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Preface

CICLing 2011 was the 12th Annual Conference on Intelligent Text Processing
and Computational Linguistics. The CICLing conferences provide a wide-scope
forum for the discussion of the art and craft of natural language processing
research as well as the best practices in its applications.

This set of two books contains four invited papers and a selection of regular
papers accepted for presentation at the conference. Since 2001, the proceedings
of the CICLing conferences have been published in Springer’s Lecture Notes in
Computer Science series as volume numbers 2004, 2276, 2588, 2945, 3406, 3878,
4394, 4919, 5449, and 6008.

The set has been structured into 13 sections:

– Lexical resources
– Syntax and parsing
– Part-of-speech tagging and morphology
– Word sense disambiguation
– Semantics and discourse
– Opinion mining and sentiment analysis
– Text generation
– Machine translation and multilingualism
– Information extraction and information retrieval
– Text categorization and classification
– Summarization and recognizing textual entailment
– Authoring aid, error correction, and style analysis
– Speech recognition and generation

The 2011 event received a record high number of submissions. A total of 298
papers by 658 authors from 48 countries were submitted for evaluation by the
International Program Committee, see Tables 1 and 2. This two-volume set
contains revised versions of 74 papers, by 227 authors, selected for presentation;
thus the acceptance rate for this set was 25%.

The books feature invited papers by

– Christopher Manning, Stanford University, USA
– Diana McCarthy, Lexical Computing Ltd., UK
– Jun’ichi Tsujii, U. of Tokyo, Japan, and U. of Manchester and NacTeM, UK
– Hans Uszkoreit, Saarland University and DFKI, Germany

who presented excellent keynote lectures at the conference. Publication of ex-
tended full-text invited papers in the proceedings is a distinctive feature of the
CICLing conferences. Furthermore, in addition to the presentation of their in-
vited papers, the keynote speakers organized separate vivid informal events; this
is also a distinctive feature of this conference series.
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Table 1. Statistics of submissions and accepted papers by country or region

Country Authors Papers1 Country Authors Papers1

or region Subm. Subm. Accp. or region Subm. Subm. Accp.
Australia 17 7 3 Korea (South) 10 4.29 1
Austria 2 1.33 0.33 Macao 4 1 –
Belgium 4 2 1 Malaysia 5 2 –
Brazil 5 2 1 Mexico 13 6.92 2
Canada 11 6.33 2 Myanmar 7 2 –
China 47 17.67 5.67 Nigeria 3 1 –
Colombia 3 2 – Norway 7 2.17 –
Croatia 3 2 – Pakistan 6 3.57 –
Cuba 2 0.67 – Peru 2 0.50 –
Czech Rep. 14 8.50 3 Poland 2 2 –
Egypt 9 2.67 1.67 Portugal 25 9.67 2
Finland 3 2 – Romania 7 3.33 –
France 36 16.68 4.83 Russia 8 2.33 –
Georgia 1 1 – Saudi Arabia 1 1 –
Germany 29 12.58 3.50 Singapore 7 2.50 1
Greece 6 2 1 Spain 39 14.30 4.30
Hong Kong 5 2 1 Sweden 5 1.39 1
India 85 41.75 6.42 Taiwan 13 5 –
Iran 23 18 3 Thailand 6 3 1
Ireland 14 7 1 Tunisia 9 3.15 –
Israel 3 1.75 – Turkey 8 4.17 1
Italy 17 6.25 2.25 UK 13 6.67 0.50
Japan 71 29.67 14 USA 39 17.87 4.53
Jordan 1 0.50 – Viet Nam 8 4.33 1

Total: 658 298 74
1 By the number of authors: e.g., a paper by two authors from the USA and

one from the UK is counted as 0.67 for the USA and 0.33 for the UK.

With this event we introduced a new policy of giving preference to papers
with verifiable and reproducible results: we encouraged the authors to provide,
in electronic form, a proof of their claims or a working description of the sug-
gested algorithm, in addition to the verbal description given in the paper. If the
paper claimed experimental results, we encouraged the authors to make avail-
able to the community all the input data necessary to verify and reproduce these
results; if it claimed to advance human knowledge by introducing an algorithm,
we encouraged the authors to make the algorithm itself, in some programming
language, available to the public. This additional electronic material will be per-
manently stored on CICLing’s server, www.CICLing.org, and will be available to
the readers of the corresponding paper for download under a license that permits
its free use for research purposes.

In the long run we expect that computational linguistics will have verifia-
bility and clarity standards similar to those of mathematics: in mathematics,
each claim is accompanied by a complete and verifiable proof (usually much



Preface VII

Table 2. Statistics of submissions and accepted papers by topic2

Accepted Submitted % accepted Topic

13 40 33 Lexical resources
13 47 28 Practical applications
11 39 28 Clustering and categorization
11 44 25 Other
10 28 36 Acquisition of lexical resources
10 29 34 Statistical methods (mathematics)
10 52 19 Machine translation & multilingualism
9 25 36 Syntax and chunking (linguistics)
9 31 29 Semantics and discourse
9 58 16 Information extraction
7 46 15 Text mining
6 12 50 Symbolic and linguistic methods
6 50 12 Information retrieval
5 13 38 Parsing algorithms (mathematics)
5 16 31 Noisy text processing and cleaning
5 18 28 Summarization
4 11 36 Text generation
4 16 25 Opinion mining
4 17 24 POS tagging
3 7 43 Speech processing
3 8 38 Cross-language information retrieval
3 15 20 Word sense disambiguation
3 20 15 Formalisms and knowledge representation
2 6 33 Emotions and humor
2 13 15 Named entity recognition
1 5 20 Spelling and grammar checking
1 7 14 Anaphora resolution
1 7 14 Textual entailment
1 8 12 Question answering
1 11 9 Natural language interfaces
1 12 8 Morphology
– 6 0 Computational terminology

2 As indicated by the authors. A paper may belong to several topics.

greater in size than the claim itself); each theorem —and not just its descrip-
tion or general idea—is completely and precisely presented to the reader. Elec-
tronic media allow computational linguists to provide material analogous to
the proofs and formulas in mathematics in full length—which can amount to
megabytes or gigabytes of data—separately from a 12-page description pub-
lished in a book. A more detailed argumentation for this new policy can be
found on www.CICLing.org/why verify.htm.

To encourage the authors to provide algorithms and data along with the pub-
lished papers, we introduced a new Verifiability, Reproducibility, and Working
Description Award. The main factors in choosing the awarded submission were



VIII Preface

technical correctness and completeness, readability of the code and documenta-
tion, simplicity of installation and use, and exact correspondence to the claims
of the paper. Unnecessary sophistication of the user interface was discouraged;
novelty and usefulness of the results were not evaluated—those parameters were
evaluated for the paper itself and not for the data.

The following papers received the Best Paper Awards, the Best Student Paper
Award, as well as the Verifiability, Reproducibility, and Working Description
Award, correspondingly (the best student paper was selected from the papers of
which the first author was a full-time student, excluding the papers that received
a Best Paper Award):

1st Place: Co-related Verb Argument Selectional Preferences, by Hiram
Calvo, Kentaro Inui, and Yuji Matsumoto;

2nd Place: Self-Adjusting Bootstrapping, by Shoji Fujiwara and Satoshi
Sekine;

3rd Place: Effective Use of Dependency Structure for Bilingual Lexicon Cre-
ation, by Daniel Andrade, Takuya Matsuzaki, and Jun’ichi Tsujii;

Student: Incorporating Coreference Resolution into Word Sense Disam-
biguation, by Shangfeng Hu and Chengfei Liu;

Verifiability: Improving Text Segmentation with Non-systematic Semantic Re-
lation, by Viet Cuong Nguyen, Le Minh Nguyen, and Akira Shi-
mazu.

The authors of the awarded papers (except for the Verifiability Award) were
given extra time for their presentations. In addition, the Best Presentation
Award and the Best Poster Award winners were selected by a ballot among
the attendees of the conference.

Besides its high scientific level, one of the success factors of CICLing con-
ferences is their excellent cultural program. The attendees of the conference
had a chance to visit Kamakura—known for the Kamakura period of ancient
history of Japan—where they experienced historical Japanese cultural heritage
explained by highly-educated local volunteers and saw Shinto (traditional reli-
gion of Japan) shrines and old Buddhist temples characteristic of Japan. They
recalled recent history at the Daigo Fukuryu Maru Exhibition Hall, which tells
the story of a Japanese boat exposed to and contaminated by nuclear fallout
from a thermonuclear device test in 1954. Finally, the participants familiarized
themselves with modern Japanese technology during guided tours to Toshiba
Science Museum and Sony Square; the latter can only be accessed by special
invitation from Sony. And of course they enjoyed Tokyo, the largest city in the
world, futuristic and traditional at the same time, during an excursion to the
Japanese-style East Gardens of the Imperial Palace and a guided tour of the
city, by bus and boat (see photos on www.CICLing.org).

I would like to thank all those involved in the organization of this conference.
In the first place these are the authors of the papers that constitute this book:
it is the excellence of their research work that gives value to the book and sense
to the work of all other people. I thank all those who served on the Program
Committee, Software Reviewing Committee, Award Selection Committee, as
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well as the additional reviewers, for their hard and very professional work. Special
thanks go to Ted Pedersen, Grigori Sidorov, Yasunari Harada, Manuel Vilares
Ferro, and Adam Kilgarriff, for their invaluable support in the reviewing process.

I thank the School of Law and Media Network Center of Waseda University,
Japan, for hosting the conference; the Institute for Digital Enhancement of Cog-
nitive Development (DECODE) of Waseda University for valuable collaboration
in its organization; and Waseda University for providing us with the best con-
ference facilities. With deep gratitude I acknowledge the support of Professor
Waichiro Iwashi, the dean of the School of Law of Waseda University, and Pro-
fessor Toshiyasu Matsushima, Dean and Director of Media Network Center of
Waseda University. I express my most cordial thanks to the members of the lo-
cal Organizing Committee for their enthusiastic and hard work. The conference
would not have been a success without the kind help of Professor Mieko Ebara,
Ms. Mayumi Kawamura, Dr. Kyoko Kanzaki, and all the other people involved
in the organization of the conference and cultural program activities.

My most special thanks go to Professor Yasunari Harada, Director of DE-
CODE, for his great enthusiasm and infinite kindness and patience; countless
nights without sleep, after a whole day of teaching and meetings, spent on the
organization of the conference, from the strategic planning to the finest details.
I feel very lucky to have had the opportunity to collaborate with this prominent
scientist, talented organizer, and caring friend. From him I learnt a lot about
human relationships as well as about planning and organization.

With great gratitude I acknowledge the financial support of the Kayamori
Foundation of Information Science Advancement, which greatly helped us to
keep the fees low. I would like to express my gratitude to the Kamakura Wel-
come Guide Association for making our visit to this historical city of Japan a
memorable and enjoyable one. Thanks are also due to Sony and Totsusangyo
Corporation, Toshiba Science Museum, and Daigo Fukuryu Maru Exhibition
Hall, for arranging special visits and guided tours for CICLing 2011 partici-
pants. I would like to specifically recognize the help of Mr. Masahiko Fukakushi,
Executive Officer and Corporate Senior Vice President of Toshiba Corporation,
in arranging our visit to Toshiba Science Museum and the help of Dr. Atsushi
Ito, Distinguished Research Engineer at KDDI R&D Laboratories, in providing
wireless Internet access to the attendees of the conference.

The entire submission and reviewing process was supported for free by the
EasyChair system (www.EasyChair.org). Last but not least, I deeply appreciate
the Springer staff’s patience and help in editing this volume and getting it printed
in record short time—it is always a great pleasure to work with Springer.

February 2011 Alexander Gelbukh
General Chair
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Krister Lindén
Aurelio Lopez
Bernardo Magnini
Cerstin Mahlow
Christopher Manning
Yuji Matsumoto
Diana Mccarthy
Rada Mihalcea
Ruslan Mitkov
Dunja Mladenic
Marie-Francine Moens
Dan Moldovan
Masaki Murata
Smaranda Muresan
Roberto Navigli
Kjetil Nørv̊ag
Kemal Oflazer
Constantin Orasan
Maria Teresa Pazienza
Ted Pedersen

Viktor Pekar
Anselmo Peñas
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Award Committee

Alexander Gelbukh
Eduard Hovy
Rada Mihalcea

Ted Pedersen
Yorick Wiks



Organization XIII

Additional Referees

Naveed Afzal
Rodrigo Agerri
Alexandre Agustini
Laura Alonso Alemany
Rania Al-Sabbagh
Maik Anderka
Paolo Annesi
Eiji Aramaki
Jordi Atserias
Wilker Aziz
João B. Rocha-Junior
Nguyen Bach
Vı́t Baisa
Jared Bernstein
Pinaki Bhaskar
Arianna Bisazza
Eduardo Blanco
Bernd Bohnet
Nadjet Bouayad-Agha
Elena Cabrio
Xavier Carreras
Miranda Chong
Danilo Croce
Amitava Das
Dipankar Das
Jan De Belder
Diego Decao
Iustin Dornescu
Kevin Duh
Oana Frunza
Caroline Gasperin
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Abstract. Multiword Expressions (MWEs) are important linguistic units that re-
quire special treatment in many NLP applications. It is thus desirable to be able
to recognize them automatically. Semantically annotated corpora should mark
MWEs in a clear way that facilitates development of automatic recognition tools.
In the present paper we discuss various corpus design decisions from this per-
spective. We propose guidelines that should lead to MWE-friendly annotation
and evaluate them on numerous sentence examples. Our experience of identifying
MWEs in the Prague Dependency Treebank provides the base for the discussion
and examples from other languages are added whenever appropriate.

1 Motivation

Grammatical theories have been thriving recently in computational linguistics. They de-
scribe phenomena of natural language in increasing detail with the purpose of creating
a description that analyses and/or generates language as natural as possible.

Several treebanks have been developed during the past decade, new ones are still
being created and the old ones are being enriched with additional annotations. A corpus
is often designed and developed with the vision of further, deeper annotation, with the
aim to add semantic information in future. Multiword expressions (MWEs; such as
idioms, phrasemes, multiword named entities) are an important part of most natural
languages. Usually they form a significant portion of vocabulary, particularly in special
domains where terminology is in play, but not only there.

Although some grammatical theories have accounted for MWEs decades ago
(see e.g. [1]), in treebanks, multiword expressions are one of the least developed phe-
nomena. Recently, however, their processing started to attract attention, as they are
proving to be important for information extraction, machine translation and other cru-
cial tasks of NLP [2]. Therefore they should be an integral part of any serious semantic
annotation.

In this paper, we discuss some decisions of a treebank design that have direct influ-
ence on representation of MWEs. A good treebank design can contribute to both more
natural and more useful representation of MWEs, or even enable to capture certain rare
forms of MWEs. We will also discuss the decisions that make the representation of
MWEs harder or inefficient (see Section 3).

A. Gelbukh (Ed.): CICLing 2011, Part I, LNCS 6608, pp. 1–14, 2011.
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2 E. Bejček, P. Straňák, and D. Zeman

We base the discussion on our experience with MWEs in the Prague Dependency
Treebank 2.0 (PDT 2.01)[3]. Examples from other treebanks are presented for compar-
ison. Examples that are not specifically marked are taken from PDT 2.0.

The rest of the paper is organized as follows: In Section 2, we provide some back-
ground on multiword expressions, and why they are important in NLP. In Section 3,
we discuss the way MWEs are currently represented in selected treebanks, and what
are the problems of these representations. Section 4 constitutes the core of the paper.
We present a variety of linguistic phenomena and decisions of their representation that
affect processing of MWEs to varying degree. We summarise our findings in Section 5.

2 Introduction to MWEs

Multiword expressions are a boundary phenomenon on the interface of grammar and
lexicon. We understand them, in accordance with [4,5,6] and other authors, as phrases
that contain some idiosyncratic elements that differentiates them from normal expres-
sions. The idiosyncratic element can be morphological, syntactic, or semantic.2 As a
practical guideline we add that the idiomaticness must be significant enough to justify
adding the given MWE into a lexicon.3

The idiosyncracy that defines the class of multiword expressions causes problems
for various NLP applications.

– Morphological analysers have to analyse “words” that only exist in modern lan-
guage as a part of an idiom (e.g. “criss” in criss-cross) in one fixed form. Even if
it is a form of say singular, instrumental case, it does not fill such a morphological
function.

– Syntactic analysers (and treebank designers before them) have to cope with analysis
of idioms and other MWEs, in which the relations between the parts (words) do not
have the meaning expressed by dependency relations or phrase structure types of
the given grammar. The problem is usually solved by creating artificial annotation
(grammar) rules with little to no linguistic motivation. Rules for analysis of named
entities (NEs) like addresses or personal names can serve as good examples (see
the relevant sections in [9]).

– Semantic idiosyncrasy limits the forms or even completely changes the translation
equivalents of a MWE. One cannot translate “spill the beans” into a foreign lan-
guage literally and keep its meaning. It is a big challenge for machine translation,
especially in terminology (Supreme Court, Secretary of the Treasury, etc.).

The problems with handling MWEs in NLP applications are precisely why it is impor-
tant to represent them correctly in treebanks. We will demonstrate that proper represen-
tation of MWEs can alleviate later problems with their treatment.

1 http://ufal.mff.cuni.cz/pdt2.0/
2 Some authors prefer still wider definition of MWEs and include also expressions that are

fully regular and compositional on all layers of description, but are statistically significant.
For instance the phrase “salt and pepper” is significantly more frequent than “pepper and
salt” [7,6].

3 For a description of a lexicon of MWEs see for instance [8].
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For the purpose of this paper the problem whether a particular expression is a MWE
or not is not crucial. What is important, is an agreement that MWEs exist, and that in
representing them the linguistic phenomena discussed below have to be tackled.

3 Representation of MWEs

A handful of corpora provide MWE annotation on the layer of tokenisation. That means
a MWE is actually converted to one-word expression. Not only is it an indivisible mean-
ing from the perspective of deep syntax; it is also one token from the point of view of
morphology and surface syntax. Even if the treebank does not have a dedicated deep-
syntactic layer of annotation, the idiomaticness of the MWE can be captured by the
annotation; the price is that it is no more possible to describe the inner structure of
the MWE as well, should one desire that. Tokenisation-based annotation is typically
limited to contiguous MWEs (otherwise, one would have to reorder tokens, apart from
joining them). The CoNLL Shared Task Treebanks ([10], [11]) of Portuguese, Spanish
and Catalan belong to this class. For instance, consider the following Spanish sentence:

(1) sentence:
lit.:

Durante
During

la
the

presentación
presentation

del
of-the

libro
book

"
"

La_prosperidad_por_-
The_prosperity_through_-

_medio_de_la_investigación_._La_investigación_básica_en_EEUU
_means_of_the_research_._The_research_basic_in_U.S.

"
"

,
,

editado
edited

por
for

la
the

Comunidad_de_Madrid
Community_of_Madrid

,
,

el
the

secretario
secretary

general
general

de
of

la
the

Confederación_Empresarial_de_Madrid-CEOE
Confederation_of-Company_of_Madrid-CEOE

–
–

CEIM
CEIM

–
–

,
,

Alejandro_Couceiro
Alejandro_Couceiro

,
,
abogó
advocated

por
for

la
the

formación
formation

de
of

los
the

investigadores
investigators

en
in

temas
themes

de
of

innovación
innovation

tecnológica
of-technology

.

.

trans.: During the presentation of the book “Prosperity through Research. The
Basic Research in the U.S.”, edited for the Community of Madrid, the Secre-
tary General of the Confederación Empresarial de Madrid (CEOE), Alejandro
Couceiro, advocated for the training of researchers in the field of technological
innovation.

We believe that MWEs should be viewed as single units, but not on the morphological
layer, as in the above mentioned Iberian treebanks. Even in terms of surface syntax,
it is usually possible4 to view MWEs as relations between words. It is the layer of
the meaning of a sentence, i.e. deep syntax, where it is natural to tackle MWEs as
single units, because units of this layer are supposed to be “meanings” [1,12,13]. In
the PDT 2.0, the deep syntactic layer is called the tectogrammatical layer [9] and we
demonstrate (mainly in Section 4) that it is the layer of description most suitable to
represent MWEs.

4 Even though sometimes quite awkward.
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The same is true for other treebanks that already include some deep structures: in
the beginning of treebanking, all treebanks (including PDT 1.0) were based only on
the surface syntax. Most of them, however, have been accepting some deep syntactic
features. These include PropBank [14] and NomBank [15] for the Penn Treebank, Chi-
nese PropBank [16] and annotation of some named entities integrated in the in recent
Chinese Treebank (see Figure 1), Salsa project [17] for the German Tiger treebank, and
several others. The main problem of most of these annotation projects is, however, that
the deep structures are annotated without any relation to the (surface) syntax, thus often
ending up in conflict with it.

An illustration of this problem is given in Figure 1. The NEs, as well as coreference,
were annotated on plain text and are stored separately from the syntactic annotation of
the Chinese Treebank. This results in many cases in a unit of coreference annotation
or a NE that does not form a phrase and thus cannot be represented in the tree. This
points towards an error of either syntactic or deeper annotation, because any unit that
is a member of a coreference relation or that forms a named entity should also form a
phrase in a phrase structure tree.

3.1 List Structures

Some MWEs really have no internal syntactic structure in the given language. For in-
stance embedded passages in a foreign language cannot be analysed using the grammar
of the “main” language of the treebank.

Fig. 1. A sentence from the Chinese Treebank 7, romanised yàtài jı̄ngjì jì hézuò huìyì lı̌ngxiù
huìyì jíjiāng zài 11yuè zhōngxún zài wénlái zhàokāi, meaning “Asia-Pacific Economic Cooper-
ation [APEC] Summit will be held in mid-November in Brunei.” lit. “Asia-Pacific economy and
cooperation conference leader meeting upcoming in November mid in Brunei hold.” The first
five terminal nodes together constitute a named entity (MWE) that is the Chinese translation of
APEC. However, the syntactic annotation does not contain any nonterminal spanning just this
expression. The NP-SBJ span includes two additional terminals and describes an event (meeting
of APEC leaders) rather than the institution. On the other hand, its second child NP fails to cover
the node of Asia-Pacific. Thus the MWE cannot be properly marked without changing the parse
tree first.
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Fig. 2. . . . divoké Kiss That Frog blízké staršímu Shot The Monkey nebo Digging In The Dirt
s výraznými varhanami.
trans.: . . . wild Kiss That Frog similar to older Shot The Monkey or Digging In The Dirt with
striking organ.
Foreign expressions (English in the Czech sentence) represented as lists. The first MWE is mod-
ified by an attribute “similar (to)” and a coordination of the other two MWEs that are also further
modified. (Example from the PDT 2.0.)

In PDT 2.0 these constructions are represented as lists of words with a generated root
node that has a t-lemma5 substitute specifying the type of the list (an Idiomatic Phrase,
or a Foreign Phrase).

The list members (words in a list structure) cannot have children, since the whole
point of creating these list structures is to specify either that there are no syntactic
relations inside these objects, or that we cannot describe them. The whole structure can
of course have children (e.g. attributes). Such children are represented as brothers of the
members of list structures, and are distinguished by their tectogrammatical function, as
seen in Figure 2.

We believe that creating list structures with artificial rigid and flat structures serves
no point. Lemmas of the parts of such structures are foreign morphological forms
(e.g. “shot”), and the dependency edges do not really represent any dependency re-
lations. Thus we believe that non-analysable idioms and foreign phrases should be rep-
resented just as a single node.6

5 A lemma of a node of a tectogrammatical tree, i.e. a tree on the tectogrammatical layer.
6 One may also want to annotate the original structure according to the foreign grammar in

parallel to the one-node representation assigned to the phrase once it entered the host language
and became a MWE.
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4 Linguistic Phenomena Reflected by Treebank Features

We present an overview of common linguistic phenomena that complicate capturing the
MWEs. Every phenomenon is described and exemplified, the problem is discussed and
a potential solution in the dependency treebank is proposed.

Two principles are to be borne in mind while making decisions on the structure of a
treebank:

1. Structure of a tree must not obstruct marking any MWE.
2. Representation of a MWE has to enable identification of the same MWE automati-

cally in the text.

How does one represent a MWE in a treebank? As the tree structure is non-linear, the
best representation is a set of nodes that make up a particular MWE. This set has to be
unambiguous, i.e. two different MWEs should not be represented by the same set of
nodes.7 On the other hand, slight variations in form of the same MWE should lead to
the same representation so that the various forms of the MWE can be matched against
each other. The set of nodes itself for a particular MWE highly depends on the treebank
grammar and it is generally not guaranteed that every peculiar MWE can be mapped to
a tree structure. For example, the MWE may contain a word that has been elided and
does not have a corresponding node in the tree structure. In other cases, deep syntactic
structure may contain a complex node spanning several surface words, some of which
belong to a MWE and some of which do not; one would have to be able to mark only a
part of a complex node in order to delimit the MWE properly.

The second principle leads to this aim: each and every instance of the particular
MWE should be described by absolutely identical structure in data. In that case, it would
be easy to find other instances of the same MWE automatically (using the same treebank
or formalism). Following subsections illustrate that this is not as natural as it might
seem.

4.1 Morphology

MWEs are hard to recognize automatically in an unprocessed text. Lemmatisation (or at
least stemming) is the minimum requirement—even in English, not speaking of highly
inflected languages such as Czech.

Consider the two instances of the German idiom auf die lange Bank schieben (“put
off”) in Examples (2) and (3) and Figure 3. The first one is in infinitive, the second one
is passive. However, their lemmatised strings are identical, which makes it possible to
recognize them as instances of the same MWE.

(2) sentence:
lemmatised:
lit.:

Die
Der
The

EU
EU
EU

dürfe
dürfen
could

die
der
the

Entscheidung
Entscheidung
decision

nicht
nicht
not

auf
auf
on

die
der
the

lange
lang
long

Bank
Bank
bench

schieben
schieben
shift

. . .

. . .

. . .
trans.: The EU could not put the decision off . . .

7 i.e. The structure of a subtree plus the words (lemmas) themselves.
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Fig. 3. An example from the CoNLL 2009 German treebank: Die Stunde der Wahrheit wurde in
der Kongreßhalle bloß auf die lange Bank geschoben. The moment of truth in the congress hall
was just put off (lit. “shifted on the long bench”). The idiom has been passivised in this sentence
but it still can be identified using lemmas.

(3) sentence:
lemmat.:
lit.:

Die
Der
The

Stunde
Stunde
moment

der
der
of

Wahrheit
Wahrheit
truth

wurde
werden
was

in
in
in

der
der
the

Kongreßhalle
Kongreßhalle
congress-hall

bloß
bloß
just

auf
auf
on

die
der
the

lange
lang
long

Bank
Bank
bench

geschoben.
schieben.
shifted.

trans.: The moment of truth in the congress hall was just put off.

One might think that lemmatisation is a solved problem and that an annotated corpus
is unlikely to lack it. As a matter of fact, out of the 23 treebanks from the CoNLL
2006 and 2007 shared tasks, lemmatisation was missing from significant number of
them (Bulgarian, Chinese, Danish, German, Japanese and Swedish 2006 and English
and Chinese 2007).

4.2 Word Form Alternations

There are many changes of word forms other than inflection mentioned in previous
Section 4.1. Although these changes are more significant than morphological alterna-
tions, they still do not necessarily change the meaning of the MWE.

Lemmas in their usual sense cannot provide for unification of the alternations men-
tioned below, since the alternations differ morphologically and a considerable number
of lemmatisers would assign a different lemma to each of them. In order to capture
the relation between morphologically different expressions for a semantically identical
concept, we need a sort of generalized lemma, common for all word form alternations.8

8 Functional Generative Description (FGD, [12]), the theory behind PDT, introduces such a
generalized concept called the “tectogrammatical lemma”. The deep (tectogrammatical) layer
of PDT 2.0 assigns a t-lemma attribute to nodes but it fails to merge some of the alternations
mentioned here.
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An alternative approach would be to annotate each MWE with its exact lemma, and
create links between “variants” in the lexicon. The drawback here would be the large
amount of lemma variants (some of them created productively on a regular basis) all
written in the lexicon. The additional complexity could however bring also some ad-
ditional information, i.e. in case of lemmas whose relation can be described by lexical
functions [18]. Some variants of lemmas cannot, however, be distinguished by a lexical
function, e.g. variants of diminutives in Czech. Some of the (spelling) variants are even
unified on the level of morphology, while some other are not, and we unify them only in
the MWE lemmas. Thus we have decided to employ the simple and uniform approach
of using the same MWEs for all lemma variants. We can list and further analyse and
classify all the variant realisations of all MWEs at a later point. We view the application
of a lexical function in this respect as a form of a modification of a MWE, very much
like any other modification, with similar restrictions: Some words in some MWEs can
be modified, while other words or even whole MWEs cannot. Thus the approaches can
be complimentary in our view.

Gender Inflection. The first alternation type we want to mention is present in many
languages, including English, French or German. Since gender inflection of nouns is
not productive in any of these languages, the alternate forms are assigned separate
lemmas. Examples include pairs like “waiter”/“waitress”, “actor”/“actress”, “écrivain”
or “homme de lettres”/“femme de lettres” etc. Examples of such pairs used in Czech
MWEs are quoted below. We believe that the core meaning of the MWE remains the
same across genders and it should be differentiated by a flag, not by a separate MWE
in the lexicon.

We indicate the approximate occurrence ratio in PDT 2.0 in parentheses.

(4) mistr
master

/
/

mistryně
she-master

světa
of-the-world

(ratio 76:1)

world champion

(5) státní
public

zástupce
prosecutor

/
/

zástupkyně
prosecutrix

(ratio 2:1)

prosecuting attorney

(6) poštovní doručovatel
postman

/
/

doručovatelka
-woman

(ratio 1:2!)

postman / postwoman

We propose that in each of the pairs, both variants should map to the same generalized
lemma. One may wonder whether the actual string representing the generalized concept
in (6) should match the masculine form (as is the usual default), or the feminine form
(because in this particular case it seems to be more common in Czech data), or some-
how embrace both (e.g. poštovní_doručovatel(ka)). However, these are only technical
subtleties that are not significant from the perspective of the general concept-oriented
approach.

Abbreviations. Writing systems of most languages have a means of abbreviating words
and long multiword named entities. Examples of abbreviated and unabbreviated forms
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referring to the same concept are given in (7) and (8). Again, we propose that the corpus
annotation assign the same generalized lemma to both members of each such pair.

(7) Václav Havel / V. Havel

(8) země
states

bývalého
of-former

Sovětského
Soviet

svazu
Union

/
/

země
states

bývalého
of-former

SSSR
USSR

Aspect. In quite a few languages (the Slavic family being an example) aspect alter-
nation is lexicalised (or at least not fully productive), which means that perfective
and imperfective verbs get different surface lemmas. The following Czech examples
(9) and (10) illustrate aspectual variations of MWEs.9

(9) zaujímat stanovisko / zaujmout stanovisko
take a stand imperfective / perfective

(10) pohlavně zneužívat / pohlavně zneužít
sexually abuse imperfective / perfective

Diminutives. Unless diminutive formation is fully productive in a language, the
diminutive typically gets a (surface) lemma different from the base word. Yet the core
meaning of a MWE is usually preserved in a “diminutivized” variant such as in the
following Czech example (11):

(11) rodinný
family

dům
house

/
/

domek
small-house

Others. For the sake of completeness we bring up some other related pairs, although it
is arguable whether it is necessary to unify them all. They have very close meanings and
one has to consider them carefully. The variants in (12) are lexical meronyms but their
encompassing MWEs are almost synonymous (furthermore, the second one is rarely
used). The second expression (13) has the same meaning, only the first form is fixed
phrase and the second is less formal. The pair in (14) has exactly the same properties
in English. And the last one (15) illustrates an ellipsis10 of a part of a word; the two
expressions are totally synonymous in the context of telecommunications.

(12) občanský
civil

zákoník
code

/
/

občanský
civil

zákon
law

— meronym

(13) náčelník
chief

generálního
of-general

štábu
staff

/
/

šéf
head

generálního
of-general

štábu
staff

— synonym

(14) cenová
priceadj

regulace
control

/
/

regulace
regulation

cen
of-prices

— synonymous, though different
syntactic structures

(15) telekomunikační
telecommunication

systém
system

/
/

komunikační
communication

systém
system

— ellipsis

9 Aspect is an exception that is unified in the t-lemma attribute of PDT 2.0, except for a few
omissions.

10 If we substitute the Greek prefix “tele-” in telecommunication in (15) with its translation re-
mote, the fact that it is an ellipsis becomes obvious.
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4.3 Word Order

Lemmatisation is not sufficient (not even the generalized one) when the word order
comes into play. In languages with a free word order, the same MWE can surface in
various permutations. For instance, consider the phraseme “sehrát roli” (to play a role)
in (16) and (17). The two instances differ in word order. The first sentence is neutral
with respect to topic-focus articulation (i.e. it keeps the default Subject-Verb-Object
order), whereas the second sentence accents the Subject (“communistic interpretation
of history”) by placing it into the focus position (resulting in the Object-Verb-Subject
order).

(16) sentence:
lit.:

Klubíčko
Entanglement

vztahů,
of-relations,

které
that

sehrály
played

roli
role

v
in

této
this

kauze,
case,

se pokoušíme
we-are-trying

rozmotat. . .
to-disentangle. . .

trans.: We are trying to disentangle the entanglement of relations that played a
role in this (legal) case.

(17) sentence:
lit.:

Svou
Its

roli
role

sehrál
played

i
even

komunistický
communistic

výklad
interpretation

historie.
of-history.

trans.: Even the communistic interpretation of history played its role.

The word order differences are a good reason why MWE detection should be done on
dependency trees (as opposed to simple bracketing). Instead of looking at sequences
of adjacent tokens, one can query parent-child pairs that remain the same regardless of
word order. See Figure 4 for the dependency trees of (16) and (17).

4.4 Discontinuity on Surface

Discontinuous MWEs pose a problem similar to the word-order issue. Even a very
lexicalised phrase (such as a verbal phraseme) can be disconnected with other words
breaking in. In a phrase-based bracketing one would have to capture a MWE with gaps.
The results would differ across sentences (different positions and sizes of the gaps) and
there seems to be no reasonable algorithm to recognize them automatically.

Examples (18) and (19) illustrate that continuity is not related to MWE boundaries.
There seems to be the phrase “hrát na nervy” (∼ to fray one’s nerves) twice – but only
the first one (the one with gaps) is a real phraseme; the words in (19) came together just
by coincidence.

(18) sentence:
lit.:

Na nervy
On nerves

to
it

muselo
must-have

hrát
play

i
also

našemu
to-our

olympijskému
Olympic

vítězi.
winner.

trans.: It must have been making nervous even our Olympic winner.

(19) sentence:
lit.:

Je
Is

to
it

balzám
balm

na nervy hrát
for nerves to-play

s
with

Jenseny.
Jensen’s.

trans.: To play with Jensen’s is like a balm for your nerves.
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Fig. 4. Although the MWEs look diverse in the text (examples 16 and 17), they are identical and
so are their subtrees. (It is not important whether a node is the left or the right son of its parent –
the order of nodes represents the topic-focus articulation and does not affect the MWE.)

Similarly as in Section 4.3, we argue for the dependency structure as the basis for
MWE detection. A dependent node of a MWE (“nervy” in this case) is connected to
the governing node (“hrát”), no matter how far it is or in which direction. On the other
hand, the parts of the would-be MWE in (19) are unrelated in the dependency tree,
which blocks them from being considered as a MWE.

Dependency subtrees (with word order information stripped) provide sufficient
means of representation for a vast majority of MWEs. They adhere to the second prin-
ciple and assign the same representation to all instances of a MWE, regardless of word
order and gaps. Unfortunately, there are still phenomena that cause problems.

4.5 Ellipsis

In (20) both “Ministry of the Interior” and “Ministry of Defense” should be recog-
nized as MWEs. The problem is that there is only one word “ministry”. The annotation
mechanism would have to enable reusing one node in two different MWEs. Even if it
did, a surface-oriented dependency tree (where there is a 1-1 mapping between nodes
and tokens) would not provide enough information to detect the MWEs automatically
(there would be no dependency link between “ministry” and “interior” or “defense”,
respectively).

(20) dvě
two

klíčová
key

ministerstva
ministries

–
–

vnitra
of-the-Interior

a
and

obrany
of-Defence

This example illustrates why we need a deep syntactic tree in which elided nodes are
reconstructed. Figure 6 illustrates how the example is structured in the tectogrammatical
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Fig. 5. Seemingly two occurrences of the phraseme “hrát na nervy” (∼ to fray one’s nerves) in
Examples (18 and 19). The dependency tree of (19) indicates that the idiomatic interpretation
would be false. Such MWE across subtrees cannot be correct.

layer of the PDT 2.0. Thanks to the generated copies of “ministerstvo”, the links to the
required attributes are readily available and the MWEs can be detected easily.

Finally, there is an even worse problem with coordination: a coordination of two
modifiers ascribed to an already modified noun, see (21):

(21) coord.:
lit.:

základní
basic

a
and

náhradní
substitute

vojenská
military

služba
service

trans.: military service and unarmed service

To be able to recognize both MWEs, we would like to see two complete (and dis-
junct) subtrees, one for “základní vojenská služba” and another for “náhradní vojenská
služba”. Node reconstruction in a deep syntactic tree could achieve that by generating
copies of both the nodes “vojenská” and “služba”. Unfortunately, this is not the case in
PDT 2.0 where only the noun is copied, see Figure 7.

Fig. 6. A coordination with generated nodes
(displayed as squares) enables annotation of
words elided in the text (20)

Fig. 7. The word “vojenský” (military) mod-
ifies the whole coordination in PDT 2.0, in-
stead of modifying each coordinated node
“služba” (service) with the same meaning

To summarize this section, we propose that elided nodes in coordination should be
regenerated by copying and that their modifiers should be copied along, i.e. modifica-
tion of the whole coordination should not be allowed.
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5 Conclusion

We have discussed a number of linguistic phenomena that affect representation and
automatic detection of multiword expressions in corpora. Each phenomenon led to a
type of additional information that is needed in the corpus in order to detect MWEs
properly. Such information can be added either manually in annotated corpora, or by
previous steps of automatic processing of the text.

The following features of a treebank have been identified as useful for appropriate
and efficient representation of MWEs:

– Surface lemmatisation to overcome the impact of inflection.
– Generalized lemmatisation to unify surface lemmas referring to the same semantic

concept.
– Dependency structure to abstract from word order variation and discontinuity.
– Restoring nodes for elided words. In case of coordinated modifiers, restoring can

be achieved relatively easily by copying the modified node to each coordination
member.

We have tested our proposals while annotating MWEs in PDT 2.0, using the deep syntax
of its tectogrammatical layer. They proved to be helpful from the perspective of both
the principles set in Section 4.

Our annotated data, a lexicon of MWEs in PDT 2.0, and the tools we have used are
freely available at http://ufal.mff.cuni.cz/lexemann/mwe/.
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Abstract. Supersense tagging classifies unknown words into semantic categories 
defined by lexicographers and inserts them into a thesaurus. Previous studies on 
supersense tagging show that context-based methods perform well for English 
unknown words while structure-based methods perform well for Chinese 
unknown words. The challenge before us is how to successfully combine 
contextual and structural information together for supersense tagging of 
Chinese unknown words. We propose a simple yet effective approach to 
address the challenge. In this approach, contextual information is used for 
measuring contextual similarity between words while structural information is 
used to filter candidate synonyms and adjusting contextual similarity score. 
Experiment results show that the proposed approach outperforms the state-of-
art context-based method and structure-based method.  

Keywords: Supersense Tagging, Contextual Information, Structural Information, 
Chinese Unknown Words. 

1   Introduction 

Lexical-semantic resources such as WordNet [1] have influenced NLP research 
significantly. These resources have been successfully applied in a wide range of 
research [2, 3, 4, 5]. However, to keep up with the pace of language evolution, 
lexicographers should update the resources by hand, which is time-consuming and 
labor-intensive. To reduce human effort, a technology called supersense tagging [6] is 
presented to help lexicographers classify unknown words and insert them into an 
existing resource. Here, supersense refers to a semantic class to which the unknown 
word belongs, e.g., “tool”, “organization”, “person”, etc. A similar name of that task 
is semantic classification [7].  

To address the problem of supersense tagging, two kinds of information might be 
utilized, i.e., contextual information and structural information.  

Pilot studies on English unknown words mainly used contextual information [6, 8]. 
The methods of these studies are based on the distributional hypothesis, which means 
that words having similar meaning usually appear in similar context. The experiments 
of these studies show the effectiveness of contextual information for English.  
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However, pilot studies on Chinese unknown words [7, 9, 10] mainly used 
structural information. The experiments of these studies show the effectiveness of 
structural information for Chinese. To understand the idea of structure-based 
methods, we must notice that Chinese words are composed of meaningful characters, 
e.g., 民 means ‘person’. Therefore, it is reasonable to believe that an unknown word w 
probably has the same supersense with a known word w1 if w and w1 share some 
characters, e.g., w1 = 市民 shi-min ‘citizen’. Structure-based methods can be used in 
Chinese but not English, because most Chinese characters are meaningful while 
English characters are not. 

Then, one question is, how about using context-based method in Chinese? 
Since contextual information has been proved effective in English, it is reasonable 
to believe that it should also be effective in Chinese, as distributional hypothesis 
seems do not have difference among languages. But previous studies gave 
negative answer. [11] examined a context-based method but only achieved 34% 
accuracy.  

Another question is can contextual information be integrated with structural 
information to improve the whole performance of supersense tagging on Chinese? 
[10] is the only one that has tried this idea. According to [10], structure-based 
methods are the main part and a context-based method is only used to rank the 
candidate supersense provided by the structure-based methods. That is a loose-
coupled combination. [10]’s experiments show that the use of contextual information 
doesn’t further improve performance on the basis of structural information. Therefore, 
contextual and structural information have not been successfully integrated yet. 

In this study, tightly-coupled strategy is proposed to combine contextual and 
structural information together for supersense tagging of Chinese unknown words. 
Context-based approach forms the main part of this strategy. It is used to measure 
the contextual similarity between two words. Structure-based approach is tightly-
coupled with context-based approach. Firstly, the structure-based approach 
generates a candidate synonym set. The context-based method would be used to 
measure the similarity between the test word and each of the word among the 
candidate synonym set. Secondly, the structure-based approach adjusts the 
similarity scores computed by context-based approach. The basic idea of the using 
of structural information in this strategy is the assumption that: the more common 
characters two Chinese words share, the closer their meanings are. Both the process 
of candidate synonym set building and contextual similarity score adjusting are 
based on this assumption. We experiment on a Chinese thesaurus Cilin and extract 
context for test words from a large corpus to validate the effectiveness of the 
proposed approach. We also compare several weighting schemes in measuring 
contextual similarity. 

The remainder of this paper is organized as follows. Section 2 introduces related 
work on supersense tagging. The proposed approach is described in Section 3. 
Experiments results and error analysis are presented in Section 4 and Section 5 
respectively. The final section gives out conclusion and presents future work. 
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2   Related Work 

2.1   Supersense Tagging in Chinese 

Most previous studies on Chinese used structural information. [7] proposed a similar-
example-based method. The similarity of the modifiers of two words that share the 
same head is computed to represent the similarity of the two words. [9] attempted to 
detect the morpho-syntactic relationship between the morphemes of a word and filter 
retrieved candidate synonyms by morpho-syntactic relationship. Both [10] and [12] 
computed the association between character and semantic categories. Except for the 
character-category association model, [10] developed dozens of manual rules, which 
constructed the rule-based model and achieved high precision with low recall. The 
result of Lu’s rule-based model shows that only about 30% Chinese words obey strict 
rules. For most Chinese words, the mapping from part meaning to whole meaning 
would encounter too many WSD problems. This is just the limitation of structure-
based methods. 

[11] did the only study that used contextual information alone to do Chinese 
supersense tagging. From translation, WordNet is used to providing candidate 
categories for a Chinese unknown word. Then context comparison is used to choose a 
final category from those candidate categories. The accuracy of this approach is only 
about 34%. 

[10] combined two knowledge-based models together with a context-based model. 
It might be considered as two separate methods: one contains the two knowledge-
based models and so is structure-based (called structure-based approach); the other 
contains all the three models and is both context-based and structure-based (called 
hybrid approach). The hybrid approach included two steps. Firstly, the two 
knowledge-based models provide some candidate supersenses for the unknown 
words. Secondly, the context information is computed and compared to determine 
which supersense should win. The structure-based approach (about 61% F1-score) 
outperforms previous methods on the same task, but the hybrid approach (only about 
37% F1-score) does not further improve performance.  

2.2   Supersense Tagging in English 

Most previous studies on English used context information. [13] used a vector-space 
technique to insert words into the WordNet hierarchy. [6] implemented a multi-class 
perceptron classifier, which takes those features commonly used in WSD and named 
entity recognition, such as standard collocation, spelling and syntactic relations. Their 
originality was to use the WordNet glosses as annotated training data and massively 
increase the number of training instances with the help of the noun hierarchy. [14] 
proposed a classification method using both context feature of an unknown word and 
the strength of the semantic relatedness of its target class to other likely candidate 
classes. They tried to classify nouns into 137 classes and achieved 35.1% precision.  

[8] described an unsupervised approach based on vector-space similarity. Although 
that approach does not require annotated examples, it significantly outperforms the 
method of [6] (68% against 53% precision) on English unknown nouns with 26 
supersenses. 
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2.3   Weighting Scheme 

The difference between term frequency and term presence is a serious problem in 
standard IR and sentiment classification. Term frequencies have traditionally been 
important in standard IR [15], where TFDIF usually performs better than IDF. [16] 
compared several term weighting schemes, including TFIDF, IDF and their 
normalized form, on sentiment classification task. The results show: (1) normalized 
TFIDF and normalized IDF performs best and very similar; (2) BOOL performs not 
well but is still better than TF; (3) IDF is even worse than TF. This conclusion is 
similar to that on standard IR [15]. 

To measure contextual similarity, PMI and TTEST are more popular [8, 10]. Both 
PMI and TTEST are based on term frequency and co-occurrence frequency. Schemes 
such as TFIDF and IDF are rarely used to measure contextual similarity. 

The task of measuring contextual similarity is quite different from standard IR and 
sentiment classification, but it is also a kind of classification problem. It is necessary 
for us to comparing TFIDF, IDF and their normalized form with PMI and TTEST.  

3   The Proposed Method 

For an unknown word, the proposed method analyzes its structure to collect some 
known words from a thesaurus to work as its candidate synonyms. Then the 
contextual similarity is computed between the unknown word and the candidate 
synonyms. Finally, the method selects some most similar candidate synonyms, and 
assigns the dominant supersense among those synonyms to the unknown word. (It is 
assumed that the supersense of the unknown word has been included in the current 
thesaurus. In other words, no new supersense is created.) 

Particularly, given an unknown word w and a thesaurus T, the following three steps 
are executed: 

(1) Candidate Synonym Set Building. A character filtering process and a POS (Part 
Of Speech) filtering process are completed to acquire some words sharing 
character and POS with w from T. Those words compose a set, which is called 
candidate synonym set and denoted by CS(w).  

(2) Contextual Similarity Computation. Collect context of w and words in CS(w) 
from a corpus. Denote context of a word w1 as CT(w1), where w1=w or 
w1∈CS(w). Define contextual similarity of w and wi∈CS(w) as sim(w, wi)=λ(w, 
wi) * CTS(w, wi), where CTS(w, wi) denotes the pure contextual similarity, while 
weighted by λ(w, wi) (structural similarity between a test word and corresponding 
training word). 

(3) KNN Classification. A KNN classifier is employed to assign w a supersense s, 
which is selected from {SS(wi)}. Here, SS(wi) denotes the supersense of wi∈CS(w).  

In the following, the above three steps are described in three subsections. 

3.1   Candidate Synonym Set Building 

Most Chinese characters are meaningful, e.g., 民 means person, 队 means organization 
and 器  means tools. Therefore, a word usually has some synonyms that share 
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character with it. E.g., 基民 ji-min ‘stock fund investor’ has a synonym 市民 shi-min 
‘citizen’. The statistics on some test sets shows that about 98% words obey that 
assumption (see Table 2), which means that about 98% of words have at least one 
synonym that shares a character. 

According to the above observation, to guess the supersense of an unknown  
word w, we can focus on those known words sharing character with w and select a 
supersense for w from the set of supersenses of those words. In this way, the 
candidate supersense set of w is largely shrunk, compared with forming that set by 
selecting all the supersenses of T. Moreover, some noisy data are filtered through this 
filtering process. 

This character-filtering process, one of the key components of structure-based 
methods, is borrowed to work as the basis for context analysis. 

In detail, given an unknown word w and a thesaurus T, the candidate synonym set 
CS(w) is formed by selecting any word w1∈T, where w1 and w share at least one 
character. For example, for w = 基民 ji-min ‘stock fund investor’, CS(w)={基础 ji-
chu ‘basis’, 人民 ren-min ‘human’, 民主 min-zhu ‘democracy’, 奠基者 dian-ji-zhe 
‘founder’…}. 

CS(w) can be further filtered by POS. That is, if the POS of w is known, then w1 
will be removed from CS(w) if w1 has different POS with w. In fact, identifying POS 
of unknown words is an independent research topic, e.g., [17]. In the experiments of 
this paper, POS of w is assumed known and POS-filtering is employed. 

3.2   Contextual Similarity Computation 

Three important factors involve in the similarity computation procedure: context 
extraction and representation, term weighting and similarity measurement. They are 
described in the following. 

3.2.1   Context Extraction and Representation 
Two kinds of context extraction strategies are developed: window-based and 
dependency-based strategies. Window-based strategy takes the words appearing 
within a certain window size of the target word as its context. [10] examined window 
size from 6 to 100 (i.e., 3 to 50 on the left and right of the target word respectively) 
and found that 6 performs the best. [11] also used 6. Therefore, 6 is adopted as the 
window size in this paper. 

Dependency-based strategy takes syntactic dependency information of a target 
word as its context. A dependency relationship is an asymmetric binary relationship  
 

 

Fig. 1. Example of Dependency Tree  



20 L. Qiu, Y. Wu, and Y. Shao 

between a word and its modifier [18]. The local context of a word w is a triple  
(w, r, w’), where w’ is a word having r relation with w. Notice that w can be either the 
target word or modifier in a triple. 

A target word may have multiple context triples in one sentence. For example, in 
sentence “the boy met a brown dog” (Figure 1), the word “dog” has three context 
triples: (dog, NMOD, a), (dog, NMOD, brown), (dog, OBJ, met). Then, for “dog”, 
three features are acquired: a/NMOD, brown /NMOD, met/OBJ. By parsing a corpus 
with a syntactic dependency parser, all features of a target word can be collected.  

The context of a word is represented by a vector <v1, v2, ..., vn>, where n is the total 
number of context words, and vi is a weighted value.  

For w=公安局长 gong-an-ju-zhang ‘police chief’, four candidate synonyms of w 
are w1=公使 gong-shi ‘minister’, w2=公国 gong-guo ‘duchy’, w3=会长 hui-zhang 
‘chairman’ and w4=特长 te-chang ‘one’s specialty’. Frequency of some context words 
is listed in Table 1. For instance, the figures in column ‘成为/VOB’ means that,成为
公安局长 cheng-wei-gong-an-ju-zhang ‘become police chief’, 成为公使 cheng-wei-
gong-shi become minister’ and 成为会长 cheng-wei-hui-zhang ‘become chairman’ 
occur ‘1, 2 and 4 times respectively in the corpus, while成为公国 cheng-wei-gong-
guo ‘become duchy’ and 成为特长 cheng-wei-te-chang ‘become one’s specialty’ 
occur none in the corpus. 

Table 1. Frequency of some context words of w, w1, w2, w3 and w4 

 成为/VOB 

cheng-wei 
‘become’ 

为/POB 

wei  
‘for’ 

武汉市/ATT 

wu-han-shi  
‘Wuhan 
city’ 

一位/QUN 

yi-wei 
‘a’ 

在/POB 

zai 
‘at’ 

一个/QUN 

yi-ge 
‘a’ 

w=公安局

长 

1 1 1 1 1 4 

w1=公使 2 1 0 2 1 0 

w2=公国 0 0 0 0 2 1 

w3=会长 4 1 0 10 1 2 

w4=特长 0 5 0 0 5 3 
 

3.2.2   Term Weighting 
We test various term weighting schemes including BOOL, TFIDF, BMTFIDF, IDF, 
BMIDF, TTEST and PMI (the formulas of the last six schemes are listed in Figure 2). 
In those weighting schemes, w is the headword. c is the context word. tf(w,c) is the 
frequency of c occurring in the context of w. df(c) is the times of c occurring in the 
context of different headwords, |d| is the number of unique context words in the 
context of w. avgdl is the average |d| of the context of all headwords, N is the number 
of headwords in the collection. P(w) is the probability of w occurring in the corpus. 
P(c) is the probability of c occurring in the corpus. P(w,c) is the probability of w and c 
co-occurring in the corpus. k1 and b are constants 2.0 and 0.75. 
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Fig. 2. Weighting schemes 

3.2.3   Similarity Measure 
Contextual similarity of w and wi∈CS(w) is defined as sim(w, wi)=λ(w, wi) * CTS(w, 
wi), where CTS(w, wi) denotes the pure contextual similarity, while weighted by λ(w, wi) 
(called λ weighting). 

Cosine distance is used to compute CTS(w, wi). See formula (7) for concrete 
definition, where n denotes the dimension of the two vectors, while vj and vij denote 
the weighted value of the jth context word of w and wi respectively.  
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The λ weighting is based on structural information. Its basic idea is that: the more 
common characters two Chinese words share, the closer their meanings are. 
Therefore, λ(w, wi) is defined as follows.  

(1) If w and wi only share the final or the first character, λ(w, wi)=1. E.g., w=基
民 ji-min ‘stock fund investor’, wi=市民 shi-min ‘citizen’. 

(2) Else, if w and wi share both the final and the second final character, λ(w, 
wi)=λ1. E.g., w=铝合金 lv-he-jin ‘aluminum alloy’, wi=铁合金 tie-he-jin 
‘iron alloy’. 
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(3) Else, if w and wi share both the first and the final character, λ(w, wi)=λ2. 
E.g., w=电机厂 dian-ji-chang ‘electronic appliance factory’, wi=电器厂 
dian-qi-chang ‘electronic motor factory’. 

(4) Else, λ(w, wi)=λ3.  

The three parameters should be set as λ1≥λ2≥1≥λ3.  
To optimize all the λs, the following procedure is completed: (1) set the range of λ1 

and λ2 as [1, 20], and adjust every 1; (3) set the range of λ3 as [0, 1], and adjust  
every 0.1.  

3.3   KNN Classification 

Each word wi∈CS(w) has a supersense SS(wi), which is defined in the thesaurus T. 
Different candidate synonym may have same supersense. A KNN classifier takes the 
following steps: 

(1) Rank sim(w, wi) from big to small.  
(2) Keep sim(w, wi) unchanged for the first K words and set sim(w, wi)=0 for the 

remaining.  
(3) Collect supersenses of all wi∈CS(w) to form a supersense set {SS(wi)}. For a 

supersense sj∈{SS(wi)}, denote its similarity sum as sim(sj), and compute it as 
sim(sj)=∑sim(w, wi), where wi satisfies SS(wi)= sj.  

(4) Assign w the supersense having the biggest similarity sum, i.e., Argmax(sim(sj)). 

4   Experiments 

4.1   Evaluation Setup 

4.1.1   Data Set 
Extended Cilin: (abbreviated as Cilin in the following), which is released by Harbin 
Institute of Technology, is taken as the thesaurus in the experiments [19]. Cilin 
classifies over 70,000 words into 12 major categories, 94 medium categories (for nouns, 
there are 49 medium categories) and 1428 small categories. Each small category 
contains several synsets that are close in meaning. The three levels of semantic 
categories are referred to as major, medium and small supersense in the following. 

Two sets were constructed, called TS1 and TS2, which contain 3,000 test words 
respectively. TS1 is used for development and TS2 are used for test. 

TS1 and TS2 were constructed following the procedure in [10], which selects 
words from Cilin, and then filters and groups them with the help of Contemporary 
Chinese Corpus [20]. The Contemporary Chinese Corpus, which is segmented and 
POS-tagged, contains all the news articles (over 1.12 million tokens) of the People’s 
Daily newspaper published in China from January to June 1998. To form TS1 (or 
TS2), filter from Cilin those words not occurring in Contemporary Chinese Corpus of 
January 1998, or not POS-tagged as nouns, verbs, or adjectives. Then group those 
words, which remain in Cilin after filtering, by their frequency in Contemporary 
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Chinese Corpus: 1-3 times, 3-6 times, and 7 or more times. Randomly select 1,000 
words from the three groups to form TS1 (or TS2). 

Context of words is extracted from a self-made corpus, called Raw-Corpus.  
Raw-Corpus contains about 500,000 news articles (about 20,000,000 sentences), 
which are collected from four news websites Xinhua (www.xinhuanet. com), Sina 
(news.sina.com.cn), Sohu (news. sohu.com) and CCTV (news.cctv.com) from 
January to December 2006.  

To extract context of a word, at most 1000 sentences containing that word are 
retrieved from Raw-Corpus. To reduce noisy data, a retrieved sentence must contain 
at least 50 Chinese characters. All those retrieved sentences are then segmented and 
parsed by LTP 2.0 Platform1, which is developed by HIT Center for Information 
Retrieval. The LTP 2.0 Platform supports adding new words in functions of word 
segmentation and dependency parsing. 

4.1.2   Baseline, Topline and State-of-Art Methods 
For comparison, a baseline method, a topline method and two state-of-art methods are 
experimented on both the two sets (TS1, TS2).  

Baseline Method (Baseline): In this method, when the candidate synonym set is 
formed, all candidate synonyms vote with equal weight. That is, the KNN classifier 
works with setting sim(w, wi)=1 and K=|CS(w)|. In fact, this method assigns w with 
the supersense that the most candidate synonyms have. 

Topline Method (Topline): In the method, denote the correct supersense of w as s, 
and the assignment is considered correct if s∈{SS(wi)}. That is, as long as one 
candidate synonym share supersense with w, the topline model is considered correct 
on w. The topline method only used to help estimate the upper limit of the 
performance of the proposed method. 

State-of-art Context-based Method (SCM): The approach of [8] is the state-of-art 
one among all those context-based methods. We implemented this approach and 
called it SCM. Grefenstette’s weighted JACCARD measure and TTEST are used to 
measure contextual similarity between words.  

State-of-art Structure-based Method (SSM): The structure-based approach of [10] 
is the state-of-art one among all those structure-based methods. We also implemented 
this approach and called it SSM. SSM includes the rule-based model and character-
category association model of [10]. Since the third model, i.e., the context-based one, 
doesn’t further improve performance on the basis of the previous two models, it 
hasn’t been adopted in SSM. 

4.2   Evaluation Results 

4.2.1   Method Comparison 
In the experiments, we first compare the proposed approach (with parameters: k=20, 
λ1=10, λ2=10, λ3=0.4, window-based and PMI weighting, which are adjusted  on TS1.) 

                                                           
1 http://ir.hit.edu.cn/demo/ltp/ 
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with the baseline method, topline method and two state-of-art methods. For convenience 
of comparison with previous studies for English, we also make experiments on 
classifying all nouns into 49 medium categories. However, except indicating directly, 
all the following evaluations are made on the results of classifying nouns, verbs and 
adjectives into 1428 small categories. Note that a polysemous candidate synonym 
would vote one time for each of its supersense. Moreover, for a polysemous unknown 
word, the result is considered correct if the assigned supersense matches any of its 
correct supersense. Table 2 shows the comparison results. 

Seen from the table, the proposed approach outperforms the baseline method and 
the two state-of-art methods. The proposed method achieves improvements about 
10% over the SSM, about 20% over the baseline method and 25% over the SCM. The 
SCM runs even worse than the baseline method. Note that the process of candidate 
synonym set building is executed in the baseline method but not in the SCM. The 
SSM outperform the baseline method greatly, with improvement about 10% in terms 
of F1-score.  

The baseline model achieves above 45% F1-score on small suspense tagging. The 
performance is much better than that in English, e.g., [14] achieved 35% when 
classifying English nouns into 137 classes. The topline method achieves about 98% 
F1-score. This suggest that the character-filtering and POS-filtering processes, i.e., the 
process of candidate synonym set building, are reliable and have little risk of missing 
correct answers. 

4.2.2   Weighting Schemes Comparison 
To choose the most suitable weighting scheme, seven variants of the proposed method 
are implemented. In the seven implementations, TTEST, TFIDF, BOOL, BMTFIDF, 
IDF, BMIDF and PMI are used as weighting schemes respectively. All other 
parameters are kept the same as in Section 4.2.1. Table 3 shows the results on TS1.  

The results show that PMI outperform best ([10] also show that PMI perform better 
than TTEST, although the accuracy of Lu’s hybrid method using PMI weighting is 
only about 37%). BMTFIDF, one of the best weighting schemes in standard IR, also 
performs well in measuring contextual similarity. However, IDF, which usually 
perform worse than TFIDF in standard IR, outperforms IDF in measuring contextual 
similarity. 

The TTEST implementation of the proposed method performs much better than the 
SCM, which also uses TTEST as the weighting scheme. 

4.2.3   Influences of the Value of K in KNN Classifier 
Figure 3 shows the F1-score curve of three variant implementations of the proposed 
method on TS1 with different values of K in the KNN Classifier. K varies from 1 to 
80. In the three variant implementations, PMI, BMTFIDF and TTEST are used as the 
weighting scheme respectively and all the other parameters are the same as in  
Section 4.2.1. From this figure, we can see that the proposed method with PMI 
weighting achieves the best performance at K=20, while BMTFIDF and TTEST 
weighting at K=25.  
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Fig. 3. F1-score vs. the value of K in the KNN classifier (TS1) 

4.2.4   Influences of the Process of Candidate Synonyms Building, the Process of 
λ Weighting and the Context Extraction Strategy 

Besides the value of K and weighting schemes, there are several other crucial options 
in the proposed method, i.e., candidate synonyms set (CSS) building, λ weighting and 
context extraction strategy. To verify the effectiveness of those options, several 
implementations of the proposed method are experimented. The first one uses all the 
best parameters as in Section 4.2.1. All the following implementations are based on the 
first one. The second one only uses the dependency-based context extraction strategy 
instead of the window-based one. The third one only doesn’t include the process of 
candidate synonyms set building. The fourth one only sets all the three λs as 1. The last 
one not only doesn’t include the process of candidate synonyms set building, but also 
sets all the three λs as 1. The results of the five implementations are listed in Table 4. 

Table 2. Comparison results 

Method Data Set F(Small Supersense) F(Medium Supersense) 
TS1 0.482 0.559 

Baseline 
TS2 0.458 0.562 
TS1 0.981 0.995 

Topline 
TS2 0.980 0.997 
TS1 0.431 0.573 

SCM 
TS2 0.425 0.557 
TS1 0.580 0.713 

SSM (Lu) 
TS2 0.561 0.692 
TS1 0.681 0.802 Proposed Method 
TS2 0.671 0.767 
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Table 3. Comparison results of weighting schemes on TS12 

Weighting 
Scheme 

P R F 

BOOL 0.626 0.625 0.625 
TFIDF 0.630 0.629 0.629 

TTEST  0.637 0.627 0.632 
BMIDF 0.664 0.663 0.663 
IDF 0.666 0.665 0.665 
BMTFIDF 0.671 0.670 0.670 
PMI 0.682 0.680 0.681 

 

Table 4. Comparison results of the using of candidate synonyms set building, context extraction 
strategy and λ weighting on TS1 

Parameter P R F 

Best parameter 0.682 0.680 0.681 
Without character-filtering and 

POS-filtering 
0.633 0.633 0.633 

λ1=1, λ2=1, λ3=1 0.664 0.663 0.663 
Without character-filtering and 

POS-filtering, λ1=1, λ2=1, λ3=1 
0.461 0.461 0.461 

Dependency-based Context 
Extraction Strategy 

0.670 0.668 0.669 

 
From this table, we may find that both the process of candidate synonym set building 

and λ weighting are very crucial. If both of the two processes are not contained in the 
proposed method, the performance decreases greatly (46.1% in terms of F1-score) and is 
very close to that of the Curran’s SCM method. The results not only show the 
effectiveness of the combination strategy in the proposed method, and also show that 
context-based method alone doesn’t perform as well as structure-based method (e.g. Lu’s 
SSM method). However, since both the previous two processes are based on the same 
idea, only missing one of them doesn’t lead to great decrease. As for context extraction 
strategy, the dependency-based one performs a little worse than the window-based one. 

5   Error Analysis 

There are four types of errors. First, for an unknown word w, there is no word in 
thesaurus T that shares character with w, i.e., CS(w)=Ø. In such a case, no supersense is 
assigned to w. TS1 and TS2 only have 4 and 2 such types of words respectively. 

Second, although some words do share characters with w, all of them do not share 
supersenses with w. There are 83 and 80 such types of words in the two sets respectively.  
                                                           
2 In SCM, K=10, which is the best parameter for SCM. 
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Third, w does not appear in the Raw-Corpus, i.e., CT(wi)=<0, …, 0>. Thus, sim 
(w, wi) =0 holds for all wi∈CS(w). In this case, the proposed method degrades to the 
baseline model. There are 50 and 32 such types of words in the two sets respectively. 
Since contextual information is absent, many of them would produce wrong results. 

Fourth, although one or more candidate synonyms share supersense with w, the 
proportion of those words is too small to help that supersense win among all the 
candidate supersenses. Most of the errors are of this type. 

6   Conclusions and Future Work 

This paper proposes a tightly-coupled approach to combine contextual and structural 
information for supersense tagging of Chinese unknown words. The experiment 
results show the effectiveness of the proposed approach. Although context-based 
methods used alone perform not as well as structure-based methods, the combination 
of contextual and structural information performs much better than using them alone.  

There are several avenues that might be taken for future work. First, since PMI is 
usually used for feature selection and TFIDF used for term weighting, adding a 
feature selection process into the proposed method might make some more 
improvements. Second, our experiment results show that IDF weighting performs 
better than TFIDF weighting, which is very different from the results in standard IR 
and sentiment classification. We would try to explain this difference in future work. 
Finally, although this paper only experimented on Chinese, the idea might also be 
applicable to other Asian languages such as Japanese. 
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Abstract. This paper introduces a work on identification of conjunct verbs in 
Hindi. The paper will first focus on investigating which noun-verb combination 
makes a conjunct verb in Hindi using a set of linguistic diagnostics. We will 
then see which of these diagnostics can be used as features in a MaxEnt based 
automatic identification tool. Finally we will use this tool to incorporate certain 
features in a graph based dependency parser and show an improvement over 
previous best Hindi parsing accuracy.  

Keywords: Conjunct verbs, Diagnostics, Automatic Identification, Parsing, Light 
verb. 

1   Introduction 

There are certain verbs that need other words in the sentence to represent an activity 
or a state of being. Such verbs along with the other words, required for completion of 
meaning, are together called Complex Predicates (CP). CP exist in great numbers in 
South Asian languages [1], [2], [3]. A CP is generally made via the combination of 
nouns, adjectives and verbs with other verbs. The verb in the CP is referred as light 
verb and the element that the light verb combines to form a CP is referred as host [4]. 

[5] says that in Hindi/Urdu, the light verb is taken as a contributing ‘semantic 
structure’ which determines syntactic information such as case marking whereas host 
contributes the ‘semantic substance’, i.e. most of the meaning the complex predicate 
has. [6] has talked about four types of complex predicates: (a) In Syntactic Complex 
Predicates the formation takes place in the syntax. (b) In Morphological Complex 
Predicates, a piece of morphology is used to modify the primary event predication. 
Well known example is morphological causatives. (c) Light Verbs cross linguistically 
do not always form a uniform syntactic category. They are not always associated with 
a uniform semantics, but they always muck around with the primary event 
predication. (d) In Semantics, complex predicates represent the decomposition of 
event structure. 

In CPs, ‘Noun/Adjective+Verb’ combinations are called conjunct verbs and 
‘Verb+Verb’ combinations are called compound verbs. In this paper, we are focusing 



30 R. Begum et al. 

on conjunct verbs in Hindi and their identification using set of diagnostics and then 
we will see which of these diagnostics can be used to automate the identification 
process using statistical techniques and showed their usefulness in data driven 
dependency parsing [41]. This work can also greatly help in automatically augmenting 
a lexical network such as the Hindi WordNet1. Previous automatic identification 
approaches made use of parallel English corpora [19], [20] which makes use of the 
property that single verb in English will break into two components i.e. 
noun/adjective and verb in Hindi. [21] also makes use of English corpus for extracting 
collocation based features. To the best of our knowledge ours is the first work towards 
automatic identification of conjunct verbs in Hindi using only Hindi corpus. We have 
achieved a maximum accuracy of 85.28%. Incorporating this as a feature in graph 
based dependency parsing shows an improvement of 0.39% in label and 0.28% in 
label attachment accuracy. 

The paper is arranged as follows: Section 2 gives overview of conjunct verbs in 
Hindi. In Section 3, we describe behavioral Diagnostics to Identify Complex Predicates. 
In Section 4, we discuss the subjective evaluation of diagnostics. In Section 5 and 6, we 
define the system for automatic identification of conjunct verb and discuss experimental 
results respectively. We evaluate the effect of conjunct verb on parsing accuracy and 
compare it with the current state-of-the-art parser in Section 7. We conclude the paper is 
Section 8. 

2   Conjunct Verbs in Hindi 

Conjunct verb in Hindi is formed by combining a noun or an adjective with a verb. 
These verbs have the following structure [7]: 
 

Noun/Adjective   + Verb (Verbalizer) 
 
The most frequent verbalizers in Hindi are karnaa ‘to do’, honaa ‘to be’, denaa ‘to 
give’, lenaa ‘to take’, aanaa ‘to come’. Take (1) as a case in point. 
 
(1) raam ne    siitaa ko     kshmaa      kiyaa  
      ram   Erg. sita    Acc. forgiveness do-Past  
      ‘Ram forgave Sita.’ 
(2) raam ne    shyaam kii     madad kii 
      ram  Erg.  shyam  Gen.  help     do-Past 
      ‘Ram helped Shyam.’ 

 
In example (1), kshmaa ‘forgiveness’ is a noun which is combined with the verb 
karnaa ‘to do’ to express the sense of the verb ‘to forgive’. In example (2), conjunct 
verb is madad karnaa ‘to help’ and the noun madad ‘help’ is linked with the object 
shyaam ‘Shyam’ by the postposition (Hindi case marker) kii ‘of’.  

There are two approaches [8] which define conjunct verbs: ‘Lexical approach’ and 
‘Semanticist approach’. The aim of Lexical approach is to offer either a formal or 
                                                           
1  Developed by the wordnet team at IIT Bombay, http://www.cfilt.iitb.ac.in/ 
webhwn 



 Identification of Conjunct Verbs in Hindi and Its Effect on Parsing Accuracy 31 

structural justification for the recognition of the category of conjunct verbs and to 
specify and delimit the noun or adjective plus verb sequence as conjunct verbs. [12], 
[13], [14], [15] have followed Lexical approach. In ‘Semanticist Approach’, they tried 
to explore the semantic structure of the language completely abandoning the lexicalist 
interpretationists’s goal of specifying and delimiting the noun or adjective plus verb 
sequence as conjunct verbs. [16], [17] have followed semanticist approach. 

In this paper we also discuss the syntactic analysis of the conjunct verbs i.e., how 
they are treated at the syntactic level annotation of the data. 

3   Diagnostics to Identify Complex Predicates 

The following are some of the diagnostics mentioned in the literature [4], [18] for 
deciding which Noun+Verb (N+V) combinations are conjunct verbs: 

I. Coordination Test (D1): This test shows that nouns of conjunct verb don't allow 
coordination. However it is possible to conjoin the entire N+V combination. 
 
(3)*log       pratiyogita   meN  rucii     aur   bhaag                le     rahe  the 
       People competition  in      interest and  participation     take    Prog be-Past 
       ‘People were taking interest and participation in the competition.’ 
(4) log       pratiyogita   meN  rucii    le      rahe  the  aur   bhaag            le    rahe   the 
      People competition in     interest  take  Prog was and  participation  take Prog  was 

 ‘People were taking interest and participation in the competition.’ 
 
Example (3) is ungrammatical because rucii ‘interest’ and bhaag ‘participation’ are 
conjoined by aur ‘and’, whereas these nouns are part of CP. Sentence (4) is 
grammatical because here the N+V combination i.e., rucii le ‘take interest’ and bhaag 
le ‘participate’ has been conjoined with aur ‘and’. 

II. Constituent Response Test (Wh-Questions) (D2): CP internal nouns can’t be 
questioned. Only N+V combination can be questioned. 

 
(5) raam ne   jamhaaii  lii  
      ram   Erg yawn        take-Past 
      ‘Ram yawned.’ 
(6)*raam ne kya lii? 
        ram Erg what take-Past 
        ‘What did Ram take?’ 
(7) raam ne   kya   kiya? 
      raam Erg what do-Past 
      'What did Ram do?' 
 
Example (6) is ungrammatical because only noun of CP i.e., jamhaaii ‘yawn’ given in 
example (5) has been questioned. Whereas in (7), the N+V combination, jamhaaii le 
‘take yawn’ has been questioned. 
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III. Relativization (D3): CP internal nominals cannot be relativized.  

(8)*vah  snaan  [jo       bahut pavitra hai] raam ne gangaa taT   par kiyaa  
       that  baath   which  lot       pure      is     ram  Erg ganga  bank on do-Past        
      ‘The bath which Ram did on the bank of river Ganga is very pure.’ 
 
Sentence (8) is ungrammatical because snaan ‘bath’ which is noun internal to CP has 
been relativized by the relative clause. 
 
IV. Adding the accusative case marker (D4): CP internal nominal will not allow the 
accusative marking. 
         
(9)*raam ne    us    jamhaaii ko   liyaa ... 
       ram Erg that yawn       Acc take-Past ... 
      ‘Ram took that yawn…..’           
 
Sentence (9) is ungrammatical because jamhaaii ‘yawn’ which is noun internal to CP 
has taken an accusative case marker. 
 
V. Adding the Demonstrative Pronoun (D5): CP internal nominal will not take 
Demonstrative Pronoun. 
 
(10) raam ne     yah  nirdesh diyaa 
       ram   Erg.  this  order    give-Past 
       'Ram gave this order.' 
 
In sentence (10), the demonstrative pronoun yah ‘this’ is modifying the N+V 
combination i.e., nirdesh diyaa ‘gave order’ and not just the Noun, nirdesh ‘order’. 
To justify the above diagnostics we did a survey of these tests among native speakers 
of Hindi Language.  

4   Diagnostics Evaluation 

We conducted a survey among 20 native language speakers of Hindi to ascertain the 
usefulness of the diagnostics described in the previous section in identification of 
conjunct verb (CV). We took conjunct verbs and applied the above diagnostics to 
see how they fare in a subjective evaluation. Table 1 below shows the results of the 
test. ‘+ve’/‘-ve’ reflect the usefulness of diagnostics D1-D5 for each verb. A 
diagnostic is deemed ‘+ve’ if it got the desired response from >50% of the subject. 
A noun/adjective-verb pair is accepted as a conjunct verb (indicated by ‘yes’) if 
>=3 diagnostics are ‘+ve’, it is not accepted as a conjunct verb (indicated by ‘no’) if 
all the diagnostics are ‘-ve’. The decision is ‘unsure’ (indicated by ‘maybe’) if >=3 
diagnostics are ‘-ve’. If a diagnostic is not applicable for a verb we use a hyphen  
(‘-’) to indicate this. The cells that show +ve/-ve indicate no majority in total 
number of responses. For ease of exposition, Table 1 shows the result only for only 
7 verbs. The study considers a total of 20 verbs. 
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Table 1. Results of the subjective evaluation 

Noun+Verb D1 D2 D3 D4 D5 CV 

rucii le 
‘take interest’ 

+ve +ve +ve/-ve +ve +ve Yes 

maar khaa 
‘get beaten’ 

+ve +ve -ve +ve +ve Yes 

bhaag le  
‘participate’ 

+ve +ve +ve +ve -ve Yes 

snaan kar 
‘bathe’ 

-ve +ve +ve +ve +ve Yes 

chalaang maar 
‘jump’ 

- +ve +ve +ve +ve Yes 

bhojan kar 
‘eat’ 

-ve - -ve  +ve -ve may be 

havaa khaa 
‘feel air’ 

+ve +ve +ve +ve +ve Yes 

 
After exploring the behavioral diagnostics to identify conjunct verb, we will now 

move on to automate this task of identification. The tool will try to use the diagnostics 
that can be incorporated.  

5   Automatic Identification of Conjunct Verb 

In the previous sections, various tests were explored for manual identification of 
conjunct verbs. Now, we will explain the methodology used for building a statistical 
tool for automatic identification of conjunct verb. We didn’t focus on compound 
verbs (verb + verb) because already a high accuracy of 98% has been reported [22]. 
We have learned a binary classification using maximum entropy model, which will 
classify a noun/adjective-verb pair into either conjunct verb or literal class (non- 
conjunct verb). 

5.1   Corpus 

We have used two different dataset that are part of Hyderabad Dependency Treebank 
annotated according to CPG framework [9]. 

1. Dataset-1: Has 4500 manually annotated sentences (200k words approx.). It 
was released as part of the ICON’10 tools contest on Indian Language 
Parsing [39]. This dataset was used as a training data. 
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2. Dataset-2: Has 1800 sentences. It was released as part of the ICON’09 tools 
contest on Indian Language Parsing [40]. This dataset was used as a testing 
data. 

Training data has around 3749 unique consecutive noun/adjective-verb pairs out  
of which 1987 are unique noun/adjective and 350 unique verbs. Semantic category  
of each object is mined from the Hindi WordNet. The language model consisting of 
trigrams of words is created for training data, which is later used for extraction of 
various features. Testing data has 3613 noun/adjective-verb pairs out which 998 are 
conjunct verbs and remaining are literal expressions. 

5.2   Features  

Each of noun/adjective-verb pair is represented as a vector of following feature set. 
The features are categorized into three categories (1) Lexical (word based features 
like f1, f2, f3), (2) Binary features (f4, f5), (3) Collocation based (f6, f7). These 
features will helps in classifying a noun/adjective-verb pair into literal or conjunct 
verb class.  

a. Verb (f1): Some verbs govern whether an object-verb pair is conjunct verb or not 
as compared to other verbs. They are more likely to occur as light verbs. Example of 
such a verb is ‘kar’ (to do) which accounts for large part of conjunct verb expressions. 
On the other hand verbs like ‘chalnA’ (to walk) occur as literal expression in most 
cases. Hence, verb will be a good feature for classification task. 

b. Object (Noun, Adjective) Lexical (f2): Some objects are more biased towards 
occurring with a light verb as compared to other objects. These objects have high 
chances of forming conjunct verb expression with a light verb as compared to other 
objects.  

c. Semantic Category of Object (f3): In some of the theoretical work [5], [6] 
importance of semantic category of a noun/adjective in identifying conjunct verb has 
been shown. We incorporated this feature for nouns/adjectives by extracting it from 
the Hindi WordNet. We referred to the first sense of topmost ontological node of a 
noun/adjective. Some of the possible semantic categories are ‘Artifact’, ‘Abstraction’, 
‘State’, ‘Physical Object’ etc. Total semantic categories are 83; noun/adjective  
will fall into any of these categories, so this will help in case of unknown 
nouns/adjectives. 

For Example: in the expression ‘viSvAsaGAwa-karana’ (meaning ‘to betray’), the  
Semantic type of ‘viSvAsaGAwa’ is “Anti Social”. 

d. Post-Position Indicator (f4): is a Boolean feature which will indicate whether a 
noun/adjective is followed by a post position and then verb i.e. a post-position marker 
is present between noun/adjective and verb or not. Basic intuition behind this feature 
is that if a noun/adjective is followed by a post position than it’s a possible candidate 
of being a part of verb argument structure. Hence, possibly the particular 
noun/adjective-verb pair doesn’t belong to conjunct verb class, as mentioned in 
diagnostic number 4 (D4) in section 3. 
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e. Demonstrative Indicator (f5): is a Boolean feature indicating presence of DEM 
(demonstrative tag) before noun/adjective-verb pair. This diagnostic is explained in 
section 3 as D5.  

f. Frequency of Verbs corresponding to particular Object (f6): If a noun/adjective 
is occurring with few verbs than it is highly probable that the given noun/adjective-
verb pair is a multi-word expression.So the frequency of the number of different verbs 
occurring with a particular object will be a good indicator for conjunct verbs. For 
example: a noun ‘svIkAra’ (to accept) occurs only with two different verbs –‘kar’ (to 
do) and ‘hE’ and noun ‘kAnUna’ (law) occurs with five different types of verbs –
‘bawA’ (to tell), ‘kar’, ‘baxala’ (to change), ‘lA’ (to bring) and ‘paDa’ (to study). 
Therefore, ‘svIkAra’ is more likely to form a conjunct verb expression. 

g. Verb Argument Indicator (f7): This feature computes the average number of 
post-position occurring before a unique noun/adjective-verb pair. The reason for 
exploring this feature is that if an expression has large number of post position 
occurring before it then its verb’s argument structure is likely to be satisfied because 
each post-position is preceded by a noun/adjective which may potentially be the 
argument of the verb. Hence this noun/adjective-verb pair is more probable to form a 
conjunct verb. 

5.3   Maximum Entropy 

The features extracted above are used for binary classification of a noun/adjective-
verb expression into conjunct verb and non-conjunct verb using the maximum entropy 
model [23]. Maximum entropy has already been widely used for a variety of natural 
language tasks, including language modelling [24], [25], text segmentation [26], part-
of-speech tagging [28], and prepositional phrase attachment [27]. 

The maximum entropy model estimates probabilities based on the principle that the 
model is consistent with the constraint imposed maintaining uniformity otherwise. 
The constraints are derived from training process which expresses a relationship 
between the binary features and the outcome [29] [30]. Some of the features on which 
training is performed are distinct valued features (f1, f2) while others are real valued 
feature (f6, f7). These features are mapped to binary features. We used maximum 
entropy toolkit2 to conduct our experiments. 

6   Experiments and Results 

The trained system on the corpus of 4500 sentences is tested on 1800 sentences for 
measuring its accuracy. The binary classification of noun/adjective-verb test 
expressions into conjunct verbs and non-conjunct verbs are done. We took different 
set of features for our experiments by trial and error method to come up with the best 
model. The best model gives us the highest accuracy of around 85.28%. For the 
baseline for our task we included Verb (f1) and Object (f2) as feature. Table 2 gives 
the overview of useful features which helped in improving the accuracy. 

                                                           
2 http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html 
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Table 2 shows that when the semantic feature (f3) was introduced, it lead to an 
improvement of around ‘0.75%’, which proves the relevance of this feature. Inclusion 
of both Boolean features f4 and f5 showed a large jump in accuracy of about ‘3.15%’. 
Recall that f3 and f4 corresponds to D4 and D5 in section 3. Addition of feature f6 
improved our system by ‘0.54%’ showing dominance of particular objects (as discuss 
during f6 definition) in conjunct verbs. We have not considered features which will 
show the steep decrease in accuracy, e.g. feature f7 on addition shows a decrease of 
‘7.78%’ with respect to the best accuracy reached so far, and moreover it is even less 
than the baseline also. We define features (f1+f2+f3+f3+f5) and (f1+f2+f3+f3+f5+f6) 
as System-1 and System-2 respectively. 

Table 2. Showing system accuracy with different feature set 

Feature set Accuracy 
f1 + f2 (81.59) 

f1+f2+f3  (82.34) 
f1+f2+f3+f4+f5  (84.74) 

f1+f2+f3+f4+f5+f6 (85.28) 
    f1+f2+f3+f4+f5+f7 (77.44) 

7   Effect of Conjunct Verb on Parsing Accuracy 

It had been observed that Dependency framework is the better way to analyze 
morphological rich free word-order languages (MoRFWO) (such as Czech,Turkish, 
Hindi, etc). Various data driven [32], [33], [34] and hybrid approaches [31] has been 
tried but still the current state-of-the-art parsing accuracy hasn’t reached to a level 
which is comparable to English. Complex linguistics phenomenon is considered as a 
most vital factor for low accuracy of Hindi parsing apart from long distance 
dependencies, non-projective sentences and less corpus size. In past various 
morphological [34], semantic [35] and clause boundary [32] features have been tried 
to give language specific features in data driven parsing. All these features help in 
increasing the overall Hindi dependency parsing accuracy, but the gap between 
labeled and unlabeled accuracy is still large. Previous works [34], [43] have pointed 
that error due to complex predicates are significant in Hindi dependency parsing. 
Recall that in a conjunct verb it is the noun/adjective-verb complex that forms the 
predicate thereby controlling the argument structure. This means that unlike a 
sentence with a normal verb the predicate information in a sentence with conjunct 
verb is distributed.  

In this section, we investigate the effect of using conjunct verb specific features on 
parser accuracy. MST [36], [37] Parser was used to parse sentence, the MaxEnt based 
tool described in section 5.3 provides the feature. An improvement of 0.39% in  
label and 0.28% in label attachment accuracy is achieved. 

7.1   Experiments and Results 

We considered the MST+MaxEnt setting mentioned in [38] as Baseline for our 
experiments. All the parsing related experiments are performed on Dataset-2 as 
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described in section 5.1. Using the output of System-1 and System-2 as described in 
Section-6, we added conjunct verb feature in each consecutive noun/adjective-verb 
pair in the dataset. Feature is added in the feature column of CONLL [42] format by 
giving an extra indicator like ‘pof’ (for conjunct verb) and ‘npof’ (for non-conjunct 
verb), which led to an increase in parsing accuracy using MST. Total number of 
noun/adjective-verb pairs is 3613 out of which 962 and 942 are marked as ‘pof’ and 
remaining as ‘npof’ by System-1 and System-2 respectively. The parsing result is 
shown in Table 3.  

Table 3. Average LA (Labeled Attachment), UA (Unlabeled Attachment) and L (Label) 
accuracies on 12-fold cross validation 

 LA (%) UA (%) L (%) 

Baseline 68.77 85.68 71.90 

System 1 69.05 85.68 72.29 

System 2 68.52 85.04 71.93 
 

Table 4. 2nd and 3rd column represents the number of correctly identified ‘pof’ and ‘npof’ 
labels. Baseline-1 and Baseline-2 gives the number of labels that are correctly identified by the 
Baseline System group into ‘pof’ and ‘npof’ labels in comparison to System-1 and System-2 
respectively. These stats are the summation of 12 testing set which are tested during 12-fold 
cross validation. 

 ‘pof’ labels ‘npof’ labels 
Baseline-1 715 1628 
System-1 715+36 1628+21 
Baseline-2 713 1630 
System-2 713+42 1630+15 

 

7.2   Observations 

System-1 shows an increase of 0.39% in label and 0.28% in label attachment 
accuracy, this increase accounts to the 0.3%, 1.87%, 2.94% and 0.43% increase in 
labels accuracy of ‘k1’, ‘k2’, ‘pof’, ‘k7p’3 respectively. These labels occur in the 
same environment as ‘pof’, hence the confusion. Both the System-1 and System-2 
helps in reducing the ‘npof’ label (like ‘k1’, ‘k2’, ‘k7p’ etc.) confusion for those 
chunks which are given conjunct verb feature, by correctly identifying 21 and 15 
more labels compare to baseline respectively as shown in Table 4. Similarly, number 
of correctly identified conjunct verb labels increase by 36 and 42 in System-1 and 
System-2 respectively. This increase shows the positive effect of giving label specific 
feature to noun/adjective-verb pairs. Even if there is an increase in both systems 

                                                           
3 k1, k2 can be roughly translated as agent and theme respectively. ‘pof’ is the relation between 

noun/adjective-verb in a conjunct verb, ‘k7p’ shows place relation. The dependency labels in 
the Treebank are syntactico-semantic in nature. For more details refer [10]. 
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output, the overall accuracy of System-2 is less compare to both System-1 and 
Baseline results. This decrease is because of indirect wrong learning leading to 
ambiguity between different labels. 

8   Conclusions and Future Work 

We have analyzed some of the diagnostics for manual identification of conjunct verb 
and there relevance in automatic identification. We successfully showed the 
importance of these diagnostics in statistical techniques by observing the significant 
increase in overall accuracy of identifying conjunct verbs and there positive effect on 
parsing accuracy. In future we will try to automate behavioral diagnostics (like D1 
and D3) on the availability of large corpus. Although some diagnostics like 
Constituent Response Test (Wh-Questions) cannot be automated, they can give some 
theoretical grounding to conjunct verb identification and can complement the 
statistical tool. 

We tried to include some context through feature like f7, but they didn’t help. Since, 
additional context proves helpful in many tasks; we will have to explore this feature. 
The parsing accuracy showed improvement by incorporating the features given by our 
tool. Other NLP application tasks such as Machine Translation can also be tried. 
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Abstract. This paper deals with the identification of Reduplicated Multiword 
Expressions (RMWEs) which is important for any natural language applications 
like Machine Translation, Information Retrieval etc. In the present task, 
reduplicated MWEs have been identified in Manipuri language texts using CRF 
tool. Manipuri is highly agglutinative in nature and reduplication is quite high 
in this language. The important features selected for running the CRF tool 
include stem words, number of suffixes, number of prefixes, prefixes in the 
word, suffixes in the word, Part Of Speech (POS) of the surrounding words, 
surrounding stem words, length of the word, word frequency and digit feature. 
Experimental results show the effectiveness of the proposed approach with the 
overall average Recall, Precision and F-Score values of 92.91%, 91.90% and 
92.40% respectively. 

Keywords: Multiword Expressions (MWE), Reduplicated MWE, Conditional 
Random Field (CRF), Manipuri. 

1   Introduction 

Manipuri (or Meiteilon) belongs to the Tibeto-Burman family of languages mainly 
spoken in Manipur, a state in the North East India. Manipuri is a schedule language of 
Indian constitution. This language is also spoken in some parts of the other countries 
like Myanmar and Bangladesh. Manipuri is highly agglutinative in nature, monosyllabic, 
influenced and enriched by the Indo-Aryan languages of Sanskrit origin and English. The 
affixes play the most important role in the structure of the language. The majority of  
the roots found in the language are bound and the affixes are the determining factor of 
the class of the words in the language. Manipuri uses two scripts; the first one is 
purely of its own origin (Meitei Mayek) while another one is a borrowed Bengali 
script. In the present task, the processing has been done on the Bengali script. 
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MWE is composed of an ordered group of words which can stand independently 
and carries a different meaning from its constituent words. For example in English: 
‘to and fro’, ‘bye bye’, ‘kick the bucket’ etc. MWEs include compounds (both word-
compounds and phrasal compounds), fixed expressions and technical terms. A fixed 
expression MWE is one whose constituent words cannot be moved randomly or 
substituted without distorting the overall meaning or allowing a literal interpretation. 
Fixed expressions range from word-compounds, collocations to idioms. Some of the 
proverbs and quotations can also be considered as fixed expressions. Reduplicating 
words are usually collocated words MWE. 

The paper is organized in the following manner. Section 2 gives a brief discussion 
about related works, Section 3 details about Manipuri Reduplicated MWEs, Section 4 
gives the list of prefixes, suffixes and an example of highly agglutinative word, 
Section 5 gives the idea about how words are stemmed, Section 6 gives the concept of 
CRF, the Reduplicated MWEs identification using CRF is discussed in Section 7 
which is followed by the experiments and evaluation while the conclusion is drawn in 
Section 8. 

2   Related Works 

The concept of Reduplicated MWE originated from the concept of MWEs. So far few 
works of Reduplicated MWEs and MWEs are found on Indian Languages as well as 
on other Language. First work of Manipuri Reduplicated MWEs can be seen in [1], 
other combined works on identification of named entities and Reduplicated MWEs 
can be seen in [2]. For Bengali works on Reduplicated MWEs can be found in [3]. 
Works on MWE identification for Bengali and Hindi languages can be found in  
[4], [5] and [6]. MWE works on languages other than Indian languages can be found 
in [7], [8], [9] and [10]. It is observed that very little work has been done for 
Reduplicated MWEs.  

3   Manipuri Reduplicated MWEs 

The difficulties faced during the POS tagging task of Manipuri motivated us to work 
on the identification of MWEs and reduplicated MWEs in Manipuri. Some example 
Reduplicated MWEs which are difficult in POS tagging are words like iমনু iমনু মনুবা 
(‘i-mun i-mun mun-ba’) which means, ‘completely ripe’, েঙােশাক েঙােশাক েঙৗবা (‘ƞǝω-srok 
ƞǝω-srok ƞǝω-ba’) which means ‘shining white’ etc. Works for identification of 
Reduplicated MWEs in Manipuri is found in [1]. The process of reduplication is 
defined in [11] as: ‘reduplication is that repetition, the result of which constitutes a 
unit word’. These single unit words are the MWEs. The reduplicated MWEs in 
Manipuri are classified mainly into four different types. These are: 1) Complete 
Reduplicated MWEs, 2) Mimic Reduplicated MWEs, 3) Echo Reduplicated MWEs 
and 4) Partial Reduplicated MWEs. Apart from these four types there are also cases of 
a) Double reduplicated MWEs and b) Semantic Reduplicated MWEs. 
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3.1   Complete Reduplicated MWEs  

In the complete reduplication MWEs the single word or clause is repeated once 
forming a single unit regardless of phonological or morphological variations. 
Interestingly in Manipuri these complete reduplication MWEs can occur as Noun, 
Adjective, Adverb, Wh- question type, Verbs, Command and Request. For example, 
মিরক মিরক (‘mǝrik mǝrik’) which means ‘drop by drop’. 

3.2   Partial Reduplicated MWEs 

In case of partial reduplication the second word carries some part of the first word as 
an affix to the second word, either as a suffix or a prefix. For example,   
(‘cǝt-thok cǝt-sin’) means ‘to go to and fro’, শামী লানমী (‘sa-mi lan-mi’) means ‘army’. 

3.3   Echo Reduplicated MWEs 

The second word does not have a dictionary meaning and is basically an echo word of 
the first word. For example, thk-si kha-si means ‘good manner’. Here the first word 
has a dictionary meaning ‘good manner´ but the second word does not have a 
dictionary meaning and is an echo of the first word. 

3.4   Mimic Reduplicated MWEs 

In the mimic reduplication the words are complete reduplication but the morphemes 
are onomatopoetic, usually emotional or natural sounds. For example, করক করক (‘krǝk 
krǝk’) means ‘cracking sound of earth in drought’. 

3.5   Double Reduplicated MWEs 

In double Reduplicated MWE there consist of three words, where the prefix or suffix 
of the first two words is reduplicated but in the third word the prefix or suffix is 
absent. An example of double prefix reduplication is iমনু iমনু মনুবা (‘i-mun i-mun mun-
ba’) which means, ‘completely ripe’. It may be noted that the prefix is duplicated in 
the first two words while in the following example suffix reduplication take place, 
েঙােশাক েঙােশাক েঙাবা (‘ƞǝω-srok ƞǝω-srok ƞǝω-ba’) whichmeans ‘shining white’.  

3.6   Semantic Reduplicated MWEs 

Both the reduplication words have the same meaning as well as the MWE. Such type 
of MWEs is very special to the Manipuri language. For example, পামবা ৈক (‘pamba 
kǝy’) means ‘tiger’ and each of the component words means ‘tiger’. Semantic 
reduplication exists in Manipuri in abundance as such words have been generated 
from similar words used by seven clans in Manipur during the evolution of the 
language.  
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4   Prefixes, Suffixes and an Example of Highly Agglutinative 
Manipuri Word 

Altogether 72 (seventy two) affixes are listed in Manipuri out of which 11 (eleven) 
are prefixes and 61 (sixty one) are suffixes. Table 1 shows the 10 prefixes. The prefix 
ম (mə) is used both as formative and pronomial prefix but it is included only once in 
the list. Similarly, Table 2 lists 55 (fifty five) suffixes as some of the suffixes are used 
with different forms of usage such as গমু (gum) which is used as particle as well as 
proposal negative, দা (də) as particle as well as locative and না (nə) as nominative, 
adverbial, instrumental or reciprocal.  

To prove with the point that Manipuri is highly agglutinative let us site an example 
word: “পৃিশনহনজারমগাদাবািনদােকা” (“pusinhənjərəmgədəbənidəko”), which means “(I wish I) 
myself would have caused to carry in (the article)”. Here there are 10 (ten) 
suffixes being used in a verbal root, they are “pu” is the verbal root which means 
“to carry”, “sin”(in or inside), “hən” (causative), “jə” (reflexive), “rəm” 
(perfective), “gə” (associative), “də” (particle), “bə” (infinitive), “ni” (copula), 
“də” (particle) and “ko” (endearment or wish).  

Table 1. Prefixes in Manipuri 

Prefixes used in Manipuri 

a, i, i, খ,ু চা, ত, থ, ন, ম and েশ 

Table 2. Suffixes in Manipuri 

Suffixes used in Manipuri 

, , , , , , , , , , , , , , , , , , , , 

, , , , , , , , , , , , , , , , , , , , , , , , 

, , , , , ,   and   
 

5   Manipuri Word Stemming 

Manipuri words are stemmed by stripping the suffixes in an iterative manner. As 
mentioned in Section 4 a word is rich with suffixes and prefixes. In order to stem a 
word an iterative method of stripping is done by using the acceptable list of prefixes 
(11 numbers) and suffixes (61 numbers) as mentioned in the Table 1 and Table 2 
above. 

6   Concept of CRF 

The concept of Conditional Random Field [12] is developed in order to calculate the 
conditional probabilities of values on other designated input nodes of undirected 
graphical models. CRF encodes a conditional probability distribution with a given set 
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of features. It is an unsupervised approach where the system learns by giving some 
training and can be used for testing other texts. 

The conditional probability of a state sequence X=(x1, x2,..xT) given an observation 
sequence Y=(y1, y2,..yT) is calculated as : 

P(Y|X) = t))X, ,y,y (fexp(
1

t1-t

T

1t
k

k
k

XZ ∑∑
=

λ  (1)

where, fk( yt-1,yt, X, t) is a feature function whose weight λk is a learnt weight 
associated with fk and to be learned via training. The values of the feature functions 
may range between -∞ … +∞, but typically they are binary. ZX is the normalization 
factor:  
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which is calculated in order to make the probability of all state sequences sum to 1. 
This is calculated as in Hidden Markov Model (HMM) and can be obtained efficiently 
by dynamic programming. Since CRF defines the conditional probability P(Y|X), the 
appropriate objective for parameter learning is to maximize the conditional likelihood 
of the state sequence or training data. 

∑
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where, {(xi, yi)} is the labeled training data. 
Gaussian prior on the λ’s is used to regularize the training (i.e., smoothing). If λ ~ 

N(0,ρ2), the objective function becomes, 
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The objective function is concave, so the λ’s have a unique set of optimal values. 

7   Reduplicated MWE Identification Using CRF 

Figure 1 shows the system architecture for identification of Reduplicated MWEs 
using CRF. The important processes required in identification of Reduplicated MWE 
extraction using CRF are feature selection, preprocessing which includes arrangement 
of tokens or words into sentences with other notations, creation of model file after 
training and finally the testing with the test corpus. For the current work, C++ based 
CRF++ 0.53 package1 which is readily available as open source for segmenting or 
labeling sequential data is used.  

                                                           
1 http://crfpp.sourceforge.net/ 
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Fig. 1. System Architecture for identification of Reduplicated MWEs 

Following sub sections explain the overall process in detail: 

7.1   Feature Selection 

The feature selection is important in CRF. The various features used in the system are,  

F= {SWi-m, …, SWi-1, SWi, SWi+1,… , SWi-n , number of acceptable suffixes, 
number of acceptable prefixes, acceptable suffixes present in the word, 
acceptable prefixes present in the word, Surrounding POS tag, word length, 
word frequency, digit feature } 

The details of the set of features that have been applied for MWEs in Manipuri are as 
follows: 

Surrounding Stem words as feature: Stemming is done as mentioned in Section 
5 and the preceding and following stem words of a particular word are used as 
features since the preceding and following words influence the present word in case 
of reduplicated MWEs. 

Number of acceptable suffixes as feature: The suffix plays an important role in 
Manipuri since it is a highly agglutinative language. For every word the numbers of 
suffixes are identified during stemming, if any and the number of suffixes is used as a 
feature. 

Number of acceptable prefixes as feature: Like suffixes the prefixes plays an 
important role too for Manipuri since it is a highly agglutinative language. For every 
word the numbers of prefixes are identified during stemming, if any and the number 
of prefixes is used as a feature. 

Acceptable suffixes: 61 suffixes have been manually identified in Manipuri and 
the list of suffixes is used as one feature. As mention with an example in Section 4, 
suffixes are appended one after another and the maximum number of appended 
suffixes can be ten. So taking into account of such case, for every word ten columns 
separated by a space are created for every suffix present in the word. A “NIL” 
notation is being used in those columns when the word consists of less or no 
acceptable suffixes. 

Evaluation Results

Preprocessing Documents Collection 

Data Test 

Labeling

Features Extraction 

Data Training 

CRF Model  

Features Extraction
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Acceptable prefixes as feature: 11 prefixes have been manually identified in 
Manipuri and the list of prefixes is used as one feature. For every word the prefix is 
identified and a column is created mentioning the prefix if the prefix is presents, 
otherwise the “NIL” notation is used.  

Surrounding POS tag: Reduplicated MWEs can be a combination of noun-noun, 
verb-noun, adjective-noun POS patterns etc, so the POS of the surrounding words are 
considered as an important feature. 

Length of the word: Length of the word is set to 1 if it is greater than 3 otherwise, 
it is set to 0. Very short words are rarely Reduplicated MWEs. 

Word frequency: A range of frequency for words in the training corpus is set: 
those words with frequency <100 occurrences are set the value 0, those words which 
occurs >=100 but less than 400 are set to 1 and so on. The word frequency is 
considered as one feature since Reduplicated MWEs are rare in occurrence compared 
to those of determiners, conjunctions and pronouns. 

Digit features: Reduplicated MWEs are generally strings of characters and not 
digits. Thus the digit feature is an important feature. A binary notation of ‘1’ is used if 
the word consist of a digit else ‘0’. 

7.2   Pre-processing and Feature Extraction 

A Manipuri text document is used as an input file. The training and test files consist 
of multiple tokens. In addition, each token consists of multiple (but fixed number) 
columns where the columns are used by a template file. The template file gives the 
complete idea about the feature selection. Each token must be represented in one line, 
with the columns separated by white spaces (spaces or tabular characters). A sequence 
of tokens becomes a sentence. Before undergoing training and testing in the CRF the 
input document is converted into a multiple token file with fixed columns and the 
template file allows the feature combination and selection which is specified in 
section 7.1.  

Two standard files of multiple tokens with fixed columns are created: one for 
training and another one for testing. In the training file the last column is manually 
tagged with all those identified Reduplicated MWEs by marking B-RMWE for the 
beginning of Reduplicated MWE and I-RMWE for the rest of the Reduplicated MWE 
else ‘O’ for those which are not reduplicated MWE whereas in the test file we can 
either use the same tagging for comparisons or only ‘O’ for all the tokens regardless 
of whether it is Reduplicated MWE or not. 

7.3   Model File after Training 

In order to obtain a model file we train with CRF using the training file. This model 
file is a ready-made file by the CRF tool for use in the testing process. In other words 
the model file is the learnt file after the training of CRF. We do not need to use the 
template file and training file again since the model file consists of the detail 
information of the template file and training file. 
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7.4   Testing  

The test file is the test data to which we want to assign sequential tags of the 
Reduplicated MWEs by the system, i.e., tagging with B-RMWE for the beginning of 
Reduplicated MWE and I-RMWE for the rest of the Reduplicated MWE else ‘O’ for 
those words which are not Reduplicated MWEs. As mentioned earlier in section 7.2 
this file has to be created in the same format as that of training file, i.e., of fixed 
number of columns with the same field as that of training file.  

The output of the testing process is a new file with an extra column which is tagged 
with B-RMWE for the beginning of Reduplicated MWE and I-MWE for the rest of 
the Reduplicated MWE else ‘O’ for those words which are not part of any 
Reduplicated MWEs. 

8   Experiment and Evaluation 

Manipuri corpus are collected and filtered to rectify the spelling and syntax of a 
sentence by a linguist expert from Linguistic Department, Manipur University. In the 
corpus some words are written in English, such words are rewritten into Manipuri in 
order to avoid confusion or error in output. The corpus we have collected includes 
55,000 tokens which are of Gold standard. A total of 50,000 words are considered for 
training and testing is done on the rest 5000 words.  

A number of problems have been faced while doing the experiment due to 
typical nature of the Manipuri language. In Manipuri, word category is not so 
distinct. The verbs are also under bound category. Another problem is to classify 
basic root forms according to word class although the distinction between the noun 
class and verb classes is relatively clear; the distinction between nouns and 
adjectives is often vague. Distinction between a noun and an adverb becomes 
unclear because structurally a word may be a noun but contextually it is adverb. 
Further a part of root may also be a prefix, which leads to wrong tagging. The verb 
morphology is more complex than that of noun. Sometimes two words get fused to 
form a complete word. 

8.1   Best Feature Selection 

Experiments are performed in order to identify the best feature so that maximum 
Reduplicated MWEs are identified in a given text. Training is done with features 
created by a Gold standard and manually POS tagged data by a linguist and tested 
with 5000 tokens. The notations used by the linguist for the Reduplicated MWE are 
B-RMWE for the beginning of Reduplicated MWE and I-RMWE for the rest of the 
Reduplicated MWE else ‘O’ for those which are not part of any reduplicated MWE. 
Among the features mentioned in Section 7.1 different combinations have been 
experimented in order to identify the best feature set that produces good result. The 
Table 4 shows the result in terms of recall (R), precision (P) and F-measure (F). Table 
3 suggests the meaning of the notations used. 
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Table 3. Meaning of the notations 

Notation Meaning 

SW[-I,+J] Stem Words spanning from the i-th left position to 

the j-th right position  

POS[-I, +J] POS tags of the words spanning from the ith left to 

the jth right positions 

NoPre Number of prefix present in the word 

NoSuf Number of suffix present in the word 

Pre Prefixes present in the word 

Sufj Suffixes present in the word, where j= 1 to 10 (Refer 

section 7.1) 

DF Digit feature 

Len Length of the word 

Frq Frequency of the word 

Table 4. Results on the development set 

Feature 
R 

(in %) 
P 

(in %) 
FS 

(in %) 

SW[-2,+2], POS[-2,+2], NoPre, NoSuf, 

Pre, Sufj, Len, Frq, DF 

92.91 91.90 92.40 

SW[-3,+3], POS[-3,+3], NoPre, NoSuf, 

Pre, Sufj, Len, Frq, DF 

90.12 88.67 89.39 

SW[-3,+2], POS[-3,+2], NoPre, NoSuf, 

Pre, Sufj, Len, Frq, DF 

87.76 84.78 86.24 

SW[-4,+3], POS[-4,+3], NoPre, NoSuf, 

Pre, Sufj, Len, Frq, DF 

78.87 76.87 77.86 

SW[-4,+3], POS[-4,+3], NoPre, NoSuf, 

Pre, Sufj, Len, Frq, DF 

68.64 65.89 67.24 

SW[-2,+2], POS[-2,+2], NoPre, NoSuf, 

Pre, Sufj, Len, Frq, DF 

64.78 63.99 64.38 

SW[-3,+3], POS[-3,+3], NoPre, NoSuf, 

Pre, Sufj, Len, Frq, DF 

52.88 50.14 51.47 

SW[-4,+3], POS[-4,+2], NoPre, NoSuf, 

Pre, Sufj, Len, Frq, DF 

25.76 42.78 32.16 

SW[-4,+4], POS[-4,+4], NoPre, NoSuf, 

Pre, Sufj, Len, Frq, DF 

21.54 36.24 27.06 
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A lot of variations are noticed in Table 4 as we experiment with various feature 
combinations. We have started the combination from four stem words prior and 
four stem words succeeding a given stem word, POS tag of previous four words and 
the following four words, number of prefixes and suffixes, prefixes and suffixes 
appended in each word extended up to ten suffixes and one prefix, word length, 
frequency and a digital feature. 

8.2   Best Result 

With the experiments performed above we are able to find the best feature selection 
for the CRF. The best combination is thus as follows: 

 
F={ SWi-2,SWi-1, SWi, SWi+1 ,SWi-2, POS tag(s) of the current and 2 preceding 

and 2 following word(s), Number of Prefix, Number of Suffixes, Prefix of the 
word, Upto ten suffixes (if present) in the word, Length of the word, word 
frequency, Digital feature} 

Table 5. Best result on the test set 

Reduplicated MWE Types Recall Precision F-Measure 
Complete and Mimic 
Partial 
Echo 
Double 
Semantic 

98.33 
95.68 
90.37 
96.48 
83.72 

92.16 
96.56 
91.21 
92.78 
86.78 

95.15 
96.12 
87.92 
94.59 
85.22 

 
The best result for different Reduplicated MWEs shows a result as in Table 5. The 

overall best result for all types of MWEs is shown in Table 6. 

Table 6. Overall best result on the test set 

Model Recall Precision F-Score 

CRF 92.91 91.90 92.40 

8   Conclusion 

In this paper experiments have been carried out using the CRF tool for identification 
of Reduplicated MWEs in Manipuri and results achieved are promising. More 
features need to be identified in future to improve the score. Besides using the CRF 
tool, other machine learning methods need experimentation for identification of 
Reduplicated MWEs. Moreover, reduplicated MWE identification is also necessary 
for authorship stylometry task. 
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Abstract. Researches in Computational Linguistics (CL) and Natural
Language Processing (NLP) have been increasingly dissociated from each
other. Empirical techniques in NLP show good performances in some
tasks when large amount of data (with annotation) are available. How-
ever, in order for these techniques to be adapted easily to new text types
or domains, or for similar techniques to be applied to more complex
tasks such as text entailment than POS taggers, parsers, etc., rational
understanding of language is required. Engineering techniques have to
be underpinned by scientific understanding. In this paper, taking gram-
mar in CL and parsing in NLP as an example, we will discuss how to
re-integrate these two research disciplines. Research results of our group
on parsing are presented to show how grammar in CL is used as the
backbone of a parser.

1 Introduction

The two terms, Computational Linguistics (CL) and Natural Language Pro-
cessing (NLP), have often been used interchangeably. However, these two terms
represent two different streams of research which emphasize different aspects of
our field. For example, while research on grammar and its formalisms in CL and
research on parsing in NLP are closely related, their objectives are quite different.
On one hand, researchers in CL have focused on revealing how surface strings
of words systematically correspond to their meanings (in a compositional way)
and have been interested in developing formalisms by which the correspondences
are described. On the other hand, those in NLP are interested in more practical
engineering issues involved in processing natural languages by computer, such as
efficient algorithms for a program (parser) which computes the structure and/or
the meaning of a given sentence.

While some of parsers used in NLP are based on a grammar in CL, in order for
them to be practical, they should not only be efficient and robust but also be able
to choose the most plausible interpretation of a sentence among many possible

A. Gelbukh (Ed.): CICLing 2011, Part I, LNCS 6608, pp. 52–67, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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interpretations. Probabilistic modeling, which has been extensively studied of
lately, has been successful not only in making such choices but also in improving
both the efficiency and robustness of parsers. However, since probabilistic models
are beyond the scope of research on grammars in CL formalisms, the two research
streams have become increasingly dissociated from each other.

We discuss in this paper our research strategy for re-connecting these two
streams of research to evolve a new broader filed in which research on grammar
representation and processing are properly integrated. In particular, we argue
that representation of grammar and processing based on it should be clearly
distinguished. Straightforward application of a grammar in CL to parsers in
NLP would not be fertile as we expected. At the same time, statistical model-
ing without proper linguistic theories would be as futile as CL without proper
consideration of processing issues. We discuss several researches [1–9], which
we have been engaged in. They will shed light on the interesting relationship
between representation of grammar and processing.

2 Grammar Formalisms in CL

Confusion between grammar formalisms and processing started at the very be-
ginning of research on grammar in theoretical linguistics. Chomsky proposed a
set of transformation rules in order to associate a pair of sequences of words
which are very different from each other as sequence but share the same core
meaning [10]. The Standard Theory was proposed in [11], which postulated two
levels of structures, the surface and deep structures. The former is mapped to
phonological realization (sequence of words) and the latter with meaning through
semantic interpretation.

Though the main aim of introduction of transformation rules was to associate
surface sequences of words with somewhat standardized “meaning” representa-
tions, the whole process of linking the two levels was misinterpreted as a mental
process which has some psychological reality. It was wrongly claimed that trans-
formational grammar was not suited for parsing because it modeled generation
of sentences instead of recognition.

The tendency of directly associating a grammar representation with process
has become less common, due to the advent of grammar formalisms in CL,
such as GPSG [12] (Generalized Phrase Structure Grammar), LFG [13] (Lexical
Functional Grammar), HPSG [14] (Head-Driven Phrase Structure Grammar),
CCG [15] (Combinatorial Category Grammar), LTAG [16] (Tree Adjoining
Grammar) etc.. These formalisms have made it clear that the role of gram-
mar is to define an infinite set or/and to describe relationships between surface
sequences of words and their meanings. A grammar models neither psychologi-
cal processes in human mind nor computational processes for computer software.
These formalisms, inspired by computer science, are accompanied by clear se-
mantics, and emphasize the declarative nature of grammar representation.

The separation of declarative representation of grammar from processing has
significant implication on NLP (Natural Language Processing). Research on
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parsing, for example, is concerned with the efficiency or psychological reality
of algorithms which, given a sequence of words, compute the structure as a sen-
tence and/or its meaning. Due to the inherent ambiguities of natural language,
the search space is very large. Therefore, issues such as how to search the space
efficiently, how to find the most plausible interpretations among many, etc. have
been the major research issues in parsing.

However, the declarative nature of the grammar formalisms and the freedom
they provides have not been fully explored in NLP research.

3 Grammar Conversion

The clear separation of grammar representation and processing is a norm in
formal language theory (FLT). For example, the same grammar can be used by
diverse algorithms (Left-Corner, CYK, Earley, Shift-Reduce, etc), all of which
are guaranteed to be complete and sound. These base algorithms of CFG can
also be augmented with probabilistic models, and one can study the formal prop-
erty, the efficiency and effectiveness of these algorithms [17, 18]. Furthermore, in
FLT, grammars and the language defined by them are also clearly separated. A
grammar can be transformed into seemingly different grammars without affect-
ing the language defined by them. A grammar in CFG can be transformed into
other grammars of standard forms such as Chomsky Normal Form, Graibach
Normal Form, etc. The base algorithms of parsing are defined for one of these
standard forms.

Compared with CFG, grammar conversion among grammars in the different
formalisms in CL has hardly been studied. We neither know whether two gram-
mars in different formalisms define the same set, nor whether they have the
same number of derivation histories (i.e. the same number of interpretations) for
a given sequence of words.

We aimed in [19] to remedy this situation by showing that a grammar of
LTAG [20] can be converted to a HPSG-style of grammar. In this work, we
treated HPSG from two different perspectives, HPSG as a formal descriptive
framework and HPSG as a linguistic theory. As a formal framework, HPSG
has the same generative power as Type0, while TAG, the formal framework for
LTAG, belongs to the class called “mildly context sensitive” [21]. The greater
generative power of HPSG as a formal framework allows us to obtain a trivial
encoding of LTAG [22]. However, such conversion leads to a grammar which does
not follow the basic assumptions made by HPSG as a linguistic theory [14]. We
require our HPSG-style grammar to satisfy the minimum principles of HPSG as
linguistic theory.

For example, a lexical entry for a word must express the characteristics of the
word in the HPSG style, such as its sub-categorization frame and grammatical
category. A rule schema must represent constraints on the configuration of im-
mediate constituents and not be a construction-specific rule. These restrictions
enable us not only to define a formal link between the two frameworks (TAG
and HPSG as a framework), but also to clarify the relationship between specific
grammars in LTAG and HPSG as a linguistic theory.
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Fig. 1. Conversion of LTAG trees into canonical elementary trees

LTAG (lexicalized TAG) is a linguistic theory which use TAG as its descriptive
framework. As a linguistics theory, LTAG commits to specific principles which
individual grammars should follow. For example, it requires all the elementary
trees in a grammar be anchored by lexical items. The first approximation of a
grammar of LTAG by HPSG can be obtained simply by folding the leaf-trees
of an elementary tree into the Subcat feature of the lexical head in HPSG.
However, grammar conversion reveals interesting insights on differences between
the two linguistic theories. LTAG, for example, allows elementary trees to be
multi-anchored. It also allow non-anchored sub-trees to be included as parts of
elementary trees. The former is used to treat continuous or discontinuous idioms,
which causes difficulties in HPSG. The latter allow generalization which HPSG
cannot make in a simple manner.

These constructions can also be converted into HPSG-style canonical elemen-
tary trees (Fig. 1 (a) and (b)). Such conversion suggests interesting extensions
of HPSG (See [23] for the details). With such extensions to HPSG, we showed
that we could construct a HPSG-like grammar which is strongly equivalent to
an original LTAG grammar. The actual LTAG grammar we used is the XTAG
English grammar at 2001 [24], which was one of the most comprehensive gram-
mars of English. Experiments confirmed that the number of derivation trees by
our grammar is exactly the same as by the original XTAG grammar.
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More importantly, parsers based on the two grammars in the LTAG and HPSG
formalisms showed very different performances in terms of parsing efficiency. The
LTAG parser we used for comparison is the one reported in [25]. It is based on the
Head-Corner algorithm proposed in [26]. The parser for HPSG is a näıve imple-
mentation of CKY. As Table 2 shows, the näıve CKY parser is much faster, by a
factor of 13, than the original LTAG parser. Both parsers use dynamic program-
ming, in which the merging operation of the same states plays the essential role
in preventing combinatorial explosion. The main cause of inefficiency in LTAG
parsing is that the head-corner parsing can merge states only when partial parses
share the same elementary trees. On the other hand, the HPSG-grammar based
parser slices elementary trees into a set of binary branching sub-trees so that it
can merge when partial parses share the same top-level binary trees.

This experiment shows that the two equivalent grammars in terms of declara-
tive semantics may have very different characteristics from the view of processing.

Table 1. Classification of elementary trees in the XTAG English grammar (LTAG)
and lexical entries converted from them (HPSG)

Grammar A B C D Total

LTAG 326 763 54 50 1,193
HPSG 326 1,989 1,083 2,474 5,872

A: Canonical elementary trees
B: Multi-anchored trees without non-anchored sub-trees
C: Single-anchored trees with non-anchored sub-trees
D: Multi-anchored trees with non-anchored sub-trees

Table 1 and Table 2 illustrate the interesting contrasts of the two grammars.
Table 1 shows that the LTAG grammar captures generalization better than the
HPSG one. 1,193 elementary trees in XTAG have to be expanded into 5,872
lexical entries in the converted HPSG. On the other hand, the parser using the
HPSG grammar outperforms the LTAG parser which keeps elementary trees
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Table 2. Parsing performance with the XTAG English grammar for the ATIS corpus

Parser Parse time (sec.)

Näıve HPSG Parser 1.54
LTAG Parser 20.76

as they are during parsing. It is important to note that the HPSG parser can
reconstruct the same derivation trees and descriptive trees as the LTAG parser
produces, without keeping elementary trees.

4 Deriving Partial Constraints from Grammar - CFG
Filtering

Though formalisms in CL do not use unbridled transformation, they also provide
their own devices which are beyond CFG. Since they normally use feature-value
representation to characterize phrases and constraints among them, parsing al-
gorithms for them use unification instead of symbol equality among non-terminal
symbols in CFG, which is computationally expensive [27].

Another alternative is to avoid unification from processing altogether. A bun-
dle of feature-value pairs can be represented by a non-terminal symbol in CFG,
and if we ignored certain features (e.g. compositionally built semantic represen-
tation), the number of possible bundles of feature-value pairs would be finite.
The discussion in Sect. 3 also indicates that a grammar in one formalism (e.g.
LTAG) can be converted into another one in another formalism (e.g. HPSG).
Surface differences in representation are not essential in terms of the language
actually defined.

Following this line of thought, we derived a CFG grammar from a given HPSG
grammar [28]. Since we remove some of the features in the given HPSG to
limit the number of non-terminals, the derived CFG is less constrained than
the original grammar. On the other hand, a sequence accepted by the original
grammar is guaranteed to be accepted by the derived CFG.

The derived CFG approximates the original grammar in the same way as a
FA approximates a push-down automaton PDA by restricting the depth of the
stack [29] (For RG approximation of CFG, see [30]).

We derive a CFG from a HPSG grammar by recursively instantiating daugh-
ters of an ID rule of the HPSG grammar with lexical entries and generated
feature structures, as shown in Fig. 3. This procedure terminates when new
feature structures are not generated. In order to guarantee termination of the
whole process, we impose restrictions [31] on the features (i.e. ignore some of
the features which lead to infinitely many feature structures) (See [28] for the
details). The CFG thus derived have a large set of non-terminal symbols, and
the generalizations captured by the grammar representation are lost. However,
parsing based on a CFG with atomic symbols as non-terminals is far faster than
parsing using feature unification. In this work, we viewed unification as a device
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for grammar representation which has clear declarative semnatics [32]. As long
as the semantics of grammar representation is not changed, we can tranform the
representation into other forms for processing.

Once parsing finishes, we can easily reconstruct the derivation history by the
original grammar and perform further checking by unification. Since we use the
original grammar at this stage, the meaning representation can be constructed
at this stage.

The number of unification required is far less than that parsers using the
original grammar alone. This is because all partial parses which fail to contribute
to successful parses have been removed by the first phase of CFG parsing. Such
global filtering of unnecessary rule applications is found to be far more effective
than local filtering by quick checks.

The overall architecture using CFG filtering is very similar to that for LFG. In
LFG, the CFG component is explicit in grammar representation as c-structure. A
LFG parser generally adopts two-stage architecture [33], which is essentially the
same as CFG filtering in our framework. The essential difference is in grammar
representation. LFG, a multi-strata syntactic theory, considers c-structure as
an essential level of representation, while HPSG, a mono-strata theory, directly
map a sequence of words to the meaning. The derived CFG in our parser is
relevant to processing but has no theoretical status in grammar representation.
We can design a derived CFG for the sole purpose of maximizing the efficiency,
by choosing features.

Though in different context, [34] observed an interesting fact which may shed
light on the relationship between mono-strata theories and multi-strata ones. In
this work, he made logical axiomatization of the GB theory [35], a multi-strata
theory (surface structure and D-structure), as a logic program, and then applied
a series of program transformation. In the end, he discovered that D-structure
disappeared in the final program which maps PF (Phonetic form) directly to LF
(Logical Form).
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5 Parsing as a Search Problem

While a declarative grammar in CL defines a set of all possible interpretations,
a parser in NLP has to choose the most or more plausible ones than the rest.

Pragmatics or constraints based on extra-linguistic knowledge may give fur-
ther constraints on interpretations to narrow down possible interpretations. How-
ever, as many indicated, pragmatic clues are mostly preferential, not constraints
[36–39]. In order for the whole scenario of natural language understanding based
on pragmatic knowledge to work efficiently, a sentential parser should be very
efficient in producing single or a limited number of plausible parses, which are to
be checked their pragmatic plausibility. It should be able to do so with limited
accesses to semantic or pragmatic resources [40].

While evidences show that the first phase of linguistic processing (i.e. before
the conscious re-analysis phase) may not produce complete interpretations [41],
the existence of garden path sentences indicates that deterministic processing of
some sort, and thus selection of more plausible parsing paths than the rest, takes
place during parsing in human processing before processing based on pragmatics
[42, 43].

Preferential ranking can be captured by a probabilistic model. Since the prob-
abilistic version of CFG (Probabilistic CFG) and Viterbi-type parsing algorithms
for PCFG have been studied extensively, several attempts have been made to (1)
reduce the cost of exhaustive viterbi-type algorithms of PCFG by clever pruning
[44–46], and (2) to combine PCFG-parsing with parsing by feature-based gram-
mar [47–49]. The research results in (1) show that clever pruning can drastically
reduces the cost of parsing by reducing the total number of rule application with
minimum search errors. This is important since each rule application in parsing
for feature-based grammar involves expensive operation of unification.

The idea in (2) is rather simple. They used the CFG backbone, or a shallow
grammar built independently of the feature-based grammar, to choose the (most)
plausible derivation trees among many. Then they proceed to the stage of full
unification. However, since the probabilistic model of the first phase is dissociated
from feature-values in the original grammar, it failed to exploit rich information
encoded in the original grammar.

Although a grammar in the declarative formalisms is not concerned with
selection of plausible interpretation, this does not mean that the feature-value
representation does not contribute to the selection. On the contrary, to pack them
in single non-terminal symbols loses useful information for preference rating as
we lose useful generalization in grammar representation. Preference cues are not
monolithic but multi-layered in the same way as linguistic constraints are.

One possible solution is to build probabilistic models directly for feature-based
grammar, and apply the same line of thought on PCFG to feature-based gram-
mar. That is, one has to (1) build a probabilistic model for feature-based gram-
mar formalisms, (2) estimate model parameters without combinatorial explosion
of possible interpretations, and (3) develop efficient algorithms with clever prun-
ing based on the probabilistic model.
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Table 3. Viterbi parsing versus beam thresholding versus iterative parsing

Precision Recall F-score Avg. No. of failed
Time (ms) sentences

viterbi (none) 87.80% 87.52% 87.66% 94374 2
beam search (num+width) 88.63% 82.45% 85.43% 90 25
iterative (iterative) 87.40% 87.03% 87.21% 101 2

As for (1), log-linear model or maximum entropy models [50] are being success-
fully deployed for constructing discriminative models for grammars with many
features [51–54]. It was also shown by [55], [56], and [3] that estimation of model
parameters and selection of most plausible interpretations can be done by using
packed structures (i.e. feature forests) in a way similar to a dynamic program-
ming method used for PCFG.

Both [55] and [56] used simple exhaustive Viterbi-type of algorithms. They
enumerate all possible interpretations in packed feature forests and then choose
the most plausible interpretations. Though the packed representation reduces
the computational cost, the efficiency of their algorithms is inherently lim-
ited by the inefficiency of exhaustive parsing. Since then, we have introduced
to parsing based on a feature-based grammar (a grammar in HPSG: see [57]
for the detail) many clever search strategies which were proven effective for
PCFG-parsing. These include local and global beam search [4], iterative widening
search [8], etc.

Table 3 shows the performances of our parsers with three different strate-
gies [5]. While the exhaustive Viterbi showed the best performance in terms of
quality, it was extremely slow. On the other hand, the beam search combined
with iterative widening showed good performance in terms of both quality and
efficiency. The search errors (i.e. errors caused by pruning of this method) are
very small (0.45 %). Please also note tha the sentence length was limited to 14
words in these experiments because of inefficiency of Viterbi parsing.

6 Super-Tagging and Staged-Architecture

Whether search strategies such as beam search, iterative widening, etc. work
effectively and efficiently is highly dependent on how good the FOM (Figure
of Merit) is. When the parses with the highest value of the FOM are not the
correct ones, they are counted as model errors (errors caused by the model).
On the other hand, even if the correct ones would have the highest FOMs, the
parsing paths which would reach to them would be pruned in early stages of
search. This happens when we use beam search. These are counted as search
errors. Furthermore, when we employ iterative widening, an inappropriate FOM
tends to increase the number of iterative cycles and the efficiency deteriorates.
The efficiency deterioration occurs especially when early stages of parsing assign
wrong FOM values to partial parses of small constituents without much evidence.
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Since we use a probabilistic model as the FOM, we examined how different
types of probabilistic models affect the performance [6].

The one used in [6] is, in essence, the same as PCFG. That is, the inside prob-
ability of a mother node is computed based on the inside probabilities assigned
to the daughters (See the formula 1).

(Model 1)

pmodel1(T |w) = p0(T |w)
1

Zw
exp

(∑
u

λufu(T )

)
(1)
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T ′

p0(T
′|w) exp

(∑
u

λufu(T ′)

)

p0(T |w) =

n∏
i=1

p(li|wi)

The probabilities of smaller constituents are percolated up to those of larger ones
in a bottom-up fashion. At the bottom of a parse are words. The probabilities
of assignment of lexical entries to words are estimated without considering the
context. Words are the smallest constituents. The effect of the context on lexical
assignment to a word will be indirectly considered as the probabilities of larger
constituents which include the word. Wrong assignments would be redressed at
later stages when larger constituents are constructed.

This model would make errors in the very early stage of processing, i.e. lex-
ical entry assignments, since lexical assignment probabilties do not take into
consideration the context in which words occur. Such errors may lead to parsing
failure and thus trigger another cycle of iteration (efficiency deterioration). In
some cases, they may survive till the end inside the highest FOM (model or
search errors).

Another FOM focuses on lexical assignment. This model estimates the prob-
ability of lexical assignment to a word by taking the local context of the word
in a sentence. The model uses the words in local context of (+1/-1), the POS
tags of the word in local context (+3/-2), their bi-grams, etc. (See [6] for the
details). The model assigns the probability of a parse according to (2).

(Model 2)
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p(li|w, i) (2)

The third FOM is the combination of these two models.
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Table 4. Experimental results for Penn Treebank Section 23

Section 23 (≤ 40 + Gold POSs) Section 23 (≤ 100 + Gold POSs)
LP LR F1 Avg. Time LP LR F1 Avg. Time

model 1 87.65 86.97 87.31 468 ms 87.26 86.50 86.88 604 ms
model 2 87.71 87.02 87.36 111 ms 87.23 86.47 86.85 129 ms
model 3 89.79 88.97 89.38 132 ms 89.48 88.58 89.03 152 ms

Section 23 (≤ 40 + POS tagger) Section 23 (≤ 100 + POS tagger)
LP LR F1 Avg. Time LP LR F1 Avg. Time

model 1 85.33 84.83 85.08 509 ms 84.96 84.25 84.60 674 ms
model 2 85.26 84.31 84.78 133 ms 85.00 84.01 84.50 154 ms
model 3 87.66 86.53 87.09 155 ms 87.35 86.29 86.81 183 ms

The performances of these three models are shown in Table 4. As expected,
the third model showed the best performance. Compared with the model 1, the
model 3 improves the accuracy but also the efficiency significantly. This means
that improvement in lexical assignment is one of the keys for efficient parsing by
avoiding iteration cycles or backtracking. This confirms the observation by others
research groups in different grammar formalisms that super-tagging significantly
improved the efficiency of their parsers [58–62].

It is also interesting to see that the model 2 performed rather well. The model
did not construct any probabilistic models for larger constituents, thus avoid
complex computation of probabilities on feature-bundles. It chooses the parse
with the highest FOM of (1.2) among all possible parses. Parsing in this model
only ensures that a sequence of lexical entries assigned to words actually lead
to legitimate parses. Furthermore, since the super-tagger in this model is one
of the simplest, we can improve the performance by introducing rich features in
context and using more sophisticated models of sequential lablling [63].

Compared with probabilistic models on trees or embedded feature structures,
even sophisticated models for sequential tagging are much faster. Therefore,
if we could improve the performance of super-tagging in terms of accuracy, a
model centered a super-tagger without complex probabilistic models for larger
constituents could be both efficient and accurate.

Figure 4 is a staged architecture for efficient HPSG parsing [7]. The first two
stages are sequential tagging parts, POS and super-tagger. The super-tagger, a
simple one as in the Model 2, produces a raked list of sequences of super-tags.
The third stage is to filter out sequences of super-tags which do not lead to com-
plete parses. This phase uses the CFG skeleton derived from the original HPSG.
While the super-tagger only sees a local context of five words, the CFG parsing
check whether a given sequence of supertags is globally consistent with the given
grammar. The final phase is a deterministic shift-reduce parser which checks all
constraints and re-constructs the derivation history (or construct the meaning
representation). This staged architecture produces an extremely efficient parser
by avoiding probabilistic models on feature-value pairs, and by restricting clever
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Fig. 4. Staged architecture with supertagging

Table 5. Results of parsing on Section 23

Sentences ≤ 40 words Sentences ≤ 100 words
LP LR F1 Avg. Time LP LR F1 Avg. Time

model 1 85.33 84.83 85.08 509 ms 84.96 84.25 84.60 674 ms
model 3 87.66 86.53 87.09 155 ms 87.35 86.29 86.81 183 ms
staged architecture 87.15 86.65 86.90 25.9 ms 86.93 86.47 86.70 29.6 ms

search only to the early stage of POS tagger and super-tagger (See Table 5).
Currently, we focus on improving the performance of super-tagger and thus that
of the whole parser in terms of accuracy [9, 64].

7 Concluding Remarks

The declarative formalisms in CL give more freedom than procedural formalisms
such as TG to the research on processing. Based on them, we can explore possible
designs of architectures or algorithms for processing.

However, because of the multi-layered nature of linguistic constraints and the
complex relationship between the surface (a sequence of words or phonemes) and
the meaning, these formalisms for grammar representation also use formalism-
specific descriptive devices with procedural flavor, such as feature unification,
substitution and adjoining, function application and type-raising, etc.

Though they have clear semantics, these devices make the formalisms opaque
compared with simple CFG. They may have caused confusion among researchers
in NLP about representation and processing. The coufusion is not so conspicuous
as initial confusion among psycholinguists caused by TG [65]. Parsing research,
for example, had invested great effort on making unification efficient, while we
show in this paper that most of unifications could be avoided or be replaced
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by the simple symbol equality checking. The computational cost of unification
turned out to be not as crucial for efficient parsing as we had thought. We con-
fused unification as a device for grammar representation with actual operation
to be performed in parsing.

The surface differences in the formalisms also make comparison of grammars
difficult. It is not trivial to see whether two grammar representations in different
formalisms actually define the same language or not. Conversion from a gram-
mar in LTAG to a HPSG-style grammar shows that grammars in different for-
malisms are not as different as they look. It also shows that such basic constructs
in representation as elementary trees in LTAG can be dispensed with in an ac-
tual parser. Without explicit representation of elementary trees, the parser in
Sect. 3 can preserve derivation trees and thus compute the meaning according to
the original grammar. The parser is far more efficient than the one with explicit
representation of elementary trees.

The relationship between grammar representation and processing is similar
to the one between the computational level and the algorithmic level by [66].
The division would be useful from the practical point of view as well as from
the conceptual one. It enables us to design processing algorithms in systematic
ways, based on declarative grammar representation. Maintainability in represen-
tation and efficiency in processing will be achieved simultaneously. We can focus
on efficiency in designing computational architectures and algorithms, while the
completeness and soundness of grammar can be addressed at the level of gram-
mar representation. We showed in this paper that the breakdown of a thoery at
the computational level into the one of the algorithmic level is far from trivial.
As the design of supertagger shows, it may involve information accesses which a
theory of the computational level does not anticipate.
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Abstract. Though the lack of semantic representation of automatically extracted 
LTAGs is an obstacle in using these formalism, due to the advent of some 
powerful statistical parsers that were trained on them, these grammars have been 
taken into consideration more than before. Against of this grammatical class, there 
are some widely usage manually crafted LTAGs that are enriched with semantic 
representation but suffer from the lack of efficient parsers. The available 
representation of latter grammars beside the statistical capabilities of former 
encouraged us in constructing a link between them. 

Here, by focusing on the automatically extracted LTAG used by MICA [4] and 
the manually crafted English LTAG namely XTAG grammar [32], a statistical 
approach based on HMM is proposed that maps each sequence of former 
elementary trees onto a sequence of later elementary trees. To avoid of 
converging the HMM training algorithm in a local optimum state, an EM-based 
learning process for initializing the HMM parameters were proposed too. 
Experimental results show that the mapping method can provide a satisfactory 
way to cover the deficiencies arises in one grammar by the available capabilities 
of the other. 

Keywords: Supertagging, HMM Initialization, XTAG Derivation Tree, Semantic 
Representation, Grammar Mapping, Automatically Extracted Tree Adjoining 
Grammar, MICA. 

1   Introduction 

Tree Adjoining Grammar (TAG) introduced by Joshi [17] as a Mildly Context Sensitive 
Grammar is supposed to be powerful enough to model the natural languages [18]. In 
Lexicalized case (Lexicalized Tree Adjoining Grammar, LTAG,), any elementary tree 
of a TAG could be considered as a complex description of the lexical item that provides 
a domain of locality, which specifies syntactic and semantic dependencies [2]. 
Lexicalization, Extended Domain of Locality (EDL) and Factoring of Recursion from 
the Domain of dependencies (FRD) are three important keys of using this formalism in 
NLP applications and theorems. 
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Regarding the LTAG creation methodologies, LTAGs could be classified into two 
major classes, manually crafted LTAGs and automatically extracted LATGs [14]. The 
first class, manually crafted, contains the grammars that are developed by some 
experts and are enriched with some representations like feature structures, e.g., 
English XTAG grammar [32]. The difficulties and time consuming of developing 
these grammars inclined some researchers to develop some methods to extract LTAG 
from a corpus automatically [9, 30]. In [23, 9, 30, and 24] some statistical models are 
proposed that extract LTAG from tree banks automatically. These models take 
syntactic structure of a corpus and produce an LTAG as output by hiring some 
statistical and machine learning algorithms (e.g., Chen’s grammar for English [9], 
Xia’s grammar for English [30], Habash’s grammar for Arabic [15], and Park’s 
grammar for Korean [24]). The coverage of these grammars is strictly bounded by the 
training corpus. 

In spite of the all capabilities of automatically extracted and manually crafted 
LTAGs, there are some serious obstacles in using them in real world applications. 
But, fortunately, the observed weaknesses in each of these classes are against the 
capabilities of the other. For instance, though there is no applicable parsing algorithm 
for manually crafted LTAGs, due to their statistical nature, automatically extracted 
grammars have a lot of potential to be used by some powerful statistical parsers such 
as Statistical LTAG parser [28] and MICA [4]. On the other hand, despite there is no 
semantic representation for automatically extracted LTAGs, the manually extracted 
LTAGs are enriched with semantic representation due to their manually creation. 

Here, we are going to rectify some of these deficiencies by utilizing their relevant 
capabilities in the other grammar. Our focus is on the English XTAG grammar [32] as 
the manually crafted grammar in one side and the automatically extracted grammar 
used by the MICA parser [4] in the other side. This grammar, MICA’s, has been 
automatically extracted from Penn Treebank using Chen’s approach [9]. The detail 
information about XTAG and MICA grammar are presented in section 2.  

The main idea is based on mapping each elementary tree sequence of one grammar 
onto an elementary tree sequence of another grammar. The usefulness of the mapping 
can be considered by the three different ways. First, mapping elementary trees of 
automatically extracted grammars which represent the syntactical structure of a word, 
onto an elementary tree of a hand crafted grammar, can enrich the automatically 
extracted grammar with the semantic representation of hand written elementary trees. 
Second, this mapping enables the XTAG based applications to use the statistical 
parsers related to the automatically extracted grammar instead of XTAG parser. 
Third, it provides a way to evaluate the existence gap between in the manually crafted 
grammar or vice versa. 

In this paper, we have defined the mentioned mapping as a sequence-tagging 
problem to give the best mapping solution regarding the local and non-local 
information of each elementary tree. Here an unsupervised sequence tagger based on 
Hidden Markov Model (HMM) has been presented that produces an XTAG 
elementary tree sequence given an automatically extracted elementary tree sequence. 

The layout of this paper is as follow. Next section introduces the grammars in more 
detail regarding the mentioned deficiencies and the relevant capabilities. In section 
three, we present a brief history of previous works have been done on this subject. In 
section 4 the system architecture of the solution is presented that clarifies how to use 
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the model in real world applications. Problem modeling and other related works for 
training the HMM is presented in section 5. An innovative way for finding a suitable 
initial state of HMM parameters is given too. Finally in section 6 after giving an 
outline about the numerical experiment, the models accuracy is calculated. 

2   XTAG vs. MICA 

XTAG grammar [32] is a well known and large scale manually crafted LTAG for 
English that has been hand-crafted at university of Pennsylvania since 1990. It 
contains 1226 elementary trees that provide good syntactic as well as semantic 
constraints over the words due to their manually creation. The linguistic knowledge, 
such as features representation, embedded in XTAG grammar caused it widely get 
used in many TAG based applications such as parsing, machine translation, 
information retrieval, generation, semantic interpretation and summarization 
applications [32, 12, 13]. 

Despite the widely usage of XTAG grammar, there is no related efficient parser 
yet. The current available XTAG parser1 uses the chart-based head-corner parsing 
algorithm mentioned by Van Noord [29] that runs in O(n6) time complexity. Several 
ambiguities in the resulted parse trees beside the low speed of this method caused 
applications to face big problems and subsequently encouraged some researchers to 
solve them [2, 3, 13]. 

Though the history of progress in supertagging accuracy is clearly evidenced on 
the success of statistical methods in this area, the lack of statistical information for 
XTAG grammar was an obstacle in using these methods for XTAG based 
supertagging [2, 3, 13]. Under the circumstance some researchers, e.g. [9], tried to 
extract a LTAG that is almost compatible with XTAG grammar and contains 
statistical information. It was expected that these XTAG-like automatically extracted 
grammars be more compatible with statistical supertagging solutions due to their 
statistical nature [9].  

In [9] a XTAG-like LTAG contains some statistical information about the 
grammar was extracted from Penn Treebank. This model was a limited version of 
TAG namely Tree Insertion Grammar (TIG) [27] that didn’t absolutely obey TAG 
formalisms. The compatibility of the grammar with XTAG grammar and then the 
emergence of MICA [4] as a statistical and powerful parser that was developed to 
work with it caused the formalism has been taken into consideration. MICA (stand for 
Marseille-INRIA-Columbia-AT&T) is a dependency parser that returns the deep 
dependency representations of the given sentence, have been created since 2009 [4]. 
In supertagging, MICA uses the set of Chen’s automatically extracted supertags [9]. 
The output of supertagger then is given as an input to an Earley-like parser based on 
PCFG generated by SYNTAX [6]. 

Like the other automatically extracted LTAGs, MICA’s grammar also suffers 
from the huge size of elementary tree set and sparse data problem [9]. The total 
number of XTAG single anchor elementary trees over the English Penn Treebank is 
about 500 whereas this number for the MICA’s grammar is about 4700 elementary 

                                                           
1 Updated version available at http://www.cis.upenn.edu/˜xtag 
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trees. Enriching these huge size grammars with semantic representation needs a large 
humanly efforts. Nevertheless, this is an unavoidable task since this mapping enables 
it to be used in many areas of NLP and computational linguistic applications. 

3   Related Works 

Bridging between English XTAG and some other English grammars was considered 
by researchers in the last two decades. The significance of this work is due to the fact 
that English XTAG is a fairly comprehensive and ready to use grammar for English in 
compare to many of other grammars that are not as comprehensive as it is. The most 
important reasons that make it necessary to build such a bridge can be considered as 
follow: 1) sparseness and the lack of semantic representation of automatically 
extracted LTAGs, 2) obtaining a linguistically sound grammar for some efficient 
parsers such as HPSG parser [20] and MICA parser [4], 3) increasing the syntactic 
coverage of some lexicalized resources such as VerbNet [19, 10], and 4) finding the 
overlap between an automatically extracted LTAG and XTAG grammar [31].  

Due to enriching an automatically extracted LTAG with semantic representation, 
in [9] a conversion method has been proposed that maps an individual XTAG 
elementary tree onto an automatically extracted elementary tree using a heuristic rule-
based classification procedure. The outline of Chen’s method [9] is based on two 
transformations, node local transformation and structural transformation. In node 
local transformation the minor changes between source and target formatting is 
alleviated. In structural transformation also the syntactic differences between 
automatically extracted elementary trees and the output of node local transformation 
phase was diminished. Using these transformations, many of most frequently used 
XTAG elementary trees, about 4% of overall tree frames and about 30% of tree 
frames anchored by verbs, were mapped onto the elementary trees of automatically 
extracted grammar.  

Xia and Palmer [31] also used a similar rule-based method to calculate the overlap 
between XTAG and the LTAG that was automatically extracted from Penn Treebank 
using Xia’s approach [30]. They defined two type of matching named t-match and c-
match. Two elementary trees were considered to be t-match if they had the exactly 
same structure barring the type of information present in one grammar such as feature 
structure in XTAG. In c-match also an elementary tree was decomposed into three 
parts: subcat frame, subcat chain and modification pair. Two elementary trees were 
considered c-match, if they were decomposed into same tuple [31]. Regarding their 
work, two elementary trees of XTAG and the automatically extracted LTAG are 
considered match if they satisfy one of t-match or c-match rules. They reported 82.1% 
of accuracy in the matching procedure regarding t-match and c-match types. 

In [26] the syntactic coverage of VerbNet [19, 10], a domain independent of verb 
lexicon with explicit syntactic and semantic information for English, was extended by 
incorporating the coverage of XTAG grammar, accounting for possible transformation 
of each declarative frame. Due to the limitation of the VerbNet’s syntactic coverage that 
describes only declarative frame for each syntactic construction or alternation, mapping 
syntactic information of this resource to XTAG elementary trees could increase the 
robustness of it by capturing possible transformations of each frame [26]. Moreover, the 
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semantic predicates presented in the VerbNet could be used to disambiguate the XTAG 
verb senses regarding this mapping [26]. From 196 VerbNet’s frame, all but 18 
correspond exactly to 16 of 57 XTAG elementary trees by doing manually mapping 
between XTAG trees and VerbNet’s frames, they reported.  

In [14] also a statistical approach was proposed that the automatically extracted 
grammar used by MICA parser [4] was enriched by the semantic representation of 
XTAG grammar. The mentioned mapping problem was reformulated as a sequence 
tagging problem and modeled by an HMM. By manually checking a test corpus 
randomly selected from Penn Treebank, about 82% of accuracy in which XTAG 
elementary trees were correctly assigned to MICA elementary trees given a sequence 
of MICA elementary trees was reported.  

Here, by modeling the problem at issue as a statistical problem we have closely 
followed the proposed approach in [14]. Making some modifications in training 
algorithm as well as using comprehensive data for training phase makes the model to 
be more accurate and also simpler than the proposed model in [14]. The simplicity of 
the model is due to skipping the complicated smoothing method and embedding it in 
training algorithm. Another important difference between this solution and the 
solution available in [14] is in the evaluation function used in training algorithm that 
we will express it in detail in section 5. 

It is expected that the significant improving in both accuracy (about 88% against 
82% over WSJ) and complexity of the model in compare to [14] can enable the model 
to be used by researchers and developers. 

4   HMM-Based LTAGs Mapping 

As originally was introduced in [14], the mapping problem can be reformulated as a 
sequence tagging in which any target elementary tree is strictly depends on the local 
and non-local information of a sequence of source elementary tree. For the sake of 
simplicity we will use P as the MICA parser, G as the MICA grammar, P’ as the 
XTAG parser and G’ as the XTAG grammar. The statistical formulation of the 
problem could be as below:  

Given a sequence of elementary trees T=(t1,t2,…,tn)   assigned to sentence 
S=(w1,w2,…,wn) by P, tag each member of T with an isolated elementary tree ′ ′ 
such that the likelihood of ′ ′ , ′ , , ′  given T and S be maximized. 

The sequence classification problem can statistically be modeled using a Hidden 
Markov Model [14]. HMM is a statistical model that is used in modeling a Markov 
process with unobserved state. Here we have used a first order HMM to model the 
mentioned problem. The initializing and training phases of the HMM also have been 
done in an unsupervised fashion 

Figure 1 shows the basic architecture of the model to be used as XTAG-
supertagger or in desired state as XTAG-parser given the trained HMM λ and MICA 
parser. Regarding this graph, creation a XTAG derivation tree2 for a given sentence is 

                                                           
2  A derivation tree represents the process of combining elementary trees to yield a parse for the 

sentence. 
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decomposed into two main steps. At first the sentence will be supertagged using 
MICA and the HMM-Based Tagger to get a XTAG elementary tree sequence and then 
by combining the associated supertags regarding the dependency of the sentence’s 
lexemes the XTAG based derivation tree is generated. Here the HMM-Based Tagger 
is an implementation of Viterbi’s algorithm; the standard solution for the second issue 
raised in literature that deals with finding most likely hidden state path in which 
maximizes the probability of the observation sequence given the hidden state path and 
HMM. 

 

Fig. 1. The basic architecture of model to be used as XTAG supertagger or XTAG parser 

5   Problem Modeling Using HMM 

HMM (Hidden Markov Model) as a statistical model for modeling a Markov process 
with unobserved states is widely getting used in many applications of temporal 
pattern recognitions such as speech recognition, hand written recognition and part of 
speech tagging.  Like the other corpus based methods, HMM also is a successful 
classifier while it doesn’t use the complexity of classification problem. The success of 
the corpus based taggers like HMM, is due to this fact that linguistic phenomena can 
often be observed trough epiphenomena [7]. In HMM states are not visible while the 
output depends on the states are visible.  

Regarding the HMM formulation of the problem presented in [14], the problem 
can be modeled by considering each XTAG elementary tree as a hidden state of the 
model and each MICA elementary tree as an observation symbol. The observation 
and the state transition probabilities also were considered as the probability of 
observing each MICA elementary tree given a XTAG elementary tree and the 
probability of seeing each XTAG elementary tree after the other XTAG elementary 
trees, respectively. 
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5.1   Training the HMM 

Training as the adjusting the model parameters (A, B and ∏) to maximize the 
probability of the observation sequence is the most difficult problem arises in the 
literature. The current standard solutions, Baum-Welch or Baldi-Chauvin [1] algorithms, 
can efficiently find a local optimum λ= (A, B and ∏) that maximize P(O| λ) [25]. These 
algorithms inherit this weakness from the HMM in which does not provide any clear 
solution to use the extra information of problem context. In this case, the initial state of 
training algorithm provides a way to use a part of environment’s knowledge that can 
largely enhance the mentioned weakness [25].  

At issue, here, after initializing the model by using an innovative EM-based 
approach, the HMM was trained by Baum-Welch algorithm. The unsupervised EM-
based initializing method was used for incorporating the available knowledge about 
the mapping between MICA and XTAG elementary trees and for avoiding the Baum-
Welch algorithm of converging to a local optimal solution. In the next part, an outline 
of data preparation for initialization and training the model is presented. The 
introduced EM-based initialization procedure is expressed in detail too.  

Data Preparation. Like the other statistical models, HMM also needs a large-scale 
training corpus for both training and initialization. In initialization phase, as will be 
given later, having a set of English sentences that can be parsed by both of MICA and 
XTAG parsers is required; let us name this corpus as Initialization Database (IDB). 
Training also must be done over an enough large MICA elementary tree sequence 
data set, namely Train Database (TRDB), achieved from parsing some English 
sentences using MICA parser;  

Let C and C’ be two sets of elementary tree sequences were utilized in a derivation 
tree obtained from parsing IDB using MICA and XTAG parsers respectively. The 
order of elementary trees in each of C or C’ sequences are same as the order of their 
anchors in corresponding sentence in IDB. Since neither of these parsers produces a 
unique derivation tree for a given sentence, we applied some restrictions over their 
output.  

While due to its probabilistic architecture, MICA has the ability to score its 
resulted derivation trees; XTAG does not provide any solution for the ambiguity in 
parser results. Among the whole elementary tree sequences achieved from parsing a 
sentence in IDB, C contains the most probable ones. But, C’ contains all but some 
XTAG elementary tree sequences produced by the parser that contains at least one 
multi anchor elementary trees regarding this fact that MICA’s grammar does not 
contain any multi anchor elementary trees. 

To summarize, given a sentence Si in IDB, C contains its related most probable 
MICA elementary trees sequence , , , ,  ,  and C’ contains a set of 
XTAG elementary tree sequences ,′ | ,′ ′  in which each member of ξi is a 

sequence of XTAG elementary trees ,′ , ,′ , , , ,′   , ,′ ′.  

Initializing the HMM Parameters. The simplest and most intuitive way to estimate 
the mentioned HMM parameters is using Maximum Likelihood Estimation (MLE) 
method on the annotated corpora C and C’. Despite the simplicity of the MLE, the 
existence ambiguity in C’ would mislead the MLE method. To reduce the ambiguity 
size of C’, we have used a specialized kind of expectation maximization (EM) 
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algorithm [11] to score each XTAG elementary tree sequence indicating its 
compatibility with the related MICA elementary tree and other sequences of C’. 

Here, we are going to estimate the missed HMM parameters A, B and ∏ that 
maximizes the likelihood of observing C regarding the implicit knowledge of the 
HMM about the given mapping between XTAG and MICA sequences in C and C’. 
Formally, we are going to estimate HMM parameters λ such that the probability  
 | , ,  |                                               (1) 

is being maximized. The probability (1) can easily be estimated using forward 
algorithm, the standard algorithm for the first problem raised in the literature. 

In the EM formulation, E-step was defined as the HMM parameters estimation and 
were approximated by MLE with some consideration. Taking count in the MLE has 
been done by considering the score of each sequence of C’. The mentioned score 
shows how well a XTAG elementary tree sequence is compatible with its related 
sequence in C and other sequences in C’. Therefore, the score of a sequence ,′  
could be defined as the joint probability of observing it and its related sequence  

 given the current values of HMM parameters (λ) normalized by the number of 
sequences in ξi (|ξi|). Due to the variation of HMM parameters in each iteration of 
EM-based initialization, the scores of each sequences in C’ may vary too. The initial 
score of each sequence in C’ is first considered to be uniform distribution of 
probability over each member of ξi. Then, regarding the variation of HMM 
parameters, these scores will be vary. Eq. (2) shows the scoring function: 

,′ | | 0
,′ , || | 0 .                                            (2) 

Given the ith MICA elementary tree sequence , , , , , ,  in C and its jth 
related XTAG elementary tree sequence ,′ , ,′ , , ,′ , , , ,′  in ξi, the 
observation probabilities could be estimated by taking weighted-count from the set: 
 , , , ,′ | | |, | |, | |                                 (3) 

and normalizing them by the weighted sum of  all observed pair , , ,′   
that share the same second XTAG elementary tree as shown in eq. (4): 
 

 , | , ,′ , , , ,′∑ , , , ,′                                      (4)  

Here , , , ,′ , weighted-count, is the count of pair , , , ,′  in τ, weighted by 
the score of the related XTAG elementary tree sequence that  , ,′  is one of its 

constituents, ,′ .  
The state transition probabilities also could be estimated by computing the 

weighted-count of bigram ′ , ′  from any XTAG elementary tree sequence 
′ ′ , ′ , , ′  member of C’ and normalizing by the sum of all bigrams that 

share the same first elementary tree, as shown in eq. (5). 
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′| ′
′ , ′∑ ′ , ′  .                                               (5) 

The prior probabilities also could be estimated more easily. The prior probability 
matrix elements could be estimated by taking weighted-count from the elementary 
tree ′  at beginning of any sequence ′ ′ , ′ , , ′   in C’ and normalizing them 
by the sum of all scores related to C’ sequences. Eq. (6) shows how to compute the 
prior probability of a given XTAG elementary tree. 

′
′∑ ′| ′|                                                         (6) 

Another constituent step of the EM formulation, M-step, was considered as updating 
the model parameters such that the probability value in eq. (1) increases. Regarding 
this fact that HMM parameters are strongly depend on the values of scoring function, 
the only thing that should be done to increase the value of eq. (1) is estimating the 
new score values according to the earlier HMM.  

Fig. 2 summarizes the main steps of initialization phase. In each iteration it 
estimates the HMM parameters using weighted-MLE (E-step) and re-estimate the 
new score values of C’ sequences regarding the earlier HMM (M-step). It iterates 
until the score values of C’ converge to a stable state or it exceeded predefined 
maximum number of iterations.  

 

Fig. 2. The EM-based Initialization process for initializing the HMM parameters 

6   Numerical Illustration 

To evaluate the mapping accuracy of the proposed system, the model were initialized 
and trained with three real world data sets include ATIS [16], IBM Manual and WSJ 
[21] corpora. Table 1 summarizes some statistical information related to each 

C
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randomly selected subset of mentioned corpora used in initialization, training and 
testing the HMM. To guarantee valid results for making prediction regarding new 
data, the test data sets, namely TSDBs, were further randomly selected from each 
related corpus independent of the IDBs and TRDBs. However, in all of these cases, 
IDBs were selected as a subset of their related TRDBs.  

Our implementation was carried out on the MATLAB 7.6 development 
environment by extending the HMM toolbox written by Kevin Murphy [22]. The 
empirical evaluation was performed on the Intel Core™ 2 Duo running at 2.2 GHz 
and 3 GB RAM. 

Table 1. Some statistical information about initialization, training and testing dataset 

 No. Sentences No. Lexemes Avg. Sen. Length Max. Sen. Length 
 IDB TRDB TSDB IDB TRDB TSDB IDB TRDB TSDB IDB TRDB TSDB 

ATIS 904 1291 12 8612 17020 134 9 13 11.16 20 86 18 

IBM 3463 9754 71 36387 154917 873 10 15 12.2 17 58 19 

WSJ 11913 21709 198 113883 221337 2039 9 10 10.3 14 21 16 

6.1   The Initializing Effect 

The aforementioned initialization method was applied over three IDB’s, ATIS-IDB, 
IBM-IDB and WSJ-IDB. Fig. 3 shows how well the model enhanced itself while 
running the HMM initializing method. It represents the logarithm value of eq. 3, 
normalized by the number of sentences in each IDB during running the initialization 
method. 

Reviewing the effect of initial state on the Baum-Welch training algorithm as 
another way for showing the quality of the HMM initial state is summarized in table 
2. It shows how well the initial state can converge the HMM to a better solution than 
when it is trained with other randomly selected initial states. Due to this fact that 
Baum-Welch is strongly dependent on the HMM initial’s state, a good initial state can 
avoid of stopping algorithm in local optimum state. As it shows from the five 
experiments that have been carried out for training the HMM over each mentioned 
TRDB, the training process that is started with the proposed initial state, the EM 
column of each TRDB categories, gets a better response than when it was started with 
other randomly selected initial states, the four random columns of each TRDB 
categories. 

 

Fig. 3. Increasing the normalized value of P(C|λ) while running the HMM initialization method 
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Table 2. The negative value of logarithm likelihood of observing TRDBs while training the HMMs 
regarding their relevant initial states 

×-1 ATIS-TRDB IBM-TRDB WSJ-TRDB 
Iter. Random EM Random EM Random EM 

1 143228 143071 143167 143257 52397 1310790131084913107901310790 478280 186246418630741864440 1863123 673492 

2 56290 56280 56303 56282 42301 545387 545396 545387 545387 404000 804452 804216 804219 804413 606253 

3 56069 56046 56078 56054 41606 544138 544153 544138 544138 399605 802300 802008 801912 802204 596898 

4 55707 55675 55684 55694 41269 542331 542389 542331 542331 397236 799048 798804 798525 798905 591915 

5 55131 55122 55056 55136 40974 539670 539843 539670 539670 395411 794170 793902 793560 794054 588348 

6 54396 54441 54329 54422 40835 536080 536409 536080 536080 394075 788027 787213 787259 787858 585622 

7 53564 53627 53506 53603 40698 531432 531974 531432 531432 392958 781647 780926 780308 780926 583566 

8 52410 52429 52333 52451 40445 524274 525397 524274 524274 392111 774719 771456 771903 772534 582135 

9 50671 50681 50700 50773 40322 510952 513470 510952 510952 391400 764814 759079 758881 759539 580955 

10 48242 48274 48326 48398 40230 488795 492899 488795 488795 390925 747794 737006 737136 737756 579861 

6.2   Model’s Evaluation 

We have defined two type of evaluation for evaluating the model at issue, namely, 
lexical agreement, and tagging accuracy. In lexical agreement, it was measured how 
well the model observes the agreement between the anchor of both source and target 
elementary trees. In the other words, linguistically, can the target elementary tree be 
assigned to the anchor of the source elementary tree independent of the contextual 
environment of the anchor? In tagging accuracy also the model’s response over a test 
corpus was evaluated.  

The lexical agreement evaluation was done over the all of mentioned test 
datasets. Table 3 shows the result of the evaluation over the prepared test sets. 
Certainly, by considering the contextual environment, lexical agreement doesn’t 
guarantee that the assigned XTAG elementary tree to a MICA elementary tree 
(consequently to its related word in input sentence) is correct. For instance, while it 
gives a considerable value over ATIS-TSDB, as we will say later, the next evaluation 
criterion is not as acceptable as it is. 

As it shows, regarding this fact that the values of lexical agreement over each test 
sets are near to each other, it can be concluded that the model’s response about this 
evaluation measurement is not depend on the size of training set nor the nature 
training sentences.  

Tagging accuracy shows the model’s accuracy comparing with a gold tagged 
corpus. In tagging accuracy the model is considered as a supertagger that tags each 
words of an input sentence with its proper XTAG elementary tree (supertag).  To give 
more statistical information about the evaluation, depend on the average length of 
sentences in each datasets, TSDBs was divided into two parts. P1 includes all 
sentences of a test dataset with length smaller than the average, and P2 includes the 
other sentences. Table 4 gives the result of manually checking the models response 
over the mentioned test sets, tagging accuracy. As it shows, the model’s response is 
not that much depends on the sentence length. Because, as can be seen, the achieved 
accuracies in both of P1 and P2 are very close to each other regarding the test sets. 
Moreover, the relatively large distance between the ATIS-TSDB tagging accuracy and 
the others can be interpreted by this assumption that the measurement is strictly 
dependent on the size of training data. Since, though figure 3 shows that ATIS-TRDB 
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is a better training history in compare to both of IBM-TRDB and WSJ-TRDB, it gets 
some lower values for tagging accuracy. The assumption about the invert dependency 
between size of training data and tagging accuracy is observable in the model’s 
response for IBM and WSJ. However, as it was mentioned before, the assumption is 
not true for the lexical agreement.  

Figure 4 shows the distribution of error counts in a given sentence in TSDBs. It 
shows how a sentence is susceptible to issue errors regarding its dataset. For instance, 
the two most likely error counts that a WSJ-TSDB sentence may contains are zero or 
one. And in ATIS-TSDB, the most likely error count that may issue is two. As it shows 
most of the errors counts that may generated by the model for a sentences are 1, 2, or 3.  

Table 3. Lexical agreement evaluation over test sets (TSDBs) 

 ATIS-TSDB IBM-TSDB WSJ-TSDB 
Lexical Agreement 89.55% 91.7% 90.66% 

Table 4. The result of the accuracy tagging evaluation over test sets 

  ATIS-TSDB IBM-TSDB WSJ-TSDB 
  P1 P2 All P1 P2 All P1 P2 All 
Incorrect 12 17 29 29 70 99 86 139 225 
Correct 45 60 105 220 554 774 711 1103 1814 
Err Rate 21% 22% 21.6% 11.6% 11.2% 11.3% 10.7% 11.1% 11.03% 
Accuracy 79% 78% 78.3% 88.3% 88.8% 88.7% 88.3% 88.9% 88.96% 
Total 57 77 134 249 624 873 797 1242 2039 

 
Fig. 4. Distribution of error counts in a given sentence of TSDBs 

7   Conclusion 

In this paper, we have tackled the problem of mapping MICA’s [4] output to XTAG 
[32] elementary tree sequence as a sequence-tagging problem. An unsupervised 
sequence tagger based on Hidden Markov Model has been illustrated that it’s initial 
values were trained by an innovative EM-based unsupervised method and then the 
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whole parameters also were trained by forward-backward algorithm. It is expected that 
the model can provide way for using MICA’s [4] parser with XTAG grammar [32]. 
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Abstract. Very few attempts have been reported in the literature on de-
pendency parsing for Tamil. In this paper, we report results obtained for
Tamil dependency parsing with rule-based and corpus-based approaches.
We designed annotation scheme partially based on Prague Dependency
Treebank (PDT) and manually annotated Tamil data (about 3000 words)
with dependency relations. For corpus-based approach, we used two well
known parsers MaltParser and MSTParser, and for the rule-based ap-
proach, we implemented series of linguistic rules (for resolving coordi-
nation, complementation, predicate identification and so on) to build
dependency structure for Tamil sentences. Our initial results show that,
both rule-based and corpus-based approaches achieved the accuracy of
more than 74% for the unlabeled task and more than 65% for the labeled
tasks. Rule-based parsing accuracy dropped considerably when the input
was tagged automatically.

Keywords: Tamil, Dependency parsing, Syntax, Clause boundaries.

1 Introduction

The most important thing in Natural Language Processing (NLP) research is
data, importantly the data annotated with linguistic descriptions. Much of the
success in NLP in the present decade can be attributed to data driven approaches
to linguistic challenges, which discover rules from data as opposed to traditional
rule based paradigms. The availability of annotated data such as Penn Treebank
[1] and parallel corpora such as Europarl [2] had spurred the application of sta-
tistical techiniques [4], [5], [3] to various tasks such as Part Of Speech (POS)
tagging, syntactic parsing and Machine Translation (MT) and so on. They pro-
duced state of the art results compared to their rule based counterparts. Unfor-
tunately, only English and very few other languages have the privilege of having
such rich annotated data due to various factors.

In this paper, we take up the case of dependency parsing task for Tamil language
for which no annotated data is available. We report our initial results of applying
rule based and corpus based techniques to this task. For rule-based approach, the
rules (such as rules for coordination and main predicate identification) have been
crafted after stuying the Tamil data in general. The rules often rely on morpholog-
ical cues to identify governing or dependent nodes. For corpus-based approach, we

A. Gelbukh (Ed.): CICLing 2011, Part I, LNCS 6608, pp. 82–95, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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used two popular dependency parsers: Malt and MSTParser. For the purpose of
experimentation, both the approaches have been tested on small syntactically an-
notated corpus. The annotation is partially based on popular Prague Dependency
Treebank (PDT) [15].

In Section 2, we introduce previous attempts on this topic and similar work
that is happening for other Indian languages. Section 3 introduces some im-
portant aspects of Tamil language. Section 4 proposes the annotation scheme,
Section 5 introduces the rule-based method and corpus-based techniques and
the remaining sections introduce experimental evaluations and discussions.

2 Related Work

Tamil syntactic parsing is less discussed in the literature though there are some
recent work on developing morphological analyzers and POS taggers for Tamil.
This is evident from the scarce number of publications that have appeared on
this topic. The situation is better for other major Indian languages such as
Hindi and Telugu. There is an active research on dependency parsing ([7], [8],
[9]) and developing annotated treebanks for Hindi and Telugu. One such effort
is, developing a large scale dependency treebank [10] (aimed at 1 million words)
for Telugu, as of now the development for which stands [11] at around 1500
annotated sentences. Recently in year 2009, there was an NLP tools contest
dedicated for parsing Indian languages (Hindi, Telugu and Bangla) as part of
the ICON 2009 conference. That unfortunately didn’t include Tamil.

There were two prior works [12], [13] that discussed about Tamil syntactic pars-
ing. [12] used morphological analyzer and heuristic rules to identify phrase struc-
tures. [13] built a dependency analyzer for spoken language Tamil utterences.
The work [13] used relative position of words to identify semantic relations. The
current paper is different from [12] with respect to building dependency trees
rather than phrase structure trees. The current paper gives a comprehensive
treatment (in terms annotation scheme, parsing approaches and experimenta-
tion) to Tamil dependency parsing than the other two papers. There is a re-
cent paper [14] which used machine learning approach to dependency parsing of
Tamil. Since no results were reported, we are not able to compare our results
with theirs.

3 General Aspects of Tamil Language

Tamil is an south Indian language that belongs to Dravidian family of languages.
Other major languages in the Dravidian family include Telugu, Malayalam and
Kannada. The main features of the Tamil language include agglutination, rel-
atively free word order, head final and the subject-verb agreement. Below we
touch briefly on these features.

Morphology. Tamil is an agglutinative language [6] and has rich set of mor-
phological suffixes which can be added one after another to noun and verb stems
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(mainly) as suffixes. Tamil morphology is mainly concatenative and derivations
are also possible by means of adjectivalization, adverbialization and nominal-
ization. In general, Tamil morphology can be represented [6] as [stem (+affix)n].
Though there are only eight basic POS categories, with no such restrictions
placed on as to how many words can be glued together, Tamil morphology pose
significant challenges to POS tagging and parsing.

Head Final and Relatively Free Word Order. Tamil is a head final lan-
guage, meaning the head of the phrasal categories always occur at the end of
a phrase or constituent. Modifiers and other co-constituents always precede the
phrasal head. For example, postposition is the head of the postpositional phrase,
and will be modified by noun phrases. There are very few exceptions (identifi-
able) such as the subject of a sentence occuring after the finite verb (head). In
most cases, head final rule is preserved.

Tamil is a Subject Object Verb (SOV) language and the word order is rela-
tively free. Within a clause, phrases can be moved to almost any position except
to the postion of clause head which should always be a verb. Consider the Tamil
sentence ‘appA enakku puTTakam kotuTTAr’1 (Father gave me a book). The
free word order nature of Tamil for this sentence is given below,

appA enakku puTTakam kotuTTAr S-O2-O1-V
enakku appA puTTakam kotuTTAr O2-S-O1-V
puTTakam enakku appA kotuTTAr O1-O2-S-V
puTTakam appA enakku kotuTTAr O1-S-O2-V
.... ...
enakku puTTakam kotuTTAr appA O2-O1-V-S

Agreement. There are two kinds of verbs in Tamil: finite verbs and non finite
verbs. Finite verbs usually occur as sentence final and will act as a main verb of
the sentence. Finite verbs agree with their subject in number and gender. This
is accomplished via coding the number and gender of subject in the finite verbs
as suffixes. Both finite and non-finite verbs can take subjects, but only finite
verbs can code their agreement with subjects. The explicit coding of subject-
verb agreement in finite verbs make the presence of subjects optional in certain
situations, and the subject can be partially inferred from finite verb affixes.
Table 1 shows that the total number of subjects are less than the total number
of finite and non-finite verbs. This implies that some of the subjects are shared
between finite and non finite verbs in sentences or some verbs may not take
subjects at all. This point is to illustrate that it is not always possible to identify
the subjects just by knowing agreement markers.

4 Annotation Scheme

In this section, we describe the data and propose annotation scheme for Tamil
dependency structures.
1 We have transliterated the Tamil script into Latin script. Transliterated form is used

throughout the paper.
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Table 1. Counts of subjects and verbs

Category #Num
Sentences 204
Subjects 332
Finite verbs 203
Non finite verbs 220

We collected Tamil data from a news website2. We picked news articles from
the website randomly, so to have our data as diverse as possible. The raw Tamil
data was in utf-8 encoding, we transliterated that into Latin script for the
ease of processing during annotation work and as well as to handle the data
programmatically. As of now, the corpus size we have taken for annotation is
2961 words.

Annotation is divided into two parts: (i) POS tagging of the data and (ii)
assigning relations and dependency structure to words. Tagging the data with
POS is necessary as our rule based dependency parser often use POS tags of
words to predict dependency relations.

4.1 POS Tagging

As is the case for any morphologically rich language, providing a fixed tagset
for languages such as Tamil is a complex task. Many tagsets were proposed in
the literature and many methodologies based on finite state machines, Hidden
Markov Models (HMM) and Support Vector Machines (SVM) were proposed for
tackling morphology and tagging of Tamil. The main question here is, “What
kind of POS tagset is required for our task? Whether simple POS tagset or fine
grained morphological pos tagset”. Considering the rich suffix base Tamil have
[6], we decided to use detailed morphological tags instead of just categorical.
For morphologically rich languages, morphological cues can to some extent help
identifying syntactic relationship between words. Unfortunately, no standard
exist for morphological tagging of Tamil.

Our manual morphological tagging is not based on marking every linguistic as-
pect within a word. Rather, our aim is to add more information to the tag which
are needed for identifying syntactic relationships. For example, we tag the word
pUkkatai (flower shop) as a single noun rather than having composed of two sepa-
rate nouns pU (flower) and katai (shop). Thus the tag of that wordwill be “3n nn”,
where nn would indicate the word is a noun and 3n would indicate the noun is a
3rd person neuter gender. For tagging verbs, to distinguish lexical and auxiliary
verbs, we add prefixes “mv” and “aux” respectively. For example, the lexical verb
patiTTAn (read he) is tagged as “mv pst 3sm f”. In the tag, “pst 3sm” indicates
the verb is a past tense verb and the subject is 3rd person singular masculine. “f”
indicates the verb is a finite verb. Knowing whether the verb is finite or non finite
will greatly help in identifying the main predicate of the sentence.

2 http://www.dinamani.com
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In the Table 2, we have Corpus 1 with 2961 words tagged and syntactically
annotated, and Corpus 2 which also contains Corpus 1 and the remaining words
in the corpus are tagged, but not syntactically annotated. The table also provides
some insights into how many tags a single token can take. From the Table 2, it
is clear that, more than 90% of the tokens take only a single tag. Tokens with 2
tags vary between 5-8%, and the remaining count is almost negligible.

Table 2. Number of tags assigned to tokens

Corpus 1 Corpus 2

Tagset size 296 459
Lexical verb tags 120 194
Auxliary verb tags 31 44
# of words 2961 8421
Unique tokens 1634 3747
1 tag count 1534/(93.88%) 3427/(91.46%)
2 tag count 92/(05.63%) 284/(07.58%)
3 tag count 8/(00.49%) 33/(00.88%)
4 tag count 0/(00.00%) 3/(00.08%)

4.2 Dependency Annotation

Our annotation scheme is partially based on Prague Dependency Treebank
(PDT) [15], [16] , a large scale dependency annotation project for Czech lan-
guage. The PDT was annotated on three layers: morphological layer (m-layer),
analytical layer (a-layer) and tectogrammatical layer (t-layer). In m-layer, a sen-
tence is annotated at the word level, marking their POS and identifying their
lemmas. This layer roughly corresponds to morphological tagging of a sentence.
The sentence is represented as a rooted tree in a-layer, where each node cor-
respond to a word in the sentence. Each dependent node is connected with a
governing node via an edge which hold a relationship between the two nodes. In
the PDT style annotation, the edges are not labeled, rather each node (analytical
node) is assigned an analytical function (afun) which acts as relation with which
it connect to its governing node. In tectogrammatical layer, a tree represents the
deep syntactic structure of a sentence. In t-layer tree, the nodes correspond to
auto- semantic words which have the lexcical meaning. Words that correspond
to prepositions, determiners and other function words will not be represented in
t-layer. There is also one more layer called w-layer which simply represents the
input sentence or tokens (prior to m-layer).

Our annotation involves only m-layer and a-layer. In m-layer, words are an-
notated with morphological tags as mentioned in the previous sub section (POS
tagging). As of now, for a-layer we have defined 19 analytical functions, 13 of
them comes from PDT. The list of analytical functions is given in Table 3. The
a-layer annotation is performed using TrEd annotation tool [17] after parsing
the text using rule-based parser (Section 5.1). The sample annotation is shown
in Figure 1.
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StaM

katawTa
katawTa
adj

aTimuka
aTimuka
nnpc

Atciyil
Atciyil
loc_3n_nn

latcumi
latcumi
nnpc

pirAnEsh
pirAnEsh
3n_nnp

Talaimaic
Talaimaic
nnc

ceyalALarAka
ceyalALarAka
3h_nn

iruwTAr
iruwTAr
mv_pst_3sh_f

.

.

.

StaA

adj
katawTa
Atr

nnpc
aTimuka
Atr

loc_3n_nn
Atciyil
NR

nnpc
latcumi
Atr

3n_nnp
pirAnEsh
Sb

nnc
Talaimaic
Atr

3h_nn_adv
ceyalALarAka
Atr

mv_pst_3sh_f
iruwTAr
Pred

.

.
AuxK

katawTa aTimuka Atciyil latcumi pirAnEsh Talaimaic ceyalALarAka iruwTAr.

Fig. 1. Sample annotation using TrEd tool

Table 3. Analytical functions for a-layer annotation

AFUN Description Example

AdjCl Adjectival clauses inRu wataipeRRa pOttiyil

today take-place-which match-loc

Adv Adverbial inimEl watakkATu
hereafter happen-will-not-it

Atr Attribute iwTiya aracu

Indian government
AuxA Determiners iwTap paiyan

this boy
AuxC Conjuncts rAman maRRum cITA

Ram and Sita
AuxK Terminal punctuation –
AuxP Postposition pUmikkuk kIzE

earth-dat under
AuxV Auxiliary cAppAtu cAppittu vittAn

food eat-pst leave-pst-3sm

AuxX Comma –
CondCl Conditional clause avar ennai azaiTTAl

he-honorific me-acc call-if

Coord Coordination node rAman maRRum cITA
Ram and Sita

InfCl Infinitive clause puTTakam kotukka rAman ...
book give-inf Ram ...

NR Dependency not defined –
Obj Direct object rAman oru puTTakam kotuTTAr

Ram a book give-3s-honorific
PObj Postpositional object rAmanaip paRRi

Ram-acc about
Pred Predicate of the sentence ramEsh paNam kotuTTAn

Ramesh money give-pst-3sm

Sb Subject ramEsh paNam kotuTTAn
Ramesh money give-pst-3sm

VbpCl Verbal participle clause kAcu kotuTTu mittAy
money give-pst candy

VFin Finite verb (not predicate) paricu kotuTTAn enRu kURinAn
gift give-pst-3sm that say-pst-3sm
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Table 4. Coordination pattern

S.No Pattern Coordination type Coordination head

1 ... Aum ... Bum ... and(um) B
2 ... Aum , ... Bum ... and(um) ,
3 ... A, ...B, ...C maRRum D and(maRRum) maRRum
4 ... AO ... BO ... or(O) B
5 ... AO allaTu ...BO ... or(O) allaTu

walla
(adj)
Atr

awTa
(det)
AuxA

(3sm_nn)
maniTan

(3sm_nn)
maniTan

walla
(adj)
Atr

AdjCl
(pst_adj_part)

patiTTa

(b) awTa walla maniTan 

(That good  man)
(a) walla maniTan 

(good  man)

(c) wanRAka patiTTa paiyan 

(The boy who studied well)

(adv)
wanRAka

m−layer
a−layer

w−layer

(3sm_nn)
paiyan

Adv

Fig. 2. Illustration of Atr, Adv, AuxA, AdjCl analytical functions

Atr, Adv, AuxA, AdjCl. Atr is used to mark the nodes in an attribute re-
lationship to their governing nodes. In Figure 2a) the word walla (good) is in
an attribute relation to it’s governing node maniTan (human). In noun-noun
combinations, the first noun will be in attribute relationship to the second noun
(head). Similarly Adv and AuxA are used to mark adverbials and determiners,
and they modify verbs and nouns. Adjectival clauses in Tamil are equivalent to
relative clauses in English. Though adjectival heads act as modifiers to the fol-
lowing nouns, they still retain the verbal properties and take left side arguments.
Adjectival clause heads are marked with AdjCl.

Coord, AuxC,AuxX. Coordination is one of the complex phenomena in
Tamil. [6] talks about only one type coordination which uses morphological suffix
as a coordination device. But coordination can be marked either morphologically
with -um (“and”) or with a separate word maRRum (“and”) or with commas
or in combination of any of the previous three. They can coordinate any type
of individual words, phrases and clauses with same categorical status. The type
of role which the coordination node can take depends on the type of conjuncts
they coordinate. Here we list the most common type of coordination patterns
we identified from the corpus. If A, B, C and D are elements to be conjoined via
coordination, then the pattern (also in Figure 3) for coordination (and, or) is
listed in the Table 4.

The main issue in coordination conjunction is, when elements are conjoined,
the coordinating node should assume the role of the conjoined elements and
should attach to the appropriate node where the conjoined elements would have
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m−layer
a−layer

w−layer A−um
(mtag1)
AuxC

Coord

,
(,)

(a) A−um , B−um 

(A  ,  B)

(b) A, B, C maRRum D 

(A, B, C and D)

(,)
,

AuxX
(,)
,

AuxX
(mtag1)
AuxC

B
(mtag1)
AuxC

A

(mtag1)
AuxC

C
(mtag1)
AuxC

D

Coord

maRRum
(cconj)

(A  or  B)

(c) A−O allaTu B−O 

(mtag1)
AuxC

B−um
(mtag1)
AuxC

Coord
(cconj)

(mtag1)
AuxC

A−O B−O

allaTu

Fig. 3. Illustration of coordination conjunction

attached. At present, during annotation, the category of the conjoined elements
are not reflected in the coordinating node.

5 Approaches to Parsing

In this section, we define two approaches (rule based & corpus based) we have
used to parse Tamil sentences.

5.1 Rule Based Parsing

The algorithm 5.1 simply returns the parents (in array) of each word token which
is equivalent to unlabeled edges in the dependency tree. Each element of this
array is an integer, representing the position of the parent word in the sentence.
Array index correspond to word position of a child node .

Algorithm 5.1: GetUnlabeledEdges(words, mtags)

comment: Set parents (p) and is parent available (ipa) array to 0

comment: size(p) = size(ipa) = size(words)

p← 0
ipa← 0
identify main predicate(p, ipa, words, tags)
resolve coordination(p, ipa, words, tags)
identify trivial parents(p, ipa, words, tags)
process complements(p, ipa, words, tags)
return (p)

procedure set parent(node, parent)
acyclicity ← check acyclicity()
if not acyclicity and ipa[node] �= 1

then
{

p[node]← parent
ipa[node]← 1

return
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We have mainly defined four procedures inside the algorithm, which update the
parent (p) and is parent available (ipa) array whenever the linguistic rules defined
inside them are satisfied. For instance, the procedure identify main predicate will
look for the main predicate of the sentence. If found, then the parent of that node
will be updated (0 in this case. 0 is a technical root of the tree). Once the parent is
found, finding the parent again for this node is prohibited via the ipa array, which
sets the boolean variable, once the parent is found for that node. Each procedure
implements a set of linguistic rules which assign parents to words in the sentence.
For instance, predicate finding rule is very simple. It says, if the last word of the
sentence is a ‘finite verb’, and it’s morphological tag ends with ‘ f ’ then the parent
of that node is 0 which is the technical root of the tree.

The procedure resolve coordination will try to locate coordination head and
the conjuncts. If the coordination head is found, then the conjuncts will be
located and their parent will be set to the coordination head. Setting the parent
of the coordination head is the complicated task, the procedure will try to assign
the parent based on the conjoined elements. This procedure implements the
coordination rules specified in Table 4.

The procedure identify trivial parents will try to locate modifiers such as ad-
jectives, determiners, cardinals, ordinals and so on, and set their parents which
would be the immediate phrasal head following the modifiers. In the case of
postpositions which act as the PP head, the task is to identify the noun phrase
preceding them, and attach them as children of the postpositional head.

The procedure process complements takes care of complementation in Tamil.
Tamil uses various devices to perform complementation. Of which, the most
common types of complementations are non finite clauses, using certain lexical
verbs such as ‘en’ (say), and few nouns and postpositions as complementizers.
Presence of a complementation would indicate that there is some clause end-
ing at that point. If there is an explicit presence of complementizer, then the
complementizer would act as a head of the clausal predicate preceding it. Then
the complementizer would attach itself to the appropriate node that follow the
complementizer.

In the same procedure, we also perform clause boundary identification and
attach arguments to the clausal predicates. Clausal predicate would signal the
end of a clause. Based on morphological tags, we identify these clause boundaries
and attach arguments of that clause to the clausal predicate. Let us assume,
there are three clauses inside a sentence. This procedure would identify the 3
clausal predicates and attach arguments that belong to them. In Tamil, clauses
usually occur in linear order, so the arguments always appear to the left of a
clausal predicate. Thus the arguments for clause 2 would immediately start from
clause 1 boundary and end before the second clausal predicate. Once the clausal
predicates and their arguments are attached, the clausal predicates would be
attached to either complementizers, or nouns (in the case of adjectival clauses)
or other clauses. At present, the procedure works only if the clauses are in linear
order. If there is an embedded clause, then this procedure often attaches wrong
arguments to the clausal predicates.
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Label Assignment. Once the unlabeled edges are identified, this procedure
assigns labels to nodes. The procedure again makes use of morphological tags of
parents and their children to assign labels to them. For example, the children of
postpositional node is assigned PObj label and if the case of a node is accusative
and its parent is verb, then the node is assigned Obj. This procedure labels all
the nodes that are present in the sentence.

The rule-based parsing system is implemented within TectoMT framework
[18], a highly modular NLP system for Machine Translation and other related
NLP tasks. All tasks of the rule-based parser have been implemented as modules
inside TectoMT system. Evaluation of this parser is given in the next section.

5.2 Corpus Based Approach

For corpus based approach we are using two well known parsers namely Malt-
Parser [20] and MSTParser [19]. Evaluation of these parsers for our data is
explained in the next section.

6 Experiments and Results

We did manual morphological tagging on 8421 tokens. Out of them, 2961 tokens
are both morphlogically tagged as well as dependency annotated. Refer Section 4
and Table 2 for more information about the nature of the data. We name the
corpus as follows: 2961 tokens corpus is called C1, 8421 tokens corpus as C2 ,
and 5500 tokens (C2-C1) as C3.

Experiments for Rule Based (RB) parsing and Corpus Based (CB) parsing is
done with different settings. Though direct comparison cannot be made, we can
find some similarities in the individual label performance.

The main input for the RB parsing is an input sentence and its morpholog-
ical tags. Two experiments have been conducted for RB parsing. For both the
experiments, RB approach was tested against the whole dataset (2961) tokens.
In the first experiment, morphological tags for input tokens have been automat-
ically tagged by TnT tagger [21] trained on C3 (tagged the C1 with 72.34%
accuracy). For the second experiment, input tokens are provided to RB parser
with gold standard morphological tags. The Table 5 (left) shows the accuracy of
RB parser. The column Auto POS corresponds to the first experiment and the
Manual POS corresponds to the second experiment. We can see the sharp de-
cline (for both unlabeled and labeled) in performance when the input tokens are
not given gold standard tags. Individual label performance is given in Table 6.
The only label which achieved a higher performance in both the experiments is
the prediction of Pred which is the main predicate of the sentence. Since AuxK
was a sentence termination, it was not included. The worst performed label
in both the experiments is Coord. The precision of subject Sb is also low due
to difficulties in identifying the right subject when more than one nominatives
qualify for subject status. The performance of Sb may also decrease if the sub-
ject of one clause is occurring outside of its boundary in the case of embedded
clauses.
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Table 5. Parsing Accuracy a) Rule based b) Corpus based

Auto POS Manual POS

Unlabeled 71.94 84.73
Labeled 61.70 79.13

MaltParser MST Parser

Unlabeled 75.03 74.92
Labeled 65.69 65.69

Table 6. Precision/Recall of Rule Based Parser: a) Auto POS (left) b) Manual POS
(right)

Afun Precision Recall

AdjCl 48.31 78.18
Adv 43.75 72.41
Atr 68.26 79.93

AuxA 78.95 100.00
AuxC 68.89 48.44
AuxK 100.00 99.03
AuxP 50.88 61.70
AuxV 50.00 39.39
AuxX 44.92 100.00

CondCl 50.00 16.67
Coord 33.33 26.92
InfCl 75.68 66.67
NR 57.17 53.99
Obj 48.28 65.12

PObj 49.06 66.67
Pred 96.06 96.06
Sb 44.73 74.55

VFin 48.00 80.00
VbpCl 53.52 61.29

Afun Precision Recall

AdjCl 81.94 98.33
Adv 87.27 97.96
Atr 87.08 97.18

AuxA 100.00 100.00
AuxC 87.50 67.74
AuxK 99.03 100.00
AuxP 82.54 100.00
AuxV 69.44 100.00
AuxX 52.54 100.00

CondCl 57.14 100.00
Coord 59.09 41.94
InfCl 93.33 100.00
NR 73.64 73.37
Obj 81.05 73.33

PObj 70.37 97.44
Pred 97.07 98.03
Sb 58.91 94.93

VFin 91.18 100.00
VbpCl 81.08 100.00

For CB parsing, we have divided the corpus C1 into two parts: training set
(2008 tokens) and test set (953 tokens). Both the Malt and MST parsers were
trained on the same training set and evaluated on the same test set. Table 5
(right) shows the accuracy of both Malt and MST parser. They perform almost
similarly for both labeled and unlabeled tasks. In the case of individual label
performance (Table 7), labeled precision for Sb is high and low for Coord. Some
individual labels from both RB parsing and CB parsing show same level of
performance, for instance Sb and Coord.

As a general remark, the current experiments for both RB & CB tasks have
been done with very small amount of data. Yet we were able to correlate some
of the labels’ individual performance. As observed from the labeled precision of
both RB and CB tasks, some labels are easily predictable (Pred) and some labels
are not, such as Coord, Sb. As far as the non-projective structures are concerned,
for Hindi, the study [22] has found that 14% of Hindi treebank structures are
non-projective. For Tamil, non-projectivity may arise in embedded clauses.
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Table 7. Precision/Recall of corpus based parsing: a) MaltParser (left) and b) MST
Parser (right)

Afun Precision Recall

AdjCl 71.43 71.43
Adv 57.89 100.00
Atr 91.46 90.55

AuxA 91.67 84.62
AuxC 100.00 84.62
AuxK 100.00 96.72
AuxP 53.57 100.00
AuxV 100.00 26.67
AuxX 40.74 100.00

CondCl – 0.00
Coord 50.00 25.00
InfCl 82.35 70.00
NR 41.28 75.32
Obj 38.46 66.67

PObj 56.25 52.94
Pred 96.61 96.61
Sb 59.38 55.88

VFin 77.78 87.50
VbpCl 68.42 56.52

Afun Precision Recall

AdjCl 76.00 90.48
Adv 50.00 100.00
Atr 84.79 93.40

AuxA 92.31 92.31
AuxC 46.67 58.33
AuxK 100.00 96.72
AuxP 50.00 100.00
AuxV 66.67 28.57
AuxX 50.00 100.00

CondCl – 0.00
Coord 20.00 16.67
InfCl 83.33 75.00
NR 42.86 73.94
Obj 51.72 78.95

PObj 44.44 47.06
Pred 80.60 91.53
Sb 70.73 56.31

VFin 71.43 62.50
VbpCl 78.26 75.00

7 Conclusion and Future Work

In this paper, we reported our initial experiments with dependency parsing for
Tamil using both rule based and corpus based approaches. For the rule based
approach, the labeled accuracy achieved 79% when input tokens are provided
with morphological tags and declined to 61% when tested in a real world scenario.
For the corpus based approach, the labeled accuracy stood at around 65% (for
both Malt and MST) and unlabeled accuracy stood at around 75%. From the
experiments, we observed that, both the rule based and corpus approaches found
difficulty in identifying coordination nodes (Coord) while they performed well in
identifying main predicate of the sentence for unseen cases. Tagging accurately
also had an impact on the performance (as shown by the rule based parser).
The current experiments were done with very small data, more insights can be
gained and accuracy can be improved if we have more data. In the future, we
are planning to add more annotated corpora for our experiments.
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Abstract. Incremental parsing is appealing for applications such as speech recog-
nition and machine translation due to its inherent efficiency as well as being a
natural match for the language models commonly used in such systems. In this
paper we introduce an Incremental Combinatory Categorical Grammar (ICCG)
that extends the standard CCG grammar to enable fully incremental left-to-right
parsing. Furthermore, we introduce a novel dynamic programming algorithm to
convert CCGbank normal form derivations to incremental left-to-right deriva-
tions and show that our incremental CCG derivations can recover the unlabeled
predicate-argument dependency structures with more than 96% F-measure. The
introduced CCG incremental derivations can be used to train an incremental CCG
parser.

1 Introduction

An incremental parser is able to processes an input sentence left-to-right, word-by-
word, and build for each prefix of the input sentence a partial parse that is a sub-graph
of the partial parse that it builds for a longer prefix. Besides being cognitively plausi-
ble, an incremental parser is more appealing for applications since its time and space
complexities are close to linear in input length. It should, for example, constitute a nat-
ural match for the word-by-word decoding and pruning schemes used within statistical
machine translation and speech recognition.

Combinatory Categorial Grammar (CCG) [10] is a lexicalized grammar formalism
that has very strong potential for incremental parsing, mainly due to its ability to rep-
resent an arbitrary subsequence of a valid sentence by a single category even if they do
not form a complete phrase. CCG [10] extends the categorial grammar by adding new
combinatory rules such as type raising and composition. Not only do these extensions
increase the grammar coverage and ability to recover long-range dependencies but also
they allow incremental parsing. However, there are still difficulties in handling some
linguistic constituents such as back modifiers (e.g. adverbs) in an efficient and deter-
ministic, yet incremental manner. Although standard CCG rules may be able to handle

� This work was conducted while the first two authors were at IBM Cairo Technology Develop-
ment Center.
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such constituents, such handling is heavily dependent on type raising in a way that can
greatly increase the search space of an incremental parser.

CCGbank [4] is a set of CCG normal form derivations that was obtained by trans-
forming the parse trees in the Penn Wall Street Journal (WSJ) Treebank into normal
form CCG derivations, namely head dependency annotations over a wide-coverage lex-
icon of supertags. CCGbank has been used to train a number of wide-coverage CCG
parsers, e.g. [1].

The contribution of this paper is twofold. First, extending Steedman’s CCG by intro-
ducing combinatory rules to support efficient incremental left-to-right parsing. Second,
introducing an incremental version of CCGbank by transforming the normal form CCG
derivations into head dependency left-to-right derivations that can be used to train in-
cremental CCG parsers.

The rest of the paper proceeds as follows. In section 2, we review previous works on
incremental parsing. In section 3, we review the standard CCG. In section 4, we describe
our Incremental CCG extension. In section 5, we introduce the algorithm to transform
CCG normal for derivations into incremental derivation. In section 6, we evaluate the
incremental CCG and its derivations. Finally, we conclude and discuss the future work.

2 Related Work

Yamada and Matsumoto [11] proposed a bottom-up shift-reduce dependency parser
that processes the sentence word by word and uses an SVM classifier to decide the
actions to take for each word. These actions can push or pop tokens to or from a parsing
stack. They can also create dependency links in the dependency graph, which represents
the syntactic dependencies between the words of the input sentence. That parser is,
however, not fully incremental because it allowed multiple passes on the sentence to
recover the full dependency graph. Nivre [5],[6] proposed a dependency parser based on
the framework of Yamada and Matsumoto. The parser proposed by Nivre incorporated
a modified set of actions that allowed for single-pass parsing that is incremental in most
of the sentences. Nivre defines an incremental parse as a parse in which the dependency
graph is always connected in all parsing steps.

The parsers of Yamada and Matsumoto and Nivre are examples of transition-based
deterministic parsers. An incremental transition-based parser maintains a parsing state
that represents a partial parse of the words processed so far. As a new word is processed,
the parsing action(s) modifies this state. The state in the previous parsers is determined
by the contents of the parsing stack and the dependency graph constructed so far. The
transition-based parser is deterministic if it maintains a single parsing state. A statistical
parser, on the other hand, maintains a set of n-best parsing states.

The parsers of Yamada and Matsumoto and Nivre are also examples of dependency
grammar parsers, where a span of words is solely represented by a dependency sub-
graph. Dependency grammar does not have the notion of a phrasal node that represents
a span of words.

Sagae and Lavie [7] propose a statistical shift-reduce parser. They show that incor-
porating a best-first search strategy by replacing the single parsing state with a heap of
n-best states results in significant improvements in dependency accuracy.
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Instead of dependency grammar, we consider incremental parsing based on a variant
of CCG grammar formalism. Specifically, we focus on converting normal form deriva-
tions in CCGbank to incremental derivation to facilitate the training of incremental
CCG parsers.

Hassan et al. [2] recently introduced an approach to obtain incremental CCG deriva-
tions by assigning a CCG operator to each word in the sentence, based on the gold
dependency structure. However, because each word was tagged individually, the result-
ing operator sequence is not guaranteed to be applicable without heavy modifications
to CCG operators allowing many non-standard exceptions. The dynamic programming
approach we develop guarantees the generation of a set of combinatory rules that will
fully parse the sentence without deviations from the standard CCG rules.

In a related work, Schuler et al. [9] introduced the right-corner transform that trans-
forms context-free grammar (CFG) parsing trees to incremental trees that can be recog-
nized by a bounded stack parser. This transformation utilized notions similar to those in
CCG grammar, mainly the notion of incomplete constituents that contain subcategories
to be satisfied. Schuler [8] also introduced a model-based transformation that trans-
forms an entire probabilistic CFG (PCFG) grammar into a hierarchical hidden Markov
model (HHMM) recognizer.

The approach we follow in this paper is different from that followed by Hassan
et al. [2] and Schuler et al. [9]. Instead of specifying conversion rules to convert gold
derivations to incremental derivations, we augment CCG with additional combinatory
rules to facilitate efficient incremental parsing. Then, a dynamic programming algo-
rithm searches for incremental derivations of the non-incremental sentences in CCG-
bank without prior knowledge or conversion rules. We show that, with little guidance
from gold derivations, an incremental version of CCGbank can be obtained with the
dependency information largely preserved.

3 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) [10] is a theory that assumes a lexicalized
grammar consisting of a lexicon and a small set of combinatory rules. The combinatory
rules assemble lexical entries together into parse-trees. The lexical entries consist of
syntactic constructs (called categories or supertags) that describe such lexical informa-
tion as the POS tag of the word, its sub-categorization information and the hierarchy of
phrase categories that the word may project upwards in the parse-tree.

As a grammar formalism, CCG has its advantages over dependency grammar. First,
due to the flexible and lexicalized nature of CCG, having an incremental CCG deriva-
tion provides a compact and at the same time rich representation of the parsing state
that can be used as a feature in other systems [3], specifically, the parsing state is rep-
resented by at most two CCG categories. Second, CCG combinatory rules have direct
semantic interpretations which can be used to implement semantic parsing in addition
to syntactic parsing as in [12].

CCG Grammar is an extension of categorial grammar, which assumes that syntactic
constituents can combine in a function-argument relationship. A word or a span of
words is represented by a category that can be either atomic such as NP (noun phrase)
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or composite such as S\NP1 (intransitive verb phrase) or (S\NP1)/NP2 (transitive verb
phrase). A composite category X\Y represents a constituent X that seeks an argument of
type Y to the left in order to form a constituent. A composite category X/Y represents
a constituent X that needs, to be complete, an argument of type Y to the right, where X
and Y can be atomic or composite categories.

Two CCG categories can be combined through combinatory rules. The most impor-
tant rules defined by CCG grammar are listed below:

Forward Application

X/Y Y ⇒> X

Forward Composition

X/Y Y/Z⇒>B X/Z

Backward Application

Y X\Y ⇒< X

Backward Composition

X\Z Y\X⇒<B Y\Z
Backward Cross-composition

X/Z Y\X⇒<B× Y/Z

An important unary rule is the type raising rule, defined as follows

Forward type raising

T ⇒>T T/(T\X)

Backward type raising

T ⇒<T T\(T/X)

A CCG derivation starts by assigning a category to each word in the input sentence.
Combinatory rules are then used to combine these categories until a single root cate-
gory is reached. In a CCG derivation, a CCG category represents a continuous span of
words in the sentence. Categories in the leaves, called lexical categories, represent sin-
gle words while the root category represents the whole sentence. The following example
shows a CCG derivation of the sentence “I met the manager”:

I met the manager
NPI (S[dcl]met\NP1)/NP2 NPX/NPX NPmanager

>

NPmanager

>

S[dcl]met\NP1

<

S[dcl]met
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The numeric subscripts in the composite category indicate argument slots. A cat-
egory is also augmented with a head reference which refers to a word in the sen-
tence. For example, the verb met in a sentence is represented associated with a category
(Smet\NP1)/NP2. This enables inference of dependency links from a derivation. Ba-
sically, if a category X fills an argument slot in another category Y , a predicate-argument
dependency is induced between the head reference of X to the head reference
of Y .

The head reference of a category might be a variable. Variables enable the recovery
of long-range dependencies through unification. An example of a category containing
variables is the relative pronoun (NPX\NP1,X)/(S2\NPX), in which the variable
X indicates that the subject of the relative clause is the noun phrase that precedes the
relative pronoun.

The set of induced predicate-argument dependencies form a predicate-argument de-
pendency structure, which is a directed acyclic graph where each node represents a
word in the input sentence and there is a link to each node from each argument of the
corresponding lexical categories. An example of that structure is shown in figure 1.

Fig. 1. Sample CCG dependency structure

Type-raising and composition introduce spurious ambiguity to CCG grammar; for a
given sequence of words, multiple derivations can lead to equivalent results. For exam-
ple, another derivation for the sentence “I met the manager” is shown here:

I met the manager
NPI (S[dcl]met\NP1)/NP2 NPX/NPX NPmanager

>T

S[dcl]/(S[dcl]\NP)
>B

S[dcl]met/NP

>B

S[dcl]met/NP

>

S[dcl]met

Equivalent multiple derivations can be reduced to a normal form, where type raising
and forward composition are performed only if needed. This notion of normal form,
however, discourages incremental parsing because as shown in the previous derivation,
type raising and forward composition can be used instead of application to obtain a
left-to-right incremental parse. Therefore, to train incremental CCG parsers, the normal
form derivations in CCGbank have to be transformed into incremental derivations.
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Finally, an interesting property of CCG formalism is that it has direct semantic inter-
pretation, based on Lambda calculus. For example, the forward application rule can be
written as

X/Y : λz. f(z) Y : y⇒ X : f(y)
This makes it simple to extend a CCG parser to a semantic parser.

4 Incremental CCG

4.1 Incremental Combinatory Rules

In this section, we describe our extension to Steedman’s CCG by introducing combina-
tory rules to support efficient incremental left-to-right parsing. We propose an extended
set of combinatory rules to increase the grammar coverage and the ability to recover
long-range dependencies for a fully incremental left-to-right parsing. The set of CCG
binary combinatory rules described in the previous sections are extended with the fol-
lowing rules to support incrementality:

CCGbank Binary Rules

CCGbank utilizes a set of non-CCG binary rules. We use this set of rules. An example
of such rules is:

S[dcl]/S[dcl] ,⇒ S\S

Type-raising and CCGbank Unary Rules

CCGbank utilizes a set of unary type-changing rules and type-raising rules. We use this
set of rules. An example of such rules is:

S[adj]\NP⇒ NP\NP ,

which states that an adjective phrase can act as a noun phrase modifier. We permitted
additional type-raising rules that are appropriate for incremental processing such as

NP⇒ S/(S\NP) ,

which is useful when parsing sentences that start with a sentence modifier S/S.

Argument Swapping (AS)

This is a unary type changing rule that uses Lambek associativity axioms to change a
category such that the direction of its outermost argument is to the left 1.

((X|Y|...|Z)\W)/V/U.../T ⇒>AS ((X|Y|...|Z)/V/U.../T)\W
This allows for combining two categories even if the right category has unfilled ar-
guments to the right without the need to type-raise the left category. This is necessary

1 The notation X|Y indicates that the rule applies to X\Y and X/Y.
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to minimize the allowed type raising options in order not to expand the search space
during parsing. The following derivation demonstrates argument swapping

He ate dinner
NPHe (S[dcl]ate\NP1)/NP2 NPdinner

>AS

(S[dcl]ate/NP2)\NP1

<

(S[dcl]ate/NP2)
>

S[dcl]ate

Backward Modification (BM)

Backward modification is introduced to allow incremental parsing of sentences con-
taining back-modifiers such as adverbs. The problem with back-modifiers is that an ex-
plicit representation of their arguments may be lost in the incremental parsing process.
Consider the sentence “He ran quickly”. The phrase “He ran” resolves to a sentence
category S. It is now required to combine it with the verb modifier “quickly”, whose
category is (S\NP )\(S\NP ). Such combination is not supported by standard CCG.
To handle this problem we define backward modification as follows: if History(X, Y )
exists then

X Y\Y ⇒>BM X ,

where History(X,Y) = Z if Z = (...((Y|Z1)|Z2)...)|ZN for some N ≥ 0 and Z is the
lexical category of a word in the span of X. If there are multiple lexical categories in the
span of X that satisfy these conditions, the right-most one is considered.

The effect of back-modification can be obtained using type-raising. By type-raising
Z to (...((Y/(Y\Y)|Z1)|Z2)...)|ZN and assuming, without loss of generality, that the
arguments Z1 through ZN will be satisfied by words preceding the modifier, the left
hand side would then be X/(Y \Y ) instead of X . That new category can be combined
with the modifier using standard forward application.

To illustrate this, consider the sentence “He ate dinner quickly”. The backward mod-
ification rule can be used to parse this sentence as follows

He ate dinner quickly
NPHe (S[dcl]ate\NP1)/NP2 NPdinner (SX\NP)\(SX,1\NP)

>AS

(S[dcl]ate/NP2)\NP1

<

(S[dcl]ate/NP2)
>

S[dcl]ate
>BM

S[dcl]ate : S[dcl]ate\NP1 satisfies SX,1\NP
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An equivalent result can be achieved using type-raising as follows

He ate dinner quickly
NPHe (S[dcl]ate\NP1)/NP2 NPdinner (SX\NP)\(SX,1\NP)

>T

((S[dcl]ate\NP1)/((S\NP)
\(S\NP)))/NP2

>AS

((S[dcl]ate/((S\NP)
\(S\NP)))/NP2)\NP1

<

(S[dcl]ate/((S\NP)
\(S\NP)))/NP2

>

S[dcl]ate/((S\NP)\(S\NP))
>

S[dcl]ate

The problem with type-raising, however, is that it requires the parser to type-raise
the modified category to the type that matches the modifier, which could be several
words beyond. This would require the parser to have unbounded look-ahead memory
or an exponentially growing beam that can maintain all type-raising options. Back-
modification results in the same dependency structure obtained by type-raising while
alleviating these difficulties.

4.2 Recursive Extensions

To facilitate incremental parsing, forward application and backward modification are
recursively extended as follows:

if X Y⇒ Z
then X Y|W ⇒ Z|W

Similarly, unary rules are recursively extended as follows:

if X⇒ Z
then X|W ⇒ Z|W

4.3 Backward Modification with Argument Replacement

In incremental parsing, the argument fillers may change as the parse continues. For ex-
ample, in the incremental parse of the sentence “I met John’s friend”, when parsing
the subsequence “I met John”, the noun John will, incorrectly, fill the object argument
of the verb met, creating an erroneous dependency. To handle such a situation, the
apostrophe is tagged as (NPX\NPY:Y→X)/NPX. The Y → X notation means that any
dependency whose argument is Y will have it changed to X . Thus, when the apostrophe
back modifies the noun John, the dependency between met and John will be replaced
by a dependency between met and friend, correcting the dependency structure. An ar-
gument may be replaced by a set of arguments, thus replacing a single dependency with
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multiple dependencies. This happens in the case of conjunction, where a conjunction
category conj is changed to (ZX\ZX:Y→{X,Y})/ZX, indicating that for any dependency
involving X as an argument, an additional dependency involving Y as the argument is
created.

Some dependencies, however, are not affected by argument replacement such as the
dependency between a definite article and its noun argument, as in “I met the man-
ager’s friend” where the dependency between the article the and its noun argument
manager is correct regardless of the presence of the possessive apostrophe. Whether
a dependency is to be affected by argument replacement is encoded in the category.
For example the category corresponding to the definite article is NPX/NX,1∗, where 1∗
indicates that the dependency between argument slot 1 and its filler will not be affected
by argument replacement.

5 Transforming CCG Normal Form Derivations into Incremental
Derivations

In this section we describe our novel dynamic programming technique for transforming
CCG normal form derivations into incremental derivations. The result of the transfor-
mation process is an incremental CCGbank where sentences are annotated with lexical
categories as well as combinatory rules that allow left-to-right, incremental parses sat-
isfying the same dependency relations specified in the normal form derivations of the
CCGbank.

We introduce a dynamic programming transformation algorithm based on a con-
strained variation of CYK chart parsing. CYK operates on a chart in which the cell
(i, j) corresponds to the span covering words i through j. Each cell in the chart stores
possible CCG categories for the corresponding span. Each category holds pointers to
parent categories and the rule that combines them to obtain that category. Thus, each
category member is the root of the derivation sub-tree covering the corresponding span.
The parsing algorithm starts by assigning CCG categories to diagonal cells, which cor-
respond to single word spans. Then, bottom-up parsing is carried out to try all possible
combinatory rules to reach the cell that spans the whole sentence. The conversion pro-
cess is outlined in algorithm 1.

Step 6 in the algorithm accounts for incrementality constraints. To ensure incremen-
tality, the bottom-up parsing is subject to the following constraints:

1. The only permissible combinations are:
– (1, i)(i + 1, j)→ (1, j)
– (i, j − 1)(j, j)→ (i, j)

2. The combination (i, k)(k +1, j)→ (i, j) is allowed only if there is no dependency
arc between words x and y such that x < k + 1 and k + 1 ≤ y < j.

The first constraint allows the parser to independently process a segment of the sen-
tence starting from i > 1 (we call this a fork operation) until it reaches a category that
spans the range (i, j) then combines the spans (1, i − 1) and (i, j) (we call this a join
operation). The constraint, however, prevents nested forks, thus facilitating parsing with
a bounded stack. The constraint ensures that the parsing state can be represented by at
most two categories, the category obtained before the fork (if there is) and the category
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Algorithm 1. Linear parse generation
1: for i = 1 to N do
2: Add CCG category corresponding to word i to (i, i)
3: for j = 2 to N do
4: for i = j − 1 to 1 do
5: for k = i + 1 to j do
6: if (i, k − 1)(k, j)→ (i, j) is allowed then
7: for all category pairs (c1, c2) in (i, k − 1)× (k, j) do
8: for all possible combinatory rules r do
9: Add r(c1, c2) to (i, j)

10: Find a category c in (1, N) matching the root category of the non-incremental parse
11: if c does not exist then
12: print ”Conversion Failed”
13: else
14: Traverse tree rooted by c, printing combinatory rules

obtained from the segment processed so far. The fork/join operation is analogous to the
interrupt operator used by [2] to handle appositions and interruptions.

The second constraint states that if a segment of the sentence is to be processed by a
fork/join operation, processing cannot exceed a dependency link between this segment
and the part of the sentence before it. The constraint thus prevents forks that cause the
intermediate dependency structure to have multiple disconnected components while the
corresponding true dependencies form a connected graph.

Figure 2 visualizes how the conversion algorithm obtains an incremental parse for the
sentence “I met the manager”. To simplify the chart, only combinations that correspond
to forward application/composition and backward application operators are shown. For
each entry, the figure shows the corresponding category, the operator that resulted in
this category, pointers to parent entries that were combined by that operator and a time
step (to visualize the order of obtaining these entries).

An example for a violation for each constraint is seen in the figure. The combination
at time step 5 violates the first incrementality constraint; it would require combining
the verb met, whose span does not start at the beginning of the sentence, with the
phrase “the manager” that spans multiple words. The combination at time step 2 is also
invalid, since it violates the second incrementality constraint; there is a dependency link
between the verb met and its subject I which prevents combining the verb alone with
words to the right. Otherwise, until the dependency between met and I is resolved,
the intermediate dependency graph will contain at least two disconnected components,
the node I and the verb phrase starting with met. Thus, the phrase “met the manager”
cannot be processed independently by a fork/join operation.

The figure shows that there are two identical entries in the cell (1,4). Thus, we have
two possible incremental parses. The first one, whose time step is 6, is selected since
it does not involve any fork/join operations. In general, different sub-derivations may
lead to identical categories in some cells. In such case, only one of them is kept; we
keep the sub-derivation which contains the least number of forks. Tie breaking is done
by selecting the derivation in which the length of the latest fork is shorter. This way,
generated parses use forking only as necessary.
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Fig. 2. Linear parse example. Entries that will be included in the selected linear parse tree are
shaded.

By traversing the tree whose root is the selected entry, the incremental parse can be
expressed as the following sequence of operations: (START, Swap arguments of the
next input word, BA, FC, FC). In general, any linear parse tree can be expressed as a
sequence of the following operations:

– Binary combinatory rule
– Unary rule on the parsing state category
– Unary rule on the lexical category of the next word
– Fork
– Join by a binary combinatory rule

There is one case in which we allow the violation of the second constraint, which is
the case of relative clauses that result in a S/NP such as “The gift that he has given”.
In this case the relative clause can be processed to end up with the S/NP even though
there may be dependencies between the relative pronoun, that, and words within the
clause. We will refer to this exception as relative clause exception.

6 Experimental Results

To evaluate the conversion algorithm, we converted CCG derivations in sections 00
through 21 of the CCGbank to incremental derivations 2. To keep the conversion pro-
cess manageable, CCG categories corresponding to commas and conjunction words

2 The resulting incremental CCG derivations together with the inferred dependency structures
can be downloaded from http://www.CICLing.org/2011/software/128
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where determined from CCGbank derivations. Dependency structures were then in-
ferred from incremental derivations, according to resolution rules defined in section 4,
and compared to gold dependency structures. In our evaluation, we are interested in
coverage (the percentage of sentences for which an incremental derivation could be ob-
tained), dependency precision , recall and f-measure, and the percentage of correctly
parsed sentences (sentences for which the inferred dependency structure is identical
to the gold dependency structure). Table 1 summarizes the results for three configu-
rations. The first configuration ,ICCG, uses the proposed extended combinatory rules.
However, forking is not allowed and hence strict incremental parsing is enforced. The
second configuration, ICCG+forks, allows forking as described in section 5. The third
configuration, ICCG+fork+RC exceptions, allows for the relative clause exception de-
scribed in section 5.

The results show that our proposed rules achieve very high coverage when forking
is allowed. As coverage increases, dependency accuracy in terms of precision, recall,
and f-measure decreases a little. This is expected because by relaxing incrementality
constraints, longer and more complicated sentences can be incrementally parsed. It is,
however, more difficult to correctly resolve dependencies in those sentences due to
ambiguities and use of complex constructs. By examining the resulting dependency
structures, we have found that most of the disagreements with gold dependencies are
due to the assumption in section 4.3 that whether a dependency is affected by argument
replacement depends on the involved categories. In fact, it is tightly related to the actual
semantics of the sentence, which can be ambiguous and require background knowledge
to resolve. Using word-word dependency statistics or additional semantic resources can
reduce the problem.

With more than 96% f-measure, the results indicate clearly that our framework can
provide an incremental CCG for efficient incremental parsing with a small loss of
accuracy.

Table 1. Experimental Results

Coverage Precision Recall F-measure Correct Sentences
ICCG 0.8023 0.9594 0.9681 0.9637 0.5122
ICCG+forks 0.9494 0.9588 0.9675 0.9632 0.4931
ICCG+forks+RC exceptions 0.959 0.9585 0.9670 0.9628 0.4894

7 Conclusion and Future Work

We have extended the standard CCG to support incremental parsing by introducing a
number of combinatory rules to support efficient incremental left-to-right parsing. We
have introduced extensions to CCG combinatory rules as well as additional category
information to facilitate incremental parsing by overcoming the incrementality limita-
tions of standard CCG such as back modifiers and argument replacement. Moreover,
we have introduced an incremental version of CCGbank by transforming the normal
form CCG derivations into left-to-right derivations and have shown that the incremen-
tal derivations can recover predicate-argument dependency structures with more than
96% f-measure. These incremental CCG derivations should facilitate the training of
efficient incremental CCG parsers.
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Abstract. The unsupervised approach for syntactic analysis tries to discover the 
structure of the text using only raw text. In this paper we explore this approach 
using Grammar Inference Algorithms. Despite of still having room for 
improvement, our approach tries to minimize the effect of the current 
limitations of some grammar inductors by adding morphological information 
before the grammar induction process, and a novel system for converting a 
shallow parse to dependencies, which reconstructs information about inductor’s 
undiscovered heads by means of a lexical categories precedence system. The 
performance of our parser, which needs no syntactic tagged resources or rules, 
trained with a small corpus, is 10% below to that of commercial semi-
supervised dependency analyzers for Spanish, and comparable to the state of 
the art for English. 

1   Introduction 

There are mainly two approaches for creating syntactic dependencies analyzers: 
supervised and unsupervised. The main goal of the first approach is to attain the best 
possible performance for a single language. For this purpose, a great collection of 
resources is collected (manually annotated corpora with part of speech annotation, 
and syntactic and structure tags) which requires a great effort and years to be 
collected. For this approach the state of the art is around of 85% of syntactic 
annotation of full sentences in several languages (Sabine and Marsi, 2006), getting 
over 90% for English. On the other hand, the unsupervised approach tries to discover 
the structure of the text using only raw text. This would allow creating a dependency 
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Table 1. The NAIST Supervised Dependency Syntax Analyzer’s precision 

Language Precision Language Precision 
Arab 65.19 Portuguese 85.07 
Chinese 84.27 Slovene 71.42 
Czech 76.24 Spanish 80.46 
Danish 81.72 Swedish 81.08 
Dutch 71.77 Turkish 61.22 
German 84.11 Bulgarian 86.34 
Japanese 89.91   

 
analyzer for virtually any language. In this paper we explore this second approach. 
We present the model of an unsupervised dependency analyzer, named DILUCT-GI 
(GI from Grammar Inference). We propose adding morphological information before 
the grammar induction process, and after the grammar induction process, converting 
the shallow parsing to dependencies by reconstructing unavailable dependency 
information from the grammar inductors by means of a lexical categories precedence 
system, in a simpler fashion compared to previous works that use complex rule 
systems (Robinson, 1967; Gelbukh et al. 2005; Civit et al., 2006). 

In the following sections we present an overview of Syntactic Analyzers (Section 2), 
the implementation of our System (Section 3), description of the method for 
converting from Constituent Chunks to Dependencies (Section 4) introducing the 
Lexical Categories Precedence Hierarchy (Section 4.1); evaluation for Spanish 
(Section 5), and for English (Section 5.1) and finally our Conclusions and Future 
Work (Section 6). 

2   Overview of Syntactic Analyzers 

Recent syntactic analyzers use a manually tagged corpus as training for the learning 
grammar structures similar as those found in such corpus (Charniak, 1997). Some 
analyzers try to learn different grammar rules than those used in the training corpus; 
however, it has been shown that usually these analyzers are less successful than the 
previous mentioned ones (Briscoe and Waegner, 1993; Pereira and Schabes, 1992).  

Most of the mentioned analyzers use statistical techniques. Different probabilities 
are assigned to all the possible representation of a sentence; then they select the most 
probable and present it as the correct representation. In the following sections we 
present a state of the art of supervised, semi-supervised and unsupervised syntactic 
analyzers. 

2.1   Supervised Syntactic Analysis 

Most of the state of the art for supervised syntactic analyzers was established in the 
shared task of CONLL-X (Buchholz and Marsi, 2006) where 19 analyzers for 13 
different languages were presented. The vast majority of these analyzers was based on 
treebanks, and used different machine learning methods amongst which we can mention 
Support Vector Machines and EM algorithms. As an example we can mention the 
NAIST multilingual dependency analyzer from NAIST (Cheng et al., 2006), which had 
the following results. 
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The state of the art for English (Penn Treebank converted to dependencies) 
corresponds to transition based systems, such as NAIST’s (Yamada and Matsumoto, 
2003), graph-based algorithms (McDonald et al., 2005b, 2006), ensemble parsers 
(Sagae and Lavie, 2006; McDonald et al. 2005a), and phrase structure based analyzers, 
such as those by Collins et al., (1999) and Charniak (2000). Semi-Supervised 
Dependency Syntax Analysis. 

Connexor is a Semi-Supervised Syntactic Dependency Analyzer commercially 
available for several languages (English, Spanish, French, German, Swedish and 
Finnish). This analyzer is based on the functional dependency grammar approach 
developed by Tapanainen and Järvinen (1997). This analyzer is composed of three 
elements: Lexicon; Morphologic disambiguation module focused on sub-categorical 
information such as person, gender and number; and FDG. 

Another semi-supervised syntactic analyzer is DILUCT (Calvo and Gelbukh, 2006). 
This algorithm uses heuristics for discovering relationships between words, as well as 
co-occurrence statistics learnt in an unsupervised way for PP-attachment resolution.  

2.2   Unsupervised Syntax Analysis 

This approach is relatively new, being one of the seminal works the one of Yuret 
(1998). Subsequently several works have been presented, such as grammar bigrams 
(Paskin, 2001), Top-down generative models (Klein and Manning, 2004), contrastive 
estimation (Smith and Eisner, 2005) and non-projective examples (McDonald et al., 
2007) applied to certain phenomena of adjunction for syntax analysis.  

Gorla et al. (2007) describe two proposals for elaborating an unsupervised 
dependency analysis system; however, to our knowledge, this system is still under 
development. Our proposal differs completely from theirs. Cohen et al. (2008) use 
Bayesian parameter estimation for unsupervised dependency analysis, obtaining a 
precision of adjunction of 59.4% for sentences shorter than 10 words, 45.9% for 
sentences shorter than 20 words, and 40.5 for all sentences, using Minimum Bayes 
Risk for English. The grammar they obtain is a probabilistic grammar trained and 
tested with Part of Speech Tags only.  

3   Implementation 

Several steps are needed for creating a Dependency Analyzer using the Grammar 
Inference algorithms described previously. We describe this process in four stages: 

 

1. Adding morphological tags to improve the performance of the inductors. 
(Section 4.1) 

2. Grammar Induction. We used the grammar induction tools ABL (Section 
4.2) and EMILE (Section 4.3), both open source and freely available from 
their author’s page1. 

3. Parameter tuning of grammar inductors. (Section 4.4) 
4. Convert the output of the grammar inductor (a shallow parse) in dependency 

relations. We propose doing this conversion using a simple algorithm based 
on lexical categories precedence. (see Section 5) 

                                                           
1 ilk.uvt.nl/~menno/research/software/abl and 
  staff.science.uva.nl/~pietera/Emile/ 
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In the following subsections we describe details of each one of this stages. We will 
illustrate our procedure using the Spanish CAST-3LB corpus (Civit et al., 2003) as a 
means of exemplification, however our approach should work for any language 
requiring only a PoS tagger as an external resource.  

3.1   PoS Tagging of Raw-Text 

CAST-3LB is a Spanish Dependency Tagged corpus. We use this corpus to be able to 
compare afterwards with the annotated version as a gold standard; however, to 
simulate a real situation, our algorithm was given access only to the raw text of this 
corpus. 

We generated a PoS-tagged version of raw CAST-3LB corpus using the TnT 
Tagger (Brants, 2000) trained on the Spanish CLiC-TALP Corpus2. The TnT Tagger 
has been shown to have a performance of 94% for these settings (Morales-Carrasco 
and Gelbukh, 2003). The benefits of adding morphological tags information prior to 
Grammar Induction was shown in Calvo and Gambino (2007).  

3.2   Grammar Inductor’s Parameter Selection 

In order to find the best parameters of these inductors, we tested the similarity of the 
output of the inductors with regard to the gold standard CAST-3LB. We compared the 
location of opening and closing parentheses. For example, the following sentence 
(“we cannot remember either why they came”) shows the original CAST-3LB 
chunking and a sample output after grammar induction. 

CAST-3LB: 

(tampoco recordamos ((por qué) llegaron).) 
Grammar Inductor: 
(tampoco (recordamos (por qué) llegaron.)) 

The first and third opening parentheses are in the same position, as well as the first 
and third closing parentheses (shown in bold). From here we computed the Recall, 
Precision and F-score measures as follows. Note that these measures were used only 
for parameter selection, in this middle stage. 

Recall = 
# of coincident parenthesis

Total # of parenthesis in Gold Standard
 

                      Precision = 
# of coincident parenthesis

Total # of parenthesis in Induction
 

F-Score combines recall and precision into one score. We selected so β=1 so that 
recall and precision are equally weighed.  

Fβ = (β 2 + 1) * Precision * Recall

(β 2 * Precision) + Recall
 

                                                           
2 http://clic.fil.ub.es 
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Table 2. ABL with different parameters test 

Corpus Recall Precision F-score 

Parameters Alignment method: Biased, Selection method: Branch 

Raw 17.58% 21.19% 19.22% 

Raw+PoS 17.60% 21.27% 19.26% 

Parameters Alignment method: Biased, Selection method: Leaf 
Raw 14.27% 26.21% 18.48% 

Raw+PoS 14.56% 26.63% 18.82% 

Parameters Alignment method:  Default, Selection method: Branch 
Raw 16.88% 23.64% 19.69% 

Raw+PoS 16.96% 23.50% 19.70% 

Parameters Alignment method: Default, Selection method: Leaf 
Raw 11.69% 31.24% 17.01% 

Raw+PoS 12.39% 31.24% 17.74% 

 
EMILE provides the following selection of parameters: 

1. total_support_percentage of context / expression of a particular kind. 
2. expression_support_percentage for an expression in a determined context 
3. context_support_percentage of appearances in a context along with expression of 

certain kind. 
4. rule_support_percentage of characteristic expressions for a type that can be 

substituted by one of the referred types in the rule. A rule will be incorporated to 
the grammar only if this percentage is exceeded. 

 

Table 3 and Table 4 show the performance obtained with different parameters. We 
show the best 4 F scores, the default (in italics), and the worse 4 F-scores—note that 
however, precision is the highest in one of the cases. 

ABL provides the following alignment methods: default, biased, all; and the 
following selection methods: first, leaf, branch. Table 2 shows the results of testing 
with different parameters. 

Table 3. Parameter selection for EMILE (no PoS Tags, i.e., raw text only) 

1 2 3 4 Recall Prec. F 
50 20 20 25 9.75% 53.72% 16.51% 
60 30 30 30 9.72% 54.17% 16.49% 
40 40 40 20 9.71% 53.95% 16.46% 
50 40 40 25 9.68% 54.39% 16.44% 
75 50 50 50 9.53% 55.06% 16.25% 
50 30 30 25 9.47% 54.90% 16.16% 
70 30 30 35 7.50% 42.71% 12.76% 
80 50 50 40 7.47% 42.84% 12.72% 
70 50 50 35 7.46% 42.91% 12.71%  
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Table 4. Parameter selection for EMILE (using PoS Tags, i.e., raw + PoS) 

1 2 3 4 Recall Prec. F 
70 70 70 35 9.55% 54.96% 18.91% 
50 20 20 25 9.80% 53.78% 16.57% 
60 20 20 30 9.69% 54.43% 16.45% 
70 20 20 35 9.67% 54.58% 16.42% 
70 60 60 35 9.45% 54.75% 16.11% 
75 50 50 50 9.40% 53.06% 15.97% 
70 30 30 35 7.40% 42.61% 12.61% 
70 50 50 35 7.30% 42.55% 12.46%  

4   From Chunks to Dependency Relations 

The CAST-3LB, as well as the output of the grammar inductors can be regarded as 
chunks of constituents. In this section we explore a simple mechanism for transforming 
these constituent chunks to dependencies. Let us review first some considerations 
concerning this conversion. 

Ninio (1996) points out that the relation between constituents and dependencies is 
formally weak. Grammar relations are primary to a dependency grammar and as such, 
they do not have a role within the dependency approach. However, relations can be 
derived from one representation to the other one. Marneffe et al. (2006) generate 
typed dependency trees from constituent trees using a constituent grammar analyzer. 
They identify the constituent heads afterwards following the rules proposed by 
Collins et al. (1999). 

Robinson (1967) points that one important difference between both representations 
is that the dependency approach uses only terminal categories, while the constituents 
approach uses categories of a higher degree. Despite of this, there is a systematic 
correspondence between the trees produced by each approach. The author proposes a 
series of rules by which it is possible to convert from one representation to the other. 

Gelbukh et al. (2005) propose a procedure based in heuristics coded as 15 rules for 
marking the head, to convert a constituent corpus in a dependency corpus estimating 
an accuracy of 95%. Civit et al. (2006) propose a similar method based on rules 
linguistically motivated, which are encoded in a head table, but they do not provide 
an evaluation. 

In this work we look for a simple yet effective way for doing such conversion, 
given that we do not have constituent tags available, but only PoS tags. 

4.1   Lexical Categories Precedence 

Hengeveld (1992) suggests that there exist common lexical hierarchies amongst the 
majority of languages, including the flexible and not flexible ones, referring to the 
linguistic regularity of such languages; however, he does not mention its application 
for syntactic analysis. On the other hand, Genthial et al. (1990) suggest the existence 
of a Lexical Categories (LC) hierarchy for the construction of syntactic structures. 
When applying them, however, they code them into rules, in a similar way as 
Gelbukh et al. (2005) and Civit et al. (2006). 
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We propose using a LC hierarchy to determine the head for dependency analysis 
starting from a shallow parse. Our procedure is described in the following pseudo-
algorithm.  

function convert (syntactic groups, head) 
1. get the most deep-nested syntactic group 
2. obtain words and LC from this syntactic group 
3. compare the LC of the group 
4. mark the word with highest LC precedence as head of 

this group 
5. mark other words as dependent 
6. convert(rest of syntactic groups, head of the group) 
end function. 

In order to obtain a correct LC hierarchy, we used the original syntactic groups 
found in the CAST-3LB as a gold standard. Iteratively we adjusted the LC hierarchy 
until a representative sample group of sentences of the gold standard were parsed 
correctly. The LC hierarchy we obtained follows, listed by highest (1) to lowest (12) 
precedence. The symbols in parenthesis correspond to the 3LB tagging system. 
However, as we will show later, this hierarchy can be easily adapted to a different 
tagging system.  

Table 5. Comparison of our system (DILUCT-GI) with other systems 

Measures Resources 
System Recall Precision F-meas. Dictio

naries 
Rules Syntactic 

annotations 

Morphol. 
annotatio
ns 

DILUCT 55.0% 47.0% 51.0%     

Connexor 42.1% 39.6% 40.8%     

DILUCT-GI 31.8% 32.3% 32.1%     

TACAT 30.0%     —    —     

 

Verb (v), Adverb (rg), Noun (n), Adjective (a), Pronoun (p), Negation (rn), 
Subordinated conjunction (cs), Preposition (s), Determiner (d), Coordinated conjunction 
(c), Interjection (i), Punctuation symbols (f). 

We found that additional information conveyed by the tags was not necessary for 
the correct identification of the position in the hierarchy. i.e., vmis3s0 is simplified 
to v. Additional information such as person, gender, number or tense is discarded for 
verbs. This simplification is done for every PoS. 

5   Evaluation of Dependencies 

Briscoe et al. (2002) suggest evaluating the accuracy of syntactic analyzers based on 
the grammar relationships between lemmatized lexical heads. Each tree can be 
represented as a n-ary representation with n triplets: each dependency relationship has 
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Table 6. DILUCT-GI dependency analyzer results for the Susanne corpus 

Corpus Recall Precision Fscore 

Alignment method: Biased Parameters 

Selection method: Branch 

Raw+PoS 40.41% 40.33 % 40.37% 

Alignment method:  Default Parameters 

Selection method: Branch 

Raw+PoS 39.03% 38.97 % 39.00% 

 
a head, a dependant, and the kind of relationship between them. Following this, we 
compare two dependency analyses by comparing every triple in them. When we 
generated extra triplets, we counted them as errors, since they are outside of the gold 
standard. 

CAST-3LB is a Spanish corpus with 3,700 tagged sentences. The best scores we 
obtained were 31.83% recall, 32.36% precision and 32.09% F-measure, using ABL, 
Text and PoS tags using Default alignment mode and Branch selection method. Table 
5 compares these results with other semi-supervised dependency analyzers: DILUCT 
(Calvo and Gelbukh, 2008) and TACAT (Atserias and Rodríguez, 1998). TACAT is a 
shallow syntactic parser for Spanish and results were converted to dependencies for 
comparison3. The compared analyzers use resources such as dictionaries, rules, and 
syntactic annotations, whereas our proposal uses only morphological annotations, so 
that this comparison might be unfair, however, at our knowledge, presently there is no 
unsupervised dependency analyzer for Spanish available for comparison. 

5.1   Building an English Parser in a Few Days 

In order to perform a fair comparison, we need to compare with an unsupervised 
method. For example, for English, the syntactic analyzer using unsupervised Bayesian 
parameter estimation by Cohen et al. (2008) obtains an adjunction precision of 59.4% 
for sentences shorter than 10 words, 45.9% for sentences shorter than 20 words, and 
40.5% for all sentences. They infer a grammar based on PoS tags with no words and 
output is not a dependency tree. Gorla et al. (2007) did not report results of their 
unsupervised dependency analyzer. 

We did an implementation of a parser for English based on the Susanne corpus 
(Sampson, 1995) consisting of 7,500 annotated sentences for English. Same as before, 
we used only the raw text and morphological tags of this corpus, ignoring all syntactic 
information as input for our syntactic analyzer, but used the annotation as gold 
standard.  

The Susanne corpus is annotated following the approach called Susanne Analytic 
Scheme. Genabith et al. (2001) recommend converting a corpus to the Xbar notation 
to minimize the creation of CFG rules for grammar induction; therefore, we used the 

                                                           
3 Results kindly provided by Jordi Atserias, Technical University of Catalonia. 
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Xbar annotated version of the Susanne corpus by Nick Cercone4. This corpus’ 
morphological tags are different to other corpora; for example, pronouns are tagged as 
nouns and adjectives and adverbs are classified together. Based on the previous LC 
hierarchy we found, by testing again over sample sentences, we determined in short 
time the Susanne English LC Hierarchy as follows. 

Verb (V), Auxiliar verb (have, be, being), Auxiliar (Aux), Noun (N), 
Adjective_1 (Aeasy), Adjective_2 (A), Preposition (P), Determiner (D), 
Predeterminer (PreDet), Conjunction (C) 

Results are shown in Table 6 for the best parameters found in Section 3.4. 

6   Conclusions and Future Work 

Although not directly comparable, the performance of our system obtained for 
English suggests that by using a bigger corpus for Spanish we may achieve better 
performance—the corpus for English has 7500 sentences, whereas 3LB for Spanish 
has only 3500.  

For the purpose of Dependency Analysis, ABL had better performance. EMILE 
stores all context-expression pairs during the induction process in order to create a 
new non-terminal as part of the grammar. Because of this, van Zaanen and Adriaans 
(2001) consider that this inductor will obtain better results with a big corpus (more 
than 100,000 sentences.) On the other hand, ABL uses a greedy algorithm that stores 
all possible constituents found before selecting the best. This property allows ABL to 
have a better performance with small corpora. 

We obtained better results using a combined corpus of words and tags. It was a 
relatively small, but constant difference in all configurations tested. The information 
provided by these tags helps during the alignment process to disambiguate some 
constituents that belong to several lexical categories. 

We found that the ABL Grammar Inductor had better performance than the one 
reported by their authors, who tested with the Wall Street Journal Corpus in English 
(van Zaanen, 2002), obtaining 12% of recall. The Biased-Branch configuration for 
ABL obtained the highest recall (17.60%), while the configuration Default-Leaf 
obtained the highest precision (31.24%). As expected, the higher amount of syntactic 
groups found, the less precision they have. 

We presented a model for dependency analysis, which can be reasonably easy 
adapted to other languages, based on unsupervised learning on raw text annotated 
with morphological tags. As far as we know, for Spanish this would be the first 
unsupervised (after adding PoS tags) dependency analyzer, whereas for English we 
achieved results within the state of the art. Despite having still margin for 
improvement, our proposed model alleviates some intrinsic limitations such as those 
taking place when learning with Grammar Inductors (Gold, 1967), by adding 
morphologic information before the induction process, and a novel system for 
converting a shallow parse into a dependency analysis by means of a Lexical 
Category Precedence Hierarchy. Our method can be used for languages where 

                                                           
4 Available at www.student.cs.uwaterloo.ca/~cs786s/susanne/ 
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linguistic resources are scarce, given that morphologic tags are available. We believe 
that at least romance languages share a similar lexical precedence hierarchy; however, 
proving this, as well as testing with other corpora, is left as future work. 
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Abstract. In sequence labeling problems, the objective functions of most learn-
ing algorithms are usually inconsistent with evaluation measures, such as Ham-
ming loss. In this paper, we propose an online learning algorithm that addresses
the problem of labelwise margin maximization for sequence labeling. We decom-
pose the sequence margin to per-label margins and maximize these per-label mar-
gins individually, which can result to minimize the Hamming loss of sequence.
We compare our algorithm with three state-of-art methods on three tasks, and the
experimental results show our algorithm outperforms the others.

1 Introduction

In recent years, the sequence labeling problems have obtained much attention espe-
cially in the machine learning, computational biology and natural language processing
communities such as part-of-speech tagging [16], chunking [17], named entity recog-
nition [18] and Chinese word segmentation [26,15]. The goal of sequence labeling is
to assign labels to all elements of a sequence. Due to the exponential size of the output
space, sequence labeling problems tend to be more challenging than the conventional
classification problems.

Recently, many algorithms have been applied for sequence labeling and the progress
has been encouraging. These algorithms usually have the different objective functions.
For example, average perceptron algorithm [1] aims to minimize the 0-1 loss of se-
quence. Maximum entropy Markov models (MEMM) [13] and conditional random fields
(CRF) [11] aims to maximize the conditional likelihood. SVMstruct [23] and maximum
margin Markov networks (M3N) [22] aims to maximize the margin or minimize hinge
loss [5].

However, most of these objective functions often calculate the conditional probabil-
ity or margin on the whole sequence, which are usually inconsistent with conventional
evaluation measures of sequence labeling, such as Hamming loss. The probability and
margin cannot response the Hamming loss directly.

   an             exciting            moment 
                       

 B    E     B    M   M    E     S     B     E 
 B    E     B     E    B     E     S     B     E 
 1     1     1    1    1     1     1     1     1    
 1     1     4   -1   -1     4     1     1     1  

Sentence: X 
Correct Label: Lc 
Wrong Label: Lw 
Margin:   M1=9 
Margin: M2=12 

Fig. 1. Per-label decomposition of margin for Chinese word segmentation. “B”, “M”, “E” and
“S”, which represent the beginning, middle, end or single character of a word respectively.

A. Gelbukh (Ed.): CICLing 2011, Part I, LNCS 6608, pp. 121–132, 2011.
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For example, in maximum margin algorithm for Chinese word segmentation (shown
in Figure 1), given a sentence X and its label Lc, the margin is calculated between the
correct label Lc and the wrong label Lw which has maximum score besides Lc. Assum-
ing that we have two parameters w1 and w2, which can result in two different margins
M1 = 9 and M2 = 12. M1 and M2 are the sum of per-label margins in each position.
Although w2 is apparently better than w1 since w2 have larger margin, we claim that
w2 is worse than w1. If we decompose the margin into individual positions, we find that
M2 contains negative value in per-label margin. The negative margin indicate a wrong
predict, so w1 should be better than w2 since that w1 can give higher accuracy.

So we wish to find an objective function to approximate the evaluation measures of
sequence labeling. However, it is difficult to find parameters that achieve the highest
possible accuracy even on the training data. In particular, if we wish to minimize Ham-
ming loss, which measures the number of incorrect labels, gradient-based optimization
methods cannot be applied directly.

In this paper, we define the labelwise hinge loss to approximate the Hamming loss,
which is the minimal differences between the score of the correct label and the closest
negative. Then we propose an online learning algorithm that addresses the problem of
per-label margin maximization for sequence labeling. Our learning algorithm is based
on Passive-Aggressive (PA) algorithm [4], which passively accepts a solution whose
loss is zero, while it aggressively forces the new prototype vector to stay as close as
possible to the one previously learned. Our method maximize the labelwise margin
instead of the separation margin of whole sequence.

The rest of the paper is organized as follows. Section 2 gives a brief introduction to
sequence labeling models. Then we propose our algorithm in section 3 and compare it
with CRF, M3N and PA in section 4. Section 5 gives the analysis and related words.
Section 6 concludes the paper.

2 Sequence Labeling Models

Sequence labeling is the task of assigning labels y = y1, . . . , yL to an input sequence
x = x1, . . . , xL.

Give a sample x, we define the feature is Φ(x,y). Thus, we can label x with a score
function,

ŷ = arg max
y

F (w, Φ(x,y)), (1)

where w is the parameter of function F (·). The feature vector Φ(x,y) consists of lots
of overlapping features, which is the chief benefit of discriminative model.

For example, in first-order Markov sequence labeling, the feature can be denoted as
φk(yi−1, yi,x, i), where i is the position in the sequence. Then the score function can
be rewritten as

ŷ = arg max
y

F (
L∑

i=1

∑
k

wkφk(yi−1, yi,x, i)), (2)

where L is length of x.
Different algorithms vary in the definition of F (·) and the corresponding objective

function. F (·) is usually defined as linear or exponential family function.
In this section, we introduce several related sequence labeling methods.
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2.1 Averaged Perceptron

The average perceptron algorithm for structured learning is described in [1,10]. In the
training phase, given training examples with a random initial weight vector w, the ex-
amples are iteratively processed. Let y be the true label sequence for input x and ŷ be
the predicted label sequence. If a mistake is made, i.e, y �= ŷ , the weight vector is
updated as w = w+Φ(x,y). In order to avoiding overfitting, the averaging technology
is employed.

2.2 Conditional Random Fields

Conditional random fields (CRF) are undirected graphical models trained to maximize
a conditional probability [11]. When used for sequential labeling problems, a common
special-case graph structure used is a linear chain. A linear-chain CRF with parameters
w defines a conditional probability for a state sequence y given an input sequence x to
be

Pw(y|x) =
1

Zw
exp(wT Φ(x,y)), (3)

where Zw is the normalization constant such that the sum of all the terms is one.

2.3 Maximum Margin Markov Networks

Maximum margin Markov networks (M3N) [22], which defines a log-linear Markov
network over a set of label variables, represents the correlations between these label
variables. They define a margin-based optimization problem for the parameters of this
model.

min 1
2 ||w||2 + C∑x ξx (4)

s.t. wT Δfx(y) >= Δtx(y) − ξx, ∀x,y

where ξ is non-negative slack variable.
For Markov networks that can be triangulated tractably, the resulting quadratic pro-

gram (QP) has an equivalent polynomial-size formulation (e.g., linear for sequences)
that allows a very effective solution.

2.4 Online Passive-Aggressive Algorithm

Passive-aggressive (PA) algorithm [3,4] was proposed for normal multi-class classifi-
cation and can be easily extended to structure learning [2]. Like perceptron, PA is an
online learning algorithm. Given an example (x,y), ŷ is denoted as the incorrect label
with the highest score,

ŷ = arg max
z�=y

wT Φ(x, z). (5)

The margin γ(w; (x,y)) is defined as

γ(w; (x,y)) = wT Φ(x,y) −wT Φ(x, ŷ). (6)

Thus, we calculate the hinge loss.

�(w; (x,y) =

{
0, γ(w; (x,y)) > 1
1− γ(w; (x,y)), otherwise

(7)



124 W. Gao, X. Qiu, and X. Huang

In round t, the new weight vector wt+1 is calculated by

wt+1 = argmin
w

1
2
||w −wt||2 + C · ξ,

s.t. �(w; (xt,yt)) <= ξ and ξ >= 0 (8)

where ξ is non-negative slack variable, and C is a positive parameter which controls the
influence of the slack term on the objective function.

3 Online Labelwise Margin Maximization Algorithm

These above algorithm often calculate the conditional probability or margin on the
whole sequence, which are usually inconsistent with conventional evaluation measures
of sequence labeling, such as Hamming loss.

In this section we propose a per-label margin maximization algorithm based on on-
line PA algorithm, which can approximate the Hamming loss.

To decompose the margin into each label, we need give a definition to labelwise
margin firstly.

The score function of our algorithm is linear function.
Given an example (x,y), ŷ is denoted as the incorrect label with the highest score1,

ŷ = arg max
z�=y

wT Φ(x, z). (9)

Then the labelwise margin γi(w; (x,y)) in position i is defined as

γi(w; (x,y)) = wT Φi(x,y)−wT Φi(x, ŷ), (10)

where Φi(x,y) is the local feature vector drawn from position i.
Thus, we calculate the labelwise hinge loss for each position i.

�i(w; (x,y) =

{
0, γi(w; (x,y)) > 1
1 − γi(w; (x,y)), otherwise

(11)

The labelwise hinge loss can be regarded as an approximation of Hamming loss, but it
gives more penalty for the wrong label with larger score.

We use online learning algorithm to calculate the parameters w.
In round t, we find new weight vector wt+1 by

wt+1 = arg min
w∈Rn

1
2
||w −wt||2 + C · L · ξ,

s.t. �i(w; (xt,yt)) <= ξ and ξ >= 0 (12)

where ξ is non-negative slack variable, L is the sentence length and C is a positive
parameter which controls the influence of the slack term on the objective function.

1 We use Viterbi algorithm in inference phase.
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The goal of our algorithm is to achieve a margin per label at least 1 as often as pos-
sible, thus the Hamming loss is also reduced indirectly. On rounds where the algorithm
attains a margin less than 1 it suffers an instantaneous loss.

We abbreviate �i(wt; (x, y)) to �t,i. If �t,i = 0 then wt itself satisfies the constraint
in Eq. (12) and is clearly the optimal solution. We therefore concentrate on the case
where �t,i > 0.

First, we define the Lagrangian of the optimization problem in Eq. (12) to be,

L((w), ξ, α, β) =
1
2
||w −wt||2 + C · L · ξ +

L∑
i=1

αi(�t,i − ξ)− βξ

s.t. αi >= 0(∀i), β >= 0. (13)

where α, β is a Lagrange multiplier.
Setting the partial derivatives of L with respect to the elements of ξ to zero gives∑

i

αi + β = C · L. (14)

The gradient of w should be zero,

w−wt −
L∑

i=1

αi(Φi(x,y)− Φi(x, ŷ)) = 0, (15)

we get

w = wt +
L∑

i=1

αi(Φi(x,y)− Φi(x, ŷ)). (16)

Substitute Eq. (14) and Eq. (16) to dual objective function Eq. (13), we get

L(α) = −1
2
||

L∑
i=1

αi(Φi(x,y) − Φi(x, ŷ))||2

−
L∑

i=1

αiwt
T (Φi(x,y) − Φi(x, ŷ)) +

L∑
i=1

αi (17)

Differentiate with each αi, and set it to zero, we get

⎛
⎝ L∑

j=1

αj (Φj(x,y)− Φj(x, ŷ)) + wt
T

⎞
⎠

T

· (Φi(x,y) − Φi(x, ŷ)) − 1 = 0. (18)

So we can get a linear system about αi with L linear equations,∑
j

Aijαj = Bi, (i = 1, · · · , L) (19)

where Aij =(Φj(x,y)−Φj(x, ŷ))T (Φi(x,y)−Φi(x, ŷ)) and Bi =1−wt
T (Φi(x,y)−

Φi(x, ŷ)).
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We reformulate the Eq. (19, and the equivalent matrix equation is

Aᾱ = B, (20)

where A is L × L symmetric matrix with elements Aij , B = [B1, · · · , BL]T is vector
and ᾱ = [α1, · · · , αL]T .

Here, A is usually singular and sparse. We can solve it by singular value decompo-
sition (SVD) [7].

A = UDV T , (21)

where U, V is orthogonal.
We can calculate ᾱ by

ᾱ = V D−1UT B, (22)

where D−1 is defined as

D−1 =
{

1/σi ifσi > 0
0 otherwise (23)

From
∑

i αi + β = C · L, we know that
∑

i αi < C · L. We give the same treatment to
each αi, so

ᾱ∗
i = min(C, ᾱi). (24)

Finally, we get update strategy,

wt+1 = wt +
L∑

i=1

ᾱ∗
i (Φi(x,y)− Φi(x, ŷ)). (25)

input : training data set: (xn, yn), n = 1, · · · , N ,
aggressive parameters: C,
average number: K
maximum iterative number: T

output: w

Initialize: cw← 0,;
for k = 0 · · ·K − 1 do

w0 ← 0 ;
for t = 0 · · ·T − 1 do

receive an example (xt,yt);
predict: ŷt = arg max

z�=yt

〈wt, Φ(xt, z)〉;
calculate �i(w; (x,y));
for i = 0 · · ·L do

if �i(w; (x,y)) ≤ 1 then
calculate α∗

i by Eq. (24);
end

end
update wt+1 with Eq.(25);

end
cw = cw + wT ;

end
w = cw/K ;

Algorithm 1. Labelwise Margin Maximization Algorithm
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Our final algorithm is shown in Algorithm 1.
In order to avoid overfitting, the averaging technology is employed. We set the re-

peated number K to 2 for average parameters in this paper.

4 Experiment

To evaluate our algorithm, denoted as LPA (Labelwise PA), we compare it with CRF,
M3N and PA. We used CRF++2 and Pocket M3N3 packages as the CRF and M3N
implementations. In our experiments, we use linear kernel for M3N and set C = 1 for
PA and LPA. We also try to use the different values of C, and found that larger values
of C imply a more aggressive update step and result to fast convergence, but it has little
influence on the final accuracy. The maximum iterative number T is set to 20 for PA
and LPA.

4.1 Chunking

Text chunking consists of dividing a text in syntactically correlated parts of words.
We use the training and test data from CoNLL-20004. This data consists of the same
partitions of the Wall Street Journal corpus (WSJ) as the widely used data for noun
phrase chunking: sections 15-18 as training data (211727 tokens) and section 20
as test data (47377 tokens). The annotation of the data has been derived from the
WSJ corpus by a program written by Sabine Buchholz from Tilburg University, The
Netherlands.

The feature templates are shown in Table 1(a). W represents a word, P represent the
part-of-speech tag, and T represents the chunking tag. The subscript of W indicates its
position relative to the current character, whose subscript is 0.

Table 1. Chunking

(a) Feature templates for chunking

WiT0, i = −2,−1, 0, 1, 2

W−1,0T0, W0,1T0

PiT0, i = −2,−1, 0, 1, 2

P−2,−1T0, P−1,0T0, P0,1T0, P1,2T0

P−2,−1,0T0, P−1,0,1T0, p0,1,2T0

T−1,0

(b) Results of Chunking

Precision Recall F1

CRF 93.91% 93.67% 93.79
M3N 93.59% 92.99% 93.29
PA 93.69% 92.95% 93.32

LPA 94.59% 93.63% 94.11

Evaluations are done using precision and recall on the extracted chunks, and we
report F1 = 2PR/P + R. The results are shown in Table 1(b). We can see that our
algorithm gives best performance.

2 Available from http://crfpp.sourceforge.net
3 Available from http://code.google.com/p/pocketcrf/
4 http://www.cnts.ua.ac.be/conll2000/chunking/
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Fig. 2. Per-label accuracy

4.2 Chinese Word Segmentation

Chinese word segmentation is to segment Chinese sentence (not space-separated) into
a sequence of words. Chinese word segmentation can be regarded as sequence labeling
problem. We use “B”, “M”, “E” and “S” to represent the beginning, middle, end or
single character of a word respectively.

We use four corpora5 in SIGHAN Bakeoff 2 [6] to evaluate our algorithm, which
includes the Academia Sinica Corpus (AS), the Hong Kong City University Corpus
(CityU), the Peking University Corpus (PKU) and the Microsoft Research Corpus
(MSR).

The feature templates are shown in Table 2. C represents a Chinese character, and
the subscript of C indicates its position relative to the current character, whose subscript
is 0. T represents the character-based tag.

The evaluation measure are reported are precision, recall, and an evenly-weighted F1.

Table 2. Feature templates for Chinese word segmentation and named entity recongition

CiT0, (i = −1, 0, 1)

C−1,0T0, C0,1T0, C−1,1T0

T−1,0

The results are shown in Table 3, which show LPA outperforms the others. PA gives
the poorest performance. Although the result of LPA is almost the same as CRF and
M3N, it has about 2% percent boost on PA in average by adding the constraints for
each label.

Table 3. F-measure on SIGHAN Bakeoff 2

PKU MSR CityU AS
CRF 93.2 96.5 9.41 95.1
M3N 93.4 96.3 94.5 94.9
PA 93.9 92.6 93.5 94.9

LPA 94.0 96.7 94.8 95.2

5 http://www.sighan.org/bakeoff2005/
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(a) PKU (b) CityU

(c) MSR (d) AS

Fig. 3. Per-label accuracy

4.3 Chinese Named Entity Recognition

Chinese named entity recognition is a task to find the named entity in Chinese sentences.
The entities often includes person, organization, location and geopolitical. We use the
MSRA and CityU corpora from Bakeoff 20066 [12]. The feature templates are same
to Chinese word segmentation. The results are shown in Table 5(a) and 5(b). Chinese
named entity recognition can also be regarded as sequence labeling problem, in which
each Chinese character of sentence is to be assigned with one of 9 tags (see Table 4).

Table 4. Tags of Chinese Named Entity Recognition

Tag Meaning
0 (zero) Not part of a named entity
B-PER Beginning character of a person name
I-PER Non-beginning character of a person name
B-ORG Beginning character of an organization name
I-ORG Non-beginning character of an organization name
B-LOC Beginning character of a location name
I-LOC Non-beginning character of a location name
B-GPE Beginning character of a geopolitical entity
I-GPE Non-beginning character of a geopolitical entity

The evaluation measure are reported are precision, recall, and an evenly-weighted
F1. The results are shown in Table 5(a) and 5(b). LPA gives best performance on F1

measure.

6 http://www.sighan.org/bakeoff2006/
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Table 5. Results of Chinese Named Entity Recognition

(a) CityU

Precision Recall F1

CRF 74.43% 58.81% 65.71
M3N 71.93% 63.65% 67.54
PA 74.47% 60.03% 66.48

LPA 75.37% 62.41% 68.28

(b) MSRA

Precision Recall F1

CRF 83.18% 76.28% 79.58
M3N 79.94% 78.95% 79.44
PA 82.13% 79.83% 80.96

LPA 83.59% 80.05% 81.78

5 Discussion and Related Works

From the experimental results, we can see that the labelwise decomposition of the mar-
gin gives a boost on performances of three sequence labeling tasks. A major reason is
that the labelwise hinge loss is closer to Hamming loss than the whole loss.

A few works have also dealt with the problem of minimizing the loss of sequence
directly.

Gross et al. [8] gave a gradient-based procedure for minimizing an arbitrarily accu-
rate approximation of the empirical risk [24] under a Hamming loss function. Our work
is to minimize the structural risk [24] with maximizing the labelwise margin. Kakade
et al [9] proposed a method to minimize the loss incurred by maximum a posteriori,
rather than maximum expected accuracy, parsing on the training set. Xiong et al [25]
also proposed a criterion called minimum tag error (MTE) for discriminative training
of conditional random fields (CRFs) and applied it to Chinese word segmentation. The
MTE criterion is an average of the raw tag accuracy over all possible label sequences
(weighted by their likelihood).

More generally, our work is related to piecewise decomposition [14] [19] [20] [21]
for factor graph in graphical model, which have recently been the subject of much in-
terest. Piecewise decomposition is proposed for fast learning and inference of structure
learning.

6 Conclusion

In this paper, we propose an online learning algorithm that addresses the problem of per-
label margin maximization for sequence labeling. In the future, we will investigate our
algorithm in other sequence labeling problems, such as part-of-speech tagging. Then
we will extend our algorithm to more complex structure learning problems, such as
parsing.

Moreover, we also wish to extend labelwise margin to piecewise margin for parallel
learning and inference.
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Abstract. Learning Selectional Preferences has been approached as a verb and 
argument problem, or at most as a tri-nary relationship between subject, verb 
and object. The correlation of all arguments in a sentence, however, has not 
been extensively studied for sentence plausibility measuring because of the 
increased number of potential combinations and data sparseness. We propose a 
unified model for machine learning using SVM (Support Vector Machines) 
with features based on topic-projected words from a PLSI (Probabilistic Latent 
Semantic Indexing) Model and PMI (Pointwise Mutual Information) as co-
occurrence features, and WordNet top concept projected words as semantic 
classes. We perform tests using a pseudo-disambiguation task. We found that 
considering all arguments in a sentence improves the correct identification of 
plausible sentences with an increase of 10% in recall among other things. 

1   Introduction 

A sentence can be regarded as a verb with multiple arguments. The plausibility of 
each argument depends not only on the verb, but also on other arguments. Measuring 
the plausibility of verb arguments is required for several tasks such as Semantic Role 
Labeling, since grouping verb arguments and measuring their plausibility increases 
performance, as shown by Merlo and Van Der Plas (2009) and Deschacht and Moens 
(2009). Metaphora recognition requires this information too, since we are able to 
know common usages of arguments, and an uncommon usage would suggest its 
presence, or a coherence mistake (v. gr. to drink the moon in a glass). Malapropism 
detection can use the measure of the plausibility of an argument to determine misuses 
of words (Bolshakov, 2005) as in hysteric center, instead of historic center; density 
has brought me to you; It looks like a tattoo subject; and Why you say that with 
ironing? Anaphora resolution consists on finding referenced objects, thus, requiring 
among other things, to have information about the plausibility of arguments at hand, 
i.e., what kind of fillers is more likely to satisfy the sentence’s constraints, such as in: 
The boy plays with it there, It eats grass, I drank it in a glass. 

This problem can be seen as collecting a large database of semantic frames with 
detailed categories and examples that fit these categories. For this purpose, recent 
                                                           
*  This research is supported by SNI, SIP-IPN, COFAA-IPN, and PIFI-IPN, CONACYT; and 

the Japanese Government (JSPS). 



134 H. Calvo, K. Inui, and Y. Matsumoto 

works take advantage of existing manually crafted resources such as WordNet, 
Wikipedia, FrameNet, VerbNet or PropBank. The problem with the semantic frames 
approach for this task is that semantic frames are too general. For example Anna 
Korhonen (2000) considers the verbs to fly, to sail and to slide as similar and finds a 
single subcategorization frame. On the other hand, n-gram based approaches are too 
particular, and even using a very big corpus (such as using the web as corpus) has two 
problems: some combinations are unavailable, or counts are biased by some syntactic 
constructions. For example, solving the PP attachment for extinguish fire with water 
using Google1 yields fire with water: 319,000 hits; extinguish with water: 32,100 hits. 
Resulting in the structure *(extinguish (fire with water)) instead of (extinguish (fire) 
with water).  Thus, we need a way for smoothing these counts. This latter has been 
done by using Selectional Preferences since Resnik (1996) for verb to class 
preferences, and then generalized by Agirre and Martinez (2000) for verb class to 
noun class preferences. More recent work includes (McCarthy and Carroll, 2003), 
which disambiguate nouns, verbs and adjectives using automatically acquired 
selectional preferences as probability distributions over the WordNet noun hyponym 
hierarchy and evaluate with Senseval-2. However all these works have a common 
problem which is that they address separately each argument for a verb. 

1.1   The Need for Co-occurrence 

Calvo et al. (2009) show that considering simultaneously three arguments yields 
better precision than only two, with certain loss of recall. Kawahara and Kurohashi  
(2006) perform verb disambiguation for learning preferences by differentiating the 
main verb with the closest argument. For example play a joke and play a guitar will 
have different argument preferences; however, in some cases this is not enough, as it 
can be seen in the following example, where the verb has different meanings 
depending of a far argument: 

Play a scene for friends in the theatre (to act), and 
Play a scene for friends in the VCR (to reproduce.) 

Recent works have proposed a discriminative approach for learning selectional 
preferences, starting with Bergsma et al. (2008). Ritter et al.  (2010) and Ó Séaghdha 
(2010) propose a LinkLDA (Latent Dirichlet Allocation) model with linked topic 
hidden variables drawn from the same distribution to model <subject, verb, object> 
combinations, such as <man, eats, ramen> and <cow, eats, grass>. However, these 
works consider at most tri-nary relations. Motivated by the problem of considering as 
many arguments as possible for clustering verb preferences, we propose here a 
general model for learning all co-related preferences in a sentence, allowing us to 
measure the plausibility of its occurrence. In addition this model allows using both 
statistical resources as well as manual resources such as dictionaries or WordNet to 
improve the prediction. In this work we show an example of using Probabilistic 
Latent Semantic Indexing (PLSI), Pointwise Mutual Information (PMI) and WordNet 
for measuring this plausibility.  

Furthermore, there are several particular questions that we seek to answer in this 
paper: (1) For automatic learning, building the co-occurrence table from real examples 
                                                           
1 Google query as of April 20th, 2010. 



 Co-related Verb Argument Selectional Preferences 135 

can be achieved using different approaches (see Section 2). Which approach offers the 
best solution?; (2) Joining verb and nouns information in a single table is suitable for the 
model?; (3) Using a Support Vector Machine (SVM) trained only on PLSI information 
performs better than the PLSI model?; (4) How does this model perform when varying 
training information?; (5) Combining statistical information (PLSI and PMI) with 
manually crafted resources information such as WordNet improves results? 

In Section 2 we describe our proposed model, and present in Section 3, the 
experiments we conducted to answer the previous questions. Finally in Section 4 we 
analyze the results and draw our conclusions. 

2   Methodology 

First we build the resource for counting co-occurrences. We do this by parsing the 
UKWaC corpus with MINIPAR (Lin, 1998) to obtain a lemmatized dependency 
representation. The UKWaC corpus (Ferraresi et al. 2008) is a large balanced 
corpus of English from the UK Web with more than 2 billion tokens. The sentence 
Play a scene for friends in the theatre becomes: play obj:scene for:friend in:theatre. 
Then we pre-calculate the mutual information statistics between each pair of words, 
i.e., (play, obj:scene), (play, for:friend), (play, in:theatre), (obj:scene, for:friend), 
(obj:scene, in:theatre), (for:friend, in:theatre). We then proceed to calculate the topic 
representation of each word using PLSI. 

The Probabilistic Latent Semantic Indexing (PLSI) model was introduced in 
Hofmann (1999). It was derived from Latent Semantic Indexing (Deerwester et al., 
1990). The model attempts to associate an unobserved class variable z∈Z={z1, ..., 
zk}, with two sets of observable arguments. In terms of generative models, PLSI can 
be defined as follows: a document is selected with probability P(d), then a latent class 
z is selected with probability P(z|d) and finally a word w is selected with probability 
P(w|z). This definition can also be represented as Eq. (1). 

 (1)

Given a set of sentences, there are several ways for considering what a word and what 
a document is. We can consider grouping the documents by verb or by noun. That is, 
a document eat will contain all the arguments co-occurring with the verb eat, or, a 
document ball contains the other arguments and verbs co-occurring with the noun 
ball, for instance play, with:stripes, for:exercise, etc. (see Table 1). On the other hand, 
documents can be nouns only, and the co-occurrences would be verbs plus functions. 
See Table 2.  

Table 1. Co-occurrence table (verbs+nouns) 

 with friend in park 
play 1 1 
eat 1  
ball  1 
yoyo 1  

P d,w( ) = P zi( ) ⋅ P d zi( ) ⋅
Z
∑ P w zi( )
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Table 2. Co-occurrence table (nouns only) 

 play with play at 
Yoyo 1  
ball 1  

 
In summary, the following different ways of building the sentence co-occurrence 

matrix for PLSI are listed below. fn means function:noun (with:stripes), v means verb 
(play), n noun (ball), vf means verb:function (play:with). Baroni and Lenci (2009) 
have performed experiments with similar matrices. Their nomenclature is indicated in 
square brackets. 

a. (fn|v,fn|v) 
bc. (fn,fn), (v,fn) [LCxLC, CxLC] 
d. (v|n,fn) 
ef. (v,fn), (n,fn) [CxLC,CxLC] 
g. (n,vf|nf) [CxCL] 
h,i. (n,vf) (n,nf) 

Note that modes a and bc are the same, however bc considers building and training 
the PLSI model separately for nouns and verbs. The same happens for modes d and ef 
and g and hi. In the experiment section we detail results for each one of the different 
settings for building the sentence co-occurrence matrix for PLSI. 

2.1   Assembling SVM Features for Training and Testing 

Once the PLSI and PMI resources are built, the training and test sentences are parsed 
with MINIPAR. In this paper, only the first level shallow parse is used. We mapped 
features to positions in a vector. Every argument has a fixed offset, i.e., the subject 
will always be in the first position, the object in position 75, the arguments beginning 
with in at position 150, etc. In this way the co-relation can be captured by an SVM 
learner. We have chosen a second-degree polynomial kernel, to capture combinations 
of features. Each of the arguments is decomposed into several sub-features. These 
sub-features consist of a projection of each word in the PLSI topic space, the 
Pointwise Mutual Information (PMI) between target word and the feature word, and a 
projection of the feature word in the WordNet space.  

Table 3. Simplified example representation for SVM training and testing (one long row), verb: 
play 

subj      obj (target)     

z1 z2 z3 PMI wn1 wn2 wn3 z1 z2 z3 PMI wn1 wn2 wn3 

       0.3 0.2 0.5 1 0.8 0.3 0.2 

in       on       

z1 z2 z3 PMI wn1 wn2 wn3 z1 z2 z3 PMI wn1 wn2 wn3 

0.4 0.3 0.8 0.4 0.2 0.4 0.3        

with       for      

z1 z2 z3 PMI wn1 wn2 wn3 z1 z2 z3 PMI wn1 wn2 wn3 

       0.4 0.6 0.4 0.2 0.1 0.9 0.1 
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Table 4. Top concepts in WordNet 

dry_land_1 writing_4 money_2 state_1 
object_1 construction_4 garment_1 abstraction_1 
being_1 worker_2 feeling_1 attribute_1 
human_1 creation_3 change_of_state_1 relation_1 
animal_1 food_1 motion_2 cognition_1 
flora_1 beverage_1 effect_4 unit_6 
artifact_1 location_1 phenomenon_1 relationship_3 
instrument_2 symbol_2 activity_1 time_1 
device_2 substance_1 act_1 fluid_2 
product_2    

Table 5. Results of using different modes for building the co-occurrence matrix for PLSI, and 
using PLSI and PM with and without SVM learning 

Train 
size 

mo
de 

SVM on 
PLSI&PM 

PLSI*
PM 

SVM on 
PLSI&PM 

PLSI*
PM 

SVM 
(PLSI&PM) 

PLSI*
PM 

Coverage Precision Recall 
125 a 0.70 0.68 0.58 0.64 0.40 0.44 
125 bc 0.69 0.68 0.56 0.59 0.39 0.40 
125 d 0.83 0.74 0.65 0.59 0.54 0.44 
125 ef 0.83 0.74 0.59 0.60 0.48 0.44 
125 g 0.86 0.80 0.58 0.56 0.49 0.45 
125 hi 0.83 0.72 0.62 0.58 0.51 0.42 
250 a 0.78 0.78 0.62 0.59 0.48 0.45 
250 bc 0.78 0.77 0.58 0.61 0.45 0.47 
250 d 0.88 0.78 0.65 0.60 0.57 0.47 
250 ef 0.88 0.78 0.59 0.57 0.52 0.45 
250 g 0.90 0.83 0.61 0.55 0.54 0.45 
250 hi 0.88 0.79 0.64 0.55 0.56 0.44 
500 a 0.86 0.85 0.57 0.54 0.49 0.46 
500 bc 0.85 0.85 0.62 0.57 0.53 0.48 
500 d 0.92 0.81 0.68 0.58 0.62 0.47 
500 ef 0.92 0.81 0.60 0.49 0.55 0.39 
500 g 0.93 0.86 0.62 0.56 0.58 0.48 
500 hi 0.92 0.79 0.64 0.56 0.59 0.44 

 
Conrath, 2007) with regard to 38 top concepts in WordNet shown in Table 4. The PMI 
value for the target word and every target word is also included: (scene, scene) 1, 
(scene, in theatre) 0.4, (scene, for friends) 0.2.  

3   Experiments 

Let us recall the questions we intend to answer for these experiments. 

1. For automatic learning, building the co-occurrence table out from real examples 
can be done in several ways, as shown in Section 2. Which approach is 
preferable? 

2. Joining verb and nouns information in a single table is better for the model? 



 Co-related Verb Argument Selectional Preferences 139 

3. Using an SVM trained only on PLSI information can perform better than the 
PLSI model itself? 

4. How does this model perform with varying training information? 
5. Combining statistical information (PLSI and PMI) with manually crafted 

resources information such as WordNet improves results? 

Table 6. Results of pseudo-disambiguation task with different settings of PMI, PLSI and 
WordNet (WN) 

Wordset 125      
PMI PLSI WN Learning Coverage Precision Recall F 

0 0 1 68.36% 89.44% 54.88% 49.09% 51.82% 
0 1 0 89.59% 82.61% 66.96% 55.23% 60.53% 
0 1 1 92.60% 96.09% 63.23% 60.76% 61.97% 
1 0 0 93.63% 46.62% 70.98% 33.10% 45.15% 
1 0 1 94.55% 94.88% 65.85% 62.48% 64.12% 
1 1 0 97.14% 83.03% 66.09% 54.85% 59.95% 
1 1 1 98.01% 96.09% 65.26% 62.71% 63.96% 

Wordset 250      
0 0 1 67.85% 89.49% 53.87% 48.21% 50.88% 
0 1 0 88.01% 87.02% 69.44% 60.43% 64.62% 
0 1 1 90.82% 96.28% 68.22% 65.69% 66.93% 
1 0 0 93.24% 55.18% 70.34% 38.81% 50.02% 
1 0 1 93.78% 95.39% 64.86% 61.87% 63.33% 
1 1 0 96.88% 87.12% 68.99% 60.11% 64.24% 
1 1 1 97.28% 96.28% 66.10% 64.64% 65.36% 

Wordset 500      
0 0 1 91.09% 89.49% 46.75% 41.84% 44.16% 
0 1 0 86.75% 91.58% 68.32% 62.57% 65.32% 
0 1 1 93.46% 96.79% 54.37% 52.63% 53.49% 
1 0 0 92.95% 64.62% 65.11% 42.07% 51.11% 
1 0 1 93.46% 95.72% 63.18% 60.48% 61.80% 
1 1 0 96.65% 91.72% 68.77% 63.08% 65.80% 
1 1 1 96.68% 97.69% 65.51% 63.41% 64.44% 

Average       
0 0 1 91.09% 89.47% 51.83% 46.38% 48.96% 
0 1 0 86.75% 87.07% 68.24% 59.41% 63.49% 
0 1 1 93.46% 96.39% 61.94% 59.69% 60.80% 
1 0 0 92.95% 55.47% 68.81% 37.99% 48.76% 
1 0 1 93.46% 95.33% 64.63% 61.61% 63.08% 
1 1 0 96.65% 87.29% 67.95% 59.35% 63.33% 
1 1 1 96.68% 96.69% 65.62% 63.59% 64.59% 
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Following Weeds and Weir (2003) we perform experiments for a pseudo-
disambiguation task. This task consists of changing a target word (in this case, direct 
object) and identifying the most plausible sentence using the system, while 
considering the verb and all of its arguments. For example, for the sentences (i) I eat 
rice with chopsticks at the cafeteria; and (ii) I eat bag with chopsticks at the cafeteria, 
the system should be able to identify the first sentence as most plausible. We 
randomly selected 50 sentences from the WSJ corpus for the verbs: play, eat, add, 
calculate, fix, read, write, have, learn, inspect, like, do, come, go, see, seem, give, 
take, keep, make, put, send, say, get, walk, run, study, need, and become. These verbs 
were chosen as a sample of most frequent verbs, as well less frequent frequent verbs. 
They are also verbs that can support a great variety of arguments, such as take (i.e., 
ambiguity is high). For training we created wordsets for the same verbs. Each training 
wordset contains 125, 250 or 500 verb dependency triples per verb. Varying the size 
of training set provides answer to the fourth question. These wordsets were used for 
training the PLSI model, and also for creating the PMI database. Then, the same 
wordsets were used for training SVM. Each sentence was treated as a row, as 
described in Section 2.1, with each feature expanded in PLSI sub-features (topics). 
We generated two false examples randomly for each good example. For testing we 
generate a false for each existing test example. 

At this point we have not included yet information about WordNet. This first 
experiment explores different ways of building the co-occurrence matrix, as described 
in Section 2 (questions number 1 and 2). We compare using PLSI and PM with and 
without SVM learning to answer question number 3. See results in Table 5. 

From Table 5 and Figure 1 we observe that in all cases, the performance is 
improved when all arguments are considered (carried out by adding the SVM learning 
stage to the PLSI binary co-occurrences). In addition, whereas the g mode (n,vf|nf) for 
creating the co-occurrence matrix has greater coverage, by precision and recall mode 
d (v|n,fn) is always the best. We observe also an increasing performance while 
increasing the amount of data in the training wordset. Both the g and the d modes 
combine verbs and nouns, so that we can answer question two with a yes: it is better 
to join nouns and verbs in a single table.  

3.1   Adding Manually Crafted Information 

In this experiment we add manually crafted information into the model. As described 
in Section 2.1, we add information into the training and testing table about the 
distance to 38 common top concepts in WordNet. Table 6 shows the results obtained. 

From Figure 2 it is possible to see that in most cases, combining the three sources 
of information improves the learning rate, although separately, PMI provides the 
highest learning rate. Coverage is always the best when combining the three 
resources. However, precision is better with PMI only for small amounts of training 
data, whereas PLSI gives better support when adding more data. Recall is greater for 
the cases involving the aid of WordNet information. On the average, except for 
precision, the best values are obtained when combining the three resources.  
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4   Analysis and Conclusions 

Despite the minimal training data, we were able to obtain prediction rates above a 
trivial baseline of random selection between two options. With these experiments it 
was possible to determine the impact of using several resources, and also to measure 
the benefit of using an ensemble model for SVM with regard to a simple PLSI model. 
We found that considering all co-occurrences of arguments in a sentence increases 
recall by 10%. We also observed that, as expected, adding more data increases 
coverage; however, it increases recall in a greater extent using SVM over PLSI than 
in PLSI only. Using SVM increases coverage, precision and recall, even when trained 
with the same information available to PLSI. This suggests that generating negative 
examples randomly, and applying machine learning to this sample may improve 
performance of tasks using topic models. 

We found also that the best mode to build the co-occurrence matrix for PLSI is 
mode d (v|n,fn), which corresponds in (Baroni and Lenci, 2009) work to the CxLC 
mode. We found also that building separately co-occurrence matrices for verbs and 
nouns does not improve the performance of the model; on the contrary, it worsens it. 
It is better to use a joint table of verbs and nouns because it is possible to share the 
information on the features between both groups of words. We proposed also that a 
single model to combine statistical information (PLSI and PMI) with manually crafted 
resources such as WordNet, and proved that performance increases in this way, 
however the increase was not as significative as we expected, as it is possible to see in 
Figure 2, where we can see that most of the contributing features are those from PLSI. 
However, as previously shown in Figure 1 and Table 5, SVM learning over PLSI has 
the advantage of being able to capture the co-relation of all arguments, as opposed 
than the pairwise PLSI model. 

As future work, we plan evaluating with larger wordsets, as well as applying our 
model to other tasks such as anaphora resolution, or sentence coherence detection. 
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Abstract. For many languages, we are not able to train any supervised
parser, because there are no manually annotated data available. This
problem can be solved by using a parallel corpus with English, parsing
the English side, projecting the dependencies through word-alignment
connections, and training a parser on the projected trees. In this paper,
we introduce a simple algorithm using a combination of various word-
alignment symmetrizations. We prove that our method outperforms pre-
vious work, even though it uses McDonald’s maximum-spanning-tree
parser as it is, without any “unsupervised” modifications.

1 Introduction

Syntactic parsing is one of the basic tasks in natural language processing. The
best parsers learn grammar from manually annotated treebanks and for all there
holds the rule that increasing amount of training data improves their perfor-
mance. However, there are many languages for which a very few linguistic re-
sources exist. Developing a new treebank is quite expensive and for some rarer
languages it is even impossible to find linguists for the annotations.

In recent years, numerous works have been devoted to developing parsers
that would not need much annotated data. One way is the totally unsupervised
parsing (e.g. the Klein and Manning’s inside-outside method [1]), which infers
the dependencies from raw texts only. But the performance of such parsers is
quite low so far. This changes when we append a few annotated sentences to the
raw texts. Koo proved in [2] that this causes a great improvement.

Hwa came up with an idea [3] to use a parallel corpus. For many languages
there exist some form of parallel texts, very often with English or other resource-
rich languages being the coupled. The idea is to make a word-alignment, parse
the English side of the corpus, then project the dependencies from English to the
other language using the alignment, and, finally, train a parser on the resulting
trees or tree fragments. Several similar works ([4], [5], [6], [7]) came after and
made many improvements on this process. Ganchev [6] and Smith and Eisner [5]
combine this method with unsupervised training.
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In all our experiments, we project dependency trees from English to other
languages, denoted by the attribute foreign or letter X throughout the text.
However, our approach should be effortlessly applicable also for language pairs
with other source language.

When implementing the word alignment task in a parallel corpus, one can
hardly expect only perfect 1:1 alignment links (e.g. due to typological language
differences). If M:N links are allowed, a wide scale of alignment link types arises.
Some of them are necessary or reasonable from one viewpoint, but spurious
from the other (e.g. when aligning functional words). Hence, the fact that it
is difficult to get one single ultimate word alignment, is not implied only by
technical imperfectness of current implementations, but rather by the nature of
languages. Simply said, different alignment schemes must be for different tasks.
However, this paper shows that we can profit from the diversity.

The novel contribution of this paper lies in exploiting several types of word-
alignment links; the previously published works expected a single word alignment
on the input, but we show that combining more asymmetric sentence alignments
leads to better results. Different types of alignment links can imply different
reliability of projected edges, which provides the projection procedure with ad-
ditional information. Furthermore, we also establish a method for filtering out
the noise before training the parser. We use so called alignment sparseness and
non-projectivity metrics for filtering sentences.

In Section 2, we comment previous works related to dependency projection.
Section 3 describes word-alignment symmetrizations and discuss their suitabil-
ity. Our projection algorithm is described in Section 4 and the process of data
filtering is in Section 5. In Section 6, we present parsing accuracies on various
languages and compare them to previous works. We conclude in Section 7.

2 Related Work

Our projection method was inspired by Hwa’s work [4] from 2005, in which
word alignment was used for projecting dependencies from English into Span-
ish and Chinese. They solved the “more counterpart” problem (what to do if
an English word has more than one corresponding word) by choosing the left-
most corresponding word as a main node; each other corresponding word then
becomes dependent on the previous one (left-to-right dependencies). Unlike us,
they used only one type of alignment link and they did not specify which method
of symmetrization they used. They also introduced the data pruning criteria for
filtering out the sentences where the alignment is bad (e.g. too many not aligned
words or too many counterparts for one word) and added some hand-written
rules to handle heterogeneity of different annotation schemas.

Smith and Eisner introduced in [5] quasi-synchronous grammar features for
dependency projection and adaptation of annotation.

Ganchev et al. use in [6] so called “conserved dependencies”, in which counter-
parts of governing and dependent word form a dependency edge (with the same
orientation) in English. They ran an unsupervised parser with posterior regular-
ization, in which inferred dependencies should correspond to projected ones.
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Jiang and Liu use in [7] a matrix with alignment probabilities instead of the
alignment itself in their projection algorithm. They compute a score for each
possible link between the two parallel sentences and then, using a threshold,
train a parser on the projected dependencies. They made the evaluation on the
same Chinese data as in [4] and obtained better accuracy.

3 Alignment Symmetrization Methods

We use GIZA++ tool [8] to make word-alignments in parallel corpora. The align-
ment created by GIZA++ is asymmetric. For each word in one language just one
counterpart in the other language is found, as it is depicted in Figure 1. Standard
practice in machine translation tools is to run this alignment twice in both the
directions (source-to-target and target-to-source) and use one of symmetrization
methods described in [8]. For example, if we make an intersection of the two
asymmetric alignments in Figures 1 and 2, we get the symmetric alignment,
which is in Figure 3.

Coordination    of    fiscal    policies    indeed   ,   can    be    counterproductive   .

Eine Koordination finanzpolitischer Maßnahmen kann in der Tat kontraproduktiv sein .

Fig. 1. German-to-English alignment example. From each word in the German sentence
“Eine(A) Koordination(coordination) finanzpolitischer(fiscal) Maßnahmen(policies)
kann(can) in(in) der(the) Tat(fact) kontraproduktiv(contraproductive) sein(be).“ a link
is made to just one English word.

Our task is different from machine translation. We do not need to make any
symmetrization, because the task itself is asymmetric. We have a parse tree in
English and we want to project it to the other (foreign) language. We would like
to know a counterpart for each foreign word, because each foreign word must
depend on some other foreign word in the new tree. On the other hand, we do
not need to know a counterpart for each English word. From this point of view,
the asymmetric alignment X-to-English (Figure 2) seems to be more useful for
the projection of dependencies than the opposite alignment English-to-X.

Of course, symmetrized alignment is useful too. If a connection between two
words appears in both X-to-English (XtoEN) and English-to-X (ENtoX), it
should be more preferred. Beside the intersection (INT ) alignment, which is

Coordination    of    fiscal    policies    indeed   ,   can    be    counterproductive   .

Eine Koordination finanzpolitischer Maßnahmen kann in der Tat kontraproduktiv sein .

Fig. 2. English-to-German alignment example. A link is made from each English word.
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Coordination    of    fiscal    policies    indeed   ,   can    be    counterproductive   .

Eine Koordination finanzpolitischer Maßnahmen kann in der Tat kontraproduktiv sein .

Fig. 3. Example of intersection alignment

Coordination    of    fiscal    policies    indeed   ,   can    be    counterproductive   .

Eine Koordination finanzpolitischer Maßnahmen kann in der Tat kontraproduktiv sein .

Fig. 4. Example of grow-diag-final-and alignment

depicted in Figure 3, we will use in this work also so called grow-diag-final-and
(GDFA) alignment (Figure 4), in which there are all links from the intersec-
tion alignment and some other links adjacent to already added links. All the
symmetrization methods are described in [8].

4 Algorithm for Projecting Dependency Trees

In this section, we describe our projection algorithm in detail. We present the
setting which led to the best projection results across languages we tested. How-
ever, it is possible that a slightly different setting would be more useful for some
other languages.

4.1 Assignment of Corresponding Words

First of all, we go through the English sentence and for each English word ei we
find a set of corresponding foreign words C(ei) = [fc1 , fc2, . . .]. The set can be
empty as well as it can contain more than one foreign word. But every foreign
word can belong at most to one English word.

The foreign words fcj in the sets C(ei) are ordered according to the type
of alignment connection between fcj and ei. In the first position, there is a
word connected by an intersection link (if it exists). This links have the highest
weight since they are confirmed by both GIZA++ runs. They are followed by
words connected by alignment links X-to-English that are also in grow-diag-
final-and alignment. Words connected only by X-to-English links are at the end.
The whole procedure is described in detail in Figure 5. The first three loops add
words into sets sequentially; the last loop searches for English words that have
no correspondent so far and if such English word ei is linked to some word fj

and fj is not the only word in its set, fj is transfered to C(ei).
This assignment method ensures that each foreign word now belongs to just

one English word. In this point we differ from previous works. This helps in
searching dependencies for words that do not have its own counterpart in English
(mostly the function words). Such word then becomes dependent on a word with
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Input: INT , GDFA, XtoEN , ENtoX . . . various alignments of a sentence
Output: C . . . sets of correspondent words for each English word

foreach [ei, fj ] ∈ INT do
Push fj to C(ei);

end
foreach [ei, fj ] ∈ (GDFA ∩XtoEN) \ INT do

Push fj to C(ei);
end
foreach [ei, fj ] ∈ XtoEN \GDFA do

Push fj to C(ei);
end
foreach [ei, fj ] ∈ (ENtoX ∪GDFA) \ INT do

ek ← such English node for which fj ∈ C(ek);
if C(ek)[0] �= fj then

Delete fj from C(ek);
Push fj to C(ei);

end

end

Fig. 5. Algorithm for assignment of corresponding words

which it shares its counterpart. Since the shared counterpart is only one (it is
determined by the X-to-English alignment), we do not need to use any heuristic
for choosing one as it is in [4].

To conclude, the acquired sets of corresponding words are very close to the
X-to-English alignment, only some connections are substituted by English-to-X
links so that more English words would be covered. Of course, there are many
other possibilities how to deal with different alignment symmetrizations, but this
method seems to be the best for our testing languages.

4.2 Building the Dependency Tree

The algorithm for building the dependency tree of a foreign sentence consists of
one recursive function project subtree(). It goes through the English tree in
a depth-first manner and builds the foreign tree at the same time. The process
is described in pseudo-code in Figure 6. The example of an English-to-German
projection is depicted in Figure 7.

When an English node ei is processed, we choose from the ordered set of
corresponding words C(ei) the first one and declare it as the main counterpart.
The other corresponding words then become its children.

We demonstrate the algorithm on an example in Figure 7. The English node
indeed has three corresponding words in the German sentence: in, der, and Tat.
While the word Tat is connected to indeed by an intersection link, the other
two words are connected only with grow-diag-final-and links. This means that
C(indeed) = [Tat, in, der] and Tat becomes the main counterpart of indeed and
the words in and der become its children.



Dependency Tree Projection 149

e root = technical root of English parse tree;
f root = technical root of foreign parse tree;
build subtree(e root, f root);

function build subtree(e node, f node);
begin

foreach e child ∈ children(e node) do
if |C(e child)| = 0 then

build subtree(e child, f node);
else

main f child ← C(e child)[0];
parent(main f child) ← f node;
foreach f child ∈ C(e child) do

if f child �= main f child then
parent(f child) ← main f child;

end

end
build subtree(e child, main f child);

end

end
end

Fig. 6. Algorithm for projection of dependency trees

Coordination    of    fiscal    policies    indeed   ,   can    be    counterproductive   .

Eine Koordination finanzpolitischer Maßnahmen kann in der Tat kontraproduktiv sein .

German root

English root

Fig. 7. Projection of an English dependency tree into German. Intersection connections
are depicted by solid arrows, other are dashed.
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Another problem which must be solved is dealing with English nodes that
have an empty set of corresponding words, for example the English preposition
of. In these cases, the algorithm goes directly to its children and counterparts
of its children (the words finanzpolitischer and Maßnahmen) become children of
the counterpart of its parent (the word Koordination). It means that the node
Maßnahmen is a child of the node Koordination, even though there is one more
node (of ) between policies and coordination.

5 Data Filtering

When we have the dependency trees projected into the foreign language, we
can simply train a parser on them and measure the parsing quality on some
manually annotated treebank. The problem is that the quality of some trees on
which we are training is very poor. This can be caused by various errors, mainly
in preprocessing:

– non-parallel sentences – two parallel sentences have completely different
meaning. This is caused by an error in sentence-level alignment. Sometimes
it happens that only a part of a sentence is translated.

– completely different structure – the sentences have the same meaning but
their syntactic structures are completely different.

– wrong word alignment – in case there are more words with very low frequency
in the sentence.

We would like to filter out these bad sentences before training. For this purpose,
we established two metrics of the sentence quality: alignment sparseness and
non-projectivity.

5.1 Alignment Sparseness Limit

We define alignment sparseness as a relative number of words that have no
counterpart in an intersection alignment. It is computed as a number of links
divided by the average length of the pair of sentences. Its values are between
0 and 1. Value 0 means that the parallel sentences have the same length and
there is a perfect 1-to-1 alignment mapping. Value 1 means that there are no
intersection links at all.

S = 1 − #links
1
2
(length(e) + length(f))

All sentences that have higher alignment sparseness than a given threshold
are filtered out. There is a trade-off between quality and quantity of the training
data. Figure 8 shows the experiment in searching for optimal sparseness limit
Smax. We can see that the higher the limit Smax, the higher the number of train-
ing sentences. If we train a parser on them and test it on a treebank, accuracy
of such parser increases at first, but then it begins to decrease slightly, because
the number of wrongly aligned sentences in the training data grows.



Dependency Tree Projection 151

Fig. 8. Relations between alignment sparseness limit, number of sentences after fil-
tering, and unlabeled parsing accuracy. This was measured on English-Czech News
commentaries parallel corpus with approximately 100,000 sentence pairs. You can see
that the optimal limit Smax here is 0.2. For this limit, the parser was trained only on
12,500 sentences, which means that we filter out more than 87% of sentences.

5.2 Non-projectivity Limit

The next criterion for recognition of trees that are not suitable for training the
parser is the number of non-projective edges in them. An edge [d, g] in a tree
is non-projective, if the parent p of the governing node g lays between d and g.
Of course, some non-projective edges can be correct, but after the review of the
projected trees, we found out that a majority of non-projective edges are errors
caused mainly by the wrong word alignment.

The experiment in which we filter out also such sentences where there were
more non-projectivities than a given limit is shown in Figure 9. We can see that
the best parsing accuracy was achieved by filtering out all sentences containing
at least one non-projective edge (the limit NPmax = 0).

Fig. 9. Experiment with filtering out the sentences containing more non-projectivities
than a given limit NPmax. It was done on Czech-English parallel corpus already filtered
by alignment sparseness limit Smax = 0.25, which is more than 20,000 sentence pairs.

6 Experiments

We ran our experiments on four languages: Bulgarian, Czech, Dutch, and German.
For Czech and German, we used the News commentaries parallel corpus as it was
prepared for the WMT10 translation task.1 For Bulgarian and Dutch, we used
1 http://www.statmt.org/wmt10/
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the Acquis Communautaire parallel corpus2. The English side of the corpus was
tagged by Morce tagger [9] and parsed by McDonald’s maximum spanning tree
parser [10] which was trained on English CoNLL X3 data. The foreign (target)
sides were tagged by Tree-tagger [11] with appropriate models downloaded from
TreeTagger websites.4

For filtering the projected trees, we tried several values for alignment sparse-
ness limit and non-projectivity limit. Once we had the filtered trees, we trained
the MST parser5 on them. The parser was then tested on development-test data
from the CoNLL X shared task [12]. The attachment accuracies are in Table 1.

Table 1. Unlabeled parsing accuracies for Bulgarian, Czech, Dutch, and German tested
on CoNLL X testing data. Smax and NPmax are the thresholds used for filtering data
before training. The “EN parser” column describes the post-processing steps used for
English parsing.

Language Parallel Corpus EN parser Smax NPmax Accuracy

Bulgarian Acquis Communautaire CoNLL+CoordTr 0.2 0 52.7 %
Czech News commentaries CoNLL+AuxVTr 0.15 0 62.0 %
Dutch Acquis Communautaire CoNLL+CoordTr 0.2 0 52.4 %
German News commentaries CoNLL+CoordTr 0.2 0 55.7 %

Ideally, the testing treebanks should follow the same annotation guidelines as
the treebank on which we train English. However, that is not true in CoNLL X.
The treebanks differ for example in capturing coordination structures or dealing
with auxiliary verbs. For this reasons we implemented two post-processing steps;
one for transforming coordination structures (CoordTr)6 and the other for re-
hanging auxiliary verbs (AuxVTr).7 The basic parsing (using the CoNLL data)
is marked in Table 1 as CoNLL.

In order to compare our projection method with previous works, we ran the
whole process on Bulgarian with exactly same setting as in [6]. We used the
English-Bulgarian OpenSubtitles parallel corpus [13], the English side was parsed
by McDonald’s MST parser trained on sections 2-21 of the Penn treebank with
dependencies extracted using the head rules of Yamada and Matsumoto [14]. The
parser was tested on the Bultreebank corpus as it was released for CoNLL X [12]

2 Only the one-to-one sentence pairs were extracted from the parallel corpus and due
to the computability reasons, we used only the first 100,000 parallel sentences which
length was higher than two and lower than 30 words.

3 http://nextens.uvt.nl/~conll/
4 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
5 We used the McDonald’s parser mstparser-0.4.3b with these settings: order:1,
iters:10, decode-type:proj, training-k:1.

6 In English CoNLL data, the head of coordination structure is the conjunction. How-
ever, in Bulgarian and German, the first coordinating member is the head and the
other members and conjunctions become its children.

7 Auxiliary verbs in Czech CoNLL data (byl, bude, by) depend on the main verb, while
English auxiliary verbs (do, will, be, have) do not.
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Table 2. Comparison of unlabeled parsing accuracies on Bulgarian CoNLL X training
set. Our method is by 0.3% better than the method presented by Ganchev et al. in
their work [6].

Method Parser Accuracy

Ganchev et al. Discriminative model 66.9 %
Ganchev et al. Generative Model 67.8 %
Our method MST parser 68.1 %

shared task on the training sentences of up to 10 words. Punctuation was stripped
at training time. The results compared in Table 2 show that our method out-
performs the previous work [6] in unlabeled accuracy of the parser.

The projection algorithm written in Perl, example data, and the instructions
how to run the whole process including syntactic analysis and alignment can be
downloaded from http://www.cicling.org/2011/software/49/.

7 Conclusions and Future Plans

In this paper, we describe a novel method for projecting dependency trees across
parallel texts, in which diverse word-alignment symmetrizations are used. Even
though we do not combine the projected dependencies with automatically in-
ferred dependencies, and we train MST parser directly on the projected trees
without any modifications, we show that the parsing accuracies reached by our
simple projection method are comparable to the previous more complex works.
We have made the comparison on Bulgarian data and we outperform the previ-
ous state-of-the-art result by 0.3%.

We see two main advantages of the presented algorithm. First, it uses different
types of alignment links and therefore some of them may be more preferred in
the projection than others. Second, the X-to-English alignment ensures that all
words on the target side are linked somewhere. This fact helps in attachment of
function words which do not have their own counterpart in English.

The biggest problem of this task is differences in annotation guidelines of
particular treebanks. This fact makes the evaluation problematic. We would like
to solve it in the future by creating more rules to make the treebanks more similar
or even create a small multilingual treebank with the same annotation rules for
several languages, which would be very useful for evaluating such experiments.

We are also aware of great amounts of trees that are filtered out before train-
ing. In the future we plan to incorporate into training data all well-aligned
subtrees, not only the whole sentences.
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Abstract. A novel set of “tree topological features” (TTFs) is investigated for 
improving a classifier-based unlexicalized parser. The features capture the 
location and shape of subtrees in the treebank. Four main categories of TTFs 
are proposed and compared. Experimental results showed that each of the four 
categories independently improved the parsing accuracy significantly over the 
baseline model. When combined using the ensemble technique, the best 
unlexicalized parser achieves 84% accuracy without any extra language 
resources, and matches the performance of early lexicalized parsers. 
Linguistically, TTFs approximate linguistic notions such as grammatical 
weight, branching property and structural parallelism. This is illustrated by 
studying how the features capture structural parallelism in processing 
coordinate structures. 

Keywords: parsing, unlexicalized model, topological features, machine learning. 

1   Introduction 

Advances in parsing have been made on two major fronts, namely, learning models 
and algorithms, and parsing features. In addition to improving probabilistic modelling 
and classifier-based methods, new parsing features have been developed in the last 
two decades, for example, the propagation of lexical head feature (Magerman, 1995; 
Collins, 2003) and semantic features. This paper explores a novel set of features, 
collectively called “tree topological features” (TTFs). TTFs can be easily computed 
with no extra language resources and be integrated into parsing models. They also 
deliver significant improvement over the baseline model. 

This study is motivated by the fact that mainstream parsers seldom consider the 
shape of subtrees dominated by these nodes and rely primarily on matching 
POS/syntactic tags. As a result, an NP with a complicated structure is treated the same 
as an NP that dominates only one word. However, linguists working in syntactic 
processing have long observed that the size and shape of subtree also affect word 
ordering and parse tree building. For example, (i) branching property, (ii) heaviness of 
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phrases in construction such as dative alternation and heavy NP-shift, and (iii) 
structural correlation of conjuncts in coordinate structures. We have proposed features 
to quantify subtree configuration and how they can be integrated into our parser. 

A classifier-based unlexicalized parser was built to evaluate the contribution of the 
TTFs to the parser performance. While much research has centred on lexicalized 
parsers (Magerman, 1995; Ratnaparkhi, 1997; Collins, 2003) which use word token 
information, there are two reasons why we have highlighted unlexicalized parsing as 
our evaluation platform. First, TTFs can be more fairly assessed by minimizing 
interference from other features. The presence of other features may mask the 
contribution of features under scrutiny. In all our experiments, the only features used 
in addition to TTFs are tag features, i.e. POS and syntactic tags in the input. Second, 
due to the unavailability of lexical tokens in the input, there is a practical demand for 
richer feature set to better inform various tasks in unlexicalized parsers. Although it 
was believed that the lexicalized parsers should outperform unlexicalized parsers 
(Klein & Manning, 2003), recent studies (Matsuzaki et al., 2005; Petrov & Klein, 
2007) actually show that unlexicalized parsers can match lexicalized parsers in 
performance, for example, using the grammar rule splitting technique. TTFs will be 
shown to be a profitable direction in parsing research.  

The organization of the paper is as follows. Section 2 reviews the range of features 
commonly used in parsing. The four subsets of TTFs will be introduced in Section 3. 
Section 4 discusses the architecture of the unlexicalized parser. The experimental 
evaluation is presented in Section 5. In Section 6, we will discuss the effectiveness 
and advantages of TTFs in parsing and possible enhancement. This is followed by a 
conclusion in Section 7. 

2   Related Work 

2.1   Parsing Features 

This section reviews major types of information in parsing.  

Tag Features: The dominant types of information that drive parsing and chunking 
algorithms are POS/phrase tags, context-free grammar (CFG) rules, and their 
statistical properties. Matching tags against CFG rules to form phrases is central to all 
early parsing algorithms such as CKY algorithm (Kasami, 1965), and the Earley 
algorithm (Earley, 1970), and the chart parsing approach (Kay, 1986). Even in the 
latest state-of-the-art parsers, tag features still contribute a lot to the performance.  

Word Token-based Features: Machine learning and statistical modelling emerged as 
an ideal computational approach to feature-rich parsing. Classifiers can typically 
capitalize on a large set of features in decision making. Magerman (1995), 
Ratnaparkh (1999), Charniak (2000) among others used classifiers to model 
dependencies between word pairs. They popularized the use of head word tokens and 
their corresponding POS as attributes in lexicalized parsing. Collins (1999, 2003) also 
integrated information like head word token and distance from head into the statistical 
model to enhance probabilistic chart parsing. Since then, word tokens, head words 
and their statistical derivatives have become standard features in many state-of-the-art 
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parsers. Word token information is also fundamental to dependency parsing (Kübler 
et al., 2009) because dependency grammar is rooted in the idea that the head and the 
dependent word are related by different dependency relations.  

Semantic-based Features: Some efforts have also been made to consider semantic 
features such as sense tags in parsing. Words are first tagged with semantic classes, 
often using WordNet-based resources. The lexical semantic class can be instructive to 
the selection of the correct parse from a set of candidate structures. It has been 
reported that the lexical semantics of words is effective in resolving structural 
ambiguity, especially PP-attachment (Black et al., 1992; Stetina & Nagao, 1997; 
Xiong et al., 2005; Agirre et al., 2008). Nevertheless, the use of semantic features has 
still been relatively rare. They incur overheads in acquiring semantic language 
resources, such as sense-tagged corpora and WordNet databases. Semantic-based 
parsing also requires accurate sense-tagging. Since substantial gain from POS-based 
features is unlikely in the near future and deriving semantic features is often a 
tremendous task, there is a pressing need to seek for new features. 

2.2   Linguistically-Motivated Features 

In this section, a review of the linguistic motivation behind the TTFs is provided. 

Grammatical Weight: Apart from syntactic categories, linguists have long observed 
that the number of words (often referred to as “weight” or “heaviness”) in a phrase 
can affect syntactic processing of sentences (Quirk et al., 1972: 943; Wasow, 1997; 
Rosenbach, 2005). It corresponds roughly to the span feature as described in later 
section. The effect of grammatical weight often manifests in word order variation. 
Heavy NP shift, dative alternation, particle movement and extraposition in English are 
canonical examples where “heavy” chunks get dislocated to the end of a sentence. 
Charniak & Johnson (2005) utilized grammatical weight as a criterion for re-ranking 
the N-best candidates. 

Tree Topology: CFG-based parsing approach hides the structural properties of the 
dominated subtree from the associated syntactic tag. Structural topology, or tree 
shape, however, can be useful in guiding the parser to group tags into phrases. 
Structures significantly deviating from left/right branching, e.g. center embedding, are 
much more difficult to process and rare in production (Chomsky & Miller, 1963; 
Gibson, 1998). Another example is the resolution of scope ambiguity in coordinate 
structures. Coordinate structures are common but notoriously difficult to parse due to 
massive scope ambiguity when the conjuncts are complex (Collins, 1999; Kübler et 
al., 2009). One good cue to the problem is that humans prefer coordinate structures 
with parallel internal syntactic structures (Frazier et al., 2000; Dubey et al. 2008). The 
implication to syntactic parsing is that preference should be given to bracketing in 
which the conjuncts are structurally similar.  

3   Tree Topological Features 

Most parsers depend largely on matching syntactic tags to build parse trees. However, 
it is well-known that the shape of subtrees (including grammatical weight, skewness, 
etc.) can affect the well- formedness of phrase formation. For example, although the 
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sequence VP  VBD PP NP (gave [PP to Bill] [NP the books]) is normally not 
accepted, the sentence becomes easily accepted if the NP is “heavy”, e.g. gave [PP to 
Bill] [NP the books which my friend bought yesterday]. Consequently, it is helpful to 
add weight information to the rule, as in (1). 

VP    VBD  PP  NPheavy (1)

Previous empirical studies (Frazier et al., 2000; Dubey et al., 2008) have shown that 
coordinate structures tend to have a balanced structure across conjuncts. The chunking 
of coordinate structures could be enhanced if the rule includes indicators describing the 
tree shape of the conjuncts, as in (2).  

VP    VPshape  CC  VPshape (2)

Tree topological features (TTFs) are thus formulated to capture the shape or topology 
of subtree quantitatively. Our approach involves examining four sets of features, 
without any assumption of the word tokens, namely, (i) Node Coordinates (NCs), (ii) 
Span Ratio (SR), (iii) Aspect Ratio (AR), and (iv) Skewness Measure (SM). 

Node Coordinates (NCs): NCs record the position of the root node of the subtree from 
the most embedded terminal node and the beginning of the sentence. They include the 
level of focus (LF) and the relative position (RP) of the target subtree. The LF is 
defined as the total number of levels under the target node, with the terminal level 
inclusive. In other words, it is the number of nodes in the path from the subtree root 
node to the terminal node farthest away from the root in the subtree. The RP indicates 
the linear position of the target node in that level. In Fig. 1, the LF for subtree A and B 
are the same, i.e. LF = 4. The RP’s for subtree A and B are 1/2 and 2/2 respectively.  

NP

VP

VP

VP

NP

NP

PP 

NP 

S

Subtree B Subtree A 

 

NN IN NNP CC POS NN VB TO VB JJ NNS

Level 0
(Terminal Level)

Level 1

Level 3

Level 2

Level 4

Level 5

NNP  

Fig. 1. Two different subtrees in the sentence S 

Span Ratio (SR): The SR is defined as the total number of terminal nodes spanned 
under the target node and is divided by the length of the sentence. In Figure 1, the span 
ratio for the target node VP at subtree B is 5/12. This ratio illustrates not only how 
many terminal nodes are covered by the target node, but also how far the target node is 
from the root S. When the SR is close to 1, the node is closer to the root S. 
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Aspect Ratio (AR): The AR of a target node in a subtree is defined as the ratio of the 
total number of non-terminal nodes involved to the total number of terminal nodes 
spanned. The AR is indicative of the average branching factor of the subtree. It also 
measures the flatness of the subtree.  

Skewness Measure (SM): The SM estimates the degree to which the subtree leans 
towards either left or right. In this research, the SM of a subtree is evaluated by the 
distribution of the length of the paths connecting the target node and each terminal 
node it dominates. The length of a path from a target node V to a terminal node T is 
the number of edges between V and T. For a tree with n terminal nodes, there are n 
paths. A pivot is defined as the [n/2]th terminal node when n is odd and between 
[n/2]th and [(n+1)/2]th terminal nodes if n is even, where [ ] is a ceiling function. The 
SM is defined as  
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Eqn (1)

where xi is the length of the i-th path pointing to the i-th terminal node, x and σ are 
the average and standard deviation of the length of all paths at that level of focus 
(LF). ρi is the distance measured from the i-th terminal node to the pivot. The distance 
is positive if the terminal node is to the left of the pivot, zero if right at the pivot, and 
negative if the terminal node is to the right of the pivot. Obviously, if the lengths of 
all paths are the same in the tree, the numerator of Eqn (1) will be crossed out and the 
SM returns to zero. The pivot also provides an axis of vertical flipping where the SM 
still holds. The farther the terminal node from the pivot, the longer the distance. The 
distances ρ provide the moment factors to quantify the skewness of trees. For 
illustration, let us consider subtree B with the target node VP at level of focus (LF) = 
4 in Figure 1. Since there are five terminal nodes, the pivot is at the third node VB. 
The lengths of the paths xi from left to right in the subtree are 1, 2, 3, 4, 4 and the 
moment factors ρi for the paths are 2, 1, 0, -1, -2. Assuming that x and σ for all the 
trees in the Treebank at level 4 are, say, 2.9 and 1.2 respectively, then SM = -3.55. It 
implies that subtree B under the target node VP has a strong right branching tendency, 
even though it has a very uniform branching factor which is usually defined as the 
number of children at each node. In our parser, to determine whether the two target 
nodes at level 4, i.e., NP and VP, should be merged to form a S at level 5 or not, an 
attribute vector with TTFs for both NP and VP are devised as a training case while the 
corresponding target attribute is a binary value, i.e., chunking vs. merging. 

4   A Classifier-Based Parser 

4.1   Basic Architecture 

Our parser is based on classical chunk-based parsing which is a bottom-up derivation 
strategy (Abney, 1991; Magerman, 1995; Ramshaw & Marcus, 1995; Sang, 2001; 
Tsuruoka & Tsujii, 2005; Sagae & Lavie, 2005). It is divided into three major 
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modules, namely, (i) chunker, (ii) phrase recognizer, and (iii) learning module. The 
input is a string of POS and/or syntactic tags without word tokens. The input is 
subject to two passes. In the first pass, the chunker locates the boundaries of chunks 
(or phrases) of the lowest level in the target parse tree. In the second pass, the phrase 
recognizer assigns non-terminal syntactic tags (e.g. NP, VP, etc.) to the identified 
phrases. The updated tag sequence is fed back to the chunker for processing at the 
next level. The iteration continues until a complete parse is formed. The learning 
module acquires the knowledge encoded in the Penn Treebank to support the 
classification tasks in the two passes. The details of the machine learning algorithm 
will be provided in Section 4.2. Table 1 shows the parsing algorithm. 

Chunk/Merge Approach 
To identify phrases, we develop a “Chunk/ Merge Approach”, which is a binary 
classification that determines whether the point between two adjacent tags should be 
classified as a phrase boundary. Let the input of the chunker be a tag sequence <x0 … 
xn … xm> where 0 ≤ n ≤ m. Define the focus point yn as the point between two 
consecutive tags xn and xn+1. The chunker classifies a focus point as either a chunking 
point or merging point at the relevant level. A focus point yn is a merging point if xn 
and xn+1 share the same parent node in the target parse tree. Otherwise, yn is a 
chunking point. In machine learning, a feature vector is set up for each focus point in 
training. The target attribute is classified as either chunking point or merging point. 

Table 1. Parsing algorithm 

 Prepare training data from the Treebank based on topological features 
 Train the chunker and phrase recognizer using the ensemble technique 
 For any input POS tag sequence l,  

WHILE l contains more than one element DO 
IDENTIFY the status, + or %, of each focus point in l 
RECOGNIZE the syntactic tag (ST) of each identified phrase 
UPDATE l with the new ST sequence 

ENDWHILE 
 Display the parse tree 

 
Consider the Penn Treebank POS sequence in (3) and the expected classification of 
points. Chunking points are marked with “%” and merging points with “+”. 

L0: PRP % VBZ % DT % RB + JJ % NN 
    He     is    a    very  nice  guy 

(3) 

The point between RB and JJ is a merging point because they are siblings of the 
parent node ADJP in the target parse tree. The point between DT and RB is a 
chunking point. DT and RB are not siblings and do not share the same parent node. 
Chunks are defined as the consecutive tag sequences in the chunker output that are 
not separated by %. By the same procedure, the output strings of Level 1—3 
chunking are represented as (4)—(6) respectively. 

L1:  NP % VBZ % DT + ADJP + NN (4) 
L2:  NP % VBZ  + NP (5) 
L3:  NP + VP (6) 
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Phrase Recognition 
The phrase recognizer assigns a syntactic tag to each chunk identified by the chunker 
in each iteration. Recall (3), where RB JJ constitutes a phrase. The function of the 
phrase recognizer is to label the phrase as ADJP. The recognizer is a classifier that 
predicts the phrase label based primarily on the tag sequence supplied by the chunker. 
The use of a classifier instead of a rule table is preferred for several reasons. The 
classifier approach makes it possible to assign a label to rules not seen in the training 
data. Also, some ambiguous rules can be better resolved by considering contextual 
features. For example, IN S could have two different tag assignments depending on 
the context as shown in Table 2. 

Table 2. Ambiguity of IN+S 

Rule Example 
IN+S PP “by + [S buying big blocks of stock]” 
IN+S SBAR “as + [S UAL stopped trading]” 

 
In Section 2—21 of the Penn Treebank, 13,554 distinct rules are found. Table 3 
shows that 94.3% of the tag sequences correspond to only one possible syntactic tag, 
i.e. unambiguous, and the rest correspond to multiple possible tags.  

Table 3. Ambiguity of rules 

No. of Tags Rule Count % Frequency % 
N = 1 12,786 94.3 138,554 18.7 
N = 2 530 3.9 128,892 17.4 
N = 3 142 1.0 101,531 13.7 
N = 4+ 96 0.7 371,344 50.2 

Total: 13,554 100.0 740,321 100.0 

 
However, unambiguous rules only account for 18.7% of rules in terms of occurrence 
frequency. 81.3% of the rules encountered in the treebank have to be disambiguated 
by the recognizer. To enhance the classification, the following feature vector, as 
shown in Table 4, is used in training and prediction. 

Table 4. Feature vector for the phrase recognizer 

Attribute Meaning 
PhraseType Syntactic tag of the phrase (e.g. NP, VP, etc.) [=Target value] 
TotalTag No. of tags in the phrase 

RelPosition 
Position of the first tag of the chunk relative to the sentence  
(i.e. Position of 1st tag / Total no. of tags in the sentence) 

Tag1…Tag6 Tags for the first six tags of the phrase 
PTag Tag right before the first tag of the phrase 
FTag Tag right after the last tag of the phrase 
LastTag Last tag of the phrase (for head-final phrases) 
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4.2   Machine Learning 

The classification tasks in chunking and phrase recognition are supported by machine 
learning. Classifier-based parsing has the advantage of flexibly incorporating a large 
amount of features. This is different from chart parsing models which require special 
statistical modelling. The critical issue is the selection of features that are instructive 
to the classification tasks. POS and syntactic tags form the base set. The 6 tags on 
each side of the focus point are defined as the context of the focus point. Suppose the 
focus point yn between xn and xn+1 is considered. The attributes include the 6 tags 
preceding the focus point (xn-5, … , xn) and 6 tags following the focus point (xn+1, … , 
xn+6). The four sets of features as discussed in Section 3 will be examined and 
compared in the experiments. 

Table 5. Adaboost algorithm 

Given: (x1, y1),..,(xm, ym) where xi ∈ X, yi ∈ Y = {-1, +1} 
Initialize D1(i) = 1/m 
For t = 1, …, T 

 Train a weak learner using distribution Dt  

 Get a weak hypothesis ht : X → {-1, +1} with error  
εt = Pri~Dt[ht(xi) ≠ yi] 

 Choose  ⎟⎟
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The ensemble technique is adopted to yield a more accurate predictive power 

(Dietterich, 2000). Ensemble learning creates a finite set of classifiers from random 
sets of training instances and then uses them together for the classification. 
Empirically, ensembles tend to yield better results and enhance their predictive power 
when there is a significant diversity among the data. Boosting, a widely used 
ensemble technique, is an effective method that produces a very accurate prediction 
rule by combining rough and moderately inaccurate rules of thumb (Schapire & 
Singer, 2000). In boosting, an initial base classifier using a set of training instances 
having equal weight is constructed. When the prediction of the base classifier differs 
from the expected outcome, the weight of this poorly predicted instance increases. A 
new training data set is then selected randomly from the weighted instances. As a 
result, the learning of the next classifier pays more attention to the poorly predicted 
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instances. This process continues until a specified number of iterations is reached or a 
predefined termination condition is met. In brief, the main idea of boosting is to 
combine many simple and moderately inaccurate categorization rules into a single, 
highly accurate categorization rule. The simple rules are trained sequentially; 
conceptually, each rule is trained on the examples that were the most difficult to 
classify by the preceding rules. The first practical boosting algorithm, AdaBoost, 
which was introduced by Freund & Schapire (1997), solved many of the practical 
difficulties of the earlier boosting algorithms. Table 5 illustrates the main idea of the 
algorithm. Interested readers can refer to the literature for more detailed discussion 
(Freund & Schapire, 1997; Hastie et al., 2001). 

5   Experimental Results 

5.1   Parsing Performance 

Our parsing models were trained and tested using the Penn Treebank (Marcus et al., 
1993). Following the convention of previous studies, we pre-processed the trees by 
removing NULL elements and functional tags and collapsing ADVP and PRT into 
ADVP. Sections 2—21 are used for training and Section 23 for testing. To evaluate the 
contribution of the features, seven different experiments were set up, as in Table 6. E1 
is the baseline experiment with tags only. The ±6 tags around the focus point are 
included in the feature vector. In addition to the tag features in E1, E2—E5 also 
include the NCs, SR, AR and SM respectively. Chan et al. (2010) reported that the 
overall performance after mixing the four types of TTFs. In this paper, the separation 
of the features presented in this paper allows us to estimate the relative contribution of 
different features towards the chunker. E6 was created by combining all the rules 
from E2—E5. All TTFs are therefore considered.  

Table 6. Parsing features in seven experiments 

Experiment Features 
E1 POS only (=baseline) 
E2 POS+NCs 
E3 POS+SR 
E4 POS+AR 
E5 POS+SM 
E6 POS+NCs+SR+AR+SM 

 
We first study the impact of feature sets on chunking. CH1—CH6 are evaluated.  

Table 7 shows the training and test errors in the chunkers. If one compares CH2—
CH5, it is clear that all TTFs enhance sentence chunking. The gain from the AR and 
SM (i.e. CH4 and CH5) is more significant. The best chunker, CH6, reduces the test 
error rate from the baseline 4.36% to 3.59%.  
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Table 7. Performance of chunkers 

Chunker Training error % Test error % 
CH1 1.66 4.36 
CH2 1.02 4.23 
CH3 1.04 4.09 
CH4 1.03 3.82 
CH5 1.01 4.00 
CH6 -- 3.59 

 
The error rates in training and testing of phrase recognition are 0.09% and 0.68% 

respectively. The same phrase recognizer was used in all parser evaluation tests. 

Table 8. Performance of seven parsers P1—P6 

 R P F CBs 0 CBs ≤2 CBs 
P1 78.94 77.63 78.28 1.59 48.72 76.43 
P2 81.89 82.39 82.14 1.38 53.77 79.89 
P3 82.46 82.05 82.25 1.44 52.91 77.78 
P4 82.18 82.33 82.26 1.40 52.58 78.56 
P5 82.49 82.02 82.26 1.43 53.64 78.48 
P6 84.74 83.33 84.03 1.34 54.61 80.53 

 
The chunker and the phrase recognizer were assembled to form a parser. CH1—

CH6 were used in P1—P6 respectively. We use the PARSEVAL measures to 
compare the performance as shown in Table 8. Our baseline parser (P1) performs 
fairly well. The tag-based parser produces an F-score of 78.28%. The addition of any 
of the four kinds of TTFs significantly raises the F-score of the baseline model to 
82.14—82.26% (P2—P5). They are very close in performance. The SR is marginally 
worse than the other three features. When the rule sets of P2—P5 are combined, P6 
leverages the cooperative effect of TTFs (ensemble learning), producing the best F-
score of 84.03%. 

5.2   Analysis of the Aspect Ratio and Skewness Measure 

To better understand why TTFs are instructive to parsing, we present in Tables 9 
and 10 the preliminary statistical analysis of the AR and SM of some major phrase 
types, including VP, NP, S, and PP, based on Sections 2—21 of the Penn Treebank. 
The separation of TTFs in the experiments enables us to examine the contribution 
of individual TTFs more clearly than the contribution of the TTFs as an aggregate, 
as in our previous study (Chan et al. 2010). The tables reveal that most of the AR 
and SM values are significantly different across levels, suggesting that the features 
can record reliably the TTF differences of subtrees. For example, in Table 9, the AR 
mean and standard deviation of L2-VP subtrees are 0.398 and 0.120 respectively.  
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We performed t-tests for difference in means between various levels, even under  
the same phrase type. The t-score for the difference in mean between L2-VP and 
L3-VP is -103.280, which indicates a strong difference in their AR values between 
these two levels. The means progressively increases as the level goes up. The ratio 
is potentially useful in deciding whether a focus point is merging. In a VP, the verb 
is usually far less complex than the object NP, but in a coordinate structure, the 
conjunct phrases tend to be equally complex. The AR potentially provides a useful 
measure of the tendency. 

Similarly, t-tests for difference in means between various levels and phrase types 
were conducted in SM as shown in Table 10. Again, they indicate a strong 
difference in their SM values between these two levels. The means of all phrases 
beyond Level 2 are negative, consistent with the fact that English is generally a 
right branching language. When we compare the SM values across phrase types, it 
is easy to notice that VPs and PPs have larger negative values, meaning that the 
skewness to the right is more prominent. Even within the same phrase type, the SM 
values may differ significantly as one moves from its current level to parent level. 
The SM offers an indicator that differentiates different phrase types with different 
syntactic levels. 

Table 9. AR values for various phrases (* = the mean in the column is statistically significantly 
different from the mean in the immediately following column, with d.f. >120) 

VP L2-VP L3-VP L4-VP L5-VP 
N 18,406 22,052 18,035 15,911 
Mean 0.398 0.530 0.625 0.698 
S.D. 0.120 0.137 0.152 0.157 
tscore  -103.280* -65.060* -43.392*  

NP L2-NP L3-NP L4-NP L5-NP 
N 23,270 28,172 10,827 8,375 
Mean 0.312 0.568 0.599 0.706 
S.D. 0.139 0.156 0.161 0.189 
tscore  -196.680* -17.175* -41.464*  

S L2-S L3-S L4-S L5-S 
N 2,233 5,020 7,049 7,572 
Mean 0.782 0.679 0.687 0.705 
S.D. 0.223 0.192 0.171 0.165 
tscore  18.9275* -2.3599 -6.4684*  

PP L2-PP L3-PP L4-PP L5-PP 
N 53,589 11,329 11,537 5,057 
Mean 0.350 0.471 0.639 0.670 
S.D. 0.109 0.139 0.150 0.154 
tscore  -87.162* -87.867* -12.030*  
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Table 10. SM values for various phrases (* = the mean in the column is statistically significantly 
different from the mean in the immediately following column, with d.f. >120)  

VP L2-VP L3-VP L4-VP L5-VP 
N 18,406 22,052 18,035 15,911 
Mean -1.022 -4.454 -4.004 -3.738 
S.D. 1.018 1.406 1.438 1.405 
tscore  284.085* -31.483* -17.216*  

NP L2-NP L3-NP L4-NP L5-NP 
N 23,270 28,172 10,827 8,375 
Mean 1.013 -1.313 -1.432 -2.171 
S.D. 1.284 2.013 1.821 1.628 
tscore  158.748* 5.609* 29.614*  

S L2-S L3-S L4-S L5-S 
N 2,233 5,020 7,049 7,572 
Mean 0.688 -1.825 -1.459 -1.517 
S.D. 1.229 2.732 2.451 2.128 
tscore  54.031* -7.568* 1.523  

PP L2-PP L3-PP L4-PP L5-PP 
N 53,589 11,329 11,537 5,057 
Mean -1.337 -3.322 -3.951 -3.301 
S.D. 0.935 1.148 1.112 1.183 
tscore  172.352* 42.073* -33.173*  

6   Discussion and Further Work 

6.1   Effectiveness of Tree Topological Features to Our Parser 

The findings reported in Section 5 indicate that the best unlexicalized parser, P6, 
performs on a par with first generation lexicalized parsers, as shown in Table 11. The 
experiments have two implications. First, the integration of TTFs produces substantial 
gain over the baseline model, P1. To the best of our knowledge, TTFs have not been 
systematically investigated in parsing before. The effectiveness of these new features 
suggests that in addition to improving parsing algorithms, practitioners should not 
overlook efforts in devising new features. Second, the implementation of TTFs is very 
easy and computationally inexpensive. In fact, no extra resources or complicated 
algorithms are needed to compute TTFs. Most importantly, they are highly suitable to 
the stringent requirements of unlexicalized parsing in which no word token 
information is allowed. The features can be added to mainstream parsers relatively 
easily without substantial changes. 

Table 11. Parsers comparison (Length ≤ 40 words) 

 R P F 
Our parser (=P6) (unlexicalized) 84.7 83.3 84.0 
Magerman 1995 (lexicalized) 84.6 84.9 84.7 
Klein & Manning 2003 (unlexicalized) 85.7 86.9 86.3 
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6.2   Tree Topological Features and Coordinate Structure Parsing 

Our study has provided a way to quantitatively capture linguists’ various insights that 
tree topology is helpful in syntactic structure building (e.g. grammatical weight, 
subtree shape, etc.). Apart from the marco performance presented in Section 5, let us 
examine more closely how parsing coordinate structures (CSs) can be benefitted from 
a TTF-aware parser. CSs are chosen because they are notoriously difficult to parse 
due to scope ambiguity (Collins, 1999, 2003). Corpus studies show that conjuncts 
tend to be similar structurally. A TTF-aware parser can exploit the cue of the AR and 
SM to produce CSs with structurally similar conjuncts. We extracted all rules that 
have the form “XP  XP ‘and’ XP” from the training data, and compared the AR and 
SM of phrases with and without CSs. t-tests for difference in mean between them were 
performed. The t-score is based on unequal sample sizes and unequal variances. 

As shown in Tables 12 and 13, CSs and non-CSs are statistically significantly 
different from each other in terms of the AR and SM, when we keep the phrase type and 
level constant. For example, the means of AR for CSs and non-CSs in VP (Level 3) are 
0.529 and 0.647 respectively. They are statistically different. The SM is an even better 
indicator. CS phrases are much more balanced with a smaller SM value ranging from -
0.4 to -1.2. The SM values in non-CS columns are generally several times larger. The 
SM offers information for the chunkers to avoid over- or under-chunking conjuncts in 
phrases with a coordination marker (e.g. ‘and’) because over- or under-chunking may 
lead to a large SM value. In essence, the SM captures the syntactic branching property.  

Table 12. AR values of coordinate structures (+CS = node that immediately dominates a CS; -
CS otherwise; * = the mean in the column is statistically significantly different from the mean 
in the immediately following column) 

NP L3 (-CS) L3-(+CS) L4 (-CS) L4-(+CS) 
N 27,950 222 10,222 605 
Mean 0.569 0.433 0.598 0.623 
S.D. 0.156 0.145 0.161 0.149 
tscore  13.911* -3.991*  
PP L3 (-CS) L3-(+CS) L4 (-CS) L4-(+CS) 
N 11,288 41 11,522 15 
Mean 0.471 0.544 0.640 0.532 
S.D. 0.139 0.124 0.150 0.088 
tscore  -3.761* 4.744*  
VP L3 (-CS) L3-(+CS) L4 (-CS) L4-(+CS) 
N 21,855 197 17,711 324 
Mean 0.529 0.647 0.624 0.666 
S.D. 0.137 0.121 0.152 0.133 
tscore  -13.609* -5.617*  

 
We also want to briefly compare our parser with parser in Charniak & Johnson 

(2005). Their parser also integrated some global features such as the conjunct 
parallelism, right-branching, and the “heaviness” of the phrases. They re-rank the 
output of a k-best parser with a final F-score of 91%. The re-ranking procedure, 
which is a means of post-processing, goes beyond the history-based models and 
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captures any possible features numerically. However, this global optimization 
approach suffers from the drawback of reparsing the training Treebank repeatedly. A 
serious problem in the approach is that the truly correct parse may not even be 
included in the restricted small subset of all possible analyses. As shown in Collin 
(2000), 41% of the correct parses were not included in the set of 30-best parses which 
are supposed to be shortlisted by the subsequent re-ranking mechanism. 

Table 13. SM values of coordinate structures (+CS = node that immediately dominates a CS; -
CS otherwise; * = the mean in the column is statistically significantly different from the mean 
in the immediately following column). 

NP L3 (-CS) L3-(+CS) L4 (-CS) L4-(+CS) 
N 27,950 222 10,222 605 
Mean -1.321 -0.397 -1.448 -1.162 
S.D. 2.010 2.190 1.806 2.047 
tscore  -6.266* -3.360*  
PP L3 (-CS) L3-(+CS) L4 (-CS) L4-(+CS) 
N 11,288 41 11,522 15 
Mean -3.332 -0.580 -3.955 -0.353 
S.D. 1.136 1.068 1.104 1.743 
tscore  -16.465* -8.002*  
VP L3 (-CS) L3-(+CS) L4 (-CS) L4-(+CS) 
N 21,855 197 17,711 324 
Mean -4.488 -0.628 -4.063 -0.793 
S.D. 1.350 2.136 1.364 1.676 
tscore  -25.319* -34.908*  

6.3   Further Work 

The reported parser still has some room for improvement. First, our current bottom-up 
chunking strategy considers only the best chunking and merging sequence at each 
time. It is better to introduce N-best chunking sequence and propagated more than one 
possible structure up the tree. Second, it would be interesting to integrate TTFs in 
combination with other design features, such as rule splitting, into the parser. Third, 
an insight from Collins (2003) is that head POS (in addition to head words) in 
lexicalized parsing can capture head-modifier relationships and subcategorization 
frames. In unlexicalized models, we can attach the feature of the head POS tag of the 
phrase to enrich the information about the phrases. 

7   Conclusion 

We propose to capture and quantify tree topological information using the four sets of 
TTFs. On our unlexicalized parser, all four sets of features have been demonstrated to 
produce the performance gain over the baseline model. Taking advantage of the 
ensemble learning technique, our best unlexicalized parsing F-score stands at 84.0%, 
similar to that of the first generation lexicalized parser. TTFs can be inexpensively 
computed and flexibly incorporated into different types of parsers. TTFs are effective 
in capturing basic linguistic properties, such as grammatical weight and branching 
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direction, which are overlooked in previous studies of parsing. Our treebank statistical 
analysis shows that the proposed features are good indicators of tree topology of 
various phrase types. The parser can integrate the information in the decision of 
phrase formation. The analysis of TTFs in CSs and non-CSs highlights how the SM 
can help resolve the scope ambiguity in CSs. Unlike some approaches which take 
advantages of tree topology in their post-processing phase, our approach will put to 
good use of the features in predicting phrase boundaries and their syntactic tags, as a 
critical ambiguity resolution issue, during the early stage of parsing. 
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Abstract. I examine what would be necessary to move part-of-speech
tagging performance from its current level of about 97.3% token accu-
racy (56% sentence accuracy) to close to 100% accuracy. I suggest that
it must still be possible to greatly increase tagging performance and ex-
amine some useful improvements that have recently been made to the
Stanford Part-of-Speech Tagger. However, an error analysis of some of
the remaining errors suggests that there is limited further mileage to be
had either from better machine learning or better features in a discrim-
inative sequence classifier. The prospects for further gains from semi-
supervised learning also seem quite limited. Rather, I suggest and begin
to demonstrate that the largest opportunity for further progress comes
from improving the taxonomic basis of the linguistic resources from which
taggers are trained. That is, from improved descriptive linguistics. How-
ever, I conclude by suggesting that there are also limits to this process.
The status of some words may not be able to be adequately captured
by assigning them to one of a small number of categories. While conven-
tions can be used in such cases to improve tagging consistency, they lack
a strong linguistic basis.

1 Isn’t Part-of-Speech Tagging a Solved Task?

At first glance, current part-of-speech taggers work rapidly and reliably, with
per-token accuracies of slightly over 97% [1–4]. Looked at more carefully, the
story is not quite so rosy. This evaluation measure is easy both because it is
measured per-token and because you get points for every punctuation mark
and other tokens that are not ambiguous. It is perhaps more realistic to look
at the rate of getting whole sentences right, since a single bad mistake in a
sentence can greatly throw off the usefulness of a tagger to downstream tasks such
as dependency parsing. Current good taggers have sentence accuracies around
55–57%, which is a much more modest score. Accuracies also drop markedly
when there are differences in topic, epoch, or writing style between the training
and operational data.

Still, the perception has been that same-epoch-and-domain part-of-speech tag-
ging is a solved problem, and its accuracy cannot really be pushed higher. I
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think it is a common shared meme in at least the U.S. computational linguistics
community that interannotator agreement or the limit of human consistency on
part-of-speech tagging is 97%. As various authors have noted, e.g., [5], the second
wave of machine learning part-of-speech taggers, which began with the work of
Collins [6] and includes the other taggers cited above, routinely deliver accuracies
a little above this level of 97%, when tagging material from the same source and
epoch on which they were trained. This has been achieved by good modern dis-
criminative machine learning methods, coupled with careful tuning of the feature
set and sometimes classifier combination or semi-supervised learning methods.
Viewed by this standard, these taggers now clearly exceed human performance
on the task. Justifiably, considerable attention has moved to other concerns, such
as getting part-of speech (POS) taggers to work well in more informal domains,
in adaptation scenarios, and within reasonable speed and memory limits.

What is the source of the belief that 97% is the limit of human consistency
for part-of-speech tagging? It is easy to test for human tagging reliability: one
just makes multiple measurements and sees how consistent the results are. I
believe the value comes from the README.pos file in the tagged directory of early
releases of the Penn Treebank. It suggests that the “estimated error rate for the
POS tags is about 3%”.1 If one delves deeper, it seems like this 97% agreement
number could actually be on the high side. In the journal article on the Penn
Treebank [7], there is considerable detail about annotation, and in particular
there is description of an early experiment on human POS tag annotation of
parts of the Brown Corpus. Here it was found that if two annotators tagged
for POS, the interannotator disagreement rate was actually 7.2%. If this was
changed to a task of correcting the output of an automatic tagger (as was done
for the actual Penn Treebank), then the disagreement rate dropped to 4.1%,
and to 3.5% once one difficult text is excluded. Some of the agreement is then
presumably both humans adopting the conventions of the automatic POS tagger
rather than true human agreement, a topic to which I return later.

If this is the best that humans can give us, the performance of taggers is clearly
at or above its limit. But this seems surprising – anyone who has looked for a
while at tagger output knows that while taggers are quite good, they regularly
make egregious errors. Similarly, examining portions of the Penn Treebank by
hand, it is just very obvious that there are lots of errors that are just mistakes
rather than representing uncertainties or difficulties in the task. Table 1 shows
a few tagging errors from the beginning of section 02 of the training data.2

These are all cases where I think there is no doubt about what the correct
tag should be, but that nevertheless the annotator failed to assign it. It seems
1 This text appears up through LDC95T7 Treebank release 2; the statement no longer

appears in the much shorter README included in the current LDC99T42 Treebank
release 3.). This error rate is also mentioned in [7, pp. 327–8].

2 My informal impression is that the accuracy of sections 00 and 01 is considerably
worse, perhaps reflecting a “burn in” process on the part of the annotators. I think
it is in part for this reason that parsers have been conventionally trained on sections
02–21 of the Penn Treebank. But for POS tagging, most work has adopted the splits
introduced by [6], which include sections 00 and 01 in the training data.
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clear that the inter-annotator agreement of humans depends on many factors,
including their aptitude for the task, how much they are paying attention, how
much guidance they are given and how much of the guidance they are able to
remember. Indeed, Marcus et al. [7, p. 328] express the hope that the POS error
rate can be reduced to 1% by getting corrections from multiple annotators,
adjudicating disagreements, and using a specially retrained tagger. However,
unfortunately, this work never took place. But using the tools developed over
the last two decades given the existence of the Penn Treebank, we are now in
a much better position to do this, using semi-automated methods, as I discuss
below.

Table 1. Examples of errors in Penn Treebank assigned parts-of-speech, from section
02 of the WSJ

Time , the/DT largest/JJS newsweekly/RB , had average circulation of

Correct: newsweekly/NN
below the $ 2.29 billion value United Illuminating places/NNS on its bid

Correct: places/VBZ
Rowe also noted that political concerns also worried/VBN New England Electric .

Correct: worried/VBD
Commonwealth Edison now faces an additional court-ordered refund on its sum-

mer/winter rate differential collections that/IN the Illinois Appellate Court has es-

timated at $ 140 million .

Correct: that/WDT
Joseph/NNP M./NNP Blanchard/NNP , 37 , vice president , engineering ; Mal-

colm/NNP A./NN Hammerton/NNP

Correct: A./NNP

2 Approaching the Asymptote: Continuing to Push Up
POS Tagging Numbers

Since the time of our last POS tagger paper [1], I’ve added a few features that
have slightly pushed up the performance of the Stanford POS tagger. I give the
details of those models here. But it is noticeable that they do not improve overall
performance by very much. Other people seem to be hitting the same wall, and
while there are fractionally better results from others, none are much better.
Suppose somehow that more machine learning magic can get numbers up from
97.3% per-token accuracy to 97.5% per-token accuracy. That would still mean
that the last decade will only have solved about 1/6 of the errors remaining in
part of speech taggers.

2.1 Incremental Improvements

The experiments I present here describe incremental work: There are no big
changes to the architecture, but some improvements in the features, parameters,
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and learning methods give small incremental gains in POS tagging performance,
bringing it close to parity with the best published POS tagging numbers in 2010.
These numbers are on the now fairly standard splits of the Wall Street Journal
portion of the Penn Treebank for POS tagging, following [6].3 The details of the
corpus appear in Table 2 and comparative results appear in Table 3.

Table 2. WSJ corpus for POS tagging experiments

Set Sections Sentences Tokens Unknown

Training 0-18 38,219 912,344 0
Development 19-21 5,527 131,768 4,467
Test 22-24 5,462 129,654 3,649

Table 3. Tagging accuracies with different feature templates and other changes on the
WSJ 19-21 development set

Model Feature Templates # Sent. Token Unk.
Feats Acc. Acc. Acc.

3gramMemm See text 248,798 52.07% 96.92% 88.99%
naacl 2003 See text and [1] 460,552 55.31% 97.15% 88.61%
Replication See text and [1] 460,551 55.62% 97.18% 88.92%
Replication′ +rareFeatureThresh = 5 482,364 55.67% 97.19% 88.96%
5w +〈t0, w−2〉, 〈t0, w2〉 730,178 56.23% 97.20% 89.03%
5wShapes +〈t0, s−1〉, 〈t0, s0〉, 〈t0, s+1〉 731,661 56.52% 97.25% 89.81%

5wShapesDS + distributional similarity 737,955 56.79% 97.28% 90.46%

3gramMemm shows the performance of a straightforward, fast, discrimina-
tive sequence model tagger. It uses the templates 〈t0, w−1〉, 〈t0, w0〉, 〈t0, w+1〉,
〈t0, t−1〉, 〈t0, t−2, t−1〉 and the unknown word features from [1]. The higher
performance naacl 2003 tagger numbers come from use of a bidirectional
cyclic dependency network tagger, which adds the feature templates 〈t0, t+1〉,
〈t0, t+1, t+2〉, 〈t0, t−1, t+1〉, 〈t0, t−1, w0〉, 〈t0, t+1, w0〉, 〈t0, w−1, w0〉, 〈t0, w0, w+1〉
The next line shows results from an attempt to replicate those numbers in 2010.
The results are similar but a fraction better.4 The line after that shows that
the numbers are pushed up a little by lowering the support threshold for in-
cluding rare word features to 5. Thereafter, performance is improved a little
by adding features. 5w adds the words two to the left and right as features,
and 5wShapes also adds word shape features that we have described for named
entity recognition elsewhere [8].5 These features map words to equivalence classes

3 In this paper, when I refer to “the Penn Treebank”, I am actually referring to just
the WSJ portion of the treebank, and am using the LDC99T42 Treebank release 3
version.

4 I think the improvements are due to a few bug fixes by Michel Galley. Thanks!
5 As far as I am aware, features of this sort were first introduced by Collins [9].
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based on character type, such as Mexico to Xxxxx and IA-64 to XX-dd. Some of
the other recent taggers cited earlier have made use of even more higher order
features and conjunctive features [2, 10], but in our tagger they seem to provide
marginal to negative gains. Something that does really help is adding features
for words based on induced distributional similarity classes, as shown on the
last line.6 Here, we use the method and code of [11], though other methods for
introducing distributional similarity classes would probably work roughly as well.
While the overall gains on the WSJ are modest, taken together, these features
and the word shape features give a significant gain in performance on unknown
words: errors on unknown words are reduced by 13% (relative). And one would
expect these features to be even more useful when the tagger is subsequently
used on text from other domains or epochs. Note, however, that the last line is
for a model where the distributional similarity classes were trained separately
on about 300 million words of data in an unsupervised fashion, whereas all the
other models are trained only on the WSJ training set.

I present these numbers to show that while small amounts of progress remain
possible, we clearly seem to be entering an era of diminishing returns. It seems
like about 2.4% of the remaining 2.6% error rate might need to be approached
from a different angle.7

2.2 Splitting Tags

I have shown in other work that parsing performance on the Penn Treebank
can be improved enormously by splitting certain of the categories, both part-
of-speech and phrasal categories, and parsing with the resulting split-category
treebank grammar [12]. One might reasonably think that the same strategy could
be applied successfully to the POS tagging problem, especially as a number of the
most useful state splits for parsing are splits of part-of-speech categories. But,
unfortunately, splitting tags seems to be largely a waste of time for the goal
of improving POS tagging numbers. A thorough exploration of the possibilities
can be found in [13]. My own more limited experimentation point in the same
direction.

3 Error Analysis

How, then, can we solve the other 5/6 of the errors of POS taggers? An exami-
nation of the things that taggers get wrong on same-domain test text makes it
clear that little of the remaining error is going to be solved by better local fea-
tures of the kind used by current state-of-the-art sequence model taggers. How
6 This line corresponds to the released version 3.0 of the Stanford POS Tagger, avail-

able at http://nlp.stanford.edu/software/tagger.shtml
7 Since this investigation was part of a series of experiments on different models, they

were all evaluated only on the development set (section 19–21). It is now clear from
several studies, including the numbers below, that the final test set is a bit easier,
and it could be expected that final test set numbers would be almost 0.1% higher.
See table 6 for results on the final test set.
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are we going to get the rest? To answer that, we need to understand what kinds
of errors there are. In Table 4, I give a rough breakdown of where we need to
look.8

I did a small error analysis, taking a sample of 100 errors from section 19
of the treebank. I divided errors into seven classes, as shown in Table 4. Many
errors are hard to classify. When things were unclear, I allowed an error to be
assigned to two classes, giving it 1/2 a point under each. I exemplify the seven
classes below.

Table 4. Frequency of different POS tagging error types

Class Frequency

1. Lexicon gap 4.5%
2. Unknown word 4.5%
3. Could plausibly get right 16.0%
4. Difficult linguistics 19.5%
5. Underspecified/unclear 12.0%
6. Inconsistent/no standard 28.0%
7. Gold standard wrong 15.5%

1. Lexicon gap: Here, the word occurred a number of times in the training
data, but never with the tag which it has in this context. Given the nature
of discriminative POS taggers, it is always going to be very difficult for
context to override lexical features in this situation. For example, below,
slash is clearly a noun, but in the training set, it occurs only but several
times as a verb.

a/DT 60/CD %/NN slash/NN in/IN the common stock dividend
2. Unknown word: Here the tagger has to rely only on context features, and

contexts are often ambiguous. For example, below, substandard is a word
which does not appear in the training data and it is also very reasonable for
a POS tagger to guess that it might be a noun (as it did).

blaming the disaster on/IN substandard/JJ construction/NN
3. Could plausibly get right: Here, you could imagine a sequence model tag-

ger with a context of a few words or tags on either side getting the right
answer, though it may be quite difficult in practice. For example, below, it
seems like a sequence tagger should be able to work out that overnight is
here functioning as an adverb rather than an adjective (the tag it chose),
since it is here a verb modifier not pre-modifying a noun.

market/NN players/NNS overnight/RB in/IN Tokyo/NNP began bid-
ding up oil prices

4. Difficult linguistics: Needs much syntax/semantics/discourse: Here,
it seems very clear that determining the right tag requires broad contextual
knowledge that must be beyond a sequence tagger with local features. For

8 An early, but somewhat imprecise, discussion of the different sources of tagging
disagreement can be found in [14].
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example, below, a tagger just cannot correctly choose between the present
(VBP) and past (VBD) tag for set without an understanding of a multi-
sentence discourse context, and happens to choose wrongly.

They/PRP set/VBP up/RP absurd/JJ situations/NNS , detached
from reality

5. Underspecified/unclear: The tag is underspecified, ambiguous, or unclear
in the context. There are several common cases of this, such as whether to
choose a verbal or adjectival tag for words which have a participial inflec-
tional form and modify a head, and whether to choose a verbal or noun tag
for gerunds. While there are linguistic tests that can be used to distinguish
the two categories in both these cases, often in particular contexts the cor-
rect analysis is just underspecified. For example, below, it is unclear whether
discontinued should be regarded as an adjective or verbal participle.

it will take a $ 10 million fourth-quarter charge against/IN discon-
tinued/JJ operations/NNS

6. Gold standard inconsistent or lacks guidance: Here, there should be a
right answer, but the tagging manual does not define what to do and in
practice the annotators have been inconsistent, so it is not surprising that
the tagger gets such things right only half the time by chance. For example,
for expressions like the ’30s below, or indeed corresponding ones like the
1930s, the treebank is inconsistent in sometimes tagging them as CD and
at other times as NNS. There should be a clear answer here which should
be consistently used, but none was defined, and human annotators were
inconsistent. (If the tag CD is construed fairly strictly as cardinal numbers –
for example, ordinals are definitely excluded and tagged as adjectives (JJ),
then it seems to me like these expressions shouldn’t be tagged CD, and that
NNS is correct, and below we retag in this fashion, but in the Treebank, the
two taggings are almost exactly equally common, with a couple of tokens
also tagged as NN, to add variety.)

Orson Welles ’s Mercury Theater in/IN the/DT ’30s/NNS ./.
7. Gold standard wrong: The tag given in the gold standard is clearly wrong.

For example, below, the tag of VB for hit is just wrong. It should be a VBN,
as the passive participle complement to got. Other examples of this sort
appeared in Table 1.

Our market got/VBD hit/VB a/DT lot/NN harder/RBR on Monday
than the listed market

What conclusions can we draw? While semi-supervised methods like the distri-
butional similarity classes above are very useful for handling unknown words,
their ability to improve overall tagger performance numbers appear quite lim-
ited. At most they can address errors in classes 1 and 2, which account for less
than 10% of the errors, and in practice they are likely to address only errors
in class 2, which are about 5% of the errors, since in discriminative sequence
models, lexical features are very strong and it is difficult for context to override
them.9 The progress that has been made in the last decade in POS tagging has
9 But, again, this is for same-epoch-and-domain testing; their impact is much greater

when tagging data from disparate domains.
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presumably come mainly from handling some of the cases in class 3, and there is
presumably still a fraction of space for improvement here. But many of the cases
in class 3 shade off into cases of class 4, where it is hard to imagine a sequence
model POS tagger getting them right, except sometimes by a lucky guess. At
any rate, classes 3 and 4 together comprise less than one third of the errors. The
cases in class 5 are inherently difficult; we return to them at the end. The easiest
path for continuing to improve POS tagging seems to be to look at the cases
in classes 6 and 7, where the gold standard data is just wrong or is inconsis-
tent because of the lack of clear tagging guidelines. These classes comprise over
40% of the data, and, indeed, if some of the cases that I regard as unspecified
or unclear (class 5) could be made clear by tightening up the guidelines, then
we might be dealing here with over half the remaining errors. The road on this
side of the fence is much less traveled, but I believe it now provides the easiest
opportunities for tagging performance gains.

4 Correcting the Treebank

From the earliest days of the resurgence of statistical NLP, there has been a
very strong current against fixing data. I think the attitude originated at IBM.
For example, one can find a discussion of the issue in David Magerman’s thesis
[15, p. 101]. I think the idea is that the world is noisy, and you should just take
the data as is, in contrast with old-style NLP, which dealt with constructed and
massaged data. In addition there are also clear concerns about the overfitting
of models, and of model builders being influenced to assign the labels that their
models predict. At any rate, one of the big advantages of this perspective is
that everyone is using exactly the same training and test sets, and so results are
exactly comparable and should be reproducible (after pinning down a few more
things about evaluation metrics, etc.).

While it is of course important for everyone to be aware of changes that
particular experimenters have made to data sets, and there is certainly value
in constant training and test sets for the sake of comparable experiments, it
seems that a desire for constancy can be and has been carried much too far.
We are now 15 years from the distribution of Penn Treebank release 2, which
was the final version of the WSJ data, and many researchers have variously
noticed mistakes and deficiencies in the annotation, but virtually no attempt
has been made to correct them.10 For example, Ratnaparkhi [16] notes that a

10 This is not fully true: Work on the PropBank did lead to revisions to and correc-
tions of the Treebank as part of a PropBank-Treebank merge activity, and some other
ideas for improving treebank structure (for noun phrase structure and hyphenation)
have been incorporated into OntoNotes (LDC2009T24), a new, unified corpus which
includes large sections (but not all) of the classic WSJ Treebank. However, there
hasn’t been correction of a lot of the miscellaneous small-scale errors, and transi-
tioning the community to OntoNotes is still very much a work in progress, with the
vast majority of current work on English treebanks and POS tagging and parsing
still using the original Penn Treebank Wall Street Journal data.
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large source of errors in his tagger is that the tags for certain common words
like about are inconsistent across the corpus, and, indeed, that the name of the
annotator of an example is one of the best predictors of tag assignment. Similarly,
Abney et al. [17] examine the most anomalous word tokens that get the highest
weights when applying boosting to POS tagging and show that many of these
tokens have erroneous tags.

At some point the desire for corpus constancy becomes dysfunctional. The
de facto situation with the WSJ treebank contrasts with what you see in other
fields such as taxonomic biology. It is just not the case that because the first
person who collected a certain specimen said it was an Acacia species that for all
time it continues to be called an Acacia species, even when further evidence and
testing makes it perfectly clear that it is not. At both the individual and species
level, the taxonomic biology world has been willing to tolerate quite large scale
renamings and disruptions so as to improve the ontological basis of the field.
Such is scientific progress in a taxonomic field. The same thing should happen
with the content of treebanks.11

In computational linguistics, the main work that has been done on improving
the taxonomy of tags to allow clearer automatic tagging and improving the con-
ventions by which tags are assigned has been done within the English Constraint
Grammar tradition [18, 19]. Contrary to the results above, this work has achieved
quite outstanding interannotator agreement (up to 99.3% prior to adjudication),
in part by the exhaustiveness of the conventions for tagging but also in part by
simplifying decisions for tagging (e.g., all -ing participles that premodify a noun
are tagged as adjectives, regardless). It is surprising the extent to which this
work has been ignored by the mainstream of computational linguistics. In some
ways, the present work tries to apply some of the same approach to generating
consistent taggings, but without performing revisions to the tag set used.

While one way to achieve the goal of correcting the treebank would for hu-
mans to carefully check tag assignments, further linguistic annotation work and
the developments in language technology provide other methods. A very good
way to find errors and inconsistencies in tag assignments is to see where tools
like taggers go wrong, as in the examples cited above [16, 17]. Inconsistencies can
also be detected by methods aimed just at this task, an idea notably explored
by Dickinson [20]. But for the Penn Treebank there is also another profitable
approach to pursue. An examination of the corpus makes clear that the tree-
banking was done much more carefully and consistently than the POS tagging.
Since, following the ideas of X′ theory, the POS tag of words can often be pre-
dicted from phrasal categories, we can often use the tree structure and phrasal
categories to tell us what the POS tags should have been. This is the main strat-
egy used here to reduce the error and inconsistency rate in the Penn Treebank.
While Dickinson’s methods are interesting, they do not provide a sufficient level
of precision for fully automatic treebank correction, whereas using the treebank

11 One venue where this may increasingly happen in the future is in the more open
data Manually Annotated Sub-Corpus (MASC) of the American National Corpus:
http://www.anc.org/MASC/
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syntactic structure commonly does. So, I use testing on the training data to
identify inconsistencies, and then information from the treebank structure to
guide correction.

5 Fixing Some of the Errors

Many of the errors and inconsistencies in the Penn Treebank are quite systematic
and are well-suited to fixing by deterministic rules. Here, we use Tsurgeon scripts
[21], which work by matching a tree pattern using Tregex (a tgrep-like language;
cf. [22]) and then performing operations on matched parts of the tree. Here are
a couple of cases of the kinds of errors we can straightforwardly fix.12

5.1 Past Tense versus Past Participles

There are quite frequent tagging errors as to when verb forms are marked as past
tense (VBD) versus past participles (VBN). In general, if a past participle is not
adjacent to a passive or perfective auxiliary indicating a VBN, then it is quite
frequently wrongly tagged as VBD.13 But such cases can usually be detected and
fixed by rules over tree patterns. For instance, we can use rules such as this one:

@VP < VBD=bad [ > (@VP < (/ˆVB/ < be have get )) | > (@VP <
CONJP|CC > (@VP < (/ˆVB/ < be have get ))) | > (@NP < @NP) ]
relabel bad VBN

That is, a verb in a VP that is under a VP containing a passive or perfective
auxiliary verb (perhaps inside a conjunction structure) or modifying a noun
phrase should really be a participle VBN and not a past finite VBD.

5.2 Plurals as Singulars

The (reasonable) convention for practical part of speech tagging is that words
receive a single word class. This flies in the face of commonly accepted ideas of
linguistic morphology where there can be zero derivation of an X0 category from
another X0 category, with a change in category. There are many such cases in the
Penn Treebank, some clearer and some less clear. One case is with plural nouns
that become incorporated into named entities which are then treated as singular.
Examples include (the) United States, (the) Parks Council, and Kawasaki Heavy

12 I will not dwell on the problems caused by hyphenation in the original Penn Tree-
bank, since they are widely recognized and have been reformed in more recent LDC
treebanking projects, including the OntoNotes corpus, which contains many of the
trees of the Penn Treebank in an updated form which improves the representation
of hyphenated terms and complex NPs with left-branching structure.

13 One could suspect that these errors in many cases reflect a bias resulting from the use
of an automatic tagger in the construction of the Penn Treebank, since these were
probably cases that the tagger got wrong, and the human annotator then failed to
correct.
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Industries. The noun of interest is clearly morphologically plural. But despite the
fact that it would normally be regarded as the head of the noun phrase in the first
and third examples, the whole noun phrase takes singular verb agreement (the
United states is changing . . . ). Given the stated preference for the Penn Treebank
to tag on the basis of syntactic function, it seems like the verbal agreement is a
good reason to tag such words as singular NNP, but in practice they are usually
– though not consistently – tagged as NNPS. The right answer isn’t entirely clear
here, involving both how fossilized the formation is and whether to choose the
original or final category in cases of X0 zero derivation. However, in this case,
most of the compounds are fairly transparent, and annotators prefer to go with
the morphology around three-quarters of the time. Since it is in fashion at the
moment to go with the wisdom of crowds, I will adopt this convention.

Another similar problem is when non-nouns become involved in proper nouns,
such as United in either United Airlines or (the) United States. It is unclear
whether to stick with the adjectival tag for United or to call it a proper noun
because the whole phrase is clearly a proper noun. In this case, human annotators
overwhelmingly went with the NNP choice, and, again, I will follow the wisdom of
the crowd. I will summarize these two decisions as the United States Principles.14

In practice, we can handle cases of these principles simply with rules like:

NNP=bad < Industries|Airlines
relabel bad NNPS

5.3 That

That is a hard word for taggers, since it can function as all of a determiner,
complementizer, relative pronoun, and an adverb (he isn’t that sick), and has
separate tags for each function (DT, IN, WDT, and RB). Some cases of that are
clearly ones that need syntactic structure to get right and are beyond the reach
of a POS tagger. But there are also lots of errors in the tagging of that in the
training data, and we may as well at least correct those, so that the POS tagger
14 There are further issues here. On proper nouns getting a noun tagging, the Penn

Treebank part-of speech tagging guidelines [23, sec 5.3] make a stronger claim, saying
that any capitalized word that is part of a name should be tagged NNP or NNPS.
This seems too strong, since sometimes verbs and function words are capitalized as
parts of names, such as in the titles of books like Gone With The Wind. I feel that
this is just wrong and very confusing to an POS tagger. Such titles are larger-level
syntactic units. While the annotators sometimes followed this dictate, the majority
of the time they ignored it. Again, we will follow the wisdom of crowds. This rule
will only be applied to content words of a base NP that are part of a name.

Secondly, there are also proper adjectives such as Australian or North Korean.
These are also tagged inconsistently as adjectives or proper nouns in the Penn tree-
bank. Arguably, it is a bad defect of the the Penn Treebank tag set that it lacks
a proper adjective category that would cover these cases. But, given the current
tag set, when these expressions occur as adjectival modifiers (rather than as a noun
referring to a person) then it seems clear that they should be tagged as JJ. These
are not proper nouns.
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gets the best chance it can to learn the distinctions. Again, we use the parse
structure to guide the correction:

@NP < (IN|WDT=bad < /ˆ(?:a|that|That)$/)
relabel bad DT

@SBAR < (DT|WDT|NN|NNP|RB=bad < that|because|while|Though)
relabel bad IN

@ADJP < JJ < (IN=bad < that)
relabel bad RB

The first rule matches 173 times in the Penn Treebank, while the second rule
matches 285 times. These aren’t really rare errors we are talking about.

5.4 Miscellaneous Errors and Inconsistencies

Many of the details of inconsistencies are particular to individual lexical items
and quite mundane. To take one example that turns up a bunch of times, for K
mart, annotators were inconsistent on whether to tag mart as a proper noun or
not, presumably because it is not capitalized. It seems to me that it should be
treated as still a proper noun, and at any rate, this should just be consistent.
This rule make it consistent:

@NP < (NNP < K $+ (NN=bad < mart))
relabel bad NNP

5.5 Tagging Results

Overall, I defined a couple of hundred such rules, based on examination of the
training data, some of which changed several hundred tags, others of which
changed only a single tag. Some were aimed at outright errors and others at
inconsistencies. The rules certainly don’t exhaust all the errors and inconsisten-
cies found in the training data, but there are enough covering a number of the
most common problem that we can get some idea as to whether such taxonomic
improvements might noticeably lift tagging accuracy.

The one complication is how to assess this with respect to test sets. As I show
below, if you only correct the training data, then no gains are achieved. This
is because the test data has all the same errors and inconsistencies as before.
Indeed, the uncorrected tagger may pick up some of any patterning that exists
in “inconsistent” tagging, and do better on the test set. Therefore, the strategy
adopted here is as follows: Change rules are developed looking at the training
data. These rules are then tested by examining their effect on the development
data. It is checked that they do not apply wrongly in any situations (if they
do, they are refined to make their application more limited and precise (and
the process repeated), or just discarded following Hippocratic reasoning of first
doing no harm. Then, the final rules are applied to the final test data without
examining their effect. That is, the changes are assumed to all be correct for the
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test data. Of course, there is a small risk here that a rule could misapply, but the
sanctity of the final test data is preserved. Moreover, based on the precise nature
of the change rules and examination of their effects on development test data, I
feel highly confident that at least 98% of the changes will be good corrections of
consistentizations of the test data.

In Table 5 we show the effects of this process on the development data. Note
that the number of features in the tagger goes down a bit with data correction
because there is less entropy in tag assignments. The error reduction between the
first and last lines is already quite substantial (by the standards of these things),
and would presumably increase further with further extension and refinement of
the correction rule set. Finally, Table 6 show the scores of several models on the
final test data.

Table 5. Effect of correction on tagging accuracy on the WSJ 19–21 development set

Model Corrected Corrected # Sent. Token Unk.
Train Test Feats Acc. Acc. Acc.

5wShapesDS no no 737,955 56.79% 97.28% 90.46%
no yes 57.95% 97.38% 90.60%
yes no 735,679 55.87% 97.21% 90.58%
yes yes 62.66% 97.75% 90.75%

Table 6. Accuracy of taggers on the final test set WSJ 22–24

Model Corrected Sentence Token Unknown
Data Accuracy Accuracy Accuracy

naacl 2003 no 55.75% 97.21% 88.50%
Replication no 56.44% 97.26% 89.31%
5wShapes no 56.65% 97.29% 89.70%
5wShapesDS no 56.92% 97.32% 90.79%
5wShapesDS yes 61.81% 97.67% 90.49%

6 Foundational Issues

Notwithstanding the significant progress that can be made by removing errors
and improving the consistency of the treebank, there are interesting foundational
linguistic issues as to which decisions are linguistically well-justified, and which
turn into arbitrary conventions of treebank annotation. The latter can still give
consistency, but cannot really be linguistically justified.15

What I want to look at is the validity of what is in the Penn Treebank:

“Measurement requires three things: An object to be measured, a well-
defined property of the object to measure, and a measuring instrument
that actually does the job” [24, 135].

15 For instance, consistency could be trivially guaranteed by always giving the same
tag to each token of a word type.
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The objects at hand here are clear: words and sentences of English newswire.
My concerns touch the other two issues: Are part-of-speech labels well-defined
discrete properties enabling us to assign each word a single symbolic label?
Secondly, is the measuring instrument up to the task? Answering questions like
this is one clear place where linguists should have something useful to offer to
the modern world of Statistical NLP.

The first question is in many ways the more interesting. If the properties of
part of speech and syntactic category are not well-defined, then the variables
assigned by the coder lack a coherent basis. Is it possible to assign to each word
in a context a single symbol that represents the word’s syntactic category? Or
do we need something like squishy categories [25]? While the use of discrete
categories underlies most of modern generative linguistics, fuzziness is readily
accepted by a descriptive grammar such as [26], which regularly refers to the
“fuzzy borders between word classes”.16 A thorough recent examination of the
issues is found in [27]. Given that the behavior of some words has gradually
changed from one part of speech to another over time,17 some gradable notion
of category is presumably necessary. On the other hand, one needs to account for
the fact that it seems reasonable and feasible to assign such a category as noun
or verb to the vast majority of the words in the lexicon. This could perhaps
be connected up with work on categorical perception [30] which attempts to
explore how phenomena which are grounded in continuous physical quantities
are perceived by human beings as belonging to discrete categories, with only a
little fuzz around the edges.

What is it that treebankers are actually assigning as categories? [29] showed
that many of the criteria that people often use for part of speech are actually sen-
sitive to semantic sorts. Are treebankers mainly influenced by semantic function
or are they really picking out structural categories? According to generative wis-
dom, notional (semantic) criteria for part of speech are “extremely unreliable”
[31, 57], but given that they are what is taught in school, if anything (“a noun
is a person, place or thing”), there is a high probability that treebankers often
use these rather than true syntactic distributional categories. Here I present one
example of this phenomenon. I discussed a couple of others in [32].

6.1 Transitive Adjectives

Maling [29] discusses the three words near, like, and worth, arguing that these
words were historically clearly adjectives, but that with the loss of case marking

16 Where a treebanker was uncertain concerning the proper part-of-speech tag, they
could give words disjunctive tags, and the journal paper [7] describes this as part
of a policy of not having annotators make arbitrary decisions. However, in practice,
this option was little used, with only 0.01% of tokens (147 tokens) receiving an
ambiguous tag. In the vast majority of cases of indeterminacy, it is clear that the
annotator either did just make an arbitrary decision or else accepted the decision
of the automatic tagger that preceded them. Hence the inconsistency noted in the
previous section.

17 For examples and discussion, see [28], [29], and the discussion below.
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in English, like and worth shifted syntactic category to become prepositions (the
more appropriate category for uninflected words that take an NP complement),
while near is perhaps the only surviving case of a transitive adjective in En-
glish. In various footnotes, two other candidate surviving transitive adjectives
are suggested: opposite and due. Searching the treebank reveals another possible
transitive adjective: outside.18 Table 7 shows a summary of the occurrence of
these words in the Penn Treebank Wall Street Journal corpus.

Table 7. Parts of speech assigned to putative transitive adjectives in the Penn Tree-
bank

Total IN JJ NN NNS RB VB(P)

due 371 344 2 1 24
like 580 461 26 93
near 126 97 24 5
outside 145 80 52 8 5
opposite 19 1 12 6
worth 114 10 65 39

The case of worth is well-studied. It is a recognized problem word and the
treebank manuals have specific, if inconsistent, instructions for it. The initial
guide to part of speech tagging said [23, p. 31]:

worth is a preposition (IN) when it precedes a measure phrase, as in
worth ten dollars.

The subsequent Treebanking manual provides an odd mixture of descriptive and
prescriptive advice, but seems to reverse this earlier judgment [33, pp. 308–309]:

worth:
1. with complement: ADJP

Note that some instances of this use of worth are labeled PP-PRD,
as in (b); however the use of ADJP-PRD, as in (a), predominates.
(a) [S [NP-SBJ [NP the results], [ADJP however general],] [VP are

[ADJP-PRD worth [NP the search]]]]
(b) [S [NP-SBJ [NP the results], [ADJP however general],] [VP are

[PP-PRD worth [NP the search]]]]
2. dollars worth: NP

There is considerable variation, but here is a common way of ana-
lyzing expressions like five dollars worth:

[VP issue [NP [NP [ADJP [QP some $ 3 million to $ 4 million]
u] worth] [PP of [NP Rural Roads Authority bonds]]]]

Commented out in the file is: “Sorry, there ain’t no ‘right’ way for these. –R.”.
This is the essence of the problem. It is generally accepted that worth appears in
18 The only other word tagged as an adjective and followed by an NP complement is

one instance of such, but this is because of a clear typo in the newswire source: *Akzo

has high hopes for some emerging fiber businesses, such carbon fibers and aramid.
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certain contexts as a noun, but, in the remaining cases, is worth a preposition,
as Maling and Santorini propose, an adjective as the new Treebanking manual
proposes (and also, both the Oxford English Dictionary and Huddleston and
Pullum [34]), or should we un-ask this question?

6.2 Treebank Evidence

There are 114 instances of worth, selectively shown in Table 8. 10 examples are
tagged as a preposition, 8 in phrases that treebankers later tagged as ADJPs
(1–2) and two that were later tagged as PPs (3–4). In one of the former, the
complement is incorrectly tagged as an adverbial (5). 65 examples were tagged
as JJ, 48 placed in ADJPs (6–7), 13 placed in PPs (8–9) and 4 which occur
inside noun phrases and should have been tagged as NN (10–11). 39 examples
were tagged as NN: 2 of these were incorrect and should have been given a
non-noun tag (12–13). The rest are noun uses including after a quantifier phrase
(14–15) and in other noun uses including compounds (16–17). In 4 cases involving
quantifiers (all cases involving a following PP), an extra erroneous level of ADJP
structure has been added (18).

There are various questions and concerns here. The OED lists worth as a noun,
and as an adjective (and as an obsolete verb). [26] appears to regard worth as
both a preposition and an adjective. On p. 1064 they argue that:

The prepositional status of worth . . . is confirmed by the fact that it can
govern a noun phrase, a nominal -ing clause with a genitive subject, and
a nominal relative clause (but not a that -clause or a to-infinitive

but later (p. 1230) it is listed as a canonical example in the section on “Adjective
complementation by an -ing participle clause” with an additional note on it being
unclear whether to regard worthwhile as an adjective or as worth followed by
a noun (which is reflected in inconsistent spelling). At any rate, they seem to
beg the question of the existence of transitive adjectives, by declaring anything
with NP complements to be a preposition. Huddleston and Pullum [34] reject the
criterion of taking an NP complement as being decisive and come out strongly in
favor of worth as a transitive adjective, unlike similar words like like, unlike and
due which they suggest belong to both the adjective and preposition categories.

Contra Maling, there is some evidence that worth is still more like an adjective
than a preposition, but it seems fairly clear that it has mixed properties that
make it partly like adjectives and partly like prepositions, but not like a canon-
ical member of either category. Even Huddleston and Pullum admit that worth
“differs markedly from central members of the adjective category”. That is, it is
a case of syntactic gradience resulting from historical changes [27]. In such cases,
it is artificial to demand a categorical classification, whatever its convenience for
current part-of-speech tagging technology.

One pragmatic solution in such cases might just be to accept that certain
high frequency words may have odd properties and we should just give them
tags by convention, however imperfect their assignment to a category. There are
probably few applications of NLP which will be much affected by the choice of an
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Table 8. Selected citations of worth in the Penn Treebank WSJ corpus

1 Northeast says its bid is (ADJP-PRD (IN worth) (NP e)).
2 Each share point is (ADJP-PRD (IN worth) (NP about $60 million) in sales)
3 grain elevators are (PP-PRD (IN worth) (S-NOM e preserving for aesthetic . . . ))
4 should be (PP-PRD (IN worth) (NP 30 a share))
5 assets are (ADJP-PRD (IN worth) (NP-ADV more to private buyers than . . . )
6 a good number decide it’s not (ADJP-PRD (JJ worth) (NP it))
7 and decide it’s (ADJP-PRD (JJ worth) (NP the astronomical price) to add it
8 It was (PP-PRD (JJ worth) it), just for the look on . . .
9 the company . . . is (PP-PRD (JJ worth) (NP $70 a share)) if broken up

10 are in need of (NP billions of dollars (JJ worth) of repair)
11 is one of the (JJS earliest) (NN high-net) (JJ worth) (NNS banks) (PP in the U.S.)
12 Not even . . . makes this trip (ADJP-PRD (NN worth) (S taking))
13 What is UAL stock (ADJP-PRD (NN worth) (NP e))
14 an additional $200 to 300 million (NN worth) per month
15 could pile up $150 (NN worth) of quarters on a slanted coin
16 The company’s net (NN worth) cannot fall below $185 million
17 thus dilute the (NN worth) and voting power of ASKO
18 will sell (NP (ADJP (QP $25 million)) (NN worth) (PP of his clothes))

adjective or preposition tag for worth. If anything, applications are mainly likely
to gain from the treatment being consistent. But in such cases, we must accept
that we are assigning parts of speech by convention for engineering convenience
rather than achieving taxonomic truth, and there are still very interesting issues
for linguistics to continue to investigate, along the lines of [27].
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Abstract. This paper presents a new approach to learn a rule based
system for the task of part of speech tagging. Our approach is based on
an incremental knowledge acquisition methodology where rules are stored
in an exception-structure and new rules are only added to correct errors
of existing rules; thus allowing systematic control of interaction between
rules. Experimental results of our approach on English show that we
achieve in the best accuracy published to date: 97.095% on the Penn
Treebank corpus. We also obtain the best performance for Vietnamese
VietTreeBank corpus.

1 Introduction

Part-of-speech (POS) tagging is one of the most important tasks in Natural Lan-
guage Processing, which assigns a tag representing its lexical category to each
word in a text. After the text is tagged or annotated, it can be used in many
applications such as: machine translation, information retrieval etc. A number
of approaches for this task have been proposed that achieved state-of-the-art re-
sults including: Hidden Markov Model-based approaches [1], Maximum Entropy
Model-based approaches [2] [3] [4], Support Vector Machine algorithm-based ap-
proaches [5], Perceptron learning algorithms [2][6]. All of these approaches are
complex statistics-based approaches while the obtained results are progressing
to the limit. The combination utilizing the advantages of simple rule-based sys-
tems [7] can surpass the limit. However, it is difficult to control the interaction
among a large number of rules.

Brill [7] proposed a method to automatically learn transformation rules for the
POS tagging problem. In Brill’s learning, the selected rule with the highest score
is learned on the context that is generated by all preceding rules. In additions,
there are interactions between rules with only front-back order, which means an
applied back rule will change the results of all the front rules in the whole text.
Hepple [8] presented an approach with two assumptions for disabling interactions
between rules to reduce the training time while sacrificing a small fall of accuracy.
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Ngai and Florian [9] presented a method to impressively reduce the training time
by recalculating the score of transformation rules while keeping the accuracy.

In this paper, we propose a failure-driven approach to automatically restruc-
ture transformation rules in the form of a Single Classification Ripple Down
Rules (SCRDR) tree [10][11][12]. Our approach allows interactions between rules
but a rule only changes the results of selected previous rules in a controlled con-
text. All rules are structured in a SCRDR tree, which allows a new exception rule
to be added when the system returns an incorrect classification. Moreover, our
system can be easily combined with existing part of speech tagger to obtain an
even better result. For Vietnamese, we obtained the highest accuracy at present
time on VietTreebank corpus [13]. In addition, our approach obtains promising
results in term of the training time in comparison with Brill’s learning.

The rest of paper is organized as follows: in section 2, we provide some related
works including Brill’s learning, SCRDR tree, among others and describe our
approach in section 3. We describe our experiments in section 4 and discussion
in section 5. The conclusion and future works will be presented in section 6.

2 Related Works

2.1 Transformation-Based Learning

The well-known transformation-based error-driven learning method had been
introduced by Brill [7] for POS tagging problem and this method has been
used in many natural language processing tasks, for example: text chunking,
parsing, named entity recognition. The key idea of the method is to compare the
golden-corpus that was correctly tagged and the current-corpus created through
an initial tagger, and then automatically generate rules to correct errors based
on predefined templates. For example, corresponding with a template “transfer
tag of current word from A to B if the next word is W” is some rules like as:
“transfer tag of current word from JJ to NN if the next word is of” or “transfer
tag of current word from VBD to VBN if the next word is by”...

Transformation-based learning algorithm runs in multiple iterations as
follows:

– Input: Raw-corpus that contains the entire raw text without tags extracted
from the golden-corpus that contains manually tagged word/tag pairs.

– Step 1: Annotated-corpus is generated using an initial tagger where its
input is the raw-corpus.

– Step 2: Comparing the annotated-corpus and the golden-corpus to deter-
mine tag errors in the annotated-corpus. From these errors, all templates are
used for creating potential rules.

– Step 3: Each rule will be applied to a copy of annotated-corpus. The score
of a rule is computed by subtracting of number of additional errors from
number of correctly changed tags. The rule with the best score is selected.

– Step 4: Update the annotated-corpus by applying selected rule.
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– Step 5: Stop if the best score is smaller than a predefined threshold T, else
repeat step 2.

– Output: Front-back ordered list of transformation rules.

The training process of Brill’s tagger includes two phases:

– The first-phase is used to assign the most likely tag for unknown words. Ini-
tially, the most likely tag for unknown words starting with a capital letter is
NNP and otherwise it is NN. In this phase, the lexical transformation rules
are used to predict the most likely tag for unknown words. The transforma-
tion templates in this phase depend on character(s), prefix, suffix of a word
and only the preceding/following word. For example, “change the most likely
tag of an unknown-word to Y if the word has suffix x, |x| <= 4”, “change
the most likely tag of an unknown-word to Y if the last (1, 2, 3, 4) characters
of the word are x” or “change the most likely tag of an unknown-word to Y
if the word x ever appears immediately to the left/right of the word”

– The second phase uses transformation-based error-driven learning for pro-
ducing contextual transformation rules. Each word is assigned a tag by the
initial tagger: known-words were annotated with the highest frequency tag
using the lexicon extracted from corpus that was used for learning lexical
transformation rules, and unknown-words were assigned with default tags
NNP or NN and subsequently the ordered lexical transformation rules were
applied.

To tag raw texts, the known-words are assigned by the highest frequency tag us-
ing lexicon extracted from the training corpus and unknown-words are assigned
with default tags NNP or NN and then the ordered lexical transformation rules
are applied to these unknown-words. Finally, the ordered contextual transfor-
mation rules will be applied to all words. In the tagging process, a word can be
tagged multiple times. At each the iteration during the training phase, all possi-
ble rules will be generated and each rule’s score is computed based on the entire
corpus. Therefore, training phase in Brill’s learning takes a significant amount
of time.

The transformation-based learning of Brill allows interactions between learnt
rules. A new rule can change the result of any previous rules.

Hepple [8] presented a method to impressively improve about 950 times [9] at
the training time while there was a small fall in the precision by using two
assumptions: independence and commitment, which disables any interaction
between learned rules. The commitment assumption assumes that a tag was
changed at most once by a rule in the whole training period. And the indepen-
dence assumption imposes that if a rule changes a tag, it will not change the
context relevant to the firing of a future rule. Ngai and Florian [9] proposed an
approach called as Fast TBL to significantly reduce about 340 times at the train-
ing time on corpus of about 1 million words while achieved the same accuracy as
a standard transformation-based tagger. The central idea of this approach is to
save the number of corrected-tags and the number of additional errors for each
rule for recalculation when applying a newly selected rule to the current corpus.
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Another drawback of Brill’s learning is that it is not able to estimate probabil-
ities of class memberships. An approach presented in [14] shows how to convert
transformation-based rules list to decision trees for resolving this problem.

2.2 Single Classification Ripple Down Rules

Ripple Down Rules (RDR) [10][15][12] were developed to allow users incremen-
tally add rules to an existing rule-based system whiles systematically controlling
interactions between rules and ensuring consistency among existing rules.

Suppose the system’s classification produced by some rule R is deemed in-
correct by the expert. As the justification for the decision that the classification
is incorrect, the expert creates a new rule Re which acts as an exception to the
rule R. The justification would refer to attributes of the case, such as patient
data in the medical domain, or a linguistic pattern matching the case in the
natural language domain[15].

The new rule Re will only be applied to cases for which the provided condi-
tions in Re are true and for which rule R would produce the classification, if
rule Re had not been entered. In other words, in order for Re to be applied to
a case as an exception rule to R, rule R has to be satisfied as well. A sequence
of nested exception rules, of any depth, may occur. Whenever a new exception
rule is added, a difference to the previous rule has to be identified by the ex-
pert. This is a natural activity for the expert when justifying his/her decision to
colleagues or apprentices. The case which triggered the addition of an exception
rule is stored along with the new rule. This case, called the cornerstone case of
the rule R, is retrieved when an exception to R needs to be entered. The cor-
nerstone case is intended to assist the expert in coming up with a justification,
since a valid justification must point at differences between the cornerstone case
and the case at hand for which R does not perform satisfactorily. A number of
RDR-based systems also store with every rule all cases for which the rule has
given a correct conclusion. These systems effectively store all seen cases. This
enables the consistency test to be checked against not only the cornerstone cases
but all previously seen cases.

A SCRDR tree [10][12] is a finite binary tree with two distinct types of edges.
These edges are typically called except and if not (or false) edges as shown in
figure 1. Associated with each node in a tree is a rule. A rule has the form: if α
then β where α is called the condition and β the conclusion.

An SCRDR tree is evaluated for a case by passing the case to the root of the
tree. At any node in the tree, if the condition of a node N’s rule is satisfied by
the case, the case is passed on to the except child of N if it exists. Otherwise,
the case is passed on to N’s if not child if it exists. The conclusion given by
this process is the conclusion from the last node in the SCRDR tree which fired.
To ensure that a conclusion is always given, the root node typically contains a
trivial condition which is always satisfied. This node is called the default node.

A new rule is added to an SCRDR tree when the evaluation process returns a
wrong conclusion using the fired rule R. A new node containing the new rule is
attached to the last node evaluated in the tree provided the new rule is consistent
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Fig. 1. A part of SCRDR tree for POS tagging

with the existing knowledge base. This is done by making sure cases that have
been previously classified correctly by the rule R do not match the new rule.
If the node has no exception link, the new node is attached using an exception
link, otherwise an if not link is used.

2.3 Vietnamese POS Tagging Problems

Dinh and Hoang [16] proposed an approach for Vietnamese POS tagging problem
that gave accuracy of 87% by building an English-Vietnamese bilingual corpus
which contains approximately 5 million words. They tagged the English corpus
using transformation-based learning of Brill [7] and convert POS-annotation tags
from English side to Vietnamese using existing word-alignment tools.

Three available tools using machine learning methods: Conditional Random
Fields [17], Maximum Entropy Model, Support Vector Machine were used to
combine with morpheme-based approach in [18] for Vietnamese POS tagging,
that achieved the highest averaged accuracy using the 5-fold cross-validation of
91.64% on Vietnamese Treebank corpus [13].

3 Our Approach

In this section, we describe a transformation-based failure-driven approach to
automatically build a single classification Ripple Down Rule (SCRDR) tree for
POS tagging problem. Figure 2 describes the learning model used in our ap-
proach.

The Raw corpus is annotated by using an Initial tagger to create the Anno-
tated corpus. By comparing the annotated corpus with the Golden corpus, an
Object-driven dictionary is generated based on the Object Template which cap-
tures the context containing the current word and its tag, (1st, 2nd, 3rd) previous
and next words and (1st, 2nd, 3rd) previous and next tags in following format
(previous 3rd word, previous 3rd tag, previous 2nd word, previous 2nd tag, previ-
ous 1st word, previous 1st tag, word, currentTag, next 1st word, next 1st tag, next
2nd word, next 2nd tag, next 3rd word, next 3rd tag) in the annotated corpus.
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Fig. 2. The diagram describing our approach

An object-driven dictionary is a set of the format (Object, correct Tag) in
which Object captures the context of the current word in the annotated corpus
and correct Tag is the corresponding tag in the golden corpus.

Rule1: if {word == “object.word”} then tag = “correctTag”
Rule2: if {next1stTag == “object.next1stTag”} then tag = “correctTag”
Rule3: if {prev1stTag == “object.prev1stTag”} then tag = “correctTag”

Fig. 3. Some rule examples

From the object template, rule templates are created based on the templates
of Brill’s tagger for Rule selector. Examples of rule templates are shown in
figure 3 where elements in bold will be replaced by concrete values for creat-
ing concrete rules.

Training algorithm:

– Step 1: Load raw corpus and assign initial tags using an initial tagger.
– Step 2: Create Object-driven dictionary by comparing output of the initial

tagger and the golden corpus.
– Step 3: Build the default node representing the initial tagger.
– Step 4: At a node-FR in SCRDR tree, let SE be the set of elements from

the object-driven dictionary that fired at the node-FR but theirs tags are
incorrect i.e. node-FR gives wrong conclusions for elements in SE.

To select a new exception rule, a list of all concrete rules is generated
based on rule-templates from all elements in SE and unsatisfied cornerstone
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case of node-FR. The rule with the highest value by subtracting B from A
would be selected where A is the number of elements in SE that is correctly
modified by the rule and B is the number of elements in SE that is incorrectly
changed by the rule.

The newly selected rule is added to the SCRDR tree where the corner-
stone case is the case in SE that is correctly modified by the selected rule.

This step process is repeated until the score for the selected rule is under
a given threshold. At each iteration, a new exception rule is added to correct
an error made by the existing rule-based system.

To illustrate how the new exception rules are added, lets consider the following
rule (a node in the SCRDR tree)

if currentTag == “vb” and prev1stTag == “nns” then tag = “vbp”
cc: (‘the’, ‘dt’, ‘latest’, ‘jjs’, ‘results’, ‘nns’, ‘appear’, ‘vb’, ‘in’, ‘in’, ‘today’,

‘nn’, ‘’s’, ‘pos’)

Suppose we have a case that this rule fires but returns a wrong conclusion
i.e. incorrect tag. The following rule can be added as an exception rule of the
rule in the SCRDR tree with the cornerstone case (cc) being the case that was
misclassified originally:

if word == “cut” then tag = “vbn”
cc: (‘keeping’, ‘vbg’, ‘their’, ‘prp$’, ‘people’, ‘nns’, ‘cut’, ‘vb’, ‘off’, ‘rp’,

‘from’, ‘in’, ‘the’, ‘dt’)

To take a further example, suppose we have a new case that the above newly
added rule fires but the conclusion is incorrect. The following exception is added
to correct the mistake:

if prev2ndTag == “dt” then tag = “nn”
cc: (‘to’, ‘to’, ‘the’, ‘dt’, ‘capital-gains’, ‘nns’, ‘cut’, ‘vb’, ‘,’, ‘,’, ‘which’,

‘wdt’, ‘has’, ‘vbz’)

Tagging process:

– Raw texts are tagged by initial tagger to create the annotated texts.
– Make objects to capture context surrounding current word/tag in annotated

texts.
– Each object is classified by SCRDR tree for generating output tag.

In our method, we use two thresholds: one for finding rules for nodes at the
depth of 1 and the other is used for nodes at higher levels. One reason is that
the default node has no cornerstone case.

4 Experiment

We apply our approach to both English and Vietnamese part of speech tagging
tasks.
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4.1 Results for English

Following [2] [3] [4] [5] [6], we split the Penn Wall Street Journal Treebank [19]
into training, development and test sets as shown in table 1 for our experiments
for English. We retrained Brill’s tagger on training data at default threshold of 2
resulting in 1595 rules with the time cost for learning contextual transformation
rules of 2700 minutes.

Table 1. Data Set

DataSet Sections Sentences Tokens

Training 0-18 38,219 912,344
Develop 19-21 5,527 131,768
Test 22-24 5,462 129,654

For our method, RDR tree was built on whole training data using Brill’s
retrained initial tagger as the initial tagger that achieved the baseline accuracies
of 93.67% and 93.58% on development data and test data respectively.

Brill’s retrained tagger achieved an accuracy of 96.57% on development data
while the result of our taggers on development data is shown in table 2. The
accuracy is comparable while our method improves up to 33 times in training
time.

Table 2. Pos tagging in accuracy of development data of our approach

Threshold Number of
rules

Accuracy (%) Training time
(minutes)

(50, 20) 133 95.76 14
(10, 10) 393 96.21 30
(5, 5) 830 96.42 48
(3, 2) 2517 96.55 82
(1, 1) 18310 96.35 512

Table 3 shows the performance for our method using the best threshold and
Brill’s tagger on test data.

Table 3. Pos tagging accuracy on test data

Method Accuracy (%)

Brill 96.530
Our approach 96.548

Table 4 shows the accuracy of our method depending on the depth of the
RDR tree.
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Table 4. Accuracy and speed tagging in our method on test data on PenIV 2.66GHZ
of CPU, 1G of RAM

Depth Number of
rules

Accuracy
(%)

Speed tagging (num-
ber of words second)

<= 1 1433 96.372 161
<= 2 2467 96.540 160
<= 3 2517 96.548 160

Table 5. Accuracy of our method with different initial taggers on test data

Initial Tagger (IT) Accuracy
of IT (%)

Accuracy of IT
and RDR tree(%)

Number of rules
in RDR tree

Brill’s tagger 96.53 96.68 322
Tagger of Tsuruoka
and Tsujii

96.987 97.095 130

Table 5 shows the returned results when we used Brill’s retrained tagger and
tagger of Tsuruoka and Tsujii [4] that was trained on same WSJ 0-18 training
data at default parameters as initial taggers for building an RDR tree in our
approach. It can be seen that our approach can be used to improve performance
of existing approaches by adding more exception rules.

4.2 Results for Vietnamese

We ran experiments for Vietnamese on the same corpus as in [18] on Vietnamese
Treebank corpus [13]. This corpus contains approximately 10000 sentences with
a tag set of 17 labels. We randomly divide the corpus into five folds; giving
one fold size of around 44±1K words. Each time, four folds were merged as the
training set and the remaining fold is selected as the test set. Final result is
the averaged results of five runs using the best threshold found for the English
experiment.

Table 6 shows the result of our approach, which we use an open dictionary
assigning the most frequent tag in whole training set for a word as the initial
tagger. For this open dictionary assumption, when a word (in test set) not in
the dictionary, it would be tagged as Np if the first character is an upper letter
or N if otherwise by default. With the open dictionary assumption, the accuracy
of the initial tagger is 90.38%.

Table 6. Five-fold cross validation accuracy of our method in open dictionary assump-
tion

Method Final accuracy (%)

Open dict 92.24
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From table 6, it can be seen that our method achieves a higher accuracy than
accuracy of 91.64% of the method described in [18].

We also trained our method using the closed dictionary assumption where the
initial tagger assigns a word with the most frequent tag that extracted from whole
training and test sets. In addition, we retrained Brill’s tagger for Vietnamese
using the closed dictionary assumption without the process of learning lexical
transformation rules. Both of methods obtained an accuracy of 92.81% at the
initial state.

Table 7 shows the results for our approach and Brill’s tagger in closed dictio-
nary assumption.

Table 7. Five-fold cross validation accuracy in closed dictionary assumption

Method Final accuracy (%)

Brill’s tagger 94.72
Our method 94.61

It can be seen that our approach is comparable to that of Brill’s in this corpus.
Due to the small size of this corpus, our approach can utilize experts to add rules
instead of learning rule from the corpus.

5 Discussion

For Brill’s approach and Hepple’s approach, a new rule is selected based on the
accuracy of context, so the output of initial tagger is always changed when the
new rule applies. In our approach, objects always are static so that new rules are
selected based on the original state of the output of the initial tagger. Therefore
our approach can be easily combined with existing state of the art taggers to
improve their performance as demonstrated when we improve the existing result
of Tsuruoka and Tsujii [4].

Another important point is that our approach is very suitable to use experts
to add new exception rules given a concrete case at hand that is misclassified
by the system. This is especially important for under-resourced languages where
obtaining a large annotated corpus is difficult.

6 Conclusion

In this paper, we propose a failure-driven approach to automatically restructure
transformation rules in the form of a Single Classification Ripple Down Rules
tree. Our approach allows controlled interactions between rules where a rule only
changes the results of a limited number of other rules. On the Penn Treebank,
our approach achieves the best performance published to date of 97.095%. For
Vietnamese, our approach achieves an accuracy of 92.24% for open-dictionary
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assumption and an accuracy of 94.61% for close-dictionary assumption. This is
also the best result to date to the best of our knowledge.

In the future we will involve experts to manually add more exception rules to
the current rule based system to even improve the performance of the system
further.

Another avenue is to use Ngai and Florian’s method [9] to improve the training
time and extend the lexical transformation rule learning of Brill for Vietnamese.
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Abstract. In this paper, we present an efficient part-of-speech (POS)
tagger for Arabic which is based on a Hidden Markow Model. We explore
different enhancements to improve the baseline system. Despite the mor-
phological complexity of Arabic our approach is a data driven approach
and does not utilize any morphological analyzer or a lexicon as many
other Arabic POS taggers. This makes our approach simple, very effi-
cient and valuable to be used in real-life applications and the obtained
accuracy results are still comparable to other Arabic POS taggers. In the
experiments, we also thoroughly investigate different aspects of Arabic
POS tagging including tag sets, prefix and suffix analyses which were not
examined in detail before. Our part-of-speech tagger achieves an accu-
racy of 95.57% on a standard tagset for Arabic. A detailed error analysis
is provided for a better evaluation of the system. We also applied the
same approach on different languages like Farsi and German to show the
language independent aspect of the approach. Accuracy rates on these
languages are also provided.

1 Introduction

The continous increase in the demand for processing Arabic faces many chal-
lenges. One important challenge at this point is the requirement to tag part-
of-speech (POS) information in a given Arabic text with high accuracy and
efficiently. Part-of-speech tagging is the task of classifying the words in a sen-
tence into a set of classes. Output of POS taggers has a widespread usage in many
Natural Language Processing (NLP) applications, such as Machine Translation
(MT) or Information Retrieval (IR). The efficiency and accuracy of the POS
tagger has usually a reasonable impact on the overall quality of the entire sys-
tem. There are many studies on Statistical Machine Translation (SMT) systems
that report gain in evaluation scores when a POS tagger is used [14,18,17,6].

POS tagging is the task of labeling words in an input sentence with part-of-
speech and additional linguistic information. The words in the input sentence
must be tokenized before the tagging process. There are two main approaches
to POS tagging: rule-based tagging and stochastic tagging. Rule based taggers
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process a set of rules that resolve the POS of a word. Stochastic taggers disam-
biguate the POS by calculating probabilities based on a large corpus [11]. There
are also some combined approaches like Transformation Based Learning (TBL)
which include characteristics from both rule-based and stochastic approaches.

In this paper, we investigate the different aspects of Arabic POS tagging
and present a Hidden Markov Model (HMM) based method. The proposed POS
tagging system achieves an accuracy of 95.6% using a restricted tagset of 17 tags.
The tagger is language independent and has been used successfully for different
languages such as English and Persian.

The rest of this paper is organized as follows. In the next section we give
a brief overview of related work. In Section 3, the approach and the system
that is implemented in this study is explained. Next, we talk about the training
procedure and data in particular. In Section 5 the system is evaluated with
detailed experiments and error analysis. Finally, we conclude the paper with
Section 7.

2 Related Work

The huge demand for Arabic POS taggers in different NLP systems causes re-
searchers to focus on this problem. In the recent years, different studies have
emerged but they are not enough and the problem is not studied as sufficiently
as in other languages such as English.

[8] present an approach to use a morphological analyzer for tokenizing and
morphological tagging. First, they obtain all possible morphological analyses
from the morphological analyzer. Next, they use a Support Vector Matrix (SVM)
based classifier to for the POS and other morphological features. The work by
[5] and [4] also use an SVM based approach to automatically tokenize, POS tag
and annotate base phrases in Arabic text.

[16] proposes a tagger of Semitic languages that treats both Arabic and Hew-
brew. They also use a morphological analyzer in their HMM based POS tagger.
The work by [9] is similar in the sense that it combines a morphological analyzer
in a HMM model. In [12], a hybrid appraoch to Arabic POS tagging is presented
which makes use of a tag set including 131 tags. In [1], the application of TBL
to Arabic POS tagging is inspected.

Our approach is different from all the above studies in the sense that it is
purely stochastic, corpus-driven, HMM based and without utilizing a morpho-
logical analyzer during the tagging process.

3 The Approach

POS tagging is considered as a sequence classification task and Hidden Markov
Model can be applied to different language related classification problems suc-
cessfully. Our work is inspired by systems which employ the HMM approach
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to POS tagging in different languages such as [2]. Given an observation of a
sequence of words, the aim is to find the best sequence of POS tags that cor-
respond to the observed words. The Bayesian explanation for this problem is
formulated in the following well-known equation:

t̂ n
1 = arg max

tn
1

n∏
i=1

P (wi|ti)P (ti|ti−1) (1)

In Equation (1) the sequence of the words in the observed sentence are repre-
sented as w1 . . . wn. In order to calculate the estimate of the tag sequence t̂ n

1 ,
tag transition probabilities and word likelihoods are used. The tag transition
probability P (ti|ti−1) is estimated with a bigram Language Model (LM) that is
constructed from a tag transition corpus. The word likelihood P (wi|ti) is com-
puted from counts in the training data. The HMM is represented as a weighted
finite state machine (FSM) with hidden states. In POS tagging, the HMM states
correspond to the tags and the output symbols represent the words. Viterbi al-
gorithm is used to determine the most likely tag sequence.

We use the IRSTLM toolkit [7] to estimate, store and access the language
models required in the tagger. The toolkit supports the Witten-Bell smoothing
[19] and the Kneser-Ney smoothing [13] methods. In order to overcome the sparse
data problem in high order n-grams, we use interpolation in combination with
the smoothing methods.

P̂ (tn|tn−1, tn−2) = λ1P (tn|tn−1, tn−2) +
λ2P (tn|tn−1) +
λ3P (tn) (2)

Equation (2) shows how different n-grams are joined to interpolate second order
probability values. The weights in the interpolation formula, i.e. the λ values,
sum to 1 and they are calculated by deleted interpolation according to the fre-
quencies in the training data as described in [2]. Normalization of the λ values
ensures that the result is still a probability distribution.

The word likelihood probabilityP (wi|ti) is computed according to Equation (3)
which makes use of the frequencies in the training corpus. C(ti, wi) is the count
of the times the word wi is tagged as ti in the training corpus.

P (wi|ti) =
C(ti, wi)

C(ti)
(3)

Data sparsity problem is again a big problem while computing the word like-
lihood as it was in the tag transition probabilities. Whenever a word in the
observation was not seen in the training corpus, the above formula will evaluate
to zero. If the tag is an open-class tag, then the likelihood is estimated using
prefix and suffix probabilities as in Equation (7) where pj

i denotes the wi pre-
fix including the first j characters and sk

i denotes the wi suffix including the last k
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characters. Moreover, P̂p(p
j
i |ti) is the estimation of the probability that the prefix

pj
i can occur if the tag ti is observed. Similarly, P̂s(sk

i |ti) is the estimation of
the probability that the suffix sk

i can occur if the tag ti is observed. The terms
prefix and suffix do not have any linguistic meaning, they are only character
strings. While calculating the prefix and suffix probabilities, the longest prefix
and suffix is used that is matched in the training set. Once a match is found no
other shorter strings are searched further.

P̂p(p
j
i |ti) =

C(ti, p
j
i )

C(pj
i )2

(4)

P̂s(sk
i |ti) =

C(ti, sk
i )

C(sk
i )2

(5)

P̂ (wi|ti) = αP̂p(p
j
i |ti) + (1 − α)P̂s(sk

i |ti) (6)

P̂ (wi|ti) = α
C(ti, p

j
i )

C(pj
i )2

+ (1 − α)
C(ti, sk

i )
C(sk

i )2
(7)

Empirically, the α weight is found to be 3/5 indicating that the prefix probility
has slightly more predictive power over the suffix probability in Arabic. Setting
the weight according to the length of the matched prefix and suffix did not yield
better results. In English, prefix probability does not have any predictive power
because of its morphological structure and the α value is set to zero.

We use the algorithm listed in Figure 1 to estimate the word likelihood. If
the observed word is matched in the training corpus then the word-likelihood
function simply returns the result in Equation (3). If the word is not matched and
if the tag is a closed-class tag, then the function returns zero. Otherwise, prefix
and suffix analysis is performed on the word. The algorithm ensures that a non-
zero probability value is returned for open-class tags. The functions prefix-prob
and suffix-prob always return a non-zero value because at least one character
of the word matches as prefix and suffix.

The Viterbi algorithm is used to decode the most desirable sequence of tags.
The algorithm takes as input the language models and the sequence of observed
words and outputs the optimal tag sequence. Both first-order and second-order
HMMs are constructed. The first-order model utilizes bigram language models
and the second-order model utilizes trigram language models.

4 Training

4.1 Data

The Penn Arabic Treebank [15] parts 1, 2 and 3 (ATB) is used for training and
testing purposes. The entire corpus contains 629,866 words in 1,835 news stories
from four distinct sources. In ATB, Buckwalter’s morphological analyzer [3] is
used to generate a candidate list of POS values for each word/token and the
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word-likelihood(word , tag )

if count(tag, word) > 0 then

return count(tag, word) / count(tag)

else

if tag is open-class then

return α × prefix_prob(word, tag)

+ (1 − α) × suffix_prob(word, tag)

else

return 0

end if

end if

suffix-prob(word , tag )

for i=2 to length(word)

suffix = substr(word, 2, i)

if count(suffix, word) > 0 then

return count(tag,suffix)/count(tag)2

end if

end for

prefix-prob(word , tag )

for i=length(word)-1 down to 1

prefix = substr(word, 1, i)

if count(prefix, word) > 0 then

return count(tag,prefix)/count(tag)2

end if

end for

Fig. 1. Algorithm to calculate the word likelihood for a word

appropriate POS value is selected by human annotators. Detailed information
about the size of the corpus parts is given in Table 1. We have used 95% of the
ATB corpus for training and the remaining 5% for testing.

4.2 Arabic Tag Sets

The annotation level in ATB can be described as morphological analysis tags
rather than simple POS tags. The annotation labels contain more than the lin-
guistic category of the word, e.g. determiner, gender, person, number, definitness
information and more. Morphological richness in the languages increases the nu-
umber of tags in the tagset. There are in total 1731 different labels which are
formed by combining various morphological information. [10] gives similar num-
bers for Slovene and Czech. Some frequent labels from the ATB corpus are listed
below:

det+adj+nsuff fem sg+case def gen
conj+pv+pvsuff subj:3ms
adj+case indef gen
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Table 1. Size of the ATB corpus

Part Genre Stories Words

1 News 734 145,386
2 News 501 144,199
3 News 600 340,281

Total 1,835 629,866

Different tasks require different tag sets and the selection of the tags in the tag
set affects the performance rate of the tagger. In order to compare with previ-
ously published results, similar tag sets should be used. In [8], a reduced tag set
consisting of 15 tags is used: v (verb), n (noun), pn (proper noun), aj (adjec-
tive), av (adverb), pro (pronoun), p (preposition/participle), d (determiner),
c (conjunction), neg (negative particle), num (number), ab (abbreviation), ij
(interjection), px (punctuation) and x (unknown). The frequency counts of the
tags in our training corpus is given in Table 2.

Table 2. Frequency counts of the tags in the reduced tag set

N 209366 PN 51526 AB 2904
P 74402 PRO 27009 D 261

PX 71414 C 17352 IJ 196
AJ 67268 NUM 13415 NEG 40
V 55635 AV 4111 X 31

In [5], a tag set similar to the English Penn Treebank tag set is used for Arabic
and it contains 24 different tags: cc, cd, conj+neg, part, dt, fw, in, jj,
nn, nnp, nnps, nns, no func, numeric, comma, prp, prp$, punc, rb, uh,
vbd, vbn, vbp, wp, wrb. In [4], an extended tag set comprising 75 tags is used
which aim to cover the morphological richness of Arabic including marking for
case, number, gender, definiteness, mood, person, voice, tense and others.

In our tagger, the tag set is not hard coded and the tags are defined externally
which makes the tagger independent of the tag set in use. The tag set definition
includes a list of the tags in use and other information like whether they are open
class tags or closed class tags. The words and tokens that belong to a closed class
tag are fixed and out-of-vocabulary (OOV) words are assigned only to open class
tags during tagging.

4.3 Language Model Estimation

First step in LM estimation is the collection of frequency counts and n-grams.
The estimation for the tag transition proability in Equation (1) is calculated with
a tag transition model. A tag sequence file is extracted from the ATB corpus in
the following format for each sentence:

tag1 tag2 tag3 · · ·
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This tag sequence file is used to create a tag frequency file and a tag transition
n-gram using the IRSTLM toolkit. Discounting and interpolation methods are
used in combination in order to smooth the probability values as described in
Section 3. Next, a ”word to tag” mapping file is extracted from the ATB corpus
in the following format:

word1/tag1 word2/tag2 word3/tag3 · · ·

This word to tag mapping file is used to create a frequency file which contains
the counts of how many times a word was tagged with a specific tag. This fre-
quency file is used to estimate the word likelihood probability in Equation (1).
For OOV words, prefix frequency files, suffix frequency files, prefix to tag fre-
quency files and suffix to tag frequency files are created for differet prefix and
suffix lengths. These frequency files are created using the following sequence files
that are extracted from the ATB corpus.

prefix1 prefix2 prefix3 · · ·
suffix1 suffix2 suffix3 · · ·
prefix1/tag1 prefix2/tag2 prefix3/tag3 · · ·
suffix1/tag1 suffix2/tag2 suffix3/tag3 · · ·

5 Evaluation

5.1 Experiments

We have two different goals in the experiments. First goal is to analyze the effect
of different aspects in Arabic POS tagging. The second goal in the experiments
is to evaluate and compare our POS tagger against other published results. The
test file, which is 2%of the ATB corpus, contains 984 sentences and over 12K
tokens of which 5,597 are unique. The OOV rate in the test file is 5.4%. The
accuracy results are given in percent correct rates.

The unigram baseline system produces 84.3% accuracy and with bigram
language model the accuracy jumps to 93.69%. In IRSTLM, tag transition
probabilities are smoothed by default with Witten-Bell discounting. If the dis-
counting method is changed to improved Kneser-Ney discounting, then an ac-
curacy of 93.67% is achieved. Applying deleted interpolation in combination
with the discounting approaches in the tag transition probabilities increases the
accuracy to 94.13%. Suffix analysis without prefix analysis adds 1.22% accu-
racy and prefix analysis without suffix analysis adds 1.17% accuracy. If suffix
analysis and prefix analysis are applied together then the accuracy increase be-
comes 1.44%. We did not achieve any gain by switching from a bigram language
model to a trigram language model. The accuracy results are summarized in
Table 3.
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Table 3. Accuracy results of the model with different features

Features Accuracy

Unigram LM 84.3%
Bigram LM + Witten-Bell Smoothing 93.69%
Bigram LM + Kneser-Ney Smoothing 93.67%
+ Deleted Interpolation 94.13%
+ Suffix Analysis 95.35%
+ Prefix Analysis 95.57%
Trigram LM 95.50%

In the next setup, we have experimented on the prefix and suffix length.
Table 4 lists the accuracy results for different lengths from 1 to 10. It came out
that prefix/suffix length longer than 9 did not have any effect on the results.

Table 4. Accuracy results of the model with different prefix and suffix lengths

Prefix/Suffix
Accuracy Gain

Length

1 94.25% 0.12%
2 94.55% 0.30%
3 94.99% 0.44%
4 95.22% 0.23%
5 95.31% 0.09%
6 95.46% 0.15%
7 95.49% 0.03%
8 95.54% 0.05%
9 95.57% 0.03%
10 95.57% 0%

[8] report an accuracy score of 98.1% on the tag set with 15 tags compared
to our 95.57%. We believe that the difference results from the utilization of the
morphological analyzer.

5.2 Error Analysis

In this section we present the details of the types of errors that occured in the
experiments. Table 5 lists the number of times a POS category is predicted
erronously. Nouns (n) are tagged 175 times incorrectly which corresponds to
31.47% of the errors. However, because of the high frequency of n in the test
file, the percent error of the class is only 3.97%. Thus, we can conclude that
the tagger performs well on nouns. The highest percent error rate belongs to
proper nouns (pn) and it is 9.43% (if we exclude interjection POS - ij because
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of its very low frequency). The high error rate in proper nouns is explainable
because of the high OOV rate. The second highest error rate is on adjectives
(aj) with 8.49% and the third highest error rate is on verbs (v) with 7.97%.

Table 5. Error counts and error rates based on word classes

POS
Error Reference

Count Percent Count Percent

N 175 31.47% 4,403 3.97%
AJ 122 21.94% 1,437 8.49%
PN 95 17.09% 1,007 9.43%

V 94 16.91% 1,180 7.97%
P 39 7.01% 1,599 2.44%

PRO 15 2.70% 557 2.69%
NUM 7 1.26% 335 2.09%

AV 5 0.90% 77 6.49%
C 3 0.54% 372 0.81%
IJ 1 0.18% 3 33.33%

Total 556 100% 12,501 NA

Table 6 lists the number of times a specific tagging error has occurred. The
most common error is the aj - n mismatch. In 108 instances, an adjective in the
reference file is tagged as a noun which corresponds to 19.42% of all errors. The
second most common error is the v - n mismatch with 84 instances and 15.11%.

Table 6. Error types and their frequencies

Reference Hypothesis Count Percent

AJ N 108 19.42%
V N 84 15.11%
N AJ 78 14.03%

PN N 71 12.77%
N PN 38 6.83%
N V 25 4.50%
N P 23 4.14%
P N 18 3.24%

PN AJ 13 2.34%
P PRO 9 1.62%
P C 9 1.62%

AJ PN 9 1.62%
PRO P 7 1.26%
PRO N 6 1.08%

other low freq. errors 58 10.43%

Total 556 100%

Table 7 lists the wrong hypotheses and their frequencies.
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Table 7. Wrong hypotheses and their frequencies

Wrong
Count Percent

Hypotheses
N 292 52.52%

AJ 96 17.27%
PN 52 9.35%

P 42 7.55%
V 32 5.76%

PRO 19 3.42%
C 11 1.98%

NUM 7 1.26%
D 2 0.36%

AB 2 0.36%
AV 1 0.18%

Total 556 100%

6 Experiments on Farsi and German

In order to see the language independent aspect of the approach we have con-
ducted experiments on Farsi and German. The results are summarized in
Table 8. The Farsi tagger is trained on data of 2.6 M words and it achieved
an accuracy rate of 95.54%. The German tagger is trained on a data of 1 M
words and it achieved an accuracy rate of 95.80%. It is very interesting that the
accuracy for all languages are very close to each other.

Table 8. POS accuracy rates for Farsi and German

Train Data Test Data Accuracy

Words Sentences Words Sentences

Farsi 2.6 M 90 K 26 K 900 95.54 %
German 1 M 50 K 9.3 K 510 95.80 %

7 Conclusions

In this study we present an efficient HMM based POS tagger for Arabic that
is comparable to other state-of-the-art Arabic taggers. The tagger is efficient so
that it can be used in real-life applications. For example, it is integrated into an
SMT system and it is utilized for reordering purposes.

Different aspects of Arabic POS tagging including tag sets, prefix and suffix
analyses are investigated and verified with the experiments. We have obtained
comparable results to other state-of-the-art Arabic POS tagging systems. We
also present a detailed error analysis of the system.
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The system is also trained on languages like Farsi and German which show
different morphological and syntactic properties compared to Arabic. Results
obtained for the other languages are similar as in Arabic.

As a future work, we aim to improve the accuracy in the pos tagger more.
We also want to lay out the effect of POS tagging in the performance of Arabic
SMT.
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Abstract. With the increase in the number and size of computer learner
corpora in the field of Second Language Acquisition, there is a growing
need to automatically analyze the language produced by learners. How-
ever, the computational tools developed for natural language processing
are generally not considered as appropiate because they are designed to
treat native language. This paper analyzes the reliability of two part-
of-speech taggers on second language Spanish and investigates the most
frequent tagger errors and the impact of learner errors in the performance
of the taggers.

1 Introduction

An increasing number of learner corpora are being compiled in the field of Second
Language Acquisition. Such corpora, defined as electronic collections of spoken
or written texts produced by foreign or second language learners [1], require
linguistic annotation that enables the study of learner language in a systematic
way. However, most of the work on annotating learner texts has traditionally
focused on the (generally manual) annotation of errors [2], and little attention
has been given to the purely linguistic annotation, irrespectively of errors. With
the increase in the number and size of corpora, such annotation is becoming
even more necessary to study not only misuse of words but also other aspects of
learner language such as the under- and overuse of words and structures.

For these reasons, it is necessary to study how state-of-the-art natural lan-
guage processing tools such as part-of-speech (PoS) taggers can be (re)used in
the learner domain [3, 4]. The aim of this paper is to evaluate the performance
of two PoS taggers on second language Spanish and investigate what are the
most frequent tagger errors and how they are related to learner errors. For the
evaluation, we have tagged a sample of 5,000 words of learner language with
two Spanish PoS taggers. First, we have manually revised the PoS tags assigned
by them and second, we have manually annotated the sample with learner er-
ror information. Finally, we have extracted quantitative information about the
taggers and the learners’ performance.

The paper is organized as follows. Section 2 deals with the type of texts and
taggers used for the evaluation and makes a distinction between two types of

A. Gelbukh (Ed.): CICLing 2011, Part I, LNCS 6608, pp. 214–226, 2011.
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information encoded in the manual revision: tagger errors and learner errors.
Section 3 deals with the results of the evaluation: the precision of the taggers,
the analysis of the taggers’ and learner errors, and the impact of learner errors
on PoS precision. Finally, section 4 summarizes the conclusions.

2 Evaluation

2.1 The Sample File

We have extracted the texts for the evaluation from the CORANE corpus [5],
which contains 1,091 Spanish essays written by 321 learners with different pro-
ficiency levels and different native languages.

Our study deals with texts written by Japanese learners with an intermediate
level of Spanish.1 The CORANE corpus contains essays from 19 Japanese learn-
ers with a B1 level and 9 learners with a B2 level, and we randomly selected one
essay from each learner, which results in a text sample made up by 28 essays
written by 28 different learners, totallying approximately 5,000 words (excluding
punctuation).2

2.2 The PoS Taggers

The sample was tagged with two Spanish PoS taggers: FreeLing [6] and
HISPAL [7].3 Tested on native language, FreeLing offers a state-of-the-art accu-
racy of about 97%, and HISPAL, of 99%.

With regard to the strategies used by the taggers, FreeLing provides two al-
gorithms for PoS tagging with a similar performance: an HMM trigram model
and a relaxation labelling model (the latter enables the use of hand-written rules
together with the statistical models). For the analysis of our sample, the former
model was used. FreeLing Spanish dictionary was built by hand, and contains
over 81,000 forms corresponding to more than 7,100 different combinations of
lemma and PoS.

HISPAL is a rule-based parser with a modular architecture. However, unlike
other rule-based systems, the morphological analysis is carried out by means

1 The levels B1 and B2 of the Common European Framework of Reference for Lan-
guages.

2 The topics of the essays are: My first impression of Spain (1 essay); My holidays (3);
Wishes for the year 2001 (3); My life in Spain (2); Write about a person you know
(2); Dialogue (1); Recipe (3); What I would do if I were invisible (3); November 1st
(1); A Japanese Wedding (1); A Party (3); My opinion about a piece of news (3);
Big Brother (1); Free time (1).

3 We did not test the performance of the Spanish TreeTagger [8] because the informa-
tion it provides is not easily comparable to the other taggers. TreeTagger’s tagset
uses broad categories with little morphological information: it lacks gender and num-
ber information for nouns and adjectives, and mode, tense and person information
for verbs.
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of a lexicon-free morphological analyzer. Specifically, HISPAL “uses a full form
lexicon only for about 220 closed class tokens, while everything else is treated
analytically through affix classes with or without stem conditions. [...] Which of
these alternatives are real Spanish words will be decided by lexicon look-up.”
The lexicon was created with a bootstrapping method, from corpora, and finally
a large list of lexeme strings was manually checked.

With regard to the backfall strategies and heuristics they use to treat unknown
words or contexts (typical of learner texts), in FreeLing unknown words “are
handled via conditional probabilities of PoS tags given word suffixes, so that
the most suitable PoS tags are proposed for each word not included in the
morphological dictionary.” In HISPAL, if one or more of the suggested readings
for a word have a lexicon-support (extracted from corpora) for their roots, other
readings are discarded.

With regard to the tagset used by the taggers, both assign not only word class
but also morphological information like gender, number, person, case, tense and
mode. Every tagger uses a slightly different tagset, and we evaluated the accuracy
of the taggers with respect to their own tagset.

Table 1. Morphological information for inflecting word classes in FreeLing and HISPAL

Word class Gender Number Person Case Tense Mode

Nouns (Common) • •
Verbs (Finite) • • •
Verbs (Participle) • •
Adjectives • •
Pronouns (Determiners) • •
Pronouns (Personal) • • • •
Pronouns (Independent) • •

The size of the tagsets, which may be related to the taggers’ accuracy, is dif-
ficult to quantify. However, each tagger encodes similar information, and during
the revision of the sample we found that the information provided by each tagger
is easily comparable. Both provide morphological information for inflecting word
classes (nouns, verbs, adjectives, determiners and pronouns). Specifically, both
specify the gender (masculine or feminine), number (singular or plural), person
(first, second or third), case (nominative, accusative, dative or genitive), tense
(present, imperfect, future, past or conditional) and mode (indicative, subjunc-
tive, imperative, infinitive, gerund or participle), as shown in table 1. Adverbs,
conjunctions, prepositions, interjections and numerals are non-inflecting word
classes and then only receive a word class tag.

The main difference between the taggers’ tagsets are the following. On the
one hand, FreeLing provides information about the type of adjective, adverb,



An Evaluation of Part of Speech Tagging 217

determiner and pronoun in the PoS tag,4 while HISPAL encodes this informa-
tion as secondary lexicon information which is not the target of this study.5 On
the other hand, HISPAL provides information about the number and gender of
proper nouns while FreeLing does not, and classifies the traditional word classes
Determiner and Pronoun into three classes: Determiner (defined as inflecting pro-
nouns, that can be used as prenominals), Personal (defined as person-inflecting
pronouns) and Independent pronouns (defined as non-inflecting pronouns, that
can not be used as prenominals).

2.3 Tagger Errors vs. Learner Errors

First, we annotated the fragment of 5,000 words with each tagger, and merged
the two tagged files into one file, with one word per row, where the columns
contain the form, the lemma and the PoS tag assigned by each tagger. Second,
we manually revised the file to look for:

(i) Tagger (PoS) errors : when the PoS tag assigned by the parser is wrong we
have added the correct tag (according to each tagger’s guidelines), based on
the stem, the morphology and the distribution of the word.

(ii) Learner errors: when the word used by the learner is wrong from the native
point of view we have added information about the type of error (mispelling,
wrong ending, wrong distribution, etc.).6

While (i) informs us about the accuracy of the parser, (ii) informs us about the
accuracy of the learner. It is important to note the different meaning that the
word “wrong” or “error” has in each case. In (i), “wrong” means that the PoS is
not appropiate for the word used by the learner, wether the word is “correct” or
not from the native point of view. For example, in (1) the tagger assigns a PoS of
proper noun to the word mi ‘my’, but in fact this word is a possessive pronoun
(the tagger probably assigned the proper noun tag incorrectly because the word
appears at the beginning of the sentence). In this case, the human annotator
adds the correct PoS tag to the word.

(1) Mi idea ha cambiado mucho.
My idea has changed a lot.

4 Adjectives can be qualifying or ordinal. Adverbs can be general or negative. De-
terminers can be demonstrative, possesive, interrogative, exclamative, indefinite or
article. Pronouns can be personal, demonstrative, possessive, indefinite, interroga-
tive, relative or exclamative.

5 The secondary tags in HISPAL contain additional information about the word: not
only word class “type” but also valency and semantic prototype information. Due to
the amount of information, and to keep the tagsets as comparable as possible, we
decided to take into account only the primary PoS tag.

6 Our error classification is an adaptation of [9]. It should also be kept in mind that
error annotation always contains an element of subjectivity, as the very notion of
error is far from clear-cut [10].
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However, in (2) muchísimos (masculine plural determiner, ‘a lot of’) is cor-
rectly analyzed as a masculine plural determiner by the tagger, even though in
this context (followed by the feminine noun habitaciones, ‘rooms’), there is a
gender agreement error and the determiner should be feminine (muchísimas)
from a native point of view.

(2) Este palacio es muy grande y tiene muchísimos habitaciones [...].
This palace is very big and has a lot of rooms

On the contrary, in (ii), “wrong” means that, from the native point of view,
there is an error in the lexical stem, the morphology or the distribution of the
word. For example, in (2), there is a learner error in the word muchísimos, which
should be feminine instead of masculine, so the human annotator adds a tag that
encodes the type of error (in this case, it is a Distribution-Morphology mismatch
error).

This two-layered model can be also explained in terms of “form” (i.e. the
learner language ’as is’) and “function” (an interpretation of the intended mean-
ing of the learner). The goal of the PoS tagger is to analyze the learner language
as is. Given this type of PoS annotation, one can build another module that
analyzes the intended meaning or construction, that is, learner error annotation
(like the gender mismatch in (2)), or other type of linguistic annotation.

While PoS errors and learner errors are related and some times coincide, in
approximately half of the tokens in our sample PoS errors do not correspond to
learner errors, and learner errors don’t result in PoS errors, as one may expect
(section 3.4).

3 Results

3.1 Precision of the Taggers

After manually revising the text sample, we calculated the precision of the
two taggers, which is considerably high: FreeLing has a precision of 92.6% and
HISPAL, of 95.0%.7Therefore, the taggers experiment a decrease of between 4.4
and 4 points with respect to their documented accuracy on native texts (which
is 97% and 99%, respectively).

However, to establish a more fair comparison between the taggers’ precision
on learners texts with respect to native texts, we corrected our learner texts
changing them into something a native speaker would say, but trying to keep
the text as close to the original as possible. We then tagged and corrected the
7 We calculated the precision of the taggers by diving the number of correct PoS tags

by the number of tokens in the sample excluding punctuation (5,101 tokens). Even
though during the analysis the taggers merge and split some words differently, the
number of tagged tokens is the same in the two samples because we aligned the two
files. This means that the merged tokens are counted as correct as many times as
the number of words they contain, in the same way as the split tokens. When both
taggers merge the words in the same way, they are counted only once.
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texts and the precision of the taggers was 96.1% for Freeling and 98.1% for
HISPAL (exactly 0.9 points lower than the documented precision), which allows
us to say that the taggers show a slightly lower performance when they deal with
learner texts: in our sample, their precision decreases between 3.1 and 3.5 points
with respect to the near native version of the same texts.

This means that, in our sample, both taggers succeeded to assign a correct
PoS tag to more than half of the tokens containing a learner error.8 As
table 2 shows, with FreeLing 64.9% of the tokens with learner errors are cor-
rectly assigned a PoS tag, and with HISPAL, 69.4%. These figures are consid-
erably high taking into consideration that both taggers assign not only a word
class but also morphological information to every token.

Table 2. PoS precision with respect to learner errors

PoS error No PoS error Total

FreeLing Learner error 35.1 64.9 100.0
No learner error 5.4 94.6 100.0
Total 7.4 92.6 100.0

HISPAL Learner error 30.6 69.4 100.0
No learner error 3.1 96.9 100.0
Total 5.0 95.0 100.0

The slightly different performance of the two taggers can be related to the
different strategies employed to deal with faulty input (section 2.2) but also to
the different treatment of inherently ambiguous morphological forms.

In Spanish, several verb forms are systematically ambiguous. Specifically, the
first and third person singular of several verbal tenses have the same form (the
indicative and subjunctive imperfect tense, the conditional tense and the sub-
junctive present tense). The particle se is also a highly ambiguous form (it can
be an impersonal mark, part of a pronominal pronoun or a pronoun).

While FreeLing tries to disambiguate those systematically ambiguous forms,
HISPAL assigns an underspecified tag to them (additional information is in-
cluded in secondary tags). This may be one of the reasons why the FreeLing
tagger has a slightly lower accuracy in our sample compared with HISPAL. In-
deed, the majority of the errors that affect verbal morphology and the particle
se in FreeLing are not related to learner language, and actually do not co-occur
with learner errors. If we substracted those cases from FreeLing errors, the ac-
curacy of the tagger would raise from 92.6% to 94.3%, a figure that is very close
to the 95.0% achieved by HISPAL.

8 However, when the tagger manages to assign a correct PoS tag to an unknown word,
the lemma assigned is generally the same word form (generally an inflected form,
instead of the dictionary form), which may be problematic for later processing that
requires information about the lemma of the words.
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3.2 Analysis of the Taggers’ Errors

With regard to the type of PoS information that is assigned wrongly in our
learner texts, the most frequent error is word class confusion, which gives account
of 92.3% of the tagger errors in HISPAL and 73.9% in FreeLing. The errors in
the morphological features, that is, in-class errors, concern mainly the verb, since
this is the word class with a higher inflecting potential (table 1).

The precision and recall of the different PoS tags for each word class is shown
in table 3.9 The tag with the lowest precision is the Proper Noun tag (58.7%), in
the FreeLing sample (apart from the Interjection tag in HISPAL, which appears
only once). In addition to that, the Adjective and Independent Pronoun tags have
a low precision in both taggers. As for the two most frequent tags (Common
Noun and Verb), interestingly, the Verb tag has a low precision in FreeLing,
while the Common Noun tag has a low precision in HISPAL. This seems to
indicate that the distinction between these two word classes is problematic and
taggers are inclined towards one of the two readings in favour of the other, as we
will see in table 4. With regard to recall, in FreeLing the Common Noun, Verb
and Adverb PoS tags have a significant lower recall. HISPAL follows the same
tendency except for the fact that the Adjective, instead of the Adverb, is the tag
with the lowest recall.

Table 3. Recall and precision of PoS tags (word class)

FreeLing HISPAL

Word class TP+FP TP FN Recall Precision TP+FP TP FN Recall Precision

Common Noun 964 921 86 91.5 95.5 1116 957 69 93.3 85.75
Verb 1041 923 118 88.7 88.7 1005 956 61 94.0 95.12
Pronoun-Det. 663 654 12 98.2 98.6 745 729 16 97.9 97.85
Preposition 627 621 12 98.1 99.0 621 619 10 98.4 99.68
Adverb 325 317 43 88.1 97.5 401 392 13 96.8 97.76
Adjective 275 235 14 94.4 85.5 292 246 31 88.8 84.25
Coordinating Conj. 233 233 2 99.1 100.0 234 233 0 100.0 99.57
Pronoun-Personal 263 246 15 94.3 93.5 227 217 12 94.8 95.59
Subordinating Conj. 185 180 20 90.0 97.3 160 151 18 89.3 94.38
Proper Noun 218 128 6 95.5 58.7 135 114 9 92.7 84.44
Pronoun-Indep. 110 91 14 86.7 82.7 82 69 7 90.8 84.15
Numeral 65 64 0 100.0 98.5 82 81 0 100.0 98.78
Interjection 7 5 5 50.0 71.4 1 0 9 0.0 0

9 We calculated the precision of every tag by diving the number of times a given tag
was assigned correctly (TP) by the number of times the tag was assigned (TP+FP).
Accuracy was calculated by dividing the number of times a given tag was assigned
correctly (TP) by the same number plus the number of times the tag should have
been assigned but it was not (FN).
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On the other hand, the tags that contribute the most to the overall error rate
in FreeLing are verbs (33.0%) and proper nouns (25.1%), while in HISPAL are
common nouns (46.4%), verbs (14.3%) and adjectives (13.4%).10

Table 4 shows the five most common error pairs in each sample. For FreeLing,
the most frequent error concerns the morphological features of the verb. While
this pair is also considerably frequent in the HISPAL sample, in FreeLing this
is mostly due to the design of the tagger (that tries to disambiguate inherently
ambiguous forms) and not to learner errors (that only explain 23.2% of the
cases). The same happens with the ambiguous Spanish particle se.

Table 4. The five most frequent PoS error pairs (word class) and their co-ocurrence
with learner errors

False PoS True PoS Freq % L error % L error

FreeLing Verb Verb 82 21.6 19 23.2
Proper noun Common noun 40 10.5 9 22.5
Adjective Common noun 22 5.8 4 18.2
Se (impersonal) Se (verbal) 21 5.5 0 0
Common noun Verb 19 5 8 42.1

HISPAL Verb Common noun 24 9.2 8 33.3
Common Noun Verb 22 8.4 19 86.4
Adjective Common noun 19 7.3 11 57.9
Common noun Adjective 19 7.3 6 31.6
Verb Verb 13 5.0 8 61.5

The second most frequent PoS error in the FreeLing sample consists on the
confusion between proper and common nouns. This agrees with the fact that the
Proper Noun tag is the one with the lowest precision in FreeLing (table 3). In
both samples the confusion between nouns and verbs and nouns and adjectives,
in both directions, is very frequent.

With regard to the relationship between tagger and learner errors (section
3.4), we can see in the last column of table 4 that FreeLing’s errors can be at-
tributed mainly to the tagger’s performance itself, while in HISPAL the tagger’s
errors and learner errors are more strongly related.

3.3 Analysis of Learners’ Errors

As expected, the accuracy of the taggers decreases when analyzing learner lan-
guage. In our sample, FreeLing error rate is 7.4% and HISPAL error rate is 5%.
To measure the effect that learner language has on the accuracy of the taggers,
we manually tagged our sample with learner error annotation.

10 We calculated each tag’s contribution to the error of the tagger by dividing the
number of times a given tag was assigned incorrectly by the total number of tag
errors.
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Our sample contains 359 learner errors at the word level, that is, 7% of words
are wrong from a native point of view.11 As shown in table 5, the most frequent
error type is distribution-morphology mismatches,12 followed by misspellings,
accents, spare words, errors related to punctuation marks, uppercase or lowercase
letters, stem-distribution mismatches13 and wrong word choice.

Table 5. Frequency of learner errors

Error Freq. %

Distribution-Morphology mismatch 113 31.5
Misspelling 79 22.0
Accent 37 10.3
Spare word 37 10.3
Punctuation mark or upper/lowercase 35 9.7
Stem-Distribution mismatch 18 5.0
Word choice 13 3.6

The occurence of learner errors is specially frequent in some word classes,
as table 6 summarizes. In our sample, one out of every ten verbs, adjectives
and personal pronouns contain some kind of learner error. Verbs and personal
pronouns are probably the most complex word classes from the morphological
point of view (they are the most inflecting word classes, as seen in table 1), and
as a result they are the most difficult and error-prone for learners. In the case
of the verb and the adjective, the most common error is the mismatch between
distribution and morphology and for the personal pronouns it is the spare use
of such pronouns. Proper nouns are also a common source of errors, due to the
use of uppercase or lowercase letters and punctuation signs in an unconventional
way.

3.4 The Impact of Learner Language on PoS Precision

The relationship between tagger errors and learner errors is shown in table 7,
where we can see that 33.2% of the PoS errors in the FreeLing sample co-occur
with learner errors, while in HISPAL this percentage raises to 43.0%. Therefore,
2.5 and 2.2 points of the error rate in FreeLing and HISPAL, respectively, can be
attributed to learner errors directly. Even though we cannot measure it in our
11 We did not annotate errors consisting of a missing word, wrong word order or gram-

matically correct but semantically unnatural constructions. The annotation of these
phenomena would give a higher learner error rate.

12 Defined as the cases where “the lexical word class specification for the stem accords
with its distribution and morphology, but the inflectional morphology does not match
the distribution, i.e. the grammatical context” [9]. This is the case of agreement errors
in gender and number, for example.

13 Defined as the cases where “a lexeme of a given word class appears in a distributional
slot which is not available to instances of that word class”.
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Table 6. Word classes and frequency of learner errors

Word class (TP+FN) Learner error %

Common Noun 1007 57 5.7
Verb 1041 105 10.1
Pronoun-Determiner 666 48 7.2
Preposition 633 21 3.3
Adverb 360 18 5.0
Adjective 249 27 10.8
Coordinating Conjunction 235 0 0.0
Pronoun-Personal 261 28 10.7
Subordinating Conjunction 200 10 5.0
Proper Noun 134 16 11.9
Pronoun-Independent 105 5 4.8
Numeral 64 1 1.6
Interjection 10 2 20.0

sample, learner errors may also affect the performance of the parser indirectly,
when a learner error causes a tagger error that in turn causes another tagger
error. If for example a given word in the text has to be disambiguated by means
of a contextual rule that includes a neighbouring wrong tag, the rule is likely to
assign another wrong tag to the word.

Table 7. Frequency of PoS errors and learner errors

PoS error No PoS error Total

Freq. % Freq % Freq. %

FreeLing Learner error 126 33.2 233 4.9 359 7.0
No learner error 254 66.8 4488 95.1 4742 93.0
Total 380 100 4721 100 5101 100

HISPAL Learner error 110 43.0 249 5.1 359 7.0
No learner error 146 57.0 4596 94.9 4742 93.0
Total 256 100 4845 100 5101 100

Some learner errors co-occur more frequently than others with taggers’ er-
rors. As for the word classes affected, if we go back to table 4, we can see in the
last column that some PoS errors co-occur very often with learner errors, while
others have a low co-occurency. Interestingly, in both taggers the pairs Common
Noun-Verb and Verb-Common Noun (that is, the confusion between verbs and
common nouns) are the pairs that co-occurs with learner errors more frequently
(in 42.1% and 86.4% of cases in FreeLing and HISPAL, respectively). This may
indicate that the distinction between verbs and nouns are specially vulnerable
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to learner errors. The next pair that co-occurs more often with learner errors
is the Verb-Verb pair, that is, the errors in the morphological features of the
verb. The different verb forms are also vulnerable to errors. For example, for the
tagger the difference between subjunctive present and indicative past is only the
absence or presence of an accent in the verb ending. Then, the accentuation of
the verb is critical to achieve a correct morphological interpretation.

As for the different type of learner errors considered, as table 8 shows, in our
sample, the errors that have a bigger impact on the performance of the tagger
are the less “linguistic” ones: those related to accents, the misuse of punctuation
marks or uppercase or lowercase letters, and misspellings. For the first two,
the taggers have a precision of around 30% (HISPAL has a considerably higher
precision (60%) when dealing with the latter type of errors). For misspelling,
both taggers have a precision of around 50%.

Table 8. Most frequent learner errors and precision of the taggers

Tokens % FreeLing % HISPAL %

Distribution-Morphology mismatch 113 31.5 94 83.2 98 86.7
Misspelling 79 22.0 40 50.6 41 51.9
Accent 37 10.3 12 32.4 10 27.0
Spare word 37 10.3 37 100.0 37 100.0
Punctuation, upper/lowercase 35 9.7 12 34.3 21 60.0
Stem-Distribution mismatch 18 5.0 17 94.4 16 88.9
Word choice 13 3.6 12 92.3 13 100.0

Interestingly, Distribution-Morphology mismatches, which is the most com-
mon type of error in our sample, receive a correct tag in more than 80 of cases,
and Stem-Distribution mismatches, in more than 88%. The wrong word choice,
as well as spare words, as expected do not interfere with tagger’s precision.

The different performance of the taggers when dealing with learner language
may be related to the backfall strategies and heuristics they use to treat unknown
words or contexts (section 2.2). However, it is clear that their results could be
improved with the help of an ortographic correction module designed to deal with
learners errors related to accents, punctuation, the use of upper- or lowercase
and misspellings.

4 Conclusions

We have evaluated the performance of two Spanish PoS taggers on Spanish
learner texts. The taggers were designed to analyze native texts and employ
different strategies to deal with faulty input. The results show a considerable
high precision of both taggers dealing with texts written by intermediate-level
learners of Spanish whose mother tongue is Japanese. The FreeLing tagger has a
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precision of 92.6%, and the HISPAL tagger, of 95.0%. In addition to that, part of
the differences between the taggers can be due to the fact that FreeLing tries to
disambiguate systematically ambiguous forms (if we substract those cases from
the error rate, its precision raises to 94.3%).

The PoS tag with the lowest precision is the Proper Noun tag, in the FreeLing
sample, due to punctuation and upper- or lowercase misuse. Next, the Verb
has a low precision in FreeLing, while the Noun tag is the tag with the lowest
precision in HISPAL. As for learner errors, in our sample 7% of words are wrong
from a native point of view, for a variety of reasons: distribution-morphology
mismatches is the most common type of error, followed by misspellings and
accents, which together give account of two thirds of learner errors.

With regard to the relationship between PoS errors and learner errors, in HIS-
PAL the former co-occur with learner errors in 43.0% of cases, and in FreeLing,
in 33.2%. The confusion between verbs and common nouns is specially affected
by learner errors, which indicates that the distinction between these two word
classes is specially vulnerable to learner errors. The type of learner errors that
have a bigger impact on the taggers’ performance are ortographic errors like ac-
cents, punctuation, the use of upper- and lowercase letters and misspelling, while
the taggers can deal reasonably well with grammatical errors like distribution-
morphology or stem-distribution mismatches. Other type of errors, like the use
of spare words or the wrong word choice does not interfere with the taggers’
performance.

Overall, both taggers succeeded to analyze most of the learner errors. FreeLing
correctly analyzed 64.9% of the words with learner errors, and HISPAL, 69.4%.
However, given the influence of ortographic errors on their performance, their
results could be improved with the help of an ortographic correction module.

To sum up, our evaluation shows that PoS taggers developed for native lan-
guage can deal reasonably well with learner language and the learner errors
frequently contained in it. While there is still room for improvement, we advo-
cate for the use of PoS taggers for the analysis of (intermediate-level) learner
language analysis, if possible with an ortographic module that detects errors
in accents, punctuation and upper- or lowercase letters, which are the type of
learner errors that cause more tagger errors. Such an ortographic module may
be useful not only for learner input but also for native input, where ortographic
rules are not stable either.

The annotation of learner corpora with PoS information will facilitate the
study of learner language [11, 12] as well as the development of new tools for
automatic error-tagging or Intelligent Computer Assisted Language systems [13].
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Abstract. In this paper we introduce a new conjugating tool which gen-
erates and analyses both existing verbs and verb neologisms in Spanish.
This application of finite state transducers is based on novel linguis-
tically motivated morphological rules describing the verbal paradigm.
Given that these transducers are simpler than the ones created in previ-
ous developments and are easy to learn and remember, the method can
also be employed as a pedagogic tool in itself. A comparative evaluation
of the tool against other online conjugators demonstrates its efficacy.

1 Introduction

Although the literature about online Spanish conjugators is scarce, it does reveal
that some are fully memory based (DRAE)1 while others rely on finite state
morphological rules [17]2.

To the best of our knowledge, the goal of most of the work related to verbal
morphology was not the creation of an end-user tool such as a conjugator. How-
ever, both machine learning and rule-based approaches have been taken into
consideration when processing inflectional morphology. While instance based-
learning algorithms can induce efficient morphological patterns from large train-
ing data [2,1,5,13], approaches using finite state transducers [19,8,6] do enable
the implementation of robust morphological analyzer-generators which are suc-
cessful in handling concatenation phenomena [4].

The Onoma conjugator3 was implemented as a cascade of finite state transduc-
ers that implements a decision tree. The use of finite state transducers (FSTs)
� While developing this work the first author’s institution was Molino de Ideas s.a.
1 Conjugator from the Dictionary of the Royal Spanish Academy (DRAE). Available

at: http://buscon.rae.es/draeI/
2 The conjugator developed by Grupo de Estructuras de Datos y Lingǘıstica Com-

putacional (GEDLC) at the University of Las Palmas de Gran Canaria, which is
available at: www.gedlc.ulpgc.es/investigacion/scogeme02/flexver.htm

3 Developed and funded by Molino de Ideas. http://conjugador.onoma.es
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provides the possibility of generating verbal paradigms as well as the reverse
process: the analysis of inflectional verb forms [9]. Further, the use of a cascade
structure facilitates the implementation of ordered alternation rules [10,11].

The remainder of the paper is structured as follows: the data and methodology
used in this study is explained in Section 2, while Section 3 describes Spanish
verbal morphology. Section 4 discusses the architecture of the system. A com-
parative evaluation of the system against other online conjugators is presented
in Section 5. Finally, in Section 6, conclusions are drawn.

2 Data and Methodology

A database named the MolinoIdeas Verb Conjugation Database (MIVC-DB) was
used for the modeling process. It contains 15,367 verbs (plus their correspond-
ing verbal paradigms) including all the verbs registered in the Royal Spanish
Academy Dictionary (11,060 verbs) [15], the Spanish Wikipedia, and the verbs
found in a collection of 3 million journalistic articles from newspapers written
in Spanish from America and Spain4.

Our conjugator differs from the other Spanish processors in its architecture
[17] (the GEDLC conjugator relies on the interaction of a segmentation program,
three lists containing prefixes, verbal endings and pronouns, and two modules:
one for the verbal endings and another for obtaining required external informa-
tion) and in the design of the transducers, which are not based on concatenation
rules [19] (in this FST model, a specific ending is added to 62 conjugation classes,
giving as a result almost 150 verb-stem final states), but on rules which modify
a hypothetical regular verb form, providing the possibility to extend such rules
for the conjugation and analysis of verb neologisms in Spanish.

When designing the rules and patterns for each FST, the Spanish verbal
inflectional paradigm was analyzed in detail from a linguistic point of view. This
analysis led to the derivation of a simpler description of the inflectional verb
paradigm which can be fully expressed (except for six verbs, see Section 4) using
just nine patterns and a set of rules, as opposed to approximately one hundred
and twenty conjugation models as in other approaches [7,18]. Given that the
FSTs used in this system are easy to learn and remember, the description can
be employed as a pedagogic tool in its own right by students of Spanish as
a foreign language. It helps in the learning of the Spanish verb paradigm since
currently existing methods (e.g. [14,12]) do not provide guidance on the question
of whether verbs are regular or irregular. This is due to the fact that the system
can identify the nature of any possible verb by reference only to its infinitive
form5 following just seven steps. [16].

For the design of the algorithm, in order to validate the rules and patterns
extracted from the analysis of the MIVC-DB, an error-driven approach was
taken.
4 Newspapers with the major representation in our corpus are: El Páıs, ABC, Marca,

Público, El Universal, Claŕın, El Mundo and El Norte de Castilla.
5 In some rare cases, external information which the system also provides is required,

see Section 4.
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3 Spanish Verb Morphology

In Spanish, inflected verb forms exist for the nineteen tenses/moods as shown
in Table 16.

Table 1. Inflected forms from the verbal paradigm

Tense/mood Examples, verb ayudar (to help)

present tense/indicative ayudo, 1st person singular
present tense/subjunctive ayude, 1st person singular
present tense/imperative ayuda, 2nd person singular
preterite imperfect tense/indicative ayudaba, 1st person singular
preterite imperfect tense/subjunctive 1 ayudara, 1st person singular
preterite imperfect tense/subjunctive 2 ayudase, 1st person singular
preterite perfect composed tense/indicative he ayudado, 1st person singular
preterite perfect composed tense/subjunctive haya ayudado, 1st person singular
past perfect tense/indicative ayudé, 1st person singular
past perfect composed tense/subjunctive hube ayudado, 1st person singular
preterite pluscuanperfect tense/indicative hab́ıa ayudado, 1st person singular
preterite pluscuanperfect tense/subjunctive 1 hubiera ayudado, 1st person singular
preterite pluscuanperfect tense/subjunctive 2 hubiese ayudado, 1st person singular
future tense/indicative ayudaré, 1st person singular
future tense/subjunctive ayudare, 1st person singular
future perfect tense/indicative habré ayudado, 1st person singular
future perfect tense/subjunctive hubiere ayudado, 1st person singular
conditional simple tense/indicative ayudaŕıa, 1st person singular
conditional perfect tense/indicative habŕıa ayudado, 1st person singular

Except for the imperative, each tense possesses seven inflected forms corre-
sponding to grammatical person. Furthermore, there are two infinitives and two
gerunds (present and perfect) plus four forms of the participle form, depending
on its number/gender variations. The potential therefore exists for up to 140
different forms per verb.

A Spanish verb consists of its stem, tense-mood inflections and person-number
inflections. Most of the complexity resides in four factors:

1. Both kinds of inflection (tense-mood and person-number) can sometimes be
realized by the same morphological segment;

2. the stem can be realised by different variations, i.e. the same verb can have
more than one stem;

3. prefixes and suffixes can be added to the stem; and
4. the verb can be irregular which means that either the stem, the inflections

or both are different from the hypothetical regular paradigm of conjugation.

Of 15,367 verbs, 4,225 are irregular (27.5 %). Moreover, 26.8% of the verbal
neologisms in Spanish are irregular [16]. This group of irregular neologisms follow
6 Throughout the paper, the solidus will be used when denoting tense/mood combi-

nations.
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the inflectional patterns of established verbs and conflates genuine paradigmatic
irregularity and orthographic issues regarding grapheme realization on stem final
consonants among others, shown in Section 4.

Most morphological processing systems are based on combining stems with
inflections [19,7,12]. By contrast, our verbal paradigm description is based on
patterns and transformational rules. Here, the term rule is used to denote an
alteration that affects the hypothetical regular form of an irregular verb to gen-
erate the irregular form that matches with the appropriate irregular conjugation.
Such rules are applied to a pattern which is the set of inflected forms affected
by the irregularity rules (see subsection 4.1) in the verbal conjugation paradigm
of the particular verb.

4 System Architecture

The system is composed of two modules, which employ finite state machines.
The first one (Classifier) is designed to recognize the verb form and extract
the information needed for its conjugation or analysis. This information is: (1)
the word from which the verb form derives (if there is one) and (2) some formal
information on the verb form which is derived via seven finite state automata
(regular expressions) which detect wether the verb is regular or irregular based
on its ending [16] or, in some cases, from the word that the verb is derived
from. This module makes use of two additional purpose-built submodules: one
to detect the word from which the verb is derived and another to identify the
stress pattern of the verb. These two submodules are used to detect the verb
root and to provide information that will later be exploited for its inflection or
analysis. When the verb form is irregular, this information will be used to select
the irregularity rules and patterns to be applied (see subsection 4.1).

By means of the first module, the verbs are classified into two groups [3]:
(a) regular verbs and (b) irregular verbs. When identified, irregular verbs are
further divided into (b.1) the so-called Magnificent verbs, traer (to bring), valer
(to be worth), salir (to go out), tener (to have), venir (to come), poner (to put),
hacer (to do), decir (to say), poder (can), querer (to want), saber (to know),
caber (to fit), andar (to walk), and their derivations; (b.2) verbs which undergo
diphthongization or a vowel replacement in their root; (b.3) verbs which are
affected by diacritic rules of irregularity; (b.4) verbs which suffer orthographic
changes in their endings; (b.5) verb forms whose root ends in a vowel and will
undergo heterogeneous rules of irregularity, and finally; (b.6) the irreducible
verbs which are a set of six verbs whose conjugations are stored in memory:
the auxiliary verb (haber, (to have)), the copulative verbs, ser (to be) or estar
(to be), and the monosyllabic verbs: ir (to go) dar (to give) and ver (to see).
Apart from the irreducible verbs, the rest of the verbal paradigm system is based
entirely on rules and patterns implemented in Module 2 (Modeling).

Module 2 is composed of two conjugation modules. The first module (2.1
Hypothetical verb form) conjugates –or analyses– the verb form as if it were
regular by concatenating the root with the corresponding inflections depending
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on its tense, mood, person and number. The second conjugation module (2.2
Modifying the hypothetical verb form) – is composed of several finite state
machines. For irregular verbs, it first detects the type of patterns and rules of
irregularity that should be applied to the hypothetical verb forms generated
by Module 2.1. Next, it applies the selected irregularity rules and patterns to
generate the correct irregular paradigm. There are a total of 40 rules and seven
patterns, plus two additional ones for the Magnificent verbs.

4.1 Module 2.2: Modifying the Hypothetical Verb Form

Patterns: Each pattern is composed of the set of grammatical person, tense,
and number forms which are affected by the associated rule. The patterns are
correlated with groups of verbs that satisfy a set of formal conditions. The names
of the patterns and the characteristics of the inflectional verbs affected by them
are stated below:

(1) Pattern To: recognizes verbs whose root contains the stressed syllable.

(2) Pattern Te: for verbs whose inflection contains the stressed syllable.

(3) Pattern Dei: recognizes verbs whose inflections begin with the vowels e or i.

(4) Pattern Dao: recognizes verbs whose inflections begin with the vowels a or o.

(5) Pattern Di: recognizes verbs with a stressed inflection that begins with an un-

stressed i.

(6) Pattern Dti: recognizes verbs whose inflections begin with a stressed i.

(7) Pattern Dt-i: is used to recognize verbs with a stressed inflection that begins with

any vowel except i.

Depending on the pattern and the formal composition of the verb form, a spe-
cific irregularity rule is activated by means of one of the FSTs in Module 2.2:
modifying the hypothetical verb form.

To illustrate: pattern Dei activates the irregularity modifications (subsec-
tion 4.1) which always affect third person singular and first and third per-
son plural forms of the present tense/imperative, all the person forms of the
present tense/subjunctive and the first person singular of the preterite per-
fect simple tense/indicative. For example, the form escenifique from escenificar
(to stage) substitutes the letter c by qu in the first person singular present
tense/subjunctive form.

Similarly, the irregularity rules (see subsection 4.1) activated by the pattern
Di will only affect the gerund, the third person singular and the first person
plural forms of the preterite perfect simple tense/indicative plus all the gram-
matical person forms of the preterite imperfect tense/subjunctive and the future
tense/subjunctive. To illustrate, the verb form cayere from verb caer (to fall)
adds a y between its root and the inflections in all person forms of the preterite
imperfect/subjunctive and the future/subjunctive tenses/moods.

The Magnificent verbs are recognized using two specific patterns:

(8) Pattern Fc: for all the grammatical person forms of future and conditional tenses/

indicative moods.
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(9) Pattern ı́4: allows recognition of verbs for all person forms belonging to preterite

perfect simple tense/indicative mood and preterite imperfect/subjunctive and the

future/subjunctive tenses/moods.

Irregularity Transformational Rules: Finally, Module 2.2 applies the per-
tinent irregularity modifications over the hypothetical regular forms generated
by Module 2.1. in order to generate the corresponding irregular verb form.

The rules perform one of the following three types of alteration:

– substitution, (e.g. z is substituted by c in pattern Dei, to derive the first
person singular present tense/subjunctive inflected form trace from trazar
(to trace));

– addition, (e.g. z is added in the root for verb forms recognized using the
pattern Dao, as illustrated when the first person singular present tense/
indicative form conozco is derived from conocer (to know));

– deletion, (e.g. the vowel i is removed from the inflections of verbs recognized
by means of the Di pattern, as illustrated when the first person singular
present tense/indicative form taño is derived from tañer (to strum)).

Overall, 40 irregularity rules have been implemented. They are divided into five
groups:

(1) Consonantal orthographic transduction rules: These comprise 9 FSTs which

modify the verb in order to ensure that the derived form obeys Spanish ortho-

graphic conventions. These rules are activated for verbs recognized using the pat-

terns Dei, Dao and Di (e.g. one rule of this type enables the first person singular,

present tense/indicative form sigo to be derived from seguir (to follow), when it is

activated by the pattern Dao).

(2) Diacritic transduction rules: Comprised by 2 FSTs activated by the pattern

To (The processing that they perform is illustrated by the derivation of the first

person singular, present tense/indicative form vaćıo from vaciar (to empty)).

(3) Root vowel transduction rules: Comprised by 8 FSTs that operate on the

root vowel, which can be either diphthongized or replaced by another vowel. These

irregularity rules are activated by patterns To and Dti (e.g. when the first per-

son singular, present tense/indicative form sirvo is derived from servir (to serve),

having been activated by the pattern Dti).

(4) Vowel root ending transduction rules: Comprised of 8 FSTs which apply

heterogeneous transduction rules affecting those verbs whose infinitive form root

ends in a vowel. The use of these rules is illustrated by the derivation of oyes from

óır (to hear) by addition of the letter y after the root, having been activated by

the pattern Te.

(5) Specific Magnificent verbs transduction rules: Comprising 13 FSTs acti-

vated by the patterns Fc, ı́4, Dao and To. To illustrate, the root of the verb

tener (to have) is changed (when the rule is activated by the pattern ı́4). (Tuve),

is modified by adding the letter g after its root (when the rule is activated by the

pattern Dao) and (tengo) is modified by addition of d after the root in the verb

forms recognized by the pattern Fc (tendré).
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The FSTs exploited in Module 2.2 are arranged in a cascade as their order of
application is important, given that most of the irregular verbs activate several
rules. For instance, dormir (to sleep) undergoes substitution of its root vowel o
by u when recognized by pattern Dti (firstly, the second person plural of present
tense/subjunctive form durmáis, is derived. This is followed by diphthongization
of the root vowel when it is recognized by the pattern To to derive the first person
singular of present tense/indicative form duermo.

5 Comparative Evaluation

A comparative evaluation of the system was carried out against seven Spanish
conjugators that are available online. They are:

1. Royal Spanish Academy Conjugator: http://buscon.rae.es/draeI/.
2. Reverso conjugator:

http://conjugador.reverso.net/conjugacion-espanol.html.
3. WordReference Spanish Verb Conjugator:

http://www.wordreference.com/conj/EsVerbs.asp.
4. University of Oviedo conjugator:

http://www6.uniovi.es/dic/conjuga.html.
5. The conjugator developed by Grupo de Estructuras de Datos y Lingǘıstica

Computational from University of Las Palmas de Gran Canaria:
http://www.gedlc.ulpgc.es/investigacion/scogeme02/flexver.htm.

6. SpanishDict Verb Conjugator: http://www.spanishdict.com/conjugate/.
7. Verbix Spanish Verb Conjugator v.2.0:

http://www.verbix.com/languages/spanish.shtml.

Please notice the comparison between these results should be done with caution
since there is no reason to assume that the other conjugators are aiming to
address the same task, specifically, the conjugation of verbal neologisms.

A list containing 40 heterogeneous verb forms (inflectional forms as well as
infinitives) was tested against each conjugator. The verb forms used in the evalu-
ation were carefully selected on account of their difficulty. They can be classified
into five ad hoc categories: (1) regular and irregular verb neologisms7, formed
by concatenating a prefix to an existing verb: autodestruir (to self destroy);
or (2) verb neologisms formed from words which are not verbs: googlear (to
google); (3) verbs with multiple conjugation: roer (to gnaw) which, for exam-
ple, can be conjugated as roo, roigo or royo in its first person singular form in
present tense/indicative mood); (4) verbs with double meanings whose paradigm
of conjugation differs depending on the meaning: acostar (acuesto, to put in
bed; acosto, to reach the coast) (Table 2); and (5) ambiguous inflected forms
(Table 3). Of the 40 verb forms, 10 belong to class 1, 10 to class 2, 6 instances
belong to classes 3 and 6 to class 5. 8 ambiguous examples belong to class 5.

Table 2 presents which systems are able to generate the different kinds of ver-
bal paradigms, while Table 3 shows which systems analyze inflected verb forms
7 The neologisms chosen for the evaluation are not present in MICV-DB.
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Table 2. Comparative evaluation: generation of verbal paradigms

System Conjugation 1 Prefix 2 New word 3 Multiple 4 Double
neologisms neologisms conjugation meaning

Conjugator 1 yes no no yes yes (see text)
Conjugator 2 yes no (see text) no no no
Conjugator 3 yes no no yes no
Conjugator 4 yes no no yes no
Conjugator 5 yes yes no yes no
Conjugator 6 yes no no no no
Conjugator 7 yes yes yes yes no
Onoma yes yes yes yes yes

and ambiguous inflected forms. Table 4 presents the accuracy of the conjugation
or the analysis of 40 verb forms in the systems.

Conjugator 1 (in Table 2) does present the two different conjugations of a verb
with double meanings, although it does not state which type of verbal paradigm
corresponds to which meaning, as our system does. Onoma offers the user the
opportunity to first choose the appropriate meaning and then displays the verb
paradigm depending on the user’s choice. Conjugator 2 does conjugate some
verb neologisms formed with prefixes although it does not cover all cases (e.g.
cohacer (to do at the same time)).

Only half of the tested conjugators (including Onoma) analyze inflected verb
forms (see Table 3) and ambiguous verb forms (5) were used to test this type of
analysis. For instance, sé can either be the first person singular form indicating
the present tense/indicative mood of the verb saber (to know), or the second
person singular present tense/imperative form of the verb ser (to be).

Table 3. Comparative evaluation: analysis of inflected verb forms

System Analysis 5 Ambiguous verb
forms analysis

Conjugator 1 no no
Conjugator 2 yes no
Conjugator 3 yes yes
Conjugator 4 no no
Conjugator 5 yes yes
Conjugator 6 no no
Conjugator 7 no no
Onoma yes yes

As can be inferred from the evaluation presented, no other existing online
conjugation system is as extensive in its functionality and the range of fea-
tures employed. This is particularly evident in its ability to identify and analyze
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Table 4. Comparative evaluation: accuracy of conjugation and analysis

System Conjugation accuracy: Analysis accuracy:
neologisms and registered
registered verbs verbs

Conjugator 1 37.5% none
Conjugator 2 25.0% 37.5%
Conjugator 3 31.2% 87.5%
Conjugator 4 31.2% none
Conjugator 5 50.0% 100%
Conjugator 6 15.6% none
Conjugator 7 81.2% none
Onoma 100% 87,5%

ambiguous inflected forms, verb neologisms and to deal with verbs that have
double meanings and therefore, double conjugations.

Nevertheless, our system does not conjugate six outdated verbs (e.g. far (to
do), caler (to be necessary), etc.) as, to our knowledge, such paradigms have been
largely unexplored, though two conjugators (2 and 7) do present the possible
verbal paradigm for this small group of verbs. Given that they are not used in
contemporary Spanish, their treatment is considered beyond the scope of the
present paper.

On this data set, Onoma is able to conjugate verbal paradigms with 100%
accuracy, while its accuracy in analysing verb forms is 87,5%. Onoma, as well
as displaying the correct verb paradigms in its analysis of all registered verbs
sometimes includes paradigms of verbs that may possibly occur in Spanish, but
are not registered in existing dictionaries. When paradigms of non-registered
verbs are included in its analyses of a verb, this is considered an error, regardless
of whether or not the rest of the analysis is correct. While this strict approach
to evaluation adversely affects the performance level reported for Onoma, it
allows a feasible comparison to be made with those systems that do not treat
neologisms. Overall, it can be concluded that Onoma compares favorably with
the other conjugators in terms of the accuracy of analysis and conjugation.

6 Final Remarks

In this paper we have presented Onoma, a system which conjugates Spanish
verbs, including neologisms. Onoma’s linguistically motivated model for verb
paradigms is novel and has great potential for pedagogic applications in teaching
the intricacies of the Spanish verb conjugation system.

As the Onoma transducers are implemented on a database management sys-
tem, they are simple to modify independently of the rest of the software. In
future work, we plan to integrate the Onoma algorithm into a general Spanish
morphological processor to treat the rest of the open-class lexical categories.
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Abstract. Representation of word meaning has been a topic of consid-
erable debate within the field of computational linguistics, and partic-
ularly in the subfield of word sense disambiguation. While word senses
enumerated in manually produced inventories have been very useful as
a start point to research, we know that the inventory should be selected
for the purposes of the application. Unfortunately we have no clear un-
derstanding of how to determine the appropriateness of an inventory for
monolingual applications, or when the target language is unknown in
cross-lingual applications. In this paper we examine datasets which have
paraphrases or translations as alternative annotations of lexical mean-
ing on the same underlying corpus data. We demonstrate that overlap
in lexical paraphrases (substitutes) between two uses of the same lemma
correlates with overlap in translations. We compare the degree of overlap
with annotations of usage similarity on the same data and show that the
overlaps in paraphrases or translations also correlate with the similarity
judgements. This bodes well for using any of these methods to evaluate
unsupervised representations of lexical semantics. We do however find
that the relationship breaks down for some lemmas, but this behaviour
on a lemma by lemma basis itself correlates with low inter-tagger agree-
ment and higher proportions of mid-range points on a usage similarity
dataset. Lemmas which have many inter-related usages might potentially
be predicted from such data.

1 Introduction

Words mean different things in different contexts and if we want systems to
interpret and produce language as humans do then we need to build systems that
can handle this. Work in computational lexical semantics has been dominated
by work involving predefined inventories of senses, particularly in the subfield of
word sense disambiguation (wsd). The use of inventories such as WordNet [1]
have been a major catalyst for work in lexical semantics and certainly there
are good reasons why one might want to use such an inventory, for example to
exploit the other information contained therein. However, frequently inventories
are used because that is how the gold-standard data has been annotated, rather

A. Gelbukh (Ed.): CICLing 2011, Part I, LNCS 6608, pp. 238–252, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Measuring Similarity of Word Meaning in Context 239

than with regard to whether the distinctions that are being made are in fact
useful. The lack of consensus on the appropriate representation of sense has
been a major cause of contention within the wsd community.

While we know that the inventory should be selected for the purposes of the
application, we have no clear understanding of how to determine the appropri-
ateness of an inventory, certainly for monolingual applications, but also when
the target language is unknown in cross-lingual applications.1 Additionally, while
there has been good deal of research in wsd using predefined inventories, there
is a need to examine and evaluate other representations of lexical semantics such
as inventories that can be derived automatically from distributional similarity
data [2, 3].

In this paper we provide an overview of three different datasets that have been
designed so as to provide alternative annotations of word meaning in context.
These three datasets are:

– the English Lexical Substitution Task dataset (lexsub) [4]
– the Cross-Lingual Lexical Substitution Task dataset (clls) [5]
– the Usage Similarity dataset (Usim) [6]

It is quite possible to use these gold-standards to evaluate preexisting inventories,
but since the gold-standards were not produced using any particular inventory
they also allow comparison between different representations.

The three different datasets have been created using lexical substitutes, i.e.
paraphrases, (lexsub),2 translations (clls) and ordinal scale usage similarity
judgements (Usim). The datasets all used a portion of data in common, allowing
us to compare these different annotations. In this paper we examine to what
extent these alternative annotations correlate which we would expect them to do
as representations of the same underlying phenomena: word meaning in context.

We are of course only able to examine this relationship in the context of the
data we have available. Our results will depend on the lemma and occurrences
of that lemma. We also examine these relationships on a lemma by lemma basis
and show that the lemmas where the relationship tends to break down also tend
to be the lemmas with poor inter-tagger agreement in the more fundamental
usage similarity task. We show that the proportion of mid range judgements
for a lemma in the usage similarity task also correlates with the inter-tagger
agreement for that lemma. This mid range measure therefore might be used as
a predictor of words where meanings are difficult to distinguish.

The paper is structured as follows. In the next section we give some back-
ground to word meaning annotation. We also provide an overview of the lexsub,
clls and Usim datasets and the methodologies used to create them. In section 3

1 Even in the case of machine translation, it is possible that translations won’t form
neat clusters, or that a particular usage might warrant a translation that has not
occurred in training data for that lexeme.

2 We use the terms paraphrases and substitutes interchangeably in this paper to mean
lexical paraphrase of a lemma in context within the same language. We use transla-
tions for the cross-lingual substitutes in the clls data.



240 D. McCarthy

we motivate our analysis and highlight the subset of the underlying corpus data
that is common to all datasets. In subsection 3.1 we describe our methodology
for calculating similarity between two usages of the same lemma in terms of the
overlap of paraphrases or translations. In subsection 3.2 we examine the cor-
relations of the overlap and Usim scores over the data that is common to all
three datasets. In subsection 3.3 we do the same analysis on a lemma by lemma
basis. We demonstrate that lemmas where the correlation between the overlap
(lexsub, clls) and similarity measures (Usim) is low or not evident, tend also
to be those lemmas with low inter-tagger agreement on Usim and have a higher
proportion of mid-range scores indicating less certainty of the annotators and
more inter-relationships between usages.

The data and software that have been used for the analysis in this paper will
be available at http://www.cicling.org/2011/software/diana, along with pointers
to the related datasets from which the data described here was taken.

2 Word Meaning Annotations

2.1 Background

There has been a great deal of work on word meaning annotations in computa-
tional linguistics, in particular the senseval and SemEval series3 Most of the
datasets used have been produced with the same methodology whereby a list of
senses is given and each annotator is asked to select the best one. For example,
given the WordNet listing of the noun match in figure 1, and the sentence below
from lexsub:

Like the Philadelphia match, this event was covered live on the World
Wide Web

It is unlikely that any native speaker would have difficulty in assigning sense 2
for the word match in this context. However, it is easy to find problematic cases
such as the following (from the same dataset):

This is at least 26 weeks by the week in which the approved match with
the child is made

In this case, senses 8 and 9 both seem relevant. Sense 8 is not quite right because
this sentence seems to be talking about adoption, not a partnership (married or
otherwise) of equals. Meanwhile sense 9 does not seem quite right as the word
resembles and the example provided in the definition in figure 1 seem to indicate
visual appearance.

Problematic cases such as these are commonplace [7]. Despite these issues,
word sense tagging may be useful when one specifically needs to apply the in-
ventory to corpus data, for example to exploit semantic relations [8]. wsd is

3 The senseval series was renamed SemEval for the 2007 event due to the increasing
range of semantic phenomena that the tasks covered, rather than just word senses.
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1. match, lucifer, friction match – (lighter consisting of a thin piece of wood or card-
board tipped with combustible chemical; ignites with friction; ”he always carries
matches to light his pipe”; ”as long you’ve a lucifer to light your fag”)

2. match – (a formal contest in which two or more persons or teams compete)
3. match – (a burning piece of wood or cardboard; ”if you drop a match in there the

whole place will explode”)
4. match, mate – (an exact duplicate; ”when a match is found an entry is made in

the notebook”)
5. match – (the score needed to win a match)
6. catch, match – (a person regarded as a good matrimonial prospect)
7. peer, equal, match, compeer – (a person who is of equal standing with another in

a group)
8. couple, mates, match – (a pair of people who live together; ”a married couple from

Chicago”)
9. match – (something that resembles or harmonizes with; ”that tie makes a good

match with your jacket”)

Fig. 1. WordNet 3.0 senses for the noun match

often performed on the premise that it will ultimately prove useful for natural
language processing applications, but without specifically addressing its utility.
There is some research as to the utility of wsd, but unfortunately the evidence
is equivocal [9–13]. A popular proposal is to make coarse grained senses such
that tagging by humans and machine is more reliable [14–16]. While this un-
doubtedly helps boost inter-tagger reliability and wsd system performance [17],
we do not yet know whether this increased performance will help in applications.
Sometimes the coarse distinctions are resolved implicitly, for example by virtue
of the collocations within a query and it may be the subtler distinctions that
will improve the results [18].

While some lemmas may be easy to partition into senses, this is not always the
case [19]. Senses often fall between one another making sense grouping decisions
difficult. For example, the senses of the noun child in WordNet as shown in
figure 2 are clearly related to one another, however if one was to group these
there are several ways to go. Sense 1 seems to lie somewhere between sense 2 and
sense 3. That is, it is related to both 2 and 3 more than sense 2 and sense 3 are to
each other. Sense 2 likewise seems to lie somewhere between sense 1 and sense 4.
In senseval-2, sense 1 and 3 formed one group and sense 2 and 4 another. While
this is quite a plausible grouping, using the youth vs descendant distinction,
it does not reflect the fact that that sense 1 and 2 are clearly related, and can
be translated the same way in some languages (for example, both might be
translated as enfant in French).

While we do certainly acknowledge that annotating and disambiguating word
senses may be necessary for some applications, in this paper our aim is to ex-
amine datasets that do not use a predefined inventory and therefore allow for
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1. child, kid, youngster, minor, shaver, nipper, small fry, tiddler, tike, tyke, fry,

nestling – (a young person of either sex; ”she writes books for children”; ”they’re
just kids”; ”‘tiddler’ is a British term for youngster”)

2. child, kid – (a human offspring (son or daughter) of any age; ”they had three
children”; ”they were able to send their kids to college”)

3. child, baby – (an immature childish person; ”he remained a child in practical mat-
ters as long as he lived”; ”stop being a baby!”)

4. child – (a member of a clan or tribe; ”the children of Israel”)

Fig. 2. WordNet 3.0 senses for the noun child

comparison of different approaches that represent lexical semantics, including
fully unsupervised distributional approaches, without biasing to an approach
that uses a specific inventory. The datasets involve tasks (lexical paraphrasing,
translation and similarity) that test systems in ways that should bode well for
applications such as summarisation, translation and question-answering, both
monolingual and cross-lingual.

2.2 Three Datasets Annotated without Recourse to a Specific
Inventory

LEXSUB: The English Lexical Substitution Dataset. lexsub was de-
vised for SemEval 2007 as a means of evaluating wsd systems without recourse
to a predefined inventory. For the gold standard dataset, five human annotators
produced lexical paraphrases (substitutes) for target words in the context of a
sentence. The 201 target words (nouns, verbs, adjectives and adverbs) each have
ten sentences which were extracted from the English Internet Corpus [20]. The
annotators were permitted to supply up to three substitutes, provided each were
equally valid, and they were also permitted to provide a NULL response in the
event that they could not find a suitable substitute. The details are reported in
[4, 21]. Systems that perform well on this task have potential in paraphrasing
applications. The task merges two subtasks of i) finding the substitutes and ii)
selecting the appropriate ones for the context. It is possible to evaluate these
two subtasks separately [21] on retrieval of the union of substitutes for the ten
sentences (for evaluating inventories) and by providing the union of substitutes
as input for matching to the context.

We provide an example of the gold-standard data for the adjective stiff in
figure 3.4 The sentence number (1 to 10) is given in the first column and the
English substitutes (lexical paraphrases) provided by the five annotators are
given in the second column. The frequency of each substitute from all five

4 In the caption of this figure and elsewhere in this paper we use the suffix {̇a,r,n,v}
for the PoS classes {adjective, adverb, noun and verb} respectively.
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Sent lexsub substitutes clls translations

1 rigid 4; inelastic 1; firm 1; inflexible 1 duro 4; tieso 3; rigido 2; agarrotado 1;
entumecido 1

2 rigid 3;unyielding 1;firm 1 duro 3; tieso 3; rigido 2; agarrotado 1;
fuerte 1; yerto 1; firme 1

3 strong 2; firm 2; good 1; solid 1; hard 1 duro 4; definitivo 1; severo 1; fuerte 1

4 strong 4; tough 2; intense 1 duro 3; dificil 2; consistente 1; fuerte 1;
protocolario 1; marcado 1; ceremonioso
1; firme 1

5 aching 3; frozen 1; rheumatic 1; cricked
1; painful 1; sore 1

torticolis 2; entumecido 2; duro 1; an-
quilosado 1; torcido 1; tieso 1

6 aching 3; sore 2 duro 2; tieso 2; rigido 1; agarrotado 1;
yerto 1; firme 1

7 stern 1; formal 1; firm 1; unrelaxed 1;
constrained 1; unnatural 1; unbending
1

duro 2; forzado 2; fijo 1; rigido 1; acar-
tonado 1; insipido 1

8 harsh 2; heavy 2; severe 1; strong 1;
rigid 1

duro 3; severo 3; contundente 1; rigodo
1; estricto 1

9 firm 3; rigid 2; unyielding 1; hard 1 duro 2; protocolario 1; severo 1; cere-
monioso 1; firme 1

10 strong 4; heavy 2; powerful 1 consistente 3; duro 3; contundente 1;
fuerte 1; dificil 1

Fig. 3. Substitutes and Translations for the stiff.a sentences in lexsub and clls

annotators is shown after that substitute and before the semi-colon.5 In this
data one can see the different meanings of stiff : rigid, strong (good), aching,
stern, harsh. However, we also see that there are overlaps in the substitutes
suggesting a potential overlap in meaning, for example the meanings of stiff in
sentences 1, 3 and 7 are clearly different yet they share the substitute firm:

1) Even though it may be able to pump a normal amount of blood out of the
ventricles, the stiff heart does not allow as much blood to enter its chambers
from the veins.

3) One stiff punch would do it.
7) In 1968 when originally commissioned to do a cigarstore Indian, he rejected

the stiff image of the adorned and phony native and carved “ Blue Nose, ”
replica of a Delaware Indian.

CLLS: The Cross-Lingual Lexical Substitution Dataset. This task was
run as part of SemEval 2010. For this dataset four human annotators annotated
all sentences for 130 lemmas taken from the lexsub dataset. All annotators
were native Spanish speakers with a high level of proficiency in English. Their
task was to produce Spanish translations for the target word in the context of a

5 Unlike a traditional wsd task the annotators are not selecting from a fixed inventory
and all substitutes with their respective frequencies are used in the gold-standard.
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sentence. They were asked to provide as many translations as possible. Unlike a
full blown machine translation task [11], annotators and systems are not required
to translate the whole context but just the target word. Such a facility might
be useful for language learners, as an aid to human translation, or the output
might be useful for cross-lingual information retrieval and translation. Previous
work has used translations for sense distinctions [22] however in the clls task
there was no requirement for distinct groupings of translations. The annotators
were simply asked to provide as many translations as they felt were appropriate
for the target word in the context.

By way of an example, the translations of the adjective stiff are given in
the third column of figure 3. The relationships between the different usages are
apparent from the translations (all have duro as a translation, and many have
rigido), but also we can see differences which correspond to those found in the
paraphrases (for example only sentences 5 and 6 have substitutes aching, sore
and the translation tieso).

The Usage Similarity Dataset (Usim). This dataset has been collected in
two rounds. The first set of annotations was collected as one of the annotation
tasks described in [6]. A further set of such annotations has subsequently been
collected using approximately the same method. We refer to the two rounds as
Usim-1 and Usim-2. The data for both rounds was taken from lexsub. The task
involves the users being given every pair of 10 sentences for each lemma, i.e. 45
sentence pairs per lemma, and the annotators were asked to give a judgement
between 1 and 5 of how similar the usage of that lemma was in the two sen-
tences. Rather than use a word sense, substitute or translation as an annotation,
this task aims to represent lexical meaning in context as similarity between two
occurrences. This has been used previously to look at the correlation between
the overlap of substitutes and usage similarity judgements [6], and we extend
that analysis to compare overlap of translations with the overlap of substitutes,
as well as both with usage similarity. The Usim dataset also has potential for
evaluating distributional methods which represent lexical meaning without nec-
essarily inducing clusters (word senses).

Both rounds use data taken from the lexsub dataset. The first round used
data for 34 lemmas whereas the second round used data for 26 lemmas. There
were four lemmas that were common to both rounds. The annotation proceeded
in more or less the same way except that in the first round only one sentence
of context was given as in lexsub, whereas in the second round the annotators
could also see the previous and following sentence. Also, in the first round there
were three annotators whereas in the second round we used eight annotators to
reduce the impact of individual variation.

3 Analysis

In this paper we examine the extent that lexical substitutes (from lexsub) and
translations (from clls) correlate with each other and with Usim judgements
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using the overlap of paraphrases or translations as a measure of similarity be-
tween two usages of the same lemma.

In the analysis reported here, we examine only the lexsub data that is com-
mon to both clls and Usim. There are 32 lemmas from Usim-1 also in clls
and 24 lemmas from Usim-2 also in clls. There are four lemmas that overlap
these two sets. Each lemma has 10 sentences other than:

– one sentence (for bar.n) which had one sentence discounted because of a
mistagging in the trial dataset from lexsub,

– one sentence (for lead.n) which was discounted in lexsub as only one sub-
stitute from the five annotators was provided

– two sentences (one for flat.a and one for shade.n) which were discounted in
Usim (rounds 1 and 2 respectively) because one of the annotators provided
a ‘don’t know’ response [6]

Thus the results here are based on 516 sentences for these 52 lemmas. We report
the overall correlations between datasets separately for the two rounds of Usim.
Since the second round of Usim had more annotators and consequently has less
individual variation, when we give results by lemma we use round 2 for the four
lemmas that are in both Usim-1 and -2.

3.1 Overlap Calculation

In order to compare tasks, we follow previous work [6] in calculating the overlap
of substitutes (and for clls, these are the translations) at each sentence pair for
a lemma. The overlap, inter, is the multiset intersection of the substitutes in
two sentences (s1 and s2). inter is calculated as follows. Let subss1 and subss2

be the sets of substitute types for s1 and s2 respectively. Let freqw1 be the
frequency of a substitute (w) for s1 from the lexsub (or clls) gold standard
and freqw2 be the equivalent for s2. Let maxfreq(freqs1, freqs2) be the larger
of freqs1 and freqs2 where these are the total frequency of all substitutes for
the respective sentence. Then inter is measured as:

inter(s1, s2) =

∑
w∈subss1∩subss2

min(freqw1, freqw2)
maxfreq(freqs1, freqs2)

(1)

3.2 Correlations between LEXSUB, CLLS and Usim

As in [6], and following [23], we calculate spearman’s rank correlation coeffi-
cient (ρ) between the overlap measures and the average judgement from Usim.
We normalise all Usim judgements to z-scores before taking the average to al-
low for the fact that the annotators may have used the 1-5 scale differently. In
table 1 we see the correlations between the lexsub, clls and Usim datasets. The
correlations are calculated over every sentence pairing for every lemma within
that dataset. These correlations are all highly significant as can be seen from the
probability (p-value) of this occuring by chance. For the second round of Usim
annotation there were more annotators and this results in less noise from indi-
viduals and stronger correlation (larger values of ρ). We also note that the Usim
tasks both have highercorrelations with the paraphrases in lexsub compared
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Table 1. Correlations between datasets

datasets ρ p-value

lexsub-clls 0.519 2.04e-169
lexsub-Usim-1 0.570 9.37e-122
lexsub-Usim-2 0.724 9.24e-172
clls-Usim-1 0.523 1.10e-99
clls-Usim-2 0.625 5.74e-115

to the translations in clls (i.e. comparing lexsub-Usim-1 to clls-Usim-1 and
also lexsub-Usim-2 to clls-Usim-2). It seems that while both overlap of para-
phrases and translations give us a useful gauge of the similarity of two usages,
the paraphrases gave a slightly stronger relationship. This was surprising be-
cause it was thought that finding translations might be easier for annotators (as
well as machines), although the pairwise inter-annotator agreement for clls was
only slightly higher than for lexsub [5]. The total number of lexical substitute
and translations types for this set of lemmas was 1250 and 1217 respectively.
Since these are similar we do not believe this should be a major factor in the
differences in correlation.

3.3 Correlations by Lemma

We investigated whether the correlation between translation and paraphrase
overlap, and paraphrase and translation overlap with Usim, holds for all lemmas.
To do this we did the same calculation on all sentence pairs as in table 1, but this
time for the data for one specific lemma at a time. We also provide the Usim
inter-annotator agreement (iaa) for each lemma using spearman’s correlation
following [6] so that we can see whether the lemmas where there is a mismatch
in correlation between the various annotations are also those where humans
disagree on similarity between usages. Such disagreements are probably due to
the inter-relationships between meanings of the different usages. In addition to
this, we provide mid which is the proportion of judgements from the annotators
in the intermediate points of the Usim 1-5 scale, that is 2, 3 or 4, for each lemma.
This is calculated in the following way. Let a ∈ A be an annotator from the set
A of all annotators, and ja ∈ Pl be the judgement of annotator a for a sentence
pair for a lemma from all possible such pairings for that lemma (Pl). Then the
mid score is calculated as:

MID(lemma) =

∑
a∈A

∑
ja∈Pl

1 if ja ∈ {2, 3, 4}
|A| · |Pl| (2)

These scores by lemma are shown in table 2 which is ordered alphabetically by
lemma. To make it easier to see the patterns we provide table 3 which uses the
scores from table 2 to sort the lemmas into rank order for each column respec-
tively. We use the ρ coefficients for all columns and sort in ascending order except
rev mid which orders the lemmas in descending order of the mid score. The rea-
son for this is that we anticipate that lemmas with more judgements in the
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Table 2. Scores by lemma. The lemmas are ordered alphabetically.

lemma Usim round lexsub-clls lexsub-Usim clls-Usim mid iaa

account.n 2 0.322 0.517 0.516 0.389 0.66
bar.n 1 0.583 0.615 0.620 0.296 0.35

bright.a 2 0.402 0.555 0.125 0.553 0.53
call.v 2 0.708 0.849 0.699 0.178 0.65

charge.v 1 0.640 0.618 0.320 0.244 0.68
check.v 1 0.396 0.389 0.765 0.519 0.35
clear.v 1 0.339 0.538 0.685 0.452 0.63

coach.n 2 0.875 0.695 0.836 0.269 0.74
dismiss.v 2 0.829 0.783 0.656 0.606 0.52

draw.v 1 0.352 0.498 0.266 0.526 0.50
dry.a 1 0.448 0.580 0.372 0.378 0.59

execution.n 1 0.763 0.885 0.753 0.459 0.78
field.n 1 0.712 0.449 0.358 0.474 0.25

figure.n 1 0.757 0.757 0.567 0.393 0.50
fire.v 2 0.921 0.853 0.905 0.169 0.93
fix.v 2 0.750 0.529 0.637 0.339 0.57
flat.a 1 0.719 0.559 0.775 0.435 0.85

fresh.a 1 0.506 0.390 0.409 0.756 0.17
function.n 1,2 0.106 0.781 0.063 0.533 0.14

hard.r 1 0.743 0.119 -0.065 0.637 0.34
heavy.a 1 0.357 0.385 0.555 0.600 0.57
hold.v 2 0.202 0.475 0.106 0.478 0.47

investigator.n 1,2 0.653 0.471 0.322 0.272 0.23
lead.n 2 0.058 0.027 0.666 0.493 0.47
light.a 1 0.526 0.287 0.192 0.363 0.49

match.n 1 0.677 0.743 0.755 0.326 0.59
neat.a 2 -0.110 0.622 0.077 0.581 0.31
new.a 2 0.282 0.141 -0.310 0.225 0.01

order.v 1,2 0.613 0.720 0.708 0.344 0.65
paper.n 1 0.764 0.738 0.812 0.437 0.63
poor.a 1 0.309 0.779 0.237 0.341 0.43
post.n 1 0.556 0.745 0.618 0.222 0.69
put.v 1 0.720 0.146 0.270 0.622 0.34

range.n 2 0.690 0.782 0.654 0.344 0.74
raw.a 1 0.451 0.117 0.243 0.733 0.29
rich.a 2 0.677 0.857 0.696 0.406 0.73
right.r 1 0.441 0.618 0.616 0.481 0.65
ring.n 2 0.319 0.759 0.459 0.325 0.53

rough.a 2 0.568 0.635 0.827 0.350 0.63
rude.a 1 0.224 0.299 0.846 0.533 0.61

severely.r 2 0.472 0.212 0.527 0.325 0.78
shade.n 2 0.704 0.740 0.608 0.302 0.42
shed.v 2 0.188 0.594 0.166 0.494 0.53
skip.v 2 0.417 0.666 0.504 0.381 0.70
soft.a 2 0.397 0.554 0.590 0.436 0.51

solid.a 1 0.237 0.618 0.329 0.630 0.49
special.a 1 0.107 0.202 0.368 0.704 0.37

stiff.a 1,2 0.444 0.493 0.305 0.497 0.40
strong.a 1 0.040 0.170 0.507 0.733 0.31

tap.v 1 0.578 0.725 0.786 0.452 0.70
throw.v 1 -0.183 0.290 -0.061 0.696 0.32
work.v 1 0.033 0.497 -0.054 0.637 0.27
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Table 3. Lemmas ordered by the score (from table 2) in each respective column. All
columns except rev mid are in ascending order, rev mid is in descending order of the
mid score.

lexsub-clls lexsub-Usim clls-Usim rev mid iaa

throw.v lead.n new.a fresh.a new.a
neat.a raw.a hard.r raw.a function.n
work.v hard.r throw.v strong.a fresh.a

strong.a new.a work.v special.a investigator.n
lead.n put.v function.n throw.v field.n

function.n strong.a neat.a hard.r work.v
special.a special.a hold.v work.v raw.a

shed.v severely.r bright.a solid.a neat.a
hold.v light.a shed.v put.v strong.a
rude.a throw.v light.a dismiss.v throw.v
solid.a rude.a poor.a heavy.a hard.r
new.a heavy.a raw.a neat.a put.v
poor.a check.v draw.v bright.a bar.n
ring.n fresh.a put.v function.n check.v

account.n field.n stiff.a rude.a special.a
clear.v investigator.n charge.v draw.v stiff.a
draw.v hold.v investigator.n check.v shade.n
heavy.a stiff.a solid.a stiff.a poor.a
check.v work.v field.n shed.v hold.v

soft.a draw.v special.a lead.n lead.n
bright.a account.n dry.a right.r light.a

skip.v fix.v fresh.a hold.v solid.a
right.r clear.v ring.n field.n draw.v
stiff.a soft.a skip.v execution.n figure.n
dry.a bright.a strong.a clear.v soft.a
raw.a flat.a account.n tap.v dismiss.v

severely.r dry.a severely.r paper.n bright.a
fresh.a shed.v heavy.a soft.a ring.n
light.a bar.n figure.n flat.a shed.v
post.n charge.v soft.a rich.a fix.v

rough.a right.r shade.n figure.n heavy.a
tap.v solid.a right.r account.n dry.a
bar.n neat.a post.n skip.v match.n

order.v rough.a bar.n dry.a rude.a
charge.v skip.v fix.v light.a clear.v

investigator.n coach.n range.n rough.a paper.n
match.n order.v dismiss.v order.v rough.a

rich.a tap.v lead.n range.n call.v
range.n paper.n clear.v poor.a order.v
shade.n shade.n rich.a fix.v right.r

call.v match.n call.v match.n account.n
field.n post.n order.v ring.n charge.v
flat.a figure.n execution.n severely.r post.n
put.v ring.n match.n shade.n skip.v

hard.r poor.a check.v bar.n tap.v
fix.v function.n flat.a investigator.n rich.a

figure.n range.n tap.v coach.n coach.n
execution.n dismiss.v paper.n charge.v range.n

paper.n call.v rough.a new.a execution.n
dismiss.v fire.v coach.n post.n severely.r

coach.n rich.a rude.a call.v flat.a
fire.v execution.n fire.v fire.v fire.v
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middle range (2, 3 and 4) are more likely to be those with lower correspondence
between paraphrases, translations and usage similarity.

From table 3, we observe a tendency for lemmas where the relationship be-
tween paraphrases and translations (lexsub-clls) is weak or absent to also
have lower iaa and higher average mid scores. The same tendency to low iaa
and higher mid scores occurs where the relationship between paraphrases or
translations and usage similarity (lexsub-Usim and clls-Usim) breaks down.
These trends are highlighted by the position of the lemmas in the columns in
table 3. These are of course only tendencies as factors other than the meaning
of the usage affect the translations and paraphrases available for a lemma. Nev-
ertheless, there is a striking tendency that words where the different meanings
are interrelated (work.v and special.a) tend to occur in the early rows in all
(or most) columns whereas words where the meanings are more easily distin-
guished tend to occur in the final section (e.g. coach.n and fire.v). To measure
this relationship, we calculated spearman’s ρ between i) the mid scores or ρ val-
ues for lexsub-clls, lexsub-Usim and clls-Usim by lemma and ii) the iaa.
The results are shown in table 4. The iaa–mid correlation is negative because
lower values of mid tend to occur for lemmas with higher iaa. The ρ values
support the finding we observe from looking at the positions of the lemmas in
the columns of table 3. All columns show a correlation with iaa, but the extent
that a mismatch between translation overlap and Usim judgements provides the
strongest indicator of poor iaa for that lemma.

Table 4. Correlation of score by lemma with iaa for that lemma

score ρ p-value

lexsub-clls 0.424 0.0017
lexsub-Usim 0.526 6.177e-05
clls-Usim 0.670 5.558e-08
mid -0.486 0.00026

3.4 Discussion

Our results support the view that lexical translations and substitutes, where they
exist, can be used as a representation of word meaning. Though of course the
correspondence in substitute or translation overlap between sentences may be
coincidental, on the whole an overlap in meaning typically produces an overlap
in lexical paraphrase or translation. Although the correspondence is not evident
for all lemmas, it seems from our analysis that when translations and paraphrase
overlap does not concur with usage similarity, this is often because the meanings
of the word is inter-related which is reflected by lower iaa on Usim. The mid
score is also a useful indicator of iaa as it is simple to obtain. One could apply
this mid score in cases where the annotators had been asked to annotate different
lemmas to reduce annotation effort. One could then put more effort into sense
induction and disambiguation of lemmas with lower mid values on the grounds
that their senses are distinguished more easily.
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4 Conclusion

We have examined the clls and lexsub datasets and found a highly significant
correlation between the overlap of translations and the overlap of substitutes of
the same lemma for the same sentence pairings. We have also found a highly sig-
nificant correlation between both of these measures and usage similarity (Usim)
judgements. This relationship is not evident across the board however, with lem-
mas such as fire.v displaying an extremely strong correlation while lemmas with
more relationships between different usages, such as special.a, with very low cor-
relation. These correlations scores on a lemma-by-lemma basis are themselves
correlated with iaa of the lemma. The lower the iaa, the lower the correla-
tion between lexsub and clls overlap, and lexsub or clls overlap with Usim
judgements. There is also a negative correlation with the number of usage sim-
ilarity judgements in the mid range (2, 3 or 4) of a 1-5 scale and the iaa for a
lemma. This suggests that scores in the mid range may be useful for predicting
low iaa. This may help in identifying lemmas with distinct usages and those
with inter-related usages which may prove problematic for word sense induction
and disambiguation.

There are many directions we anticipate for future work, in particular the
use of these datasets for comparing fully unsupervised representations of lexical
meaning. The standard use of lexsub and clls is for evaluating lexical para-
phrases and translations, but since the overlap in paraphrases and translations
from these sets correlate with usage similarity judgements (in Usim) one could
use overlap of substitutes and translations in full lexsub and clls datasets to
evaluate a system that estimates the similarity of two usages. Another direction
we hope to investigate is the extent that the paraphrases, and translations can
be clustered (see [5] and [24]).
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Abstract. Word sense induction (WSI) is the task aimed at automati-
cally identifying the senses of words in texts, without the need for hand-
crafted resources or annotated data. Up till now, most WSI algorithms
extract the different senses of a word ‘locally’ on a per-word basis, i.e. the
different senses for each word are determined separately. In this paper,
we compare the performance of such algorithms to an algorithm that
uses a ‘global’ approach, i.e. the different senses of a particular word
are determined by comparing them to, and demarcating them from, the
senses of other words in a full-blown word space model. We adopt the
evaluation framework proposed in the SemEval-2010 Word Sense Induc-
tion & Disambiguation task. All systems that participated in this task
use a local scheme for determining the different senses of a word. We
compare their results to the ones obtained by the global approach, and
discuss the advantages and weaknesses of both approaches.

1 Introduction

Word sense induction (WSI) methods automatically identify the senses of words
in texts, without the need for predefined resources or annotated data. These
methods offer an alternative to the use of expensive hand-crafted resources de-
veloped according to the ‘fixed list of senses’ paradigm, which present several
drawbacks for efficient semantic processing [1]. The assumption underlying unsu-
pervised WSI methods is the distributional hypothesis of meaning [2], according
to which words that occur in similar contexts tend to be similar. In distributional
semantic analysis, the co-occurrences of words in texts constitute the features
that serve to calculate their similarity. Following this approach, data-driven WSI
algorithms calculate the similarity of the contexts of polysemous target words
and group them into clusters. The resulting clusters describe the target word
senses.

The unsupervised algorithms used for WSI can be distinguished into local
and global. Local algorithms work on a per-word basis, determining the senses
for each word separately. Algorithms that use a global approach determine the
different senses of a particular word by comparing them to, and demarcating
them from, the senses of other words in a full-blown word space model.

A. Gelbukh (Ed.): CICLing 2011, Part I, LNCS 6608, pp. 253–264, 2011.
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In this paper, we compare the performance of these two types of algorithms
for sense induction. The comparison is carried out using the evaluation frame-
work proposed in the SemEval-2010 Word Sense Induction & Disambiguation
(WSI&D) task [3,4]. The SemEval WSI tasks [4,5] provide a common ground for
comparison and evaluation of different sense induction and discrimination sys-
tems. All the systems that participated in the SemEval-2010 WSI&D task use
a local scheme for determining the different senses of a word. We compare their
results to the ones obtained by the global approach, and discuss the advantages
and weaknesses of both approaches.

The paper is organized as follows. We first explain how word senses are iden-
tified in the local and the global approaches to sense induction, and we present
the global algorithm used in our research. Section 3 describes the evaluation
setting that we adopt and the metrics that will be used in order to evaluate the
performance of the algorithms. In Section 4, we present the evaluation results
of the global approach, and compare them to the results obtained by the local
systems that participated in the SemEval-2010 WSI&D task. Our last section
draws conclusions, and lays out some avenues for future work.

2 WSI Algorithms

2.1 Inducing Word Senses on a Per-word Basis

Local methods to word sense induction discover the senses of a target word
(w) by clustering its instances in texts according to their semantic similarity.
Following the distributional hypothesis of meaning, words that are used in similar
contexts carry similar meanings [2,6]. So, the instances of w that appear in
similar contexts are considered as semantically similar and its senses can be
discovered by clustering its contexts [7].

The features used for calculating the similarity of the instances of w are their
co-occurrences in a fixed-sized window of text. So, the different instances of w in
a corpus can be represented by feature vectors created from their contexts [8,9].
The grouping of the context vectors according to their similarity generates a
number of clusters that describe the different senses of w. The context of w
may be taken into account in different ways : it may be modeled as a first-
order context vector, representing the direct context of the instances of w in the
corpus [10,11], or by using higher-order vectors, i.e. by considering the context
vectors of the words occurring in the target context [8].

Other methods use the words found in the context of target words in order to
construct co-occurrence graphs. In a graph of this type, the vertices correspond
to the words appearing in the contexts of the target words and the edges rep-
resent their relations. These relations may be grammatical [12] or they may be
co-occurrences of the words in fixed contexts [13,14]. The senses of the target
words are discovered by partitioning the co-occurrence graph using clustering
techniques, or by using a PageRank algorithm.
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2.2 Global Approach to Sense Induction

In contrast to the local approach to sense induction, where senses are discovered
by clustering contexts for each word individually, the global approach discovers
senses by clustering semantically similar senses of words in a global manner,
comparing them and demarcating them from the senses of other words in a full-
blown word space model. The similarity between the senses is calculated on the
basis of their common features, e.g. the syntactic dependencies a particular sense
occurs with [15].

In Pantel and Lin’s [16] method, the similarity of word senses is calculated on
the basis of the dependency relations in which the senses take part (extracted
from a syntactically annotated corpus). Each word is represented by a feature
vector, where each feature corresponds to a syntactic context (dependency triple)
in which the word occurs. Each feature is weighted and its value corresponds to
the pointwise mutual information between the feature and the word. The algo-
rithm first discovers a set of tight clusters (called ‘committees’) in the similarity
space. Each word is then assigned to the closest committee by comparing the
word’s feature vector to the centroid of a committee (i.e. the mean of the feature
vectors of the committee members). After a word is assigned to a particular
committee, the overlapping features are deleted from the word’s vector, which
allows for the discovery of less dominant senses. Each cluster that a word belongs
to describes one of its senses.

2.3 Non-negative Matrix Factorization for Sense Induction

Sense induction. The global algorithm implemented here is based on the one
proposed by Van de Cruys [17]. This algorithm creates semantic word models by
using an extension of non-negative matrix factorization (NMF) [18], that com-
bines both the bag of words approach and the syntax-based approach to sense
induction. The intuition in this is that the syntactic features of the syntax-based
approach can be disambiguated by the semantic dimensions found by the bag of
words approach. The algorithm finds a small number of latent semantic dimen-
sions, according to which nouns, contexts and syntactic relations are classified.

Nouns are classified according to both bag-of-words context and syntactic con-
text, so three matrices are constructed that capture the co-occurrence frequency
information for each mode. The first matrix contains co-occurrence frequencies
of nouns cross-classified by dependency relations, the second matrix contains
co-occurrence frequencies of nouns cross-classified by words that appear in the
noun’s context window, and the third matrix contains co-occurrence frequencies
of dependency relations cross-classified by co-occurring context words. NMF is
then applied to the three matrices and the separate factorizations are interleaved
(i.e. the results of the former factorization are used to initialize the factorization
of the next matrix). A graphical representation of the interleaved factorization
algorithm is given in figure 1.

When the factorization is finished, the three different modes (nouns, bag-of-
words context words and syntactic relations) are all represented as a limited
number of semantic dimensions.
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Fig. 1. A graphical representation of the extended nmf

Next, the factorization that is thus created is used for word sense induction.
The intuition is that a particular dimension of an ambiguous word is ‘switched
off’, to reveal possible other senses of the word. Matrix H indicates the impor-
tance of each syntactic relation given a semantic dimension. With this knowledge,
the syntactic relations that are responsible for a certain dimension can be sub-
tracted from the original noun vector. This is done by scaling down each feature
of the original vector according to the load of the feature on the subtracted
dimension.

The last step is to determine which dimension(s) are responsible for a certain
sense of the word. In order to do so, the method is embedded in a clustering
approach. First, a specific word is assigned to its predominant sense (i.e. the
most similar cluster). Next, the dominant semantic dimension(s) for this clus-
ter are subtracted from the word vector, and the resulting vector is fed to the
clustering algorithm again, to see if other word senses emerge. The dominant
semantic dimension(s) can be identified by ‘folding in’ the cluster centroid into
the factorization.

A simple k-means algorithm is used to compute the initial clustering. k-means
yields a hard clustering, in which each noun is assigned to exactly one (dominant)
cluster. In the second step, it is determined for each noun whether it can be
assigned to other, less dominant clusters. First, the salient dimension(s) of the
centroid to which the noun is assigned are determined. The centroid of the
cluster is computed by averaging the frequencies of all cluster elements except
for the target word we want to reassign, and weighting the resulting vector with
pointwise mutual information [19]. After subtracting the salient dimensions from
the noun vector, it is checked whether the vector is reassigned to another cluster
centroid. If this is the case, (another instance of) the noun is assigned to the
cluster, and the second step is repeated. If there is no reassignment, we continue
with the next word. The target element is removed from the centroid to make sure
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that only the dimensions associated with the sense of the cluster are subtracted.
When the algorithm is finished, each noun is assigned to a number of clusters,
representing its different senses.

We use two different methods for selecting the final number of candidate
senses. The first method, NMFcon , takes a conservative approach, and only se-
lects candidate senses if – after the subtraction of salient dimensions – another
sense is found that is more similar to the adapted noun vector. The second
method, NMFlib , is more liberal, and also selects the next best cluster centroid
as candidate sense until a certain similarity threshold φ is reached. Experimen-
tally (examining the cluster output), we set φ = 0.2 .

Sense disambiguation. The sense inventory that results from the induction
step can now be used for the disambiguation of individual instances as follows.
For each instance of the target noun, we extract its context words, i.e. the words
that co-occur in the same paragraph, and represent them as a frequency vector.
Using matrix G from our factorization model (which represents context words
by semantic dimensions), this co-occurrence vector can be ‘fold in’ into the se-
mantic space, thus representing the probability of each semantic dimension for
the particular instance of the target noun. Likewise, the candidate senses of the
noun (represented as centroids) can be folded into our semantic space using ma-
trix H , which represents the dependency relations by semantic dimensions. This
yields a probability distribution over the semantic dimensions for each centroid.
As a last step, we compute the Kullback-Leibler divergence between the context
vector and the candidate centroids, and select the candidate centroid that yields
the lowest divergence as the correct sense.

Example. Let us clarify the process with an example for the noun chip. The
sense induction algorithm finds the following candidate senses:

1. cache, CPU, memory, microprocessor, processor, RAM, register
2. bread, cake, chocolate, cookie, recipe, sandwich
3. accessory, equipment, goods, item, machinery, material, product, supplies

Each candidate sense is associated with a centroid (the average frequency vector
of its members), that is fold into the semantic space, which yields a ‘semantic
fingerprint’, i.e. a distribution over the semantic dimensions. For the first sense,
the ‘computer’ dimension will be the most important. Likewise, for the second
and the third sense the ‘food’ dimension and the ‘manufacturing’ dimension will
be the most important.1

Let us now take a particular instance of the noun chip, such as the one in (1).

(1) An N.V. Philips unit has created a computer system that processes
video images 3,000 times faster than conventional systems. Using re-
duced instruction - set computing, or RISC, chips made by Inter-
graph of Huntsville, Ala., the system splits the image it ‘sees’ into 20
digital representations, each processed by one chip.

1 In the majority of cases, the induced dimensions indeed contain such clear-cut se-
mantics, so that the dimensions can be rightfully labeled as above.
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Looking at the context of the particular instance of chip, a context vector is
created which represents the semantic content words that appear in the same
paragraph (the extracted content words are printed in boldface). This context
vector is again folded into the semantic space, yielding a distribution over the se-
mantic dimensions. By selecting the lowest Kullback-Leibler divergence between
the semantic probability distribution of the target instance and the semantic
probability distributions of the candidate senses, the algorithm is able to induce
the ‘computer’ sense of the target noun chip.

Implementational details. The SemEval training set has been part of speech
tagged and lemmatized with Stanford Part-Of-Speech Tagger [20,21], and parsed
with MaltParser [22] trained on sections 2-21 of the Wall Street Journal section of
the Penn Treebank extended with about 4000 questions from the QuestionBank2

in order to extract dependency triples. The SemEval test set has only been tagged
and lemmatized, as our disambiguation model did not use dependency triples as
features (contrary to our induction model).

The three matrices needed for our factorization model were constructed using
the 5K nouns, 80K dependency relations, and 2K context words (excluding stop
words) with highest frequency in the training set, which yields matrices of 5K
nouns × 80K dependency relations, 5K nouns × 2K context words, and 80K
dependency relations × 2K context words. For our initial k-means clustering, we
cluster the 5K nouns into 600 clusters.

The sense induction and disambiguation algorithms were implemented in
Python. The interleaved NMF factorization model itself was implemented in
Matlab, using 50 iterations, and factorizing the model to 50 dimensions.

3 Word Sense Induction Evaluation in SemEval 2010

3.1 Training and Evaluation Datasets

Our WSI algorithm is trained and tested on the dataset of the SemEval-2010
WSI&D task [4]. The main difference of this task from the SemEval-2007 WSI
task [5] is that the training and testing data are treated separately, which allows
for a more realistic evaluation of the clustering models. Word senses are induced
from the training data while testing data are used for tagging new instances of
the words with the previously discovered senses.

The SemEval-2010 WSI&D task is based on a dataset of 100 target words, 50
nouns and 50 verbs. For each target word, a training set is provided from which
the senses of the word have to be induced without using any other resources. The
training set for a target word consists of a set of target word instances in context
(sentences or paragraphs). In this paper, we will focus on the set of nouns, that
consists of 716,945 instances.

The senses induced during training are used for disambiguation in the testing
phase. In this phase, the systems are provided with a testing dataset that consists

2 http://maltparser.org/mco/english_parser/engmalt.html
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of unseen instances of the target words. The testset comprises 5,285 noun in-
stances. The instances in the testset are tagged with OntoNotes senses [23]. The
systems need to disambiguate these instances using the senses acquired during
training.

3.2 Supervised and Unsupervised Evaluation

The results of the systems participating in the SemEval-2010 WSI&D task are
evaluated both in a supervised and in an unsupervised manner. In the supervised
evaluation, one part of the testing dataset is used as a mapping corpus, which
serves to map the automatically induced clusters to gold standard (GS) senses,
and the other part as an evaluation corpus, used to evaluate the methods in a
standard WSD task. The mapping between clusters and GS senses serves to tag
the evaluation corpus with GS tags.

In the unsupervised evaluation, the induced senses are evaluated as clusters
of examples (tw contexts) which are compared to the sets of examples tagged
with the GS senses (corresponding to classes). So, if the testing dataset of a tw
comprises a number of instances, these are divided into two partitions : a set
of automatically generated clusters and a set of GS classes. A number of these
instances will be members of both one GS class and one cluster. Consequently,
the quality of the proposed clustering solution is evaluated by comparing the
two groupings and measuring their similarity.

3.3 Evaluation Measures

The supervised evaluation in the SemEval-2010 WSI&D task follows the scheme
employed in the SemEval-2007 WSI task [5], with some modifications. The in-
duced senses (clusters) are mapped to GS senses using a mapping corpus, which
is a part of the testing sense-tagged dataset. Then, the evaluation corpus, which
corresponds to the rest of the testing dataset, is used to evaluate WSI methods
in a standard WSD task. The evaluation is performed according to the precision
and recall measures employed for the evaluation of supervised WSD systems.

Two evaluation metrics are employed during the unsupervised evaluation in
order to estimate the quality of the clustering solutions, the V-measure [24]
and the paired F-Score [25]. V-Measure assesses the quality of a clustering by
measuring its homogeneity (h) and its completeness (c). Homogeneity refers to
the degree that each cluster consists of data points primarily belonging to a single
GS class, while completeness refers to the degree that each GS class consists of
data points primarily assigned to a single cluster. V-Measure is the harmonic
mean of h and c.

V M =
2 · h · c
h + c

(1)

In the paired F-Score [25] evaluation, the clustering problem is transformed into
a classification problem [4]. A set of instance pairs is generated from the auto-
matically induced clusters (F(K)), which comprises pairs of the instances found
in each cluster. Similarly, a set of instance pairs is created from the GS classes
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(F(S)), containing pairs of the instances found in each class. Precision is then
defined as the number of common instance pairs between the two sets to the to-
tal number of pairs in the clustering solution (cf. formula 2). Recall is defined as
the number of common instance pairs between the two sets to the total number
of pairs in the GS (cf. formula 3). Precision and recall are finally combined to
produce the harmonic mean (cf. formula 4).

P =
|F (K) ∩ F (S)|
|F (K)| (2)

R =
|F (K) ∩ F (S)|
|F (S)| (3)

FS =
2 · P · R
P + R

(4)

The obtained results are also compared to two baselines. The Most Frequent
Sense (MFS ) baseline groups all testing instances of a tw into one cluster. The
Random baseline randomly assigns an instance to one of the clusters.3. This
baseline is executed five times and the results are averaged.

4 Evaluation Results

4.1 Unsupervised Evaluation

In table 1, we present the performance of a number of algorithms on the V-
measure. We compare our V-measure scores with the scores of the best-ranked
systems in the SemEval 2010 WSI&D task. The second column shows the number
of clusters induced in the test set by each algorithm. The MFS baseline has a
V-Measure equal to 0, since by definition its completeness is 1 and homogeneity
is 0.

Table 1. V-measure for SemEval noun testset

VM (%) #Cl

UoY 20.6 11.54
Hermit 16.7 10.78
KSU KDD 18.0 17.5
NMFlib 13.5 5.42
Duluth-WSI 11.4 4.15
Random 4.2 4.00
NMFcon 3.9 1.58
MFS 0.0 1.00

3 The number of clusters of Random was chosen to be roughly equal to the average
number of senses in the GS.



A Quantitative Evaluation of Global Word Sense Induction 261

NMFcon – our model that takes a conservative approach in the induction of
candidate senses – does not beat the random baseline. NMFlib – our model that
is more liberal in inducing senses – reaches better results. With 13.5%, it scores
similar to other algorithms that induce a similar average number of clusters,
such as Duluth-WSI [26].

Pedersen [26] has shown that the V-Measure tends to favour systems produc-
ing a higher number of clusters than the number of GS senses. This is reflected
in the scores of our models as well.

In table 2, the paired F-Score of a number of algorithms is given. The paired
F-Score penalizes systems when they produce a higher number of clusters (low
recall) or a lower number of clusters (low precision) than the GS number of
senses. We again compare our results with the scores of the best-ranked systems
in the SemEval 2010 WSI&D task.

Table 2. Paired F-score for SemEval noun testset

FS (%) #Cl

MFS 57.0 1.00
Duluth-WSI-SVD-Gap 57.0 1.02
NMFcon 54.6 1.58
NMFlib 42.2 5.42
Duluth-WSI 37.1 4.15
Random 30.4 4.00

NMFcon reaches a score of 54.6%, which is again similar to other algorithms
that induce the same average number clusters. NMFlib scores 42.2%, indicating
that the algorithm is able to retain a reasonable F-Score while at the same time
inducing a significant number of clusters. This especially becomes clear when
comparing its score to the other algorithms.

4.2 Supervised Evaluation

Table 3 shows the recall of our algorithms in the supervised evaluation, again
compared to other algorithms evaluated in the SemEval 2010 WSI&D task.

Table 3. Supervised recall for SemEval noun testset, 80% mapping, 20% evaluation

SR (%) #S

UoY 59.4 1.51
NMFlib 57.3 1.93
Duluth-WSI 54.7 1.66
NMFcon 54.5 1.21
MFS 53.2 1.00
Random 51.5 1.53
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NMFlib gets 57.3% and NMFcon reaches 54.5%, which again indicates that
our algorithm is in the same ballpark as other algorithms that induce a similar
average number of senses.

5 Conclusion and Future Work

In this paper, we presented a quantitative evaluation of a global approach to word
sense induction, and compared it to more prevailing local approaches to word
sense induction, that induce senses on a per-word basis. The results indicate that
the global approach performs equally well, reaching similar results to the state-
of-the-art performance of local approaches. Moreover, the global approach is able
to reach similar performance on an evaluation set that is tuned to fit the needs of
local approaches. The evaluation set contains an enormous amount of contexts
for only a small number of target words, favouring methods that induce senses on
a per-word basis. The global approach is likely to induce a more balanced sense
inventory using a more balanced, unbiased corpus, and is likely to outperform
local methods when such an unbiased corpus is used as input. We therefore think
that a global approach to word sense induction, such as the one presented here,
provides a genuine and powerful solution to the problem at hand, and deserves
further attention.

We conclude with some issues for future work. First of all, we would like to
evaluate the approach presented here using a more balanced an unbiased corpus,
and compare its performance on such a corpus to local approaches. Secondly, we
would also like to include grammatical dependency information in the disam-
biguation step of the algorithm. For now, the disambiguation step only uses a
word’s context words; enriching the feature set with dependency information is
likely to improve the performance of the disambiguation.
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Abstract. Word sense disambiguation (WSD) and coreference resolution are two 
fundamental tasks for natural language processing. Unfortunately, they are 
seldom studied together. In this paper, we propose to incorporate the coreference 
resolution technique into a word sense disambiguation system for improving 
disambiguation precision. Our work is based on the existing instance knowledge 
network (IKN) based approach for WSD. With the help of coreference 
resolution, we are able to connect related candidate dependency graphs at the 
candidate level and similarly the related instance graph patterns at the instance 
level in IKN together. Consequently, the contexts which can be considered for 
WSD are expanded and precision for WSD is improved. Based on Senseval-3 
all-words task, we run extensive experiments by following the same 
experimental approach as the IKN based WSD. It turns out that each combined 
algorithm between the extended IKN WSD algorithm and one of the best five 
existing algorithms consistently outperforms the corresponding combined 
algorithm between the IKN WSD algorithm and the existing algorithm. 

Keywords: Word sense disambiguation, coreference resolution, natural language 
processing. 

1   Introduction 

Word sense disambiguation (WSD) is one of the core research topics of natural 
language processing for identifying which sense of a word is used in a sentence, when 
the word has multiple meanings. It remains as an open problem in natural language 
processing and has important applications in areas such as machine translation, 
knowledge acquisition, and information retrieval [1].  

Supervised WSD approaches provide the state of the art performances in 
benchmark evaluation [2]. Decadt et al. [3] proposed a memory-based approach 
which provides the best performance in senseval-3 all word tasks. Unsupervised WSD 
approaches were also proposed because manual supervision is a cost heavy task. 
Some WSD systems are built on lexical knowledge base [4-9]. Navigli [20] also 
proposed an integration of a knowledge-based system to improve supervised systems. 
They explore and calculate the semantic relationships between concepts in semantic 
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networks [4, 5]. Some of them are graph based approaches [6-9]. The simi-supervised 
approach [10] shows the potential of getting better WSD results by a relative small 
manual training set. In this paper, we focus on the discussion of the supervised WSD 
approaches.  

Most WSD algorithms use fixed size windows for word collections. Many 
approaches [10, 11] are based on collocations [12]. The collocations are identified by 
a sliding window. The relations between words are always simplified as whether 
appearing in the collection window or whether appearing in some particular position 
in the window. The size of windows is always fixed. Since these approaches ignore 
the details of many relations between the words, enlarging the size of the windows 
may not improve the performance obviously. As such, other natural language 
processing techniques such as coreference resolution are seldom considered to 
improve the performance of WSD because they cannot affect the semantic context 
which is decided by the window. Some other works use flexible size windows. 
Personalizing PageRank approach [9] builds the context of at least 20 content words 
for each sentence to be disambiguated, taking the sentences immediately before and 
after it when the original sentence is too short. Navigli and Velardi [6] used the 
sentence as the border of the semantic context of a word in their Structural Semantic 
Interconnection approach. Coreference resolution may help these works to enlarge the 
contexts. However, the related words in their contexts are order-free. They consider 
all the words in a context equally without considering the semantic or syntactic 
relations between the words in the context. A larger context may not be helpful for 
them to improve the precision. 

Recently, Hu et al. [13] proposed a new WSD approach based on an instance 
knowledge network (IKN). It keeps all the information of the training set at the 
instance level of the IKN. When attempting to disambiguate word senses for a 
candidate sentence, it discovers the knowledge by a graph matching algorithm from 
the IKN. Because they used Stanford dependency parser [14, 15] to parse the text into 
dependency graphs, and Stanford parser can only work on separate sentences 
properly. The size of the dependency graph limited the performance of the IKN 
approach. Actually, the instance network structure with syntactic relations between 
instance nodes provides the potential to enlarge the contexts. Based on this 
observation, we found that coreference resolution techniques can be used to extend 
the structure of IKN and consequently help to improve the performance of WSD.  

Up to now, WSD and coreference resolution have been considered as two separate 
tasks in natural language processing due to some reasons discussed above. We reckon 
that natural language understanding is an integrated process. If possible, different 
techniques should be integrated to help each other to improve the performance of 
natural language text.  

In this paper, we aim to use coreference resolution technique to improve 
performance of WSD. To the best of our knowledge, this is the first attempt in this 
topic. We propose to employ the results of coreference resolution in WSD based on 
the IKN approach [13]. We enlarge the contexts for WSD by connecting separate 
dependency graphs of IKN with the help of coreference resolution.  

The rest of the paper is organized as follows. In Section 2, we briefly introduce the 
IKN WSD approach, which sets the basis of this work. We present the extended IKN 
structure, its graph matching algorithm and algorithms for training and WSD in 
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Section 3. The experimental evaluations are given in Section 4. In Section 5, we 
discuss some issues for incorporating coreference resolution into WSD. Section 6 
concludes the paper with an indication of the future work. 

2   Instance Knowledge Network and Its WSD Approach 

We first give a brief introduction of the IKN WSD [13] approach as the work 
presented in this paper is based on it. The IKN is a knowledge representation model, 
which has three levels – the word level, the type synset level and the instance level. 
The word level and the type synset level are from WordNet [16]. To build the 
instance level of the IKN, they parse the sentences in a sense tagged corpus into 
dependency graphs. Each word node in a dependency graph is set a unique identifier. 
Each word node becomes an instance node. Then by the sense tags for the word, they 
connect the instance node to the corresponding tagged sense synset of WordNet. By 
this way, they convert each dependency graph as an instance graph patterns (IGP). So 
the instance level of the IKN is composed of all the IGPs which are created from the 
corpus.  

There are four types of relations in the IKN: sense relations between each word at 
the word level and its sense synsets at the synset level, semantic relations between the 
synsets at the synset level, instance relations between each synset at the synset level 
and its instance nodes at the instance level, and dependency relations between 
instance nodes at the instance level. 

In IKN, each word may have multiple senses, each sense in turn may be tagged in 
multiple positions in the corpus, and an instance node is created for each tagged word.  
Therefore, a word may be associated with multiple instance nodes.  

To discover the knowledge in the IKN, a graph matching algorithm was proposed. 
The algorithm attempts to find matching sub graphs in the IGPs at the instance level 
of the IKN for a particular candidate dependency graph which is parsed from a 
candidate sentence. They named a matching sub graph as an instance matching sub-
graph (IMSG).  

Figure 1 shows a simplified structure of the IKN and a general picture on how 
graph matching works. Given a candidate dependency graph G, first the algorithm 
finds, for each candidate word w in G, the semantic related synsets (SRSs) at the type 
synset level and then the semantic related instance nodes (SRINs) at the instance 
level. Then, for each edge e(w1, w2) in G, we find its matching edges in all IGPs at the 
instance level. An edge e’(iw1, iw2) in an IGP G’ is called a matching edge of e if iw1 
and iw2 are an SRIN of w1 and w2, respectively, and they have the same dependency 
relation. Finally, the matching edges by shared candidate words and instance nodes 
are connected to get the IMSGs.  

For each returned SRIN n of a word w, their semantically related instance 
relationship SRIR(w, n) is denoted as (w, s, t, n) where s is the sense synset of w on 
the path and t is the semantic relation between s and the SRS s’ on the path which 
directly connects to n.     

Because the IKN approach is based on Stanford dependency parser which can only 
parse sentences, the candidate dependency graphs and the IGPs can only represent 
separate sentences. Consequently, each IMSG is also limited in a single sentence. 
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Fig. 1. Graph Matching Algorithm on Instance Knowledge Network 

Base on the graph matching algorithm, a probabilistic training algorithm and a 
WSD algorithm are developed. The probabilistic training algorithm attempts to 
calculate conditional probabilities for each pair <i1, i2> of instance nodes in each IGP. 
The instance node pairs are not limited to edges only. Since multiple candidate word 
pairs {< w1i, w2j >} may match <i1, i2>, and matched word pairs can be classified by 
their SRCs t1 and t2 of their SRIRs, respectively. Here SRIR(w1i, i1) = (w1i, s1i, t1, i1), 
SRIR(w2j, i2) = (w2j, s2j, t2, i2), multiple conditional probabilities are defined for <i1, 
i2> and they are directional. For instance, P(i2, t2 | i1, t1) is defined as the probability of 
s2j being the proper sense of w2j when s1i is the proper sense of w1i. P(i1, t1 | i2, t2) can 
be defined similarly. 

After the training process, conditional probabilities from one sense synset to others 
are obtained. Since a pair of words <w1, w2> may appear in different candidate 
dependency graphs with different syntactic relations between them and each candidate 
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dependency graph may match different IGPs, each pair <s1i, s2j> of sense synsets of 
<w1, w2> may have multiple matched instance node pairs {<i1i, i2j>}. Consequently, for 
each pair <s1i, s2j>, it is associated with multiple pairs of conditional probabilities, each 
pair coming from a matched instance node pair <i1i, i2j>.  

The WSD algorithm attempts to find IMSGs in the IKN given a candidate 
dependency graph. Different word pairs of a particular sense synset pair <s1, s2> may 
have different syntactic relations, and their matched sets of instance node pairs may 
also be different. This shows different contexts of <s1, s2>. For each context, the pair 
of conditional probabilities for <s1, s2> are calculated as the maximal conditional 
probabilities from the matched set of instance node pairs. 

Based on these context sensitive conditional probabilities between synsets, an 
iterative process is deployed for calculating the probability for each sense of a 
candidate word until it gets stable. The final probability for each word sense is 
considered as the probability of the sense being the proper sense of the candidate 
word. The sense with maximal probability is considered as the WSD result of the 
word and its probability is defined as the confidence of the disambiguation. 

3   Extending IKN with Coreference Resolution 

The IKN approach [13] opens the door to use coreference resolution to improve the 
performance of WSD. To incorporate the results of coreference resolution, we first 
extend the structure of the IKN. Based on the extended IKN structure, we then present 
the corresponding extended graph matching algorithm. We finally discuss the 
probabilistic training and WSD algorithms for the extended IKN. 

3.1   Extending the Structure of IKN 

Stanford dependency parser works on sentences and parses each sentence into a 
dependency graph. A dependency graph contains words as nodes and dependency 
relations between the words as edges. There is no edge between different dependency 
graphs of different sentences.  

Coreference resolution is to discover the words or phrases in a sentence or different 
sentences which refer to the same entity. When there are two words or phrases refer to 
the same entity, we connect them by a coreference relation. If these two words or 
phrases belong to different sentences, then their corresponding dependency graphs are 
connected, and consequently, the context for WSD is enlarged. 

To use coreference resolution to improve the performance of WSD, we employ 
BART coreference system [17, 18]. In BART, the coreference resolution results are 
represented as tags for phrases or single words and the phrases or words with the 
same tag are deemed coreferenced.  

To extend the IKN with the results of BART, we first select the base word in each 
coreferenced tagged phrase or word. For pronoun, the base word is the pronoun itself. 
For noun phrase which contains adjective or multiple nouns, we select the last noun as 
the base word. Then in each group of coreferenced phrases and words with the same 
tag, we select the base word of the first phrase or word in the text as the prime base 
word. Finally, we connect all the nodes of the base words in the group to the node of 
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the prime base word by adding new edges representing the coreference relation. As a 
result, some previously separate dependency graphs are connected to form a so-called 
joint dependency graph (JDG). A JDG may represent part of an article or even the 
whole article. 

Fig. 2. Joint dependency graph 

Definition (Joint Dependency Graph): A joint dependency graph JG is connected 
graph represented as JG(T, CG) where T = {t1, …, tn} and CG = {CG1, …, CGn}. ti ∈ 
T is a tag. CGi = {Gi0, Gi1, …, Gini} is a group of dependency graphs connected by the 
coreference relation represented by ti, and each Gij (1≤j≤ni) is connected to Gi0 which 
owns the prime base word tagged by ti. 

Figure 2(a) shows an example of a JDG. In the example, we have three sentences 
“The man is a manager. He went to his office. He put the document on the desk.” 
These three sentences are parsed as three dependency graphs.  

The coreference resolution results for these three sentences are four coreferenced 
phrases: the man in the first sentence, he and his in the second sentence, and he in the 
last sentence. We select the base words for each phrase, where man is the base word 
for the first phrase, thus the prime base word for these three sentences, he, his and he 
are base words for the other three phrases. So we connect the base words he, his and 
he to the prime base word man with the coreference relation, and it results in a star-
shaped connected JDG shown in Figure 2(a).  

The star-shaped connection method may lead to different graph structures when 
similar sentences are presented in different order. For example, we may present the 
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above three sentences as “A man went to his office. He put the document on the desk. 
He is a manager.” The JDG for these three sentences is shown Figure 2(b). We will 
show that this JDG will be treated as the same as the JDG shown in Figure 2(a) by out 
extending graph matching algorithm.    

In the IKN approach, we can extend the dependency graphs to JDGs at both the 
candidate level and the instance level (shown in Figure 1). That is, by coreference 
resolution, we can connect coreferenced candidate graphs to a candidate JDG at the 
candidate level, and connect coreferenced IGPs to a joint IGP (JIGP) at the instance 
level.  

3.2   Graph Matching Algorithm between Candidate JDG and JIGP 

The graph matching algorithm of the IKN WSD approach [13] is limited to match 
some IGPs at the instance level of the IKN with the given candidate dependency 
graph. Now, we present the extended graph matching algorithm between candidate 
JDGs and JIGPs. Due to page limitation, we only highlight the main difference 
between the extended algorithm and the original algorithm which is briefly introduced 
in Section 2.  

Given a candidate JDG JG, we find all matching sub-graphs of JIGPs in the 
extended IKN (EIKN for short) for JG. 

In the IKN, the matching algorithm basically first finds each pair of matching 
edges between a candidate dependency graph and an IGP, and then tries to maximally 
connect to those matched edges in both the candidate dependency graph and the IGP. 
After that, one or many IMSGs in the IGP can be identified for their corresponding 
subgraphs in the candidate dependency graph. 

In the EIKN, a graph matching is between a candidate JDG and a JIGP. As such, a 
subgraph of the candidate JDG may cover multiple candidate dependency graphs. 
Similarly, an IMSG may involve multiple IGPs in a JIGP. This is because that two 
matching edges belonging to different dependency graphs or different IGPs can be 
connected by coreference relations. 

Figure 3 shows the difference of connecting matching edges between the graph 
matching algorithms of existing IKN system and our extended IKN system. Figure 
3(a) shows a normal matching between a candidate dependency graph and an IGP in 
the IKN. The connection happens because the candidate word w2 and its SRIN i2 are 
shared by two pairs of matching edges. 

Figure 3(b), Figure 3(c) and Figure 3(d) show the differences of the extended graph 
matching algorithm on how to connect matching edges between a JDG and a JIGP. 
Coreference relation holds between w2 and w’2 at the candidate level and between i2 
and i’2 at the instance level. A coreference relation is transitive, which means that if 
coreference relation holds between a and b as well as between b and c, then 
coreference relation also holds between a and c.  

In Figure 3(b), instance node i2 is a SRIN for both candidate words w2 and w’2 and 
there is a coreference relation between w2 and w’2. We can join the two pairs of 
matching edges {(w1, w2), (i1, i2)} and {(w’2, w3), (i2, i3)} together. So instance 
dependency graph with node set {i1, i2, i3} is an IMSG of the JDG with node set  
{w1, w2, w’2, w3}.  
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In Figure 3(c), both instance nodes i2 and i’2 are an SRIN of candidate word w2 and 
there is a coreference relation between i2 and i’2. So the joint instance dependency 
graph with node set {i1, i2, i’2, i3} is considered as an IMSG of the dependency graph 
with node set {w1, w2, w3}. 

In Figure 3(d), there is a coreference relation between w2 and w’2 and there is 
also a coreference relation between i2 and i’2. In this case, the joint instance 
dependency graph with node set {i1, i2, i’2, i3} is an IMSG of the JDG with node set 
{w1, w2, w’2, w3}. 

Through these methods, we extend the graph matching algorithm for the EIKN. 
We can find all (joint) IMSGs in all JIGPs of the EIKN for a given candidate JDG. 

3.3   Extending Training and WSD Approaches 

Based on the graph matching algorithm for the EIKN, the probabilistic training 
algorithm and the WSD algorithm for the EIKN can be developed similar to the IKN. 
In the IKN system, both a candidate dependency graph and an IGP are limited to a 
single sentence. In the EIKN system, we train the EIKN by candidate JDGs and the 
matched IMSGs may span over multiple IGPs (i.e., in a JIGP). As a result, conditional 
probability needs to be calculated or adjusted for each instance node pair in the 
matched IMSGs. This helps enlarge the size of IMSGs, and in turn helps WSD for 
matching text with larger contexts. 

Instance level 

Candidate level Candidate level 

Candidate level 

Instance level 

Instance level Instance level 

Candidate level 

(a) (b) 

(c) (d) 

w1 w2 w3 

i1 
i2 
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i1 

i1 i1 

i2 

i2 i2 

i3 

i3 i3 i’2 
i’2 

w1 
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w3 
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w3 

w2 
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w’2 
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Fig. 3. Comparison between graph matching algorithms of IKN and EIKN 
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Compared the WSD algorithm for the EIKN with the WSD algorithm for the IKN, 
there are two main differences. Firstly, instead of a dependency graph for a single 
sentence, the EIKN WSD algorithm disambiguates a JDG for multiple sentences 
with a larger context. Secondly, the EIKN WSD algorithm is able to match against a 
JIGP instead of an IGP. Because of these differences, in the probabilistic reasoning 
process of the EIKN WSD algorithm, the finding of the maximum conditional 
probability of a given sense synset from another sense synset is not limited from the 
dependency graph of a single sentence. For the sense synset s of a candidate word w, 
we find a maximal conditional probability P(s | sij) of s from each sense synset sij of 
surrounding candidate word wi in the JDG which w belongs to. By this approach, we 
enlarge the size of context which is considered for WSD. Based on the maximal 
conditional probabilities between synsets in a larger context, we employ a similar 
iterative process to the IKN WSD for calculating the final probability for each sense 
of a candidate word. The sense with maximal final probability is considered as the 
WSD result of the word and its probability is defined as the confidence of the 
disambiguation. 

4   Experiments and Evaluation 

Similar to the settings for the IKN experiments, we use Stanford dependency parser to 
parse the text into dependency graph. The additional feature is that we employ BART 
coreference resolution system as a basis to connect the dependency graphs and IGPs 
together in our approach. We build the EIKN by sense tagged corpus SemCor [19] 
and we train the EIKN by SemCor again. The experiment results of WSD are for 
Senseval-3 all word tasks.  

The trained EIKN has about 500k instance nodes, 2.2M relations and 930k 
conditional probabilities. The EIKN building process and training process cost about 
110 hours on a windows XP professional system with 2.2GHz CPU and 3 GB RAM. 
The disambiguation for the texts of senseval-3 all word tasks takes about one hour 
and a half on the same computer.  

To compare with the IKN approach, the EIKN high-precision WSD results are 
combined with those of each given existing WSD algorithm A through the following 
method which is the same to the IKN approach. For each test word wi, we define 
sEIKN(wi) as the result sense, cEIKN(wi) as the confidence of disambiguation, and θ as 
the confidence threshold for the EIKN WSD approach. We also define sA(wi) as the 
result sense for the existing WSD algorithm. Then we can get the result sense 
sA+EIKN(wi) of wi by the combined algorithm as sA+EIKN(wi) = sEIKN(wi) if cEIKN(wi) is 
greater than or equal to the threshold θ, and sA+EIKN(wi) = sA(wi) otherwise. 

Through this method, we use the EIKN WSD results with high confidence values 
(greater than the threshold θ) to replace the corresponding WSD results of the existing 
algorithm. If these selected EIKN WSD results have better precision than the replaced 
existing WSD results, the combined WSD results will get better recall than the 
existing WSD algorithm.  
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Table 1. The comparision between the recalls of combined algorithms of Extended IKN and 
existing algorithms and the combined algorithms of IKN and the corresponding existing 
algorithms 

  Single Combined 

IKN/EIKN Threshold θ N/A 0.7 0.8 0.9 

GAMBL+IKN 65.2% 65.2% 65.4% 65.4% 
GAMBL+EIKN 65.2% 65.1% 65.6% 65.8% 
SenseLearner+IKN 64.6% 65.2% 65.1% 65.0% 
SenseLearner+EIKN 64.6% 65.8% 65.9% 65.7% 
Koc+IKN 64.1% 64.7% 64.7% 64.5% 
Koc+EIKN 64.1% 64.8% 65.2% 65.2% 
R2D2+IKN 62.6% 63.8% 63.4% 63.2% 
R2D2+EIKN 62.6% 63.8% 64.0% 63.8% 
Meaning-allwords+IKN 62.4% 63.6% 63.6% 63.5% 
Meaning-allwords+EIKN 62.4% 63.3% 63.9% 63.7% 

 
We combine the EIKN algorithm with the five best algorithms of Senseval-3 all 

word tasks. For each given existing algorithm A, we attempt to get the combined 
results of A+EIKN and the corresponding combined results of A+IKN for a range of 
thresholds θ. We compare the results of A+EIKN and A+IKN for each particular θ.  

In Table 1, we compare the recalls of each combined algorithm between the EIKN 
algorithm and one of the five existing algorithms with the corresponding combined 
algorithm of the IKN algorithm and the existing algorithm. When the threshold θ 
equals to or is greater than 0.8, for each existing WSD algorithm A and particular θ 
the combined results of A+EIKN achieve better recall than the corresponding 
combined algorithm A+IKN. When the threshold θ =0.8, 0.9, the improvements are 
from 0.2% to 0.8%. Compared to the corresponding existing WSD algorithms, the 
improvements are from 0.4% to 1.5%. Except the combined GAMBL+EIKN 
algorithm, all the other four combined algorithms improve more than 1% the recall 
than the corresponding algorithm. The best recall of A+EIKN is also better than 
A+IKN.  

We observed that the effects of combined algorithms may be different. A worse 
recall of an existing algorithm may lead to better recall of the combined result. For 
example, the recall 64.6% of SenseLearner algorithm is worse than the recall 65.2% 
of GAMBL algorithm. However, when θ = 0.8, the recall of SenseLearner+EIKN 
algorithm is 65.9% which is better than 65.6% the recall of GAMBL+EIKN 
algorithm.  

From the experiments, in the word set with high disambiguation confidence, the 
EIKN algorithm which uses coreference resolution results can achieve better results 
than the IKN algorithm and the top five algorithms in Senseval-3 all word tasks. 

5   Discussion 

Up to now, word sense disambiguation and coreference resolution are still two 
separate topics in natural language processing area. Nonetheless, the understanding of 
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natural language is an integrated process. Unfortunately, to the best of our knowledge, 
there is no existing model that is able to consider these two understanding techniques 
together before the IKN model was proposed.  

We found that the IKN model has the potential to incorporate these two different 
techniques at the instance level, so we propose the EIKN model to realize the 
incorporation. The EIKN model uses a coreference approach to enlarge the effective 
context size for WSD. This approach is the first attempt to show how these two 
different techniques work together for natural language understanding.   

Some issues remain in incorporating these two techniques. The main issue is that 
existing coreference resolution systems may not be able to provide high-precision 
results. As a WSD result depends on the results of coreference resolution, the 
quality of results obviously affects the quality of the WSD result. BART, the 
coreference resolution system used in our EIKN system provides the precision 
about only 68% in MUC-6 benchmark system. This inevitably affects the 
performance improvement. Nonetheless, the relative low precision of coreference 
resolution does not impact much on the accuracy of high confidence WSD results in 
the EIKN. In the EIKN, the probabilistic training process works on JDGs which 
incorporate the results of coreference resolution. Therefore the conditional 
probabilities across multiple dependency graphs that we acquired in the training 
process already reflect the precision of the coreference resolution results. This 
phenomenon shows that the IKN probabilistic model is not only effective to WSD. 
It may be also effective to coreference resolution.  

6   Conclusion and Future Work 

In this paper, we introduced a new word sense disambiguation approach based on the 
existing IKN WSD approach by incorporating coreference resolution results. With the 
help of the results of a coreference resolution system, we build our EIKN system by 
connecting candidate dependency graphs at the candidate level and IGPs of the IKN 
at the instance level. This allows us to enlarge the size of contexts which can be 
considered in both the training process and the disambiguation process. 

We run extensive experiments in our EIKN system based on Senseval-3 all-words 
task. Following the similar evaluation approach of the IKN work, we combined our 
EIKN WSD algorithm with the best five WSD algorithms. The performance of each 
combined algorithm of our EIKN algorithm and one existing algorithm is better than 
the corresponding combined algorithm of the IKN algorithm and the existing 
algorithm in the word sets with high confidence.  

In the future, we will attempt to use high precision WSD results to provide high 
precision results of coreference resolution. We believe that high precision WSD and 
high precision coreference resolution can help each other in an iterative process. 
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Abstract. Although dependency parsers have become increasingly pop-
ular, little work has been done on how to associate dependency structures
with deep semantic representations. In this paper, we propose a semantic
calculus for dependency structures which can be used to construct deep
semantic representations from joint syntactic and semantic dependency
structures similar to those used in the ConLL 2008 Shared Task.

Keywords: Dependency graphs, Deep Semantics, Graph Rewriting.

1 Introduction

Deep semantics have been developed for stochastic categorial parsers [1] and
for parsers based on phrase structure grammars [2, 3, 4]. Much less work has
been done, however, on combining dependency parsers with a a deep seman-
tics calculus. Although [5] sketches a syntax-semantics interface for dependency
grammar, the proposed approach requires a constraint-based, tightly interleaved
construction of dependency, predicate/argument and scoping structure which is
not easily adaptable to the output of contemporary dependency parsers. Simi-
larly, [6] presents a formalism for semantic construction from dependency struc-
tures. However, the approach incorrectly assumes that semantic dependencies
match syntactic dependencies and so fails to generalise (cf. Section 2).

In this paper, we present an approach for rewriting dependency graphs into
deep semantic representations that can be applied to joint syntactic and semantic
dependency structures similar to those used in the ConLL 2008 Shared Task. We
start by discussing a number of issues raised by dependency structures in relation
to semantic construction and by motivating the choices underlying our approach
(Section 2). We then present our proposal (Section 3).

2 Motivations

In essence, a dependency structure consists of nodes labelled with lexical items
(and optionally, parts-or-speech) and linked by binary asymetric relations called
dependencies. Figure 5 illustrates this with the plain (non bold) nodes and edges
forming a possible dependency graph for the sentence “John seems to love Mary”.

A. Gelbukh (Ed.): CICLing 2011, Part I, LNCS 6608, pp. 277–288, 2011.
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Importantly, dependency structures differ from phrase structure trees or cat-
egorial derivations in that they describe relations between words and eschew the
notions of syntactic constituents and non terminal syntactic categories. Starting
with [7] however, a key assumption is that the computation of deep semantics
strongly relies on syntax. Thus in phrase structure grammars, each syntactic
rule is coupled with a semantic rule specifying how the semantics of its daugh-
ters combines to yield the semantics of the constituent being derived. Similarly,
in categorial grammars, each word is simultaneously assigned a syntactic and
a semantic category describing both how it syntactically combines with other
word/category pairs and how its semantics combine with the semantics of the
items it combines with. In essence, syntax guides semantic construction in that
it constrains the semantic type1 of word occurrences and specifies how the se-
mantics of constituents combine to yield the semantics of derived constituents.
Given this, dependency graphs raise two main issues with respect to semantic
construction.

First, the impoverished syntactic categories they include make it difficult to
determine the semantic type of a given word occurrence. For instance, given the
two sentences in (1), there is no obvious way to determine from their depen-
dency graphs (shown in Figures 5 and 6) that the semantic functor licensed by
“seems” combines with a VP semantics in (1a) but with a sentence semantics
in (1b).

(1) a. John seems to love Mary
b. It seems that John loves Mary

The problem is that, in both cases, the syntactic category associated with
“seems” is a simple part-of-speech category which fails to indicate the syntactic
and hence the semantic type of the verb arguments. To put it another way,
there is no indication in a dependency graph of which syntactic type of ”seem”
is used to build each of the two sentences. To determine that “seems” combines
with an infinitival VP in (a) but with a sentential argument in (b), dependencies
that are non local to “seems” would need to be checked e.g., Does “love” in the
dependency graph dominate a “to” or a “that” node ?

A second issue regarding semantic construction from dependency graphs is
that syntactic and semantic dependencies do not necessarily match [3]. In par-
ticular, there is sometimes a mismatch between predicate/argument and scope
relations. For instance, in questions such as (2), “which man” scopes over the rest
of the sentence to yield the meaning Which is the x such that x is a man and
John thinks that Mary likes x ? Standard dependency structures fail to capture
the scope of the wh-element because “man” is related by an object relation to
“likes” but not to the main verb “thinks”.

1 Here and in what follows, the term “semantic type” refers to the logical type of
the denotation of natural language expressions e.g., in an extensional typed lambda
calculus the type t of sentences or the type ((e,t),(e,t),e) of quantifiers with e the
type of individuals and t the type of truth values.
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(2) Which man does John think that Mary likes?

In sum, the combined lack in a dependency graph, of a fully fledged syn-
tactic categorial system and of a syntactic structure makes it difficult both to
determine the semantic type of a word occurrence (Does “seems” combine with
a VP or an S semantics?) and to appropriately describe how meanings should
combine (How can both scope and predicate/argument relationships be appropri-
ately captured?). To address these issues, we propose an approach to semantic
construction which does not rely on a strict syntax/semantic parallelism but
constructs semantic representations based on a small set of general principles
describing the syntax-semantic interface. These principles are encoded in graph
rewriting rules which determine the semantic type of each word occurrence based
on the graph configuration in which it occurs. We show how this approach han-
dles the cases above and a range of various other semantic phenomena.

3 Proposal

We start (Section 3.1) by briefly introducing graph rewriting and discussing
termination, confluence and well-formedness. We then describe our approach to
semantic construction (Section 3.2) and illustrate its working by describing the
derivation of “Every man loves a woman” (Section 3.3). We then go on to sketch
how to handle control, raising, modifiers and relative clauses (Section 3.4).

3.1 Graph Rewriting

Used in e.g., formal calculus, combinatoric algebra and operational semantics,
rewriting is a technique for modelling reduction and simplification. For instance,
the rewriting rule r1 : x∗y+x∗z→ x∗(y+z) permits factorising 5∗6+5∗7+5∗8
to 5 ∗ ((6 + 7) + 8). More generally, a rewriting system consists of a set of
rewriting rules of the form l → r where l and r are filtering and rewriting
patterns respectively. Given a graph g, such a rule will apply to g if g matches
the filtering pattern l. The result of applying a rule to a graph g is g where the
sub-part of g matched by l is rewritten according to the rewriting pattern r.
Matching consists in looking for a homomorphism between the pattern graph l
and the host graph g while the allowed rewriting operations include information
duplication, deletion and addition2.

GrGen, a standard graph rewriting system. To define our rewrite rules, we use
an existing rewriting system called GrGen [9]. In GrGen, the objects handled by
rewriting are directed graphs with typed nodes and edges. Each node and each
edge has a type. Additionally, nodes can be associated with a set of attribute
value pairs constrained by the node type. In the filtering pattern, attribute value
pairs are interpreted as constraints while in the rewriting pattern, they are in-
terpreted as assignments. Finally, nodes names can be used to constrain the
mapping between filtering and rewriting pattern in that two nodes with the
same names must be identical.
2 For a precise definition of matching, we refer the reader to [8].
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rule forall {
pattern{
w:word; d:word; h:sem;
w -det-> d;
w --> h;
if {d.word=="every"}

}
replace{
w -det-> d;
w --> h;
f:sem; v:sem; r:sem; s:sem;
eval{

v.var = "X";
f.formula = "";
r.formula = "∧";
s.formula = "∧";

}
h --> f;
f -V-> v;
f -R-> r;
f -S-> s;

}
}

(a) GrGen Rule

w . . .

d every h

⇒
w . . .

d every h

f ∀〈V 〉.〈R〉 ⇒ 〈S〉

v X r ∧ s ∧

det

det

V R S

(b) Graphical representa-
tion

Fig. 1. A rewrite rule which expands the seed node licensed by an “Every N” subgraph
with a semantic subgraph encoding the corresponding semantic type namely, the type
of a universal quantifier. Here and in what follows, we use the following graphical
conventions. Node names (e.g., w, d, h, f, q, r) appear to the left of the vertical bar
splitting a node description while attribute values (every, X,∧) appear to its right.
Attribute names are omitted. Node types are indicated using different fonts whereby
italics indicate a node in the semantic representation structure, a plain font a node in
the dependency structure and a bold font a node in the SRL structure. Edge type is
not represented but is deducible from the types of the in and out vertices.

Expressive and efficient, GrGen3 is well suited to specify our semantic con-
struction rules. For instance, the rewrite rule graphically depicted in Figure 1b
can be specified as shown in Figure 1a. In essence, the rewrite rule expands the
seed node h4 licensed by an “Every N” dependency subgraph, with a seman-
tic subgraph capturing the corresponding semantic type namely, the type of a
universal quantifier.
3 There are other rewriting systems available such as in particular, the Tsurgen system

used in the Stanford Parser to map parse trees into dependency graphs. We opted
for GrGen instead because GrGen is efficient, notationally expressive (for specifying
graphs but also rules and rule application strategies) and comes with a sophisticated
debugging environment.

4 See Section 3.2 for an explanation of how seed nodes are introduced.
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Confluence, termination and well-formedness. The standard approach to seman-
tic construction typically relies on the typed lambda calculus to define and com-
bine meaning representations. This ensures termination (through the typing sys-
tem), confluence (all ways of combining the same sequence of lambda terms yield
the same result) and well-formedness of the resulting formulae (beta-reduction
will fail in case of a type clash).

These properties are not garanteed by rewriting. Indeed it is easy to define a
non confluent rewriting system that yields ill formed semantic representations.
We avoid those pitfalls as follows. We ensure termination and confluence by
imposing a total order on rule application. As we shall see in the following
section, each rule captures a general semantic construction principle. The order
imposed on their application captures the way in which these principles interact
(e.g., scope can only be defined after quantifiers and their semantic arguments
have been introduced). Further, well formedness is ensured by the translation
from semantic graphs to FOL formulae which will fail in case a FOL formula
cannot be reconstructed from a given constructed graph.

3.2 Basic Semantic Construction Procedure

Our semantic calculus is semantic rather than syntax driven. Drawing on the
global dependency analysis of a sentence, it incrementally constructs a seman-
tic representation by building, linking and labelling the various substructures
composing this representation.

To simplify semantic construction, we additionally assume that the depen-
dency graphs we take as input are enriched with semantic role labelling (SRL)
information. This permits abstracting over syntactic idiosyncrasies such as active-
passive alternations or dative shifts, and making certain semantic dependencies e.
g. in control constructions explicit. The dependency graphs are produced by the
Stanford parser [10] and augmented with Propbank style semantic role labelling
information as described in [11]. Given such joint structures, we use rewrite rules
to further extend them with a semantic representation. Here, we illustrate the
approach by showing how to build first order logical formulae but nothing hinges
on this and other types of semantic representations could be built such as e.g.,
Discourse Representation Structures (DRSs) or Minimal Recursion Semantics
structures (MRSs).

Semantic construction is modelled by a rewriting system consisting of six gen-
eral syntax-semantic principles implemented as a set of cascaded rules applying
in a fixed order, each rule taking as input the output of the previous step. The
underlying intuition is as follows. First, “seed nodes” are created by adding as
many nodes to the semantic representation as there are words pointed to by se-
mantic role labelling edges. That is, a node is created for each predicate and each
argument in the SRL structure. Second, each seed node is expanded with the
subformula skeleton representing its meaning. Nominal arguments are expanded
with a generalised quantifier tree shape while predicates (verbs or deverbal nom-
inals) are expanded with an existential quantification over eventuality variables.
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Third, scope is determined by linking the resulting trees together. Fourth, nodes
are labelled with the appropriate predications whereby variables are bound by
the appropriate operator.

In sum, semantic construction initialises a structure (seed nodes creation),
expands it with structures representing the semantic type of each node (node
expansion), determines scope by linking these substructures together (scoping)
and finalises the resulting structure by labelling nodes with the appropriate lit-
erals and bound variable (node labelling, variable binding). Additional principles
are implemented for modelling connectives such as “when” or “if-then”, which are
not discussed here because of space restrictions.

3.3 Run through Example

We start by giving a bird eye view of the semantic construction process for the
sentence “Every man loves a woman". In the next section, we will show in more
detail how the rewrite rules permit appropriately mapping syntax to semantics
and more particularly, how they ensure that variables are appropriately bound.

The joint dependency+SRL graph input to semantic construction is shown in
Figure 2a. The first step (2b) creates three seed nodes each of which is licensed
by an SRL node: the n0 node is licensed by the predicate node associated with
the verb “loves” and the n1, n2 nodes are licensed by the two verb argument
heads “man” and “woman” respectively.

The second step expands these seed nodes to build substructures describing
their semantic type. Seed nodes that are licensed by a dependency node with
nominal category dominating a determiner node licence the construction of a
subtree representing a generalised quantifier i.e., a tripartite structure consisting
of a quantifier, a restriction and a scope where the quantifier will be determined
by the specific determiner dominated by the noun (e.g., a universal for “every”
or “all” and an existential for “a”5). In contrast, seed nodes licenced by a predi-
cate (e.g., a verb or a deverbal nominal) trigger the construction of a structure
representing an existentially bound event variable. The node expansions licensed
by “Every man”, “loves” and “A woman” respectively are shown in Figure 2c.

The third step (Figure 2d) connects the substructures built so far thereby
determining scope. Scope is specified by adding an edge between the scoping
node of each scope bearing operator and the head of the semantic substructure
licensed by the next syntactic argument in the sentence (e.g., by adding a link
from the scoping node of “every man” to the root node of the head of the sub-
formula licenced by “a woman”). The verb structure is linked to the restriction
of its right most argument (the tree for “loves” is linked to the scoping node of
“a woman”). Here we make the simplifying assumption that scope is unambigu-
ously determined by the linear order of words in the sentence. Scope ambiguity
could be accounted for either by having a rule strategy that supports alternative
rules and rule application order thereby inducing several possible solutions or by
5 For donkey sentences such as “If a farmer owns a donkey, he beats it” where the

indefinite “a farmer” licenses a universal quantifier, the approach should be modified
so as to build Discourse Representation Structures rather than FOL formulae.
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(e) Specifying predications

Fig. 2. Derivation example “Every man loves a woman”. The notation ∀〈V 〉.(〈R〉 ⇒
〈S〉) is syntactic sugar indicating that the node is labelled with the attribute value pair
quant:forall and that a FOL formula of that shape can be reconstructed from the
subgraph rooted in that node. Indeed, from the final representation, the following FOL
formula can be derived: ∀M.(man(M)∧∃W.(woman(W )∧∃E.(love(E)∧arg0(E,M)∧
arg1(E,W ))))
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mapping the dependency graphs to underspecified semantic representations such
as MRSs. In this case, the scoping links would need to underspecify, rather than
specify scope and all argument structures should be linked directly to the verb
structure.

Fourth (Figure 2e), predications are handled and existing substructures are
expanded with the appropriate literals. For quantifiers, the restriction node is
labelled with a literal whose predicate is the lemma of the nominal heading the
quantifier and whose variable is the quantifier variable. Similarly the semantic
structure licensed by verb and noun predicates are expanded as shown in Figure
2e so as to contain as predicate, the lemma of the licensing verb or deverbal noun
and as variable, the variable bound by the existential quantifier licensed by this
verb/deverbal. Additionally, literals are added for each of the verb arguments
where each literal relates the verb event variable to the argument variable via
the thematic role relation given in the SRL structure.

3.4 Rules, Variable Binding and Semantic Phenomena

We now show in more detail how variable binding occurs and sketch the treat-
ment of relative clauses, raising, control and questions.

Variable binding (Quantifier restriction and verb semantics). Semantic construc-
tion must ensure that the variable bound by a quantifier correctly occurs in its
restriction and in its scope. Here, this is ensured by equating the relevant vari-
able in the restriction and in the scope with the quantifier variable. Figure 3
illustrates this graphically. The top rule shows how the quantifier restriction is
labelled with a literal lemma(V) where lemma is the nominal head of the quan-
tifier and V , the variable bound by the quantifier. Similarly (Figure 3b), each
argN edge in the input graph licenses the introduction in the verb semantics of
a literal ArgN(E,A) where E is the event variable licensed by the verb and A
the variable licensed by the argN argument. Note that the binding of argument
variables is mediated not by syntactic functions but by thematic roles thereby
simplifying the syntax/semantic interface (because distinct syntactic realisations
are abstracted over).

Relative clauses. Relativised arguments are processed in the same way as argu-
ments of a main clause verb because thematic roles relate the verb of a relative
clause, not to the relative pronoun, but to its antecedent (cf. Figure 4) and, as
just mentioned, the binding of predicate argument variables is mediated by the-
matic roles. The scoping rules additionnally ensure that the semantics associated
with a relative clause is included in the restriction of the relative antecedent.

Control. As for relativised arguments, control verbs do not necessitate any addi-
tional rules because the semantic role labeller already provides the information
required for appropriately binding the subject (or the object) of the control
verb to the subject of its infinitival complement. Thus, in “John promised Mary
to shave", “John” is labelled as arg0 of both “promised” and “shave”, thereby
supporting the appropriate variable bindings.
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Fig. 3. Rules adding the literal licensed by the nominal head of the quantifier
(lemma(V)) to its restriction (top) and the argument literals (argN(E,A)) to its scope
(bottom). QUANT and ∃ abreviate the attribute value pairs quant:exists or forall
and quant:exists respectively while V, A and E are variables.The scope branch of the
quantifier is not represented in the rule as the rule filter needs only specify the min-
imal pattern that should be present in the host graph for the rule to be applicable.
Additional material is copied over. The top rule states that given a graph contain-
ing a dependency node w, labelled with the word “lemma” and linked to the skeleton
quantifier subgraph rooted in h, the literal lemma(V) should be added to the quanti-
fier restriction. Similarly, the bottom rule rewrites subgraphs relating a verb semantic
skeleton (rooted in wh) and any of its argument semantic skeleton (rooted in ah) by
adding the literal argN(E,A) to the verb semantics.

Adjectival and Adverbial Modifiers. Adjectives and adverbs licence the intro-
duction of a predication over an individual and an event variable respectively.
This variable is equated with the variable predicated of by the denotation of the
modifiee (i.e., the noun or the verb) using a rule which can be summarised as
follows: if the dependency node A is in a modification relation to the dependency
node W and W is related to a semantic structure with bound variable X , then
the literal A(X) should be included in the restriction of this semantic structure.
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Fig. 4. “John loves a woman who sings". Semantic role labelling relate the predi-
cate licensed by the verb of the relative clause not to the relative pronoun but to its
antecedent thereby supporting a uniform semantic treatment of relativised and non
relativised argumentsXS
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Fig. 5. “John seems to love Mary". The
symbolic SRLer we use produces a mod-
ification relation between “seems” and its
sentential argument thereby supporting a
modifier treatment of “seem”.
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Fig. 6. “It seems that John loves Mary".
The symbolic SRLer correctly labels
“John” as the arg0 of “loves”.

Raising. Raising verbs such as “seems” in “John seems to love Mary” and “It
seems that John loves Mary” are handled as modifiers in that they modify the
event variable introduced by the sentential or infinitival object. Semantic role
labelling ensures that “John” is the arg0 of “loves” in both cases (cf. Figure 5)
and therefore that the appropriate semantics is constructed.

Questions. As mentioned in Section 2, the dependency graph of questions such
as “Which woman does Mary think John likes?” fails to support a strictly compo-
sitional semantics because local information is not sufficient to simultaneously
determine that “Which woman” is the object of “likes” and takes scope over
the whole sentence. In our approach, such sentences are unproblematic: “Which
woman” licences the introduction of a quantifier which binds the object variable
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of “likes” (through the normal predicate/argument binding mechanism); further,
its scope is determined to respect the linear order of the words in the input
sentence.

Coverage and evaluation. We tested [12] the coverage and the correction of our
approach by applying it to a set of 1 000 sentence pairs annotated with an
entailment value (true if the first sentence entails the other, false otherwise).
For each sentence, the sentences were parsed using the Stanford parser and
the semantic role labeller of [11], semantic construction was carried out and
the resulting semantic representations translated to FOL. Automated reasoners
were then used to check entailment. In all cases, a correct FOL formula was
built. Moreover, entailment detection was correct in 71.3% of the cases. Since in
many cases, parsing failed to produce a correct analysis, these first results are
encouraging. They need to be further tested on real world data though as the
testsuite used in this first experiment was artificially constructed and restricted
to a limited set of linguistic variations (different verb subcategorisation type and
control mainly).

4 Conclusion

By adopting a semantics rather than a syntax driven strategy, the semantic
construction approach described in this paper permits bypassing the issues raised
by the lack of syntactic information in dependency graphs. More generally, the
approach can be seen as defining a set of very general principles governing
the construction of semantic representations for predicate/argument structures,
quantifiers and modifiers. Contrary to the lambda calculus approach, this al-
lows for a very concise system where a small set of rewrite rules can be used
to describe a large number of syntax-semantics interfaces. We are currently ex-
tending the approach to cover further semantic phenomena (e.g., comparatives
and discourse connectives) and evaluate its coverage and correction using the
entailment recognition test.
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Abstract. The Explicit Semantic Analysis (ESA) model based on term
cooccurrences in Wikipedia has been regarded as state-of-the-art seman-
tic relatedness measure in the recent years. We provide an analysis of the
important parameters of ESA using datasets in five different languages.
Additionally, we propose the use of ESA with multiple lexical seman-
tic resources thus exploiting multiple evidence of term cooccurrence to
improve over the Wikipedia-based measure. Exploiting the improved ro-
bustness and coverage of the proposed combination, we report improved
performance over single resources in word semantic relatedness, solving
word choice problems, classification of semantic relations between nom-
inals, and text similarity.

1 Introduction

Semantic relatedness (SR) aims at measuring how related the meaning, i.e. the
semantic content of two words is. Computing the SR of words finds applications
in many classical Natural Language Processing (NLP) problems like Word Sense
Disambiguation [24], Information Retrieval [29,22], Cross-Language Information
Retrieval [5], Text Categorization [10], Information Extraction [26], Coreference
Resolution [27], or Spelling Error Detection [3].

Most of the SR measures proposed in the past have two limitations. First,
they only exploit the implicit knowledge encoded in a single structured knowl-
edge source like WordNet or Wikipedia, or a large text collection like the World
Wide Web, but do not exploit the complementary knowledge in multiple re-
sources through combination. Second, most measures are designed to compute
relatedness between words, not between longer text segments. However, SR has
important applications both on the word level (Word Sense Disambiguation,
Spelling Error Correction), and on the text level (Information Retrieval, Text
Categorization). Therefore, in this paper, we address the combination of the
knowledge encoded in heterogeneous, independent knowledge resources to obtain
better and more robust performance paying attention to direct applicability to
word pairs and pairs of texts alike.
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For this purpose, we focus on distributional semantic relatedness, and in par-
ticular, following Gabrilovich and Markovitch [9], we employ concept vector
based measures to incorporate knowledge from heterogeneous resources (repre-
senting encyclopedic knowledge and lexical information in our case) to overcome
the weaknesses of single resources. In Section 3, we give a detailed overview
on concept vector based measures. We also propose a new formulation of the
concept vector based measure that has one less degree of freedom, i.e. it does
not require any pruning of word concept vectors. In Section 4, we introduce our
combined measure. We implement the combination of independent knowledge
sources through combining the relatedness scores provided by concept vector
measures based on single resources. As concept vector measures are applicable on
the word as well as on the text level, the combined measure preserves the direct
applicability to longer texts. In Section 5, we demonstrate the usefulness of the
proposed approach through the successful application of the combined measure
to three different NLP tasks: i) solving word choice problems, ii) classification of
semantic relations between nominals, and iii) text similarity computation. We
also show that the combined measure yields stable performance on the word
level for different parts of speech, which was not experimentally demonstrated
by previous works.

2 Related Work

In the last decade, many different approaches have been proposed to measure
the semantic relatedness of natural language units (i.e. words, phrases or texts).
Structural Methods exploit the structural information through measuring
path length [3,27,30], computing PageRank vectors [32], or comparing link vec-
tors [20] in a lexical semantic knowledge resource like WordNet, Wikipedia or
ConceptNet. Distributional Methods employ distributional relatedness to
compare cooccurrence patterns measuring hit counts [4,2], comparing distribu-
tional profiles [23,1] or concept vectors [9,34,13] in an underlying collection of
representative texts like Wikipedia or the Web.

Structural methods are defined to compute relatedness on the word level1.
Web-based distributional methods also operate on the word level, calculating
hit count based association measures like mutual information between terms.
Such methods can be extended to model text-level similarity through measuring
the relatedness between all word pairs in the documents to be compared, and
then aggregating the word level similarities [21]. This requires n ·m calculations
to compare two texts of sizes n and m, which can be computationally demanding
or even infeasible, e.g. for web-based measures where this entails n ·m queries
to a search engine.

In contrast to structural and web-based approaches operating solely on the
word level, concept vector based methods using a closed collection have the
advantage that longer texts can be represented similar to single words. Thus,
1 Words are the natural unit of representation in the underlying structured resource,

e.g. lexical units for WordNet and concepts (i.e. article names) for Wikipedia.
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it is straightforward to compute the similarity of longer text segments [6,9].
Concept vector based measures are applicable both on the word and text level
using exactly the same formulation, and comparison of longer texts does not
require substantial extra computation (i.e. direct comparison of all word pairs).

The performance of concept vector based SR measures heavily relies on how
well the underlying knowledge base can be used to assess semantic relatedness
based on term cooccurrence. The Explicit Semantic Analysis (ESA) model [9]
showed that Wikipedia is seemingly the most appropriate single resource for
this purpose, and later work [34] showed that alternative resources can provide
comparable performance (or even a noticeable advantage, e.g. for verb pairs).
These results in the literature suggest that the combination of multiple resources
can lead to improved performance and more robust behavior across different
parts of speech at the same time.

The combination of resources has already been shown to be beneficial for word
semantic relatedness [1]. Agirre et al. [1] report the best results so far on the En-
glish WS-353 [8] and RG-65 [25] datasets, by combining personalized PageRank
on the WordNet graph with the contextual and syntactic dependency profiles
of words over a large web-based corpus. These approaches are not straightfor-
ward to apply to longer texts, at least without significant extra computation (see
above). Thus, here we combine resources using concept vector measures and also
employ a thorough extrinsic evaluation of combination using three NLP appli-
cations.

3 Concept Vector Based Semantic Relatedness

Concept vector based SR methods represent words as a vector of articles in a
specific document collection describing world knowledge (each document repre-
senting a real world concept). Semantic relatedness is then calculated using a
vector similarity function. Formally, for a content word t, the concept vector −→t
is defined as −→t = {wc1t, wc2t, . . . , wcnt}, where wcit represents the weight of the
concept ci for the word t (e.g. the term frequency of t in ci) and n is the collection
size. The relatedness of terms t1 and t2 can thus be calculated using a vector
similarity measure, e.g. cosine similarity: simcosine(t1, t2) =

∑
i wcit1 ·wcit2√∑

i w2
cit1

·
√∑

i w2
cit2

.

Following [6,9], longer text segments can be represented using the centroid of
the individual term concept vectors. The relatedness of two text segments can
then be determined using the same vector similarity function as on the word
level. As a result, it is unnecessary to compute the relatedness between all word
pairs in the respective documents to get the document-level relatedness score.

3.1 Concept Vector Based SR Parameters

At the core of concept vector based methods is measuring the term cooccurrence
statistics over Wikipedia (or a similar resource). The most important technical
parameters of such a measure are:
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Vector Similarity Function. An arbitrary f(t1, t2) �→ � vector similarity
function can be used to compare two concept vectors. Thereby, (t1, t2) is con-
sidered more similar to each other than (t3, t4) if f(t1, t2) > f (t3, t4).

Gabrilovich and Markovitch [9] used the cosine similarity, and recently Has-
san and Mihalcea [13] proposed a Lesk-like [18] vector similarity function, and
argued that it is more suitable for cross-language relatedness. We assume that
the concept vectors are normalized, and simplify the formulas accordingly:

– simdotprod(t1, t2) =
∑

i wcit1 · wcit2

– simLesk(t1, t2) =
∑

i(wcit1 + wcit2), if both wcit1 > 0 and wcit2 > 0,

where t1 and t2 denote terms, and wcitj denotes the weight of the concept (doc-
ument) ci in the knowledge base, for the term tj .

Component Weights. Each concept in the underlying knowledge source has
to be assigned a weight in a term’s concept vector. The weight is usually defined
as a function of the term’s frequency in the descriptive text of the concept. Thus,
terms that are not used in the descriptive text of a concept are naturally assigned
a weight of 0 in the corresponding concept vector. Gabrilovich and Markovitch
[9] reported to use TF.IDF weights, while Hassan and Mihalcea [13] used a
normalized TF formula:

– log TF.IDF : wcit = log(TFcit + 1) · IDFt (the logarithm of the number of times
term t appears in document ci, multiplied by the inverted document frequency of
the term in the knowledge base),

– normalized TF : wcit = TFcit ∗ log(M/|ci|), where M denotes a constant repre-

senting the vocabulary size in the entire knowledge base, and |ci| represents the

vocabulary size of document ci.

Normalization. In concept vector based SR, it is essential to normalize the
concept vectors in order to get relatedness values that are comparable to each
other. We consider two standard normalization methods: the L1(−→t ) =

∑
i wcit

and L2(−→t ) =
√∑

i w2
cit norms (and divide each vector component by the re-

spective norm value). Even though it is not clearly stated in the literature, we
assume that all previous works on concept vector based SR used one of these
normalization schemes.

Only the cosine similarity (dotprodL2) and the (Lesk L1) satisfy the criterion
that for each term sim(t, t) = 1.0. Some combinations, like Lesk L2 might even
output values larger than 1.0, but this is not important, as long as the scores of
the same measure are meaningfully comparable to each other.

Concept Vector Pruning. Many studies based on reimplementations of ESA
[9] mention that the performance of their system improved greatly when they
applied a cutoff threshold and kept just the k highest values in each concept
vector, setting very small weights to zero. Gabrilovich and Markovitch [9] em-
ployed a pruning threshold defined relative to the highest component weight in
the vector (they set all weights to zero when the difference of values in a sliding
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Table 1. Spearman rank correlations for different concept vector models on the EN,
AR, ES and RO WS353 datasets and the DE Gur350 dataset. ’?’ indicates a parameter
that we could not determine with certainty based on the corresponding papers.

weights sim. norm. pruning EN AR ES RO DE

our measure log-TF · IDF avgprod L2 – .73 .46 .51 .50 .62
H&M reimpl. norm-TF Lesk L1 – .49 .28 .26 .29 .50
G&M reimpl. log-TF · IDF cosine L2 – .61 .25 .21 .24 .52
H&M reimpl. norm-TF Lesk L1 0.01 .70 .43 .43 .43 .60
G&M reimpl. log-TF · IDF cosine L2 0.001 .69 .37 .34 .36 .58

H&M 2009 norm-TF Lesk ? ? .71 .26 .50 .28 –
G&M 2007 log-TF · IDF cosine L2 sliding w. .75 – – – –
Z et al. 2008 log-TF · IDF cosine L2 ? .31-.62 – – – .65

window of size 100 dropped below 5% of the highest weight), and e.g. Yeh et al.
[32] reported to keep just the 625 highest values for English.

3.2 Our Concept Vector Measure

In our study we used a slightly different concept vector measure with the simi-
larity function: simavgprod(t1, t2) =

∑
i(wcit1 + wcit2) · wcit1 · wcit2 , log TF.IDF

component weights, and L2 normalization. We chose to use the above implemen-
tation, because it does not require the application of an ad-hoc cutoff threshold
for term vectors to remove small component weights (i.e. concepts with lower
TF values for the given term) in order to show competitive performance. We
consider this a positive property as pruning would be inevitably tuned on word
relatedness datasets which we also use for evaluation.

3.3 Evaluation on Word Semantic Relatedness

Datasets and Evaluation measures. For word semantic relatedness, we use
the Spearman rank correlation ρ and the linear Pearson correlation r of SR
scores with human judgments as evaluation metrics. Spearman correlation mea-
sures how well a monotonic function can describe the relationship between an
SR measure and human scores, i.e. how accurately the measure reproduces the
relative ordering of word pairs (by humans), while Pearson correlation measures
the linear dependence between SR and human scores.

We use publicly available word relatedness datasets for five languages in our
experiments. For English, we use the WordSimilarity 353 dataset (EN-WS353)
[8]. For German, we use the dataset (DE-Gur350) provided by Gurevych [11].
For Arabic (AR-WS353), Romanian (RO-WS353), and Spanish (ES-WS353), we
use the translations of the WS353 dataset provided by Hassan and Mihalcea [13].

Experimental Results. In order to compare the proposed vector measure to
those used in previous works, we present results on word relatedness in five
languages, with Wikipedia as the underlying knowledge resource in Table 1.
We compare our measure to those proposed by Gabrilovich and Markovitch [9]
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(G&M 2007)2 and Hassan and Mihalcea [13] (H&M 2009). In order to cope with
potential noise due to different preprocessing steps and Wikipedia versions, we
provide the results reported in previous works, together with our reimplementa-
tion using the same Wikipedia index and preprocessing. In our reimplementation,
we employed a pruning threshold relative to the index size (i.e. the number of
concepts in Wikipedia for different languages), and kept the k highest values in a
concept vector for k = threshold · index size. For example, for the reimplemen-
tation of the H&M 2009 measure, we kept the highest 1% of the concept vector
components and set all other weights to 0). We report results without pruning
and with pruning (the threshold was fit to provide the best possible result on
the EN-WS353 dataset).

As the results in Table 1 demonstrate, our results are in line with the per-
formance scores reported in previous works and our proposed vector measure
gives good performance with one less degree of freedom (i.e. no need of tun-
ing a concept vector pruning threshold on the word level, to set small-weight
components to zero). This different behavior of the proposed measure can be
attributed to the fact that less weight is given to overlapping low-weight vec-
tor components (compared to the other vector measures used here). Our results
with this configuration are comparable to (with an advantage for languages with
smaller Wikipedias) the Spearman correlation values reported using concept vec-
tor based SR with Wikipedia for English (0.75) [9]; for German (0.65) [34]; and
for Arabic (0.26), Romanian (0.28) and Spanish (0.50) [13]. However, differences
in the Wikipedia versions, preprocessing, etc. make direct comparison to previ-
ous works difficult, this is why we replicated the corresponding methods. In our
subsequent experiments, we use the parameter set described above, i.e. avgprod
similarity function, log TF.IDF component weights, and L2 norm.

4 Combination of Multiple Resources

For languages where multiple knowledge resources are available, independent
concept vector based models can be constructed [34]. We propose the combina-
tion of concept vector based SR values based on different resources to construct
a measure that performs well across all parts of speech. This would be crucial for
a wide range of applications in NLP, and is achieved through the combination
of lexical knowledge with the encyclopedic knowledge in Wikipedia. We perform
experiments for German and English, using the knowledge resources Wikipedia,
Wiktionary, and WordNet/GermaNet for combination.

4.1 Lexical Semantic Knowledge Resources

A lexical semantic knowledge resource provides textual descriptions of concepts
from which the concept vectors can be constructed. We use Wikipedia, Wik-
tionary, and WordNet for this purpose. Before constructing the vector, we prepro-
cess the textual descriptions using stopword removal and lemmatization (English,
German) or stemming (Arabic, Romanian, Spanish).
2 Zesch et al. [34] reimplemented the ESA model [9].
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Wikipedia articles provide detailed textual descriptions for concepts. We
used the JWPL Wikipedia API to access the article content. We used the dump
from February 6, 2007 (English); September 20, 2009 (Arabic, Spanish); Septem-
ber 19, 2009 (Romanian); February 6, 2007 (German). Following Gabrilovich and
Markovitch [9], we discard English Wikipedia articles with less than 100 words
and 5 in- or outlinks.

Wiktionary is a multilingual, web-based dictionary, thesaurus, and phrase
book, designed as the lexical companion to Wikipedia. In order to get rid of noise
from boilerplate text, we used the JWKTL package [34] for fine-grained access to
Wiktionary entries. We concatenated the content of all relation types offered by
JWKTL for each concept. We used the dump from October 16, 2007 (English)
and October 9, 2007 (German).

WordNet [7] and GermaNet [16] are lexical databases for English and
German. In WordNet, we consider synsets as concept vector components and
use the glosses and examples as textual descriptions. As GermaNet contains no
glosses, we construct pseudo glosses by concatenating the lemmas of all concepts
within a distance of three synsets from the original concept (distance understood
as relation path length).

4.2 Combined Concept Vector Measure

A simple and suitable model for combination is to take the individual scores as
features, and train regression models to approximate the gold standard scores.
For combination, we used the Weka [12] implementations of Linear Regression
(LinReg) and Multilayer Perceptron (MLP) models.

Using regression models, we expect an improved Spearman correlation as the
model can learn a nontrivial (and possibly nonlinear) combination of individual
values to predict human scores. This setup can also improve the Pearson corre-
lation by seeking an optimal regression model that predicts the human-assigned
relatedness values as accurately as possible on the training set.

Datasets and Experimental Setup. For English, we used the EN-WS353
dataset [8], the EN-RG65dataset [25], and the verb relatedness dataset EN-YP130
[31]. For German, we used the translation of the RG65 dataset (DE-Gur65) and
the DE-Gur350 dataset [11]. For machine learning experiments, we always used
one complete dataset for evaluation. We then performed the training of regres-
sion models using the word pairs in the remaining datasets that did not appear
in the actual evaluation dataset. For example, for evaluation on the English
EN-YP130 dataset, we used the word pairs in the EN-WS353 and EN-RG65
datasets to train the models. This way, our scores are comparable to previous
results on these datasets, as they are trained on a disjoint set of word pairs. We
did not perform any parameter tuning in order to avoid using parameters that
are tuned to the relatively small training sets. Thus, we used the MLP model
with 50 training iterations, and all other parameters set to the default values
defined by Weka.
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Table 2. Spearman rank (ρ) and Pearson (r) correlations (English)

Method EN-WS353 EN-YP130 EN-RG65
335 126 65

ρ r ρ r ρ r

MLP .781 .762 .701 .722 .860 .896
LinReg .790 .661 .642 .654 .858 .820

Wikipedia .731 .469 .394 .389 .834 .742
Wiktionary .661 .390 .628 .462 .803 .569
WordNet .558 .226 .715 .509 .811 .297

Table 3. Spearman rank (ρ) and Pearson (r) correlations (German)

Method DE-Gur350 DE-Gur65
214 50

ρ r ρ r
MLP .774 .756 .871 .891
LinReg .769 .679 .870 .809

Wikipedia .724 .388 .784 .543
Wiktionary .580 .379 .868 .511
GermaNet .570 .331 .715 .561

Word Semantic Relatedness Experimental Results. As intrinsic eval-
uation, we present the results for combining multiple knowledge resources on
word relatedness datasets in Tables 2 and 3. We consider this task as intrinsic
evaluation as it directly correlates SR scores to human judgments of conceptual
similarity. We can assume that the better a measure approximates human scores,
the more useful it should be in various NLP applications.

In italics below the dataset name, we show the number of covered word pairs.
The first table rows show the results with Multilayer Perceptron (MLP), second
rows show Linear Regression (LinReg) for combination. Since all combined mea-
sures exploit concept vector based SR on WordNet/GermaNet, Wiktionary, and
Wikipedia, we compare them to individual resources (rows 3-5).3

As we can see, the use of multiple resources consistently improves over any
single resource. Zesch and Gurevych [33] found that increasing the size of the un-
derlying collection (Wikipedia) does not exhibit such remarkable improvements
in correlation with human judgments. This confirms our hypothesis that a combi-
nation should exploit the advantages of individual resources. The positive effect

3 The slight differences between values for Wikipedia in Tables 2 and 3 compared to
the ’our measure’ row of Table 1 are due to discarding word pairs not covered by
Wiktionary or WordNet. This is necessary to ensure a fair comparison of models
based on different resources. However, by using only the scores from resources that
actually cover the particular word pair, a combined measure with maximal coverage
can be constructed. In subsequent extrinsic evaluations, we always employ coverage-
maximizing combined measures, assuming 0 values for words not covered by some
of the resources.
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of the complementarity of the knowledge in different knowledge resources is best
demonstrated by the English verb dataset (EN-YP130 column), which was par-
ticularly difficult for the otherwise best performing Wikipedia-based measure –
the combined measures show a remarkable improvement over the performance
of Wikipedia. On the other hand, supervised models perform worse here than
WordNet. This is expected, as we used the EN-WS353 and EN-RG65 datasets
mostly consisting of noun pairs as the training data, so the models gave more
credit to Wikipedia (which performs bad on verbs).

Apart from just one case (EN-YP130 dataset for English) the nonlinear MLP
model does not show large improvement over linear regression in terms of Spear-
man correlation, but it largely improves Pearson correlation. Thus, we suggest
the use of linear regression whenever just the ranking of objects is important
for an application, as this is the simplest and probably most robust supervised
model. The use of a small neural network with sigmoid nodes is a good alter-
native when one wants to use the measure to retain “similar objects” where
“similar” is determined relative to the highest score in a set, as in such settings
good Pearson correlation is important.

We consider the application of machine learning to combine the results of
concept vector measures built on multiple knowledge resources promising. Our
best result on EN-WS353 is competitive to Agirre et al. [1] (0.78), while pre-
serving the favorable aspect of concept vector measures: same formulation for
word and text level, and direct applicability to longer texts without the need to
compute relatedness scores for all word pairs. As an additional benefit, concept
vector based measures – and their combination – return numerical SR scores
(not rank positions like the combination proposed by Agirre et al. that learns
pairwise preferences and deduces final ranks from the comparison of all pairs).
This is required by applications that need to decide whether the confidence in
the returned value is sufficient (the top ranked words/documents might still have
quite low SR scores).

5 Extrinsic Evaluation and Discussion

To study the beneficial effects of the combined SR measure incorporating het-
erogeneous knowledge resources, we compare it to single-resource baselines in
solving word choice problems, classification of semantic relations, and text sim-
ilarity computation.

5.1 Word Choice Problems

Word Choice problems [15] consist of a target word and four candidate words or
phrases. The objective is to pick the one that is most closely related to the target.
The relatedness between the target and each of the candidates is computed by
a SR measure, and the candidate with the maximum semantic relatedness value
is chosen.
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Table 4. Accuracy and coverage in solving word choice problems (English and German)

Method English German
acc. cov. H acc. cov. H

MLP .742 .997 .851 .740 .848 .790
LinReg .746 .997 .853 .770 .848 .807

Wikipedia .600 .997 .749 .718 .821 .766
Wiktionary .835 .602 .700 .886 .313 .463
WN / GN .855 .529 .654 .637 .310 .417

Datasets and Evaluation Measures. In our experiments, we used the datasets
introduced by Jarmasz and Szpakowicz [15] of 300 Word Choice (WC) problems
for English, and by Zesch et al. [34] of 1008 WC problems for German. We
lemmatized the target and all candidates. We employed the standard evaluation
metrics for this task, i.e. we measured the accuracy (percent of WC problems
solved correctly), coverage (percent of WC problems with all alternatives repre-
sented in the knowledge base and at least one with nonzero relatedness) and H
(harmonic mean of the accuracy and coverage) of SR measures.

Experimental Results. In Table 4, we present results for different measures
and their combination in solving word choice problems. The combined measures
show very positive characteristics: the coverage is better or equal to the highest
coverage of an individual resource, while the accuracy is closer to the most
accurate lexical resources than Wikipedia’s (which is unpaired in coverage by the
other knowledge resources). Overall the combined measure gives an improvement
of more than .10 (14% relative increase) in H for English and .04 (5% relative
increase) for German. The best results in Table 4 are in the range of the state-
of-the-art (H = .86 [15] for English and H = .75 for German [34]).

5.2 Classification of Semantic Relations between Nominals

The classification of semantic relations between nominals aims at the iden-
tification of specific relation types between nouns or base noun phrases ap-
pearing in natural language sentences collected from the web. Hendrickx et
al. [14] proposed to identify and classify instances of 9 abstract semantic re-
lations between noun phrases, i.e. Cause-Effect, Instrument-Agency, Product-
Producer, Content-Container, Entity-Origin, Entity-Destination, Component-
Whole, Member-Collection, Message-Topic. That is, given two nominals (e1
and e2 ) in a sentence, systems have to decide whether relation(e1,e2) or re-
lation(e2,e1) holds for one of the relation types or the nominals’ relation is other
(other relation or unrelated).

Datasets and Evaluation Measures. For the classification of semantic rela-
tions between nominals, we use the dataset (8000 train and 2717 test sentences)
and standard evaluation measure [14], i.e. the macro averaged F measure for the
various relation types. We also provide the classification accuracy scores that
serve our goal to compare the effect of SR measures better.
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Table 5. Macro average F and classification accuracy in relation classification

Method Train (10 fold) Test
macro F acc. macro F acc.

MLP .708 .668 .689 .647
Wikipedia .694 .654 .680 .635

Baseline .657 .621 .605 .561

MLP (no lex.) .585 .550 – –
Wikipedia (no lex) .558 .524 – –

Baseline (no lex.) .373 .385 – –

Experimental Results. For comparison, we employed a baseline system using
standard lexical (word unigram and lemma uni- and bigrams), surface (sentence
length, distance of the nouns in tokens), and contextual (POS uni-, bi- and
trigrams, dependency relations between the nouns) features for classification. To
test the added value of semantic relatedness measures, we added SR features to
the baseline classifier, describing the relatedness of the nouns to be classified to
a set of clue words characteristic for one of the relations (e.g. goods, cargo, bottle
for Content-Container)4.

In Table 5, we compare the performance of the relation classification system
with the baseline features and with extended feature sets using Wikipedia-based
SR features and SR features provided by the combined measure. We also com-
pare SR performance without lexical features (i.e. when used in a nonlexicalized
classifier). The results show consistent improvements over the Wikipedia-based
measure, and huge improvements over the baseline without SR (indicating that
SR incorporates useful world knowledge to the classifier model). The best results
in Table 5 are in the range of the state-of-the-art performance (0.52-0.82 macro
average F measure [14]), with top performance reached using richer representa-
tions than the one used here. For details, see Szarvas and Gurevych [28].

5.3 Text Similarity

Two texts are considered similar when their semantic content is closely related
to each other. Text similarity computation aims at quantifying the conceptual
similarity between two input texts and correlates the calculated similarity scores
to the human notion of document similarity through comparison to similarity
scores assigned by readers. This task has natural applications in information
search and content management.

In our text similarity implementation, we use the document-level aggregation
based on centroid vectors [9].

Datasets and Evaluation Measures. For text similarity experiments, we use
the 1225 similarity pairs provided by Lee et al. [17], and similar to previous works
we use Pearson correlation for evaluation (and also list Spearman correlation).
4 The list of clue words, feature set and additional material can be found at
http://www.ukp.tu-darmstadt.de/data/sr-combination/
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Table 6. Pearson (r) and Spearman rank (ρ) correlations on the Lee et al. (2005)
dataset

Method full part 1 part 2
r ρ r ρ r ρ

MLP .621 .576 .743 .616 .757 .567
LinReg .727 .571 .702 .630 .721 .570

Wikipedia .707 .563 .688 .615 .722 .543
Wiktionary .500 .376 .411 .350 .563 .407
WordNet .582 .452 .566 .436 .597 .470

G&M reimpl. .697 .484 .704 .516 .709 .464

G&M 2007 .72 – – – – –

Experimental Results. In Table 6, we compare the combined measures to
single resources and to our reimplementation of ESA [9]. We used the word
similarity datasets for training the combined models. This approach has the
weakness that supervised models are trained on word similarity scores which
have largely different characteristics from text similarity values. For WordNet
and Wiktionary, many word pairs receive 0 similarity (i.e. they do not cooccur
at all in the small text definitions in these resources), which is seldom the case
for document pairs. This difference in the distribution of feature values is easily
noticeable in the Pearson correlation of the nonlinear combination. To mimic a
more ideal setting, when combined measures are trained on a set of document
pairs (with assigned similarity scores), we cut the Lee et al. dataset into two
parts and report results on each part (the combined models here are trained
on the other half of the dataset). Besides the unexpected behavior mentioned
above, we again see a consistent improvement through combination of different
knowledge sources, over single resource measures.

These results suggest that multiple knowledge sources serve as a better basis
for comparison of the similarity of text pairs. Or to put that in a wider context,
the individual SR measures built on different resources would be good separate
features for learning to rank (where a similar combination of features is per-
formed to develop improved ranking functions) [19], as their improvements add
upon each other. The best results in Table 6 are in the range of the state of the
art performance of 0.60 [17] to 0.77 [32] Pearson correlation (Spearman is not
used by previous studies).

6 Conclusions and Future Work

This paper demonstrated that better and more robust SR measures (that are
applicable to single words and texts alike) can be obtained through the com-
bination of concept vector measures exploiting various independent knowledge
resources. First, we provided a detailed overview of concept vector based se-
mantic relatedness measures, identified the most important parameters (term
weighting, vector similarity function, vector normalization, and concept vector
pruning) that can have major effect on the performance of the concept vector
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model as an SR measure. Thus, future work should state clearly the parameters
of the implementation used, or the results will become difficult to reproduce
and compare. Moreover, we proposed a formulation that has one less degree of
freedom – it does not require the pruning of the word vectors – and performs
well for representative datasets in five languages.

Our second main contribution is the combination of concept vector based SR
values computed on different underlying resources by means of machine learning.
To combine relatedness measures, we used a regression framework that preserves
the direct applicability of concept vector based measures to longer texts. We
demonstrated that the combination of resources yields stable performance across
parts of speech and consistently improves performance in word relatedness over
the standard knowledge base (Wikipedia) for concept vector based measures.

Finally, we performed a thorough extrinsic evaluation using three different
NLP tasks: solving word choice problems, classification of semantic relations
between nominals, and text similarity. We demonstrated that the improved cor-
relation scores of our combined measure on standard word relatedness datasets
actually lead to positive effects in all these applications. Thus, these experimental
evaluations prove the feasibility of our approach and the hypothesis that through
combining heterogeneous knowledge sources for concept vector based semantic
relatedness, more robust and accurate measures can be developed that are also
applicable to longer texts. The good results in text similarity calculation also
suggest that these vector similarity values based on different knowledge sources
are promising candidates for separate features in learning to rank (as their pos-
itive characteristics can be combined using machine learning).

In future work, we plan to extend our model to incorporate further resources
and similarity measures, and to apply these measures together with traditional
Information Retrieval similarity functions, in learning to rank [19].
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Abstract. Text segmentation is a fundamental problem in natural lan-
guage processing, which has application in information retrieval, question
answering, and text summarization. Almost previous works on unsuper-
vised text segmentation are based on the assumption of lexical cohesion,
which is indicated by relations between words in the two units of text.
However, they only take into account the reiteration, which is a category
of lexical cohesion, such as word repetition, synonym or superordinate.
In this research, we investigate the non-systematic semantic relation,
which is classified as collocation in lexical cohesion. This relation holds
between two words or phrases in a discourse when they pertain to a
particular theme or topic. This relation has been recognized via a topic
model, which is, in turn, acquired from a large collection of texts. The
experimental results on the public dataset show the advantages of our
approach in comparison to the available unsupervised approaches.

Keywords: text segmentation, lexical cohesion, topic modeling.

1 Introduction

Text segmentation is one of the fundamental problems in natural language pro-
cessing with applications in information retrieval, text summarization, informa-
tion extraction, etc. [15]. It is a process of splitting a document or a continuous
stream of text into topically coherent segments. Text segmentation methods
can be divided into two categories, by the structure of the output that is lin-
ear segmentation [4,7,11,14,16,22,24] and hierarchical segmentation [20], or by
the algorithms that are unsupervised segmentation or supervised segmentation.
In this research, we focus on the unsupervised-linear text segmentation method.
The main advantage of unsupervised approach is that it does not require labeled
data and is domain independent.

Almost unsupervised text segmentation methods are based on the assumption
of cohesion [10], which is a device for making connections between parts of the
text. Cohesion is achieved through the use of reference, substitution, ellipsis,
conjunction, and lexical cohesion. The most frequent type is lexical cohesion,
which is created by using semantically related words. Halliday and Hasan, in

A. Gelbukh (Ed.): CICLing 2011, Part I, LNCS 6608, pp. 304–315, 2011.
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[10], classified lexical cohesion into two categories: reiteration and collocation.
Reiteration includes word repetition, synonym, and superordinate. Collocation
includes relations between words that tend to co-occur in the same contexts,
which are the systematic and the non-systematic semantic relations.

The current approaches in lexical cohesion-based text segmentation only focus
on the first category of lexical cohesion, reiteration. Most of them use reiteration
with the assumption that the repetition of words can play as the indicator of
the topic coherence in a segment and the topic incoherence between segments.
By using reiteration, those approaches can compute the semantic relation be-
tween two blocks of texts via some similarity-distance measurement to determine
whether they can put a segment boundary between those blocks.

The collocation is the most problematic part in lexical cohesion [10,19,22].
Morris and Hirst in [19] first tried to take into account the collocation in text
structuring. However, they could only perform some manual experiments on the
text due to the limitation of available electronic resources at that time. In [1],
they tried to use WordNet as a device for recognizing synonym and hyponym in
text segmentation as an intermediate step to summarize a text. The resource-
based approach has some limitations. For instance, WordNet mainly contains
relations between nouns and is not available for almost languages. On the other
hand, WordNet or thesauri normally contain relation between words, which can
be recognized without context, such as {apple, orange, fruit}. In other words,
those approaches can only take into account the systematic semantic relation.

In this research, we investigate how to recognize the second relation in col-
location, the non-systematic semantic relation, in order to improve text seg-
mentation performance. This relation holds between two words or phrases in a
discourse when they pertain to a particular theme or topic, which is normally
hard to classify without context. For instance, {paper, contribution, review} in
conference topic or {translation, word, meaning} in language topic are exam-
ples of classes of non-systematic semantic relation. Due to the nature of that
relation, a topic model [3,6,13] estimated based on the co-occurence of words
would be appropriate for recognizing it. In the scope of this paper, we attempt
to use Latent Dirichlet Allocation (LDA) [3], which has many advantages and is
widely adopted in comparison to previous topic model methods, such as Latent
Semantic Analysis (LSA) [6] or Probabilistic Latent Semantic Indexing (pLSI)
[13]. The LDA model used in this research is estimated from a very large corpus,
which contains all the articles of Wikipedia—the free encyclopedia.

In the next section, we provide a concise introduction to lexical cohesion
and analyses of the non-systematic semantic relation in the text segmentation
task. Section 3 presents some main points of topic modeling based on LDA.
Section 4 begins with a presentation of a general framework for lexical cohesion-
based text segmentation algorithms. Then, we describe our text segmentation
algorithm with non-systematic semantic relation. The evaluation of experiments
is discussed in Sect. 5. Section 6 summarizes some related works. We present
conclusion in Sect. 7.
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2 Non-systematic Semantic Relation

Morris and Hirst [19] were the first to apply lexical cohesion for text seg-
mentation. Based on the reiteration and collocation relationships in [10], they
divided lexical cohesion into five types of relationships that are presented in Ta-
ble 1. The reiteration includes not only identity of reference or word repetition,
but also the use of synonym or superordinate. The collocation includes seman-
tic relationships between words that often co-occur. They can be further di-
vided into two categories of relationship: systematic semantic and non-systematic
semantic.

Table 1. Five types of lexical cohesion

No. Type of relation Example

1 Reiteration with identity Mary bit into a peach.
of reference Unfortunately, the peach wasn’t ripe.

2 Reiteration without identity Mary ate some peaches.
of reference She likes peaches very much.

3 Reiteration by means of Mary ate a peach.
superordinate She likes fruit.

4 Systematic semantic relation Mary likes green apples.
She does not like red ones.

5 Non-systematic semantic Mary spent three hours in the garden yesterday.
relation She was digging potatoes.

A systematic semantic relation holds between words or group of words that
can be classified in a fairly straightforward way. For example, that relation in-
cludes antonyms, members of an ordered set such as {one, two, three}, members
of an unordered set such as {red, green, blue}, or part-to-whole relationships like
{eyes, mouth, face} [19].

A non-systematic semantic relation holds between words that tend to occur
in similar lexical environments, in which, they describe things that tend to oc-
cur in similar situations or contexts. In other words, they normally belong to a
particular theme or topic. On the other hand, words in this relation can have
different part-of-speeches. For instance, some classes are {paper, conference, re-
view, presentation} or {language, translate, speak}. This type of relationship is
the most problematic, especially from a knowledge representation point of view.
It normally holds between words in a specific context [19].

In this research, to take into account the non-systematic semantic relation,
we employ a topic model. A topic model is usually estimated based on the co-
occurrence of words in a large collection of documents. In the scope of this
research, we use latent Dirichlet allocation (LDA) [3]. A brief description of
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LDA will be presented in Sect. 3. In LDA, each word is assigned to a topic
with a specific probability, and it can belong to several topics with different
probabilities. The inference process of LDA will assign a topic to each word in
a document.

In the real world, there are many ways to combine a group of words in a
non-systematic semantic relation. If a topic model would like to assign ap-
propriate topics to words in a text, it should be estimated from a collection
that contains documents in which those words co-occur. Therefore, to cover al-
most co-occurrence of words, we need to estimate the topic model on a very
large collection of texts, and that collection should be also topical-balanced. In
our research, we estimate a LDA model from the whole collection of articles in
Wikipedia, which should satisfy our requirements.

In Fig. 1, we show an inferred portion of a text with topics for content words.
It is a well-known example in text segmentation entitled “Stargazers” [11]. In
that example, the topic number of every word is superscripted.

The Hubble680 Space680 Telescope680, one of the most important375 telescopes680

ever built272, will help astronomers680 search253 for advanced365 life229 in space680

and may find664 an answer973 to the age-old617 question973: are we alone in the
universe253.

The information973 collected827 by the Hubble680 will be able to test905 the
common299 assumptions617 that we live365 on an average851 planet680 orbiting86 an
average778 star86, that our solar680 system820 must be typical851 of others through-
out the galaxy86, and that many advanced868 life229 forms224 have evolved375 in
the universe253.

Analysis827 of data827 sent back713 over the last 30 years713 by unmanned680

spacecraft680 from distant680 regions86 of the solar86 system820 is already seriously
questioning973 these assumptions617.

The way the earth224 evolved874 holds868 the key365 to the question973 of life229

in space680.

Images680 of Mars253, and radar680 pictures973 of Jupiter680, Saturn680, Uranus680

and Neptune680 show571 that our earth253 and its moon680 are unique664—at least
in the solar680 system820 .

Fig. 1. The first segment of the article “Stargazers” has been topic-assigned

In the above example, we can see some group of words that are topical-related.
They are also assigned the same topic number. For instance, some typical groups
are {Hubble, telescopes, astronomers, planet, spacecraft} in topic 680, {orbiting,
star, galaxy} in topic 86, {search, Mars, universe}, and so on.

To make the example more illustrative, in Table 2, we show the top 20 most
likely words of some topics corresponding to the assigned topics in the example
in Fig. 1.
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Table 2. Top 20 most likely words of the topic model estimated on Wikipedia

Topic Top 20 words

86 sun stars star galaxy cluster constellation magnitude ngc galaxies spiral
dwarf light orion hd years sky apparent zodiac approximately nebula . . .

224 rocks rock volcanic formation formed volcano geology geological lava erup-
tion basin deposits fault plate ago earth surface cone found volcanoes . . .

253 earth planet space alien ship universe aliens worlds galaxy race planets
science travel mars technology series destroyed ships spaceship fiction . . .

365 human humans world race humanity beings life civilization future created
nature technology people artificial form living body advanced natural sur-
vival . . .

680 earth observatory solar mars moon telescope planet sun astronomical as-
tronomy jupiter venus orbit planets comet astronomer observations saturn
system planetary . . .

827 phase analysis pattern patterns information methods data phases based
structure determine identify study identification method specific techniques
important activity detection . . .

3 Topic Modeling

Latent Dirichlet Allocation (LDA) [3,9] is a probabilistic generative model that
can be used to estimate the properties of multinomial observations by unsu-
pervised learning. With respect to text modeling, LDA is a method to perform
so-called Latent Semantic Analysis (LSA) [6]. It is shown that the co-occurrence
structure of terms in text documents can be used to recover this latent topic
structure, notably without any usage of background knowledge. Latent-topic
representations of text, in turn, allows modeling of linguistic phenomena like
synonymy and polysemy.

The generation process of LDA in Fig. 2 can be interpreted as follows [3]: a
document containing Nm words wm = {wm,n}Nm

n=1 is generated by first picking
a distribution over topics θm from a Dirichlet distribution Dir(α), which deter-
mines topic assignments for words in that document. Then, the topic assignment
for each word placeholder [m, n] is performed by sampling a particular topic zm,n

from the multinomial distribution Mult(θm). Finally, a particular word wm,n is
generated for the word placeholder [m, n] by sampling from the multinomial dis-
tribution Mult(ϕzm,n). The topics ϕk are sampled once for the entire corpus. K
is the number of topics, M is the number of documents in the corpus, and Nm

is the number of words in document m.
In this research, we use Gibbs sampling for estimating the LDA model and

inferring the topic for every word of the input document. In practice, after do-
ing topic inference on the input document, we compute the topic distribution
for every block of text using the topics of words in that block, which is assigned
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Fig. 2. The generative graphical model of LDA

by a Gibbs sampling process. The topic distribution of the text block will be
used to compute the topical-similarity between every pair of text blocks. The
probability of topic k of a text block i is computed as follows [12]:

ϑi,k =
nk

i + αk∑K
j=1 nj

i + αk

(1)

where nk
i is the number of words in text block i assigned topic k, αk is the k-th

element of the vector α, which is the hyper parameter of the LDA model.

4 Text Segmentation Algorithm

4.1 General Framework

Algorithms for unsupervised text segmentation can be divided into two cat-
egories: lexical cohesion-based [4,11,14,16,22] and generative-based [24,7]. The
lexical cohesion-based approaches can in turn be divided into lexical chain-based
and similarity-based. Indeed, the difference between two sub-categories is minor,
because they are also based on the principle of the lexical chain [19]. In the scope
of this research, we employ the similarity-based approach. Figure 3 shows the
general framework for similarity-based text segmentation.

This process could be interpreted as follows. First, a document has been split
into sentences or fixed-size blocks of texts. Then, an occurrence matrix is built
based on a vocabulary, in which one dimension is for sentences, and another
dimension is for words in the vocabulary. To remove some gaps that are cre-
ated by short sentences or sentences containing common words, some smoothing
technique might be applied to the occurrence matrix. The next step is creating
a similarity-distance matrix between all pairs of sentences. This matrix is nor-
mally seen as a gray-scale image, which is called DotPlot [22]. Thus, the text
segmentation problem can be seen as a special case of the image segmentation
problem or the graph partitioning problem. As is common in image processing,
some smoothing techniques may be applied to enhance the density of some area
and to reduce noise. Last, a segmentation algorithm has been applied to the sim-
ilarity matrix or DotPlot image to find the boundaries of segments in the given
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Fig. 3. The general framework of the similarity-based text segmentation algorithm

document. Although the graph partitioning problem is NP-complete, we can eas-
ily create a dynamic programming algorithm based on the linear characteristics
of the text segmentation problem.

Previous approaches are normally different in the similarity matrix, the
smoothing technique, or the segmentation algorithm. For example, Choi et al.
[4] built the similarity matrix using the cosine similarity between all pairs of
word vectors, which represent sentences. They used a rank filter for smoothing
the similarity matrix. Then, similar to [22], a top-down clustering algorithm has
been applied to find segment boundaries. A similar strategy was used in [14],
but the anisotropic diffusion is used as the smoothing technique.

4.2 Algorithm

In this research, we follow the general framework presented in the previous sec-
tion. We integrate the topical information into the similarity computation step.
In the smoothing step, we apply the anisotropic diffusion technique to the image
representation of the similarity matrix to reduce noise in homogeneous regions,
make homogeneous regions more homogeneous, and sharpen the boundaries be-
tween homogeneous regions [14]. In the segmentation step, we re-implement the
minimum cut segmentation algorithm, which has been normally applied to the
image segmentation problem [23]. We follow the dynamic programming algo-
rithm in [16] to find an exact solution for the minimum cut problem in text
segmentation.

Similarity Matrix. In our model, the similarity between two sentences si and
sj is a linear combination of two similarity measures, the lexical-based and the
topical-based.

The lexical-based similarity is the cosine of two vectors that represents word
frequency in two sentences. To reduce the effect of common words in general
English text, we use a vocabulary without stopwords, which does not play any
role in semantic relation. On the other hand, this representation model cannot
address the issue of words that are not in the stopwords list but occur throughout
a text in a particular subject. Those words may play an important role in un-
derstanding the meaning of a text, but it has no effect on the text segmentation
task. For instance, the word “earth” occurs in almost all sentences in the text
“Stargazers” in Fig. 1. Thus, its occurrence does not mark a change in topic. To
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address this issue, we employ a modified version of the TF-IDF1 weighting score
[4,16], in which we split a text to chunks, which are treated as “documents”.
At the end, the lexical-based similarity between two sentences is computed as
follows:

simlex(si, sj) = cos(tf–idfsi , tf–idfsj )

=
∑

v∈V tf–idfv,si × tf–idfv,sj√∑
v∈V tf–idf2v,si

×
√∑

v∈V tf–idf2v,sj

(2)

where v is a word in the vocabulary V . In practice, we use an exponential version
of the above similarity to accentuate differences between low and high lexical
similarities esim(si,sj).

The topical-based similarity between two sentences is computed based on the
topic distribution of those sentences, which is, in turn, computed by (1). Previous
studies [3,9] normally use the Kullback–Leibler divergence (KL) for computing
the similarity. However, the KL divergence is not a distance measure proper
because it is not symetric. Thus, alternatively, we use the information radius
(IRad) [17] as the topical-based similarity measure, which is also known as the
Jenshen–Shanon divergence (JS)—a variation of the KL divergence.

IRad(p, q) = JS(p‖q) = KL
(

p

∥∥∥∥p + q

2

)
+ KL

(
q

∥∥∥∥q + p

2

)
(3)

IRad is symmetric (IRad(p, q) = IRad(q, p)) and there is no problem with infinite
values since pi+qi

2 �= 0 if either pi �= 0 or qi �= 0. IRad(p, q) ranges from 0 for
identical distributions to 2 log 2 for maximally different distributions. The IRad
is transformed to the similarity measure as follows [17]:

simtopic(si, sj) = 10−βIRad(psi
‖psj

) (4)

where β is a parameter that can be tuned for optimal performance. In practice,
we normally choose β = 1.

The final similarity score between two sentences is the linear combination of
(2) and (4), which is computed as follows:

sim(si, sj) = λsimlex(si, sj) + (1− λ)simtopic(si, sj) (5)

where λ is a model’s parameter, which can be tuned based on the development
set.

To reduce noise and reduce the number of edges in the graph that represents
the similarity matrix, we use a threshold for the similarity score. This threshold
is also optimized based on the development set.

1 TF-IDF: Term Frequency–Inverse Document Frequency.
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5 Experiments

In this section, we present experiments on the public dataset with the current
available systems on text segmentation. Table 3 shows the list of systems that
are involved in our experiments. Those systems are used with their default pa-
rameters. Some systems, such as MinCutSeg and JSeg, have been optimized on
a separate development set which is extracted from the experimental dataset.
Documents in the development set are not used in experiments. Softwares and
data are available on http://www.cicling.org/2011/software/174.

Table 3. Systems involved in experiments

Name Description Ref.

JTextTile The Choi’s implementation of TextTiling method. [11]

C99 A widely referred text segmentation system. [4]

TextSeg A generative-based text segmentation system. [24]

MinCutSeg A minimum cut segmentation system for spoken lectures. [16]

JSeg Our system without non-systematic semantic relation.

JSegT Our system with non-systematic semantic relation (λ = 0.7).

5.1 Dataset

The dataset used in this research is Choi’s artificial dataset [4], which has been
widely used for benchmarking the performance of text segmentation algorithms
[4,14,24,16,18]. This dataset contains 700 documents. Each document is a con-
catenation of ten text segments. Each segment, in turn, is the first n sentences of
a randomly selected document from the Brown corpus2. Each document is char-
acterized by the range of n. The corpus was generated automatically according
to the description in [4]. Table 4 shows the dataset statistics.

Table 4. Choi’s dataset

Range of n 3–11 3–5 6–8 9–11

Number of documents 400 100 100 100

The topic model has been estimated on the Wikipedia dataset, which contains
3,071,253 articles with 6,332,406 distinct words. The vocabulary used for this
research contains 233,851 words. The model containing 1,000 topics has been
estimated in 200 iterations by GibbsLDA++3. The topic inference has been
done on all documents in the dataset.
2 Brown corpus can be freely accessed via NLTK: http://www.nltk.org
3 http://gibbslda.sourceforge.net/
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5.2 Evaluation Results

Experimental results have been evaluated using two error metrics, Pk [2] and
WindowDiff [21]. Low Pk or WindowDiff indicates high accuracy. Table 5 shows
the evaluation of experimental results on all the systems on Choi’s dataset. The
Pk and WindowDiff (WD) scores have been averaged on all the documents in
the whole dataset and in sub-datasets.

The parameter λ in (5) of JSegT has been set to 0.7 by tuning on the devel-
opment set containing five documents.

Table 5. Experimental results

System
3–11 3–5 6–8 9–11 All

Pk WD Pk WD Pk WD Pk WD Pk WD

JTextTile 0.524 0.649 0.473 0.541 0.513 0.635 0.533 0.739 0.516 0.644
C99 0.143 0.144 0.115 0.115 0.104 0.104 0.112 0.112 0.129 0.130
TextSeg 0.106 0.107 0.074 0.075 0.052 0.053 0.037 0.037 0.084 0.084
MinCutSeg 0.243 0.251 0.340 0.350 0.241 0.244 0.174 0.175 0.247 0.253
JSeg 0.129 0.130 0.091 0.091 0.107 0.107 0.121 0.126 0.119 0.121
JSegT 0.035 0.036 0.020 0.020 0.030 0.030 0.046 0.046 0.034 0.034

5.3 Discussion

The text segmentation module is normally a part of an application. Therefore,
the evaluation of the performance of text segmentation systems is difficult and
depends on the application. In this research, we used a widely-used artificial
corpus to evaluate our system, and it may be appropriate for comparing the
relative performance among text segmentation systems without applications.

The important point to notice in Table 5 is that the JSegT system yields a
better result than other systems on the whole dataset. Thus, it confirms the
fact that the use of the non-systematic semantic relation can help improve the
performance of the text segmentation. On the other hand, the JSeg system,
which employs the minimum cut segmentation from the MinCutSeg system,
yields a much better result than MinCutSeg in spite of the fact that MinCutSeg
was optimized on the same development set as JSeg and JSegT. The reason
for this may be that the MinCutSeg was developed for long documents, such
as transcripts of spoken lectures in MIT. Our systems, JSeg and JSegT, use an
advanced smoothing technique that is effective for short documents.

In the scope of this paper, we also performed experiments with the TextSeg
system [24], which is a representative of generative methods in text segmentation.
TextSeg yields stable results in experiments, especially in the dataset 9–11. The
TextSeg’s approach is very different from the similarity-based approach used
in this research. Therefore, if the non-systematic semantic relation could be
integrated into TextSeg, it may yield potential results.
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6 Related Work

Our approach takes into account the non-systematic semantic relation to improve
the performance of text segmentation. Such relation has been captured by using
a topic model. Choi et al. [5] used LSA in this task but as a method to reduce the
number of dimensions of document. Ferret [8] tried to discover topics from the
document itself without any priori knowledge. His approach is only appropriate
with very long documents, which contain enough information for building the co-
occurrence matrix. Eisenstein and Barzilay [7] built a LDA-based model for long
documents, which generalizes the generative method introduced by Utiyama
and Ishihara [24]. Misra et al. [18] follow the generative approach, in which
the topic model is used to compute the topic distribution for every candidate
segment to determine whether that segmentation is optimal. It is different from
our approach, in which the topic information is used to directly capture the
non-systematic semantic relation.

7 Conclusion

We have proposed a method to capture the non-systematic semantic relation in
a text using topic modeling to improve the performance of the text segmentation
algorithm. This relation has been integrated in the similarity computation pro-
cess, which will directly affect the quality of the segmentation. The topic model
used in this research has been estimated from a large and topic-balanced corpus,
Wikipedia, which could help the text segmentation model to apply to a wide
range of texts. Experimental results show that our system is more efficient than
the availabe systems on Choi’s dataset. In future work, we plan to incorporate
the systematic semantic relation and to evaluate our method using real corpora.
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Abstract. We present our work on automatic identification of cause-effect 
relations in a given Tamil text. Based on the analysis of causal constructions in 
Tamil, we identified a set of causal markers for Tamil and arrived at certain 
features used to develop our language model. We manually annotated a Tamil 
corpus of 8648 sentences for cause-effect relations. With this corpus, we 
developed the model for identifying causal relations using the machine learning 
technique, Conditional Random Fields (CRFs). We performed experiments and 
the results are encouraging. We performed an error analysis of the results and 
found that the errors can be attributed to some very interesting structural 
interdependencies between closely occurring causal relations. After comparing 
these structures in Tamil and English, we claim that at discourse level, the 
complexity of structural interdependencies between causal relations is more 
complex in Tamil than in English due to the free word order nature of Tamil.  

Keywords: Cause and Effect; CRFs, Tamil; discourse; structural interdependency; 
machine learning. 

1   Introduction 

The analysis and modeling of discourse structure has been an important area of 
linguistic research in recent times and it is indeed crucial for building efficient Natural 
language processing (NLP) applications. The automatic identification and extraction 
of discourse relations can improve the performance of NLP applications like Question 
Answering and Information Extraction. One such discourse relation, the causal 
relation is the focus of this paper.  

Extractions of Causal relations in English [3, 4] and in other languages like Thai 
[11] have been attempted by researchers from the Data mining or Knowledge 
Acquisition perspective. Some researchers [9] have focused on recognition of 
discourse relations using cue phrases or detection of implicit discourse relations, but 
not extraction of arguments.  Others [2, 18] have tried identification of the arguments 
of all discourse connectives in the PDTB.  

Our work aims at extraction of causal relations from a text comprehension 
perspective i.e., we’re interested in what is expressed in text rather than what is a 
causal relation in the real world. Our objective is to identify causal markers and the 
text spans of their two arguments. Our work is closer to [2] and [18] in identification 
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of arguments, but closer to [3] and [4] in focusing on only the causal relation, which 
is not always marked by connectives. We have 

a. Identified causal markers in Tamil and their syntactic patterns 
b. Identified a set of machine learning features for these markers 
c. Annotated a corpus for causal relations- causal markers and its two arguments 
d. Trained and tested a corpus using CRFs for language modeling 
e. Analyzed errors, found structural interdependencies between causal relations 
f. Compared these structures between English and Tamil. 

2   The Relation of Cause-Effect in Tamil 

The cause-effect relation or the causal relation is a semantic relation between two 
events: E1, the cause or reason and E2, the effect. The cause is the event, E1 that 
causes the event, E2. In other words E1 is the reason for E2 to occur. The event, E2 is 
the effect which is the result or consequence of the cause. Under the taxonomy of 
discourse relations and definitions proposed by Mann and Thompson [8], we address 
the relation definitions Volitional Cause, Non-volitional cause, Volitional result and 
Non-volitional result as cause-effect relations in this work. 

Tamil, belonging to the Dravidian family of languages, is an agglutinative 
language with rich morphology, and has relatively free word order. It is spoken in 
several countries like India, Srilanka, Myanmar, Malaysia and Singapore. Sobha 
Lalitha Devi and Menaka S [15] have studied the causal relation in Tamil. They have 
identified the causal markers or cue phrases and the syntactic patterns of the same. 
We have worked further and identified the features of these markers. Table 1, adapted 
from [15] summarizes the causal markers in Tamil and their properties. 

Table 1. Causal markers and suffixes in Tamil 

Causal Marker 
or Suffix 

Lexical 
Marker 
/ Suffix 

Intra-
sentential/
Inter-
sentential 

Intra-
Clausal/ 
Inter-
Clausal 

Attaches 
to (or) 
follows  

Remarks 

-aal/-inaal Suffix Intra-
sentential 

Both Noun 
phrase 

 

-ataal/ 
-atanaal/ 
-amaiyaal/ 
-apaTiyaal 

Suffix Intra-
sentential 

Inter-
clausal 

Verb Cause is in 
subordinate clause 
and Effect is in matrix 
clause 

kaaraNam Lexical 
Marker 

Both Both Noun 
Phrase 

Effect precedes and 
Cause follows marker 

kaaraNamaaka Lexical 
Marker 

Intra-
sentential 

Both Noun 
Phrase/ 
Infinitive 
Verb  

 

kaaraNattaal Lexical 
Marker 

Intra-
sentential 

Inter-
clausal 

Relative 
Participle 
Verb 
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Table 1. (continued) 

aakaiyaal/ 
aatalaal/ 
aanapatiyaal 

Discourse 
connective  

Both Inter-
clausal 

Sentence 
initial/ 
Clause 
initial 

The intra-sentential 
form is nothing but a 
case of agglutination 

atanaal/ 
itanaal 

Discourse 
connective  

Inter-
sentential 

- Sentence 
initial 

Can be decomposed 
to inherent pronouns 
atu/itu and causal 
suffix –aal 

 
kaaRRu aTittataal             kaakitankaL paRantana. 
wind     blow-pst-CAUSE papers         fly-pst 
‘Because the wind blew, the papers flew.’ 
 

The above example illustrates the cause-effect relation in Tamil. Here the cause is 
‘kaaRRu aTittatu/wind blew’. And the effect is ‘kaakitankaL paRantana/papers flew’. 

3   Automatic Cause – Effect Relation Identification 

To identify and extract cause-effect relations in Tamil, we start with a set of linguistic 
cues, ranging from morphological suffixes to discourse connectives. To locate such 
linguistic cues, we need to do preprocessing of text.  We have preprocessed the test 
for morph analysis, part-of-speech tagging (POS), chunking, clause tagging. Here, we 
have split the task into two stages - identification of the causal marker and 
identification of the arguments of the marker. We have used Conditional Random 
Fields (CRFs), a supervised machine learning method, for the automatic identification 
of cause-effect relations. 

3.1   Conditional Random Fields 

CRFs is an undirected graphical model, where the conditional probabilities of the 
output are maximized for a given input sequence [6]. We chose CRFs, because it 
allows linguistic rules or conditions to be incorporated into machine learning 
algorithm. CRFs make a first order Markov independence assumption and can be 
viewed as conditionally trained probabilistic finite state automata (FSA). The training 
of the CRFs requires iterative scaling techniques, where a quasi-Newton method such 
as L-BFGs is used. Here, we have used CRF++ [5], an open source toolkit for linear 
chain CRFs. 

3.2   Corpus Annotation 

Large-scale annotations of discourse structure like the Penn Discourse Tree Bank 
(PDTB) for English [13] and the Hindi Discourse Relation Bank (HDRB) [10] for Hindi 
make it easy for machine learning purposes in such languages. But, in the case of Tamil, 
since there is no Discourse Tree Bank, we identified a novel, akal viLakku, by mu. 
varataraajan for the training and testing corpus. It contains 8648 sentences of narrative 
discourse with dialogues interspersed. In-line annotation of the causal relations was 
done by a single annotator following a set of annotation guidelines formulated. 
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In PDTB, the assignment of the Arg1 and Arg2 labels to a discourse relation’s 
arguments is syntactically driven. The two arguments to a discourse connective are 
simply labeled Arg2, for the argument that appears in the clause that is syntactically 
bound to the connective, and Arg1, for the other argument [12]. 

In HDRB, however, the Arg1/Arg2 label assignment is semantically driven, in that 
it is based on the “sense” of the relation to which the arguments belong. Thus, each 
sense definition for a relation specifies the sense-specific semantic role of each of its 
arguments, and stipulates one of the two roles to be Arg1, and the other, Arg2 [10]. 
We have labeled our arguments in a similar sense-specific manner. This is necessary 
because one causal marker may have the syntactic Arg2 as Cause and another causal 
marker may have the syntactic Arg1 as Cause. So, in this work, Cause is always 
tagged as Arg1 and Effect is tagged as Arg2.  

The following examples of causal relations show how the tagging is done in the 
corpus in a sense-specific manner. 

 

Fig. 1. Example of Tagging of Causal relations 

3.3   Training and Testing 

We used 6500 sentences consisting of 272 causal relationships tagged for training.  
The sentences had 13 different causal markers. This input data, was pre-processed 
with morphological analyzer [17], part-of-speech (POS) tagger [1], phrase chunker 
[14], and clause tagger [16]. We used the following features in CRFs. 

In the first stage of identifying the causal markers, we train the system using the 
features of Word, POS, Chunk and Word suffix.  

In the next stage we train the system to identify the arguments and their text spans. 
Here we have built 4 language models for each of the 4 boundaries – Arg2-START, 
Arg1-END, Arg1-START and Arg2-END in that order. The system was trained in 4 
phases to produce the 4 models. In each phase we use the previously identified 
boundary also as a feature along with the features given in the table 2. We chose to 
first tag the boundaries (most often) close to the causal marker identified in stage 1 
i.e., Arg2-START and Arg1-END.  

We used 2148 sentences from the corpus consisting of 80 causal relations for 
testing. For testing the sentences were pre-processed similar to the training data. The 
system identified the causal markers in stage 1 and marked them. This output was 
input to stage 2. In both the stages we used CRFs as the machine learning algorithm. 

It was observed that of all features, POS(b), Word Suffix(d), Type of Marker(f) 
and Sentence Position(i) had a significant impact on the results. 
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Table 2. Table of features 

SNo Features Used Identification 
of Marker 

Arg1-
START

Arg1-END Arg2-
START 

Arg2-END 

a Word Y N Y Y Y 
b POS Y Y Y Y Y 
c Chunk Y N N N N 
d Word Suffix  Y Y Y Y Y 
e Causal Marker N Y Y Y Y 
f Type of marker N Y Y Y Y 

g Clause Type N Y Y Y Y 
h Clause boundary N Y Y Y Y 
i Sentence Position 

with respect to 
causal marker 

N Y Y Y N 

j Combination of  
b and d 

Y N N N N 

k Combination of  
i, f, d and b 

N Y Y Y Y 

3.4   Results and Discussion 

Table 3 shows the results obtained by the system in stage 2. We observe that the 
precision of identification of Arg1-END and Arg2-START boundaries is better than 
the other two boundaries.  This is due to the reason that these are nearer to the causal 
marker (for most of the markers). Also, since each boundary is successively 
identified, the error propagation of the previous model accounts for the lower 
precision of identification of the next boundary.  

We noted that Arg1-START is generally at the start of a sentence and Arg2-END 
is generally at the end of a sentence. But there are cases where the cause-effect 
relation occurs in reported speech within quotes or in the subordinate clause of a 
complementizer. So, the machine tags two possible positions for these two boundaries 
(two Arg1-STARTs or two Arg2-ENDs for a single causal marker) in these sentences. 
This accounts for the lower precision of Arg1-START and Arg2-END. In fact, some 
of these cases are ambiguous even for a human annotator. 

For instance, consider the following sentences. 
 

(1.a) [nee keeTTataal]Arg1    [naan poneen   enRu     conneen] Arg2. 
        You ask-CAUSE         I        go-PST  COMP  say-PST 
        ‘I said that I went because you asked.’ 
 

(1.b) [nee kuuppiTTataal]Arg1    [naan poneen]Arg2 enRu     conneen. 
         You call-CAUSE             I        go-PST        COMP  say-PST 
         ‘I said that I went because you called.’ 

Here, though both the sentences have the same syntactic structure and similar 
features, we interpret the scope of the effect (Arg2) differently in each case. This is 
because a cause denoted by the verb keel/ask has more probability of having an effect 
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denoted by the verb col/say than having an effect denoted by the verb po/go in 
example 1.a. On the other hand, in example 1.b, cause denoted by verb kuuppiTu/call 
has more probability of having effect denoted by verb po/go than the verb col/say. 
Such semantics of verbs is not considered by the system and hence both the 
possibilities are tagged by the system. 

With respect to some specific markers like kaaraNamaaka, the errors are more 
because the marker can occur in different patterns and the corpus size was too small 
for the machine to learn all these patterns. The system could not identify the exact 
boundaries when the arguments’ text span was of more than two sentences. The 
system also failed to identify causal relations for which the causal marker was not 
specified explicitly. A good number of errors were due to structural interdependencies 
between causal relations at the discourse level. When there are such structures, there 
is a considerable overlap in the arguments of two causal relations leading to the 
improper identification of boundaries by the system. These are discussed in detail in 
the next section. 

In 90% cases, atleast one boundary was identified correctly. The system identified 
atleast one argument (2 or 3 boundaries correct) properly in 82% of the cases. The 
system identified all 4 boundaries correctly in 55% of the cases for all causal markers. 

With respect to the accuracy of identification of both arguments we get 75.35% as 
F-measure for all causal markers. In identifying the causal markers in stage 1, we get 
92%. 

Table 3. Results of extraction of causal relations using CRFs 

 Total   
Causal 

Relations  

System 
Tagged 

Correctly 
Tagged  

Precision 
(%) 

Recall 
(%) 

F-measure 
(%) 

Arg1-START 80 71     52 73.24 65.00 68.87 
Arg1-END 80 91     66     72.52 82.50 77.19 
Arg2-START 80 94     74 78.72 92.50 85.05 
Arg2-END 80 102    64 62.74 80.00 70.32 
Average    71.80 80.00 75.35 

4   Structural Interdependencies between Causal Relations 

From the error analysis of our experiments, we found complex interdependencies and 
different structural patterns of causal relations. We found some structures similar to 
the structures discussed in [7] and some newer structures as well. We would like to 
highlight here that all these structures were observed not between any two discourse 
relations, as shown in [7], but within a single kind of discourse relation – the causal 
relation. These very unique patterns of interactions between the arguments of causal 
relations range from embedding and sharing to interleaving. Such variation in 
structures is possible in Tamil due to the free word order nature of Tamil. We 
generalized these patterns to get the possible structural interdependencies between 
causal relations in Tamil at the discourse level. We have also explored the possibility 
of such patterns in English in the following discussion. 
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4.1   Embedding within Itself – Cause (Arg1) within Effect (Arg2) 

Within a single Causal relation, we observe an embedding of one argument within 
another in Tamil. The cause is expressed as an embedded adjunct. It takes the causal 
marker –aal which is suffixed to a NP. This is roughly equivalent to the markers 
because of and due to in English, in the sense that the cause is expressed as a NP and 
not as a clause. But, the difference is that both the markers because of and due to have 
a non-embedding structure of Marker-Arg1-Arg2 or Arg2-Arg1-Marker. 

(2.a) [appaa  [mutukuk  kaTTiyaal]Arg1  varuntikkoNTiruntaar.]Arg2 

 father    back        boil-CAUSE  suffer-PAST-PROG 
 'Father was suffering because of boils on his back.'     

It appears that this is because of the free word order nature of Tamil. Example 2.a 
may be written as in 2.b where it has the trivial structure of Arg1-Marker-Arg2. Of 
course it can also be written as in 2.c where there is focus shift. Both 2.b and 2.c show 
trivial structures, though 2.a. has the most frequently occurring structure.  

(2.b)[mutukuk  kaTTiyaal]Arg1  [appaa varuntikkoNTiruntaar.]Arg2 

   back        boil-CAUSE  father suffer-PAST-PROG 
 'Because of boils on his back, father was suffering.'      

(2.c)[appaa varuntiyatu]Arg2 [mutukuk  kaTTiyaal].Arg1   
 father suffer-PAST          back                      boil-CAUSE   
'It was because of boils on his back that father was suffering.'      

  

Fig. 2a. Cause (Arg1) embedded within its 
effect (Arg2) 

Fig. 2b. Effect (Arg2) embedded within its 
cause (Arg1) 
 

4.2   Embedding within Itself – Effect (Arg2) within Cause (Arg1) 

Though embedding of Arg2 within Arg1 was not observed in the errors, this is a 
logical possibility to be considered after encountering the structure in 4.1, for the sake 
of completeness (Fig.2.b). In English, we do not observe this internal embedding. 

4.3   Between Two Causal Relations – Completely Independent: The Trivial Case 

When we consider discourse structural interdependencies between two causal 
relations, we first discuss - for the sake of completeness - the trivial case of two 
totally independent Causal Relations occurring adjacent to each other. The structure is 
depicted as in Fig.3. The following example shows such a case. 

(3)onRu,  [neTunkaalamaaka  makkaL  vaaznta uur]Arg1i  

one,    longtime               people    live-RP   town 
[aakaiyaal entak kiNaRRilum  niir  uppaaka irukkum.]Arg2i 
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so               all    wells-LOC       water  salty be.              
maRRonRu, [mikap pazankaalattu uuramaippu]Arg1j 

another          very    old                   township           
[aakaiyaal  terukkaL ellaam  akalamaaka irukkum.]Arg2j 

so              streets      all  wide            be.    
‘Firstly, since it is a town where people have been living for a long time, all wells 
have salty water. Secondly, since it a very old township, all streets are wide.’ 
 

Fig. 3. Independent Causal Relations 

4.4   Between Two Causal Relations – Containment 

One most frequently occurring structural dependency is that of embedding or 
containment of the whole of a causal relation within one of the arguments of another 
causal relation. This argument may be the cause as illustrated by example 4.a or effect 
as in example 4.b. The structural dependencies are depicted in Fig. 4a and Fig. 4b.  

(4.a)[avaruTaiya manam keTTuppoovataRkuk kaaraNam]Arg2i   
    his               mind      spoil-DAT                     reason                  

 [[enn-aal]Arg1j  [eeRpaTTa  eemaaRRamtaan.]Arg2j]Arg1i 

 I-CAUSE     cause-RP disappointment 
'The reason for the spoiling of his mind is the disappointment caused by me.’ 

 
Fig. 4a. Containment: One Causal Relation within Cause(Arg1) of another 

(4.b)[ippootu  pakkattu uurkaLilum  paLLikaL uLLataal]Arg1i 
   now       nearby    towns-LOC  schools      be-CAUSE                

[[kalvi kaaraNamaaka]Arg1j [varuvoorum]Arg2j kuRaintu viTTaarkaL.]Arg2i 

  education   reason          those who come     reduced 
'Since high schools have been established now in nearby towns as well, those who  
come for education have reduced.' 

 
Fig. 4b. Containment: One Causal Relation within Effect (Arg2) of another 
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We mention embedding within Cause (Arg1) and embedding within Effect (Arg2) 
specifically here instead of including them both into embedding within an argument 
because the causal relation is asymmetrical. We observe such embedding of one 
causal relation within an argument of another causal relation in English as well.  

4.5   Between Two Causal Relations – Sandwiching 

Finding an independent causal relation between the arguments of another causal 
relation is very rare. It is difficult to consider that a totally independent Causal 
Relation occurs between the two arguments of another Causal Relation. Quite often, it 
is difficult to draw a line between a sandwiched Causal Relation and an 
embedded/contained Causal Relation. But example 5 is a clear case of sandwiching. 
 

(5) [cantiran  uNmaiyaakavee  maanam  uTaiyavan.]Arg1i 

Chandran really          self-respect  have-person   
atanaaltaan [imaavatiyaal]Arg1j [eemaaRRam aTaintat]Arg2j aaka  uNarntatum 
so                Imavati-CAUSE   cheat  got                    realized-after   
[kalluuri  viTutiya  viTTee  ooTippooy viTTaan.]Arg1i 

 college  hostel      from        ran away. 
'Chandran really has self-respect. So, he ran away from the college hostel as soon 
as he realized  that he got cheated by Imavati.’ 

 

Fig. 5. Sandwiching: A causal relation between the arguments of another 

This particular structure and the internal embedding structures discussed in 
sections 4.1 and 4.2 are newer structures not discussed in [7]. The possibility of this 
structure occurring in English is very rare. 

4.6   Between Two Causal Relations – Complete Overlap/Shared Argument 

An argument may be shared by two Causal Relations in different ways:  

(a) Arg1i= Arg1j      (b) Arg1i = Arg2j or Arg2i = Arg1j  (c) Arg2j = Arg2i 

Here, the example is considered a shared argument only if Arg1 of one Causal 
Relation is Arg2 of another Causal Relation (as in case b above). If the shared 
argument is Arg1 of both the Causal Relations (case a) or Arg2 of both the Causal 
Relations (case c), then it is a case of multiple causes or multiple effects, respectively. 

(6) [vaNTikkaararkku  ippootu  varuvaay  kuRaintupoonataal ]Arg1i 
 cart owners-DAT      now      income        reduced-CAUSE               

[avarkaL  kutiraikaLai  nanRaaka  vaittiruppatillai. ]Arg2i/Arg1j 
they         horses-ACC      well   keep-NEG 

[aakaiyaal ippootu uLLa kutiraikaLum paarppataRku azakaaka illai.]Arg2j 
so               now      present horses           see-DAT       beautiful     no 
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'As the income for cart owners has reduced now, they do not maintain the horses  
well. So, the horses, at present, do not look beautiful. 

 

Fig. 6. Complete Overlap: Shared Argument 

4.7   Between Two Causal Relations – Partial Overlap/Partially Shared Argument 

This is similar to the structure in section 4.6, but one argument is shared partially as 
seen in example 7. These kinds of overlaps are seen in English as well. 

 

Fig. 7. Partial Overlap: Partly Shared Argument 

(7) [enakku ooyaata veelai;]Arg1i [atanaal [cennaiyil kaTaikkup pooyp poruLkaLai  
I-DAT      rest-no work          so           Chennai-LOC shop-DAT go      things-ACC 
vaanki koNTu   uurkkup  poovataRku  vaayppum illai.]Arg2i  

buy-VBP        town-DAT   go-BEN         chance       no       

atu tunpamaakavum irukkum.]Arg1j [atanaal  uurkkup      pookum pootellaam 
that painful-also         be          so        town-DAT     go      time-always   

ammaaviTam ruupaay  nooTTukaLaik koTuttuviTTu tirumpuveen.]Arg2j 
mother-loc  rupee  notes-acc   give-vbp       return-past. 
'I had lots of work. So, I did not have a chance to go shopping in Chennai, buy  
things and go to my hometown. That was also painful. So, whenever I went to my  
hometown, I gave my mother rupee notes and returned.' 

4.8   Between Two Causal Relations – Interleaving: Pure Crisscross  

Interleaving of two causal relations where the dependencies cross over is also 
observed as shown in example (8) and Fig. 8. This is found in English as well. 

 

Fig. 8. Interleaving of causal relations 

(8)[meeRku naaTukaLil inta ozukkankaL iruppataRkuk kaaraNam uNTu.]Arg2i 

western  countries-LOC this discipline    be-DAT           reason       Exist          
[inku  illaamaikkuk  kaaraNam  uNTu.]Arg2j  
here   absence-DAT    reason         Exist         
[ankee piRarkku utavuvatee kaTavuLukku ukantatu ena ninaikkiRaarkaL.] Arg1i 
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there  others-DAT help           God-DAT        liking                    that think-present          
[inkee inta uNmai veLippaTaiyaaka illai.]Arg1j 

here    this truth    explicit                     no 
'There is a reason why this discipline exists in western countries. There is a reason 
why this is absent here. There, religion has grown based on the belief that God  
likes us to help others.  Here this truth is not explicit.' 

4.9   Multiple Causes (Arg1s) or Multiple Effects (Arg2s)  

Apart from the above noted structures, we found cases of multiple causes and 
multiple effects. Such cases might be due to shared arguments as noted in section 
4.6(case a and case c), list structures or enumerations.  

From the discussions in this section, we observe that structural interdependencies 
between causal relations in Tamil are very complex in comparison to English. This is 
due to the nature of the languages. Tamil has relatively free word order which allows 
for scrambling. The adjuncts in a clause can move freely within the clause, though 
long distance movement outside the clause is not possible. This allows for variations 
in structures, leading to structural complexities.  

On analysis of the errors due to structural complexities and other reasons, we 
propose the following solutions to improve the system’s performance. Firstly, the 
system can be improved by identifying and adding more features for certain markers 
like kaaraNamaaka and -aal. Secondly, when two causal relations are structurally 
interdependent, they do not always have the same causal marker. The features that 
significantly impact the machine learning and tagging for each marker are different. 
We can leverage on this fact and develop models specific to each marker or models 
specific to a certain group of markers of similar type (like intra-sentential or inter-
sentential markers). It will give a simple but effective solution to the problem, thus 
improving the performance. 

5   Conclusion 

We presented a method for the identification and extraction of causal relations in 
Tamil using CRFs. The results are encouraging. We observed that the POS, Word 
suffix, Type of Marker and Sentence position had an impact on learning. The errors 
can be largely attributed to structural interdependencies between and within the causal 
relations. These structural patterns range from internal embedding to shared 
arguments to sandwiching. Though, most of these structures are found in both Tamil 
and English, the cases of internal embedding are unique in Tamil, due to its nature of 
free word order. If we can address this issue and develop specific models for each 
marker or for a group of markers, we can improve the performance of our system.  
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Abstract. It is widely accepted that in a text, sentences and clauses
cannot be understood in isolation but in relation with each other through
discourse relations that may or may not be explicitly marked. Discourse
relations have been found useful in many applications such as machine
translation, text summarization, and question answering; however, they
are often not considered in computational language applications because
domain and genre independent robust discourse parsers are very few.
In this paper, we analyze existing approaches to identify five discourse
relations automatically (namely, comparison, contingency, illustration,
attribution, and topic-opinion), and propose a new approach to identify
attributive relations. We evaluate the accuracy of each approach with re-
spect to the discourse relations it can identify and compare it to a human
gold standard. The evaluation results show that the state of the art sys-
tems are rather effective at identifying most of the relations considered,
but other relations such as attribution are still not identified with high
accuracy.

1 Introduction

It is widely accepted that sentences and clauses in a text cannot be understood
in isolation but in relation with each other. A text is not a linear combination
of clauses but a hierarchial organized group of clauses placed together based
on informational and interactional relations to one another. For example, in
the sentence “If you want the full Vista experience, you’ll want a heavy system
and graphics hardware, and lots of memory”, the first and second clauses do
not bear much meaning independently; they become more meaningful when we
realize that they are related through the discourse relation condition.

In a discourse, different kinds of relations such as contrast, causality, elab-
oration may be expressed. The use of such discourse structures modelled by
rhetorical predicates (described in section 2) have been found useful in many
applications such as document summarization and question answering ([9, 7]).
For example, [9] showed that rhetorical predicates can be used to select the con-
tent and generate coherent text in question answering with the help of schemata.
Recently, [10] has demonstrated that rhetorical predicates can be useful in blog

A. Gelbukh (Ed.): CICLing 2011, Part I, LNCS 6608, pp. 328–339, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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summarization. Rhetorical predicates have also been found useful for anaphora
resolution [9] and machine translation [11].

Though rhetorical predicates are useful in many applications, their automatic
identification remains a challenging task. Existing rhetorical predicate identifica-
tion approaches (e.g. [9, 11]) are often domain or genre dependent. For example,
in [9], predicates are identified based on the hierarchical structures and pre-
stored relations in a knowledge base. In certain sub-languages, predicates are
often identified by means of key words and other linguistic clues (e.g. because,
if, then) or through verb frameworks [11]. With verb frameworks, characteristics
of a verb are defined for the specified sub-language and each verb is associated
with possible rhetorical predicates. [11] also used domain knowledge with verb
frameworks to identify predicates.

In this paper, we focus on genre and domain independent intra-sentential
rhetorical predicates identification approaches which can tag individual rhetori-
cal predicates as opposed to performing a more complete discourse parse. Only
intra-sentence predicates are considered because in many applications such as
extractive summarization, question answering, and information retrieval, indi-
vidual sentences are extracted from different documents or from different posi-
tions of a document to build a candidate sentence list. As a result, there is very
little chance that inter-sentential relations will exist among candidate sentences.
On the other hand, intra-sentential relations have already been found useful
to organize texts and select content by utilizing schema in summarization and
question answering [9, 10, 1]. Intra-sentential relations may enable a system to
answer non-factoid questions such as “Why do people like Picasa?” by selecting
clauses related through a causality; and [1] showed that 95% of the time, causal-
ity occurred within sentences in the corpus T (a gigaword newswire corpus of
4.7 million newswire documents1).

In this paper, we first introduce the set of rhetorical predicates which we have
taken into consideration. Then we present different available approaches such as
the SPADE parser [13], Jindal et al.’s [5] work, and Fei et al.’s [3] work that
can be used to identify these rhetorical predicates. We have also developed an
approach to identify the attributive predicate. We then evaluate the performance
of each of these approaches using precision, recall, and F-Measure. We have also
developed gold standards for the identification of each predicate to evaluate the
effectiveness of these approaches. The evaluation results show that the current
state of the art is acceptable to identify some predicates (e.g. illustration) but
not others (e.g. attribution).

2 Rhetorical Predicates

Rhetorical predicates are the means which a speaker has to describe informa-
tion. Rhetorical predicates describe different predicating acts a speaker can use
and describe the structural relations between clauses in a text. Some examples

1 Distributed by the Linguistic Data Consortium, http://www.ldc.upenn.edu
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are constituency (that provides details about sub-parts), and attributive (that
provides details about an entity or object).

Rhetorical predicates take clauses as arguments. Clauses represent the small-
est units that stand in informational or interactional relationship with other
parts of texts. In this framework, clauses are classified into rhetorical predicates
based on their underlying information. Rhetorical predicates classify clauses into
two broad categories:

1. A clause that contains a relation with another clause.
2. A clause that provides information on its own.

In the first case, rhetorical predicates describe the relation between clauses and
thus express the relationship that unite them (e.g. the evidence predicate creates
a relation with the stated fact in order to provide support) [9]. In the second
case, rhetorical predicates characterize the structural purpose of a clause (e.g. the
attributive predicate can describe the attribute of an object). Here, a single clause
can characterize a predicate. This kind of discourse structure is not considered
by most of the discourse theories except rhetorical predicates.

Our work was performed within the framework of developing a query-based
summarizer for blogs. Hence, we considered the predicates that were most useful
for this application [10]. We considered six types of rhetorical predicates, namely
comparison, contingency, illustration, attribution, topic-opinion, and attributive.
The comparison, contingency, illustration, and attribution predicates are also
considered by most of the work in the field of discourse such as the PDTB
research group [12] and [2]. We considered two additional classes of predicates:
attributive and topic-opinion.

The attributive predicate, also included in Grimes’ predicates [4], is considered
because it describes attributes or features of an object or event and is often
used in query-based summarization and question answering. We introduced the
topic-opinion predicate because by analyzing the TAC-2008 corpus2, we have
found that the discourse structures (e.g. feelings, thoughts) captured by this
predicate are often used in opinionated texts. In building our predicate model,
we considered all main discourse structures listed in Mann and Thompson’s
Rhetorical Structure Theory (RST) taxonomy [6]. These discourse structures
are also considered in Grimes’ and Williams’ predicate lists [9]. Description of
these rhetorical predicates are given below:

1. Comparison: Gives a comparison and contrast among different situations -
e.g. Perhaps that’s why for my European taste Starbucks makes great espresso
while Dunkin’s stinks. The comparison predicates also subsume the contrast,
analogy, and preference predicates.

2. Contingency: Provides cause, condition, reason, evidence for a situation,
result or claim - e.g. The meat is good because they slice it right in front of
you. The contingency predicate subsumes the explanation, evidence, reason,
cause, result, consequence, background, condition, hypothetical, enablement,
and purpose predicates.

2 http://www.nist.gov/tac
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3. Illustration: Is used to provide additional information or detail about a
situation - e.g. I have a special relationship with the lovely people who work
in the Dunkin’ Donuts in the Harvard Square T Station in Cambridge. The
joint, list, disjoint, and elaboration predicates are subclasses of the illustra-
tion predicate.

4. Attribution: Is used to convey reported speech both direct and indirect.
This predicate can also be used to express feelings, thoughts, or hopes - e.g.
I said actually I think Zillow is great.

5. Topic-Opinion: Can be used to express an opinion on a specific topic; an
agent can express internal feeling or belief towards an object or an event -
e.g. The thing I love about their sandwiches is the bread.

6. Attributive: Provides details about an entity or an event. It can be used to
illustrate a particular feature about a concept - e.g. Mary has a pink coat.

As stated earlier, our study focused only on these predicates but other predicates
would also be interesting to consider (e.g. antithesis).

3 Discourse Tagging

Several approaches to automatically identify the predicates described above have
been proposed; the most notable ones are: the SPADE parser [13], Jindal et al.’s
approach [5], and Fei et al.’s approach [3].

3.1 The SPADE Parser

The SPADE parser [13] was developed within the framework of RST. In SPADE,
a large number of fine grained discourse relations are considered compared to
those in RST. The SPADE parser identifies discourse relations within a sentence
by first identifying elementary discourse units (EDU)s, then identifying discourse
relations between two EDUs (clauses) by following the RST theory. For example,
in the sentence below, the SPADE parser identifies two clauses:

a. [Perhaps that’s why for my European taste Starbucks makes great espresso]
b. [while Dunkin’s stinks.]

and assigns the relation contrast between these two clauses.
The parser consists of two components: the discourse segmenter and the dis-

course parser. The discourse segmenter divides sentences into clauses. It uses
two components for this purpose namely a statistical model, which assigns a
probability to the insertion of a discourse boundary after each word in the sen-
tence, and a segmenter which uses the probabilities computed by the model for
inserting discourse boundaries. Given a sentence, this model first finds the syn-
tactic parse tree of the sentence. Then using both lexical and syntactic features
of the parse tree it determines a probability of inserting a discourse boundary.
Once the discourse boundaries of a sentence are determined the discourse parser
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creates a discourse tree for the sentence. The discourse parser also consists of
two components: a parsing model, which assigns a probability to every potential
candidate parse tree, and the discourse parser, which is an algorithm for finding
the best discourse tree. To find the best discourse tree, it implements a bottom-
up algorithm which searches through the space of all possible discourse trees
using dynamic programming. In this process, between two clauses if more than
one discourse relation is available then the relation with the highest probability
score (that is calculated based on their syntactic and lexical information from
the training corpus) is selected.

The SPADE parser can only identify discourse structures across clauses, and
cannot identify those occurring within a clause. For example, in “Dunkin Donuts’
coffee tasted better than Starbucks” a comparison structure is used, but would not
be identified by SPADE. However, in our analysis, we found that comparisons,
topic-opinion, and attributive do occur within a clause. To identify these kinds
of structures, the taggers described in the next sections were considered.

3.2 Jindal et al.’s Approach

In order to label a clause as containing a comparison predicate, Jindal et al.’s
approach [5] can be used. In this approach, using a set of keywords and annotated
texts, the classifier first generates patterns for comparison sentence mining called
sequences.

To build the sequence database, the classifier first considers the sentences
which contain at least one predefined keyword. Then it creates a sequence
using words which occur within a window of 3 words around the keyword.
In the next step, these words are replaced with their part of speech (POS)
tag and a class is associated with the sequence based on whether this sen-
tence is a comparison or non-comparison sentence. For example, the sentence
“With/IN Carmax/NNP you/PRP will/MD generally/RB always/RB pay/VB
more/RBR than/IN from/IN going/VBG to/TO a/DT good/JJ used/VBN
car/NN dealer/NN” contains the keyword “more”and the sequence will be stored
in the database :

({RB}{RB}{VB}{more/RBR}{IN}{IN}{VBG}) comparison

After the database is constructed, class sequential rules (CSR) are generated. A
CSR is a rule with sequences on the left and a class label on the right of the
rule. The CSR rules are generated by combining sequences which are available
in the sequence database. As CSR, those rules are accepted which meet the pre-
specified support and confidence threshold value. The support and confidence of
a rule are defined as follows:

Support of a rule = # of instances containing this rule
# of instances in the sequence database

Confidence of a rule = # of instances containing this rule in this class
# of instances in the sequence database satisfying the rule
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A Näıve Bayes classifier is used using the CSR patterns as features to learn a
2-class classifier (comparison and non-comparison). To evaluate their approach,
we have developed a classifier to identify the comparison predicate using their
annotated dataset (see section 4).

3.3 Fei et al.’s Approach

The topic-opinion predicate indicates whether a sentence expresses an opinion
towards a specific topic. Fei et al. [3] showed that the dependency relations of
words defined by a dependency grammar are useful to find relations between a
topic and subjective words.

Dependency relations refer the binary relations between two words where in
this binary relation one word is the parent and the other word is the child. In this
representation, one word can be associated with only one parent but with many
children. In this way, when we create the dependency relations of a sentence it
will be in a tree form (called a dependency tree). These dependency relations are
useful to find relations (links) between subjective words and a topic. Different
words of a sentence can be related using the dependency relations directly or
based on the transitivity of these relations. For example, the dependency relation
of the sentence “Subway has bad food.” is shown in Figure 1.

Fig. 1. Dependency Relations

The head of the arrow directs the child, the tail comes from the parent, and
the tag of the arrow shows the dependency relation type. From Figure 1, we can
see that both words Subway and food are children of the word has. The word
bad and food are directly related using the dependency relation amod. Subway
and bad are related based on the transitivity of the relations. With the help of
dependency relations we can find that the topic Subway and the subjective word
bad are related. Fei et al. [3] used 3 instances of dependency relations (shown in
Figure 2) for opinion mining:

1. Subjective Words that are Descendant of the Topic: To identify
whether subjective words (S-word) are descendent of the topic, subjective
words should be in the modifier relation with the topic directly or based on
some transitivity relations.

2. Subjective Words and the Topic that have the Common Ancestor:
Under this category, [3] accepted instances where the same ancestor is the
verb.

3. Subjective Words that are Ancestors of the Topic: To classify under
this category according to [3], the subjective word needs to be a verb, and
the topic needs to be in the subject or object of the verbs.
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Fig. 2. Topic-opinion Dependency Relations Tree

In order to evaluate their approach, we have also built a tagger by following
Fei et al.’s approach (see section 4).

3.4 Our Attributive Tagger

To our knowledge, no previous work has focused on tagging the attributive pred-
icate. Hence, to identify these predicates, which typically occur within a clause,
we developed our own tagger. Similarly to Fei et al.’s [3] work, we used depen-
dency relations of words (using the Stanford parser3) to develop this classifier.

Fig. 3. Attributive Dependency Relations Tree

By analyzing TAC 2008 data, we have found that the dependency relation
shown in Figure 3 can be used to identify the attributive predicate. From this
figure, we can see that to be classified as an attributive predicate, the topic
needs to be the descendant of a verb; however, the topic need not necessarily be
directly related to the verb. From our TAC data analysis, we have also found
that to classify as an attributive predicate, the topic needs to be in subject
or object relation of the verb. We have devised a set of 5 heuristic rules by
analyzing datasets containing 200 attributive sentences (sentences from TAC-
2008). For example, in the sentence “Picasa displays the zoom percentage” there
will be a dependency relation nsubj between the topic “picasa” and the verb
“displays”(shown in Figure 4).

The 5 heuristics rules are:

1. The verb is directly associated with the topic using the dependency relation
nsubj.

2. The verb is associated with a noun using the nsubj relation and that noun is
linked with the topic using the dependency relation nn.

3. The verb is associated with a noun using the nsubj relation and that noun is
linked with the topic using the dependency relation prep.

3 Available at nlp.stanford.edu/software/stanford-dependencies.shtml
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Fig. 4. Attributive Dependency Relations Example

4. The verb is associated with a noun using the nsubj relation and that noun is
linked with the topic using the dependency relation poss.

5. The verb is directly associated with the topic using the dependency relation
dobj.

4 Evaluation

This section describes the corpora and the evaluation results of the predicate
taggers described above. This section also provides a comparison with a baseline
and gold standard for each predicate.

4.1 Corpora

To evaluate the performance of the taggers, four different corpora have been
used. The descriptions of these corpora are given below:

The SPADE Parser Corpus
To evaluate the SPADE parser, the publicly available RST Discourse Treebank
20024, which contains 385 Wall Street Journal articles from the Penn Treebank,
was used. The dataset is divided into a training set of 347 articles (6132 sen-
tences) and a testing set of 38 articles (991 sentences). In the corpus, for each
document, a discourse tree was manually created by following Rhetorical Struc-
ture Theory (RST). In the evaluation, only discourse subtrees over individual
sentences were utilized.

The Comparative Corpus
To evaluate the comparative classifier, the dataset developed by [5] was used.
This corpus consists of 905 comparative and 4985 non-comparative sentences.
Four human annotators labelled these data manually. This dataset consists of
reviews, forum, and news articles from different sources.

The Topic-opinion Corpus
To evaluate the topic-opinion classifier, the corpus developed by [3] from the
polarity dataset5 was used. The polarity dataset originally includes 1000 pos-
itive and 1000 negative reviews on films. From this polarity dataset, [3] have

4 Distributed by the Linguistic Data Consortium (http://www.ldc.upenn)
5 http://www.cs.cornell.edu/people/pabo/movie-review-data
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randomly annotated 400 sentences that contain both film terms and opinion-
ated expressions from General Inquirer terms6. In this corpus of 400 sentences,
in 262 sentences opinions are attached to the target. To annotate this corpus,
86 popular film terms from the dataset and online film glossary7 were collected.

The Attributive Corpus
Since no standard dataset was available for the attributive predicates, we have
manually created a corpus of 400 sentences from the TAC 2008 opinion sum-
marization track. This corpus consists of 200 attributive sentences and 200 non-
attributive sentences.

4.2 Results

For the evaluation, each approach was evaluated with its associated dataset and
the performance was evaluated using precision, recall, and F-Measure scores.
The SPADE parser’s performance was evaluated on 18 discourse relations iden-
tification. On the other hand, the performance evaluation of all other classifiers
was binary (e.g. attributive versus non-attributive).

Table 1. Performance of Different Predicate Identification Approaches

Rhetorical Clause Classifier Precision Recall F-Measure
Predicate Level

Comparison Inter SPADE 58% 31% 40%

Comparison Intra Jindal et al.’s 77% 81% 79%
Authors’ 66% 68% 67%

Contingency Inter SPADE 85% 76% 80%

Illustration Inter SPADE 79% 93% 85%

Attribution Inter SPADE 52% 83% 64%

Topic-opinion Intra Fei et al.’s 75% 66% 70%
Authors’ 66% 68% 67%

Attributive Intra Authors’ 77% 76% 77%

Table 1 shows the results of the evaluation. The table indicates: a) the rhetor-
ical predicates which have been identified; b) at what level these predicates
occurred (within a clause or across two clauses); c) which classifier is used to
identify the specified predicate; d) the evaluation results using precision, recall,
and F-Measure.

From Table 1, we can see that to identify inter-clause comparison, contin-
gency, illustration, and attribution predicates, the SPADE parser is used. As
the evaluation of the SPADE parser was executed on 18 label relations and the
performance for a specific predicate identification is not mentioned in [13], we
have computed ourselves the performance of the SPADE parser for contingency,
6 http://www.wjh.havard.edu/~inquirer
7 http://www.filmsite.org/filmterms.html
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comparison, illustration, and attribution predicates using the same corpus used
by [13]. The performance of the SPADE parser to identify each of these pred-
icates is shown in Table 1. The table shows the evaluation results of Jindal et
al.’s approach (as published in [5]) and our implementation (authors’) of their
approach to identify the comparison predicate which occur within a clause. Ta-
ble 1 also shows the evaluation results of Fei et al.’s approach (as published in
[3]) and our implementation of their approach. Table 1 also shows the evaluation
results of our approach to identify the attributive predicate.

Table 2. Baseline and Gold Standard Performance

Baseline Gold Standard

Rhetorical Clause P R F P R F
Predicate Level

Comparison,
Contingency, Inter unknown unknown 23% unknown unknown 77%
Illustration,
Attribution

Comparison Intra 94% 32% 48% 85% 92% 88%

Topic-opinion Intra 70% 21% 32% 73% 77% 75%
Attributive Intra 39% 67% 49% 76% 86% 81%

Table 2 shows the baseline and gold standard performance for identifying
these rhetorical predicates using precision (P), recall (R), and F-Measure (F).
The baseline and gold standard figures were computed as described below:

Baselines:
Inter-Comparison, Contingency, Illustration, Attribution : The SPADE
baseline described in [13] was used. The baseline algorithm builds right branch-
ing discourse tree and labels with the most frequent relation learned from the
training set.

Intra-Comparison : The baseline algorithm considers a sentence as a compar-
ison if it contains any of the keywords of Jindal et al. [5].

Topic-opinion : Following [3], the baseline algorithm considers sentences as
topic-opinion if they follow one of the two patterns below:

(RB)+JJ+(NN)+Target; ((RB)+JJ)+NN+Target

where, RB, JJ, and NN are part of speech (adverb, adjective, noun) and Target
is the topic of the sentence.

Attributive: To be considered as an attributive predicate, the topic of the sen-
tence needs to be associated with the verb using the dependency relation subj.
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Gold Standards:
Inter-Comparison, Contingency, Illustration, and Attribution : The gold
standard of [13] was used. It is computed as the agreement between two human
annotators who independently annotated 53 articles of the RST Discourse Tree-
bank corpus.

Intra-Comparison, Topic-opinion, and Attributive: The gold standards
are computed as the agreement between two human annotators who annotated
100 sentences of the comparative, the topic-opinion, and the attributive corpus
for each rhetorical predicate.

4.3 Analysis

In general, the state of the art approaches do much better at tagging rhetorical
predicates compared to the baseline and do respectably well compared to the gold
standard. As Table 1 shows, currently, the state of the art systems have difficulty
tagging the rhetorical predicate topic-opinion - achieving an F-Measure of 70%.
However, the gold standard is also very low (75%), leading us to believe that
this predicate is hard to identify. The reason behind this could be it may not be
marked explicitly in the text, or may be marked in a variety of ways. Moreover,
sentiment identification, which is a sub-task of topic-opinion predicate tagging,
is a complex task on its own. As a result, the F-Measure scores of the attribution
predicate tagging, which also requires sentiment analysis, is also low. On the
other hand, the rhetorical predicate intra-comparison is tagged satisfactorily by
the state of the art systems, and the gold standard is high too. We believe that
this rhetorical predicate is more explicitly marked linguistically and in a more
stereotypical manner.

5 Conclusion and Future Work

In our work, we have identified a set of intra-sentential rhetorical predicates
which can be expressed in factoid or opinionated texts and have analyzed do-
main and genre independent automatic approaches to identify these rhetorical
predicates. We tried to use off-the-shelf approaches which have been developed
for discourse analysis or for other purposes to identify intra-sentential discourse
structures. In addition, we have introduced an automatic approach to identify
the attributive predicate based on dependency relations. As a gold standard to
evaluate the tagging of each predicate was not available, we have developed
one and have used it to compare the performance of various approaches. The
evaluation shows that these approaches are effective to identify some discourse
structures (e.g. illustration) compared to others (e.g. attribution).

As the performance of our comparative and topic-opinion classifier is not very
satisfactory, in the future we plan to conduct a manual analysis to find out
why. To analyze our topic-opinion classifier’s performance, we plan to evaluate
its accuracy in sentiment analysis. In the future, we also plan to evaluate the
usability of rhetorical predicate tagging for summarization.
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Abstract. The corpora available for training discourse relation classi-
fiers are annotated using a general set of discourse relations. However,
for certain applications, custom discourse relations are required. Creat-
ing a new annotated corpus with a new relation taxonomy is a time-
consuming and costly process. We address this problem by proposing
a semi-supervised approach to discourse relation classification based on
Structural Learning. First, we solve a set of auxiliary classification prob-
lems using unlabeled data. Second, the learned classifiers are used to
extend feature vectors to train a discourse relation classifier. By defin-
ing a relevant set of auxiliary classification problems, we show that the
proposed method brings improvement of at least 50% in accuracy and
F-score on the RST Discourse Treebank and Penn Discourse Treebank,
when small training sets of ca. 1000 training instances are employed.
This is an attractive perspective for training discourse relation classifiers
on domains where little amount of labeled training data is available.

1 Introduction

Detecting the discourse relations underlying the different units of a text is cru-
cial for several NLP applications, such as text summarization [1] or dialogue
generation [2]. To date, only three major annotated corpora are available, the
RST Discourse Treebank (RSTDT) [3], the Discourse Graphbank [4], and the
Penn Discourse Treebank (PDTB) [5]. The RSTDT is based on the Rhetorical
Structure Theory framework (RST) [6], and annotation is done using a set of
78 fine-grained discourse relations, usually grouped by researchers into a set of
18 more general relations [3]. In the Discourse GraphBank, annotation is done
using a set of 11 discourse relations. Finally, in the PDTB, annotation is done in
a hierarchical fashion, with 4 relations at the highest-level, and 20 at the most
detailed level.

However, in some applications, we must extract discourse relations that are
different from the ones defined in above-mentioned discourse theories. In [7]
for instance, it is shown that the use of a RST discourse parser improves the
detection of relevant information in clinical guidelines. Notably, certain RST dis-
course relations such as Temporal or Consequence are useful in the context

A. Gelbukh (Ed.): CICLing 2011, Part I, LNCS 6608, pp. 340–352, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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of clinical information extraction. However, the majority of RST relations are
too generic and not relevant enough for this task. For this application, captur-
ing relations such as Permission, Obligation or Advice would be of greater
interest. Thus, in the context of a specialized application, employing a discourse
relation classifier trained on a custom set of discourse relations can be required.

A straightforward solution consists of creating a new corpus annotated with
the desired set of discourse relations. However, this process is costly and time-
consuming. Alternatively, it is interesting to tackle the discourse relation clas-
sification problem by employing a semi-supervised approach. While having at
our disposition a small set of labeled examples, we propose to leverage freely-
available unlabeled data, by employing Structural Learning [8]. In the proposed
approach, unlabeled training data is employed to solve auxiliary classification
tasks related to the main discourse classification problem. The unlabeled data
can be obtained with a minimal effort, for instance on the web. By solving the
auxiliary tasks, some information about the main discourse classification task
is learnt, and encoded as new features in the main classifier’s training and test
feature vectors. We show that the proposed method brings a significant improve-
ment in classification performance (F-score and accuracy), in particular when
training sets of small to moderate (ca. 100 to 1000 instances) size are employed.

Our contributions in this paper are summarized as follows.

– We propose a set of auxiliary tasks related to the main discourse relation clas-
sification problem, and which can be solved using unlabeled data only. We
show that incorporating these tasks into the main problem through Struc-
tural Learning brings significant improvement in F-score and classification
accuracy of at least 50%, when small to moderate amounts of training data
are used.

– The proposed method is evaluated on the RSTDT and PDTB corpus, and
compared to a state-of-the-art semi-supervised discourse relation classifica-
tion method [9].

2 Related Work

Most of the recent work on discourse relation classification have been based on
either fully-supervised or unsupervised methods.

The first unsupervised approach to discourse relation classification was pre-
sented in [10]. In this work, the authors were the first to employ word pair
features calculated from the two arguments of a relation. These features have
the promise of capturing implicit relations, i.e. discourse relations not signaled
by a discourse cue, such as but, and or thus. For instance, the presence of a word
pair (flashy, low-key) indicates a Contrast relation.

Supervised methods have been employed to train discourse relation classifiers
on the RSTDT. In [11], as a part of the sentence-level discourse sparser ‘SPADE’,
a probabilistic model employing lexical and syntactic features is used for training
a discourse relation classifier. In [12], for the same task, relation classification
is done using a Support Vector Machines [13]-based classifier trained on a rich
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set of shallow lexical and syntactic features. In recent work [14], another RST
parser based on a chart-parsing approach is presented. Here, discourse relation
classification is performed using a neural network trained on syntactic and lexical
features, including lexical heads.

Supervised methods have also been employed to learn discourse relation clas-
sifiers on the PDTB. In [15], an explicit discourse relation classifier is presented.
Explicit relations are discourse relations signaled by a discourse cue, and the
authors demonstrate that these can be classified accurately, with an F-score of
0.93. However, implicit discourse relations have been shown to be much more dif-
ficult to classify. In [16], implicit discourse relation classification on the PDTB is
studied. The authors employ features such as word pairs, verb classes, modality,
context, lexical features, and obtain a state-of-the-art accuracy of 0.446. In [17],
for the same task, the authors also employ word pairs, as well as dependency
paths, contextual information, and production rules in parse trees. They obtain
an accuracy of 0.402.

Semi-supervised learning methods have been employed for a variety of tasks
in NLP, such as named-entity recognition or text classification. In particular, [8]
have presented the Structural Learning theory, which is based on the prediction
of properties of the main classification task, using unlabeled data only. Their
algorithm has been shown to perform at least as well as co-training [18] for
several tasks. Structural Learning is conceptually similar to Multi-task learning
[19], where related problems are learnt at the same time as the main classification
problem, which enables inductive transfer and leads to a better model.

To the best of our knowledge, our previous work [9] corresponds to the first
semi-supervised discourse relation classification method. In that work, a method
based on the co-occurrence of features observed in unlabeled data was intro-
duced. The degree of co-occurrence between feature pairs is first measured on
a set of sentences extracted from Wikipedia1, using the χ2-measure [20]. Co-
occurrence information is then used to extend the feature vectors of a discourse
relation classifier, bringing additional information about features unseen during
training. The feature set contains word pairs computed between the arguments
of discourse relations, production rules from the parse trees, as well as lexical
heads. This co-occurrence-based method brings significant increase in classifica-
tion performance when training is done on small sets, containing few instances
of certain discourse relations.

In this paper, we employ a feature set similar to [9], but propose a different
semi-supervised learning method to tackle the discourse relation classification
task. First, whereas the co-occurrence-based method employs unlabeled data to
learn feature co-occurrences, the proposed method uses unlabeled data to solve
auxiliary classification problems. Second, the co-occurrence-based method en-
codes co-occurrence information into a large set of new features, which is then
appended to the original feature vectors. Because the size of the appended feature
set depends on the number of unseen features during training, for small training
sets, which correspond to a large number of unseen features, the process results

1 http://en.wikipedia.org
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in a considerable dimension increase, typically of ca. 10000. By contrast, in the
proposed method, the information learned from unlabeled data is encoded into
a compact set of new features, typically less than 100, and including these fea-
tures into the classification problem does not increase dimension considerably.
Nonetheless, because our experimental setting is similar, the proposed method
can be directly evaluated against the feature co-occurrence-based discourse re-
lation classification method introduced in [9].

3 Method

In this paper, we aim at learning a discourse relation classifier, given a set of
labeled instances T and a set of unlabeled instances L, where typically |L| >>
|T |. The main idea is to use the unlabeled instances to generate auxiliary tasks
that are useful for discovering important properties about the structure of the
main problem. If the auxiliary tasks are similar—or at least related—to the main
discourse relation classification task, then we will benefit from solving them. For
instance, consider the following Reason relation, holding between two discourse
units in square brackets.

Reason: [ Our research shows we sell more of our heavier issues ] [ because
readers believe they are getting more for what they pay for. ]

In discourse relation classification, it occurs often that a discourse relation can
be predicted by observing the word pairs of its arguments. For instance, trivially,
a word pair (∗, but) is usually the indication of a Contrast relation. In our
example, the word pair (show, because), which has been lemmatized to be made
more general, is a strong indicator of the Reason relation. Intuitively, a task
related to detecting the Reason relation will thus be the task of detecting the
(show, because) word pair, when observing other features of the instance. A
positive training instance of this new auxiliary task would be,

+(show, because): [ Our research we sell more of our heavier issues ] [
readers believe they are getting more for what they pay for.]

The original word pair has to be masked in order to make for an acceptable
training instance. A negative training instance for this auxiliary task would be
any instance not containing the word pair (show, because), such as,

−(show, because): [She has thrown extravagant soirees for crowds of people,]
[but prefers more intimate gatherings.]

This auxiliary task, which is related to the task of predicting the Reason re-
lation, can be learned using unlabeled data only. In Section 3.1, we detail the
Structural Learning algorithm, and show how the information learned from solv-
ing these auxiliary tasks can be included into the main classification problem.
Then, we present the features employed for this task in Section 3.2. Finally, we
describe the auxiliary problem creation step in Section 3.3.
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3.1 Structural Learning

In this section, we assume that we have at our disposition a training set consisting
of T labeled instances

{
(xt, yt)

T
t=1

}
, where the xt are feature vectors and yt the

class labels. The feature space has dimension d.
First, we solve a set of auxiliary classification problems pl for l ∈ [1, . . . , m],

using linear classifiers, and find for each pl the optimal weight vector ŵl such
that,

ŵl = argmin
w

⎛
⎝∑

j

L(w · xj , pl(xj)) + λ||w||2
⎞
⎠ . (1)

Here L is a loss function and λ a regularization coefficient.
Next, we stack the optimal weight vectors of each problem column-per-column,

and create a matrix W = [ŵ1 . . . ŵm]. In order to reduce the dimension of W , we
perform on this matrix a singular value decomposition (SVD). It is noteworthy
that whereas algorithms such as principal component analysis aim at reducing
the dimension of the feature space, performing a SVD on W is a dimension
reduction on the space of auxiliary classifiers, aimed at learning a compact rep-
resentation of it.

Since typically discourse relation classifiers employ several types of heteroge-
nous features, such as words, part-of-speech tags and word pairs, it is rea-
sonable to perform a localized dimension reduction for each type of feature.
Consequently, we perform a series of ‘block’ SVDs, for each type of feature em-
ployed. For each feature type fi, i ∈ [1, . . . , n], whose index in the feature space
starts at position si, and ends at position ei, we create a feature type-specific
structural parameter matrix θi so that,

Ui, Di, V
T
i = SVD(W[si:ei,:]) (2)

θi = UT
i[1:h,:] (3)

The number h is the number of structural features we wish to incorporate in our
problem.

The complete structural parameter matrix θ = [θ1 . . . θn] has dimension h×d,
and it encodes the structure learnt by the auxiliary tasks in a low-dimension
common space. We can now project each training and test feature vector of the
main task on θ, and obtain a set of h new structural features, which are appended
to their original feature vector. We obtain the training set,{([

xt

θxt

]
, yt

)T

t=1

}
(4)

Finally, we rescale the extended features. As observed in [21], we found nec-
essary to give relatively more weight to the structural features, which can be
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performed by rescaling them. This is done by finding a factor k ∈ R
+, k > 1 so

that,

T∑
t=1

||θxt|| = k

T∑
t=1

||xt||. (5)

This factor is found empirically, as the value that maximizes classification accu-
racy on a held-out dataset.

3.2 Features

We use three types of features, which have previously been employed successfully
in several works presented in Section 2, including our co-occurrence-based semi-
supervised method [9]: Word pairs, production rules from the parse tree, as well
as features encoding the lexico-syntactic context at the border between two units
of text [11]. Word pairs are lemmatized using the Wordnet-based lemmatizer of
NLTK [22].

Figure 1 shows the parse tree for a sentence composed of two discourse units,
which serve as arguments of a discourse relation we want to generate a feature
vector from. Lexical heads have been calculated using the projection rules of [23],
and annotated between brackets. Surrounded by dots is, for each argument, the
minimal set of sub-parse trees containing strictly all the words of the argument.

We first extract all possible lemmatized word-pairs from the two arguments,
such as (Mr., when), (decline, ask) or (comment, sale). Next, we extract from
left and right argument separately, all production rules from the sub-parse trees,
such as NP �→ NNP NNP, NNP �→ “Sherry” or TO �→ “to”.

Finally, we encode in our features three nodes of the parse tree, which capture
the local context at the connection point between the two arguments: The first
node, which we call Nw, is the highest ancestor of the first argument’s last word
w, and is such that Nw’s right-sibling is the ancestor of the second argument’s
first word. Nw’s right-sibling node is called Nr. Finally, we call Np the parent
of Nw and Nr. For each node, we encode in the feature vector its part-of-speech
(POS) and lexical head. For instance, in Figure 1, we have Nw = S(comment),
Nr = SBAR(when), and Np = VP(declined). In the PDTB, certain discourse
relations have disjoint arguments. In this case, as well as in the case where the
two arguments belong to different sentences, the nodes Nw, Nr, Np cannot be
defined, and their corresponding features are given the value zero.

3.3 Auxiliary Classification Problems

Following the intuition presented at the beginning of this section, we use as
auxiliary tasks the prediction of word pairs in unlabeled data, when observing all
other features. The creation of training data for the auxiliary task of predicting
the presence of word pair (w1, w2) is done as follows:

1. We filter out unlabeled instances containing the word pair (w1, w2). These
will serve as positive training examples for the auxiliary task.
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NP (Sherry)

S (declined)

VP (declined)

NNP NNP

declined

VBD (declined)

Mr. Sherry to

VP (comment)

comment when asked about the sales

TO VP

SBAR (when)

WHADVP (when)

WRB

S (asked)

VP (asked)

VBN PP (about)

IN NP (sales)
DT NNS

.

. (.)

Argument 1 Argument 2

VB

S (comment)

Fig. 1. Two arguments of a discourse relation, and the minimum set of subtrees that
contain them—lexical heads are indicated between brackets

2. The remaining unlabeled instances, i.e. those which do not contain the word
pair (w1, w2), will serve as negative training examples.

3. Since typically there are many more negative training examples than positive
ones, there is a risk that the classifier might label every new test instance as
belonging to the negative class. To prevent this issue, we cap the number of
negative training examples. We empirically found that using a 2 : 1 ratio of
negative to positive training instances gave the best results. Using a lower
ratio gave slightly worse results, while using higher ratios of negative training
data did not significantly change the performance, but increased the training
time of the auxiliary classifiers.

4. In positive and negative training instances, all word pair features are masked
(set to zero). Although we could choose to keep certain word pairs unmasked,
[8] recommend for optimal performance to mask (and predict) all features
that have a good correlation to the labels of the auxiliary tasks (the other
word pairs).

4 Experiments

In [8], it is shown that setting the number of structural features h between 20
and 100 does not change the results significantly. We select the intermediate
value h = 50, which is used in all the following experiments. The factor used to
rescale structural features is empirically set to five, which is consistent with the
results of [21].

We employ as our unlabeled data the set of 100, 000 unlabeled instances used
in [9], which consists of sentences randomly extracted from Wikipedia and seg-
mented into elementary discourse units automatically. The sentences have been
parsed using the Stanford parser [24], in order to extract syntactic information.
With 100, 000 unlabeled training instances, it occurs often that the auxiliary
classification task corresponding to the detection of a word pair will have very
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few positive training examples—typically around ten. To avoid incorporating
into the structural features auxiliary problems whose classification performance
is poor, we filter out auxiliary problems with less than 30 positive training in-
stances. This finally results in solving 1358 auxiliary problems for RSTDT rela-
tion classification, and 1542 for PDTB.

We follow the common practice in discourse research for partitioning the dis-
course corpora into training and test set. For the RST classifier, the dedicated
training and test sets of the RSTDT are employed. For the PDTB classifier, we
conform to the guidelines of [25, 5]: The portion of the corpus corresponding to
sections 2–21 of the WSJ is used for training the classifier, while the portion
corresponding to WSJ section 23 is used for testing. This setting is identical to
the one employed in [9].

For RSTDT, we extract 25078 training vectors and 1633 test vectors. For
PDTB we extract 49748 training vectors and 1688 test vectors. There are 41
classes (relation types) in the RSTDT relation classification task, and 29 classes
in the PDTB task. For the PDTB, we select level-two relations, because they
have better expressivity and are not too fine-grained. For our classifiers, we use
the multi-class logistic regression (maximum entropy model) implemented in the
Classias toolkit [27]. Regularization parameters are set to their default value of
one and are fixed throughout the experiments described in the paper.

In the following experiments, we evaluate the performance of the proposed
method against two baselines. The first is the ‘random’ baseline, in which
classification decisions are made randomly. The second, noted no SSL in
Figures 2 and 3, is the classifier trained with the same feature set, on the same
training set as the proposed method, but for which no semi-supervised learning
algorithm has been applied. As in [9], we employ macro-average F-score as the
proposed evaluation metric. Indeed, since training sets can be imbalanced due
to the prevalence of certain well-detected relations, such as Elaboration or
Attribution in the case of the RSTDT, the micro-average F-score does not
reflect accurately the classifier’s performance on all classes. The macro-average
F-score, which is the arithmetic mean of the F-score computed for each class,
considers each class with equal importance.

We first measure the performance on the RSTDT when 100 to 10000 training
instances are used. For each training set size, all classifiers are trained with the
same instances. Results are indicated in Figure 2. We observe that the proposed
method improves accuracy compared to the no SSL baseline only for 100 training
instances. For both the proposed method and the co-occurrence-based method
[9], above 2000 training instances, accuracy scores are as high as the no SSL
baseline. However, we see a clear performance improvement over no SSL in terms
of macro-average F-score. For 100 training instances, this baseline classifier has a
macro-average F-score of 0.086. The classifier trained with the proposed method
reaches a macro-average F-score of 0.180 (+108.34% score increase over the no
SSL baseline), while the co-occurrence-based classifier obtains an F-score of 0.189
(+119% increase over no SSL). For 1000 training instances, the no SSL baseline
has an F-score of 0.127, while the classifier trained with the proposed method
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reaches an F-score of 0.171 (+34.38% over no SSL). The co-occurrence-based
classifier obtains a slightly higher F-score of 0.191 (+49.18% over no SSL). From
1000 to 9000 training instances, we observe in each case an F-score increase over
no SSL, although the relative performance gain diminishes gradually. Finally,
when 10000 training instances are used, both semi-supervised methods obtain
the same F-score as no SSL, at around 0.244. As in the case of co-occurrence-
based discourse relation classification [9], we observe that the proposed method
is most efficient when small training sets are employed, whereas there is no
performance gain when using larger sets of 10000 training instances.

(a) Accuracy (b) Macro-average F-score

Fig. 2. Scores on the RSTDT, as a function of the number of training instances used

Similarly, we measure the performance of the proposed method on the PDTB.
The results of this experiment are indicated in Figure 3. We observe a similar
trend as in the case of the RSTDT experiments. For 100 training instances, the
no SSL baseline has an extremely low accuracy of 0.019 and a macro-average F-
score of 0.016. However, the classifier trained with the proposed method reaches
a respective accuracy and F-score of 0.157 (+726.84% score change over the no
SSL baseline) and 0.103 (+545.91% over no SSL). These scores are slightly higher
than the co-occurrence-based classifier, which reaches respective accuracy and
F-score of 0.139 (+630% over no SSL) and 0.089 (+459.12% over no SSL). When
1000 training instances are employed, using semi-supervised methods results in
a clear improvement both in accuracy and F-score. The no SSL baseline obtains
an accuracy of 0.134 and F-score of 0.087, while the proposed method reaches
a respective accuracy and F-score of 0.189 (+40.75% over no SSL) and 0.137
(+56.91% over no SSL). In this case, the co-occurrence-based method obtains
a respective accuracy and F-score of 0.199 (+48.73% over no SSL) and 0.134
(+52.69% over no SSL). On this dataset, the proposed method outperforms the
co-occurrence-based method when more than 2000 training instances are used.
Notably, for 9000 training instances, whereas no SSL’s macro-average F-score
is 0.194, the proposed method reaches an F-score of 0.247 (+27.07% over no
SSL), versus 0.202 (+3.96% over no SSL) for the co-occurrence-based classifier.
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These scores are consistent with the results of Figure 2, with the exception that,
for PDTB relation classification, the proposed method did improve the macro-
average F-score when large training sets were used.

(a) Accuracy (b) Macro-average F-score

Fig. 3. Scores on the PDTB, as a function of the number of training instances used

An interesting property of a semi-supervised method is how its performance
will be affected by the amount of unlabeled training data employed. After select-
ing a training set of 100 instances, we evaluate the performance of the proposed
method when a variable amount of unlabeled training data is used. The results
are shown in Figure 4. A first observation is that, when only 10, 100 or 1000
unlabeled instances are available, there is not enough data to train the auxil-
iary classifiers, and consequently the proposed method cannot be applied. On
the other hand, the co-occurrence-based method performs well even with small
amounts of unlabeled training data: With 10 unlabeled instances, this method
increases the F-score for RSTDT by 40.2%, and by 227% for PDTB. For 10000
unlabeled training instances, it becomes possible to train the auxiliary classifiers.
In this case, the proposed method scores lower than the feature co-occurrence-
based method, with an F-score increase on the RSTDT of 110.9% for the co-
occurrence-based method, vs. 49.5% for the proposed method. For the PDTB
the F-score increase is 472.3% for the co-occurrence-based method, against 378%
for the proposed method. Finally, when using the full set of 100, 000 unlabeled
training instances, the performance of the proposed method increases dramat-
ically, and becomes very close to the performance of the co-occurrence-based
method. For RSTDT relation classification, we observe an F-score increase of
119.0% for the co-occurrence-based method, against 108.6% for the proposed
method. However, for PDTB relation classification, the proposed method out-
performs the co-occurrence-based method, with an F-score increase of 547.8%
for the proposed method, against 459.7% for the co-occurrence-based method.
These values confirm that, provided that we have a sufficient amount of unla-
beled training data at our disposition, the proposed method performs at least
as well as the co-occurrence-based discourse relation classification method [9].
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(a) Performance on the RSTDT (b) Performance on the PDTB

Fig. 4. Effect of unlabeled data on the proposed method, for 100 training instances

Finally, we discuss some qualitative differences between the proposed method
and the co-occurrence-based method [9]. First, whereas the co-occurrence-based
method performs a large increase in the size of the feature space—dimension
increase of ca. 15000 for a training set of 100 instances—the proposed method
only adds a small, fixed number of features—set to 50 in our experiments. Then,
the proposed method was shown to require more unlabeled data than the co-
occurrence-based method, in order to train the auxiliary classification problems.
Indeed, with 100 or 1000 unlabeled instances, most word pairs rarely occur in
unlabeled data, which makes it impossible to train accurate auxiliary classifiers.
Last, whereas the feature co-occurrence based method is independent from any
classification problem or machine learning algorithm, the proposed method re-
quires some human supervision in order to define relevant auxiliary tasks, and it
requires employing linear classifiers to solve the auxiliary classification problems.

5 Conclusion

We presented a semi-supervised discourse relation classification method based on
Structural Learning [8]. The method was evaluated on the RSTDT and PDTB,
where it was shown to bring significant performance increase in accuracy and
F-score, especially in the cases where small training sets of ca. 1000 instances
were used. This is an interesting outlook for creating discourse relation classifiers
on domains with little available training data.

The proposed method was compared to a feature co-occurrence-based method
[9], and it was shown to perform comparably given the same amount of unlabeled
data. Although the relative performance improvement over baseline classifiers
is important, classification accuracy and macro-average F-score are rather low
when large training sets are employed. We hypothesize that this is due to the
poor detection of implicit relations, where the current state-of-the-art F-score is
still modest. However, ongoing research has been focusing on finding appropriate
features for this task [28,29], which has the promise of enabling us to improve
classification performance.
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Abstract. This paper presents a new analysis of the discourse functions
of Japanese particles wa and ga. Such functions are integrated with infor-
mation structures into the constraint-based grammar under the HPSG
framework. We examine the distribution of these particles and demon-
strate how the thematic-rhematic dichotomy of the constituent can be
determined by the informational status of one or more of its daughter
constituents through various linguistic constraints. We show that the
relation between syntactic constituency and information structure of a
sentence is not a one-to-one mapping as a purely syntax-based anal-
ysis assumes, and then propose the multi-dimensional grammar which
expresses mutual constraints on the thematic-rhematic interpretation,
syntax and phonology.

1 Introduction

Information Structure (IS) plays a crucial role for ensuring coherence in dis-
course. In many languages, intonation is the primary means of conveying IS.
The mini-dialogue in (1), where bold face corresponds to the so called B-accent
(L+H∗) and small capitals indicate the word bearing the so called A-accent
(H∗), illustrates the connection between IS and accent in English.

(1) Speaker Q: So tell me about the people in the White House.
Anything I should know?

Speaker A1 : Yes. [θ The president] [ρ hates the Delft china set].
Don’t use it. (Engdahl and Vallduv́ı [1]:5, ex.3, Modified.)

The information conveyed by a sentence is split into new information rheme (ρ
focus) and information already present in the discourse theme (θ, topic).

It has been observed that languages adopt different means to encode their IS:
English employs prosody, Catalan relies on word order, and Greek uses both. In
addition to those means, Japanese utilizes morphology.

(2) Speaker A2 : [θ Daitooryoo-wa]
president-θ

[ρ maisen-no
Meissen-gen

syokki-ga okonomi desu].
china.set-nom like

‘The president likes the Meissen china set.’

In (2) theme and rheme are identified by the particles, wa and ga, respectively.

A. Gelbukh (Ed.): CICLing 2011, Part I, LNCS 6608, pp. 353–367, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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However, the distribution of these particles does not correspond to the
thematic-rhematic dichotomy of sentences. For example, wa-marked constituents
can be construed as rheme if they bear new information, as in (3A).

(3) Speaker Q: What is the president eating?
Speaker A: [θ Daitooryoo-wa]

president-θ
[ρ chokoreeto-wa]

chocolate-ρ
meshiagatte
eating

imasu. . .
is

‘It is (at least) chocolates that the president is eating.’

When chokoreeto ‘chocolate’ is being focused, the phrase receives a high pitch
(either on chokoreeto or on wa) and is construed as rheme.

Another example comes from the domain of rheme. Let us consider (4) in
which chokoreeto is pitch-accented.

(4) Speaker Q: What is the president doing?
Speaker A: [θ Daitooryoo-wa]

president-θ
[ρ chokoreeto-wa

chocolate-ρ
meshiagatte
eating

imasu]. . .
is

‘It is (at least) eating chocolates that the president is doing.’

(4A) implies that the president are eating chocolates, and he may also be doing
something else, such as sending text messages. That is, chokoreeto-wa meshia-
gatte imasu ‘eating chocolates’ not just chokoreeto-wa carries a rheme interpre-
tation. Like English, a pitch accent serves to mark rheme for more than just the
accented word. The domain is extended beyond the constituent marked with wa.

As it can be seen in (3A) and (4A), there are two usages of the particle wa,
i.e. theme and rheme. Japanese is the language in which the order of sentence
constituents other than verbs is relatively free. However, a scrambled word order
is not possible when a sentence contains a wa-marked subject indicating theme
followed by a wa-marked object indicating rheme. Compare (3A) and (5A).

(5) Speaker A: #Chokoreeto-wa
chocolate-ρ

daitooryoo-wa
president-θ

meshiagatte
eating

imasu. . .
is

Analysis of these discourse functions of the particles is not only linguistically
interesting but also important for computational applications, for example, the
automatic identification of the coherence of a text and machine generation of
contextually-appropriate particles in Japanese. While wa and ga provide useful
materials in relation to the study of focus structure (Erteschik-Shir [2]) and
information packaging theory (Vallduv́ı [3]), the existing linguistic analyses are
mostly informal and not sufficiently detailed for computational applications.

In this paper, we attempt to remedy the situation by providing a new formal
analysis of the discourse functions of Japanese particles wa and ga. We argue that
the relation between the syntactic constituency and the information structure of
a sentence is not a one-to-one mapping as purely syntax-based analysis assumes.

The paper is organized as follows. Section 2 summarizes how theme and rheme
are identified in this work. Section 3 formalizes the constraints on Japanese
thematic-rhematic dichotomy based on the previous constraint-based approach
to English. Section 4 discusses some implications of our analysis and shows some
applications of the formalization. Section 5 concludes this paper.



Integrating Japanese Particles Function and Information Structure 355

2 Theme/Rheme Dichotomy and WA/GA-Marked Subject

Japanese is a language in which theme and rheme are identified by the use of
particles. In the case of subjects, these are either marked with wa or ga. In this
section, we first summarize how theme and rheme are identified in the context
of this paper since their definitions vary considerably among linguists.

Erteschik-Shir [2] studies the interface between discourse structure and syn-
tax defining a grammatical level of focus structure in which theme and rheme
(described as topic and focus , respectively) constituents are marked. Theme is
distinguished from rheme by Reinhart’s [4] theme test.

(6) Speaker Q: Tell me about x
Speaker A: ... x ... (X = TOPIC) (Erteschik-Shir [2]:14, ex.11)

Erteschik-Shir defines theme as the subject of the predication. Thus, in (7A) the
president is the theme, and the predicate represents the assertion made about
the theme.

(7) Speaker Q: Tell me about the president.

Speaker A: [θ The president] is eating chocolates.
(As for the president, he is eating chocolates.)

The part ‘president’ bears a theme-associated B-accent. Theme is old informa-
tion in the sense that it has already been introduced in discourse.

Rheme is determined by using question-answer pairs to identify the con-
stituent which answers a wh-question.

(8) a. Speaker Q: Who is eating chocolates?
Speaker A: [ρ The president] is eating chocolates.

(It is the president who is eating chocolates.)

b. Speaker Q: What is the president eating?
Speaker A: The president is eating [ρ chocolates].

(It is chocolates that the president is eating.)

c. Speaker Q: What is the president doing?
Speaker A: The president [ρ is eating chocolates].

(It is eating chocolates that the president is doing.)

In (8a) and (8b), the part ‘president’ and ‘chocolates’ receive a high pitch (H∗).
In (8c), the nuclear stress (the A-accent) appears on the right hand periphery
of the clause. A pitch accent can serve to mark rheme, i.e. new information (of
more than just the accented word).1

1 Vallduv́ı [3] proposes a three-way partition of information structure of a sentence.
The information conveyed by a sentence is split into new information focus (rheme)
and information already present in the discourse ground . The latter is further divided
into link (topic, theme) and tail . In (8a) the part ‘ate chocolates’ is the tail, but we
ignore this information throughout this paper.
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Based on the definitions and the diagnostics shown above, let us examine the
interpretation of wa-marked and ga-marked subjects in Japanese.

As can be seen in (9A), the wa-marked subject has a theme interpretation.

(9) Speaker Q: Tell me about the president.
Speaker A: [θ Daitooryoo-wa]

president-θ
chokoreeto-o
chocolate-acc

meshiagatte
eating

imasu.
is

‘As for the president, he is eating chocolates.’

Theme marking differs from English in that daitooryoo-wa ‘the president’ goes
unstressed. Wa-marked constituents can also carry a rheme interpretation, as in
(10A), if the phrase receives a high pitch (either on daitooryoo or on wa).

(10) Speaker Q: Who is eating chocolates?
Speaker A: [ρ Daitooryoo-wa]

president-ρ
chokoleeto-o
chocolate-acc

meshiagatte
eating

imasu. . .
is

‘It is (at least) the president who is eating chocolates.’

Ga-marked constituents are construed as rheme if they bear new information.

(11) Speaker Q: Who is eating chocolates?
Speaker A: [ρ Daitooryoo-ga]

president
chokoleeto-o
chocolate-acc

meshiagatte
eating

imasu.
is

‘It is (only) the president who is eating chocolates.’

The part ‘daitooryoo’ is marked by the boundary tone (H%), which marks rheme
and adds its own semantic contribution.

There is a difference between wa-marked and ga-marked rheme. In (10A) and
(11A), ‘daitooryoo’ belongs to a set specified in the discourse, i.e. the people
in the White House. In (11A), he has to be the only member of the set who is
eating chocolates, if the First Lady is also eating chocolates then the statement
becomes false. In (10A), on the other hand, he is not required to be the only
member of the set. In other words, members who are eating chocolates have to
be listed exhaustively in (11A) but non-exhaustively in (10A).

Here we do not go into detail about these discourse (and/or semantic) func-
tions, but we do make a distinction between wa-marked and ga-marked rheme
in Section 3, and mention the properties of the particle ga by referring to those
functions in Section 4.

3 Theme/Rheme WA and Japanese Information Structure

The constraint-based grammar formalism is well-suited for representing IS which
interacts with syntax and phonology in principled ways. In this section, we con-
sider how IS, which is a crucial factor for thematic-rhematic dichotomy, is for-
mally represented in Japanese multi-dimensional grammar under the computa-
tionally applicable framework of HPSG (Sag et al. [5]) and its extension (Engdahl
and Vallduv́ı [1]).



Integrating Japanese Particles Function and Information Structure 357

IS is represented as the info(rmation)-st(ructure) feature within lexical
and the phrasal signs’ value of con(te)x(t) feature as following:2

(12)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

phon

[
...

accent accent

]

synsem

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

syn

[
head head
val [ ... ]

]
sem [ ... ]
arg-st 〈 ... 〉

conx

⎡
⎣ ...

info-st

[
theme [ ... ]
rheme { ... }

]⎤⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

dtrs [ ... ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

As in (12), phon(ology) and conx are enriched with accent and info-st,
respectively. The feature info-st directly represents the theme and rheme
dichotomy of a sentence.

Let us look at first how pitch accent type and informational status constrain
each other by referring to the examples in Section 1. The skeletal lexical signs of
the part {daitooryoo-wa}, {chokoreeto-wa}, {okonomi desu, meshiagatte imasu},
and {syokki-ga,} are posited as (13a), (13b), (13c), and (13d), respectively.

(13) a.
1

[
phon [accent U ]
head [pform wa ]
info-st [theme 1 ]

]
b.

1

[
phon [accent A ]
head [pform wa]
info-st [rheme { 1 }]

]

c.
1

[
phon [accent U ]
info-st [ ]

]
d.

1

[
phon [accent A ]
info-st [rheme { 1 }]

]

(13a)–(13d) show that the value of accent and the value of info-st constrain
each other. This is expressed by means of structure-sharing between info-st
and the sign itself. (13a) and (13b) introduce U (nmarked) and A(-accented) wa-
marking words, which are construed as theme and rheme, respectively. (13c) says
about itself that the value of info-st is not specified if the value of accent is
unmarked without any morphological marking.

It is worth noting that (13d) shows the presence of A-accent is sufficient to
identify the informational contribution of the lexical sign as rheme, and vice
versa; the constraint in (13b) seems redundant. However, we have observed wa-
marked (i.e. [head|pform wa]) rheme and ga-marked (i.e. [head|case nom])
rheme are different in the discourse (and/or semantic) functions which we left
in Section 2 for future work. Here we simply maintain this distinction without
enriching conx (and/or sem(antics)).

Thus, IS in Japanese, as in Catalan-type languages, depends crucially on
morpho-syntactic devices such as wa-marking.3 Furthermore, as in English-type
2 The relevant units of linguistic information are called signs. The signs are often

abbreviated by omitting features and type designations that can be readily inferred.
3 Regarding (13a) and (13b), we do not describe either such phonological aspects or

a morphological process which removes the case particles ga and o obligatorily and
ni optionally, while keeping other case particles and postpositions intact.
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languages, the prosodic phenomenon of sentence accent is also essential. (13a)–
(13d) show that conx|info-st value, i.e. discourse is not only an independent
level of linguistic information but also interacts with the other grammatical
levels, i.e. phon and syn(tax), simultaneously.

A Japanese sentence is restricted to at most one wa-marked theme phrase,
which, if present, appears in sentence-initial position; however, multiple elements
within the sentence can carry a rheme interpretation by receiving a high pitch
in situ even if they are marked with wa.4 Following what is commonly accepted
in the linguistic literature on the wa-marking topicalization (e.g. Hoji [6], Saito
[7]), we assume that wa-marked elements for rheme and theme are licensed by
the following two lexical rules, rheme-substitution and theme-addition.

(14) a. Rheme-substitution Lexical Rule[
head verb
arg-st 〈 a ⊕ 1 ⊕ b 〉

]

→
⎡
⎣head verb

arg-st

〈
a ⊕ 2 pp

[
accent A
pform wa
info-st [rheme { 2 }]

]
⊕ b

〉⎤⎦
where a and b are possibly empty lists of synsem objects, 1 and 2

are identical other than their accent, pform and info-st values, and ⊕
stands for list concatenation.

b. Theme-addition Lexical Rule⎡
⎣head

[
verb
vform assert

]
info-st [ ]

⎤
⎦

→

⎡
⎢⎢⎢⎢⎣
head

[
verb
vform assert

]

val

[
topic

〈
1 pp

[
accent U
head [pform wa]
info-st [theme 1 ]

]〉]

info-st [theme 1 ]

⎤
⎥⎥⎥⎥⎦

In (14a), a wa-marked rheme phrase is introduced into the arg(ument)-
st(ructure) of the verb by substituting one of its argument(s). In (14b), on
the other hand, the topic feature is introduced as the value of val(ence) which
describes the categories of the constituent. The value of topic is a singleton list
in order to subcategorize for at most one wa-marked theme phrase.

It is worth noting that a theme phrase is prohibited from appearing both in a
conditional clause and in a relative clause, whereas a rheme phrase is not. The
theme phrase requires modality at the sentential ending. These characteristics

4 This also matches the characterization of link (theme) and focus (rheme), since under
Vallduv́ı’s system [3] the Information Structure of a sentence is restricted to at most
one link but any number of focus and tail elements, and moreover the property of
theme is consistent with his original conception of link as exclusively sentence-initial.
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can be straightforwardly explained by assuming that the specific head (i.e.
[v(erb)form assert(ive)]) has a different valence specification for topic.

In addition to lexical signs there are phrasal signs which result from combining
signs according to the grammar rules. The phrasal signs for verb phrases and
sentences are licensed by the following two rules, respectively.

(15) a. Head-Subject-Complement Rule[
phrase
comps 〈 〉

]
→ 1 ... n H

[
word
comps 〈 1 , ..., n 〉

]
A phrase can consist of a lexical head preceded by all of its complements.

b. Head-Topic Rule (to be revised)[
phrase
topic 〈 〉

]
→ 1 H

[
phrase
topic 〈 1 〉

]
A phrase can consist of a phrasal head preceded by its topic.

These grammar rules are well-formedness conditions on possible phrases of which
d(augh)t(e)rs represent the immediate constituent structure. (15b) ensures
that a phrase subcategorized as topic appears in a sentence-initial position.

There are additional constraints specifying how info-st of a phrase is con-
strained by info-st of one or more of its daughters.

(16) info-st Instantiation Principle (in Japanese)
Either (i) if a daughter’s info-st is instantiated, then the mother inher-
its this instantiation (for narrow rheme),

(Engdahl and Vallduv́ı [1]:12, ex.15, Slightly modified.)
or (ii) if the non-agentive highest ranking argument’s rheme is instan-
tiated, then the rheme of the mother is the sign itself (for wide rheme).

(Chung et.al. [8]:397, ex.37, Slightly modified.)

Phrasal signs must satisfy the info-st Instantiation Principle (IIP).
Now we examine how these constraints predict the info-st value of the pre-

vious examples, which are repeated below with slight modification.

(17) Speaker Q: Who is eating chocolates? (=(10Q))

Speaker A1 : [ρ Daitooryoo-wa]
president-ρ

chokoleeto-o
chocolate-acc

meshiagatte
eating

imasu.
is

‘It is (at least) the president who is eating chocolates.’ (=(10A))

Speaker A2 : [ρ Daitooryoo-ga]
president-nom

chokoleeto-o
chocolate-acc

meshiagatte
eating

imasu.
is

‘It is (only) the president who is eating chocolates.’ (=(11A))

(18) Speaker Q1 : What is the president eating? (=(3Q))

Speaker Q2 : What is the president doing? (=(4Q))
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Speaker A: [θDaitooryoo-wa]
president-θ

[ρ2 [ρ1 chokoreeto-wa]
chocolate-ρ

meshiagatte
eating

imasu].
is

ρ1 : ‘It is (at least) chocolates that the president is eating.’ (=(3A))

ρ2 : ‘It is (at least) eating chocolates that the president is doing.’ (=(4A))

The lexical rules, rheme-substitution and theme-addition, in (14a) and (14b)
operate on the verb meshiagatte imasu ‘eat’ in (19) give rise to corresponding
verbs in (20a) and (21) which are responsible for (17A1) and (18A), respectively.

(19)
[
head verb
arg-st 〈 1 np[nom], 2 np[acc] 〉
info-st [ ]

]

(20) a.
(19) →

⎡
⎣head verb

arg-st

〈
1 pp

[
accent A
pform wa
info-st [rheme { 1 }]

]
, 2 np[acc]

〉⎤⎦
b.

(19) →
⎡
⎣head verb

arg-st

〈
1 np[nom], 2 pp

[
accent A
pform wa
info-st [rheme { 2 }]

]〉⎤⎦
(21)

(20b) →

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

head verb

val

[
topic

〈
3 pp

[
accent U
head [pform wa]
info-st [theme 3 ]

]〉]

arg-st

〈
1 np[nom], 2 pp

[
accent A
pform wa
info-st [rheme { 2 }]

]〉

info-st [theme 3 ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The signs and the rules described in (12)-(15) and (20a) lead to the following
simplified representation of (17:A1) (and (17:A2)), in which values of the dtrs
attribute are presented in the constituent tree notation whose arcs are labelled
h(ead-dtr), c(omp-dtrs) or t(opic-dtr), and the head feature is omitted.

(22)
s

[
comps 〈 〉
info-st [rheme { 1 }]

]
�����������

c1

1 pp
(np)

⎡
⎢⎣
accent A
pform wa
(case nom)
info-st [rheme { 1 }]

⎤
⎥⎦

daitooryoo-wa(-ga)

�
�
c2

2 np

[
accent U
case acc
info-st [ ]

]

chokoreeto-wo

�����������
h

v

⎡
⎢⎣
accent U
comps 〈 1 , 2 〉
arg-st 〈 1 , 2 〉
info-st [ ]

⎤
⎥⎦

meshiagatte imasu

Since we assume that in topic-prominent languages like Japanese and Korean, the
subject is the highest ranking argument on the arg-st list, HPSG’s Argument
Realization Principle (ARP) requires only a minor revision as shown in (23).
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(23) Argument Realization Principle (in Japanese)
The elements on the arg-st list is realized as comps.

The verbs in (19)-(21) have the realization comps〈 1 , 2 〉 and the appropriate
elements referred in particular rules in (15) are canceled from the relevant valence
specifications of the head daughter (in head-complement phrases, in this case).

In (22), pp daitooryoo-wa is focused not only phonologically (A-accent)
but also morphologically (wa-marking). This is sufficient to identify the informa-
tional contribution of such an element as rheme. Consequently (16i) is available
within IIP and then the rheme value 1 is inherited by the mother constituent.

IIP also addresses the contextual ambiguity in (18A). This sentence, with an
A-accent on the wa-marked object, can be interpreted either with narrow rheme
(ρ1) on the object postposition phrase or with wide rheme (ρ2) on the whole
verb phrase depending on the context in (18Q1) and (18Q2), respectively. The
tree (24) shows how the value of info-st of the sentence follows from IIP.

(24)

s

⎡
⎢⎣
topic 〈 〉
comps 〈 1 〉
info-st

[
theme 3

rheme ρ1{ 2 } ∨ ρ2 { 4 }
]
⎤
⎥⎦

��������
t

3 pp

[
accent U
pform wa
info-st [theme 3 ]

]

Daitooryoo-wa

���������
h

4 vp

⎡
⎢⎣
topic 〈 3 〉
comps 〈 1 〉
info-st

[
theme 3

rheme { 2 } ∨ { 4 }
]
⎤
⎥⎦

��������
c

2 pp

[
accent A
pform wa
info-st [rheme { 2 }]

]

chokoreeto-wa

������
h

v

⎡
⎢⎢⎢⎣
accent U
topic 〈 3 〉
comps 〈 1 , 2 〉
arg-st 〈 1 , 2 〉
info-st [theme 3 ]

⎤
⎥⎥⎥⎦

meshiagatte imasu

Since the rheme value of pp chokoreeto-wa is instantiated, two disjunctive
options are available within IIP. (16i) requires the mother, i.e. vp to inherit the
info-st value of its daughter, i.e. [rheme 2 ]. (16ii) allows that rheme value
of the mother is 4 vp itself, since the non-agentive highest ranking argument’s
rheme is instantiated, and therefore the value is 4 . Consequently, either 2

(ρ1) or 4 (ρ2) propagates to the info-st value of its mother, i.e. s by (16i).
2 pp is canceled from the comps, other valence specifications are passed up

from the head daughter to its mother, and then the topic is discharged by 3 pp.
It is worth noting that the comps list remains unsaturated. This is because

the additional theme phrase, i.e. ‘daitooryoo-wa’ does not cancel off the subject,
i.e. 1 . We think this is a correct prediction since theme-addition sentences allow
a resumptive pronoun which may cause cancellation whereas rheme-substitution



362 A. Ohtani

sentences do not.5 The relation between a theme element and an unrealized
element is a matter of context. We do not go into enough detail about such
predictions to require the introduction of lexical rules for wa-marked elements.

In this section, we have represented the constraint-based formalization of the
Japanese IS system by following the thematic-rhematic dichotomy discussed in
the previous section. To capture the functions of the particles, in particular wa
which is instantiated as not only theme but also rheme, we introduced the new
lexical rules and grammar rules for Japanese while making a minor revision to
the HPSG constraints that play a role in English system.

4 Rheme GA Projection and Obligatory Interpretation

In this section, we discuss the implications of our analysis and show more ap-
plications of the formalization of Japanese IS by referring to the functions of
the particle ga. The nominative case particle ga is often associated with rheme.
When a sentence with a ga-marked subject is uttered out-of-the-blue, the whole
sentence bears new information as (25A1).

(25) Speaker Q: What happened?
Speaker A1 : [ρ Daitooryoo-ga

president-nom
chokoreeto-o
chocolate-acc

kai mashita].
bought

‘The president bought chocolates.’
Speaker A2 : #[ρ Daitooryoo-ga chokoreeto-o kai mashita].

‘#[ρ The president bought chocolates].’

IIP constrains the value of rheme of a sentence if its complement is instantiated.
However, the wide rheme on the whole sentence (ρ) in (25A1) is the case that no
complement’s rheme is instantiated, and therefore IIP does not constrain the
info-st value of the sentence.

It is worth noting that no set from which ‘daitooryoo’ is picked out is pre-
supposed in (25A1). This is different from the rheme we have determined and
formalized in the previous section. Thus, we distinguish such an interpretation
from the rheme constrained by IIP, and then suppose that the all-rheme read-
ing in (25A1) is licensed by Chafe’s definition [9]: ‘every utterance contains new
information.’ When a sentence does not contain any parts which make an infor-
mational contribution, it receives an all-rheme reading.

Selkirk [10] claims that an A-accent on the external argument in English
cannot project the rheme value up to the mother, as can be seen in (25A2).
Japanese also shows the same sensitivity and this is confirmed by the suitability
or unsuitability of the answer to a wh-question in (25Q).

(26) Speaker A3 : #[ρ Daitooryoo-ga
president-nom

hashiri mashita].
ran

‘#[ρ The president ran].’

5 For a more detailed discussion of these sentences, see Hoji [6].
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Speaker A4 : [ρ Daitooryoo-ga
president-nom

nakunari mashita].
died

‘[ρ The president died].’

The rheme of the pitch-accented subject of the transitive verb in (25A2) and
unergative verb in (26A3) cannot be projected up, whereas that of the unac-
cusative verb in (26A4) can, and then the sentence includes an all-rheme reading.
These readings are predicted by (16ii), i.e. one of the disjunctive options of IIP.

However, unlike English, Japanese prohibits rheme on an oblique argument
from being projected up to its mother phrase. As can be seen in (27A1) and
(27A2), it is only when the object chokoreeto-o receives a high pitch that the
vp (or s) can receive the wide rheme reading.

(27) Speaker Q: What did the president do?
Speaker A1 :# Daitooryoo-wa

president-θ
[ρ Maria-ni

Maria-dat
chokoreeto-o
chocolate-acc

age mashita].
gave

‘The president [ρ gave chocolates to Maria].’
Speaker A2 : Daitooryoo-wa

president-θ
[ρ Maria-ni

Maria-dat
chokoreeto-o
chokolate-acc

age mashita].
gave

‘# The president [ρ gave chocolates to Maria].’

(27A1) cannot be a felicitous reply to a vp-rheme question in (27Q). Even in
scrambled examples in (28), the felicity of (27A1) and (27A2) holds.

(28) Speaker A1
′:#Daitooryoo-wa [ρ chokoreeto-o Maria-ni age mashita].

Speaker A2
′: Daitooryoo-wa [ρ chokoreeto-o Maria-ni age mashita].

This is rather expected, considering the cross-linguistic properties of the lan-
guage. Chung et.al [8] claim that the only difference in IIP between Korean and
English is that the non-agentive ranking argument that allows wide rheme pro-
jection in (16ii) is the highest in Korean whereas the lowest in English. As is well
known, Korean and Japanese have almost identical grammar systems. Thus, the
present formalization requires only a minor revision to the English IIP.

What is interesting is that, unlike English, the sentence-initial ga-marked
phrase of an individual-level predicate as in (29A1) and the so-called multiple
nominative construction (MNC) as in (29A2) in Japanese (and Korean) can only
be construed as rheme without any pitch accent (e.g. Kuroda [11], Kuno [12]).

(29) Speaker A1 : [ρ Hisho-ga
secretary-nom

] yuunoo
efficient

desu.
is

‘It is (only) the secretary who is efficient.’
Speaker A2 : [ρ Daitooryoo-ga

president-nom
] hisyo-ga
secretary-nom

yuunoo
efficient

desu.
is

‘It is (only) the president whose secretary is efficient.’

Various subject-sensitive phenomena such as honorification, binding, control,
and so on indicate that the immedicate preverbal nominative np carries the
subject properties whereas the initial nominative np does not.
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Extensive past study reveals that the sentence-initial ga-marked phrase is the
realization of rheme. Kuno [12] distinguishes two usages of ga, which are referred
to as descriptive as in (25A1) and exhaustive listing as in (29A1) and (29A2).
The evidence that such a phrase as in (29A2) is solely rheme comes from several
tests. For example, only the first ga-marked phrase can be wh-questioned as in
(30Q1) while the second one cannot as shown in (30Q2).

(30) Speaker Q1 : Dare-ga
who-nom

hisyo-ga
secretary-nom

yuunoo
efficient

desu
is

ka?
q

‘(lit.) Who is it whose secretary is efficient?’
Speaker Q2 : *Daitooryoo-ga

president-nom
dare-ga
who-nom

yuunoo
efficient

desu
is

ka?
q

We posit that the particle ga has three lexical signs; in addition to the nominative
case marker (i.e. [case nom]) described in Section 3 and repeated here as in both
(31a) and (31b), it also serves as a rheme marker as in (31c).

(31) a.
1

[
accent U
case nom
info-st [ ]

]
b.

1

[
accent A
case nom
rheme 1

]
c.

1

[
accent A ∨ U
marking ga
rheme 1

]

(31a) specifies only the nominative value of the head. The preverbal ga-marked
phrase in (29A2) and the unmarked subject of all-rheme sentence in (25A1) are
constrained by it. Both (31b) and (31c) mark rheme, but the difference between
these signs is that only (31c) interacts with the new grammar rule in (32a) and
therefore the sentence-initial ga-marked phrase construed as rheme obligatorily.

(32) a. Head-Specifier Rule[
phrase
rheme { 1 }

]
→ 1

[
phrase
marker ga
rheme { 1 }

]
H

[
phrase
spr 〈 1 〉

]
b. Head-Topic Rule (final)[

phrase
topic 〈 〉

]
→ 1 H

[
phrase
topic 〈 1 〉
spr 〈 〉

]

Because of the introduction of the new valence feature sp(ecifie)r, Head-Topic
Rule is revised. (33) shows that theme is higher than rheme as (32b) constraints.

(33) Speaker A1 : [θ Kankoku-wa]
Korea-θ

[ρ daitooryoo-ga]
president-nom

hisyo-ga
secretary-nom

yuunoo desu.
efficient is

‘As for Korea, it is (only) the president whose secretary is efficient.’
Speaker A2 :#[ρ Kankoku-ga][θ daitooryoo-wa] hisyo-ga yuunoo desu.

Some of the important constraints in MNC are (i) the consecutive phrases need
to be in a certain semantic relation, and (ii) the specifier value of the non-initial
nominative requires to be unsaturated. Compare (29A2) with (34).

(34) Speaker A1 : [np Daitooryoo-no
president-gen

hisyo-ga ]
secretary-nom

yuunoo
efficient

desu.
is

‘It is (only) the president whose secretary is efficient.’
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Speaker A2 :*Daitooryoo-ga
president-nom

[np Kim-no
Kim-gen

hisyo-ga ]
secretary-nom

yuunoo
efficient

desu.
is

To account for these phenomena, we assume the following lexical rule.

(35) Rheme-addition Lexical Rule[
head individual-level-pred
comps 〈np[nom]〉

]
→

⎡
⎢⎢⎢⎢⎢⎣

head individual-level-pred
spr 〈 1 [marking ga ]i〉
comps

〈
n′
[
case nom
spr 〈 1 〉

]
j

〉

conx

[
restr R (i, j)
info-st [rheme 1 ]

]

⎤
⎥⎥⎥⎥⎥⎦

In (35), the value of restr(iction) is construed as placing semantic condition,
e.g. subordinate Relation between the entity of the first ga-marked element (i)
and the entity of the second nominative element (j ) that is subcategorized for
by the individual-level predicate. The second element differs from ordinary nps
in that it cannot be fully saturated. This incompleteness accounts for the im-
possibility of replacing the element with a fully saturated wh-word as in (30Q2).

Let us examine how the lexical signs posited in (31) and the sign derived by
(35) interact with the grammar-rules introduced in (32).

(36)
s

⎡
⎣topic 〈 〉
info-st

[
theme 3

rheme { 2 }
]⎤⎦

������ t

3 pp

[
accent U
theme 3

]

Kankoku-wa

������h

5 s

⎡
⎢⎣
topic 〈 3 pp〉
spr 〈 〉
info-st

[
theme 3

rheme { 2 }
]
⎤
⎥⎦

������� spr

2

[
accent U
marking ga
rheme { 2 }

]

daitooryoo-ga

�������h

4 vp

⎡
⎢⎣
topic 〈 3 pp〉
spr 〈 2 〉
comps 〈 〉
info-st [theme 3 ]

⎤
⎥⎦

������� c

1 n′
[
accent U
info-st [ ]

]

hisho-ga

������h

v

⎡
⎢⎢⎢⎣
accent U
topic 〈 3 pp〉
spr 〈 2 [marking ga ]〉
comps 〈 1 n′[spr 〈 2 〉]〉
info-st [theme 3 ]

⎤
⎥⎥⎥⎦

yuunoo desu

(36) represents the constituent tree notation of (33A1). (32b) ensures that the
theme phrase ‘Kankoku-wa’ subcategorized for by topic appears in the sentence-
initial position, which is higher than the rheme ‘daitooryoo-ga’. (32a) constrains
the phrase selected by spr to project the rheme value up to the mother, which
results in the obligatory rheme interpretation for the first ga-marked phrase.
Thus, Japanese employs base-generated gapless thematic-rhematic construction.
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5 Conclusions and Future Work

This paper addresses fundamental questions regarding the multi-dimensional
grammar for Japanese. IS is an integral part of the grammar, which interacts
in principled ways with syntax, morphology, and phonology. We have shown
that, unlike English but in a similar manner to Catalan, Japanese informational
interpretation has the following characteristics:

– The sentence is restricted to at most one morphologically wa-marked but
phonologically unmarked theme phrase, which, if present, appears in the
sentence-initial position.

– The obligatory rheme with marker ga and either with or without phonolog-
ical marking is also encoded by syntactically higher position only preceded
by the theme.

– The optional rheme interpretation of one or more phrases marked with either
wa or ga can be carried by receiving a high pitch in situ.

By assuming HPSG and its extension on IS, we have outlined a constraint-
based system which can explain that the distribution of the particles wa/ga
and dichotomy of theme/rheme is not in a one-to-one mapping relation, but the
relevant grammar modules of syntax and phonology are mutually constrained.

We did not go into detail on the difference between wa-marked and ga-marked
optional rhemes, and the relation among consequitive ga-marked phrases in
MNC. We have proposed a base-generated multiple occurrence mechanism for
them but will leave the semantic constraints for future work.
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Abstract. We apply a network model of lexical alignment, called Two-
Level Time-Aligned Network Series, to natural route direction dialogue
data. The model accounts for the structural similarity of interlocutors’
dialogue lexica. As classification criterion the directions are divided into
effective and ineffective ones. We found that effective direction dialogues
can be separated from ineffective ones with a hit ratio of 96% with re-
gard to the structure of the corresponding dialogue lexica. This value is
achieved when taking into account just nouns. This hit ratio decreases
slightly as soon as other parts of speech are also considered. Thus, this
paper provides a machine learning framework for telling apart effective
dialogues from insufficient ones. It also implements first steps in more
fine-grained alignment studies: we found a difference in the efficiency
contribution between (the interaction of) lemmata of different parts of
speech.

1 Motivation

According to the Interactive Alignment Model [1, IAM ], mental representations
of dialogue partners on all linguistic levels become more and more similar, i.e.
aligned, during their communicative interaction. Since the linguistic levels – pho-
netic, lexical, syntactic, semantic, situation model – are interconnected, align-
ment propagates through these levels. Via this spreading of alignment, global
alignment, that is, alignment of situation models, can be a result of local align-
ment on lower levels. Thus, the IAM provides an account to the ease and ef-
ficiency of dialogical communication beyond explicit negotiation. Part of the
efficiency of communication is the fulfillment of the dialogue task or purpose.
Consequently, we would expect that more aligned dialogues are more successful
– a proposition we make productive below.

The central mechanism that is acknowledged within the IAM is priming.1

Priming is typically understood and modeled as spreading activation in neural
networks. Two varieties of activation have to be distinguished:
1 But see [2] for an argument that priming cannot be the process that implements

alignment.
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1. A linguistic form /x/ activates its corresponding mental representation x
within the interlocutors. We simply call this activation.

2. A representation y, which is activated by a form /y/, also activates rep-
resentations which are related to y. The kind of relation depends on the
linguistic level of which y is an element. For example, if y is the phonologi-
cal representation of can, the phonologically similar representation pan may
be co-activated. Since the contents of many cans can be heated in pans, the
semantic representations of both forms also trigger each other. The mediated
activation of a representation x by a form /y/ is termed co-activation.

The linguistic forms produced and perceived in a dyad do not only prime their
corresponding representations, they also co-activate a set of related representa-
tions. A model that captures the structure of dialogue lexica of speakers is a
network model of interlinked nodes. The nodes of this model represent linguistic
elements of a certain kind. Since we are concerned with lexical alignment in this
paper, the nodes in our model represent lemmata. In order to give an impression
of the phenomena we are interested in, consider the following score of a dialogue
extract:2

A: street lights lamps
B: street lamps

A and B talk about the same (plural) referent, what we will call the topic of a
contribution. The term A proposes (street lights) is corrected by B (street lamps).
B’s correction is then partly taken up by A (lamps). From the perspective of
alignment, the dialogue lexica of the interlocutors contain three related nouns
which are linked among each other in corresponding ways. The interlocutors
finally align on the repeated use of a certain noun, namely lamp.

Observable evidence for alignment like the lamp example is ubiquitous in
human communication. This notwithstanding, a correlation between the type
of communication and extent of alignment has been reported. [4] found that
speakers in a task-oriented dialogue setting are more receptive to priming than
speakers in a spontaneous dialogue setting. The authors used common linear
regression as the statistical analysis tool. Recently, [5] developed a network-
based framework to model alignment in dialogue, the so-called Two-Level Time-
Aligned Network (TiTAN) model. The TiTAN model has already been applied to
strictly task-oriented dialogue data [6]. In this paper, we use the TiTAN model to
assess alignment in more spontaneous dialogue data, namely direction dialogues.
We do that by classifying dialogues for being effective or ineffective according to
their main function, that is, direction giving.

In the following Section 2 we shortly point out two shortcomings of previous
approaches to measure priming or alignment which are overcome by the TiTAN
model introduced in Section 3. After that, the TiTAN model is applied to natural

2 The extract is taken from dialogue no. 24 around second 600 of the collection from
[3] – see Section 4 for some more details. In its German original form, the sequence
of nouns is Straßenlampen – Straßenlaternen – Laternen.
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language direction data. The data and the results are described in Section 4,
which is followed by a conclusion that summarizes our findings.

2 Related Work

The approach followed here diverges in two respects from related work that tries
to measure priming or alignment.

The earliest work on assessing alignment-related properties of (written) texts
in quantitative terms is the lexical adaption model proposed by [7]. In a nutshell,
Church measured the frequency of primed words in comparison to unprimed ones
in the second half of split documents. A related measurement of the recurrence
of syntactic patterns was conducted by [4], who account for the repetition of
phrase structure rule instances within the Switchboard [8] and the HCRC Map
Task [9] corpora.

A priming assessment that relates counting repeated elements to task achieve-
ment was implemented by [10]. They trained a Support Vector Machine (SVM)
to predict task success from lexical and syntactic repetition in the HCRC Map
Task corpus. Thus, the study is also precursor for the efficiency of aligned dia-
logue hypothesis pursued in the empirical part of this paper. The SVM is applied
to time stamps in the data, indicating the proportion of variance that can be
explained by the model.

The accounts for assessing priming effects in natural language data so far
underlie two restrictions:

1. They focus on the repetition of elements, that is, they do not account for
co-activation and linked representations.

2. They operate on fairly arbitrary temporal units that were artificially imposed
on the data.

The model proposed by [5], the Two-Level Time-Aligned Network (TiTAN )
model, avoids both afore-mentioned restrictions. The temporal units which carry
the alignment process are dialogue turns, genuine components of conversations.
The network structure allows for capturing co-activation of related elements.
The next section explains how the TiTAN model of direction givings looks like.

3 Modeling Dialogue Lexica as TiTAN Series

During their conversation, interlocutors establish a so called dialogue lexicon [1]
of commonly or differently used words. On the one hand, they may reuse words
that their partner used the same way or at least similarly within their conversa-
tion. Alternatively, interlocutors may use the same words but for different things
or may introduce new words that were not used before. Sameness (and conversely
difference) of word usage, thus, is detected according to the extensional crite-
rion of aboutness. What words are about is called their topic in the following.
By speaking about similar word usages we refer to the similarity of the lexical
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contexts of words [11]. In the present scenario, this context is identified with the
basic structural unit of dialogues, that is, the turn [12].

From this point of view, the generation of a dialogue lexicon is conceived as a
process in which a lexical network grows turn by turn based on the word usages
of the dialogue partners. In such a dialogue lexicon network, vertices denote
lexical items while the strength of their edges denote the number of contexts
in which these words co-occurred until the corresponding point in time. In this
sense, the generation of a dialogue lexicon appears as a time series that emits
lexical networks at its different time points. It is this combined notion of complex
networks [13] and time series that is used to model the build-up of dialogue lexica
as a result of dialogical communication. In this section, we briefly recapitulate
this model in terms of so called Two-Layer Time-Aligned Network (TiTAN) series
[5] and introduce its instantiation in the context of direction givings.

Generally speaking, a TiTAN series is a time series {Lt | t ∈ �} of indexed
graphs Lt that model the dialogue lexicon of a dyadic conversation at time t.
Each of these graphs Lt is partitioned into two layers, A and B, representing
each interlocutors’ part of the dialogue lexicon. In order to instantiate the notion
of a TiTAN series in the framework of direction givings, we start with formalizing
dialogue lexica before we explain how TiTAN series are serialized.

Formally speaking, the dialogue lexicon of a dyadic conversation among two
interlocutors A and B at time t is modeled as a labeled graph Lt = (V, Et,L).
In this graph, the vertex set V is partitioned into non-empty disjunct subsets
VA and VB whose elements denote the words used by interlocutor A and B,
respectively, to perform the task of direction giving. The vertices in V are labeled
by the surjective function L : V → LV where, in our case, the set of labels
LV consists of lemmata. Analogously, the edge set Et is partitioned into three
non-empty disjunct subsets EABt , EAt , EBt where all edges {v, w} ∈ EAB end
at vertices v ∈ A, w ∈ B, while all edges {x, y} ∈ EX , X ∈ {A, B}, end at
vertices x, y ∈ VX . EA and EB capture intrapersonal lexical relations, while
edges in EAB are used to link lexical items shared among the interlocutors. The
subgraphs LAt = (VA, EAt ,L) and LBt = (VB , EBt ,L) are called the A- and
B-layer, respectively, of the two-layer graph Lt = (V, Et) at time t. They are
denoted by the projection functions πA(Lt) = LAt and πB(Lt) = LBt . In terms
of our application area, layer A represents the dialogue lexicon of interlocutor
A, layer B represents the dialogue lexicon of interlocutor B, while the graph Lt

provides a unified model of their overall dyadic dialogue lexicon.
The networks defined so far model linguistic units and their relations. How-

ever, they do not distinguish between seldomly and frequently intantiated rela-
tions. This asymmetry is accounted for by assigning weights to the edges in Lt.
Thus, dialogue lexica are modeled as weighted labeled graphs Lt = (V, Et, μt,L)
that are indexed by the point in time t ∈ � at which they are spanned. Re-
call that t is derived from the dialogue turns of the interlocutors and, thus,
from a dialog-inherent time-related ordering. In this sense, a TiTAN series is
serialized according to the contributions of the interlocutors manifested and
organized as turns. As a two-layer graph, Lt is divided into the subgraphs
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πA(Lt) = LAt = (VA, EAt , μAt ,L) and πB(Lt) = LBt = (VB , EBt , μBt ,L) ac-
cording to the distribution of Lt over the agents A and B at time t. The spanning
of edges within Lt is done as follows [5, p. 1453]:

– Intrapersonal links: if at time t, agent X ∈ {A, B} uses a word form as an
instance of lemma l ∈ LV to express the current turn’s topic T = T (t),
intrapersonal links between vertex v ∈ VX ,�X(v) = l are generated, and
all other vertices w in layer LXt whose lemma L(w) was used by X in the
same or any preceding turn to speak about the same topic T . If any of
these edges e = {v, w} already exists, its weight is incremented by 1, that is,
μt(e) = μt−1(e) + 1. Initially, all edges have a weight of 1.

– Interpersonal links: if at time t, agent X ∈ {A, B} uses a word form as an
instance of lemma l ∈ LV to express the topic T = T (t), which has been
expressed by the dialogue partner Y �= X in any preceding turn on the
same topic by means of the same lemma, an interpersonal link {v, w} ∈ Et

between v ∈ VA and w ∈ VB is generated for which L(v) = L(w) = l, given
that this link does not already exist. Otherwise, its weight is increased by 1.

With the passing of time, this process generates a series of dialogue lexica Lt that
are indexed by the corresponding time point t. Figure 1(a) provides a schematic
visualization of this construction process of a TiTAN series. The starting point
is given by completely unlinked dialogue lexica LA0 and LB0 of the interlocu-
tors A and B. Following the afore-given construction procedure, the lexica are
networked turn-wise by adding intra- and interpersonal links. A TiTAN, thus,
allows for modeling for each turn the degree of structural coupling of the di-
alogue lexica of both interlocutors. It finally results in a dialogue lexicon that
manifests the degree of lexical alignment at the end of the conversation of both
interlocutors. To see this, look at Figure 1(b), which shows two extreme values of
dialogue lexica: the lower bound is given by two layers LAt and LBt of the overall
dialogue lexicon Lt that are completely disconnected and internally structured
in completely different ways. Such a situation occurs if both agents always use
different words or denote the same topics always differently. The upper bound
is set by two isomorphic layer graphs that are fully linked. This scenario corre-
sponds to a dialogue in which both agents always use the same words the same
way. Due to thematic progression of natural dialogues, constraints by stylistics
and verbal economy, and psychological factors of various kinds, neither of these
extremal points is to be expected to be realized by dialogical conversation. They
delineate, however, theoretical boundary values that make lexical alignment a
measurable property [5].

In the framework of task-related conversations like direction giving, alignment
is supposed to be bound up with communicative success, i.e. efficiency [1, p. 172].

The question arises how to measure whether a dialogical interchange is ef-
ficient or not. Using TiTAN series to represent such dialogues, we hypothesize
that the class of effective directions can be separated from the class of ineffective
directions in terms of the topology of the final state of the dialogue lexica Lt.
In other words, we hypothesize that the way lexical items are connected and
clustered in a dialogue lexicon informs about the status of the corresponding
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A

B

“alignment channel”

time line
t t ′≺

(a) Illustration of a Two-layer Time-
Aligned Network series. Initially, the
lexica of interlocutors A and B are un-
linked (left of dashed arrows). Dialogue
turn by dialogue turn, the interlocutors’
lexica are networked such that a dia-
logue lexicon emerges that is spanned
by intra- and interpersonal links across
the alignment channel (right of dashed
arrows).

alignment min. alignment max.

spectrum of

dialog lexica

(b) The extrema of the graph-theoretical
modeling of lexical alignment: com-
pletely independent (left) vs. fully link-
age of identical lexica (right). Note that
alignment minimum and maximum are
theoretical extrema that are not to be
expected to be found in real dialogues,
which are supposed to populate the spec-
trum of dialog lexica.

Fig. 1. (Co-)Activation of representations within the dialogue networks of interlocutors
A and B: A TiTAN series illustration (a) and structural extrema (b)

direction giving. If this is true, it should be possible to utilize complex network
theory [13] to represent dialogue lexica by topological indices that are finally
input to unsupervised learning of the class of effective and ineffective directions.
This is the way, we proceed in this paper. More specifically, we apply Quanti-
tative Network Analysis (QNA) [14,15] to represent and classify dialogue lexica
by means of complex network theory. In the present area of application, QNA
involves three steps of modeling:

1. Quantitative graph modeling : initially, each dialogue lexicon is represented
by a vector of topological indices that model its network structure.

2. Feature selection: in the next step, a genetic search is performed to find
salient features within the vectors that best separate effective and ineffective
dialogues. Note that this process of feature selection may stop at a local
maximum as it does not necessarily find an optimal feature subset.

3. Classification: based on the appropriately projected feature vectors, a hier-
archical agglomerative clustering is performed together with a subsequent
partitioning that is informed about the number of target classes. We use
complete linkage together with the Mahalanobis distance to perform this
step. Note that we use MATLAB to make any of these computations. Note
also that the Mahalanobis distance is used to handle correlations between
features.
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To sum up, QNA takes the set of input dialogues together with the parameter
space of linkage methods and distance measures to find out the feature subset
that best separates the data according to the underlying classification. In the
present study, we utilize a subset of indices of complex network theory together
with a subset of indices that were invented to model dialogue lexica [5]. See [5]
and [15] for a summary of this quantitative graph model. All in all, 50 topological
indices were computed per input dialogue to model its structural characteristics.
Note that we exclude simple frequency oriented indices (e.g., the number of
vertices or edges). In Section 4, we discuss eight instantiations of this model by
experimenting with a set of 25 dialogues about directions.

4 Experimentation

4.1 Data

The speech data the TiTAN model is applied to are taken from the Bielefeld
Speech and Gesture Alignment Corpus (SaGA) [3]. The primary data of the
SaGA corpus are made up of 25 direction dialogues. After finishing a simulated
bus ride through a virtual town, one participant explains the route taken and
some sights passed to a second participant.

Video and audio recordings were made of the experiments, and on their basis,
an orthographic transcription of speech on the level of words has been created.
Typical phenomena of spontaneous speech (for example, clitics, elisions, assim-
ilations, and spontaneous neologisms) were transcribed according to guidelines
in order to ensure consistency.

These transcriptions were tagged with part-of-speech and lemma information
by a system consisting of the eTagger of the eHumanities Desktop [16], a central
trigram HMM tagger that has been trained on the German Negra Corpus.3 The
Stuttgart-Tübingen Tag Set (STTS, cf. [17]) was used, along with pre- and post-
processing mechanisms that are specialized in the handling of the phenomena of
spoken language mentioned above. Preprocessing methods map recurring word
form variants to their standardized counterparts before tagging. Postprocessing
mechanism apply several heuristics to unrecognized words that help to identify
neologisms – for example those that had been constructed from two or more
known words (e.g., “Peitschenlampe‘” – whip lamp, constructed from the nouns
“Peitsche” / whip and “Lampe” / lamp). Still, there were word forms that could
not be detected or handled automatically. These tokens have been manually
corrected after applying the tagger.

Since we are not concerned with well-formedness or related grammatical no-
tions, but rather with regularites of word use, the syntactically fine-grained POS
of the STTS are too detailed. Thus, we mapped the STTS onto the functionally ba-
sic types N(oun), V(erb), ADJ(ective), ADV(erb) JUNC(tors), PREP(ositions),
DET(erminers), PRO(nouns), and PART(icles). A fourth type, called REST, col-
lects the remainder of POS like interjections and fragments. These basic categories
are used in the construction of dialogue lexica.
3 http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/
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For the construction of a TiTAN series, information about turns and their
respective topic are required. As a consequence, the turn boundaries needed for
the construction of a TiTAN were annotated manually for all of the 25 dialogues.
The topics we acknowledge are derived from the stages of the route through the
virtual town of the primary data. The SaGA town and its 12 stages (topics) are
shown in Figure 2. In addition, there is a 13th topic called SaGA which indicates
turns that are about (large parts of) the whole virtual town. The label META
is used to classify turns that do not relate to the route, but rather negotiate
discourse issues or interpersonal concerns.

Each dialogue has been rated with respect to whether the interlocutors con-
verge on a suitable description of the SaGA route. The criterion is whether the
addressee has been put into the position to find the way from the sculpture to
the fountain without going astray. We distinguish three cases or classes: 1. The
direction is correct; 2. The direction is partially correct, but sufficient for the
purpose to cross the SaGA town; 3. The direction is full of holes and useless.
If, for instance, a participant mistakes the conifers in the park for leaf trees but
apart from that gives a right direction, the dialogue is classified into the second
class. Class 1 and 2 are grouped together into “correct” directions. In sum, there
are 17 wrong and 8 correct directions. For each of these 25 dyads, a separate
dialogue lexicon network has been built according to Section 3.

One might object that the occurrence of alignment is independent from the
validity of the given direction. Note, however, that the classification of dialogues
is not concerned with their correctness in the first place. In particular class 2
above accounts for directions that are false strictly speaking, but nonetheless
carry enough information to let the addressee find the way. Finally, the class 3
dialogues are clearly faulty. So what is the root of the matter? [1, p. 172] empha-
size that “alignment of situation models is central to successful dialogue”. No
matter whether the situation models are correct or not, a precondition is that the
dialogue participants have situation models at all! There are reasons to assume
that this is the problem with class 3 dialogues. The direction givers’ models of
the SaGA town are fragmentary – the models contain gaps. It is questionable
whether fragmentary models can be conceived of as situation models at all. As it
stands, we are aware of these theoretical obstacles, but regard our classification
approach as feasible.

4.2 Evaluation

In this section, we describe the experimental scenarios by which we test our
classification hypothesis introduced in Section 3. This hypothesis says that the
efficiency of a direction giving in dialogical communication can be detected based
on the topology of the final state of the corresponding dialogue lexicon. As
described in Section 3, we test this hypothesis in the framework of Quantitative
Network Analysis (QNA). More specifically, we test 8 different variants of this
hypothesis (as summarized in Table 1):

– Variant [N ]: we start with considering nouns only. The idea behind this
approach is that nouns are mainly used by interlocutors to refer to the
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Fig. 2. Overview of the virtual SaGA town, with topics marked

reference universe of the direction giving – see the entities of the virtual SaGA
town marked in Figure 2. We expect that the efficiency of directions is more
easily identified by means of the nominal subnetworks of the corresponding
dialogue networks.

– Variant [N |A], [N |V ] and [N |V |A]: alternatively, we experiment with ad-
ditionally considering adjectives and verbs. The reason to take these POS
into account is that many of their instances have a descriptive meaning in
relation to the reference universe of the direction giving (as, e.g., the verb to
turn in Turn to the left).

In addition to these four variants, we consider those subnetworks that exclude
words with a meta-communicative function (see the Rows 1–4 and the column
Meta, which codes whether words are included that are tagged by META ac-
cording to Section 4.1). These are words (as, e.g., to think in Let me think)
that do not have a referential meaning regarding the reference universe of the
direction giving, but serve, for example, to organize the dialogue. In our cor-
pus of 25 direction givings, we have annotated 5,561 word forms with a meta-
communicative function in relation to the overall set of 45,190 word forms that
we were manually annotated. Thus, more than 10% of the word forms were used
for meta-communicative reasons. From this perspective, one may expect an effect
of excluding or including this class of words.

Table 1 summarizes the results of our findings. It shows that the best per-
forming variant is based on selecting nouns without any meta-communicative
function (see Row 1). This variant produces an F -score of more than 96%. The
F -score (or F -measure) is the harmonic mean of recall and precision of the com-
puted classification in relation to the correct classification of the data into 17
ineffective and 8 effective dialogues. An F -score of 96% means that nearly all
dialogues have been classified correctly. If we additionally consider verbs, the
F -score decreases to 92% (Row 2). The loss of classification is even higher if we
separately consider the network of adjectives and that of verbs and adjectives
(Row 3 and 4). Thus, although adjectives and verbs have denotational meanings
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Table 1. Summary of the results of differently parameterized Quantitative Network
Analyses (QNA). Row no. 9 shows the average F -score of these variants. The last col-
umn denotes the number of features output by the genetic search of the best performing
subset of features as part of QNA (see Section 3).

No. Setting Meta Procedure F -score Features

1. [N ] yes QNA .96057 16 / 50
2. [N |V ] yes QNA .92 18 / 50
3. [N |A] yes QNA .91651 20 / 50
4. [N |V |A] yes QNA .88171 21 / 50

5. [N ] no QNA .92194 21 / 50
6. [N |V ] no QNA .87771 18 / 50
7. [N |A] no QNA .88171 22 / 50
8. [N |V |A] no QNA .91651 24 / 50

9. average over non-random approaches .9096 20

10. random baseline known-partition .58668
11. random baseline equi-partition .58583

in the dialogues analyzed here, they do not help to separate the class of effective
and ineffective direction givings to the same degree as nouns only.

These results seem to be contra-intuitive. Denotations of orientations and
movements should be key ingredients of a successful direction giving. However,
they are relational in character as they depend on the things they relate. Re-
garding situation models, a precondition for relational specification is that the
objects in question are (correctly) spread out on the mental model. This in turn
requires that the objects are available to the interlocutor. Objects are typically
denoted by nouns or noun phrases. If the direction giver can name the things
he wants to talk about, he can relate them to each other or to the direction fol-
lower. Thus, correct [N |V |A]-dialogues depend on correct [N ]-dialogues. Besides
this logical relationship, however, verbs, and adjectives may be the source for
errors beyond nominal expressions. The decreasing F -score of [N |V |A], [N |V ],
and [N |A] variants in comparison to the [N ] variant is very probably due to the
asymmetrical status of the [N ] partitions of the dialogues in relation to their
adjective- and verb-based partitions.

What happens if we additionally consider words with meta-communicative
functions? As shown by the rows 5 through 8 in Table 1, there is a negative
effect of including meta-communicative words. However, the differences being
observed are rather marginal so that we conclude that there is only a small
effect of either including or excluding this class of words. Meta-communicative
acts typically provide information that the addressee has either understood the
direction or that he could not follow. Thus, meta-communicative turns are used
to convey a sort of binary information. As this information does not relate to
the direction proper, it may be the reason for the lack of classificatory power
being observed.
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In order to further assess the quality of our results, we computed two random
baselines (Row 10 and 11 in Table 1): the baseline called known-partition has
information about the number of instances of the target categories. That is, by
knowing that there are 17 ineffective and 8 effective dialogues, this baseline ran-
domly generates two subsets of these cardinalities to compute the corresponding
F -score. By repeating this procedure 1,000 times, we get an expected F -score
of about 58%. This score is a little bit smaller if we consider the second random
baseline that assumes equal sizes of the target categories (in our case 12 and 13).
Obviously, all topology-related classifiers clearly outperform these two baselines.
Thus, we can conclude, at least until any future falsification, that the efficiency
of a direction giving is encoded into the structure of its dialogue lexicon.

5 Conclusion

In this paper, we applied Two-Layer Time-Aligned Network (TiTAN) series in
the context of direction givings. Based on this graph model, we implemented
several classifiers that solely explore the structure of dialogue lexica to assess
their efficiency. By example of a corpus of 25 dialogues, we have shown that
topological indices of dialogue lexica can indeed reveal this status. We also ob-
served that lexical units with meta-communicative functions have a small effect
on classification. This is in support of the observation that lexical manifestations
of dialogue organization have a some impact on the efficiency of direction givings.
Furthermore, we observed that the networking of nouns has the highest classifi-
catory power, while the subnetworks of adjectives and verbs are less informative.
One reason for this finding may be the outstanding referential meaning of nouns
in conjunction with their semantic specificity. There are several POS that we did
not consider here. Apart from adverbs, this relates to instances of closed POS.
In future work will consider these classes and their role in the organization of
dialogue lexica too.
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Abstract. We propose a new rule-based system for phrase-level polarity
analysis and show how it benefits from empirically validating its polarity
composition through surveys with human subjects. The system’s two-
layer architecture and its underlying structure, i.e. its composition model,
are presented. Two functions for polarity aggregation are introduced that
operate on newly defined semantic categories. These categories detach a
word’s syntactic from its semantic behavior. An experimental setup is de-
scribed that we use to carry out a thorough evaluation. It incorporates
a newly created German-language data set that is made freely and pub-
licly available. This data set contains polarity annotations at word-level,
phrase-level and sentence-level and facilitates comparability between dif-
ferent studies and reproducibility of our results.

1 Introduction

With the advancing integration of the Internet into our everyday life, the amount
of user generated content grows rapidly. People blog about their experiences, dis-
cuss in fora, author product reviews or twitter short messages. They do not stick
to certain topics but write about everything of interest, e.g. holidays or recent
purchases. In “Web 2.0”, people express their opinion directly and frankly with-
out being asked to do so and hence, this content has an immeasurable value for
market research. While for marketing purposes, sentence- or even document-level
analysis may suffice, a more fine-grained analysis is essential for deeper investi-
gations established in business environments (e.g. quality assurance, competition
analysis).

Whereas most approaches to sentiment analysis focus on two- or three-way
classification of words (cf. [1]), sentences (cf. [2,3]) or complete documents (cf.
[4]), with both rule-based or machine learning techniques, they all make a general
assumption: each sentence or document deals with exactly one topic. This should
be true for most product reviews, but within fora discussions or blog entries,
people often address multiple topics. Typical sentences like Ich mag X, aber Y
sieht komisch aus. (I like X, but Y looks strange.) contain more than one topic.
Thus, in order to perform a thorough and fine-grained analysis, one has to delve
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deeper into the text – down to the phrase-level. At this level, we are able to
extract relations (cf. [5]) between a topic and its associated polarity (e. g. X
and mag (like), Y and komisch (strange)), which is crucial for topic-centric
sentiment analysis.

We therefore propose a new rule-based system for phrase-level polarity anal-
ysis and illustrate its concepts in German. Although this has been done before
for English, this work’s novelty lies in its idea to overcome the nowadays pre-
dominant approach to rule-based polarity analysis. Instead of solely relying on
intuition when modeling polarity composition, we either empirically validate its
general notions by carrying out surveys with human subjects or base them upon
findings of other fields of research, e.g. psychology.

1.1 Related Work

The body of sentiment analysis literature is large and nowadays literally encom-
passes more than a thousand studies. Many of them were extensively surveyed in
[6]. However, work specifically tailored to phrase-level polarity analysis is quite
sparse. That is partly because this task is possibly even harder than document-
or sentence-level polarity analysis as there is less context, and partly because
there is no publicly available data set which is fine-grained enough for train-
ing, testing and evaluation purposes on phrase-level in the sense of phrase as a
syntactic constituent.

[7] laid the groundwork by extending [8]’s English-language MPQA corpus
annotation scheme with annotations for contextual polarity. MPQA annotations
among other features were then used in a two-step machine learning approach
to first classify expressions in being neutral or polar, then to classify them being
positive, negative or both. [9] later expanded their previous work by in-depth
comparison of different machine learning algorithms and feature combinations.
Their research differs from ours in that they focus on phrases in the sense of
word n-grams, whereas we focus on syntactic constituents.

[10] chunked sentences into syntactic constituents and analysed them using the
Dictionary of Affect in Language (DAL) and n-gram techniques. Perhaps closest
to our research is [11]’s and [12]’s work: both “compose” sentence polarity out
of phrase polarity according to the semantic compositional principle, whereas
we exclusively aim to determine phrase polarity. The major drawback is that
unfortunately both [11] and [12] rely on only commercially available parsers and
not publicly available lexical resources. Thus, their algorithms and results are
neither easily reproducible nor extendible. Additionally, the general notions and
aggregation rules they build up on lack empirical validation.

1.2 Outline

This paper is outlined as follows: in the following Section we introduce the po-
larity composition model. A comprehensive evaluation is presented in Section
3, along with a now publicly available German-language data set for evaluation
purposes. Finally, we draw conclusions in Section 4.
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2 Polarity Composition Model

The polarity composition model (PCM) is a two-layered structure consisting of
a word-level and a phrase-level polarity analysis, the latter depending on the
former.

2.1 Word-Level Polarity Analysis

The goal of word-level polarity analysis is to identify the word form’s prior polar-
ity, i.e. its semantic orientation without any given context (cf. [9]). To determine
a word form’s prior polarity, it is searched for in [13]’s SentiWS. SentiWS is a
publicly available German-language dictionary listing positively and negatively
connotated words plus their part of speech (POS) tag, their inflections where
available and a value v ∈ [−1, 1] that expresses their polarity’s intensity. A v > 0
suggests positive polarity, a v < 0 negative polarity. The bigger |v| is, the more
“expressive” is the word form.

The search incorporates POS tags, which act as a light-weight word sense
disambiguation (cf. [14]). If the search is successful, the found word form is
assigned the corresponding weight and a category.

Categories separate the word forms’ syntactic functions from their semantic
tasks. From our point of view, there are potential polar categories and modi-
fying categories. Potential polar categories comprehend adjectives and adverbs,
nouns and verbs. Modifying categories span negations as well as weakening and
strengthening intensifiers. The word form’s POS tag is mapped to an appropriate
category, involving manually compiled lists of negations and intensifiers. Table
1 summarises the categories and their abbreviations as used here.

Table 1. Categories and their abbreviations

Abbr. Category

ADJ Adjectives, adverbs
N Nouns
V Verbs

NEG Negations
INC Strengthening Intensifiers
DEC Weakening Intensifiers

A sub-category not yet addressed in this work is that of relative adjectives
(cf. [15]) such as klein (small) – groß (big) or niedrig (low) – hoch (high).
This category is particularly interesting, because its members show a somewhat
irregular behavior: whereas großer Verlust (big loss) is negatively connotated in
the context of economics, it might be positively connotated when talking about
a person’s body weight. In both cases großer (big) just intensifies the polarity of
Verlust (loss). But one might imagine someone saying Ganz groß! (This is big!).
In that case groß shows positive polarity on its own. Thus, relative adjectives
are clearly domain-dependent.
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2.2 Phrase-Level Polarity Analysis

Phrase-level polarity analysis builds up on word-level polarity analysis’ results
and aims to recognise the word form’s contextual polarity (cf. [9]). To achieve this,
the local context has to be taken into account – e.g. the (linguistic) phrase struc-
ture. The phrase structure with regard to polarity is determined by negations as
well as weakening and strengthening intensifiers, i.e. the modifying categories we
introduced earlier. [16] calls them Contextual Valence Shifters (CVS). Typical
phrase types are verbal phrases (VPs), noun phrases (NPs) and prepositional
phrases (PPs), among others.

Negations. The most prominent CVS are negations, e.g. nicht (not) as in
nicht schlecht (not bad). But negations are not necessarily limited to nicht, they
might as well appear in the form of words like kein (no), niemals (never), ohne
(without) etc.

Currently, the best practice in sentiment analysis literature is “flipping” the
polarity of a polar word form when proceeded by a negation (cf. for example
[17]), i.e. turning a positive polarity negative and vice versa. In contrast to
that, we believe in affective asymmetries as recently discussed in psychology
(cf. [18]): positivity and negativity are not exact opposites, but have their very
own characteristics. Thinking of the antonyms gut (good) and schlecht (bad)
and assuming both have opposite polarities, nicht gut (not good) would have the
same polarity as schlecht (bad) and nicht schlecht (not bad) would have same
polarity as gut (good). Is that true? We believe, that[

X is
{

good.
bad.

}]
is
{

“more positive”
“more negative”

}
than

[
X is

{
not bad.
not good.

}]
.

Weakening and Strengthening Intensifiers. Besides negations, weakening
and strengthening intensifiers are the most important CVS according to [16].
Examples are sehr (very), viel (much) and selten (rarely), wenig (little) etc.
They mostly behave like we expect them to – they weaken or strengthen polar
word forms:[

X is
{

very good.
very bad.

}]
is
{

“more positive”
“more negative”

}
than

[
X is

{
good.
bad.

}]
.

and, analogously[
X is

{
rarely good.
rarely bad.

}]
is
{

“less positive”
“less negative”

}
than

[
X is

{
good.
bad.

}]
.

Formal Construct. In order to account for these considerations and flexibly
model the discussed phrase-internal dependencies, a formal construct is needed.
Inspired by [11] and [12], who “composed” the polarity of complex lexical units
out of atomic lexical units in a bottom-up fashion following the compositional
principle, we now define such a construct’s formal syntax and semantics.
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Syntax A rule r has the form

r := [(d, f, p)CATi . . . CATj ]

with either CATk ∈ {ADJ, N, V, NEG, INC, DEC} a category or a rule by
itself, “. . . ” an optional marker for discontinuity, d ∈ {→,←} a direction, f ∈
{a+, a∗} an aggregation function and p ∈ Q a parameter obligatory for a×. One
can visualize a rule as shown in Figure 1. Because of CATk’s recursive definition,

CATi CATj

(f, p)

Fig. 1. Visualisation of the formal construct

it is possible to compile rules of arbitrary complexity, e.g.

[(d, f, p) [(d′, f ′, p′)CATi CATj ] CATk]

Moreover syntax allows for one optional category CATk ∈ {NEG, INC, DEC},
expressed by surrounding the category in question with cambered brackets as in
[(d, f, p) [(d′, f ′, p′) {CATi}CATj ] CATk].

The motivation behind (d, f, p) and its values is as follows: d was introduced
to allow for modifications not only of the phrase head, but also of parts of the
phrase, e.g. in a VP like funktioniert nicht gut (doesn’t work well) where nicht
relates to gut instead of the phrase head funktionieren (work). f was introduced
to allow for different kinds of interactions between potential polar and modifying
categories. Finally, p was introduced to allow for flexible rule modeling. p values
ideally should be empirically motivated, e.g. through small experiments like the
following: we asked 8 judges, whether they perceive kein schönes Auto (not a
nice car) or kein sehr schönes Auto (not a very nice car) as “more negative”.
75% of the judges perceived the former as “more negative” as the latter. For
that reason the factor p of NEG modifying ADJ is bigger than NEG modifying
INC (cf. paragraph Modelling). Except for this specific instance, the remaining
p values were chosen intuitively, but will be addressed in future work.

Semantics: Central to the interpretation of a rule r is the definition of the
aggregation functions a+ and a×. a+ combines the polarity values v1, v2 ∈ [−1, 1]
of possibly complex word forms w1, w2 as shown in Equation 1.

a+(v1, v2) =

{
v1 + v2, if v1, v2 ≥ 0 or v1, v2 ≤ 0
min{v1, v2} −max{v1, v2} else

(1)

If v1, v2 are both positive or both negative, a+ acts as an ordinary addition.
However, if their polarity differs, we subtract the larger from the smaller value,
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i.e. the result is always negative. Although this may seem contra-intuitive at first
sight, we carried out two small surveys to verify its benefits.

We randomly extracted a 100 word pairs from a corpus containing 16.7 million
sentences. Each word pair contains one word form that is positively connotated
according to SentiWS, and one that is negatively connotated. Examples are
übertriebene Pflege (exaggerated care) or mächtiges Problem (mighty problem).
We then asked 9 judges to judge these word pairs regarding their overall po-
larity. Their judgements reach an inter-annotator agreement of κ = 0.71 and
are therefore considered significant. 73% of all word pairs were judged being of
negative polarity, 17.78% were judged positive and 9.22% were judged as being
neutral or unclear. Thus, if a+ is calculated as given in Equation 1 the sign of
the polarity is correct in at least 73% of all cases and wrong in 27% of all cases
at most.

Although this survey verifies our hypothesis of phrases containing a positive
and a negative word as being most probably negative, some cases still remain
worthy of further discussion. Especially the influence of the polarity’s intensity
on the phrase’s overall polarity requires additional studies as currently even
weakly negative terms turn the polarity of positive phrases into negative.

To verify min{v1, v2}−max{v1, v2}’s usefulness itself we then selected all word
pairs that were judged being negative by at least 7/9 raters and were judged
being positive by at most 1/9 raters. 65 word pairs fulfilled these criteria. We
then asked 11 judges to judge whether the whole word pair is more expressive
than the head of the word pair alone, i.e. we asked whether übertriebene Pflege
is more expressive than Pflege (care). Although the inter-annotator agreement
was lower (κ = 0.5), the judges decided for the whole word pair being more
expressive 69% of the time. 22% of the time they decided that it was not more
expressive and in 9% of the time they could not make a differientation. Thus,
if a+ is calculated as given in Equation 1 the calculated polarity intensity is
“correct” in at least 69% of all cases.

a× combines the polarity values v1, v2 ∈ [−1, 1] of possibly complex word
forms w1, w2 and a parameter p in a multiplication-like fashion as shown in
Equation 2.

a×(v1, v2, d, p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p · v1 · v2, if d ∈ {→,←}, v1, v2 �= 0
p · v2, if d =→, v1 = 0, v2 �= 0
p · v1, if d =←, v1 �= 0, v2 = 0
p else

(2)

Once a+ or a× is calculated, both functions are normalised through a as shown
in Equation 3 in order to ensure comparability of their results. The bigger |a| is,
the more “expressive” is the composition of w1 and w2.

a(a.) =

{
min{a., 1, 0} if a. > 0
max{a.,−1, 0} if a. < 0

(3)

The categories function as wildcards. The phrase kein Erfolg (no success) could
be captured by the negation category NEG and the noun category N in the rule
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[(d, f, p) [(d′, f ′, p′)NEG N]] that then could be interpreted by applying the ag-
gregation functions according to the tripels (d, f, p) and (d′, f ′, p′). If there’s an
optional category, the rule is interpreted as if there were two, so from the rule
including an optional category [(d, f, p) [(d′, f ′, p′) {CATi}CATj ] CATk] we de-
rive [(d, f, p) [(d′, f ′, p′)CATi CATj ] CATk] and [(d, f, p)CATj CATk]. The dis-
continuity marker allows for matching non-adjacent categories, e.g. matching
zuverlässiger und hilfsbereiter Freund (reliable and helpful friend) by a rule like
[(d, f, p) [(d′, f ′, p′)ADJ . . . ADJ] N].

Modeling: Although the rule base is included in [19] and is fairly self-explanatory,
it is important to mention some considerations regarding the PCM. We decided
to use a× whenever modeling aggregations in which modifying categories take
part in. If a× is used for modeling a negation that directly modifies a polar
category, p is set to −0.75. If a negation modifies another modifying category, p
is set to −0.4, to account for our earlier discussion of affective asymmetries and
directions of modifications. Intensifiers behave symmetrically: if a× is used for
modeling a strengthening intensifier, p is set to 1.5, thus increasing its strength
by 50%. If used for a weakening intensifier, p is set to 0.5, thus decreasing its
strength by 50%. So far we mostly relied on intuition when choosing p’s values.
They are certainly subject to debate, but we hope to verify them or choose more
appropriate values in future work.

Aggregations in which only potential polar categories participate are modeled
using a+.

Example: To illustrate the PCM’s behavior, the polarity composition of the VP
funktioniert bei Regen nicht sehr gut (doesn’t work very well when it’s raining)
is now presented in detail. The word-level polarity analysis assigns the category
V and the weight 0.004 to funktioniert, NEG to nicht, INC to sehr and ADJ
and 0.372 to gut. The phrase-level polarity analysis now matches the VP to an
appropriate rule: [(←, a+)V . . . [(→, a×, 1.5) [(→, a×,−0.4)NEGINC] ADJ]] (cf.
Figure 2). The rule matches because it allows for categories in between V and
NEG, e.g. Regen – N – through the marker for discontinuity. Rules are pro-
cessed inside out, so [(→, a×,−0.4)NEGINC] is interpreted first. a×(0.0, 0.0,→
,−0.4) = −0.4 (cf. Equation 2) is calculated and hence the expression nicht sehr

V . . . NEG INC ADJ

(a+)

(a×,−0.4)

(a×, 1.5)

Fig. 2. Visualisation of the example
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(not very) is now weighted −0.4. Next [(→, a×, 1.5)− 0.4 ADJ] is interpreted
and a×(−0.4, 0.372,→, 1.5) = −0.2232 is calculated. The expression nicht sehr
gut (not very good) is now weighted −0.2232. Last [(←, a+)V . . . − 0.2232] is
interpreted and according to Equation 1 a+(0.004,−0.2232) = −0.2272 is cal-
culated. The whole VP funktioniert bei Regen nicht sehr gut is now weighted
−0.2272 and is therefore considered being of negative polarity.

3 Evaluation

For evaluation purposes our experimental setup consists of an implementation
similar to [19], and a newly created German-language data set included in [19].
As our approach heavily relies on POS tags and identified phrase structure, we
employ the Stanford POS Tagger (cf. [20,21]) and Stanford Parser (cf. [22,23])
which also includes a tokenizer. Both provide state of the art performance for
German as well as a few other languages and are publicly available.

3.1 Data Set

Unfortunately, there is no German-language data set publicly available, that pro-
vides polarity annotations at word-level, phrase-level and sentence-level. There-
fore, in order to evaluate the PCM’s performance we created a new one and
made it freely available (cf. [19]). 1,000 sentences containing the term W212 1

and 1,000 sentences containing the the term Rost (rust) were randomly selected
from a corpus comprising 16.7 million sentences. This corpus consists of posts
to a variety of internet fora focussing on automobiles. All 2,000 sentences were
then manually categorised as being positive, negative or neutral, i.e. showing no
overt polarity.

Out of these 2,000 sentences, for each polarity category 133 sentences contain-
ing the term W212 and 33 sentences containing the term Rost were selected,
leaving 166 sentences of positive, 166 sentences of negative and 166 sentences of
neutral polarity. Sentences not parseable, mostly because they were ill-formed
or too long, were removed, resulting in a final data set of 477 sentences. The
minimal sentence length is 4 word forms, the maximum is 41 word forms and
the approximate average is 15.96 word forms.

The whole data set was tokenized and parsed. All resulting word forms and
phrases were then annotated by two raters. They were allowed to annotate posi-
tive and negative polarity, as well as no or ambiguous polarity. In addtion, raters
were allowed to “override” and replace sentence annotations, if they disagreed
with the given polarity. The inter-annotator agreement, a free-marginal variant
of Cohen’s Kappa we also used earlier (cf. [24], [25]) is κ = 0.76 for word-level
polarity and κ = 0.58 for phrase-level polarity.

So whereas the word-level polarity shows “substantial agreement” according
to [26], the phrase-level polarity only shows “moderate agreement”. These values
meet our expectations: it is quite easy to agree on the polarity of isolated word
1 W212 denotes Mercedes Benz’s E-Class model manufactured since 2009.
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forms, but it is not as easy to agree on longer chunks, or phrases. Because of
that, we report all our results compared to the first rater’s and compared to the
second rater’s annotations, as well as compared to their consensus.

3.2 Results

In order to evaluate the PCM, we created two experimental setups. Within the
first setup, errors originating from the POS tagger, parser or SentiWS are not
taken into account. The second setup measures the performance of the complete
workflow including the pre-processing steps which are explained earlier. In both
scenarios, we provide results of a baseline algorithm for comparison. The base-
line algorithm simply sums up the polarity values v1, . . . , vk of the word forms
w1, . . . , wk contained within the target phrase. Its output is compared to the
consensus of Rater 1 and 2.

Phrase-Level. The results of the phrase-level evaluation are given in Table 2.
In this scenario, only 3,177 of the total 3,597 phrases are regarded, the remaining
420 are discarded due to erroneous pre-processing.

Table 2. Precision P , recall R and f-measure Fα=0.6 for the phrase-level polarity
analysis compared to Rater1,2’s annotations and their consensus. Errors that are either
POS tagger-, parser- or SentiWS-based were ignored.

Positive Negative Overall

P R F P R F P R F

Rater 1 0.90 0.89 0.89 0.88 0.87 0.88 0.89 0.88 0.89
Rater 2 0.77 0.87 0.81 0.81 0.90 0.85 0.79 0.89 0.83

Consensus 0.91 0.91 0.91 0.95 0.92 0.94 0.93 0.91 0.92

Baseline 0.70 0.78 0.73 0.77 0.75 0.76 0.74 0.76 0.75

When comparing the consensus to the baseline, our PCM achieves significant
improvements for precision, recall and f-score – 25.7%, 19.7% and 22.7%, re-
spectively. It is notable that the difference between the baseline and the results
achieved by our PCM drops when being compared to a single rater. The results
are still very competitive, achieving improvements of 10.7% and 18.7%, respec-
tively. The drop reflects the difficulty in defining an indisputable evaluation data
set for sentiment analysis. Therefore, it is our opinion that it is adequate to
compare approaches considering undisputed annotations, i.e. the consensus, in
the first place.

We will analyse common error types of the PCM and discuss potential solu-
tions to them in Section 3.3.

System-Level. At system-level, all 3,597 phrases are taken into account. The
results are given in Table 3. As for the token-level (cf. [13]) and the phrase-level,
the precision values for negative phrases are higher than they are for positive
phrases. This may be a direct consequence of the tendency to use positive ex-
pressions not only in positive contexts, but also in neutral or even negative ones.
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Table 3. Precision P , recall R and f-measure Fα=0.6 for the system-level polarity
analysis compared to Rater1,2’s annotations and their consensus

Positive Negative Overall

P R F P R F P R F

Rater 1 0.53 0.60 0.56 0.68 0.54 0.62 0.59 0.57 0.58
Rater 2 0.45 0.60 0.50 0.61 0.55 0.59 0.52 0.58 0.54

Consensus 0.51 0.67 0.56 0.70 0.62 0.67 0.59 0.64 0.61
Baseline 0.45 0.59 0.49 0.65 0.56 0.61 0.53 0.58 0.55

Examples include phenomena like ironic and sarcastic propositions like Na toll!
(Oh great!), or set phrases like Guten Morgen! (Good morning!).

The relative improvements achieved by our model at system-level are 11.3%
for precision, 10.3% for recall and 10.9% for the f-score.

3.3 Discussion

After presenting the results of our experiments, we thoroughly analyse common
error types.

– Phrases containing irony and sarcasm are not yet addressed by the PCM,
consequently, misclassifications occur. A set phrase or idiom like Gute Nacht
(Good night) is classified as positive due to the positive prior polarity of
Gute (Good). But when used in the sense of aus und vorbei (it’s over), this
phrase can also be of negative polarity. In order to avoid such errors, an
additional classification into sarcastic and non-sarcastic sentences (cf. [27])
may be essential.

– Colloquial language is very typical for textual resources obtained from In-
ternet fora or blogs. They contain many neologisms and arbitrary phrase
constructions that have to be dealt with. Negations like the number 0 as in
0 Probleme (0 problems) represent only the tip of the iceberg. To address
this problem, a continuous editing of the language resources along with an
enrichment by contextual information (e.g. matching 0 either as a number
or as a negation) is necessary.

– Interactions between nouns and verbs denoting presence or absence are not
yet supported by our model. Nevertheless, for correct analyses of sentences
like Rost ist nicht vorhanden (Rust is not present) this is important. Simi-
larly, interactions between nouns and nouns denoting presence or absence as
in ein Auto, das am besten durch Abwesenheit von Geräuschen und Vibra-
tionen charakterisiert wird (a car best characterized by the absence of noise
and vibration) exist, too. An introduction of appropriate categories (i.e. ABS
(absence) and PRE (presence)) and their integration into the PCM possibly
helps to solve this problem.

– The lack of a distinction between relative and absolute adjectives (cf. [15])
entails several erroneous analyses (see Section 2.1). Analogous to words de-
noting presence or absence, the establishment of a new category for relative
adjectives might be a sufficient extension of our model.
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Contrary to the error types that have been mentioned so far that may be ad-
dressed by extending the PCM, disputatious polarities present a far more com-
plex problem: sometimes, even human raters can not fully agree whether a lexical
unit, e.g. a phrase, is of negative or positive polarity, or no polarity at all. Some
phrases in our data set were first independently marked with identical polarities
by the raters, but subsequent discussions then lead to uncertainty about their
“correct” polarity. Especially comparitive utterances like es hat weniger Rost als
das andere Auto (it has less rust than the other car) are difficult to judge.

4 Conclusions and Future Work

We proposed a new rule-based system for polarity analysis that benefits from
empirical validation of its notions, thereby achieving competitive results. In doing
so, we pointed out new ways to look at very interesting aspects of sentiment
analysis, e.g. the fact that polarity composition and its underlying aggregations
may sometimes be contra-intuitive at first sight. While our experiments were
carried out using German-language resources, we believe many, if not all, of our
insights are easily transferable to other languages. We strongly encourage others
to utilise our findings and make extensive use of surveys and the like for verifying
decisions taken in polarity analysis systems to be right or wrong.

Future research directions include investigating in sub-categories such as the
above mentioned relative adjectives and interactions between them and other
categories. Also we would like to examine interdependencies of adjacent lexi-
cal units on higher levels, e.g. phrase to phrase and sentence to sentence or
phrase to sentence, sentence to document and vice versa (cf. [28]). Keeping these
recommendations in mind, we believe it is promising to further study polarity
composition, aggregation functions and their application.
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Abstract. We apply a network model of lexical alignment, called Two-
Level Time-Aligned Network Series, to natural route direction dialogue
data. The model accounts for the structural similarity of interlocutors’
dialogue lexica. As classification criterion the directions are divided into
effective and ineffective ones. We found that effective direction dialogues
can be separated from ineffective ones with a hit ratio of 96% with re-
gard to the structure of the corresponding dialogue lexica. This value is
achieved when taking into account just nouns. This hit ratio decreases
slightly as soon as other parts of speech are also considered. Thus, this
paper provides a machine learning framework for telling apart effective
dialogues from insufficient ones. It also implements first steps in more
fine-grained alignment studies: we found a difference in the efficiency
contribution between (the interaction of) lemmata of different parts of
speech.

1 Motivation

According to the Interactive Alignment Model [1, IAM ], mental representations
of dialogue partners on all linguistic levels become more and more similar, i.e.
aligned, during their communicative interaction. Since the linguistic levels – pho-
netic, lexical, syntactic, semantic, situation model – are interconnected, align-
ment propagates through these levels. Via this spreading of alignment, global
alignment, that is, alignment of situation models, can be a result of local align-
ment on lower levels. Thus, the IAM provides an account to the ease and ef-
ficiency of dialogical communication beyond explicit negotiation. Part of the
efficiency of communication is the fulfillment of the dialogue task or purpose.
Consequently, we would expect that more aligned dialogues are more successful
– a proposition we make productive below.

The central mechanism that is acknowledged within the IAM is priming.1

Priming is typically understood and modeled as spreading activation in neural
networks. Two varieties of activation have to be distinguished:

1. A linguistic form /x/ activates its corresponding mental representation x
within the interlocutors. We simply call this activation.

1 But see [2] for an argument that priming cannot be the process that implements
alignment.
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2. A representation y, which is activated by a form /y/, also activates rep-
resentations which are related to y. The kind of relation depends on the
linguistic level of which y is an element. For example, if y is the phonologi-
cal representation of can, the phonologically similar representation pan may
be co-activated. Since the contents of many cans can be heated in pans, the
semantic representations of both forms also trigger each other. The mediated
activation of a representation x by a form /y/ is termed co-activation.

The linguistic forms produced and perceived in a dyad do not only prime their
corresponding representations, they also co-activate a set of related representa-
tions. A model that captures the structure of dialogue lexica of speakers is a
network model of interlinked nodes. The nodes of this model represent linguistic
elements of a certain kind. Since we are concerned with lexical alignment in this
paper, the nodes in our model represent lemmata. In order to give an impression
of the phenomena we are interested in, consider the following score of a dialogue
extract:2

A: street lights lamps
B: street lamps

A and B talk about the same (plural) referent, what we will call the topic of a
contribution. The term A proposes (street lights) is corrected by B (street lamps).
B’s correction is then partly taken up by A (lamps). From the perspective of
alignment, the dialogue lexica of the interlocutors contain three related nouns
which are linked among each other in corresponding ways. The interlocutors
finally align on the repeated use of a certain noun, namely lamp.

Observable evidence for alignment like the lamp example is ubiquitous in
human communication. This notwithstanding, a correlation between the type
of communication and extent of alignment has been reported. [4] found that
speakers in a task-oriented dialogue setting are more receptive to priming than
speakers in a spontaneous dialogue setting. The authors used common linear
regression as the statistical analysis tool. Recently, [5] developed a network-
based framework to model alignment in dialogue, the so-called Two-Level Time-
Aligned Network (TiTAN) model. The TiTAN model has already been applied to
strictly task-oriented dialogue data [6]. In this paper, we use the TiTAN model to
assess alignment in more spontaneous dialogue data, namely direction dialogues.
We do that by classifying dialogues for being effective or ineffective according to
their main function, that is, direction giving.

In the following Section 2 we shortly point out two shortcomings of previous
approaches to measure priming or alignment which are overcome by the TiTAN
model introduced in Section 3. After that, the TiTAN model is applied to natural
language direction data. The data and the results are described in Section 4,
which is followed by a conclusion that summarizes our findings.

2 The extract is taken from dialogue no. 24 around second 600 of the collection from
[3] – see Section 4 for some more details. In its German original form, the sequence
of nouns is Straßenlampen – Straßenlaternen – Laternen.



Implicit Feature Identification via CoAR Mining 395

2 Related Work

The approach followed here diverges in two respects from related work that tries
to measure priming or alignment.

The earliest work on assessing alignment-related properties of (written) texts
in quantitative terms is the lexical adaption model proposed by [7]. In a nutshell,
Church measured the frequency of primed words in comparison to unprimed ones
in the second half of split documents. A related measurement of the recurrence
of syntactic patterns was conducted by [4], who account for the repetition of
phrase structure rule instances within the Switchboard [8] and the HCRC Map
Task [9] corpora.

A priming assessment that relates counting repeated elements to task achieve-
ment was implemented by [10]. They trained a Support Vector Machine (SVM)
to predict task success from lexical and syntactic repetition in the HCRC Map
Task corpus. Thus, the study is also precursor for the efficiency of aligned dia-
logue hypothesis pursued in the empirical part of this paper. The SVM is applied
to time stamps in the data, indicating the proportion of variance that can be
explained by the model.

The accounts for assessing priming effects in natural language data so far
underlie two restrictions:

1. They focus on the repetition of elements, that is, they do not account for
co-activation and linked representations.

2. They operate on fairly arbitrary temporal units that were artificially imposed
on the data.

The model proposed by [5], the Two-Level Time-Aligned Network (TiTAN )
model, avoids both afore-mentioned restrictions. The temporal units which carry
the alignment process are dialogue turns, genuine components of conversations.
The network structure allows for capturing co-activation of related elements.
The next section explains how the TiTAN model of direction givings looks like.

3 Modeling Dialogue Lexica as TiTAN Series

During their conversation, interlocutors establish a so called dialogue lexicon [1]
of commonly or differently used words. On the one hand, they may reuse words
that their partner used the same way or at least similarly within their conversa-
tion. Alternatively, interlocutors may use the same words but for different things
or may introduce new words that were not used before. Sameness (and conversely
difference) of word usage, thus, is detected according to the extensional crite-
rion of aboutness. What words are about is called their topic in the following.
By speaking about similar word usages we refer to the similarity of the lexical
contexts of words [11]. In the present scenario, this context is identified with the
basic structural unit of dialogues, that is, the turn [12].

From this point of view, the generation of a dialogue lexicon is conceived as a
process in which a lexical network grows turn by turn based on the word usages
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of the dialogue partners. In such a dialogue lexicon network, vertices denote
lexical items while the strength of their edges denote the number of contexts
in which these words co-occurred until the corresponding point in time. In this
sense, the generation of a dialogue lexicon appears as a time series that emits
lexical networks at its different time points. It is this combined notion of complex
networks [13] and time series that is used to model the build-up of dialogue lexica
as a result of dialogical communication. In this section, we briefly recapitulate
this model in terms of so called Two-Layer Time-Aligned Network (TiTAN) series
[5] and introduce its instantiation in the context of direction givings.

Generally speaking, a TiTAN series is a time series {Lt | t ∈ �} of indexed
graphs Lt that model the dialogue lexicon of a dyadic conversation at time t.
Each of these graphs Lt is partitioned into two layers, A and B, representing
each interlocutors’ part of the dialogue lexicon. In order to instantiate the notion
of a TiTAN series in the framework of direction givings, we start with formalizing
dialogue lexica before we explain how TiTAN series are serialized.

Formally speaking, the dialogue lexicon of a dyadic conversation among two
interlocutors A and B at time t is modeled as a labeled graph Lt = (V, Et,L).
In this graph, the vertex set V is partitioned into non-empty disjunct subsets
VA and VB whose elements denote the words used by interlocutor A and B,
respectively, to perform the task of direction giving. The vertices in V are labeled
by the surjective function L : V → LV where, in our case, the set of labels
LV consists of lemmata. Analogously, the edge set Et is partitioned into three
non-empty disjunct subsets EABt , EAt , EBt where all edges {v, w} ∈ EAB end
at vertices v ∈ A, w ∈ B, while all edges {x, y} ∈ EX , X ∈ {A, B}, end at
vertices x, y ∈ VX . EA and EB capture intrapersonal lexical relations, while
edges in EAB are used to link lexical items shared among the interlocutors. The
subgraphs LAt = (VA, EAt ,L) and LBt = (VB , EBt ,L) are called the A- and
B-layer, respectively, of the two-layer graph Lt = (V, Et) at time t. They are
denoted by the projection functions πA(Lt) = LAt and πB(Lt) = LBt . In terms
of our application area, layer A represents the dialogue lexicon of interlocutor
A, layer B represents the dialogue lexicon of interlocutor B, while the graph Lt

provides a unified model of their overall dyadic dialogue lexicon.
The networks defined so far model linguistic units and their relations. How-

ever, they do not distinguish between seldomly and frequently intantiated rela-
tions. This asymmetry is accounted for by assigning weights to the edges in Lt.
Thus, dialogue lexica are modeled as weighted labeled graphs Lt = (V, Et, μt,L)
that are indexed by the point in time t ∈ � at which they are spanned. Re-
call that t is derived from the dialogue turns of the interlocutors and, thus,
from a dialog-inherent time-related ordering. In this sense, a TiTAN series is
serialized according to the contributions of the interlocutors manifested and
organized as turns. As a two-layer graph, Lt is divided into the subgraphs
πA(Lt) = LAt = (VA, EAt , μAt ,L) and πB(Lt) = LBt = (VB , EBt , μBt ,L) ac-
cording to the distribution of Lt over the agents A and B at time t. The spanning
of edges within Lt is done as follows [5, p. 1453]:
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– Intrapersonal links: if at time t, agent X ∈ {A, B} uses a word form as an
instance of lemma l ∈ LV to express the current turn’s topic T = T (t),
intrapersonal links between vertex v ∈ VX ,�X(v) = l are generated, and
all other vertices w in layer LXt whose lemma L(w) was used by X in the
same or any preceding turn to speak about the same topic T . If any of
these edges e = {v, w} already exists, its weight is incremented by 1, that is,
μt(e) = μt−1(e) + 1. Initially, all edges have a weight of 1.

– Interpersonal links: if at time t, agent X ∈ {A, B} uses a word form as an
instance of lemma l ∈ LV to express the topic T = T (t), which has been
expressed by the dialogue partner Y �= X in any preceding turn on the
same topic by means of the same lemma, an interpersonal link {v, w} ∈ Et

between v ∈ VA and w ∈ VB is generated for which L(v) = L(w) = l, given
that this link does not already exist. Otherwise, its weight is increased by 1.

With the passing of time, this process generates a series of dialogue lexica Lt that
are indexed by the corresponding time point t. Figure ???? provides a schematic
visualization of this construction process of a TiTAN series. The starting point is
given by completely unlinked dialogue lexica LA0 and LB0 of the interlocutors
A and B. Following the afore-given construction procedure, the lexica are net-
worked turn-wise by adding intra- and interpersonal links. A TiTAN, thus, allows
for modeling for each turn the degree of structural coupling of the dialogue lexica
of both interlocutors. It finally results in a dialogue lexicon that manifests the
degree of lexical alignment at the end of the conversation of both interlocutors.
To see this, look at Figure ????, which shows two extreme values of dialogue
lexica: the lower bound is given by two layers LAt and LBt of the overall dialogue
lexicon Lt that are completely disconnected and internally structured in com-
pletely different ways. Such a situation occurs if both agents always use different
words or denote the same topics always differently. The upper bound is set by
two isomorphic layer graphs that are fully linked. This scenario corresponds to
a dialogue in which both agents always use the same words the same way. Due
to thematic progression of natural dialogues, constraints by stylistics and verbal
economy, and psychological factors of various kinds, neither of these extremal
points is to be expected to be realized by dialogical conversation. They delineate,
however, theoretical boundary values that make lexical alignment a measurable
property [5].

In the framework of task-related conversations like direction giving, alignment
is supposed to be bound up with communicative success, i.e. efficiency [1, p. 172].

The question arises how to measure whether a dialogical interchange is ef-
ficient or not. Using TiTAN series to represent such dialogues, we hypothesize
that the class of effective directions can be separated from the class of ineffective
directions in terms of the topology of the final state of the dialogue lexica Lt.
In other words, we hypothesize that the way lexical items are connected and
clustered in a dialogue lexicon informs about the status of the corresponding
direction giving. If this is true, it should be possible to utilize complex network
theory [13] to represent dialogue lexica by topological indices that are finally
input to unsupervised learning of the class of effective and ineffective directions.



398 Z. Hai, K. Chang, and J.-j. Kim

This is the way, we proceed in this paper. More specifically, we apply Quanti-
tative Network Analysis (QNA) [14,15] to represent and classify dialogue lexica
by means of complex network theory. In the present area of application, QNA
involves three steps of modeling:

1. Quantitative graph modeling : initially, each dialogue lexicon is represented
by a vector of topological indices that model its network structure.

2. Feature selection: in the next step, a genetic search is performed to find
salient features within the vectors that best separate effective and ineffective
dialogues. Note that this process of feature selection may stop at a local
maximum as it does not necessarily find an optimal feature subset.

3. Classification: based on the appropriately projected feature vectors, a hier-
archical agglomerative clustering is performed together with a subsequent
partitioning that is informed about the number of target classes. We use
complete linkage together with the Mahalanobis distance to perform this
step. Note that we use MATLAB to make any of these computations. Note
also that the Mahalanobis distance is used to handle correlations between
features.



Implicit Feature Identification via CoAR Mining 399

To sum up, QNA takes the set of input dialogues together with the parameter
space of linkage methods and distance measures to find out the feature subset
that best separates the data according to the underlying classification. In the
present study, we utilize a subset of indices of complex network theory together
with a subset of indices that were invented to model dialogue lexica [5]. See [5]
and [15] for a summary of this quantitative graph model. All in all, 50 topological
indices were computed per input dialogue to model its structural characteristics.
Note that we exclude simple frequency oriented indices (e.g., the number of
vertices or edges). In Section 4, we discuss eight instantiations of this model by
experimenting with a set of 25 dialogues about directions.

4 Experimentation

4.1 Data

The speech data the TiTAN model is applied to are taken from the Bielefeld
Speech and Gesture Alignment Corpus (SaGA) [3]. The primary data of the
SaGA corpus are made up of 25 direction dialogues. After finishing a simulated
bus ride through a virtual town, one participant explains the route taken and
some sights passed to a second participant.

Video and audio recordings were made of the experiments, and on their basis,
an orthographic transcription of speech on the level of words has been created.
Typical phenomena of spontaneous speech (for example, clitics, elisions, assim-
ilations, and spontaneous neologisms) were transcribed according to guidelines
in order to ensure consistency.

These transcriptions were tagged with part-of-speech and lemma information
by a system consisting of the eTagger of the eHumanities Desktop [16], a central
trigram HMM tagger that has been trained on the German Negra Corpus.3 The
Stuttgart-Tübingen Tag Set (STTS, cf. [17]) was used, along with pre- and post-
processing mechanisms that are specialized in the handling of the phenomena of
spoken language mentioned above. Preprocessing methods map recurring word
form variants to their standardized counterparts before tagging. Postprocessing
mechanism apply several heuristics to unrecognized words that help to identify
neologisms – for example those that had been constructed from two or more
known words (e.g., “Peitschenlampe‘” – whip lamp, constructed from the nouns
“Peitsche” / whip and “Lampe” / lamp). Still, there were word forms that could
not be detected or handled automatically. These tokens have been manually
corrected after applying the tagger.

Since we are not concerned with well-formedness or related grammatical no-
tions, but rather with regularites of word use, the syntactically fine-grained POS
of the STTS are too detailed. Thus, we mapped the STTS onto the functionally ba-
sic types N(oun), V(erb), ADJ(ective), ADV(erb) JUNC(tors), PREP(ositions),
DET(erminers), PRO(nouns), and PART(icles). A fourth type, called REST, col-
lects the remainder of POS like interjections and fragments. These basic categories
are used in the construction of dialogue lexica.
3 http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/
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Fig. 1. Overview of the virtual SaGA town, with topics marked

For the construction of a TiTAN series, information about turns and their
respective topic are required. As a consequence, the turn boundaries needed for
the construction of a TiTAN were annotated manually for all of the 25 dialogues.
The topics we acknowledge are derived from the stages of the route through the
virtual town of the primary data. The SaGA town and its 12 stages (topics) are
shown in Figure 1. In addition, there is a 13th topic called SaGA which indicates
turns that are about (large parts of) the whole virtual town. The label META
is used to classify turns that do not relate to the route, but rather negotiate
discourse issues or interpersonal concerns.

Each dialogue has been rated with respect to whether the interlocutors con-
verge on a suitable description of the SaGA route. The criterion is whether the
addressee has been put into the position to find the way from the sculpture to
the fountain without going astray. We distinguish three cases or classes: 1. The
direction is correct; 2. The direction is partially correct, but sufficient for the
purpose to cross the SaGA town; 3. The direction is full of holes and useless.
If, for instance, a participant mistakes the conifers in the park for leaf trees but
apart from that gives a right direction, the dialogue is classified into the second
class. Class 1 and 2 are grouped together into “correct” directions. In sum, there
are 17 wrong and 8 correct directions. For each of these 25 dyads, a separate
dialogue lexicon network has been built according to Section 3.

One might object that the occurrence of alignment is independent from the
validity of the given direction. Note, however, that the classification of dialogues
is not concerned with their correctness in the first place. In particular class 2
above accounts for directions that are false strictly speaking, but nonetheless
carry enough information to let the addressee find the way. Finally, the class 3
dialogues are clearly faulty. So what is the root of the matter? [1, p. 172] empha-
size that “alignment of situation models is central to successful dialogue”. No
matter whether the situation models are correct or not, a precondition is that the
dialogue participants have situation models at all! There are reasons to assume
that this is the problem with class 3 dialogues. The direction givers’ models of
the SaGA town are fragmentary – the models contain gaps. It is questionable
whether fragmentary models can be conceived of as situation models at all. As it
stands, we are aware of these theoretical obstacles, but regard our classification
approach as feasible.

4.2 Evaluation

In this section, we describe the experimental scenarios by which we test our
classification hypothesis introduced in Section 3. This hypothesis says that the
efficiency of a direction giving in dialogical communication can be detected based
on the topology of the final state of the corresponding dialogue lexicon. As
described in Section 3, we test this hypothesis in the framework of Quantitative
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Network Analysis (QNA). More specifically, we test 8 different variants of this
hypothesis (as summarized in Table 1):

– Variant [N ]: we start with considering nouns only. The idea behind this
approach is that nouns are mainly used by interlocutors to refer to the
reference universe of the direction giving – see the entities of the virtual SaGA
town marked in Figure 1. We expect that the efficiency of directions is more
easily identified by means of the nominal subnetworks of the corresponding
dialogue networks.

– Variant [N |A], [N |V ] and [N |V |A]: alternatively, we experiment with ad-
ditionally considering adjectives and verbs. The reason to take these POS
into account is that many of their instances have a descriptive meaning in
relation to the reference universe of the direction giving (as, e.g., the verb to
turn in Turn to the left).

In addition to these four variants, we consider those subnetworks that exclude
words with a meta-communicative function (see the Rows 1–4 and the column
Meta, which codes whether words are included that are tagged by META ac-
cording to Section 4.1). These are words (as, e.g., to think in Let me think)
that do not have a referential meaning regarding the reference universe of the
direction giving, but serve, for example, to organize the dialogue. In our cor-
pus of 25 direction givings, we have annotated 5,561 word forms with a meta-
communicative function in relation to the overall set of 45,190 word forms that
we were manually annotated. Thus, more than 10% of the word forms were used
for meta-communicative reasons. From this perspective, one may expect an effect
of excluding or including this class of words.

Table 1 summarizes the results of our findings. It shows that the best per-
forming variant is based on selecting nouns without any meta-communicative
function (see Row 1). This variant produces an F -score of more than 96%. The
F -score (or F -measure) is the harmonic mean of recall and precision of the com-
puted classification in relation to the correct classification of the data into 17
ineffective and 8 effective dialogues. An F -score of 96% means that nearly all
dialogues have been classified correctly. If we additionally consider verbs, the
F -score decreases to 92% (Row 2). The loss of classification is even higher if we
separately consider the network of adjectives and that of verbs and adjectives
(Row 3 and 4). Thus, although adjectives and verbs have denotational meanings
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Table 1. Summary of the results of differently parameterized Quantitative Network
Analyses (QNA). Row no. 9 shows the average F -score of these variants. The last col-
umn denotes the number of features output by the genetic search of the best performing
subset of features as part of QNA (see Section 3).

No. Setting Meta Procedure F -score Features

1. [N ] yes QNA .96057 16 / 50
2. [N |V ] yes QNA .92 18 / 50
3. [N |A] yes QNA .91651 20 / 50
4. [N |V |A] yes QNA .88171 21 / 50

5. [N ] no QNA .92194 21 / 50
6. [N |V ] no QNA .87771 18 / 50
7. [N |A] no QNA .88171 22 / 50
8. [N |V |A] no QNA .91651 24 / 50

9. average over non-random approaches .9096 20

10. random baseline known-partition .58668
11. random baseline equi-partition .58583

in the dialogues analyzed here, they do not help to separate the class of effective
and ineffective direction givings to the same degree as nouns only.

These results seem to be contra-intuitive. Denotations of orientations and
movements should be key ingredients of a successful direction giving. However,
they are relational in character as they depend on the things they relate. Re-
garding situation models, a precondition for relational specification is that the
objects in question are (correctly) spread out on the mental model. This in turn
requires that the objects are available to the interlocutor. Objects are typically
denoted by nouns or noun phrases. If the direction giver can name the things
he wants to talk about, he can relate them to each other or to the direction fol-
lower. Thus, correct [N |V |A]-dialogues depend on correct [N ]-dialogues. Besides
this logical relationship, however, verbs, and adjectives may be the source for
errors beyond nominal expressions. The decreasing F -score of [N |V |A], [N |V ],
and [N |A] variants in comparison to the [N ] variant is very probably due to the
asymmetrical status of the [N ] partitions of the dialogues in relation to their
adjective- and verb-based partitions.

What happens if we additionally consider words with meta-communicative
functions? As shown by the rows 5 through 8 in Table 1, there is a negative
effect of including meta-communicative words. However, the differences being
observed are rather marginal so that we conclude that there is only a small
effect of either including or excluding this class of words. Meta-communicative
acts typically provide information that the addressee has either understood the
direction or that he could not follow. Thus, meta-communicative turns are used
to convey a sort of binary information. As this information does not relate to
the direction proper, it may be the reason for the lack of classificatory power
being observed.
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In order to further assess the quality of our results, we computed two random
baselines (Row 10 and 11 in Table 1): the baseline called known-partition has
information about the number of instances of the target categories. That is, by
knowing that there are 17 ineffective and 8 effective dialogues, this baseline ran-
domly generates two subsets of these cardinalities to compute the corresponding
F -score. By repeating this procedure 1,000 times, we get an expected F -score
of about 58%. This score is a little bit smaller if we consider the second random
baseline that assumes equal sizes of the target categories (in our case 12 and 13).
Obviously, all topology-related classifiers clearly outperform these two baselines.
Thus, we can conclude, at least until any future falsification, that the efficiency
of a direction giving is encoded into the structure of its dialogue lexicon.

5 Conclusion

In this paper, we applied Two-Layer Time-Aligned Network (TiTAN) series in
the context of direction givings. Based on this graph model, we implemented
several classifiers that solely explore the structure of dialogue lexica to assess
their efficiency. By example of a corpus of 25 dialogues, we have shown that
topological indices of dialogue lexica can indeed reveal this status. We also ob-
served that lexical units with meta-communicative functions have a small effect
on classification. This is in support of the observation that lexical manifestations
of dialogue organization have a some impact on the efficiency of direction givings.
Furthermore, we observed that the networking of nouns has the highest classifi-
catory power, while the subnetworks of adjectives and verbs are less informative.
One reason for this finding may be the outstanding referential meaning of nouns
in conjunction with their semantic specificity. There are several POS that we did
not consider here. Apart from adverbs, this relates to instances of closed POS.
In future work will consider these classes and their role in the organization of
dialogue lexica too.
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Abstract. Currently, we can find a lot of weblogs written by young
people. In the weblogs, they tend to describe their undiluted emotions
or opinions. To analyze the emotions of young people and what causes
those emotions, our study focuses on the specific Japanese language used
among young people, which is called Wakamono Kotoba. The proposed
method classifies Wakamono Kotoba into emotion categories based on su-
perficial information and the descriptive texts of the words. Specifically,
the method uses literal information used for Wakamono Kotoba, such as
Katakana, Hiragana, and Kanji, etc., stroke count, and the difficulty level
of the Kanji as features. Then we classified Wakamono Kotoba into emo-
tion categories according to the superficial similarity between the word
and the Wakamono Kotoba registered in the dictionary with an annota-
tion of its emotional strength level. We also proposed another method
to classify Wakamono Kotoba into emotion categories by using the co-
occurrence relation between the words included in the descriptive text of
the Wakamono Kotoba and the emotion words included in the existing
emotion word dictionary. We constructed the Wakamono Kotoba emo-
tion dictionary based on these two methods. Finally, the applications of
the Wakamono Kotoba emotion dictionary are discussed.

Keywords: Wakamono kotoba, emotion dictionary, emotion corpus.

1 Introduction

Currently, a variety of languages are used to convey text information on the
Internet. Internet terminology is an example and it is usually used only on the
Internet. Another example is Wakamono Kotoba, a Japanese language used by
the younger generation ranging from teenagers to those in their late 20’s. They
are also frequently used on the Internet. Without processing Wakamono Kotoba
correctly, it would be difficult to extract the living opinions of younger people
from the information on the Web. To precisely recognize Wakamono Kotoba in
a sentence, it is necessary to register these words in the dictionary. However, the
process is not efficient.

Therefore, technology to automatically recognize unknown Wakamono Kotoba
words from a sentence and to analyze such words semantically would be useful.

A. Gelbukh (Ed.): CICLing 2011, Part I, LNCS 6608, pp. 405–416, 2011.
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Unknown word processing is an important research topics in the field of nat-
ural language processing. Unknown words have been analyzed based on the su-
perficial features such as the type of character (Katakana, Hiragana, Kanji, etc.)
or the word examples [1–4]. However, even though an unknown word can be
recognized and classified into rough categories, it is still difficult to classify those
words semantically.

In this paper, we propose a method to estimate the emotions expressed with
Wakamono Kotoba and consider the possibility of using the method to estimate
the writer’s emotion from sentences that include unknown words that are not
registered in the analytical dictionaries, such as Wakamono Kotoba words.

1.1 Existing Research

There is already a lot of research dealing with Wakamono Kotoba, especially
in the field of linguistics, [5] but not in the field of engineering. Harada et al.
[6] studied the technology to generate Wakamono Kotoba words from existing
words. Their method can create new Wakamono Kotoba words by abbreviating
existing words according to a rule. However, Wakamono Kotoba is much affected
by the time period background and has various types; therefore, a simple rule
cannot cover the various kinds of Wakamono Kotoba.

Matsumoto et al. [7] collected sentences that included Wakamono Kotoba and
constructed an emotion corpus. They conducted an experiment to estimate emo-
tion from the sentences that included Wakamono Kotoba based on the emotion
corpus. Emotion can be estimated from the sentences that include Wakamono
Kotoba words that are in the corpus; however, there is a problem in that emo-
tion cannot be estimated from the sentences that include new Wakamono Kotoba
words that are not in the corpus. While Wakamono Kotoba words are being cre-
ated every day, many of them are disappearing. Therefore it is inefficient to
register all Wakamono Kotoba in a dictionary.

In this paper, we conducted a questionnaire to identify the emotions of the
active Wakamono Kotoba and constructed a basic Wakamono Kotoba dictionary
based on the questionnaire results. With this dictionary, we proposed a method
to estimate the emotions of the Wakamono Kotoba words not registered in the
dictionary.

1.2 The Definition of Wakamono Kotoba

In this paper, we define Wakamono Kotoba as follows:

(A) Words introduced in commercially available books or Web pages as Waka-
mono Kotoba.

(B) Words often used on the Web.

We identified words satisfying both the (A) and (B) conditions as Wakamono
Kotoba.

To fulfill condition (A) words shown in dictionaries of slang words or new
words were chosen as Wakamono Kotoba candidates. Then, to fulfill condition
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(B), these candidate words were searched using Yahoo! Blog search1 and sorted
in order of the search results (hit frequency), and, finally, the words ranked over
the median were defined as Wakamono Kotoba. The median me of the search hit
frequency is calculated by Equation 1. m indicates the rank in the hit results, n
shows the total number of words, and Xm and Xm+1 describe the hit numbers
of the words ranked m-th and (m + 1)-th. Only the words ranked over the me
were used in this study.

me =

{
Xm if n is odd : m = n + 1

2
Xm + Xm+1

2 if n is even : m = n
2

(1)

2 Wakamono Kotoba Emotion Dictionary

The Wakamono Kotoba emotion dictionary that we created includes annota-
tions of emotional strength for each Wakamono Kotoba with four-dimensional
vector. Table 1 shows a part of the dictionary. For example, the Wakamono Ko-
toba word “Nenige” expresses the emotion of the vector [0,-3,-1,0]. This means
that the word conveys the emotion of Hate with 3 degree and Sadness with 1
degree.

In this study, we used eight basic kinds of emotions identified by Plutchik [8],
such as “Anticipation,” “Surprise,” “Trust,” “Hate,” “Joy,” “Sadness,” “Fear”
and “Anger” and defined four kinds of opposing emotional pairs with a four-
dimensional vector. This dictionary can be used to estimate the emotion of a
sentence that includes Wakamono Kotoba and as training data to estimate the
emotion of an unknown or new Wakamono Kotoba word.

The dictionary was constructed in the following steps:

1) Selection of Wakamono Kotoba
Words satisfying both conditions (A) and (B) were registered in the list as
Wakamono Kotoba.

2) Judgment of Part of Speech The part speech of each Wakamono Kotoba was
manually judged.

3) Questionnaire to estimate the emotion of each Wakamono Kotoba word
A questionnaire was used to ask if the examinees know the Wakamono Ko-
toba word and what emotion each Wakamono Kotoba expresses.

4) Registration of Wakamono Kotoba in the dictionary
Based on the result of the questionnaire, the emotion vector is annotated
for each Wakamono Kotoba, and the words are registered in the Wakamono
Kotoba emotion dictionary.

We used the questionnaire to ask two examinees about the emotions of Waka-
mono Kotoba words.

1 http://blog-search.yahoo.co.jp/
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Table 1. Example of Wakamono Kotoba emotion dictionary

Word
Anticipation Trust Joy Fear

� � � �
Surprise Hate Sadness Anger

nenige 0 -3 -1 0
rasukaru 0 -1 0 0
chapatsu 0 -2 0 0

3 Proposed Method

3.1 Emotion Estimation Method Based on Superficial Feature of
Wakamono Kotoba

One of the features of the Wakamono Kotoba used by young people is the humor
of the impressions of the words; [9–11] such words are often spoofs of known
words. For this reason, we thought that, if the superficial features were similar,
the emotional impressions would also be similar between the words.

Examples of Wakamono Kotoba’s superficial features and their emotional im-
pressions are described below.

Ex.1 Recently, I am Yaseborikku (getting slim).
Ex.2 Recently, I am Honeborikku (getting bony).

“Yaseborikku” in Ex. 1 means people who are thin, and “Honeborikku” in Ex.
2 means big-boned or bony. These two words are similar in usage; however,
their meanings are different. Both “Yaseborikku” and “Honeborikku” are Waka-
mono Kotoba words, derived from “Metaborikku,” which is the abbreviation for
metabolic syndrome, and both words share negative impressions (getting bony).

That is, words derived from words with negative impressions tend to take on
the negative impressions of the original words. In this study, we focused on the
superficial similarity based on the hypothesis that words with similar superfi-
cial features would share similar emotions. We supposed that the literal features
would affect the impression of physical appearance and that the pronunciation
(reading) feature would affect the auditory impression. Therefore, we also de-
cided to use pronunciation (reading) information as a feature. The superficial
information used for estimation is as follows:

f1: Number of characters
f2: Sum of the stroke counts of the characters
f3: Sum of the difficulty level of the Kanji characters
f4: Number of Hiragana
f5: Number of Katakana
f6: Number of letters
f7: Number of numeric characters
f8: Number of Kanji characters
f9: Sum of the stroke counts of readings
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The similarity degree between each superficial feature is calculated by the co-
sine similarity (shown in Equation 2), which is often used for vector similarity
calculations.

V1 and V2 are the feature vectors consisting of the features f1 to f9 that are
extracted from the Wakamono Kotoba.

Sim cos(f1, · · · , f9) =
V1 · V2

|V1| × |V2| (2)

Some of the common approaches to calculate superficial similarity are char-
acter N-gram or edit distance. We decided to use two kinds of cosine similari-
ties: 1) character bi-gram(Sim bi gram) and 2) pronunciation (reading) bi-gram
(Sim read bi gram). We also used the Jaro-Winkler Distance [12](Sim jwd) of
the character type. We used the Jaro-Winkler Distance because the method can
reflect more detailed difference than the Levenstein Distance with respect to
similarity.

The final similarity is calculated by Equation 3 as the sum of these similarities.
When the emotion vector annotated for the Wakamono Kotoba maximizes the
value of Equation 3, the vector is identified as the emotion vector of the inputted
Wakamono Kotoba (see Fig. 1).

Sim = Sim cos(f1, · · · , f9) + Sim bi gram

+Sim read bi gram + Sim jwd (3)

Inputted 

Word

Extract 

superficial 

features

Create 

character 

bi-gram list

Create 

reading 

bi-gram list

Create 

character 

type list

Training Data
(WakamonoKotoba

Emotion Dictionary)

Sim_cos Sim_bi_gram

Wakamono

Kotoba

Sim_read_bi_gram Sim_jwd

Fig. 1. Flow of calculating similarity of Wakamono Kotoba

3.2 Emotion Estimation Based on Semantic Information

From the superficial features of Wakamono Kotoba, we might judge that the
emotions are similar only if the characters used or the number of characters in
the word are similar. However, even though their characters or pronunciation are
the same, many words express different meanings, causing ambiguity in the word
senses. Therefore, we proposed a method to calculate an emotion vector using
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the relation of the content words included in the descriptions for the Wakamono
Kotoba and the basic emotion word. Following is the description for the Waka-
mono Kotoba word “Muchaburi.”

“Muchaburi” (2007) · · ·
A type of lead-in to a joke with a planned punch line, where the person who
composes the sketch gradually builds up the joke differently from the prepared
one and forces the final punch line to the other person in a screwed-up condition
· · ·. (Japanese Slang Dictionary2)

In this example, the descriptions of the Wakamono Kotoba word includes
words explaining their meanings or situations of use.

Therefore, we considered the relation between the words included in the de-
scription and the emotion words to estimate the emotion of the Wakamono Ko-
toba. The MI-score is a co-occurrence scale calculated with the word frequency
in the corpus as the denominator. MI-score which is co-occurrence scale is cal-
culated with frequency of word in whole corpus as denominator. Because the
interpretations for Wakamono Kotoba are usually not so long, the co-occurrence
rate between the words used in the interpreations and the basic emotion words
is expected to be low. As the result, the value of the MI-score would become
low and it would be difficult to recognize the distinctive difference among each
MI-score. Therefore, we thought that the MI-score method was not effective for
our experiment. If we use this scale, because that if the co-occurrence between
the word include in interpretation and basic emotion word, the MI-score value
become extremely low, the method is not effective.

We used a contextual similar word database [13] as an index to judge the
similarity of the contexts where the words were used. This database listed a
maximum of 500 words in descending order of the contextually similarity used
on the Web to one million words. Table 2 shows an example of the basic emotion
words. These words were extracted from a Japanese-English parallel corpus[14,
15], from which a maximum of 10 kinds of typical words were selected for each
emotion category.

The flow of emotion estimation using the relation degree of the words in the
description of the Wakamono Kotoba word and the basic emotion words is as
follows:

Step 1. Each description of a Wakamono Kotoba word is divided into mor-
phemes and classified as content words or the function words.

Step 2. According to the results of Step 1, a content word vector is created for
each Wakamono Kotoba word.

Step 3. The set of contextually similar words included in each word in the ba-
sic emotion word list is extracted from the contextually similar word
database. Then the top 100 or 200 words in each set of the contextually
similar words are set as the relation word vector CW (EWj).

2 http://zokugo-dict.com/
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Table 2. Example of basic emotion words

Emotion Category Words
Anticipation tanoshimi, kitai, kibou, etc.

Surprise azen, bikkuri, kyotan, etc.
Trust shinyu, doui , koui, okiniiri, suki, taisetsu, etc.
Hate keishi, urusai, kirai, hinann, etc.
Joy kofuku, arigato, tanoshii, shiawase, egao, etc.

Sadness shitsuren, rakutan, namida, hikan, etc.
Fear sakuran, touwaku, shinpai, osoroshii, etc.

Anger kennka , gekido, hysteria, fungai, rippuku , etc.

Step 4. By extracting the top 100 or 200 words from the set of the contextually
similar words, the relation word vector CW (KWj) is created for the
content word vector of each Wakamono Kotoba word.

Step 5. The relation degree score (ej) is calculated based on the number of
corresponding words in between the relation word vectors of the content
words and the basic emotion words (Equation 4).

ej =
|CW (KWi) ∩ CW (EWj)| × 2
|CW (KWi)| + |CW (EWj)| (4)

Step 6. An emotion vector is created based on the relation degree score.

Equation 5 shows how to convert to the four-dimension emotion vector. The
function of sgnMax returns a signed value of the larger absolute value in either
en or em . The sign for Anticipation, Trust, Joy, Fear is set as plus (+), and the
sign for Surprise, Hate, Sadness, or Anger is set as minus (-).

En,m =
sgnMax(|en|, |em|)
|en|+ |em| × 3 (5)

4 Experiment for Emotion Determination of Wakamono
Kotoba

In this section, the evaluation experiments were conducted for two kinds of
emotion estimation for Wakamono Kotoba: 1) using superficial features and 2)
using semantic information.

The targets for evaluation were 756 Wakamono Kotoba words with annotated
emotion vectors identified using the questionnaire. The evaluation was conducted
by calculating how much the output emotion vector corresponds with the emo-
tion vector as the correct answer. Match score of EV and EV ’ is calculated with
Equation 6.

MatchScore(EV, EV ′) =
∑4

i=1 Weight(ei, e
′
i)

4
(6)
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The function of weight returns the weight according to each matching pattern.
Table 3 shows the matching patterns and the corresponding weights.

Table 3. Matching patterns and correspondent weights

Matching Pattern Weight(ei, e
′
i)

The sign of ei is ei = e′i = 0 0.5
same as ei = e′i �= 0 1.0

the sign of e′i ei �= e′i 3/(|ei − e′i|+ 1)
The sign of ei is different from the sign of e′i 0

4.1 Preliminary Experiment: Evaluation of Polarity Estimation

As a preliminary experiment, we evaluated the performance of the estimation of
emotion polarity: positive, negative, and neutral. Positive emotions are Antici-
pation, Joy, and Trust. Negative emotions are Sadness, Hate, Fear, and Anger.
A neutral emotion is Surprise.

In the method based on superficial features, we sorted Wakamono Kotoba in
order of the superficial similarity, focused on the top k-th and evaluated the most
frequent polarity as the estimation result (k-nearest neighbor method). Leave-
one-out Cross Validation was used as the experiment method. Fig. 2 shows the
estimation result when k was changed from 1 to 50. Table 4 shows the estimation
accuracy of the emotion polarity when the semantic information was used.
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A was used for a training data in test 1 and 3, and for a test set in test 1 and 2. 
B was used for a training data in test 2 and 3, and for a test set in test 3. 

Fig. 2. Result of polarity estimation ( use superficial features )
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Table 4. Result of polarity estimation (use semantic information)

top100 top200

Accuracy (%) 35.88 37.07

4.2 Experiment 1: Superficial Features

We set the correct threshold value of the MatchScore for each condition and
conducted experiments based on the superficial features of Wakamono Kotoba.
Leave-one-out Cross Validation was used as the experiment method. Table 5
shows the accuracy in each experiment condition when the correct threshold
was set as 0.5.

Table 5. Accuracy of emotion estimation ( MatchScore Threshold 0.5 )

Test no. Test data / Train data Feature Accuracy(%)

test 1 A / A

Character bi-gram 34.4
Read bi-gram 33.2

f1 − f9 38.2
All features 49.5

test 2 A / B

Character bi-gram 32.6
Read bi-gram 31.4

f1 − f9 36.1
All features 46.7

test 3 B / A

Character bi-gram 31.5
Read bi-gram 30.2

f1 − f9 34.6
All features 44.2

The experimental results by each feature are shown in Fig. 3. These figures
showed that the best result was obtained in test 1. The result might indicate
that the training data and the test data were created by the same examinee.

We obtained a better result in test 2 (using A as the test set) than in test 3
(using B as the test set). Because the number of Wakamono Kotoba annotated
emotion vectors was larger in test data A than in the test data B, the emotion
vector given by the examinees varied greatly. As result, test data A might have
become unfit as training data.

The experimental results showed that higher accuracy was obtained when
superficial features other than character bi-gram or reading bi-gram were used.
In fact, features such as the character type and its stroke count, difficulty level,
and reading information played important roles in estimating the emotion of
Wakamono Kotoba.
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Fig. 3. Result of emotion estimation ( use superficial features )

4.3 Experiment 2: Semantic Information

Fig. 4 shows the results of the experiment using description vectors. The accu-
racy rates using the top 100 contextually similar words and using the top 200
contextually similar words did not show a distinctive difference.

However, the result from using the top 100 words was higher than the result
from using the top 200 words when the threshold value of MatchScore was low.
In total, the accuracy of the method using the superficial features was higher
than another method using the semantic information.
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Fig. 4. Result of emotion estimation ( use semantic information )
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5 Discussion

From the experimental results, we found that it was difficult to use semantic
information effectively because many Wakamono Kotoba words had complex
meanings, so the description often included noise words.

On the other hand, using the superficial features, our method estimated the
emotion of Wakamono Kotoba words with a certain level of accuracy. However,
when the correct threshold of MatchScore was 0.6 to 0.7, the accuracy was
higher in the method using semantic features.

If the training data of Wakamono Kotoba is classified in advance according to
the semantic features, the accuracy might be higher than in the method using
only superficial features.

6 Application for Emotion Estimation from Sentences

Our Wakamono Kotoba emotion estimation method can be applied to the emo-
tion estimation of a sentence that includes Wakamono Kotoba.

First, Wakamono Kotoba is extracted from the inputted sentence. After the
emotion of the extracted Wakamono Kotoba is estimated, the emotion is esti-
mated from the other parts of the sentence excluding the Wakamono Kotoba,
using the existing method (word-based or grammar-based). By integrating the
two results, it will be possible to estimate the sentence emotion with higher
accuracy than with the existing method.

7 Conclusion

In this paper, we proposed two types of emotion estimation methods for Waka-
mono Kotoba using superficial features and semantic information and then con-
ducting the evaluation experiments. According to the experimental results, the
method using superficial feature was more effective for emotion estimation than
the method using semantic information. The results also suggested that our
method would be applicable for emotion estimation from the sentences that in-
clude unknown Wakamono Kotoba because our method was effective to estimate
emotion with a certain accuracy without considering the sense of the Wakamono
Kotoba.

On the other hand, to make the process applicable to unknown Wakamono
Kotoba, it is also necessary to detect Wakamono Kotoba in the sentence auto-
matically. Because it is difficult to judge whether a word is Wakamono Kotoba
or another unknown word without background information, in the future, we
would like to propose a method to judge whether a word is Wakamono Kotoba
or not automatically using the appearance log or user profile on weblogs.
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Abstract. In recent years, extraction of temporal relations for events that 
express sentiments has drawn great attention of the Natural Language 
Processing (NLP) research communities. In this work, we propose a method 
that involves the association and contribution of sentiments in determining the 
event-event relations from texts. Firstly, we employ a machine learning 
approach based on Conditional Random Field (CRF) for solving the problem of 
Task C (identification of event-event relations) of TempEval-2007 within 
TimeML framework by considering sentiment as a feature of an event. 
Incorporating sentiment property, our system achieves the performance that is 
better than all the participated state-of-the-art systems of TempEval 2007. 
Evaluation results on the Task C test set yield the F-score values of 57.2% 
under the strict evaluation scheme and 58.6% under the relaxed evaluation 
scheme. The positive or negative coarse grained sentiments as well as the 
Ekman’s six basic universal emotions (or, fine grained sentiments) are assigned 
to the events. Thereafter, we analyze the temporal relations between events in 
order to track the sentiment events. Representation of the temporal relations in a 
graph format shows the shallow visual realization path for tracking the 
sentiments over events. Manual evaluation of temporal relations of sentiment 
events identified in 20 documents sounds satisfactory from the purview of 
event-sentiment tracking.  

Keywords: Temporal Relations, CRF, TempEval-2007, TimeML, Sentiment Event, 
Visual Tracking. 

1   Introduction 

The kinds of states which change and thus might need to be located in time are 
referred as events in the present context. The event entities are represented by finite 
clauses, nonfinite clauses, nominalizations, event-referring nouns, adjectives and even 
some kinds of adverbial clauses. In general, the events are described in different 
newspaper texts, stories and other important documents where occurrence time of 
events, temporal location and ordering of the events are specified. Several earlier 
methods have been proposed for detecting and tracking events from text archives [1].  
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On the other hand, text does not only contain informative contents, but also some 
attitudinal private information, including emotional states. Human emotion described 
in texts is an important cue for our daily communication too. But, the identification of 
emotional states from texts is not an easy task as emotion is not open to any objective 
observation or verification [2]. Nowadays, in the Natural Language Processing (NLP) 
communities, several research activities on sentiment and/or emotion analysis are in 
full swing. Sentiment of people is important as it has great influence on our society. 
Our main motivation to investigate the insides of event-sentiment relation lies with 
the facts that though events and sentiments are closely coupled with each other from 
social, psychological and commercial perspectives, there has been very little attention 
regarding their detection The identification of the temporal relations between two 
events by taking the sentiment feature into account is also crucial to analyze and track 
human sentiments. This is also important in a wide range of other NLP applications 
that include temporal question answering, document summarization, current 
information retrieval systems etc.  

Mishne and de Rijke [3] proposed a system, MoodViews1 to analyze the temporal 
change of sentiment. MoodViews analyzes multiple sentiments by using 132 
sentiments used in LiveJournal2. Although our concept for the sentiment graph is 
similar to MoodViews, we focus on temporal relations between events associated with 
similar or different types of sentiments. With respect to information visualization, 
Havre et al. proposed a system called ThemeRiver [4] that visualizes thematic flows 
along with timeline. Although our approach is different from ThemeRiver, we focus on 
visualization of sentiment flows on events based on temporal expressions. The 
temporal sentiment identification from social events has been carried out in [5]. In their 
task, the authors have analyzed the temporal trends of sentiments and topics from a text 
archive that has timestamps in Weblog and news articles and produces two kinds of 
graphs, topic graph that shows temporal change of topics associated with a sentiment 
and sentiment graph that shows temporal change of sentiments associated with a topic. 
In contrast, our present task incorporates the knowledge of temporal relations (e.g. 
AFTER, BEFORE, OVERLAP) instead of timestamps for temporal sentiment 
tracking. In addition to that, we also analyze the role of sentiment in identifying 
temporal relations between the events.  

Let us consider the following example: 

 “The prime minister of India told Friday that he has talked with top commander of 
Indian military force and sent a team to recover the host of Taj Hotel hijacked.”  

For example, in the above sentence, the native speakers can quickly identify the 
ordering of the three events, namely ‘hijacking’, ‘talking’ and ‘sending’ as: 
hijacking  talking sending even though the temporal relations such as ‘before’, 
‘after’ or ‘overlap’ never appeared in the text. But, the above example also shows the 
presence of underlying sentiments (as shown in underlined script) scribed in the 
sentence. The TempEval-2007 challenge addressed the question of identifying 
temporal relations by using a common corpus on which research systems competed to 
find temporal relations [6]. Our present aim is not only to identify the temporal 

                                                           
1 http://moodviews.com/ 
2 http://www.livejournal.com/ 
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relations from the events but also to identify the sentiments associated with the 
events, to determine the contribution of sentiment in identifying temporal relations as 
well as to track the sentiments over the events based on temporal relations. 

The present system identifies temporal relations between the events by considering 
the contribution of the sentiment property into account. We propose a machine 
learning approach based on Conditional Random Field (CRF) [7] for solving the 
problem of Task C (identification of event-event relations) of TempEval-2007 within 
TimeML framework. The task is to identify the temporal relations between the events 
that occur in two consecutive sentences and to classify the event pairs into their 
respective temporal classes. Incorporating sentiment property into the set of other 
standard features, the proposed system outperforms all the participated state-of-the-art 
systems of TempEval 2007 with the F-score values of 56.87% under the strict 
evaluation scheme and 59.20% under the relaxed evaluation scheme. The positive or 
negative coarse-grained sentiments as well as the Ekman’s [8] six basic universal 
emotions or fine-grained sentiments (happiness, sadness, anger, fear, surprise and 
disgust) are assigned to the events. Based on the temporal relations, the events from 
each of the documents are represented using a graph that shows the shallow path for 
identifying the sentiment changes over events. Manual evaluation of temporal 
relations of sentiment events identified in 20 documents sounds satisfactory from the 
purview of event-sentiment tracking. 

The rest of the paper is organized as follows. Section 2 describes the sentiment 
based temporal relation identification using CRF. The evaluation schemes and results 
are discussed in Section 3. The tagging of the events with sentiments, generation and 
tracking of the event-sentiment relational graph and the evaluation of the event-
sentiment tracking system along with the associated results are discussed in Section 4. 
Finally Section 5 concludes the paper. 

2   CRF Based System for Identifying Temporal Relations  

The Task C at TempEval-2007 was involved with the automatic identification of 
temporal relations holding between verb events in adjacent sentences. There are two 
types of events such as, main-event and sub-ordinate event. The main-event is 
determined from multiple sentences by following very shallow, syntactic-based 
criteria within the scope of a sentence. It has been observed that syntactically 
subordinate events are dominated by main-event in coordination relations and the 
main-event is the first one in the sentence string. The events expressions were 
annotated in the source in accordance with the TimeML standard [9]. For all the tasks, 
data were provided for training and testing that includes annotations identifying: (1) 
sentence boundaries, (2) all temporal referring expression as specified by TIMEX3, 
(3) all events as specified in TimeML and (4) selected instances of temporal relations, 
as relevant to the given task. For task C, a restricted set of event terms, whose stems 
occurred twenty times or more in the TimeBank corpus, was identified. This set is 
referred to as the Event Target List or ETL. Furthermore, only the event expressions 
that occur within the ETL are considered. In the training and test data, TLINK 
annotations for these temporal relations are provided. The only difference being that 
in the test data the relation type is withheld.  
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2.1   Pair-Wise Classification Using CRF  

In the present approach, the identifications and classifications of temporal relations 
are based on a supervised machine learning algorithm, Conditional Random Field 
(CRF) that can include arbitrary set of features and still can avoid over fitting in a 
principled manner. We consider the temporal relation identification task as a pair-
wise classification problem in which the EVENT target pairs are modelled. In the 
present task, we report only Task C that identifies temporal relations between the 
events that appear in two adjacent sentences. The events and temporal expressions 
(TE) were annotated in the source in accordance with the TimeML standard [9]. The 
set of temporal relations to be predicted includes: OVERLAP, BEFORE, AFTER, 
BEFORE-OR-OVERLAP, OVERLAP-OR-AFTER and VAGUE.  

The main advantage of CRF is the assumption of conditional independence of the 
observed data. In generative approach, this might be too restrictive for a considerable 
number of object classes. Unlike ME, CRF does not suffer from the label bias 
problem. CRF can include arbitrary set of features and has the ability of automatic 
feature induction. 

2.2   Features  

We use the gold-standard TimeBank features for training and testing the CRF model. 
The features are extracted automatically from the respective datasets but we mainly 
use the various combinations of the following features: 

(i). Event Class: This is denoted by the ‘EVENT’ tag and used to annotate those 
elements in a text that mark the semantic events described by it. 
(ii). Event Stem: This feature extracts the stem of the head event. 
(iii). Event and Time Strings: This feature is used to denote the actual event strings 
and time.  
(iv). Part of Speech (POS) of Event Terms: POS information is very useful to 
identify the even-event relations. The features values may be either of ADJECTIVE, 
NOUN, VERB, and PREP. 
(v). Event Tense: This feature is useful to capture the standard distinctions among the 
grammatical categories of verbal phrases. The tense attribute can have values, namely 
PRESENT, PAST, FUTURE, INFINITIVE, PRESPART, PASTPART, or NONE 
(vi). Event Aspect: It denotes the aspect of the events. The aspect attribute may take 
values, PROGRESSIVE, PERFECTIVE and PERFECTIVE PROGRESSIVE or 
NONE 
(vii). Event Polarity: Polarity of an event instance is represented by the boolean 
value, POSITIVE or NEGATIVE. 
(viii). Event Modality: The modality attribute is only present if there is a modal word 
that modifies the instance. 
(ix). Type of Temporal Expression: It represents the temporal relationship holding 
between events, times or between an event and a time of the event. 
(x). Temporal Signal: This is used to represent the temporal prepositions. 
(xi).Temporal Relation between the Document Creation Time and Temporal 
Expression in the Target Sentence: The value of this feature could be “greater 
than”, “less than”, “equal”, or “none”. 
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Incorporating Sentiment Feature 

The sentiment is an important cue that effectively describes the events associated with 
it. The binary classification of the sentiments as well as the fine-grained 
categorization of Ekman’s six emotions is utilized to qualify the event properties. The 
sentiment attributes are identified for each of the sentences. Here, we mainly employ 
the word to sentence level emotion tagging module [11] for identifying the sentiment 
properties of events. The features for positive and negative sentiments as well as a 
representative feature with respect to all the six emotions are assigned for classifying 
the event pairs into the temporal classes.  

The sentiment or emotional verbs play an important role in identifying the 
temporal relations. To accomplish the goal, we include a special feature for sentiment 
verbs that are identified using SentiWordNet [12] or WordNet Affect lists [14] or 
VerbNet [15]. The verbs of SentiWordNet or WordNet Affect are identified using the 
Part-of-Speech (POS) information. On the other hand, VerbNet associates the 
semantics of a verb with its syntactic frames and combines traditional lexical 
semantic information such as thematic roles and semantic predicates, with syntactic 
frames and selectional restrictions. Verb entries in the same VerbNet class share 
common syntactic frames, and thus they are believed to have the same syntactic 
behavior. The VerbNet files containing the verbs with their possible subcategorization 
frames and membership information are stored in XML file format. For example, the 
emotional verbs “love” and “enjoy” are members of the admire-31.2-1 class and 
“enjoy” also belongs to the class want-32.1-1. The XML files of VerbNet are 
preprocessed to build up a general list that contains all member verbs and their 
available syntax information retrieved from VerbNet. The main criterion that is 
considered for selecting the frames is the presence of “emotional_state” type 
predicate associated with the frame semantics.  

We obtain the training and testing datasets from the TempEval-2007 evaluation 
task. The datasets are preprocessed for the specified CRF format. Thereafter, we 
extract features in the form of vectors from the annotated training data. The feature 
vectors consisting of the available features for each <main-event, main-event> and 
<main-event, next subordinate event, previous subordinate event, main-event> pair in 
the TimeBank corpus are identified. Now, we have a training data in the form (Wi, 
Ti), where, Wi is the ith pair along with its feature vector and Ti is its corresponding 
TempEval relation class. All the feature vectors are extracted from the training data. 
The temporal relations are annotated by one of the labels, such as BEFORE, 
BEFORE-OR-OVERLAP, OVERLAP, OVERLAP-OR-AFTER, AFTER or 
VAGUE. We have trained CRF using the automatically extracted feature vectors and 
by defining the appropriate feature template. The models are created from the training 
set and the feature template. The same feature extraction methodology is again 
repeated for the test data. An unknown instance <main-event, main-event> or <main-
event, next subordinate event, previous subordinate event, main-event> is assigned the 
appropriate output label, i.e., OVERLAP, BEFORE, AFTER, BEFORE-OR-
OVERLAP, OVERLAP-OR-AFTER and VAGUE, depending upon the 
probabilities, learned in the CRF model. The output label predicted by the CRF is 
matched against the reference label.  
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3   Evaluation of Temporal Event Identification System 

For TempEval -2007, the tasks were defined in such a way that a simple pair-wise 
comparison is possible since it was not required to create a full temporal graph and 
judgments are made in isolation. There are three basic temporal relations (BEFORE, 
OVERLAP, and AFTER) as well as three disjunctions over this set (BEFORE-OR-
OVERLAP, OVERLAP-OR-AFTER and VAGUE). The organizers used two scoring 
schemes: strict and relaxed.  

The strict scoring scheme only counts exact matches as success. For example, if 
the key is OVERLAP and the response is BEFORE-OR-OVERLAP then this is 
counted as ‘failure’. The standard definitions of precision and recall are followed: 
Precision = Rc / R and Recall = Rc / K, where, Rc is the number of correct answers in 
the response, R is the total number of answers in the response and K is the total 
number of answers in the key. For the relaxed scoring scheme, precision and recall 
are defined as Precision = Rcw / R and Recall = Rcw / K, where, Rcw reflects the 
weighted number of correct answers. The F-score is measured as follows where Pr = 
Precision and Re = Recall: F-score=2*Pr*Re / (Pr + Re). We have developed a 
number of CRF models based on the features and/or feature templates included into it. 
We have a training data in the form (Wi, Ti), where, Wi is the ith pair along with its 
feature vector and Ti is its corresponding TempEval relation class. Models are built 
based on the training data and the feature template. During evaluation, we obtain the 
highest performance for the following feature templates as shown in Figure 1. In the 
figure, wi : Current <event, event> pair, w(i-n)  : Previous nth <event, event> pair, w(i+n) : 
Next nth <event, event> pair, ti-1: previous <event, event> pair.        

 
w(i-3) 
w(i-2) 
w(i- 1) 

wi 
wi+1 
w(i+2) 
w(i+3) 

Combination of wi-1 and   wi 
Combination of wi and   wi+1 

Dynamic output tag (ti-1) of the previous pair 
Feature vector of wi of other features 

Fig. 1. Best Feature Template of the CRF based System for <main-event, next sub-event, prev 
sub-event, main-event> relation 

The test data consists of 20 articles from TimeBank [8]. The performance is 
assessed with three evaluation metrics, namely precision (P), recall (R) and F-score 
(FS). The systems are evaluated in terms of two scoring schemes, ‘strict’ and 
‘relaxed’. The strict scoring scheme counts only exact matches, while the relaxed one 
gives credit to partial semantic matches too. Evaluation results [13] show that the 
system performs better with the context size of seven (i.e., previous three, current and 
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the next three <main-event, next-subordinate-event, previous- subordinate-event, 
main-event> pairs), tense, aspect and temporal class features. It shows the precision, 
recall and F-score values of 43.8% 43.8% and 43.8% respectively under the strict 
evaluation scheme and 46.9, 46.9% and 46.9%, respectively under the relaxed 
evaluation scheme. For the sub-ordinate event, the system demonstrated the precision, 
recall and F-score values of 55.1%, 55.1% and 55.1%, respectively for the strict 
evaluation scheme and 56.9%, 56.9% and 56.9%, respectively for the relaxed 
evaluation scheme. Table 1 shows the results by incorporating the sentiment feature 
into the system. For the main-event, sentiment feature in CRF based system performs 
better with the margins of 1.4 percentage F-scores in the strict evaluation scheme and 
1.5 percentage F-scores in the relaxed evaluation scheme.  

Table 1. Precision (P), Recall (R) and F-scores of CRF based system 

  Techniques                      Strict 
        P           R           FS 

Relaxed 
  P           R         FS 

CRF (main event)      0.438     0.438     0.438   0.469   0.469     0.469 
CRF (main event) +Sentiment 
Feature 
 

     0.452     0.452     0.452   0.484   0.484     0.484 

CRF (subordinate  event)      0.551     0.551     0.551         0.569   0.569     0.569 
CRF (subordinate event) 
+Sentiment Feature 

     0.572     0.572     0.572   0.586   0.586     0.586 

 
The incorporation of sentiment feature also shows that the CRF is most effective to 

handle the subordinate-event in association with the knowledge regarding the 
sentiment property of the events. It shows the overall performance improvement of 
2.1 and 1.7 percentage points over the earlier model in the strict and relaxed 
evaluation scheme, respectively. The system also exhibits superior performance for 
the subordinate-event over the main-event.  

4   Event-Sentiment Tagging 

Opinion or Emotion or Sentiment analysis is a recent sub discipline at the crossroads 
of information retrieval [16] and computational linguistics [17]. Information is 
concerned not only with the subject or topic or event of a document but also with the 
sentiment or emotion it expresses. It has a rich set of applications such as tracking 
users’ sentiments about products or events or about political candidates as expressed 
in online forums, customer relationship management, stock market prediction, social 
networking etc. Not only the classification of reviews [18] or newspaper articles [19] 
or blogs [20] but the Question-Answering systems [21] and current Information 
Retrieval systems [22] are also increasingly incorporating sentiment analysis within 
their scopes. 

In the present task, we use the TimeML corpus for assigning coarse grained 
sentiments such as positive or negative and fine grained sentiments such as Ekman’s 
six emotions (happiness, sadness, anger, fear, surprise and disgust) at the sentence 
level. Event-sentiment relational graph for each of the documents is generated based 
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on the temporal relations identified using a CRF based supervised event-event relation 
identification system. The generation of the event-sentiment relational graph using an 
open source graphical system helps to visualize and track the changes of sentiments 
between consecutive and remote events of a document. The sentiment change 
between two consecutive events is termed as sentiment twist and change between rare 
or remote events containing one or more intermediate events is termed as sentiment 
transition. The manual evaluation of the event-sentiment system sounds satisfactory.  

4.1   Tagging of Sentiments to Events 

The investigation mainly focused on analyzing the impacts of coarse grained and fine 
grained sentiments on events that are present in the TempEval-2007 TimeML corpus. 
Ekman’s [8] six basic emotion types, such as happiness, sadness, anger, fear, 
surprise, and disgust are considered as fine-grained sentiment whereas two different 
valences, positive and negative are considered as coarse grained and are assigned to 
the sentences that contain events. Other sentences are considered as neutral. The 
sentiment tagging systems [10] [11] work at two levels, word level followed by 
sentence level.  

The CRF based machine learning approach that incorporates several singleton 
features (e.g. POS, words from SentiWordNet [12], question words, reduplication, 
punctuation markers or special symbols (!, @, $, ?)) as well as different combination 
of context features (e.g., unigram, bigram etc.) are employed for word level emotion 
tagging. The system [10] demonstrates F-score of 72.27% for English SemEval 2007 
affect sensing news corpus containing 2,500 development word tokens. Incorporation 
of error analysis and equal distribution of emotion tags with the non-emotion tag 
improves the word level emotion tagging and an overall F-score of 83.65% is 
achieved by the system on 1,500 test word tokens of the news corpus.  

The sentential emotions and valence tags are assigned based on the word level 
emotion tagged constituents. The system calculates six different emotion tag weights 
from SentiWordNet and applies the tag weights on the word level emotion tagged 
data to acquire sentence level emotion scores for each emotion type. A sentence level 
emotion tag that has the maximum emotion score is assigned to each sentence. The 
system shows the F-scores of 66.66%, 59.33%, 62.32%, 62.70%, 65.89% and 62.67% 
for happy sad, anger, disgust, fear and surprise emotion classes, respectively on 200 
test sentences. On the other hand, the polarity information of the emotion tag weights 
helps in calculating the valence score for each of the sentences. The total emotion tag 
weights acquired from the different emotion tags in a sentence are treated as the 
valence or coarse grained sentiments (positive and negative) of the sentence. It has 
been observed that the system achieves an average F-score of 66.41% for coarse 
grained sentiment tagging on 250 test sentences [11]. 

As there is no emotion-annotated information available in TempEval-2007 corpus, 
each test sentence of the corpus was annotated with single emotion tag and evaluated 
by us successively. The systems [10] [11] have been applied on 20 test articles of the 
TempEval event corpus. Manual evaluation shows that the system achieves an 
average F-score of 64.23% for emotion tagging with respect to all emotion classes. 
But, the sentences of the TempEval corpus is annotated with positive and negative 
sentiments and the evaluation yields an average F-score of 66.23%.  
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4.2   Generation of Event-Sentiment Relational Graph  

The Ekman’s six different emotions along with positive, negative or neutral 
sentiments are tagged with the sentences containing one or more potential events. If 
we consider the positive, negative and neutral valences as coarse grained sentiment 
events and Ekman’s six emotions as the fine-grained sentiments, by hypothesis, the 
temporal relations also exist among the sentiment events and the relations between 
each of the events are represented using a directed graph. The temporal relations 
between each of the successive sentiment or neutral events have already been 
identified by the CRF based system as described in Section 2. 

An open source graphical tool 3 has been used to represent the temporal relations 
among the events. The tool uses an XML file schema to store the information 
regarding nodes as well as the edges of a graph (as shown in Figure 2). For each of 
the documents of TempEval-2007 event corpus, a separate graph is generated. The 
sentiment of each sentence is assigned to its containing event and each event is 
represented using a graphical node. The event nodes that are of similar sentiments are 
connected to their corresponding sentiment hubs based on their annotated sentential 
sentiment tags.  

 

Fig. 2. Snapshot of a Sentiment-Event Directed Graph for a document 

4.3   Tracking of Event-Sentiment Relational Graph 

The tracking of sentiments includes sentiment twist and sentiment transition. The 
sentiment twist between two consecutive events and sentiment transition among more 
than two events are identified by arriving at the corresponding sentiment hub. The 
sentiment change or tracking of sentiments between two consecutive events or 

                                                           
3 http://www.hpl.hp.com/research/idl/projects/graphs/guess.html 
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sentiment twist is identified from the AFTER, BEFORE and OVERLAP temporal 
relations. The ambiguities of the OVERLAP relations are identified by the notion of 
BEFORE-OR-OVERLAP, OVERLAP-OR-AFTER relations. It has been observed 
that the maximum length of an event chain or sentiment transition in the TempEval 
2007 corpus is four. The number of instances of the sentiment transitions is less than 
the number of instances of the sentiment twists in the TimeML corpus. Hence, the 
sentiment transition or tracking of sentiment is identified based on the sentiment 
twists of the intermediate event pairs in an event chain. 

4.4   Evaluation of Event-Sentiment Tracking  

The sentiment events are identified from 20 test documents. Apart from sentiment 
twist, the maximum number of participating events in a sentiment transition is 3~ 4. 
The results of the event-sentiment tracking are shown in Table 2. In the present 
experiments, we have considered all the six emotions of Ekman’s (happiness, 
sadness, anger, fear, surprise and disgust) but the results only consider the single 
average emotion instead of six. Results show that the performance of the system is 
comparatively better in case of identifying sentiment tracking between coarse grained 
sentiments rather than coarse to fine grained sentiments and vice versa. It has to be 
mentioned that though the system performs satisfactory in identifying the event 
sentiment tracking path, most of the errors have occurred due to the misleading 
characteristics of the system in assigning neutral tags to the sentences with implicit 
sentiments. The rest of the errors occur in detecting the immediate sentiment changes 
of reverse polarity (+ve/-ve) in the sentiment twists. It shows that the complementary 
sentiment changes in sentiment twists are not always reliable without proper 
reasoning but in case of sentiment transitions, the reversibility may occur by changing 
sentiments in the intermediate event nodes in an event chain.  

Table 2. Results of F-scores of the Event-Sentiment Tracking 

  Source-Destination 
  Pair                      

Twist/Transition between # Events 
  Two                     Three                      Four   
 

+ve   -ve  0.7032                  0.6924                    0.6821             
+ve   neutral  0.7365                      --                            -- 
+ve   Emotion  0.6414                  0.6277                    0.6087   
  
-ve   +ve  0.7065                  0.6833                    0.6724   
-ve   neutral  0.7151                      --                           --   
-ve   Emotion 0.6075                  0.5877                    0.5729  

  
neutral  +ve  0.7011                      --                           --   
neutral  -ve  0.6898                      --                           --   
neutral  Emotion  0.6337                      --                           --  

  
Emotion  +ve  0.6227                  0.6077                    0.5802   
Emotion  -ve  0.6393                  0.6207                    0.6162   
Emotion  neutral 0.6210                      --                           --   
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5   Conclusion  

In this paper, we have reported our work on temporal relation identification under the 
TempEval 2007 evaluation exercise. The Task C of TempEval-2007was involved 
with the identification of six relations between the events in two consecutive 
sentences. Evaluation results show that the CRF based system outperforms all the 
state-of-the-art participating systems by including sentiment as the feature with all 
other available features of the TimeBank corpus. The sentiment tagged events, their 
visualization and tracking as well the evaluation show a promising venue of research. 
In future, we would like to employ the system in identifying sentiment changes from 
lengthy event chains in order to investigate the potential reasoning behind the 
sentiment change.  
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Eder Miranda de Novais, Ivandré Paraboni, and Diogo Takaki Ferreira

School of Arts, Sciences and Humanities, University of São Paulo (USP / EACH)
Av. Arlindo Bettio, 1000 - São Paulo, Brazil

{eder.novais,ivandre,diogo.ferreira}@usp.br

Abstract. Statistical language models based on n-gram counts have
been shown to successfully replace grammar rules in standard 2-stage (or
‘generate-and-select’) Natural Language Generation (NLG). In highly-
inflected languages, however, the amount of training data required to
cope with n-gram sparseness may be simply unobtainable, and the bene-
fits of a statistical approach become less obvious. In this work we address
the issue of text generation in a highly-inflected language by making use
of factored language models (FLM) that take morphological information
into account. We present a number of experiments involving the use of
simple FLMs applied to various surface realisation tasks, showing that
FLMs may implement 2-stage generation with results that are far supe-
rior to standard n-gram models alone.

Keywords: Text Generation, Surface Realisation, Language Modelling.

1 Introduction

In Natural Language Generation (NLG) systems, surface realisation can be
viewed as the task that takes as an input a set of features representing a sen-
tence specification (or what to say), and produces the corresponding output
string (how to say it) [1]. In the case of symbolic generation, the input to surface
realisation will normally have to be provided in a high level of detail, making
the surface realisation module1 difficult to adapt to applications that are not
linguistically-motivated by design.

By contrast, with the more recent use of statistical methods in NLG, the is-
sue of input specification to surface realisation has become in many ways more
manageable. Standard 2-stage (or ‘generate-and-select’) architectures as in [3]2

complement an underspecified input by overgenerating a large number of alter-
native realisations (often including ungrammatical sentences) and selecting the
most likely output according to a statistical language model.

Language models may however suffer from data sparseness, and statistical
NLG relies heavily on large corpora as training data. Early work in the field [3]
1 See [2] for details on a typical NLG architecture.
2 Given the limited availability of NLP resources for our target language, in this paper

we do not discuss state-of-art grammar acquisition approaches such as [4].

A. Gelbukh (Ed.): CICLing 2011, Part I, LNCS 6608, pp. 429–438, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



430 E.M. de Novais, I. Paraboni, and D.T. Ferreira

implemented 2-stage generation with the aid of a 250-million words corpus of
English texts. Presently, several billion-words English corpora are not uncom-
mon, but in order to achieve comparable results for more inflected languages (for
which the effects of data sparseness will be presumably much more dramatic)
the training corpus would have to be in principle much larger.

Since such large (and good-quality) corpora may not always be obtainable,
alternative ways of coping with data sparseness in highly-inflected languages are
called for. To this end, one possible strategy that has emerged in recent years
within the language modelling community is the use of language models that take
additional (e.g., morphological) features into account besides the usual n-gram
counts.

In this work we investigate the use of so-called Factored Language Models
[11] as an alternative to standard n-gram counts in order to generate text in
a highly inflected language. To this end, we present a number of experiments
focussing on individual surface realisation subtasks, and we compare the results
of different models applied to the ‘select’ stage of the generation process.

The reminder of this paper is organised as follows. Section 2 introduces pre-
vious work on 2-stage NLG and the surface realisation issues that are the focus
of this paper. Section 3 describes our general approach and the language models
to be used in the experiments. Section 4 described the experiments themselves
and their results, which are further discussed in Section 5. Section 6 presents
our conclusions and future work.

2 Background

The work in [5] presented a number of experiments in 2-stage surface realisation
in which generation decisions were made with the aid of simple n-gram models
built from a 40-million words corpus of Brazilian Portuguese newspaper articles
[6]. The experiments intended to simplify the input requirements to a surface
realisation module (and hence free the underlying application from the burden of
making certain linguistic decisions) in a number of individual surface realisation
tasks, ranging from synonymy to sentence linearization.

Generally speaking, results in [5] were positive but still insufficient for prac-
tical purposes. This was particularly the case of three subtasks, which were
deemed problematic for the n-gram approach: the lexicalization of verb phrases,
the ordering of noun modifiers and the issue of verb-complement agreement
(particularly in passive voice.) In this paper the three issues are revisited.

Verb phrase (VP) lexicalization [7] is the task of choosing the appropriate
wording for VP heads (i.e., verbs) from a synset conveying a potentially large
number of alternative realisations3. For instance, given the goal of producing
an output string for the input concept ‘say’, the system will consider a synset
conveying synonymous words such as ‘say’, ‘inform’, ‘tell’ and so on. The task
becomes even more complex if, for instance, we do not have a means to choose
3 The lexicalization of Portuguese NPs, by contrast, was found to be less problematic

in [5] and will not be further discussed in this paper.
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among several competing synsets [8]. As we discuss later, applying random se-
lection to this task is not a viable alternative, and even a purely frequency-based
approach tends to perform poorly.

The ordering of noun modifiers corresponds to the linearization of a set of
content words conveying a noun head and its modifiers (adjectives, prepositional
phrases etc.) For instance, given the content words {blue, small, car} we would
like to produce the NP ‘the small blue car’. The ordering of noun modifiers is a
complex task even in the case of English modifiers, which tend to occur before
the NP head [9,10]. In languages such as Portuguese, however, the ordering of
modifiers is far more flexible.

Finally, the verb-complement agreement task consists of establishing the cor-
rect morphological features of verb complements. For instance, in ‘They are
nice guys’ the complement (‘nice’) agrees in number with the subject (‘They’.)
In more inflected languages, verb-complement agreement may also involve gen-
der agreement, and the task becomes even more challenging (from an n-gram
perspective) if we consider the potentially long distances between the agreeing
terms. In [5] this was found to be particularly the case of sentences in passive
voice, which may be explained by the observation that passive voice usage (and
the corresponding n-grams) was less common in the training data.

The accuracy scores reported in [5] for the above surface realisation subtasks
were as follows: VP lexicalization achieved up to 40% accuracy using a frequency-
based approach; the ordering of noun modifiers achieved up to 65% accuracy
using a standard 2-gram language model, and verb-complement agreement in
passive voice obtained up to 68% accuracy using a 3-gram language model. In
what follows we intend to improve on all these results.

3 Current Work

Despite the overall positive results of the n-gram approach in [5] for our three
working issues (namely, VP lexicalization, ordering of noun modifiers and verb-
complement agreement), one may ask how these results may be improved with-
out resorting to a very large (and otherwise unavailable) corpus. One possible
strategy, and which will be followed in this paper, is the use of Factored Lan-
guage Models (FLMs) [11], which are widely used in speech recognition, machine
translation and many other statistical NLP applications.

FLMs generalize the n-gram approach by incorporating information from var-
ious sources (besides n-gram counts.) In a FLM, each word wt is represented as a
vector of k factors {f1

t , f2
t , ...fk

t }. Factors may represent any word feature deemed
useful (e.g., to model a highly-inflected language) such as morphological classes,
roots, semantics etc. For details on FLMs and the related issue of generalized
parallel backoff, we refer to [11].

The motivation for using FLMs in highly-inflected language processing is self-
explanatory, as illustrated even by a simple example in English: if a bigram as
‘he failed’ does not occur in the training data, but the bigram ‘he finished’ does,
we may still take advantage of, say, part-of-speech information, to obtain some
probability estimate of ‘failed’ given that the previous word is a pronoun.
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The benefits of using FLMs are of course more evident in the case of a highly-
inflected language, for which not only verbs but many other word classes may
vary in gender, number, tense etc. However, taking a large number of factors
into account may be costly, and the resulting models may be difficult to use in
practice (assuming of course that we had sufficient computational resources to
build such large models in the first place.) Given our goal of applying FLMs
to practical language generation, in this work we will focus on simple FLMs
conveying a limited set of factors, and which can be applied under conditions of
reasonable efficiency.

For the purpose of comparison to previous work, all language models below
were built from the same training data used in [5]. From this corpus, stan-
dard interpolated 2-gram and 3-gram language models were built to be used
in our current baseline systems. In addition to that, from a tagged version of
the same corpus, we also built four factored language models that are meant to
be tested against the n-gram approach. The factored models take into account
words, lemmas, part-of-speech, gender and number information, although the
best-performing alternative in each experiment turned out to use only a subset
of the original factors4. All factored models use Kneser-Ney smoothing when
applicable.

For the first two tasks (VP lexicalization and ordering of noun modifiers) we
will use a simple factored model that takes the previous words (W) into account
and, in case the bigram (or trigram) is not found, attempts to use the previous
lemma counts (L) instead. We will refer to the bigram and trigram versions of
this model respectively as FLM1 and FLM2, which are represented as follows.

FLM1 : p(Wt|Wt−1, Lt−1).

FLM2 : p(Wt|Wt−1, Lt−1, Wt−2, Lt−2).

Regarding our third task (verb-complement agreement), a pilot experiment sug-
gested - perhaps rather intuitively - the need to take gender and number infor-
mation into account. Thus, in our bigram FLM3 and its trigram version FLM4

the probability of the current word is estimated by considering as factors the
previous words (W), gender (G) and number (N) information:

FLM3 : p(Wt|Wt−1, Gt−1, Nt−1).

FLM4 : p(Wt|Wt−1, Gt−1, Nt−1, Wt−2, Gt−2, Nt−2).

In the next section we apply the above FLM1...FLM4 models to the three
surface realisation tasks under consideration as part of a standard 2-stage NLG
system for a highly-inflected language.

4 In particular, in an earlier version of this work, a model using part-of-speech informa-
tion was found to outperform our current system for task 2 (ordering of modifiers),
but the difference turned out to be non-significant for our present purposes.
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4 Evaluation

In what follows we describe the results of a number of experiments focussing
on the three surface realisation tasks introduced in the previous section (VP
lexicalization, ordering of noun modifiers and verb-complement agreement.) To
this end, surface realisation decisions made with the aid of factored language
models (FLM1...FLM4) will be compared with a number of baseline systems
deemed relevant to each task. These include the standard n-gram approach and
additional Random and Frequency-based strategies when relevant. All results
reported for the baseline systems are taken from [5], and are presently reproduced
for ease of comparison. The factored language models and instructions on how
to use them are available from www.CICLing.org/2011/software/75.

The test data used in our experiments consisted of the original input for each
task and corresponding Reference sets described in [5]. Evaluation proper is car-
ried out by comparing the strings produced by each system (FLM or baseline) to
the equivalent in each Reference set, using the following four evaluation metrics:

– Edit-distance (Levenshtein’s distance): the number of insert, delete and sub-
stitute operations needed to make both strings identical. Zero edit-distance
stands for an identical match.

– Accuracy: the number of exact matches between the two strings, being as-
signed the value 1 if both strings are identical, or 0 otherwise.

– NIST [12] and BLEU [13] scores: standard Machine Translation evaluation
metrics based on n-gram counts. BLEU scores range from 0 to 1, being 1
equal to 100% accuracy. NIST scores (which give more weight to rare n-
grams than in the case of BLEU scores) do not have an upper bound, but
higher values stand for higher correctness as well.

4.1 Verb Phrase Lexical Choice

Our first experiment addresses the use of FLMs applied to the task of lexical-
ization of Verb Phrase (VP) head constituents. Given the goal of realising a
particular concept as a verb, the experiment consists of choosing the appropri-
ate verb surface form from a synset conveying, on average, 10 synonymous for
each concept. To this end, the experiment used the same 40-sentences Refer-
ence set built for the task in [5]. Keeping all the other sentence constituents
unchanged, the Reference set was overgenerated allowing only the main VP
head constituents to vary according to the synonymous found in each synset,
producing 400 alternative surface realisation forms.

In order to select the most likely surface realisation form for each sentence,
four baseline systems taken from [5] are considered: standard bigram and trigram
language models, a Frequency-based approach that selects the most common
word found in the corpus for each verb concept, and a Random strategy that
selects a random synonym out of each synset. The baseline systems are compared
against FLM1 (bigram) and FLM2 (trigram) models described in the previous
section (i.e., those that take the previous words and their lemmas into account.)
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Table 1 shows the results of this experiment (keeping in mind that best results
correspond to lower Edit-distance and higher Accuracy, NIST and BLEU scores.)

Table 1. Verb Phrase lexical choice

System Edit-distance Accuracy NIST BLEU

Standard 2-gram 4.98 0.13 8.731 0.863
Standard 3-gram 3.88 0.30 8.877 0.893
FLM1 3.00 0.53 9.009 0.928
FLM2 1.93 0.65 9.119 0.947
Frequency-based 3.25 0.42 8.891 0.907
Random 5.38 0.13 8.659 0.852

4.2 Ordering of Noun Modifiers

The second experiment applies FLMs to the ordering of pre- and post-modifiers
such as adjectives, prepositional phrases (PPs) etc. within noun phrases (NPs.)
To this end, we reused the Reference set developed for the task in [5], conveying
40 sentences in standard subject-verb-complement structure.

The NPs under consideration conveyed one or two modifiers each, with a single
(i.e., non-ambiguous) ordering evenly distributed across the data (i.e., before or
after the head noun, or in both positions simultaneously.) In addition to that,
two kinds of NP were considered: with and without PP attachments as in ‘the
far end of the corridor’. The use of a PP attachment increases the challenge of
finding the correct ordering using a statistical model as some alternatives under
consideration (e.g., ‘*the end of the corridor far’) may leave a potentially wide
gap between modifier and head noun5.

Given that certain orderings would not naturally occur in our data (e.g., plac-
ing an adjective between the noun and a prepositional phrase), and also to enable
a comparison with related work [5], this experiment did not test every possible
ordering of modifiers, that is, we limited ourselves to a number of combinations
that were critical to our approach. For that reason we will call this a constrained
experiment, which will be subsequently complemented by an unconstrained ver-
sion that takes full free order into account.

The constrained experiment consisted of producing different orderings for
the constituents of NPs found in the subject position, and comparing a num-
ber of strategies for selecting the most likely surface realisation for each case.
Keeping all other sentence constituents unaltered, 128 alternative sentences
were produced (an average of 3.2 alternatives for each Reference sentence,)
and subsequently selected according to three baseline systems: the standard
bigram and trigram models, and a Random selection strategy6. These baseline
5 The use of PPs in this way is nevertheless ubiquitous in our target language.
6 Unlike the previous experiment (VP lexical choice,) the task of choosing the ordering

of noun modifiers is not a matter of domain or genre preference, but rather a decision
guided by linguistic constraints. For that reason, a comparison to a frequency-based
strategy would not be applicable.
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systems are compared once again to the FLM1 (bigram) and FLM2 (trigram)
models. The results are shown in Table 2.

Table 2. Ordering of noun modifiers (constrained)

System Edit-distance Accuracy NIST BLEU

Standard 2-gram 5.15 0.65 7.244 0.814
Standard 3-gram 5.35 0.63 7.201 0.795
FLM1 1.55 0.85 7.341 0.929
FLM2 2.75 0.80 7.314 0.888
Random 9.73 0.27 6.831 0.559

As the data used in the above experiment was limited to a subset of possible
alternative orderings (namely, the most challenging alternatives from a 2-stage
generation perspective,) we decided to make the task more difficult and test
how the FLM models would perform under free word order. We developed an
unconstrained version of the same experiment in which all possible orderings of
NP constituents in the Reference set were considered, making 352 alternatives
in total (an average of 8.8 alternatives for each sentence.) Results for the FLM
models and the Random baseline system are presented in Table 3.

Table 3. Ordering of noun modifiers (unconstrained)

System Edit-distance Accuracy NIST BLEU

FLM1 3.93 0.70 7.304 0.772
FLM2 4.43 0.60 7.224 0.754
Random 11.85 0.20 6.369 0.346

4.3 Verb-Complement Agreement

In our final experiment we evaluate the use of FLMs to establish agreement be-
tween verb and complement constituents in passive voice usage. As a Reference
set we used the 120 sentences in passive voice considered in [5]. The sentences
are divided in three groups conveying 0, 1 or 2 intermediate adverb constituents
(hence varying the distance within the dependency chain), with complement gen-
der (male/female) and number (singular/plural) attributes evenly distributed.
The following is an example of each group, keeping in mind that the original
(Portuguese) text would require the complement term (‘concerned’) to agree
with the noun head (‘visitors’) in both gender and number.

(a) The visitors are concerned by the news.
(b) The visitors are very concerned by the news.
(c) The visitors are not very concerned by the news.

The same evaluation procedure adopted in the previous experiments was re-
peated. Keeping all other sentence constituents unchanged, the sentences in the
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Reference set were overgenerated whilst allowing only the gender and number
of the complement term to vary, making four alternative surface realisations for
each sentence. The resulting 480 output sentences (4 alternatives per sentence)
were evaluated according to the bigram, trigram and Random baseline strategies,
and also by the FLM3 (bigram) and FLM4 (trigram) models. The results are
shown in Table 4.

Table 4. Verb-complement agreement constraints (passive voice)

System Edit-distance Accuracy NIST BLEU
Standard 2-gram 0.45 0.67 7.132 0.886
Standard 3-gram 0.42 0.68 7.167 0.892
FLM3 0.30 0.75 7.171 0.920
FLM4 0.25 0.75 7.169 0.920
Random 0.95 0.30 6.473 0.754

5 Discussion

The experiments presented in the previous section illustrate a number of ways in
which simple factored language models may free an underlying application from
(some of) the burden of providing detailed input specification to the surface
realisation module.

The lexicalization of Portuguese VPs was previously shown [5] to be a chal-
lenging task with maximum accuracy of 42% for a frequency-based strategy.
Presently, we notice that both FLM1 and FLM2 now easily outperform all the
baseline systems in Table 1, including the frequency-based approach. However,
we acknowledge that these results may be still considered insufficient for practi-
cal purposes (i.e., with maximum 65% accuracy for the trigram factored model),
and that more training data may be ultimately required.

Regarding the ordering of noun modifiers task, previous work has shown max-
imum accuracy of 65% using a standard bigram model. This was once again
outperformed by the use of factored language models, with up to 85% accuracy
in the case of the bigram FLM (Table 2). Interestingly, however, in both stan-
dard and factored language models, the use of bigrams slightly outperforms the
trigram version of the same model. Although the difference in this case was not
found to be significant, this may suggest that the ordering of noun modifiers
does not require higher-order language models.

In the complementary (unconstrained) experiment on ordering of noun mod-
ifiers all permutations of NP constituents were considered, which nearly tripled
the size of the search space. Even in this case, however, we were able to show (cf.
Table 3) that FLMs were superior to random selection, and also outperformed
standard n-gram models even in the much simpler (constrained) task in previ-
ous Table 2. Put together, the two experiments seem to suggest that we may
ultimately be able to devise (e.g., with some additional training data) a surface
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realisation module that simply takes as an input a bag of content words with
no particular order, and produces as a result a well-formed output NP with no
implemented grammar rules.

Finally, in the verb-complement agreement task (Table 4), FLMs also showed
improvement over standard n-gram models, with no significant difference be-
tween models of order 2 and 3. These results are still below those obtained for
active voice agreement in [5], suggesting that alternative (factored) models are
called for in order to achieve optimal performance in the task.

6 Conclusions

In this paper we have revisited a number of surface realisation subtasks in highly-
inflected language generation. Building upon previous work, we presented a series
of experiments involving the use of simple factored language models that take
morphological information into account as an alternative to standard n-gram
counts in a 2-stage NLG architecture.

The experiments addressed the issue of VP lexicalization, the ordering of
noun modifiers and verb-complement agreement. In all cases, our results suggest
that FLMs may indeed outperform n-gram models using only a fraction of the
training data that would normally be required by the standard n-gram approach
in a highly-inflected language.

Our experiments represent a first step towards the design of a trainable surface
realisation module for the Brazilian Portuguese language, which should ideally
generate text from an input conveying minimal linguistic knowledge, and without
the need to implement complex grammar rules (e.g., such as those required to
establish the ordering of noun modifiers.)

As future work, we intend to collect a larger data set to build a more robust
version of each of our current FLMs, and propose new models (particularly for
the lexicalization and verb-complement agreement tasks) based on these insights.
Other aspects of the current work that need improvement include a thorough
investigation of models that take part-of-speech information into account (which
seem particularly relevant to the ordering of modifiers task) and an extension of
these to other surface realisation tasks so as to obtain a fully functional system.

Acknowledgments. The authors acknowledge support by FAPESP and the
University of São Paulo.

References

1. Gatt, A., Reiter, E.: SimpleNLG: A realization engine for practical applications.
In: European Natural Language Generation Workshop, ENLG 2009 (2009)

2. Reiter, E.: An Architecture for Data-to-Text Systems. In: European Natural Lan-
guage Generation Workshop (ENLG 2007), pp. 97–104 (2007)

3. Langkilde, I.: Forest-based statistical sentence generation. In: Proceedings of
ANLP-NAACL 2000, pp. 170–177 (2000)



438 E.M. de Novais, I. Paraboni, and D.T. Ferreira

4. Belz, A.: Automatic Generation of Weather Forecast Texts using Comprehensive
Probabilistic Generation-Space Models. Natural Language Engineering 14(4), 431–
455 (2008)

5. de Novais, E.M., Dias Tadeu, T., Paraboni, I.: Improved Text Generation Using N-
gram Statistics. In: Kuri-Morales, A., Simari, G.R. (eds.) IBERAMIA 2010. LNCS
(LNAI), vol. 6433, pp. 316–325. Springer, Heidelberg (2010)

6. Nunes, M.G.V., Vieira, F.M.C., Zavaglia, C., Sossolote, C.R.C., Hernandez, J.:
A construcao de um lexico para o portugues do Brasil: licoes aprendidas e per-
spectivas. II Encontro para o processamento de portugues escrito e Falado, 61–70
(1996)

7. Reiter, E., Sripada, S.: Human Variation and Lexical Choice. Computational Lin-
guistics 28(4) (2002)

8. Bangalore, S., Rambow, O.: Corpus-based lexical choice in natural language gen-
eration. In: 38th Meeting of the ACL, Hong Kong, pp. 464–471 (2000)

9. Malouf, R.: The order of prenominal adjectives in natural language generation. In:
Proceedings of ACL 2000, Hong Kong (2000)

10. Mitchell, M.: Class-Based Ordering of Prenominal Modifiers. In: Proceedings of
the 12th European Workshop on Natural Language Generation, Athens, pp. 50–57
(2009)

11. Bilmes, J., Kirchhoff, K.: Factored Language Models and Generalized Parallel
Backoff. In: Proceedings of HLT-NAACL 2003, vol. 2 (2003)

12. NIST: Automatic Evaluation of Machine Translation Quality using n-gram Co-
occurrence Statistics (2002),
http://www.nist.gov/speech/tests/mt/doc/ngram-study.pdf

13. Papineni, S., Roukos, T., Ward, W., Zhu, W.: Bleu: a method for automatic eval-
uation of machine translation. In: ACL 2002, pp. 311–318 (2002)



Prenominal Modifier Ordering

in Bengali Text Generation

Sumit Das, Anupam Basu�, and Sudeshna Sarkar

Indian Institute of Technology, Kharagpur
Department of Computer Science and Engineering

Kharagpur, West Bengal, India – 721302
{sumitdas,anupam,sudeshna}@cse.iitkgp.ernet.in

Abstract. In this paper, we propose a machine learning based approach
for ordering adjectival premodifiers of a noun phrase (NP) in Bengali.
We propose a novel method to learn the pairwise orders of the modifiers.
Using the learned pairwise orders, longer sequences of pronominal modi-
fiers are ordered following a graph based method. The proposed modifier
ordering approach is compared with an existing approach using our own
dataset. We have achieved approximately 4% increment in the F-measure
with our approach indicating an overall improvement. The modifier or-
dering approach proposed here can be implemented in a Bengali text
generation system resulting in more fluent and natural output.

1 Introduction

Natural Language Generation (NLG) systems should produce text which is
meaning-preserving and fluent. Ordering prenominal modifiers is an important
task in text generation, because wrongly ordered modifiers in NPs affect the
meaning and fluency of the generated text. In English, prenominal modifiers
can occur almost in any order, depending on the context. Some orders are more
marked than the others, but strictly speaking none are ungrammatical. For ex-
ample, for the NP in (1), (1a) is more fluent than the other two orders.

1. (a) charming young blond lady
(b) * blond young charming lady1

(c) * blond charming young lady

Though there exists some consensus that the prenominal modifier ordering is
partly governed by the semantic constraints, but the exact semantic constraints
are not known. Few early studies [1,2] manually analyzed small corpora, based
on which they placed the modifiers in broad semantic classes. They defined rules
to impose order among the modifier classes. The modifiers were ordered ac-
cording to the order of the classes to which they belong. The recent works on
� Prof. Anupam Basu is the Director (Hon.) of Society for Natural Language Technol-

ogy Research (SNLTR), Kolkata, West Bengal, India.
1 The ‘*’ marked NPs are not fluent.

A. Gelbukh (Ed.): CICLing 2011, Part I, LNCS 6608, pp. 439–450, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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modifier ordering has moved away from the rule based linguistic approaches to
machine learning based approaches. Prenominal modifier ordering has applica-
tions in several other fields, such as, machine translation, question-answering,
text summarization etc.

Previous research on modifier ordering was mostly done for English. Till date
no rule-based or machine learning based work has been reported on this topic for
Bengali. Modifier ordering is necessary for improving the fluency and naturalness
of Bengali text. For example, for the NP in (2), (2a) is most fluent. The other
orders sound a bit unreal and better suitable in some specific context.

2. (a) nAnArakama bichitra sAmudrika prAnI 2 (many peculiar sea creatures)
(b) * bichitra sAmudrika nAnArakama prAnI (peculiar sea many creatures)
(c) * sAmudrika bichitra nAnArakama prAnI (sea peculiar many creatures)

Out of 129808 NPs with adjectival premodifiers, extracted from a 2.21 million
token Bengali corpus (taken from CIIL corpus3), 4651 (approximately 3.6%)
contain multiple premodifiers. Thus, in Bengali text a significant portion of the
NPs have multiple premodifiers. Here, we make an assumption that in an NP
with multiple adjectival modifiers, all of them modify the head noun. This as-
sumption is valid because an NP with multiple modifiers, all modifying the head
noun, is far more common than an NP with multiple modifiers where one of
them modifies another.

In this paper, we follow a novel machine learning based approach for carrying
out the prenominal modifier ordering in Bengali. For ordering multiple premodi-
fiers in an NP, first the pairwise order of the modifiers are determined empirically
from corpus. We propose a three stage process to build a model for pairwise or-
dering of modifiers. Then the sequential chain of the modifiers is generated from
the known pairwise orders by following a graph based method. Our prenominal
modifier ordering approach can be implemented in the referring expression gen-
eration module or the surface realization component of a Bengali NLG system
to improve the quality of the generated text.

The remainder of this paper is organized as follows: In Section 2, we provide a
brief overview of the existing works. In Section 3, we explain how we prepared our
data set. We discuss a baseline model for modifier ordering in Section 4. Detailed
description of our proposed approach is given in Section 5. In Section 6, we dis-
cuss the performance evaluation measures and the results obtained. In Section 7,
concluding remarks and some future directions are provided.

2 Related Works

The early research works on prenominal modifier ordering were mainly rule based
linguistic approaches [3,4,5]. They performed manual analysis of small corpora
2 In this paper, Bengali graphemes are written using Roman Script in ITRANS nota-

tion. They are written in italics font.
3 A part of the EMILE/CIIL corpus developed at Central Institute of Indian Lan-

guages (CIIL), Mysore.
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and explored various factors that influence the ordering. They conjectured that
ordering of prenominal modifiers is a function of certain semantic constraints
relating different aspects of the modifiers to the nouns they modify. They grouped
the modifiers into broad semantic classes, such as, color, size, nationality etc.
and defined rules for ordering these classes. For example, Goyvaerts [6] proposed
the following order for English noun modifiers: quality ≺ size/length/shape ≺
old/new/young ≺ color ≺ nationality ≺ style ≺ gerund ≺ denominal4. There
is no general consensus on the different criteria used to arrive at these semantic
classes. Furthermore, it is not clear how to map the modifiers to these semantic
classes. This justifies the exploration of machine learning based approaches which
use a large amount of direct corpus evidence and do not suffer from the drawbacks
of rule-based linguistic approaches.

Among the recent computational works, Shaw and Hatzivassiloglou [7] first
proposed a corpus-based statistical approach for this problem. Three methods
e.g., direct evidence, transitivity and clustering were proposed by them for or-
dering pair of modifiers in English. Briefly, direct evidence method predicts the
modifier ordering from the statistics directly obtained from the corpus. In tran-
sitivity method, the modifiers in the unseen pairs are ordered by finding the
transitive closures of the prenominal modifiers. In clustering method, an order
similarity metric is used to group the modifiers into classes. The modifiers are
ordered according to the order of the classes in which they belong. This work
can order pair of modifiers only. The highest prediction accuracy of 90.67% was
reached when the model was trained and tested on a medical corpus. However,
they experienced a large difference in accuracy (54%) when the Wall Street Jour-
nal (WSJ) corpus [8] was used. Thus, they concluded that the modifier ordering
is domain dependent.

Malouf [9] proposed a number of statistical and machine learning based tech-
niques for ordering modifiers. The reported accuracy in this work ranged from
78.28% to 89.73% when used on 100 million tokens of BNC5. He achieved the
best result (89.73%) by combining memory-based learning and positional prob-
ability. This approach was also limited to pairwise modifier ordering.

Mitchell‘s [10] approach grouped the modifiers into classes based on their po-
sitional distribution with the head nouns and the other modifiers. He mentioned
a preferable order among the different positional classes proposed. Unlike the
previous approaches, this work can order more than two prenominal modifiers.
Mitchell evaluated his model in different domains and achieved token precision
of 89.57% and type precision of 94.17%. The recall values were much low (63.47%
and 58.18%). Overall, the prediction accuracy of his approach was 74.14%.

Dunlop [11] introduced a novel modifier ordering approach adapted from mul-
tiple sequence alignment (MSA) techniques which are generally used in computa-
tional biology. The approach utilized simple features within the raw text, and did
not require any semantic information. The ordering of more than two prenomi-
nal modifiers can be predicted by this method. The model was trained and tested

4 A ≺ B stands for “A precedes B ”.
5 http://www.natcorp.ox.ac.uk/
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with different corpora. This work reported 88.9% token accuracy, 88.2% type pre-
cision, 88.1% type recall and 88.2% type f-measure for pairwise modifier ordering.
For longer modifier sequence ordering, the reported token accuracy is 86.7%, to-
ken precision is 86.7%, token recall is 86.7% and token f-measure is 86.7%.

3 The Data Set Preparation

We have taken a set of 174814 unlabeled Bengali sentences (approximately 2.21
million tokens) from CIIL corpus to extract the prenominal modifier sequences
which are used by the modifier ordering methods discussed here. We have iden-
tified the noun phrases (NP) by using a shallow parser for Indian Languages6.
The word level morphological analysis, parts-of-speech (POS) tags and chunk
boundaries with type-casted chunk labels in the SSF7 structures generated by
the shallow parser are used here for modifier sequence extraction. We have ex-
tracted the simplex NPs from these NPs by matching them with a set of regular
expressions. These regular expressions consist of the syntactic categories and the
different forms of a simplex NP in Bengali. A simplex NP is a maximal NP that
includes sequence of premodifiers, followed by a head noun. The premodifiers
can be cardinal numbers (QC), ordinal numbers (QO), quantifiers (QF), posses-
sive pronouns (PRP), adjectives (JJ) and non-head nouns (NN). The adjectival
premodifier sequences followed by a head noun are extracted from the simplex
NPs by dropping the QCs, QOs, QFs, PRPs and NNs. After this, the inflected
forms of the adjectival modifiers and the head nouns are transformed to their
base forms by using the morphological information generated by the shallow
parser. This increases the count of the modifiers and the head nouns. There are
3289 modifier sequence types in the 4651 multiple modifier sequences extracted
from the corpus. 77.77% of these 3289 sequence types occur only once. Our sub-
sequent analysis operates on this data. We randomly held out 10% of our corpus
(approximately 17481 sentences) for test purpose, and used the remaining 90%
for training. The modifier sequences extracted from the training corpus are used
to train our proposed modifier ordering model. The sequences obtained from the
test corpus are used for evaluation.

4 Word Bigram as Baseline Model

Given a number of words, the task of generating the most natural word sequence
is a well known problem in statistical language processing. The n-gram language
model is the most straightforward and used solution for this type of problems.
The prenominal modifier ordering problem can be mapped to this more general
word ordering problem. We use a bigram language model as the baseline model
for ordering modifiers. To determine the correct order for a sequence of mod-
ifiers, we generate all possible orderings and choose the one with the highest
6 http://ltrc.iiit.ac.in/analyzer/bengali/
7 http://ltrc.iiit.ac.in/analyzer/bengali/shallow-parser-ben-3.0.fc8/doc/

ssf-guide-4oct07.pdf
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probability. We build a backoff word bigram model using the SRILM statistical
language model toolkit [12]. The unlabeled training sentences are used to build
the bigram model. We evaluate the model by using the sequences, containing
two or more premodifiers followed by a head noun, extracted from the test cor-
pus. The result of this experiment is somewhat disappointing. Among the 502
test sequences, the order is correctly predicted for 353. The reason for such poor
performance is that the frequencies of the modifier sequences are very low in
Bengali text. So, the bigram model is not a reliable solution for this problem.

5 Methodology

Since the word bigram based approach does not perform very well for ordering
modifiers, so we choose to pursue a more focused solution for this problem. To
order multiple premodifiers in an NP we mainly perform the following two tasks.

1. Build a machine learning based model for pairwise modifier ordering. For
ordering the modifiers of the seen modifier pairs, use direct corpus evidences,
while for the unseen pairs transitivity and semantic cluster based methods
are used to impose order.

2. Determine the correctly ordered chain of multiple premodifiers if that can
be generated unambiguously from the known pairwise orders.

Brief description of the techniques used to carry out these tasks are given below.

5.1 Pairwise Ordering

We follow a three stage process to build the pairwise modifier ordering model.
The stages are direct evidence, transitivity and semantic clustering. The se-
quences, containing premodifiers followed by a head-noun, extracted from the
training corpus are used to build the model. From these sequences, first we ex-
tract only the modifier strings by dropping the trailing head-noun. Then from
those modifier sequences we obtain the ordered modifier pairs. For example, for
the NP “nAnArakama bichitra sAmudrika prAnI ”, the modifier sequence is
“nAnArakama bichitra sAmudrika”. From this the three ordered modifier pairs
〈nAnArakama, bichitra〉, 〈nAnArakama, sAmudrika〉 and 〈bichitra, sAmudrika〉
are generated. An NP with n premodifiers has nC2 ordered modifier pairs. From
these ordered modifier pairs we construct a m ×m matrix ModPair, where m
is the number of distinct modifier types. ModPair[a, b] gives the number of oc-
currence of the ordered pair 〈a, b〉 in the training corpus. From 4099 multiple
modifier sequences extracted from the training corpus, we produce 4119 ordered
modifier pairs. There are 2042 different modifier types in the extracted data. So,
from this we can infer that the data is quite sparse. The three stages for building
the pairwise modifiers ordering model are described in the following subsections.

Direct Evidence. The simplest strategy followed here for pairwise order-
ing is direct evidence method proposed by Shaw and Hatzivassiloglou [7]. To
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order a pair of modifiers e.g., {a, b}, we rely on the direct corpus evidences. If
ModPair[a, b] > ModPair[b, a] then the order is “a ≺ b”. For ModPair[a, b] <
ModPair[b, a], the order is “b ≺ a”. If ModPair[a, b] = ModPair[b, a] then no
ordering preference can be given.

This method is highly accurate for the seen pairs, but for the unseen pairs it
can’t give any ordering preferences. Only 0.07% elements of the matrix ModPair
have nonzero values. Thus the matrix is too sparse and the overall accuracy of
direct evidence is low. Out of 549 ordered modifier pairs extracted from test
corpus, 379 are correctly ordered by this method. In order to overcome the
sparseness of the data, we need a method which can predict the order of the
modifiers of an unseen pairs from the seen modifier pairs.

Transitivity. To overcome the limitation of the direct evidence method, Shaw
and Hatzivassiloglou [7] proposed a more generalized approach that orders the
modifiers of the unseen pairs too. They compute the transitive closure of the
ordering relation “≺”. That is, if “a ≺ c” and “c ≺ b”, then by transitivity
“a ≺ b”. For example, the modifiers “bichitra” and “jaiba” never occur together
in the training data. So, they can’t be ordered by the direct evidence method.
However, the orders “bichitra ≺ sAmudrika” and “sAmudrika ≺ jaiba” are
given by the direct evidence method. Therefore, by transitivity we can predict
the order “bichitra ≺ jaiba”.

The transitivity method can reach to contradictory ordering inferences. For
example, along with the above mentioned orders, we found the following ordered
modifier pairs in our corpus: 〈jaiba, rAsAYanika〉, 〈rAsAYanika, nAnAbidha〉,
〈nAnAbidha, sAmudrika〉 and 〈sAmudrika, khanija〉. Using transitivity we can
infer the order “jaiba ≺ sAmudrika”. This is contradictory to our previous
inference. To quantify the relative strengths of these transitive inferences, Shaw
and Hatzivassiloglou [7] proposed a graph based solution. A directed graph is
formed with the distinct modifier types found in the training corpus. If the
pair {a, b} occurs n times in the training corpus among which the number of
occurrence of the ordered pair 〈a, b〉 is m, then the directed edge “a → b” is
assigned a weight given by the following formula:

−log(1−
n∑

r=m

nCr × 1
2

n

)

Clearly, more the number of occurrences of an ordered pair for a pair of modifiers,
greater the weight of corresponding edge in the graph. Now, the pairwise modifier
ordering problem is turned into the problem of finding the minimum weight path
between the graph nodes. For this, Floyd-Warshall’s [13] all pairs shortest path
algorithm is used. For the pair {a, b}, the minimum weight path among a to b
and b to a is calculated. The ordering preference for the pair {a, b} is whichever
is minimum among these two. If they are equal then no ordering inference can
be drawn for the pair {a, b}. Transitivity method fills up the ModPair matrix to
14.26%. Out of 549 test modifier pairs, 405 are correctly ordered by this method.
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Semantic Clustering. As discussed in Section 2, earlier linguistic approaches
put the modifiers into semantic classes and generalized the modifier ordering
task to the ordering of the corresponding semantic classes. They determined
features depending on which the modifiers are assigned to different classes. But
the major problem with those approaches is that they don’t agree on the features
and classes used. Here, we propose a computational approach to cluster the
modifiers into a number of classes so that semantically related modifiers become
the member of the same class. This idea is motivated by the work of automatic
adjective clustering by Hatzivassiloglou [14]. After the classes are formed, the
pairwise order among the modifier classes are found by using the ordered modifier
pairs extracted from the training corpus. Using the semantic clustering method,
the ordering of those modifier pairs which could not be ordered either by direct
evidence method or by transitivity method is done.

We produce the different modifiers-nouns pairs from the sequences, extracted
from the training corpus, consisting of one or more prenominal modifiers followed
by a head noun. 119359 such modifier-noun pairs are produced from 115292
such sequences. Using the modifier-noun pairs, we find the distribution of the
nouns a modifier modifies. This is based on the expectation that the modifiers
describing the same property tend to modify approximately the same set of
nouns. Therefore, we infer that the modifiers having similar distribution are
semantically similar. Here, we use the cosine vector measure to calculate the
similarity between the modifiers. The modifiers are represented as real-valued
vectors in a multi-dimensional space. The vector spaces consist of the nouns with
which the modifier collocates in the produced modifier-noun pairs. Table 1 gives
an example of five nominal modifiers represented as vectors in noun spaces.

Table 1. Modifier Vectors in Noun Spaces

gA.DI rAstA jalasrota chele prastAba
ba.Da 3 2 0 4 0

ra∼Ngina 1 0 0 0 0

sundara 1 4 0 2 1

tIbra 0 0 3 0 0

bhaYa∼Nkara 0 2 2 0 1

The modifier ba.Da occurs thrice prenominally with the noun gA.DI, twice
with rAstA, four times with chele and never occurs with jalasrota and prastAba.
For two n-dimensional vectors x and y the cosine similarity is given by the
following formula:

cos(x, y) =
x · y
|x||y| =

n∑
i=1

xiyi√
n∑

i=1
xi

2
n∑

i=1
yi

2
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Using this cosine similarity values the semantic dissimilarity among the modifiers
are calculated as follows:

dissimilarity(x,y) = 1− cos(x, y)

The 15073 modifiers occurring prenominally in the training corpus are partitioned
into disjoined classes so that the modifiers with high dissimilarity values are placed
in different classes. We use non-hierarchical K-means algorithm for clustering the
modifiers. Here, we used 10 clusters. Table 2 shows some of the adjectival modi-
fiers belonging to these clusters as found by the K-means algorithm.

Table 2. Clusters Containing Semantically Related Modifiers

Cluster Modifier

1 ra∼Ngina, kAryapayogI, kAryakara, suDola, tapasbI, raktAkta
2 puruShattama, bichchhurita, shaktishAlI, gamanashIla
3 sAmudrika, nirdhArita, prAkRRitika, sAmAjika
4 pratibhAbAna, parishramI, byAkula
5 charama, jamakAlo, nirlipta, chakachake
6 natuna, barjita, sAbadhAnI, chalati, purano
7 uchchatama, be.NTe, sarbAdhika, janapriYa
8 baddha, jIrNa, sarala, gunI
9 asAmAjika, bikaTa, bijAtIYa,jAntaba
10 jalaja, spaShTa, AbachhA, meghalA

After the classes of premodifiers are induced, for each pair of classes we decide
a pairwise order. For two classes Ci and Cj , we extract all pairs of premodifiers
{x, y} with x ∈ Ci and y ∈ Cj . If we have evidence (either by direct evidence
or by transitivity) that x ≺ y, then one point is added in favor of Ci ≺ Cj ;
whereas, one point is added in favor of Cj ≺ Ci if y ≺ x. Once all such modifier
pairs are considered, the pairwise order of the pair {Ci, Cj} is the one for which
the calculated score is greater. Now the order of an unseen modifier pair {a, b},
where a ∈ Ci and b ∈ Cj , is the order of the class pair {Ci, Cj}. The drawback
of this method is that if no order can be defined for the class pair {Ci, Cj}
or the class of any of the modifiers a or b is not found then the order of the
pair {a, b} cannot be inferred. Out of 549 test modifier pairs 440 are correctly
ordered by the semantic clustering method when combined with direct evidence
and transitivity methods.

5.2 Sequence Ordering

Our goal is to correctly order multiple premodifiers of a given NP. For the
NPs with two modifiers, this is done by using the pairwise modifier ordering
model. But for the NPs with more than two premodifiers, we need to extend
the pairwise ordering method. For the NPs with more than two premodifiers,
we generate all possible modifier pairs. The preferred orders of those modi-
fier pairs are generated using the pairwise ordering method. Some or all of the



Prenominal Modifier Ordering in Bengali Text Generation 447

pairwise orders are known by this. Now, using the known pairwise orders we
try to build an ordered modifier chain. If that can be generated without am-
biguity then the generated chain of modifiers is the correct order of the mod-
ifiers for the given NP. For example, in the NP “nAnArakama bichitra sAmu-
drika prAnI ”, there are three modifier pairs, e.g., {nAnArakama, bichitra},
{bichitra, sAmudrika}, and {nAnArakama, sAmudrika}. If the pairwise or-
dering model gives the ordering preferences as “nAnArakama ≺ bichitra”,
“bichitra ≺ sAmudrika”, and “sAmudrika ≺ nAnArakama” then no ordered
modifier chain is possible. So, the premodifiers of this NP cannot be ordered
correctly. On the other hand, if the pairwise orders, known from the pairwise
ordering model, are “nAnArakama ≺ bichitra” and “bichitra ≺ sAmudrika”
then ordered chain can be formed. The order of the prenominal modifiers is
“nAnArakama ≺ bichitra ≺ sAmudrika”.

To generate the ordered chain from known pairwise orders, we use the idea of
topological sort of the nodes of a directed graph. For a given NP with multiple
premodifiers, the nodes of the graph are the premodifiers; the directed edges
are along the known pairwise modifier orders. The algorithm for generating the
ordered modifier chain is given in Algorithm 1.

Algorithm 1. Algorithm for generating ordered chain of modifiers
Input: The directed graph formed by the modifier of an NP
Output: Ordered chain of modifiers if a chain can be formed
L← Empty list that will contain the ordered modifier nodes;
S ← Set of all modifier nodes with indegree 0;
while S contains only 1 node do

remove a node n from S;
insert n in L;
foreach node m with an edge e from n to m do

remove edge e from graph;
if m has no other incoming edges then

insert m into S;
end

end

end
if graph has edges or L does not contain all the graph nodes then

no ordered chain of modifiers is possible;
end
else

get the modifiers from L sequentially generating the ordered modifier chain;
end

6 Evaluation

We use precision, recall and F-measure as the evaluation metrics for our prenom-
inal modifier ordering approach. These are widely used evaluation measures in
NLP and IR research. If X is the set modifier sequences found in the test corpus
and Y is the set of modifier sequences generated by the system when used on
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the test modifier sequences, then precision, recall and F-measure are defined as
follows:

Precision =
X ∩ Y

Y
Recall =

X ∩ Y

X

F-measure = 2× Precision ×Recall
Precision + Recall

We use 10 fold cross-validation to separate out the test corpus from the train-
ing corpus. The modifier sequences, containing multiple modifiers, are extracted
from the test corpus to evaluate the prenominal modifier ordering approach
proposed here. 502 such test modifier sequences are obtained. As discussed in
Section 3, during the preparation of data we transformed the modifier tokens
to their corresponding types, using morphological analyzer. So the calculated
precision, recall and F-measure values are for the modifier types.

The baseline model, discussed in Section 4, predicts the ordering of 361 test
modifier sequences among which 353 are correct. Our method combines the power
of transitive inference and clustering with the direct corpus evidence. Due to these,
greater number of test sequences is ordered correctly by our approach. Among the
442 test sequences, for which our modifier ordering model predicts some order, 415
are correct. Table 3 compares the precision, recall and F-measure of the baseline
model and our approach. The precision of our approach is less than that of base-
line model. But, as our approach correctly orders much greater number of test
modifier sequences, the recall and F-measure values are higher for it.

Table 3. Comparison of Precision, Recall and F-measure of Our Approach with the
Baseline Model

Precision Recall F-measure

Baseline 97.78% 70.32% 81.81%
Our Approach 93.89% 82.69% 87.93%

All the previous works on prenominal modifier ordering evaluated their systems
for pair of modifiers. In the same line, we also test our approach on modifier pairs.
From 502 test modifier sequences 549 modifier pairs are generated which are used
to evaluate the pairwise modifier ordering model. We evaluate our approach for
orderingmore than two prenominal modifiers too. To our knowledge, only Mitchell
[10] and Dunlop [11] tested their systems for more than two modifiers.

The existing prenominal modifier ordering methods, tested for English, can
be implemented for Bengali. To test how effective are they for Bengali, we im-
plement the Mitchell’s approach. We train and test it with our data set. Four
prenominal positions and nine positional classes for the Bengali modifiers are
considered in building this model. Mitchell’s approach clusters the modifiers
based on their positional distribution with the head nouns. But in Bengali, the
word order is not so rigid. So, the clustering the noun modifiers based on their
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positional distribution is not so effective for prenominal modifier ordering in Ben-
gali. Table 4 compares the precision, recall and F-measure values of our model
with that of Mitchell’s model when evaluated on our data set. The results for
pairwise ordering as well as for sequence ordering are shown. Both the preci-
sion values of our approach is bit less than those of Mitchell’s approach. But,
the recall values are much higher for our approach. The F-measure values for
our approach also show improvements over the F-measure values of Mitchell’s
approach.

Table 4. Comparison of Precision, Recall and F-measure of Our Approach with the
Mitchell’s Approach

Mitchell Our Approach

Pairwise Ordering Precision 95.79% 92.55%
Recall 74.68% 80.14%

F-measure 83.93% 85.9%

Sequence Ordering Precision 94.64% 93.89%
Recall 73.9% 82.69%

F-measure 83.99% 87.93%

7 Conclusions

Here, we have discussed an approach to automatically order multiple premodi-
fiers of the NPs in Bengali. To order multiple modifiers, our approach first learns
the pairwise modifier orders through three stages: direct evidence, transitivity
and semantic clustering. Then, by using the pairwise orders, longer prenomi-
nal modifier sequences are generated. We tested an existing modifier ordering
approach on our data set. Our modifier ordering approach shows considerable
improvements over that existing approach.

The approach described here, builds a machine learning based model for or-
dering prenominal modifiers. It orders the modifiers of an NP as they appear in
the training corpus. Since Bengali is a free-word-order language, the other mod-
ifier orders which do not appear in the training corpus may also sound fluent
and natural. Thus, for ordering of prenominal modifiers in Bengali, linguistic
properties of the modifiers can be used. The ontological knowledge of the noun
modifiers in Bengali can be used for better ordering of the prenominal modifiers.
In the future, we will train and test our modifier ordering model with Bengali
corpus in different domains to test its domain dependency. We will implement
our approach in a Bengali text generation system to test the improvements in
fluency of the generated text.

Acknowledgments

We would like to thank anonymous reviewers for their valuable comments. We
would also like to thank Mr. Plaban Kumar Bhowmik, Mr. Tirthankar Dasgupta



450 S. Das, A. Basu, and S. Sarkar

and Mr. Sanjay Chatterjee for their valuable advice and support. This work is
supported by the project Sanyog - Phase II, funded by Media Lab Asia and
Society for Natural Language Technology Research (SNLTR), and conducted
in Communication Empowerment Laboratory, Indian Institute of Technology,
Kharagpur.

References

1. Danks, J.H., Glucksberg, S.: Psychological scaling of adjective orders. Journal of
Verbal Learning and Verbal Behavior 10, 63–67 (1971)

2. Martin, J.: Semantic determinants of preferred adjective order. Journal of Verbal
Learning and Verbal Behavior 8, 697–704 (1969)

3. Danks, J.H., Schwenk, M.A.: Prenominal adjective order and communication con-
text. Journal of Verbal Learning and Verbal Behavior 11, 183–187 (1972)

4. Martin, J.: Adjective order and juncture. Journal of Verbal Learning and Verbal
Behavior 9, 379–383 (1970)

5. Bacharach, V.R., Maisto, A.A.: Prenominal adjective order and visual discrimina-
tion in children. Journal of Experimental Child Psychology 17, 495–506 (1974)

6. Goyvaerts, D.L.: An introductory study on the ordering of a string of adjectives in
present-day english. Philologica Pragensia 11, 12–28 (1968)

7. Shaw, J., Hatzivassiloglou, V.: Ordering among premodifiers. In: Proceedings of the
37th Annual Meeting of the Association for Computational Linguistics on Com-
putational Linguistics, pp. 135–143. Association for Computational Linguistics,
Morristown (1999)

8. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated cor-
pus of english: The penn treebank. Computational Linguistics 19, 313–330 (1993)

9. Malouf, R.: The order of prenominal adjectives in natural language generation. In:
ACL 2000: Proceedings of the 38th Annual Meeting on Association for Computa-
tional Linguistics, pp. 85–92. Association for Computational Linguistics, Morris-
town (2000)

10. Mitchell, M.: Class-based ordering of prenominal modifiers. In: ENLG 2009: Pro-
ceedings of the 12th European Workshop on Natural Language Generation, pp.
50–57. Association for Computational Linguistics, Morristown (2009)

11. Dunlop, A., Mitchell, M., Roark, B.: Prenominal modifier ordering via multiple se-
quence alignment. In: HLT 2010: Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, pp. 600–608. Association for Computational Linguistics, Morristown
(2010)

12. Stolcke, A.: Srilm - an extensible language modeling toolkit, pp. 901–904 (2002)
13. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer

Algorithms. Addison-Wesley Publishing Company, Reading (1974)
14. Hatzivassiloglou, V., Mckeown, K.R.: Towards the automatic identification of ad-

jectival scales: Clustering adjectives according to meaning. In: Proceedings of the
31st Annual Meeting of the ACL, pp. 172–182 (1993)



Bootstrapping Multiple-Choice Tests with
THE-MENTOR

Ana Cristina Mendes, Sérgio Curto, and Luı́sa Coheur

Spoken Language Systems Laboratory - L2F/INESC-ID
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Abstract. It is very likely that, at least once in their lifetime, everyone has an-
swered a multiple-choice test. Multiple-choice tests are considered an effective
technique for knowledge assessment, requiring a short response time and with
the possibility of covering a broad set of topics. Nevertheless, when it comes to
their creation, it can be a time-consuming and labour-intensive task. Here, the
generation of multiple-choice tests aided by computer can reduce these draw-
backs: to the human assessor is attributed the final task of approving or rejecting
the generated test items, depending on their quality.

In this paper we present THE-MENTOR, a system that employs a fully auto-
matic approach to generate multiple-choice tests. In a first offline step, a set of
lexico-syntactic patterns are bootstrapped by using several question/answer seed
pairs and leveraging the redundancy of the Web. Afterwards, in an online step, the
patterns are used to select sentences in a text document from which answers can
be extracted and the respective questions built. In the end, several filters are ap-
plied to discard low quality items and distractors are named entities that comply
with the question category, extracted from the same text.

1 Introduction

Multiple-choice tests are an effective technique for knowledge assessment, requiring a
short response time and with the possibility of covering a broad set of topics. Typically,
these tests consist in a number of test items, each composed by two parts: a question
and a group of suggested answers. Respondents are supposed to identify the correct
answer among the incorrect ones (called distractors). The following is an example of a
multiple-choice test item with one correct answer and two distractors:

Q. “What is the largest ocean?”

1. Atlantic (distractor)
2. Pacific (correct answer)
3. Indian (distractor)

The manual creation of multiple-choice test items is a time consuming trial and er-
ror process; in this context, computer aided multiple-choice tests generation can help
reducing the amount of time allocated to this task.

A. Gelbukh (Ed.): CICLing 2011, Part I, LNCS 6608, pp. 451–462, 2011.
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In this paper, we hypothesize that the process of generating multiple-choice tests
with only one correct answer per question can rely on the bootstrap of a set of ques-
tion/answer (Q/A) seed pairs. Here, we describe our approach to automatically generate
multiple-choice tests and present THE-MENTOR, a system that generates multi-choice
tests about a free text document. THE-MENTOR is composed by two main components
which perform the following tasks:

Learning lexico-syntactic patterns – A set of Q/A seeds is used to bootstrap pat-
terns that relate questions with answers. Patterns are learned from the Web, and
we exploit its redundancy to create plausible patterns. Moreover, we perform verb
expansion and allow several types of patterns, according to the precision of the
match against the original seeds. The decision of accepting different types of pat-
terns resulted from the fact that, if patterns are too specific (strong patterns), they
will not frequently match and not many tests will be generated; if patterns are too
generic (weak patterns), the quality of the generated tests decreases.

Generation of test items – The retrieved patterns extract sentences where answers can
be found and from which the respective questions can be built. In order to discard
low quality items, several filters are applied. Distractors are named entities that
comply with the question category, extracted from the same text.

Afterwards, the user can evaluate the quality of the generated test items through a web
interface. The multiple-choice test will be composed by the test items the user consid-
ered as having quality.

This paper is organized as follows: in Section 2 we describe the pattern learning
task; in Section 3 we describe how to generate multiple-choice test items. In Section 4
we show the evaluation results; in Section 5 we present related work; in Section 6 we
present our conclusions and point to future work directions.

2 Pattern Learning

The first task in the generation of multiple-choice test items by THE-MENTOR has to
do with learning lexico-syntactic patterns and is performed off-line, that is, before the
user specifies the text document based on which the test will be generated.

The algorithm for pattern learning is based on the bootstrapping technique presented
in [1], and involves the following two stages. First, we use a seed pair – composed by a
natural language question and its correct answer – to bootstrap patterns that relate ques-
tions and answers. We call B-PATTERNS to the patterns extracted from the bootstrap
process. Second, the B-PATTERNS are validated using a validation pair – also a natural
language question and its correct answer – as input. The validation pair will help to
remove those patterns that are too specific to the seed pair. Therefore, each seed pair
has a validation pair associated. These pairs are automatically grouped, knowing that al-
though their constituents are lexically distinct, they must share the same syntactic struc-
ture as well as the same category. For example, the seed question “Who is the President
of France?” cannot be validated by the question “What is the capital of France?” since,
although both share the same syntactic structure (WHNP VBZ NP), they have a different
focus: the former searches for the name of an individual (HUMAN:INDIVIDUAL) and
the later for the name of a city (LOCATION:CITY).
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The syntactic analysis of questions is made using the Berkeley Parser [2] trained on
the QuestionBank [3], a treebank of 4,000 parse-annotated questions. In what concerns
the classification of questions, we use a machine learning-based classifier fed with fea-
tures derived from a rule-based classifier [4]. Regarding the question categories, we
use Li and Roth’s two-layer taxonomy [5], consisting of a set of six coarse-grained
categories and fifty fine-grained ones.

Finding patterns. The algorithm to find B-PATTERNS starts by generating permu-
tations of a set comprising the seed answer, the phrasal nodes of the seed question
(excluding the Wh-phrase), and a wildcard * which stands as a placeholder for one or
more words and adds diversity into the generated patterns. For instance, considering the
question “Who painted the Birth of Venus ?” and the sentence Botticelli has painted the
Birth of Venus, a wildcard is required to match the verb has. Since we do not allow the
wildcard to be the first or the last element in the query, the total number of permutations
is n!− 2(n− 1)!, in which n is the number of elements to be permuted. In addition, the
reason why we use phrasal nodes instead of question tokens as it is done in [1], is be-
cause they represent a single unit of meaning, and therefore should not be broken down
into parts (except for verb phrases). For example, considering the previous question
“Who painted the Birth of Venus ?”. it does not make sense to divide the noun-phrase
the Birth of Venus, since it would generate several meaningless permutations, like Birth
the painted Botticelli * of Venus.

After the permutations have been created, each is enclosed in double quotes and
sent to Google search1. The double quotes ensure that each search result contains the
exact quoted permutation, with every word in the exact same order in which it ap-
pears in the original query. The snippets retrieved from the search engine are then
broken down into sentences, and if there exists a sentence that matches the respec-
tive permutation, we rewrite it as a pattern. Consider again the question “[WHNP
Who] [VBD painted] [NP the Birth of Venus]”, and suppose a sentence Botticelli has
painted the Birth of Venus that matches the permutation Botticelli * painted the Birth
of Venus. The resulting pattern would then be “{ANSWER} has VBD NP”, created by
replacing each phrasal node with the respective tag, and the seed answer with the tag
“{ANSWER}”.

Pattern Validation. While many of the learned patterns are generic enough to be ap-
plied to other questions, there are others specific to the seed pair. For instance, the
pattern “NP was VBD around 1486 by {ANSWER}”, extracted from the sentence The
Birth of Venus was painted around 1486 by Botticelli. Since this pattern only works for
the seed question (and possibly for a small number of works of art of that same year), it
should be filtered-out. To eliminate these elements, we use a different algorithm which
requires the use of a validation pair.

The validation algorithm works by testing each generated pattern against the val-
idation pair, and calculating its precision. The precision is considered to be the ra-
tio between the number of times the pattern matched the retrieved snippets and the

1 In this work we use Google as the search engine. However, there is no technical reason that
prohibits this system to use another search engine.
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number of times the pattern was expected to match (that is, the maximum number of
snippets retrieved by the search engine). For example, using the aforementioned pat-
tern and the validation pair “Who painted Guernica?”/Picasso, the query Guernica
was painted around 1486 by Picasso would be issued, resulting in zero results – and
thus zero precision. This would cause the pattern to be ruled-out, as the algorithm
dictates that each pattern must have precision larger than a threshold in order to be
retained.

2.1 Handling Verbs

Our method for learning patterns implies that every phrase (except the Wh-phrase)
must be present in the B-PATTERNS. From now on, we call strong patterns to the
B-PATTERNS that contain all phrases (and their contents) of the seed question. Whereas
this is the expected behaviour for Noun- and Prepositional-phrases that should be stated
ipsis verbis in the sentence fragments that will generate the patterns as they are in the
seed question, the same does not apply for Verb-phrases. The pattern generator should
be flexible enough to capture a pattern in the sentence Botticelli finished painting The
Birth of Venus in 1485., even if the surface word that corresponds to the verb is not the
same as the one present in “Who painted the Birth of Venus?”.

Being so, we allow the verbs in the pattern to be in a different inflexion than the main
verb in the seed question. Moreover, in case the seed question has an auxiliary verb, the
sentence fragment does not need to contain it, since these are most probable to appear in
interrogative sentences than on declaratives ones. To create these patterns, we pick the
main verb of the question and conjugate it in its multiple inflexions. Afterwards, a new
query is sent to the search engine with the several inflexions, and without the presence
of the auxiliary verb (if it exists in the question).

The B-PATTERNS generated by verb inflection are named inflected patterns.

2.2 Allowing Weak Patterns

There are, however, some patterns that should not be disregarded, even if they do not
contain all question phrases and cannot be handled by allowing the multiple inflexion
of verbs. These patterns arise from sentence that, despite not completely rephrasing
the question, capture the existing relation between it and the answer. For instance, the
pattern “NP, by {ANSWER}” should be recovered from the sentence The Birth of Venus,
by Botticelli, even if it does not include the verb (in this case, painted). These patterns
are different from the strong and inflected patterns, not only because of how
they were created, but also because they will trigger distinct strategies in the test item
generation. To generate this type of patterns (called weak patterns), the procedure is
similar as referred, just we do not allow the Verb Phrases in the question to be present
on the permutations.

Table 1 shows a set of patterns2 generated from, and validated with, the snippets
retrieved by the search engine, for questions with flatten syntactic structure WHNP
VBD NP and category HUMAN:INDIVIDUAL.

2 Here, as well as throughout the entire paper, the Penn Treebank II Tags [6] are used.
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Table 1. Example of extracted patterns with respective precision and type

Question HUMAN:INDIVIDUAL-WHNP VBD NP

Precision Pattern Type

0.625 {ANSWER}’s NP W
0.25 {ANSWER} began VBG NP I

0.625 NP VBD by {ANSWER} S

3 Building Mutiple-Choice Tests

The next task in the generation of multiple-choice test items by THE-MENTOR is done
online. The user specifies the target documents and the system parses the text and ap-
plies the learned patterns in order to obtain Q/A pairs (as well as distractors). This
method also involves several strategies for filtering the obtained Q/A pairs in order to
discard low quality pairs.

3.1 Extracting Question/Answer Pairs

Our algorithm for extracting Q/A pairs relies on matching lexico-syntactic information
from the B-PATTERNS against the parsed sentences of the target document. Each match
is done at two levels in the sentence parse tree: at the word level, since most of the
patterns include tokens to separate the syntactic components, and at the syntactic level.
For that purpose, we have developed a tree matching algorithm (out of the scope of this
paper) to find all the occurrences of a given pattern on the syntactic tree of the parsed
sentences.

After the extraction of the sentence fragments where questions and their respec-
tive answers are stated, we apply a set of filters to refine the proceeding generation of
multiple-choice test items, namely:

Forcing Question/Answer Category Matching. The extracted fragments in which the
answer does not comply with the expected category can be discarded. Consider, for
example, the Q/A pair: “Who was François Rabelais?”-An important 16th century
writer. Here, the answer agrees with the semantic class expected by the question
(HUMAN:INDIVIDUAL), indicated by the word writer.
Thus, we test the answer in order to check if at least one of its words belongs to the
question category. By using WordNet’s lexical hierarchy, a word is associated with
a higher-level semantic concept, which represents itself a question category. To do
so, we have manually grouped a set of WordNet synsets into fifty clusters, each
representing a question category. For example the category HUMAN:INDIVIDUAL

is related with the synsets person, individual, someone, somebody and
mortal. The words actor, leader and writer are hyponyms of (at least) one of
these synsets. Since WordNet can be seen as a directed acyclic graph, with synsets
as vertices and lexical relations – such as hypernym – as edges, we employ a
breadth-first search on the translated synset’s hypernym tree, in order to find a
synset that pertains to any of the pre-defined clusters.
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Discarding Anaphoric References. A group of simple regular expressions is used to
invalidate questions that contain anaphoric references and others, which we empiri-
cally know that will not result in quality multiple-choice test items. Thus, questions
like “What is it?”, “Where is there?” or “What is one?” are discarded.

3.2 Generation of Test Items

Given that we successfully discover and extract fragments in the target document that
match B-PATTERNS, the generation of multiple-choice test items is straightforward and
performed according to the type of the fragment extracted from the sentence (strong,
inflected and weak). Since we keep track of both the set of questions (that share the
syntactic form) for which we discovered the patterns, and the sentences that generated
them, the generation goes as follows: both strong and inflected patterns result in
a direct unification of all extracted fragment components with the B-PATTERNS com-
ponents. However, within inflected patterns, the verb is inflected with the tense and
person existing in the question and the auxiliary in the question is also used. In what
concerns the weak patterns, we perform the unification of the fragment components
with the respective pattern components, and for all the components that do not appear
in the fragment, the components in the question are used.

Regarding the generation of distractors, we search in the text for named entities
whose type agree with the category of the question. For that purpose, and to take ad-
vantage of the rich taxonomy of question categories utilized, we developed and use
several strategies to recognize named entities from texts. These strategies include the
usage of regular expressions (to extract numerical entities), gazetteers (to extract loca-
tions) and a machine learning-based recognizer (for persons, locations, organizations
and others). We choose the named entities nearer to the sentence that originated the
Q/A pair, however not in the same sentence. As an example, if we consider the sentence
This resource briefly explores the telegraph invented by Samuel Morse., that originates
the Q/A pair “Who invented the telegraph?”-Samuel Morse, since its category is HU-
MAN:INDIVIDUAL, we will search and use as distractors the named entities of type
PERSON in the nearer sentences.

4 Experiments

Our approach takes as input natural language questions and their correct answers. In
our experiments, we used 139 natural language Q/A pairs, some taken from an on-line
trivia, others manually created. All questions are factoids pertaining to 10 categories
– ENTITY:CURRENCY (5 Q/A pairs), ENTITY:SPORT (3), ENTITY:LANGUAGE (4),
HUMAN:INDIVIDUAL (28), LOCATION:CITY (11), LOCATION:COUNTRY (24), LO-
CATION:MOUNTAIN (2), LOCATION:OTHER (27), LOCATION:STATE (12) and NU-
MERIC:DATE (23). To allow comparisons with other systems, the used Q/A pairs are
available in http://qa.l2f.inesc-id.pt/wiki/index.php/Resources

The pairs were automatically grouped (according to their category and syntactic
structure), in order to create the seed/validation pairs. This step resulted in a set of
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Table 2. Example of seed-validation pairs

Group – HUMAN:INDIVIDUAL-WHNP VBD NP
S “Who wrote Odyssey?”/Homer
V “Who painted Guernica ?”/Picasso

Group – LOCATION:COUNTRY-WHPP VBD NP VBN
S “In which country was Bjorn Borg born?”/Sweden
V “In which country was the match invented?”/France
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Fig. 1. Distribution of B-PATTERNS per category

668 seed/validation pairs, which, along with the different syntactic structures and cat-
egories, led to a total of 20 groups. Examples of seed/validation pairs are presented in
Table 2, with a reference to the group to which they belong.

The 16 top ranked snippets retrieved by the web search engine Google were used to
learn the patterns, according to the process described in Section 2. The learning task
resulted in 1348 B-PATTERNS, from which 1126 were unique.

The distribution of patterns according to the category is presented in Figure 1. We no-
ticed that the more seed/validation pairs exist, the more B-PATTERNS were bootstrapped
by category. An exception to this was the category ENTITY:LANGUAGE, for which a
small number of pairs (12) gave rise to a large number of patterns (all belonging to the
type strong and inflected). The highest number of patterns were discovered for
the category HUMAN:INDIVIDUAL, which was the category with more seed/validation
pairs. Moreover, a great share of patterns of this category are of type weak: almost one
third. The ratio between weak patterns and the total amount of patterns is less for the
other categories: in five categories this ratio lower then 5%.

To evaluate the generated test items we used a similar model of test item review to
that of [7]. If an item makes no sense (like “Who left alone much?”-the new British
rulers) it is discarded; otherwise, it is marked as worthy. A worthy item is evaluated
according to the degree of review needed, and classified as: minor, if it requires up
to minimal corrections (like article introduction or spelling corrections), for example
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Table 3. Number of generated question and answer pairs for each pattern type

Type Degree of Review Discarded Total
Min. Mod. Maj.

S 14 26 11 8 59
I 2 7 8 28 45
W 0 2 55 53 110

Total 16 35 74 89 214

“Who was François Rabelais?”-An important 16th century writer; moderate, if it re-
quires the removal/insertion or reordering of words, or if a set of distractors is not ap-
plicable, for example, in: “Who was Eugène Viollet-le-Duc?”-the associated architect
the words “the associated” should be removed; major, if it requires a deep grammati-
cal correction, for example in: “Who became Philip I?”-the Spanish king the question
should be reformulated to “What did Philip I become?”.

4.1 Evaluation

We used the Wikipedia article about the “History of Portugal” 3 as target document in
the evaluation of our approach for the generation of the test items.

Results for each type of pattern – strong, inflected and weak – are shown in
Table 3.

A total of 806 sentences from the referred article tried to match with every of the
learned patterns. Considering the type of the involved patterns, 59 were strong, 45
inflected and 110 weak patterns extracted Q/A pairs. Although more patterns were
activated, they did not pass the filtering phase.

As expected, most of the Q/A pairs extracted from the strong patterns generated
items considered as worthy. This type of patterns generated the pairs that needed small
or no revision. However, a tendency exists for augmenting the degree of review needed
when lowering the constraints imposed by the patterns (measured by the existence of the
question components in the pattern). The extracted question/answer pairs are distributed
through six of the aforementioned categories:

– Human:Individual: generated the highest number of pairs (138), mostly using
strong patterns. Greatly contributed to the total of minor revision items (11 of 14);

– Location:City: generated the second highest number of pairs: 27, in which 13 were
worthy;

– Location:Country: generated only eight pairs, only two considered worthy;
– Location:Other: generated 18 pairs. Since this category is more generic that the

previous two Locations, it could generate better test items than the others (for in-
stance, a Q/A pair “Where is Lisbon?”-Europe is allowed, but not “In which coun-
try is Lisbon?”-Europe);

– Location:State: generated seven pairs. All of them were discarded.
– Numeric:Date: generated 13 pairs, three of which needing minor revisions.

3 http://en.wikipedia.org/wiki/History_of_Portugal
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Although no patterns of the other four categories matched, this result was somewhat
expected: firstly, due to the nature of the document target in use: an article about the
history of a country; secondly, the patterns belonging to these categories existed in
higher number than the others (an exception being the category ENTITY:LANGUAGE).

The B-PATTERN that generated more patterns was the weak pattern “NP with
{ANSWER}”, however for the 72 generated, all of them are either discarded, or need
major revision. The one that was most successful, with a higher number of worthy
generated items with minor revision when compared to the total number of gener-
ated patterns (11 in 42), was “{ANSWER} VBD NP”, both from the category HU-
MAN:INDIVIDUAL.

Concerning the distractors, mostly they were appropriate to the generated test item.
Moreover, and since they are in agreement with the question, if its Wh-phrase has to be
reviewed/replaced, the distractor will probably have to be changed too.

4.2 Discussion

The approach used within THE-MENTOR receives as input a set of natural language
Q/A pairs and generates test items in order to create multiple-choice tests. With this
approach, several test items were generated automatically that can help the creation
of multiple-choice tests, originated from a small set of seed pairs. These seeds can be
easily found and built, for instance, using the test sets made available in evaluation
campaigns for QA systems (like TREC or CLEF).

As results suggested, there is a relation between the types of the B-PATTERNS and
the test items they generate: STRONG patterns generated better Q/A pairs, however in
a lower number, and WEAK patterns generated Q/A pairs with lower quality, but still
most of them can be used after some revision. However, a similar relation could not be
spotted for the category type and the generated test items. It was anticipated that the
WEAK patterns would lead to the worse results, however we consider that they are able
to capture important information. We believe that their posterior generation into Q/A
pairs and the automatic filtering phase should be improved.

Also, our approach relies in the lexico-syntactic information stated on the patterns.
Even if with this we are neglecting information that could be valuable in the matching
of sentences and generation of the tests, for instance semantic information, we could
still generate a large set of test items, most of which can be used.

5 Related Work

There are not many examples in the literature of systems that focus on the generation
of multiple-choice tests. An exception is the computer-aided environment for generat-
ing multiple-choice test items, described in [8]. Authors present a system that relies
heavily on natural language processing techniques and resources, built on the notion of
key-terms (terms about which the test items should be generated). The system performs
three main tasks: it starts by identifying and extracting the key-terms from the source
corpora, by using regular expressions that match nouns and noun-phrases; afterwards,
question generation rules are applied only to sentences of SV(O) structure and the
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generated questions filtered to assure grammatical correctness; lastly, concepts seman-
tically related with the answer are retrieved from the WordNet [9]. After the generation,
a post-editing phase exists in which the test items are revised by human assessors. This
system was later adapted to the medical domain [10].

Authors [11] and [12] describe two other systems for multiple-choice test generation.
However, the type of questions they output are different from the ones of the aforemen-
tioned system and from our work: the fill-in-the-blank (or cloze) questions, are built
with blank spaces to be filled by the appropriate option. The first system, called We-
bExperimenter, obtains distractors from several sources/techniques such as WordNet,
edit distance or mutual information, and uses a machine learning classifier to decide the
correct position of the blank in the question. WebExperimenter was later adapted to as-
sist the learning of English as a second language [13]. The second system was originally
built with the purpose of measuring the English proficiency of non-native speakers, and
works by selecting and replacing a word (authors focused uniquely on verbs) in a cor-
rect English sentence with a blank. Distractors are chosen in order to maintain the same
characteristics of the correct choice, and picked from a thesaurus. The correctness of
each distractor is assessed through a web-based verification: if the sentence restored
from the blanked sentence and the distractor exists in the web, the distractor is assumed
to be correct. Following this line, several systems, like REAP [14] and FAST [15], put
their efforts in the improvement of cloze questions.

Although the literature in multiple-choice test generation is not extensive, this task
can easily borrow and adapt techniques employed in Question-Answering (QA). These
have influenced our work, hence, here we briefly describe some of these systems.

A good parcel of the research in question answering relies on the usage of patterns,
namely to bridge the gap between the question and the sentence in which the answer
can be found. The main idea is that the answer to a given question will probably occur
in sentences that contain a rewrite of the original question. For example, given the
question “Who painted the Birth of Venus?”, a possible rewrite is painted the Birth
of Venus, which is very likely to appear after the answer Botticelli. However, there is
also a strong possibility that there are words separating the rewrite and the answer. If
we find these sequences, we are able to create patterns that will allow us to find the
answers to similar questions. For instance, ANSWER, who REWRITE is a pattern that
can be extracted from the sentence Botticelli, who painted the Birth of Venus.

In the QA track of the TREC-10, the winning system – described in [16] – presents an
extensive list of surface patterns and draws the attention of the community to the poten-
tial of this technique. Posterior work of [1] details a pattern-learning algorithm, that can
be summarized in the following: first, a question (part of it) and its answer are submit-
ted to Altavista; second, the 1000 top documents are downloaded and those containing
both the answer and the question are retained; finally, the longest matching substrings
are extracted and the question and the answer are replaced by tokens <QUESTION>
and <ANSWER>. Our pattern-learning algorithm is similar to this, although we accept
patterns that do not match both the question and the answer. Moreover, our patterns are
syntactically-based. Somehow related with the work of [1] is the work of [17] and [18].
The former searches for possible answers in snippets by analysing substrings that have
similar contexts of already known answers and uses genetic algorithms in the process;
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the later bases the performance of the QA system AskMSR on manually created rewrite
rules which are likely substrings of declarative answers to questions. The authors also
felt the need to produce less precise rewrites, since the correct ones did not match any
document. On the Dutch language, [19] explores the question rewriting process for
questions that have as answer type person and location. The authors use syntactic infor-
mation in the question analysis, but the rewrite rules are hand built, like in [20], which
presents an extensive list of regular expressions.

6 Conclusions and Future Work

Here we presented THE-MENTOR, a system that automatically generates multiple-
choice test items, composed by a question, a correct answer and a set of distractors.
First, it exploits the redundancy of large corpora sources to bootstrap frequent patterns.
Each pattern is assumed to bridge the gap between a question and its answer. After-
wards, given a target document, it extracts question/answer pairs from the sentences
that match the patterns, as well as the distractors in their surroundings, and builds test
items.

By using mainly syntactic information complemented by verb conjugation and Word-
Net information, the approach we described allowed us to achieve an set of patterns
that, after applied to a medium sized target document, could generate a large amount of
question/answer pairs, most of which can be used without or after some revision.

As future work, we intend to generate patterns using semantic features, rather than
only lexico-syntactic ones. Moreover, we would like to evaluate this approach in texts
of different nature. To use dependency grammar is also in our plans in order to allow
the system to learn long distance dependencies. When it comes to distractor extraction,
we are considering using other sources besides the target document.
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Patrick, Jon II-151
Paul, Michael II-55
Pham, Dang Duc I-190
Pham, Son Bao I-190
Pilevar, Abdol Hamid II-68
Pilevar, Mohammad Taher II-68

Qiu, Likun I-15
Qiu, Xipeng I-121

Radicioni, Daniele P. II-1
Ramasamy, Loganathan I-82
Rao, Pattabhi R.K. I-316
Rello, Luz I-227
Remus, Robert I-380
Ren, Fuji I-405
Reyes-Barragán, Alejandro II-458
Robaldo, Livio II-177
Rosso, Paolo II-277
Rubino, Raphaël II-29
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