) _ (y,gh). Now giving 

a tangential measure or a Haar system on the groupoid G is giving a 

measure AXon each GX which is invariant under these left 

multipIications. There is a natural choice in this case, namely take 

for AXon GX := H, a fixed left Haar measure on H. Evidently this 

tangential measure is continuous in the sense of 4.15. This example is 

of course the reason one calls such obiects Haar systems. Of course, 

for the groupoid rost defined to fall strictLy within the context of 

Chapter IV where we assume discrete holonom.v groups, the various 

isotropy groups of the action of H on X, Hx = (h: hox = x) must 

be discrete. If for instance H is a Lie group acting on a manifold X 

then the action of H will give rise to a foIiation of X only in this 

case. 

In the case of a group H acting on aspace X as above, one 
• may form (cf. Pedersen [Ped]) a C algebra, the reduced crossed 

product algebra of C(X) by H. written C(X)r )4 H. It is c1ear that 

the general construction for groupoids should and does yield the 

reduced crossed product construction in this case. 

Proposition 6.5. If G = X X H for an action of H on X (no 

assumptions on isotropy) then 

~. One checks that there are dense subalgebras of both sides 
* that are algebraically identical. The algebra Cr (G) is obtained by 
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completing in the norm defined bv the family of representations /{x' 

for x E X. Each of these comes from a covariant representation of 

the pair (C(X),G) and one has to prove that these give the same norm 

as the subfamily of a11 covariant representations of the pair used to 

define the reduced crossed product. We omit the details. 0 

Another. somewhat trivial case, is of interest; let X be 10ca11v 

compact and let G = X X X be the equivalence relation (principal 

groupoid) with a11 points equivalent. If X is a manifold foliated by 

one leaf, G is its groupoid. A Haar system is simply a measure >.. on 

X whose support is a11 of X. Evidently elements of the dense 

subalgebra of the definition can be realized as integral kernel 

operators on L2(X,A) with compactlv supported kerneis. The 

completion is obviously a11 compact operators 1< on L2(X,>..). 

Proposition 6.6. * In this case Cr(G) E!! 1<. o 

An important theme in Feldman-Moore [FM] , 

Feldman-Hahn-Moore [FHM] , and Ramsay [Ra] is that for measured 

groupoids or equivalence relations, the special case when the orbits 

are discrete is much easier to handle and that in some sense the 

general case could be reduced to this special case. We want to see 

that the same is true in this context. First of a11 we need a 

definition. 

DefinitioD 6.7. The OocalLy Hausdorff) topological groupoid G has 

dis c r e t e 0 r bit s ü the range and source maps are local 

homeomorphisms. 

It fo11ows that each equivalence class (or leaf) of the 

associated equivalence relation is countable and discrete in the 

relative topology from G (although not in the relative topology from 

X). In this case there is a natural choice of tangential measure, 

namely the counting measure on each leaf. It fo11ows from the 

definition of discreteness that this is a continuous tangential measure, 
• * and so we can define the C algebra Cr(G). 

It is useful to point out that in the principal case, where G is 
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simply an equivalence relation, that G can be covered by sets of a 

very simple kind. Let 0 be an open set in X and let b be a 

homeomorphism onto an open subset of X; let U(b,O) = ((x,b(x)), 

xE OJ. 

Proposition 6.8. If G is discrete and principal, then the U(b,O) are 

open sets and form a cover of G. [] 

The dense subalgebra A of compactly supported functions (or 

its substitute in the non-Hausdorff case) can be thought of as 

generalized matrices especially if there is no holonomy so that G is a 

principal groupoid, i.e. an equivalence relation R. Then as we have 

already seen the formulas simplify and the product of two functions on 

ReX X X is given by (f·g)(x,z) = B'(x,y)g(y,z) where the sum is 

extended over all y which He in the same class as x and z. The 

condition that fand g be compactly supported implies that the sum is 

finite. Written this way the product really does look like matrix 

multiplication. When there is holonomy, multiplication is still given by 

a sum rather than an integral, but the sum must include summation 

(convolution) on the discrete holonomy groups. 

For general groupoids, the process of completing the dense 
* • subalgebra A of functions to obtain Cr(G) leads to elements in the C 

algebra which cannot be represented as functions on G. One of the 
• nice features of discrete rroupoids is that an element of the C 

algebra can be represented by a continuous function on G, at least if 

G is Hausdorff. 

Proposition 6.9. For f E A and u E G. 

I f(u) I , I fl 

• where I f I = s u P Ill'x(f) I is the C -norm. 
x 

Proof. The representation Il' of A in L2(Gx,A x) in the definition of -*- x 
Cr(G) is a representation by matrices since GX is a countable discrete 
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set and AX is eounting measure. It is evident moreover that f(u) is 

just one of the matrix eoeffieients of Il"x1f), and so the inequality is 

obvious. 0 

* Thus if fn is a sequenee in A with a limit in Cr(G), fn must 

eonverge uniformly as eontinuous funetions on G to a limit fand we 

have the desired result for Hausdorff G. Moreover multiplieation of 

* elements of er(GI is given by the same "matrix multiplieation" 

formulas for the functions whieh represent them. The sums are no 

longer finite but are absolutely eonvergent as is easily seen using the 

argument of Proposition 6.9. The situation for non-Hausdorff G ean 

be handed by loealization to Hausdorff subsets. 

Another feature of the diserete ease is that the set of units X 

is an open subset of G beeause rand s are loeal homeomorphisms. 

Henee the set of eompaetly supported funetions Ce(X) is a subset of 
• the algebra A used to define C (G). Moreover it is a subalgebra; 

elements of Ce (X) eorrespond to diagonal matriees in the deseription 
• above of A as generalized matriees. Henee the C algebra Co (X) 

* beeomes a subalgebra of Cr(G). If X is eompaet, as it will be in 

most eases, then Co (X) = C(X) has a unit whieh is also a unit for 

* Cr(G). 

Finally, suppose that G is diserete and prineipal--that is, an 

equivalenee relation and Hausdorff (note that it would be Hausdorff 

automatieally if X itself is Hausdorff sinee G ean be mapped 

eontinuously into X X X). In this ease the subalgebra Co (X) of 

* Cr(G) has a very special property--namelv it is a diagonal subalgebra 

* of Cr(G) in the language of KumHan [Kum] (and a Cartan subalgebra 

in the language of Renault [Renl]). We are inelined to change 

terminology and ea11 Kumjian's diagonal subalgebras Cartan subalgebras. 

Definition 6.10 (Kumiiu [Kum]). A Cartan subalaebra B of a 
• unital C algebra A is an abelian subalgebra (that eontains the unit of 

A) with a faithful eonditional expeetation P: A _ B with the property 

that the kernel of P is spanned by a11 elements a of A such that 

(il • aBa C B, 
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• (ii) a Ba C B, 

(iii) a2 = O. 

(Kumjian calls these free normalizers of B.l If A is not unital, a 

Cartan subalgebra of A is a subalgebra B such that B+ is a Cartan 

subalgebra of A + where ( t is the operation of appending a unit. 

To see (Kumiian [Kum]) that CO IX) is a Cartan subalgebra of 

* Cr(G), one has to define first a conditional expectation P. If 

* m E Cr(G), it is represented by a function on G by Proposition 6.9 

and then one restricts the function to the diagonal to get an element 

in Co (X). Next note that free centralizers can be obtained by taking 

a function a supported on a set of the form Ulf,O) in G where f has 

no fixed points and such that a(x,f(x»a(f(x),f2(x» = O. An easy 

localization argument shows that any compactly supported function on 

G-AX can be written as a finite sum of such functions, and hence 

that there are enough normalizers to span the kernel of P. Conversely 

it is evident from the condition a2 = 0 that aoy such a viewed as a 

function on G must vanish on the diagonal and so is in the kernel of 

P. 
Kumnan proves, complementing an earlier result of Renault 

[RenI] , a powerful converse to this exercise. Roughly stated it says 

that every pair (A,B) where B is a Cartan subalgebra (diagonal 

subalgebra in the language of Kumjian [Kum]) arises uniquely from a 

discrete equivalence relation but with a "twist" coming from a kind of 

two cocycle as in Feldman-Moore [FM] and Renault [RenI] . In 

fact the topological objects which classify the pairs IA,B) are called 

twists. We shall not pursue this topic further here as it would take 

U8 afield. 

If GI and G2 are topological groupoids then their product 

GI X G2 = G is also. If Ai is a Haar system on Gi' i = 1,2 then it 

is evident that we can define a Haar system Al X).2 on 

G = GI X G2 for if ~ is the unit space of Gi' X = Xl X X2 is the 

unit space of G and the range map r of G is rl X r2' Hence 

-l( ) -1 - 1 (xl,x2) 
rxl ,x2 = r 1 (Xl) X r 2 (x2) and (Al X ).2) is defined to 

be the product measure. The following is then straightforward. 
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Proposition 6.11. 

the minimal or spatial tensor product. 

Proof. lf Ai.A are the algebras of functions on Gj'G used to define 
• these C algebras, it is evident that the algebraic tensor product 

Al ~ A2 can be identified as a dense subalgebra of A. The 
* completions Cr/Gl.) are defined by a family of • representations 7C 

~j 

* (xU E Xi) and it is clear that the completion Cr/G) can 

exactly by the family of tensor products 7C x ~ 7C X • 
1,j 2,j 

follows. o 

be defined 

The result 

As a corollary of this, suppose that GI is a groupoid and that 

G2 = X2 X X2 is a groupoid of the type in Proposition 6.6, for 

instance the groupoid of a manifold X2 foliated by a single leaf. 

Then form G = GI X G2. If for instance GI is the groupoid of a 

foliated space Xl and X2 is a fixed manifold foliated as a single leaf, 

then G is the groupoid of the foliated space X = Xl X X2 where the 

leaves of X are 1 X X2 where 1 is a leaf in Xl' In other words 

we have fattened up the leaves of Xl by crossing with a fixed 

manifold. The foliated spaces Xl and X have the same transversal 

structure. As a consequence of 6.6 and 6.11 we have for any GI and 

any X2 the following: 

Proposition 6.12. 

compact operators. 

As a further example let us consider the groupoid arising from 

a fibration p: X _ B with standard fibre F. We let G be the 

equivalence relation on X where x ~ y if p(x) = p(y). If the fibration 

is locally trivial (cf. Steenrod [St]) and the standard fibre is a 

manifold. then X is a foliated space with leaves equal to the fibre of 

the fibration. If U C B is an open set over which the fibration is 

trivial. then U defines an open subfoliated space which is the product 

of U foliated by points with F foliated by one leaf. Hence "locally" 
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• • the C algebra is a product C (U) @ 1< by above. But this works 

globallv at the algebra level, at least if B is finite dimensional. In 

order to avoid degenerate cases we assume in the following that the 

standard fibre is not a finite set. The algebra is formed with respect 

to any given continuous Haar system. 

Propo8itiOQ 6.13. If G is the groupoid of a locally trivial fibration 
. " Wlth base B, then Cr(G) is Morita equivalent to C(B) @ 1<. If B is 

finite-dimensional then 

Proof. For each bEB, let p-1(b) be the fibre over b. A Haar 

system is simply the assignment in a "smooth" fashion of a measure 

Ab on p-1(bl:!! F, where smoothness means that in each local 

trivialization of p-1(U):!! U X F, the Ab for b in U viewed as 

measures on F vary continuously. The Hilbert spaces L2(p-1(b),Ab) 

then form a continuous field of Hilbert spaces over B (cf. Dixmier 
" [Di2]) and it is evident from Proposition 6.12 that Cr(G) consists of 

the sections of the corresponding field of operator algebras 

1«L2(p-1(b),A bl). The Oixmier-Oouady invariant [00] is trivial and 

hence " Cr(G) is Morita equivalent to C(B) @ 1<. If B is 

finite-dimensional then the field of Hilbert spaces is trivial and so 

" Cr(G) !!! C(B) @ 1<. 0 

If in this example, the fibration X _ B has a cross section s, 

then s(B) is a complete transversal homeomorphic to B. Then s(B) is 

a groupoid of a trivial sort--equivalence classes are points. Thus 

" "" Cr(s(B)) = C(B) and so Cr(G) :!! Cr(s(B)) @ 1<. This is in fact quite 

a general phenomenon at least for groupoids of foliated spaces as is 

shown by Hilsum and Skandalis [HS]. We describe this result, which 

will be of considerable use to uso in some more detail. 

In Chapter IV we discussed regular transversals for foliated 

spaces. These were locally compact subsets N of the foliated space X 

so that N C N' with N C N' and N compact, and such that there 

exists an open ball B in IRP. p lhe leaf dimension, with a 

174 



homeomorphism of N' X B onto an open subset U of X with the map 

an isomorphism of foliated spaces. For this discussion, we shaH also 

assume that there is a larger ball B' containing B with an extension 

of the homeomorphism of N' X B to N' X B' onto some U'; we shall 

also assume that N is open in N' so that N X B corresponds to an 

open set. To simplify notation, let us take the N X B to be subsets 

of X. If X is compact one can c1early find a finite number of such 

Ni so that the union is a complete transversal. If X is locally 

compact, then as in Fack-Skandalis [FS] one can find a locally finite 

such family and can also arrange that the Ni X Bare disioint from 

each other. At aH events if N = VNi' finite or infinite, then there is 

a ball B in IRP so that N X B = U is an open subset of X. We can 

also arrange that UC contains a set of exactly the same form N X B 

using the fact that for the original Ni we had a Ni X B' :::> Ni X B. 

Let G be the groupoid of the foliated space (Hausdorff or not) 

and let G: be the groupoid relativized to N; 

G: =(u E G: r(u),s(u) E Nl. Then H = G: is a topologie al groupoid 

* in its own right and it has diserete orbits. Then Cr(H) is an algebra 

of the kind discussed earlier in the chapter. If we form U = N X B 

then G~ is an open subgroupoid of G and is clearly the product 

where B X B is the prineipal groupoid (equivalenee relation) with unit 

spaee Band with all points equivalent. It follows from Proposition 

6.12 that 

where 1< is the algebra of compact operators. 

Further as G~ is an open subgroupoid of G, we can extend 

functions in the dense subalgebra defining C:(G~) to funetions on G. 
* u * Moreover the choice of Haar system for defining Cr(Gu) and Cr(G) 

are compatible. It follows now that the natural iniection of the dense 

algebra of eompactly supported functions on G~ into functions on G 
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• ... u ... produces a map i on the C algebra level of Cr(GU) into Cr(GI. The 

result of Hilsum and Skandalis [HS], in a slightly strengthened version 
... 

is the following, which shows in some sense that Cr(G) is no more 
... U 

complicated than Cr(GUI and also that the complete transversal N 

controls the structure of these algebras. 

... 
Theorem 6.14 (Hilsum-Skandalis [HS]). The algebra Cr(G) is 

isomorphic to the algebra M2(C;(G~l) of 2 X 2 matrices over C;(G~) 
and the injection map i above corresponds to the natural inclusion of 

C;(G~) into 2 X 2 matrices a _ (g g]. Hence C;(GI is also 

isomorphic to C;(G:) @ 1< where 1< is the algebra of compact 

operators. 

We shall not reproduce the details of the argument but will 

note some highlights. Fixing the complete transversal N as above, 
• they define for each open set V of the unit space X, aC-module (cf. 

... N 
Kasparov [Kas2]) H(V) over Cr(GN). These add for disroint U's and 

H(VI = H(W) if V =W - F where F is closed in X and meets each leaf 

in a null set. They also establish that the algebra of "compact 

operators" (in Kasparov's terminology) on H(V) is C;(G~). For the 

particular choice of U = N X B, the "tube" around the transversal N 

which was constructed above, it is easy to see that 
... N 

H(U) = Hoo @ Cr(GN) where Hoo is an infinite dimensional Hilbert 

space. Since by construction we can find another transversal N' 

which looks rost like N and a "tube" around it, N' X B inside of UC, 

one may use the above to argue that H(X) = H(U) EIl H(Uc) and that 

H(Uc) contains a submodule H(U') isomorphic to HlUl. The Kasparov 

stablization theorem of [Kas2] says that H(Uc) is isomorphic to H(U) 

which establishes the result. 0 

We note that there is another interesting approach to the 

isomorphism (6.141 due to Haefliger (cf. Theorem A5.1 in appendix A), 

Renault [Ren2] and Muhly-Renault-Williams [MRW]. One shows that 

G is equivalent to G: as topological groupoids. Then one shows that 

under mild hypotheses, the C· -algebras associated to equivalent 

groupoids are strongly Morita equivalent and hence (by 

176 



Brown-Green-Rieffel [BGR]) stably isomorphie. 

We now turn our attention to another and closely related 

operator algebra that one ean eonstruet. Let G be a loeally eompaet 

groupoid with diserete holonomy groups together with a given Haar 

aystem A. We also assume that the underlying Borel groupoid has a 

eomplete transversal--a eondition that is Cl f 0 r t i 0 r i satisfied for 

the groupoid of a foUated spaee. We also assume given on this Borel 

groupoid a positive transverse measure )I, not neeessarily 

invariant--ef. Chapter IV. Indeed for the eoming diseussion we can 

and shall negleet any topologie al strueture and simply work as in 

Chapter IV with a standard Borel groupoid with a eomplete 

transversal. a fixed tangential measure and with eountable holonomy 

groups G~. 

The integration proeess of Chapter IV where we integrate the 

tangential measure A with respeet to the transverse measure )I 

produees a measure U = J Ad)l on the unit spaee X. Then as noted in 

Chapter IV one may turn G into a meClsur ed aroupo i d (Maekey 

[Ma5] , Ramsay [Ra2]) by defining a measura i4 on G by 

ü(J~) = JA x(E " GX)du(x) 
X 

(i.e., U = Ur in the terminology of Chapter IV). We note that 

eonversely if G is a standard measured groupoid, then by a result of 

Peter Hahn [Hapl] there is a Haar measure A (= tangential measure 

~ Haar system) on G and a measure )I on X so that the original 

measure on G is given by the formula above. 

Now any measured groupoid has a regular representation (Hahn 

[Hapl], Connes-Takesaki [CT]) whieh in form looks Just like the 

eonstruetion defining C;(G). We form the Hilbert spaee H = L2(G,ü) 

whieh is deeomposed as a direet integral 

where HX = L2(GX,A x). If rp = (rpx) is an element of Hand if f is a 

suitable funetion (see below) on Gone defines just as in (6.2): 
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('r(f)'P)(u) = f f(u -1v)'P(v)dA xCv). 

In order for this to define a bounded operator f has to satisfy 

eonditions as in Hahn [Hap1]. 

Definition 6.15. A measurable funetion f on G equipped with a Haar 

system A and a transverse measure )I is I e ft i n t e ara b I e with 

respeet to the Haar system A if 

the essential sup being taken with respeet to ü; f is r i ah t 

in t earab I e if f- is left integrable, f-(u) = f( u -1 ), and 

i nt e ara b I e if left and right integrable. A funetion is I e ft 

(riaht, two sided) square intearable if Ifl 2 is left 

(right, two sided) integrable. 

It is not hard to see that the integrable funetions form a 

* --algebra under the same operations (6.1) we used to define Cr(G). 

Note that the integrability eonditions are not the same as f being in 

L2(G,ü), and that the eondition depends only on the equivalenee elass, 

i.e. the null sets, of the transverse measure )I, and not on )I itself. 

We observe that if f is integrable with respeet to A the 

operator "'x(f) in L2(GX,A x) is given by a kernel funetion whieh, when 

we unravel the respeetive definitions. is integrable in the sense of 

Proposition 1.14. Henee "'x(f) defines a bounded operator with a norm 

that is essentially 

bounded operator 

--homomorphism. 

bounded in x by Proposition 1.14 and so defines a 

",(f) on L2(G,Ü). Further, f _ ",(f) is a 

We note parenthetieally that if f E Co(G), the 

eontinuous eompaetly supported funetions on a loeally eompaet 

topologieal groupoid with Haar system A (or the replaeement for 

Co (GI in the non-Hausdorff ease), then the integrability eonditions are 

satisfied with ordinary suprema instead of essential suprema. 

Definition 6.16. 
_ N 

The von Neumann al aebra W (G,t.t) assoeiated 

to the measured groupoid (G,ü) is the weak closure of the --algebra 
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generated by the operators ",(f). for a11 integrable functions f. 

This algebra is realized on the space Hand quite evidently 

commutes with the abelian algebra Ar of multiplication operators 

generated by a11 bounded measurable functions on Gwhich depend only 

on the range r(u) of a point u in G. 
* N The fact that elements of W (G.u) commute with ~ means by 

direct integral theory (cf. Takesaki [Tak2]. IV. ~8) that any 
* N 

m E W IG.u) may be decomposed as a direct integral. Specifica11y the 

abelian algebra ~ on H decomposes H as a direct integral 

where evidently HX = L2(GX .A x). Then any operator m commuting with 
* N 

Ar' and in particular any m in W (G.u) has a direct integral 

decomposition 

where mX is an operator on L2(GX ,A x). Conversely every bounded 

Borel field of operators x_mx on the Borel field of Hilbert spaces 

L2(GX ,A x) defines an operator that commutes with Ar' 

Moreover for each u E G. left translation Lu by u defines a 

bijection from GS(u) to Gr(u) which maps A s(u) to A r(u). (This is 

the definition of invariance for A.) Consequently left multiplication 

by u-1 gives rise to a unitary operator Uu which is a unitary 

equivalence of HS(u) to Hr(u). and these evidently satisfy UuUv = Uuv' 

It is further easily verified that the convolution operators ",(f) which 
* N are dense in W (G,u) have the further property that their 

dis integration products above ",(f)x satisfy 

* N ConsequentLy the same holds for any m E W (G,u), namely 

(*) U mS(u) = mr(u)U for almost a11 u. 
u u 
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The intuitive reason for this is that the m's 

convolution operator on the groupoid and 

are a kind of right 

so a sum of right 

translations. The Uu are left translation operators and right 

translations always commute with left translations. Finally it is true 
• N 

that W (G.J.t) is exactly the set of operators which commute with Ar 

and whose dis integration products satisfy the above relations (.). 
• N 

There are some important subalgebras of W (G,J.t) that will 

occur. First of all if I{) is a bounded measurable function on (G,ü) 

with the property that I{)(u) depends only on the source s(u) of u (so 

I{)(u) = I{)'(s(u)), then ml{) , multiplication by I{) on L2(G) defines a 

bounded operator which evidently commutes with Ar and whose direct 

integral disintegration products m~ on L2(GX.A x) are multiplication 

operators by the function I{)'(s(v)) v E GX. This field of operators 

evidently satisfies (.) because left translation by u-1 ma~s G; to G; 

wbere u-1 E G:. Hence ml{) defines an element of W (G.J.t). The 
• N 

set of such is evidently a von Neumann subalgebra of W (G,J.t), 

denoted As and isomorphie to L oo(X). In case G is principal--that is, 

an equivalence relation--this is tbe usual diagonal subalgebra. and if 

the equivalence relation is countable, it is a Cartan subalgebra 

(Feldman-Moore [FM] ) tbat plays a key role in the structure of 
• N 

W (G,J.t). 
• N 

Anotber slightly larger subalgebra of W (G,J.t) wbich takes 

account of tbe bolonomy is also useful. Let E = Cu E G. 

r(u) = s(u):>. Then E can be viewed as the union VG~ of the 

(discrete) holonomy groups. If f is an..v Borel function ol E which is 

not only bounded, but for whicb }: I f(u) I (u E Gp is bounded in 

Y. tben right convolution by f restricted to G~ defines an operator 

R(f)~ on L2(G~) for any x because GX is a principal homogeneous 

space on tbe right for G~. Then as L~(GX) can be regarded as the 

direct integral 

R(f)~ integrates to give an operator R(f)x on L2(Gx). For exactly tbe 

same reasons as above, tbis field satisfies (.) and so defines an 
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. ~ 
element R(f) of W (G.J.d. Suppose that f happens to be supported on 

the subset of E = VG~ consisting of the identity elements of the 

(discrete) groups G~. Then f is in effect a function on the unit space 

X. and \P(u) = f(s(u)) defines a function on G depending only on s(u) 

that in turn defines an element m\p of the algebra As' A moment's 

thought shows that m\p = R(f). The closure Ds of the set of 

operators R(f), which is evidently a von Neumann subalgebra of . ~ 

W (G.u) contains As' This generalized diagonal subalgebra Ds has a 

readilv apparent structure. 

Proposition 6.17. The algebra Ds is a direct integral 

of the right group von Neumann algebras RX of the discrete groups G: 

with As 5! L oo(X) the obvious subalgebra. 0 . ~ ~ 

The algebra W (G.U) on the Hilbert space H is in standard form 

(cf. Takesaki [Takl]) in the sense that there exists a con.iugate 

linear isometry J of 8 onto 8 such that J2 = id. and 

• ,..,J .,...., 

JW (G,u)J = W (G.u)' 

where N' denotes the commutant of N in 18(8). In fact the J that 

works is quite easy to write down. Recall from Chapter IV that the 

transverse measure )I, which we started with here. has a modular 

function, or modulus, A which is a positive function on the groupoid G 

satisfying A(u)A(v) = A(uv) whenever uv is defined. This function 

measures the extent that )I is not an invariant transverse measure. 

This modular function has the further property that if i(v) = v-1 is 

the inversion map on G, then i transforms the measure iJ on G into a 

measure i.(iJ) (i.(iJ) = Us in the language of Chapter IV) which is 

equivalent to iJ with Radon-Nikodym derivative given by 

~ 

dU,. (v) = A(v). 
d(i ... (U» 
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It follows then that for !P E ii = L2(G,~), 

defines a conjugate linear involutive isometry. The fo11owing 

summarizes results that can be found in Hahn 

Connes-Takesaki [CT], but also see Takesaki [Takl]. 

Theorem 6.18. With the above notation 

• _ .,..,J 
JW (G,/.t)J = W (G,/.t)' 

. ~ 

[Hap1], 

and W (G,/.t) is the algebra of a11 operators m commuting with Ar so 

that the corresponding dis integration products mX satisfy 

for almost a11 u E G. Moreover JAsJ = Ar' 

We shall not go into the somewhat tedious details of the proof; 

the idea is that what works for groups works for groupoids. The . ~ 

algebra W (G,/.t) consists of right convolutions and conjugation by J 

makes them into left convolutions which at the von Neumann algebra 

level are each others commutants. As to the second part, Ar is . ~ 

clearly in the commutant of W (G,/.t) and Ar together with "smoothed" 

versions of the UU suffice to generate this commutant. C 

It is evident from the definitions that once we fix a Haar 
• * system A, the C algebra Cr(G) has a natural representation into 

• N 

W (G,/.t) for any choice of transverse measure JI and corresponding 

* /.t. Recall that Cr(G) is defined by representations Il'x of a dense 

subalgebra A. These representations Il' x take place on 

HX = L2(GX,A x) and so the direct integral Il' of the Il'x gives a 
* • ~ 

representation of Cr(G) into W (G,/.t). The following is clear. 

Propoeition 6.19. 
* • N 

The image of Cr(G) Is dense in W (G,/.t) and the 

representation is faithful if the support of the transverse measure )I 
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is all of X in the sense that the measure I Adv has support equal to 

X. D 

It is well to reflecl for a moment on the geometrie meaning of 

these algebras for a topolorical rroupoid G. First of all each orbit or 

leaf I, of the equivalence relation on X 88sociated to G has a 

"holonolDY covering" , which we can take to be GX for any x EI.. 

The left translations Lu which map GS(u' to Gr(u' provide canonical 

identifications between these models of 'i when x = s(u', and 

y = r(u' are points of 1,. In addition the "holonomy group" G: 

operates by left translation freely on GX :=" and the quotient 

G:''i is exactly the original leaf 1,. Each leaf I. and its covering 

, come equipped with a measure so we have Hilbert spaces L2(i, 
which are just L2(GX ,AX, for any x E 1,. . ~ 

Then elements of W (G,I!' can be thought of as providing for 

almost a11 holonolDY coverings 'i an operator m<l' on L2<l,. These 

are supposed to be bounded and to vary in aBorei way with 'i. 
The exact meaning of the last statement is that when we identify 

L2(l' with L2(GX,A x, for any x E I, and get a field of operators 

mX, then the mX are Borel sections of the Borel field of Hilbert 

spaces L2(GX,A x, over X. The commuting relations in the second part 

of Theorem 6.18 say in part that whether we identify L2<l' with 

L2eGx,Ax, or with L2(GY,AY' with x,y E 1" we get the same 

operator on L2(". Finally m(l) is not an arbitrary operator on L2(l' 

but the commuting relations in 6.18 say also that m(l) must commute 

with left translation by G:, and that these are the only restrietions. 
• * Elements of the C -algebra Cr(G, have a very similar 

interpretation. Each m in this algebra d~fines an operator me" on 

aU (not almost aIl) holonolDY coverings of the leaves which commutes 

with left translation by G: and which is further restricted to be a 

uniform limit of such operators that can be defined by convolution 

with sultable continuous kerne I functions. Finally the m<l' have to 

vary continuously as , varies in a manner that is fairly clear 

heuristically . . ~ 

It is evident that the von Neumann algebra W (G,I!' depends 

only on the equivalence class, in the sense of absolute continuity, of 

the measure J.t on the unit space X of G because of its definition in 
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terms of fields of operators. In turn the equivalenee elass of J.l 

depends only on the equivalenee class of the transverse measure ]I 

from whieh it is eonstrueted (regarding of course the Haar system 

0 .. x) as fixed onee and for a11). The Hilbert spaee H upon whieh we 
• N 

have realized W (G,J.l) of course depends on J.l itself but for two 

equivalent J.l's there is a natural unitary equivalenee of the two 

spatial realizations of the algebra. For simplicity we sometimes write 
• W (G) where the Haar system and the equivalenee class of transverse 

measurea entering into the definition are understood. 

If N is a eomplete transversal for the equivalenee relation on 

X defined by the rroupoid G, then as in Chapter IV, the transverse 

measure ]I defines a measure on N, and the part of G over N, G: 

beeomes a measured groupoid (G:,ÜN) whose orbits are eountable. 

• - • N"" There should be a close relation between W (G,J.l) and W (GN,J.lN) 

parallelinr Theorem 6.14 and indeed there iso For eonvenienee we 

assume that the tangential measure C >.. x) on GX that we are given 

at the very beginning of the diseussion has the property that all (or 

almost aIl) the measures >.. x have no atoms. This will surely be the 

ease for the groupoid of a folia ted spaee with the usual ehoiee of 

tangential measures. In this ease, the arguments of Theorem 5.6 of 

Feldman-Hahn-Moore [FHM], trivially modified to cover the ease of 

non-prineipal groupoids, shows that as a measured groupoid (G,ü) is 

isomorphie to (G:,J.lN) X..9 where ..9 is the prineipal groupoid 

(equivalenee relation) with unit spaee the interval I = [0,1] with all 

points equivalent and with the measure J.l on I Lebesgue measure, the 

measure on eaeh leaf also Lebescue measure. With this struetural 

result for G the followin. is clear. 

Proposition 6.20. Under the eonditions above there is an isomorphism 

The importanee and usefulness of this result is that it allows 
• N 

most questions about W (G,J.l) to be redueed to questions about 
• N N N 

W (GN,J.lN)' Sinee GN has eountable orbits, the strueture and 

properties of the algebra built on it is far more understandable and 
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transparent, and there are far fewer technical details to wrestle with. 

In particular an operator in the algebra is represented by a "matrix" 

over G: (that is. formally it is of the form ",(f) for a function f on 
N • N 

GN). and the study of unbounded weights on W (G,U) will often 
• N N 

reduce to the study of (bounded) states on W (GN'UN)' 

It is evident that the abelian and diagonal subalgebras As and 
• N 

Os of W (G,U) introduced above decompose naturally with respect to 

the tensor product decomposition. Let A: and 0: be the 
• N N 

corresponding abelian and diagonal subalgebras of W (GN'UN)' 

Propo!itiOD 6.21. In the decomposition of Proposition 6.20 we have 

isomorphisms 

where L 00(1) is the subalgebra of 8(L2(1)) consisting of multiplications 

by bounded measurable functions. C 

One example of the usefulness of the reduction to a cross 

section is the following which of course could be established directly 

but less transparently. 

• N 

Propoeitiop 6.22. 'fhe relative commutant of As in W (G.U) is Os' 

and the relative commutant of Os is the center of 0.. which in the 

direct integral decomposition of Proposition 6.17 is the direct integral 

of the centers ZX of the right group von Neumann algebras RX of the 

holonoMY groups G :. In particular if almost an of the holonomy 

groups are infinite coniugacy dass (i.c.c.) groups then the relative 

centralizer of Os is As' 

~. By the previous proposition, the question is reduced to A: and 

0:. All operators are liven by "matrices" u in [FM]; then easy 

computation in this discrete case does the trick. As to the final 

statement, recall that a discrete group H is tc.c. (all non-trivial 

coniugacy classes are infinite) if and only if the center of the group 

von Neumann algebra is trivial. C 
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The next step begins with the crucial observation that the 
* algebra W (G) comes with a natural family of normal semi-finite 

weights. Indeed each (positive) transverse measure v in the fixed 

equivalence class will define in a natural way a weight (J v on 
* W (G); this weight will be a trace if and only if v is an 

i n v <l r i <l nt transverse measure. There are several different wa.vs to 

define these weights; one way starts by utilizing the natural Hilbert 
* ~ algebra structure that is implicit in the construction of W (G,/J) and 

uses the basic Tomita-Takesaki construction of weights from a Hilbert 

algebra (cf. Takesaki [Takl]). We will rat her approach the matter 

through the ideas developed in Chapter I of locally traceable 

operators; we can give a very simple and direct definition as folIows. 

Suppose given a transverse measure v and associated 
* N von Neumann algebra W (G,/J). We wish to define (J v on the 

positive part W*(G,ü)+ and taking values in [0,00]. Here is a rough 
• ".I + 

idea of the construction of the weight. To each m E W (G,/J) we 

shall associate a tangential measure Am which has the property that 

if one decomposes m to a field of operators mX on L2(GX,AX), then 

the local trace of 

G~'Gx :: i(x) uniquely. 

mX determines the measure A: on 

Then the weight (J v corresponding to the 

transverse measure v is given by 

where the integral is taken in the sense of Chapter IV. Now he re are 

the details. 

Any m E W*(G.u)+ corresponds to a field of positive operators 

mal, one for almost all holonomy coverings I or equivalently a field 

mX of positive operators on L2(GX ,A x) for almost all x. Then since 

mX is positive we can define its local trace as a positive measure 

Tr(mx) on GX• This measure may be identica11y plus infinity. At a11 

events it is defined even in this degenerate sense and recall that our 

definition of mX being 10callY traceable was that this measure should 

be O'-finite (or Radon if GX comes with a 10ca11y compact topology). 

These measures are alwa.vs absolutely continuous with respect to A x 

by their definition. The invariance properties satisfied by the mX as 
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stated in 6.18 impLy by the analysis in Chapter I that left translation 

4I whieh maps GS(u) to Gr(u) must trans form Tr(ms(u» into Tr(mr(u» 

for almost all u E G. Thus for almost all pairs x,y with x ~ y, 

Tr(mx) on GX is the same as Tr(mY) on GY after identifying GX and 

GY. Moreover the eountable group G ~ aets by left translation on GX 

and henee on L2(Gx,A x) and mX eommutes with these translations. 

Again by Chapter I, Tr(mx) is invariant under G~ and henee Tr(mx) 

uniquely determines a measure Tr'(mx) on G~'Gx. But this quotient 

spaee is just the equivalenee class I(x) of x. Henee for eaeh leaf 

I, and eaeh x E I we obtain a positive measure Tr'(mx) on I. The 

invarianee properties eited above tell us that this measure does not 

depend on whieh x we ehoose and depends only on the leaf I; we 

denote it by Am(I). 

This deseription is simpler if there is no holonomy so that G is 

an equivalenee relation. Then GX is the equivalenee class or leaf of 

x, and the loeal traee of mX gives a measure Tr(mx) on GX ; invarianee 

properties say that Tr(mx) = Tr(mY) and so there is a measure 

Am(l) depending onLy on the leaf I; this ean be thought of as the 

loeal traee of mli) for all or almost all I. But now Amll) is 

what we ealled a tangential measure and it is the sort of objeet that 

ean be integrated against a transverse measure to give a number. 

Proposition 6.23. For every 

yields a tangential measure 

integral in the sense of Chapter 

• N + 
m E W (G,/..t) , the above preseription 

Am(l) (perhaps not o-finite). The 

IV 

* ~ (finite or not) defines a semi-finite normal weight on W (G,IJ). 

Proof. For the assignment of a measure Amll) to eaeh leaf to be 

a tangential measure, it must satisfy some smoothness eonditions 

transversallv. From Chapter IV we see that these amount to the 

requirement that the field of measures A~ = Tr(mx) on GX should be 

Borel viewed as measures on G in that 
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ff(u)d>"X 

should be a Borel function of x for any non-negative Borel function f 

on G. This is clearly satisfied by the local traces of the Borel field 

of operators mX. We note once more that mX is not assumed to be 

locallv traceable in the sense that >.. x is a o-finite measure. The 

integral we write down in the statement still always makes sense as 

everything is non-negative. It is clear that t1 v as defined is 

additive and positivelv homogeneous. That it is normal is clear from 

the properties of the local trace and the integration process of 

Chapter IV. Equivalently it is not hard to produce a family of 

vectors E" i in the Hilbert space H such that t1 v(m) = L(mE" i' E" i)' 

which is an equivalent definition of normality. Finally the dense 
* N sub algebra used in Hahn [Hap] to define the algebra W (G,u) 

synthetically contains a weakly dense set of operators where t1 v is 

evidently finite so that t1 v is semi-finite. 0 

One of the features of this definition is that it is clear for 

which positive operators t1 v is finite. 

* N + CoroUary 6.24. Let m E W (G.u). Then (I v(m) < 00 if and only 

if mX is locallv traceable on alm ost all GX in the sense that 

>..~ = Tr(mx) is a o-finite measure; if so. then the integral 

is finite. 0 

* N If an operator a E W (G,U) is given by a kernel function f so 

that a = I((f) and 

with f integrable in the sense of Chapter IV, then we can give an 

alternate formula for (I vIa). 

where 

If b = a*a then b is given as I((g), 
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according to formula 6.1. If x E X, the unit space of G. then x can 

be thought of as an element of G and to keep matters straight let us 

call this element e(x). /In case G is an equivalence relation on X, 

e(x) = (x,x) is a diagonal element.) Now although fand g above are 

measurable functions on G defined only almost everywhere and as the 

units e(X) form a null set in G, the restriction of g to e(X) appears to 

have no sense. However if u = elx) is a unit. then 

has a weIl defined meaning for almost all x. When we write g(e(x)) 
* for a g of the form f f. it is this function that we shall understand. 

The following shows that as one expects, traces of integral operators 

are obtained by integrating the kerneion the diagonal. 

Proposition 6.25. For a transverse measure v. let u = f).,.t dv 

be the integral of the tangential measure )., with respect to v, the 

result viewed as a measure on the unit space X. For an operator 

b = 7l'(g) E W*(G,u) with g = lf. then ~ v(b) = f g(e(x))du(x) where 

g(elx)) is as defined above. Equivalently g(e(x))·)., defines a new 

tangential measure ).,' whose derivative with respect to )., is g(e(x)). 

Then 

(the integral of ).,' with respect to v). 

Proof. This is simply a matter of identifying the tangential measure 

).,' lor rather I).,'lx as a measure on GX for each x) as the local trace 

of the operator 7l'x(lf) on L2(Gx,)" x); this is self evident as 
* * 7l' xlf f) = 7l' xlf) 7l' xlf) where 7l' xlf) is given by a kernel defined by the 

function f. Then the result folIows. 0 

189 



8y the general Tomita-Takesaki theory (cf. Takesaki [Tak1]), 

any semi-finite normal faithful weight !P on a von Neumann algebra 

has associated to it a one parameter group of automorphisms of the 

algebra, the so called modular automorphism aroup, u!p(t). 

The standard construction of this group via unbounded operators can 

be exploited easily to construct this group explicitly for the weights 

-)I above. (These weights will always be normal, faithful and 

semi-finite as the transverse measure )I was restricted to lie in the 

same equivalence class that defines the von Neumann algebra itself.) 

This is worked out in Feldman-Moore [FM], Hahn [Hap] , 

Connes-Takesaki [CT]. 

Proposition 6.26. Let A be the modular function of the transverse 

measure )I (cf. Definition 4.9). Then the modular automorphism group 
* N u)l associated to the weight _ v of W (G,J,.t) is spatially implemented 

by the one parameter group of unitary operators U)I(t) on L2(G,Ü) 

defined by multiplication by the functions Ait on G. Thus 

* ~ u )I(t)m = U )I(t)mU v(-t) for m E W (G,U). 

* ~ Moreover for operators of the form Il'(f) in W (G,U) (cf. Definition 

6.15) 

where fAit is pointwise multiplication of fand Alt. 

Proof. The operators Il'(f) form a Hilbert algebra with the * operator 

given very concretely by r* (u) = f ( u - I ). One then easily computes 

the polar decomposition of the unbounded conjugate linear operator 

f _ f* and following the standard recipe in Takesaki [TakI] , one 

finds the result. The final formula is a simple caiculation. 0 

Recall that the centralizer of a weight _ on a von Neumann 

algebra R is equivalently the von Neumann subalgebra generated by 
* those unitaries u in the algebra such that _(uxu) = _(x), or 
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equivalently it is the fixed point algebra of the modular automorphism 

group Wedersen [Ped] , Lemma 8.14.61. A weight is a trace if and 

only if its centralizer is the entire algebra. As the modular 
* ~ 

automorphism group a v of the weight - v on W (G,/l) is given 
* ~ explicitly and clearly fixes the diagonal subalgebra Os of W (G,/l) 

(Proposition 6.22), the first half of the following is immediate. 

Proposition 6.27. The centralizer of _ v contains the diagonal 

subalgebra Os' Conversely if almost aU of the holonomy groups are 

Lc.c. Icf. Proposition 6.22) then any faithful normal semi-finite weight 

whose centralizer contains Os is of the form - w for some 

transverse measure w. 

Proof. For the second part we fix a weight _ v and let 1/1 be any 

other faithful normal semi-finite weight with centralizer containing Os' 

Then compute the Radon-Nikodym derivative (I/I:fP v)t (Connes 

[CoI], or cf. Takesaki [Takl], p. 23). This is a one parameter 
* ~ family of unitary operators in W (G,/l) satisfying a certain cocycle 

condition. Since Os centralizes both 1/1 and -v' it follows that 

(1/1: - v)t must commute with Os for each t. But und er the condition on 

G~, the relative commutant of Os is by Proposition 6.22 the abelian 

subalgebra As' Because of commutation properties, the derivative 

(I/I:-v)t is actually a one parameter unitary group in As and so has 

the form exp [ith(x)] where h is a measurable function on X, which by 

positivity properties of 1/1 and - v is positive. Then w = hv is 

another transverse measure. and it is evident that 

The argument rost given provides an answer in general to the 

question of finding aU weights whose centralizer contains Os' but one 

has to introduce an extended class of weights. As we will not need 

this, we sketch this only briefly. Suppose that in addition to a 

transverse measure v on X one is given for each x E X, a 

semi-finite normal faithful trace T X on RX, the group von Neumann 

algebra of G~. Then one can construct in an obvious way a trace T 
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on the diagonal algebra Os because Os is given as a direct integral of 

the algebras RX • The transverse measure v itself also defines a 

weight ., v on Os' The Radon-Nikodym derivative (.,:., v) computed 
• N 

in Os can then be used to define a weight " on W (G,U) by the 
• N 

condition (":")1) = (":")1) (computed in W (G,U)). 

The weights " constructed in this fashion are, we claim, the 
• N 

most general weights on W (G,U) with centralizer containing Os' The 

data entering into ", namely a transverse measure )I and a familv of 

traces .,x on RX are not independent for we can multiply each .,x by 

a positive scalar c(x), replace )I by the transverse measure v' with 

dv'/dv = c(x)-l, and the resulting weight will be the same. When the 

traces .,X are finite, then they can be normalized so .,x(1) = 1 and 

then the transverse measure )I is determined. Of course when .,x is 

taken to be the Plancherel trace, then the resulting weight is " )I 

that we constructed previously. It is evident that values of the more 

general weights discussed in this paragraph can be given by integral 

formulas analogous to those in Pro positions 6.23 and 6.25. In addition 

it is not difficult to compute the modular automorphism group of these 

weights because there is a simple formula for the Radon-Nikodym 

derivative of these with respect to a ")1 where we alrea<lv know 

the modular auto morph i sm group. 

Returning to the ")1' we see that we have determined when 

(J)I is a trace because this is true if and only if the modular 

automorphism group is trivial. 

CoroU8I'Y 6.28. The weight ")1 is a trace if and only if )I is an 

invariant transverse measure. that iso its modular function A is 

identically one almost everywhere. 0 

It is not so easy to tell when the more general weights defined 

by fields of traces .,x together with a )I are traces because in 
• general it is hard to determine what the center of W (G,m iso 

To conclude this chapter let us return to the topologie al and 

geometrie context of a locally compact topological groupoid G, or in 

particular the holonomy groupoid of a foliated space. As before G is 

assumed to come eQuipped with a fixed continuous tangential measure. 

192 



., * 
Then for any transverse measure v, the reduced C algebra Cr(G) 

• N 

has a natural representation into W (G,U) as described in Proposition 

* 6.19. The weight -v may be restricted then to the image Cr(G) to 
• produce a weight on this C -algebra, which we denote by the same 

symbol. If the transverse measure v is f i n i t e relative to the 

tangential measure A in the sense that U = J Adv is a finite 

measure on the unit space X of G (and in particular if it is aRadon 

transverse measure on the groupoid of a foliation in the sense of 4.17) 

* then the restriction of "v to Cr(G) enjoys finiteness properties. In 

particular for any g in Cc(G), the norm dense subalgebra of compactly 
* supported functions on G used in the definition of Cr(G), the positive 

• element f = g g satisfies "v(f) < 00 in view of Proposition 6.25 or 

Corollary 6.24. This finiteness property plus the known continuity 
• N * 

properties of "v on W (G,U) assure that "v as a weight on Cr(G) 

is densely defined and lower semi-continuous (pedersen [Ped] , 5.6.7). 
• N 

Quite evidently we can recapture the von Neumann algebra W (G,u) 

* * from Cr(G) and "v via the GNS construction as the image of Cr(G) is 
• N 

dense in W (G,u) by Proposition 6.19. 

If v is an invariant transverse measure, then "v is of 
* * • course a trace on CrIG), and as Cr(G) is dense in W (G,u), the 

converse is true. Thus Corollary 6.28 and Corollary 4.25 combine to 

yield the following corollary in the setting of foliated spaces. 

Corollary 6.29. For aRadon transverse measure v on a compact 

foliated space X with continuous tangentially smooth modular function 

6, the following are equivalent: 

(1) The Ruelle-Sullivan current Cv is closed and so defines 

[C v ] e H~(X;IR). 

(2) The I-form a = O. 

(3) The modular function 6 :: 1. 

(4) The transverse measure v is an invariant transverse measure. 
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* N 

(51 The weight -)I on W IG(X),t.t) is a trace. 

* In general. C r (GI will have traces other than -)I; for 

instance if G is the holonomy groupoid of the Reeb foliation. the 

c10sed leaf and its holonomy produces a quotient isomorphie to 

C*(Z2, ® 'I< where C*IZ2) is the group C* algebra of Z2 and 'I< is 

the compact operators. The only -)I which factors through this 

quotient comes by taking )I to be the transverse measure 

corresponding to the closed leaf: then -)I is P ® Tr where P is the 

Plancherel trace on C* (Z21. 

However in the absence of holonomy, traces are always given, 

as one suspects, by transverse measures. 

Theorem 6.30. Let G be the groupoid of a compact foliated space X 

and assurne there is no holonomy Iso that G is the equivalence 

relation). If _ is an..v densely defined lower semi-continuous trace on 
* * the C algebra CrIG), then there is a unique invariant transverse 

Radon measure )I on X with _ = -)I' 

Proof. We pick a complete transversal N and an open neighborhood U 

of it as in the discussion preceding Theorem 6.14. We make use of 
* * N the structural fact that CrIG) :!: CrIGN) ® '1<, and we recall that any 

densely defined lower semi-continuous trace is finite on the Pedersen 

ideal--the unique minimal dense two-sided ideal Icf. Pederson [Ped] , 

Theorems 5.6.1, 5.6.7). As this ideal intersects any subalgebra in a 

dense ideal, it follows that _ is densely defined on the subalgebra 

C;(G:) ® e :::: C;IG:I where e is a minimal projection in '1<. Finally 

since the equivalence relation when restricted to N is discrete, C;(G:) 

contains a Cartan subalgebra CoIN) by the remarks following Definition 

6.10. For the same reasons as above, _ is densely defined on ColNI 

and so is given by aRadon measure )I on N. Moreover by the 

construction of N. there is a larger transversal N' containing N with 

the c10sure N of N in N' compact. As the measure )I is by the same 

reasoning the restrietion of aRadon measure )I' on N' it follows that 

)} is a finite measure on N. Since ColNI contains an approximate 
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* N identity for Cr(G N) and (I remains bounded on this approximate 

identity. it follows that (I is a finite trace on C;(G:). 

Since there is no holonomy, G: is an equivalence relation on N. 

We know by Proposition 6.8 that G: has a covering by open sets of 

the form U(f,OI = C(x,f(x)),x E 0) where 0 is an open set in N and 

f is a homeomorphism of 0 onto an open subset of N with fex) ~ x 

where ~ is the equivalence relation on N. As the diagonal t.N of N 

in G: is open and closed, its complement may be covered by sets of 

the form U(f,O) where f has no fixed points. If a is any compactly 

supported function on U(f.O) and b any compactly supported function 

on t.N = U(id,N), then viewed as elements in C;(G:) their convolution 

products in both orders are again compactly supported on open sets 

U(f.O) and 

(a*b - b*a)(x,f(x)) = a(x,f(x)) C b(f(x).f(x)) - b(x,x) 

Since (I(c), for c compactly supported in U(f,O) can be 

expressed as 

(I(c) = f CdA 

for aRadon (signed) measure on U(f,O), the equality (I(a*b - b*a) = 0 

plus the fact that b has no fixed points teUs us that A is zero. As 

any compactly supported function on G: - t.N can be written as a 

finite sum of functions supported on open sets U(f,O), it follows that 

(I(a) = f a(x.xldv(x) 

for every compactly supported function on G: where v is the 

measure on N constructed above. 

An argument similar to the one above shows that v as a 

measure on N is invariant und er the equivalence relation; that is, its 

modular function on N is trivial. Then, as in Chapter IV, v can be 

extended to all Borel transversals to give an invariant Radon 

transverse measure. which we denote by v. Then clearly 
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We have seen in Chapter IV that von Neumann factors of type 

1100 and of type III}" for a11 }" occur as the von Neumann algebras of 

foliated spaces. Proposition 6.20 shows that with minimal assumptions 

on tangential measures. the von Neumann algebra has the form 

W 8 B(H) for an infinite-dimensional Hilbert space H. We also have 

seen that the von Neumann algebra comes equipped with a family of 

semi-finite normal faithful weights, with corresponding modular 

automorphism groups. Given this much structure, it is natural to 

wonder just which von Neumann algebras can occur as the 

von Neumann algebra of a foliated space. Here is the answer. 

Theorem 6.31. Any purely infinite approximatelv finite von Neumann 
• algebra A is isomorphic to W (X,U) for some compact foliated space 

X and transverse measure U. 

~. According to the classification of such algebras (Connes 

[Col] , Haagerup [Ha2] , Kreiger [Kr]) one may find a Borel space 

Y, an automorphism (I of Y (so that there is an associated action of Z 

on Y), and a transverse measure Uo so that the group measure 

construction associated to these data produces a von Neumann algebra 

AO so that 

A :!! AO 8 B(H). 

Equivalently, if G is the measure groupoid generated by (Y,(I,U), 

then AO is the von Neumann algebra of this measure groupoid as 

defined in Chapter VI. 

Now according to Theorem 3.2 of Varadarajan [Var] we may 

assume without loss of generality that Y is a compact metric space 

and that the map (I is a homeomorphism. Form the associated 

compact foliated space X obtained by suspending (Y,(I), and let U 

be the associated transverse measure on X constructed from Uo as in 

Chapter IV. Then the von Neumann algebra of (X,u) is A as 

desired. 0 
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We note that we have proved more than we stated. for the 

foliated space produced is alwavs of leaf dimension 1. There are 

obvious questions which arise in this connection. Mav Y be chosen to 

be zero-dimensional? May Y be chosen to be a smooth manifold and (J 

a diffeomorphism. so that X is a smooth manifold? We do not know 

the answers to these questions. 

We conclude this chapter with abrief diseussion of some 

aspeets of the K-theory of operator algebras in the eontext of the 
• C -algebras of groupoids. In the following ehapter, K-theory will 

enter in a more extended fashion. We assurne that the reader is 

familiar with the basies of the K-theory of operator algebras (cf. 

Karoubi [Kar], Atiyah-Singer [ASI] and especially Blaekadar [B1]) . 
• Reeall that for a unital C algebra A. one looks at all projeetions in 

VnMnlAI IMnlAI is the n X n matriees over Al and sub.ieets them to 

the natural equivalenee relation that e ~ f if there are 

u.v E VMn(AI with uv = e, vu = f. These classes form a semi-group, 
n 

and one forms the assoeiated Grothendieck group whieh is denoted 

KO(AI. One mav think of it as classes of formal differenees of 

projeetions. If A does not have a unit. append one to obtain A +, 

eompute KOlA +) as above. and note that the natural homomorphism 

e: A + _ a: induces a homomorphism e.: KO(A +) _ KO(a:) where the 

latter group is easily seen to be isomorphie to the integers. Then 

define KOIAI to be the kernel of e.. For a compaet spaee X, KO(C(X)) 

is the usual topologieal K-theory of eompaet spaees KO(X). For X 

loeally eompaet, KO(CO(X)) is the usual K-theory of the spaee X with 

eompaet supports Icf. Atiyah-Singer [ASI] , Karoubi [Kar]). We 

define K1 (A) = KO(SA) where SA = CO(IO.1),A). Then Bott periodieity 

asserts that Kj(A) :: Kj(S2AI . 

We reeall two further properties of K-theory. First, K.(A) is 

homotopy-invariant; that is, if ft: A _ A' is al-parameter family of 

·-homomorphisms (eontinuous in the sense that the associated map 

A _ C( [0,1] ,A') is a ·-homomorphism) then 

f~ = r!: K.(A) _ K.(A'). 
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Second. if J is a closed ideal of Athen there is a natural long exact 

sequence 

* The group KO(Cr(Gl) is going to be a central player in index 

lheory and will be the group where the index lives. If G is the 
* groupoid of a compact manifold foliated by a single leaf, Cr(G) = 1< 

is the compact operators and it is well known and easily seen that 

KO(1<) = Z, and the usual index of an elliptic operator is interpreted 

as an element of this group. 
• Let (jJ denote the C -algebra of norm limits of 

pseudodifferential operators of order ~ ° (Say, with matrix 

coefficients) on a compact manifold M. There is a natural sequence 
• of C -algebras 

Jr: • O_1<_(jJ_C(SM)@Mn _O 

• where S M is the cosphere bundle. If P E (jJ is elliptic with 

principal symbol CI, then Jr:(P) = CI and 

[CI] E K1(C(S·M) @ Mn) :!! K-1(S·M). The boundary map 

corresponds to the Fredholm index map 

a[CI] = index (P) 

as may be seen easily by a naturality argument involving 

* o _ 1< _ (jJ _ C (S M)@M n _ 0 

II! ! o _ 1< _ e(H) _ e(H)/1< _ 0 
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If G is the groupoid of a foIiation eoming from a fibration with 
* base B, Cr(G) is, as we have seen, isomorphie to C(B) 8 1<, and so 

by stability, 

Reeall that the Atiyah-Singer index for families of elliptie operators 

[ASIVl with a parameter spaee B is an element of KO(B). 

What we want to deseribe here is a kind of Chern eharaeter on 
* KOICrIGIX))), G the groupoid of a foliation, or more properly a 

pa. r t i a.l Chern eharacter. This Chern character will take values in 

the reduced tangential cohomology group Ü~(X) in top degree p (the 

leaf dimension) as defined in Chapter IH. We shall assume without 

further notice that the foliation is tangentially oriented and that the 

groupoid of the foliation is Hausdorff. This partial Chern character 

* sees only part of the strueture of KO(Cr(G(X))), specificalLy the part 

that transverse measures ean see. The "fuH" Chern character is 

* conjecturally a homomorphism from KO(CrIG)) into the cyclic homology 

H~(AO) of a suitable dense subalgebra AO of C;(G), (see 

Connes-SkandaIis [CS21 and, for cyclic theory, Connes [C081, 

[C091). While the outline of this is clear and specifie cases are 

known, there do remain some details. The "partial" Chern character 

that we wiH define directly would be obtained in general by composing 

the fuH Chern character with a natural homomorphism from H~(AO) to 
-p 
HT(X). 

For the definition of our Chern eharacter, we start with a 

typical element of K-theory, u = [el - [f], where e and f are 

projeetions in Mn(C;(G)+) with the same images in KO(a:), where 

G = G(X). Then we can assume without loss of generaIity that the 

images of e and f in ~ (a:) are exactlv the same. Let v be a 

positive Radon invariant transverse measure on X and form the 

corresponding trace "v on 
* ,,; = "v 8 Tr on MnICr(G)). 

Extend to 

Theorem 6.31. 
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(a) The element e-f may be chosen to be in the ideal of definition 
of _~. 

(bI The map v _ _ vle-f) extends to a linear functional on the 

set of all Radon signed transverse measures MT/X) which depends only 
* on the K-theory class u = [e] - [f] E KOICr(G)). Denote it by 

c'(u). 

(c) The map c' takes values in the weak • continuous functionals 

on MT(X) (viewed the dual space of ii~IXI as in 14.27), 14.29)) and 

hence yields uniquely a map 

which we call the partial ehern character c(u) of u. 

Before turning to the proof. we offer some observations. Note 

that the partial Chern character is given very explicitly as follows. If 
* * + [u] E KO(CrIG)) is represented by [e] - [f], where e,f E Mn(Cr(G) ) 

with common images in Mn/a:I and if e and f are in the domain of 

tII~. then c [u] is the cohomology class of the tangentially smooth 

p-form wu which (after identifying p-currents with Radon invariant 

transverse measures) is given by 

* where _~ is the trace -v @ Tr on Cr(G) @ ~ associated to the 

invariant transverse measure v. 

Suppose that [u] is the index class of a tangential, 

tangentially elliptic operator D on X. One might try to construct wu 
as follows. The restriction of D to a leaf t is locally traceable and 

has an associated p-form (pultE nPlt). One is tempted, then. to 

try to amalgamate the p-forms (.ou)t to a p-form Pu E n~IX). 

Unfortunately the forms (.ou).I do not vary continuously in the 

transverse direction and it is not at all clear that it is possible to 

alter the (.ou).I in some direct fashion to obtain aglobai class. We 
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-avoid this difficulty by regularizing at the C -algebra level with 

respect to MT(X). 

Proof of 6.31. In view of the Hilsum-Skandalis result, Theorem 6.14, 

and the fact that KO(A 8 1<) :!! KO(A), we may assume that 

u E KO(C;(G:)) for a transversal N of the type described in (6.14) and 
* N + consequently that e and f are in ~(Cr(GN) ). 

* N We need to look more carefu11y at how Cr(GN) sits inside 
1< 

Cr(G). As before we may arrange matters so that there is a larger 

transversal N' containing N and the closure N, which we may assume 

is compacl. Moreover we may arrange that a neighborhood U' of N' 

has the form U' = N' X fRP, P the leaf dimension, so that the second 

coordinates describe the leaves 10ca11y. Then 

G2 = G:: X fRP X fRP. Suppose that the graph is Hausdorff. Then 

elements of G:: and G: can be represented by Proposition 6.9 as 

continuous functions vanishing at 00 on these spaces. We then pick a 

fixed compactly supported function lfJ on fRP and extend a function '" 
N' to GU by the formula on GN, one on U 

and one extends "'U to "'Gon a11 of G by 

complement of U 
Gu' In particular if 

'" 
is 

represents an element of 
1< N 

Cr(GN), then "'U 
support and '" G represents an element of the 

1< 
functions used to define Cr(G). It may be 

'" - "'G gives an embedding i of C;(G:) 

"'U(g,X,y) = ",(g)lfJ(x)lfJ(y) 

making it zero on the 

supported on GN 
N and 

and "'G have compact 

dense subalgebra A of 

checked that this map 

In the 

non-Hausdorff case the same argument works after localizing to open 

Hausdorff subsets. It fo11ows from the discussion here and in Theorem 
1< N 1< 

6.14 that the isomorphism (} of Cr(GN) 8 1< with Cr(G) can be 

arranged so that (}(x 8 e1) = Ux) where e1 is a one dimensional 

projection. 

In particular any finite matrix of elements in C;(G:) is always 
1< N 

represented in Cr(GN) by a kernel operator where the kernel is 

continuous and has compact support. Further, the kemel is 

tangentially smooth (Chapter III) for the natural foliation of G. 

Finally as every element of C;(G:) can be written as a linear 

combination of elements of the form a-a, it follows by Proposition 6.25 
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that any element b of C;(G) represented as a finite matrix of 

elements of C*(GN) 
r N via the isomorphism (] is in the ideal of 

definition of any weight "v for any (positive) Radon transverse 

measure, and that "v(b) is given by integrating the kernel of b on the 

unit space. Specüically ü v is aRadon transverse measure, and A 

is the fixed smooth tangential measure, then the integral of A with 

respect to v 

J.l = JAdV 

is a measure on X. If kb is the kerne I function on G for b. then 

where e is the function embedding X as the set of units in G. As kb 
is tangentialLy smooth on G. kb(e(x)) is tangentialLy smooth on X. 

Finally as the foliation is oriented, we may view the tangential 

measure A as a tangentially smooth p-form, and then wb = kb(e(.))A 

is also a tangentially smooth p-form. Recasting the formula above, we 

see that 

is given by integrating the tangentialLy smooth p-form wb against the 

transverse measure v. 

The proposition is now obvious for we can arrange the two 

projections e and f defining the K-theory element u = [e] - [f] to 

be in Mn(C;(G:)+) and their düference e-f to be a finite matrix over 

C;(G:. to which the above analysis applies. For an invariant 

(positive) Radon transverse measure. "v(e-f. can be given by 

integrating a fixed tangential]Y smooth p-form we_f against v. This 

in fact constructs the value of the partial Chern character c(u. in 

Ü~(X.; name]y it is the c1ass of the form we_f' That it is weIl 

defined and independent of the choice of e and f results from the 

fact that "v is a trace and the duality result, Proposition 4.29. C 
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As we will be working with projections that often do not lie in 
• the C -algebras under consideration, but rather in a von Neumann 

• algebra containing the C -algebra of interest, we shall add a few 

words about K-theory for von Neumann algebras. As any von Neumann 
• • algebra W is aC-algebra one could just define KO(W) using the C 

definition. However, the presence of infinite projections leads to bad 

behavior; for instance, KO(IB(H)) = 0 for an infinite dimensional Hilbert 

space H. We want to stick to finite projections. Recall the 

definition, which is reminiscent of Dedekind's definition of a finite set. 

Definition 6.32. A projection e in a von Neumann al,ebra W is 

f i ni t elfe is not equivalent in the sense above to a proper 

proiection of itself. 

Equivalently, one may first define a von Neumann algebra W to 

be finite if given w E W+ there is a finite normal trace (J on W+ 

with (J(w) ~ 0; then define e E W to be a finite projection if eWe is 

a finite von Neumann algebra. For this approach, cf. Dixmier (Dil]. 

One then forms the semi-group of classes of finite projections 

in VMn (W) and then the corresponding Grothendieck group to obtain a 
n 

group we denote K~(W). Bvidently K~(IB(H)) = Z while K~(w) = IR 

if W is a factor of type 11, and K~(W) = 0 if W is a factor of type 

111. From this one can readily compute K ~(W) for aoy W . 
• Now if we start with a C algebra A and a representation pt 

of A into a von Neumann algebra W, we would like to define, at least 

under some conditions, a homomorphism 

* At the very least we would want this map to exist when A = Cr(G(X)) . ~ ~ 

end W = W (G(X),U) with U arising from a Radon invariant transverse 

measure for the foliation. 

Propoeition 6.33. • Let A is aC-algebra of the form A = B 8 1< 

with a representation pC into a von Neumann algebra W, such that 
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I\'IA) is dense and when we write 1\'(8)" = eWe for a pro.iection e in 

W. then e is a finite projection. 

homomorphism 

Then there is a weil defined 

We omit the obvious proof that is based on the equality 

KOIB) == KOlA) and observe that the conditions are satisfied in the 
* * N case at hand since A = CrIGIX)) = Cr(GN) @ 1<, and since the trace 

III v has heen shown to be finite on C;(G:) in Theorem 6.31 it follows 

that 111 vle) is finite where e is the pro.iection in the statement of the . ~ 

Proposition. Finally since 111 v is a faithful trace on W IG,u) it 

follows that e is a finite projection. 0 

CoroUary 6.34. For any finite Radon invariant transverse measure v 

there is a natural homomorphism 

* • ~ 
and the associated trace 111 v on Cr(G) and on W IG,u) extends to 

yield a commuting diagram 

.. N 

We note that if W IG.u) is a factor then it is of Type 1100 

f * ,.., 
and Tr v: KolW IG.u)) - IR is an isomorphism. 

Looking ahead more explicitly to the next chapter, we consider 

the following situation: we have an exact sequence 

O_A_P_C_O 

• of C algebras. We assume that P has a representation I\' into a 

204 



von Neumann algebra W such that 1I'(A) is weakly dense. As above 

we assume that A = B @ 1< where 1I'(BI" = eWe with e a finite 

projection. We suppose that P and hence C are unital. Now let 

d E P and suppose that a, its image in C is invertible (that is, to 

adumbrate the following chapter, d is elliptic). We regard a as an 

element of K1(C) and then according to the exact sequence of 

K-theory. the index of a is a well defined element ind(d) in KO(AI. 

On the other hand, we can view 1I'(d) as an element of the 

von Neumann algebra Wand then its kernel, kerI1l'(d)) and ker(1I'(d*)) 

are pro.iections in W. What one hopes, using the map of Proposition 

6.33 is indeed the case, as follows from Breuer's theory of Fredholm 

operators [Bre] in von Neumann algebras. The following summarizes 

the result and will play a crucial role in Chapter VII. 

Proposition 6.35. Under the assumptions above. ker(1I'(d)) and 

ker(1I'(d*)) are finite projections in W. Moreover the difference 

[ker(!r(d))] - [ker(1I'(d*))] (the analytic index of d) is an element of 

K~IW) and if 11'* is the map from KOlA) to K~(W) of Proposition 6.33. 

then 

1I'*(ind(d)) = [ker(1I'(d))] - [ker(1I'(d*))]. 

Proof. If m is the smallest norm elosed ideal in W containing the 

finite projections, then evidently m ::> 1I'1B) by hypothesis, and hence 

m ::> 1I'(B @ 1< 1 = 1I'(A). Since a is invertible in C, it follows that the 

image of 1I'(d) in W Im is invertible and hence that 1I'(dl is Fredholm 

by Theorem 1 of Breuer [Bre]. It follows from Breuer that 

kerI1l'(d)) and ker(1I'(d*)) are finite projections in W. Finally a elose 

examination of the definition of the index map K1 (C) _ KOlA) as for 

instance given in Blackadar [Bl] Definition 8.7 shows directlv that 

that 1I'*(india)) = [ker(1I'(dl)] - [ker 1I'(d*)]. 0 

The point here is that the naivelv defined "spatial" analytic 

index, [ker 1I'(dl] - [ker 1I'(d*)] of d in the von Neumann algebra W, 

a very measure theoretic type of object, is always the image via 11'* 
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of an element in KO(A), an element whieh in turn has important 

topologie al invarianee properties. This will be applied to the extension 

* -0 • o _ Cr(GI _ @ _ 1'(8 F,End(E)) _ 0 

of pseudodifferential operators of a foliated spaee. The von Neumann . ~ 

algebra W will be W (G,/J) eonstrueted from a Radon invariant 

transverse measure )I. 
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CHAPTBR VII: PSBUDODIFFBRBNTIAL OPBRATORS 

This chapter is devoted to the study of tangential 

pseudodifferential operators and their index theory. 'I'he chapter has 

four topics, treated in turn. They are 

A) the general theory of pseudodifferential operators on 

foliated spaces (7.1 - 7.19): 

B) differential operators and finite propagation (7.20 -

7.27); 

C) Dirac operators and the McKean-Singer formula (7.28 -

7.39); 

D) Superoperators and the asymptotic expansion of the heat 

kernel (7.40 - 7.51). 

A. P.eudodifferential operatol'8. We begin the chapter by 

introducing the machinerv of tangential differential operators, 

smoothing operators, and pseudodifferential operators, first in a local 

setting and then globallv. We demonstrate that a tangentially elliptic 

pseudodifferential operator has an inverse modulo compactly smoothing 

operators. Letting @ denote the closure of the 8-algebra of 

pseudodifferential operators of order 0 on a bundle E, there is a short 

exact sequence 

* - 8 o - Cr(G(X)) - @ - ['(8 F,End(E)) - 0 

8 
where 8 F is the cotangent sphere bundle of the foliated space. This 

leads to formulas which relate the abstract index class ind(P) E 
* KO(Cr(G(X))), the Connes index ind).l(P)' and the Type II von 

Neumann index. In general. the index of a tangential, tangentially 

* elliptic operator may be regarded as a class in KO(C r (G(X))) or in 
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f· --KOIW (GIX),.u)). The natural map 

commutes with the homomorphisms from these groups to IR induced by 

an invariant transverse measure v. so 

• indvlPI = (6v(ker[8P] - ker[8P ]) 

where (6 v is the trace associated to the invariant transverse measure 

v. These results imply that the index of the operator depends onlv 

upon the homotopy class of the tangential principal symbol of the 

operator. 

B. Differential operatore and finite propgation. Turning next to 

tangential differential operators. we introduce bounded geometry and 

finite propagation conditions. We show that a tangential differential 

operator D on a compact foliated space has a unique (leafwise) 
• closure, so that the Hilbert fields Ker(D) and Ker(D ) are well-defined. 

It then makes sense to form the index measure lD and then to 

define the index by 

This is formally the same as the definition for operators of order zero, 

of course, but some further work is required to make the connection 

between the two more concrete and transparent. 

C. Dirac operatore ~ ~ McKean-Sinler formula. The key 

differential operators for the purposes of index theory are the 

tangential Dirac operators. Having introduced these operators in an 

abstract context and having verified that the general machinery of 

Section B applies to these operators. we establish the McKean-Singer 

formula: for t > O. 

208 



D. Superoperators and the asymptotic expansion. We introduce 

superoperators and restate the McKean-Singer formula in the form 

A 

. d (DI = .. ~(e-tD) m v "'., 

A 

where D is the superoperator 

and (J: is the supertrace. Next we introduce complex symbols and 

prove that as t - 0 there is an asymptotic expansion 

L t j /2p f X)D)dv 
j~-p • X 

where each Aj(D) is a signed tangential measure independent of t. As 

indv(D) is independent of t. an easy argument shows that 

where 

is the associated tangentially smooth p-form and [C v ] is the 

homology dass of the Ruelle-Sullivan current associated to v. The 

identification of wD for twisted signature operators and the completion 

of the proof is left to Chapter VIII. 

We are deeply grateful to Steve Hurder, Peter Gilkey, Jerome 

Kaminker. John Roe. and Michael Taylor for their enormously helpful 

assistance in the preparation of this chapter. 

A. PSBUDODIFFBRBNTIAL OPBRATORS 

Fix a tangential Riemannian metric on X and corresponding 

tangential Riemannian metric on G(XI. This determines a volume form 
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on each leaf of X and on each leaf of G(X). There is a corresponding 

tangential measure A. X on X and a tangential measure A.G(XI on G(X). 

Reca11 that 

where A.~ (X) is a measure on GX• The measure A.G(X) is invariant 

under the left action of the holonomy groupoid. Precisely. if u E 

G~ and if f is a non-negative Borel function on G. then 

f f(uu')dA.~ (X) (u') = f f(u')dA.b (X) (u'). 

We fix once and for a11 a transverse measure d)). Note that in view 

of the results of Chapter IV. d)) may be regarded as a measure on 

the transversals of G(X) or equivalently as a measure on the 

transversals of X. [For most of this chapter there would be no harm 

in letting )) have a non-trivial modular function. but our applications 

require that )) be an invariant transverse measure, so we assume that 

as needed.] This determines measures u = A.Xd)) on X and 

A.G(X)d)) on G(X) by the procedure of Chapter IV. 

Let U be an open subset of IRPXN with the induced foliated 

structure. Define 

and 

Recall that C;(U) denotes the continuous. tangentiallv smooth 

functions on U. and C;c(UI denotes those which are compactly 

supported. We topologize these by insisting that convergence means 

convergence on compact subsets of a function and its tangential 

derivatives. 

Definition 7.1. Let X be a foliated space with foliation bundle F. 
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The bund I e 01 densi ti es 01 order a OR X (a eOlRplex line 

bundle) is defined by 

for all A E ~ - CO). w E APF - CO)). x 

Define 1 F 1 = 1 F 11, Densities of order 1 on a leaf are measures on 

that leaf, so it makes sense to define 

and then distributions on the leaf I. by 

Similarly, c01llp<utlv supported distributions t'(I.) are 

defined on the leaf I as dual to r(l., 1 TI. 1 ). 

These are examples of an assignment to eaeh leaf I. of a 

topologieal veetor space E(l), and we shall informally speak of such 

an assignment as a field of topological veetor spaees, leaving 

undefined what kind of transverse measurability is required. Further 

examples include 

and 

One partieular ease of importanee is when these spaees are 

Hilbert spaees. 

DefinitioQ 7.2. A Borel field 01 Hilbert SPQces E over a 

211 



folialed space X is an assignment of a (separable) Hilbert space Ex to 

each x in X which is Borel in the sense of direct integral theory (cf. 

Chapter VI, p. 183 and [Tak2], IV, s8) together with a map 

u - u. from G(X) into unitary operators from Es(u) to Er(u) in the 

language of Chapter IV such that luv). = u.v. and (u- l ). = (u- l ). and 

80 lhat u. is a Borel function of u. In this case we say that u 

defines a representation of G(X) on the field E. Abo und e d 

o per (1 tor P: E - E' of Borel fields of HUbert spaces is a Borel 

family (cf. p. 183) of operators P x: Ex - E~ with uniformly bounded 

norms which is invariant und er the left action of each G~. 

If one has a tangential measure ~ x on X, one may form 

Ex = L2(ix,~ x) as in Chapter IV. This field is clearlv a Borel field 

of Hilbert spaces where u. for any u is defined as the identity map 

from Es(u) to Er(u)' This is called the reaular representation 
of the groupoid G(X) with the tangential measure ~. 

Let E and E' be finite-dimensional tangentially smooth complex 

bundles over X. A t an a e nt i a l 0 per a tor from E to E' is a 

family P = CP x: xEX) where, for each x, P x is a linear map 

(7.3) 

which is invariant under the left action of each G ~. Left invariance 

implies that there exists a vector-valued distribution on G such that 

for each x E X the distributional kernel associated to P x (on GX ) is 

K(Y,Y') = K(y-ly') so that 

(7.4) (P xt)(y) = fK(y-lY')t(Y')d>"~ (X) (y') 

for all t E C;. Note that in this generality, the operators CP x) 

vary measurably but not necessarily continuously in the transverse 

direction. To obtain continuous control transversely one must assume 

that the distribution kernel varies continuously transversely. 

If we assume that G(X) is Hausdorff then the distributions 

Kx = K(y,·) x = rlY) E X corresponding to the operator P x fit 

together to form a distribution P on G(X) because G(X, is a fibre 

space over X with GX as the fibre over x. One defines 
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where 'Px is the restrietion of a eompaetly supported test function 'P 

on G(X) to GX and .u is the measure on X obtained by integrating the 

tangential measure >.. with respeet to the fixed transverse measure v 

as in Chapter IV. The distribution K is ealled the distribution 

kernel of P. 

The usual construetions for operators on manifolds may be 

eonducted leaf by leaf. For instance, if T is a tangential operator 

then a f 0 rma I ad j 0 i nt Tt on C: is defined leafwise by 

Definition 7.5. A tanaent ial dt f ferent tal operator 

is a continuous linear operator whieh. loeally, is given hyalinear 

combination of partial differential operators along the leaves. We 

extend D to tangential distributional sections '" by 

where Dt is the formal adjoint of D. A tangential differential 

operator D has a loeal expansion on a eoordinate patch of the form 

where the an vary continuously in x and vary smoothly on each leaf. 

The maximal global value for m is the 0 r der of D. A tangential 

differential operator from E to E' induees an operator 

by restriction. This operator varies continuously as one moves 
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transversely. More generally , one sometimes wishes to consider 

operators D = ( D t ) where the transverse variation is only 

measurable. 

The Hodae-Laplace operator provides a key example of a 

tangential differential operator. Suppose given a foliated space with a 

tangential Riemannian connection. Recall that the de Rham operator 

is a map d = (~) where, for x E t. d: ok(t) _ ok+l(t). 

The orientation on F determines the Hodge --operator 

Define 

and 

This determines the tangential Hodre-Laplace operator 

on forms over X and similarly on forms over G(X). Each ä k is a 

second order tangential differential operator. In flat space, ~o = 
-E(a2/axi 2) is the classical Laplacian. 

Given a tangential differential operator D, define the 

tanaential (total) sllmbol of D by 

and define the tanaential principal symbol of D by 

The tangential total symbol is a purely local notion; it depends on the 
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choice of coordinate system. In contrast, the local tangential 

principal symbols patch together to yield the global tangential principal 
a • 

symbol amID) on the cosphere bundle S F of F. If amID) IS 

invertible then D is said to be t a n f1 e n t tal I V e I I i ." t t c. For 

example, a2(Al ) = -EE ~ which is invertible on unit vectors, so the 

tangential Hodge-Laplace operator A is a tan,entially elliptic 

operator. 

Next recall a bit of the classical theory of pseudodifferential 

operators - see [Tay] , [AS2], [Gi3] , for more detail. Suppose first 

that U is an open subset of IRP. If 

is a differential operator with smooth coefficients one can write for u 
00 p '" e Ce (U), extended to IR , (u the Fourier transform,) 

(a) J 2· < "'>'" P(x,D)u(x) = ! a (x) Eae 1ft' X,,, u(E)dE 
I al'm a 

so that, with the symbol of P given by 

one has 

(aa) P(x,D)u(x) = J p(x,ne2ift'<x,E>~(E)dE. 
Sometimes one writes 

P(x,D) = OP(p(x, E ». 

The class of differential operators is not targe enough to 

include. for instance, the parametrix of a differential operator of 

positive order, since such an operator would have negative order. The 

general idea then is to admit a larger class of symbols and then use 

(aa) to define a larger class of operators. We define two such 
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eissses, Sm(U) and S~(U), as follows. For an..v integer m, let Sm(U) be 

the set of a11 smooth functions p(x,t) on UXlRP which satisfy the 

following condition: for each compact subset K of U and for all 

multi-indices a,8, 

for x E K, t E ~p. 

For instance, polynomials in t of degree m with smooth coefficienls 

He in Sm(U). More generally, if (I is some smooth function, let 

This Is an elliptic symbol of order m whenever (I 'f:. o. For p E 

Sm(U), define 

P = OP(p): c~(U) _ Coo(U) 

by 

Pu(x) = (21l")-P p(x,t)el x, u(t)dt. f .< E>'" 

The class S:(U) consists of those symbols p E Sm(U) which 

satisfy the following additional condition: for each non-zero value of 

t, the limit 

exists. 

0m(p)(X, t) = 11 m p(X, 11 t)/ 11m 
11 .. 00 

Then 0m(p) is a COO function on UX(~p-O) and it is 

homogeneous of degree m in t. 
Finally, a pseudodtfferential operator is an operator 

P: C~(U) - Coo(U) such that for each f E C~(U) the associated 

operator Pf is a pseudodifferential operator in local coordinates; Le., 

it Is of the form OP(Pf) for some Pf ES:. The set of such 

operators is denoted c;>m(U). There is an obvious extension to 
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matrix-valued functions. 

Lemma 7.6. Let r(x, ~ ,y) be a matrix-valued symbol which is smooth in 

each variable. We suppose that r has compact x-support inside U (an 

open set in IRP with compact closure) and that there are e8timates 

for a11 multiindices (a,.8,Y), where m < -p-k. so that the associated 

operator 

OP(r)f(x) = I I ei(x-y)~ r(x, ~ ,y)f(y)dyd~ 

is a pseudodifferential operator of order m. The dis tri b u t ion 

k ern e I K(x,y) is given by 

K(x,y) = Jei(x-Y)~r(x,~,Y)d~. 

Then K i8 Ck in (x,y) and 

OP(r)f(x) = IK(x,y)f(y)dy. 

Proof. See Gilkey [Gi3l page 19, Lemma 1.2.5. 0 

Lsum!lt 7.7. Let K(x,y) be a smooth kernel with compact x,y support 

in U (an open set in IRP with compact clo8ure). Let P be the 

operator defined by K. If k i8 a non-negative integer, then 

I K loo,k ' C(k) I P I-k,k' 

~. See Gilkey [Gi3l, page 21, Lemma 1.2.9. 0 

The principal sV1llboi C7m(P) of a pseudodifferential 

operator P i8 defined by 
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where f is any function equal to 1 near x. The algebra Glm(U) is 

invariant under diffeomorphisms of U and hence determines unique]Y a 

corresponding class of operators Glm(M) for a (paracompact) manifold 

M. and, more general]Y, for Glm(E,E'), where E and E' are smooth 

bundles over M. The principal symbol yields a map 

• •• (7m(P): S M - Hom(1C (E), IC (E'» 

where IC is the canonical projection of the cotangent sphere bundle of 

M to M. Give @m(E,E') the natural Fr~chet topology using coordinate 

neighborhoods. Then 

• •• r(S M, Hom(1C (E),IC (E'»). 

If M is compact then 

is continuous for each m and s, so bounded families of symbols yield 

bounded families of operators. 

A pseudodifferential operator P from B to E' on a compact 

manifold M is 311100 t h i na if for all S,t, P induces bounded mape 

where WS(E) denotes the (classical) Sobolev space associated to the 

smooth sections over the (compact) manifold M. Equivalent]Y, P is 

smoothing if 

P: E'(E) _ Coo(E'). 

The conditions are equivalent since 

and 
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by the Sobolev lemma. 

distributional kernel. 

A smoothinl operator has a smooth 

Let us return to the realm of foliated spaces. Let X be a 

compact foliated space with leaves of dimension p equipped with a 

tanlential Riemannian metric and let G = G(X) be its holonoMY 

Iroupoid. which we assume to be Hausdorff. Let E and E' be 

finite-dimensional tanlentially smooth complex bundles over X. 

Definition 7.8. Fix areal number s. The tangential Sobolev 

f i eid W; = CW:) is defined aa follows: W: is the completion 

of DOII(1 + ~)s/2 with respect to the norm 

The representation of G(X) on the Hilbert field W:(G(X)) by left 

translation i8 by construction equivalent to the regular representation 

of G(X). (cf. 7.2). Note that up to equivalence the field W;(G(X)) is 

independent of choice of tangential Riemannian metric. 

Definition 7.9. A tangential operator P i8 91100 t hing if P induces a 

bounded operator 

for all s.t. The distribution kernel which determines P is in fact a 

smooth function on each leaf. though it may be only measurable 

transversely. The kernel dies off in a complicated way on each leaf; 

it is not necessarily compactly supported on G(X). A tangential 

operator Pis compactlV smoothina if P is smoothinl and if the 

distribution kernel of P is compactly supported on G(X,. 

If C is a compact subset of G(X, then the s U1J'PO r t of P is in 

C if the distribution vanishes off C, i.e .• 
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for all (. Then 

for P 1 and P 2 compactly supported. A tangential operator P is 

ps eudo loeal if for all neighborhoods S of GO there is a compactly 

smoothing operator R with Supp(P+R) C S. Say P1~P2 if P1-P2 is 

compactly smoothing. 

Suppose that 0 E!! LXN is a distinguished coordinate patch of 

the holonomy groupoid G(X) with L open and connected in 1R2P. A 

tangential operator P from E to B' over 0 corresponds by invariance 

to a measurable family P = CP n: n E N) where 

To make P a tangential pseudodifferential operator one naturally 

requires that each P n be a classical pseudodifferential operator and 

that these operators vary continuously in n. The invariance condition 

on the family of operators translates into the condition that the 

distribution kernel K(Y, y' ,n) is really a function of y-1y', so write 

K(y,y',n) = K(y-1 Y',n). 

Thus K may be regarded as being defined on an open set of G(X) 

itself. On the question of what support for K should be allowed, one 

has some choice. We insist that K has compact support on G(X). The 

set of such P of order , m is denoted @~(O,B,B'). Each element 

of C;c(G(O)) determincs a compactly smoothing operator. 

If P E @:(O,E,E') with distribution kernel K, then K extends 

naturally to all of G(X) (by setting it equal to zero outside of 0). It 

is then the distribution kernel for a unique tangential operator on G, 

denoted P'. This operator decomposes as P' = CP'x) where P'x has 

support contained in GXf\s-1(0). Finally, 

Definition 7.10. A t'(1,ngential pseudodifferential 

operator on X is a finite linear combination of compactly 
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smoothing operators with transversely continuous distribution kernei. 

and operators of the form P' above. By construction, each such 

operator is pseudolocal and has a continuous compactly supported 

distribution kernel. Transverse continuity implies that the tangential 

principal symbol of such an operator is continuous. 

Let @m(G(X),E,E') be the linear space of tangential 

pseudodifferential operators of order ~ m from E to E'; that is, 

finite linear combinations of operators arising on the various 

@m(O,E,E') and compactly smoothing operators. The linear space 

@-OO(E,E') = n @m(E,E') 
m 

consists of the compactly smoothing operators with transversely 

continuous tangentially smooth kerneis, which is precisely the image of 

C~ c (G(X)). When the context is appropriate we abbreviate to @(E,E') 

or to @. 

All of this has been for G(X) Hausdorff. If G(X) is only locally 

* Hausdorff then we modify as in the construction of Cr(G(X)). Cover 

the space G(X) by open Hausdorff sets 0, for which @m(E,E') does 

make sense, and then define @m(G(X),E,E') to be the algebra of linear 

combinations of these local pseudodifferential operators and compactly 

smoothing operators. 

The following proposition is taken directly from Connes [Co3, 

page 126]. 

Proposition 7.11 [Connes]. 

b) If P E @O(E,E'), then the family CP x:xEX} extends to a 

bounded intertwining operator L2(G,>..,s*(E)) - L2(G,>..,s*(E')). 

c) If P E @m(It,It), m<O, then P e C;(G(X)). 

d) If P E @m(E,E') with m < -pl2, then its associated distribution 

kernel K is measurable on G(X) with 
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Proof (CoRDes). a) Suppose first that n = _00. One may assume that 

P' E @m eorresponds to a eontinuous family P E @~(O,E,E') with 0 

E!! L X N. A partition of unity argument shows that we may study 

functions f (with assoeiated multiplieation operators Mf) supported on 

W' E!! Lx L' X N, 

where 0' E!! L' X N eompatibly with 0 E!! L X N. The kernel 

assoeiated to P~ is of the form 

KI(t,t" ,n) = JK(t.t' ,n)f(t' ,t" ,n)a' dt" 

and is tangentially smooth. Thus P~ is smoothing, and this implies 

that @m@-oo C @_oo. For the general ease assume that P' E @m. Q' 

E @n arise from @e(O,E.E'). where 0 E!! L )( N, and then invoke the 

classieal argument. In partieular. this shows that @O(G(X),E,E) is an 

algebra. 

b' Assume that the o~erator is of the form P' for P E 

@~(O,E.E'). The assertion follows from the inequality 

e) This follows from the natural inelusion 

and the eontinuity of the map given by n - P n' 

d) It suffiees to prove the assertion for P', with P E 

@~(O,E,E'). One has 
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KCt,t' ,n) = f ei<t-t', P aet,E ,n)dE 

where 

is uniformly bounded; Le., 

laet,E,n)I ~ c(1 + I E I)m. 

Then the Parseval equality shows that 

is uniformly bounded. 0 

Let P E @meGCX),B,E') be a tangential pseudodifferential 

operator from E to E'. We define its pri ncip<ll symbol umep) 

to be that of the operator sCP) Cwhich acts on bundles over X, rather 

than on bundles over G.) If P is a smoothing operator with associated 

kernel K, then sCP) is the operator associated with the kemel function 

K'(Y,x) = 1: KCy) E Ex· e~ Csum over aU y: x - y) 

This is indeed a smoothing operator and its principal symbol 0mCP) is 

zero for aU m. It foUows that um induces a homomorphism 

One defines ellipticity of P by the invertibility of umCP) which is the 

same as the ellipticity of sCP). 

Proposition 7.12 [C03, page 128]. Suppose that P E @mCE,E') is 

a tangentially elliptic pseudodifferential operator. Then there exists a 

tangentially elliptic pseudodifferential operator Q E @-mCE',E) such 

that PQ-idE, and QP-idE are compactly smoothing. 
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Proof (Connes). Let (Ol) be a finite open cover of X by coordinate 

charts of the form 0i =: LiXNi. Let ("i) be a tangentially 

smooth partition of unily subordinate to this cover. Let C be a 

compact neighborhood of GO C G(X) such that for each i, 

where -i' E C;c(Oi) has value 1 on the support of "i and s is the 

source map. We may suppose that Supp P C C. 

Por each i, define Mi to be the tangential operator from E to 

E' given by multiplication by "i' os. The distribution ~ associated 

to PMi is supported in Wi, so there exists Pi E (il~(~,E,E') such 

that Pi' = PMt. The usual multiplicative property of principal symbols 

implies that 

so that Pi is tangentially elliptic on the support of "i' We must 

show that there exists Qi E (il~"(~,E',E) such that PiQi - "i is 

compactly smoothing. 

Since Pi is elliptic on the support of -i with total symbol p 

and prlncipal symbol Pm E Sm there exists so me q ES-rn with Pmq -

"i smoothing. Define qk inductively by qo = q and 

where the sum is taken over all a,j,k with j<k and I a I +j = k. 

Let Qi E (il-m with total symbol qO"i'+ql"i'+.... This defines Qi E 

(il-m so that a(PiQi - "i) ~ 0 on SUPP("i)' Similarly we could solve 
... ... m 

a(QiPi - "i) ~ 0 for Qi E (il- . We compute: 
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N .... 

so "i(Qi - Qi) N 0 modulo smoothing operators on the support of "i' 

whieh implies that ~ and 6j agree modulo smoothing operators. Their 

distributional kerneis are eompaetly supported since "i' is eompactly 

supported. Set Qj = Qj"j; then PjQj - "i is eompaetly smoothing. 

Set Q = E MiQi'. Then PQ - IE, js compactly smoothing, which 

implies the result. 0 

Corollary 7.13 [Co3, page 

(j)m(G(X),E,E') with P 2 elliptic. 

that 

128] . Suppose that PI' P 2 E 

Then there is a eonstant e < 00 such 

for a11 x E X and for a11 E E C:(Gx). 

Proof (Connes). Let Q2 E (j)-m(G(X),E',E) with Q2P2 - idE smoothing. 

As P1Q2 E (j)0 (by 7.11d), there is a constant cl < 00 with 

for each E E C:(Gx), which implies the result. 0 

Remark 7.14 (Connes). We note two special eases of this corollary. 

First, suppose that P2 is the identity. Then 

so that PI is a 

P2 = (1 + A)m, some 

bounded operator. Seeond, suppose that 

power of the identity plus the tangential 

Laplacian. Then the corollary implies that 
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In particular. 

for any k. 

Corollary 7.13 implies that if P E @s(l~.E) i. tangentialiy 

elliptic, then P defines a bounded invertible G(X)-operator 

P: W; - Dom(P) 

where Do m(P) has norlll 11 E 11 + 11 P ( 11. This implies that each Q E 

@m(E,E') extends for each s to a bounded G(X)-invariant operator 

Proposition 7.15 [C03]. 

a) Let U = L )( N he a distinguished coordinate patch. let P E 

@~(U,E,E·). and let 

be the canonical extension. 

(independent of P) such that 

Then there is a constant b > 0 

M Let )I be an invariant transverse measure with allociated trace . ~ 

-)I on W (G(X),u). 
. ~ 

Then each T E W (G(X),U) which has a 

continuous extension to 
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for some s > p (the dimension of the leaves) is in the domain of 

"v and there is a constant c, independent of T, such that 

Proof. a) If m = 0 then this estimate follows as in the proof of 

Proposition 7.11b. In general, fix some s' and consider the tangential 

operator 

where A is the tangential Hodge-Laplace operator A = (An)' 

~ defined over L X (n), formed from the underlyi.ng tangential 

Riemannian connection. Then 

IIQII = cllPIl s w • .s'O 
W,w-

If Q were in @O then the argument would be complete, but this is not 

so in general. However, we may uniformly approximate the 

distributional kernel of Q by kerneis Kj supported on compact 

neighborhoods of the diagonal (x,x)) X N. Let Tj be the associated 
o operator to Kjo Then T j E @ , so that 

by the earlier estimate and the T j uniformly approximate Q, which 

completes the argument. 

b) 
• N 

There is some 8 E W (G(X),u) such that 

T = (1 + 6)-s/2m8(1 + 6)-s/2m 

with 11811 = IIT"-s,s. Proposition 7.11 implies that 8 has finite trace. 
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So it suffices to show that (1 + A,-s/m is in the domain of _ v. 

Corollary 7.12 im pli es that there is a tangentilll pseudodifferential 

operator P of order -s with 

So it suffices to show that -v(p·p, is finite. Let Kp denote the 

distributional kernel of P. Restriet to a leaf I. Proposition 1.12 
• implies that (P P', is a locally traceable operator with local trace 

given by 

Thus 

which is finite by (7.11d) and the fact that 

Recall from (7.11b) that each pseudodifferential operator 

extends to a bounded operator on the Hilbert field L:(G(X)) = 
CL2(Gx) with norm given by 

IIPII = sup IIPxlI, 
xEx 

where pX acts on L2(Gx). These form the ·-algebra GlO(G(X),E,E) 

which contains C; c (G(X)) as a two-sided ideal. Taking closures we . -
obtain aC-algebra GI called the (closed' pseudodifferential 

* operator algebra with closed two-sided ideal Cr(G(X),. 
* Cr(G(X)) depends on E, but we suppress this for simplicity.) 
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* that S F denotes the eosphere bundle of the foliated spaee. 

Proposition 7.16 (Connes [C03, page 138]). The tangential principal 

symbol map 

is a sudeetive *-homomorphism. It extends to a sudeetion of 
* C -algebras and induees a eanonieal short exaet sequenee of 
* C -algebras 

* -0 0 * o - Cr(G(X)) - (iJ - r(S F,End(E)) - 0 

Proof. That 0 is surjeetive is proved in the classical setting in [Pa, 

cf. p. 269, 246] by the eonstruetion of a eontinuous linear seetion. 

The general idea is to use partition of unity arguments to reduee 

down to the ease of trivial veetor bundles over open balls in 

Euelidean spaee, and then to explieit1y write down the seetion. All 

this generalizes in an obvious way to our setting. It suffiees, then, to 

* eompute ker(o). It is elear that Ker(o) eontains Cr(G(X)), so it 

suffiees to prove the opposite inclusion. Note that sinee 0 has a 

eontinuous linear seetion, any T E (iJO with 11 o(T) 11 small has 

small speetral radius in @O/C;(G(X)). The proposition then follows 

* from the following Lemma (with A = Cr(G(X)), B = Ker(o)). 

* Lemma 7.17. Let (iJ be a dense *-subalgebra of aC-algebra (iJ and 

let A C B C @ be ideals. Suppose that the following eondition holds: 

(*) If x E (iJ with I x I small in @/B then the speetral radius 

p(x) is small in @/A. 

Then A = B. 

Proof. Let (iJ A C @/A be the (dense) image of (iJ and similarly for 

(iJB C @/B. Let 
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be the obvious surjection. If x E fiI A with y,(x) = 0 then Iy,x I 

= 0 in ~/B by (.). Then p(x) = 0 in ~I A and x = 0; thus y, is 

injective and so an isomorphism. Let 

Then _ is a bounded map, by (.), and it extends to 

It is easy to see that _ is the inverse to the natural projection 

~: ~I A - ~/B, so ~ is an isomorphism, and A = B. O. 

Note that if P is a smoothing operator of order 0 which is not 

compactly smoothing then it might not be in fiI and in particular not 

* in Cr(G(X». Such operators are, however, in the Breuer ideal of . ~ 

compact operators (cf. proof of 6.35) in W (G(X),/..l) as we shall see 

(cf. 7.37). Similarly, if P is (say) compactly smoothing with 

distribution kernel which is measurable but not continuous then the 

same conclusion holds. 

The previous proposition enables us to extend the definition of 

tangential ellipticity to any P in the closure of filO by declaring P to 

be t an gen t i all 11 e l l i l' t i c if O'(P) is invertible. 

The short exact sequence (7.16) induces a long exact sequence 

in K-theory and, in particular, there is a natural connecting 

homomorphism 

If P is a tangential, tangentially elliptic pseudodifferential operator of 

order zero, then its tangential principal symbol O'O(P) is invertibIe and 
• hence defines a class in K1(r(S F,End(E))). Apply the connecting 

homomorphism a and one obtains the index class 
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We remind the reader that the content of the Connes-Skandalis index 

theorem is to identify this class, while the content of the Connes 

index theorem is to identify the class 

c(ind(P)) E ii~(X). 

where c is the partial Chern character. 

The next step in the argument is to relate the index class 

ind(P) to the families of kerneis Ker(PL) and Ker(PL .), to the 

associated families of local traces, and to the associated von Neumann 

algebra proiections. 

Fix an invariant transverse measure v and form the associated . ~ 

von Neumann algebra W (G(X),U) with trace _ v' It is clear from 

the construction that there is a natural map 

. ~ 

ß: @ - W (G(X),U) 

* • ~ whose image is weakly dense. 

the canonical map and let 

Let Ir: Cr (G(X» - W (G(X),U' be 

be the induced homomorphism. Recall that l P = Cl; ) is the 

* index measure of P and that ind(P) E KO(Cr(G(X,) is the image of 

the tangential principal symbol of P. 

ProPO!ition 7.18. Let P E GiO be a tangentially elliptic operator. 

Then 

a) 

that 

. . ~ 

Ker(ßP) and Ker(ßP ) are finite projections in W (G(X),U), so 

[Ker(ßP)] - [Ker(ßP·)] E K~(W·(G(X).Ü)). 
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b) • 1C.(ind(P)) = [Ker(8P)] - [Ker(8P )]. 

c) c(ind(P)) = [lp] E H~(X). 

d) indjl(P) :: I lpdjl = _jl([Ker(8P)] - [Ker(8P·)]). 

Proof. This is immediate from 6.35. D 

CoroUm 7.19. Let P E GiO be a tangentially elliptic operator. Then 

depends only upon the homotopy class of the principal symbol of P in 

Ko(C; (G(X))). 

Em2{. This is immediate from (7.18) and the fact that ind(P) E 
* . KO(C r (G(X))) depends only upon the homotopy class of the tangentIal 

prineipal symbol aO(P) of P. D 

Tbis eompletes our introduction to abstract tangential 

pseudodifferential operators. 

B. DIFFBßBNTIAL OPBRATORS Arm FINITE PROPAGATION 

The most natural operators on foliated spaces are parametrized 

versions of the elassieal differential operators. These operators are 

unbounded. and it is necessary to exerci.e some eare in promoUng 

them to bounded operators in defining an index. There are at least 

two pos.ible teehnieal approaches. Connes prefers to use methods 

from geometrie asymptoties. We have chosen to use finite propagation 

teehniques. in part beeause of their lovely simplieity. and in part 

because we have been impressed by their effieacy as demonstrated. 

e.g.. by Taylor [Tay2]. Cheeger. Gromov. and Taylor [CGT]. and 

more reeently by John Roe [Ro3]. 

Definition 7.20. Let D be a first order differential operator over a 
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noneompaet eomplete manifold with self acUoint prineipal symbol 

a1 (D). The propagation speed of D is defined by 

If e(x) , ethen D is said to have fi ni t e propaaat ton speed 

(cf. [CGT] , [Tay2] , [Ch], [Ro3]). In that ease, solutions to the 

hyperbolie system 

(~ + iD)u = 0 
et 

exist ([Fr]) and propagate at speeds bounded by e. 

Reeall that if D is a densely defined operator then the 

lormal adjoint Dt of D is defined by (D~,v) = Cu,Dv). If D = Dt 

then D is 10 r mal llf se lf -a d j 0 i nt . In general, the closure fi of 

D saUsfies fi C Dt . A symmetrie operator T is es sen t t al llf se l I 
ad j 0 i nt provided that T is self-acUoint, or equivalently, Tt is 

symmetrie, in whieh ease T = Tt . 

Theorepa 7.21 (Chernoff [Ch] Lemma 2.1). SUPPDse that 

D: rCH) - rCH) is a first order (not neeessarily elliptie) differential 

operator over a noneompaet eomplete manifold and suppose that D is 

formally self-adioint and has finite propagation speed with a uniform 

bound e(x) , e < +00. Then D is essentially self-adjoint and, more 

generally, Dk is essentially self-adioint for all k. Thus for any 

bounded Borel funetion on IR, fCD) is defined as a bounded operator on 

L2(E). 

Proof. We repeat Chernoff's proof. Fix a positive inte.er k and let 

A = Dk. It suffiees to show that there is no non-trivial solution to 

the eigenvalue equation A tu = ~iu; that is, there is no non-zero 

ehoiee for u such that 

<u,v> ~ <u,Av> = 0 

for all v E DomCA). 
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Suppose that A tu = iu. We want to show that u = O. Let v E 

C~(M). Then Ut = eitA extends to a unitary operator on L2. Define 

F(t) by 

The function F is bounded on IR since Ut is unitary. The k'th 

derivative F(k) of F(t) is riven by 

Hence F(t) is a linear eombination of exponential funetions e ut where 

u runs through the solutions of the equation uk = _ik+ 1. So none 

of the u's ia pure imarinary. As F ia bounded, this implies that F ia 

identieally zero, so that <Utv,u> = O. Finite propagation implies that 

Ut reatriets to an isomorphism C~(M) - C~(M). Thus <C~(M), u> = 
o and so u = 0 as required. A similar argument applies to the 

solutions of A tu = -iu. Tbis eatablishes the theorem. 0 

Pick some point x E X. The map 

IRp :! F x 

exp 
x I X 

mape some open p-ball B about the orilrin to achart of 'x' tbe leaf 

whieh eontains x. Chooae an orthonormal base for Fx and extend tbe 

map to 

_ _ e_x_p.:::X~1 X 
Fx X N 

to obtain a "tangential normal coordinate system" at x. It is 

determined uniquely up to an element of C(N,O(p)), where O(p) is the 

orthogonal group. Chooae an ortbonormal basis for Sx' the fibre of 

the bundle S at x. For y E exp(BXN)nl tbere is a well-defined 
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isomorphism Sx - Sy given by parallel transport. Thus a basis is 

determined for the seetions of S over the patch. So fix a choice of 

basis at Sx; the resulting system is called a ca no ni ca l 

coordi nat e S1Jst em. Letting (ei) denote the basis 

vector-fields on exp(BXN) which correspond to the canonical 

coordinate system on S, then the tangential Levi-Civita connection 

acts by 

Definition 7.22. (X,S) has bound ed geomet r1J if 

1) X has positive tangential injectivity radius; that is, there is a 

nonempty open ball B C IRP which is injected by the exponential map 

at every point of X, 

2) For each leaf, the Christoffel symbols of the tangential 

connection on X lie in a bounded set of the Frechet space Coo(B), 

and 

3) For each leaf, the Christoffel symbols of the tangential 

connection of the bundle S He in a bounded set of Coo(B). 

Proposition 7.23. Let M be a smooth Riemannian manifold with a COO 

bounded geometry covered by open sets (Uj ) with exponential 

coordinate charts on each Uj of fixed radius c. Let 0 be an elliptic 

differential operator of positive order whose coefficients are bounded 

in COO with a uniform ellipticity estimate. Then 0 and its formal 

adjoint ot act as unbounded operators on L2(M) with domain C:(M), 

and the closure of ot is the Hilbert space adioint 0* of O. 

Proof. (This proof was kindly supplied to us by M. Taylor.) We 

define 0 and ot as unbounded operators on L2(M) with domain Dom(O) 
* 00 t • = Dom(O ) = Co(M). We aim to prove that the closure of 0 is 0 . 

Suppose first that the order of 0 is even. Recal1 from (7.21) that al1 

powers of the Laplace operator 11 are essentially self -adioint, since 
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M is eompiete. Sinee by definition, 

* u E Dom(O ) iff 

using Ioeal elliptie regularity of ot, we ean state 

* u E Dom (0 ) iff 

2 2m t 2 u E L (M), u E W1oc(M), and 0 u E L (M), 

where nt is apriori applied to u in the distributional sense. Sinee 

the weak and strong extensions of Am eoineide, we can S8Y both 

that 

and that 

(*) u E DOIII(Am) iff u E L2(M) and for a sequence 

Now elliptic estimates bound L2 norms of otu over a ball Vj C M (Vj 

C Uj , S8Y of radius co/2), in terms of L2 norms of A~ and of u 

over Uj (with bounds independent of j) and conversely, one has a 

bound on L2 norms of Amu over Vj in terms of L2 norms of otu and u 

over Uj . One can suppose the Vj eover M and that the Uj do not 

have too many overlaps, so we deduce 
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From here it is easy to complete the proof. Indeed, given u E 
a m 00 

Dom(D) = Dom(t. ), we know by (a) that there exist Vj E Co(M) 

such that Vj - 0 in L2(M) and t.m(Vj - vk) - 0 in L2(M), as j,k 

- 00 The boundedness hypotheses on the coefficients of Dt , 

together with elliptic estimates, imply 

IID~II 2 ~ CIlt.IDwIl 2 + Cllwll 2 • w E C:(M). 
L (M) L (M) L (M) 

Thus, 

as j,k - 00 

and the theorem is established for 0 of even order. 

It remains to consider the case when 0 is of odd order. Let 

Po be the closure of Dt , the minimal extension of Dt and let Pt = Da, 

the Hilbert space adjoint, which is the maximal extension of ot. 
a a 

Let A = Po Po and B = Pt Pt. By von Neumann's 

theorem, A and Bare self -adjoint and 

However A and B are extensions of the even order elliptic operator 

otO. The previous case implies that A = B. Thus Dom(P 0) = 

Dom(Pt ) and we are through. 0 

If D is a tangential differential operator then Ker(O) = 
(Ker(O 1.):> forms a measurable field of Hilbert spaces. If (a suitable 

closure of) 0 is locally traceable along the leaves then there is also 

associated a tangential measure (cf. 4.11) 

t1Ker(O) = {t1Ker(D ):>, 
I. 
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where J.tKer(D ) is the loeal dimension (defined in Chapter I, after 1.8) 

of the orthofonal projection onto the subspace Ker(Dt ). Similarly 

there is a natural tangential measure J.tKer(D\ These measures 

would appear to depend upon the choice of closure of D. This 

problem is disposed of by the following Corollary. 

CoroU!ll'Y 7.24. Let X be a compact foliated space witl. some fixed 

tangential Riemannian metric and let D be a tangentially elliptic 

differential operator. Then the (leafwise) closure of the (leafwise) 

formal adjoint of D is the (leafwise) Hilbert space adjoint of D. Thus 
• Hence ker D and ker D are uniquely defined D has a unique closure. 

Hilbert fields, and J.tKer(D) and J.tKer(D·) are uniquely defined 

tangential measures. 

Proof. This follows immediately from the preceedinr proposition and 

the observation that if l. is a leaf in X then l. is a Riemannian 

manifold with bounded geometry as required. 0 

It still remains to define the index of a tangential differential 

operator of positive order. The most natural definition at this point 

is to form an index measure 

t D = J.tKer(D) - J.tKer(D·) 

which is unique, by 7.24, and let the index be the total mass of this 

measure: 

As this stands it is not at all clear how this corresponds to the index 

of order zero operators and the canonical pseudodifferential operator 

extension, nor is it clear how to compute. We turn to these matters 

next. 

Let D be a tangential, tangentially elliptic differential operator 

of positive order m from seetions of E to sections of E'. Then D 

extends to a densely defined unbounded operator D = CDll of 
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Hilbert fields 

where I is the holonomy covering of the leaf " E, E' are the 

puUbacks ol the bundles to the holonoDlY groupoid G = G(X) and L 2 

denotes the corresponding Hilbert fields obtained by pulling the bundles 

back to G(X), lifting the action of 0, and then restricting. The 

operator 0 has a onique leafwise closure, by CoroUary 7.24, which for 

convenience we also denote by O. By standard lunctional analysis, 
8 

(1 + 0 0) is a positive operator which is bounded below and hence has 

an inverse (1 + 0 8 0)-1 which Is a bounded operator 
2~ 2~ 

LT(B',) - LT(B,). Recall that 

8 • 
DOII(O 0) = C.-: .- E DOII(O), 0.- E DOIll(O »). 

Then (1 + 0 8 0) has a square root (1 + 0 8 0)112 by standard functional 

analysis. The spectral theorem baplles that 

AB A = (08 0)112 is the positive part of the polar decomposition 0 = 
UA (U partial isometry), OOIl(A) = 0011(0) and so 

DOII«(1 + 0 8 0)112) = 0011(0). 

This implies that the operator (1 + 0 8 0)-112 has range equal to 

DOII(O). Since the operator (1 + 080 )a Is onto for each a > 0, 

the operator (1 + 0 8 0)-112 is defined on aU of L2(E). Thus 

makes sense and is boonded by direct composition. In polar form, L = 
UB. That is L has the same polar part U as 0 = UA; 0 has been 

replaced by 0(1 + 0 8 0)-1/2, a bounded version of 0, and 
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Note that L = UB and D = UA have the same kernel. The closure of 

the ranges is likewise the same. Hence 

Ker(L) = Ker(D) and • • Ker(L ) = Ker(D ) 

. ~ 

in the von Neumann algebra W (G(X),U). If we knew that L were in 

@O or even in (pO then we would know that these projections were 

li-finite and that the li-index of D was just the v-index of L. One 

can establish this in greater generality using methods of Connes, but 

we specialize to first order operators. 

Theorem 7.25 Taylor [Tay, Ch. XII] ud Roe [Rol]. Let D = 
(D I) be a tangential, tangentially elliptic and tangentially formally 

self -adjoint operator. Lift each Dito its holonomy covering Dt . 
Let f be a bounded Borel function, so that f(Dt ) i8 defined by the 

spectral theorem. Let f(D) :: (f(Dt )} act on the canonical Hilbert 
2 * field Lr(G(X)) of Cr(G(X». Then: 

1) If f is a Schwartz function with Fourier transform f. then 

where the integral is understood to be in the weak sense along the 

leaves. 

2) If D is first order with finite propagation speed on each leaf 

and f E Co(JR) with Fourier transform f E C;(JR) then f(D) E 

C;c(G(X». 

3) If D is first order with finite propagation speed on each leaf 
* and f E Co(lR) then f(D) E Cr(G(X». 

Proof. Part 1) is proved by [Tay, Ch. XII]. For parts 2) and 3) see 

[Ro3, Theorem 2.1 and Corollary 2.2.]. 0 
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CoroUm 7.26 (Roe). Let D be a first order tangential tangentially 

elliptic and tangentially formally self-adjoint differential operator from 

sections of E to sections of E' with uniformly bounded propagation 

speed on a11 leaves. Define 

Then L is a bounded operator on L2, and L E @O. 

EI:2!!f. It suffices to prove that L E @O. Let 

fex) = x(1 + x2)-1I2. 

Then 

f'(x) = (1 + x2)-3/2 

and 

f"(x) = O( I x I )-3 at 00. 

Regard f as a tempered distribution (i.e., as a functional on the 

Schwartz space) and let g(E') be the Fourier transform of f. Then g is 

itself a tempered distribution, and 

(f')" = ihlE') 

Thus E'g(E') is a function and f" is in L2, which implies that (f")'" = 
-E'2g(E') is bounded, so that g(E') = O(E'-2) at 00. Write g = g1+g2' 

where g1 has support very near ° and g2 E L1(1R). Then 

The inverse Fourier transform of g2 belongs to Co(lR) b)r the 

'" Riemann-Lebesgue lemma, so the second term is in Cr(G(X)). The 

first term is properly supported, by the finite propagation speed 

241 



condition, and it is a pseudodifferential operator by the arpment of 

[Tay, Theorem 1.3, p. 296]; thus it belones to @O, and hence f(D) e 
-0 
@. D 

The preceeding Corollary shows us how to fit classieal first 

order tangentially elliptic operators into the general framework of 

tangential pseudodifferential operators presented in Section A. For 

arbitrary higher order differential operators we adopt an alternate 

strategy: we work directly at the von Neumann algebra level. 

Propotition 7.27. Let T be a tangential, tangentially elliptic 

pseudodifferential operator of order m > 0, and let fJ. be the 

tangential Hodge-Laplace operator associated to the bundle of T. 

Define P = (1+fJ.)-m/2T . Then P e GiO, O'O(P) is homotopic to 

O'm(T), and 

and 

. ~ 

in W (G(X)),u). 

flggf. Since P = (invertible)T, O'O(P) is homotopic to O'm(T). It 

suffices to prove that P e @O and "v(Ker p.) = .,v(Ker T\ 
• For the first, note that fJ. is the O-form component of D = d + d 

extended to the bundle via the connection. Use the leafwise finite 

propagation speed property of the operator D to write 

Then gl(D)T e @O as in (7.26). The operator g2(D) is smoothing and 
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tends to ° if we make gl have large support. Thus 11 g2(D)T 11 2 
L 

- ° and thus P E GiO. 
• •• It remains to prove that ")I(Ker P) = ")I(Ker T) in W . 

• If 1( is the orthogonal proJection onto Ker T then the orthogonal 
• projection onto Ker P is given by 

We should like to say that 1( and 1(' have the same trace. This is 

not immediate, since (1 + A)m/2 is an unbounded operator. The 

ellipticity estimate in general takes the form 

• IT "I +cl"l· 

• If " E Ker(T ) then 

and thus (1 + A)m/2 is bounded on Ker(T\ and 1((1 + A)m/2 i! 
bounded. Thus 

This completes our general study of tangential differential 

operators with finite propagation speed. These results will be used in 

Section C. which deals with a special class of tangential differential 

operators which are c10sely tied to the geometry of foliated spaces. 

C. DIRAe OPBRATORS Alm Dm McKBAN-SINGBR PORMVLA 

We turn now to the study of generalized Dirac operators and 

asymptotics. The goal of this section is the McKean-Singer formula 
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(7.39) which is the brid.e to the asymptotic development of the index 

ind)./(D). 

Assume for the rest of the chapter that X is a compact 

foliated space with oriented foliation bundle F which is equipped with 

the Levi-Civita tangential connection (5.18) and associated tangential 

Riemannian metric. Each leaf of X is a complete Riemannian manifold 

with bounded geometry. Suppose that V is a real inner product space. 

We write Cliff(V) for its associated C l iI 10 r d 0. l a e b r 0.. The 

Clifford algebra is universal with respect to linear maps j: V - A, 

where A is areal uni tal algebra and 

(v,v)! + Uv)2 = 0, 

and this characterizes the algebra. More concretely, Cliff(V) may be 

regarded as the free associative uni tal alcebra on the basis vectors 

C ek) of V modulo the relations 

Let Cliffc(V) = Cliff(V)~a: be the complexified algebra. If E - X is 

any real Riemannian vector bundle, then Cliffc(E) is the associated 

bundle of Clifford algebras. In particular, if X is a foliated space 

with a tangential Riemannian metric then we may form Cliffc(X) ;: 

Cliffc(F), where F is the tan.ent bundle of the foliated space. 

Definition 7.28. If S is a bundle of left modules over Cliffc(X), then 

S is a to.naential Clillord bundle if it is equipped with a 

tangential Hermitian metric and compatible tangential connection such 

that 

a) if e E Fx then e:Sx - Sx is an isometry. 

b) if 11 E r .,(Clifrc(x)), 8 E S, then 

V(IIs) = IIV(s) + (VII)s. 
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If S has an involution which anticommutes with the Clifford action of 

tangent vectors. then it is a graded Clifford bundle. Associated to a 

tangential Clifford bundle S is a natural first order differential 

operator 0 = Os called the (a e n e r a l i z e d) Dir a C O'P e rat 0 r. It 

is defined to be the composition 

where the first map is given by the tangential connection. the second 

by the tangential Riemannian metric. and the third by the Clifford 

module structure on S. In an orthonormal basis Cel ..... ep) for Fx 
one may write 

If S is graded then ° is similarly graded; it interchanges sections of 

the positive and negative eigenbundles of the involution. In Chapter 

VIII we shall show that this definition encompasses the operators of 

primary lnterest in the proof (and in many applications) of the index 

theorem. 

L!Im!!! 7.29. The Oirac operator is formally self-adjoint on each leaf. 

Proof. Fix tangentially smooth sections r. s of S. one of which is 

compactly supported. Let a be the tangential I-form 

a(v) = -(r.vs) 

where vs is the module action of s on v. Let el ..... ep be anormal 

basis of vector fields near x. Then 
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• = (d a)x + (r,Ds)x 

and hence <Dr,s> = <r,Ds> by integration, as required. CI 

Form the Hilbert field L;(S) by completing the tangentially 

smooth sections of S along each leaf in the norm determined by the 

tangential Riemannlan metric. 

Proposition 7.30. The Dirac operator is essentially self adjoint 

regarded as an operator on the Hilbert field L;(S). Thus (by 7.21) if 

f Is a bounded Borel function on IR then f(D) is defined as a bounded 

operator on L.~(S). 

Proof. This follows immediately from 7.29 and 7.21. CI 

Let R: A2F· - End(S) be the tangential curvature operator 

associated to the tangential connection on S. Define R' E End(S) by 

with respect to the orthonormal basis. 

Propoeition 7.31 (Weitzenbock formula) . For s E r .,.(S), D2s = 
• V Vs + R's. 

Proof. Work in normal coordinates at a point. Then the result is 

formal: 

= -I: VJ.vis + I e.e·(V.V. - V·V.)s i<j 1 J 1 J J 1 

• = V Vs + R's. CI 

This formula aHows us to analyze the coefficients of the Dirac 
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operator. Suppose that (X.S) has bounded geometry. Using tangential 

normal coordinates near a point of X. one may regard the operator 0 2 

as a partial differential operator along the leaves of BXN acting on 

matrix-valued functions. By the Weitzenbock formula. 0 2 may be 

written as 

(7.32) 

where the aj and bare matrix-valued tangentially smooth functions on 

BXN which are constant in n and which. by virtue of the bounded 

geometry. may be estimated independently of the particular point of X 

chosen. In particular one sees that 0 2 is a tangentially elliptic 

operator with principal symbol _~2. As the origin of the tangential 

normal coordinate system varies. the operators 0 2 form a bounded 

family of tangentially elliptic operators with the same tangential 

principal symbol. 

Suppose that f is a function on IRP supported within B/2. 

Then f may be regarded as defined on BXN and 0 2 may be regarded 

as acting on f. The elliptic estimate 7.14 applied to 0 2 gives 

(7.33) 

for some constant e and the usual Sobolev norms. Moreover. since 

det(g) is bounded away from zero locally and (by the compactness of 

X) globally with aglobai lower bound. the tangential principal symbol 

of 0 2 is bounded away from zero with aglobai lower bound. so e may 

be chosen uniformly on X. This makes it possible to prove a Sobolev 

embedding theorem for X. 

Definition 7.34. Suppose r ~ O. The uni form er space ue~(s) is 

the bundle obtained by taking over each leaf the Banach space of an 

e ~ seetions s of S (restricted to the leaf) such that the norm 

IIlIsllll r = supe I Vv ",vv s(x) I} 
1 q 

is finite. where sup is over an x E X and over an choices vl •...• vq 
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(0 ~ CI ~ r) of unit tangent vectors at x. 

Theorem 7.35 [RoO 5.20]. Let k be an even integer with k > r + 

pl2. Then W~(S) is included continuously in UC~(S). 

Proof. We may immediately restrict attention to some leaf t. [The 

constant involved in the elliptic estimate is continuous from leaf to 

leaf.] Choose some s E Wk(.e). Then 

where 8 C IRP, "':8 - [0,1] is a smooth function supported on (812) 

with "'=1 on (8/4) and "'s is regarded as a function on (812). Then 

by the classical Sobolev embedding 

~ c 111 s 11 Wk((B/2)) 

and so IIl1sllll ~ (const) IIsll k as required. 0 
W (I) 

Theorem 7.36 [RoO 5.21]. Suppose that X is a compact foliated 

space and that P is a tangential, tangentially elliptic differential 

operator on the module S. Let f E ..ll(IR), the Schwartz space. 

Then the operator f(P), which is defined (leafwise) by the spectral 

theorem is a tangential smoothing operator and its distribution kernel 

• • Kf E r 1'(S @AF @S) 

is uniformly bounded. 
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Proof. Since f is a Schwartz function, the functions x - I x I kf(x) 

are bounded on IR for any k, which implies by the spectral theorem 

that the operators pkf(P) are bounded on L2(t ,S) for each leaf t. 
Thus f(P) maps Wk(8) into Wk+n(S) for any k and n. If follows in the 

usual way that f(P) is a smoothing operator when restricted to each 

leaf. Thus f(P) is tangentially smoothing. As for the uniform bound • 
• let x E X and v E Sx ; let E: x•v be the distribution al section defined 

by 

E: (s) = <s ,v> 
X,v X 

for s E r 7(8). Then €x.v E UCr(8)· C W-k(S) (by 7.35) and so 

by (7.35) again. This implies that Kr is uniformly bounded. 0 

Proposition 7.37. Let P be a self -adjoint tangentially elliptic 

differential operator of any positive order on a module S with bounded 

geometry, and let f E Co(IR). Then f(P) is in the Breuer ideal [Bre] 

of compact operators in W·(G(X),u). Similarly. if P ~ 0 then e-tP 

is in the Breuer ideal. 

Proof. By a continuity and density argument we may assume that f is 

eompactly supported and smooth. Then 7.36 gives a distribution kernel 

for f(P) which is bounded on G, and similarly for f(p)2. This implies 

that 

so that f(p)2 is trace elass. Thus f(P) is Hilbert-Sehmidt, so in 

particular. f(P) is compact. The same argument applies to e-tP for P 

positive since the function e-tz may be replaced by a funetion which 

dies Quickly off IR+ and wh ich agrees with e-tz on IR+. 0 

It is now possible to prove a generalization of the 
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McKean-Singer formula, which provides a bridge to the asymptotic 

expansion. 

Proposition 7.38. Fix an invariant transverse measure )I on X and 

let 

D: r ,,(R) - r "un 

be a tangentially eIliptic differential operator of order m > 0 on 

modules with bounded geometry. Then for each t > 0, the operators 

• • 
e -tD D and e -tDD 

are tangential smoothing operators whose distribution kerneis are 

functions which are uniformly bounded. The correspondina elements in . ~ 

W (G(X),JJ) have finite trace, and 

(7.39) 
• • 

ind (D) = 1/1 ([e-tD D] _ [e-tDD ]). )I )I 

flggf. The first part of the theorem is immediate from (7.37). To 

establish formula (7.39), we argue as follows. Write D = UA in polar 

form, where A = (D·D)1I2 and U is a partial isometry. Then U·U is 

the projection onto (Ker D)1., UU· is the projection onto (Ker D .)1., 

and 

so U is an equivalence between corresponding spectral projections of 
• • D D and DD for any Borel subset of (0,+00). Thus 

• = 1/1)1([8 Ker D] - [8 Ker D ]) = 

= ind )I(D). 0 
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The next step in our development is the reformulation of the 

McKean-Singer formula (7.39) in terms of superoperators, and the 

resulting asymptotic expansion of the heat kernel. 

D. SUPEROPERATORS AND THE ASYMPTOTIC EXPANSION 

In this seetion the McKean-Singer formula (7.39) is rephrased in 

terms of superoperators. Then symbols which depend upon a complex 

parameter are introduced and the asymptotic expansion (Theorem 7.48) 

for ind)/(D) is developed. This leads to the formula (7.48), which 

expresses ind)/(D) as the total mass of the tangentially smooth p-form 

wD(g,E). More detailed study of this form for particular Dirac 

operators leads in Chapter VIII to the proof of the index theorem. 

Definition 7.40. A graded vector s1'ace is a vector space of the 

form V = v+ev- thought of as the eigenspace decomposition of an 

involution of V. A stJ.1'ero1'erator is an operator T: V-V. A 

superoperator has an obvious 2 by 2 matrix decomposition and is said 

to be grade-1'reservi ng if TU = 0 for i ~ j. A trace _ on 

it(V+) and it(V-) extends to a s 11.1' e r t ra c e _s on V by 

If D: V+ - V- then define its associated stJ.1'eroperator 6 
by 

" [0 D = 
D 

0*] : v-v. 
DD 

Then 6 is a positive grade-preserving superoperator of order twice the 

order of D. The utility of this construction is illustrated by the 

following corollary. 

CorolIm 7.41. Fix an invariant transverse measure of X and let 
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be a tl'lngentially elliptic differential operator on modules with bounded 

geometry with associated superoperator O. Then 

'" 
indv(D) = _:(e-tD). 

Proof. This is immediate from 7.39 and the definition of the 

supertrace. O. 

Next we develop the machinery of co~plex symbols in order to 

produce the asymptotic expansion of _~(e-tD). Let us assurne given 

a tangentially elliptic differential operator D of order m/2 with 

positive definite principal symbol. Let 0 be the associated 

superoperator of order m; say 0: r r(E) - r r(E). Let e be a 

fixed curve of distance ~ I from the positive real axis as shown. 

For tEe, the operator (0-n-I is defined by the spectral theorem 

and has norm I (O-n-Il ~ 1. The map 

is continuous for tEe, and hence we may write 

Extend (6- n -1 to graded tangential Sobolev spaces. 

I t_xl-1 ~ 1 for tEe, xE IR+, so that 

Then 
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.... 1 .... k ,. 1 ,. 1 
1(0-1"- fl km ~ ce 10 (0-1"- flo + I (O-t)- flo} 

(by [Gi3] 1.3.5) 

If k = 1 we obtain 

and then by induction 

,. -1 k 1 I (0- t) . f I km ~ c(1 + I t I) - I f I km-m' 

Interpolate to obtain 

,. 
Proposition 7.42. Let 0 be a8 above. Then given s, there is a k = 
k(s) and c = cIs) so that 

for all t E C. 

Definition (7.43). q(x, E ,t ,n) E SkI t )(UXN) is a s 11mb 0 I 0 J 0 r der 

k dependi ng on t if q is smooth in (x,E,n. continuous in n, has 

compact x-support in U, is holomorphic in t and if there are 

estimates 

(.) 

Say that q is homogeneous 01 order k in (E,t) if 
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Homogeneity implies the decay condition (.). Grading in this manner 

corresponds to regarding t as having order m. It follows that 

(Pm - t)-I E S-m(t). Further, the spaces S·(t) are closed under 

multiplication and differentiation in the usual manner. In particular, 

liven n > 0, there is some kIn) > 0 such that if Q has symbol in 

SkI t) then it induces Q( t): W-n - Wn and 

(7.44) 

Let @~(UXN) denote those grade-preserving pseudodifferential 

superoperators 

C; c (UXN)-+ C; c (UXN) 

with symbol in Sk(t) and x-support in U. For t fixed, Q(t) E 

@k(UXN). If h: UXN - UXN is a tangentially smooth homeomorphism 

then hinduces a map @~(UXN) - @~(UxN) which respects principa] 

symbols, so that it makes sense to speak of operators with complex 

symbol on C;c(X) or even of operators on bundles over X. Finally, 

define @~(G(X)) as before-, that is, as finite linear combinations of 

pseudodifferential operators frem patches lifted from @~(UXN)) and 

compactly smoothing operators. 

We wish to find an approximation for (D-t)-I which is a 

pseudodifferential operator. Fix some finite open cover (Vi) of X 

by distinguished coordinate patches and let l1i be a subordinate ... 
tangentially smooth partition of unity. On a coordinate patch, let D 

have total symbol Po + ... + Pm' Let po' = p. for j<m and p , = P J J m m 
- t. Then 

... 
a(D-t) = 

so D- t is tangentially elliptic. Use the equation 

254 



to give a loeal solution for ~(.n, with symbol l1irO + ... + 

large. Precisely, set 

rO = l1·(P - .n-1 and 
1 m 

where we sum over j < n and I a I +i+m-k = n. Define R( t) = 
~l1i~(r). The principal tangential symbol of R(.n is (Pm-.n-1, so 

R( n is a parametrix for D. We have established the following 

proposition. 

Proposition 7.45. Let D E @r(l~,E) be a tangentially elliptic 

grade-preserving differential superoperator. Then no may be selected 

sufficiently large so that (D_n-1 is approximated arbitrarily well by 

the parametrix R(.n in the operator norm as t - 00. That is, 

for t E (!, f E r T(R). 0 

Proposition 7.45 implies that 

and henee, for t<1, 

Define E(t) E CP by 

Then 

E(t) = (2ICO-lf(!R(ne-ttdt = 

= (21C0-1 f(!RH It)e- t dt It. 
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"e-tn - E(t)"_k,k ~ 

by the analyticity in t. Thus 

t-k"e(t) - e-tn"_k,k ~ 

is bounded at t - O. If k > p/2 then 11. II-k,k bounds the 

uniform norm and hence 

So it suffices to find an asymptotic expansion for (J v(E(t)). Define 

Then 

so it suffices to expand Ei(t). 

Recall that the total symbol of RH) is denoted Crj)' 

Define 

Then Ei(t) is a pseudodifferential operator with total symbol eO,t + ... 

+ en t' and ej t E S-oo for a1l t. Let Eji(t) be the operator 
0' , 

associated to ej,t. Then E~(t) is represented by a distribution kernel 

Kj, t defined by 
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Thus 

where 

Note that each ej(x,nl is tangentially smooth and is transversely 

bounded. If m is even then ej(x,nl = 0 for j odd. 

DeHne 

... 
Aj(Dl(x,nl = ej(x,nldvol(xl 

and 

Then each Aj{i>l is a signed tangential measure 

which depends on the (X,Pl, D, the tangential Riemannian metric g, but 

not on t. 

Proposition 7.46. Each Ajd>l is locally bounded. 

(x,nl E IRPXN. 

It is clear that Aj<l>lx has a sirned Borel density on r-1(xl for each x. 
"'-

So it suffices to show that the Radon-Nikodym derivative of Aj(Dl 

with respect to the standard tangential measure is bounded on any set 
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r-1(C), C compacL This derivative is of course just the function 

ej(x,n). So the problem reduces to proving that ej(x,n) is locally 

bounded. 

Recall that 

where the rj are the homogeneous parts of the total symbol of 51' 
given explicitly above, and where Pm + Pm-l +... is the total symbol 

of 5. Note further that 

k 
ej,t(x,~,n) = (2"U-1C kIee-tt d;k rj(x,(,l',n)dl'. 

k 
Since ~ rj is homogeneous of degree -m-j-km in ((,1'), it 

follows dttat ej is a smoothing operator on each leaf for any t > 0 

(though not necessarily compactly supported) and hence jIIv(ej) is 

finite, as required. 0 

This establishes the following theorem. 

Theorem 7.47 [C03]. Fix (X,F,g), an invariant transverse measure v 
and a tangential, tangentially elliptic differential operator D from E to 

E' where (X,E) and (X,E') have bounded geometry. Let 5 be the 

associated superoperator, and let JII v be the associated trace on . -W (G(X),E,u). Then for j ~ -p there is a family of signed tangential 

measures ).J~5) on X (which depend on (X,g,F,D) but not on t) and an 

asymptotic expansion 

(7.48) 

Coroll8!'Y 7.49. In the notation of 7.47, 

Proof of 7.49. Fix some t > O. Then 
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As the left hand side is independent of t, eaeh term in the summation 

whieh involves non-trivial powers of t must vanish. The remaining 

term (eorresponding to j = 0) then gives the index. D 

Coroßary 7.50. The tangential measure Aj is homogeneous of weight 

j/Zp in the eoeffieients of D. That is, 

Further, in ease m = I, then (det (a))l/ZAj(D) is a polynomial in the 

eoeffieients of D relative to x, their derivatives relative to x, and 

det-1(a), where det(a) is the leading term of the quadratie 

form. D 

Write 

(7.51) • wD(g,E) = (AO(D) - AO(D )) I dA I 

for the tangentially smooth p-form whieh eorresponds to D. Note that 

this form is meesurable but not neeessarily eontinuous transversely. 

In Chapter VIII this form will be identified for certain elassieal 

operators end this will enable us to eomplete the proof of the Index 

Theorem. 
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CHAPTBR VIII: THB INDBX THBORBM 

In this chapter we compute the index of a tan~entially elliptic 

pseudodifferential operator on a compact foliated space. 

Let X be a compact foliated space with leaves of dimension p 

and foliation bundle F which we assurne oriented and equipped with a 

tangentially smooth oriented tangential Riemannian structure g. Let D 

be a tangential. tangentially elliptic pseudodifferential operator on 
* (bundles overl X. For each leaf t the spaces Ker D t and Ker D t 

are well defined by 7.23 and are locallv finite dimensional with local 

index measure 

We define the analytic index of D to be the tangential measure 

where l ~ = l D for x E t. If D is a differential operator of 
t 

positive order m then Proposition 7.24 implies that the index measure 

l D is still well-defined. Alternatively. the operator (1 + I1I-m12D is 

in the dosure of the order zero pseudodifferential operator algebra 

and has the same tangential principal symbol and same index dass in 

the von Neumann algebra and thus may be used to replace D. 

The topological index of D is defined as chr(DlTdr(XI. where 

(The peculiar introduction of signs is explained in Atiyah-Singer III 

[ASIII]. p. 557.1. 

With these preliminaries in hand. we may state the Connes 

Index Theorem. 

Theorem 8.1. (Connes [Co3] I. Let D be a tangential. tangentially 

elliptic pseudodifferential operator on X and let )) be an invariant 
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transverse measure. Then 

Dur studv of invariant transverse measures and tangential 

cohomology enables us to reformulate Theorem 8.1 so as to avoid 

mention of transverse measures. 

Theorem 8.2. Let D be a tangential. tangentially elliptic operator on 

X. Then 

-I) 
as classes in H7 (X). 

Theorem 8.2 implies Theorem 8.1 since an invariant transverse 

measure )) corresponds uniquely to a homomorphism H~(X) _ 0:. If 

X has no invariant transverse measures then H~ (X) = 0 and so the 

statement is simply [l D] = O. 

The proof follows a well-known path; we establish Theorem 8.1 

for twisted signature operators and then argue homotopy-theoretically 

that this suffices to prove (8.1). Theorem 8.1 and the Riesz 

representation theorem (4.27) immediately imply Theorem 8.2. As an 

introduction to the techniques we first consider the de Rham and 

signa tu re operators. 

Define complex vector bundles Exk and Ek by G 

k • * • k = A (s F 0:) = s Ex· 

The de Rham operator d is defined briefly in Chapter VII: we recall 

additional detail here. Let f"dxI be a tangentially smooth k-form on 

G(X) in local coordinates; Le.. a tangentially smooth section of the 
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k bundle EG • Then exterior differentiation 

induces a natural map 

which agrees with the usual exterior derivative on each leaf GX of 

G/Xl. Thus d yields an unbounded operator on the Hilbert field 

If E is some vector then explicit computation yields 

so that the principal symbol o/d) of d is given locally by 

/8.3) 
Ir 

V E F Ir' 

The associated symbol sequence 

... --+ ---+ ... 

is an exact sequence for each E ;t 0 and hence d is a tangentially 

elliptic operator. To summarize: 

Proposition 8.4. The de Rham operator 

is a densely defined unbounded tangential. tangentially elliptic operator 

with tangential principal symbol given by 
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oldllx. E )Iv) = E "v. 

The orientation of F induces a natural bundle isomorphism 

* E k El>-k 
G - G 

which is given locally in terms of an orthonormal basis (e1"",es ) 

by *leI) = :t:eJ where land J are complementary multi-indices and the 

sign is determined by the parity of the permutation II,J). This induces 

the Hodge inner product on sections r rIEG): 

<u,v> = J u,,*vd.u. 
G(X) 

With respect to this inner product the de Rham operator has a formal 

adioint 5 given on (k+1)-forms by 

5 - I llPk+p+1*d * k+1 - - . k 

where dk denotes the restriction of d to k-forms. As * induces an 

isometry on forms. its symbol is invertible, so that 0(5) = 
:t:ol*)o(d)o(*) is also invertible. Hence 5 is a tangentially elliptic 

operator. 

The Hodae-La:pla.ce opera.tor l!. is defined by 

(8.4) 

and its restriction to E~ is denoted l!.i' 

We note that 

= l!. since d2 = 52 = 0 

so that (d + 5) is a first order tangentially elliptic operator. 

Furthermore, 
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since 

= <Id+ Ii )w. Id+ Ii 'w> 

= 1 Id+lilw 12. 

Proposition 8.5. The Hodge-Laplace operator is an essentiallv 

self -ad.ioint tangential. tangentiallv elliptic operator. 

Proof: This proposition follows from 17.211. but we prefer to give a 

more direct proof. Let I. be a leaf of GIXI. Restriet d to I. and 

consider the resulting commuting diagram 

r.,(EGII.) 
d 

r.,(EGII.) 

11 11 

'" '" d '" '" r(A «Tl)«:» r(A «Tl«:» 

1 
__ Tg 

1 
2 '" '" 2 '" '" L (1.,(8 a) ) - .. L (1.,(8 a) ) 

where a is the densitv associated to IX,g) restricted to 1.. Let TI. 

be the closure of d. Then ImlT 1.' ~ KerlT 1.) and the operator 

is a self-adjoint operator on L211..ls· all which extends the operator 

fl.11.' This implies that the restrietion of fl. to each leaf is a 

self-adjoint elliptic operator. 0 

The locallv finite-dimensional space Kerlfl.i'l. is .iust the 
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space of square-intearable harmonie forms of degree i on 

t. The local dimension of this space is well-defined up to 

equivalence. since changing the metric g on F results in a change by 

similarity. Define the Be t tim eas ure .Bi to be the tangential 

measure given by 

.B~ = local dimension of Ker(foi) I. :uKerlfo.) 
. 1 t 

where x EI.. The Betti numbers relative to some invariant transverse 

measure 1I are given by J .Bidll. 

Note that the Hodge --operator induces a natural isomorphism. 

of Hilbert fields 

Kerlfol·) = Ker(fo .) 
P-l 

and hence the Betti measures .Bi and .Bp_i coincide. Define the 

t an a e n t i alE u l er eh ara e t er ist i e to be the signed tangential 
p . 

measure ! (-l)l.Bi. If p is odd then 
1-0 

p . 

i~o(-ll.Bi = (.BO - .Bpl + (.BI - .Bp_11 + ... + (.BE..::.!. - .Bp+11 

2 2 

= 0 

since .Bi = .Bp_i· Let us assume. then. that p is even. 

Let D be the restriction of (d+/il to even forms, so that 

D: r 'T(eE~ i) _ r 'T(eE~ i + 1). Then the local trace of D t is just 

(!(-lli.Bt for x E 1.. Furthermore. D is a Dirac operator in the 

sense of Chapter VII, so that we may apply the heat equation 

argument, as folIows. 

Theorem 8.6. (Gauss-Bonnetl 

a) For any invariant transverse measure 1I, 
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b) [ I (_Ui 6i] = [Pf(K/21l')] = e'T (X) (the tangential 
1-0 

Euler class) in H;(X). 

Proof. The index of the operator D may be expressed in two ways. 

On the one hand. the local index l D is given by 
I 

l D = I(_l)i 6 x 
, 1 

more or less by definition. On the other hand. D is a first order 

tangential tangentially elliptic operator and Theorem 7.47 implies that 

where wD is a tangentlally smooth p-form which corresponds to D. 

Restriet wD(r.E) to a leaf I. Then the local index theorem of 

Atiyah-Bott-Patodi [ABP] implies that 

wD(r.E) I = Pf(K/21l') ,. 

Thus 

TMs holds for each invariant transverse measure lI. and hence 

as classes in ÜP(X). c 

Coro1lm 8.7. (Connes [Co3]) Let X be a foHated compact manifold 

with leaves of dimension 2. Let F be oriented and equipped with a 

tangentially smooth Riemannian metric. Fix some invariant transverse 
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measure v. Suppose that J Kdv > 0 (i.e., the v-average curvature of 

X is strictly positive). Then X must have a closed leaf, and in fact, 

the set of closed leaves has positive v measure. 

Proof. The Gauss-Bonnet theorem and the curvature assumption imply 

that 

Suppose that there is no generic closed leaf. Then Ker(LI I, = 0 

for v-almost every leaf, and hence J 80dv = O. By duality we have 

f82dV = O. Thus - J '}dv > 0 which is a contradiction since, 

'}dv ~ O. [J 

We move next to the signature operator. Assume that p = 2q 

is even. Then there is a natural involution t: Ex _ Ex given by t = 

(-})q*1. This decomposes EG to HG = E~CDE~, the ~ eigenspaces. 

The elliptic operator (d+&): r 1'(HG) _ r .,.(EG) anticommutes with t 

and hence restricts to an operator 

(8.8) A: r 1'(E~) _ r .,.(E~) 

given by A = (d+&)1 + . This is the tangential si aJl<lture 
r .,(EG) 

o per <I tor. The tangential principal symbol of A, is the restriction 

of the symbol of the elliptic operator (d+&) I to r .,.(E~ I,) which 

is invertible, so A is tangentially elliptic. Graded as in (8.8), A is a 

Dirac operator in '.he sense of Chapter VII. 

The invo .ion t restricts to an involution of Ker(d+ &) 5!! 

Ker(A) since t anticommutes with (d+&). The ~ eigenspace 

decomposition is simply the decomposition of Hilbert fields 

* Ker(A) 5!! Ker(A)CDKer(A ). 

Decompose Ker(A) further as 
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p 
Ker/A) = e Ker/Ai ). 

i"O 

The subspace Ker/Ak)eKerIAp_k) is t-invariant for each k, 0 ~ k ~ 

q, and there is a unitary equivalence 

given by x+tlx) ... x-tlx). Thus only the middle dimension Ker/Aq) 

contributes to the index. If U,v E Ker(Aq) CHiIX) then u"'v E 

H~IX) and for any invariant transverse measure P, f u",vdp E IR. 

This gives a natural bilinear form on KerlAq) and it is reasonable to 

think of tA as the shmature measure of this bilinear form, since 

(8.9) f l Adp = fl+l eigenspace of t)dp - fl-l eigenspace of t)dp -

:: Sign/X, p). 

If X = M foliated as one leaf then KerlAi) S! Hi/M) and SignIX.p) 

is exactly the signature of M. 

Suppose that p = 2q = 4r+2. Then t = :t:i* and so .. = -id. 

Thus * is a real transformation on KerIAq). The:t: eigenspaces of 

* (and hence of t) are con.iugate via the map 

and thus Ker(Aqt is unitarily equivalent to Ker(Aq)- and lAis the 

zero measure. The topological index also vanishes. Thus the index 

theorem holds trivially. So we restriet attention to the case p = 4r. 

Recall that Hirzebruch L-polynomials Lk are polynomials of 

degree 4k in the Pontrjagin classes which are given by the splitting 

principle as 

~L=n j . [ X] 
k k tanh x j 

The first few polynomials (in the tangential cohomology setting) are as 

folIows: 
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La = 1 

L = 1 T 
1 3P l 

Lemma 8.10. Lr(p I •..• P:) = chT(A)TdT(F a:) I p' where w I p denotes the 

component of w in dimension p. 

We omit this calculation: a proof may be found in Shanahan 

[Sh] 'S3. 

Theorem 8.11 (Hirzebruch Signature Theorem). Let X be a compact 

oriented foliated space with leaves of dimension 4r. Let Lr(pI •...• p:) 

denote the Hirzebruch L-polynomial in (}~(X). Then 

8) For any invariant transverse measure v. 

b) The index class lA of the signature operator is equal to 
T T -P 

~(Pl ..... Pr) in HT(X). 

Proof. The index of the operator A may be expressed in two ways. 

On the one hand. the local trace l D is given by 
I. 

as explained above. On the other hand. D is a first order tangential 

tangentially elliptic operator and Theorem 7.47 implies that 
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where ""Ais a tangentially smooth p-form which corresponds to A. 

Restriet ""A1g.E1 to a leaf l. Then the Iocal index theorem of 

Atiyah-Bott-Patodi [ABP] im pli es that 

Thus 

This holds for each invariant transverse measure V. and hence 

-p 
as classes in H.,.IXI. 0 

With this preparation in hand we consider the twisted signature 

operators. Let X be a compact foliated space with leaves of 

dimension p = 2q and oriented foliation bundle F. Let V be a 

tangentially smooth complex vector bundle with a tangential Hermitian 

structure and tangential connection l!.V' The bundle EX@([V carries 

a twisted de Rham differential 

given by 

. * 
where u E r .,.IA1IF ([I. vEr .,.IV), and '" is the external pairing. The 

map * acts as *lu@V) = (*u\@V. The involution t: EX - EX extends 

to a natural involution of EX@V which fixes l@V. The twisted 

differential and the involution lift to EG@V, as usual. 

Let IiV denote the formal ad.ioint of dV' Then IiV = -*dV·' 

and 
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Decompose EG@V into % eil;(enspaces with respect to t. Then the 

operator restriets to an operator 

(8.121 

called the twisted siana.ture opera.tor. 

operator in the sense of Chapter VIl. 

This is a Dirac 

Define 

Lemma 8.13. 

This is a fairly involved purely topological calculation whose 

proof we omit (cf. Shanahan [Sh] \. 

Theorem 8.14. Let X be a compact foliated space with oriented 

leaves of dimension p = 2q = 4r. Let V be a complex vector bundle 

over X. Then 

al (Twisted Signature Theorem\. For every invariant 

transverse measure v. 

JlAVdV = Jch1'(VI.2Q;t'(XldV. 

bl [l AV] = [ch1'(VI· 2Q;t'(XII p] E H~(X). 

dl The index theorem holds for twisted signature operators. 

Proof: The argument is virtually identical to the argument in Theorem 

8.11. 0 

The remaining task before us is to demonstrate how knowledge 
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of the index of twisted sig-nature operators (that is to sav. of certain 

natural tangential differential operators) implies the index theorem for 

a11 tangential pseudodifferential operators. 

following lemma. 

Webegin with the 

Lemma 8.15. Suppose that the index theorem holds for 

pseudodifferential operators of order zero. 

pseudodifferential operators of all orders. 

Then it holds for 

Proof. There is nothing to prove for operators of negative order. 

since such operators lie in the kernel of the tangential principal 

symbol map on i?O. Suppose that T is a tang-ential, tangentia11y 

elliptic pseudodifferential operator of positive order m. Let T be the 
'" associated superoperator of order 2m. Then T is tangential, 

tangentially elliptic and forma11y self-ad.ioint of order 2m, with 

Let P = n + Al-mT. 

with 

Then Proposition 7.27 implies that P E i?O 

The index theorem for P then implies the index theorem for T. 0 

We turn next to the case of a tangential, tangentia11y elliptic 

pseudodifferential operator of order zero on a compact foliated space 

X with leaves of dimension p and oriented foliation bundle F. We 

wish to reduce to the case where p is even. For this purpose we 

briefly consider the multiplicative properties of the topological and 

analytical indices. 

Suppose that Xl and X2 are compact foliated spaces as above 

and Vi' Wi are tangentia11y smooth Hermitian bundles over Xi' Let X 

= Xl XX2 and define bundles V and W over X by 
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Let Di be tangential, tangentially elliptic pseudodifferential operators 

of positive order. Hf Di are non-positive we modify as in 

Atiyah-Singer I [ASI] , p. 528-9.) Define D1l*D2 by the matrix 

Then D1l*D2 is tangential and tangentially elliptic. 

Let t ~ 0 P = ch.,ID)Td.,IX). 

Proposition 8.16. Let vi be invariant transverse measures on ~. and 

let vIXv2 be the product measure. Then 

Proof: The multiplicative property of the classical index Icf. Seeley 

[Pa]. p. 217-228) implies that 

Then 

to p x top 
t D t D 

1 2 
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as required. A similar argument holds for l D IID . 0 
1 2 

Note that we do not claim that the multiplicative property 
P 1 P 2 P 1+P 2 

holds at the level of H.r (X1)XH'T IX2) - H'T (X1XX2) since not 

every invariant transverse measure on X1XX2 is determined by product 

measures. However this i.! certainly true if X2 = M (one leaf). 

Corollary 8.17. If the index theorem 8.1 holds for an X with p even 

then it holds for p arbitrary. 

Proof: Suppose that the index theorem holds for an X with p even 

and suppose given a foliated space X with p odd. Then XXS1 is 

foliated with leaves of even dimension (p+1). Let T be the operator 

on the circle defined by 

Tei •• = { 
ei(n+l)x n ~ 0 

n < o. 

Then T = eixP+(l_P) where P: L2(Sl) _ H2(S1) is the orthogonal 

projection. Thus P and (hence) T are pseudodifferential operators of 

order zero. and 

alTIIx." = { 
E > 0 

E < 0 

so T is elliptic. A direct check shows Ker T = 0, Cok T is generated 

by constant functions, and so ind(T) = -1. The map 

KO(F X) - KO(F l' given by multiplication by the symbol of T is an 
Xxs 
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isomorphism by Bott periodicity. Thus every symbol class in 

KO(F l' has the form a(Pla(TI for some pseudodifferential operator 
Xxs 

on X. As the topological and analytical indices are multiplicative by 

(8.161, the theorem folIows. 0 

Let X be a compact foliated space with leaves of dimension p 

= 2q and F oriented. Fix an invariant transverse measure v. The 

functions 

and 

depend only upon the class of the tangential principal symbol a(D) 

and extend to IR-linear functions KOIFI@IR _IR. This is clear for 

the topological index. For the analytic index we must show that 

tD1$D2 = tD1 + tD2' 

This is immediate if one thinks of D1 $D2 as [: 1 0] Further, the 
°2 . 

two functions agree on the classes of the symbols [aIAV'] of the 

twisted signature operators. 

We note that (8.151, 18.171, and the following (8.18) together 

imply the index theorem 8.1. 

Proposition 8.18. Suppose that X is a compact foliated space with 

oriented foliation bundle F of dimension p = 2q. Then the classes 

[a(AV )] span the vector space KO(F)@IR. 

In fact we shall prove the following more general proposition 

which Atiyah [At2] refers to in the case of X foliated by a single 

leaf as the Global Bott theorem. 
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Proposition 8.19. Let X be a compact foliated space with oriented 

foliation bundle F of dimension p = 2q. For any open subset Y of X 

let F y be the restrietion of F to Y and define 

by 

91Vl = [oIAVI]. 

Then 9 is an isomorphism. 

We begin by clarifying the map 9. 

Lem.oul 8.20. If V is a tangentially smooth complex vector bundle over 

X then [oIAV)] ;: V· [oIAI] in KOIF). Thus 9 is given by 

multiplication by the symbol of the signature operator: 

91V) = V· [oIA)] 

and hence extends to a transformation 

:0 :0 
9: K IYI@IR _ K IFy l@11i! 

which is natural with respect to inclusions of subspaces and boundary 

maps. 

Proof: 

o 

:0 11: 

The twisted signature complex factors as r 7 IV)@A IF a:)' 

Lemma 8.21. Suppose that 9y is an isomorphism whenever F y is a 

trivial bundle. Then €}y is an isomorphism for a11 Y and Proposition 

8.19 holds. 

Proof: Let Y be an open subspace of X. Cover X by a finite open 
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cover Xl' .Xt ,such that each FX. is a trivial bundle. Then of course 
1 

F triviaiizes when restricted to each Yi = ynXi and on 

(YlV ... Vyi,nYi+l for each i. The maps 9Yi and 9(Yl V ... Vyi,nYi+l 
are isomorphisms by assumption. A Mayer-Vietoris argument and a 

finite induction completes the argument. 0 

In order to complete the proof of the Index Theorem 8.1 then, 

we are reduced to considering the case where X = t 2Q XN is a 

product foliation. A Mayer-Vietoris argument on t shows that we 

may reduce further to X = fR 2QXN. that is, we must show that the 

map 

is an isomorphism. 

Next we consider the diagram 

'" 2 '" K (fR Q)@K (N)@fR 

e 2 @l 
fR Q 

where adenotes the Künneth map (an isomorphism over fR). The 

diagram commutes by the naturality of e. 
demonstrate that the map 

So it suffices to 

is an isomorphism. The groups are isomorphie by the Bott periodicity 

map 8. 

Lemma 8.22. eR 2Q = 2q 8. and hence e fR2q is an isomorphism. 

The proof of this lemma involves careful consideration of the 
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Dirac operator on 1R2q and some classical representation theory. We 

omit the proof and refer the reader to Atiyah CAt2J for details. 

This completes I ne proof of Proposition 8.19 and hence the 

proof of the Index Th em 8.1. 0 
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APPENDIX A: THE o-OPERATOR 

By S. Hurder 

CONTENTS 

Al. Average Euler characteristic 

A2. The ä-Index Theorem and Riemann-Roch 

A3. Foliations by surfaces 

A4. Geometric K-theories 

A5. Examples of complex foliations of 3-manifolds 

The purpose of this Appendix is to discuss the conclusion of 

the foliation index theorem in the context of foliations whose leaves 

are two-dimensional. Such foliations provide a class of reasonably 

concrete examples, which while they are certainly not completely 

representative of the wide range of foliations to which the theorem 

applies, are sufficiently complicated to warrant special attention, and 

also have the benefit of possessing the smallest leaf dimension for 

which the leaves have interesting topology. There is another, more 

fundamental reason for studying these foliations, and that is the 

observation that given any leafwise co. -Riemannian metric on a 

two-dimensional foliation, :r, there is a corresponding complex-analytic 

structure on leaves making :r into a leafwise complex analytic 

foliation. Thus, two dimensional foliations automatically possess a 

Teichmüller space. and for each point in this space of complex 

structures, there is an associated Dirac operator along the leaves. 

The foliation index theorem then assumes the role of a Riemann-Roch 

Theorem for these complex structures. 

We begin in sAl with a discussion of the average Euler 

characteristic of Phillips-Sullivan, which is the prototype for the 

topological index character of the foliation index theorems for 

surfaces. In sA2, the index theorem is reformulated for the 

ä-operator along the leaves of a leafwise-complex foliation. The 

Teichm~'ller spaces for two-dimensional foliations are discussed in 
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'SA3, and a few remarks about their properties are liven. In 'SA4, 

some homotopy questions concerning the K-theory of the symbols of 

leafwise elliptic operators are discussed, with regard to the 

determination of a11 possible topological indices for a fixed foliation. 

Finally, 'SA5 describes some of the "standard" foliations by surfaces, 

especially of three-manifolds, and the calculation of the foliation 

indices for them. 

The reader will observe that this Appendix concentrates upon 

topological aspects of the follation index theorem and serves as an 

elaboration upon Connes' example of a foliation by complex lines on 

the four-manifold 1:/ Al X 1:/ A2 described in 'SA3. A key point of 

this example is that the meaning of the analytic index along the 

leaves can also be explicitly described in terms of functions with 

prescribed zeros-and-poles and a crowth condition. For the foliations 

we consider, such an explicit description of the analytic index is much 

harder to describe, and would take us too far afield, but must be 

considered an interesting open problem, especially with regards to the 

Riemann-Roch nature of the foliation index theorem. 

\Al. Averue JMn Cht.racteriltic 

The index theorem for the de Rham complex of a compact even 

dimensional manüold, M, yields the Chern-Gauss-Bonnet formula for its 

Euler characteristic, which is equal to the alternating sum of the 

Betti numbers of M. In a likewise fashion, it was shown in Chapter 

VIII that the foliation index theorem for the tangential de Rham 

complex of a foliated space yields an altemating sum of "Betti 

measures". When the transverse mcasure v has a special form, i.e., 

it is defined by an averaging sequence, the d-foliation index can also 

be interpreted as the v-average Euler characteristic of the leaves. 

We examine this latter concept more closely, for it provides a 

prototype for the calculation of the topological index in the general 

foliation index theorem. First, recall the integrated form of Theorem 

8.6c): 

Theorem AI.I (d-FoHation Index Theorem). Let v be a transverse 

invariant measure for a foliation Y of a foliated space X, with 
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Cv E H~(X) the associated Ruelle-Sullivan homology class of v. Let 

d be the de Rham operator on the tangential de Rham complex of Y. 

Assume the tangent bundle FX is oriented. with associated Euler form 

eT/XI. Then 

(A1.2) - J = f . 
x x 

The left-hand-side of (1.2) is interpreted in Chapter VIIlas 

the alternating sum of the v-dimensions of the L2-harmonic forms on 

the leaves of Y. To give a geometrie interpretation of the 

right-hand-side of (A1.2). we require that v be the limit of discrete 

regular measures: 

Definition Al.3. An averaui na sequence [GP] for Y is a 

sequence of compact subsets CLj I .i=1.2 •... J where each Lj is a 

v01(6L j ) 
submanifold with boundary of some leaf of Y. and _ O. 

vo1(L j ) 

(The sets CLjJ may belong to differing leaves as j varies. and we are 

assuming a Riemannian metric on FX has been chosen and fixed.) 

The sequence CLjJ is r eau l ar if the submanifolds 6Lj of X 

have bounded geometry (Le .• there is a uniform bound on the sectional 

curvatures. the injectivity radii and the second fundamental forms of 

the 6Lj ). 

For X compact. the measure vL associated to an averaging 

sequence is defined, on a tangential measure A. by the rule 

1im ___ _ 
j ... oo vo 1 (L j ) J A, 

where, if necessary, we pass to a subsequence of the CLjJ for 

which the integrals converge in a weak-* topology. The closed 

current associated to vL determines an asymptotic homology class 

denoted by CL E Hp(X;IR). 

We say a transverse invariant measure v is r euu l ar if v 
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= vL for some regular averaging sequenee C Lj 1.i=1,2, ... J. 

Not all invariant transverse mcasures arise from averaging 

sequenees, but there are many examples where they do, the primary 

ease being foliations with growth restrietions on the leaves. Choose a 

Riemannian metrie on FX. Its restrietion to a leaf LeX of 31 

defines a distanee funetion and volume form on L. Pick a base point 

x E Land let g(r,x) be the volume of the ball of radius r eentered at 

x. We say L has: 

'PO t lInomi a t aTowt h of degree ~n if lim sup g(r.x) < 00 

r_oo r n 

subex'Ponential arowth if 11m sup!. log g(r,x) = 0 
r_oo r 

no n-expo nent i a l arowt h if 11m 1 nf !. log g(r,x) = 0 
r .. oo r 

eX'Ponential arowth if 11m inf !. log g(r,x) > O. 
r_oo r 

For X eompaet, the growth type of L is independent of the 

ehoiee of metrie on FX and the basepoint x. 

For a leaf L with non-exponential growth, there is 80 sequenee 

of radii rj _ 00 for whieh the balls Lj of radius rj eentered at X 

form an averaging sequenee [PU]. In this ease, all of the sets Lj 

are eontained in the same leaf L. For X eompaet and the foliation of 

elass C2, these sets Lj ean be modified to make them regular as weIl. 

For a foliation 31 with even-dimensional leaves and a regular 

measure v, the d-Index Theorem be comes 

x(3I,v) = 11m J eT(X). 
j .. oo vol(L j ) 

L j 

By the Gauss-Bonnet theorem, 

J eT(X) = e(Lj ) + J I:j 

L j aL j 
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l 

where elLjl is the Euler characteristic of Lj and E j is a correction 

term depending on the Riemannian geometry of öLj. The assumption 

that the submanifolds C öLj ) have uniformly bounded geometry implies 

there is a uniform estimate 

I f E j I ~ K • voUöLj ). 

öL. 
J 

Therefore. in the limit we have 

(A1.41 
e (L . ) 

x(:f.lIl = 1 im __ ....:J,,--_ 
j ... oo V 01 ( L j ) 

and the right side of (A1.4) is ealled the ave raa e E u.l er 

chara.cteristic of the averaging sequence 

Phillips-Sullivan [PS] and Cantwell-Conlon [CCl] use this invariant 

of a non-compact Riemannian manifold to give examples of 

quasi-isometry types of manifolds which cannot be realized as leaves 

of foliations of a manifold X with Hp(X.IR) = O. 

Consider three examples of open 2-manifolds Icf. [PS]), whose 

metrie is defined by the given embedding in E3. Each of the 

following, with their quasi-isometry dass of metrics, can be realized 

as leaves of some foliation of some 3-manifold, but the first two 

cannot be realized (with the given quasi-isometry dass of metricsl as 

leaves in S3. 

(A1.51 Jaeob's Lad<l~r 
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The growth type of L is linear. and the average Euler characteristic 
of L is _..;.1 __ 

vol(H) 

(AI.6) Infintt.~ Jail ~'1H Window 

The growth of L is quadratic, and average Euler characteristic of L is 
2 

vol A 

I 

/~ ~ ~ /-
f I 

I I 
I ( 
I---------~___.J. 

'V L 

The growth of L is quadratic. but the average Euler characteristic is 

zero. 

The construction of the average Euler characteristic for 
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surfaees suggests that a similar geometrie interpretation ean be given 

for the topologieal index of other differential operators. For the 

ä-operator of eomplex Une foliations. this is indeed true, as diseussed 

further in s3. 

sA2. The ä-Index Theorem and Riemann-Roch 

We next examine in detail the meaning of the foliation index 

theorem for the tangential ä-operator. Let ~ be a foliation of a 

foliated spaee X and assume the leaves of ~ are complex manifolds 

whose complex strueture varies continuously in X. That is, in 

Definition 2.1 of Chapter II, we assume that foliation charts C<Px ) 

ean be chosen for whieh the composition tv0<p~l(.,n) is 

holomorphic for all n, and n 1-+ tyo<p~l(.,n) is eo~tinuous in the 

space of holomorphic maps. 

Let k be such that the dimension of the leaves of ~ is p = 
2k. 

A eontinuous veetor bundle E _ X is ho! omorph i c if for 

each leaf LeX with given complex structure, the restriction 

EIL - L is a holomorphie bundle. As before, FX is the tangent 

bundle to the leaves of ~, and this is holomorphie in the above sense. 

Let Ar,s _ X be the bundle of smooth tensors of type (r,s): 

Given a holomorphic bundle E, let Ar,s ~ E denote the (r,s)-forms with 

eoeffieients in E. Assume that E has an Hermitian inner product, and 

then set 

where Lx is the leaf of ~ through x, E I Lx is the restrietion of the 

Hermitian bundle E to Lx, and we then take the L2-seetions of E over 

Lx with respeet to a Lebesgue measure on Lx inherited from a 

Riemannian metrie on FX. Note that L2(~,EI is in general neither a 

subspaee nor a quotient of L2/X,E). the global L2-seetions of E over 

X. 
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For E a leafwise-holomorphic bundle. the leafwise o-operator 

for j: has a densely defined extension to 

which is tangentially elliptic. Let kersl§ /ill EI denote the kernel of 

An element w E kers(§ ® EI is a form whose restriction to each leaf 

L is a smooth form of type 10,s) satisfying ä(w I L) = O. Furthermore. 

for each s ~ 0, ker slä ® EI is a locally finite dimensional space over 

X (cf. Chapter n. For an invariant transverse measure v. the total 

v-density of the (O,s)-solutions w to the equation ä ® E(wl = 0 is 

dimv kersl§ ® E), and we set 

k 
L dimv kers(ä ® EI. 

8-0 

Similar arguments apply to the adjoint ä*, and with the notation of 

Chapter IV we have 

f t - dv = dim v ker(ä /ill EI - dim v ker(§* ® E) 
a ® E 

x 

Theorem A2.1 (ä-Index Theorem). Let v be an invariant transverse 

measure for a complex foliation j: of X, C v E H~ k (X;IRI the 

associated Ruelle-Sullivan homology class, and TdT(X) = TdlFX ® 0:1 

the tangential Todd class for j:. Then 

(A2.21 f t dv = <ch(§ ® E) TdTIX). Cv> 
§ ® E 

x 

The left-hand-side of IA2.21 is identified with the 

arithmetic f1enus of j: with coefficients in E. 

286 



xlo @ E, v) = 

where 

k 
L (_lli dim v Hi(:f:EI 

i-O 

EI is a loeally-finite 

dimensional spaee over X. The number dim v Hi(:f;E) measures the 

density of this eohomology group in the support of v. and generalizes 

the v-Betti numbers of the operator d. 

On the right-hand-side of IA2.21, the term eh(ä @ E) is the 

Chern eharaeter of the K-theory class determined by the eomplex 

A 0,· @ E. There is a standard simplifieation of the cup product 

ehlä @ E)TdIFX @ «:1, which yields: 

Corollary A2.3. x(o @ E,v) = <eh(E) Td.,(FX), C v >' 

Proof. Use the splitting principle and the multiplieativity of the Chern 

and Todd characters. For details, see [Sh]. 0 

Corollary A2.3 is exaetly the classical Riemann-Roch Theorem 

in the context of foliations. The arithmetical genusx:(ä @ E, v) is 

lhe v-density of the alternating sum of the dimensions of the 

ä-closed L2-forms on the leaves of:f. The right-hand side is a 

tOllologieal invariant of E, FX and CV ' For a given measure v, 

one ean hope to choose the bundle E so that x(ä @ E, v) *' 0, 

guaranteeing the existenee for v-a.e. leaf L of :f of ä-closed 

L2-forms on L with eoeffieients in E. 

sA3. Foliations ~ Surfaces (Complex Lines Of k=l) 

Let X be a eompact foliated spaee with foliation :f having 

leaves of dimension p = 2. For example, we may take X = M to be a 

smooth manifold and assume TM admits a 2-plane subbundle F. Then 

by Thurston [Th2], F is homotopie to a bundle FM which is tangent 

to a smooth foliation of M by surfaees. 

Lemma A3.1. Let:f be a two dimensional foliation of X with FX 

orientable. Then every Riemannian metrie g on FX canonieally 

determines a eontinuous eomplex strueture on the leaves of:f. That 

iso the pair l:f,gl determines a eomplex foliation of X. 
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Proof. Define a J-operator J g on FX to be rotation by +1{12 with 

respect to the given metric g and the orientation. For each leaf L. 

the structure J g I L is integrable as the leaf is two-dimensional hence 

uniquely defines a complex structure on L. Furthermore, by the 

parametrized Riemann mapping theorem [Ah], there exist foliation 

charts for ~ with each t' 0 lfJ x( • ,nI holomorphic and continuous in the 

variable n. 0 

We remark that if ~ has a given complex structure, J. then a 

metric g can be defined on FX for which Jg = J. Thus, the 

construction of Lemma 2.1 yields all possible complex structures on 

~. This suglJests the definition of the Teichmüller space of a 

2-dimensional foliation ~ of aspace X. We sa.v two metrics g and g' 

on FX are holomorphicall1! equivalent if there is a 

homeomorphism _: X _ X mapping the leaves of ~ smoothly onto 
• themselves, and _ g' is conformally equivalent to g. We say that g 

and g' are measurabl1! holomorphicall1! equivalent if there 

is a measurable automorphism _ of X mapping leaves of ~ smoothly 
• onto leaves of ~, and _ (g') is conformally equivalent to g by a 

measurable conformal factor on X. 

Definition A3.2. The (measurab I e) Tei chmü II er space T(X,~) 

(respectively, Tm(X,~)) is the set of (measurable) holomorphic 

equivalence classes [g] of metrics on FX. 

When ~ consists of one leaf. this reduces to the usual 

Teichmüller space of a surface. When ~ is defined by a fibration 

X _ Y with fibre a surface ~, let T(~) be the Teichmüller space of 

~, then T(X,~) = CO(Y,T(}:)) is infinite dimensional. The more 

interesting question is to study T(X,~) for an ergodic foliation ~. 

There are constructions of foliated manifolds, due to E. Ghys. which 

show that T(X,~) can be infinite-dimensional, even for ~ ergodic. 

As an analogue of the Phillips-Sullivan Theorem in SI, one 

can ask if given a surface ~ with complex structure J~, and given a 

compact manifold X, does there exist a foliation ~ of X and [g] E 

T(X,~) with Y. a leaf of ~ so that the complex structure induced on Y. 

bv [g] coincides with J~? The average Euler characteristic of ~ 

still provides an obstruction to solvin~ this problem. when ~ has 
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non-exponential growth type. but the additional requirement that l: 

have a prescribed complex structure should force other obstructions to 

arise. This would be especially interesting to und erstand for L of 

exponential growth-type, where no obstructions are presently known. 

Related to this is a problem posed by J. CantweIl and L. Conlon. 

which is when does there exist a metric on FX for which every leaf 

has constant negative curvature? Surprisingly. a complete solution is 

given for codimension-one. proper foliations in their preprint "Leafwise 

Hyperbolicity of Proper Foliations" /19861. 

We now turn to consideration of the ä-Index Theorem for a 

foliation by complex lines. and derive an analogue of the average 

Euler characteristic. 

Lemma A3.3. Let:f be a complex line foliation of X. Then 

(A3.4) 

Proof. The degree two component of ch1'(E)Td1'(X) is 

1 
cl(E) + - cI(FX). 0 

2 
Our goal is to give a geometric interpretation of the term 

<cl (E). C)I> in (A3.4) similar to the average Euler characteristic. 

Let x _ a;pN be the canonical bundle over the complex 

projective N-space. For large N. there exists a tangentially smooth 

map fE: X _ a;pN with f;x = E. IWe say that fE classifies E.) 

Let H C a;pN 

H2(a;pN) of x. 

and :f is also 

be a hypersurface dual to the first Chern class cl E 

For convenience. we now assume X is a Cl-manifold 

Cl. The complex structure on :f orients its leaves, 

and the complex structure on a;pN orients the normal bundle to H. A 

connection on x _ a;pN pulls back under f E to a connection on 

* E _ X. so fElc l ) = cllE) holds both for cohomolo5rV classes and on 

the level of forms. Furthermore. a Cl_perturbation of f E results in a 

CO -perturbation of the form cl (EI. 

Given a regular averaging sequence CLjJ, for each j ~ 1 

choose a Cl_perturbation f j of f E so that flL j ) is transverse to H, 

289 



and 

x E 

* f i1cl) converges 

L ~ " C 1 IR) is a J j. 

uniformly to cIIE). We say a point 

zer 0 of E if f.lL·) is positively oriented at 
J .1 

fjlx), and a po I e if the orientation is reversed. Let Z(L j ) and PILj) 

denote the corresponding set of zeros and poles in Lj. Then 

elementary geometry shows 

f IIZIL·) - IIPIL·) + E: •• J . J l 

L. 
J 

where the error term E: j is proportional to vol(aLj ). This uses that 

(aLj ) has uniformly bounded geometry. Combined with Lemma 3.3. we 

obtain: 

Proposition A3.5. Let X be a Cl-manifold and assume Y is a 

Cl-holomorphic foliation by surfaces. 

regular averaging sequence (Lj ). 

For v = v L given by a 

IIZ(L.> 
xli; @ E. v) = 1 im J _ 1im _11_P_(_L.:;;j_>_ +.!.. X(Y,v) 

j ... oo v01(L;> 2 j ... oo vo1(L j > 

= [average density Of] _ [average density Of] 
zeros of E poles of E 

+ .!.. [average EU1er] 
2 char . 

Consider the case of a foliation of a 3-manifold X by surfaces. 

Let (y l' 00" y d ) be a collection of d embedded closed curves in X 

which are transverse to Y. and (nl,oo.,nd) a collection of non-zero 

integers. This data defines a complex line bundle E _ X. agd for a 

leaf L the restriction EIL is associated to the divisor :r. n· • 
i -1 1 

(Yi"L). Let v be an invariant measure. Then Proposition A3.5 takes 

on the more precise form: 

Proposition A3.6. 
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d 
V(y.) + .!. = Y- n· . X(1'.vl. 

i = 1 1 1 2 

d 
Proof. ellE) is dual to the l-eycle l: n· . Y i· 0 

i = 1 1 

If v = VL is defined by an averaging sequenee CLj ), then 

vly i) is preeisely the limit density of (Y i f'I Lj ) in Lj , so Proposition 

A3.6 relates the v-dimension of L2-harmonie forms on the leaves of l' 

with the average density of the zeros and poles of E. This is exaetly 

what a Riemann-Roeh Theorem should do. The latitude in ehoosing E 

for a given l' means one ean often ensure that either HO(1';E), the 

L2-meromorphie funetions on the leaves of l' with order ~ l: ni • 

Y i ' or the eorresponding spaee of meromorphie l-forms HI(1';E) has 

positive v-density. This type of result is of greatest interest when 

the eomplex struetures of the leaves of l' ean be preseribed in 

advanee. as in Example A3.7 below. 

For a eomplex line foliation l' of an n-manifold X, given 

closed oriented submanifolds CVI .... 'Vd) of eodimension 2 in X 

transverse to 1', and integers Cnl .... ,nd). there is a holomorphie line 

d 
bundle E _ X eorresponding to the divisor l: n. • Vl" The 

i -1 1 
existenee of such closed transversals Vi to 1', and more generally of 

holomorphie veetor bundles E _ X, is usually hard to aseertain. 

However, there is one geometrie eontext in whieh such Vi always 

exists in multitude, the foliations given as in 12.2) of Chapter 11. We 

briefly reeall their eonstruetion. 

Let V be a eompaet oriented manifold of dimension n-2, l:g a 

surfaee of genus g, and D: r g _ DifflV) a representation of the 

fundamental group r g = 7C 1 (Y-gI- The quotient manifold 

M = (~ X V)/r g has a natural 2-dimensional foliation transverse to 

the fibres of 7C: M _ l:g. The leaves of l' are eoverings of l:g 

assoeiated to the isotropy groups of D, and inherit eomplex 

struetures from l:g. The d-index theorem for l' ean be dedueed from 

Atiyah's L2-index theorem for eoverings [At3]. For the ä-index 

theorem, this is no longer the ease. Also. note that the Teiehmiiller 

spaees of this class of foliations always has dimension at least that of 

2.g. as every metrie on Tl:g lifts to ametrie on FM. However. they 
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need not have the same dimension. and T(M,~) or T m(M,~) provide 

a very interesting geometrie "invariant" of the representation p of 

r g on Y. 

For eaeh point x E ~g' the fibre l{'-l(x) C M is a closed 

orientable transversal to~. To obtain further transversals. we assume 

the fibration M _ ~g is trivial. so there is a eommutative diagram 

Y . 

Note that the foliation ~ on ~g X Y indueed from its identifieation 

with M will not, in general, be the produet foliation. A transversal to 

~ eorresponds to a transversal to i, and the latter ean often be 

found explicitLy. 

Bxample A3.7. Consider the example deseribed by Connes in [C07]. 

Here, ~1 = a:lr 1 is a eomplex torus, as is Y = a:/r 2' for lattiees 

r 1 and r 2 in a:. Let r 1 aet by translations on a:lr 2' and form 

Connes takes V 1 = 0 X a:lr 2 and V 2 = a:lr 1 X 0 as the 

transversals in ~1 X Y. Neither V 1 nor V 2 is homotopie to a fibre 

l{'-l(x) so the a-index theorem for E assoeiated to the divisor V r V 2 

is not derivable from the L2-index theorem for eoverings. For v the 

Euelidean volume on a:lr 2' Connes remarks that 

x(a ® E, v) = density r 2 - density r l' 
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so the dimension of the space of L2-harmonic functions on almost 

every leaf a: C M with divisor a: " (VI - V 2) is governed by the 

density of the lattices r 1 and r 2' Again. this is exactly the role of 

a Riemann-Roch Theorem, where for foliations the degree of a divisor 

is replaced with the average density of the divisor. 

!A4. Geometric K-Theories 

The examples described at the end of !A3 for the a-operator 

suggest that to obtain analytical results from the foliation index 

theorem, it is useful to und erstand the possible topological indices of 

leafwise elliptic operators. In the examples above, the ],I-topological 

indices are varied by making choices of "divisors" which pair 

non-trivially with the foliation cycle C],I' As a consequence, various 

spaces of meromorphic forms are shown to be non-trivial. To obtain 

similar results for a general foliation. :f, it is useful to determine 

the range of topological indices of leafwise elliptic operators for :f. 

In this section, we briefly describe the formal "calculation" of these 

indices in terms of K-groups of foliation groupoids. In some cases, 

these abstract results can be explicitlv calculated, giving very useful 

information. The reader is referred to the literature for more detailed 

discussions. One other point is that the foliation index theorem 

equates the analytic index with the evaluation of a foliation cycle on 

a K-theory class; these evaluations can be much easier to make, than 

to fully determine the topological K-theory of the foliation. In this 

section, and in !A5, we will examine more carefully the values of the 

topological index paired with a foliation current for some classes of 

foliations. 

Recall from Definition 2.20 of Chapter 11 the ho l onomv 

aroupo i d, or araph, G(X) associated to the foliated space X. A 

point in G(X) is an equivalence class [Y xv] of paths Y: [0,1] -

X with Y(O) = x, Y(l) = Y and Y remains on the same leaf for all t. 

Two paths are identified if they have the same holonomy. G(X) is a 

topological groupoid with the multiplication defined by concatenation of 

paths. 

Also associated to :f and X is a groupoid r(X), constructed by 

Haefliger in [Hae4]. The groupoid r(X) coincides with one of the 

293 



restricted groupoids G~(X) of Chapter II. Let CU a) be a locally 

finite open cover of X by foliation charts such that U a " U 8 is 

contractible if 

diff eomorphism 

IRP X pt. 

non-empty. For each a, there is given a 

- a: U a - IRP X IRq sending the leaves of 31 U a to 

Define a transversal T = _-l(CO) X IRq) c U a a a 
for each a. By a judicious choice of the CU a ). we can assume 

the CT a) are pairwise disjoint /cf. [HS] I. Then set N = V Ta' an 

embedded open q-submanifold of X. It is an easy exercise to show 

G:IX) coincides with the Haefliger groupoid rlX) constructed from 

the foliation charts C - a: U a _ IRp+q). 

The inclusion N X N C X X X induces an inclusion of 

topological groupoids r(X) C GIX). The cofibre of the inclusion is 

modeled on the trivial groupoid RP X RP. where all pairs (x,y) are 

morphisms. One thus expects the above inclusion to be an 

equivalence, and Haefliger shows in [Hae4] that this is indeed so: 

Theorem A4.l (Haefliger). 

equivalence of categories. 

The inclusion r(X) c G(X) is a Morita 

For any topological groupoid, .tl , there is a classifying space B.tl 

of .tl structures, which is constructed using a modification of the 

Milnor join construction [Hae2.Mi]. Applying this to G(X) yields the 

space BGIX) which is fundamental for foliation K-theory Icf. Chapter 9 

[Co7]). Applying the B-construction to r(X). we obtain aspace 

Br(X) which is fundamental for the characteristic class theory of 3. 

Corollary A4.2. Let 3,X be a foliated space. The inclusion rlX) C 

G(X) induces a homotopy equivalence BrIX) :::: BG(XI. 

Thus, the topological invariants of Br(X) and BGIX) agree. 

Note the open contractible covering CU a ) of X defines a natural 

continuous map X _ BrIX). If all leaves of 3 are contractible, 

then this inclusion is a homotopy equivalence. so that the topological 

type of BGIX) is the same as X. By placing weaker restrictions on 

the topological types of the leaves of 3. one can more generally 

deduce that the inclusion is an N-equivalence on homotopy groups, 
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rHae4]. For the generic foliation. however, one expects that the 

space BG(X) will have a distinct topological type from X, probably 

more complicated. 

The space Br(X) can be studied from a "universal viewpoint" by 

introducing the Haefliger classifying spaces. For the class of 

transversally er -differentiable foliations of codimcIlsion q, Haefliger 

defines aspace Br ~ r ), and there is a universal map 

iX: Br(X) _ Br ~ r ) . 

The cohomology groups of Br ~ r) then define universal classes which 
• • pull back to Br(X) via HX). The non-triviality of (iX) is then a 

statement about both the topology of Br(X) and the inclusion iX. A 

short digression will describe the situation for COO foliations. 

Let Br q denote the universal classifying space of codimension q 

COO -foliations. (It is important to specify the transverse 

differentiability of :'f, as the topology of Br q depends strongly on 

how much differentiability is required.) The composition 

f:'f: X - Br(X) _ Br q' 

or more precisely its homotopy class, was introduced by Haefliger in 

order to "classify" the COO -foliations on a given X. The classification 

is modulo an equivalence relation which turns out to be 

concordance for X compact, and i nt earab l e homotoPlI for X 

open (cf. [Hae2]). 

For Br(X), the principal invariants are the characteristic 

classes: for a codimension q, COO -foliation there are universal classes 

(cf. [L]) 

and for given :'f on X we obtain its secondary classes via 
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We next describe how the topology of BG(XI is related to the 

topological indices of leafwise elliptic operators of 'J. For 'J a 

C1-foliation of a manifold X. the groupoid G/X) has a natural map to 

GL(q.lR) obtained by taking the Jacobian matrix of the holonomy along 

a path [Y Xy]' This induces a map 

BG(X) _ BGL(q,IR). 

which defines a rank q vector bundle E _ BG(X) whose pullback to 

X under X _ Br/X) _ BG(X) is the normal bundle to 'J. The 

E -twisted K-theory of BG/X) is defined as 

K!(BG(X)) :: K.(B(E),S(E)) 

where B(E) is the unit disc subbundle of E _ BG/X). and SIE) is 

the unit sphere bundle. 

Connes and Skandalis construct in [CS2] a map 

which they call the topologie al index map. via an essentially 

topological procedure which converts a vector bundle or unitary over 
* * BG/Xl into an idempotent or invertible element over Cr (X). Let FIX 

denote the unit cotangent bundle to 'J over X. Then there is a 

natural map of K-theories. b: K1/F ;Xl _ K ~/BG/Xl). obtained from 

the exact sequence for the pair (B(E).S/E)). If 'J admits a 

transverse invariant measure v. then there is a linear functional - v 

on KO(C;(X)) (cf. 6.23). and the composition _volndtob = Ind~. 
the topologie al ineasured index. That iso for 0 a leafwise operator 

1 * with symbol dass u = [00] E K (F 1 X). 

Connes and Skandalis also construct a direct map. 
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which they ca11 the analytic index homomorphism, by associating to an 

'* invertible u the index projection operator over Cr (X) of a zero-order 

leafwise elliptic operator whose symbol class is u. Also, Ind~ !!iI! 

111]./ 0 Inda (u) is the analytic index of this operator, calculated using the 

dimension function associated to]./. They then proved: 

Theorem A4.3 (General FoUation Index Theorem). For any foliaion '-, 

there is an equality of maps 

Note that Theorem A4.3 makes sense even when ,- possesses 

no invariant measures. If there is an invariant measure, ]./, then by 

the above remarks, the theorem implies the ]./-measured foliation 

index theorem proved in Chapters 7 and 8. Note also that this 

formulation of the index theorem shows that the possible range of the 

analytic traces of leafwise operators, with respect to a given invariant 

measure ]./, are eontained in the image of the map 111 ]./ 0 Indt : 

K~(BG(X)) _ IR. This is the meaning of the earlier statement that 

the topology of BGIX) dictates the possible analytic indices of leafwise 

operators, and motivates the study of BG(X). In fact, Connes has 

'* coruectured that this spaee has K-theory isomorphie to that of Cr(X). 

Conjecture A4.4. Suppose that a11 holonomy groups of ,- are 

torsion-free. Then Indt is an isomorphism. 

It is known that Conjecture A4.4 is true if ,- is defined by a 

free action of a simply connected solvable Lie group on X, [C07]. 

Also, for flows on the 2-torus and for certain "Reeb foliations" of 

3-manifolds, the work of Torpe [To] and Penington [Pen] shows that 

conjecture (A4.4) holds. 

Given a foliated manifold X with both FX and TX orientable, a 

natural problem, related to Conjecture A4.4, is to determine to what 

extent the composition 
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is an isomorphism. We describe three quite general results on this, 

and then show that the ä-Index Theorem also sheds some light on this 

problem in particular cases. 

Let G be a connected Lie group. A locally free action of G on 

X is a l MO S t fr e e if given g E G with fixed point x E X, either 

g = id or the germ of the action of g ne ar x is non-trivial. If ~ is 

defined bv an almost free action of G on X. then G(X) E!! X X G. If 

G is also contractible, then X _ BG(X) is a homotopy equivalence. 

Theorem A5.5 (CoDDes [Co7]). Let ~ be defined bv an almost free 

action of a simply connected solvable Lie group G on X. Then there 

* is a natural isomorphism K.(XI E!! K.(Cr(X»). 

For BP = r'G/K a locallv symmetrie space of rank one with 

negative sectional curvatures, there is a natural action of the lattice r 
on the sphere at infinity (E!! Sp-l) of the universal cover G/K. The 

manifold M = (G/K X Sp-ll/r can be identified with the unit tangent 

bundle T1B. The codimension q = (p-1) foliation of M defined in 

Chapter 11 corresponds here with the Anosov (= weak stable) foliation 

of T1B. 

Theorem A5.6 (Takai [Ta]). The index vields an isomorphism 

For B a surface of genus ~ 2, this result is due to Connes 

(Chapter 12, [C07]). 

The third result deals with the characteristic c1asses of 

COO -foliations. • Recall from above that each c1ass [z] E H (WOq) 

defines a linear functional 6. [z] on H.(XI. Connes has shown [C010] 
* that [z] also defines a linear functional on K.ICr(Xll. and these 
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* functionals are natural with respect to the map H.(X) _ R.(Cr(X)). 

From this one concludes: 

Theorem A4.7 (Connes [ColO]). Suppose there exists [zl E 
• H IWOn) and [u] E H.IXI such that !:t.. [z] ([u]) ~ O. Then [u] is 

* mapped to a non-trivial class in R.(C r lXI). 

Theorem A4.7 shows that the characteristic classes of ~ can 

* be used to prove certain classes in H.(X) inject into R.IC r (X)). 

After these generalities. we consider foliations of 3-manifolds 

with an invariant measure )) given. and study the ))-topological index. 

Ind~lu). for u E R1IX). which calculates the composition 

First, here is a general statement for such foliations. Recall that a 

simple closed curve Y in X transverse to ~ determines a complex 

line bundle Ey over ~ with divisor [Y]. Take ä along leaves and 

form ä ® Ey . then this gives a map 

and composing with Inda yields a map 

Proposition A4.8. Let ~ be a codimension-one. C1-foliation of a 

compact 3-manifold X. Assume both TX and FX are orientable. 

a) Suppose )) is an invariant transverse measure with C)) ~ 0 

in H2(X;IR), and the support of )) does not consist of isolated toral 

leaves. IA toral leaf L is isolated if no closed transverse curve to ~ 

intersects L.) Then there exists a holomorphic line bundle E _ X 

such that Ind))lä ® E) ~ 0, and thus Indlä ® E) E RO(C;(X)) is 
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non-zero. 

b) Let C)ll, ... ,)1 d) be a collection of invariant transverse measures 

such that the associated currents CC1,. .. ,Cd ) C H2(X:IR) are 

linearly independent when evaluated on closed transversals to :f. 

Then there exist holomorphic line bundles E1, ... ,Ed over X such that 
- * the elements Clndla @ Ei) i=1.. ... d) C KO(CrIX)) are linearly 

independent. 

For example. it is not hard to show that if :f has a dense 

leaf. and the currents CC1 ..... Cd ) C H2(X;IR) of part b) are 

independent. then they are independent on closed transversals. Define 

H(A) C H2IX;IR) to be the subspace spanned by the currents associated 

to the invariant measures for :f. 

Corollary A4.9. If:f has a dense leaf. then there is an inc1usion 

* H(A) C KO(Cr(X)) @ IR. 

Proof of A4.8. First assume there is a c10sed transverse curve y to 

:f which intersects the support of)l. Then )I(Y) ~ O. and we 

define E = En • y and use (A3.4) to calculate Ind)l(a @ En • y) ~ 

o for all but at most one value of n. If no such curve Y exists, 

then the support of )I must consist of compact leaves. One can show 

these leaves must be tori which are iso la ted and this contradicts the 

hypothesis that there is a non-isolated toral leaf in the support of 

)I. This proves a). The proof of b) is similar. 0 

!A5. Examples of Complex Foliations of 3-Manifolds 

The geometry of foliations on 3-manifolds has been intensively 

studied. In this section. we select four c1asses of these foliations for 

study, and consider the a-index theorem for each. LetMbea 

compact oriented Riemannian 3-manifold. Then M admits a 

non-vanishing vector field. and this vector field is homotopic to the 

normal field of some codimension one foliation of M. Moreover. M 

even has uncountably' many codimension one foliations which are 

distinct up to diffeomorphism and concordance. [Thl] . This 
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abundance of foliations on 3-manifolds makes their study especially 

appealing. 

There are exact1y two simply connected solvable Lie groups of 

dimension two. the abelian ~roup R2 and the solvable affine group on 

the line, 

A2 = { [: :-1] I x>O } C SL(2,~I. 

A locallv free action of R2 or A2 on a 3-manifold M defines a 

codimension one foliation with very special properties. The foliations 

defined by an action of R2 have been completely classified: see (A5.11 

and (A5.21 below. For 1I'1M solvable. the locally free actions of A2 on 

M have been classified by Ghys-Sergiescu [GS] and Plante [PU]: 

see (A5.41 and (A5.5) below. For 1I'1M not solvable, some restrictions 

on the possible A2-actions are known. 

Note that Connes' Theorem A4.5 applies only when ~ is 

defined by an alm ost free action of R 2 or A 2. This assumption does 

not always hold in the following examples, so we must use the 

geometry of ~ to help calculate the image of the index map. 

Throughout, M will denote a closed, oriented Riemannian 

3-manifold and ~ an oriented 2-dimensional foliation of M. 

(AS.!) Locallv-Pree R2-Actions 

Let a E SL(2,Z), which defines a düfeomorphism 

_ a: T2 _ T2. and a torus bundle over SI by setting 

Theorem AS.1 [RRW]. Suppose M admits a locally free action of R2. 

Then M is diffeomorphic to Ma for some a E SL(2,Z). 

For ~ defined by an R2-action. 1I'1M is solvable by Theorem 

A5.1, and ~ has no Reeb components. The foliated 3-manifolds with 

1I'1M solvable and no Reeb components have been completely classified 

by Plante (Theorem 4.1 of [PI2]: note that only his cases 11, 111 or V 

are possible for an R2-action). 
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For If 1 M solvable. there is also a classification of the invariant 

measures for any :f on M: 

Theorem A5.2 (Plante-Thurston). If If 1 M is solvable and :f is 

transversally oriented. then the space of foliation cycles. H(M C 

H2(M). has real dimension 1. 

For :f defined by an R2-action. this implies there is a unique 

non-trivial pro.iective class of cycles in H21MI which arise from 

invariant transverse measures. Fix such an invariant measure v. 

For the d-index theorem. evaluation on C v yields the average 

Euler characteristic of the leaves in the support of v. These leaves 

are covered by R2. hence have average Euler characteristic zero. and 

T v anihilates the class Ind(d\. 

For the operator ä. we use formula IA3.41 to construct 

holomorphic bundles over M for which T v 0 Ind(ä ® E) ~ O. The 

number of such bundles is controlled bv the per i od mappi na of 

v. This is a homomorphism Pv: H1(M;ZI _ IR defined as Pvlal 

= v(YI where Y is a simple closed curve representing the homology 

class a. The rank of its image is called the rank of (:f,v), 

denoted by r(:f). Note that 1 ~ rI:f) ~ 3. 

- * Proposition A5.3. The elements Indio ® EI E KO(Cr(XI), for E _ M 

a holomorphic line bundle, generate a subgroup with rank at least 

r(:f). 

Proof. For each a E 1f1M with P v(al ~ O. choose a simple 

closed curve Y in M representing a and transverse to:f. This is 

possible by Theorem A5.1 and the known structure of R2-actions. 

Then take E = Ey as in s3 to obtain T v 0 Indlä ® EI = 
<ch(E).c v> = v(y) = P v(y). This shows the map T v is onto the 

image of P v' 0 

It is easy to see that r(:f) = 3 if and only if :f is a foliation 

by planes. This coincides with the R2-action being free, and then one 

knows by Theorem A4.5 that 
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a ......... Ind(ä @ Ey ) 

* is an isomorphism from H2(M:Z) onto the summand of RO(C r (M)) 

* corresponding to the image of H2(M;Z) C RO(M) - RO(Cr(M)). 

(A5.2) An B2-Action on ~ Nilmanifold 

Let N3 be the nilpotent group of strict1y triangular matrices in 

GLl3.1R): 

N3 = { [g ! ~I such that a,b.c E IR } 

For each integer n>O, define a lattice subgroup 

{ [
1 p r/nl r n = g ~ ~ such that p,q,r E Z } . 

Then M = N3/r n is a compact oriented 3-manifold. and the subgroup 

R 2 = { [g ! ~ I } acts almost freely on M via left translations. Also 

note M is a circle bundle over T2, and H2(M;IR) ::: 1R2. By 

Theorem A4.5, the index map is an isomorphism, so RO(C;(M)) ::: Z3. 

The curve representing the homology class of a n -_ [gI o~ o~ I E -1M 

is transverse to ':1 and P v( a) "f:. 0 for a transverse measure v with 

Cv "f:. O. However. Ind(ä @ Ey ) cannot detect the contribution to 

RO(C;(M)) from the curve defined by a fibre of M _ T2. 

(A5.3) Foliations Without HolonoDIY 

If for every leaf L of a foliation. ':1, the holonomy along each 

closed loop in L is trivial,then we say ':1 is without holonomy. In 

codimension-one. such foliations can be effectively classified up to 
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topological equivalence. We discuss this for the case of C2-foliations. 

By Sacksteder's Theorem (cf. [L]). a codimension-one, C2-foliation 

without holonomy of a compact manifold admits a transverse invariant 

measure v whose support is a11 of M. Moreover, there is 

foliation-preserving homeomorphism between M and a model foliated 

space, X = fii X S1)/r, where r is the fundamental group of a 

compact manifold B, B is its universal cover with r acting via deck 

translations. and r acts on S 1 via a representation 

exp(2Il'ip): r _ SO(2), for p: r _ IR. The foliation of X by sheets 

B X (9) has a canonical invariant measure. de, and v corresponds 

to d9 under the homeomorphism. Since the index invariants are 

topologieal. in this case we can assume that M is one of these 

models. For a 3-manifold this implies B = ~g for Lg a surface of 

genus g ~ 1. The case g = 1 is a special case of examples (A5.}) 

above. 

Let Adenote the abelian subgroup of IR which is the image of 

p. Denote by r(:T) the rank of A. It is an easy geometrie al 

exercise to see that the group A agrees with the image of the 

evaluation map [d6]: H1 (M;ZI _ IR. Moreover. there exists simple 

closed curves (Y1, .... Y r ) in M transverse to :T for which 

(Pv(Yi)) yields a Z-basis for r. Form the holomorphic bundles (Ei) 

corresponding to the (Y i)' then the set Clnd(ä 8 Ei)) generates a 
... 

free subgroup of rank r in KO(Cr(M)). Since H2(BG(M);IR) has rank r. 

this implies 

Proposition A5.4. The index map 

is a monomorphism. 

These foliations have been analyzed in further detail by 

Natsume [N] where he shows that this map is also a surjection. 

(A5.4) Solvable Group Actions 

The loca11y free actions of A2 on 3-manifolds has been studied 
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by Ghys-Sergiescu [GS] and Ghys [Gh]: 

Theorem A5.5 [Gh]. Let 1{1M be solvable and suppose A2 acts on M. 

Then M is diffeomorphic to a torus bundle Ma over SI. and the 

monodromy map a E SL(2,1R) has two distinct real eigenvalues. 

Theorem A5.6 [Gh]. Suppose A2 acts locally freely on M and 

preserves a smooth volume form. Then M is diffeomorphic to 

SL(2.1R)/r for some cocompact lattice in the universal covering group 

~. and the action of A2 on M is via left translations. 

Proposition A5.7 [Gh]. Suppose H1 (M) = 0 and A 2 acts locally freely 

on M. Then the action preserves a smooth volume form on M. 

Let us describe the foliation on MO = T2 X IR/ (J a' Let v E 

1R2 be an eigenvector with eigenvalue ). > 0. The foliation of 1R3 

by planes parallel to the span of C (~ X 01. (Ö X 1)) is invariant 

und er the covering transformations of 1R3 _ Ma, so descends to a 

foliation :T}. on Ma. When}. = 1, the R2-action on 1R3 defining the 

foliation there descends to an R2 action on Ma, defining :T}.. When 

X. ~ 1. the leaves of :T}. are defined by an action of A2 on Ma. 

For A 2 -actions on M with I{ 1 M not solvable, it seems 

reasonable to conjecture they must have the form given in Theorem 

A5.6. 

If the action of A2 preserves a volume form on M3, then :T is 

transversally affine [GS], so there can be no invariant measures for 

:T. In this case Theorem 8.6 of Chapter VIII reveals no information 
* about KO(Cr(M)). However. one has Connes' Theorem A4.5 since the 

A2-action is almost free. To give an illustration, let r c SL(2.1R) 

be a cocompact lattice, and set M = SL(2,1R)/r. The group A 2 

acts via left translations and preserves a smooth volume form on M. 

Then G(M) 9!: M X A2. Kb(BG(M)) 9!: KO(M) and 

Ind: Kb(BG(M)) __ KO(C;(M)) is an isomorphism. Note the foliation on 

M admits 2g closed transversals Cyl .... 'y2g) which span H1(M). 

Form the corresponding bundles Ei __ M. and consider the classes 
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It is natural to ask whether these 

classes are linearly independent. and for a geometrie proof if so. 

(A5.5) Foliations With MI Leaves Proper 

A leaf L C M is proper if it is loeally closed in M. ~ is 

proper if every leaf is proper. The geometrie theory of 

eodimension-one proper foliations is highly developed (cf. [CC2] , 

[HHi]). We reeall a few general facts relevant to our diseussion. 

Theorem A5.S. Let ~ be a proper foliation of arbitrary co dimension. 

Then the quotient measure spaee M/~, endowed with the Lebesgue 

measure from M, is a standard Borel spaee. 

Corollary A5.9. Let ~ be a proper foliation of arbitrary eodimension. 

Then an..v ergo die invariant transverse measure for ~ with finite total 

mass is supported on a eompaet leaf. 

Theorem A5.10. For a eodimension one proper foliation ~, all leaves 

of ~ have polvnomial growth, and the closure of eaeh leaf of ~ 

eontains a eompaet leaf. 

Let ~ be a proper eodimension-one foliation of M3. Given a 

transverse invariant measure lI, we ean assurne without loss of 

generality that the support of 1I is a eompaet leaf L. If L has genus 

~2, then there exists a closed transversal Y whieh interseets L, so 

T 1I 0 Ind(ä ® En • yl t:. 0 for all but at most one value of n. Thus, 

the class [L] E H2(M:Z) eorresponds to a non-trivial class Ind(ä ® 
* En • y) E KO(C r (MI). If L is a 2-torus. then it is diffieult to tell 

whether the homology class of L is non-zero, and if so, wh ether it 
* generates a non-tero class in KO(Cr(M)l. 

eriterion whieh vields an answer. 

There is a geometrie 

Theorem A5.11 (Rumler-Sullivan). Suppose M admits ametrie for 

whieh eaeh leaf of ~ is a minimal surfaee. Then every eompaet leaf 

of ~ has a closed transversal whieh interseets it. 
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Corollary A5.12. Suppose:f is a proper and minimal foliation. For 

each ergodie invariant transverse measure v. there is a holomorphic 

bundle Ev - M such that Ind/ä ® Ev) E KO(C;(M)I is non-zero, 

and Indv(ä ® Ev) "#. o. 

We cannot conclude from Corollarv A5.12 that the elements 

C Ind(ä ® E v) I v ergo die ) are independent. (Consider the product 

foliation Lg X SI.) However. if M has ametrie for which every leaf 

is geodesie submanifold, then there are as many independent classes in 
* KO(Cr(M)) as there are independent currents C v E H2/M;IR). 

The Reeb foliation of S3 is another relevant example of a 
* proper foliation. It is not minimal. and KO(C r (M)) :!! Z so the tor al 

leaf does not contribute /cf. [Pen] and [Toll. 

(A5.6) Foliations With Non-Zero Godbillon-Vey Class 

There 

foliations (of 

E H3(M;IR). 

is exactlv one characteristic class for codimension-one 

differentiability at least C2), the Godbillon-Vey class GV 

Recall from % A4 that GV defines linear funct.ionals on 
* both Ka(MI and Ka/Cr(MI), and these functionals agree under the map 

* * Ka/MI --+ Ka/Cr(MI). /We remark that the map GV: Ka(Cr(M)) --+ IR 

is no t natural -- it depends upon the choice of a smooth dense 

subalgebra of C;(MI.I If GV "#. 0 in H3(MI, then there is a class [u] 

* E Ka/Cr/MI) on which GV is non-trivial. From this we conclude that 

the composition 

is injective. 

* The information on K1 (C r (M)I obtained from GV is about all 

one knows for these foliations :f a on M, which underlines the need 

for bett er understanding of how the geometry of a foliation is related 
* to the analvtic invariants in KO(C r (M)). 
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APPBNDlX B: L2 HARMONIC FORMS ON NON-COMPACT MANIFOLDS 

By Calvin C. Moore. Claude Sehoehet. 

and Robert J. Zimmer 

lf M is a eompaet oriented manifold then the Hodge theorem 

supplies a unique harmonie form associated to eaeh de Rham 

eohomology class of M. If the eompaetness assumption is dropped 

then the situation beeomes eonsiderably more sensitive. In this 

appendix we demonstrate how to use the index theorem for foliated 

spaees to produee L2 harmonie forms on the leaves of eertain foliated 

spaees. 

We begin by reealling the Hirzebrueh signa tu re theorem. If M 

is a eompaet oriented manifold of dimension 4r then its signature is 

defined to be the signature of the bilinear form on H2r(M) given by 

(x.y) = f MXvy. 

Reeall that there is a signature operator A (cf. Chapter VIIII. and the 

signature of the manifold. Sign(M). is the Fredholm index of this 

operator. If M has positive signature then H2r(M) must be non-trivial 

and must eontain classes represented by harmonie forms. (An easy 

special ease: take M4r = o:p2r. Then Sign(M) = 1. H2r(M) = IR and 

so o:p2r has harmonie 2r-forms.) 

Let X denote a eompaet metrizable folia ted spaee with leaves 

of dimension 4r and oriented foliation bundle F. Then there is a 

signature operator A = CA R.} with loeal traee denoted here by a = 
4r( Ca R.} and assoeiated partial Chern eharaeter [al E Hr XI. For 

eaeh invariant transverse measure v we define the signature of X by 

Sign(X.v) = <[a].[C v]>' 

where Cv is the Ruelle-Sullivan eurrent assoeiated to v. This is 

independent of the metrie chosen but of course does depend upon v. 
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The foliated spaee version of the signature theorem states that [al = 

[Lr ], where Lr is the Hirzebrueh L-polynomial in the tangential 

Pontdagin classes of F. If Sign(X,v) > 0 then there are 

v-non-trivial L2 harmonie 2r-forms on X (that is to say, there are 

non-zero L2 harmonie 2r-forms on some of the leaves of X, and the 

support of v is positive on the union of these leaves.). 

Here is our first result. 

Theorem 81. Suppose that X is a eompaet oriented foliated spaee 

with leaves of dimension 4. Assume that X has a tangential 

Riemannian strueture so that eaeh leaf is isometrie to the eomplex 

2-disk 8 2 (with its Poinear~ metrie). Let v be an invariant 

transverse measure on X. Then Sign(X,v) > O. 

Corollary 82. The spaee X eannot be written as a produet of foliated 

spaees. 

Corollary 82 also follows from the (signifieantly more general) 

assertions of [Z3]. 

Corollary fuI !M proof) 83. 

harmonie 2-forms. 

The spaee 8 2 has non-trivial L2 

Remark. It may be enough to assume that eaeh leaf of X is 

quasi-isometrie to 8 2. 

Dur proof of 81 is somewhat round-about. First we prove 81 

in a very special ease in the setting of automorphie forms. Then we 

prove the corollaries. Finally we deduee the general ease of 81 from 

Corollary 83. The foliated spaees index theorem is used twiee, in 

different direetions. 

Proof. Consider the following special ease. Let G be the group of 

holomorphie automorphisms of 8 2, let r be a eoeompaet torsionfree 

lattiee in G, and let K be a maximal eompaet subgroup of G. Then 

8 2 is isometrie to the homogeneous spaee G/K. The quotient spaee 

8 2/r is a eompaet eomplex manifold of real dimension 4. We assume 
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that it is oriented. The lattice r may be chosen so that 

Sign(B2 Ir) is strictly positive; we assume this to be the case. 

Let S be a smooth manifold upon which r acts without fixed 

points and suppose that S has a finite r -invariant measure J-l. (For 

instance, take S = Glr' for some suitable lattice r'.) Define an 

action of r on 8 2XS by 

Ib,slY = (hY .SY) 

and let 

denote the resulting orbit space. Then X is a compact space foliated 

by the images of the various maps 

so each leaf is isometrie to 8 2. There is a natural projection 

given by sending (b,sl to the image of b under the map 8 2 - 8 2 Ir. 

The restriction of 7( to each leaf t is a covering map 

t - 8 2 Ir. The tangent bundle F to the foliated space is simply the 

pullback of the tangent bundle of (the manifoldl 8 2 Ir by 7(. 

Let us compare the signature theorems on X and on 8 2 Ir. 

The Hirzebruch signature theorem (in this low-dimensional situation) 

reads 

where dvol is the volume form on 8 2 Ir and PI is the first Pontrjagin 

class. The Connes signature theorem applied to the signature operator 

A with respect to the invariant transverse measure )) corresponding 

to the invariant measure J-l on S reads 
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As F = ,/(T(B2/r) and PI pro.ieets to pI under the map from de 

Rham to tangential eohomology, we have 

= Sign(X,v) 

so that 

Sign(X, v) = Sign(B2 Ir) > o. 

Thus Sign(X,v) is striet1y positive, and in faet is a positive integer (if 

we properly normalize IJ. originaILy). This proves the theorem for this 

partieular c1ass of foliated spaees. 

Next we establish Corollary B3. By definition of Sign(X,v) we 

see that 

in our example above. Now eaeh leaf I. is isometrie to B2 and the 

measure al. is the loeal traee of the signature operator on B2, so that 

in this example the measure al. realLy does not depend upon 1.. As 

we see that Ker(A 1.) must be non-trivial for some leaves 1.; thus the 

spaee B2 must have non-trivial L2 harmonie 2-forms. This proves 

Corollary B3. 

We turn next to the general ease of Theorem BI. Let X be a 

eompaet folia ted spaee as in the statement of the theorem. Then the 

loeal traee a = Ca 1.) of the signature operator is independent of the 
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leaf 1.. Thus 

by our earlier argument. AppLy the foliation index theorem again (in 

the opposite directionl and we see that 

which implies that the c1ass [pI (F*I] *' 0 in Hi(X). 

Finally. X cannot split as a product of foliated spaces since 

that would imply that Sign(X. vI = O. This completes the proof of BI. 

B2, and B3. 0 

In order to generalize, one need only look at those properties 

of B2 which were actually used in the proof. The key fact was that 

there was a lattice group r such that B2 - B2 Ir was 

well-behaved, and such that B2 Ir was a compact manifold with 

positive signature. 

Definition 84. A Cliffor<!::Klein form of a connected and simply 

connected Riemannian manifold B is a Riemannian manifold B' whose 

universal Riemannian covering is isomorphie to B. 

A. Borel [Bor] has shown that a simply connected Riemannian 

symmetrie space B always has a compact Clifford-Klein form. Let IB 

be the collection of spaces which are finite products of irreducible 

symmetrie domains whose compact counterparts are 

U(p+2r)/(U(p)XU(2rl), 

SO(4k+21/(SO(4klxSO(2)), 

The space B2 is in IB since B2 is associated to the space 
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U(3)/(U(1)XU(2)) :! a; p2. 

If B is a simply eonneeted Riemannian symmetrie spaee then 

Sign(ß') = 0 unless B E (8. If B E (8 then Sign(B');.. 1, by Borel 

[Bor. 'S3]. This is all that we need. 

Theorem 85. Let X be a eompaet oriented foliated spaee with leaves 

of dimension p. Suppose that X has a tangential Riemannian strueture 

sueh that eaeh leaf is isometrie to some fixed B E (8. Then 

Sign(X,)/) > 0 for eaeh invariant transverse measure )/. 

Corollary 86. If B E (8 is a manifold of dimension 4r, then B has 

non-trivial L 2 harmonie 2r-forms. 

We omit the proof, whieh is essentially the same as the special 

ease B = B2. 

We turn next to the use of the Gauss-Bonnet theorem. Reeall 

that if X is a eompaet oriented foliated spaee with leaves of 

dimension 2q then the index theorem applied to the de Rham operator 

Yields 

* in H.r(X), where X is the alternating sum of the Betti measures (8.6). 

Given an invariant transverse measure )/. the theorem reads 

where 

xIX, v) = J xdv 

is the tangential Euler eharaeteristie of (X. )/). 

Suppose that G is a semisimple Lie group with maximal eompaet 

subgroup K and torsionfree lattiee r. Let S be some eompaet 

smooth manifold upon whieh r aets without fixed points and let J..t be 

a finite r-invariant measure on S. Let B = G/K and define 
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x = (SXS)/r (where r aets diagonaUy). Then X is a foliated manifold 

with leaves eorresponding to the image of SX{SJ. The spaee Sir 

is a eompaet smooth manifold and eaeh leaf I is a eovering spaee 

for Sir. The spaee X has an invariant transverse measure )I 

eorresponding to the measure u on the global transversal S. For 

instanee, if G = PSL(2,1R) then S is the upper half plane Hand X is 

foliated by eopies of H. (Note that H has eonstant negative 

eurvature- it is homeomorphie but not isometrie to a:.) 

The Euler eharaeteristie of Sir is given by the elassieal 

Gauss-Sonnet theorem: 

x(S/r) = f K/21C dvol 

where K is the eurvature form on Sir and dvol is the volume form 

on Sir. 

Specialize to the ease where eaeh leaf has dimension 2. The 

Setti measure 80 is alwavs zero sinee there are no L2 harmonie 

functions on non-eompaet manifolds. Duality implies that 8 2 = O. 

Thus the foliation Gauss-Bonnet theorem reduees to 

where K7" is the Gauss eurvature along the leaves. Arguing just as in 

the proof of the special ease of Theorem B1, we see that 

Assume that the surfaee Sir has genus greater than 2. Then 

x(S/r) is negative and henee the Betti measure 8 1 is strietly 

positive. Sinee leaves have dimension 2. we see that 

f Ker(del)(1_forms) > O. 

In our example we are again integrating a eonstant funetion. Thus on 

the generie leaf I = G/K there are non-trivial L2 harmonie 1-forms. 

If we eontinue as in the study of the signature operator. we 
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can obtain the following theorem. 

Theorem 87. Let X be a compact oriented foliated spaee with 

tangential Riemannian strueture sueh that eaeh leaf is isometrie to the 

upper half plane. Let)) be an invariant transverse measure. Then 

the tangential Euler eharaeteristiex(X.))) is strietly positive and X 

has non-trivial L2 harmonie I-forms. 

Remark. If the leaves have dimension greater than 2 then .81 does 

not eorrespond so neatly to the Euler eharaeteristie. For example, if 

the leaves have dimension 4 and x(8/r) < 0 then 

so that 

As the left hand side must be non-negative, this implies that the 

integral of either .81 or .83 land henee both of them, by duality) must 

be strietly positive. Thus there are L2 harmonie 1 and 3-forms. 
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APPBNDIX C: POSITIVB SCALAR CURVATURB 

ALONG THB LBAVBS 

Bv Robert J. Zimmer 

Mikhael Gromov and Blaine Lawson. in their classic paper 

[GL], use Dirac operators with coefficients in appropriate bundles and 

associated topological invariants to investigate whether or not a given 

compact non-simply connected manifold can support ametrie of 

positive scalar curvature. In this appendix we consider the analogous 

problem for foliated spaces. We use appropriate tangential Dirac 

operators to investigate the existence of a tangential Riemannian 

metric with positive scalar curvature along the leaves of a compact 
'" folia ted space. Gromov-Lawson use the A-genus and the 

Atiyah-Singer index theorem; we shall use the tangential A-genus and 

the Connes index theorem. 

Let M be a compact oriented manifold of dimension p = 2d 

with associated Hirzebruch A-class. AlM) E Heven(M.fR). a 

polynomial in the Pontrjagin classes. If M is a spin manifold. then 

there are the associated bundles of half-spinors S±(M). and an 

associated Dirac operator 

The Ativah-Singer theorem implies that index(O+) vanishes unless p is 

divisible bv 4. and in that case 

'" = A[M] 

A A ~ ...... 

where A [M] is the A-genus of M. i.e.. A [M] = <A(M), [M] >. If 

E is any Hermitian bundle over M (with a unitary connection) then, 

following Gromov-Lawson [GL]. SIM)®E is called a twisted spin 

b und I e over M. Associated to this bundle there is also an elliptic 

operator called the twisted Dirac operator 0+. The 
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Atiyah-Singer theorem now implies that 

Suppose now that X is a eompaet foliated spaee with oriented 

foliation bundle Fand invariant transverse measure)l. Suppose 

further that F ia a spin foHation, i.e., F has a spin strueture. Then 

there is an assoeiated bundle of spinors and for eaeh leaf I. an 

assoeiated Dirae operator D; on the leaf and henee a tangentially 

elliptie operator D+ = CD;). Then by Connes' theorem, 

where [C)ll is the homology class of the Ruelle-SuIlivan eurrent 

assoeiated tO)l. Define 

,. 
the tangeJltial A-genus oj X with respeet to the invariant 

transverse measure)l. Note that if ker D I. = 0 as an unbounded 

operator on L 2(1.) for )I-a.e. 1., then A)I [Xl = o. 
Choose some tangential Riemannian metrie on X and let I( 

denote the sealar eurvature along the leaves. We say that the metrie 

has positive scalar curvature on the leaj I. if I(?; 0 

on I. and if I( > 0 at some point of 1.. If this is so, then by 

Lichnerowiez's eomputations, ker D~ = 0, and sinee we are in L2 and 

DI. is formally self-adjoint, ker DI. = o. Thus: 

Proposition Cl. Let X be a eompaet foliated spaee with foliation 

bundle F with a given spin structure, and let v be an invariant 

transverse measure. If there exist8 ametrie on X whieh has positive 

scalar eurvature alon, )I-a.e. leaf, then A)I [Xl = o. 

Now suppose that B is an Hermitian bundle on X with a unitary 

tangential eonnection. For any leaf I, let B, be the restrietion of 

B to I. Then there is a twisted spin bundle S(F)8B on X, and a 
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twisted Dirac operator 0+ = CD;). 

implies: 

Once again. Connes' theorem 

+ ~ 

Thus if ker(D ) = O. then <chT(E)AT(F). [CvJ> = O. 

For each leaf 1.. the equation 

holds. where V is a certain first order tangential operator. and Ro is 

described aB in [GL. Theorem 1.3]. in terms of the Clifford 

multiplication and the tangential curvature tensor of E t. An 

argument as in [GL. Theorem 1.3] Yields the following proposition. 

Propo!ition C3. 

then ker 01. = O. 

In particular. this would yield vanishing of 

Definition C4. Call a manifold M expandab l e if ror each r. there 

is a smooth embedding of the Euclidean ball 

(where M is the universal cover of M) such that 

for all v E TBr . 

Bxample CS. The torus Tn is expandable. 

Proposition C6 (Gromov-Lawson). 

1) A compact solvmanifold is expandable. 
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2) A manifold of nonpositive curvature 1s expandable. 

Definition C7 (slicht modification of [GL]). A compact manifold M of 

dimension n is enlargeable if for each c > 0 there is a finite 

coverinr M' - M and a c-contractinr map M' - Sn of non-zero 

derree. 

Proposition ca. Let M be a compact expandable manifold and suppose 

that 7C 1 (M) is residually finite. Then M is enlarreable. 

Theorem C9 (Gromov-Lawson). Suppose that M is an enlargeable 

manifold of even dimension and suppose that some finite cover of M is 

a spin manifold. Then M has no metric of positive scalar curvature. 

Corol1m ClO. No compact solvmanifold and no manifold of 

non-positive curvature with a finite spin covering supports a metric of 

positive scalar curvature. 

We move to the context of foliated spaces. 

Theorem CU. Let M be a compact enlargeable manifold of even 

dimension with a finite spin coverinr M'. Let 7C 1 (M) act on aspace 

Y with an invariant measure ]I (not necessarily smooth). Form the 

associated foliated bundle over M 

so that each leaf is of the form M/(subgroup of 7C 1(M)). Then there 

is no tanrential Riemannian metric on the foliated space X such that 

every leaf has everywhere positive scalar curvature. 

CoroJlary C12. For a foliated bundle over any compact solvmanifold or 

over any manifold of non-positive curvature with a finite spin cover, 

the result holds. 

Proof. For the solvmanifold case in odd dimension, cross with SI with 
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the foliation lleaf)XS1 over solvmanifolds. 0 

Proof or Theorem CU. Suppose that there were such a metric. Let 

o < Ko ~ min K on almost all leaves. Passing to finite covers yields 

the diagram 

y - x' - X 

01 1 
M' - M 

with a c-contracting map f: M' - S2n of non-zero degree, where 

c2 < K 0/ a and a depends upon the dimension of M and data on a 

fixed Hermitian bundle Eo - S2n with cn/Eo) ;t O. Proposition C3 

and computation as in Proposition 3.1 of [GL] imply that 

Since 

•• T 
o f (cn(Eo)) + 1 

(n-1)! 

A 

and A v [X] = 0 by Proposition Cl. it follows that 

Since 

f r*1c~/Eo));t O. 
s2n 

• we use the basic computation that <0 w. [C v ]> ;t 0 for foliated 

bundles, where f w ;t O. This is a contradiction. 0 

Gromov-Lawson show [Cor. A] that any metric of non-negative 

scalar curvature on the torus Tn is flat. That suggests the following 

conjectures. 
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Con,jectures C13. 

1) For foliations over Tn, K ~ 0 along the leaves implies that 

K = 0 along the leaves. 

21 (strongerl If K ~ 0 then the leaves are Ricci fIat, or even 

31 (still stronger) If K ~ 0 then the leaves are flat. 

Remark C14. If M is a manifold with non-negative scalar curvature 

and with K > 0 at one point of M. then Kazdan and Warner have 

shown [KW] that there is a conformal change in the metric of M 

such that K > 0 everywhere on M. Suppose that X is a compact 

foliated space and suppose that X has positive scalar curvature along 

the leaves. Is it true that the metric on X may be altered so that 

K > 0 everywhere? This may be done one leaf at a time; the 

difficulty lies in making the change continuous transversely. 
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