
Lecture Notes in Artificial Intelligence 5406
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Amba Kulkarni Gérard Huet (Eds.)

Sanskrit
Computational
Linguistics

Third International Symposium
Hyderabad, India, January 15-17, 2009
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Amba Kulkarni
University of Hyderabad, Department of Sanskrit Studies
Hyderabad 500046, India
E-mail: apksh@uohyd.ernet.in

Gérard Huet
INRIA, Centre de Paris-Rocquencourt
78153 Le Chesnay Cedex, France
E-mail: gerard.huet@inria.fr

Library of Congress Control Number: 2008942497

CR Subject Classification (1998): J.5, H.3.1, I.2.7, F.4.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-93884-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-93884-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12600052 06/3180 5 4 3 2 1 0

Preface

This volume presents the proceedings of the Third International Sanskrit Com-
putational Linguistics Symposium hosted by the University of Hyderabad,
Hyderabad, India during January 15–17, 2009. The series of symposia on Sanskrit
Computational Linguistics began in 2007. The first symposium was hosted by
INRIA at Rocquencourt, France in October 2007 as a part of the joint collabora-
tion between INRIA and the University of Hyderabad. This joint collaboration
expanded both geographically as well as academically covering more facets of
Sanskrit Computaional Linguistics, when the second symposium was hosted by
Brown University, USA in May 2008.

We received 16 submissions, which were reviewed by the members of the
Program Committee. After discussion, nine of them were selected for presenta-
tion. These nine papers fall under four broad categories: four papers deal with
the structure of Pān. ini’s As.t.ādhyāȳı. Two of them deal with parsing issues,
two with various aspects of machine translation, and the last one with the Web
concordance of an important Sanskrit text.

If we look retrospectively over the last two years, the three symposia in succes-
sion have seen not only continuity of some of the themes, but also steady growth
of the community. As is evident, researchers from diverse disciplines such as lin-
guistics, computer science, philology, and vyākaran.a are collaborating with the
scholars from other disciplines, witnessing the growth of Sanskrit computational
linguistics as an emergent discipline.

We are grateful to S.D. Joshi, Jan Houben, and K.V.R. Krishnamacharyulu
for accepting our invitation to deliver the invited speeches.

The symposium hosted a traditional debate, called Vidvat Sabha, where par-
ticipants presented views of different schools of language analysis – vyākaran.a,
nyāya, and mı̄mānsā – on the meaning of a sentence and debated on it. We
thank all the participants of the Vidvat Sabha, in particular Prahlad Char, who
accepted our invitation to chair the session. Since the Vidvat Sabha is a ‘live
program’ to be watched and listened to, we do not have its report in these pro-
ceedings, however, the video recordings of this program will be available on the
symposium website shortly.

We thank the University of Hyderabad, INRIA, Ministry of Information
Technology, Government of India, Rashtriya Sanskrit Sansthan, and Sanskrit
Academy for their valuable support.

This symposium would not have been possible without the involvement of
several persons. In addition to the Program Committee members, we would
like to thank J.S.R.A. Prasad and K. Subramaniam for their help in the local
organization.

We thank all the researchers who responded to our call for papers and partic-
ipants in this event without whose response the symposium and workshop would
not have been a success.

VI Preface

Finally we thank the editorial team of Springer, who have provided us with a
platform to record the proceedings of the symposia so as to make them available
to other researchers and help in building the community right from its birth.

January 2009 Amba Kulkarni
Gérard Huet

Organization

SCLS 2009 was organized by the Department of Sanskrit Studies, University of
Hyderabad, in joint collaboration with INRIA, France and the Sanskrit Academy,
Hyderabad

Program Chair

Amba Kulkarni University of Hyderabad, Hyderabad, India
Gérard Huet INRIA, Rocquencourt, France

Steering Committee

Brendan Gillon McGill University, Montreal, Canada
Gérard Huet INRIA, Rocquencourt, France
Amba Kulkarni University of Hyderabad, Hyderabad, India
Malhar Kulkarni IIT Mumbai, India
Peter Scharf Brown University, RI, USA

Program Committee

Stefan Baums Department of Asian Languages and Literature,
University of Washington, USA

Pushpak Bhattacharya Department of Computer Science and
Engineering, IIT, Mumbai, India

Brendan S. Gillon Department of Linguistics, McGill University,
Montreal, Canada

François Grimal École française dExtrême-Orient, Pondicherry,
India

Jan Houben Directeur d’Etudes, École Pratique des Hautes
Études, Paris

Malcolm Hyman Max-Planck-Institut für Wissenschaftsgeschichte,
Berlin, Germany

Girish Nath Jha Special Centre for Sanskrit Studies, J.N.U.
New Delhi, India

K.V.R. Krishnamacharyulu Department of Vyākaran.a, Rashtriya Sanskrit
Vidyapeetham, Tirupati, India

Malhar Kulkarni Department of Humanities and Social Sciences,
IIT, Mumbai, India

Lalit Kumar Tripathi Rashtriya Sanskrit Sansthan, Allahabad, India

VIII Organization

Peter M. Scharf Department of Classics, Brown University,
Providence, RI, USA

Srinivas Varakhedi Director, Sanskrit Academy, Hyderabad, India

Sponsoring Institutions

University of Hyderabad, India
INRIA, France
Ministry of Information Technology, India
Rashtriya Sanskrit Sansthan, Delhi, India
Sanskrit Academy, Hyderabad, India

Table of Contents

Background of the As.t.ādhyāȳı . 1
S.D. Joshi

Pān. ini’s Grammar and Its Computerization: A Construction Grammar
Approach . 6

Jan E.M. Houben

Annotating Sanskrit Texts Based on Śābdabodha Systems 26
K.V. Ramkrishnamacharyulu

Modelling the Grammatical Circle of the Pān. inian System of Sanskrit
Grammar . 40

Anand Mishra

Computational Structure of the As.t.ādhyāȳı and Conflict Resolution
Techniques . 56

Sridhar Subbanna and Shrinivasa Varakhedi

Levels in Pān. ini’s As.t.ādhyāȳı . 66
Peter M. Scharf

On the Construction of Śivasūtra-Alphabets . 78
Wiebke Petersen

Tagging Classical Sanskrit Compounds . 98
Brendan S. Gillon

Extracting Dependency Trees from Sanskrit Texts . 106
Oliver Hellwig

Sanskrit Analysis System (SAS) . 116
Manji Bhadra, Surjit Kumar Singh, Sachin Kumar, Subash,
Muktanand Agrawal, R. Chandrasekhar, Sudhir K. Mishra, and
Girish Nath Jha

Translation Divergence in English-Sanskrit-Hindi Language Pairs 134
Pawan Goyal and R. Mahesh K. Sinha

Web Concordance of the Prak̄ırn.a-Prakāśa of Helārāja on the
Jātisamuddeśa (3.1) of Vākyapad̄ıya . 144

Malhar Kulkarni and Chaitali Dangarikar

Author Index . 155

Background of the As.t.ādhyāȳı

S.D. Joshi

Retired Prof. and Head, Department of Sanskrit and Director, CASS, Pune, India

1. I have hesitated in accepting the invitation extended to me by Amba Kulka-
rni on September 9. The main reason was that I am not acquainted with
what is called Sanskrit Computational Linguistics, or with theories of Ma-
chine Translation, or with information theory. In fact, I know nothing about
these subjects. So what can I tell you? In view of my deeply regretted lack
of knowledge regarding the subjects mentioned, I have decided to deliver a
talk on a subject of which I have some experience, namely, Pān. ini’s linguistic
analysis as shown in his method of analysis, in the development of theoret-
ical concepts and in the composition of the As.t.ādhyāȳı. Clearly, Pān. ini, in
applying his linguistic analysis of the spoken Sanskrit of his days, has de-
veloped a number of theoretical concepts which can be used for the analysis
of other languages also. That is an elementary insight which proved to be
fruitful already in the 19th century when linguistics and especially compar-
ative linguistics were developed as separate branches of science in Germany
and France. Reading statements about information coding in which Pān. ini
is hailed as an early language code information scientist, I am reminded of
the situation in the early sixties, after Chomsky had published his book on
Syntactic Structures in 1957. Here Chomsky introduced a type of grammar
called transformational generative grammar. It earned him a great of ap-
plause, globally, I may say. Then it dawned on linguists that Pān. ini had also
composed a generative grammar. So Pān. ini was hailed as the fore-runner
of generative grammar. That earned him a lot of interest among linguists.
Many linguists, foreign as well as Indian, joined the bandwagon, and posed
as experts in Pān. inian grammar on Chomskyan terms. Somewhat later, af-
ter Chomsky had drastically revised his ideas, and after the enthusiasm for
Chomsky had subsided, it became clear that the idea of transformation is
alien to Pān. ini, and that the As.t.ādhyāȳı is not a generative grammar in the
Chomskyan sense. Now a new type of linguistics has come up, called Sanskrit
Computational Linguistics with three capital letters. Although Chomsky is
out, Pān. ini is still there, ready to be acclaimed as the fore-runner of Sanskrit
Computational Linguistics. I am, of course, grateful for the interest shown
in Pān. ini.

2. So what to talk about? I can, obviously, refer to the 25 volumes published
by the University of Pune, and the Sahitya Akademi, one series on sections
of Mahābhās.ya and another series on sections of the As.t.ādhyāȳı. From the
first series I expressly mention the Samarthāhnika, the Kārakāhnika, the
Anabhihitāhnika and the Paspas̀āhnika. In all of these books fundamental
questions about Pān. ini’s method of linguistic analysis have been discussed
extensively. But references cannot make up a key-note address. So what I

A. Kulkarni and G. Huet (Eds.): Sanskrit Computational Linguistics, LNCS 5406, pp. 1–5, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 S.D. Joshi

plan to do is to mention a number of typical features of the As.t.ādhyāȳı and
some basic grammatical concepts applied in Pān. ini’s analysis of the spoken
Sanskrit of his days, and in the composition of the As.t.ādhyāȳı.

3. Pān. ini is short on theory, great on grammatical detail. A coherent linguistic
theory can only be inferred from his detailed observations of linguistic data
put in the form of rules. Questions of linguistic development, of historic
sound change, and of history in general lie outside Pān. ini’s interest.

4. Contrary to some Western misconceptions the starting point of Pān. ini’s anal-
ysis is not meaning or the intention of the speaker, but word form elements
as shown in the initial stages of the prakriyā. Here morphemic elements ob-
tained from analysis are put side by side in an order of pūrva and para from
left to right. Then by applying operations to these elements a derivation
process starts. The process results in a word fit for use in vyavahāra, the ev-
ery day usage of an educated brahmin .Thus we may say that Pān. ini starts
from morphology to arrive at a finished word where no further rules become
applicable. We have to bear in mind that Sanskrit is an inflecting language.

5. Is the As.t.ādhyāȳı rightly called a grammar? It certainly deals with the tra-
ditional parts of grammar in the West, namely, morphology, word-formation
and syntax. On that account the name “grammar” is applied. It is, in fact,
part of the title given by Böhtlingk to his edition of the As.t.ādhyāȳı. But the
As.t.ādhyāȳı is not a grammar in this general Western sense of the word. It
is a device, a derivational word-generating device. It presupposes knowledge
of phonetics and it is based on morphemic analysis. It derives an infinite
number of correct Sanskrit words, even though we lack the means to check
whether the words derived form part of actual usage. As later grammarians
put it, we are laks.an. aikacaks.us.ka, solely guided by rules. Correctness is guar-
anteed by the correct application of rules. For purposes of derivation as seen
by Pān. ini a list of verbal bases, dhātus, is essential. That list is provided in
the dhātupāt.ha. It must have formed part of the Pān. inian tradition from
the very beginning.

6. Every s̀āstra ‘branch of science’ has its technical vocabulary. Technical terms
require a definition of their meaning, as opposed to words in everyday speech
which are characterized by free symbolization, not bound by a previous con-
vention regarding meaning. The As.t.ādhyāȳı, being a śāstra, has its own
technical vocabulary, consisting of saṁjñās ‘technical terms’ and pratyāhāras
‘abbreviative designations.’ The saṁjñās are usually, but not always, defined.
The non-defined saṁjñās are borrowed from various other branches of sci-
ence supposed to be generally known. I mention mantra, yajus, napuṁsaka,
liṅga, kriyā, vartamāna, vibhakti, prathamā, jāti, dravya, gun.avacana, vis-
arga, vākya, vidhi, samartha and upamāna. Use of pratyāhāras is made when
the question is of enumerations of speech sounds or of suffixes. Pratyāhāras
are an enumeration saving device.

7. Is semantics part of the As.t.ādhyāȳı? Or, put slightly differently, does mean-
ing (artha) form part of Pān. ini’s linguistic analysis? We have to be very
careful here in what is understood by the word “meaning.” In the Indian
tradition artha is the thing-meant, the thing referred to, that to which

Background of the As.t.ādhyāȳı 3

we refer by means of words and sentences. Taking artha in this sense, the
answer to my question is, no. That is clearly stated by P1.2.56, arthasya
anyapramān. atvāt ‘because artha is decided by something else (than the
As.t.ādhyāȳı).’ The idea is that the As.t.ādhyāȳı is no authority to decide that
word A refers to item A and that word B refers to item B. That is decided
by usage in which metaphor plays a big role. Obviously, this should not be
taken to mean that lexical meaning is of no interest to the As.t.ādhyāȳı. The
whole of the taddhita-section testifies to the opposite.

To specify the meaning in which a nominal form is used, its lexical mean-
ing, Pān. ini uses meaning-conditions. They are usually stated in a locative
nominal form, sometimes also by means of a phrase. I quote two exam-
ples. The first is P. 3.2.134. It prescribes the following kr.t-suffixes up to P.
3.2.177 in three meanings stated as tacch̄ıla ‘(an agent) having such and
such a habit,’ taddharma ‘(an agent) having such and such a duty’ and
tatsādhukārin ‘(an agent) who does something well.’ The second is P. 3.3.116.
It deals with the kr.t suffix LyuT. . The rule says yena saṁspars̀āt kartuh.
s̀ar̄ırasukham ‘one account of contact with which the agent experiences a
feeling of physical pleasure.’

In the taddhita-section the meaning-condition is often phrased by means
of a pronominal form like tasya, tena followed by a noun or participle in the
nominative. The whole serves as an adhikāra. But here also phrases may be
used for the same purpose. I mention P. 4.2.59, tad adh̄ıte tad veda.

8. Pān. ini’s operational rules are generally substitution rules. Here the distinc-
tion between the original (sthānin) and the substitute (ādes̀a) is essential. As
far as further rule application is concerned, the substitute is declared to be
like the sthānin (P. 1.1.56). An exception is made for rules which deal with
the substitution of phonemes. An ingenuous idea of Pān. ini was to extend
the concept of substitution to zero-substitution (lopa) also. Lopa is defined
as adars̀anam “disappearance from sight” (P. 1.1.60).

9. What about rule-order application in the As.t.ādhyāȳı? As is well-known,
the As.t.ādhyāȳı has been divided into two parts, the siddha-kān.d. a and the
asiddha-kān.d. a, the latter part starting from the rule pūrvatrāsiddham (P.
8.2.1). The asiddha-kān.d. a is also known as the tripād̄ı. In the earlier part
rules are applied independently of the numerical order. In the tripād̄ı rules
are applied strictly according to their numerical order. Also, with regard to
the application of a rule in the siddha-kān.d. a a rule in the tripād̄ı-section is
asiddha. A rule A can be siddha ‘(regarded as) effected’ or asiddha ‘(regarded
as) non-effected’ with regard to rule B in the sense that rule A is regarded as
having taken effect before the application of rule B or not. Accordingly, rule
B may become operative or not. This is a very useful grammatical fiction
in the As.t.ādhyāȳı. The tripād̄ı-section has been established to overcome
difficulties in the random application order, when this order would lead to
undesired results. The majority of rules put in the asiddha-section are rules
dealing with consonant-substitutions due to sandhi.

10. Another situation in which the order of application of rules becomes vi-
tal is that of conflict (vipratis.edha). The term vipratis.edha has not been

4 S.D. Joshi

defined in the As.t.ādhyāȳı, but it was taken up by Kātyāyana for explana-
tion (vārtika I on P. 1.4.2). In the prakriyā a conflict may arise in the sense
that two rules become applicable at the same stage. Here the question is
of determining the stronger rule which is to prevail. Tradition, as embodied
in Nāgeśa’s Paribhās.endus̀ekhara, has formulated a number of principles to
solve a conflict. I may point out that recently a considerable amount of work
has been done on conflict-procedure, leading to the formulation by myself
and P. Kiparsky of the siddha-principle. I won’t bother you with further
details on this intricate subject, but refer you to Vol. IV in the As.t.ādhyāȳı
of Pān. ini Series, 1995, Introduction, p. viii-xi, Here the new ideas on the
subject have been explained.

11. Kātyāyana, in the opening vārtika of the Mahābhās.ya, says atha
śābdānuśāsanam ‘now starts the instruction in words.’ But what are words?
Patañjali explains in his bhās.ya that words may belong to ordinary speech
or the Veda. They are laukika or vaidika. Examples for both categories are
quoted. Then he asks the question, in gauh. what is the word (śabda)? The
answer is that from this word we understand an object with a dewlap, a
hump, hoofs and horns. Apparently, a word is that from which we under-
stand a meaning in the sense of a thing-meant.

Pān. ini’s answer to the question what is a word is rather different and
rather more linguistically precise. First of all, for “word” he does not use
the word śabda, but he uses the term pada. Then he defines that term
as suptiṅantam ‘ending in a suP-suffix or in a tiṄ-suffix’ (P. 1.4.14). Thus
pada does not just mean “word”. It means a fully derived word according
to Pān. inian standards. Clearly here Pān. ini does not enter into questions of
meaning, but talks in terms of word form categories. The suffixes mentioned
are listed by P 3.4.78 and P. 4.1.2. We further note that the endings called
tiṄ are excluded from the designation kr.t (P. 3.1.93).

12. The derivational process, prakriyā, starts from a dhātu, a verbal base, a list
of which is provided in the dhātupāt.ha. What comes next in the derivation
are suffixes (pratyayas), divided into kr.t and taddhita. The section dealing
with the addition of suffixes starts from P 3.1.92, dhātoh. . This is the central
rule in the As.t.ādhyāȳı for purposes of derivation. The order of dhātu and
pratyaya is fixed by P. 3.1.2, which says that a suffix is a following element.
The derivational base of a subanta pada is either a dhātu + a kr.t suffix, which
forms a nominal base, or a nominal base + a taddhita suffix, or a combina-
tion of nominal bases called samāsa. All of these derivational nominal bases
are called prātipadika (P. 1.2.46). Thereafter a feminine suffix may be added
to indicate feminine gender, and the suP-suffix comes to take care of gender
other than the feminine and of number, and of case. The last two general
stages of the derivation are reserved for the application of sandhi-rules and
of accent-rules. We have to bear in mind that Sanskrit is a pitch-accented
language, although, unlike in the Vedas, accent in Sanskrit is not indicated.
Accent is treated by Pān. ini in great detail; from P. 6.1.158 to 6.2.199, in
all 263 sūtras, with two isolated rules at the end of pāda 8.4. That is in
short how the derivation of a nominal form goes, the whole process being

Background of the As.t.ādhyāȳı 5

regulated by rules. As everybody knows, for some Sanskrit subanta words a
derivational base is not reasonably available. They are declared to be avyut-
panna ‘underivable,’ or they may be still be derived with the help of an ad
hoc invented suffix.

One more point about prakriyā which may be of interest to you being
computer-linguists. The As.t.ādhyāȳı is not just an analysis of what he calls
bhāṡā, and what was called Sanskrit later on. It is also a generative calculus,
which is actually the main thrust of the As.t.ādhyāȳı. Whereas the type of
grammar developed in Greece and Rome is paradigmatic, the As.t.ādhyāȳı is a
generative calculus known as prakriyā for which Bhat.t.oj̄ı Dı̄ks.ita composed
the authoritative handbook known as the Siddhāntakaumud̄ı. Mastery of
Pān. ini is shown in mastery of prakriyā, and the rest is silence. The prakriyā
evolves by means of rule operations in successive stages. This is strongly rem-
iniscent of a mathematical procedure known as algorithm. Here the answer
to a problem belonging to a class which has an infinite number of members is
produced in a finite number of steps. As you undoubtedly know, in principle
the calculus can be produced by a machine provided with a tape. That was
shown already in 1937 by Turing. Thus, I think, we may say that Pān. ini
whom I date around 350 B.C. has intuitively used this idea of calculus.

13. What about case, one may ask. The technical term in the As.t.ādhyāȳı is
kāraka, literally “one who or that which brings about”, introduced by P.
1.4.23. A satisfactory English translation is not found. Kāraka is a syntac-
tic category, since it deals with the formal characteristics of word meaning
combination according to the speaker’s intention, whether in a word group
or in a sentence. Kāraka is not a semantic category, nor a semantic-syntactic
category which merely confuses the issue. For an exhaustive discussion of
the grammatical points involved I may refer to the Kārakāhnika, published
by the University of Poona in 1975.

14. Finally, I want to say something very briefly about Pān. ini’s idea of vākya.
The term is not defined in the As.t.ādhyāȳı. Literally the term means “what
can be spoken”, in distinction from vācya. The term is used in the sense of
“utterance” whose end is marked by a pause (avasāna, P 1.4.110), but also
in the sense of what we call a word group or sentence. Since Pān. ini uses the
term vākyādeh. ‘at the beginning of a vākya’ in P. 8.1.8, he must have had an
idea where the vākya starts. In fact, it starts after a pause in speech. That
is why Pān. ini need not define vākya and that has saved him a lot of trouble.
The first attempts to formally define vākya stem from Kātyāyana. He has
provided two definitions in the vārtikas. IX and X on P. 2.1.1.

September 24, 2008

A. Kulkarni and G. Huet (Eds.): Sanskrit Computational Linguistics, LNCS 5406, pp. 6–25, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Pāṇini’s Grammar and Its Computerization: A
Construction Grammar Approach*

Jan E.M. Houben

École Pratique des Hautes Études (SHP), Paris

Abstract. This article reviews the impact of modern theoretical views on
our understanding of the nature and purpose of the grammar of Pāṇini
(ca. 350 BCE), and argues that new possibilities for progress open up for
our understanding of this ancient grammar by confronting it not with the
presuppositions of generative grammar as has been done – with undeniable
but limited theoretical profit -- in the last few decades, but with recently
developed theories of construction grammar and cognitive linguistics. This,
in turn, provides new perspectives on old problems in the study of Pāṇinian
grammar, and especially on the challenge of its computerization. The
present article focuses on general technical aspects of Pāṇini's grammar and
is the counterpart of a recent study on the earliest available elaborate theory
of Pāṇini's grammar, the one formulated by the grammarian-philosopher
Bharthari (5th cent. CE).

Keywords: Pāṇini's grammar, (transformative) generative grammar,
construction grammar, cognitive linguistics, computerization of Pāṇini's
grammar, levels of representation in Pāṇini's grammar, Dhātu-pāṭha, lists of
roots.

1 Introduction

The history of grammatical thought in India can be estimated to be at least around
3000 years old, as we find hints to the analysis of verbal roots from various
linguistic forms, finite verbs and nominal forms, in the Atharva-veda, and
especially in the Brāhmaṇas (Liebich 1919, Palsule 1960). These three millennia
of Indian grammatical thought have been dominated by Pāṇini’s grammar for
more than two thirds of the time, since the date of its composition, ca. 350 B.C.E.1

* Because of the limited time available for writing this article I have to refer to earlier

publications (Houben 1999, 2003, 2006, 2008a, 2008b) for the substantiation of some of
my points with detailed examples from the works of Pāṇini and Pāṇinīyas. A brief
discussion of Pāṇini and his predecessors and successors, not only in their intellectual
but also in their social and cultural contexts, is given in Houben 1997.

1 Pāṇini's rūpya (A 5.2.120) refers to a type of coin which appeared in the Indian
subcontinent only from the 4th century B.C.E. onwards: cf. von Hinüber 1989: 34 and
Falk 1993: 304. The date of “ca. 350 B.C.E.” for Pāṇini is thus based on concrete
evidence which till now has not been refuted.

 Pāṇini’s Grammar and Its Computerization: A Construction Grammar Approach 7

As the earliest major grammatical description, Pāṇini’s grammar is remarkably
extensive in covering its object, surprisingly efficient and brief in formulation and
presentation, and of impressive quality. Even then, it was marginally amended
and improved upon in a long tradition, and on a large scale it was recast and
abbreviated. While it never received a definitive replacement, numerous
alternative grammars have been composed which adopted a great number of the
techniques and materials of Pāṇini’s grammar while modifying it – in the
respective authors’ view, improving on it – in other respects. The domination of
Pāṇini’s grammar over the practice of Indian grammar and Sanskrit literature can
therefore be described as a kind of extended love-hate relationship.

The object of Pāṇini's grammar is (a) the language of the Vedic texts and (b)
the current language of Pāṇini’s time, which is very close to the "classical"
Sanskrit that got established in subsequent centuries. The sophisticated and highly
complex system of Pāṇini's grammar consists of the following components : (i) an
inventory of phonemes in the form of fourteen formulas, the pratyāhāra-sūtras;
(ii) the grammatical rules or sūtras, in eight books, collectively the Aṣṭādhyāyī
(A); (iii) lists of roots or dhātu-s divided in ten major groups, collectively called
the Dhātu-pāṭha (DhP); (iv) a number of lists of forms that are not derivable from
roots, collectively the Gaṇapāṭha (GP); additional components that can be left out
of consideration in a brief overview are (v) the uṇādi-sūtras referring to suffixes
that form nominal stems apart from the kt- and taddhita-formations that are
extensively discussed in the Aṣṭādhyāyī; (vi) the phiṭ-sūtras on the accents of
derived forms; and (vii) the liṅgānuśāsana giving lists and rules to determine the
gender of various words (according to A 1.2.53, knowledge of the gender of
words can be presupposed and need not be taught in the grammar).

Grammars which present themselves as independent, even when they use many
of the techniques and devices of Pāṇini, normally concern Sanskrit but also Pali
or the closely related Prakrits.

A direct view on Pāṇini’s grammar as composed and intended by the author
and as accepted by first-generation users in the author’s own time is impossible.
The cultural and technical conditions of the transmission of knowledge in the
Indian world – which, until several centuries after Pāṇini, was initially dominated
by orality and later on by manuscript-literacy – allow us to achieve only a view
that is to an important extent mediated. Three major steps in this mediation over
many centuries can be distinguished, out of which the crucial importance of the
last two, b and c, has been almost entirely neglected. The first step is (a) the
interpretations and constructions of early grammarians whose work is sufficiently
transmitted and whose thought concerns more or less the entire grammar of
Pāṇini: Patañjali, 2nd cent. B.C.E., author of the Vyākaraṇa-Mahābhāṣya;
Bharthari, 5th cent. C.E., author of the Mahābhāṣya-dīpikā and of the
Vākyapadīya, an investigation of theoretical and philosophical issues regarding
basic concepts in Pāṇini’s grammar; Vāmana and Jayāditya, 7th cent. C.E.,
(regarded as) joint authors of the Kāśikā; (b) the interpretations and constructions
of “later” grammarians who perceive the nature and role of Pāṇini’s grammar in
specific ways in function of their study of the transmitted texts and in function of

8 J.E.M. Houben

the cultural and sociolinguistic conditions of their own time – partly similar,
partly different from the conditions in Pāṇini’s time; the view and constructions
of later grammarians are all the more important because we know that the oral
tradition knew important discontinuities at an early stage – referred to by the 5th
century grammarian-philosopher Bharthari – and that the written transmission
depends on manuscripts whose physical lifespan is limited to around two to four
hundred years, and hence on regular copying; (c) the interpretations and
constructions of “western” scholars (and Indian scholars following the methods of
modern linguistics) of Pāṇini’s grammar who perceive the nature and role of
Pāṇini’s grammar in specific ways in function of their study of the available
transmitted texts and in function of the nature and roles of grammars in “western”
context, and of their own theoretical views on grammar and language – on the
nature of words, nouns, verbs and the sentence – whether implicitly accepted or
explicitly formulated. With regard to the highly sophisticated Indian sciences and
disciplines pertaining to language, it has been rightly pointed out that it is difficult
for modern scholars to detect and appreciate something in these linguistic works
if they do not have already discovered it by themselves (Staal 1988: 47).

It is with regard to step (c) in our mediated view on Pāṇini’s grammar that the
presuppositions of construction grammar are of direct relevance. Construction
grammar, sometimes abbreviated as CxG, refers to a “family” of theories or
models of grammar that have started to attract wider attention especially since
around 2000, when theories of the “family” of Chomskian transformational
generative grammars were losing their attraction. Perhaps unexpectedly, the
presuppositions of construction grammar also have implications for steps (a) and
(b). Presuppositions of construction grammar overlap to a great extent with those
of cognitive linguistics. Cognitive linguists investigate basic psychological
mechanisms underlying all cognitive domains including the learning and use of
language, normally without postulating an identifiable structure given before
hand in language or in the language user as in Chomskian theory.

In several significant respects, a mediated view on Pāṇini’s grammar in
the light of construction grammar turns out to be different from a view on
Pāṇini’s grammar in the light of transformative generative grammar or of
generative grammar. Moreover, it opens new perspectives on the computerization
of this grammar. Because of the importance and authoritative status of Pāṇini’s
grammar in Indian cultural and literary history the great challenge of
computerizing this grammar has attracted several scholars but till now no
comprehensive and convincing results can be cited.

One of the problems in our understanding of and dealing with Pāṇinian
grammar is that it has come to us without a statement of underlying theoretical
views by the author himself. In the tradition of Pāṇinian grammar we do have
quite elaborate theoretic and philosophical discussions of basic grammatical
concepts in the work of Bharthari, especially in his Vākyapadīya. Major
presuppositions of Bharthari, fortunately or unfortunately, do not match major
presuppositions of Chomskian transformative generative grammar or those of
generative grammar (Houben 2008b). Since our views on Pāṇini’s grammar have

 Pāṇini’s Grammar and Its Computerization: A Construction Grammar Approach 9

been very much informed, explicitly or implicitly, by theories of generative
grammar it was till now not possible to see Bharthari as a thinker developing a
valid view on Pāṇini’s grammar. Instead he has been regarded as someone
carrying his readers away from grammar to a peculiar, idiosyncratic philosophy
which does not fit very well in any of the traditional philosophical schools of
Bharthari’s time, and which is hardly relevant to modern linguistic concerns.

In a recent study (Houben 2008b), I confronted foundational assumptions of
cognitive linguistics with features of Bharthari’s theory of grammar and found,
surprisingly, that in this light Bharthari’s theoretical investigations are of direct
relevance to current linguistic concerns, and, moreover, that he develops a valid
and directly relevant theoretical perspective on Pāṇini’s grammar, in spite of the
eight to nine centuries that intervene between him and Pāṇini (which is at least 15
centuries less than those intervening between us and Pāṇini). The present article
is a counter-part to this article on “Bharthari as a cognitive linguist” as it
explores the relevance of three foundational assumptions of construction
grammar (which, as said, partly overlap with presuppositions of cognitive
linguistics) for Pāṇini’s grammar as known to us. To make this article comparable
and compatible with the Bharthari article I will refer to the same lists of
foundational assumptions, the list for construction grammar and the list for
cognitive linguistics, that were used in that article.

One major difference between the two articles is that in the case of Bharthari
and cognitive linguistics we can directly match (or contrast) theory and theory,
whereas in the case of Pāṇini and construction grammar we have on the one
hand Pāṇini’s full-fledged grammar and on the other hand the theories of
construction grammar which have been used with regard to problems of
language learning and language use but, to my knowledge, it has not yet led to
the formulation of a comprehensive grammar entirely on the basis of these
theories. In our present study we will therefore explore to what extent principles
of construction grammar can be assumed to be underlying the grammar of Pāṇini
as we have it. It will force us to rethink certain views on Pāṇini’s grammar that
have till now seemed entirely natural and indisputable. It will force us also to
rethink some of the currently indisputed choices to emphasize some of the
relevant ancient and pre-modern texts and to neglect others. It may provide new
perspectives on how Pāṇini’s grammar originated and how it was used, which
also implies a new perspective on what deserves to be central and what
secondary in its computerization.

In recent years William Croft has argued in favour of what he calls Radical
Construction Grammar (e.g., Croft 2001, 2003, in prep.), in contradistinction to
conventional construction grammar, which he labels "vanilla construction
grammar". The aims of Croft include the comparison of constructions in
different languages, which is not relevant in the case of Pāṇini’s sanskrit
grammar. According to Croft, three (Croft 2003) or four theses (Croft in prep.)
are accepted by conventional construction grammarians, whereas his own
Radical Construction Grammar accepts a few more theses which emphasize that
what the first theses describe as conventional construction grammar is “all that is

10 J.E.M. Houben

universal in formal syntactic representation” (2003: 4). For the present purpose,
we can limit ourselves to Croft’s first four theses, supposed to be valid for most
theories of construction grammar:

(1) The basic unit of grammatical representation is a pairing of form and
meaning, where the form may range from the complex and schematic to
the atomic and substantive.

(2) The basic units of grammatical representation are symbolic, that is, for a
grammatical unit there is no separation of (a) the form and (b) the
meaning or function of that form.

(3) According to Croft's third thesis, the constructions of a language form a
structured inventory.

(4) According to the fourth thesis which we find in Croft (in prep.), usage is
the basis of constructions.

For the sake of reference I will give here also the list of foundational assumptions
formulated by Adele E. Goldberg in 1996 which I used in the Bharthari article.
Although in the title of her article she speaks of “construction-based grammar”
the list is said to represent “widely shared foundational assumptions of cognitive
linguists.”

1. Semantics is based on the speaker's construals of situations, not on
objective truth conditions (Langacker 1985, 1987, 1988; Fauconnier 1985;
Lakoff 1987; Talmy 1985).

2. Semantics and pragmatics form a continuum, and both play a role in
linguistic meaning. Linguistic meaning is part of our overall conceptual
system and not a separate modular component (Talmy 1978, 1985; Haiman
1980; Lakoff 1987; Langacker 1987)

3. Categorization does not typically involve necessary and sufficient
conditions, but rather central and extended senses (Rosch 1973; Rosch et al.
1976; Lakoff 1977, 1987; Haiman 1978; Fillmore 1982; Hopper and
Thompson 1984; Givón 1986; Brugman 1988; Taylor 1989; Corrigan et al.
1989)

4. The primary function of language is to convey meaning. Thus formal
distinctions are useful to the extent that they convey semantic or pragmatic
(including discourse) distinctions (Wierzbicka 1986, 1988; Lakoff 1987;
Langacker 1987; Haiman 1985; Croft 1991; Deane 1991)

5. Grammar does not involve any transformational component. Semantics is
associated directly with surface form.

6. Grammatical constructions, like traditional lexical items, are pairings of
form and meaning. They are taken to have a real cognitive status, and are
not epiphenomena based on the operation of generative rules or universal
principles (Fillmore et al. 1987; Lakoff 1987; Wierzbicka 1988; Goldberg
1995)

7. Grammar consists of a structured inventory of form-meaning pairings:
phrasal grammatical constructions and lexical items (Fillmore and Kay
1993; Lakoff 1987; Langacker 1987; Wierzbicka 1988; Goldberg 1995).

 Pāṇini’s Grammar and Its Computerization: A Construction Grammar Approach 11

Foundational assumptions of construction grammar and of cognitive linguistics
are usually formulated in contradistinction to those of generative grammar or
transformative generative grammar. Pāṇini’s grammar, however, does have parts
and aspects that are very well addressed in the light of generative grammar or
transformative generative grammar. Other basic and crucial aspects, however, are
destined to remain un-recognized and unexplored if the family of generative
grammars form our only theoretical frame of reference.

2 Construction Grammar and Pāṇinian Grammar

According to Croft’s first thesis, “the basic unit of grammatical representation is a
pairing of form and meaning, where the form may range from the complex and
schematic to the atomic and substantive,” in other words, from phrase structures
and idioms to words and morphemes. This refers to the syntax – lexicon
continuum, which Goldberg addressed in foundational assumption no. 6
"Grammatical constructions, like traditional lexical terms, are pairings of word
and meaning." The result is that for construction grammarians the lexicon
becomes an inventory of lexical items in the classical sense as well as
constructions and even lexically unfilled constructional idioms. The counterpart
to this thesis is found in the family of generative grammars which typically
distinguish and separate different components in the grammar, mainly a lexicon,
or lists of lexical items, and an (autonomous) syntax, or a body of general rules.

Langacker (2000 : 2) refers to this as the Rule / List fallacy, which implies “the
spurious assumption that rules and lists are mutually exclusive.” According to
Langacker, this fallacy should be avoided by including in the grammar

 both rules and instantiating expressions. This option allows any
valid generalizations to be captured (by means of rules), and while
the descriptions it affords may not be maximally economical, they
have to be preferred on grounds of psychological accuracy to the
extent that specific expressions do in fact become established as
well-rehearsed units. Such units are cognitive entities in their own
right whose existence is not reducible to that of the general patterns
they instantiate. (Langacker 2000 : 2)

In the practice of grammar, the separation of syntax and lexicon can therefore be
overcome either by setting up a lexicon that includes idioms, phrase structures,
etc., or by including lists of lexical items in the syntax. This is precisely the
situation we find in Pāṇini’s grammar : the grammar contains numerous lists
integrated into the rules, and moreover a number of major lists in the form of
roots and nouns assorted in sophisticated ways.

To Langacker’s remarks we should add that the aim to have an accurate
description of psychological processes underlying the use of language is shared
with the generative grammars which claim that the division of grammar into
components reflects the human capacity for learning and using language. In

12 J.E.M. Houben

classical transformational generative linguistics it is the syntax which forms the
core of a postulated universal Language Acquiring Device (LAD). This explains
the fascination of generative linguists with the syntactic rules as the central
component of grammar. As Kiparsky (2002: 1) observed :

 Generative linguists for their part have marveled especially at its
ingenious technical devices [in use in the body of rules (JH)], and at
[the] intricate system of conventions governing rule application and
rule interaction that it presupposes, which seem to uncannily
anticipate ideas of modern linguistic theory (if only because many
of them were originally borrowed from Pāṇini in the first place).

Of the theoretical aim of somehow capturing universal psycho-linguistic patterns
in the grammar there is no trace either in Pāṇini’s grammar or in the theoretical
discussion of Bharthari. On the contrary, Bharthari argues that the divisions
accepted in grammar are for the sake of analysis and description only and have no
absolute status, and that, for instance, in the understanding of a sentence by a
language user there is no definitive status of the parts of a sentence, which each
individual may provisorily isolate in his own way:

 arthaṁ kathaṁ cit puruṣaḥ kaś cit saṁpratipadyate /
 saṁsṣṭā vā vibhaktā vā bhedā vākyanibandhanāḥ //
 A person understands a meaning in one way or the other.
 Whether combined or separated, parts are based on the sentence.
 (Vākyapadīya 2.39)

With regard to the study of Pāṇini’s grammar, however, there is a risk that the
perspective of generative linguistics leads not only to a fascination with the body
of rules but also to a neglect of other aspects of the grammar or to a tendency to
see the other components as both separable from and secondary to the body of
rules.

Conversely, the perspective of construction grammar invites us to re-valuate
the lists, especially the most sophisticated lists of assorted roots, the Dhātupāṭha,
in which we find stored much grammatical information on each root. The
postulation of a root as the element underlying numerous verbal and nominal
forms actually occurring in the language is in each case a grammatical
achievement. For the Dhātu-pāṭha presupposed in his grammar, Pāṇini was
indebted to generations of previous grammatical thinkers, from the time of the
Atharva-veda and Brāhmaṇas onwards. The fact that the current Dhātupāṭha
contains dhātusūtras, rules specifically applicable to a set of roots, and that
through their categorization and through markers in the form of accents and
labels in the form of phonemes a root evokes specific sets of rules in the body of
rules or Aṣṭādhyāyī suggests the validity of a view on the grammar of Pāṇini that
is an inversion of the common view on this grammar (and an inversion of the
generative linguist’s view): the rules appear as an appendix to the lists of roots,
rather than the lists of roots being appendices to the body of rules. The
Aṣṭādhyāyī and perhaps its predecessors thus appear as integrations of separate

 Pāṇini’s Grammar and Its Computerization: A Construction Grammar Approach 13

sets of rules, some of which concern specific sets of assorted roots (others being
concerned with sandhi-rules, etc.). Moreover, from the point of view of a
grammar user of Pāṇini’s own time, the analysis of whose conditions has
remained surprisingly poor in the generative linguist’s framework, the selection
of a suitable root is normally the starting point of the synthetic part of his
consultation cycle.

According to Croft’s second thesis, “the basic units of grammatical
representation are symbolic, that is, for a grammatical unit there is no separation
of the form and the meaning or function of that form.” This amounts to an
entailment of Goldberg's foundational assumptions 4 and 6: grammatical
constructions do not have an independent formal status, nor do meaning and
function resort to a separate component of the grammar. In Croft's formulation
the thesis includes the acceptance of a continuity of semantics and, what Croft
calls, "conventional discourse or information structural properties" (2003: 3).
This is Goldberg's foundational assumption 2, the continuity of semantics and
pragmatics.

In this perspective it is “wrong” – or: it is a theoretical exercise more inspired
by modern theoretical concerns than by ancient practice or theory of grammar –
to postulate a level of “pure” semantics, and even more “wrong” to suggest that
this level of “pure” semantics is the starting point for uni-directional derivations
in Pāṇini’s grammar. In an earlier article on “meaning statements in Pāṇini’s
grammar” (Houben 1999) I discussed the views formulated in Kiparsky and Staal
(1969), Bronkhorst (1979), Joshi and Roodbergen (1975) and Kiparsky (1982)
according to which “semantics” or “meanings” form the starting point of the
derivation of words in Pāṇini’s grammar. Also in his lectures on the architecture
of Pāṇini’s grammar (Kiparsky 2002: 2-6), Kiparsky sticks to the postulation of a
first level of “semantic information” in Pāṇini’s grammar. This is all the more
problematic as Kiparsky also postulates that “The grammar is a device that starts
from meaning information such as [5] and incrementally builds up a complete
interpreted sentence,” where [5] refers to a case where, basically, kārakas are
assigned on the basis of “semantic information.”

This is not that much different from Kiparsky and Staal (1969), except that in
this earlier article the formulation leans more to Chomskian generative
grammar. As I argued extensively in 1999, the view that Pāṇini’s grammar is a
device “to encode a given meaning and to produce an expression” is untenable:
“how the semantic level can be placed at the basis and, as far as derivations are
concerned, at the beginning of the sophisticated grammar of Pāṇini, while it is
admitted at the same time that this semantic level is very sketchy” (Houben
1999: 26-27). Criticizing the partly parallel view of Bronkhorst according to
which “meaning elements” are the input of Pāṇini’s grammar I observed
similarly: “Just as a semantic level with sketchy representations of semantic
relations can hardly be accepted as forming the basis and starting point of
Pāṇini’s grammar, in the same way the terms which Bronkhorst considers to be
Pāṇini’s ‘semantic elements’ are too vague and insufficient to initiate the
procedures of Pāṇini’s grammar and to direct them with precision to the desired

14 J.E.M. Houben

utterances” (Houben 1999: 29). The appropriateness of my refusal to accept
“pure” meanings or “pure semantics” as a significant level or stage in Pāṇini’s
grammar, for which no direct traditional support exists, finds support in this
basic thesis of construction grammar: for a grammatical unit there is no
separation of (a) the form and (b) the meaning or function of that form.

If “pure” meanings or “pure semantics” are not the starting point of the
derivations in Pāṇini’s grammar, then what is the starting point? As argued in
1999 and 2003, we have to understand the nature and purpose of Pāṇini’s
grammar in its specific context which is quite different from that of modern
grammars. Strictly speaking it is not incorrect to say, with Kiparsky (2002) that
“Pāṇini studied a single language”; however, this statement is incomplete on a
vital point: Pāṇini was definitely aware of various “substandard” forms of the
language, forms which from a modern perspective we would assign to an
altogether different language such as Prakrit. The system of Pāṇini’s grammar
“clearly requires a user who wants to check and possibly improve a preliminary
statement” (Houben 2003: 161). The system implies the presence of a
knowledgeable user, a preliminary statement, and the application of first analytic
and next synthetic procedures to the words in it, with the user keeping in mind the
preliminary statement and its purport, and aiming at the best possible, saṁ-skta
form of his preliminary statement.

The concrete starting point for a derivation in the synthetic phase of the
consultation cycle of a user of grammar in Pāṇini’s time will then never be “pure”
meaning or an autonomous level of semantic representations but the selection of a
root – for instance, bhū ‘to be’ – or a form from lists of underived stems,
pronominal forms, etc., in which form and meaning are inseparably integrated. In
the sociolinguistic context of Pāṇini’s time we can suppose that the preliminary
statement of the user of the grammar contained not necessarily only “perfectly
formed” words but also substandard ones, for instance honti or bhonti instead of
bhavanti. The knowledge of the user of grammar in Pāṇini’s time concerns not
only the basic outlines of the grammar and knowledge of the language aimed at,
but also substandard forms current in his time and area.

What does this mean for the four “levels of representation” in the derivation of
forms postulated by Kiparsky and Staal in 1969 and confirmed with minor
modifications by Kiparsky in 2002? Against the background of then current
generative grammar theories of “deep structure” in linguistic utterances, the
scheme of four levels of representation seemed attractive in 1969. An opposite
trend is visible in construction grammar, as testified for instance in Goldberg’s
fifth thesis: “Grammar does not involve any transformational component.
Semantics is associated directly with surface form.” With regard to the first part
of this statement, formulated explicitly in opposition to transformational
generative grammar: it became soon clear to scholars, how ever much they were
inspired by transformational generative linguistics, that the presence of syntactic
transformations (for instance, from passive to active constructions, etc.) cannot be
accepted for Pāṇini’s system. The second part of Goldberg’s statement is what
also appears to be the desired outcome of the present thesis of Croft: “no

 Pāṇini’s Grammar and Its Computerization: A Construction Grammar Approach 15

separation of the form and the meaning or function of that form.” Even a little
familiarity with Pāṇini’s system, however, will make it clear that, how ever much
one may be inspired by construction grammar or cogntive linguistics, at least two
distinct levels of derivation are to be accepted: a level of morphological
representations (where we find roots, stems, suffixes) and a level of phonological
representations (with words in their final form after the application of all
substitution rules including those of sandhi).

Is any other level to be accepted? It turns out to be the case that no additional
level of representation is needed to account for Pāṇini’s system. Above we have
already dispensed with a level of “pure” semantic representations, as its
postulation is untenable. In an earlier article (Houben 1999), when the potential
usefulness of construction grammar had not yet attracted my attention, I proposed
to replace Kiparsky’s (and Kiparsky’s and Staal’s) level of semantics with a level
of “semantics, pragmatics and intentionality,” and I emphasized its
unformalizable nature, which seems quite disastrous from the perspective of
generative linguistics, but which at the end only means that we need a
knowledgable user of the grammar, familiar with the language and basic outlines
of the grammar, and also a preliminary statement that is the starting point of the
consultation cycle. One more level remains in Kiparsky’s scheme, that of
“morphosyntactic representation,” earlier referred to as “abstract syntax (e.g.,
kārakas)”. Even from Kiparsky’s own account, e.g. his recent one of 2002, it is
clear that this is in fact not an autonomous level of representation. I would now
like to propose that both this and the “level” of “semantics, pragmatics and
intentionality” are better regarded as domains of consultation, which allow the
user of the grammar to label the linguistic forms of his preliminary sentence
according to syntactically relevant categories of meaning or according to
semantically relevant generalizations of form (suffixes). The proof of the validity
of this scheme of the architecture of Pāṇini’s grammar is provided by Kiparsky’s
own account of his four levels of representation (2002). Although, as we have
seen, according to his explicit statement, “The grammar is a device that starts
from meaning information ... and incrementally builds up a complete interpreted
sentence” (Kiparsky 2002: 4), Kiparsky defeats his own account by placing the
“output” of the correct sentence at the beginning. After giving his scheme of four
levels of representation under [1], his immediate next step is:

“Consider the sentence whose output (phonological) form is shown in [2]:

[2] vánād grmam adyópétyaudaná āśvapaténāpāci2

‘When Āśvapata came from the forest to the village today, he cooked some rice.’ ”
It is difficult to find a better confirmation of my thesis (Houben 1999, 2003)

that not a semantic level but a preliminary utterance forms the starting point of a
derivation according to Pāṇini. That the two “broad classes of rules” which
should “effect a mapping” between the first and second and the second and third

2 Kiparsky (2002 : 3) gives the last part of the sentence as : āśvapaténpāci, omitting the

application of A. 8.1.28 tiṅ atiṅaḥ.

16 J.E.M. Houben

level do not concern an autonomous first and second level of representation is
moreover clear from the way these classes of rules are referred to in Kiparsky’s
scheme. The first class of rules would effect the “assignment of kārakas and of
abstract tense”: but to what are these kārakas and abstract tenses (laṭ, etc.)
assigned? Not to the semantic representations of level one, but to the words of the
preliminary utterance, in accordance with my thesis and as de facto demonstrated
by Kiparsky. Similarly, the “morphological spellout rules” which would effect a
mapping between the level of morphosyntactic representation and that of abstract
morphological representation is not sufficiently steered by the information
available on the first two level, without taking into account a preliminary
sentence, which is what Kiparsky actually does.

According to Croft's third thesis, “the constructions of a language form a
structured inventory.” This corresponds to Goldberg's foundational assumption 7:
“Grammar consists of a structured inventory of form-meaning pairings: phrasal
grammatical constructions and lexical items.”

The negative implication of this thesis is that it takes away the theoretical basis
for a grammar consisting in a pure and autonomous syntax to which lists of
lexical items are appended. It also takes away the theoretical basis for a structure
that is given before hand, whether in the Saussurean sense or in a more dynamic
Chomskian sense (cf. Kaldewaij 1986). Since in Pāṇini’s grammar we have only
the grammar without direct statement of the underlying linguistic view, it is
difficult to confirm directly whether this thesis is congenial to Pāṇini’s approach
or not. There is in any case no trace that a structure given before hand in language
was accepted by Pāṇini or his predecessors. In the case of Bharthari's linguistic
views, however, it is clear that they leave no room for the presence of a "structure
given before hand" in Sanskrit, inspite of what one might expect on the basis of
the oft-cited words of Sir William Jones (1786): "The Sanskrit language,
whatever may be its antiquity, is of a wonderful structure."

The positive side of this thesis, as discussed by Croft, is that the inventory is
widely characterized as a network. But he adds that the nature and structure of
this network is a matter of debate, with as one of the parameters the extent to
which inheritance and usage play a role in the formation of this network. The
topic of “usage” appears again in the next thesis.

According to a further implication of this thesis, as it is the constructions that
are the primitive elements of syntactic representation, grammatical categories
such as “noun,” “verb,” etc., are derived from these. Bharthari must definitely
be counted among those who would agree to this. In book 2 of his Vākyapadīya,
verses 344-345, for instance, Bharthari refers positively to the view of another
authority, Audumbarāyaṇa, according to whom the division into four categories
of words disappears both in front of the mental nature of the sentence (the fact
that it is based in the mind) and in front of the purposeful employment of
language in daily life; both in the discipline of grammar and in daily life,
however, we speak about language in terms of divided words and categories of
words as this is convenient and widely applicable. This would further imply that,
“the only internal syntactic structure of constructions is their meronomic structure

 Pāṇini’s Grammar and Its Computerization: A Construction Grammar Approach 17

(i.e. the part-whole relation defined by an element's role in a construction), and
symbolic links to components of semantic structure” (Croft, in prep.). This is
again entirely congenial to Bharthari’s approach to language and grammar.

Would Pāṇini accept this too? We do not have direct access to the way
grammatical concepts such as “noun” and “verb” were in use in Pāṇini’s own
time. Pāṇini’s own purely formal definition of a word as sup-tiṅ-antam “that
which ends in a -sup suffix or in a -tiṅ suffix is a word,” and hence as divisible in
only two major categories, the noun and the verb, is in any case remarkable. If
Pāṇini’s definition contrasted with the categories of “noun,” “verb,” “adverb,”
“preposition” as we find them in the Nirukta – which is likely but difficult to
prove as the relative date of the Nirukta vis-à-vis Pāṇini’s work is not established
– the latter were apparently relativized by the postulation of the pure technical
definition with only two major categories.

According to the fourth thesis, widely accepted by proponents of construction
grammar, usage is the basis of the constructions. This is part of a theory on how
people learn and use language, and it is the counterpart of theories that place
emphasis on inherited components of the language faculty.

Pāṇini is not directly concerned with a theory of individual’s language use or
language acquisition. As grammarians, however – and not as specialists in
psycho-linguistics – the early Pāṇinians such as Kātyāyana and Patañjali clearly
base themselves on attested usage which they aim to describe efficiently. It is
most likely that we can assume the same for Pāṇini, his contemporary
grammarians and his predecessors. There is no trace that it ever was the aim of
Pāṇini and early Pāṇinians to describe a mental language capacity.

The contrast between two seventeenth century grammarians in the Pāṇinian
tradition will in this respect appear in a different light (cf. Houben 2008a). One
among these two, Bhaṭṭoji Dīkṣita, placed Pāṇini and his two early successors,
Kātyāyana and Patañjali, on a level of absolute nominal and practical grammatical
authority. Although seemingly “saving” the three Pāṇinian munis from distortions
by lesser grammarians who come later in the tradition, he in fact cuts himself off
from the Pāṇinian “spirit” of usage based grammar. The other, Nārāyaṇa Bhaṭṭa,
defended the authority of “non-Pāṇinian” grammarians even if he himself follows
Pāṇini’s system in great detail and adopted all his central techniques and devices.
Although seemingly giving a lower place to Pāṇini it is precisely Nārāyaṇa Bhaṭṭa
who preserves the Pāṇinian “spirit” of usage based grammar. Practically all major
specialists of Pāṇinian grammar, western and Indian, trace their teacher parentage
back to the school of Bhaṭṭoji Dīkiṣita which found its fulfillment in the work of
Nāgeśa Bhaṭṭa. Through a configuration of factors, Nārāyaṇa’s work was
neglected even in his native area (in what is now Kerala), and his distinctive,
usage based perspective on Pāṇinian grammar of a sanskrit tradition that can be
said to have been “living” at least up to seventeenth century Kerala, has been
largely neglected by modern scholars. In the light of the principles of construction
grammar it appears worthwhile to review the modern scholars’ automatic choice
of perspective on Pāṇinian grammar.

18 J.E.M. Houben

3 Computerizing Pāṇini’s Grammar

In an important overview of modern Pāṇinian Studies, namely George Cardona’s
Recent Research in Pāṇinian Studies (1999), we read in the concluding section
that the author considers the "expanding use of technology in connection with
Indology and particularly the application of computer science methods to Pāṇini"
a major research direction in Pāṇinian Studies.

Indeed, in the last few decades publications on sanskrit grammar and on
sanskrit computational linguistics often express high expectations regarding a
"fruitful collaboration between traditional grammarians and engineers" in order to
contribute to the solution of "some of the problems of modern technology"
(Le Mée 1989: 114, approvingly cited in Cardona 1999: 272). This view3
harmonizes well with the view on grammar and its purposes dominant in modern
linguistics in the past two or three decades: the rules of a grammar should be able
"to generate the infinite number of sentences of the language" in such a way that
"any speaker, or even a machine, that followed the rules would produce sentences
of the language, and if the rules are complete, could produce the potentially
infinite number of its sentences" (Searle 2002: 33; cf. Chomsky 1965).

Pāṇini’s grammar in which an intricate system of rules occupies a central
position has frequently been compared with a computer program. As systematic
collections of rules Pāṇini’s grammar and a computer program can indeed be
compared, but how far can we really take this popular comparison? If the two are
so similar, transcribing the rules of Pāṇini’s grammar intelligently into an XML-
language should yield us a rich computer program describing the sanskrit
language. Since at least twenty years there have been ideas to develop "programs
replicating Pāṇinian prakriyā" and programs that analyse "strings in terms of
Pāṇinian rules" (cp. Cardona 1999 : 272f). In spite of several elaborate and
sophisticated attempts in this direction, it seems we are still far from a
comprehensive and convincing endresult. Why is it proving so difficult, for at
least some twenty years, to computerize Pāṇini’s grammar?

Perhaps a major reason is that we are not clear on some crucial issues
regarding Pāṇini’s grammar. In particular, it remains generally unclear for which
aim exactly Pāṇini wrote his grammar and for which aim it was accepted and
transmitted by his public. The focus on Pāṇini as an isolated genius has prevented
us from rigorously addressing the question: what is the nature of Pāṇini’s
grammar and what were the aim and context of his grammar in his own time?

According to Cardona (1999: 201), the Aṣṭādhyāyī "presents a synthetic
system, whereby affixes are introduced, under meaning and co-occurrence
conditions, to verbal and nominal bases, forming syntactic words (pada) that bear
particular semantic and syntactic relations with each other." Each part in this

3 While Cardona suggests here he supports the high expectations regarding a "fruitful

collaboration between traditional grammarians and engineers," he is elsewhere rightly
reticent in accepting detailed parallels between Pāṇini and methods and approaches in
modern linguistics.

 Pāṇini’s Grammar and Its Computerization: A Construction Grammar Approach 19

statement is in itself correct, yet on its own the statement as a whole amounts to a
one-sided and incomplete, and in that sense also problematic view of Pāṇini's
system. If the system is only synthetic, why would so much attention have been
paid to the finished utterances of Vedic texts4 with all their grammatical
exceptions? If the system is synthetic, it must be the abstracted linguistic elements
(affixes, verbal and nominal bases) that form the starting point of the synthesis.
But then one finds that the system fails entirely in providing guidance to arrive at
an acceptable utterance. However, in the practice of modern, early and pre-
modern Pāṇinīyas through the ages up to the present, no-one has ever produced a
correct form through Pāṇini's system that was not already his starting point, or
among his starting options. Usually the correct form is put at the beginning after
which it is derived through the system. This is not what modern users of grammar
usually do with their grammars, if, for instance, they want to learn a language.
We can hence suspect that the aim of Pāṇini’s grammar must have been
something else. As already indicated, it is therefore useful to see Pāṇini’s
grammar not as “a device that starts from meaning information” nor to see it as a
synthetic system combining affixes and nominal and verbal bases, but as a system
that starts with a preliminary statement. The more comprehensive and more
realistic view of Pāṇini's grammar as "reconstitutive" rather than one-sidedly
"synthetic" gives an important place to unformalized and fundamentally
unformalizable domains, which need not be an unsurmountable problem for the
designer of a computer program if this is not thought of as a closed system but as
a program that interacts with a knowledgeable user who has a starting sentence to
be checked.

4 Conclusion and Prospects: The Dhātu-pāṭha as a Central
Component of Pāṇini’s Grammar

If the fascination with a closed system of rules, which has been more an ideal –
not only of modern scholars but also of Pāṇinīyans admired by them such as
Bhaṭṭoji and Nāgeśa – than a reality in the case of Pāṇini’s grammar, is given up,
the interface between the impressive collection of verbal roots together with all
the grammatical information it contains, and the collection of rules that are now
found together in the Aṣṭādhyāyī can receive more attention. The derivation of a
word in a preliminary statement by any potential user of Pāṇini’s grammar will
normally start with the selection of a root in the Dhātu-pāṭha corresponding to a
selected problematic word in his statement. If the grammar user succeeds, he is

4 We may accept, with Bronkhorst 1991: 81-87 and Kelly 1996: 105f (and see now also

Bronkhorst 2007), that the process of creating texts coming under Pāṇini's category of
chandas was probably not yet entirely over in the times of Pāṇini and the Buddha. But
compared to the Vedic texts which were ritually employed and transmitted in largely –
not yet entirely – fixed forms in Pāṇini's time, linguistic creation in chandas must have
been marginal, so that the main referent of the term must still be regarded to be "the
(established) Vedic texts".

20 J.E.M. Houben

immediately in possesion of crucial grammatical information on this root and is
steered on to the rules that can apply. If he does not succeed, he has to go on and
search in lists of underived stems, etc. These procedures have little interest from
the point of view of generative grammar, but they can be supported by the use of
digitital data bases and a consultation program designed by a skilled computer
programmer and specialists of Pāṇinian grammar.

The Dhātu-pāṭha has its own problems, for instance the fact that important
commentaries on it have not yet been satisfactorily edited. Moreover, in the
currently available one associated with Pāṇini’s grammar we have not only
extensive sections which seem to have predated Pāṇini but also later additions. In
general, it seems that new forms have been added over the centuries without
discarding outdated ones. Early Dhātu-pāṭhas conserved in Tibetan and the
Dhātu-pāṭhas of alternative grammars such as the Sārasvata grammar or the
Mugdhabodha, which are still in many respects “Pāṇinian” even if they present
themselves as independent, are here of interest not only for the forms they contain
but also for those left out. This can help in tracing something of the linguistic
reality of two millennia of ‘living’ sanskrit in India, to which strict followers of
Bhaṭṭoji’s school have to remain blind.

The challenge of a computerized Pāṇinian grammar together with theoretical
incentives derived from construction grammar may thus provide a new impetus to
the study of domains and aspects in the work of sanskrit grammarians, and finally
of the rich cultural tradition of sanskrit literature, that have been largely neglected
till now, among them the domain of the Dhātu-pāṭhas that deserves to be taken up
at the point where Liebich and Palsule left it.

References

Bronkhorst, J.: The role of meanings in Pāṇini’s grammar. Indian Linguistics 40, 146–157
(1979)

Bronkhorst, J.: Pāṇini and the Veda reconsidered. In: Deshpande, M., Bhate, S. (eds.)
Pāṇinian Studies: Professor S.D. Joshi Felicitation Volume, pp. 75–121. Center for
South and Southeast Asian Studies, Ann Arbor (1991)

Bronkhorst, J.: Greater Magadha: Studies in the Culture of Early India. E.J. Brill, Leiden
(2007)

Brugman, C.M.: The story of over: Polysemy, Semantics, and the Structure of the Lexicon.
Garland, New York (1988)

Cardona, G.: Recent Research in Pāinian Studies. Motilal Banarsidass, Delhi (1999)
Chomsky, N.: Aspects of the Theory of Syntax. MIT Press, Cambridge (1965)
Corrigan, R., Eckman, F., Noonan, M.: Linguistic categorization. John Benjamins,

Philadelphia (1989)
Croft, W.: Syntactic Categories and Grammatical Relations. Univ. of Chicago Press,

Chicago (1991)
Croft, W.: Radical Construction Grammar: Syntactic Theory in Typological Perspective.

Oxford Univ. Press, New York (2001)

 Pāṇini’s Grammar and Its Computerization: A Construction Grammar Approach 21

Croft, W.: Logical and typological arguments for Radical Construction Grammar. In:
Fried, M., Östman, J.-O. (eds.) Construction grammar(s): Cognitive and cross-language
dimensions. John Benjamins, Amsterdam (2003), http://lings.ln.man.ac.uk/
Info/staff/WAC/Papers/RCG-CAL.pdf

Croft, W.: Some implications of Radical Construction Grammar for syntactic organization
and semantic structure (in Preparation), http://lings.ln.man.ac.uk/Info/
staff/WAC/WACabst.html#inpreprcgimpl

Deane, P.: Limits to attention: A cognitive theory of island phenomena. Cognitive
linguistics 2(1), 1–64 (1991)

Fauconnier, G.: Espaces mentaux. Minuit, Paris (1984)
Fauconnier, G.: Mental Spaces. In: Aspects of Meaning Construction in Natural Language.

MIT, Cambridge (1985); Cf. Fauconnier 1984. New edn. Cambridge Univ. Press,
Cambridge (1994)

Falk, H.: Schrift im alten Indien: Ein Forschungsbericht mit Anmerkungen. Gunter Narr
Verlag, Tübingen (1993)

Fillmore, C.J.: Frame semantics. In: Linguistics in the morning calm, pp. 111–138.
Hanshin, Seoul (1982)

Fillmore, C.J., Paul, K.: Construction Grammar Coursebook, University of California,
Copy Central, Berkeley (1993)

Fillmore, C.J., Kay, P., O’Connor, C.: Regularity and idiomaticity in grammatical
constructions: The case of let alone. Language 64, 501–538 (1988)

Givón, T.: Prototypes: Between Plato and Wittgenstein. In: Craig, C. (ed.) Noun classes
and categorization: proceedings of a symposium on categorization and noun
classification. John Benjamins, Philadelphia (1986)

Goldberg, A.E.: Constructions. In: A Construction Grammar Approach to Argument
Structure. Chicago Univ. Press, Chicago (1995)

Goldberg, A.E.: Jackendoff and construction-based grammar. Cognitive Linguistics 7(1),
3–19 (1996)

Haiman, J. (ed.): Natural Syntax: Iconicity and Erosion. Cambridge Univ. Press,
Cambridge (1985)

von Hinüber, O.: Der Beginn der Schrift und frühe Schriftlichkeit in Indien. Franz Steiner,
Wiesbaden (1989)

Hopper, P.J., Thompson, S.A.: The discourse basis for lexical categories in Universal
Grammar. Language 60, 703–752 (1984)

Houben, J.E.M.: The Sanskrit tradition. In: van Bekkum, W., Houben, J., Sluiter, I.,
Versteegh, K. (eds.) The Emergence of Semantics in Four Linguistic Traditions:
Hebrew, Sanskrit, Greek, Arabic, pp. 49–145. John Benjamins, Amsterdam (1997)

Houben, J.E.M.: Meaning Statements’ in Pāṇini’s grammar: on the purpose and context of
the Aṣṭādhyāyī. Studien zur Indologie und Iranistik 22(1999 [2001]), 23–54 (1999)

Houben, J.E.M.: Three Myths in Modern Pāṇinian Studies (Review article of George
Cardona, Recent Research in Pāinian Studies, Delhi 1999.) Asiatische Studien/Études
Asiatiques 57(1), 121–179 (2003)

Houben, J.E.M.: Sur la théorie du nombre de Bhartṛhari (Review article of Pascale Haag,
Le Saṁkhyāsamuddeśa du Bhartṛhari (théorie du nombre), Paris 2005.) Histoire –
Epistémologie – Language, Tome XXVIII, 157–166 (2006)

Houben, J.E.M.: Bhaṭṭoji Dīkṣita’s ‘small step’ for a Grammarian and ‘Giant Leap’ for
Sanskrit Grammar. Journal of Indian Philosophy 36, 563–574 (2008a)

22 J.E.M. Houben

Houben, J.E.M.: Bhartṛhari as a ‘cognitive linguist’. In: Chaturvedi, M. (ed.) Proceedings
of the International Seminar on Bhartṛhari, December 12-14, 2003. Motilal Banarsidass,
New Delhi (2008b)

Joshi, S.D., Roodbergen, J.A.F.: Patañjali’s Vyākaraña-Mahābhāṣya, Kārakāhnika.
Introduction, translation and notes, pp. 1.4.23–1.4.55. Centre of Advanced Study in
Sanskrit, University of Poona, Poona (1975)

Kaldewaij, J.: Structuralisme en Transformationeel Generatieve Grammatica. Dissertation.
Utrecht University (1986)

Kelly, J.D.: What was Sanskrit for? Metadiscursive strategies in ancient India. In: Houben,
J. (ed.) Ideology and Status of Sanskrit: Contributions to the History of the Sanskrit
Language, pp. 87–107. E.J. Brill, Leiden (1996)

Kiparsky, P.: Some theoretical problems in Pāṇini’s grammar. Post-graduate and Research
Department Series No. 16. Bhandarkar Oriental Research Institute, Pune (1982)

Kiparsky, P.: On the Architecture of Pāṇini’s Grammar. In: Three lectures delivered at
the Hyderabad Conference on the Architecture of Grammar and at the University
of California, L.A. (2002), downloaded on December 15, 2006
http://www.stanford.edu/~Papershyderabad.pdf

Kiparsky, P., Stall, F.: Syntactic and semantic relations in Pāṇini. Foundations of
Language 5, 83–117 (1969)

Lakoff, G.: Linguistic gestalts. Chicago Linguistic Society 13, 225–235 (1977)
Lakoff, G.: Women, Fire and Dangerous Things. Chicago Univ. Press, Chicago (1987)
Langacker, R.W.: Observations and speculations on subjectivity. In: Haiman, J. (ed.)

Natural Syntax: Iconicity and Erosion, pp. 109–150. Cambridge Univ. Press,
Cambridge (1985)

Langacker, R.W.: Foundations of Cognitive Grammar 1. Stanford Univ. Press, Stanford
(1987)

Langacker, R.W.: A usage-based model. In: Topics in Cognitive Linguistics (by Rudzka-
Ostyn, Brygida), pp. 127–161 (1988)

Langacker, R.W.: A dynamic usage-based model. In: Barlow, M., Kemmer, S. (eds.)
Usage-based Models of Language, pp. 1–63. CSLI Publications, Stanford (2000)

Le Mée, J.: Pāṇinīyas and engineers. In: Kumar, A., et al. (eds.) Studies in Indology: Prof.
Rasik Vihari Joshi Felicitation Volume, pp. 113–121. Shree Publishing House, New
Delhi (1989)

Liebich, B.: Zur Einführung in die indische einheimische Sprachwissenschaft, II:
Historische Einführung und Dhātupāṭha. C. Winter, Heidelberg (1919)

Palsule, G.B.: The Sanskrit Dhātupāṭhas: A Critical Study. University of Poona, Poona
(1961)

Rosch, E.: Natural Categories. Cognitive Psychology 4, 328–350 (1973)
Rosch, E., et al.: Basic objects in natural categories. Cognitive Psychology 8, 382–439

(1976)
Searle, J.R.: End of the Revolution. The New York Review of Books, February 28, p. 33

(2002)
Staal, F.: Universals: Studies in Indian Logic and Linguistics. Univ. of Chicago Press,

Chicago (1988)
Talmy, L.: The relation of grammar to cognition. In: Waltz, D. (ed.) Theoretical Issues in

Natural Language Processing, vol. 2, Coordinated Science Laboratory, Univ. of Illinois,
Champaign (1978)

Talmy, L.: Force dynamics in language and thought. In: Eilfort, W., Kroeber, P., Peterson,
K. (eds.) CLS, Parasession on Causatives and Agentivity, pp. 293–337 (1985)

 Pāṇini’s Grammar and Its Computerization: A Construction Grammar Approach 23

Taylor, J.R.: Linguistic categorization: prototypes in linguistic theory. Clarendon Press,
Oxford (1989)

Wierzbicka, A.: The semantics of ‘internal dative’ in English. Quaderni di Semantica 7,
155–165 (1986)

Wierzbicka, A.: The Semantics of Grammar. John Benjamins, Philadelphia (1988)

Appendix

24 J.E.M. Houben

 Pāṇini’s Grammar and Its Computerization: A Construction Grammar Approach 25

Construction grammar J.E.M. HoubenConstruction grammar J.E.M. Houben 11

abstract syntax
(syntactically relevant categories of meaning /

semantically relevant generalizations of form)

morphological representations
(form and meaning)

phonological representations
(form and meaning)

Semantics, pragmatics, intentionality

Form and meaning,
derivation (), consultation (), labeling ()

Annotating Sanskrit Texts Based on
Śābdabodha Systems

K.V. Ramkrishnamacharyulu

Rastriya Sanskrit Vidyapeetham, Tirupati, India

1 ������

�� ���� ��	
������ � �� ����
 ���� �� �� ��
� ���� ����� ����� 	�
 ����

2 Introduction

Though Sanskrit has a huge repository of texts as well as well discussed grammar
formalism, we still neither have a full fledged parser for Sanskrit based on this
formalism nor do we have any annotated text.

We propose here a tagging scheme for manual tagging of Sanskrit texts, based
on different grammatical relations that have been discussed by different schools
of śābdabodha systems. We hope the tagging scheme proposed here serves as a
good starting point for manual annotation.

The process of Śābdabodha involves identifying the relations between differ-
ent words in a sentence. The traditional model of sentence analysis which is
mainly based on Pān. inian model provides us with various relations that are
mainly Syntactico-Semantic in nature. Tradition treats a sentence as a series of
modifier-modified relations(M.M.R.). Ākāṅks. ā (expectancy) plays a major role
in establishing these relations.

Sentence is a group of words that are bound together by ākāṅks.ā. Sentences
are of two types: vākya (simple sentence) and mahā-vākya (complex sentence).

Vākya is a group of words with one verb. Other words in the sentence satisfy
the ākāṅks.ās (expectancies) of the main verb. These ākāṅks.ās are called utthita
ākāṅks.ā(Natural expectancies). The main verb is the mukhya víses.ya (head)
which is modified by other words (modifiers) in the sentence.

Mahā vākya is a group of sentences which are inter-related and denote a
single meaning. Here the head of the main sentence is modified by the heads
of the other (subordinate) sentences. As such the relations between the main
verb of the main sentence and the main verbs in sub-ordinate sentences denote
the inter-sentential relations. The ākāṅks.ā between the activities i.e. heads of
the sentences is not natural but are triggered by special words in the sentence
construction. These ākāṅks.ās, therefore, are called utthāpyākāṅks. ā.

The relations, thus, are of two types: external relations - relations between
sentences and internal relations - relations between words within the sentences.

In what follows, we list different inter-sentential and intra-sentential rela-
tions. We indicate, wherever possible, the marker which helps in identifying these

A. Kulkarni and G. Huet (Eds.): Sanskrit Computational Linguistics, LNCS 5406, pp. 26–39, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Annotating Sanskrit Texts Based on Śābdabodha Systems 27

relations, semantics associated with these relations, language conventions associ-
ated with them, if any, followed by the proposed tag1 with an example sentence.

3 Proposed Tagset

3.1 Inter-sentential Relations

These relations are denoted by certain link words and non-finite verb forms. The
ākāṅks.ā between two sentences is known only if the link words are present in the
sentence. All such relations are marked by (...) R where (...) denotes the part
of the sentence, R is the inter-sentential relation. The inter-sentential relations
may be further subclassified as

1. Relations denoted by non-finite verbs
2. Relations denoted by certain link words

Relations denoted by Non-finite verbs

1. �� ���������� (pūrvakāl̄ınatvam)
liṅgam: ktvā ending non-finite verb form
Meaning: ktvā- ending verb form denotes the activity which preceeds an
activity denoted by the main verb.
Properties: The kartā of the ktvā ending verb is shared with that of the
main verb2.
Proposed tag: (...) ktvā
Example: (���� �� ��� �����) ktvā ���� �!"��) �
(rāmah. (dugdhaṁ p̄ıtvā) ktvā śālām. gacchati).

2. #
�	�� (purpose of the main activity)
liṅgam: tumun-ending nonfinite verb form
Meaning: The tumun-ending verb denotes the purpose of the main activity
Properties: The kartā is shared in some cases. In some cases the karma or
sampradāna of the main activity becomes the kartā of the purpose activity.
proposed tag: (...) tumun
Example: ($%� #������ (
�� �&'� ��(���) tumun ��)��
� �!"���)�
(aham. pratidinam. (yogaśāstram. pat.hituṁ) tumun vidyālayam. gacchāmi).
($%� *�+�� �� �, %� (*�-� �) tumun $�.
���) �
(aham. bhavantam. mama gr.he (bhoktum) tumun āhvayāmi).

1 Though technically name of the relation should end in the bhāva pratyaya ‘tva’ as in
‘kartr.tva’, ‘karmatva’ etc., since we tag the words, we tag them as ‘kartā’, ‘karma’,
etc.
Thus in the sentence
���� �� �� �	
�� (rāmah. gr.haṁ gacchati),
rāma has kartr.tva of the kriyā denoted by gam, but we tag it as
���� kartā �� �� �	
�� (rāmah. kartā gr.haṁ gacchati).

2 ������������ �� ������ 3.4.21, (samānakartr.kayoh. pūrvakāle).

28 K.V. Ramkrishnamacharyulu

3. /��������� (Simultaneity)
liṅgam: śatr. or śānac
Meaning: It denotes the activity occuring simultaneously with the main
verb
Properties: The kartā is shared with the main activity
proposed tag: (...) śatr./(...) śānac
Example: (0���� (�� ��0�) śatr. �!"��) �
(bālakah. (jalam. piban) śatr. gacchati).
(0���� (
���) śānac %/��) �
(bālakah. (śayānah.) śānac hasati).

4. *���12/3�� (bhāvalaks.ān.a saptamī)

– $�+���������� (Time of the completion of preceeding activity)
liṅgam: kta - ending in 7th case
proposed tag: (...) kta7
Example: ((���� ��� ���) kta7 � �4� �56�) �
((rāme vanam. gate) kta7 daśarathah. khinnah.).

– /��������� (simultaneous events)
liṅgam: śatr. or śānac - ending in 7th case
propsed tag: (...) śatr.7
Example: ((���� ��� �!"��) śatr.7 /��� $�� /���) �
(rāme vanaṁ gacchati) śatr.7 s̄ıtā anusarati.

– �� ���������� (time of the main activity before the starting of the sub-
ordinate activity)
liṅgam: lr.t. + śatr. or śānac ending in 7th case
Proposed tag: (...) lr.t.-śatr.7
Example: ((��7� ��8
��2�/�) lr.t.-śatr.7 ���) �
((gos.u dhoks.yamān. āsu) lr.t.-śatr.7 gatah.).

Relations denoted by words

1. /����������� (samānakāl̄ınatvam)

– liṅgam: yadā - tadā or yasmin kāle - tasmin kāle
yadā or yasmin kāle in the subordinate sentence typically in the
beginning and tadā or tasmin kāle in the beginning of the main sentence
proposed tag: (...) yadā1
Example: (��� �
� �� �, �
�� (
�� ��9� �7���) yadā1)�
(tadā mayūrah. nr.tyati (yadā meghah. vars.ati) yadā1)

– liṅgam: yadā or yasmin kāle
Only yadā or yasmin kāle is present, and tadā or tasmin kāle is absent.
proposed tag: (...) yadā2

Annotating Sanskrit Texts Based on Śābdabodha Systems 29

Example: (�
� �� �, �
�� (
�� ��9� �7���) yadā2) �
(mayūrah. nr.tyati (yadā meghah. vars.ati) yadā2)

– liṅgam: tadā or tasmin kāle
Only tadā or tasmin kāle is present, and yadā or yasmin kāle is absent.
proposed tag: (...) tadā
Example: (��9� �7��� (��� �
� �� �, �
��) tadā) �
(meghah. vars.ati (tadā mayūrah. nr.tyati) tadā)

2. #��0+�� (conditional relation)

– liṅgam: yadi - tarhi
‘yadi’ in the beginning of a subordinate sentence and ‘tarhi’ in the main
sentence;
proposed tag: (...) yadi1
Example: ((
�� ��� :!"�/) yadi1 ��%� $%� *��� �, %� $��!"���) �
((yadi tvam icchasi) yadi1 tarhi ahaṁ bhavatah. gr.ham āgacchāmi).

– liṅgam: yadi
Only yadi is used,
proposed tag: (...) yadi2
Example: ($%� $����;
��� (
�� *��� $���1�� /<��
� ��=
��&
��) yadi2)�
(aham āgamis.yāmi (yadi bhavān apeks.itaṁ saulabhyaṁ
vidhāsyati) yadi2).

– liṅgam: tarhi
Only ‘tarhi’ is used, and the word ‘yadi’ is missing. proposed tag
(...) tarhi
Example: (��� :!"�/ (��%� $%� *��� �, %� $��!"���) tarhi) �
(tvam icchasi (tarhi ahaṁ bhavatah. gr.ham āgacchāmi) tarhi).

– liṅgam: cet
presence of the word ‘cet’ proposed tag: (...) cet
Example: ((��� :!"�/ >��) cet $%� *��� �, %� $��!"���) �
((tvam icchasi cet) cet ahaṁ bhavatah. gr.ham āgacchāmi).

– liṅgam: tarhi eva
group the words from the beginning up to tarhi eva as one sentence,
and the rest as second sentence
proposed tag: (...) tarhi eva
Example: ((��� :!"�/ ��%� ?�) tarhi eva $%� *��� �, %� $��!"���) �
((tvam icchasi tarhi eva) tarhi eva ahaṁ bhavatah. gr.ham āgacchāmi)).

3. ���2/���@�� ��
��*��� , ���2�*���@�� ��
�����A� (Non productive effort
(or) product without cause)
– liṅgam: yadyapi – tathāpi

proposed tag (...) yadyapi1

30 K.V. Ramkrishnamacharyulu

Example: ((
)�� $
� 0%� #
�/� �, ����) yadyapi1 �4��� ���1� ��
$�� A�2��) �
((yadyapi ayaṁ bahu prayāsaṁ kr.tavān) yadyapi1 tathāpi par̄iks.ā tu
anutt̄irn. ā)

– liṅgam: yadyapi
Example: ((
)�� $��� 0%� #
�/� �, ��) yadyapi2 ���1� �� $�� A�2��) �
((yadyapi anena bahu prayāsah. kr.tah.) yadyapi2 par̄iks.ā tu anutti.rn. ā).

– liṅgam: tathāpi proposed tag (...) tathāpi
Example: ($
� �4� � �� �� (�4��� #4��� �&���� �B����) tathāpi) �
(ayaṁ tathā na kuśalah. (tathāpi prathamapuraskāraṁ labd-
havān) tathāpi)

– liṅgam: athāpi or evamapi
proposed tag (...) athāpi
Example: (���1�
�� $%� $�� A�2�� ($4��� �� �� ���5;
�) athāpi) �
par̄iks.āyām aham anutt̄irn.h. (athāpi punah. likhis.ye) athāpi)

4. %��� %��� �C��� (cause and effect)

– liṅgam: yatah. -tatah. or yasmāt-tasmāt
proposed tag (...) yatah.1
Example: ((
�� $
� /�
� �����) yatah.1 ��� #�� ���1�
�� ���� ���) �
((yatah. ayaṁ samaye nāgatah.) yatah.1 tatah. praveśapar̄iks.āyām.
nānumatah.)

– liṅgam: yatah. or yasmāt
proposed tag (...) yatah.2
Example: (#�� ���1�
�� ���� ��� $
� (
�� /�
� �����) yatah. 2) �
(praves.apar̄ıks.āyāṁ nānumatah. ayam. (yatah. samaye nāgatah.) yatah. 2)

– liṅgam: tatah. or tasmāt or atah.
proposed tag (...) tatah.
Example: ($
� /�
� ����� (��� $
� ���1�
�� ���� ���) tatah.)�
(ayam. samaye nāgatah. tatah. ayam. par̄ıks.āyām. nānumatah.)

5. $�+���������� (following action)
liṅgam: tatah. or tatastatah. or anantaram or atha
proposed tag: (...) atha
Example: (#4�� $%� , 2��� ($4 ��5���) atha) �
(prathamam ahaṁ śr.n. omi (atha likhāmi) atha)

6. /�� D
� (conjunction)
liṅgam: api ca or kim. ca
proposed tag (...) apica
Example: (�*1�� $E ($��> �����
) apica) �
(bhiks.ām at.a (apica gāmānaya) apica)

Annotating Sanskrit Texts Based on Śābdabodha Systems 31

7. /��������2��� (co-location)
– liṅgam: yatra - tatra or yasmin - tasmin

proposed tag: (...) yatra1
Example: ((
' ��
�&�� �� F
+��) yatra1 ��+�� �' ������) �
((yatra nāryastu pūjyante) yatra1 ramante tatra devatāh.)

– liṅgam: yatra or yasmin
proposed tag: (...) yatra2
($%� 0, +����� �G
� (
' ������� �����) yatra2) �
(aho br.ndāvanam. ramyam. (yatra govardhano girih.) yatra2)

– liṅgam: tatra or tasmin
proposed tag: (...) tatra
Example: ((�' H���� ��� ��	�) tatra ��/%IJ�� �*��) �
((tatra snātvā naro rājan) tatra gosahasraphalam. labheta)

8. $/�JK
� (non-fulfilment of expected activity)
liṅgam: kintu or parantu
proposed tag (...) kintu
Example: (�	�+�� � ���L#
M� $���� (��+�� �N�L%�� � �� -�) kintu) �
(gajendrah. t̄ivraprayatnam akarot (kintu nakragrahāt na muktah.) kintu)

4 Sentence Internal Relations

These are of two types

– related to the words denoting activity,
– related to other words

4.1 Relations Related to the Activity-Denoting Words

These relations are triggered by the vibhaktis. However one vibhakti may indi-
cate several relations. It is the context which indicates a particular relation. we
mark these relations by REL where REL stands for the relation label.
These relations are also of two types:

– kāraka relations
– non-kāraka relations

– kāraka relations
• kartā k1
• karma k2
• karan.a k3
• sampradāna k4
• apādāna k5
• adhikaran.a k7

32 K.V. Ramkrishnamacharyulu

These kāraka relations may also be further classified as

• ���� (kartā) (k1)

∗ default (k1)
����A� k1 �>���
devadattah. k1 pacati
�4� k1 �!"���
rathah. k1 gacchati

∗ $�� *�� (experiencer(k1-e)
Example: 9E� k1-e �O
���
ghat.o k1-e naśyati.
�� '� k1-e 	�
���
putrah. k1-e jāyate.
/� k1-e /� 5� $�� *����
sah. k1-e sukham anubhavati.

∗ $�� ��� (abstract) (k1-a)
Example: N��� k1-a $��!"���
krodhah. k1-a āgacchati.

∗ #
�	�� (prayojakah.) (k1-p)
����A� k1-p ��;2� ��'�2 ��>
���
(devadattah. k1-p vis.n. umitren.a pācayati.

∗ #
�F
� (prayojyah.) (k1-j)
����A� ��;2� ��'�2 k1-j ��>
���
devadattah. vis.n.umitren.a k1-j pācayati.

∗ �P
&4� (madhyasthah.) (k1-m)
����A�
Q�A�� k1-m ��;2� ��'�2 ��>
���
devadattah. (yajñadattena) k1-m vis.n.umitren.a pācayati.

∗ $�*#����/R�#���� (cause for temptation) (k1-t)
Example: ����� k1-t ��>���
modakah. k1-t rocate.

∗ ���-��,� (karma-kartr.) (k1-k2)
Example: �*)�� ��S� k1-k2 &�
����
bhidyate kās.thah. k1-k2 svayameva.
�!
�� $���� k1-k2 &�
����
pacyate odanah. k1-k2 svayameva.

∗ ��2-��,� (karan.a-kartr.) (k1-k3)
Example: $�/� k1-k3 �"��A�
asih. k1-k3 chinatti.

Annotating Sanskrit Texts Based on Śābdabodha Systems 33

∗ 7S� -���� (s.as.t.h̄ı kartā) (K1-6)
Example: $�>�
�&
 k1-6 $�� �/�� �
ācāryasya k1-6 anuśāsanam.

• ��� (karma) (k2)
∗ default (k2)

Example: '� � k2 	
���
śatrūn k2 jayati.
$���� k2 *� T��
odanam. k2 bhuṅkte.

∗ R���)� (created)(k2-u)
Example: $���� k2-u �>���
odanam. k2-u pacati.

∗ ����
�� (raw meterial)(k2-v)
Example: /� �2U k2-v �� VW�� ������
suvarn.am. k2-v kun.dalam. karoti.

∗ #
�F
-���� (prayojya-kartā) (k2-j)
Example: 0��� k2-j 1��� ��

���
bālam. k2-j ks.̄ıram. pāyayati.

∗ $����� (location) (k2-l)
Example: �X�� V(� k2-l $�� ����
vaikun. tham k2-l adhísete.

∗ �� � (village, town, state, country etc) (k2-p)
Example: �� Y� k2-p &������
kurūn k2-p svapiti.

∗ ���� (time) (k2-t)
Example: ��/� k2-t $�&���
māsam k2-t āste.

∗ *��� (activity) (k2-a)
Example: ����%� k2-a $�&���
godoham k2-a āste.

∗ ����� (road measurment) (k2-m)
Example: N� � k2-m $�&���
krośam k2-m āste.

∗ /G#���� (recipient) (k2-k4)
Example: � � �� ���� k2-k4
	���
paśunā rudram. k2-k4 yajate.

34 K.V. Ramkrishnamacharyulu

∗ $���Z/�� (not intended) (k2-an)
Example: �L��� �!"� �, 2� k2-an &�, ���
grāmam. gacchan tr.n. am. k2-an spr.śati.

∗ $��4�� (not expected) (k2-un)
Example: ���� ��� k2-un ����� �
��
gopah. gām. k2-un dogdhi payah.

∗ ���-��� (gati-karma) (k2-g)
Example: ���� �L��� k2-g �!"���
rāmah. grāmam. k2-g gacchati.

∗ ��2� (instruments of playing) (k2-k3)
Example: $1�� k2-k3 ��[
���
aks.ān k2-k3 d̄ıvyati.
�+�� �� k2-k3 N�W���
kandukam. k2-k3 kr̄ıd.ati.

∗
� #�� ���� (yam. prati kopah.) (k2-k)
Example: N� �� k2-k $�*N� P
���
krūram k2-k abhikrudhyati.

∗ �+
-��� (in disrespect) (k2-d)
Example: � ���� �, 2�
 k2-d / �, 2� k2-d �+
��
na tvām. tr.n. āya k2-d / tr.n. am. k2-d manye.

∗ 7S�-��� (s.as.t.h̄ı-karma) (k2-6)
Example: B����� k2-6 $�� �/�� �
śabdānām k2-6 anuśāsanam.

• ��2� (instrument) (k3)

∗ default (k3)
0��� �� �\�
� ���� R]�E
���
bālah. kuñcikayā tālam udghāt.ayati.

∗ ��� (karma) (k3-k2)
Example: � � �� k3-k2 ����
	���
paśunā k3-k2 rudram. yajate.

∗ ���N
2� (money in bonded labour) (k3-m)
Example: ��� k3-m ���N�2����
śatena k3-m parikr̄ın. āti.

Annotating Sanskrit Texts Based on Śābdabodha Systems 35

• /G#���� (recipient) (k4)

∗ /����
� (recipient with ownership) (k4-o)
����A� 0L�^2�
 k4-o ��� ������
devadattah. brāhman. āya k4-o gām. dadāti.

∗ &������ (recipient without ownership) (k4)
����A� �	��
 k4-o �&'� #1����
 ������
devadattah. rajakāya k4-o vastram. praks.ālanāya dadāti.

∗ �N

� $�*#��� (intended to relate with activity) (k4-i)
example: ��
� k4-i ����
patye k4-i śete.

∗ Q�Z&
���� (addressed through praise etc.) (k4-a)
example: �, ;2�
 k4-a _�9���
kr.s.n. āya k4-a ślāghate.

∗ RA�2�� (a creditor) (k4-u)
example: ����A�
 k4-u �� ���
���
devadattāya k4-u śatam. dhārayati.

∗ `�Z/�� (desired) (k4-d)
Example: �� ;���
� k4-d &�, %
���
pus.pebhyah. k4-d spr.hayati.

∗
� #�� ���� /� (point of anger) (k4-k)
Example: %�
� k4-k N� P
���
haraye k4-k krudhyati.

∗ #�
��2� (location of desire) (k4-p)
Example: ����A�
 k4-p ��>�� ������
devadattāya k4-p rocate modakah.

∗
&
 ��#a� (enquiry about) (k4-e)
Example:- �, ;2�
 k4-e ��P
���
kr.s.n. āya k4-e rādhyati.

∗ ���N
2� (money in bonded labour) (k4-b)
Example: ����A� ��
 k4-b ���N����
devadattah. śatāya k4-b parikr̄ıtah.

• $������ (apādānam) (k5)
∗ default (point of departure/seperation) (k5)
�, 1�� k5 �2U �����
vr.ks.āt k5 parn.am. patati.

36 K.V. Ramkrishnamacharyulu

∗ *
 -%��� � (cause of fear) (k5-f)
Example: �, %&4� >���� k5-f �0*����
gr.hasthah. corāt k5-f bibheti.

∗ $�b
�� -R�
��� (teacher) (k5-u)
Example: "�'� R��P
�
�� k5-u $�����
chātrah. upādhyāyāt k5-u adh̄ıte.

∗
&��� ���2� (point for obstruction) (k5-o)
Example: �� ��� k5-o $+�� ���
���
kūpāt k5-o andham. vārayati.

∗
&
 /
&
� $� ��� :c� /� / /� (person intended not to be seen)
(k5-n)
Example: ���� � k5-n ����
�� �, ;2��
mātuh. k5-n nil̄ıyate kr.s.n. ah.

∗ #�, ��� (raw material) (k5-p)
Example: �, �� k5-p 9E� 	�
���
mr.dah. k5-p ghat.ah. jāyate.

∗ #*�� (place of first appearence) (k5-a)
Example: �%���� k5-a �d� #*����
himavatah. k5-a gaṅgā prabhavati.

∗ ���	
� (defeat from activity)3 (k5-d)
Example: $P

��� k5-d ���	
���
adhyayanāt k5-d parājayate.

• $����2� (location) (k7)
∗ ���� (time) (k7-t)

Example: '���
� �� k7-t ���� $�/�� �
tretāyuge k7-t rāmah. ās̄ıt.

∗ �� � deśah. (place) (k7-p)
Example: ���� $�
�P
�
�� k7-p $�/�� �
rāmah. āyodhyāyām k7-p ās̄ıt.

∗ ��7
� vis.ayah. (other than above) (k7-v)
Example: ��1� k7-v :!"� $�&��
moks.e k7-v icchā asti.

∗ /�
&
 $���� (time duration) (k7-td)
Example: 	������ k5-a (�` �
�+��) k7-td �������
janavar̄ıtah. k5-a (māı paryantaṁ) k7-td virāmah. .

3 ������ ����� parājeh. asod.hah. 1.4.26.

Annotating Sanskrit Texts Based on Śābdabodha Systems 37

∗ $+����-�� � (place in between) (k7-pd)
Example: �������� k5-a >+�� �����
�+�� k7-td *����� /�+��
tirupatitah. k5-a candragiriparyantaṁ k7-td bhavanāni santi.

– $����/G0+�� /�1�� �N

� (Non kāraka relations, but direct relations
with the activity)

• /G0���� (addressed) (radr)
Example: *� ��� radr ��� Re��
bho rāma radr mām uddhara.

• #/F
#��7��� (uncompounded negation) (rneg)
Example: ���� �, %� � rneg �!"���
rāmah. gr.ham. na rneg gacchati.

• /�G
� (similarity) (rs)
Example: 0L�^2�� rs $�����
brāhman.avat rs adh̄ıte.

• �N
� - $��, f
+����/�
� (time duration between the repetition of the
same activity) (rtd)
Example: $) *� g� ���h
�� rtd *�-��
adya bhuktvā dinadvayāt rtd bhoktā.

• ���i
� (purpose) (rtv)
Example: "�'� $P

��
 rtv ��)��
� �/���
chātrah. adhyayanāya rtv vidyālaye vasati.
/� N
2�
 rtv $��2� �!"��
sā krayan. āya rtv āpan.am. gacchati.

• %��� � (cause) (rhv)
Example: ��)�4�� $P

��� rhv ��)��
� �/���
vidyārth̄ı adhyayanena rhv vidyālaye vasati.

• ��Z/� (repitition) (rrpt)
Example: �� +��� $���� #���, 1� rrpt �/\���
śakuntalā āśrame prativr.ks.am. rrpt siñcati.

• �N
�-$��, �A-�2�� (counting of repetition) (rcrpt)
Example: 0���� ��(� �\���� rcrpt �(���
bālakah. pāt.haṁ pañcavāraṁ rcrpt pat.hati.

• �N
��� �72� (manner adverb) (rad)
Example: %&�� ����� �+�� rad �!"���
hast̄ı mārge mandam. rad gacchati.
�, �� ����� rad ������
mr.gah. (vegena) rad dhāvati.

38 K.V. Ramkrishnamacharyulu

• $�
+�-/G0e� ���� (complete relation with time) (rt2)
Example: 0���� �� ��� �� ��/� rt2 $�����
bālakah. gurukule māsam rt2 adh̄ıtah.

• $�
+�-/G0e� ����� (complete relation with road) (rr2)
Example: ��(� N� � rr2 $���� �
pāt.hah. krośam rr2 adh̄ıtah.

• $�
+�-/G0e� ���� (#
�	��) /J�� (complete relation with time
with result) (rt3)
Example: 0����� ��/�� rt3 $�� ���� $�����
bālakena māsena rt3 anuvākah. adh̄ıtah. .

• $�
+�-/G0e� ����� (#
�	��) /J�� (complete relation with road with
result) (rr3)
0����� N� �� rr3 $�� ���� $�����
bālakena krośena rr3 anuvākah. adh̄ıtah. .

– Other Relations
• 7S� (s.as.t.h̄ı relation) (r6)

($P
���&
) r6 �� &��� "�'�� �(�+��
adhyāpakasya r6 pustakam. chātrāh. pat.hanti.

• $��G*/�
� ����� (starting point of time) (rst5)
Example: �����j�� rst5 $��L%�
2� ��/��
kārtikyāh. rst5 āgrahāyan. ı̄ māse.

• $��G*�� � ����� (starting point of place) (rsp5)
Example: �������� rsp5 >+�� ����� N� ��
tirupatitah. rsp5 candragirih. krośe.

• �12� (point of direction) (rd)
Example: �, 1� #�� rd ��)���� ��)� � �
vr.ks.aṁ prati rd vidyotate vidyut.
�1� *��&
 R��� rd W
���
paks.̄ı bhavanasya upari rd dayate.
���� �L��� #�� rd ����
rāmah. grāmaṁ prati rd ����

• ���i
� (purpose) (rt)
Example: 0����
 rta �� &��� N�2����
bālakāya rt pustakam. kr̄ın. āti.

• %��� � hetuh. (rh)
Example: �� G*���� �VW�� rh 9E� ������
kumbhakārah. dan.d. ena rh ghat.am. karoti.

Annotating Sanskrit Texts Based on Śābdabodha Systems 39

• /% /G0+�� (associative) (ras)
(�� '�2 /%) ras ���� �!"���
(putren.a saha) ras pitā gacchati.

• ���� (non-associative) (rnas)
(����2 ����) rnas 	���� ���&��
(dharmen.a vinā) rnas j̄ıvanam. nāsti.

• ��*-� (comparison between two) (rv5)
��4� ��� ��E���� '���
� rv5 $�k�����
māthurāh. pāt.al̄ıputrakebhyah. rv5 ād.hyatarāh.

• ������2� (Isolating one from a group – in the superlative degree context)
(rn7 / rn6).
���� rn7 �, ;2� 0%� 1����
gavāṁ rn7 kr.s.n. ā bahuks.̄ırā
��7� rn6 �, ;2� 0%� 1����
gos.u rn6 kr.s.n. ā bahuks.̄ırā

Appendix

Relations

Inter Sentential

karakam karakam-

-

-

karta

karma

karanam.

sampradanam-

- -apa danam

adhikaranam.

Non-

Direct Relations with the
activity Other Relations

External

Non-finite Verb Forms Words

sambodhana

Uncompounded
 Negation

Similarity

Time Duration
Between the

Repetition of the
Same Activity

Purposive

Cause

Repetition

Counting of Repetition

Adverbial

Complete Relation
 with Road

Complete Relation
with time

Complete Relation
with time and

 Road with result

sasthi re lat ion. . .
-

Starting point of the
time

Starting point of the
place

Point of direction

tadart hya - Purpo se-

-

-

-

het uh.
Associative

vina (Non
- Ass o cia t ive)

compari son
bet ween two

 nirdh arana
(Iso lating one
from a group)

Sequence of
two activities

Activity result
of main action

Simultanious
 activity

Time of preceding
 activity’s

completion

 Time of the
activity performed
 simultaniously

Time fo activity
to be performed
 after the main
 activity

Simultanious
 activity

Conditional
 relation

Non-productive
 Effort

Cause and effect

Following action

In addtion to

same place

 Non-fulfillment
of wished activity

Fig. 1. Relations in anvaya-prakriyā

Modelling the Grammatical Circle of the
Pān. inian System of Sanskrit Grammar

Anand Mishra

Department of Classical Indology
Ruprecht Karls University, Heidelberg, Germany

amishra@ix.urz.uni-heidelberg.de

Abstract. In the present article we briefly sketch an extended version
of our previously developed model for computer representation of the
Pān. inian system of Sanskrit grammar. We attempt to implement an
antecedent analytical phase using heuristical methods and improve the
subsequent phase of reconstitution using the rules of As.t.ādhyāȳı by in-
corporating strategies for automatic application of grammatical rules.

Keywords: Sanskrit, Grammar, Pān. ini, As.t.ādhyāȳı, Computational
Linguistics, Modelling.

1 Introduction

In the following we propose a computer model for representing the grammatical
process of the Pān. inian system of Sanskrit grammar. In Sect. 2 we describe the
circular nature of this grammatical process. It consists of first an analysis of a
given linguistic expression into constituent elements and then its reconstitution
using a given set of rules. This process, thus starts with a provisional statement
and ends in a sam. skr. ta or perfected expression.

A brief summary of our model for implementing the latter step of reconstitu-
tion of linguistic expressions using the rules of As.t.ādhyāȳı is presented in Sect. 3.
The implementation of the preceding analytical step is now being attempted. The
main approach here is to improvise heuristics to guess the constituent elements
of a given expression. This is outlined in Sect. 4. The subsequent reconstitutive
step as specified by As.t.ādhyāȳı is now proposed to include strategies for auto-
matic application of rules in Sect. 5. The main program modules implementing
all this are mentioned in Sect. 6.

2 Circular Nature of the Grammatical Process

The As.t.ādhyāȳı of Pān. ini is a device to produce linguistic expressions using
its constituent elements. It prescribes a set of fundamental components which
constitute the language, characterizes them using a number of attributes and
specifies rules to form the final linguistic expressions. This process of constructing

A. Kulkarni and G. Huet (Eds.): Sanskrit Computational Linguistics, LNCS 5406, pp. 40–55, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Modelling the Grammatical Circle of the Pān. inian System 41

linguistic expressions presupposes a process of analysis, as a result of which,
Pān. ini1 had at his disposal fundamental components like bhū, tip2 etc.

The analytical process, beginning with the pada-pāt.ha of Vedic mantras is not
recorded in terms of rules of analysis. Thus, Madhava Deshapande [3] notes
that Pān. ini’s grammar “does not provide us with analytical tools to go from
texts to their interpretation, or from sentences to morphemes and phonemes. It
presupposes the results of an analytical phase of scholarship, but is itself not
representative of that analytical phase”.

The As.t.ādhyāȳı records processes only of the second phase of a grammatical
circle that begins with a provisional expression which a speaker formulates to
express her/his intention (vivaks. ā) and culminates in formation of a sam. skr. ta
expression. The first phase, that of analysis of a sentence in one or more padas
(vākyavibhajyānvākhyāna) and further a pada in its constituting components
i.e. prakr. ti and pratyaya etc. (padavibhajyānvākhyāna), precedes the process of
synthesis.3

Thus, the grammatical process can be stated as consisting of the following
steps:

1. Collection of padas Pj from a (provisional) sentence Si.

Si = {Pj}n
1 (1)

Decomposition of a pada Pj into prakr. ti (root) R and pratyayas (affixes)
A1···k.

Pj = {R, A1···k} (2)

2. Combination of the constituent components into padas and sentence.

{R, A1···k} −→ P ′
j (3)

{P ′
j}n

1 −→ S′
i (4)

The above steps comprise a circular process of first decomposing a (provisional)
sentence into imaginary4 components and then reassembling these components
to form a sam. skr. ta expression.

Si −→ {Pj}n
1 −→ {R, A1···k} −→ {P ′

j}n
1 −→ S′

i (5)

Thus, modelling the grammatical process involves modelling this circular process
of decomposition and then recombination, through which a provisional sentence
is transformed into a sam. skr. ta sentence.5

1 Here, a reference to Pān. ini includes his predecessor, contemporary and successor
grammarians as well.

2 The it - markers are represented in small caps.

3 See Bhattacharya [1] Pp. 228.
4 See Bhattacharya [1] Pp. 229.
5 See Houben [7] Pp. 48.

42 A. Mishra

3 Representing the Grammatical Process of As.t.ādhyāȳı

This section briefly summarizes the basic data structure for modelling the gram-
matical process of As.t.ādhyāȳı.6

3.1 Fundamental Components

The building blocks of the language are collected and assigned a unique key in
our database. For example, the phoneme /a/ has the key a 0, the kr. t suffix /a/
has the key a 3 and the taddhita suffix /a/ is represented by the key a 4.

Definition 1. The collection of unique keys corresponding to the basic con-
stituents of the language, we define as the set F of fundamental components.

Remark 1. This set is further sub-divided in two disjoint sets consisting of the
set of keys corresponding to the phonemes (P) and the set containing the keys
of the rest of the constituting elements (M).

P = {a 0, i 0, u 0, . . .} (6)

M = {bhU a, tip 0, laT 0, . . .} (7)

3.2 Attributes

The fundamental units of the language are given an identity by assigning a num-
ber of attributes to them. This includes the various technical terms introduced
in the grammar as also the it -markers and pratyāhāras.

Definition 2. The collection of unique keys corresponding to the terms, which
characterize a fundamental component, we define as the set A of attributes.

Remark 2. Corresponding to the sets P and M we can decompose the set A into
two disjoint sets Aπ and Aμ, Aπ being the set of unique keys of the attributes
to the elements of P and Aμ to elements of M.

A = Aπ ∪ Aμ (8)

Aπ = {hrasva 0, udAtta 0, it 0, . . .} (9)
Aμ = {dhAtu 0, pratyaya 0, zit 9, . . .} (10)

Remark 3. Any two of the four sets P , M, Aπ, Aμ are mutually disjoint.

Given the mutually disjoint sets P , M and A, we represent a linguistic expres-
sion at any stage of its derivation through a language component, which is an
ordered collection of sound sets. We first define a sound set and then a language
component in terms of these sound sets.
6 For a detailed description, see Mishra [9].

Modelling the Grammatical Circle of the Pān. inian System 43

3.3 Sound Set ψ

Definition 3. A sound set ψ is a collection of elements from sets P , M and A
having exactly one element from the set P.

ψ = {πp, μi, αj |πp ∈ P , μi ∈ M, αj ∈ A, i, j ≥ 0} (11)

3.4 Language Component λ

Definition 4. A language component λ is an ordered collection of at least one
or more sound sets.

λ = [ψ0, ψ1, ψ2, . . . ψn] such that ‖λ‖ > 0 (12)

A language component λ has as many sound sets ψi’s as there are phonemes in
that component. A sound set ψ contains a number of fundamental components
and attributes. Those attributes which are common to a number of sound sets in
a language component, become the attributes of that chain of sound sets. This
chain could be a single phoneme, or a morpheme or more than one morphemes
and even more than one words.

The process of formation is represented through a process strip σ, which is an
ordered collection of a pair having its first entry as a rule number and second
one to be a language component, which is achieved after application of this rule.

3.5 Process Strip σ

Definition 5. A process strip σ is an ordered collection of pairs, where the first
element of the pair is the number of a particular grammatical rule (e.g. rulep)
and the second element is a language component λ.

σ = [(rulep, λp), (ruleq, λq), . . .] (13)

There are two basic operations, attribute addition and augmentation which are
applied to a language component. All the operations in As.t.ādhyāȳı e.g. substi-
tution, reduplication, accentuation etc. are implemented using a combination of
these two basic operations.

3.6 Attribute Addition

Let α ⊂ A ∪ M and ψ be a sound set. Then attribute addition is defined as

haψ(ψ, α) = ψ ∪ α (14)

Remark 4. This operation can be applied to a number of sound sets given by
indices [i, i + 1, . . . , j] in a given language component λ

haλ(λ, α, [i, . . . , j]) = [ψ1, . . . , ψi ∪ α, . . . , ψj ∪ α, . . . , ψn] (15)

44 A. Mishra

3.7 Augmentation

Let

λ = [ψ1, . . . , ψi, ψi+1, . . . , ψn]
λk = [ψ1k, ψ2k, ψ3k, . . . , ψmk]

and i be an integer index such that i ≤ ‖λ‖, then augmentation of λ by λk at
index i is defined as

hg(λ, λk, i) = [ψ1, . . . , ψi, ψ1k, ψ2k, ψ3k, . . . , ψmk, ψi+1, . . . , ψn] (16)

3.8 Substitution

We define substitution in terms of the above two operations.
Let [i, i + 1, i + 2, . . . , j] be the indices of sound sets to be replaced in the

language component λ = [ψ1, . . . , ψi, ψi+1, . . . , ψn].
Let λk = [ψ1k, ψ2k, ψ3k, . . . , ψmk] be the replacement, then the substitution is

defined as

hs(λ, λk, [i, . . . , j]) = hg(haλ(λ, {δ}, [i, . . . , j]), λk, j) (17)

where δ ∈ A is the attribute which says that this sound set is no more active
and has been replaced by some other sound set.

A rule of grammar is represented through a function fq, which takes a process
strip σp and adds a new pair (ruleq, λq) to it where ruleq is the number of the
present rule, and λq is the new modified language component after application
of one or more of the two basic operations defined above on the input language
component λp.

fq(σp) = σq where (18)
σp = [. . . , (rulep, λp)] (19)
σq = [. . . , (rulep, λp), (ruleq, λq)] (20)
λq = ha, hg(λp, . . .) (21)

A typical formative process begins with a seed element (usually a verbal root
or nominal stem), and a chain of rules provided manually through a template is
applied. At the end, a sam. skr. ta expression is formed.

The system has been tested for different formative processes of As.t.ādhyāȳı
and can be accessed online (http://sanskrit.sai.uni-heidelberg.de).

4 Heuristically Analyzing the Sanskrit Expressions

As.t.ādhyāȳı provides us with a collection F of fundamental elements which is
a finite set, having limited entries. Using this set and another finite collection
of rules, a substantially bigger set of linguistic expressions can be formed. To

Modelling the Grammatical Circle of the Pān. inian System 45

specify this process, a number of meta-linguistic entities (collected in set A of
attributes) as well as conventions are used.

This process presupposes another process of looking for these fundamental
components in the expressions of the language. For example, by some process
of analysis, it is ascertained that with bhavati the elements like bhū or śap or
tip are associated.7 As mentioned earlier, there are no recorded rules for this
step. The question, which fundamental elements are associated with a particular
expression, can however be approached heuristically.8 The problem can be stated
as follows:

Problem 1. Given a string S, search for the possible break-up tuples such that
each tuple contains only fundamental elements which could be later used as seeds
for reconstitution.

The above task is performed by an Analyzer (A) which aims at guessing the
possible fundamental components constituting a given sentence S. It does not
aim to ascertain the perfect break up in terms of fundamental constituents, but
only some of the possible components, which could function as seeds for the
subsequent step of reconstitution.

Example 1. We give an example first for a sub-problem, where our string S is
a pada. Given S = jayati, A(S) should fetch us at least a tuple consisting of at
least the verbal root ji and possibly the tiṅ suffix tip as well.

A(jayati) = [(ji, tip, . . .), (e1, . . .), (e2, . . .), . . .] where ei ∈ F (22)

In fact, it gives a list of possible decomposition tuples.

4.1 Some Observations on the Process of Analysis

Before we describe our approach for developing heuristics towards analysing an
expression and give an example, we first mention a few observations as to the
nature of this problem.

On the surface, it seems to be searching for a needle in a hay stack, but a
closer look allows for such an adventure! For this purpose, certain features of the
grammatical corpus and processes of As.t.ādhyāȳı can be made use of.

1. The set of fundamental elements F is finite. That means, we do not have to
search infinite elements.

2. The order of fundamental elements in a tuple is also not random. Thus,
(upasarga, dhātu, vikaran. a, pratyaya) is one such (partial) order.

7 The examples here are at pada level and not at vākya level, although the unit of
analysis (as well as synthesis) is a sentence. This is because of simplicity and also it
does not amount to any loss of generality.

8 I am also working on the possibilities to incorporate some statistical methods, but
it is too early to report about it.

46 A. Mishra

3. Simultaneous presence of certain fundamental elements within a tuple is also
restricted. For example, while analysing a pada, both a tiṅ suffix as well as
a sup suffix can not occur simultaneously.

4. Certain attributes of the fundamental elements, like avasāna, sup, tiṅ indi-
cate pada boundaries. This is helpful to identify more than one padas within
a character string.

5. A dictionary of possible surface forms (as keys) and corresponding original
elements (as values) provides a connection between phoneme chains on the
surface level to the fundamental elements, which may have contributed to it.
Here, a special sub-set is of those elements, like dhātus or tiṅ suffixes which
are more abundantly present.

6. Consonants are less prone to phonetic changes.
7. The replacement rules (ādeśa-sūtras) can be reversed, and these reversed

rules can be used to gain the replaced element. Thus, for example, the re-
placement rule thā ah. se (3.4.080)9 replaces the whole of thās of a t.it lakāra
with se. So in case, se is identified, the reversal of this rule will be used to
check the possibility of thās here.

8. Reverse engineering of certain standard vidhis, e.g. reduplication or s.atva
vidhi etc. brings us closer to the original element.

Finally it should be mentioned that it is for the teleological purpose of providing
seeds for the subsequent step of reconstitution, with which this phase is con-
cerned and not to provide a correct and complete decomposition of a sentence
or a word. In fact an imprecise break up of an incorrect pada can only possibly
lead to the sam. skr. ta form.

4.2 The General Process of Analysis

Given a character string, the general process of analysis involves in guessing its
possible break ups in terms of elements of the set F of fundamental constituents.
It consists of the following steps:

1. Take a possible break up of character string.
2. Try to find the corresponding elements associated with these sub-strings

using the dictionary which maps surface forms to fundamental elements.
3. Try to find the possible replaced elements using reverse replacement rules in

a given tuple of fundamental elements.
4. Check for Pān. inian consistency of this tuple.
5. If consistent, then add to the list of break up tuples.
6. Repeat the previous steps for a new initial break up.

We illustrate the above process through a couple of examples.

Example 2. Consider pavete to be the input string. We first try to guess the
possible tiṅ suffix. For that, we look up in the the dictionary which maps surface
forms to fundamental elements for tiṅ suffixes. This dictionary looks like

{ti : [tip, . . .], tah. : [tas, . . .], . . . , te : [ātām, . . .], . . .}
9 Numbers in brackets refer to the rule number in As.t.ādhyāȳı .

Modelling the Grammatical Circle of the Pān. inian System 47

We take only those break up strings which can possibly be associated to some
tiṅ element. Thus, the possible break up is restricted through the keys of the
dictionary of surface forms to fundamental elements. In this case, we break the
string as pave te and associate ātām to te. We represent this as follows

[(pave)(te : ātām)]

Next we look at the leading part (pave) of the provisional break up, which has
the possibility that it may contain the verb. Here we look first in the list of verbs
beginning with p. These are [paci, pat.a, . . . , pus.a, pūṅ, pūñ, . . .]. We now use
the rules for reverse replacement. This is guided by the standard replacement
series in verbs. One such series is ū → o → av replacements. The character string
av motivates the reverse replacement, and applying this, we come from (pave)
to (pūe). We associate now the verbs pūṅ as well as pūñ to the sub-string pū.
We thus have,

[(pū : pūṅ, pūñ)(e)(te : ātām)]

We now collect the decomposition tuples. These are,

[(pūṅ, ātām), (pūñ, ātām), . . .]

Now the Pān. inian consistency of the tuples are checked. In this case the tuples
are (dhātu, pratyaya) tuples. So the order of elements within a tuple is correct.
Moreover, within a tuple, there is no simultaneous presence of mutually exclusive
pairs of fundamental elements. For example, no sup and tiṅ suffixes are present
simultaneously. Thus, these two tuples are added to the list of other possible
break up tuples of fundamental elements.

L = [. . . , (pūṅ, ātām), (pūñ, ātām), . . .]

The process is repeated for other possible character break ups (as long as there is
such a possibility). The tuples are ranked according to the richness of information
they contain for the subsequent process of reconstitution. Thus, those tuples,
having a dhātu or prātipadika and a tiṅ or sup suffix are ranked higher than
those having only a dhātu etc.

Example 3. Consider the case where the input string (for a pada) has four or
more consonants. We look for the possibility whether it is the case of reduplica-
tion, specially because of the suffix san.

1. Look whether there is consonant s or s. in the input string
2. Use the heuristics for deciding the tiṅ endings for a pada (see previous

example) and check if s or s. appear before these.
3. Get the part before s or s. and check it with heuristics for reduplication.

Now the heuristics of reduplication is implemented taking care of the process
of reduplication in As.t.ādhyāȳı. Thus, let us consider the case, where input has
three consonants.

48 A. Mishra

1. The probability of a root with two consonants is high.
2. Get the list of roots having the consonants as the last two consonants of

input. (Here, also the roots which undergo changes due to n. atva or s.atva
vidhi etc.)

3. Check if the first consonant of input could be a reduplicated consonant e.g.
pairs like j -g or c-k etc.

4. If the last consonant is r or l then consider the possibility of r. or l..

Consider now the input string: titiks.ate. The process of analysis is briefly sketched
below.

1. Consider a possible string break up: titik s.a te
2. Check heuristics for tiṅ and assume that it returns (ta, ātām. . .)
3. Split at s or s. : titik s.ate
4. Send the first half before s or s. to check for reduplication.
5. We have here three consonants: t t k
6. Search for the roots with consonants t k (as also the possible variants t j, t

g etc.). It returns roots like tika, tiga, tija, tuja, tuj i etc.
7. Check the first consonant of the input, if it is according to the reduplication

rules.
8. Now reduce the choice further using other heuristics (e.g. looking at the

vowels between the two consonants of the root).
9. Thus, the output of this heuristics is: [(tika, san, ta), (tiga, san, ta), (tija,

san, ta), . . .]

5 Forming Sam. skr.ta Expressions Using
the Rules of As.t.ādhyāȳı

Given a break up tuple, the process of forming the sam. skr. ta expression(s) is
regulated by the rules of As.t.ādhyāȳı. We developed a model for constituting
linguistic expressions beginning with seed elements and through manual pre-
scription of rule order using templates (see Sect. 3). We now propose to include
strategies for automatic application of rules.

5.1 An Extended Model for Forming Sam. skr. ta Expressions

This part of the grammatical process is being implemented in the Synthesizer
module, which takes as input a tuple of fundamental elements. This tuple is
gained by the preceding step of analysis. All the constituent elements for for-
mation of a particular expression are not provided in this input tuple, but only
the seed elements, e.g. verbal root or nominal stem and if possible tiṅ or sup

suffixes etc. This initial tuple contains partial information about the vivaks. ā or
intention of the speaker.

Further, the input tuple is consistent. Consistency means that it contains
only those elements which can occur simultaneously. Moreover, the ordering of

Modelling the Grammatical Circle of the Pān. inian System 49

these elements is according to the Pān. inian principles. For example, the element
corresponding to dhātu must precede the pratyaya or suffix element.

In the Synthesizer, the elements of this input tuple are taken as seeds and
a number of appropriate rules are applied with the goal of reproducing the
sam. skr. ta form of the original expression. For this purpose, the data structure
and corresponding operations are described in Sect. 3. The entire process is
simulated using the process strip. All the information which is required to assess
the conditions for application of a particular rule is stored in this process strip,
which stores not only the current stage of formation but also the previous stages.

The question, which rule must be applied next, was resolved thus far by
prescribing a template based approach in which the order of rules to be applied
was stated manually. We now propose strategies for automatic application of
rules. For this, we introduce stable and transitional λ - states.

5.2 Stable and Transitional λ - States

At any stage of formation, the fundamental components together with their
attributes are represented in a language component λ. Given such a language
component, we first try to bring it in a stable λ - state by applying certain rules
which we call stabilizing rules.

The purpose of this step is to prepare the current λ - state for assessing the
‘cause of application’ or nimitta of those transitional rules which bring about a
transition of λ - state. We first specify what we mean by stabilizing and transi-
tional rules.

Stabilizing Rules. There are certain rules in As.t.ādhyāȳı (specially most of the
definition rules), which need to be applied to a λ - state in order to add more
grammatical information which is necessary for a progressive flow of the process
of formation of linguistic expressions.

For example, if a new element is introduced in the previous step, which con-
tains the phoneme /ā/, then the application of rule vr.ddhirādaic (1.1.001) adds
the information that it also has the attribute vr.ddhi, which may be required for
subsequent application of other rules. Similar rules which bring about some kind
of attribute addition are what we call stabilizing rules.10

We collect these stabilizing rules seperately and define this set as follows:

Definition 6. The set of stabilizing rules R∫ is the set of those characterizing
rules in As.t.ādhyāȳı, which fulfill the condition that the application of any rule
belonging to this set on a language component is not depended upon the results
of application of any other rule of this set.

For example, the characterizing rules vr.ddhirādaic (1.1.001) and adeṅgun. ah.
(1.1.002) belong to the set of stabilizing rules R∫ .

10 In fact many fundamental elements have certain attributes which are static, i.e. they
are always associated with that particular fundamental element. For example, with
the element /a/ the attribute ac (specifying that it is a vowel) is always attached.

50 A. Mishra

Having defined the set of stabilizing rules, we can now speak of a stabiliz-
ing process (−→) which brings a language component λ to a stable language
component λ′ by applying the stabilizing rules from the rule set R∫ .

λi −→ λ′
i (23)

Transitional Rules. Those rules which do not belong to the set of stabilizing
rules, we call transitional rules. The effect of the application of a particular rule
belonging to this set has a consequence for the application of some other rule
belonging to this same set. Barring those characterizing rules grouped under R∫ ,
all the other rules, we put in this group.

The process of transition of λ - states caused by application of transitional
rules can now be considered as a transitional process (=⇒).

λi =⇒ λi+1 (24)

The General Formative Process. The general Pān. inian process of formation
of linguistic expressions can now be presented as an incremental increase of
process strip σ through a transitional phase and then stabilization of the strip
through a stabilizing phase, whereby the two phases always alternate.

[. . . , ([rulepi], λp −→ λ′
p)] =⇒ [. . . , ([rulepi], λ

′
p), ([ruleqi], λq −→ λ′

q)] (25)

5.3 Executing the Stabilizing Process

The stabilizing phase (λp −→ λ′
p) is executed every time by applying the rules

from the set R∫ . This helps in characterizing the current situation of the language
component.

Example 4. For example, if a morpheme like śap is added in the previous tran-
sitional phase, the following stabilizing phase adds the attributes like hrasva,
gun. a, śit, pit, sārvadhātuka etc. to the sound set corresponding to the phoneme
/a/ of śap.

5.4 Executing the Transitional Process

Given a stable λ - state within a process strip, the main challenge here is to decide
as to which rule should next be applied to proceed through the transitional
step. A correct and definite answer to this problem is the key for automatic
application of rules in the process of formation of linguistic expressions according
to As.t.ādhyāȳı. The problem can be divided into two sub-steps.

1. What are the possible rules which could be applied?
2. Given more than one possibilities, how to choose the correct one?

Assessing a λ - State. A sub-module Assessor assesses a given λ - state and
gives a tuple of list of rules, which could be applied for a transitional process. This
tuple is then sent to ConflictResoluter, another sub-module, which evalutes

Modelling the Grammatical Circle of the Pān. inian System 51

the question of conflicting rules and fetches those options which may lead to
correct results. If there are more than one possibilities, then all are pursued in
a parallel manner.

The Assessor Module. There are two guiding principles here to decide which
rules can possibly now be applied:

1. Assessment of the intention (vivaks. ā) of the speaker.
2. Assessment of the thus far evolution of formative process, i.e. assessment of

the input process strip.

Assesing the Intention of the Speaker. One way to assess the intention of
the speaker is to provide a user interface at this level. But for now, we depend
on our heuristic analysis of the original provisional input by the speaker.

Example 5. If bhavati is what the speaker inputs and if our analysis provides us
with one such tuple like (bhū, tip) then we can guess some of the information as
to what she/he wants to convey. Thus, at some stage when the question arises
which tiṅ suffix is to be attached, then the entry in the input tuple can give us
the information.

Example 6. Given the initial tuple (tija, san, ta), and the situation that we
have just the dhātu in the stable λ − state (λ′), the question as to which way to
proceed could be answered by looking at the presence of san.

Assesing the Stable λ − state. The assessment of the stable λ - states
in a process strip is based upon the observations as to what are the elements
which are currently present and what could be the next introduction (āgama) or
substitution (ādeśa). Here, certain guidelines for the general flow of the formative
process are first taken into consideration.

For example, in the situation where only a dhātu is present and the input
tuple has a tiṅ suffix, the general flow would be to apply rules for introduction
of lakāra. If there is already a lakāra and no tiṅ substitute, then rules for such
a substitution are applied.

The observations regarding the general order of introduction of fundamental
elements are stored in terms of defining a partial order of these elements. This
partial ordering aims to provide the answer to the question as to which element
should next be introduced.

Certain morphemes give rise to a scope of applying certain rules once they
are introduced. This observation is collected in the form of a special dictionary,
where the possible rules, which could subsequently be applied, are listed. For
example l it. , san etc. trigger reduplication, and so the rules which bring about
reduplication are listed with these morphemes.

Conflict Resolution. The successive filtering of possible candidates should
normally provide a definite answer to the question of rule application. But in
some cases, there are conflicting claims. Here we follow the solutions according

52 A. Mishra

to the principles laid down by Joshi-Roodbergen [5]. One such principle for
a ‘one-way conflict’ is that in case of rules not belonging to asiddhakān. d. a, “that
rule is to be applied first, which destroys the nimitta of the other rule, or which
changes the phonetic form to which the other rule was to become applicable”.11

The ConflictResoluter Module. The conflict resolution algorithms are im-
plemented in the module ConflictResoluter which gets as input, the process
strip together with a tuple of list of conflicting rules. It checks the applicability
of these rules and returns the one which should be applied. We briefly show its
functioning by way of one example.

Example 7. Consider the reconstitutive process of dudyūs.ati and let the process
strip correspond to the stage12

σp = diū + san + śap + tip

At this stage, the Assessor proposes two possibilities ([6.1.009], [6.1.077]). The
first one is the rule san yaṅ oh. (6.1.009) which calls for reduplication and the
second one is the rule ikah. yan. aci (6.1.077) which prescribes substitution of
yan. respectively in place of ik. The ConflictResoluter now checks as follows:

1. Take the process strip σp and apply san yaṅ oh. (6.1.009). This means
applying the process of reduplication. This gives the extended process strip
with the new λ - state as

σq = di + diū + san + śap + tip

2. Now this new λ - state is stabilized and then checked using Assessor if the
conflicting rule (6.1.077) is still applicable. This is the case here. So, the
application of this rule neither changes the nimitta of the conflicting rule
nor does it bring about any change in the phonetic form of the elements to
which the other rule is to be applied.

3. The other rule ikah. yan. aci (6.1.077) is now applied to the process strip
σp. This gives the result

σq = dyū + san + śap + tip

4. The resulting new λ - state is assessed and it shows that the phonetic form
of the element to which the other rule is to be applied has been changed.

5. This results in selection of the rule ikah. yan. aci (6.1.077) for application
at this stage, because both the rules do not belong to the range of rules of
asiddhakān. d. a.

Similarly, other principles of conflict resolution are implemented. We enunciate
below the general architecture of the computer implementation of the modelling
process. At the moment, the modules are in the programming phase and testing
of a wider range of examples are needed before the system could be put to use.
11

Joshi-Roodbergen [6] Pp. X.
12 The process strip actually is a complex data structure which is expressed in terms

of language components, which in turn is a list of sound sets (see Sect. 3), but for
the sake of simplicity, we write it here in this form.

Modelling the Grammatical Circle of the Pān. inian System 53

6 Computer Implementation of the Model

The entire process is divided into four main modules besides a specially designed
Database of the fundamental components F and attributes A of Pān. inian Gram-
mar. These four main modules are:

1. Input
2. Analyzer
3. Synthesizer
4. Output

Each of them contain a number of other sub-modules. We sketch briefly the main
ones below.

6.1 Database

Besides having a repository of the fundamental components F and attributes
A in As.t.ādhyāȳı, there are a few special dictionaries and lists of elements and
attributes serving specific purposes. It includes

1. A dictionary which maps surface forms to fundamental elements, which is
used by the Analyzer module. It looks like:

{ti : [tip, . . .], tah. : [tas, . . .], . . . , te : [ātām, . . .], . . .}

2. A set of pairs whose elements exclude each other within an analysis tuple.
E.g. {(sup, tiṅ), (lat. , laṅ), . . . }

3. A list of acceptable partial orders within an analysis tuple. E.g. [(upasarga,
dhātu, vikaran. a, pratyaya), (dhātu, san, vikaran. a), . . .]

4. A dictionary, used by Assessor, of fundamental elements as keys and list of
rules which are possibly applied when this element is introduced as values.

5. A number of special subsets of the set of fundamental elements or attributes
for the sake of identification of respective elements. For example, the set of
phoneme attributes, or the set of morpheme attributes etc.

6.2 Input

This module, as the name suggests, takes care of the user interface for enter-
ing a provisional sentence S. After an initial processing, e.g. checking the non-
occurence of phonemes not belonging to the language, the input is passed to the
Analyzer.

6.3 Analyzer (See Sec. 4)

Given a sentence S, the Analyzer aims at guessing the possible fundamental
components constituting it. The Analyzer functions heuristically and suggests

54 A. Mishra

first a number of possible break ups. These possibilities are then ranked based
upon certain constraints and provide seeds for Synthesizer.

Thus, given a string S, the Analyzer (A) produces a ranked list D of possible
decompositions, represented as tuples containing the fundamental components
constituting S.

A(S) = D = [(e1, e2, . . .), (e3, . . .), (e4, . . .), . . .] where ei ∈ F (26)

6.4 Synthesizer (See Sec. 5)

Given an analysis tuple t = (e1, e2, e3, . . .), the Synthesizer (Z) now applies a
series of rules from As.t.ādhyāȳı, which are collected in a rule set R, and produces
the final expression S′.

Z((e1, e2, e3, . . .)) = S′ where ei ∈ F (27)

For the purpose of assessing a given stage during the process of formation, it
uses the Assessor module, which outputs a tuple of lists of rules which could
be applied at that stage. In case of a conflict of rules, the ConflictResoluter
module tries to resolve the clash. Otherwise all the possibilities are checked in a
parallel manner.

6.5 Output

This module outputs the reconstituted sentence S′ as well as the original provi-
sional sentence S. It also provides a step-by-step process of constitution of the
final expression beginning with its elemental parts and grammatical information
gathered during the course of formation.

References

1. Bhattacharya, R.S.: Pān. in̄ıya Vyākaran. a kā Anuś̄ılana. Indological Book House,
Varanasi (1966)

2. von Böhtlingk, O.: Pān. ini’s Grammatik, Olms, Hildesheim. Primary source text
for our database (1887)

3. Deshpande, M.M.: Semantics of Kārakas in Pān. ini: An Exploration of Philosoph-
ical and Linguistical Issues. In: Matilal, B.K., Bilimoria, P. (eds.) Sanskrit and
Related Studies: Contemporary Researches and Reflections, pp. 33–57. Sri Sat-
guru Publications, Delhi (1990)

4. Dı̄ks.ita, P.: As.t.ādhyāȳı sahajabodha, vols. 1-4. Pratibha Prakashan, Delhi (2006-
2007)

5. Joshi, S.D., Roodbergen, J.A.F.: On siddha, asiddha and sthānivat Annals of the
Bhandarkar Oriental Research Institute, vol. LXVIII, Poona, pp. 541–549 (1987)

6. Joshi, S.D., Roodbergen, J.A.F.: The As.t.ādhyāȳı of Pān. ini. With Translation and
Explanatory Notes, vol. II. Sahitya Akademi, New Delhi (1993)

Modelling the Grammatical Circle of the Pān. inian System 55

7. Houben, J.E.M.: ‘Meaning statements’ in Pān. ini’s grammar: on the purpose and
context of the As.t.ādhyāȳı. Studien zur Indologie und Iranistik 22, 23–54 (1999)
[2001]

8. Katre, S.M.: As.t.ādhyāȳı of Pān. ini. Motilal Banarsidass, Delhi (1989)
9. Mishra, A.: Simulating the Pān. inian System of Sanskrit Grammar. In: Proceed-

ings of the First International Sanskrit Computational Linguistics Symposium,
Rocquencourt, pp. 89–95 (2007)

10. Śāstr̄ı, C.: Vyākaran.acandrodaya, vols. 1-5. Motilal Banarsidass, Delhi (1971)
11. Vasu, S.C., Vasu, V.D.: The Siddhānta-Kaumud̄ı of Bhat.t.oj̄ı Dı̄ks.ita. vols. 1-3.

Panini Office, Bhuvanesvara Asrama, Allahabad, India. Primary source text for
prakriyā (1905)

Computational Structure of the As.t.ādhyāȳı and
Conflict Resolution Techniques

Sridhar Subbanna1 and Shrinivasa Varakhedi2

1 Rashtriya Sanskrit Vidyapeetha, Tirupati, India
sridharsy@gmail.com

2 Samskrita Academy, Osmania University, Hyderabad, India
shrivara@gmail.com

Abstract. Pān. ini ’s As.t.ādhyāȳı consists of sūtras that capture funda-
mentals of Sanskrit language and define its structure in terms of phonol-
ogy, morphology and syntax. The As.t.ādhyāȳı can be thought of as an
automaton to generate words and sentences. In object oriented program-
ming terms, prescribing sūtras are objects having its transformation rule
as its method. The meta rules or paribhās.ā sūtras and paribhās.ā vārtikās
define the flow of the program. During application of sūtras, conflicts may
arise among two or more competing sūtras. In this paper, computational
structure of the As.t.ādhyāȳı, sūtra objects observing the environment,
tree representation of sūtras and mathematical representation of conflict
resolution techniques are presented.

Keywords: Pān. ini, As.t.ādhyāȳı, Sanskrit, Vyākaran. a, Sūtra, Computer
Modelling, Conflict Resolution, Object Oriented Programming, Mathe-
matical Representation.

1 Introduction

The As.t.ādhyāȳı[1] (śabdānuśāsanam) deals with the generation of words and
sentences of Sanskrit Language and also provides a base for the analysis of
the same in general. Its algebraic nature and comprehensiveness illustrate that
its structure can be described as a machine generating words and sentences of
Sanskrit.

The As.t.ādhyāȳı[9] consists of around 4000 sūtras that describe the fundamen-
tals of Sanskrit language in terms of phonology, morphology and syntax. The
structure consists of definitions, rules, and meta-rules that are context-sensitive
and operate in sequence or recursively[6].

Generally these rules are classified into three groups:

1. Rules of definition and meta-rules (sam. jña and paribhāshā)
2. Rules of affixation of roots (dhātu and prātipadika) and
3. Rules of transformation for stems and the suffixes.

The computer programs have exactly the same features of context-sensitive
rules, recursion and sequential rule application[7]. Prescribing sūtras are context-
sensitive rules, paribhās.ās define the flow and hence the as.t.ādhyāȳı can be
thought of as an automaton that generates Sanskrit words and sentences.

A. Kulkarni and G. Huet (Eds.): Sanskrit Computational Linguistics, LNCS 5406, pp. 56–65, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Computational Structure of the As.t.ādhyāȳı 57

2 Computational Structure of the As.t.ādhyāȳı

The As.t.ādhyāȳı consists of sūtras that are organized in a systematic and math-
ematical manner. The application of sūtras follows a systematic procedure in
deriving the final form of words from roots and affixes. In object oriented
programming[8], objects have state and behaviour as two characteristics. State is
the data part and behaviour is the method or function. Here, sūtra as an object
will be observing the state of environment and applies as its transformation rule
if the condition satisfies. Thus, object oriented programming suits best to model
the as.t.ādhyāȳı.

2.1 Classification and Representation of Sūtras

Traditionally the sūtras in the As.t.ādhyāȳı are classified into 6 groups.1

1. sam. jñā sūtras : assign sam. jña-s or labels.
2. paribhās. ā sūtras : meta-rules for interpretion and application of sūtras.
3. vidhi sūtras : prescribing rules for ādeśa(substitution/deletion) and

āgama(insertion).
4. niyama sūtras : conditioning rules that confines vidhi sūtra with some addi-

tional conditions.
5. atideśa sūtras : extension rules to extend the existing rules in another sce-

nario.
6. adhikāra sūtras : governing rules adopted for division of contents and gives

meaning to the successive sūtras.

For our convenience these sūtras can be grouped as follows.

1. Meta rules or helping rules (2 & 6 above)
2. Prescribing rules (1,3,4 & 5 above)

paribhās. ā and adhikāra sūtras are meta rules. Paribhās. ā sūtras are utilized to
intrepret the sūtras and adhikāra sūtras are meant to define the boundary of a
particular topic domain. Rest are prescribing rules that define transformation
functions. The meta rules help in interpretation[4] and application of rules. This
will be discussed in detail in the conflict resolution section.

The prescribing rules can be grouped under each nested topic (ekavākya).
Each nested group can be represented as a tree of sūtra objects. utsarga or
general sūtra will be root node and apavāda (exception) sūtras will be the child
nodes. The sūtras that are having different conditions under the same topic
will be the sister nodes. During the application of sūtras a single tree traversal
algorithm can be used to determine the sūtra that is to be applied. It has to be
seen whether this process of tree building can be automated.

The following examples will explain the nature of representation.

Example 1: The Figure 1 shows representation of mutually exclusive guru and
laghu sam. jñas.
1 sam. jñā ca paribhās. ā ca vidhir niyama eva ca

atideśodhikāraśca s.ad. vidham sūtralaks.an. am.

58 S. Subbanna and S. Varakhedi

Fig. 1. Tree representation for guru and laghu sam. jña rules

1. hrashvam laghu 1.4.10
2. sam. yoge guru 1.4.11
3. dh̄ırgham. ca 1.4.12

Example 2: At various different places the it sam. jña is used. The Figure 2 shows
its definition.

1. upadeśe ajanunāsika it 1.3.2
2. halantyam 1.3.3
3. na vibhaktau tusmāh. 1.3.4
4. ādih. ñit.udavah. 1.3.5
5. s.ah. pratyayasya 1.3.6
6. cutū 1.3.7
7. laśakvataddhite 1.3.8

Fig. 2. Tree representation for it sam. jña rules

Example 3: The Figure 3 shows the representation of the sandhi sūtras. The
sūtra 2, 3, 4 & 6 are sister nodes as their conditions for applying or domain are
different. The sūtra 12 is apavāda to both sūtra 2 and sūtra 6. There may be
many such cases in whole of the as. t.ādhyāȳı.

1. sam. hitāyām. 6.1.72
2. iko yan. aci 6.1.77
3. ecoyavāyāvah. 6.1.78
4. vānto yi pratyaye 6.1.79
5. dhātostannimittasaiva 6.1.80
6. ādgunah. 6.1.87
7. vr.ddhireci 6.1.88
8. etyedhatyūt.hsu 6.1.89
9. eṅi pararūpam. 6.1.94

10. omāngośca 6.1.95
11. ato gune 6.1.97
12. akah. savarn. e d̄ırghah. 6.1.101
13. prathamayoh. pūrvasavarn. ah. 6.1.102.

Computational Structure of the As.t.ādhyāȳı 59

Fig. 3. Tree representation for ac sandhi rules

2.2 Computational Structure

The root nodes will be observing the environment (subject). All the nodes that
find the condition send a request for their application. After getting requests,
conflict resolver adopts the resolution techiques and selects only one node among
them for application. Then the tree with that as root node will be traversed to
find the exact sūtra for application. The sūtra object contains all the information
about the sūtra. The sūtra will be applied to update the environment. The
Figure 4 represents the overall structure of the as.t.ādhyāȳı.

The output states and other sūtras are siddha (visible) to all the sūtras of the
as.t.ādhyāȳı except where it is explicitly mentioned as asiddha (invisible). There
are three places where the asiddhatva is explicitly mentioned.

1. Asiddhavadatrābhāt 6.4.22
2. S. atvatukorasiddhah. 6.1.86
3. Pūrvatrāsiddham 8.2.1

In general, whenever conditions for a sūtra are satisfied, that sūtra will be ap-
plied. Only one sūtra will be applied at a time. In other words no two sūtras
can be applied simultaneously. However, the sūtras of asidhavat prakaran.a that
are all having the same condition, can be thought of as applied simultaneously.
The sūtras in the last three pādas, that is, tripād̄ı need to be applied in the
sequential order. The Figure 4 explains this model.

In Figure 4, the siddha block contains the sūtras of sapādasaptādhyāȳı minus
the asiddhavat prakaran.a sūtras (6.4.22 to 6.4.175). The asiddhavat block con-
tains the sūtras of asiddhavat prakaran.a. The asiddha block contains the tripādi
sūtras. The ovals A and B represent the output states and the C represents the
output of the system (final state). The small circles represent sūtra group that
takes the input state and changes the state. There will be a state transition
function defined for each sūtra object. While in a particular state, if the condi-
tions for root sūtra are satisfied, then complete tree with this as a root node is
traversed in order to find out which sūtra within this tree is to be applied, ac-
cordingly it transforms the state by invoking the function defined for that sūtra.
In the siddha block, all the states are visible and can be input state to any sūtra
in the same block.

60 S. Subbanna and S. Varakhedi

Siddha

Asiddhavat

Asiddha

A

A

B

Root Level Nodes observing the Environment

A, B Environment

C Output

C

Input

Fig. 4. Computational Structure of the As.t.ādhyāȳı

While in the siddha blok, if conditions of any of the sūtras in the asiddha-
vat block are met, initially, state B is same as state A. The sūtras here in
the asiddhavat block take both A and B as input, and transforms only B. So,
all other sūtras check for their condition in state A and operates on B. When

Computational Structure of the As.t.ādhyāȳı 61

there are no more conditions for the sūtras in this block, the state A is made
same as state B.

When there are no more conditions for sūtras in the siddha block or in the asid-
dhavat block then the state is sequentially updated by the sūtras in asiddha block
that are applicable in that particular state and the final output state will be C.

There is a need to develop techniques that make the explanation of the
computational structure of the as.t.ādhyāȳı easier. The techniques of represent-
ing and manipulating knowledge should be developed and create computing
algorithms that have computational abilities.

Example 1. When the state A is vana + t.ā(case 3,num 1)], the sūtra t.ā
ṅasiṅasām inātsyāh. (7.1.12) in the siddha block finds its condition. After its
invocation A is changed to vana + ina. Then the sūtra ād gunah. (6.1.87) in the
siddha block finds its condition and gets invoked. A now becomes vanena. No
other sūtra finds the condition, hence A is passed to C. Now C has the final
form vanena.

Example 2. When the state in A is śās + hi sūtras in the Asiddhavat block
find the condition. Initially, state B will be same as state A. Now the sūtra śā
hau (6.4.35) is invoked and then B is changed to śā + hi. The sūtra hujhalbhyo
herdhih. (6.4.101) also finds the condition in A and is invoked. B is now changed
to śā + dhi. No more sūtras finds the condition, so A is made same as B. None
of the sūtras either in siddha block or the asiddha block find the condition in A.
Hence A is passed to C without any tranformation giving the final word [́sādhi].

Example 3. When the state A is dvau + atra. The sūtra ecoyavāyāvah.
(6.1.78) finds the condition. This sutra is now applied, A is changed to dvāv +
atra. No sūtra in the siddha block or the asiddhavat block finds condition in A.
The sūtra lopah. śākalyasya (8.3.19) in the asiddha block finds the condition.
After its invocation it is changed to dvā + atra. This state is not visible to the
sutras either in the siddha block or in the asiddhavat block. Even though there
is condition for akah. savarn. e d̄ırghah. (6.1.101) in the siddha block, this state is
not visible to this sūtra. Hence this sūtra cannot be applied. The sūtras that
are following the sūtra lopah. śakalyasya(8.3.19) have visibility of this state but
do not find condition. Hence none of the sūtras are applied, yielding the final
form as dvā atra.

The asiddhatva is the base for the above shown computational structure of the
as.t.ādhyāȳı. This whole structure developed on the basis of Siddha-asiddha prin-
ciple resolves many conflicts in the whole application.

3 Techniques for Conflict Resolution

In general, it can be thought of, as all the sūtras will be observing the changes in
a given state (prakriyā) and wherever they find their condition (nimitta), they

62 S. Subbanna and S. Varakhedi

would come forward to apply their function - kārya on that state, as a result the
state would get modified. However there are possibilities of conflict that arise
between many sūtras in this process, as many of them may find condition in a
particular state and all of them would try to apply. At any point of time only
one modification is possible in the given state. Sometimes all the sūtras may be
applied in a particular order or one is applied and others are rejected. Due to
this, complexity of the program will not only increase, but also results into a
paradoxical situation.

There are different paribhās.ā sūtras, paribhās.ā vārtikās to resolve these con-
flicts. Considering only the as.t.ādhyāȳı sūtras it may not be possible to resolve
conflicts under all circumstances, hence vārtikas also should be taken into ac-
count in conflict resolution. We are trying to represent conflict resolution tech-
niques mathematically, that can be directly adopted in a computer program.

3.1 Conflict Resolution through Sūtras

There are only few sūtras that directly prescribe the flow or resolve conflict.

3.1.1 Vipratis.edhe param. kāryam.
1.4.2 This sūtra says when there is conflict then para (the later one in a sequential
order) sūtra is to be applied. According to Patanjali’s interpretation para means
íst.a[2] and not the later one in the sūtra order. There is another controversy
among traditional and modern Grammarians in interpretation of this sūtra. The
traditional view is that this sūtra is globally applicable across the as.t.ādhyāȳı.
The modern thinking is that this sūtra is locally applicable to the ekasam. jñā
domain which runs through 2.2.38. This needs to be looked into greater detail
to see the cases on which they have taken their stands.

3.1.2 Siddha and Asiddha
All the sūtras are treated as siddha (visible) to each other unless specified ex-
plicitly as asiddha (invisible) in the sūtras.2

There are two view points on asiddha concept namely Śāstrāsiddha and
Kāryāsiddha. If a sūtra is Śāstrāsiddha, if sūtra itself is invisible to another
sūtra, and it is Kāryāsiddha if the sūtra is visible but its kārya (result) is
asiddha to the other. These two alternative ideas need to be examined.

Example śivacchāyā[10]

1. śivachāyā
2. śivatchāyā 6.1.73
3. śivadchāyā 8.2.39
4. śivajchāyā 8.4.40
5. śivacchāyā 8.4.55

2 pūrvatra asiddham 8.2.1, asiddhavadatrābhāt 6.4.22, s.atvatukorasiddhah. 6.1.86.

Computational Structure of the As.t.ādhyāȳı 63

The environment is śivachāyā. The sūtra che ca 6.1.73 is applied and is
changed to state 2. Now the sūtras jhalām. jaśonte 8.2.39 and stoh. ścunāścuh. 8.4.40
find the condition in this context. Since 8.4.40 is asiddha to 8.2.39, 8.2.39 is ap-
plied first and state is updated to state 3. Again, 8.4.40 and khari ca 8.4.55 has
nimmita for application, similar to earlier one, here also since 8.4.55 is asiddha
to 8.4.40, 8.4.40 is applied first and state is update to state 4. Now, 8.4.55 gets
a chance for its application and environment is moved to state 5. The sūtra coh.
kuh. 8.2.30 cannot see the environment and does not come forward. This way
application of rule 8.2.30 is prevented after the final form.

3.2 Conflict Resolution through vartikas

3.2.1 Para-nitya-antaraṅga-apavādānām uttarottaram. bal̄ıyah.
[3] This paribhās.ā gives us criterion for conflict resolution. The priority is
apavāda, antaraṅga, nitya and para. We explain below how we model these
priorities.

1. utsarga - apavāda
utsarga and apavāda (General and Exception) sūtras are static; this
information is embedded in the tree structure itself. During the application
of sūtras the tree is traversed in such a way to determine the apavāda sūtra.
When two sūtras have utsarga and apavāda relation then apavāda sūtra is
selected and applied, utsarga sūtra is rejected.

2. antaraṅga - bahiraṅga
The definition alpāpeks.am. antaraṅgam. and bahvapeks.am. bahiraṅgam. can
be used to determine the antaraṅgatva and bahiraṅgatva of the any two
sūtras. When the sūtras have antaraṅga and bahiraṅga relation then an-
taraṅga sūtra is selected and applied, bahiraṅga sūtra is rejected. The an-
taraṅga and bahiraṅga are relative to the context and can be mathematically
determined. The definition could be formalized as follows.

Let f(X, φ) return the number of conditions that are required for sūtra X
to apply in the given state φ.

if f(X, φ) is less than f(Y, φ)
then X is Antaraṅga and Y is Bahiraṅga
else Y is Antaraṅga and X is Bahiraṅga
endif

Example, Let X = sarvād̄ıni sarvanāmāni 1.1.27 and Y=prathamacharama
tayalpakatipayanemāśca 1.1.33. When the state is ubhaya jas. Whether ubaya
gets sarvanāmasam. jñā by X or optionally by Y is the question.

f(X, φ) = 1 as there is only one condition for X to apply. The condition
is ubhaya’s existance in sarvādi gana.

f(Y, φ) = 2 as there are two conditions for Y to apply. One condition is
ubhaya is a tayappratyayānta and second condition is jas pratyaya in front
of it.

64 S. Subbanna and S. Varakhedi

Since, f(X, φ) < f(Y, φ), X is antaran. ga and Y is bahiran. ga. Since
antaran. ga is preferred, here ubhaya will get the sarvanāmasam. jñā by X,
but not optional sarvanāmasam. jñā by Y.

3. Nitya - Anitya
The definition of nitya and anitya is given as kr. tākr. taprasaṅgi nityam
tadvipar̄ıtamanityam. The nitya and anitya are relative to the context and
can be mathematically defined.

Let there be sūtras X and Y that have the condition for its application
in a particular state. If X is applicable irrespective of the application of Y
then X is said to be nitya. On application of Y if X loses its condition for
application then it is said to be anitya. It can be defined mathematically as
follows.

Let f(X, φ) returns φ′ ,transformed state after application of sūtra X in
the φ state and returns zero if sūtra X is not applicable in the φ state.

if f(X, f(Y, φ)) is not zero
X is nitya and Y is anitya
else

if f(Y, f(X, φ)) is not zero
X is anitya and Y is nitya
else X and Y do not have the nitya anitya relation.

Comsider the case when the state is tud ti then the sūtras tudādibhyah.
śah̄(3.1.77) and pugantalaghūpadasya ca (7.3.86) both find their con-
dition. Let X = tudādibyah. śah. (3.1.77) and Y = pugantalaghūpadasya
ca(7.3.86). Then f(X, φ) =tud sha ti and f(Y, f(X, φ)) = 0 because Y is
not applicable in the state tud sha ti. So Y is anitya. Consider, f(Y, φ) =
tod ti and f(X, f(Y, φ)) =tod sha ti i.e, is not equal to zero. Hence X is nitya.

4. Para - Apara
Para and Apara (Posterior and Prior): The sūtra that is positioned before
in the as. t.ādhyāȳı order is apara and the one later is para. Between the para
and apara sūtras, para sūtra is selected and applied, apara sūtra is rejected.
The para-apara relation can be determined based on the sūtra saṅkhyā.

For example, bahuvacane Jhalyet 7.3.103 is para to supi ca 7.3.102 as
7.3.103 is later than 7.3.102. Let f(X) returns the sūtra number in the
at.ādhyāȳı.

if f(X) > f(Y)
then X is para and Y is apara
else Y is para and X is apara

3.2.2 Varn. ādāṅgam. bal̄ıyo bhavati
There are two rules one acting on aṅga3 and other on phoneme. In this case, the
sūtra on aṅga should be applied first.

3 yasmāt pratyayavidhih. tadādi pratyaye aṅgam - 1.4.13.

Computational Structure of the As.t.ādhyāȳı 65

3.2.3 Laks.ye laks.an. am. sakr.deva pravartate
This vartika prevents the recursion. Only once any sūtra should be applied in
a particular environment[5]. Here sūtra means group of sūtras under the same
topic (ekavākya). In the tradition, analogy of takrakaun. d. in. ya4 is given to expain
this concept.

4 Conclusion

The next objective is to implement this as a computer program and see whether
we can optimize the sūtras or evaluate the necessity of the vārtikas. Such an
implimentation would not only confirm the automata nature of Paninian System
but also exhibit the complexities of the system and feasibility of resolutions to
them by employing techniques shown by Pān. inian Tradition. Our current effort
could be a first step towards achieving that goal.

Acknowledgment. Authors thank Lalit Kumar Tripati and Amba P Kulkarni
for useful discussions at various stages of the work.

References

[1] Giri, S.P., Satyanarayanashastri: Pan. in̄ıyah. As.t.ādhyāȳı Krishnadas Academy,
Varanasi (1984)

[2] Josi, B.S.B.: The Vyākaran.amahābhās.ya of Patañjali. Chaukhamba Sanskrit
Pratishtan, Delhi (1872)

[3] Kielhorn, F.: Paribhās.enduśekara of Nāgojibhat.t.a. Parimal Publications, Delhi
[4] Mishra, S.: Kāśikā. Chaukamba Samskrita Samsthan, Varanasi (1979)
[5] Abhyankar, K.V.: Paribhāshāsamgraha. Bhandarkar Research Instt., Puna (1967)
[6] Kiparsky, P.: On the Architecture of Panini’s Grammar. Conference on the Ar-

chitecture of Grammar, Hyderabad (2002)
[7] Bhate, S., Kak, S.: Panini’s Grammar and Computer Science, Annals of the Bhan-

darkar Oriental Research Institute, 79–94 (1993)
[8] Roy, P.V., Haridi, S.: Concepts, Techniques and Models of Computer Program-

ming. MIT Press, Cambridge (2004)
[9] Vasu, S.C.: The As.t.ādhyāȳı of Pān. ini. Motilal Banarasidas Publishers, New Delhi

(2003)
[10] Vasu, S.C.: Siddhānta kaumudi. Motilal Banarasidas Publishers, New Delhi (2002)

4 Brāhman. ebhyo dadhi d̄ıyatam. , takram. kaun. d. in. yāya. Here there are two rules.
Brāhman. ebyo dadhi d̄ıyatām. is first one, takram. kaun. d. in. yāya is the second one.
Once takram. is given to kaun. d. in. ya, again dadhi will not be given according to first
rule.

Levels in P‡ıini 's A˘Òh‡dhy‡y„

Peter M. Scharf

Department of Classics, Brown University, PO Box 1856, Providence, RI 02912

Abstract. In 1969 Kiparsky and Staal proposed that P‡ıini's A˘Òh‡dhy‡y„ con-
tained a four-level hierarchy of rules. While modifying the interrelation of the
levels, Kiparsky (2002) still maintains the four-level hierarchy. R. Rocher
(1964: 51) and Cardona (1976: 215-224) argued against such a hierarchy, the
former maintaining that P‡ıini operated just with a two-level hierarchy of
meaning and speech. Cardona was willing to accept the propriety of speaking
of one intermediate level on the grounds that the assignment of k‡raka terms
involved both semantic and cooccurrence conditions. The present paper clari-
fies the issue, argues that the assignment of abstract l-affixes to the same level
as k‡raka classification by Kiparsky is problematic, that most rules considered
to be purely phonetic (sandhi rules) in fact include morphological conditions
and concludes that although there are intermediate stages in derivation, P‡ıini
considers there to be just two levels. The semantic and syntactic levels are
properly coalesced in a syntacticosemantic level and the abstract morphological
and the morphophonemic level are properly coalesced in a single morphopho-
nemic level.

Keywords. levels, generative grammar, Panini, Astadhyayi, phonology, mor-
phology, syntax, semantics, morphophonemic, syntacticosemantic, computa-
tional implementation.

 Kiparsky's rchitecture

One of the most prominent contemporary linguistic models used to interpret P‡ıinian
grammar is the idea that grammar consists of modules in a generative hierarchy, or
levels. Clearly influenced by Chomskian generative grammar, Kiparsky and Staal
(1969) proposed that P‡ıinian grammar contains rules in a hierarchy of four levels of
representation: semantics, deep structure, surface structure, and phonology. More re-
cently Kiparsky (2002) restates this scheme referring to the four levels as follows: (1)
semantic, (2) morphosyntactic, (3) abstract morphological, and (4) phonological (see
Fig. 1). Three classes of rules map prior levels onto subsequent levels: (1) rules that
assign k‡rakas and abstract tense, (2) morphological spellout rules, and (3) rules of al-
lomorphy and phonology. Rules incorporate conditions at both the levels from which
and to which they map, as well as at prior levels in a unidirectional derivation begin-
ning with semantics and ending with phonology.

As an example of how derivation is understood to work in the four-level hierarchy,
one may take the derivation of the sentence Devadatta odanaß pacati (Fig. 2). At the
semantic level, the speaker intends to express that Devadatta, called here John Doe,

.

1

scharf@brown.edu

A

A. Kulkarni and G. Huet (Eds.): Sanskrit Computational Linguistics, LNCS 5406, pp. 66–77, 200 .
© Springer-Verlag Berlin Heidelberg 200 9

9

undertakes the action of cooking in present time for the purpose of making boiled
rice. P‡ıinian semantics classifies John Doe as the independent agent in the action,
and boiled rice as that which is desired to be obtained. Four rules apply to map the
semantic level onto the morphosyntactic level. 1.4.49 and 1.4.54 assign k‡rakas,
3.4.69 lets an l-affix occur to denote an agent (kartÁ), and 3.2.123 assigns abstract
tense by introducing the l-affix laÒ on the condition that present time is to be denoted.

1. Semantic information Assignment of k‡rakas (th-roles) and of abstract tense
2. Morphosyntactic representation Morphological spellout rules
3. Abstract morphological representation Allomorphy and phonology
4. Phonological output form

Fig. 1. Levels according to Kiparsky 2002: 3

1. John Doe[svatantra] rice[„psitatama] cooks[vartam‡na].
 John Doe[independent] rice[desideratum] cooks[present].

 1.4.49 kartur „psitatamaß karma
 1.4.54 svatantra˛ kart‡
 3.4.69 la˛ karmaıi ca bh‡ve c‡karmakebhya˛
 3.2.123 vartam‡ne laÒ

2. Devadatta[kartÁ] odana[karman] Ûupaca˘+laÒ .
 Devadatta[agent] odana[direct object] pac+laÒ.

 3.4.78 tiptasjhi...iÛvahimahiÔ
 1.3.78 ˜e˘‡t kartari parasmaipadam
 1.4.108 ̃ e˘e prathama˛
 1.4.22 dvyekayor dvivacanaikavacane
 3.1.68 kartari ˜ap
 4.1.2 svaujasamauÒ...Ôyossup
 2.3.2 karmaıi dvit„y‡
 2.3.46 pr‡tipadik‡rthaliÔgaparim‡ıavacanam‡tre pratham‡

3. Devadatta+su odana+am Ûupaca˘+˜ap+tip.
 Devadatta+[nom] odana+[acc] pac+[3sa pre].

 1.3.9 tasya lopa˛
 6.1.107 ami pÂrva˛
 8.3.17 bhobhagoaghoapÂrvasya yo Ÿ˜i
 8.3.19 lopa˛ ˜‡kalyasya
 8.3.23 mo Ÿnusv‡ra˛

4. Devadatta odanaß pacati.
 Devadatta cooks rice.

Fig. 2. Example of Four-level Derivation

Levels in P‡ıini's A˘Òh‡dhy‡y„ 67

Several “spellout” rules then apply to map the morphosyntactic level onto the ab-
stract morphological level. 3.4.78 provides that a basic verbal termination replaces
the l of the affix laÒ that occurs after the verbal root pac. Restrictive rules 1.3.78,
1.4.108 and 1.4.22, read in conjunction with 3.4.78, select the third person singular
active (3sa) affix tip on condition that a single agent that is neither the speaker nor the
addressee is to be denoted. Before the affix tip (termed s‡rvadh‡tuka by 3.4.113 tiÔ˜it
s‡rvadh‡tukam), 3.1.68 provides the default verbal stem-forming affix ˜ap to cosig-
nify the agent. Then 4.1.2 provides nominal terminations. Restrictive rules 2.3.2,
2.3.46, and 1.4.22, read in conjunction with 4.1.2 select the appropriate nominal ter-
mination. 2.3.2 selects a second triplet nominal termination (dvit„y‡) after the stem
odana on condition that the k‡raka karman, which has not yet been denoted (anabhi-
hite 2.3.1), is to be denoted. 2.3.46 selects a first triplet nominal termination
(pratham‡) after the stem devadatta on condition that just the stem meaning, gender,
and number are to be denoted. (The k‡raka kartÁ has already been denoted by the
verbal termination thus preventing 2.3.18 kartÁkaraıayos tÁt„y‡ from applying.)
1.4.22 selects the singular terminations am (2s) and su (1s), respectively in each trip-
let.1

Finally, several rules of allomorphy (of which there are none in the present exam-
ple) and phonology apply to map the abstract morphological level onto the
phonological level.2

The example of the derivation of the sentence Br‡hmaı‡ya phal‡ny ad‡t, shown in
Fig. 3, provides greater detail. At the semantic level, the speaker intends to express
that someone, indicated by an X, undertakes the action of giving in past time for the
purpose of transferring his ownership of fruit to a Brahmin. P‡ıinian semantics clas-
sifies X as the independent one in the action, and the fruit as that which is desired to
be obtained. Five rules apply to map the semantic level onto the morphosyntactic
level. 1.4.32, 1.4.49 and 1.4.54 assign k‡rakas, 3.4.69 lets an l-affix occur to denote
an agent (kartÁ), and 3.2.110 assigns abstract tense by introducing the l-affix luÔ on
the condition that past time is to be denoted.

Several “spellout” rules then apply to map the morphosyntactic level onto the ab-
stract morphological level. 3.4.78 provides that a basic verbal termination replaces
the l of the affix luÔ that occurs after the verbal root d‡. Restrictive rules 1.3.78,
1.4.108 and 1.4.22, read in conjunction with 3.4.78, select the third person singular
active (3sa) affix tip on condition that a single agent that is neither the speaker nor the
addressee is to be denoted. Before the affix tip (termed s‡rvadh‡tuka by 3.4.113 tiÔ˜it
s‡rvadh‡tukam), 3.1.43 provides the default abstract verbal stem-forming affix c li
that occurs with verbal terminations that replace luÔ . Then 4.1.2 introduces nominal
terminations. Restrictive rules 2.3.2, 2.3.13, and 1.4.22, read in conjunction with
4.1.2 select the appropriate nominal terminations. 2.3.2 selects a second triplet nomi-
nal termination (dvit„y‡) after the stem phala on condition that the k‡raka karman,
which has not yet been denoted (anabhihite 2.3.1), is to be denoted. 2.3.13 selects a
fourth triplet nominal termination (cathurth„) after the stem br‡hmaıa on condition

1 Rules 1.4.99-108 that designate verbal and nominal terminations in the lists 3.4.78 and 4.1.2

by terms that allow selection according to person, number, and voice are not shown.
2 The rule that deletes markers, 1.3.9, is shown here though its application is simultaneous with

the introduction of affixes.

68 P.M. Scharf

that the k‡raka saßprad‡na is to be denoted. 1.4.21 selects the plural second-triplet
termination ˜as (2p) after the stem phala, and 1.4.22 selects the singular fourth-triplet
termination Ôe (4s) after the stem br‡hmaıa.

1. X[svatantra.eka] Brahmin[karmaı‡ yam abhipraiti.eka] fruit[„psitatama.bahu] gave[bhÂta.˜e˘a.eka].
 X[independent.one] Brahmin[whom one intends with the direct object.one] fruit[desideratum.many] gave[past.3rdperson.one].

 1.4.32 karmaı‡ yam abhipraiti sa saßprad‡nam
 1.4.49 kartur „psitatamaß karma
 1.4.54 svatantra˛ kart‡
 3.4.69 la˛ karmaıi ca bh‡ve c‡karmakebhya˛
 3.2.110 luÔ (bhÂte 84)

2. Br‡hmaıa[saßprad‡na.eka] phala[karman.bahu] Ûud‡§+luÔ[kartÁ.bhÂta.˜e˘a.eka].
 Br‡hmaıa[indirect object.one] phala[direct object.many] d‡+luÔ[3rdperson.one].

 3.4.78 tiptasjhi...iÛvahimahiÔ
 1.3.78 ˜e˘‡t kartari parasmaipadam
 1.4.108 ˜e˘e prathama˛
 1.4.21 bahu˘u bahuvacanam
 1.4.22 dvyekayor dvivacanaikavacane
 3.1.43 cli luÔi
 4.1.2 svaujasamauÒ...Ôyossup
 2.3.2 karmaıi dvit„y‡
 2.3.13 caturth„ saßprad‡ne

3. Br‡hmaıa+Ôe[caturth„.ekavacana] phala+˜as[dvit„y‡.bahuvacana]
 Ûud‡§+cli+tip[luÔ.prathama.ekavacana].
 Br‡hmaıa+[dative.sg] phala+[accusative.pl] d‡+[3sa aor].

 1.3.9 tasya lopa˛
 3.4.100 ita˜ ca (Ôita˛ 99, lasya 77, lopa˛ 97)
 3.1.44 cle˛ sic
 1.4.99 la˛ parasmaipadam
 2.4.77 g‡tisth‡ghup‡bhÂbhya˛ sica˛ parasmaipede˘u (luk 58)
 7.1.13 Ôer ya˛
 7.1.20 ja˜˜aso˛ ˜i˛ (napußsak‡t 19)
 1.1.42 ˜i sarvan‡masth‡nam
 7.1.72 napußsakasya jhalaca˛ (num 58)
 7.3.102 supi ca (ato d„rgo ya§i 101)
 6.4.8 sarvan‡masth‡ne c‡saßbuddhau (nopadh‡y‡˛ 7, d„rgha˛ 6.3.111)
 6.4.71 luÔlaÔlÁÔk˘v aÛ ud‡tta˛
 6.1.77 iko yaı aci

4. Br‡hmaı‡ya phal‡ny ad‡t.
 He gave fruit to the Brahmin.

Fig. 3. Fuller Example of Four-level Derivation

 Levels in P‡ıini's A˘Òh‡dhy‡y„ 69

Finally, several rules of allomorphy and phonology apply to map the abstract mor-
phological level onto the phonological level. Three rules modify the basic termina-
tions provided after the verbal and nominal stems: 3.4.100 deletes the i in the basic
verbal termination ti that replaces luÔ , 7.1.13 replaces the basic singular fourth triplet
nominal termination Ôe with ya, and 7.1.20 replaces the basic plural second triplet
nominal termination ˜as after a neuter stem with ˜i. Two rules modify the verbal
stem-forming affix: By 3.1.44 c li is replaced by the s-aorist stem-forming affix sic ,
and 2.4.77 deletes it after the root d‡ before a verbal termination termed parasmaipada
by 1.4.99. Four rules modify the nominal and verbal stems: 7.1.72 provides the aug-
ment n after the final vowel of the vowel-final neuter stem phala before the termina-
tion ˜i which is termed sarvan‡masth‡na by 1.1.42; 6.4.8 lengthens the penultimate
vowel of an n-final stem before such a termination, 7.3.102 lengthens the final vowel
of an a-final stem before a nominal termination that begins with a semivowel, nasal,
jh, or bh (here the y in ya), and 6.4.71 adds the augment a to the beginning of a stem
followed by a termination that replaces luÔ , laÔ , or lÁÔ . Finally, a purely phonetic
rule applies: In phal‡ni, 6.1.77 replaces the vowel i followed by a vowel with y.3

 K‡rakas

As early as 1964, R. Rocher (1964: 51) criticized the characterization of k‡rakas as
syntactic categories, instead arguing that they are semantic. Calling them syntactico-
semantic, Cardona (1976: 215-224) countered that it is suitable to consider k‡rakas as
a level between the purely semantic level and the level at which nominal terminations
are introduced (the abstract morphological level in Kiparsky 2002) because the rules
that introduce k‡raka terms include both semantic and co-occurrence conditions.

It is certainly the case that co-occurrence conditions enter into k‡raka classification
rules, and therefore that the k‡raka classification is an intermediate stage of derivation
between that of semantic conditions and that of the introduction of nominal termina-
tions. The intermediate stage is a way of achieving a complex mapping between
meaning and speech. It is possible that such an intermediate stage serves merely the
purpose of procedural economy and does not imply that k‡raka classification consti-
tutes a level in any psychological or structural sense. P‡ıini may conceive of just two
levels: semantic (artha) and phonetic (˜abda).

L-affixes

In their description of levels, Kiparsky and Staal place l-affixes at the same level as
k‡rakas. Kiparsky (2002: 3) describes “Assignment of k‡rakas (th-roles) and of ab-
stract tense” as the function of the first set of rules mapping the semantic level to the
morphosyntactic level. The treatment of l-affixes by P‡ıini, however, differs mark-
edly from the treatment of k‡rakas. K‡rakas are semantic objects classified by being
designated by terms (sa§j§‡). Section 1.4 classifies semantic objects intended to be
expressed by a speaker in relational categories by calling them by a k‡raka term.

3 Notes 1-2 apply to Figure 3 as well.

2

3

70 P.M. Scharf

Speech forms are subsequently introduced under the condition that an item designated
by a k‡raka term is to be denoted. L-affixes, in contrast, are introduced under seman-
tic and syntactic conditions, just as other affixes are, and then are replaced by mor-
phological elements; they serve therefore as abstract morphological elements them-
selves (level 3) rather than as morphosyntactic representations (level 2).4 Kiparsky’s
placement of l-affixes in level 2 rather than level 3 therefore sharply contrasts with
P‡ıini’s treatment.

Part of the motivation for assigning l-affixes to the level of morphosyntactic repre-
sentation and their replacements tip, tas, jhi, etc. to the level of abstract morphological
representation is to place the basic set of verbal terminations and the basic set of
nominal terminations at the same level in the hierarchy and thereby to achieve paral-
lelism between them. 1.4.14 suptiÔantaß padam refers to basic verbal (tiÔ) and
nominal (sup) terminations alike as the items ending in which a phonetic string is
termed a word (pada). Just as the basic nominal terminations su, au, jas, etc. are dis-
tributed over semantic and syntactic conditions including k‡raka and number, the ba-
sic verbal terminations tip , tas, jhi, etc. are distributed over the same conditions
k‡raka and number, and similar conditions such as person (puru˘a). Kiparsky (2002:
3) calls the rules that achieve this distribution 'morphological spellout rules'. 3.4.78
tiptasjhi... introduces the basic set of verbal terminations just as 4.1.2 svaujas... intro-
duces the basic set of nominal terminations. These sutras are read in conjunction with
restrictive rules (niyama) that achieve the proper distribution over the conditions of
number (1.4.21-22),5 person (1.4.105-108),6 and k‡raka (p‡da 2.3 for nominal termi-
nations, and 1.3.13-93 for verbal terminations).

However, the parallelism is incomplete. The verbal terminations introduced by
3.4.78 are not distributed over the conditions of time and mood as the nominal termi-
nations introduced by 4.1.2 are distributed over k‡rakas. On the contrary, it is rather
the l-affixes introduced by 3.2.110 luÔ, 3.2.111 anadyatane laÔ, etc. that are distrib-
uted over time and mood. Moreover, the conditions under which l-affixes are intro-
duced include k‡rakas. 3.4.69 la˛ karmaıi ca bh‡ve c‡karmakebhya˛ provides that l-
affixes occur under the condition that a kartÁ is to be denoted or either a karman or
bh‡va. The later alternative depends upon whether the root after which the l-affix oc-
curs is transitive or intransitive, i.e. occurs with (sakarmaka) or without (akarmaka) a
direct object (karman); after intransitive verbal roots the l-affix is introduced under
the condition that the action itself (bh‡va) is to be denoted, while after transitive ver-
bal roots the l-affix is introduced under the condition that the direct object is to be de-
noted. 3.4.69 thus accounts for the distribution of l-affixes over certain k‡raka condi-
tions. In the derivations in Figure 2 and Figure 3, 3.4.69 is clearly out of place; as a
rule that maps an abstract morphological element onto a k‡raka, it is alone in the sec-
tion of rules that map from level 1 to level 2. The other rules that map onto k‡rakas
(1.3.78, 3.1.68, and 2.3.2 in Fig. 2; 1.3.78, 2.3.2, and 2.3.13 in Fig. 3) all occur be-
tween levels 2 and 3. Verbal terminations, including the so-called basic verbal termi-

4 Cardona (1997: 496) calls them “abstract affixes”.
5 1.4.21 bahu˘u bahuvacanam. 1.4.22 dvyekayor dvivacanaikavacane.
6 1.4.105 yu˘mady upapade sam‡n‡dhikaraıe sth‡niny api madhyama˛. 1.4.106 prah‡se ca

manyopapade manyater uttama ekavac ca. 1.4.107 asmady uttama˛. 1.4.108 ˜e˘e prath-
ama˛.

 Levels in P‡ıini's A˘Òh‡dhy‡y„ 71

nations, are morphophonemic replacements of the l-affixes. On the grounds of the

parallelism between l-affixes and basic nominal terminations, in addition to the fact
that they, like the basic nominal terminations su, au, jas, etc. are initially introduced
items rather than replacements, l-affixes, rather than the basic verbal terminations tip ,
tas, jhi, etc., would properly be placed at the same level as basic nominal terminations
in a fourfold hierarchy of levels.

Moving l-affixation to the level of abstract morphological representation would re-
quire that basic verbal terminations appear subsequently in the transformation of ab-
stract morphology to phonological output. Such a move is entirely unproblematic.
There are no objective criteria to distinguish the level of the basic verbal terminations
that replace l’s from the level of the nominal terminations that replace the basic nomi-
nal terminations su, au, jas, etc. Just as l’s are the primary elements introduced after
verbal stems, basic nominal terminations su, au, jas, ..., Ôi, os, sup are the primary
elements introduced after nominal stems and feminine affixes. Basic verbal termina-
tions replace l’s by 3.4.78, and other verbal terminations replace basic verbal termina-
tions by 3.4.79-112, 7.1.3-5, 7.1.35, 7.1.40-46, etc.7 Replacements include partial as
well as total replacements. For example, by 3.4.79 Òita ‡tmanepad‡n‡ß Òer e, under
the condition that the basic verbal terminations are marked with Ò, the segment of the
basic ‡tmanepada terminations ta, ‡t‡m, jha, etc. that consists of the last vowel and
any following consonants is replaced by e; while by 3.4.79 the entire basic verbal
termination th‡s is replaced by se. The basic verbal terminations inherit markers and
other properties from the l they replace in accordance with the principle, stated in
1.1.56 sth‡nivad ‡de˜o ’nalvidhau, that replacements have the status of their substitu-
ends. Having the status of their substituends likewise extends to the replacements of
basic verbal terminations so that verbal forms qualify to be termed pada by 1.4.14.

There is no segregation of the type of conditions under which replacements of ba-
sic verbal terminations and their subsequent replacements occur, nor any segregation
of such conditions according to the location of the sÂtras that provide such replace-
ments in the A˘Ò‡dhy‡y„. Replacements of the basic terminations in the third adhy‡ya
include phonological conditions, and subsequent replacements in the seventh adhy‡ya
include semantic conditions. For example, 3.4.109-111 include morphological and
phonological conditions in the provision that jus replaces the jhi that replaces l
marked with Ô. Thus 3.4.109 sijabhyastavidibhya˜ ca includes the condition that the
jhi follows the vikaraıa sic , a reduplicated root (abhyasta), or the class 2 root vid;
3.4.110 ‡ta˛ includes the phonological condition that the jhi follows an ‡-final root af-
ter the deletion (luk) of sic;8 and 3.4.111 laÔa˛ ˜‡kaÒ‡yanasyaiva allows the replace-
ment, in the opinion of ¯‡kaÒ‡yana, also if the jhi that replaces laÔ follows an ‡-final
root. On the other hand, 7.1.35 tuhyos t‡taÔ ‡˜i˘y anyatarasy‡m provides that t‡taÔ
optionally replaces tu or hi, which are themselves derived from the basic verbal ter-
minations tip and sip respectively by 3.4.86-87, under the semantic condition that a
wish is to be expressed (‡˜i˘i).

7 Cardona (1997: 487-496) analyses the abstraction of a set of basic verbal terminations first in-

troduced as replacements of l by 3.4.78 from verbal terminations that occur in various tenses,
aspects, and moods and (1997: 273-279) discusses rules that derive the occuring verbal ter-
minations from the basic verbal terminations.

8 Cardona (1997: 278) provides details of the derivation of examples.

72 P.M. Scharf

Likewise, basic nominal terminations are replaced under phonological conditions
as well as semantic conditions. For example of the former, after a-final stems 7.1.9
ato bhisa ais replaces the basic nominal termination bhis by ais, 7.1.12 Ò‡ÔasiÔas‡m
in‡tsy‡˛ replaces the basic nominal terminations Ò ‡, Ôasi , and Ôas by ina, at, and sya,
and 7.1.13 replaces the basic nominal termination Ôe by ya. For example of the latter,
7.1.19 napußsak‡c ca and 7.1.20 ja˜˜aso˛ ˜i˛ replace the basic dual and plural first-
triplet nominal terminations by ˜„ and ˜i respectively after neuter stems.

The fact that there are no objective criteria to distinguish the character of replace-
ments of l-affixes from replacements of nominal terminations makes the relocation of
basic verbal terminations to the chain of morphophonemic changes that occur in the
transformation of abstract morphology to phonological output entirely suitable.

 Abstract orphology ersus honology

The claim that the phonological output form resides on a different level from the ab-
stract morphological representation is problematic. The abstract morphological repre-
sentation often appears unchanged as the final phonological output, without having
been subject to any additional rule. In the example devadatta odanaß pacati dis-
cussed in section I above (Fig. 2), the affix -ti in pacati, remains unchanged except for
the dropping of the marker p.

Conversely, the abstract morphological representation often undergoes more than
one permutation before arriving at its final phonological output form. The number of
permutations is not correlated with the number of levels. In the same example, the fi-
nal s in devadattas (devadatta+su) is placed at the level of abstract morphological rep-
resentation (level 3). The s is first changed to y by 8.3.17 and then to zero (lopa) by
8.3.19 undergoing replacement twice in stepping one level. Figure 3 shows several
instances in which there are multiple stages of derivation that take place in transform-
ing abstract morphology to phonological output. Most notably 3.1.44 replaces cli (in-
troduced at the level of abstract morphology by 3.1.43) with sic which 2.4.77 subse-
quently deletes.

In contrast to pacati in Figure 1, an extra stage of replacement occurs in the deriva-
tion of the form pacanti (3pa pre: pac-a-anti < pac-a-jhi < pac-jhi < pac-laÒ). The l of
laÒ is replaced by jhi in accordance with 3.4.78 tiptasjhi... and then the cover symbol
jh is replaced by ant after a-final stems in accordance with 7.1.3 jho 'nta˛. The sym-
bol jh is replaced by at instead after reduplicated stems in accordance with 7.1.4 ad
abhyast‡t and after stems that do not end in a before ‡tmanepada terminations in ac-
cordance with 7.1.5 ‡tmanepade˘v anata˛. Thus are accounted for forms such as da-
dati (3pa pre d‡ ‘give’) and cinvate (3pm pre ci ‘collect’) respectively. The use of the
cover symbol jh achieves a valuable generalization in unifying the verbal terminations
of the third person plural that do and do not contain n. Without privileging either ant
or at as the more basic termination, the former of which is more common in paras-
maipada terminations and the latter of which is more common in ‡tmanepada termina-
tions, positing jh as basic nevertheless achieves the same economy of rules as would
be achieved by positing ant as the basic termination.

4 VM P

 Levels in P‡ıini's A˘Òh‡dhy‡y„ 73

It is certainly arguable that in some instances the choice of abstract morphological
representation, whether it ever appears in phonological output or not, is motivated by
procedural economy and proportional representation of forms that actually occur.
Cardona (1997: 330-332) discusses cover symbols and (490-492) demonstrates the
economy and elegance of the inclusion of the cover symbol jh in the basic verbal ter-
minations. The reasons for the use of the abstract symbol c li as the basic aorist stem-
forming-affix are less apparent. To what extent procedural economy and proportional
representation in phonological output serve as the criteria to determine the choice of
abstract morphological representation requires further investigation. It is nevertheless
certainly clear that the choice of the particular abstract morphological representation
in some cases is identical to a final phonological output; in other cases it requires sev-
eral stages of transformation to reach phonological output; and in still others it never
appears as phonological output. The last is precisely what the previous section argued
is the situation with l-affixes. Just as jh and cli are abstract morphological representa-
tions at level 3, l, with various markers, is the abstract morphological representation
of all verbal terminations. Since the number of permutations is not correlated with the
number of levels, the fact that l’s undergo more than one permutation before reaching
final phonological output form in most verb forms is not grounds for segregating
these permutations into separate levels, just as it is not grounds for positing a separate
level for the y posited as a replacement for the nominal termination su in accordance
with 8.3.17 (Fig. 2), or for sic which replaces cli by 2.4.77 (Fig. 3), both of which un-
dergo an additional permutation before appearing in final phonological output.

Once l-affixes are postponed one level to the level of abstract morphology, basic
verbal terminations tip , tas, jhi, etc. are seen to be simply one additional morphopho-
nemic modification of l-affixes, just like, for example, the imperative terminations tu,
t‡m, antu, etc. which are further morphophonemic modifications of the basic verbal
terminations tip , tas, jhi, etc., and just like ais (introduced after a-final stems by 7.1.9
ato bhisa ais) which is a morphophonemic modification of the basic nominal termina-
tion bhis.

The only justification for considering that l-affixes belong to the level of morpho-
syntactic representation rather than to the level of abstract morphological representa-
tion like other abstract affixes such as c li and jh is that the conditions for the replace-
ment of l-affixes include semantics and syntax while the conditions for the
replacement of cli (by 3.1.44) and jh (by 7.1.3-5) are only morphological and
phonological. However, this criterion is invalid. As Scharf (2008: sections IVB and
IVD2) pointed out, Houben (1999) demonstrated that semantic factors directly serve
as conditions even in phonological rules, and Cardona (personal communication)
pointed out that most phonological rules include syntactic conditions. Houben (1999:
46) illustrated the direct use of semantic and pragmatic factors as conditions for pho-
netic modifications to strings in the section of rules 8.2.82-108. Factors such as giv-
ing a responding greeting to someone belonging to a higher caste than a ˜Âdra (8.2.83
pratyabhiv‡de ’˜Âdre) and calling from a distance (8.2.84 dÂr‡d dhute) conjoin with
the syntactic condition, specified in the heading to the section (8.2.82 v‡kyasya Òe˛
pluta ud‡tta), that the string be a sentence to condition vowel prolongation and high
tone. Since semantic and syntactic conditions can serve as conditions in rules that
map from abstract morphological representation (level 3) to phonological output form
(level 4) it is not the case that conditions are restricted to the levels from which and to

74 P.M. Scharf

which they map. Kiparsky (2002) conceded that rules incorporate conditions at prior
levels as well. Therefore the fact that rules that replace l-affixes include semantic and
syntactic conditions is not sufficient grounds for preponing l-affixes to the level of
morphosyntactic representation. The real motivation for doing so must be recognized
as a twentieth century conception of a fourfold distinction between semantics, syntax,
morphology, and phonetics.

Conclusions

Stages of replacement vary greatly in the production of speech forms; there is no
clear association between those stages and any psychological or conceptual level. In
distinction to potentially multiple stages of affixes and their replacements, it seems to
me that just one level is involved once an affix has been introduced. The fact that
P‡ıini uses the technique of replacement for the derivation of the final output form
from an abstract morphological representation indicates that the replacement is con-
sidered to belong to the same level rather than to a different one; it belongs to the
morphophonemic level as opposed to the syntacticosemantic level.

The semantic and syntactic levels are properly coalesced in a syntacticosemantic
level and the abstract morphological and the morphophonemic levels are properly
coalesced in a single morphophonemic level. While P‡ıini derives forms through
numerous un-correlated stages of derivation, he makes a clear distinction between the
level of meaning and the level of speech.

The concept of levels in P‡ıinian grammar, and the hierarchy of four levels pro-
posed by Kiparsky and Staal, was inspired by divisions that evolved in modern lin-
guistics. It is anachronistic to read them into the A˘Ò‡dhy‡y„. Kiparsky himself
(2002: 2) hedges his attribution of levels to P‡ıini calling them, “what we (from a
somewhat anachronistic modern perspective) could see as different levels of represen-
tation.” P‡ıini's grammar certainly worked with two levels: meaning and speech. Its
derivational procedure certainly included more than two stages. However, it appears
forced to press the derivational stages into a conceptual hierarchy of levels between
the purely semantic and the purely phonetic, particularly into a four-level hierarchy
corresponding to modern linguistic divisions.9 Consequently, it would be inappropri-
ate to call a computational implementation of such a four-level hierarchy a close
model of P‡ıinian methodology.

In working within the two levels meaning and speech, P‡ıini does stratify these
levels so that it is possible to consider that there are four levels, though these do not
align neatly with the modern conceptions of semantics, syntax, morphology, and pho-
nology. The level of meaning can be stratified into an initial stage of naive worldly
semantics as opposed to a subsequent stage of syntacticosemantic organization ready
to serve as conditions for morphophonemic rules. The level of sound can be stratified
into an initial stage in which basic morphophonemic elements, including abstract

9 Hyman (2003: 188-89) argues that Herodian's recognition of three types of linguistic errors--

namely, barbarism, solecism, and acyrologia--corresponds to the threefold distinction of
phonology, morphosyntax, and semantics.

5

 Levels in P‡ıini's A˘Òh‡dhy‡y„ 75

morphological elements, are introduced and a final stage of the finished phonological
form. In this way one does arrive at a four-fold hierarchy with three types of rules:
rules that organize the syntacticosemantic level, rules that introduce basic elements,
and rules that modify introduced elements. Rules that organize the syntacticoseman-
tic field include k‡raka classification. Rules that introduce basic elements include the
rules that introduce affixes after roots and stems in chapters 3-5 of the A˘Ò‡dhy‡y„.
Rules that modify introduced elements include rules of augmentation, substitution,
and deletion. The criteria for the segregation of such rules are obvious in the syntax
and purport of the rules themselves.

 Implications for omputational odeling

Because it is incorrect to assert that l-affixes, which would be more appropriately
placed in the level of abstract morphological representation, and k‡rakas, which be-
long to the level of morphosyntactic representation, occupy the same level in a four-
level hierarchy, therefore a four-module implementation based on such a hierarchy
would not produce a close computational model of P‡ıinian procedure if it imple-
mented rules that provide l-affixes in the same module as rules that classify k‡rakas.
Likewise, because it is incorrect to assert that verbal terminations, which are morpho-
phonemic modifications of l’s brought about by 3.4.78, etc., and the nominal termina-
tions su, au, jas, etc., which are affixes that serve as abstract morphological represen-
tation initially introduced by 4.1.2, occupy the same level, it would not produce a
close computational model of P‡ıinian procedure to implement these rules in the
same module. In a computational model based upon a hierarchy of levels that mod-
eled P‡ıinian procedure, l-affixes would have to be introduced in the same module
that introduced other affixes, in a module prior to a module that provided morpho-
phonemic replacements of them, and in a module subsequent to one that classified
k‡rakas. Verbal terminations would have to replace l-affixes in the same module that
provided other morphophonemic replacements of abstract morphological representa-
tions, and in a module subsequent to one that initially introduced affixes.

References

6 C M

76 P.M. Scharf

Cardona, G.: Pāṇini: A Survey of Research. Mouton, The Hague (1976)
Chomsky, N.: Syntactic Structures. Mouton, The Hague (1957)
Houben, J.: ‘Meaning statements’ in Pāṇini’s grammar: on the purpose and context of the

Aṣṭādhyāyī. Studien zur Indologie und Iranistik 22, 23–54 (1999) [2001]
Hyman, M.: One word solecisms and the limits of syntax. In: Swiggers, P., Wouters, A.

(eds.) Syntax in Antiquity. Orbis Supplementa 23. Monographs published by the Inter-
national Center of General Dialectology, Louvain, pp. 179–192. Peeters, Leuven (2003)

Kiparsky, P.: On the Architecture of Pāṇini’s Grammar. Paul Kiparsky’s Home Page
(2002), http://www.stanford.edu/~kiparsky/ (See Kiparsky, 2008)

Kiparsky, P.: On the Architecture of Pāṇini’s Grammar. In: Huet, G., Scharf, P. (eds.) Top-
ics in Sanskrit Computational Linguistics. LNCS. Springer, Heidelberg (2008) (See Ki-
parsky, 2008)

 Levels in P‡ıini's A˘Òh‡dhy‡y„ 77

Kiparsky, P., Staal, J.F.: Syntactic and semantic relations in Pāṇini. Foundations of Lan-
guage 5, 83–117 (1969)

Rocher, R.: ‘Agent’ et ‘objet’ chez Pāṇini. Journal of the American Oriental Society 84,
44–54 (1964)

Scharf, P.: Modeling Pāṇinian Grammar. In: Huet, G., Kulkarni, A. (eds.) Proceedings of
First International Symposium on Sanskrit Computational Linguistics, pp. 77–94
(2007), http://sanskrit.inria.fr/Symposium/DOC/Scharf.pdf,
http://sanskrit.inria.fr/Symposium/DOC/Scharf_Slides.pdf

Scharf, P.: Modeling Pāṇinian Grammar. In: Huet, G., Kulkarni, A., Scharf, P. (eds.) Top-
ics in Sanskrit Computational Linguistics. LNCS, Springer, Heidelberg (2008)

On the Construction of Śivasūtra-Alphabets

Wiebke Petersen

Heinrich-Heine University Düsseldorf
Universitätsstr. 1, 40225 Düsseldorf, Germany

petersew@uni-duesseldorf.de

Abstract. In the present paper, a formalization of the technique used
by Pān. ini in his Śivasūtras for the denotation of sound classes is given.
Furthermore, a general notion of Śivasūtra-alphabets and of Śivasūtra-
sortability is developed. The presented main theorem poses three suf-
ficient conditions for the Śivasūtra-sortability of sets of classes. Finally,
the problem of ordering sets of classes which are not Śivasūtra-sortable is
tackled and an outlook on modern problems which could be approached
by Pān. ini’s technique is given.

Keywords: Śivasūtras, Pān. ini, orders, lattices.

1 Introduction

1.1 Pān. ini’s Śivasūtra-Technique

Among linguists Pān. ini’s grammar of Sanskrit is acknowledged to be the culmi-
nation point of ancient Indian grammar:

Indian linguistics originated among reciters who wanted to preserve their
Vedic heritage and apply it in ritual. Unconcerned with meaning, they
concentrated on form and incorporated a good measure of linguistic anal-
ysis that culminated in the Sanskrit grammar of Pān. ini. (Staal, 2006)

Although more than 2 000 years old, Pān. ini’s grammar is rather accurately pre-
served due to the fact that it was soon considered to be the standard grammar
of Sanskrit. Thereby the originally descriptive grammar of a living language
achieved the status of a normative, prescriptive grammar (cf. Staal, 1995). Sit-
uated in the oral culture of ancient India, Pān. ini’s grammar was designed for
repetitive recitation. Thus the grammar is necessarily presented in a purely linear
form, and its compactness was particularly desirable.

Its main part consists of about 4 000 rules, many of them phonological rules
which describe the complex system of Sanskrit Sandhi (cf. Böhtlingk, 1887).
Phonological rules are typically of the form “sounds of class A are replaced by
sounds of class B if they are preceded by sounds of class C and followed by
sounds of class D”, which in modern phonology is usually denoted as

A → B/C D . (1)

A. Kulkarni and G. Huet (Eds.): Sanskrit Computational Linguistics, LNCS 5406, pp. 78–97, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Construction of Śivasūtra-Alphabets 79

����������	
������� ����	��� �����	����	 ���	��	����� �����	 �	��	�����	��	���	 �	��	���	 (I)

��	��� 	�!�	 �"	�#	�$	�%��&�'�	 (�)��*��+��,	���	���-	���	 ���.	���	 '	�!	�/	��� ����

a.i.un. r. .l.k e.oṅ ai.auc hayavarat. lan. ñamaṅan. anam jhabhañ (II)
ghad.hadhas. jabagad. adaś khaphachat.hathacat.atav kapay śas.asar hal

Fig. 1. Pān. ini’s Śivasūtras in linear form (I: Devanāgar̄ı script; II: Latin transcription)

Since Pān. ini’s grammar has been designed for oral tradition, it makes no use
of visual symbols (like arrows, slashes . . .) to indicate the role of the sound
classes in a rule. Instead, Pān. ini takes natural case suffixes which he uses meta-
linguistically in a formalized way in order to mark the role a class plays in a
rule. In Pān. inian style rule (1) becomes

A + genitive, B + nominative, C + ablative, D + locative . (2)

Since constantly repeating the single sounds of each class involved in a rule is
not economical, an appropriate phonological description must involve a method
to denote the sound classes. The method should be such that it is easier to
address a natural phonological class than an arbitrary set of sounds (cf. Kornai,
1993, 2008). A wide-spread technique in modern phonology is to build up a
structured system of phonetic features (e.g., [±consonantal] or [±voiced]) in
order to define the phonologically relevant sound classes. The aim is to identify
phonetic features, i.e., features that are motivated by properties of the isolated
sounds, by which the sounds can be classified into phonological classes, i.e.,
into classes of sounds with analogous behavior in the same speech contexts.
Unfortunately, this leads to the problem of choosing and naming features and
often involves the danger of defining ad-hoc features.

Pān. ini’s technique for the denotation of sound classes allows him to do com-
pletely without features. His grammar of Sanskrit begins with 14 sūtras, the
so-called Śivasūtras , which are quoted in Fig. 1 in their original linear form and
in Fig. 2 in the tabular form given in Kiparsky (1991). Each single sūtra consists
of a sequence of sounds which ends in a consonant, the so-called anubandha. This
last consonant of each sūtra is used meta-linguistically as a marker to indicate
the end of a sūtra. According to Misra (1966) the system behind the choice of
the consonants used as anubandhas is unknown. Together the Śivasūtras define a
linear list of Sanskrit sounds which is interrupted by marker elements (anuband-
has). In his grammar Pān. ini uses pratyāhāras , i.e., pairs consisting of a sound
and an anubandha in order to designate the sound classes on which a rule oper-
ates. Such a pair denotes the sounds in the interval between the sound and the
anubandha; e.g., the pratyāhāra iC denotes the class {i, u, r., l.} as depicted in
Fig. 3.1 Pratyāhāras are often used in rules of type (2) where they replace the
open place-holders A, B, C and D.

1 To simplify matters we ignore here that a pratyāhāra actually denotes the ordered
list of sounds in the interval and not just the unordered class of sounds .

80 W. Petersen

1. a i u N.
2. r. l. K
3. e o Ṅ
4. ai au C
5. h y v r T.
6. l N.
7. ñ m ṅ n. n M
8. jh bh Ñ
9. gh d.h dh S.

10. j b g d. d Ś
11. kh ph ch t.h th

c t. t V
12. k p Y
13. ś s. s R
14. h L

Fig. 2. Pān. ini’s Śivasūtras in tabular form (the default, syllable-building vowel a is
left out)

1. a i u N.
2. r. l. K
3. e o Ṅ
4. ai au C
5. h y v r T.

Fig. 3. Example of a pratyāhāra: iC = {i,u,r.,l.,e,o,ai,au}

There is a longstanding debate on how Pān. ini developed the Śivasūtras and
whether he arranged the sounds in the best way possible (cf. Böhtlingk, 1887;
Faddegon, 1929; Staal, 1962; Kiparsky, 1991). Note that exactly one sound,
namely h, occurs twice in the list of the Śivasūtras (in the 5th and in the 14th
sūtra). Nowadays it is generally assumed that the order of the sounds in the
Śivasūtras is primarily determined by the structural behavior of the sounds in
the rules of Pān. ini’s grammar and that the arrangement of the sounds is chosen
such that economy or rather brevity is maximized (cf. Staal, 1962; Misra, 1966;
Cardona, 1969; Kiparsky, 1991). Kiparsky (1991) argues “that the structure of
the Śivasūtras is entirely explicable on systematic grounds [. . . and] that no other
principles are needed than those used in the construction of the rest of Pān. ini’s
grammar, namely the principle of economy and the logic of the special case and
the general case.”

In Petersen (2004) it has been formally proven that there is no shorter solution
than the Śivasūtras to the problem of ordering the sounds of Sanskrit in a by
markers interrupted, linear list with as few repeated sounds as possible such
that each phonological class which is denoted by a sound-marker pair (i.e., a
pratyāhāra) in Pān. ini’s grammar can be represented by such a pair with respect
to the list. Hence, Pān. ini was forced to duplicate one sound, namely h, in the
Śivasūtras and he used a minimal number of markers. Actually, it can be shown

On the Construction of Śivasūtra-Alphabets 81

that there are nearly 12 000 000 alternative sound lists interrupted by markers
which fulfill the above mentioned conditions and which are of the same length as
the Śivasūtras (Petersen, 2008). The question whether the actual list chosen by
Pān. ini in the Śivasūtras results, as Kiparsky (1991) argues, from the ‘principle
of economy’ and the ‘logic of the special case and the general case’ and not
from the ‘principle of historic continuity’ (Cardona, 1969) or the ‘principle of
homorganic continuity’ (Staal, 1962) cannot be answered by the mathematical
reasoning in Petersen (2008).

The present paper focuses not so much on the concrete list of the Śivasūtras
as former ones (cf. Petersen, 2004, 2005), but concentrates more on the general
technique of ordering entities in a list which is interrupted by marker elements
such that each class of entities out of a given set of classes forms an interval
and thus can be unambiguously addressed by a pair consisting of an entity and
a marker. In particular it is examined under which conditions it is possible to
construct such a list without being forced to include an entity twice.

1.2 General Problem of S-sortability

As a start we will simplify Pān. ini’s Śivasūtra-technique by abandoning the claim
that the target list is interrupted by markers and that each class which is deno-
table with respect to the list forms an interval which ends immediately before a
marker. Thus the simplified problem states as follows:

Problem 1. Given a set of classes, order the elements of the classes in a linear
order such that each single class forms a continuous interval with respect to that
order.

The target orders will be called S-orders:

Definition 1. Given a finite base set A and a set of subsets Φ with
⋃

Φ = A,
a linear order < on A is called a Śivasūtra-order (or short S-order) of (A, Φ)
if and only if the elements of each set φ ∈ Φ form an interval in (A, <), i.e.,
∀φ ∈ Φ : if φmin is the minimum of φ w.r.t. (A, <) and φmax is the maximum
of φ, then there is no a ∈ A \ φ s.th. φmin < a < φmax.

Furthermore, (A, Φ) is said to be S-sortable if and only if there exists an
S-order (A, <) of (A, Φ).

Example 1. Given the base set A = {a, b, c, d, e, f, g, h, i} and the set of classes
Φ = {{d, e}, {a, b}, {b, c, d, f, g, h, i}, {f, i}, {c, d, e, f, g, h, i}, {g, h}}, (A, Φ) is S-
sortable and a ≺ b ≺ c ≺ g ≺ h ≺ f ≺ i ≺ d ≺ e is an S-order of (A, Φ).2

It is important to note that not all sets of classes are S-sortable. For instance,
since the duplication of at least one sound element in the Śivasūtras is unavoid-
able, the set of classes defined by the sound classes in Pān. ini’s grammar which
are denoted by pratyāhāras is not S-sortable. Orders, like the one underlying the
2 As usual, ≺ stands for the binary predecessor relation, i.e., a ≺ b if and only if a < b

and there is no c such that a < c < b.

82 W. Petersen

Śivasūtras, which contain at least one element twice will be called S-orders with
duplications. A smaller example of a non S-sortable set of classes is given here:

Example 2. Given the base set A = {a, b, c, d, e, f} and the set of classes Φ =
{{d, e}, {a, b}, {b, c, d}, {b, c, d, f}}, (A, Φ) is not S-sortable (without duplica-
tions).

One of the major aims of the present paper is to examine the conditions which
S-sortable sets of classes fulfill and to show how these conditions can be con-
structively applied to different tasks: (1) the building of concrete S-orders, (2)
the identification of best candidates for duplication in the case of non S-sortable
sets of classes, (3) the insertion of a minimal amount of marker elements such
that each class forms an interval that ends immediately before a marker. S-orders
which are interrupted by marker elements are called S-alphabets and defined as
follows:

Definition 2. Given a finite base set A and a set of subsets Φ with
⋃

Φ = A,
a Śivasūtra-alphabet (short S-alphabet) of (A, Φ) is a triple (A, Σ, <) with

– Σ is a finite set of markers with A ∩ Σ = ∅,
– < is a linear order on A ∪ Σ

if and only if for each φ ∈ Φ there exists a ∈ φ and M ∈ Σ such that φ = {b ∈
A | a ≤ b < M} (aM is called the pratyāhāra or S-encoding of φ).

Furthermore, (A, Φ) is said to be S-encodable if and only if there exists an
S-alphabet (A, Σ, <) of (A, Φ).

It follows from definition 2 that whenever (A, Σ, <) is an S-alphabet of (A, Φ)
then (A, < |A) is an S-order of (A, Φ). Furthermore, since every S-order can be
trivially enhanced into an S-order by inserting a marker behind each element, it
is true that each S-sortable set of classes is S-encodable and vice versa.

2 Main Theorem on S-sortability

The main theorem on S-sortability depends on two constructs taken from Formal
Concept Analysis (FCA), which is a mathematical theory for the analysis of
data (cf. Ganter and Wille, 1999). For our purposes, we do not need to evolve
the whole apparatus of FCA, it is sufficient to define what we understand by the
formal context and the concept lattice of a set of classes (A, Φ): Given a base set
A and a set of subsets Φ, the formal context of (A, Φ) (or the (A, Φ)-context)
is the triple (Φ, A,
) and the concept lattice of (A, Φ) (or the (A, Φ)-lattice) is
the ordered set (A ∪ {ψ | ψ =

⋂
Ψ with Ψ ⊆ Φ}, ⊇).

Given the base set A and the set of classes Φ in example 1, the formal context
of (A, Φ) and the Hasse-diagram of the concept lattice of (A, Φ) are depicted in
Fig. 4. The formal context is given in form of a cross table as usual. Its concept
lattice is constructed as follows: All elements of Φ and all possible intersections
of elements of Φ are ordered by the set-inclusion relation such that subsets are

On the Construction of Śivasūtra-Alphabets 83

e

d

c

i
f

h
g

b

a

{d, e}

{d}

{c, d, f, g, h, i}

{f, i} {g, h}

{b}

{a, b}

{ }

{a, b, c, d, e, f, g, h, i}

{c, d, e, f, g, h, i} {b, c, d, f, g, h, i}

a b c d e f g h i

{d, e} ××
{b, c, d, f, g, h, i} ××××××××
{a, b} ××
{f, i} × ×
{c, d, e, f, g, h, i} ×××××××
{g, h} ××

Fig. 4. Concept lattice (left) and formal context (right) of (A, Φ) in example 1

d

c

b

e f a

a b c d e f

{d, e} ××
{a, b} ××
{b, c, d} ×××
{b, c, d, f} ××× ×

Fig. 5. Concept lattice (left) and formal context (right) of (A, Φ) in example 2

placed above their supersets. The Hasse-diagram of an ordered set is the directed
graph whose vertices are the elements of the set and whose edges correspond to
the upper neighbor relation determined by the order. An ordered set is said to
be Hasse-planar if its Hasse-diagram can be drawn without intersecting edges.
Hence, the concept lattice in Fig. 4 is Hasse-planar.

The node labeling in Fig. 4 is twofold: The labels below the nodes indicate the
corresponding sets. For the labels above the nodes a more economic labeling is
chosen which assigns each element of the base set A to the node corresponding
to the smallest set which contains the element. The labels below the nodes are
superfluous as they can be reconstructed from the others by collecting all labels
attached to nodes which can be reached by moving along paths upwards in the
graph. From now on, solely the upper labels will be used in figures of concept
lattices, as seen in Fig. 5, which shows the concept lattice for example 2.

The main theorem on S-sortability states three equivalent, sufficient condi-
tions which a set of classes must fulfill in order to be S-sortable. The individual
conditions will be explained in detail in the succeeding subsections.

Theorem 1. A set of classes (A, Φ) is S-sortable if and only if one of the fol-
lowing equivalent statements is true:

84 W. Petersen

e

d
c i f h g

b

a

Fig. 6. Enlarged concept lattice for example 1

Condition 1: Let Φ̃ = Φ ∪ {{a} | a ∈ A}. The concept lattice of the enlarged set
of classes (A, Φ̃) is Hasse-planar.

Condition 2: The concept lattice of (A, Φ) is Hasse-planar and for any a ∈ A
there is a node labeled a in the S-graph of the concept lattice.

Condition 3: The Ferrers-graph of the enlarged (A, Φ̃)-context is bipartite.

Although all three conditions depend on properties of graphs, they are of different
nature. The first one demands that the Hasse-diagram of a concept lattice can be
drawn without intersecting edges; the second one relies on the positions of certain
labels in such a Hasse-diagram; and the third one depends on the bipartity of
so-called Ferrers-graphs. Instead of giving the proof of the theorem in isolation,
the following subsections treat the three conditions for S-sortability one by one.
For each condition, illustrational examples are given, a proof of its sufficiency
is sketched, and it is demonstrated how the condition can be applied in the
construction of S-alphabets with as few duplicated elements as possible and a
minimal number of markers.

2.1 First Condition for S-sortability: Main Planarity Criterion

Condition 1 relates S-sortability with Hasse-planarity of enlarged concept lat-
tices. Here, a set of classes gets enlarged by adding each element of the base set
as a singleton set to the set of classes, e.g., in the case of example 1 the classes
{a}, {b}, {c}, . . . , {i} have to be added. The condition states that a set of classes
is S-sortable if and only if the concept lattice of the so enlarged set of classes is
Hasse-planar, i.e., if it is possible to draw its Hasse-diagram without intersecting
edges. Figure 6 shows a plane drawing of the enlarged concept lattice for the set
of classes taken from example 1.

Figure 7 shows the Hasse-diagram of the enlarged concept lattice that belongs
to the set of classes in example 2 which is not S-sortable. In the case of this small

On the Construction of Śivasūtra-Alphabets 85

d c b

e fa

Fig. 7. Enlarged concept lattice for example 2

lattice it can be easily verified that it is impossible to draw its Hasse-diagram
without intersecting edges.

Condition 1 is proven in detail in Petersen (2008). The fact that the existence
of a plane drawing of the Hasse-diagram of an enlarged concept lattice implies
the existence of an S-order follows immediately from the definition of our concept
lattices: Since concept lattices order sets by set inclusion it is ensured that in
the case of an enlarged set of classes the labels belonging to the elements of one
class form an interval in the sequence defined by the left-to-right order of the
labels in a plane drawing of the Hasse-diagram of the concept lattice. It can
be easily seen that this guarantees that the left-to-right order of the labels in
a plane drawing of the Hasse-diagram of a concept lattice of an enlarged set of
classes (A, Φ̃) defines an S-order of (A, Φ). For instance, the S-order defined by
the plane Hasse-diagram in Fig. 6 is e ≺ d ≺ c ≺ i ≺ f ≺ h ≺ g ≺ b ≺ a.

The second statement, i.e. that the existence of an S-order implies the ex-
istence of a plane drawing of the enlarged Hasse-diagram, was first proven in
Petersen (2004). The proof is based on the controlled construction of a drawing
of the enlarged concept lattice for each S-order which ensures that the drawing
is plane. The resulting drawing is such that the left-to-right order of the labels
equals the original S-order.

Since several plane drawings leading to different S-orders usually exist for a
concept lattice of a set of classes, our construction method does not determin-
istically result in one S-order. In fact, the proof of the theorem above implies
that for every S-order there exists a plane drawing of the concept lattice from
which it can be read off. For instance, for the Hasse-diagram in Fig. 6 one finds
48 plane drawings leading to 48 distinct S-orders of the set of classes taken from
example 1.

See Petersen (submitted) for a discussion on why and how S-orders can be
fruitfully applied to the problem of ordering books in a library or products in
a warehouse. In short, the applicability of S-orders to these problems is based
on the fact that in S-orders elements belonging to one class are placed in close
distance to each other.

As demonstrated, condition 1 reduces the problem of S-sortability nicely to
the Hasse-planarity of certain concept lattices. However, in practice condition 1 is

86 W. Petersen

problematic for two reasons in particular: First, the condition is non-constructive
for the problem of inducing S-alphabets with minimal marker sets. If one finds
a plane drawing of the Hasse-diagram of an enlarged set of classes, it is always
possible to read off an S-order, but usually not an S-alphabet of the original set
of classes without superfluous markers. Each S-order can be trivially completed
into an S-alphabet by inserting a marker element behind each element in the S-
order, but such an S-alphabet will usually contain unnecessarily many markers.
The problem is that by enlarging a set of classes the information about which
elements do not need to be separated by a marker in an S-alphabet gets lost.
Condition 2, which operates on concept lattices that are not enlarged, offers a
way out of the dilemma.

Second and even worse, condition 1 does not offer an easily verifiable criterion
for the S-sortability of a set of classes. The problem of determining whether a
plane drawing of a general graph exists is hard. In section 2.3, which treats
condition 3, a sufficient criterion for the Hasse-planarity of concept lattices will
be presented which can be algorithmically checked.

2.2 Second Condition for S-sortability: Minimizing the Number of
Marker Elements

Condition 2 consists of two parts. It states that a set of classes (A, Φ) is S-sortable
if and only if the following two conditions are fulfilled:

1. The concept lattice of (A, Φ) is Hasse-planar.
2. For any a ∈ A there is a node labeled a in the S-graph of the concept lattice

of (A, Φ).

The second part depends on the notion of S-graphs of concept lattices. S-graphs
only exist for Hasse-planar concept lattices since their definition is based on plane
drawings of Hasse-diagrams: Given a plane drawing of the Hasse-diagram of an
(A, Φ)-lattice, remove the top node and all adjoined edges if it corresponds to the
empty set (if the top node does not correspond to the empty set, do not change
the drawing). The resulting drawing defines a plane graph, and the boundary
graph of the infinite face of this graph is the S-graph of the (A, Φ)-lattice. In
Petersen (2008) it has been proven that for each S-sortable set of classes there
exists exactly one S-graph up to isomorphism. Examples of S-graphs are given
in Fig. 8.

The proof of condition 2 is based on the following considerations: According
to condition 1 a set of classes (A, Φ) is S-sortable if and only if the enlarged
(Ã, Φ)-lattice is Hasse-planar. Since an S-order of (A, Φ) is necessarily an S-
order of (Ã, Φ) too, it follows that the S-sortability of a set of classes implies the
Hasse-planarity of its concept lattice. Hence, for any S-sortable set of classes a
plane drawing of the Hasse-diagram of its concept lattice exists which implies
the existence of the S-graph of its concept lattice. However, the Hasse-planarity
is only a necessary, but not a sufficient precondition for S-sortability as Fig. 5
demonstrates, which shows a plane drawing of the Hasse-diagram of a concept
lattice of a set of classes that is not S-sortable.

On the Construction of Śivasūtra-Alphabets 87

e

d

c

i
f

h
g

b

a d

c

b

e f a

Fig. 8. S-graphs of (A, Φ)-lattices (left: (A, Φ) taken from example 1, right: (A, Φ)
taken from example 2)

A close investigation of what happens while reducing a plane drawing of an en-
larged concept lattice to a plane drawing of the non-enlarged concept lattice will
conclude the proof of condition 2: A plane drawing of the non-enlarged concept
lattice can be gained from a plane drawing of the enlarged one by contracting
all edges leading from lower nodes to nodes which correspond to singleton sets
which were added while enlarging the set of classes. For each such node there
will be exactly one edge which must be contracted. Hence, the contraction will
not destroy the planarity of the graph. Furthermore, a node labeled a (with
a ∈ A) which trivially belongs to the S-graph of the enlarged concept lattice will
also belong to the S-graph of the non-enlarged concept lattice. This proves that
condition 2 is equivalent to condition 1 and thus that it is a sufficient condition
for the S-sortability of a set of classes.

In contrast to condition 1, condition 2 operates immediately on the concept
lattice of the original set of classes. Hence, on the concept lattice which in-
volves only those sets for which a pratyāhāra must exist in a corresponding
S-alphabet. Therefore, it is possible to develop a procedure for the construction
of S-alphabets with minimal marker sets on the basis of the S-graphs treated
in condition 2. For a detailed illustration of how the procedure works see Fig. 9
which stepwise illustrates the procedure for the S-sortable set of classes given in
example 1.

Procedure for the construction of S-alphabets with minimal marker sets:

1. Start with the empty sequence and choose a walk through the S-graph that:
– starts and ends at the lowest node,
– reaches every node of the S-graph,
– passes each edge not more often than necessary,
– is oriented such that while moving downwards as few labeled nodes with

exactly one upper neighbor as possible are passed.

88 W. Petersen

e
e
d

(0
)

(1
)

(2
)

e
d
M

1
c

e
d
M

1
c
f
i

e
d
M

1
c
f
iM

2
g
h

(3
)

(4
)

(5
)

e
d
M

1
c
f
iM

2
g
h
M

3
b

e
d
M

1
c
f
iM

2
g
h
M

3
b
M

4
a

e
d
M

1
c
f
iM

2
g
h
M

3
b
M

4
a
M

5

(6
)

(7
)

(8
)

F
ig

.9
.
Se

qu
en

ce
of

fig
ur

es
to

ill
us

tr
at

e
th

e
pr

oc
ed

ur
e

fo
r

th
e

co
ns

tr
uc

ti
on

of
S-

al
ph

ab
et

s
w

it
h

m
in

im
al

m
ar

ke
r

se
ts

On the Construction of Śivasūtra-Alphabets 89

2. While walking through the S-graph modify the sequence as follows:
– While moving upwards along an edge do not modify the sequence.
– While moving downwards along an edge add a new marker to the se-

quence unless its last element is already a marker.
– If a labeled node is reached, add the labels in arbitrary order to the

sequence, except for those labels which have already been added in an
earlier step.

The small example given in Fig. 10 illustrates the importance of choosing a
walk through the S-graph that avoids passing labeled nodes while moving down-
wards. In Petersen (2004) a similar procedure is applied in order to demonstrate
that the number of markers in Pān. ini’s Śivasūtras cannot be reduced. Note
that the procedure is not deterministic, as it usually does not return one single
S-alphabet. In Petersen (2008) it has been proven that every S-alphabet with
minimal marker set can be derived by this procedure. In the case of Pān. ini’s
problem the procedure leads to nearly 12 000 000 equally short S-alphabets in
which the sound h occurs twice.

2.3 Third Condition for S-sortability: Algorithmically Verifiable
Criterion

Since it is hard to decide whether a concept lattice is Hasse-planar by examining
the concept lattice itself, it is favorable to use a planarity criterion which does
not depend on properties of concept lattices (like condition 1 and 2), but on prop-
erties of their corresponding formal contexts which can be checked more easily.
Condition 3 follows immediately from condition 1 and the following proposition
which is proven in Zschalig (2007):

Proposition 1. The concept lattice of a formal context is Hasse-planar if and
only if its Ferrers-graph is bipartite.

A graph is said to be bipartite if it is possible to assign its vertices to two disjoint
classes such that each edge connects vertices which belong to distinct classes.
Zschalig (2007) defines the Ferrers-graph of a formal context as follows:

Definition 3. The Ferrers-Graph of a formal context (G, M, I) is Γ (I) with

set of vertices: V (Γ (I)) = Ī with Ī = G × M \ I and
set of edges: E(Γ (I)) = {{(a1, b2), (a2, b1)} | (a1, b1), (a2, b2) ∈ I} .

The definition is easier to understand if one describes the formal context by a
cross table as before (cf. Fig. 4 and Fig. 5). Then the empty cells of the table
become the vertices of the Ferrers-graph, and two vertices are connected by an
edge if and only if their cells violate the condition of a Ferrers-relation. Here,
violating the condition of a Ferrers-relation means that the two ‘partner’ cells –
which together with the two empty cells define the corners of a rectangle – both
contain a cross. Hence, in the small example

90 W. Petersen

×
×

the two empty cells are vertices of the corresponding Ferrers-graph, and they
are connected by an edge:

× •
• ×

Figure 11 demonstrates by the example of two edges how the Ferrers-graph
of a formal context is constructed. In the left part of the figure, the two vertices
(2, c) and (3, a) of the Ferrers-graph have to be connected by an edge since
their partner cells (2, a) and (3, c) bear crosses. The right part of the figure
demonstrates that the vertices (3, b) and (0, e) have to be connected by an edge
too. As an example for two non-connected vertices of the Ferrers-graph consider
the vertices (2, c) and (3, d). They are not connected by an edge in the Ferrers-
graph since their partner cell (2, d) does not bear a cross.

The whole Ferrers graph for this example context is given in Fig. 12. Here, the
edges of the graph are labeled by the cells of the cross table of the formal context.
Note that the Ferrers-graph is bipartite which is in accordance with the Hasse-
planarity of the corresponding concept lattice shown in Fig. 12. However, the
example set of classes is not S-sortable since the node labeled f does not lie on
the S-graph of the concept lattice. Hence, by the main theorem on S-sortability it
follows that the concept lattice of the enlarged set of classes is not Hasse-planar

eM1adM2bM3cM4 cbdM1aM2eM3

Fig. 10. Example with two distinct walks through the S-graph of which only
the right one leads to an S-alphabet with minimal marker set (here, Φ =
{{a, d}, {a, b, d}, {b, c, d}, {e}})

a b c d e f
0 • • • × × •
1 • × × × • •

2 × × • • • •

3 • × × • • ×

a b c d e f
0 • • • × × •

1 • × × × • •
2 × × • • • •

3 • × × • • ×

Fig. 11. Illustration for the definition of edges in Ferrers-graphs

On the Construction of Śivasūtra-Alphabets 91

a b c d e f
0 × ×
1 × × ×
2 × ×
3 × × ×

3-e 2-d 2-e 3-d 1-e 2-c 2-f

0-b 0-a 0-c 0-f 1-f 1-a 3-a

Fig. 12. Example of a bipartite Ferrers-graph (upper left: formal context; lower left:
Ferrers-graph; right: concept lattice)

and that its Ferrers-graph is not bipartite. Both, the enlarged concept lattice
and its corresponding Ferrers-graph are given in Fig. 13. As demonstrated by
the edge between the vertices 2-f and 9-b, the Ferrers-graph is not bipartite.

The Ferrers-graph of a formal context is bipartite if it is possible to assign
its vertices to two disjoint classes such that each edge connects vertices which
belong to different classes. This property can easily be algorithmically verified
by assigning an arbitrary start vertex to the first class and assigning all vertices
which are connected with it to the second class. Every time a vertex is assigned
to one class, all neighbor vertices are assigned to the other class. This procedure
has to be repeated for every connected component of the Ferrers-graph. If at any
point a vertex has to be assigned to both classes, the Ferrers-graph is necessarily
not bipartite. But if it is possible to assign all vertices to the classes without
conflicts, the Ferrers-graph is bipartite. Hence, condition 3 offers a possibility to
check algorithmically whether a set of classes is S-sortable or not.

3 Identifying Good Candidates for Duplication

The aim of this section is to illustrate how the three conditions for S-sortability
can be applied in the construction of S-alphabets with duplications in the case of
non S-sortable sets of classes. It turns out that for different sets of classes different
strategies have to be chosen in order to tackle the problem of identifying those
elements which have to be duplicated in order to get an S-alphabet with as few
duplications as possible and a minimal number of markers.

First, it will be demonstrated by the examples in Fig. 12 and Fig. 13 how in
some cases condition 3 can be applied in order to identify minimal S-alphabets
in the case of non-sortable sets of classes. Let therefore

A = {a, b, c, d, e, f} and Φ = {{d, e}, {b, c, d}, {a, b}, {b, c, f}} .

92 W. Petersen

a
b

c
d

e
f

0
×

×
1

×
×

×
2

×
×

3
×

×
×

4
×

5
×

6
×

7
×

8
×

9
×

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

0-
a

0-
b

0-
c

0-
f

1-
a

1-
f

3-
a

5-
a

5-
f

6-
a

6-
b

6-
f

7-
a

7-
b

7-
c

7-
f

8-
a

8-
b

8-
c

8-
d

8-
f

9-
a

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

1-
e

2-
c

2-
d

2-
e

2-
f

3-
d

3-
e

4-
b

4-
c

4-
d

4-
e

4-
f

5-
c

5-
d

5-
e

6-
d

6-
e

7-
e

9-
b

9-
c

9-
d

9-
e

F
ig

.1
3.

E
xa

m
pl

e
of

a
no

n-
bi

pa
rt

it
e

Fe
rr

er
s-

gr
ap

h
(l
ef

t:
fo

rm
al

co
nt

ex
t;

up
pe

r
ri
gh

t:
co

nc
ep

t
la

tt
ic

e;
lo

w
er

ri
gh

t:
Fe

rr
er

s-
gr

ap
h

On the Construction of Śivasūtra-Alphabets 93

a c d e f
0 × ×
1 × ×
2 ×
3 × ×

Fig. 14. Formal context and concept lattice of the set of classes in Fig. 12 reduced by b

As the Ferrers-graph in Fig. 13 of the enlarged set of classes is not bipartite, it
is not possible to give an S-alphabet of (A, Φ) without duplicated elements. The
task is now to identify those elements whose duplication leads to an S-alphabet
with as few duplicated elements as possible and a minimized marker set.

The Ferrers-graph in Fig. 13 indicates that the elements b and f cause the
graph to be non-bipartite. Duplicating f would be pointless since f is an element
of only one class, namely {b, c, f}. Therefore, it should be tried to duplicate b
such that the set of classes gets S-sortable and thus S-encodable.

First, by condition 2 Fig. 14 indicates that the set of classes becomes S-
sortable if b is completely removed. Furthermore, if a minimal S-alphabet can
be gained by duplicating b, Fig. 14 restricts the order of the elements a, c, d, e
and f . On the basis of the S-graph of the concept lattice in Fig. 14 the following
four minimal S-alphabets of the set of classes reduced by b can be identified (the
marker positions are indicated by vertical lines):

a|fc|d|e| fc|d|e|a| a|ed|c|f | ed|c|f |a| .

Adding a copy of b such that the resulting set of classes becomes S-sortable leads
to one of the two formal contexts and corresponding concept lattices in Fig. 15.
From both concept lattices one can read off S-alphabets with a minimum of four
marker elements. As four markers are already needed in an S-alphabet of the
set of classes reduced by b, all S-alphabets with minimal marker sets which can
be read off the S-graphs of the two concept lattices in Fig. 15 are minimal (e.g.,
ab|fc|b′d|e|, ed|b′c|fb|a, ab|fb′c|d|e|, ed|b′c|f |ab|, . . .).

The analysis of Ferrers-graphs is not always as informative as in the case of
the discussed example, where one single edge can be identified that destroys
the bipartity of the graph. Therefore, another example that involves a different
method for the identification of good candidates for duplication will be pre-
sented: Let the set of classes consists of those sound classes used in Pān. ini’s
Sanskrit grammar that are denoted by pratyāhāras. The concept lattice of the
corresponding pratyāhāra-context is given in Fig. 16. As mentioned before, it is
not Hasse-planar, but proving that a graph like the one in Fig. 16 is not planar
may be hard. In Petersen (2004) the proof is based on the criterion of Kura-
towski, which states that a graph is planar, i.e. drawable without intersecting

94 W. Petersen

a b b’ c d e f
0 × ×
1 × × ×
2 × ×
3 × × ×

a b b’ c d e f
0 × ×
1 × × ×
2 × ×
3 × × ×

Fig. 15. Formal contexts and concept lattices for possible duplications of b (cf. Fig. 12
and Fig. 13)

Fig. 16. Concept lattice of Pān. ini’s pratyāhāra-context

edges, if and only if it contains neither the graph nor the graph as a

minor.3 In Petersen (2004) it is shown that the graph in Fig. 16 has as a
minor by identifying a fitting section of the graph.

Instead of applying Kuratowski’s criterion directly it is easier to work with a
derived necessary condition for S-sortability: Figure 17 shows a context of three
independent elements and its concept lattice. An ordered set like this concept
lattice is Hasse-planar if and only if the graph which is the result of adding
an extra edge connecting the bottom and the top node in its Hasse-diagram is
planar. It can be easily verified that in the case of a concept lattice of three

independent elements the resulting graph has as a minor. It follows that

3 A graph is the minor of an other graph if it can be constructed from the latter by
removing vertices and edges and contracting some of the remaining edges.

On the Construction of Śivasūtra-Alphabets 95

h l v

{h, l} × ×
{h, v} × ×
{v, l} × ×

Fig. 17. Formal context of three independent elements and its concept lattice

whenever a set of classes has three independent elements it is not S-sortable.
Three elements are said to be independent if for any pair of them there exists a
set in the concept lattice which contains both, but not the third. The set of all
independent triples of a formal context can be extracted algorithmically.

In the case of Pān. ini’s pratyāhāra-context, one finds 249 independent triples.
Interestingly, all of them include the sound h and no other sound element is
included in all of them. Hence, h is the best candidate for duplication as h offers
the only possibility to destroy all independent triples by a single duplication and
thus to order the sounds in an S-alphabet with just one duplicated element. By
an analysis of the concept lattice of the pratyāhāra-context reduced by h, it has
been proven in Petersen (2008) that in the Śivasūtras Pān. ini has chosen a way
of duplicating h that leads to a minimal S-alphabet.

4 Conclusion

The analyses of the various examples in this paper demonstrate how the three
sufficient conditions for S-sortability offer different approaches for the construc-
tion of minimal S-alphabets which interlock and complement one another. As
the problem of constructing minimal S-alphabets inherently bears the danger
of combinatoric explosion, it is important to check which solution strategy is
the most efficient in each individual case. One can benefit from the fact that
the three conditions of S-sortability support different ways of tackling the prob-
lem. For instance, whether a graph is bipartite can be checked algorithmically
while the question whether all labels lie on the S-graph of a concept lattice can
be answered by simply looking at it. Hence, S-alphabets should be constructed
semi-automatically by considering the application of all presented strategies.

In fact, deciding whether Pān. ini has actually chosen an optimal way of ar-
ranging the sounds in the Śivasūtras is more intricate than presented here. We
have simplified the problem to the problem of constructing a minimal S-alphabet
to the set of sound classes which are denoted by pratyāhāras in Pān. ini’s gram-
mar. But due to the following reasons this is not the exact problem which Pān. ini
faced: First of all, not all sound classes in Pān. ini’s grammar are denoted by pra-
tyāhāras. For instance, Pān. ini also makes use of the older varga-classification
of sounds, or sometimes he even simply lists the sounds involved in a rule. Sec-
ond, Pān. ini permits overgeneralized rules by using a pratyāhāra in a rule that

96 W. Petersen

tree structure S-sortable structure general hierarchy

Fig. 18. Mid-position of S-sortable structures

denotes a larger class of sounds than the one to which the rule actually ap-
plies (cf. Kiparsky, 1991). Third, the order of the sounds in the Śivasūtras does
not only depend on the classes which need to be encoded by pratyāhāras. A
phonological rule, which claims that sounds of class A are replaced by sounds
of class B, also has to ensure that a replaced element of class A is replaced by
its counterpart of class B. In Pān. ini’s grammar, a special meta-rule guarantees
that the sounds are replaced by their counterparts according to their position
in the sound lists denoted by the pratyāhāras (cf. footnote 1). Hence, a deeper
analysis of the use of the sound classes in Pān. ini’s grammar is still necessary in
order to decide whether the Śivasūtras are optimal.

We will conclude by some remarks on the promising prospect of revitalizing
Pān. ini’s Śivasūtra-technique in order to approach some modern problems. A first
field of problems is tackled in Petersen (submitted), namely the problem that
quite often one is forced to order things linearly although they could be more
naturally organized in a non-linear hierarchy (e.g., books on bookshelves, clothes
on racks, . . .). S-orders may offer a way out as they order elements linearly, but
in a sense bundle elements of one class up by keeping the distances between
them small.

Another possible, but yet unexplored application area of the presented formal-
ization of Pān. ini’s technique is data representation in Computer Science. Data
structures in Computer Science are encoded linearly as classical programming
languages are inherently linear. Since tree structures can be encoded as nested
lists, many formalisms only allow for tree structures and leave polyhierarchies
out. However, in knowledge engineering multiple inheritance relations are central
and thus polyhierarchies are badly needed. In this dilemma, S-sortable sets of
classes could take over the position of tree structures due to the fact that they
can be encoded linearly by lists with indexed brackets. Furthermore, they build
up a hierarchical structure which takes a mid-position between tree structures
and general hierarchical structures (cf. Fig. 18): They can be represented in a
plane drawing like tree structures, but allow, at least in a limited way, for mul-
tiple inheritance like general polyhierarchies. A promising task is to explore to
what extent Pān. ini’s Śivasūtra-technique can be employed for the representation
of hierarchies in order to allow at least for limited multiple inheritance without
loosing the advantages of an efficient linear encoding and processing of hierar-
chical relations. The idea is to extend, for some tasks, the class of admissible

On the Construction of Śivasūtra-Alphabets 97

hierarchies from tree-shaped hierarchies to S-sortable ones. More on this idea
can be found in Petersen (2008).

Acknowledgements. Part of the research presented in this paper was made
possible by the Deutsche Forschungsgemeinschaft within the Forschergruppe
FOR 600.

Bibliography

Böhtlingk, O.: Pān. inis Grammatik. Leipzig (1887); Reprinted, Hildesheim (1964)
Cardona, G.: Studies in Indian Grammarians I: The Method of Description Reflected

in the Śiva-Sūtras. Transactions of the American Philosophical Society 59(1), 3–48
(1969)

Faddegon, B.: The Mnemotechnics of Pān. ini’s Grammar I: The Śiva-Sūtra. Acta Ori-
entalia 7, 48–65 (1929)

Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations, Berlin
(1999)

Kiparsky, P.: Economy and the construction of the Śivasūtras. In: Deshpande, M.M.,
Bhate, S. (eds.) Pān. inian Studies. Ann Arbor, Michigan (1991)

Kornai, A.: Mathematical Linguistics. Springer, London (2008)
Kornai, A.: The generative power of feature geometry. Annals of Mathematics and

Artificial Intelligence (8), 37–46 (1993)
Misra, V.N.: The Descriptive Technique of Pān. ini. An Introduction. Mouton & Co.,

The Hague (1966)
Petersen, W.: A Mathematical Analysis of Pān. ini’s Śivasūtras. Journal of Logic, Lan-

guage, and Information 13(4), 471–489 (2004)
Petersen, W.: How formal concept lattices solve a problem of ancient linguistics. In:

Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS 2005. LNCS, vol. 3596, pp. 337–
352. Springer, Heidelberg (2005)

Petersen, W.: Linear coding of non-linear hierarchies – revitalization of an ancient
classification method. In: Proceedings of the GfKl 2008 (submitted, 2008)

Petersen, W.: Zur Minimalität von Pān. inis Śivasūtras – Eine Untersuchung mit Meth-
oden der Formalen Begriffsanalyse. PhD thesis, University of Düsseldorf (2008)

Staal, F.J.: Artificial languages across sciences and civilizations. Journal of Indian
Philosophy 34(1-2), 87–139 (2006)

Staal, F.J.: A method of linguistic description. Language 38, 1–10 (1962)
Staal, F.J.: The Sanskrit of science. Journal of Indian Philosophy 23(1), 73–127 (1995)
Zschalig, C.: Bipartite ferrers-graphs and planar concept lattices. In: Kuznetsov, S.O.,

Schmidt, S. (eds.) ICFCA 2007. LNCS, vol. 4390, pp. 313–327. Springer, Heidelberg
(2007)

Tagging Classical Sanskrit Compounds

Brendan S. Gillon

McGill University
Montreal, Quebec

Abstract. The paper sets out a prima facie case for the claim that
the classification of Sanskrit compounds in Pān. inian tradition can be
retrieved from a very slight augmentation of the usual enriched context
free rules.

Keywords: As.t.ādhyāȳı, Classical Sanskrit, compounds, context free
rules, Pān. ini.

1 Introduction

The aim of this paper is to make a prima facie case that the information per-
taining to the grammar of compounds in Classical Sanskrit captured in their
classification by the Pān. inian tradition can be retrieved from a very slight
augmentation of the usual enriched context free rules used by generative lin-
guists. To make the complete case would require much more space than is
available here.

I shall proceed as follows. First, I shall remind the reader of the general
properties of compounds in Classical Sanskrit. Second, I shall set out what I
mean by enriched context free rules. Third, I shall review the classification of
compounds by the Pān. inian tradition and show, for each category, how that
category can be retrieved from the structure assigned to a compound by the
enriched context free rules.

2 General Properties

The following are generally acknowledged regularities which the compounds of
Classical Sanskrit exhibit.

1. Compounds are subject to the inflectional and derivational morphological
forms of simple words (A 2.4.71; A 6.3.1; MBh to A 2.1.1, i.e., Kielhorn (ed)
[5] v. I,p. 362.5; Whitney [8] §1246; and Cardona [1] pp. 264-265). In particu-
lar, inflection occurs at the end of compounds, not within them; derivational
suffixes can be added as easily to compounds as they can be to words.

2. The accentuation of a compound is that of a simple word, not that of a
phrase (A 6.1.158; MBh to A 2.1.1, i.e., Kielhorn (ed) [5] v. I, pp. 362.8-9;
Whitney [8] §1246).

A. Kulkarni and G. Huet (Eds.): Sanskrit Computational Linguistics, LNCS 5406, pp. 98–105, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Tagging Classical Sanskrit Compounds 99

3. Constituents of a compound, unlike constituents of phrases, have a fixed
linear order (A 2.2.30; MBh to A 2.1.1, i.e., Kielhorn (ed) [5] v. I, p. 362.8;
Cardona [1] pp. 261-264). In general, whereas no two immediate constituents
of a compound can be transposed and the sense of the compound retained for
its members; any two immediate constituents of a phrase can be transposed
and the sense of the phrase retained.

4. Inflected words, which are external to a compound, are not construed with
uninflected constituents subordinate within it (MBh to A 2.1.1).

5. A compound is usually analyzable into two immediate constituents (A 2.1.4);
and if there is a head, it is the second immediate constituent (A 1.2.43;
A 2.2.30; ; Whitney [8] §1246; Cardona [1] pp. 261-263).

6. Compounds are of unbounded complexity (Whitney [8] §1248).
7. A compound has a typical, and for Pān. ini, a canonical, phrasal paraphrase

(vigraha-vākya) such that, if a compound has the form [C D]i then its phrasal
paraphrase has the form Cj Di (where i and j denote one of the seven
Sanskrit cases). Moreover, the head of a canonical phrasal paraphrase is the
head of the compound being paraphrased.

The first four regularities make it plausible that lexical and phrasal syntax
are distinct. The fifth and sixth regularities show that compounds in Classical
Sanskrit are binary branching and recursive. Such are the kinds of structures
which one would expect the enriched context free rules of the sort given by
Selkirk (1982), among others, for English would generate.

To be sure, there are exceptions to these regularities, but happily they are
not productive. For example, some compounds, such as conjunctive compounds
(dvandva compounds) formed from the names of gods, do not have the accent
of simple words. Moreover, there are cases where an inflectional affix occurs on
a subordinate constituent within a compound (A 6.3.7-8), so-called aluk com-
pounds, or within lexical derivation (A 6.3.17). However, these cases are not
considered productive by any Sanskritist and they are best treated as items to
be listed in the lexicon. (For examples and discussion, see Whitney [8] §1250 and
Cardona [1], pp. 264-265.)

3 Enriched Context Free Rules

It is useful to distinguish between descriptive grammars and generative gram-
mars. Descriptive grammars are those which state regularities which do not aim
to generate all and only the well-formed expressions of the language. Traditional
grammars of European languages and teaching grammars of various languages
around the world are examples of such grammars. Generative grammars are those
grammars which aim, on the basis of a lexicon and a set of rules, to generate all
and only the acceptable expressions of a language. Pān. ini’s As.t.ādhyāȳı is such
a grammar, for it aims to do precisely that for Classical Sanskrit. Grammars of
the American structuralists, what they called constituency grammars, are also
examples of such grammars.

100 B.S. Gillon

These grammars, though generative, were informal grammars. The first at-
tempt to define and characterize formal grammars was undertaken by Chomsky
[3]1, who distinguished regular grammars, from context free grammars, from
context sensitive grammars, from unrestricted grammars. Chomsky [2] claimed
that the constituency grammars of the American structuralists are properly for-
malized as context free grammars. However, as most formally minded linguists
now recognize, this is not true. To be sure, American structuralist linguists did
use rules which are instantiations of context free rules, but the rules they used
had richer content, which included the use of features and of structured category
labels.

Context free grammars can be viewed from a variety of perspectives. Ini-
tially, they were regarded as rewrite rules. The correlated labelled trees, then,
represented equivalence classes of derivations. Eventually, linguists abandoned
the view of context free grammars as sets of rewrite rules and adopted the
view instead they characterized the order which the morphemes in a complex
expression bear to one another. This is the view I shall take in what follows,
though I suspect that nothing crucial depends on which of the two views one
opts for. The latter view is simply the one which most linguists find more
congenial.

It is now generally recognized that the labels for categories of expressions,
features and subcategorization frames are all required in a grammar of a lan-
guage. Enriched context free rules, then, are context free rules enriched with such
additional structure. Let me state, then, some of the enrichments required for
the treatment of expressions of Classical Sanskrit.2 To begin with, one requires
feature specification for case, number and gender. We shall not introduce these
here, as they do not bear directly on the range of data to be addressed in this pa-
per. In addition, one requires structured category labels. Basically, one requires
labels for adjective, adverb, noun, preposition, verb and clause. However, these
must be enriched so as to distinguish between stems, words (inflected stems)
and phrases. The phrasal labels include A1 (inflected adjective), A2 (adjective
phrase), N1 (inflected noun), N2 (noun phrase), V1 (inflected verb), V2 (verb
phrase), P1 (preposition), P2 (prepositional phrase), D1 (adverb), D2 (adverbial
phrase) and S (clause). The remaining labels, which are labels for stems, are A0

(adjective stem), N0 (noun stem), P0 (preposition stem)3 and V0 (verb stem).
(Since phrasal syntax plays only an incidental role here, I shall drop the super-
scripts and, unless otherwise specified X is short of X0.) All compound stems
will then have a label X (X0). Subcategorization information is used to capture
what morphologists call bound morphemes. I shall indicate bound morphemes
with the linguist’s customary use of a hyphen, preceding the morpheme, when
the morpheme is suffixed to another constituent, and succeeding the morpheme,

1 This publication was based on work done before 1957.
2 It is such enrichments which are at the heart of such grammars as Generalized Phrase

Structure Grammar (GPSG) and Head Driven Phrase Structure Grammar (HPSG).
3 There is probably no need to distinguish between preposition stem and prepositional

word.

Tagging Classical Sanskrit Compounds 101

when it is prefixed. (How subcategorization is to be handled is a much more
complex matter, involving many facets of the grammar not discussed here.)

4 Traditional Classification

Pān. ini’s treatment of compounds in his As.t.ādhyāȳı is one familiar to con-
temporary linguists. Each compound is paired with a canonical phrasal para-
phrase (vigraha-vākya). Underlying the compound and its canonical phrasal
paraphrase is a string of symbols, which denote what the compound and its
paraphrase denote. At a suitable point in the derivation, elements correspond-
ing to the inflection of words in the paraphrase are optionally deleted. As a
result of this correspondence between compound and canonical paraphrase, it
is possible to classify the compounds using properties of the paraphrases. This,
then, is the basis for the classification of compounds used in the later Pān. inian
tradition. Here is the classification:

1. aluk
2. luk

(a) avyaȳıbhāva
(b) dvandva
(c) tatpurus.a

i. nañ tatpurus.a
ii. prādi tatpurus.a
iii. upapada tatpurus.a
iv. vibhakti tatpurus.a
v. karmadhāraya

A. víses.an. a-pūrva-pada-karmadhāraya
B. víses.an. a-uttara-pada-karmadhāraya
C. víses.an. a-ubhaya-pada-karmadhāraya
D. upamāna-pūrva-pada-karmadhāraya
E. avadhāran. a-pūrva-pada-karmadhāraya
F. upamāna-uttara-pada-karmadhāraya

(d) bahuvr̄ıhi compounds

The question is: can one recover from the analysis of a compound by enriched
context free rules the classification of the compound within this schema. The
answer seems to be yes. However, the full case cannot be made here, both because
the data to be surveyed demands a paper much longer than what is permitted
and because the problem of compound analysis is intimately connected with
other aspects of the grammar whose precise treatment remains either obscure or
undecided. Nonetheless, I shall sketch out the basic ideas, filling in, as required,
ancillary assumptions.

102 B.S. Gillon

The simplest cases are the aluk compounds. These are the compounds in which
the left sister is inflected. Consider, for example, ātmanepada. It is analyzed as
[N [N1 ātmane] [N pada]].4 The fact that the analysis contains a bracket
labelled with N1 as a left sister to a bracket labelled with N is both necessary
and sufficient to identify the compound as an aluk compound.

All other compounds are luk compounds, meaning the left sister constituents
are all stems, either bound or unbound. Within the luk compounds, avyaȳıbhāva
compounds are easily identified by their analysis. They are compound stems
inflected as adverbs, as is, for example, [D1 [P upari] [N bhūmi]].

Also easily identifiable from their parses are nañ-tatpurus.a compounds,
upapada-tatpurus.a compounds and prādi-tatpurus.a compounds. Nañ-tatpurus.a
compounds are compounds prefixed with the bound morpheme a- or an-. Thus,
for example, it is evident that [N [A a-] [N brāhman. a]] and [N [A an-] [N aśva]]
are such compounds. An upapada-tatpurus.a compound is one whose right sister is
a bound, nominal morpheme derived from a verbal root. Examples of such bound
morphemes are: -bhid, -jña, -stha, -dr. ś, -ghna, -cara, etc.

On the assumption that one can identify a bound, nominal morpheme derived
from the verbal root, one can easily identify a compound such as [N [N sarva]
[N -jña]] as an upapada-tatpurus.a compound. Finally, a prādi-tatpurus.a com-
pound is one whose first constituent is either a preposition (e.g., pra), a prefixing
bound morpheme (e.g., ku-) or an indeclinable (e.g., puras). These morphemes
are listed in the grammar with the first member of the list being the prepo-
sition pra. (Hence, they are given the name prādi compounds.) Each of these
compounds, then, are readily identified from their analysis and the prādi list.
Examples of such compounds are: [N [P adhi] [N rāja]], [N [A ku-] [N purus.a]]
and [N [A puras] [N -kāra]].

We now come to compounds which require further annotation for their identifi-
cation. They are those compounds comprising two adjectival stems, two nominal
stems or a nominal stem followed by an adjectival stem.5 Let us begin with stems
of the form N N. Dvandva compounds, many vibhakti-tatpurus.a compounds and
karmadhāraya compounds are of this form. It is common to distinguish headed
constituents from non-headed constituents. Vibhakti-tatpurus.a compounds and
most karmadhāraya compounds are headed, indeed, right headed. Dvandva com-
pounds are non-headed compounds; and some karmadhāraya compounds are also
non-headed.

The simplest extension of the notation is to introduce a special symbol for the
non-headed compounds, inserting between the elements a plus sign, say. Thus,
one would have the dvandva compound [N [N rāma]+[N kr.s.n. a]]. Some so-
called víses.an. a-ubhaya-pada-karmadhāraya compounds are also non-headed: for
example, [A [A snāta]+[A anulipta]]. Now it is easy from this notation to see

4 Since aluk compounds are not productive, they are listed in the dictionary and they
can be listed with their analysis. Some questions of implementation arise with respect
to whether or not one wishes to encode the case of the inflected subordinate word.

5 I am making the simplifying assumption that participial stems are labelled as adjec-
tival stems.

Tagging Classical Sanskrit Compounds 103

which is which. The compounds which have the plus sign and both of whose
constituents are nouns are dvandva compounds; other compounds with the plus
sign are víses.an. a-ubhaya-pada-karmadhāraya compounds.

To distinguish among the remaining compounds, one could do the following:
one could introduce a labelled relational symbol.6 This symbol could be indexed
by a numeral between one and seven. Each vibhakti tatpurus.a would have the
numeral corresponding to its case. Thus, one has [N [N sukha] ≤2 [A āpanna]
], [N [N ākhu] ≤3 [A daṁśita]], [N [N go] ≤4 [A hita]], [N [N vr.ka] ≤5 [A
bh̄ıta]], [N [N rāja] ≤6 [N purus.a]] and [N [N ı̄́svara] ≤7 [A adh̄ına]].

Those with the numeral one are identifiable as karmadhāraya compounds.
In this way, the víses.an. a-pūrva-pada-karmadhāraya compounds, as exemplified
by the compound [N [A d̄ırgha] ≤1 [N kan. t.ha]], the víses.an. a-ubhaya-pada-
karmadhāraya compounds, as exemplied by [A [A tulya] ≤1 [A śveta]], the
upamāna-pūrva-pada-karmadhāraya, as exemplified by [N [N anala] ≤1 [N us.n. a
]], the avadhāran. a-pūrva-pada-karmadhāraya, as exemplified by [N [N rāja] ≤1
[N rs. i]], and the upamāna-uttara-pada-karmadhāraya, as exemplified by [N [N
purus.a] ≤1 [N vyāghra]] would all be identifiable as karmadhāraya compounds.
I shall leave open the question as to how these subclasses might be distinguished
from one another using the enriched context free notation advocated here.

Finally, we come to bahuvr̄ıhi compounds. Such compounds are most easily
identified by the fact that their final constituent is a noun but they behave like
adjectives. When this is marked inflectionally, such compounds are easily identi-
fied. But this is not always so. For example, when a bahuvr̄ıhi compound is the
left sister of a compound or of a derivational suffix, it cannot be grammatically
identified. Indeed, such cases are ambiguous; and one must rely on the context
to figure out whether the compound is a tatpurus.a or a bahuvr̄ıhi. Moreover, if
the last word of the bahuvr̄ıhi compound is of the same gender as the noun it
modifies, again it is ambiguous. The easiest way to annotate such compounds is
with a phonetically null suffix (see Gillon [4] for discussion), but how precisely
to implement that depends on how inflectional tagging is to be done, another
complexity not addressed here.

5 Bound Morphemes

We have already seen some instances of the utility of the notion of a bound mor-
pheme, to be formalized as subcategorization, in providing parses for Sanskrit
compounds. I end the paper with an indication of still further uses. To begin
with, consider the stems pūrva, apara, adhara, uttara, ardha and madhya. In
compounds, they are adjectives, in phrases they are nouns. This distinction is
nicely handled by treating the adjectives as bound morphemes and the nouns as
unbound morphemes.

In addition, many words, which, when uncompounded, belong to one
inflectional class, belong to another, typically the a stem inflectional class, when

6 In earlier work, I used the symbol ≺.

104 B.S. Gillon

compounded. In each case, subcategorization can be used to handle the treat-
ment of these stems.

1. The word r.c, which has a consonantal stem, becomes the a-stem r.ca, when
preceded by a word in a compound. The same holds for the words pur (pura),
ap (apa), dhur (dhura) and pathin (patha).

2. The consonantal stem words sāman and loman, when preceded by the prepo-
sitions prati, anu and ava become the a-stem words sāma and loma, respec-
tively.

3. The i stem word bhūmi becomes the a stem word bhūma, when preceded in
compound by either kr. s.n. a, pān. d. u or a numeral.

4. The ı̄ stem words nad̄ı and godavar̄ı become the a stem words nada and
godavara, respectively, when preceded in compound by a numeral.

5. The r stem word catur becomes the a stem word catura, when preceded in
compound by either tri or upa.

6. The s stem word varcas becomes a stem word varcasa, when preceded in
compound by either brahman, hastin, palya or rājan.

7. The s stem word tamas becomes a stem word tamasa, when preceded in
compound by ava, sam or andha.

8. The n stem word adhvan becomes a stem word adhva, when preceded in
compound by a preposition.

9. The i stem word aṅguli becomes a stem word aṅgula, when preceded in
compound by either a numeral or an indeclinable.

10. The i stem word rātri becomes a stem word rātra, when preceded in com-
pound by either a numeral or an indeclinable or ahan or sarva or a word
denoting part of the night.

11. The n stem word ahan becomes a stem word aha, when preceded in com-
pound by either a numeral or an indeclinable or sarva or a word denoting
part of the day.

6 Conclusion

Above, I have made a prima facie case that the information pertaining to the
grammar of compounds in Classical Sanskrit captured in their classification by
the Pān. inian tradition can be retrieved from a very slight augmentation of the
usual enriched context free rules used by generative linguists. I have reviewed
this classification and I have shown, for each category in the classification, how
that classification can be retrieved from a fairly standard set of enriched context
free rules, adapted for Classical Sanskrit.

References

[1] Cardona, G.: Pān. ini: his work and its traditions. Background and Introduction.
Motilal Banarsidass, New Delhi (1988)

[2] Chomsky, N.: Syntactic structures. Mouton and Company, The Hague (1957)
(Janua Linguarum: Series Minor n. 4)

Tagging Classical Sanskrit Compounds 105

[3] Chomsky, N.: Formal properties of grammars. In: Luce, R.D., Bush, R., Galanter,
E. (eds.), vol. 2, pp. 323–418 (1963)

[4] Gillon, B.S.: Autonomy of word formation: evidence from Classical Sanskrit. Indian
Linguistics 56(1–4), 15–52 (1995)

[5] Kielhorn, F. (ed.): The Vyākaran.a Mahābhās.ya of Patañjali, 4th edn. Bhandarkar
Oriental Research Institute, India (1880) (revised by R. N. Dandekar, 1985)

[6] Luce, R.D., Bush, R., Galanter, E.(eds.): Handbook of mathematical psychology.
Wiley, New York (1963)

[7] Selkirk, E.O.: The syntax of words. The MIT Press, Cambridge (1982)
[8] Whitney, W.D.: Sanskrit grammar: including both the classical language, and the

older dialects, of Veda and Brahmana, 2nd edn. Harvard University Press, Cam-
bridge (1881) (11th reprint, 1967)

Extracting Dependency Trees from
Sanskrit Texts

Oliver Hellwig

Institut für Sprachen und Kulturen Südasiens, Freie Universität Berlin, Germany

Abstract. In this paper, I describe a hybrid dependency tree parser
for Sanskrit sentences improving on a purely lexical parsing approach
through simple syntactic rules and grammatical information. The per-
formance of the parser is demonstrated on a group of sentences from epic
literature.

Keywords: Sanskrit syntax, Sanskrit word order, dependency tree.

1 Introduction

Designing a reliable algorithm for the automatic syntactic analysis of Sanskrit
phrases is an important, though still unsolved problem in computational lin-
guistics. Some previous approaches to this problem are based on built-in rules
that encode the syntax of regular Sanskrit phrases using, for instance, finite au-
tomata. How to find these syntactic rules is not often the central focus of interest,
however. Many researchers use kāraka analysis (e.g., [6], claiming free word order
for Sanskrit) or the syntax rules formulated in modern learner’s manuals such
as Apte’s or Kale’s grammars. Whether these rules describe the correct word
order of classical Sanskrit texts remains open to discussion, however, because
they may reflect either a pre- (Pān. ini’s kāraka theory) or post-classical use of
Sanskrit. Modern Indological research is no great help in finding the syntactic
rules of the classical language. German Indologists such as Delbrück [4], Speyer
[9], Canedo [2] and, more recently, Ickler [8] took great pains in analyzing large
corpora in detail, but they concentrated on Vedic and pre-classical prose. Results
of these stylistic studies of early Sanskrit are hardly applicable to classical texts,
which are, in addition, written in verse in most cases (cmp. the critical remarks
in [5] on the bias in selecting the texts). The same holds for Staal’s frequently
cited work [10], which does not care very much about the word order in real
Sanskrit texts. In summary, the syntactic rules used in rule-based approaches
are derived from theories about modern or pre-classical Sanskrit and then ap-
plied to the classical language. This procedure implies that Sanskrit syntax has
remained unchanged over an interval of over 3000 years, a claim well suiting
the tendency to deny any development in this language, but not founded on
large-scale research.

At this point, we find ourselves in a chicken-and-egg dilemma. Before using a
rule-based approach to analyze the syntax of classical texts, we need the syntactic

A. Kulkarni and G. Huet (Eds.): Sanskrit Computational Linguistics, LNCS 5406, pp. 106–115, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Extracting Dependency Trees from Sanskrit Texts 107

rules for the classical language. To find these rules in significant numbers, we
need a syntactic parser that is, as just described, rule-based in many cases. We
may, therefore, simplify the starting problem: The aim is to design not a complete
syntactic parser, but instead an algorithm giving the most probable dependency
tree of a lexically and morphologically analyzed sentence. Valid rules describing
the word order of classical Sanskrit may be derived from a large number of
manually corrected trees in a later step; however, this step is not discussed in
this paper.

Among the numerous approaches to derive dependency trees from sentences
in natural languages, a recently published thesis by Yuret is especially interest-
ing because it combines an appealing basic idea with an unsupervised learning
algorithm [12]. In this paper, I describe how the performance of Yuret’s purely
lexical parser can be improved through the addition of some simple, yet efficient,
features such as information about grammar (2.2) and valences (2.2), smoothing
probabilities (2.2) and a few fixed syntactic rules (2.2). Because test data for
Sanskrit syntax are not available, the performance of the parser is demonstrated
during the improvement steps by analyzing a few sample sentences from the
Rāmāyan.a (2.3).

2 Building a Lexicalized Parser

2.1 Yuret’s Model

The starting point of the following experiments is the purely lexical dependency
parser described by Yuret [12]. According to Yuret, syntactic information is cap-
tured by the mutual information between the lexical components of a sentence
(cmp. [12, 26-31] and Footnote 1, below). Because mutual information does not
depend on the order of two lexical items, the dependency structure constructed
using Yuret’s algorithm is undirected (but may, of course, be transformed into a
directed graph as soon as the root item is identified). Furthermore, the depen-
dency structure is acyclic and, therefore, a tree, which is equivalent to the claim
that each word in a sentence should have only one governing word. Finally, Yuret
claims that the dependency structure should be projective, i.e., its links should
not cross. The author admits that this restriction holds only for many (not all!)
sentences in natural languages; this warning is especially important for Sanskrit
verses. However, projectivity simplifies the construction of the tree to such a
degree that the occasional errors caused by this condition may be neglected. In
summary, the application of Yuret’s ideas to a sentence produces a dependency
tree that reflects the syntactic structure of the sentence as given by its lexical
components. The arrangement of such a tree is not necessarily identical to the
structure found using, for instance, constituent analysis. However, items close to
each other in the dependency tree should constitute syntactic units in regular
constituent analysis.

Yuret’s system consists of two parts. The processor builds dependency struc-
tures for a series of lexical units (= a sentence), while the learner represents

108 O. Hellwig

the “knowlegde” or “brain” storing information gained from previously ana-
lyzed sentences. To parse a sentence, the processor searches for the most prob-
able structure given the information stored in the learner. Although there is
a Viterbi style algorithm calculating the exact solution, Yuret proposes the
following approximation that reduces computation time from O(n5) to O(n2)
[12, 35ff.]:

1. Each sentence is read from left to right. For each word wi to the left of the
current word wj , the conditional probability p(wj |wi) = p(wi,wj)

p(wi)
is calcu-

lated.1

2. If p(wj |wi) �= 0, the words wi and wj may be connected with a link. However,
this link can only be created if (1) it does not intersect with an already
existing link and (2) it does not create a cycle in the dependency structure.
If condition (1) or (2) applies, the new link is only inserted if its value
p(wj |wi) is higher than the respective value of the existing link. In this case,
the existing link is removed from the dependency tree.

3. When the sentence has been analyzed, the learner is updated with the linking
information created in the second step. Therefore, only the cooccurrence
frequencies of words being connected by a link are increased in the learner.
During the first cycles of the algorithm, the “brain” of the learner is empty
and no dependency structure can be created. In these cases, the learner is
updated using pairs of adjacent words.

2.2 Improving Yuret’s Parser

After being trained on the current corpus of the SanskritTagger database (cmp.
[7]), Yuret’s parser is able to identify some syntactic substructures in unknown
1 Yuret uses the mutual information of ordered pairs of words MI(wi, wj) =

log p(wi,wj)
p(wi,∗)·p(∗,wj) instead of the conditional probability. If L denotes the dependency

structure of a sentence S, W the set of all words wi contained in S, and w0 the head
word of the structure, Yuret explains the use of mutual information as follows [12,
28/29]. The joint probability of the entire sentence is given by

p(S) = p(L)p(w0)
∏

(wi,wj)∈L

p(wj |wi) = p(L)p(w0)
∏

(wi,wj)∈L

p(wi, wj)
p(wi)

.

Because a projective tree constructed from a sentence S has |S|−1 connections after
the head word has been identified, this expression can be rewritten as

p(S) = p(L)
∏

wi∈W

p(wi)
∏

(wi,wj)∈L

p(wi, wj)
p(wi, ∗) · p(∗, wj)

,

demonstrating, according to Yuret, that the syntactic information of a sentence can
be expressed by the mutual information contained in the lexemes that constitute the
sentence. Following Yuret, I set p(S) to a constant factor. – For reasons of numerical
accuracy, I use the logarithm of p(wj |wi) instead of the raw value (multiplication →
addition).

Extracting Dependency Trees from Sanskrit Texts 109

sentences. Nevertheless, when we analyze the sample phrases (cmp. 2.3), it be-
comes obvious that the parser never manages to identify the correct overall struc-
ture of any of the samples. This is probably caused by the comparatively small
number of data used for training the parser. While Yuret reports convincing
results only for databases of more than 10 million words, the SanskritTagger
database comprises about 2.5 million lexical units. This number is probably not
large enough to arrive at reliable estimations of lexical cooccurrence. The fol-
lowing sections describe how to improve the performance of the parser without
training it on more lexical data.

Grammatical information. Every word stored in the SanskritTagger
database is accompanied by grammatical information concerning, for instance,
number, case or tense. Although Yuret deliberately excluded this kind of infor-
mation from the parsing process, I have observed clearly superior analysis of the
sample phrases when grammatical information was taken into account. To in-
clude grammar, the conditional probability of pairs of lexical items is multiplied
by the conditional probability of the respective grammatical categories. These
categories are a simplified version of those described in [7, 44] since only person
and number are recorded for verbal forms.

Verbal valences. The second improvement on Yuret’s model concerns finite
verbal forms and their preferred valences. In many cases, verbs show a strong
preference for certain cases, which may be used to enforce links between verbs
and their valences. For this sake, we have built from the training data a verb-
valence dictionary that stores verbs and the cases that typically occur close to
them. Before starting the main learning process, the part of the corpus used for
training is scanned for verbal forms. If a finite verb is encountered we search for
the next and previous two declined nouns that are included in the same sentence
as the verb, and store the verb-case combination in a preliminary table. Next, we
calculate the global relative frequencies of all cases and then find extraordinary
strong verb-case combinations. A combination is considered strong if (1) it occurs
with a frequency of more than 15% and the verb is referenced at least 100 times,
or (2) the relative frequency of case c for verb i is significantly larger than the
global relative frequency for this case. If ac is the global average frequency of
case c, fci is the frequency of case c given verb i, and ni is the sum of all
fci for verb i, we use a simple χ2 test, with significance assigned at the 10%
level (χ2 ≥ 1.64, 1 df), to assess whether fci is significantly above the expected
number of occurrences of case c:

χ2 =
(fci − ac · ni)2

ac · ni
+

((ni − fci) − (1 − ac) · ni)2

(1 − ac) · ni

If one of these two conditions is fulfilled, the verb and case are stored in a
separate valence dictionary.

Whenever the combination of a verb and a declined noun is found during the
processing of a new sentence, we search for the verb in the valence dictionary just
described. If the case of the declined noun is among the favorite cases of the verb,

110 O. Hellwig

the linking strength between the verb and noun is enforced by a positive value
(see page 111 for details). – Given the importance of valence information for
parsing (see, for instance, [11]), the valence dictionary could be corrected manu-
ally in a future version of the program and even enriched by lexical information
concerning preferred valences.

Smoothing cooccurrence frequencies. One of the main problems in pro-
cessing natural language using statistical methods is the sparseness of data,
especially of n-grams of higher order. Among the many proposed solutions to
this problem, we find simple strategies such as linear interpolation (see, e.g.,
[1]) or add-alpha smoothing. A more sophisticated strategy that makes use of
lexical information gained from the training corpus was proposed by Dagan et
al. [3], and it was successfully applied to the parsing of Sanskrit sentences. This
strategy consists of two steps: a preprocessing step, during which similar words
are retrieved from training data, and the actual smoothing step. During pre-
processing, we calculate the Kullback-Leibler divergence D between all pairs of
words wi and wj that are contained in the corpus C:

Dij =
∑

wk∈C

p(wk|wi) log
p(wk|wi)
p(wk|wj)

.

Based on Dij , the n nearest words wj are stored for each wi. If an unknown
bigram (w1, w2) is found during parsing, the conditional probability p(w2|w1) is
estimated using conditional probabilities of word pairs (w′

1, w2), where w′
1 is a

word similar to w1 found in the preprocessing step. If Su is the set consisting
of the n words wu nearest to w1, the estimation p∗(w2|w1) is calculated in the
following way:

p∗(w2|w1) =
∑

wu∈Su

p(w2|wu)
D1u∑

wu∈Su
D1u

Using simple syntactic rules. The final and, in my opinion, most effective
way to improve Yuret’s model is the use of simple syntactic rules, which trans-
form the lexicalized base model into a hybrid parsing approach. I distinguish
between two types of syntactic rules: Fixed rules encode the syntactic structures
of a phrase that are certain to occur (given that the phrase is complete). These
rules create fixed links or prevent lexical links from being constructed. In addi-
tion to describing the basic syntactic structures of a sentence, these rules strongly
reduce the number of possible links and thereby suppress improbable analyses.
On the other hand, enforcements increase or decrease the linking strength, but
they do not insert or remove links from the dependency tree.

Fixed rules can further be divided into positive and negative rules. Positive
rules describe the basic structure of a sentence containing exactly one verb,
which may be supplemented by a congruent subject and absolutives. To detect
this basic structure, the sentence is repeatedly scanned from left to right. In the
first scan, the finite verb is detected and linked to the beginning of the phrase

Extracting Dependency Trees from Sanskrit Texts 111

(→ head-verb). Next, absolutives are found and connected either to the head-
verb or to other absolutives. The head verb serves as a “center of gravity” indi-
cating the search direction from each absolutive contained in the sentence:

Abs1 . . . finite verb
“center of gravity”

. . . Abs2 Abs3
�� �� ��

Finally, nominatives congruent with the head verb are connected to it. If several
nouns can be connected with the verb, the most probable one given the lexical
attraction between noun and verb is selected. Negative or restrictive rules prevent
possible links from being inserted into the dependency tree. Currently, three
negative rules are used:

1. Words contained in a composite must only be linked to the head of the
composite or other words contained in the composite. – This rule describes
the correct formation of composites, but it is sometimes neglected in real
texts. To give just one example: Someone “whose body is pierced by ar-
rows” should be a śaraviddhaśar̄ırah. . However, expressions such as śarair
viddhaśar̄ırah. can be frequently found, for instance, in epic texts.

2. An indeclinable must not be linked with a noun or adjective. – Exceptions
are indeclinables forming part of composites such as su- or nānā-.

3. Incongruent nouns, except for the combination any case-genitive, must not
be linked. – The validity of this rule is not established for the nominal
style of scientific Sanskrit; see, e.g., prasiddhasādharmyāt sādhyasādhanam
upamānam (NyāSū, 1, 1, 6), where -sādharmyāt is dependent on -sādhanam.

Enforcements change the strength of a new link, but they do not influence its
insertion directly. We have met the first type of enforcement in section 2.2: If
a case is among the preferred valences of a finite verb or absolutive, the link
between the noun and the verb is enforced. In addition, the following three
syntactic enforcements are used:

1. The linking strength between grammatically congruent nouns is increased
(e.g., tena +↔ balena, aks.ayasya

+↔ ātmanah.).
2. Links between nominatives not identified as subject (see above) and congru-

ent finite verbs are enforced.
3. In the early phases of learning, indeclinables have a strong influence on the

lexical information due to their high frequencies. Therefore, the strength of a
link connecting an indeclinable with any other word (except for finite verbal
forms) is weakened. This enforcement is only applied when negative rule 2
is not valid.

The parameter values for the four enforcements (including the combination
of verb and valence from section 2.2) were estimated using a genetic algorithm.
Running this algorithm repeatedly for 100 generations resulted in the following
average parameter values: verb - valence: 3.2, congruent nouns or adjectives,
nominative - verb: 3, indeclinables: 0.7.

112 O. Hellwig

2.3 Evaluation

In this paper, we cannot present a true evaluation because test data for San-
skrit syntax are not available. Therefore, we demonstrate the performance of the
parser using two sentences from chapter Rāmāyan.a, Bālakān.d. a 9, which was
excluded from the training set, and the popular benchmark sentence pramān. a-
bhūta ācāryo darbhapavitrapān. ih. prāṅmukhah. śucau avakāśe upavísya mahatā
yatnena sūtram. pran. ayati sma. The two sentences from Rāmāyan.a are:
Rām, Bā, 9, 6: śrutvā tatheti rājā ca pratyuvāca purohitam.
and
Rām, Bā, 9, 32: evam. sa nyavasat tatra sarvakāmaih. supūjitah. .

Figure 1 shows the results of parsing the two sample phrases from the
Rāmāyan.a using Yuret’s basic model. As mentioned on page 108, the parser is
not able to identify even the basic structures of the sentences, possibly due to the
small number of training data. In addition, the strong influence of indeclinables
on the dependency structure is clearly discernible. In Figure 2, the same two sen-
tences are parsed with grammatical information (2.2), valences (2.2), smoothing
(2.2) and syntactic enforcements (2.2) activated. Although the parser is still far
from able to identify the correct structure of the sentences, it found some impor-
tant substructures such as pratyuvāca ↔ purohitam, tathā ↔ iti (iti terminating a
direct speech) and the complex made of two composites in the second sentence. As
becomes apparent from intermediary stages of learning not reproduced in this pa-
per, the detection of the last substructure was especially influenced by the valence
dictionary. In the last test, whose results are displayed in Figure 3, all optimiza-
tions are activated. Now, each of the sentences contains only one error. The word
ca should probably not be connected to the head verb in the first sentence. In the
second sentence, tatra remains unconnected to the rest of the sentence (but could,
of course, easily be associated with nyavasat after finishing the parsing process).

Parsing the “benchmark sentence” pramān. abhūtah. . . . results in equally good
analysis (cmp. Figure 4). After fixing pran. ayati as the head verb, the algorithm
connects the absolutive upavísya to the verb and selects the composite ending
in -pān. ih. as the subject of the sentence. Here, a human user would certainly
select ācāryah. , and, in some runs of the learning process, this word is indeed
marked as the subject of the sentence. These differences can be explained by
the heuristic nature of the learning process and can perhaps be amended by
running the process repeatedly with different initalizations and then averaging
the results. Among the remaining substructures, attention should be paid to the
adverbial expressions modifying the absolutive and the head verb. Both adverbial
structures are connected to the right verb and are, in addition, sorted correctly
(yatnena modifies pran. ayati and is itself modified by mahatā, etc.). How the
nominatives in the beginning of the sentence are connected remains open to
discussion even for a human user. However, it should be noted that the parser
correctly associates the directional adjective prāṅmukhah. with the absolutive
upavísya and not with the preceeding and congruent nominative -pān. ih. . On the
whole, the few restrictions introduced by the fixed syntactic rules clearly improve
the analysis of the sentences.

Extracting Dependency Trees from Sanskrit Texts 113

* śru tathā iti rājan ca prativac purohita

−2.29

−2.65

−1.16

−2.22

−2.32

−8.04

* evam tad nivas tatra sarva kāma su pūjay

−5.20−5.18−2.44

−9.08−2.21

−5.41

−6.69

Fig. 1. Sample phrases parsed using Yuret’s method – The numbers give the logarithm
of the conditional lexical probability of two words

* śru tathā iti rājan ca prativac purohita

−2.23C•−6.96C−1.26• −2.08•

−3.37

−2.12•

* evam tad nivas tatra sarva kāma su pūjay

−5.02−5.21−9.55•−5.12•

−7.34•−2.46

−5.25•

−7.42

Fig. 2. Sample phrases parsed using all optimizations except for fixed syntactic rules
– • = syntactic enforcement, C = probability estimated by smoothing

śru tathā iti rājan ca prativac purohita

−2.77C•−6.87C−2.61•

�����

����

fixed

−8.65

����������

���������

fixed

evam tad nivas tatra sarva kāma su pūjay

−4.98−5.54�����
fixed

−6.67•−7.53

−4.68•

Fig. 3. Sample phrases parsed using all optimizations – Symbols are explained in the
caption of Figure 2

114 O. Hellwig

pramān. a bhū ācārya darbha pavitra pān. i prāṅ-
mukha

śuci ava-
kāśa

upavís mahant yatna sūtra pran. ı̄ sma

−1.99C−4.90C•−2.19C•−2.16C•−2.18C−9.99−3.07

−2.51C−3.83 −2.29C

−2.67C• �������

�������

fixed

����������

���������

fixed

Fig. 4. “Benchmark sentence” parsed with all optimizations activated

3 Summary

In spite of the appealingly simple idea on which it is based, Yuret’s parser is
not able to correctly identify the syntactic structures of Sanskrit sentences. This
behavior may be due to lack of training data. The performance of the parser can
be improved when additional, non-lexical information about grammar and va-
lences is included in the parsing process. The best performance is achieved when
lexical and grammatical information is combined with a small number of fixed
rules. These rules describe the basic components and structures of a complete
sentence, but they are by far less detailed than the finite automata used by some
researchers. Judging from the few samples that we have discussed in Section 2.3,
such a hybrid approach can certainly be used as a starting point for building a
database of the syntactic structures of classical Sanskrit. The strict projectiv-
ity of the dependency tree assumed in Yuret’s original version of the algorithm
remains an unsolved problem especially in the context of versified Sanskrit. In
a future version of the parser, one may allow crossing links in the dependency
structure if, for example, both links have a very high mutual information.

References

1. Brants, T.: TnT - a statistical part-of-speech tagger. In: Proceedings of the 6th
Applied NLP Conference, Seattle (2000)

2. Canedo, J.: Zur Wort- und Satzstellung in der alt- und mittelindischen Prosa.
Vandenhoeck & Ruprecht, Göttingen (1937)

3. Dagan, I., Lee, L., Pereira, F.C.N.: Similarity-based models of word cooccurrence
probabilities. Machine Learning 34(1-3), 43–69 (1999)

4. Delbrück, B.: Altindische Syntax. Verlag der Buchhandlung des Waisenhauses,
Halle (1988)

5. Gonda, J.: Old Indian. Handbuch der Orientalistik, Zweite Abteilung, Erster Band,
Erster Abschnitt. E.J. Brill, Leiden (1971)

6. Goyal, P., Arora, V., Behera, L.: Analysis of Sanskrit text: Parsing and semantic
relation. In: Proceedings of the First International Sanskrit Computational Lin-
guistics Symposium, pp. 23–36 (2007)

7. Hellwig, O.: SanskritTagger, a stochastic lexical and POS tagger for Sanskrit. In:
Proceedings of the First International Sanskrit Computational Linguistics Sympo-
sium, Rocquencourt, pp. 37–46 (2007)

8. Ickler, I.: Untersuchungen zur Wortstellung und Syntax der Chāndogyopanis.ad.
Göppinger Akademische Beiträge, 75. Verlag Alfred Kümmerle, Göppingen (1973)

Extracting Dependency Trees from Sanskrit Texts 115

9. Speyer, J.S.: Vedische und Sanskrit-Syntax. Grundriss der Indo-arischen Philologie
und Altertumskunde, III. Band, Heft A. Verlag von Karl J. Trübner, Strassburg
(1896)

10. Staal, J.F.: Word Order in Sanskrit and Universal Grammar. Foundations of Lan-
guage, Supplementary Series, vol. 5. D. Reidel Publishing Company, Dordrecht
(1967)

11. Wauschkuhn, O.: Automatische Extraktion von Verbvalenzen aus deutschen Tex-
tkorpora. Shaker Verlag, Aachen (1999)

12. Yuret, D.: Discovery of Linguistic Relations Using Lexical Attraction. PhD thesis,
Massachusetts Institute of Technology (1998)

A. Kulkarni and G. Huet (Eds.): Sanskrit Computational Linguistics, LNCS 5406, pp. 116–133, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Sanskrit Analysis System (SAS)

Manji Bhadra1, Surjit Kumar Singh2, Sachin Kumar3, Subash4, Muktanand Agrawal5,
R. Chandrasekhar6, Sudhir K. Mishra7, and Girish Nath Jha8

1,2,3,5,8 Special Centre for Sanskrit Studies
Jawaharlal Nehru University

New-Delhi
4 C-DAC Kolkata, NLP Group

6 Visiting Scholar, Department of Classics, Brown University
7 C-DAC Pune, AAI Group

1manji.bhadra@gmail.com, 2surjit.jnu@gmail.com,
3sachinjnu@gmail.com, 8girishjha@gmail.com,

4subhash.jnu@gmail.com, 5mukta.jnu@gmail.com,
6chandrashekhara@gmail.com, 7sudhirkumarmishra@gmail.com

Abstract. The paper describes Sanskrit Analysis System (SAS) – a
complete analysis system for Sanskrit. Some modules of this system have
already been developed. The system accepts full text inputs in Devanāgarī
Unicode (UTF-8). The sandhi module does the segmenting for complex
tokens and then hands over the text for detailed processing. Currently,
the SAS modules have independent interfaces for unit testing at
http://sanskrit.jnu.ac.in. The authors are working on the integration process
of these modules. The SAS has two major components - the shallow parser
and the kāraka analyzer. The shallow parser has separate modules, some of
them are partially implemented, and some of them are in the process of
being implemented. The modules have been developed as java servlet in
unicode using RDMBS techniques. The applications of the SAS will be
many ranging from being a Sanskrit reading assistant to machine translation
system from Sanskrit to other languages.

Keywords: sandhi, subanta, tianta, kdanta, samāsa, taddhita, strī pratyaya,
kāraka, vibhakti, prātipadika, dhātu, sup, ti, avyaya, sūtra, vārttika, ākākā,
yogyatā, vivakā, liga, upadhā, gaa, pada, lakāra, vacana, vikāra, upasarga,
vddhi.

1 Introduction

Developing an NLP system which analyzes a natural language is a difficult task.
Sanskrit language has Pāini’s grammar which is explicitly generative, while the task
in analysis systems is to apply rules for processing a generated string or utterance.
The authors in this process have tried to use Pāinian rules in reverse with appropriate
lexical interfacing for analyzing Sanskrit. But in many cases, Pāinian rules demand

 Sanskrit Analysis System 117

deep semantic analysis, especially in the case of kāraka rules. The SAS has two major
components - one is the shallow parser and the other is the kāraka analyzer. Shallow
parser contains sandhi1 analyzer, samāsa analyzer, subanta2 analyzer, gender
analyzer3, kdanta analyzer4, taddhita analyzer, tianta5 analyzer and the POS
tagger6. Among them the sandhi analyzer is partially implemented and samāsa and
taddhita analyzers are yet to be implemented. After getting the input, the system first
analyzes the sandhi and samāsa by these modules wrapped into a separate system.
Then the system analyzes the nominal inflected words for separating base and
vibhakti and stores the PNG features of the tokens. Primary derived nouns are
analyzed by the kdanta analyzer and secondary derived nouns are supposed to be
analyzed by the taddhita analyzer. The tianta analyzer analyzes verbs into affixes,
number and person. After morphological analysis of each word in the sentence, the
POS tagger assigns them appropriate POS category with the help of lexicon, corpus
and other Pāini based formulations. The kāraka7 analyzer takes over from here and
analyzes the syntactico-semantic relations at the sentence level. A brief modular
outline of the SAS is given below –

SAS

 Shallow parser Kāraka analyzer*

 sandhi* samāsa** subanta gender kdanta taddhita** tianta tagging

1 Kumar Sachin,2007, ‘Sandhi Splitter and Analyzer for Sanskrit (with reference to ac

Sandhi)’, M.Phil dissertation, Special Center for Sanskrit Studies, JNU.
2 Chandra Subash, 2006, ‘Machine recognition and Morphological Analysis of Subanta-

padas’, M.Phil dissertation, SCSS, JNU.
3 Bhadra Manji, 2007, ‘Computational analysis of Gender in Sanskrit Noun Phrases for

Machine Translation’, M.Mhil dissertation, Special Center for Sanskrit Studies, JNU.
4 Singh Surjit Kumar, 2008,‘Kdanta Recognition and Processing for Sanskrit’, M.Mhil

dissertation, Special Center for Sanskrit Studies, JNU.
5 Agrawal Muktanada, 2007, ‘Computational Identification and Analysis of Sanskrit Verb

Forms of bhvādigaa,’ M.Phil dissertation, Special Center for Sanskrit Studies, JNU.
6 Chandrasekhar R, 2007, ‘ Part of Speech Tagging for Sanskrit’, Ph.D. thesis, Special Center

for Sanskrit Studies, JNU.
7 Jha Girish Nath, Misra Sudhir, ‘Semantic processing in Pāini’s karaka system’ Presented

in second International Sanskrit Computational Linguistics Symposium at Brown University,
2008.

118 M. Bhadra et al.

For example –

INPUT : pÉÉåeÉlÉÉliÉUÇ * kÉÏqÉiÉÏ ÌMüliÉÑ cÉgcÉsÉÉ oÉÉÍsÉMüÉ pÉëÍqÉiuÉÉ kÉÉiÉÑmÉÉPÇû mÉPûÌiÉ |
PREPROCESSING: pÉÉåeÉlÉÉliÉUÇ kÉÏqÉiÉÏ ÌMüliÉÑ cÉgcÉsÉÉ oÉÉÍsÉMüÉ pÉëÍqÉiuÉÉ kÉÉiÉÑmÉÉPÇû mÉPûÌiÉ |
*SANDHI : pÉÉåeÉlÉ AliÉUÇ
kÉÏqÉiÉÏ ÌMüliÉÑ cÉgcÉsÉÉ oÉÉÍsÉMüÉ pÉëÍqÉiuÉÉ kÉÉiÉÑmÉÉPÇû mÉPûÌiÉ |
**SAMASA: pÉÉåeÉlÉ AliÉUÇ
kÉÏqÉiÉÏ ÌMüliÉÑ cÉgcÉsÉÉ oÉÉÍsÉMüÉ pÉëÍqÉiuÉÉ
kÉÉiÉÑhÉÉqÉç mÉÉPûqÉç
ûmÉPûÌiÉ |
SUBANTA: pÉÉåeÉlÉ AliÉUÇ
kÉÏqÉiÉÏç xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
ÌMüliÉÑ[AV]

cÉgcÉsÉÉ xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
oÉÉÍsÉMüÉ xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
pÉëÍqÉiuÉÉ
kÉÉiÉÑ XûxÉç wÉ¸Ï uÉWÒûuÉcÉlÉ mÉÉPû AqÉç Ì²iÉÏrÉÉ LMüuÉcÉlÉ
mÉPûÌiÉ[Verb]
GENDER: pÉÉåeÉlÉ AliÉUÇ
kÉÏqÉiÉÏ[sf:hf] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
ÌMüliÉÑ[AV]

cÉgcÉsÉÉ[sf:hf][OûÉmÉç]xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
oÉÉÍsÉMüÉ[sf:hf] [OûÉmÉç] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
pÉëÍqÉiuÉÉ
kÉÉiÉÑ [sm:hm]XûxÉç wÉ¸Ï uÉWÒûuÉcÉlÉ mÉÉP[sm:hm]û AqÉç Ì²iÉÏrÉÉ LMüuÉcÉlÉ
mÉPûÌiÉ[Verb]> feminine

KDANTA: pÉÉåeÉlÉ AliÉUÇ
kÉÏqÉiÉÏ [sf:hf] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
ÌMüliÉÑ[AV]

cÉgcÉsÉÉ[sf:hf][OûÉmÉç]xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
oÉÉÍsÉMüÉ[sf:hf] [OûÉmÉç] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
pÉëÍqÉiuÉÉ[pÉëqÉç iuÉÉcÉç]
kÉÉiÉÑ [sm:hm]XûxÉç wÉ¸Ï uÉWÒûuÉcÉlÉ mÉÉP[sm:hm]û AqÉç Ì²iÉÏrÉÉ LMüuÉcÉlÉ
mÉPûÌiÉ[Verb]> feminine

**TADDHITA: pÉÉåeÉlÉ AliÉUÇ
kÉÏqÉiÉÏ [kÉÏqÉiÉç qÉiÉÑmÉç] [sf:hf] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
ÌMüliÉÑ[AV] cÉgcÉsÉÉ[sf:hf][OûÉmÉç]xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
oÉÉÍsÉMüÉ[sf:hf] [OûÉmÉç] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ

 Sanskrit Analysis System 119

pÉëÍqÉiuÉÉ[pÉëqÉç iuÉÉcÉç]
kÉÉiÉÑ [sm:hm]XûxÉç wÉ¸Ï uÉWÒûuÉcÉlÉ mÉÉP[sm:hm]û AqÉç Ì²iÉÏrÉÉ LMüuÉcÉlÉ
mÉPûÌiÉ[Verb]> feminine

TIANTA: pÉÉåeÉlÉ AliÉUÇ
kÉÏqÉiÉÏ [kÉÏqÉiÉç qÉiÉÑmÉç] [sf:hf] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
ÌMüliÉÑ[AV]

cÉgcÉsÉÉ[sf:hf][OûÉmÉç]xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
oÉÉÍsÉMüÉ[sf:hf] [OûÉmÉç] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
pÉëÍqÉiuÉÉ[pÉëqÉç iuÉÉcÉç]
kÉÉiÉÑ [sm:hm]XûxÉç wÉ¸Ï uÉWÒûuÉcÉlÉ mÉÉP[sm:hm]û AqÉç Ì²iÉÏrÉÉ LMüuÉcÉlÉ
mÉPûÌiÉ { (MüiÉ×ïuÉÉcrÉ) mÉPû ([puÉÉÌSaÉhÉ] [xÉåOèû] [xÉMüqÉïMü]) ([sÉOèû]) ÌiÉmÉç ([mÉUxqÉæ]
[mÉëjÉqÉ-mÉÑÂwÉ] [LMüuÉcÉlÉ]) } > feminine

POS TAGGER: pÉÉåeÉlÉ AliÉUÇ[N]

kÉÏqÉiÉÏ[Adj][kÉÏqÉiÉç qÉiÉÑmÉç] [sf:hf] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
ÌMüliÉÑ[AV]

cÉgcÉsÉÉ[sf:hf][Adj][OûÉmÉç]xÉ ÑmÉëjÉqÉÉ LMüuÉcÉlÉ
oÉÉÍsÉMüÉ[N][sf:hf][OûÉmÉç]xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
pÉëÍqÉiuÉÉ[pÉëqÉç iuÉÉcÉç]
kÉÉiÉÑ[N][sm:hm]XûxÉç wÉ¸Ï uÉWÒûuÉcÉlÉ mÉÉP[N][sm:hm]û AqÉç Ì²iÉÏrÉÉ LMüuÉcÉlÉ
mÉPûÌiÉ { (MüiÉ×ïuÉÉcrÉ) mÉPû ([puÉÉÌSaÉhÉ] [xÉåOèû] [xÉMüqÉïMü]) ([sÉOèû]) ÌiÉmÉç ([mÉUxqÉæ]
[mÉëjÉqÉ-mÉÑÂwÉ] [LMüuÉcÉlÉ]) } > feminine

KĀRAKA: pÉÉåeÉlÉ AliÉUÇ](MüqÉï)[N]

kÉÏqÉiÉÏ(MüiÉÉï)[Adj][kÉÏqÉiÉç qÉiÉÑmÉç] [sf:hf] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
ÌMüliÉÑ[AV]

cÉgcÉsÉÉ(MüiÉÉï)[Adj][sf:hf][OûÉmÉç]xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
oÉÉÍsÉMüÉ(MüiÉÉï)[N][sf:hf] [OûÉmÉç] xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ
pÉëÍqÉiuÉÉ[pÉëqÉç iuÉÉcÉç]
kÉÉiÉÑ[N][sm:hm]XûxÉç wÉ¸Ï uÉWÒûuÉcÉlÉ mÉÉP(MüqÉï)[N][sm:hm]û AqÉç Ì²iÉÏrÉÉ LMüuÉcÉlÉ
mÉPûÌiÉ { (MüiÉ×ïuÉÉcrÉ) mÉPû ([puÉÉÌSaÉhÉ] [xÉåOèû] [xÉMüqÉïMü]) ([sÉOèû]) ÌiÉmÉç ([mÉUxqÉæ]
[mÉëjÉqÉ-mÉÑÂwÉ] [LMüuÉcÉlÉ]) } > feminine

2 Description of Each Module

2.1 Sandhi Module

The analysis procedure of the sandhi analysis system uses lexical lookup method as
well as rule base method. Before sandhi analysis process, pre-processing, lexical
search of sandhi strings in sandhi example base and subanta-analysis takes place
respectively. The pre- processing will mark the punctuation in the input. After that,
the program checks the sandhi example base. This example base contains words of

120 M. Bhadra et al.

sandhi-exceptions (vārttika list) and commonly-occurring sandhi strings (example
list) with their split forms. These words are checked first to get their split forms
without parsing each word for processing. After lexical search, subanta analyzer gets
the case terminations (vibhakti) separated from the base word (prātipadika). Subanta
analyzer also has a function to look into lexicon for verb and avyaya words to exclude
them from subanta and sandhi processing.

2.1.1 Sandhi Rule Base
The rule base has been built up in the following format:

input Sanskrit text
↓

pre-processing
↓

subanta processing
↓

rule base
↓

result generator
↓

lexical lookup
↓

subanta processing
↓

lexical lookup
↓

output

Rules for vowel sandhi are in format of

LÅ=L+A:(mÉÔuÉïÃmÉxÉÎlkÉÈ,LXûÈmÉSÉliÉÉSÌiÉ);AÉåÅ=AÉå+A:(mÉÔuÉïÃmÉxÉÎlkÉÈ,LXûÈmÉSÉliÉÉSÌiÉ);AÉrÉçs=Lå+s:(ArÉ
ÉÌSxÉÎlkÉ,LcÉÉåÅrÉuÉÉrÉÉuÉÈ);ArÉçs=L+s:(ArÉÉÌSxÉÎlkÉ,LcÉÉåÅrÉuÉÉrÉÉuÉÈ);AÉuÉçs=AÉæ+s:(ArÉÉÌSxÉÎlkÉ,LcÉÉåÅrÉuÉÉrÉÉ
uÉÈ);AuÉçs=AÉå+s:(ArÉÉÌSxÉÎlkÉ,LcÉÉåÅrÉuÉÉrÉÉuÉÈ);?rÉçs=?D+s:(rÉhÉç xÉÎlkÉ CMüÉå rÉhÉÍcÉ);?rÉçs=?C+s:(rÉhÉç
xÉÎlkÉ CMüÉå rÉhÉÍcÉ);

In these rules, the Roman character ‘s’ stands for svara or vowel. This rule applies on
the string after phoneme splitting. When phonemes are split, there are only vowels,

consonants, avagraha, visarga and anusvara. For example the rule आयs्=ऐ+s means

when in the phonemic string a sequence of characters appears as ‘आ’ followed by ‘य’्

then ‘s’ (or any ‘svara’), then replace it by the right hand side of the ‘=’ sign of the
rule. In the RHS of the rule, ‘s’ means that svara (not any svara) which is in LHS of
the rule. The case of variable ‘s’ is the same as in the rules of ayādi sandhi. Some of
vowel sandhi rules make changes depending upon consonants. Operations depend
upon consonants in following ways - on voiced consonants, unvoiced consonants and
also as semivowels.

 Sanskrit Analysis System 121

3 Subanta Analyzer

Sanskrit is a heavily inflected language, and depends on nominal and verbal
inflections for communication for meaning. A fully inflected unit is called pada.
Inflected nouns are called subanta pada and inflected verbs are called tianta pada.
According to Cardona8, a Sanskrit sentence has NPs (including avyayas (AVs)) and
VPs. It is defined as (N-En)p…(V-En)p. After sup and ti combine with prātipadika
(PDK)9 they are assigned kāraka stipulations to return complete sentence.

3.1 Sanskrit Subanta (Inflected Nouns)10

Sanskrit nouns are inflected with seven cases in three markers. Sanskrit nouns can be
further divided as primary derived forms (kdanta), secondary derived forms
(taddhita), compounds (samāsa). There are 21 suffixes called sup (seven vibhaktis
combined with three numbers)11 which can be attached to the nominal bases (PDK)
according to the syntactic category, gender and end-character of the base. Apart from
these suffixes, there are upasarga (prefixes) which can attach to the PDK. But a PDK
with only upasarga cannot be used in sentence without vibhakti. In Sanskrit, there are
indeclinable (AVs) which are subanta but remain unchanged under all morphological
conditions.12

3.1.1 Recognition of Punctuation
The system recognizes punctuations and tags them with the label _PUNCT. If the
input has any extraneous character, then some normalization takes place. For example
- UÉ/&^%@#qÉç:, oÉÉ,’”:-=sÉMü: UÉqÉÈ, oÉÉsÉMüÈ .
The Devanāgarī Sanskrit input text is then sent to the analyzer.

3.1.2 Recognition of Avyaya
The system takes help of avyaya database for recognizing AVs. If an input word is
found in the AVs database, it is labeled AV, and excluded from the subanta analysis.
Around 524 avyayas are stored in the database.

3.1.3 Recognition of Verbs
System takes the help of verb database for verb recognition. If an input is found in the
verb database, it is labeled VERB and not sent for further processing. Since storing all
Sanskrit verb forms is not a good option for computational reasons (there are 2000
verb roots and forms generated from it would be in the millions. Besides, there are
innumerable nāmdhātus as well and a regular verb form can be conjugated as

8 George Cardona, 1988, Pāini His Work and Tradition, vol…I Delhi(MLBD 1988).
9 AjÉïuÉSkÉÉiÉÑUmÉëirÉrÉ: mÉëÉÌiÉmÉÌSMüqÉç 1.2.45, M×ü¨ÉÎ®iÉxÉqÉÉxÉ¶É 1.2.46.
10 Jha Girish Nath et al., ‘Inflectional Morphology Analyzer for Sanskrit, pages 47-66

Proceedings of First International Sanskrit Computational Linguistics Symposium October,
2007.

11 xuÉÉæeÉxÉqÉÉæOèNû�ÉprÉÉÎqpÉxXåûprÉÉqprÉÉxXûÍxÉprÉÉqprÉÉxXxÉÉåxÉÉÇXçrÉÉåxxÉÑmÉç.
12 xÉSØzÉÇ Ì§ÉwÉÑ ÍsÉ…¡åûwÉÑ xÉuÉÉïxÉÑ cÉ ÌuÉpÉÌ£üwÉÑ/ uÉcÉlÉåwÉÑ cÉ xÉuÉåïwÉÑ rÉ³É urÉåÌiÉ iÉSurÉrÉqÉç (Gopatha Brāhmaa).

122 M. Bhadra et al.

sannata, ijanata etc as well). The SAS has 450 commonly used verb roots and
their regular forms plus mechanisms to recognize unseen verbs (in the tianta
module) as well.

3.1.4 Recognition of Subanta
Thus a process of exclusion identifies the nouns in a Sanskrit text. After the
punctuation, avyayas and verbs are identified, the remaining words in the text are
labeled as SUBANTA.

3.2 Analysis of Subanta

System does analysis of inflected nouns with the help of two relational databases –
examples and rules. Brief description of these databases follows-

3.2.1 Example Database
All complicated forms including those of some pronouns which cannot be easily
analyzed according to rules are stored in the database. For example: AWûqÉç=AxqÉSè+xÉÑ
mÉëjÉqÉÉ LMüuÉcÉlÉ;AWÇû=AxqÉSè+xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ; AÉuÉÉqÉç=AxqÉSè+AÉæ mÉëjÉqÉÉ Ì²uÉcÉlÉ;
AÉuÉÉÇ=AxqÉSè+AÉæ mÉëjÉqÉÉ Ì²uÉcÉlÉ;uÉrÉqÉç=AxqÉSè+eÉxÉç mÉëjÉqÉÉ uÉWÒûuÉcÉlÉ;uÉrÉÇ=AxqÉSè+eÉxÉç mÉëjÉqÉÉ
uÉWÒûuÉcÉlÉ;

3.2.2 Rule Database
The subanta patterns are stored in this database. This database analyzes those nouns
which match a particular pattern from the rule base. For example, UÉqÉ: ,lÉSÏ, UqÉÉ,
mÉÑxiÉMüqÉç etc. First, the system recognizes vibhakti as the end character of nouns. For

example, ‘:’ is found in nominative singular like- UÉqÉ: �rÉÉqÉ: xÉuÉï: pÉUiÉ: LMü: . The
system isolates ‘:’ and searches for analysis in the sup rule base. In the case of
nominative and accusative dual, PDK forms will be ending in ‘üÉæ’ . For example, UÉqÉÉæ,
rÉÉqÉÉæ, xÉuÉÉæï, LMüÉæ. The system isolates ‘üÉæ’ and searches for analysis by matching the rule
database. The sample data is as follows-

üÉ=üÉ+xÉÑ mÉëjÉqÉÉ LMüuÉcÉlÉ;üÉprÉÉqÉç=+prÉÉqÉç iÉ×iÉÏrÉÉ cÉiÉÑjÉÏï mÉgcÉqÉÏ Ì²uÉcÉlÉ;üÉprÉÉÇ=+prÉÉqÉç iÉ×iÉÏrÉÉ
cÉiÉÑjÉÏï mÉgcÉqÉÏ Ì²uÉcÉlÉ;prÉÉqÉç=+prÉÉqÉç iÉ×iÉÏrÉÉ cÉiÉÑjÉÏï mÉgcÉqÉÏ Ì²uÉcÉlÉ;prÉÉÇ=+prÉÉqÉç iÉ×iÉÏrÉÉ cÉiÉÑjÉÏï
mÉgcÉqÉÏ Ì²uÉcÉlÉ;üåprÉÈ=+prÉxÉç cÉiÉÑjÉÏï mÉgcÉqÉÏ oÉWÒûuÉcÉlÉ;prÉÈ=+prÉxÉç cÉiÉÑjÉÏï mÉgcÉqÉÏ oÉWÒûuÉcÉlÉ;

4 Gender Analyzer

After subanta analyzer one can get information about Sanskrit nouns. But still gender
information is not fully analyzed by subanta analyzer. In Sanskrit, there is gender
agreement between adjectives and noun. Though there is no gender agreement between
verb and the agent like Hindi, but kdanta forms agree with agent in terms of gender in
a sentence. If machine has to understand Sanskrit language then it needs to understand
the gender also like any other grammatical category. In the absence of a correct gender
analysis of Sanskrit NPs, the target language translations may be wrong.

 Sanskrit Analysis System 123

4.1 Description of the Gender Analyzer

The gender analyzer gets each sentence as a token. Then it sends the token for pre
processing. After pre processing, it finds the verb and avyayas using database and
excludes them for further processing. If in the text there are multiple NPs with
conjunct or comma, then it gets separated NP chunks separated by conjunct or
comma. After that, the system takes help of subanta analyzer to obtain PDK. After
obtaining PDK, the system takes the help of lexical resources to get gender
information of nouns. If enough information about gender is not found then the
system looks for rules. At the end, it suggests the collocational gender of a sentence
with respect to a target Hindi sentence.

4.1.1 Rule Base for Gender Analyzer
The present subanta analyzer of Sanskrit analyses the Sanskrit words with
prātipadika with vibhakti markers. Some vibhakti markers help to identify the gender
of a word. For example, the word narān can be analyzed as masculine gender from
the vibhakti marker ān, and the number of the word would be plural. If the word
appears in the input with this particular vibhakti, then the gender recognition of the
word would be easy. The problem with this method is that the particular word has to
arrive in the input with this particular vibhakti. As a consequence of this step, there
would be huge numbers of words whose gender would be unrecognized by the
system.

4.1.2 Rules of Ligānuśāsana
Gender can be recognized from the last but one syllable of the word. The technical
name of this category is upadhā (penultimate).13

upadhā clause Gender Example Exception

k, , , h, n,
 p, bh, ma, y,
r, ,s

if the word
ends in a

Masculine stabaka,
ghaa,dīpa,
bhanu etc

chibuka,
lalāa,pāpa,
ratna etc

L if the word
ends in a

Neuter phala tūla, upala etc

Among these words, if some words are used as proper names then it would follow

the gender of a person if the name is a mythical and famous one, for example
ambarīa.

After this step, the gender of a large number of words would remain unrecognized.
To handle this problem, another rule from Ligānuśāsana is implemented for gender
analyzer. The rule depends on the last vara of the word. For example, if the word
ends in (pit, bhrāt), generally the gender of the word would be masculine. But there
are exceptions to this rule, like the words māt, nanānd etc in the feminine gender.

After the application of the Pāinian rules, there are still a large number of Sanskrit
words whose gender recognition is very difficult. For these kinds of words, the gender

13 AsÉÉåÅlirÉÉimÉÔuÉï EmÉkÉÉ.

124 M. Bhadra et al.

can be recognized from the last syllable of the word apart from the Pāinian rule. For
example, if the ending syllable is a then the gender of the word would be masculine.
If the ending syllable is ā then generally the gender of that word would be feminine.
But there are exceptions to this rule as viśapā, dārā, hāhā etc.

5 Kdanta Analysis

All the verbal suffixes besides ti are called kt. kt is a technical term of Pāinian
grammar that covers a vast field, both structurally as well as semantically.14 The
primary nominal derivatives from the verb roots are kdanta. The kt suffixes are
added to roots or their modified forms, to form nouns, adjectives and indeclinables,
for example k - kāra, krt, karaa, kurvat, kariyat, cakvas, ktvā, kartum. These
are called kdantas or primary derived nominal bases.15

5.1 Kdanta Identification and Analysis Mechanisms

The process of kdanta analysis mechanism is divided into two sections - recognition
and analysis.

5.1.1 Kdanta Identification Mechanism
The kdanta recognition starts by an exclusion process. The verb forms, avyayas and
punctuations are excluded by running POS tagger by checking the verb, avyaya and
pronoun databases and punctuation lists. The nominal bases are obtained by the
subanta analyzer which is a part of the POS tagger. These nominal bases are then
checked in fixed lists by the POS tagger. This may result in some of the subantas
being marked for kdanta. The remaining subantas are sent to the kdanta recognizer
and analyzer system for recognition and analysis using following steps –

• check the kdanta database, annotated corpus and kdanta-tagged Monier

Williams Sanskrit Digital Dictionary (MWSDD).
• the subantas still untagged for kdanta are sent to the rule base for kdanta

checking.
• the rule base applies Pāinian rule base in reverse for marking kdantas.
• it is possible that even after these systematic identification procedures, there

may remain an untagged kdanta subanta. This will count as failure of the
system.

5.1.2 Kdanta Analysis Mechanism
The system is divided into two parts- lexical database and rule-base. Lexical database
of examples has been created for analyzing those forms which would be otherwise
very complex to analyze if passed through the rule base. Lexical database has three
major parts- a lexical kdanta database with complicated kdanta forms and their

14 Sharma, Dipti, Structure and Meaning,1982 Nag Publishers New-Delhi.
15 Kale, M.R., A Higher Sanskrit Grammar.

 Sanskrit Analysis System 125

lexical information, Monier Williams Sanskrit Digital Dictionary and corpus of the
current Sanskrit prose with kdanta words tagged with kdanta information.

The rule-base is for analyzing more regular forms. It consists of mainly three
tables, namely, upasargavikāra table, dhātuvikāra table and pratyayavikāra table. To
restrict dhātuvikāra and pratyayavikāra from inconsistent combinations, both are
bound with a unique id.

For example, mÉÉPûMüÈ[(mÉPû+huÉÑsÉç/mÉPû+ÍhÉcÉç+huÉÑsÉç)mÉëjÉqÉÉ-LMüuÉcÉlÉ]

6 Tianta Analysis

Verbs have been of central importance to Sanskrit grammarians. Yāska insisted so
much on them that he propounded that all the nominal words are derived from verb
roots16. Like noun padas, verb padas (tianta) have to undergo certain inflectional
process in which various verbal affixes are added to verb roots or dhātus. These
dhatus are encoded with the core meaning of the verb. These can be primitive17 or
derived18. Primitive verb-roots, which are around 2000 in number, have been listed in
a lexicon named dhatupātha. They are divided in 10 groups/classes called gaas. All
the verb-roots of a group undergo somewhat similar inflectional process. Derived
verb-roots may be derived from primitive verb-roots or from nominal forms. Prefixes
also play an important role as they can change the meaning of a verb root. These roots
then have to undergo various inflectional suffixes that represent different paradigms.
In this process, the base or root also gets changed.

6.1 Process of Formation of Sanskrit Verb Forms

A Sanskrit verb root may take various forms. There are ten lakāras that represent
Tense, Aspect and Mood. Inflectional terminations are 18 in number. These are
divided in two groups – parasmaipada and ātmanepada, each having 9 affixes which
is a combination of 3 persons x 3 numbers. A verb is conjugated in either pada,
though some of the roots are conjugated in both. For each different lakāra, a root is
affixed with these 9 terminations. Again, there are three voices- Active, Passive and
Impersonal. Transitive verbs are used in the Active and Passive voices while
intransitive verbs are conjugated in the Active and Impersonal voices. Addition of one
or more of 22 prefixes (upasargas) to verb roots can result in more variety of forms.
Derivative verb roots, both derived from verb roots as well as nominal words, also
follow the same process to form verb forms. There can be some specific rules and
exceptions in some cases. The following chart gives a rough estimate of possible
verb-forms in Sanskrit19 . This is to suggest that Sanskrit verb forms can not be stored
in the database because the derived verb forms can be potentially innumerable.

16 bhāvapradhānamākhyātam (Yāska, Nirukta).
17 bhuvādayo dhātava (P 1/3/1).
18 sanādyanta dhātava (P 3/1/32).
19 Mishra Sudhir K., Jha, Girish N., 2004, Identifying Verb Inflections in Sanskrit morphology,

in proc.of SIMPLE 04, IIT Kharagpur, pp. 79-81.

126 M. Bhadra et al.

2000 verb roots
+ derived bases
(causatives, desideratives, frequentatives, denominatives)

 ↓
 TAM [10 lakāras]
 ↓
 ┌──────────────┐
 parasmai ātmane
 ↓ ↓
 10x9 forms 10x9 forms
 ↓ ↓
 22 upasarga 22 upasarga

The verb roots of different gaas adapt certain terminations when ti affixes are
added to them. The ti affixation also influences the verb root and it undergoes
several morpho-phonemic changes, for example, having gua operation on the end
vowel. The verb root can adopt certain operations resulting in the final verb-forms.

bhū + ti(p)

bhū+(ś)a(p) + ti (infixation of characteristic)

bho + a + ti (penultimate vowel guated)

bhav a ti (ayādi sandhi)

As shown in the example, when suffix tip is added to the verb root bhū, then bhavati
form is obtained as the final verb form. This can be cited as a common analysis of
most verb forms.

6.2 The Analysis of Sanskrit Verb Forms

The methodology for the analysis of Sanskrit verb form in the present work follows the
analysis of Pāini in somewhat reverse direction. Pāinian analysis identifies different
morphemes in any given pada and presents an analysis where he provides step-by-step
methodology to derive a verb form from a given verb root in certain paradigms. As
illustrated above, Sanskrit verb forms are a blend of multiple morphemes which
contain relevant information. Analytically it can be said that the first element is the
conjugational affix that remains at the end of every verb form. These affixes have
encoded information of pada (though it is determined by root), lakāra, person and
number. Thus termination can serve as the most important thing to convey about
the paradigm information of any verb form. They can be a tool to identify a verb
form in a given text. The terminations, as they are basically replacements of 18 original

 Sanskrit Analysis System 127

ti affixes in different lakāras, differ among themselves according to lakāras. However
in each lakāra, they are similar for all verb roots of various groups, leaving some
expectation. So ti can be used to identify any verb form of present tense of
parasmaipada. But some terminations can vary among themselves for a group of
gaas. Then again, the termination may be changed due to morphophonemic
environment, tā affix of lu lakāra, changing to ā with roots like yaj.

Further left, there are various morphemes of the various characteristics and
increments inserted between the verb root and terminations, in the process of their
formation explained above. Bhvādigaa verb forms in conjugational lakāras, have ‘a’
as a result of śap characteristics; svādi roots have no, nu or nv all of them remaining
morphemes of śnu. Some roots like that of adādi have no such characteristics sign
infixed in them.

At the right end of the verb form, there is modified stem of the verb root. The
modification can be gua, vddhi or any other. Generally a root adopts a common
stem in all the forms for both padas in conjugational lakāras. So bhav is the stem
for all parasmaipadī forms in the conjugational lakāras. But there are exceptions
to it to that extent that four or five types can be found among nine forms of a single
lakāra pada.

Here the first morpheme the ti termination is common among all verb forms of a
particular pada-lakāra- purua -sakhyā combination. Second constituent, the
characteristics (existing in the form of its remaining morpheme) and increments
inserted in between may differ, yet being almost the same in a particular group. The
third constituent, the modified verb-root is particular in the strict sense. In the
analysis, the recognition of the ti will identify a word as a verb form and find out its
pada-lakāra- purua -sakhyā. The second morpheme can, in many cases, be helpful
to recognize the gaa of a particular root because the characteristics in a lakāra are
determined by the gaa that the roots belong to. Thus the core of the analytical
approach is that each tianta verb form can be analyzed to form a unique combination
of verbal stem + ti termination, and both of these constituent parts are stored in
separate tables. When it is to be analyzed, its constituent morphemes are recognized
and identified with the help of pre-stored structured data.

7 POS Tagger

After getting the information about inflected nouns of Sanskrit, it is necessary to
understand the role of each word in a sentence. This process of marking up the words
in a text as corresponding to a particular part of speech, based on both its definition,
as well as its context—i.e., relationship with adjacent and related words in a phrase,
sentence, or paragraph20 is called POS tagging. A typical POS tagger acts as a shallow
parser and is pre- requisite in several NLP related applications such as machine
translation system, information retrieval word sense disambiguation etc. Sanskrit is an
inflectional language and words in a sentence carry information about entities in
terms of stem, endings, gender, case, number and case relation, while verbs denote
activity, function reaction, mode, voice, tense, person, number etc. Extracting and

20 http://en.wikipedia.org/wiki/Part-of-speech_tagging

128 M. Bhadra et al.

organizing, i.e. annotating, these information is the first step towards understanding
the language. Words in a language may occur in POS or various grammatical
categories as they are also known. In Sanskrit for example

 1) gacchati can be either a tianta or kdanta
 2) rāma can either be a nāmapada (abhidhāna) or tianta
 3) āyāta can either be a kdanta or tianta
 4) mā can either be an avyaya or namapada or a sarvanāman etc

7.1 The Sanskrit Tagset

The designed tagset is classified according to the morphological structure of the
categories. There are two kinds of tags in this tagset. Word class main tags and feature
sub-tags. The tag as a whole is a combination of word class main tag with feature sub-
tags separated by an underscore. All the tags bear Sanskrit names21 with letter-digit
acronymic in Roman script.

The process first involved evolving a stable tagset for Sanskrit text which has 65
word class tags, 43 feature sub-tags, and 25 punctuation tags and one tag UN to tag
unknown words – a total of 134 tags. A single full tag is a combination of word class
tag and feature sub-tags (indeclinable and punctuation tags do not have sub-tags).
The word class tags are 8 Noun tags, 8 Pronoun tags, 3 Adjective tags, 9 Participle
tags, 2 Number tags, 14 Compound tags, 11 indeclinable tags and 10 verb tags.
Feature tags are three gender sub tags (p,s,n); 8x3 = 24 (Nominal)Case and Number
tags (1.1 through 8.3); 4 Verb base modifying tags (Nd, Yn, Sn, Ni); 1Verbal
Preposition (UPA); 2 Pada tags (P and A); 3x3 = 9 (Verbal) Person and Number tags
(1.1 through 3.3).

7.2 Description POS Tagger

7.2.1 Pre-processing
After getting Unicode (UTF-8) sandhi free Devanagari Sanskrit input (or with
minimal sandhi) as word, sentence or text, the system sends those input for pre
processing. In this step, the system searches for punctuations in the input and tags
them. In addition to tagging the punctuations, this function also removes unwanted
foreign letters or punctuations from the inside of a Devanagari string.

7.2.2 Fixed-List Tagger
After initializing the input, the system goes to check in the fixed tagged lists. This
database stores lists of avyayas, list of verbs and POS list. The POS example base
consists of approximately 1 MB data. For example

AgcÉÌiÉ[P_laTV_1.1]/[KV1_p_7.1]/[KV1_n_7.1];AgcÉiÉÈ[P_laTV_1.2]/[KV1_p_2.

3]/[KV1_p_5.1]/[KV1_p_6.1]/KV1_n_5.1]/[KV1_n_6.1];AgcÉÎliÉ[P_laTV_1.3]/[K

21 Few names are coined in English for the purpose of clarity and to avoid confusion while

marking their notions. The tags having English names are all the compound tags containing
‘C’ for Compound and few punctuation tags.

 Sanskrit Analysis System 129

V1_n_1.3]/[KV1_n_2.3];AgeÉÌiÉ[P_laTV_1.1]/[KV1_p_7.1]/[KV1_n_7.1];AgeÉiÉÈ
[P_laTV_1.2]/[KV1_p_2.3]/[KV1_p_5.1]/[KV1_p_6.1]/KV1_n_5.1]/[KV1_n_6.1];

AgeÉÎliÉ[P_laTV_1.3]/[KV1_n_1.3]/[KV1_n_2.3];lÉÉqÉ[N_n_1.1]/[(nAman)N_n_2.1

];mÉëjÉqÉqÉç[N_n_1.1]/[(prathama)N_n_2.1]/[N_p_2.1]/[AVKV];iÉl§ÉqÉç[N_n_1.1]/[(tantr

a)N_n_2.1];rÉxrÉ[SNS_n_6.1]/[(yad)SNS_p_6.1];qÉWûÉlÉç[NVI_p_1.1]/[(maha)N_p_

2.3];ÍxÉÇWûaÉÉåuÉ×wÉrÉÉåÈ[N_p_6.2]/[(siMhagovRuSha)N_p_7.2]/[N_s_6.2]/[(siMhagovRu

ShA)N_s_7.2];uÉlÉå[N_n_7.1]/[(vana)N_n_1.2]/[(vana)N_n_2.2];iÉiÉç[SNN_n_1.1]/[

(tad)SNN_n_2.1];qÉÌWûsÉÉUÉåmrÉqÉç[N_n_1.1]/[(mahilAropya)N_n_2.1];lÉaÉUqÉç[N_n_1.1]/[

(nagara)N_n_2.1];

If the token is found, it gets tagged with corresponding tag from the lexicon.

7.2.3 Subanta Analyzer
However, a large number of input tokens are not found in these lists as they may be
marked for subanta. Therefore the next component of subanta analyzer checks
untagged input in the subanta examples. If not found, it starts analyzing the token
from the right end and checks in the lexicon after each appropriate cut. If it is found, it
tags the input. If after all these steps, the input remains untagged, it gets the ‘not
found’ tag. The resultant tagged token is sent back to the main tagger ‘Post’ which
linearizes the results with adding color schemes for ambiguous and untagged tokens.

8 Kāraka Analysis

After understanding words in a Sanskrit sentence, it is necessary to understand how
the words are arranged in a sentence, what are the relation between other words and
verbs. In Sanskrit, this relation can be understood while analyzing kāraka relation.
Etymologically kāraka is the name given to the relation between a noun and a verb in
a sentence. It means ‘that which brings about’ or ‘doer’. 22

8.1 Kāraka and Vibhakti Mapping

Pāini discusses the entire gamut of kāraka-vibhakti relations in three sections of
Aādhyāyī

• kāraka sūtra (P. 1.4.23 – P. 1.4.55) 33 sūtras
• vibhakti sūtra (P. 2.3.1 - P. 2.3.73) 73 sūtras
• karma-pravacanīya (P. 1.4.82 – P. 1.4.97) 16 sūtras

Now the problem of implementation of all kāraka rules is that there are rules of
vivakā dependent operations. In the example xjÉÉsrÉÉ mÉcÉÌiÉ, xjÉÉsÉÏ should be

Location as it is the AÉkÉÉU (AÉkÉÉUÉåsÍkÉMüUhÉqÉç), but it is करण by rule xÉÉkÉMüiÉqÉÇ MüUhÉqÉç

22 A detailed description of kāraka and its mapping with vibhakti is given in Jha Girish Nath,

Mishra Sudhir K., ‘Semantic processing in Pāini’s kāraka system’ Presented in second
International Sanskrit Computational Linguistics Symposium at Brown University, 2008.

130 M. Bhadra et al.

because the speaker thinks it is the most instrumental (xÉÉkÉMüiÉqÉ (mÉëM×ü� EmÉMüÉUMü)) and

therefore prefers Instrumental case. MüqÉïhÉÉ rÉqÉÍpÉmÉëæÌiÉ xÉ xÉqmÉëSÉlÉqÉ prescribes Dative for

the receiver of gift, but vārtika çAÍzÉ¹urÉuÉWûÉUå SÉhÉÈ mÉërÉÉåaÉå cÉiÉÑjrÉïjÉåï iÉ×iÉÏrÉÉ prohibits it
if the gift was intended for deriving some benefit (sexual favor in this case).
Vārtikas extend, limit Pāinian rules, for example - lÉÏ-uÉ½ÉålÉï (lÉÉrÉrÉÌiÉ uÉÉWûrÉÌiÉ uÉÉ pÉÉUÇ
pÉ×irÉålÉ) allows karaa if the verb is lÉÏ or uÉW . It thus limits aÉÌiÉoÉÑÎ®mÉëirÉuÉxÉÉlÉÉjÉï

 MüiÉÉï xÉ hÉÉæÌlÉrÉliÉ×MüiÉ×ïMüxrÉ uÉWåûUÌlÉwÉåkÉÈ which allows karma. Sometimes

vārtikas limit themselves ÌlÉrÉliÉ×MüiÉ×ïMüxrÉ uÉWåûUÌlÉwÉåkÉÈ (if the kartā is ‘sārathi’ or any of its

synonyms then lÉÏ-uÉ½ÉålÉï does not apply uÉÉWûrÉÌiÉ UjÉÇ uÉÉWûÉlÉç xÉÔiÉÈ (karma by Pāini’s

aÉÌiÉoÉÑÎ®… sūtra). Another problem is how to implement semantic conditions such as,

xuÉÉiÉÇ§rÉ,DÎmxÉiÉ/DÎmxÉiÉiÉqÉç,xÉÉkÉMüiÉqÉ,AÍpÉmÉëæÌiÉ (to be AÍpÉqÉÑZÉ - approach someone for gift),

mÉëÏrÉqÉÉhÉÈ (one who gets pleased - ÂcrÉjÉÉïlÉÉÇ mÉëÏrÉqÉÉhÉÈ) - WûUrÉå UÉåcÉiÉå pÉÌ£üÈ,kÉëÑuÉ (fixed

point) AmÉÉrÉ (path of separation) kÉëÑuÉqÉmÉÉrÉåÅmÉÉSÉlÉqÉç,kÉÉuÉiÉÈ AµÉÉiÉç mÉiÉÌiÉ (is AµÉÉiÉ an AÉkÉÉU
or kÉëÑuÉ ?) ,AÉkÉÉUÉåÅÍkÉMüUhÉqÉ (AÉkÉÉUÈ ÌMüqÉç ?) etc.

A tentative model of kāraka analyzer is given below.

1. VERB ID
2. VERB ANALYSIS
3. NON—VERB ID
4. SUBANTA ANALYSIS
**5. ĀKĀKA CHECK
**6. KĀRAKA RULES
**7. SPECIAL CONDITIONS
8. KĀRAKA ASSIGNMENT

In this model, the starred modules are under implementation. While analyzing the
verb, the system will take the help of tianta analysis. For tokenizing the tianta , the
system checks every character of the word through reverse module and matches
through verb database for recognizing the tianta pada which is used in the sentence.
If it is found, then all information which is relevant in kāraka analysis are provided to
system for further implementation. Otherwise it returns to check again if dhātu is used
with upasarga and after recognizing upasarga, the system removes the upasaga from
the verb, and again checks it for dhātu identification number and the result is sent to
dhātu information database for getting the relevant information of the dhātu. After the
verb analysis, the system checks for non verb words and then it takes help of subanta
analyzer and kāraka assignment is implemented. In between, there are some steps like
ākākā checking, and special semantic conditions are not implemented yet.

9 Result Analysis and Limitations

Currently the modules of the SAS are not integrated. Individual modules can be tested
as http://sanskrit.jnu.ac.in. The limitation of lexical resource may affect some

ÉïzÉoSMüqÉÉïMüqÉïMüÉhÉÉqÉÍhÉ

 Sanskrit Analysis System 131

modules. In sandhi analyzer, if the input is ÌWûqÉÉsÉrÉÈ the output will be ÌWûqÉÉsÉå AÈ
(ArÉÉÌSxÉÎlkÉ LcÉÉåÅrÉuÉÉrÉÉuÉÈ),ÌWûqÉÉsÉÏ AÈ (rÉhÉç xÉÎlkÉ CMüÉå rÉhÉÍcÉ), ÌWûqÉÉÍsÉ AÈ (rÉhÉç xÉÎlkÉ CMüÉå
rÉhÉÍcÉ), ÌWûqÉÉ AsÉrÉÈ (SÏbÉïxÉÎlkÉ AMüÈ xÉuÉhÉåï SÏbÉïÈ), ÌWûqÉ AsÉrÉÈ (SÏbÉïxÉÎlkÉ AMüÈ xÉuÉhÉåï SÏbÉïÈ)
ÌWûqÉ AÉsÉrÉÈ (SÏbÉïxÉÎlkÉ AMüÈ xÉuÉhÉåï SÏbÉïÈ). Here, the system gives multiple answers with
appropriate rules of Pāini as it finds all the parts in these results as valid words in
the 200k Sanskrit dictionary. Future enhancements in this module will select the most
common output based on a frequency marling in the dictionary. The subanta analyzer
can not recognize many forms and is being currently updated. In the gender analyzer,
lexical resources may hamper the result. The system cannot identify gender of those
words which are used in different gender in different meaning properly, like the word
mitra. Sometimes the system fails to check proper gender agreement as well. There
are limitations of the Kdanta, Tianta, POS tagger and Kāraka modules as well
which are being improved currently.

10 Conclusion

The authors in this paper have presented an ongoing work for developing a complete
SAS. Currently, the SAS has some modules partially developed and some under
development. Significant future additions will be the ambiguity resolution modules
like anaphora resolution. After the kāraka checking module, a disambiguation module
is also going to be added in near future, to resolve problems like ‘bhavati ! bhikām
dehi’. Here according to the SAS system, bhavati and dehi both get verb tags. But
here bhavati is used as noun and in vocative. If there is proper punctuation like an
exclamation mark after this word then one can say it is used in vocative. If there is no
punctuation mark then the problem can be resolved by counting verbs in the sentence
which in most cases can be only one. These kinds of problems are to be handled in the
disambiguation module. For the testing of the system, 140 files in unicode Devanāgari
have been collected. Those texts are in simple Sanskrit and collected from different
sources mostly samples of current Sanskrit. Though there is no complete statistics of
the results, but one of the tests in subanta with simple Sanskrit gave a 90% accuracy.

The table is given below.

S.No. File Theme Source Words Time(secs)

1 Corpus-1 rājā sagara sandeśa 609 3
2 Corpus-2 samrāa aśoka sandeśa 916 3.2
3 Corpus-3 eka nibandha sandeśa 882 3
4 Corpus-4 cācā neharu sandeśa 332 1
5 Corpus-5 sarasvatī vandanā

and a story
sandeśa 241 1

6 Corpus-6 ādhunika praśāsana sandeśa 1045 3.5
7 Corpus-7 eka vaika sandeśa 849 2
8 Corpus-8 paśya me rūpāi sandeśa 1328 4
9 Corpus-9 Sanskrit sikśā sandeśa 306 2
10 Corpus-10 saghe śakti sandeśa 4207 6

132 M. Bhadra et al.

References

1. Vamdeva, A.: ‘Liṅga-Parijnānam’, Shabdatattva Prakāshan Varanasi (1990)
2. Muktanada, A.: Computational Identification and Analysis of Sanskrit Verb Forms of

bhvādigaöa. Mphil degree at SCSS, JNU (submitted, 2007)
3. Manji, B.: Computational analysis of Gender in Sanskrit Noun Phrases for Machine

Translation. Mphil degree at SCSS, JNU (submitted, 2007)
4. Bharati, A., Chaitanya, V., Sangal, R.: A Computational Gram-mar for Indian

Languages Processing. Indian Linguistics Journal 52, 91–103 (1991)
5. Bharati, A., Chaitanya, V., Sangal, R.: Natural Language Processing: A Pan

Perspective. Prentice-Hall of India, New Delhi (1995)
6. George, C.: Pāṇini’s syntactic categories. Journal of Oriental Institute Baroda 16, 201–

215 (1967)
7. George, C.: Pāṇini His Work and Tradition (MLBD 1988), Delhi, vol. I (1988)
8. George, C.: Some Questions on Pāöini’s Derivational System. In: Procs. of Splash,

iSTRANS, p. 3. Tata Macgraw-Hill, New Delhi (2004)
9. Chandrasekhar, R.: Part of Speech Tagging for Sanskrit. Phd degree at SCSS, JNU

(submitted, 2007)
10. Daniel, J., Martin, J.: Speech and Language Processing. Prentice-Hall of India, New

Delhi (2000)
11. Edgren, A.H.: On the verbal roots of the Sanskrit language and of the Sanskrit

grammarians. Journal of American Oriental Society 11, 1–5 (1885)
12. Huet, G.: Towards Computational Processing of Sanskrit, Recent Advances in Natural

Language Processing. In: Proceedings of the International Conference ICON, Mysore,
India (2003)

13. Jha, Girish N., et al.: Towards a Computational analysis system for Sanskrit. In: Proc.
of first National symposium on Modeling and Shallow parsing of Indian Languages at
Indian Institute of Technology, Bombay, pp. 25–34 (2006)

14. Jha, Girish N.: A Prolog Analyzer/Generator for Sanskrit Noun phrase Padas,
Language in India, vol. 3 (2003)

15. Jha, Girish N.: Generating nominal inflectional morphology in Sanskrit. In: SIMPLE
2004, IIT-Kharagpur Lecture Compendium, pp. 20–23. Shyama Printing Works,
Kharagpur (2004)

16. Jha, Girish N.: Morphology of Sanskrit Case Affixes: A computational analysis,
M.Phil dissertation, J.N.U., New Delhi (submitted, 1993)

17. Jha, Girish N.: The system of Panini. Language in India 4, 2 (2004)
18. Jha, Girish N., Mishra, Sudhir K.: Semantic processing in Pāṇini’s karaka system. In:

Second International Sanskrit Computational Linguistics Symposium at Brown
University (2008)

19. Joshi, S.D.: Verbs and nouns in Sanskrit. Indian linguistics 32, 60–63 (1962)
20. Kale, M.R.: A Higher Sanskrit Grammar. MLBD, New Delhi (1995)
21. Kapoor, K.: Semantic Structures and the Verb: a propositional analysis. Intellectual

Publications, New Delhi (1985)
22. Sachin, K.: Sandhi Splitter and Analyzer for Sanskrit (with reference to ac Sandhi).

Mphil degree at SCSS, JNU (submitted, 2007)
23. Mishra, Sudhir K., Jha, Girish N.: Identifying Verb Inflections in Sanskrit

morphology. In: Proc. of SIMPLE 2004, IIT Kharagpur, pp. 79–81 (2004)
24. Mishra, Sudhir K., Jha, Girish N.: Sanskrit Karaka Analyzer for Machine Translation.

In: SPLASH proc. of iSTRANS, pp. 224–225. Tata McGraw-Hill, New Delhi (2004)

 Sanskrit Analysis System 133

25. Ruslan, M.: The Oxford Handbook of Computational Linguistics. Oxford University
Press, Oxford

26. Mishra, N. (ed.): Kashika of Pt.Vamana and Jayaditya, Chaukhamba Sanskrit
sansthan, Varanasi (1996)

27. Van Nooten, B.A.: Pāṇini’s replacement technique and the active finite verb.
University of California, Berkeley

28. Sharma, R.N.: The Aṣtādhyayi of Pāṇini. Munshiram Manoharlal Publishers Pvt. Ltd,
Delhi (2003)

29. Shastri, Bheemsen, Laghusiddhantakaumudi, Prakashan, B.: 537, Lajapatrai Market,
New Delhi

30. Kumar, S.S.: Kṛdanta Recognition and Processing for Sanskrit. Mphil degree at SCSS,
JNU (submitted, 2008)

31. Shastri, Dwarikadas, S.: The Madhaviya Dhatuvṛtti by Saya_acarya. Tara Book
Agency, Varanasi (2000)

32. Sharma, D.: Structure and Meaning. Nag Publishers, New Delhi (1982)
33. Subash, Jha, Girish N.: Morphological analysis of nominal inflections in Sanskrit. In:

Platinum Jubilee International Conference, L.S.I., p. 34. Hyderabad University,
Hyderabad (2005)

34. Subash: Machine recognition and morphological analysis of Subanta-padas, M.Phil
dissertation J.N.U., New Delhi (submitted, 2006)

35. Upadhye, P.V.: Dhaturupacandrika. Gopal Narayen & Co, Bombay (1927)
36. Whitney, W.D.: History of Sanskrit Grammar, Sanjay Prakashan, Delhi (2002)

Web References

• IIIT, Hyderabad,
http://www.iiit.net/ltrc/Publications/Techreports/tr010/
anu00kbcs.txt

• Peter M. Scharf and Malcolm D. Hyman,
http://sanskritlibrary.org/morph/

• Huet’s site http://sanskrit.inria.fr/
• Prajna system, ASR Melcote,

http://www.sanskritacademy.org/Achievements.htm
• Aiba, Verb Analyzer for classical Sanskrit,
• http://wwwasia.human.is.tohoku.ac.jp/demo/vasia/html/
• Desika, TDIL, Govt. of India,

http://tdil.mit.gov.in/download/Desika.htm
• RCILTS, JNU, http://rcilts.jnu.ac.in
• Shabdabodha, ASR, Melcote, http://vedavid.org/ASR/#anchor2
• http://en.wikipedia.org/wiki/Part-of-speech_tagging

Translation Divergence in
English-Sanskrit-Hindi Language Pairs

Pawan Goyal1 and R. Mahesh K. Sinha2

1 School of Computing and Intelligent Systems, University of Ulster, UK
goyal-p@email.ulster.ac.uk

2 Indian Institute of Technology, Kanpur, India
rmk@iitk.ac.in

Abstract. The development of a machine translation system needs that
we identify the patterns of divergence between two languages. Though
a number of MT developers have given attention to this problem, it
is difficult to derive general strategies which can be used for any lan-
guage pair. Therefore, further exploration is always needed to identify
different sources of translation divergence in different pairs of transla-
tion languages. In this paper, we discuss translation pattern between
English-Sanskrit and Hindi-Sanskrit of various constructions to identify
the divergence in English-Sanskrit-Hindi language pairs. This will enable
us to come up with strategies to handle these situations and coming up
with correct translation. The base has been the classification of transla-
tion divergence presented by Dorr [Dorr, 1994].

Keywords: Machine Translation, Translation Divergence.

1 Introduction

Translation divergence occurs when the underlying concept of a sentence gets
manifested differently in different languages. The topic has been studied from
different perspectives and a number of approaches have been proposed to handle
them [Habash and Dorr, 2002]. It is difficult to obtain correct machine transla-
tion for any MT system without identifying the nature of translation divergence.
In this paper, we examine English-Sanskrit and Hindi-Sanskrit language pairs
mostly from the perspective of identifying the language specific divergences. The
languages, English and Sanskrit, as well as Hindi and Sanskrit differ in many
respects, presenting a rich source for the study of translation divergence in MT.
In section 2, we look at the translation divergence classification proposed by
Dorr and in what way, it appears in the English-Sanskrit-Hindi language pairs.
In section 3, we look at some other divergence patterns which cannot be clas-
sified in the divergence patterns identified by Dorr. In section 4, we give the
concluding remarks.

2 Divergence Patterns Identified by Dorr

Dorr has identified seven classes of translation divergences. These classes are:

A. Kulkarni and G. Huet (Eds.): Sanskrit Computational Linguistics, LNCS 5406, pp. 134–143, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Translation Divergence in English-Sanskrit-Hindi Language Pairs 135

1. Thematic Divergence
2. Promotional Divergence
3. Demotional Divergence
4. Structural Divergence
5. Conflational Divergence
6. Categorial Divergence
7. Lexical Divergence

These classes have been defined to account for different types of translation di-
vergences found in a pair of translation languages. Let us look, in what sense
these can be seen while we examine English-Sanskrit and Hindi-Sanskrit lan-
guage pairs.

2.1 Thematic Divergence

Thematic divergence refers to the divergences arising from differences in the
realization of the argument structure of a verb. In the language pairs, we have
considered, we can find many examples of this divergence. Let us consider some
of these:

– Subject NP in English in nominative case while subject NP in Sanskrit in
dative case:

1. I like sweets. ⇒ mahyam madhuram rocate.
(I DAT) (sweets) (like.PR1).
⇒ Sweets are liked by me.

When we go from Hindi to Sanskrit, same divergence appears:

2. main mit.hāī pasanda karatā hūM. ⇒mahyam madhuram rocate.
(I) (sweets) (like) (do) (be.PR) (I DAT) (sweets) (like.PR).

⇒ mujhe mit.hāī pasanda haim. .
(I DAT) (sweets) (like.PR).

From the example 2, we see that there is divergence between Hindi and San-
skrit. Here the experiencial verb ‘ruc’ gets an active construction in Hindi
while it conditions a dative subject in Sanskrit. However, there is no diver-
gence when we go from Sanskrit to Hindi since the closest translation in
Hindi is mujhe mit.hāī pasanda haim. which has a dative subject as well.

If we examine other verbs such as ‘eat’ for the same pattern, we will not
find this divergence.

3. I eat sweets. ⇒aham madhuram khādāmi.
(I) (sweets) (eat.PR)
⇒ main mit.hāī khātā hūM
(I) (sweets) (eat.PR)

1 Appendix 1.

136 P. Goyal and R.M.K. Sinha

Thus, this divergence is present in a special category of verbs and not all the
verbs. Pān. ini in his kāraka adhikāra lists special cases of verbs which require
special treatment. In a work on English verb classes by Levin [Levin, 1997],
semantic classes of verbs are analyzed which give rise to Divergence.

2.2 Structural Divergence

These are the examples where a noun phrase (NP) is realized in different ways in
two languages. This is most common between English and Sanskrit because in
Sanskrit, no noun is pronounced without a vibhakti. This vibhakti can be realized
in English either as a null or a preposition. Here are some of the examples that
exhibit Structural divergence:

4. He brought mangoes. ⇔ sah. āmrāni ānayat.
(He) (mangoes) (bring.PST)

5. He went to the market. ⇔ sah. āpan. am agacchat.
(He) (market.ACC) (go.PST)

6. He enters the class. ⇔ sah. kaks. āyām pravísati.
(He) (class.LOC) (enter.PR)

In example 4 and 6, the vibhakti in Sanskrit is not realized by a preposition
in English but a null, while in example 5, the vibhakti is realized by a preposi-
tion in English.

While we go from Sanskrit to hindi, we will not get many examples of this
divergence since both languages are kāraka and vibhakti based.

2.3 Conflational and Inflational Divergence

A conflational divergence results when two or more words in English are trans-
lated by one word in Sanskrit. There are many mechanisms in Sanskrit that
present this divergence. Same is true between Hindi and Sanskrit too. Let us
look at some of them:

– ‘sannata prayoga ’:-
7. aham pipat.his. āmi ⇒ I want to read.
(I) (want to read)

⇒ aham pat.hitum icchāmi
(I) (to read) (want)

aham pipat.his. āmi ⇒ main pad. hanā cāhatā hūM.
(I) (want to read) (I) (read) (want be.PR)

⇒ aham pat.hitum icchāmi
(I) (to read) (want)

A sentence in Sanskrit such as ‘aham pipat.his. āmi ’ is translated in English
as ‘I want to read’, thus ‘want to see’ is translated as ‘pipat.his. āmi ’. Thus it

Translation Divergence in English-Sanskrit-Hindi Language Pairs 137

presents conflational divergence. This divergence is exhibited even between
Hindi and Sanskrit.

– ‘nāmadhātu prakriyā ’:- In certain meanings, a Sanskrit nominal stem can
accept certain pratyayas. Consider the sentences:
8. sah. pan. d. itāyate ⇒ He behaves like a scholar.
(He) (behaves like a scholar)

⇒ sah. pan. d. itāh. iva ācarati
(He) (Pandita) (like) (behave.PR)

sah. pan. d. itāyate ⇒ vaha pan. d. ita kī taraha ācaran. a karatā hai.
(He) (behaves like a scholar) (He) (scholar) (like) (behave do be.PR)

⇒ sah. pan. d. itāh. iva ācarati
(He) (Pandita) (like) (behave.PR)

He behaves like a scholar.⇐ sah. pan. d. itāyate. The affix kyaṅ is applied to
the noun pan. d. ita in the sense of ‘behaves like’.

9. sah. śis.yam putrīyati ⇒ He treats the disciple as his son.
(He) (disciple.ACC) (treats as son)

⇒ sah. śis.yam putram iva ācarati
(He) (disciple.ACC) (son) (like) (behave.PR)

sah. śis.yam putrīyati ⇒ He treats the disciple as his son.
The affix kyac is applied to the noun putra in the sense of ‘treats like’.

In example 9, ‘treats as son’ in English is realized by a single word ‘putrīyati ’
in Sanskrit and presents an example of conflational divergence.

– ‘yaṅanta prayoga ’:- This refers to frequentatives.

10. sah. pāpacyate ⇒he cooks again and again
(He) (cooks again and again)

⇒ sah. punah. punah. pacati
(He) (again) (again) (cook.PR)

Same pattern is exhibited when we go from Sanskrit to Hindi language pair.
sah. pāpacyate ⇒ vaha bāra bāra pakātā hai
(He) (cooks again and again) (He) (again) (again) (cook be.PR)

⇒ sah. punah. punah. pacati
(He) (again) (again) (cook.PR)

Hence the English words, ‘cooks again and again’ and the Hindi words, ‘bāra
bāra pakātā hai ’ will be translated in Sanskrit as ‘pāpacyate’. Here, the root
‘pac (to cook)’ is applied with the affix ‘yaṅ’ to form ‘pāpacyate’. This again,
exhibits the example of conflational divergence.

138 P. Goyal and R.M.K. Sinha

2.4 Categorial Divergence

Categorial divergences are located in the mismatch between parts of speech of
the pair of translation languages. Consider the following example:

11. She is jealous of me. ⇔ sā mahyam īrs.yati
(She) (with me) (jealousy does).

We notice that in Sanskrit, ‘jealous’ is realized by a verbal mapping, thus present-
ing categorial divergence. When we go from Hindi to Sanskrit, we have another
translation possible in hindi, for example:

usako mujhase īrs.yā hai ⇒ sā mahyam īrs.yati
(She.DAT) (me-from) (jealousy be.PR) (She) (with me) (jealousy does).

⇒ vaha mujhase īrs.yā karatī hai
(she) (me-with) (jealousy) (do)

2.5 Lexical Divergence

Lexical divergence arises out of the unavailability of an exact translation map
for a construction in one language into another language. In Sanskrit, by adding
‘upasarga’ to a verb, it gets a different meaning. For example, consider the fol-
lowing sentences:

12. sah. mām vadati ⇒ He speaks to me.
(He) (me.ACC) (speaks)

13. sah. ks.etre vivadati ⇒ He quarrels in the field.
(He) (field.LOC) (quarrel.PR)

⇒ sah. ks.etre kalaham. karoti
(He) (field.LOC) (quarrel) (do)

In example 12, the Sanskrit verb ‘vad ’ is realized by English verb ‘speak’, while
in example 13, the Sanskrit verb ‘vi+vad ’ (upasarga ‘vi’ is added to verb vad)
is realized by a new verb in English ‘quarrel’.

3 Other Divergence Patterns

Let us look at some other divergence patterns that are found in these languages:

3.1 Implications of Word Order

Though Sanskrit is a free phrase order language, there are situations where the
word order changes the meaning of the sentence. An example is the occurrence
of kim, consider the sentences:

Translation Divergence in English-Sanskrit-Hindi Language Pairs 139

14. kim sah. khādati? ⇔ ‘is he eating?’
(QP) (he) (eat.PR)

15. sah. kim khādati? ⇔ ‘what is he eating?’
(He) (IP) (eat CONT)

16. sah. khādati kim? ⇔ ‘is he eating?’
(He) (eats) (QP)

Thus, two different interrogative patterns in English are taken care of by different
word orders. Similar situation does not arise when we examine Hindi-Sanskrit
language pair and we donot find this divergence. Thus, we have:

14. kim sah. khādati? ⇔ ‘kyā vaha khā rahā hai? ’
(QP) (he) (eat.PR) (QP) (he) (eat) (PROG) (be.PR)

15. sah. kim khādati? ⇔ vaha kyā khā rahā hai?
(He) (IP) (eat CONT) (He) (IP) (eat)(PROG) (be.PR)

16. sah. khādati kim? ⇔ vaha khā rahā hai kyā?
(He) (eats) (QP) (He) (IP) (eat)(PROG) (be.PR) (IP)

In Sanskrit, word order is used to decide for definiteness for a noun. For ex-
ample, consider the two sentences:

17. bālakah. gr.he asti ⇔ ‘The boy is in the house’
(boy) (house.LOC) (be.PR)

18. gr.he bālakah. asti ⇒ ‘A boy is in the house’.
(house.LOC) (boy) (be.PR)

Thus, bālakah. occurs at different positions in the sentence to show ‘a definite
boy’ (example 17) and ‘some boy’ (example 18). In other words, the bare noun
phrase ‘bālaka’ in 17 and 18 is mapped by definite and indefinite noun phrases
in English. However, the only difference between these two Sanskrit sentences is
the respective positions of the subject NP and the adverbial phrase. When we
look at the reverse translation of 18, we find that the nature of divergence is
different. Thus, we have:

19. A boy is in the house. ⇒ gr.he ekah. bālakah. asti
(house.LOC) (a) (boy) (be.PR)

On the other hand, there is no divergence between Hindi-Sanskrit language pair
on this issue.

140 P. Goyal and R.M.K. Sinha

3.2 Change of Voice

In Sanskrit language, we find the use of passive voice to be very frequent, which
is not so in English. We are presenting the examples below which show diver-
gence when we go from Sanskrit to English translation. The Sanskrit sentence
is in passive voice, while the corresponding sentence in English sentence is in
active voice.
20a. rāmen. a hasitavyam ⇒ Ram should smile.
(Ram.INS)(laugh.KR)

⇒rāmah. haset.
(Ram) (smile.IMPR)

21a. kopah. na karan. īyah. bhavatā ⇒ You should not be angry.
(anger) (not) (do.KR) (you.INS)

⇒ tvam mā krudhya
(you) (not) (anger.IMPR)

22a. tena khāditah. ⇒ He ate.
(he.INS) (eat.PASS)

⇒ sah. akhādat.
(he) (eat.PST)

While examining Hindi-Sanskrit language pair, we do not find similar divergence
since the corresponding Hindi sentences are very close to the passive construct
in Sanskrit:

20b. rāmen. a hasitavyam ⇒ rāma ko ham. sanā chāhie
(Ram.INS)(laugh.KR) (Ram.ACC) (laugh) (should)

21b. kopah. na karan. īyah. bhavatā ⇒ āpako gussā nahīm. karanā chāhie
(anger) (not) (do.KR) (you.INS) (you.ACC) (anger) (not) (do) (should)

22b. tena khāditah. ⇒ usane khāyā
(he.INS) (eat.PASS) (He) (eat.PST)

3.3 Gerunds and Participle Clauses

Another significant source of divergence in Sanskrit and English/Hindi can be
located in the way various clauses and adjuncts are realized in different lan-
guages. First, let us consider English and Sanskrit language pair:

23. ‘He is happy to protect the country’
⇔ des̀am raks.itvā sah. prasannah. bhavis. yati.
(country.ACC) (protect.GER) (he) (happy) (be.FU)

Translation Divergence in English-Sanskrit-Hindi Language Pairs 141

24. ‘He came here to protect the country’
⇔ des̀am raks. itum sah. atra āgacchat
(country.ACC) (protect.GER) (he) (here) (come.PST)

25a. He is not able to walk.
⇔ sah. calitum asamarthah. .
(He) (walk.GER) (not able)

We notice that in example 23 and 24, in Sanskrit, different types of adjunct
verbal clauses and complement verbal clauses are realized by different struc-
tures. In English, they are realized by an infinitive clause. The examples 24 and
25a have similar sentence construction. We now examine some sentences between
Sanskrit and Hindi languages:

25b. vaha calane mem. asamartha hai ⇔ sah. calitum asamarthah. .
(He) (walk) (in) (able) (not) (be.PR) (He) (walk.GER) (not able)

26. vaha citra dekhane (ke liye) āyā ⇔ sah. citram dras. t.um āgatah. .
(He) (picture) (see) (for) (come.PST) He) (picture) (see.GER) (come.PST)

In the Hindi sentences in (25b-26), the adjunct verbal clauses and complement
verbal clauses are realized by different structures, which in Sanskrit are mapped
by a single structure. Though, for example 25b, we have a Sanskrit parallel as
‘sah. calane akus̀alah. ’ which does not present divergence.

3.4 Morphological Gaps

We take the example of causatives:

27. ‘I study’ ⇒ aham pat.hāmi
(I) (study.PR)

28. ‘I make him study’ ⇒ aham tam pāt.hayāmi
(I) (He.ACC) (teach.PR)

In the above two sentences, the form pat.hāmi and pāt.hayāmi are morpholog-
ically derived from the root pat.h, while the English counterpart has only one
lexical verb ‘study’ and other is derived using the verbs such as ‘get’, ‘make’
etc, with separate argument structure. In case of Hindi-Sanskrit, no divergence
is exhibited as such since in Hindi also, roots are morphologically derived:
pad. hā ⇒ pad. hāyā⇒pad. havāyā.

3.5 Honorific

In Sanskrit, honorific features are expressed by the use of plural pronoun (as
well as adjective and noun, this is crucial since the verb endings need to agree
with noun) and plural verb inflections. For example, consider the sentence:

142 P. Goyal and R.M.K. Sinha

29.Respected teacher is teaching the students.
⇔ pūjyāh. gurucaran. āh. śis.yān pāt.hayanti.
(respected.pl) (teacher.pl) (students.ACC) (teach.PR)
⇔ pūjya guruj̄i s̀is.yom. ko pad. hāte haim.
(respected) (teacher) (students) (to) (teach)

We see that in example 29, the adverb ‘pūjya’, noun ‘gurucaran. a’ as well as
the verb ‘pāt.h’ take plural inflections in case of Sanskrit, while in hindi only the
verb ‘pad. hāte haim. ’ takes the plural inflection. This divergence is caused by the
socio-cultural aspect of the respective languages.

3.6 Mapping of Time

In English, the concept of a.m. vs p.m cannot be exactly mapped in Sanskrit.
The example 30 shows that the time at 5 o’clock in the morning (prātah. kāle
pañcavādane) is denoted by a.m. in English. In example 31, the time at 11 o’clock
in the morning/afternoon (prātah. kāle/madhyadine ekādas̀avādane) is also de-
noted by a.m. in English. Therefore, the term a.m. (and similarly p.m.) cannot
be translated as such. One needs to examine the numbers written before and
should have a built in intelligence in the translation system to handle different
numbers by appropriate Sanskrit words.

When we go from Sanskrit to English translation, this divergence pattern is not
exhibited since English also has more terms for periods of day than a.m. and p.m.

30. He arrived at 5 a.m. ⇒ sah. prātah. kāle pañcavādane āgatah.
(He) (morning.LOC) (at 5 o’clock) (arrive.PST).
⇒ He came at 5 o’clock in the morning.

31. He arrived at 11 a.m. ⇔ sah. prātah. kāle/madhyadine ekādas̀avādane āgatah. .
(He) (morning/afternoon.LOC) (at 11 o’clock)
(arrive.PST).

A similar situation is seen with respect to the mapping of p.m. in the exam-
ples 32-34.

32.He arrived at 3 p.m. ⇔ sah. aparāhne trivādane āgatah. .
(He) (afternoon.LOC) (at 3 o’clock) (arrive.PST).

33. He arrived at 5 p.m. ⇒ sah. sāyam. kāle pañcavādane āgatah.
(He) (evening.LOC) (at 5 o’clock) (arrive.PST).
⇒ He came at 5 o’clock in the evening.

34. He arrived at 11 p.m. ⇒ sah. rātrau ekādas̀avādane āgatah.
(He) (night.LOC) (at 11 o’clock) (arrive.PST).
⇒ He came at 11 o’clock in the night.

However, there is no divergence in case of this mapping, when we examine Hindi-
Sanskrit language pair.

Translation Divergence in English-Sanskrit-Hindi Language Pairs 143

4 Conclusions and Discussions

Above mentioned are some of the divergence patterns that we were able
to classify. We have kept in view the classification of translation diver-
gence proposed by Dorr and some of the works on Hindi-English divergence
[Sinha and Thakur, 2005] [Dave et. al., 2002]. We are in the process of iden-
tifying other such patterns. These divergence patterns will be useful in our
implementation of machine translation system from English to Sanskrit lan-
guage. Some of the divergence study has been useful in the current implementa-
tion of our machine translation system [Goyal and Sinha, 2008] from English to
Sanskrit.

References

[Dorr, 1994] Dorr, B.: Classification of Machine Translation Divergences and a Pro-
posed Solution. Computational Linguistics 20(4), 597–633 (1994)

[Habash and Dorr, 2002] Habash, N., Dorr, B.: Handling Translation Divergences:
Combining Statistical and Symbolic Techniques in Generation-Heavy Machine
Translation Technical Report, LAMP 88 (2002)

[Dave et. al., 2002] Dave, S., Parikh, J., Bhattacharya, P.: Interlingua Based English-
Hindi Machine Translation and Language Divergence. Journal of Machine Trans-
lation (JMT) 17 (2002)

[Levin, 1997] Levin, B.: English Verb Classes and Alterations: A Preliminary Investi-
gation. The MIT Press, Cambridge (1997)

[Sinha and Thakur, 2005] Sinha, R.M.K., Thakur, A.: Translation Divergence in
English-Hindi MT EAMT, Budapest, Hungary (2005)

[Goyal and Sinha, 2008] Goyal, P., Sinha, R.M.K.: A Study towards English to San-
skrit Machine Translation system. SISSCL (2008)

Appendix 1

ACC: Accusative Case, INS: Instrumental Case, LOC: Locative Case,AFF:
Affirmative Case, CAUS: Causative Case, CONT: Continuative Aspect, CPP:
Conjunctive Participal Particle, ET: Determiner, DUR: Durative Aspect; EW:
Echo Word, FU: Future Tense,DAT: Dative Case, DIT: ditransitive Case,
ERG: Ergative Case, GER: Gerund, HAB: Habitual Aspect, IMP: Imper-
fective Aspect, IMPR:.Imperative Mood, PASS: Passive Particle, PR: Present
Case, INT: Interrogative, OPT: Optative Mood, QP: Question Particle, RP:
Relative Pronoun, SUBJ: Subjunctive Mood, TRS: Transitive, VPRT:Verbal
Participle, KR: kr. tya pratyayānta in Sanskrit

Web Concordance of the Prak̄ırn. a-Prakāśa of
Helārāja on the Jātisamuddeśa (3.1) of

Vākyapad̄ıya

Malhar Kulkarni and Chaitali Dangarikar

Indian Institute of Technology, Mumbai, India
malhar@hss.iitb.ac.in,
chaitali@hss.iitb.ac.in

http://www.hss.iitb.ac.in

Abstract. This article presents features of the web concordance in the
form of KWIC (key word in context) index of the Prak̄ırn. a-Prakāśa
of Helārāja (980 A.D.) on the Jātisamuddesá of Vākyapad̄ıya (450
A.D.), a seminal work in Indian grammatical tradition. Apart from the
original text it also takes into account variant readings in the text. This
searchable concordance will be useful for the philological study of the
text.

Keywords: Web concordance, KWIC Index, Sanskrit Grammar,
Prak̄ırn. a-Prakāśa, Jātisamuddesá, Vākyapad̄ıya, Bhartr.hari (450 AD),
Helārāja (980 A.D.).

1 Introduction

This paper aims to present the features of the online KWIC index of the
Prak̄ırn. a-Prakāśa (PP) of Helārāja1 of the Jāti-Samuddeśa (JS) of Vākyapad̄ıya2

(VP) as available in Iyer’s edition [5] and it’s Web concordance that we have
prepared during last two years. KWIC is a word index in a Key Word In
Context format. The purpose of preparing the KWIC index of JS is to provide
a supplementary aid to the study of VP kān. d. a 3. Growing interest in the study
of VP demands that the vast text of the third kān. d. a should be available and
accessible in the KWIC format.

Very few web concordances of Sanskrit texts are available to date. Some
notable web concordances are (a) Database query to Vedic Concordance

1 Helārāja (980 A.D.) wrote a commentary on entire VP of Bhartr.hari. The
commentary on first and second kān. d. as is lost. The only work of Helārāja that
is available today is his commentary on the third kān. d. a of Vākyapad̄ıya.

2 Vākyapad̄ıya or Trikān. d. ı̄ (according to Aklujkar) is a wellknown treatise composed
by a philosopher and grammarian called Bhartr.hari (450 AD) [2]. Rau [3] and Bhate
and Kar [4] published word-index to the kārikā text of Vākyapad̄ıya. There are three
kān. d. as in Vākyapad̄ıya: (1) Brahma-kān. d. a or Āgama-kān. d. a, (2) Vākya-kān. d. a, and
(3) Pada-kān. d. a or Prak̄ırn. a(ka)-kān. d. a.

A. Kulkarni and G. Huet (Eds.): Sanskrit Computational Linguistics, LNCS 5406, pp. 144–153, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.hss.iitb.ac.in

Web Concordance of the Prak̄ırn. a-Prakāśa of Helārāja 145

[Bloomfield]3 (b) Database query to Rgvedic word concordance [Lubotsky]4

(c) Pandanus Sanskrit E-texts5 and (d) Rāmopakhyāna index6 is a complete
concordance of a small segment of the Mahābhārata. First one is the database
that represents an electronic version of M. Bloomfield’s Vedic Concordance
prepared by Marco Franceschini, under the supervision of Prof. Alessandro
Passi, at the University of Bologna. Second one is the conversion of the first
one into the STARLING-format by A. Lubotsky, October 2000, May 2005.
Third one is a searchable collection of Sanskrit electronic texts is a part of
the Pandanus project. At present it contains 27 Kāvya and Subhās. ita works
(more than 4MB of data), all transcribed and proofread by students of the
Seminar of Indian Studies (Institute of South and Central Asia, Faculty of
Arts, Charles University, Prague), the work is still in progress. All these
concordances are searchable databases and do not provide exact word-lists of
the texts.

Plenty of e-texts on Sanskrit Grammar are available but no index is available
online so far. We hope that our attempt of building the web concordance of
the entire VP and PP on JS of VP (see figure 1) will be considered as a
useful tool to study the terminology of Sanskrit Grammarians. The lexicon
database generated by this concordance can be useful in the NLP related
activities.

The reason behind choosing the text of PP on JS of VP is: Unebe prepared the
index of the Vr.tti, a commentary on Vākyapad̄ıya kān. d. a 1 which appeared in the
vol. 22 of Sam. bhās. ā in 2002 [6]. Unebe quoted Cardona’s (1999) remarks about
Professor Ashok Aklujkar’s forthcoming new edition of VP which will contain
index of the Vr.tti on the first two kān. d. as [7, p. 249-250]. We are presenting the
first Samuddeśa of the third kān. d. a of VP. Readers must note that this is an aid
to the Iyer’s edition of VP [5] and not an edition of VP 3.1.

The subject-matter of the third kān. d. a is divided into various Samuddeśas.
And most of the recent research works on the third kān. d. a focus on a particular
Samuddeśa, rather than studying the third kān. d. a as a whole. Secondly, as
Houben (1995) pointed out that the third kān. d. a should be divided into two:
(a) Samuddeśas discussing the Jāti-paks.a and (b) Samuddeśas discussing the
Dravya-pakās.a [8]. According to him, in Jāti-Samuddeśa we find the Jāti-
padārtha-vāda, whereas, in the Samuddeśas after Dravya-Samuddeśa emphasis
is given on the Dravya-padārtha-vāda. The index of the individual Samuddeśa,
will provide immense help to the researchers who study the Samuddeśas sep-
arately as well as for those who want to study the 3rd kān. d. a in its entirety.
Thinking thus we have prepared the KWIC index of the Jāti-Samuddeśa of the
Vākyapad̄ıya.

3 http://www.indo-european.nl/cgi-bin/startq.cgi?flags=endnnnl&root=
leiden&basename=/data/ie/bloomf

4 http://www.indo-european.nl/cgi-bin/startq.cgi?flags=endnnnl&root=
leiden&basename=/data/ie/concord

5 http://iu.ff.cuni.cz/pandanus/electronictexts/
6 http://sanskritlibrary.org

http://www.indo-european.nl/cgi-bin/startq.cgi?flags=endnnnl&root= leiden&basename=/data/ie/bloomf
http://www.indo-european.nl/cgi-bin/startq.cgi?flags=endnnnl&root= leiden&basename=/data/ie/bloomf
http://www.indo-european.nl/cgi-bin/startq.cgi?flags=endnnnl&root=leiden&basename=/data/ie/concord
http://www.indo-european.nl/cgi-bin/startq.cgi?flags=endnnnl&root=leiden&basename=/data/ie/concord
http://iu.ff.cuni.cz/pandanus/electronictexts/
http://sanskritlibrary.org

146 M. Kulkarni and C. Dangarikar

Fig. 1. Frame-based interface of Web concordance of PP on JS of VP

2 Interface of the Web Concordance

The web concordance of the Prak̄ırn. a-Prakāśa (an interface shown in figure 1)
is intended for the online users. Prak̄ırn. a-Prakāśa is available as hyperlinked
text. Every entry in a concordance comes with a reference which is a pointer
to a particular location in the source text (text as per the Iyer’s edition [5]).
Researchers working on Bhartr.hari are presented with a ready-to-use concordance
instead of having to construct their own, and with a browser interface which is
already familiar.

Web concordance of the Prak̄ırn. a-prakāśa is prepared using the Concordance
software developed by R.J.C Watt. The text is presented in the Harvard-
Kyoto encoding. The only modification is “E” and “O” are used for “ai” and
“au” respectively. Key Words in this concordance are sorted in the English
alphabetical order.

Left panel of this web concordance contains the list of a vocabulary list and
a full version of the original literary text, all hypertextually linked for ease of
reference. The words are listed in the English alphabetical order. The uppermost
panel contains the link to the list of keyword sorted alphabetically. In the
Concordance panel, one can find a key word followed by number of occurrences.
Under that the short context in which the word is used in the text can be seen.

Web Concordance of the Prak̄ırn. a-Prakāśa of Helārāja 147

Fig. 2. Properties of the Concordance

The hyperlinked number at the right end of each occurrence is a combination
of page number and line number of the hyperlinked text of the Iyer’s edition [5]
of Prak̄ırn. a-prakāśa. Lower panel shows the text of the Prak̄ırn. a-Prakāśa on
Jātisamuddeśa.

2.1 Properties

Figure 2 shows information about the concordance, including the number of
lines, words, characters, and sentences in the source text, the type-token ratio of
the text, and the average number of words per sentence. Types are word-forms
and tokens are occurrences of word-forms. The number of lines in the text of
Prak̄ırn. a-Prakāśa are 4311 and there are 6593 types of words in the text. Among
these 2476 are the token words. The type-token ratio is 3.6%. This ratio of types
to tokens is a measure often used in quantitative stylistic analysis. The sandhi
and samāsa words are split manually and hence the word-length is delimited.
Following graph explains the statistical information regarding the word-lengths
in the text.

The Chart’s X-axis shows word length in letters. The Y-axis shows the
numbers of such words. The labels at the top of each bar on the chart show the
numbers of words (as on the Y-axis) but can be switched to show the percentage
of the whole text which such words represent.

148 M. Kulkarni and C. Dangarikar

Fig. 3. Word Length Chart

3 Features of the KWIC Index

All entries in this index are arranged in alphabetical order. Each entry in this
index is arranged in two columns. Each entry begins with the keywords appearing
in the bold format and a number preceding to it which indicates the number
of occurrences of that particular word in the text. Below this, follows a list
of occurrences with the short context in two columns. First column has three
sub-columns containing the number of Verse, Page no. according to Iyer’s edition
(1994) and line numbers at the end. In second column, occurrence of the keyword
with the short context in which it appears in the JS and PP are mentioned. For
example:

4 am. śa

003 0002 0001 kriyā-sva-bhāvah. | //tatra caˆam. śaˆam. śi-kalpanayāˆapoddhāre

078 0002 0074 ah. |//tatra pratipatty-artham am. śaˆam. śikatayā appoddhāra-pad

003 0003 0001 a iti siddha-sādhya-//laks.an. aˆam. śa-dvaya-vis.ayah. , padaˆapodd

002 0015 0001 riyamān. asya padasya vākyārthaˆam. śa-parikalpanayāˆarthavata e

Here, the number preceding the keyword am. śa indicates the number of
occurrences found in PP and JS. First entry should be read as verse 1 page
2 line 15 of Iyer’s edition. // in the text indicates the beginning of the line. The
compound words in the text are split into their constituent elements and these
elements are shown connected by the hyphen (-). While doing so, the vowel
sandhis are dissolved and shown as connected by ˆ . Consonant sandhis are
shown as connected by hyphen. For example,

Web Concordance of the Prak̄ırn. a-Prakāśa of Helārāja 149

cām. śām. śikalpanayā <is shown as > caˆam. śaˆam. śi-kalpanayā

Verbal compounds remain undissolved and mentioned as abhivyanakti. But
the cv̄ı forms are dissolved.

087 0002 88 | naˆity āha://gun. e ’pi naˆaṅḡı-kriyate pradhānaˆantara-siddhaye
090 0012 89 gun. e ’pi sam. khyā//naˆaṅḡı-kriyate ’traˆiti dvi-bahud. v

Negative compounds like acoditasya are not dissolved as a-coditasya to
avoid its confusion with the words like a-kāra. Similarly, compounds like sārtham
etc. are not dissolved.

053 0021 46 avyavacchinnām. śrutim āhur akartr.kām |//śid. t.air nibadhyamānā
052 0011 46 svārtha-pratipatti-darśanād akiñcit-karasyaˆanarthakasya paratra
008 0007 2 rūpam. //padārthāv iti sphut.ı̄-kr. tam| anyathā vāˆarthe
075 0017 71 āhuh. : sagun. a ity etad eva sphut.ı̄-kr. tam. sadāˆekatvenaˆiti

Readers must note that anusvāra is encoded following the para-savarn. a
principle and while sorting it comes in the place of para-savarn. a. For example,
aṅga comes after ga and gh whereas am. śa comes in the beginning. Similarly,
due to the yan. -sandhis words like iti and api should be searched twice as iti
and ity (in sandhi) and api and apy. Same is applicable to the occurrences
of the 7th case singular ending of the nominal words ending is i for example,
siddhau and saddhav, jātau and Jatāv etc.

Additional Features of the KWIC Index

Variant Readings (Jāti-Samuddeśa) The text presented here is based on the
Iyer’s edition of VP 3.1 with PP on it [5]. We are thankful to Yves Ramseier for
making available the digitized text of PP which saved our efforts of digitizing
the full text again. After the initial proofreading we realized that the text given
by Yves Ramseier needs some corrections and modifications. Apart from those
modifications, we included various readings of the text of PP from the other
editions, i.e., Ambākartr̄ı by Śarmā (1991) (AK), and Rāmakr. s.n. aśāstr̄ı and
Śāstr̄ı (1905) (A). Variant readings from the editions of kārikā text are also
included here in the appendix. For example,

1. Verse 6 (a):- R: svajātih. ; BK, AK, AL: svā jātih. . Rau mentions sā jātih. from
the ms. A p. 16.

2. Verse 10 (a):- R: yā śabdajātísabdes. u; I, AK, & SK: yā śabdajātih. śabdes.u
p. 9.

3. Verse 19 (a):- AL: pravr. ttirūpāyām. ; I & AK: R, & SB: pravr. ttirūpā p. 22.
4. Verse 27 (b):- BSS, I, & AK: nis.pattau ; Rau: nis.pattyai p. 36.
5. Verse 54 (a): AK and I: karman. yaṅgatvam for Rau: karmasv aṅgatvam

p. 62.
6. Verse 57 (a): mss. prathamah. .; prathamā for I, AK, R: prathamam.
7. Verse 60 (c):- AK & I: ks. āyām. for Rau: ks. āyā p. 67.
8. Verse 62 (d): AK: evam for Rau & I: eva p. 68.

150 M. Kulkarni and C. Dangarikar

9. Verse 63 (a):- I: ekena cet pra for Rau & AK: ekena ca pra p. 69.
10. Verse 68 (b):- Rau mentions eight different readings from various mss. as

pāradharmohataste , pāradharmmotvaste, pāradharmoyataste , pāravataste,
pāraevāste , pāradharmmataste , pāradharmmotaste , and pāravātaste. Rau
considers sam. khyāvyāpāradharmo as one compound word whereas Iyer and
AK splits it as sam. khyā vyāpāradharmo. p. 72.

11. Verse 79 (a):- Rau mentions 5 different readings: vyaktísaktes samāpannā,
vyaktísaktes samāsanno, vyaktísakis samāsanno, dravyaśakter yathāsannā
and dravyśakter yathāsattā. p. 81.

In the context of the Index Raus’ readings [9] are indicated by using an *
followed by the abbreviation R in <. . . >. For example,

103 0003 *108 ||105<R 109>||//ghat.a-jñānam iti jñānam. ghat.aˆādyˆākāram. j

Here, 105<*R 109> indicates that verse 105 of Iyer’s edition [5] is recorded as
verse 109 in Rau’s edition [9] edition of Vākyapad̄ıya. It means that the verse
no.109 in Rau’s edition is recorded as verse no.105 in Iyer’s edition.

Variant Readings (Prak̄ırn.a-Prakāśa): KWIC index also lists the variant
readings found in the text of Prak̄ırn. a-Prakāśa rendered by K. A. Subramania
Iyer and Raghunath Sharma.

1. AK: rucirah. for I: ruciram. p.1:3.
2. AK: nivartana for I: nirvartana p.2:14.
3. mss. M ˚upakalpita˚ for I and AK: ˚utkalita˚ p.3:1.
4. AK: dan. d. aka after iti in 24b p.15:1.
5. AK: na śrautārthatyāgah. pratinidhau | for I: na śrautārthatyāgah. | [25b]

pratinidhau naitan. nyāyyam. | p.15:10.
6. AK: śabdo’vastucintām. anusarati for I: śabdo vastucintām. anusarati p.15:11.
7. AK: pratipādyate for I: pratipadyate p. 17:11.
8. AK: | p. 18:1.
9. AK: ˚ks.an. ah. for I: ˚laks.an. ah. p. 18:3.

10. AK: ˚abhivyañjane iti for I: ˚abhivyañjana iti p. 18:4.
11. AK: ˚prasaṅga ityāśaṅkyāha for I: ˚prasaṅgaityāśaṅkyāha p. 22:13.
12. AK: in the main text ˚avabhāitvābhāt but ˚avabhāitvābhāvāt in the

Ambākartr̄ı for I: ˚avabhāitvābhāvāt. p. 24:3.
13. AK: jāti-vyatiriktayā , I: jāti vyatiriktayā; and BBS: jātir vyatiriktayā p.

25:11.
14. AK: vastu san-nābhidhīyate; I: vastu-san-nābhidhīyate p. 25:14.
15. AK & I: yathā; Ramseier: tathā p. 26:12.
16. AK & I: sattva-gun. āh. | tathā; Ramseier: sattvagun. ās tathā p. 27:3.
17. AK: gotvākārah. prasūyate; I: gotvākārah. pratyayah. prasūyate p. 27:16.

The text of Iyer’s edition [5] of PP on 106 verses of JS has 105 pages, 4596 lines
and 7175 words. Among these 24409 words, only 7175 words are unique words.

We hope and believe that this work will prove useful for Indologists all over
the world working in the area of Language studies. We hereby attach a few
sample pages of the said KWIC index (after converting HK encoding into the
roman transliteration). The web concordance of the PP on JS of VP will be
made available on the IIT website at appropriate time.

Web Concordance of the Prak̄ırn. a-Prakāśa of Helārāja 151

References

1. Potter, K.H.: Helārāja. In: Potter, K. (ed.) The Philosophy of Greammarians.
Encyclopedia of Indian Philosophy, vol. V, pp. 193–197. Motilal Banarasidass, Delhi
(1990)

2. Aklujkar, A.: Two textual studies of Bhartr.hari. In: Bhate, S., Bronkhorst, J. (eds.)
Bhartr.hari: Philosopher and Grammarian, Proceedings of the First International
Conference, Bhartr.hari, Delhi, First Indian edn., Motilal Banarsidass Pub. (1994)
(Origenally published, 1993)

3. Rau, W.: Bhartr.haris Vākyapad̄ıya Vollständiger Wortindex zu den mūlakārikās.
Franz Steiner Verlag, Stuttgart (1988) (Akademie der Wissenschaften und der
Literatur, Abhandlungen der Geistes- und Sozialwissenschaftlichen Klasse, Jahrgang
1988, n◦11) (in German)

4. Bhate, S., Kar, Y.: Word Index to the Vākyapad̄ıya of Bhartr.hari. Eastern Book
Linkers, Delhi (1992) (Together with the complete text of the Vākyapad̄ıya. Follows
roughly Rau’s 1977 edition, but in Devanāgar̄ı)

5. Iyer, K.A.S.: Vākyapad̄ıya of Bhartr.hari with the Prak̄ırn. a-Prakāśa of Helārāja,
Kān.d. a III Part i. Deccan Collage, Pune (1994)

6. Unebe, T.: KWIC index to the Vākyapad̄ıya, kān. d. a 1. Nagoya Studies in Indian
Culture and Buddhism. Sam. bhās.ā 22, 1–239 (2002)

7. Cardona, G.: Recent Research in Pān. inian Studies. Matilal Banarasidass, Delhi
(1999)

8. Houben, J.E.M.: The Sam. bandha-samuddeśa (Chapter on Relation) and
Bhartr.hari’s Philosophy of Language. Egbert Forsten (1995)

9. Rau, W.: Bhartr.hari’s Vākyapad̄ıya: Die Mūlakārikās nach den Handschriften
heraugegeben und mit einem Pāda-Index versehen von Wilhelm Rau. Reprint edn.
Franz Steiner, Wiesbaden (2002)

Abbreviations Used

A Rāmakr. s.n. aśāstr̄ı and Śāstr̄ı (1905)
AK Ambākartr̄ı by Śarmā (1991)
I Iyer’s edition of V ākyapad̄ıya of Bhathari
JS Jāti-Samuddeśa
PP Prak̄ırn.a-Prakāśa
R Rau’s edition of V ākyapad̄ıya of Bhatr.hari
VP Vākyapad̄ıya

About Authors
Dr. Malhar Kulkarni, Associate Professor, Department of Humanities and Social
Sciences, Indian Institute of Technology, Powai, Mumbai, 400076.

Chaitali Dangarikar, Research Scholar, Department of Humanities and Social
Sciences, Indian Institute of Technology, Powai, Mumbai, 400076.

A Sample of the KWIC Index

4 am. śa

003 0002 0001 kriyā-sva-bhāvah. | //tatra caˆam. śaˆam. śi-kalpanayāˆapoddhāre

078 0002 0074 ah. |//tatra pratipatty-artham am. śaˆam. śikatayā appoddhāra-pad

152 M. Kulkarni and C. Dangarikar

003 0003 0001 a iti siddha-sādhya-//laks.an. aˆam. śa-dvaya-vis.ayah. , padaˆapodd

002 0015 0001 riyamān. asya padasya vākyārthaˆam. śa-parikalpanayāˆarthavata e

1 am. śah.
003 0004 0001 hedāt kārakaˆātmā siddha-rūpoˆam. śah. | yady api ca nāma-padā

1 am. śasya

068 0021 0062 jātih. padārtho bādhyeta, jātyˆam. śasyaˆajātitvād//iti prakr.ty

1 am. śā

047 0005 0040 ātrāh. kalāh. parikalpitā bhāgā am. śā gotvaˆādi-sāmānya-víses. āh.
1 am. śi

003 0002 0001 -sva-bhāvah. | //tatra caˆam. śaˆam. śi-kalpanayāˆapoddhāre kārak

1 am. śikatayā

078 0002 0074 /tatra pratipatty-artham am. śaˆam. śikatayā appoddhāra-padārtha

1 am. śo

003 0002 0001 āre kārakaˆātmā kriyāˆātmā caˆam. śo vibhāgaˆarha iti siddha-

1 akartr.
090 0006 0089 yasyaˆasti kartr.-sam. jñakasyaˆakartr. -sam. jñakasya ca tasyaˆub

1 akartr. kām

053 0021 0046 im-avyavacchinnām. śrutim āhur akartr. kām|//śis. t.air nibadhyamān

1 akarmakebhyah.
090 0008 0089 vam. //lah. karman. i ca bhāve caˆakarmakebhyah. (P. 3.4.69)//it

1 akāra

073 0004 0068 mah. , tena liṅgena gamyata ity akāra-praśles.am. ke cid vyācaks.
1 akāran. āni

038 0001 0028 virodhah. | tathā caˆāhuh. :///naˆakāran. āni vidhim. bādhante prat

1 akāri

033 0009 0019 atirikta-sāmānya-kalpanāˆevam akāriˆity atra tātparyaˆarthah.
2 akiñcit

052 0011 0046 m. svārtha-pratipatti-darśanād akiñcit-karasyaˆanarthakasya p

088 0023 0089 antryam. sarves. ām. eva vidyate, akiñcit-karasya kriyāˆaṅga-bhā

1 akramatā

020 0019 07-8 stavah. kramah. | pratyāyane tv akramatāˆeva| śabdaˆācchuritat

1 aks.aren. a

018 0012 0006 avat sphot.a-tattvam| prathamaˆaks.aren. a hi jāter ābhāsa-mātra

4 akhan. d. a

002 0003 0001 ada-vyutpattir-vākya-vādinām, akhan. d. a-pada-//vyutpattāv iva

079 0002 0075 katayā//pratipāditah. | vākyād akhan. d. a-pratibhāˆutpattāv apod

078 0015 0074 stutah. | tathā ca śruty-ād̄ınyˆakhan. d. a-vākya-paks.e naˆupapady

002 0003 0001 dhyā//pr. thak padam. nis.kr.s.ya | akhan. d. a-vākya-vyutpattāv upāya

1 akhan. d. e

015 0002 0005 ˆadhyavāpah. /śabda-vyāpārah. |//akhan. d. eˆapi hi vākyārtha-nayeˆ

1 agata

074 0021 0070 vādāt sam. mārge pradhāna-velāvˆagata-sam. khyākānām evaˆavadhār

1 agatyā

097 0007 0096 m. sva-sam. vijñāna-padaˆabhāvād agatyā bhedaˆabheda-śabdābhyām.
1 agr.hyamān. a

Web Concordance of the Prak̄ırn. a-Prakāśa of Helārāja 153

039 0018 30-31 śrotraˆindriya-//kāryam| evam agr.hyamān. a-sva-bhāvā vyaktayah.
2 agr.hyamān. asya

040 0001 30-31 yam. ///śabdaˆartha ity arthah. | agr.hyamān. asyaˆapi tadān̄ım. vyak

040 0002 30-31 yaˆavasāyaˆavirodhāt sam. pratyˆagr. hyamān. asyaˆapi dr.s.t.am. prat̄ı

1 agni

064 0009 0056 atāt| tathā hi “āgneyam ajam-agni-s.t.oma ālabheta” ity uktvā

2 agnau

054 0013 0046 athāˆāditye tejah. , dāhakatvam agnau, śaityam apsu| tathā jñāna

088 0012 0089 tarhi yajeh. prayogo dr. śyate, “agnau sus.t.hu yajata” iti| atra

Author Index

Agrawal, Muktanand 116

Bhadra, Manji 116

Chandrasekhar, R. 116

Dangarikar, Chaitali 144

Gillon, Brendan S. 98
Goyal, Pawan 134

Hellwig, Oliver 106
Houben, Jan E.M. 6

Jha, Girish Nath 116
Joshi, S.D. 1

Kulkarni, Malhar 144
Kumar, Sachin 116

Mishra, Anand 40
Mishra, Sudhir K. 116

Petersen, Wiebke 78

Ramkrishnamacharyulu, K.V. 26

Scharf, Peter M. 66
Singh, Surjit Kumar 116
Sinha, R. Mahesh K. 134
Subash 116
Subbanna, Sridhar 56

Varakhedi, Shrinivasa 56

	Background of the A\d{s}\d{t}{\=a}dhy{\=a}y{\=\i}
	P\={a}\d{n}ini’s Grammar and Its Computerization: A Construction Grammar Approach
	Introduction
	Construction Grammar and P\={a}\d{n}inian Grammar
	Computerizing P\={a}\d{n}ini’s Grammar
	Conclusion and Prospects: The Dh\={a}tu-p\={a}\d{t}ha as a Central Component of P\={a}\d{n}ini’s Grammar
	References

	Annotating Sanskrit Texts Based on \'{S}\={a}bdabodha Systems
	Introduction
	Proposed Tagset
	Inter-sentential Relations

	Sentence Internal Relations
	Relations Related to the Activity-Denoting Words

	Modelling the Grammatical Circle of the P\={a}\d {n}ini System of Sanskrit Grammar
	Introduction
	Circular Nature of the Grammatical Process
	Representing the Grammatical Process of \emph{A\d{s}\d{t}\={a}dhy\={a}y\={\i}}
	Fundamental Components
	Attributes
	Sound Set ψ
	Language Component λ
	Process Strip σ
	Attribute Addition
	Augmentation
	Substitution

	Heuristically Analyzing the Sanskrit Expressions
	Some Observations on the Process of Analysis
	The General Process of Analysis

	Forming Samskrta Expressions Using the Rules of \emph{A\d{s}\d{t}\={a}dhy\={a}y\={\i}}
	An Extended Model for Forming Samskrta Expressions
	Stable and Transitional \lamda - States
	Executing the Stabilizing Process
	Executing the Transitional Process

	Computer Implementation of the Model
	Database
	Input
	Analyzer (See Sec. 4)
	Synthesizer (See Sec. 5)
	Output

	Computational Structure of the \emph{A\d{s}\d{t}\={a}dhy\={a}y\={\i}} and Conflict Resolution Techniques
	Introduction
	Computational Structure of the \emph{A\d{s}\d{t}\={a}dhy\={a}y\={\i}}
	Classification and Representation of S\={a}tras
	Computational Structure

	Techniques for Conflict Resolution
	Conflict Resolution through S\={a}tras
	Conflict Resolution through {\it vartikas}

	Conclusion

	Levels in P\={a}\d{n}ini’s \emph{A\d{s}\d{t}\={a}dhy\={a}y\={\i}}
	Kiparsky's rchitecture
	K\={a}rakas
	L-affixes
	Abstract orphology ersus honology
	Conclusions
	Implications for omputational odeling
	References

	On the Construction of \'{S}ivas\={u}tra-Alphabets
	Introduction
	Pānini's Śivasūtra-Technique
	General Problem of S-sortability

	Main Theorem on S-sortability
	First Condition for S-sortability: Main Planarity Criterion
	Second Condition for S-sortability: Minimizing the Number of Marker Elements
	Third Condition for S-sortability: Algorithmically Verifiable Criterion

	Identifying Good Candidates for Duplication
	Conclusion

	Tagging Classical Sanskrit Compounds
	Introduction
	General Properties
	Enriched Context Free Rules
	Traditional Classification
	Bound Morphemes
	Conclusion

	Extracting Dependency Trees from Sanskrit Texts
	Introduction
	Building a Lexicalized Parser
	Yuret's Model
	Improving Yuret's Parser
	Evaluation

	Summary

	Sanskrit Analysis System (SAS)
	Introduction
	Description of Each Module
	$Sandhi$ Module

	$Subanta$ Analyzer
	Sanskrit $Subanta$
	Analysis of $Subanta$

	Gender Analyzer
	Description of the Gender Analyzer

	K\d {r}danta Analysis
	K\d {r}danta Identification and Analysis Mechanisms

	Tinanta Analysis
	Process of Formation of Sanskrit Verb Forms
	The Analysis of Sanskrit Verb Forms

	POS Tagger
	The Sanskrit Tagset
	Description POS Tagger

	$K\={a}raka$ Analysis
	$K\={a}raka$ and $Vibhakti$ Mapping

	Result Analysis and Limitations
	Conclusion
	References

	Translation Divergence in English-Sanskrit-Hindi Language Pairs
	Introduction
	Divergence Patterns Identified by Dorr
	Thematic Divergence
	Structural Divergence
	Conflational and Inflational Divergence
	Categorial Divergence
	Lexical Divergence

	Other Divergence Patterns
	Implications of Word Order
	Change of Voice
	Gerunds and Participle Clauses
	Morphological Gaps
	Honorific
	Mapping of Time

	Conclusions and Discussions

	Web Concordance of the Prak\={\i}r\d na-Prak\=a\'sa of Hel\=ar\=aja on the J\=atisamudde\'sa (3.1) of V\=akyapad\={\i}ya
	Introduction
	Interface of the Web Concordance
	Properties

	Features of the KWIC Index
	Sample of the KWIC Index

