
Lecture Notes in Computer Science 1596
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

�
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Riccardo Poli Hans-Michael Voigt
Stefano Cagnoni David Corne
George D. Smith Terence C. Fogarty (Eds.)

Evolutionary
Image Analysis,
Signal Processing and
Telecommunications

First European Workshops,
EvoIASP’99 and EuroEcTel’99
Göteborg, Sweden, May 26-27, 1999
Proceedings

��

Volume Editors

Riccardo Poli
Department of Computer Science, University of Birmingham
Edgbaston, Birmingham B15 2TT, UK
E-mail: R.Poli@cs.bham.ac.uk

Hans-Michael Voigt
Centre for Applied Computer Science
Rudower Chaussee 5, D-12484 Berlin, Germany
E-mail: voigt@gfai.de

Stefano Cagnoni
Department of Computer Engineering, University of Parma
Parco delle Scienze 181/a, I-43100 Parma, Italy
E-mail: cagnoni@ce.unipr.it

David Corne
University of Reading
Whiteknights, PO Box 225, Reading RG6 6AY, UK
E-mail: D.W.Corne@reading.ac.uk

George D. Smith
University of East Anglia
Norwich, Norwich NR4 7TJ, UK
E-mail: gds@sys.uea.ac.uk

Terence C. Fogarty
Napier University
219 Colinton Road, Edinburgh EH14 1DJ, UK
E-mail: tcf@dcs.napier.ac.uk

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme
Evolutionary image analysis, signal processing and
telecommunications : first European workshops ; proceedings /
EvoIASP ’99 and EuroEcTel ’99, Göteborg, Sweden, May 26 - 27
1999. Riccardo Poli ... (ed.). - Berlin ; Heidelberg ; New York ;
Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo
: Springer, 1999

(Lecture notes in computer science ; Vol. 1596)
ISBN 3-540-65837-8

CR Subject Classification (1998): I.4, C.3, I.5.4, H.4.3, F.1

ISSN 0302-9743
ISBN 3-540-65837-8 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

c© Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

Typesetting: Camera-ready by author
SPIN: 10704703 06/3142 – 5 4 3 2 1 0 Printed on acid-free paper

Preface

Evolutionary Computation (EC) is a rapidly expanding field of computer science
which creates, studies and applies problem solving, optimisation and machine-
learning techniques inspired by the theories of genetic inheritance and natural
selection. Although the origins of this field can be traced back to the inventors
of the computer, Turing and von Neumann, it was only properly founded in the
1960s by people such as Holland, Rechenberg and Fogel, and only became widely
known and worked on in the late 1980s.

During this time a number of results were reported in the literature which
showed how EC techniques can solve problems in domains such as automatic
design, optimisation, pattern recognition and control. Until recently, however,
only very rarely could one claim that EC techniques approached the performance
of human experts in these domains.

Thanks to the technological improvements as a result of empirical work in
EC, advances in EC theory, and the increased power of the computer, EC is now
ready for large scale applications in complex engineering domains, such as image
analysis, signal processing and telecommunications.

This volume contains the proceedings of EvoIASP’99, the first European
Workshop on Evolutionary Computation in Image Analysis and Signal Pro-
cessing, and of EuroECTel’99, the first European Workshop on Evolutionary
Telecommunications, held, respectively, on 28 and 29 May 1999, in Goteborg,
Sweden.

EvoIASP’99 was the first event specifically devoted to the application of EC
to image analysis and signal processing. The aims of the workshop were, firstly,
to give European and non-European researchers in these fields, as well as people
from industry, an opportunity to present their latest research and discuss current
developments and applications, and, secondly, to foster closer future interaction
between members of the three scientific communities involved.

EuroECTel’99 was the first international meeting specifically oriented to-
wards work on the application of EC to the variety of optimisation problems
which exist in the field of telecommunications. Some of the very latest work on
this topic was presented and discussed at this workshop, including new methods
for network optimisation, issues of optimisation in distributed databases, and
new EC-based methods for verifying communications protocols.

The workshops were held in conjunction with two other major European
events: EvoRobot’99, the second European Workshop on Evolutionary Robotics,
held on May 28 and 29, and EuroGP’99, the second European Workshop on
Genetic Programming, held on May 26 and 27.

Thirteen papers were accepted for publication in the EvoIASP’99 proceed-
ings and for presentation at the workshop while five papers were accepted for
publication in the EuroECTel’99 proceedings and for presentation at the work-
shop. Many of these papers are written by researchers internationally recognised

in their respective fields and all are of high quality. This has been assured by two
international program committees which include the best EC researchers from
around the world, as well as experts in image analysis, signal processing, and
telecommunications.

May 1999 Riccardo Poli, Hans-Michael Voigt , Stefan0 Cagnoni,
David Corne, George Smith, and Terence C. Fogarty

VI Preface

Organization

EvoIASP’99: the first European Workshop on Evolutionary Image Analysis and
Signal Processing was organized by EvoIASP, the EvoNet Working Group on
Image Analysis and Signal Processing

EuroECTel’99: the first European Workshop on Evolutionary Telecommunica-
tions was organized by ECTelNet, the EvoNet Working Group on Telecommu-
nications

EvoIASP’99 Organizing Committee

Program co-chair:
Program co-chair:
Publication chair:
Publicity chair:
Local chair: Peter Nordin (Chalmers University of Technology,

Riccardo Poli (University of Birmingham, UK)
Hans-Michael Voigt (GFaI Berlin, Germany)
Terence C. Fogarty (Napier University, UK)
Stefano Cagnoni (University of Parma, Italy)

Sweden)

EvoIASP’99 Program Committee

Giovanni Adorni, University of Parma, Italy
Wolfgang Banzhaf, University of Dortmund, Germany
Albert0 Broggi, University of Pavia, Italy
Stefano Cagnoni, University of Parma, Italy
Ela Claridge, University of Birmingham, UK
Dave Cliff, MIT, USA
Jason Daida, University of Michigan, USA
Kalyanmoy Deb, University of Dortmund, Germany
Terence C. Fogarty, Napier University, UK
David Hogg, University of Leeds, UK
Mario Koeppen, FhG IPK, Germany
William B. Langdon, University of Birmingham, UK
Evelyne Lutton, INRIA, France
Peter Nordin, Chalmers University of Technology, Sweden
Riccardo Poli, University of Birmingham, UK
Jim Smith, University of the West of England, UK
Hans-Michael Voigt , GFaI Berlin, Germany

EuroECTel’99 Organizing Committee

Program co-chair:
Program co-chair:
Program co-chair:
Publication chair:
Local chair: Peter Nordin (Chalmers University of Technology,

David Corne (University of Reading, UK)
George Smith (University of East Anglia, UK)
Martin Oates (BT, UK)
Terence C. Fogarty (Napier University, UK)

Sweden)

EuroECTel’99 Program Committee

Thomas Baeck, Informatik Centrum Dortmund, Germany
Brian Carse, University of the West of England, UK
Marco Dorigo, Free University of Brussels, Belgium
Terence C. Fogarty, Napier University, UK
Jin K. Hao, EMA-EERIE, France
Markus Hoehfeld, Siemens, Germany
Andy Keane, Southampton University, UK
Bernard Manderick, Free University of Brussels, Belgium
Jason Mann, Nortel, UK
Masaharu Munetomo, Hokudai University, Japan
Peter Nordin, Chalmers University of Technology, Sweden
Ken Sharman, University of Glasgow, UK
Matteo Sonza Reorda, Politecnico di Torino, Italy
Mark Sinclair, University of Essex, UK
Alice Smith, University of Pittsburgh, USA
John Turner, Nortel, UK
Brian Turton, Cardiff School of Engineering, UK
Athanasios Vasilakos, ICS-FORTH, Greece

Sponsoring Institutions

Chalmers University of Technology and Goteborg University, Sweden
EvoNet: the Network of Excellence in Evolutionary Computing

VIII Organization

Table of Contents

Evolutionary Image Analysis and Signal Processing Talks
An Evolutionary Approach to Fitting Constrained Degenerate Second

C. Robertson, R. B. Fisher, N . Werghi and A. P. Ashbroolc

J. F. Miller
GA Optimisation of Spatio-Temporal Grey-Scale Soft Morphological Filters

N . R. Harvey and S. Marshall
Simulation of Evolvable Hardware to Solve Low Level Image Processing
Tasks .. 46
G. Hollingworth, A. Tyrrell and S. Smith

Genetic Snakes for Medical Images Segmentation 59
L. Ballerini

Evolving a Task Specific Image Operator 74
M. Ebner and A. Zell
Generation and Selection of Sensory Channels 90

Order Surfaces ... 1

Evolution of Digital Filters Using a Gate Array Model 17

with Applications in Archive Film Restoration 31

E. D. de Jong and L. Steels

Evolutionary Image Analysis and Signal Processing Posters
Selecting Filter Banks to Enhance Evoked Potentials Recordings Using

S. J. Turner, P. D. Picton and J. A. Campbell

S. C. Roberts and D. Howard

Evolutionary Algorithms .. 101

Evolution of Vehicle Detectors for Infrared Line Scan Imagery

Genetic Programming for Channel Equalisation

111

126
A. Esparcia-Alca'xar and K. Sharman

Improving Mutation Capabilities in a Real-Coded Genetic Algorithm 138
C. Munteanu and V. Laxarescu
Model-Based Object Recognition from a Complex Binary Imagery Using

S. Chalcraborty, S. Dey and K. Deb

S. F. Corno, M. Rebaudengo, M. Sonxa Reorda and M. Vzolante

Genetic Algorithm .. 150

Test Pattern Generation under Low Power Constraints 162

Evolutionary Telecommunications Talks

A Genetic Algorithm for Designing Networks with Desirable Topological

A . Webb, B. Turton and J. Brown
Approximate Equivalence Verification for Protocol Interface

182
F. Corno, M. Sonxa Reorda and G. Squillero
Evolving Routing Algorithms with the JBGP-System 193
E. Lulcschandl, H. Borgvall, L. Nohle, M. Nordahl and P. Nordin
Optimising Self Adaptive Networks by Evolving Rule-Based Agents 203
E. Nonas and A . Poulovassilis

Properties.. ... 171

Implement ation via Genetic Algorithms

Evolutionary Telecommunications Poster
Genetic Construction of Optimal Circulant Network Designs 215
E. A . Monalchova, 0. G. Monalchov and E. V. Mulchoed

Author Index ... 225

X Table of Contents

An Evolutionary Approach to Fitting Constrained
Degenerate Second Order Surfaces

C. Robertson, R.B. Fisher, N. Werghi, and A.P. Ashbrook

Division of Informatics, University of Edinburgh,
Edinburgh, EH1 2QL, UK
craigr@dai.ed.ac.uk

Keywords: Evolutionary algorithms, surface fitting, Genocop III.

Abstract. In this work we examine the applicability of an evolutionary strategy
to the problem of fitting constrained second-order surfaces to both synthetic and
acquired 3D data. In particular we concentrate on the Genocop III algorithm
proposed by Michalewicz [8] for the optimization of constrained functions. This
is a novel application of this algorithm which has demonstrably good results when
applied using parametric models. Example times for convergence are given which
compare the approach to standard techniques.

1 Introduction

Shape analysis of objects from range data (captured three dimensional co-ordinates of
surface points) is a key problem in computer vision with several important applications in
manufacturing, such as assembly, quality control and reverse-engineering. The problem
is generally formulated as a nonlinear programming problem (NLP), which tries to opti-
mally fit the data to candidate shape descriptions. The NLP optimises a function subject
to several constraining equations and inequalities. Especially with nonlinear constraints,
it is notoriously difficult to optimise and there is no known method to guarantee a satis-
factory solution. Traditional techniques, such as gradient descent, are unsatisfactory for
the solution of NLPs, due to the local nature of their search methods and the reliance on
smooth derivatives in the search-space. In previous work [7] we examined the applicabi-
lity of evolutionary strategies to the problem of fitting lines and surfaces to both synthetic
and acquired object range data. In this paper we effectively take the next step, which
is to fit degenerate second order surfaces that have a priori constraints and geometric
relationships. The Genocop III algorithm developed by Michalewicz [8], Ch.7 was used
and extended in this paper by adding a complex evaluation function. It is an evolutionary
algorithm system which is specialised to handle constrained function optimisation and
particular to it is the handling of non-linear constraints. It uses real-valued genes, and
includes methods to deal with linear, non-linear, domain and inequality constraints. We
have used a specialised fitness function (described in section 2.3.3), applied to the pro-
blem of fitting parametric 3-dimensional surface equation chromosomes to range data
while simultaneously applying several necessary geometric and domain constraints. The
constraints applied are of two typical types : domain, the restriction on the parameter
size; relational, relationships between surfaces that are known a priori.

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 1–16, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

2 C. Robertson et al.

Since this problem has a specific context it is important to illustrate it. Our group is
researching the reverse engineering machined parts. These parts are often complex and
possess many surfaces which may have know geometrix relationships. Segmentation
and parameterisation of the captured 3-dimensional range data is a difficult multi-part
task involving the following elements:

1. Data collection. This is performed using a moving-bed, orthogonal laser ranger
which provides data at up to 0.5mm steps in the X-Y plane. Noise on the data is
around 0.15 mm.

2. Data registration. This is performed using a variation on the iterated closest point
algorithm [1].

3. Segmentation. There are many ways of segmenting the 3d dataset, most are based
upon changes in local surface curvature followed by some form of least-squares
optimisation, for example [9].

4. Exploitation of constraints. Constraints may be applied to exploit knowledge about
surface relationships.

The formulation of constraints and the application of constraint-based correction
and optimisation of surface fitting has been achieved previously [5] with notable success
using the several constraint application strategies. There are, however, some associated
problems with this approach: complex formulation of the constraint function; heavy
reliance on the global convexity of the solution space; reliance on very accurate initial
estimate of solution.

The ‘processing pipeline’ that is required for this approach also can lead to a build-up
of problems that must be solved in the constraint application stage. In order to alleviate
some of these problems a more holistic strategy is proposed where segmentation, fitting
and constraint management takes place simultaneously. Previously [7] it was demonstra-
ted that simultaneous fitting and constraint management could be achieved in a single
evolutionary algorithm with careful chromosome management and good generation of
starting conditions.

In this paper, the technique has been explored and improved by:

1. Making the representation more efficient by only applying the technique to degene-
rate quadric surfaces.

2. Enhancing the evaluation of chromosomes by applying specialised fitting functions
for degenerates.

3. A simple objective function, the least-squares error metric, then using the constraints
to define the manifold of allowable solutions.

4. Including a naive segmentation function as part of the evaluation function.

2 Method
2.1 Data Generation

Free Quadrics
A free quadric is a second order surface of the type:

a1x
2 + a2y

2 + a3z
2 + a4xy + a5xz + a6yz + a7x + a8y + a9z + a10 = 0 (1)

An Evolutionary Approach to Fitting Constrained Degenerate Second Order Surfaces 3

This covers all second order shapes and these fall into several family groups : cy-
linders, cones, paraboloids, hyperboloids, ellipsoids, planes. Some of these forms are
degenerate and there is sufficient variety in the shapes to cover all easily machineable
surfaces. Note that higher order free surfaces also exist on machined parts, perhaps as a
result of casting, but are not considered here.
Degenerate Quadrics

In this paper, the degenerate forms of these surfaces are used, this is a small subfamily
of surfaces of the following types: spheres, cylinders, right circular cones. The machined
surfaces that we address rarely contain whole pieces of these shapes and the surfaces are
often fragmentary or partial. In order to generate synthetic versions of this subfamily,
patches of the given types were generated as shown in figure 1. These fell into the
following three groups:

1. Spherical sections generated about a given vector (spherical caps) as well as whole
spheres

2. Cylinders of differing radii, length and wedge angle.
3. Cones of differing slope-angle, wedge-angle and length. Truncated cones were also

used.

θθ

Cylinder WedgeConical RingConical Wedge

θ

Spherical Cap

P

P
n

P
n

d

P

n

Fig. 1. Degenerate Quadric Patches

2.2 Gene and Chromosome Formulation

In standard GAs binary encoding forms the chromosomes in the solution, however in an
evolution program each gene is a floating point number. Genes are then concatenated into
a chromosome. In the cases we have previously investigated, typical part-chromosomes
were parameter vectors (A = ai : i ∈ {1, .., 10} representing second order surfaces. In
the new parametric representations, the vectors may be any length.

In the case of planes, we have used the 4 gene parametric representation :
A :< n̂, d > where n̂ is the unit normal describing the plane and d is the constant
defining its minimum distance from the origin. In the case of spheres, we have used
the 4 gene parametric representation : A :< P, r > where P is the centre point and

4 C. Robertson et al.

r is the sphere radius. In the case of cylinders, we have used the 7 gene parametric
representation : A :< P, n̂, r > where P is defined as the start point of the cylinder, n̂
is the axis direction and r is the radius. For cones, the 7 gene representation used is :
A :< P, n̂, α > ,where P is defined as the start point (or tip) of the cone, n̂ is the axis
direction and α is the half-angle between the axis and the slope of the cone.

A full chromosome, G, describing a given object, is a set of concatenated part-
chromosomes: G = {Aj}. The parametric representation of a set of degenerate quadrics
as a chromosome is much shorter than a set of general quadrics as explored in [7].
This cuts down the complexity of constraint representation and makes it amenable to
straighforward manipulation without the need to employ geometrical constraints on the
surfaces’ form, only on pairs of forms taken as systems.

2.3 Algorithm

Traditional Methods of Generating Constrained Populations. Evolutionary methods
have been shown to be useful for solving general NLP problems [11][6][7]. There are
four main techniques for dealing with chromosomes that contravene constraints on so-
lutions [10]: rejection, which discards infeasible solutions immediately throughout the
process; repairing, which depends on methods to repair solutions back to feasible; mo-
difying operators, which means designing crossover, mutation and other operators than
only ever produce feasible offspring; penalties, which is the most common technique
for optimizing constrained functions. A penalty function is one which punishes chro-
mosomes for straying from the constraints by decreasing their fitness or removing them
from the population. There are no good guidelines for designing such penalty functions
however [10].

Almost all optimization problems are constrained in some way. What we required
is some way of generating solutions that are both iteratively improving as well as satis-
fying these constraints. Most optimization problems are defined on a search space, D,
as follows 1 : D ⊆ Rq , where D =

∏q
k=1 < lk, rk > and each xk is in the interval

< lk, rk >. The set Rq is thus a crucial characteristic of the problem. Significant op-
timization theory only exists where this set is convex. In GENOCOP, this convexity is
assumed, i.e we seek to optimize : f(x1, . . . , xq) ∈ Rq , where (x1, . . . , xq) ∈ D ⊆ Rq.
D is convex and is defined by the range of variables lk ≤ xk ≤ rk for k = 1, . . . , q.

Because D is convex, for each point in the search space, there exists a range where
other variables remain fixed. We also assume that this range can be efficiently computed.
This property is useful for performing mutation. If the variable xk is to be mutated, it
can be moved inside its range so any offspring produced are feasible.

Also, for any two points, x1 and x2, in the space D, the linear combination ax1 +
(1 − a)x2, (where a ∈ [0, 1]) is also in D. This is used for crossover.

Genocop II and III Calculus based methods assume that the objective function, f(x),
and all constraints are twice continuously differentiable functions of x. The general
approach is to transform the non-linear problem (NLP) into a sequence of sub-problems

1 This brief account follows the one given by Michalewicz [8] which the reader is encouraged to
read for further details.

An Evolutionary Approach to Fitting Constrained Degenerate Second Order Surfaces 5

and then solve those, requiring an explicit computation of the objective function. Some
of these methods become ill-conditioned and fail.

Genocop II uses a sequential quadratic penalty function and is formulated as the
optimisation of the function:

F (x, r) = f(x) + 1
2r C

T
C , where r > 0 and C is the vector of active constraints,

c1, . . . , cl

Attia has provided solutions to the instability of this approach [12]. The set of all
constraints, C, is divided into the linear constraints,L, the non-linear equations,Ne and
the non-linear equalities,Ni. A set of active constraints, A is then built from Ne and
the violated constraints from Ni (a constraint is said to be violated if it is more than
some tolerance δ from its correct value), which are called V . The structure of Genocop
II is outlined in [8]. Inside its main loop, Genocop I optimizes the function F (x, r) =
f(x) + 1

2r A
T
A. Several mutation operators take an initially identical population and

introduce diversity to it. At convergence, the best individual,x∗, is saved and the the
value of the penalty parameter is decreased.

Most of the essential elements of Genocop III are the same as those of Genocop
II. However, in this algorithm two populations are kept, a reference set R and a search
set S. The reference population is a set of fully feasible individuals which satisfy all
the constraints whereas the search population may not. At each iteration, the search
population are allowed to move around the solution space and are repaired back onto the
constraint manifold. If the search point is S and the reference point is R, then a random
point Z is created from the segment between S and R by generating a value, a ∈ [0, 1]
then :

Z = aS + (1 − a)R (2)

Once a feasible Z is found, if it is better than R, then that reference point is replaced
with some probability. As the iterations progress, the set of reference points converge to
the maximum or minimum on the search space.

Evaluation Function and Point Assignment for the Fitting. In our application of
Genocop III the evaluation function is almost certainly more complex than was initially
intended for the algorithm. For each point,xi, the true geometric distance to the theore-
tical surface is computed and this is used as the least-squares error for that point relative
to that surface.

ei = minp{dist(xi, Sp)} (3)

where ei is the error for the point xi, p is the index of M theoretical surfaces, i is the
index of N points, Sp is the parameterised surface and dist is the distance to that surface.

The evaluation function to be minimised is then the sum of these minima :

E =
i=N∑

i=0

ei (4)

It is possible to use this as a simple segmentation scheme (especially if the chromo-
some population variations are small and the start conditions are close to the solution).

6 C. Robertson et al.

The point assignment is thus straightforward. In some tests, such as the real object dis-
cussed in section 3.3 the data is pre-segmented. If the assignment information is available
it should be used in order that the computation time can be reduced.

Starting Conditions and Relational Constraints In virtually all cases, domain con-
straints on individual genes are used to narrow the search space for that gene. These are
represented as one permanent part of the sequential quadratic penalty function matrix
[8] used in the evaluation function. A good example of where domain constraints can
reduce the search space is in the case of the three parameters describing a unit normal.
Each of these parameters can never be outside the range [−1, +1] so these make good
domain constraints.

In-chromosome relational constraints are straightforward to formulate when a pa-
rametric form is used. For example, consider two planes,P1 =< x1, x2, x3, x4 > and
P2 =< x5, x6, x7, x8 > which are known a priori to be orientated orthogonally. In this
case, the chromosome would have the form G = {x1, x2, x3, x4, x5, x6, x7, x8} and
the orthogonality constraint would then appear as a non-linear inequality of the form:
(x1 − x5)2 + (x2 − x6)2 + (x3 − x7)2 ≤ ε where ε is the constraint tolerance value.

In order to perform the optimisation, Genocop requires a starting position on the
constrained manifold. This is the seed for the search points which are then mutated
around it. It is also used to produce the set of reference points as described earlier in this
section. In our case this means designing a chromosome which is both close to being a
concatenation of the individual least-squares results for the part-chromosomes as well
as fulfilling the domain and relational constraints. Starting conditions for increasingly
complex solutions with increasingly complex constraints have previously been found
to be difficult [7] for the general quadric. However, when a parametric representation
is used, start conditions become very simple to generate, even when many constraints
are used. For example, when a parametric representation for a right, circular cone is
used the chromosome consists of seven floating-point genes with one constraint, that of
normality for the axis vector. When a general quadric is used, however, the chromosome
consists of ten floating-point genes with six constraints to ensure its form. When further
constraints are added, a start condition for the reference population becomes difficult
to find for the general representation but relatively easy for the parametric one (since
the only constraint is normality for 3 genes in the whole sequence). The complexity
increases as further quadrics are added. Consider a chromosome with three general
quadrics representing three right, circular cones. In a general representation this would
be 30 floating-point genes together with 15 shape constraints and three relationship
constraints. In a parametric form it would be 21 genes and six constraints in total. This
reduction is quite marked but clearly relies on knowing a priori the classification of the
surfaces in the data.

3 Results

In total 70 single-object experiments were carried out, all of which reached successful
convergence, i.e the summed error over all points in the data set stablized. The final values
for chromosome parameters are used as the test of value for each of the experiments.

An Evolutionary Approach to Fitting Constrained Degenerate Second Order Surfaces 7

Where there were significant convergence effects these have been noted. All of the data
used for the synthetic surfaces has Gaussian noise added with standard deviation 0.1mm.
This is comparable with the laser range finder and therefore represents typical data noise.

3.1 Caps, Rings and Wedges

Spherical Caps
Ten spherical cap datasets were generated for decreasing values of θ from 170o to

30o to test feasibility of fitting and speed of convergence. Sphere radii were kept at
10 mm with centre position (0, 0, 15). The number of data points per data set was 1000
so the data at 170o is much more descriptive of the shape than the data at 30o, illustrated
in the convergence rate, fig.2(a).

One important aspect of these tests is that with θ = 30o data the variation in position
genes is much higher than with θ = 170o (figures 2(b) and 2(c)). Intermediate positions
show that the rate of these variations and rate of convergence change gradually with
angle. Note that our previous fitting tool which utilises Taubin accumulation [4] fairs
similarly in the tests, having almost exactly the same average error per point. After
25, 000 evaluations all radii converged to the correct value given experimental noise.
Cylinder Wedges

Ten cylindrical wedge datasets were generated for decreasing values of θ from 170o

to 30o to test feasibility of fitting and speed of convergence. Cylinder radii were kept
at 10mm, data was generated around the normal (0, 0, 1) and the starting point was
(15, 10, 10). The length of the cylinder in each case was 20mm. Error graphs for the
cylinder wedges tell us little about convergence except that it is dependent upon the initial
reference population, which the algorithm generates internally. All of the test examples
converged within 100, 000 evaluations with the axis correct to within around 0.5o and
radius correct to around 0.05mm, as shown in table 1.

θ Normal Error/o Radius Error/mm
170 0.5733 0.0287
155 0.4196 0.0012
140 0.0000 0.0027
125 0.5754 0.0040
110 2.5648 0.1464
90 0.5500 0.0032
70 0.5751 0.0191
50 0.5747 0.0033
45 0.0000 0.1213
30 0.0000 0.1851

Table 1. Absolute Errors on Cylinder Wedge Parameters

Conical Wedges
Ten conical wedge datasets were generated for decreasing values of θ from 170o to

30o to test feasibility of fitting and speed of convergence. Cone slope half-angle was
kept at 30o, axis was (0, 1, 0), apex position was (0, 25, 0) and cone depth was 20mm.

8 C. Robertson et al.

0 0.5 1 1.5 2 2.5

x 10
4

0

500

1000

1500

2000

2500

Chromosome Evaluations

Su
mm

ed
 E

rro
rs

fo
r B

es
t C

hr
om

os
om

e
Theta=170 degrees
Theta=30 degrees

(a) Error Convergence for θ = 170o and θ = 30o

0 1000 2000 3000 4000 5000 6000 7000 8000
−2

0

2

4

6

8

10

12

14

16

18

20

Chromosome Evaluations

Po
sit

ion
 in

 m
m

(b) Position Genes During Convergence for θ = 170o true value is (0, 0, 15)

0 0.5 1 1.5 2 2.5 3

x 10
4

−25

−20

−15

−10

−5

0

5

10

15

20

Chromosome Evaluations

Po
sit

ion
 in

 m
m

(c) Position Genes During Convergence for θ = 30o true value is (0, 0, 15)

Fig. 2. Error Graphs for Spherical Datasets

An Evolutionary Approach to Fitting Constrained Degenerate Second Order Surfaces 9

1000 data points were used per set, with noise as before. Details of the results are shown
in table 2. The error on the cone normal increases as the wedge decreases. At 30o it is
actually outside acceptable error bounds. This caveat may be explained by the error in
the estimate of the apex position, which can be seen to drift as the wedge angle decreases.

θ Normal Error/o Slope Angle Error/o Apex position estimate
170 0.5815 0.0375 -0.002763 25.008604 0.0161751
155 0.5314 0.4210 0.001005 25.012029 0.0150246
140 0.5747 0.0460 0.005348 25.018583 -0.0153982
125 0.5808 0.0204 0.021809 25.007158 -0.0135571
110 0.5727 0.0007 0.002103 25.007488 -0.0285622
90 0.5757 0.0059 -0.014792 24.991615 -0.0065875
70 0.7000 0.3159 -0.009692 25.162830 -0.1308158
50 1.5526 1.2332 0.006790 25.636304 -0.4279015
45 1.1866 0.8757 0.006669 25.655696 -0.4368368
30 3.0208 2.7954 0.000730 26.736854 -1.0613992

Table 2. Absolute Errors on Cone Wedge Parameters and Apex Estimate

Conical Rings
Ten conical ring datasets were generated for decreasing values of length, from100mm

to 10mm from the base, from a cone of total length 110mm measured base to apex. Cone
slope angle was kept at 30o, axis was (0, 1, 0), apex position was (0, 25, 0). A full 180o

spread was also used and 1000 data points were used per set.
Convergence over all of the conical ring datasets was uniform. Errors are detailed

in table 3. Average error for the normal axis was around 0.5o and the error on the cone
slope angle was less than 0.01o. It can also be seen that the apex position estimates are
much better that those in the cone wedge case.

Length Normal Error/o α Error/mm Apex Position
100 0.5730 0.0020 -0.010790 24.981763 0.027289
90 0.2149 0.0023 -0.014435 25.012355 0.012871
80 0.5630 0.0104 -0.000247 25.026578 -0.005360
70 0.4681 0.0042 0.037935 24.979377 0.002949
60 0.5464 0.0012 0.001648 24.981952 -0.002780
50 0.5723 0.0017 0.005134 24.981803 0.000237
40 0.4681 0.0046 -0.031845 25.003873 0.090405
30 0.3621 0.0021 0.006406 24.984144 -0.004444
20 0.5630 0.0430 0.043338 24.811958 -0.014173
10 0.5835 0.0037 -0.025032 24.973985 -0.342472

Table 3. Absolute Errors on Cone Ring Parameters and Apex Estimate

10 C. Robertson et al.

3.2 Constrained Degenerate Quadric Pairs

Distance Constraints
Spheres were fitted with the distance constraint applied to their centres. The sphere

parameters used were as follows:
Sphere 1:Position(0, 0, 10), Radius 5, complete/half sphere, 1000 data points.
Sphere 2:Position(0, 0, 0), Radius 3, complete/half sphere, 1000 data points.

Summed errors for the fitting are shown in fig. 3(a) and the convergence of the radii
genes is shown in fig, 3(b). Position for both spheres was found accurately to within
0.001mm and the radii were found to within 0.01mm. Since the results were similar for
both half-spheres and spheres, only whole spheres are shown.

(a) Summed Errors for Constrained Sphere Fitting (Whole Spheres)

(b) Radii Convergence for Constrained Sphere Fitting using
Whole Spheres with Distance Constraint (true values are 3mm and 5mm)

Fig. 3. Constrained Sphere Fitting Graphs

An Evolutionary Approach to Fitting Constrained Degenerate Second Order Surfaces 11

Convergence for spheres and half-spheres that were overlapping produced similar
results although using slightly more chromosome evaluations. It was also noted that the
quality of results obtained was as good as without constraints in both cases, i.e radii to
within 0.001mm and position parameters to within 0.005mm.
Mixed Constraints

In mixed constraint experiments whole cones and cylinders were used. In the first
set of experiments cones were used with four constraints : two unit normal constraints
on the axes, a distance constraint between apexes and an orthogonal constraint on the
axes. Data for the cones was as follows:

Cone 1: Apex position (0, 0, 0), Axis (0, 0, 1), Length 20, half-angle α = 30o or
0.5235988 radians.

Cone 2: Apex position (0, 0, 20), Axis (0, 0, 1), Length 20, half-angle α = 30o or
0.5235988 radians.

Cone 3: Apex position (20, 0, 0), Axis (1, 0, 0), Length 20, half-angle α = 30o or
0.5235988 radians.

Once again, Gaussian noise is applied with a standard deviation of 0.1mm.
Two Cones with Apex Distance and Same Axis Constraints

In this experiment, cones 1 and 2 were used. The starting vector for the reference po-
pulation was simple to find since the constraints on the fitting have been much simplified
since earlier efforts to perform this test [7]. Previously, for two right circular cones with
a distance constraint and an axis constraint the total number of inter-gene constraints
would have been 16, now it is only 3. The cones are generated on the same axis but with
apexes 20mm away from each other. The vector for the reference populations was as
follows:

P1 = (0, 0, 1), n̂1 = (0, 0.141, 0.9899), α1 = 0.5 radians
P2 = (0, 0, 21), n̂2 = (0, 0.141, 0.9899), α2 = 0.5 radians

which is in the same order as the generation data above. Position for each of the two
part-chromosomes is 1mm away from the correct position and the slope angle is 0.024
radians (1.35o) from the true value. The normal axis is also at an angle of around 0.5o

to the correct value. These values were chosen because they are typical of values found
after registration using ICP [1]. The result vector was as follows :

P1 = (0.000216, −0.004444, −0.013367), n̂1 = (−0.000111, 0.000021,
0.999969), α1 = 0.523469 rad.

P2 = (0.002930, −0.007804, 19.986713), n̂2 = (−0.000325,−0.000021,
0.999951), α2 = 0.523393 rad.
This shows that the convergence to the correct cone models and constraint satisfaction
is remarkably good, to the noise level on the data set.
Two Cones with Apex Distance and Orthogonal Axis Constraint

In this experiment, cones 1 and 3 were used. The cones were generated on the
same axis but with apexes 20mm away from each other. The vector for the reference
populations was as follows:

P1 = (0, 0, 1), n̂1 = (0, 0.141, 0.9899), α1 = 0.5 radians
P2 = (0, 0, 21), n̂2 = (0, 0.141, 0.9899), α2 = 0.5 radians
The result vector was as follows :

12 C. Robertson et al.

P1 = (−0.006925, −0.001579, −0.024732), n̂1 = (0.000279, −0.000089,
0.999950), α1 = 0.523178 rad.

P2 = (19.993097, −0.012630, −0.000523), n̂2 = (0.999949, 0.000792,
−0.000378), α2 = 0.523704 rad.
This shows that the convergence to the correct cone models and constraint satisfaction.

3.3 A Real Object

In order to test the overall application of these technique a reasonably complex real
part was examined. This machined part (called the UFO) is an object consisting of six
surfaces, four planes and two quadrics as shown in figure 4. It is made to high tolerances
but is formed from eight data sets which are then registered together.

UFO Part as Polygons UFO Part after Segmentation

Fig. 4. Real Object Rendered as Polygons and Vertices

The object was first segmented into individual surfaces using a region growing me-
thod and Taubin accumulation for the fitting [13]. Each of the different surfaces was
saved as a 3d data set. There were 7274 data points in total, representing the polygon
centres. This is a valid subsampling since the polygon mesh is statistically representative
of the original data set (many tens of thousands of points). The chromosome represen-
ting the constrained shape consisted of 30 individual genes as follows: G = A1, ..., A6,
where A1 is the 7 parameter cylinder, A2 is the 7 parameter cone and A3 to A6 are the
4 parameter planes. A total of 11 constraints were used, the first 6 were unit normal
constraints and the final 5 were geometric as follows:

1. Cylinder axis is the same as that of the back plate normal.
2. Cone axis is the same as the bottom plate normal
3. The back plate normal is orthogonal to the bottom plate
4. The back plate normal is orthogonal to the sloping side (side 1)
5. The sloping sides are at 120o to each other

An Evolutionary Approach to Fitting Constrained Degenerate Second Order Surfaces 13

These five constraints fully constrain the object’s shape. The start conditions for this
object were simply the least-squares fit for each of the surfaces which were then adjusted
to fit the constraints (obviously sub-optimally). The controlling ground-truth used for
this test was that the cylinder radius was known to be 60mm and the cone half-angle was
known to be 30o from the normal at its apex.

The graphs in figure 5 show the convergence of the parameters 500,000 evaluations.

(a) Cone Half Angle for Constrained UFO Fitting

(b) Cylinder Radius for Constrained UFO Fitting

Fig. 5. Constrained UFO Fitting Graphs

14 C. Robertson et al.

The full set of estimations for the parameters is given below:

– Cylinder : P1 = 154.086, −2.184, −57.711, n̂1 = 0.995561, 0.005837, 0.088583,
radius = 60.366mm.

– Cone :P2 = 45.307, −5.697,−137.595, n̂2 = −0.044865, 0.039102, 0.998023,
α = 32.3o

– Planes
1. n̂1 = 0.995425, 0.003886, 0.091327, d = 46.62732)
2. n̂2 = 0.046830, −0.885180, −0.461808, d = 47.79109
3. n̂3 = 0.041421, 0.845461, −0.531490, d = 47.06203
4. n̂4 = −0.092407, 0.041308, 0.995308, d = 14.12157

The numbers of points used was as follows: cylinder 1896, cone 1386, back-plate
616, side1 767, side2 839, bottom plate 1770. Time to reach a stable solution was 218.75
minutes when running on a 269MHz Ultrasparc 10 at approx 50% CPU usage. These
results have several important aspects. Firstly, the cone half angle is within the same
margin of error as the synthetic data when only a 30o wedge is used. This is explained
by the fact that not only is this a 60o wedge of a cone but it is truncated at only 30mm
out of its 140mm height. The cylinder parameters are very good since the cylinder data
describes only a 60o wedge of the original data. It should also be noted that all of the
constraints are satisfied to within the tolerance prescribed (ε = 0.001) which represents
0.0573o error on axis constraints. The summed least-squares error (Euclidean rather
than algebraic) was 19.8367 over the whole of the six surfaces. This should also be seen
in light of the fact that there were around 1% of outliers in the whole dataset and the
registration process is almost certainly imperfect.

4 Conclusions

4.1 Improvements

In previous work [7] we showed that optimal surface fitting under geometric constraints
was feasible with an evolutionary algorithm. In this paper we have demonstrated that the
method is more accurate when parametric models are used for degenerate surfaces. We
have also demonstrated that the geometric constraints for these models are much simpler
to formulate. This leads to the quicker formulation of starting reference populations.

We have shown that even a naive point-assignment algorithm can perform simple
segmentation when used in conjunction with geometric constraints and we have thus
tentatively proposed a full processing system for range-data. The pptimization of least-
squares surface fitting is comparable to methods currently employed for second-order
surfaces. In some instances (for example where data is sparse) it is actually superior.
This is due partially to the fact that data presentation is not ordered as it is in, say, the
Taubin accumulation process [3],[4]. No claims are made for the segmentation algorithm
other than in circumstances where two sphere datasets overlap if a distance constraint
is applied the algorithm still convergenes in a time comparable to no-overlap. Therefore
segmentation is a plausible addition to the functionality of the algorithm. The application
of geometic and domain constraints has ensured that the convergence to the optimal
solution (subject to tolerance) has been achieved. When geometric constraints have

An Evolutionary Approach to Fitting Constrained Degenerate Second Order Surfaces 15

been applied they also have been fulfilled (subject to tolerance). These constraints have
been : distance, axis normality and relative axis position. These are the only constraints
applicable to the degenerate surfaces we have examined.

4.2 Caveats - New and Old

Of the problems mentioned in the first paper [7], none are now applicable. The formu-
lation of the initial vector for the reference set is easy for parameterized chromosomes.
Generating two right cirular cones with orthogonal vector normals, for example, using a
parameterized model is straightforward whereas using the previous representation was
difficult. When these initialisations were compounded the task was infeasible.

The problem of traversing the space different amounts in different dimensions is
somewhat mitigated by this parameterizarion since the units are at least within the same
order. The problem of what the slack constraint variables actually mean is still different
for each constraint. This problem is not so pronounced here as in other methods, for
example [5].

One new caveat is that the parametric versions of the objective functions are not so
easy to speed up by using off-line calculations. This can mean that for objects involving
many (possibly hundreds of) thousands of points the least-squares error calculations
will be time-consuming. A simple sub-sampling scheme has been implemented where
at each iteration a sample from such a huge dataset is taken and errors computed from this.
Although initial tests have been positive, the rates of convergence are not as predictable
as those found in this paper - even if the time to convergence is much lower. It is widely
held that evolutionary schemes, in fact GAs as a whole, are quick to implement but slow
to run. In the main this is true but with a computationally complex evaluation function
it is doubly so.

4.3 Further Work

This work is a proof of concept, i.e that an evolutionary algorithm could solve the
problem of constrained surface fitting, and as such is complete. There are many side
issues that should be addressed: speeding-up the chromosome evaluation; including
data registration, although how is not clear; outlier removal from the data at run time
would provide modest improvements; and weighting the surface errors to skew the fit
towards more important surfaces.

Acknowledgements

The work presented in this paper was funded by a UK EPSRC grant GR/H86905. The
authors would also like to thank Andrew Tuson and David Corne for advice on several
aspects of this work.

16 C. Robertson et al.

References

1. D. Eggert, A. W. Fitzgibbon, R. B. Fisher. “Simultaneous registration of multiple range
views for use in reverse engineering”, Proc. Int. Conf. on Pat. Recog., pp 243–247,Vienna,
Aug. 1996.

2. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald andW. Stuetzle. “Surface Reconstruction
from Unorganized Points”, Computer Graphics, 26(2), pp 71–78, 1992.

3. G. Taubin. “Estimating the tensor of curvature of a surface from a polyhedral approxima-
tion”, Proc. 5th Int. Conf. on Computer Vision, pp 902-907, 1995.

4. G. Taubin. “Estimation of planar curves, surfaces and nonplanar space curves defined by
implicit equations with applications to edge and range image segmentation”, Proc. IEEE
PAMI, 13(11), pp1115–1138, 1991.

5. N. Werghi, R. B. Fisher, A. Ashbrook, C. Robertson, “Improving model shape acquisi-
tion by incorporating geometric constraints”, Proc. British Machine Vision Conference
BMVC97, Essex, pp 520–529 September 1997.

6. Z. Michalewicz, D. Dasgupta, R. G. Le Riche and M. Schoenauer, “Evolutionary algo-
rithms for constrained engineering problems”, special issue on Genetic Algorithms and
Industrial Engineering, ed. M. Gen, G.S.Wasserman and A. E. Smith, International Jour-
nal of Computers and Industrial Engineering, 1996.

7. C. Robertson, D. Corne, R. B. Fisher, N.Werghi, A.Ashbrook, “Investigating Evolu-
tionary Optimisation of Constrained Functions to Capture Shape Descriptions from
Range Data”, Proc. 3rd On-line World Conference on Soft Computing (WSC3) (see
http://www.cranfield.ac.uk/wsc3/ also in Advances in Soft Computing - Enginee-
ring Design and Manufacturing, eds. Roy, Furuhashi and Chawdhry, Springer-Verlag,
1998.

8. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Third
Edition, Springer, 1996.

9. A. Hoover, G. Jean-Baptiste, X. Jiang, P. J. Flynn, H. Bunke, D. Goldgof, K. Bowyer, D.
Eggert, A. Fitzgibbon, R. Fisher, “An Experimental Comparison of Range Segmentation
Algorithms”, IEEE Trans. Pat. Anal. and Mach. Intel., Vol 18(7), pp673–689, July 1996

10. M. Gen and R. Cheng, “A Survey of Penalty techniques in Genetic Algorithms”, In
Proceedings of the IEEE International Conference on Evolutionary Computation 1996,
1996.

11. Z. Michalewicz and N. Attia, “Evolutionary Optimization of Constrained Problems”, in
Proceedings of the 3rd Annual Conference on Evolutionary Programming, San Diego,
CA, 1994, pages 98-108. World Scientific.

12. N. F. Attia, New Methods of Constrained Optimization Using Penalty Functions, Ph.D
Thesis, Essex University, United Kingdom, 1985.

13. R. B. Fisher, A. W. Fitzgibbon, D. Eggert, “Extracting Surface Patches from Complete
Range Descriptions”, Proc. Int. Conf. on Recent Advances in 3-D Digital Imaging and
Modeling, Ottawa, Canada, pp 148-155, May 1997.

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 17-30, 1999.
© Springer-Verlag Berlin Heidelberg 1999

Evolution of Digital Filters Using a Gate Array Model

Julian F. Miller

School of Computing, Napier University, 219 Colinton Road, Edinburgh, EH14 1DJ, UK
j.miller@dcs.napier.ac.uk

Abstract. The traditional paradigm for digital filter design is based on the
concept of a linear difference equation with the output response being a
weighted sum of signal samples with usually floating point coefficients.
Unfortunately such a model is necessarily expensive in terms of hardware as it
requires many large bit additions and multiplications. In this paper it is shown
how it is possible to evolve a small rectangular array of logic gates to perform
low pass FIR filtering. The circuit is evolved by assessing its response to
digitised pure sine waves. The evolved circuit is demonstrated to possess
nearly linear properties, which means that it is capable of filtering composite
signals which it has never seen before.

1 Introduction

The difference equation is a fundamental concept employed in the construction and
analysis of digital filters [8]. Formally this is represented in the following way. The
output of the filter at time n, y(n), may be a function of N samples of the signal x(n-i)
at earlier times, and may also, if feedback is present, involve earlier outputs y(n-i)
given by the following equation:

 ∑ ∑
−

= =

−+−=
1

0 1

)()()(
N

i

M

i
ii inybinxany (1)

where the coefficients ai and bi are real valued floating-point numbers. The essential
problem of filter design is the choice of {ai}, {bi}, N, and M, so that the filter has the
desired behaviour (i.e. frequency response). In practice the coefficients {ai}, {bi} are
of finite precision. The practical requirements of implementing such a system in
hardware consists of providing a number of shift registers, multipliers, and adders.
Large bit multipliers are very costly in hardware terms. Three of the most important
factors in the design of digital filters are quality of signal response, size (cost) of
hardware implementation, and speed of operation. There are many traditional
approaches which have been developed to address these issues [8]. In particular one
popular method for reducing the complexity of implementation is to restrict the filter
coefficients to integer coefficients, see [4] and references therein. Recently,
researchers have started to explore the application of evolutionary algorithms to filter
design [1] [2] [3] [5] [6] [15] [17] [18] [19]. The essential idea employed by most of
these authors is to use an evolutionary algorithm to optimise the filter coefficients.

18 J.F. Miller

This may be in combination with finite wordlength analysis [1] [6] for IIR filter
design, or it may be in an adaptive context [5][18]. Other workers have employed
evolutionary algorithms to optimise coefficients together with add and shift operations
in so-called multiplier-less designs [15] [17] [19]. In [3] a genetic algorithm was used
to design an efficient non-linear filter for signal noise reduction by finding a suitable
positive boolean function (PBF). The PBF could be represented as a boolean sum of
products, involving AND gates and OR gates.

The main idea of the work presented in this paper is to explore for the first time at
a logic gate level whether it is possible to evolve networks of logic gates to carry out
filtering tasks. This is an interesting thing to do for two main reasons. Firstly to
explore the concept of digital filtering in a space of possibilities which is considerably
larger and richer than the traditional human, top-down, difference equation method.
Secondly to see how effective a microscopic number of logic gates might be in a
filtering task. The pioneering concept of gate-level evolution of digital functions was
developed in [7]. In [13] the authors generalised the concept of gate-level evolution to
the so-called functional level, and they showed how it was possible to carry out
adaptive equalisation on a communications channel with superior bit error rates to the
conventional least mean squares method. Their method was not rigidly fixed to be
linear in operation, it could be carried out very quickly, and relatively inexpensively
in hardware. These authors believed that it would not be possible to achieve real-
world performance using a gate-level approach. One of the objectives of the work
presented here is to show that that the possibilities afforded by gate-level evolution
have been left largely unexplored, and that there remains much fundamental work to
be done at this level. An additional motivation for attempting this work is the
enormous potential for new knowledge discovery afforded by the simple nature of
logic functions. In other words, can new principles be extracted from gate-level
evolution which can inspire and contribute to new methodological paradigms? There
are of course enormous questions that need to be addressed if such a filtering method
is to become practicable. Foremost among these would be the question of linearity. If
a gate array is to be trained to carry out a filtering task then can this be done in such a
way that composite signals, which can be represented as weighted sums of sine waves,
will also be filtered? This would imply that the circuit at least be weakly linear. The
findings presented in this paper are encouraging in this regard, as in section 4 it is
shown that the evolved gate arrays do appear to be quasi-linear.

The actual method employed here to evolve a gate array (section 2) is developed
from earlier work in [9][10][11]12] and has some similarity to a method called
Parallel Distributed Genetic Programming (PDGP) [14]. In earlier work [10][11][12],
the objective was to synthesise an entire truth table. This becomes increasingly time
consuming and difficult as the number of inputs grow. It is obvious that attempting to
evolve truth tables of larger sizes will not be feasible. It was argued in [9] that the real
applications for gate-array evolution probably lie in real number mapping problems,
where the digitised real numbers are presented to a circuit and a digitised real number
output is desired. In such a scenario the number of input conditions is determined by
the problem and is not necessarily an exponential function of the number of inputs.
Such a scenario is ideally furnished by the digital filtering task. In this paper only a
simple low pass FIR filter is considered. The details of this are explained in section 3.
In section 4 the evolved filtering characteristics of the gate array are examined,

Evolution of Digital Filters Using a Gate Array Model 19

including some results which show the quasi-linear behaviour. These are discussed in
section 5, and conclusions are given in section 6.

2 Gate-Level Evolution of Digital Circuits

The chromosome representation used is best explained with a simple example. In Fig.
1 is shown a small gate array consisting of four logic cells. The logic cells in this case
have functions XOR, AND, or MUX (multiplexer). The gate array implements the
one-bit adder (with carry-in). The circuit in question actually arose in an earlier
experiment reported elsewhere [12] and is quite novel in its own right. A, B, and Cin
denote the primary inputs. Cout and Sum are the output bits of the adder. Each cell is
assumed to possess three input connections. If the cell function does not require inputs
then the corresponding genes are ignored. For example the upper right cell (output 5)
below has input connections 3, 2, 1. Thus, the first input is connected to the output of
the cell with output label 3 (upper left), the second input is connected to the primary
input Cin, and the third input is connected to primary input B. The function of each
cell is expressed as the fourth gene associated with each cell. The primary outputs of
the gate array are also expressed as connections. For example Cout is connected to the
output of the cell with output label 6. The gate array is envisaged as being divided into
vertical columns of cells and the representation is so constrained that columns of cells
may only have their inputs connected to connection points on their left. This ensures
the feed-forward nature of the circuit and removes any time dependent behaviour.
Actually the connectivity is further constrained by the presence of a parameter
denoted l, which dictates the number of columns on the left (including the primary
inputs at column zero) to which the inputs of cells in column l may be connected. The
purpose of this is to constrain the fan-out of signals and thereby improve the ease with
which the circuit may be routed when it is physically implemented.

The chromosome representing the gate array shown in Fig. 1 is given below:

0 1 0 10 0 0 2 6 3 2 1 10 0 2 3 16 6 5

Fig. 1. One-bit adder (with carry-in) implemented as a feed-forward gate array

20 J.F. Miller

where the emboldened integers are the cell functions. The allowed cell functions can
be chosen to be any subset of those shown in Table 1, where ab implies a AND b, a
indicates NOT a, ^ represents the exclusive-OR operation and | the OR operation.

Functions 16-19 describe va
The last five functions pr
evolutionary process, this
universal logic modules and
variables. The genetic alg
feed-forward nature of the
connections and functions.
exchange. Elitism was alwa
tournament selection method
was selected with a certain p

3 Evolving a Filter Res

The incoming analogue sig
sampled at frequency f, with
is given by s=fp. The sampl
In a FIR filter of order n o
These nr bits for the s samp
gate array. For each nr input
a set of input-output conditi
discrete fast fourier transform
in [8] was used to do this.
gate array can be assessed f
sine waves with zero phase.
fundamental f1 (1/p) up to th
1. The sine waves were tra
assumed only positive value
representation. One can env
corresponds to a single exac
arrangement is shown in Fig
which is digitised to binary
history of samples are colle
presented to the gate array.
wordlength equal to 4 bits.
cutoff point fp. To evaluate t

0 1 2 3 4 5 6 7 8 9 10
0 1 a b a b ab ab ab ab
rious multiplexers and 20 describes a Reed-Muller ULM.

Table 1. Allowed gate functions

 11 12 13 14 15 16 17 18 19 20
 a^b a^b a|b a|b a|b a|b ac|bc ac|bc ac|bc ac|bc a^(bc)
ove to be very effective components in assisting the
is probably due to their flexibility in that they are all
 allow the synthesis of any logic function of one or two
orithm employed random mutation which respected the
circuits and also the different alphabets associated with
Uniform crossover was employed with a 50% genetic

ys used as it is markedly beneficial [11]. A probabilistic
 (size 2) was used in which the winner of the tournament
robability (between 0.5 and 1.0).

ponse with a Gate Array

nals which are to be processed by the gate array are
 sampling period p. Thus the number of samples used, s,
es are digitised and represented by a wordlength of r bits.
ne therefore must collect nr bits at each sampling time.
les are collected and represent the input conditions to the
 bits the gate array must produce r output bits. In this way
ons are defined. When s samples have been collected the

 (DFFT) is taken. A program, which was freely available
In this way the frequency characteristics of the evolving
or each input signal. The input signals chosen were pure
They had frequencies which were integral multiples of the
e Nyquist frequency, fn (half sampling frequency) minus

nslated by the addition of a d.c. component so that they
s, this removed the need for two’s complement number
isage this more clearly by noting that the fundamental
t sine cycle fitting into the sampling window. The entire
. 2. In this figure an input sine wave is shown on the left
numbers with wordlength 4 and filter order 2. An entire
cted for each sine wave. These are the input conditions
 On the right of the gate array is shown the outputs of
The desired filter response is characterised by a low pass
he fitness of a chromosome each digitised sine wave with

Evolution of Digital Filters Using a Gate Array Model 21

frequency f is presented to the gate array and the DFFT of the output response is
calculated.

Fig. 2. The trainin

The power in the frequ
response in the compl
maximum power associa
of the output is ignored.
is calculated in the follow

)(−= ii fWx

0.1=ix

The total fitness x associ
components xi for all fre
wave with frequency gre
be 1, if the maximum po
definition of fitness mea
above the cutoff point,
cutoff point. Thus the d
conforms to a pure sine w

 GATE
 ARRAY

0001 0000
0010 0001
0011 0010

pa

st

T
IM

E

 p

re
se

nt

Input signal Output signal

001
001
000

0000
0001
0010
.

.

g scenario for evolving a gate array with fil

ency domain W(f), defined as the m
ex frequency domain, is normalised
ted with the DFFT of a pure sine wave
The fitness xi of the gate array for a sin
ing way:

1,:),(max{ 1 −≤≤≠∀ njj fffijjfW

}1:),(max{ 1 −≤≤∀− njj fffjfW , f

ated with a given chromosome is then g
quencies up to fn-1. Thus if the maxim
ater than the cutoff point is zero, the fit
wer is not zero then the fitness compone
ns that one is trying to suppress sine w
and trying to enhance only the pure f
egree to which the actual shape of th
ave is being rewarded for frequencies b

1 0010
0 0001
1 0000

0000
0001
0010

FOURIER TRANSFORM
.

.

tering properties

odulus of the output
by dividing by the

. The d.c. component
e wave of frequency fi

} , pff ≤ (2)

pf>

iven by the sum of the
um power for a sine

ness contribution will
nt will be lower. This
aves with frequencies
requencies below the
e outgoing sine wave
elow the cutoff point.

 Frequency

22 J.F. Miller

4 Results

The experimental parameters for this paper are given below, the nominal sampling
period p was chosen to be 1 for convenience. Thus the sampling frequency f equals the
number of samples s.

� number of samples s=128, wordlength r =8, filter order = 4,
� normalised passband cutoff = 0.08 (10.24 un-normalised)
� population_size is 10, breeding rate is 100%, mutation probability is

0.005
� num_generations is 5000, number of runs is 2, elitism,
� tournament selection (size 2) acceptance probability is 0.7
� number of rows in gate array is 9, number of columns in gate array is 9
� connectivity parameter l = 9. The only gate type allowed was the multiplexer

(type 16).

The results shown in this paper are for the best of two runs of the genetic algorithm
under the above conditions. Investigation of the most suitable parameter settings lies
outside the scope of this paper. A small population size was chosen purely for speed
of execution. The frequency response of the evolved filter is shown in Fig. 3.

4.1 Filter Response to Pure Sine Signals in the Passband

0

0.5

1

1.5

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Frequency (sampling/128)

R
el

at
iv

e
p

o
w

er

Fig. 3. Frequency response of the evolved filter

300

100

150

200

250

300
200

250
0

50

100

150

1 13 25 37 49 61 73 85 97 109 121

0

50

1 13 25 37 49 61 73 85 97 109 121
0

0 .5

1

1 .5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Fig. 4. Incident signal f1 , output response and frequency response

Evolution of Digital Filters Using a Gate Array Model 23

4.

200

250

300
200

250

300
0

50

100

150

1 13 25 37 49 61 73 85 97 109 121 0

50

100

150

1 13 25 37 49 61 73 85 97 109 121
0

0 .5

1

1 .5

1 5 9 1 3 1 7 2 1 2 5 2 9 3 3 3 7 4 1 4 5 4 9 5 3 5 7 6 1

Fig. 5. Incident signal f5 , output response and frequency response
2 Filter Response to Pure Sine Signals in the Stopband

150

200

250

300
0

50

100

1 13 25 37 49 61 73 85 97 109 121

0

0.5

1

1.5

1 4 7 10 13 16 19 22 25 28

Fig. 6. Incident signal f15 , o
150

200

250

300
31 34 37 40 43 46 49 52 55 58 61

utput response and frequency response

0

50

100

1 13 25 37 49 61 73 85 97 109 121

24 J.F. Miller

4.

200

250
200

250

300
3 Filter Response to Signals Which are a Sum of Two Sine Waves

0

50

100

150

1 13 25 37 49 61 73 85 97 109 121

0

0 . 5

1

1 . 5

1 7 13 19 25 31 37 43 49 55 61

F r e q u e n c y (s a m p l i n g / 1 2 8)

R
el

at
iv

e
p

o
w

er

Fig. 7. Incident signal f20 , output response and frequency response

0

50

100

150

1 13 25 37 49 61 73 85 97 109 121

200

250

300
200

250

300
0

50

100

150

1 13 25 37 49 61 73 85 97 109 121

0
0.2
0.4
0.6
0.8

1
1.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Frequency (sampling/128)

R
el

at
iv

e
p

o
w

er

Fig. 8. Incident signal 0.5(f1 + f2), output response and corresponding frequency response

0

50

100

150

1 13 25 37 49 61 73 85 97 109 121

Evolution of Digital Filters Using a Gate Array Model 25

200

250

300

200

250

300

5

10

15

Fi
0

50

100

150

1 13 25 37 49 61 73 85 97 109 121
0

50

100

150

1 13 25 37 49 61 73 85 97 109 121

150

200

250

300
200

250

300
0

0

0

0

1 13 25 37 49 61 73 85 97 109 121

0

0.5

1

1.5

1 6 11 16 21 26

Fr e q u e n cy

R
el

at
iv

e
p

o
w

er

g. 10. Incident signal 0.5(f4 + f40), output
0

0.5

1

1.5

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Frequency (sampling/128)

R
el

at
iv

e
p

o
w

er

Fig. 9. Incident signal 0.5(f3 + f20), output response and corresponding frequency response
31 36 41 46 51 56 61

 (s am p lin g /128)

response and corresponding frequency response

0

50

100

1 13 25 37 49 61 73 85 97 109 121

26 J.F. Miller

4.4 Filter Response to Signals Which are a Sum of Three Sine Waves

200

250

300
200

250

300
0

50

100

150

1 13 25 37 49 61 73 85 97 109 121
0

50

100

150

1 13 25 37 49 61 73 85 97 109 121
0
0.2
0.4
0.6
0.8

1
1.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Frequency (sampling/128)

R
el

at
iv

e
p

o
w

er

Fig. 11. Incident signal 0.33(f1 + f2 + f20), output response and corresponding frequency
response
200

250

300
150

200

250
0

50

100

1 13 25 37 49 61 73 85 97 109 121
0

50

100

150

1 13 25 37 49 61 73 85 97 109 121
0
0.2
0.4
0.6
0.8

1
1.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Frequency (sampling/128)

R
el

at
iv

e
p

o
w

er

Fig. 12. Incident signal 0.33(f1 + f2 + f5), output response and corresponding frequency response

Evolution of Digital Filters Using a Gate Array Model 27

5 Discussion of Results

5.1 Filter Characteristics

In Fig. 3, the filter response is shown, there is still a noticeable tail which extends past the
cutoff frequency of 10 f1 from 11f1 to about 20 f1. However it should be noted that the
gate array is tiny and the work is still at a preliminary phase. The quality of the
frequency response in meeting the specification is encouraging. In section 4.1 are
shown the output responses of the filter to incident pure sine signals and also the
output response in the frequency domain. Sine waves in the passband are being passed
with little attenuation, however it can be seen especially in the case of the lowest
frequency sine wave (Fig. 4) that there is the largest distortion of the signal. In Figures
6 and 7 the incident sine signals have frequencies in the stopband so they should be
highly attenuated. One can see that there is a marked drop in signal amplitude as the
signal is converging to a d.c. component. As the frequency of the incident signals are
increased the off d.c. spikes become more and more sparse. Actually there is
something a little puzzling here as the fitness function is designed to suppress
frequencies in the stopband with uniform probability so that the attenuation of those
frequencies should show no frequency dependent behaviour. The reason for this is not
currently understood but it may be due to a frequency dependent distortion in the
incident sine signals. In Figs. 8-12 are shown the output responses of the filter to
various sums of sine waves. All these signals have never been seen by the filter before.
In Fig. 8 it can be seen that the filter is exaggerating the changes in amplitude of the
incident signal. The frequency response shows the dominant frequencies to be the
same as the incident. The filter is displaying a nearly or quasi-linear response. In Figs.
9 and 10 the higher frequency lies in the stopband thus for ideal filter behaviour one
would expect the higher frequency component to be highly attenuated. The evolved
filter appears to be doing this as it is responding to the slower changes in the signal.
This is confirmed by the frequency responses. In Figs. 10 and 11 more complex
signals were presented to the filter. These were sums of three sine waves. In the first
case (Fig. 11) two components were in the passband. Again the filter is still trying to
follow the slower changes and the frequency response is dominated by the lower
frequencies. In Fig. 12 all the frequencies lay in the passband, again it is seen that the
filter is trying to follow all the changes in the incident signal. However once again it is
exaggerating the changes.

5.2 Hardware Requirements and Speed of Evolved Filter Compared with
Conventional

When the evolved filter circuit was analysed it was found to require 29 multiplexers
(equivalent to 87 two-input gates). In addition the filter would produce the filtered
response very quickly as one only has to wait for the signals to propagate through the
gate-array. A conventional filter of order 4 and wordlength 8 would require at least an
eight-bit adder and multiplier as well as registers to store the coefficients. A
conventional cellular adder and multiplier of this size would require n2 AND gates and
n(n-1) full adders (where n=8). Thus it would require 344 two-input gates. The output
would be delayed by a number of clock cycles to accumulate the response (see
equation 1).

28 J.F. Miller

6 Conclusions

In this paper it has been shown that it is possible to evolve filtering characteristics
with a gate-array containing very few components. The gate-array filter is produced
without many of the conventional assumptions in that it does not employ coefficients
or any explicit arithmetic operations. The evolved filter has a quasi-linear response
that has emerged naturally. There is currently no mathematical framework for
understanding how to design filters at this level. It is felt that the results presented here
may encourage some thinking about a mathematical underpinning of this. There is still
an enormous amount of further investigation to be undertaken. The work raises almost
as many questions as it answers. Why is the evolved filter quasi-linear? Can one
evolve it in such a way as to enhance its linearity? Would this require greater gate
resources? What would the filtering action of cascades of these smaller filters be like?
How would the filter response to changes in phase of the incident sine waves? It is felt
that this work once gain demonstrates the enormous capacity of a few gates to display
complex behaviours, a fact which has become evident in much work in the field of
evolvable hardware [16].

Acknowledgements

Especial thanks to Gary Robertson for many helpful discussions, and also, thanks to
George Rae, Mohammed Yaminysharif, and Jay Hoy of the EE&CE Department,
Napier University.

References

1. Arslan T., and Horrocks D. H., “A Genetic Algorithm for the Design of Finite
Word Length Arbitrary Response Cascaded IIR Digital Filters”, : Proceedings of
the First IEE/IEEE International Conference on Genetic Algorithms in
Engineering Systems: Innovations and Applications (GALESIA’95), No. 414,
IEE, London, pp. 276-281, 1995.

2. Chellapilla K., Fogel D. B., and Rao S. S., “Gaining Insight into Evolutionary
Programming Through Landscape Visualization: An Investigation into IIR
Filtering”, Evolutionary Programming 97, pp. 407-417, 1997.

3. Delibasis K. K., Undrill P. E., and Cameron G. G., “Genetic algorithm
implementation of stack filter design for image restoration”, ”, IEE Proceeedings
in Vision, Image and Signal Processing, Vol. 143, No. 3, pp. 177-183, 1996.

4. Dempster A. G., and Macleod M. D., “Use of Minimum-Adder Multiplier Blocks
in FIR Digital Filters”, IEEE Transactions on Circuits and Systems-II: Analog
and Digital Signal Processing, Vol. 42, No. 9, pp. 569-577, 1995

5. Esparcia Alcazar A. I., and Sharman K. C., “Some Applications of Genetic
Programming in Digital Signal Processing”, in Late Breaking Papers at Genetic
Programming 96, Stanford, pp. 24-31, 1996.

Evolution of Digital Filters Using a Gate Array Model 29

6. Harris S. P., and Ifeachor E. C., “Automating IIR filter design by genetic
algorithm”, Proceedings of the First IEE/IEEE International Conference on
Genetic Algorithms in Engineering Systems: Innovations and Applications
(GALESIA’95), No. 414, IEE, London, pp. 271-275, 1995.

7. Iba H., Iwata M., and Higuchi T., Machine Learning Approach to Gate-Level
Evolvable Hardware, in Higuchi T., Iwata M., and Liu W., (Editors),
Proceedings of The First International Conference on Evolvable Systems: From
Biology to Hardware (ICES96), Lecture Notes in Computer Science, Vol. 1259,
Springer-Verlag, Heidelberg, pp. 327 – 343, 1997.

8. Ifeachor E. C., and Jervis B. W., “Digital Signal Processing: A Practical
Approach”, Addison-Wesley, 1993.

9. Miller J. F., and Thomson P., “Evolving Digital Electronic Circuits for Real-
Valued Function Generation using a Genetic Algorithm”. Koza, John R. et al,
(Editors). Genetic Programming: Proceedings of the Third Annual Conference,
July 22-25, 1998, University of Wisconsin, Madison, Wisconsin. San Francisco,
CA: Morgan Kaufmann pp. 863-868, 1998.

10. Miller J. F., Thomson P., “Aspects of Digital Evolution: Evolvability and
Architecture”, in (Editors), Proceedings of The Fifth International Conference
on Parallel Problem Solving from Nature (PPSNV), Lecture Notes in Computer
Science, Vol. 1498, Springer-Verlag, Heidelberg, pp. 927-936, 1998.

11. Miller J. F., Thomson P., “Aspects of Digital Evolution: Geometry and
Learning”, in Sipper M., Mange D., and Perez-Uribe A. (Editors), Proceedings of
The Second International Conference on Evolvable Systems: From Biology to
Hardware (ICES98), Lecture Notes in Computer Science, Vol. 1478, Springer-
Verlag, Heidelberg, pp. 25-35, 1998.

12. Miller J. F., Thomson P., and Fogarty T. C., “Designing Electronic Circuits Using
Evolutionary Algorithms. Arithmetic Circuits: A Case Study”, in Genetic
Algorithms and Evolution Strategies in Engineering and Computer Science: D.
Quagliarella, J. Periaux, C. Poloni and G. Winter (eds), Wiley, 1997.

13. Murakawa M., Yoshizawa S., and Higuchi T., “Adaptive Equalisation of Digital
Communication Channels Using Evolvable Hardware”, in Higuchi T., Iwata M.,
and Liu W., (Editors), Proceedings of The First International Conference on
Evolvable Systems: From Biology to Hardware (ICES96), Lecture Notes in
Computer Science, Vol. 1259, Springer-Verlag, Heidelberg, pp. 379 – 389, 1996.

14. Poli R., “Evolution of graph-like programs with parallel distributed genetic
programming”, in Bäck T. (Editor), Genetic Algorithms: Proceedings of the
Seventh International Conference, Morgan Kaufmann, pp. 346-353, 1997.

15. Redmill D. W., and Bull D. R., “Design of Low Complexity FIR Filters using
Genetic Algorithms and Directed Graphs”, in Proceedings of the Second
IEE/IEEE International Conference on Genetic Algorithms in Engineering
Systems: Innovations and Applications (GALESIA’97), No. 446, IEE, London,
1997.

16. Sipper M., Sanchez E., Mange D., Tomassini M., Perez-Uribe A., and Stauffer
A., “A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired
Hardware Systems”, IEEE Transactions on Evolutionary Computation, Vol. 1, No
1., pp. 83-97, 1997.

30 J.F. Miller

17. Sriranganathan S., Bull D. R., and Redmill D. W., “Design of 2-D Multiplierless
FIR Filters using Genetic Algorithms”, Proceedings of the First IEE/IEEE
International Conference on Genetic Algorithms in Engineering Systems:
Innovations and Applications (GALESIA’95), No. 414, IEE, London, pp. 282-
286, 1995.

18. Sundaralingam S., and Sharman K. C., “Genetic Evolution of Adaptive Filters”,
in Proceedings of DSP, London UK, pp. 47-53, 1997.

19. Wade G., Roberts A., and Williams G., “Multiplier-less FIR filter design using a
genetic algorithm”, IEE Proceedings in Vision, Image and Signal Processing,
Vol. 141, No. 3, pp. 175-180, 1994.

GA Optimisation of Spatio-Temporal Grey-Scale
Soft Morphological Filters with Applications in

Archive Film Restoration

Neal R. Harvey1 and Stephen Marshall2

1 Astrophysice & Radiation Measurements Group, Los Alamos National Laboratory,
Los Alamos, NM 87545, USA

2 Department of Electronic & Electrical Engineering University of Strathclyde,
Glasgow, G1 1XW, UK

Abstract. A technique is described for the optimisation of spatio-tem-
poral (3-D) grey-scale soft morphological filters for applications in ar-
chive film restoration. The optimisation is undertaken using genetic algo-
rithms. By employing filters which incorporate the temporal dimension,
this technique extends and improves upon previously described techni-
ques which were based purely in the spatial (2-D) domain. Examples of
applying the technique to real-world film restoration problems are shown.

1 Introduction

There has been a growing interest in recent years in the area of archive film
restoration. This has no doubt come about in part due to the emergence of
digital television broadcasting and the growth in video sales. In order to satisfy
demand, it is becoming more attractive to offer much of the available archive
material. However, a great deal of the archive material has suffered some form
of corruption and requires restoration in order to be of a sufficient quality for
resale or broadcast. This paper addresses the particular problem associated with
archive film material, known as film dirt . This occurs when particles get caught in
the film transport mechanism and damage the film, causing loss of information.
This damage manifests as “blotches” of random size, shape and intensity.

Fig. 1 shows an example of an image from a sequence of images corrupted
with film dirt.

Here we describe a global filtering strategy for the restoration of image se-
quences corrupted with film dirt, using 3-D grey-scale soft morphological filters
and a method for the optimisation of the filter parameters using a genetic algo-
rithm.

2 Soft Morphological Filters

Soft morphological filters are a relatively recently introduced class of non-linear
filters [1,2]. Their original definition was related to the class of (standard/struc-
tural) morphological filters (discrete flat morphological filters), but they have

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 31–45, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

32 N.R. Harvey and S. Marshall

Fig. 1. Image corrupted with film dirt

GA Optimisation of Spatio-Temporal Grey-Scale Soft Morphological Filters 33

since been extended to the grey-scale (function processing) case [3]. The idea
behind soft morphological filters is to slightly relax the standard definitions of
morphological filters in such a way as to achieve robustness whilst retaining most
of the desirable properties of standard morphological filters. Whereas standard
morphological operations are based on local maximum and minimum operations,
in soft morphological operations these operations are replaced by more general
weighted order statistics. The key idea of soft morphological operations is that
the structuring element is divided into two parts: the hard centre which behaves
like the standard structuring element and the soft boundary , where maximum
and minimum are replaced by other order statistics. This makes the operations
behave less rigidly in noisy conditions and makes the operations more tolerant
to small variations in the shapes of the objects in the filtered image.

Just as the fundamental standard morphological operations are dilation and
erosion, the fundamental soft morphological operations are soft dilation and soft
erosion. In a manner similar to that of standard morphological operations, the
secondary soft morphological operations of soft opening and soft closing and the
tertiary soft morphological operations of soft open-closing and soft close-opening
can be defined.

Before proceeding to the definitions of the soft morphological operations,
some other concepts need to be defined:

The Structuring System [b, a, r] consists of three parameters; functions a and
b, having supports A and B, respectively (A ⊂ B) and a natural number, r,
satisfying 1 ≤ r ≤ |B|, where |B| is the cardinality of B. Function b is called the
structuring function, a its (hard) centre (A the support of its (hard) centre), b\a
its (soft) boundary (B\A, the support of its (soft) boundary) and r the order
index of its centre or the repetition parameter .

2.1 Fundamental Grey-Scale Soft Morphological Operations

Grey-scale soft dilation of a signal f by the structuring system [b, a, r] is denoted
by f ⊕ [b, a, r] and is defined by:

f ⊕ [b, a, r](x) = the rthlargest value of the multiset

{r � (f(x − α) + a(α))}
⋃

{f(x − β) + b(β)} (1)

where α ∈ A, β ∈ B\A

Grey-scale soft erosion of a signal f by the structuring system [b, a, r] is
denoted by f 	 [b, a, r] and is defined by:

f 	 [b, a, r](x) = the rthsmallest value of the multiset

{r � (f(x + α) − a(α))}
⋃

{f(x + β) − b(β)} (2)

where α ∈ A, β ∈ B\A

34 N.R. Harvey and S. Marshall

As an extreme case, grey-scale soft morphological operations by the structu-
ring system [b, a, r] reduce to the equivalent standard grey-scale morphological
operations by the function b if r = 1, or, alternatively, if A = B. If r > |B\A|,
grey-scale soft morphological operations by the structuring system [b, a, r] reduce
to the equivalent grey-scale standard morphological operations by the structu-
ring function a.

2.2 Secondary Grey-Scale Soft Morphological Operations

Grey-scale soft opening by the structuring system [b, a, r] is defined as grey-scale
soft erosion by the structuring system [b, a, r] followed by grey-scale soft dilation
by the structuring system [bs, as, r] of the soft eroded result.

Grey-scale soft opening of f by [b, a, r] is denoted by f[b,a,r] and is defined
by:

f[b,a,r](x) = (f 	 [b, a, r]) ⊕ [bs, as, r](x) (3)

Grey-scale soft closing by the structuring system [b, a, r] is defined as grey-
scale soft dilation by the structuring system [b, a, r] followed by grey-scale soft
erosion by the structuring system [bs, as, r] of the soft dilated result.

Grey-scale soft closing of f by [b, a, r] is denoted by f [b,a,r] and is defined by:

f [b,a,r](x) = (f ⊕ [b, a, r]) 	 [bs, as, r](x) (4)

Note that the symmetric function of f , having support F is denoted as fs

and defined as:

fs = {−f(−x) : x ∈ F} (5)

i.e. the symmetric function is also known as the reflection of the function, and
is accomplished by reflecting the function through the vertical axis and through
the horizontal axis. This is equivalent to rotating the graph of the function by
180o about the origin.

2.3 Tertiary Grey-Scale Soft Morphological Operations

Grey-Scale soft open-closing by the structuring system [b, a, r] is defined as grey-
scale soft opening by the structuring system [b, a, r], followed by grey-scale soft
closing of the soft opened result, using the same structuring system.

Similarly, grey-scale soft close-opening by the structuring system [b, a, r] is
defined as grey-scale soft closing by the structuring system [b, a, r], followed by
grey-cale soft opening of the soft closed result, using the same structuring system.

GA Optimisation of Spatio-Temporal Grey-Scale Soft Morphological Filters 35

3 Optimisation of Soft Morphological Filters

Several methods have been described for the optimisation of soft morphological
filters. Huttunen et al [4] and Kuosmanen et al [5] describe methods for the
optimal choice of (2-D) flat (function-set processing) soft morphological struc-
turing system. These methods do not, however, optimise the choice of soft mor-
phological operation. Harvey [6,7] described a method for the optimisation of
(2-D/spatial) grey-scale soft morphological filters which is able to optimise not
only the structuring system, but also the choice of soft morphological opera-
tion. In [8] this GA optimisation technique was applied to the restoration of
film material. Purely spatial (2-D) filtering techniques obviously do not make
use of the available temporal information available. The temporal characteri-
stics of the corruption in image sequences containing film dirt (i.e. non-time
correlated, temporally impulsive) can provide useful information. In this paper
the 2-D (spatial) method of film dirt removal is improved and extended to the
3-D (spatio-temporal) case in order to make use of this valuable temporal infor-
mation.

3.1 Soft Morphological Filter Parameters

In searching for the optimal choice of soft morphological filter the following
parameters have to be considered:

– Size and shape of structuring system’s hard centre
– Size and shape of structuring system’s soft boundary
– Rank selection parameter
– Choice of soft morphological operations

What follows is a description of how these parameters are incorporated into a
genetic algorithm optimisation strategy. The parameters are encoded and map-
ped to a “chromosome”.

Overall Structuring Function. Limits as to the dimensions of the overall
structuring function are set (i.e. the spatial, temporal and grey-scale dimen-
sions) and the optimisation process is allowed to search for any size and shape of
overall structuring function within this 4-D hypercube “envelope”. If the overall
spatio-temporal dimensions of the structuring function are fixed, it may be that
for a particular structuring function, not all positions within this region are in
the actual region of support. In order to take this into account in the GA op-
timisation, it is necessary for positions outside the structuring function’s region
of support, but within the overall search envelope, i.e. don’t care positions, to be
distinguishable. A suitable code, therefore, would be one which includes a uni-
que representation for those “null” positions. An example of such an encoding
scheme is shown in Table 1. A “*” refers to a position outside the structuring
function’s region of support. In this example, grey-scale values ranging from 0

36 N.R. Harvey and S. Marshall

Table 1. Example of code for coding positions within and outside the overall structu-
ring function’s region of support

Code Grey-scale value

0 *
1 0
2 1
3 2
4 3
5 4

to 4, as well as positions outside the structuring function’s region of support are
able to be encoded.

The overall structuring function is divided into two distinct regions: the hard
centre and soft boundary. Hence, some method of distinguishing these two regi-
ons must be incorporated into the coding.

Hard Centre. A binary string, having a length equivalent to the cardinality of the
structuring function’s overall support “envelope”, is used to flag those positions
within the structuring function’s support which are in the hard centre. Positions
in this string which contain a one are positions within the structuring function
which are in the hard centre. After forming each new individual, the hard centre
flags are checked against the structuring function portion of the chromosome. If
any of the positions within the structuring function portion of the chromosome
are coded as being outside its region of support, i.e. “null” positions, then a
check is made to ensure that the corresponding position within the hard centre
flag string has a zero and is changed as necessary.

Soft Boundary. Any positions within the overall structuring function’s support
not coded as a null position and not having a one in the corresponding hard
centre flag portion of the chromosome are considered to be in the soft boundary
of the structuring function.

Rank selection parameter. From the definition of soft morphological opera-
tions, we know that for a structuring function, b having a support B, the rank
selection parameter, r, has to lie somewhere in the range 1 ≤ r ≤ |B|. In other
words, we can state that the rank selection parameter is related in some way
to the cardinality of the structuring function. So, in order to code the repe-
tition parameter we can have a binary string, the length of which is equal to
the overall size of the structuring function (i.e. the pre-set outer limits of the
structuring function’s support). This binary string is then used to flag whether a
position within the structuring function’s support contributes to the repetition
parameter - a one signifying that it does. To ensure consistency, a check has
to be made, after forming each new individual, that those positions flagged as

GA Optimisation of Spatio-Temporal Grey-Scale Soft Morphological Filters 37

contributing to the repetition parameter are only those positions coded as being
within the structuring function’s support. If any positions in the repetition pa-
rameter binary string are flagged with a one, but the corresponding positions
in the structuring function are coded as being outside the structuring function’s
support, these flags have to be altered to ensure that they are set to zero. In this
way the binary string can only code values lying within the allowable range.

Choice and Sequence of Soft Morphological Operations. When consi-
dering the soft morphological operations in the context of design of soft mor-
phological filters, one has to consider the search space within which the GA will
operate. Here we will, essentially, be seeking to limit our search to the set of
fundamental (primary), secondary and tertiary soft morphological operations,
i.e. to the set which includes { soft erosion, soft dilation, soft opening, soft clo-
sing, soft open-closing and soft close-opening }. Each member of this set can be
defined as some combination of the fundamental soft morphological operations.
Therefore, for a coding scheme to be able to encode this set of soft morphological
operations, we can state that there are two basic decisions to be made;

– The set of individual soft morphological operators from which to choose.
– The maximum number of soft morphological operations in the sequence.

So, to be able to code the primary, secondary and tertiary soft morphological
operations, the set of soft morphological operators necessary is { soft dilation,
soft erosion} and the sequence length required is four, i.e. the longest sequence
of operations will be for the tertiary operations of soft open-closing and soft
close-opening, which can be defined in terms of the fundamental (primary) ope-
rations as a sequence of four separate primary operations: soft open-closing can
be defined as soft erode, soft dilate, soft dilate, soft erode and soft close-opening
as soft dilate, soft erode, soft erode, soft dilate.

In order that the GA should be able to perform optimisation over the entire
search space, it is necessary to include the do-nothing , or identity operation
to the set of soft morphological operations. This is due to the fact that the
length of the sequence of soft morphological operations is fixed in the genetic
algorithm, but it is desirable to include in the search space all the combinations
of soft morphological operations from the simple soft erosion and soft dilation,
through the soft close and soft open filters, to the soft open-close and soft close-
open filters. Hence, if one were to omit the do-nothing (or identity) operation,
then the search space would only include those filters which contain exactly four
operations, each chosen from the set {soft erode, soft dilate} and the search
space would be severely restricted. Each member of the set of soft morphological
operations to be considered in the GA optimisation can be coded as a single
integer and these integers can then be mapped to appropriate positions in a
chromosome. Table 2 shows an example of codings for the set {soft dilation, soft
erosion, do-nothing}.

It is necessary to ensure that each possible sequence of operations is unique,
i.e. so that no combinations of operations in a sequences can be coded in more

38 N.R. Harvey and S. Marshall

than one way, since some combinations of filter sequences are equivalent, e.g. soft
erode, soft dilate, do-nothing, do-nothing and do-nothing, soft erode, do-nothing,
soft dilate. This is accomplished by, after forming each new individual, checking
the sequence of operations portion of the chromosome and ensuring that any
do-nothing operations are moved to the end of the sequence.

Table 2. Example of a code for soft morphological operations, if choice is from {soft
erosion, soft dilation, do-nothing}

Code Soft Morphological Operator

0 Do-Nothing
1 Soft Erosion
2 Soft Dilation

Combining the coded structuring function’s hard centre and soft bo-
undary, sequence of soft morphological operations and rank selection
parameter. To form the complete chromosome, the separate strings containing
the encoded structuring function, hard centre flags, sequence of soft morpholo-
gical operations and rank selection parameter are simply concatenated.

The size of the search space is therefore fixed. The overall dimensions of the
structuring functions - the maximum size of its region of support (and hence
the support of the hard centre and soft boundary and the range of possible
rank selection parameters), the maximum grey-level values and the maximum
length of soft morphological operations, together with the choice of rank-order
morphological operations are all set beforehand. The GA will be capable of se-
arching for any 3-D grey-level soft morphological filter which is a combination
of four operations from the set {soft erode, soft dilate, do-nothing}, which will
use a structuring function (hard centre and soft boundary) and rank selection
parameter chosen from all the possible variations within the overall region of
support and maximum grey-level value. This search space encompasses (3-D)
spatio-temporal, 2-D (purely spatial) and 1-D (purely temporal) soft morpho-
logical filters. In addition, the class of soft morphological filters encompasses
several other classes of non-linear filters including standard morphological filters
and rank-order filters.

3.2 Fitness Function

In order to provide each individual, representing a particular set of filter para-
meters with a fitness value, it is necessary to have some method of ascertaining
the filter’s performance, with respect to some criterion. Criteria commonly used
in image processing optimisation problems usually involve some comparison of
the filtered image with an “ideal” image, and will include a measure of the mean

GA Optimisation of Spatio-Temporal Grey-Scale Soft Morphological Filters 39

absolute and/or mean squared error. In the case of film restoration, however, it
is generally not possible to perform a comparison with an ideal image, as such
a thing does not exist. After all, if a non-corrupted version of the film exists,
why bother trying to restore a corrupted version? It is therefore necessary to
base the fitness value on some objective image quality criterion which can be
calculated using only the available image sequence. The objective quality cri-
terion used in this technique is based on an objective quality measure, defined
by Ramponi et al [9]. This “quality appraiser” is based on the discrimination
between background and detail regions, using a measure of the local variance. A
threshold is used to discriminate between pixels: those with a variance above a
certain threshold are considered as detail pixels and the others are considered as
background pixels. The average detail variance and background variance for an
image is calculated. The measure of a filter’s performance is calculated in terms
of the increase in detail variance (and hence increase in sharpness) and decrease
in background variance (and hence decrease in noise/corruption) that it effects
on the corrupted image. Obviously, in this application, we are more interested in
the decrease in background variance (and hence noise/corruption). Any increase
in detail variance would be an added bonus.

3.3 Genetic Operators

The actual “genetic algorithm” itself was based upon what is often referred to
as a simple genetic algorithm, or SGA, with minor modifications.

– Selection: Roulette wheel selection was used.
– Crossover : Uniform crossover was applied, with a probability of 0.75.
– Mutation: The mutation operator involved randomly choosing one of the pos-

sible values of an allele for a particular locus on the chromosome. Mutation
was applied with a probability of 0.03.

– Population Size: The population size was set at 30.

4 Application to Real Image Sequences

The GA, as described above, was run, using a representative sub-set of a corrup-
ted image sequence. This sequence consisted of 9 images of 91 × 132 pixels. The
GA was set the task of optimising a soft morphological filter with an overall size
of structuring function set at 3×3×3. The best filter found after 1000 generations
was then applied to the full-sized corrupted image sequence. Some examples of
this original, corrupted and the corresponding filtered image sequence are shown
below.

Figs. 2 to 5 show some examples of regions extracted from a sequence of
images corrupted with film dirt, together with the same regions after having
been filtered with the grey-scale soft morphological filter found using the GA.
The upper example of the pairs is the corrupted version and the lower example
is the filtered version.

40 N.R. Harvey and S. Marshall

Fig. 2. Region extracted from image corrupted with film dirt and the same region after
filtering with the grey-scale soft morphological filter found using the GA

GA Optimisation of Spatio-Temporal Grey-Scale Soft Morphological Filters 41

Fig. 3. Region extracted from image corrupted with film dirt and the same region after
filtering with the grey-scale soft morphological filter found using the GA

42 N.R. Harvey and S. Marshall

Fig. 4. Region extracted from image corrupted with film dirt and the same region after
filtering with the grey-scale soft morphological filter found using the GA

GA Optimisation of Spatio-Temporal Grey-Scale Soft Morphological Filters 43

Fig. 5. Region extracted from image corrupted with film dirt and the same region after
filtering with the grey-scale soft morphological filter found using the GA

44 N.R. Harvey and S. Marshall

Table 3. Average local background variance (BV) values for the original and filtered
image regions shown in Figs. 2 to 5

Fig. Original BV Filtered BV

2 15.50 12.38
3 20.13 17.20
4 15.08 12.21
5 20.91 17.52

From Figs. 2 to 5 it can be seen that the filter applied to the corrupted image
sequence has been able to subdue significantly the appearance of the corruption
within the image without unduly affecting the image detail. This can also be
seen, quantitatively, by the decrease in average local background variances, as
shown in Table 3. Examples of complete, full-sized images as well as moving
image sequences can be viewed at the following web page:

http://www.spd.eee.strath.ac.uk/̃harve/bbc epsrc film dirt.html

Other restoration methods described in the literature, e.g. [10,11], perform
well with resepct to the complete removal of larger film-dirt artefacts. This is due
to the fact that these techniques are based upon a detect-and-remove approach
where the artefacts are first detected and the entire areas containing these ar-
tefacts are completely removed and replaced with some estimate of the original
data. However, these methods do not perform well when the film-dirt artefacts
are difficult to detect, such as when they are small in size, or the difference
between artefact and adjacent non-artefact pixels is small. The global filtering
strategy described here is much better at removing these smaller and/or less
pronounced artefacts. It is also simple to understand and implement. Another
benefit of this method is that it may have applications in other areas of image
restoration and enhancement and is not totally restricted to the single task of
film dirt removal. The optimisation is carried out with respect to a “local” image
quality criterion and this should allow the technique to be applied to image se-
quences suffering from other types of corruption/noise. In addition, the GA (the
fundamental operations), and associated fitness function are not limited to the
field of soft morphology and could also be applied to the optimisation of other
filters.

5 Conclusion

A method has been described which allows the optimisation of 3-D grey-scale
soft morphological filters with respect to an objective quality criterion which
is based on a local measure of variance. Soft morphological filters found using
this technique show good results in removing film dirt from corrupted image se-
quences whilst retaining essential image details. The new 3-D technique improve

GA Optimisation of Spatio-Temporal Grey-Scale Soft Morphological Filters 45

upon the performance of the existing 2-D method and may have some benefits
compared to other non-global strategies.

Acknowledgements I should like to thank the staff at BBC R & D Dept., Kings-
wood Warren, Surrey, England, for providing archive film material and to the
EPSRC for funding this work.

References

1. Koskinen, L., Astola, J., Neuvo, Y.: Soft Morphological Filters. Proc. SPIE Symp.
on Image Algebra and Morphological Image Processing II. San Diego, USA (July
1992) 262–270

2. Kuosmanen, P.: Soft Morphological Filtering. Ph.D. Thesis, Dept. of Mathematical
Sciences, University of Tampere, Finland (April 1993)

3. Pu, C.C., Shih, F.Y.: Soft Mathematical Morphology: Binary and Grey-Scale. Proc.
Int. Workshop on Mathematical Morphology and its Application to Signal Proces-
sing. Barcelona, Spain (May 1993) 28–33

4. Huttunen, H., Kuosmanen, P., Koskinen, L., Astola, J.: Optimization of Soft Mor-
phological Filters by Genetic Algorithms. Proc. of Image Algebra and Morphological
Image Processing. San Diego, USA (July 1994) 13–24

5. Kuosmanen, P., Koivisto, P., Huttunen, H., Astola, J.: Optimization of Soft Mor-
phological Filters under Shape Preservation Criteria. Proc. Image Algebra and Mor-
phological Image Processing V. San Diego, USA (July 1994)

6. Harvey, N.R., Marshall, S.: Grey Scale Soft Morphological Filter Optimisation by
Genetic Algorithms. In: P. Maragos, P. Schafer, R. Butt (eds.): Mathematical Mor-
phology and its Applications to Image and Signal Processing. Kluwer Academic
Publishers (1996) 179–18

7. Harvey, N.R.: New Techniques for the Design of Morphological Filters using Genetic
Algorithms. Ph.D. Thesis, Dept. of Electonic and Electrical Engineering, University
of Strathclyde, UK (September 1997)

8. Harvey, N.R., Marshall, S.: Film Restoration Using Soft Morphological Filters. Proc.
6th Int. Conf. on Image Processing and its Applications (IPIA’97). Dublin, Ireland
(July 1997) 279–282.

9. Ramponi G., Strobel N., Mitra S., Yu T-H.: Nonlinear Unsharp Masking Methods
for Image Contrast Enhancement. Journal of Electronic Imaging 5(3) (July 1996)
353–366

10. Kokaram, A.C., Morris, R.D., Fitzgerald, W.J., Rayner, P.J.W.: Detection of Mis-
sing Data in Image Sequence. IEEE Trans. on Image Proc. Vol. 4. No. 11 (November
1995) 1496–1508

11. Kokaram, A.C., Morris, R.D., Fitzgerald, W.J., Rayner, P.J.W.: Interpolation of
Missing Data in Image Sequence. IEEE Trans. on Image Proc. Vol. 4, No. 11 (No-
vember 1995) 1509–1519

Simulation of Evolvable Hardware to Solve Low
Level Image Processing Tasks

Gordon Hollingworth, Andy Tyrrell, and Steve Smith

University of York, Heslington, York, England
{gsh100, amt, sls}@ohm.york.ac.uk

http://www.amp.york.ac.uk/external/aseg/evolarch.html

Abstract. The long term goal of the work described in this paper is the
development of a bio-inspired system, employing evolvable hardware,
that adapts according to the needs of the environment in which it is de-
ployed. The application described here is the design of a novel and highly
parallel image processing tool to detect edges within a wide range of con-
ventional grey-scale images. We discuss the simulation of such a system
based on a genetic programming paradigm, using a simple binary logic
tree to implement the genetic string coding. The results acquired from
the simulation are compared with those obtained from the application
of a conventional Sobel edge detector, and although rudimentary, show
the great potential of such bio-inspired systems.

1 Introduction

Bio-inspired systems have been present in the electronics and computer science
communities for many years [21]. It is possible to classify bio-inspired systems
into three domains: phylogeny, ontogeny and epigenesis. Each of these is rela-
tively well understood in the world of natural science. However, inspiration is
required to bridge the gap between natural sciences and engineering.

Phylogeny embraces the evolution of species through the passing of genes
from one generation to the next. Infrequent errors occurring during the copying
of genes, known as mutations, originate new traits on the species. The survival of
species depends upon these traits and allow the species to adapt better to changes
in the environment. The environment is represented by co-evolving populations
and the resources needed for the survival of species. The ideas of phylogenetics
have been applied for more than three decades with artificial systems. These are
generally known as evolutionary algorithms or evolutionary computation, with
specific examples being genetic algorithms, evolution strategies, evolutionary
programming and genetic programming [10,14,18]. The evolution of hardware
systems can be either extrinsic or intrinsic. In the first case a software descrip-
tion of the electronic circuit is evolved using computer simulation, and only the
final elite chromosome is downloaded onto the programmable chip. Examples of
extrinsic evolution include simple synchronous logic circuits. In the latter case
the adaptation is done on-line in real-time.

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 46–58, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Simulation of Evolvable Hardware 47

Evolutionary design techniques like Genetic Algorithms (GAs), Genetic Pro-
gramming (GP) and Evolvable Hardware (EHW) have been applied to many
simple design applications [18,19,11] and some advanced ones [6,8,16]. It is be-
lieved that the application of these techniques can create systems that will react
to their inputs in a method akin to the adaptation of natural biological beings to
the environment. In the work reported here, high level image processing appli-
cations are evolved that have the ability to adapt to changes in the environment
that would normally create errors in the system.

This paper first describes the image processing problem of edge detection,
followed by a brief introduction to evolutionary algorithms like the GP, and the
application of GP to the Image Processing (IP) problem, resulting in a natural
parallel architecture. Finally the actual edge detector evolved is discussed and
evaluated in its abilities, in comparison to the Sobel edge detector.

2 Evolutionary Design Techniques

Genetic Algorithms were first explored by John Holland [4]; he showed how it
is possible to evolve a set of binary strings which described some system to
which a measure of fitness is applied. The analogy to normal evolution is that
the binary strings are analogous to the DNA sequence (the genotype)carried by
all living things, the phenotype (the body) is built through a process known as
embryological development, which is a sequence of chemical interactions within
each cell which distinguishes various cells and describes their action. The body
is then subject to the environment where its fitness for reproduction is assesed,
more fit individuals have a higher rate of reproduction. This means that genes
within the DNA that code for specific ’good’ traits (traits which describe bet-
ter reproduction abilities) will have a higher probability of existing in future
populations.

In artificial evolution a binary string describes the system, this system is
either described directly or is described through some form of embryological
development. The system is then assesed within the environment to find its
fitness relative to the other individuals. This measure is then used to weight the
probability of reproduction so that through many generations, good genes win
out and bad genes die away.

A simple example is to find the maximum of some function f(x), the genotype-
phenotype mapping is simple since the value of x to insert into the function is the
binary value of the genotype. The fitness is literally the value of the function,
and as generation passes to generation the average fitness increases. Holland
showed that this works mathematically when the rate of reproduction is higher
for ’more fit’ individuals[4].

Genetic Programming (GP) is a simple extension to the Genetic Algorithm,
introduced by John Koza[9]. Instead of describing the system using a simple
binary string, a tree structure of functions is used. This structure creates a
system with inputs at the end of each branch and a simple output at the top.
An example tree is shown in figure 5.

48 G. Hollingworth, A. Tyrrell, and S. Smith

A further extension to the domain of evolutionary techniques came after
the creation of Field Programmable Gate Array (FPGA)[7] devices and Pro-
grammable Logic Devices (PLD), since these can be programmed using a binary
string or by coding a binary logic tree. The electronic circuits can then be eva-
luated either electronically, to compare their output with the required output
(intrinsic EHW), or in simulation (extrinsic EHW) to create some measure of
the fitness[22].

This has promoted much research on EHW [16,18,19,11,8,6] showing not only
the successful evolution of electronic circuits, but also some desirable features,
such as fault tolerance [17].

The power of bio-inspired electronics is in its potential as an adaptive hard-
ware which can change its behaviour and improve its performance while exe-
cuting in a real physical environment (as opposed to simulation). Such on-line
adaptation is more difficult to achieve but theoretically gives many advantages
over extrinsic systems. At present, work has mostly been concered with off-
line adaptation. That is, the hardware is not used in an execution mode while
evolving. Problems involved with on-line adaptation include, time to adapt and
accuracy of adaptation. However, if these problems can be overcome, the power
of bio-inspired electonics offers much to many.

3 Image Processing Operation

Edge detection is used to establish boundaries between regions in an image, ba-
sed upon the relative gray-levels. Common applications of edge detection might
include locating cell-walls, the outline of an aircraft and the pre-processing stage
for character recognition. The particular type of edge detector used often depends
upon the type of edge detection criteria specified for the image under considera-
tion and may differ depending upon whether the located edges are intended for
human interpretation or futher machine manipulation. An ideal edge detection
operator would be capable of detecting all types of edges, include simple steps,
gradients and changes of texture, regardless of orientation and the quality of
the image, which can commonly be distorted due to noise, corruption and poor
lighting.

As might be expected, no such edge detection operator currently exists, alt-
hough a number of different fundamental approches have been developed which
include gradient-based, template matching and edge fitting operators and finally
statistical detectors [20].

Gradient-based operators work on the principle that edges may be defined
between areas of varying image intensity. It is common to represent images digi-
tally as a number of picture elements or pixels, each of which has a value relating
to the grey-scale intensity of the image at that point [1]. The gradient value at
a pixel f(x, y) is therefore related to the two dimensional differential:

∆f =

√√√√[(
df

dx

)2

+
(

df

dy

)2
]

(1)

Simulation of Evolvable Hardware 49

The other edge detection operators listed above use highly non-linear me-
thods. Template matching uses a cross-correlation between the image and a set
of templates that detect edges in various orientations. Edge fitting uses a ma-
thematical model of a step-edge with a search function to find the best fitting
model at each point in the image. Finally, statistical detectors use statistical
techniques to segment the image and indicate the edges between the segmented
regions.

Gradient operators are more commonly used in IP, since they can be effec-
tively implemented through a simple 2D FIR filter, which is simple to implement
on Digital Signal Processor(DSP) technology.

The first step in testing Image Processing (IP) with evolutionary design tech-
niques is to choose a common algorithm to simulate. The algorithm chosen is
the process of edge detection, this is because it is a simple and well understood
algorithm which is based at a pixel intensive low level. This is useful because
we are interested in understanding how well evolutionary design will work with
common IP applications.

4 An IP Architecture for EHW

The first problem which must be addressed is that of the reduction of comple-
xity of the IP problem, this is generally due to the high number of input and
output pixels that must be processed. Images are usually composed of thousands
of individual pixels, each of which is represented by a number of bits, creating a
massive network to deal with a function between input and output pixels. Since
a genotype must code the function and connections between input and output
pixels, a correspondingly large genotype is required. In general, the larger the
genotype, the longer the time required for evolution. To minimise the evolution
time (and therefore the time to adapt to changes in the environment) the ge-
notype should be reduced in length as far as possible. A further requirement is
that the system should be independant of the image size.

This problem can be overcome by exploiting the parallelism of images. Figure
1 shows a diagram of the basic structure of the architecture, each block in the
network is pre-loaded with a single pixel of the image which is than output to the
local neighbourhood. This architecture allows a rich and varied form of image
processing from edge detection to high and low pass filtering.

Figure 2 shows the common processing block for each pixel (as seen in fi-
gure 1). Within each block are four main elements, the input pixel value, the
output pixel value, the genotype string and the functional block. The genotype
string is used to ’program’ the functional block to perform some mapping bet-
ween the local neighbourhood (input pixel and eight neighbour pixels) pixels
and the output pixel. One method of doing this, for example, is to use lookup
tables and multiplexors. Of course this would create some non-linear function
due to the non-linear nature of the processing functions (e.g., and, or, not) It
should be noted that this architecture is restricted to working within the local
neighbourhood, but this will be addressed in later versions of the system.

50 G. Hollingworth, A. Tyrrell, and S. Smith

COMMON FUNCTION

BLOCK

NEIGHBOURHOOD

COMMUNICATION

Fig. 1. Evolvable Hardware platform for grayscale local neighbourhood image proces-
sing

8 BITS

INPUT PIXEL

LOGIC FUNCTION, AS

DEFINED BY THE

GENOTYPE

OUTPUT PIXEL

GENOTYPE STRING

NEIGHBOUR

INPUTS 8X8 BITS

Fig. 2. Single pixel element block diagram

Simulation of Evolvable Hardware 51

Since the processing block can be programmed using a binary string, this
string can then be subjected to the forces of evolution to design an image pro-
cessing function.

The proposed architecture will have a number of characteristics to help with
implementation, these include: high regularity, which simplifies its implementa-
tion on silicon; modular in nature, making the actual function of the processing
element independant from the function of the remaining blocks within a cell;
simple, in terms of the processing elements used, allowing built-in self test logic
to provide self diagnosis without excessively increasing the silicon area[13,12].

5 Simulation of the Evolvable Hardware

The application of EHW in the design of Image Processing hardware as described
above is entirely novel and unproven. It is therefore prudent to evaluate the
system performance as far as possible before committing the design to hardware.
This is achieved by simulating the entire system in software, paying special
consideration to the following areas:

Desired Edge Detection Operation The type of edge detection operation
to be designed by the hardware system.

Fitness Evaluation The method adopted for assessing the performance of the
function evolved.

Type of Evolutionary Algorithm The type of Evolutionary Algorithm to be
employed (i.e. Genetic Algorithm or Genetic Program)

Genotype-Phenotype mapping The G-P mapping system used to convert
between the genotype and the hardware system.

5.1 Desired Edge Detection Operation

As described earlier a number of different approaches to edge detection are avai-
lable for conventional IP work, the most popular of these are gradient operators.
It was therefore decieded that a gradient operator should be used as the ope-
ration by which the EHW system should be compared. The specific gradient
operator chosen for evaluation of the EHW simulation is that devised by Sobel
[15]. The Sobel operator is a simple, but effective neighbourhood processing or
mask operator that combines good edge detection with immunity to noise.

Neighbourhood processing is achieved by considering the grey-scale values
of the 8 pixels that surround the pixel under investigation. According to the
weights specified in the mask, (see figure 3) a new value is calculated for the
central pixel. This process is repeated for every pixel in the image.

The Sobel operator utilises two such 3x3 pixel masks which, are shown in
figure 3. The first calculates the gradient in the horizontal plane and therefore
detects vertical edges while the second calculates the gradient in the vertical
plane and detects horizontal edges. In both cases the gradient is calculated by
multiplying each pixel by the respective weighting and summing the result.

52 G. Hollingworth, A. Tyrrell, and S. Smith

1 0 -1
2 0 -2
1 0 -1

1 2 1
0 0 0
-1 -2 -1

Fig. 3. Masks to detect vertical and horizontal edges

The vertical and horizontal gradients can be combined, using equation 2, to
give a measure of the magnitude of the gradient at each point (i, j) in the image.

im[i, j] =
√

(Sobelh[i, j])2 + (Sobelv[i, j])2 (2)

Where Sobelh[i, j] is the horizontal gradient at (i, j), and Sobelv[i, j] is the
vertical gradient.

The above is commonly approximated, using equation 3, to reduce compu-
tational complexity whilst maintaining the desired operation:

im[i, j] = |Sobelh[i, j]| + |Sobelv[i, j]| (3)

The Sobel operator is generally followed by a simple thresholding operation
in which each pixel in the image is assigned a value representing either black or
white depending on the magnitude of the gradient at that point compared to
some global threshold value. This operation is illustrated in figure 4.

Fig. 4. (a) Original image (b) Sobel Output

5.2 Fitness Evaluation

The fitness of the genetically derived edge detector must be evaluated with
respect to the Sobel operator previously described. Since the output image will
be one bit (either a pixel is an edge or it is not) there are a number of methods

Simulation of Evolvable Hardware 53

of comparing binary edge outputs from edge detectors[3,2], although in general,
such methods are mathematically complex and too computationally intensive to
preform practically in siumulation. An alternative method, described here, is a
simplified minimisation of under and over detection of edge pixels. In essence,
the results of the application of a Sobel operator and the genetically contrived
edge detector to the same original image, are compared on a pixel-by-pixel basis.
Two calculations are made based on those edges identified by the Sobel operator
but not the genetically derived edge detector and vice-versa.

Underdetection (Pef) is the number of edge pixels not detected by the ge-
netically derived edge detector divided by the total number of edge pixels
detected by the Sobel operator.

Overdetection (Pnf) is the number of non-edge pixels detected by the gene-
tically derived edge detector divided by the total number of non-edge pixels
detected by the Sobel operator.

Both of these values require minimisation simultaneously and is achieved by
maximising equation 4:

fitness =
1

1 + Pef + Pnf
(4)

5.3 Type of Evolutionary Algorithm

Phylogeny embraces the evolution of species through the passing of genes from
one generation to the next. The basis of this evolutionary development is that in-
frequent errors occuring during the copying of genes (mutations) originate new
traits upon the species. Occasionally the mutation increases the individual’s
suitability for a changing environment, meaning that the probability of repro-
duction is increased. Two classes of Evolutionary Algorithm exist which exploit
this method of evolutionary adaptation, Genetic Algorithms and Genetic Pro-
gramming. The survival of species depends upon these random traits producing
’fitter’ individuals and thus allowing the species to adapt better to a changing
environment.

A number of tests have been conducted to find the most suitable algorithm for
this application. The first was to evolve the convolution kernels (one horizontal
and one vertical) to perform the stated tasks. This method used the Genetic
Algorithm approach and showed itself to be successful, although, the function
unit described above (within the standard processing block) would be limited to
a simple linear convolution within the local neighbourhood.

The efficiency of the Genetic Programming paradigm has been investigated
for these problems. This method creates a tree of functions, with inputs at
the lowest layer of the tree and a single bit output at the top of the tree. In
our implementation the inputs are the various bits of the various neighbouring
image pixel values and the output equals a one or zero for an edge or non-
edge respectively. Figure 5 shows a simple tree structure using the basic logic

54 G. Hollingworth, A. Tyrrell, and S. Smith

functions. Each terminal is shown in bold and are named by the position they
are in respect to the current pixel, i.e. NorthWest, SouthEast etc. When a tree
is evaluated a fitness value is assigned which is then used in the breeding of the
new population. Higher fitness individuals are more likely to reproduce, leading
to fitter individuals reproducing more often. This operation tends to create a
new individual that is better, more fit, than either of its parents.

5.4 Genetic String Coding

The coding method used with GP is simple, using a selection of the node func-
tions and the terminal values:

{AND OR NOT XOR} Node Functions
{N NE E SE S SW W NW} Neighbouring pixel terminal values.

The set of functions was chosen to mimic the set of functions available wit-
hin an FPGA. This then gives an indication of how well the application would
transport across to current devices.

An example tree is shown in figure 5 using the functions and terminal sets
shown.

XOR XOR

OR

SW NE NW SE

Fig. 5. A simple binary logic tree

The terminals, shown in bold in the figure, are actually only a single bit wide
(due to the fact we are using logic gates). This means that with an 8 neighbour-
hood, 8 bits per pixel, 64 terminals would be required, making the evolution
time long. For the purposes of this simulation the task has been simplified to
use only 3 bits per pixel.

Simulation of Evolvable Hardware 55

6 Results of Evolution

The results of the test runs are described as a set of images corresponding to
various stages through a single run of the GP. These are compared with the
output achieved by processing the same original image using the Sobel edge
operator described earlier (figure 6a)

Figures 6b,7a and 7b shows the results of a single run of the GP using the
logic functions on 3 bits of image data. Figure 6b is the result of a random logic
tree, figure 7a is the output after 300 generations, where the trees have become
very similar (almost a species of logic trees!) Figure 7b is the result after running
the system for 791 generations. It is interesting to note that although the trees
have been converged for some time, regular improvements are still being made
in the edge detectors operations.

Since the edge detector evolved was only tested on a single image, it was
thought useful to compare its performance on a different image. The results of
this are seen in figure 8a and b. It is obvious that the evolved edge detector
is in fact very specific to the properties of edges in the original image. Future
runs of the algorithm will address this issue and alter the fitness measurement
to include other varieties of edge types.

Fig. 6. (a) Sobel output using full 8 bits of input image (b) Best output from the first
random generation

7 Discussion

The images considered above, resulting from a simulation of the proposed EHW
architecture for image processing, indicate that an edge detection operator is
being evolved. The final image shown is still far from perfect when compared

56 G. Hollingworth, A. Tyrrell, and S. Smith

Fig. 7. (a) Results after 300 generations (b) Results after 791 generations

Fig. 8. (a) Original Image (b) Result after being passed through the same edge detector
as figure 7b

with the output of the Sobel edge detector, however, it should be noted that
a form of edge detection has been evolved from a zero starting point, showing
that using the EHW architecture is a valid method of simple low-level image
processing. The main importance of the derived edge detector is in its speed,
since it is only a simple logic tree, there is only a small propogation delay from
output to input. This would be of the order of ten times faster than current DSP
devices if implemented in an ASIC.

The main problem with this method of evolution is the time required to
evaluate the population, with only a single image being tested, the system took
24 hours to reach its current capability, however, these results look promising
and work continues to refine and improve the evolution strategies.

Simulation of Evolvable Hardware 57

8 Conclusion

The method described in this paper is an image processing operation that can
be acheived using evolutionary algorithms. It is believed that the results presen-
ted demonstrate that this has been acheived through the simulation of a new
architecture designed to exploit the parallism of images for the implementation
of Evolvable Hardware.

Although the evolved system has some measure of sucess, it is important
to note that the detector is not as good as a Sobel edge detection operator.
Obviously the evolved system cannot produce something which is better than
the Sobel, since, a Sobel would be perfect (in terms of its measured fitness).
Instead the important result from this work is the EHWs ability to detect edges
in some degree, this means that low- level image processing operators are able to
be evolved through this method. This leads to the authors’ belief that higher level
IP operators can be evolved, where, it would be possible to test the system using
more abstract descriptions of the behaviour of the image processing systems.
Finally it is hoped that the work would give rise to novel solutions to well
understood problems.

References

1. R.C. Gonzalez and R.E. Woods. Digital Image Processing. Addison-Wesley, 1993.
2. R.M. Haralick. Digital step edges from zero crossing of second directional deriva-

tives. IEEE Trans., Pattern Anal. Machine Intell., PAMI-6:58–68, Jan. 1984.
3. M. Heath, S. Sarkar, T. Sanocki, and K.W. Bowyer. A robust visual method for

assessing the realtive performance of edge-detection algorithms. IEEE Transactions
on Pattern and Machine Intelligence, 19(12):pp 1338–59, 1996.

4. J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

5. G.S. Hollingworth, S.L. Smith, and A.M. Tyrrell. Design of highly parallel edge
detection nodes using evolutionary techniques. In Proceedings of 7th Euromicro
Workshop on Parallel and Distributed Processing. IEEE Press, 1999.

6. H. Iba, M. Iwata, and T. Higuchi. Gate-level Evolvable Hardware: Empirical study
and application, pages 259–279. Springer-Verlag, 1997.

7. Xilinx inc. Xc6200 field programmable gate array data book, 1995.
http://www.xilinx.com/partinfo/6200.pdf.

8. M. Iwata, I. Kajitani, H. Yamada, H. Iba, and T. Higuchi. A pattern recognition
system using evolvable hardware. In International Conference on Evolutionary
Computation: The 4th Conference on Parallel Problem Solving from Nature, pages
761–770. Springer, 1996.

9. J.R. Koza. Genetic Programming. MIT Press, 1992.
10. M. Murakawa, S. Yoshizawa, and T. Higuchi. Adaptive equalisation of digital

communication channels using evolvable hardware. In Higuchi et al., editor, Pro-
ceedings of 1st International Conference on Evolvable Systems: From Biology to
Hardware, volume 1259 of LNCS, pages 379–389. Springer, 1997.

11. M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, and T. Higuchi.
Hardware evolution at functional level. In International conference on Evolutionary
Computation: The 4th Conference on Parallel Problem Solving from Nature, pages
62–71, 1996.

58 G. Hollingworth, A. Tyrrell, and S. Smith

12. C. Ortega and A.M. Tyrrell. Biologically inspired real-time reconfiguration tech-
nique for processor arrays. In Proceedings of 5th IFAC Workshop on Algorithms
and Architectures for Real-Time Control, 1998.

13. C. Ortega and A.M. Tyrrell. Design of a basic cell to construct embryonic arrays,
1998.

14. M. Sipper. Designing evolware by cellular programming. In Higuchi et al., editor,
Proceedings of 1st International Conference on Evolvable Systems: From Biology
to Hardware, volume 1259 of LNCS, pages 81–95. Springer, 1997.

15. I.E. Sobel. Camera models and machine perception (phd thesis), 1970.
16. A. Thompson. Evolving Electronic Robot Controllers that exploit hardware resour-

ces., pages 640–656. Springer-Verlag, 1995.
17. A. Thompson. Evolutionary techniques for fault tolerance. UKACC International

Conference on Control, pages 693–698, 1996.
18. A. Thompson. An evolved circuit, intrinsic in silicon, entwined with physics. In Pro-

cedures of the 1st international conference on Evolvable systems (ICES96). Sprin-
ger, 1996.

19. A. Thompson. Silicon evolution. In J.R. et al. (Eds) Koza, editor, Proceedings of
Genetic Programming 1996 (GP96), pages 444–452. MIT Press, 1996.

20. D. Vernon. Machine Vision: Automated Visual Inspection and Robot Vision. Pren-
tice Hall, 1991.

21. J. Von Neumann. Theory of Self Reproducing Automata. University of Illinois
Press, 1966.

22. X. Yao and T. Higuchi. Promises and challenges of evolvable hardware. In Inter-
national Conference on Evolvable Systems: From Biology to Hardware. Springer,
1996.

Genetic Snakes for Medical Images Segmentation

Lucia Ballerini

Department of Electronic Engineering, University of Florence
Via S.Marta, 3 - 50139 Firenze - Italy

lucia@asp.die.unifi.it

Abstract. In this paper an approach is described for segmenting medi-
cal images. We use active contour model, also known as snakes, and we
propose an energy minimization procedure based on Genetic Algorithms
(GA). The widely recognized power of deformable models stems from
their ability to segment anatomic structures by exploiting constraints
derived from the image data together with a priori knowledge about the
location, size, and shape of these structures. The application of snakes to
extract region of interest is, however, not without limitations. As is well
known, there may be a number of problems associated with this approach
such as initialization, existence of multiple minima, and the selection of
elasticity parameters. We propose the use of GA to overcome these li-
mits. GAs offer a global search procedure that has shown its robustness
in many tasks, and they are not limited by restrictive assumptions as
derivatives of the goal function. GAs operate on a coding of the para-
meters (the positions of the snake) and their fitness function is the total
snake energy. We employ a modified version of the image energy which
consider both the magnitude and the direction of the gradient and the
Laplacian of Gaussian. Experimental results on synthetic images as well
as on medical images are reported. Images used in this work are ocu-
lar fundus images, snakes result very useful in the segmentation of the
Foveal Avascular Zone (FAZ). The experiments performed with ocular
fundus images show that the proposed method is promising in the early
detection of the diabetic retinopathy.

1 Introduction

The study of the retinal vessels plays a crucial role in many clinically relevant
diseases such as systemic hypertension, arteriosclerosis and diabetes. In parti-
cular, diabetic retinopathy is the leading cause of new adult blindness. Thought
diabetes can affect the eye in a number of ways, the fine network of blood ves-
sels in the retina is usually involved - hence the term diabetic retinopathy. One
way to early detect diabetic retinopathy is the study of the Foveal Avascular
Zone (FAZ). In fact, retinal capillary occlusion produces a FAZ enlargement.
Moreover, the FAZ is characterized by qualitative changes showing an irregular
contour with notchings and indentations [1]. The detection (segmentation) of
FAZ boundary in usually considered the starting point for this kind of analysis.

We propose an automatic segmentation procedure to correctly identify the
FAZ boundary. The observation of the particular anatomy of the FAZ prompted

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 59–73, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

60 L. Ballerini

us to use a robust global segmentation method combining constraints derived
from the image data with a priori knowledge about the position, size, and shape
of this structure. The method was derived from the theory of active contours [2],
along with Genetic Optimization [3]. The widely recognized power of deformable
models stems from their ability to segment anatomic structures by exploiting
constraints derived from the image data along with a priori knowledge about
the location, size, and shape of such structures. However, the application of
snakes to extract region of interest suffers from some limitations. In fact, there
may be a number of problems associated with this approach such as algorithm
initialization, existence of local minima, and the selection of model parameters.

We propose the use of GA to overcome some of these limits. GAs offer a
global search procedure that has shown its robustness in many tasks, and they
are not limited by restrictive assumptions on the objective function, such as
the existence of derivatives. GAs operate on a coding of the free variables (the
positions of the snake) and their fitness function is the total snake energy. We
have employed a modified version of the image energy which accounts for both
the magnitude and the direction of the gradient and the Laplacian of Gaussian.
Genetic algorithms have several advantages over traditional methods: they ope-
rate on codings of the parameters rather than on the parameters themselves,
they explore a population of points rather than a single point, they take advan-
tage of information on the objective function and do not need other auxiliary
knowledge, they use probabilistic rather than deterministic rules.

Snake optimization through genetic algorithms proved particularly useful in
order to overcome problems related with initialization, parameter selection and
local minima. In the following the proposed snake model will be referred to as a
Genetic Snake.

Compared to current methods for segmenting the FAZ (manual selection or
threshold methods), the proposed method offers high quantitative accuracy for
the measurement of area and perimeter and we expect it will prove sufficiently
robust in the aid to ophthalmological diagnosis.

The organization of the paper is as follow: in Section 2 we discuss active
contours, the basic notions, their limitations and some improvements proposed
in literature. In Section 3 we present the genetic optimization procedure. Ex-
perimental results on synthetic and medical images are reported in Section 4,
in particular for retinal images we proposed an energy functional based on FAZ
properties, which will allow snakes to give accurate FAZ boundary localization.
We also discuss the choice of the model coefficients for this kind of images.

2 Active Contours

The mathematical foundations of deformable models represent the confluence
of geometry, physics, and approximation theory. Geometry serves to represent
object shape, physics imposes constraints on how the shape may vary over space
and time, and optimal approximation theory provides the formal underpinnings
of mechanisms for fitting the models to measured data. Deformable curves, sur-

Genetic Snakes for Medical Images Segmentation 61

faces, and solid models gained popularity after they were proposed for use in
computer vision and computer graphics [4]. Seemingly, snakes are the most po-
pular deformable model [2].

Snakes are planar deformable contours that are useful in several image ana-
lysis tasks. They are often used to approximate the locations and shapes of
object boundaries on the basis of the reasonable assumption that boundaries
are piecewise continuous or smooth.

Representing the position of a snake parametrically by v(s) = (x(s), y(s))
with s ∈ [0, 1], its energy functionals can be written as

Esnake =
∫ 1

0
Eint [v(s)] ds +

∫ 1

0
Eext [v(s)] ds (1)

where

– Eint represents the internal energy of the spline due to bending and it is
associated with a priori constraints

– Eext is an external potential energy which depends on the image and ac-
counts for a posteriori information.

The final shape of the contour corresponds to the minimum of this energy.
In the original technique of Kass et al. [2] the internal spline energy is defined

as

Eint [v(s)] =
1
2

[
α(s)

∣∣∣∣∂v(s)
∂s

∣∣∣∣
2

+ β(s)
∣∣∣∣∂2v(s)

∂s2

∣∣∣∣
2
]

. (2)

The spline energy is composed of a first order term controlled by α(s) and a
second order term controlled by β(s). The two parameters α(s) and β(s) dictate
the simulated physical characteristics of the contour: α(s) controls the tension
of the contour while β(s) controls its rigidity. The values of the non negatives
functions α(s) and β(s) determine the extent to which the snake can stretch
or bend at any point s on the snake. For example, increasing the magnitude of
α(s) increase the tension and tends to eliminate extraneous loops and ripples by
reducing the length of the snake. Increasing β(s) increases the bending rigidity
of the snake and tends to make the snake smoother and less flexible. Setting the
value of one or both of these functions to zero at a point s permits discontinuities
in the contour at s.

The external energy couples the snake to the image. It is defined as a scalar
potential function whose local minima coincide with intensity extrema, edges,
and other image features of interest.

The external energy, which is commonly used, is defined as

Eext [v(s)] = −γ|∇I(x, y)|2 (3)

where I(x,y) is the image intensity, ∇ the gradient operator, and γ a weight as-
sociated with image energies. In this case the snake will be attracted to intensity
edges.

62 L. Ballerini

According to Marr-Hidreth’s theory [5] of edge-detection, Kass et al. [2] ex-
perimented also a slightly different edge functional

Eext [v(s)] = −γ|∇Gσ ∗ I(x, y)|2 (4)

where Gσ ∗ I(x, y) denotes the image convolved by a Gaussian filter with a
standard deviation σ. This edge functional is used by many researchers.

Although originally developed for application to problems in computer vision
and computer graphics, the potential of deformable models for use in medical
image analysis has been quickly realized. Deformable models are capable of ac-
commodating the significant variability of biological structures over time and
across different individuals. Deformable models have been successful applied to
problems of fundamental importance in medical analysis including segmentation,
shape representation, matching, and motion tracking [6].

The application of snakes and other similar deformable contour models to ex-
tract regions of interest is, however, not without limitations. For example, snakes
were designed as interactive models. In non-interactive applications, they must
be initialized close to the structure of interest to guarantee good performance.
The internal energy constraints of snakes can limit their geometric flexibility and
prevent a snake from representing long tube-like shapes or shapes with signifi-
cant protrusions or bifurcations. Furthermore, the topology of the structure of
interest must be known in advance since classical deformable contour models are
parametric and are incapable of topological transformations without additional
machinery.

Various methods have been proposed to improve and further automate the
deformable contour segmentation process.

Cohen [7,8] used an internal (inflating force) to expand a snake model past
spurious edges towards the real edges of the structure, making the snake less
sensitive to initial conditions. This model, called balloon, reduces the sensibility
to initialization, but increases the numbers of parameters.

McInerney and Terzopoulos [9,10] have been developing topology indepen-
dent shape modeling schemes that allow a deformable contour or surface model
to not only represent long tube-like shapes or shapes with bifurcations, but also
to dynamically sense and change its topology. Their model is known as topolo-
gically adaptable snake.

Gunn and Nixon [11,12,13,14] used a dual active contour, which is combined
with a local shape model to improve the parameterization. One contour expands
from inside the target feature, the other contracts from the outside. The two
contours are interlinked to provide a balanced technique with an ability to reject
weak local energy minima.

Neuenschwander et al. [15,16,17] propose a snake-based approach that lets a
user specify only the distant endpoints of the curve he wishes to delineate without
having to supply an almost complete polygonal approximation. They simplify the
initialization process and achieve much better convergence properties than those
of traditional snakes by using the image information around these end points
to provide boundary conditions and by introducing an optimization schedule

Genetic Snakes for Medical Images Segmentation 63

that allows a snake to take image information into account first only near its
extremities and then, progressively, toward its center. In effect, the snakes are
clamped onto the image contour in a manner reminiscent of a zip-lock being
closed.

Lai and Chin [18,19,20,21] present an integrated approach to modeling, ex-
tracting, detecting and classifying deformable contours directly from noisy ima-
ges. They begin by conducting a case study on regularization, formulation and
initialization of the active contour models. Using the minimax principle they
derive a regularization criterion whereby the values can be automatically and
implicitly determined along the contour.

Yezzi et al. [22,23] formulate a geometric active contour model (geometric
snake) based on defining feature based metrics on given images which in turn
leads to a novel snake paradigm in which the feature of interest may be considered
to lie at the bottom of a potential well.

3 Genetic Optimization of Snakes

We propose an energy minimization procedure based on Genetic Algorithms.
This helps to overcome the difficulties related to initialization and local minima.
In addition, we have observed a noticeable improvement of the segmentation
with respect to standard snake algorithm.

Applying a Genetic Algorithm to any practical problem requires the defini-
tion of the following items:

1. a structural (chromosomal) representation of solutions to the problem;
2. an evaluation (objective function) of individuals in terms of their “fitness”;
3. a method to initialize the population of candidate solutions;
4. values of parameters used by the algorithm (e.g., population size, crossover,

etc.);
5. genetic operators which produce new sets of individuals;
6. a termination criterion for the Genetic Algorithm.

Some of this components (e.g. representation, evaluation and initialization)
are entirely domain-dependent and will be discussed in the following, whereas
others are implemented independently of the application domain.

The parameters that undergo genetic optimization are the positions of the
snake in the image plane v(s) = (x(s), y(s)). The coordinates x and y are codified
in the chromosomes using a Gray-code [24,25]. To simplify the implementation
we used polar coordinates.

The fitness function is the total snake energy as previously defined in Equa-
tion (1), where Eint and Eext are defined in Eqs. (2) and (4). The sigma scaling
option is used [3].

The genetic optimization requires the definition of a region of interest (see
Fig. 1), given by r and R (the minimum and the maximum magnitude allowed
for each v(s). The initial population is randomly chosen in such region, and
each solution lies in this region (r and R are user defined). This replaces the

64 L. Ballerini

original initialization with a region-based version, enabling a robust solution
to be found by searching the region for a global solution. This overcomes the
problems associated with sensitivity to initialization which was a crucial problem
of “hill climbing” techniques. As a result, the new optimization criterion is better
at extracting non-convex shapes compared to conventional snakes.

region of interest

feature

x

y

r
R

Fig. 1. Genetic Snakes Initialization.

The population size was computed according to the length of genome, as
suggested by Goldberg [3]. We have used the standard two-point crossover. The
crossover rate and mutation rate are set respectively to 0.6 and 0.000006.

4 Results

The most adequate set of parameters or our genetic snakes depends on several
things: the characteristics of noise, the digitization parameters, the tortuosity of
vessel which determine the FAZ boundary. Therefore, given a particular applica-
tion some experimentation is required for choosing the best parameters. To show
how this can be done, in the following section we report on some experiments
performed on synthetic images with different patterns with additive noise of dif-
ferent variance. Then we present some results obtained with real ocular fundus
images.

4.1 Experiments on Synthetic Images

The experiment uses synthetic images containing boundary of circles and squa-
res as shown in Figure 2. The intensity images are generated by setting the pixel
value to 255 if it belongs to the boundary, and 100 otherwise. We smooth the
boundary by convolving images with a 3×3 window who acts as a low pass fil-
ter. The two kinds of images (circles and squares) are constructed to study the
snake ability to capture corners as well as smoothed boundary. A zero mean,

Genetic Snakes for Medical Images Segmentation 65

white Gaussian noise was added to the images. Three different noise levels (cor-
responding to the standard deviation values: 20, 40, 60) were considered. This
allowed us to study the robustness of our segmentation technique with respect
to noise variance and to determine an adequate set of weights. Figure 2 shows
some examples of simulated images.

On these images we perform experiment using snakes having 50 points, vary-
ing the energy weighting coefficients (α = 0.5, 0.8, 1, 1.2, 1.5, β = 0.5, 0.8, 1, 1.2,
1.5 and γ = 1) running the GA for 2300000 iteration each time. Figure 3 reports
some of the results obtained. We observed that snakes with larger values of α
and β have better noise rejection capabilities, but snakes having too large values
of α and β tend to shrink on itself.

Fig. 2. Examples of synthetic test images with different values of Gaussian noise (from
left to right: σnoise =20, 40, 60)

4.2 Experiments on Medical Images

Genetic snakes are then applied to retinal images in order to segment the Foveal
Avascular Zone (FAZ). Retinal images were taken by a SLO, with a frequency
of 25 frames per second following the injection of a bolus of fluorescein. These
images were digitized into 512 × 512 pixel matrices with 256 gray levels per
pixel. The region of interest (ROI) i.e. the FAZ is approximately in the center
of these images. For simplicity, the origin of the coordinates was located at the
center of the FAZ. Its position can be chosen approximately be the user. The
energy functionals are chosen according to FAZ properties, we employ a modified

66 L. Ballerini

Fig. 3. Simulation results on synthetic test images with different shape, different values
of Gaussian noise and with the best set of snake coefficients

version of the image energy which consider both the magnitude and the direction
of the gradient and the Laplacian of Gaussian.

Proposed Energy Functional The internal energy term, Eint, controls the
properties of the snake and it is expressed according to Kass [2] by

Eint [v(s)] =
1
2

[
α(s)

∣∣∣∣∂v(s)
∂s

∣∣∣∣
2

+ β(s)
∣∣∣∣∂2v(s)

∂s2

∣∣∣∣
2
]

. (5)

The values of the parameters α(s) and β(s) are chosen empirically. The internal
energy provides an efficient interpolation mechanism for recovering missing data.

The external energy Eext are the image functionals. It is chosen according to
FAZ properties. The image functionals are designed to produce minima corre-
sponding to interesting objects in the image. It is shown that the choice of the
image functional can effect the performance of the optimization technique used.
For this reason various forms were experimented.

The classical optimization techniques impose different restrictions on the
type of image functional that can be employed (for example the existence of
derivatives); the use of genetic algorithms give us more freedom on the choice of
such functional.

First, we consider a functional which localizes bright lines since FAZ bound-
aries are ultimately bright lines (i.e. capillaries) with an intensity maximum at
their center. A simple external energy functional that attracts a snake to lines

Genetic Snakes for Medical Images Segmentation 67

could be the image intensity

Eext [v(s)] = γI(x, y) (6)

where γ is a weight factor whose sign determines whether the snake is attracted
by dark or bright lines. For the case of a negative γ, the snake is attracted
to local minima of Eext, which corresponds to local maxima of intensity, i.e.
bright lines. This functional (see Fig. 4(a)) can detect roof edges. It would be
tempting to implement this functional for our purposes, since (6) would localize
the medial axis of the capillaries. However, the achievable performances are
partially satisfactory, which is due to the adjacency of the snake to the bigger
vessels exhibiting a strong maximum; moreover, die leakage introduces a light
haze with consequent artifacts on the image function.

(a) (b)

Fig. 4. (a) Image intensity and (b) image convolved by gradient of Gaussian (σ = 2).

Then, we consider a functional which attracts the snake to image edges, since
we would like the snake to detect vessel boundaries. In this case, if edges are of
interest, Eext would be defined as

Eext [v(s)] = −|∇I(x, y)|2 (7)

where ∇I(x, y) is the gradient of the image. An easy implementation of this
functional can be obtained by computing the Gradient of Gaussian (GoG) of
the image intensity

Eext [v(s)] = −|∇Gσ ∗ I(x, y)|2. (8)

The resulting functional image is shown in Fig. 4(b). The weight in this case
is negative so that local minima of Eext correspond to maxima of the gradient,
i.e. strong edges. Simple implementation of this functional for FAZ boundary
extraction also does not give fully satisfactory performance. The fact that it is
the edge of the vessels that is localized and not the point of maximum intensity
provides a basis for uncertainty.

68 L. Ballerini

This suggested to us to consider both the magnitude and the direction of the
image gradient. A suitable functional may be obtained by constructing the dot
product of the contour tangent with the normalized gradient vector

Eext [v(s)] =
∣∣∣∣∂v
∂s

· ∇I(x, y)
|∇I(x, y)|

∣∣∣∣ . (9)

The weight of this factor is positive, so that orientation inconsistencies tend be
penalized. In this way, edge points whose orientation disagrees with that of the
overlaying snake may also yield minimal values of the external energy. Hence
the snake is able to discriminate against phantom lines, while allowing for the
presence of corners. The two components of the gradient are shown in Fig. 5.

(a) (b)

Fig. 5. The x and y components of the gradient of the image. The intensity of each
pixel is proportional to the gradient component in that point.

In order to increase the locus of attraction of a minimum, we have experi-
mented with a slightly different edge functional (also proposed by Kass [2]):

Eext [v(s)] = −|∇2Gσ ∗ I(x, y)|2. (10)

Minima of this functional lie on zero-crossings of ∇2Gσ ∗I(x, y) which define ed-
ges in the Marr-Hildreth theory [5]. Adding this term to a snake means the snake
is attracted by zero-crossing, but it is still constrained by its own smoothness.
This image functional is shown in Fig. 6.

In addition, since image gradient and Laplacian of Gaussian (LoG) produce
random edges in the background region where some noise is present, we can
improve FAZ boundary localization by including a Gaussianly smoothed version
of the image intensity (with large σ).

Genetic Snakes for Medical Images Segmentation 69

Fig. 6. Image convolved by Laplacian of Gaussian (σ = 2). (The original image is
shown in Fig. 4(a)).

Thus, the proposed energy functional is composed of four terms and can be
expressed as

Eext[v(s)] = −γ1Gσ∗I(x, y)−γ2|∇Gσ∗I(x, y)|2+γ3

(
n · ∂v

∂s

)
−γ4|∇2Gσ∗I(x, y)|2

(11)
where n = ∇Gσ∗I(x,y)

|∇Gσ∗I(x,y)| .
In a few cases, additional knowledge on the image has been integrated within

the snake by adding a constraint energy term Econ to Equation (4). In order to
specify a particular image feature, located in the interval [x1, x2][y1, y2], this
functional can be defined as

Econ [v(s)] =
{

0 if (x, y) ∈ [x1, x2] × [y1, y2]
1 otherwise (12)

This is a soft constraint, which can help in the case that a microaneurysm or a
large vessel attracts the snake more than the FAZ boundary we are looking for.

Snake-Model Coefficients The choice of the weights controls the type of
solution the active contour produces: large values of the weights associated with
image functionals tend to move the snake boundary towards the FAZ contour,
while the values of α and β control the smoothness and continuity.

The signal to noise ratio (SNR) can affect the choice of weights: in low SNR
images, or where there are missing and/or false edges, an increased contribu-
tion from continuity and smoothness terms to the energy functional is usually
desirable. Large values for the continuity and curvature weights will discourage
convergence to a “busy” contour. On the other hand, small weights may allow the
contour to be trapped into false edges or leak out through gaps in the boundary.

The internal energy weights are normally kept constant while image energy
weights are varied to find a good balance between the four terms. We set α(s) = α

70 L. Ballerini

and β(s) = β, where α and β are constant values. In this way different segments
of the snake cannot have different elastic behavior. We have observed that values
close to 1 give good results. The values of the weights associated with image
functionals are chosen in the range [0.5, 0.8].

In Fig. 7 we can see some examples of original images and the corresponding
FAZ outlines segmented by our snake model.

5 Conclusion

FAZ segmentation is achieved by using active contour models (snakes). The wi-
dely recognized power of deformable models stems from their ability to segment
anatomic structures by exploiting constraints derived from the image data along
with a priori knowledge about the location, size, and shape of such structures,
as discussed previously.

Deformable models are capable of accommodating the often significant va-
riability of biological structures over time and across different individuals.

The modified version of the image energy we proposed (which accounts for
both the magnitude and the direction of the gradient and the Laplacian of Gaus-
sian) exhibits interesting properties in the localization of FAZ boundary.

The energy minimization procedure based on Genetic Algorithms overcomes
the problems associated with sensitivity to initialization and local minima, which
was a crucial problem of classical techniques.

In a first stage we have implemented the standard snake algorithm [2]. Ho-
wever the choice of the related parameters resulted very critical in our case. This
difficulty was significantly reduced in the proposed model.

In this work we applied GAs to the positions of the snake. The management of
the weight controls of the energy function is an open important problem. Further
work on this technique could be the evolution of the parameters governing the
snake behaviour.

Compared to current methods for segmenting the FAZ (manual selection or
threshold methods), a snake-based approach is expected to provide significant
improvements. This method offers high quantitative accuracy for the measure-
ment of area and perimeter, which is important for diabetic studies [26]. Thus,
we expect these methods will prove sufficiently robust in the aid to ophthalmo-
logical diagnosis.

References

1. G. H. Bresnick, R. Condit, S. Syrjala, M. Palta, A. Groo, and K. Korth, “Abnor-
malities of the foveal avascular zone in diabetic retinopathy,” Arch. Ophthalmol.
102, pp. 1286–1293, september 1984.

2. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Inter-
national Journal of Computer Vision 1(4), pp. 321–331, 1988.

3. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Lear-
ning, Addison-Wesley, Reading, MA, 1989.

Genetic Snakes for Medical Images Segmentation 71

(a) (b)

(c) (d)

Fig. 7. Images of normal (a) and diabetic (b) FAZ, and the same images with super-
imposed snakes (c) and (d).

72 L. Ballerini

4. D. Terzopoulos and K. Fleischer, “Deformable models,” The Visual Computer 4(6),
pp. 306–331, 1988.

5. D. Marr, Vision, New York: W. H. Freeman, 1980.
6. T. McInerney and D. Terzopoulos, “Deformable models in medical image analysis:

A survey,” Medical Image Analysis 1(2), pp. 91–108, 1996.
7. L. D. Cohen and I. Cohen, “Finite element methods for active contour models

and balloons for 2D and 3D images,” IEEE Transactions on Pattern Analysis and
Machine Intelligence 15, pp. 1131–1147, November 1993.

8. L. D. Cohen, “On active contour models and balloons,” Computer Vision, Gra-
phics, and Image Processing: Image Understanding 53, pp. 211–218, March 1991.

9. T. McInerney and D. Terzopoulos, “Topologically adaptable snakes,” in Proc. Fifth
International Conf. on Computer Vision (ICCV’95), Cambridge, MA, pp. 840–845,
IEEE Computer Society Press, (Los Alamitos, CA), 1995.

10. T. McInerney and D. Terzopoulos, “Medical image segmentation using topologi-
cally adaptable surfaces,” in Proc. First Joint Conference of Computer Vision,
Virtual Reality, and Robotics in Medicine and Medical Robotics and Computer-
Assisted Surgery (CVRMed-MRCAS’97), Grenoble, France, March, 1997, pp. 23–
32, Springer-Verlag, (Berlin), 1997.

11. S. R. Gunn and M. S. Nixon, “Robust snake implementation; a dual active
contour,” IEEE Transactions on Pattern Analysis and Machine Intelligence 19,
pp. 63–68, January 1997.

12. S. R. Gunn, Dual Active Contour Models for Image Feature Extraction. PhD thesis,
University of Southampton, Faculty of Engineering and Applied Science, 1996.

13. S. R. Gunn and M. S. Nixon, “A dual active contour including parameteric shape,”
tech. rep., University of Southampton, Department of Electronics and Computer
Science, 1994. 1994 Research Journal.

14. S. R. Gunn and M. S. Nixon, “A dual active contour for improved snake per-
formance,” tech. rep., University of Southampton, Department of Electronics and
Computer Science, 1995. 1995/6 Research Journal.

15. O. Henricsson and W. Neuenschwander, “Controlling Growing Snakes by Using
Key-Points,” in Proceedings 12th IAPR International Conference on Pattern Re-
cognition, pp. 68–73, (Jerusalem), 1994.

16. W. Neuenschwander, P. Fua, G. Székely, and O. Kübler, “Initializing Snakes,” in
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 658–663, June 1994.

17. W. Neuenschwander, P. Fua, G. Székely, and O. Kübler, “Making Snakes Converge
from Minimal Initialization,” in ARPA Image Understanding Workshop, pp. 1627–
1636, (Monterey, CA), Nov. 1994.

18. K. F. Lai and R. T. Chin, “Deformable contours: Modeling and extraction,”
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-17(11),
pp. 1084–1090, 1995.

19. K. F. Lai and R. T. Chin, “Deformable contours: Modeling and extraction,” in
Proc. Computer Vision and Pattern Recognition Conf., 1994.

20. R. T. Chin and K. F. Lai, “On regularization, formulation and initialization of
active contour models (Snakes),” in Proc. 1st Asian Conf. on Computer Vision,
pp. 542–545, 1993.

21. R. T. Chin and K. F. Lai, “On classifying deformable contours using the generalized
active contour model,” in Proc. Int. Conf. Automation, Robotics and Computer
Vision, 1994.

Genetic Snakes for Medical Images Segmentation 73

22. A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver, and A. Tannebaum, “A geometric
snake model for segmentation of medical imagery,” IEEE Transactions on Medical
Imaging 16, pp. 199–209, April 1997.

23. S. Kichenassamy, A. Kumar, P. Olver, A. Tannebaum, and A. Yezzi, “Gradient flow
and geometric active contour,” in Proceedings of International Conf. on Computer
Vision, June 1995.

24. D. Beasley, D. R. Bull, and R. R. Martin, “An overview of genetic algoritms: Part
1, fundamentals,” University Computing 15(2), pp. 58–69, 1993.

25. D. Beasley, D. R. Bull, and R. R. Martin, “An overview of genetic algoritms: Part
2, research topics,” University Computing 15(4), pp. 170–181, 1993.

26. L. Ballerini, Computer Aided Diagnosis in Ocular Fundus Images. PhD thesis,
Università di Firenze, Italy, 1998.

Evolving a Task Specific Image Operator

Marc Ebner and Andreas Zell

Eberhard-Karls-Universität Tübingen, Wilhelm-Schickard-Institut für Informatik
Arbeitsbereich Rechnerarchitektur, Köstlinstraße 6, 72074 Tübingen, Germany

{ebner,zell}@informatik.uni-tuebingen.de

Abstract. Image processing is usually done by chaining a series of well
known image processing operators. Using evolutionary methods this pro-
cess may be automated. In this paper we address the problem of evolving
task specific image processing operators. In general, the quality of the
operator depends on the task and the current environment. Using genetic
programming we evolved an interest operator which is used to calculate
sparse optical flow. To evolve the interest operator we define a series of
criteria which need to be optimized. The different criteria are combined
into an overall fitness function. Finally, we present experimental results
on the evolution of the interest operator.

1 Motivation

A large number of standard image processing operators are available to solve
a particular problem. In general, the required operators depend on the current
task and environmental conditions. In our work we are trying to evolve image
processing operators which perform optimal for the task and the given envi-
ronmental conditions. To evolve the image operators we have chosen genetic
programming [14,15,2] because it allows the evolution of hierarchical structures
which are often required to solve image processing tasks. The sample problem
which we address here is the evolution of an interest operator which is used to
compute sparse optical flow. We show how an interest operator can be evolved
which is optimal according to multiple criteria which are specific to the applica-
tion. Before we present our experimental results we briefly discuss related work
of using evolutionary methods for image processing tasks.

2 Background

A number of researchers have used evolutionary algorithms for image processing
tasks. The methods used range from evolutionary programming [3], structure
evolution [18] a variant of an evolution strategy, to genetic algorithms [25,26,13,
4]. A growing number of researchers are using genetic programming.

Tackett [30] evolved a symbolic expression for image classification based on
image features. Koza [15] and Andre [1] evolved character detectors using genetic
programming. Johnson et al. [11] evolved Ullman’s visual routines [32] using
genetic programming to locate the left and right hand in an image showing the

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 74–89, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Evolving a Task Specific Image Operator 75

silhouette of a person. Poli [21] applied genetic programming to the task of image
segmentation. Daida et al. [5] used genetic programming to extract pressure-
ridges from satellite images of arctic sea ice. Harris and Buxton [9] used genetic
programming to evolve one-dimensional edge detectors. Poli and Cagnoni [22]
evolved algorithms for image enhancement using interactive program evolution.
Winkeler and Manjunath [33] used genetic programming for face detection.

Considerable work has been done in the area of feature extraction and tracking.
A match between interesting points extracted from an image sequence or from
a pair of stereo images can be established easily [36,34]. Knowledge about point
correspondences may be used to establish a three-dimensional model of the
world. A number of different methods have been developed to extract interesting
points from an image. Moravec [20] developed an interest operator which extracts
points with a high variance of pixel values in four directions: horizontal, vertical
and both diagonals. Smith [29] developed a corner finder which extracts points
where the size of the region belonging to the current pixel in a small neighbor-
hood is a local minimum. Other methods range from using the determinant of
the Hesse matrix to find regions of high curvature [27,19], corner detection [27],
difference of Gabor filters [36], detection of symmetry [24,35] to the use of en-
tropy [12]. Shi and Tomasi [28] argue that good features are those for which the
tracker works best. Extracted features (textured regions) are monitored by cal-
culating a dissimilarity measure computed from an affine model of image motion.
Features with a high dissimilarity measure should be abandoned. Lew et al. [17]
developed an adaptive method for feature selection. From a set of features they
select a subset which maximizes the error distance between the correct match
and other possible matches.

Genetic programming has so far been rarely used for the construction of
image processing operators. Ebner [6] used genetic programming to evolve ope-
rators to extract edges from digitized images and evolved an approximation to
the Moravec interest operator [7]. In difference to the previous work no existing
operator is used for computing the fitness of an evolved individual. In this paper,
we only specify the desired properties of the operator and integrate them into a
measure of the individual’s fitness.

3 Evolving an Interest Operator

As a sample application we have chosen to evolve an interest operator. The points
extracted by the operator are used to calculate sparse optical flow. Optical flow
is calculated by establishing corresponding points between the previous image
and the current image. It is assumed here that the optical flow can be quite
large. This might occur if the camera moves very fast or, equivalently, if delays
between subsequent images are long. In this case the calculation of optical flow
is simplified by focusing the search only on interesting points in the image.
Correspondences are established by comparing the pixels in a small area around
the interesting points. The goal is to extract only those points which can be
localized accurately in the next image. To achieve this goal we are trying to

76 M. Ebner and A. Zell

optimize a number of different properties of the operator. We start by describing
the different properties qualitatively which are formalized later. The following
properties were used here.

a) The number of established matches should be large. If only a single point is
extracted for every image, localizing the point is easy. However, obtaining a
dense flow field is usually desirable.

b) The quality of the match should be good. If some error measure describes the
difference between pixel values in a small area surrounding the two matched
points then this measure should be small.

c) A threshold is used to determine when a match can be considered adequate.
Thus a match is not found for every extracted point. Therefore the ratio
between matched points and number of extracted points should be high,
that is, a match should be established for most of the extracted points.
Otherwise it would be possible to extract almost every point and let the
search procedure weed out the unnecessary points. However, this is precisely
the task the operator should perform.

d) The matches should be unambiguous. For each point all other points are
considered as a possible match. Therefore the difference between the error
measure of the best match and the second-best match should be large indi-
cating clearly which of the possible matches is the correct one.

e) The optical flow field should be smooth with only a few discontinuities. That
is, nearby flow vectors should have approximately the same direction.

f) The density of the flow field may be regulated by introducing a term that
tries to achieve a flow field with a maximum density that is distributed over
the image.

We now formalize the different optimization criteria. Let I(t) be the image
taken at time t. First, the evolved operator is applied to this image. Non-local
maxima are suppressed and all points where the pixel value is larger than a
threshold ε1 are extracted. Let F (t) be the extracted interesting points of image
I(t). Given two images I(t1) and I(t2) taken at times t1 and t2, respectively, a
correspondence between the points in F (t1) and F (t2) is established. Given a
point (x1, y1) ∈ F (t1) we calculate the following error measure e for every point
(x2, y2) ∈ F (t2) that is within a specified distance of the original point.

e(x1, y1, x2, y2) =

√√√√ 1
wh

∑
− w

2 ≤i< w
2

∑
− h

2 ≤j< h
2

(
Ĩ(x1 + i, y1 + j) − Ĩ(x2 + i, y2 + j)

)2

(1)

where Ĩ(t) is obtained by smoothing image I(t) with a Gaussian filter and w and
h specify the width and height of the patch which is used to calculate the error
measure. The point (x2, y2) for which the error measure is minimal is chosen as
the corresponding point. In addition a threshold is used to reject bad matches.
Therefore a match is only established provided that e is less then a threshold ε2.
Let Fm(t) be the points for which a match could be established. Let np be the

Evolving a Task Specific Image Operator 77

number of points in F (t1) and let nm be the number of points for which a match
could be established. Then the following measures of operator quality were used
for our experiments.

a) Number of matches:

m1 = nm (2)

b) Quality of matches:

m2 =
1

nm

∑
(x,y)∈Fm(t1)

1
1 + emin(x, y)

(3)

where emin(x1, y1) = min(x,y)∈F (t2) e(x1, y1, x, y) is the minimum of the error
measure e. The measure m2 is analogous to Pratt’s figure of merit which is
used to judge the performance of edge detectors [10].

c) Match percentage:

m3 =
nm

np
(4)

d) Match ambiguity:

m4 =
1

nm

∑
(x,y)∈Fm(t1)

enext(x, y) − emin(x, y)
emax(x, y) − emin(x, y)

(5)

where emax(x1, y1) = max(x,y)∈F (t2) e(x1, y1, x, y) is the maximum of the
error measure e. Let (xm, ym) be the point for which the error measure is
minimal. Then the value of the error measure for the second-best match is
defined as enext(x1, y1) = min(x,y)∈F (t2)\(xm,ym) e(x1, y1, x, y).

e) Flow smoothness:

m5 =
1
np

∑
(x,y)∈F (t1)

s(x, y) (6)

where s is a smoothness measure calculated for a small neighborhood around
the point. Let FN(x,y) be the points inside the neighborhood of point (x, y).

FN(x,y)(t) = {(x′, y′) ∈ F (t)|
√

(x′ − x)2 + (y′ − y)2 < ε3} (7)

Then the smoothness measure is calculated as

s(x, y) =
1

2|FN(x,y)(t1)|
∑

(x′,y′)∈FN(x,y)(t1)

1 +
∆x∆x′ + ∆y∆y′√

∆x2 + ∆y2
√

∆x′2 + ∆y′2

(8)

where (∆x, ∆y) is the computed optical flow of point (x, y).
f) Maximum flow field density:

m6 =
1
np

∑
(x,y)∈F (t1)

min
{

dmin(x, y)
ddes

, 1.0
}

(9)

where dmin(x, y) is the distance in pixels between point (x, y) and its nearest
point and ddes is the desired minimum distance between the extracted points.

78 M. Ebner and A. Zell

4 Using Genetic Programming to Evolve Image
Operators

Genetic programming is especially suited to combine simple elementary func-
tions into a complex hierarchical image processing operator. To apply genetic
programming to the evolution of an image processing operator we have to define
the set of terminal symbols, the set of primitive functions and a suitable fitness
measure. We now describe each of these in turn.

4.1 Terminal Symbols

The input image I was our only terminal symbol. The pixel values were norma-
lized to the range [0, 1].

4.2 Primitive Functions

As primitive functions we used the following set of unary and binary functions.
Let IR be the image that results from the application of a primitive function to
an input image I in the case of an unary function and two input images I1 and
I2 in the case of a binary function. Image coordinates are denoted with x and y.
Unary primitive functions:

– Square root (Sqrt): IR(x, y) =
√|I(x, y)|

– Square (Square): IR(x, y) = I(x, y) · I(x, y)
– Gabor filters (Gabor0,...,Gabor7):

IR(x, y) = | ∫ Ψ(x′, y′, f, θj)I(x − x′, y − y′)dx′dy′|
with Ψ(x, y, f, θ) = exp(i(fx cos θ + fy sin θ) − f2(x2+y2)

2σ2),
σ = π, f = π

2 and θj = πj
8 with j ∈ {0, ..., 7} (as defined in [16]).

– Average (Avg3x3): IR(x, y) = 1
9

∑
−1≤i,j≤1 I(x + i, y + j)

– Median filter (Median3x3): IR(x, y) = Median{I(x+ i, y + j)|−1 ≤ i, j ≤ 1}
– Gaussian filter (Gauss):

IR(x, y) =
∫

e
x′2+y′2

2σ2 I(x − x′, x − y′)dx′dy′ with σ = 1.0.
– Derivative of Gaussian in x direction (GaussDx):

IR(x, y) = 1√
2πσ3

∫
xe− 1

2σ2 (x′2+y′2)I(x − x′, y − y′)dx′dy′ with σ = 1.0.
– Derivative of Gaussian in y direction (GaussDy):

IR(x, y) = 1√
2πσ3

∫
ye− 1

2σ2 (x′2+y′2)I(x − x′, y − y′)dx′dy′ with σ = 1.0.

Binary primitive functions:

– Addition (+): IR(x, y) = I1(x, y) + I2(x, y)
– Subtraction (-): IR(x, y) = I1(x, y) − I2(x, y)
– Multiplication (*): IR(x, y) = I1(x, y) · I2(x, y)

– Protected division (/): IR(x, y) =

{
1 if I2(x, y) = 0
I1(x, y)/I2(x, y) otherwise

Figure 1 shows how some of the primitive functions could be used to build an
operator which calculates the determinant of the Hesse matrix.

Evolving a Task Specific Image Operator 79

* Square

-

GaussDy

GaussDy

GaussDx

GaussDx

Image

GaussDy

GaussDx

Image Image

Fig. 1. Example of an existing operator which was manually constructed from the set
of primitive functions.

4.3 Fitness Measure

The different criteria have to be integrated into one fitness measure. We have to
do multi-objective optimization to evolve a detector which is optimal according
to all of the criteria. An overview about multi-objective optimization is given
by Fonseca and Fleming [8]. To integrate the different measures into one we
calculate the average of each measure over all fitness cases. Let m̄(i) be the
average of the measure m for the individual i. Next, we normalize them across
all individuals in the population. This gives us a selection probability pc(i) =

m̄c(i)∑
j m̄c(j) for each criterion c and individual i. The selection probabilities were

combined into a single fitness function f =
∏

i pi. The combined fitness reaches
its maximum value only if all of the different selection probabilities have a large
value. The normalization is not necessary for the multiplicative contribution of
the different measures. We normalize them, because in other experiments an
additive contribution was used.

Table 1. Comparison between different interest operators and the evolved interest
operator. Absolute fitness is computed as fitness = Πim̄i which is used as an absolute
measure to compare the different operators.

Name of operator m̄1 m̄2 m̄3 m̄4 m̄5 m̄6 Absolute fitness
Kitchen-Rosenfeld [27] 54.33 0.9850 0.4669 0.6710 0.9294 0.6154 9.592
Det(HI) [27,19] 51.67 0.9853 0.5386 0.7396 0.9635 0.6568 12.83
Moravec [20] 49.33 0.9848 0.5242 0.6912 0.9359 0.7293 12.01
SUSAN [29] 77.00 0.9867 0.5426 0.5318 0.9195 0.6042 12.18
Diff. of Gabor filters[36] 64.00 0.9865 0.5967 0.5803 0.9348 0.6891 14.08
Evolved 131.0 0.9871 0.7814 0.5504 0.9170 0.6620 33.77

80 M. Ebner and A. Zell

Fig. 2. Image sequence which was used during evolution.

Response of the operator:

Extracted points:

Sparse optical flow:

Fig. 3. Best individual from generation 50. The first row shows the response of the
evolved operator. The second row shows the extracted interesting points. The third
row shows the computed sparse optical flow.

Evolving a Task Specific Image Operator 81

Fig. 4. Image sequence which was used to test the evolved operator.

Response of the operator:

Extracted points:

Sparse optical flow:

Fig. 5. Results of the evolved operator on a test sequence.

82 M. Ebner and A. Zell

Response of the operator:

Extracted points:

Sparse optical flow:

Fig. 6. Best individual from the first generation.

4.4 Results

With the above representation we evolved an interest operator. We used a se-
quence of 4 images with sizes 128×128 shown in Figure 2. The major parameters
of the run were as follows. We used a population size of 500 individuals. The
experiment was run for 50 generations. A limit of 1000 nodes and a maximum
possible depth of the trees of 17 was used. Tournament selection with size 7 was
used and crossover, reproduction and mutation probabilities were set to 85%,
10% and 5%, respectively. The results of the experiment are displayed in Figure
3. The first row shows the response of the best evolved operator from generation
50. The second row shows the extracted interesting points and the third row
shows the computed sparse optical flow. The evolved operator was tested on an
additional image sequence shown in Figure 4. The results achieved with the evol-
ved operator on the test sequence is shown in Figure 5. The response of the best
operator which was found in the first generation of the experiment applies the
Gabor2 operator twice. It extracts edges which are oriented in direction π

4 (Fi-

Evolving a Task Specific Image Operator 83

Response of the operator:

Extracted points:

Sparse optical flow:

Fig. 7. Results achieved with the Kitchen-Rosenfeld corner detector [27].

gure 6). Table 1 shows the performance of the evolved operator in comparison to
the Kitchen-Rosenfeld corner detector [27], the determinant of the Hesse matrix
[27,19], the Moravec operator [20], the SUSAN operator [29], and the difference
of Gabor filters [36]. The results of these operators are shown in Figure 7, Figure
8, Figure 9, Figure 10 and Figure 11 respectively. For some quality measures the
evolved operator performed better than the other operators whereas for others
it performed worse. Selection, however, is done according to the overall fitness.
The evolved operator clearly outperformed the existing operators in terms of the
overall fitness.

As can be seen the evolved operator highlights regions in the image that are of
particular interest for the calculation of sparse optical flow. Some wrong matches
are also produced. This is due to the fact that the operator combines different
possibly contradicting measures. For instance the number of points extracted
should be high and at the same time the matches should be unambiguous. Fitness
statistics for the experiment can be found in Figure 12. Except for the Gaussian
filter all of the available functions occurred in the evolved individual. The division

84 M. Ebner and A. Zell

Response of the operator:

Extracted points:

Sparse optical flow:

Fig. 8. Results achieved with the determinant of the Hesse matrix [27,19].

operation, derivative of the Gaussian in y direction, average, Gabor filters, the
square root and the square function were used several times.

5 Conclusion

We have shown that task specific image operators may be evolved using genetic
programming. Different criteria are used to evolve operators which are optimal
for the task at hand. As a sample task we evolved an interest operator for the
computation of sparse optical flow. The following criteria were used to evolve
the interest operator. a) A large number of matches should be produced. b) The
quality of the matches should be good. c) The relation of matched points to
unmatched points should be high. d) Matches should be unambiguous, e) the
flow field should be rather smooth and f) have a maximum density. These criteria
led to the evolution of an operator which can be used to extract interesting points
from an image.

Evolving a Task Specific Image Operator 85

Response of the operator:

Extracted points:

Sparse optical flow:

Fig. 9. Results achieved with the Moravec operator [20].

Provided that the fitness evaluation can be done fast enough it might be pos-
sible to construct adaptive vision systems which are able to adapt themselves to
changing environmental conditions. Just as the pupil’s diameter adapts to chan-
ging brightness conditions [31] an artificial visual system might evolve optimal
or near optimal image processing operators on the fly. At present, however, the
evolution is performed offline and evolution of an operator from scratch takes
several days to complete on a single PC.

6 Acknowledgements

This work was supported in part by a scholarship to the first author according
to the Landesgraduiertenförderungsgesetz. For our experiments we used the lil-
gp Programming System [37]. For image processing we used the Vista software
environment [23].

86 M. Ebner and A. Zell

Response of the operator:

Extracted points:

Sparse optical flow:

Fig. 10. Results achieved with the SUSAN operator [29].

References

1. D. Andre. Automatically defined features: The simultaneous evolution of 2-
dimensional feature detectors and an algorithm for using them. In K. E. Kinnear
Jr., editor, Advances in Genetic Programming, pp. 477–494, Cambridge, Massa-
chusetts, 1994. The MIT Press.

2. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming
- An Introduction: On The Automatic Evolution of Computer Programs and Its
Applications. Morgan Kaufmann Publishers, San Francisco, California, 1998.

3. A. K. Bhattacharjya and B. Roysam. Joint solution of low, intermediate, and high-
level vision tasks by evolutionary optimization: Application to computer vision at
low SNR. IEEE Transactions on Neural Networks, 5(1):83–95, January 1994.

4. R. R. Brooks, S. S. Iyengar, and J. Chen. Automatic correlation and calibration of
noisy sensor readings using elite genetic algorithms. Artificial Intelligence, 84:339–
354, 1996.

Evolving a Task Specific Image Operator 87

Response of the operator:

Extracted points:

Sparse optical flow:

Fig. 11. Results achieved with the difference of Gabor filters [36].

20

22

24

26

28

30

32

34

0 5 10 15 20 25 30 35 40 45 50

F
itn

es
s

(b
es

t-
of

-g
en

er
at

io
n)

Generations

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Q
ua

lit
y

Generations

m1
m2
m3
m4
m5
m6

Fig. 12. The absolute fitness (best of generation) is shown on the left. Absolute fitness
is calculated as fitness = Πim̄i. The different quality measures which belong to the
individual with the highest fitness are shown on the right. The first quality measure
(number of matches) was normalized to the range of [0,1] to integrate the measure into
the same diagram.

88 M. Ebner and A. Zell

5. J. M. Daida, J. D. Hommes, T. F. Bersano-Begey, S. J. Ross, and J. F. Vesecky.
Algorithm discovery using the genetic programming paradigm: Extracting low-
contrast curvilinear features from sar images of arctic ice. In P. J. Angeline and K.
E. Kinnear, Jr., editors, Advances in Genetic Programming Volume II, pp. 417–442,
Cambridge, Massachusetts, 1996. The MIT Press.

6. M. Ebner. On the evolution of edge detectors for robot vision using genetic pro-
gramming. In H.-M. Groß, editor, Workshop SOAVE ’97 - Selbstorganisation von
Adaptivem Verhalten, VDI Reihe 8 Nr. 663, pp. 127–134, 1997. VDI Verlag.

7. M. Ebner. On the evolution of interest operators using genetic programming. In
R. Poli, W. B. Langdon, M. Schoenauer, T. Fogarty, and W. Banzhaf, editors,
Late Breaking Papers at EuroGP’98: the First European Workshop on Genetic
Programming, pp. 6–10, Paris, France, 1998. The University of Birmingham, UK.

8. C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in
multiobjective optimization. Evolutionary Computation, 3(1):1–16, 1995.

9. C. Harris and B. Buxton. Evolving edge detectors with genetic programming. In J.
R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Genetic Program-
ming 1996, Proceedings of the First Annual Conference, pp. 309–314, Cambridge,
Massachusetts, 1996. The MIT Press.

10. R. Jain, R. Kasturi, and B. G. Schunck. Machine Vision. McGraw-Hill, NY, 1995.
11. M. P. Johnson, P. Maes, and T. Darrell. Evolving visual routines. In R. A. Brooks

and P. Maes, editors, Artificial Life IV, Proceedings of the Fourth International
Workshop on the Synthesis and Simulation of Living Systems, pp. 198–209, Cam-
bridge, Massachusetts, 1994. The MIT Press.

12. T. Kalinke and W. von Seelen. Entropie als Maß des lokalen Informationsge-
halts in Bildern zur Realisierung einer Aufmerksamkeitssteuerung. In B. Jähne, P.
Geißler, H. Haußecker, and F. Hering, editors, Mustererkennung 1996, 18. DAGM-
Symposium, Heidelberg, pp. 627–634, Berlin, 1996. Springer-Verlag.

13. A. J. Katz and P. R. Thrift. Generating image filters for target recognition by
genetic learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(9):906–910, September 1994.

14. J. R. Koza. Genetic Programming, On the Programming of Computers by Means
of Natural Selection. The MIT Press, Cambridge, Massachusetts, 1992.

15. J. R. Koza. Genetic Programming II, Automatic Discovery of Reusable Programs.
The MIT Press, Cambridge, Massachusetts, 1994.

16. J. Lampinen and E. Oja. Distortion tolerant pattern recognition based on self-
organizing feature extraction. IEEE Transactions on Neural Networks, 6(3):539–
547, May 1995.

17. M. S. Lew, T. S. Huang, and K. Wong. Learning and feature selection in ste-
reo matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(9):869–881, September 1994.

18. R. Lohmann. Selforganization by evolution strategy in visual systems. In H.-M.
Voigt, H. Mühlenbein, and H.-P. Schwefel, editors, Evolution and Optimization ’89,
pp. 61–68. Akademie-Verlag, 1990.

19. H. A. Mallot. Sehen und die Verarbeitung visueller Information, Eine Einführung.
Vieweg, Braunschweig, 1998.

20. H. P. Moravec. Towards automatic visual obstacle avoidance. In Proc. of the 5th
International Joint Conference on Artificial Intelligence, Vision–1: p. 584, 1977.

21. Riccardo Poli. Genetic programming for image analysis. In J. R. Koza, D. E.
Goldberg, D. B. Fogel, and R. L. Riolo, editors, Genetic Programming 1996, Pro-
ceedings of the First Annual Conference, pp. 363–368, Cambridge, Massachusetts,
1996. The MIT Press.

Evolving a Task Specific Image Operator 89

22. R. Poli and S. Cagnoni. Genetic programming with user-driven selection: Experi-
ments on the evolution of algorithms for image enhancement. In J. R. Koza, K.
Deb, M. Dorigo, D. B. Fogel, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo,
editors, Genetic Programming 1997, Proceedings of the Second Annual Conference,
pp. 269–277, 1996. Morgan Kaufmann Publishers.

23. A. R. Pope and D. G. Lowe. Vista: A software environment for computer vi-
sion research. In Proceedings of the 1994 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 768–772. IEEE, 1994.

24. D. Reisfeld, H. Wolfson, and Y. Yeshurun. Detection of interest points using
symmetry. In Proceedings of the International Conference on Computer Vision,
Osaka, Japan, pp. 62–65. IEEE, December 1990.

25. M. M. Rizki, L. A. Tamburino, and M. A. Zmuda. Evolving multi-resolution
feature-detectors. In D. B. Fogel and W. Atmar, editors, Proceedings of the Second
American Conference on Evolutionary Programming, pp. 108–118. Evolutionary
Programming Society, 1993.

26. G. Roth and M. D. Levine. Geometric primitive extraction using a genetic
algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(9):901–905, September 1994.

27. M. A. Shah and R. Jain. Detecting time-varying corners. Computer Vision, Gra-
phics, and Image Processing, 28:345–355, 1984.

28. J. Shi and C. Tomasi. Good features to track. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 593–600, 1994.

29. S. Smith. A new class of corner finder. In Proceedings of the 3rd British Machine
Vision Conference 1992, pp. 139–148, 1992.

30. W. A. Tackett. Genetic programming for feature discovery and image discrimi-
nation. In S. Forrest, editor, Proceedings of the Fifth International Conerence on
Genetic Algorithms, pp. 303–309. Morgan Kaufmann, 1993.

31. M. J. Tovée. An introduction to the visual system. Cambridge University Press,
Cambridge, 1996.

32. S. Ullman. Visual routines. In M. A. Fischler and O. Firschein, editors, Readings
in Computer Vision: Issues, Problems, Principles, and Paradigms, pp. 298–328,
Los Altos, California, 1987. Morgan Kaufmann Publishers.

33. J. F. Winkeler and B. S. Manjunath. Genetic programming for object detection. In
J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, D. B. Fogel, M. Garzon, H. Iba, and
R. L. Riolo, editors, Genetic Programming 1997, Proceedings of the Second An-
nual Conference, pp. 330–335, San Francisco, California, 1997. Morgan Kaufmann
Publishers.

34. M. Xie. Automatic feature matching in uncalibrated stereo vision through the use
of color. Robotics and Autonomous Systems, 21:355–364, 1997.

35. H. Zabrodsky, S. Peleg, and D. Avnir. Symmertry as a continuous feature. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 17(12):1154–1165,
1995.

36. Q. Zheng and R. Chellappa. Automatic feature point extraction and tracking in
image sequences for arbitrary camera motion. International Journal of Computer
Vision, 15:31–76, 1995.

37. D. Zongker and B. Punch. lil-gp 1.01 User’s Manual (support and enhancements
Bill Rand). Michigan State University, March 1996.

Generation and Selection of Sensory Channels

Edwin D. de Jong1 and Luc Steels1,2

1 Vrije Universiteit Brussel
Artificial Intelligence Laboratory

Pleinlaan 2, 1050 Brussels, Belgium
{edwin, steels}@arti.vub.ac.be

http://arti.vub.ac.be
2 Sony Computer Science Laboratory Paris

6, Rue Amyot, 75005 Paris, France
http://www.csl.sony.fr

Abstract. Sensory channels determine the way an agent views the world.
We investigate the question of how sensory channels may be autono-
mously constructed using generation and selection. The context is the
discrimination of geometric shapes. In a first experiment, elements of a
solution were attributed fitness based on the part of the problem they
solved. In two subsequent experiments, cooperation between elements
was respectively required and encouraged by means of a fitness function
which only rewards complete solutions. Differences between the approa-
ches are discussed, and generation and selection is concluded to provide a
successful mechanism for the autonomous construction of sensory chan-
nels.

Introduction

The discrimination game, introduced in [7], was developed for the investigation
of category formation. The direct objective of a discrimination game is to distin-
guish a randomly selected object, called the topic, from the rest of the objects
in a scene. Information is distilled from the objects by sensory channels, known
as feature extractors in pattern recognition. A category is a range of values that
a certain sensory channel may yield. Two objects can be distinguished if there
is at least one sensory channel for which the objects’ readings are in different
categories. In the course of playing discrimination games, agents adapt their
collection of categories. The eventual goal for an agent then is to acquire a set
of categories that allow it to be successful in its discrimination task. In related
research on language evolution, these categories are used by agents in lexicon
formation experiments, see [8] for an overview.

In previous experiments, e.g. [3], [10], [2], sensory channels have always been
determined by the experimenter. Here, we want to investigate whether it is possi-
ble to let the agent itself construct useful sensory channels for its discrimination
task. The mechanism for this construction is generation and selection based
on a set of rudimentary functions that can be used in combination with each

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 90–100, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Generation and Selection of Sensory Channels 91

other. The approach can be seen as a form of genetic programming [5] without
crossover. This implies that the agent assembles a program which calculates in-
formation about the objects. In the experiments reported here, the objects are
geometric shapes. An example of a sensory channel that could be generated is
(BREAK-FIGURE ANGLES AVG). The functions are applied in order, each one ta-
king the result of the previous function as input. This function breaks a figure
into curves, as will be explained later, computes the angles between subsequent
curves, and returns the average of these angles.

We are not aware of any related work on generation and selection of sensory
channels within the context of discrimination games. The discrimination game
could be viewed as a special case of unsupervised learning. In [1], a supervised
learning problem is approached using a hybrid method for feature selection. The
system uses a genetic algorithm to search for subsets of features to be used in a
pattern recognition task. The fitness of features is partly evaluated by computing
the performance of a classifier built by inductive learning from these features. In
[9], visual routines are described that are oriented towards a specific goal, rather
than aimed at building a general model as known from David Marr’s work [6].
Johnson et.al. [4] evolve this kind of visual routines using genetic programming
with point and edge based functions as primitives.

The structure of the paper is as follows. Section 1 briefly describes the basics
of the discrimination game. Section 2 is concerned with the generation of sensory
channels; selection is discussed in section 3. The results of the experiments are
presented in sections 4, which is followed by conclusions.

1 The Discrimination Game

The categories associated with a sensory channel are organized as a tree. During
normal operation, this tree grows and shrinks dynamically as the agent refines
categories and removes ineffective refinements. Figure 1 shows an example of
such a tree. The root node represents the entire range of values that the sensory
channel may produce. At each internal node, this interval is split into its two
halves.

The course of the discrimination game is as follows. For each object in a scene,
the agent receives the values extracted by its current set of sensory channels.
The agent randomly selects one object to be the topic. The value of a sensory
channel for a certain object lies in several categories of that channel’s category
tree. This is because categories in any branch of the tree are subranges of strictly
monotonously decreasing size of the complete range, which is represented by the
root of the tree. For each category it can be determined which objects fall within
it and which do not. If there exists a single category in which the topic and no
other objects lie, or in which all of the other objects lie but not the topic, then
this category allows the agent to perform the desired discrimination. If this is
not the case, all possible sets of categories up to a specified size are considered.
This may produce a set of categories where each category discriminates the topic
from some, but not all, of the other objects, and each object can be discriminated

92 E.D. de Jong and L. Steels

0 - 1

0.5 - 1

0 - 0.5

0.5 - 0.75

0.75 - 1

Fig. 1. Example of a tree representing the categories of a sensory channel

from the topic by at least one category. When no such combination is found, the
game ends in a failure. The discrimination success is the ratio between successful
and unsuccessful games.

2 Generation of Sensory Channels

We want to investigate whether it is possible to let the agent itself construct
sensory channels using generation and selection. Sensory channels are generated
by an essentially random process of combining basic functions. To speed up the
process, impossible combinations of functions are excluded. Selection takes place
on the basis of discrimination success.

As was stated above, agents normally adapt the category trees by adding
and removing categories. Since we are interested in the feasibility of autonomous
sensory channel construction, rather than in the specific categories that are used,
sensory channels should be treated equally, so that the evaluation of the channels
is not biased by other factors than the quality of the channel. Therefore, each
channel’s category tree is explored up to a certain depth, which is equal for all
channels, and trees are not adapted by the agent.

Scenes contain a random number of these randomly generated geometrical
shapes: circles, rectangles, squares, triangles, trapezia. Figure 2 shows an ex-
ample of such a scene. Table 1 lists the functions used for generating sensory
channels. Channels are sequences of functions that are applied sequentially to
the internal representation of a shape. They are created by assuming ’figure’
as the first input type and randomly selecting functions with appropriate input
types until the final result is of type ’number’. Since there is a limited number of
possibilities to choose from at every step, this leads to functions of a finite length
in practice, and it is not necessary to limit the number of functions in a channel,

Generation and Selection of Sensory Channels 93

0

1

2

3

Fig. 2. Example of a scene

even though this may become infinite in theory. Therefore, it is not necessary to
develop a genetic code for the channels, and no crossover is performed.

The only function applicable to a complete shape is break-figure, which
yields a list of curves. The idea of this function is that a contour is split into
several segments based on the degree of curvature. Segments may be curved,
but, when seen as a circle segment, the allowed variation in the radius of this
circle is limited. Whenever the curvature does change substantially, this signi-
fies the end of the segment and the beginning of a new one. In general, this
decision procedure would need to be defined more precisely, but since all figures
here are geometric and functions are based directly on the internal descriptions
of the shapes, their segmentation is known beforehand; a circle is a single seg-
ment, since by definition its degree of curvature (the reciprocal of the radius)
is constant when measured along its contour, a triangle has three discontinuous
(straight) curves, and squares, rectangles and trapezia four. After segmenting,
the angles between subsequent segments can be computed, as well as the lengths
and curvatures of the segments themselves. All these functions yield a list of
numbers, to which arithmetical functions and set functions may be applied.

The generation aspect of our approach is determined by the choice of fun-
ctions and the ways in which they may be combined. Ideally, all information
contained in a figure should be extracted by some function. In this case, the
choice of functions was rather straightforward; the angles between curves, their
lengths and their degree of curvature are all important properties that should
be available as a possible basis for a channel. Although more sophisticated fun-
ctions are conceivable, these functions described seemed sufficient as a basis for
the generation process. Furthermore, standard set operations and arithmetical
functions are provided. Concerning the combination of the functions, we opted
for the most basic form, i.e. combining functions sequentially.

94 E.D. de Jong and L. Steels

Table 1. Functions used for generating sensory channels and their applicability

Input type Function Output type
figure break-figure list of curves
list of curves curvatures list of numbers
list of curves lengths list of numbers
list of curves angles list of numbers
list of numbers nth subsequence of length m list of numbers
list of numbers sum number
list of numbers difference number
list of numbers average number
list of numbers first number
list of numbers nth element number

3 Selection of Sensory Channels

Having fixed the generation part, the remaining degree of variation is the selec-
tion component. This is the more interesting part. Standard genetic algorithms
assume an n-dimensional search space where solutions are points in this space,
and solutions are compared with respect to fitness. In these terms, a solution in
our case is a set of sensory channels. A good set of sensory channels will allow
an agent to achieve high discrimination success, which can be seen as the fitn-
ess of that solution. Thus, one approach would be to randomly generate sets of
sensory channels, evaluate them by playing discrimination games, and select the
successful ones.

Although it would certainly be possible to take this approach, there is a
possibility to exploit the structure of the problem by making better use of the
feedback provided by the discrimination game. Since the function of a sensory
channel is to discriminate the topic from other objects, the degree to which it
succeeds in this can be determined per channel. Thus, it appears more efficient
to evaluate each sensory channel apart, rather than a set of channels. The succes-
sful sensory channels are then allowed to remain, while ineffective channels are
removed and replaced by new, randomly generated sensory channels. When this
approach is adopted, the question that remains is how to calculate the success of
a sensory channel. The results of three approaches that have been investigated
are reported in the next section.

4 Experiments

4.1 Rewarding Partial Solutions

In the first experiment, success is attributed at the lowest possible level, i.e. the
category level. Every category can be used to discriminate the topic from zero
or more of the other objects. It would seem that the higher the ratio between

Generation and Selection of Sensory Channels 95

distinguished and non distinguished objects is, the more desirable the sensory
channel is. Although the outcome of a discrimination game is binary (1 if all
objects can be distinguished from the topic, zero if not), the fraction of distin-
guished objects provides more detailed information, and therefore this quantity
is stored for each category. At the end of a series of discrimination games, the
sensory channel for which categories have the lowest average fraction is discarded
and replaced by a new sensory channel. The number of sensory channels thus
remains constant, and was limited to 5 in these experiments.

Figure 3 shows the discrimination success over time. Each of the 500 data-
points represents the fraction of successful discrimination games in a series of
100 games. Scenes are randomly generated and contain a random number, from
2 up to 11, of geometric figures. After every series of games, the set of sensory
channels is adapted using generation and selection as described above. In order
to obtain reliable results, the experiment has been repeated ten times; the graph
shows the average value over these runs.

Although the absolute success is acceptable, there is a consistent drop of the
success after an initial rise. Apparently, the generation and selection process is
not functioning effectively. An analysis of the selection process revealed three
phases. First, ineffective elements in the (random) initial set of sensory chan-
nels are replaced by more successful channels. This causes the initial increase
in the success. Then there is a phase where four of the five channels are bet-
ter than average. The remaining channel may be any channel, since after each
series of games the least effective channel is replaced by a randomly generated
new channel. This phase is characterized by a high succes rate. Eventually ho-
wever, in all of the ten runs, the system converges to a situation where four
of the five channels are identical. Apparently, there is a single sensory chan-
nel which is more successful than any other channel. This channel calculates
the length of the third curve of a figure, and has been encountered in several
equivalent forms, a.o. (BREAK-FIGURE LENGTHS (NTH 2)) and (BREAK-FIGURE
LENGTHS (NTH-M-TUPLE 1 4) (NTH-M-TUPLE 2 2) (NTH 1)). This last chan-
nel breaks a figure into curves, calculates the lengths of these curves, takes the
first subsequence of length 4, then the second subsequence of length two of that
sequence, and finally the second element of this list of numbers, which produces
the same answer as the first channel.

Clearly, merely selecting the most successful elements of solutions does not
yield optimal results. The semi-stable situation in the middle phase of the experi-
ments produced better solutions because of the diversity of the sensory channels.
This diversity allowed the agent to combine channels which, although each only
discriminates a subset of the objects, together do the whole job. This led us to
think that the complementary aspect of elements in a solution may sometimes
be more important than the quality of the elements themselves. This hypothesis
was investigated in two subsequent experiments.

96 E.D. de Jong and L. Steels

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

Discrimination success averaged over 10 runs

Fig. 3. Discrimination success when sensory channels are evaluated based on their
individual capacity to discriminate

4.2 Cooperation between Sensory Channels

Two experiments have been performed where cooperation between sensory chan-
nels is investigated. In the first of these experiments, cooperation is required of
solutions by only attributing fitness to solutions which consist of two of more
channels and which resulted in a successful discrimination game, i.e. all objects
could be discriminated from the topic. In the second experiment, we also only
reward solutions which resulted in a successful discrimination game, but no con-
straint is placed on the number of sensory channels. This still favours groups
of channels that complement each other, resulting in complete discrimination
success, over groups of similar channels where each channel individually achie-
ves high discrimination success but whose combination does not yield complete
success. Thus, cooperation is encouraged in this scheme, but not required.

Enforcing Cooperation In this experiment, cooperation between sensory chan-
nels is enforced by only rewarding solutions consisting of more than one sensory
channel. In these solutions, cooperation must take place, since the fact that a
solution contains more than one channel implies that no single discriminative
sensory channel has been found. Fitness was only attributed in cases where the
discrimination game is successful. Thus, information about partial discrimina-
tion (e.g. when 6 out of 8 objects can be discriminated from the topic) is not

Generation and Selection of Sensory Channels 97

used. At first sight, it may seem that this method of selection makes less effec-
tive use of the feedback on discrimination. However, the results show that even
if this may be the case, it is overshadowed by a larger advantageous effect of
cooperation between channels.

Figure 4 shows the success, again averaged over ten runs, of 500 series of 100
discrimination games. This time, discrimination success increases steadily over
time, without the fallbacks that characterized the first method. Furthermore,
the level that is eventually reached is substantially higher; the average discri-
mination success surpasses 0.90, whereas in the first experiment it continued to
vary around 0.75.

Whereas the first experiment consistently converged to four identical sen-
sory channels based on the length of the curves, this experiment showed that
encouraging cooperation leads to diversity. In each of the ten runs, the resulting
set of sensory channels contained four different channels 1. In all but one case,
these four channels included the two channels based on curve length that were
observed in the semi-stable solutions of the successful middle phase in the first
experiment. Moreover, solutions now consistently included channels based on
the angles between subsequent curves.

Encouraging Cooperation In the final experiment, fitness is attributed in
cases where the discrimination game is successful. In contrast with the previous
experiment, no constraint is placed on the number of channels in a solution. This
has the effect that for the solutions containing more than one channel, the ones
containing complementary channels have a higher chance of being rewarded than
solutions of equally strong channels that do not complement each other. Thus,
cooperation between channels is encouraged, but in contrast with the second ex-
periment, it is not required, since single channels allowing perfect discrimination
are also rewarded.

Figure 5 shows the success of this scheme averaged over ten runs of 500 series
of 100 discrimination games. As in the previous experiment, success increases
steadily over time, but here the level that is eventually reached is still higher,
around 0.95. In contrast with the enforced cooperation experiment, these fun-
ctions were not always based on different basis functions. The majority of the
functions was based on length. However, the solutions were still diverse; in every
case, the final set of functions did not contain any duplicate function.

The success of this experiment can be explained by the nature of the solu-
tions; these contain selective channels, and are diverse at the same time. Ap-
parently, the strong focus on complementariness in the enforced cooperation
experiment rules out some solutions with functions that can be discriminative
on their own. Furthermore, the encouragement of cooperation in the last experi-
1 The sensory channel that was added most recently is not taken into account, since

it was randomly generated at the previous time step. As the newly added channel
is usually less effective then the remaining channels, it is normally this channel that
is removed again at the next selection step. Thus the four remaining channels come
to form a stable part of the solution.

98 E.D. de Jong and L. Steels

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

Discrimination success averaged over 10 runs

Fig. 4. Discrimination success when cooperation between the sensory channels in a
solution is required

ment secures a diversity of the solutions that explain its advantage over the first
experiment.

Conclusions

In previous work on discrimination games, sensory channels, which determine the
way an agent sees the world, have always been programmed by the experimenter.
The goal of this research was to investigate whether it is possible to let the
agent construct these sensory channels autonomously by means of generation
and selection based on a set of basic functions. This question can be answered
positively.

As part of the investigation, three experiments on generation and selection
of sensory channels have been performed. From an evolutionary computation
point of view, the element of variation in these experiments is a set of sensory
channels. Since the discrimination games provide information about the fitness
of each separate channel, the first experiment made use of this information as
much as possible. This resulted in solutions containing multiple instances of equi-
valent sensory channels, and hence a lack of useful complementary channels. In
two other experiments, cooperation between sensory channels was investigated.
First, cooperation of sensory channels was required of the solutions. This impro-
ved performance substantially. However, it had the drawback of ruling out some

Generation and Selection of Sensory Channels 99

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

Discrimination success averaged over 10 runs

Fig. 5. Discrimination success when cooperation between the sensory channels in a
solution is encouraged

solutions which contain highly selective channels and are diverse at the same
time. This problem was not present in the third experiment, where cooperation
was not required but encouraged, by attributing success only when the complete
discrimination task was solved. The judicious encouragement of cooperation tur-
ned out to result in a desirable combination of diversity and selectiveness, which
explains the favourable outcome of the final experiment.

It may be concluded that autonomous construction of sensory channels is
possible using generation and selection, and that encouraging, but not requiring
cooperative solutions may result in more diversity and better performance than
attributing fitness at the lowest possible structural level.

5 Acknowledgements

For this research, grateful use was made of the BABEL package, developed by
Angus McIntyre at Sony CSL, Paris. Thanks furthermore to Bart de Boer for
useful discussion and to Paul Vogt and Tony Belpaeme for comments on an
earlier version.

100 E.D. de Jong and L. Steels

References

1. J. Bala, K. De Jong, J. Huang, H. Vafaie, and H. Wechsler. Using learning to
facilitate the evolution of features for recognizing visual concepts. Evolutionary
Computation, 4(3), 1996.

2. T. Belpaeme, L. Steels, and J. Van Looveren. The construction and acquisition
of visual categories. In A. Birk and J. Demiris, editors, Proceedings of the 6th
European Workshop on Learning Robots EWLR-6, Lecture Notes on Artificial In-
telligence, Berlin, 1998. Springer-Verlag.

3. E.D. de Jong and P. Vogt. How Should a Robot Discriminate Between Objects?
A comparison between two methods. In Proceedings of the Fifth International
Conference of The Society for Adaptive Behavior SAB’98, volume 5, Cambridge,
MA, 1998. The MIT Press.

4. M. P. Johnson, P. Maes, and T. Darrell. Evolving visual routines. In R. A.
Brooks and P. Maes, editors, ARTIFICIAL LIFE IV, Proceedings of the fourth
International Workshop on the Synthesis and Simulation of Living Systems, pages
198–209, Cambridge, MA, 6-8 July 1994. The MIT Press.

5. J. R. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.
6. D. Marr. Vision: A Computational Investigation into the Human Representation

and Processing of Visual Information. W. H. Freeman, New York, 1982.
7. L. Steels. Perceptually grounded meaning creation. In M. Tokoro, editor, Procee-

dings of the International Conference on Multi-Agent Systems ICMAS’96. Kyoto,
Japan., 1996.

8. L. Steels. The synthetic modeling of language origins. Evolution of Communication,
1(1):1–34, 1997.

9. S. Ullman. Readings in Computer Vision, chapter Visual routines, pages 298–328.
Morgan Kaufmann Publishers, 1987.

10. P. Vogt. Perceptual grounding in robots. In A. Birk and J. Demiris, editors, Lear-
ning Robots, Proceedings of the EWLR-6, Lecture Notes on Artificial Intelligence
1545. Springer, 1998.

Selecting Filter Banks to Enhance Evoked Potentials
Recordings Using Evolutionary Algorithms

SJ Turner, PD Picton, JA Campbell
University College Northampton, Northampton, NN2 6JD, UK

scott.turner@nene.ac.uk

Abstract. Evoked potentials are electrical signals produced by the body in
response to a stimulus. In general these signals are noisy with a low signal
to noise ratio. In this paper a method is proposed that uses sets of filters,
whose cut-off frequencies are selected by an evolutionary algorithm. An
evolutionary algorithm was investigated to limit the assumptions that were
made about the signals. The set of filters separately filter the evoked
potentials, and are combined as a weighted sum of the filter outputs. The
evolutionary algorithm also selects the weights. Inputs to the filters are sets
of averaged signal, 4 or 10 signals per average. Even though there is likely
to be variations between the signals, this process can improve the
extraction of potentials.

1. Introduction

Evoked potentials (or evoked responses) are electrical signals recorded from a human
body in response to a stimulus to the nervous system. Somatosensory evoked
potentials in particular are recorded at sites such as the scalp or spine, ordinarily due to
direct electrical stimulation of the nerves in the arms or legs. The features looked for
are negative or positive peaks at certain known values, e.g. at 20msec or 300msec.
The main problem with evoked potentials is the presence of noise from, for example,
other sources within the body, recording equipment, or the local environment [1].
Noise can dominate the recorded signal, leading to a very low signal to noise ratio.
There are several difficulties with this noise, one of which is that the spectral
components of the noise overlap the same region as those of the evoked potential.
This means that just applying a bandpass filter will not extract the evoked potential,
and the noise components are often larger than those of the evoked potential.
Ensemble averaging is the most commonly used method of reducing the noise in
evoked potential recordings. The main disadvantage of this method is that to produce a
reasonably noise-free signal, a large number of signals need to be averaged. Collection
of a large number of signals means that signals need to be collected over relatively
long periods of time. Taking a long time to collect the data may be undesirable for
the subject under going the tests, or even impractical, and variations between signals
can lead to distortion of features in the averaged signal. After ensemble averaging, a

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 101−109, 1999.
 Springer-Verlag Berlin Heidelberg 1999

single bandpass filter is often applied. The aim of this work is to investigate using a
set of bandpass filters to reduce the number of signals that are needed to extract the
evoked potential. The searching abilities of evolutionary algorithms were used to
select appropriate filter parameters and weights.

2. Method

2.1 Equipment And Data
All the signals were recorded on FM tape, using a STORE 4 FM tape recorder

(RACAL Recorders), from spinal recorded evoked potentials in response to
stimulation of the median nerve at the wrist. The data was collected using a Gateway
2000 Pentium P90 computer via an interface card and data acquisition software
(PC30F, Eagle Technology). All the filters and evolutionary algorithms were
developed and implemented in MATLAB (MathWorks, USA). Before being recorded
the signals were passed through a bandpass filter (0.016-750Hz).

Recorded data consisting of 222 responses were collected from the tape. A total of 38
responses were excluded from the experiments as they were found to contain artifacts such
as 'clipping.' Using the remaining 184 recorded responses, two sets of data with 92
responses in each were formed into a test and a training set These sets are referred to here,
as the recorded data. An average of the 184 recorded responses was used to form a reference
signal which was the target signal that the filters aim to extract. In addition it was
possible to make simulated data by adding noise to this reference signal. Pre-stimulus
recordings, i.e. electrical activity recorded just before stimulation occurred, was the source
of the added noise. This was chosen as it represents electrical activity recorded at the same
site as where the evoked responses were to be recorded and should therefore contain
similar kinds of electrical activity as the background noise on the evoked response
recordings. This simulated data (target signal + noise) set was split into a training set (55
responses) and a test set (56 responses).

2.2 Filter Banks
The arrangement of the filter bank is shown in Figure 1. The signal was passed

through each filter separately. The output of this system was the response produced by a
weighted sum of the individual filter outputs.

102 S.J. Turner, P.D. Picton, and J.A. Campbell

Fig. 1. Modeling the response as a set of x parallel filters

The results shown in this paper are those obtained using 3 filters in the filter bank.
The filters were 4th order Butterworth bandpass filters, implemented using the
MATLAB command FILTFILT. This command produced a zero-phase shift filter,
which means that the filter itself did not produce a phase shift in the signal.
Butterworth filters were selected because of their relatively smooth pass-band.

All the filters were set up randomly so that initially the low frequency cut-off was
within the range 0-200Hz, and the high frequency cut-off was selected to be up to
300Hz higher than the low frequency cut-off. Subaverages (averaging small sets of
signals) of the input sets were created to reduce the noise level. Again, the results
shown in this paper are those obtained when 10 responses were used in each sub-
average. The stimulation rate was set at two stimulations per second, so sub-averages
of 10 responses equate to 5 seconds worth of evoked responses. In the training process
every example in the sub-averaged training set was used to measure the fitness of the
'individual' set of filters and weightings in the population of possible solutions. The
mean of all the example fitness values for that individual solution was used. Both
simulated data and recorded data were used to develop and test the filter banks.

2. 3 Evolutionary Algori thm
The filter parameters were encoded as a sequence of floating point numbers on the

chromosomes. Michalewicz [3] suggests that floating point values are "intuitively
closer to the problem space."

Fi tness Function. The fitness function used here was the Mean Squared
Error (MSE) between the results of the evolutionary algorithm and the known target
response.

mse
N

e k
k

N
=

=∑1
2

1
()

(1)

103Selecting Filter Banks to Enhance Evoked Potentials Recordings

The error is the difference between the target signal and the test sequence at a point in
time, e(k).

S election and Mutation After the fitness of each of the filter banks has
been calculated the top quarter of the original population go through to the next
generation unchanged i.e. those with the highest fitness (i.e. lowest MSE values). The
remaining three quarters of the population in the next generation were produced by a
selection process using crossover. The selection process used in this work is the roulette
wheel approach where the higher the fitness of an individual sequence, the greater the
probability that the sequence’s genes will be used in the next generation. A set of pairs
of random numbers, ranging from 1 to the sum of all portions of roulette wheel, was
used to select the sequences that were the 'parents' of the next generation. A third random
number was produced that determines where along the sequence the swapping occurs, so
the two original sequences produce two new sequences. A second matrix was formed that
was the same size and shape as the population matrix, and contained values in the range 0
to 1. If the value in the matrix was less than or equal to the mutation rate, then a change
was made to the value in the population matrix at the corresponding position. The value
in the population matrix was altered by up to +/- 12.5% of the current value. The
population size was chosen as 80 and the mutation rate was set at 0.05. The
evolutionary algorithms were all stopped after 200 generations.

3. Results

Figure 2 shows the averaged signal used both as the underlying signal of the
simulated data sets and as the target signal.

104 S.J. Turner, P.D. Picton, and J.A. Campbell

Fig. 2. Target signal

This spinal recording was chosen as it has small but important early components
and much larger later components which were more time invariant. It therefore
combines many of the features that need to be taken into account in the extraction of
the evoked potentials from the background noise.

Five unfiltered sub-averages of simulated test data and the effects of filtering are
shown in Figure 3. The signals have been shifted along the voltage axis to aid the
visual presentation. Three filters were developed using the simulated training set.
Comparing the results of the set of filters and the target signal, resemblance between
the target signal and these filters can be seen. The most noticeable feature of these
filtered signals is that they have negative peaks at around 50ms and 200ms. Two
positive peaks in the region 100-200ms were also observed. These peaks are present in
the target signal (Figure 2). Later components around 250, 300, 350ms do not appear
in the majority of the signals. At the beginning of the signal, features are not present
or have been 'flattened.'

105Selecting Filter Banks to Enhance Evoked Potentials Recordings

Fig. 3. (a) Averages of simulated activity (10 simulated evoked response per average). (b)
The signals in (a) after being passed through a set of filters whose parameters were selected
by an evolutionary algorithm, based on training with a different set of simulated responses.

Recorded evoked potentials were passed through the filters used previously. Figure
4 shows both the unfiltered and filtered responses. As in Figure 3, some of the
features can be seen, but the similarities with the target signal are not as clear as when
the simulated test data were filtered. Figure 5 shows the unfiltered averaged test
recorded data again, but this time the signals are passed through a set of filters
developed using the recorded data training set. In comparison with Figure 4, these are
essentially the same shape but smoother. Table 1 contains the filter parameters and
weightings for both sets of filters. Table 2 contains the minimum, maximum, mean
and standard deviations of the MSE values.

Fig. 4. (a) Averages of recorded activity (10 recorded evoked response per average). (b)
The signals in (a) after being passed through a set of filters whose parameters were selected
by an evolutionary algorithm (same filters as used in figure 3.)

Fig. 5. (a) Averages of recorded activity (10 recorded evoked response per average). (b)
The signals in (a) after being passed through a set of filters whose parameters were selected
by an evolutionary algorithm, based on training with a different set of recorded responses.

106 S.J. Turner, P.D. Picton, and J.A. Campbell

Cut-off
frequencies

(Hz)

fx fx+1 weight

3 filter bank 4.022 26.9667 0.9307
 (simulated) 66.751 576.816 0.2848

133.398 637.093 0.0563

3 filter bank 3.71 18.4259 0.6253
(recorded) 52.788 55.649 0.31

42.545 260.143 0.086

Table 1. Filter parameters selected using the evolutionary approach

min max. mean STD

Training
Data

Test Data 10-3 10-3 10-3 10-3

simulated simulated 0.39 0.81 0.61 0.18
recorded 1.6 5.9 2.7 1.4

recorded simulated 1.0 1.4 1.2 0.2
recorded 0.6 3.8 1.7 1.1

Table 2. Mean Squared Error values for the two filters.

4. Discussion

 Evolutionary algorithms enable less specific assumptions to be made about the
frequency properties of the signal beforehand. Using an evolutionary algorithm the
algorithm can select cut-off frequencies for the filter, and weights, based on how well
the filtered signal matches the shape of the target signal. A filter bank approach was
selected so that spectral areas that are not important to extracting the evoked potential
are less likely to be included in the filtered result.

A noticeable feature of all the processed responses, whether from simulated or
recorded data, was that features at the beginning of the response were not as large as
they are in the target signal. The reason for this was that these components were small
compared with the rest of the response, and have higher frequency components than

107Selecting Filter Banks to Enhance Evoked Potentials Recordings

those in the rest of the response. The dominant features were therefore these larger
components, and this was the feature the algorithms have found. Changes in the larger
low frequency components produced larger changes in MSE than the higher frequency
components of the smaller early components. In Table 1, a list of the cut-off
frequencies of the filter banks developed are given. Common to both set of filters is a
high weighting on low frequencies, which would help to explain why components at
the beginning of the response were smoothed out or reduced. This fits with groups
such as Rossini et al. (1981) [4], who used a bandpass filter with relatively high
frequency parameters (i.e. 150-3000 Hz) to extract short latency components (early
components of the responses). The idea of a bandpass filter to extract these
components does therefore seem relevant. Increasing the number of filters was
investigated, but the results were no better, and so did not justify the extra processing
needed. A reduction in the number of responses per average was tried, but the
combination of the 'noisier' inputs signals and filters produced were not as effective as
those where 10 responses were used.

5. Conclusions

Filtering simulated responses produced better results than filtering recorded
responses (Table 2). This was believed to be due to the simulated response being time
invariant. They were produced by taking the target responses, repeating it several
times, and adding recorded noise. This means that the underlying response was not
changing between the responses. In the recorded data, the underlying response can vary
between the responses. The results of the filter developed using recorded data suggest
that it was better than the filter developed using simulated data, for filtering recorded
data (Table 2), at least for the later components of the signals. An assumption has to
be made about the response that the frequency components were the same throughout
the response, i.e. that it is stationary. A visual inspection of the responses suggests
this is not true, as does the work by various groups using high-pass filtering to
extract short latency components (e.g. Rossini et al. (1981) [4], McCabee et al.
(1983)[2]). A possible way around this problem is to allow the filters to contribute to
the overall final response at different times. These are time-varying filters, and work is
on-going to investigate these. The effects of using other sets of intraspinal recordings
and scalp recordings are also needed to investigate the effects of variations in
recordings between subjects. A particular problem area is that the later components of
the signals are likely to vary more than the earlier components. It is possible that
other data sets may have signals that vary more than these, but this would also be a
problem for the conventional ensemble average method.

108 S.J. Turner, P.D. Picton, and J.A. Campbell

1. Harrison SAB, Lovely DF (1995) "Identification of noise sources in surface
recording of spinal somatosensory evoked potentials" Medical & Biological
Engineering & Computing pp. 299-305.

2. McCabee PJ, Pinkhasov EI, Cracco RQ (1983) "Short latency somatosensory

evoked potentials to median nerve stimulation effect of low frequency filter"
Electroencephalography and Clinical Neurophysiology Vol. 55 pp 34-44.

3. Michalewicz Z (1996) Genetic Algorithms + Data Structures = Evolution Programs

3rd Edition, Springer.

4. Rossini PM, Cracco RQ, Cracco JB, House WJ (1981) "Short latency

somatosensory evoked potentials nerve stimulation: scalp topography and the effect
of different frequency filters" Electroencephalography and Clinical Neurophysiology

109Selecting Filter Banks to Enhance Evoked Potentials Recordings

References

Evolution of Vehicle Detectors for Infrared Line
Scan Imagery

Simon C. Roberts and Daniel Howard

Software Evolution Centre
Systems & Software Engineering Centre

Defence Evaluation and Research Agency (DERA)
Malvern, Worcestershire WR14 3PS, UK

dhoward@dera.gov.uk

Abstract. The paper addresses an important and difficult problem of
object recognition in poorly constrained environments and with objects
having large variability. This research uses genetic programming (GP)
to develop automatic object detectors. The task is to detect vehicles in
infrared line scan (IRLS) images gathered by low flying aircraft. This
is a difficult task due to the diversity of vehicles and the environments
in which they can occur, and because images vary with numerous fac-
tors including fly-over, temporal and weather characteristics. A novel
multi-stage approach is presented which addresses automatic feature de-
tection, automatic object segregation, rotation invariance and genera-
lisation across diverse objects whilst discriminating from a myriad of
potential non-objects. The approach does not require imagery to be pre-
processed.

1 Problem Requirements

Airborne reconnaissance by low flying aircraft usually results in vast amounts of
imagery from the aircraft’s on-board sensors. Human analysts use their intuition
and expertise to understand the imagery, but it is not possible for an analyst
to inspect all of the imagery in reasonable time. Therefore, a timely automatic
detector which can bring areas of interest to an analyst’s attention is very at-
tractive. The objective being not to classify objects but rather to bring the most
promising areas in the imagery to the attention of the analyst.

The ultimate aim of this work is to develop automatic vehicle detectors for use
by analysts of infrared line scan (IRLS) imagery. The problem is very challenging
because the images vary with season, time of day, strength of sunlight, terrain,
altitude and bank of the aircraft, and important esoteric reasons, e.g. the sensors
on different aircraft will never be identical. Furthermore, the images are captured
on video tape and suffer from quality degradation if not digitised within the first
few plays. The automatic detector must find all the vehicles in the image without
too many false alarms, it must be fast, and also it should preserve generality for
detection of unusual vehicles and certain suspicious vehicle-like objects.

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 110–125, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Evolution of Vehicle Detectors for Infrared Line Scan Imagery 111

2 Staged Genetic Programming

Genetic Programming for image analysis and object detection was pioneered
by Tackett [1]. Investigators [2,3] have consistently expressed concern over the
amount of computing time required to obtain practical results in this area. By
pre-computing statistics of pixel data, Poli [4] both reduced the size of the search
space and the computing time requirement. Other researchers have attempted
to prevent the ‘bloating’ behaviour of GP, but GP’s generality and search power
can be compromised with such an intention.

In [5,6] we have proposed a two-stage Genetic Programming method and
tested it in a hard near real world setting in a very computationally expensive
domain. The two-stage method provided:

– small evolution times with no recourse to ‘parsimony’ or new crossovers;
– very efficient, i.e. fast, object detectors.

A novel multi-stage version is presented in this paper where GP is used to
evolve a number of detectors which are then fused together to produce an overall
object detector. The first stage is a coarse detection which is required to identify
all of the objects in the imagery at the expense of producing many false alarms.
Later stages provide a finer level of detection to reduce the false alarm rate.
Each stage of detection processes irrotational statistics drawn directly from the
imagery - no pre-processing is required. Thus, this work demonstrates additional
uses for the staged evolution method:

– it can automatically discover features for vehicles such that these need not
be prescribed a-priori ;

– it can begin to address the so-called stability-plasticity dilemma [7].

3 Experimental Conditions

The traditional approach of using training, test and validation data sets has not
yet been adopted because this requires a more uniform set of imagery and a
more accurate account of each video tape that the imagery is extracted from.
The problem being that there is no record of how many times these tapes have
been used, and each time a tape set is looked at by an analyst the quality of the
tape in use depreciates to an extent.

In addition, the volume of imagery required to construct comprehensive trai-
ning, validation and test sets was not available at the time of these experiments.
The rationale became to use GP on progressively larger training sets in order to
learn about the likely elements of a solution, e.g. the limitations of the solution
strategies adopted, and the power of the terminals and the functions used, i.e.
the appropriateness of the search bias [8].

Two experiments were carried out. The first involved only four IRLS images
taken from the same aircraft on the same flight and at roughly the same height
and flight bank. The theme of these images was diverse. The second experiment
involved ten IRLS images but at different heights and flight banks.

112 S.C. Roberts and D. Howard

Four Samsung Alpha 633MHz machines and four 450MHz Pentium machi-
nes ran many combinations of random seeds for the various stages of Genetic
Programming - c++ code. And other machines were used to study the evolved
detectors, running an application with a Mathematica back-end [9]. This soft-
ware traced the paths taken by detectors, i.e. down the min() and max() nodes
in GP trees, to extract the dominant expressions responsible for the detection.
Those findings will be presented elsewhere.

4 GP Specifications

The steady-state GP parameters used in the experiments were as in Table 1. (α
and β are fitness function variables as described is section 4.3)

Table 1. Genetic Programming settings

Population 10000
Max tree size 1000
Max generations 10
Function nodes + , - , * , % , min() , max()
Terminal nodes integer constants (-128 to 127)

floating-point constants (-0.5 to 0.5)
statistics as described in section 4.1

Kill tournament size 2
Breed tournament size 4
α 1, 2, 3
β 1 to 7

4.1 Statistics

Statistics of pixel information served as the underlying primitives for the GP
trees as with [4,5,6,15]. However, these were defined to be rotationally invariant
statistics based on concentric circles of single pixel thickness as in Figure 1. The
circles were drawn with a diameter in pixels, e.g 11, with statistics defined on the
pixel values in the perimeter. Four types of irrotational statistics were defined
on each circle:

– a perimeter average, Pd,
– a perimeter standard deviation, Sd,
– the number of edges found on the perimeter, Nd,
– an edge distribution measure, Ed.

where the subscript d stands for ‘diameter’. For example, for a diameter of 35
pixels the statistics are: P35, S35, N35 and E35 respectively.

Evolution of Vehicle Detectors for Infrared Line Scan Imagery 113

Fig. 1. Concentric statistics of pixel data

The number of edges was computed by taking the difference between cons-
ecutive pixels on the circle, and comparing against a threshold. An edge was
identified when the difference between consecutive pixels on a given ring ex-
ceeded half the standard deviation of the entire image. The edge distribution
measure Ed was defined as:

Ed =
Nd∑

i=1

(
si

L
)2 (1)

where si is the arc length between the ith and the (i-1)th edges, L is the total arc
length or perimeter, and Nd is the number of edges detected on the perimeter.
If no edges were detected Ed was set to 1.

This choice of statistics must provide the evolutionary process with: (a) an
irrotational character; (b) robustness to high variability in pixel data; and (c)
both angular and radial information.

4.2 Initialisation

Each individual was represented as a tree consisting of functions and terminal
nodes. The population was initialised using the ramped-half-and-half technique
[11] with a maximum initial tree size of 4 nodes.

4.3 Fitness Function

A fitness function was used to evolve all detectors. A ‘hit’ or positive evaluation
by the detector on a vehicle in the ‘truth’ is a ‘true positive’ or TP . A ‘false
alarm’ or positive evaluation by the detector of a non-object is a ‘false positive’
or FP . The fitness function f aimed to maximise TP and to minimise FP :

f =
α TP

α Nv + β FP
− 1 (2)

where Nv is the total number of vehicles in the ‘truth’ and α and β control the
position along the Pareto curve. Higher α to β ratios thus bias detectors to hit

114 S.C. Roberts and D. Howard

objects at the expense of yielding false alarms. Although these variables were
not rigorously optimised, they were varied across different evolution runs.

4.4 Genetic Operators

These were standard cross-over and mutation operators (95% cross-over and
5% mutation) using tournament selection. No mating radius restrictions were
applied, i.e. no ‘speciation’ was used - an individual could potentially breed with
any other individual. Whenever the maximum allowed tree size was reached the
shorter side of the swap was selected in crossover.

4.5 Choice of Parameters

Earlier work concluded that detection accuracy increases with population size
[10]. Following this, the population was fixed at 10,000 which was found to give
reasonable computation times.

The number of generations was restricted to 10 due to the computational
expense of evolving for more generations. The average individual size tends to
increase with each generation as has been observed by many, e.g. [12,13,14],
thus the computational demands increase with generation. Furthermore, small
solutions are likely to generalise better and it was thought that 10 generations
was low enough to avoid over-training.

The maximum detector size was limited to 1000 nodes but no other scheme
encouraged small detectors. However, the best detector in a population was found
by ordering the individuals firstly in decreasing fitness and secondly in increasing
size. Therefore the best detector was the smallest of the fittest detectors.

Each GP specification was run with at least 10 different randomiser seeds in
order to ascertain general performance.

5 Training Strategy

In order to give the reader an appreciation of the difficulty of the task, Figure 2
shows a selection of vehicles from some of the IRLS images considered. It serves
to illustrate the variability of vehicle subimages, e.g. some vehicles are colder
than others, some are thermal shadows of vehicles, some appear in perspective
while others are top down views of vehicles. Some vehicles are so bright that
no features are recognisable. Note also that they come in many sizes, and can
be seen at different heights. The vehicles have been aligned in this figure but
they can appear at any angle. Any template matching algorithm would find it
extremely difficult to generalise across these vehicles.

5.1 Definition of a Motorised Vehicle

This work tried to avoid introducing an a-priori answer to the questions: “what
is a car?” or “what is a lorry?” For example, the training points were not focused

Evolution of Vehicle Detectors for Infrared Line Scan Imagery 115

on distinct features of vehicles (e.g. bumpers, windscreens, hot engines, etc.) but
a more generic approach was taken in order to encourage automatic feature de-
tection. The reasons for not training on distinct features are numerous. From an
isolated subimage it is difficult to clearly specify what it is about that subimage
that indicates the presence of a vehicle. In other words, it is very difficult to
define features which distinguish all vehicles from all non-vehicles. The training
scheme would also require the precise locations of characteristic features to be
specified.

Fig. 2. Selection of vehicles from the IRLS images.

Furthermore, the generalisation of features a-priori was undesirable because
this generalisation is inextricably linked to the solution of the problem. Instead
vehicles were simply represented by pixels subjectively placed towards the centre
of each vehicle. A ‘vehicle box’ was centred on each of these points to contain
most of each vehicle. GP was rewarded whenever it produced a detection within
these boxes. An ‘indifference zone’ surrounded each vehicle box which may or
may not have overlapped a vehicle depending on vehicle orientation and size.
GP was neither rewarded nor punished for detections in this zone. The concept
of a vehicle box allowed GP to discover characteristic vehicle points. This was
facilitated by the multi-stage evolutionary process. Upon completion of the first
stage, all detections within vehicle boxes were defined as vehicle points for the
second evolution stage. GP then sacrificed many of these in order to trade off
vehicle detections against fewer false alarms. Vehicle pixels that survived this
process were to be found in parts of the motorised vehicle that GP considered to
best represent the vehicle. Thus GP was able to discover both the characteristic

116 S.C. Roberts and D. Howard

features and their location by generalising across these vehicle subimages. This
procedure thus overcame the need manually specify distinct features of vehicles.

5.2 Standard Training Procedure

The following simple training procedure was a default for the experiments:
1. transform the image using 64.0 for mean and a standard deviation of 16.0.
2. define a ‘truth’ for each image to specify a single vehicle point for each

vehicle.
3. evolve many first detectors using different initial random seeds.
4. select the best first detector from these, i.e. the one that produces the most

hits and the least false alarms over all images.
5. apply the first detector to locate discovered vehicle points (i.e. hits within

vehicle boxes) and false alarms with which to train the second detector.
6. evolve many second detectors using different initial random seeds.
7. select the best second detector, i.e. the one that gives the highest reduction

in false alarms whilst sacrificing the least number of hits.
8. fuse the selected first and second detector to process all images.

6 Experiments Involving Four Images

For this experiment GP trained on four images, shown in Figures 3 and 4, that
contain examples of vehicles in diverse environments. These raw IRLS images
were in no way manipulated other than for a standard aspect ratio correction
which has to do with the nature of the linescan sensor. Figure 3 is image number
1 in Table 2, and those of Figure 4 correspond to images 2, 3 and 4 in Table 2.
From the table note that these were at similar altitude and on the same flight.

6.1 Implementation of the Training Strategy

Detectors process information about a subimage centred on a given point, the-
refore training points need to be selected for each vehicle. Ideally, these points
would allow detectors to discover features which generalise across vehicles and
discriminate from non-vehicles. However, as mentioned in section 5.1 these fea-
tures are not known a-priori.

The selection of training points was restricted by the potential proximity of
vehicles to each other, e.g. note how close the vehicles are in image 2. If training
points had been selected on vehicle perimeters, there would have been a danger
that detectors may not have generalised across proximate and isolated vehicles.
To avoid this, a single training point was centrally positioned on each vehicle.

6.2 Results

Figure 3 shows the results of applying the detectors to image 1. The rate of
detection is high and the false alarm rate is low. Furthermore, as is shown in

Evolution of Vehicle Detectors for Infrared Line Scan Imagery 117

Fig. 3. Results of the two-stage evolution strategy: (left) application of first stage
detector, (right) application of fused first and second stage detectors. White areas
denote positive returns of the detectors. (corresponds to image 1 in Table 2)

Figure 4, this detector is able to identify disparate vehicles such as cars and
lorries, vehicles at different projection, and of different brightness and tone.

For image 1 the detector managed to point to the thermal shadow of a car
parked in a cool area towards the bottom of the image. In that area, the detector
avoided detecting two people standing near these vehicles. Vehicle-like objects
such as what is believed to be a skip at the top-right corner of this image were
correctly flagged as suspicious objects. All three lorries in image 2 were detected
and the large wall in the obstacle course that adjoins the car park was correctly
missed. The detector missed very few vehicles in these first two images.

When the detectors were applied to image 3 they obtained a perfect detection
of a vehicle in an urban situation, including a building with a bright roof, air
vent, sharp edges and corners. Bright areas by the edge of the road were correctly
classified as not being vehicles. Note that the detector settled for pixel areas on
the front and back of the vehicle.

Image 4 was the most difficult image for this detector because:
– the canopy above the vegetation appears as a great number of textured

shapes and edges that can readily be confused with the shapes of vehicles.
– the vehicle in this image is unlike the others in that it contains a different

type of vehicle - a tank - and is of dull tone.
The detectors on image 4 produced a number of false alarms. This, however is
consistent with a scenario likely to contain hidden objects. The image analyst
may spend more effort on such an image. And results for Image 4 in Figure 4

118 S.C. Roberts and D. Howard

are misleading because pixels flagged by the detector needed to be shown at
much larger than pixel size. For example, the reader may conclude that image 4
contains eight false alarms and three hits. However, in actuality there is an equal
number of false alarms as hits. It is interesting to note that a simple clustering
method would eliminate those false alarms.

Fig. 4. Results of the fused two-stage detectors. White areas denote positive returns
of the detectors. (from left to right these images correspond to images 2-4 of Table 2)

7 Experiments Involving Ten Images

The vehicle generalisation task becomes more difficult when many images are
considered. This is not only due to the larger variability of vehicle types (e.g.
cars, lorries, etc.) but is also due to variable aircraft altitude and bank, terrain
environment, and atmospheric conditions.

Using the approach of sections 5.2 and 6.1 to process many more images with
a greater variety of characteristics proved disappointing. The best results from
a brief experiment involving 30 evolution runs using different random seeds, hit
approximately two-thirds of the vehicles whilst giving about the same number of
false alarms. Generalising across such a variety of vehicles whilst discriminating
from a greater variety of non-vehicles is clearly too difficult a task.

7.1 Multiple Stages Method

The generalisation task is simplified if the vehicles are segregated such that
only a subset of the vehicles needs to be discriminated from non-vehicles by
a single second detector. Although vehicles can be manually segregated into

Evolution of Vehicle Detectors for Infrared Line Scan Imagery 119

training subsets by their visual characteristics (e.g. by separating bright and
dark vehicles, cars and lorries, etc.), automatic segregation avoids the need to
manually define category boundaries. Automatic segregation is simply achieved
by training a second detector to hit as many vehicles as possible whilst giving
no false alarms. In theory, this detector should hit the most common vehicles
which are most easily distinguishable from non-vehicles. These vehicles are then
omitted from the training set and another second detector is evolved to hit the
residual vehicles, whilst again giving no false alarms. Continuing this procedure
should give multiple second detectors which specialise in hitting different types
of vehicle. These second detectors can then be combined with OR and fused to
the first detector using AND.

This approach is beneficial with regard to the so-called stability-plasticity
dilemma [7]. To solve this dilemma a pattern-recognition system must be adap-
tive to changes in the input whilst previously encoded patterns must be stable
against these changes. For example, a system which can detect vehicles from an
industrial environment should be able to be adapted to detect vehicles from a
rural environment without losing the ability to detect the industrial vehicles.
In other words, it is desirable for a detection system to perform incremental
learning where old pattern-encodings are retained even when new patterns are
learned. Evolving a new second detector to process a new type of vehicle gives
the system the ability to perform incremental learning, providing that the new
vehicles can be generalised by the first detector.

A potential disadvantage with this technique is a reduction in detection speed
on test images due to the need to apply multiple second detectors. However, as
the generalisation task for a given second detector is simplified, smaller second
detectors should be produced. The best results on ten images using the former
approach were produced by detectors with a size of about 400 nodes, whereas
the multiple-second-detector approach often produced much smaller detectors.
Furthermore, fusing the second detectors using OR avoids the need to apply all
second detectors to every subimage.

Table 2. Details of imagery

image type altitude (ft) bank total vehicles flight
1 industrial 296 1R 29 A
2 car park 300 1R 43 A
3 industrial 300 1R 1 A
4 forest 288 0 1 A
5 rural 612 71L 9 A
6 rural 608 71L 3 A
7 residential 456 0 1 A
8 rural 612 72L 3 A
9 residential 460 9L 1 B
10 rural 604 71L 1 A

120 S.C. Roberts and D. Howard

Fig. 5. Large outer ring and coverage of vehicles (left); multiple training points along
a line for the first GP stage (right).

7.2 Implementation of the Training Strategy

The selection of a single training point per vehicle proved insufficient. In order to
provide more training data whilst avoiding difficulties arising from the proximity
of vehicles, multiple training points were used for each vehicle such that the
points fell on a straight line with the same orientation as the vehicle, as shown
in Figure 5. It was ensured that all points on the line were sufficiently distant
from the vehicle edges.

It was deemed that shape information was important for vehicle detection.
Whilst there was no statistic which explicitly specified vehicle shape, it was
thought that shape information could be extracted if the diameter of the outer
ring were greater than the typical vehicle width. However, if the outer ring were
excessive it could overlap neighbouring vehicles. Preliminary experiments proved
the importance of large outer rings by comparing the results obtained from using
an outer ring with a diameter equal to a typical vehicle width, and using an outer
ring which clearly exceeded this width.

This experiment highlighted the importance of shape information and ve-
rified that shape was primarily captured by the statistics of the outer ring.
The ring diameters clearly provide vehicle size information. The training images
corresponded to different altitudes hence ring diameters were linearly scaled ac-
cording to altitude. For example, the diameters 11, 23, 33 and 45 corresponded
to 300 feet, thus scaling to 5, 11, 17, and 23 for 600 feet. The coverage of vehicles
by the rings is also shown in Figure 6.

7.3 Results

The overall results for all runs are summarised Table 3. ‘Hits’ is TP or the
number of or detected vehicles and ‘FAs’ is FP or number of false alarms from
all images. FOM is the ‘figure of merit’ which is equivalent to equation (2) but
with α = β = 1. For the evolution of first detectors using different randomiser
seeds and α values, β was fixed at 1. Coverage is the average number of hit
points per vehicle. Each column gives the average and standard deviation (in
brackets) across all seeds.

Evolution of Vehicle Detectors for Infrared Line Scan Imagery 121

Table 3. Summary of evolution: detector 1 (top); detector 2i (centre left) ; detector
2ii (centre right); detector 2iii (bottom) for different random seeds, α or β.

α Hits FAs FOM Coverage
1 90 (1) 7298 (2480) .0137 (.0049) 85 (14)
2 91 (1) 10622 (3052) .0095 (.0039) 103 (22)
3 91 (1) 13260 (4480) .0078 (.0032) 115 (26)

1

β Hits FAs FOM β Hits FAs FOM
4 42 (4) 8 (3) .4201 (.0379) 1 73 (4) 37 (12) 0.5647 (.0248)
5 37 (3) 4 (3) .3868 (.0315) 2 67 (2) 22 (6) 0.5881 (.0093)
6 37 (6) 4 (2) .3841 (.0625) 3 67 (3) 18 (6) 0.5994 (.0137)
7 35 (4) 3 (1) .3672 (.0410) 4 63 (1) 13 (1) 0.5921 (.0117)

2i,2ii

β Hits FAs FOM
1 82 (2) 32 (3) .6523 (.0032)

2iii

For the evolution of 2i detectors using different randomiser seeds and β va-
lues, α was fixed at 1. The best first detectors were deemed to be those that hit
all vehicles with fair coverage and had relatively low false alarm rates. A number
of detectors satisfied this requirement, mostly corresponding to α = 2. For the
evolution of 2ii detectors using different randomiser seeds and β values, α was
fixed at 1. For the evolution of 2iii detectors using different randomiser seeds,
both α and β were fixed at 1. All four of these tables show a general insensitivity
to randomiser seed and a clear trend for the number of hits and false alarms to
increase with the α to β ratio, as expected. Figure 6 shows that the individual
second detectors identified particular features of the vehicle, to some degree the
staged evolution method behaves as an automatic feature detector. It appears
that the 2i detector is processing internal vehicle edges and is sensitive to vehicle
width; 2ii follows external edges; 2iii detects bright areas.

Figure 7 shows that two vehicles were missed in image 1 because they are
located close to the image edges, thus, preventing a sub-image being centred
on the vehicles. Image 9 picks up more false alarms that most images perhaps
because it is from a different flight. It is interesting to note that the two false
alarms to the left of this image are centred on an area with a width equal to
that of a typical vehicle.

Figure 8 combines images 5 and 8 and can be considered to represent the
average performace that can be expected of the detectors developed to date.

8 Conclusions

The techniques have potential but a better understood and consistent set of ima-
gery is required to advance this work. Vehicle shape is insufficiently represented
by the current statistics. Further work could improve the statistics in this regard
by relating information from multiple rings centred on different points. However,
the scheme must generalise across proximate and isolated vehicles.

122 S.C. Roberts and D. Howard

Fig. 6. Some vehicles from Image 2. From top to bottom: 1st, 2i, 2ii, 2iii, 1st AND (2i
OR 2ii OR 2iii). Note how different second detectors target different features of cars.

Evolution of Vehicle Detectors for Infrared Line Scan Imagery 123

Fig. 7. Fusion of 1st AND (2i OR 2ii OR 2iii) detectors; image 4 (top left); image 7
(top right); image 9 (bottom left); image 1 (bottom right)

124 S.C. Roberts and D. Howard

Fig. 8. Expected performance. Most cars and lorries are detected with a few misses
and false alarms (from images 5 and 8). Note that the content of IRLS images can be
unclear even to the trained eye. The linescan and line replication of IRLS images for
aspect ratio correction are just visible at this level of magnification.

Evolution of Vehicle Detectors for Infrared Line Scan Imagery 125

Acknowledgements
The authors wish thank Computing Devices Ltd of Hastings for their assistance.

References

1. Tackett W. A.: Genetic Programming for feature discovery and image discrimi-
nation. Proceedings of the Fifth International Conference on Genetic Algorithms.
Morgan Kaufmann, (1993).

2. Winkeler J. F. and Manjunath B. S.: Genetic Programming for Object Detection.
In Koza, Deb, Dorigo, Fogel, Garzon, Iba and Riolo (editors). Genetic Programming
1997: Proceedings of the Second Annual Conference.

3. Daida M., Bersano-Begey T.F., Ross S.J. and Vesecky J.F.: Computer-assisted de-
sign of image classification algorithms: dynamic and static fitness evaluations in a
scaffolded Genetic Programming environment. In Koza, John R., Goldberg, David
E., Fogel, David B., and Riolo, Rick L. (editors). Genetic Programming 1996: Pro-
ceedings of the First Annual Conference, pp. 279-284, Cambridge, MA: The MIT
Press.

4. Poli R.: Genetic Programming for Image Analysis. In Koza, John R., Goldberg,
David E., Fogel, David B., and Riolo, Rick L. (editors). Genetic Programming 1996:
Proceedings of the First Annual Conference Cambridge, MA: The MIT Press.

5. Howard D.: Application of Genetic Programming to target detection and CFD pro-
blems. DERA Malvern technical report DERA/CIS/SEC/TR980322, (1998).

6. Howard D. and Roberts S.C.: Evolution of Ship Detectors for Satellite SAR Ima-
gery Proceedings of Second European Workshop in Genetic Programming EvoGP,
Lecture Notes in Computer Science, Göteborg, Sweden, (1999).

7. Carpenter G. A. and Grossberg S.: The adaptive resonance theory of adaptive pat-
tern recognition by a self-organizing neural network. IEEE Computer, 77-88, (1988).

8. Tom M. Mitchell. Machine Learning. McGraw-Hill International, 1997. ISBN 0-07-
042807-7.

9. Mathematica v.3.0 software: c©1996 Wolfram Research, Inc.
10. Roberts S.C., Howard D., Brankin R.: Genetic evolution of automatic ship detec-

tion in SAR imagery. DERA Malvern report DERA/CIS/SEC/TR980323, (1998).
11. Koza J.R.: Genetic Programming. Cambridge, MA: The MIT Press, 1992.
12. Langdon W.B. and Poli R.: Fitness Causes Bloat: Mutation. In Proceedings of the

First European Workshop on Genetic Programming, pp 37-48, (1998).
13. Rosca, J. P.: Generalty versus size in Genetic Programming. In Koza, John R.,

Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). Genetic Program-
ming 1996: Proceedings of the First Annual Conference, pp 381-387. Cambridge,
MA: The MIT Press.

14. Soule T. and Foster J.A.: Code size and depth flows in genetic programming. In
Koza, Deb, Dorigo, Fogel, Garzon, Iba and Riolo (editors). Genetic Programming
1997: Proceedings of the Second Annual Conference, pp 313-320.

15. Target detection in SAR imagery by genetic programming, D. Howard, S. C.
Roberts, R. Brankin, Genetic Programming 1998: Late Breaking Papers, pp 67-
75, (1998).

Genetic Programming for Channel Equalisation

Anna Esparcia-Alcázar? and Ken Sharman

Department of Electronics & Electrical Engineering
University of Glasgow, Scotland, UK

aesparcia@ieee.org, kenshar@elec.gla.ac.uk

Abstract In this paper we investigate the application of a combined
Genetic Programming - Simulated Annealing (GP-SA) solution to a clas-
sical signal processing problem which arises in communications systems.
This is the so called channel equalisation problem where the task is to
construct a system which adaptively compenstates for imperfections in
the path from the transmitter to the receiver. Our primary interest is to
examine the recosntruction of binary data sequences transmitted through
distorting channels. We measure the performance of a generic GP-SA
equaliser and compare it to that of standard methods commonly used
in real systems. In particular, we consider special cases which are known
to be difficult for the existing methods, such as non-linear and partial
response channels. Our results show that the GP-SA method generally
offers superior signal restoration but at the expense of computational
effort.

1 Introduction

In previous work [3, 4], the authors have described a variant of Genetic Pro-
gramming (GP) [10] that is well suited to applications in the signal processing
domain. This approach uses GP to adapt the structure of a signal-flow graph
in conjunction with gain parameters that are optimised by Simulated Anneal-
ing (SA). This technique is particularly powerful in that it enables simultaneous
adaptation of both the structure and the parameters of a signal processing sys-
tem. This is in contrast to classical adaptive signal processing systems where
the system structure is chosen a priori. Although fixed system structures are
adequate in many applications, there are equally many applications where an
adaptive structure has the potential for better performance - especially when the
operating environment is unknown and hence an optimal structure cannot be
determined. Furthermore, a large class of signal processing systems employ con-
trol algorithms that only work with certain types of structure (e.g. linear filters).
It is generally difficult to extend these control algorithms to structures known
to offer better performance (e.g. non-linear filters). Hence, the opportunity for
flexible structure adaptation is appealing.

? presently with the Industrial Control Centre, University of Strathclyde, Glasgow,
Scotland

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 126−137, 1999.
 Springer-Verlag Berlin Heidelberg 1999

unknown
channel

C(�)

equalising
filter
H(�)

6

+

+

input observed
signal

noise

estimated inputxk yk

nk xk-d
^

yk

+

Hk
6

-

error

reference (input)xk-dz-d

^

switch
closed during

training

Figure1. The Channel Equalisation System.

The objective of this paper is to present experimental results comparing the
GP-SA approach with some standard fixed-structure adaptive systems applied
to the classical problem of channel equalisation. This extends previous work in
this area and complements that of other authors who have proposed alternative
solutions based on neural networks (which are still fixed structure, but have
larger operating domains).

The paper is structured as follows. Sect. 2 briefly describes the channel equal-
isation problem and some of the existing solutions. In Sect. 3 we describe three
special cases that have been addressed by other authors, pointing out the why
they are difficult to solve by conventional techniques, thus justifying the GP-SA
approach. In Sects. 4, 5 and 6 we describe the experiments and present results
comparing GP-SA to the classical solutions for these three special cases. The
results are collated and summarised in Sect. 7, and general conclusions are given
in Sect. 8.

2 Background on Channel Equalisation

In a communications system, the original transmitted signal is modified by the
characteristics of the propagation medium (the channel) as it travels to the re-
ceiver. Effects such as multipath, bandwidth limitations, non-linearities and so
on all contribute to making the received data different to that which was trans-
mitted. The aim of channel equalisation [16, p. 636][8, p. 217] is to compensate
for the channel’s imperfections and recover the original data.

Figure 1 shows a block diagram of a generic communications system and
the usual form of the equaliser. The basic problem is complicated by the fact
that the channel’s characteristics are unknown (and possibly time-varying). A
common approach uses a training period where a known signal is sent into the
channel. The output of the equaliser can be compared to this reference to assess
its performance. A feedback signal then adjusts the equaliser in an adaptive
loop. Once the training process is finished, the transmission of the data begins.

127Genetic Programming for Channel Equalisation

At this stage some form of test signal can be transmitted, in order to measure
the performance of the equaliser and the success of the training.

2.1 Linear equalisation

A simple and widely used method of equalisation is based on linear systems
theory. This approach is attractive as it is fairly easy to develop an adaptive
control algorithm for adjusting the parameters of the equalising filter. The con-
trol objective is to minimise a cost function such as a measure of the difference
between the transmitted and equalised signals. The approach is tractable if the
cost function is diferentiatable in the equaliser’s parameters. A popular choice
is the mean squared error (MSE).

Let the error signal {εk} be the difference between some desired response
{dk} and the actual filter output, {yn}.

εn = yn − dn (1)

The MSE is defined as

MSE = E(ε2k) (2)

where E(·) is the mathematical expectation.
From Fig. 1, note that that optimum equaliser has a transfer function H(z)

which is the inverse of C(z), i.e.

H(z) =
1

C(z)
(3)

This is referred to as inverse filtering.
If the channel impulse response is modelled as an Auto Regressive (AR)

process, the effective transfer function of the channel is

C(z) =
1

b0 + b1 · z−1 + b2 · z−2 · · · + bn · z−n
(4)

In this case the appropriate equaliser is a finite impulse response (FIR) filter
as follows

H(z) = b0 + b1 · z−1 + b2 · z−2 · · · + bn · z−n (5)

A widely used method for adapting the coefficients {bi} for this class of
problems is the recursive least squares (RLS) algorithm.

When the channel is better modelled as a moving average (MA) or, more
generally, as an auto regresive moving average (ARMA) system, an equaliser
such as the one given in Eqn 5 may not be sufficient, even for high values of
n. In such cases, an infinite impulse response (IIR) equaliser may be employed,
such as the one given by Eqn 6

H(z) =
b0 + b1 · z−1 + b2 · z−2 · · · bn · z−n

a0 + a1 · z−1 + a2 · z−2 · · ·am · z−m
(6)

128 A. Esparcia-Alcázar and K. Sharman

Despite providing reduced computational complexity, IIR equalisers have
been traditionally less employed because the two fundamental approaches to
the adaptation of the coefficients ai and bj present major problems [17]. They
can lead to biased estimates of the coefficients or converge to a local minimum of
the error surface (which is not quadratic and may have multiple local minima),
resulting in an incorrect estimate of the coefficients. A trade-off must be found
between the two. Furthermore, an added problem is guaranteeing the stability
of H(z) during the adaptation process.

Recently other approaches have been employed to address these problems,
such as Evolutionary Programming (EP) [1], Genetic Algorithms (GAs) [5, 11]
and Simulated Annealing [14].

As can be deduced from Eqns 3 to 6, inverse filtering with FIR and IIR
equalisers is dependent on the channel being linear (with transfer function C(z))
and its inverse H(z) being realisable (for instance, H(z) must be the transfer
function of a stable system). Additional problems of linear equalisers have been
reported in [9].

2.2 Nonlinear equalisation

In other situations the channel C will have nonlinear distortion. Such channels
are found, for example, in data transmission over digital satellite links, especially
when the signal amplifiers operate near their high gain limits [9]. If the distortion
is severe, linear equalisers perform poorly. Nonlinear equalisers must then be
employed but, in general, the mathematical treatment of such models is complex.

An alternative has been found in neural networks. Neural networks, such as
multilayer perceptrons (MLPs) and Radial Basis Function (RBF) networks have
been applied to channel equalisation. This is done at the expense of turning the
equalisation problem into a classification one: the transmitted data are assumed
to be symbols belonging to some finite alphabet and the network, acting as a
classifier, must determine which symbol was transmitted.

One important drawback of NNs lies in the determination of the structure:
there exists no established procedure for determining the number of layers and
nodes [12].

The second main problem of MLPs and RBF networks is their being feedfor-
ward structures. When nonlinearity is the main impairment, feedforward NNs
perform well. This is the case of the examples reported in [2, 7, 18]. It was shown
how, for the high levels of noise involved in these examples, nonlinear classifiers
were required.1

However, for higher values of the signal to noise ratio (SNR) (as should be ex-
pected in a telephone channel, for instance) the need for nonlinear compensation
is balanced or overcome by the need for recurrence, or feedback.

To be able to cater for this, feedforward NNs require a large number of nodes,
which increases their complexity. This hinders the study of their behaviour, as

1 As pointed out above, these constitute cases of the detection problem, rather than
equalisation.

129Genetic Programming for Channel Equalisation

well as their hardware implementation, which prevents their use in real time
applications [13].

More recently, equalisation with recurrent neural networks (RNNs) has also
been reported in the literature [9, 15]. Their less wide spread use is due to the
complexity of the training algorithm, which may become unstable.

RNNs have the advantage of being more compact than their feedforward
counterparts, but the issue of determining the structure remains.

2.3 A new approach

In view of all the problems involved in linear and nonlinear equalisation methods,
it is desirable to find an equalisation technique that allows for adaptation of the
structure, while catering at the same time for recurrence and nonlinearity.

Thus, taking into account the properties of Genetic Programming [10] and
the tree representation described in previous work by the authors [3, 4], the scene
is set for addressing the channel equalisation problem with GP.

3 Overview

The examples discussed here are cases for which it has been shown [2, 7, 6, 18]
that nonlinear equalisation techniques can provide better results than linear
ones. The unknown channel to equalise will be:

– a linear channel with high levels of noise.

– a linear partial response channel.

– a nonlinear channel.

The results yielded by the proposed method will be compared to those ob-
tained by training a 19th order FIR equaliser with the RLS algorithm, as done
by [9].

The set up for the experiments is as follows. A training signal consisting of
a 250 bit pseudo random binary signal (PRBS), applied at a rate of one bit
per sample, is used to train both a FIR-RLS and a GP+SA equalisers. For the
latter, the first 50 samples are rejected as transient in the calculation of the
fitness during the evolution process.

After adaptation, a further 100100 samples of a signal of the same noise
realisation are processed by both filters and the bit-error rate (BER)2 calculated
(rejecting the first 100 samples in both cases).

For the settings of the GP and SA algorithms the reader is referred to Table
4 and [3, 4].

2 The BER is defined as the number of incorrectly classified bits divided by the total
number of transmitted bits

130 A. Esparcia-Alcázar and K. Sharman

Table1. Values of the bit-error rate obtained by equalisers for the channel H(z) =
1 + 0.7z−1 over 30 runs.

average BER minimum BER
SNR(dB) FIR-RLS GP+SA FIR-RLS GP+SA
2.5 0.126724 0.129697 0.11284 0.10519
5 0.071622 0.082892 0.06121 0.05491
7.5 0.033807 0.034803 0.02731 0.01299
10 0.009246 0.014868 0.00653 0.00120

4 Linear channel with high noise

Let us consider the linear minimum phase channel described by the transfer
function

H(z) = 1 + 0.7z−1 (7)

In the low noise situation it is possible to find an equaliser for this channel
to any specified accuracy by employing a FIR filter of sufficient order. When
the noise is high, however (i.e. the signal to noise ratio, SNR, is lower than
10 dB) the phenomenon of noise enhancement appears, which means that any
increase in order results in a decrease in efficiency of the equaliser [7]. It is
therefore interesting to try and find low order equalisers which employ some
form of nonlinearity.

Results for different values of the SNR are given in Table 1 and shown graph-
ically in Fig 2. Average and minimum values of the BER for 30 runs (per point)
are presented, showing that the GP+SA method can obtain lower minimum
values than the FIR-RLS, especially for values of the SNR of 7.5 and 10 dB.

For values of the SNR below these the noise is too high for the equalisation
method to make a significant difference. For values above, both methods give
consistently BERs of zero. In these cases it is interesting to note that several
GP+SA equalisers yielded a fitness of 1 (i.e. MSE = 0), while this was never
achieved by any of the FIR-RLS equalisers.

5 Partial response channel

The transfer function of partial response channels has zeros on the unit circle.
Such channels are frequently encountered in magnetic recording [9] and since
the inverse of the channel is undefined, there exists no linear filter that would
sufficiently equalise them. Therefore nonlinear methods have to be used to re-
construct the originally transmitted signal.

Following [9] the channel employed in the experiments had a double zero on
the unit circle, its transfer function being

H(z) = 1 − 2 · z−1 + z−2 (8)

131Genetic Programming for Channel Equalisation

Average BER

0.001

0.01

0.1

1

2.5 5 7.5 10
SNR(dB)

B
E

R

RLS

GP+SA

Minimum BER

0.001

0.01

0.1

1

2.5 5 7.5 10
SNR(dB)

B
E

R

RLS

GP+SA

Figure2. Average and minimum values of the BER for linear channel (30 runs per
point)

Table2. Values of the bit-error rate obtained by equalisers for the partial response
channel H(z) = 1 − 2 · z−1 + z−2 over 30 runs.

average BER minimum BER
SNR(dB) RLS GP+SA RLS GP+SA

10 0.07537 0.10266 0.06197 0.0014

12.5 0.06866 0.09047 0.05944 0

15 0.05895 0.08109 0.04295 0

17.5 0.05135 0.11199 0.04356 0

20 0.04471 0.07155 0.03426 0

22.5 0.03498 0.06836 0.02914 0

∞ 0.00623 0.07644 0.00515 0

The performance of the proposed method was compared to that of the RLS
algorithm, first for the noiseless case and then for different realisations of the
signal to noise ratio. Thirty runs were performed in all cases and the values of
the bit-error rate obtained are given in Table 2.

A t-test was used to compare the two methods in the absence of noise showing
that the average BER of the solutions was lower for the RLS algorithm. However,
none of the RLS solutions obtained a BER of zero, while, on the other hand,
this was achieved by a number of the GP+SA solutions.

One of the solutions obtained by the proposed method is shown in Fig 3(b).

6 Nonlinear channel

Nonlinear channels are the obvious cases to tackle with nonlinear equalisation
techniques. The channel used in the experiments follows the model shown in [9,
2] and is given by Eqns 9 and 10.

132 A. Esparcia-Alcázar and K. Sharman

0.965474

NL135

/2

Y1

-
1.597672.00654

X1

X0

+
0.0480472

(a) Linear channel

NL185

Y1

+

X0

0.994331

0.719799 -0.722215

(b) Partial response
channel

Figure3. GP equalising filters for linear and partial response channels. The node
NL135 represents the function tanh(2.67x) and the node NL185 represents the function
tanh(3.64x).

ỹn = 0.3482xn + 0.8704xn−1 + 0.3482xn−2 (9)

ŷn = ỹn + 0.2 · ỹ2
n (10)

The channel output, ŷ , is further corrupted by the addition of white Gaussian
noise.

The experimental procedure is as explained for the linear channel, with the
same GP and SA settings. The values of the bit-error-rate obtained are given in
Table 3 and displayed graphically in Fig 5. From it we can conclude that GP
equalisers outperform linear equalisers trained by the RLS algorithm, both on
the average and the minimum values.

An example of a solution obtained by the proposed method is given in Fig
6. This tree was obtained with a training signal whose SNR was 15 dB. Other
solutions obtained for various SNR realisations had a similar structure.

7 Comparison

A comparison with the results obtained by [9] and [15] is attempted here. Such
a task is not easy, due to the difficulty in obtaining reliable measures from pub-
lished results. Furthermore, the methods employed by these authors are based
on a different philosophy than that of the GP+SA method presented here.

133Genetic Programming for Channel Equalisation

Minimum BER

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

10 12.5 15 17.5 20 22.5
SNR (dB)

B
E

R

RLS

GP+SA

Average BER

0.001

0.01

0.1

1

10 12.5 15 17.5 20 22.5
SNR (dB)

B
E

R

RLS

GP+SA

Figure4. Average and minimum values of the BER for partial response channel (30
runs per point). Note that the scale for the minimum BER plot is linear and not
logaritmic, as is customary, so as to be able to show values of zero

Table3. Values of the bit-error rate obtained by equalisers for the nonlinear channel
given by Eqns 9 and 10.

average BER minimum BER
SNR(dB) RLS GP+SA RLS GP+SA

5 0.153082 0.131444 0.13183 0.12431

7.5 0.111524 0.093784 0.09914 0.08232

10 0.084465 0.064212 0.06722 0.04311

12.5 0.055214 0.044546 0.04454 0.01466

15 0.039135 0.026311 0.02155 0.00349

17.5 0.028946 0.016541 0.01095 0.00025

The minimum BER results achieved by the proposed method were consis-
tently lower that the average values obtained by [9] and minimum values of [15]
for the linear and partial response channels, and similar for the nonlinear one.

However, the average results only outperformed those of [9] for the high noise
cases (SNR ≤ 7.5 dB) of the linear channel.

This is consistent with our expectation. Further adjustments in the method
are needed to achieve optimal performance in these problems.

8 Conclusions

Previous work by the authors showed the possiblity of using node gain GP+SA
for channel equalisation. This work has addressed the performace issues involved.
We compared GP+SA equalisers to those obtained by classical techniques and
also to results provided in the equalisation literature. Our results, which have
been obtained for three classical examples, show that the performance of node

134 A. Esparcia-Alcázar and K. Sharman

Average BER

0.01

0.1

1

5 7.5 10 12.5 15 17.5
SNR(dB)

B
E

R

RLS

GP+SA

Minimum BER

0.0001

0.001

0.01

0.1

1

5 7.5 10 12.5 15 17.5
SNR(dB)

B
E

R

RLS

GP+SA

Figure5. Average and minimum values of the BER for the channel H(z) = 0.3482 +
0.8704z−1 + 0.3482z−2 with nonlinear gain d2 = 0.2. Results obtained by GP+SA and
RLS equalisers over 30 runs (per point).

gain GP+SA is variable but we observed that in many cases the proposed method
provided much better performance.

The main drawback of GP+SA when compared to the RLS algorithm is its
computational expense. We have not been able to compare it with that of neural
network-based methods due to the lack of data available. In any case computa-
tional expense is only an issue in certain applications, such as communications;
other applications of equalisation do not have such time constraints and GP+SA
could be successfully applied in those cases. Furthermore it must be pointed out
that techniques that are widely employed nowadays, such as the RLS algorithm,
were regarded as impractically time-consuming in their early days.

References

1. K Chelapilla, DB Fogel, and SS Rao. Gaining insight into evolutionary program-
ming through landscape visualisation: an investigation into IIR filtering. In PJ An-
geline, RG Reynolds, JR McDonnnell, and R Eberhart, editors, Evolutionary Pro-
gramming VI, Springer–Verlag, Berlin,Germany, 1997.

2. S Chen, GJ Gibson, CFN Cowan, and PM Grant. Adaptive equalization of finite
non-linear channels using multilayer perceptrons. Signal Processing, 20:107–119,
1990.

3. AI Esparcia-Alcázar. Genetic Programming for Adaptive Digital Signal processing.
PhD thesis, University of Glasgow, Scotland, UK, 1998.

4. AI Esparcia-Alcázar and KC Sharman. Some applications of genetic programming
in digital signal processing. In Late Breaking Papers at the GP’96 conference, pages
24–31, Stanford University, USA, July 1996.

5. DM Etter, MJ Hicks, and KH Cho. Recursive adaptive filter design using an adap-
tive genetic algorithm. In Proceedings of the 1982 IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP82, pages 635–638, 1982.

135Genetic Programming for Channel Equalisation

X0

NL212

Y1

-

-1.01892

0.297801

2.01471

/2

Figure6. An equalising filter for the channel H(z) = 0.3482 + 0.8704z−1 + 0.3482z−2

with nonlinear gain d2 = 0.2. The node NL212 represents the function tanh(4.16x).

6. GJ Gibson, S Siu, and CFN Cowan. Multilayer perceptron structures applied to
adaptive equalisers for data communications. In Proceedings of the 1989 IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP89,
pages 1183–1186, 1989.

7. GJ Gibson, S Siu, and CFN Cowan. The application of nonlinear structures to the
reconstruction of binary signals. IEEE Trans. on Signal Processing, 39(8):1877–
1884, August 1991.

8. S Haykin. Adaptive Filter Theory. Prentice Hall, 3rd edition, 1996.
9. G Kechriotis, E Zervas, and ES Manolakos. Using recurrent neural networks for

adaptive communication channel equalization. IEEE Trans. on Neural Networks,
5(3):267–278, March 1994.

10. JR Koza. Genetic Programming: On the programming of computers by means of
natural selection. The MIT Press, Cambridge, Massachusetts, 1992.

11. Q Ma and CFN Cowan. Genetic algorithms applied to the adaptation of IIR filters.
Signal Processing, 48:155–163, 1996.

12. B Mulgrew. Applying radial basis functions. IEEE Signal Processing Magazine,
13(2):50–65, March 1996.

13. SK Nair and J Moon. Data storage channel equalization using neural networks.
IEEE Trans. on Neural Networks, 8(5):1037–1048, September 1997.

14. R Nambiar and P Mars. Genetic and annealing approaches to adaptive digital
filtering. In Proceedings of the 26th Asilomar Conference on Signals, Systems and
Computers, pages 871–875, IEEE Computer Society Press, 1992.

15. R Parisi, ED Di Claudio, G Orlandi, and BD Rao. Fast adaptive digital equalization
by recurrent neural networks. IEEE Trans. on Signal Processing, 45(11):2731–2739,
November 1997.

16. JG Proakis. Digital Communications. McGraw–Hill, 3rd edition, 1995.
17. JJ Shynk. Adaptive IIR filtering. IEEE Acoustics, Speech and Signal Processing

Magazine, pages 4–21, April 1989.
18. S Theodoridis, CFN Cowan, CP Callender, and CMS See. Schemes for equalisa-

tion of communication channels with nonlinear impairments. IEE Proceedings on
Communications, 142(3):165–171, June 1995.

136 A. Esparcia-Alcázar and K. Sharman

Table4. GP and SA set up for equalisation experiments

Genetic Program Settings

Function set + - * / +1 -1 *2 /2 1 Z

PSH NL0. . . NL255

Terminal set X0. . . X3 Y1 Y2 C0. . . C255 STK0. . . STK4

β limits for NL nodes βhi = 10 βlo = 0.1

Nodes with Gain X Y STK C NL

Population size 500

Mutation probability 0.01

Size restrictions at creation: maximum depth = 4
at crossover: maximum length = 25

Fitness function 1
1+MSE

0 ≤ f ≤ 1

Input signal (X)
output of the channel when fed with a
Pseudo-Random Binary Signal (PRBS)

Reference signal the same PRBS delayed by one sample

Number of training samples

250
550 (partial response channel, noiseless only)

the first 50 are not considered for fitness cal-

culation.

Number of runs 30

Termination criterion for each run
30 minutes of CPU time
60 min (partial response channel, noiseless

only)

Number of test samples
100100
the first 100 are not considered for fitness cal-

culation.

Simulated Annealing Settings

Perturbation Distribution Cauchy C(0, 1)

Starting Temperature (T0) 1.5
Cooling Schedule
(temperature variation law)

Inverse linear in n: T = T0
n+1

Scale perturbation by 0.2

Annealing Iterations (n) 100

Trials per temperature 5

PSH: push node’s input value to a stack, return same.
NLn: implements the sigmoid function, or tanh

�
β
2

�
with n an integer in the range [0,

nmax] and β = nβmax−βmin
nmax

+ βmin.
XN: system input delayed by N samples; YN: system output delayed by N samples.
STKn: retrieve nth position of the stack.
The 256 entries in the constant table are chosen at random uniformly within the
interval [-1,1].

137Genetic Programming for Channel Equalisation

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 138-149, 1999.
© Springer-Verlag Berlin Heidelberg 1999

Improving Mutation Capabilities in a Real-Coded
Genetic Algorithm

Cristian Munteanu and Vasile Lazarescu

Electronics and Telecommunications Department, “POLITEHNICA” University
of Bucharest, 1-3 Iuliu Maniu Blvd., Sector 6, 7000 Bucharest, Romania

{munteanu, vl}@vala.elia.pub.ro

Abstract. This paper introduces a new method of performing mutation in a real-
coded Genetic Algorithm (GA), a method driven by Principal Component
Analysis (PCA). We present empirical results which show that our mutation
operator attains higher levels of diversity in the search space, as compared to
other mutation operators, meaning that by employing our mutation operator we
maintain diverse populations that increase the chances of finding better
solutions during evolution of the GA. The performances of the real-coded GA
with PCA-mutation were checked on the problem of designing IIR filters by
Deczky method, which is a well known direct design method of IIR filters.
Results obtained show that our PCA-mutation GA has been more successful in
keeping diverse populations during search, the consequence being the finding of
better solutions to the filter design problem, compared to solutions found using
GA with classical mutation operators.

1 Introduction

Genetic Algorithms (GAs) are strategies that mimic the evolution of populations of
individuals, and as their natural counterparts, GAs behave according to the principle
“Survival of the fittest will win”. GAs have been applied in solving various problems
including difficult optimization tasks where the function to be optimized is highly
multimodal, nonlinear, with no gradient information available. Many technical design
problems may fall into the “difficult optimization task” paradigm, such as adaptive IIR
filter design, robust control, optimal path planning in robotics, pattern recognition,
circuit layout and general optimal engineering design, as well as applications in
scheduling, time-tabling and in economics. GAs may yield interesting insights into
biological behavior of natural organisms, thus enlarging the spectrum of applicability.

GAs are complex evolving systems, and since their first theoretical motivations
made by Holland in [4], there was an increasing strive to bring together various
theoretical considerations concerning the way GAs work. In his seminal work [4],
Holland explained how GAs process information by applying simple genetic
operations, such as selection, crossover, mutation and inversion to a population of

Improving Mutation Capabilities in a Real-Coded Genetic Algorithm 139

chromosomes. He named the information blocks processed by GAs, schemata and he
showed through the Schema Theorem, that high performance schemata tend to spread
exponentially into the population (performance or fitness of a schema, or
chromosome, being defined with respect to the function to be optimized by the GA).
Therefore, the optimal chromosome (solution of the optimization problem) consists of
such performant schemata. Later, Goldberg in [1] advanced the Building Block
Hypothesis, which states that a GA seeks near-optimal performance through
juxtaposition of short length and low order, performant schemata, called building
blocks. However, many classical theoretical results, have been questioned by recent
advances in GA theory, and we will briefly mention the investigation of the Building
Block Hypothesis’ validity in [11]. Most of the theoretical work done so far, concerns
the variants of GAs with binary coded chromosomes, or binary-coded GAs. However,
in practice, real-coded GAs, that are GAs for which genes in the chromosomes are
coded as real variables, have proven to perform quite well in many applications.
Goldberg, in [2], talks about the “paradox of real codings” saying that “theoreticians
have wondered why practitioners have paid so little heed to the [classical, binary-
coded GA] theory, and practitioners have wondered why the theory seems so unable to
come to terms with their findings [concerning real-coded GAs]”.

In this paper we will focus on real-coded GAs which, as previously mentioned,
perform very well in many applications. In the remainder of this paper we will
introduce a new mutation operator based on Principal Component Analysis (PCA-
mutation) and we will check that a PCA-mutation real-coded GA performs better than
real-coded GAs with other mutation operators, on a digital filter design test problem.
Specifically, the test problem is a IIR filter design problem by Deczky method.
Results obtained support our initial claim that PCA-mutation searches in a more
thorough manner than classical real-coded GA mutation operators: Uniform and Non-
Uniform mutation operators.

2 Outline of Real-Coded GAs

Real-coded GAs employ a population x of N chromosomes, each chromosome having
l genes (usually, N and l are fixed), with:

[]x = x x x N
T

1 2, ,,K
(1)

where x x x xi i i il= [, , ,],1 2 K ∀ =i N1K denotes a chromosome in the population with
real-coded genes x lb ubij j j∈[,] with lb ubj j, ,∈ℜ ∀ = =i N j l1 1K K, .

The bounds on the genes' values (lower bound lb j and upper bound ubj) are taken
equal to the bounds of the parameters of the problem to be optimized. The main
genetic operations in a real-coded GA are the same as those in a binary-coded GA.
Thus, we have a selection mechanism that picks the highly fitted chromosomes into
the mating pool. The individuals in the mating pool, are then recombined by applying
crossover and mutation. The selection mechanism is the same as in the binary-coded

140 C. Munteanu and V. Lazarescu

GA case. We may employ any selection scheme valid for binary-coded GAs, such as:
proportional selection, rank-based selection, tournament selection, elitist mechanisms,
etc. The remaining genetic operations (i.e. crossover and mutation), differ from their
binary-coded counterparts, because they have to operate on real valued genes, but they
are similar in spirit with the classical binary-coded operators [5, 6].

The main crossover operators are:

1. Simple crossover: defined in the usual, binary-coded chromosome’s way, that
randomly picks two parents from the mating pool and exchanges genetic
information between one random split point in the chromosomes.

2. Arithmetical crossover: defined as a linear combination of two chromosomes seen
as vectors: Let x p

1 , x p
2 be two parents in the mating pool. The offspring after

recombination are calculated as:

() ()x a x a x x a x a xo p p o p p
1 1 2 2 1 21 1= ⋅ + − ⋅ = − ⋅ + ⋅, (2)

with a a random value in [0, 1].
3. Heuristic crossover: defined as a linear extrapolation of the two parents based on

fitness value. Let x p
1 , x p

2 be two parents in the mating pool, with fitness
f x f xp p() ()1 2≥ in a maximization problem. The offspring are calculated as:

()x x a x x x xo p p p o p
1 1 1 2 2 1= + ⋅ − =, (3)

with a a random number in [0, 1]. The offspring have to be feasible with respect to
their genes’ values: x lb ub iij

o
j j∈ ∀ ∈[,], { , },1 2 j l= 1K . If not feasible, the offspring

are regenerated following the same rule given in (2), with another randomly picked
constant a.

The main mutation operators are:

1. Uniform mutation: which randomly selects one gene xij and sets its value equal to a
uniform random number in [,].lb ubj j

2. NonUniform mutation: which randomly selects one gene xij and sets its value
according to the following rule:

() ()
() ()

x
x ub x t a

x x lb t a
ij
o ij j ij

ij ij j

=
+ − ⋅ <

− + ⋅ ≥







Γ

Γ

if

if

1

1

0 5

0 5

.

.

(4)

where Γ() (())t a t t b= −2 1 max with a1 and a2 two random numbers in [0, 1], b a
constant parameter, t the generation number, tmax the maximum run time.

Real-coded GAs have been seldom studied by GAs theoreticians, mainly because
small alphabets, that are used to code genes in a chromosome, maximize the number
of schemata available for genetic processing [1]. Therefore, a small alphabet (e.g.
binary) would be the best choice, while an infinite alphabet as in the real-coding
scheme, would be the worst choice. Real-coded GAs have been successfully applied in
many practical tasks for a number of reasons, such as: their suitable coding scheme

Improving Mutation Capabilities in a Real-Coded Genetic Algorithm 141

(one parameter represents one gene), the avoidance of Hamming cliffs and other
artifacts of mutation acting on bit strings treated as unsigned binary integers, their
fewer generations to population conformity [2]. Goldberg in his study [2] develops a
theory of virtual alphabets for real-coded GAs. Virtual alphabets may be roughly
defined as slices in the search space for which the fitness function has above average
values. These finite number virtual alphabets are the information processing units of
the real-coded GAs in the same way schemata are the basic building blocks of a
binary-coded GA search mechanism. Goldberg also identifies some problems, related
to premature convergence of the real-coded GAs and blocking. The latter phenomenon
is similar to deception in a binary-coded GA, in that virtual alphabets already
discovered and combined during evolution, prevent from further improvement of the
best solution found, the GA being lead away from the actual global optimum. To
avoid blocking and premature convergence, new genetic operators have to be
designed, operators that maintain genetic diversity in the population at a suitable high
level, knowing that premature convergence or convergence in a general sense, means
high conformity of the individuals in the population. From this theoretical point of
view, seeking more effective mutation operators, that avoid loss of diversity, makes
sense. We adopt this approach in the next section, by introducing a new mutation
operator, that is the PCA-mutation.

3 Principal Component Analysis and PCA-Mutation

Principal Component Analysis (PCA) has been used recently in Evolutionary
Algorithms, specifically in Evolutionary Strategies (ESs), by Hansen and Ostermeier
to adapt the mutation distribution [3]. Their Covariance Matrix Adaptation algorithm
(CMA) was designed to achieve a generalized step size control scheme for the
mutation operator in ESs. Our approach to PCA utilization with Evolutionary
Algorithms is entirely different from theirs, both in terms of implementation details
(our PCA-based mutation operator acts on a GA rather than an ES) and most
important in terms of the goals we seek. While Hansen and Ostermeier’s CMA
strategy seeks to better adapt to the search space, increasing the exploiting power of
mutation in ESs [3], our PCA-based mutation operator seeks to increase the
exploratory effect of mutation in real-coded GAs.

Principal Component Analysis (PCA) is a well known statistical technique that has
been widely used in data analysis and compression. The goal of the method is the
compression of a high-dimensional input data into a lower dimensional space, without
loss of relevant information. The input data set x = [, , ,]x x xN

T
1 2 K with

x x x xi i i il= [, , ,],1 2 K ∀ =i N1K may be viewed as a cloud of N points in the l-
dimensional Euclidean space, centered around the mean E(x). To capture the main
features of the data set, PCA is looking for directions along which the dispersion or
variance of the point cloud is maximal. These “principal” directions form a subspace
of lower than l dimension, and the projection of the data x onto the respective
subspace will yield a transformation similar to compression, that minimizes the loss of

142 C. Munteanu and V. Lazarescu

information according to the Minimum Mean Square Error criterion. Before
proceeding, let us note that the definition of the data cloud previously given, is the
same as the definition of the genetic population in (1). This means that we think of the
genetic population in a real-coded GA, as a cloud of l- dimensional points, the number
of points in the cloud being N. We apply PCA on this genetic population (x) in the
usual manner, as follows: First we compute the covariance matrix S of the data cloud
x:

()(){ }S x xx x= − −E
Tµ µ (5)

with µ x =E(x). As matrix S is a symmetrical matrix its eigenvalues have real and
positive values [8]. We may calculate the eigenvalues λ()i and the respective l-
dimensional eigenvectors v i()

 and we have:

() () ()Sv v i li i i= =λ for 1K . (6)

Because the eigenvalues λ()i are real and positive we may order them such that
λ λ λ λ1 2 0> > > > > >K Ki l will be the set of ordered eigenvalues, and vi with
i l= 1K the respective eigenvectors. The PCA method states that if we project the
data x onto a subspace consisting of a few directions given by those eigenvectors vi at
the top of the rank (vi for i p= 1K with p < l) we get an optimal linear
transformation (better than any reduction transformation to p arbitrary directions), also
called the Karhunen-Loève Transform.

The PCA-mutation proceeds as follows: after computing the covariance matrix S,
the ordered set of eigenvalues λ i and the corresponding eigenvectors vi , we calculate
the projection of the population x onto the orthogonal basis formed by all l
eigenvectors vi . First, we subtract the mean µ x from the population x in order to
“center” the data cloud into the origin of the coordinates system. The projected
population y onto the new coordinates system V, is:

()y x Vx= − ⋅µ (7)

where V = []v v vl1 2 K is the orthogonal eigenvector matrix, each vi being an l-
dimensional column vector.

Mutation is performed on the projected population y = (yij) by computing the
squared length of the projections along each direction vi , that is || ()||Prvi x 2 . We have:

()Pr , ,v j iji
x y i l j N

2 2 1 1= = =K K .
(8)

It can be shown [8] that the mean squared length of the projection along one
direction vi is equal to the respective eigenvalue λ i :

()E i lvi iPr
2

1= ∀ =λ , K . (9)

The mean in (9) is taken over all N points in the population. Equation (9) and the
fact that λ λ λ λ1 2 0> > > > > >K Ki l imply that the mean squared projection is

Improving Mutation Capabilities in a Real-Coded Genetic Algorithm 143

biggest along the first direction v1 , called the first Principal Component, the second
biggest component being along direction v2 , and so on. The mean length of each
projection quantifies the level of diversity along the respective direction. PCA is used
in order to extract the most important information present in the data set, along the
Principal Components Directions. However, our mutation operator seeks a totally
different goal: the genetic populations after applying mutation, should exhibit close in
value components and not some important components while others are negligible.
The homogeneity of the components after applying mutation may be viewed as
equivalent to a high diverse genetic population. A population less diverse will exhibit
a few important principal components while the rest are close to zero. PCA-mutation
should prevent this situation.

From equation (9) and the ordering of the eigenvalues λ i , we have:

E E i lv vi i
Pr Pr for

−





 > 



 =

1

2 2
1K .

(10)

Consider the following non-negative quantities:

c c c i l j Nj
i

j
i

j
i, , ,so that − ≤ ∀ = =1 1 1K K . (11)

As before, i is the index of the respective ordered eigenvalue λ i . The quantities cj
i

are taken as random numbers between 0 and cmax , and then sorted to fulfill (11). cmax

is a constant parameter of the mutation operator. Taking the mean value in (11) we
have:

() ()E c E c i lj
i

j
i− ≤ ∀ =1 1K . (12)

The mutation operator adds the quantities cj
i to each projected squared coordinate,

as follows:

∀
= +

= +
=− −

−

i
x x c

x x c
j N

v j v j j
i

v j v j j
i

i i

i i

Pr () Pr ()

Pr () Pr ()

mutated

mutated

1 1

2 2 1

2 2 1K .

(13)

Taking the mean value in (13) over all points in the population j N= 1K , subtracting
the equations, and letting ∆ i vi j vi jE x E x= −−(|| ())||) (| | ())||)Pr Pr1

2 2 and
∆ i vi j vi jE x E xmutated mutated mutatedPr Pr= −−(|| ())||) (|| ())||),1

2 2 we have:

() ()()∆ ∆i i j
i

j
iE c E cmutated = + −−1 . (14)

From (10) we have ∆ i > 0 and from (12) we have (() ()) .E c E cj
i

j
i− − ≤1 0

Combining this latter result with (14) we obtain:

∆ ∆i i i lmutated ≤ ∀ =, 1K . (15)

The main result of applying mutation is given in equation (15): after applying
mutation, the difference between two adjacent mean squared projections tends to
become smaller compared to the same quantity before mutation. As the mean squared

144 C. Munteanu and V. Lazarescu

projection quantifies the importance of the component along the respective direction
(vi), we conclude from (15) that our mutation operator satisfies our design goal, that
is: mutation tends to homogenize the components to avoid having few important
principal components while the rest are negligible. As discussed before, homogeneity
of components means higher diversity in the genetic population, and this is the
objective our mutation operator has to achieve. After adding the quantities cj

i to the
projected squared coordinates in (13), we perform an operation that is inverse to the
projection on the orthogonal V basis. Before doing this, we must ensure that each
negative projected coordinate corresponds to a negative projected mutated coordinate.
Therefore, we first compute the sign of each element in matrix y, that is we compute
the matrix signum(y). The actual mutated coordinates in ymutated are the square roots of
the mutated square projections || Pr ()||vi jxmutated 2 in (13), multiplied by the corresponding
sign signum(yij). Finally, we have:

x y V x
mutated mutated= ⋅ +T µ with []V = v v vl1 2 K . (16)

The resulting mutated population is x mutated . PCA-mutation as any mutation
operator is applied with some probability Pm . By generating a matrix A = (aij) of
uniform random variables in [0, 1], if aij > Pm then the respective quantity cj

i is set
to zero in (13), otherwise it is left unchanged. To compute the homogeneity level of
the components, apart from the differences ∆ i , we may employ the components’
ratios rp defined as:

r p l i lp

k
k

p

k
k

l i= < ==

=

∑

∑

λ

λ
λ1

1

1, , with the ordered eigenvalues of K S . (17)

A high level of components homogeneity implies a low level of rp , while the
existence of some dominant principal components, while the rest of the components
are close to zero, means that rp ≅ 1. Therefore, PCA-mutation should achieve low
values for the ratios rp .

4 Test Case: IIR Filter Design by Deczky Method

Deczky method is a direct method of designing IIR filters, the main advantages over
the indirect methods are the simplicity (it does not require analogue prototypes, as the
indirect methods do) and the possibility to specify a desired group delay characteristic
together with a desired magnitude characteristic [9]. The filter to be designed has the
following transfer function:

() ()()
()()H z K

z z z z

p z p z
o

k k

k kk

Ns

=
− −
− −

− ∗ −

− ∗ −
=

∏ 1 1

1 1

1 1

1 1
1

(18)

Improving Mutation Capabilities in a Real-Coded Genetic Algorithm 145

with Ns the number of singularities: zeros zk and poles pk and Ko a constant. The
parameters to be found are: Ko , zk and pk . The error to be minimized is:

() () () () () () ()E W A A Wi i i d i
m

q

L

i i d i o
m

q

L

ω α ω ω ω α ω τ ω τ ω τ= − + − −
= =

∑ ∑1 1
1

2 2
1

(19)

with ω i being L digital frequencies in the interval [0, π], A the magnitude
characteristic of the transfer function in (18), t the group delay characteristic of H(z)
in (18), τ o an acceptable lag (also a parameter to be found) and W W1 2, some error
weighting functions. In the original Deczky method, constants α α1 2, were taken so
that α α1 2 1+ = .

Deczky method implies solving a system of nonlinear equations to find the
parameters that minimize the error function in (19). Usually, gradient or second order
methods are employed for this task, like the Fletcher-Powell algorithm [9], but these
methods require many restarts, as they usually fall into local optima, depending on the
initial solution taken. Therefore, a global search approach that does not require
gradient information, is more appropriate for the Deczky method. This should be a
reasonable task for a GA. As the number of parameters in the Deczky method is
relatively big, a real-coded GA with the most suitable one parameter-one gene coding,
is the best choice. We, therefore, employed our real-coded GA with PCA-mutation
(PCAmGA). Our strategy was compared to a real-coded GA with Uniform mutation
(UmGA), to a real-coded GA with NonUniform mutation (NUmGA) and to a
modified Newton method. The crossover operator was arithmetic crossover. All
employed classical mutation and crossover operators are defined in section 2. The
selection mechanism for all strategies involved in the comparison is a combination of
binary tournament selection, that picks the best individual from a randomly taken pair
of parents, with an elitist scheme that automatically copies the k best individuals into
the next generation (we used k = 5). The elitist scheme is necessary because we used a
relatively high mutation rate (Pm= 0.05) that can destroy the useful genetic information
found during GA’s evolution, unless we apply additional preserving mechanisms. The
fitness function is taken with respect to the error in (19), to be minimized by the GA.
Because our implementations of GAs search for the maximum rather than minimum
value, we took the fitness as: fitness = 1/error. The coding of the parameters into real
genes is the following: the amplitudes of the singularities z pk k, are taken so that to
obtain a minimum phase filter: | |, | |z pk k ∈[0, 1] (the rightmost value for the pole’s
amplitude is taken less than unity to insure stability), the phases of the respective
singularities are covering the whole unit circle [0, 2p); Ko and τ o are taken in [-10,
10]. Each parameter is represented by a single real gene in the chromosome. The
constants in Deczky method are: Ns = 5, L = 30, m = 2 (we minimize a quadratic
error function), α α1 28 0 02= =, . , W W1 2 1() ()ω ω= = ; the desired amplitude
characteristic Ad i()ω and desired group delay characteristic τ ωd i() are plotted in
Figure 1. All strategies compared, have the following common parameters: population
size N = 100, chromosome length l = 22, mutation rate Pm = 0.05, crossover rate Pc =
1, maximum number of generations to run is tmax = 300. For the PCAmGA we have

146 C. Munteanu and V. Lazarescu

the additional parameter cmax = 0.05 (see discussion on equation (11)) and for
NUmGA we have the constant b in (4) with b = 3 (also tmax = 300 is a parameter of
NUmGA). We performed 20 independent runs for each strategy. Results are given in
Table 1, in terms of Best, Average and Standard Deviation of the solution found (the
solution is the chromosome with the maximum fitness, or minimum error value
equivalently, found in a run), statistics being calculated over 20 independent runs.

Table 1. The Best, Average and Standard Deviation of the solution found, statistics being
calculated over 20 independent runs for PCAmGA, UmGA, NUmGA

Fitness: Best Average Std.
PCAmGA 0.5083 0.36623 0.1082

UmGA 0.4301 0.30031 0.0558
NUmGA 0.2208 0.1254 0.067
Newton 0.4518 0.3098 0.0859

From Table 1, it follows that PCAmGA outperforms UmGA, NUmGA, and the
modified Newton method, on average, and considering the best solutions found.
Assuming normal distributions of the solutions found, we applied a Student’s t-Test for
significance of means difference, and found that the average solution obtained by
PCAmGA is significantly different from the average solution found by UmGA, at a
significance level of 0.05. A better result was obtained when comparing PCAmGA to
NUmGA: the average solution found by PCAmGA is significantly better than the one
obtained by NUmGA, at a significance level of 0.05. Strategies employing an
evolutive search (i.e. PCAmGA, UmGA) performed better, on average, than the
modified Newton search method. In Figure 1, we plot the magnitude and group delay
characteristics of the best solution found by PCAmGA.

To show that PCAmGA achieves higher levels of conformity for the components in
PCA, which as discussed in the previous section, implies higher levels of population
diversity, we computed the PCA ratios rp for p l l= =1 22K , . We identified the
minimum levels of rp denoted by Λ p . Roughly, these are mean levels obtained after
150 generations for PCAmGA and UmGA, and before 100 generations for NUmGA.
In the case of NUmGA, after nearly 100 generations the population diversity starts to
decrease significantly, due to the diminishing effect of NonUniform mutation.
Therefore, levels of PCA ratios for NUmGA were computed before generation 100.
Around Λ p the value of rp oscillates with a small variance. These levels may be
viewed as “minimum” levels for rp during the evolution of a GA. Comparing these
levels (Λ p), a lower level means higher population diversity (see comments on
equation (17)). These levels, averaged over 20 independent runs, are given for each
strategy, in Table 2. The ratio r2 is plotted in Figure 2 for PCAmGA and UmGA and
we may note that Λ 2 for PCAmGA is around 0.25, which is less than 0.4, the level for
UmGA.

From Table 2 it is apparent that PCAmGA reaches the lowest levels Λ p for each p,
proving experimentally that our mutation operator maintains highly diverse
populations, increasing the chances of finding better solutions.

Improving Mutation Capabilities in a Real-Coded Genetic Algorithm 147

The PCAmGA was implemented in the Matlab™ programming environment, and it
took approximately 20 minutes on a 150 MHz Pentium computer, to obtain good
solutions to the filter design problem.

0 2
0

0.5

1

1.5

-1 0 1
-1

0

1
Pole-zero plot

Real part

0 2
0

10

5

Fig. 1. Best solution found by PCAmGA (continuous line = solution characteristic, dot line =
desired characteristic)

Table 2. Levels Λ p of the PCA ratios rp for PCAmGA, UmGA and NUmGA

L PCA
mGA

Um
GA

NUm
GA

L PCA
mGA

Um
GA

NUm
GA

L1 0.1334 0.2266 0.4181 L12 0.8133 0.9031 0.9889

L2 0.2413 0.3667 0.6140 L13 0.8437 0.9238 0.9919

L3 0.3334 0.4718 0.7075 L14 0.8710 0.9416 0.9940

L4 0.4132 0.5567 0.7776 L15 0.8957 0.9564 0.9951

L5 0.4843 0.6273 0.8326 L16 0.9179 0.9690 0.9965

L6 0.5475 0.6868 0.8760 L17 0.9375 0.9792 0.9976

L7 0.6038 0.7377 0.9109 L18 0.9548 0.9872 0.9984

L8 0.6546 0.7814 0.9380 L19 0.9698 0.9930 0.9991

L9 0.7003 0.8188 0.9581 L20 0.9825 0.9969 0.9995

L10 0.7420 0.8512 0.9730 L21 0.9928 0.9991 0.9999

L11 0.7795 0.8791 0.9830 L22 1 1 1

148 C. Munteanu and V. Lazarescu

150 200 250 300
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Generation

PCA ratio r2 for PCAmGA and UmGA

Fig. 2. PCA ratio r2 for PCAmGA (dash line) and UmGA (continuos line)

5 Conclusions

In this paper we introduce a new mutation operator for a real-coded GA, based on
PCA. The mutation operator searches more effectively, outperforming the classical
mutation operators by keeping high levels of genetic diversity in the population,
resulting in better solutions found. The tests were performed on a Deczky IIR design
method that requires a global search strategy, and we obtained good solutions
employing our new mutation operator. The IIR filter found by our strategy
(PCAmGA) was better than the solution found by the classical Newton search method.

One may argue that, as our operator involves computations over multiple parents in
the population to produce the offspring, it should be regarded as a multiparent
recombination operator rather than a mutation operator which traditionally requires
one parent to produce one offspring. However, it is also traditionally accepted that the
global effect of mutation is that of randomly changing the genes’ values, while the
effect of recombination is that of exchanging genetic information between two or
more parents. Tacking into account the latter argument, we have chosen to name our
operator “mutation”, because its end effect is that of randomly changing the genes’
values in the gene pool, rather than exchanging the information between parents.

Improving Mutation Capabilities in a Real-Coded Genetic Algorithm 149

For future work we will focus on improving our method by designing repairing
algorithms, as PCA-mutation may yield unfeasible chromosomes. We will also
consider a Non Uniform PCA-mutation by decreasing the parameter cmax over time.

We will consider a comparison of PCAmGA to other powerful strategies acting on
real-coded chromosomes, such as The Breeder Genetic Algorithm [7], and to
mutation-orientated evolutionary methods such as the Evolutionary Strategies [10]. In
the light of the No Free Lunch (NFL) Theorems of Wolpert and Macready [12], that
basically state that there is no general better optimization strategy, the respective
comparison will be done on an extended test set, to clearly identify the problems most
suitable for the application of PCAmGA.

References

1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. NY:
Addison-Wesley (1989)

2. Goldberg, D.E.: Real-coded GAs, Virtual Alphabets, and Blocking. Complex Systems. 5
(1991) 153-171

3. Hansen, N., Ostermeier, A.: Convergence Properties of Evolutionary Strategies with the
Derandomized Covariance Matrix Adaptation: The (m/mI, l)-CMA-ES. In: Proceedings of
EUFIT’97, Vol. 1, Verlag Mainz, Aachen (1997) 650-654

4. Holland, J.H.: Adaption in Natural and Artificial Systems. Ann Arbor (1975)
5. Houck, C.R., Joines, J.A., Kay, M.G.: A GA for Function Optimization: A Matlab

Implementation. Technical Report. North Carolina State University (1995)
6. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn.

Springer-Verlag, Berlin Heidelberg New York (1996)
7. Mühlenbein, H., Schlierkamp-Vosen, D.: Predictive Models for the Breeder Genetic

Algorithm. Evolutionary Computation. 1(1) (1993) 25-49
8. Neagoe, V., Stanasila, O.: The Theory of Pattern Recognition. Romanian Academy

Publishing House (1992)
9. Oppenheim, A., Schafer, R., W.: Discrete-Time Signal Processing. Prentice-Hall

International (1989)
10. Schwefel, H.-P.: Numerical Optimization of Computer Models. Wiley, Chichester (1981)
11. Thornton, C.: Why GAs are Hard to Use. Complexity International. 4 (1997)
12. Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE Trans.

on Evolutionary Computation. 1(1) (1997) 67-82

Model-Based Object Recognition from a
Complex Binary Imagery Using Genetic

Algorithm

Samarjit Chakraborty1, Sudipta De2, and Kalyanmoy Deb3?

1 Institut TIK, Eidgenössische Technische Hochschule, Zürich, Switzerland.
2 KanGAL, Indian Institute of Technology Kanpur, India.

3 Department of Computer Science, University of Dortmund, Germany.

Abstract. This paper describes a technique for model-based object re-
cognition in a noisy and cluttered environment, by extending the work
presented in an earlier study by the authors. In order to accurately model
small irregularly shaped objects, the model and the image are represen-
ted by their binary edge maps, rather then approximating them with
straight line segments. The problem is then formulated as that of finding
the best describing match between a hypothesized object and the image.
A special form of template matching is used to deal with the noisy envi-
ronment, where the templates are generated on-line by a Genetic Algo-
rithm. For experiments, two complex test images have been considered
and the results when compared with standard techniques indicate the
scope for further research in this direction.

1 Introduction

Finding the best transformation that maps an object model into the image of
a scene is a central issue in object recognition. There are several approaches
to this problem which explicitly rely on results from computational geometry.
Among them are geometric hashing [17], alignment [14] and voting [2]. The
Hough transform [22], which is recognized as a powerful tool for curve as well as
object detection falls into the third category. A different line of approach involves
the development of cost functions for measuring the difference between two sets
of points or line segments under various transformations. Such cost functions
based on the Hausdorff distance have been extensively investigated in both com-
putational geometry [1,3,12] and computer vision [13,24] literatures. Although
these methods give good results in the presence of small amounts of noise and
occlusion, they do not scale well when applied to complex cluttered scenes, and
in the presence of a lot of noise. For example, in a study on the noise sensitivity
of the generalized Hough transform by Grimson and Huttenlocher [9], it was con-
cluded that even for moderate amounts of noise and occlusion, these methods
can hypothesize many false solutions, and their effectiveness is dramatically re-
duced. Similar conclusions were made by Sarachik [25] for the geometric hashing
? Author to whom all correspondence should be directed.

e-mail: deb@ls11.informatik.uni-dortmund.de

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 150–161, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Model-Based Object Recognition 151

paradigm applied to 2-D object recognition. So these techniques are reliable only
for relatively simple tasks in the absence of excessive noise and clutter, where
the image data corresponding to correct solutions is a large fraction of the total
data. In an effort to address this problem, in [6] we proposed a scheme for de-
tecting analytic curves using a Genetic Algorithm (GA) [7] in combination with
the Randomized Hough transform [27]. The present paper extends that work to
consider the detection of any binary object model in a binary edge map of a scene
image. There exists a large volume of literature on detecting curves and objects
in noisy as well as cluttered images. But most of them assume a predefined er-
ror model, either uniform bounded for feature displacement or a 2D Gaussian.
Additionally, several approaches also assume the presence of the model in the
image and the worst case search time in the presence of noise is exponential in
the problem size [10]. The proposed method in this paper is flexible, and does
not assume any error model. It is particularly effective in the case of complex
images where the number of pixels belonging to the object being searched for
is a very small fraction of the total number of edge pixels. In image processing
literature there is a mathematical distinction between clutter and noise. The
former might refer to all features or points that come from something different
than the model, where as noise usually refers to the phenomenon in which the
identified locations of the image points are slightly displaced from where they
should be. Coupled with these, there might be several spurious data points in
the image arising out of various sources, for example, edge points arising out of
brightness discontinuities and imperfect edge detection. For the purpose of this
paper it is not required to distinguish between these different errors and we will
refer to all such points jointly as false attractors.

The concept of using GA for curve extraction has been explored in the past
[11,23]. But the problems of noise or clutter were not considered. Object reco-
gnition in a complex image using GA has also been attempted [26]. The method
that we present is more flexible in terms of the allowable similarity between the
model and the object in the scene image. This has important advantages for suc-
cessful recognition of real life images, since it results in a flexibility in evaluating
an hypothesis about the occurrence of the object in the scene. We illustrate this
through examples presented in Section 4.

There has been an enormous amount of research in automatic object reco-
gnition. But despite this fact the problem remains largely unsolved. A compre-
hensive overview of this subject from a variety of perspectives can be found in
[21]. We believe that the use of GA can help in dealing with the uncertainties
that arise in any practical object recognition system. Further, since such a task
involves a very large search space, a suitably designed GA approach can reduce
the search time by several orders of magnitude with respect to an exhaustive
search.

In this paper, the object recognition task is performed by representing the
model and the image in the form of their binary edge pixels. This representation
has a number of benefits. Edge pixels are robust to changes in sensing conditions
and edge-based techniques can be used with many imaging modalities. Several

152 Samarjit Chakraborty, Sudipta De, and Kalyanmoy Deb

previous approaches have considered modeling objects as a set of straight line
segments, and matching these to the straight line segments extracted from an
image [5,19]. Our use of the complete edge map to model objects, rather than ap-
proximating them as straight line segments, allows irregularly shaped objects to
be modeled accurately. We specifically address images with a very large fraction
of points constituting the false attractors by using a special form of template
matching and compare our results with standard methods. Our templates are
generated on-line, guided by the GA.

In the next section we briefly identify cases where standard methods fail due
to the presence of a large number of false attractors. Towards this we use an
example of straight line detection, following which we describe our method. In
Section 4 we describe test results with two images and compare the performance
with standard methods. Section 5 concludes the paper.

2 Motivation

The various approaches towards searching for the occurrence of an object in a
scene can be roughly classified depending on whether the search is performed in
the correspondence space, transformation space, or both. Correspondence space
is the space of matches, which are sets of pairings between model and image
features or points. Transformation space is the space of possible object poses.

The interpretation tree approach [8] exemplifies those methods that search
entirely in the correspondence space. Its name refers to a search tree of choices
concerning the interpretation of each image feature. Proceeding from the root of
the tree, the match search examines an additional image feature at each level of
the tree. Branches at each level represent different choices among model features
that can be matched to that image feature, plus the choice of matching nothing at
all to it. A complete interpretation of the image, assigning some subset of image
features to corresponding model features, is associated with each of the tree’s
leaves. This method is computationally very costly and is generally exponential
to the number of image and model pixels. Hence in the presence of excessive
number of false attractors, such a method is rendered infeasible.

The generalized Hough transform is an example of a method that searches
the transformation space. An accumulator array indexed by parameters of ob-
ject pose, is first initialized as empty. Then, for each possible match between one
image feature and one model feature, poses consistent with that match are de-
termined and votes are cast in the bins of the accumulator array corresponding
to those poses. The second stage is an exhaustive search for parameters in the
accumulator array which are local maxima. Each such local maximum represents
a candidate match between the model and the image. In this approach, points
on the same object occurring in the image result in points in the parameter
space which are close together, whereas the false attractors result in randomly
distributed points in the parameter space. Thus a large cluster of points in the
parameter space represent a match between the model and an object in the
image. The validity of this assumption, however, depends on there being a low

Model-Based Object Recognition 153

likelihood that clusters due to false attractors will be comparable or larger in
size than clusters due to points on genuine objects. We believe that in many real
life images, this assumption does not hold. Fig. 1(a) shows two straight lines L1
and L2, where each line is composed of a small number of disconnected points.
In Fig. 1(b), random noise is superimposed on the line L1 (Fig. 4 in Section 4
shows one example where such a situation really arises in practice). Let us call
the lines in Fig. 1(a) as true lines and the line in Fig. 1(b) that corresponds to
line L1 of Fig. 1(a), as a pseudo line. Line L2 in this figure still remains a true
line. If our model is a simple straight line, then ideally the recognition algorithm
should detect both L1 and L2 from Fig. 1(a) but only L2 from Fig. 1(b). Note
that there are a large number of pseudo lines in the noise region in Fig. 1(b).
Since the number of points on each of these pseudo lines is comparable or more
than than the number of points on the line L2, it gets masked in the parameter
space by these pseudo lines.

Fig. 1. A binary edge image (a) Two straight lines (b) Noise superimposed on one of
the lines

3 A Genetic Algorithm for Object Recognition

To overcome the effects of noise in curve detection, the Window RHT and Ran-
dom Window RHT due to Kälviäinen et al. [16], randomly place a window on
an edge point and try to locate a curve within the window. Similarly template
matching [4,28] has been widely used in computer vision for object recognition.
An object in an image is defined to be recognized if it correlates highly with
a template image of the hypothesized object. The template image is usually a
transformed version of the model of the hypothesized object. Our technique is
conceptually similar to this. We place a weighted template on an edge point and
measure the weighted difference between pixels on a real object and the spurious
points surrounding it. The templates are constructed online, guided by the GA.

A crucial problem with ordinary template matching is the size of the search
space [20,18]. An attempt to overcome this is through the randomized versions
like Window RHT and Random Window RHT. We feel that a search guided by
a GA is more superior than a simple random search and can reduce the search
time by orders of magnitude.

154 Samarjit Chakraborty, Sudipta De, and Kalyanmoy Deb

3.1 Generating Templates from Model Images

Given a binary edge map and a model, or possibly a library of models, our
objective is to identify the occurrence of these models in the image. If a model is
represented by the set of its edge pixels M, then a template T is generated from
M by choosing three parameters that describe a transformation of M into T ,
along with some additional parameters which determine the quality of allowable
matches. The parameters used for transformation are translation, rotation and
scaling, and possibly also mirror image about any arbitrary line. We say that the
model M occurs in the given image at the location indicated by the template T if∑

x∈T Zx ≥ Nmin, where Zx is the gray level of the pixel x (0 or 1 in a binary edge
map) in the binary edge map of the image. The template T is the set of points
{x : d(x, I(x ′)) ≤ δ and x ′ ∈ M}, where I is some composition of translation,
rotation and scaling, and d(x, I(x ′)) is the Euclidean distance between the points
x and I(x ′). δ is a parameter which describes the width of a strip or band around
the transformed model, which allows for certain tolerance. Nmin is the minimum
number of pixels of the edge detected image that must occur within the template
so that the presence of the hypothesized object corresponding to the model M
can be ascertained. A relatively large value of δ allows objects to be detected
which are fuzzy or have a weak similarity with the model M.

For images with relatively less or no spurious points such as Fig. 1(a), this
formulation is sufficient and is in fact similar to the Window RHT used for curve
detection, except for the fact that we do not use any transformation mapping
from the image to the parameter space as is common in Hough transform. Rather,
we simply count the number of points lying within the template T . But in the
case of images with a large proportion of false attractors such as Fig. 1(b),
whenever the template is placed on a region consisting of such points, a false
alarm in the form of a pseudo object will be raised. To extend this method to
include such images, we formulate a weighted template rather than the simple
one described above. The response of the template T under this formulation is
given by R =

∑
x∈T WxZx, where Wx is the weight or coefficient of the pixel x.

We shall say that the model M occurs in the image at the location indicated by
template T if the response R of the template is greater than a constant Rmin,
fixed, depending on the dimensions of the model, template width δ, and the
coefficients Wx. The coefficients of pixels that lie away from the transformed
model i.e. I(M), are assigned negative values. So when a lot of spurious points
are present in the neighborhood of I(M), as in the case of the pseudo lines in
Fig. 1(b), the positive response due to the points on and near I(M) is offset
by the negative response due to the spurious points surrounding it. As a result,
false alarms are avoided.

3.2 Parameter Search Space and the Use of GA

Even if a particular object is known to be present in the image a priori, the space
of transformations from the model to the image is extremely large. Hence an
exhaustive search of this space would take too long to find a good match between

Model-Based Object Recognition 155

templates and images. A random search in the presence of excessive noise and
clutter is also not beneficial. So instead of randomly choosing the transformation
parameters to generate a template, we use a genetic algorithm to search the
parameter space for all instances of objects for which the template response is
greater than Rmin. For this, each of the parameters - x and y-coordinates of the
translation vector, the rotation angle, and the scaling factor, are coded as fixed
length binary strings. The resulting string, obtained by concatenating all these
strings, gives the chromosomal representation of a solution to the problem. Note
that the domains of each of the parameters may be different and the length of the
string coding a given parameter depends on the required parameter resolution.
The fitness of a solution is taken to be the response of the weighted template,
as described in the previous section.

Since in practical situations an exact match between the model and a hypo-
thesized object is not expected, we construct the template T such that points
near the transformed model I(M) are associated with positive coefficients and
points lying further away have negative coefficients. This, along with a suita-
bly chosen value of the minimum response Rmin, offers considerable flexibility
regarding the quality of the resemblance between the model and the detected
objects.

Creation of initial population. In most GA applications, the initial popula-
tion consists of entirely random structures to avoid convergence to a local optima.
However, in this problem, the question is not of finding the global optima, but
of finding all solutions with fitness greater than Rmin. To identify prospective
regions of the search space, the hypothesize and test paradigm commonly used in
visual object recognition might be effectively used. In [6] we used a Randomized
Hough transform for this purpose. For object recognition, a variation of this me-
thod similar to the generalized Hough transform might be used to generate an
initial set of hypotheses. Towards this, pairs of points are randomly chosen and
possible transformations which map these two points onto points in the image are
computed, as in the alignment method [14]. However instead of explicitly testing
such transformations, the count, in the accumulators representing the parame-
ter space, corresponding to such transformations are incremented by one. After
repeating this process for a predefined number of times, points in the parameter
space with counts exceeding a predefined threshold represent candidate hypo-
theses. The GA searches the entire parameter space with a bias towards these
hypotheses. Corresponding to each candidate hypothesis, a suitable number of
solutions are introduced into the initial population. Further, a fixed number of
random samples from the solution space are also introduced. The total number
of solutions is kept fixed over all the generations.

It should be noted that the above mentioned method of generating candi-
date hypotheses is rendered ineffective in the presence of excessive clutter and
extreme scaling, where this scheme is no better than randomly generating the
initial population. However, for images with even moderate amounts of noise
and clutter, it can lead to a considerable speedup.

156 Samarjit Chakraborty, Sudipta De, and Kalyanmoy Deb

Selection. The selection used here falls into the category of dynamic, genera-
tional, preservative, elitist selection [27]. Let there be M distinct solutions in
a given generation, denoted by S1, S2, . . . , SM . The probability of selecting a
solution Si into the mating pool is given by :

P (Si) = F(Si)∑M

j=1
F(Si)

Where F(Si) is the fitness of the solution Si. A fixed number of solutions are
copied into the mating pool according to this rule and a small number of re-
maining solutions are randomly generated. In each generation, a fixed number
of best solutions of the previous generation are copied in place of the present
worst solutions, if they happen to be less fit compared to the former. This is a
slight modification of the Elitist model where only the best solution is preserved.

Crossover and Mutation. Because of the number of parameters involved,
it is intuitive that the single point crossover operation may not be useful. So
crossover is applied to each substring corresponding to each of the parameters -
x and y-coordinates of the translation vector, the rotation angle, and the scaling
factor, the operation being the usual swapping of all bits from a randomly chosen
crossover site of the two parents, chosen randomly from the mating pool [29].
Hence this crossover is similar to the standard single-point crossover operator,
but operated on substrings of each parameter. Therefore, there are four single-
point crossovers taking place between two parent strings.

We have used a classical mutation operator in which each bit position of the
solution strings is complemented with a small mutation probability.

The overall algorithm. The initial population consisting of a fixed number
of solutions is created as already described. In each generation, the entire po-
pulation is subjected to selection, crossover and mutation. At the end of each
generation, edge pixels corresponding to solutions having fitness greater than
Rmin are removed from the edge map. After fixed number of generations, the
accumulators corresponding to the parameter space used for generating the can-
didate hypotheses are reset and the voting process is repeated to generate a fresh
set of hypotheses. Candidate solutions corresponding to these are then introdu-
ced into the population and whole process is once again repeated. This iteration
is continued until no new curve segments are extracted for a given number of
generations, which in our experiments was set to 200.

4 Test Results and Comparisons

We have experimented with two different images. For the ease of comparison
with standard methods, in our first experiment the model is a simple straight
line. Although this is the simplest possible case, as evident from the previous
sections, our algorithm is blind to this fact. For comparing the performance
of our method with Hough transform which is the most popular method for
straight line detection, we used a public domain software package XHoughtool

Model-Based Object Recognition 157

[15], where a number of non-probabilistic and probabilistic Hough transform
algorithms have been implemented.

As indicated in the previous section, there are various parameters that our
algorithm uses. The parameters related to the template are its width, the coef-
ficients or weights associated with each pixel, and the threshold response Rmin.
The allowable quality or degree of correspondence between the model and the
objects extracted from the image is determined by the template coefficients and
its width. A wide template with more than one row of positive coefficients will
detect objects whose pixels are spread out along its width compared to the model
in question. Thus, a suitably designed template, along with a proper threshold
value Rmin, will be able to distinguish between an object having a relatively
weak similarity with the model, and a false attractor. In our first experiment
where the model is a straight line, we have used a template width of 3, to detect
only perfect straight lines. The coefficients of all pixels lying on the straight line
were set to 2 and the others to −1 as shown in Fig. 2. Too low a value, Rmin,
of the threshold might detect a pseudo line where as a too high value might
miss a faint, disconnected, but visually detectable line. The results shown in this
section were obtained with Rmin set to the length of the transformed line, i.e.
I(M).

-1

-1

 2

-1

-1

 2

-1

-1

 2

-1.......

-1

 2

-1

-1

 2

-1

-1

 2.......

.......

Fig. 2. A mask of width 3

For the GA parameters, we used a mutation probability of 0.1 and any po-
pulation size around 100 was found to work well. In each generation, 25% of
the solutions were randomly created and the rest copied from the mating pool
in accordance with the fitness proportionate selection. Further, the best 10%
solutions of the previous generation were copied in place of the worst solutions
of the current generation.

Fig. 3(b) shows a 512 by 512 binary image obtained after edge detection of
the corresponding gray scale image shown in Fig. 3(a). Our model in this case
consists of a simple straight line. Note the three disconnected, but visible real
lines in the image, two at the center and one the the extreme left end. The
straight lines detected by our algorithm are shown in Fig. 3(c). Altogether seven
different Hough transform algorithms are implemented in the XHoughtool pack-
age. In spite of a serious attempt being made to select the test parameters for
each method as optimally as possible, none of the algorithms gave useful results
because a large number of pseudo lines were detected. A typical result is shown
in Fig. 3(d). Since the number of edge points lying on the real lines are much less
compared to those lying on many of the pseudo lines, no suitable accumulator
threshold value exists which can detect only the real lines. Generally these algo-

158 Samarjit Chakraborty, Sudipta De, and Kalyanmoy Deb

rithms work well even in the case of noisy images, where the lines are connected
and the number of edge points lying on these lines are at least comparable to
the number of noise points. It is to be noted in this example that there are
edge detectors which if used for Fig. 3(a) along with proper thresholding, would
eliminate most of the false attractors now appearing in Fig. 3(b). In such a si-
tuation, a simple HT algorithm would suffice. However, we have used the edge
detection algorithm incorporated in xv, the interactive image viewer available
on any X-window system. This, in some way artificial route, was adopted only
to illustrate a situation where the proposed method might be useful. Secondly,
the ‘lines’ detected in Fig. 3(c) are actually edges, with no width. But for the
purpose of this algorithm we do not distinguish between an edge and a line.

Fig. 3. Test results with the model being a simple straight line (a) A 512 by 512 gray
scale image (b) The corresponding binary edge map obtained after edge detection (c)
Straight lines detected by the proposed method (d) A typical result obtained using a
Hough transform algorithm

Our second example is a synthetic image shown in Fig. 4 consisting of in-
stances of the letters A and Z under various orientations and scaling, along with
random noise. The model is a letter A. Note that there are seven instances of
the letter A in the scene image. In most of the test runs the algorithm could

Model-Based Object Recognition 159

detect all the seven As and avoid any false alarms. However, it was crucial to
approximately choose the value of the threshold Rmin. In this case also we used
a template width of three as in the previous example.

Fig. 4. A binary scene image where the model A is to be detected

We should emphasize here that the procedure for generating the initial so-
lutions described in the last section, is much more effective in the case of our
second example where the proportion of false attractors is much less compared
to the first.

5 Summary

The Hough transform and its variants are the most popular methods for de-
tecting analytic curves from binary edge data. However, they do not scale well
when applied to complex environments in the presence of excessive noise and
clutter. In [6] we presented a GA in combination with the Randomized Hough
transform but using a different scoring function, to deal with such environments.
This paper extended that technique to incorporate model based object recogni-
tion. Towards this we used a special form of template matching which offers a
considerable flexibility regarding the quality of the allowable matches. Although
there has been attempts to use simple random search for several computer vision
problems, a search guided by a GA is probably superior in this case.

For future work, further experimentation could be performed using a variety
of different image and model pairs to illustrate the general applicability of this

160 Samarjit Chakraborty, Sudipta De, and Kalyanmoy Deb

method. One possible application domain might be automatic target recognition
where, because of its military applications, the goal is to avoid the object being
detected. It should also be possible to utilize other methods than the one descri-
bed here for generating the set of hypotheses used for initializing the population.
Further, it would be interesting to extend the set of transformations considered
here with shearing for example, to test weak similarities between the model and
the image.

Acknowledgements

The authors are grateful to the anonymous referees for their constructive criti-
cism and suggestions.

References

1. P.K. Agrawal, M. Sharir, and S.Toledo. Applications of parametric searching in
geometric optimization. In Proc. of 3rd. ACM SIAM Symp. on Discrete Algorithms,
pages 72–82, 1992.

2. T. Akutsu, H. Tamaki, and T. Tokuyama. Distribution of distances and triangles in
a point set and algorithms for computing the largest common point sets. In Proc.
13th. Annual ACM Symp. on Computational Geometry, pages 314–323, Centre
Universitaire Méditerranéen, Nice, France, 1997.

3. H. Alt, B. Behrends, and J. Blömer. Measuring the resemblance of polygonal
shapes. In Proc. of 7th. Annual ACM Symposium on Computational Geometry,
pages 186–193, 1991.

4. Dana Ballard and Christopher M. Brown. Computer Vision. Prenctice Hall, 1982.
5. Ross J. Beveridge. Local Search Algorithms for Geometric Object Recognition: Op-

timal Correspondence and Pose. PhD thesis, University of Massachusetts, Amherst,
May, 1993.

6. S. Chakraborty and K. Deb. Analytic curve detection from a noisy binary egde
map using genetic algorithm. In Proc. 5th. International Conference on Parallel
Problem Solving from Nature (PPSN V), pages 129–138, 1998. Lecture Notes in
Computer Science 1498.

7. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Lear-
ning. Addison-Wesley, Reading, M.A., 1989.

8. W. E. L. Grimson. Object Recognition by Computer : The Role of Geometric
Constraints. MIT Press, 1990.

9. W. E. L. Grimson and D. P. Huttenlocher. On the sensitivity of the Hough trans-
form for object recognition. IEEE Trans. Pattern Anal. Machine Intell., PAMI-
12:255–274, 1990.

10. W. Eric L. Grimson. The effect of indexing on the complexity of object recognition.
Technical Report A.I. Memo No. 1226, Artificial Intelligence Laboratory, MIT,
1990.

11. A. Hill and C. J. Taylor. Model-based image interpretation using genetic algo-
rithms. Image and Vision Computing, 10:295–300, 1992.

12. D.P. Huttenlocher, K. Kedem, and M. Sharir. The upper envelope of voronoi
surfaces and its applications. Discrete and Computational Geometry, 9:267–291,
1993.

Model-Based Object Recognition 161

13. D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. Comparing images
using the Hausdorff distance. IEEE Trans. Pat. Anal. and Mach. Intel., 15:850–
863, 1993.

14. D.P. Huttenlocher and S. Ullman. Recognizing solid objects by alignment with an
image. Inter. Journal of Computer Vision, 5(2):195–212, 1990.

15. H. Kälviäinen, P. Hirvonen, L. Xu, and E. Oja. Houghtool–a soft-
ware package for Hough transform calculation. In Proceedings of the
9th Scandinavian Conference on Image Analysis, pages 841–844, June 1995.
(http://www.lut.fi/dep/tite/XHoughtool/xhoughtool.html).

16. H. Kälviäinen, L. Xu, and E. Oja. Recent versions of the Hough transform and the
Randomized Hough transform : Overview and comparisons. Technical Report 37,
Department of Information Technology, Lappeenranta University of Technology,
Finland, 1993.

17. Y. Lamdan and H.J. Wolfson. Geometric Hashing: A general and efficient model-
based recognition scheme. In International Conference on Computer Vision, pages
238–249, 1988.

18. Z. Q. Liu and Terry M. Caelli. Multiobjective pattern recognition and detection
in noisy backgrounds using a hierarchical approach. Computer Vision, Graphics,
and Image Processing, 44:296–306, 1988.

19. Chris Loader. Local search algorithms for 2d geometric object recognition. Master’s
thesis, Department of Computer Science, The University of Western Australia,
1995.

20. Avrahm Mergalit and Azriel Rosenfeld. Using probabilistic domain knowledge to
reduce the expected computational cost of template matching. Computer Vision,
Graphics, and Image Processing, 51:219–234, 1990.

21. Arthur R. Pope. Model-based object recognition : A survey of recent research.
Technical Report TR-94-04, Department of Computer Science, University of Bri-
tish Columbia, January, 1994.

22. J. Princen, J. Illingworth, and J. Kittler. A formal definition of the Hough trans-
form : properties and relationships. J. Math. Imaging Vision, 1:153–168, 1992.

23. G. Roth and M. D. Levine. Geometric primitive extraction using a genetic algo-
rithm. IEEE Trans. Pattern Anal. Machine Intell, PAMI-16(9):901–905, 1994.

24. W.J. Rucklidge. Locating objects using the Hausdorff distance. In Proc. of 5th.
International Conference on Computer Vision, pages 457–464, 1995.

25. Karen B. Sarachik. Limitations of geometric Hashing in the presence of gaussian
noise. Technical Report A.I. Memo No. 1395, Artificial Intelligence Laboratory,
MIT, 1992.

26. D. L. Swets, B. Punch, and W. John. Genetic algorithms for object recognition
in a complex scene. In Proceedings of the International Conference on Image
Processing, pages 595–598, October, 1995. Washington, D.C.

27. L. Xu and E. Oja. Randomized Hough transform (RHT) : Basic mechanisms,
algorithms, and computational complexities. CVGIP : Image Understanding,
57(2):131–154, 1993.

28. Leonid P. Yaroslavsky. Digital Picture Processing. Springer Verlag Berlin, 1985.
29. K. S. Y. Yuen, L. T. S. Lam, and D. N. K. Leung. Connective Hough transform.

Image and Vision Computing, 11(5), 1993.

Test Pattern Generation under
Low Power Constraints

Fulvio Corno, Maurizio Rebaudengo, Matteo Sonza Reorda, Massimo Violante

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24 I-10129, Torino, Italy
{corno, reba, sonza, violante}@polito.it

Abstract. A technique is proposed to reduce the peak power consumption of
sequential circuits du ring test pattern application. High -speed computation
intensive VLSI systems, as telecommunication systems, make power
management during test a critical problem. A Genetic Algorithm computes a set
of redundant test sequences, then a genetic optimization algorithm selects the
optimal subset of sequences able to reduce the consumed power, without
reducing the fault coverage. Experimental results gathered on benchmark
circuits show that our approach decreases the peak power consumption by 20%
on the average with respect to the original test sequence generated ignoring the
power dissipatio n problem, without affectin g th e fault coverage.

1 Introduction

Testing a VLSI circuit is often performed through the application to its Input Pins
of a sequence of values, such that the values that one can observe on the Output Pins
of the fault-free circuit are different from the ones appearing on the same pins of any
faulty circuit. One of the main problems is how to generate a suitable sequence of
values to be applied to the Input Pins (Automatic Test Pattern Generation, or ATPG).

The economical importance of ATPG tools for digital circuits is continuously
growing, and the demand for efficient algorithms and tools able to handle the current
circuits is thus very strong. Correspondingly, there have been significant research
efforts in this field, which produced tens of proposals in terms of ATPG algorithms
and techniques.

In the last few years, several methods have been proposed for sequential circuits,
which exploit Genetic Algorithms (GAs). In fact, Evolutionary Techniques allow to
tame randomness and successfully exploit it for finding optimal solutions. Results
showed that the approach is very flexible and provides good results for large circuits,
where other methods fail. An overview of such techniques is presented in [1].

Due to the great increase in circuit size and complexity, the Test Pattern
Generation problem is traditionally considered critical from the point of view of the
required computational power, and a significant amount of research activities has
been devoted to it in the past years [2]. The ATPGs are thus evaluated according to
three parameters: the attained Fault Coverage, the required CPU time, and the number
of generated Test Vectors.

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 162−170, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Now, something is changing due to technological novelties and market’s stimuli.
The recent development of complex, high-performance, low-power devices
implemented in deep submicron technologies creates a new class of more
sophisticated electronic products. Telecommunication systems are an emblematic
example of this new class of systems: they operate at high frequency, mix analog and
digital components and require high computation capabilities (e.g. wireless
communications systems). This new class of systems makes power management a
critical parameter.

Starting from the observation that the power consumption during test is
significantly higher than that during normal circuit operation [3], researchers have
devoted their efforts to the definition of new test algorithms, able to consider the
power consumption along with the previously mentioned parameters.

Several approaches have been proposed, which can be classified as:
• ATPG-integrated optimization : the test pattern is optimized for low-power

during the test generation phase [4][5].
• post-ATPG optimization: the test pattern is first generated by a classical

ATPG, then it is optimized for power [6][7][8][9].
The method proposed in this paper stems from the observation that, given a fault to

be tested, several sequences may exist able to detect it. The test sequences are
equivalent form the point of view of Fault Coverage, but they may show a
significantly different behavior as far as the power consumption is concerned. In
particular, as motivated in Section 2, peak power consumption is considered.

Our method proposes to exploit a traditional GA-based ATPG to compute a
redundant test pattern, i.e., a test pattern where a single fault is covered by several
different sequences. Then, an optimization algorithm is applied to select an optimal
subset from the pool of previously computed test sequences, in order to minimize the
peak power consumption without affecting the Fault Coverage.

To enlarge the search space of the optimization algorithm, an analysis of the fault
list is preliminarily performed to identify the faults detected only by sequences
responsible for the peak power consumption (defined as critical faults). Then the
redundant test pattern is generated targeting the critical faults, only. This approach
allows also a reduction of the CPU time overhead introduced by the redundant ATPG.

The proposed method is organized in four independent steps: critical fault
identification, redundant test pattern generation, peak power estimation and optimal
sequences selection. To demonstrate the feasibility of the approach and to evaluate its
performance we made some preliminary experiments: switch level simulation is
exploited to evaluate peak power consumption, and genetic algorithms were
implemented both to generate redundant test pattern and to select the optimal subset
of sequences for minimal power consumption. The experimental results gathered on a
subset of the ISCAS benchmark circuits show a reduction ranging from 1% to 52%
with respect to the original test patterns generated ignoring the power consumption
problem, without affecting fault coverage.

The remainder of our paper is organized as follows. Section 2 presents the
problems raised by power consumption during test application. Section 3 describes
the approach adopted to minimize the power dissipation during test application.
Experimental results on benchmark circuits are presented and discussed in Section 4.
Section 5 draws some conclusions.

163Test Pattern Generation under Low Power Constraints

2 Motivation

In this paper, we assume that the circuit under test has been implemented by using
a static CMOS technology. The source of power dissipation in a CMOS circuit can be
classified as static and dynamic. Static dissipation is due to leakage currents, and can
be neglected since it has a small magnitude. Dynamic dissipation is due to the current
required to charge and discharge the load capacitance within the circuit, and is the
dominant term of power dissipation for CMOS circuits.

Given a CMOS gate g, its dynamic power consumption can be expressed as:

Pg = 0.5V2

dd CL Eg(sw) fswitch (1)

where Vdd is the supply voltage, CL is the physical capacitance at the output of the
gate g, Eg(sw) is the number of time the output of gate g toggles, and fswitch is the clock
frequency. For high frequency, computation extensive applications, such as
telecommunication systems, the term Eg(sw)fswitch has a significant magnitude, leading
to high power consumption.

High power consumption produces high temperatures that tend to exacerbate
several silicon failure mechanisms, in particular electro-migration [10]. To improve
circuit performance and portability, the current trend is to adopt low-power design
techniques and to reduce the package size by exactly matching the power dissipation
during the normal mode operation [4]. It is therefore necessary to apply test vectors
causing a power consumption not higher than that during normal operation or to
remove any excessive heat generated during test using cooling equipment. Due to the
constantly increasing density of circuits, the use of cooling equipment is increasingly
difficult to adopt.

The problem becomes even more evident when addressing the test of bare-dies
since the power dissipation capability of a bare-die is lower than that of a packaged
chip [11]. The test applied before packaging stresses the chip much more than in any
later stage. Hence, some of the bare-dies may fail during this test session even if they
don’t have manufacturing defects, if power dissipation constraints are not taken into
account when preparing the test sequences. Another factor that must be taken into
account is the impedance of the probes used to carry the input and power supply
signals to the bare-die, which is normally higher than that of the pins of a circuit
package [12]. High power consumption corresponds to high currents through the
power supply and ground probes. Due to the high probe impedance, the bare-die is
subject to high power and ground noise, which are given by:

dt

dI
LVnoise ⋅= (2)

where I is the current through the power supply and ground probes, and L is the
probe impedance. When L is higher than usual, the term dI/dt which is closely
correlated to the circuit switching activity) must be reduced in order to maintain Vnoise

under a threshold. Otherwise, the circuit under test could erroneously change its logic
state, failing the test, and good dies could be classified as faulty due to excessive
noise. From another point of view, this means that the test sequences for a bare-die
have to satisfy more stringent power constraints than those for a packaged chip.

164 F. Corno et al.

The above mentioned phenomena reduce the die-yield (which is the ratio of good
dies available for packaging to the total number of dies etched) and hence rise the IC
cost. Reduction in die-yield may not be significant for small, low-density circuits.
However, for large and high density circuits, as in the case of Multi-Chip-Modules
(MCMs), the problem becomes more significant.

In the past, the problem of power dissipation during test was a minor issue since
the test was performed at a speed lower than the normal operation speed. Conversely,
today circuits are tested at higher clock rates, if possible at the circuit normal clock
rate (at-speed testing). Power dissipation during test is therefore expected to rise [4].

During circuit design, the peak power consumption is a critical issue since it
determines the thermal and electrical limits of component, the system packaging
requirements, and heat sinks dimensions [13]. We can thus conclude that when
dealing with high-density systems as the modern ASICs or MCMs, to perform a non-
destructive test we have to satisfy all the power constraints defined in the design
phase. Therefore, the peak power consumption during test must be kept under a well
defined threshold.

3 Proposed approach

Our method exploits a GA-based test pattern generator to compute a redundant test
pattern, i.e., a test pattern where a single fault is covered by several different
sequences. Then, an optimization algorithm is applied to select an optimal subset
from the pool of test sequences previously computed, in order to minimize the peak
power consumption without affecting the Fault Coverage. The existence of multiple
sequences able to detect a given fault and the significantly different power
consumption of the sequences motivate our approach.

To minimize the CPU time required by the ATPG for computing a redundant test
pattern, an analysis of the fault list is preliminarily performed. The critical faults for
power consumption are identified: they are those faults detected only by sequences
leading to the peak power consumption. Then the redundant test pattern is generated
targeting the critical faults, only.

The whole process has been organized in four independent steps:
1. critical fault identification
2. redundant test pattern generation
3. peak power estimation
4. optimal test sequence selection.
In Fig. 1 the general environment is reported. In the following, the different steps

are analyzed.

165Test Pattern Generation under Low Power Constraints

ATPGFault
List

Initial
Test

Pattern

Peak Power
Estimation

Power
Measures

Fault
Coverage

Data

Critical Fault
Identification

Reduced
Fault List

Redundant
ATPG

Redundant
Test

Pattern

Peak Power
Estimation

Power
Measures

Fault
Coverage

DataOptimal Test
Sequence Selection

Optimized
Test

Pattern

Fig. 1. The environment for low power testing.

3.1 Critical fault identification

A fault is said critical if all the sequences able to detect it have a high peak power
consumption. The peak power optimization process has thus to target critical faults,
only, with the intent of replacing the sequences that have a high power consumption
with others less consuming covering all the critical faults.

To identify the critical faults, a first ATPG experiment is performed. In this step no
redundancy is introduced in the test pattern. The peak power consumption of the
obtained test pattern is measured, and the faults covered only by sequences
corresponding to the peak power consumption are selected: the obtained reduced fault
list is then used as the target for the following redundant test pattern generation.

3.2 Redundant test pattern generation

A test pattern composed of several independent sequences is said to be redundant
if one or more sequences can be removed without affecting the fault coverage attained
by the test pattern.

The redundant ATPG module inserted in the flow on Figure 1 has the peculiarity of
purposely introducing a redundancy in the test pattern. This redundancy allows us to
ignore the power consumption problem during test pattern generation with the fault
coverage as the main goal of the algorithm.

The adopted ATPG does not need to be adapted to the low power objective, the
only required modification being the introduction of an artificial redundancy in the
test pattern. A fault is considered as detected only if it covered by at least M

166 F. Corno et al.

sequences, M being the redundancy factor. To effectively explore the search space of
test sequences, a GA-based ATPG [14] is used.

The advantage of this approach is to simply adopt a standard fault coverage
oriented ATPG with minimal modifications. The only cost introduced is an increase
in CPU time required to generate the redundant test pattern. On the other hand, being
the critical faults a small portion of the fault list, we expect to have a reduced CPU
time overhead.

3.3 Peak power estimation

The IRSIM [16] switch-level simulator is adopted to measure the peak power
consumption of a test sequence. The power consumption of each pattern belonging to
a test sequence is first computed. Then, the peak power consumption of the sequence
is computed by identifying the maximum among the values of each vector of the
sequence.

3.4 Optimal test sequence selection

The goal of this step is to generate the optimal test pattern satisfying the following
constraints:

• same fault coverage of the redundant test pattern
• minimal peak power consumption.
This goal is reached starting from the redundant test pattern generated during the

previous step. The minimization algorithm has to select the optimal subset of
sequences that satisfies the constraints. The problem is a classical set covering
problem. For the purpose of this paper we devised a Genetic Algorithm to solve the
optimal test sequence set selection. The following sub-section details the adopted
fitness function.

3.5 Fitness

The fitness function definition is a critical choice since it allows to tune the
algorithm to find an optimal solution. As it has been said before, the goal of the
algorithm is to minimize the power consumption satisfying the constraint to cover the
complete set of faults covered by the original fault list. The following fitness function
has been adopted:

• if the Fault Coverage attained by the i-th individual (FCi) is lower than the
Fault Coverage (FC) attained by the redundant test pattern, then the fitness
function is:

f(i) = FCi – FC < 0 (3)

• if the Fault Coverage attained by the i-th individual is equal to the Fault
Coverage attained by the redundant test pattern, then the fitness function is:

f(i) = PP – PPi > 0 (4)

167Test Pattern Generation under Low Power Constraints

where PP is the Peak Power consumption of the redundant test pattern and PPi is
the peak power consumption of the i-th individual.

As a consequence, individuals reducing the Fault Coverage have a high probability
to be removed from the population, while the power consumption of individuals that
do not affect the Fault Coverage is minimized.

4 Experimental Results

To implement the critical fault identification step we exploited the GA-based
ATPG GATTO [14] for test pattern computation and IRSIM for peak power
estimation. To implement the remaining steps of the algorithm described above, two
tools have been written:

• RED-GATTO (REDundant GATTO) produces the redundant test pattern and
for each sequence generates the list of covered faults (without fault dropping).
RED-GATTO has been implemented starting from the GA-based ATPG
GATTO [14]. Some changes have been introduced to implement the modified
fault dropping mechanism: the redundancy factor is set to 5, i.e., a fault is
dropped only if it has been detected by at least 5 sequences.

• POPTIM (Power OPTIMizer) implements the Genetic Algorithm for optimal
test sequence set selection: its input is the set of sequences generated by RED-
GATTO (in particular the list of faults covered by each sequence) and the
power consumption measure for each sequence computed by IRSIM.

A subset of the standard set of benchmarks for sequential ATPG problems
ISCAS’89 [15] has been adopted. All the experiments have been run on a Sun
SparcStation 5/110 with 64 Megabytes of RAM. Table 1 shows the obtained results.
The attained fault coverage (FC), the number of vector in the test pattern (Vect.) and
the peak power consumption (PP) are reported for the original ATPG (GATTO) and
for the power optimized ATPG.

The results demonstrate that the approach allows to effectively reduce the peak
power consumption: 20% on the average, but circuits exist for which the reduction
reached 50%.

From the CPU time point of view, it is important to specify that the largest part of
the reported CPU time is spent by the ATPG step. The redundancy requires a lot of
elaboration time and the CPU time is approximately proportional to the redundancy
factor used by the ATPG.

From the test length point of view, we can observe that the proposed method has a
reduced impact on the number of required test vector.

When compared to an alternative post-ATPG optimization method [9], the
proposed approach performs 10% better.

5 Conclusions

Starting from the observation that for high performance VLSI systems, such as
telecommunication systems, the power consumption is becoming a problem, an
approach to generate test patterns for low power has been proposed. It is based on

168 F. Corno et al.

four separated steps namely critical faults identification, test pattern generation, peak
power estimation and optimal test sequence set selection. This approach is
independent on the adopted ATPG and it is based on the concept of redundant test
pattern generation. The ATPG to be exploited is not required to be particularly suited
to low power minimization, only the fault dropping mechanism has to be modified. In
our approach we used a modified version of the GA-based ATPG GATTO [14].

Experimental results show the effectiveness of the proposed method in reducing
the peak power consumption of test pattern.

6 References

1. F. Corno, M. Rebaudengo, M. Sonza Reorda, “Experiences in the Use of Evolutionary
Techniques for Testing Digital Circuits”, Invited Paper, Applications and Science of
Neural Networks, Fuzzy Systems, and Evolutionary Computation, B. Bosacchi, D. Fogel, J.
Bezdek, Editors, Proceedings of SPIE, Vol. 3455, pp. 128-139, 1998

2. M. Abramovici, M. A. Breuer, A. D. Friedman: Digital systems testing and testable design,
Computer Science Press, New York, NY (USA), 1990

3. Y. Zorian, “A Distributed BIST Control Scheme for Complex VLSI Devices”, IEEE 11th
VLSI Test Symposium, 1993, pp. 4-9

4. S. Wang, S.K. Gupta, “ATPG for Heat Dissipation Minimization during Scan Testing”,
IEEE Design Automation Conference, 1997, pp. 614-619

5. J. Silva, J. Monteiro, K.A. Sakallah, “Test Pattern Generation for Circuit Using Power
Managment Techniques”, IEEE European Test Workshop, 1997

6. J. Costa, P. Flores, H. Neto, J. Monteiro, J. P. Marques Silva, “Power Reduction in BIST by
Exploiting Don’t Cares in Test Patterns”, IEEE Internation Workshop on Logic Synthesis,
1998

7. P. Girard, C. Landrault, S. Pravossoudovitch, D. Severac, “Reducing Power Consumption
during Test Application by Test Vector Ordering”, IEEE International Symposium on
Circuits And Systems, 1998

8. F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda, “A Test Pattern Generation
methodology for low power consumption”, IEEE 16th IEEE VLSI Test Symposium, 1998,
pp. 453-457

9. F. Corno, M. Rebaudengo, M. Sonza Reorda, M. Violante, “Transformation-based Peak
Power Reduction for Test Sequences”, to be presented at IEEE Alessandro Volta Memorial
Workshop on Low Power Design, 1999

10. P.C. Li, T.K. Young, “Electromigrations: The Time Bomb in Deep-Submicron ICs”, IEEE
Spectrum, Vol. 33, No. 9, 1996, pp. 75-78

11. S. Chakravarty, V. Dabholkar, “Minimizing Power Dissipation in Scan Circuits During
Test Application”, IEEE Workshop on Low Power Design, 1994, pp. 51-56

12. S. Wang, S. Gupta, “ATPG for Heat Dissipation Minimization During Test Application”,
IEEE Trans. on Computers, Vo. 47, No. 2, February 1998, pp. 256-262

13. M. Pedram, “Power Minimization in IC Design: Principles and Applications”, ACM
Transaction on Design Automation of Electronic Systems, Vol. 1, No. 1, 1996, pp. 3-56

14. F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda, “GATTO: a Genetic Algorithm
for Automatic Test Pattern Generation for Large Synchronous Sequential Circuits”, IEEE
Transactions on Computer Aided Design, Vol. 15, No. 8, August 1996, pp. 943-951

15. F. Brglez, D. Bryant, K. Kozminski, “Combinational profiles of sequential benchmark
circuits,” Proc. Int. Symp. on Circuits And Systems, 1989, pp. 1929-1934

16. A. Salz, M. Horowitz, “Irsim: An incremental mos swith-level simulator”, Design
Automation Conference, 1989, pp. 173-178

169Test Pattern Generation under Low Power Constraints

Table 1. Experimental results

Original ATPG Low Power ATPG
Circuit FC

[%]
Vect.

#
PP

[mW]
Vect.

#
PP

[mW]
∆PP
[%]

CPU
[s]

s208 69.3 269 1.51 157 1.38 8.6 77
s298 88.6 756 1.65 194 1.27 23.0 216
s344 98.1 122 1.93 90 1.40 27.5 126
s349 97.9 148 1.94 110 1.60 17.5 120
s382 85.2 822 2.00 646 1.62 19.0 707
s386 76.6 523 3.42 359 2.42 29.2 143
s400 87.3 936 1.92 884 1.89 1.6 940
s420 47.5 243 1.62 84 1.49 8.0 100
s526 77.8 1890 1.76 658 1.47 16.5 1383

s526n 80.8 2101 1.89 1482 1.55 18.0 1521
s641 83.2 337 2.65 279 2.02 23.8 485
s713 81.7 504 3.45 325 2.58 25.2 601
s820 39.8 219 5.05 142 2.49 50.7 134
s832 38.9 179 5.34 195 2.58 51.7 358
s838 37.2 316 2.10 219 1.67 20.5 210
s938 37.2 316 2.09 223 1.67 20.1 209
s953 98.7 1236 3.48 1058 2.64 24.1 1308
s967 89.0 547 3.32 529 2.90 12.7 973

s1269 99.6 539 18.48 371 10.45 43.4 1438
s1423 54.1 399 9.68 516 8.61 11.1 2251
s1488 76.0 354 13.98 513 10.98 21.5 1863
s1494 95.4 1492 15.13 1794 15.02 0.7 4318
s1512 54.7 393 3.43 303 3.07 10.5 810
s5378 67.8 613 19.01 730 17.35 8.7 9147

s13207 20.4 1307 22.34 584 18.11 18.9 14998
s15850 5.5 127 19.18 42 15.06 21.5 1445
s35932 76.3 407 355.37 330 326.20 8.2 59939

Average 20.1

170 F. Corno et al.

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 171-181, 1999.
© Springer-Verlag Berlin Heidelberg 1999

A Genetic Algorithm for Designing Networks with
Desirable Topological Properties

Andrew Webb1, Brian Turton1, and John Brown2

1 Cardiff School of Engineering, Division of Electronic Engineering, Cardiff University,
Queen’s Buildings, PO Box 689, Newport Road, Cardiff, CF2 3TF, UK

2 Magellan Business Networks, Northern Telecom House, Maidenhead, SL6 8XB, UK
email: turton@cf.ac.uk, webba@cf.ac.uk, john.brown.jmbrown@nortel.co.uk

Abstract. The network design problem discussed in this paper deals
with optimising network parameters that characterise the following
topologies: ring, chordal ring, torus and hypercube. These topologies
have known, advantageous characteristics that may be useful in a final
solution. By devising a system that can measure the extent to which an
arbitrary mesh approaches these topologies multi-objective genetic
algorithms that include topology as a dimension can be developed.
Multi-objective genetic algorithms allow the designer to choose the
’ideal’ design from a pareto-optimal surface. This paper describes a
method by which such a measure can be obtained for a topology from a
set of network parameters namely: minimum hop count, node
eccentricity, node degree and the number of links. In order to prove
that these measures are effective in the context of a genetic algorithm,
test results are given for applying these measures as part of a fitness
function for evolving the specified topologies from an ’arbitrary’ mesh
network. The results obtained show that the measures used are suitable
for measuring the extent to which an arbitrary mesh matches a known
topology, within a fitness function. As a consequence the designer can
be guaranteed a range of acceptable but different choices.

1. Introduction

The network design problem discussed in this paper deals with the optimisation of
parameters associated with a particular topology. These parameters we seek to
optimise include network diameter (maximum eccentricity), minimum hop count
between node pairs, node degree and the number of links. There are a number of
beneficial reasons for doing this. Certain specific topologies, particularly toroidal
networks have a number of desirable topological properties that are useful when
designing reliable and efficient telecommunication networks. These desirable
properties include regular, symmetrical connectivity patterns, a guaranteed nodal
degree, straightforward routing, guaranteed network diameter and measures of
network vulnerability such as toughness and integrity. For example, the Manhattan

172 A. Webb, B. Turton, and J. Brown

Street Network, a form of torus, exhibits many of these properties and has already
been proposed as a possible architecture for local and metropolitan area networks.
The relatively large number of potential paths between node pairs makes such
networks more reliable and enables heavily congested portions of the network to be
avoided. By increasing the number of alternative paths in an appropriate manner, the
mean and maximum distance between nodes decreases, messages use a smaller
fraction of the available bandwidth and the overall throughput increases [1-3]. Thus
more efficient and economic use is made of the available resources. A direct method
of encouraging ’good’ characteristics would be to measure network toughness and
integrity [4]. The toughness is a measure of how tightly the sub-graphs of a graph G
are held together, while integrity is a measure of the overall network vulnerability
rather than local weaknesses. However, there is no known Polynomial algorithm for
finding these values, consequently these measures are impractical for use within a
genetic algorithm where many thousands of topologies need to be evaluated. The
alternative is to encourage the network towards predetermined advantageous
topologies.

2. Problem Description

This section will first provide an overview of the various terms and notations used in
the subsequent sections of this paper. A description is also given of the various
parameters used in the GA optimsation.

2.1 Notation

� AE = Mean maximum node eccentricity
� SE = Standard deviation of the maximum node eccentricity
� DE = Desired mean maximum node eccentricity
� N = Number of graph nodes
� Dij = Minimum hop count between nodes (i) and (j)
� AD = Mean nodal degree
� DD = Desired mean nodal degree
� SD = Standard deviation of the nodal degree
� AH = Mean minimum hop count between all node pairs
� DH = Desired minimum hop count between all node pairs
� SH = Standard deviation minimum hop count
� W1 - W7 = Weighting factors used in fitness function

A Genetic Algorithm for Designing Networks with Desirable Topological Properties 173

() 2/1
1 1

−= ∑ ∑
= +=

NNDAH
N

i

N

ij
ij

{ })(max veDiameter =













−
=

SGk

S
Gt

(
min)(

2.2 Definitions

The degree of a node is defined as the number of links incident on to the node. The
hop count is the minimum number of hops between the nodes i and j. The mean hop
count, AH, is defined as follows:

 (1)

Where N is the number of graph nodes and Dij is the distance in hops between the
node i and node j. The eccentricity, e(v), of a vertex v is the minimum distance
between v and the vertex furthest from v.

 The network diameter is the maximum eccentricity, and can be defined as
follows:

(2)

For the graph G of figure 1, the nodes x, y and z have an eccentricity of 5, 3 and 4
respectively. The overall diameter (maximum eccentricity) is 5.

Fig. 1. Example graph

The toughness of a graph G, t(G), is defined as:

(3)

where S is the vertex cut-set of G and k(G-S) is the number of remaining graph
components after the vertex cut-set has been removed.

The integrity of a graph G, i(G) is defined as:

(4)

where N(G-S) is the maximum order of a component of G-S, i.e. the number of
nodes in the largest remaining component.

y

G: x

z

{ })(min)(SGNSGi −+=

174 A. Webb, B. Turton, and J. Brown

2.3 Problem Definition

The network design problem that we are interested in is that of generating graphs that
resemble the given topology, i.e. graphs whose actual parameters values match the
known ideal parameter values as closely as possible. One way of encouraging this in
non-regular topologies is to use a fitness function that is a measure of how closely a
graph resembles the chosen topology. Thus the fitness value is proportional to how
closely the actual parameter values match the ideal parameter values. The metrics
used in the fitness function were the mean and standard deviation of each of the
previously mentioned parameters; an additional metric was used for the number of
network links. The ideal values for each topology are shown below in table 1:

Table 1. Optimal topology parameter values

Nw
Size

Topology Mean
Diam

Mean
Node
Deg

Mean
Hop
Count

No.
Links

Ring 8 2 4.266 16
Ch Ring 5 3 2.666 24

Torus 4 4 2.133 32

16
Nodes

Hcube 4 4 2.133 32

Ring 16 2 8.258 32

Ch Ring 5 3 3.161 48

Torus 6 4 3.096 64

32
Nodes

Hcube 5 5 2.580 80

Ring 32 2 16.29 64

Ch Ring 8 3 4.698 96

Torus 8 4 4.063 128

64
Nodes

Hcube 6 6 3.047 192

The fitness value used by the GA is simply a measure of how closely an individual
graph resembles the topology of interested. The fitness function is as follows:

(5)

The weighting factors W1, W3, W5 and W7 are set at 100, while W2, W4 and W6
are set at 20.

() ()

() 





−−+−+





−−

+−+





−−+−+





−−=

11211

211211

765

4321

DL

L
WSEW

DE

AE
W

SDW
DD

AD
WSHW

DH

AH
WFitness

A Genetic Algorithm for Designing Networks with Desirable Topological Properties 175

or

3. GA Implementation

3.1 Encoding Chromosome Solutions

The chromosomes comprise of a sequence of binary numbers to represent connections
between node pairs [5-6]. The number of genes, L, is equal to the number of potential
links that connect all possible node pairs and is given by:

(6)

where N is the total number of graph nodes. The chromosome structure, Ci, is
represented below,

,where Ci is a binary number that represents the presence or absence of a link between
a node pair. New offspring are allocated using a roulette wheel method, applied to
linearised fitness values. After the new generation has been allocated, standard two-
point crossover is applied to chromosome pairs at a probability pc to produce new
child chromosomes. In order to maintain genetically diverse populations, a number of
mutation operators are applied with a very low probability pm and are described
pictorially in figures 2 and 3. The single link swap shown in figure 2 deletes an
arbitrarily chosen link and adds another link at another arbitrarily chosen location that
has no link. The double link swap shown in figure 3 deletes two arbitrarily chosen
links and replaces them at two arbitrarily chosen non-link sites.

 Fig. 2. Single link swap Fig. 3. Double link swap

3.2 Repair Heuristics

The GA can sometimes produce ’bad’ results that need to be repaired to make them
feasible. Unfeasible networks include disconnected networks, networks that violate
the connectivity requirements and networks that cannot survive single link or node
failures. Such networks are repaired in an arbitrary fashion, such that useful areas in
the search space are not excluded. The repair mechanism uses a graph searching
algorithm to detect if a graph is disconnected. Unfeasible graphs are ’repaired’ by
adding a suitable number of arbitrarily chosen links until the network is feasible. For
networks to satisfy the connectivity requirements, the node degree, k, must fall within
the specified limits, e.g. (1<k<6). Graphs that violate the connectivity condition are
repaired in the manner described in figure 4.

() 21−= NNL

{ }Li CCCCC ,...,,, 210=

176 A. Webb, B. Turton, and J. Brown

Fig. 4. Satisfying connectivity requirements

The graph shown in figure 4 shows how node (a) violates the minimum node
connectivity constraint of degree 2. Adding a candidate link (shown as a dotted line)
arbitrarily can rectify this degree constraint violation. Figure 4 also shows how node
(c) exceeds the maximum connectivity constraint for this example. To rectify this,
one of the existing links connected to node (c) is chosen arbitrarily and removed.

Occasionally, some networks become disconnected in such a way as to produce
two or more distinct networks, even though all network nodes may satisfy the
connectivity requirements. This can sometimes happen when generating initial
random populations or as a result of applying genetic operators.

Fig. 5. Ensuring graph is fully connected

The dotted lines shown in figure 5 illustrate some of the many potential candidate
links that may be added to the graph. To reconnect the graph, candidate links are
added arbitrarily until the graph is connected. Another feasibility constraint could be
to ensure that the loss of any single link or node should not bisect the network. The
link and node that are indicated by the arrows in figure 6 illustrate how their removal
could disconnect the graph. The dotted lines show some of the potential links that
could be added to make these networks immune to a single link or node failure.

 Fig. 6. Surviving single link/node failures

Existing link

Candidate link

Existing link

b

a

Existing link

Candidate link

c

d
e

k
Candidate lin
Link/node failure

A Genetic Algorithm for Designing Networks with Desirable Topological Properties 177

3.3 Fitness Evaluation

The chromosome fitness value is a measure of how much a graph resembles the
topology of interest, i.e. its "toroidalness", "ringness", "hypercubeness", etc. The
higher the fitness value, the more closely the network resembles the chosen topology.
To compute the graph fitness values, we apply Dijkstra’s shortest path algorithm to
each graph to determine the minimum hop count between all node pairs. These hop
counts are used to determine the following parameters that are used in part of the
fitness evaluation: mean and standard deviation of the maximum node eccentricity
and mean and standard deviation of the minimum hop count between all node pairs.
The mean/standard deviation node degree and the total number of links are obtained
from the graph. A summary of the algorithm is shown in the following pseudocode:

Evolutionary Algorithm
{

Generate initial population of graphs;
WHILE (Termination criteria NOT reached)
{

Apply graph repair mechanisms:
(i) Satisfy connectivity constraints;
(ii) Ensure graph is biconnected;

Evaluate chromosomes:
(i) Apply Dijkstra’s Algorithm;
(ii) Calculate fitness;

Select new population: Recombination and Mutation;
}

}

4. Computational Results

The graphs in figure 7 show the normalised mean and best fitness values obtained
over 500 iterations of the GA for 16, 32 and 64 node topologies. In table 2 a
summary is given showing the best overall parameter values obtained by the GA. The
first column in table 2 represents the size of each network, while the second column
represents the network topology. The following three columns give the mean and
standard deviation of the parameters and also the percentage differences by which
these values differ from the optimal. The final column shows the fitness values and
their percentage difference from the optimal values.

178 A. Webb, B. Turton, and J. Brown

Fig. 7. Mean and best fitness values obtained by the GA.

Table 2. Best parameter values obtained by the GA

N To Eccentricity
Mean Std Dev

 % diff % diff

Mean Node Degree
Mean Std Dev

 % diff % diff

Hop Count
Mean Std Dev

 % diff % diff

Fitness

 % diff
R 4.26 0.00 0.00 0.00 2.00 0.00 0 0 8.00 0.00 0.00 0.00 520 0
C 2.65 0.30 0.24 12.3 3.00 0.00 0.51 25.8 4.68 6.24 0.47 23.9 488 6.02
T 2.11 0.75 0.17 8.55 4.00 0.00 0.51 25.8 3.56 10.9 0.51 25.6 484 6.86

16

H 2.11 0.75 0.17 8.55 4.00 0.00 0.51 25.8 3.56 10.9 0.51 25.6 484 6.86
R 6.67 19.1 0.43 21.8 2.25 12.5 0.44 22 12.4 22.4 0.49 24.9 438 15.7
C 3.15 0.06 0.21 10.5 3.00 0.00 0.50 25.4 5.00 0.00 0.00 0.00 505 2.77
T 3.02 2.39 0.13 6.7 4.00 0.00 0.67 33.6 5.00 16.6 0.00 0.00 484 6.76

32

H 2.40 6.78 0.10 5.1 5.00 0.00 0.56 28.4 4.00 20.0 0.00 0.00 479 7.72
R 9.64 40.8 0.43 21.7 2.21 10.9 0.41 20.8 18.1 43.2 0.88 44.1 390 24.9
C 4.06 13.5 0.18 9.3 3.34 11.4 0.54 27.0 6.85 14.2 0.35 17.5 459 11.6
T 2.87 29.1 0.08 4.4 4.46 11.7 0.59 29.5 4.00 50.0 0.00 0.00 415 20.0

64

H 2.49 17.9 0.05 2.85 6.21 3.65 0.41 20.8 4.00 33.3 0.00 0.00 455 12.3

N = Number of nodes To = Topology
R = Ring C = Chordal Ring
T = Torus H = Hypercube

32 - Node Graphs

0
0.2
0.4
0.6
0.8

1

Ring Ch Ring Torus Hcube

F
itn

es
s

Best Average

16 - Node Graphs

0

0.2

0.4

0.6

0.8

1

Ring Ch Ring Torus/Hcube
F

itn
es

s

Best Average

64 - Node Graphs

0

0.2

0.4

0.6

0.8

1

Ring Ch R ing Torus Hcube

F
itn

es
s

Best Average

A Genetic Algorithm for Designing Networks with Desirable Topological Properties 179

4.1 Example Results

The graphs shown in figure 8 show two examples of the best topology obtained by the
GA after 1000 iterations. Table 3 compares the ideal parameter values with actual
parameter values.

 (i) Torus (ii) Chordal Ring
 Optimal Best result Optimal Best Result

Fig. 8. Comparison of best topology found with ideal result

Table 3. Ideal and actual parameter values

(i) Torus (ii) Chordal Ring

Parameter Value Ideal Actual % diff Ideal Actual % diff
Fitness: 520 487 6.20 520 498 4.23

Mean Hop Count: 2.13 2.00 6.25 2.66 2.76 6.25

Std Dev Hop Ct: 0.00 0.04 0.02 0.00 0.15 7.50

Mean Node Deg: 4.00 4.00 0.00 3.00 2.87 4.33

Std Dev Node Deg: 0.00 0.00 0.00 0.00 0.34 17.0

Mean Max Ecc: 4.00 3.00 25.0 5.00 5.00 0.00

Std Devn Max Ecc: 0.00 0.00 0.00 0.00 0.00 0.00

Number of Links: 32 32 0.00 24 23 4.16

4.2 Evaluating Toughness and Integrity

The toughness and integrity values were determined for a number of randomly
selected chromosomes with different fitness values. Evaluation of toughness and
integrity were achieved by determining the number of disconnected graph
components, k(G-S), and the maximum order of the remaining components, N(G-S),
for all possible vertex cut-sets. The target toughness and integrity values were 1 and
9 respectively. The graphs shown in figures 9 and 10 plot the fitness value against the
toughness and integrity values for the 16 node torus and chordal ring target
topologies.

180 A. Webb, B. Turton, and J. Brown

Fig. 9. Toughness vs Fitness

Fig. 10. Integrity vs Fitness

5. Discussion of Results and Conclusions

The quality of results obtained by the GA is established by comparing its results with
the known optimal solutions. In all examples the results of the GA appears to
converge after a few hundred generations. The graphs given in figures 9 and 10 show
that as the GA approaches the ideal topology, in doing so it also reaches the target
toughness and integrity values.

The results for the 64-node graphs have the slowest rate of convergence, due to the
very large search space that this size of problem presents us with. There was one
instance where the GA managed to generate an optimal result within 500 generations.
Beyond this point the Genetic Algorithm seems to search randomly for better
solutions and as a consequence further experiments indicate that at least 10,000
generations are required before an optimal result is reached. Ring topologies are
unusual in that a connectivity of two is both necessary and sufficient to ensure a
connected graph is a ring. Other topologies are more complex in that they require
additional criteria. In particular this is true of the remaining topologies studied:
chordal ring, torus and hypercube. Other improvements could be made to make the
GA perform more efficiently, particularly when the GA has ceased to produce

Integrity Values for Torus and Chordal Ring

5.5

6

6.5

7

7.5

8

8.5

9

9.5

250 300 350 400 450 500 550

Fitness

In
te

gr
ity

Torus

Ch Ring

Toughness Values for Torus and Chordal Ring

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

250 300 350 400 450 500 550

Fitness

T
ou

gh
ne

ss

Torus

Ch Ring

A Genetic Algorithm for Designing Networks with Desirable Topological Properties 181

improved results. These include more sophisticated mutation/link swapping
techniques and also hill climbing techniques.

In order to design practical networks more suitable for real-world design problems,
it is possible to use this idea as part of a multiobjective function so that the network
designer could choose networks that have been simultaneously optimised over a
variety of different parameters. This work shows how arbitrary mesh networks can be
guided towards known topologies with good characteristics without limiting the
network to precisely match a particular topology. In addition approaching a known
topology has been shown to encourage toughness and integrity values that match
those of the associated target topology.

References

1. Maxemchuck, N. F., "Routing in the Manhattan Street Network", IEEE Transactions on
Communications, Vol. COM-35, No. 5, May 1987.

2. Maxemchuck, N. F., "Regular Mesh Topologies in Local and Metropolitan Area Networks",
AT&T Technical Journal, Vol. 64, No. 7, September 1985.

3. Robertazzi, T. G., "Toroidal Networks", IEEE Communications Magazine, June 1983, Vol.
26, No. 6.

4. Chartrand, G., Lesniak, L., Graphs and Digraphs, Chapman & Hall, 1996, 3rd

 Edition.
5. Sinclair, M.C., “Minimum Cost Topology Optimisation of the COST 239 European Optical

Network”, Proceedings of the Second International Conference on Artificial Neural
Networks and Genetic Algorithms, Alés, France, pp26-29, April 1995.

6. Sinclair, M.C., "NOMaD: Applying a Genetic Algorithm/Heuristic Hybrid Approach to
Optical Network Topology Design", Proceedings of the IEE Colloquium on
Multiwavelength Optical Networks: Devices, Systems and Network Implementations,
London, June 1998.

7. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning.
Addison Wesley, Reading, MA (1989).

8. Cahn, R. S., Wide Area Network Design: Concepts and Tools for Optimization, Morgan
Kaufman Publishers, 1998.

9. Davis, L., Orvosh, D., Cox, A. and Qiu, Y., “A Genetic Algorithm for Survivable Network
Design”, Proceedings of the Fifth International Conference on Genetic Algorithms, pp405-
415, 1993.

10. Davis, L., Coombs, S., “Genetic Algorithms and Communication Link Speed Design:
Theoretical Considerations”, Proceedings of the Second International Conference on
Genetic Algorithms, pp. 252-256, 1987.

11. Kershenbaum, A, “Telecommunications Network Design Algorithms” , McGraw-Hill.
1993.

12. Ko, K.T., Tang, K.S., Chan, C.Y., Man, K.F., "Packet switched Communication Network
Designs using GA", Genetic Algorithms in Engineering Systems: Innovations and
Applications, Conference Pub. No. 446, 2-4 September 1997.

13. Standish, T.A., "Data Structures, Algorithms and Software Principles in C", Addison-
Wesley, 1995.

14. Tanenbaum, A.S., "Computer Networks", 3rd edition, Prentice/Hall International, Inc., 1996.

Approximate Equivalence Verification for Protocol
Interface Implementation via Genetic Algorithms

Fulvio Corno, Matteo Sonza Reorda, Giovanni Squillero

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24 I-10129, Torino, Italy
{corno, sonza, squillero}@polito.it

Abstract. This paper describes a new approximate approach for checking the
correctness of the implementation of a protocol interface, comparing its low-
level implementation with its high-level prototype. The possibility to validate
protocol interfaces is extremely useful in many industrial design flows and the
proposed methodology does not impose particular requirements and it is able to
fit in existing design flows: the proposed approach is based on coupling a
commercial simulator with a genetic algorithm that tries to disprove the
equivalence of an implementation with its high-level prototype. The use of a
commercial simulator guarantees a complete compatibility with current
standards and the method is able to fit painlessly in an existing industrial flow.
Moreover, the use of a genetic algorithm allows the analysis of large and
realistic designs. Experimental results show that the proposed method is
effectively able to deal with realistic designs, discovering potential problems,
and, although approximate in nature, it is able to provide a high degree of
confidence in the results.

1 Introduction

The development of protocol interfaces is a challenging task due to the increasing
complexity of both digital circuits and protocol specifications. Starting from the
protocol requirements (usually provided as a set of natural-language statements),
common design flows include several steps (sketched in Figure 1) before producing
the final, low-level hardware implementation of a protocol interface.

In the first steps, it is usual to prepare an abstract prototypical description of the
interface in some high-level hardware description language; this description should
then be validated to check if it is coherent with protocol requirements. This
description neglects many details and optimizations, but it fully reflects the
functionality of the interface. The validation process is commonly carried out by
including some checks in the design and simulating the interface with functional test
patterns. Alternatively, validation can be performed using model checkers, or other
programs, although, in this case, it is necessary to suitably express protocol
characteristic and designers tend to be unwilling to learn new formalism, such as
temporal logics.

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 182−192, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Unfortunately, these descriptions are often not directly synthesizable, in the sense
that it is not possible to derive directly and in an automated way the low-level
description of the interface implicitly from the high-level one. Designers have to
develop it with some manual transformation and checking the equivalence of the two
descriptions is a critical issue that requires an accurate analysis in order to test
whether all the characteristics of the high-level specification are correctly
implemented.

PROTOCOL
SPECIFICATIONS

HIGH-LEVEL
SPECIFICATION

LOW-LEVEL
IMPLEMENTATION

Coherent with
protocol
specifications?

Equivalent to
high-level
design?

Figure 1: Common Protocol Interface Design Flow

Consequently, two different types of checks are involved in the development of a
protocol interface: validating the correctness of the high-level interface with respect to
protocol requirements, and verifying the equivalence of the high-level specification of
the interface with the low-level one. This paper addresses the second problem,
proposing a methodology for checking the equivalence that is applicable to a wide set
of descriptions and able to fit almost painlessly in an existing design flow.

An important characteristic of the high-level prototypical specifications is that,
while non-synthesizable, they are usually executable (designers typically test them by
simulation). The proposed method uses the possibility of executing these descriptions
to heuristically check their equivalence with the low-level implementations. Thus, the
method does not require to write any custom model in ad-hoc languages.

At the present time, exact equivalence verification of a large high-level system
with respect to its low-level implementation is beyond the state of the art. Therefore,
we propose a partial solution to this problem, which sacrifices exactness in favor of
applicability. Indeed, all verification systems shall be considered not exact when run
on a computer system. In practice, there is always the case that the tool runs out of
memory or available CPU time before delivering a result. In our method, we simply
give up exactness explicitly: we develop an approximate equivalence verification
algorithm that is not always able to produce an answer, but is able to deal with
sequential equivalence between high-level specifications and their low-level
implementations.

The proposed approach belongs to a brand new framework that can be called
approximate equivalence verification. Given the two circuits, approximate
equivalence verification techniques employ simulation driven by heuristic algorithms
to seek a counterexample of the equivalence to be proven, i.e., an input pattern able to
produce an output behavior in one system different from the one produced by the
other. Thus, they can only provide negative responses (using these techniques, no
equivalence can ever be proved), and there is no mathematical certainty that the

183Approximate Equivalence Verification for Protocol Interface Implementation

counterexample, if it exists, will eventually be found by the algorithms. Nevertheless,
experimental results show that in many practical cases the confidence obtainable with
such methods on the whole set of real circuits can by higher than the one obtainable
with more traditional, formal approaches.

In recent times, approximate equivalence verification techniques are achieving
increasing interest in the research community. Two techniques able to deal with real-
sized circuits described at low-level have recently been proposed [4] [5]. Both
approaches are based on the same low-level simulator, but they implement completely
different evolutionary algorithms to seek a counterexample. In those works,
approximation techniques were shown to successfully complement the results
obtained by exact techniques, thus improving the overall quality of the verification
process. The problem of equivalence verification of one system described at the RT-
level and one described at the gate-level was engaged in [7], while the problem of
equivalence verification of two systems described at the RT-level was tackled in [6].

The paper describes VEGA.PI (Verification of Equivalence through Genetic
Algorithm of a Protocol Interface), a new approach for checking the equivalence of a
generic high-level prototype and its low-level implementation. VEGA.PI exploits the
analysis of internal activity of the low-level description, and it can take advantage
from designers’ knowledge for identifying known correspondences in the two
descriptions.

Experimental results show that the proposed approach is effectively able to verify
large and realistic circuits, discovering problems in the design process. Furthermore,
another set of experiments, performed on smaller circuits and compared with an
equivalence verification algorithm based on exact techniques, showed that VEGA.PI
is able to provide results with a high degree of confidence despite its approximate
nature.

The paper is organized as follows: Section 2 describes the algorithm, with
particular emphasis to the heuristic; Section 3 contains the experimental evaluation of
a prototype; Section 4 concludes the paper.

2 The VEGA.PI Algorithm

For the purpose of this paper, we chose to describe protocol interfaces as VHDL
processes. VHDL is widely adopted in industrial design flows, and it is ideal to
describe protocol interface specifications, since it is well known by designers and it
allows to easily include checks in the form of assert statements directly into the
description.

Given two descriptions, a distinguishing sequence is an input pattern able to
produce an output behavior in one system different from the one produced by the
other. In this paper, we assume that both circuits start from the reset state. If such a
sequence exists, an equivalence verification tool should be able to provide it as a
counterexample; otherwise, it should provide the proof of its non-existence. The
approximated approach presented in this paper will never be able to provide non-
existence (i.e., circuit equivalence) proofs, but is meant to be effective in finding the
counterexample, when existing. Experimental results will show that, even with this
limitation, the degree of confidence that the approximated result can provide is quite
high.

184 F. Corno, M. Sonza Reorda, and G. Squillero

An important fact to emphasize is that both descriptions share the concept of
temporization and vectors composing sequences are applied simultaneously. Thus, we
are assuming that both systems use the same clock.

Given two descriptions that are to be proven equivalent, the information needed by
VEGA.PI is the list of corresponding primary inputs and primary outputs (that must
coincide in the two descriptions). The designer has also the opportunity to specify a
set of checkpoints, i.e., mappings between VHDL signals or variables and netlist lines
that should correspond in the two implementations. Usually, checkpoints are limited
to a subset of the memory elements, and it is straightforward to identify them, for
instance knowing the convention adopted by the synthesis tool for assigning gate
names from RT-level signal names.

Checkpoints are only used as hints to the algorithm, and their functional
equivalence is not assumed, thereby allowing the user to take benefit even from
partial or hypothetical correspondences. The higher number of checkpoints the
designer is able to provide, the more effective the heuristic algorithm is in evaluating
sequences. In the worst case, if no checkpoints are provided, a pure black box
verification is performed.

During verification, the RT-level description is considered as an almost black box,
where primary inputs are controllable and primary outputs and checkpoints are
observable. On the contrary, the internal behavior of the gate-level description is
completely accessible by the tool. The genetic algorithm aims at deriving a sequence
that causes a difference on the primary outputs, and it guides the search by analyzing
the differences that may appear on the checkpoints and by monitoring the internal
activity of the gate-level circuit.

VEGA.PI adopts a heuristic search algorithm for constructing the distinguishing
sequence (as other approximate equivalence verification algorithms); therefore, the
more it runs without finding a counterexample, the likelier it does not exist. In this
way designers are able to easily trade off CPU time with confidence on the result.

GENETIC
ALGORITHM

LOW-LEVEL

SIMULATOR

HIGH-LEVEL

SIMULATOR

STUB STUB

sequence

primary outputs
checkpoints

primary outputs
checkpoints

internal behavior

Figure 2: VEGA.PI Architecture

The architecture of VEGA.PI is shown in Figure 2. VEGA.PI constructs
counterexamples through a genetic algorithm (detailed in the next Section) which
exploits information coming from the simulation of sequences. The genetic algorithm
uses two different stubs to communicate with different simulators, one for gate-level

185Approximate Equivalence Verification for Protocol Interface Implementation

descriptions and one for RT-level descriptions. These two stubs have different
characteristics because the required interaction is different: the gate-level simulator
must be highly customizable, since the internal state of the circuit is heavily observed
during the simulation. On the contrary, the main requirement for the RT-level
simulator is to be fully compatible with the VHDL standard. For this reason, we
propose the adoption of commercial tools that, while sacrificing some ability to
interact with the simulation, guarantee more applicability.

3 The Genetic Algorithm

Evolutionary Algorithms aim at applying techniques derived from biological
systems, in particular Natural Selection, to search and optimization problems.
VEGA.PI, in particular, uses a specific type of evolutionary algorithm, called Genetic
Algorithm (GA). GAs were first introduced by Holland in [10] and they are today well
known to be suited for finding nearly optimal solutions of very large problems [8].
Moreover, the use of a GA for generating input sequences has already been widely
exploited in the literature (e.g., for Automatic Test Pattern Generation [[2] [12] [11]).

The goal of the GA in VEGA.PI is to discover a distinguishing sequence, i.e., an
input pattern able to produce an output behavior that is different in the two systems
being compared. The GA evolves a population of sequences, i.e., binary vectors to be
applied to the circuit primary inputs in consecutive clock cycles starting from the
initial state.

Each sequence is characterized by its fitness, i.e., its closeness to the goal. The goal
is to excite some internal differences and to propagate them to a primary output of the
circuit. In the algorithm, the goal can be rephrased as follows: excite all possible
behaviors in the circuit while trying to retain any difference found in some
checkpoints. The following fitness function F(s) for a sequence s is thus used in
VEGA.PI:

()∑
=

⋅−⋅+⋅+⋅=
)len(

1

*)(
s

i
iiii UACCsF δγβα

where the sum extends over all the len(s) vectors of the sequence s. After simulating
the i-th vector in sequence s:

• Ci is the number of checkpoints where the two circuits assume a different
value for the first time

• C*

i is the number of checkpoints already counted in Ci-1 or in C*

i-1 whose
difference is still present after the current vector

• Ai is the gate-level circuit activity, i.e., the number of gates and flip-flops
which have assumed a binary value never assumed before

• Ui is equal to 1 if the vector is useless, i.e., if all Ci, C
*

i, and Ai are equal to 0.
Otherwise it is equal to 0.

The coefficients α > β > γ > δ set the relative importance of the sub-goals, in
decreasing order: forcing new differences on checkpoints; retaining differences on
checkpoints; letting the circuit explore new configurations; avoiding useless vectors.

Since all Ci, C
*

i, and Ai count an event only the first time it occurs, the coefficient δ
has the effect to penalize long sequences: vectors that are not able to force new

186 F. Corno, M. Sonza Reorda, and G. Squillero

differences on checkpoints neither to explore new configurations receives a negative
value.

During evolution, sequences mate and mutate to generate new sequences in the
population and best sequences are selected for survival on the basis of their fitness
function. Using this mechanism, sequences in the population tend to become fitter and
fitter as generations pass.

The mating of sequences is performed through crossover operators, that select two
parents and generate a new sequence by taking random parts of each parent; four
crossover operators are defined in VEGA.PI and they are chosen with equal
probability:

• Horizontal 1-cut crossover: the new sequence is composed of some vectors
coming from either parent, according to the position of one cut point randomly
generated in the first individual (x1), and another one randomly generated in
the second (x2).

• Horizontal 2-cut crossover: the new sequence is composed of some vectors
coming from either parent, according to the position of two cut points
randomly generated in the first individual (x1 and x2). The length of the new
sequence is the longest between the two parent ones.

• Horizontal uniform crossover: each vector in the new sequence is taken
randomly from the first or from the second parent. The length of the new
sequence is the longest between the two parent ones.

• Vertical uniform crossover: each vector in the new sequence inherits some
bit columns from the first parent and some from the second. The length of the
new sequence is the longest between the two parent ones: inputs taken from
the shortest parent are completed with random values where needed.

Sequences can also undergo mutation, where some bits are randomly modified,
inserted, or deleted. Three mutation operators are implemented in VEGA.PI and are
selected with equal probability:

• Change mutation: a vector in the sequence is replaced with a new randomly
generated one.

• Add mutation: a random vector is added in a random position, shifting
forward the subsequent vectors.

• Delete mutation: a randomly selected vector is removed from the sequence,
shifting backward the subsequent vectors.

Individuals are selected for applying genetic operators using the roulette wheel
technique on their linearized fitness: sequences with higher fitness are likelier to be
selected for crossover or mutation, so that good sequences are given more chances to
generate better ones. Evolution continues until a distinguishing sequence is found,
until a maximum predefined number of generations has been stepped through, or until
the system has reached stability (i.e., no fitness improvements are recorded for a
given number of generations).

3.1 Implementation

A prototypical implementation of VEGA.PI has been developed using the ANSI-C
language. VEGA.PI includes the genetic algorithm and the two separate stubs and
amounts to about 2,000 lines of code.

187Approximate Equivalence Verification for Protocol Interface Implementation

For simulating the gate-level description, we adopted an in-house developed,
2-valued, event-driven, gate-level simulator. The stub allows examining the internal
state of each gate during simulation.

The adopted parameters for the fitness function are shown in Table 1.

Table 1: Parameter Values

Parameter Value Meaning
α # of gates Weight for exciting a difference on a checkpoint

β
10

α
Weight for keeping a difference on a checkpoint

γ 1 Weight for exploring new configurations
δ 1 Penalty for useless vectors

The GA simulates a population of 30 individuals, creating 15 new individuals at
each generation (thus preserving the best half of the population). Mutation or
crossover operators are chosen with equal probability (50%). The maximum number
of possible generations was set to 300, and the system is assumed to have reached
stability after 30 generations without any fitness improvements.

To avoid any limitations in the syntax of the descriptions, for simulating RT-level
descriptions we choose a commercial VHDL simulator: V-System 5.1 developed by
Model Technology. For the sake of efficiency, VEGA.PI runs the simulator as a
concurrent process and communicates with it via unix pipes or sockets. The
developed stub can be accommodated to interact with different simulators.

4 Experimental Evaluation

To evaluate VEGA.PI, two different sets of experiments were performed. The first
set of experiments aims at evaluating the confidence of the results provided by
VEGA.PI. The second shows the efficacy of VEGA.PI for validating the output of a
synthesis tool in presence of designer errors.

All experiments were performed on Sun SPARC-Stations 5 with 64 Mbytes of
memory, running SunOS 4.1.4.

4.1 Confidence Evaluation

VEGA.PI was used to disprove equivalence of high-level specifications with their
gate-level implementations in presence of errors. The adopted error model aims at
mimicking small and subtle mistakes: first an high-level description is synthesized;
then a random fanout-free region (FFR) is selected from the gate-level description,
and a randomly chosen single bit in its truth table is flipped; finally, the updated FFR
is synthesized back in the description. Since no checks are performed to determine if
the input configuration for the flipped bit is sequentially reachable or to determine if
the flipped bit is sequentially observable, descriptions are often sequentially
equivalent even after the modification.

188 F. Corno, M. Sonza Reorda, and G. Squillero

To evaluate the confidence of the result, VEGA.PI is compared with AQUILA [9],
a state of the art equivalence verification tool. This tool is not able to handle high-
level descriptions, thus, it was used to verify the equivalence between the original
gate-level implementation and the modified one. The complete experimental flow is
sketched in Figure 3.

RT-level
Description

synthesis

FFR modifiergate-level
Description

gate-level
Description

VEGA-RT

AQUILA

Figure 3: Experiment Flow

Some benchmark descriptions have been selected among publicly available VHDL
synthesizable descriptions [1]. Their characteristics are summarized in Table 2.
“#VHDL lines” and “#GATES” report the size of the specification and of the
implementation, respectively. Last three columns better detail benchmarks, in term of
number of memory elements (“FF”), primary inputs (“PI”) and outputs (“PO”).

Table 2: FFR Benchmark Characteristics

circuit #VHDL lines #GATES #FF #PI #PO
 b06 128 66 9 4 6
 b08 89 168 21 11 4
 b13 296 309 53 12 10

Table 3 reports experiment results. In the first column (“Circuit”) the name of the
circuit is showed. The first column group describes the characteristics of the FFR
selected for injecting the fault: the output gate name (“stem”), the number of gates
belonging to the FFR (“size”) and the number of its inputs (“#in”). The next column
group contains the different answers given by the two different tools to the question
“is the modified circuit equivalent to the original one?”. VEGA.PI is an approximate
algorithm, thus the answer can be “NO” (a counterexample was found) or “probably”
(since no distinguishing sequence has been found, the circuits should be assumed
equivalent). AQUILA is an exact tool and it is able to provide both answers: “YES”
(proven equivalent) and “NO” (proven different). Unfortunately, for the largest circuit
it fails due to memory explosion without providing any answer. Finally, column
“CPU” reports the seconds of CPU time consumed by VEGA.PI.

189Approximate Equivalence Verification for Protocol Interface Implementation

Table 3: Experimental Results

stem size #in VEGA-RT AQUILA
b06 U206 9 6 NO NO 10.0
b06 U206 9 6 NO NO 3.0
b06 U208 6 4 NO NO 6.0
b06 U208 6 4 probably YES 1,014.0
b08 U331 17 11 probably YES 625.1
b08 U331 17 11 NO NO 122.2
b08 U332 17 10 NO NO 95.6
b08 U332 17 10 probably YES 1,102.0
b08 U334 26 16 probably YES 1,595.2
b08 U334 26 16 probably YES 1,366.6
b13 GT_255_U5 11 7 NO unknown 96.7
b13 GT_255_U5 11 7 NO unknown 546.8
b13 U695 6 4 NO unknown 430.8
b13 U695 6 4 NO unknown 637.6
b13 U697 7 4 NO unknown 9.0
b13 U697 7 4 NO unknown 489.0
b13 U710 8 4 NO unknown 420.0
b13 U710 8 4 NO unknown 5.0
b13 U755 5 3 probably unknown 1,526.0
b13 U755 5 3 probably unknown 1,210.0
b13 U826 7 4 probably unknown 830.9
b13 U826 7 4 probably unknown 769.7

FFR
Circuit CPU [s]

EQUIVALENT?

Experimental results show that results provided by VEGA.PI have a high degree of
confidence. When AQUILA demonstrates the non-equivalency, VEGA.PI is always
able to find a valid distinguishing sequence: in no case the exact tool contradicts the
hypothesis made by VEGA.PI.

It should be noted that the main goal of VEGA.PI is to deal with RT-level designs
without imposing severe syntax limitations. Thus, the proposed approach sacrifices
some efficiency in the interaction with the simulators to guarantee more applicability.
It can be noted that, when verifying small descriptions, the overhead caused by the
two stubs is significantly big. However, on larger descriptions almost all CPU time is
used to run simulations, and simulation time, usually, does not increase exponentially
with circuit complexity.

4.2 Verification of Synthesis Results

To evaluate VEGA.PI on realistic problems, we tested it on two high-level
descriptions of simplified microprocessors realized by students, where the critical part
is the correctness of the bus interface. Students were not experienced designers, and
the resulting VHDL specification contains ambiguous statements that may cause a
misinterpretation. As a result, the gate-level implementation does not correctly
implement protocol specifications.

190 F. Corno, M. Sonza Reorda, and G. Squillero

Table 4: Microprocessors Benchmark Characteristics

circuit #VHDL lines #GATES #FF #PI #PO
p-viper 518 3,461 247 34 54
p-80386 648 6,931 447 37 70

Table 4 summarizes the characteristics of the benchmarks in terms of number of
VHDL lines and the number of processes. For the gate-level descriptions Table 4
reports the number of gates, flip-flops, primary inputs and primary outputs. For both
circuits, VEGA.PI disproves the equivalency of the RT-level with the synthesized
gate-level implementation, thus exposing a problem in the synthesis step.

In each case, by analysis of the provided counterexample, the students were able to
pinpoint the location of the problem in the VHDL code. For the p-viper circuit, an
assignment of a 32-bit signal (declared as a VHDL integer) to a 20-bit variable
(declared as integer range 2**20-1 downto 0) caused an inconsistency in
the upper bits of the variable, since in the netlist they were not present. In the p-80386
benchmark, the pointer registers in the FIFO instruction queue were compared as
signed values in the VHDL source (since they were declared as integer range)
and as unsigned values in the netlist (since the synthesizer inferred that they always
contained positive values, i.e., addresses).

The errors were corrected by inserting a truncation operator in p-viper to drop the
upper bits in the VHDL, too, and by declaring the address pointers as unsigned in
p-80386.

5 Conclusions

This paper presented a new approximate approach for verifying the equivalence of
an RT-level design with its gate-level implementation. This task is particularly
important when designers deal with circuits (or sub-circuits) implementing protocols;
in this case, equivalence between the implementation and its high-level specification
has to be carefully verified. This verification would significantly benefit several
design steps, if the methodology do not impose particular requirements. The proposed
approach is based on coupling a heuristic algorithm with a commercial VHDL
simulator and an in-house developed gate-level simulator, thus the proposed method
guarantees a complete compatibility with VHDL standards and it is able to fit
painlessly in an existing industrial flow.

Experimental results show that the proposed approach is effectively able to verify
large and realistic RT-level designs, discovering problems in the synthesis process.
Furthermore, another set of experiments, performed on smaller descriptions and
compared with an exact equivalence verification algorithm, showed that VEGA.PI is
able to provide results with a high degree of confidence despite its approximate
nature.

191Approximate Equivalence Verification for Protocol Interface Implementation

6 References

1. Circuits downloadable at http://www.cad.polito.it/tools/
2. F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda , “GATTO: a Genetic Algorithm

for Automatic Test Pattern Generation for Large Synchronous Sequential Circuits” , IEEE
Transactions on Computer-Aided Design, Vol. 15, No. 8, August 1996, pp. 991-1000

3. F. Corno, P. Prinetto, M. Sonza Reorda, “Testability analysis and ATPG on behavioral
RT-level VHDL,” IEEE International Test Conference, 1997, pp. 753-759

4. F. Corno, M. Sonza Reorda, G. Squillero: “VEGA: A Verification Tool Based on Genetic
Algorithms,” IEEE International Conference on Circuit Design, Texas, 1998, pp. 321-326

5. F. Corno, M. Sonza Reorda, G. Squillero, “Approximate Equivalence Verification of
Sequential Circuits via Genetic Algorithms,” poster in DATE’99 Design, Automation and
Test in Europe, 1999

6. F. Corno, M. Sonza Reorda, G. Squillero, “Approximate Equivalence Verification
Techniques for RT-Level Descriptions,” submitted to: GLSVLSI’99, Great Lake
Symposium on VLSI, 1999

7. F. Corno, M. Sonza Reorda, G. Squillero, “Approximate Verification of RT- versus
Gate-Level Sequential Circuits”, submitted to: DAC’99, ACM/IEEE Design Automation
Conference, 1999

8. E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine Learning,”
Addison-Wesley, 1989

9. S.-Y. Huang, K.-T. Cheng and K.-C. Chen, “AQUILA: An Equivalence Verifier for Large
Sequential Circuits,” ASP-DAC, 1997

10. J. H. Holland, Adaption in Natural and Artificial Systems, University of Michigan Press,
Ann Arbor, MC (USA), 1975.

11. M.S. Hsiao, E.M. Rudnick, J.H. Patel, “Automatic Test Generation Using Genetically-
Engineered Distinguishing Sequences,” IEEE Transactions on Computer-Aided Design,
Vol. 16, N. 9, September 1997. pp. 1034-1044

12. D. G. Saab, Y. G. Saab, J. A. Abraham, “Automatic Test Vector Cultivation for Sequential
VLSI Circuits Using Genetic Algorithms,” IEEE Transactions on Computer-Aided
Design, Vol. 15, N. 10, October 1996, pp. 1278-1285

192 F. Corno, M. Sonza Reorda, and G. Squillero

Evolving Routing Algorithms with the
JBGP-system

Eduard Lukschandl1, Henrik Borgvall2, Lars Nohle2, Mats Nordahl2, Peter
Nordin2

1 Ericsson Hewlett-Packard Telecom AB, P.O. Box 333, S-431 24 Mölndal, Sweden
2 Institute of Physical Resource Theory, Chalmers University of Technology, S-412 96

Göteborg, Sweden

Abstract. This paper describes work in progress where we apply Ge-
netic Programming to the problem of finding routing algorithms in telecom-
munication networks, using a network simulator and the Java Bytecode
Genetic Programming System being developed at the EHPT lab.

1 Introduction

Circuit switched communication networks consist of switches connected by links.
Normally, the topology of the network only contains connections from a switch to
a small number of its neighbours. This means that a phone call originating in one
switch and destined for a non-neighbour has to be routed via other switches. The
routing problem consists in chosing algorithms for routing calls in a network with
limited node and link capacities. Network operators lose substantial amounts of
money because calls do not reach their destination. One of the reasons for this is
that switches may get overloaded, blocking the attempted call, so that the caller
gets a busy signal. A number of new techniques from artificial intelligence, such
as artificial neural networks, genetic algorithms, and ant-like agents have been
tried in attempts to improve routing algorithms.

Today, routing in telecommunications networks is often done by using a rout-
ing table to decide to which neighbouring switch a certain call should be routed.
A routing table is a mapping from the set of all possible destination switches
(determined, e.g., by the area code) to the set of neighbouring switches of the
node in question. The routing tables are usually static, i.e., they are defined as
part of the network configuration process, and are only rarely changed after that.
A routing table may contain alternative choices, so that if the first neighbour
chosen is overloaded the call is routed to the second choice listed in the routing
table, and if the second neighbour is also overloaded, an alarm to a human op-
erator may be generated. The operator has two alternatives: blocking the call,
or manually (and temporarily) updating the routing table. Considerable losses
may occur because the operator usually chooses the blocking alternative.

The aim of this project is to use GP to learn routing functions for telecom-
munication networks, utilizing the Java Bytecode GP framework developed by
the group. Both static and dynamic routing will be considered in the project.

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 193−202, 1999.
 Springer-Verlag Berlin Heidelberg 1999

2 Genetic Programming

An evolutionary algorithm maintains a population of structures such as computer
programs, or binary strings. These are bred much like dogs or cattle, selecting for
some desirable feature with a large number of generations passing each second.
In this way one can breed computer programs that solve problems that no hu-
man programmer can solve, using completely new and innovative programming
techniques.

One approach to evolutionary algorithms is Genetic Programming (GP) [4],
which lets the computer program itself by evolving programs, e.g., in machine
code. An overview is given in [2]. This method can be used, e.g., when theories
are lacking, and a system cannot be designed from first principles, or when there
is no time for human programming and complete programs have to be written
in a few seconds in order to adapt to new situations.

Since its introduction in 1992 GP has been used to solve a number of hard
problems, e.g., in speech and image understanding, robotic control and pattern
finding. Most of the programs generated are difficult to analyze, and it is evident
that the computer creates programs for itself in a very different way than human
beings. However, some analyzable parts show impressive, ingenious and creative
use of computer resources in solving a hard problem.

GP has not yet been extensively applied to routing problems in telecommu-
nications networks (one exception is given by ref. [3, 8]).

3 The system

The system is built around a network simulator that allows us to model a network
and the features we are interested in, such as telephone call patterns, and routing
algorithms, and to study properties of the system such as the load inflicted on
a switch when establishing a route, and the number of calls lost due to switch
overloading.

The simulator simulates the behaviour of people making phone calls via the
network for a certain period of time. Initially, very simple stochastic models
have been used to generate calls, but the aim of the project is to move to more
realistic models based on real data.

In general, the simulator can take into account various limitations built into
the system, such as

– The nodes contain one or several limited resources.
– Data processing in the nodes may take a certain amount of time.
– Links between nodes may have limited transportation capacity.
– Data transmission along the links may take a finite amount of time.

In the initial runs described below, we restrict ourselves to the case of un-
limited link transmission capacity, zero transmission time, and a single resource
at each node that is used during the duration of a call and models a resource
like buffers or ports (another example of a resource might be a processing unit

194 E. Lukschandl et al.

that is only used while connecting and disconnecting a call). This means that
connecting and disconnecting calls takes zero time and zero resources.

In each node of the network, there is a single information processing and
routing entity. This software entity or program gets input from an environment
and processes it. It may produce an output, affect its environment, and/or change
its state if equipped with internal memory. It could more formally be described
as an finite automaton or Turing machine equipped with actuators.

Fig. 1.: Schematic view of a node.

The environment contains of a number of such routing entities, each one
representing a node in a communication network of predefined topology. The
nodes are linked to each other by connecting the actuators of the routing program
with the sensors of the other routing programs. All links are defined as being
bi-directional.

3.1 The Call Simulation

We simulate the behaviour of people making telephone calls via the network for a
certain period of time. The calls consist of normal circuit switched connections.
The simulator contains an event queue and a clock or counter simulating the
progress of time. There are two basic kinds of events: call-connect events and
call-disconnect events. A large number of random calls are generated before the
simulation starts. These calls are then sorted and fed into the simulated network.
Calls are taken from the event queue and dispatched to the appropriate node.

The following tasks are performed when a call, or call-connect event, arrives
at a network node:

– If the load capacity of node is exceeded then the call fails and we update the
counter for failed and blocked calls. The information about the failed call is
propagated backwards in the net decreasing the load of earlier nodes.

195Evolving Routing Algorithms with the JBGP-System

– If it is detected that this call already has passed the node then the call fails
due to circular routing. The failure counter for circular calls is updated and
infomation is propagated backwards just as for the blocked call.

– If none of the problems above are encountered the call is considered successful
and if the node is the destination node of the call then the success is noted
and a call-disconnect is scheduled after the prescribed time.

– If the node is not the destination node the routing program is used to foward
the call to a neighbouring node.

A call-disconnect event causes the load of the nodes in question to be decre-
mented.

3.2 The Evolutionary System

The genetic programming framework used to represent the routing programs is
the Java Bytecode GP system developed at EHPT. Descriptions of this system
are given in [5, 6]. For the purposes of our current research we have streamlined
it to evolve functions, represented as Java methods in bytecode format, that take
only numbers as parameters and return only numbers. Thus the instructions used
in the programs are a subset of the JVM instruction set. Technically speaking,
this GP-engine is a Java method evolver (JME).

When the system is run, the JME asks the environment to evaluate the
individuals of the population, i.e. the candidate methods, by calling the environ-
ment’s evaluate-method and passing it the individual (method) to be evaluated.
The environment takes the individual and plugs it into the processor-slot of one
or more nodes of the network. Then a simulation run starts and the calls are
dispatched by the scheduler and routed according to the program of the individ-
ual. During the simulation various values are collected, such as number of failed
calls or the money earned. From these values in different experiments fitness
values can be computed which are returned to the JME. In the initial version

Fig. 2.: The relationship between JME and the environment.

of the system, one algorithm is evolved for each class of nodes with a certain
out-degree. The algorithms initially have access to information about the load
at neighbouring nodes, possibly information about distance to the goal for the

196 E. Lukschandl et al.

different neighbours, or other local information. The task of the system is to
find routing algorithms for each node type that optimise the performance of the
system, measured either by the number of lost calls for a certain call sequence or
a variety of call sequences, or by the revenue with different price tags on different
calls, e.g., differentiating between local, long distance, and international calls.

In another version of the system, separate algorithms will be evolved at each
node of the network, which means having a population at each node, where each
individual program is tested for a fairly short time. Similar strategies have been
successful when using GP for robot control (e.g., [7]), and it will be interesting
to attempt to extend these ideas to a multi-agent situation. This version will
provide an interesting testing ground for different ideas on credit assignment.

4 Experiments

4.1 Restrictions in the Model

In these initial experiments we made the following choices of parameters and
restrictions compared to the final objectives:

– The network used was based on the Synchronous Digital Hierarchy network
of British Telecom used as a test case by Schoonderwoerd and others [1, 9].
In the intial experiments we have however reduced the network topology by
taking only a subset consisting of the 13 northernmost nodes of the network
into account, see Figure 1.

– The number of calls was 250 per simulation, evenly distributed over 250 time
units.

– The mean call duration was 20 time units.
– The number of call patterns was held to one: all nodes have the same prob-

ability of being the source of the calls and the same probability of being the
destination.

– The load capacity of the nodes was set to 8.

We also made a few other simplifications, e.g., we did not use any state vari-
ables or internal memory in the nodes. Furthermore all knowledge transmission
was considered to be instantaneous, and we did not consider any topological
differences between nodes. This paper describes initial experiments showing the
basic feasibility of the experiments but the evaluations are not, at present, ex-
tensive enough to enable statistically significant conclusions.

4.2 Experiment Setup

The following experiments were performed:
In Experiment A each node ran a routing program. The output of this node-

internal routing program specified the target neighbour node of an incoming call,
so that each node could directly tell which of its neighbouring nodes it should
route to. The input parameters to the routing program in each node were the

197Evolving Routing Algorithms with the JBGP-System

Fig. 3.: The northen part of the SDH network of British Telecom.

destination node, the loads of the neighbouring target nodes, and their distances
to the destination node. Preliminary evaluations showed that this approach was
computationally expensive and complex to evolve, and the remaining experi-
ments were performed in a quite different manner:

A node which wants to know which neighbouring node to route to does the
following. It asks each of the neighbouring nodes to run a ”busyness program”
and return a busy-factor to the asking node. The node then simply choses the
neighbouring node with the lowest busy-factor. We performed three different
experiments with this set-up:

– Experiment B: The input parameters to an evolved ”busyness program” were
the load of a node, and its distance to the destination node of the call to be
routed. The number of lost calls was minimised.

– Experiment C: The input parameters were the load of a node, and its distance
to the destination node, as above. But in these experiments, calls to a certain
node were given a tenfold value compared to the other calls. In this case, the
revenue was maximised.

– Experiment D: The input parameters were the load of a node, and its dis-
tance to the destination node, as above; and in addition, a value, either 1 or
10, of the call to be routed. The revenue was maximised.

198 E. Lukschandl et al.

In all experiments we used the following GP-parameters:

– number of individuals: 500

– cross-over rate: 85%

– mutation rate: 5%

– percentage of randomly chosen individuals copied: 5%

– percentage of best individuals copied: 5%

5 Results

The following results were observed:

Experiment A: This experiment was abandonded as described above.

Experiment B: In this case the objective was minimising the number of lost
calls using the load and distance to the destination as parameters. The exper-
iment was performed over 100 generations, which means that a total of 50000
individuals were evaluated, or in other words that 50000 simulations of 250 calls
between 13 switches were run.

As can be seen in Figure 4 the problem is quite amenable to random search,
and the best of the 500 randomly generated algorithms in the initial generation
causes the loss of 7.6% of the 250 calls, i.e., 19 calls. Furthermore we conclude
that the improvement over time in the evolutionary process is rather moderate
leading to a call loss of 6.8% after 100 generations.

The function associated with the best simulation can be expressed as follows:

L(
1

2
d+ 2 +

1

2
d(d+ L/(d− L2)) + d (1)

where L is the load relative to the maximum load, and d is the distance to the
destination. Most of the calls are lost because of blocking situations.

Experiment C: In this case the objective was maximising the revenue using
the load and distance to the destination as parameters, see Figure 5. An in-
teresting observation in this experiment is that the percentage of lost calls is
higher than in Experiment B, 8% after 80 generations compared to 6.8%. But
as can be seen in Figure 7 showing the revenue, the amount of money earned
at generation 80 is 410 units for 230 calls, compared with 404 units for the 233
successfully routed calls in Experiment B. This suggests that the algorithm is
able to discriminate between normal and expensive calls, without having explicit
knowledge about the price, and only getting implicit information via the fitness
value.

Experiment D: Here the objective was maximising revenue using the load, the
distance to the destination, and the price of the call as parameters. The results
are shown in Figure 6. As expected, providing the algorithm with the price
parameter and maximising revenue leads to even better performance revenue-
wise, while the percentage of lost calls is the same as in Experiment B.

199Evolving Routing Algorithms with the JBGP-System

Fig. 4.: Experiment B: Minimising the number of lost calls.

Fig. 5.: Experiment C: Maximising the revenue using two para-
meters.

6 Conclusion and Discussion

The preliminary results show that Genetic Programming is a feasible method
for the induction of routing algorithms and possibly a viable alternative to other
methods. The flexibility in adding arbitrary parameters, such as the price of
calls, and the ease of introducing the evolved algorithm into a running system,
encourage us to continue with this line of research.

In future work we will extend this work to study networks of more realistic
size (such as the complete SDH network mentioned above). We also intend to
study the performance of the algorithms under the influence of non-random call-

200 E. Lukschandl et al.

Fig. 6.: Experiment D: Maximising the revenue using three para-
meters.

Fig. 7.: The revenue from experiments B-D.

patterns (e.g., more calls originating from one node or more calls destined for
one node), in particular call-patterns taking more statistical features of real data
into account.

We will also investigate the sensitivity of the algorithm to topology changes
in the network, such as broken links or nodes, where the genetic approach may
turn out to be useful in relearning and adapting the routing algorithm.

The experiments should also be extended to make the results truly statis-
tically significant. The simulation itself could easily be parallelized (the system
can already run transparently across a network in a distributed fashion). We

201Evolving Routing Algorithms with the JBGP-System

will also carry out experiments where the programs are expressed in binary ma-
chine code, which will both improve speed in the evolution and be essential for
applications in real problem domains. The efficiency could also be further im-
proved by the use of time parsimony, i.e., including execution speed as part of
the fitness function. The results should of course also be compared more care-
fully against other approaches, from simple routing tables to more complicated
adaptive methods.

References

1. Appleby, S., Steward, S. : Mobile Software Agents for Control in Telecommunication
Networks, BT Technology Journal, 12(2) (1994).

2. Banzhaf, W., Nordin, P., Keller R.E., Francone, F.D. : Genetic Programming - An
Introduction. Morgan Kauffmann, San Fransisco, and d-punkt, Heidelberg, Ger-
many (1998).

3. I. M. A. Kirkwood, S. H. Shami, and M. C. Sinclair: Discovering simple fault-tolerant
routing rules using genetic programming. ICANNGA97, University of East Anglia,
Norwich, UK, (1997).

4. Koza, J.R : Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press (1992).

5. Lukschandl, E., Holmlund, M., Modén, E.: Automatic Evolution of Java Byte-
code: First Experience with the Java Virtual Machine: Late Breaking Papers at
the First European Workshop on Genetic Programming (EuroGP’98) Paris, 14-15
April (1998).

6. Lukschandl, E., Holmlund, M., Modén, E., Nordahl. M., Nordin, P. :Induction of
Java Bytecode with Genetic Programming. Late Breaking Papers at the Genetic
Programming Conference. J.R. Koza (ed.), University of Wisconsin, July 22-25.
Stanford, CA: Stanford University Bookstore (1998).

7. Nordin, P., Banzhaf, W. :An On-Line Method to Evolve Behaviour and to Control a
Minature Robot in Real Time with Genetic Programming. Adaptive Behavior 5(2)
(1997) 107-140.

8. Shami, S. H. , Kirkwood, I. M. A. , Sinclair, M. C.: Evolving simple fault-tolerant
routing rules using genetic programming. Electronics Letters, 33(17) August (1997)
1440–1441.

9. Schoonderwoerd, R., Holland, O.E., Bruten, J.L., Rothkrantz, L.J.M.: Ant-like
Agents for Load Balancing in Telecommunication Networks. Agents’97, Marina del
Ray CA, USA (1997).

202 E. Lukschandl et al.

Optimising Self Adaptive Networks by Evolving Rule-
Based Agents

Evaggelos Nonas1 and Alexandra Poulovassilis2

1 Department of Computer Science, King’s College London, Strand,
London WC2R 2LS, U.K.

vagelis@dcs.kcl.ac.uk
2 Department of Computer Science, King’s College London, Strand,

London WC2R 2LS, U.K.
alex@dcs.kcl.ac.uk

Abstract. The need for networks that adapt autonomously to dynamic
environments is apparent. In this paper we describe how self adaptive
networks can be optimised by means of agents residing on the nodes of
the network. The knowledge of these agents is a set of active rules. A
genetic algorithm dynamically prioritises these rules in the face of
dynamically evolving conditions. To our knowledge, this is the first
time that GAs have been used for this purpose. We demonstrate the
applicability of our method by presenting several experiments and
results.

1 Introduction

As telecommunication networks have become bigger and more complex, the need for
managing them effectively, optimising their capacity and reducing their operation
costs has become apparent. This need is becoming more urgent as the
telecommunications market is continuously changing and new services have to be
constructed and provided quickly and cheaply. Moreover, since users are becoming
mobile, networks have to adapt quickly to varying load conditions and traffic patterns.

There are many methods for optimising a network. Some of them solve this
problem using an analytical approach, others using an evolutionary approach. Both
categories give good results from a long-term point of view. They use statistical data
to calculate average costs, which do not change over a long period of time: weeks or
even months.

In contrast, what we propose is a method for optimising the network on the
protocol level, by using costs that can be predefined or collected at run-time. For the
optimisation procedure we combine the analytical with the evolutionary approach.
Parts of the problem are solved using a deterministic algorithm, and other more

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 203−214, 1999.
 Springer-Verlag Berlin Heidelberg 1999

complicated parts are solved using a genetic algorithm. Such a network will have the
ability to adapt to dynamic environments with little or no human intervention, so it is
termed a Self Adaptive Network.

We use software agents that reside on each node of the network and optimise it in
real time. The knowledge of each agent is expressed in the form of active rules
consisting of events and actions. The reactive part of the agent (the part that responds
to external events) is dynamically optimised by a genetic algorithm. The rational part
of the agent also uses active rules, but these are statically defined.

The outline of this paper is as follows: Section 2 describes the main features of self
adaptive networks. Section 3 describes and compares two software architectures that
work using active rules: beliefs, desires, intentions (BDI) agents and active databases.
It then describes the active rules that our system uses. Section 4 describes the genetic
algorithm that optimises the rule-based agents. Section 5 gives some experiments and
results from our system. In section 6 we present conclusions and future research
directions.

2 Self Adaptive Networks

A self adaptive network is a network that can automatically adapt to changes in its
environment without human intervention being necessary. While load conditions
change and nodes and links may fail, the network continues to operate near the
optimum state, requiring little or no assistance from its operators. In other words, the
network must be autonomous, intelligent and have distributed control. There should
be no need for global knowledge in the network. On the contrary all information must
be kept as local as possible.

Our network model is a simple yet powerful one. The network is composed of a set
of nodes and a set of connections between them. Each node can exchange messages
only with its immediate neighbours. There is no global knowledge of the topology of
the network stored in any node. There is a set of services provided by the network and
each node can provide some or all of the services. The task for every node is to
provide the services requested from it with the minimum cost. The cost can be a
function of the number of intermediate nodes and links the service is using, as well as
of the load and spare capacity of those nodes and links respectively. Obviously, the
larger the number of intermediate nodes and links a service is using, the larger the
cost for the provision of that service.

Messages are exchanged between nodes to allow service establishment and service
cancelling. Messages can be exchanged only between connected nodes. For the time
being we use three kinds of messages, but we intend to add more in the future. The
first kind of message requests a service from a node and has as parameters the
requesting node, the service number as well as the hop-count (number of intermediate
nodes the request has used). Messages with a hop-count greater than a specific
number are canceled automatically, to avoid flooding the network with cyclic or very
long requests. The second kind of message concerns the answer to a request for a

204 E. Nonas and A. Poulovassilis

service. If the service can be provided, the cost is returned, otherwise the message just
rejects the request. The third kind of message cancels services already provided.

When a service is provided its cost is calculated as follows:

(1)

where i is the number of nodes and k is the number of links the service is using, and
Ni and Lk is the load imposed by this service on each node and link, respectively.
When the service can not be provided (because a node or link has reached its
maximum capacity, or because the hop count has exceeded the maximum allowed
limit), the same formula is used for the cost of the service, but i and k are now set to
the total number of nodes and links in the network respectively. Clearly, more
sophisticated cost functions can be used in dynamic environments.

3 Active Databases and BDI Agents

Beliefs-desires-intentions (BDI) agents have been extensively studied for some years
[5], [9], [11], [2]. A BDI agent has the following components (see Figure 1):
• Beliefs Database: Contains facts about the sate of the world, as well as about the

agent's internal state.
• Desires: Contains agent's goals expressed as conditions over some interval of time

and are described by applying various temporal operators to state descriptions.

DESIRES

BELIEFS DATABASE PLANS

INTERPETER

INTENTIONS

BDI AGENT

EFFECTORS

SENSORS

ENVIRONMENT

USER

Fig. 1. Typical BDI System

∑∑ +
k

k
i

i LN

205Optimising Self Adaptive Networks by Evolving Rule-Based Agents

EXECUTION ENGINE

DATABASE E-C-A RULES

USER
TRANSACTIONS

ACTIVE DATABASE

U
S
E
R
S

EFFECTORS

SENSORS

ENVIRONMENT

SYSTEM
TRANSACTIONS

• Plans: Actions the agent has to take in order to fulfill its goals. They have an
invocation condition which specifies upon which events the plan should be fired
and a context condition which specifies under what condition the plan applies.

• Intentions: Plans that are valid for firing are placed in an intentions structure where
they are executed. They can be hierarchically ordered.
Active databases are also based upon an Event-Action architecture [4] (see Figure

2). An active database system consists of the “traditional” components of a database
system plus a component that is concerned with the firing of event-condition-action
(ECA) rules. The meaning of an ECA rule is: “when an event occurs check the
condition and if it is true execute the action”. There is an event language for defining
events and for specifying composite events from a set of primitive ones. The
condition part of an ECA rule formulates in which state the database has to be, in
order for the action to be executed. The action part of an ECA rule may start a new
transaction which when executed may trigger new ECA rules. In this way we can
have trees of triggering and triggered transactions.

By comparing Figures 1 and 2 we can very easily see the correspondence between
the components of the BDI agent and active database architectures. The beliefs
database of the BDI agent corresponds to the main database store of an active
database. The desires of a BDI agent are expressed in an active database as
transactions submitted by users. The plans of a BDI agent correspond to the ECA
rules of the active database. Finally the intention structure of the BDI agent is
expressed in the active database as transactions generated by the system, i.e.
transactions generated from the activation of ECA rules.

Similarities and differences between BDI agents and active databases are discussed
in more detail in [1], [12], where characteristics such as events, actions, consistency,
query expressiveness, goal achievement and responsiveness are compared. The most
important of their common characteristics is the way that actions are executed, in that

Fig. 2. Typical Active Database System

206 E. Nonas and A. Poulovassilis

upon a certain event occurring, if a condition holds a rule is fired. There may be cases
where more than one rule may be triggered by the same event occurrence. The
system will then select the rule with the highest priority to fire, or will arbitrarily
select a rule to fire if there are more than one with the same priority.

In this paper we assume that there is an agent running on each node of the network.
The knowledge of each such agent is expressed using a set of rules. An event occurs
at a node when it is asked to provide a service. There are two possible actions that can
be triggered for this event: the service can be provided remotely, or the service can be
provided locally. When a service is to be provided remotely, a new `send request’
event is generated. The possible actions corresponding to this event are all the nodes
that the requesting node is connected with. For instance, if node 1 is connected with
nodes 2, 3 and 4 and the network provides services A, B and C, the events and actions
for node 1 are shown in Table 1 (no order is shown, just all the events and all the
possible actions for each event).

4 Using a GA to Optimise the Rule Based Agents

Our method provides an automatic way of selecting the “best” rule to fire upon an
event occurring, using a genetic algorithm to determine which rule to fire if more than
one rule is triggered. Genetic algorithms and genetic programming have been used
before in the design of agent systems [8], [10]. The novelty of our work is that we are
using GAs to dynamically optimise a set of rules in response to changes in the
environment.

Table 1. A Simple Example Rule Set

Events Actions
Provide service A Local

Remote
Provide service B Local

Remote
Provide service C Local

Remote
Send request for service A Send to node 2

Send to node 3
Send to node 4

Send request for service B Send to node 2
Send to node 3
Send to node 4

Send request for service C Send to node 2
Send to node 3
Send to node 4

207Optimising Self Adaptive Networks by Evolving Rule-Based Agents

Actions for
Provide
Service A

Actions for
Provide
Service B

Actions for
Provide
Service C

Actions for
Send req. for
Service A

Actions for
Send req. for
Service B

Actions for
Send req. for
Service C

For the moment we do not support conditions in our active rules, although we plan
to cater for conditions in the future.

At each node, the system holds a list of possible actions that can be taken for each
event that may occur. The first action is always selected, but a simple genetic
algorithm running in parallel dynamically changes the order of the actions. Obviously
this approach requires a measure of the performance of the agent, which must be
available at run-time, to be given to the genetic algorithm.

The GA is used to try out several permutations of the rule set and finally find the
best ordering. Permutations of the possible actions for each event are enumerated and
placed in the chromosome one after the other. We assign each permutation an integer
in the range 0..n!-1, where n is the number of actions. The binary representation of
this number is placed in the chromosome to encode that permutation of actions for the
event. The whole chromosome is composed of a sequence of K such numbers, in their
binary representation, where K is the number of possible events. Thus one
chromosome can encode all the rules with which each agent works1.

Each agent has a chromosome pool which is initially randomly instantiated. These
chromosomes are evolved by the genetic algorithm to better solutions. We use a
constant population size, selection proportional to fitness, and full replacement of
parents by their children. Multiple point crossover is used for breeding. Crossover
points are set at the end of each event in the chromosome. The chromosome for the
example of Table 1 is shown in Figure 3, where the arrows show the positions of the
crossover points.

The fitness of each chromosome is calculated as follows: When a node provides a
service to another node, it also sends to it the cost of this service. This cost is a
function of the number of intermediate nodes and links the service is using as well as

1 This particular encoding of the GA was chosen initially for ease of programming,
but it was adopted since it performed well. Our current library that implements the
Genetic Algorithm, does not support other than the binary encoding. An alternative
method for describing permutations would be as ordered lists. We are in the process
of adding this feature to our library. Once we’ve done this, we are planning to test the
performance of PMX or other permutation crossovers ([3, pp. 72], [6], [13]).

Fig. 3. Chromosome Encoding

208 E. Nonas and A. Poulovassilis

their load and free capacity respectively. Obviously, when the service is provided
locally, the cost is minimum. Each chromosome in the chromosome pool is used for
service provision for some time and the costs of the services provided using it are
averaged. The fitness, then, for this chromosome is inversely proportional to this
average cost. So the larger the cost, the smaller the fitness of the chromosome and
vice-versa.

The fitness of each rule set is given by:

(2)

where M is the maximum cost for service provision and A is the average cost for all
the services provided using this rule set. Fitness is normalized between 0 and 1000.
The squared term helps the GA to converge more quickly to a solution.

The current implementation of our architecture is in Borland C++ Builder and runs
under Windows 95 or Windows NT. A network simulator as well as the actual agents
running on each node of the network have been built. The genetic algorithms used by
the agents have also been programmed. There is a graphical user interface that
provides for the design of the network, the design of the rules the agents are using and
the fine-tuning of the genetic algorithm that each agent runs.

Since the genetic algorithm controls the way the agents respond to events, we can
say that the reactive behaviour of the agent is controlled by the genetic algorithm. But
there can also be another part, the "rational" part, that controls the agent, for example
if our architecture is part of an agent built partially using another method and
controlled partially by the constructs this method provides. If for instance the agent is
built conforming to the BDI model, it will have facts, goals, plans and intentions.
Some of the plans will be selected for execution using the traditional approach, but
some others using the GA approach. The rational part of the agent can also control
several parameters of the GA, restart it when needed, or schedule it to be run when
the load is low.

5 Experiments and Results

In this section we present some results for several network configurations. In all the
graphs, the Y axis shows the mean fitness of the nodes’ chromosome pools, averaged
over all the nodes. The X axis shows the number of generations the genetic algorithm
has been run. While nodes are being trained, service requests have a uniform
distribution as far as type of service is concerned, across all nodes. Of course, real
traffic data can ultimately be used for more effective training.

Our first experiment uses a network of 100 nodes and 200 links. The topology has
been randomly created by our software. There are 40 services provided across the
network. We examine three different cases with varying service distribution across
nodes. In the first case all 40 services are provided by all the nodes. In the second case
there is a random distribution of services across nodes. The number of different
services provided by each node is drawn randomly from the range [1..40]. In the third

2

2)(
1000

M

AM
F

−×=

209Optimising Self Adaptive Networks by Evolving Rule-Based Agents

case, services and nodes are split into 5 disjoint sets and eight services are provided
by each node. For example, nodes 1 to 20 provide services 1 to 8, nodes 21 to 40
provide services 9 to 16, etc. Graphs for all three cases are shown in Figure 4 under
the legends Totally Replicated, Random and Partitioned respectively.

As we would expect, the best performance is achieved when services are totally
replicated across all nodes. The worst performance is achieved when services and
nodes are partitioned into disjoint sets. This is because only a few of the total number
of services can be provided locally, or with a small hop-count. Random distribution of
services results in a performance between the two “extreme” cases.

Our second experiment demonstrates the fault tolerance of the network and its
behaviour is illustrated in Figure 5. There is a network, Network A, consisting of 11
nodes and 10 services. 10 of the nodes are connected in a ring and provide only 3
services each, which vary from node to node. The 11th node provides all 10 services
and is connected with all the other nodes. So it is the most important node of the
network.

The black curve in Figure 5 shows the performance of the network when node 11
is down from the beginning of the run until it finishes: we call this network Network
B. Network B is optimised to an average fitness of approximately 380. The grey curve
initially shows the behavior of Network A, which is optimised to a state higher than
Network B. After 500 generations node 11 goes down and the performance of the
network decreases initially but after approximately 500 more generations it reaches
the expected performance for Network B. At that point node 11 comes up again and
the performance of the network is restored to its original value. After 1400
generations from the beginning of the experiment node 11 goes down again but this

Fig. 4. Varying the Distribution of Services

0

100

200

300

400

500

600

700

800

900

1000

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225

Totally Replicated Random Partitioned

210 E. Nonas and A. Poulovassilis

time no GA is used for optimising the network. Instead the agents remove from their
rule sets any dependencies they have on node 11. To do this they degrade the priority
of actions involving node 11 to the last position in the rule set. The performance of
the network after this point is shown by a flat line, since there is no evolution of the
rule sets. The performance is about 350, which is close to the 380 mark that the GA
can achieve after evolution and certainly near (but a bit lower) the optimum
performance for this configuration. This last observation shows that our approach can
be used for very quick network restoration and perhaps also for congestion control.

Fig. 5. Fault Tolerance Demonstration

Fig. 6. Speed of Optimisation

0

100

200

300

400

500

600

700

1 114 227 340 453 566 679 792 905 1018 1131 1244

B A->B->A->B

0

200

400

600

800

1000

1 36 71 106 141 176 211 246 281 316 351 386 421 456 491

N5L10 N10L20 N20L40

N30L60 N50L100 N100L200

211Optimising Self Adaptive Networks by Evolving Rule-Based Agents

It is for this reason that we keep a permutation in the chromosome, instead of a
single “best” action for each event. As we have demonstrated in our experiments the
second action for an event can be used for network restoration in case of failures. It
could be argued though that the actions at the bottom of the event action table will be
used rarely and thus that maintaining them is an unnecessary overheard. Thus, further
investigation into the usefulness and fitness of the lower-order actions is necessary.

Finally we present a third experiment, which shows the speed the GA optimises a
network according to its size. In figure 6 we present six different cases named NXLY,
where X and Y are respectively the number of nodes and links the network has. All
six networks have a links-to-nodes ratio of two to one. All the networks provide 5
services. We see that the time taken by the GA to optimise the network is not
dependent on the size of the network. This is a very important fact that demonstrates
the distributed solution and load balancing our method supports. One can also observe
that bigger networks have better performance. This is to be expected since bigger
networks have more alternatives for providing “cheap” (i.e. lower cost, so higher
fitness) services.

6 Conclusions

In this paper we have described how self adaptive networks can be optimised by
means of agents residing on the nodes. The knowledge of these agents is a set of
active rules. A genetic algorithm dynamically prioritises these rules in the face of
dynamically evolving environments. To our knowledge, this is the first time that GAs
have been used for this purpose. We have showed that our approach is good for
network failures and network restoration. We expect it to be well suited to more
general conditions of varying load, and more experimentation is necessary into this.
The advantages of our approach to optimising self-adaptive networks are apparent:
distributed solution, load balancing and sharing, and self adaptation to varying load
conditions and fault situations.

Our network model is connectionless and best effort. In other words it very much
matches the TCP/IP routers used to handle traffic on the Internet. It will try to
transmit a packet (provide a service in our model) using the best possible way. It will
always take the first choice of the active rule set, but if this is unavailable, then it will
take the second, and so forth. Another application domain for our approach is global
query optimisation in distributed heterogeneous databases. Such systems consist of
multiple autonomous databases, and there is little or no global information about local
cost models and database contents. We envisage that agents residing on each node
could use dynamically evolving active rules to determine the best way to process each
type of query (i.e. service) requested at that node.

One could argue that in our system the genetic algorithm can find a local optimum
and then stop. This is always a possibility with genetic algorithms, but in a network
where service distribution across nodes is done in such way that neighbouring nodes
have some services in common there are many good solutions and the genetic
algorithm will find one of them. In extreme cases where there is only one good

212 E. Nonas and A. Poulovassilis

solution the genetic algorithm may fail, but it can be restarted by the rational part of
the agent with many chances of finding a better solution. Overall, the advantages of
adaptation, autonomy and distributed operation are more important in self adaptive
networks than the discovery of the best solution, especially in a dynamic and
continually changing environment where keeping track of global information would
be difficult if not impossible.

For further work we plan to construct the rational part of the agents. This too will
be based on active rules. It will schedule, restart and fine tune the genetic algorithm.
It will also feed it with a good initial population and will provide for knowledge
exchange between neighbouring nodes. Scheduling and restarting can be done
depending on changing load conditions, on changing network topologies and on the
spare computational capacity of the nodes, since they also have to provide services to
the network. Depending on those conditions, the rational part can either use the GA to
re-optimise the network or based on the knowledge it already has can adjust the rule
base for better performance. We believe that this combination of intelligence and
heuristic search methods will lead to a much better performance than use of the latter
alone.

Finally, we plan to apply our approach to the problem of query optimisation in
distributed, heterogeneous databases, where there may be many possible ways for a
query to be answered. In this context, the rational parts of the agents will facitate
information sharing between the data sources while the reactive parts will optimise
distributed access to the data.

Acknowledgments

E. Nonas is sponsored by B.T. Laboratories, Systems and Software Unit, Martlesham
Heath, Ipswich.

References

1. J. Bailey, M. Georgeff, D. B. Kemp, and D. Kinny, “Active databases and agent systems ---
A comparison”, Lecture Notes in Computer Science, 985, 342-356, (1995).

2. Michael Bratman, Intention, plans, and practical reason, Harvard University press, 1987.
3. Lawrence Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York,

1991.
4. K. R. Dittrich, S. Gatziu, and A. Geppert, “The active database management system

manifesto: A rulebase of ADBMS features”, Lecture Notes in Computer Science, 985, 3-17,
(1995).

5. Klaus Fischer, Jorg P. Muller, and Markus Pischel, “A pragmatic BDI architecture”, in
Proceedings on the IJCAI Workshop on Intelligent Agents II : Agent Theories,
Architectures, and Languages, volume 1037 of LNAI, pp. 203-218, Berlin, (19-20 August
1996). Springer Verlag.

213Optimising Self Adaptive Networks by Evolving Rule-Based Agents

6. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, Reading, Mass., 1989.

7. David Goldberg, Genetic Algorithms, Addison Wesley, Reading, 1989.
8. Thomas Haynes and Sandip Sen, “Evolving behavioral strategies in predators and prey”, in

IJCAI-95 Workshop on Adaptation and Learning in Multiagent Systems, pp. 32-37, (1995).
9. David Kinny, Michael Georgeff, and Anand Rao, “A methodology and modelling technique

for systems of BDI agents”, in Proceedings of the 7th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, volume 1038 of LNAI, pp. 56-71, Berlin, (22-
25 January 1996). Springer Verlag.

10.Mauro Manela and J. A. Campbell, “Designing good pursuit problems as testbeds for
distributed AI: A novel application of genetic algorithms, in Proceedings of the 5th
European Workshop on Modelling Autonomous Agents in a Multi-Agend World
(MAAMAW'93), volume 957 of LNAI, pp. 231-252, Berlin, GER, (August 1995). Springer.

11.Anand S. Rao and Michael P. Georgeff, “BDI agents: from theory to practice”, in
Proceedings of the First International Conference on Multi—Agent Systems, pp. 312-319,
San Francisco, CA, (1995). MIT Press.

12.Johan van den Akker and Arno Siebes, “Enriching active databases with agent technology”,
in Proceedings ot the First International Workshop on Cooperative Information Agents,
volume 1202 of LNAI, pp. 116--125, Berlin, (February26--28 1997). Springer.

13.G. Syswerda, “Schedule Optimisation using Genetic Algorithms”, In L. Davis, editor,
“Handbook of Genetic Algorithms”, chapter 21, pp. 332-349, Van Nostrand Reinhold,
1991.

214 E. Nonas and A. Poulovassilis

Genetic Construction of Optimal Circulant
Network Designs ?

E.A. Monakhova, O.G. Monakhov, and E.V. Mukhoed

Institute of Computational Mathematics and Mathematical Geophysics,
Siberian Division of Russian Academy of Sciences

Pr. Lavrentieva, 6, Novosibirsk, 630090, Russia
Phone: +7-3832-341066, Fax:+7-3832-324259

{emilia, monakhov}@rav.sscc.ru

Abstract. A solution of NP -hard optimization problem of constructing
optimal circulant networks with the minimum diameter for given degree
δ > 4 and number of graph nodes N > 1000 is considered. The circulant
networks and their different applications are the object of intensive in-
vestigations, and they are realized as interconnection networks in some
parallel multicomputer systems. The application to solution of the pro-
blem of a genetic algorithm based on the simulation of natural evolution
process and the comparison between it and a random and reduced se-
arch algorithms are considered. The catalogues of optimal (suboptimal)
circulant networks are obtained.

Keywords: optimal networks, circulant graphs, genetic algorithms

1 Introduction

In this work we consider fundamental optimization problem of efficient inter-
connection networks design for parallel computer architectures: the construction
of optimal networks having the minimum diameter (and, respectively, the opti-
mum of transmission delays, reliability and connectivity, speed of communicati-
ons and etc.) for a given number of nodes N and degree δ of a regular graph.
The circulant graphs [1, 3, 4, 6, 10, 13, 17, 19], characterising by high scalability,
survival and modularity, are realized as interconnection networks in multimodule
supercomputer systems (MPP, Intel Paragon, Cray T3D, etc.). For degree of a
graph δ = 4, there exists an analytical solution for synthesis of optimal circulants
[2,4,9]. But under δ > 4 and any N the problem of optimal (suboptimal) circu-
lants synthesis is known as NP -hard and an analytical approach to its solution
meets certain difficulties. Heuristic algorithms are known for synthesis of subop-
timal loop networks [1, 17] but diameters of graphs obtained are distinguished
considerably from their exact lower bounds. The algorithms of search [5, 10] do
not give solutions for large N and n, so it is necessary to develop new effective
methods. Genetic algorithms were successfully used for solution of a number
of problems in combinatorial optimization, artificial neural network learning,
? This work is partially supported by RFBR grant N97-01-00884

R. Poli et al. (Eds.): EvoIASP’99 and EuroEcTel’99, LNCS 1596, pp. 215–223, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

216 E.A. Monakhova, O.G. Monakhov, and E.V. Mukhoed

graph theory, modelling evolution and Cayley graphs degree/diameter problem
[7, 14, 15, 18]. The paper presents an application of genetic algorithm based on
the simulation of natural evolution process for the synthesis of multidimensional
circulants.

2 Optimal Circulants

Definition 1. A circulant network is the graph G(N ; s1, s2, . . . , sn) with N nodes
(N is an order of graph), labelled as 0, 1, 2, . . . , N−1, having i±s1, i±s2, . . . , i±sn

(mod N) nodes adjacent to each node i.

The numbers S = (si) (0 < s1 < s2 < . . . < sn < (N + 1)/2) are the
generator set of the finite Abelian automorphism group associated to a graph.
The degree of a node in an undirected graph G δ = 2n, where n is dimension
of this graph. The graph G(N ; 1, s2, . . . , sn) when s1 = 1 is known as a loop
network [1, 3, 5, 6, 13, 16]. The optimization problem is to find a graph with the
minimum diameter (and, possibly, with the minimum mean distance) among all
possible circulants (C(N, n)) having N nodes and dimension n. The diameter
of G is defined by d = maxij dij , where dij is the length of a shortest path
from a node i to a node j. The average distance of G is d̄ = 1

N(N−1)

∑
ij dij .

Let d(N) = minS {d(G(N ; S))}. Let for any graph G ∈ C(N, n), Kn,m denote
the number of nodes that are reachable by at most m steps from the node 0,
K∗

n,m being the upper bound for Kn,m. Denote Ln,m = Kn,m − Kn,m−1, L∗
n,m

being the upper bound for Ln,m. The values of K∗
n,m, L∗

n,m for any n, m were
determined in [4, 8, 17].

In the literature, a different sense is applied to a term “optimal”. For example,
in [3, 6, 13, 16] a graph is optimal if d(G) = d(N), and it is tight optimal if d(G) =
ulb(N) (exact lower bound for d(N)). We will use the following terminology.

Definition 2. A graph G ∈ C(N, n) is limit optimal, if Ln,m = L∗
n,m for any

0 ≤ m ≤ d∗ − 1 and Ln,d∗ = N − K∗
n,d∗−1, where the diameter d∗ = ulb(N) is

given from the correlation K∗
n,d∗−1 < N ≤ K∗

n,d∗.
Limit optimal graphs achieve the exact lower bounds for the diameter and

average distance, they have the maximum connectivity among all graphs from
C(N, n) [4,8] and the minimum number of steps for realization of communication
algorithms [11] but exist not for all values of N and n > 2 [10].

Definition 3. A graph G is optimal if d(G) = ulb(N).

Definition 4. A graph G is suboptimal if d(G) = ulb(N) + 1.

The diameters of optimal circulants are computed from the expression for
K∗

n,m. In the case when n = 2 the exact lower bound for d(N) should be ulb(N) =
d(

√
2N − 1 − 1)/2e [2, 4, 9]. In [2, 4, 9] it was shown that for any N > 4 optimal

graph G(N ; s1, s2) exists for the values of s1 = ulb(N), s2 = ulb(N) + 1. The

Genetic Construction of Optimal Circulant Network Designs 217

example of limit optimal circulant with a given description is shown in Fig. 1.
For n = 2, the necessary and sufficient conditions of existence of limit optimal
double-loop networks [12], conditions of existence of optimal ones [3, 10, 13]
were determined. For n > 2 the question about existence for any N at least
of suboptimal graphs remains open. In [5] for loop networks with degree 6 and
N ≤ 1237 optimal and suboptimal graphs and their descriptions are obtained.

Fig. 1. Circulant graph G(12;2,3) shown as a lattice

3 Two Algorithms for Finding a Graph Diameter

The basic part of computations under synthesis of optimal networks is requi-
red for finding a graph diameter. Two different algorithms for finding a diameter
were realized in the complex of genetic algorithms programs.

3.1 The First Algorithm for Finding a Diameter

Let N nodes of a tested graph G with numbers 0, 1, ..., N −1 be cycling in a loop.
An element h[i] of array h will contain a distance from node 0 to node i. At the
beginning of computations h[0] = 0, h[i] = −1 for all other i. Then, there follows
a loop in which the paths are formed from node 0 to all nodes, the lengths of
these paths and the number of nodes which may be reached from the node 0 at
given step of loop are computed (Fig.2, left). And it goes on until there are the
nodes in which a path can be built. In addition it is defined whether the graph
G is connected or not. In the latter case a diameter of G gets the value equal
to infinity. As soon as a step of the loop exceeds the value d∗ under search of
optimal circulants (or d∗ + 1 for suboptimal) the loop is finished.

3.2 The Second Algorithm for Finding a Diameter

This algorithm is a generalization of the algorithm proposed in [16] for two-
dimensional circulants and it is based on the constructive method of synthesis [9,
12, 16, 17], using the geometrical visualization and generating the constructions
of optimal circulants (Fig.2, right). Consider the algorithm for circulants with

218 E.A. Monakhova, O.G. Monakhov, and E.V. Mukhoed

Fig. 2. Scanning nodes for first (left) and second (right) algorithms for finding of
diameter

degree 6. A circulant G(N ; S) may be constructed as a octahedron-similar frame
of lattice of unit cubes in Z3 in the following way. Label each lattice point (i, j, k)
by number m = (s1i+s2j +s3k) (mod N), m being the number of graph node.
As a result every label 0 ≤ m ≤ N − 1 is repeated in the space infinitely many
times, resulting in a tessellation of octahedron-similar constructions of Z3 . All
N node labels of optimal graphs with d = d∗ must lie inside a octahedron with
a semidiagonal equal to d∗ (for suboptimal graphs d is increased by a unit). So
we scan the coordinates of lattice points in the following way: i ∈ [−d, d] and,
correspondingly, j ∈ [−(d − |i|), d − |i|], and k ∈ [−(d − |i| − |j|), d − |i| − |j|],
and label obtained numbers of nodes. If the number of labelled (uncoinciding)
nodes equals N then the optimal description is found.

3.3 The Results of Execution

As it was shown by the computer realization the improvement of the first algo-
rithm for finding a diameter as compared to the second one is of a factor 2–2.7
in execution time. The results of genetic algorithms execution presented below
in Tables were obtained under the realization of the first version of obtaining a
diameter.

4 Genetic Algorithm for the Synthesis

The genetic algorithm is based on simulation of the survival of the fittest in
the population of entities each of which presents a point in space of solutions
of optimization graph problem. The entities are presented by strings of genes
(generator sets). The function F named fitness function evaluates the degree
of approximation of a graph diameter to its exact lower bound. The purpose
of genetic algorithm is the search of global minimum of F when the initial
structure of population is given through applying to it the genetic operators:
selection, crossover, mutation.

Genetic Construction of Optimal Circulant Network Designs 219

4.1 The Structure of Data

While searching the optimum, we use two populations: the old and new one. The
old population is produced on previous iteration (for the first iteration it is filled
with randomly chosen generator sets) and is used for filling new population.
Under the synthesis of optimal descriptions for N , changing in some range,
the generator sets that were the best ones for value of N are used as the first
population for value of N + 1.

The parameters of genetic algorithm are: N and n are the order and the
dimension of a graph, M is the number of graphs in population, iM is the
number of iterations, pm is the probability of mutation, pc is the probability of
applying crossover to pair of entities.

Each population is the set of generator sets for given N and n. Each ge-
nerator set is represented by an vector of length n + 1. The genes contain the
integers from 1 to [N/2], the [n + 1]- term describes the diameter of a graph.
The minimization of fitness function means the minimization of diameter. The
iterations are finished if the best value of F is distinguished at most on one unit
from the exact lower bound of a diameter or after a given number of steps.

4.2 The Mutation

The mutation is applied to randomly chosen generators in all set of generators
of the current population (their number is determined by pm) and produces
new ones. The mutations of two types are applied: 1) a replacement of each
chosen generator with random number from 1 to [N/2] and 2) a replacement of
a generator with random number from some neighborhood of replaced generator.

4.3 The Crossover

We apply the single point crossover to two generator sets and get two new ones.
Some arbitrary pairs are chosen with probability pc from population consisting
of M graphs. In every pair the graph generators are partitioned into two parts
in randomly chosen place and they exchange the parts between each other (see
Fig. 3).

Fig. 3. Example of mutation and crossover

220 E.A. Monakhova, O.G. Monakhov, and E.V. Mukhoed

4.4 The Selection

The selection realizes the principle of the survival of the fittest. It is applied to
the old population as a whole. The diameters of all graphs in population are
computed. The selection consists in sorting the population on significance of a
graph diameter and in copying several best generator sets to the new population
which then is filled out by using crossover and mutation. The graphs with smaller
diameters are remembered separately in order not lose them under mutation or
crossover. The graphs with most diameters are displaced by the graphs with
smaller diameters.

5 Experimental Results

In the Tables 1 and 2 some results of execution of genetic algorithm (GA) for
the synthesis of descriptions of selected graphs are presented for degree 6 (Table
1) and for larger degrees (Table 2). The descriptions of optimal (suboptimal)
graphs are represented: N is the number of nodes of a graph, si is the generator,
d is the diameter of a graph, d∗ is exact lower bound for the diameter. Under
execution of genetic algorithm the following values of parameters were used:
pm = 0.18, pc = 0.5, M = 200, iM=3000.

Table 1. The fragment of catalogue of circulants with δ = 6

N d(d∗) s1 s2 s3 N d(d∗) s1 s2 s3

1561 11(10) 43 645 650 1562 11(11) 130 301 350
2047 12(11) 19 575 974 2048 12(12) 237 464 541
2625 13(12) 1096 1244 1283 2626 13(13) 65 239 562
3303 14(13) 46 238 651 3304 14(14) 229 1047 1182
4089 15(14) 133 1309 1617 4090 15(15) 347 1130 1240
11521 22(20) 823 5135 5137 11522 22(21) 2129 2626 4003
13287 23(21) 1138 1586 6042 15225 24(22) 105 337 1247

Table 2. The selected circulants with different degrees

N δ d(d∗) s1 s2 s3 s4 s5 s6 s7 s8

2236 8 8(7) 57 92 248 607
1024 10 6(5) 49 64 367 462 476
4096 12 7(6) 321 753 836 1380 1893 1990
19825 12 9(7) 92 456 1735 3952 5366 6701
16384 14 8(6) 490 1277 1645 2512 3832 4317 5448
55000 16 8(7) 855 4380 7897 10132 20068 20175 22429 25671

We compared the genetic algorithm with the reduced search (RS) [12] and
the random search (RA) algorithms. The measurements of arithmetic mean of
execution time tav(RS), tav(GA) and tav(RA) in intervals N1 ≤ N ≤ N2 for

Genetic Construction of Optimal Circulant Network Designs 221

Table 3. Comparison between the RS, GA and RA of circulant synthesis

graph δ N1 − N2 d(d∗) tav(RS) tav(GA) tav(RA)
subopt 6 1562-1571 12(11) 0.6 0.5 0.5

1800-1809 12(11) 1.3 2.7 0.7
2048-2057 13(12) 1.2 0.8 0.2
2616-2625 13(12) 476.3 198.3 147.7

subopt 8 682-691 7(6) 0.9 0.3 0.3
980-989 7(6) 9.2 0.5 0.4

1760-1769 8(7) 58.0 1.1 0.8
optimal 6 2048-2057 12(12) 568 23.3 21.8

3304-3313 14(14) 2335 196.6 497.6
4090-4099 15(15) 3867 1633 3705

optimal 8 1300 7(7) – 8.0 15.0

obtaining the first encountered suboptimal (or optimal) description are presented
in Table 3 (in seconds, Pentium-166 MMX).

These valuations were determined for different values of N including the
beginning, the middle and the end of ranges for a given diameter. The choice
of intervals is explained by the fact that a probability of existence of optimal
(suboptimal) descriptions for circulants are decreased under increase of N for a
given d. The minimum probability is observed at the bounds of transitions from a
diameter to another one. The execution time of algorithms is considerably increa-
sed in these points on comparison with the beginning of range. The results show
that the use of GA becomes preferable for obtaining optimal circulants under the
increase of a diameter and a dimension. Under above-mentioned parameters ge-
netic algorithm allowed to synthesize the whole continuous ranges of suboptimal
(in most cases) or optimal circulant graphs with degrees δ = 6, 8, 10, 12 and or-
ders, respectively, N ≤ 3300, 3400, 3500, 3600. The considered algorithm allows
to synthesize rapidly suboptimal (or with the diameter differing two units from
its exact lower bound) graphs for large degrees and orders. The explicit cata-
logues of optimal and suboptimal three-dimensional circulants and graphs with
larger degrees are represented at Web-page: - http : //rav.sscc.ru/ ∼ emilia/.

Fig. 4 shows the obtained number of suboptimal graphs vs number of mu-
tations and crossovers for given iM = 1000, N = 2300, M = 100 n = 3. The
maximum number of the suboptimal graphs corresponds to application of the
crossover operator to each graph of the population (cross every=1).

6 Conclusion

The results of research of genetic algorithm application to the synthesis of opti-
mal circulant network designs are presented. The genetic algorithm and random
search are suitable for perspective areas search in spaces of solutions of consi-
dered optimization problem. Their efficiency depends on probability of existing
the desired graphs for a given degree and order. Under increasing dimension
and order of a graph the appropriateness of using genetic algorithm is increased.

222 E.A. Monakhova, O.G. Monakhov, and E.V. Mukhoed

Fig. 4. Number of suboptimal graphs vs number of mutations and crossovers

The genetic algorithm allowed to get the descriptions of optimal (suboptimal)
circulants for such values of N and δ which were inaccessible earlier for heuristic
[1, 17] and exhaustive search [5, 10] algorithms. The following stage of advance
in solution of the optimization problem for large degrees and orders is connec-
ted with researches developed in combination of genetic algorithms and more
powerful heuristics and elaboration of parallel versions of the algorithms.

References

1. J.-C. Bermond, F. Comellas and D.F. Hsu, Distributed loop computer networks:
a survey, J. Parallel Distributed Comput., 24, 1995, 2–10.

2. J.-C. Bermond, G. Illiades and C. Peyrat, An optimization problem in distributed
loop computer networks, Third International Conference on Combinatorial Math.
New York, USA, June 1985, Ann. New York Acad. Sci., 555, 1989, 45–55.

3. J.-C. Bermond and D. Tzvieli, Minimal diameter double-loop networks: Dense
optimal families, Networks, 21, 1991, 1–9.

4. F.T. Boesch and J.-F. Wang, Reliable circulant networks with minimum transmis-
sion delay, IEEE Trans. Circuits Syst., CAS-32, 1985, 1286–1291.

5. S. Chen and X.-D. Jia, Undirected loop networks, Networks, 23, 1993,
257–260.

6. D.-Z. Du, D.F. Hsu, Q. Li and J. Xu, A combinatorial problem related to distri-
buted loop networks. Networks, 20, 1990, 173–180.

7. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, 1989.

8. V.V. Korneyev, Macrostructure of homogeneous computer systems, Vychislitelnye
sistemy, 60, Novosibirsk, 1974, 17–34 (in Russian).

9. E.A. Monakhova, On analytical representation of optimal two-dimensional Dn-
structures of homogeneous computer systems, Vychislitelnye sistemy, 90, Novosi-
birsk, 1981, 81–91 (in Russian).

10. E.A. Monakhova, Optimal circulant computer networks, Proc. International Con-
ference on Parallel Computing Technologies, PaCT-91, Novosibirsk, USSR, 1991,
450–458.

Genetic Construction of Optimal Circulant Network Designs 223

11. E.A. Monakhova, O.G. Monakhov, Collective exchanges in circulant networks of
parallel computer systems, Optoelectronics, Instrumentation and Data Processing,
New York, 6, 1997, 91–106.

12. E. A. Monakhova, O. G. Monakhov, V. V. Korneyev. Methods and algorithms for
synthesis of optimal circulant structures of computer systems, Proc. of the Sixth
Inter. Workshop on Distributed Data Processing (DDP-98), Novosibirsk, Russia,
1998, 87–90 (in Russian).

13. K. Mukhopadhyaya and B.P. Sinha, Fault-tolerant routing in distributed loop net-
works, IEEE Trans. Comput., 44, No. 12, 1995, 1452–1456.

14. M. Sampels, Large Networks with Small Diameter, Proc. of the Inter. Workshop on
Graph Theoretic Concepts in Computer Science (WG’97), Berlin, 1997, 288—302.

15. H.-P. Schwefel, T. Baeck, Artificial evolution: How and why?, Genetic Algorithms
and Evolution Strategy in Engineering and Computer Science - Recent advances
and industrial applications. Wiley, Chichester, 1997, 1–19.

16. D. Tzvieli, Minimal diameter double-loop networks. 1. Large infinite optimal fa-
milies, Networks, 21, 1991, 387–415.

17. C.K. Wong and Don Coppersmith, A combinatorial problem related to multimo-
dule memory organizations, J.Assoc. Comput. Mach., 21, 1974, 392–402.

18. X. Yao, Global Optimization by Evolutionary Algorithms, Proc. of The Second
Aizu Inter. Symposium on Parallel Algorithms/ Architecture Synthesis, Japan,
IEEE Press, 1997, 282–291.

19. J. Zerovnik, T. Pisanski, Computing the diameter in multiple-loop networks, J.
Algorithms, 14,1993, 226-243.

Author Index

Ashbrook, A.P. 1

Ballerini, L. 59
Borgvall, H. 193
Brown, J. 171

Campbell, J. A. 101
Chakraborty, S. 150
Corno. S. F. 162

de Jong, E. D. 90
Deb, K. 150
Dey, S. 150

Ebner, M. 74
Esparcia-Alcazar, A. 126

Fisher. R. B. 1

Harvey, N. R. 31
Harvey, N. R. 31
Hollingworth, G. 46
Howard, D. 111

Lazarescu, V. 138
Lukschandl, E. 193

Marshall, S. 31
Miller, J. F. 17
Monakhov, 0. G. 215
Monakhova, E. A. 215
Mukhoed, E. V. 215
Munteanu, C. 138

Nohle, L. 193
Nonas, E. 203
Nordahl, M. 193
Nordin, P. 193

Picton, P. D. 101
Poulovassilis, A. 203

Rebaudengo, M. 162
Roberts, S. C. 11 1
Robertson, C. 1

Sharman, K. 126
Smith, S. 46
Sonza Reorda, M. 162, 182
Squillero, G. 182
Steels, L. 90

Turner, S. J. 101
Turton, B. 171
Tyrrell, A. 46

Violante, M. 162

Webb, A. 171
Werghi, N. 1

Zell. A. 74

	Front matter
	Chapter 1
	Introduction
	Method
	Data Generation
	Gene and Chromosome Formulation
	Algorithm

	Results
	Caps, Rings and Wedges
	Constrained Degenerate Quadric Pairs
	A Real Object

	Conclusions
	Improvements
	Caveats - New and Old
	Further Work

	Chapter 2
	1 Introduction
	2 Gate-Level Evolution of Digital Circuits
	3 Evolving a Filter Response with a Gate Array
	4 Results
	4.1 Filter Response to Pure Sine Signals in the Passband
	4.2 Filter Response to Pure Sine Signals in the Stopband
	4.3 Filter Response to Signals Which are a Sum of Two Sine Waves
	4.4 Filter Response to Signals Which are a Sum of Three Sine Waves

	5 Discussion of Results
	5.1 Filter Characteristics
	5.2	Hardware Requirements and Speed of Evolved Filter Compared with Conventional

	6 Conclusions
	Acknowledgements
	References

	Chapter 3
	Introduction
	Soft Morphological Filters
	Fundamental Grey-Scale Soft Morphological Operations
	Secondary Grey-Scale Soft Morphological Operations
	Tertiary Grey-Scale Soft Morphological Operations

	Optimisation of Soft Morphological Filters
	Soft Morphological Filter Parameters
	Fitness Function
	Genetic Operators

	Application to Real Image Sequences
	Conclusion

	Chapter 4
	Introduction
	Evolutionary Design Techniques
	Image Processing Operation
	An IP Architecture for EHW
	Simulation of the Evolvable Hardware
	Desired Edge Detection Operation
	Fitness Evaluation
	Type of Evolutionary Algorithm
	Genetic String Coding

	Results of Evolution
	Discussion
	Conclusion

	Chapter 5
	Introduction
	Active Contours
	Genetic Optimization of Snakes
	Results
	Experiments on Synthetic Images
	Experiments on Medical Images

	Conclusion

	Chapter 6
	Motivation
	Background
	Evolving an Interest Operator
	Using Genetic Programming to Evolve Image Operators
	Terminal Symbols
	Primitive Functions
	Fitness Measure
	Results

	Conclusion
	Acknowledgements

	Chapter 7
	The Discrimination Game
	Generation of Sensory Channels
	Selection of Sensory Channels
	Experiments
	Rewarding Partial Solutions
	Cooperation between Sensory Channels

	Acknowledgements

	Chapter 8
	Introduction
	Method
	Equipment And Data
	Filter Banks
	Evolutionary Algori thm

	Results
	Discussion
	Conclusions
	References

	Chapter 9
	Problem Requirements
	Staged Genetic Programming
	Experimental Conditions
	GP Specifications
	Statistics
	Initialisation
	Fitness Function
	Genetic Operators
	Choice of Parameters

	Training Strategy
	Definition of a Motorised Vehicle
	Standard Training Procedure

	Experiments Involving Four Images
	Implementation of the Training Strategy
	Results

	Experiments Involving Ten Images
	Multiple Stages Method
	Implementation of the Training Strategy
	Results

	Conclusions

	Chapter 10
	Introduction
	Background on Channel Equalisation
	Overview
	Linear channel with high noise
	Partial response channel
	Nonlinear channel
	Comparison
	Conclusions
	References

	Chapter 11
	1 Introduction
	2 Outline of Real-Coded GAs
	3 Principal Component Analysis and PCA-Mutation
	4 Test Case: IIR Filter Design by Deczky Method
	5 Conclusions
	References

	Chapter 12
	Introduction
	Motivation
	A Genetic Algorithm for Object Recognition
	Generating Templates from Model Images
	Parameter Search Space and the Use of GA

	Test Results and Comparisons
	Summary

	Chapter 13
	Introduction
	Motivation
	Proposed approach
	Experimental Results
	Conclusions
	References

	Chapter 14
	1.	Introduction
	2. 	Problem Description
	2.1 Notation
	2.2 Definitions
	2.3 Problem Definition

	GA Implementation
	3.1 	Encoding Chromosome Solutions
	3.2	Repair Heuristics
	3.3	Fitness Evaluation

	Computational Results
	4.1 Example Results
	Evaluating Toughness and Integrity

	5.	Discussion of Results and Conclusions
	References

	Chapter 15
	Introduction
	The VEGA.PI Algorithm
	The Genetic Algorithm
	Experimental Evaluation
	Conclusions
	References

	Chapter 16
	Introduction
	Genetic Programming
	The system
	The Call Simulation
	The Evolutionary System

	Experiments
	Restrictions in the Model
	Experiment Setup

	Results
	Conclusion and Discussion
	References

	Chapter 17
	Introduction
	Self Adaptive Networks
	Active Databases and BDI Agents
	Using a GA to Optimise the Rule Based Agents
	Experiments and Results
	Conclusions
	Acknowledgments
	References

	Chapter 18
	Introduction
	Optimal Circulants
	Two Algorithms for Finding a Graph Diameter
	The First Algorithm for Finding a Diameter
	The Second Algorithm for Finding a Diameter

	The Results of Execution
	Genetic Algorithm for the Synthesis
	The Structure of Data
	The Mutation
	The Crossover
	The Selection

	Experimental Results
	Conclusion

	Back matter

