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PREFACRE

This book grew out of lectures and the lecture notes generated
therefrom by the first named author at UC Berkeley in 1980 and by
the second named author at UCLA, also in 1980. We were motivated
to develop these notes more fully by the urgings of our colleagues and
friends and by the desire to make the general subject and the work of
Alain Connes in particular more readily accessible to the mathematical
public. = The book develops a variety of aspects of analysis and
geometry on foliated spaces which should be useful in many contexts.
These strands are then brought together to provide a context and to
expose Connes' index theorem for foliated spaces [Co3], a theorem
which asserts the equality of the analytic and the topological index
{two real numbers) which are associated to a tangentially elliptic
operator. The exposition, we believe, serves an additional purpose of
preparing the way towards the more general index theorem of Connes
and Skandalis [CS]. This index theorem describes the abstract index
class in KO(C:(G(M))), the index group of the C’—algebra of the
foliated space, and is necessarily substantially more abstract, while the
tools used here are relatively elementary and straightforward, and are
based on the heat equation method.

We must thank several people who have aided us in the
preparation of this book. The origins of this book are embedded in
lectures and seminars at Berkeley and UCLA (respectively) and we
wish to acknowledge the patience and assistance of our colleagues
there, particularly Bill Arveson, Ed Effros, Marc Rieffel and Masamichi
Takesaki. More recently, we have benefitted from conversations and
help from Ron Douglas, Peter Gilkey, Jane Hawkins, Steve Hurder,
Jerry Kaminker, John Roe, Jon Rosenberg, Bert Schreiber, George
Skandalis, Michael Taylor, and Bob Zimmer.

We owe a profound debt to Alain Connes, whose work on the
index theorem aroused our own interest in the subject. This work
would not exist had we not been so stimulated by his results to try to
understand them better.
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INTRODUCTION

Global analvsis has as its primarv focus the interplay between
the local analysis and the global geometry and topology of a manifold.
This is seen classically in the Gauss-Bonnet theorem and its
generalizations. which culminate in the Ativah-Singer Index Theorem
[AS1] which places constraints on the solutions of elliptic systems of
partial differential equations in terms of the Fredholm index of the
associated elliptic operator and characteristic differential forms which
are related to global topoiogical properties of the manifold.

The Ativah-Singer Index Theorem has been generalized in
several directions, notably by Ativah-Singer to an index theorem for
families [AS4]. The typical setting here is given by a family of
elliptic operators P = CPbZ} on the total space of a fibre bundle
F— M — B, where P, is defined on the Hilbert space
L2(p°1(b).dvol(FH. In this case there is an abstract index class
ind(P) € KO(B). Once the problem is properly formulated it turns out
that no further deep analytic information is needed in order to
identify the class. These theorems and their equivariant counterparts
have been enormously useful in topology, geometry, physics, and in
representation theory.

A smooth manifold M"™ with an integrable p-dimensional
subbundle F of its tangent bundle TM may be partitioned into
p-dimensional manifolds called i eaves such that the restriction of F
to the leaf is just the tangent bundle of the leaf. This structure is
called a foliation of M. Locally a foliation has the form RPXN,
with leaves of the form RPXn3. Locally, then, a foliation is a fibre
bundle. However the same leaf may pass through a given coordinate
patch infinitely often. So globally the situation is much more
complicated.

Foliations arise in the study of flows and dynamics, in group
representations, automorphic forms. groups acting on spaces
{continuously or even measurably), and in situations not easily modeled
in classical algebraic topolozv. For instance. a diffeomorphism acting
ergodically on a manifold M yields a 1-dimensional foliation on MXR

with each leaf dense. The space of leaves of a foliation in these



cases is not decent topologically (every point is dense in the example
above) or even measure-theoretically (the space may not be a standard
Borel space). Foliations carry interesting differential operators, such
as signature operators along the leaves. Following the Atiyah-Singer
pattern. one might hope that there would be an index class of the

type
ind(P) = Average ind(Px).

There are two difficulties. First of all, leaves of compact foliations
need not be compact, so an elliptic operator on a leaf may well have
infinite dimensional kernel or cokernel, and thus "ind(P,)" makes no
sense. This problem aside, the fact that the space of leaves may not
be even a standard Borel space suggests strongly that there is no way
to average over it. There was thus no analytic index to try to
compute for foliations.

Alain Connes saw his way through these difficulties. He
realized that the "space of leaves” of a foliation should be a
non-commutative space -- that is, a C'-algebra C:(G(M)). In the
case of a foliated fibre bundle this alzebra is stably isomorphic to the
algebra of continuous functions on the base space. This suggests
KO(C:(G(M))) as a home for an abstract index ind(P) for tangentially
elliptic operators. [Subsequently Connes and Skandalis proved [CS]
an abstract index theorem which identifies this class.]

Next Connes realized that in the fibre bundle case there is an
invariant transverse measure » which corresponds to the volume
measure on B. So we must assume given some invariant transverse
measure in general. [These may not exist. If one exists it may not
be unique up to scale.] An invariant transverse measure » gives

rise to a trace ¢, on C:(G(M)) and thus a real number
indp(P) = iy(ind(P)) €R
which Connes declared to be the analytic index. [Actually we

are cheating here; the most basic definition of the analytic index is in

terms of locally traceable operators as we shall explain below and in



Chapters I and IV.] With an analytic index to compute, Connes

computed it.

Connes Index Theorem. Let M be a compact smooth manifold with an
oriented foliation and let ¥ be an invariant transverse measure with
associated Ruelle-Sullivan current Cv' Let P be a tangentially

ellintic pseudodifferential operator. Then
indy(P) = <ch(P)Td(M),[Cy]>.

Connes' theorem is very satisfving and its proof involves a tour
of many areas of modern mathematics. The authors decided to expose
this theorem and to use it as a centerpiece to discuss this region of
mathematics. Along the way we realized that the setting of
foliated spaces (local picture RPXN with N not necessarily
Euclidean) was at once simpler pedagogically and yielded a somewhat
more general theorem, since foliated spaces which are not manifolds
occur with some frequency.

The local picture of a foliated space is simply a space of the
form RPXN, where we regard sets of the form RPX{n} as leaves

and N is a transversal.

N

To such a space is canonically associated a p-plane vector bundle

F with F(t ) = T(RP). The global picture of a foliated space X
RPN n

is somewhat more complex. We stipulate that X be a separable

metrizable space with coordinate patches Ux = IRprx and

continuous change of coordinate maps of the form
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which are smooth along the leaves, in the sense that a set in Uy of
the form RPXn is sent to a set of the form RPXy(n) by a smooth
map. This guarantees that the leaves in each coordinate patch
coalesce to form leaves £ in X which are smooth p-manifolds. The

bundles FIU- coalesce to form a p-plane bundle F over X such that
i

F|, = T(&) for each leaf .

Any foliated manifold is a foliated space. There are interesting
examples of foliated spaces which are not foliated manifolds. For
instance, a solenoid is a foliated space with leaves of dimension 1 and
with Ni homeomorphic to Cantor sets. If M® is a manifold which is
foliated by leaves of dimension p and if N is a transversal of M" then
any subset of N determines a foliated subspace of M simply by taking
those leaves of M" which meet the subset. This includes the
laminations of much current interest in low dimensional topology.
Finally, X may well be infinite dimensional; take Il°l°S1 foliated by
lines corresponding to algebraically independent irrational rotations.
Then €12 X IIT.,_°S1 is a transversal!

If X is a foliated space then C:(X) is the ring of continuous
functions on X which are smooth in the leaf directions. If E -fu X
is a foliated bundle (i.e.. E is also foliated, » takes leaves to leaves,
and x is smooth on each leaf) then I‘T(E) = I‘T(X.E) denotes
continuous tangentially smooth sections of E. We let Q};(X) =
l",r(AkF') and define the tangential cohomoloay groups of a

foliated space by
k - ukin*
HT(X) = H (OT(X))

where d: Q‘,;(X) — Q};+1(X) is the analogue of the de Rham
differential obtained by differentiating in the leaf directions. Similar
{but not the same) groups have been studied by many authors.

Tangential cohomology groups are based upon forms which are



continuous transversely (even if X is a foliated manifold.) It turns
out that this small point has some maijor consequences. The groups

may be described as
k - uksy.
HT(X) =H (X,&,,)

where Q, is the sheaf of germs of continuous functions which are
constant along leaves. The tangential cohomologvy groups are functors
from foliated spaces and leaf-preserving tangentially smooth maps to
graded commutative R-algebras. They vanish for k > p. There is the
usual apparatus of long exact sequences, suspension isomorphisms, and
a Thom isomorphism for oriented k-plane bundles.

The groups H:(X) have a natural topology and are not
necessarily Hausdorff; we let ITI:(X) = H‘;(X)/C(-)-} denote the
maximal Hausdorff quotient. For example, if X is the irrational flow
on the torus then H;(X) has infinite dimension but ﬁi(X) = R. The
parallel between de Rham theory and tangential cohomology theory
extends to the existence of characteristic classes. Given a
tangentially smooth vector bundle E — X we construct tangential
connections, curvature forms. and Chern classes. This leads to a
tangential Chern character. a tangential Todd genus and hence a

topological index
¢5°P = =07 lch_(DITd_(X) € HO(X)

where ¢ denotes the tangential Thom isomorphism.

Next we recall the construction of the groupoid of a foliated
space; the idea is due to Ehresmann, Thom and Reeb and was
elaborated upon by Winkelnkemper. If X is a foliated space then
there is a natural equivalence relation: x ~ y if and only if x and ¥
are on the same leaf. The resulting space ®(X) C X X X is not a
well-behaved topological space. The holonomy groupoid G(X) of a
foliated space is designed to by-pass this difficulty. It contains
holonomy data not given by Q@®(X); holonomy 1is essential for
diffeomorphism and structural questions about the foliated space. The

holonomy groupoid G(X) consists of triples (x,y,Lal) where x



and v lie on the same leaf 2 of X, a is a path from x to y in &£,
and Cal denotes the holonomy class of the path a. The map
G(X) — Q(X) is simply (x.v,[a]) — (x.¥). The preimages of (x,v)
correspond to holonomy classes of maps from x to y. The space G(X)
is a (possibly non-Hausdorff) foliated space. If N is a complete
transversal fi.e. N is Borel and for each leaf &£,
1 € #(NN2) € Xo) then G: is the subgroupoid of G(X) consisting of
triples (x,y,CaJ) with xv € N. In a sense which we make quite
precise, Gg is a good discrete model for G(X).

Next we turn to a studv of differential and pseudodifferential
operators on X. Suppose that E, and E; are foliated bundles over X
and D: T (Ej) — F,(Eq). D is said to be tangential if D
restricts to DB: l‘(Eo 2) -— I'(_El 2) for each 2, and D is
tangentially elliptic if each operator Dz is an elliptic
operator. If D is a tangential, tangentially elliptic operator then
Ker Dz and Ker D; consiét of smooth functions on £. However
these spaces may well be infinite-dimensional. and hence expressions

such as
*
dim Ker Dz - dim Ker Dz

make no sense. However there is some additional structure at our
disposal. for Ker D, and Ker D; are C”(£)-modules. We shail
show that these spaces are for each £ locally finite dimensional in a
sense that we now describe.

Let Y be a locally compact space endowed with a measure (in
the application to index theory Y = £ is a leaf and the measure is a
volume measure) and suppose that T is a positive operator on LZ(Y,E)

for some bundle E over Y. Then
Trace(f}/2T£1/2) = Trace (T1/2¢T1/2)
for every bounded positive function f. We define a measure e by

Trace (£1/21£1/2) = ffduT
Y



and declare T to be locally traceable with local trace o
provided that uT(Yi) < « where the Y, are compact sets with union Y.
If T = 3 \T; with each T, locally traceable then T is locally
traceable with local trace Up = ZXi“T-‘ We identify a closed
subspace V with the orthogonal proiection onto it and say that the
subspace is locally finite dimensional if the projection is
locally traceable. Any closed subspace of C™-functions is locally
finite dimensional.

If Y is a C* manifold and D is an elliptic pseudodifferential
operator on Y then DD and D'D are locally traceable so Ker D and
Ker D' are locally finite dimensional. The local index of D is
defined to be

‘D = Uger D ~ “Ker D* °
If Y is a compact manifold then JlD = ind(D), the classical
Y

Fredholm index.

The notion of locally traceable operator makes it possible to
discuss the index of an elliptic operator on a non-compact manifold.
As we observed previously, if D is a tangential, tangentially elliptic
operator on a compact foliated space X then D, is an elliptic
operator on the leaf 2 and its local index

¢ = u - U
Dz Ker DE Ker D;

does make sense as a (signed) Radon measure on £. Write tg =
tp for each x € ¢. Then ¢p = Cepd is a tangential
2

measure; that is, a family of Radon measures supported on leaves of
X with suitable invariance properties (cf. 4.11). We regard ¢p as
the index of D. If the foliation bundle F is oriented then a
tangential measure determines a class in [:l;’(X). The task of an index
theorem is to identify that class.

To proceed further along these lines and because they are of



substantial independent interest., we introduce transverse measures.
For this we move temporarily to a measure-theoretic context.
Suppose that (X.®) is a standard Borel equivalence relation. We
assume that there is a complete Borel transversal (which holds easily
in the setting of foliated spaces) and that we are given a one-cocycle
A€ Zl(a,ﬁ?’). A transverse measure of modulus A is a
measure » on the o-ring of all Borel transversals which is o-finite
on each transversal and such that » T is quasi-invariant with modulus
Alp for the countable equivalence relation ®& N (TXT) for each
transversal T. If A = 1 then » is an invariant transverse
measure. For example, if X is the total space of a fibration
£ — X — B foliated with fibres as leaves then an invariant
transverse measure on X is precisely a o-finite measure on B.

Recall that a tangential measure A is an assignment 2 ~
X, of a measure to each leaf (or class of ®) which satisfies suitable
Borel smoothness properties (cf. 4.11). For example, if D is a
tangential, tangentially elliptic operator on X then the local index )
is a tangential measure. If we choose a coherent family of volume
measures for each leaf £ then these coalesce to a tangential measure.

Given a tangential measure X and an invariant transverse
measure ». we wish to describe an integration process which produces
a measure Ad» on X and then a number [de obtained by taking the
total mass of the measure. Choose a co;nplete transversal N. There
is a Borel map o: X — N with o(x) ~ x. Then a'l(n) is contained
in the leaf containing n. Regard X as fibring measure-theoretically

over N. Let )‘n be the restriction of )\2 to a'l(n). Then

I)‘nd»‘n) = Ady is a measure on X. This integration process is
N

related to the pairing of currents with foliation cycles in Sullivan
[Su].

How many invariant transverse measures are there? Let MT(X)
be the vector space of Radon invariant transverse measures. The

construction above provides a pairing

MT(X) x 02(X) — R



and hence a Ruelle-Sullivan map

MT(X) — Hom . (HD(X), R} = HT(X).
We prove a Riesz representation theorem: this map is an isomorphism.
For example, if X is foliated by points then Hg(X) = C(X) and an
invariant transverse measure is just a measure. so our result reduces
to the usual Riesz representation theorem. We see also that X has no
invariant transverse measure if and only if ﬁ:(X) = 0.

With this machinery in hand we can state and prove the
remarkable index theorem of A. Connes. Let D be a tangential,
tangentially elliptic pseudodifferential operator on a compact oriented
foliated space of leaf dimension p. As described above, we obtain the
analytic index of D as a tangential measure ‘p- For any invariant

transverse measure » the real number szdv is the analytic
X

y-index ind”(D) defined by Connes. The Connes index theorem states

that for any invariant transverse measure v,

Idev = ftgopd»
top

where ¢ = to;lchT(D)TdT(X) is the topological index of the
symbol of D. Using the Riesz representation theorem we reformulate

Connes’ theorem to read
[cpl = [¢p°P1 € HYX)

which, as is evident, does not invoive invariant transverse measures.
Of course if X has no invariant transverse measures then !—{g(X) =0
and tp € {03.

There is a stronger form of the index theorem for foliated
manifolds which is due to Connes and Skandalis. To state it we need
to introduce the reduced C*—algebra of the foliated space. The
compactly supported tangentially smooth functions on G(X) form a

*_algebra under convolution. (If G(X) is not Hausdorff then a



modification is required.) For each leaf G* of G(X) with its natural
volume measure there is a natural regular representation of this
*_algebra on lB(Lz(Gx)). Complete the *-algebra with respect to these
representations and one obtains C:(G(X)). This algebra enters into
index theory because there is a natural pseudodifferential operator

extension
*x —0 o x
0 — Cr(G(X)) — (° — T(S F.End(E)) — 0

and hence the tangential principal symbol of D yields an element of
KO(C:(G(X)H. Connes and Skandalis [CS2] identify this element
and thereby obtain a sharper form of the index theorem which is
useful in the Type III situation. Even in the presence of an invariant
transverse measure, if the symbol of an operator D has finite order in
Ko(CL(X)) then Cepd = 0 in HE(X).

We conciude this introduction with a brief summary of the

contents of each chapter.

I LOCALLY TRACEABLE OPERATORS

Given an operator T on LZ(Y,E) for a locally compact space Y,
we explain the concept of local traceability and we construct the
local trace rp of T. The local index ‘p of an elliptic operator on
a noncompact manifold is one motivating example. We also discuss
several situations outside the realm of foliations where locally
traceable operators shed some light. In particular, we interpret the
formal degree of a representation of a unimodular locally compact

group in these terms.

IL FOLIATED SPACES

Here we set forth the topological foundations of our study.
We give many examples of foliated spaces and construct tangentially
smooth partitions of unity. Then follow smoothing results which

enable us, for instance, to assume freely that bundles over our spaces

10



are tangentially smooth. It is perhaps worth noting that KO(X)
coincides with the subgroup generated by tangentially smooth bundles.
Next we explain holonomy and, following Winkelnkemper, introduce the
holonomy groupoid of a foliated space. We consider the relationship
between G(X) and its discrete mcdel Gg and determine the structure

of GS in several examples.

III. TANGENTIAL COHOMOLOGY

In this chapter we define the tangential cohomology groups
H;(X) as the cohomology of the de Rham complex l‘T(A'F') and
equivalently as the cohomology of X with coefficients in the sheaf of
germs of continuous functions on X which are constant along leaves.
There is an analogous compactly supported theory H; C(X) and an
analogous tangential vertical theory H;V(E) on bundles. We develop
the properties parallel to the expected properties from de Rham
theory. There is a Mayer-Vietoris sequence (for open subsets) and a
Kunneth isomorphism

* ] = *
H,(O8H (M) ~=. H_(XXM)

provided that M is a manifold foliated as one leaf and XXM is
foliated with leaves £XM. We establish a Thom isomorphism theorem
(3.30) of the type

k & +k
& H (X) — H7_“(B)

for an oriented tangentially smooth n-plane bundle E — X. Finally
we indicate the definition of tangential homology theory. In an
appendix we rephrase these constructions in terms of Lie algebra
cohomology.

Iv. TRANSVERSE MREASURES
We develop here the general theory of groupoids, both in the

measurable and topological contexts, in order to give a proper home to

11



transverse measures. The prime examples are G(X) and G:, of course.
We introduce transverse measures and their elementary properties.
The proper integrands for transverse measures are tangential measures,
as we have previously explained in the foliation context. We carefully

explain the integration process
(\,») ~ \dy ~ dev

and indicate the necessary boundedness results. Specializing to
topological groupoids and continuous Radon tangential measures, we
recount  the Ruelle-Sullivan construction of the current
Cv € n;(X) associated to the transverse measure ». The current is
a cycle if and only if » is invariant. We relate invariant transverse
measures on X to invariant measures on a complete transversal N.
Finally we establish the Riesz representation theorem: finite invariant
cont(H;(X),R). One
useful consequence of this result is that a linear functional F on
MT(X) is representable as F(y) = Iudv for some w € HR(X) if
and only if the functional is continuous in the weak topology on
MT(X).

transverse measures are exactly the group Hom

V. CHARACTERISTIC CLASSES

This chapter contains the Chern-Weil development of tangential
characteristic classes. This comes down to carefully generalizing the
usual constructions of connections, curvature, and their classes. This
results in tangential Chern classes c: € H:“(X), tangential
Pontriagin classes p: € H:“(X), and a tangential Euler class, as well
as the now classical universal combinations of these. We construct
these classes at the level of forms, so that, for a fixed tangential
Riemannian connection, the topological index is a uniquely defined
form. We verify the necessary properties of the tangential Chern
character and the tangential Todd genus which relates the K-theory
and tangential cohomology Thom isomorphisms.

12



VI OPERATOR ALGEBRAS

Each foliated space has associated to it the reduced C.—algebra
C:(G(X)) introduced by A. Connes. In this chapter we present its
basic properties. Central to our treatment is the Hilsum-Skandalis

isomorphism
x * N
C.(G(X)) = C,(Gy)8K

which shows that, at the level of C‘-algebras, the foliated space
"fibres” over a complete transversal N. The C'-algebra C:(Gg) is the
C'—algebra of the discrete model G: of G(X). An invariant transverse
measure » induces a trace #, on C:(G(X)) and one then may
construct the von Neumann algebra W'(G(X),ﬁ). The analogous
splitting

whe. = wGY.Mesr)

at the von Neumann algebra level is expected, of course. In the
ergodic setting this corresponds to the usual decomposition of a II_,
factor into the tensor product of II; and I, factors. We conclude
with a brief introduction to K-theory and the construction of a partial
Chern character c: KO(C:(G)) — ﬁ?(X).

VII. PSEUDODIFFERENTIAL OPERATORS

The usual theory of pseudodifferential operators takes place on
a smooth manifold. In this chapter we "parametrize” the theory to the
setting of foliated spaces. This involves constructing the
pseudodifferential operator algebra and its closure, defining the
tangential principal symbol, and showing that the analytic index class
¢p depends only upon the homotopy class of the principal symbol. We

construct the pseudodifferential operator extension which has the form
* —0 =
0 —C.(X) — ¢ — r(S F,End(E)) — 0.

Turning to tangential differential operators, we introduce bounded

13



geometry and finite propagation techniques to demonstrate that ‘p is
well-defined. We establish the McKean-Singer formula: for t > 0,

L L ~
ind (D) = #,([e~tD Dy _ [¢7PD 1) = 42(e7tD)

where ﬁ is an associated self-adjoint superoperator and ¢; is the
supertrace. Next we prove that as t — 0 there is an asymptotic

expansion

0% (e-tD) ~ /20 [ 5 (D
e jg—p l g

where each x]u‘)) is a signed tangential measure independent of t. As

indy(D) is independent of t, it is immediate that
ind, (D) = J' wpg.EXy

where wp is a tangentially smooth p-form which depends on the bundle

E of D and upon the tangential Riemannian metric.

VIII. THE INDEX THEOREM

If D is a tangential, tangentially elliptic pseudodifferential
operator on a compact foliated space with oriented foliation bundle of
dimension p, then we have defined the analytic index ‘p and the

top

topological index {p as tangential measures. @ We establish the

Connes index theorem which asserts that for any invariant transverse
measure »,

tndy = [E°Pdy.
[ty = [45

We reformulate this result, in light of the Riesz representation
theorem, as

[¢pl = [¢5°P1 € HR(X).

14



Chapter VIII is devoted to the proof of the index theorem. We verify
the theorem for tangential twisted signature operators and then argue
on topological grounds that this suffices.

There are three appendices to the book; each applies the index
theorem in concrete situations and so demonstrates some possible uses
of the theorem. The first appendix, by Steven Hurder, develops some
interesting examples and applications of the theorem to the case when
the leaves of the foliation have a complex structure. The second
appendix, by the authors and Robert J. Zimmer, explores the use of
the index theorem to demonstrate the existence of square-integrable
harmonic forms on certain non-compact manifolds. The third appendix,
by Robert J. Zimmer, discusses the application of some of the
Gromov-Lawson ideas regarding the existence of a tangential metric
which has positive scalar curvature along the leaves. These provide a
complement to the general development.

15



CHAPTER I: LOCALLY TRACEABLE OPERATORS

Our object in this chapter is to develop the notion of what we
call locally traceable operators —- or, more or less equivalently, the
notion of locally finite dimensional subspaces relative to an abelian
von Neumann algebra . The underlying idea here is that certain
operators, although not of trace class in the usual sense, are of trace
class when suitably localized relative to . The trace, or perhaps
better, the local trace of such an operator is not any longer a
number, but is rather a measure on a measurable space X associated
to the situation with & = L*(X). This measure is in general infinite
but o-finite, and it will be finite precisely when the operator in
question is of trace class in the usual sense, and then its total mass
will be the usual trace of the operator. Heuristically, the local trace,
as a measure, will tell us how the total trace - infinite in amount -
is distributed over the space X. Once we have the notion of a locally
traceable operator, and hence the notion of locally finite dimensional
subspaces, one can define then the local index of certain operators.
This will be the difference of local dimensions of the kernel and
cokernel, and will therefore be, as the difference of two o-finite
measure, a o-finite signed measure on X. One has to be slightly
careful about expressions such as « - <« that arise, but this is a
minor matter and can be avoided easily by restricting consideration to
sets of finite measure. These ideas are developed to some extent in
Atiyah CAt3] for a very similar purpose to what we have in mind
here, and we are pleased to acknowledge our gratitude to him.

To be more formal and more exact about this notion, we
consider a separable Hilbert space H with an abelian von Neumann
algebra O inside of ®(H), the algebra of all bounded operators on H.
{(We could dispense in part with this separability hypothesis, but it
would make life unnecessarily difficult; all the examples and
applications we have in mind are separable.) For example, suppose
that X is a standard Borel space {(cf. [Ar], [Z4, Appendix A] for
definitions and properties of such spaces). It is a fact that X is

isomorphic to either the unit interval [0,1] with the usual o-field
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of Borel sets or is a countable set with every subset a Borel set; cf.
[Ar] for details. Now let u be a o-finite measure on X and let
H, be a fixed n-dimensional Hilbert space where n = 1,2,...,». Then
H= LZ(X,u.Hn), the set of equivalence classes of square integrable
Hn—valued functions on X, is a separable Hilbert space. The algebra
L®(X,u) of equivalence classes of bounded measurable functions acts
as a von Neumann algebra on H. We recall that an H -valued
function f on X is measurable if (f(+),€) is measurable for each
fixed £ on H, and square integrability means that If(-)l2 is
integrable.

This example is almost the most general such example of an
abelian von Neumann algebra acting on a separable Hilbert space.
Indeed, let us choose standard measure spaces (Xn,un), one for each
n = 1,2,...,%, with the understanding that some Xn's may be the void
set and so will not contribute anything; then form H® =
Lz(Xn,un,Hn) as we did before and finally form the direct sum
H = EH(n). The measure spaces (Xn.un) may be assembled by
disjoint union into a standard measure space (X,u) and then
L®(X,u), which is essentially the product of the spaces L“(Xn,un),

acts as a von Neumann algebra on H by (f -¢)n = f X -¢n where
n

f € LX,m), ¢ = (¢n) € H. It is a standard theorem that if W is
any abelian von Neumann algebra acting on a separable Hilbert space
K, then there are (Xn,un) as above and a unitary equivalence U of K
with H = SL3X_u H) such that UmU™! = L”(X,u), (cf. Dixmier
CDi1] p. 117))

Thus whenever we have an abelian subalgebra & of ®(H), H
may be regarded by this result as a space of functions f on
X = X with f(x) € H, for x € X. It is often convenient to
introduce the notation Hy = H, for x € X, so that (Hx) may be
thought of as a "field" of Hilbert spaces or a Hilbert bundle; the
functions f satisfy f(x) € Hy and can be thought of as (square
integrable) sections. The notion of measurability of such a function is
clear: it should be measurable on each set X, as a function into H =
H,. What we have in fact described is the direct integral

X
construction defined by the abelian subalgebra ®, and one writes
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H = [Hdut)
X

as the direct integral of the spaces Hx‘ In the sequel we will freely
think of elements f of H in this situation as vector-valued functions.
A more specific kind of example that we have in mind is
described as follows: X is a connected C” manifold, u is a
o-finite measure absolutely continuous with respect to Euclidean
measure on X, and E — X is a Hermitian vector bundle on X -- that
is, a complex vector bundle with each fibre given an Hermitian inner
product which varies continuously from fibre to fibre. Denoting the
fibre of E over x € X by H,, we obtain a field of Hilbert spaces {Hy}
of constant (finite) dimension. It is easy to find a Borel trivialization
of B, that is, a field of unitary isomorphisms ¥y of H with a fixed
Hilbert space Hn 80 that these maps define a Borel isomorphism of the
total space E of the bundle with XXH, . With H the set of square
integrable measurable sections of E, (equivalently H = Ideu(x) or
H = L3XH ) and with & = L*(X,u) acting by multiplication on H,
we obtain exactly the kind of abstract structure described above.
Given such a pair H,& we want to define what it means for an
operator T on H to be locally traceable relative to M. To motivate
this, consider a one dimensional subspace V of H and choose a unit

vector ¥ in V. Viewing H as a direct integral of a field Hx

H= [Hdut
X

we can think of ¥ as a function ®(x) with #(x) € Hy, and then
form lw(x)lz. This is an integrable function of norm one, or
equivalently the measure Iw(x)ladu(x) is a probability measure which
we denote Hp(y)- Its measure class is intrinsic to V and in particular
does not depend on the choice of the measure gt used to write & =
L”(X.u). (Recall that u could be replaced by any measure equivalent
to u in the sense of absolute continuity.) This measure Up(y) has
u-total mass one -- the dimension of V -- and can be thought of as
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describing how the dimension of V is "spread out over” the space X or
also how the dimension of V "localizes." More generally, if V is any
finite dimensional subspace of H, let us choose an orthonormal basis

PPy for V. Then it is an elementary and well known calculation

n

that Zl Iwi(x)l2 is independent of the choice of the orthonormal
jm

basis and consequently that the measure Up(v) defined by

= 3 2

is independent of all choices. Its total mass is n, the dimension of V,
and again Hp(y) can be thought of as describing how the total
dimension of V is distributed or localized over the space X.

In the same way we argue that if T is any finite rank
operator, and if ¥4 ®, is any orthonormal basis for the range of T
{or for the orthogonal complement of the kernel of T), then the
measure up defined by

i) = 3 (9, #x) dute

where the inner product is taken pointwise in Hy, is a signed measure
of total mass equal to the trace of T and which again describes how
this total trace is distributed over the space X. If T = P(V) is the
orthogonal projection onto a finite dimensional subspace V, then this
clearly coincides with the previous definition as the notation itself
suggests.

With these simple examples in mind, the path of development is
fairly clear and leads us to consider operators T for which a suitably
defined up is a o-finite measure; or, if as in many examples X is
naturally a locally compact space, then operators T for which ey is
a Radon measure (finite on compact sets). We begin with the trace
function which we view as defined on all nonnegative operators on a
Hilbert space H with values in the extended positive real numbers.
Denote this cone of nonnegative operators by ®(H)* and for T €
8(H)* define Tr(T) = 2(T¢ i€ i) where £; is any orthonormal basis for

H and where we define Tr(T) to be +« if the series (of nonnegative
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terms) diverges. It is elementary, using the positive square root S =
Tl/ 2 of T, to see that the sum is independent of the choice of basis.

As a map from 8(H)* to R*, Tr satiefies
(1) Te(Ty + T, = Te(T,) + Tr(T,)
(2) Tr(AT) = ATrT), X220
3)  Tr(A"A) = Tr(AA"), A € B(H)

(4) For any increasing net T q in 8(H)* with T = lub Tq
in the sense of the order on B(H)+, Tr(T) = lub Tr(Ta)

(cf. Dixmier [Di2] p. 93 and p. 81). Such mappings defined on the
positive cone in any von Neumann algebra are called normal
traces. Condition (3) is equivalent to the condition

(3)  Tr(UTU™l) = Te(T) for T in ®(H)* and U unitary.

If one drops (3) altogether such functions are called normal
welights; in this connection see Haagerup [Haall for a discussion
of the continuity condition (4).

Suppose now that M is an abelian von Neumann algebra on H;
then & = L*™(X,u) and for convenience we use the same symbol for a
function and the corresponding operator. (We note parenthetically that
for most of this ® could be any von Neumann algebra, but as we do
not have any significant applications in mind except for abelian & we
shall not pursue this level of generality ). Our first observation is the
following.

Propesitiog 1.1. Let f € & = L”(X;u) and nonnegative, and let T €
8(H)*. Then

Te( £Y2161/2 ) = Tyr1/267172)

where fl/ 2 and Tl/ 2 are the nonnegative square roots of f and T.
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Proof. Let S = fl/le/z; then S = T1/%1/2 and the formula of
the statement results immediately from the fact that 'l‘r(AA‘) =
Tr(A"A). O

This shows first of all that for fixed nonnegative T, the left
hand side above is linear in f for f nonnegative. The continuity and
additivity properties of the trace and the fact that g — tl/ ngl/ 2
is order preserving and weak operator continuous show that if we

defined for any measurable subset E of X,

where fE is the characteristic function of E, then ep is a positive
countably additive measure on X, absolutely continuous with respect to
u in that w(B) = 0 implies uT(E) = 0. The same reasoning and an

approximation argument shows that for any f = 0

e £1/27£1/2 ) = ffduT.
X

The crucial problem, and this will lead us to the definition, is that
Mp may and often does fail to be o-finite in the sense that

o0
X=vV X, where Xi is an increasing sequence of sets of finite Uy
i=]

measure. At this point one has a choice of two closely related
definitions of local traceability of T. On the one hand one could say
that T is locally traceable if uq is o-finite, and this is perfectly
satisfactory, but for applications we want something a bit different
which reflects extra structure on X. Namely suppose we are given in
X an increasing family of subsets X; which exhaust X. The idea is
that sy should be not just o-finite relative to any exhaustion of X,
but that uT(Xi) < « for this particular choice of Xl. We have in mind
the example of X a locally compact second countable space with X; a
countable fundamental family of compact sets. The condition above

just means that g is a Radon measure.
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Definition 1.2. If (X;) is an exhaustion of X by increasing Borel sets,
one says that a positive operator T on H is locally traceable
(relative to this exhaustion) if uplX;) < o for all i. The measure
e is called the local trace of T.

Agreeing to call a Borel subset of X bounded if it is
contained in some X;, we can rephrase slightly the definition of local
traceability as follows: a positive operator T is locally traceable iff
fTf is trace class for every nonnegative f in & = L%(X,u) of
bounded support.

It is evident from Proposition 1.1 and the continuity properties
of the trace that we have the following properties for local traces

which we state without proof.

Proposition 1.3.
D upeg = up + g
(2) Uy = N
{3) if 0 €S €T and T is locally traceable then so is S.
4) if T(a) is a net converging upward to T then

ﬂT(E) = lim MT(a)(B)
for every measurable set E.

For non-positive operators one extends the notion of local

traceability by linearity.

Definjtion 1.4. If T i¢ any operator on H, T i8 locally
traceable (relative to a given exhaustion of X) if we can write
T = iglkiPi where P, are nonnegative locally traceable operators and
\; complex numbers. The local trace of such a T is by definition

Z)\iupi.

This last statement requires a little explanation. First, the

local trace is indeed well defined, for if T can be written in two
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different ways as a linear combination of positive locally traceable
operators, it is easy to see using the additivity properties that Hp
comes out to be the same. Second, the measure pp is not quite a
standard kind of object, for as a "measure” defined on all Borel
subsets of X, it is all too likely to involve inadmissible expressions
like » - o, What we have is a complex valued measure defined on
the o-ring of all Borel sets of X which are contained in some X; (i.e.
the bounded Borel sets) for the given exhaustion and which is
countably additive on the (relative) o-field of Borel subsets of each
X;.

If an operator T is locally traceable, with local trace wuq,
then for every positive f in ®& of bounded support, £/ szI/ 2 s a

trace class operator and we have
Teie)/2061/2) = [tduy

where the integral on the right is well defined since f has bounded
support.

We record some elementary consequences of these definitions
which extend the integral formula above. For part two below note
that the set of complex valued measures defined above is a
(two-sided) module over & = L™(X,u) by multiplication of measures by

functions with the left and right actions being the same.

Proposition 1.5.

(1) If P= (Pl-Pz) + 1 (P3-P4) is the canonical
representation of an operator P in terms of positive operators (i.e. Py
is the positive part of the real part of P, etc) then P is locally
traceable iff each Pi is.

(2) The class of locally traceable operators is closed under
adjoints and is a two-sided module over M. Moreover the local trace

is a two-sided module map.

Proof. (1) If each P, is locally traceable, then by definition P is
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locally traceable. Conversely, if P is locally traceable so P =

n
Zl)\iTi, Ti positive and locally traceable, then P' has a similar
im

expression with ii instead and so is locally traceable. Consequently
the real and imaginary parts of P are locally traceable, and so it will
suffice to show that if P is self adioint and locally traceable, then
P*, its positive and negative parts, are also. We may assume
P = ZXiTi with T, positive locally traceable, \; real; then by
combining terms, P = T,-Ty, T, positive locally traceable. Then P +
T, = T is a positive operator greater than P and hence P + Ty = Ty
> P By (3) of Proposition 1.3 it follows that P* is locally
traceable, and then that P™ is also.

(2) We have already seen that the locally traceable
operators are closed under adioints. To see that this class is a
two-sided module over @, it suffices, by taking linear combinations, to
show that gP is locally traceable when P is nonnegative locally
traceable, and g € ® To do this we show that the self adjoint
operators gP + Pg‘ and i(gP - Pg.) are locally traceable. Writing P =
Q2 and observing that

R =(Q+Qg)(Q+Qg) = Q% + gQ? + Q%" + 0%,

we see that gP + Pg‘l is a linear combination of the positive operators
P, ng‘, and R. The first is given as locally traceable. To see that
the second is also, let f be an element of bounded support in O and
observe that ngg‘f = g(fPf)g. is of trace class since fPf is. Hence
ng' is locally traceable. For the third, the definition of R shows
that gP + Pg‘ g P+ ng' and hence that R € 2(P + ng’). By
monotonicity, R is locally traceable and it follows that gP + Pg‘ is
locally traceable. A similar argument can be used for the imaginary
part of gP, establishing that gP is locally traceable.

To see that the local trace is a bimodule map, consider an
operator S = hTk with T locally traceable, and h,k positive elements

in M. The local trace ug satisfies
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(1.6) Tri /28112 = [fdug

for every positive f in & of bounded support, and this property
characterizes "g since ug is uniquely determined by the integrals
above. But now

Tr(fl/Zthfl/Z) = Tr(hl/zhl/zfl/z’l‘fl/zkl/zkl/z)

= Tr(cl/241/2¢1/2061/2,1/241/2)

using the fact that f1/27¢1/2 is trace class and the commutativity
properties of the trace. By the definition of Uy the last expression
can be written as the integral of the nonnegative function khf, which
is of bounded support, against the measure U Combining these
equalities we see that

Toie1/2861/2) = [taug = [fhkduy.
By unicity we find
stk = Khiup)

at least for h and k positive. By linearity this holds for all h and k
and so the local trace is a bimodule map. o

We isolate as a separate statement a useful formula implicit in
the above proof.

Corollary 1.7. If T is locally traceable and h, k € & are of
bounded support, then hTk is traceable and

TrhTk) = [bkdup.  ©

The local trace has a further rather straighforward invariance
property. Suppose that u is a unitary operator in the normalizer of
the abelian algebra ®&; that is, u(!u'1 = 0. Then conjugation by u
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defines a *-isomorphism of ® = L™(X,u) and by point realization
theorems, cf. Mackey [Ma2], there is a Borel automorphism 6 of X
with 6.4 ~ u so that (uful)x) = £(6~1x) for f € L*X,u) =
. Recall that 8u(E) = u(G'l(E)) for any Borel set E. Now if (Xi)
is a given exhaustion of X as introduced earlier in this section, we
know what bounded sets are and we want 6 to map bounded sets to
bounded sets. Then the expected fact concerning this situation is

true, and we omit the short proof.

Propositiop 1.8. If u and 6 are as above, and if T is a locally
traceable operator with local trace tep, then uTu'1 is locally

traceable with local trace O«(up). o

Many of the most common examples of locally traceable
operators are self adjoint projections. If V € H is a closed subspace
and P(V) the orthogonal projection onto it, then we say that V is
locally finite dimensional if P(V) is locally traceable. The
local trace Up(y) is called the local dimension and for brevity
we will write it simply as Hy.

Now let us suppose that X is a locally compact space
denumerable at «, and let the exhaustion X of X consist of a
fundamental sequence of compact sets (every compact set K is
eventually in some Xi). Further suppose that £ is a finite
dimensional Hermitian vector bundle over X and that the Hilbert space
H is the space of (equivalence classes of) L2 sections of & relative
to some Radon measure u on X, which without loss of generality we
take to have support equal to all of X. Then it makes sense to talk
about the continuous sections in H; this is the (dense) subspace C of
H consisting of those equivalence classes (mod null sections) which
contain a continuous section of &. If such a continuous section
exists in a given class, it is of course unique. We make the following

definition.
Definition 1.9. An operator S from H to H is smoothing of

order zero if S(H) C C. the continuous sections.

The following result will provide large classes of interesting
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and important locally traceable operators -- the exhaustion here is

understood to be by compact subsets of X.

Theorem 1.10. Let Si' i = 1....n be operators on H which are

smoothing of order zero. Then T = iglsiS: is locally traceable.

Proof. It clearly suffices to consider one such S. If v € H, then
the element S(v) of H lies in C and is represented by a unique
continuous section S(v)(+). Then for fixed x € X and for a fixed
vector ¢ in the dual space E: of the fibre Ex of £€ at x, we can
define #(S(v)(x)). By a standard argument in functional analysis using
the closed graph theorem, this is a continuous linear functional b(x,®)
of v. Moreover, if #(x) is a continuous section of the dual bundle
£ of €, it is clear that b(x,#(x)) is a continuous function of x. From
all of this it follows that we can find for each x € X, a measurable
section Ki(x,-) of the bundle End(€) with [K(x,)! square

integrable for each x such that
Swx) = [Rexyviyduty)

It is an easy matter to choose this function K to be iointly
measurable in its two variables by the von Neumann selection theorem
(cf. [Z4, p. 196]), and. by continuity in x, the L2 norm of 1K(x, =}
is bounded as x runs over compact sets. Since the Hilbert-Schmidt
norm of K(x.y) is at most a constant multiple of its operator norm
because the fibre is finite dimensional, the same statement holds for
this norm. Thus if f is a bounded Borel function of compact support
viewed both as a function and as the corresponding multiplication

operator, the operator fS can be written as
(ES)VIx) = ff(x)Ktx,y)vty)du(y).
The kernel f(x)K(x,v) has compact support in x and it follows from our

remarks above and the Fubini theorem that the Hilbert-Schmidt norm

If(x)K(x._v)le is an L2 function on X X X. This implies that fS is a
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Hilbert Schmidt operator, and hence that (fS)(fS)‘ = fSS'f is a
traceable operator. This means by definition that ss” is locally
traceable, and we are done. o

As an example of this theorem, consider a closed subspace V of
H which consists of continuous functions. Then it follows immediately
that the projection P(V) onto V is locally traceable and that V is
locally finite dimensional.

By far the most important example of this for us is the
following: X a C” manifold which is pot necessarily compact, £ an
Hermitian vector bundle over X, and D' a differential operator from £
to € which we assume to be elliptic, (cf. Taylor CTayl). We form
the space H of square-integrable sections of & and form the
corresponding unbounded operator D on H. This is of course somewhat
inexact, for one could form many such operators with different
domains. The smallest such would be the closure of the operator D'
acting on the space of compactly supported sections. The largest
would be the Hilbert space adioint of the formal adioint (D')' defined
on the compactly supported sections. For our purposes here D can be
any closed operator between these two. (As a remark for future
chapters, we note that in the specific cases to be treated later these
two extreme operators defined by D' coincide [cf. (7.24)] so there is
no ambiguity about the unbounded operator D on H). With such a D
we form its kernel V = Ker(D). The elements v of V will be by
definition weak solutions of the differential equation D'v = 0 and
hence by ellipticity actually C* sections. By Theorem 1.10 and the
comments following it, Ker(D) is locally finite dimensional; its local
dimension, which we write up is a Radon measure on X. If D' is the
Hilbert space adioint of D, the same considerations apply and we can
form the local dimension uD. of the kernel of D.

Definition 1.11. The local index ¢ of D is the difference

up - “D" a signed Radon measure on X.
If X is compact, then of course these are all finite measures

and the total mass of tp necessarily an integer, is the usual index of

D. The classical Ativah-Singer index theorem provides a formula for
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this in terms of topological invariants. The obiect of the Connes
index theorem for foliations is to provide a similar formula in the
following context: X a compact foliated space, D a differential
operator assumed to be tangentially elliptic (see Chapter VII) so that
for any leaf £ of the foliated space the differential operator D 2 =
D, will be elliptic in the usual sense and will define a local index on
each leaf £2. The leaves 2 are not necessarily compact and hence
Ker(D‘) is not necessarily finite dimensional.  The theorem then
provides a formula for the average of these local indices, the average
being taken over all leaves. This averaging process is by no means
straightforward and requires a whole subsequent chapter, Chapter IV,
to explain.

The framework of locally traceable operators provides a
convenient bridge to the work of Atiyvah [At3] on the index
theorem for covering spaces. Let X be a manifold (not necessarily
compact) and let X — X be a covering space with fundamental

domain U and covering group I'. Then
L4 = L) o LAr)
where X is given volume measure, X is given the pullback measure,

and T acts by the left regular representation. With respect to this
decomposition the commutant of I' is the von Neumann algebra

A = 8Liw)ee,
where ® is the algebra corresponding to the right regular
representation. There is a natural trace 7 on A corresponding to
the usual trace on 8 tensor with the canonical trace on ®. Suppose
that T is a bounded operator on Lz(i) which commutes with the action
of T. Then T has the form

T =3, T,8R,

with respect to the decomposition above. Atiyah defines
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indp(T) = 7(£T9)

where f is the characteristic function of U. We may simplify this to

read
ind(T) = Trace(fTf)

where T = Tide I.

Let A = LX) acting upon Lz()“(') by multiplication, and, by
restriction, A acts on LZ(U). Then A is isomorphic to L”C(U) acting
upon LZ(U) by multiplication. Write T = Tid acting upon LZ(U). Then
it is clear that indr(T) is precisely the integral of the local trace:

indp.(T) = I dug -
X

Then Atiyah's theorem may be understood simply as relating up to
the lift of up to X.

The content of Theorem 1.10 can be rephrased somewhat with
no reference to topology; namely if H = LZ(X,u) (or finite dimensional
vector valued functions) on a measure space, let T be a bounded
linear transformation on H to itself such that TH) C L*(X,u).
That is, the image of T consists of bounded functions. Then we claim
that TT is locally traceable and that there is a very simple formula
for the local trace. Actually the same idea would work if T(H) were
contained in a suitably defined space of locally bounded functions too,
but for simplicity let us stick to globally bounded functions.

First we observe that an application of the closed graph
theorem shows that T is bounded as a map of LZ(X) into L™(X).
Further it is an easily shown fact, (cf. Dunford-Schwartz LDS1 p.
499) that whenever T is a bounded linear map from a separable
Banach M into L™(X), there is a measurable bounded function k(x) from
X into the dual M" of M such that (Tm)x = ki(x)(m) for m € M.
Application of this yields a bounded map x — k(x) from X to LZ(X)
which serves as a "kernel” for T. The following is proved in exactly

the same way that Theorem 1.10 is.
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Proposition 1.12. If T maps L2(X,u) into L®(X,u) then TT is
locally traceable (relative to any exhaustion by sets of finite
u-measure) and its local trace is the measure Ik(x)lzdu(x) where
k is as above.

It is a standard fact that the L? valued measure function can

be written as k(x)(y) = K(x,y) for a jointly measurable function. Then
) = [ Kxy)Etyduty)

is, as we observed already, an integral kernel operator.

Because the issue will come up in the construction of operator
algebras associated with groupoids and foliations, we recall briefly
some sufficient conditions for a kernel K(x,y) to define a bounded

operator.

Defjnition 1.13. A kernel K(x,y) on X X X is integrabdle (with

respect to a measure (4 on X) if
ess sup I IK(x,y) 1 duly) <
X
ess sup I IK(x,y) 1 du(x) < o .
y

One may define an operator T = TK from functions on X to functions
on X formally by

(TfNx) = j Kx,y)fly)duty) .

If f € RO et then the integral at least makes sense and the two
conditions in the definition above show immediately that ITfll is
bounded by a constant times 1fl; and that ITfl, is bounded by
a constant times Ifl_. It is an easy and standard interpolation
result using the Riesz convexity theorem (cf. Dunford-Schwartz
CDSJ, p. 525) that T defines a bounded operator on each LP to LP
for each p with a norm no worse than the larger of the two bounds in
the definition.
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Proposition 1.14. If the kernel K is integrable, T = TK defines a
bounded operator on LZ(X). If in addition k(x) = [f IK(x,y)lzdy] 1/2 is
essentially bounded in x, then T maps Lz(X) to L”(X) and the local
trace of TT is kz(x)du(x).

The ideas developed above find other interesting applications
and it is our purpose in the balance of this chapter to look at some
of these. Specifically, let G be a locally compact second countable
abelian group. Let H = L%G.ug) with & = L™(G,ug) acting by
multiplication, where ug is Haar measure. If E is any Borel subset of
the dual group G, we construct the subspace V(E) of H consisting of
functions ¥ € H whose PFourier transform @ vanishes outside of E.
We recall that if ug is any Haar measure on G, then there is a
uniquely determined choice of Haar measure u. on G with the
property that the Pourier inversion formula holds eractly, not just up
to a scalar, when ug and ua are used. Specifically if

9(@) = [ (@ xiot) dugx)
and if

¥ = [ (@x v du(a)

then (®)~ = ¢ for suitable functions ¥ where (+,*) is the duality
pairing of G X G to the circle group.

Let us assume that the subset E of G has finite dual Haar
measure. Then by the Fourier inversion theorem, the elements of V(E)
are back transforms of elements of LZ(E) C LZ(G). But since E has
finite measure, LZ(E) C LI(E), and consequently the elements of V(E)
are back transforms of integrable functions on G. It follows that V(E)
consists of continuous functions and so by Theorem 1.10, V(E) is
locally finite dimensional. Let up be the local dimension of V(E).
The unitary operator ug induced by left translation leaves V(E)
invariant and normalizes ®. Proposition 1.8 tells us then that up is
invariant under left translation by elements of G. Thus ug is a

Haar measure; the only question is which one. This is not difficult to
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answer.

Proposition 1.15. Let UG be a Haar measure on G, let ua be its

dual Haar measure on 6, and let E be a subset of finite measure in

6. Then the local dimension of V(E) is given by

= u~(EMun.
Up MG ue

Proof. PFirst we observe that the answer written above does not
depend on the original choice of u; in view of the way .
changes when we change ug. To obtain the result we note that the
projection operator PE onto V(E) is given as a convolution operator
with the kernel K(x,y) = IE (w‘l,a) dua(u). Now for f Dpositive,

bounded and of compact support, the operator PEfl/z is given by
convolution with the L2 kernel K(x.y)fl/ 2(y). Since P;‘; = PE’ we have

f1/2PEf1/z = (PEfl/z,‘(PEfl/Z)
and is given as a convolution operator with kernel
£1/2(x) Kix,y)f1 2y)

which is the convolution of K(x,y)fl/ 2(y) with its adjoint.

Consequently we can calculate the trace of fl/ 2PEf1/ 2 by integrating

the kernel on the diagonal x = y. So
Teie!/2Pge!/2) = [1£/200)% Kixx) dug)
= [f( (1,a)du~(a) duns(x)
I X) IE ) uG uglx
= [t u(B) duglx).

Thus ug = uA(E)uG as desired. a]

Let us continue this discussion a little further; suppose that G

33



is a unimodular locally compact second countable group, and let x be
a square integrable irreducible representation. This means that =
occurs as a summand of the left regular representation on LZ(G), or
that one (equivalently each) of its matrix coefficients is square
integrable. Associated to such a representation is a number d_
called the formal degree of n (cf. Dixmier [Di2, 14.4]) which
can be defined by the equation

[ty (xCeruv) dugle = dz ' xuly . v).

Of course d » depends on the choice of Haar measure ug but it is
clear that the product dvr“G is intrinsic. This suggests, as we shall
show in a moment, that the formal degree is not properly a number,

but rather a Haar measure.

Praposition 1.16. Let G be unimodular, x» a square integrable
irreducible representation, and let V(x) be any irreducible subspace
of the left regular rcpresentation equivalent to x. Then V(x) has
locally finite dimension; the local dimension is a multiple of Haar

measure given by dqu where d;r is usual formal degree.

Proof. It follows from the usual discussion of square integrable
representations that any subspace V(x) can always be realized as the
set of matrix coefficients ((K(x)’ly.xo)) where x_, is fixed and y
varies over H(x), the Hilbert space upon which n is realized. This
demonstrates immediately that V(x) consists of continuous functions
and hence by Theorem 1.10 is locally finite dimensional. The same
argument as in the abelian case shows that the local dimension is a
multiple of Haar measure. In order to compute the multiple, we
realize V(x) as the set of matrix coefficients Cc.: x € H(x)2
where cy = (x(g"l)x,xo). By the orthogonality relations the square
norm of c_ is d;l(xo,xo)(x,x). Normalizing x, by (x,.x.) = dx’

X

we see that x — Cy is an isometry. Now let Cei} be an
orthonormal basis in H(x) and let < be the corresponding vectors in

V(x). Further let Vn be the span of (cl,...,cn). By the introductory
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comments in the chapter, the local trace n, of Vn is given by

n 2
duy = 3 |e@)|” dugle).

As n tends to «, the projection onto Vn increases monotonically to the

projection onto V. By (4) of Proposition 1.3, un(E) increases upward

n 2
to u_(E) where u_ is the local dimension of V(x). But I lc-(g)'
x x 151 i

increases monotonically to the infinite sum

i:Zol Ici(g)lz = 10_201 (n'(g'l)ei,xo)l2 = l"(g”‘olz = |x, 2 _ d.

It follows that duﬁ_ = dxd“G as desired. a

If the group G is non-unimodular the situation becomes more
complicated as one might guess from Duflo-Moore [DM], Pukanszky
[Puk]. Suppose that x is an irreducible square integrable
representation of G. This means that x» occurs as summand of the
left regular representation, but now some, but not all matrix
coefficients are square integrable. Let P(x) be the closed linear
span of all irreducible summands of LZ(G) equivalent to x. Then
P(x) is also invariant under right translation and as a G X G module is
isomorphic to » X ¥ where ¥ is the contragredient of x (cf. Mackey
[Ma6]). As ® is also square integrable, and as P(x) is primary for
the left and the right actions, there are, once we fix a left Haar
measure on G, two canonically defined formal degree operators on
P(x), D, for the left action and Bx for the right action [Ma6].
Each is an unbounded positive operator affiliated to the von Neumann
algebras associated to the left and right actions respectively, and
semi-invariant under these actions. If we change Haar measure by a

1 so that symbolically

scalar factor c, then D_ and IN)K change by ¢~
the products Dxd“G and Dxd“G are intrinsic. We recall that both
the left and right von Neumann algebras are isomorphic to ®(H), the
algebra of all bounded operators, and so have canonically defined
traces.

Now suppose that V C P(x) is a subspace of P(x) invariant
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under the right action. We would like to know when V is locally
finite dimensional and in those cases we want a formula. As before,
the local dimension, if it exists, is a multiple of left Haar measure.
The subspace V, being left invariant, defines a projection PV in the
right von Neumann algebra on P(x) as these two algebras are
commutants of each other. We now try to make sense out of the
expression (f)'x)l/ sz(ﬁ K)l/ 2 as a bounded positive operator. In fact
it will be a well-defined bounded operator precisely when the range of
Py is included in the domain of ‘-B;\')l/ 2 When this happens and
when in addition this bounded positive operator has a trace, we see
that Py or V itself is finite relative to B;r' Another way to say
this very much in the spirit of Pedersen-Takesaki [PT1 is to
observe that IN)K defines a weight ¢ on the von Neumann algebra of
the right action given by T — Tr(D’lr/zTD,l‘,/z) (cf. Moore [Mrll)
and the condition on Pv is that ¢ is finite on this element. Our

result is the following.

Proposition 1.17. The subspace V of P(x) has locally finite dimension

if and only if Py, is finite relative to Bx' The local dimension is
X1/2p R1/2

then Tr(D " PVD " ) [The o

We omit the proof of this fact and simply remark that if G is
unimodular, then D, and ﬁx become scalar multiples of the identity,
namely d,«1 where d . is the usual (scalar) formal degree. Then the
statement above is exactly the same as in the unimodular case. It is
interesting that, contrary to the unimodular case, not all irreducible
summands of P(x) have finite local dimension, and moreover that there
are irreducible subspaces of P(x) with arbitrarily small local dimension.

These special cases suggest the form of the general result
which is as follows: let ug be left Haar measure on G. Then there
are semi-finite normal weights semi-invariant for the modular functions
¢ on &, the von Neumann algebra of the left regular representation,
and ¢ on ® the von Neumann algebra of the right regular
representation. Normalize these so that Fourier transform becomes an
isometry. Then if V is an invariant subspace for the left regular

representation, the projection PV onto it is in the algebra ® of the
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right regular representation.
Proposition 1.18. The subspace V has finite local dimension if and
only if ;Z(PV) < o; in this case the local dimension is z(Pv)uG.

s}

We again omit the proof of this resuit.
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CHAPTER II: FOLIATED SPACES

In this chapter we introduce the basic definitions and

elementary properties of foliated spaces.

Definition 2.1. A foliated space X of dimension p is a separable
metrizable space X together with a collection of open sets (Ux x € X}

with x € Ux and homeomorphisms
Wx: Ux —t Lx X NX
with Lx open in RP which satisfy the following conditions:

1) Writing o, = (t,n), then coordinate changes are given by
t' = o(t,n)

n' = ¢(n) for some local homeomorphism .

2) If Ux s} Uy is nonempty then the composite
’ -1
n -~ wywx (*.n)
. . (-]
gives a continuous map Nx - C (Lx,Ly).

Further, the collection (U,} is assumed maximal among such
collections.

Since coordinate changes smoothly transform the level surface
n = constant to n' = constant, the level surfaces coalesce to form
maximal connected sets called 1eaves, and the space X is foliated
by these leaves. Each leaf is a smooth manifold of dimension p.

The main examples of foliated spaces are, of course, foliated
manifolds (cf. Lawson CLJ), of class C™, or of class C°°’0 as in
Connes [Co03]. We pause to exhibit some simple examples of foliated
manifolds. These are quite standard; our reference is Lawson CL1
upon whom we have relied heavily.

The simplest example of a foliated manifold is just M =
LP x N? where L and N are smooth manifolds and M is foliated with
leaves of the form L X (n). The projection map f: M — N is a

submersion (i.e., dfx: TMx — TNx is surjective for all x). More
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generally, if f: MP*T _, NT g any submersion then M has a
p-dimensional foliation with leaves corresponding to connected

components of some f~ 1(n). For instance, suppose that
FP - M — BY

is a fibre bundle in the category of smooth manifolds with F
connected. Then MP*Y is foliated by the inverse images Fb = f'l(b) =
F. The Hopf fibration

sl s3 _, g2
and a closed connected subgroup H of a Lie group G
H— G — G/H

vield foliations of s3 and of G respectively.

A different sort of example arises by taking a connected Lie
group G acting smoothly on a manifold M. Assume that the isotropy
group at x, {g € Glgx = x}, has dimension independent of x. Then M
is foliated by the orbits of G. (If H acts on G for H a closed
connected subgroup then this coincides with the previous example.)

Foliations may also be described in terms of the foliation
bundle FM. Let M = T2 = ll!z/z2 and fix a smooth one-form w =
aldxl + azdxz with ajay # 0. It is evident that dw = 0. Let FM
= {v € TM|wlv) = 0}. This is an involutive sub-bundle and hence
foliates the torus. If al/az € @ then each leaf is a circle. If
a;/a; € Q@ then each leaf is dense, in fact a copy of R sitting
densely in the torus, which corresponds to an irrational flow on the
torus.

Next we construct bundles with discrete structural group. Let
F be a space, let BP be a manifold (connected for simplicity), and let

B — B denote the universal cover. Suppose given a homomorphism

®: xl(B) —+ Homeo(F).
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Form the space

~

as a quotient of B X F by the action of xl(B) determined by deck
transformations on B and by ¥ on F. The action on B X F is free
and properly discontinuous, hence M is a foliated space. It is foliated
by leaves 2, which are the images of Bx(x) as x € F. There is a
natural map M —s B and the composite lx — M — B is a
covering space. If F is a manifold and ¥ takes values in Diff(F)
then M is a smooth manifold.

A very special case of the above construction is of
considerable importance. Suppose given a single homeomorphism 6 €
Homeo(F). Then xl(Sl) = 2 acts on Homeo(F) via 6 and there

results a bundle
(2.3) M=RX,F— 8l

called the suspension of 6. For instance, if & € Diff(R) is
the map 8(y) = -y then RXR has a 2Z-action given by (x,y) —
(x+1,-y) and M = RX R is the Mobius band

2.4)

Each leaf 2y is a circle wrapping around twice except for the core
circle £ (corresponding to R X {0})) which wraps once.

Finally we describe the Reeb foliation of s3. This is
constructed in stages. First foliate the open strip R X [-1,11 as

shown:
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.

Then spin the strip about the x-axis to obtain a solid infinite cylinder

(thought of as a collection of snakes, each eating the tail of the

next):

| 9o )

solid torus foliated by

-

Next identify (x,v,z) with (x+1,y,z) to obtain a
copies of IlE2 and the boundary leaf which is of course the torus.

~d—d

(This is to be thought of as a collection of snakes, each eating its

Finally, observe that 83 may be obtained by gluing two

own tail.)
Taking two copies

copies of a solid torus along the boundary torus.
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of the solid torus above, one obtains s3 foliated by leaves of
dimension two. Along the boundary of the two solid tori there is a
closed leaf diffeomorphic to T2, All other leaves are copies of RZ,
No leaf is dense: the closure of a typical copy of RE js RS
together with the closed leaf T2, Note that each point p on the
closed leaf is a sort of saddle point in the sense that curves in leaves

nearby (above and below) have the following saddle property:

part of the
closed leaf

(2.6) Y

Curves ¥y 8y are in the xz plane; curves Y58, are in the yz
plane. Curves v4,8, lie in the same leaf; curves v,,5 lie in the
same leaf. Schematically the snake below the closed leaf is moving
left to right whereas the snake above the closed leaf is moving
towards the reader. This is important for the resulting holonomy
property as we shall see.

The notion of foliated space is strictly more general than that
of a foliated manifold. A solenoid is a foliated space (p = 1) with

each Nx homeomorphic to a subspace of a Cantor set. The infinite

0
torus T™ = nl T:l has a flow given by
j-

irGj
r~X°+ﬂe

for fixed algebraically independent numbers {Oj} and hence is a
foliated space of dimension 1. Each Nx is homeomorphic to a
subspace of T®, thought of as IXT® C TIXT°° = T™

A continuous function f: X — Y between foliated spaces of
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possibly different dimensions which takes leaves to leaves is

tangentially smooth if in local coordinates the function

-1
wfxfwx

Tx—'TXXNx———_‘Tf (x ))<Nf (x )—Tf (x)
€ ~ f(tn,) 0 —t’

is smooth for every n_.

Each local patch Uy, has a natural tangent bundle which is
induced by ¢, from the bundle T XT XN, — T XN,. The transition
functions {wx) preserve smoothness in the leaf direction and hence
these coalesce to form a p-plane bundle over X, called the tangent
bundle or foliation bundle of the foliated space and denoted p:
FX — X. We frequently write IF = FX and also write FX, = F, =
p'l(x) for the fibre over x € X.

Proposition 2.7. a) A tangentially smooth map f: X — Y induces a
bundle map df: FX -+ FY which over leaves corresponds to the usual

differential.

b) Let X3 denote the disioint union of the leaves of X
(each leaf having its smooth manifold topology). Then X% is a
(usually non-separable) smooth manifold of dimension p, the identity
map it X% — X s tangentially smooth, and i'FX = T(XB), the
tangent bundle of X®. O

A vector bundle p: E — X of (real) dimension k over a
foliated space X of dimension p is tangentially smooth if E has
the structure of a foliated space of dimension p+k which is compatible
with the local product structure of the bundle and if p:E — X is
tangentially smooth. The tangent bundle is tangentially smooth. We
let C:(X) denote the ring of (real-valued or complex-valued)
tangentially smooth functions on X and FT(E) or T_(X,E) denote
the C:(X)—module of tangentially smooth sections of the bundle E —
X.

43



The following series of propositions (2.8 - 2.15) serves to let
us assume freely that all bundles which arise in our study are
tangentially smooth. Transverse continuity is essential here;

Proposition (2.8) is false if one assumes only transverse measurability.

Proposition 2.8. Let X be a foliated space. Then every open cover

of X has a subordinate tangentially smooth partition of unity.

Proof: (Compare Hirsch CHir, 2.2.1]) Let % = (Ui}iEI be an open
cover of X. There is a locally finite atlas on X, {¥,V )}, such
that (V) refines % and we may assume that each ¢ (V) C
T XN, € R® x N_ is bounded and each \_Iu C X is compact. There
is a shrinking Wilaes of V = {Va}aEJ’ and each W, C V  is
compact. It suffices to find a tangentially smooth partition of unity
subordinate to V.

For each a, cover the compact set wu(Wa) Cc RP x Ny

by a finite number of closed balls
B(a,1),...,B(a,k(a))
contained in ¢ (V). Choose maps
hg § RP x N, — 0013 j=1,..kla)

which are tangentially smooth (i.e., maps N, — C”(RP,C0,12))
such that

h, J-(x) >0 if and only if x € Int B(a,i).

Let

Then
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ho(x0  if x€Q (W)
hglex)=0 if x€ERPXN - V;B(a,j).

Let m: M — [0,) be defined by

_ hu'pa(x) if x € Va
m(x) =
0 if x € X- V':1

Then m, is tangentially smooth, m, > 0 on Wa' and supp m, C
Vy.  Define ry = m /% m,. Then fry) is a tangentially smooth
partition of unity subordinate to V. o

For foliated spaces X and Y, let C;(X,Y) denote the continuous
functions from X to Y which take leaves to leaves and let C:(X,Y)
denote the subset of tangentially smooth maps. We topologize C;(X,Y)
by the strong topology. Let & = @;pUhep and ¥ = {¢;,Viieq
be locally finite sets of charts on X and Y respectively. Let X =
‘Ki’iEI be a family of compact subsets of X, with K, < U, let £ =
{e;)ier a family of positive numbers, and let f € Cy(X,Y) with f(K;) C
Vi A stromg basic neighborhood N°; o, ¥ X, £) is
the set of maps ¢ € C;(X,Y) such that e(K;) C v; for all i € I and
II(nﬁif‘p;l)(x) - (wiW;I)(x)ll < € for all x € ¥;K;,). The strong
topology has all possible sets of this form for a base. If X is
compact then this topology coincides with the weak (= compact-open)
topology on C;(X,Y). We refer the reader to Hirsch [Hir] from

which we have freely borrowed.

Proposition 2.9. Let X = T X N and X' = T' X N' be trivial foliated
spaces (with T C RP, T' € RP). Then CJ(X,X') is dense in C3(X.X').

Proof: Since all functions preserve leaves we may assume that X' =
T' = R", regarded as a foliated space with one leaf. We must show
that C:(X,IR“) is dense in C°(X,R") in the strong topology.

Let {V} be a locally finite open cover of X and for each a

let €q > 0. Let f: X — R" be continuous, and suppose we want a
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Cf; map g to satisfy If-gl < €_ on V(I for all a. For each x €

a
X, let Wx C X be a neighborhood of x meeting only finitelyv many
Vu' Set

sx = minCca: x € Vu} > 0.
Let Ux C Wx be an open neighborhood of x so small that |f{y)-f(x)]
< 8y for all y € Ux' Define constant maps 8y Ux — R" by gx(y)
= f(x). Relabeling the cover (Ux) and the maps (gx}, we have shown:
there is an open cover (Ui)iel = % of X and C: maps g;: X — R
such that whenever vy € Ui s} Vu then

lgily) - flv)l < €.

Let {ri)i

g X — R" by

€l be a C: partition of unity subordinate to %. Define

gly) = Z; rylvlg;ly).
Then g € C7(X,R"), and
lely) - fn)1 = 12 riyleg;ly) - Z ryly)f(y)!
€ I rly)lgly) - fiv)l.
Hence if y € V then
lely) - fy)l < ¥ rilyle, = €. o

The following relative approximation lemma allows us to

globalize the preceeding proposition.
Propesitiop 2.10. Let U= L X NC R’ X Nand V=L' X N' C

Rp' X N' be open sets, K € U a closed set, W ¢ U an open set, and
fe C;(U,V) such that f is tangentially smooth on a neighborhood of
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K-W. Then every neighborhood N of f in C;(U,V) contains a map h:
U — V which is tangentially smooth on a neighborhood of K and
agrees with f on U - W.

Proof: Since all maps are to send leaves to leaves and since
C°(U,L’) is open in C°(U,RP) we may assume that V = L' = R, Let
A C U be an open set containing the closed set K-W such that fIA is
C:. Let W, C U be open with

K-ACW_ CW_cWw.

Let {r o,rl) be a C;’ partition of unity for the open cover {W,U—W o}
of U. Define

G: C°(U,R") — C°(U,R")

by
Gle)x) = r (x)g(x) + ryx)f(x).
Then
G“’|w° = 8|w°
and
6@ |y_w = flu_w-

Further, G(g) is C: on every open set on which both f and g are C:,
and G is clearly continuous.

Since G{f) = f, there is an open set N, C C°(U,R"Y)
containing f such that G(N ) C N. By Proposition 2.9 there is a C:
map g € N_ (since C:(U,IR“) is dense in C°(U,R™). Then h = Glg)
has the required properties. a

We now prove the basic approximation theorem.
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Theorem 2.11. Let X and Y be foliated spaces. Then C:(X,Y) is
dense in C;(X,Y) with the strong topology.

Corollary 2.12. Let X be a foliated space and let M be a
C”-manifold, regarded as a foliated space with one leaf. Then
C7(X.M) is dense in C°(X,M).

Proof: Let f: X — Y be in Cj. Let & = (9, U}ier be a locally
finite atlas for X and let ¥ = {"'i’vi}iel be a family of charts for
Y such that for all i € I, f(u;) c Vi Let € = {Ci}iGI be a closed
cover of X, C; €U, Let g = czi)ceA be a family of positive
numbers and put N = N{f; ¢,4,C,8) C C;(X.Y). We look for a g € N
which is C:. The set I is countable; we therefore assume that I
{1,2,3,...} or, if X is compact, I = {1,2,...,s}.

Let (wi)iEI be a family of open sets in X such that Ci C Wi C
V-Vi C U;. We shall define by induction a family of C: maps g, €
N, having the following properties: g, = f and for k 2 1,

gk = &1 on X - Wy

gy is C: on a neighborhood of V
0g

c
3
i<k

Assuming for the moment that the g, exist, define g: X — Y
by glx) = 8‘(x)(x), where «(x) = max (k|x € Uy). Each x has a
neighborhood on which g = g (x)" This shows that g € C: and g €
N, and the theorem is proved.

It remains to construct the g Put g, = f; then the
hypotheses are true vacuously. Suppose that 0 < m and we have maps
g € N, 0 € k < m satisfying the inductive hypothesis. Define a

space of maps
_ o -
¥ =+th € Cz(Um,Vm) h = gn-1 ON Um - W_ )

m

Define T: ¥ — C,(X,Y) by
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h on Um
T(h) =
8n-1 ©O0 X - Um

It is evident that T is continuous, T(e, 1|U,) = &, 1, and hence
1N 2 2.

Let K = VkSkanUm' Then K is a closed subset of Um and
€n-1' Up — Vp is C: on a neighborhood of K-W . 8ince U and
Vm are trivially foliated spaces we can apply the previous proposition
to C;(Um,Vm). We conclude that the maps in ¥ which are C: in a
neighborhood of K are dense in ¥. Therefore T'l(N) contains such
a map h. Define &y = T(h); then €n € N satisfies the inductive

hypothesis at stage m, completing the proof. DO

Relative Approximation Theorem 2.13. Let f € C;(X,Y) and suppose
that f is tangentially smooth on some neighborhood of a (possibly
empty) closed set A C X. Then every neighborhood N of f in
C;(X,Y) contains a map h € C:(X.Y) with h = f on some neighborhood
of A.

Proof: If X and Y are product foliations then this follows from the
relative approximation lemma 2.10. The local-global process is
essentially the same as in the proof of Theorem 2.11 where we show
that C:(X,Y) is dense in C;(X,Y). In the construction of the maps
(g}, add the additional condition that g = f on A. In the induction
assume that every map in Y agrees with f on some neighborhood of A.
The relative approximation lemma 2.10 allows the same argument to

proceed. O

Lemmg 2.14. Let f € CyH(X,RP X N), let A be a closed subset of X,
and suppose that f is tangentially smooth on some neighborhood of A.
Then there is a homotopy H € C;(X X R, R? X N) such that

f(x) for t € 0
1) H(x,t) = H(x,1l) for t 2 1
f(x) for x € A
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2)  Hx1) € CIX,RP x N)

3) For each t, H(-,t) is arbitrarily close to f on compact

subsets.

Proof: Write f(x) = (fl(x),fz(x)). By the previous theorem, there is a
map g € C:(X,lkp X N) with g = f on some neighborhood of A and g
arbitrarily close to f. We may assume that g = (gl.fz). Let 3 €
C”(R,R) be a monotone function with 8(t) = 0 for t € 0 and 5(t)
=1fort > 1. Define H: X X R — RP X N by

Hx,t) = (fl(x)(l-ﬁ(t)) + g(x)5(t), fz(x))-
Then H has the required properties. 0O
Theorem 2.15. Let f € CZ(X,Y) and suppose that f is tangentially

smooth on some neighborhood of a closed subset A. Then there is a
homotopy H € C;(X X R, Y) such that

f(x) for t £ 0
1) H(x,t) = H(x,1) for t 2 1
f(x) for x € A

2) g =HkxI € CIXY

3) H(-,t) is arbitrarily close to f on compact subsets.

The function g € C:(X,Y) is unique up to tangentially smooth
homotopy (rel A) and hence defines a unique map f‘: H;(Y) — H;(X).
Here H:. is tangential cohomology which will be formally introduced in

Chapter III.

Proof: Let ¥ = (Vi} be a family of coordinate patches for Y and let ¢
= (Ui) be a family of coordinate patches for X with f~ 1(Vi) C U;. Let
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C = (Ci) be a closed cover of X with Ci CU;. Let ¢t = (Si} be a

family of positive numbers, and let
N=(fx¥ XR ¥ XR, € £ CCHX X RY)

where x: X X R — X is the projection and & X R is the pullback
along x of ®. Choose open sets W; with C; C W; C Wi cu.

We shall define by induction a family of maps g, €
CZ(X X R,Y) with the following properties:

f(x) for t £ 0
1) glxt) = 9 2, (x, 1)  for t > 1
f(x) for x € A
2) gk(x,l) is tangentially smooth on a neighborhood of
the set (LyV...UL) X [1,»)
3) gk(-,t) is close to f on compact subsets

4) g,(xt) = filx)
5) gk = 8_1 on (X X R) - (W X R).

Suppose for the moment that the gy exist. Define H: X X R — Y
by

Hix,t) = g ‘(x)(x,t)

where «(x) = maxtk|x € I_Jk). Each point (x,t) has a neighborhood on
which H(x,t) = g‘(x)(x,t). Thus H(x,1) € C:(X,Y). The other
conditions on H are evident, so H has been constructed as required.
Here is the construction of the g Set g (xt) = flx)
Suppose that m > 0 and we have maps ge €N with 0 € k < m

satisfying the inductive hypotheses. Define a space of maps ¥ by
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v=the C;(Um XRV )| h=g jon(U -W)XR and
h = f on a neighborhood of (Um N A) X R,

Define T: ¥ —» C;(X X R,Y) by

h on U X R
T(h) =
8,-1 ©on (X—Um) X R.

It is evident that T is continuous and T(g _; U )= 8y 1 SO )
m
is non-empty.

Let K= U (Ck N Um) X R. Then K is a closed subset of
k€<m

Uy X R and g _; € C;(Um X R, V) is tangentially smooth on a
neighborhod of K X (W, X R) Since U, X R and V  are product
foliated spaces, we may apply the previous proposition to
CZ(Um X IR,Vm). We conclude that the maps in Y which are
tangentially smooth on some neighborhood of K are dense in 8.
Therefore T'I(N) contains such a map h. Define 8n = T(h). Then €n
€ N satisfies the inductive hypotheses at stage m. This completes the
proof of the existence of the homotopy H.

It remains to demonstrate that g = H(-,1) is unique up to
tangentially smooth homotopy which fixes A. Suppose that g and &
are both constructed by the above procedure with g = H(-,1) and E =
H(-,1) and g = § on A. An obvious construction vields a homotopy M €
CyX X RY) with

g(x) t €0
Mx,t) = ¢ &8(x) t 21
g(x) x € A
and M is close to g as usual. Let A =

X X [(-«,0JVC1,)] V (AXIR). Apply the first part of the theorem
with X replaced by XXR, f replaced by M, and A replaced by A. We
obtain a function M € C:(XXIR,Y) with
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g(x) t £ 0
Mxt) =4 8(x) t 2 1
g(x) x € A

and M is close to g as usual. Thus g is homotopic to g- via a
tangentially smooth homotopy fixing A. O
We consider next the consequences of Theorem 2.15 for vector

bundles.

Propositionp 2.16: Every continuous (real or complex) vector bundle E
over a compact foliated space X has a compatible C;.° bundle

structure; and such a structure is unique up to C: isomorphism.

Proof: Let g: X — Gn be a classifying map for E —s X, where Gn =
Gn(lRm'k) or Gn(ﬂln+k) denotes a suitable compact Grassmann manifold
with canonical smooth bundle E* — Gn’ Then g can be approximated
by, and so is homotopic to, a C: map h by Theorem 2.15. Then E is
equivalent to h'En, and h E" is a C:—bundle, since E® is a smooth
bundle and h is of class C:.

If Eo and E, are C: bundles that are isomorphic as
C*®-bundles then there is a continuous map H: X X I — G, such that
H:(En) = E. i = 0,1. Approximate H by a map fl in C: fixing Hy and
Hy; then ﬁT(E“) is a C7 equivalence between Ej and E;. O

The proposition implies that tangentially smooth K-theory (i.e.,
K-theory defined via tangentially smooth bundles) on locally compact
foliated spaces coincides with the usual K-theory. In the next
chapter we shall introduce tangential de Rham cohomclogy. This does
not agree with ordinary de Rham cohomology, as will become evident.

Let X be a foliated space of dimension p. The next order of
business is the construction of the holonomy groupoid or graph of X,
denoted G or G(X). Our construction follows that of Winkelnkemper
CWil as closely as possible.

Recall that a plaque is a component of U N £, where £ is

some leaf and U is some coordinate patch. Every point of X has a
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neighborhood which consists of a union of plaques with respect to
some U and, with respect to the same U, two different plaques #,
#', can be on the same leaf. A regular covering is a covering
of X by open coordinate patches U, such that each plaque in U, meets
at most one plaque in Uj. We henceforth assume {without any loss of
generality) that our covers are always regular.

We recall the definition and elementary properties of the
concept of holonomy. Let ¢ be a leaf of X and @ an arc in £
starting at a and ending at b. Subdivide the arc a into small
enough subarcs by means of points a = agay,...a, = b so that each
point a has a neighborhood Ui consisting entirely of plaques, so that
if we choose a plaque #y of UO then there is a unique plaque *q C
Ul which intersects 4 8 unique plaque #y C Uz which intersects
+y, ete., and finally a unique plaque #y C Uk'

Let N, and Ny be transversals X through a and b respectively.
For points n € N, which are sufficiently close to a, we define Hgb(n)
€ N, by the above procedure. That is, find the unique plaque 4y C
Uy which contains n, follow the plaque to plaque #, C Uy, and
define Hgb(n) to be the unique element in 2 N N. Then Hgb is a
homeomorphism from a neighborhood of a in N, to a neighborhood of b
in Nb' and Hgb(n) lies on the same leaf as n. Choosing the partition
(ai) and the neighborhoods (Ui} differently changes Hgb, but the new
and old maps will coincide on some smaller neighborhood. Thus the
germ of Hgb does not depend on these choices. Altering a by a
homotopy in £ which fixes endpoints preserves the germ of Hgb'

If a = b and Ny = Ny then composing the germs is a
well-defined operation under which the holonomy germs form a group
G:. The natural map xl(.e,a) — Gz given by a =~ Hga is a
surjective homomorphism, so if £ is simply connected then G: = {02
for each a € 2. The group G: is the holonomy group of the leaf
£ at the point a. (The notation comes from groupoids and will
become apparent.) The set (x € X G: = 02 is a dense GS' by
Epstein, Millett, and Tischler [EMT], so that in that sense at least
trivial holonomy is generic.

The set (x € G G: # 0) may have positive measure. For

example, let K be a Cantor subset of the unit circle of positive
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measure. Let ¢ be a homeomorphism of the circle which has K as its
fixed point set. The associated foliation of the torus has closed
leaves corresponding to each point of K and each of these leaves has
non-trivial holonomy.

For example, if we foliate the annulus as shown

then Gz = Z for each a € &£, since with respect to the arc a which
traverses the leaf once clockwise the holonomy map H: I — I is
monotone decreasing and hence of infinite order in G:. Similarly, the
other closed leaf has non-trivial holonomy. Each of the remaining
leaves is homeomorphic to R (and thus simply connected) and hence
has trivial holonomy.

Let X be the foliated space shown:

\\\J—

(2.17)

—~_

This is noncompact, of course, Every leaf is simply connected, so all
of the holonomy groups are trivial. The exponential map yields a
tangentially smooth map X — X, and this is a covering space.

Here are some more examples to illustrate the concept.

Consider the torus, foliated as indicated:
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c c
D D
E E
A A

There are closed leaves through A,B,C, and a family of closed leaves
intercepting the line segment DA (with 2E as a typical closed leaf in
this family). Each closed leaf 2 is a circle, with n4(2) = Z. The
leaf £p has trivial holonomy, since a small transverse disk meets only
the adiacent family of closed leaves which are plaque paths. The
leaves 2 A 4 % and £p each have holonomy group 2. Note that
for the leaf #p a disk placed between D and E is acted upon
trivially; the disk must overlap the C-D area to see the holonomy.

The Reeb foliation of 83 has a unique closed leaf ‘0
diffeomorphic to the torus T2 with xl(ﬂo) = 22, The holonomy
group G: for x € 2, is also 22, generated by the images of the
paths 5y and 8y in figure 2.6.

The case of a bundle M - B with discrete structural group
(2.2) given by a homeomorphism : xl(B) ~ Homeo(F) is
particularly pleasing. For x € F, let

Ty = {8 € nq(B)| @(g)x = x)
be the isotropy group. The leaf .tx (which is the image of B x {x}
in M) may be expressed as ‘x = fi/l‘x where l‘x acts on B by deck

transformations. The holonomy group G: is the image of the

homeomorphism
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xl(tx) x Fx — Homeo(F,x)

where Homeo(F,x) denotes the germs of homeomorphisms at x which fix
X.

For instance, consider the Mobius strip
M=R XZR

foliated by circles corresponding to the images of R X {y} for various
values of v € R (cf. 24). If y # 0 then nl(zy) = 2 acts
trivially upon Diff(R,y), and hence Gz = 0. However, the holonomy
group Gg of the core circle is the group 2/2, since the
diffeomorphism @(y) = -y which creates M does lie in Diff(IR,0), and
02 = 1.

Holonomy is a critically important internal property of
foliations. As evidence we cite a special case of the Reeb stability

theorem and refer the reader to Lawson CLJ for more information.

Theorem 2.19 (Reeb). Let MP*M be a smooth foliated manifold with a
compact leaf £ with trivial holonomy. Then there exists a
neighborhood U of ¢ in M such that U is a union of leaves and a

diffeomorphism
exDl X, u

which preserves leaves.

Thus M has a family of compact leaves near £. We see this
theorem at work in example (2.18). The leaves 2 Alp 2o 2p and
2p are all compact. Only #p has trivial holonomy; it does have a

family of closed leaves near it, of the form
2 X (E-¢, E+e).

We next introduce the graph {or groupoid) of a foliation and

verify its elementary properties. This is due to Ehresman [Eh},
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Reeb, and Thom [Tho] and expounded by Winkelnkemper CWil.
See also Phillips [Ph]. A more systematic discussion of groupoids
will be found in Chapter IV.

Definitiog 2.20. The holonomy graph or groupoid G(X) of the
foliated space X is defined to be the collection of all triples
(x,y,Lal) where x and y lie on the same leaf 2, a is a
(plecewise-smooth) path from x to y in 2, and Cal is the
holonomy equivalence class of a: a is equivalent to 8 if asl =
1 or id in Gz.

There are canonical maps as follows:

1) A: X — G(X) by A(x) = (x,x,L0]), where 0 denotes

the constant arc at x.

2) an involution i: G{X) —s G{X) given by i(x,y,Lal) =
(v.x,Ca 1)

3) projections Py.Py: G(X) — X defined by

pylx,y,Lald) =

X
polx,y,Lad) = y.

Frequently Py is written as r (= range) and Py is written as s
(= source). Note that if 2, is the leaf through x in X, then le(x)
will turn out to be 2, the covering space of 2, corresponding to
the holonomy kernel and EX/G’; = 2,  Thus the construction
"'unwraps' all leaves of X simultaneously with respect to their correct

topology as well as their holonomy.” (Winkelnkemper CWil, 0.3)

4) Let
G(X) & G(X) = ((uv) € G(X) X GX)| py(w) = py(vh.

Then we have m: G ® G — G defined by

mi(x,y,Ca),(x,z,C82) = (y.zC8a~1])
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with m o diag = Ap,, m(u,v) =i o miv,u), and
m(u,a0p4(u)) = i(u).

The foliation on X induces a 2p-dimensional foliation on G{(X):
the leaf in G(X) through the point (x, .y, .Ca,]) does not
depend on Ca,J and consists of all triples (x,y,Cal) with xy €

2, = ly with Cal arbitrary. With the leaf topology it is
o

diffeomorphic to py'(x) X p3'(v) ¥ &, X 2.

Next we define the topology on G(X). Let z = (a,b,[a]) be a
point in G(X). Choose a path a which represents [al], a family
% = (Uyq,...,.U 3 of coordinate patches which implements the holonomy
map H:b and an open transversal N upon which Hgb is defined. We
may assume that the projection n: U — N is suriective. Suppose
that x is an element of Uy. There is a path s, in the plaque of x
(unique up to holonomy) from x to n(x). By the setup above, there is
a canonical (up to holonomy) path a, from n(x) to Hgb(n(x)). Let
a{x) be the unique plaque in Uy which contains Hgb. Then for
y € q(x) there is a path tyx in q(x) (unique up to holonomy) from
Hgb(n(x)) to y. As a subbase for the topology of G(X) we take the

subsets

vz,a,‘u,N = {xy, [tyxuxsx]: X € Ul,y € q(x)3.
Since each leaf, being a smooth p-manifold, has countably generated

fundamental groups, it follows that this topology has a countable base.

Proposition 2.21. With the above topology G(X) is Hausdorff if and
only if for all x and y, the holonomy maps along two arbitrary arcs d
and 8 from x to y and with respect to the same transversals Nx,Ny
are already the same if they coincide on an open subset of their

domain whose closure contains x.

Proof: Since X is Hausdorff, it is enough to separate points z =
(x,y,Cal) and 2z’ = (x,y,La']) in order to show that G(X) is Hausdorff.
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Suppose any two neighborhoods of z and z' had a point z" =

(x".b",Ca"]) in common. Then

" € Vz’a n vz',a' =

(R9.8,) € GX)|X € A fn), ¥ € HY (2

2 g N HE ()}

where B, =sgVa, V sy = ":'x Vv u;\ V) 85 Since the short arcs
Sz Sy do not affect holonomy, the holonomy along both a and a’
would have to coincide with the holonomy defined by a" on its
domain. The domain of the holonomy of a" contains x in its closure.
Conversely, if the holonomy along o and a' coincided on an
open set. containing x in its closure, then from the definition of the
sets Vg above any neighborhood of z will intersect any neighborhood
of 2. O

Corollary 2.22. If G: = 0 for all x € X then G(X) is Hausdorff.

This is the case, for instance, if each leaf is simply-connected.
Consider the graph of Example (2.18). Is it Hausdorff?
PFollowing Proposition 2.21, it suffices to examine the foliation at
leaves with non-trivial holonomy, in this case leaves £ Adplo
and “D' Intuitively the question is whether the holonomy is
one-sided. Leaves #p and £ cause no difficulty. However, leaves

2 A and ) do indeed cause difficulty. Take £p for example. Here

is the picture: \___}/

s

S

Let a be the horizontal circle through D and Let 8 be the constant
path at D. Let N be the transversal (r,s) and let N' be the
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transversal (D,s). We have already determined that Gg = 2
generated by Cal, and thus

{D,D,La]) # (D,D,LB])

in the graph. However the transversal N' (which contains D in its
closure) does not detect the presence of holonomy. Proposition 2.21
implies that the points (D,D,Cal) and (D,D,L8]) cannot be
separated by disioint open sets, so the graph is not Hausdorff.

The graph of the Reeb foliation of 3 is also not Hausdorff,
though this is for more subtle reasons. The point is that the
holonomy corresponding to the spreading out in the AP direction is
seen by a closed path in the leaf parallel to 81, so that if one cuts
the foliation a cross-section appears just as figure 2.6 and the same

non-separation problem occurs.

Proposition 2.23. Each point of G{X) has a neighborhood which is
tangentially diffeomorphic to an open neighborhood of IRZD X Na.

Proof: Pick (a,b,Lal) € G(X) and a representing Cal. Choose
neighborhoods Ul""’Uk and tangential coordinate patches (ti,ni): Ui —
RP X N corresponding to the path a.

Let Na = nl(Ul) and Nb = nk(Uk). After a possible shrinking of Ul
and Uk there results the holonomy map Hgb: Na —_— Nb'

Given x € Ul' there is a unique plaque path relating nyx with

61



H:b(nlx). If v € Uk with ny = Hgb(nlx) then the unique plaque
path determines a path B8 from x to y in UiUi' The path 8 is not

unique, but CAJ is unique, and of course H:y(nlx) = myy. Let

W = {{x,y,L8])|x € Ul,y € Uk’ ny = Hgb(nlx), 8

determined as above).

Note that if (x,y,C8]) = (x,y,L8']) in W then [8] = [8'1.
Define @: W — RP X RP X N by

¢(x.y,L8] = (tyx,tpy.nqx)

We claim that & is a bijection. It is clear that ¢ must be iniective
by our restriction on 8. Suppose that (rl,rz,rs) € R’ x RP X N,
(or an open subset if the t; and n; arc not surjective). Choose x €
Uy with t4x = rq and nyjx = rq. Choose y € Uy with tiy = ry and
ny = Hgb(rs). Since ny = Hgb(nlx), there is a leaf path 8 in
vUi from x to y. Then &{x,y,[8]) = (rl,rz.r3), so & is suriective.
It is clear that & is tangentially smooth. O

Our final topic in this chapter is a close examination of the
equivalence relation and (in anticipation of the Chapter IV discussion)
the topological groupoid of a foliation in the case of a foliated bundle
with discrete structural group and the case of the Reeb foliation.

Recall (2.2) that the initial data for a foliated bundle are a
manifold BP with universal cover B. a space F and a homomorphism

: xl(B) — Homeo(F). The resulting space M = B X (B)F is a
1

foliated space of dimension p, and the natural map M %, B restricts
to a covering space map INBXCx} — 2 %, B.

Let I' be the image of xl(B) in Homeo(F), and for each x € F
let

r,={y €Er| vyx = x2

X

denote the isotropy group at x and let
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(2.24)
Xz¢vyer| vy =y for all v in some neighborhood of x in F3

denote the stable isotropy group at x. The stable isotropy
group TX is a normal subgroup of the isotropy group r, and our
previous results imply that l"x/ rx G:, the holonomy group at x.

Let b € B be a basepoint, let b € B be some preimage of b,
and let N be the image of bXF in M. The map bXF — N is a
homeomorphism since ;\'l(B) acts freely on B, so N is a copy of F
sitting as a complete transversal to the foliated space.

Let G be the subgroupoid V G;,
are triples (nm,Lal) with nm € N and Cal some holonomy class

so that elements of GN

of a path in the leaf 2, of M from n to m. Regarding G as a
category, then Gg is the full subcategory with objects N. Results of
Hilsum-Skandalis CHS] {(see Ch. VI) imply that the C‘—algebra of the
foliation of M is determined by the C'-algebra of the groupoid G:.
(In fact G: is Morita equivalent to G(X); see A4.1.) As Gg is much
simpler to understand than the full groupoid of the foliation, we

explore its structure.

Theorem 2.25. If M = B X () F is a foliated bundle as above with
complete transversal N = F t‘xen there is a natural homeomorphism of

topological groupoids

N~ (Fxr)/=

'lY lies in the

where (x,v) = (y,5) if and only if x = y, and &
stable isotropy group T'*. Thus Gg is completely determined by the
action of T = Im(xl(B) — Homeo(F)) on F.

We note some consequences of the resuit.

Corollary 2.26. If the holonomy groups G’): are trivial for all x € F
then

63



N o ~
GN = (FXr)/

where (x,Y)”{y,5) if and only if x = y and 8"17 lies in the isotropy

group T (i.e., if and only if x = y and vx = 8x).

The corollary is immediate from the identification G: =
r/rx

Note that the stable isotopy groups I'* vanish for all x if and
only if for each ¥ € I the fixed point set of ¥ has no interior.
This condition is quite frequently satisfied in practice. For instance,
if F is a Riemannian manifold FY, I acts as isometries and each
non-zero element ¥ moves some element of F, then the fixed point set
of each ¥ € T is a manifold of dimension at most (q~1) and hence has
no interior. Indeed, any real analytic action satisfies this condition.

For an example where the condition is violated, see (2.28).

Corollary 2.27. If for each ¥ € I the fixed point set of ¥ has no

interior then there is a natural isomorphism of topological groupoids
Gy ¥ Fxr.

Proof: Each stable isotropy group T vanishes and so the result
follows from Theorem 2.25. o

Proof of Theorem 2.25. We shall show that Gy = (NXT)/~, which
suffices. Define a map o: (NXI)/x — G: as follows. Let (n,v) €
NXI. Represent ¥ by some based loop a in B. Lift a to a path
@ in the leaf 2, of n € M with €(0) = n. Then ®(1) € N N 2,
and (n,8(1),C&1) represents an element o(n,y) € Gg. We argue
that o is well-defined as follows. Independence of choice of lifts &
of a is clear. Suppose that (n,y) = (n,5), so that 5'17 €
I®™  Represent ¥ and 5 by loops a and A8 respectively, and lift
these loops to paths €& and 3 in 2, with &(0) = 3(0) = n. Then

S‘loﬁ is a loop in zn whose holonomy class is trivial, since 8'17 €
r® Thus o(n,y) = o(n.5) and o is well-defined.
The map o is obviously continuous. If ony) = o(n,s)
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then 8 v must lift to a loop 218 with trivial holonomy in G:.

This implies that 6'1
(n.m,Cald) € GS then the composite [0,11 —% M —&, B is a loop

(since »n = xm) and ol,xd) = (n,m,Cal). Thus o is a

v € r" and hence o is a monomorphism. If

homeomorphism.

The groupoid structure on (NXT)/~ is obtained as follows.
The unit space is N, of course, and s(n,¥) = n. The range map r is
given by r(n.y) = @(1) where & is a lift of a realization of the loop ¥
as earlier in this proof. Thus (n,¥) and (m.3) may be multiplied
when @& lifts v and (1) = m, and then

{n,¥)*(m,5) = (n,5v)

With this structure it is clear that o is a homeomorphism of

topological groupoids. O

In practice Theorem 2.25 is rather easy to use. For instance,
consider the Mobius strip M = IRXZIR (cf. 2.4). The equivalence
relation is simply the union of the y = x and y = -x lines in the
plane, a figure "X". The group I' is 2/2 acting non-freely since I
fixes 0 € R. This is an isolated fixed point and certainly has no
interior; thus Gz = RX2Z/2 with the obvious structure of a (Hausdorff)
smooth manifold by Corollary 2.27. The map Gg - (xy)] v == x3
is a homeomorphism except at the origin, where it is two-to-one in
the obvious way, corresponding to the fact that Gg x 2/2, Gg =0
for n # 0.

Next consider the manifold M constructed as the suspension of

the action of 2 on R given by 6 where

>
o(n)(t) =
t £ 0.

The element 6(1) fixes (-»,0] and hence the condition of Corollary

2.27 is violated. The equivalence relation for GS has the form

65



{2.28)

The groups r, are given by r, = 2 for t € 0 and r, = 0 for t >

0, and using Theorem 2.25 we have
N _ ~
Gy = (RX2)/~
where
(tn) x {tm) e> m=nort <0

and hence Gg is the (path-connected) non-Hausdorff 1-manifold

(2.29) _—

Finally we move away from foliated bundles and consider the
Reeb foliation of S3 (cf. (2.5), (2.6)). Take a transversal N = [-1,1]
which starts near the closed leaf, tunnels through the solid snake in
time [-1,0), passes through the closed leaf at time 0, and tunnels
through the other solid snake in (0,1], stopping near (but not at) the
closed leaf. Then N is a complete transversal. The corresponding
equivalence relation for G: is the following subset of the plane with

the relative topology:
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(2.30)

The point (0,0) corresponds to the point 0 € N which lies on the
closed leaf £y A sequence C(t,2"): t € N-€023 corresponds to
choosing a point t € N-{03, going around a corresponding holonomy
path of degree n and returning to 2, N C-1,11.

The map from Gg to the equivalence relation is a bijection
except that (0,0) has preimage Zz, corresponding to the fact that the
closed leaf 2, has holonomy group Z%. So as a set fibred over the

transversal N, Gg has structure

o (r,s) o
S ° o': °
o\ o [ S
(2.31) o e%ede © -
..... °
© o e
O o O
O e,

Write the lines for t < 0 as (0,s,L-1,0)) and the lines for t > 0 as
{r,0,(0,1]). Then the set

(0,5,C~1,0)) V C(r,s)2 V (r,0,(0,17)

is diffeomorphic to C-1,1] in the topology of GS. These sets serve
as coordinate patches which exhibit G: as a (non-Hausdorff) smooth
topological groupoid. As an exercise, the reader is invited to show
that the fundamental group xl(Gg) is the free group on two

generators.
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CHAPTER III: TANGENTIAL COHOMOLOGY

In this chapter we discuss certain cohomology groups associated
with a foliated space, which we shall call tangential cohomology
groups. It will be in these groups that invariants connected with the
index theorem shall live. Similar groups have been considered before,
for instance, by Kamber and Tondeur L[KT2J, Molino [Mol],
Vaisman [V3], Sarkaria CSall, Heitsch CHel, El Kacimi-Alaoui
CEl], and Haefliger [CHae3] (whose work we discuss at the end of
chapter IV). These cohomology groups are also related to those
introduced by Zimmer in [Z2] for foliated measure spaces. The
similarities and differences between the three situations are easy to
describe; all involve differential forms which are smooth in the
tangential direction of the foliation. The difference comes in the
assumptions on the transverse behavior; for foliated manifolds,
(Kamber-Tondeur, et al) forms are C* in the transverse direction,
while for foliated spaces (the present treatment), the forms are to be
continuous in the transverse directions as that is all that makes sense,
and finally for foliated measure spaces (Zimmer), the forms are to be
measurable in the transverse direction, for again that is all that makes
sense.

Thus let X be a metrizable foliated space with tangent bundle
FX — X as defined in Chapter II. The quickest and simplest way to
introduce the tangential cohomology is via sheaf theory and sheaf
cohomology, but for those readers who are not familiar with such
notions we show how to define the groups via a de Rham complex and
also show in an appendix how to give a completely algebraic
definition. For details concerning sheaves and their cohomology,
consult Godement CGomJ], Wells CWel.

We consider the sheaf on X, R, of germs of continuous real
valued tangentially locally constant functions. Specifically, this sheaf
assigns to each open set U of X the set of continuous real-valued
functions on U that are locally constant in the tangential direction on
the foliated space U (given the induced foliation from X). This is
obviously a presheaf and it is immediate that the additional conditions
defining a sheaf (Godement EGom] p. 109) are satisfied.
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Definition 3.1. The tangential cohomology groups of the
foliated space X are the cohomology groups of the sheaf @,
H*(X,(R,r), which we normally write as H;(X,IR) or simply H:(X).

These cohomology groups can be defined by construction of
resolutions (CGomJ p. 173) or perhaps more simply by the Eech method
using cocycles defined on open covers of X (CGoml p. 203) but for
us the most useful and transparent way of dealing with them is via a

de Rham complex.

Definition 3.2. A tangential differential k-form at x € X
is an alternating k-form on the tangent space FX, at x ie. an
element of Ak(F.Xx). These fit together to yield a vector bundle
denoted AFF" on X which is just the kth exterior power of the
cotangent bundle, and it is quite evidently tangentially smooth in the
sense of the previous chapter.

For each open set U, we assign to U the tangentially smooth
sections I‘T(IN\k(F‘)) (defined on U). Just as before this gives a sheaf

which we denote by Ak(F.) - the sheaf of germs of
tangentially smooth k-forms.
There is an obvious differential from r,r(Ak(F‘)) to

I‘.,(L\kﬂ(F')) which can be defined in an elementary way in terms of

local coordinates. If U & LP X N is a local coordinate patch with
XqpXp coordinates on the open ball LP in RP, then a tangential

differential k-form is an obiect that can be written locally as

(3.3) w= (E . a(xl,...xp,n) dxilA...Adxik

iy

with a and all of its derivatives with respect to the X continuous in
all variables. Then dw is defined just as one does classically for a

k-form with n playing the role of a parameter;
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Qa
3.4) dw = hX
(iz).j ax:i

(X4,...,X.,n) dX; A dX. A...AdX, .
1 p jin iy i

We evidently have d2 = 0 and so we have a sequence of sheaves with

maps
(35 0 — &, — AUFT) L AURT) — .. — APFT) — O

where the first map is the natural inclusion of tangentially locally
constant functions into tangentially smooth functions. The Poincare

Lemma obviously holds in this context:

Proposition 3.6. The sequence (3.5) is an exact sequence of sheaves;
that is, for sufficiently small open sets U, the kernel of each map on

sections over U is the range of the map in one lower degree.

Proof. On an open set of the form L X N, where L is a ball in ®rP,
a k-form in the kernel of d is an expression w(x,n) where for fixed n
this is an ordinary closed k form with respect to the variable x € L.
{The variable n plays the role of a parameter with respect to which
everything varies continuously.) By the usual Poincare Lemma, one
finds a k-1 form @, one for each n, so that dwn = w(*,n) and
what is at issue is that we can choose ®, to be continuous as n
varies over N so that ?n defines a section of Ak'l(F.) over U. This

is a routine exercise the details of which we omit. D

Moreover, just as in the usual case, one sees that the sheaves
Ak(F') are fine LCGom, p. 157] and consequently by the general
machinery of sheaf theory one can calculate the cohomology of the

sheaf R, from this resolution - a de Rham type theorem. Let

k _ -k — kn*
01=07(X)—1‘,(Q (F )

denote the global tangentially smooth sections of the sheaf Ak(F‘).

Proposition 3.7. There are isomorphisms
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k+1
r

k=1 K
(01. —_— 01)

ker (Ql; —_ 0

kxm) = HYX:Q) =
HER) = HAK@,) =

In particular, if X = M foliated as one leaf then this is the
usual identification of the de Rham cohomology groups H‘(M;R). The
analogous result (and indeed the entire chapter) holds with R
replaced by € throughout.

From this proposition it is evident that H};(X,IR) =0 for k > p
where p is the leaf dimension of the foliated space. However, these
cohomology groups are in general going to be infinite dimensional, in
contrast to the case of a compact manifold (with a foliation consisting
of one leaf). Further, these groups, which are vector spaces, also
inherit via the de Rham isomorphism the structure of (generally non
Hausdorff) topological vector spaces. We topologize Q:(X) by
demanding that in all local coordinate patches we have uniform
convergence of the functions a(xl,...,xp) of (3.3) together with all their
derivatives in the tangential direction on compact subsets of the
coordinate patch. The differentials are clearly continuous with
respect to these topologies and so H:(X,IR) is a topological vector
space.

In general the image of d will fail to be closed and so
H:(X,IR) will not be Hausdorff in these cases. It will be useful
occasionally to replace the image of d by its closure, or equivalently
replace H;(X,IR) by its quotient obtained from dividing by the closure
of the identity; this is the largest Hausdorff quotient. We will denote
this maximal Hausdorff quotient of H'.;(X,IR) by ﬁ‘,;(X,IR). The point
of this is first that we shall usually only care about the image of a
cohomology class Cwl of Hk(X R) in this Hausdorff quotient rather
than the class itself since fwdv depends only on the class of w in
HP, and second one at least has a chance of computing the groups H
in certain cases.

The tangential cohomology groups are related via natural maps

to the wusual cohomology groups of the compact metrizable space.
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Since Eech cohomology and sheaf cohomology agree for such spaces
(CGomJ p. 228) we shall simply write H’(X,A) for this cohomology for
coefficients in an abelian group A. Specifically, the sheaf cohomology
is defined to be the cohomology of the sheaf ® of germs of locally
constant real valued functions. As a sheaf ® assigns to each open
set U the locally constant real valued functions on U. The
cohomology groups H'(X,a) are written as we indicated above as
H'(X,IR). But now there is a natural inclusion map of the sheaf &
into the sheaf 6!1 of tangentially locally constant functions and we

can complete this to a short exact sequence
(3.8) o_..a_L.QT_.av._.o

where Gv is defined as the quotient sheaf of 6!1. by ®, (CGom]

p. 117). We obtain in particular an induced homorphism
(3.9 re: HXR) = H (X.8) — H (X&) = H,(X,R)

which is a sort of "restriction” map from ordinary cohomology to
tangential cohomology. Of course we also have a long exact sequence
of cohomology corresponding to the short exact sequence of sheaves
above, but we will not explore that further, and the sheaf ®,, will
not play any further role.

We should comment that the only reason for introducing

sheaves was to obtain a natural definition of r,. For we could have

defined H‘(X,IR) as  either Eech cohomology or equivalently
Alexander-Spanier cohomology and we could have directly defined
H;(X,IR) as the cohomology of the tangential de Rham complex with no
mention of sheaves. But then it is not at all apparent that there is a
map re from the cohomology of X to the tangential cohomology of X.
Actually as we have suggested before it is usually the composed map
Fs from H.(X,IR) to l-l;(X,lR) that is of more significance than r,.

It might be helpful to look at an example and the simplest one
is that of the Kronecker foliation of a two torus T2 by parallel lines

of a fixed irrational slope \ relative to given coordinate axes. The
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leaves are given in parametric form as {(eit, ei)‘tc). t € R} for
some fixed ¢ € T. Tangential zero forms are simply real-valued
functions which are tangentially smooth. Clearly the tangent bundle
is a trivial bundle and in fact we can find an essentially unique
tangential one form w which is invariant under group translation on
T2, Then the most general tangential one form is easily seen to be
of the type fw where f is any tangentially smooth function. If 6 is
a group-invariant vector field on T2 pointing in the tangential
direction, then the differential d: Q?(F*) — Q_}(F') is given by d(g)
= O(g)w for a suitable normalization of 6.

To investigate this more closely we expand g in double Fourier

series
— Ne,m
8(51»52) =3 gn’meltz

and for a second function f denote its Fourier coefficients by fn,m'
The condition for a function g to be tangentially smooth is easily seen
to be that gn‘m(m)\m)k should be the Fourier coefficients of a
continuous function, for each k = 0,1,... . The relation between f and

g expressed by d(g) = fw is simply that

(3.10) fn,m = (n + )\m)gn,m.-

Quite clearly the kernel of d consists of constants so HE(X,IR) =
R. On the other hand if we are given fw with f tangentially smooth,
we have to find out when we can solve (3.10). An evident necessary
condition is that f0,0 = 0 and indeed if f0,0 = 0 and if f is a
trigonometric polynomial, we can find a trigonometric polynomial g
solving the equation, as \ is irrational and n + Am is not zero unless

n=m = 0. Since one easily sees that the set
{fwlfo 0= 0. f a trigonometric polynomial)

is dense in all fw with fO 0= 0 in the topology described above, one
can conclude immediately that ﬁ;(X.IR) ~ fR. It is interesting to
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note that the closed tangential cohomology ﬁ,:(X,IR) in this case is
the cohomology over R of a circle.

However H;(X,IR) # }—l;(X,IR) and the former is in fact infinite
dimensional, for (3.10) results in a classic "small denominator problem.”
Indeed, choose a sequence (n(k), m(k)) with n(k) + Am(k) = £(k) a
summable sequence, and define fn,m = 0 unless (n,m) = (n(k), m(k)) and
fn(k), m(k) 8any sequence in k asymptotic to E(k)"l. Then
fn.m‘n + Am)" is the Fourier series of a continuous function for each
k as it holds for k = 0 and as (n+Am) is bounded (in fact tends to
zero) where fn,m # 0. But quite evidently fn'm(nﬂ\m)"l = gm is
not the Fourier series of a continuous function as €n.m does not tend
to zero. This shows that H;.(X,IR) is infinite dimensional and of
course non-Hausdorff since I-{;(X;IR) is one dimensional.

We remark that if one uses differential forms which also are
required to be C™ in the transverse direction then the result is quite
different. Haefliger CHae3] shows that for such forms the associated
first cohomology groups of the Kronecker flow on the torus has either
infinite dimension or dimension one, depending upon whether the
irrational slope is Liouville or diophantine.

Let

L—X—B

be a fibration with X compact and with leaves Lb corresponding to
preimages of points b € B assumed to be smooth. Then the tangential
cohomology of X has a simple description. Form a vector bundle E

over B with
E = H (L)
b b

(It is locally trivial.) Then H;(X) is isomorphic to the continuous
cross-sections of E. (This suggests that for more general fibrations
F —+ X — B of foliated spaces there should be a Serre spectral
sequence of the type H;(B; H;(F)) > H;(X); we do not pursue this

direction here.)
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*
The next order of business is a more thorough study of HT(X).
Let ¥ denote the category of metrizable, (hence paracompact) foliated
spaces and tangentially smooth (leaf-preserving) maps. Let X = R
or €: we note once and for all that our results hold in both cases and
that ® < € induces an isomorphism HI;(X;IR)@RI = H?;(X;ﬂl).
* %*
Let HT(X) = H,(X:k).
Proposition 3.11. H; is a contravariant functor from F to
2-graded associative, graded-commutative topological K-algebras and
continuous homomorphisms, and H‘T‘(X) =0 for k < 0 or k > p where p

is the leaf dimension of X.
Proof: The wedge-product of forms yields a natural continuous map
i 3 i+j

,(X) & QT(X) — 0O, (X)
which supplies the product structure in the usuval way. As O:(X) =0
for k < 0 or k > p = dim X, the cohomology groups also vanish. If f:
X — Y then by proposition 2.15 we may assume that f is tangentially
smooth. Thus the induced map Q;(Y) — n:(X) is continuous and
f': H;(Y) —_ H;(X) is continuous. 0O
Proposition 3.12. If X is the topological sum of {Xj) in ¥, then

k k
H (X) = I}HT(Xj) 0

Proposition 3.13. Hg(X) ={f € C:(X) | f| ¢ is a constant for any leaf
£}, In particular, if X has a dense leaf then Hg(X) XK 0O

Definjtiop 3.14. Let f.e: X — Y in F. An F-homotopy h
between f and g is an F-map h: X X R — Y (where X X R is
foliated as (Leaf of X) X R) such that

f(x) for t £ 0
h(x.t) = .
g(x) for t 2 1
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Homotopy in F 1is obviously an equivalence relation. The

*
following technical proposition leads to homotopy-invariance of H'r'

Proposition 3.15. Let Jp X — X X R by Jt(x) = (x,t). There is a

K-linear map
. *x x
L: 0 (X X R) — 0,(X)
with the following properties:

) LaXx x ®) c ok @)
2)  dL+Ld=J]-Jg

That is, L is a chain-homotopy from Jo to Jl‘
Proof: By a tangentially smooth partition of unity argument, we may

assume that X = RP X N. Then any k-form in Q};(X X R) with

k 2 1 may be written uniquely as a sum of monomials of the form

a= ade
or
8 = bdxpadt .
Define L{0J(X X R) = 0, L(a) = 0, and

L8

[ )

Then LIOX(X X R) ¢ 0X7'(X). If f € 0Q(X X ) then

1l

L + Lo = L(3Eat) + L[5 G5 ax)

of
ar dt

i}
O oy
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* *
=, - Jpt.
On forms of type a,

(L + Ld)a = Lda
(2

a
[,([ )3 dt]d"l

[J’;‘ - Jga.

On forms of type &, J:B = J;a = 0 and

_ _ 2 r(ov
dL8 = -Ld8 = 5 aidt]dxi,\dx[ .

i=]1

This shows that dL. + Ld = J : - J; on monomials and hence in

general. (]
Theorem 3.16. If f,g: X — Y are F-homotopic, then
] _ 8- * *
f =¢g: H,,(Y) -— H.r(X).
This is immediate from Proposition 3.15. (n]

Corollary 3.17. If f: X — Y is a continuous leaf-preserving map

then f induces a unique continuous map f*: H;(Y) —_— H;(X).

Proof: Say f =~ g and f = g’ where gg' € ¥ Then g' =g by
Theorem 3.16, so declare ff = g‘. u]

Corollary 3.18. Say X,Y € F and f: X — Y is a leaf-preserving
homeomorphism. Then f is an isomorphism. Thus H; is a

leaf-preserving topological invariant.

Proof: The map f 1 is also leaf-preserving. By Corollary 3.17 the
maps f,f'l induce f', (f'l):, and clearly (f"l)‘ = (f:)'l. o
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Corollary 3.19. (Homotopy-type invariance). Two foliated spaces
having the same “leaf-preserving homotopy type" have isomorphic

tangential cohomology.

Proof: Let f: X — Y be a leaf-preserving homotopy equivalence with

leaf-preserving homotopy inverse g, so that fg = lY' gef = lx via

F-homotopies. By Corollary 3.17, f' and g' exist, and then £ =
-1

€)". O

Next we introduce cohomology with compact supports. The
support of a form w € Q:(X) is the closure of
{x € X| wi(x) 2 0). Let Q:C(X) C O‘;(X) denote the forms of compact
support. The groups O‘,; X form a complex, as
d: Q‘;(X) — nl,;+l(X) decreases supports, Define tangential
cohomoloqgu with compact support by

(3.20) HE (%) = HK@Q; (X)),

The inclusion n; C(X) © Q;(X) is the inclusion of a differential

subalgebra, thus inducing a map of 2-graded K-algebras
(3.21) Hy (X) — HE(X)

which is an isomorphism if X is compact. The following proposition

%*
summarizes the elementary properties of H, <

* .
Proposition 3.22. 1) H'r < is a contravariant functor from ¥ and
proper F-maps to Z-graded associative, graded-commutative

topological K-algebras and continuous homomorphisms.

2) If X is the topological sum of {Xj} in F, then there is

a natural isomorphism

HE () = o H¥ (X).
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3) H; C(X) is a unital algebra if and only if X is compact,

in which case H:C(X) = H;(X) naturally.

4) H: C(X) is a covariant functor with respect to inclusions
of open sets U C X.

An F-homotopy h: X X R — Y is proper if h| X X1is

proper.

Proposition 3.23. Let O(X X R = {w € 0,X X R)| supplw) is
a compact projection}. Then there is a linear map
L: Q:(X X R) — Q;C(X) such that

k k-1
L, (X X R) C 0, (X)
and
* *x
dL+Ld=J] -J;. O

Theorem 3.24. If f.g are proper F-homotopic continuous maps then
t  J *
f =g on H‘r e O

Corollary 3.25. Let h: X —» Y be a leaf~preserving homeomorphism.
Then there is a map h" and h': H;C(Y) =, H;C(X). a]

Note that H; c is npot an invariant of homotopy type. The
space R™ has the homotopy type of the space RP X R® and
llg c(mpxuzm) = 0, since no constant function on a leaf has compact
support, but ch(lkm) = Cg(“?m)-

In preparation for the Thom isomorphism theorem, we introduce
a third sort of cohomology which best suits the total space of vector
bundles. (Bott-Tu [BT] is an excellent general reference.) Suppose
that n: E — X is a tangentially smooth real vector bundle over X

with E foliated by leaves which locally are of the form

(leaf of X) X Ex
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where E, = K'l(x) = R".  Let ﬂ‘;v(E) be those forms :n € Q‘;(E)
which are compactly supported on each fibre Ey,. Then Q. (E) is a
*

subcomplex; let H, (E) be the associated cohomology groups. We
shall refer to them as tangential compact vertical or more
simply as tangential vertical cohomology groups. If X is
compact then 0 (E) = 0, (E) and so H, (E) = H
these groups differ.

* .
TC(E); in general

Theorem 3.26. (Mayer-Vietoris) Let U, V be open subspaces of the
foliated space X. Then the Maver-Vietoris sequence (with usual maps)
*x *x *x *x
0 — OT(UVV) —_— QT(U)GBQT(V) — OT(U(\V) - 0
is exact. Hence there is a long exact sequence
- — HYUW) — HEUeHEWV) — HEUAV) — HEY ) —
Similarly, if n: E — X is a tangentially smooth bundle over X, X1
and X, are open sets in X with Xl VX, =X U= K'l(Xl),
Vs x‘l(Xz), then the sequence
0 — ok (B) — ak eak v) — 0¥ wnv) — o
is exact and so there is a long exact sequence

— HY,(B) — HY (eHE (V) — HX wnv) — HED'B) o .

Proof: Let wy € Q“;(U), wy € n‘;(U), and suppose that wy|yay =
wy|yay- Define w € aku.v) by

wU(x) if x € U
wix) =
wv(x) if x € V

Then w maps to (mU,wV). This shows exactness of the first sequence.

The other verifications are as trivial. O
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Proposition 3.27. There is a natural associative continuous external

product pairing
.yt h) i+]
a: HT(X)QHT(Y) —_ H1 X XY)
and similarly
.oyl 3 i+j
a.: HTC(X)@HTC(Y) —_— Hrc X XY

. * *
respecting H'r o = H‘r'

r x
Proof: Let X «—2- X X Y —Y, Y be the proiections. Define the
first pairing by

* *
x_Orx multiply
HIXQHI(Y) X% HIX X VRHIX x V) — 4 HEY I x v)

and similarly for H; o 8]
Proposition 3.28. Let X be a foliated space and let M be a smooth

manifold. Foliate X X M as (leaf of X) X M. Then a induces

natural continuous isomorphisms

Hy (X)QH (M) — H,(X X M)
and
H,  (X)QH.(R") — H), (X X R").

Proof: There is a natural isomorphism of sheaves

GT(X)QR(M) x GQT(X X M)
corresponding to the pairing d. This is clear since (on a local patch
and hence globally) a function on X X M which is constant on leaves

corresponds uniquely to a function on X which is constant on leaves

and a constant function on M. This proves the first isomorphism.
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For the second we regard X X R™ as a trivial bundle over X. The
homotopy inverse to the Kinneth pairing above is given by integration
along the fibre
H® (XeR") — HX""(X) = H* ™x)eH™RY)
TV 4% T T e

as in Bott-Tu [BT], page 61. 0O

Corallary 3.29. Let u, € HE(IR“) = R be the canonical generator

and for a foliated space X, |let u": = a(lx@un) €
H:V(X X R™. Then
1) H;V(X X R") is a free continuous H;(X)—module on u:(\.
2) If f: X — Y in F then
€ x 1)° ux = uﬁ
3) ﬁ(uﬁ@uz) = uﬁf}. {explained below)

The class uﬁ is the Thom class of the trivial bundle X X R" — X.

The map ¥ is the composition

a 4
Hp, (X X RDQHZ (X X R™) S HITMX X R™ X ¥ X R™)

\ l % (t defined below)
a

n+m n-+m
Hoo (XX YXR )

Proof: Apply Proposition 3.28 to X X R™. Then
HET™X x R 2 o X@HE ™"~ I(®")
¥ Hy(X)QH(R")

As Hg(an) 2 R on u the class u:(\ = lx@un generates

n’
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H};t“(x X R") as an H;‘(X)—module. This proves 1).

For 2), we compute:

€ x D'uY = ¢ x (1 Y8u)

£ (1V)8u,
= 1Xeun
= uﬁ as required.

For 3), consider the graded commutative diagram below, where t
generically denotes twist maps:

0 0 18tRl 4 0
HO(X)BHD(RMSH(VIQHT(R™) s H(X)QH  (Y)OH  (RM)BH(R™)
l ala l alka

H,(X x RUSHD (Y X R™)  HO(X X Y)8HY " (®R™™)
|a |a

HIE™(K x B x ¥ x R™) £ HPP™X X ¥ x R™™)

Then

a(uf‘@uz) = t~a(u§®u,¥,)

ta(aga)1¥gu @1Y8u,)

a(aga)(18t81)1Xgu 81Y8u )

= a(aga)1¥@1Yeu, gu )

= u(lxxyeumm) since a(ungum) = Yem
— . XXY

T Yn+m o

83



Thom Isomorphism Theorem (3.30). For each compact foliated space X
and for each tangentially smooth real oriented n-plane bundie
p: E — X there is a unique Thom class up € H:C(E) with the
following properties:

1) If f: X — X' in ¥ and E' is a real oriented bundle
over X', then

f up: = up.

2) Let x € X and let Ex denote the fibre over X in E.
Then the inclusion E, CE induces a map
H7 (B) — HZ(E,) = HC(R") under which up is
sent to L
The K-algebra H; c(E) is a free H;(X)—module on the Thom class upi

precisely, there is a continuous Thom isomorphism

(3.31) o Hr0) = HIZM(B)
given by
(3.32) ¢, (w) = ugw.

Further, if E and E' are bundles over X as above then

uEeEv = uEuE-.

Proof: We shall establish the Thom theorem in somewhat greater
generality than stated above. Let us say that a bundle E over X is
r-trivial if there exist a finite open cover Xl....,Xr of X such that the

bundle E is trivial when restricted to any Xi. We shall prove that the
Thom theorem in the form

. yk = n+k
o, Hix) = HILMB)
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holds for X a foliated space (compact or not) and E — X any
oriented r-trivial bundle. This implies Theorem (3.30) since if X is
compact then every vector bundle over X is r-trivial for some r and
also H;V(E) = H;C(E)-

We proceed by induction on r. If r = 1 then E is a trivial
bundle. Corollary 3.29 establishes the existence and uniqueness of the
classes uﬁ = up with the properties 1) and 2) compatible with
orientation.  Suppose inductively that for all bundles E' which are
k-trivial for some k < r we have shown uniqueness of the Thom class
up compatible with orientations. Let »: E -+ Y be an oriented
bundle which is oriented r-trivial, via open sets Xl""'xr' Let U =
K'I(Xl, v~ X 1) and V = x'l(Xr). Then U and V are open sets in
E with E = ULV. The Mayer-Vietoris sequence (3.26) yields the long

exact sequence
— H2;'UAY) — HD(B) — HD (U)GHD (V) — H}(UNV).
Since UNV C x'l(Xr). we have
n
unv = [0y ven X_p A X ] X R

Thus H;;l(UnV) = 0 by Corollary 3.25. By induction we have

existence and uniqueness of the classes
up € HY (V)
uy € HY (V)
and each of these restrict to the class
Ul e B3 (unv)

using uniqueness and orientability. Exactness of the Mayer-Vietoris

sequence implies that there is a unique class up € H;‘V(E) which
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maps to (ug,uX). This establishes the existence and uniqueness of the

Thom classes ug for all r-trivial bundles E. Define
BRTLS n+k
¢, Hy(X) — H__"(E)

by OT(w) = ugw. This is a continuous isomorphism on trivial bundles,
by Corollary 3.29. A Mayer-Vietoris argument which we omit (cf.
Bott-Tu [BT], p. 64) implies that o, is an isomorphism for all

r-trivial bundles. O

Remark: Let zz X — E be the zero-section. Define é’T(E) €
H;‘(X) by '€T(E) = z'uE. The class 31 is the tangential Euler class.
Similarly we may construct Chern classes and the tangential Chern
character in this manner. Since up lies in cohomology with
real/complex (but not integer) coefficients, characteristic classes

constructed in this manner are not visibly integral classes.

Our final topic in this chapter is the introduction of tangential
homology. Recall that the tangential forms O:(X) and Ol_; {X) have
been topologized by demanding that in all coordinate patches we have
unitorm convergence of the functions a(xl,.,xp,n) together with all
their derivatives in the tangential direction on compact subsets of the

covidinate patch. The differential d is continuous. Define
(3.33) Of(X) = hom(n¥ (X))

where hom denoles continuous homomorphisms. Elements ¢ €

0: are called currents. The natural differential
AT T
dg- Qk — Ok—l
is given by
<wdge> = (-1 1<dw,c>

where ¢ € Qz, w € Q:_l, and < , > denotes the evaluation of a
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current ¢ € 0F on a form w. (Our sign convention dictates that
forms are placed on the left, currents on the right, in <w,c>.) It is
immediate that d,z. = 0. Let Q:c C 0: be those currents which
have compact support in the obvious sense. This is a differential
submodule. Define tangential homology by

ker du: O — OF |

(3.34) HT(X;R) =
, Im dy: QZ+1 - Q:

and similarly for HZ (X;R).

Proposition 3.35.

1) Each HI is a covariant functor from foliated spaces and
tangentially smooth maps to R (resp. €)-vector spaces and continuous
homomorphisms.

2) If f and g are tangentially homotopic maps X — Y then

fe = gt HIOGR) — HI(V:R).

3) The pairings

*  ATC
< . >: 0180* — 'R
and
. a eal
<,> 0,80 — R
induce continuous pairings
* TcC
< > HT(X:R)@H* (X:R) — R

< >t Hy (XRIGHIXR) — R.

and an isomorphism
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HJ(X) = Hom (X),R).

cont(Hl‘;c
4) If X = M foliated as one leaf then
HI(XR) = Ho(X;R).
Proof: Only 3) requires comment. Compactness {(on one side or the

other) guarantees that the pairings exist at the chain level. There is

a natural continuous pairing
(cocycles)®(cycles) — R
given by evaluation. If w = dw' then

<w,c> = <dw',c>

+ <w',dgc> dec = 0 since c is a cycle

and similarly, if ¢ is a boundary then

<w,c> = <w,d.c™>

x <dw,c”™> {(dw = 0)

Thus there are pairings as indicated. @ The isomorphism comes on
purely algebraic grounds from the fact that Homcont("m is an exact
functor. O
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APPENDIX

In this addendum we want to rephrase the construction of the
tangential de Rham complex so as to make the algebraic essentials of
the construction clear and to show the essential unity of this
construction with ordinary Lie algebra cohomology. In this we will be
following what is folklore. We start with a pair consisting of a
commutative associative algebra A over a field k and a Lie algebra L
also over k. We assume that we have a representation of L as a Lie
algebra of derivations of A, and we write the action of & € L on
an element a € A as just ©(a). We further assume that L as a linear
space is a module over A (but not that L is a Lie algebra over A).

Rather one assumes

(3A.1) [8,by] = b[B,¢] + e(bly

where ay is left multiplication of a € A on ¢ € L. We call (AL)
a Lie-associative pair. Note that if ©(b) = 0 for all 8 and
b then L is a Lie algebra over A. A module M for the pair (AL) is
simply a vector space over k with a module structure for A and with

a representation of L on M (as vector space) satisfying

(3A.2) ©(am) = a+6(m) + &(a)*m

(3A.3) (a®}m) = a(©(m)) for a € A, ® €L m €M,

where &(m) is the Lie algebra action and bem is the left module

action. We observe the following fact.

Proposition 3A.4. The algebra A itself, given the structure of A
module by left multiplication, and the defining representation of L as
derivations of A, is an (A,L) module.

Proof: That the key identities (3A.2) and (3A.3) are satisfied in the

first case is just the fact that L is given to act as derivations of A.
a
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As noted previously this structure already contains ordinary Lie
algebras by taking for instance A = k in which case modules as
defined above are ordinary L modules. However, the motivating
example for this is given by a C* manifold X, with A = C”(X) and
L the C* vector fields. More generally X could be a foliated space
with A the tangentially smooth functions C:(X) and L the tangentially
smooth sections of the tangent bundle r,.(FX). That L is a Lie
algebra under commutator brackets is immediate.

The immediate point here is to define cohomology groups H‘(M)
for any (A,L) module M so that in the first example above (A = k) one
obtains usual Lie algebra cohomology while in the second example, one
obtains the usual de Rham cohomology of X and in the third example
one obtains the tangential cohomology. The construction is patterned
exactly on the classical Koszul complex (cf. MacLane [Mac]) and the
construction of differential forms. If M is an (A,L) module we let
CX(L,M) or for short CP(M) denote the space of all alternating p
linear, A-linear maps from L to M.’ A differential CP(M) — Cp+1(M)

is defined as usual by

d49(@y,...8,) = 3§ o(-1'e,(8(6;,...6;,...8))
(3A.5)

e )

i+ ; 8. .8
+ 1§j(-1) ¢([Gi,ej],91,...,9i,...,8j,..., b

What requires checking is that d¢ is actually A linear since none of
the individual terms on the right are A linear. Use of the basic
identities (3A.1) and (3A.2) for A, L, and M produces the necessary
cancellations. We omit the details. It is also evident that @ =0
and so one as usual defines cohomology groups H:(L.M) or for short
HP(M) = ZP(M)/BP(M) where ZP(M) is the kernel of d in CP(M) and
BP(M) is the image of d from CP~1(M).

It is an easy matter to check that in the case A = k, this
yields the usual Lie algebra cohomology of the module M as the
formulas (3A.5) are the standard ones, cf. MacLane [Mac]. It is
equally easy to see that if A = C™(X), and L the C” vector fields
on X, then the cohomology H:(L,A) = H'(A) is the usual de Rham
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cohomology of X because C'(A) is visibly the de Rham complex of
differential forms with its usual differential. In the same way, when
A= C:(X) is the tangentially smooth functions on a foliated space and
L is the C* tangentially smooth tangential vector fields, then H‘(A) is
also visibly the tangential cohomology as defined in Chapter III.
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CHAPTER IV: TRANSVERSE MEASURES

In this chapter we concentrate upon the measure theoretic
aspects of foliated spaces, including especially the notion of
transverse measures.

We begin with a general study of groupoids, first in the
measurable and later in the topological context. Our examples come
from the holonomy groupoid of a foliated space (2.20) and a discrete
version corresponding to a complete transversal. We introduce
transverse measures » with a given modulus and discuss when these
are invariant.

Next we look in the tangential direction, defining a tangential
measure X\ to be a collection of measures \* (one for each leaf in
the case of a foliated space) which satisfies certain invariance and
smoothness conditions. For instance, a tangential, tangentially elliptic
operator D vields a tangential measure ¢y as follows. Restrict D to

x

a leaf 2. Then from Chapter I Ker Dz and Ker Dz are locally
finite dimensional and hence the local index LDIZ is defined as a
signed Radon measure on Z2. [A priori it would seem that ¢p
depends on the domains 2om(D,) but in Chapter VII we shall
demonstrate that ‘4 is well-defined.] Then tp = (lD) is a
tangential measure. Tangential measures, suitably bounded, correspond
to integrands: if A\ is a tangential measure and » is an invariant
transverse measure then \dy is a measure on X and IXd» € R is
defined.

Next we specialize to topological groupoids and continuous
Radon tangential measures. In the case of a foliated space we
recount the Ruelle-Sullivan construction of a current associated to a
transverse measure and we show that the current is a cycle if and
only if the transverse measure is invariant.

Finally we prove a Riesz representation theorem for (signed)
invariant transverse measures on a foliated space X; they correspond
precisely to the topological vector space (ﬁ;’(X))'.

A groupoid, whose main feature is a partially defined
associative multiplication, is best understood by two extreme special

cases - a group on the one hand, and an equivalence relation on the
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other. We need say no more about groups, but if ® is an
equivalence relation on a set X so that ® is a subset of XXX, one
can construct a partially defined associative multiplication on ® so
that it becomes a groupoid. Specifically if u = (x,y) and v = (w,z) are
two elements of ®, the product uv is defined exactly when y = w, and
then uv = (x,z). It is suggestive to define the range of an element u
= (x,y), denoted r{u), to be the first coordinate x and the source of u,
denoted s(u) to be the second coordinate y. Then uv is defined
precisely when r{(v) = s(u). Intuitively one might think of the pair
{(x,vy) as something starting at y and going to x so that multiplication
is in some way a kind of composition.

If X is a foliated space, there is an obvious equivalence
relation on X defined by the leaves, but as we saw in Chapter II a
foliated space has associated to it something more, namely its graph
G(X) or as it is also called, the holonomy groupoid of X. This is but
one example where a Borel or topological groupoid presents itself
naturally - another is when one has a topological group acting on a
space where the action is not necessarily free. Thus we are led to

the notion of a groupoid:

Definition 4.1. A groupoid G with unit space X consists of the
sets G and X together with maps

(1) A: X — G (the diagonal or identity map)

(2) An involution i: G — G, called inversion and written i(u)
= u-l
(3) range and source maps

rr G — Xand 8: G — X
(4) an associative multiplication m defined on the set G’ of

pairs (u,v), u,v € G, with r(v) = s(u); one writes m(u,v)

= u-v or just uv.
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In addition to the properties already listed one needs the

obvious extra conditions

(5) r(A(x)) = x, s(A(x)) = x and u-(A(s(u)) = u,
Alr(u)su = u

(6) r(u‘l) = s(u) and muwud) = Alr(a)

Alternatively, one could define a groupoid as a small category
where every map has an inverse. At all events, if X is reduced to a
single point, G is simply a group with identity element A(x), X =
{x2. In general the maps r and s together yield a map
®: u — (r(u), s(u)) of G into XXX. The image of this map is an
equivalence relation on X in view of the axioms above. If this map is
injective, then G as a groupoid is (isomorphic to) this equivalence
relation; G is called principal if this happens. In any case this
shows that associated to any groupoid there is always a principal
groupoid (i.e. an equivalence relation). A general groupoid can be
viewed as a mixture or combination of this equivalence relation ®
and the other extreme case of a groupoid, namely a group.

Specifically, we let

G, = Cu: s(u) = x3,

X
GY = Cu: rlu) = y2,
y - y
Gy = Gx NG
G% = Culrfu) € Z, s(u) € Y2

more generally. Then G: is immediately seen to be a group with
identity element A(x). The sets G’; for (x,y) € ® are principal
homogeneous spaces for G: and G§ with G: acting on the left and
G¥ acting on the right. In particular for (x,y) € @, G: and G;'
are isomorphic. Thus the groupoid G appears as a kind of fibre space
over the equivalence relation @ as base and with the group-like
obiects Gz as fibres. This is exactly the geometric structure that the

holonomy groupoid of Chapter Il displaved. Indeed we will often refer
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to the groups G: as holonomy groups. They can also be thought of
as "isotropy groups” because of another important example of groupoids
coming from group actions. If a group H acts as a group of
transformations on a space X, the set G = HXX becomes, as George
Mackey has emphasized in his seminal papers [Ma3], [Ma51], a
groupoid. The unit space is X; A{x) = x; the range and source maps
are sth,x) = x, r(h,x) = hex where he-x is the result of the group
element h acting on the point x. The inverse of (h,x) is (h'l,h-x).
Two points (g,y) and (h,x) are multipliable when y = h=x and then
(g,y)=(h,x) = (gh,x). Finally the holonomy group G: is visibly just the
isotropy group Ch: h*x = xJ of the action at x.

Now that the purely algebraic structure of groupoids has been
described, we impose the extra conditions appropriate for the analytic

and geometrical applications.

Definition 4.2. A (standard) Borel groupoid (cf. Mackey [Ma5]
or Ramsay CRal) is a groupoid G so that G and its unit space are
Borel spaces - that is, come equipped with a o-field of sets - so
that the defining maps A, r, s, i and m are Borel.

The set X becomes, via the diagonal map A, a subset of G,
and it will have the relative Borel structure because A and r are
Borel maps. (In principle it would not be necessary to separately
assume that X was a Borel space.) The subset G' of GXG, where m
is defined, is given the product Borel structure. We will be assuming
throughout that the Borel space G is a standard Borel space. This
means that G with its Borel o-field is isomorphic to a Borel subset of
a complete and separable metric space given its Borel o-field. The
reader is referred to Mackey ([Ma5], Arveson [Arl, Bourbaki
CBoul for further discussion of this important and pervasive regularity
condition for Borel spaces. It is a condition that can be easily

checked in the examples to be treated.
Proposition 4.3. The graph G(X) of a foliated space (cf. Definition

2.20 in Chapter II) with the o-field generated by the open sets is a
standard Borel groupoid.
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Proof: In case the graph G(X) is Hausdorff, this is obvious for it is a
locally compact Hausdorff second countable space and can be given a
separable complete metric. In general G(X) may be covered by a
countable number of open sets U; each of which is locally compact,
Hausdorff and second countable. It is easy to see that a subset E of
G(X) is Borel if and only if E N Ui is Borel for all i. Since each Ui
is standard as a Borel space, it follows easily that G(X) is standard.
a

We will impose two further conditions on our standard Borel
groupoid G, both of which are very natural and immediate in the
context of foliated spaces. First we shall assume that each
holonomy group Gy is countable. The second condition

revolves around the notion of a transversal.

Definition 4.4. If G is a standard Borel groupoid with unit space X
and associated equivalence relation ®, a Borel subset S of X is
called a transversal if 8 intersects each equivalence class of Q®
in a countable set. (For us countable shall mean finite or countably
infinite.) A transversal is complete if it meets every equivalence
class.

If & is a countable standard Borel equivalence relation in the
sense of Feldman-Moore CFMIJ (that is, the equivalence classes are
countable), then of course any Borel subset is a transversal. As we
shall see, the existence of a complete Borel transversal for a general
G ensures that it can be built up in a simple way from a countable
standard equivalence relation.

We shall now forthwith assume that ® always has a
complete (Borel) transversal. Note that for foliated spaces
the existence of such sets is an immediate consequence of the
definitions. In dealing analytically with transversals, we will have
need of a very helpful result about Borel spaces that is not too well

known.

Theorem 4.5. Let X and Y be standard Borel spaces and let f be a
Borel map from X into Y with property that f~ 1(y) is countable for
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each y. Then X can be written as the disioint union of Borel subsets
U; so that f is iniective on each U;. Moreover f(X) is a Borel subset
of Y.

We shall not include a proof. The reader is referred to the
discussion in Kuratowski CKur] in section 35,VII. A proof may be
found in Hahn CHahl p. 381. See also Purves CPul.

We list some consequences of this result that will be relevant

for us.

Proposition 4.6. Let G be a standard Borel groupoid with countable
holonomy groups.

(1) The equivalence relation ® is a Borel subset of XXX, hence a

standard space.

2) If 8 is a Borel transversal, the saturation ®(S) of S with

respect to the equivalence relation ® is a Borel subset of X.

3) If S is as in (2), there is a Borel map f from R(S) to S with
f(x) ~ x.

Proof: (1) The map G — XXX given by u — (r{u),s(u)) is Borel and
countable to one. Hence its image & is Borel.

(2) Recall that the saturation of a set S is the set of all
points equivalent to a member of S. Let W be the subset of XXX
given by (SXX) N ® By (1) W is a Borel set. Now let p be the
projection map to the second factor. The image of W under p is
nothing else but @(S), and since S is a transversal p on W is
countable to one. Hence p(W) is Borel by Theorem 4.5.

(3) By the first part of the theorem, we may with a little
cutting and pasting construct a subset U of W above so that p is
injective on U and p(U) = p(W) = ®(S). Then define a map f of
®(S) into S by the condition that f(x) is the unique point so that
(f(x),x) € U. The graph of f is a Borel function, and it follows (cf.
Auslander-Moore Ch. I [AMJ) that f itself is Borel. This is the

desired function. O
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The existence of a complete Borel transversal in a standard
Borel groupoid G guarantees by part (3) of the proposition above that
the equivalence relation ® of G is built up in a very simple way from
a countable standard equivalence relation. To see this note that a
complete Borel transversal 8 in X defines a countable standard
equivalence ®g on 8 itself; Rg = (SXS) N ®  Then the map f
guaranteed by (3) of Proposition 4.6 from X to S with f(x)~x displays
X as a fibre space over S so that & is also fibred over ®g in the
sense that two points of X are ®-equivalent if and only if their
images under f are &s—equivalent. We shall exploit this structural
representation heavily in our discussion of transverse measures.

We observe that not every standard Borel groupoid ® satisfies
our condition on the existence of a complete Borel transversal.
Indeed let X be a Borel subset of the plane R% whose projection to
the first axis is not a Borel set (Kuratowski CKurl), and define an
equivalence relation on X by declaring that two points are equivalent
if their first coordinates are the same. This is clearly a standard
Borel groupoid {with no holonomy), but there is no complete Borel
transversal. For if S is such a transversal, it would follow by
Theorem 4.5 that the projection of S to the first axis, which is the
same as the projection of X to that axis, would be a Borel set.

Mackey [Ma5], followed by many others (cf. CRal,
CRa2]), has introduced and studied the notion of a measured groupoid;
these are by definition standard Borel groupoids with one more
additional datum, namely a Borel measure or better an equivalence
class of Borel measures on the groupoid. This class of measures has
to satisfy an invariance property that reduces in the case of a
principal groupoid (an equivalence relation) to the condition that 6.u
be equivalent to u where u is any measure in the class, and 6 is
the flip 6(x,y) = (y,x) on the equivalence relation and 8.y is the
image of the measure u under the map 6. The condition in general is

somewhat more complicated but basically the same.

Definitiop 4.7. A measure ¢ on a standard Borel groupoid G is
quasi {nvariant if é,u is quasi invariant on ®@ where R is the
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principal groupoid associated to G and ¢ is the projection map
G ~ @& and if when u is disintegrated over @&,(u) into measures
ui on the fibres G)’: of the maps ¢, then for almost all pairs (x,v) in
K, ui should be quasi invariant under the action of the groups G:
and G;.

In the present case when the holonomy groups Gi are
countable this last condition can be rephrased more simply as the
condition that for almost all (x,y) ui gives positive mass to each
point in the countable set Gz. Note that re(u) is equivalent to
8«(11) and defines an equivalence class of measures on the unit space
of X.

Although we have seen that a standard Borel groupoid may fail
to have a complete transversal, an important result of Ramsay [Ral
shows that a standard measure groupoid does have such a transversal

up to null sets.

Theorem 4.8. Let G be a standard measured Borel groupoid with unit
space X. Then there is a Borel subset Y of X conull for the natural
measure (class) on X defined by the measure u on G and a subset T
of Y which is a complete Borel transversal for the groupoid GY =
r'l(Y) n s"l(Y). That is, T is a transversal for the original
equivalence relation on X and meets every equivalence class of that

relation which has a non empty intersection with the conull subset Y.

Thus while the results to follow concerning transverse measures
which all assume the existence of a complete transversal on the
groupoid do not strictly apply to a measured groupoid, they will apply
after one deletes an inessential null set from the unit space. Our
point of view in that discussion is that a1l the points count and that
one cannot delete or ignore null sets, especially when one is dealing,
as we shall later, with locally compact groupoids.

The discussion to follow concerning transverse and tangential
measures can be interpreted as an analysis of a measure on a groupoid
into a product (in a Fubini type sense) of a part tangential to the
orbits of the groupoid times a part transverse to the orbits. The

transverse part is thus in some vague sense a measure on the space
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of orbits of the groupoid.

Let us now turn to the crucial topic of transverse measures.
If G is a standard Borel groupoid (or more particularly an equivalence
relation & on X) a transverse measure provides, at least intuitively, a
method of integrating some kind of object over the set of equivalence
classes of the principal groupoid ® associated to G - that is over
the quotient space X/®. This quotient space is in general a very
pathological space from the point of view of measure theory,
containing subsets like [R/@, the real numbers mod the rational
numbers. If the quotient space X/® with its quotient Borel structure
were a standard or even analytic Borel space (e.g. if G were to come
from a foliation given by the fibres of a fibre bundle) then transverse
measures would be really just ordinary measures on X/Q. For
general foliations transverse measures suitably defined have played an
important role for yvears. In addition, as Connes points out [Co31,
one has to rethink one's concept of what sort of functions are
suitable integrands for integrating against a transverse measure.

We will treat something a bit more general than what
traditionally in the theory of foliations is called a transverse measure;
transverse measures here will involve a modular function analogous to
the modular function on a locally compact group. When this modular
function is identically one, as is traditional in foliation theory, the
transverse measure will be called invariant. Hence what in foliations
is called a transverse measure, we shall call an invariant transverse
measure.

The modular function in question above 1is simply a
homomorphism from the groupoid to the group of positive real numbers
R* under multiplication. A homomorphism of a groupoid G to a group
H (or indeed to another groupoid) is a map ¢ from G to H so that
when uv is defined #(u)#(v) is defined and is equal to #(uv). When
G and H are standard Borel groupoids, one insists naturally that ¢
be a Borel map. For the purposes at hand we fix a Borel
homomorphism. denoted by A, of G into the group R*. We further
assume that A is holonomy invariant in that A(u) depends only on r(u)
and s(u). Put another way, there is a homomorphism A' of the

principal groupoid (equivalence relation) ® associated to G so that
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A{u} = A'(p(u)) where p(u) = (r(u),s(u)) is the projection of G onto the
equivalence relation Q.

Let us now consider the case when G (or ®) has countable
equivalence classes. Then in view of our standing hypothesis that all
holonomy groups are countable, the range and source maps r and s are
countable to one. In [Ma5], the notion of a quasi invariant measure
on X with given Radon-Nikodym derivative (or modulus) A is
discussed, at least in the case of trivial holonomy groups, see also
[FM1]. The discussion extends without change; namely we start with
a measure » on X quasi invariant under ® in the sense that a subset
E of x is v-null if and only if its ® saturation - again a Borel set
by Proposition 4.6 - is also v-null. As r is countable to one, there is
a unique measure ». on ® which is the integral of the counting
measures on the fibres of the map r over the base X. Specifically if
ICl is the cardinality of C, then

» (8) = I 18ac~ 1)1 dwix).
X

There is a similar measure Ve defined using the source map s instead
of r. As in Feldman-Moore C[FMIJ], these measures are mutually
absolutely continuous and the Radon-Nikodym derivative dvr/dvs = A
is called the modulus of ». This function on G is readily seen to
depend only on the projection of G onto ® As a function on G or R
the modulus A is a homomorphism up to null sets in that A(uv) =
A(u)A(v) for almost all u and v in the obvious sense.

We return to the case of a general standard Borel groupoid
with countable holonomy groups and a complete Borel transversal. We
observe that the set of all Borel transversals % is indeed a o-ring,
but not in general a o-field, of subsets of X. A transverse measure
will be simply a measure on this o-ring. For each S € 3 we can
form the restriction of G to S, Gg = u € G, rfu,su) € S3.
This is a groupoid with countable orbits and countable holonomy groups
of the kind discussed a moment ago.

There is a subtle point here about whether A is or is not
constant on the holonomy groups G:. There will be instances later on

when we specifically will want to allow A to be non constant on
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some holonomy groups G’;; the point is that this cannot happen for too
many x's, for it follows from the fact that A is equal almost
everywhere to the Radon-Nikodym derivative of » g on GS and some
null set manipulations, that for ”IS almost all x € S, A is constant

X
on Gx'

Definition 4.9. A transverse measure with modulus A on a
standard Borel groupoid is a measure » on the o-ring of Borel
transversals 3 so that » g is o-finite for each S € 3 and so that
Y|g is quasi invariant on Gg with modulus equai to A almost
everywhere on Gg. If A = 1, one says that » is an {nvariant
transverse measure.

A transverse measure allows one to talk consistently about
what it means for a set L of equivalence classes of the equivalence
relation ® to have measure zero. The condition is that the
intersection of the leaves in L with each Borel transversal S should
be contained in a v's Borel null set, or equivalently that this should
happen for a single complete Borel transversal. Since the modulus of
a quasi invariant measure is constant on holonomy groups, we conclude
from this discussion that A is constant on the holonomy groups of
almost all leaves.

As an example of a transverse measure we consider the
Kronecker foliation on the two-torus T2 where the leaves are of the

form
Clexp2rilx + xp)), exp(2rikx), x € R
X irrational. Regard the two-torus as the square
xy) | 0£x<1,0<y<1),

and for each p, -\ < p £ 1, let £p be the part of the line y =

Ax + p inside the square described above.
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If S is any Borel transversal, then S must meet each £ o in at
most a countable set. If n(p) is the cardinality of S N 2 o then n

is obviously a Borel function. We define » by the formula

1
»8) = f n(o)dp.
-\

It is not difficult to verify that this produces an invariant transverse

measure for the graph of this foliation. If instead one defined

1
»(s) = j n(o)f(o)do
-\

for some positive Borel function f, the result would be a transverse

measure with modular function
Allx1.y9), (x9,¥5)) = flyy-Ax M/ Elyy-Ax,).

Recall that given a diffeomorphism ¢ of F then one may form
its suspension M = RX,F (cf. (2.3)) which is foliated with leaves of
dimension 1. An invariant transverse measure for M corresponds to a
#-invariant measure on F. More generally, in the situation (2.2) of a

manifold with discrete structural group
M=B xxl(B) P

an invariant transverse measure on M corresponds to a measure on F
which is invariant under the action xl(B) ~— Homeo(F).

Also let us consider the very special case when G = ® is an
equivalence relation coming from a Borel map p of X onto a standard
Borel space B - in other words, a fibration. Here x ~ y if and only
if p(x}) = ply.,. We let A = 1 so we are looking for invariant
transverse measures. If » is a measure on the base B then if N is

transversal we define

»(N) = J' IN n p~1(b)1d(b).
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It is clear that » so defined on the o-ring of transversals is an
invariant transverse measure. Conversely we claim every such » is
of this form. To see this, observe that the assumed existence of a
complete transversal yields by Proposition 4.6 the existence of a
Borel cross section S for the map p. It follows that p maps S
bijectively onto B; by Kuratowski [Kur] it is therefore a Borel
isomorphism. If » is an invariant transverse measure on X, » gives
in particular an ordinary measure on S. This may be transported to B
via p|S to give a measure ; on B. Then it is an easy exercise to see
that » on any transversal N is given by the formula above in terms of
» and IN N p~l(b)1.

It is well to extend the remarks above a bit to observe that »

is determined by what happens on any complete transversal.

Proposition 4.10. For any standard Borel groupoid with countable
holonomy and unit space X, a transverse measure » of modulus A is
completely determined by » N where N is any complete transversal.
Conversely if vy is a transverse measure on N with modulus AIN,

then there exists a (unique) transverse measure on X with modulus A.

Proof. By Proposition 4.6 we construct a Borel map t from X to N
with f(x) ~ x. If S is any transversal, f restricted to S, f IS’ is a
countable to one map of S8 to N; then assuming we know ”IN =y
for some transverse measure, we can immediately calculate » on S

given the invariance properties in terms of A(f(s),s) as follows:

»8) = [ (5, Att.shdvylt)
N

where for each t the sum is taken over all s with f(s) = t. This
shows that » on N determines » altogether.

Conversely if we are given a transverse measure vy on N, we
use the same formula to extend vy to all transversals. It is a
simple calculation to show that the result is a transverse measure on
X. a
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If X is a foliated manifold with oriented transverse bundle, we
remark that there is a canonical transverse measure class given by the
volume element on gq-dimensional transverse submanifolds. This may or
may not be an invariant transverse measure (class).

A transverse measure on a general groupoid in this formulation
is really an ordinary measure but is defined on a o-ring & instead
of a o-field. The measure could of course be extended to the
o-field generated by 3 but this extension would in general be
impossibly non o-finite as a measure on the entire space. (If the
entire groupoid has countable orbits then a transverse measure is just
an ordinary (o-finite) measure on the unit space.) These facts make a
huge difference in the type of object that can be integrated in

general against a transverse measure.

We insert here several diverse examples of foliated spaces
which yield interesting classes of (primarily Type III) von Neumann
algebras. In Chapter VI we shall consider the question of exactly
which von Neumann algebras may be realized as the von Neumann
algebras of foliated spaces.

Let G = SL,(R), let T be a discrete cocompact subgroup, and
let M = G/T be the resulting compact 3-dimensional manifold. Foliate
M by the left action of the triangular subgroup

a 0
B= -1 a>0.
b a

The orbits are two dimensional, hence this is a codimension 1 foliation
of M. Each leaf is dense. In fact, if one lets

=[]

act instead [this is called the horocycle flow] then each leaf is still
dense. The foliation arising from N has an invariant transverse
measure. However, there is no invariant transverse measure at all for
the foliation which arises from the action of B. The associated
von Neumann algebra is a IIII factor; cf. Bowen [Bow].

Here is an example of a 1-dimensional foliation of a
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3-dimensional manifold which is due to Furstenberg [Fu]. It is built
by first defining a 2 action on a 2-manifold and then suspending it to
make an IR action on a 3-manifold.

Let M = TXT be the 2-torus and let { be an irrational

number. Let
#(x,y) = (e2™18x g(x)y)

where X,y are complex numbers of absolute value 1 and where
€ T — T is a function at our disposal. We construct g as follows
by first defining

2xing ¢
hx)= 5 L kK
k20 k

where ny is a sequence of integers tending to « at our disposal.
Observe that

k(x) = h(e?™¥y) - hix) =

=X-l-(e

kz0 k

2rin, ¢ 2xin, ¢
k* 1e k .

Now pick ¢t and ny such that, say,

innk&' nk
(*) le -1 <r some r < 1.
This is possible for suitable %, but such !'s are not very common -
they are highly Liouville; alternatively one could make
2xin, ¢
o k

(**) I -1 = O(n;r) for all r > 0.

Then consider
oitth(e?™ ¥ x) _ hix)

glx) =

for suitable t as our g. First of all, if k(x) = h({tx) ~ h(x), then k is
real analytic under (*) and C™ under (**). Hence #(x,y) is real
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analytic, respectively C®. It is a theorem of Furstenberg [Fu] that

for any # of the form above,

(1) ¢ is minimal iff one cannot factor any power of g as
gMx) = u(ez"ﬂx)/u(x)

for a continuous function u: T — T, and

(2) # is ergodic with respect to Lebesgue measure if one cannot

factor any power of g as
g2 = u(e®™¥ x)/ulx)
for a measurable function u: T — T.

The proofs are not hard.
Now the g is cooked up so that

elx) = oith€®™x) ithtx)

so that for all t the transformation is not ergodic, hence not ungiuely
ergodic. However, if one could factor as above, then the factorization
would be unique up to a constant, as § is irrational and rotation by §
is ergodic on T. So if one could factor g (or any power of g) then
the factorization would have the same form as above. Hence ¢ will

be minimal for given t provided that we can be assured that

eith(x)

is not continuous. If this is continuous for all t, it is easy enough
to see that h(x) is continuous (and conversely, of course). But h is
not continuous because the Fourier series of h(x) would then be
Cesaro summable to h for every x, by advanced calculus. Then we

would have
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h(1) = C8. X
kz0

= |-

which is nonsense, since this is a sum of positive terms.

So ¢ is minimal - each orbit is dense, but (for suitable choice
of g and t) @ is not ergodicc Now form the suspension of ¢ to
obtain a one dimensional foliation of the 3-torus which has
corresponding properties. A transversal is of course M with the
equivalence relation induced by powers of ¢. This is a real analytic
foliation. There are a continuum of ergodic invariant transverse
measures of this foliation - in fact they are indexed by the circle.
Each is singular with respect to Lebesgue measure and in the foliation
case live on a measurable but not topological 2-torus inside the
manifold. Measure theoretically this foliation looks like a Kronecker
foliation on the 2-torus with angle § crossed with a circle - nothing
happening in the transverse direction here. The invariant ergodic
transverse measures are just the measures on the copies of the
Kronecker torus in this product structure.

Here is an example given by Connes [Co2, p. 150] of a
foliation whose von Neumann algebra is of type I[I)‘ for some fixed \
with 0 <\ < 1. Let S be a circle of length s, let X = SL(2,R)/T
for a discrete cocompact subgroup I', and let Y = SXX. Act on Y
by the group of matrices of the form

for t,b € R, where

[ ]

acts trivially on S and by the horocycle action on X, and

et 0
0 et

acts by a rotation of speed 1 on 8 by the geodesic flow on X. The
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resulting foliation has a von Neumann algebra of type I, where
A =e % IfS is replaced by a space K of dimension at least 2 with
an ergodic action then a III, factor results.

With these examples in hand, we return to the general
development. The next order of business is the introduction of
appropriate integrands to pair with transverse measures.

By way of motivation to see what the appropriate integrands
are, we consider the case when G is an equivalence relation on X with
each equivalence class consisting of one point. As noted, a transverse
measure » is an ordinary measure; one uses a (non negative) Borel
function f on X as integrand. Instead of looking at f as a function
on X, we view f as an assignment to each equivalence class of G (i.e.
each point of X), of a measure living on that equivalence class. The
measure attached to {x2 is of course f(x)!ix where 5, is the Dirac
measure at x. Moreover, we regard the process of integration as first

passing from the integrand f to the measure f+=» on X, where

f-»(E) = j‘ fdy,
E

and then passing to the total mass of f+» to obtain a real number
- the integral of f.

This point of view guides us in the general case: the proper
integrand for a transverse measure » on a standard Borel groupoid G
will be a family of measures CA%3 one on each "leaf” of the
groupoid. If G is an equivalence relation this is simply an assignment
2 — 2% of a (non negative, o-finite)} measure A% on each
equivalence class ¢ of the equivalence relation. This map
2 — 2% should be Borel in an obvious but tedious sense that we
shall not write down.

If for example G has countable orbits, there is a very natural
such family of measures; namely, 2 s counting measure on the
(countable) set 2. For the Kronecker foliations discussed above, each
orbit is an affine real line; that is, the real line without an origin
specified. On such affine lines we can simultaneously normalize Haar

measure to obtain a family C)\‘e} of the type described. Finally if &
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is any standard equivalence relation and if S is a Borel transversal,
we can define a family ofs by letting )\2 be the counting

measure on the countable set T N £, viewed as a measure on £.

Definitiop 4.11. A tangential measure \ = 2%y for an
equivalence relation ® is an assignment of (non-negative) measures
2 ~ 2% as above.

This was all for a principal groupoid (i.e. equivalence relation).
The presence of holonomy complicates matters a bit, ‘but the
complication is largely notational. Recall that the inverse images of
the range map r are denoted GX = r'l(x). A tangential measure on G
is first an assignment of a (o-finite) measure \X on GX* for each x
in a Borel fashion subject to an invariance condition. For equivalence
relations, when x ~ vy, r‘l(x) is actually the same as r'l(y) and we
demanded A* = A\Y (= A%) where £ is the common equivalence class

of x and y. In general the requirement is that
J'f(uu')dx"(u') = J’ f(u')drY (')

for every u € Gi (= r'l(y) N s'l(x)) and every non negative Borel
function f on G. Since the meaning of this formula is not immediately
transparent, we rephrase it more geometrically. Each set GX is acted
upon by the group G: which acts freely from the left by groupoid
multiplication. The quotient space G::\Gx is canonically identified to
the equivalence class 2(x) of the corresponding principal groupoid
(equivalence relation) associated to G. If vy ~ x with respect to @,
then each element of Gi defines a bijection of G* onto GY; moreover
GY is acted upon freely by G) on the right and G§ on the left again
using groupoid muliplication. By associativity, the transformations of
Gz intertwine the actions of G: on G* and G;’ on GY so that the
quotient spaces Gy\G* and G;'\Gy can be identified. The
identification is independent of the element in Gz and when these two
sets are further identified with £(x) and &£(y) respectively, the
mapping becomes the identity map between £ = £(x) and £ =
2(y), the common equivalence classes of x and y under &.

The invariance condition expressed by the integral formula



above says first of all that AX on G¥* is invariant under the left
action of G;: for all x. and furthermore that elements of Gz, viewed
as mappings from G* to GY, carry A\* onto \Y. We see now that
the standing hypothesis of countability of G: allows us to simplify the
situation. By a choice of cross section, GX can be viewed as the
product G: X 2(x), and using counting measure on Gi, there is a
biiection between measures on #£(x) and G:—invariant measures on GX
which is independent of the cross section. Thus if AX is a choice of
G: invariant measures on G¥, x€X, with corresponding measures
XX on £2(x), the further invariance under Gi for a tangential measure
means that X\* = XY if x ~ y. Hence A\X = %% if x € ¢
defines a tangential measure on Q. the associated principal groupoid.
Summarizing, we obtain the following observation which allows us

better to understand tangential measures in general.

Proposition 4.12. If G is a standard Borel groupoid with countable
isotropy groups and ® is the corresponding equivalence relation, then
the map A — X defined above is a bijection from tangential measures

on G to tangential measures on Q. (a]

To illustrate further the notion of a tangential measure when
there is holonomy. consider the example of a groupoid G coming from
the action of a locaily compact group H on a Borel space X. Recall
that elements of G are pairs (h,x) and that the range map is r{h,x) =
hex. If we fix a point Xy € X, then r'l(xo) can be represented as
the set C(h,h'lxo), h € H3, and we use the first coordinate to
parametrize this set. If Yo is equivalent to X 80 that Yo = ho-xo,
then r'l(yo) can be represented as the set C(k,k‘lyo), k € H2,

y
and elements of Gx0 are of the form (hohl,xo) where hl is in the
0

isotropy group of Xq- Groupoid multiplication shows that the map from

Y -1, ~
Gxo to G 0 is (h,h'lxo) —_— (hohlh, h'lhl 1holy()). Hence in terms of
the parameters on these spaces the map is left translation. Therefore
a suitable choice of tangential measure would be A\¥ equal to left

Haar measure on H transported over to r—l(x) as indicated above.



There are evidently many other choices also.

Ultimately we will want to consider tangential measures of
mixed sign. In outline the notion is clear, but there are technical
difficulties because generically the measures A% (or 2X) will be
infinite measures. Indeed one sees easily that for an equivalence
relation ®, the existence of a tangential measure with A% finite for
each ¢ implies that the equivalence relation ® is smooth; that is, the
quotient space X/® is an analytic Borel space, LCAr, p. 711. Since
infinite signed measures cause problems in this general context, one
would only want to discuss tangential measures of mixed sign in the
presence of some topological assumptions.

Let us now turn to the integration process, which is related to
the Ruelle-Sullivan pairing [RuS]. Begin with a standard Borel
groupoid G together with a transverse measure » with modulus A
and a tangential measure \. The integration process is going to
produce first a measure u, written du = Adv, on the unit space X
whose total volume u(X) = I Ad» will be the integral of the tangential
measure with respect to the transverse measure. To define these
objects we first fix a complete Borel transversal S, which exists by
our standing hypothesis. By Proposition 4.6 we find a Borel function f
from X to S with f(x) ~ x. Next we observe by Proposition 4.12 that
we may as well assume that G = R is principal. Then for each point
8 € S we define a measure pg On f'l(s) as the restriction of 2408
to f'l(s) C 2(s), the equivalence class of s. The modular function A
of » comes to us as a function on Gg, but we have observed that if
we stay away from a »-null set of equivalence classes of the relation
®, then A is constant on holonomy groups, and is almost everywhere
really a function on ® In the present context, this means that there
is a saturated null set N of § so that for s € N, A(s,x) is well
defined. That is the meaning of the function which appears in the
integral below which defines the measure u = Ide on X, the

result of integrating \ against the transverse measure »:

frav=um = [[f  asxxgdogx]dve)
E 1)



for any Borel set E in X. The first remark is that this is
independent of the choice of the complete transversal S and of the
function f from X to S. The presence of the modular function A in
the above formula is exactly what is needed to achieve this, and we
omit the simple calculation.

The resulting measure u on X is thus well defined and depends
only on the data given, the transverse measure » of modulus A and

the tangential measure \. Its total mass is written as

wX) = Ide.
X

In the most primitive special case of an equivalence relation on
X given by a fibration p of a space X over a base space B, we have
seen already that a transverse measure » with modulus 4 = 1 is
exactly a measure on the base B, and that a tangential measure is a
family of measures C)\b}, one on each fibre p'l(b). The integral Ady
is the usual construction of a measure on the total space X from a
measure on the base and measures on the fibres. The formula given
above in the general case makes the general situation very similar
intuitively to the fibration case. Indeed the total space X is fibred
measure theoretically over the transversal S, instead of a base space

B; the picture is quite similar:

£72(s)

S

In accord with the notion that a transverse measure » on G
is in some sense a measure on the orbit space X/G, we have already
remarked that it is possible to say what it means for a Borel set of
orbits to be a null set of orbits. This is clear for a Borel set of
orbits corresponds to a Borel set E in the unit space which is

saturated or invariant with respect to the equivalence relation R of G.



Definitiop 4.13. An invariant Borel set E in X is a v-null set if
every transversal in E has » measure zero.

Using this definition it is easy to define an ergodic transverse
measure; namely if X = El v} EZ where Ei are invariant Borel sets,
one of them is a »-null set. In addition one has as usual a type
classification of ergodic transverse measures into types I, II, and III
Indeed if N is a complete transversal then ((RN,N,v|N) is an ergodic
countable standard measured equivalence relation which has a type
classification (Feldman-Moore CFMJ). In the type II case, one may
have different transversals where one is type II4 while another is type
II,. Hence there is no meaningful distinction between these types
and one has one class of type II transverse measures. As usual one
may further divide the type III case into the III, 0 < X € 1
subtypes by the type classification of the discrete versions
(GN,N,le). For some examples of type IIIX factors, cf. Connes
{Co2], pp. 149-150.

Further, a general transverse measure » can be displayed as a
continuous sum of ergodic components. To see this, one makes an
ergodic decomposition of (N,vIN) and then uses the projection map p of
Proposition 4.6 of all of X on N to decompose » itself. By
construction, all of the groupoids appearing as disintegration products
will have complete transversals.

Throughout this entire discussion the modular function A has
remained fixed. If we change the modular function to a new one A’

which is however in the same cohomology class, that is
A'(w) = Afu) bir(u)bisu)?

where b is some Borel function on X into the strictly positive real
numbers, then there is no essential difference betweon transverse
measures of modulus A and transverse measures of modulus A'.
Indeed if » is a transverse measure of modulus A, then b-»,
where multiplication of a (transverse) measure by a positive Borel
function has the usual meaning, is by a simple computation (cf.

Feldman-Moore I CFM13J], p. 291) a transverse measure of modulus A’



where A' is as above, and conversely.

Since most of the groupoids we shall meet carry not just a
Borel structure, but also a topology, we shall now discuss briefly the
notion of a topological groupoid. Following Renault CRenl], we

impose the following conditions.

Definitiog 4.14. A groupoid G with unit space X is a topological

groupoid if G and X are topological spaces and

(1) The set where the partially defined multiplication is

defined is closed in GXG and multiplication is

continuous.
2) The range and source maps are open and continuous.
(3) The inversion map is a homeomorphism.

For our discussion G and X will be assumed to be locally compact in
which case we will say that G is a locally compact (topological)
groupoid. Ordinarily one would automatically assume that G and X are
Hausdorff and most of the time in the sequel we will have this as a
standing assumption. However the reader should be aware that there
are a number of interesting, natural, and significant examples where a
non-Hausdorff structure is forced upon one. The graph of the Reeb
foliation discussed in Chapter II is one such example. All interesting
examples known to us satisfy the following condition that could be

used in place of the Hausdorff condition:

4) X is Hausdorff and G has a cover consisting of open

sets each of which is Hausdorff.

If (4) is satisfied we say that G is locally Hausdorff.

We remark that if G = & is an equivalence relation, then Q is
a subset of XXX; yet the topology of & will not be the relative
topology from XXX. For instance if we consider the Kronecker

equivalence relation @& on the circle Tl given by & ~



€ exp(2xink), n € 75, \ irrational, then ® as a subset of Tixrl
is a line of irrational slope in the two torus. To make it a locally
compact groupoid one has to give ® the usual topology of the real
line.

The prime example we have in mind is the graph of a foliation,
at least when it is Hausdorff, as described in Chapter II. If H is a
locally compact group acting as a topological transformation group on
a locally compact Hausdorff space X, then the groupoid HXX described
earlier in this chapter becomes a locally compact topological groupoid.

Finally, the following simple example displays for us in a
discrete context the need for introducing the graph of a foliation. On
the real line R consider the equivalence relation & where x ~ 27%x
for all n € 2. In spite of the simplicity of this, the equivalence
relation ® does not admit any reasonable locally compact topology.
The trouble comes near (0,0) = py where @ appears to have an

infinite number of line segments all passing through this point.

If however we introduce points 1 which are formally the limits of
(x,27"x) as x — 0 with n fixed, then we can visualize this new obiject

G as an infinite set of (parallel) real lines

P

= {(x.8/2)32

= {(x,x)2
Po

= {(x.,2x)2
P

It is easy to see that G may be turned into a locally compact



topological groupoid. Indeed it is a discrete version of the graph
construction for a foliation. = We remark that if we modify the
equivalence relation ® by saying that x ~ x for x < 0 and x ~ 27"k
all n, for x 2 0, then this construction leads to a non-Hausdorff

graph-like object

Py

= {(x,x))
Po

P_1

where a neighborhood of p; is a small interval containing py and
extending to the right of Py plus a small interval to the left of Py
(but not including pg) which has already arisen in Chapter II (2.29).

In both examples it is clear that Lebesgue measure is a quasi
invariant measure. It would be natural to hope that the modular
function A could be fixed up to be continuous. A, simple calculation
shows that on the n‘ horizontal line in these examples A is almost
everywhere equal to 2". Hence in the first example we can make A
continuous, but then over the point 0 it is non-constant on the
holonomy group Gg. This happens only on a null set-one point, in
accord with our earlier discussion. In the second example we see that
A cannot be constructed so as to be continuous.

Another class of examples of interest of topological groupoids
are ones that arise from the holonomy of a single leaf of a foliation.
(Compare with the bundle construction in Chapter II; cf. 2.25.) Let M
be a manifold and let T be a quotient group of xl(M). Then there
is a covering M of M with deck group I', and we identify M as the
orbit space M/T. We form G = (Mxi’/l)/r where I is acting
diagonally. = Two TI-orbits I-(x,y) and I -(z,w) are multipliable if
F*y = Tz we define their product to be l‘-(*(lx, ’rz-w)
where v, and Y, are elements of T so that vy.y = vyez
The unit space is the original manifold M, and the range and source
maps are rI-(x,y)) = F-x € M, and s(F=(xy)) = Ty € M. It
is not difficult to see that this produces a topological groupoid with T



as constant holonomy group. One easily sees that as a Borel groupoid
this groupoid is simply the product of the group I and the
equivalence relation on M where all points are equivalent, but it is
not the product as a topological groupoid.

In the context of topological groupoids, homomorphisms of a
groupoid to a group or another groupoid should be assumed to be
continuous. Transverse measures considered in this context will be
assumed to have continuous modular functions.

In the context of topological groupoids there is a special kind
of tangential measure of interest. If we recall that tangential
measures are objects to be integrated against transverse measures and
hence are analogues of functions, it makes sense to try to define, in

analogy with a continuous function, a continuous tangential measure.

Definition 4.15. We say that a tangential measure X s
continuous if each \X is a Radon measure on r'l(x) C G and if

f fdnX(u)

is continuous in x for every continuous function f of compact support
in G. This is appropriate if G is Hausdorff. If G is only locally
Hausdorff we demand instead that the integral above be continuous in
x when f is compactly supported inside some Hausdorff open set and is
continuous there. Such a function f need not be even continuous on
all of G.

As an example consider the case of a G arising from a locally
compact group H acting topologically on a locally compact space X.
We saw earlier in this chapter that the assignment x —s AX where
A\X is Haar measure on H carried over to r'l(x) = C(h,h'lx)) by the
map h — (h,h'lx) is a tangential measure. Evidently this is also a
continuous tangential measure.

An obvious item of concern is to find conditions on a
transverse measure » and a tangential measure \ so that the
integral \dy produces a finite measure on X. Rather than taking

this question up in this general context we shall take it up in the



more special context of primary interest when G is the graph of a
foliation. We turn to that case now.

So assume that X is a locally compact foliated space with G
the graph of the foliation, which we assume is Hausdorff. Then G is
itself a foliated space as described in Chapter II with leaves equal to
the holonomy groupoids of the leaves of the original foliation. All
homomorphisms @ of G to a Lie group and in particular to R will be
assumed to be tangentially smooth on the foliated space G in the
sense of Chapter II.

Now suppose that » is a transverse measure on X of modulus
A. As suggested previously, the notion of » being a Radon measure,
to the extent that this can be defined in general, would be a
condition demanding that » be finite on some distinguished set of
compact transversals. But in a foliated space there is a distinguished

set of compact transversals given by the foliation structure.

Definition 4.16. Call a transversal C open-regular if there is an
open set L in RP, where p is the dimension of the foliation, and an
isomorphism ¢ of foliated spaces of LXC onto an open subset of X,
which is the identity on C. A transversal C is regular if it is

contained in an open-regular transversal.

If Ux is one of the coordinate patches in the definition of the

foliation so that Ux = LXXNX’ L, open in RP, then any compact

X
subset of Nx is a compact regular transversal. Our definition of a

Radon transverse measure involves finiteness on these transversals.

Definition 4.17. A transverse measure » on a topological groupoid is

Radon if »(C) is finite for every compact regular transversal.

We observe that in order to check this condition, it will suffice
to check finiteness on a much smaller family of compact regular
transversals. For instance, let C, be a familv of such transversals
with maps ®; of LiXCi into X, and suppose that there are relatively
open subsets of C, U ¢ U C VvV, CC so that the open sets
#,(L;xU;) cover X.



Proposition 4.18. If »(C)) is finite for each i for such a family, then »

is Radon.

Proof: Let B be any compact regular transversal with a map # of
LXD into X with D O B. By covering argument and by shrinking L if
necessary we may assume that #(LXB) lies inside some #,(L,XV;) and
has compact closure there. The projection mapping to the second
coordinate of L;XV; gives rise to a continuous map f of B to Vi 80
that b and f(b) lie in the same plaque of the coordinate neighborhood
LixVi. Using the geometry of this situation, we easily show that
there is an integer n so that f~ 1(b) has at most cardinality n. Now
using the quasi-invariance properties of transverse measures, we can
calculate »(B) by the formula

»(B) = )X A(b,x)]dv(x).

£(b) [f(b)"‘

Since the modulus A is a continuous function, it is bounded and as
{(b,f(b)) b € B2 is compact, the integrand is bounded. As f(B) C vV, C

Ci’ »(f(B)) is finite and we are done. OO

It is evident of course that a Radon transverse measure is
completely determined by what it does on regular transversals. For
instance, the union C = VG, in the proposition above is a complete
transversal and if » is known on C,, it is known on the union C and
then knowledge of » on a complete transversal determines the
transverse measure entirely.

Up to now transverse measures have always been positive
measures. However at this point we are in a position to consider
signed or even complex transverse measures. We simply take
differences or complex linear combinations of (positive) Radon
transverse measures. Such an object cannot be defined on all

transversals, but clearly it can be defined on regular transverals.

Definition 4.19. A signed or complex transverse Radon
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measure of modulus A is a real or complex linear combination of
positive Radon transverse measures of modulus A defined on all finite
unions of regular transversals.

By our remarks above to the effect that a positive Radon
transversal measure, viewed as a measure on all transversals, is
completely determined by what it is on regular transversals, the
domain we have specified for signed or complex Radon transverse
measures is surely large emough. They can be expanded of course to
a somewhat larger class of transversals without confronting expressions
like © - %, but not in general to all transversals. We shall make use
of these objects only briefly in connection with the Riesz
representation theorem (4.27) for compact foliated spaces.

On the graph of a foliation of X we can construct tangential
measures of particular interest.  Each set r'l(x) is itself a C”
manifold, and so has a unique equivalence class of measures, those
equivalent to nonvanishing densities. As each set r'l(x) is a covering
space of the leaf £, of x in the foliation, and as tangential measures
are invariant under the deck group, giving a tangential measure Az
(as we have already noted in Proposition 4.11) is the same as giving
measures il' one for each leaf 2.

To construct such measures, cover X by coordinate charts of
the form LXN; where L, is an open ball in R® and let \; be
tangential measure on the foliated space L;XN; where )\'1‘ is for n €
N;. normalized Lebesgue measure on L;. Now choose a partitition of
unity Oi subordinate to the covering and define A to be the sum
29ixi. Then we lift X% on each leaf £ to a unique measure \X on
r"l(x) using counting measure on the fibres of the covering map.
Proposition 4.12 implies that X = CA\¥) satisfies the invariance

properties required and thus is a tangential measure.

Proposition 4.20. The tangential measure just constructed is a

continuous tangential measure (G Hausdorff or locally Hausdorff).

Progf: We have to check the continuity of
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X ~ J‘ f)dnX(u)

for each f of compact support on G for G Hausdorff. Using partitions
of unity we may localize the support of f so that it lies within a
subset K of G on which the map (r,s) is injective into a subset of
XXX contained in Supp(Oi)xSupp(Oj) for suitable (i,i) where 6, is the
original partition of unity used to define A. One easily verifies the
continuity of the integral as a function of x for such f. One proceeds

similarly in the locally Hausdorff case. (s}

If we perform the construction using different coordinate
charts, or using different partitions of unity, we obtain a tangential
measure Xy which is equivalent to X\ in the sense that )‘)1( is
mutually absolutely continuous with respect to A* on r"l(x). The
Radon Nikodym derivative dkl/dk is a continuous nonvanishing
function on G which one can check is bounded from 0 and « not just
on compact subsets of G but also on any set r'l(C), C compact in X.
In terms of this we may define local boundedness of a tangential

measure.

Definjtion 4.21. A tangential measure \' is locally bounded
(Lebesque) if (A')* has a Borel density on r'l(x) for each x and if
d\'/d\ is bounded on any set r'l(C), C compact, for one (and hence
any) tangential measure \ of the kind constructed above by partitions
of unity. If the unit space is compact, we will for simplicity call

such a measure a bounded tangential measure.

With these definitions the desired finiteness result is quite

straightforward.

Proposition 4.22. If » is a Radon transverse measure on the graph G
of a foliated space X, and if A is a locally bounded (Lebesgue)
tangential measure, then for any compact set K of X the integral
w(K) = I Ady is finite.

K
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Proof: We consider coordinate patches Ui ison'\orp}'nic as foli?ted

spaces via ¥ to LiXNi so that ¥ extends to L, XN, where N, is

compact and contains N; in its interior and where L; is a relatively
!

compact open ball in the ball L;. The compact set K can be covered

by a finite number of such sets U; so it suffices to show that u(Ui)

is finite. But by the definition of u we can evaluate u(U;) by the

formula

oy = | [f Alfxg.n), (x,n))dxn(x)]dvo(n)
Ni Li

where x; is a fixed point of L; and »; is the transverse measure »
restricted to the transversal n/ai(xo,Nil. As this transversal is
contained in a compact regular transversal, vy is a finite measure.
Moreover the measures A" on the plaques ¢i(Li,n) have smooth
densities which extend uniformly in n to a slightly larger "ball” and
hence are bounded uniformly in n. The modular function A is
continuous, and hence its values entering into the integrand are
bounded. (Note that strictly speaking A is a function on the graph.
It can be transported locally down to the equivalence relation ® as
we have done, since we are operating in coordinate patches with the
plaques contractible). It now follows at once that the integral above

is finite, and we are done. o

We remark that one could easily obtain finiteness results for
tangential measures which do not have densities by imposing similar
local boundedness conditions.

Our final goal now is to relate the previous discussion, which
has been mostly analytic, to more geometric and topological aspects of
the foliation. We begin with a tangentially smooth homomorphism A
of G into R, such as the modular function of a transverse measure on
X. Tangential smoothness is with respect to the foliation of G by the
holonomy groupoids of the leaves of the original foliation. We
consider log(A) as a real-valued function on G and form its
differential. On each set GX = r"l(x), the homomorphism property of A

implies that
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(log A)vu) = log(A)v) + (log A)u)

for v in the holonomy group G:. Hence the differential of the
function log(A) becomes in a natural way a differential on the quotient
Gi\Gx, or in other words the leaf 2, of x. Again by the
homomorphism property of A, this differential on £, is independent of
x, and hence one has an intrinsically defined differential 1-form on
each leaf £. Moreover the tangential smoothness of A implies
immediately that these 1-forms on the leaves fit together continuously
to what we have called in Chapter III a tangentially smooth 1-form
for the foliation; recall that this is a tangentially smooth section of
the dual F X of the foliation bundle. We denote this 1-form by a

(or a A if there is confusion). Summarizing:

Proposition 4.23. For a tangentially smooth homomorphism A on G,
the construction above yields a tangentially smooth 1-form a A oD

X. The map A — a, is injective.

Proof: If U 2 LXN is a coordinate patch with L a p-ball with
coordinates (X,u) = (xl,...,xp,n), n € N, then locally A can be

written as a function of pairs (X,n), (¥,n), X,¥y € L
A((X,n), (¥.n)) = f(x,¥,n).
Then the procedure for calculating a gives
a =3 2 (log fNR,,7.nMdy;:
9v; o i’
this expression is seen to be independent of io The desired
properties of a follow from this explicit local formula.
To see the final statement, we observe that for a point
(x,y,L¥]J) in G, we can obtain the value of A by integrating a,

along a smooth version of the path v. Recall that ¥ is totally on

a leaf so integration of tangential 1-forms makes sense. O
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Now suppose that A is the modular function of a transverse
measure », and suppose for simplicity that the bundle of the foliation
FX is oriented. If o is the orientation, and if o is a tangentially
smooth p-form on FX (p = leaf dimension), then oy = 00 is a
tangentially smooth volume form on FX. Then o4 restricted to any
leaf 2 defines a signed measure with a C™ density, and hence a
(signed) tangential measure . We can write o = aT - o;
where af have corresponding positive (negative) measures XT. Then

assuming that » is a Radon transverse measure, we define the integral
u= f Ad» to be

f xldv - j xzd»

which by Proposition 4.22 is the difference of two Radon measures on
X, and is therefore a signed Radon measure defined on bounded Borel
sets in X. If we further assume that the form o has compact
support in X, then evidently u has compact support and is a Radon
measure.

The integral can therefore be viewed as a linear functional

Y
p-forms on X, where

C., on the space 05 c of compactly-supported tangentially smooth

Cylo) = [ Ay .
X

Such an object is what we have called a tangential p-dimensional
current in Chapter III. This was first defined in Ruelle-Sullivan
CRuS] and is called the Ruelle-Sullivan current. The point
of this discussion is to determine the boundary of this current. The

boundary is a p-1 dimensional current defined by
diC (o) = (-1)PC (do)
where d is the differential on tangential forms.

Proposition 4.24. For a compactly supported p-1 tangential form o,
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we have
Cy(da) = Cv(or,\u)

where a is the tangential 1-form associated to the modulus of the

transverse measure ».

It follows that if a = 0, or equivalently A = 1, then Cv is
a closed current. Conversely if C, is closed, we can deduce that a
= 0 Thus whenever » is an invariant transverse measure C,,
defines a tangential homology class in the tangential homology group
H;(X,R) of Chapter III (3.31) because the map o - C,lo) is
continuous with respect to the natural topology on 0;’ C(X). We

denote this class by I'.'Cv]. Summarizing, we have

Corollary 4.25. For a Radon transverse measure » with tangentially

smooth modular function A, the following are equivalent:

(1) The Ruelle-Sullivan current Cp is closed and so
defines [C,J € H](X,R)

(2) The 1-form a = 0
(3) The modular function A = 1

(4) The transverse measure » is an invariant transverse

measure.

The proof of Proposition 4.24 is a straightforward calculation
which goes as follows: first we may assume that o is supported
inside of some coordinate patch U = LXN where we use coordinates
(X,n) = (xl,xz...xp,n). The form o can be written as

v
o=12 ai(i,n)dxlA...Adxi...Adxp,

and we can represent the modular function locally as
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Al(x',u), (x,u)) = f(x',x,u).

The 1-form a is 3 33—1 log(f(xo,x,n))dxi. which does not depend on Xq-
Now if Yy is the transverse measure on the transversal given by x =
X h(x,n)dxlA...Adxp is a p-form, and Xp the corresponding

tangential measure, the definitions yield

f Ay = I [ I h(x,n) f(xo.x,n)dx] dwyfn).
U N L

Thus for our p-1 form o,

i 9%y
c o = | [J’ (S(-1) m_i)f(xo,x,n)dx]dvo(n) :
N'L

On the other hand, we see that

Cylona) = | [ [ st0iP o Z (xo.x,n)dx]dvo(n).
N ‘L

Integration by parts on L gives the desired result as the functions a;

vanish in a neighborhood of the boundary of L. 0O

Corollary 4.26. If X is a compact oriented foliated space which has a

non-zero invariant Radon transverse measure then H,';(X) # 0.

This is the case, for instance, when X has a closed leaf. We
improve this result significantly below (4.27).

Haefliger [Hae3] has wused tangential transversely smooth
cohomology in connection with the question of the existence of a
Riemannian metric on M for which all the leaves are minimal (in the
sense of area-minimizing) submanifolds. One consequence of his work
is that the group C:(N)H of compactly supported functions on some
complete transverse submanifold N modulo holonomy maps onto the

group H?(M). The map fails to be an isomorphism (e.g., for the
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Liouville-irrational flow on the torus).

Recalling the definition of a signed (or complex) Radon measure
from 4.19 we see from 4.25 and 4.26 that any signed Radon invariant
transverse measure will define a continuous linear functional on Hg(X)
or equivalently ﬁ,‘;(X) -~ the topology on these spaces was defined in
connection with Proposition 3.7. In the special case of a compact
space X foliated by points, so p = 0, Hg(X) = ﬁg(X) is the Banach
space of continuous functions on X. An invariant Radon (signed)
transverse measure is just a Radon (signed) measure on X and the
Riesz representation theorem says that these measures provide all the
continuous linear functionals on ﬁg(X). More generally, if the
foliation on X arises from a fibre bundle structure on X as total
space, a base B and fibre L which we take to be a p-dimensional
oriented manifold, then as we have already remarked (Proposition 4.11),
invariant transverse Radon measures for this foliated space can be
viewed simply as Radon measures on B. On the other hand, we have
seen in Chapter III that in that case H};(X) = ﬁ,';(X) can be identified
topologically as C(B), the set of continuous functions on B. Again the
usual Riesz representation theorem tells us that all continuous linear
functionals on }_{,‘;(X) are given by invariant transverse measures. We
show that this is true in general. This result is clearly closely
related to, but distinct from the Corollary contained in section 3.3 of
Haefliger [Hae3] and the work of Sullivan ([Su], cf. Prop. 1.8).

Let MT(X) denote the vector space of Radon invariant

transverse measures on X.

Theorem 4.27 (Riesz Representation Theorem). If X is a compact
oriented foliated space with leaf dimension p, then the set of
continuous linear functionals on I*_{;’(X) can be identified as the set of
Radon invariant transverse measures. More precisely, the
Ruelle-Sullivan map

MT(X) — Hom___ (HZ(X),R)

con

is an isomorphism.
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Note that Homcont(HE(X),lR) is isomorphic to H;:(X) for X
compact by (3.32).

Given the theorem it is easy sometimes to compute the top
tangential cohomology group. For example, an invariant transverse
measure on the Kronecker flow on the torus corresponds by (4.10) to a
measure on a transverse circle which is invariant under rotation by an
irrational angle, hence a multiple of Haar measure. Hence
MT(Kronecker flow) = R and so l'-I;.(Kronecker flow) = R. A more
interesting case arises from the Reeb foliation of §3.  The only
holonomy invariant measures are multiples of the counting measure
associated to the unique closed leaf. Thus MT(Reeb) = R and so
ﬁ:(Reeb) = R

Proof. Let & be a continuous linear functional on ﬁ:(X). Now choose
as in Definition 2.1 an open. "coordinate” chart U around x € X with
U =2 B X N where B = BP is an open ball in RP and where N is
locally compact. Then the set Ny = C(\n), n € N, X fixed in
B} is a transversal and if D is a compact subset of N, D, =
€(\,n), n € D) is a regular transversal in the sense of 4.12. We fix
a tangentially smooth p-form o which has compact support in B. Now
if f is any compactly supported real valued function on N, f € Cc(N),
the formula fo(\,n) = f(n)o(\) defines a tangentially smooth p form of
compact support on the foliated space U = B X N. If we extend it
by zero outside U to X, it yields a tangentially smooth p-form on X,
which we also denote by fo.

We now consider the map ¢: f — @&(fo) for fixed 0. By
the definition of the topology on Qg(X), it is evident that ¥ is
norm continuous on C.(N). By the usual Riesz representation theorem,
it must be represented by a finite Radon measure u, on N.

The orientation on leaves of X gives by restriction an
orientation on the ball B which is an open subset of a leaf of X, and
hence we may integrate the forms o on B. By the Poincar; lemma
two compactly supported forms oy and o, on B are cohomologous,

that is, 0 - 0y = dp on B if and only if their integrals are the
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same. It follows that for1 and faz as elements of er)(X) differ by
a coboundary if o4 and oy have the same integral. Now define wu

on N to be Uy for any o of integral one. Then clearly
®(fo) = f [j a] f(n)duln).
N B

Moreover for any A we can identify N with N)\ by n — (\,n) and
can transport g onto NX’ calling it u)‘. Then we can rewrite the

above as

o(fo) = J' [I(fa)(x,n)]du)‘(n) :
NX B

Finally if o is any tangentially smooth p-form on X with compact
support inside U = B X N, it may by a kind of Stone-Weierstrass
theorem be approximated in the topology of Q?(X) by linear
combinations of forms of the type fo. By continuity of both sides

of the formula above,

®(0) = f [ J’ a(X,n)]du)‘(n)
N)‘ B

holds for any \.

A is a measure on it;

Now each N, is a transversal and u
we have to see now that we can piece these together to construct a
transverse measure. First we observe that our compact space X can
be covered by a finite number of open sets of the form U & B X N,
let us say UL,..,U™ with Ul = B x Nl. We identify each N! with say
Nli) (b € B) and then N = UNi is a complete transversal; we can also
arrange for simplicity that the Nl are all disioint as subsets of X.
Rach Ni carries a Radon signed measure denoted by ui from the
construction above and we fit them together to give a (signed)
measure on N. As we have observed before, the foliated structure on
N gives rise to a countable standard equivalence relation on N in the

sense of Feldman-Moore C[FMJ. We want to show that wp is
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invariant under this equivalence relation. To see this, we observe
that if Ui and Uj intersect, then the proiection of their intersection
onto the respective transversals Nl and N" are open subsets NU nd
NJi respectively of N and NJ Clearly for each n € NlJ there is a
unique x' in NI which lies on the same leaf and it is evident that the
map pli taking x to x' is a homeomorphism of N onto NI

It is further evident that these partial homeomorphisms
generate the equivalence relation on N in the obvious sense. To see
that g is invariant under this equivalence relation, it suffices by
Feldman-Moore [FMJ] to see that each 0ij is measure preserving.
(The fact that here we have signed measures, while in [FM] we have
positive measures is of course irrelevant.) However the formulas
above for #(o) when o is supported in Ul or U} in terms of ui and
uj show immediately that ¢l is measure preserving, for we apply these
formulas to o's which are supported in Ul n Ul

Thus we have an invariant measure g on the complete
transversal N. To get transverse measures in the usual sense, we
should first split u = u* - u~ into its positive and negative parts,
each of which is automatically invariant because pu* are canonically
defined. Then u™ is extended to all transversals as in 4.10. Thus
finally ¢ is a signed Radon transverse measure in the sense of our
definition.

Let ®, be the corresponding linear functional on ﬁ;(X). Then
the integral formulas above when compared to the formulas of
Proposition 4.19 show that o“(a) = &(o) for o supported in ul.
But then a partition of unity argument shows that these span and so ¢
=9, and we are done. O

This result identifies the dual of the topological vector space
ﬁ:(X) in an explicit fashion as the set of invariant Radon transverse
measures MT(X). Then of course by duality, any o € l_lg(X) defines
a linear functional Fo on MT(X) by Fo(y) = Iadv. It will be of
considerable interest to us at several points to know which linear
functionals F on MT(X) can be so represented. Of course there is no
problem in those cases when MT{(X) and ﬁ;(X) are finite dimensional,

but it is a problem in general. Following standard techniques, we
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introduce a "weak” topology on MT(X) with the result that those linear
functionals representable as Fo are just the ones continuous in this
topology. For each open-regular transversal N (cf. 4.16) and each
continuous real valued function on N of compact support, and for each
» € MT(X), the integral [fdwy is well defined, where vy is the
transverse measure » on the transversal N; This defines a linear
functional I; on MT(X).

Definition 4.28. The weak topology on MT(X) is the smallest

topology making these linear functions continuous.

Proposition 4.29. The weak topology so defined coincides with the
weak-* topology on MT(X) as the dual of ﬁ:(X) and consequently a
linear function F on MT(X) is representable as Fo, o € ﬁ?(X). if

and only if it is continuous in the weak topology.

Proof. If N is an open-regular transversal, let B be a ball in RP;
then there is a tangentially smooth homeomorphism of B X N onto an
open set U in X; we shall think of U = B X N as sitting inside X. If
f is a compactly supported function on N, we can easily construct a

tangentially smooth p-form o on X supported on U = B X N so that

]" olb.r) = f(n).
B

Then from our formulas for integration it is immediate that
) = ftavy = [odv = ¥(Cod)

where Col is the class of o in l-_l:(X). Hence the weak topology
defined by the I¢ is contained in the weak-* topology on MT(X) as the
dual of l'_l.‘;(X). Conversely we see by a partition of unity argument
that a linear functional » — »(Lo]) for any o can be
represented as a finite linear combination of If's. Hence the two
topologies coincide and the result follows. o

We note that it would suffice in defining the weak topology to
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restrict to any finite set of open-regular transversals Ni so that there
are corresponding coordinate charts N; X B, B a ball in RP, which
cover X.

We close Chapter IV with two examples which illustrate the
Riesz representation theorem 4.27.

Suppose that T is a homeomorphism of a separable metrizable
space N and that f is a positive continuous function on N. Then we

may form the space XT obtained as the quotient of the space
C(t,n) € R X NJ0 £ t € f(n)2

by the relation (f(n),n) ~ (0,T(n)). If f = 1 then Xy is simply the
suspension of the homeomorphism T (cf. 2.3). The space Xp has a
natural oriented foliation of dimension one corresponding to the action
of R on the first factor of R X N. As f changes the topological
foliated conjugacy class of X remains the same; so in that sense at
least the dependence of Xp on f is minimal. Invariant transverse
measures on Xp correspond to T-invariant measures on N, denoted
M(NT. Theorem 4.27 implies that HL(Xp) = M(VT.

Let us look at this example in more detail. The general
tangential 1-form a(t,n)dt is a tangential cocycle, since it is in the

top degree. The function a must satisfy
(*) a{f(n),n) = a(0,T(n))

in order to be defined on XT‘ If alt,n)dt = g—b(t,n), then b must also
t
satisfy (*). Set b{0,n) = bo(n). Then

t
bito) = [a(t)de + by(n)
0

and hence

f(n)
bEm,m = [ attnde + b
0
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Now

f(n)
[ atmdt = b ) - by
0

and so any tangential 1-coboundary must be of the form (bO(T(n)) -
bo(n))dt. Thus

1 C(N)
Hix,) = —CN)
T T (1-1)c(N)

and

ol C(N)
HT(XT) = ——
(T-1)C(N)

It is clear then that l-{;.(XT)‘ = M(N)T, as is predicted by (4.27).

This example generalizes to the case of bundles with discrete
structural group, as follows. Let B be an oriented compact manifold
of dimension p with ' = xl(B) and B — B the universal cover.
Suppose that T' acts on a space F. Then the space X = erF is
foliated by leaves of dimension p which are the images of B X (x3
for x € F (cf. 2.2). We may regard differential forms on X as forms

w(b,x) defined on BXF satisfving the invariance condition
(**) w(Yb,¥x) = wlb,x), ¥ € T.

Fix a fundamental domain U in B. Let w be a p-form (necessarily

closed) and define f w(X) = Iw(b,x). If » is an invariant transverse
u

measure on X, then Ifwdv is independent of choice of U. If w is a

coboundary, say w = do, then
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£,00 = [ulbx)
u
= J(; o(b,x) by Stokes' theorem
u

and

ffwdv = lja(b,x)dv
U

= i (Io(b,x))dv
u

for any invariant transverse measure d», since Ia(b,x) is a periodic

function and l (periodic)dy = 0.
u

Suppose that U is sufficiently well-behaved so that QU consists

of 2k piecewise smooth hypersurfaces
e - + -
dU = H] VH] V .. VH VH,

and there are elements v, €T which reflect H: with H; and
generate I'. (This sort of decomposition is quite familiar in the theory
of Riemann surfaces. In general one may assume that I' acts by
isometries. Let D be an open dense PL disk in B and let V be one
component of its preimage. Then U = int(closure(V)) is an open disk
in B with PL boundary dU. The deck group T acts in a PL fashion
on OU which decomposes into smooth hypersurfaces. However, to
ensure that I is generated by €v;3 which act as reflections on
these hypersurfaces is a very delicate (and sometimes impossible)
matter. The interested reader is referred to M. W. Davis [Da] for a
taste of the difficuity.) Then
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k
l obbx) = 3 f olb,x) + f o(b,x)
u 1 +
H

i -Hy

where —H; indicates H; with the orientation reserved. Let gi(x) =

I o(b,x). Then
+
Hi

k
gua(b.x) = [ et - gv0

so that terms cancel in pairs under integration I( )dv. We see from
this analysis that the p-coboundaries correspond to the algebraic sum
in C(X)

k

Z(Yi - 1)C(X)

1

which is also

(r - 1)CX) = = (v - 1)CX).
YET

Thus
T (r - 1)c(x) k
Sy, - 1)C(x)
1
and
AP = c(x) x c(x)

(r - 1)c(x) k
%(‘Yi - 1)c(x)

which is the predual of MT(X).
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CHAPTER V: CHARACTERISTIC CLASSES

In this chapter we mimic as closely as possible the
Milnor-Stasheff [MSJ expose of the Chern-Weil construction of
characteristic classes in terms of curvature forms.

The Chern-Weil procedure begins with a vector bundle with a
certain structural group G. In our situation we consider complex
(tangentially smooth) bundles with structural group GL(n,C), real
vector bundles with structural group GL(n,R), and oriented real vector
bundles with structural group SO(2n). Choose a tangential connection
V. see below, that respects the structure. The associated curvature
form K determines a closed tangential 2-form whose tangential
cohomology class is independent of choice of the connection. Then
any polynomial or formal power series P which is G-invariant
determines a characteristic form. In the case X = M is a manifold
with FX = TM then this yields the usual characteristic classes in de
Rham cohomology Ht(M).

We shall assume throughout that all bundles over foliated
spaces are tangentially smooth and that leaf-preserving maps between
foliated spaces are also tangentially smooth; this is not a real
restriction, in view of our smoothing results (2.16). We use the
Milnor-Stasheff [MSJ sign conventions for characteristic classes.

Let E — X be a (tangentially smooth) complex n-plane bundle
over the foliated space X, and let FE = Homp(F,C) be the
complexified dual tangent bundle of the foliated space X.

Definition 5.1. A tangential connection on E — X is a

C-linear mapping
*
v: l',r(E) — rT(F¢@E)
which satisfies the Leibnitz formula
vifs) = df®s + fv(s)

for every s € I"T(E) and every f € C:(X.ﬂ:). The image V(s) is
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called the tangential covariant derivative of s.

Equivalently, we may regard Vv as a bilinear map

I, (Fp) X T (E) — T (E)

with
va(s) = va(s) v € F¢
and
v, (8s) = Vg's * gv,(s) f.g € c:(x)
s € l',r(E)

One may regard V as a map between the Lie algebras
rT(FC) (with Lie bracket) and Hom(l‘T(E), I'T(E)) (with bracket

corresponding to AB-BA for matrices). Thus
v: r'r(FtI:) -+ Hom (l‘,r(E), l",r(E)).

Note that v is not generally a Lie algebra homomorphism.

The correspondence 8 1+ V(s) decreases supports; that
is, if the section s vanishes throughout an open subset U C X, then
V(s) vanishes throughout U also. For given x € U we can choose a
tangentially smooth function f which vanishes outside U and is

identically 1 near x. The identity
df@s + fv(s) = vifs) = 0

evaluated at x, shows that V(s) vanishes at x.

Since a connection is a local operator (i.e., it decreases
supports), it makes sense to talk about the restriction of v to an open
subset of X. If a collection of open sets U, covers X, then a
global tangential connection is uniquely determined by its restrictions
to the various U .

If the open set is small enough so that E}U is trivial, then

I (E|U) is a free C:(X)—module with basis denoted, say, s;,....s.
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Tangential connections may be constructed as follows.

Proposition 5.2. Let E“’ijJISi i<n be an arbitrary n X n matrix of
tangentially smooth complex 1-forms on U. Then there is a unique
tangential connection V on the trivial bundle EJU such that V(si) =
Zwij@sj.

Proof: The connection Vv is determined uniquely by the formula
V(% fis) = % (df;®s; + £, 9(s))). a

Henceforth, we assume that all tangential connections
are given locally as differential operators, as in the
above proposition.

There is exactly one tangential connection on a coordinate
patch such that the tangential covariant derivatives of the 8, are all
zero; or in other words so that the connection matrix is zero. It is

given by

This particular "flat" connection depends of course on the choice of
basis s;3.

Note that if vV, and V, are tangential connections on E and g
is a tangentially smooth complex-valued function on X, then the linear
combination gV1+(1—g)V2 is again a well-defined tangential connection

on E.

Proposition 5.3. Every tangentially smooth vector bundle E — X with

paracompact foliated base space possesses a tangential connection.

Proof: Choose open sets U, covering X with E|U,

choose a tangentially smooth partition of unity Crgd subordinate

trivial, and

to CUu). Each restriction E U(1 possesses a connection Va by
Proposition 5.2. The linear combination z"ava is now a well
a
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defined global tangential connection. DO
Given a tangentially smooth map g: X' — X we can form the
induced vector bundle E' = g'E. Note that there is a canonical

C:(X,t)-linear map
8' B
g: l".,(E) — l‘,r(E ).

Similarly, any tangentially smooth 1-form on X pulls back to a 1-form

on X', so there is a canonical C:(X,C)—linear mapping
= * vk
g: I‘T(FEQE) — rf(Fu: ®FE’).

Proposition 5.4. To each tangential connection Vv on E there
x x
corresponds one and only one tangential connection V' = g Von g E =

E' so that the following diagram is commutative:

v *
F (B) —— I, (F8E)

|- |

. vl LI '
r e —Y . r (Fg 8E)

Proof: Let (Ua) be an open cover and €r ) a tangentially
smooth partition of unity subordinate to a locally finite refinement of
Cg'l(Uu)J. On a typical set Ua’ pick sections 811008y with V(si) =

§ wij@sj. Lift the 1-forms w5 to w;, = g“"ij and lift the

sections 8; to s; = g'si over g'l(Ua). If v’ exists then

v =3 wy ;@ *)
377
a 3

which shows uniqueness for V'. For existence, use (*) to define

).

and then define V' globally by v' = X r_(v']| _
-1 a 1
g Uy g (U
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Given a tangential connection V, we proceed to construct its

curvature.

Proposition 5.5. Given a tangential connection V, there is one and

only one C-linear mapping
-~ * 2 *
v: FT(FC@E) — I'T(A FE@E)
which satisfies the Leibnitz formula

V(t@s) = dt@s - tAV(s)

~

for every l1-form § and every section s € l'.r(E). Furthermore, Vv

satisfies the identity
VIE(E@s) = dfA(E@s) + £U(5@s).

Proof: In terms of a local basis 81wy for the sections, we must

have

V(%S’i@si) = E(driesi - !iAV(si)).
This formula specifies 3 uniquely. Existence follows from a
(tangentially smooth) partition of unity argument. 0O

The tangential curvature tensor of the tangential

connection V is defined by
- S0 2 *
K = vow: I‘T(E) N l‘T(A Fm@E).
Proposition 5.6. The value of the section K(s) at x € X depends
only upon s{x), not on the values of s at other points of X. Hence

the correspondence

s(x) — K(s)x)
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defines a tangentially smooth section of the complex

vector bundle
2n* 2n*
Hom(E,A F“:@F,) = A Fm@Hom(E,E).
Proof: Clearly K is a local operator, and Kifs)
computation; K is C:(X.E)-linear. Suppose that s(x)

of a local basis 8.8, for sections we have

fK(s) by direct
s'(x).

In terms

g'-s = g fisi
near X, where fl(x) = .. = fn(x) = 0. Hence

K(s') - K(s) = X fiK(si)
1
vanishes at x.

This completes the proof.

In terms of a basis 81,18y for the sections of E{U, with V(si) =
%“’ij@sjv we have

K(si)

V(T wy8s))
J

% 0ij8s

where Q is the n X n matrix of 2-forms given by

i dw;; - 3 w
or

g Yia © Waj

in matrix form.

Recall that v may be

regarded as a linear map

v: I'(Fg) — Hom (T (E), I (E).

Then the curvature K may be regarded as
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K = Kv: I'T(Fm) X rT(Fm) —+ Hom (l',r(E), l',r(E))
where KV is given by the formula

Kg = YV = uV - Vevwl
Thus the curvature is the obstruction to Vv being a Lie algebra
homomorphism: if the connection is flat then v is a Lie algebra
homomorphism and K = 0.

Starting with the tangential curvature tensor K, we construct
tangential characteristic classes as follows. Recall that Mn(lt)

denotes the algebra consisting of all n X n complex matrices.

Definition 5.7. An invariant polynomial on Mn(c) is a

function
P: Mn(C) s C

which may be expressed as a complex polynomial in the entries of the

matrix and satisfies
P(XY) = P(YX)
for all matrices X,Y, or equivalently
PTXT™)) = P(X)

for all X and for all non-singular matrices T. (The structural group

is, of course, GL(n,C).)

The trace and determinant functions are well-known examples
of invariant polynomials on M, (T).

If P is an invariant polynomial, then an exterior form P(K) €
rT(A'FE) = eml",r(AmFE) is defined as follows. Choose a local basis
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81,....8, for the sections in a neighborhood U of x, so that K(s;)
=3 0;;®s;. The matrix Q = Co;3 has entries in the commutative
algebra over € consisting of all exterior forms of even degree. It
makes good sense to form P(Q). This lies a priori in Q;(U) but
patches together to form P(K) € 0;()(), since a change of basis will
replace Q by a matrix TaT™! and P(TOT'I) = P(Q).

If P is a homogeneous polynomial of degree r then P(K) €

O,Z.r(X). If P is an invariant formal power series of the form
P = PO + Pl + ...

where each Pr is an invariant homogeneous polynomial of degree r,
then P(K) is still well-defined since Pr(K) = 0 for 2r > p (the leaf

dimension).

Fundamental Lemma 5.8. For any invariant polynomial (or invariant
formal power series) P. the exterior form P(K) is closed; that is,
dP(K) = 0. Thus P(K) represents an element CP(K)J in the
tangential de Rham cohomology group H;(X;u:).

Proof: We summarize the proof found in Milnor-Stasheff CMS, bp.
296-81. Given any invariant polynomial or formal power series P(A) =
P(EAHJ) form the matrix EBP/aAﬁJ of formal first derivatives and
let P'(A) denote the transpose of this matrix. Let 0O = El‘)ijJ be
the curvature matrix with respect to some basis for the restriction of
the bundle to U. Then

dP(n) = Z(BP/BQij)dQU = Trace(P'(0)dQ).

Since 0 = dw - wAaw, taking exterior derivatives yields the Bianchi

identity
d0 = WAl - QAw.

The matrix P'(A) commutes with A, and hence
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QAP'(0) = P'(Q)AQ.
Now
dP(Q) = trace((P'(D)AwlAQ - QAP'(Q)Aw))
= 3 (POl - QAP (D Aw);.

Since each (P'(O)Aw)ﬁ commutes with the 2-form Oji’ this sum is

zero, which proves the lemma. O

Corollary 59.  The cohomology class [P(K)] € H_(X) is

independent of the choice of tangential connection V.

Proof: Let Yo and Y4 be two different tangential connections on E.
Map X X R to X by the projection (x,t}) s+ x and form the
induced bundle E' over X X IR, the induced tangential connections V(.,

]
and v, and the linear combination
] ]
vV =ty + (1-t)v,.

Thus P(Kv) is a tangential de Rham cocycle on X X R (foliated of
dimension p+1).
Consider the map iez X s (x,€) from X to X X R, where €
E
equals 0 or 1. Evidently the induced tangential connection (ic) v on
*
(ie)E' may be identified with the tangential connections Ve On E.

Therefore
% —_
“e)(P(KV)) = (P(Kve))-

But the mappings io and il are homotopic and hence

EP(KVO)J = EP(Kvl):I. a

The polynomial P determines a tangential characteristic
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cohomology class in H;(X;m) which depends only upon the isomorphism
class of the vector bundle E. If a tangentially smooth map
g2 X' — X induces a bundle E' = g‘E with induced tangential
connection V', then clearly

P(Ky) = & P(Ky).
Thus these characteristic classes are well behaved with respect to
induced bundles.

The entire treatment may be repeated for real vector bundles,
and one obtains characteristic cohomology <classes CP(K)1 €
H;(X;IR) for any GL(n,R)-invariant polynomial P on Mn(IR).

For any square matrix A, let o(A)} denote the k-th

elementary symmetric function of the eigenvalues of A, so that
det(l + tA) = 1 + toy(A) + ... + t"o (A).

It is well known (Milnor-Stasheff CMS, p. 299]) that any invariant
polynomial on M, (C) can be expressed as a polynomial function of
01O
Definition 5.10. Let E be a tangentially smooth complex vector bundle
with tangential connection V. The tangential Chern classes
c;(E) are defined for m = 1,2,... by

cT(B) = (__‘_,,, Lo, Ky € HAM(X:T).

2xi)

The tangential Chern classes do not depend on the choice of
tangential connection, by Corollary 5.9. The fact that any invariant
polynomial on Mn(ﬂ:) can be expressed as a polynomial function of

01000 implies that any characteristic class ¢ = CQ(K)J can be

n
expressed as a polynomial in the Chern classes. If g X' — X is a

tangentially smooth map then

g'c;(E) = c:'(g'E)
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by Proposition 54. If E has a flat tangential connection then all
characteristic classes vanish and in particular c;(E) = 0.

If X = M is a compact smooth manifold foliated by one leaf
then a tangential connection is a connection, tangential curvature ig
curvature, and c;(E) = cm(E) € Hzm(M;C); the tangential Chern
classes are Chern classes. In general, however, this cannot be the
case. If X is a compact foliated space with leaves of dimension p
then H',;.'(X;C) =0 for m > p, so c;(E) = 0 for 2m > p. On the other
hand, the ordinary Chern classes cp(E) (defined topologically, since we
do not assume that X is a manifold) need not vanish. The following

proposition explains the relation between the c¢_ and the c:‘.

m
Propositiop 5.10. Let E be a tangentially smooth complex vector

bundle over a compact foliated space X. Then
c;(E) = r.cm(E)
where rq: H’(X;ﬂi) N H;(X;ﬂ:) is the canonical map.

Proof: Since X is compact there is a compact Grassmann manifold
Gk(ﬂ:mk) with universal n-plane bundle E" and a continuous map g: X
— Gk(cn+k) (which we may assume to be tangentially smooth) such
that E = g'En. Let Vv be a connection on E", so that cm(En) =
— o, (K)T € HEMGE™) ©). If v = ¢’V is the induced

(2xi) )
tangential connection on X, then

- n
cm(E) =g cm(E )
—  _¢'Co_(K.)3
= (2} .
2ri)™ mv

To complete the proof, then, we need only show that the diagram
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L

EmG @™o 2, K26 ™Ky

| |

r
e —2, H2"XO)
commutes; this follows from the naturality of r. o
Corollary 5.11. The tangential Chern classes satisfy the following

properties:

1) If g X' -~ X is tangentially smooth then
g cT(E) = cT(g E).
m
2)  cl(EeE) = 3 cT(B) cl_,(E)

i=0 m-1i

3)  If E is a line bundle then c((E) = 1 and
c;(E) =0 form > 1.

4) If E is of dimension n then c;(E) =0 form > n.
Proof: We have established 1) previously. The rest of the corollary
follows from the analogous properties of Chern classes and the fact
that re: H‘(X;C) —_— H;(X;C) is a ring map. o

There are several important combinations of Chern classes.
Here are two of them. The tangential Chern character
ch’(E) € emnﬁ"'(x;a:) is the characteristic class associated to the
invariant formal power series

(5.12) chT(A) = trace (eP/27),

The tangential total Chern class of E is the formal
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sum
(5.13) cT(B) = 1 + c](B) + cJ(B) + ..
which lies in @H;m(x;ﬂ:), and satisfies c’(E®E) = c (E)cT(E).
It corresponds to the invariant polynomial det (I + A/2xi).
Let 9 be the elementary symmetric polynomials and let 8 be
the universal polynomials determined inductively by Newton's formula
8, - O18p-1 Y 998, 2~ - ¥ O, 48 £ 0o, = 0.
For example,
sl(al) =04
syl04,0,) = 02 - 20
2'91'72 1 2
s3(01,az,03) = ar:l3 - 30102 + 303.

Proposition 5.14. The tangential Chern character has the following

properties:
oo
1)  ch"B)=n+ I s lc"(EN/K
k=1

where n = dim E. In particular, if E is a line
bundle, then

ch”(E) = k§0 cTE)/K! = explcT(B).
2) ch”(BoE') = chT(E) + chT(E').
3) chT(EQE') = ch"(E)chT(E").

4) ch”: KOX) — eﬂi‘“(x;m) is a ring map. o
m

As an example we compute the Chern classes of the canonical
bundles of CP" (regarded as a foliated space with one leaf). Let E
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be the canonical complex line bundle over CP" and D its orthogonal
complement, so that 'EeD = cPxc™?! (the trivial complex
(n+1)-plane bundle.). A geometric argument, which we omit, implies
that the tangent bundle of CP" (a complex n-plane bundle, as CP" is
a complex manifold) satisfies T(CP™) = Hom (E,D). Then

T(CP™&(CP™XC) = Hom (E,D&(CP" X €))

Hom (E,CP® x €™

4

= Ee...0B

where E is the conjugate bundle of E. In general we have ck(l_?.) =
(—l)kck(E) for any bundle E. Thus

¢(T(CP™) = c(TICPMS(CP"XCT))

¢(E®...6F) (n+1 times)

(B2

C1 + oy(E)1°*

1}

C1 - ¢y B)I%*L,

For example, if n = 1 so that CP" = cP! = 82 then
o(T(8%) = [1 - ¢;(B)2?

=1 - 2¢4(E).

(The classes cl(E)k vanish for k > 1 since HZk(Sz) =0 for k > 1)
Thus cl(T(Sz)) = -2c(E). Similarly,

o(T(CP?) = 1 - 3¢;(E) + 3¢ (B)2.
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For real vector bundles we may use real tangential connections
or else complexify. If E is a real tangentially smooth n-plane vector
bundle with complexification Eg. then c¢;(Eg) = 0 in HZi(X;E) for i
odd (Milnor-Stasheff CMSJ, p. 174), and hence cI(Ec) = 0 for i odd.
Define the tangential Pontrjagin classes pI(E) by

(5.15) pT(B) = (-1lc], (Eg).

Define the tangential total Pontrjagin class to be the

unit
(5.16) p"(E) = 1+ pT(E) + pT(E) + ...
Note that pI(E) = 0 for i > n/2. We may regard pI(E) € H,‘;i(X;IR)
as (—l)lCZi(E) € H41(X;Z) via the topological definition. The following
properties of the tangential Pontriagin classes follow immediately from
the corresponding properties of tangential Chern classes.
Proposition 5.17. For each tangentially smooth real vector bundle E
over a compact foliated space X there are tangential Pontrjagin
classes pI(E) € H:i(X;IR) satisfying the following properties:
1) If g2 X' — X is tangentially smooth then
g p7(E) = pT(g E)
T T 7 T 7
2) p,(EGE’) = 1§o p;(E) py_;(E)Y  (pg =1
3) If E is of real dimension n then pI(E) = 0 for i > n/2.
4) The total tangential Pontriagin class
pT(E) = 1 + p[(E) + pJ(E) + ...

s
corresponds to the invariant polynomial det(I + ;—i).
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To complete our discussion of characteristic classes it remains
to define the tangential Euler class. For this we need to assume that
each leaf of X is given a Riemannian structure which varies

continuously in the transverse direction.

Proposition 5.18. The dual tangent bundle F‘ possesses one and only
one symmetric tangential connection which is compatible with its

metric.

This preferred tangential connection Vv is called the
Riemannian or Levi-Civita tangential connection. A

tangential connection on F‘ is symmetric if the composition
z x
rF) ¥ r (F8F ) -2 T (A%F)
is equal to the exterior derivative d.

Proof: Let 848y be an orthonormal basis for I‘T(F‘ U)‘ There is
one and only one skew-symmetric matrix Ewkjj of 1-forms such
that

dsk = § wijsj.

(See Milnor Stasheff C[CMS, p.302-31). Define the tangential

connection V over U by
Vi) = 2 w8
and extend by partitions of unity to all of X. 0

Let E be an oriented tangentially smooth real 2n-plane
bundle with a tangentially smooth Euclidean metric. Choose an
oriented orthonormal basis for the sections r (E U) for some
coordinate patch U. Then the tangential curvature matrix Q obtained
from a symmetric tangentially smooth connection is skew-symmetric.

There is a unique polynomial with integer coefficients on
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skew-symmetric matrices called the Pfaffian and written Pf with

the property that

PE(A)2 = det(A)
and
Pf(diag(S.S,....S) = 1.

The Pfaffian satisfies the invariance condition
Pf(BABY) = Pf(A)et(B)

and is hence SO(2n)-invariant. (For the linear algebra we omit, see
Milnor-Stasheff [MS, p.309-310]). Thus Pf(0) € 02™(U) makes
sense. Choosing a different oriented orthonormal basis for the
sections over U, this exterior form will be replaced by Pf(BaBt)
where the matrix B is orthogonal (B'1 = Bt) and orientation-preserving
(det(B) = 1). Thus these local forms coalesce to create a global

2n-form
PE(K) € 027(X).

As before, this class is a cocycle and hence represents a
tangential characteristic cohomology class. It is convenient to
normalize. Define the tangential Euler class e'(E) €
H2™(X:R) by

(5.19) e (B) = CPf(K/2x)1.

The tangential Euler class is well-defined and independent of
choice of symmetric tangential connection. Here are its elementary

properties.

Proposition 5.20. To each 2n-dimensional oriented tangentially smooth
real vector bundle E with a Euclidean metric over a compact foliated

space X there is associated a tangential Euler class



eT(B) € H2"(X;R)

which is of the form e”(E) = CPf(K)/2x] and is independent of

choice of symmetric connection. Further,

1) If g: X' — X is tangentially smooth then
g e (E) = o(¢ B).

2) e’ (EOE') = eT(E)e”(E').

3) If E has a nowhere zero tangentially smooth section
then ¢”(E) = 0.

4) the tangential Pontriagin class p:(E) is equal to
the square of the tangential Euler class o’ (B):
pT(B) = " (R)2.

5) If E is classified by f: X — Gk(lkn+k) then
in H2"(X:R)

e’ (E) = rf'e(En) = re(E).

Note: In topological treatments of characteristic classes matters
are somewhat different. Classes take values in integral
cohomology and may very well be torsion classes. The resulting
formulas are more complicated. (Our classes are the images of those
under H.( 2) — H'( :R). (For example, in integral cohomology,
formula 5.17(2) holds only mod 2.) In the Chern-Weil approach the
classes take  values in cohomology with real or complex
coefficients, so torsion has been destroved. There is apparently no
way known of showing directly from the Chern-Weil approach that
Chern classes are integral cohomology classes; proofs known to us rely
on the topological construction.

Recall that for any compact foliated space X we have defined

the tangential Chern character
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ch”: KOX) — oHZ™(X:C)
m
to be that map which, in the Chern-Weil setting, arises from the
invariant polynomial trace(eA/ 2’n). It is not hard to show that ch?
is a ring map and that it extends to a natural transformation of
2/2-graded functors
ch™: K (X) — H, (X:0)
where Hy" is the Z/2-graded functor (GH2™@(@H2"™"").
m m
Proposition 5.21. If M is a compact smooth manifold then
ch®l : K'(MI®T — H™ (M;T)

is an isomorphism.

We omit the proof of this proposition. The actual situation is

the following:
= Vax
1) ch extends to K (X) — H (X;C) for any locally
compact Hausdorff space X. (Here K'(X)
refers to K-theory with compact supports:
K%x) = KOx*).)
2) The map
= Vas
ch®l : K X)®C — H (X;T)
is an isomorphism on those spaces.
3) In fact, there is an isomorphism

ch®l : K (X)8Q — H' (X:Q).

To prove 3) one checks first that ch®1 is an isomorphism for X a



sphere. Induction (or a spectral sequence argument) implies that ch®1
is an isomorphism for all finite complexes (and in particular for all
compact smooth manifolds). Since K and n respect inverse limits,
ch®l is an isomorphism for X = 1lim Xj the inverse limit of finite
complexes.  Any compact metric ‘s_pa-ce arises in this manner (cf.
Eilenberg-Steenrod CES1J), so (2) holds for compact metric spaces.
Finally, a one-point compactification argument implies the full result.
Lest the reader fall into an obvious trap, we note that the

natural map
ch78l : K (XI8C — H} (X;C)

is not an isomorphism in general for foliated spaces, or even for

foliated manifolds. In the diagram

Kxec <ML, y*x.c
o1

-~ 3
°*\ lr
* %

H, (X:€)

only ch®1 is an isomorphism. Any bundle E for which ci(E) =01i-=
1,..p will be in the kernel of ch”®1, even though CEJ # 0 in
general in KO(X)QE. On the other hand, H;*(X;E) is infinitely
generated in some cases. So ch”®1 is neither iniective nor
surjective in general.

Next we consider Thom isomorphisms. Recall (from 3.29) that if
X is a compact foliated space and if E — X is a tangentially smooth
oriented real n-plane bundle then there is a unique Thom class up €

H',r‘ C(E) and a Thom isomorphism
. uk ] k+n
o, H.r(X) — Hg . (E)

given by
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b‘r(w) = upw.

The same result holds in ordinary cohomology. Precisely, there is a

Thom class & € HZ(E) and a Thom isomorphism
(5.22) & HY) 2 H**(E)
given by

d(w) = Ugw.

The proof of this fact is essentially identical to the proof of the
tangential Thom isomorphism (cf. Bott [Bo], §%6,7). Further, the

restriction map ry: H:(E) — H; <(E) respects Thom classes:
rallp) = ug
and hence there is a commutative diagram
H — . B

¢ ¢,

rx

k+n(E) - . H

k
k +“(E).

H v

There is also a Thom isomorphism in K-theory. To obtain it,
however, it is necessary to assume that the structural group of the
bundle reduces to the group spinC. {This is slightly more than
orientability.) For instance, it suffices to assume that E — X is a
complex vector bundle (which is all we shall require).

If E — X is indeed a spin®-bundle (of even real dimension for
convenience) then there is a K-theory Thom class ulé € KO(E). (This
means K-theory with compact supports: KO(E) = RO(E+).) Further,

multiplication by this class induces an isomorphism
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(5.23) o K0 — KYB)
given by
0K(x) = u:x.

(For the proof of this theorem the reader may consult Atiyah CAt1l]
and Karoubi [Kar].) All three Thom isomorphisms extend to the case
X locally compact - see Karoubi CKarJ.

It would be natural to suppose that Thom isomorphisms commute

with the Chern character, i.e. that the diagram
ch

KO%) —T Hjo(XR)

OK L

T

ch

KO8 —T H J(ER)

would commute. Let 1 € KO(X) denote the class of the complex
one-dimensional trivial bundle over X, which is the identity of KO(X).
Then

ch, @ (1) = ch_(up)
¢1ch1(1) = 01(1) = ug
Thus commutativity boils down to the relation between the cohomology
Thom class up and the Chern character of the K-theory Thom class
chT(ulé). Generally these classes are not equal. Define the
tangential Todd class

LR .
Td_(E) € H, (GR)

by the formula
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- Lol Ky -1
(5.23) Td,(B) = Ce, '(ch (ughI™".
Thus

Td,(E) =1 &> ug = ch_ (ug).

Our definition is of course modeled after the classical Todd class
which is defined by

Td(E) = Lo HehwkN1! € H(Xim)
so that
Td(E) = 1 e» f = chlup).
We list the elementary properties of the tangential Todd class.

Proposition 5.24. The tangential Todd class has the following

properties:

1) rsTd(E) = Td,(B), where ry: H (X;R) — H,(X;R) is

the restriction map.
2) TdT(EQE') = TdT(E)TdT(E').

3) If f: X — Y is a tangentially smooth map and

E — Y is a tangentially smooth bundle then
Td,(f E) = £ Td(E).

4) TdT is the tangental characteristic class associated with

the invariant power series —ﬁ_—K .
1-e

Proof: The first property follows from the fact that r,ﬁ'E = ug. The
remaining properties may be proved directly or deduced from the

analogous properties of the classical Todd class as in Karoubi



CKarl, p. 285. O
Note that Td(E) is a unit in the ring H"(X;IR). Let E' be a
real bundle such that E®E' is a trivial bundle. Then

()
1]

Td(E®E') since Td(1) = 1

TAHE)TA(E") by 1).

It is customary to define the Todd genus of a smooth
manifold M by

Td(M) = Td(TMRC)

and following custom we define the tangential Todd genus of a

foliated space X by
(5.25) TdT(X) = Td,(FX@tt).

We emphasize that we may regard classes such as Td_(X) as
tangential forms in 0;(X) given by certain universal polynomials in
the tangential curvature form KE. Given a tangential connection,
these forms are uniquely defined (not just up to cohomology class.)
Changing the tangential connection changes the form but preserves the
cohomology class of the form.

We may see the Todd class very explicitly. The power series

expands as

1-e~ %

1+ %4 ; ( l)s-l By 2s
- - —_X
2 s=] (28)!

where Bs € Q is the s-th Bernoulli number (cf. the appendix of
Milnor-Stasheff CMS]):
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B, = 1/6 Bs = 5/66
B, = 1/30 Bg = 691/2730
By = 1/42 B, = 7/6

B, = 1/30 Bg = 3617/510.

For example, if X is a foliated space with leaf dimension p € 8 then
H:‘(X) = 0 for k > 8 and the polynomial has the form

B B
1+X 4+ 12 _ 2.4
2 2 24
=1+X+ 12 1 4
2 12 720

Thus if E is a complex line bundle over X then
Td (B) = 1 + LcJ(B) + LoTiB? - LcTip
2 12 720

Note that this is a non-homogeneous class sitting as is usual in the

group
ev . - 2my,,
H’r X;R) = 2“7 (X;R).
For instance, if X = M = cp? with canonical complex line
bundle E1 then write w = —~—. Then
2xi

¢(TCP?) = 1 - 3w + 3w

The Chern character and Todd class are given at the form level by

ch(TCP?) = 2 - 3w + 32

2
and

TA(TCP?) = 1 - %u + W2

We follow the usual convention in interpreting expressions of
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the type dev where w is a non-homogeneous form; take the part of w

which lies in QP and ignore the rest. For instance,
f Td_(EM»

is to be understood as follows: write TdT(E) = ¥ Td:(E) where
Td7(E) € H7(X), and define

| T, By = [ Tdb(ENY.

Finally, note that if M is a foliated manifold with tangent
bundle TM and folialion bundle FM then the normal bundle to the
foliation NM = TM/FM has a flat connection in the leaf direction and
so its relevant characteristic classes vanish. Thus if w is any

tangential cohomology class, then
IwTd(M)dv = I WTd(TM)dy = j' wTd(FM)d

and so we may use Td(M) and Td(FM) interchangeably in index

formulas.
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CHAPTER VI: OPERATOR ALGEBRAS

We turn now to the discussion of operator algebras that can be
associated with groupoids and in particular to the groupoid of a
foliated space. For this discussion we start with a locally compact
second countable topological groupoid G and we assume given a
continuous tangential measure A\ (see Chapter IV for the definition).
Thus for each x in the unit space X of G we have a measure A\X on
GX = r"l(x) with certain invariance and continuity properties as
described in Chapter IV. For the moment we do not need to assume
that the groupoid has discrete holonomy groups as in Chapter IV, but
all the examples and all the applications will satisfy this condition. If
in addition the support of the measure A\¥ is equal to r'l(x). as is
usual in our examples, then A\ is called a Haar system.

In this chapter we construct the C‘-algebra of the groupoid
and we determine this algebra in several important special cases. We
describe the Hilsum-Skandalis stability theorem. Assuming a transverse
measure, we construct the associated von Neumann algebra and
develop its basic properties and important subalgebras. This leads us
to the construction of the weight associated to the transverse
measure; it is a trace if and only if the transverse measure is
invariant. Finallv, we introduce the K-theory index group KO(C:(G))

and construct a partial Chern character
. x 3 ~ -D
c: KO(Cr(G(X))) — MT(X) = HT(X)

which is given explicitly as follows. If [u] € KO(C:(G(X))) and »

is an invariant transverse measure with associated trace 2, then
c([uliy) = ¢;:(e - f)
*
where e and f are suitably chosen projections in C,L_(G(X))"'@Mn whose
difference represents u and ¢'; = ¢v@Tr. The partial Chern

character applied to the symbol of a tangential, tangentially elliptic

operator D vields the cohomology analytic index class
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[¢pl € HOX).

We shall first review the construction of a C. algebra
associated to the pair (G,\) (cf. Connes [Co3], Renault [Renl]).
Suppose first that G is Hausdorff. On the space C.(G) of continuous
compactly supported functions on G one defines a multiplication and an

involution

6.1) (E¥g)u) = J'ﬂv)g(v'lu)dxr‘“’«v)

f*u) = £(u 1),

That these define an associative algebra with involution on Cc(G) is a
straightforward calculation paralleling the case when G is a locally
compact group, (cf. Pedersen [Ped], p. 233). The invariance property

of tangential measures allows one to rewrite the convolution as
(fre)u) = I faviglv-1HdrsWy).

In the case when G is an equivalence relation R on a space X,
then a tangential measure is simply a measure A\X for each x such
that A* = AY if x ~ v. Functions on G = R are viewed as partially

defined functions of two variables, and the formulas become
(Frelx2) = [fx.ylety.2dN )
f*(x,y) = f(y.x)

where in the first formula AX could be \Y or A% as x. v, and z in
the formula are all in the same equivalence class.

There are two ways of norming the involutive algebra Cc(G).
For the first way, there is for each x € X a natural homomorphism
x_ of C.(G) into the algebra of bounded operators on the Hilbert

X
space Lz(Gx,Xx) defined essentially by convolution:

(6.2) (x (£)0Nu) = If(u'lv)w(v)dxx(v).
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The integral is clearly well defined for @ € Lz(Gx.)\x), fe Cc(G)
and it yields a bounded operator n’x(f) on LZ(GX,XX). That =
defines a *-homomorphism is likewise easily checked. Note that the
formula (6.2) above displays xx(f) in effect as right convolution by
f' (= f*) where f'(a) = f(u™1),

One norms CC(G) by 1f)1 = suplxx(f)l; the completion of
X

CC(G) under this norm is virtually by construction a C‘ algebra. for we
obtain it by embedding CC(G) into bounded operators on a Hilbert
space (the sum of the Lz(Gx,Xx)) and closing up the image.

Definition 6.3. The reduced C‘-alqebrq of the groupoid G
is the completion of CC(G) with respect to the norm 1ft above; it
is denoted C:(G).

This construction is analogous to the construction of the
reduced C- algebra of a locally compact group by closing up the image
of the regular representation. Therefore it is sensible to call the c
algebra above the reduced c algebra of the groupoid, C:(G). Connes
and his students write this algebra as C'(V,F) when G is the graph of
a foliated manifold (V.F).

The second way of norming Cc(G) corresponds to the full

=
C -algebra of a group. Namely we first put a kind of an Ll norm on
C.(G)

1£1, = maxtsup, [ 1£1dA W), sup, 1 £ dASw)

so that it becomes a normed *-algebra. Then we form the
C'—completion of this algebra using all bounded * representations.
This is denoted C*(G) and is called the full c* algedra of the
groupoid. As the representations =«  are 'among all *bounded
representations, it is evident that the reduced C algebra C_(G) is a
quotient of C.(G).

As our concern here will be with analysis and differential

operators on foliated spaces where the representations - play the
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central role, it is evident that it is the reduced c algebra C:(G)
rather than the full C" algebra that will be the focus of attention.
Of course the construction of both C:(G) and C'(G) presupposes a
tangential measure or a Haar system on the groupoid G. These
algebras can depend on this choice. and if one is being absolutely
precise, the underlying Haar system should be included in the notation.
The reader is referred to Renault [Renl] for a more extended
discussion on this point. This will not be an issue for us because in
the first place if \ is a tangential measure (resp. Haar system) and if
A" = f\ where f is a continuous everywhere positive function on G
that is constant on the fibres of the map u — (r(u).s(u)) of G into
X X X, then \' is also a tangential measure (resp. Haar system). In
this case it is easy to check that the c’ algebras C:(G) and C‘(G) do
not depend on whether one uses X\ or \'. Secondly, in the case of
the graph of a foliated space, there is as we have already pointed out
in Chapter IV {4.20 and remarks following) a choice of a class of Haar
systems (each A\* should have a continuous, or even tangentially C”,
density on the leaves in local coordinates), any two of which differ
like X and \' above. If the total space of the foliation is compact
one can aiso ensure that the function relating A and \' is bounded
above and below. At all events when we speak about C:(G) or C‘(G)
in the context of the graphs of foliations, we shall always understand
that standard choice of Haar system. It is evident that the
hypothesis that G be second countable makes the c algebra C:(G)
separable.

All of this discussion has assumed that the groupoid G is
Hausdorff, but we know that the groupoid of a foliation need not be
Hausdorff. At all events the groupoid is locally Hausdorff so it may
be covered by a family of open sets each one of which is Hausdorff.
We still assume that the space is second countable. Then as one can
take this family to be a countable family U;, it is straightforward
using standard techniques to see that G is at least a standard Borel
groupoid. (A set E is Borel if and only if E N U, is Borel for each
i.) This will be useful later when we introduce von Neumann algebras
associated with these groupoids.

E 3
It is still quite straightforward to introduce the C algebra in
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the locally Hausdorff case. We gave a definition in (4.15) of what
was meant by a continuous tangential measure X\ = C)\z) in
this situation. Now instead of considering all continuous compactly
supported functions on G. let us consider instead the set of finite
linear combinations of functions f = Zfi where each fi is a compactly
supported function continuous on some open Hausdorff subset U; of G
extended to be zero on the rest of G. (Note that while £, is
continuous on Ui its extension to G is not in general a continuous
function on G.) These functions can be convolved using the same
formulas as in the Hausdorff case to give an *-algebra. Then one
follows the same recipe for norming it and constructing a separable c
algebra C:(G).

The C" algebra associated to the groupoid of a foliated space
X plays a key role in the analysis and geometry of X as we shall see.
In particular its K-theory group KO(C:(G)) is the natural place where
indices for operators live (cf. Connes-Skandalis [CS1,CS2]). One may
also think of it as a non~commutative replacement for the algebra of
functions on the quotient space X/R where X is the unit space of G
and R is the equivalence relation on X defined by R. For a foliated
space this is the space of leaves. Indeed when X/R is a "good" space
such as when G is the groupoid of a foliated space which is a
fibration, then C:(G) looks very much like C(X/R), as we shall see
presently; they are in fact stably isomorphic. The interpretation of
C:(G) as functions on the leaf space is enhanced by the following
result of Fack and Skandalis [FS].

Theorem 6.4. If G is the groupoid of a foliated space, then C:(G) is
simple as a c algebra if and only if every leaf of the foliated space
is dense.

We shall not prove this result except to remark that if ¢ is a
proper closed leaf, then the representation "y above for any x in £
has a non-trivial kernel so that C:(G) is not simple.

One of the most important classes of examples of topological
groupoids comes from group actions. Suppose that a locally compact
group H acts as a topological transformation group on a space X with

h € H acting on a point x € X denoted hex. The product space
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G = X X H becomes in a natural way a groupoid where the product in

G, (x,g)+({y.h), is defined if and only if g*y = x and then
(x,g) *(v.h) = (x,gh).

X is the space of units and the range and source maps are given by
r(x,h) = x, s(x,h) = h™l+x. Then GX = €(h,x), x fixed, h arbitrary in
HY = H. If u = (gy) is an element of G which can multiply G* on
the left, that is s(u) = s(v,g) = g'ly = x, then left multiplication by u
maps GX onto GY, y = g-x and the map is (x.h) — (y,gh). Now giving
a tangential measure or a Haar system on the groupoid G is giving a
measure AX on each GX* which is invariant under these left
multiplications. There is a natural choice in this case, namely take
for AX on GX = H, a fixed left Haar measure on H. Evidently this
tangential measure is continuous in the sense of 4.15. This example is
of course the reason one calls such obiects Haar systems. Of course,
for the groupoid just defined to fall strictly within the context of
Chapter IV where we assume discrete holonomy groups, the various
isotropy groups of the action of H on X, l-Ix = Ch: h*x = x3 must
be discrete. If for instance H is a Lie group acting on a manifold X
then the action of H will give rise to a foliation of X only in this
case.

In the case of a group H acting on a space X as above, one
may form (cf. Pedersen [Ped]) a C‘ algebra. the reduced crossed
product algebra of C(X) by H, written C(X), » H. It is clear that
the general construction for groupoids should and does yield the

reduced crossed product construction in this case.

Proposition 6.5. If G=XXH for an action of H on X (no

assumptions on isotropy) then
*
C.(G) = C(X)r x H.

Proof. One checks that there are dense subalgebras of both sides
that are algebraically identical. The algebra C:(G) is obtained by
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completing in the norm defined by the family of representations .
for x € X. Each of these comes from a covariant representation of
the pair (C(X),G) and one has to prove that these give the same norm
as the subfamilv of all covariant representations of the pair used to

define the reduced crossed product. We omit the details. u]

Another. somewhat trivial case, is of interest; let X be locally
compact and let G = X X X be the equivalence relation (principal
groupoid) with all points equivalent. If X is a manifold foliated by
one leaf, G is its groupoid. A Haar system is simply a measure \ on
X whose support is all of X. Evidently elements of the dense
subalgebra of the definition can be realized as integral kernel
operators on LZ(X,X) with compactly supported kernels. The

completion is obviously all compact operators X on LZ(X,M.
Proposition 6.6. In this case C.(G) = X. O

An important theme in Feldman-Moore [FM],
Feldman-Hahn-Moore [FHMJ], and Ramsay [Ra] is that for measured
groupoids or equivalence relations. the special case when the orbits
are discrete is much easier to handle and that in some sense the
general case could be reduced to this special case. We want to see
that the same is true in this context. First of all we need a

definition.

Definition 6.7. The (locally Hausdorff) topological groupoid G has
discrete orbits if the range and source maps are local
homeomorphisms.

It follows that each equivalence class (or leaf) of the
associated equivalence relation is countable and discrete in the
relative topology from G (although not in the relative topology from
X). In this case there is a natural choice of tangential measure,
namely the counting measure on each leaf. It follows from the
definition of discreteness that this is a continuous tangential measure,
and so we can define the C algebra C:(G).

It is useful to point out that in the principal case, where G is
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simply an equivalence relation, that G can be covered by sets of a
very simple kind. Let O be an open set in X and let b be a
homeomorphism onto an open subset of X; let U(b,0) = C(x,b(x)),
x € 0.

Proposition 6.8. If G is discrete and principal, then the U(b,0) are

open sets and form a cover of G. o

The dense subalgebra A of compactly supported functions (or
its substitute in the non-Hausdorff case) can be thought of as
generalized matrices especially if there is no holonomy so that G is a
principal groupoid. i.e. an equivalence relation R. Then as we have
already seen the formulas simplify and the product of two functions on
R C X XX is given by (f*g)ix.z) = 3f(x.y)e(v.z) where the sum is
extended over all y which lie in the same class as x and z. The
condition that f and ¢ be compactly supported implies that the sum is
finite. = Written this way the product really does look like matrix
multiplication. When there is holonomy, multiplication is still given by
a sum rather than an integral, but the sum must include summation
(convolution) on the discrete holonomy groups.

For general groupoids, the process of completing the dense
subalgebra A of functions to obtain C:(G) leads to elements in the C
algebra which cannot be represented as functions on G. One of the
nice features of discrete groupoids is that an element of the C*
algebra can be represented by a continuous function on G. at least if
G is Hausdorff.

Proposition 6.9. For f € A and u € G.
ifu)t <€ 1f1
where 1f1 = sup lxx(f)l is the C -norm.
X

Proof. The representation "y of A in Lz(Gx,kx) in the definition of

* .
Cr(G) is a representation by matrices since GX is a countable discrete
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set and \* is counting measure. It is evident moreover that f(u) is
just one of the matrix coefficients of xx(f), and so the inequality is

obvious. a]

Thus if fn is a sequence in A with a limit in C:(G), fn must
converge uniformly as continuous functions on G to a limit f and we
have the desired result for Hausdorff G. Moreover multiplication of
elements of C:(G) is given by the same “matrix multiplication”
formulas for the functions which represent them. The sums are no
longer finite but are absolutely convergent as is easilv seen using the
argument of Proposition 6.9. The situation for non-Hausdorff G can
be handed by localization to Hausdorff subsets.

Another feature of the discrete case is that the set of units X
is an open subset of G because r and s are local homeomorphisms.
Hence the set of compactly supported functions CC(X) is a subset of
the algebra A used to define C‘(G). Moreover it is a subalgebra;
elements of C,(X) correspond to diagonal matrices in the description

*
above of A as generalized matrices. Hence the C algebra C_(X)
becomes a subalgebra of C:(G). If X is compact, as it will be in
most cases, then C_(X) = C(X) has a unit which is also a unit for
C,(G).

Finally, suppose that G is discrete and principal--that is, an
equivalence relation and Hausdorff (note that it would be Hausdorff
automatically if X itself is Hausdorff since G can be mapped
continuously into X X X). In this case the subalgebra C_(X) of
C:(G) has a very special property--namely it is a diagonal subalgebra
of C:(G) in the language of Kumiian [Kum] (and a Cartan subalgebra
in the language of Renault [Renl]).  We are inclined to change

terminology and call Kumiian's diagonal subalgebras Cartan subalgebras.

Definition 6.10 (Kumiian [Kum]). A Cartan subalgebra B of a
unital C" algebra A is an abelian subalgebra (that contains the unit of
A) with a faithful conditional expectation P: A —s B with the property
that the kernel of P is spanned by all elements a of A such that

() aBa CB.
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(i) a Ba C B,
(i) a% = 0.

(Kumjian calls these free normalizers of B.) If A is not unital, a
Cartan subalgebra of A is a subalgebra B such that B* is a Cartan
subalgebra of A* where ( )* is the operation of appending a unit.

To see (Kumijian [Kum]) that CO(X) is a Cartan subalgebra of
C:(G), one has to define first a conditional expectation P. If
m € C:(G), it is represented by a function on G by Proposition 6.9
and then one restricts the function to the diagonal to get an element
in C_ (X). Next note that free centralizers can be obtained by taking
a function a supported on a set of the form U(f,0) in G where f has
no fixed points and such that a(x,f(x))a(f(x),fz(x)) = 0. An easy
localization argument shows that any compactly supported function on
G-AX can be written as a finite sum of such functions, and hence
that there are enough normalizers to span the kernel of P. Conversely

2

it is evident from the condition a“ = 0 that any such a viewed as a

function on G must vanish on the diagonal and so is in the kernel of
P.

Kumiian proves, complementing an earlier result of Renault
[Renl], a powerful converse to this exercise. Roughly stated it says
that every pair (A,B) where B is a Cartan subalgebra (diagonal
subalgebra in the language of Kumiian [Kum]) arises uniquely from a
discrete equivalence relation but with a "twist” coming from a kind of
two cocycle as in Feldman-Moore [FM] and Renault [Renl]}. In
fact the topological objects which classify the pairs (A,B) are called
twists. We shall not pursue this topic further here as it would take
us afield.

If Gl and Gz are topological groupoids then their product
Gy X Gy = G is also. If A is a Haar system on Gi’ i = 1,2 then it
is evident that we can define a Haar system X\q X )\2 on
G = Gl X GZ for if X‘ is the unit space of Gi' X = Xl X Xz is the
unit space of G and the range map r of G is ry X ry. Hence

(x4:%,)
2!

r'l(xl,le = rIl(xl) X r;l(xz) and (Ay X ) is defined to

be the product measure. The following is then straightforward.
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Proposition 6.11. C (G, X G,) = C (G,) ® C (G,) where & denotes
r'?1 2 r'v] r2

the minimal or spatial tensor product.

Proof. If Ai.A are the algebras of functions on Gi,G used to define
these C‘ algebras, it is evident that the algebraic tensor product

Al ® A2 can be identified as a dense subalgebra of A. The
Xii

(x;; € X)) and it is clear that the completion C.(G) can be defined

completions C:(Gi) are defined by a family of * representations »

exactly by the family of tensor products », ® n, . The result
}

1, 2,
follows. a] !

As a corollary of this, suppose that Gl is a groupoid and that
GZ = Xz X X2 is a groupoid of the type in Proposition 6.6, for
instance the groupoid of a manifold X, foliated by a single leaf.
Then form G = Gy X G,. If for instance G, is the groupoid of a
foliated space X; and X, is a fixed manifold foliated as a single leaf,
then G is the groupoid of the foliated space X = Xy X X, where the
leaves of X are £ X X, where ¢ is a leaf in X;. In other words
we have fattened up the leaves of X, by crossing with a fixed
manifold. The foliated spaces X, and X have the same transversal
structure. As a consequence of 6.6 and 6.11 we have for any G, and

any Xz the following:

Proposition 6.12. C,(G) = C,(G;) ® X where X is the algebra of

compact operators.

As a further example let us consider the groupoid arising from
a fibration p: X — B with standard fibre F. We let G be the
equivalence relation on X where x ~ y if p(x) = ply). If the fibration
is locally trivial (cf. Steenrod [St]) and the standard fibre is a
manifold. then X is a foliated space with leaves equal to the fibre of
the fibration. If U C B is an open set over which the fibration is
trivial. then U defines an open subfoliated space which is the product
of U foliated by points with F foliated by one leaf. Hence "locally”
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the C algebra is a product C‘(U) ® X by above. But this works
globally at the algebra level, at least if B is finite dimensional. In
order to avoid degenerate cases we assume in the following that the
standard fibre is not a finite set. The algebra is formed with respect

to any given continuous Haar system.

Proposition 6.13. If G is the groupoid of a locally trivial fibration
with base B, then C:(G) is Morita equivalent to C(B) ® X. If B is

finite~-dimensional then
CL(G) = C(B) ® .

Proof. For each b € B, let p"l(b) be the fibre over b. A Haar
system is simply the assignment in a "smooth” fashion of a measure
Xb on p'l(b) 2 F, where smoothness means that in each local
trivialization of p'l(U) = U X F. the AP for b in U viewed as
measures on F vary continuously. The Hilbert spaces Lz(p'l(b),xb)
then form a continuous field of Hilbert spaces over B (cf. Dixmier
[Di2]) and it is evident from Proposition 6.12 that C:(G) consists of
the sections of the corresponding field of operator algebras
K(Lz(p'l(b),xb)). The Dixmier-Douady invariant [DD] is trivial and
hence C:(G) is Morita equivalent to C(B) @ X. If B is
finite-dimensional then the field of Hilbert spaces is trivial and so
C.G) 2 CB) @ XK. O

If in this example, the fibration X — B has a cross section s,
then s(B) is a complete transversal homeomorphic to B. Then s(B) is
a groupoid of a trivial sort--equivalence classes are points. Thus
C,(s(B) = C(B) and so C.(G) = C_(s(B) ® X. This is in fact quite
a general phenomenon at least for groupoids of foliated spaces as is
shown by Hilsum and Skandalis [HS]. We describe this result, which
will be of considerable use to us. in some more detail.

In Chapter IV we discussed regular transversals for foliated
spaces. These were locally compact subsets N of the foliated space X
so that N € N' with N C N' and N compact, and such that there

exists an open ball B in RP, p the leaf dimension, with a
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homeomorphism of N' X B onto an open subset U of X with the map
an isomorphism of foliated spaces. For this discussion, we shall also
assume that there is a larger ball B' containing B with an extension
of the homeomorphism of N' X B to N' X B’ onto some U’; we shall
also assume that N is open in N' so that N X B corresponds to an
open set. To simplify notation. let us take the N X B to be subsets
of X. If X is compact one can clearly find a finite number of such
Ni so that the union is a complete transversal. If X is locally
compact, then as in Fack-Skandalis [FS] one can find a locally finite
such family and can also arrange that the N, X B are disjoint from
each other. At all events if N = UN,. finite or infinite, then there is
a ball B in RP so that N X B = U is an open subset of X. We can
also arrange that UC contains a set of exactly the same form N X B
using the fact that for the original N; we had a N, X B'D Ni X B.

Let G be the groupoid of the foliated space (Hausdorff or not)
and let Gg be the groupoid relativized to N;
Gy =Cu € G: r(u)s(u) € N). Then H = Gy is a topological groupoid
in its own right and it has discrete orbits. Then C:(H) is an algebra
of the kind discussed earlier in the chapter. If we form U= N X B
then Gg is an open subgroupoid of G and is clearly the product

U N
Gy = Gy X (B X B)

where B X B is the principal groupoid (equivalence relation) with unit
space B and with all points equivalent. It follows from Proposition
6.12 that

* ~U * ~N
C.G)) =~ c ) 8 X

where X is the algebra of compact operators.

Further as Gg is an open subgroupoid of G, we can extend
functions in the dense subalgebra defining C:(Gg) to functions on G.
Moreover the choice of Haar system for defining C:(Gg) and C:(G)
are compatible. It follows now that the natural iniection of the dense

algebra of compactly supported functions on Gg into functions on G
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produces a map i on the c algebra level of C:(GH) into C:(G). The
result of Hilsum and Skandalis [HS], in a slightly strengthened version
is the following, which shows in some sense that C:(G) is no more
complicated than C:(Gg) and also that the complete transversal N

controls the structure of these algebras.

Theorem 6.14 (Hilsum-Skandalis [HS]). The algebra C:(G) is
isomorphic to the algebra MZ(C:(GB)) of 2 X 2 matrices over C:(Gg)
and the injection map i above corresponds to the natural inclusion of
C:(Gg) into 2 X 2 matrices a — [8 g . Hence C:(G) is also
isomorphic to C:(G:) ® X where X is the algebra of compact

operators.

We shall not reproduce the details of the argument but will
note some highlights. Fixing the complete transversal N as above,
they define for each open set V of the unit space X, a C"-module (cf.
Kasparov [Kas2]) H(V) over C:(Gg). These add for disioint U's and
H(V) = H(W) if V =W - F where F is closed in X and meets each leaf
in a null set. They also establish that the algebra of "compact
operators” (in Kasparov's terminology) on H(V) is C:(Gg). For the
particular choice of U = N X B, the "tube" around the transversal N
which was constructed above, it is easy to see that
HU) = H, & C:(Gg) where H, is an infinite dimensional Hilbert
space. Since by construction we can find another transversal N'
which looks just like N and a "tube” around it, N' X B inside of US,
one may use the above to argue that H(X) = H(U) @ H(U®) and that
H(U®) contains a submodule H(U') isomorphic to H(U). The Kasparov
stablization theorem of [Kas2] says that H(U®) is isomorphic to H(U)
which establishes the result. o

We note that there is another interesting approach to the
isomorphism (6.14) due to Haefliger (cf. Theorem A5.1 in appendix A),
Renault [Ren2] and Muhlv-Renault-Williams [MRW]. One shows that
G is equivalent to G: as topological groupoids. Then one shows that
under mild hypotheses, the C'—algebras associated to equivalent

groupoids are  strongly Morita equivalent and hence (by
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Brown-Green-Rieffel [BGR]) stably isomorphic.

We now turn our attention to another and closely related
operator algebra that one can construct. Let G be a locally compact
groupoid with discrete holonomy groups together with a given Haar
system \. We also assume that the underlying Borel groupoid has a
complete transversal--a condition that is a fortiori satisfied for
the groupoid of a foliated space. We also assume given on this Borel
groupoid a positive transverse measure », not necessarily
invariant--cf. Chapter IV. Indeed for the coming discussion we can
and shall neglect any topological structure and simply work as in
Chapter IV with a standard Borel groupoid with a complete
transversal, a fixed tangential measure and with countable holonomy
groups G.

The integration process of Chapter IV where we integrate the
tangential measure \ with respect to the transverse measure »
produces a measure ¢ = dev on the unit space X. Then as noted in
Chapter IV one may turn G into a measured groupoid (Mackey
[Ma5], Ramsay [Ra2]) by defining a measure @ on G by

WE) = jx"(E A G¥dulx)
X

(i.e., 1~1 = in the terminology of Chapter IV). We note that
conversely if G is a standard measured groupoid, then by a result of
Peter Hahn [Hapl] there is a Haar measure \ (= tangential measure
~ Haar system) on G and a measure » on X so that the original
measure on G is given by the formula above.

Now any measured groupoid has a regular representation (Hahn
[Hapl], Connes-Takesaki [CT]) which in form looks just like the
construction defining C:(G), We form the Hilbert space H = LZ(G,E)

which is decomposed as a direct integral
H= J'H"du(x)

where HX = LZ(GX,)\X). If » = (¥¥) is an element of H and if f is a

suitable function (see below) on G one defines just as in (6.2):
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(r(E)0)) = jf(u'lv)mv)dxx(v).

In order for this to define a bounded operator f has to satisfy

conditions as in Hahn [Hapl].

Definition 6.15. A measurable function f on G equipped with a Haar
system A\ and a transverse measure ¥ is left integrable with

respect to the Haar system \ if
ess sup flf(u-lv)ld)\ﬂu’(v) < oo,
u

the essential sup being taken with respect to u; f is right
integrable if f* is left integrable, f*(u) = -f—(-:'—l_) and
inteqgrable if left and right integrable. A function is left
(right, two sided) square integrable if |f|2 is left
(right, two sided) integrable.

It is not hard to see that the integrable functions form a
*-algebra under the same operations (6.1) we used to define C:(G).
Note that the integrability conditions are not the same as f being in
LZ(G,H), and that the condition depends only on the equivalence class,
i.e. the null sets, of the transverse measure », and not on v itself.

We observe that if f is integrable with respect to \ the
operator x_(f) in LAG*\X) is given by a kernel function which, when
we unravel the respective definitions. is integrable in the sense of
Proposition 1.14. Hence ;\'x(f) defines a bounded operator with a norm
that is essentially bounded in x by Proposition 1.14 and so defines a
bounded operator x(f) on LZ(G,;.). Further, f — «x(f) is a
*_homomorphism. We note parenthetically that if f € C_(G), the
continuous compactly supported functions on a locally compact
topological groupoid with Haar system X\ (or the replacement for
C,(G) in the non-Hausdorff case), then the integrability conditions are

satisfied with ordinary suprema instead of essential suprema.

Definition 6.16. The von Neumann algebra W‘(G,ﬁ) associated

to the measured groupoid (G.E) is the weak closure of the *-algebra
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generated by the operators x{f), for all integrable functions f.

This algebra is realized on the space H and quite evidently
commutes with the abelian algebra A of multiplication operators
generated by all bounded measurable functions on G which depend only
on the range r{u) of a point u in G.

The fact that elements of W‘(G,ﬁ) commute with A, means by
direct integral theory (cf. Takesaki [Tak2], IV, ©8) that any
m € W‘(G,ﬁ) may be decomposed as a direct integral. Specifically the

abelian algebra Ar on H decomposes H as a direct integral

= Idev
X

where evidently HX = Lz(Gx,)\x). Then any operator m commuting with
Ar’ and in particular any m in W‘(G,E) has a direct integral

decomposition
m = jmxdv

where mX is an operator on Lz(Gx,Xx). Conversely every bounded
Borel field of operators x — m* on the Borel field of Hilbert spaces
LZ(GX,XX) defines an operator that commutes with A.

Moreover for each u € G, left translation L, by u defines a
bijection from G o Gr(u) which maps )\s(u) to AFW, (This is
the definition of invariance for \.) Consequently left multiplication

1

by u™" gives rise to a unitary operator Uu which is a unitary

equivalence of Hs(“) to Hr(“), and these evidently satisfy Uqu = qu.
It is further easily verified that the convolution operators w(f) which
are dense in W‘(G,[’t) have the further property that their

disintegration products above =(f)* satisfy
U0 = (@@, for almost all u.
Consequently the same holds for any m € W'(G,ﬁ), namely

(*) Uums(u) = mr(“)Uu for almost all u.
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The intuitive reason for this is that the m's are a kind of right
convolution operator on the groupoid and so a sum of right
translations. The Uu are left translation operators and right
translations always commute with left translations. Finally it is true
that W'(G,ﬁ) is exactly the set of operators which commute with A,
and whose disintegration products satisfy the above relations (*).

There are some important subalgebras of W‘(G,ﬁ) that will
occur. First of all if ¥ is a bounded measurable function on (G,u)
with the property that ¥(u) depends only on the source s(u) of u (so
®(u) = ¥'(s(u)), then my, multiplication by ¢ on LZ(G) defines a

bounded operator which evidently commutes with Ar and whose direct

X
1 4

operators by the function @'(s(v)) v € GX. This field of operators
-1

integral disintegration products m_, on LZ(Gx,Xx) are multiplication

evidently satisfies (*) because left translation by u~' maps G; to G;

where ul € G:. Hence m, defines an element of W'(G,u). The

set of such is evidently : von Neumann subaigebra of W*(G,ﬂ),
denoted A, and isomorphic to L”(X). In case G is principal--that is,
an equivalence relation--this is the usual diagonal subalgebra, and if
the equivalence relation is countable, it is a Cartan subalgebra
(Feldman-Moore [FM]) that plays a key role in the structure of
W' (G, ).

Another slightly larger subalgebra of W'(G,LNL) which takes
account of the holonomy is also useful. Let E = {u € G,
r(u) = s(u)l. Then E can be viewed as the union VGz of the
{discrete) holonomy groups. If f is any Borel function or? E which is
not only bounded, but for which Stf(u)i (u € G;) is bounded in
y, then right convolution by f restricted to G;' defines an operator
R(f); on LZ(G;) for any x because G* is a principal homogeneous
space on the right for Gz. Then as L°(G¥) can be regarded as the

direct integral
L3G¥) = ILZ(G;)dxx(y)

R(f); integrates to give an operator R(f)X on Lz(Gx). For exactly the

same reasons as above, this field satisfies (*) and so defines an
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element R(f) of W‘(G,H). Suppose that f happens to be supported on
the subset of E = vG; consisting of the identity elements of the
(discrete) groups Gz. Then f is in effect a function on the unit space
X, and ¥(u) = f(s(u)) defines a function on G depending only on s(u)
that in turn defines an element m, of the algebra A, A moment's
thought shows that m, = R{f). The closure Dy of the set of
operators R(f), which is evidently a von Neumann subalgebra of
W‘(G,E) contains A_. This generalized diagonal subalgebra Dg has a

readily apparent structure.
Proposition 6.17. The algebra Ds is a direct integral

D, = jR"d»(x)
X

of the right group von Neumann algebras R* of the discrete groups Gi
with Aj = L%(X) the obvious subalgebra. o

The algebra W‘(G,E) on the Hilbert space H is in standard form
(cf. Takesaki [Takl]) in the sense that there exists a coniugate
linear isometry J of H onto H such that g2 = id, and

k 3 o £ 3 ~
JW (G,uN = W (G,u)'

where N' denotes the commutant of N in ®(H). In fact the J that
works is quite easy to write down. Recall from Chapter IV that the
transverse measure », which we started with here, has a modular
function, or modulus, A which is a positive function on the groupoid G
satisfving A(u)A(v) = A(uv) whenever uv is defined. This function
measures the extent that » is not an invariant transverse measure.
This modular function has the further property that if i(v) = v'1 is
the inversion map on G, then i transforms the measure f on G into a
measure is() (ie(t) = ug in the language of Chapter IV) which is

equivalent to ﬁ with Radon-Nikodym derivative given by

— 48 v) = AW).
d(i,(u))
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It follows then that for ¥ € H = LZ(G,TI),
ol = eu-haw1)1/2

defines a coniugate linear involutive isometry. The following
summarizes results that can be found in Hahn [Hapl],
Connes-Takesaki [CT], but also see Takesaki [Takl].

Theorem 6.18. With the above notation
t 3 ~ z ~
JW (G,u)J = W (G,u)

and W'(G,a) is the algebra of all operators m commuting with Ar S0

X

that the corresponding disintegration products m* satisfy

UUps(W) = privgu

for almost all u € G. Moreover JAJ = A

We shall not go into the somewhat tedious details of the proof;
the idea is that what works for groups works for groupoids. The
algebra W'(G,ﬁ) consists of right convolutions and conjugation by J
makes them into left convolutions which at the von Neumann algebra
level are each others commutants. As to the second part, A, is
clearly in the commutant of W‘(G,E) and A, together with "smoothed”
versions of the UY suffice to generate this commutant. o

It is evident from the definitions that once we fix a Haar
system X\, the c algebra C:(G) has a natural representation into
W'(G,H) for any choice of transverse measure » and corresponding
ﬂ. Recall that C:(G) is defined by representations Ky of a dense
subalgebra A. These representations L take place on
HX = LZ(GX,XX) and so the direct integral x of the L
representation of C:(G) into W.(G,H). The following is clear.

gives a

Proposition 6.19. The image of C.(G) is dense in W (G,ii) and the

representation is faithful if the support of the transverse measure »
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is all of X in the sense that the measure Ikdv has support equal to
X. o

It is well to reflect for a moment on the geometric meaning of
these algebras for a topological groupoid G. First of all each orbit or
leaf £ of the equivalence relation on X associated to G has a
"holonomy covering” £ which we can take to be GX for any x € &.
The left translations L, which map 6% o G provide canonical
identifications between these models of £ when x = s(u), and
y = r{u) are points of ¢. In addition the "holonomy group” G:
operates by left translation freely on GX =~ £, and the quotient
GX \z is exactly the original leaf ¢. Each leaf ¢ and its covering
£ come equipped with a measure so we have Hilbert spaces Lz(ll)
which are just Lz(Gx,Xx) for any x € 4.

Then elements of W‘(G,fi) can be thought of as providing for
almost all holonomy coverings 2 an operator m(z) on LZ(Z). These
are supposed to be bounded and to vary in a Borel way with 2.
The exact meaning of the last statement is that when we identify
LZ(I) with Lz(Gx,Xx) for any x € £ and get a field of operators
m¥*, then the m* are Borel sections of the Borel field of Hilbert
spaces L2(GX,\X) over X. The commuting relations in the second part
of Theorem 6.18 say in part that whether we identify LZ(E) with
LZ(Gx.XX) or with LZ(Gy,x-") with x,y € 2, we get the same
operator on Lz(;). Finally m(%) is not an arbitrary operator on LZ(Z)
but the commuting relations in 6.18 say also that m(Z) must commute
with left translation by G:, and that these are the only restrictions.

Elements of the C‘—algebra C:(G) have a very similar
interpretation. Bach m in this algebra defines an operator m(z) on
all (not almost all) holonomy coverings of the leaves which commutes
with left translation by G: and which is further restricted to be a
uniform limit of such operators that can be defined by convolution
with suitable continuous kernel functions. Finally the m(2) have to
vary continuously as £ varies in a manner that is fairly clear
heuristically.

It is evident that the von Neumann algebra W‘(G,ﬂ) depends
only on the equivalence class, in the sense of absolute continuity, of

the measure u on the unit space X of G because of its definition in
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terms of fields of operators. In turn the equivalence class of u
depends only on the equivalence class of the transverse measure v
from which it is constructed (regarding of course the Haar system
¢)\X3 as fixed once and for alll. The Hilbert space H upon which we
have realized W‘(G,H) of course depends on g itself but for two
equivalent u's there is a natural unitary equivalence of the two
spatial realizations of the algebra. For simplicity we sometimes write
W‘(G) where the Haar system and the equivalence class of transverse
measures entering into the definition are understood.

If N is a complete transversal for the equivalence relation on
X defined by the groupoid G, then as in Chapter IV, the transverse
measure » defines a measure on N, and the part of G over N, Gg
becomes a measured groupoid (G:,;N) whose orbits are countable.
There should be a close relation between W‘(G,ﬁ) and W'(G:,EN)
paralleling Theorem 6.14 and indeed there is. For convenience we
assume that the tangential measure CAX3 on G* that we are given
at the very beginning of the discussion has the property that all (or
almost all) the measures A\* have no atoms. This will surely be the
case for the groupoid of a foliated space with the usual choice of
tangential measures. In this case, the arguments of Theorem 5.6 of
Feldman-Hahn-Moore [FHM], trivially modified to cover the case of
non-principal groupoids, shows that as a measured groupoid (G.q) is
isomorphic to (G:,uN) X ¢ where ¢ is the principal groupoid
(equivalence relation) with unit space the interval I = [0,1] with all
points equivalent and with the measure (1 on I Lebesgue measure, the
measure on each leaf also Lebesgue measure. With this structural

result for G the following is clear.
Proposition 6.20. Under the conditions above there is an isomorphism
WG = WGN.1y) & BLAD).
The importance and usefulness of this result is that it allows
most questions about W'(G,H) to be reduced to questions about

W'(G:,HN). Since G: has countable orbits, the structure and

properties of the algebra built on it is far more understandable and
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transparent, and there are far fewer technical details to wrestle with.
In particular an operator in the algebra is represented by a "matrix"
over G: (that is, formally it is of the form =(f) for a function f on
G:), and the study of unbounded weights on W‘(G,ﬁ) will often
reduce to the study of (bounded) states on W'(GS,HN).

It is evident that the abelian and diagonal subalgebras Ay and

.~

Ds of W (G,u) introduced above decompose naturally with respect to
the tensor product decomposition. Let A: and D§ be the
corresponding abelian and diagonal subalgebras of W'(GS.TAN).

Propositiop 6.21. In the decomposition of Proposition 6.20 we have

isomorphisms

Ag

D

R

AY o L0
D} ® LM

[

where L™(I) is the subalgebra of lB(Lz(I)) consisting of multiplications
by bounded measurable functions. o

One example of the usefulness of the reduction to a cross
section is the following which of course could be established directly

but less transparently.

Proposition 6.22. The relative commutant of Ag in W'(G,z) is D,
and the relative commutant of D, is the center of D, which in the
direct integral decomposition of Proposition 6.17 is the direct integral
of the centers ZX of the right group von Neumann algebras R* of the
holonomy groups G:. In particular if almost all of the holonomy
groups are infinite coniugacy class (i.c.c.) groups then the relative
centralizer of Dy is A,

Proof. By the previous proposition, the question is reduced to A§ and
Dg. All operators are given by "matrices” as in [FM]; then easy
computation in this discrete case does the trick. As to the final
statement, recall that a discrete group H is i.c.c. (all non-trivial
conjugacy classes are infinite) if and only if the center of the group

von Neumann algebra is trivial. ]
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The next step begins with the crucial observation that the
algebra W'(G) comes with a natural family of normal semi-finite
weights. Indeed each (positive) transverse measure » in the fixed
equivalence class will define in a natural way a weight ¢, on

=

W (G); this weight will be a trace if and only if » is an
invariant transverse measure. There are several different ways to
define these weights; one way starts by utilizing the natural Hilbert
algebra structure that is implicit in the construction of W*(G,E) and
uses the basic Tomita-Takesaki construction of weights from a Hilbert
algebra (cf. Takesaki [Takl1]). We will rather approach the matter
through the ideas developed in Chapter I of locally traceable
operators; we can give a very simple and direct definition as follows.

Suppose given a transverse measure » and associated
von Neumann algebra W‘(G,ﬁ). We wish to define #, on the
positive part W“‘(G,;Jj)+ and taking values in [0,»]. Here is a rough
idea of the construction of the weight. To each m € W'(G,ﬁ)+ we
shall associate a tangential measure A which has the property that
if one decomposes m to a field of operators m* on LZ(Gx,Xx), then
the local trace of m* determines the measure )\: on

G:\Gx = 2(x) uniquely. Then the weight ¢ v corresponding to the

transverse measure » is given by
o m =[x (2)dv(e)

where the integral is taken in the sense of Chapter IV. Now here are
the details.

Any m € W‘(G.rt)+ corresponds to a field of positive operators
m(Z), one for almost all holonomy coverings 2 or equivalently a field
m¥ of positive operators on LZ(GX,XX) for almost all x. Then since
m* is positive we can define its local trace as a positive measure
Tr(m*) on GX. This measure may be identically plus infinity. At all
events it is defined even in this degenerate sense and recall that our
definition of m* being locally traceable was that this measure should
be o-finite {or Radon if GX comes with a locally compact topology).
These measures are always absolutely continuous with respect to A\X

by their definition. The invariance properties satisfied by the m¥ as
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stated in 6.18 imply by the analysis in Chapter I that left translation
L, which maps ¢Sl o Gr(“) must transform Tr(ms(“)) into Tr(mr(u))
for almost all u € G. Thus for almost all pairs x,y with x ~ v,
Trim*) on GX is the same as Tr(mY) on GY after identifving G* and
GY. Moreover the countable group Gi acts by left translation on GX
and hence on LZ(GX,XX) and m¥X commutes with these translations.
Again by Chapter I, Tr(m¥) is invariant under G: and hence Tr(m¥X)
uniquely determines a measure Tr'(m*) on G:\GX. But this quotient
space is just the equivalence class 2(x) of x. Hence for each leaf
2, and each x € 2 we obtain a positive measure Tr'(m*) on 2. The
invariance properties cited above tell us that this measure does not
depend on which x we choose and depends only on the leaf £; we
denote it by A (£).

This description is simpler if there is no holonomy so that G is
an equivalence relation. Then GX is the equivalence class or leaf of
x. and the local trace of m* gives a measure Tr(m*) on G¥; invariance
properties say that Tr(m*) = Tr(mY) and so there is a measure
A (2) depending only on the leaf £; this can be thought of as the
local trace of m(£) for all or almost all 2. But now )\m(l) is
what we called a tangential measure and it is the sort of obiect that

can be integrated against a transverse measure to give a number.

Proposition 6.23. For every m € W:(G,ﬁ)", the above prescription
vields a tangential measure Xm(l) (perhaps not o-finite). The

integral in the sense of Chapter IV

o m =[x (2)dr(e)
(finite or not) defines a semi-finite normal weight on W‘(G,LNA).
Proof. For the assignment of a measure xm(z) to each leaf to be
a tangential measure, it must satisfy some smoothness conditions
transversally. From Chapter IV we see that these amount to the

requirement that the field of measures X: = Trim¥) on G¥ should be

Borel viewed as measures on G in that
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f fa)dnX

should be a Borel function of x for any non-negative Borel function f
on G. This is clearly satisfied by the local traces of the Borel field

X is not assumed to be

of operators mX. We note once more that m
locally traceable in the sense that A¥ is a o-finite measure. The
integral we write down in the statement still always makes sense as
everything is non-negative. It is clear that ¢, as defined is
additive and positivelv homogeneous. That it is normal is clear from
the properties of the local trace and the integration process of
Chapter IV. Equivalently it is not hard to produce a family of
vectors &, in the Hilbert space H such that #,(m) = 2(mé,,€,),
which is an equivalent definition of normality. Finally the dense
subalgebra used in Hahn [Hap] to define the alzebra W*(G.;i)
synthetically contains a weakly dense set of operators where 2, is

evidently finite so that % is semi-finite. ]

One of the features of this definition is that it is clear for

which positive operators %, is finite.

Corollary 6.24. Let m € W‘(G.;;)*'. Then ¢ (m) < « if and only
by

if m* is locally traceable on almost all G* in the sense that

)\:‘ = Trim*) is a o-finite measure; if so. then the integral
fxmmd»u)
is finite. a

If an operator a € W*(G.LNA) is given by a kernel function f so
that a = =(f) and

=@ = [fulopmdXm  u e 6% g € LGN
with f integrable in the sense of Chapter IV, then we can give an

alternate formula for ¢y(a). If b= a*a then b is given as nl(g),

where
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g = 2w = [fv- D Tudn )

according to formula 6.1. If x € X, the unit space of G, then x can
be thought of as an element of G and to keep matters straight let us
call this element e(x). (In case G is an equivalence relation on X,
e(x) = (x,x) is a diagonal element.) Now although f and g above are
measurable functions on G defined only almost everywhere and as the
units e(X) form a null set in G, the restriction of g to e(X) appears to

have no sense. However if u = e(x) is a unit. then
glelx)) = [ 1Ev™1) 12X (w)

has a well defined meaning for aimost all x. When we write g(e(x))
for a g of the form f'f_. it is this function that we shall understand.
The following shows that as one expects, traces of integral operators

are obtained by integrating the kernel on the diagonal.

Proposition 6.25. For a transverse measure », let u = J‘x%»
be the integral of the tangential measure A\ with respect to », the
result viewed as a measure on the unit space X. For an operator
b=rlg) € WI(GH with g=£f then #,0b) = [elebldutx) where
gle(x)) is as defined above. Equivalently g(e(x))*\ defines a new
tangential measure \' whose derivative with respect to \ is gle(x)).
Then

¢, = [xdv
X

(the integral of \' with respect to »).

Proof. This is simply a matter of identifying the tangential measure

\' (or rather (A\')* as a measure on G* for each x) as the local trace

of the operator xx(f:f) on LZ(G",xx); this is self evident as
x x

xx(f fl = xx(f) xx(f) where xx(f) is given by a kernel defined by the

function f. Then the result follows. (n}
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By the general Tomita-Takesaki theory (cf. Takesaki [Tak1]),
any semi-finite normal faithful weight ¢ on a von Neumann algebra
has associated to it a one parameter group of automorphisms of the
algebra, the so called modular automorphism group, aw(t).
The standard construction of this group via unbounded operators can
be exploited easily to construct this group explicitly for the weights
¢, above. (These weights will always be normal, faithful and
semi-finite as the transverse measure » was restricted to lie in the
same equivalence class that defines the von Neumann alzebra itself.)
This is worked out in Feldman-Moore [FM], Hahn ([Hap],

Connes-Takesaki [CT].

Proposition 6.26. Let A be the modular function of the transverse
measure » (cf. Definition 4.9). Then the modular automorphism group
o, associated to the weight %) of W'(G,ﬂ) is spatially implemented
by the one parameter group of unitary operators U,(t) on LZ(G,H)

defined by multiplication by the functions Ait on G. Thus
x ~
o,thm = Uv(t)mUv(—t) for m € W (G,u).

Moreover for operators of the form =(f) in W*(G,E) (cf. Definition
6.15)

o, tx(f) = xifalt)
where fAit is pointwise multiplication of f and Ait.

Proof. The operators x(f) form a Hilbert algebra with the * operator
. * —TT .

given very concretely by f (u) = £(u "), One then easily computes
the polar decomposition of the unbounded conjugate linear operator
f — f‘ and following the standard recipe in Takesaki [Takl}, one

finds the result. The final formula is a simple caiculation. o
Recall that the centralizer of a weight ¢ on a von Neumann

algebra R is equivalently the von Neumann subalgebra generated by

those wunitaries u in the algebra such that ¢(uxu') = ¢(x), or
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equivalently it is the fixed point algebra of the modular automorphism
group (Pedersen [Ped], Lemma 8.14.6). A weight is a trace if and
only if its centralizer is the entire algebra. As the modular

= ~
automorphism group o, of the weight ¢p on W (G,u) is given

bV
explicitly and clearly fixes the diagonal subalgebra Ds of W'(G,u)

(Proposition 6.22), the first half of the following is immediate.

Proposition 6.27. The centralizer of #, contains the diagonal
subalgebra Dy.  Conversely if almost all of the holonomy groups are
i.c.c. (cf. Proposition 6.22) then any faithful normal semi-finite weight
whose centralizer contains Dy is of the form 2, for some

transverse measure w.

Proof. For the second part we fix a weight 2, and let ¢ be any
other faithful normal semi-finite weight with centralizer containing D,.
Then compute the Radon-Nikodym derivative (.p:wy)t (Connes
[Col], or cf. Takesaki [Takl], p. 23). This is a one parameter
family of unitary operators in W:(G,TA) satisfying a certain cocycle
condition. Since Ds centralizes both ¢ and 2 it follows that
(y:¢,), must commute with D for each t. But under the condition on
G:, the relative commutant of Ds is by Proposition 6.22 the abelian
subalgebra A;.  Because of commutation properties, the derivative
(y:# ), is actually a one parameter unitary group in Ag and so has
the form exp[ith(x)] where h is a measurable function on X, which by
positivity properties of ¢ and ¢» is positive. Then w = hy is
another transverse measure, and it is evident that
¢=0, O

The argument just given provides an answer in general to the
question of finding all weights whose centralizer contains D,. but one
has to introduce an extended class of weights. As we will not need
this, we sketch this only briefly. Suppose that in addition to a
transverse measure » on X one is given for each x € X, a
semi-finite normal faithful trace 7¥ on R¥X, the group von Neumann

algebra of G:. Then one can construct in an obvious way a trace 7
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on the diagonal algebra D, because Dg is given as a direct integral of
the algebras RX. The transverse measure » itself also defines a
weight 7, on D The Radon-Nikodym derivative (7:71)) computed
7
in Ds can then be used to define a weight ¢ on W (G,u) by the
x  ~
condition (r:7,) = (¢:¢y) (computed in W (G,u)).

The weights @ constructed in this fashion are, we claim, the
most general weights on W*(G,ﬁ) with centralizer containing D;. The
data entering into #, namely a transverse measure » and a family of
traces 7X on RX are not independent for we can multiply each 7¥ by
a positive scalar c(x), replace » by the transverse measure »' with
dy'/dy = c(x)'l, and the resulting weight will be the same. When the
traces 7X are finite, then they can be normalized so 7X(1) = 1 and
then the transverse measure v is determined. Of course when 7% is
taken to be the Plancherel trace, then the resulting weight is 25
that we constructed previously. It is evident that values of the more
general weights discussed in this paragraph can be given by integral
formulas analogous to those in Propositions 6.23 and 6.25. In addition
it is not difficult to compute the modular automorphism group of these
weights because there is a simple formula for the Radon-Nikodym
derivative of these with respect to a #, Where we already know
the modular automorphism group.

Returning to the #, We see that we have determined when
¢, is a trace because this is true if and only if the modular

by
automorphism group is trivial.

Corollary 6.28. The weight ¢v is a trace if and only if » is an
invariant transverse measure, that is. its modular function A is

identically one almost everywhere. 0

It is not so easy to tell when the more general weights defined
by fields of traces 7X together with a » are traces because in
general it is hard to determine what the center of W’(G,ﬁ) is.

To conclude this chapter let us return to the topological and
geometric context of a locally compact topological groupoid G, or in
particular the holonomy groupoid of a foliated space. As before G is

assumed to come equipped with a fixed continuous tangential measure.
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Then for any transverse measure », the reduced c algebra C:(G)
has a natural representation into W’(G,ﬁ) as described in Proposition
6.19. The weight ¢, may be restricted then to the image C:(G) to
x

produce a weight on this C -algebra. which we denote by the same
symbol. If the transverse measure » is finite relative to the
tangential measure X\ in the sense that u = fxdv is a finite
measure on the unit space X of G (and in particular if it is a Radon
transverse measure on the groupoid of a foliation in the sense of 4.17)
then the restriction of #, to C:(G) enjoys finiteness properties. In
particular for any g in C(G), the norm dense subalgebra of compactly
supported functions on G used in the definition of C:(G), the positive
element f = g*g satisfies ¢ v(f) < e in view of Proposition 6.25 or
Corollary 6.24. This finiteness property plus the known continuity
properties of #, on W'(G,H) assure that #, as a weight on C:(G)
is densely defined and lower semi-continuous (Pedersen [Ped], 5.6.7).
Quite evidently we can recapture the von Neumann algebra W‘(G,;)
from C:(G) and #, via the GNS construction as the image of C:(G) is
dense in W*(G,ﬁ) by Proposition 6.19.

If » is an invariant transverse measure, then ¢, s of
course a trace on C:(G), and as C:(G) is dense in W'(G,u), the
converse is true. Thus Corollary 6.28 and Corollary 4.25 combine to

vield the following corollary in the setting of foliated spaces.
Corollary 6.29. For a Radon transverse measure » on a compact
foliated space X with continuous tangentially smooth modular function

A, the following are equivalent:

(1) The Ruelle-Sullivan current Cv is closed and so defines
[C,1 € H](X:R).

(2) The 1-form o = 0.

(3) The modular function A

[}
—

(4) The transverse measure » is an invariant transverse measure.
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(5) The weight ¢V on Wt(G(X),a) is a trace.

In general. C:(G) will have traces other than ¢ ; for

instance if G is the holonomy groupoid of the Reeb foliatiol:l. the
closed leaf and its holonomy produces a quotient isomorphic to
C:(Zz) ® X where C'(ZZ) is the group ¢ algebra of 2% and X is
the compact operators. The only 2, which factors through this
quotient comes by taking » to be the transverse measure
corresponding to the closed leaf: then #, is P ® Tr where P is the
Plancherel trace on C‘(Zz).

However in the absence of holonomy, traces are always egiven,

as one suspects, by transverse measures.

Theorem 6.30. Let G be the groupoid of a compact foliated space X
and assume there is no holonomy (so that G is the equivalence
relation). If ¢ is any densely defined lower semi-continuous trace on
the C algebra C:(G), then there is a unique invariant transverse
Radon measure » on X with ¢ = 2,
Proof. We pick a complete transversal N and an open neighborhood U
of it as in the discussion preceding Theorem 6.14. We make use of
the structural fact that C:(G) x C:(GS) ® X, and we recall that any
densely defined lower semi-continuous trace is finite on the Pedersen
ideal~-the unique minimal dense two-sided ideal (cf. Pederson [Ped],
Theorems 5.6.1, 5.6.7). As this ideal intersects any subalgebra in a
dense ideal, it follows that ¢ is densely defined on the subalzebra
C:(Gg) Rex C:(G:) where e is a minimal projection in XK. Finally
since the equivalence relation when restricted to N is discrete, C:(Gg)
contains a Cartan subalgebra C(N) by the remarks following Definition
6.10. For the same reasons as above, ¢ is densely defined on CoN)
and so is given by a Radon measure » on N. Moreover by the
construction of N, there is a larger transversal N' containing N with
the closure N of N in N' compact. As the measure » is by the same
reasoning the restriction of a Radon measure »' on N' it follows that

v is a finite measure on N. Since CO(N) contains an approximate
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identity for C:(G:) and ¢ remains bounded on this approximate
identity. it follows that ¢ is a finite trace on C:(G:).

Since there is no holonomy, GS is an equivalence relation on N.
We know by Proposition 6.8 that G: has a covering by open sets of
the form U(f,0) = ((x,f(x)),x € O3 where O is an open set in N and
f is a homeomorphism of O onto an open subset of N with f(x) ~ x
where ~ is the equivalence relation on N. As the diagonal AN of N
in Gg is open and closed, its complement may be covered by sets of
the form U{f,0) where f has no fixed points. If a is any compactly
supported function on U(f,0) and b any compactly supported function
on AN = U(id,N), then viewed as elements in C:(Gg) their convolution
products in both orders are again compactly supported on open sets
U(f.0) and

(a*b - b*a)(x.f(x)) = a(x,f(x)) Cb(f(x).f(x)) - b(x,x)2

Since #(c), for ¢ compactly supported in U(f,0) can be

expressed as
#(c) = jcdx

for a Radon (signed) measure on U(f,0), the equality #(a*b -~ b*a) = 0
plus the fact that b has no fixed points tells us that \ is zero. As
any compactly supported function on G: - AN can be written as a

finite sum of functions supported on open sets U(f,0), it follows that
s(a) = Ia(x,x)dv(x)

for every compactly supported function on Gg where » is the
measure on N constructed above.

An argument similar to the one above shows that v as a
measure on N is invariant under the equivalence relation; that is, its
modular function on N is trivial. Then, as in Chapter IV, » can be
extended to all Borel transversals to give an invariant Radon

transverse measure, which we denote by . Then clearly
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$ = #, on C:(Gg) and hence on C:(G). o

We have seen in Chapter IV that von Neumann factors of type
II,, and of type III, for all X occur as the von Neumann algebras of
foliated spaces. Proposition 6.20 shows that with minimal assumptions
on tangential measures, the von Neumann algebra has the form
W ® B(H) for an infinite-dimensional Hilbert space H. We also have
seen that the von Neumann algebra comes equipped with a family of
semi-finite normal faithful weights, with corresponding modular
automorphism groups.  Given this much structure, it is natural to
wonder just which von Neumann algebras can occur as the

von Neumann algebra of a foliated space. Here is the answer.

Theorem 6.31. Any purely infinite approximately finite von Neumann
algebra A is isomorphic to W'(X,u) for some compact foliated space

X and transverse measure (.

Proof. According to the classification of such algebras (Connes
[Col], Haagerup [Ha2]. Kreiger [Kr ]) one may find a Borel space
Y, an automorphism # of Y (so that there is an associated action of 2
on Y)., and a transverse measure ny so that the group measure
construction associated to these data produces a von Neumann algebra

AO so that
A= AO ® B(H).

Equivalently, if G is the measure groupoid generated by (Y,#,u),
then A, is the von Neumann algebra of this measure groupoid as
defined in Chapter VI.

Now according to Theorem 3.2 of Varadaraian [Var] we may
assume without loss of generality that Y is a compact metric space
and that the map # is a homeomorphism. Form the associated
compact foliated space X obtained by suspending (Y,#), and let u
be the associated transverse measure on X constructed from uy as in
Chapter IV. Then the von Neumann aigebra of (X,u) is A as
desired. a
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We note that we have proved more than we stated. for the
foliated space produced is always of leaf dimension 1. There are
obvious questions which arise in this connection. May Y be chosen to
be zero-dimensional? May Y be chosen to be a smooth manifold and ¢
a diffeomorphism, so that X is a smooth manifold? We do not know
the answers to these questions.

We conclude this chapter with a brief discussion of some
aspects of the K-theory of operator algebras in the context of the
C*-algebras of groupoids. In the following chapter, K-theory will
enter in a more extended fashion. We assume that the reader is
familiar with the basics of the K-theory of operator algebras (cf.
Karoubi [Kar], Ativah-Singer [ASI] and especially Blackadar [Bl]).
Recall that for a unital C algebra A. one looks at all proiections in
U M, (A) (Mn(A) is the n X n matrices over A) and subjects them to
the natural equivalence relation that e ~ f if there are
uwv € XMn(A) with uv = e, vu = f. These classes form a semi-group,
and one forms the associated Grothendieck group which is denoted
Ky(A).  One may think of it as classes of formal differences of
projections. If A does not have a unit, append one to obtain At
compute KO(A+) as above, and note that the natural homomorphism
e: A* — € induces a homomorphism ey KO(A+) —_— KO(E) where the
latter group is easily seen to be isomorphic to the integers. Then
define Ky(A) to be the kernel of es. For a compact space X, KO(C(X))
is the usual topological K-theory of compact spaces KO(X). For X
locally compact, KO(CO(X)) is the usual K-theory of the space X with
compact supports (cf. Ativah-Singer [ASI], Karoubi [Kar]). We
define K,(A) = K(SA) where SA = C;((0.1),A). Then Bott periodicity
asserts that K(A) = K,(S2A).

We recall two further properties of K-theory. First, K«(A) is
homotopy-invariant; that is, if f' A — A" is a l-parameter family of
*_homomorphisms ({(continuous in the sense that the associated map
A — C([0,1]1,A') is a *-homomorphism) then

£ = 1. Ku(A) — Ka(A)
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Second. if J is a closed ideal of A then there is a natural long exact

sequence

Kg(J) —— KG(A) — KO(A/J)

l l

K (A/T) — K (A) — K,;(J).

The group KO(C:(G)) is going to be a central player in index
theory and will be the group where the index lives. If G is the
groupoid of a compact manifold foliated by a single leaf, C:(G) = X
is the compact operators and it is well known and easily seen that
Kg(K) = 2, and the usual index of an elliptic operator is interpreted
as an element of this group.

Let @ denote the C -algebra of norm limits of
pseudodifferential operators of order € 0 (say, with matrix
coefficients) on a compact manifold M. There is a natural sequence

of C‘-algebras

0 — kK — © 5, CISM) 8 M, — 0
where S'M is the cosphere bundle. If P€ @ is elliptic with
principal symbol o, then x(P) = o and
[o] € K;(C(SM) @ M) = K"{S'M). The boundary map

3: K,(C(S'™M) & M,) — K(X)
corresponds to the Fredholm index map
8[o] = index (P)

as may be seen easily by a naturality argument involving

*
0~ X— @ — C(5MEM — 0.

T I

0 — ¥ =— B(H) — @®(H)/X —_ 0
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If G is the groupoid of a foliation coming from a fibration with
base B, C:(G) is, as we have seen, isomorphic to C(B) ® X, and so
by stability,

* x = g9
Ko(C,(G) = Ko(CB) = K'(B).

Recall that the Ativah-Singer index for families of elliptic operators
[ASIV] with a parameter space B is an element of KO(B)‘

What we want to describe here is a kind of Chern character on
KO(C:(G(X))), G the groupoid of a foliation, or more properly a
partial Chern character. This Chern character will take values in
the reduced tangential cohomology group ﬁ:(X) in top degree p (the
leaf dimension) as defined in Chapter III. We shall assume without
further notice that the foliation is tangentially oriented and that the
groupoid of the foliation is Hausdorff. This partial Chern character
sees only part of the structure of KO(C:(G(X))), specifically the part
that transverse measures can see. The "full” Chern character is
conjecturally a homomorphism from KO(C:(G)) into the cyclic homology
Hi‘(AO) of a suitable dense subalgebra A0 of C:(G), (see
Connes-Skandalis [CS2] and, for cyclic theory, Connes [Co8],
[Co9]). While the outline of this is clear and specific cases are
known, there do remain some details. The "partial” Chern character
that we will define directly would be obtained in general by composing
the full Chern character with a natural homomorphism from Hi‘(AO) to
Hp(X).

For the definition of our Chern character, we start with a
typical element of K-theory, u = [e] - [f], where e and f are
projections in Mn(C:(G)+) with the same images in Kj(C), where
G = G(X). Then we can assume without loss of generality that the
images of e and f in M/ (C) are exactly the same. Let » be a
positive Radon invariant transverse measure on X and form the
corresponding trace @ on C : (G). Extend @ to

bV by
n _ *
¢v = ¢v ® Tr on Mn(Cr(G)).

Theorem 6.31.
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(a) The element e-f may be chosen to be in the ideal of definition
of ¢;.

(b) The map ¥ — ¢v(e-f_) extends to a linear functional on the
set of all Radon signed transverse measures MT(X) which depends only
on the K-theory class u = [e] - [f] € KO(C:(G)). Denote it by

c'(u).

(c) The map ¢’ takes values in the weak * continuous functionals
on MT(X) (viewed the dual space of I-{:(X) as in (4.27), (4.29)) and

hence yields uniquely a map
. * "D‘
c: KO‘Cr‘G” — H‘r X)
which we call the partial Chern character clu) of u.

Before turning to the proof, we offer some observations. Note
that the partial Chern character is given very explicitly as follows. If
fu] € KO(C:(G)) is represented by [e]-[f]. where ef € Mn(C:(G)+)

with common images in Mn(lIZ) and if e and f are in the domain of

¢:, then c[u] is the cohomology class of the tangentially smooth
p-form w, which (after identifying p-currents with Radon invariant

transverse measures) is given by
— N
wu(v) = ¢y(e—f)

where ¢: is the trace ¢y ® Tr on C:(G) ® Mn associated to the
invariant transverse measure v.

Suppose that fu] 1is the index «class of a tangential,
tangentially elliptic operator D on X. One might try to construct Wy
as follows. The restriction of D to a leaf £ is locally traceable and
has an associated p-form (o), € 0P(2). One is tempted, then, to
try to amalgamate the p-forms (pu_)z to a p-form oy € O;’IX).
Unfortunately the forms (p))y do not vary continuously in the
transverse direction and it is not at all clear that it is possible to

alter the (pu_) 2 in some direct fashion to obtain a global class. We
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avoid this difficulty by regularizing at the C*—algebra level with
respect to MT(X).

Proof of 6.31. In view of the Hilsum-Skandalis result, Theorem 6.14,
and the fact that KolA & K) = K4(A), we may assume that
u € KO(C:(G:)) for a transversal N of the type described in (6.14) and
consequently that e and f are in }\%(C:(G:f').

We need to look more carefully at how C:(Gg) sits inside
C:(G). As before we may arrange matters so that there is a larger
transversal N' containing N and the closure N, which we may assume
is compact. Moreover we may arrange that a neighborhood U’ of N’
has the form U' = N' X RP, p the leaf dimension, so that the second
coordinates describe the leaves locally. Then
GH = Gg: X RP x RP. Suppose that the graph is Hausdorff. Then
elements of Gg: and Gg can be represented by Proposition 6.9 as
continuous functions vanishing at « on these spaces. We then pick a
fixed compactly supported function ¥ on RP and extend a function ¢
on Gg: to one on Gg by the formula yl.xy) = vl(e)9(x)oly)
and one extends ¢y to ¥g on all of G by making it zero on the
complement of Gg. In particular if ¢ is supported on Gg and
represents an element of C:(Gz), then Yu and ¥G have compact
support and ¢ represents an element of the dense subalgebra A of
functions used to define C:(G). It may be checked that this map
¥ — ¢ gives an embedding i of C:(Gg) into C:(G). In the
non-Hausdorff case the same argument works after localizing to open
Hausdorff subsets. It follows from the discussion here and in Theorem
6.14 that the isomorphism 6 of C:(G:) ® ¥ with C:(G) can be
arranged so that 6(x ® e;) = i(x) where e; is a one dimensional
projection.

In particular any finite matrix of elements in C:(Gg) is always
represented in C:(Gg) by a kernel operator where the kernel is
continuous and has compact support. Further, the kernel is
tangentially smooth (Chapter III) for the natural foliation of G.
Finally as every element of C:(Gg) can be written as a linear

combination of elements of the form a*a, it follows by Proposition 6.25
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that any element b of C:(G) represented as a finite matrix of
elements of C:(GS) via the isomorphism 6 1is in the ideal of
definition of any weight #, for any (positive) Radon transverse
measure, and that #,(b) is given by integrating the kernel of b on the
unit space. Specifically if ¥ is a Radon transverse measure, and \
is the fixed smooth tangential measure, then the integral of \ with

respect to »
u = fxdv
is a measure on X. If ky, is the kernel function on G for b, then
#,0) = [k(etNdutx)

where e is the function embedding X as the set of units in G. As ky,
is tangentially smooth on G, kple(x)) is tangentially smooth on X.
Finally as the foliation is oriented, we may view the tangential
measure A\ as a tangentially smooth p-form, and then wy = kyle(<hx
is also a tangentially smooth p-form. Recasting the formula above, we

see that
#,(b) = Jwbdv

is given by integrating the tangentially smooth p-form wy, against the
transverse measure ».

The proposition is now obvious for we can arrange the two
projections e and f defining the K-theory element u = [e] - [f] to
be in Mn(C:(GE)"') and their difference e-f to be a finite matrix over
C:(G:) to which the above analysis applies. For an invariant
(positive) Radon transverse measure. ¢, le-f) can be given by
integrating a fixed tangentially smooth p-form we_s against ». This
in fact constructs the value of the partial Chern character cfu) in
ﬁ,‘;(X); namely it is the class of the form we_¢- That it is well
defined and independent of the choice of e and f results from the

fact that ¢” is a trace and the duality result, Proposition 4.29. u}
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As we will be working with projections that often do not lie in
the C.-algebras under consideration, but rather in a von Neumann
algebra containing the C*—algebra of interest, we shall add a few
words about K-theory for von Neumann algebras. As any von Neumann
algebra W is a C‘-algebra one could just define KO(W) using the c
definition. However, the presence of infinite projections leads to bad
behavior; for instance, KO(tB(H)) = 0 for an infinite dimensional Hilbert
space H. We want to stick to finite projections. Recall the

definition, which is reminiscent of Dedekind's definition of a finite set.

Definition 6.32. A projection e in a von Neumann algebra W is
finite if e is not equivalent in the sense above to a proper

projection of itself.

Equivalently, one may first define a von Neumann algebra W to
be finite if given w € W' there is a finite normal trace ¢ on W'
with #(w) # 0; then define e € W to be a finite projection if eWe is
a finite von Neumann algebra. For this approach, cf. Dixmier [Dil].

One then forms the semi-group of classes of finite projections

in UMn(W) and then the corresponding Grothendieck group to obtain a
n

group we denote Kg(W). Evidently K(f)(lB(H)) = 2 while K(f)(W) =R
if W is a factor of type II, and KE(W) =0 if W is a factor of type
III. From this one can readily compute Kg(W) for any W.

Now if we start with a C. algebra A and a representation
of A into a von Neumann algebra W, we would like to define, at least

under some conditions, a homomorphism

ra: KolA) — KE(W).
At the very least we would want this map to exist when A = C:(G(X))
and W = W‘(G(X),rt) with ﬁ arising from a Radon invariant transverse

measure for the foliation.

Proposition 6.33. Let A is a C -algebra of the form A = B ® X

with a representation x into a von Neumann algebra W, such that
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x(A) is dense and when we write =x(B)" = eWe for a projection e in
W. then e is a finite proiection. Then there is a well defined

homomorphism
re: KolA) — KS(W).

We omit the obvious proof that is based on the equality
KO(B) = KO(A) and observe that the conditions are satisfied in the
case at hand since A = C:(G(X)) = C:(GS) ® X, and since the trace
2, has been shown to be finite on C:(G:) in Theorem 6.31 it follows
that ¢y(e) is finite where e is the projection in the statement of the

x ~
Proposition. Finally since 2, is a faithful trace on W (G,u) it

follows that e is a finite projection. 0

Corollary 6.34. For any finite Radon invariant transverse measure »

there is a natural homomorphism
. x f z ~
LS9 KO(Cr(G)) — Kg(W (G,

and the associated trace ¢y on C:(G) and on Wt(G,H) extends to

vield a commuting diagram

* KV £ * ~
Kg(C (G)) —— Kg(W (G.u))

Ty \ / Ty

R

We note that if W*(G.ﬁ) is a factor then it is of Type II
and Try: KS(W’(G,HH ~— R is an isomorphism.

Looking ahead more explicitly to the next chapter, we consider

the following situation: we have an exact sequence
0 - A—msP—C—10

of C* algebras. We assume that P has a representation » into a
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von Neumann algebra W such that =x(A) is weakly dense. As above
we assume that A = B ® X where =n(B)" = eWe with e a finite
projection. We suppose that P and hence C are unital. Now let
d € P and suppose that d, its image in C is invertible (that is, to
adumbrate the following chapter, d is elliptic). We regard d as an
element of Kl(C) and then according to the exact sequence of
K-theory, the index of d is a well defined element ind(d) in KO(A).

On the other hand, we can view x(d) as an element of the
von Neumann algebra W and then its kernel, ker({n(d)) and ker{x(d*))
are projections in W. What one hopes, using the map of Proposition
6.33 is indeed the case, as follows from Breuer's theory of Fredholm
operators [Bre] in von Neumann algebras. The following summarizes

the result and will play a crucial role in Chapter VII.

Proposition 6.35. Under the assumptions above, ker(x(d)) and
ker(x(d*)) are finite projections in W. Moreover the difference
[ker(r(d)] - [ker(n(d*))] (the analytic index of d) is an element of
K(f)(W) and if n, is the map from KO(A) to KS(W) of Proposition 6.33,
then

xx(ind(d)) = [ker(x(d)] - [ker(x(d*)].

Proof. If m is the smallest norm closed ideal in W containing the
finite projections, then evidently m D =x(B) by hypothesis, and hence
m D x(B ® X) = x(A). Since d is invertible in C, it follows that the
image of x(d) in W/m is invertible and hence that =(d) is Fredholm
by Theorem 1 of Breuer [Bre]. It follows from Breuer that
ker(x(d)) and ker(x(d*)) are finite projections in W. Finally a close
examination of the definition of the index map Kl(C) —_— KO(A) as for
instance given in Blackadar [Bl] Definition 8.7 shows directly that
that m,(ind{d)) = [ker(x(d)] - [ker =x(d*)]. o

The point here is that the naively defined "spatial” analytic

index, [ker x(d}] - [ker =(d*)] of d in the von Neumann algebra W,

a very measure theoretic type of obiect, is always the image via =,
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of an element in KO(A), an element which in turn has important

topological invariance properties. This will be applied to the extension
* —0 x .
0 — C.(G) — ¢" — Ir(S FEnd(E) — 0
of pseudodifferential operators of a foliated space. The von Neumann

algebra W will be W’(G,ﬁ) constructed from a Radon invariant

transverse measure ».

206



CHAPTER VII: PSEUDODIFFERENTIAL OPERATORS

This chapter is devoted to the studv of tangential
pseudodifferential operators and their index theory. The chapter has

four topics, treated in turn. They are

A) the general theory of pseudodifferential operators on
foliated spaces (7.1 - 7.19);

B) differential operators and finite propagation (7.20 -
7.27);

C) Dirac operators and the McKean-Singer formula (7.28 -
7.39);

D) Superoperators and the asymptotic expansion of the heat

kernel (7.40 - 7.51).

A. Pseudodifferential operators. We begin the chapter by

introducing the machinery of tangential differential operators,

smoothing operators, and pseudodifferential operators, first in a local
setting and then globally. We demonstrate that a tangentially elliptic
pseudodifferential operator has an inverse modulo compactly smoothing
operators. Letting @ denote the closure of the *-algebra of
pseudodifferential operators of order 0 on a bundie E. there is a short

exact sequence
0 — CH(G(X) — & — I(S"F,End(E) — 0

where S'F is the cotangent sphere bundle of the foliated space. This
leads to formulas which relate the abstract index class ind(P) €
KO(C:(G(X))), the Connes index ind,(P), and the Type II von
Neumann index. In general. the index of a tangential. tangentially

elliptic operator may be regarded as a class in KO(C:(G(X))) or in
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KS(W (G(X).4). The natural map
* f x ~
By Ko(C(GXN) — KW (G(X), 1)

commutes with the homomorphisms from these groups to R induced by

an invariant transverse measure », so
ind ,(P) = 8 (ker [ 4P] - ker[ P 1)

where ¢y is the trace associated to the invariant transverse measure
v. These results imply that the index of the operator depends only
upon the homotopy class of the tangential principal symbol of the

operator.

B. Differential operators and finite propagation. Turning next to

tangential differential operators. we introduce bounded geometry and
finite propazation conditions. We show that a tangential differential
operator D on a compact foliated space has a unique (leafwise)
closure, so that the Hilbert fields Ker(D) and Ker(D‘) are well-defined.
It then makes sense to form the index measure ) and then to

define the index by
ind (D) = Idev.

This is formally the same as the definition for operators of order zero,
of course, but some further work is required to make the connection

between the two more concrete and transparent.

C. Dirac operators and the McKean-Singer formula. The key

differential operators for the purposes of index theory are the
tangential Dirac operators. Having introduced these operators in an
abstract context and having verified that the general machinery of
Section B applies to these operators. we establish the McKean-Singer

formula: for t > 0,

208



= x
ind (D) = 8 ([e”D D7 - [etbD 7).

D. Superoperators and the asymptotic expansion. We introduce

superoperators and restate the McKean-Singer formula in the form
. _ .8 -tﬁ
mdp(D) = ¢v(e )

~
where D is the superoperator

~ 0 D]2
D= *
D 0
and ¢: is the supertrace. Next we introduce complex symbols and

prove that as t — 0 there is an asymptotic expansion

o)~ 5 /2 [ )by
jz-p X
where each Xi(ﬁ) is a signed tangential measure independent of t. As

indv(D) is independent of t, an easy argument shows that
ind, (D) = [ wpeEMy = <[up(@E).[C,]>
where
~ x
wD(g,E) = XO(D)IdXI = (XO(D) - XO(D Nidn|

is the associated tangentially smooth p-form and [Cy] is the
homology class of the Ruelle-Sullivan current associated to ». The
identification of wp for twisted signature operators and the completion
of the proof is left to Chapter VIII.

We are deeply grateful to Steve Hurder, Peter Gilkey, Jerome
Kaminker, John Roe. and Michael Tavlor for their enormously helpful

assistance in the preparation of this chapter.

A. PSEUDODIFFERENTIAL OPERATORS

Fix a tangential Riemannian metric on X and corresponding

tangential Riemannian metric on G(X). This determines a volume form
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on each leaf of X and on each leaf of G(X). There is a corresponding
tangential measure )‘X on X and a tangential measure )‘G(X) on G(X).
Recall that

— x
Aox) = g(x)y?

where )‘é(x ) is a measure on G*. The measure XG(X) is invariant
under the left action of the holonomy groupoid. Precisely, if u €

Gz and if f is a non-negative Borel function on G, then
Jewundng g, @) = friang oy w

We fix once and for all a transverse measure dv. Note that in view
of the results of Chapter IV. d» may be regarded as a measure on
the transversals of G(X) or equivalently as a measure on the
transversals of X. [For most of this chapter there would be no harm
in letting » have a non-trivial modular function, but our applications
require that » be an invariant transverse measure, so we assume that
as needed.]} This determines measures u = kxd» on X and
)‘G(X)d” on G(X) by the procedure of Chapter IV.

Let U be an open subset of RPXN with the induced foliated

structure. Define
a a
a_ 1
dy = (@/8xy) “..(/0x) P
and
DY = -/ 214l

Recall that C:(U) denotes the continuous, tangentially smooth
functions on U, and C:C(U) denotes those which are compactly
supported. We topologize these by insisting that convergence means
convergence on compact subsets of a function and its tangential

derivatives.

Definition 7.1. Let X be a foliated space with foliation bundle F.



The dbundle of densities of order a on X (a complex line
bundle) is defined by

IFlg.x = €#: APF, - €CO) — € | Q) = |X[%e(w)

for all \ € R - (0}, w € A"Fx - €033,

Define |F| = {F|{. Densities of order 1 on a leaf are measures on

that leaf, so it makes sense to define
00 -
CoU12]) = T e, |T2])
and then distributions on the leaf 2 by
' 00 *
2'(8) = €212,

Similarly, compactly supported distributions £'(2) are
defined on the leaf £ as dual to I'(2,|T2]).

These are examples of an assignment to each leaf 2 of a
topological vector space E(£), and we shall informally speak of such
an assignment as a field of topological vector spaces, leaving
undefined what kind of transverse measurability is required. Further
examples include

87(X) = (C*(e)
and

87 .(X) = CCT(e).

One particular case of importance is when these spaces are

Hilbert spaces.

Definitiop 7.2. A Borel field of Hilbert spaces E over a
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foliated space X is an assignment of a (separable) Hilbert space Ex to
each x in X which is Borel in the sense of direct integral theory (cf.
Chapter VI, p. 183 and [Tak2], IV, §8) together with a map

stu) 0 Ery
language of Chapter IV such that (uv)y = ueve and (u™7)y = (u'l), and

u — us from G(X) into unitary operators from E ) in the
so that uy is a Borel function of u. In this case we say that u
defines a representation of G(X) on the field E. A bounded
operator P: E — E' of Borel fields of Hilbert spaces is a Borel
family (cf. p. 183) of operators P, By — E} with uniformly bounded
norms which is invariant under the left action of each G:.

If one has a tangential measure A* on X, one may form
E, = Lz(z",x") as in Chapter IV. This field is clearly a Borel field
of Hilbert spaces where us for any u is defined as the identity map
stu) t0 Erqy
of the groupoid G(X) with the tangential measure \.

Let E and E' be finite-dimensional tangentially smooth complex

from E This is called the regular representation

bundles over X. A tangential operator from E to E' is a

family P = CPx: X€EX2 where, for each x, Px is a linear map
(7.3) P C2GXs"(B) — C (G%s (E")

which is invariant under the left action of each G:. Left invariance
implies that there exists a vector-valued distribution on G such that
for each x € X the distributional kernel associated to P, (on G¥) is
K(v,v') = K(v"1v') so that

(7.4) (PE)™) = [ROINIEEINE 4y ()

for all &€ € C:. Note that in this generality, the operators €P3
vary measurably but not necessarily continuously in the transverse
direction. To obtain continuous control transversely one must assume
that the distribution kernel varies continuously transversely.

If we assume that G(X) is Hausdorff then the distributions
Kx = K(v,*) x = rly) € X corresponding to the operator Px fit
together to form a distribution P on G(X) because G(X) is a fibre

space over X with GX as the fibre over x. One defines



K@) = [ K, (@ )dux)

where @, is the restriction of a compactly supported test function ¢
on G(X) to G* and u is the measure on X obtained by integrating the
tangential measure N\ with respect to the fixed transverse measure »
as in Chapter IV. The distribution K is called the distribution
kernel of P.

The usual constructions for operators on manifolds may be
conducted leaf by leaf. For instance, if T is a tangential operator
then a formal adjoint T' on C. is defined leafwise by

<y, Tte> = <Ty,o>.
Definition 7.5. A tangential differential operator

D: FT(E) — rT(E')
is a continuous linear operator which, locally, is given by a linear
combination of partial differential operators along the leaves. We
extend D to tangential distributional sections ¢ by

<Dy,#> = fw(x)Dt #(x)dx.

where DY is the formal adioint of D. A tangential differential

operator D has a local expansion on a coordinate patch of the form

D= b3 au(x)D(1

|a[<m

where the a, vary continuously in x and vary smoothly on each leaf.
The maximal global value for m is the order of D. A tangential
differential operator from E to E' induces an operator

0 0 vy
D: @(E) — &7(E)

by restriction. This operator varies continuously as one moves



transversely. More generally, one sometimes wishes to consider
operators D = (D,3 where the transverse variation is only
measurable.

The Hodge-Laplace operator provides a key example of a
tangential differential operator. Suppose given a foliated space with a
tangential Riemannian connection. Recall that the de Rham operator
is a map d = Cdx) where, for x € 2, d: n“(z) —_ ok“l(;z).

The orientation on F determines the Hodge *-operator
= ale) — oPe).
Define
5 = (-)PK*P-lags . g*tlg) — gk(g)
and
&y = d5 + 5d : aKe) — ok,
This determines the tangential Hodge-Laplace operator
ok k
A 0 (X) — 0 (X)
on forms over X and similarly on forms over G(X). Each Ay is a
second order tangential differential operator. In flat space, A, =
-z(az/ axiz) is the classical Laplacian.
Given a tangential differential operator D, define the
tangential (total) symbol of D by
ol{x, ) = z aa(x)&'u.
|a|€m
and define the tangential principal symbol of D by
o_(x,£) = b a_(x)¢<.
m | a | =m a

The tangential total symbol is a purely local notion; it depends on the



choice of coordinate system. In contrast, the local tangential
principal symbols patch together to yield the global tangential principal
symbol o (D) on the cosphere bundle S'F of F. If 0,(D) is
invertible then D is said to be tangentially eltliptic. For
example, GZ(A.Q) = —Efi which is invertible on unit vectors, so the
tangential Hodge-Laplace operator A is a tangentially elliptic
operator.

Next recall a bit of the classical theory of pseudodifferential
operators - see [Tay], [AS2], [Gi3], for more detail. Suppose first
that U is an open subset of RP. If

Px,D) = 3 a xD?

ajsm

is a differential operator with smooth coefficients one can write for u
€ C:(U), extended to RP, (1? the Fourier transform,)

*) PDu) = 2 aqi [ € 22T X Eyepde
<m
so that, with the symbol of P given by

olx,€) = pix,€) = I a (€T € CT(UXRP),
ja|<m

<

one has
(%) P Dhutd) = [olx, €627 % Eue)de.
Sometimes one writes

P(x,D) = OP(p(x,£)).

The class of differential operators is not large enough to
include, for instance, the parametrix of a differential operator of
positive order, since such an operator would have negative order. The
general idea then is to admit a larger class of symbols and then use

(**) to define a larger class of operators. We define two such



classes, S™(U) and S:(U), as follows. For any integer m, let S™(U) be
the set of all smooth functions p(x,€) on UMRP which satisfv the
following condition: for each compact subset K of U and for all

multi-indices «, 8,
ID20Ep(x.€) | € Cy 5 g1 + (gm0
for x € K, £ € RP.

For instance, polynomials in & of degree m with smooth coefficients

lie in S™(U). More generally, if ¢ is some smooth function, let
plx,£) = ()1 + | & |HM/2L,

This is an elliptic symbol of order m whenever ¢ # 0. For p €
S™(U), define

P = OP(p): C(U) — C™(U)
by
Pu(x) = (2x)'°jp(x,z)ei<x" >ale)de.

The class S':(U) consists of those symbols p € S™(U) which
satisfy the following additional condition: for each non-zero value of
€, the limit

o, (P)x, &) = Lim plx,n€)/n™
exists. Then am(p) is a C* function on UX(RP-0) and it is
homogeneous of degree m in &.

Finally, a pseudodi fferential operator is an operator
P: C:(U) — C”(U) such that for each f € C:(U) the associated
operator Pf is a pseudodifferential operator in local coordinates; i.e.,
it is of the form OP(pf) for some b € S'c':. The set of such

operators is denoted @™(U). There is an obvious extension to
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matrix-valued functions.

Lemma 7.6. Let r{x,£,y) be a matrix-valued symbol which is smooth in
each variable. We suppose that r has compact x-support inside U (an

open set in IRP with compact closure) and that there are estimates

DRI € G gt + 112

for all multiindices (a,8,v), where m < -p-k. so that the associated

operator
OP(D)f(x) = j J‘ei‘H" r(x, € y)f(y)dyd€

is a pseudodifferential operator of order m. The distribution
kernel Ki(x,y) is given by

Kix,y) = f olX Yy € y)de.

Then K is Ck in (x,y) and

OPI(X) = [Rixyflv)dy.
Proof. See Gilkey [Gi3] page 19, Lemma 1.2.5. o
Lemma 7.7. Let K(x,y) be a smooth kernel with compact x,y support
in U (an open set in RP with compact closure). Let P be the
operator defined by K. If k is a non-negative integer, then

|K|°°,k < C(k)IPI_k,k.

Proof. See Gilkey [Gi3], page 21, Lemma 1.2.9. o

The principal symbol am(P) of a pseudodifferential
operator P is defined by

o PIx.&) = o (pelx,£)



where f is any function equal to 1 near x. The algebra #™(U) is
invariant under diffeomorphisms of U and hence determines uniquely a
corresponding class of operators ®™(M) for a (paracompact) manifold
M, and, more generally, for @™E,E'), where B and E' are smooth

bundles over M. The principal symbol yields a map
3 z =
op(P): S M — Hom(x (E), x (E")
where x is the canonical projection of the cotangent sphere bundle of
M to M. Give @™(E,E') the natural Fre'chet topology using coordinate
neighborhoods. Then
0y ®™EE) — T(S M, Hom(x (E),x (E').
If M is compact then
e™(M) — L(WE(M),WS (M)
is continuous for each m and s, so bounded families of symbols yield
bounded families of operators.
A pseudodifferential operator P from B to E' on a compact
manifold M is smoothing if for all s,t, P induces bounded maps
P: WSE) — WS4m),
where WS(E) denotes the (classical) Sobolev space associated to the
smooth sections over the (compact) manifold M. Egquivalently, P is
smoothing if
P: £'(B) — C™(E).

The conditions are equivalent since

VUWSE) = ¢ (B) and N WSE) = C*(EB)
8 s



by the Sobolev lemma. A smoothing operator has a smooth
distributional kernel.

Let us return to the realm of foliated spaces. Let X be a
compact foliated space with leaves of dimension p equipped with a
tangential Riemannian metric and let G = G(X) be its holonomy
groupoid, which we assume to be Hausdorff. Let E and E' be

finite-dimensional tangentially smooth complex bundles over X.

Definition 7.8. Fix a real number s. The tangential Sobolev
field W; = CWi} is defined as follows: W: is the completion
of Dom(l + AX)S/ 2 with respect to the norm

- /2
1€l . = M1 + A )% %€ )
$,X Ax LZ(GX)
The representation of G(X) on the Hilbert field W:(G(X)) by left
translation is by construction equivalent to the regular representation
of G(X), (cf. 7.2). Note that up to equivalence the field W:(G(X)) is

independent of choice of tangential Riemannian metric.

Definition 7.9. A tangential operator P is smoothing if P induces a

bounded operator
P: W2(G(X) — W37 E(GX)

for all s,t. The distribution kernel which determines P is in fact a
smooth function on each leaf, though it may be only measurable
transversely. The kernel dies off in a complicated way on each leaf;
it is not necessarily compactly supported on G(X). A tangential
operator P is compactly smoothing if P is smoothing and if the
distribution kernel of P is compactly supported on G(X).

If C is a compact subset of G(X) then the support of P is in
C if the distribution vanishes off C, i.e.,

Supp(P, €) C Supp £oC71



for all €. Then
Supp(Plopz) C SuDP(Pl)SuDD(Pz)

for Pl and Pz compactly supported. A tangential operator P is
pseudolocal if for all neighborhoods S of GO there is a compactly
smoothing operator R with Supp(P+R) € S. Say Pl"'Pz if PI-PZ is
compactly smoothing.

Suppose that 0 = LXN is a distinguished coordinate patch of
the holonomy groupoid G(X) with L open and connected in R2P. A
tangential operator P from E to E' over 0 corresponds by invariance

to a measurable family P = CPn: n € N) where
P: C™(LXCn3,E) — C™(LXCn3,E).

To make P a tangential pseudodifferential operator one naturally
requires that each Pn be a classical pseudodifferential operator and
that these operators vary continuously in n. The invariance condition
on the family of operators translates into the condition that the

distribution kernel K(v,Y',n) is really a function of Y—lY', S0 write
K(v,y'.n) = K(v~1y'n).

Thus K may be regarded as being defined on an open set of G(X)
itself. On the question of what support for K should be allowed, one
has some choice. We insist that K has compact support on G(X). The
set of such P of order € m is denoted G"C"(Q,E.E'). Each element
of C°,; <(G(0)) determines a compactly smoothing operator.

If Pe @'(':'(Q.E.E') with distribution kernel K, then K extends
naturally to all of G{X) (by setting it equal to zero outside of Q). It
is then the distribution kernel for a unique tangential operator on G,
denoted P'. This operator decomposes as P' = CP'y> where P’ has

support contained in G"ns‘l(o). Finally,

Definition  7.10. A tangential pseudodi fferential

operdator on X is a finite linear combination of compactly
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smoothing operators with transversely continuous distribution kernels
and operators of the form P’ above. By construction, each such
operator is pseudolocal and has a continuous compactly supported
distribution kernel. Transverse continuity implies that the tangential
principal symbol of such an operator is continuous.

Let ®"™G(X),E,E') be the linear space of tangential
pseudodifferential operators of order < m from E to E'; that is,
finite linear combinations of operators arising on the various

®™(0,E,E') and compactly smoothing operators. The linear space
¢~"(E,E) = n ¢™(E,E)
m

consists of the compactly smoothing operators with transversely
continuous tangentially smooth kernels, which is precisely the image of
C°,; <(G(X)). When the context is appropriate we abbreviate to @(E,E’)
or to @.

All of this has been for G(X) Hausdorff. If G(X) is only locally
Hausdorff then we modify as in the construction of C:(G(X)). Cover
the space G(X) by open Hausdorff sets 0, for which ¢™(E,E') does
make sense, and then define @™(G(X),E,E') to be the algebra of linear
combinations of these local pseudodifferential operators and compactly
smoothing operators.

The following proposition is taken directly from Connes [Co3,
page 126].
Proposition 7.11 [Connes].

a) Mo c ™ for all m,n.

b) IfPe @o(B.E'). then the family CPx:xEX) extends to a
bounded intertwining operator LZ(G,x,s‘(E)) — LZ(G,X.s'(E')).

o) I PE @CLC) m<o, then P € C.(G(X).

d) If P € @™E,E') with m < -p/2, then its associated distribution

kernel K is measurable on G(X) with
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sup, [ KO Fgd¥in) < o
Proof (Connes). a) Suppose first that n = -, One may assume that
P' € @™ corresponds to a continuous family P € @"':'(Q,E.E') with Q

= L X N. A partition of unity argument shows that we may study

functions f (with associated multiplication operators Mf) supported on
W =L XL XN,

where O = L' X N compatibly with @ = L X N. The kernel
associated to PMf is of the form

Ky(tt'm) = [Riet,netee " nade |
and is tangentially smooth. Thus PMf is smoothing, and this implies
that @M@~ ¢ @™®. Por the general case assume that P' € @™, Q'
€ @" arise from OC(Q,E,E'), where 0 = L X N, and then invoke the
classical argument. In particular, this shows that @O(G(X),E,E) is an

algebra.

b) Assume that the operator is of the form P' for P €
@g(Q,E,E'). The assertion follows from the inequality

IPL1l < Sup (I, |I.
c) This follows from the natural inclusion
*x *
C (o) — C_(G)
and the continuity of the map given by n ~— Pn'

d) It suffices to prove the assertion for P', with P €
GZ(Q,E,E'). One has
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Kit.t'n) = fe‘“""'f >alt,€,n)d€

where

lagol3 = [ lateni?ide

is uniformly bounded; i.e.,

la(t,§,n)| € c(l + |€})™,
Then the Parseval equality shows that

[1Ke.t0 2= ag 13
is uniformly bounded. a

Let P € ¢™(G(X),EE) be a tangential pseudodifferential

operator from E to E'. We define its principal symbol orm(P)
to be that of the operator s(P) (which acts on bundles over X, rather

than on bundles over G.) If P is a smoothing operator with associated

kernel K, then s(P) is the operator associated with the kernel function
K'ly,x) = E K(v) € E;@Ey (sum over all v: x — y)

This is indeed a smoothing operator and its principal symbol arm(P) is

zero for all m. It follows that %n induces a homomorphism
0, ®™GX),EE) — I _(S F,Hom(E,E').

One defines ellipticity of P by the invertibility of am(P) which is the
same as the ellipticity of s(P).

Proposition 7.12 [Co3, page 128]. Suppose that P € @™E,E') is
a tangentially elliptic pseudodifferential operator. Then there exists a
tangentially elliptic pseudodifferential operator Q € ¢™™(E',E) such
that PQ-idEv and QP-idE are compactly smoothing.
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Proof (Connes). Let €0;3 be a finite open cover of X by coordinate
charts of the form 0, = LxN, Let (#,> be a tangentially
smooth partition of unity subordinate to this cover. Let C be a
compact neighborhood of cY C G(X) such that for each i,

where 'i' € C: C(Oi) has value 1 on the support of 8, and s is the
source map. We may suppose that Supp P C C.

For each i, define M; to be the tangential operator from E to
E' given by multiplication by #;'0s. The distribution K; associated
to PMi is supported in Wi, so there exists Pi € @:((H,E,E') such
that P;" = PM;. The usual multiplicative property of principal symbols
implies that

am(Pi') = am(P)Oi'

so that Pi is tangentially elliptic on the support of ¢i' We mnmust
show that there exists Qi € o;"(ni,E',B) such that PiQi - 'i is
compactly smoothing.

Since Pi is elliptic on the support of 'i with total symbol p
and principal symbol Pm € S™ there exists some q € 8™ with Ppd -
¢, smoothing. Define q inductively by 9 =4 and

q = ~a-% dfp-Dfayal € sk

where the sum is taken over all a,jk with i<k and |a|+j
Let (Nli € @™ with total symbol qo¢i'+q1¢i'+... . This defines
@™ 30 that a(Piai - ¢i) ~ 0 on Supp(¢i). Similarly we could solve
a(aiPi - %)~ 0 for ai € @™, We compute:

Qo
m

= ol(8;-QP)Q) + o(@P;-2)T)
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80 ¢i(6i - ai) ~ 0 modulo smoothing operators on the support of ’i'
which implies that Q; and Q; agree modulo smoothing operators. Their
distributional kernels are compactly supported since ¢i' is compactly
supported. Set Qi = Qi’i; then PiQi - 'i is compactly smoothing.
Set Q = € MiQi" Then PQ - Ip is compactly smoothing, which
implies the result. a]

Corollary 7.13 [Co3, page 128]. Suppose that Pl' P2 €
®™G(X),E.E') with P2 elliptic. Then there is a constant ¢ < « such
that

1Py €1l € cllPy (€1l + NEN

for all x € X and for all § € C.(G¥).

Proof (Connes). Let Qz € ¢"™G(X),E'.E) with QZPZ - idE smoothing.
As P1Q2 € (Po (by 7.11d), there is a constant €y < with

IP1QyPoE) | € cqlIPE |
for each ¢ € C:(Gx). As Pl(Qsz - idE) is smoothing, one has
IP1QyPyE - PiEll € cyli€ll
for each § € C:(Gx), which implies the result. a

Remark 7.14 (Connes). We note two special cases of this corollary.
First, suppose that P2 is the identity. Then

1Py €Nl < cl2liel
so that P1 is a bounded operator. Second, suppose that

Py =(1+ A)™, some power of the identity plus the tangential
Laplacian. Then the corollary implies that
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1P €1 € 1101+ AE) + ],
In particular,
11+ AEN, € €N, + €I,
for any k.
Corollary 7.13 implies that if P € @%(E,E) is tangentially
elliptic, then P defines a bounded invertible G(X)-operator

P: W: — Dom(P)

where Dom(P) has norm ||€|| + ||[P€)]. This implies that each Q €
®™(E,E') extends for each s to a bounded G(X)-invariant operator

Q: Wi ™E) — WI(E).
Proposition 7.15 [Co3].

a) Let U = L X N be a distinguished coordinate patch, let P €
PRUE,E), and let

. + — '
P: W2TE) — WZI(E)

be the canonical extension. Then there is a constant b > 0
(independent of P) such that

|IP-"W‘;_’_“"Ws <b s:p "Pn"ws+m'ws'
T T
b) Let » be an invariant transverse measure with associated trace

¢, on W(GX).H). Then each T € W (GX)u) which has a

continuous extension to
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W °(E) — WZ(E)

for some 8 > p (the dimension of the leaves) is in the domain of
2, and there is a constant ¢, independent of T, such that

|¢,,(T)| g c||T||w_sws.
Proof. a) If m = 0 then this estimate follows as in the proof of
Proposition 7.11b. In general, fix some s' and consider the tangential

operator
Q = (1 + M-s'/ZmP(l + A)—s/Zm

where A is the tangential Hodge-Laplace operator A = CAn),
Ay defined over L. X ¢€nl}, formed from the underlying tangential

Riemannian connection. Then

Il = clPl g o
If Q were in 6’0 then the argument would be complete, but this is not
so in general. However, we may uniformly approximate the
distributional kernel of Q by kernels Kj supported on compact
neighborhoods of the diagonal €(x,x)> X N. Let Tj be the associated

operator to KJ-. Then Tj € (Po, so that
ITy1 € sup Tl

by the earlier estimate and the T,- uniformly approximate Q, which

completes the argument.
b) There is some S € W'(G(X),ﬁ) such that
T = (1 + A)—s/ZmS(l + A)—s/Zm

with [|S}| = ||T|| Proposition 7.11 implies that S has finite trace.

-8,8°
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So it suffices to show that (1 + A)'S/m is in the domain of ’v'
Corollary 7.12 implies that there is a tangential pseudodifferential
operator P of order -s with

1+ ay%/m ¢ p°p.
So it suffices to show that ¢y(P.P) is finite. Let KP denote the
distributional kernel of P. Restrict to a leaf 2. Proposition 1.12

implies that (P'P)z is a locally traceable operator with local trace

given by
upp), = | IKptvxn) | 2dnmn.
£ y
Thus
*or — _ 2
¢y PP = [Luptp) v = [ [ 1Kptvxn) | 2aneinedy
which is finite by (7.11d) and the fact that
2
fuxpnﬂsdy <w. O
Recall from (7.11b) that each pseudodifferential operator
P € ¢UEE)

extends to a bounded operator on the Hilbert field L:(G(X)) =
CLZ(GX)) with norm given by

IPli = sup [IP¥],
x€X

where PX acts on L2(Gx). These form the *-algebra G’O(G(X),E,E)
which contains C: <(G(X)) as a two-sided ideal. Taking closures we
obtain a C'—algebra @ called the (closed) pseudodi fferential
operator algebra with closed two-sided ideal C.(G(X)). (In fact
C:(G(X)) depends on E, but we suppress this for simplicity.) Recall
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that S'F denotes the cosphere bundle of the foliated space.

Proposition 7.16 (Connes [Co3, page 138]). The tangential principal
symbol map

o: #%(G(X),E,E) — T(8'F, End_(E))

is a surjective *-homomorphism, It extends to a surjection of
x
C -algebras and induces a canonical short exact sequence of

C'-algebras
* -0 o x
0 — C(GX)) — ¢ — I(8 F,End(E)) — 0

Proof. That o is surjective is proved in the classical setting in [Pa,
cf. p. 269, 246] by the construction of a continuous linear section.
The general idea is to use partition of unity arguments to reduce
down to the case of trivial vector bundles over open balls in
Euclidean space, and then to explicitly write down the section. All
this generalizes in an obvious way to our setting. It suffices, then, to
compute ker(o). It is clear that Ker{o) contains C:(G(X)), so it
suffices to prove the opposite inclusion. Note that since o has a
continuous linear section, any T € 6’0 with ||o(T)|| small has
small spectral radius in (50/0:(G(X)). The proposition then follows
from the following Lemma (with A = C:(G(X)), B = Ker(0)).

Lemma 7.17. Let ® be a dense *-subalgebra of a C.-algebra ¢ and
let A C B C @ be ideals. Suppose that the following condition holds:

(*) If x € @ with |x| small in ®/B then the spectral radius
p(x) is small in G/A.

Then A = B.

Proof. Let @ A € ®/A be the (dense) image of @ and similarly for
®g C ®/B. Let
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o @A—‘@B

be the obvious surjection. If x € @A with ¢(x) = 0 then |¢x]|
= 0in ®/B by (*). Then p(x) = 0 in ®/A and x = 0; thus ¢ is

injective and so an isomorphism. Let
o=y log— 0,
Then ¢ is a bounded map, by (*), and it extends to
#: 3/B — G/A.

It is easy to see that @ is the inverse to the natural projection
¢: ®/A — @/B, so ¢ is an isomorphism, and A = B. a.

Note that if P is a smoothing operator of order 0 which is not
compactly smoothing then it might not be in @ and in particular not
in C:(G(X)). Such operators are, however, in the Breuer ideal of
compact operators (cf. proof of 6.35) in W‘(G(X),E) as we shall see
(cf. 17.37). Similarly, if P is (say) compactly smoothing with
distribution kernel which is measurable but not continuous then the
same conclusion holds.

The previous proposition enables us to extend the definition of
tangential ellipticity to any P in the closure of o0 by declaring P to
be tangentially elliptic if o(P) is invertible.

The short exact sequence (7.16) induces a long exact sequence
in K-theory and, in particular, there is a natural connecting

homomorphism

3: Ky(r(s"F.End(E)) — Ko(Cy(G(X).
If P is a tangential, tangentially elliptic pseudodifferential operator of
order zero, then its tangential principal symbol aO(P) is invertible and

hence defines a class in Kl(l‘(S‘F,End(E))). Apply the connecting

homomorphism © and one obtains the index class
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ind(P) € Ky(C, (GIX).

We remind the reader that the content of the Connes-Skandalis index
theorem is to identify this class, while the content of the Connes

index theorem is to identify the class
c(ind(P) € HP(X),

where ¢ is the partial Chern character.

The next step in the argument is to relate the index class
ind(P) to the families of kernels Ker(P|) and Ker(P *), to the
associated families of local traces, and to the associated von Neumann
algebra projections.

Fix an invariant transverse measure » and form the associated
von Neumann algebra W'(G(X),rl) with trace ¢, It is clear from

the construction that there is a natural map
8 6 — W I(GX),H)

whose image is weakly dense. Let =: C:(G(X)) — W’(G(X).ﬁ) be

the canonical map and let
rs: Ky(Co(GX) — K5W (G(X), 1))

be the induced homomorphism. Recall that tp = [ t;) is the
index measure of P and that ind(P) € KO(C:(G(X))) is the image of
the tangential principal symbol of P.

Proposition 7.18. Let P € 6->0 be a tangentially elliptic operator.
Then

a) Ker(8P) and Ker(lP') are finite projections in W‘(G(X),ﬂ), so
that

[Ker(sP)] - [Ker(8P)] € K5(W (G(X),1).
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b)  ralind(P) = [Ker(8P)] - [Ker(P)].
¢  clindP) = [¢p] € H(X).

d) ind ,(P) = Itpdv = ¢,([Ker(8P)] - [Ker(ﬁP')]).

Proof. This is immediate from 6.35. o
Corollary 7.19. Let P € 50 be a tangentially elliptic operator. Then
indv(P) = dy( [Ker{8P)] - [Ker(ﬁP.)])

depends only upon the homotopy class of the principal symbol of P in
Kq(Cy (GEX.

Proof. This is immediate from (7.18) and the fact that ind(P) €
KO(C:(G(X))) depends only upon the homotopy class of the tangential
principal symbol ao(P) of P. o

This completes our introduction to abstract tangential

pseudodifferential operators.

B. DIFFERENTIAL OPERATORS AND FINITE PROPAGATION

The most natural operators on foliated spaces are parametrized

versions of the classical differential operators. These operators are
unbounded, and it is necessary to exercise some care in promoting
them to bounded operators in defining an index. There are at least
two possible technical approaches. Connes prefers to use methods
from geometric asymptotics. We have chosen to use finite propagation
techniques, in part because of their lovely simplicity, and in part
because we have been impressed by their efficacy as demonstrated,
e.g., by Taylor [Tay2], Cheeger, Gromov, and Taylor [CGTJ], and
more recently by John Roe [Ro3].

Definition 7.20. Let D be a first order differential operator over a
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noncompact complete manifold with self adjoint principal symbol

al(D). The propagation speed of D is defined by
c(x) = Sup( ||ol(x,E)||:||E|| = 12.

If c(x) € ¢ then D is said to have finite propagation speed
(cf. [CGT], [Tay2], [Ch]l, [Ro3]). In that case, solutions to the
hyperbolic system

@ +iDu=0
ot

exist ([Fr]) and propagate at speeds bounded by c.

Recall that if D is a densely defined operator then the
formal adjoint D' of D is defined by (D'u,v) = (u,Dv). If D = D'
then D is formally self-adjoint. In general, the closure D of
D satisfies D C Dt. A symmetric operator T is essentially self
adjoint provided that T is self-adjoint, or equivalently, T is

symmetric, in which case T = Tt

Theorem 7.21 (Chernoff [Ch] Lemma 2.1). Suppose  that
D: r(E) — TI(E) is a first order (not necessarily elliptic) differential
operator over a noncompact complete manifold and suppose that D is
formally self-adjoint and has finite propagation speed with a uniform
bound c(x) € ¢ < +0 . Then D is essentially self-adioint and, more
generally, Dk is essentially self-adioint for all k. Thus for any
bounded Borel function on R, f(D) is defined as a bounded operator on
L2(E).

Proof. We repeat Chernoff's proof. Fix a positive integer k and let
A=0k 1t suffices to show that there is no non-trivial solution to
the eigenvalue equation Aty = =iy; that is, there is no non-zero
choice for u such that

<u,v> = <y,Av> = 0

for all v € Dom(A).
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Suppose that Atu = ju. We want to show that u = 0. Let v €
C:(M). Then Ut = eltA extends to a unitary operator on Lz. Define
F(t) by

F(t) = <Utv,u>.

The function F is bounded on R since Ut is unitary. The k'th
derivative F(k) of F(t) is given by

Flh) = <ikpku v = <kauww =

= <y, atw = K" 1pw).

Hence F(t) is a linear combination of exponential functions e® where

k = —ikﬂ. So none

a runs through the solutions of the equation a
of the a's is pure imaginary. As F is bounded, this implies that F is
identically zero, so that <Utv,u> = 0. Finite propagation implies that
Ut restricts to an isomorphism C:(M) —_ C:(M). Thus <C:(M), u> =
0 and so u = 0 as required. A similar argument applies to the

solutions of Atu = —iu. This establishes the theorem. o

Pick some point x € X. The map

exp
mPst———"—ox

maps some open p-ball B about the origin to a chart of 2, the leaf
which contains x. Choose an orthonormal base for Fx and extend the
map to

exp
FXXN———-—-‘X

to obtain a “tangential normal coordinate system” at x. It is
determined uniquely up to an element of C(N,O(p)), where O(p) is the
orthogonal group. Choose an orthonormal basis for S, the fibre of
the bundle S at x. For y € exp(BXN)N2 there is a well-defined
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isomorphism Sx — Sy given by parallel transport. Thus a basis is
determined for the sections of S over the patch. 8o fix a choice of
basis at Sy the resulting system is called a caenonical
coordinate system. Letting Cei) denote the Dbasis
vector-fields on exp(BXN) which correspond to the canonical
coordinate system on S, then the tangential Levi-Civita connection

acts by
V.le:) = & rk.e and V(s )=E r? s
i ij~k iva ia’ s
Definition 7.22. (X,S) has bounded geometry if

1) X has positive tangential injectivity radius; that is, there is a
nonempty open ball B ¢ RP which is injected by the exponential map

at every point of X,

2) For each leaf, the Christoffel symbols of the tangential
connection on X lie in a bounded set of the Frechet space C™(B),

and

3) For each leaf, the Christoffel symbols of the tangential

connection of the bundle S lie in a bounded set of C™(B).

Proposition 7.23. Let M be a smooth Riemannian manifold with a C™
bounded geometry covered by open sets CUj) with exponential
coordinate charts on each Uj of fixed radius c. Let D be an elliptic
differential operator of positive order whose coefficients are bounded
in C° with a uniform ellipticity estimate. Then D and its formal
adjoint D' act as unbounded operators on LZ(M) with domain C:(M),
and the closure of D' is the Hilbert space adioint D' of D.

Proof. (This proof was kindly supplied to us by M. Taylor.) We
define D and D' as unbounded operators on LZ(M) with domain Dom(D)
= Dom(D’) = C2(M). We aim to prove that the closure of D% is D'
Suppose first that the order of D is even. Recall from (7.21) that all

powers of the Laplace operator A are essentially self-adjoint, since
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M is complete. Since by definition,
u € Dom(D") iff

|wbv) € Cylivil 5 for all v € CoM),
using local elliptic regularity of Dt_. we can state
u € Dom (D) iff

u € L%M), u € WT_(M), and D'u € L2(M),
where D' is a priori applied to u in the distributional sense. Since
the weak and strong extensions of A™ coincide, we can say both
that
u € Dom(a™) iff

u € L2(M), u € WIT (M), and aA™u € L2(M),
and that
* u € Dom(a™) iff u € L2(M) and for a sequence

v; € C::(M), v — uin L2m)

then Am(vj - vk) - 0 in LZ(M) as jk = o,

Now elliptic estimates bound L2 norms of D%u over a ball VJ- CcM (Vj
C Uj. say of radius c./2), in terms of L2 norms of A™u and of u
over Uj (with bounds independent of j) and conversely, one has a
bound on L% norms of A™u over V]- in terms of L2 norms of D'u and u
over Uj. One can suppose the VJ- cover M and that the Uj do not

have too many overlaps, so we deduce

Dom(D’) = Dom(a™).
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From here it is easy to complete the proof. Indeed, given u €
DomD) = Dom(a™), we know by (*) that there exist v; € Cj(M)
such that v; — 0 in LZ(M) and Am(v - vk) — 0 in LZ(M) as jk
— The boundedness hypotheses on the coefficients of D
together with elliptic estimates, imply

t o
I Dw || € CJla™w|| Cliw| ., wE C_ (M)
L2M) L% L2 °

+
M)

Thus,
ID7tv; = vl 5 < CIA™tw; = vl 5 + Cllvj = vyl 5 — O
as jk = o

and the theorem is established for D of even order.

It remains to consider the case when D is of odd order. Let
Py be the closure of Dt, the minimal extension of D! and let Py = D.,
the Hilbert space adioint, which is the maximal extension of pt.
Clearly Pg CPy. Let A= PO'PO and B = Pl‘Pl' By von Neumann's
theorem, A and B are self-adjoint and

pom(Al/?) = pom(Py),  Dom(B!/?) = Dom(p,).

However A and B are extensions of the even order elliptic operator
DtD. The previous case implies that A = B. Thus Dom(PO) =
Dom(Pl) and we are through. o

If D is a tangential differential operator then Ker(D) =
CKer(Dz)) forms a measurable field of Hilbert spaces. If {a suitable
closure of) D is locally traceable along the leaves then there is also

associated a tangential measure (cf. 4.11)

HRer(D) = CHKer(n, )



where HKer(D,) is the local dimension (defined in Chapter I, after 1.8)
of the orthogonal projection onto the subspace Ker(Dz). Similarly
there is a natural tangential measure “Ker(Dt)' These measures
would appear to depend upon the choice of closure of D. This
problem is disposed of by the following Corollary.

Corollary 7.24. Let X be a compact foliated space with some fixed
tangential Riemannian metric and let D be a tangentially elliptic
differential operator. Then the (leafwise) closure of the (leafwise)
formal adjoint of D is the (leafwise) Hilbert space adjoint of D. Thus
D has a unique closure. Hence ker D and ker D are uniquely defined
Hilbert fields, and UK er(D) and “Ker(D') are uniquely defined

tangential measures.

Proof. This follows immediately from the preceeding proposition and
the observation that if ¢ is a leaf in X then £ is a Riemannian

manifold with bounded geometry as required. o

It still remains to define the index of a tangential differential
operator of positive order. The most natural definition at this point

is to form an index measure

{p = UKer(D) ~ “Ker(D")

which is unique, by 7.24, and let the index be the total mass of this

measure:
ind (D) = ledv.

As this stands it is not at all clear how this corresponds to the index
of order zero operators and the canonical pseudodifferential operator
extension, nor is it clear how to compute. We turn to these matters
next.

Let D be a tangential, tangentially elliptic differential operator
of positive order m from sections of E to sections of E'. Then D

extends to a densely defined unbounded operator D = CDE’) of
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Hilbert fields
2,5 2,5
L.,(E) - L.,(E)

where £ is the holonomy covering of the leaf 2, E, E' are the
pullbacks of the bundles to the holonomy groupoid G = G(X) and L2
denotes the corresponding Hilbert fields obtained by pulling the bundles
back to G(X), lifting the action of D, and then restricting. The
operator D has a unique leafwise closure, by Corollary 7.24, which for
convenience we also denote by D. By standard functional analysis,
(1+DD)is a positive operator which is bounded below and hence has
an inverse (1 + D'D)'1 which is a bounded operator
L;(E") —_ L:(ﬁ‘). Recall that

Dom(D'D) = C#: # € Dom(D), D¢ € Dom(D )?.

Then (1 + D‘D) has a square root (1 + D‘D)l/ 2 by standard functional
analysis. The spectral theorem implies that

pom((1 + D'D)Y?) = pom(D"D)1/?).

As A = (D‘D)l/ 2 is the positive part of the polar decomposition D =
UA (U partial isometry), Dom(A) = Dom(D) and so

Dom((1 + D'D)1/2) = pom(D).
This implies that the operator (1 + D'D)"l/ 2 has range equal to
Dom(D). Since the operator {1 + D'D)u is onto for each a > 0,
the operator (1 + D'D)'l/ 2 is defined on all of LZ(E). Thus
L = p(1 + p'D)y"1/2
makes sense and is bounded by direct composition. In polar form, L =

UB. That is L has the same polar part U as D = UA; D has been
replaced by D{1 + D‘D)'l/ 2, a bounded version of D, and
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B=a1+A"!=Da+pDr112

Note that L = UB and D = UA have the same kernel. The closure of

the ranges is likewise the same. Hence
Ker(L) = Ker(D) and Ker(L") = Ker(D")

in the von Neumann algebra W=(G(X),1~1). If we knew that L were in
#0 or even in &0 then we would know that these projections were
y-finite and that the v-index of D was just the v-index of L. One
can establish this in greater generality using methods of Connes, but

we specialize to first order operators.

Theorem 7.25 Taylor [Tay, Ch. XII] and Roe [Ro3]. Let D =
€D,3 be a tangential, tangentially elliptic and tangentially formally
self-adjoint operator. Lift each D, to its holonomy covering Dy.
Let f be a bounded Borel function, so that f(D}) is defined by the
spectral theorem. Let f(D) = Cf(DZ)> act on the canonical Hilbert
field L2(G(X)) of CL(G(X)). Then:

1) If f is a Schwartz function with Fourier transform F, then
£D) = (172 fitrei*Pat

where the integral is understood to be in the weak sense along the

leaves.
2) If D is first order with finite propagation speed on each leaf
and f € CO(IR) with Fourier transform f € C:(IR) then f(D) €

C7 . (G(X).

3) If D is first order with finite propagation speed on each leaf
and f € C,(R) then f(D) € C.(G(X)).

Proof. Part 1) is proved by [Tay, Ch. XII]. For parts 2) and 3) see
[Ro3, Theorem 2.1 and Corollary 2.2.]. (s}
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Corollary 7.26 (Roe). Let D be a first order tangential tangentially
elliptic and tangentially formally self-adjoint differential operator from
sections of E to sections of E' with uniformly bounded propagation
speed on all leaves. Define

L =D + D312,
Then L is a bounded operator on Lz, and L € 6_’0.
Proof. It suffices to prove that L € #0. Let

f(x) = x(1 + x2,—1/2'
Then

f’(x) = (l + XZ)—3/2

and
£'%) = 0(|x|)"3 at .

Regard f as a tempered distribution (i.e., as a functional on the
Schwartz space) and let g(§) be the Fourier transform of f. Then g is

itself a tempered distribution, and
) = icge) € = -£2(6).
Thus €g(€) is a function and f" is in Lz, which implies that (') =

—Ezg(f) is bounded, so that g(§) = O(E'z) at . Write g = 8118y,
where 8y has support very near 0 and 8 € Ll(li). Then

t0) = fey(6)0¥0de + [g,(6101¢Dae.
The inverse Pourier transform of :2) belongs to CO(IR) by the

Riemann-Lebesgue lemma, so the second term is in C:(G(X)). The

first term is properly supported, by the finite propagation speed
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condition, and it is a pseudodifferential operator by the argument of
[Tay, Theorem 1.3, p. 296]; thus it belongs to G’o, and hence f(D) €
50

. [a]

The preceeding Corollary shows us how to fit classical first
order tangentially elliptic operators into the general framework of
tangential pseudodifferential operators presented in Section A. For
arbitrary higher order differential operators we adopt an alternate

strategy: we work directly at the von Neumann algebra level.

Proposition 7.27. Let T be a tangential, tangentially elliptic
pseudodifferential operator of order m > 0, and let A be the
tangential Hodge-Laplace operator associated to the bundle of T.
Define P = (1+4)™/2T. Then P € &% o4(P) is homotopic to
am(T), and

¢v(Ker P) = !v(Ker T)
and

t _ z

ﬂy(Ker P)= ¢v(Ker T)
. = ~
in W (G(X)), ).
Proof. Since P = (invertible)T, og(P) is homotopic to on(T. It
suffices to prove that P € 50 and ¢y(Ker P') = !v(Ker T‘).
For the first, note that A is the O-form component of D = d + d‘
extended to the bundle via the connection. Use the leafwise finite
propagation speed property of the operator D to write

(1 + a™2r = [ (610i¥D1de + fgy(610i¢Drae

= g,(DIT + g,(D)T.

Then g(D)T € 6’0 as in (7.26). The operator g,(D) is smoothing and
1 2
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tends to 0 if we make gy have large support. Thus Ilgz(D)Tlle

-~ 0 and thus P € 50.
It remains to prove that ¢v(Ker P') = ¢”(Ker T') in W'.

If x is the orthogonal projection onto Ker T. then the orthogonal
projection onto Ker P' is given by

xo= 1+ A 21+ A/2,
We should like to say that » and x' have the same trace. This is
not immediate, since (1 + A)m/2 is an unbounded operator. The
ellipticity estimate in general takes the form

11+ 828 < [T 8| +c|4].
If ¢ € Ker(T') then

11+ a™28) < cla].

and thus (1 + A)m/2 is bounded on Ker(T'), and x(1 + A)m/2 is
bounded. Thus

8,1 + A)-m/zx(l + A)m/Z)
= o,((1 + &7 2xn(1 + A2
= #,(x(1 + A™%1 + 2™ 2x) = 6 (m). O
This completes our general study of tangential differential
operators with finite propagation speed. These results will be used in

Section C, which deals with a special class of tangential differential

operators which are closely tied to the geometry of foliated spaces.

C. DIRAC OPERATORS AND THE McKEAN-SINGER FORMULA
We turn now to the study of generalized Dirac operators and

asymptotics. The goal of this section is the McKean-Singer formula
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(7.39) which is the bridge to the asymptotic development of the index
ind (D).

Assume for the rest of the chapter that X is a compact
foliated space with oriented foliation bundle F which is equipped with
the Levi-Civita tangential connection (5.18) and associated tangential
Riemannian metric. Each leaf of X is a complete Riemannian manifold
with bounded geometry. Suppose that V is a real inner product space.
We write CIliff(V) for its associated Cli{ fford algebra. The
Clifford algebra is universal with respect to linear maps j: V — A,

where A is a real unital algebra and
w1 + ()2 =0,

and this characterizes the algebra. More concretely, Cliff(V) may be
regarded as the free associative unital algebra on the basis vectors

Cek} of V modulo the relations

eje; + eje; = 0@ # j) and eiz = -1 all ii

Let Cliff¢(v) = Cliff(V)@mﬂ: be the complexified algebra. If E — X is
any real Riemannian vector bundle, then Cliff®(E) is the associated
bundle of Clifford algebras. In particular, if X is a foliated space
with a tangential Riemannian metric then we may form ClLff°(X) =
Cliff®(F), where F is the tangent bundle of the foliated space.

Definition 7.28. If S is a bundle of left modules over CLff®(X), then
S is a tangential Clifford bundle if it is equipped with a
tangential Hermitian metric and compatible tangential connection such
that

a) if e € Fx then e:Sx — Sx is an isometry.

b)  if # € I (CLff°(X)), s € 8, then

v(#s) = @v(s) + (Vo)s.
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If 8 has an involution which anticommutes with the Clifford action of
tangent vectors, then it is a graded Clifford bundle. Associated to a
tangential Clifford bundle S is a natural first order differential
operator D = DS called the (generalized) Dirac operator. It

is defined to be the composition
=
r,8) — r.(F @) — r_(F®S) — r_(S)
where the first map is given by the tangential connection, the second
by the tangential Riemannian metric, and the third by the Clifford
module structure on S. In an orthonormal basis Cel,...,ep) for Fx
one may write
(Ds)x =z ek(Vks)x.
If S is graded then D is similarly graded; it interchanges sections of
the positive and negative eigenbundles of the involution. In Chapter
VIII we shall show that this definition encompasses the operators of
primary interest in the proof (and in many applications) of the index
theorem.

Lemma 7.29. The Dirac operator is formally self-adjoint on each leaf.

Proof. Fix tangentially smooth sections r, s of S, one of which is
compactly supported. Let a be the tangential 1-form

a(v) = —(r,vs)

where vs is the module action of s on v. Let LSRN be a normal

basis of vector fields near x. Then
(Dr,s), = Ele;v;r.s),
= —I:(Vir,eis)x

= —z[vi(r’eis) - (r,eiVis)]
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= @ a), + ©.Ds),
and hence <Dr,s> = <r,Ds> by integration, as required. o
Form the Hilbert field L:(S) by completing the tangentially

smooth sections of S along each leaf in the norm determined by the

tangential Riemannian metric.

Proposition 7.30. The Dirac operator is essentially self adjoint
regarded as an operator on the Hilbert field L:(S). Thus (by 7.21) if
f is a bounded Borel function on R then f(D) is defined as a bounded
operator on L;(S).

Proof. This follows immediately from 7.29 and 7.21. o

Let R: AZF‘ — End(S) be the tangential curvature operator

associated to the tangential connection on S. Define R' € End(S) by
R'(s) = (1/2)E eiejR(eiAej)s
with respect to the orthonormal basis.

Proposition 7.31 (Weitzenbock formula). For s € I‘T(S), pés =
V‘Vs + R's.

Proof. Work in normal coordinates at a point. Then the result is

formal:
Dzs = £ e;V.(e;V.s)
1'1'717)

= -L VjVis + Zj eiej(ViVj - VjVi)s

i<
t 3
=9 ¥Us + R's. a}

This formula allows us to analyze the coefficients of the Dirac
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operator. Suppose that (X,S) has bounded geometry. Using tangential
normal coordinates near a point of X, one may regard the operator D2
as a partial differential operator along the leaves of BXN acting on
matrix-valued functions. By the Weitzenbock formula, p? may be

written as
(7.32) -izjgﬁ(x)(a/axi)(a/ax") + Efa0/8x) + b

where the a; and b are matrix-valued tangentially smooth functions on
BXN which are constant in n and which, by virtue of the bounded
geometry, may be estimated independently of the particular point of X
chosen. In particular one sees that D% is a tangentially elliptic
operator with principal symbol -¢ 2 As the origin of the tangential
normal coordinate system varies, the operators D2 form a bounded
family of tangentially elliptic operators with the same tangential
principal symbol.

Suppose that f is a function on RP supported within B/2.
Then f may be regarded as defined on BXN and D2 may be regarded
as acting on f. The elliptic estimate 7.14 applied to p? gives

(7.33)  Mflleg € CUIEN + 1D2EN)

for some constant C and the usual Sobolev norms. Moreover, since
det(g) is bounded away from zero locally and (by the compactness of
X) globally with a global lower bound, the tangential principal symbol
of D2 is bounded away from zero with a global lower bound, so C may
be chosen uniformly on X. This makes it possible to prove a Sobolev
embedding theorem for X.

Definition 7.34. Suppose r > 0. The uniform C' space UCL(S) is
the bundle obtained by taking over each leaf the Banach space of all
C; sections s of S (restricted to the leaf) such that the norm
Hislli, = supC |\7V1...\7v s(x) | 3
q

is finite, where sup is over all x € X and over all choices VysenVyg
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{0 € q € r) of unit tangent vectors at x.

Theorem 7.35 [Ro0 5.20]. Let k be an even integer with k > r +
p/2. Then W‘,;(S) is included continuously in UC,';(S).

Proof. We may immediately restrict attention to some leaf 2. [The
constant involved in the elliptic estimate is continuous from leaf to
leaf.] Choose some s € Wk(e). Then

sl = sup [#s|lyer
(s,8)  UCL)

where B C RP, #:B — [0,1] is a smooth function supported on (B/2)
with #=1 on (B/4) and ¢s is regarded as a function on (B/2). Then

2 2
| #s]| = || #s]
uct(e) cT(RP)

< IR} | #s]
! wk(rP)

by the classical Sobolev embedding

<
°1lel ka2

< ¢oisll
2l wh(e)

and so | |s|||| € (const)||s|| ,  as required. n]
w3(2)

Theorem 7.36 [Ro0 5.21]. Suppose that X is a compact foliated
space and that P is a tangential, tangentially elliptic differential
operator on the module S. Let f € 3(R), the Schwartz space.
Then the operator f(P), which is defined (leafwise) by the spectral

theorem is a tangential smoothing operator and its distribution kernel
t 3
Kf € l',r(S ®AF 9S)

is uniformly bounded.
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Proof. Since f is a Schwartz function, the functions x — lekf(x)
are bounded on R for any k, which implies by the spectral theorem
that the operators Pkf(P) are bounded on LZ(A,S) for each leaf 2.
Thus £(P) maps WK(S) into WK*™S) for any k and n. If follows in the
usual way that f(P) is a smoothing operator when restricted to each
leaf. Thus f(P) is tangentially smoothing. As for the uniform bound,
let x € X and v € Sx'; let €
by

. be the distributional section defined

€ x.v(s) = <8,,v>
for s € I(S). Then ¢, € UCNS)" C WK(S) (by 7.35) and so
Ketv.-) = f(P)e, , € WK(S) C UCT(S)
by (7.35) again. This implies that K¢ is uniformly bounded. a

Proposition 7.37. Let P be a self-adjoint tangentially elliptic
differential operator of any positive order on a module S with bounded
geometry, and let f € CO(IR). Then f(P) is in the Breuer ideal [Bre]
of compact operators in W‘(G(X),E). Similarly, if P 2 0 then e'tP

is in the Breuer ideal.

Proof. By a continuity and density argument we may assume that f is
compactly supported and smooth. Then 7.36 gives a distribution kernel
for f(P) which is bounded on G, and similarly for f(P)z. This implies
that

TetEP)) = [ IKgpyxx) 1 %dy <

so that f(P)2 is trace class. Thus f(P) is Hilbert-Schmidt, so in
particular, f(P) is compact. The same argument applies to e'tP for P
positive since the function etz

dies quickly off R* and which agrees with e % on R*. a

may be replaced by a function which

It is now possible to prove a generalization of the
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McKean-Singer formula, which provides a bridge to the asymptotic

expansion.

Proposition 7.38. Fix an invariant transverse measure » on X and
let

D: T (E) — T _(E))

be a tangentially elliptic differential operator of order m > 0 on

modules with bounded geometry. Then for each t > 0, the operators

z x
e—tD D and e—tDD

are tangential smoothing operators whose distribution kernels are
functions which are uniformly bounded. The corresponding elements in
W'(G(X),H) have finite trace, and

3 =
(7.39) ind (D) = ¢ ([e"0 D7 - [e7tPD 7).
Proof. The first part of the theorem is immediate from (7.37). To
establish formula (7.39), we argue as follows. Write D = UA in polar
form, where A = (D‘D)l/ 2 and U is a partial isometry. Then U'U is
the projection onto (Ker D)‘L, UU‘ is the projection onto (Ker D')J‘.
and

= = * = * *
UMDU=UUVAAUU=IDDI=DD

so U is an equivalence between corresponding spectral projections of
-
D D and DD- for any Borel subset of (0,+~). Thus

# ([0 D] - [otPD'y) =
= 8,([8 Ker D] - [#Ker D']) =

= indv(D). [a}



The next step in our development is the reformulation of the
McKean-Singer formula (7.39) in terms of superoperators, and the

resulting asymptotic expansion of the heat kernel.

D. SUPEROPERATORS AND THE ASYMPTOTIC EXPANSION

In this section the McKean-Singer formula (7.39) is rephrased in
terms of superoperators. Then symbols which depend upon a complex
parameter are introduced and the asymptotic expansion (Theorem 7.48)
for ind, (D) is developed. This leads to the formula (7.48), which
expresses indv(D) as the total mass of the tangentially smooth p-form
wD(g,E). More detailed study of this form for particular Dirac
operators leads in Chapter VIII to the proof of the index theorem.

Definition 7.40. A graded vector space is a vector space of the
form V = V'@V~ thought of as the eigenspace decomposition of an
involution of V. A superoperator is an operator T: V— V. A
superoperator has an obvious 2 by 2 matrix decomposition and is said
to be grade-preserving if Tij = (0 for i # j. A trace ¢ on
2(V*) and £(V") extends to a supertrace #% on V by

#3(T) = #(Tyy) - #(Tyy).

If D: VF — V™ then define its associated superoperator D
by

L] *

A 0 D 2 DD 0

D=[ ]=[ *]:V-—'V.
D 0 0 DD

Then 6 is a positive grade-preserving superoperator of order twice the
order of D. The utility of this construction is illustrated by the
following corollary.

Corollary 7.41. PFix an invariant transverse measure of X and let

+ -
D: I (EY) — T _(E)



be a tangentially elliptic differential operator on modules with bounded

geometry with associated superoperator 13 Then
ind (D) = #5(e™tD).

Proof. This is immediate from 7.39 and the definition of the

supertrace. a.

Next we develop the machinery of complex symbols in order to

'tD). Let us assume given

produce the asymptotic expansion of ¢;(e
a tangentially elliptic differential operator D of order m/2 with
positive definite principal symbol. Let D be the associated
superoperator of order m; say D: [‘T(E) —_ I‘T(E). Let € be a

fixed curve of distance 2 1 from the positive real axis as shown.

N

For ¥ € &, the operator (6-!’)’1 is defined by the spectral theorem
and has norm I(ﬁ—S’)"ll € 1. The map

¢ — |(D-5)71
is continuous for ¥ € €, and hence we may write
etD = (z,ri)'lf e t¥(D-r)lds.
(4

Extend (ﬁ-!)'l to graded tangential Sobolev spaces. Note that
H‘—xl'l € 1fort €& x €RY, so that

1B-5)1 1o € cif]q

Then
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|B-511¢ 1, € e 1DRB-07 1t ) + 10-5)71F 12
(by [Gi3] 1.3.5)
€ o D51 + 18D% 1By e+ 1610
€ Ul *+ 1E1IB-07 ) o
If k = 1 we obtain
1B-5)"1f)1, < e + [EDIEN,
and then by induction
|- (g € ot + JEETyEg
Interpolate to obtain

Proposition 7.42. Let 13 be as above. Then given s, there is a k =
k(s) and ¢ = c(s) so that

1B-571e1, € ot + 1T
for all ¥ € €.

Definition (7.43). q(x,£,t.n) € SK(Y)UXN) is a symbol of order
k depending on § if q is smooth in (x,€,%), continuous in n, has
compact Xx-support in U, is holomorphic in ¥ and if there are

estimates

() IDIDEDYal € Cg 5,1+ |€] + |3 V/mk-18]-miv],

Say that q is homogeneous of order k in (£,}) if

alx,tE M) = tRx.£,%) for t 2 1.



Homogeneity implies the decay condition (*). Grading in this manner
corresponds to regarding ¢ as having order m. It follows that
— S’)'l € S™™(¥). Further, the spaces S‘(!') are closed under

multiplication and differentiation in the usual manner. In particular,

(p

given n > 0, there is some k(n) > 0 such that if Q has symbol in
SK(t) then it induces Q(t): W® — W" and

(7.44) Qs _, € Ca+fs ™

Let @l;(UXN) denote those grade-preserving pseudodifferential

superoperators
00 00
CTC(UXN)—' C1c (UXN)

with symbol in Sk(S’ ) and x-support in U. For ¢ fixed, Q(f) €
ok(UxN). If h: UXN — UxN is a tangentially smooth homeomorphism
then h induces a map ot(UxN) —_— @‘;(ﬁxﬁ) which respects principal
symbols, so that it makes sense to speak of operators with complex
symbol on C: <X) or even of operators on bundles over X. Finally,
define 6";(G(X)) as before-, that is, as finite linear combinations of
pseudodifferential operators from patches lifted from @I;(UXN)) and
compactly smoothing operators.

We wish to find an approximation for (ﬁ—&’)'l which is a
pseudodifferential operator. Fix some finite open cover {V,3 of X
by distinguished coordinate patches and let »n, be a subordinat:
tangentially smooth partition of unity. On a coordinate patch, let D
have total symbol py + ... + p . Let pj' = p; for j<m and p' = p
- §. Then

m

~ m
oD-5) = Z pf
j=0
so D-t is tangentially elliptic. Use the equation

o(nR(END-5) - T ~ 0
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to give a local solution for Ri(l’), with symbol nrg + 4 rp .M
large. Precisely, set

rg = ni(pm-S')’1 and
- a. nd
r, = 'rOEd&'erxpk /al
where we sum over j < n and |a|+itm-k = n. Define R(}) =
z‘.niRi(S’). The principal tangential symbol of R(%) is (pm-&')'l, 80
R(Y) is a parametrix for f) We have established the following

proposition.

Proposition 7.45. Let D € 6";'(E,E) be a tangentially elliptic

grade-preserving differential superoperator. Then n, may be selected

sufficiently large so that (6-&)"1 is approximated arbitrarily well by

the parametrix R(}) in the operator norm as ¥ — «. That is,
le@-01 - RN € o1+ 8 17*E]
for t € &, f € r,(F). (a]
Proposition 7.45 implies that
A . ~k-1
IR(EHD-§) - idpll o € co(2+]t])
and hence, for t<1,
IR/ - D-5/07 )y € 1 + /87K L,
Define E(t) € @ by
B(t) = @ni)”! [ Risre~flds =
(4
= @i Re/eds st
c

Then
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e - By <
< (z,r)'lj le=S 1 + s/t %1 a5
(o4
by the analyticity in . Thus
tKjelt) - o) <
< @olf jetie s 1xptar
c

is bounded at t — 0. If k > p/2 then || . |l bounds the

uniform norm and hence
-tD ~ ank
¢, le ) - ¢,,(E(t)) = O(t").
So it suffices to find an asymptotic expansion for ¢v(E(t)). Define
Elt) = @xi)"1[ _o"F'Ri(1)Y.
(4
Then
- i i
¢ ,(E(t) = L;# (EYt) (finite sum)
so it suffices to expand Bi(t).

Recall that the total symbol of R(}) is denoted er).
Define

0; ¢(x.€) = (z,ri)'ljce’” i€, £)dE.

Then Bi(t) is a pseudodifferential operator with total symbol egy t -
toe and et € S8 for all t. Let E;(t) be the operator
ol 1]

associated to et Then E;(t) is represented by a distribution kernel

Kj,t defined by
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Kjoxym = [ol* Ve, x,.nde.
Thus
K; xx.n) = t-p)/ mej(x,n)
where
ojfxn) = (zxi)'ljjce“rjm,e.r,n)drde.
Note that each ej(x,n) is tangentially smooth and is transversely
bounded. If m is even then ej(x,n) = 0 for j odd.
Define
)‘j(ﬁ)(x,n) = ej(x,n)dvol(x)
and
Then each Xj(ﬁ) is a signed tangential measure
A L ]
xj(D) = xj(D) - Xj(D )

which depends on the (X,F), D, the tangential Riemannian metric g, but
not on t.

Proposition 7.46. Each Xj(ﬁ) is locally bounded.
Proof. Note that xj(f)) ¢ is given by
)‘j‘ﬁ)z = ej(x,n)dvol(x) (x,n) € RPxN.
It is clear that \ (D)x has a signed Borel density on r ~1(x) for each x.

So it suffices to show that the Radon-Nikodym derivative of X (D)

with respect to the standard tangential measure is bounded on any set
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r'l(C), C compact. This derivative is of course just the function
ej(x,n). So the problem reduces to proving that ej(x,n) is locally
bounded.

Recall that

ej(x,n) = (2xi)"1 I‘[e'rrj(x.f,t,n)dkdf

where the r; are the homogeneous parts of the total symbol of ﬁS’
given explicitly above, and where p, + py ; + .. is the total symbol
of D. Note further that

k
— a-1.-k -ty _d
ej't(x,E,n) = (2ri)” "t Ice ;?F rj(x,E.l’,n)dl’.
dk
Since — r; is homogeneous of degree -m-j-km in (£,§), it
d
follows tfmt e; is a smoothing operator on each leaf for any t > 0
(though not necessarily compactly supported) and hence ¢v(ej) is

finite, as required. o
This establishes the following theorem.

Theorem 7.47 [Co3]. Fix (X,F.,g), an invariant transverse measure ¥
and a tangential, tangentially elliptic differential operator D from E to
E' where (X,E) and (X,E’) have bounded geometry. Let D be the
asfociated superoperator, and let ’v be the associated trace on
W (G(X),E,u). Then for j 2 -p there is a family of signed tangential
measures Xj(ﬁ) on X (which depend on (X,g,F,D) but not on t) and an

asymptotic expansion

(7.48) s3e™tD) ~ 3 tj/zi’j xj(ﬁ)d».
jz-p X

4

Corollary 7.49. In the notation of 7.47,
ind, (D) = [(hg(D) = XD .

f of 7.49. Fix some t > 0. Then
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: _ ,8,.-tD - *
ind, D) = #3t%) = = jx<xj(n) - A{(D")dv.

As the left hand side is independent of t, each term in the summation
which involves non-trivial powers of t must vanish. The remaining

term (corresponding to j = 0) then gives the index. o

Corollary 7.50. The tangential measure Xj is homogeneous of weight
i/2p in the coefficients of D. That is,

A\§D) = g/ 29) (D).

Further, in case m = 1, then (det (a))l/ 2)\j(D) is a polynomial in the
coefficients of D relative to x, their derivatives relative to x, and
det"l(a), where det(a) is the leading term of the quadratic
form. (3]

Write
x
for the tangentially smooth p-form which corresponds to D. Note that
this form is measurable but not necessarily continuous transversely.
In Chapter VIII this form will be identified for certain classical

operators and this will enable us to complete the proof of the Index

Theorem.
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CHAPTER VIII: THE INDEX THEOREM

In this chavter we compute the index of a tangentially elliptic
pseudodifferential operator on a compact foliated space.

Let X be a compact foliated space with leaves of dimension p
and foliation bundle F which we assume oriented and equipped with a
tangentially smooth oriented tangential Riemannian structure g. Let D
be a tangential. tangentially elliptic pseudodifferential operator on
(bundles over) X. For each leaf £ the spaces Ker D, and Ker D;
are well defined by 7.23 and are locally finite dimensional with local

index measure

=11D - M %

¢
D
2 D,

2

We define the analvtic index of D to be the tangential measure

tp = Cepd
where tg = ¢p for x € 2. If D is a differential operator of
positive order m then Proposition 7.24 implies that the index measure
¢p is still well-defined. Alternatively, the operator (1 + Ar™/2p s
in the closure of the order zero pseudodifferential operator algebra
and has the same tangential principal symbol and same index class in

the von Neumann algebra and thus may be used to replace D.

The topological index of D is defined as chT(D)TdT(X). where
- p(p+1)/2 -1
chT(D) = (-1) L chT(a(D)).
(The peculiar introduction of signs is explained in Ativah-Singer III
[ASIII]. p. 557.).
With these preliminaries in hand, we may state the Connes

Index Theorem.

Theorem 8.1. (Connes [Co03]). Let D be a tangential, tangentially

elliptic pseudodifferential operator on X and let » be an invariant
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transverse measure. Then
ind, D) = [¢pdy = [ch, (DITd, (X)dy.

Our studvy of invariant transverse measures and tangential
cohomology enables us to reformulate Theorem 8.1 so as to avoid

mention of transverse measures.

Theorem 8.2. Let D be a tangential, tangentially elliptic operator on
X. Then

[tD] = [chT(D)Td,r(X)]
as classes in ﬁ};(X).

Theorem 8.2 implies Theorem 8.1 since an invariant transverse
measure Y corresponds uniquely to a homomorphism P—l,‘;(X) - C. If
X has no invariant transverse measures then I:I:(X) = 0 and so the
statement is simply [tD] = 0.

The proof follows a well-known path; we establish Theorem 8.1
for twisted signature operators and then argue homotopv-theoretically
that this suffices to prove (8.1). Theorem 8.1 and the Riesz
representation theorem (4.27) immediately imply Theorem 8.2. As an
introduction to the techniques we first consider the de Rham and
signature operators.

Define complex vector bundles E; and E: by

k _ kp*
EX = AKFQ)

k_kt*_tk
Eg = Ak Fp = s'Ey.

= k - k
Ey = ®Ex  Eg = OE.

The de Rham operator d is defined briefly in Chapter VII: we recall
additional detail here. Let fAde be a tangentially smooth k-form on

G(X) in local coordinates; i.e., a tangentially smooth section of the
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bundle Eé Then exterior differentiation

P
difadxp) = 3 2L dxiad;

i=1 axi
induces a natural map
d: rT(EG) —_— rT‘EG)

which agrees with the usual exterior derivative on each leaf G* of
G(X). Thus d vields an unbounded operator on the Hilbert field

d: L2G(X), Eg) — LUGX), Eg).
If € is some vector then explicit computation vields
Endxp = % EjAde
so that the principal symbol o(d) of d is given locally by
(8.3) oldix.EMv) = Eav v € Fr.
The associated symbol sequence
k (€~ Dx Ek.,.l

vos ) G —— G — e

is an exact sequence for each &€ 2 0 and hence d is a tangentially

elliptic operator. To summarize:
Proposition 8.4. The de Rham operator
.12 2
d: Le(G(X). EG) — LA(G(X), EG)

is a densely defined unbounded tangential, tangentially elliptic operator

with tangential principal symbol given by
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oldHx. EMv) = EAv.
The orientation of F induces a natural bundie isomorphism
. pk p-k
*: E; — Eg

which is given locally in terms of an orthonormal basis Cel ..... e 2
by *(eI) = ey where 1 and J are complementary multi-indices and the
sign is determined by the parity of the permutation (I.J). This induces

the Hodge inner product on sections I‘.r(EG):

<u,v> = uA*vdu.
G(X)

With respect to this inner product the de Rham operator has a formal

adjoint & given on (k+1)-forms by

- k+p+1
5k+1 = (—l)p D :dk:

where dk denotes the restriction of d to k-forms. As * induces an
isometry on forms, its symbol is invertible, so that o(3) =
zo(*)o(d)o(*) is also invertible. Hence 5 is a tangentially elliptic
operator.

The Hodge-Laplace operator A is defined by

(8.4) A =ds + 8d: T _(Ep) — T (Eg)

and its restriction to Eé is denoted A
We note that

(d+a)2 =d% +ds + 5d + 52
= A sinced2=52=0

so that (d + &) is a first order tangentially elliptic operator.

Furthermore,
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Ker(Ai) = Ker((d+8)i)
since
<Bw,w> = <(d+8)2w.w>

<(d+8)w. (d+5)w>

Hd+8)w! 2,

Proposition 8.5. The Hodge-Laplace operator is an essentially

self-adioint tangential. tangentially elliptic operator.

Proof: This proposition follows from (7.21). but we prefer to give a
more direct proof. Let £ be a leaf of G(X). Restrict d to £ and

consider the resulting commuting diagram

d
) —— FT(EG )

r_(e
7T G 2

2
i i

* * d * *
r(Aa ((Tﬂ)m)) _ T(A ((Tlu:))

l l

2 x Ok T 2 x %
L°(2.(s a) ) - - - - Lo(2,(s a) )

11

where a is the density associated to (X.g) restricted to 2. Let T 2

be the closure of d. Then Im(T 2) < Ker(T 2) and the operator

* *

T IT et T .eT 2
is a self-adioint operator on Lzll.(s'a)) which extends the operator
Al,. This implies that the restriction of A to each leaf is a

self-adioint elliptic operator. (]

The locally finite-dimensional space Ker(Ai)z is Jjust the
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space of square-integrable harmonic forms of degree i on
2. The local dimension of this space is well-defined up to
equivalence. since changing the metric 2 on F resuits in a change by
similarity.  Define the Betti measure 8, to be the tangential

measure given by
X . . -
8 = local dimension of Ker(Ai)£ = uKer(Ai)ﬂ

where x € £. The Betti numbers relative to some invariant transverse
measure » are given by rﬁidv.
d

Note that the Hodge *-operator induces a natural isomorphism
of Hilbert fields

Ker(Ai) = Ker(Ap_i)

and hence the Betti measures 8, and 8o coincide.  Define the
tangential Euler characteristic to be the signed tangential
P .
measure 3 (~1)! 8;. If p is odd then
i=Q

P .
1 =
T -18 =8y - B)+ (8 - B ) 4.4 (B, - B,,)

i=0 — ——

2 2

since Bi = 8 Let us assume, then. that p is even.

-1'

Let I;) be the restriction of (d+5) to even forms, so that
D: I‘T(GBEéi) — rT(eEéi”). Then the local trace of D, is just
(2(—1)‘£i)x for x € 4. Furthermore. D is a Dirac operator in the
sense of Chapter VII, so that we mav apply the heat equation

argument, as follows.
Theorem 8.6. (Gauss-Bonnet)

a) For any invariant transverse measure »,
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1 .
S (-1iedy = [PHK/2r)dy.
i=0

b) [igo(-l)iﬂi] = [Pf(K/2x)] = e’ (X) (the tangential

Euler class) in H,';(X).

Proof. The index of the operator D may be expressed in two ways.
On the one hand, the local index ‘D‘ is given by

iy = S(-1)is*
D 2 i

more or less by definition. On the other hand, D is a first order

tangential tangentially elliptic operator and Theorem 7.47 implies that

ind, (D) = [wpfe.E)dy
where wp is a tangentially smooth p-form which corresponds to D.
Restrict wp(g,E) to a leaf £. Then the local index theorem of
Atiyah-Bott-Patodi [ABP] implies that

wp(&.E), = Pf(K/2x),.
Thus

faz-vistay = [prw/2may.

This holds for each invariant transverse measure », and hence

S(-1)is; = Pf(K/2x)
as classes in HP(X). o
Corollary 8.7. (Connes [Co3]) Let X be a foliated compact manifold

with leaves of dimension 2. Let F be oriented and equipped with a

tangentially smooth Riemannian metric. Fix some invariant transverse
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measure Y. Suppose that I Kdy > 0 (i.e., the v-average curvature of
X is strictly positive). Then X must have a closed leaf, and in fact,

the set of closed leaves has positive » measure.

Proof. The Gauss-Bonnet theorem and the curvature assumption imply
that

j’ (8 - 8, + A)d» > 0.

Suppose that there is no generic closed leaf. Then Ker(a 2 = 0

for v-almost every leaf, and hence Iﬂodv = 0. By duality we have
fazdv = 0. Thus -Iﬂldv > 0 which is a contradiction since,
Bld» z 0. o

We move next to the signature operator. Assume that p = 2q
is even. Then there is a natural involution t: By — Ex given by t =
(-1)9%1,  This decomposes EG to Eg = EEQEE, the = eigenspaces.
The elliptic operator (d+85): T (Eg) — rT(EG) anticommutes with t

and hence restricts to an operator
(8.8) A: T _(Eg) — T_(Eg)

given by A = (d-|»8)|r (E+). This is the tangential signature
7G

operator. The tangential principal symbol of A 2 is the restriction
of the symbol of the elliptic operator (d+5) g to FT(EE ﬂ) which
is invertible, so A is tangentially elliptic. Graded as in (8.8), A is a
Dirac operator in ‘he sense of Chapter VII.

The invo ion t restricts to an involution of Ker(d+s) =
Ker(A) since t anticommutes with (d+3). The = eigenspace

decomposition is simply the decomposition of Hilbert fields
Ker(a) = Ker(A)eKer(A').

Decompose Ker(A) further as
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p
Ker{ad) = o Ker(Ai).
i=0
The subspace Ker(Ak)QKer(Ap_k) is t-invariant for each k, 0 € k €

q, and there is a unitary equivalence
[Ker(a,)oKer(A )17 — [Ker(a )oKer(a 11

given by x+t{x) ~ x-t(x). Thus only the middle dimension Ker(Aq)
contributes to the index. If uv € Ker(Aq) C H:(X) then uav €
H_';(X) and for any invariant transverse measure V. Iu/\vdv € R.
This gives a natural bilinear form on Ker(Aq) and it is reasonable to

think of ¢ A 8S the signature measure of this bilinear form, since

(8.9) ItAdv = I(+1 eigenspace of t)dy - I(-l eigenspace of tMdy =
Sign(X,»).

If X = M foliated as one leaf then Ker(Ai) = Hi(M) and Sign(X.»)
is exactly the signature of M.

Suppose that p = 2q = 4r+2. Then t = #i* and so ** = -id.
Thus * is a real transformation on Ker(Aq). The = eigenspaces of

* (and hence of t) are conjugate via the map
a®l - (*al@i ~ a®l + (*a)®i

and thus Ker(Aq)+ is unitarily equivalent to Ker(Aq)' and ‘A is the
zero measure. The topological index also vanishes. Thus the index
theorem holds trivially. So we restrict attention to the case p = 4r.

Recall that Hirzebruch L-polynomials L, are polynomials of
degree 4k in the Pontriagin classes which are given by the splitting
principle as

X4
5 L = n[__..- ] .

tanh xi

The first few polynomials (in the tangential cohomology setting) are as

follows:
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T
1

-
ot
|
Wi

p
2
~ 1 T T
Lz—-4_5‘7p2—pl )
L, = —— (62p7 - 13p7p7 + 2p79)
3 m Py DDy by

Lemma 8.10. Lp7...p7) = ch (AITd (Fg)| . where w|  denotes the

component of w in dimension p.

We omit this calculation: a proof may be found in Shanahan
[Sh] 83.

Theorem 8.11 (Hirzebruch Signature Theorem). Let X be a compact
oriented foliated space with leaves of dimension 4r. Let Lr(p‘{,...,p:)

denote the Hirzebruch L-polynomial in 0,‘;()(). Then

a) For any invariant transverse measure Vb,

b) The index class ¢ A of the signature operator is equal to
L.(p]....p7) in H2(X).

Proof. The index of the operator A may be expressed in two ways.

On the one hand. the local trace ‘p is given by
2
1D£ = Sign(X.v)z

as explained above. On the other hand, D is a first order tangential

tangentially elliptic operator and Theorem 7.47 implies that

ind,,(A) = [w,(e.E)y
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where wa is a tangentially smooth p-form which corresponds to A.
Restrict wA(g.E) to a leaf £. Then the local index theorem of
Ativah-Bott-Patodi [ABP] implies that

wal@.B), = L(p]....00),.
Thus
SignX.») = [Lp]....0]Mv.

This holds for each invariant transverse measure v, and hence

as classes in ﬁ:(X). o

With this preparation in hand we consider the twisted signature
operators. Let X be a compact foliated space with leaves of
dimension p = 2q and oriented foliation bundle F. Let V be a
tangentially smooth complex vector bundle with a tangential Hermitian
structure and tangential connection Ay. The bundle EX@CV carries

a twisted de Rham differential
given by

dyluav) = dugv + (-Dlu A Ayv
where u € FT(Ai(F;:). v € l",r(V), and A is the external pairing. The
map * acts as *(u®v) = (*u)®v. The involution t: EX —_ EX extends
to a natural involution of EX@V which fixes 1QV. The twisted
differential and the involution lift to EG@V_. as usual.

Let 3y denote the formal adioint of dv. Then 8y = -*dy*,

and

270



Decompose EG@V into * eigenspaces with respect to t. Then the

operator restricts to an operator
+ -
(8.12) AV: r,r((EG@V) ) — r-r“-EG@V) )
called the twisted signature operator. This is a Dirac
operator in the sense of Chapter VII.
Define

- -2s T T
LX)=%2 2 Ls(pl,...,pr).

Lemma 8.13.
.20 =
ch(V)-292(X) | | = ch(AyITd (X))

This is a fairlv involved purely topological calculation whose

proof we omit (cf. Shanahan [Sh]).
Theorem 8.14. Let X be a compact foliated space with oriented
leaves of dimension p = 2q = 4r. Let V be a complex vector bundle

over X. Then

a) (Twisted Signature Theorem). For every invariant

transverse measure »,
= a
szvd» = IchT(V)-Z 2(X)dv.
= .94 T3]
b) [ep,] = Lohy V)2 z(x_)|p] € H2X).
d) The index theorem holds for twisted signature operators.

Proof: The argument is virtually identical to the argument in Theorem
8.11. O

The remaining task before us is to demonstrate how knowledge
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of the index of twisted signature operators (that is to sav. of certain
natural tangential differential operators) implies the index theorem for
all tangential pseudodifferential operators. We begin with the

following lemma.

Lemma 8.15. Suppose that the index theorem holds for
pseudodifferential operators of order zero. Then it holds for

pseudodifferential operators of all orders.

Proof. There is nothing to prove for operators of negative order,
since such operators lie in the kernel of the tangential principal
symbol map on 50. Suppose that T is a tangential, tangentially
elliptic pseudodifferential operator of positive order m. Let ’f be the
associated superoperator of order 2m. Then T is tangential,

tangentially elliptic and formally self-adioint of order 2m, with
. — s ~ - ~
1ndv(T) = ¢v(T) and am(’[‘) x azm(T).

Let P=(1+ A)—m'f. Then Proposition 7.27 implies that P € (50
with

S — ¢ I
¢y(T) = mdv(P) and azm(T) = aO(P).
The index theorem for P then implies the index theorem for T. (]

We turn next to the case of a tangential, tangentially elliptic
pseudodifferential operator of order zero on a compact foliated space
X with leaves of dimension p and oriented foliation bundle F. We
wish to reduce to the case where p is even. For this purpose we
briefly consider the multiplicative properties of the topological and
analytical indices.

Suppose that X, and X, are compact foliated spaces as above
and V,, W, are tangentially smooth Hermitian bundles over X;. Let X
= XIXXZ and define bundles V and W over X by

V = (V,RV,)8(W,8W,)
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W = (W,8V, )e(V,8W,)).

Let Di be tangential, tangentially elliptic pseudodifferential operators
of positive order. (If Di are non-positive we modify as in
Atiyah-Singer I [ASI], p. 528-9.) Define DI#DZ by the matrix

*
“Tw 80

*
I, ®D, Dl@Iwz

Then DlﬂDz is tangential and tangentially elliptic.
Let ¢5°P = ch (DITd_(X).

Proposition 8.16. Let v be invariant transverse measures on Xi, and

let Y{Xv,y be the product measure. Then
a) [ (EOP  d(y xw,) = ” (E°Pqy ][Izt°pdv ]
J ¢p #p, V1P 0, 1 b, %2

b} [l dly X»,) = ”t dy ]”z dy ]
. DllﬁD2 1772 D1 1 D1 2

Proof: The multiplicative property of the classical index (cf. Seeley
[Pa], p. 217-228) implies that

top . ,top top
‘p. #D = ¢p X ¢p
1 212 1 2 2 2
1 2
where £ = 21X22 is a leaf of XIXXZ‘ Thus
top _ top top
¢ = ¢ X¢
Dlv'fD2 Dl 02

Then



top — top, ,top
,r ‘Dlllozd‘»”ﬁ‘l’g) = f(lol x:DZ M(vXv,)

= [I ¢[§Tpdv1] [I agzpdvz]

as required. A similar argument holds for ¢ . o
DlﬁDz

Note that we do not claim that the multiplicative property

p P p,+p
holds at the level of H_'(X/XH,%(X,) — H_ ' ~2(X;XX,) since not
every invariant transverse measure on xlxxz is determined by product

measures. However this is certainly true if Xz = M (one leaf).

Corollary 8.17. If the index theorem 8.1 holds for all X with p even
then it holds for p arbitrary.

Proof: Suppose that the index theorem holds for all X with p even
and suppose given a foliated space X with p odd. Then X><S1 is
foliated with leaves of even dimension (p+1). Let T be the operator

on the circle defined by

ei(n+1)x
T einx =

einx n < 0.

Then T = e*P+(1-P) where P: L%S!) — H2%S!) is the orthogonal
projection. Thus P and (hence) T are pseudodifferential operators of
order zero., and

el £>0

o(T)ix.€) =
£ <O

so T is elliptic. A direct check shows Ker T = 0, Cok T is generated

by constant functions, and so ind(T) = -1. The map

KO(F ) — KO(F ) given by multiplication by the symbol of T is an
X xxs!
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isomorphism by Bott periodicity. Thus every symbol class in

KUF 1) has the form o(P)o(T) for some pseudodifferential operator
on X. As the topological and analytical indices are multiplicative by
(8.16), the theorem follows. o

Let X be a compact foliated space with leaves of dimension p
= 2q and F oriented. Fix an invariant transverse measure ». The

functions

D~ I dev
and
D~ j ch,(DITd,_(X)d»

depend only upon the class of the tangential principal symbol o(D)
and extend to MR-linear functions KO(F)@R —[R. This is clear for

the topological index. For the analytic index we must show that

¢ =ip +t ip..
D,eD, Dy D,

0

D
This is immediate if one thinks of DIGBDZ as [01 ] Further, the
2

D

two functions agree on the classes of the symbols Ea(AV)] of the
twisted signature operators.
We note that (8.15), (8.17), and the following (8.18) together

imply the index theorem 8.1.

Proposition 8.18. Suppose that X is a compact foliated space with
oriented foliation bundle F of dimension p = 2a. Then the classes
Ea(Av)] span the vector space KO(F)QIR.

In fact we shall prove the following more general proposition

which Ativah CAt2] refers to in the case of X foliated by a single
leaf as the Global Bott theorem.
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Proposition 8.19. Let X be a compact foliated space with oriented
foliation bundle F of dimension p = 2q. For any open subset Y of X
let FY be the restriction of F to Y and define
8 = 6y: KOYIeR — KOF @R

Y. 1S ' Y -~
by

o(V) = Ea(Av)J.
Then @ is an isomorphism.

We begin by clarifying the map 6.

Lemma 8.20. If V is a tangentially smooth complex vector bundle over
X then Eo(AV)J = V-LofA)] in KO(F). Thus © is given by
multiplication by the symbol of the signature operator:

8(V) = V-LolA)]
and hence extends to a transformation

9: K (Y)GR — K (FyIQR

which is natural with respect to inclusions of subspaces and boundary

maps.

Proof: The twisted signature complex factors as FT(V)QA‘(FE).
a

Lemma 8.21. Suppose that 9Y is an isomorphism whenever FY is a
trivial bundle. Then 9Y is an isomorphism for all Y and Proposition
8.19 holds.

Proof: Let Y be an open subspace of X. Cover X by a finite open
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cover Xy, X, ,such that each Fy is a trivial bundle. Then of course
F triviaiizes when restricted lto each Yi = Yf\Xi and on
(Ylv...UYi)nYi+1 for each i. The maps 9Yi and 9‘Y1V---VYi)"Yi+1
are isomorphisms by assumption. A Mayer-Vietoris argument and a

finite induction completes the argument. O

In order to complete the proof of the Index Theorem 8.1 then,
we are reduced to considering the case where X = EquN is a
product foliation. A Mayer-Vietoris argument on £ shows that we
may reduce further to X = quxN. that is, we must show that the

map
8: K (REIXN)RR — K (RZIX(RZIXN))QR

is an isomorphism.

Next we consider the diagram

9
2q
K" (R%2I%N) QR RO XN g™ (RZIXRZI%N) @R
afl a®l
* 2q * 9m2<1®1 * 2q 2q *
K (R2Vek* (N)eR —R . kM (R2IxRZ2ek” (N)@R

where a denotes the Kunneth map (an isomorphism over R). The
diagram commutes by the naturality of 6. So it suffices to
demonstrate that the map

8 ., : K (RROQR — K (R2IxR2%)QR
R4

is an isomorphism. The groups are isomorphic by the Bott periodicity

map 8.
Lemma 8.22. # = 298, and hence 6 is an isomorphism.
' R R2d

The proof of this lemma involves careful consideration of the



Dirac operator on R2 and some classical representation theory. We
omit the proof and refer the reader to Atiyah CAt2] for details.

This completes ‘ne proof of Proposition 8.19 and hence the
proof of the Index Th em 8.1. (u]
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APPENDIX A: THE d-OPERATOR

By S. Hurder
CONTENTS

Al. Average Euler characteristic

A2, The d-Index Theorem and Riemann-Roch

A3. Foliations by surfaces

A4, Geometric K-theories

AS. Examples of complex foliations of 3-manifolds

The purpose of this Appendix is to discuss the conclusion of
the foliation index theorem in the context of foliations whose leaves
are two-dimensional. Such foliations provide a class of reasonably
concrete examples, which while they are certainly not completely
representative of the wide range of foliations to which the theorem
applies, are sufficiently complicated to warrant special attention, and
also have the benefit of possessing the smallest leaf dimension for
which the leaves have interesting topology. There is another, more
fundamental reason for studyving these foliations, and that is the
observation that given any leafwise C™-Riemannian metric on a
two-dimensional foliation, ¥, there is a corresponding complex-analytic
structure on leaves making ¥F into a leafwise complex analytic
foliation.  Thus, two dimensional foliations automatically possess a
Teichmuller space, and for each point in this space of complex
structures, there is an associated Dirac operator along the leaves.
The foliation index theorem then assumes the role of a Riemann-Roch
Theorem for these complex structures.

We begin in %A1 with a discussion of the average Euler
characteristic of Phillips-Sullivan, which is the prototype for the
topological index character of the foliation index theorems for
surfaces. In 8A2, the index theorem is reformulated for the
O-operator along the leaves of a leafwise-complex foliation. The

Teichmuller spaces for two-dimensional foliations are discussed in



SA3, and a few remarks about their properties are given. In §A4,
some homotopy questions concerning the K-theory of the symbols of
leafwise elliptic operators are discussed, with regard to the
determination of all possible topological indices for a fixed foliation.
Finally, SA5 describes some of the "standard” foliations by surfaces,
especially of three-manifolds, and the calculation of the foliation
indices for them.

The reader will observe that this Appendix concentrates upon
topological aspects of the foliation index theorem and serves as an
elaboration upon Connes' example of a foliation by complex lines on
the four-manifold ([://\1 X C/Az described in SA3. A key point of
this example is that the meaning of the analytic index along the
leaves can also be explicitly described in terms of functions with
prescribed zeros-and-poles and a growth condition. For the foliations
we consider, such an explicit description of the analytic index is much
harder to describe, and would take us too far afield, but must be
considered an interesting open problem, especially with regards to the

Riemann-Roch nature of the foliation index theorem.

SAl. Average Euler Characteristic

The index theorem for the de Rham complex of a compact even
dimensional manifold, M, yields the Chern-Gauss-Bonnet formula for its
Euler characteristic, which is equal to the alternating sum of the
Betti numbers of M. In a likewise fashion, it was shown in Chapter
VIII that the foliation index theorem for the tangential de Rham
complex of a foliated space yields an alternating sum of "Betti
measures”. When the transverse mcasure » has a special form, i.e.,
it is defined by an averaging sequence, the d-foliation index can also
be interpreted as the v-average Euler characteristic of the leaves.
We examine this latter concept more closely, for it provides a
prototype for the calculation of the topological index in the general
foliation index theorem. First, recall the integrated form of Theorem
8.6¢):

Theorem A1l.1 (d-Foliation Index Theorem). Let » be a transverse

invariant measure for a foliation ¥ of a foliated space X, with
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Cy € Hg(X) the associated Ruelle-Sullivan homology class of v. Let
d be the de Rham operator on the tangential de Rham complex of F.
Assume the tangent bundle FX is oriented, with associated Euler form
e"(X). Then

a12) xF» = [ ¢4« dv= [ " (X)dy = <e”(X).c)>.

v

X X

The left-hand-side of (1.2) is interpreted in Chapter VIII as
the alternating sum of the v-dimensions of the L2_harmonic forms on
the leaves of ¥. To give a geometric interpretation of the
right-hand-side of (Al.2), we require that » be the limit of discrete

regular measures:

Definition Al.3. An averaqging sequence [GP] for F is a

sequence of compact subsets CLj i=1,2,...3 where each Lj is a

vol(aL_l)

submanifold with boundary of some leaf of ¥, and ——m0m7 — —————
vol(L 1)

(The sets CL]-) may belong to differing leaves as j varies, and we are
assuming a Riemannian metric on FX has been chosen and fixed.)

The sequence (Lj) is regular if the submanifolds aLJ- of X
have bounded geometry (i.e., there is a uniform bound on the sectional
curvatures, the injectivity radii and the second fundamental forms of
the aLj).

For X compact. the measure YL associated to an averaging

sequence is defined, on a tangential measure \, by the rule

. 1
Ady; = 1im o e X\,
I L Jaoo vol(Lj) I
X

J

where, if necessary, we pass to a subsequence of the CLjJ for
which the integrals converge in a weak-* topology. The closed
current associated to |, determines an asymptotic homology class
denoted by Cp € HD(X:IR).

We say a transverse invariant measure » is regular if »
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=y for some regular averaging sequence CLj =1,2,...2.

Not all invariant transverse measures arise from averaging
sequences, but there are many examples where they do, the primary
case being foliations with growth restrictions on the leaves. Choose a
Riemannian metric on FX. Its restriction to a leaf L € X of ¥
defines a distance function and volume form on L. Pick a base point
x € L and let g(r,x) be the volume of the ball of radius r centered at
x. We say L has:

polynomial growth of degree €n if 1im sup -g’(—rl“L) < o
) LR r

subexponential growth if lim sup 1 log g(r,x) = 0

) o r

non-exponential growth if lim inf 1 log glr,x) = 0
Y ap OO r

exponential growth if lim inf L log gir,x) > 0.
) Y r
For X compact, the growth type of L is independent of the
choice of metric on FX and the basepoint x.
For a leaf L with non-exponential growth, there is a sequence
of radii rj — ® for which the balls L of radius r; centered at X
form an averaging sequence [Pl1]. In this case, all of the sets Lj
are contained in the same leaf L. For X compact and the foliation of
class Cz. these sets Lj can be modified to make them regular as well.
For a foliation ¥ with even-dimensional leaves and a regular

measure », the d-Index Theorem becomes

x(FY) = 1im —L f o7 (X).
oo vol(L1)

Ly

By the Gauss-Bonnet theorem,

[ eTma=ony+ [

Lj aLj
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where e(Lj) is the Euler characteristic of LJ- and €; is a correction
term depending on the Riemannian geometry of E)Lj. The assumption
that the submanifolds CaLi) have uniformly bounded geometry implies

there is a uniform estimate

I I ejl <K - vol(aL]-).
oL

Therefore, in the limit we have

e(L.)
(Al1.4) x(F.y) = lim —0u0J
Jr 0 vol(Li)

and the right side of (Al.4) is called the average Euler
characteristic of the averaging sequence CLj).
Phillips-Sullivan [PS] and Cantwell-Conlon [CC1] use this invariant
of a non-compact Riemannian manifold to give examples of
quasi-isometry types of manifolds which cannot be realized as leaves
of foliations of a manifold X with H (X.R) = 0.

Consider three examples of open 2-manifolds (cf. [PS]), whose
metric is defined by the given embedding in E3. Each of the
following, with their quasi-isometry class of metrics, can be realized
as leaves of some foliation of some 3-manifold, but the first two
cannot be realized (with the given quasi-isometry class of metrics) as

leaves in 83.
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The growth type of L is linear, and the average Euler characteristic

of L is —at,
vol(H)

(A1.6) Infinite Jail Cell Window

The growth of L is quadratic, and average Euler characteristic of L is
2

vol K

(A1.7) Infinite Loch Ness Monster

/\/Ny/ﬂvf\“ﬁ\,va\/“\/~__\,\,,,s_—\\,\,ﬁy_\,‘
/
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{ /
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/ /

/ /

/ [ ~ l_
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The growth of L is quadratic, but the average Euler characteristic is

zero.

The construction of the average FEuler characteristic for
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surfaces suggests that a similar geometric interpretation can be given
for the topological index of other differential operators. For the
5—-operator of complex line foliations, this is indeed true, as discussed
further in %3.

§A2. The O-Index Theorem and Riemann-Roch

We next examine in detail the meaning of the foliation index
theorem for the tangential d-operator. Let F be a foliation of a
foliated space X and assume the leaves of ¥ are complex manifolds
whose complex structure varies continuously in X. That is. in
Definition 2.1 of Chapter II. we assume that foliation charts C¥ 3
can be chosen for which the composition tyow;l(-,n) is
holomorphic for all n, and n s+ tyotp;l(-,n) is continuous in the
space of holomorphic maps.

Let k be such that the dimension of the leaves of ¥ is p =
2k.

A continuous vector bundle E — X is holomorphic if for
each leaf L C X with given complex structure, the restriction
E|L — L is a holomorphic bundle. As before. FX is the tangent
bundle to the leaves of ¥, and this is holomorphic in the above sense.
Let A™® — X be the bundle of smooth tensors of type (r,s):

IS _ I,§ *
AV = A (Fu:X ).

Given a holomorphic bundle E, let AT'® @ E denote the (r.s)-forms with
coefficients in E. Assume that E has an Hermitian inner product, and

then set

2 — 2

L4F.E) = xgx L (Lx,Ele),
where L, is the leaf of ¥ through x, E|Lx is the restriction of the
Hermitian bundle E to L,. and we then take the L%_sections of E over
Lx with respect to a Lebesgue measure on Lx inherited from a
Riemannian metric on FX. Note that LZ(:?.E) is in general neither a
subspace nor a quotient of LZ(X,E). the global L2_sections of E over

X.
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For E a leafwise-holomorphic bundle, the leafwise é—operator

for ¥ has a denselv defined extension to
3 8 E: LAF.A™S @ B) — L2747 g E)

which is tangentially elliptic. Let kers(é ® E) denote the kernel of
3 @ B: L%5,4%% @ B) — 1454051 @ B).

An element w € kers(é ® E) is a form whose restriction to each leaf
L is a smooth form of type (0,s) satisfying d(w|L) = 0. Furthermore,
for each s 2 0, kers(é ® E) is a locally finite dimensional space over
X (cf. Chapter I). For an invariant transverse measure ». the total
v-density of the (0,s)-solutions w to the equation @ ® E(w) = 0 is
dimv kers(é ® E). and we set

— k -
dimv ker(® @ E) = S§0 dimv kers(a ® E).

Similar arguments apply to the adioint 5*, and with the notation of

Chapter IV we have

f ‘. dv = dim, ker(d & E) - dim,, ker(3 @ E)
2QE

X

Theorem A2.1 (O-Index Theorem). Let » be an invariant transverse
measure for a complex foliation F of X, c, € H'gk(X;R) the
associated Ruelle-Sullivan homology class, and TdT(X) = TdFX Q )
the tangential Todd class for ¥. Then

(A2.2) J’ ‘S o K dv = <ch(® @ E) Td (X). C,>

The left-hand-side of (A2.2) is identified with the

arithmetic genus of ¥ with coefficients in E,
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x® @ E, ») = 1%0 (-1 dim, HYF:E)
where HUFE) = ker(® @ Elker® & E) is a locally-finite
dimensional space over X. The number dimv HYF;E) measures the
density of this cohomology group in the support of v, and generalizes
the v-Betti numbers of the operator d.

On the right-hand-side of (A2.2), the term ch(d ® E) is the
Chern character of the K-theory class determined by the complex
AO" ® E. There is a standard simplification of the cup product
ch(® ® E)TA(FX & €), which yields:

Corollary A2.3. x(® @ E.v) = <ch(E) Td_.(FX), C .

Proof. Use the splitting principle and the multiplicativity of the Chern
and Todd characters. For details, see [Sh]. o

Corollary A2.3 is exactly the classical Riemann-Roch Theorem
in the context of foliations. The arithmetical genus x(® & E,») is
the v-density of the alternating sum of the dimensions of the
d-closed L2-forms on the leaves of ¥. The right-hand side is a
topological invariant of E, FX and C,. For a given measure v,
one can hope to choose the bundle E so that x(® & E,») # 0,
guaranteeing the existence for »-a.e. leaf L of F of d-closed

Lz—forms on L with coefficients in E.

S5A3. Foliations by Surfaces (Complex Lines or k=1)

Let X be a compact foliated space with foliation ¥ having
leaves of dimension p = 2. For example, we may take X = M to be a
smooth manifold and assume TM admits a 2-plane subbundle F. Then
by Thurston [Th2], F is homotopic to a bundle FM which is tangent

to a smooth foliation of M by surfaces.

Lemma A3.1. Let F be a two dimensional foliation of X with FX
orientable. Then every Riemannian metric g on FX canonically
determines a continuous complex structure on the leaves of ¥. That

is, the pair (¥,g) determines a complex foliation of X.
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Proof. Define a J-operator Jg on FX to be rotation by +x/2 with
respect to the given metric g and the orientation. For each leaf L,
the structure J8 L is integrable as the leaf is two-dimensional hence
uniquely defines a complex structure on L. Furthermore, by the
parametrized Riemann mapping theorem [Ah], there exist foliation
charts for F with each t'owx(-,n) holomorphic and continuous in the
variable n. (n]

We remark that if ¥ has a given complex structure, J, then a
metric g can be defined on FX for which Jg = J.  Thus, the
construction of Lemma 2.1 yields all possible complex structures on
F. This suggests the definition of the Teichmuller space of a
2-dimensional foliation ¥ of a space X. We say two metrics g and g’
on FX are holomorphically equivalent if there is a
homeomorphism ¢#: X — X mapping the leaves of F smoothly onto
themselves, and ¢‘g' is conformally equivalent to g. We say that g
and g' are measuradly holomorphically equivalent if there
is a measurable automorphism ¢ of X mapping leaves of F smoothly
onto leaves of ¥, and ¢‘(g') is conformally equivalent to g by a

measurable conformal factor on X.

Definition A3.2. The (measurable) Teichmuller space T(X.F)
(respectively, Tm(X,f!-')) is the set of (measurable) holomorphic
equivalence classes [g] of metrics on FX.

When F consists of one leaf, this reduces to the wusual
Teichmuller space of a surface. When ¥ is defined by a fibration
X — Y with fibre a surface S, let T(3) be the Teichmuller space of
>, then TX.¥) = CO(Y,T(Z)) is infinite dimensional. The more
interesting question is to study T(X,¥) for an ergodic foliation ¥.
There are constructions of foliated manifolds, due to E. Ghys, which
show that T(X.¥F) can be infinite-dimensional, even for F ergodic.

As an analogue of the Phillips-Sullivan Theorem in %1, one
can ask if given a surface 3 with complex structure JZ’ and given a
compact manifold X, does there exist a foliation ¥ of X and [g] €
T(X,¥) with 5 a leaf of ¥ so that the complex structure induced on 3
by [g] coincides with JZ? The average Euler characteristic of 3

still provides an obstruction to solving this problem, when X has
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non-exponential growth type, but the additional requirement that ¥
have a prescribed complex structure should force other obstructions to
arise. This would be especially interesting to understand for 3 of
exponential growth-type, where no obstructions are presently known.
Related to this is a problem posed by J. Cantwell and L. Conlon,
which is when does there exist a metric on FX for which every leaf
has constant negative curvature? Surprisingly, a complete solution is
given for codimension-one, proper foliations in their preprint "Leafwise
Hyperbolicity of Proper Foliations" (1986).

We now turn to consideration of the O-Index Theorem for a
foliation by complex lines, and derive an analogue of the average

Euler characteristic.
Lemma A3.3. Let F be a complex line foliation of X. Then
(A3.4) x(® 8 E») = <c\(B), C,> + = x(F.¥)

Proof. The degree two component of ch1(E)Td1(X) is

o)(B) + = ¢y(FX). O

Our goal is to give a geometric interpretation of the term
<c1(E). C,> in (A3.4) similar to the average Euler characteristic.

Let £« — CPN be the canonical bundle over the complex
projective N-space. For large N, there exists a tangentially smooth
map fE: X — cPY with f;x = E. (We say that fE classifies E.)
Let H C cpN be a hypersurface dual to the first Chern class ¢y €
HZ(EPN) of x. For convenience, we now assume X is a cl-manifold
and ¥ is also Cl. The complex structure on ¥ orients its leaves,
and the complex structure on €PN orients the normal bundle to H. A
connection on « — CPN pulls back under fp to a connection on
E — X. so f;(cl) = cl(E) holds both for cohomology classes and on
the level of forms. Furthermore, a Cl-perturbation of fE results in a
Co-perturbation of the form c4(E).

Given a regular averaging sequence L;2, for each i 2 1

choose a Cl—perturbation fj of fE so that fj(Li) is transverse to H,
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and f;(cl) converges uniformly to cl(E). We say a point
x € L; N f;l(H) is a zero of E if fL;) is positively oriented at
fj(x), and a pole if the orientation is reversed. Let Z(Lj) and P(Lj)
denote the corresponding set of zeros and poles in Lj. Then
elementary geometry shows

f cy(E) = HZ(L) - #P(L) + €,

L.
J

where the error term €; is proportional to vol(f‘)Lj). This uses that
[« aLj} has uniformly bounded geometry. Combined with Lemma 3.3. we

obtain:

Proposition A3.5. Let X be a Cl—manifold and assume ¥F is a
Cl—holomorphic foliation by surfaces. For v = v given by a

regular averaging sequence {Lj).

- #z(L.) ftP(L ;) 1
xR E, ) =1im b -~ lim ——3 _ + 2 x(F,»)
2

Jeo0 vol(LJ.) Jsoo vol(L].)

- [average density of average density of
zeros of E - poles of E
+ 1 faverage Euler
; char :

Consider the case of a foliation of a 3-manifold X by surfaces.
Let r‘*l""’*d) be a collection of d embedded closed curves in X

which are transverse to ¥F. and Cnl nd) a collection of non-zero

integers. This data defines a complex line bundle E — X, a&ld for a

leaf L the restriction E|L is associated to the divisor 2 n, -
i=]

(YiﬂL). Let » be an invariant measure. Then Proposition A3.5 takes

on the more precise form:

Proposition A3.6.

dim), HYFE) - dim, HY(F:E)

290



d 1
= % n - V(Yi) + — x(F.»).
= 2

i=1 !
d
Proof. cl(E) is dual to the l-cvcle I notoYg (n]
i=1
If v = v, is defined by an averaging sequence CLj), then

v(Yi) is precisely the limit density of (Yi N Lj) in Lj- so Proposition
A3.6 relates the v-dimension of L2-harmonic forms on the leaves of F
with the average density of the zeros and poles of E. This is exactly
what a Riemann-Roch Theorem should do. The latitude in choosing E
for a given ¥ means one can often ensure that either HO(ZF;E), the
Lz-meromorphic functions on the leaves of F with order 2 X n -
¥;- or the corresponding space of meromorphic 1-forms H1(3-';E) has
positive y-density. This tvpe of result is of greatest interest when
the complex structures of the leaves of ¥ can be prescribed in
advance, as in Example A3.7 below.

For a complex line foliation ¥ of an n-manifold X, given

closed oriented submanifolds CVl..‘.,VdD of codimension 2 in X

transverse to ¥, and integers {nq....ng3, there is a holomorphic line

d
bundle E — X corresponding to the divisor X n, = V.. The

existence of such closed transversals V; to ¥, a;; 1mo:e genelrally of
holomorphic vector bundles E — X, is usually hard to ascertain.
However, there is one geometric context in which such Vi always
exists in multitude, the foliations given as in (2.2) of Chapter II. We
briefly recall their construction.

Let Y be a compact oriented manifold of dimension n-2, Zg a
surface of genus g, and o: rg — Diff(Y) a representation of the
fundanlental group I'g = xl(ig). The quotient manifold
M= (X x Y)/l‘g has a natural 2-dimensional foliation transverse to
the fibres of n: M — Zg. The leaves of ¥ are coverings of Zg
associated to the isotropy groups of o, and inherit complex
structures from Zg. The d-index theorem for ¥ can be deduced from
Atiyah's Lz—index theorem for coverings [At3]. For the d-index
theorem, this is no longer the case. Also, note that the Teichmauller
spaces of this class of foliations always has dimension at least that of

Zg. as every metric on TZg lifts to a metric on FM. However. they
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need not have the same dimension. and T(M,¥) or Tm(M.EF) provide
a very interesting geometric "invariant” of the representation o of
r g o0 Y.

For each point x € Xg, the fibre K-l(x) C M is a closed
orientable transversal to ¥. To obtain further transversals. we assume

the fibration M — Xg is trivial. so there is a commutative diagram

mn

M———‘ngy-
,,\/
zg

Note that the foliation ¥ on Zg X Y induced from its identification
with M will not, in general. be the product foliation. A transversal to
F corresponds to a transversal to Er':, and the latter can often be

found explicitly.
Example A3.7. Consider the example described by Connes in [Co7].
Here, Zl = tl:/l"l is a complex torus, as is Y = (II/FZ_. for lattices

ry and r, in €. Let ry act by translations on (l:/l‘z, and form

M = (C X €/T,)/T;  (T/T) X (C/T,)
K ‘

Connes takes vV, = 0 X ll?/l‘z and V, = [[:/1‘1 X 0 as the
transversals in 5,'1 X Y. Neither V; nor V, is homotopic to a fibre
x’l(x) so the O-index theorem for E associated to the divisor Vl—Vz
is not derivable from the Lz—index theorem for coverings. For » the

Euclidean volume on u:/rz, Connes remarks that

x(é ® E. ») = density 1'2 - density 1‘1.
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so the dimension of the space of L2_harmonic functions on almost
every leaf € C M with divisor € N (V; - V,) is governed by the
density of the lattices I'y and [,. Again. this is exactly the role of
a Riemann-Roch Theorem, where for foliations the degree of a divisor

is replaced with the average density of the divisor.

5A4. Geometric K-Theories

The examples described at the end of $A3 for the d-operator
suggest that to obtain analytical results from the foliation index
theorem. it is useful to understand the possible topological indices of
leafwise elliptic operators. In the examples above, the »-topological
indices are varied by making choices of “divisors”" which pair
non-trivially with the foliation cycle C,- As a consequence, various
spaces of meromorphic forms are shown to be non-trivial. To obtain
similar results for a general foliation, ¥, it is useful to determine
the range of topological indices of leafwise elliptic operators for ¥F.
In this section, we briefly describe the formal "calculation” of these
indices in terms of K-groups of foliation groupoids. In some cases,
these abstract results can be explicitly calculated, giving very useful
information. The reader is referred to the literature for more detailed
discussions.  One other point is that the foliation index theorem
equates the analytic index with the evaluation of a foliation cycle on
a K-theory class; these evaluations can be much easier to make, than
to fully determine the topological K-theory of the foliation. In this
section, and in SA5, we will examine more carefully the values of the
topological index paired with a foliation current for some classes of
foliations.

Recall from Definition 2.20 of Chapter II the holonomy
groupoid. or graph, G(X) associated to the foliated space X. A
point in G(X) is an equivalence class [va] of paths v: [0,1] —
X with ¥(0) = x, ¥(1}) = y and Y remains on the same leaf for all t.
Two paths are identified if they have the same holonomy. G(X) is a
topological groupoid with the multiplication defined by concatenation of
paths.

Also associated to ¥ and X is a groupoid I'(X), constructed by

Haefliger in [Hae4]. The groupoid I'(X) coincides with one of the
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restricted groupoids G:(X) of Chapter II. Let CUa) be a locally

finite open cover of X by foliation charts such that U(1 nu 8 is

contractible if non-empty. For each a, there is given a
diffeomorphism 24 Ua — RP X R? sending the leaves of F U(1 to
RP X pt. Define a  transversal Tf_1 = ¢;l(C0} x RY c Ua

for each a. By a judicious choice of the €Uy, we can assume
the €T, are pairwise disioint (cf. [HS}). Then set N =V Ty an
embedded open g-submanifold of X. It is an easy exercise to show
GS(X) coincides with the Haeflizer groupoid I'(X) constructed from
the foliation charts (¢ : U, — RP* 3,

The inclusion N X N < X X X induces an inclusion of
topological groupoids I'(X) C G{X). The cofibre of the inclusion is
modeled on the trivial groupoid RP X RP, where all pairs (x,v) are
morphisms. One thus expects the above inclusion to be an

equivalence, and Haefliger shows in [Hae4] that this is indeed so:

Theorem A4.1 (Haefliger). The inclusion I'(X) € G(X) is a Morita

equivalence of categories.

For any topological groupoid, ¥, there is a classifying space BY
of Y structures, which is constructed using a modification of the
Milnor join construction [Hae2,Mi]. Applving this to G(X) vields the
space BG(X) which is fundamental for foliation K-theory (cf. Chapter 9
[Co7]). Applying the B-construction to I(X), we obtain a space

Br(X) which is fundamental for the characteristic class theory of ¥.

Corollary A4.2. Let F,X be a foliated space. The inclusion T'{X) C
G(X) induces a homotopy equivalence BI(X) > BG(X).

Thus, the topological invariants of BIr(X) and BG(X) agree.
Note the open contractible covering €U,3 of X defines a natural
continuous map X — Br(X). If all leaves of F are contractible,
then this inclusion is a homotopy equivalence, so that the topological
type of BG(X) is the same as X. By placing weaker restrictions on
the topological types of the leaves of ¥. one can more generally

deduce that the inclusion is an N-equivalence on homotopy groups,
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[Haed]. For the generic foliation, however., one expects that the
space BG(X) will have a distinct topological type from X, probably
more complicated.

The space BI(X) can be studied from a "universal viewpoint" by
introducing the Haefliger classifying spaces. For the class of
transversally CT-differentiable foliations of codimcnsion q, Haefliger

defines a space Brf]r). and there is a universal map
iy: BL(X) — Bri®’.

The cohomology groups of Brg”) then define universal classes which
x x

pull back to Br(X) via (ix). The non-triviality of (iX) is then a

statement about both the topology of BI(X) and the inclusion iy. A
short digression will describe the situation for C” foliations.

Let Bl‘q denote the universal classifying space of codimension g

C%-foliations. (It is important to specify the transverse

differentiability of ¥F, as the topology of Bl"q depends strongly on

how much differentiability is required.) The composition
f3": X — Br{X) — qu.

or more precisely its homotopy class. was introduced by Haefliger in
order to "classify” the C™-foliations on a given X. The classification
is modulo an equivalence relation which turns out to be
concordance for X compact, and integradle homotopy for X
open (cf. [Hae2]).

For Br(X), the principal invariants are the characteristic
classes: for a codimension q, C”-foliation there are universal classes

{cf. [L])
~ x x
Ae: H (qu) — H (Bl"q),
and for given ¥ on X we obtain its secondary classes via

* ~s x t 3
Ay = f&' o Ayt H (woq) — H (X).
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We next describe how the topology of BG(X) is related to the
topological indices of leafwise elliptic operators of ¥. For ¥ a
clfoliation of a manifold X, the groupoid G(X) has a natural map to
GL(q.R) obtained by taking the Jacobian matrix of the holonomy along

a path [va]. This induces a map
BG(X) — BGL(q,R),

which defines a rank q vector bundle § — BG(X) whose pullback to
X under X — Br(X) — BG(X) is the normal bundle to ¥. The
€-twisted K-theory of BG(X) is defined as

KE(BG(X) = K.(B(£),S(£))

where B(£) is the unit disc subbundle of & — BG(X), and S(¢) is
the unit sphere bundle.

Connes and Skandalis construct in [CS2] a map
Ind,: KE(BG(X)) — Ka(C (X)),

which they call the topological index map, via an essentially
topological procedure which converts a vector bundle or unitary over
BG{X) into an idempotent or invertible element over C:(X). Let F:X
denote the unit cotangent bundle to F over X. Then there is a
natural map of K-theories, b: KI(F:X) —_— KS(BG(X))_. obtained from
the exact sequence for the pair (B(£),S(£)). If ¥ admits a
transverse invariant measure », then there is a linear functional 2,
on KO(C:(X)) (cf. 6.23), and the composition ¢ ,0Ind ob = Ind;,
the topological measured index. That is, for D a leafwise operator
with symbol class u = [op] € KL(F}X).

#,,0Ind; obu) = <ch(D)Td_r(X).Cy>.

Connes and Skandalis also construct a direct map,
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. ] * *
Ind: K}F X) — Ky(C (X)),

which they call the analytic index homomorphism, by associating to an
invertible u the index projection operator over C:(X) of a zero-order
leafwise elliptic operator whose symbol class is u. Also, Ind; E
#,0Ind (u) is the analytic index of this operator, calculated using the

dimension function associated to ¥. They then proved:

Theorem A4.3 (General Foliation Index Theorem). For anv foliaion ¥,

there is an equality of maps
d _ i 1 * *
In a = Indtob. K'(F,X) — KO‘Cr(X))'

Note that Theorem A4.3 makes sense even when ¥F possesses
no invariant measures. If there is an invariant measure, », then by
the above remarks, the theorem implies the »-measured foliation
index theorem proved in Chapters 7 and 8. Note also that this
formulation of the index theorem shows that the possible range of the
analytic traces of leafwise operators, with respect to a given invariant
measure », are contained in the image of the map ¢”oIndt:
KS(BG(X)) — R. This is the meaning of the earlier statement that
the topology of BG(X) dictates the possible analytic indices of leafwise
operators, and motivates the study of BG(X). In fact, Connes has

*
conjectured that this space has K-theory isomorphic to that of Cr(X).

Conjecture A4.4. Suppose that all holonomy groups of ¥F are

torsion-free. Then Indt is an isomorphism.

It is known that Coniecture A4.4 is true if ¥ is defined by a
free action of a simply connected solvable Lie group on X, [CoT7].
Also. for flows on the 2-torus and for certain "Reeb foliations” of
3-manifolds. the work of Torpe [To] and Penington [Pen] shows that
conjecture (A4.4) holds.

Given a foliated manifold X with both FX and TX orientable, a
natural problem, related to Conjecture A4.4, is to determine to what

extent the composition
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Th Ind
om ¢ £ t *
HelX) = Ko(X) = Kx(X) — Ki(BG(X)) —— Ku«(C_ (X))

is an isomorphism. We describe three quite general results on this,
and then show that the d-Index Theorem also sheds some light on this
problem in particular cases.

Let G be a connected Lie group. A locally free action of G on
X is almost free if given g € G with fixed point x € X, either
g = id or the germ of the action of g near x is non-trivial. If ¥ is
defined by an almost free action of G on X, then G(X) = X X G. If

G is also contractible, then X — BG(X) is a homotopy equivalence.

Theorem A5.5 (Connes [Co07]). Let F be defined by an almost free
action of a simply connected solvable Lie group G on X. Then there

is a natural isomorphism K.(X) = K,(C:(X)).

For B? = I\G/K a locally symmetric space of rank one with
negative sectional curvatures, there is a natural action of the lattice T
on the sphere at infinity (= Sp'l) of the universal cover G/K. The
manifold M = (G/K X Sp'l)/l' can be identified with the unit tangent
bundle T!B. The codimension a = (p-1) foliation of M defined in
Chapter II corresponds here with the Anosov (= weak stable) foliation
of TIB.

Theorem A5.6 (Takai [Tal). The index yields an isomorphism
KaM) % K.(C) (M)

For B a surface of genus 2 2, this result is due to Connes
(Chapter 12, [Co7]).

The third result deals with the characteristic classes of
C®—foliations.  Recall from above that each class [z] € H‘(WOG)
defines a linear functional A¢[z] on He(X). Connes has shown [Cole

that [z] also defines a linear functional on K.(C:(X)). and these
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functionals are natural with respect to the map Hy(X) — K,(C:(X)).

From this one concludes:

Theorem A4.7 (Connes [Col01). Suppose there exists [z] €
H*(WOn) and [u] € H.(X) such that A,[z](ful) # 0. Then [u] is
*

mapped to a non-trivial class in Ka«(C_(X)).

Theorem A4.7 shows that the characteristic classes of F can
be used to prove certain classes in Hy(X) iniect into K,(C:(X)).

After these generalities, we consider foliations of 3-manifolds
with an invariant measure » given, and study the »-topological index.

Ind;(u), for u € Kl(X), which calculates the composition

a

£ 1 * Indp
K,(X) — K§X) = K'(F X) —2 R.

First, here is a general statement for such foliations. Recall that a
simple closed curve ¥ in X transverse to ¥ determines a complex
line bundle E,( over ¥ with divisor [v]. Take d along leaves and

form @ ® E,(, then this gives a map
1 *
Hl(X;Z) — K(F,;X)
[¥] — [3 @ E,]
and composing with Inda vields a map
*
Ind: Hl(X;Z) — Ko(Cr(X)).

Proposition A4.8. Let ¥ be a codimension-one, Cl-foliation of a

compact 3-manifold X. Assume both TX and FX are orientable.

a) Suppose » is an invariant transverse measure with Cy 20

in HZ(X;IR), and the support of » does not consist of isolated toral
leaves. (A toral leaf L is isolated if no closed transverse curve to ¥
intersects L.) Then there exists a holomorphic line bundle E — X
such that Indplé @ E) # 0. and thus Ind(@ ® E) € KO(C:(X)) is
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non-zero.

b} Let vyvy3 be a collection of invariant transverse measures

such that the associated currents €Cq...Cg3 C Hy(X:R) are

linearly independent when evaluated on closed transversals to ¥.

Then there exist holomorphic line bundles El""'Ed over X such that
- *

the elements (Ind(® @ E) i=1...d3 C Ky(C (X)) are linearly

independent.

For example, it is not hard to show that if ¥ has a dense
leaf. and the currents CCl,...,Cd} C HZ(X;IR) of part b) are
independent, then thev are independent on closed transversals. Define
H(A) C HZ(X;IR) to be the subspace spanned by the currents associated

to the invariant measures for ¥.

Corollary A4.9. If ¥ has a dense leaf, then there is an inclusion
H(A) C Ky(CL(XD) 8 R.

Proof of A4.8. First assume there is a closed transverse curve Y to
¥ which intersects the support of ». Then »(v) # 0, and we
define E = E ,. and use (A3.4) to calculate Ind”(é ® E .y ¢#
0 for all but at most one value of n. If no such curve ¥ exists,
then the support of » must consist of compact leaves. One can show
these leaves must be tori which are isolated and this contradicts the
hypothesis that there is a non-isolated toral leaf in the support of

¥. This proves a). The proof of b) is similar. 0

SAS5. Examples of Complex Foliations of 3-Manifolds

The geometry of foliations on 3-manifolds has been intensively
studied. In this section. we select four classes of these foliations for
study, and consider the O-index theorem for each. Let M be a
compact oriented Riemannian 3-manifold. Then M admits a
non-vanishing vector field, and this vector field is homotopic to the
normal field of some codimension one foliation of M. Moreover, M
even has uncountably “many codimension one foliations which are

distinct up to diffeomorphism and concordance, [Thl]. This
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abundance of foiiations on 3-manifolds makes their studv especially
appealing.

There are exactly two simply connected solvable Lie groups of
dimension two. the abelian group RZ and the solvable affine group on

the line.

x>0 } C SL(2.R).

#=1 [

A locally free action of R% or A% on a 3-manifold M defines a
codimension one foliation with very special properties. The foliations
defined by an action of R2 have been completely classified: see (A5.1)
and (A5.2) below. For x1M solvable. the locally free actions of A% on
M have been classified bv Ghys-Sergiescu [GS] and Plante {[Pi1];
see {A5.4) and (A5.5) below. For le not solvable. some restrictions
on the possible Az-actions are known.

Note that Connes’ Theorem A4.5 applies only when ¥ is
defined by an almost free action of R% or A%, This assumption does
not alwayvs hold in the following examples. so we must use the
geometry of F to help calculate the image of the index map.

Throughout. M will denote a closed. oriented Riemannian

3-manifold and ¥ an oriented 2-dimensional foliation of M.

(A5.1) Locally-Free R2-Actions
Let a € SL(2,2)., which defines a diffeomorphism

2. T2 — Tz. and a torus bundle over S:l by setting

M, = T X R/(x.t) ~ (8,(x).t+1).
Theorem A5.1 [RRW]. Suppose M admits a locally free action of Rz.
Then M is diffeomorphic to Ma for some a € SL(2.2).

For ¥ defined by an RZ-action. le is solvable by Theorem
A5.1. and F has no Reeb components. The foliated 3-manifolds with
le solvable and no Reeb components have been completely classified
by Plante (Theorem 4.1 of [Pi2]: note that only his cases II, IIIl or V
are possible for an Rz—action).

301



For rrlM solvable, there is also a classification of the invariant

measures for any F on M:

Theorem A5.2 (Plante-Thurston). If le is solvable and ¥ is
transversally oriented. then the space of foliation cycles. H(A) C

HZ(M). has real dimension 1.

For ¥ defined by an Rz—action, this implies there is a unique
non-trivial proiective class of cycles in HZ(M) which arise from
invariant transverse measures. Fix such an invariant measure ».

For the d-index theorem. evaluation on Cv vields the average
Euler characteristic of the leaves in the support of ». These leaves
are covered by Rz, hence have average Euler characteristic zero. and

Tv anihilates the class Ind(d).

For the operator O, we use formula (A3.4) to construct
holomorphic bundles over M for which T, o Indd ® E) # 0. The
number of such bundles is controlled by the period mapping of
v. This is a homomorphism P : Hl(M;Z) — R defined as P,la)
= »(v) where v is a simple closed curve representing the homology
class a. The rank of its image is called the rank of (F,»),
denoted by r(¥). Note that 1 <€ r(F) < 3.

Proposition A5.3. The elements Indid 8 E) € KO(C:(X)), for E —- M
a holomorphic line bundle, generate a subgroup with rank at least
r(F).

Proof. For each a € ~M with Pv(a) # 0, choose a simple
closed curve Y in M representing a and transverse to ¥. This is
possible by Theorem A5.1 and the known structure of Rz-actions.
Then take E = EY as in %3 to obtain Tp o Ind@ ® E) =
<ch(E).cy> = py) = PV(Y). This shows the map T» is onto the

image of Pv. o
It is easy to see that r(¥) = 3 if and only if ¥ is a foliation

by planes. This coincides with the Rz—action being free, and then one
knows by Theorem A4.5 that

302



a +— Indd® @ E.)

is an isomorphism from HZ(M;Z) onto the summand of KO(C:(M))

=

corresponding to the image of HZ(M;Z) C KO(M) —_ KO(C:(M)).

Let N3 be the nilpotent group of strictly triangular matrices in

GL(3.R):
%= { [

For each integer n>0, define a lattice subgroup
1

r = 0

n 0

Then M = N3/l"n is a compact oriented 3-manifold, and the subgroup

1
R2={[0
0

2

note M is a circle bundle over Tz_. and HZ(M;IR) = R, By
Theorem A4.5, the index map is an isomorphism, so KO(C:(M)) = 23.

1
0
0

O~

b
cl such that a,b.c € R } .
1

o v
-0

/n
such that p,q,r € 2 .

(=R R

b
0] } acts almost freely on M via left translations. Also
1

(=N g

00
The curve representing the homology class of a = [ 1 l] € le
0o I
is transverse to ¥ and P»‘“’ # 0 for a transverse measure » with
Cv # 0. However, Ind(d R EY) cannot detect the contribution to
Ko(C(M)) from the curve defined by a fibre of M — TZ.

(A5.3) Foliations Without Holonomy

If for every leaf L of a foliation. ¥, the holonomy along each
closed loop in L is trivial,then we say ¥F is without holonomy. In

codimension-one, such foliations can be effectively classified up to
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topological equivalence. We discuss this for the case of c2-foliations.
By Sacksteder's Theorem (cf. [L]), a codimension-one, Cz-foliation
without holonomy of a compact manifold admits a transverse invariant
measure » whose support is all of M. Moreover, there is
foliation-preserving homeomorphism between M and a model foliated
space, X = (ﬁ X Sl)/l‘, where I is the fundamental group of a
compact manifold B, B is its universal cover with T acting via deck
translations. and r acts on S! via a representation
exp(2rip): ' — SO(2), for p: T — R. The foliation of X by sheets
B X €93 has a canonical invariant measure. df#, and » corresponds
to df under the homeomorphism. Since the index invariants are
topological, in this case we can assume that M is one of these
models. For a 3-manifold this implies B = Z'g for Zg a surface of
genus g 2 1. The case g = 1 is a special case of examples (A5.1)
above.

Let A denote the abelian subgroup of R which is the image of
o. Denote by r(F) the rank of A. It is an easy geometrical
exercise to see that the group A agrees with the image of the
evaluation map [df]: Hl(M;Z) — [R. Moreover, there exists simple
closed curves €vj...¥.3 in M transverse to ¥ for which
€P,(v;)3 vields a Z-basis for I'. Form the holomorphic bundles CE;32
corresponding to the Cv;3. then the set CInd(© ® E;)3 generates a
free subgroup of rank r in KO(C:(M)). Since HZ(BG(M);IR) has rank r,

this implies
Proposition A5.4. The index map
T *
Ky(BGIM) — KO(Cr(M))
is a monomorphism.

These foliations have been analyzed in further detail by

Natsume [N] where he shows that this map is also a suriection.

(A5.4) Solvable Group Actions

The locally free actions of A2 on 3-manifolds has been studied
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by Ghys~Sergiescu [GS] and Ghys [Gh]:

Theorem A5.5 [Gh]. Let le be solvable and suppose A2 acts on M.
Then M is diffeomorphic to a torus bundle Ma over Sl, and the

monodromy map a € SL(2,R) has two distinct real eigenvalues.

Theorem A5.6 [Gh]. Suppose A2 acts locally freely on M and
preserves a smooth volume form. Then M is diffeomorphic to
SL(2.R)/T for some cocompact lattice in the universal covering group
m, and the action of A2 on M is via left translations.

Proposition A5.7 [Gh]. Suppose Hl(M) = 0 and A2 acts locally freely

on M. Then the action preserves a smooth volume form on M.

Let us describe the foliation on M, = T2 x R/®,. Let v E
RZ be an eigenvector with eigenvalue A > 0. The foliation of R3
by planes parallel to the span of C(; X 0), (0 X 1)3 is invariant
under the covering transformations of RS — M, so descends to a
foliation Fy on M,. When X = 1, the R%-action on RS defining the
foliation there descends to an R% action on M, defining ¥y When
N # 1, the leaves of ¥, are defined by an action of A% on M,.

For A2-actions on M with KlM not solvable, it seems
reasonable to conjecture they must have the form given in Theorem
A5.6.

If the action of A2 preserves a volume form on M3, then ¥ is
transversally affine [GS], so there can be no invariant measures for
¥F. In this case Theorem 8.6 of Chapter VIII reveals no information
about KO(C:(M)). However, one has Connes’ Theorem A4.5 since the
Az-action is almost free. To give an illustration, let I' C SL(2,R)
be a cocompact lattice, and set M = SL(2,R)/T. The group A2
acts via left translations and preserves a smooth volume form on M.
Then GIM) = M x A2, KT(BGM) = KOM) and
Ind: KS(BG(M)) — KO(C:(M)) is an isomorphism. Note the foliation on
M admits 2g closed transversals CYl.....ng) which span H;(M).

Form the corresponding bundles Ei — M. and consider the classes
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(Ind(3 ® E)> C Ky(C(M). It is natural to ask whether these

classes are linearly independent. and for a geometric proof if so.

(A5.5) Foliations With All Leaves Proper

A leaf L € M is proper if it is locally closed in M. ¥ is
prover if every leaf is proper. The geometric theory of
codimension-one proper foliations is highly developed (cf. [CC2],

[HHi]). We recall a few general facts relevant to our discussion.

Theorem A5.8. Let ¥ be a proper foliation of arbitrary codimension.
Then the quotient measure space M/F, endowed with the Lebesgue

measure from M, is a standard Borel space.

Corollary A5.9. Let F be a proper foliation of arbitrarv codimension.
Then any ergodic invariant transverse measure for ¥ with finite total

mass is supported on a compact leaf.

Theorem A5.10. For a codimension one proper foliation ¥, all leaves
of ¥ have polynomial growth, and the closure of each leaf of ¥

contains a compact leaf.

Let ¥ be a proper codimension-one foliation of M3. Given a
transverse invariant measure », we can assume without loss of
generality that the support of » is a compact leaf L. If L has genus
22, then there exists a closed transversal v which intersects L. so
T, o Ind(@ ® E .y} # 0 for all but at most one value of n. Thus,
the class [L] € Hz(M;Z) corresponds to a non-trivial class Ind(®@ &

*
E .y) € KolC (M) If L is a 2-torus, then it is difficult to tell
whether the homology class of L is non-zero, and if so, whether it
generates a non-zero class in KO(C:(M)). There is a geometric

criterion which vields an answer.
Theorem AS5.11 (Rumler-Sullivan). Suppose M admits a metric for

which each leaf of ¥ is a minimal surface. Then every compact leaf

of F has a closed transversal which intersects it.
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Corollary A5.12. Suppose ¥ is a proper and minimal foliation. For
each ergodic invariant transverse measure v, there is a holomorphic
bundle E, — M such that Ind(® ® E,) € K(C,(M) is non-zero,
and Indp(a Q@ E)) =0

We cannot conclude from Corollary A5.12 that the elements
(Ind(®@ ® Ey) v ergodic} are independent. (Consider the product
foliation Zg x 81) However, if M has a metric for which every leaf
is geodesic submanifold, then there are as many independent classes in
KO(C:(M)) as there are independent currents C, € HZ(M;IR).

The Reeb foliation of s3 is another relevant example of a
proper foliation. It is not minimal, and KO(C:(M)) % Z so the toral
leaf does not contribute (cf. [Pen] and [To]).

(A5.6) Foliations With Non-Zero Godbillon-Vey Class

There is exactly one characteristic class for codimension-one
foliations (of differentiability at least Cz), the Godbillon-Vey class GV
€ H3(M;IR). Recall from %A4 that GV defines linear functionals on
both K«(M) and K.(C:(M)), and these functionals agree under the map
KelM) — Kq(CL(M). (We remark that the map GV: Ku(C,(M) — R
is not natural -- it depends upon the choice of a smooth dense
subalgebra of C:(M).) If GV # 0 in Hs(M), then there is a class [u]
€ K,(C:(M)) on which GV is non-trivial. From this we conclude that

the composition

HyM;Z) — KS(BG(M) — K (C_ (M)

is injective.

The information on Kl(C:(M)_) obtained from GV is about all
one knows for these foliations ¥, on M, which underlines the need
for better understanding of how the geometry of a foliation is related

to the analyvtic invariants in KO(C:(M)).
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APPENDIX B: L2 HARMONIC FORMS ON NON-COMPACT MANIFOLDS

By Calvin C. Moore, Claude Schochet,

and Robert J. Zimmer

If M is a compact oriented manifold then the Hodge theorem
supplies a unique harmonic form associated to each de Rham
cohomology class of M. If the compactness assumption is dropped
then the situation becomes considerably more sensitive. In this
appendix we demonstrate how to use the index theorem for foliated
spaces to produce L2 harmonic forms on the leaves of certain foliated
spaces.

We begin by recalling the Hirzebruch signature theorem. If M
is a compact oriented manifold of dimension 4r then its signature is

defined to be the signature of the bilinear form on Hzr(M) given by
(xy) = XY,
[~

Recall that there is a signature operator A (cf. Chapter VIII), and the
signature of the manifold. Sign(M). is the Fredholm index of this
operator. If M has positive signature then Hzr(M) must be non-trivial
and must contain classes represented by harmonic forms. (An easy
special case: take M4r = IPZF. Then Sign(M) = 1, Hzr(M) = R and
so CP2T has harmonic 2r-forms.)

Let X denote a compact metrizable foliated space with leaves
of dimension 4r and oriented foliation bundle F. Then there is a
signature operator A = €A, 2 with local trace denoted here by a =
Cal} and associated partial Chern character [a] € H:r(X). For

each invariant transverse measure ¥ we define the signature of X by
Sign(X.») = <[a].[Cv]>.

where Cy is the Ruelle-Sullivan current associated to ». This is

independent of the metric chosen but of course does depend upon ».
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The foliated space version of the signature theorem states that [a] =
[Lr]' where Lr is the Hirzebruch L-polynomial in the tangential
Pontrjagin classes of F. If Sign(X.») > 0 then there are
y-non-trivial L2 harmonic 2r-forms on X (that is to say, there are
non-zero L2 harmonic 2r-forms on some of the leaves of X, and the
support of v is positive on the union of these leaves.).

Here is our first result.

Theorem B1. Suppose that X is a compact oriented foliated space
with leaves of dimension 4. Assume that X has a tangential
Riemannian structure so that each leaf is isometric to the complex
2-disk B2 (with its Poincare metric). Let » be an invariant

transverse measure on X. Then Sign(X,») > 0.

Corollary B2. The space X cannot be written as a product of foliated

spaces.

Corollary B2 also follows from the (significantly more general)

assertions of [Z3].

Corollary (of the proof) B3. The space B2 has non-trivial L2

harmonic 2-forms.

Remark. It mav be enough to assume that each leaf of X is
quasi-isometric to Bz.

Our proof of Bl is somewhat round-about. First we prove Bl
in a very special case in the setting of automorphic forms. Then we
prove the corollaries. Finally we deduce the general case of Bl from
Corollary B3. The foliated spaces index theorem is used twice, in

different directions.

Proof. Consider the following special case. Let G be the group of
holomorphic automorphisms of Bz, let T be a cocompact torsionfree
lattice in G, and let K be a maximal compact subgroup of G. Then
B2 is isometric to the homogeneous space G/K. The quotient space

Bz/l‘ is a compact complex manifold of real dimension 4. We assume
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that it is oriented. The lattice I' may be chosen so that
Sign(BZ/ I') is strictly positive; we assume this to be the case.

Let S be a smooth manifold upon which I' acts without fixed
points and suppose that S has a finite I'-invariant measure u. (For
instance, take S = G/I'" for some suitable lattice TI'.) Define an
action of T on B2XS by

(b,sly = (bv,sv)
and let
X = (B2xs)/T

denote the resulting orbit space. Then X is a compact space foliated

by the images of the various maps
B%x(s) — BZxS — X
so each leaf is isometric to BS. There is a natural projection
x: X — BY/T

given by sending (b,s) to the image of b under the map B2 —_ Bz/l'.
The restriction of x to each leafl ¢ 1is a covering map
¢ — B%/T. The tangent bundle F to the foliated space is simply the
pullback of the tangent bundle of (the manifold) Bz/ I by «.

Let us compare the signature theorems on X and on B2/r.
The Hirzebruch signature theorem (in this low-dimensional situation)

reads
Sign(B2/r) = J’ Ly, (1B%/1)")dvol
3

where dvol is the volume form on BZ/I‘ and Py is the first Pontriagin
class. The Connes signature theorem applied to the signature operator
A with respect to the invariant transverse measure » corresponding

to the invariant measure g on S reads



Sien(X.») = [ Lp](F )dv.
3

As F = x'(T(Bz/I‘) and Pq projects to p'{ under the map from de

Rham to tangential cohomology, we have
: 2 - 1 2/
Sign(B/T) = j’ L5 (T(B2/1) )dvol
3
= f lpT(F‘)dv
3
= Sign(X,»)
so that
Sign(X,») = Sign(B2/T) > 0.
Thus Sign{X,») is strictly positive. and in fact is a positive integer (if
we properly normalize u originally). This proves the theorem for this
particular class of foliated spaces.

Next we establish Corollary B3. By definition of Sign(X,») we

see that
Iaedv >0

in our example above. Now each leaf ¢ is isometric to B2 and the
measure a, is the local trace of the signature operator on Bz, so that

in this example the measure a 2 really does not depend upon 2. As
- x
a, = Ker(Az) - Ker(Az )

we see that Ker(Az) must be non-trivial for some leaves £; thus the
space B2 must have non-trivial L® harmonic 2-forms. This proves
Corollary B3.

We turn next to the general case of Theorem Bl. Let X be a
compact foliated space as in the statement of the theorem. Then the

local trace a = (a e) of the signature operator is independent of the
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leaf 2. Thus
Sign(X, ) = j a,dy > 0

by our earlier argument. Apply the foliation index theorem again (in

the opposite direction) and we see that
[ Lo7F%av > 0
3

which implies that the class [p](F )] # 0 in HA(X).

Finally, X cannot split as a product of foliated spaces since
that would imply that Sign(X.») = 0. This completes the proof of BI,
B2, and B3. u]

In order to generalize, one need only look at those properties
of B2 which were actually used in the proof. The key fact was that
there was a lattice group I such that BZ — Bz/l‘ was
well-behaved, and such that B%/r was a compact manifold with

positive signature.

Definition B4. A Clifford-Klein form of a connected and simply

connected Riemannian manifold B is a Riemannian manifold B' whose
universal Riemannian covering is isomorphic to B.

A. Borel [Bor] has shown that a simply connected Riemannian
symmetric space B always has a compact Clifford-Klein form. Let ®
be the collection of spaces which are finite products of irreducible

symmetric domains whose compact counterparts are
U(p+2r)/(U(p)xU(2r)),
S0(4k+2)/(S0(4k)xS0(2)),
Eg/(Spin(10)xT?).

The space B2 is in B since B2 is associated to the space



UB)/(U(1)XU2) = TP2.

If B is a simply connected Riemannian symmetric space then
Sign(B') = 0 unless B € 8. If B € 8 then Sign(B') =2 1, by Borel
[Bor,83]. This is all that we need.

Theorem B5. Let X be a compact oriented foliated space with leaves
of dimension p. Suppose that X has a tangential Riemannian structure
such that each leaf is isometric to some fixed B € ®. Then

Sign(X,») > 0 for each invariant transverse measure ».

Corollary B6. If B € 8 is a manifold of dimension 4r, then B has
non-trivial L? harmonic 2r-forms.

We omit the proof, which is essentially the same as the special
case B = BZ.

We turn next to the use of the Gauss-Bonnet theorem. Recall
that if X is a compact oriented foliated space with leaves of
dimension 2q then the index theorem applied to the de Rham operator

vields

[x1 = [K,1/2x

in H;(X), where x is the alternating sum of the Betti measures (8.6).

Given an invariant transverse measure », the theorem reads
x(X,») = J' K, /2x d,

where

x(X,») = j xdy

is the tangential Euler characteristic of (X.»).

Suppose that G is a semisimple Lie group with maximal compact
subgroup K and torsionfree lattice T. Let S be some compact
smooth manifold upon which I' acts without fixed points and let u be

a finite TI-invariant measure on S. Let B = G/K and define



X = (BXS)/T (where I' acts diagonally). Then X is a foliated manifold
with leaves corresponding to the image of BX{s3. The space B/T
is a compact smooth manifold and each leaf £ is a covering space
for B/T. The space X has an invariant transverse measure Y
corresponding to the measure u on the global transversal S. For
instance, if G = PSL(2,R) then B is the upper half plane H and X is
foliated by copies of H. (Note that H has constant negative
curvature- it is homeomorphic but not isometric to C.)

The Euler characteristic of B/I is given by the classical

Gauss-Bonnet theorem:
x(B/T) = J’ K/2x dvol

where K is the curvature form on B/I' and dvol is the volume form
on B/T.

Specialize to the case where each leaf has dimension 2. The
Betti measure 8, is always zero since there are no L2 harmonic
functions on non-compact manifolds. Duality implies that By = 0.

Thus the foliation Gauss-Bonnet theorem reduces to
I—Ald» = I K, /2x dv

where KT is the Gauss curvature along the leaves. Arguing just as in

the proof of the special case of Theorem Bl, we see that
x(B/T) = f K/2x dvol = [ K_/2x dv = f-nldv.

Assume that the surface B/I' has genus greater than 2. Then
x(B/I') is negative and hence the Betti measure 84 is strictly

positive. Since leaves have dimension 2, we see that

J‘ Ker(d®d )3 _gorms) > O

In our example we are again integrating a constant function. Thus on
the generic leaf ¢ = G/K there are non-trivial Lz harmonic 1-forms.

If we continue as in the study of the signature operator, we



can obtain the following theorem.

Theorem B?7. Let X be a compact oriented foliated space with
tangential Riemannian structure such that each leaf is isometric to the
upper half plane. Let » be an invariant transverse measure. Then
the tangential Euler characteristic x(X,») is strictly positive and X

has non-trivial L2 harmonic 1-forms.

Remark. If the leaves have dimension greater than 2 then 84 does
not correspond so neatly to the Euler characteristic. For example, if
the leaves have dimension 4 and x(B/I') < 0 then

I (-8) + By - By)dy < 0

so that
j Bydy < f (8, + B3)dv.
As the left hand side must be non-negative, this implies that the

integral of either 31 or 84 {and hence both of them, by duality) must

be strictly positive. Thus there are L2 harmonic 1 and 3-forms.
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APPENDIX C: POSITIVE SCALAR CURVATURE
ALONG THE LEAVES

By Robert J. Zimmer

Mikhael Gromov and Blaine Lawson, in their classic paper
[GL], use Dirac operators with coefficients in appropriate bundles and
associated topological invariants to investizate whether or not a given
compact non-simply connected manifold can support a metric of
positive scalar curvature. In this appendix we consider the analogous
problem for foliated spaces. We use appropriate tangential Dirac
operators to investigate the existence of a tangential Riemannian
metric with positive scalar curvature along the leaves of a compact
foliated space. Gromov-Lawson use the K-genus and the
Atiyah-Singer index theorem; we shall use the tangential K-genus and
the Connes index theorem.

Let M be a compact oriented manifold of dimension p = 2d
with associated Hirzebruch ;—class, R‘M) € HEVENM,R), a
polynomial in the Pontriagin classes. If M is a spin manifold, then
there are the associated bundles of half-spinors S*(M), and an

associated Dirac operator
D*: st — r s

The Atiyah-Singer theorem implies that index(D+) vanishes unless p is

divisible by 4, and in that case
index(D*) = A[M]

where ;[M] is the ;-genus of M. i.e., ;[M] = <;(M),[M]>. If
E is any Hermitian bundle over M (with a unitary connection) then,
following Gromov-Lawson [GL]. S(MIQE is called a twisted spin
bundle over M. Associated to this bundle there is also an elliptic

operator called the twisted Diraec operator D*. The



Atiyah-Singer theorem now implies that
index(D*) = (-1)d<ch(E)AMM), [M1>.

Suppose now that X is a compact foliated space with oriented
foliation bundle F and invariant transverse measure V. Suppose
further that F is a spin foliation, i.e., F has a spin structure. Then
there is an associated bundle of spinors and for each leaf £ an
associated Dirac operator DI on the leaf and hence a tangentially

elliptic operator D = CDZ). Then by Connes' theorem,
Index (D% = (-19<A_(F), [C, 1>

where [Cv] is the homology class of the Ruelle-Sullivan current

associated to ». Define
Av[X] = <A1(F), [C,1>

the tangential X—Qenus of X with respect to the invariant
transverse measure ». Note that if ker D, =0 as an unbounded
operator on Lz(z) for v-a.e. £, then ;v[X] = 0.

Choose some tangential Riemannian metric on X and let «
denote the scalar curvature along the leaves. We say that the metric
has positive scalar curvature on the leaf 2 if x 2 0
on £ and if «x > 0 at some point of £. If this is so, then by
Lichnerowicz's computations, ker Dz = 0, and since we are in L2 and
D, is formally self-adjoint, ker D, = 0. Thus:

Proposition Cl. Let X be a compact foliated space with foliation
bundle F with a given spin structure, and let » be an invariant
transverse measure. If there exists a metric on X which has positive

scalar curvature along v-a.e. leaf, then ‘:v [X] = 0.

Now suppose that E is an Hermitian bundle on X with a unitary
tangential connection. For any leaf £, let E 2 be the restriction of
E to 2. Then there is a twisted spin bundle S(F)®E on X, and a



twisted Dirac operator p* = CD;). Once again, Connes' theorem

implies:
Proposition C2. Ind,(D*) = <ch, (E)A_(F),[C,1>.

Thus if ker(D*) = 0, then <ch_(E)A_(F),[C,}> = 0.
For each leaf ¢, the equation

D} = ViV, + x/4 + R),
holds, where Vv is a certain first order tangential operator, and Ro is
described as in [GL, Theorem 1.3], in terms of the Clifford
multiplication and the tangential curvature tensor of E 2 An

argument as in [GL, Theorem 1.3] yields the following proposition.

Proposition C3. If «2 4(6!0)£ and « > r(ao)e at some point,
then ker Dz = 0.

In particular, this would yield vanishing of
<ch (B)A ,(F), [C,,1>.

Definition C4. Call a manifold M expandable if for each r, there
is a smooth embedding of the Euclidean ball

(where M is the universal cover of M) such that

aer(v) 2 v for all v € TB,.
Example C5. The torus T is expandable.
Proposition C6 (Gromov-Lawson).

1) A compact solvmanifold is expandable.



2) A manifold of nonpositive curvature is expandable.

Definition C7 (slight modification of [GL]). A compact manifold M of
dimension n is enlargeable if for each ¢ > 0 there is a finite
covering M' — M and a c-contracting map M' — S™ of non-zero

degree.

Proposition C8. Let M be a compact expandable manifold and suppose
that n‘l(M) is residually finite. Then M is enlargeable.

Theorem C9 (Gromov-Lawson). Suppose that M is an enlargeable
manifold of even dimension and suppose that some finite cover of M is

a spin manifold. Then M has no metric of positive scalar curvature.

Corollary C10. No compact solvmanifold and no manifold of
non-positive curvature with a finite spin covering supports a metric of

positive scalar curvature.
We move to the context of foliated spaces.

Theorem Cl1. Let M be a compact ehlargeable manifold of even
dimension with a finite spin covering M'. Let xl(M) act on a space
Y with an invariant measure » (not necessarily smooth). Form the

associated foliated bundle over M
Y— X= Mxxl(M)Y - M

so that each leaf is of the form i'/l/(subgroup of xl(M)). Then there
is no tangential Riemannian metric on the foliated space X such that

every leaf has everywhere positive scalar curvature.
Corollary C12. For a foliated bundle over any compact solvmanifold or
over any manifold of non-positive curvature with a finite spin cover,

the result holds.

Proof. For the solvmanifold case in odd dimension, cross with S1 with



the foliation (leaf))(S1 over solvmanifolds. ]

Proof of Theorem C11. Suppose that there were such a metric. Let
0 < k, € min x on almost all leaves. Passing to finite covers vields

the diagram

I
1'

ll

M' —

with a c-contracting map f: M' — Szn of non-zero degree, where

c2 < xo/a and a depends upon the dimension of M and data on a

fixed Hermitian bundle Eo —_ SZn with cn(Eo) # 0. Proposition C3

and computation as in Proposition 3.1 of [GL] imply that
x X ~ s> =
<ch1(p f Eo)Av(F)’ [C,] = 0.
Since

ch (6 fB)=— o (T(E) + 1
r'0 °-(n-l)!o nlby

and Kv[X] = 0 by Proposition C1, it follows that
z X% 1 -
<o f c (E))[C,1> = 0.
Since

[ felEn o

S2n

we use the basic computation that <o'w, [C”]> z 0 for foliated

bundles, where fw # 0. This is a contradiction. 0
Gromov-Lawson show [Cor. A] that any metric of non-negative

scalar curvature on the torus T is flat. That suggests the following

conjectures.
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Conjectures C13.

1) For foliations over T, ¥ 2 0 along the leaves implies that

x = 0 along the leaves.

2) (stronger) If # 2 0 then the leaves are Ricci flat, or even

3) (still stronger) If ¥ 2 0 then the leaves are flat.

Remark C14. If M is a manifold with non-negative scalar curvature
and with « > 0 at one point of M, then Kazdan and Warner have
shown [KW] that there is a conformal change in the metric of M
such that x > 0 everywhere on M. Suppose that X is a compact
foliated space and suppose that X has positive scalar curvature along
the leaves. Is it true that the metric on X may be altered so that
x > 0 everywhere? This mav be done one leaf at a time; the

difficulty lies in making the change continuous transversely.
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