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Preface

La physique ne nous donne pas seulement l’occasion de
résoudre des problems, : : : elle nous fait pressentir la solution
(Physics gives us not only the opportunity to solve
problems, : : : it helps us to anticipate the solution)

(Henri Poincaré, 1854–1912)

Dynamic processes in the Earth’s interior and on its surface can be described by
geodynamic models. These models can be presented by a mathematical problem
comprising a set of partial differential equations with relevant conditions at the
model boundary and at the initial time. The mathematical problem can be then
solved numerically to obtain future states of the model. Meanwhile the initial
conditions in the geological past or some boundary conditions at the present are
unknown, and the question of how to “find” the conditions with a sufficient accuracy
attracts attention in the field of geodynamics. One of the mathematical approaches
is data assimilation or the use of available data to reconstruct the initial state in
the past or boundary conditions and then to model numerically the dynamics of the
Earth starting from the reconstructed conditions.

Quantitative geodynamic models have been developed with the advent of
powerful computers. Since the 1980s simple data assimilation methods began to
be employed in geodynamic modelling, and since the 2000s more sophisticated
methods have been in use. The assimilation models have shown a capability to
reconstruct thermal and dynamic characteristics of the solid Earth in the geological
past. However, the models require accurate geophysical, geodetic, geochemical,
and geological data. The observations, although growing in size, are still sparse
and irregularly distributed in space and time. Therefore, efficient methods for data
assimilation are needed for accurate reconstructions and modelling.

In this book we describe the methods and numerical approaches for data assim-
ilation in geodynamical models and present several applications of the described
methodology to relevant case studies. The book starts with a brief overview of
the basic principles in data-driven geodynamic modelling, inverse problems, and
data assimilation methods, which is then followed by methodological chapters on
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vi Preface

backward advection, variational (or adjoint), and quasi-reversibility methods. The
chapters are accompanied by those presenting applications of the methods to solving
some geodynamic problems such as mantle plume evolution, lithosphere dynamics,
salt diapirism, and a volcanic lava flow. These applications might present an
interest to the hydrocarbon industry and to experts dealing with geohazards and risk
mitigation. For example, the knowledge of sedimentary basin evolution complicated
by deformations due to salt tectonics can help in oil and gas exploration; the
understanding of the stress-strain evolution and stress localisation can provide an
insight on the preparation of large earthquakes; volcanic lava flow assessments can
mitigate a potential risk for population and infrastructure.

We have to apologise that the book does not contain all methods for data
assimilation, but only frequently used in geodynamic modelling. However, we
believe that the methods and the applications described here will be helpful for
understanding how geo-data can be utilised to resolve quantitatively some problems
in geodynamics.

Karlsruhe, Germany Alik Ismail-Zadeh
Yekaterinburg, Russia Alexander Korotkii
Yekaterinburg, Russia Igor Tsepelev
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Chapter 1
Introduction

Abstract In this chapter, we introduce direct and inverse problems as well as well-
and ill-posed problems, which are characterised by the existence, uniqueness, and
stability of the problem solution. We present some examples of unstable problems
and discuss the basic elements in forward and backward numerical modelling and
the errors associated with the modelling. Finally we briefly review the methods for
data assimilation used in geodynamic modelling.

Keywords Data assimilation • Methods • Numerical modelling • Well-
posedness • Ill-posedness • Solution stability • Errors

Geodynamics, whose past and current behaviours are of great scientific interest,
deals with dynamic processes in the Earth’s interior and on its surface. Mantle
convection, hotspots and mantle plumes, lithosphere dynamics and plate subduction
as well as their surface manifestation as volcanism, seismicity, and sedimentary
basins evolution are among principal geodynamic problems (e.g. Turcotte and
Schubert 2002). Many geodynamic problems can be described by mathematical
models, i.e. by a set of partial differential equations and boundary and/or initial
conditions defined in a specific domain. A mathematical model links the causal
characteristics of a geodynamic process with its effects. The causal characteristics
of the model process include, for example, parameters of the initial and boundary
conditions, coefficients of the differential equations, and geometrical parameters of
a model domain. The aim of the direct mathematical problem is to determine the
effects of a geodynamic model process based on the knowledge of its causes, and
hence to find a solution to the mathematical problem for a given set of parameters
and coefficients. An inverse problem is the opposite of a direct problem. An
inverse problem is considered when there is a lack of information on the causal
characteristics but information on the effects of the geodynamic process exists.

In this book we refer to a data-driven numerical model in geodynamics, when a
numerical model derived from the mathematical model describing a geodynamic
process is considered in the cases of known effects of the geodynamic process
(available geophysical, geological, geochemical, geodetic, and other data) but
(some) unknown causal characteristics of the model. The goal of data-driven

© The Author(s) 2016
A. Ismail-Zadeh et al., Data-Driven Numerical Modelling in Geodynamics:
Methods and Applications, SpringerBriefs in Earth Sciences,
DOI 10.1007/978-3-319-27801-8_1
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2 1 Introduction

numerical modelling is to determine the model characteristics. Such approach is
known also as data assimilation. There are two approaches in data assimilation. The
classical approach considers a mathematical model as a true model and available
geo-data as a true data set with some measurement errors, and the goal is to
recover the true model (e.g., initial or boundary conditions). Another way to treat
a mathematical model is the Bayesian approach, where the model is considered
as a random variable, and the solution is a probability distribution for the model
parameters (Aster et al. 2005). Here we consider the classical data assimilation
approach and use the term “data assimilation in geodynamic modelling” assuming
that it is as a synonym to “data-driven numerical modelling in geodynamics”.

1.1 Inverse Problems in Geodynamics

Inverse problems can be subdivided into time-reverse or retrospective problems (e.g.
to restore the development of a geodynamic process), coefficient problems (e.g.
to determine the coefficients of the model equations and/or boundary conditions),
geometrical problems (e.g. to determine the location of heat sources in a model
domain or the geometry of the model boundary), and some others. Inverse problems
are often ill-posed. The idea of well- (and ill-) posedness in the theory of partial
differential equations was introduced by Hadamard (1902). A mathematical model
of a geodynamic problem is considered to be well-posed if (i) a solution to this
problem exists, and the solution is (ii) unique and (iii) stable. Problems for which at
least one of these three properties does not hold are called ill-posed. The requirement
of stability is the most important one. If a problem lacks the property of stability then
its solution is almost impossible to compute, because computations are polluted by
unavoidable errors. If the solution of a problem does not depend continuously on
the initial data, then, in general, the computed solution may have nothing to do with
the true solution.

For example, the retrospective (inverse) problem of thermal convection in the
mantle is an ill-posed problem, since the backward heat problem, describing both
heat advection and conduction through the mantle backwards in time, possesses the
properties of ill-posedness or instability (Kirsch 1996). In particular, the solution
to the problem does not depend continuously on the initial data. This means that
small changes in the present-day temperature field may result in large changes of
predicted mantle temperatures in the past. Let us explain this statement using two
simple problems related to the one-dimensional (1-D) diffusion equation and the
two-dimensional (2-D) Laplace equation.

Example 1.1 Consider the following problem for the 1-D backward diffusion
equation:

@u .t; x/ =@t D @2u .t; x/ =@x2; 0 � x � �; t < 0
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with the following boundary and initial conditions

u .t; 0/ D 0 D u .t; �/ ; t � 0; u .0; x/ D �n.x/; 0 � x � �:

At the initial time the function �n(x) is assumed to take the following two forms:

�n.x/ D sin ..4n C 1/ x/

4n C 1
and �0.x/ � 0:

We note that

max
0�x�� j�n.x/ � �0.x/j � 1

4n C 1
! 0 at n ! 1: (1.1)

The two solutions of the problem

un .t; x/ D sin..4nC1/x/
4nC1 exp

�
�.4n C 1/2t

�
at �n.x/ D �n and

u0 .t; x/ � 0 at �n.x/ D �0

correspond to the two chosen functions of �n(x), respectively. At t D �1 and
x D �=2

un .�1; �=2/ D 1

4n C 1
exp

�
.4n C 1/2

�
at n ! 1: (1.2)

At large n two closely set initial functions �n and �0 are associated with the two
strongly different solutions at t D �1 and x D �=2. Hence, a small error in the
initial data (1.1) can result in very large errors in the solution to the backward
problem (1.2), and therefore the solution is unstable, and the problem is ill-posed in
the sense of Hadamard.

Example 1.2 Now we consider a problem for the 2-D Laplace equation. This
problem can be formulated as:

@2u .y; x/ =@y2 D �@2u .y; x/ =@x2; y � 0;

with the following initial conditions

u .0; x/ D 0; @u .y; x/ =@yjyD0 D n�1 sin.nx/:

The solution of the problem is

un .y; x/ D n�1 .eny C e�ny/ sin.nx/: (1.3)
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Note that max
ˇ̌
uy .0; x/

ˇ̌ D max
ˇ̌
n�1 sin.nx/

ˇ̌ � n�1 ! 0 at n ! 1. Meanwhile
the solution (1.3) un ! 1 at n ! 1 for x ¤ �n; n D 0;˙1;˙2; : : : ;
and therefore the solution is unstable, and the problem is ill-posed in the sense of
Hadamard.

Despite the fact that many inverse problems are ill-posed, there are some
methods for solving them. The idea of conditionally well-posed problems and
the regularization method were introduced by Tikhonov (1963). According to
Tikhonov, a class of admissible solutions to conditionally ill-posed problems should
be selected to satisfy the following conditions: (i) a solution exists in this class, (ii)
the solution is unique in the same class, and (iii) the solution depends continuously
on the input data (that is, the solution is stable). The Tikhonov regularization is
essentially a trade-off between fitting the observations and reducing a norm of the
solution to the mathematical model of a geodynamic problem. Using two examples
we show below the differences between the Hadamard’s and Tikhonov’s approaches
to ill-posed problems.

Example 1.3 Consider the problem for the 1-D backward diffusion equation
(similar to the problem presented in Example 1.1):

@u .t; x/ =@t D @2u .t; x/ =@x2; 0 � x � �; �T � t < 0;

with the boundary and initial conditions

u .t; 0/ D 0 D u .t; �/ ; t � 0; u .0; x/ D �0.x/; 0 � x � �:

The solution of the problem satisfies the inequality:

ku .�; t/k � ku .�;T/k�t=T ku .x; 0/k1Ct=T ;

where the norm is presented as ku .�; t/k2 �
�Z

0

u2 .x; t/ dx. We note that the

inequality

ku .�; t/k � M�t=T ku0k1Ct=T : (1.4)

is valid in the class of functions ku .�; t/k � M D const (Samarskii and Vabischevich
2007). Inequality (1.4) yields to a continuous dependence of the problem’s solution
on the initial conditions, and hence to well-posedness of the problem in the sense of
Tikhonov.

Example 1.4 Consider the problem for the 2-D Laplace equation (similar to the
problem presented in Example 1.2):

@2u .y; x/ =@y2 D �@2u .y; x/ =@x2; .x; y/ 2 .0; 1/� .0; 1/ ;



1.2 Forward and Backward Modelling and Source of Errors 5

with the conditions

u .0; x/ D f .x/; @u .y; x/ =@yjyD0 D 0; x 2 Œ0; 1� ;

u .y; 0/ D 0 D u .y; 1/ ; y 2 Œ0; 1� :

The solution of the problem satisfies the inequality

1Z

0

u2 .x; y/ dx �
0
@

1Z

0

f 2.x/dx

1
A
1�y0
@

1Z

0

u2 .x; 1/ dx

1
A

y

for ju .x; y/j � M D const, .x; y/ 2 .0; 1/ � .0; 1/ (e.g., Kabanikhin 2011).
This inequality shows a continuous dependence of the problem on the prescribed
conditions, and the problem itself is well-posed in the sense of Tikhonov. Therefore,
the Tikhonov’s approach allows for developing methods for regularization of the
numerical solution of unstable problems.

1.2 Forward and Backward Modelling and Source of Errors

Forward modelling in geodynamics is associated with the solution of direct
mathematical problems, and backward modelling with the solution of inverse (time-
reverse or retrospective) problems. In forward modelling one starts with unknown
initial conditions, which are added to a set of governing equations, a rheological
law, and boundary conditions to define properly the relevant mathematical problem.
Once the problem is stated, a numerical model (a set of discrete equations) is solved
forward in time to obtain future states starting from an initial condition. The initial
condition varies (keeping all other model parameters unchanged) to fit model results
to reality (observations) as much as possible. Because the model depends on the
initial conditions and they are unknown a priori, the task “to fit model results to
reality” becomes difficult.

Another approach is to use backward modelling. In this case observations
are employed as the input condition for a mathematical model. The term “input
condition” is used in backward modelling to distinguish it from the initial condition
used in forward modelling, although the input condition is an initial condition for
the mathematical model in backward modelling. The aim of backward modelling
in geodynamics is to find the initial condition in the geological past from available
observations.

A numerical model has three kinds of variables: state variables, input variables,
and parameters. State variables describe the physical properties of the medium
(velocity, pressure, temperature) and depend on time and space. Input variables
have to be provided to the model (initial or boundary conditions), most of the time
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these variables are not directly measured but they can be estimated through data
assimilation. Most models contain also a set of parameters (e.g. viscosity, thermal
diffusivity), which have to be tuned to adjust the model to the observations. All the
variables can be polluted by errors (Ismail-Zadeh and Tackley 2010).

There are three kinds of systematic errors in numerical modelling of geodynami-
cal problems: model, discretisation, and iteration errors. Model errors are associated
with the idealization of Earth dynamics by a set of conservation equations governing
the dynamics. The model errors are defined as the difference between the actual
Earth dynamics and the exact solution of the mathematical model. Discretisation
errors are defined as the difference between the exact solution of the conservation
equations and the exact solution of the algebraic system of equations obtained
by discretising these equations. And iteration errors are defined as the difference
between the iterative and exact solutions of the algebraic system of equations. It
is important to be aware of the existence of these errors, and even more to try to
distinguish one from another.

Apart from the errors associated with the numerical modelling, another two
components of errors are essential during data assimilation: (i) data misfit associated
with the uncertainties in the distribution of measured physical parameters (e.g.
temperature) and (ii) errors associated with the uncertainties in initial and boundary
conditions. For example, since there are no direct measurements of temperatures
in the Earth’s interior, the temperatures can be estimated indirectly from either
seismic wave or their anomalies, geochemical analysis or through the extrapolation
of surface heat flow observations. Many models of temperature in the lower crust
and in the mantle are based on the conversion of seismic tomography data into
temperature. Meanwhile, a seismic tomography image of the Earth’s mantle is a
model indeed and incorporates its own model errors. Another source of uncertainty
comes from the choice of geochemical compositions in temperature modelling
from the seismic velocities. If data (e.g., synthetic temperature models in the
mantle) are biased, information on temperature can be improperly propagated to
the past. The temperature at the lower boundary of the model domain used in
forward and backward numerical modelling is, of course, an approximation to the
real temperature, which is unknown and may change over time at this boundary.
Incomplete knowledge of thermal characteristics of the crust and the mantle is
another source of errors, which can be propagated into the past during data-driven
numerical modelling in geodynamics.

1.3 Data Assimilation Methods

To solve a geodynamic problem, when there are measured/observed data on some
physical parameters of the problem but initial and/or some boundary conditions are
unknown, data assimilation techniques can be used to constrain the conditions from
the data. The initial (boundary) conditions so obtained can then be used to restore
geodynamical characteristics of the problem (e.g. temperature, velocity). Data
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assimilation can be defined as the incorporation of observations and initial/boundary
conditions in an explicit dynamic model to provide time continuity and coupling
among the physical characteristics of a geodynamic problem.

There are several principal mathematical methods used in quantitative data-
driven modelling of geodynamic problems. For example, if heat diffusion can be
neglected in a particular problem (e.g. problems of gravity-driven salt tectonics
in sedimentary basins), the measured physical parameters can be assimilated
into the geological past using the backward advection (BAD) method. Numerical
approaches to the solution of the inverse problem of the Rayleigh-Taylor (gravita-
tional) instability were developed for a dynamic restoration of diapiric structures to
their earlier stages (e.g., Ismail-Zadeh et al. 2001; Korotkii et al. 2002; Ismail-Zadeh
et al. 2004b). Forte and Mitrovica (1997), Steinberger and O’Connell (1997, 1998),
Conrad and Gurnis (2003), and Moucha and Forte (2011) modelled the mantle
flow backwards in time from present-day mantle density heterogeneities inferred
ignoring heat diffusion.

In sequential filtering a numerical model is computed forward in time for the
interval for which observations have been made, updating the model each time
where observations are available. For example, the sequential filtering was used
to compute mantle circulation models (Bunge et al. 2002). Despite sequential data
assimilation well adapted to mantle circulation studies, each individual observation
influences the model state at later times. Information propagates from the geological
past into the future, although our knowledge of the Earth’s mantle at earlier times is
much poor than that at present.

The variational (VAR) data assimilation method has been pioneered by meteo-
rologists and used very successfully to improve operational weather forecasts (e.g.
Kalnay 2003). The data assimilation has also been widely used in oceanography
(e.g. Bennett 1992) and in hydrological studies (e.g. McLaughlin 2002). The
use of VAR data assimilation in models of mantle dynamics (to estimate mantle
temperature and flow in the geological past) has been put forward by Bunge et al.
(2003) and Ismail-Zadeh et al. (2003a, b). The major difference between the two
approaches are that Bunge et al. (2003) applied the VAR method to the coupled
Stokes, continuity, and heat equations (generalized inverse), whereas Ismail-Zadeh
et al. (2003a) applied the VAR method to the heat equation only. The VAR
approach by Ismail-Zadeh et al. (2003a) is computationally less expensive, because
it does not involve the Stokes equation into the iterations between the direct and
adjoint problems. Moreover, this approach admits the use of temperature-dependent
viscosity.

The VAR data assimilation method was employed for numerical restoration of
models of present prominent mantle plumes to their past stages (Ismail-Zadeh et al.
2004a; Hier-Majumder et al. 2005). Effects of thermal diffusion and temperature-
dependent viscosity on the evolution of mantle plumes was studied by Ismail-Zadeh
et al. (2006) to recover the structure of mantle plumes prominent in the past from
that of present plumes weakened by thermal diffusion. Liu and Gurnis (2008)
simultaneously inverted mantle properties and initial conditions using the VAR data
assimilation method and applied the method to reconstruct the evolution of the
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Farallon Plate subduction (Liu et al. 2008). Horbach et al. (2014) demonstrate the
practicality of the method for use in a high resolution mantle circulation model
by restoring a representation of present day mantle heterogeneity derived from
the global seismic shear wave study backward in time for the past 40 million
years (Myr). Worthen et al. (2014) used the VAR (adjoint) method to infer mantle
rheological parameters from surface velocity observations and instantaneous mantle
flow models. Ratnaswamy et al. (2015) developed adjoint-based approach to infer
plate boundary strength and rheological parameters in models of mantle flow from
surface velocity observations, although, compared to Worthen et al. (2014), they
formulated the inverse problem in a Bayesian inference framework. Korotkii et al.
(2016) applied the VAR method to determine thermal and dynamic characteristics
within a lava flow from thermal measurements at lava’s surface.

The quasi-reversibility (QRV) method was introduced by Lattes and Lions
(1969). The use of the QRV method implies the introduction into the backward
heat equation of the additional term involving the product of a small regularization
parameter and a higher order temperature derivative. The data assimilation in this
case is based on a search of the best fit between the forecast model state and the
observations by minimizing the regularization parameter. The QRV method was
introduced in geodynamic modelling (Ismail-Zadeh et al. 2007) and employed to
assimilate data in models of lithosphere/mantle dynamics beneath the Carpathian
region (Ismail-Zadeh et al. 2008) and beneath the Japanese islands (Ismail-Zadeh
et al. 2013).

In numerical modelling sensitivity analysis assists in understanding the stability
of the model solution to small perturbations in input variables or parameters. For
instance, if we consider mantle temperature in the geological past as a solution to
the backward model, what will be its variation if there is some perturbation on the
inputs of the model (e.g. present temperature data)? For example, the gradient of the
objective functional with respect to input parameters in variational data assimilation
gives (see Chap. 3) the first-order sensitivity coefficients. Hier-Majumder et al.
(2006) performed the first-order sensitivity analysis for two-dimensional problems
of thermo-convective flow in the mantle. The second-order adjoint sensitivity
analysis presents some challenge associated with cumbersome computations of the
product of the Hessian matrix of the objective functional with a vector (Le Dimet et
al. 2002). See Cacuci (2003) and Cacuci et al. (2005) for more detail on sensitivity
and uncertainty analysis.
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Chapter 2
Backward Advection Method and Its
Application to Modelling of Salt Tectonics

Abstract This chapter deals with the simplest method in data assimilation allowing
for solving a geodynamic problem backward in time by suppressing thermal
diffusion. The method is suitable in the advection-dominated regimes of thermal
convective flows. We present an application of the method to three-dimensional
numerical modelling of salt diapirism in sedimentary basins.

Keywords Backward advection • Salt buoyancy • Diapir • Sedimentary basin •
Restoration • Numerical modelling

2.1 Basic Idea of the Backward Advection (BAD) Method

The principal mathematical difficulty in solving some geodynamic problems (e.g.
thermal convective flows in the mantle) backward in time is the ill-posedness of
the backward heat problem and the presence of the heat diffusion term in the
heat equation (Kirsch 1996). The backward advection (BAD) method suggests
neglecting the thermal diffusion term, and the heat advection equation can then be
solved backward in time. In the case of advection-dominated fluid flows with an
insignificant diffusion, this approach is valid.

Both direct (forward in time) and inverse (backward in time) advection problems
are well-posed. This is because the time-dependent advection equation has the same
form of characteristics for the direct and inverse velocity field: the vector velocity
reverses its direction, when time is reversed. Therefore, numerical algorithms used
to solve the direct problem can also be used in studies of the time-reverse problems
by replacing positive time steps with negative ones.

Using the BAD method, Steinberger and O’Connell (1998) studied the motion of
hotspots relative to the deep mantle. They combined the advection of plumes, which
are thought to cause the hotspots on the Earth’s surface, with a large-scale mantle
flow field and constrained the viscosity structure of the Earth’s mantle. Conrad and
Gurnis (2003) modelled the history of mantle flow using a tomographic image of
the mantle beneath southern Africa as an input (initial) condition for the backward
mantle advection model while reversing the direction of flow. If the resulting model
of the evolution of thermal structures obtained by the BAD method is used as a

© The Author(s) 2016
A. Ismail-Zadeh et al., Data-Driven Numerical Modelling in Geodynamics:
Methods and Applications, SpringerBriefs in Earth Sciences,
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starting point for a forward mantle convection model, present mantle structures can
be reconstructed if the time of assimilation does not exceed 50–75 Myr. Moucha
and Forte (2011) simulated mantle convection using the BAD method to reconstruct
the evolution of dynamic topography of Africa over the past 30 Myr.

In what follows we present the application of the BAD method to solving inverse
problem of the gravitational, or the Rayleigh-Taylor (RT), instability, namely, the
dynamic restoration of diapiric salt structures to their earlier stages of the evolution
studied by Ismail-Zadeh et al. (2004b).

2.2 Modelling of Salt Diapirism

Salt is so buoyant and weak compared to most other rocks with which it is found
that it develops distinctive structures with a wide variety of shapes and relationships
with other rocks by various combinations of gravity, thermal effects, and lateral
forces. The crests of passive salt bodies can stay near the sedimentation surface
while their surroundings are buried (downbuilt) by other sedimentary rocks (Jackson
et al. 1994). The profiles of downbuilt passive diapirs can simulate those of fir
trees because they reflect the ratio of increase in diapir height relative to the rate
of accumulation of the downbuilding sediments (Talbot 1995) and lateral forces
(Koyi 1996). Salt movements can be triggered by faulting and driven by erosion
and redeposition, differential loading, buoyancy and other geological processes.
For example, differential loading and buoyancy are proposed as primary driving
mechanisms for salt tectonics in the Pricaspian Basin (Volozh et al. 2003), whereas
faulting, erosion, and buoyancy are considered as principal mechanisms responsible
for salt movements in the Dnieper-Donets Basin (Lobkovsky et al. 1996; Stovba and
Stephenson 2002). Many salt sequences are buried by overburdens sufficiently stiff
to resist the buoyancy of the salt. Such salt will only be driven by differential loading
into sharp-crested reactive-diapiric walls after the stiff overburden is weakened and
thinned by faults. Such reactive diapirs often rise up and out of the fault zone and
thereafter can continue increasing in relief as by passive downbuilding of more
sediment.

Active diapirs are those that lift or displace their overburdens. Although any
erosion of the crests of salt structures and deposition of surrounding overburden
rocks influence their growth, diapirs with significant relief have sufficient buoy-
ancy to rise (upbuild) through stiff overburdens (Jackson et al. 1994). The rapid
deposition of denser and more viscous sediments over less dense and viscous salt
results in the RT instability. This leads to a gravity-driven single overturn of the
salt layer with its denser but ductile overburden. RT overturns (Ramberg 1968) are
characterized by the rise of rocksalt through overlying and younger compacting
clastic sediments that are deformed as a result. The consequent salt structures evolve
through a great variety of shapes. Perturbations of the interface between salt and
its denser overburden result in the overburden subsiding as salt rises owing to the
density inversion (Ismail-Zadeh et al. 2002).
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Two-dimensional (2-D) numerical models of salt diapirism examined how the
viscosity ratio between the salt and its overburden affects the shapes and growth
rate of diapirs (Woidt 1978). Schmeling (1987) demonstrated how the dominant
wavelength and the geometry of gravity overturns are influenced by the initial shape
of the interface between the salt and its overburden. Later Poliakov et al. (1993a) and
Naimark et al. (1998) developed numerical models of diapiric growth considering
the effects of sedimentation and redistribution of sediments. Van Keken et al. (1993),
Poliakov et al. (1993b), and Daudre and Cloetingh (1994) introduced non-linear
rheological properties of salt and overburden into their numerical models.

Two-dimensional analyses of the evolution of salt structures are restricted and not
suitable for examining the complicated shapes of mature diapiric patterns. Resolv-
ing the geometry of gravity overturns requires three-dimensional (3-D) numerical
modelling. Ismail-Zadeh et al. (2004a) analysed such typical 3-D structures as
deep polygonal buoyant ridges, shallow salt-stock canopies, and salt walls. The
increasing application of 3-D seismic exploration in oil and gas prospecting points
to the need for vigorous efforts toward numerical modelling of the evolution of salt
structures in three dimensions, both forwards and backwards in time.

Most numerical models of salt diapirism involved the forward evolution of
salt structures toward increasing maturity. Ismail-Zadeh et al. (2001a) developed
a numerical approach to 2-D dynamic restoration of cross-sections across salt
structures. The approach was based on solving the inverse problem of RT instability
by the BAD method and simultaneous back-stripping of uppermost sediments. The
same method was used in 3-D cases to model RT instability backward in time
(Korotkii et al. 2002; Ismail-Zadeh et al. 2004b).

2.3 Mathematical Statement

The advection problem (a gravity flow of an incompressible fluid of variable
density and viscosity) is considered in the rectangular domain � D Œ0; x1 D 3h� �
Œ0; x2 D 3h� � Œ0; x3 D h�, where x D (x1, x2, x3) are the Cartesian coordinates and
h is the depth of the domain. The following governing equations describe the slow
movement of salt and its overburden (e.g., Ismail-Zadeh et al. 2004b):

momentum conservation

rP D r � �� �ru C ruT
��C F (2.1)

continuity for incompressible fluid

r � u D @u1=@x1 C @u2=@x2 C @u3=@x3 D 0 (2.2)

and advection of density and viscosity with the flow

@�=@t C hu;r�i D 0; @�=@t C hu;r�i D 0 (2.3)



14 2 Backward Advection Method and Its Application to Modelling of Salt Tectonics

Equations (2.1), (2.2) and (2.3) contain the following variables and parameters:
time t; velocity u D .u1 .t; x/ ; u2 .t; x/ ; u3 .t; x//; pressure P D P(t, x); density
� D � .t; x/; viscosity � D � .t; x/; and the body force per unit volume
F D .0; 0;�g�/, where g is the acceleration due to gravity. Here, r and r�
denote the gradient and divergence operators, respectively; E � ru C ruT

is the strain rate tensor E D ˚
eij .u/

� D ˚
@ui=@xj C @uj=@xi

�
, r � .�E/ D�P3

mD1
@.�em1/

@xm
;
P3

mD1
@.�em2/

@xm
;
P3

mD1
@.�em3/

@xm

�
; and h�; �i denotes the scalar product of

vectors. Equations (2.1), (2.2) and (2.3) make up a set of equations that determine
the unknown u, P, �, and � as functions of independent variables t and x.

The number of unknowns is reduced by introducing the two-component represen-
tation of the velocity potential ‰ D . 1;  2;  3 D 0/ (Ismail-Zadeh et al. 2001b),
from which the velocity is obtained as

u D curl ‰ I u1 D �@ 2
@x3

; u2 D �@ 1
@x3

; u3 D @ 2

@x1
� @ 1

@x2
: (2.4)

Applying the curl operator to (2.1) and using the identities curl .rP/ � 0 and r �
.curl ‰/ � 0, the following equations can be derived from (2.1) and (2.2):

D2i .�ei3/ � D3i .�ei2/ D gD2�;

D3i .�ei1/ � D1i .�ei3/ D �gD1�;

D1i .�ei2/ � D2i .�ei1/ D 0; i D 1; 2; 3

(2.5)

where Dij D @2=@xi@xj; Di D @=@xi, and a summation over repeated subscripts
is assumed hereinafter. The strain rate components eij are defined in terms of the
vector velocity potential as

e11 D �2D13 2; e22 D 2D23 1; e33 D 2 .D31 2 � D32 1/ ;

e12 D e21 D D13 1 � D23 2; e13 D e31 D D11 2 � D33 2 � D12 1;

e23 D e32 D D33 1 � D22 1 C D21 2:

(2.6)

At the initial time t0 D 0 the density and viscosity are assumed to be known. On
the boundary � of �, which consists of the faces xi D 0 and xi D li (i D 1, 2, 3), the
condition of impenetrability with perfect slip is imposed:

hu;ni D 0; 	n � h	 n;ni n D 0; (2.7)

where n is the outward unit normal vector at a point on the boundary, and 	 D˚
	ij
� D �

˚
eij
�

is the stress tensor.
In terms of the vector velocity potential the boundary conditions (2.7) take the

following forms:
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 2 D D1 1 D D11 2 D 0 at �1 .x1 D 0/ and �1 .x1 D l1/ ;
 1 D D2 2 D D22 1 D 0 at �2 .x2 D 0/ and �2 .x2 D l2/ ;
 1 D  2 D D33 1 D 0 at �3 .x3 D 0/ and �3 .x3 D l3/ :

(2.8)

Thus, the problem of gravitational advection is to determine functions  1 D
 1 .t; x/,  2 D  2 .t; x/, � D � .t; x/, and � D � .t; x/ satisfying (2.3) and (2.5)
in � at t � t0, the prescribed boundary (2.8) and the initial conditions.

2.4 Solution Method

To solve a set of equations (2.5) numerically, an Eulerian FEM (Ismail-Zadeh and
Tackley 2010) is employed, and these equations are replaced by an equivalent
variational equation. Namely, consider any arbitrary admissible test vector function
ˆ D .'1; '2; '3 D 0/ satisfying the same conditions as for the vector function ‰

and multiply the first two equations of Eq. (2.5) by ®1 and ®2, respectively. Taking
the result and integrating by parts over�, and using the boundary conditions for the
desired and test vector functions, the following variational equation is obtained

@ .�I‰ ;ˆ/ D < .�; �Iˆ/ ; (2.9)

where

@ .�I‰ ;ˆ/ D
•

�

� Œ2e11Qe11 C 2e22Qe22 C 2e33Qe33 C e12 Qe12 C e13Qe13 C e23 Qe23� dx;

< .�; �Iˆ/ D
•

�

g�

	
@'1

@x2
� @'2

@x1



dx;

and the expressions for ẽij in terms of ˆ are identical to the expressions for eij in
terms of the function ‰ .

The components of the vector velocity potential are represented as a sum of tri-
cubic splines

 s .t; x/ �  s
ijk.t/


s
i .x1/ �

s
j .x2/ #

s
k .x3/ ; s D 1; 2 (2.10)

with the unknown functions  s
ijk(t) (see Fig. 4.6 in Ismail-Zadeh and Tackley 2010

for the representation of the basic splines). Hereinafter, i; l; p D 1; 2; : : : ;N1;
j;m; q D 1; 2; : : : ;N2; and k; n; r D 1; 2; : : : ;N3. Density and viscosity are
approximated by linear combinations of appropriate tri-linear basis functions:

� .t; x/ � �ijk.t/Qs1i .x1/ Qs2j .x2/ Qs3k .x3/ ; � .t; x/ � �ijk.t/Qs1i .x1/ Qs2j .x2/ Qs3k .x3/ ;
(2.11)

http://dx.doi.org/10.1007/978-3-319-27801-8_4
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where Qs1i .x1/ ; Qs2j .x2/ ; and Qs3k .x3/ are linear basis functions. The trilinear basis
functions provide good approximations for step functions (such as density or
viscosity that change abruptly from one layer to another).

Substituting approximations (2.9), (2.10) into the variational Eq. (2.8), the
following system of linear algebraic equations (SLAE) for the unknown  s

ijk(t) is
obtained:

Clmn
sijk

�
�ijk
�
 
 1ijk
 2ijk

!
D g�ijk

 
P01il Q00

jm R00kn

� P00il Q01
jm R00kn

!
: (2.12)

The coefficients Clmn
sijk D

X
a1a2b1b2c1c2

X
p;q:r

�pqrwa1a2b1b2c1c2A
a1a2
silp Bb1b2

sjmqCc1c2
sknr in (2.11) are

the integrals of various products of basic functions (the cubic splines) and their
derivatives. Here a1 C b1 C c1 D 2, a2 C b2 C c2 D 2; the values of wa1a2b1b2c1c2
are readily obtained by collecting similar terms in the sums; and coefficients
Aa1a2

silp ; Bb1b2
sjmq; and Cc1c2

sknr are integrals of the form

Aa1a2
silp D

Z l1

0

�
Da1


s
i .x1/

� �
Da2


s
l .x1/

� Qs1p .x1/ dx1;

Bb1b2
sjmq D

Z l2

0

�
Db1�

s
j .x2/

� �
Db2�

s
m .x2/

� Qs2q .x2/ dx2;

Cc1c2
sknr D

Z l3

0

�
Dc1#

s
k .x3/

� �
Dc2#

s
n .x3/

� Qs3r .x3/ dx3;

where f
g, f�g, and fªg are the cubic basis splines and fQsg are linear basis functions.
Coefficients in the right-hand side of (2.11) are represented as:

Pab
il D

Z l1

0

�
DaQs1i .x1/

� �
Db


1
l .x1/

�
dx1;

Qab
jm D

Z l2

0

�
DaQs2j .x2/

� �
Db�

1
m .x2/

�
dx2;

Rab
kn D

Z l3

0

�
DaQs3k .x3/

� �
Db#

1
n .x3/

�
dx3:

The SLAE is solved by the conjugate gradient method designed for multi-processor
computers; approximations of the density and viscosity for a prescribed velocity can
be computed by the method of characteristics (see, e.g., Ismail-Zadeh and Tackley
2010). The accuracy of the numerical method was tested by Ismail-Zadeh et al.
(2001b) using the analytical solution to the coupled Stokes and density advection
equations (Trushkov 2002), and verifying the conservation of mass at each time
step, and the accuracy of the vector velocity potential ‰ .
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2.5 Forward and Backward Model Results

Although dimensionless values and functions are used in computations, numerical
results are presented below in dimensional form for the reader’s convenience. The
time step �t is chosen from the condition that the maximum displacement does not
exceed a given small value h: t D h=umax, where umax is the maximum value of
the flow velocity. The model domain is a rectangular region (h D 10 km) divided
into 38 � 38 � 38 rectangular elements in order to approximate the vector velocity
potential and viscosity. Density is represented on a grid three times finer, 112�112�
112. The model viscosities and densities are assumed to be 1020 Pa s and 2.65 � 103

kg m�3 for the overburden layer and 1018 Pa s and 2.24 � 103 kg m�3 for the salt
layer, respectively.

Salt diapirs in the numerical model evolve from random initial perturbations of
the interface between the salt and its overburden deposited on the top of horizontal
salt layer prior to the interface perturbation. A salt layer of 3 km thick at the bottom
of the model box is overlain by a sedimentary overburden of 7 km thick at time t D 0.
The interface between the salt and its overburden was disturbed randomly with an
amplitude 	100 m. Figures 2.1a–d, a front view and 2.2a–d, a top view show the
positions of the interface between salt and overburden in the model at successive
times over a period of about 21 Myr. The evolution clearly shows two major phases:
an initial phase resulting in the development of salt pillows lasting about 18 Myr (a,
b) and a mature phase resulting in salt dome evolution lasting about 3 Myr (c, d).

To restore the evolution of salt diapirs predicted by the forward model through
successive earlier stages, a positive time is replaced by a negative time, and the
problem is solved backward in time. Such a replacement is possible, because
the characteristics of the advection equations have the same form for both direct
and inverse velocity field. The final position of the interface between salt and its
overburden in the forward model (Figs. 2.1d and 2.2d) is used as an initial position
of the interfaces for the backward model. Figures 2.1d–g and 2.2d–g illustrate
successive steps in the restoration of the upbuilt diapirs. Least square errors ı of
the restoration are calculated using the formula:

ı .x1; x2/ D
0
@

hZ

0

.� .x1; x2; x3/� Q� .x1; x2; x3//2dx3

1
A
1=2

;

where �(x1, x2, x3) is the density at initial time, and Q� .x1; x2; x3/ is the restored
density (Fig. 2.2h). The maximum value ı does not exceed 120 kg m�3, and the
error is associated with small areas of the initial interface’s perturbation.

To demonstrate the stability of the restoration results with respect to changes
in the density of the overburden, the restoration procedure was tested by synthetic
examples. Initially the forward model is run for 200 computational time steps (about
30 Myr). Then the density contrast (ı�) between salt and its overburden is changed
by a few per cent: namely, ı� was chosen to be 400, 405, 410 (the actual contrast),
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Fig. 2.1 Evolution (front view) of salt diapirs toward increasing maturity (a–d) and restoration of
the evolution (d–g). Interfaces between salt and its overburden are presented at successive times.
After Ismail-Zadeh et al. (2004b)
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Fig. 2.2 Evolution (top view) of salt diapirs toward increasing maturity (a–d) and restoration of
the evolution (d–g) at the same times as in Fig. 2.1. (h) Restoration errors (After Ismail-Zadeh
et al. 2004b)

415, and 420 kg m�3. The evolution of the system was restored for these density
contrasts. Ismail-Zadeh et al. (2004b) found small discrepancies (less than 0.5 %)
between least square errors for all these test cases. The tests show that the solution
is stable to small changes in the initial conditions, and this is in agreement with
the mathematical theory of well-posed problems (Tikhonov and Samarskii 1990).
Meanwhile it should be mentioned that if the model is computed for a very long
time and the less dense salt layer spreads uniformly into a horizontal layer near the
surface, practical restoration of the layered structure becomes impossible (Ismail-
Zadeh et al. 2001a).

In this chapter we have discussed the applicability of the BAD method to
dynamic restoration of salt structures and their overburden in an isothermal case.
Meanwhile temperature affects the maturation of hydrocarbons, and a joint thermal
and dynamic restoration would be of significant interest. One of the possibilities is to
use dynamic restoration of sedimentary layers and subsequent thermal modelling of
the restored layers (e.g., Ismail-Zadeh et al. 2008, 2010) to determinate pressure
and temperature conditions in the geological past. Alternatively, more advanced
methods of data assimilation, as variational and/or quasi-reversibility methods, can
be employed.
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Chapter 3
Variational Method and Its Application
to Modelling of Mantle Plume Evolution

Abstract In this chapter, we present a variational (VAR) method for assimilation
of data related to models of thermal convective flow. This approach is based
on a search for model parameters (e.g., mantle temperature and flow velocity in
the past) by minimizing the differences between present-day observations of the
relevant physical parameters (e.g., temperature derived from seismic tomography,
geodetic measurements) and those predicted by forward models for an initial guess
temperature. To demonstrate the applicability of this method, we present a numerical
model of the evolution of mantle plumes and show that the initial shape of the
plumes can be accurately reconstructed. Finally we discuss some challenges in the
VAR data assimilation including a smoothness of data.

Keywords Variational method • Adjoint problem • Numerical modelling • Man-
tle plume • Data smoothness • Noise

3.1 Basic Idea of the Variational (VAR) Method

The variational data assimilation is based on a search of the best fit between the
forecast model state and the observations by minimizing an objective functional (a
normalized residual between the target model and observed variables) over space
and time. To minimize the objective functional over time, an assimilation time
interval is defined and an adjoint model is typically used to find the derivatives
of the objective functional with respect to the model states.

The VAR method (sometimes referred to as the adjoint method) can be formu-
lated with a weak constraint (so-called, a generalized inverse), where errors in the
model formulation are taken into account (Bunge et al. 2003), or with a strong
constraint where the model is assumed to be perfect except for the errors associated
with the initial conditions (Ismail-Zadeh et al. 2003). The generalized inverse of
mantle convection considers model errors, data misfit and the misfit of parameters
as control variables. As the generalized inverse presents a computational challenge,
Bunge et al. (2003) considered a simplified generalized inverse imposing a strong
constraint on errors (ignoring all errors except for the initial condition errors).
Therefore, the strong constraint makes the problem computationally tractable.

© The Author(s) 2016
A. Ismail-Zadeh et al., Data-Driven Numerical Modelling in Geodynamics:
Methods and Applications, SpringerBriefs in Earth Sciences,
DOI 10.1007/978-3-319-27801-8_3
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3.2 Mathematical Statement

Although the mantle rheology is more complex (e.g., Karato 2010), we assume here
that the mantle behaves as a Newtonian incompressible fluid with a temperature-
dependent viscosity and infinite Prandtl number (the dimensionless parameter
denoting the ratio between the viscosity and the product of the density and the
thermal diffusivity). The mantle flow is described by heat, motion, and continuity
equations (Chandrasekhar 1961). To simplify the governing equations, the Boussi-
nesq approximation (Boussinesq 1903) is used by keeping the density constant
everywhere except for buoyancy term in the equation of motion.

In the model domain � D Œ0; x1 D 3h� � Œ0; x2 D 3h� � Œ0; x3 D h�, where
x D (x1, x2, x3) are the Cartesian coordinates and h is the depth of the domain, the
dimensionless equations take the form:

@T=@t C hu;rTi D r2T; x 2 �; t 2 .0; #/ ; (3.1)

rP D r � �� �ru C ruT
��C RaTe; e D .0; 0; 1/ ; (3.2)

r � u D 0; t 2 .0; #/ ; x 2 �: (3.3)

Here T, t, u D .u1; u2; u3/, P, and � are dimensionless temperature, time, velocity,
pressure, and viscosity, respectively. The Rayleigh number is defined as Ra D
˛g�refTh3��1

ref �
�1, where ˛ is the thermal expansivity, g is the acceleration due

to gravity, �ref and �ref are the reference typical density and viscosity, respectively;
T is the temperature contrast between the lower and upper boundaries of the
model domain; and � is the thermal diffusivity. In Eqs. (3.1), (3.2) and (3.3) length,
temperature, and time are normalized by h, T, and h2��1, respectively.

At the boundary � of the model domain� the impenetrability condition and no-
slip or perfect slip conditions are prescribed: u D 0 or hu;ni D 0; 	n�h	 n;ni n D
0, where n is the outward unit normal vector at a point on the model boundary,
and 	 D �

�ru C ruT
�

is the stress tensor. Zero heat flux is assumed through the
vertical boundaries of the box. Either temperature or heat flux are prescribed at the
upper and lower boundaries of the model domain. To solve the problem forward
or backward in time, the temperature is considered to be known at the initial time
(t D 0) or at the present time (t D #). Equations (3.1), (3.2) and (3.3) together with
the boundary and initial conditions describe a thermal convective flow.

3.3 Objective Functional

Consider the following objective (cost) functional at t 2 Œ0; #�

J .'/ D kT .#; �I'/ � � .�/k2; (3.4)
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where k�k denotes the norm in the space L2(�) (the Hilbert space with the norm

defined as kyk D
2
4
Z

�

y2 .x/ dx

3
5
1=2

. Since in what follows the dependence of

solutions of the thermal boundary value problems on initial data is important, these
data are explicitly introduced into the mathematical representation of temperature.
Here T .#; �I'/ is the solution of the thermal boundary value problem (3.1) at
the final time ª, which corresponds to some (unknown as yet) initial temperature
distribution �(x); � .x/ D T .#; xI T0/ is the known temperature distribution at
the final time, which corresponds to the initial temperature T0 .�/. The functional
has its unique global minimum at value ' � T0 and J .T0/ � 0, rJ .T0/ � 0

(Vasiliev 2002).
To find the minimum of the functional, the following gradient method is

employed (k D 0, : : : , j, : : : ):

'kC1 D 'k � ˇkrJ .'k/ ; '0 D T�; (3.5)

ˇk D
�

J .'k/ =krJ .'k/k2; 0 � k � k�
k�1; k > k�

; (3.6)

where T* is an initial temperature guess. The minimization method belongs to a class
of limited-memory quasi-Newton methods (Zou et al. 1993), where approximations
to the inverse Hessian matrices are chosen to be the identity matrix. Equation (3.6)
is used to maintain the stability of the iteration scheme (3.5).

Let us consider that the gradient of the objective functional rJ .'k/ is computed
with an error krJı .'k/� rJ .'k/k < ı, where rJı .'k/ is the computed value of

the gradient. Introducing the function '1 D '0�
1X

kD1
ˇkrJ .'k/ (and assuming that

the infinite sum exists) and the function '1
ı D '0�

1X
kD1

ˇkrJı .'k/ (as the computed

value of '1), the following inequality should be held for stability of the iteration
method (3.5):

k'1
ı � '1k D

�����
1X

kD1
ˇk .rJı .uk/� rJ .uk//

����� �
1X

kD1
ˇk krJı .'k/ � rJ .'k/k

� ı

1X
kD1

ˇk:

The sum
1X

kD1
ˇk is finite, if ˇk D 1=kp, p > 1. If p D 1, but the number of iterations

is limited, the iteration method is conditionally stable, although the convergence
rate of these iterations is low. Meanwhile the gradient of the objective functional
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rJ .'k/ decreases steadily with the number of iterations providing the convergence,
although the absolute value of J .'k/ =krJ .'k/k2 increases with the number of
iterations, and it can result in instability of the iteration process (Samarskii and
Vabishchevich 2007).

3.4 Adjoint Problem

The minimization algorithm requires the calculation of the gradient of the objective
functional, rJ. This can be done through the use of the adjoint problem for the
model Eqs. (3.1), (3.2) and (3.3) with the relevant boundary and initial conditions. In
the case of the heat problem, the adjoint problem can be represented in the following
form:

@‰=@t C hu;r‰i C r2‰ D 0; x 2 �; t 2 .0; #/ ;
	1‰ C 	2@‰=@n D 0; x 2 �; t 2 .0; #/ ;
‰ .#; x/ D 2 .T .#; xI'/� � .x// ; x 2 �; (3.7)

where 	1 and 	2 are some smooth functions or constants satisfying the condition
	21 C 	22 ¤ 0. Corresponding boundary conditions can be chosen by a selection of
specific 	1 and 	2.

The solution to the adjoint problem (3.7) is the gradient of the objective
functional (3.4). To prove the statement, Ismail-Zadeh et al. (2004) considered an
increment of the functional J in the following form:

J .' C h/� J .'/ D
Z

�

.T .#; xI' C h/� � .x//2dx �
Z

�

.T .#; xI'/ � � .x//2dx

D2
Z

�

.T .#; xI'/ � � .x// � .#; x/ dx C
Z

�

�2 .#; x/ dx

D
Z

�

‰ .#; x/ � .#; x/dx C
Z

�

�2 .#; x/ dx

D
Z

�

#Z

0

@

@t
.‰ .t; x/ � .t; x// dxdt C

Z

�

‰ .0; x/ h .x/dx

C
Z

�

�2 .#; x/ dx;

(3.8)
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where ‰ .t; x/ D 2 .T .t; xI#/ � � .x//; h(x) is a small heat increment to the
unknown initial temperature '(x), and � D T .t; xI' C h/�T .t; xI'/ is the solution
to the following forward heat problem

@�=@t C hu;r�i � r2� D 0; x 2 �; t 2 .0; #/ ;

	1� C 	2@�=@n D 0; x 2 �; t 2 .0; #/ ;

� .0; x/ D h .x/ ; x 2 �: (3.9)

Considering the fact that ‰ D ‰ .t; x/ and � D � .t; x/ are the solutions to (3.7)
and (3.9) respectively, and the velocity u satisfies (3.3) and the boundary conditions
specified, the first term in (3.8) can be represented as

Z

�

#Z

0

@

@t
.‰ .t; x/ � .t; x// dtdx D

#Z

0

Z

�

�
@

@t
‰ .t; x/ � .t; x/C‰ .t; x/

@� .t; x/
@t


dxdt

D
#Z

0

Z

�

� .t; x/
��u � r‰ � r2‰

�
dxdt C

#Z

0

Z

�

‰ .t; x/
��u � r� C r2�

�
dxdt

D
#Z

0

Z

�

f‰r� � n � �r‰ � ngd�dt C
#Z

0

Z

�

fr‰ � r� � r� � r‰gdxdt

C
#Z

0

Z

�

f�‰r � u C‰u � r� �‰u � r�g dxdt � 2
#Z

0

Z

�

�‰u � n d�dt D 0:

(3.10)

Hence

J .'Ch/�J .'/D
Z

�

‰ .0; x/ h .x/ dxC
Z

�

�2 .#; x/ dxD
Z

�

‰ .0; x/ h .x/ dxCo .khk/:

(3.11)

The gradient is derived by using the Gateaux derivative of the objective functional.
Therefore, the gradient of the functional is represented as rJ .'/ D ‰ .0; �/ :
Thus, the solution of the backward heat problem is reduced to solutions of series
of forward problems, which are known to be well-posed (Tikhonov and Samarskii
1990). The algorithm can be used to solve the problem over any subinterval of time
in [0,ª].
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3.5 Solution Method

Here the method for numerical solution of the inverse problem of thermal convection
in the mantle is described. Namely, the numerical algorithm is presented to solve
(3.1), (3.2) and (3.3) backward in time using the VAR method. A uniform partition
of the time axis is defined at points tn D # � ıt n, where ıt is the time step, and n
successively takes integer values from 0 to some natural number m D #=ıt. At each
subinterval of time [tnC1, tn], the search of the temperature T and flow velocity u at
t D tnC1 consists of the following basic steps.

Step 1. Given the temperature T D T .tn; x/ at t D tn solve a set of linear algebraic
equations derived from (3.2) and (3.3) with the appropriate boundary conditions
in order to determine the velocity u.

Step 2. The ‘advective’ temperature Tadv D Tadv .tnC1; x/ is determined by solving
the advection heat equation backward in time, neglecting the diffusion term in
Eq. (3.1). This can be done by replacing positive time steps by negative ones.
Given the temperature T D Tadv at t D tnC1 steps 1 and 2 are then repeated to
find the velocity uadv D u .tnC1; xI Tadv/

Step 3. The heat Eq. (3.1) is solved with appropriate boundary conditions and initial
condition 'k .x/ D Tadv .tnC1; x/ ; k D 0; 1; 2; : : : ;m; : : : forward in time using
velocity uadv in order to find T(tn, x;'k).

Step 4. The adjoint equation of (3.7) is then solved backward in time with
ppropriate boundary conditions and initial condition‰ .tn; x/ D 2 .T .tn; xI'k/�
� .x//using velocity u in order to determine rJ .'k/ D ‰ .tnC1; xI'k/.

Step 5. The coefficient ˇk is determined from (3.6), and the temperature is updated
(i.e. 'kC1 is determined) from (3.5).

Steps 3 to 5 are repeated until

ı'n D J .'n/C krJ .'n/k2 < "; (3.12)

where " is a small constant. Temperature 'k is then considered to be the approxima-
tion to the target value of the initial temperature T .tnC1; x/ . And finally, step 1 is
used to determine the flow velocity u .tnC1; xI T .tnC1; x//. Step 2 introduces a pre-
conditioner to accelerate the convergence of temperature iterations in Steps 3–5 at
high Rayleigh number. At low Ra, Step 2 is omitted and uadv is replaced by u. After
these algorithmic steps, temperature T D T .tn; x/ and flow velocity u D u .tn; x/
(corresponding to t D tn, n D 0, : : : , m) are obtained. Now based on the obtained
results, and when required, interpolations can be used to reconstruct the process on
the time interval [0,ª] in more detail.

Thus, at each subinterval of time:

– the VAR method is applied to the heat equation only;
– the direct and conjugate problems for the heat equation are solved iteratively to

find temperature; and
– backward flow is determined from the Stokes and continuity equations twice (for

‘advective’ and ‘true’ temperatures).
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Compared to the VAR approach by Bunge et al. (2003), the described numer-
ical approach is computationally less expensive, because the Stokes equation is
not involved into the iterations between the direct and conjugate problems (the
numerical solution of the Stokes equation is the most time consuming calculation).

3.6 Restoration of Mantle Plumes

A plume is hot, narrow mantle upwelling that is invoked to explain hotspot
volcanism. In a temperature-dependent viscosity fluid such as the mantle, a plume
is characterized by a mushroom-shaped head and a thin tail. Upon impinging under
a moving lithosphere, such a mantle upwelling should therefore produce a large
amount of melt and successive massive eruption, followed by smaller but long-lived
hot-spot activity fed from the plume tail (Morgan 1972; Richards et al. 1989; Sleep
1990). Meanwhile, slowly rising plumes (a buoyancy flux of less than 103 kg s�1)
coming from the core-mantle boundary should have cooled so much that they would
not melt beneath old lithosphere (Albers and Christensen 1996).

Mantle plumes evolve in three distinguishing stages: immature, i.e. an origin
and initial rise of the plumes; mature, i.e. plume-lithosphere interaction, gravity
spreading of plume head and development of overhangs beneath the bottom of the
lithosphere, and partial melting of the plume material (e.g. Ribe and Christensen
1994; Moore et al. 1998); and overmature, i.e. slowing-down of the plume rise and
fading of the mantle plumes due to thermal diffusion (Davaille and Vatteville 2005;
Ismail-Zadeh et al. 2006). The ascent and evolution of mantle plumes depend on the
properties of the source region (that is, the thermal boundary layer) and the viscosity
and thermal diffusivity of the ambient mantle. The properties of the source region
determine temperature and viscosity of the mantle plumes. Structure, flow rate,
and heat flux of the plumes are controlled by the properties of the mantle through
which the plumes rise. While properties of the lower mantle (e.g. viscosity, thermal
conductivity) are relatively constant during about 150 Myr lifetime of most plumes,
source region properties can vary substantially with time as the thermal basal
boundary layer feeding the plume is depleted of hot material (Schubert et al. 2001).
Complete local depletion of this boundary layer cuts the plume off from its source.

A mantle plume is a well-established structure in computer modelling and
laboratory experiments. Numerical experiments on dynamics of mantle plumes
(Trompert and Hansen 1998; Zhong 2005) showed that the number of plumes
increases and the rising plumes become thinner with an increase in Rayleigh
number. Disconnected thermal plume structures appear in thermal convection at
Ra greater than 107 (e.g., Hansen et al. 1990). At high Ra (in the hard turbulence
regime) thermal plumes are torn off the boundary layer by the large-scale circulation
or by nonlinear interactions between plumes (Malevsky and Yuen 1993). Plume tails
can also be disconnected when the plumes are tilted by plate scale flow (e.g. Olson
and Singer 1985). Ismail-Zadeh et al. (2006) presented an alternative explanation for
the disconnected mantle plume heads and tails, which is based on thermal diffusion
of mantle plumes.
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3.6.1 Model and Methods

To model the evolution of mantle plumes, Ismail-Zadeh et al. (2006) used
Eqs. (3.1), (3.2) and (3.3) with impenetrability and perfect slip conditions
at the model boundary � (see Sect. 3.2). A temperature-dependent viscosity
�.T/ D exp

�
M

TCG � M
0:5CG

�
is employed, where M D [225/ln(r)]�0.25 ln(r),

G D 15/ln(r)�0.5 and r is the viscosity ratio between the upper and lower
boundaries of the model domain (Busse et al. 1993). The temperature-dependent
viscosity profile has its minimum at the core-mantle boundary. A more realistic
viscosity profile (e.g. Forte and Mitrovica 1997) will influence the evolution of
mantle plumes, though it will not influence the restoration of the plumes.

The model domain is divided into 37 � 37 � 29 rectangular finite elements to
approximate the vector velocity potential by tricubic splines, and a uniform grid
112�112�88 is employed for approximation of temperature, velocity, and viscosity
(Ismail-Zadeh et al. 2006). Temperature in the heat Eq. (3.1) is approximated by
finite differences and determined by the semi-Lagrangian method (e.g., Ismail-
Zadeh and Tackley 2010; chapter 7.8). A numerical solution to the Stokes and
incompressibility Eqs. (3.2 and 3.3) is based on the introduction of a two-component
vector velocity potential and on the application of the Eulerian finite-element
method with a tricubic-spline basis for computing the potential (e.g., Ismail-Zadeh
and Tackley 2010; chapter 4.10.2). Such a procedure results in a set of linear
algebraic equations solved by the conjugate gradient method (e.g., Ismail-Zadeh
and Tackley 2010; chapter 6.3.3).

3.6.2 Forward Modelling

We present here the evolution of mature mantle plumes modelled forward in
time. Considering the following model parameters, ˛ D 3 � 10�5 K�1, �ref D
4000 kg m�3, T D 3000 K, h D 2800 km, �ref D 8 � 1022 Pa s, and � D
10�6 m�2 s�1, the Rayleigh number is estimated to be Ra D 9:5�105. While plumes
evolve in the convecting heterogeneous mantle, at the initial time it is assumed that
the plumes develop in a laterally homogeneous temperature field, and hence the
initial mantle temperature is considered to increase linearly with depth.

Mantle plumes are generated by random temperature perturbations at the top
of the thermal source layer associated with the core-mantle boundary (Fig. 3.1a).
The mantle material in the basal source layer flows horizontally toward the plumes.
The reduced viscosity in this basal layer promotes the flow of the material to the
plumes. Vertical upwelling of hot mantle material is concentrated in low viscosity
conduits near the centrelines of the emerging plumes (Fig. 3.1b, c). The plumes
move upward through the model domain, gradually forming structures with well-
developed heads and tails. Colder material overlying the source layer (e.g. portions
of lithospheric slabs subducted to the core-mantle boundary) replaces hot material
at the locations where the source material is fed into mantle plumes. Some time is
required to recover the volume of source material depleted due to plume feeding
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Fig. 3.1 Mantle plumes in the forward modelling at successive diffusion times: from 335 Myr ago
to the ‘present’ state of the plumes. The plumes are represented here and in Fig. 3.2 by isothermal
surfaces at 3000 K. (After Ismail-Zadeh et al. 2006)

(Howard 1966). Because the volume of upwelling material is comparable to the
volume of the thermal source layer feeding the mantle plumes, hot material could
eventually be exhausted, and mantle plumes would be starved thereafter.

The plumes diminish in size with time (Fig. 3.1d), and the plume tails disappear
before the plume heads (Fig. 3.1e, f). Figure 3.1 presents a hot isothermal surface of
the plumes; if colder isotherms are considered, the disappearance of the isotherms
will occur later. But anyhow, hot or cold isotherms are plotted, plume tails will
vanish before their heads. Results of laboratory experiments (Davaille and Vatteville
2005) support the numerical findings by Ismail-Zadeh et al. (2006), presented here,
that plumes start disappearing from bottom up and fade away by thermal diffusion.

At different stages in the plume decay one sees quite isolated plume heads, plume
heads with short tails, and plumes with nearly pinched off tails. Different amounts
of time are required for different mantle plumes to vanish into the ambient mantle,
the required time depending on the geometry of the plume tails. Temperature loss
is greater for sheet-like tails than for cylindrical tails. The tails of the cylindrical
plumes (e.g. Fig. 3.1c, in the left part of the model domain) are still detectable after
about 155 Myr. However, at this time the sheet-like tail of the large plume in the
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right part of the model domain (Fig. 3.1c) is already invisible and only its head is
preserved in the uppermost mantle (Fig. 3.1f).

3.6.3 Backward Modelling

To restore the prominent state of the plumes (Fig. 3.1d) in the past from their
‘present’ weak state (Fig. 3.1f), Ismail-Zadeh et al. (2006) employed the VAR
method. Figure 3.2 illustrates the restored states of the plumes (middle panel) and
the temperature residuals ıT (right panel) between the temperature T(x) predicted
by the forward model and the temperature QT .x/ reconstructed to the same age:

ıT .x1; x2/ D
2
4

hZ

0

�
T .x1; x2; x3/ � QT .x1; x2; x3/

�2
dx3

3
5
1=2

: (3.13)

Fig. 3.2 Mantle plume diffusion (r D 20 and Ra D 9:5 � 105) in the forward modelling at
successive diffusion times: from 100 Myr ago to the ‘present’ state of the plumes (left panel, a–
d). Restored mantle plumes in the backward modelling (central panel, e–g) and restoration errors
(right panel, h–j) (After Ismail-Zadeh et al. 2006)
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To study the effect of thermal diffusion on the restoration of mantle plumes, Ismail-
Zadeh et al. (2006) performed several experiments on mantle plume restoration for
various Rayleigh number Ra and viscosity ratio r. The dimensional temperature
residuals are within a few degrees for the initial restoration period (Fig. 3.2h, i). The
computations show that the errors (temperature residuals) get larger the farther the
restorations move backward in time (e.g. ıT � 300 K at the restoration time of
more than 300 Myr, r D 200, and Ra D 9:5 � 103). One can see that the residuals
become larger as the Rayleigh number decreases or thermal diffusion increases and
viscosity ratio increases.

The quality of the restoration depends on the dimensionless Peclet number Pe D
humax�

�1, where umax is the maximum flow velocity. According to the numerical
experiments, the Peclet number corresponding to the temperature residual ıT D
600 K is Pe D 10; Pe should not be less than about 10 for a high quality plume
restoration.

3.6.4 Performance of the Numerical Algorithm

The performance of the algorithm for various Ra and r is evaluated in terms of
the number of iterations n required to achieve a prescribed relative reduction of
ı�n (inequality 3.12). Figure 3.3 presents the evolution of the objective functional
J(�n) and the norm of the gradient of the objective functional krJ .'n/k versus the
number of iterations at time about 0.5� . For other time steps a similar evolution of
J and krJk is found.

Fig. 3.3 Relative reductions of the objective functional J (left panel) and the norm of the gradient
of J (right panel) as functions of the number of iterations. Curves: 1, r D 20, Ra D 9:5 � 105; 2,
r D 20, Ra D 9:5�102; 3, r D 200, Ra D 9:5�103; 4, r D 200, Ra D 9:5�102 (After Ismail-Zadeh
et al. 2006)
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Both the objective functional and the norm of its gradient show a quite rapid
decrease after about 7 iterations for Ra D 9:5 � 105 and r D 20 (curves 1). As
Ra decreases and thermal diffusion increases (curves 2–4) the performance of the
algorithm becomes poor: more iterations are needed to achieve the prescribed ".
All curves illustrate that the first 4–7 iterations contribute mainly to the reduction of
ı�n. The convergence drops after a relatively small number of iterations. The curves
approach the horizontal line with an increase in the number of iterations, because ˇk

tends to zero with a large number of iterations (see Eq. 3.6). The increase of krJk
at k D 2 is associated with uncertainty of this gradient at k D 1.

Implementation of minimization algorithms requires the evaluation of both the
objective functional and its gradient. Each evaluation of the objective functional
requires an integration of the model Eq. (3.1) with the appropriate boundary and
initial conditions, whereas the gradient is obtained through the backward integration
of the adjoint Eq. (3.7). The performance analysis shows that the CPU time required
to evaluate the gradient J is about the CPU time required to evaluate the objective
functional itself, and this is because the direct and adjoint heat problems are
described by the same equations.

Despite its simplicity, the minimization algorithm (3.5) provides for a rapid
convergence and good quality of optimisation at high Rayleigh numbers (Ismail-
Zadeh et al. 2006). The convergence rate and the quality of optimisation become
worse with the decreasing Rayleigh number. The use of the limited-memory quasi-
Newton algorithm L-BFGS (Liu and Nocedal 1989) might provide for a better
convergence rate and quality of optimisation (Zou et al. 1993; see a comparison
of the methods in Chap. 4). Although an improvement of the convergence rate by
using another minimization algorithm (e.g. L-BFGS) will reduce the computational
expense associated with the solving of the problem under question, this reduction
would be not significant, because the large portion (about 70 %) of the computer
time is spent to solve the 3-D Stokes equations.

3.7 Challenges in VAR Data Assimilation

The VAR method for data assimilation can theoretically be applied to many
geodynamic problems, although a practical implementation of the technique for
modelling of real geodynamic processes backward in time is not a simple task.
The mathematical model of mantle dynamics described by a set of Eqs. (3.1),
(3.2) and (3.3) is simple, and many complications are omitted. For example, in
the considered case study a viscosity increase from the upper to the lower mantle
is not included in the model, although it is suggested by studies of the geoid
(Ricard et al. 1984), post-glacial rebound (Mitrovica 1996), and joint inversion
of convection and glacial isostatic adjustment data (Mitrovica and Forte 2004).
The adiabatic heating/cooling term in the heat equation can provide more realistic
distribution of temperature in the mantle, especially near the thermal boundary
layer. The numerical models considered here do not include phase transformations

http://dx.doi.org/10.1007/978-3-319-27801-8_4
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(e.g. Liu et al. 1991; Honda et al. 1993a, b; Harder and Christensen 1996), although
the phase changes can influence the thermal convection pattern. The coefficient of
thermal expansion (e.g. Chopelas and Boehler 1989; Hansen et al. 1991) and the
coefficient of thermal conductivity (e.g. Hofmeister 1999) are not constant in the
mantle and vary with depth and temperature. To consider these complications in the
VAR data assimilation, the adjoint equations should be derived each time when the
set of the equations is changed. The cost to be paid is in software development since
an adjoint model has to be developed.

3.7.1 Data Smoothness

The solution of the heat Eq. (3.1) with appropriate boundary and initial conditions
is a sufficiently smooth function. The temperature derived from the seismic
tomography is a representation of the exact temperature in the Earth interior, and
so it must be rather smooth, because, otherwise, the objective functional cannot be
defined. Therefore, before any assimilation of the present temperature data can be
attempted, the data must be smoothed. The smoothing of the present temperature
improves the convergence of the iterations.

If the initial temperature is not a smooth function of space variables, recovery
of this temperature using the VAR method is not effective because the iterations
converge very slowly to the target temperature. Ismail-Zadeh et al. (2006) explained
the problem of recovering the initial temperature on the basis of three one-
dimensional model tasks: restoration of a (i) smooth, (ii) piece-wise smooth, and (iii)
discontinuous target function. (We note that the temperature in the Earth’s mantle is
not a discontinuous function but its shape can be close to a step function.)

Consider the dynamics of a physical system described by the Burgers equation
(Ismail-Zadeh et al. 2006)

ut C uux D uxx; 0 � t � 1; 0 � x � 2�

with the boundary conditions

u .t; 0/ D 0; u .t; 2�/ D 0; 0 � t � 1;

and the condition

u� D u .1; xI u0/ ; 0 � x � 2� at t D 1;

where the variable u may denote temperature. The problem is to recover the function
u0 D u0.x/; 0 � x � 2� at t D 0 (the state in the past) from the function u� D
u� .x/; 0 � x � 2� at t D 1 (its present state). The finite difference approximations
and the variational method are applied to the Burgers equation with the appropriate
boundary and initial conditions.



36 3 Variational Method and Its Application to Modelling of Mantle Plume Evolution

Task 1. Consider the sufficiently smooth function u0 D sin.x/; 0 � x � 2� . The
functions u0 and u� are shown in Fig. 3.4a. Figure 3.4b, c illustrate the iterations
�k using the iterative scheme similar to (3.5) for k D 0; 4; 6 and the residual
r6.x/ D u0.x/� '6.x/; 0 � x � 2� respectively. Iterations converge rather rapid
for the sufficiently smooth target function.

Task 2. Now consider the continuous piece-wise smooth function u0 D 3x= .2�/ ;
0 � x � 2�=3 and u0 D 3=2 � 3x= .2�/ ; 2�=3 � x � 2� . Figure 3.4
presents (d) the functions u0 and u� , (e) the successive approximations �k for
k D 0; 4; 1000, and (f ) the residual r1000.x/ D u0.x/ � '1000.x/; 0 �
x � 2� , respectively. This example shows that a large number of iterations is
required to reach the target function.

Task 3. Consider the discontinuous function u0, which takes 1 at 2�=3 � x �
4�=3 and 0 in other points of the closed interval 0 � x � 2� . Figure 3.4
presents (g) the functions u0 and u� , (h) the successive approximations �k for
k D 0; 500; 1000, and (e) the residual r1000.x/ D u0.x/ � '1000.x/; 0 �
x � 2� , respectively. Convergence to the target temperature is very poor.

To improve the convergence to the target function, a modification of the
variational method based on a priori information about a desired solution can be
used (e.g., the maximum and minimum of the solution; Korotkii and Tsepelev 2003).
Figure 3.4j shows the successive approximations Q'k for k D 0; 30; 500, and (k) the
residual Qr500.x/ D u0.x/ � Q'500.x/; 0 � x � 2� , respectively. The approximations
Q'k based on the method of gradient projection (Vasiliev 2002) converge to the target
solution better than approximations generated by (3.5).

3.7.2 Numerical Noise

If the initial temperature guess �0 is a smooth function, all successive temperature
iterations �k in scheme (3.5) should be smooth functions too, because the gradient
of the objective functional rJ is a smooth function as it is the solution to the
adjoint problem (3.7). However, the temperature iterations �k are polluted by
small perturbations (errors), which are inherent in any numerical experiment.
These perturbations can grow with time. Samarskii et al. (1997) applied a VAR
method to a 1-D backward heat diffusion problem and showed that the solution to
this problem becomes noisy if the initial temperature guess is slightly perturbed,
and the amplitude of this noise increases with the initial perturbations of the
temperature guess. To reduce the noise they used a special filter and illustrated
the efficiency of the filter. This filter is based on the replacement of iterations
(3.5) by B .'kC1 � 'k/ D �ˇkrJ .'k/, where By D y � r2y (Tsepelev 2011).
An employment of this filter increases the number of iterations to obtain the target
temperature, and it becomes quite expensive computationally, especially when the
model is three-dimensional. Another way to reduce the noise is to employ high-
order adjoint (Alekseev and Navon 2001) or regularization (e.g. Tikhonov 1963;
Lattes and Lions 1969, Samarskii and Vabischevich 2007) techniques.
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Chapter 4
Application of the Variational Method to Lava
Flow Modelling

Abstract In this chapter, we present an application of the variational data assimila-
tion method to the problem for determination of thermal and dynamic characteristics
of lava flow from thermal measurements at lava’s upper surface. Assuming that the
temperature and the heat flow are known at the lava’s upper surface, the missing
condition at the lower surface of the lava is determined at first, and then the flow
characteristics (temperature and flow velocity) are resolved in the entire model
domain.

Keywords Lava flow • Inverse theory • Adjoint problem • VAR method •
Numerical modelling

4.1 Lava Flow

During volcanic non-explosive (effusive) eruptions a lava flow starts to form when
partially molten rock is erupted onto the Earth’s surface and spreads slowly on the
surface from the volcanic edifice. The eruptions produce a variety of gravity currents
depending on temperature and the chemical composition of the magmatic rocks,
and the topography of the surface over which the lava flows (Griffiths 2000). Under
relatively steady eruption conditions, a viscous lava flow rapidly forms a solid crust.
A large surface heat flux from the lava, cooling, and crystallization of the uppermost
layer of the moving melt lead to a gravity current of lava under a solid crust, which
insulates the lava flow interior. The crust preserves the lava against rapid cooling and
permits the lava flow extending to substantial distances. Once the lava supply ceases
and the interior of the lava flow cools, the lava stops its further advance (Harris et al.
2007).

Computer simulations play an important role in understanding the dynamics,
the morphology and thermal structures of lava flows (e.g., Costa and Macedonio
2005a and references herein). Simplified isothermal models of viscous flows have
demonstrated the way, in which slow eruptions of lava would advance in the absence
of cooling. These provided the basis for models that include heterogeneous rheology
and change caused by cooling and solidification. A more realistic approach is
to calculate mass and energy transport in viscous flow using a digital elevation

© The Author(s) 2016
A. Ismail-Zadeh et al., Data-Driven Numerical Modelling in Geodynamics:
Methods and Applications, SpringerBriefs in Earth Sciences,
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model to represent topography. A 2-D model for lava flow was developed by
Ishihara et al. (1989) and later refined by Miyamoto and Sasaki (1998). Another
2-D model, which was based on the conservation equations for lava thickness and
depth-averaged velocities and temperature, was developed by Costa and Macedonio
(2005b). Solidification occurs during lava spreading and consequently the solidified
crust can become obstacles to the lava flow. Hidaka et al. (2005) developed the lava
flow simulation code based on 3-D convection analysis with simultaneous spreading
and solidification. Tsepelev et al. (2016) developed numerical models of fluid flow
with breccia for various scenarios of lava advancement.

4.2 Reconstruction of Lava Properties

Modern remote sensing technologies (e.g., air-borne or space-borne infrared sen-
sors) allow for detecting the absolute temperature at the Earth’s surface (e.g., Flynn
et al. 2001). The Stefan-Boltzmann law relates the total energy radiated per unit
surface area of a body across all wavelengths per unit time to the fourth power of the
absolute temperature of the body. Hence the absolute temperature can be determined
from the measurements by remote sensors (e.g., Harris et al. 2004). The heat flow
could be then inferred from the Stefan-Boltzmann law using the temperature.

Is it possible to use the surface thermal data so obtained to constrain the thermal
and dynamic conditions beneath the surface? Following Korotkii et al. (2016)
we present in this chapter a quantitative approach to reconstruct temperature and
velocity in the steady-state lava flow. The knowledge of the thermal and dynamic
characteristics of lava is important, particularly, for lava flow hazard assessment and
hence disaster mitigation (Cutter et al. 2015).

The problem of reconstruction of lava thermal and flow characteristics is
considered in the case when the temperature and the heat flow are known on the
lava surface, but the lava temperature and velocity are unknown. The problem is
reduced to determination of temperature and velocity as the solution to the model
of steady-state flow of viscous heterogeneous incompressible fluid with prescribed
conditions for velocity and temperature at the boundary � D @� of the model
domain �. At a part of the model boundary the conditions are abundant (e.g. both
temperature and heat flow are known), and at another part of the boundary there
is a lack of information on the temperature (because of no direct measurements
at this part of the boundary). This mathematical problem is reduced in its turn to
solving the inverse problem for determination of the temperature at the bottom
of the lava and for subsequent search for the temperature and velocity of the
lava.
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4.3 Mathematical Statement

In a two-dimensional model domain � (Fig. 4.1) the Stokes, incompressibility
and heat equations are employed to determine the steady-state flow velocity
and temperature of the incompressible heterogeneous fluid under gravity in the
Boussinesq approximation:

r � �� �ru C ruT
�� D rp � Ra T e2; (4.1)

r � u D 0; (4.2)

r � .� rT/ D hu;rTi ; (4.3)

where x D .x1; x2/ 2 � are the Cartesian coordinates; u D .u1 .x/ ; u2 .x// is
the vector velocity; p D p .x/ is the pressure; T D T .x/ is the temperature;
� D �.T/ is the viscosity; � D k=

�
�ref cp

�
is the thermal diffusivity; k D k.T/ is the

heat conductivity; �ref is the typical density; and cp is the specific heat capacity.
The Rayleigh number is defined as Ra D ˛g�refTh3��1

ref �
�1
ref , where ˛ is the

thermal expansivity; g is the acceleration due to gravity; �ref and �ref are the typical
viscosity and thermal diffusivity, respectively; T is the temperature contrast; h is
the typical length; e2 D .0;�1/ is the unit vector; r, T , and h�; �i denote the gradient
vector, the transposed matrix, and the scalar product of vectors, respectively. Length
and temperature are normalized by h and T, respectively.

The following conditions for temperature and velocity are assumed at the model
boundary � D �1 [�2 [�3 [�4. The temperature T1 and the velocity u1 are
prescribed at the left boundary �1:

Fig. 4.1 Geometry of the
lava flow model
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T D T1; u D u1: (4.4)

No slip condition is prescribed at the lower boundary �2 (unknown temperature is
to be found):

u D 0: (4.5)

At the right boundary �3, the temperature T3 is prescribed (a strong assumption,
which might be omitted, but will complicate the problem solution), the deviatoric
stress and the pressure are vanishing:

T D T3; 	 n D 0; p D 0: (4.6)

At the upper surface�4, the temperature T4 and heat flow ' are given, and no normal
flow and free-slip tangential conditions are used:

T D T4; k hrT;ni D '; hu;ni D 0; 	n � h	 n;ni n D 0; (4.7)

where 	 D �
�ru C ruT

�
is the deviatoric stress tensor, and n is the outward unit

normal vector at a point on the model boundary. The principal problem is to find the
solution to Eqs. (4.1), (4.2) and (4.3) with the boundary conditions (4.4), (4.5), (4.6)
and (4.7), and hence to determine the velocity u D u .x/, the pressure p D p .x/,
and the temperature T D T .x/ in the model domain � when temperature T4 and
heat flow ' D k@T=@n are known at boundary �4.

In addition to the principal problem, an auxiliary problem is defined as: to find
solution to Eqs. (4.1), (4.2) and (4.3) (that is, to determine u, p, and T in �) with
the following boundary conditions:

�1 W T D T1; u D u1; (4.8)

�2 W T D T2; u D 0; (4.9)

�3 W T D T3; 	 n D 0; p D 0; (4.10)

�4 W T D T4; hu;ni D 0; 	n � h	 n;ni n D 0: (4.11)

The auxiliary problem (4.1), (4.2) and (4.3) and (4.8), (4.9), (4.10) and (4.11) is a
direct problem compared to the problem (4.1), (4.2), (4.3), (4.4), (4.5), (4.6) and
(4.7), which is an inverse problem. The conditions at �1 and �3 are the same in
the direct and inverse problems, but the temperature T2 is known at �2 and no
heat flow is prescribed at �4 in the auxiliary problem compared to the inverse
problem (4.1), (4.2), (4.3), (4.4), (4.5), (4.6) and (4.7). The well- and ill-posedness
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of the similar problems have been studied by Ladyzhenskaya (1969), Lions (1971),
Temam (1977), Korotkii and Kovtunov (2006), and Korotkii and Starodubtseva
(2014).

The (measured) heat flow ' D k.T/@T=@n at model boundary �4 is assumed to
be related to some (unknown as yet) temperature T D T2 D �
 at model boundary
�2, and temperature T * is a component of the solution (T *, u *, p *) to the auxiliary
problem, when the temperature T D T2 at �2 equals to � * (Eq. 4.9), and hence
' D k .T
/ @T 
 =@n at � 4.

Consider the cost functional for admissible functions � determined at �2

J .�/ D
Z

�4

	
k
�
T�
� @T�
@n

� '


2
d�; (4.12)

where T� is the component of the solution (T� , u� , p�) of the auxiliary problem with
the condition T D � at �2 in Eq. (4.9). The functional has its global minimum at
value � D �
 and J .�
/ D 0, that is, temperature � D �
 attains a minimal value
to the functional

J .�/ ! min W � 2 „; (4.13)

where „ denotes a set of admissible temperatures at boundary �2. Therefore, the
inverse problem is reduced to a minimization of the functional or to a variation of
the function � at �2, so that heat flow k@T=@n at �4 becomes closer to the prescribed
value ' at �4.

4.4 Minimisation Problem

To minimise the cost functional (4.12) the Polak-Ribière conjugate-gradient method
is employed (e.g., Polak 1997):

�.nC1/ D �.n/ C 
.n/ d.n/; n D 1; 2; 3; : : : ; (4.14)

d.n/ D
� �rJ

�
�.n/

�
; n D 1

� rJ
�
�.n/

�C ˇ.n/ d.n�1/; n D 2; 3; : : :
; (4.15)

ˇ.n/D
Z

�2

rJ
�
�.n/

��rJ
�
�.n/

� � rJ
�
�.n�1/�� d�=

Z

�2

�
rJ

�
�.n�1/��2d�; n D 2; 3; : : : ;

(4.16)

and the descent step length 
 (n) can be found from the Wolfe conditions (e.g.,
Nocedal and Wright 1999):
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8
ˆ̂̂
<̂
ˆ̂̂
:̂

J
�
�.n/ C 
.n/d.n/

� � J
�
�.n/

�C c1 
.n/
Z

�2

rJ
�
�.n/

�
d.n/d�;

Z

�2

rJ
�
�.n/ C 
.n/d.n/

�
d.n/d� � c2

Z

�2

rJ
�
�.n/

�
d.n/d�;

(4.17)

where rJ is the gradient of the cost functional; �(n) is the n-iteration of the
admissible function �; and 0 < c1 < c2 < 1. In the case of the conjugate-gradient
method, the parameters c1 and c2 equal to 0.001 and 0.01, respectively (c1 D 0.01
and c2 D 0.9 in the case of the L-BFGS method; see Sect. 4.7). A search for the
descent step length involves iterative solving the direct and adjoint (see below)
problems to determine rJ (e.g., Fletscher 2000).

The gradient of the cost functional

rJ .�/ D
	

k
�
T�
� @z

@n


ˇ̌
ˇ̌
�2

(4.18)

can be found as the solution to the adjoint problem

r � �� �T�
� �rw C rwT

�� D rq C zrT� ; (4.19)

r � w D 0; (4.20)

r � �� �T�
�rz

�C ˝
u� ;rz

˛C Ra he2;wi

D �0 �T�
� ˝rT� ;rz

˛C �0 �T�
� ��rw C rwT

�
;ru�

�
; (4.21)

with the following boundary conditions

�1 W z D 0; w D 0; (4.22)

�2 W z D 0; w D 0; (4.23)

�3 W z D 0; Q	n D 0; q D 0; (4.24)

�4 W z D 2

	
k
�
T�
� @T�
@n

� '



; hw;ni D 0; Q	n � h Q	 n;ni n D 0; (4.25)

where Q	 D �
�rw C rwT

�
; the square brackets ŒA; B� D

mX
i;jD1

aij bij denote the

convolution of two m � m matrices A D �
aij

�
and B D �

bij

�
; and sign 0 means
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the derivation. The solution is a triplet (z, w, q) of quasi-temperature (z), quasi-
velocity (w), and quasi-pressure q. The derivation of the adjoint problem (4.19),
(4.20), (4.21), (4.22), (4.23), (4.24) and (4.25) is presented in Sect. 4.5.

The algorithm for solving the principal problem can be presented using the
following steps (the guess function �.1/ D �.1/ .x/ 2 „ determined at �2 is
prescribed at the initial iteration):

• Step 1. Consider �.i/ D �.i/ .x/, x 2 �2 (i D 1, 2, : : : ) as the boundary condition
(4.9) of the auxiliary problem (Eqs. 4.1, 4.2, 4.3 and 4.8, 4.9, 4.10, 4.11) and
determine the solution

�
T�.i/ ; u�.i/ ; p�.i/

�
of this problem in �.

• Step 2. Insert the components T�.i/ and u�.i/ of the solution into the adjoint
problem (Eqs. 4.19, 4.20, 4.21, 4.22, 4.23, 4.24, and 4.25) and determine the
solution

�
z D z�.i/ ; w D w�.i/ ; q D q�.i/

�
of this adjoint problem in �.

• Step 3. Determine the gradient of the cost functional rJ
�
�.i/
�

from Eq. (4.18)
as well as d(i), ˇ(i), and 
 (i) from the conditions (4.15), (4.16), and (4.17),
respectively.

• Step 4. Determine the value �.iC1/ from Eq. (4.14).

• Step 5. If J
�
�.iC1/

� C
���rJ

�
�.iC1/

���
2

< ", where " > 0 is a given small number,

terminate the minimization problem. Otherwise, the procedure is repeated until
the inequality is satisfied.

The performance of the algorithm is evaluated in terms of the number of
iterations n required to achieve a prescribed relative reduction of �(n). Figure 4.2
presents the evolution of the cost functional J(�(n)) and the norm of the gradient of

the objective functional
��rJ

�
�.n/

��� D
0
@
Z

�2

�rJ
�
�.n/

��2
d�

1
A
1=2

versus the number

of iterations.
Implementation of the minimization algorithm requires the evaluation of both

the cost functional (4.12) and its gradient (4.18). Each evaluation of the objective
functional requires an integration of the model Eqs. (4.1), (4.2) and (4.3) with the
appropriate boundary conditions (4.8), (4.9), (4.10) and (4.11), whereas the gradient
is obtained through the integration of the adjoint problem (Eqs. 4.19, 4.20, 4.21,
4.22, 4.23, 4.24 and 4.25). Thus, the solution of the minimization problem is reduced
to solutions of series of well-posed (direct and adjoint) problems.

4.5 Adjoint Problem

Here we present the derivation of the adjoint problem. Let the triplet�
T�C�; u�C�; p�C�

�
be the solution of the auxiliary problem (4.1), (4.2), (4.3),

(4.8), (4.9), (4.10) and (4.11) for the prescribed condition T D T2 D � C � at the
boundary �2 (see Eq. 4.9) and the triplet ( T� , u� , p� ) be the solution of the same
problem for the prescribed condition T D T2 D � at the same boundary, where �
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Fig. 4.2 Reductions of the
objective functional (dashed
line 1) and the norm of the
gradient of the objective
functional (solid line 2) as
functions of the number of
iterations

is an admissible increment of the boundary element �. The difference of the two
solutions T D T�C� � T� , u D u�C� � u� , and p D p�C� � p� should satisfy the
following boundary value problem for x 2 �:

r � �ı� �T�
� �ru C ruT

��C r � �� �T�
� �ru C ruT

��

Cr � �ı� �T�
� �ru� C ru�T

�� D rp � Ra T e2; (4.26)

r � u D 0; (4.27)

r � �ı� �T�
�rT

�C r � �� �T�
�rT

�C r � �ı� �T�
�rT�

�

D hu;rTi C ˝
u� ;rT

˛C ˝
u;rT�

˛
; (4.28)

with the following boundary conditions

�1 W T D 0; u D 0; (4.29)

�2 W T D �; u D 0; (4.30)

�3 W T D 0; 	 n D 0; p D 0; (4.31)
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�4 W T D 0; hu;ni D 0; 	n � h	 n;ni n D 0; (4.32)

where ı�
�
T�
� D �

�
T�C�

� � �
�
T�
�

and ı�
�
T�
� D �

�
T�C�

� � � �T�
�
. We note that

J .� C �/ � J .�/ D
Z

�4

	
k
�
T�C�

� @T�C�
@n

� '


2
d� �

Z

�4

	
k
�
T�
� @T�
@n

� '


2
d�

D 2

Z

�4

	
k
�
T�C�

� @T�C�
@n

� k
�
T�
� @T�
@n


	
k
�
T�
� @T�
@n

� '



d�

C
Z

�4

	
k
�
T�C�

� @T�C�
@n

� k
�
T�
� @T�
@n


2
d�D 2

Z
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k
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T�C�

� @T�C�
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� k
�
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� @T�
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�
	

k
�
T�
� @T�
@n

� '



d� C o . k � k / ;

and accounting for k
�
T�C�

� D k
�
T�
� C k0 �T�

�
T C o . k T k / D k

�
T�
� C

k0 �T�
�

T C o . k � k /, we obtain

2

Z

�4

	
k
�
T�C�

� @T�C�
@n

� k
�
T�
� @T�
@n


	
k
�
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� @T�
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� '
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d� C o . k � k / ;

and hence

J .� C �/ � J .�/

D
Z

�4

	
k
�
T�
� @T

@n
C k0 �T�

�
T
@T�
@n



2
�

k
�
T�
� @T�
@n � '

�
d� C o . k � k / :

(4.33)
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A test function w D w .x/ ; x 2 �, is assumed to satisfy the incompressibility
condition

r � w D 0; (4.34)

and the boundary conditions

�1 and �2 W w D 0; (4.35)

�3 W Q	 n D 0; (4.36)

�4 W hw;ni D 0; Q	n � hQ	 n;ni n D 0: (4.37)

Multiplying Eq. (4.26) by a test function w D w .x/, integrating the resultant
equation over �, considering Eqs. (4.34), (4.35), (4.36) and (4.37) and after
integration by parts, the following equation is obtained:

Z

�

˝
u;r � �� �T�

� �rw C rwT
��˛

dx �
Z

�

�0 �T�
�

T
�rw C rwT ;ru�

�
dx

C
Z

�

Ra T hw; e2i dx D o . k�k / ; (4.38)

where the relation
�rw C rwT ;ru�

�
can be represented in a symmetric form as�rw C rwT ;ru� C ru�T

�
=2. Multiply Eq. (4.27) by a test scalar function q D

q .x/, x 2 �, and integrate by parts the resultant equation over �. Assuming that
the function q D 0 at �3 and considering boundary conditions (4.29), (4.30), (4.31)
and (4.32) for the vector function u:

Z

�

hu;rqi dx D 0: (4.39)

Multiply Eq. (4.28) by a test scalar function z D z .x/, x 2 �, and integrate by
parts the resultant equation over�. Considering boundary conditions (4.29), (4.30),
(4.31) and (4.32) for the function T and assuming that the function z satisfies the

following boundary conditions: z D 0 at �1,�2, and �3, and z D 2
�

k
�
T�
� @T�
@n � '

�

at �4, the modified equation can be presented as
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Z

�

T
˚r � �� �T�

�rz
� � �0 �T�

� ˝rT� ;rz
˛C ˝

u� ;rz
˛ �

dx �
Z

�

˝
u;rT�

˛
z dx

C
Z
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� @T
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C �0 �T�
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@T�
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Z

�2

�
�
T�
� @z

@n
� d� D o . k�k / :

(4.40)

Now add Eq. (4.40) to Eq. (4.39) and then deduct Eq. (4.40):

Z

�

˝
u;
˚r � �� �T�

� �rw C rwT
�� � zrT� � rq

�˛
dx

C
Z

�

T
˚r � �� �T�

�rz
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� ˝rT� ;rz
˛C ˝
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�C Ra hw; e2i
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� d� D o . k�k / :

(4.41)

Assuming that the expression in braces in Eq. (4.41) equals to zero, Eqs. (4.19) and
(4.21) and the equality for two boundary integrals:
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� @T
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C k0 �T�
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z d� D
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�
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@n
� d�C o . k�k / : (4.42)

Insert Eq. (4.42) into Eq. (4.34) to derive:

J .� C �/ � J .�/ D
Z

�2

rJ . � / � d �Co . k�k / ; rJ . � / D k
�
T�
� @z

@n

ˇ̌
ˇ̌
�2

:

4.6 Numerical Approach

To implement the algorithm for solving the minimization problem, Korotkii et al.
(2016) developed a numerical code using OpenFOAM (http://www.openfoam.org).
The mathematical problem was discretized by the finite volume method (e.g. Ismail-
Zadeh and Tackley 2010). The model domain was discretized by 1500 hexahedral
finite volumes. The SIMPLE method (Patankar and Spalding 1972) for used to
determine velocity and pressure at a given temperature. To implement the conjugate-
gradient method, a set of linear algebraic equations (SLAEs) with positive-definite
and symmetric matrices was solved. In the case of the heat equation, SLAEs were

http://www.openfoam.org/
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solved by the biconjugate gradient stabilized method (Van der Vorst 1992) with
the pre-conditioner of incomplete LU-decomposition. The linear Gaussian scheme
with a flow control was used to discretize the Laplace operator. To approximate the
convective operator, we employed the total variation diminishing (TVD) method,
which gives a second-order accurate solution, with the minmod limiter (Sweby
1984; Wang and Hutter 2001; Ismail-Zadeh et al. 2007). The relaxation parameters
are 0.7 and 0.3 for the velocity and pressure, respectively; and the relative
accuracy of the SLAE solutions are 10�3. Korotkii et al. (2016) performed model
computations using a single CPU Intel Core i5 2.6 GHz with 16 GB memory, OS X
10.10. An average computational time for 80 iterations in the inverse problem was
75 min: this included the time required for minimization of the cost functional by
the conjugate gradient method, and the time to solve the direct and adjoint problems
(normally 4–5 iterations) to determine the descent step length.

4.7 Model Results and Discussion

Following Korotkii et al. (2016), we consider here a model of lava advancing down
the slope (Fig. 4.1) and assume that temperature and heat flow are available from
remote thermal measurements. The boundary of the model domain consists of the
following parts: �1 is a line segment connecting points xA D �

xA
1 ; x

A
2

� D .0; 2:5/ and
xB D �

xB
1 ; x

B
2

� D .0; 1:5/; �2 is a circular arc connecting points xB, xC D �
xC
1 ; x

C
2

� D
.1:5; 0:5/, and xD D �

xD
1 ; x

D
2

� D .3:0; 0:0/; �3 is a line segment connecting points
xD and xE D �

xE
1 ; x

E
2

� D .3:0; 0:5/; and �4 is a circular arc connecting points xE,
xF D �

xF
1 ; x

F
2

� D .1:5; 1:2/ and xA. The following dimensional parameters are used
in the modelling: ˛D 10�5 K�1, g D 9.8 m s�2, h D 10 m, �ref D 3000 kg m�3,
�ref D 3:5� 109 Pa s, Tref D 300 K, T* D 1473 K, T D T� � Tref , �ref D 10�6 m2

s�1, cp D 1200 J kg�1 K�1, and therefore, the Rayleigh number is Ra D 100. The
temperature-dependent viscosity (Griffiths 2000) and conductivity (Hidaka et al.
2005) used in this case study are presented as:
�.T/ D exp

�
n
�
T� � Tref T

��
, n D 1:3 � 10�4 K�1, and

k.T/ D
(
1:15C 5:9 � 10�7� Tref T � T�

�2
; Tref T < T�;

1:15C 9:7 � 10�6� Tref T � T�
�2
; Tref T > T�:

At �1 the temperature T1 .x1; x2/ D 5:0 � 0:5
�
x2 � xB

2

�
, x2 2 �

xB
2 ; x

A
2

�
, and the

velocity u1 .x2/ D U .x2/ n1 are prescribed, where n1 D
�p

2=2;�p
2=2

�
and

U(x2) is the parabola passing through the following three points: U
�
xA
2

� D 10,
U
�
xB
2

� D 0, and U
�
0:5

�
xA
2 C xB

2

�� D 7:25. The temperature is T3 .x1; x2/ D 3:5 �
2
�
x2 � xD

2

�
, x2 2 �

xD
2 ; x

E
2

�
and T4 .x1; x2/ D 4:5 � 2

�
x1 � xA

1

�
=3, x1 2 �

xA
1 ; x

E
1

�
at

�3 and �4, respectively. Considering guess temperature �.1/ D �.1/ .x/ at �2, the



4.7 Model Results and Discussion 53

Fig. 4.3 Reconstruction of the temperature at the boundary �2 (a). The red curve corresponds to
the target temperature, the green curve to the guess temperature, the brown curve to the temperature
after 5 iterations, and the blue curve to the temperature after the 10 iterations. The reconstructed
temperature after 10 iterations (b) in the case of no noise in the heat flow at the upper boundary of
the lava (solid line; the blue curve in a) and in the case of the noise magnitude ı D 0:1 in the heat
flow (dashed line)

algorithm described in Sect. 4.4 is used to find the temperature at �2 and hence
solve the problem (4.1), (4.2), (4.3), (4.4), (4.5) and (4.7).

The cost functional is reduced to about 10�5 after 30 iterations (Fig. 4.2). The
reconstruction of the temperature at the boundary�2 versus the number of iterations
is presented in Fig. 4.3a. The number of iterations to get a given accuracy in
reduction of the cost functional depends on the initial ‘guess’ temperature at �2.
The closer is the guess temperature to the target temperature, the less number of
iterations is needed.

Figure 4.4 shows the reconstruction process of the lava temperature and flow
velocity from the initial iteration to the 80th iteration. The temperature and velocity
residuals, that is, the difference between the temperature and velocities predicted by
the forward model (with the target temperature at �2) and those reconstructed, are
also presented in Fig. 4.4. The results of this modelling show that the restoration
works quite well: the temperature residuals are very low already after 80 iterations
within the almost entire model domain.

The accuracy of temperature measurements and inferred heat flux density can be
attributed to the accuracy of the calibration curve of remote sensors and the noise of
the sensors. Considering these sources of errors of measured temperatures, the errors
would range from 0.1 to 1 K (Short and Stuart 1983). The heat flow errors inferred
from the Stefan-Bolzmann law can be then estimated between 0.6 and 6 W m�2 at
the reference temperature Tref D 300 K, which are related to dimensionless error
values from 0.0013 to 0.013 (normalized with respect to heat flow at the reference
temperature).
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Fig. 4.4 Reconstruction of the lava temperature (a) and the flow velocity (c) after 20 and 80
iterations. The relevant residuals of the temperature (b) and the velocity (d) indicate the quality
of the reconstruction

Several numerical experiments have been performed by Korotkii et al. (2016)
where a noise on the ‘measured’ data was introduced. Particularly, a disturbance on
the heat flow ' .�/ at the boundary �4 is presented as 'ı .�/ D ' .�/C ı
 .�/, where
ı is the magnitude of the disturbance; 
 .�/ is the function generating numbers that
are uniformly distributed over the interval [�1, 1]; and ' .�/ is obtained from the
solution of Eqs. (4.1), (4.2) and (4.3) with the conditions at the boundaries (4.8),
(4.9), (4.10) and (4.11) for T2 D �.1/ at �2. Three values for the noise magnitude
ı (0.001, 0.01, and 0.1) are chosen to approximate the possible noise level of the
remote thermal measurements.

The influence of the noise on the reconstruction of the temperature and flow
velocity has been analysed by Korotkii et al. (2016). The computations show that
the errors (temperature and velocity residuals, Fig. 4.5) get larger with increase
of the noise of the input data. Meanwhile for some range of the noise .ı � 0:01/

the reconstructions are still reasonable as the temperature and velocity residuals
are not high (Fig. 4.5). Namely, if MT D max

x2�
ˇ̌
T30 .x/� T0 .x/

ˇ̌
and Mu D

max
x2�

��u30 .x/� u0 .x/
��
R2

, where T0(x) and u0(x) are the solution of the direct

problem (4.1), (4.2) and (4.3) and (4.8), (4.9), (4.10) and (4.11), than MT D 0.095,
0.096, 0.099, and 0.265 and Mu D 0.0073, 0.0074, 0.0075, and 0.01526 for ı D 0,
0.001, 0.01, and 0.1, respectively. To test a sensitivity of the approach to changes
in flow patterns, the magnitude of the velocity jUj has been varied at the left-side
boundary �1 of the model domain between 1 and 25, and the Rayleigh number
between 1 and 10,000. The approach is rather robust to changes in the velocity
magnitude and in Ra.
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Fig. 4.5 Residuals of temperature (the left panels) and velocity (the right panels) at different noise
magnitudes ı

A performance of the numerical approach depends on optimization methods. In
the presented approach the conjugate-gradient method was used. To compare its
performance with other optimization methods, the limited-memory BFGS method
(or L-BFGS method) was employed. This method belongs to the family of quasi-
Newton methods (e.g., Nocedal and Wright 1999). To minimize the cost functional
(4.12) using the L- BFGS method, components d(n) in Eq. (4.14) are determined
as d.1/ D �rJ

�
�.1/

�
and d.n/ D �B.n/rJ

�
�.n/

�
.n D 2; 3; : : : /, where B(n) is

the approximated inverse Hessian operator. When the L-BFGS method is used,
the average computational time to perform 80 iterations for minimization of the
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Fig. 4.6 Reductions of the
objective functional (dashed
lines) and the norm of the
gradient of the objective
functional (solid lines) in the
case of the conjugate gradient
method (black lines) and in
the case of the L-BFGS
method (red lines)

cost functional is reduced to 15 min (by the factor of 5) compared to the case of
the conjugate-gradient method used. The computational time reduction is achieved
because the descent step size in the iteration scheme is determined much faster. The
reduction of the objective functional and the norm of the gradient of the objective
functional with the number of iterations is faster than in the case of the conjugate-
gradient method (Fig. 4.6).

Rather accurate reconstruction of the model temperature and flow velocity relies
on the chosen methods for minimization of the cost functional (4.12), i.e. the Polak-
Ribière conjugate-gradient method or the L-BFGS method. In the general case, a
Tikhonov regularization term should be introduced in the cost functional as:

J˛ .�/ D
Z

�4

	
k
�
T�
� @T�
@n

� 'ı

2

d� C ˛

Z

�2

�2 d�:

Here ˛ > 0 is a small regularization parameter, and 'ı is the measured heat
flow with a measurement error ı. The regularization term should account for a
priori information on the problem’s solution (e.g., its monotony property, maximum
and minimum values, and the total variation diminishing). The introduction of the
regularization term in the cost functional makes the minimization problem more
stable and less dependent on measurement errors. For a suitable regularization
parameter ˛ D ˛ .ı/, the minimum of the regularized cost functional will tend
to the minimum of the functional (4.12) at ı ! 0 (Tikhonov and Arsenin 1977). In
reality the choice of the regularization parameter is a challenging issue as it depends
on several factors, e.g., on errors of measured data (e.g., Kabanikhin 2011). Note
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that the gradient of the regularized cost functional is represented as rJ˛ .�/ D
rJ0 .�/C 2˛�, and the Hessian matrix is positive (r2J˛ > 0) at ˛ > 0.

There are several simplifications in the presented model of lava flow that can be
overcome in future, but require further development of the algorithm and increase
in computational resources. For example, the proposed numerical approach allows
also for reconstructing the temperature at the right boundary of the model domain
(if heat flux is negligible at its lower boundary) or at lower and right boundaries
simultaneously. The problem presented here can be extended to the non-steady-
state flow, but this will complicate the mathematical and computational approaches.
Meanwhile, as the measurements on absolute temperature are discrete in time (e.g.,
depending on the location of Landsat satellites), a problem of non-stationary flow
can be reduced to a number of steady-state flow problems with varying boundary
conditions at the upper model surface (where the discrete-in-time measurement are
available). A more complicated lava rheology with formation and disintegration
of solid crust (e.g., Tsepelev et al. 2016) can be considered. The influence of the
shape of the crust and the degree of its disintegration on the radiated heat flux (Neri
1998) can be significant. The application of the VAR method to lava flow and its
numerical implementation have a wide range of applications in other problems of
reconstruction of the flows of fluids with strongly temperature dependent viscosity,
for example, in chemical technology or oil industry.
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Chapter 5
Quasi-Reversibility Method and Its Applications

Abstract In this chapter, we introduce a quasi-reversibility (QRV) approach to
data assimilation, which allows for incorporating observations (at present) and
unknown initial conditions (in the past) for physical parameters (e.g., temperature
and flow velocity) into a three-dimensional dynamic model in order to determine the
initial conditions. The dynamic model is described by the backward heat, motion,
and continuity equations. The use of the QRV method implies the introduction
into the backward heat equation of the additional term involving the product of a
small regularization parameter and a higher order temperature derivative. The data
assimilation in this case is based on a search of the best fit between the forecast
model state and the observations by minimizing the regularization parameter. We
present the application of the QRV method to two case studies: evolution of (i)
mantle plumes and (ii) a relic lithospheric slab.

Keywords Quasi-reversibility • Regularization • Mantle plume • Lithosphere •
Slab sinking • Vrancea • Numerical modelling

5.1 Basic Idea of the Quasi-Reversibility (QRV) Method

The principal idea of the QRV method is based on the transformation of an ill-
posed problem into a well-posed problem (Lattes and Lions 1969). In the case
of the backward heat equation, this implies an introduction of an additional term
into the equation, which involves the product of a small regularization parameter
and higher order temperature derivative. The additional term should be sufficiently
small compared to other terms of the heat equation and allow for simple additional
boundary conditions. The data assimilation in this case is based on a search of the
best fit between the forecast model state and the observations by minimizing the
regularization parameter. The QRV method is proven to be well suited for smooth
and non-smooth input data (Lattes and Lions 1969; Samarskii and Vabishchevich
2007).

To explain the transformation of the problem, we follow Ismail-Zadeh et al.
(2007) and consider the following boundary-value problem for the one-dimensional
heat conduction problem

© The Author(s) 2016
A. Ismail-Zadeh et al., Data-Driven Numerical Modelling in Geodynamics:
Methods and Applications, SpringerBriefs in Earth Sciences,
DOI 10.1007/978-3-319-27801-8_5
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@T .t; x/

@t
D @2T .t; x/

@x2
; 0 � x � �; 0 � t � t�; (5.1)

T .t; x D 0/ D T .t; x D �/ D 0; 0 � t � t�; (5.2)

T .t D 0; x/ D 1

4n C 1
sin ..4n C 1/ x/ ; 0 � x � �: (5.3)

The analytical solution to (5.1), (5.2) and (5.3) can be obtained in the following
form

T .t; x/ D 1

4n C 1
exp

�
�.4n C 1/2t

�
sin ..4n C 1/ x/ : (5.4)

Figure 5.1 presents the solution (solid curves) for time interval 0 � t � t� D 0:14

and n D 1.
It is known that the backward heat conduction problem is ill-posed (e.g. Kirsch

1996). To transform the problem into a well-posed problem, a term is introduced
in Eq. (5.1) involving the product of a small parameter ˇ > 0 and higher order
temperature derivative:

@Tˇ .t; x/

@t
D @2Tˇ .t; x/

@x2
� ˇ @

4

@x4

	
@Tˇ .t; x/

@t



; 0 � x � �; 0 � t � t�; (5.5)

Tˇ .t; x D 0/ D Tˇ .t; x D �/ D 0; 0 � t � t�; (5.6)

@2Tˇ .t; x D 0/

@x2
D @2Tˇ .t; x D �/

@x2
D 0; 0 � t � t�; (5.7)

Tˇ
�
t D t�; x

� D 1

4n C 1
exp

�
�.4n C 1/2t�

�
sin ..4n C 1/ x/ ; 0 � x � �:

(5.8)

Here the initial condition is assumed to be the solution (5.4) to the heat conduction
problem (5.1), (5.2) and (5.3) at t D t�. The subscript ˇ at Tˇ is used to emphasize
the dependence of the solution to problem (5.5), (5.6), (5.7) and (5.8) on the
regularization parameter. The analytical solution to the regularized backward heat
conduction problem (5.5), (5.6), (5.7) and (5.8) is represented as:

Tˇ .t; x/ D An exp
� �.4nC1/2t
1Cˇ.4nC1/4

�
sin ..4n C 1/ x/ ;

An D 1
4nC1 exp

�
�.4n C 1/2t�

�
exp�1

� �.4nC1/2t�

1Cˇ.4nC1/4
�
;

(5.9)
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Fig. 5.1 Comparison of the exact solutions to the heat conduction problem (red curves; a and b)
and to the regularized backward heat conduction problem (a: ˇ D 10�3 and b: ˇ D 10�7; blue
dashed curves). The temperature residual between two solutions is presented in panel (c) at various
values of the regularization parameter ˇ (After Ismail-Zadeh et al. 2007)

and the solution approaches the initial condition for the problem (5.1), (5.2) and
(5.3) at t D 0 and ˇ ! 0. Figure 5.1a illustrates the solution to the regular-
ized problem at ˇD 10�3 (dashed curves) and n D 1. The temperature residual
(Fig. 5.1b) indicates that the solution (5.9) approaches the solution (5.4) with
ˇ ! 0. Samarskii and Vabischevich (2007) estimated the stability of the solution to
problem (5.5), (5.6) and (5.7) with respect to the initial condition expressed in the
form Tˇ .t D t�; x/ D T �̌:
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��Tˇ .t; x/
��C ˇ

��@Tˇ .t; x/ =@x
�� � C

����T �̌
���C ˇ

���@T �̌=@x
���
�

exp
��

t� � t
�
ˇ�1=2� ;

where C is a constant, and showed that the natural logarithm of errors will increase
in a direct proportion to time and inversely to the root square of the regularization
parameter.

Any regularization has its advantages and disadvantages. A regularizing operator
is used in a mathematical problem to (i) accelerate a convergence; (ii) fulfil the
physical laws (e.g. maximum principal, conversation of energy, etc.) in discrete
equations; (iii) suppress a noise in input data and in numerical computations; and
(iv) take into account a priori information about an unknown solution and hence
to improve a quality of computations. The major drawback of regularization is that
the accuracy of the solution to a regularized problem is always lower than that to a
non-regularized problem.

The transformation to the regularized backward heat problem is not only a
mathematical approach to solving ill-posed backward heat problems, but has some
physical meaning: it can be explained on the basis of the concept of relaxing
heat flux for heat conduction (e.g. Vernotte 1958). The classical Fourier heat
conduction theory provides the infinite velocity of heat propagation in a region.
The instantaneous heat propagation is unrealistic, because the heat is a result of
the vibration of atoms and the vibration propagates in a finite speed (Morse and
Feshbach 1953). To accommodate the finite velocity of heat propagation, a modified
heat flux model was proposed by Vernotte (1958) and Cattaneo (1958).

The modified Fourier constitutive equation is expressed as
�!
Q D �krT �

� @
�!
Q=@t, where

�!
Q is the heat flux, and k is the coefficient of thermal conductivity.

The thermal relaxation time � D k=
�
�cpv

2
�

is usually recognized to be a small
parameter (Yu et al. 2004), where � is the density, cp is the specific heat, and v
is the heat propagation velocity. The situation for � ! 0 leads to instantaneous
diffusion at infinite propagation speed, which coincides with the classical thermal
diffusion theory. The heat conduction equation @T=@t D r2T C � @2T=@t2 based
on non-Fourier heat flux can be considered as a regularized heat equation. If the
Fourier law is modified further by an addition of the second derivative of heat flux,

e.g.
�!
Q D �krT C ˇ @

2�!Q
@t2

, where small ˇ is the relaxation parameter of heat flux
(Bubnov 1976, 1981), the heat conduction equation can be transformed into a higher
order regularized heat equation similar to Eq. (5.5).

5.2 Mathematical Statement

For convenience, a set of Eqs. (3.1), (3.2) and (3.3) with the relevant boundary and
initial conditions is represented as two mathematical problems: the boundary value
problem for the flow velocity (it includes the Stokes equation, the incompressibility
equation subject to appropriate boundary conditions)

http://dx.doi.org/10.1007/978-3-319-27801-8_3
http://dx.doi.org/10.1007/978-3-319-27801-8_3
http://dx.doi.org/10.1007/978-3-319-27801-8_3
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rP D r � �� �ru C ruT
��C RaTe; x 2 �; (5.10)

r � u D 0; x 2 �; (5.11)

hu;ni D 0; 	n � h	 n;ni n D 0; x 2 @�; (5.12)

where � is the viscosity, Ra is the Rayleigh number, 	 D �
�ru C ruT

�
is the stress

tensor, and n is the outward unit normal vector at a point on the boundary @�; and
the initial-boundary value problem for temperature (it includes the heat equation
subject to appropriate boundary and initial conditions)

@T=@t C hu;rTi D r2T; t 2 Œ0; #� ; x 2 �; (5.13)

	1T C 	2@T=@n D T�; t 2 Œ0; #� ; x 2 @�; (5.14)

T .0; x/ D T0 .x/ ; x 2 �; (5.15)

where T* is the given temperature.
The direct problem of thermo-convective flow can be formulated as follows: find

the velocity u D u .t; x/, the pressure P D P .t; x/, and the temperature T D T .t; x/
satisfying boundary value problem (5.10), (5.11) and (5.12) and initial-boundary
value problem (5.13), (5.14) and (5.15). The inverse problem can be formulated in
this case as follows: find the velocity, pressure, and temperature satisfying boundary
value problem (5.10), (5.11) and (5.12) and the final-boundary value problem which
includes Eqs. (5.13) and (5.15) and the final condition:

T .#; x/ D T# .x/ ; x 2 �; (5.16)

where Tª is the temperature at time t D # .
To solve the inverse problem by the QRV method, Ismail-Zadeh et al. (2007)

considered the following regularized backward heat problem to define temperature
in the past from the known temperature Tª(x) at present time t D # :

@Tˇ=@t � ˝
uˇ;rTˇ

˛ D r2Tˇ � ˇƒ
�
@Tˇ=@t

�
; t 2 Œ0; #� ; x 2 �; (5.17)

	1Tˇ C 	2@Tˇ=@n D T�; t 2 .0; #/ ; x 2 @�; (5.18)

	1@
2Tˇ=@n2 C 	2@

3Tˇ=@n3 D 0; t 2 .0; #/ ; x 2 @�; (5.19)

Tˇ .#; x/ D T# .x/ ; x 2 �; (5.20)

whereƒ.T/ D @4T=@x41 C @4T=@x42 C @4T=@x43, and the boundary value problem to
determine the fluid flow:

rPˇ D �r � �� �Tˇ
� �ruˇ C ruˇT

��C RaTˇe; x 2 �; (5.21)

r � uˇ D 0; x 2 �; (5.22)
˝
uˇ;n

˛ D 0; 	ˇn C ˝
	ˇ n;n

˛
n D 0; x 2 @�; (5.23)
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where 	ˇ D �
�ruˇ C ruˇT

�
, the sign of the velocity field is changed (uˇ by

�uˇ) in Eqs. (5.17) and (5.21) to simplify the application of the total variation
diminishing (TVD) method (e.g., Ismail-Zadeh and Tackley 2010; chapter 7.9) for
solving (5.17), (5.18), (5.19) and (5.20). Hereinafter temperature Tª is referred to as
the input temperature for the problem (5.17), (5.18), (5.19), (5.20), (5.21), (5.22) and
(5.23). The core of the transformation of the heat equation is the addition of a high
order differential expression ƒ

�
@Tˇ=@t

�
multiplied by a small parameter ˇ > 0.

Note that Eq. (5.19) is added to the boundary conditions to properly define the
regularized backward heat problem. The solution to the regularized backward heat
problem is stable for ˇ > 0, and the approximate solution to (5.17, (5.18), (5.19),
(5.20), (5.21), (5.22) and (5.23) converges to the solution of (5.10), (5.11), (5.12),
(5.13) and (5.14), and (5.16) in some spaces, where the conditions of well-posedness
are met (Samarskii and Vabishchevich 2007). Thus, the inverse problem of thermo-
convective mantle flow is reduced to determination of the velocity uˇ D uˇ .t; x/,
the pressure Pˇ D Pˇ .t; x/, and the temperature Tˇ D Tˇ .t; x/ satisfying (5.17,
(5.18), (5.19), (5.20), (5.21), (5.22) and (5.23).

5.3 Optimisation Problem and Numerical Approach

A maximum of the following functional is sought with respect to the regularization
parameter ˇ:

ı � ��T
�
t D #; �I Tˇk .t D 0; �/� � ' .�/�� ! max

k
; (5.24)

ˇk D ˇ0q
k�1; k D 1; 2; : : : ;<; (5.25)

where sign k�k denotes the norm in the space L2(�). Here Tk D Tˇk .t D 0; �/ is
the solution to the regularized backward heat problem (5.17), (5.18) and (5.19) at
t D 0; T .t D #; �I Tk/ is the solution to the heat problem (5.13), (5.14) and (5.15) at
the initial condition T .t D 0; �/ D Tk at time t D # ; ® is the known temperature
at t D # (the input data on the present temperature); small parameters ˇ0 > 0 and
0 < q < 1 are defined below; and ı > 0 is a given accuracy. When q tends to
unity, the computational cost becomes large; and when q tends to zero, the optimal
solution can be missed.

The prescribed accuracy ı is composed from the accuracy of the initial data and
the accuracy of computations. When the input noise decreases and the accuracy
of computations increases, the regularization parameter is expected to decrease.
However, estimates of the initial data errors are usually inaccurate. Estimates of
the computation accuracy are not always known, and when they are available, the
estimates are coarse. In practical computations, it is more convenient to minimize
the following functional with respect to (5.25)
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��TˇkC1
.t D 0; �/� Tˇk .t D 0; �/�� ! min

k
; (5.26)

where misfit between temperatures obtained at two adjacent iterations must be
compared. To implement the minimization of temperature residual (5.24), the
inverse problem (5.17, (5.18), (5.19), (5.20), (5.21), (5.22) and (5.23) must be solved
on the entire time interval as well as the direct problem (5.10), (5.11), (5.12), (5.13),
(5.14) and (5.15) on the same time interval. This at least doubles the amount of
computations. The minimization of functional (5.26) has a lower computational
cost, but it does not rely on a priori information.

The numerical algorithm for solving the inverse problem of thermo-convective
mantle flow using the QRV method can be described as follows. Consider a uniform
temporal partition tn D # � ıt n (as defined in Sect.3.5) and prescribe some values
to parameters ˇ0, q, and < (e.g. ˇ0 D 10�3, q D 0:1, and < D 10). According to
(5.25) a sequence of the values of the regularization parameter fˇkg is defined. For
each value ˇ D ˇk model temperature and velocity are determined in the following
way.

Step 1. Given the temperature Tˇ D Tˇ .t; �/ at t D tn, the velocity uˇ D uˇ .tn; �/ is
found by solving problem (5.21), (5.22) and (5.23). This velocity is assumed to
be constant on the time interval [tnC1, tn].

Step 2. Given the velocity uˇ D uˇ .tn; �/, the new temperature Tˇ D Tˇ .t; �/ at
t D tnC1 is found on the time interval [tnC1, tn] subject to the final condition
Tˇ D Tˇ .tn; �/ by solving the regularized problem (5.17), (5.18), (5.19) and
(5.20) backward in time.

Step 3. Upon the completion of steps 1 and 2 for all n D 0, 1, : : : , m, the temperature
Tˇ D Tˇ .tn; �/ and the velocity uˇ D uˇ .tn; �/ are obtained at each t D tn. Based
on the computed solution, find the temperature and flow velocity at each point of
time interval [0,ª] using interpolation.

Step 4a. The direct problem (5.13), (5.14) and (5.15) is solved assuming that the
initial temperature is given as Tˇ D Tˇ .t D 0; �/, and the temperature residual
(5.24) is found. If the residual does not exceed the predefined accuracy, the
calculations are terminated, and the results obtained at step 3 are considered as
the final ones. Otherwise, parameters ˇ0, q, and < entering equation (5.25) are
modified, and the calculations are continued from step 1 for new set fˇkg.

Step 4b. The functional (5.26) is calculated. If the residual between the solutions
obtained for two adjacent regularization parameters satisfies a predefined cri-
terion (the criterion should be defined by a user, because no a priori data are
used at this step), the calculation is terminated, and the results obtained at step
3 are considered as the final ones. Otherwise, parameters ˇ0, q, and < entering
equation (5.25) are modified, and the calculations are continued from step 1 for
new set fˇkg.

In a particular implementation, either step 4a or step 4b is used to terminate the
computation. This algorithm allows (i) organizing a certain number of independent
computational modules for various values of the regularized parameter ˇk that

http://dx.doi.org/10.1007/978-3-319-27801-8_3
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find the solution to the regularized problem using steps 1–3 and (ii) determining
a posteriori an acceptable result according to step 4a or step 4b.

5.4 Restoration of Mantle Plumes

To demonstrate the applicability of the QRV data assimilation method and to
compare the results with those obtained by the VAR and BAD methods, Ismail-
Zadeh et al. (2007) used the same forward model for mantle plume evolution
as presented in Sect. 3.6.1. Figure 5.2 (panels a–d) illustrates the evolution of
mantle plumes in the forward model. The state of the plumes at the “present” time
(Fig. 5.2d) obtained by solving the direct problem was used as the input temperature
for the inverse problem (an assimilation of the “present” temperature to the past).
Note that this initial state (input temperature) is given with an error introduced by
the numerical algorithm used to solve the direct problem. Figure 5.2 illustrates the
states of the plumes restored by the QRV method (panels e–g) and the residual
ıT (see Eq. (3.13) and panel h) between the initial temperature for the forward
model (Fig. 5.2a) and the temperature QT .x/ assimilated to the same age (Fig. 5.2g).
To check the stability of the algorithm, a forward model of the restored plumes is
computed using the solution to the inverse problem at the time of 265 Myr ago
(Fig. 5.2g) as the initial state for the forward model. The result of this run is shown
in Fig. 5.2i.

To compare the accuracy of the data assimilation methods, a restoration model
from the “present” time (Fig. 5.2d) to the time of 265 Myr ago was developed using
the BAD method. Figure 5.2 shows the BAD model results (panels e1–g1) together
with the temperature residual (panel h1) between the initial temperature (panel a)
and the temperature assimilated to the same age (panel g1). The VAR method was
not used to assimilate data within the time interval of more than 100 Myr (for Ra �
106), because proper filtering of the increasing noise is required to smooth the input
data and solution (Sect. 3.7).

Figure 5.3a presents the residual J1 .ˇ/ D ��T0 .�/� Tˇ .t D t0; �I T#/
��

between the initial temperature T0 at t0 D 265Myr ago and the restored
temperature (to the same time) obtained by solving the inverse problem
with the input temperature Tª. The optimal accuracy is attained at ˇ� D
arg min fJ1 .ˇ/ W ˇ D ˇk; k D 1; 2; : : : ; 10g � 10�7 in the case of r D 20,
and at ˇ� � 10�6 and ˇ� � 10�5:5 in the cases of the viscosity ratio
r D 200 and r D 1000, respectively. Figure 5.3b illustrates the residual J2 .ˇ/ D���Tˇ .t0; �I T#/ � T_

ˇ
.t0; �I T#/

��� between the reconstructed temperature at t0 D
265 Myr ago obtained for various values of ˇ in the range 10�9 � ˇ �
10�3 and

_

ˇ D ˇ=2. These results show the choice of the optimal value
of the regularization parameter using step 4b of the numerical algorithm
for the QRV data assimilation. In the case of r D 20 the parameter ˇ� D

http://dx.doi.org/10.1007/978-3-319-27801-8_3
http://dx.doi.org/10.1007/978-3-319-27801-8_3
http://dx.doi.org/10.1007/978-3-319-27801-8_3
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Fig. 5.3 Temperature misfit (a) J1 and (b) J2 as functions of the regularization parameter ˇ. The
minimum of the temperature misfit is achieved at ˇ*, an optimal regularization parameter. Solid
curves: r D 20; dashed curves: r D 200; and dash-dotted curves: r D 1000 (After Ismail-Zadeh et
al. 2007)

arg min fJ2 .ˇ/ W ˇ D ˇk; k D 1; 2; : : : ; 12g � 10�8 provides the optimal accuracy
for the solution; in the cases of r D 200 and r D 1000 the optimal accuracy is
achieved at ˇ� � 10�7 and ˇ� � 10�6:5, respectively. Comparison of the
temperature residuals for three values of the viscosity ratio r indicates that the
residuals become larger as the viscosity ratio increases. The numerical experiments
show that the algorithm for solving the inverse problem performs well when the
regularization parameter is in the range 10�8 � ˇ � 10�6. For greater values,
the solution of the inverse problem retains the stability but is less accurate. The
numerical procedure becomes unstable at ˇ < 10�9, and the computations must be
stopped.
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Fig. 5.4 Model of mantle plume diffusion forward in time (a and b; r D 20). Assimilation of the
mantle temperature and flow to the time of 100 Myr ago and temperature residuals between the
present temperature model (b) and the temperature assimilated to the same age, using the QRV (c
and f; ˇ D 10�7), VAR (d and g), and BAD (e and h) methods, respectively (After Ismail-Zadeh
et al. 2007)

To compare how the techniques for data assimilation can restore the prominent
state of the thermal plumes in the past from their ‘present’ weak state, a forward
model was initially developed from the prominent state of the plumes (Fig. 5.4a)
to their diffusive state in 100 Myr (Fig. 5.4b) using 50 � 50 � 50 finite rectangular
elements to approximate the vector velocity potential and a finite difference grid
148 � 148 � 148 for approximation of temperature, velocity, and viscosity. All other
parameters of the model are the same.

The VAR method (Fig. 5.4d, g) provides the best performance for the diffused
plume restoration. The BAD method (Fig. 5.4e, h) cannot restore the diffused parts
of the plumes, because temperature is only advected backward in time. The QRV
method (Fig. 5.4c, f) restores the diffused thermal plumes, meanwhile the restoration
results are not so perfect as in the case of VAR method (compare temperature
residuals in Fig. 5.4, panels f and g). Although the accuracy of the QRV data
assimilation is lower compared to the VAR data assimilation, the QRV method does
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not require any additional smoothing of the input data and filtering of temperature
noise as the VAR method does.

5.5 Restoration of Descending Lithosphere Evolution

5.5.1 The Vrancea Seismicity and the Relic Descending Slab

Repeated large intermediate-depth earthquakes in the south-eastern (SE) Carpathi-
ans (the Vrancea region) cause destruction in Bucharest, the capital city of Romania,
and shake central and eastern European cities several hundred kilometres away
from the hypocentres of the events. We refer readers to a comprehensive review
by Ismail-Zadeh et al. (2012) on geology, tectonics, geodynamics, geodesy, seismic
and geoelectric studies in the region as well as on the modelling efforts in developing
regional density/gravity and thermal structure, stress and strain, lithospheric defor-
mation and earthquake simulation, seismic hazard and earthquake forecasting in
Vrancea. Here we briefly describe the region, intermediate depth seismicity beneath
Vrancea, and its association with a high velocity body in the uppermost mantle
revealed by seismic tomography studies.

The earthquake-prone Vrancea region (Fig. 5.5) is bounded to the north and
northeast by the Eastern European platform (EEP), to the east by the Scythian
platform (SCP), to the south-east by the North Dobrogea orogen (DOB), to the
south and south-west by the Moesian platform (MOP), and to the north-west by the
Transylvanian basin (TRB). The epicentres of the sub-crustal earthquakes in the
Vrancea region are concentrated within a very small seismogenic volume about
70 � 30 km2 in planform and between depths of about 70 and 180 km. Below
this depth the seismicity ends abruptly: one seismic event at 220 km depth is an
exception (Oncescu and Bonjer 1997).

The 1940 MW D 7.7 earthquake gave rise to the development of a number of
geodynamic models for this region. McKenzie (1972) suggested that this seismicity
is associated with a relic slab sinking in the mantle and now overlain by continental
crust. The 1977 large earthquake and later the 1986 and 1990 earthquakes again
raised questions about the nature of the earthquakes. A seismic gap at depths of
40–70 km beneath Vrancea led to the assumption that the lithospheric slab had
already detached from the continental crust (Fuchs et al. 1979). Oncescu (1984)
proposed that the intermediate-depth events are generated in a zone that separates
the sinking slab from the neighbouring immobile part of the lithosphere rather than
in the sinking slab itself. Linzer (1996) explained the nearly vertical position of the
Vrancea slab as the final rollback stage of a small fragment of oceanic lithosphere.
Various types of slab detachment or delamination (e.g. Wortel and Spakman 2000;
Sperner et al. 2001) have been proposed to explain the present-day seismic images
of the descending slab. Cloetingh et al. (2004) argued in favour of the complex
configuration of the underthrusted lithosphere and its thermo-mechanical age as
primary factors in the behaviour of the descending slab after continental collision.
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Fig. 5.5 Topography map of the SE-Carpathians and epicentres of Vrancea earthquakes (mag-
nitude � 3). Upper right panel presents hypocentres of the same earthquakes projected onto
the NW-SE vertical plane AB. DOB Dobrogea orogen; EEP Eastern European platform; MOP
Moesian platform; SCP Scythian platform; TRB Transylvanian basin; and VRA Vrancea (After
Ismail-Zadeh et al. 2008)

The origin of the descending lithosphere in the region, i.e. whether the Vrancea slab
is oceanic or continental, is still under debate.

The Neogene to Late Miocene evolution of the Carpathian region is mainly
driven by the north-eastward, later eastward and south-eastward roll-back or slab
retreat (Royden 1988; Sperner et al. 2001) into a Carpathians embayment, consisting
of the last remnants of an oceanic or thinned continental domain attached to the
European continent (e.g. Balla 1987). When the mechanically strong East-European
and Scythian platforms started to enter the subduction zone, the buoyancy forces of
the thick continental crust exceeded the slab pull forces and convergence stopped
after only a short period of continental thrusting (e.g., Tarapoanca et al. 2004).
Continental convergence in the SE-Carpathians ceased about 11 Ma (e.g., Csontos
et al. 1992), and after that the lithospheric slab descended beneath the Vrancea
region due to gravity. The hydrostatic buoyancy forces promote the sinking of the
slab, but viscous and frictional forces resist the descent. The combination of these
forces produces shear stresses at intermediate depths that are high enough to cause
earthquakes (Ismail-Zadeh et al. 2000, 2005a, 2010).

Here we present a quantitative model of the thermal evolution of the descending
slab in the SE-Carpathians suggested by Ismail-Zadeh et al. (2008). The model is
based on assimilation of present crust/mantle temperature and flow in the geological
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past using the QRV method. Mantle thermal structures are restored and analysed in
the context of modern regional geodynamics.

5.5.2 Input Data: Seismic Temperature Model

Temperature is a key physical parameter controlling the density and rheology
of the Earth’s material and hence crustal and mantle dynamics. Besides direct
measurements of temperature in boreholes in the shallow portion of the crust, there
are no direct measurements of deep crustal and mantle temperatures, and therefore
the temperatures must be estimated indirectly from seismic wave anomalies,
geochemical data, and surface heat flow observations.

Ismail-Zadeh et al. (2005a, 2008) developed a model of the present crustal
and mantle temperature beneath the SE-Carpathians using the most recent high-
resolution seismic tomography image (map of the anomalies of P-wave velocities)
of the lithosphere and asthenosphere in the region (Martin et al. 2005, 2006). The
tomography image shows a high velocity body beneath the Vrancea region and
the Moesian platform interpreted as the subducted lithospheric slab (Martin et al.
2006). The seismic tomographic model of the region consists of eight horizontal
layers of different thickness (15 km up to 70 km) starting from the depth of 35 km
and extending down to a depth of 440 km. Each layer of about 1000 � 1000 km2

is subdivided horizontally into 16 � 16-km2 blocks. To restrict numerical errors in
our data assimilation, the velocity anomaly data are smoothed between the blocks
and the layers using a spline interpolation. Ismail-Zadeh et al. (2005a) converted
seismic wave velocity anomalies into temperature considering the effects of mantle
composition, anelasticity, and partial melting on seismic velocities. The temperature
in the crust is constrained by measurements of surface heat flux corrected for
paleoclimate changes and for the effects of sedimentation.

Depth slices of the present temperature model are illustrated in Fig. 5.6. The
pattern of resulting mantle temperature anomalies (predicted temperature minus
background temperature) is similar to the pattern of observed P-wave velocity
anomalies (Martin et al. 2006), but not an exact copy because of the nonlinear
inversion of the seismic anomalies to temperature. The low temperatures are
associated with the high-velocity body beneath the Vrancea region (VRA) and the
East European platform (EEP) and are already visible at depths of 50 km. The slab
image becomes clear at 70–110 km depth as a NE-SW oriented cold anomaly. With
increasing depth (110–200 km depth) the thermal image of the slab broadens in
NW–SE direction. The orientation of the cold body changes from NE–SW to N–S
below the depth of 200 km. The slab extends down to 280–320 km depth beneath the
Vrancea region itself. A cold anomaly beneath the Transylvanian Basin is estimated
at depths of 370–440 km. According to Wortel and Spakman (2000) and Martin et
al. (2006) this cold material can be interpreted as a remnant of subducted lithosphere
detached during the Miocene along the Carpathian Arc and residing within the upper
mantle transition zone. High temperatures are predicted beneath the Transylvanian



Fig. 5.6 Present temperature model as the result of the inversion of the P-wave velocity
model. Theoretically well-resolved regions are bounded by dashed line (Martin et al. 2006).
Each slice presents a part of the horizontal section of the model domain � corresponding to
Œx1 D 177:5 km; x1 D 825:5 km� � Œx2 D 177:5 km; x2 D 825:5 km�, and the isolines present the
surface topography (also in Fig. 5.7) (After Ismail-Zadeh et al. 2008)
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Basin (TRB) at about 70–110 km depth. Two other high temperature regions are
found at 110–150 km depth below the Moesian platform (MOP) and deeper than
200 km under the EEP and the Dobrogea orogen (DOB), which might be correlated
with the regional lithosphere/asthenosphere boundary.

5.5.3 Data Assimilation

To minimize boundary effects, the studied region (650 � 650 km2 and 440 km
deep, see Fig. 5.6) has been bordered horizontally by 200 km area and
extended vertically to the depth of 670 km. Therefore, a rectangular domain
� D Œ0; l1 D 1050 km�� Œ0; l2 D 1050 km�� Œ0; h D 670 km� is considered for
assimilation of present temperature and mantle flow beneath the SE-Carpathians.

Our ability to reverse mantle flow is limited by our knowledge of past movements
in the region, which are well constrained only in some cases. In reality, the Earth’s
crust and lithospheric mantle are driven by mantle convection and the gravitational
pull of dense descending slabs. However, when a numerical model is constructed
for a particular region, external lateral forces can influence the regional crustal and
uppermost mantle movements. Yet in order to make useful predictions that can be
tested geologically, a time-dependent numerical model should include the history
of surface motions. Since this is not currently achievable in a dynamical way, it is
necessary to prescribe surface motions using velocity boundary conditions.

The simulations are performed backward in time for a period of 22 Myr. Perfect
slip conditions are assumed at the vertical and lower boundaries of the model
domain. For the first 11 Myr (starting from the present time), when the rates of
continental convergence were insignificant (e.g., Csontos et al. 1992), no velocity
is imposed at the surface, and the conditions at the upper boundary are free slip.
The north-westward velocity is imposed in the portion of the upper model boundary
(Fig. 5.7a) for the time interval from 11 Myr to 16 Myr and the westward velocity in
the same portion of the boundary (Fig. 5.7b) for the interval from 16 Myr to 22 Myr.
The velocities are consistent with the direction and rates of the regional convergence
in the Early and Middle Miocene (e.g., Fügenschuh and Schmid 2005). The effect
of the surface loading due to the Carpathian Mountains is not considered, because
this loading would have not major influence on the dynamics of the region (as was
shown in two-dimensional models of the Vrancea slab evolution; Ismail-Zadeh et al.
2005b).

The heat flux through the vertical boundaries of the model domain � is set
to zero. The upper and lower boundaries are assumed to be isothermal surfaces.
The present temperature above 440 km depth is derived from the seismic velocity
anomalies and heat flow data. The adiabatic geotherm for potential temperature
1750 K (Katsura et al. 2004) was used to define the present temperature below
440 km (where seismic tomography data are not available). Relevant equations
(5.10), (5.11), (5.12), (5.13), (5.14), (5.15), (5.16), (5.17), (5.18), (5.19), (5.20),
(5.21), (5.22) and (5.23) are solved numerically.
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Fig. 5.7 Surface velocity imposed on the part of the upper boundary of the model domain in data
assimilation modelling for the time interval from 11 Myr to 16 Myr ago (a) and for that from
16 Myr to 22 Myr ago (b) (After Ismail-Zadeh et al. 2008)

To estimate the accuracy of the results of data assimilation, the temperature
and mantle flow restored to the time of 22 Myr ago were employed as the initial
condition for a model of the slab evolution forward in time; the model was run
to the present; and the temperature residual (the difference between the present
temperature and that predicted by the forward model with the restored temperature
as an initial temperature distribution) was analysed subsequently. The maximum
temperature residual does not exceed 50 degrees.

A sensitivity analysis was performed to understand how stable is the numerical
solution to small perturbations of input (present) temperatures. The present temper-
ature model was perturbed randomly by 0.5–2 % and then assimilated to the past
to find the initial temperature. A misfit between the initial temperatures related to
the perturbed and unperturbed present temperature is rather small (2–4 %) which
proves that the solution is stable. The numerical models, with a spatial resolution of
7 km � 7 km � 5 km, were run on parallel computers. The accuracy of the numerical
solutions has been verified by several tests, including grid and total mass changes
(Ismail-Zadeh et al. 2001).

5.5.4 Model Results

The results related to assimilation of the present temperature model beneath the
SE-Carpathians into Miocene times are discussed here. Although there is some
evidence that the lithospheric slab was already partly subducted some 75 Myr ago
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(e.g. Sandulescu 1988), the assimilation interval was restricted to the Miocene,
because the pre-Miocene evolution of the descending slab, as well as the regional
horizontal movements, are poorly known. Incorporation of insufficiently accurate
data into the assimilation model could result in incorrect scenarios of mantle and
lithosphere dynamics in the region. Moreover, to restore the history of pre-Miocene
slab subduction, a high resolution seismic tomography image of the deeper mantle
is required (the present image is restricted to the depth of 440 km).

Early Miocene subduction beneath the Carpathian arc and the subsequent gentle
continental collision transported cold and dense lithospheric material into the hotter
mantle. Figure 5.8 presents the 3-D thermal image of the slab and pattern of
contemporary flow induced by the descending slab. Note that the direction of the
flow is reversed, because the problem is solved backward in time: cold slab move
upward during numerical backward modelling. The 3-D flow is rather complicated:
toroidal (in horizontal planes) flow at depths between about 100 to 200 km coexists
with poloidal (in vertical planes) flow.

The relatively cold region seen at depths of 40–230 km can be interpreted as
the earlier evolutionary stages of the lithospheric slab. Since active subduction of
the lithospheric slab in the region ended in Late Miocene time and earlier rates
of convergence were low before it, Ismail-Zadeh et al. (2008) argue that the cold
slab, descending slowly at these depths, has been warmed up, and its thermal shape
has faded due to heat diffusion. Thermal conduction in the shallow Earth (where
viscosity is high) plays a significant part in heat transfer compared to thermal
convection. The deeper we look in the region, the larger are the effects of thermal
advection compared to conduction: the lithosphere has moved upwards to the place
where it had been in Miocene times (Fig. 5.9). Below 230 km depth the thermal
roots of the cold slab are clearly visible in the present temperature model, but they
are less prominent in the assimilated temperature images, because the slab did not
reach these depths in Miocene times.

The geometry of the restored slab clearly shows two parts of the sinking body
(Fig. 5.9). The NW-SE oriented part of the body is located in the vicinity of the
boundary between the EEP and Scythian platform (SCP) and may be a relic of cold
lithosphere that has travelled eastward. Another part has a NE-SW orientation and
is associated with the present descending slab. An interesting geometrical feature
of the restored slab is its curvature beneath the SE-Carpathians. In Miocene times
the slab had a concave surface confirming the curvature of the Carpathian arc down
to depths of about 60 km. At greater depths the slab changed its shape to that of a
convex surface and split into two parts at a depth of about 200 km. Although such
a change in slab curvature is visible neither in the model of the present temperature
nor in the seismic tomography image most likely because of slab warming and
heat diffusion, the convex shape of the slab is likely to be preserved at the present
time. Ismail-Zadeh et al. (2008) proposed that this change in the geometry of the
descending slab can cause stress localization due to slab bending and subsequent
stress release resulting in earthquakes, which occur at depths of 70–180 km in the
region.



Fig. 5.8 3-D thermal shape of the Vrancea slab and contemporary flow induced by the descending
slab beneath the SE-Carpathians. Upper panel: top view. Lower panel: side view from the SE
toward NW. Arrows illustrate the direction and magnitude of the flow. The marked sub-domain
of the model domain presents the region around the Vrancea shown in Fig. 5.9. The surfaces
marked by blue, dark cyan, and light cyan illustrate the surfaces of 0.07, 0.14, and 0.21 temperature
anomaly ıT, respectively, where ıT D .Thav � T/ =Thav , and Thav is the horizontally averaged
temperature. The top surface presents the topography, and the red star marks the location of the
intermediate-depth earthquakes (After Ismail-Zadeh et al. 2008)
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Fig. 5.9 Snapshots of the 3-D thermal shape of the Vrancea slab and pattern of mantle flow
beneath the SE-Carpathians in the Miocene times (See Fig. 5.8 for other notations. After Ismail-
Zadeh et al. 2008)

Moreover, the north-south (NS)-oriented cold material visible at the depths of
230–320 km (Fig. 5.6) does not appear as a separate (from the NE-SW-oriented
slab) body in the models of Miocene time. Instead, it looks more like two differently
oriented branches of the SW-end of the slab at 60–130 km depth (visible in
Fig. 5.9). Therefore, the results of the assimilation of the present temperature
model to Miocene time provide a plausible explanation for the change in the spatial
orientation of the slab from NE-SW to NS beneath 200 km observed in the seismic
tomography image (Martin et al. 2006). The slab bending might be related to a
complex interaction between two parts of the sinking body and the surrounding
mantle. The sinking body displaces the mantle, which, in its turn, forces the slab
to deform due to corner (toroidal) flows different within each of two sub-regions
(to NW and to SE from the present descending slab). Also, the curvature of the
descending slab can be influenced by slab heterogeneities due to variations in its
thickness and viscosity (Cloetingh et al. 2004; Morra et al. 2006).

Martin et al. (2006) interpret the negative velocity anomalies NW of the present
slab at depths between 70 and 110 km (see the relevant temperature slices in
Fig. 5.6) as a shallow asthenospheric upwelling associated with possible slab
rollback. Also, they mention partial melting as an additional contribution to the
reduction of seismic velocities at these depths. The results of our assimilation show
that the descending slab is surrounded by a border of hotter rocks at depths down
to about 250 km. The rocks could be heated due to partial melting as a result of
slab dehydration. Although the effects of slab dehydration or partial melting were
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not considered in the modelling, the numerical results support the hypothesis of
dehydration of the descending lithosphere and its partial melting as the source of
reduction of seismic velocities at these depths and probably deeper (see temperature
slices at the depths of 130–220 km). Alternatively, the hot anomalies beneath the
Transylvanian basin and partly beneath the Moesian platform could be dragged
down by the descending slab since the Miocene times, and therefore, the slab was
surrounded by the hotter rocks. Using numerical experiments Honda et al. (2007)
showed recently how the lithospheric plate subducting beneath the Honshu island in
Japan dragged down a hot anomaly adjacent to the plate. Some areas of high temper-
ature at depths below 280 km can be associated with mantle upwelling in the region.
High-temperature anomalies are not clearly visible in the restored temperatures at
these depths, because the upwelling was likely not active in Miocene times.

5.5.5 Model Limitations and Uncertainties

There is a major physical limitation of the restoration of mantle structures. If a
thermal feature created, let us say, hundreds million years ago has completely
diffused away by the present, it is impossible to restore the feature, which was
more prominent in the past. The time to which a present thermal structure in the
upper mantle can be restored should be restricted by the characteristic thermal
diffusion time, the time when the temperatures of the evolved structure and the
ambient mantle are nearly indistinguishable (Ismail-Zadeh et al. 2004). The time
(t) for restoration of seismic thermal structures depends on depth (d) of seismic
tomography images and can be roughly estimated as t D d/v, where v is the average
vertical velocity of mantle flow. For example, the time for restoration of the Vrancea
slab evolution in the studied models should be less than about 80 Myr, considering
d D 400 km and v � 0:5 cm yr�1.

Other sources of uncertainty in the modelling of mantle temperature in the
SE-Carpathians come from the choice of mantle composition (e.g., Szabó et al.
2004), the seismic attenuation model (Popa et al. 2005; Weidle et al. 2007), and
poor knowledge of the presence of water at mantle depths. The drop of electrical
resistivity below 1�m (Stanica and Stanica 1993) can be an indicator of the
presence of fluids (due to dehydration of mantle rocks) below the SE-Carpathians;
however, the information is very limited and cannot be used in quantitative
modelling. Viscosity is an important physical parameter in numerical modelling of
mantle dynamics, because it influences the stress state and results in strengthening
or weakening of Earth’s material. Though it is the least-known physical parameter
of the model, the viscosity of the Vrancea slab was constrained by observations of
the regional strain rates (Ismail-Zadeh et al. 2005a).

The geometry of the mantle structures changes with time, diminishing the degree
of surface curvature of the structures. Heat conduction smoothes the complex
thermal surfaces of mantle bodies with time. Present seismic tomography images
of mantle structures do not allow definition of the sharp shapes of these structures.
Assimilation of mantle temperature and flow to the geological past instead provides
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a quantitative tool to restore thermal shapes of prominent structures in the past
from their diffusive shapes at present. High-resolution experiments on seismic
wave attenuation, improved knowledge of crustal and mantle mineral composition,
accurate GPS measurements of regional movements, and precise geological paleo-
reconstructions of crustal movements will assist to refine the present models and our
knowledge of the regional thermal evolutions. The basic knowledge gained from the
case studies is the dynamics of the Earth interior in the past, which could result in
its present dynamics.
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Chapter 6
Application of the QRV Method to Modelling
of Plate Subduction

Abstract This chapter presents the application of the QRV method to dynamic
restoration of the thermal state of the mantle beneath the Japanese islands and their
surroundings. The geodynamic restoration for the last 40 million years is based on
the assimilation of the present temperature inferred from seismic tomography, and
the present plate movement derived from geodetic observations, paleogeographic
and paleomagnetic plate reconstructions.

Keywords Quasi-reversibility • Subduction • Pacific plate • Lithospheric
breaches • Tears • Japan Sea • Hot upwelling • Numerical modelling

6.1 Plate Subduction Beneath the Japanese Islands

An interaction of the Pacific, Okhotsk, Eurasian, and Philippine Sea lithosphere
plates with the deeper mantle around the Japanese islands (Fig. 6.1) is complicated
by active subduction of the plates (Fukao et al. 2001; Furumura and Kennett 2005)
and back-arc spreading (Jolivet et al. 1994), which cannot be understood by the plate
kinematics only. The Pacific plate subducts under the Okhotsk and the Philippine
Sea plates with the relative speed of about 9 cm yr�1 and 5 cm yr�1, respectively,
whereas the Philippine Sea plate subducts under the Eurasian plate with the relative
speed of about 5 cm yr�1 (Drewes 2009). Back arcs of these subduction zones are
also known as the site of active spreading in the past and recent as inferred from both
the geophysical and geological surveys (Jolivet et al. 1994). Elucidating a cause
of the Japan Sea back-arc opening is one of scientific challenges in geosciences.
Although its kinematic description and/or qualitative images of dynamics are fairly
well understood, quantitative interpretations based on sound physical and other
principles are yet missing.

P-wave seismic tomography of the mantle beneath the subducting Pacific plate
near the Japanese islands revealed a low velocity region extending oceanward at
depths around the 410-km seismic discontinuity, and this low velocity anomaly
region was interpreted as a zone with an excess temperature of 200 K and the
associated fractional melt of less than 1 % (Obayashi et al. 2006). To clarify the
origin of the hot temperature anomaly beneath the Pacific plate and its implication
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Fig. 6.1 Topography map of the Japanese Islands and surroundings. The plate motions and
deformations are presented by arrows. The rate of the motions is determined from geodetic data
and for the Philippine Sea plate from the PB2002 model (see the text). The white star indicates the
place of sampling for geochemical analysis (Hanyu et al. 2006) (After Ismail-Zadeh et al. 2013)

for back-arc basin evolution, Ismail-Zadeh et al. (2013) studied the mantle evolution
beneath the Japanese islands and their surroundings based on the assimilation of
temperature inferred from seismic tomography (Fukao et al. 2001), the present
movements derived from geodetic observations (Drewes 2009), and the past plate
motion inferred from paleogeographic and paleomagnetic plate reconstructions
(Seno and Maruyama 1984; Northrup et al. 1995; Hall 2002; Yamazaki et al. 2010).
In this chapter we present and discuss the model by Ismail-Zadeh et al. (2013).

6.2 Mathematical Statement

In the three-dimensional (3-D) rectangular domain � D Œ0; x1 D l1 D 4000 km��
Œ0; x2 D l2 D 4000 km�� Œ0; x3 D h D 800 km� and for time interval t 2 Œ0; #�, the
regularized Stokes, the incompressibility, and the backward heat balance equations
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are solved using the QRV method (chapter 5; Ismail-Zadeh et al. 2007) and the
extended Boussinesq approximation (Christensen and Yuen 1985):

�rP Cr��� �ru C.ru/T
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with appropriate boundary and initial conditions (see below). Here
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x D (x1, x2, x3), u D (u1, u2, u3), t, T, P, and � are the dimensionless Cartesian
coordinates, velocity, time, temperature, pressure, and viscosity, respectively; ª is
the present time; eij .u/ D ˚

@ui=@xj C @uj=@xi
�

is the strain rate tensor; e D .0; 0; 1/

is the unit vector; r is the gradient operator; and E is the unit operator. With regard
to the phase changes around 410 km and 660 km, respectively, �1 and �2 are the
dimensionless excess pressures; ˆ1 and ˆ2 are the phase functions describing the
relative fraction of the heavier phase, respectively, and varying between 0 and 1 as a
function of depth and temperature. The Rayleigh (Ra), Laplace (La), and modified
dissipation (Di*) dimensionless numbers are defined as Ra D ˛g��T�h3.���/�1,
La D ��gh3.���/�1, and Di� D ���

�
��ch2T���1, respectively. The operator�

E C &r2
��1

is applied to the right-hand side of the Stokes equations (6.1) to
smooth temperature jumps at the phase boundaries and to enhance the stability
of our computations. According to the QRV method, the higher dissipation term,
whose magnitude is controlled by the small parameter ˇ, is introduced to regularize
the heat balance Eq. (6.3). Length, temperature, and time are normalized by h, T,
and h2��1, respectively. The physical parameters used in this study are listed in
Table 6.1.
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Table 6.1 Parameters of the numerical model

Parameter Symbol Value

Dimensionless density jump at the 410-km phase
boundary

a1 0.05

Dimensionless density jump at the 660-km phase
boundary

a2 0.09

Thermal conductivity c 1250 W m�1 K�1

Activation energy Ea 3� 105 J mol�1

Acceleration due to gravity g 9.8 m s- 2

Depth h 800 km
Length (in x-direction) l1 4000 km
Length (in y-direction) l2 4000 km
Universal gas constant R 8.3144 J mol�1 K�1

Difference between the temperatures at the lower
(Tl) and upper (Tu) model boundaries

T* 1594 K

Dimensionless temperature at the upper model
boundary

Tu 290/T*

Dimensionless temperature at the lower model
boundary

Tl 1884/T*

Dimensionless temperature at the 410-km phase
boundary

T1 1790/T*

Dimensionless temperature at the 660-km phase
boundary

T2 1891/T*

Activation volume Va 4� 10�6 m3 mol�1

Dimensionless width of the 410-km phase transition w1 10 km/h
Dimensionless width of the 660-km phase transition w2 10 km/h
Dimensionless depth of the 410-km phase boundary z1 390 km/h
Dimensionless depth of the 660-km phase boundary z2 140 km/h
Thermal expansivity ˛ 3� 10�5 K�1

QRV regularization parameter ˇ 0.00001
Dimensionless Clapeyron (pressure-temperature)
slope at the 410-km phase boundary


1 4�106 Pa K�1 � T�.��gh/�1

Dimensionless Clapeyron slope at the 660-km phase
boundary


2 �2�
106 Pa K�1 � T�.��gh/�1

Reference viscosity �* 1021 Pa s
Thermal diffusivity � 10�6m2s-1

Reference density �* 3400 kg m�3

Phase regularization parameter − 0.0001

After Ismail-Zadeh et al. (2013)

6.3 Input Data: Seismic Temperature Model

The present temperature model beneath the Japanese islands is developed by using
the high-resolution seismic tomography (P-wave velocity anomalies) for the region
(Fukao et al. 2001; Obayashi et al. 2006, 2009). The seismic tomographic model
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consists of 16 horizontal layers of different thickness (12 km up to 88 km) starting
from the depth of 12 km and extending down to the depth of 800 km. Each layer
of 4000 � 4000 km2 is subdivided horizontally into 80 � 80 km2 blocks. To restrict
numerical errors in our data assimilation, the velocity anomaly data are smoothed
between the layers using a spline interpolation. The temperature anomalies are
inferred from the seismic wave anomalies using a non-linear inversion method
(Ismail-Zadeh et al. 2005) and considering the effects of mantle composition,
anelasticity, and partial melting on seismic velocities (Karato and Wu 1993).
The temperature anomalies are then added to the vertical temperature profile (the
background temperature) to obtain the present temperature model. At shallow depth
(down to 110 km), the background temperature is the solution of the cooling half-
space model (Schubert et al. 2001) with 48 million years after the start of cooling.
This temperature field gives a heat flow of 70 mW m�2, which is close to the mantle
heat flux. At deeper level, the background temperature is presented by the adiabatic
temperature distribution (Katsura et al. 2004) with the potential temperature of
1330 ıC. The crustal temperature inferred directly from the seismic velocity
anomalies is relatively high, and the resulting heat flow is unrealistically elevated.
Thus, the crustal temperature Tcr is calculated by estimating the geothermal gradient
ıTm/ıx3 from measured regional surface heat flow (Wang et al. 1995; Yamano
et al. 2003): Tcr .x1; x2; x3/ D Ts C x3 � ıTm=ıx3 .x1; x2/, where Ts is the surface
temperature.

The present thermal state of the back-arc region so obtained is characterized by
shallow hot anomalies reflecting the remnants of the back-arc spreading (Jolivet
et al. 1994) and deep cold anomalies related to the stagnation of the lithospheric
slabs (Fukao et al. 2001) (Fig. 6.2, see panels entitled “Present”). Meanwhile the
state of the mantle beneath the Pacific plate is characterized by the shallow cold
anomalies reflecting the existence of the old oceanic Pacific plate and the deep
broad hot anomaly of unknown origin. This temperature model is used as the initial
condition for restoration models.

6.4 Boundary Conditions

Although the mantle dynamics is coupled to the lithosphere dynamics, the coupling
can be weak or strong depending on the viscosity contrast between the lithosphere
and the underlying mantle (Doglioni et al. 2011). To explore how plate kinematics
is related to the dynamics of the mantle, kinematic conditions are assumed at the
upper model boundary, where the direction and rate of plate motion are prescribed.
The plate motion velocity is determined from the Actual Plate Kinematic and
Deformation Model (APKIM2005) derived from geodetic data (Drewes 2009) and
from the PB2002 model for the Philippine Sea and Okinawa Plates (Bird 2003). The
reference frame for the velocities is the International Terrestrial Reference Frame,
which is realized by a set of stations on the Earth’s surface. The reference for the
velocities is defined with respect to Earth rotation, that is, there is no net rotation of



Fig. 6.2 Thermal evolution of the mantle beneath the Japanese Islands. The model covers
4000 km (horizontal) � 4000 km (horizontal) � 800 km (depth). The top panel presents the plate
motion prescribed in the model. Horizontal cross-sections present temperature anomalies and the
projection of mantle flow, which are obtained by the assimilation of the present temperature to the
Middle Eocene times. Yellow closed curves indicate the hot mantle. White boxes (bold and dashed)
show the places of mantle flow changes are likely to be associated with the rotation of north-eastern
and southwestern parts of the Japan Sea in the Miocene times. See the text for characters A, B, C,
a, b, and c (After Ismail-Zadeh et al. 2013)
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the frame with respect to the rotating Earth (Drewes et al. 2006). The velocities are
determined in APKIM2005 such a way to minimise a root mean square sum of all
velocities over the Earth surface. The recent MORVEL model (Argus et al. 2011)
is similar to APKIM2005, although the velocities in the MORVEL model are taken
from different sources and have not the same reference frame.

Plate motions in the geological past are required to determine past mantle
dynamics processes. The model incorporates the history of plate motions as the
boundary conditions changing with time. Based on paleogeographic reconstructions
of the Philippine Sea (Seno and Maruyama 1984) and Japanese Islands (Maruyama
et al. 1997), Philippine Sea plate motion from paleomagnetic studies (Yamazaki et
al. 2010), relative motion of the Pacific plate (Northrup et al. 1995), and Cenozoic
plate tectonic evolution of the south-eastern Asia (Hall 2002), the velocity field
is constructed to define the plate motion in the model for the past 40 million
years, meanwhile recognizing the uncertainties in directions and magnitudes of
the regional plate motion in the mentioned studies. To simplify the model, the
present boundaries between the Okhotsk and Eurasian plates and between the North
American and Pacific plates are omitted. Although change in the plate motion is a
gradual process, for the sake of simplicity it is assumed that the plates moved with a
constant velocity W .t; x1; x2; x3 D 0/ within four time intervals in the past: from 0
to 10 million years ago (0–10 Ma), 10–20 Ma, 20–30 Ma, and 30–40 Ma (Fig. 6.2;
see the upper panel).

Therefore, the velocity W and temperature T D Tu are prescribed at the upper
surface of the model boundary. Due to complexities and significant uncertainties
in trench migration (oceanward versus trenchward) patterns observed on the wide
Pacific and Philippine Sea subduction zone (Schellart et al. 2008), the trench
migration is not included in the model by Ismail-Zadeh et al. (2013). Also a weak
(artificial) zone at the plate interfaces is not introduced (as it is used in forward
modelling to reduce stresses at the interfaces and to promote subduction). Such a
weak zone is partly accommodated in backward modelling, because in the backward
(time-reverse) modelling the hotter material from below moves upward toward
the divergent plate interfaces reducing the viscosity there. In numerical models of
mantle dynamics, when a surface velocity is prescribed, the flow is driven by a
combination of the velocity and internal buoyancy of the fluid. The choice of the
prescribed velocities affects the flow velocities in the uppermost mantle. To analyse
the influence of the prescribed velocity, the velocities have been varied by changing
their magnitude (within about 3 %) and direction (within about ˙2 degrees). The
small changes in the imposed velocities are found not to change significantly the
mantle flow and hence the pattern of upwellings.

The velocity u D 0 (no-slip) and fixed temperature T D Tl are prescribed at the
lower surface of the model boundary. To allow for the flow to pass through the lateral
boundaries, the conditions @u=@n D 0 and @T=@n D 0 are introduced at the lateral
sides of the boundary. At the model boundary @P=@n D 0 is assumed. Several
other conditions at the lateral sides and at the bottom of the model domain have
been tested by Ismail-Zadeh et al. (2013) to analyse how the boundary conditions
influence the restoration results.
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6.5 Rheological Model

Mantle rheology is rather complex and depends on temperature and pressure
(Gordon 1967), stresses (Hirth and Kohlstedt 2003), water content (Hirth and
Kohlstedt 1996), grain size (Karato et al. 2001), and composition (Lee and Chen
2007). Slow deformation of minerals in the upper mantle under the influence of
stresses and temperature is governed by diffusion and dislocation creeps (Hirth and
Kohlstedt 2003). Diffusion creep dominates deformation at cooler temperatures and
larger grain sizes, whereas dislocation creep dominates deformation at higher strain
rates and is not grain-size dependent (Billen 2008). Diffusion-controlled creep is
characterized by the Newtonian rheology, meanwhile dislocation creep by a non-
Newtonian rheology (e.g., a power-law relationship between stress and strain rate).
If in the upper mantle diffusion and dislocation creep mechanisms act together to
accommodate deformation, the lower mantle is likely to deform by diffusion creep
as seismic anisotropy studies detect less seismic anisotropy in the deep mantle
(Savage 1999).

Effects of a non-Newtonian viscosity on steady and time-dependent convection
have been studied intensively using 2-D numerical models (e.g., Christensen 1984;
Christensen and Yuen 1989; Malevsky and Yuen 1992; Billen and Hirth 2005) and
3-D numerical models (e.g., Stadler et al. 2010). For a stationary convection of a
temperature- and pressure-dependent viscosity fluid it was shown that the use of the
Newtonian viscosity with activation enthalpy one-third to half of the experimentally
determined value for olivine could mimic the dynamics of the convection with a
strongly non-Newtonian power-law viscosity (Christensen 1984). Although a non-
stationary thermal convection introduces changes in the pattern of viscous flow, the
qualitative behaviour of the flow is similar, and the difference comes in the way of
time-dependence.

In the numerical modelling Ismail-Zadeh et al. (2013) assumed that the Earth’s
mantle behaves as a temperature- and pressure-dependent (Arrhenius-type) New-

tonian fluid � .T .x/ ; x3/ D �0 exp
h

EaC��gx3Va
RT

i
, where �0 is determined so that it

will give 2:905 � 1020 Pa s at the depth of 290 km and temperature of 1698 K;
the activation energy is Ea D 3 � 105 J mol�1, and the activation volume of
Va D 4 � 10�6 m3 mol�1. Other parameters of the rheological law are listed in
Table 6.1. The upper limit of the viscosity is set to be 	1022 Pa s, which results in
the viscosity increase from the upper to the lower mantle by about two orders of
magnitude.

According to experimental studies of olivine deformation, the values of activation
energy and activation volume in a dry upper mantle are 3 � 105 J mol�1 and
6�10�6 m3 mol�1 for diffusion creep, and 5:4�105 J mol�1 and 2�10�5 m3 mol�1

for dislocation creep, respectively (Karato and Wu 1993). Measurements of the
activation volume for creep of dry olivine at pressures of 2.7–4.9 GPa and tempera-
tures near 1473ı K showed a wide range of the values 9:5 ˙ 7 � 10�6 m3 mol�1

(Durham et al. 2009). For the prescribed model values of the activation energy
and the activation volume, the model activation enthalpy is less than half of the
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experimentally determined values, and therefore, the Newtonian fluid with the
chosen model values can approximate to some extent the mechanical behaviour
of the upper mantle. The inclusion of “realistic” rheology of the upper mantle in
the model would be preferable. The numerical experiments using non-Newtonian
power-law rheology showed that, although there exists some differences between
two rheological models (Newtonian linear and non-linear rheologies), the overall
mantle dynamics is rather similar (unpublished work by S. Honda).

6.6 Numerical Approach

The problem (6.1), (6.2) and (6.3) with the prescribed boundary and input con-
ditions have been solved by the finite-volume method (Ismail-Zadeh et al. 2013)
using open source computational fluid dynamics software package OpenFoam
(http://www.openfoam.com). As 200 � 200 � 190 finite volumes (rectangular
hexahedrons) are used, a horizontal resolution of the model is 20 km � 20 km. The
model domain is divided into five horizontal layers: Layer 1 (from the surface to
the depth of 400 km), layer 2 (400–420 km), layer 3 (420–650 km), layer 4 (650–
670 km), and layer 5 (670–800 km). Within each layer 60, 40, 35, 40, and 15 grid
points are used. Therefore, a vertical resolution of the model varies from 0.5 to
8.67 km.

Velocity u and pressure P are found from the Eqs. (6.1) and (6.2) using the
SIMPLE method (Patankar and Spalding 1972). The regularized heat balance Eq.
(6.3) is approximated by the Euler method using the implicit approximation of the
advective term and the explicit approximation of the conductive term:

.E C ˇD/2
TnC1 � Tn

dt
C CTnC1 � DTn C f .u;Tn/ D 0;

where the discrete operators C D �CT and D D DT approximate the advective and
conductive terms, respectively. To solve the numerical scheme the splitting method
is used (Samarskii and Vabischevich 1995) by introducing the convection/anti-
diffusion and regularization parts as

.E C dtC/ TnC1=2 D .E C dtD/ Tn � dt f .u;Tn/ ; (6.4)

.E C ˇD/2TnC1 D TnC1=2: (6.5)

The system of the discrete equations (6.4) is solved by the BiConjugate Gradient
method (Van der Vorst 1992) using the incomplete LU-factorization as a pre-
conditioner (Saad 1996). The system (6.5) is solved by the conjugate gradient
method (e.g., Ismail-Zadeh and Tackley 2010).

http://www.openfoam.com/
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6.7 Model Results

In backward sense, the high-temperature patchy anomaly beneath the back-arc
Japan Sea basin splits into two prominent anomalies showing two small-scale
upwellings beneath the southwestern and northern part of the Japan Sea (Fig. 6.2).
The present hot anomalies in the back-arc region marked by A and B move down
to the spots marked by a and b at 38.9 Ma (Fig. 6.2). Meanwhile the broad hot
anomaly under the Pacific plate moves slowly down westward as depicted by C at
present and c at 38.9 Myr in Fig. 6.2. The hot anomalies (spot b) and (spot c) tend to
merge at 38.9 Ma and below 560 km. The model shows the link between spot b in
the back-arc region and spot c in the sub-slab mantle at depths of about 440–560 km
in the Middle to Late Eocene time. The upwellings a and b are likely to be generated
in the sub-slab hot mantle (Figs. 6.2 and 6.3) and penetrated through breaches/tears
of the subducting Pacific plate into the mantle wedge toward spots A and B. Hence,
Ismail-Zadeh et al. (2013) proposed that the present hot anomalies in the back-arc
and sub-slab mantle had a single origin located in the sub-lithospheric mantle.

The shallow mantle velocity field in the back arc, which potentially affects the
surface tectonics there, shows rather complex pattern with time compared to that
in other area. The south-westward uppermost mantle flow (the boxed area at depth
80 km of Fig. 6.2) beneath the north-eastern (NE) part of the Japan Sea region in
the Middle Eocene – Oligocene times, 38.9–25.7 Ma, changed to the south-south-
eastward flow in the Miocene times, 12.6 Ma (Fig. 6.2). This flow change could
contribute to counterclockwise rotation of the NE Japan Islands, which resulted in
the back-arc basin opening (e.g., Otofuji et al. 1985; Tatsumi et al. 1989). In the
southwestern (SW) Japan, clockwise rotation was likely to be instantaneous at about
15 Ma (Otofuji et al. 1985), which led to opening of this part of the Japan Sea.
Although the model cannot explicitly predict the changes in the mantle flow in the
SW Japan Sea region, the flow pattern in the uppermost mantle (the dash boxed area

Fig. 6.3 Schematic representation of the thermal evolution beneath the Japanese islands and their
surroundings (see the text) (After Ismail-Zadeh et al. 2013)
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at 80 km depth of Fig. 6.2) indicates that the north-westward flow established in
Oligocene becomes much weaker in Miocene.

An analysis of the onshore and offshore borehole data from South Sakhalin,
the Oga Peninsula, and Dolgorae shows that the regional tectonic subsidence
commenced in the Early Oligocene and continued until the Pliocene with a few
breaks for a tectonic uplift (Fig. 6.4; Ingle 1992). The rapid subsidence of South
Sakhalin (in the Early Miocene, some 23–22 Myr ago) was followed by the slow
subsidence and uplift until about 16 Myr ago, which was interrupted by the second
phase of rapid subsidence in the Middle Miocene (15 Myr ago) followed again
by slow subsidence and uplift. The alternation of subsidence and uplift phases
in the basin is indicative of rifting style changes from rollback-induced passive
rifting/extension to upwelling-induced (upwelling B, Figs. 6.3 and 6.4) active
rifting/extension (Huismans et al. 2001). Thus the small-scale upwelling beneath
the northern part of the Japan Sea (predicted by the data assimilation modelling)
could contribute to the rifting and back arc basin opening. The evolution of the
southwestern Japan Sea recorded in the sediments (drilled by the offshore Dolgarae-
1 borehole) shows a persistent subsidence of the basin until about 11 Myr ago
followed by rapid uplift. This uplift is likely to be associated with the small-
scale upwelling A (Figs. 6.3 and 6.4). Meanwhile preceded by a long phase (about

Fig. 6.4 Subsidence history of the Japan Sea: tectonic subsidence curves (Ingle 1992) for the
southern Sakhalin section representing the northern margin of the Japan Sea (dotted curve), the
Oga Peninsula section representing the inner arc area of north-western Honshu (solid curve), and
Dolgorae-1 well representing the southern Tsushima Basin and the southern margin of the Japan
Sea (dashed curve). The location of the wells is marked in (b). (b) Three-dimensional view of
snapshots of the iso-surfaces of positive (5 %) temperature anomalies; colours mark the depth
(After Ismail-Zadeh et al. 2013)
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15 Myr) of a slow subsidence, the relatively rapid subsidence of the Oga Peninsula
(which is located in-between two upwellings A and B) started in the Middle
Miocene (about 16 Myr ago) followed by slow subsidence for about 13 Myr and
then rapid uplift in Quaternary (about 2 Myr ago).

If the hypothesis, that the hot mantle upwellings under the Japan Sea originated
beneath the Pacific plate and penetrated through the subducting lithosphere con-
tributing to the back-arc spreading, is valid, a signature of such a phenomenon
may be found in magmatic rock samples. The change in the mantle source of
magmatic rocks related to the opening of the Japan Sea from enriched to depleted
with time (Tatsumi et al. 1989) suggests a possibility for a physical replacement of
the enriched subcontinental upper mantle with the depleted asthenospheric mantle
by an injection during back-arc development. The sample showing the mixture of
asthenospheric and lithospheric slab material is found (Hanyu et al. 2006) near the
triple junction of the Pacific, Okhotsk and Philippine Sea plates (shown by star in
Fig. 6.1). The age of this sample is about 23 Ma and corresponds to early stages of
the Japan Sea opening. These observations can be explained by our hypothesis of
hot upwellings coming from the Pacific side.

Presently, there is no consensus on the origin of hot anomaly under the Pacific
plate. It can be a relic of the hot plume originated at the thermal boundary layers,
although its closeness to the cold subduction zone seems to reject the nearby origin
of hot upwellings. It can be a relic of large plume head conveyed horizontally by
the plate movement or the hot thermal anomaly close to the sinking plume typical to
the internally heated convection. The previous study shows that the latter scenario
is more likely (Morishige et al. 2010). There is also a suggestion that the high
temperature anomaly adjacent to the cold plume in internally heated convection
may even reverse the overall direction of flow implying that the dynamical effect of
such a high temperature anomaly is fairly significant.

It is known that the opening of the Japan Sea is not a simple homogeneous
and instantaneous spreading, but has temporal and spatial variations and shows
several stages of deformation (Jolivet et al. 1994). Inhomogeneous spreading is
consistent with the patchy character of hot materials as evident in our results.
Non-instantaneous deformation may imply that the hot materials have penetrated
through, or affected, the overlying subducting Pacific lithosphere several times.

The slab break-off, detachment and tear have been intensively investigated for
the last decades. A lithospheric slab tear has been proposed in the Indonesian arc
(Widiyantoro and van der Hilst 1996) and in the Mediterranean region (Wortel and
Spakman 2000). A horizontal tear in the subducting slab has been recognized in
the Izu-Bonin-Mariana arc (e.g., Miller et al. 2005). There are numerical studies
related to this phenomenon (Durez et al. 2011), but they usually do not assume
the existence of hot anomalies under the subducting lithosphere. Morishige et al.
(2010) showed a possibility of slab break-off by hot materials in the sub-lithospheric
mantle. However, the model results by Ismail-Zadeh et al. (2013) do not show the
slab break-off but the penetration via breaches/tears in the subducting lithosphere,
which is probably more likely than the total break-off.
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The geometry of the thermal structures in the mantle changes with time due to
heat advection, which deforms the structures, and heat conduction, which smoothes
the complex shapes of the structures. This creates difficulties in understanding the
evolution of the mantle structures in the past. A quantitative assimilation of the
present mantle temperature and flow into the geological past provides a tool for
restoration of thermal shapes of prominent structures in the past from their diffusive
shapes at present. Using the present seismic tomography data as well as some
other geological, geophysical and geodetic data and constraints, Ismail-Zadeh et
al. (2013) reconstructed prominent features of hot upwelling beneath the Japan Sea
and Japanese islands using the QRV method.

There are several principal qualitative models proposed to explain back-arc
spreading: mantle diapirism (Karig 1971), convection induced by the subducting
slab (Sleep and Toksoz 1971), movements of adjacent plates (Uyeda and Kanamori
1979), and the injection of hot asthenospheric material (Tatsumi et al. 1989). The
model by Ismail-Zadeh et al. (2013) (see Fig. 6.3) as the latter one supports the
hypothesis of an asthenospheric injection. Meanwhile the major difference between
the two models is related to where the hot material came from. While the model
by Tatsumi et al. (1989) assumes that it may have come from the back-arc side,
the results of dynamic restoration of the thermal state of the mantle in the past by
Ismail-Zadeh et al. (2013) show that it came from the opposite side, that is, from
the mantle under the Pacific plate. High-resolution experiments on seismic wave
attenuation, improved knowledge of crustal and mantle mineral composition, and
enhanced paleo-reconstruction models of plate movements in the region will assist
to refine the present model of the mantle thermal evolutions beneath the western
Pacific region.

6.8 Data Uncertainties

Data assimilation can be influenced primarily by uncertainties of a present tem-
perature model (initial condition) and uncertainties in boundary conditions. Uncer-
tainties in the temperature model used in this study come from seismic tomography
models, mantle composition, seismic attenuation models, and poor knowledge of the
presence of water or melt content at mantle depths. Seismic tomography models may
introduce some uncertainties in data assimilation due to a resolution power. Ismail-
Zadeh et al. (2013) compared the images related to different seismic tomography
models and showed that the resolution power of the models is almost similar.

The temperature at the lower boundary of the model domain used in the
numerical modelling is an approximation to the real temperature, which is unknown
and may change over time at this boundary. The conditions at lateral boundaries
are prescribed to satisfy certain properties of the model (e.g., conservation of
mass, conservation of momentum), meanwhile the true conditions at the boundaries
are unknown and hence contribute to uncertainties of the model. The velocities
prescribed at the upper boundary of the model domain comes from recent geodetic
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observations and paleogeographic/paleomagnetic reconstructions of plate motion,
and hence the uncertainties in the prescribed velocity field are associated with
an accuracy of geodetic measurement, viscosity contrast between the lithosphere
and the underlying mantle, and uncertainties in paleo-reconstructions. In numerical
modelling sensitivity analysis assists in understanding the stability of model solu-
tions to small perturbations in input variables or parameters.

Ismail-Zadeh et al. (2013) performed a sensitivity analysis to understand how
stable is the numerical solution to small perturbations of input data (the present
temperature). The model of the present temperature has been perturbed randomly
by 0.5–1 % and then assimilated to the past to find the initial temperature. A misfit
between the initial temperatures related to the perturbed and unperturbed present
temperature is about 3–5 %, which proves the stability of the solution.

For a given temperature, mantle dynamics depends on various factors including
rheology (Billen 2008), phase changes (Liu et al. 1991; Honda et al. 1993a, b),
and boundary conditions. Ismail-Zadeh et al. (2013) conducted a search over the
ranges of uncertain parameters in the temperature- and pressure-dependent viscosity
(activation energy and activation volume) to achieve ‘plate-like’ behaviour of the
colder material. Also they tested the influence of phase changes, model depth
variations and boundary conditions on the model results. In numerical models of
mantle dynamics the choice of boundary conditions and the size of the model
domain influence the pattern of flow and slab dynamics. If the depth of the model
domain is significantly smaller than the horizontal dimensions of the domain,
the thermo-convective flow in the model with a low viscosity upper mantle and
higher viscosity lower mantle will generate the return flow focused in the upper
mantle. Increasing the model domain’s depth removes the artificial lateral return
flow in the upper mantle. The sensitivity analysis related to the presence of phase
transformations and to changes in boundary conditions show that the model is
robust, and the principal results of the model do not change (Ismail-Zadeh et al.
2013).
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Chapter 7
Comparison of Data Assimilation Methods

Abstract Following Ismail-Zadeh et al. (Geophys J Int 170:1381–1398, 2007), we
compare in this chapters the backward advection (BAD), variational (VAR), and
quasi-reversibility (QRV) methods in terms of solution stability, convergence, and
accuracy, time interval for data assimilation, analytical and algorithmic works, and
computer performance.

Keywords Backward advection • Variational method • Quasi-reversibility •
Data assimilation

We have presented in this book three basic methods for data assimilation in geo-
dynamic models and illustrated their applicability using several case studies. Each
method has its advantages and a number of disadvantages. Table 7.1 summaries
the differences in the methodology of data assimilation. The VAR data assimilation
assumes that the direct and adjoint problems are constructed and solved iteratively
forward in time. The structure of the adjoint problem is identical to the structure of
the original problem, which considerably simplifies the numerical implementation.
However, the VAR method imposes some requirements for the mathematical model
(i.e. a derivation of the adjoint problem). Moreover, for an efficient numerical
implementation of the VAR method, the error level of the computations must be
adjusted to the parameters of the algorithm, and this complicates computations.

The QRV method allows employing sophisticated mathematical models (because
it does not require derivation of an adjoint problem as in the VAR data assimilation)
and hence expands the scope for applications in geodynamics (e.g. thermo-chemical
convection, phase transformations in the mantle). It does not require that the desired
accuracy of computations be directly related to the parameters of the numerical
algorithm. However, the regularizing operators usually used in the QRV method
enhance the order of the system of differential equations to be solved.

The BAD method does not require any additional work (neither analytical nor
computational). The major difference between the BAD method and two other
methods (VAR and QRV methods) is that the BAD method is by design expected
to work (and hence can be used) only in advection-dominated heat flow. In the
regions of high temperature/low mantle viscosity, where heat is transferred mainly
by convective flow, the use of the BAD method is justified, and the results of

© The Author(s) 2016
A. Ismail-Zadeh et al., Data-Driven Numerical Modelling in Geodynamics:
Methods and Applications, SpringerBriefs in Earth Sciences,
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Table 7.2 Quality of the numerical results obtained by different methods

Synthetic data Geo-data

Quality
Advection-
dominated regime

Diffusion-
dominated region

Advection-
dominated regime

Diffusion-
dominated region

Good VAR VAR – –
Satisfactory QRV, BAD QRV QRV, BAD QRV
Poor – BAD – BAD

After Ismail-Zadeh et al. (2007)

numerical reconstructions can be considered to be satisfactory. Otherwise, in the
regions of conduction-dominated heat flow (due to either high mantle viscosity
or high conductivity of mantle rocks), the use of the BAD method cannot even
guarantee any similarity of reconstructed structures. If mantle structures are diffused
significantly, the remaining features of the structures can be only backward advected
with the flow.

The comparison between the data assimilation methods is summarized in
Table 7.2 in terms of a quality of numerical results. The quality of the results
is defined here as a relative (not absolute) measure of their accuracy. The results
are good, satisfactory, or poor compared to other methods for data assimilation
considered in this study. The numerical results of the reconstructions for both
synthetic and geophysical case studies show the comparison quantitatively.

The time interval for the VAR data assimilation depends strongly on smoothness
of the input data and the solution. The time interval for the BAD data assimilation
depends on the intensity of mantle convection: it is short for conduction-dominated
heat transfer and becomes longer for advection-dominated heat flow. In the absence
of thermal diffusion the backwards advection of a low-density fluid in the gravity
field will finally yield a uniformly stratified, inverted density structure, where the
low-density fluid overlain by a dense fluid spreads across the lower boundary of
the model domain to form a horizontal layer. Once the layer is formed, information
about the evolution of the low-density fluid will be lost, and hence any forward
modelling will be useless, because no information on initial conditions will be
available (Ismail-Zadeh et al. 2001).

The QRV method can provide stable results within the characteristic thermal
diffusion time interval. However, the length of the time interval for QRV data
assimilation depends on several factors. Let us explain this by the example
of heat conduction Eq. (5.1). Assume that the solution to the backward heat
conduction equation with the boundary conditions (5.2) and the initial condition
T .t D t�; x/ D T�.x/ satisfies the inequality

��@4T=@x4
�� � Ld at any time t. This

strong additional requirement can be considered as the requirement of sufficient
smoothness of the solution and initial data. Considering the regularized backward
heat conduction Eq. (5.5) with the boundary conditions (5.6)–(5.7) and the input

temperature Tˇ .t D t�; x/ D T �̌.x/ and assuming that
���T �̌ � T�

��� � ı, Samarskii

and Vabishchevich (2007) estimated the temperature misfit between the solution

http://dx.doi.org/10.1007/978-3-319-27801-8_5
http://dx.doi.org/10.1007/978-3-319-27801-8_5
http://dx.doi.org/10.1007/978-3-319-27801-8_5
http://dx.doi.org/10.1007/978-3-319-27801-8_5
http://dx.doi.org/10.1007/978-3-319-27801-8_5
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Table 7.3 Performance of data assimilation methods

CPU time (circa, in s)

Method

Solving the Stokes problem
using 50� 50 � 50 finite
elements

Solving the backward heat
problem using
148 � 148 � 148 finite
difference mesh Total

BAD 180 2.5 182.5
QRV 100–180 3 103–183
VAR 360 1.5 n 360 C 1.5 n

After Ismail-Zadeh et al. (2007)

T(t, x) to the backward heat conduction problem and the solution Tˇ(t, x) to the
regularized backward heat conduction equation:

��T .t; x/ � Tˇ .t; x/
�� � QCı exp

�
ˇ�1=2 �t� � t

��C ˇLdt; 0 � t � t�;

where constant QC is determined from the a priori known parameters of the backward
heat conduction problem. For the given regularization parameter ˇ, errors in the
input data ı, and smoothness parameter Ld, it is possible to evaluate the time interval
0 � t � t� of data assimilation for which the temperature misfit would not exceed a
prescribed value.

Computer performance of the data assimilation methods can be estimated by a
comparison of CPU times for solving the inverse problem of thermal convection.
Table 7.3 lists the CPU times required to perform one time-step computations on
16 processors. The CPU time for the case of the QRV method is presented for
a given regularization parameter ˇ; in general, the total CPU time increases by
a factor of <, where < is the number of runs required to determine the optimal
regularization parameter ˇ*. The numerical solution of the Stokes problem (by
the conjugate gradient method) is the most time consuming calculation: it takes
about 180 s to reach a high accuracy in computations of the velocity potential.
The reduction in the CPU time for the QRV method is attained by employing
the velocity potential computed at ˇi as an initial guess function for the conjugate
gradient method to compute the vector potential at ˇiC1. An application of the VAR
method requires computing the Stokes problem twice to determine the ‘advected’
and ‘true’ velocities (Ismail-Zadeh et al. 2004). The CPU time required to compute
the backward heat problem using the TVD solver (e.g., Ismail-Zadeh and Tackley
2010; chapter 7.9) is about 3 s in the case of the QRV method and 2.5 s in the case
of the BAD method. For the VAR case, the CPU time required to solve the direct
and adjoint heat problems by the semi-Lagrangian method (e.g., Ismail-Zadeh and
Tackley 2010; chapter 7.8) is 1:5 � n, where n is the number of iterations in the
gradient method used to minimize the cost functional (Eqs. 3.5 and 3.6).

Data-driven numerical modelling is useful tool for improving our understanding
of the thermal and dynamic evolution of the Earth’s structures. We have presented
the BAD, VAR and QRV methods for data assimilation and their realizations with

http://dx.doi.org/10.1007/978-3-319-27801-8_3
http://dx.doi.org/10.1007/978-3-319-27801-8_3
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the aim to restore the evolution of the thermal structures. The VAR and QRV
methods have been compared to the BAD method. It is shown that the BAD method
can be employed only in models of advection-dominated mantle flow, that is, in
the regions where the Rayleigh number is high enough (e.g., >107), whereas the
VAR and QRV methods are suitable for the use in models of conduction-dominated
flow (lower Rayleigh numbers). The VAR method provides a higher accuracy of
model restoration compared to the QRV method, meanwhile the latter method
can be applied to assimilate both smooth and non-smooth data. Depending on a
geodynamic problem one of the three methods can be employed in data-driven
modelling.
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