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PREFACE

The purpose of this book is to provide both an introduction and a state-of-the-art
review of the essential physics and signal processing principles of diagnostic ultra-
sound in a single reference volume with a unified approach. This book draws together
many of the ideas from seminal papers, the author’s research, and other sources in a
single narrative and point of view. Unlike texts that present only the theory of acoustic
fundamentals, this book relates topics to each other in the context of ultrasound
imaging and practical application. It is the author’s hope that this work will contrib-
ute to the overall development of ultrasound diagnostic imaging by serving as a focus
for discussion, an information source for newcomers, and a foundation for further
inquiry.

This text is intended for a graduate level course in diagnostic ultrasound imaging
and as a reference for practicing engineers in the field, medical physicists, clinicians,
researchers, design teams, and those who are beginning in medical ultrasound, as well
as those who would like to learn more about a particular aspect of the imaging
process. This book is an introduction to the basic physical processes and signal
processing of imaging systems, and as a guide to corresponding literature and termin-
ology. Parts of the book can be read on several levels, depending on the intent and
background of the reader. While this book provides sufficient equations for a scientific
foundation, there are also many parts of the book that go on for long stretches
without any equations. Equations can be thought of as a more precise description of
the variables involved and provide the means of simulation and deeper analysis. The
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book are presented in both the time and frequency domains, Fourier transforms are
used frequently to facilitate a more balanced and deeper understanding of the physical
processes. For those who have not used Fourier transforms recently, a review is
provided in Appendix A, along with information about digital Fourier transforms
and fast Fourier transforms and step-by-step worked-out examples.

This work is based in part on my nearly 20 years of research and development
experience at Hewlett Packard, later Agilent Technologies. Since my departure, the
healthcare group where I worked for nearly 20 years has become, by acquisition, part
of Philips Medical Ultrasound. I am indebted to my former colleagues for our many
collaborations over the years and for providing many requested images and material
for this book. Even though many of the images and system descriptions are from
Philips, readers can take some of this material to represent typical imaging systems.

Diagnostic ultrasound has been in use for over 50 years, yet it continues to evolve
at a surprisingly rapid rate. In this fragmented world of specialization, there is infor-
mation in abundance, but it is difficult to assimilate without order and emphasis. This
book strives to consolidate, organize, and communicate major ideas concisely, even
though this has been a challenging process. In addition, many essential pieces of
information and assumptions, known to those experienced in the field and not
available in journals and books, are included.

Thomas L. Szabo
Newburyport, Massachusetts
May 2004
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1.1 INTRODUCTION

The archetypal modern comic book superhero, Superman, has two superpowers of
interest: x-ray vision (the ability to see into objects) and telescopic vision (the ability
to see distant objects). Ordinary people now have these powers as well because of

1



2 CHAPTER T INTRODUCTION

medical ultrasound imaging and sonar (sound navigation and ranging) instruments.
Ultrasound, a type of sound we cannot hear, has enabled us to see a world otherwise
invisible to us.

The purpose of this chapter is to explore medical ultrasound from its antecedents
and beginnings, relate it to sonar, describe the struggles and discoveries necessary for
its development, and provide the basic principles and reasons for its success. The
development of medical ultrasound was a great international effort involving thou-
sands of people during the last half of the twentieth century, so it is not possible to
include many of the outstanding contributors in the short space that follows. Only the
fundamentals of medical ultrasound and representative snapshots of key turning
points are given here, but additional references are provided. In addition, the critical
relationship between the growth of the science of medical ultrasound and key ena-
bling technologies is examined. Why these allied technologies will continue to shape
the future of ultrasound is also described. Finally, the unique role of ultrasound
imaging is compared to other diagnostic imaging modalities.

1.1.1 Early Beginnings

Robert Hooke (1635-1703), the eminent English scientist responsible for the
theory of elasticity, pocket watches, compound microscopy, and the discovery of
cells and fossils, foresaw the use of sound for diagnosis when he wrote (Tyndall,
1875):

It may be possible to discover the motions of the internal parts of bodies, whether
animal, vegetable, or mineral, by the sound they make; that one may discover the
works performed in the several offices and shops of a man’s body, and therby (sic)
discover what instrument or engine is out of order, what works are going on at several
times, and lie still at others, and the like. I could proceed further, but methinks I
can hardly forbear to blush when I consider how the most part of men will look upon
this: but, yet again, I have this encouragement, not to think all these things utterly
impossible.

Many animals in the natural world, such as bats and dolphins, use echo-location,
which is the key principle of diagnostic ultrasound imaging. The connection between
echo-location and the medical application of sound, however, was not made until the
science of underwater exploration matured. Echo-location is the use of reflections of
sound to locate objects.

Humans have been fascinated with what lies below the murky depths of water for
thousands of years. ““To sound” means to measure the depth of water at sea, according
to a naval terms dictionary. The ancient Greeks probed the depths of seas with a
“sounding machine,” which was a long rope knotted at regular intervals with a lead
weight on the end. American naturalist and philosopher Henry David Thoreau
measured the depth profiles of Walden Pond near Concord, Mass., with this kind of
device. Recalling his boat experiences as a young man, American author and humorist
Samuel Clemens chose his pseudonym, Mark Twain, from the second mark or knot on
a sounding lead line. While sound may or may not have been involved in a sounding



1.1

INTRODUCTION 3

machine, except for the thud of a weight hitting the sea bottom, the words ““to sound”
set the stage for the later use of actual sound for the same purpose.

The sounding-machine method was in continuous use for thousands of years until
it was replaced by ultrasound echo-ranging equipment in the twentieth century.
Harold Edgerton (1986), famous for his invention of stroboscopic photography,
related how his friend, Jacques-Yves Cousteau, and his crew found an ancient Greek
lead sounder (250 B.C.) on the floor of the Mediterranean sea by using sound
waves from a side scan sonar. After his many contributions to the field, Edgerton
used sonar and stroboscopic imaging to search for the Loch Ness monster (Rines
et al., 1976).

1.1.2 Sonar

The beginnings of sonar and ultrasound for medical imaging can be traced to the
sinking of the Titanic. Within a month of the Titanic tragedy, British scientist L. F.
Richardson (1913) filed patents to detect icebergs with underwater echo ranging. In
1913, there were no practical ways of implementing his ideas. However, the discovery
of piezoelectricity (the property by which electrical charge is created by the mechan-
ical deformation of a crystal) by the Curie brothers in 1880 and the invention of the
triode amplifier tube by Lee De Forest in 1907 set the stage for further advances in
pulse-echo range measurement. The Curie brothers also showed that the reverse
piezoelectric effect (voltages applied to certain crystals cause them to deform) could
be used to transform piezoelectric materials into resonating transducers. By the end of
World War I, C. Chilowsky and P. Langevin (Biquard, 1972), a student of Pierre Curie,
took advantage of the enabling technologies of piezoelectricity for transducers and
vacuum tube amplifiers to realize practical echo ranging in water. Their high-power
echo-ranging systems were used to detect submarines. During transmissions, they
observed schools of dead fish that floated to the water surface. This shows that
scientists were aware of the potential for ultrasound-induced bioeffects from the
early days of ultrasound research (O’Brien, 1998).

The recognition that ultrasound could cause bioeffects began an intense period of
experimentation and hopefulness. After World War I, researchers began to determine
the conditions under which ultrasound was safe. They then applied ultrasound to
therapy, surgery, and cancer treatment. The field of therapeutic ultrasound began and
grew erratically until its present revival in the forms of lithotripsy (ultrasound applied
to the breaking of kidney and gallstones) and high-intensity focused ultrasound
(HIFU) for surgery. However, this branch of medical ultrasound, which is concerned
mainly with ultrasound transmission, is distinct from the development of diagnostic
applications, which is the focus of this chapter.

During World War I, pulse-echo ranging applied to electromagnetic waves became
radar (radio detection and ranging). Important radar contributions included a sweep-
ing of the pulse-echo direction in a 360-degree pattern and the circular display of
target echoes on a plan position indicator (PPI) cathode-ray tube screen. Radar
developments hastened the evolution of single-direction underwater ultrasound
ranging devices into sonar with similar PPI-style displays.
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1.2 ECHO RANGING OF THE BODY

After World War II, with sonar and radar as models, a few medical practitioners saw
the possibilities of using pulse-echo techniques to probe the human body for medical
purposes. In terms of ultrasound in those days, the body was vast and uncharted. In
the same way that practical underwater echo ranging had to wait until the key
enabling technologies were available, the application of echo ranging to the body
had to wait for the right equipment. A lack of suitable devices for these applications
inspired workers to do amazing things with surplus war equipment and to adapt other
echo-ranging instruments.

Fortunately, the timing was right in this case because F. Firestone’s (1945) inven-
tion of the supersonic reflectoscope in 1940 applied the pulse-echo ranging principle
to the location of defects in metals in the form of a reasonably compact instrument.
A diagram of a basic echo-ranging system of this type is shown in Figure 1.1 A
transmitter excites a transducer, which sends a sequence of repetitive ultrasonic pulses
into a material or a body. Echoes from different target objects and boundaries are
received and amplified so they can be displayed as an amplitude versus time record on
an oscilloscope. This type of display became known as the “A-line,” (or “A-mode” or
“A-scope”), with “A” representing amplitude.

When commercialized versions of the reflectoscope were applied to the human
body in Japan, the United States, and Sweden in the late 1940s and early 1950s
(Goldberg and Kimmelman, 1988), a new world of possibility for medical diagnosis
was born. Rokoru Uchida in Japan was one of the first to use flaw detectors for
medical A-line pulse-echo ranging. In Sweden in 1953, Dr. 1. Edler (1991) and
Professor C. H. Hertz detected heart motions with a flaw detector and began what
later was called ““echocardiography,” the application of ultrasound to the character-
ization and imaging of the heart.

Medical ultrasound in the human body is quite different from many sonar applica-
tions that detect hard targets, such as metal ships in water. At the Naval Medical

[ A 4
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Figure 1.1 Basic echo-ranging system showing
multiple reflections and an A-line trace at the bottom.
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Research Institute, Dr. George Ludwig, who had underwater ranging experience
during World War II, and F. W. Struthers embedded hard gallstones in canine muscles
to determine the feasibility of detecting them ultrasonically. Later, Ludwig (1950)
made a number of time-of-flight measurements of sound speed through arm, leg, and
thigh muscles. He found the average to be ¢,, = 1540 m /s, which is the standard value
still used today. The sound speed, ¢, can be determined from the time, ¢, taken by
sound to pass through a tissue of known thickness, d, from the equation, ¢ = d/t. He
found the sound speeds to be remarkably similar, varying in most soft tissues by only a
few percent. Normalized speed of sound measurements taken more recently are
displayed in Figure 1.2.

The remarkable consistency among sound speeds for the soft tissues of the human
body enables a first-order estimation of tissue target depths from their round trip
(pulse-echo) time delays, t,+, and an average speed of sound, c,,, from z = ¢t /2.
This fact makes it possible for ultrasound images to be faithful representations of
tissue geometry.

In the same study, Ludwig also measured the characteristic acoustic impedances of
tissues. He found that the soft tissues and organs of the body have similar impedances
because of their high water content. The characteristic acoustic impedance, Z, is
defined as the product of density, p, and the speed of sound, ¢, or Z = pc. The
amplitude reflection factor of acoustic plane waves normally incident at an interface
of two tissues with impedances Z; and Z, can be determined from the relation,
RF = (Zz —Z1)/(Zz +Zl)

Fortunately, amplitude reflection coefficients for tissue are sensitive to slight dif-
ferences in impedance values so that the reflection coefficients relative to blood
(Figure 1.3) are quite different from each other as compared to small variations in
the speed of sound values for the same tissues (see Figure 1.2). This fortuitous range of
reflection coefficient values is why it is possible to distinguish between different tissue
types for both echo ranging and imaging. Note that the reflection coefficients are
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Figure 1.2 Acoustic speed of sound of tissues normalized to the
speed of sound in blood.
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Figure 1.3 Amplitude reflection factor coefficients in dB for tissues
relative to blood.

plotted on a dB, or logarithmic, scale (explained in Chapter 4). For example, each
change of —10 dB means that the reflection coefficient value is a factor 3.2 less in
amplitude or a factor 10 less in intensity.

Also in 1949, Dr. D. Howry of Denver, Colo., who was unaware of Ludwig’s work,
built a low-megahertz pulse-echo scanner in his basement from surplus radar equip-
ment and an oscilloscope. Howry and other workers using A-line equipment found
that the soft tissues and organs of the body, because of their small reflection coeffi-
cients and low absorption, allowed the penetration of elastic waves through multiple
tissue interfaces (Erikson et al., 1974). This is illustrated in Figure 1.1. In Minnesota,
Dr. John J. Wild, an English surgeon who also worked for some time in his basement,
applied A-mode pulse echoes for medical diagnosis in 1949, and shortly thereafter, he
developed imaging equipment with John M. Reid, an electrical engineer.

When identifying internal organs with ultrasound was still a novelty, Wild used a
15-MHz Navy radar trainer to investigate A-lines for medical diagnosis. He reported
the results for cancer in the stomach wall in 1949. In 1952, Wild and Reid analyzed
data from 15-MHz breast A-scans. They used the area underneath the echoes to
differentiate malignant from benign tissue, as well as to provide the first identification
of cysts. These early findings triggered enormous interest in diagnosis, which became
the most important reason for the application of ultrasound to medicine. Later this
topic split into two camps: diagnosis—findings directly observable from ultrasound
images, and tissue characterization—findings about the health of tissue and organ
function determined by parameterized inferences and calculations made from ultra-
sound data.

1.3 ULTRASOUND PORTRAIT PHOTOGRAPHERS

The A-mode work described in the previous section was a precursor to diagnostic
ultrasound imaging just as echo ranging preceded sonar images. The imaginative leap
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Figure 1.4 The Dussik transcranial image, which is one of the first ultrasonic images of the body
ever made. Here white represents areas of signal strength and black represents complete attenuation
(from Goldberg and Kimmelman, 1988; reprinted with permission of the AIUM).

to imaging came in 1942 in Austria when Dr. Karl Dussik and his brother published
their through-transmission ultrasound attenuation image of the brain, which they
called a “hyperphonogram.” In their method, a light bulb connected to the receiving
transducer glowed in proportion to the strength of the received signal, and the result
was optically recorded (Figure 1.4). This transcranial method was not adopted widely
because of difficult refraction and attenuation artifacts in the skull, but it inspired
many others to work on imaging with ultrasound. Their work is even more remark-
able because it preceded the widespread use of radar and sonar imaging.

Despite the problems caused by refraction through varying thicknesses of the skull,
others continued to do ultrasound research on the brain. This work became known as
“echoencephalography.” Dr. Karl Dussik met with Dr. Richard Bolt, who was then
inspired to attempt to image through the skull tomographically. Bolt tried this in 1950
with his group and Dr. George Ludwig at the MIT Acoustic Laboratory, but he later
abandoned the project. In 1953, Dr. Lars Leksell, of Lund University in Sweden, used
flaw detectors to detect midline shifts in the brain caused by disease or trauma. Leksell
found an acoustic window through the temples. Equipment for detecting midline
shifts and cardiac echoes became available in the 1960s.
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The Dussiks” work, as well as war developments in pulse-echo imaging, motivated
others to make acoustic images of the body. For example, Dr. D. Howry and his
group were able to show that highly detailed pulse-echo tomographic images of
cross sections of the body correlated well with known anatomical features (Holmes,
1980). Their intent was to demonstrate that ultrasound could show accurate
pictures of soft tissues that could not be obtained with x-rays. Howry and his
group transformed the parts of a World War II B-29 bomber gun turret into a water
tank. A subject was immersed in this tank, and a transducer revolved around the
subject on the turret ring gear. See Figure 1.5 for pictures of their apparatus and
results.

The 1950s were a period of active experimentation with both imaging methods
and ways of making contact with the body. Many versions of water bath scanners were
in use. Dr. John J. Wild and John M. Reid, both affiliated with the University of
Minnesota, made one of the earliest handheld contact scanners. It consisted of a
transducer enclosed in a water column and sealed by a condom. Qils and eventually
gels were applied to the ends of transducers to achieve adequate coupling to the body
(Wells, 1969a).

The key element that differentiates a pulse-echo-imaging system (Figure 1.6) from
an echo-ranging system is a means of either scanning the transducer in a freehand
form with the detection of the transducer position in space or by controlling the
motion of the transducer. As shown, the position controller or position sensor is
triggered by the periodic timing of the transmit pulses. The display consists of time
traces running vertically (top to bottom) to indicate depth. Because the brightness
along each trace is proportional to the echo amplitude, this display presentation came
to be known as “B-mode,” with “B” meaning brightness. However, it was first used
by Wild and Reid, who called it a “B-scan.”” In an alternative (b) in Figure 1.6, a single
transducer is scanned mechanically at intervals across an elliptically shaped object. At
each controlled mechanical stopping point, sound (shown as a line) is sent across an
object and echoes are received. For the object being scanned linearly upward in the
figure, the bright dots in each trace on the display indicate the front and back wall
echoes of the object. By scanning across the object, multiple lines produce an “image”
of the object on the display.

Various scanning methods are shown in Figure 1.7. A straightforward method is
linear scanning, or translation of a transducer along a flat surface or straight line.
Angular rotation, or sector scanning, involves moving the transducer in an angular arc
without translation. Two combinations of the translation and angular motions are
compound (both motions are combined in a rocking, sliding motion) and contiguous
(angular motion switches to translation and back to angular). An added twist is that
the scanning surface may not be flat but may be curved or circular instead. Dr.
Howry’s team, along with Dr. Ian Donald and his group at the University of Glasgow,
developed methods to display each scan line in its correct geometric attitude. For
example, the first line in an angular scan at —45 degrees would appear on the scope
display as a brightness-modulated line at that angle with the depth increasing from top
to bottom.
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Figure 1.5 Howry’s B-29 gun turret ultrasonic tomographic system and resulting annotated
image of neck (from Goldberg and Kimmelman, 1988; reprinted with permission of the AIUM).
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Figure 1.6 Basic elements of a pulse echo-imaging system shown
with linear scanning of two types: (a) electronic linear array scanning,
which involved switching from one element to another, and (b) me-
chanical scanning, which involved controlled translation of a single
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Figure 1.7 Scanning methods: translation, angular rotation,
compound (translation and rotation), and contiguous (rotation, trans-
lation, and rotation).

The most popular imaging method from the 1950s to the 1970s became freehand
compound scanning, which involved both translation and rocking. Usually trans-
ducers were attached to large articulated arms that both sensed the position and
attitude of the transducer in space and also communicated this information to the
display. In this way, different views (scan lines) contributed to a more richly detailed
image because small curved interfaces were better defined by several transducer
positions rather than one.

Sonography in this time period was like portrait photography. Different patterns of
freehand scanning were developed to achieve the “best picture.” For each position of
the transducer, a corresponding time line was traced on a cathode-ray tube (CRT)
screen. The image was not seen until scanning was completed or later because the
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picture was usually in the form of either a storage scope image or a long-exposure
photograph (Devey and Wells, 1978; Goldberg and Kimmelman, 1988). Of course,
the “‘subject” being imaged was not to move during scanning. In 1959, the situation
was improved by the introduction of the Polaroid scope camera, which provided
prints in minutes.

During the same time, seemingly unrelated technologies (EE Times, 1997) were
being developed that would revolutionize ultrasound imaging. The inventions of the
transistor and the digital computer in the late 1940s set profound changes in motion.
In 1958, Jack Kilby’s invention of an integrated circuit accelerated the pace by
combining several transistors and circuit elements into one unit.

In 1964, Gordon Moore predicted that the density of integrated circuits would
grow exponentially (double every 12 months), as illustrated in Figure 1.8 (Santo and
Wollard, 1978; Brenner, 2001). By 1971, 2300 transistors on a single chip had as
much computational power as the ENIAC (Electronic Numerical Integrator and
Computer) computer that, 25 years before, was as big as a boxcar and weighed
60,000 Ib. Hand calculators, such as the Hewlett Packard scientific calculator
HP-35, speeded up chip miniaturization. Digital memories and programmable chips
were also produced.

By the early 1960s, the first commercialized contact B-mode static scanners became
available. These consisted of a transducer mounted on a long moveable articulated
arm with spatial position encoders, a display, and electronics (Goldberg and Kimmel-
man, 1988). An early scanner of this type, called the “Diasonograph’ and designed by
Dr. Ian Donald and engineer Tom G. Brown (1968) of Scotland, achieved commercial
success. For stable imaging, the overall instrument weighed 1 ton and was sometimes
called the “Dinosaurograph.” Soon other instruments, such as the Picker unit, became
available, and widespread use of ultrasound followed.

These instruments, which began to incorporate transistors (Wells, 1969b),
employed the freehand compound scanning method and produced still (static) pic-
tures. The biphasic images were black and white. Whereas A-mode displays had a

Moore's Law
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Figure 1.8 Moore’s law predicts exponential growth of micro-
processor density (indicated as a solid black line). Actual growth is
shown as a gray line.



12

CHAPTER T INTRODUCTION

dynamic range of 40 dB, B-mode storage scopes had only a 10-dB range (a capability to
display 1-10X in intensity), and regular scopes had a 20-dB (1-100X) range (Wells,
1977). Storage scopes and film had blooming and exposure variations, which made
consistent results difficult to obtain.

At the time of biphasic imaging, interest was focused on tissue interfaces and
boundaries. During an extended stay at W. J. Fry’s focused ultrasound surgery
laboratory at the University of Illinois, George Kossoff observed that the pulse echoes
from boundaries were strongly dependent on the angle of insonification. Because the
transducer had a large focal gain and power, Kossoff also noticed that the lower
amplitude scattering from tissue was much less sensitive to angular variation. These
insights led to his methods to image the soft tissues more directly. By emphasizing the
region of dynamic range for soft tissue scattering and implementing logarithmic
amplifiers to better display the range of information, Kossoff (1974) and his co-
workers at the Commonwealth Acoustic Laboratory in Australia published work on
implementing gray-scale imaging though analog methods. Gray-scale became wide-
spread because of the availability of digital electronic programmable read-only mem-
ories (EPROMs), random-access memories (RAMs), microprocessors, and analog/
digital (A/D) converters. These allowed the ultrasound image to be stored and scan-
converted to the rectangular format of cathode-ray tubes (CRTs) at video rates. By
1976, commercial gray-scale scan converters revolutionized ultrasound imaging by
introducing subtle features and an increased dynamic range for better differentiation
and resolution of tissue structures.

One of the most important applications of ultrasound diagnosis is obstetrics.
A study by Alice Stewart of England in 1956 linked deaths from cancer in children
to their prenatal exposure to x-rays (Kevles, 1997). Dr. lan Donald foresaw the benefit
of applying ultrasound to obstetrics and gynecology, and his Diasonograph became
successful in this area. Eventually ultrasound imaging completely replaced x-rays in
this application and provided much more diagnostic information. An estimated 70%
of pregnant women in the United States had prenatal ultrasounds (Kevles, 1997).

Ultrasound was shown to be a safe noninvasive methodology for the diagnosis of
diseased tissue, the location of cysts, fetal abnormalities, and heart irregularities. By
the late seventies, millions of clinical exams had been performed by diagnostic
ultrasound imaging (Devey and Wells, 1978).

1.4 ULTRASOUND CINEMATOGRAPHERS

Gray-scale was not enough to save the static B-scanner (the still portrait camera of
ultrasound) because the stage was set for movies, or ultrasound cinematography. In
the early 1950s, Dr. John J. Wild and John Reid worked on an alternative method: a
real-time handheld array-like scanner, in which they used mechanically scanned
(controlled position) transducers (Figure 1.9). In this figure, the rectangular B-scan
image format is a departure from the plan position indication (PPI) format of sonar
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Figure 1.9 Dr. John |. Wild scans a patient with a handheld, linearly scanned 15-MHz contact
transducer. John Reid (later Professor Reid) adjusts modified radar equipment to produce a B-scan
image on a large-diameter scope display with a recording camera (courtesy of J. Reid; reprinted with
permission of VNU Business Publications) (see also color insert).
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B-mode images and earlier tomographic (circular) images. Wild and Reid’s vision of
real-time scanning was a few years ahead of its time.

The year 1965 marked the appearance of Vidoson from Siemens, the first real-time
mechanical commercial scanner. Designed by Richard Soldner, the Vidoson consisted
of a revolving transducer and a parabolic mirror. By the early 1970s, real-time contact
mechanical scanners with good resolution were beginning to replace the static
B-scanners.

Radar and sonar images, and eventually ultrasonic images, benefited from the
maturing of electronically scanned and focused phased array technology for electro-
magnetic applications in the late 1950s and 1960s. In 1971, Professor N. Bom’s group
in Rotterdam, Netherlands built linear arrays for real-time imaging (Bom et al.,
1973). An example of an early linear array imaging system was illustrated in Figure
1.6. The position controller takes the form of a multiplexer, which is an electronic
switch that routes the input/output channel to different transducer array elements
sequentially. As each transducer element is fired in turn, a pulse-echo image line
is created. These efforts produced the Minivisor (Ligtvoet et al., 1978; Roelandt
et al., 1978), which was the first portable ultrasound system including a built-in linear
array, electronics, display, and a 1% hr battery, with a total weight of 1.5 kg (shown
in Figure 1.13).

J. C. Somer (1968) of the Netherlands reported his results for a sector (angular)
scanning phased array for medical ultrasound imaging. Shown in Figure 1.10 are two
views of different steering angles from the same array. On the left are Schlieren
measurements (an acousto-optic means of visualizing sound beams) of beams steered
at different angles. They are depicted as acoustic lines on the oscilloscope images on
the right. By 1974, Professor Thurstone and Dr. von Ramm (1975) of Duke University
obtained live images of the heart with their 16-channel phased array imaging system
called the “Thaumascan.”

The appearance of real-time systems with good image quality marked the end of
the static B-scanners (Klein, 1981). Parallel work on mechanically scanned trans-
ducers resulted in real-time commercial systems by 1978. By 1980, commercial real-
time phased array imaging systems were made possible by recent developments in
video, microprocessors, digital memory, small delay lines, and the miniaturization
offered by programmable integrated circuits. In 1981, the Hewlett Packard 70020A
phased array system became a forerunner of future systems, which had wheels,
modular architectures, microprocessors, programmable capabilities, and their up-
gradeability (HP Journal, 1983).

During the 1980s, array systems became the dominant imaging modality. Several
electronic advancements (EE Times, 1997) rapidly improved imaging during this
decade: application-specific integrated circuits (ASICs), digital signal processing
chips (DSPs), and the computer-aided design (CAD) of very large scale integration
(VLSI) circuits.
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Figure 1.10 (A) Pulse-echo acoustic lines at two different angles on an
oscilloscope from a phased array designed by J. C. Somer (1968). (B) Schlieren
pictures of the corresponding acoustic beams as measured in water tank (courtesy
of N. Bom).
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Figure 1.11 The first Hewlett Packard phased array system, the 70020A
(courtesy of Philips Medical Systems).

1.5 MODERN ULTRASOUND IMAGING DEVELOPMENTS

The concept of deriving real-time parameters other than direct pulse-echo data by
signal processing or by displaying data in different ways was not obvious at the very
beginning of medical ultrasound. M-mode, or a time-motion display, presented new
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time-varying information about heart motion at a fixed location when 1. Elder and
C. H. Hertz introduced it in 1954. In 1955, S. Satomura, Y. Nimura, and T. Yoshida
reported experiments with Doppler-shifted ultrasound signals produced by heart
motion. Doppler signals shifted by blood movement fall in the audio range and can
be heard as well as seen on a display. By 1966, D. Baker and V. Simmons had shown
that pulsed spectral Doppler was possible (Goldberg and Kimmelman, 1988). P N. T.
Wells (1969b) invented a range-gated Doppler to isolate different targets.

In the early 1980s, Eyer et al. (1981) and Namekawa et al. (1982) described color
flow imaging techniques for visualizing the flow of blood in real time. During the late
1980s, many other signal processing methods for imaging and calculations began to
appear on imaging systems. Concurrently, sonar systems evolved to such a point that
Dr. Robert Ballard was able to discover the Titanic at the bottom of the sea with sonar
and video equipment in 1986 (Murphy, 1986).

Also during the 1980s, transducer technology underwent tremendous growth.
Based on the Mason equivalent circuit model and waveguide, as well as the match-
ing-layer design technology and high coupling piezoelectric materials developed
during and after World War II, ultrasonic phased array design evolved rapidly.
Specialized phased and linear arrays were developed for specific clinical applications:
cardiogy; radiology (noncardiac internal organs); obstetrics/gynecology and transva-
ginal; endoscopic (transducer manipulated on the tip of an endoscope); transesopha-
geal (transducer down the esophagus) and transrectal; surgical, intraoperative
(transducer placed in body during surgery), laparoscopic, and neurosurgical; vascular,
intravascular, and small parts. With improved materials and piezoelectric composites,
arrays with several hundred elements and higher frequencies became available. Wider
transducer bandwidths allowed the imaging and operation of other modes within the
same transducer at several frequencies selectable by the user.

By the 1990s, developments in more powerful microprocessors, high-density gate
arrays, and surface mount technology, as well as the availability of low-cost analog/
digital (A/D) chips, made greater computation and faster processing in smaller
volumes available at lower costs. Imaging systems incorporating these advances
evolved into digital architectures and beamformers. Broadband communication en-
abled the live transfer of images for telemedicine. Transducers appeared with even
wider bandwidths and in 1.5D (segmented arrays with limited elevation electronic
focusing capabilities) and matrix array configurations.

By the late 1990s, near—real-time three-dimensional (3D) imaging became possible.
Commercial systems mechanically scanned entire electronically scanned arrays in
ways similar to those used for single-element mechanical scanners. Translating, angu-
lar fanning, or spinning an array about an axis created a spatially sampled volume.
Special image-processing techniques developed for movies such as John Cameron’s
Titanic enabled nearly real-time three-dimensional imaging, including surface-
rendered images of fetuses. Figure 1.12 shows a survey of fetal images that begins
with a black-and-white image from the 1960s and ends with a surface-rendered fetal
face from 2002.

True real-time three-dimensional imaging is much more challenging because it
involves two-dimensional (2D) arrays with thousands of elements, as well as an
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Figure 1.12 The evolution of diagnostic imaging as shown in fetal images. (Upper left) Fetal
head black-and-white image (I. Donald, 1960). (Upper right) Early gray-scale negative image of fetus
from the 1970s. (Lower left) High-resolution fetal profile from the 1980s. (Lower right) Surface-rendered
fetal face and hand from 2002 (Goldberg and Kimmelman, 1988, reprinted with permission of AIVM.
Courtesy of B. Goldberg, Siemens Medical Solutions, Inc., Ultrasound Group and Philips Medical
Systems).

adequate number of channels to process and beamform the data. An early 2D array,
3D real-time imaging system with 289 elements and 4992 scanlines was developed at
Duke University in 1987 (Smith et al., 1991; von Ramm, 1991). A non-real-time,
3600 two-dimensional element array was used for aberration studies at the University
of Rochester (Lacefield and Waag, 2001). In 2003, Philips introduced a real-time
three-dimensional imaging system that utilized fully sampled two-dimensional 2900-
element array technology with beamforming electronics in the transducer handle.
To extend the capabilities of ultrasound imaging, contrast agents were designed to
enhance the visibility of blood flow. In 1968, Gramiak and Shah discovered that
microbubbles from indocyanine green dye injected in blood could act as an ultrasound
contrast agent. By the late 1980s, several manufacturers were developing contrast
agents to enhance the visualization of and ultrasound sensitivity to blood flow.
To emphasize the detection of blood flow, investigators imaged contrast agents at
harmonic frequencies generated by the microbubbles. As imaging system manufactur-
ers became involved in imaging contrast agents at second harmonic frequencies,
they discovered that tissues could also be seen. Signals sent into the body at a
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fundamental frequency returned from tissue at harmonic frequencies. Tissues talked
back. P. N. T. Wells (1969a) mentioned indications that tissues had nonlinear proper-
ties. Some work on imaging the nonlinear coefficient of tissues directly (called their
“B/A” value) was done in the 1980s but did not result in manufactured devices. By the
late 1990s, the clinical value of tissue harmonic imaging was recognized and commer-
cialized. Tissue harmonic images have proved to be very useful in imaging otherwise
difficult-to-image people, and in many cases, they provide superior contrast reso-
lution and detail compared with images made at the fundamental frequency.

In the more than 60 years since the first ultrasound image of the head, compara-
tively less progress has been made in imaging through the skull. Valuable Doppler data
have been obtained through transcranial windows. By the late 1980s, methods for
visualizing blood flow to and within certain regions of the brain were commercialized
in the form of transcranial color flow imaging. The difficult problems of producing
undistorted images through other parts of the skull have been solved at research
laboratories but not in real time (Aarnio et al., 2001; Aubry et al., 2001).

1.6 ENABLING TECHNOLOGIES FOR ULTRASOUND IMAGING

Attention is usually focused on ultrasound developments in isolation. However,
continuing improvements in electronics, seemingly unrelated, are shaping the future
of medical ultrasound. The accelerated miniaturization of electronics, especially
ASICs, made possible truly portable imaging systems for arrays with full high-quality
imaging capabilities. When phased array systems first appeared in 1980, they weighed
about 800 lbs. The prediction of the increase in transistor density, according to
Moore’s original law, is a factor of 1,000,000 in area-size reduction from 1980 to
2000. Over the years, Moore’s law has slowed down a bit, as shown by the more
realistic Moore’s law (shown in Figure 1.8 as a gray line). This shows an actual
reduction of 1290. This actual Moore’s law reflects the physical limits of comple-
mentary metal oxide semiconductor (CMOS) technology and the increased costs
required for extreme miniaturization (Brenner, 2001). While a straightforward calcu-
lation in the change of size of an imaging system cannot be made, several imaging
systems that were available in 2003 have more features than some of the first-phased
array systems and yet weigh only a few pounds (shown in Figure 1.13). Another
modern achievement is handheld two-dimensional array with built-in beamforming.

Portable systems, because of their affordability, can be used as screening devices in
smaller clinics, as well as in many places in the world where the cost of an ultrasound
imaging system is prohibitive. Figure 1.13 shows four examples of portable systems
that appeared on the cover of a special issue of the Thoraxcentre Journal on portable
cardiac imaging systems (2001). The first portable system, the Minivisor, was self-
contained with a battery, but its performance was relatively primitive (this was
consistent with the state of the art in 1978). The OptiGo owes its small size to
custom-designed ASICs, as well as automated and simplified controls. The Titan, a
newer version of the original Sonosite system and one of the first modern portables,
has a keyboard and trackball, and it is also miniaturized by several ASICs. The Terason
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Figure 1.13 (Upper left) Minivisor, the self-contained truly portable ultrasound imaging system.
(Upper right) A newer version of the Sonosite, the first modern handheld ultrasound portable. (Lower
left) OptiGo, a cardiac portable with automated controls. (Lower right) Terason, 2000 laptop-based
ultrasound system with a proprietary beamformer box (courtesy of N. Bom, Philips Medical Systems,
Sonosite, Inc., and P.P. Charg, Terason, Teratech Corp.).

system has a charge-coupled device (CCD)-base proprietary 128-channel beamfor-
mer, and much of its functionality is software-based in a powerful laptop. More
information on these portables can be found in the December 2001 issue of the
Thoraxcentre Journal.

Change is in the direction of higher complexity at reduced costs. Modern full-sized
imaging systems have a much higher density of components and far more computing
power than their predecessors. The enabling technologies and key turning points in
ultrasound are summarized in Table 1.1.

1.7 ULTRASOUND IMAGING SAFETY

Diagnostic ultrasound has had an impressive safety record since the 1950s. In fact, no
substantiated cases of harm from imaging have been found (O’Brien, 1998). Several
factors have contributed to this record. First, a vigilant worldwide community of
investigators is looking continuously for possible ultrasound-induced bioeffects.



1.7 ULTRASOUND IMAGING SAFETY

21

TABLE 1.1 Chronology of Ultrasound Imaging Developments and Enabling

Technologies

Time Ultrasound Enablers
Pre-WWII Echo ranging Piezoelectricity
Vacuum tube amplifiers
1940s Dussik image of brain Radar, sonar
PPI images Supersonic reflectoscope
Therapy and surgery Colossus and ENIAC computers
Transistor
1950s A-line Integrated circuits
Compound scanning Phased-array antennas
Doppler ultrasound
M-mode
1960s Contact static B-scanner Moore’s law
Real-time mechanical scanner Microprocessors
Echoencephalography VLSI
Handheld calculators
1970s Real-time imaging RAM
Scan-conversion EPROM
Gray-scale ASIC
Linear and phased arrays Scientific calculators
Altair, first PC
1980s Commercial array systems Gate arrays
Pulsed wave Doppler Digital signal processing
Color flow imaging chips
Wideband and specialized transducers Surface mount components
Computer-aided design of VLSI
circuits
1990s Digital systems Low-cost A/D converters
1.5D and matrix arrays Powerful PCs
Harmonic imaging 3D image processing
Commercialized 3D imaging 0.1 um fabrication of
linewidths for electronics
2000s Handheld 2D array for real-time 3D Continued miniaturization

imaging

Second, the two main bioeffects (cavitation and thermal heating) are well enough
understood so that acoustic output can be controlled to limit these effects.
The Output Display Standard provides imaging system users with direct on-screen
estimates of relative indices related to these two bioeffects for each imaging mode
selected. Third, a factor may be the limits imposed on acoustic output of U. S. systems
by the Food and Drug Administration (FDA). All U. S. manufacturers measure
acoustic output levels of their systems with wide-bandwidth—calibrated hydrophones,

force balances, and report their data to the FDA.
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1.8 ULTRASOUND AND OTHER DIAGNOSTIC IMAGING MODALITIES

1.8.1 Imaging Modalities Compared

Ultrasound, because of its efficacy and low cost, is often the preferred imaging modality.
Millions of people have been spared painful exploratory surgery by noninvasive
imaging. Their lives have been saved by ultrasound diagnosis and timely interven-
tion, their hearts have been evaluated and repaired, their children have been found
in need of medical help by ultrasound imaging, and their surgeries have been guided
and checked by ultrasound. Many more people have breathed a sigh of relief after
a brief ultrasound exam found no disease or confirmed the health of their future child.
In 2000, an estimated 5 million ultrasound exams were given weekly worldwide
(Cote, 2001).

How does ultrasound compare to other imaging modalities? Each major diagnostic
imaging method is examined in the following sections, and the overall results are
tallied in Table 1.2 and compared in Figure 1.14.

1.8.2 Ultrasound

Ultrasound imaging has a spatially variant resolution that depends on the size of the
active aperture of the transducer, the center frequency and bandwidth of the trans-
ducer, and the selected transmit focal depth. A commonly used focal-depth-to-
aperture ratio is five, so that the half power beam-width is approximately two
wavelengths at the center frequency. Therefore, the transmit lateral spatial resolution
in millimeters is A(mm) = 2¢,,/f. = 3/f.(MHz), where f. is center frequency in mega-
hertz. For typical frequencies in use ranging from 1 to 15 MHz, lateral resolution
corresponds to 3 mm to 0.3 mm. This resolution is best at the focal length distance
and widens away from this distance in a nonuniform way because of diffraction effects

Imaging Exams in 2000
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Figure 1.14 Estimated number of imaging exams given
worldwide and in the United States for the year 2000.
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TABLE 1.2 Comparison of Imaging Modalities

Modality Ultrasound X-ray cT MRI
What is Mechanical properties Mean tissue Tissue absorption Biochemistry
imaged absorption (Ty and T53)
Access Small windows 2 sides needed Circumferential Circumferential
adequate Around body Around body
Spatial Frequency and axially ~1mm ~1mm ~1mm
resolution dependent 0.3-3 mm
Penetration Frequency dependent Excellent Excellent Excellent
3-25cm
Safety Very good Ionizing radiation  Ionizing radiation Very good
Speed 100 frames/sec Minutes % minute to minutes 10 frames/sec
Cost $ $ $$$$ $$$$$$$$
Portability Excellent Good Poor Poor

caused by apertures on the order of a few to tens of wavelengths. The best axial
resolution is approximately two periods of a short pulse or the reciprocal of the center
frequency, which also works out to be two wavelengths in distance since
2 =2¢,T = 2¢4,/f; = 24.

Another major factor in determining resolution is attenuation, which limits pene-
tration. Attenuation steals energy from the ultrasound field as it propagates and, in the
process, effectively lowers the center frequency of the remaining signals, another
factor that reduces resolution further. Attenuation also increases with higher center
frequencies and depth; therefore, penetration decreases correspondingly so that fine
resolution is difficult to achieve at deeper depths. This limitation is offset by special-
ized probes such as transesophageal (down the throat) and intracardiac (inside the
heart) transducers that provide access to regions inside the body. Otherwise, access to
the body is made externally through many possible “acoustic windows,” where a
transducer is coupled to the body with a water-based gel. Except for regions contain-
ing bones, air, or gas, which are opaque to imaging transducers, even small windows
can be enough to visualize large interior regions.

Ultrasound images are highly detailed and geometrically correct to the first order.
These maps of the mechanical structures of the body, (according to their “acoustic
properties,” such as differences in characteristic impedance) depend on density and
stiffness or elasticity. The dynamic motion of organs such as the heart can be revealed
by ultrasound operating up to hundreds of frames per second.

Diagnostic ultrasound is noninvasive (unless you count the “trans” and “intra”
families of transducers, which are somewhat annoying to the patient but otherwise
very effective). Ultrasound is also safe and does not have any cumulative biological
side effects. Two other strengths of ultrasound imaging are its relatively low cost and
portability. With the widespread availability of miniature portable ultrasound systems
for screening and imaging, these two factors will continue to improve.

A high skill level is needed to obtain good images with ultrasound. This expertise is
necessary because of the number of access windows, the differences in anatomy, and
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the many possible planes of view. Experience is required to find relevant planes and
targets of diagnostic significance and to optimize instrumentation. Furthermore, a
great deal of experience is required to recognize, interpret, and measure images for
diagnosis.

1.8.3 X-rays

Conventional x-ray imaging is more straightforward than ultrasound. Because x-rays
travel at the speed of light with a wavelength of less than 1 A (0.0001 mm), they do so
in straight ray paths without diffraction effects. As a result of the ray paths, highly
accurate images are obtained in a geometric sense. As the x-rays pass through the
body, they are absorbed by tissue so that a overall “mean attenuation” image results
along the ray path. Three-dimensional structures of the body are superimposed as a
two-dimensional projection onto film or a digital sensor array. The depth information
of structures is lost as it is compressed into one image plane. Spatial resolution is not
determined by wavelength but by focal spot size of the x-ray tube and scatter from
tissue. The state of the art is about 1 mm as of this writing. X-rays cannot differentiate
among soft tissues but can detect air (as in lungs) and bones (as in fractures).
Radioactive contrast agents can be ingested or injected to improve visualization of
vessels. Still x-ray images require patients not to move during exposure. Because these
are through transmission images, parts of the body that can be imaged are limited to
those that are accessible on two sides.

Most conventional x-ray systems in common use are dedicated systems (fixed in
location) even though portable units are commercially available for special applica-
tions. Systems tend to be stationary so that safety precautions can be taken more
easily. Though exposures are short, x-rays are a form of ionizing radiation, so dosage
effects can be cumulative. Extra precautions are needed for sensitive organs such as
eyes and for pregnancies.

The taking of x-ray images is relatively straightforward after some training. Inter-
pretation of the images varies with the application, from broken bones to lungs, and in
general requires a high level of skill and experience to interpret.

1.8.4 Computed Tomography Imaging

Computed tomography (CT), which is also known as computed axial tomography
(CAT), scanning also involves x-rays. Actually, the attenuation of x-rays in different
tissues varies, so tomographic ways of mathematically reconstructing the interior
values of attenuation from those obtained outside the body, have been devised. In
order to solve the reconstruction problem uniquely, enough data have to be taken to
provide several views of each spatial position in the object.

This task is accomplished by an x-ray fan-beam source on a large ring radiating
through the subject’s body to an array of detectors working in parallel on the opposite
side of the ring. The ring is rotated mechanically in increments until complete
coverage is obtained. Rapid reconstruction algorithms create the final image of a
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cross-section of a body. The latest multislice equipment utilizes a cone beam and a
two-dimensional array of sensors. The result has over two orders of magnitude more
dynamic range than a conventional x-ray, so subtle shades of the attenuation vari-
ations through different tissue structures are seen. The overall dose is much higher
than that of a conventional x-ray, but the same safety precautions as those of conven-
tional x-rays apply. CT equipment is large and stationary in order to fit a person inside,
and as a result, it is relatively expensive to operate. Consecutive pictures of a moving
heart are now achievable through synchronization to electrocardiogram (ECG)
signals.

The resolution of CT images is typically 1 mm. CT scanning creates superb images
of the brain, bone, lung, and soft tissue, so it is complementary to ultrasound.

While the taking of CT images requires training, it is not difficult. Interpretation
of CT cross-sectional images demands considerable experience for definitive diag-
nosis.

1.8.5 Magnetic Resonance Imaging

Magnetic resonance has been applied successfully to medical imaging of the body
because of its high water content. The hydrogen atoms in water (H,O) and fat make
up 63% of the body by weight. Because there is a proton in the nucleus of each
hydrogen atom, a small magnetic field or moment is created as the nucleus spins.
When hydrogen is placed in a large static magnetic field, the magnetic moment of
the atom spins around it like a tiny gyroscope at the Larmor frequency, which is a
unique property of the material. For imaging, a radiofrequency rotating field in a plane
perpendicular to the static field is needed. The frequency of this field is identical to the
Larmor frequency. Once the atom is excited, the applied field is shut off and the
original magnetic moment decays to equilibrium and emits a signal. This voltage
signal is detected by coils, and two relaxation constants are sensed. The longitudinal
magnetization constant, Ty, is more sensitive to the thrermal properties of tissue. The
transversal magnetization relaxation constant, T3, is affected by the local field inho-
mogeneities. These constants are used to discriminate among different types of tissue
and for image formation.

For imaging, the subject is placed in a strong static magnetic field created by a large
enclosing electromagnet. The resolution is mainly determined by the gradient or shape
of the magnetic field, and it is typically 1 mm. Images are calculated by reconstruction
algorithms based on the sensed voltages proportional to the relaxation times. Tomo-
graphic images of cross-sectional slices of the body are computed. The imaging
process is fast and safe because no ionizing radiation is used. Because the equipment
needed to make the images is expensive, exams are costly.

Magnetic resonance imaging (MRI) equipment has several degrees of freedom,
such as the timing, orientation, and frequency of auxiliary fields; therefore, a high
level of skill is necessary to acquire diagnostically useful images. Diagnostic interpre-
tation of images involves both a thorough knowledge of the settings of the system, as
well a great deal of experience.
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1.9 CONCLUSION

With the exception of standard x-ray exams, ultrasound is the leading imaging
modality worldwide and in the United States. Over the years, ultrasound has adapted
to new applications through new arrays suited to specific clinical purposes and to
signal processing, measurement, and visualization packages. Key strengths of ultra-
sound are its abilities to reveal anatomy, the dynamic movement of organs, and details
of blood flow in real time. Diagnostic ultrasound continues to evolve by improving in
diagnostic capability, image quality, convenience, ease of use, image transfer and
management, and portability.

From the tables chronicling ultrasound imaging developments and enabling tech-
nologies, it is evident that there is often a time lag between the appearance of a
technology and its effect. The most dramatic changes have been through the continual
miniaturization of electronics in accordance with a modified Moore’s law. Smaller-
sized components led to the first commercially available phased array imaging systems
as well as to new, portable imaging systems, which weigh only a few pounds. Moore’s
first law is apparently approaching physical limits, and a second Moore’s law predicts
rapidly increasing production costs with reduced chip size (Bimbaum and Williams,
2000). Because of the time lag of technology implementation, the latest developments
have not had their full impact on ultrasound imaging.

The potential in diagnostic ultrasound imaging seen by early pioneers in the field
has been more than fulfilled. The combination of continual improvements in elec-
tronics and a better understanding of the interaction of ultrasound with tissues will
lead to imaging systems of increased complexity. In the future, it is likely that the
simple principles on which much of ultrasound imaging is based will be replaced by
more sophisticated signal processing algorithms.
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2.1 INTRODUCTION

Ultrasound imaging is a complicated interplay between physical principles and signal
processing methods, so it provides many opportunities to apply acoustic and signal
processing principles to relevant and interesting problems. In order to better explain
the workings of the overall imaging process, this book uses a block diagram approach
to organize various parts, their functions, and their physical processes. Building
blocks reduce a complex structure to understandable pieces. This chapter introduces
the overall organization that links upcoming chapters, each of which describe the
principles of blocks in more detail. The next sections identify the principles used
to relate the building blocks to each other and apply MATLAB programs to illustrate
concepts.
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2.2 FOURIER TRANSFORM

2.2.1 Introduction to the Fourier Transform

Signals such as the Gaussian pulse in Figure 2.1a can be represented as either a time
waveform or as a complex spectrum that has both magnitude and phase. These forms
are alternate but completely equivalent ways of describing the same pulse. Some
problems are more easily solved in the frequency domain, while others are better
done in the time domain. Consequently, it will be necessary to use a method to switch
from one domain to another. Joseph Fourier (Bracewell, 2000), a nineteenth century
French mathematician, had an important insight that a waveform repeating in time
could be synthesized from a sum of simple sines and cosines of different frequencies
and phases. These frequencies are harmonically related by integers: a fundamental
frequency (fo) and its harmonics, which are integral multiples (2fy, 3fo, etc.). This
sum forms the famous Fourier series.

While the Fourier series is interesting from a historical point of view and its
applicabilty to certain types of problems, there is a much more convenient way of
doing Fourier analysis. A continuous spectrum can be obtained from a time waveform
through a single mathematical operation called the “Fourier transform.” The minus i
Fourier transform, also known as the Fourier integral, is defined as

H(f) = 3_i{h(t)] = J h(t)e > dy @.1)
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Figure 2.1 (A) Short 5-MHz time pulse and its (B) spectrum magni-
tude and phase.
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in which H(f) (with an upper-case letter convention for the transform) is the minus
i Fourier transform of h(t) (lower-case letter for the function), 7 is v/—1, and
3J_,; symbolizes the minus i Fourier transform operator. Note that, in general, both
h(t) and H(f) may be complex with both real and imaginary parts. Another oper-
ation, the minus i inverse Fourier transform, can be used to recover h(¢) from H(f) as

follows:

h(@) = 37/ [H(H] = J H(f)e™ " df (2.2)

In this equation, 3~} is the symbol for the inverse minus i Fourier transform.
A sufficient but not necessary condition for a Fourier transform is the existence
of the absolute value of the function over the same infinite limits; another
condition is a finite number of discontinuities in the function to be transformed.
If a function is physically realizable, it most likely will have a transform. Certain
generalized functions that exist in a limiting sense and that may represent measure-
ment extremes (such as an impulse in time or a pure tone) are convenient and useful
abstractions. The Fourier transform also provides an elegant and powerful way of
calculating a sequence of operations represented by a series of building blocks,
as shown shortly.

For applications involving a sequence of numbers or data, a more appropriate form
of the Fourier transform, the discrete Fourier transform (DFT), has been devised. The
DFT consists of a discrete sum of N-weighted complex exponents, exp(—i2n mn/N),
in which m and # are integers. J. W. Cooley and J. W. Tukey (1965) introduced an
efficient way of calculating the DFT called the fast Fourier transform (FFT). The DFT
and its inverse are now routine mathematical algorithms and have been implemented
directly into signal processing chips.

2.2.2 Fourier Transform Relationships

The most important relationships for the Fourier transform, the DFT, and their
application are reviewed in Appendix A. This section emphasizes only key features
of the Fourier transform, but additional references are provided for more background
and details.

A key Fourier transform relationship is that time lengths and frequency lengths are
related reciprocally. A short time pulse has a wide extent in frequency, or a broad
bandwidth. Similarly, a long pulse, such as a tone burst of # cycles, has a narrow band
spectrum. These pulses are illustrated in Figures 2.2 and 2.3. If; for example, a tone
burst of 10 cycles in Figure 2.2 is halved to 5 cycles in Figure 2.3, its spectrum is
doubled in width. All of these effects can be explained mathematically by the Fourier
transform scaling theorem:

1

S.lgan) = G(f/a) (2.3)
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Figure 2.3 A 5-MHz center frequency tone burst of 5 cycles and its
spectral magnitude.

For this example, ifa = 0.5, then the spectrum is doubled in amplitude and its width is
stretched by a factor of two in its frequency extent. Many other Fourier transform
theorems are listed in Table A.1 of Appendix A.

Consider the Fourier transform pair from this table for a Gaussian function,
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3 lexp(— )] = exp(— nf?) (2.4)

To find the minus i Fourier transform of a following given time domain Gaussian
analytically, for example,

g(t) = exp(— wt?) (2.52)

first put it into a form appropriate for the scaling theorem, Eq. (2.3),

2
g(t) =exp {—n(t w/n) } (2.5b)
so that @ = \/w/m. Then by the scaling theorem, the transform is

G(f) = exp| —n(f//w/n) | /\w]rw = /afw espl - fw)f*]  (2:6)

The Gaussian is well-behaved and has smooth time and frequency transitions. Fast-
time transitions have a wide spectral extent. An extreme example of this characteristic
is the impulse in Figure 2.4. This pulse is so short in time that, in practical terms, it
appears as a spike or as a signal amplitude occurring only at the smallest measurable
time increment. The ideal impulse would have a flat spectrum (or an extremely wide
one in realistic terms). The converse of the impulse in time is a tone burst so long that
it would mimic a sine wave in Figure 2.5. The spectrum of this nearly pure tone would
appear on a spectrum analyzer (an instrument for measuring the spectra of signals) as
either an amplitude at a single frequency in the smallest resolvable frequency reso-
lution cell or as a spectral impulse. Note that instead of a pair of spectral lines
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Figure 2.4 A time impulse and its spectral magnitude.
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Figure 2.5 A 5-MHz pure tone and its spectral magnitude.

representing impulse functions in Figure 2.5, finite width spectra are shown as a
consequence of the finite length time waveform used for this calculation by a digital
Fourier transform. All of these effects can be demonstrated beautifully by the Fourier
transform. The Fourier transform operation for Figures 2.1-2.5 were implemented by
MATLAB program chap2figs.m.

2.3 BUILDING BLOCKS

2.3.1 Time and Frequency Building Blocks

One of the motivations for using the Fourier transformis that it can describe how a signal
changesits form asit propagates or when itis sent through a device or filter. Both of these
changes can be represented by a building block. Assume there is a filter that has a time
response, ¢(t), and a frequency response, Q(f). Each of these responses can be repre-
sented by a building block, as given by Figure 2.6. A signal, p(¢), sent into the filter, g(z),
with the result, 7(¢), can be symbolized by the building blocks of Figure 2.6.

As a general example of a building block, a short Gaussian pulse is sent into a filter
with a longer Gaussian impulse response (from Figure 2.1). This filtering operation is
illustrated in both domains by Figure 2.7. In this case, the output pulse is longer than the
original, and its spectrum is similar in shape to the original but slightly narrower. For
the same filter in Figure 2.8, the time impulse input of Figure 2.4 results in a replication
of the time response of the filter as an output response (also known as “impulse
response”). Because the impulse has a flat frequency response, Figure 2.8 also replicates
the frequency response of the filter as an output response. In Figure 2.9, a single-
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Figure 2.6 (A) A time domain building block and (B) its frequency domain equivalent.

frequency input signal of unity amplitude from Figure 2.5 results in a single-frequency
output weighted with amplitude and phase of the filter at the same frequency.

The operations illustrated in Figures 2.7-2.9 can be generalized by two simple
equations. In the frequency domain, the operation is just a multiplication,

R(f) = P(f) Q(f)- (2.7a)

The three frequency domain examples in these figures show how the products of P(f)
and Q(f) result in R(f).

In the time domain, a different mathematical operation called “convolution” is at
work. Time domain convolution, briefly stated, is the mathematical operation that
consists of flipping one waveform around left to right in time, sliding it past the other
waveform, and summing the amplitudes at each time point. The details of how this is
done are covered in Appendix A. Again, this is a commonplace computation that is
represented by the symbol %, meaning time domain convolution. Therefore, the
corresponding general relation for the time domain operations of these figures is
written mathematically as

r(t) = p(t) *: q(t) (2.7b)

It does not take much imagination to know what would happen if a signal went

through a series of filters, W(f), S(f), and Q(f). The end result is
R(f) = P(f) O(f) S(f) W(f) (2.8a)

and the corresponding time domain version is

r(t) = p(t) * q(t) *; s(t) *, w(t) (2.8b)
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plication. Both the filter and input have the same 5-MHz center
frequency but different bandwidths.

We are close to being able to construct a series of blocks for an imaging system, but
first we have to discuss spatial dimensions.

2.3.2 Space Wave Number Building Block

A Fourier transform approach can also be applied to the problems of describing
acoustic fields in three dimensions. Until now, the discussion has been limited to
what might be called “one-dimensional’ operations. In the one-dimensional sense, a
signal was just a variation of amplitude in time. For three dimensions, a source such as
a transducer occupies a volume of space and can radiate in many directions simul-
taneously. Again, a disturbance in time is involved, but now the wave has a three-
dimensional spatial extent that propagates through a medium but does not change the
structure permanently as it travels.

2.3.2.1 Spatial transforms

In the one-dimensional world there are signals (pulses or sine waves). In the three-
dimensional world, waves must have a direction also. For sine waves (the primitive
elements used to synthesize complicated time waveforms), the period T is the funda-
mental unit, and it is associated with a specific frequency by the relation T = 1/f. The
period is a measure in time of the length of a sine wave from any point to another
point where the sine wave repeats itself. For a wave in three dimensions, the primitive



2.3 BUILDING BLOCKS 37
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Figure 2.8 (A) Time domain filter output, or impulse response, for a time domain impulse input.
(B) Spectrum magnitude of filter output.

element is a plane wave with a wavelength A, which is also a measure of the distance in
which a sinusoidal plane wave repeats itself. A special wavevector (k) is used for this
purpose; it has a direction and a magnitude equal to the wavenumber,
k = 2nf/c = 2n/4, in which (c) is the sound speed of the medium. Just as there is
frequency (f) and angular frequency (w = 2xf), an analogous relationship exists
between spatial frequency (f) and the wavenumber (k) so that k = 2nf. Spatial
frequency can also be thought of as a normalized wavenumber or the reciprocal of
wavelength, f = k/2n =1/4.

Before starting three dimensions, consider a simple single-frequency plane wave
that is traveling along the positive z axis and that can be represented by the exponen-
tial, expli(wt — kz)] = exp[i2n(ft — fz)]. Note that the phase of the wave has two
parts: the first is associated with frequency and time, and the second, opposite in
sign, is associated with inverse wavelength and space. In order to account for the
difference in sign of the second term, a different Fourier transform operation is
needed for (k) or spatial frequency and space. For this purpose, the plus i Fourier
transform is appropriate:
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Figure 2.9 (A) Time domain filter output, to a 4.5-MHz tone input. (B) Spectrum magnitude of
filter output is also at the input frequency but changed in amplitude and phase. The filter is centered at
5MHz.

G() = Sule] = | g (2.9)
Of course, there is an inverse plus i Fourier transform to recover g(x):
g0 =31 [6()] = | Gireraf (2.9b)

One way to remember the two types of transforms is to associate the conventional —i
Fourier transform with frequency and time. You can also remember to distinguish the
plus i transform for wavenumber (spatial frequency) and space as “Kontrary” to the
normal convention because it has an opposite phase or sign in the exponential
argument. More information on these transforms is given in Appendix A. To simplify
these transform distinctions in general, a Fourier transform will be assumed to be a
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minus i Fourier transform unless specifically named, in which case it will be called a
plus 7 Fourier transform.

In three dimensions, a point in an acoustic field can be described in rectangular
coordinates in terms of a position vector 7 (Figure 2.10a). In the corresponding three-
dimensional world of k-space, projections of the k wavevector corresponding to the x,
y, and z axes are ki, ky, and k3 (depicted in Figure 2.10b). Each projection of k
has a corresponding spatial frequency (f, = k1 /2=, etc). See Table 2.1 for a compari-
son of the variables for both types of Fourier transforms. To extend calculations to
dimensions higher than one, Fourier transforms can be nested within each other as
explained in Chapter 6.

2.3.2.2 Spatial transform of a line source

As an example of how plane waves can be used to synthesize the field of a simple
source, consider the two-dimensional case for the xz plane with propagation along z.
The xz plane in Figure 2.11a has a one-dimensional line source that lies along the x

Figure 2.10 (A) Normal space with rectangular coordinates and a position vector r to a field
point and (B) corresponding k-space coordinates and vector k.

TABLE 2.1 Fourier Transform Acoustic Variable Pairs

Variable Transform Variable Type
Time Frequency

t f i
Space Spatial Frequency

x fi +i

y f +i

z f3 +i
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Figure 2.11 (A) Line source of length (L)
and amplitude one lying along the x axis in the
xz plane. (B) The plane wave wavevector at an
angle 0 to the k5 axis and its projections. A plane
wavefront is shown as a dashed line.

axis and has a length (L) and an amplitude of one. This shape can be described by the
rect function (Bracewell, 2000) shown in Figure 2.11a and is defined as follows:

0 |x[>L/2
[[e/L)=11/2 |x|=L/2 (2.10)
1 | <L/2

As the source radiates, plane waves are sprayed in different directions. For each plane
wave, there is a corresponding wavevector that has a known magnitude, k = w/c, and
lies at an angle 0 to the k3 axis, which corresponds to the z-axis direction. In Figure

2.11b, each k vector has a projection k; = ksin 0 along x and a value k3 = | /k2 — k3
along the z axis. This vector symbolizes the direction and magnitude of a plane wave
with a flat wavefront perpendicular to it, as illustrated by the dashed line in Figure
2.11b.

In a manner analogous to a time domain waveform having a spectrum composed of
many frequencies, the complicated acoustic field of a transducer can be synthesized
from a set of weighted plane waves from all angles (0), called the “angular spectrum
of plane waves” (Goodman, 1968). Correspondingly, there is a Fourier transform
relation between the source amplitude and spatial angular spectrum or spatial fre-
quency (proportional to wavenumber) distribution as a function of f; = fsin 0 in the
xz plane. For a rectangular coordinate system, it is easier mathematically to deal with
projection f rather than 6 directly. To find the continuous distribution of plane waves
with angle, the +i Fourier transform of the rectangular source function depicted in
Figure 2.11a is taken at the distance z = 0,
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G(f)) = S.ilgw)]

1

J I1 (x/L)e>*dz = Lsinc(Lf,) = Lsinc(Lf sinf)  (2.11)

in which the sin ¢ function (Bracewell, 2000), also listed in Appendix A, is defined as

with the properties,

sine(afy = Sl (2.12a)
(maf)
sinc 0 =1
sinc n =0 (n = nonzero integer)
0 (2.12b)
J sinc x dx =1

The simplest case would be one in which a single plane wave came straight out of the
transducer with the f vector oriented along the z axis (6 = 0). Figure 2.12b reveals this
is not the case. While the amplitude is a maximum for the plane wave in that

Aperture L long
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B
Figure 2.12

15
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(A) A source function of length (L) and amplitude one along the x axis. (B) The
corresponding spatial frequency distribution from the Fourier transform of the source as a function of f;.
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direction, and most of the highest amplitudes are concentrated around a small angle
near the f; axis, the rest are plane waves diminishing in amplitude at larger angles.
Based on our previous experience with transform pairs with steep transitions, such as
the vertical edges of the source function of Figure 2.3a, we would expect a broad
angular spectrum weighted in amplitude from all directions or angles. The sinc
function, which applies to cases with the steep transitions, as well as to the present
one, has infinite spectral extent. If the source is halved to L/2, for example, the main
lobe of the sinc function is broadened by a factor of two, as is predicted by the Fourier
transform scaling theorem and as was shown for the one-dimensional cases earlier.
More information about the calculation of an acoustic field amplitude in two and
three dimensions can be found in Chapter 6.

2.3.2.3 Spatial frequency building blocks

Building blocks can be constructed from spatial frequency transforms (Figure 2.13).
Because these represent three-dimensional quantities, it is helpful to visualize a block as
representing a specific spatial location. For example, planes for specific values of z, such
as a source plane (z = 0) and an image plane (z # 0), are in common use. Functions of
spatial frequency can be multiplied in a manner similar to functions of frequency, as is
done in the field of Fourier optics (Goodman, 1968). Functions in the space (xyz)
domain are convolved, and the symbols for convolution have identifying subscripts: *,
for the xz plane and x, for the yz plane. A simplifying assumption for most of these
calculations is that the medium of propagation is not moving, or is ‘“‘time invariant.”

Recall that the scalar wavenumber k is also a function of frequency (here
k = 2nf /c). In general, building blocks associated with acoustic fields are functions
of both frequency (f) and wavenumber (k), so they can be connected and multiplied.
Conceptually, a time domain pulse has a spectrum with many frequencies. Each of

B

Figure 2.13 (A) An angular spatial frequency domain building block and (B) its spatial
domain equivalent.
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these frequencies could interact with an angular frequency block to describe an
acoustic field. All frequencies are to be calculated in parallel and involve many parallel
blocks (mathematically represented by a sum operation); this process can be messy.
Fortunately, a simpler numerical method is to use convolution. Just as there is a time
pulse, a time domain equivalent of calculating acoustic fields has been invented, called

the spatial impulse response (to be explained in Chapter 7).

2.4 CENTRAL DIAGRAM

Building blocks are assembled into a diagram in Figure 2.14. This diagram is not that
of an imaging system but of a picture of the major processes that occur when an
ultrasound image is made. Shaded blocks such as the first one, E(f), or the transmit
waveform generator, are related to electrical signals. The other (unshaded) blocks
represent acoustic or electro-acoustic events.

Transmit Receive
transducer Forward Backward transducer
response absorption absorption response
GT > HT > AT S AR HR —> GR
A .
Transmit Scatterer Receive
diffraction diffraction
'
Transmit Receive
XB beamformer beamformer | RB
Elecrical
[E excitation Filters F
Detection D
Display Dis

Figure 2.14 The central diagram, including the major signal and acoustic processes as a series

of frequency domain blocks.
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This central diagram provides a structure that organizes the different aspects of the
imaging process. Future chapters explain each of the frequency domain blocks in
more detail. Note that a similar and equivalent time-domain block diagram can be
constructed with convolution operations rather than the multipliers used here. The
list below identifies each block with appropriate chapters, starting with E(f) at the left
and proceeding left to right. Finally, there are topics that deal with several blocks
together.

E(f) is the transmit waveform generator explained in Chapter 10: Imaging Systems
and Applications. Signals from E(f) are sent to XB(f), the transmit beamformer found
in Chapter 7: Array Beamforming.

From the beamformer, appropriately timed pulses arrive at the elements of the
transducer array. More about how these elements work and are designed can be found
in Chapter 5: Transducers. These elements transform electrical signals from the
beamformer, XB(f), to pressure or stress waves through their responses, Gr(f).

Acoustic (stress or pressure) waves obey basic rules of behavior that are described
in review form in Chapter 3: Acoustic Wave Propagation. Waves radiate from the faces
of the transducer elements and form complicated fields, or they diffract as described
by transmit diffraction block Hr(f) and Chapter 6: Beamforming. How the fields of
individual array elements combine to focus and steer a beam is taken up in more detail
in Chapter 7: Array Beamforming.

While diffracting and propagating, these waves undergo loss. This is called attenu-
ation or forward absorption and is explained by Ar(f) in Chapter 4: Attenuation.
Also, along the way, these waves encounter obstacles large and small that are repre-
sented by S(f) and described in Chapters 8 and 9: Wave Scattering and Imaging and
Scattering from Tissue and Tissue Characterization.

Portions of the wave fields that are scattered find their way back toward the
transducer array. These echoes become more attenuated on their return through
factor Ar(f), backward absorption, as is also covered in Chapter 4: Attenuation.
The fields are picked by the elements according to principles of diffraction Hg(f),
as noted in Chapter 6: Beamforming. These acoustic waves pass back through array
elements and are converted back to electrical signals through Gg(f), as is explained in
Chapter 5: Transducers. The converted signals are shaped into coherent beams by the
receive beamformer, RB(f), as is described in Chapter 7: Array Beamforming.

Electrical signals carrying pulse—echo information undergo filtering, O(f), and
detection, DF(f), processes, which are included in Chapter 10: Imaging Systems
and Applications. This chapter also includes the diagram of a generic digital imaging
system. In addition, it covers different types of arrays and major clinical applications.
Alternate imaging modes are discussed in Chapter 11: Doppler Modes.
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In most of the chapters, linear principles apply. Harmonic imaging, based on the
science of nonlinear acoustics, is explained in Chapter 12: Nonlinear Acoustics and
Imaging. The use of contrast agents, which are also highly nonlinear acoustically, is
described in Chapter 14: Ultrasound Contrast Agents. Topics in both these chapters
involve beam formation, scattering attenuation, beamforming, and filtering in inter-
related ways.

Chapter 13: Ultrasonic Exposimetry and Acoustic Measurements applies to meas-
urements of transducers, acoustic output and fields, and related effects. Safety issues
related to ultrasound are covered in Chapter 15: Ultrasound-Induced Bioeffects.

Appendices supplement the main text. Appendix A shows how the Fourier trans-
form and digital Fourier transform (DFT) are related in a review format. It also lists
important theorems and functions in tabular form. In addition, it covers the Hilbert
transform and quadrature signals. Appendix B lists tissue and transducer material
properties. Appendix C derives a transducer model from simple 2-by-2 matrices and
serves as the basis for a MATLAB transducer program. Numerous MATLAB pro-
grams, such as program chap2figs.m used to generate Figures 2.1-2.5, also supple-
ment the text and serve as models for homework problems that are listed by chapter
on the main web site, www.books.elsevier.com.
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3.1 INTRODUCTION TO WAVES

Waves in diagnostic ultrasound carry the information about the body back to the
imaging system. Both elastic and electromagnetic waves can be found in imaging
systems. How waves propagate through and interact with tissue will be discussed in
several chapters, beginning with this one. This chapter also introduces powerful
matrix methods for describing the complicated transmission and reflection of plane
waves through several layers of homogeneous tissue. It first examines the properties of
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plane waves of a single frequency along one axis. This type of wave is the basic
element that can be applied later to build more complicated wave fields through
Fourier synthesis and the angular spectrum of waves method. Second, this chapter
compares types of waves in liquids and solids. Third, matrix tools will be created to
simplify the understanding and analysis of wave propagation, as well as reflections
at boundaries. Fourth, this chapter presents methods of solving two- and three-
dimensional wave problems of mode conversion and refraction at the boundaries of
different media, such as liquids and solids.

Because tissues have a high water content, the simplifying approximation that
waves in the body are like waves propagating in liquids is often made. Many ultra-
sound measurements are made in water also, so modeling waves in liquids is a useful
starting point. In reality, tissues are elastic solids with complicated structures that
support many different types of waves. Later in this chapter, elastic waves will be
treated with the attention they deserve.

Another convenient simplification is that the waves obey the principles of linearity.
Linearity means that waves and signals keep the same shape as they change amplitude
and that different scaled versions of waves or signals at the same location can be
combined to form or synthesize more complicated waves or signals. This important
principle of superposition is at the heart of Fourier analysis and the designs of all
ultrasound imaging systems. You may have heard that tissue is actually nonlinear, as is
much of the world around you. This fact need not bother us at this time because
linearity will allow us to build an excellent foundation for learning not only about
how a real imaging system works, but also about how nonlinear acoustics (described
in Chapter 12) alters the linear situation.

Finally, in this chapter, materials that support sound waves are assumed to be
lossless. Of course, both tissue and water have loss (a topic saved for Chapter 4).

3.2 PLANE WAVES IN LIQUIDS AND SOLIDS

3.2.1

Introduction

Three simple but important types of wave shapes are plane, cylindrical, and spherical
(Figure 3.1). A plane wave travels in one direction. Stages in the changing pattern of
the wave can be marked by a periodic sequence of parallel planes that have infinite
lateral extent and are all perpendicular to the direction of propagation. When a stone
is thrown into water, a widening circular wave is created. In a similar way, a cylindrical
wave has a cross section that is an expanding circular wave that has an infinite extent
along its axial direction. A spherical wave radiates a growing ball-like wave rather
than a cylindrical one. In general, however, the shape of a wave will change in a more
complicated way than these simple idealized shapes, which is why Fourier synthesis is
needed to describe a journey of a wave.

In order to describe these basic wave surfaces, some mathematics is necessary. The
next section presents the essential wave equations for basic waves propagating in an
unbounded fluid medium. In order to characterize simple echoes, following sections
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Figure 3.1 Plane, cylindrical, and spherical
waves showing surfaces of constant phase.

will introduce equations and powerful matrix methods for describing waves hitting
and reflecting from boundaries.

3.2.2 Wave Equations for Fluids

In keeping with the common application of a fluid model for the propagation of
ultrasound waves, note that fluid waves are of a longitudinal type. A longitudinal wave
creates a sinusoidal back-and-forth motion of particles as it travels along in its
direction of propagation. The particles are displaced from their original equilibrium
state by a distance or displacement amplitude (#) and at a rate or particle velocity (v)
as the wave disturbance passes through the medium. This change also corresponds to
a local pressure disturbance (p). The positive half cycles are called “compressional,”
and the negative ones, “rarefactional.” If the direction of this disturbance or wave is
along the z axis, the time required to travel from one position to another is deter-
mined by the longitudinal speed of sound ¢y, or ¢ = z/c;. This wave has a wavenum-
ber defined as k;, = w/c; where w = 2xf is the angular frequency.

In an idealized inviscid (incompressible) fluid, the particle velocity is related to the
displacement as

v =0u/ot (3.1a)

or for a time harmonic or steady-state particle velocity (where capitals represent
frequency dependent variables), as follows:

V(w) = iwU(w) (3.1b)
For convenience, a velocity potential (¢) is defined such that
v =V (3.2)

Pressure is then defined as
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p=—pdp/ot (3.3a)
or for a harmonic wave,
P(w) = —iwpd(w) (3.3b)

where p is the density of the fluid at rest. Overall, wave travel in one dimension is
governed by the wave equation in rectangular coordinates,

Pd 18
o2 o0 G4

in which the longitudinal speed of sound is

L = ylj (3.5)
Po

where 7 is the ratio of specific heats, p, is density, and By is the isothermal bulk
modulus. The ratio of a forward traveling pressure wave to the particle velocity of the
fluid is called the specific acoustic or characteristic impedance, as follows:

Zy =p/vL = pocL (3.6)

and this has units of Rayls (Rayl = kilogram/meter?. second).

Note Z; is negative for backward traveling waves. For fresh water at
20°C, ¢; = 1481m/s, Z; = 1.48 MegaRayls (10°kg/m?sec), p, = 998 kg/m?,
By = 2.18 x 10° newtons/m?, and y = 1.004.

The instantaneous intensity is

I, = pp*/Z]_ =w'Z; 3.7)
The plane wave solution to Eq. (3.4) is
Pz, t) =gt —z/cL) + h(t +z/cL) 3.8)

in which the first term represents waves traveling along the positive z axis, and the
second represents them along the —z axis. One important specific solution is the time
harmonic,

¢ = ¢po(expli(wt — kpz)] + expli(wt + kr2)]) (3.9

In a practical situation, the actual variable would be the real part of the exponential;
for example, the instantaneous pressure of a positive-going wave is

p = poRE{expli(wt — k12)]} = po cos (wt — ky 2) (3.10)

Note that the phase can also be expressed as i(wt & k1 z) = iw(t +z/c) in which the
ratio can be recognized as the travel time due to the speed of sound.
The plane wave Eq. (3.4) can be generalized to three dimensions as

Vi~ =0 (3.11)
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in which the abbreviated notation ¢,, = % is introduced. Basic wave equations for
other geometries include the spherical,

2 1
bt b=y =0 (3.12)
r C2
where 7 is the radial distance, and the cylindrical case, where

1 1
¢ﬂ+_¢r__2¢ttzo (3.13)
7 c
The solution for Eq. (3.11) is
¢ = ¢po(expli(wt —k -7)] + expli(wt + k- 7)]) (3.14)

where k can be broken down into its projections (k1, k, and k3) along the x, y, and z
axes, respectively, and 7 is the direction of the plane wave and

R* = ki + k5 + k3 (3.15)
Note Eq. (3.11) can be expressed in the frequency domain as the Helmholtz equation,
VP 4+ kP =0 (3.16)

where @ is the Fourier transform of ¢.
The general solution for the spherical wave equation (Blackstock, 2000) is

gt —r/cr) N h(t+r/cr)
r r

d)(z: t) =

Unfortunately, there is no simple solution for the cylindrical wave equation except for
great distances 7,

(3.17)

gt —rfer) h@+r/c)
~ +
VT VT
Finally, it is worth noting that the same wave equations hold if p or v is substituted
for ¢.

Most often the characteristics of ultrasound materials, such as the sound speed (c)
and impedance (Z), are given in tabular form in Appendix B, so calculations of these
values are often unnecessary. The practice of applying a fluid model to tissues involves
using tabular measured values of acoustic longitudinal wave characteristics in the
previous equations.

The main difference between waves in fluids and solids is that only longitudinal
waves exist in fluids; many other types of waves are possible in solids, such as shear
waves. These waves can be understood through electrical analogies. The main analogs
are stress for voltage and particle velocity for current. The relationships between
acoustic variables and similar electrical terms are summarized in Table 3.1. Cor-
respondence between electrical variables for a transmission line and those for sound
waves along one dimension in both fluids and solids enables the borrowing of
electrical models for the solution of acoustics problems, as is explained in the rest

P(z,1) (3.18)
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TABLE 3.1 Similar Wave Terminology
Sound Sound Electrical
Liquid Solid
Variable Symbol Units Variable Symbol  Units Variable Symbol  Units
Pressure P MPa Stress T Newton  Voltage \% Volts
Particle velocity v m/s Particle velocity v m/s Current I Amps
Particle u m Particle u m Charge [0) Coulombs
displacement displacement
Density p kg/m? Density o kg/m?
Longitudinal cr m/s Longitudinal speed ¢, m/s Wave 1/VvLC m/s
speed of sound of sound speed
Longitudinal Zi(pcr)  Mega Longitudinal Zi(pcL) Mega Impedance +/L/C Ohms
impedance Rayls impedance Rayls
Longitudinal kL m~! Longitudinal 133 m~!
wave number wave number
Shear vertical cs m/s
speed of sound
Shear vertical Zs(pcs)  Mega
impedance Rayls
Shear vertical ks m!

wave number

of this chapter. Note that for solids, stress replaces pressure, but otherwise all the
basic relationships of Egs. (3.1-3.4) carry over. Another major difference for elastic
waves in solids in Table 3.1 is the inclusion of shear waves. Waves in solids will be
covered in more detail in Section 3.3.

3.2.3 One-Dimensional Wave Hitting a Boundary

An important solution to the wave equation can be constructed from exponentials like
those of Eq. 3.9. Consider the problem of a single-frequency acoustic plane wave
propagating in an ideal fluid medium with the characteristics k; and Z; and bouncing
off a boundary of different impedance (Z;), as shown in Figure 3.2. Assume a solution
of the form,

p = poexp(ilwt — kpz]) + REpoexp (ilwt + kr2]) (3.19)

which satisfies the previous wave equation. RF is a reflection factor for the amplitude
of the negative-going wave. An electrical transmission line analog for this problem,
described in more detail shortly, is symbolized by the right-hand side of Figure 3.2.
The transmission line has a characteristic impedance (Z;), a wavenumber (1), and a
length (d). The second medium is represented by a real load of impedance (Z;) located
atz = 0 and a wavenumber (k;). By the analogy presented in Table 3.1, the pressure at
z = 0 is like a voltage drop across Z,,

p2 = po(1 + RF) (3.20a)
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Figure 3.2 One-dimensional model of wave propagation at a
boundary.

and the particle velocity there is like the sum of currents flowing in the transmission
line in opposite directions, corresponding to the two wave components,

v, =(1 —RF)po/Zl (320b)
The impedance (Z,) can be found from
p2 (1 +RF)Z;
Iy ="=——""— 21
2= 1 RF (3.21)
Finally, solve the right-hand side of Eq. (3.21) to obtain
Z) — 74
= 22
Zr) +74 (3-222)
A transmission factor (TF) can be determined from TF = 1 + RF,
27,
TF = 3.22b
Z1+ 7, ( )

Eq. (3.22a) tells us that there will be a reflection if Z, # Z4, but not if Z, = Z,. If
Z, = 0, an open circuit or air-type boundary, there will be a 180-degree inversion of
the incident wave, or RF = —1. Here the reflected wave cancels the incident, so
TF = 0. If Z, = oo, corresponding to a short circuit condition or a stress-free bound-
ary, the incident wave will be reflected back, or RF = +1. In this case, TF = 2 because
the incident and reflected waves add in phase; however, no power or intensity (see Eq.
(3.7)) is transferred to medium 2 because v, = p,/Z, = 0.

3.2.4 ABCD Matrices

Extremely useful tools for describing both acoustic and electromagnetic waves in
terms of building blocks are matrices (Matthaei et al., 1980). In particular, the ABCD
matrix form (Sittig, 1967) is shown in Figure 3.3 for the electrical case and is given by
the following equations:
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Figure 3.3 General ABCD matrix form.

Vi = AV, + B, (3.23a)

I, =CV, + DI, (3.23b)
where Vis voltage and I is current. The analogous acoustic case is

p1 = Apy + By (3.24a)

v1 = Cps + Dvs (3.24b)

The comparisons for these analogies are given in Table 3.1. The variables on the left
(subscript 1) are given in terms of those on the right because usually the impedance on
the right (Zy) is known. The input impedance looking in from the left is given by

AZy +B
ZINl = ——— 2
IN1 CZm +D (3.25a)
and the ratio of output to input voltages or pressures is
Vs Zm
—=—— 3.25b
Vi AZy+B ( )
There are also equations that can be used for looking from right to left,
DZq +B
Z =" 3.26
INR1 CZc + A ( a)
and input to output ratios are of the form,
Vi Zg
—=— 3.26b
V, DZg+B ( )

What are A, B, C, and D? Figure 3.4 shows specific forms of ABCD matrices (Matthaei
et al., 1980). With only these four basic matrix types, more complicated con-
figurations can be built up. From these types, a complete transducer model will be
constructed in Chapter 5. Figure 3.4c is the ABCD matrix for a transmission line
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Series Shunt

1 Z
0 1 1 0
o 1/ Zp1
Transmission line

C D
- Transformer

n:
n 0

me kmi dm
[ — g
cos kmd,,  -1Zmsin k,,d,
—i sin K,,dp,
_ K,
z 008 KinChn [0 1/n]
m

Figure 3.4 Specific forms of ABCD matrices. (A) Series.
(B) Shunt. (C) Transmission line. (D) Transformer.

(acoustic or electric) with a wavenumber (k;), impedance (Z;), and length (d;) for a
medium designated by “1.” This important matrix can model continuous wave, one-
dimensional wave propagation and scattering. A transmission line that is a quarter of a
wavelength long and loaded by Zyy, the input impedance, Zin1 = Z2/Zy is an imped-
ance transformer. A half-wavelength line is also curious, Zjn1 = Zy; the transmission
line does not appear to be there. Reflection factors similar to Eq. (3.22a) can also be
determined at the load end of the transmission line, designated by “R,” for either
voltage or pressure (stress),

Zm —Zino
RFg = ——— 3.27
R Zu+Zmo (.27)
A transmission factor can also be written at the load,
2Zm
TFR = ——F—— 3.28
R Zu+Zmea (3.28)

Another set of equations are appropriate for current (electrical model) or particle
velocity (acoustical model) reflection and transmission at the left (input) end,

1 Zy 170

RF, = J2M— /o2
1/Zm + 1/Zina

(3.29)

and
B Z/ZM
1/Zm + 1/Zin2

A similar set of equations for the other end of the transmission line (looking to the left)
mimic those above: Egs. (3.27-3.30) with Zjn1 replacing Zjn, and Z¢ replacing Zy.

TF; (3.30)
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These transmission lines (shown in Figure 3.4) can be cascaded and combined with
circuit elements. Primitive ABCD circuit elements can be joined to form more compli-
cated circuits and loads. In Figure 3.4a is a series element, Zg, and as an example, this
matrix leads to the equations (Fig. 3.3),

Vi=V, +Zsl, (3.31)
IL=0hL (3.32)

Figure 3.4b is a shunt element. A transformer with a turns ratio #:1 is depicted in
Figure 3.4d. Different types of loads include the short circuit (electrical, V = 0) or
vacuum load (acoustical, p = —Tzz = 0) and the open circuit (electrical, I = 0) or
clamped load (acoustical, v = 0). In general, AD — BC = 1 if the matrix is reciprocal.
If the matrix is symmetrical, then A = D.

Individual matrices can be cascaded together (illustrated in Figure 3.5). For
example, the input impedance to the rightmost matrix loaded by Zz is given by

A1Zg + By

ZINl = 55— 3.33
NL=E 7 D, (3.33)
and for the impedance of the leftmost matrix,
AxZin1 + B
Iing = ——— 3.34
™27 CZin + Dy (3-39)
As an example of cascading, consider the matrices for the case shown in Figure 3.6.
Individually, the matrices are
A Byl _[1 0
{cl Dl] = [iwC 1} (3:353)

Cascade of two elements

Ay By A B

Ecz Dy T\;z/' Cy Dy VSTEI]

ZIN2 ZIN1

Figure 3.5 ABCD matrices in cascade.

Zp

A W L Jul D

Z Z
IN2 2 IN1 1

Figure 3.6 An example of two ABCD matrices in
cascade terminated by a load (Z3).
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Az Bz _ 1 dwL
[Cz Dz]_[o 1] (3.35b)

The problem could be solved by multiplying the matrices together and by substituting
the overall product matrix elements in Eq. (3.33) for those of the first matrix. Instead,
the problem can be solved in two steps: Substituting matrix elements from Eq. (3.35a)
into Eq. (3.33) yields

Zr

Nl = ——— .
IN1 iwCZr + 1 (3.35¢)

which, when inserted as the load impedance for Eq. (3.34), provides

Zr — Ww*LCZg + iwL

Zing = .
IN2 iCZe + 1 (3.35d)
Another important calculation is the overall complex voltage ratio, which, for this
case, is
Vi WV, V3
3127 3.35
Vi iV, (3.35¢)
From Eq. (3.25b), the individual ratios are
V3 ZR Zr
AER. = 35f
Vo AyZr+By 1xZg+iwl (3.356)
and
Z Zr/(1 +iwCZ
Vi IN1 r/ (1 + iwCZg) 1 (3.359)

Vi AZni +B1 1 xZg/(1+iwCZg) + 0
so that from Eq. (3.35¢), V3/V; = V3/V), for this example.

3.2.5 Oblique Waves at a Liquid-Liquid Boundary

Because of the common practice of modeling tissues as liquids, next examine what
happens to a single-frequency longitudinal wave incident at an angle to a boundary
with a different liquid medium 2 in the plane x—z (depicted in Figure 3.7). At the
boundary, stress (or pressure) and particle velocity are continuous. The tangential
components of wavenumbers must also match, so along the boundary,

kix = ky sin0; = ky sinO1 = kq sinlg (3.36a)

where kq and k; are the wavenumbers for mediums 1 and 2, respectively. The reflected
angle (0r) is equal to the incident angle (0;), and an acoustic Snell’s law is a result of
this equation,
16,
S _ (3.36b)
sinfr ¢
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Fluid 1 Z1L7 k1L

0= 06,

Figure 3.7 Oblique waves at a liquid-liquid interface.

which can be used to find the angle 7. Equation (3.36a) can also be used to determine
Or. The wavenumber components along z are the following;:

Incident ki, = ki cos 0; (3.37a)
Reflected kg, = ky cos Og (3.37b)
Transmitted kr, = ky cos Ot (3.37¢)

which indicate that the effective impedances at different angles are the following:

_pa _ 4
" cosB;  cosb; (3.382)
and
Z
Zyp =222 — 22 (3.38b)

" cosfr cosOr
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Note that impedance is a function of the angle, reduces to familiar values at normal
incidence, and otherwise grows with the angle. The incident wave changes direction
as it passes into medium 2; this bending of the wave is called refraction. Since we are
dealing at the moment with semi-infinite fluid media joined at a boundary, each
medium is represented by its characteristic impedance, given by Eq. (3.38). Then
just before the boundary, the impedance looking towards medium 2 is given by Eq.
(3.38b). The reflection coefficient there is given by Eq. (3.22a),

. Zzg — Zlg N Zz COS 9,‘ — Z1 COS QT
 Zoww+Zyw Zycosb; +Zq cos O

(3.39a)

where the direction of the reflected wave along 0g and the transmission factor along
HT is
2225 ZZZ COS 0,‘

TF — _ |
Zip+Zay Zycosb;+Zjcosbr (3.39b)

Note that in order to solve these equations, 0t is found from Eq. (3.36).

3.3 ELASTIC WAVES IN SOLIDS

3.3.1 Types of Waves

Stresses (force/unit area) and particle velocities tend to be used for describing elastic
waves in solids. If we imagine a force applied to the top of a cube, the dimension in the
direction of the force is compressed and the sides are pushed out (exaggerated in
Figure 3.8). Not only does the vertical force on the top face get converted to lateral
forces, but it is also related to the forces on the bulging sides. This complicated
interrelation of stresses in different directions results in a stress field that can be
described by naming conventions. For example, the stress on the xz face has three
orthogonal components: T, along z, T,y along x, and T}, along y. The first subscript
denotes the direction of the component, and the second denotes the normal to the
face. Thanks to symmetry, these nine stress components for three orthogonal faces
reduce to six unique values in what is called the “reduced form” notation, T; (Auld,
1990). This notation is given in Table 3.2 and will be explained shortly.

In general, a displacement due to the vibration of an elastic wave is described by a
vector (#) having three orthogonal components. Stress along one direction can be
described as a vector,

Ty = &Ty, + 9Ty + 2Ty (3.402)
First-order strain is defined as an average change in relative length in two directions,
such as
1 /0u; Ou;
S: == At} 3.40b
/ 2 <8x,< + 6x,~> ( )

For example,
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7"
g /

YN

Figure 3.8 Stress conventions.
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TABLE 3.2 Reduced Forms for Stress and Strain (From Kino, 1987)

T, Reduced T; Equivalent S, Reduced SijEquivalent  Type of Stress or Strain
T, Thx S1 Sex Longitudinal along x axis
T, Tyy S, Syy Longitudinal along y axis
T; T, S3 S Longitudinal along z axis
Ty Ty, S4/2 Syz Shear about x axis
Ts T Ss/2 Sex Shear about y axis
Ts Ty Se/2 Sy Shear about z axis
1 /0u, Ou
Sy == [ — 4+ =2 3.40c¢
Y2 ( dy = Ox ( )
Sometimes the directions coincide:
1 /Ou, Ou, Oy
Sex == +—) == 3.40d
o2 ( Ox  Ox Ox ( )
Reduced-form notation for strain is given in Table 3.2. For example,
S
Sey = Sy = ?6 (3.40¢)
Overall, the strain relation can be described in reduced notation as follows (Kino,
1987):
-0 -
Sl Ox (; 0
0 £ 0
S2 » o
S 0 0 £ x
= AR (3.40f)
, ; Uz
Ss 2 0 2
0z ox
Se 9 0
Ldy ox J

An equivalent way of expressing strain as a six-element column vector, Eq. (3.40f), is
in an abbreviated dyadic notation,

S = Vu (3.40g)

in which each term is given by Eq. (3.40f). Stress and strain are related through
Hooke’s law, which can be written in matrix form,

T, S
T, S,
Ty | S5
n| =g (3.41a)
Ts Ss

T Se
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where symmetry Cyy = Cjr has reduced the number of independent terms. Depending
on additional symmetry constraints, the number is significantly less. Equation (3.41a)
can be written in a type of symbolic shorthand called dyadic notation for vectors,

T=C:S (3.41b)

As an example of how these relations might be used, consider the case of a longitu-
dinal wave traveling along the z axis

u = Zcos (wt — kz) (3.42)

in which the displacement direction denoted by the unit vector (£) and the direction of
propagation (z) coincide, and k = w/(C11/p)"/*. Then the strain is

S3 = S, = 2 ksin(we-kz) (3.43)

The corresponding stress for an isotropic medium (one in which k or sound speed, ¢,
is the same in all directions for a given acoustic mode) is given by the isotropic elastic
constant matrix,

(117 [Cin Ciz Ciz Cia Cis Cig7[ 07
T Ca G Cy3 G Cys Cy| | O
Ts | |G G Ciz Caa Css Csg | |55
Ti| |Cia Cir Cis Cas Cis Cag|]| 0
Ts Cs1 GCs2 Cs3 Csa Css Cse| | O
L T | LC C C C C Cesl L O
6 c: CZ Ci 54 (js 56 1707 G4
Ci Ciy Ci2 O 0 0 0
Chn Cp Ciy O 0 0 S3
- 0 0 0 Cu O 0 0
0 0 0 0 Cu O 0
L O 0 0 0 0 CuslLO
which results in the following nonzero values:
T1 = C128;5 = xCyksin(wt-kz) (3.45a)
T, = C1283 = yCyaksin(wt-kz) (3.45b)
T5 = C118S3 = 2Cq 1 ksin(wt-kz) (3.45¢)

For an isotropic medium, the elastic constants are related:

1
Cyy = E(Cll —C12) (3.46)
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Other often-used constants are Lame’s constants, 4 and y,

Ciy =4+ 2u (3.47a)
Cip=1 (3.47b)
C44 =u (347C)
where / is an elastic constant (not wavelength). Another is Poisson’s ratio,
Cn
0=——"—+— 3.48
Cii+Cn (3.48)

This is the ratio of transverse compression to longitudinal expansion when a static
longitudinal axial stress is applied to a thin rod. Poisson’s ratio is between 0 and 0.5
for solids, and it is 0.5 for liquids (Kino, 1987). The ratio of axial stress to strain in a
thin rod is Young’s modulus,

2C3,

E=Cy{ ———%—
" Ch+Cn

(3.49)
Though there are many types of waves other than longitudinal waves that propagate
along the surface between media or in certain geometries, the other two most
important wave types are shear. Earlier Eq. (3.42) described a longitudinal wave
along z in the x—z plane with a sound speed,

Ci\ 12
o= <J> (3.50a)
p
Now consider a shear vertical (SV) wave in an isotropic medium with a sound speed,
Ca\ 112
s = <44) (3.50b)
p

with a transverse displacement along x and a propagation direction along z,
usy = Xusyo cos (wt — ksz) (3.51)

as depicted in Figure 3.9. When these SV waves travel at an angle 0 to the z axis, they
can be described more generally by

usy = (Xusyx + 2usyz) cos(wt — kg - r) = (Xusyx + Zusvz) cos(wt — ksz cost) + ksx sinf)
(3.52)

A shear horizontal (SH) wave, on the other hand, would have a transverse displace-
ment along y perpendicular to the xz plane and a propagation along z,

ust = Yuspo cos(wt — Rsz) (3.53)

How are these three types of waves interrelated when a longitudinal wave strikes the
surface of a solid? Stay tuned to the next section to find out.
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Usy
X
V4
y
A
UsH
X
z
y

B

Figure 3.9 Types of basic shear waves. (A) Shear vertical (SV)
and (B) shear horizontal (SH).

3.3.2 Equivalent Networks for Waves

Oliner (1969, 1972a, 1972b) developed a powerful methodology for modeling acous-
tic waves with transmission lines and circuit elements, and it is translated here into
ABCD matrix form. This approach can be applied to many different types of elastic
waves in solids and fluids, as well as to infinite media and stacks of layers of finite
thickness. Rather than rederiving applicable equations for each case, this method
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offers a simple solution in terms of the reapplication and combination of already
derived equivalent circuits. At the heart of most of these circuits is one or more
transmission lines, each with a characteristic impedance, wave number, and length.

As an example, we will re-examine an oblique wave at a fluid-to-fluid boundary.
From Section 3.2.4, we can construct a transmission line of length (d) for the first
medium by using the appropriate relations for the incident wave from Egs. (3.37a and
3.38a). Figure 3.10 shows two diagrams: the top diagram shows a general representa-
tion of each medium with its own transmission line, and the bottom drawing indicates
the second medium as being semi-infinite and as represented by an impedance, Zy.
Note that different directions are associated with the incident, reflected, and trans-
mitted waves even though the equivalent circuit appears to look one-dimensional; this
approach follows that outlined in Section 3.2.5. At normal incidence to the boundary,
previous results are obtained. Connecting the load to the transmission line automat-
ically satisfies appropriate boundary conditions.

Applications of different boundary conditions are straightforward, as is illustrated
for fluids by transmission lines shown for normal incidence in Figure 3.11. In this figure,
the notation is the following: ks is wavenumber, V; corresponds to pressure, and I
corresponds to particle velocity (v). In Figure 3.11a, for an air/vacuum boundary (called
a pressure-release boundary), a short circuit for Ty, is applied (T, = —p). For a rigid
solid or clamped condition, given by Figure 3.11b, an open circuit load is appropriate.
When there is an infinitesimally thin interface between two fluids, the coupling of
different transmission lines corresponding to the characteristics of the fluids ensures
that the stress and particle velocity are continuous across the boundary (Figure 3.11¢).
If the waves are at an angle, impedances of the forms given by Eq. (3.38) are assumed.

Reflection direction 65 Transmission direction 61
-+ —

—

A )
po | £10Kiz0 P1| Z2okrz02 P2 |j Zr

Z=dy+d, z=d, z=0
—>
Incident direction 6;

Reflection direction 65

I
Zygkizdy Py Zg

z=d, z=0
—>
Incident direction 6;

Figure 3.10 Equivalent circuits for acoustic waves in
fluids. (Top) Two-transmission line representation of fluid
boundaries. (Bottom) Transmission line for fluid and semi-
infinite fluid boundary.
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Vacuum
=Fiuid I Vi
BC.T,=0 K

A Free surface of a fluid

-~ B.C.T,v,
t Vi continuous
|| & n,=1-2k?lk2 n,=2k/k,
zf
B Clamped surface of a fluid C Fluid—Fluid interface D Free surface of a solid (vacuum-solid interface)

z
Rigid solid ns
|

——$79-

Solid T v

s

B.C.v=0 1] %

ZS

n=kJ/k,
n,=1-2k2/k2 n,=2k/k,
E Clamped surface of a solid F  Fluid-Solid interface

Figure 3.11 Equivalent circuits for acoustic waves at boundaries of solids. (A) Free surface of a
fluid. (B) Clamped surface of a fluid. (C) Fluid-fluid interface. (D) Free surface of a solid. (E) Clamped
surface of a solid. (F) Fluid-solid interface (from Oliner, 1972b, 1972 IEEE).

3.3.3 Waves at a Fluid-Solid Boundary

A longitudinal wave incident on the surface of a solid creates, in general, a longitu-
dinal and shear wave as shown in Figure 3.12. A reflected shear wave is not generated
because it is not supported in liquids; however, one would be reflected at the interface
between two solids. The fluid pressure at the boundary is continuous (p = —T3), as are
the particle velocities.

Circuits applicable to three types of loading for solids (shown in Figure 3.11)
anticipate the discussion of this section. In this figure the notation is slightly different
and corresponds to the following: “p” designates a longitudinal wave, “s” a shear
vertical wave, and “sh” a shear horizontal wave. Note that in Figure 3.11f, a wave
from a fluid is in general related to three types of waves in the solid. In these cases,
transformers represent the mode conversion processes. In Figure 3.11d is the circuit
for the pressure release (air) boundary, and in Figure 3.11e is the clamped boundary
condition, both for waves traveling upward in the solid. In all three cases, the shear
horizontal wave does not couple to other modes. In the more general case of all three
types of waves coupling from one solid to another (not shown), a complicated
interplay among all the modes exists. This problem, as well as the circuits for many
others, are found in Oliner (1972a and 1972b). Derivations and more physical
insights for these equivalent circuits are in Oliner (1969, 1972a, 1972b).
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Fluid Z;, Ky, Solid 2 Z;, ky;.
Zosy, Kasy
Or
0
Oosy
;=61
1 2

Figure 3.12 Wavevectors in the x-z plane for fluid-solid interface problem.

The case of wave in a fluid incident on a solid (Figure 3.12) is now treated in more
detail in terms of an equivalent circuit. This problem is translated into the equivalent
circuit representation of Figure 3.13a, which shows mode conversion from the
incoming longitudinal wave into a longitudinal wave and a vertical shear wave in
the solid. Since the motions of these waves all lie in the xz plane, they do not couple
into a horizontally polarized shear wave with motion orthogonal to that plane. Also,
because an ideal nonviscous fluid does not support transverse motion, none of the
shear modes in the solid couple into shear motion in the fluid. Here the solid and fluid
are semi-infinite in extent, so characteristic impedances replace the transmission lines.
Because the input impedances of the converted waves are transformed via Eq. (3.33)
and the ABCD matrix for a transformer, the input impedance at position (a), looking
to the right in Figure 3.13b, is

Zia = 1t Zaro + nkyZasve (3.54)

Where the angular impedances used for the fluid—fluid problem are used,
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Z
21y = Lol Lok (3.55a)
cosby  cos Oy
Z
Zasvo = Pacas _ _“asv (3.55b)

cosbrsy  cos Orgy
in which these angles can be determined from the Snell’s law for this boundary,
/le = kl sin@lL = kZSV Sinezsv = kZL sin92L (356)

The stress reflection factor at (@) is simply

Zina — Zaro
——_a 7 3.57a
T Zina +Ziwo ( )
where
Zypy =L (3.57b)
cos 0;

The transmission stress factors for each of the two waves in the solids can be found
from Eq. (3.28) and impedance at each location. First at (b) in Figure 3.13b:

2n2Z2L0
TF, = ——L=% 3.58
Y7 Zito + Zia 6-58)

second at (c),

n2SV:1

[ ]
[ ]

Nogy 1
S —
A E Zou e[| 22
C—
b n2L:1

% Z,
Zi16| | rarl I 220
Nogy A I ngVZZSVS

B ZZS Ve C

Figure 3.13 Equivalent circuit for fluid-solid
interface problem. (A) Overall equivalent circuit dia-
gram. (B) Reduction of circuit to transformed loads.
(C) Simplified circuit.
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2nd,Zosvo
Ziro + Zina

Here these factors represent the ratios of amplitudes arriving at different loads over
the amplitude arriving at both loads, position (@) in Figure 3.13b. Usually, it is most
desirable to know the intensity rather than the stress arriving at different locations
(e.g., the relative intensities being converted into shear and longitudinal waves). From
the early definitions of time average intensity (Eq. 3.7) and the three previous factors,
it is possible to arrive at the following intensity ratios relative to the input intensity:
first the intensity reflection ratio,

TFsy = 3.59)

(Zina — Zaro)*

r = (RF,)? = 2INA — ZIL07 (3.60)
’ @Zina + Z110)*
and the intensity ratio for the longitudinal waves
Z A7 ot Z.
1, = (TF)? -kt 22AM2alo (3.61)
niZoro (Zio +Zina)
and the intensity ratio for the shear waves
Z 4711 on% 7,
oy = (TFgy)? —21L0 _ 11015y Z2svo (3.62)

ngyZasve  (Zing + Zma)

An example of an intensity calculation is shown in Figure 3.14.

Intensities at water—-muscle interface vs incident angle
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Figure 3.14 Intensity transmission and reflection graphs for water—
muscle boundary as an example of a fluid-solid interface.
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3.4 CONCLUSION

In this chapter, wave equations describe three basic wave shapes. When waves strike a
boundary, they are transmitted and reflected. For the one-dimensional case, solutions
consist of positive- and negative-going waves. Through the application of ABCD
matrices, solutions for complicated cases consisting of several layers can be con-
structed from cascaded matrices rather than by rederiving the equations needed to
satisfy boundary conditions at each interface. This approach will be used extensively
in developing a transducer model in Chapter 5 and Appendix C. Matrix methodology
has been extended to oblique waves at an interface between different media.

Even though tissues are most often represented as fluid media, they are, in reality,
elastic. An important case is the heart, which has muscular fibers running in preferen-
tial directions (to be described in Chapter 9). In addition, elastic waves are necessary
to describe transducer arrays and piezoelectric materials (to be discussed in Chapters
5 and 6). An extra level of complexity is introduced by elasticity, namely, the existence
of shear and other forms of waves created from both boundary conditions and
geometry. Reflection and mode conversions among different elastic modes can be
handled in a direct manner with the equivalent approach introduced by A. A. Oliner.
His methodology is well suited to the ABCD matrix approach developed here. It also
has the capability of handling mode conversions to other elastic modes, such as Lamb
waves and Rayleigh waves (as described in his publications).

BIBLIOGRAPHY

For more information on elastic waves, see Kino (1987), now available on a CD-ROM archive
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4.1 LOSSES IN TISSUES

Waves in actual media encounter losses. Real tissue data indicate that absorption has a
power law dependence on frequency. As a result of this frequency dependence,
acoustic pulses not only become smaller in amplitude as they propagate, but they
also change shape. Absorption in the body is a major effect; it limits the detectable
penetration of sound waves in the body or the maximum depth at which tissues can be
imaged. In order to compensate for absorption, all imaging systems have a way of
increasing amplification with depth. These methods will be discussed at the end of this
chapter.

Usually absorption is treated in the frequency domain. Because imaging is done with
pulse echoes, it is important to understand the effect of absorption on waveforms. This
chapter introduces model suitable for the kind of losses in tissues that can work equally
well in the domains of both time and frequency. When absorption is present, phase
velocity usually changes with frequency as well (an effect known as dispersion). The
loss model can predict how both absorption and phase-velocity dispersion affect pulse
shape during propagation. Absorption and dispersion are related through the principle
of causality. Tissues are viscoelastic media, meaning they have both elastic properties
and losses. The model can also be extended to cover these characteristics. In addition,
appropriate wave equations and stress—strain relations (Hooke’s law for lossy media)
complete the simulation of acoustic waves propagating in tissue with losses.

4.1.1 Losses in Exponential Terms and in Decibels

When waves propagate in real media, losses are involved. Just as forces encounter
friction, pressure and stress waves lose energy to the medium of propagation and
result in weak local heating. These small losses are called ““attenuation” and can be
described by an exponential law with distance. For a single-frequency (f,) plane wave,
a multiplicative amplitude loss term can be added,

Az, t) = Ag exp(i(w.t — kz)) exp(—oz) 4.1)

The attenuation factor (o) is usually expressed in terms of nepers per centimeter in this
form. Another frequently used measure of amplitude is the decibel (dB), which is most
often given as the ratio of two amplitudes (A and A) on a logarithmic scale,

Ratio(dB) = 20 log,, (A/Ao) 4.2)
or in those cases where intensity is simply proportional to amplitude squared
(Io o A7),

Ratio(dB) = 101log;, (I/Ip) = 10log;, (A/Ao)2 (4.3)
Most often, « is given in dB/cm,
oap = 1/2{20 x logy [exp( — tnepersz)]} = 8.6886(tnepers) (4.4)

Graphs for a loss constant o equivalent to 1 dB/cm are given in Figure 4.1 on several
scales.
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Figu re 4.1 Constant absorption as a function of depth on a (top) linear scale,
(middle) dB scale, and (bottom) neper scale.

A plane wave multiplied by a loss factor that increases with travel distance (z) was
shown in Eq. (4.1). This equation for a single-frequency (f.) plane wave can be
rewritten as

Az, t) = Ag exp(—oz) expliw (t — z/co)) (4.5a)

in which ¢y is a constant speed of sound and a« = oy is a constant. Also, the second
exponential argument can be recognized as a time delay. The Fourier transform of this
equation is

Az, ) = Ao exp([—aoz — iwez/c])o(f — o) (4.5b)

This result indicates that the exponential term is frequency independent and acts as a
complex weighting amplitude for this spectral frequency.

The actual loss per wavenumber is very small, or at/k << 1, a fact that will be useful
later. Even though the loss per wavelength is small, absorption has a strong cumulative
effect over many wavelengths. Absorption for a round-trip echo path usually deter-
mines the allowable tissue penetration for imaging.

4.1.2 Tissue Data

These simple loss and delay factors are not observed in real materials and tissues. Data
indicate that the absorption is a function of frequency. Many of these losses obey a
frequency power law, defined as
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Figure 4.2 (A) Absorption as a function of frequency for muscle, fat, and blood. (B) Phase
velocity dispersion difference minus a midband (5 MHz) sound speed value for the same tissues.

o(f) = oo + ou|f

(4.6a)

in which oy is often zero and y is a power law exponent. A graph for the measured
absorption of common tissues as a function of frequency is given in Figure 4.2a. In
addition to absorption loss, the phase velocity of tissue also varies with frequency,

c(f) = co + Ac(f)

(4.6b)

where Ac(f) is a small change in sound speed with frequency. What is plotted in Figure
4.2b is the change in sound speed with the constant term subtracted out for conveni-

ence,

Ac(f) = e(f) — <o

(4.6¢)
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This change of phase velocity with frequency is required by causality, as will be shown
shortly. Although this velocity dispersion is considered by many to be a small effect,
the consequences of neglecting it can be significant, especially for broad bandwidth
pulses.

As pointed out in Chapter 1, soft tissues are mostly (60%) composed of water;
therefore, values for average velocity are similar, varying only about +£10% from a
mean value (see Figure 1.2). Lists of common tissue average absorption, average
phase velocity values, and characteristic impedances are in Appendix B, and a more
complete list is in Duck (1990). Tissue attenuation has two parts: absorption and
scattering. At low-MHz frequencies, scattering is typically 10-15% of the total value
of attenuation (Bamber,1986, 1998). The tissue structure causes the scattering to vary
with angle. Both absorption and scattering are frequency dependent because the
wavelength changes in relation to the scale of tissue structure. This scaling implies
that as the imaging frequency is lowered, greater averaging over the structure occurs.
The topic of scattering will be treated in more depth in Chapters 8 and 9; for now, we
neglect scattering and assume that each type of tissue has characteristics that are
uniform everywhere (homogeneous).

4.2 LOSSES IN BOTH FREQUENCY AND TIME DOMAINS

4.2.1 The Material Transfer Function

The combined effects of absorption and dispersion on pulse propagation can be
described by a material transfer function (MTF) in the frequency domain,

MTE(f, z) = explyr(f)z] (4.72)
in which
v1(f) = —a(f) — iB(f) = —o(f) — i[ko(f) + (/)] (4.7b)

where kg = w/cy, a baseline wavenumber (where ¢ is a sound speed value usually
taken to be at the center frequency of the spectrum of a pulse), and fg(f) is an
excess dispersion term required by causality (to be presented later). In Eq. (4.7),
a frequency-dependent amplitude term is associated with «(f), and an effective
frequency-dependent phase velocity is determined by

1/e(w) = B/w=ko/w+ Bg/w=1/co + Pg/w (4.8)
in which, because the second term is very small relative to the first, can be approxi-
mated by

cw) —co = —cjPp/w (4.9)

like Eq. (4.6¢).
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4.2.2 The Material Impulse Response Function

The material transfer function (MTF) has its time domain counterpart, called the
material impulse response function, mirf(z):

mirf(t, 2) = 3 H{ explyr(f)z]} (4.10)

For an initial pulse described by po(t) having a spectrum Py(f), the pulse at a distance z
can be described simply by either

p(t, z) = po(t) *; mirf(t, 2) (4.11a)
or, equivalently, in the frequency domain as
P(f, z) = Po(f)MTE(f, z) (4.11b)

Equation (4.11a) was used to calculate pulses at increasing distances (z) in Figure 4.3
for a medium with loss. An initial starting pulse of a Gaussian modulated sinusoid was
used. A series of mirfs that were used for Figure 4.3 are shown in Figure 4.4 for the
case of a frequency dependence for absorption, withy = 1.5 (based on the time causal
model, which will be introduced shortly). Note that the mirfs follow a delay time that
is approximately z/cq, where ¢p = 1.5 mm/ps.

From these figures, we can see that the mirf function has some very interesting
properties. Its amplitude diminishes with increasing distance. As the delay time
approaches zero, mirf must become impulse-like. For short distances, mirf(t) has a
steep leading edge, as required by causality, so that its left edge does not extend into
negative time.

Pout
1 . .
— 2z=0.135cm
— z=1.35
— z=6.45
2 4 6 8 10 12
Time (us)

Figure 4.3 Changes in pressure-pulse shape of an
initially Gaussian pulse propagating in a medium with a
1dB/MHz'-*>-cm absorption y= 1.5 for three different in-
creasing propagation distances (2).
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Figure 4.4 Material impulse response functions for a medium with a
1dB/MHz'->-cm absorption for different propagation distances (z). Note that
peaks follow a 1/a characteristic. Here, a = (a3 z)”” from section 4.4.1.

What is causality? It is natural law that does not allow a response to precede its
cause. In order for the pulse response to be zero for ¢ < 0, the complex Fourier
spectral components must add up to produce an effect in the time domain, which is
the equivalent of canceling out the pulse response for times less than zero. This
mathematical operation is similar to multiplying the time response by H(z), the step
function that is zero for ¢ < 0.

4.3 TISSUE MODELS

4.3.1 Introduction

In order to calculate the material transfer function and the material impulse response,
a model must be selected. The models available describe both absorption and disper-
sion as a function of frequency and differ in terms of their convenience and accuracy.
These models are not very satisfying in terms of an explanation based on first
principles, but they can describe adequately, in an empirical way, the way absorption
affects acoustic propagation.
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The choices for models are the classic relaxation model, the time causal model, and
the Kramers—Kronig relation. The relaxation model (Kinsler ez al., 2000) is the most
well known; however, it has its own absorption function that is not exactly the power
law dependence observed for tissues (to be described shortly). An often-used
approach is to fit the one or more relaxation—absorption functions to match the
power law absorption characteristic over a limited frequency range. While this
procedure is suitable for valid band or a band-limited starting spectrum (Py), the
responses at very low and high frequencies (which are important in Fourier inversion)
must be watched carefully.

The time causal model (Szabo, 1994, 1995) is based on the observed power law
absorption characteristic and provides a more direct implementation. A third ap-
proach, the application of the Kramers—Kronig relation (Kronig, 1926), is more
challenging for an absorption power law type characteristic, which increases expo-
nentially as frequency approaches an infinite limit. This difficult problem has been
solved by the method of subtractions and has been found to be equivalent to the time
causal method (Waters et al., 2000a, 2000b). These last two methods (really the same
result solved in different domains), though more recent, have had extensive experi-
mental validation. All of these models satisfy the laws of causality.

4.3.2 Thermoviscous Model

In the classic thermoviscous model (Blackstock, 2000), the medium is composed of
noninteracting molecules that all have an associated sound speed and relaxation
constant (t). For this model, the absorption divided by frequency (x/w) has the form
shown in Figure 4.5a. Also, the excess dispersion divided by frequency (fg/w) is
plotted in Figure 4.5b, with () as a relaxation constant. The equations used for
calculating the absorption and dispersion in Figure 4.5 are the following:

oc(w)oclw< ! N ) 4.12)

1+ (wr) 1+ (wr)?

1 1
Be(w) = onw( oo 1+ (M)2> (4.13)

In the time domain, the mirf can be found from Eq. (4.10) with substitutions from
Egs. (4.12-4.13).

The graphs for absorption loss for tissues in Figure 4.2 show characteristics that are
monotonically increasing because they follow a power law; therefore, they do not
have inflection points and negative slopes like those for the relaxation model depicted
in Figure 4.5. Because of this fact and the smallness of the loss per wavenumber,
(o/ko)* << 1, a low-frequency approximation of the relaxation model is applied
more often to model loss in tissues and other materials. Note that in this region
where wt < 1, the absorption depends on the frequency squared and the phase
velocity is nearly constant.
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Figure 4.5 (A) Absorption («) divided by angular
frequency (w) versus angular frequency (w) times ()
for the thermoviscous model. Loss peak at w, = 1/7,
where 7 is relaxation time. (B) Excess dispersion (fir)
divided by angular frequency (w) versus angular fre-
quency (w) times t (from Szabo and Wu, 2000, Acous-
tical Society of America).

4.3.3 Multiple Relaxation Model

One way of overcoming the discrepancy between the thermoviscous model and
observed power law absorption characteristics of tissues is to use a fitting procedure
to Eq. (4.6a), involving either a superposition or distribution of several relaxation
time constants (Bamber, 1986; Nachman et al., 1990; Wojcik et al., 1999). This
multiple relaxation model corresponds to a tissue model with different, independent,
noninteracting molecules, each with its own relaxation constant and associated speed
of sound. Typically, two to three relaxation constants are used to fit a measured
absorption frequency characteristic for a prescribed frequency range.

4.3.4 The Time Causal Model

The time casual model is based on a power law that includes macromolecular effects.
The relaxation models are causal, which means that an effect cannot precede its cause.
Traditionally, the effects of causality have been determined by use of the Kramers—
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Kronig relation, which relates the excess dispersion characteristic to a convolution
integral operator on absorption over all frequencies,

ﬁE(f):n—f

In other words, g is the Hilbert transform of a(f) — a. This approach poses numer-
ical evaluation problems for the Hilbert transform integral of power law absorption
because, unlike the characteristics of the thermoviscous model in Figure 4.6, which
decrease with very high frequencies, power law characteristics increase monotonically

[ = a(f) + 2ol (4.14)
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Figure4.6 (A)Measured absorption data as a function of frequency for TKO-1170
(high-viscosity hydrocarbon oil) with power law fit. (B) Measured relative velocity dis-
persion with error bars compared to prediction from Eq. (4.19a) using the measured
absorption data power law fit (from Waters et al., 2000a, Acoustical Society of America).
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with frequency. One solution to this problem is to use a time causal relation. Another
way to solve the numerical difficulties is to apply a method of subtractions to the
Kramers—Kronig method (Waters et al., 2000a, 2000b). These two approaches give
the same results and can be considered to be complementary statements of causality.

For the time causal method, causality can be expressed directly in the time domain
(Szabo, 1994, 1995; Szabo and Wu, 2000) through the use of generalized functions, as

Ly, (t) = —i sgn(t) * Ly(t) 4.15)
where sgn(z) is a signum function (Bracewell, 2000),
sgnt) =1 t>0

(4.16)
sgn(t)=1 t<0

and Lg, as well as L, are Fourier transform pairs of f(f) and «0 — a(f), respectively.
These transforms involve the application of generalized functions (these details need
not concern us here and can be found in the references above). The overall propaga-
tion operator can be written as

L,(t) = Ly(t) + iLg, (2) = [1 + sgn(®)Ly(t) = 2H()L,(2) 4.17)

where H(t) is the step function (Bracewell, 2000).

Note that because the Hilbert transform is involved, there is a similarity between
this operation and that for creating an analytic signal (described in section A.2.7 of
Appendix A). In this case, the time absorption operator is multiplied by 2H(z),
ensuring causality, whereas for the analytic signal, the negative frequency components
were dropped by a similar operation in the frequency domain (as described in
Appendix A). From the time causal relation, an imaginary signal iLg, (¢) is created
from the real one, L,(t), just as for the analytic signal, an imaginary quadrature signal
was derived from the original real signal. From the power law, the time causal
relation, and the Fourier transform relation between these time operators and o
and f, the excess dispersion has been found to depend on the kind of power law type
of exponent y. The steps in the process are the following:

1. Find L,(#) from the inverse Fourier transform of a(f) — ao through the use of
generalized functions.

2. Obtain Lg, (¢) from Eq. (4.15), the time causal relation.

3. Find fg(f) from the Fourier transform of Ly, (¢) through the use of generalized
functions.

The results for f(f) indicate that various functions are necessary for different forms
of y. For y as an even integer or noninteger,

Be(f) = o tan(ry /2)f [P~ (4.18a)

and for y as an odd integer,

Be(f) = —(2/m)ouf tnlf| (4.18b)

Versions of these equations that are more appropriate for phase velocity data follow.
For y as an even integer or noninteger,

1/elf) = 1/elfo) + m tantey/2)[ 1P = Ifol '] (4.192)
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in which ¢(f) is the speed of sound at a reference frequency (fy), usually a midband
value. For y as an odd integer,

1/c(f) = 1/c(fo) — Qauf’ =t /m)(n|f| — tnlfo)) (4.19b)

Dispersion is maximum for y =1 or equal to an odd integer, given equivalent
absorption loss coefficients. Note that if y is zero or an even constant, Sz = 0. The
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Figure 4.7 (A) Measured absorption data as a function of frequency for DC 705
(silicone fluid) with power law fit of y~ 2. (B) Measured relative velocity dispersion
with error bars compared to prediction from Eq. (4.19a) using the measured absorp-
tion data power law fit. Note that dispersion is nearly zero for this quadratic loss case
(from Waters et al., 2000a, Acoustical Society of America).
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Figure 4.8 Comparison of simulations to data for a broadband pulse passing through an ATS
Laboratories, I. tissue mimicking phantom with o (fy1,) = 0.21+0.20 £-°8 dB/cm. (A) Pulse data.
(B) Time causal model. (C) Nearly local Kramers—Krénig model (from He, 1998a, IEEE).

validity of these results has been verified by independent analysis and confirmed
by experiments at several laboratories (Szabo, 1995; He, 1998a, 1998b, 1999;
Waters et al., 2000a; Szabo and Wu, 2000; Trousil et al., 2001). Examples of data
comparisons are given in Figures 4.7-4.8. In Figure 4.6, the attenuation follows a
power law with an exponent y = 1.79, and the phase velocity increases with fre-
quency. For the second case (Figure 4.7),y & 2, so very little dispersion is expected (in
excellent agreement with data).

The time causal analysis, though it uses a low-frequency approximation, holds for
the entire ultrasound imaging range and is valid to very high frequencies, including
multiple harmonic frequencies. A very conservative estimate of the upper frequency
limit is given by

fLIM = 0.1/[0(1 C()/(Z‘It)] (4.20)

For the cases where vy is equal to one and a noninteger, the Kramers—Krénig approach
with the method of subtractions (Waters et al., 2000a) has shown these dispersion
results to be valid without a high-frequency limit.

4.4 PULSES IN LOSSY MEDIA

4.4.1 Scaling of the Material Impulse Response Function

Even though losses are evaluated most often in the frequency domain, it is also
possible to examine the combined effects of loss and dispersion in the time domain
directly through the material impulse response function. At each depth (z), the mirf
from Eq. (4.10) encodes all the frequency loss and dispersion into a time waveform.
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This waveform can be determined from the inverse Fourier transform of the material
transfer function, which can be calculated from Egs. (4.6), (4.7), and (4.18). In
general, the material impulse response has to be evaluated numerically. When a fast
Fourier transform (FFT) of a digital Fourier transform (DFT) is used, enough
frequency points need to be taken to ensure that the nearly vertical leading edge of
the response is captured accurately.

Because the velocity dispersion is often small, about +2x1073 of ¢, in Figure 4.6,
for example, most people assume its effect is negligible. In Figure 4.8, simulations of
broadband pulse propagation with and without dispersion are compared to experi-
ment. In this case, the power exponent is the same as that for Figure 4.7 (y &~ 2), so no
dispersion is expected from the time causal model (in agreement with data). The third
comparison is to an older, nearly local Kramers—Krénig model that predicts disper-
sion for this case. This older model is more accurate near y ~ 1 and has been replaced
by Eq. (4.19) (Szabo, 1995; Waters et al., 2000a). The differences in the pulse
predictions are noticeable and show the need for correctly accounting for dispersion,
especially for wider bandwidth pulses.

As indicated in the last section, dispersion is maximum for y = 1. In Figure 4.9,
corresponding time domain calculations for y = 1 are shown for a material impulse
response for propagation of 1 cm in a tissue with absorption equal to 1 dB/MHz-cm
(0.1151 neper/MHz-cm) and a reference phase velocity of cp = 0.15 ¢cm/pus with and
without dispersion calculated from causality. Two striking differences are that the
acausal response is symmetrical (g = 0) while the causal one is not, and the causal
waveform peaks at 0.972z/cy. A simple explanation of the earlier arrival of the
causal response is that for most of its frequency range, the phase velocity increases

0.0

causal
acausal
y=1
z=1cm

"6.00

6.50 Time (us)

Figure 4.9 Comparison of causal time mirf and an acausal nondispersive mirf for linear loss
(y=1), for a propagation distance of 1cm and an absorption coefficient of 0.1151 neper/MHz-cm
(1 dB/MHz-cm) (from Szabo, 1993).
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Figure 4.10 Comparison of causal time mirf and an acausal nondispersive mirf for linear loss
(y = 1) for a propagation distance of 10cm and an absorption coefficient of 0.1151 neper/MHz-cm
(1 dB/MHz-cm) (from Szabo, 1993).

and is greater than its value at zero frequency, whereas in the acausal case, the phase
velocity is constant.

A second calculation, for propagation in the same material to a depth of 10 cm, is
shown in Figure 4.10. Note that the amplitude has dropped by a factor of 10 and the
timescale has been expanded by a factor of 10. Careful observation shows that the
time delays for the causal model at the 1-cm distance are slightly earlier (about 1% of
the total delay) than the mirf for the 10-cm distance because more high frequencies get
through the shorter distance.

It is possible to generalize these results through the scaling theorem. Rewriting the
material transfer function (MTF) into an equivalent scaled function,

MTE(f) = M(af) (4.21a)
in which
a=(uz)"” (4.21b)
leads to a material impulse response function (#irf) through the scaling theorem,

mirf (t) = 37 [MTF(f)] = 3~ ' [M(af)] = (1/a)ym(t/a) (4.22)

This time relationship, Eq. (4.22), provides a more direct and intuitive understanding
of how loss changes with distance than the more often-used MTF. For y = 1, this
relation shows that the amplitude of the mirf drops by 1/z and expands in length by z.
Figures 4.9 and 4.10 show, to first order, how the amplitude drops by a factor of 10
and the response elongates by a factor of 10 in accordance with Eq. (4.22). Interest-
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ingly, the mirf waveform shape and area are nearly maintained! In another example
for y = 2, Eq. (4.22) shows that amplitude falls off more gradually with distance as
1/+/z. Figure 4.4 shows how amplitude falls as 1/a for y = 1.5.

More formally, the MTF scaling relation, Eq. (4.21a), can be rewritten in the
following way:

Maf) = exp{[~(00) 1]} exp{ i[2n(e00) 7 [(212) o] + i (a2) ]| }
(4.23a)

M(af) = exp{—lalf|V'} exp{ ~i |2naf /(aco) + B (af)] |

where

Be| (12) ] = Be(h) (4.23b)

so that the material impulse response is found from the inverse Fourier transform,

SHMTF[f)} = 5 {Mlaf]} = 57 {M[@2)'Pf]} = [1/(02) " |m |t/ (2)"”
(4.24)

Equations (4.23) and (4.24) are exact formulations of the scaling relations and include
the effects of dispersion. To first order, the shapes of the mirf functions at different
distances are nearly the same except for scaling, and if we assume the slight differences
in delay are negligible (they will be small when applied to finite bandwidth pulses),
then losses can be explained through the scaling of the material impulse response
functions with distance. In summary, Eq. (4.24) provides an intuitively satisfying
picture of loss in the time domain through the mirf. The amplitude of the mirf falls
by 1/a, and the mirf widens by a factor of a with distance.

4.4.2 Pulse Propagation: Interactive Effects in Time and Frequency

In order to apply this scaling principle to the propagation of pulses in lossy media, the
interaction of the pulse characteristics, with the constantly changing mirf with dis-
tance, must be taken into account. For example, the mirfs in Figure 4.4 obey the
scaling law, but the corresponding pulses in Figure 4.3 undergo changes in shape and a
slightly different drop in amplitude with distance.

A perspective that includes both the time and frequency domain viewpoints is
helpful in explaining the changes in pulse propagation in a lossy medium. The
bandwidth of a pulse can have a considerable effect on pulse shape during propaga-
tion. The Fourier theory, Eq. (4.11), can be applied to predict the shape of a pulse at
some point in the medium, if its initial shape at z = 0 is known in either the frequency
or time domain (illustrated by Figure 4.3). Beginning with Eq. (4.11), we can examine
the effects of loss on the spectral magnitude for an initial pulse, which is a sine wave
amplitude modulated by a Gaussian envelope, that propagates into a medium that has
an absorption with linear frequency dependence, as follows:
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IP(f, 2)[=[Po(FIMTE(f, 2)| (4.25a)
IP(f, 2)|=| exp[ — b(f — f)* ] exp(— o |flz — ifz)] (4.25b)

The # dispersion has a magnitude equal to one, so
IP(f, 2)| = expl — b(f — f)* ] exp(— au|fz) (4.25¢)

By differentiating this magnitude with respect to frequency and setting the result to
zero, we obtain the position of the spectral peak as a function of propagation distance,

O|P(f, 2)|/0z = [ = 2b(f — fc) — ulfI2]|P(f, 2)| = O (4.26a)

and solving for f gives

%1%
freak = fc — %5 (4.26b)

This result indicates a downshift in peak frequency as depth z is increased. Since a
smaller value of b indicates a broader original bandwidth, Eq. (4.26b) shows a greater
downshift for wider bandwidths, as shown in Figure 4.11.

Recall from Eq. (4.11a) that the overall spectrum at a depth is the product of the
MTF for that depth multiplied by the spectrum of the initial pulse. To explore these
effects in more detail, we plot the magnitude of spectra for 10-MHz center frequency

50% Fractional bandwidth Gaussian spectra
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Figure 4.11 (A) Downshiftin peak frequency of spectra for a Gaussian-pulse
input pulse with a 50% fractional bandwidth as a function of increasing depth in a
medium with 1 dB/MHz-cm linear frequency loss dependence. (B) Spectra for a
Gaussian pulse with 25% fractional bandwidth.
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Figure 4.12 On the left are curves for material transfer functions for y=1,z=1,and z=10cm,
and an absorption coefficient of 0.1151 neper/MHz-cm (1 dB/MHz-cm). On the right are curves for the
spectral magnitudes of a narrowband Gaussian (long dashes, 25% fractional bandwidth) and wideband
Gaussian (short dashes, 50% fractional bandwidth). Both spectra have a center frequency of 10 MHz
(from Szabo, 1993).

Gaussian starting pulses with fractional bandwidths of 25% and 50% (on the right
side of Figure 4.12). On the left side of this figure are MTFs for distances of 1 and
10 cm, for a medium with linear frequency absorption (y = 1) and a coefficient of
1dB/MHz-cm (0.1151 neper/MHz-cm). The underlying causes for spectral downshift
are evident in this figure. For the MTF for a 1-cm depth, the considerable overlap of
spectra shows that the product of spectra will result in a high peak frequency. In
contrast, there is little interaction between the MTF for 10 cm and the Gaussian
spectra. The overlap, and consequently, the resulting peak frequency, is lower for
the broader bandwidth.

The effects of bandwidth on pulses can be seen by comparing pulse envelopes with
the mirfs corresponding to the same propagation distances. This perspective on loss
mechanisms is found in Figures 4.13 and 4.14 for the time domain plots of the
analytic envelopes of propagated pulses that are compared with the corresponding
mirfs used for the calculations in Figures 4.9 and 4.10. For the 1-cm distance (Figure
4.13), the mirf is narrow, the delays of the peaks remain grouped together, and the
original pulse envelopes are relatively unchanged. At a larger distance (zx = 10 cm), the
effects of dispersion alter both the delays of the peaks and the shapes of the envelopes
in Figure 4.14.

4.4.3 Pulse Echo Propagation

In order to cover the effects of absorption to pulse echoes, both the effect of reflec-
tions and the return path must be included. For a round-trip path, the MTF for each
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Figure 4.13 (Solid curve) Material impulse response function (mirf) for y=1, z=1cm, and an
absorption coefficient of 0.1151 neper/MHz-cm (1 dB/MHz-cm). (Long dashes) Pulse envelope of a mirf
convolved with narrowband Gaussian (25% fractional bandwidth) input pulse. (Short dashes) Pulse
envelope of a mirf convolved with wideband Gaussian (50% fractional bandwidth) input pulse curves

normalized to one (from Szabo, 1993).
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Figure 4.14 (Solid curve) Mirf for y=1, z=10cm, and an absorption coefficient of 0.1151 neper/
MHz-cm (1 dB/MHz-cm). (Long dashes) Pulse envelope of a mirf convolved with narrowband Gaussian
(25% fractional bandwidth) input pulse. (Short dashes) Pulse envelope of a mirf convolved with wide-
band Gaussian (50% fractional bandwidth) input pulse curves normalized to one (from Szabo, 1993).
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part of the propagation path is accounted for by multiplying the individual MTFs. In
general, for paths z; and z;, the exponential nature of the MTFs result in an overall
MTF of MTF(f, z) = exp[yr(f)(z1 + z2)]. The corresponding time domain equivalent
is the convolution of a mirf for z; and one for z;.

To add reflections to a lossy medium, the analysis of the last chapter on reflections
and wave propagation can be extended. A simple modification of the ABCD transmis-
sion line matrix can be made. For the transmission line matrix for a path length (d),
hyperbolic functions replace the trigonometric ones, and y replaces k in the argu-
ments. Then the matrix elements are

cosh(yd) Zy sinh(yd)
(Siﬂh(vd)/ZM cosh(yd) ) (4.27)

where sinh and cos b are the hyperbolic sine and cosine functions of complex argu-
ment. With these changes, the matrix approaches for reflections and mode conversion
can be combined with losses.

4.5 PENETRATION AND TIME GAIN COMPENSATION

In order to compensate for the effects of absorption and focusing, imaging systems
have a method called time gain compensation built in as a set of controls. The depth
dimension of the image is divided into horizontal (linear format) or radial (sector
format or curved linear array format) strips, each of which is connected to a separate
amplifier stage with a variable gain. These gain controls can be adjusted manually to
boost the gain independently in each strip zone. The net effect of these gains is that
they provide a means to increase gain with depth in a stepwise manner in order to
offset the effects of absorption. Adjustments in time gain compensation (TGC) are
made to approximate a uniform background level throughout the field of view
(illustrated in Figure 4.15). For this example, the overall absorption as a function of
depth (z) is divided into four zones, each of which has an amplification gain adjusted
to offset the average loss in the zone.

The penetration depth of an imaging system can be determined from a knowledge
of the effective dynamic range of the system and the loss in a phantom or body, as well
as from the fact that round-trip absorption decays as exp( — 22z). For example, if the
dynamic range (DR) of the system was 100 dB, and the one-way loss was 5 dB/cm at
5 MHz, then if DR = o432z, the penetration depth is z = 10 cm.

4.6 HOOKE’S LAW FOR VISCOELASTIC MEDIA

Hooke’s law, which shows that the proportionality of stress to strain holds only for
purely elastic media, was described in Chapter 3. A modified Hooke’s law for
viscoelastic media (elastic media with losses) is (Auld, 1990):

S
T= C:s+n% (4.282)
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Figure 4.15 (A) Exponential decay of round-trip
loss with depth in dB and (b) gain to offset loss in dB.
Gain is approximated by (c) stepwise five TGC zones with
depth for compensation. (B) Net effect of compensation
() and absorption (a) on background level in image.

where C is an elastic stiffness constant matrix and 7 is a viscosity stiffness constant
matrix of the same size. The Voigt dashpot, or low-frequency version of a thermo-
viscous model for a single cell, corresponding to this equation is given by Figure
4.16a. The spring on the left of Figure 4.16a represents the first elastic term of Eq.
(4.28a). The dashpot on the right of this figure introduces loss and symbolizes the
second term of Eq. (4.28a). The Fourier transform of this modified Hooke’s law is

T(f) = C:S(f) + iwn: S(f) (4.28b)

For single-frequency cases, Eq. (4.28b), has led to the concept of Hooke’s law with a
complex elastic constant, C + iwn (Auld, 1990).

An alternative approach is depicted in Figure 4.16b, in which the dashpot is
replaced by a more general response function, 7(¢). In this case, the counterpart to
Eq. (4.28a) is

T=C:S+n:r(t) %S (4.29a)
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Figure 4.16 Models for loss in viscoelastic materials.
(A) Relaxation or Voigt dashpot model. (B) Time causal model
(from Szabo and Wu, 2000, Acoustical Society of America).

and its Fourier transform is

T(f) = C:S(f) + in: R(F)S(f) (4.29b)

so that the concept of a complex elastic constant no longer holds except at a single
frequency. Eq. (4.29b) shows that the imaginary term changes in a more complicated
way than that of Eq. (4.28b) as a function of frequency. This second model is the time
causal model, which has more general applicability, and Eq. (4.29) reduces to Eq.
(4.28) for the case of y = 2. Expressions for r(#) can be found in Szabo and Wu (2000).

4.7 WAVE EQUATIONS FOR TISSUES

4.7.1 Voigt Model Wave Equation

If Eq. (4.28a) for the thermoviscous model is applied to the derivation of a wave
equation for this type of solid (Auld, 1990), the following equations can be obtained
for a plane wave propagating along the z axis of an isotropic solid:

v 1o w0
072 Cé p Ot? Cii 020t

(4.30a)

where v = v,, is the particle velocity in the direction 2 such as z, and the speed of
sound is

co=/Culp (4.30b)

Note the addition of a third loss term at the end of the usual wave equation. Here this
type of equation applies equally well to simple cases of elastic longitudinal wave and
shear wave propagation in an isotropic medium through the use of the appropriate

elastic constants, C11 and Caa, respectively, or for fluids by the appropriate constants
(Szabo, 1994; Szabo and Wu, 2000).
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When this equation is converted to the frequency domain and a solution for the
particle velocity of the form and direction associated with a specific mode,

v(z, w) = vo(0, w)expiwt + yz) (4.31)

is substituted in Eq. (4.30a), y can be obtained. Equations (4.12) and (4.13) are the
result of this operation. Here oy = /p/2C;; and © = 1,;;/Cj;.

In order to derive a useful low-frequency approximation to this model, substitute
the plane wave approximation,

dv 10v
- __-Z 4.32
0z ¢oOt ( )
into Eq. (4.30a). The result is
v 1% Py
-7 R 4.
o2 cor g =0 (#-332)
where
Lo = i (4.33b)

- 2
Ciico

This approach results in a quadratic frequency dependence for loss (« = o1f?) and a
nearly constant sound speed with frequency to first order; therefore, it is quite limited
in mimicking the observed behavior of tissue listed in Appendix B and illustrated by
Figure 4.2.

4.7.2 Multiple Relaxation Model Wave Equation

One way of overcoming the discrepancy between the thermoviscous model and
observed power law absorption characteristics of tissues is to apply a fitting procedure
to Eq. (4.6a) involving a superposition of several time constants. As described by
Nachman et al. (1990), the multiple relaxation wave equation results in quite compli-
cated expressions for attenuation and phase velocity. At low frequencies, these equa-
tions are approximately as follows:

@ =53k (4.34a)
c(w) = (4.34b)

where constants k, and time constants 1, are associated with each relaxation mode
(n). This multiple relaxation model corresponds to the tissue model with different
molecules, each with its own relaxation constant and sound speed.

4.7.3 Time Causal Model Wave Equations

Are there wave equations with losses that correspond more directly with the fre-
quency power law behavior of absorption for many types of materials? Szabo (1994)
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and Szabo and Wu (2000) have shown that, in general, the wave equation can be
written as

1 0%
vz - LA = O 4.35
v 2or KU ( )
where L, is a time convolution propagation operator determined by the constraints of
causality in the time domain (explained in Section 4.3.4). Specifically, the form of L,
depends on whether y is an even or odd integer or a noninteger, so we denote it as
L, =L, y, 1. It is helpful to express higher order derivatives in the abbreviated nota-

tion, v, = @"v/9%". For example, if n = 2, v,, = 0*v/0.z%. For the even integer case,
Eq. (4.35) becomes

1 2
V2 _ S0~ (— 1)}//2%001,”“ =0 (4.36)
0

The form of L, in this instance of even integers has the specific form,

2 2
Loy, exv=(— 1)y/2%”twl =(- 1)y/2¥5”1(t) XU (4.37a)
0 0

For the y as an odd integer case,

4hoj oE) . 4hoHQ
(¢

Loy, xv= o ¥ = e (4.37b)
in which
ho = —oi(y + 1)I(— 1)0+D/2 /7 (4.37¢)
and
oy = i 4.37d)
ZCQC,','
Similarly, for y as a noninteger,
t
4hni U(t,) / 4hni H(t)
Lsc, y, t ¥V = o J 7“ - t/|J’+2 = ‘o |t‘y+2 *x U (4.376)
where
by = ool (y + 2)sin (ny/2)/n (4.371)

More details about the derivation of a wave equation for a viscoelastic solid can be
found from equations of the previous forms (Szabo and Wu, 2000). An implementa-
tion of the version of these equations for fluids (Szabo, 1994) can be found in Norton
and Novarini (2003). They demonstrate that absorption and dispersion can be calcu-
lated by these operators directly in the time domain.
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5.1 INTRODUCTION TO TRANSDUCERS

The one indispensible part of a diagnostic imaging system is the transducer. Trans-
ducers come in many shapes, frequencies, and sizes. Specific forms of transducers for
different clinical applications and scanning methods will be covered in Chapter 10.
This chapter concentrates on the essential questions: How do transducers work?
What are they made of? How can piezoelectric materials for transducers be com-
pared? What are the characteristics of transducers? How can transducers be modeled
and designed? How are they constructed? What are promising new developments for
transducers of the future?

5.1.1 Transducer Basics

This section presents a basic intuitive model of a piezoelectric transducer to describe
its essential acoustic and electrical characteristics. The simplest transducer is a piece of
piezoelectric material with electrodes on the top and bottom (depicted in Figure 5.1).
Unlike the drawing at the top of this figure, the top has a cross-sectional area (A) and
sides that are much longer (>10X) than the thickness (d). Piezoelectric material is
dielectric; therefore, it has a clamped capacitance,

— V\ *
I a.
J
A
T T CO =eAld fo =c/2d
~— —_—
A
Poling
T(t) IT(f)]
—
B t C 4 e f
0 d/c

Figure 5.1 (A) Diagram for a thickness expander
piezoelectric crystal radiating into a medium matched
to its impedance. (B) Stress time response. (C) Stress
frequency response.
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Co=&A/d (5.1

in which &’ is a clamped dielectric constant under the condition of zero strain. Because
of piezoelectricity, the Hooke’s law for this capacitor has an extra term,

T =CPS—hD (5.2)

in which (b) is a piezoelectric constant. The elastic stiffness constant (CP) is obtained
under a constant dielectric displacement (D), and (E) is the electric field,

S
D=¢E= % — CoV/A (5.3)

If a voltage impulse is applied across the electrodes, the piezoelectric effect creates
forces at the top and bottom of the transducer, given by

F(t) = TA = (hCoV/2)[ — 5(t) + 8(t — d/c)] (5.4)

for which we have assumed that the media outside the electrodes has the same
acoustic impedance as the transducer (see Figure 5.1a). To obtain the spectrum of
this response, take the Fourier transform of Eq. (5.4),

F(f) = —i(hCoV)e ™/ sin[rn(2n + 1)f /2f0] (5.5)

an expression with maxima at odd harmonics (note that n = 1, 2, 3, etc.) of the
fundamental resonance fy = ¢/2d (shown in Figure 5.1c). The speed of sound be-
tween the electrodes is given by ¢ = /CP/p.

5.1.2 Transducer Electrical Impedance

Because of the forces generated by the transducer, the electrical impedance looking
through the voltage terminals is affected. A radiation impedance, (Z,) is added to the
capacitive reactance so that an equivalent circuit (see Figure 5.2a) for the overall
electrical impedance is

Zr = Zy — i(1/wCo) = Ra(f) + ilXa(f) — 1/wCo] (5.6)

Here Z, is radiation impedance, of which R4 and X} are its real and imaginary parts.
What is R4? To first order, it can be found from the total real electrical power
flowing into the transducer for an applied voltage (V) and current (I)

Wg = II"'Ra/2 = |I*|Ra/2 (5.7a)

where current is I = iwQ = iwCyV. The total power radiated from both sides of the
transducer into a surrounding medium of specific acoustic impedance, Z¢ = pcA
(equal to that of the crystal) is

Wa = ATT*/(2Zc/A) = A*F(f)/A[* /2Zc = |hCoV sin(af /2fo)*/2Zc  (5.7b)
Setting the powers of Egs. (5.7a) and (5.7b) equal, we can solve for Ry,
Ra(f) = Rac sinc*(f/2fo) (5.8a)
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Figure 5.2 (A) Transducer equivalent circuit. (B)
Transducer impedance as a function of frequency.

where sin c(x) = sin(nx) /(nx) and

B PR
Rac =7+ =555
4f()C() 2A¢

The electroacoustic coupling constant is kr, and kr = h/+/CP /&S. Interesting proper-
ties of Rac include an inverse proportionality to the capacitance and area of the
transducer and a direct dependence on the square of the thickness (d). Note that at
resonance,

(5.8b)

kg
m?foCo
Network theory requires that the imaginary part of an impedance be related to the

real part through a Hilbert transform (Nalamwar and Epstein, 1972) (Appendix A), so
the radiation reactance can be found as

Ra(fo) = (5.8¢)
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Zr(f)— =

Figure 5.3 Electrical lumped ele-
ment circuit mimicking basic electrical-
transducer impedance.

Jsintaf /fo) ~ f /f]
2(nf/2fo)*

The transducer impedance is plotted as a function of frequency in Figure 5.2b. Here
Ry is maximum at the center frequency, where Xy is zero.

Because both R4 and X, are complicated functions of frequency, it is useful to
understand them in terms of a purely electrical lumped element equivalent circuit
(Mason, 1964; Kino, 1987). This circuit mimics the electrical impedance characteris-
tic of a simple transducer with acoustic loads Z; and Z, on the electroded faces of the
piezoelectric material. The lumped element circuit with a series resonance (w;) and a
parallel antiresonance (wp) is shown in Figure 5.3. The values of these parameters are
given as follows:

(5.8d)

Xa(f) = SuilRa(f)] =

(21 +7Z5)
Ry =——7"-—7~ .
s 4k%w1COZC (5 93.)
1
Ly =—— .
TS (5.9b)
8Cok /7[
Cs =T s/ (5.9¢)

This type of representation is limited to the simplest kinds of transducer configu-
rations, but it is useful for explaining and simulating the electrical characteristics of a
transducer impedance. In other words, this circuit simulates the real and imaginary
parts of the electrical transducer impedance for these simple acoustic loads (shown in
Figure 5.2). However, because this circuit is just electrical, it does not describe the
acoustic response. Therefore, it is not a replacement for a more complete model.

5.1.3 Summary

In summary, the piezoelectric element sends out two acoustic signals for each elec-
trical excitation in this simple model. When transducers resonate, they have a dis-
tinctive electrical impedance signature that can be measured electrically. The spectral
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response of a transducer peaks at odd multiples of the fundamental frequency. Most
piezoelectric transducers are reciprocal, so they act as receivers equally well.

If the acoustic impedances on either side of the crystal differ from that of the
crystal, then multiple reflections occur at the interfaces as described by Redwood
(1963). A pair of oppositely signed stress pulses are created at each crystal boundary
in this case. In order to develop a more complete transducer equivalent circuit model
that accounts for these effects in both the time and frequency domains, it is necessary
to discuss transducer geometry, construction, and piezoelectric materials.

5.2 RESONANT MODES OF TRANSDUCERS

5.2.1 Resonant Crystal Geometries

Key factors in determining transducer parameters are the geometry or shape of the
piezoelectric material, the crystallographic orientation of the piezoelectric crystal
with respect to the electrical-poling direction, and the placement of the electrodes.
Piezoelectric materials are anisotropic, meaning that their properties vary with angle.
In other words, depending on which direction the crystal is poled (a process in which
a high voltage is applied to opposite sides of a crystal to align domains), the piezo-
electric coupling and sound speed can vary. Piezoelectric materials are explained in
more detail in Section 5.8.

An important factor in determining transducer performance is the shape or geom-
etry of the piezoelectric material in the transducer. From the simple model of a
transducer (explained in Section 5.1.1), the fundamental resonance and odd fre-
quency harmonics, f,, = (2m + 1)fo, correspond to odd multiples of half wave-
lengths, (2m + 1) /2. A practical implementation of this simple resonance idea is the
“thickness—expander mode” geometry (see Figure 5.4a), where the lateral dimensions
are much greater than the thickness dimension, and poling is oriented perpendicular

A L B
w d

w>>d L>>d 2a>>d
c , L D
d L
L>>d
we<d d o L>>w
L <<d

Figure 5.4 Resonator geometries for longitu-
dinal vibration modes along the z axis. (A) Thickness-
expander rectangular plate. (B) Thickness-expander
circular plate disk. (C) Length-expander bar. (D)
Width-extensional bar or beam plate.
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to the electrodes. In other words, the vibrations are dominated by the thickness
direction (z) so that resonances in the lateral directions are so low in frequency
that they are negligible (shown in Figures 5.4a and 5.4b for rectangular and circular
plates). The appropriate piezoelectric coupling constant for this geometry is the
thickness coupling constant (Kt) and the speed of sound (cr). Electrical polarization
is along the z or 001 axis shown as the depth axis (d) for all four geometries in
Figure 5.4.

In the early days of ultrasound imaging, transducers were of the thickness—
expander type, were usually circular in cross section, and were used in mechanical
scanning; however, most of the transducers in use today are arrays. Among the earliest
arrays was the annular type (Reid and Wild, 1958; Melton and Thurstone, 1978),
with circular concentric rings on the same disk, phased to focus electronically (Foster
et al., 1989).

The two geometries most relevant to one-dimensional (1D) and two-dimensional
(2D) arrays are the length-expander bar and the beam or width-extensional mode
(shown in Figures 5.4c and 5.4d). In each case, two dimensions are either much
smaller or larger than the third so that only one resonance mode is represented by
each picture. In reality, these rectangular geometries are limiting cases of a rectangular
parallelepiped, in which three orthogonal coupled resonances are possible; each is
determined by the appropriate half-wavelength thickness (d, w, or L). In the cases
shown in Figure 5.4, the relative disparity in the lateral resonance dimensions com-
pared with the thickness dimension allow them to be neglected relative to a dominant
thickness resonance determined by geometry.

The bar geometry (Figure 5.4c) has an antiresonant frequency determined by
length, which is the dominant dimension. This shape is the one used as piezoelectric
pillars in 1-3 composites (to be described in Section 5.8.7) and is also helpful for two-
dimensional arrays. Important constants for design are summarized for different
piezoeletric materials and geometries in Table B2 in Appendix B. From Figure 5.4.c,
the appropriate coupling constant for this geometry is k33 and the speed of sound is ¢33.

The geometry most applicable to elements of one dimensional arrays is the beam
mode, in which the length (L), corresponding to an elevation direction, is much
greater than the lateral dimensions (Souquet et al., 1979; deJong et al., 1985). For
this representation to be applicable, the width to thickness ratio (w/d) must be less
than 0.7. Other w/d ratios will be discussed shortly. One lucky break for transducer
designers was that, in general, the coupling constant for this geometry (ks33) is
significantly greater than kr (e.g., for PZT-5H, k33 = 0.7 and kr = 0.5).

The beam mode represents a limiting case. Imagine a steamroller running over a
tall piezoelectric element of the beam shape (Figure 5.4d) and changing it into a
thickness-expander shape (Figure 5.4a), which is the other extreme. For the cases in
between, calculations are necessary to predict characteristics as a function of the ratio
w/d (shown in Figure 5.5), in which two sound speed dispersion curves are indicated
for different aspect ratios and vibrational modes. For more precise design for w/d
ratios of less than 0.7, sound speed dispersion and coupling characteristics must be
calculated or measured (Selfridge et al., 1980; Szabo, 1982). For w/d ratios of greater
than 0.7, spurious multiple resonant modes can degrade transducer performance
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COUPLED MODES OF TRASDUCER ELEMENT
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Figure 5.5 Sound speed dispersion (v,) for a piezoelectric element as a function of aspect ratio
(G = w/d) (from Selfridge et al., 1980, IEEE.).

(de Jong et al., 1985). In general, the coupling constant and speed of sound vary with
this ratio (Onoe and Tiersten, 1963; Sato et al., 1979), as shown in Figure 5.5.

5.2.2 Determination of Electroacoustic Coupling Constants

The relevant equations are given in Selfridge et al. (1980).When the input electrical
impedance of a crystal of this thickness-expander geometry is measured in air, it has a
unique spectral signature. As discussed earlier, the electrical characteristics of a simply
loaded crystal are like the circuit of Figure 5.3, which has a resonant and an anti-
resonant frequency. These frequencies are related to the coupling constant and sound
speed through the following equations:
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fo =cr/2d (5.10a)

also known as the antiresonant frequency. The resonant frequency (f,), can be found
from the solution of the transcendental equation,

fy fy
Kf =27 cot <—) 5.10b

=21, < oy, ©-10)
where Kt can be calculated from fundamental constants. Alternatively, a resonant and
an antiresonant frequency can be measured and used to find the coupling constant
experimentally through Eq. (5.10b). Both the electromechanical coupling con-

stant (k1) and speed of sound (cT) equations are also given for different geometries
in Selfridge et al. (1980) and Kino (1987).

5.2.3 Array Construction

How does a single piezoelectric crystal plate fit into the structure of an array? The
array begins as a series of stacked layers with a relatively large area or footprint
(e.g., 3 x 1cm). The crystal and matching layers are bonded together and onto a
backing pedestal. This sandwich of materials is cut into rows by a saw or by other
means (as Figure 5.6 illustrates). The cut space between the elements is called a
“kerf,” and the remaining material has a width (w), repeated with a periodicity or
pitch (p). Only after the cutting process does an individual crystal element resemble
the beam mode shape with a long elevation length (L), width (), and thickness (d).
After the elements are cut, they are covered by a cylindrical lens for elevation focusing

Normal

Azimuth '\ ¢
steering Saw
angle

Matching
i layers

Crystal

Backing

/ Elevation
plane

Azimuth plane

Figure 5.6 A multilayer structure diced by a saw into one-dimen-
sional array elements (from Szabo, 1998, IOP Publishing Limited).
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Acoustic lens

Acoustic matching layers

Electrode Piezoelectric material

. Flexible printed circuit
Flexible ground plate

Backing material

Figure 5.7 Construction of a one-dimensional array with an elevation plane lens (from
Saitoh et al., 1999, IEEE).

and are connected electrically to the imaging system through a cable. Figure 5.7 shows
the overall look of the array before placement into a handle.

A typical design constraint for phased arrays is that the pitch (p) between elements
be approximately one-half a wavelength in water. The thickness dimension of the
element is also close to one-half a wavelength along the depth direction in beam mode
in the crystal material, which has a considerably different speed of sound than water.
These constraints often determine the allowable w/d ratio. For two-dimensional
arrays, elements have small sides. This is a difficult design problem in which strong
coupling can exist among all three dimensions. Models are available for these cases
(Hutchens and Morris, 1985; Hutchens, 1986;), and there are materials designed to
couple less energy into unwanted modes (Takeuchi et al., 1982). Finite element
modeling (FEM) of these geometries is another alternative that can include other
aspects of array construction for accurate simulations (McKeighen, 2001; Mills and
Smith, 2002).

5.3 EQUIVALENT CIRCUIT TRANSDUCER MODEL
5.3.1 KLM Equivalent Circuit Model

To first order, the characteristics of a transducer can be well described by a one-
dimensional equivalent circuit model when there is one dominant resonant mode. To
implement a model for a particular geometry, the same equivalent circuit model can
be applied, but with the appropriate constants for the geometry selected. This com-
plete model includes all impedances, both acoustic and electrical, as well as signal
amplitudes in both forward and backward directions as a function of frequency. By
looping through this single-frequency model a number of times, a complex spectrum
can be generated, from which a time waveform can be calculated by an inverse Fourier
transform.
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To connect acoustic and electrical parameters, use will be made of acoustical-
electrical analogs (described in Chapter 3). Warren P. Mason (1964) utilized these
analogs to derive several models for different piezoelectric transducer geometries.
The most applicable model for medical transducers is the thickness-expander model.
Based on exactly the same wave equations, a newer model was introduced by Leedom,
Krimholtz, and Matthaei (1978). This “KLM model,”” named after the initials of the
authors, gives exactly the same numerical results as the Mason model but has several
advantages for design (shown in Figure 5.8).

One of the main advantages of the KLM model is a separation of the acoustical and
electrical parts of the transduction process. Three major sections can be seen in Figure
5.8: an electrical group extending from port 3, and two acoustic groups extending to
the left and right from a center junction with the electrical group. This partitioning
will allow us to analyze these ports separately to improve the design of the transducer.
Port 1 will be used to represent forward transmission into water or the body, whereas
port 2 will be for the acoustic backing, a load added to modify the bandwidth, and
sensitivity of the transducer. Derivations for the physical basis of the KLM model can
be found in Leedom et al. (1978) and Kino (1987). As shown in Figure 5.8b, the entire
model can be collapsed into a single ABCD matrix between the electrical port and the
forward acoustic load. The derivation of this matrix from the basic 2 x 2 ABCD forms
introduced in Chapter 3 is explained thoroughly in Appendix C.

The piezoelectric element, described by the KLM model in Figure 5.8, is part
of the overall representation of a transducer or an array element. The complete
model can be represented by a series of simple ABCD matrices cascaded together

Acoustic

A B
— 1 C D L—

Figure 5.8 (A) Schematic representation of
the KLM transducer three-port equivalent circuit
model. (B) ABCD representation of the KLM
model by an ABCD matrix between the electrical
port 3 and acoustic port 1.
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(Sittig, 1967; van Kervel and Thijssen, 1983; Selfridge and Gehlbach, 1985) as
derived in detail in Appendix C. This derivation forms the basis for a numerical
ABCD matrix implementation in the form of MATLAB program xdcr.m.

5.3.2 Organization of Overall Transducer Model

The organization of the model as a whole is illustrated by Figure 5.9. Physically, this
model mimics the layers in an element of an array (see Figure 5.7), in which the layers
on top of the piezoelectric element are represented by those on the right side
of the piezoelectric element in the model (Figure 5.9). The piece from Figure 5.8
for the piezoelectric element is connected through port 3 to an electrical source.
These parameters are needed for the piezoelectric element: a crystal that has a
thickness (dy), a speed of sound (c), an area (A), resonant frequency (fo = ¢/2d,), a
clamped capacitance (Cy = ege0A/dp), an electromechanical coupling constant (kr),
and a specific acoustic impedance (Z¢ = pcA). In the KLM model, an artificial
acoustic center is created by splitting the crystal into halves, each with a thickness
of dy/2 (refer to Figure 5.8). Each of these halves, as well as all layers, are represented
by an acoustic transmission line. The right end load, usually to tissue or water, is
represented by a real load impedance, Zg.

Each layer numbered “n,” which can be a matching layer, bond layer, electrode, or
lens, is represented by the following acoustic transmission line parameters: an area
(A), an impedance (Z,r), a sound speed (c,r), a propagation factor (,), and physical

Piezoelectric acoustic

o b } : oo |
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—>
2Ll |F leay"'i 14/2,VeZe Z, i ) E"’Zrlay  F ||4r
I J—Le—{ . i oee | E]
“l Ve B

Backing Leftlayers =~ "7 777 Right matching  Tissue
layers & lens

Electrical
port 3

Matching

Source/ network

receiver

Figure 5.9 Overall equivalent circuit transducer model.
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length (d,r). The acoustic impedance looking from port 1 into the series of layers is
called Z,,,. Port 2 is usually connected to a backing, represented by a simple load (Zp),
or the acoustic impedance looking to the left is Z;,,, = Zp. If layers need to be added
to the left side of the crystal, the same layer approach can be followed with indices
such as d,;. However, there is usually not a design incentive for doing so. Because
force, rather than stress, is a key acoustic variable, all acoustic impedances are
multiplied by the area (A), as is done for the definition of Z¢. More details can be
found in Appendix C.

5.3.3 Transducer at Resonance

Now that all the pieces are accounted for in the model, they can be used to predict the
characteristics of the transducer. This section starts with a more general description of
the electrical impedance of the transducer. The key part of the model that connects
the electrical and acoustic realms is the electroacoustic transformer. As shown in
Figure 5.8.a, this transformer has a turns ratio (¢) defined as

(Y (L
¢ kT<2f0COZ(j) sznc<2f0> (5.11a)

that converts electrical signals to acoustic waves and vice versa. The sinc function is
related to the Fourier transform of the dielectric displacement field between the
electrodes, which has a rectangular shape. The KLM model also accommodates
multiple piezoelectric layers, which can be represented by a single-turns ratio related
to the transform of the complete field through all the piezoelectric layers together
(Leedom et al., 1978).

Other electrical elements of the model includes block C’, a strange negative
capacitance-like component:

C' = —Co/[K7 sinc(f /fo)] (5.11b)

that has to do with the acoustoelectric feedback and the Hilbert transform of the
dielectric displacement. Finally, there is the ordinary clamped capacitance Cj.

The electrical characteristics of a transducer can be reduced to the simple equiva-
lent circuit (shown earlier in Figure 5.2a). A complex acoustic radiation impedance
(Z4) can be found by looking through the KLM transformer at the combined acoustic
impedance found at the center point of the model, Z;,(f), as

Za(f) = 0*Zin(f) (5.12)

where Z, is purely electrical. Recall that at the center point, the acoustic impedance
to the right is Zg;,, and to the left, it is Z;;,. By throwing in other components in
the electrical leg of the KLM model, we arrive at the overall electrical transducer
impedance,

Zr(f) = ¢*Real(Zy,) +i | > Tmag(Zs,) — wfio sinc(f/fy) = 1/wCo|  (5.13a)




110

CHAPTER 5 TRANSDUCERS

Z1(f) = Ra(f) + i[Xa(f) = 1/wCo] = Za(f) — i/wCy (5.13b)

A typical plot of Z7 was given in Figure 5.2b.
At resonance, the radiation reactance, X4 (fo), is zero. The radiation resistance, R4,
is

Ra(f) = [ K1 sinc(F/2f >} [ﬂ] (5.14)
AT 12£,CoZe N\ Ziin + Zrin .
and at fo, it becomes
k2 72 2k2 Z
R —R — T -2 2 c _ T c
A(fO) A |:2f0COZC e (fO/ fO):| [leay +Zrlay:| nszCO (leay JrZrlay)
(5.15a)

where the resonant half crystals have become quarter-wave transformers
Zrin = 22 /Zay). The impedance looking from the right face of the crystal to the
right is Z,,,, and that looking from the left face of the crystal is Z,,,. If there are no
other layers, then a medical transducer (typically Zj,,, = Zp, the backing impedance,
andZ,;,, = Z,,, theimpedance of water or tissue) the radiation resistance at resonance is

202 Z.
Ra(fo) = Rao 2h,Co <ZB n Zw> (5.15b)
Note that as a sanity check, if the loads are instead made equal to Z,, Eq. (5.15b)
reduces to the simple model result of Eq. (5.8¢).

To complete the electrical part of the transducer model, a source and matching
network are added as in Figure 5.10. A convenient way to add electrical matching is a
series inductor. A voltage source (V) with an internal resistance (R,) is shown with a
series tuning inductance. These components can be represented in a series ABCD
matrix (see Chapter 3). A more complicated tuning network can be used instead with
the more general matrix elements Agr, Ber, Cer, and Dgr, as Figure 5.10 implies.

r Wgss Ralf) Ry Wra> Ra(f)
Agt Ber
Ve iXy(f) Ve & iXa()

CET DET

Figure 5.10 Electrical voltage source and electrical matching network. (Left) Simple
series inductor and resistor. (Right) ABCD representation of a more general network.

— iloC, — iloC,
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5.4 TRANSDUCER DESIGN CONSIDERATIONS

5.4.1 Introduction

In order to design a transducer, we need criteria to guide us. To make a transducer
sensitive, some measure of efficiency is required. For a pulse—echo configuration, two
different transducers can be used for transmission and reception (indicated in Figure
5.11). In general, there may be two different matching networks: E7, for transmit, and
ER (each represented by its ABCD matrix). If the transducers, matching networks, and
loads R, and Ry are the same, the transducer efficiencies are identical and reciprocal
(Sittig, 1967; Sittig, 1971; Saitoh et al., 1999).

In this situation, if the transmit transducer has an ABCD matrix relating the
electrical and acoustic variables, then the receiver will have a DCBA matrix. From
repeated calculations of this model for a range of frequencies, pulses can be calculated
using an inverse Fourier transform from the spectrum. If the round-trip pulse length
is shorter than the transit time between the transducers, then the models can be
decoupled or calculated independently; however, for a longer pulse or a continuous
wave transmit situation, the individual transducer models are connected by a trans-
mission line between the transmit and receive sections of the model.

5.4.2 Insertion Loss and Transducer Loss

One measure of overall round-trip efficiency is “insertion loss.” As illustrated in
Figure 5.12, efficiency is measured by comparing the power in load resistor Ry with
the transducer in place to the power there without the transducer. Insertion loss is
defined as the ratio of the power in Ry over that available from the source generator,

Wf Vf 2 Rf + Rg
IL(f) === ||£] [+—=—= 5.16
"=w=v| (% (5.162
and in dB, it is
ILys(f) = 101ogo IL(f) (5.16b)
v, 4 Zr % v,
L Ha )
A B D B
Z Z Z
Pulser :Cable! Probe : Medium i Probe : Impedance :Cable | Receiver
head i material head : transformer : '

Figure 5.11 Equivalent circuit for the round-trip response of a transducer with a cable and
lens (from Saitoh et al., 1999, IEEE).
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A Insertion loss
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Figure 5.12 (A) Transducer insertion loss shown as a com-
parison of the source and load with and without a device in
between. (B) Similar transducer loss definition for one-way trans-
ducer loss.

where Wy is the power in Rs, and W, is that available from the source V,. The
maximum power available is for Ry = Rg. In Figure 5.11, Ry = Z,.

Likewise, it is possible to define a one-way loss, called a ““transducer loss™ (Sittig,
1971), that is a measure of how much acoustic power arrives in right acoustic load Zy
from a source V,. Transducer loss (as shown in Figure 5.12b) is

2

_ Wr _ || Far| (4R
TL(f) = W 7 (ZR) (5.17a)
and defined in dB as
TL4p(f) = 101ogyo TL(f) (5.17b)

where Wy is the power in Zg, and Fg is the acoustic force across load Zg. Note that
for identical transducers,

TL = VIL(linear) (5.18a)

TLyp = IL43/2(dB) (5.18b)
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5.4.3 Electrical Loss

For highest transducer sensitivity, we would like transducer and insertion losses to be
as small as possible. With the KLM model, it is possible to partition the transducer loss
into electrical loss (EL) and acoustic loss, (AL),

TL(f) = EL(f)AL(f) (5.19)

as symbolized by Figure 5.13. By looking at each loss factor individually, we can
determine how to minimize the loss of each contribution. From Figure 5.10, the
voltage transfer ratio for the specific case in which the matching network (E7) is a
series tuning inductor, Z; = R, + iwL,, with matrix elements, Agr, Ber, Cgr, and Dgr,

Vr Zr Zr

2 — 5.20
Vo AprZr+Ber Zr+Zs+R, (5-20)

Now electrical loss is defined as the power reaching Ry divided by the maximum
power available from the source,

2

V- 2

EL_WRA_IZRA/Z_ i RA/Z_ ﬁ 4RARg (5.21)
W,  V2/8R,  VZ/8R, Vel |z '
Combining Egs. (5.20) and (5.21),
4R4R,
= 4% (5.22a)
|AgTZ1 + BET|

EL = R (5.22b)

(Ra + Rg 4+ Ro)* + (Xa — 1/wCq + wLs)?

If the capacitance is tuned out by a series inductor, Ls = 1/(w§Co), then at resonance,

Wi W
Ry é Acr Ber| WerZ Ra) | TENCE
Ve & Cer Der iXy(f) CZL
Wiin
— i/wCy
W, W,
EL=-"4 AL =
Wg WRA

Figure 5.13 Diagram of electrical loss as the power
reaching the radiation resistance, divided by source power
and acoustical loss as the power reaching the right acoustic
load, divided by the power reaching the radiation resistance.
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4RAR,
(Ra + R +R,)?

Furthermore, if Ry = R,, and R; < Ry, then EL(f) ~ 1.

An example of the effect of electrical tuning is given by Figure 5.14a. In this case, a
3-MHz center frequency transducer is tuned with an inductor at 3 MHz. These curves
were generated by the MATLAB program xdcr.m. The effect of tuning is strong and
alters both the shape of the transducer loss response and its absolute sensitivity.

EL(f,) = (5.22¢)

5.4.4 Acoustical Loss

Acoustical loss is the ratio of the acoustic power reaching the front load (Zg), over the
total acoustic power converted. In order to determine acoustical loss, we begin with
the real electrical power reaching R4, which, after being converted to acoustical power
at the acoustic center of the KLM model, splits into the left and right directions,

Wra = WLin + Wrin (5.23a)

Refer to Figure 5.13. If the equivalent acoustic voltage or force at the center is F,, then
the power (Wg;,) to the right side is

1| F, |
Wrin = = |5—| REAL(Zgin) (5.23b)
2 ZRin
and the power to the left is
Wein = L Fe 2REAL(Z ) (5.23¢)
Lin — 2 ZLin Lin .
If there is absorption loss along the acoustic path, then the power to the right is instead
. Fr|®
Wr = vv*REAL(ZR)/2 = oA REAL(ZR)/2 (5.24)
R

where Fg is the force across load Zg. The acoustical loss is simply the power to the
right divided by the total incoming acoustic power,

Wk Wk
C Wra Wrin + Wrin

If there is no absorption loss along the right path, then Wg = Wy;,. At resonance with
no loss, this expression can be shown to be (see Figure 5.9)

Zrla
AL =" 5.26
(f0) Zoty + Ziny (5.26)

AL(f) (5.25)

where these are the acoustic impedances to the right and left of the center. For no
layers,
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A Effect of tuning on impedance without matching layer
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Figure 5.14 Transducer operating into a water load in a beam mode
with a crystal of PZT-5H, having an area of 5.6mm? and a backing
impedance of 6 megaRayls. (A) Transducer impedance untuned and
tuned with a series inductor. (B) Two pairs of curves of electrical loss and
transducer loss with and without tuning.
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Acoustic loss (dB)
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Figure 5.15 Acoustical loss versus frequency for a water load and
several backing (z,) values for a transducer with a 3-MHz center frequency.

L Zy

_ZR +7Zr _ZB + Zw
For an air backing, AL(fy) = 1. For a backing matched to the crystal-specific imped-
ance, Zp ~ 30A (recall A is area), and for a water load, Zr =Z, = 1.5A,

AL(fo) = 0.05. Acoustic loss curves for several back acoustic loads at port 2 are
plotted for a 3.5-MHz center frequency in Figure 5.15.

AL(fo)

(5.27)

5.4.5 Matching Layers

To improve the transfer of energy to the forward load, quarter-wave matching layers
are used. The simplest matching is the mean of the impedances to be matched,

Zoi = 717 (5.28)

If we interpose this quarter-wave matching layer on the right side for the last case of a
matched backing, then since Z; =7, =30A,72, =27, =135A,Z,,=6.7A, and
Zjay = 30A, so then AL(fy) = 0.5. At the resonant frequency, recall that the value of
acoustic loss can be found from the simple formula in Eq. (5.26). The dramatic effect
matching layers can have in lowering loss over a wide bandwidth will be demonstrated
with examples in section 5.4.6. The increase in fractional bandwidth as a function of
the number of matching layers is shown in Figure 5.16. Note that for a single
matching layer, the —3-dB fractional bandwidth is about 60%. More matching layers
can be used to increase bandwidth. Philosophies differ as to how the values for
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200

150 |

100

50

3-dB Fractional bandwidth

0 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Number of matching layers

Figure 5.16 The -3-dB fractional bandwidths
versus the number of matching layers determined from
the maximally flat criteria for an overall mismatch ratio of
20 = Z./Z, (from Szabo, 1998, IOP Publishing Limited).

matching layer impedances are selected (Goll and Auld, 1975; Desilets et al., 1978);

however, a good starting point is the maximally flat approach borrowed from micro-

wave design (Matthaei et al., 1980). For two matching layers, for example, the values
 Wj7.3)7 1323 . .

are z1 = 2. 'z, and zp =z.7z) . This approach was used to estimate one-way

—3-dB fractional acoustic bandwidths in percent for the right side as a function of

the number of matching layers (shown in Figure 5.16).

5.4.6 Design Examples

We are now ready to look at two examples. The first case is a transducer element made
of PZT-5H with a 3-MHz resonant frequency desired. From Table B2 (in Appendix B),
the coupling constant and parameters for the beam mode for this material can be
selected. From the crystal sound speed, the crystal thickness is 662 um (c/2fp). The
given area is A = 7e — 6 m?, and the backing impedance is Z;, = 6 megaRayls. The
crystal acoustic impedance is 29.8 megaRayls. This case is the default for the trans-
ducer simulation program xdcr.m. The values of these variables can be found by typing
the following variable names, one at a time, at the MATLAB prompt: edi, area, zbi, and
zoi. Finally, the clamped capacitance can be found from Eq. (5.1) to be
Co = 1380 pf (pf = picofarad = e — 12farad), with the variable name c0. The value
of reactance at fy is tuned out by a series inductor (matching oppositely signed
reactances) as Ly = 1/(w3Co) = 2.04uH (symbol for microHenry), with the variable
name Is0. Putting all of these input variables into the program gives a tuned impedance
similar in shape to that shown in Figure 5.14a. Transducer, electrical, and acoustical
loss curves are given in Figure 5.17.
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Figure 5.17 Transducer, acoustical, and electrical loss curves for 3-
MHz tuned design.

In all cases, the values of the loss curves at resonance (predictable by simple
formulas) provide a sanity check. From Eq. (5.27),
15
6+15
or =7 dB. This checks with the program variable alossdb(30), where index 30 corre-
sponds to 3 MHz. From Eq. (5.15b), R49 = 94.6 ohms, variable real (z£(30)). Then

from the definition of electrical loss at resonance, Eq. (5.22c), since Ry = 0, and
R, = 50 ohms,

AL(fo) = 0.2 (5.29a)

EL(fy) = M — 0.9048 (5.29b)
(94.62 + 50)

or —0.43 dB, for a total one-way transducer loss of —7.43 dB at the resonant frequency.
The points at resonance serve as sanity anchors for the curves in Figure 5.17. Note that
the losses in dB can be simply added. Though both the acoustical and electrical losses

are interrelated, it is apparent that the acoustical loss has a much wider bandwidth.
Now a matching layer will be used for the forward side. From Eq. (5.28),
Z,, = 6.68 megaRayls. Assume that a matching layer material with the correct im-
pedance and a sound speed of 3.0 mm/us can be applied. For a quarter wave at the
resonant frequency, the layer thickness is d = ¢,,;;/(4fo) = 250 um. This information
can be turned on in the program by setting the parameter m/ = 1 rather than ml = 0
(default). Note that even with a matching layer, the tuning inductor is unchanged.
The resulting impedance has a different appearance (shown in Figure 5.18a). The
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corresponding losses are shown in Figure 5.18b. This time, the acoustical loss is found
from Eq. (5.26), in which the acoustic impedance at the right crystal face looking
toward the matching layer is Zg;,, = 29.8A megaRayls, so that

29.8
or 0.798 dB. In this case, R49 = 19.85 ohms, so from Eq. (5.22¢),
4x19.
EL(fy) = X850 4137 (5.30b)
(19.85 +50)
or 0.895 dB, for a total one-way transducer loss of —1.69 dB at the resonant fre-

quency.

Comparison of the two cases shows considerable improvement in sensitivity and
bandwidth from the inclusion of a matching layer. The overall shape of the transducer
loss could be improved because it is related to the pulse shape.

In order to refine the design, the resonant frequencies of the crystal and matching
layer can be adjusted, or more matching layers can be added. Because of constraints
beyond the designer’s control, transducer design requires adaptability, creativity, and
patience. For a typical array element design, nonlinear electronic circuitry and a
coaxial cable are added to the electrical port. In addition, a lens with absorption
loss as a function of frequency is thrown into the mix to make the design a little more
interesting. More information on design can be found in the following references:
Sittig (1967); Goll and Auld (1975); Desilets et al. (1978); Souquet et al. (1979); Van
Kervel and Thijssen (1983); Szabo (1984); Persson and Hertz (1985); Kino (1987);
Rhyne (1996).

5.5 TRANSDUCER PULSES

Because the primary purpose of a medical transducer is to produce excellent images,
an ideal pulse shape is the ultimate design goal. Agreement has been reached that the
pulse should be as short as possible and with a high-amplitude peak (good sensitivity).
Some would argue that the ideal shape is Gaussian because this shape is maintained
during propagation in absorbing tissue. Unfortunately, because of causality, a Gauss-
ian shape is not achieved by transducers; instead, the leading edge of a pulse is usually
much steeper than its tail.

To get beyond the “looks nice” stage requires quantitative measures of a spectrum
and its corresponding pulse. Spectral bandwidths are measured from a certain number
of decibels down from the spectral maximum. Typical values are —6-dB, —10-dB, and
—20-dB bandwidths. The center frequency of a round-trip spectrum is defined as

fC = (flow +fbigh)/2 (531)

where fj,,, and fj;g, are the —6 (or other number) dB low and high round-trip
frequencies, respectively. For the pulse, the pulse widths, as measured in dB levels
down from the peak of the analytical envelope (see Appendix A), are usually at the
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Figure 5.19 (A) Pulse-echo impulse response and spectrum for a 3.5-MHz linear array
design. (B) A 3.5-MHz, 2% cycle sinusoid excitation pulse and spectrum. (C) Resultant
output pulse and spectrum. All calculations by PiezoCAD transducer design program (cour-
tesy of G. Keilman, Sonic Concepts, Inc).

—6-dB, —20-dB, and —40-dB levels. These widths measure pulse “ringdown” and
quantify the axial spatial resolution of the transducer.

Another consideration in pulse shaping is the excitation pulse. The overall pulse is
the convolution of the excitation pulse and the impulse response of the transducer.
Figure 5.19 shows plots for these pulses from a 3.5-MHz linear array design with two
matching layers and a PZT-5H crystal operating in the beam mode. They were
calculated by a commercially available transducer simulation/design program called
PiezoCAD. Here the excitation pulse is 3.5 MHz, 2% cycle sinusoid.

This program calculates the spectral and pulse envelope widths as given by Table
5.1. It has many features that make it convenient for design and has examples and
tables of piezoelectric and other materials.

TABLE 5.1 Linear Array Design Width Measurements from Figure 5.19

—-6dB -20dB -40dB
Center frequency (CF) (MHz) 3.404 3.472 3.513
Bandwidth (BW) (MHz) 1.649 2.494 4.704
Fractional BW of CF (%) 48.44 71.83 133.90

Pulse length (us) 0.511 1.072 1.932
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The design problem is to create pulses that are short in the sense that the tail is
short and the so-called time sidelobes in the tail section after the main lobe are at
very low levels. If these time sidelobes are high, a single actual target may appear as a
series of targets or an elongated target under image compression, a process that
elevates lower image signals for visualization. From the Fourier transform theory of
Chapter 2, these restrictions require that the spectrum not contain sharp transitions or
corners at the band edges. In other words, a wideband (for short temporal extent)
rounded spectrum will do. This requirement presents another design constraint—
shaping the spectrum so as to achieve short pulses. Various solutions have been
proposed. One of the most widely known solutions is that of Selfridge et al. (1981).
They developed a computer-aided design program that varies acoustic and electric
parameters so as to achieve a pleasing pulse shape. Lockwood and Foster (1994) based
their computer-aided design algorithm on a generalized ABCD matrix representation
of the transducer. Rhyne (1996) developed an optimization program that is based on
spectral shaping and the physical limitations of the transducer.

Finally, it is important to remember that pulse design is usually done with the
system in mind. The overall shaping of the round-trip pulse after the transducer has
been excited by a certain-shaped drive pulse and has passed through receive filters is a
primary design goal (McKeighen, 1997). For better inclusion of the effects of elec-
tronics, SPICE transducer models (Hutchens and Morris, 1984; Morris and Hutch-
ens, 1986; Puttmer et al., 1997) have been developed that marry the transducer more
directly to the driver and to receive electronics. Nonlinearities of switching and noise
figures can be handled by this approach.

5.6 EQUATIONS FOR PIEZOELECTRIC MEDIA

What are the effects of piezoelectricity on material constants? As shown earlier in
Section 5.1.1, Hooke’s law is different for piezoelectric materials than for purely
elastic (see Chapter 3) or viscoelastic (see Chapter 4) materials and is stated more
generally below (Auld, 1990):

T=CPS—h:D (5.32a)

where CP is a 6-by-6 tensor matrix of elastic constants taken under conditions of
constant D, b is a 6-by-3 tensor matrix, and D is a 1-by-3 tensor vector. This type of
equation can be calculated by the same type of matrix approach used for elastic media
in Chapter 3. The companion constitutive relation is

E=—-hS+p%D (5.32b)

where f8% is dielectric impermeability under constant or zero strain. Pairs of consti-
tutive relations appear in various forms suitable for the problem at hand or the
preference of the user, and they are given in Auld (1990).

Alternatively, stress can be put in the following form:

T =CF:S—e:E (5.33)
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inwhich CE is a set of elastic constants measured under constant or zero electric field and
e is another piezoelectric constant. A companion constitutive equation to Eq. (5.33) is

D=¢E+eS (5.34)

where & is permittivity determined under constant or zero strain. If D = 0 in this

equation, and E is found for the one-dimensional case, then E = —eS/¢%. With E
substituted in Eq. (5.33) (Kino, 1987),

2
T=CE <1 +C28S)S cPs (5.35)

which is an abbreviated Hooke’s law version of Eq. (5.33) with D = 0. CP is called a
stiffened elastic constant, with

CP =CF(1+K?) (5.36)
in which K is not wave number but the piezoelectric coupling constant,
o2
K= (5.37)

The consequence of a larger stiffened elastic constant is an apparent increase in sound
speed caused by the piezoelectric coupling. The net effect of piezoelectric coupling
seen from the perspective of Eq. (5.35) is an increased stress over the nonpiezoelectric
case for the same strain. Various forms of K exist for specific geometries and crystal
orientations 0 (to be covered in the next section). The term K? is often interpreted as
the ratio of mutual coupling energy to the stored energy.

For the case of a stress-free condition (T = 0) in Eq. (5.33), the value of strain S can
be substituted in Eq. (5.34) to yield

D =¢"E=¢01+K>)E (5.38)

in which the stress-free dielectric constant ¢ is bigger than the often-used strain-free
or clamped dielectric constant &5.

5.7 PIEZOELECTRIC MATERIALS

5.7.1 Introduction

How does piezoelectricity work? What are some of the values for the constants just
described, and how can they be compared for different materials?

In 1880, the Curie brothers discovered piezoelectricity, which is the unusual ability
of certain materials to develop an electrical charge in response to a mechanical stress
on the material. This relation can be expressed for small signal levels as the following:

D=d:T+¢:E (5.39)

There is a converse effect in which strain is created from an applied electric field,
given by the companion equation,
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Figure 5.20 (A) Aligned electric
dipoles in domains of a poled polycrystal-
line ferroelectric. (B) Highly aligned
dipoles in domain-engineered, poled
single crystal ferroelectric.

S=sF:T+eS+d:E (5.40)

where s = C™! is determined under a constant electric field condition. All piezoelec-
tric materials are ferroelectric. This kind of material contains ferroelectric
domains with electric dipoles, as depicted for a ceramic in Figure 5.20a. If an
electric field is applied, the direction of spontaneous polarization (the alignment of
the domains shown in Figure 5.20b) can be switched by the direction of the field.
Furthermore, if an appropriately strong field is applied under the right conditions
(usually at elevated temperature), the polarization remains even after the polarizing
field is removed.

The major types of piezoelectric media are described as follows. Some of these
materials can be found in Table B2 of Appendix B.

5.7.2 Normal Polycrystalline Piezoelectric Ceramics

For polarization to be possible, the material must be anisotropic. A phase diagram for
the piezoelectric ceramic lead-zirconate-titanate (PZT"') is given by Figure 5.21. This
plot indicates that the type of anisotropic symmetry depends on both composition and
temperature. Note that in Figure 5.21, coupling and dielectric permittivity increase
rapidly near the phase boundary. These ceramics are poled close to this boundary to
get high values. All ferroelectric materials have a Curie temperature (T¢), above which
the material no longer exhibits ferroelectric properties. Properties of the ceramic are
more stable at temperatures farther from the Curie temperature.

Ceramics such as the polycrystalline PZT family are called normal ferroelectrics
and are the most popular materials for medical transducers. Combining high coupling
and large permittivity with low cost, physical durability, and stability, they are
currently the material of choice for most array applications.

5.7.3 Relaxor Piezoelectric Ceramics

Relaxor ferroelectrics have many strange characteristics, as well as more diffuse phase
boundaries and lower Curie temperatures (Shrout and Fielding, 1990) than normal

"Trademark, Vernitron Piezoelectric Division.
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Figure 5.21 PZT phase diagram. On the left scale is
the dielectric constant, and on the right scale is electro-
mechanical coupling as a function of chemical compos-
ition. Dashed line is phase boundary (from Safari et al.,
1996).

ferroelectrics. Their permittivities are usually strongly frequency dependent. While
crystals can function as normal piezoelectrics, they can also be electrostrictive under
certain conditions. Electrostrictive materials have strains that change with the square
of the applied electric fields (a different mechanism from piezoelectricity). This prop-
erty leads to some unusual possibilities in which the piezoelectric characteristics of a
device can be altered or switched on or off via a bias voltage (Takeuchi et al., 1990;
Chen and Gururaja, 1997). All dielectrics can be electrostrictors; however, the relaxor
piezoelectrics have large coupling constants because they can be highly polarized.

The Maxwell stress tensor for dielectrics (Stratton, 1941) shows that the stress is
proportional to the applied electric field squared:

Tss = (8 _2“3)152 (5.41)

where a3 is a deformation constant. If the thickness of the dielectric is d and a DC
bias voltage (Vpc) is applied to electrodes in combination with an A.C. signal of
amplitude Ay, then

&E—a .
T3 = (ﬁ) (Vbe + Vo sin wlt)z (5.42a)
c—a , V2 cos 2wt
Ts; = (TZS) (VLZ)C + V(%/Z + 2Vpc Vo sinwit — 021> (5-42b)

in which the third term in the second parentheses indicates how the bias can control
the amplitude of the original sinusoid at frequency wi, and the last term is at the
second harmonic of this frequency.
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5.7.4 Single Crystal Ferroelectrics

A number of ferroelectrics are termed single crystal because of their highly ordered
domains, symmetrical structure, very low losses, and moderate coupling. These hard,
brittle materials require optical grade cutting methods, and therefore, they tend not to
be used for medical devices, but rather for high-frequency surface and bulk acoustic
wave transducers, as well as for optical devices. This group of materials includes
lithium niobate, lithium tantalate, and bismuth germanium oxide.

5.7.5 Piezoelectric Organic Polymers

Some polymers with a crystalline phase have been found to be ferroelectric and
piezoelectric. Poling is achieved through a combination of stretching, elevating tem-
perature, and applying a high electric field. Two popular piezopolymers are polyvi-
nylidene fluoride, or PVDF (Kawai, 1969) and copolymer PVDF with
trifluoroethylene (Ohigashi et al., 1984). Advantages of these materials are their
conformability and low acoustic impedance. The low impedance is not as strong an
advantage because matching layers can be utilized with higher-impedance crystals.
Drawbacks are a relatively low coupling constant (compared to PZT), a small relative
dielectric constant (5-10, which is a big drawback for small array element sizes),
a high dielectric loss tangent (0.15-0.25 compared to 0.02 for PZT), and a low Curie
temperature (70—100°C). These materials are better as receivers such as hydrophones
and are less efficient as transmitters (Callerame ef al., 1978). A special issue of the
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control has been
devoted to many applications of these polymers (2000).

5.7.6 Domain Engineered Ferroelectric Single Crystals

A relatively recent development is the growing of domain-engineered single crystals.
Unlike other ferroelectric relaxor-based ceramics, in which domains are randomly
oriented with most of them polarized, these materials are grown to have a nearly
perfect alignment of domains (shown in Fig. 5.20b). Considerable investments in
materials research and special manufacturing techniques were necessary to achieve
extremely high coupling constants (Park and Shrout, 1997; Saitoh et al., 1999) and
other desirable properties in crystals such as PZN-4.5% PT and 0.67 PMN-0.33 PT
(Yin et al., 2000 and Zhang et al., 2001). Because both sensitivity and bandwidth are
proportional to the coupling constant squared, significant improvements are possible
(as discussed in Section 5.8).

5.7.7 Composite Materials

Another successful attempt at optimizing transducer materials for applications like
medical ultrasound is the work on piezoelectric composites (Newnham et al., 1978;
Gururaja et al., 1985). PZT, which has the drawback that its acoustic impedance is
about 30 megaRayls, is mismatched to tissue impedances of about 1.5 megaRayls.
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Figure 5.22 (A) 1-3 composite structure.
(B) 2-2 composite structure (from Safari et al.,
1996).

By imbedding pieces of PZT in a low-impedance polymer material, a composite with
both high coupling and lower impedance is achieved. Two of the most common
composite structures are illustrated in Figure 5.22. In a 1-3 composite, posts of a
piezoelectric material are organized in a grid and backfilled with a polymer such as
epoxy. A 2-2 composite consists of alternating sheets of piezoelectric and polymer
material. For design purposes, a composite can be described by ““effective parameters™
as if it was a homogeneous solid structure (Smith et al., 1984). Effective parameters
for two 1-3 composites, one with PZT-5H and another with single-crystal PMN
(Ritter et al., 2000), are listed in Table B2 in Appendix B.

5.8 COMPARISON OF PIEZOELECTRIC MATERIALS

Because of the many factors involved in transducer design (Sato et al., 1980), it is
difficult to select a single back-of-the-envelope criterium for comparing the most
important material characteristics. The following are simplifications, but they provide
a relative means that agrees with observations. Usually impedances of transducer
elements are high because of their small size; therefore, R4g >> R,. From the electrical
side, the —3 dB bandwidth is given approximately by the electrical Q,,

4k?
BW = 1/Qe = WOCORAO = 7 (543)

in which matching layers are assumed as well as Zp < Z¢ and K = K33 for most
materials except the composites BaTiO3, and PVDF, for which K7 is used. Further-
more, the electrical bandwidth is assumed to be much smaller than the acoustical
bandwidth from the acoustical loss factor, and therefore, it dominates. Another
important factor in determining acoustic impedance, which is inversely proportional
to clamped capacitance, is the relative dielectric constant (¢°). These two figures of
merit are plotted in Figure 5.23 for materials with the constants appropriate for a
geometry in common use. Ideally, materials in the upper right of the graph would be
best for array applications.

As a specific example, consider the spectrum of a design optimized for a 5-MHz
array transducer on PZT-5H compared to that of a design optimized for PZN-M
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Figure 5.23 Comparison of piezoelectric materials, —3-dB band-
width versus relative dielectric constant.

domain-engineered single-crystal material, which is shown in Figure 5.24. The
coupling constants and calculated —6-dB round-trip bandwidths for the two cases
are 0.66% and 66% and 0.83% and 90%, which are in good agreement with the
bandwidth estimates of 56% and 86%, respectively (note a one-way —3-dB band-
width is equivalent to a —6-dB round-trip bandwidth). A simple estimate of the
relative spectral peak sensitivities is in proportion to their coupling constants to the
fourth power [see Egs. (5.15b) and (5.22¢)]. In this case, the estimate for the relative
—6-dB round-trip spectral peaks is + 4 dB compared to the calculated value of 3-5 dB.

5.9 TRANSDUCER ADVANCED TOPICS

Two other effects that often affect transducer performance are losses and connecting
cables. Two major types of losses are internal mechanical losses within the crystal
element and absorption losses in the materials used. The usually small crystal mech-
anical loss can be modeled by placing a loss resistance in parallel with the trans-
ducer Cy. Piezoelectric material manufacturers provide information about this loss
through mechanical Q data. As we found from Chapter 4, all acoustic materials have
absorption loss and dispersion. Loss can be easily included in an ABCD matrix
notation by replacing the lossless transmission line matrix in Figure 3.4 by its lossy

replacement,
A B\ [ cosh(yd)  Zysinh(yd) (5.44)
C D) \sinh(yd)/Zy  cosh(yd) .

in which y is the complex propagation factor from Chapter 4, d is the length of the
transmission line, and Z is its characteristic impedance. Finally, array elements are
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Figure 5.24 Comparison of round trip spectra for 2.5-MHz center frequency designs for
(A) PZT-5H and (B) single-crystal PZN-M transducers (from Gururaja et al., 1997, IEEE).

most often connected to a system through a coaxial cable, which can also be modeled
by the same lossy transmission line matrix with appropriate electromagnetic param-
eters. Signal-to-noise ratios can also be calculated by a modified KLM model (Oakley,
1997). Methods of incorporating the switching directly in the transducer have been
accomplished (Busse et al., 1997).
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Figure 5.25 D CMUT array. (A) Schematic cross section of a CMUT cell. (B) Magnified view of a

single 5-cell wide, ID array element. (C) A portion of four elements of the ID CMUT array (from Oralkan
et al., 2002, IEEE).

The one-dimensional transducer model is a surprisingly useful and accurate design
tool. Array architectures are not really composed of individual isolated elements
because they are close to each other, and as a result, mechanical and electrical cross-
coupling effects occur (to be discussed in Chapter 7). In addition to the dispersion of
the elements, these effects can be predicted by more realistic finite element modeling
(FEM) (Lerch, 1990). A three-dimensional depiction of the complicated vibrational
mode of array elements can be predicted by a commercially available FEM program,
PZFLEX (Wojcik et al., 1996). To be accurate, a precise knowledge of all the material
parameters is required, as discussed by McKeighen (2001).

FEM modeling is especially helpful in predicting the behavior of advanced arrays.
These arrays include 1.5D (Wildes ez al., 1997 and 2D (Kojima, 1986) arrays.

Several major problems for two-dimensional arrays are electrically matching and
connecting to large numbers of small elements, as well as spurious coupled vibrational
modes. One solution is to integrate the electronics and switch into the transducer
structure through the use of multilayer chip fabrication techniques (Erikson et al.,
1997). A 16,384-element two-dimensional array has been made by this method for
C-scan imaging. Other alternatives are reviewed by von Ramm (2000). Philips
medical systems introduced a fully populated, two-dimensional array with micro-
beamformers built into the handle for a real-time 3D imaging system in 2003.
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Another approach to the large array fabrication issue is an alternative transduction
technology, called capacitive micromachined ultrasonic transducers (CMUTS), which
is based on existing silicon fabrication methods (Ladabaum et al., 1996). To first
order, the CMUT is a tiny, sealed, air-filled capacitor. When a bias voltage is applied to
these miniature membrane transducers, a stress is developed proportional to the
voltage applied squared, and the top electrode membrane deflects. Like the Maxwell
stress tensor equations, Egs. (5.41) and (5.42), if the DC bias includes an AC signal,
the pressure or deflection can carry AC signal information. The voltage applied is

V =Vpc + Vac (5.45a)
resulting in a vertical deflection,
X = Xpc + Xac (5.45b)
To first order, the pressure on the membrane is
80VDC 80V12)C
PE = —5,~ Vac + —5 7 %Ac (5.45¢)
dj(r) dj(r)

where dy () is a radial displacement. Note the similarity to Eq. (5.42). A model more
appropriate for two-dimensional arrays can be found in Bralkan et al. (1997) and
Caronti et al. (1986). This equivalent circuit model is a combination of electrostatics
and the acoustics of a miniature drum, and it predicts the radiation impedance and
other characteristics of the CMUT. The attractiveness of CMUT technology for
imaging is its simpler and more flexible fabrication as well as its high sensitivity and
broad bandwidth. Imaging with CMUT arrays has been demonstrated (Oralkan et al.,
2002; Panda et al., 2003).

An important trend is the development of transducers at higher frequencies.
Commercially available intravascular ultrasound (IVUS) imaging systems operate in
the 20-40 MHz range. Either a miniature, mechanical single-element transducer is
rotated or phased or synthetic array elements are electronically scanned on the end of
a catheter to obtain circumferential, highly detailed pictures of the interior of vessels
of the human body. Ultrasound biomicroscopy (Foster et al., 2000; Saijo and Chu-
bachi, 2000) provides extremely high-resolution images, as well as new information
about the mechanical functioning and structure of living tissue. One of the main
initiatives of the National Center for Transducers at Pennsylvania State University is
the development of high-frequency transducers (Ritter et al., 2002) and arrays and
materials.

BIBLIOGRAPHY

Overview treatments of transducers can be found in the following: Mason (1964);
Sachse and Hsu (1979); Hunt et al. (1983); Kino (1987); Szabo (1998); Foster
(2000); Reid and Lewin (1999).



132 CHAPTER 5 TRANSDUCERS

REFERENCES

Auld, B. A. (1990). Acoustic Waves and Fields in Solids, Vol. 1. Krieger Publishing, Malabar, FL.

Busse, L. J., Oakley, C. G., Fife, M. J., Ranalletta, J. V,, Morgan, R. D., and Dietz, D. R. (1997).
The acoustic and thermal effects of using multiplexers in small invasive probes. IEEE
Ultrason. Symp. Proc., 1721-1724.

Callerame, J. D., Tancrell, R. H., and Wilson, D. T. (1978). Comparison of ceramic and
polymer transducers for medical imaging. IEEE Ultrason. Symp. Proc., 117-121.

Caronti, A., Caliano, G., Iula, A., and Pappalardo, M. (1986). An accurate model for capacitive
micromachined ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control
33, 295-298.

Chen, J. and Gururaja, T. R. (1997). DC-biased electrostrictive materials and transducers for
medical imaging. IEEE Ultrason. Symp. Proc., 1651-1658.

Desilets, C. S., Fraser, J. D., and Kino, G. S. (1978). The design of efficient broad-band
piezoelectric transducers. IEEE Trans. Sonics Ultrason. SU-25, 115-125.

de Jong, N., Souquet, J., and Bom, N. (July 1985). Vibration modes, matching layers, and
grating lobes. Ultrasonics, 176-182.

Erikson, K., Hairston, A., Nicoli, A., Stockwell, J., and White, T. A. (1997). 128 X 128K
(16 k) ultrasonic transducer hybrid array. Acoust. Imaging 23, 485-494.

Foster, F. S. (2000). Transducer materials and probe construction. Ultrasound in Med. & Biol.
26, Supplement 1, S2-S5.

Foster, F. S., Larson, J. D., Masom, M. K., Shoup, T. S., Nelson, G., and Yoshida, H. (1989).
Development of a 12 element annular array transducer for real-time ultrasound imaging.
Ultrasound in Med. & Biol. 15, 649-659.

Foster, F. S., Pavlin, C. J., Harasiewicz, K. A., Christopher, D. A., and Turnbull, D. H. (2000).
Advances in ultrasound biomicroscopy. Ultrasound in Med. & Biol. 26, 1-27.

Goll, J. and Auld, B. A. (1975). Multilayer impedance matching schemes for broadbanding of
water loaded piezoelectric transducers and high Q resonators. IEEE Trans. Sonics Ultrason.
SU-22, 53-55.

Gururaja, T. R., Schulze, W. A., Cross, L. E., and Newnham, R. E. (1985). Piezoelectric
composite materials for ultrasonic transducer applications, Part 11: Evaluation of ultrasonic
medical applications. IEEE Trans. Sonics Ultrason. SU-32, 499-513.

Gururaja, T. R., Panda, R. K., Chen, J., and Beck, H. (1997). Single crystal transducers for
medical imaging applictions. IEEE Ultrason. Symp. Proc., 969-972.

Hunt, J. W., Arditi, M., and Foster, F. S. (1983). Ultrasound transducers for pulse-echo medical
imaging. IEEE Trans. Biomed Engr. BME-30, 452-481.

Hutchens, C. G. (1986). A three diemensional equivalent circuit for tall parallelpiped piezo-
electric. IEEE UFFC Symp. Proc., 321-325.

Hutchens, C. G. and Morris, S. A. (1984). A three port model for thickness mode transducers
using SPICE II. IEEE Ultrason. Symp. Proc., 897-902.

Hutchens, C. G. and Morris, S. A. (1985). A two dimensional equivalent circuit for the tall thin
piezoelectric bar. IEEE Ultrason. Symp. Proc., 671-676.

IEEE Trans. on Ultrason. Ferroelec. and Freq. Control. (Nov. 2000). Special issue on the 30th
anniversary of piezoelectric PVDF.

Kawai, H. (1969). The piezoelectricity of poly(vinylidene fluoride). Jpn. J. Appl. Phys.
8, 975-976.

Kino, G. S. (1987). Acoustic Waves: Devices, Imaging, and Analog Signal Processing. Prentice-
Hall, Englewood Cliffs, NJ.



REFERENCES

133

Kojima, T. (1986). Matrix array transducer and flexible matrix array transducer. IEEE Ultrason.
Symp. Proc., 335-338.

Ladabaum, 1., Jin, X., Soh, H. T., Pierre, F., Atalar, A., and Khuri-Yakub, B. T. (1996).
Microfabricated ultrasonic transducers: Towards robust models and immersion devices.
IEEE Ultrason. Symp. Proc., 335-338.

Leedom, D. A., Krimholtz, R., and Matthaei, G. L. (1978). Equivalent circuits for transducers
having arbitrary even- or odd-symmetry piezoelectric excitation. IEEE Trans. Sonics Ultra-
son. SU-25, 115-125.

Lerch, R. (1990). Simulation of piezuelectric devices by two- and three-dimensional finite
elements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 233-247.

Lockwood, G. R. and Foster, S. F. (1994). Modeling and optimization of high frequency
ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 41, 225-230.

Mason, W. P. (ed.). (1964). Physical Acoustics, Vol. 1A, Chap. 3. Academic Press, New York.

Matthaei, G. L., Young, L., and Jones, E. M. T. (1980). Microwave Filters, Impedance-Matching
networks, and Coupling Structures, Chap. 6. Artech House, Dedham, MA, pp. 255-354.

McKeighen, R. (2001). Finite element simulation and modeling of 2D arrays for 3D ultrasonic
imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1395-1405.

McKeighen, (1997). Influence of pulse drive shape and tuning on the broadband response of a
transducer, IEEE Ultrasonics Symp Proc., 1637-1642.

Melton, H. E. and Thurstone, F. L. (1978). Annular array design and logarithmic processing for
ultrasonic imaging. Ultrasound in Med. & Biol. 4, 1-12.

Mills, D. M. and Smith, S. W. (2002). Finite element comparison of single crystal vs. multi-layer
composite arrays for medical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49,
1015-1020.

Morris, S. A. and Hutchens, C. G. (1986). Implementation of Mason’s model on circuit analysis
programs. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 295-298.

Nalamwar, A. L. and Epstein, M. (1972). Immitance characterization of acoustic surface-wave
transducers. Proc. IEEE 60, 336-337.

Newnham, R. E., Skinner, D. P, and Cross, L. E. (1978). Connectivity and piezoelectric-
pyroelectric composites. Mat. Res. Bull. 13, 525-536.

Oakley, C. G. (1997). Calculation of ultrasonic transducer signal-to-noise ratios using the KLM
model. IEEE Tians. Ultrason. Ferroelectr. Freq. Control 44, 1018-1026.

Ohigashi, H., Koga, K., Suzuki, M., Nakanishi, T., Kimura, K., and Hashimoto, N. (1984).
Piezoelectric and ferroelectric properties of P (VDF-TrFE) copolymers and their application
to ultrasonic transducers. Ferroelectrics 60, 264-276.

Onoe, M. and Tiersten, H. F. (1963). Resonant frequencies of finite piezoelectric ceramic
vibrators with high electromechanical coupling. IEEE Trans. Ultrason. Eng. 10, 32-39.
Oralkan, O., Ergun, A. S., Johnson, J. A., Karaman, M., Demirci, U., Kaviani, K., Lee, T. H.,
and Khuri-Yakub, B. T. (2002). Capacitive micromachined ultrasonic transducers: Next-
generation arrays for acoustic imaging? IEEE Trans. Ultrason. Ferroelectr. Freq. Control

49, 1596-1610.

Oralkan, O., Jin, X. C., Degertekin, F. L., and Khuri-Yakub, B. T. (1997). Simulation and
experimental characterization of a 2D, 3-MHz capacitive micromachined ultrasonic trans-
ducer (CMUT) array element. IEEE Ultrason. Symp. Proc., 1141-1144,

Panda, S., Daft, C., and Wagner, C. (2003). Microfabricated ultrasound transducer (CMUT)
probes: Imaging advantages over piezoelectric probes. Ultrasound in Med. & Biol.
29, (55):S69.

Park, S. E. and Shrout, T. R. (1997). Characteristics of relaxor-based piezoelectric single crystals
for ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1140-1147.



134

CHAPTER 5 TRANSDUCERS

Persson, H. W, and Hertz, C. H. (1985). Acoustic impedance matching of medical ultrasound
transducers. Ultrasonics, 83-89.

Puttmer, A., Hauptmann, P, Lucklum, R., Krause, O., and Henning, B. (1997). SPICE model
for lossy piezoceramic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44, 60—67.

Redwood, M. (1963). A study of waveforms in the generation and detection of short ultrasonic
pulses. Applied Materials Research 2, 76-84.

Reid, J. M., and Lewin, P A. (Dec. 17, 1999). Ultrasonic transducers, imaging. Wiley Encyclo-
pedia of Electrical and Electronics Engineering Online, http://www.mrw.interscience.wiley.
com/eeee.

Reid, J. M., and Wild, J. J. (1958). Current developments in ultrasonic equipment for medical
diagnosis. Proc. Nat. Electron. Conf. 12, 1002-1015.

Rhyne, T. L. (1996). Computer optimization of transducer transfer functions using constraints
on bandwidth, ripple and loss. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 136-149.

Ritter, T., Geng, X., Shung, K. K., Lopath, P. D., Park, S. E., and Shrout, T. R. (2000). Single
crystal PZN/PT-polymer composites for ultrasound transducer applications. IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 47, 792-800.

Ritter, T. A., Shrout, T. R., Tutwiler, R., and Shung, K.K. (2002). A 30-MHz piezo-composite
ultrasound array for medical imaging applications. IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 49, 217-230.

Sachse, W. and Hsu, N. N. (1979). Ultrasonic transducers for materials testing and their
characterization. Physical Acoustics, Vol. XIV, Chap. 4. W. P Mason and R. N. Thurston
(eds.). Academic Press, New York.

Safari, A., Panda, R. K., and Janas, V. F. (1996). Ferroelectricity: Materials, characteristics and
applications. Key Engineering Materials, 35-70, 122-124.

Saijo, Y. and Chubachi, N. (2000). Microscopy. Ultrasound in Med. & Biol. 26, Supplement
1, S30-S32.

Saitoh, S., Takeuchi, T., Kobayashi, T., Harada, K., Shimanuki, S., and Yamashita, Y. A. (1999).
3.7 MHz phased array probe using 0.91Pb (Zn;/3Nb,;3)O3 — 0.09 PbTi O3 Single Crystal.
IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 414-421.

Sato, J-I., Kawabuchi, M., and Fukumoto, A. (1979). Dependence of the electromechanical
coupling coefficient on width-to-thickness ratio of plank-shaped piezoelectric transducers
used for electronically scanned ultrasound diagnostic systems. J. Acoust. Soc. Am.
66, 1609-1611.

Sato, J-1., Kawabuchi, M., and Fukumoto, A. (1980). Performance of ultrasound transducer and
material constants of piezoelectric ceramics. Acoust. Imaging 10, 717-729.

Selfridge, A. R., Baer, R., Khuri-Yakub, B. T., and Kino, G. S. (1981). Computer-optimized
design of quarter-wave acoustic matching and electrical networks for acoustic transducers.
IEEE Ultrason. Symp. Proc., 644-648.

Selfridge, A. R. and Gehlbach, S. (1985). KLM transducer model implementation using
transfer matrices. IEEE Ultrason. Symp. Proc., 875-877.

Selfridge, A. R., Kino, G. S., and Khuri-Yakub, R. (1980). Fundamental concepts in acoustic
transducer array design. IEEE Ultrason. Symp. Proc., 989-993.

Shrout, T. R. and Fielding Jr., J. (1990). Relaxor ferroelectric materials. IEEE Ultrason. Symp.
Proc., 711-720.

Sittig, E. K. (1967). Transmission parameters of thickness-driven piezoelectric transducers
arranged in multilayer configurations. IEEE Trans. Sonics Ultrason. SU-14, 167-174.

Sittig, E. K. (1971). Definitions relating to conversion losses in piezoelectric transducers. IEEE
Trans. Sonics Ultrason. SU-18, 231-234.



REFERENCES

135

Smith, W. A., Shaulov, A. A., and Singer, B. M. (1984). Properties of composite piezoelectric
material for ultrasonic transducers. IEEE Ultrason. Symp. Proc., 539-544.

Souquet, J., Defranould, P, and Desbois, J. (1979). Design of low-loss wide-band ultrasonic
transducers for noninvasive medical application. IEEE Trans. Sonics Ultrason. SU-26,
75-81.

Stratton, J. A. (1941). Electromagnetic Theory. McGraw Hill, New York, pp. 97-103.

Szabo, T. L. (1982). Miniature phased-array transducer modeling and design. IEEE Ultrason.
Symp. Proc., 810-814.

Szabo, T. L. (1984). Principles of nonresonant transducer design. IEEE Ultrason. Symp. Proc.,
804-808.

Szabo, T. L. (1998). Transducer arrays for medical ultrasound imaging, Chap. 5. Ultrasound in
Medicine, Medical Science Series, F. A. Duck, A. C. Baker, and H. C. Starritt (eds.). Institute
of Physics Publishing, Bristol, UK.

Takeuchi, H., Jyomura, S., Ishikawa, Y., and Yamamoto, E. (1982). A 7.5 MHz linear array
ultrasonic probe using modified PbTiOs. IEEE Ultrason. Symp. Proc., 849-853.

Takeuchi, H., Masuzawa, H., Nakaya, C., and Ito, Y. (1990). Relaxor ferroelectric transducers.
IEEE Ultrason. Symp. Proc., 697-705.

van Kervel, S. J. H. and Thijssen, J. M. (1983). A calculation scheme for the optimum design of
ultrasonic transducers. Ultrasonics, 134-140.

von Ramm, O. T. (2000). 2D arrays. Ultrasound in Med. & Biol. 26, Supplement 1, S10-5S12.

Wildes, D. G., Chiao, R. Y., Daft, C. M. W, Rigby, K. W., Smith, L. S., and Thomenius, K. E.
(1997). Elevation performance of 1.25D and 1.5D transducer arrays. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 44, 1027-1036.

Woijcik, G., DeSilets, C., Nikodym, L.,Vaughan, D., Abboud, N., and Mould. Jr., J. (1996).
Computer modeling of diced matching layers. IEEE Ultrason. Symp. Proc., 1503-1508.
Yin, J., Jiang, B., and Cao, W. (2000). Elastic, piezoelectric, and dielectric properties of 0.995Pb
(Zn;/3Nb,/3)O3 —)0.45 PbTiO3 single crystal with designed multidomains. IEEE Trans.

Ultrason. Ferroelectr. Freq. Control 47, 285-291.

Zhang, R., Jiang, B., and Cao, W. (2001). Elastic, piezoelectric, and dielectric properties of
multidomain 0.67Pb (Mgy,3 Nb,;3)O3 —)0.33PbTiO; single crystals. J. Appl. Phys.
90, 3471-3475.



This page intentionally left blank



6 BEAMFORMING

Chapter Contents

6.1 What is Diffraction?

6.2 Fresnel Approximation of Spatial Diffraction Integral
6.3 Rectangular Aperture

6.4 Apodization

6.5 Circular Apertures
6.5.1 Near and Far Fields for Circular Apertures
6.5.2 Universal Relations for Circular Apertures

6.6 Focusing
6.6.1 Derivation of Focusing Relations
6.6.2 Zones for Focusing Transducers

6.7 Angular Spectrum of Waves
6.8 Diffraction Loss

6.9 Limited Diffraction Beams
Bibliography

References

6.1 WHAT IS DIFFRACTION?

Chapter 3 explained that radiation from a line source consists of not just one
plane wave but many plane waves being sprayed in different directions. This phenom-
enon is called diffraction (a wave phenomenon in which radiating sources on the
scale of wavelengths create a field from the mutual interference of waves generated
along the source boundary). A similar effect occurs when an ultrasound wave is
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scattered from an object with a size on the order of wavelengths (to be described in
Chapter 8).

Acoustic diffraction is similar to what occurs in optics. When the wavelength is
comparable to the size of the objects, light does not create a geometric shadow of the
object but a more complicated shadow region with fringes around the object. Light
from a distant source incident on an opening (aperture) on the scale of wavelengths
in an opaque plane will cause a complicated pattern to appear on a screen plane
behind it.

The same thing happens with sound waves as is shown in Figure 6.1, which is an
intensity plot of an ultrasound field in the xz plane. In the front is the line aperture
radiating along the beam axis z. Here the scale of the z axis is compressed and
represents about 1920 wavelengths, whereas the lateral length of the aperture is 40
wavelengths. Figure 6.2 gives a top view of the same field with the aperture on the
left. Sound spills out beyond the width of the original aperture. Diffraction, in
this case, gives the appearance of bending around objects! This phenomenum
can be explained by the sound entering an aperture (opening) and reradiating second-
ary waves along the aperture beyond the region defined by straight geometric
projection.

Figure 6.1 Diffracted field of a 40-wavelength-wide line aperture depicted as a black horizontal
line. The vertical axis is intensity and shown as a gray scale (maximum equals full white), the beam axis is
compressed relative to the lateral dimension, and 1920 wavelengths are shown (from Szabo and
Slobodnik, 1973).
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Figure 6.2 Top view of a diffracted field from a 40-wavelength-wide line aperture on
the left. The same field from Figure 6.1 is shown in gray scale. The beam axis is compressed
relative to the lateral dimension (from Szabo and Slobodnik, 1973).
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Diffraction is the phenomenon that describes beams from transducers. This
chapter emphasizes frequency domain methods of predicting the characteristics
of the ultrasound fields radiated by transducer apertures. It examines two major
approaches: One involves spatial frequencies (the angular spectrum of plane
waves), and the other employs spherical waves. This chapter also covers both
circular and rectangular apertures, as well as the important topics of focusing and
aperture weighting (apodization). In Chapter 7, complementary time domain
methods (spatial impulse response) are applied to simulate focused and steered
beams from arrays.

6.2 FRESNEL APPROXIMATION OF SPATIAL DIFFRACTION INTEGRAL

Christian Huygens visualized the diffracting process as the interference from many
infinitesimal spherical radiators on the surface of the aperture rather than many plane
waves, an approach described in Section 2.3.2.2. His perspective gives an equally
valid mathematical description of a diffracted field in terms of spherical radiators, as
was shown in Eq. (3.17). Revisiting Figure 6.2, notice the many peaks and valleys near
the aperture where the field could be interpreted as full of interference from many tiny
sources crowded together. Also, far from the aperture, the spheres of influence have
spread out, and the resulting field is smoother and more expansive. The Rayleigh—
Sommerfeld integral (Goodman, 1968) is a mathematical way of describing Huygen’s

diffracting process as a velocity potential produced by an ideal radiating piston set in
an (inflexible) hard baffle,

d)(ra w) =

_ i[wt—k-(r—70)]
1J e (Ov(ro)/On)dS (6.12)

2 |r — 70|

where v, = Ov(ry)/On is the component of particle velocity normal to the element dS.
Within the integrand, the frequency domain solution of a spherical radiator can be
recognized from Chapter 3. In terms of the field pressure amplitude shown in Eq.
(3.3Db), this model can be described as a spatial integral of the particle velocity over the
source S,

(6.1b)

ipockvo [ €tRE=01A(r0)dS
) =5 | o)

|r — 70|

where v, = v9A(ro) is the normal particle velocity and A(rg) is its distribution across
the aperture S (shown in Figure 6.3). For a rectangular coordinate system, the Fresnel
or paraxial approximation of this integral is an expansion of the vector |[r —rg| as a
small-term binomial series,

[r—ro| = \/Z2 + (x — x0)* + (y — y0)° (6.2a)

144 x‘“)ﬂf-y‘w)z (6.2b)
2 2 2\ z '

|r —ro| =z
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Figure 6.3 Coordinate system
of an aperture in the xy plane and radi-
ating along the z axis. Source coordi-
natesintheaperture planeare denoted
by the subscript (0). The rectangular
aperture has sides Ly. and L,. Radial
arrows end in a spatial field point.

where the terms in Eq. (6.2b) are small compared to one and a replacement of |r — 7|
in the denominator by z results in

ochun _ . .
plr, w) = %ez(wtsz)eﬂk(xzﬁwz)/lz JJ [elee(xéer(z))/ZzA(xO’ yo)]ezk(xxo+yyo)/zdxodyo
N
(6.3)
If the aperture has a rectangular shape (shown in Figure 6.4), it has sharp transitions
along its boundary, and it can be represented by an aperture function,
A(x0, Y0, 0) = Ax(x0)Ay(¥0) (6.4a)
should be x( + yo rather than x +y
+L, L,ratherthanL, L,

A(xo, Y0, 0) = [ [(xo/Ls) [ [ (0/Ly) (6.4b)

If the aperture distribution function is separable, as in Eq. (6.4a), then the integration
can be performed individually for each plane. As an example, if the plane-wave
exponent is neglected, and

_ pockvo _ o _ o

0 2z 2nz Az (652)

The overall integral can be factored as p(x, y, 2, w)=p(x, 2, w) py(y,z,w) so that each
integral is of the form,

Px(x, w) = \/K(;ein/4e—ikx2/2z J [e—ikx(z)/ZzA(xo)]eik(xxo)/zdxo (6.5b)
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Figure 6.4 A constant amplitude aperture function for a rectangular aper-
ture consists of two orthogonal rect functions multiplied together.

If we define I' = 1/(/z), and ¢ = I'xy, then this integral can be recognized as plus-i
Fourier transform of the argument in the brackets (Szabo, 1977; Szabo, 1978),

/e -
P, T, w) :—‘/F“Oem/“e—mw J [e™™" /T A(c/T)]e>™* d¢ (6.5¢)

which can be evaluated by a standard inverse Fast Fourier transform (FFT) algorithm.

6.3 RECTANGULAR APERTURE

The previous analysis can be applied to the prediction of a field from a solid rectangular
aperture, which is the same outer shape as most linear and phased array transducers.
These aperture shapes will be helpful in anticipating the fields of arrays. Predictions
will be only for a single frequency, yet they will provide insights into the characteristics
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of beams from any rectangular aperture radiating straight ahead along the beam axis.
Here relations for fields from line sources are derived to clarify the main features of an
ultrasound field. For example, a line source can be used to simulate the field in an
azimuth or xz imaging plane. Two orthogonal line apertures can be applied to simulate
a rectangular aperture, as is given by Eq. (6.4a) and Figure 6.4.

For many cases, simple analytic solutions can be found (Szabo, 1978). For example,
for the case of a constant normal velocity on the aperture, with A as the rectangular
function of Eq. (6.4b), an exact expression for the pressure field under the Fresnel
approximation can be found from Eq. (6.5¢),

w _@ in/4 X+Lx/2 B _x—Lx/Z
P, 2, w) = \/ze F <7Tz /2> F <7_&/2 >] (6.6)

where
z
Fz) = Je’i”tz/zdt (6.72)
0

and F(z) is the Fresnel integral of negative argument (Abramowitz and Stegun,
1968),

Far from the aperture, the quadratic phase terms in Eq. (6.5¢) are negligible, and
the pressure at a field point is simply the plus-i Fourier transform of the aperture
distribution, as

pxlx, T, w) :\/TABei"/4 J [A(c/T)]e*™*dg (6.8)

—00

which, for a constant amplitude aperture distribution is

L, A - . L, L, : . L,
Prloe, T, w) = = (@) ™4 sinc (/1—:) = %Z_Oe’“/“ sinc <sz) (6.9a)

The field from a 28-wavelength-wide aperture, is presented as a contour plot in Figure
6.5a. The contours represent points in the field that are —3 dB, —6 dB, —10 dB, and
—20 dB below the maximum axial value at each depth (z) in the field. This plot was
generated by a public beam simulation program developed by Professor S. Holm and
his group at the University of Oslo, Norway (see Section 7.8 for more information).
The far-field beam profile pattern is given by Eq. (6.9a) and shown in Figure 6.11. To
determine the —6-dB beam halfwidth far from the aperture, solve for the value of x in
the argument of the sinc function of Eq. (6.9a) that gives a pressure amplitude value of
0.5 of the maximum value,

x_¢ = 0.603/2/L (6.9b)
and the full width half maximum (FWHM) is twice the —6-dB half beamwidth,
FWHM = 1.206/z/L (6.9¢)
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Figure 6.5 (A) Contour beam plot for a 12-mm (28 wavelength), 3.5-MHz line aper-
ture with —3-dB, —6-dB, —10-dB, and —20-dB contours normalized to axial values at each
depth. Nonfocusing aperture approximated by setting deep focal depth to 1000 mm (S = 3)
(Plot generated using Ultrasim software developed by Professor S. Holm of the University of
Oslo.) (B) Axial plot of normalized absolute pressure versus S from Eq. (6.10a) with $ =0.36
corresponding to Z = 120 mm.

The —6-dB beamwidth just calculated can be compared to the actual —6-dB contour
in Figure 6.5a to illustrate the good match at longer distances from the aperture.
Other beamwidths, such as the -20 dB, can be determined by this approach as well.
A decibel plot of the half-beam (symmetry applies) over a larger range is shown in the
top right of Figure 6.6. Section 6.4 will explain the effect of changing the amplitude
profile of the source on the beam shape.
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Figure 6.6 rar-field beam cross sections or beam profile on a scale for a
(A) rectangular constant amplitude function source and (B) truncated Gaussian
source.

The beam along the z axis can be found by setting x = 0 in Eq. (6.6),
L./2

; , 1
_ in/4 _ in/4
p(0, 2, w) = ™*/2p, [F ( iz/2> 1 ELANGTN [F (—m)] (6.10a)

An axial cross section of the beam that was calculated from this equation is plotted in
Figure 6.5b. Note that for any combination of parameters L,, z, and /4 that have the
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same argument in F of Eq. (6.10a), identical results will be obtained. This argument
leads to a universal parameter (S),

S=)z/L* =%/L? (6.10b)

where wavelength-scaled parameters are useful, 2 = z/4, and L = L/A. The universal
parameter S can be expressed equally well in wavelength-scaled variables, as can
previous equations such as Eqgs. (6.6), (6.9a), and (6.10a). The mathematical substitu-
tion of wavelength-scaled variables shows that what matters are the aperture and
distance in wavelengths. For example, a 40-wavelength wide aperture will have the
same beam-shape irrespective of frequency.

A second observation is that nearly identical beam-shapes will occur for the same
value of S, as shown for beam profiles in Figure 6.7. A definite progression of beam
patterns occurs as a function of z, but if these profiles are replotted as a function of the
universal parameter S, this same sequence of profile shapes can apply to all apertures
and distances except very near the aperture. For the same value of S, the same shapes
occur for different combinations of z and L. Look at Figure 6.8, in which different
apertures and distances combine to give the same value of § = 0.3. For example, if
A=1mm, and L; = 40 mm, z; = 480 mm; if L, = 40 mm, then z, = 1920 mm to
give the same value of S. This scaling result can be shown by reformulating the
arguments of Eq. (6.6) in terms of wavelength-scaled parameters and S,

x+Le/2\  (x%/L.+1)2 .
() () o1

From this relation, it is evident that for two combinations of z and L values having the
same value of S, the argument will have exactly the same numerical value when
X = (L2 /L1)x;. In the previous example, this result shows that for the larger aper-
ture, the profile is stretched by a scaling factor of two over the profile for the smaller
aperture (shown in Figure 6.8). Remember that a limitation to this approach is that
the distance and aperture combinations must satisfy the Fresnel approximation, Eq.
(6.2b), on which this result depends.

A third realization is that the last axial maximum, shown in Figure 6.5, occurs at
a transition distance, z; &~ L2/(n4), or when the argument in Eq. (6.10a) is equal to
v/m/2. This distance separates the “near” and “far” fields and is called the “natural
focus.” More exactly, Figure 6.5b shows 2max = 0.339 L2 /4. The location of minimum
—6-dB beamwidth is zmin = 0.4L2//. Eq. (6.6) describes the whole field along the
axis (except perhaps very close to the aperture). A program rectax.m, based on Eq.
(6.10a), was used to calculate Figure 6.5b. In the far field, given by Eq. (6.9a), the
pressure along the axis falls off as (\z) /2. The shape of the far field is only approxi-
mately given by Eq. (6.9a) because, in reality, the transition to a final far-field shape (in
this example, a sinc function) occurs gradually with distance from the aperture. For a
rectangular array, the contributions from both apertures to the field can be written as

x+Le/2\ fx—L/2 y+Ly/2\  [y—Ly/2
F( 2z/2> F(wiz/Z)} F<\//1z/2> F( iz/Z)]

(6.11a)

p(x3 V5%, /1) = r;ﬁein/Z
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Figure 6.7 Diffraction beam profiles for
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files for other values of L can be found by
scaling the profile at the appropriate value of
S (from Szabo and Slobodnik, 1973).
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Figure 6.8 Diffraction beam profiles versus transverse
wavelength-scaled distance (%) for different values of wave-
length-scaled apertures L and the same value of $ = 0.3 (from
Szabo and Slobodnik, 1973).

and the on-axis pressure is

o L./2 L,/2
_ ,in/2 Y
(0, 0, z, 1) = &™*2p, [F ( iz/Z) F ( ﬂ~2/2> ] (6.11b)

and there can be two on-axis peaks if L, # L, (one from the natural focus in the xz
plane and another from the natural focus in the yz plane). Experimental verification of
these equations for rectangular apertures can be found in Sahin and Baker (1994).

6.4 APODIZATION

Apodization is amplitude weighting of the normal velocity across the aperture. In a
single transducer, apodization can be achieved in many ways, such as by tapering the
electric field along the aperture, by attenuating the beam on the face of the aperture,
by changing the physical structure or geometry, or by altering the phase in different
regions of the aperture. In arrays, apodization is accomplished by simply exciting
individual elements in the array with different voltage amplitudes.

One of the main reasons for apodization is to lower the sidelobes on either side of
the main beam. Just as time sidelobes in a pulse can appear to be false echoes, strong
reflectors in a beam profile sidelobe region can interfere with the interpretation of on-
axis targets. Unfortunately, for a rectangular aperture, the far-field beam pattern is a
sinc function with near-in sidelobes only —13 dB down from the maximum on-axis
value (shown in Figure 6.6a). A strong reflector positioned in the first sidelobe could
be misinterpreted as a weak (—13 dB) reflector on-axis. Shaping is also important
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because, as we shall discuss later, the beam-shape at the focal length of a transducer
has the same shape as that in the far field of a nonfocusing aperture.

A key relationship for apodization for a rectangular aperture is that in each plane,
the far-field pattern is the plus-i Fourier transform of the aperture function, according
to Eq. (6.8). Aperture functions need to have rounded edges that taper toward zero at
the ends of the aperture to create low sidelobe levels. Functions commonly used for
antennas and transversal filters are cosine, Hamming, Hanning, Gaussian, Blackman,
and Dolph—Chebycheff (Harris, 1978; Szabo, 1978; Kino, 1987). There is a trade-off
in selecting these functions: The main lobe of the beam broadens as the sidelobes
lower (illustrated by Figure 6.6b). A number of window functions can be explored
conveniently and interactively through the wintool graphical user interface in the
MATLAB signal processing toolbox; this interface was used to create Figure 6.6,
which compares Hamming apodization to no apodization. The effect of apodization
on the overall field is given by Figure 6.9, which compares the field from the same
truncated Gaussian apodization with that from an unapodized aperture. Here not
only is the apodized beamshape more consistent, but also the axial variation is less.
Note that for any apodization, universal scaling can be still applied even though the
beam evolution is different.

6.5 CIRCULAR APERTURES

6.5.1 Near and Far Fields for Circular Apertures

Many transducers are not rectangular in shape but are circularly symmetric;
expressions for their fields can be described by a single integral. The spatial diffraction
integral, Eq. (6.3), can be rewritten in polar coordinates for apertures with
a circular geometry, neglecting the plane wave factor (Goodman, 1968; Szabo,
1981), as

p(p, 2,) = 2P0 i 32 jA(po)e—inpg/;z " <2”/’Z_Po

- ; :>podpo (6.12a)

in which p and p, are the cylindrical coordinate radii of the field and source
(as distinct from p,, used for density),

pr=x>+y? (6.12b)
Py = x} + v} (6.12¢)

for a field point (p, z) (given in Figure 6.10), and ], is a zero-order Bessel function. By
letting Y = 2np/(Az), we can transform the integral above through a change in
variables,

) N o
(o, ) =" 2 [ Alpgle ) Jo(Yppadpy (6.13)
0
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Figure 6.9 Diffraction beam profiles for an unapodized aperture (on the left)
compared to a truncated Gaussian aperture (on the right), both with an overall aperture
of 40 wavelengths (from Szabo, 1978).
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ZA

Figure 6.10 Cylindrical coordinate system for circularly symmetric
apertures.

This equation is a zero-order Hankel transform, defined with its inverse as the

following:
A(g) = H[U(M)] = J U()Jo(gr)rdr (6.14a)
0
U(g) = H'[A(g)] = JA(q)]o(qr)qdq (6.14b)
0

Equations (6.12a) and (6.13) are valid for both the near and far fields. In the far field,
as p/z and p,/z become very small, then

p(p; 2, A) = A(po)]o(YPo)Podpo (6.15)

. o0
i2mpg
2

0
Therefore, the pressure beam pattern in the far field is the Hankel transform
of the aperture function. For a constant normal velocity across the aperture of
radius a,
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Apy) = H(p of 2) (6.16)

P, 2, 1) = %LZWH[H (Mﬂ (6.17a)

a

2

; 2
_ _ipoma® 2]1(2mpa/(7z)) . ma\ .. pa
R N e 7 B O jine(7)  (€17b)

where
jinc(x) = 2J1(2nx) / 2nx) (6.18a)

and J is a first order Bessel function. The far-field beam cross section is shown in
Figure 6.11. The FWHM for this aperture is

FWHM = 0.70472z/a (6.18b)

An exact expression without approximation can be obtained for on-axis pressure,

(0, z, 2) |= 2po sin{% [\/1 + (a/z)* — 1] } (6.19a)

which under the Fresnel approximation, 22 > a?, is
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Figure 6.11 Farfield jinc beam-shape from a circular aperture (dashed line)
normalized to a far-field sinc function from a line aperture (solid line) with the same
aperture area.
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Figure 6.12 Contour beam plot for a 13.54-mm-diameter, 3.5-MHz circular aperture
with —3-dB, —6-dB, —10-dB, and —20-dB contours normalized to axial values at each depth.
(Plotgenerated using Ultrasim software developed by Professor S. Holm of the University of Oslo.)

(0, z, 2) ~ i2pge e /%% sin (%) (6.19b)

Note that for large values of z, the phase from the beginning factor of Eq. (6.19b) goes
to /2 asin Eq. (6.11b). A contour plot for a 13.54-mm-diameter aperture is given in
Figure 6.12.

6.5.2 Universal Relations for Circular Apertures

The argument of the sine function in Eq. (6.19b) has a familiar look. If we define a
diffraction parameter for circular apertures as S, = z//a?, then (6.19b) becomes

p(0, 2, A)| ~ 2pgsin (%) (6.19¢)

We can see that the last axial maximum occurs when S, = 1 (the argument = n/2) or
equivalently, when 2. = z; = a®//, the transition point is between near and far
fields. Note the similarity to the transition distance for a line source, which occurs
when the argument of Eq. (6.10a) is equal to /7/2.

As we would expect from linearity and transform scaling, similar beam-shapes
occur for the same values of the S, parameter. Apodization can be applied to circular
apertures using Hankel transforms of window functions.

The aperture area also plays a role in determining the axial far-field falloff in
amplitude. If the circular aperture area is set equal to a square aperture, then



154 CHAPTER 6 BEAMFORMING

na’> = L%, or a = L/\/m. Beam profiles of different shapes can be compared on an
equivalent area basis as done in Figure 6.11. Figures 6.5a and 6.12 were generated on
an equivalent area basis for a square aperture and a circular one. Substitute this
equivalent value of @ in

Zmax = a* /A~ L*/(n)) (6.20a)

where the distance to the maximum for a line aperture is given approximately. Recall
that a more accurate value for the line aperture is 2ma = 0.339L%/A. In general,
approximately

Zmax = AREA/(7A) (6.20Db)

For large values of z, the replacement of sine by its argument in Eq. (6.19b) leads to a

far-field falloff of
p(0, 2, )| ~ po(na?)/(z2) = poAREA/(z7) (6.21a)

and a similar far-field approximation for Eq. (6.11b) for a rectangular aperture gives

p(0, 2)| ~ \/po(L)/(z4) = \[psAREA  (2)) (6.21b)

6.6 FOCUSING

6.6.1 Derivation of Focusing Relations

Focusing is usually accomplished by a lens on the outer surface of a transducer, by the
curvature of the transducer itself, or by electronic means in which a sequence of

Principal longitudinal plane

Aperture

—6 dB beam contour
for focusing aperture,

Beam axis

Zmax Z

-20-dB

Beamwidth
W_g

Transition distance for
nonfocusing aperture
of the same size

Figure 6.13 Focusing as defined by the narrowness of a beam in a specified plane (from IEC
61828, 2001).
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Figure 6.14 (A) Line focusing for a cylindrical lens. (B) Point focusing by a spherical lens (from IEC
61828, 2001).

delayed pulses produce the equivalent of a lens. We shall focus our attention on the
thin lens. Lenses can be cylindrical (curvature in one plane only) for a geometric line
focus or spherical (curvature the same in all planes around an axis) for a geometric
focus at a point (shown in Figure 6.14).

By a convention similar to but opposite in sign to that of optics, a thin lens is made
of a material with an index of refraction, 7, and a thickness, A(x, y), as shown in
Figure 6.15. This lens has a phase factor,

Ti(x, y) = exp (ikAg) exp (ik(n — 1)A(x, 7)) (6.22)

where k is for the medium of propagation (usually water or tissue) and Ag is a
constant. For a paraxial approximation (Goodman, 1968),

2 2
Alx, y) =~ Ag — & y) (i — i) (6.23)

where Ry and R, are the lens radii (shown in Figure 6.15). A geometric focal length is
defined (Goodman, 1968) as
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Figure 6.15 Thin lens geometry and definitions.

1a 11
F20-1) <R—1 - E) (6.24)
so that the phase factor for a thin lens is
Tr(x, y) = exp (iknAo) exp (ik(x* +y?)/2F) (6.25)

and the first factor, exp ((knly), a constant, is dropped or set to equal one.

Unlike optics, ultrasonic lenses can have an index of refraction of less than one
(shown in Figure 6.16). Here common lens shapes are plano-convex or plano-
concave, where one side is flat and the corresponding R is infinite. For example, for
the plano-concave lens and the convention (opposite of that used in optics) shown in
Figure 6.16, the focal length becomes

1A ( 1 1 )
LT 6.26a
F ( ) oo Rrens ( )
or
F— “Ruens _ [Ruens (6.26b)
n—1 n—1

which numerically is a positive number because 7 is less than one (the case in Figure
6.16b). By similar reasoning, in the case in Figure 6.16¢, which has a positive radius of
curvature by convention and a positive index of refraction, the focal length also ends
up being a positive number,

Rrens

F:RLENS_
n—1

n—1"

(6.26¢)

If the phase factor, Eq. (6.25), with the understanding of the numerical value of the
geometric focal length,

Ti(x, y) = exp (ik(x* +y*)/2F) (6.272)
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Figure 6.16 Methods of focusing. (A) Transducer with a radius of curvature R so
that the focal length is equal to R. (B) Transducer with a plano-concave lens. (C)
Transducer with a plano-convex lens (from IEC 61828, 2001).

is put in the diffraction integral, Eq. (6.3) under the Fresnel approximation, the
following results:

plr, w) = lé)_okei(wtsz)efik(xljtyl)ﬂz Jj [e71‘/2(xg+y(2))/2zeik(x(2)+y(2))/2FA(xo’ yo)]eik(xonryyo)/zdedyo
2 s

(6.27b)

The net effect is replacing the —1/z term in the quadratic term in the integrand by
—(1/Z - l/F)’ or



158 CHAPTER 6 BEAMFORMING

1/2ze=1/z—1/F (6.28a)
This relation can be thought of as replacing the original zin Eq. (6.3) by an equivalent z,,
ze =2/(1 —z/F) (6.28b)

Recall that without focusing, a prescribed sequence of beam patterns occurs along the
beam axis z (shown in Figure 6.7). With focusing, the same shapes occur but at an
accelerated rate at distances given by z.. Thus, the whole beam evolution that would
normally take place for a nonfocusing aperture from near field to extreme far field
occurs for a focusing transducer within the geometric focal length F! At the focal
distance, z = F, the quadratic term in the integrand of Eq. (6.27b) is zero, and the
beam-shape is the double +i Fourier transform of the aperture function in rectangular
coordinates. Note, as before, that the aperture can be factored into two functions, so a
single Fourier transform is required for each plane (xz or yz). Similarly, for a spheri-
cally focusing transducer, Eq. (6.28) also holds; the Hankel transform of the aperture
function occurs at z = F.

6.6.2 Zones for Focusing Transducers

To understand the different regions of focusing, we return to an approximate expres-
sion for the on-axis pressure, Eq. (6.19b) from a circularly symmetric transducer, but
this time with spherical focusing and for z # F,

l'zpoefikzefim2 /202, ' na
= 2
p(0,z,) W) sin 57— (6.29a)
and for z = F (note the similarity to Eq. (6.21a)),
. o (T
p(0,2,) ~ i2poe ™*F (m) (6.29b)

Recall that the transition distance z; for the nonfocusing case, when substituted in the
on-axis pressure equation, gave an overall phase of n/2 in the argument of the sine
function. To obtain this same equivalent phase for the focusing aperture, we set the
argument of the sine in Eq. (6.29a) to +r/2 and solve for z,,

ze = £a*/a (6.30)

For a positive value of z, and the definition of z, in Eq. (6.28a), as well as the
definition, z, = z; = a*/4, Eq. (6.30) can be applied to the determination of the
near-transition distance, z = z;1, for a focusing transducer, which separates the near
Fresnel zone from the focal Fraunhofer zone depicted in Figure 6.17,

1/z1 = 1/z + 1/F (6.31a)
or,

zn =zF/(@ +F) (6.31b)
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Figure 6.17 Beamwidth diagram in a plane showing the three zones of a focused field separated
by transition distances one and two (from IEC 61828, 2001).

Similarly, through the use of the negative value of z, in Eq. (6.30), the far transition
distance between the far end of the focal Fraunhofer zone and the far Fresnel zone,

1/202 = 1/2 + 1/F (6.310)
2 = z:F/(z: — F) (6.31d)

Another way of interpreting Eq. (6.31a) is that the location of the maximum ampli-
tude is reciprocally related to the combined effects of natural focusing and geometric
focusing. Note that these comments and Egs. (6.31a-6.31d) apply equally well to the
focusing of rectangular transducers in a plane with the appropriate value of
2 &~ L2 /(n2) for the plane considered.

From the equivalent distance relation, Eq. (6.28b), it is possible to compare the beam
profiles of a focusing aperture to that of a nonfocusing aperture. The beam of a focusing
aperture undergoes the equivalent of the complete evolution from near to far field of a
nonfocusing aperture within the geometric focal length because as z approaches F in
value, z, increases to infinity. At the focal length, previous far-field Egs. (6.8), (6.9a),
and (6.17) can be used with z = F. For z > F, the phase becomes negative. A curious
result is that the near-transition distance is the location of the highest amplitude in the
focused field, which does not occur at the focal length. The location of this peak can be
found from Eq. (6.31b), which can be rewritten as

zn =F/(1 + Scr) (6.31e)
where

S.p =Fi/a*> = F/z, (6.31f)
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where Z; is the transition distance for the same aperture without focusing. Another
odd consequence of focusing is that for strongly focused apertures, significant peaks
and valleys may be generated beyond the focal length in the far Fresnel zone. Because
these Fresnel interference effects happen much farther from the aperture, they
are generally less severe and may not occur at all, depending on the strength of the
focusing. These interesting features are shown in the beam contour plot of Figure 6.18
for a spherically focusing aperture.

This section now examines several examples of these remarkable scaling laws for
focusing. Recall that in the far field, the —6-dB half-beamwidth is proportional to the
distance divided by the line aperture in wavelengths, as in Eq. 6.9b. This equation can
actually be generalized to any distance in terms of wavelength-scaled parameters,

%_¢ =bz/L (6.32a)

where away from the far-field region, the constant b must be determined numerically.
The angle from the origin to this width can be shown to be inversely proportional to
the aperture in wavelengths,

tan0_¢ =%_¢/2 = b/L (6.32b)

These equations can be applied to any beamwidths (such as —20 dB), provided the
appropriate constant b is determined.
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Figure 6.18 Beam contours (-6 dB, —12 dB, and —20 dB) for a 5-MHz spherically centered
aperture at location (0,0) (shown at the bottom center of graph) with a diameter of 25 mm and a radius
of curvature of 50 mm. The near Fresnel zone, focal Fraunhofer zone, and far Fresnel zone are marked
(from IEC 61828, 2001).



6.6 FOCUSING 161

This series of examples for an aperture of 32 wavelengths will demonstrate how
equivalent beam cross-sections can be obtained for a variety of condition. Beamplots
as a function of angle are calculated by the MATLAB focusing program beamplt.m,
which uses a numerical FFT calculation of Eq. (6.27b) for a one-dimensional unapo-
dized line aperture. The first example is a nonfocusing aperture, and since this is a
focusing program, the nonfocusing case can be approximated well by setting the focal
distance to a large number (approximating infinity), F = 50, 000. Using the location
of the transition distance in wavelengths (see Section 6.3), we obtain
2, = L*/n = 326. The corresponding beamplot and half-beamwidth angles are in
Figure 6.19a.

The next example is for a focusing aperture with F = 100. The first transition
distance can be found from Eq. (6.31b) to be &;; = 76.5. The corresponding beamplot
is shown in Figure 6.19b, where the beam-shape is that of the nonfocusing case with
half-beamwidth angles agreeing within quantization and round-off errors. Similarly,
from Eq. (6.31d), the second transition distance is Z;; = 144.3, and the corresponding
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10 10
or Lhat = 32 6dB BW/2 =2.44 1 0 Lhat = 32 6dB BW/2 = 2.46
10 Fhat = 50000 10dB BW/2 = 3.05 1 10 Fhat = 100 10dB BW/2 = 3.06
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dB
dB

40 40

50 50

60, 60
50 0 50 50 0 50

Angle (deg.) Angle (deg.)
C Blamplot D Beamplot

of Lhat = 32 6dB BW/2 =2.45 1 0 Lhat = 32 6dB BW/2 =2.43

10 Fhat = 100 10dB BW/2 = 3.06 1 10 Fhat = 50 10dB BW/2 = 3.05

20dB BW/2 = 8.18

20 Zhat = 144.3 20dB BW/2 =8.19 20 Zhat = 43.4

dB
dB

30r 30

40F 40

50 50

60 60
50 0 50 50 0 50

Angle (deg.) Angle (deg.)

Figure 6.19 (A)Beamplot in dB versus angle from the beam axis for a nonfocusing line aperture of
32 wavelengths (L = 32) at the transition distance z; = 326 with the half-beamwidth angles shown. (B)
I}eamplot at the first transition distance, Z;; = 76.5, for the same aperture with a focal distance of

F=100. (C) Beamplot for the same case but at the second transition distance, 2, = 144.3. (D)
Beamplot at the first transition distance, zn = 43.4, for the same aperture with a focal distance of F = 50.
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plotis Figure 6.19c. Finally, if we keep the aperture the same but switch the focal length
to F' = 50, the first transition distance falls to 2,y = 43.4, but the shape is essentially the
same. Note that the beam-shapes for all of these cases are the same, but, because of
the different axial distances involved for each case, the linear lateral beamwidths along
x differ. Another striking illustration of the similarities in scaling can be found
in Figures 12.19a and 12.19¢, where complete two-dimensional contour plots for
focusing beams are compared at one frequency and also at twice the same frequency.
Similar relations to Eq. (6.32) hold for circular transducers as indicated by Eq. (6.18b).

One measure of the strength of focusing is focusing gain, which is defined as the
ratio of the pressure amplitude at the focal length to the pressure amplitude on the
face of the aperture. For a circularly symmetric unapodized aperture, the focal gain is

Grocal = ma* | (ZF) (6.33a)

as can be seen from the on-axis pressure equation for a circularly symmetric focusing
transducer, Eq. (6.29b). For an unapodized line aperture, the gain in a focal plane is

Grocalx = VL?/2F (6.33b)

Focal gain for a rectangular aperture is trickier to define here because noncoincident
foci can interfere; nonetheless, it can be found from the product of the gains for the
line apertures. For the case in which the focal lengths are coincident,

Gfocal = LxLy//LF (633C)
In general, the gain for coincident foci is

Grocal = ApertureArea/IF (6.33d)

This result is a consequence of a Fourier transform principle, which states that the
center value of a transform is equal to the area of the corresponding function in the
other domain. In other words, the axial (center) value in the focal plane is propor-
tional to the area of the aperture. Associated with focal gain is the all-important
improvement in resolution. The —dB-beamwidth can still be found in the FWHM
equations, such as Eqs. (6.9¢) and (6.18b), but with z = F (the focal length). Since F is
much closer to the aperture than a far-field distance for a nonfocusing aperture, an
improvement in resolution is obtained.

A measure of the quality of focusing is a quantity called depth of field (DOF). From
optics, this term has been taken to mean a falloff in axial intensity around the focal
length for a spherically focusing aperture. For example, the difference between
locations of the —3-dB points below the last axial peak has been approximated by
Kino (1987) as

DOF3dB = 1.8S,+F (6.34)

A more general approach to defining DOF is to use the lateral changes in the beam.
A definition of DOF more appropriate to rectangular geometries as well as to circular
ones, is the difference between distances where the lateral —6-dB beamwidth has
doubled over its minimum value as illustrated by Fig 6.13.
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Kossoff (1979) has shown that for spherically focusing apertures, the —6-dB
beamwidths, W_¢, can be approximated from the axial intensity. The premise for
this approach is that the energy in a beam is approximately constant in each plane
where z is constant. The steps are the following:

(1) Find the absolute pressure amplitude Ar (A) and beamwidth, W_¢f, in the focal
plane. For example, Ar can be found from Eq. (6.29a), and the beamwidth can
be found from Eq. (6.17b). Specifically, for the —6-dB beamwidth, use the
FWHM value from Eq. (6.18b), or w_gr = FWHM.

(2) The intensity beamwidth-squared product is constant in any plane, so the
unknown product is set equal to that easily calculated in the focal plane,

AMw? = Ak’ (6.35)

(3) The unknown beamwidth at a depth (z) can be found by solving Eq. (6.35) for
w_g, since A and Af (A in the focal plane) can be found from Egs. (6.29a) and
(6.29b), and the focal beamwidth can be found from Eq. (6.18b).

This approximate method is attractive because the calculation of beam profiles at
planes other than the focal plane can be computationally involved for spherically
focusing apertures. There is no benefit of applying this approach to the rectangular
case because calculations involve either straightforward Fresnel integrals or FFTs.

To summarize, focusing compresses the whole beam evolution, normally expected
for a nonfocusing aperture, into the geometric focal length. The universal scaling
relationships derived previously for nonfocusing apertures can be combined with the
focusing equivalent z relation, Eq. (6.28), to quickly determine beam patterns for a
particular case of interest. The same beam-shapes occur as in the nonfocusing cases,
but they are compressed laterally and shifted to different axial distances. Focused
fields can be divided into three regions: the near Fresnel zone, the focal Fraunhofer
zone, and the far Fresnel zone. The terms near field and far field are only appropriate
for nonfocusing apertures. Focusing has been defined in terms of beamwidth in a
plane so that the contributions from different focusing mechanisms can be separated.
Focusing creates a beamwidth that is narrower than what would be obtained for the
natural focusing of a nonfocusing aperture.

6.7 ANGULAR SPECTRUM OF WAVES

For completeness, we will now review an alternative way of calculating beam patterns
called the angular spectrum of plane waves. This approach, which is an exact solution
to the wave equation, is a powerful numerical method and can be applied to aniso-
tropic media and mode conversion. A drawback to this method is that it cannot
provide as much analytical insight as the spatial diffraction methods can.

By extending the results for the angular spectrum of a single line aperture given in
Chapter 3, we take the double +i Fourier transform of Eq. (6.4b), which, in this case,
is just two one-dimensional transforms multiplied, since Eq. (6.4b) is separable,
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—00

G(fy, ) =J H(x/Lx)e"z”fhl’“df1 J H(y/Ly)e"“f?ydf2 (6.36a)

G(f1, f2) = LeLy sinc(Lyf ) sinc(Lyf5) (6.36b)

in which £, is a spatial frequency along axis 1 (the x axis, here), k; = 2xf;, and so
forth. Recall that this result from Chapter 3 meant that these apertures radiate plane
waves of different amplitudes dependent on their direction. Each of these plane waves
can be represented as exp (i(k-r-wt). Now if this propagation factor is broken down
into Cartesian coordinates and weighted by the directivity of the aperture, all the
contributions from the aperture source can be allowed to propagate so that at any field
point, the pressure amplitude can be represented by the following integral:

plx, v, 2) = bo J JJ G(]El, f;, O)eizn(fAﬂJrfzJ’*f.zz)dfldﬁd}é (6.37a)

—00

where
po = —47Ew,00LxLyV30 (637b)

in which the normal particle velocity (along axis 3) is v3o. Fortunately, the spatial
frequencies are related by

S S |
firfi+fi=ga=5="7 (6.38a)
R T (633
o+ fi-f it f<fiefs (6359
so that Eq. (6.37a) can be reduced to two dimensions,
p(x, y, 2) = po J J [G(fla fz)eznf3(fl’ fz)z]eizn(f1x+fzy)df:1df2 (6.39)

Values of f, which are imaginary in Eq. (6.38¢), represent evanescent waves that die
out quickly or attenuate. Note that this integral can be evaluated as a double plus-i
Fourier transform with FFTs. For a one-dimensional calculation in the xz plane, only

one FFT is needed with f3 =+/f2 - f% for propagation in the positive half-plane.
An alternate version of Eq. (6.39) is applicable to circular apertures and cylindrical
coordinates (Kino, 1987; Christopher and Parker, 1991).

6.8 DIFFRACTION LOSS

When two transducers act as a transmitter—receiver pair, only a part of the spreading
radiated beam is intercepted by the receiver, and this loss of power is called ““diffrac-
tion loss.” A mathematically identical problem is that of a single transducer acting as a
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Figure 6.20 (A) Diffraction loss curves as a function of S for
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transceiver radiating at an infinitely wide, perfect reflector plane. In the first case, the
transmitter and receiver are separated by a distance z; in the second, they are
separated by a distance 2z, where z is the distance to the reflector. The simplest
definition of diffraction loss is the ratio of the received acoustic power to that emitted
at the face of the transducer (Szabo, 1978):

L 2, 3, 2p7 (x, y, 2)dxdy

DL =T, v, 09, 3, O)dndy (6409
and in dB,
DLys(z) = 10logy, |DL()| (6.40b)
and the phase advance is
¢p; = arctan[imag(DL)/real(DL)] (6.40c¢)

where o1 and og are the areas of the transmitter and receiver, respectively. The
pressure is that calculated by diffraction integrals and integrated over the face of the
receiving transducer. The transmitted power can be obtained from the known aper-
ture function. For separable functions such as those for rectangular transducers, the
integration can be carried out in each plane (xz and yz) separately as line sources,
and the results can be multiplied. Calculations for several apodized line sources and
unapodized receivers are given in Figure 6.20. Note that the results can be plotted as a
function of the universal parameter S, and they are reciprocal (transmitters and
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Figure 6.21 Diffraction loss (dB) and phase curves (radians) as a function of S, for an unapodized
circular transmitter and receiver of radius a (from Szabo, 1993).
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receivers can be interchanged to give identical curves). The loss consists of an absolute
power loss and a phase advance, which for one plane goes to 7/4 in the extreme far
field. The contribution from both planes for a rectangular aperture provides a total
phase shift of z/2 for large distances (z).

For circularly symmetric transducers, the same definition applies in a cylindrical
coordinate system and results in a single radial integration (Seki et al., 1956). Loss is
plotted in Figure 6.21 against S., and phase advance rises asymptotically to a value
n/2 for large z.

6.9 LIMITED DIFFRACTION BEAMS

The curves in the last section show that the variations in the near field of the beam can
be smoothed out by apodization. In the far field, even apodized nonfocused beams
spread out. Focusing also has a limited effect over a predictable DOF. A way to offset
these changes and reduce diffraction loss is by a type of complex apodization that
involves both amplitude and phase weighting over the aperture. A class of functions
with this type of weighting can produce “limited diffraction beams.” These beams
have unusual characteristics: They maintain their narrow beamwidths for considerable
distances, and they maintain axial amplitudes better than normal beams.

Two examples of limited diffraction beams are the zeroth-order Bessel beam and
“X beam” shown in Figure 6.22. While the details of these beams are beyond the
scope of this chapter, they are reviewed by Lu et al. (1994).
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7.1 WHY ARRAYS?

If, to first order, the beam pattern of an array is similar to that of a solid aperture of the
same size, why bother with arrays? Arrays provide flexibility not possible with solid
apertures. By the control of the delay and weighting of each element of an array,
beams can be focused electronically at different depths and steered or shifted auto-
matically. Lateral resolution and beam-shaping can also be changed through adjust-
ment of the length and apodization of the active aperture (elements turned on in the
array.) Dynamic focusing on receive provides nearly perfect focusing throughout the
scan depth instead of the fixed focal length available with solid apertures. Finally,
electronically scanned arrays do not have any moving parts compared to mechanically
scanned solid apertures, which require maintenance. Somer (1968) demonstrated that
phased array antenna methods could be implemented at low MHz frequencies for
medical ultrasound imaging (illustrated by Figure 1.10). An early phased array im-
aging system, the Thaumascan, was built at Duke University (Thurstone and von
Ramm, 1975; von Ramm and Thurstone, 1975). The technology to make compact
delay lines and phase shifters for focusing and steering enabled the first reasonably
sized clinical phased array ultrasound imaging systems to be made in the early
1980s.

Because images are formed from pulse echoes, this chapter introduces time domain
diffraction approaches that are suited to short pulses. The benefit of the time
domain approach is that it involves a single convolution calculation with a pulse
instead of the many repeated frequency domain calculations necessary to synthesize a
pulse using the frequency domain methods of Chapter 6. Both approaches will be
helpful in describing arrays that can be thought of as continuous apertures sampled
along spatial coordinates.

As a warm-up, this chapter first applies time domain approaches to the previous
results for circular apertures. Next it describes arrays in detail, including how they
differ from solid radiating apertures. The chapter also discusses pulse-echo beam-
forming and focusing, as well as the principles and implementations of two-
dimensional (2D) arrays. Finally, it examines factors that prevent arrays from realizing
ideal performance.

7.2 DIFFRACTION IN THE TIME DOMAIN

The Rayleigh-Sommerfeld diffraction integral from Eq. (6.1a) can be rewritten in a
frequency domain form,

q)(T, f) _ J Vn(”Oa f)X(Z, 7’0) exXp ( - 127'5]((7' - 70)/6] dA() (713)

A 27(r — 70)

An inverse —i Fourier transform leads to its equivalent time domain form,

ot ) = | 2l = =)

B 200 — 70) dAg = v, (t) % h(ro, ) (7.1b)
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in which ¢ is the velocity potential, v, is particle velocity normal to the rigid source
plane at z = 0, dAy is an infinitesimal surface area element, A is the surface area of the
source, and y or X is an obliquity factor (see Section 7.5) set equal to one for now. If
we factor v,, into a time and aperture distribution function, v, (ro, ) = v, (#)v,(r), and
let v,,(ro) be constant over the aperture for the remainder of the chapter, then we can
express Eq. (7.1b) in a convolution form later.

The geometry for a circularly symmetric radiator is given in Figure 7.1. Here b is
the spatial impulse response function defined as

olt = r —ro)/eo]

Mnnzﬂaﬂj A (7.2)

A 2m(r —rp)
Recall that the instantaneous particle velocity (v) and pressure (p) at a position (#) in a
fluid can be found from
v(r, t) = —V(r, t) (7.3)
p(r, 1) = po0(r, 1)/ 0t (7.4)
Just as in the diffraction integrals of the previous chapter, these time domain field

expressions are geometry specific. The previous integrals will first be applied to the
familiar circular piston radiator and then to array elements with a rectangular shape.

7.3 CIRCULAR RADIATORS IN THE TIME DOMAIN

Fortunately, time domain diffraction integrals have been worked out for simple
geometries (Oberhettinger, 1961; Tupholme, 1969; Stephanishen, 1971; Harris,
1981a). For the geometry given in Figure 7.1 for a circular aperture of radius a, the
following delay variables are convenient:

Figure 7.1 Geometries for circularly symmetric radiating elements. (A) Conventional geom-
etry. (B) Field-point—centered coordinates.
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n =z/co (7.5a)
= /(22 +a?)/co (7.5b)

The local observer approach advocated by Stepanishen (1971) is based on time
domain spatial impulse responses that have finite start and stop times defined by
the intersections of lines from the field point to the closest and farthest points on the
aperture (Figure 7.1). For example, for field points on-axis, the spatial impulse
response is a rect function (Stepanishen, 1971; Kramer et al., 1988),

t— )/2

b, 1) = —co [ [L:Z/} (7.6)
M

where #, is the delay from the closest point from the center of the aperture, and 5, is

that from the farthest points on the edges. This response, along with Egs. (7.1.b) and

(7.4), lead to an on-axis pressure,

P, 1) = polva(t) *: Oh(z, 1)/0t] = pocovn(t) *¢ [6( — 1) — 6(t — 1,)] (7.7a)

The Fourier transform of Eq. (7.7a) can be shown to be

Pz, ) = i2pycov, exp [ikz(l +1/1+ (a/2)%) ] sin [kz ( 1+ (a/z) )] (7.7b)

in agreement with the earlier exact result of Eq. (6.19a). In Eq. (7.7a), the on-axis
pressure has a pulse from the center of the transducer, 5(¢ — 7,), and an inverted pulse
from the edges of the aperture, (¢ — #,). These contributions, called the “plane wave”
and the “edge wave,” merge eventually and interfere at half-wavelength intervals
on-axis, depending on the pulse shape and length, v,(¢). For broadband excitation,
the on-axis pressure can differ remarkably from the continuous wave (cw) case, as
illustrated by Figure 7.2.
Off-axis, expressions for the spatial impulse response are

0, ct <z fora>r, ct <Ry fora<r,
[ ta <7 <Ry
h(r, ro, 2, 1) = 2 4 242 2 g2 7.8a
& 7o ) € cos! [70+C < 1?],R1<ct§R2 752
n 2r,(c2t? — )Y
0, ct >R,
in which
Ry =\/22 4 (a—1,)* (7.8b)
Ry =\/22+ (a+1)* (7.8¢)

and 7, is the radius from the z axis to the field point so that the field point is at (7, z).
This expression is far simpler to evaluate numerically than the Hankel transform
from Eq. (6.19).

Expressions (Arditi et al., 1981) for a concave spherical focusing radiator are
similar in form to those above. The geometry for a spherically focusing aperture is
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-— A —

Plane wave Edge wave
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M B
‘d\/\/‘ c

Figure 7.2 Plane and edge wave interference at three axial positions for an excitation

function of two sinusoidal cycles: (A) ct =32/2, (B) ct =1, (C) ct = 1/2. (from Kramer et al.,
1988, IEEE).

given by Figure 7.3. Note the two regions: Region I is within the geometric cone of the

aperture, and Region II lies outside it. Cylindrical symmetry is implied. Key variables
are the following:

x =rcosf,y=rsinf (7.9a)

The depth (d) of the concave radiator is:
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Figure 7.3 Nomenclature for spatial impulse response geometry for spherical focusing
transducer (from Arditi et al., 1981, with permission of Dynamedia, Inc.).

(7.9b)

where R is the radius of curvature of the radiator, and a is the radius of the radiator.

For a field point P in Region I, 7y is defined as the shortest (for z < 0) or longest (for
z > 0) distance between P and the source, and it is the line that passes through the
origin and P and intersects the surface of the source at normal incidence. Furthermore,
7o can be expressed as:

_JR—7r forz<0
ro_{R—kr forz>0 (7.9¢)

where 71 and r, represent the distances from P to the closest and farthest edges of the
radiator for both Regions I and II:

n=1[@a-y*+R-d+2)1"? (7.9d)
r=[a+y)’+R—d+2)7"> (7.9¢)
The spatial impulse response of a concave radiator is:
Region I Region 11
z2<0 z2>0
g()R col <ny col <n col <mn
7 ro<copl<ri|n<ct<rg|l————
h(7,t) = cR1 () (7.91)
T;COS [@] n<cl<n|inctln|rn<ctn

0 1y < cot 1o < cot 1y < cot
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in which,
1—-d/R 1 (R +7r*—ct?
1) = R[ sn0 | tan0 ( 2rR >} (7.%)
12
R* + 7 —cjt? 2
o(t) = R|1 - (T) (7.9h)
On the beam axis, the spatial impulse response is:
R t—
2, C" o1l <CO ) (7.10a)
where
M= (ro+7r)/2,A(z) =71 — 10 (7.10Db)
At the geometric focal point, the solution is a § function multiplied by d,
h(0,2) = do(t — R/cy) (7.10¢)
Therefore, the pressure waveform at the focal point is a delayed replica of the time
derivative of the normal velocity at the face of the aperture from Egs. (7.1b) and (7.4).
7.4 ARRAYS

As opposed to large continuous apertures, arrays consist of many small elements that
are excited by signals phased to steer and focus beams electronically (shown in Figure
7.4). The elements scan a beam electronically in the azimuth or xz plane. A molded
cylindrical lens provides a fixed focal length in the elevation or yz plane. The nominal

Backing Acoustic lens X
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X Azimuth z
beamwidth
;
i /
B A | e >
T _.] Beam
axis Z

Y Elevation

5 Y
- beamwidth Elevation
plane YZ
l Elements Z

Figure 7.4 Relation of phased array to azimuth (imaging)
and elevation planes (adapted from Panda, 1998).

Elevation Y
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beam axis is the z axis (the means of steering the beam in the azimuth plane will be
discussed later).

A layout of array element dimensions and steering angle notation are given by
Figure 5.6. Here the pitch or element periodicity is p, the element width is w, and the
space between elements, or kerf width, is p-w. Two-dimensional and other array
geometries will be discussed later.

7.4.1 The Array Element

This section first examines the directivity of an individual element. These elements are
most often rectangular in shape, such as the one depicted in Figure 7.5. For small
elements with apertures on the order of a wavelength, the far-field beam pattern can
be found from the +i Fourier transforms of the aperture functions,

H,(x,y,2, ) =2”—7fz j A(xo)e™™™ /R dxg J Ay ()€™ 0P dy, (7.11a)
—0Q0 —00

which, for line sources of lengths describing a rectangular aperture with sides L, and
L,, gives

<y

X 9
Figure 7.5 Ssimplified geometry for a rectangular array ele-
ment in the xz plane.
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H,(x,y,z,7) = H, H, = Zc—%Lx sinc (%) L, sinc (%) (7.11b)
Recall in the original diffraction integral that the Fresnel approximation was made by
a binomial approximation of the difference vector |r — 7| and the substitution of z for
7, so that this approximation was valid only for the xz and yz planes. A more exact
result for any field point in the far field can be derived by accounting for the total
rectangular shape of the aperture. The direction cosines to the field point are intro-
duced from the spherical coordinate geometry given by Figure 7.5:

u = sin 6 cos ¢ (7.12a)
v =sinfsin ¢ (7.12b)
where 0 is the angle between 7 and the z axis, and ¢ is the angle between 7 and the x

axis.
Stepanishen (1971) has shown that the far-field response for this geometry is

L, /L
H,(x,y,z, %) = HyH, = %Lx sinc (T”) L, sinc (%”) (7.13)

which reduces to the previous expression in the xz plane, (¢ = 0) and the yz plane,
(0 = 0), and z is replaced by . The time domain equivalent of this expression can be
found from the inverse Fourier transform of Eq. (7.13) with 1 = ¢/f,

_cor (< o < o
helus v, 1, 1) = meLx (Lxu> H (Lxu/c) *Ls <Lyv> H(Lw/c) (7.14)

This convolution of two rectangles has the trapezoidal shape illustrated by Figure 7.6.
For equal aperture sides, a triangle results. For on-axis values, the rect functions
reduce to impulse functions, so that

h(t)

- T1 T1 t

Figure 7.6 Trapezoidal far-field spatial impulse response for a rectangular
array element.
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50(0,0, 7,1) = ~> L.L.o(t) (7.15)
2nr

This equation, in combination with Egs. (7.1b and 7.4), indicates that on-axis pres-
sure in the far-field is the derivative of the normal velocity, is proportional to the area
of the aperture, and falls off inversely with 7.

For two-dimensional beam scanning in the xz plane, a one-dimensional array will
extend along the x-axis (two-dimensional arrays are covered later in Section 7.6). For
this plane, H, can be expressed as a function of frequency from Eq. (7.13) with

1/2 = f/c and the convenient substitution by, = \/co/27r as

H(0,7,f) = hoxLy sinc <fo Cs’”9> (7.16)

where on-axis as 0 — 0, the H, — ho,L, (as shown in Figure 7.7). Note that this
function has zeros when u is integral multiples of 1/L,. This element directivity has
been examined (Smith et al., 1979; Sato et al., 1980), and it is discussed in more detail
in Section 7.5. The far-field time response is the inverse Fourier transform of Eq. (7.7),

c t
hy(0,7,t) = hoxLx (m) H (m) (7.17a)

which is illustrated by Figure 7.8. The limiting value of this expression on-axis is

b (0,7, t) = hoxL0(t) (7.17b)
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Frequency

Figure 7.7 rar-field element directivity as a function of frequency for
an element length L,.
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h(f)

-L,sin 6 L,sin 6 t
2c 2c

Figure 7.8 spatial impulse response h, along the z axis for an element of
length L, oriented along the x axis.

7.4.2 Pulsed Excitation of an Element

To find the pressure pulse in the far field of an element in the scan (xz) plane for a pulse
excitation g(¢), we convolve the input pulse that we assume is in the form of the
normal velocity, g(t) = dv,/0t, with the time derivative of ¥/, as given by Eq. (7.2a),

p(r, 1) = poOr /Ot = poOvy /Ot x4 b(r, t) = pog *: h(r, 1) (7.18)

As an example (Bardsley and Christensen, 1981), let g(¢) have the decaying exponen-
tial form shown in Figure 7.9,

g(t) = voxe "H(t) cos (w.t) (7.19)

in which H(¢) is the step function and v, is the normal particle velocity on the
aperture. Then the pressure can be found from

C t
p(r, t) = pog(t) % hoxLx (Lx — 0) 11 (Lx o~ /C> (7.20a)

off-axis and from

p(r, 1) = pog =t h = pog(t) *: hoxd(t) = pohxog(t) (7.20b)

for the on-axis value. The pressure response calculated from Eq. (7.20b) is plotted in
Figure 7.10 over a small angular range.

An equivalent frequency domain expression for pressure at a field point, from Eq.
(7.20a), is

P(r,f,0) = G(f)H(r,f, 0) (7.21)
where r = vV/x? + 22.
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IV(T)

r-d— To —m=

= 1/fo

Figure 7.9 Typical short acoustic pulse waveform with Q =3.1 and center frequency of
2.2.5MHz used for array calculations for examples (from Bardsley and Christensen, 1981, Acoustical
Society of America).

7.4.3 Array Sampling and Grating Lobes

In order to find out how an element functions as part of an array, a good starting point
is a perfect ideal array made up of spatial point samplers. An infinitely long array of
these samples (shown in Figure 7.11a) can be represented by a shah function with a
periodicity or pitch (p). Since the pressure at a field point is related to a Fourier
transform of the aperture or array, the result is another shah function with a period-
icity (A/p), as given by this expression, Figure 7.11b, and (see Section A.2.4 of

Appendix A):
S; {IH (P)} = pIII< o ) = plll (i/p) (7.22)

For an aperture of finite length L,, the infinite sum of the shah function is reduced to a
finite one in the spatial x domain, as is given in Figure 7.12 and as follows:
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_6.25° e . SR

Figure 7.10 Absolute values of pressure waveforms as a function of angular direction (u) and
time (t) plotted in an isometric presentation over a small angular range: —6.25° to 6.25° in 0.625°
angular increments for the pulse of Figure 7.9 and a 2.56-cm-long aperture (from Bardsley and
Christensen, 1981, Acoustical Society of America).

G - Sl ] o] )

(7.23)

In this figure, the main lobe is centered at # = 0, and the other modes for which m # 0
are called grating lobes. Grating lobes are centered on direction cosines u, at angles

0, = +arcsin (mA/p) (7.24)

The first grating lobe is the most important, or m = +1. If the periodicity is set equal
to half-wavelength spacing, which is the Nyquist sampling rate, there are no grating
lobes (the usual spacing for phased arrays). If the spacing is larger in terms of
wavelengths, then instead of one beam transmitted, three or more are sent. For
example, for a two-wavelength spacing, beams appear at 0° and +30°. For linear
arrays, spacing is often one or two wavelengths because steering requirements are
minimal, but for phased arrays that create sector scans, grating lobe minimization is
important (described in Section 7.4.5).

For the cw case, grating lobes can be as large as the main lobe, but for
pulses, grating lobes can be reduced by shortening the pulse. The effect of the
transducer bandwidth on the grating lobe can be seen from Eq. (7.21) and Figure
7.13. Shown are the main lobe and grating lobe centered on the center frequency f
and with a —3-dB bandwidth, given approximately by 958 The fractional bandwidth
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Figure 7.11 (A) A shah function of ideal samplers spaced along the x axis with a periodicity of
p. (B) Normalized Fourier transform of a shah function is another shah function with samplers situated at
intervals of u equal to integral multiples of 1/p. The amplitude of the transformed shah function is p.
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Figure 7.12 (A) An array of 2n_ + 1 point samples along the x axis with a
periodicity of p. (B) Normalized Fourier transform of a finite length array of point
samplers is an infinitely long array of sinc functions situated at intervals of u equal to
integral multiples of 1/p with an actual amplitude of Lyp.

of G(f) is approximately 0.88f/n, where 7 is the number of periods (cycles) in the
pulse (corresponding to a Q = 1.1.2n). Recall the overall response is given by the
product of H(f) and G(f) from Eq. (7.21) and that amplitude of the grating lobe will
be proportional to the overlap area of these functions from their Fourier transform
relation. As a consequence of these factors, the wider the bandwidth of G(f) (the
shorter the pulse), the smaller the overlap and the lower the amplitude of the grating
lobe in the time domain. An approximate expression for the grating lobe is O/N,
where N is the number of elements (Schwartz and Steinberg, 1998).

Another perspective on grating lobe effects is the time domain for finite length
pulses through the convolution operation. The on-axis main lobe pulse contributions
add coherently, and, at grating lobe locations, pulses add sequentially to form a long,
lower-level pulse. The overall impact of a grating lobe can be seen over a small angular
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Figure 7.13 The spatial transfer function H(fu), showing a first-order grating lobe
ug=4/p=1/24 at 24.6° with a bandwidth of %8¢ = 0.124MHz as well as the pulse spectrum
G(f) = V(f) with a bandwidth of 0.726 MHz (from Bardsley and Christensen, 1981, Acoustical Society
of America.).

range in Figure 7.14, in which the long grating lobe pulse builds at larger angles. From
this viewpoint, it is evident that the shorter the pulse, the less pulses will overlap and
build in amplitude to create a significant grating lobe.

7.4.4 Element Factors

Until now, the array was treated as having point sources. To include the imperfect
sampling effects of rectangular elements described in Section 7.4, we replace the point
samplers by elements of width w, as shown in Figure 7.15 and by the following:

Holut, 7) = hoyS: [H (%) % XL; S5(x — np)} - Zm: hoxLxpw sinc (%) sinc {% (— mz/(p))}
(7.25)

Here the first sinc term is called the element factor. In the angle or frequency domain,
the small element size translates into a broad directivity modulating the sequence of
grating lobes as shown in Figure 7.15. The —3-dB directivity width is approximately
0.881/w as opposed to the width of a main or grating lobe, which is about 0.884/L.
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5.0° -+

27.5°

Figure 7.14 An isometric presentation of pulse on-axis and the long pulse at the grating lobe.
The angular range of —5° — 27.5° in increments of 2.5° for the parameters given in Figures 7.12-7.13.
At 0°, the pulses add coherently to give an amplitude N. Near the grating lobe angle of 24.6°, pulses
overlap sequentially to create a long pulse with an amplitude approximately equal to Q (from Bardsley
and Christensen, 1981, Acoustical Society of America).

7.4.5 Beam Steering

If a linear phase is placed across the array elements, corresponding to a wave front at
an angle 0, from the z axis, the result is a beam steered at an angle 0; (shown in Figure
7.16). This phase (t,) is applied, one element at a time, as a linear phase factor with
us = sin 0,

exp ( — iw,Ts,) = exp ( — i2nf, (npus)/c) = exp ( — i2nnpus/J.) (7.26)

to unsteered array response, Eq. (7.25), then the beams are steered at u;,

Hy(u, us, ) =S

H(%) ;ané(x —np)exp (— izn("P“s)ﬁm)] 727

L
= Lpw sinc(b;/u) sinc [—x (v —mi./p— us)}
e Ae
and the amplitude weights (a,) are equal to one. Figure 7.17 shows the effects of
element directivity on the steered beam and grating lobes. In sector or angular

scanning, the location of the grating lobe is related to the steering angle,
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Figure 7.15 (A) Afinite length array of elements of width w and periodicity p. (B) Fourier transform
of spatial element amplitude results in modulation of grating lobes by broad angular directivity of
element factor. (C) Factors contributing to overall transform.
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Figure 7.16 Delays for steering an array (from Panda,
1998).
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Figure 7.17 Array angular response when steered at 0;.

Op = Earcsin (mA/p + u;) (7.28)

where m = 41 are the indices of the first grating lobes. As an example, consider a
period of one wavelength and a steering angle of —45°, then the first grating lobe will
be at

g = arcsin (1 — 0.707) = 17°

This result would not be appropriate for a phased array, but it would do for a linear
array. What periodicity would be necessary to place the grating lobe at 45° for a
steering angle of —45°?

7.4.6 Focusing and Steering

Until now, a far-field condition was assumed; however, this is not true in general. For
an array aperture of several or many wavelengths in length, a near-field pattern will
emerge. Just as lenses were used to focus (as explained in Section 6.6), arrays can be
focused by adding time-delayed pulses that simulate the effect of a lens to compensate
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for the quadratic diffraction phase term. The time delays to focus each element
(n) are:

T, = {r — /(% — xn)erzrz} Jc+to (7.29a)

where 7 is the distance from the origin to the focal point, r = \/x2 + 22, x, is the
distance from the origin to the center of an element indexed as “#” (x = np), and ¢ is
a constant delay added to avoid negative (physically unreahzable) delays. The appli-
cation of a paraxial approximation under the assumption that lateral variations are
smaller than the axial distance leads to

T, & (Xt — x2/22,) /¢ + to = [npus — (np)* /22,1 + to (7.29b)

From this approximate expression, the first term is recognizable as the steering delay,
Eq. (7.26), and the second is recognizable as the quadratic phase term needed to
cancel the similar term caused by beam diffraction, as shown for a lens in Eq. (6.27b).
In practice, usually the exact Eq. (7.29a) is used for arrays rather than its approxima-
tion. Putting all this together, we start with a modification of Eq. (7.17a) for the
spatial impulse response of a single element located at position x,, = np,

b, 7, 1) = anhoxw(ﬁ) I1 (w; /C> (7.30a)

where u is defined in Eq. (7.12a), and then the one-way transmit spatial impulse
response for an element with focusing is of the form,

\/ 0) -+ [(x, — ;
h, (t—lx/(x )Jrzzrn)h t—ufr/c (& = %) 43 e

(7.30Db)

and when x = x,, and z = z, at the focus,
b, (t —% (x — x,,)2+z2 - r,,) =h(t —r/c) (7.30c¢)

The overall array response (h,) is simply the sum of the elements,

Zan ,,(t——\/(x—x,,)z—&-z2 —‘E,,) (7.30d)

—ny,

The pressure can be found from the convolution of the excitation pulse and array
response as in Eq. (7.18). Here a perfect focus is achieved when the field point at
(x, ) is coincident with the focal point (x,, z,). However, at all other points, zones
corresponding to those described in Section 6.6.2 (a near Fresnel zone, focal Fraun-
hofer zone, and far Fresnel zone) will be created. Figure 7.18 illustrates the delays
needed for focusing. The same type of delay equations can be used for receive or
transmit.
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Figure 7.18 Array delays for focusing a beam (from
Panda, 1998).

7.5 PULSE-ECHO BEAMFORMING

7.5.1 Introduction

Several factors are involved in the ultrasound imaging of the body, as was symbolized
by the block diagram in Figure 2.14. In Chapter 3, the response of the transducer to a
pulse excitation in a pulse-echo mode was discussed. These are covered by the
electrical excitation and are also represented by the electrical excitation block (E),
the transmit transducer response (Gr), and the receive response (Gg). A more prac-
tical description includes the effects of the transmit pulse, er(t). The electroacoustic
conversion impulse response of the transducer from voltage to the time derivative of
the particle velocity, gr(t), the derivative operation, and the corresponding receive
functions (denoted by R), can all be lumped together as

err(t) = er(t) *; gr(t) *: gr(?) (7.31a)
or in the frequency domain as
Err(f) = Er()G1(f)Gr(f) (7.31b)

The overall voltage output, including focusing on transmit and receive, can be
described by the product of the array transmit and receive spatial responses (shown
by Figure 7.16),

Vo(r, f, 0) = Hr(rr, f, Or)HR (R, f, Or)Egr(f) (7.32a)
The equivalent time domain formulation of the pulse-echo signal is
Uo(2, 7y 1) = by % by % err (7.32b)

Implicit in the spatial impulse responses are the beamformers, which organize the
appropriate sequence of transmit pulses and the necessary sum and delay operations
for reception. The beamforming operations, represented by blocks XB (transmit)
and RB (receive), reside in the imaging system (to be explained in Chapter 10).
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Attenuation effects, symbolized by blocks A (forward path) and Ag (return path),
will be discussed in Section 7.9.4. Chapters 8-9 describe the scattering block (S),
as well as the scattering of sound from real tissue and how it affects the imaging
process.

The ability of a beamformer to resolve a point target is determined by the spatial
impulse response of the transmit and receive beams intercepting the target. A measure
of how well an imaging system can resolve a target is called the “point spread
function,” which is another name for the function given by Eq. (7.32). This equation
shows that the beam-shape is related to the type of pulse applied. For example,
the effect of bandwidth on the beam profile can be seen in Figure 7.19. For very
short pulses or wider bandwidths, sidelobe levels can rise; this suggests that a
moderate fractional bandwidth in the 60-80% is a better compromise between
resolution and sidelobe suppression. The shaping of the pulse is also important in

achieving a compact point spread function with low-time and spatial sidelobes
(Wright, 1985).

Round-trip beamplots normalized to on-axis value

T
— 20% bw
© 60% bw
—— 80% bw ]
— —100% bw

OO w> |

Maximum pressure at each position (dB)

1
0 1 2 3 4 5
Lateral position (mm)

Figure 7.19 Normalized full Hamming apodized beams in focal plane for three round-trip
Gaussian pulses of differing fractional bandwidths. (A) 20%. (B) 60%. (C) 80%. (D) 100% (created
with Graphical User interface (GUI) for Field 2 from the Duke University virtual imaging lab).
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7.5.2 Beam-Shaping

From Eq. (7.32a), the overall beam-shape is the product of the transmit and receive
beams, each of which can be altered in shape by apodization (‘t Hoen, 1982). So far,
each element had an amplitude weight of one that led to a sinc-shaped directivity in
the focal plane. By altering the weight of each element (a,,), see Eq. (7.27), through a
means such as changing the voltage applied to each element, other weighting func-
tions can be obtained, such as those discussed in Section 6.4 to lower sidelobes
(Harris, 1978). Individual transmit and receive aperture lengths and apodizations
can be combined to complement each other to achieve narrow beams with low
sidelobes. The apodization can also increase the depth of field. Two drawbacks of
apodization are an increased mainlobe width and a reduction in amplitude propor-
tional to the area of the apodization function.

Two ways of measuring the effectiveness of a beam-shape are its detail resolution
and its contrast resolution. Detail resolution, commonly taken as the —6-dB beam-
width, is the ability of the beam to resolve small structures. Point scatterers end up
being imaged as blobs. The size of a blob is determined by the point spread function
and can be estimated by a —6-dB ellipsoid, which has axes that are the axial resolution
(pulse envelope) and lateral resolutions in x and y at —6 dB below the peak value in
each dimension (Figure 7.20).

The contrast resolution of a beam (Maslak, 1985; Wright, 1985) is a measure of its
ability to resolve objects that have different reflection coefficients and is typically
taken to be the —40-dB (or —50-dB) round-trip beamwidth. Pulse-echo imaging is
dependent on the backscattering properties of tissue. To first order, the possibility of
distinguishing different tissues in an image is related to the reflection coefficients of
tissues relative to each other (such as those shown in Figure 1.3). These often subtle
differences occur at the —20- to —50-dB level. Consider three scatterers at reflectivity
levels of 0, —20, and —40 dB. If the main beam is clear of sidelobes down to the -50 dB
level, then these three scatterers can be cleanly distinguished. If, however, the beam
has high sidelobes at the —13-dB level, then both weak scatterers would be lost

Lateral azimuth

Lateral elevation ) )
Time axial

z

Figure 7.20 A —6-dB resolution
ellipsoid. The axes represent —6-dB
resolution in the lateral directions x
and y and the axial pulse resolution
along z.
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in the sidelobes. The level of the sidelobes sets a range between the strongest scatterers
and the weakest ones discernible. In other words, the sidelobe level sets an acoustic
clutter floor in the image.

As an example of the effect of apodization, Figure 7.21 compares an image without
apodization to one with receive Hanning apodization, both at the same amplitude
settings. The amplitude apodization functions are graphed above each image (recall
that the overall beam pattern is the product of the transmit and receive beam
patterns). What is being imaged is a tissue-mimicking phantom with small wirelike
objects (slightly smaller than the resolution capability of the imaging system) seen in
cross section against a background of tissuelike material full of tiny unresolvable
scatterers. The appearance of the wire objects is bloblike and varies with the detail
resolution, as expected, through the field of view. Near the transmit focal length, the
blobs are smaller. Careful observation of the wire targets in the image with apodiza-
tion indicates that they are slightly dimmer and wider, results of less area under the
apodization curve and a wider —6-dB beamwidth; therefore, the penetration (the
maximum depth at which the background can be observed) is less.

In the image made without apodization, the resolvable objects appear to have more
noticeable sidelobe “wings” (a smearing effect caused by high sidelobe levels). An-
other difference in the image made with apodization is contrast: The wire targets
stand out more against a darker background. For extended diffuse targets, such as the
tissue-mimicking material, the sidelobes have an integrating effect. For a beam with
high sidelobes, the overall level in a background region results in a higher signal level;
however, for a beam with low sidelobes, the overall integration produces a lower
signal level that gives the appearance of a darker background in the image. The net
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Figure 7.21 (A) Unapodized beam plot insert and corresponding image of phantom with
point targets. (B) Hanning apodization on receive beam shown in insert and corresponding image
of phantom (courtesy of P. Chang, Terasun, Teratech Corporation).
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result is that the difference in gray levels of a bright (wire) target and its background
(tissue-mimicking material) is less for the first case than the second, so that the
apparent contrast is greater for the second case.

7.5.3 Pulse-Echo Focusing

On transmit, only a single focal length can be selected. However, if the region of
interest is not moving too fast, the scan depth can be divided into smaller ranges close
to the focal zones of multiple transmit foci. These multiple transmit ranges can then
be “spliced” together to form a composite image that has better resolution over the
region of interest (see Figure 10.7 for an example). The transmit aperture length can
be adjusted to hold a constant F number, (F = F/L) to keep the resolution constant
over an extended depth (Maslak, 1985). For example, from Eq. (6.9c¢), the one-way,
—6-dB FWHM beamwidth for an unapodized aperture is 2x_g = 0.384AF#. This
approach has the disadvantage of slowing the frame rate by a factor equal to the
number of transmit foci used.

One way to increase frame rate is to employ ““‘parallel focusing”(Shattuck et al.,
1984; von Ramm et al., 1991; Davidsen and Smith, 1993; Thomenius, 1996). In this
method, a smaller number of broad transmit beams are sent so that two or more
narrower receive beams can fit within each one. On reception, multiple beams are
offset in steering angle to fit within the width of each transmit beam (Figure 7.22). In
this way, the frame rate, which is normally limited by the round-trip time of the
selected scan depth, can be increased by a factor equal to the number of receive beams.

On receive, however, a method called “dynamic focusing” (Vogel et al., 1979)
provides nearly perfect focusing throughout the entire scan depth. In this case, the

Transmit\ 4 Receive 2

Receive 1 — «— Receive 3

I T
Angle

Figure 7.22 Parallel receive beamforming in which the transmit beam is
broadened so that two or more receive beams can be extracted. Frame rate is
increased by reducing the number of transmit beams.
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Figure 7.23 Beam contour plots for a 12-element, 4.5-MHz annular array. (A) Fixed transmit focus

= 65 mm and fixed receive focus = 65 mm. (B) Fixed transmit focus = 65 mm and dynamic receive

focusing. (C) First fixed transmit focus = 50 mm and second fixed focus = 130 mm, both with dynamic
focusing and spliced together at 76 mm.

scan depth is divided into many zones, each one of which is assigned a receive focal
length. In modern digital scanners, the number of zones can be increased so that the
transitions between zones are indistinguishable and focusing tracks the received echo
depth. In addition, the receive aperture can be changed and/or apodized with depth to
maintain consistent resolution. Finally, the overall scan depth can be divided into N
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sections, each one with a separate transmit focus, and the individual sections can be
spliced together; however, this approach reduces frame rate by 1/N. Examples of the
resolution improvements attainable are shown in Figure 7.23 for a 12-element, 4.5-
MHz annular array with an outer diameter of 30 mm (Foster et al., 1989a, 1989b).
The top of the figure shows the highly localized short depth of field for a fixed focus
on receive, the middle demonstrates the benefits of receive dynamic focusing, and the
bottom illustrates the effects of a two-transmit—zone splice with dynamic focusing.

7.6 TWO-DIMENSIONAL ARRAYS

One-dimensional (1D) arrays (Figure 7.24) typically have 32 to 300 elements and
come in many forms (to be described in more detail in Chapter 10). These arrays scan
in the azimuth plane, and a mechanical cylindrical lens produces a fixed focal length in
the elevation plane. Two-dimensional (2D) arrays (refer to Figure 7.24) are needed to
achieve completely arbitrary focusing and steering in any direction. While a typical
phased array may have 64 elements, a 2D array might have 64% or 4096 elements.
Because of their large number of elements, 2D arrays present challenges for their
physical realization (see Section 7.9.2) as well as for efficient simulation of their fields.
1.5 dimensional (1.5D) arrays, intermediate between 1D and 2D arrays are described
in Section 7.9.3.

The geometry for a 2D array of point sources of period p is shown in Figure 7.25
The diffraction impulse response for this array is

) FE-
@

2D

C

Figure 7.24 Types of arrays in profile and azimuth plane
views. (A) 1D array. (B) 1.5D array. (C) 2D array.
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z |

Figure 7.25 Geometry for a square 2D array of point sources with 2N + 1 elements on a side with
d corresponding to p in the text (from Turnbull, 1991).

H(r,0,¢,7) = LxZLnyfz nioo sinc [% (u—nl/p— us)} miioc sinc {% (v —ml/p—wvs)
| ) (7.33a)

in which the directions to the field point are # and v and the steering directions are

us = sin 6y cos ¢, (7.33b)

vs = sin 0 sin ¢, (7.33¢)
and the overall apertures are the following:

Ly,=2N+1)p (7.33d)

L,=Q2M+1)p (7.33¢)
For a 2D array, grating lobes occur at the following locations:

ug = us £nl/p (7.34a)

Ve = v ml/p (7.34b)
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Figure 7.26 Far-field continuous wave pressure fields for an array of 101-by-101 point sources
with array steered to 0 = ¢ = 45". (A) p = A. (B) p = 4/2 (from Turnbull, 1991).

For examples of the effect of spacing, refer to Figure 7.26. For a square array with 101
point sources on a side, first-order grating lobes appear when the periodicity is
1 wavelength according to steering at (u, vo) = (0.5, 0.5) for the main lobe and
(u, v) = (0.5,-0.5), (=0.5, 0.5) and (—0.5, —0.5) for the grating lobes.

The first-phased arrays were narrowband, so a CW model was adequate. With the
arrival of digital systems, true-time delays for both steering and focusing became
practical. For this approach, time domain models are more appropriate for broadband
arrays. The method presented here is for 2D and 1D arrays; however, it can be
extended to other cases in Section 7.9.3.

A general geometry is given by Figure 7.27, where small square elements with sides
w and corresponding period p make up the array. Field positions are assumed to be in
the far field of any individual element or » >> p?/(nA). To determine field pressure,
the effects of element directivity can be added to Eq. (7.33) through element factors,

P(r, 0, ¢, f) = Ex(f)H.(r, 0, b, 2Yw? sinc (#) sine (?) » Obliquity Factor (7.34)
For pulses, Eq. (7.34) must be repeated for many frequencies (a computationally
intensive process). An alternative is to develop a spatial impulse response for the
array. From the far-field spatial impulse response of a rectangular element in Eq.
(7.14), the overall time response of a rectangular element will be the convolution of
two rect functions in time, or in general, the trapezoidal time function given by Figure
7.6. Therefore, the spatial impulse response of the central element at the origin to field
point position (x, y, z) can be determined by the time delays to the corners given by
Figure 7.27. Details can be found in Lockwood and Willette (1973) or Jensen and
Svendsen (1992). Focusing and steering for the beams can be added by introducing the
relative delays in Figure 7.27 to the spatial impulse response functions for each element,
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Figure7.27 Timedelay between central elementat origin and element mn of a 2D array with indices
i, j corresponding to indices m, n in the text and d = p (adapted from Turnbull and Foster, 1991, IEEE).

yn = (7 — o) J = Z{l - \/ (19 = mpe /1) + (v = npy 1)+ cos? 00| — 2 (7.35)

in which the focal point is defined by 7 and the direction cosines (1o and vg). The one-
way spatial impulse response is therefore

N M
hat, )= > by ulty t — tom) (7.36)

n=—N m=-M

For ¢ = 0 and n = 0, this equation reduces to the 1D array result of Eq. (7.30). For r
coincident with the focal point, Eq. (7.36) becomes h(t — 2r/c + ;). The pulse-echo

overall response can be constructed from the transmit and receive array responses, as
in Eq. (7.32b),

vo(F, 1) = by (7, 1) ¢ PR )" 1 err(t), (7.37)

where superscripts T'and R indicate transmit and receive, respectively.

7.7 BAFFLED

Recall that the element factor has a wide directivity and is an important effect for
steered beams; consequently, this topic has received much attention beyond the
studies previously mentioned. The directivity of an element is strongly influenced
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Figure 7.28 Geometry for an aperture, em-
bedded in a medium of impedance Z,, that radiates
in medium Z. A point M; and its image M; are
shown. (From Pesque’ and Fink, 1984, IEEE).

by its surroundings. In Figure 7.28 is an illustration of a radiating element or active
aperture embedded in a material called a baffle that has an impedance Z,. This baffle
determines the boundary conditions for aperture radiation into a medium with a wave
number k£ and an impedance Z and modifies the directivity of the aperture by an
obliquity factor that we shall now determine. Even more important is to find out what
kind of baffle is most appropriate for medical ultrasound.

The radiation problem has the solution in the form of the Helmholtz—Kirchoff
diffraction integral,

wr, k) = L [G Wlro) ., 8(;’)(70) dS, (7.38)

on n

in which the Green’s function consists of two parts associated with the field point 7
and its mirror image 7,

exp (— ik|r — ry| exp ( — ik|r' — ro|

Gk, 1,7, k) = (7.39)

4n|r — 19| 4n)r’ —ro|
where R is to be determined and the derivatives above are taken to be normal to the
aperture.

Three commonly accepted cases have been studied and experimentally verified
by measuring the directivity of a single slotted array element in the appropriate
surrounding baffle (Delannoy et al., 1979). All of these can be reduced to the form,

\I’(T, k) _ J X(Z, r, rO)Vn(rO9 k) exXp ( - ZZﬂk(T - 7'())] dS()

S 2n(r — rg) (7.40)

like Eq. (7.1a), where X is an obliquity factor. It is useful to define a direction cosine as
4 4

=l o —x0)? + 0 —yo + 2

The first case is when the element is dangling in free space and might be appropriate
for an element completely surrounded by water. Here, Z, = Z, so in Eq. (7.40),

cos ) = (7.41a)
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X =(1+cos0)/2 (7.41b)

The second case is the hard baffle, for which Z, > Z and
X=1 (7.41¢)

so Eq. (7.40) becomes the Rayleigh integral (Strutt, 1896), which we have been using
so far in this chapter and is the most common diffraction integral. The third case is the
soft baffle, for which Z, <« Z and

X = cos0 (7.41d)

and Eq. (7.40) becomes the Sommerfeld integral used in optics. Delannoy et al.
(1979) obtained good experimental agreement with each of these cases and argued
that the soft baffle situation might be the most appropriate of the three to represent a
transducer held in air against a tissue boundary.

Each of these cases, however, are extreme ones. In general, we would expect the
impedances Z, and Z to be different and to be within a reasonable range of known
materials. Pesque’ et al. (1983) found a solution for this practical intermediate case.
They let the factor in Eq. (7.39) be the reflection factor,

Zycos —Z

R = B 42
RE ZycosO+Z (7.42)
Their approach leads to the following obliquity factor:
Z; cos b
= 7.43
ZycosO+Z ( )

They (Pesque’ et al., 1983; Pesque’ and Fink, 1984) show that their more general
result reduces to the preceding soft and hard baffle cases. Their calculations for the
directivity of an element in an array are compared to data in Figure 7.29. Note that
this figure demonstrates that it is the impedance in contact with water (tissue) that
determines what value of Z; to apply. They found that by accounting for the actual
impedance at the interface with the body, which normally is a soft mechanical lens,
good agreement could be obtained with data. The counterpart of this general result in
the time domain is

dSo (7.44)

[ valro, t = (r — 10) /c]Z5 cos O
v = L 21(r — 10)(Z cos 0 + 2)

As explained in Section 5.4, an array element vibrates in a mode dictated by its
geometry, so it does not always act like a perfect piston. Smith ez al. (1979) realized
the nonuniform radiation problem and devised an approximate model. A more exact
model was derived by Selfridge et al. (1980), who found that for elements typical in
arrays, the element radiated nonuniformly. Delannoy et al. (1980) examined the
problem from the viewpoint of Lamb-like waves generated along elements more
than a water wavelength wide. They demonstrated that by subdicing the element,
this effect was minimized. Finally, spurious modes and radiation patterns can be
created through the architecture of the array, which provides possibilities for different
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Figure 7.29 Ssimulations (solid lines) of the angular radiation pattern of a phased array element
(directivity pattern) of width w=0.29 mm excited at 3 MHz and radiating into water as a function for three
different baffle impedances (Z;) compared with data (dashed lines) (from Pesque’ and Fink, 1984, IEEE).
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waves to be generated simultaneously with the intended ones. In these cases, finite
element modeling (FEM) (Lerch and Friedrich, 1986) is useful.

7.8 GENERAL APPROACHES

Because only a few geometries have been solved for time domain diffraction calcula-
tions, more general approaches have been devised. These methods apply to solid
transducers of arbitrary shape and apodization, as well as arrays with larger elements.
The first approach, used by Jensen (Jensen and Svendsen, 1992) in the Field 2
simulation program, breaks the aperture down into a mosaic of small squares (or
triangles) like those used in a 2D array just described (Jensen, 1996). Each square is
assigned an amplitude corresponding to an apodization weighting at that spatial
location. Assumptions are that the radius of curvature is large compared to a wave-
length and that each rectangular tile is small enough so that the field points are in its
far field at the highest frequency in the pulse spectrum used. A second approach used
by Holm (1995) in the diffraction simulation program Ultrasim is to perform a
numerical integration of Eq. (7.1b) by breaking the surface velocity in the integrand
into a product of spatial and time functions. Other methods have also been developed
(Harris, 1981a; Harris, 1981b; Verhoef et al., 1984; Piwakowski and Delannoy,
1989; Hossack and Hayward, 1993), including an exact time domain solution for
the rectangular element in both the near and far field (San Emeterio and Ullate, 1992).

Fortunately, two powerful programs with MATLAB interfaces for beamforming
simulations are available to the general public. Jensen’s program, Field II, is not only
for beam calculations but also can simulate an entire ultrasound imaging system,
including the creation of artificial phantoms to be imaged. Trahey and co-workers at
Duke University have created a useful Graphical User interface (GUI) for Field 2 on
their virtual imaging lab web site. Holm and his team at the University of Oslo have
created Ultrasim, an interactive beam simulation program that includes 1D, annular,
1.5D, and 2D arrays. These can be found by doing a web search.

7.9 NONIDEAL ARRAY PERFORMANCE

7.9.1 Quantization and Defective Elements

Fields of arrays approach the shape of beams obtained by solid apertures that have the
same outer dimensions if Nyquist sampling is achieved. For this case, to first order,
array performance can be estimated by a solid aperture with appropriate delay and
steering applied. A subtle difference between solid apertures and arrays of the same
outer dimensions is that the active area of an array is slightly smaller because of the kerf
cuts that isolate each element (N(p-w) smaller for a 1D array). Because of the discrete
nature of an array, however, performance is also dependent on the quantization of
delay and amplitude that is possible in the imaging system (Thomenius, 1996), as well
as individual variations in element-to-element performance and cross-coupling effects.
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The first concern about quantization is the spacing of the array itself: Does it meet
the Nyquist criteria (1/2 spacing) at the highest frequency in the pulses used? In a
digital system, phase quantization error is set by the sampling frequency of the system.
The effects of phase quantization error (Magnin et al., 1981) increase as the number
of samples per period near the center frequency decrease and result in a growth in the
width and level of sidelobe structure in the beam (Bates, 1979). Amplitude quantiza-
tion errors also bring similar effects in beam structure, but they are less severe, in
general (Bates, 1979). These effects are caused by round-off errors at the highest
number of bits available in the analog-to-digital (A/D) and digital-to-analog (D/A)
converters in an imaging system.

While these sorts of errors are straightforward to analyze, second-order effects
within the array itself are more troublesome. Unlike an ideal piston source that
vibrates in a single longitudinal mode, the vibration of an array element consists of
a more complicated combination of longitudinal and transverse modes (described in
Section 5.4). Because the element may be physically connected to a backing pedestal,
matching layers, and protective foils, other interrelated modes, such as Lamb and
Rayleigh waves, can be generated (Larson, 1981). This strange dance of elements
causes beam narrowing, ring-down, and other artifacts that can affect the image.
Cross-coupling can also be caused by electromagnetic coupling from element to
element and through the cable connecting elements to the system. Design solutions
to these problems often involve experimental detective work and FEM modeling. An
overview of the kinds of problems encountered in the design of a practical digital
annular array system can be found in Foster et al. (1989a; 1989b).

Elements can also be defective; they can be completely inoperative or partially so.
An element is called “dead” either because of depolarization of the crystal or an
electrical disconnect (open) or an unexpected connection (short). Partial element
functioning can be due to a number of possible flaws in construction, such as a
debonding of a layer. The effect of inoperative elements is straightforward to analyze
(Bates, 1979). In Eq. (7.18), for example, the amplitude coefficient of a dead or
missing element is set to zero; therefore, the beam pattern is no longer a sinc or the
intended function but a variation of it with higher sidelobes.

7.9.2 Sparse and Thinned Arrays

This topic leads us to the subject of deliberately stolen elements. Can the same beam
pattern be achieved with fewer elements? Because channels are expensive, the chal-
lenge to do more with less is there for extremely low-cost portable systems, as well as
for 2D arrays. What are the issues? Methods for linear arrays will be evaluated and
then extended to 2D arrays.

Three main methods are used to decrease the number of elements in an array:
periodic, deterministic aperiodic, and random (Schwartz and Steinberg, 1998). The
simplest method is to make the elements fewer by increasing the period in terms of
wavelengths with the consequence of creating grating lobes. There are also ways of
“thinning” an array that usually start with a full half-wavelength spaced array, from
which elements are removed by a prescribed method (deterministic aperiodic) (Skolnik,
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1969). A fundamental transform law can be applied to the CW Fourier transform
relation between the aperture function and its beam pattern in the focal plane or far
field: The gain or on-axis value of the beam is equal to the area of the aperture function.
Asaresult of this law, removing elements decreases the gain of the array and the missing
energy reappears as higher sidelobes. If the fraction of elements remaining is P in a
normally fully populated array with N elements, then the relative one-way reduced gain
to an average far-out sidelobe level is PN/(1-P). For example, if 70% of 64 elements
remain, this relative gain drops from an ideal N squared (4096) to 149 or —22 dB.

The behavior of near-in sidelobes and the main beam are governed by the cumula-
tive area of the thinned array (Skolnik, 1969). An algorithm can be developed to
selectively remove elements of unity amplitude to simulate a desired apodization
function in a least-squares sense. This method has been automated and extended to
arbitrary weighted elements (Laker et al., 1977, 1978). The success of this approach
improves as N increases, but the sidelobe level grows away from the main beam. This
disadvantage can be compensated for by selecting a complementary (receive or
transmit) beam with sidelobes that decrease away from the main beam.

Other approaches also have a similar sidelobe problem. A random method in which
the periodicity is deliberately broken up to eliminate sidelobes and to simulate an
apodization function statistically results in an average sidelobe level inversely propor-
tional to the number of elements used (Skolnik, 1969; Steinberg, 1976).

One perspective is that the shape of the round-trip beamplot is the primary goal.
For fully sampled arrays, the product of the transmit and receive CW beamshapes
provides the desired result. Because of the Fourier transform relation between the
aperture function and focal plane beamplot, an equivalent alternative is to tailor
the aperture functions so that their convolution yields an effective aperture that gives
the desired beamshape. With this approach, apertures with a few elements can simulate
the shape of a fully sampled effective aperture with apodization. A minimum number of
elements occurs when each array has the square root of the effective aperture of
the final populated array to be simulated. Therefore, for a 64-element array, two
differently arranged arrays of eight elements could provide the selected beam-shape.

Images generated by this approach were compared to those made by fully sampled
arrays (Lockwood et al., 1996). While the expected resolution was obtained near the
focal zone, grating lobes were seen away from this region. Penetration was also less
than a normal array, as would be expected based on arguments described earlier for
missing elements. In a follow-up work, Lockwood et al. (1998) estimated the effect of
a decreased signal from a 1D sparse array by a signal-to-noise ratio (SNR) equal to N,
(N,)'/?, where transmit gain (N,) is proportional to the number of elements, and
receive gain (N,) is related to the square root of elements due to receiver noise. This
estimate gives a relative decrease of SNR of —54.9 dB for the 128-element full array,
compared to the effective aperture method with only 31 total elements and with
different halves (16) used on transmit and receive.

The need for decreasing channel count is even more urgent for 2D arrays for real-
time 3D imaging (Thomenius, 1996). At Duke University (Davidsen and Smith,
1993), early 2D array work was done with a Mills cross and parallel processing to
achieve high-speed imaging. Later work included a random array employing 192



206

CHAPTER 7 ARRAY BEAMFORMING

transmit elements and 64 receive elements with a average sidelobe level of 1/v/N;N,
of —41 dB. Other work there (Smith et al., 1995) on a 484-element, 2D array and at
the University of Toronto (Turnbull and Foster, 1991) showed that the principal
difficulties were the requirement for many hundreds of active channels, severe diffi-
culties in electrical connection, and the extremely low transducer SNR because of
small element size. Alternative methods of 2D array construction also look promising.
Kojima (1986) described a 2560-element matrix (2D) array. Greenstein et al. (1996)
reported the construction of a 2.5-MHz, 2500-element array. Erikson et al. (1997)
employed standard integrated circuit packaging to simplify the interconnection of a
30,000-element array for a real-time C-scan imaging system. Smith ef al. (1995)
discussed the challenges of 2D array construction and presented results for random
sparse implementation.

In addition to random 2D arrays, other alternatives have been proposed.
Lockwood and Foster (1994, 1996) simulated a radially symmetric array with 517
elements (one sixth the number of a fully populated 65-by-65 array) using the
effective aperture approach and found it to be better than a random design.
While most array designs are based on CW theory, Schwartz and Steinberg (1998)
found that by accounting for pulse shape, ultrasparse, ultra-wideband can be
designed with very low sidelobe levels on the order of N2 one way. As pointed out
in Section 7.4.3, grating lobes can be reduced by shortening the exciting pulse.
In a similar way, very short pulses in this design do not interfere in certain regions,
which leads to very low sidelobes. Inevitably, 2D arrays will be compared to the
performance of conventional 1D arrays in terms of SNR. Schwartz and Steinberg
(1998) showed that if the acoustic output of a conventional 1D array of area A is
limited in terms of acoustic output by federal regulation, then a 2D array with
elements of area (@) would have to have N = A/a elements to achieve the same output
and equivalent SNR. This conclusion returns us back to the concept of the gain in a
beam on-axis as determined by the area of the active aperture, as given by Eq. (6.33d),
Gocal = ApertureArea/F.

In 2003, Philips Medical Systems introduced a fully populated 2D array with 2900
elements with an active area comparable to conventional arrays. Highly integrated
electronics in the transducer handle accomplish micro-beamforming to provide a true
interactive, real-time 3D imaging capability. An image from this array is shown in
Figure 10.25. More on 3D and 4D imaging can be found in Section 10.11.6.

7.9.3 1.5-Dimensional Arrays

Intermediate between 1D and 2D arrays are 1.5-dimensional (1.5D) arrays (Tournois
et al., 1995; Wildes et al., 1997). This poor man’s 2D array splits the elevation
aperture into a number of horizontal strips, as shown in Figure 7.24 (middle).
Elements in each strip can now be assigned at different delays for focusing, and
each strip can become an element in a coarsely sampled array along the y-axis.
Because of symmetry (focusing and no steering), the same delays can be applied to
similarly symmetrically positioned strips, so they can be joined together, as shown in
side view in the figure, in order to reduce connections. Note that the two central strips
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merge into a wider combined strip. The individually addressable joined groups are
referred to as “Y”” groups.

To compare the three types of arrays in Figure 7.24, we start with a 1D array of 64
elements as an example. For the 1.5D array in the figure, there are three “Y”’ groups,
corresponding to 6 horizontal strips or an overall element count of 6 x 64 = 384
effective elements. However, because of their joined grouping, only 3 x 64 = 192
connections are required. These numbers contrast the 64 elements and connections
for the 1D array example and the 4096 (%) elements and connections for the 2D
example. Note that a 1.5D array can combine electronic focusing with the focusing of
an attached fixed lens to reduce absolute focusing delay requirements.

Other variants that permit primitive steering are possible (Wildes et al., 1997).
Despite their coarse delay quantization in elevation, 1.5D arrays bring improved
image quality because the elevation focusing can track the azimuth focusing electron-
ically. Also, 1.5D arrays provide a cost-effective improvement over 1D arrays. A
variant of the 1.5D array is an expanding aperture array, which can switch in different
numbers of y groups with or without electronic elevation focusing to alter the F# in
the elevation plane.

7.9.4 Diffraction in Absorbing Media

A major effect on array performance is attenuation (Foster and Hunt, 1979). Concep-
tually, the inclusion of attenuation seems straightforward: Replace the exponential
argument in the diffraction integral, Eq. (7.1a), —i2nk(r — ro), with the complex
propagation factor, yr(r — 79) from Eq. (4.7b). While this change can be done numer-
ically (Goodsitt and Madsen, 1982; Lerch and Friedrich, 1986; Berkhoff et al.,
1996), many of the computational advantages of the spatial impulse response ap-
proach no longer apply.

Fortunately, Nyborg and Steele (1985) found that by multiplying the Rayleigh
integral by an external attenuation factor in the frequency domain for a circular
transducer, they were able to obtain good correspondence with a straightforward
numerical integration of the Rayleigh integral with attenuation included in the
integrand. They improved their agreement when they used a mean distance equal to
the maximum and minimum distances from points on the the aperture to the field
point. Jensen et al. (1993) explored a time domain alternative, in which a factor
containing attenuation and dispersion was convolved with the spatial impulse re-
sponse and compared to a numerically integrated version of Eq. (7.1b) that was
modified to include losses. Their findings were similar: Very good agreement was
obtained, overall, and even better results were found using a mean distance for field
points close to the transducer.

In summary, the findings of Nyborg and Steele (1985) and Jensen et al. (1993) can
be generalized by separating out the effects of attenuation into an operation external
to the diffraction process. In the frequency domain, this simplification is a multipli-
cation by the material transfer function [MTF(r, f)] where 7 is the distance from the
transducer to the field point on either the forward or return path. In the time domain,
the material impulse response [mirf (r,t)], from Chapter 4 can be convolved with the
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pulse or spatial impulse response. Slightly better results are possible by using the mean
distance for short distances.

Overall, the MTF for the forward path is represented by block Ar, and that for the
return path is represented by Ak = MTF(rg, f). Then Eq. (7.32a) can be extended to
include attenuation,

Volr, f, 0) = Hr(rr, f, O7)Ar(rr, Y HR(r%, [, OR)AR("R, f)ERT(f) (7.45a)

Similarly, the corresponding time domain operations are ar(rr, t) = mirf (rr, t) and
agr(rr, t) = mirf (rg, t), so that Eq. (7.32b) becomes

Vo(rs t) =h:"t by "y ar™ s ar™ ¢ err (7.45b)

7.9.5 Body Effects

Finally, the biggest detractor from ideal array performance is the body itself. The gain
of an array is based on the coherent summation of identical waveforms. The fact that
the paths from elements to the focal point can include different combinations of
tissues leads to aberration effects that weaken focusing (to be explained in Chapter 9).
Under real imaging circumstances, unexpected off-axis scatterers do occur. Grating
lobes can be sensitive to low-level scatterers (Pesque’ and Blanc, 1987). While sparse
or thinned arrays appear attractive in simulations or water tank tests, they rely on
fewer elements that mean a reduced figure of merit (discussed in Section 7.9.2) and
the introduction of grating lobes that can bounce off strong scatterers not included in
modeling. Body effects and their influence on imaging will be discussed in detail in
Chapters 8, 9, and 12.
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8.1 INTRODUCTION
What is it we see in an ultrasound image? To answer this question, several aspects of

the overall imaging process must be understood in a comprehensive way. First, how
does sound scatter from an object at typical ultrasound frequencies (Section 8.2)?
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Second, what is the role of the spatial impulse response of the transducer (Section
8.3)? Third, how does the way the image is organized into multiple acoustic beams
affect what is seen (Section 8.4)? The answers to these questions are about how an
ultrasound imaging system senses and portrays tissue objects. The actual nature,
structure, and acoustic characteristics of tissue are discussed in Chapter 9.

The array acts as an intermediary between the actual tissue and the created image.
With ultrasound, the field is spatially variant, so the appearance of the same object
depends on its location in the sound beam. In addition, the physical organization of
tissue presents scatterers on several length scales so that their backscatter changes
according to their shape and size relative to the insonifying wavelength.

These effects are apparent in an image of a tissue-mimicking phantom (Figure 8.1),
in which three types of scattering objects are seen. Figure 8.2 illustrates the arrange-
ment of scatterers in the phantom. Note the vertical column of nylon filament point
targets that appear as dots in the cross section. To their right are columns of anechoic

Figure 8.1 Two-dimensional ultrasound image of the same tissue-mimicking phantom with
wire (point) targets and cyst targets. For this image, the transmit focal length of the 5-MHz convex
array is positioned at 6 cm, which is the level of the horizontal wire target group (Image made with
Analogic AN2800 imaging system).
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Figure 8.2 lllustration of arrangement of scattering objects in a tissue-mimicking phantom (cour-
tesy of ATS Laboratories).

cylinders of varying diameters that appear as circles in the cross section. In Figure 8.1,
on the left, images of nylon filament targets with a diameter much smaller than the
wavelength at a frequency of 5 MHz, because of the transducer point spread function
(see Section 7.4.1), appear larger than their physical size and vary in appearance away
from the focal point. On the right are images of columns of cysts (seen as cross
sections of cylinders) of varying diameters on the order of several wavelengths.
These cysts have approximately the same impedance as the host matrix material
surrounding it, but they have fewer subwavelength scatterers within them and appear
black. Note that in the image, the smaller diameter cysts are more difficult to
recognize and resolve. This problem is due in part to the resolving power of the
transducer array used, as well as to the interfering effect of the background material,
which has its own texture. The targets are suspended in a tissue-mimicking material
composed of many subwavelength scatterers per unit volume. The imaging of this
matrix material appears as speckle, a grainy texture. Speckle, described in more detail
later, arises from the constructive and destructive interference of these tiny scatterers,
and it appears as a light and dark mottled grainy pattern. This varying background
interferes with the delineation of the shapes of the smaller cysts.

Note the vertical column of nylon filament point targets that appear as dots in cross
section. To their right are columns of anechoic cylinders of varying diameters that
appear as circles in cross section.

In general, there are three categories of scatterers based on length scales: specular
for reflections from objects whose shapes are much bigger than a wavelength (large-
diameter cysts in Figure 8.1); diffractive for objects slightly less than a wavelength to
hundreds of wavelengths (smaller-diameter cysts); and diffusive for scatterers much
smaller than a wavelength (background matrix material).
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8.2 SCATTERING OF OBJECTS

8.2.1 Specular Scattering

Before examining the complexity of tissue structure, we shall find it easier to deal with
the scattering process itself. The type of ultrasound scattering that occurs depends on
the relation of the shape or roughness of the object to the insonifying sound wave-
length. Objects fall roughly into three groups: those with dimensions either much
larger or much smaller than a wavelength, and the rest that fall in between these
extremes. Our discussion of backscattering will show how the scattering from a
sphere will change its appearance depending on its size relative to the wavelength of
the incident wave.

These categories are related to the smoothness of the object relative to a wave-
length. If a wavelength is much smaller than any of the object’s dimensions, the
reflection process can be approximated by rays incident on the object so that the
scattered wavefront is approximately a replica of the shape of the object. In the case of
a plane wave of radius b illuminating a sphere of radius @ much greater than a
wavelength, as illustrated in Figure 8.3a, the intercepted sound sees a cross-sectional
area of nb* and it is reflected by a reflection factor (RF) due to the impedance
mismatch between the propagating medium and sphere. As the reflected wavefront
is backscattered, it grows spherically so that the ratio of overall backscattered inten-
sity (I,) to the incident intensity (I;); can be described by (Kino, 1987),

Ir lez 2 2 bZ
T~ "7 RFP? = |RF} 1
I~ e R = IREF 25 8.1a)
A
2b ka>> 1
B
_ h
2a 2b  kb>>1

Figure 8.3 (A) Reflections from a rigid sphere of radius
a in the ka > 1 regime. (B) Scattering from a rigid disk of
radius b for kb > 1.



8.2 SCATTERING OF OBJECTS 217

in which RF is from Eq. (3.22a) (Z, is the impedance of the sphere, and Z; is the
impedance of the surrounding fluid). Note that this result does not depend on the
wavelength. In this regime, ray theory holds. The importance of the angle of incidence
was apparent for plane waves reflected from and mode converting into a smooth flat
boundary in Chapter 3. The consequences of a nearly oblique plane wave striking a
boundary are that the returning wave may be reflected away from the source and that
the nearly normal components of the wave front are reflected more strongly,
according to the impedance cosine variation described in Chapter 3. In the simple
case presented here, the sphere is assumed to be rigid so that mode conversion is
neglected.

Now consider a disk-shaped object of radius b illuminated by a cylindrical beam
of radius a (shown by Figure 8.3.b). In this case, the ratio of backscattered inten-
sities is

Ir 7'[7[92 2 2 bZ

I,-_naz |RF‘ _|RF| az (81b)
Note that for a transducer positioned at one distance from a target, it would be
difficult to tell these objects apart or determine their size only from their backscat-
tered reflections.

8.2.2 Diffusive Scattering

At the other extreme, when the wavelength is large compared to a scattering object,
individual reflections from roughness features on the surface of the object fail to cause
any noticeable interference effects. In other words, the phase differences between
reflections from high and low points on the surface are insignificant.

Lord Rayleigh discovered that for this type of scattering, intensity varies as the
fourth power of frequency. Amazingly enough, for all the millions of humans who
looked up at the sky, he was the first person determined enough to find out why it was
blue. In his landmark paper, On the Light from the Sky, Its Polarization and Colour
(1871), and in a later paper, he showed that the blueness of the sky was due to the
predominant scattering of higher-frequency (blue) light by particles much smaller
than a wavelength (Strutt, 1871).

Scattering in this regime has important implications in medical imaging. Tissue is
often modeled as an aggregate of small subwavelength point scatterers like the one
depicted in Figure 8.4. Blood flow, as measured by Doppler methods, is dependent on
scattering by many small spatially unresolved blood cells. Also, most ultrasound
contrast agents are tiny gas-filled resonant spheres used as tracers to enhance the
scattering of ultrasound from blood pools and vessels. These topics will be covered in
more detail in Chapters 11 and 14.

Lord Rayleigh (Strutt, 1871) and Morse and Ingard (1968) derived an expression
for the scattering of pressure from a sphere much smaller than a wavelength with
different elastic properties in density and compressibility from an exact solution for
ka < 1,
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2b > > ka<<1

Y

Figure 8.4 Reflections from a rigid sphere of radius a in the ka < 1 regime.

ps —k*a} [3(1 — py/py)cosl ( K1):|

bs _ - 8.2
bi 3r 1+2p,/py " K2 (8.22)
Iy k*a® [3(1 — p,/py)cos k1\]?

L 97 [ 1+2py/py * (1 - K_Z)] (8.20)

in which subscript 2 indicates the object density p and object compressibility x, and
0 =0 is along the axis of forward propagation (Figure 8.5). For a rigid sphere,
p,/p1 — oo and K /K1 — 00, Eq. (8.2b) becomes

I, k*a 1_3cos€)2
I, 9r2 2
Lord Rayleigh (Strutt, 1871) showed that a small rigid sphere acts like a dipole (two

main lobes at 0 and =) in its directivity. Therefore, the intensity backscattered along
0=mis

(8.2¢)

I 25k*a8
I,‘ B 367’2
a result that is frequency dependent (through k), unlike Eq. (8.1). Kino (1987) has

pointed out that in this case, the total scattering cross section is the ratio of the total
power scattered divided by the incident intensity,

7rk*a®

(8.2d)

o(total) = (8.3)

which compares with the specular reflector cross section of 2ma?, since the sphere
radiates equally in the forward and backward directions. In the specular case, the
forward-scattered part of the wave cancels out the incident wave behind the sphere to
create a geometric shadow.
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25
x10°

Figure 8.5 Contribution of the monopole (--) and dipole (----) terms of Eq. (8.2a) to the
directivity pattern of the scattered field (—|—) produced by a red blood cell in water modeled
as a fluid sphere for an incident plane wave coming in from the left (from Coussios, 2002,
Acoustical Society of America).

Of interest is how the scattered intensity (related to pressure squared) is propor-
tional to the frequency to the fourth power and to the sixth power of the radius in Egs.
(8.2b—8.2d). Note that just by changing frequency, the same scatterer will appear to
have stronger or weaker reflections. As a result, the intensity reflected from this small
sphere radiates outward as an expanding sphere whose intensity is proportional to the
difference in compressibility and/or density and the fourth power of frequency. Later
we shall return to the subject of how groups of these small scatterers can have a
cumulative effect on imaging.

8.2.3 Diffractive Scattering

The last and largest category of scattering objects are those in between the extremes
described earlier. Scattering for these objects is governed by the same Helmholtz—
Kirchoff integral, Eq. (7.37), applied to the problem of diffraction of waves from
transducer apertures. To first order, the scattered waves can be considered to be
originating from the surfaces of the illuminated objects, which act as secondary
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Figure 8.6 Polar scattering diagrams for a rigid sphere for different ka numbers (from Jafari, et al.,
1981, with permission from the World Federation of Ultrasound in Medicine and Biology).

sources. Actually, the scattering from elastic objects is far more involved, and only
solutions for simply shaped objects have been solved analytically. Note that in this
regime, scattered waves can be different in shape from the object and they can have
maxima and minima that vary with angle and ka number. This conclusion is evident in
Figure 8.6, in which the scattering of a rigid sphere for different values of ka and
different directions show vastly different results for the same physical object (Jafari
et al., 1981). In these polar diagrams, 0° is the incident direction and 180° is the
backscattered direction back toward the source. Exact solutions for elastic scattering
from solid spheres and cylinders can be found in Faran (1951) and Hickling (1962).

8.2.3.1 Frequency domain Born approximation

An often-used estimate of scattering in this intermediate wavelength to object
range is the Born approximation. The starting point is the Helmholtz—Kirchoff
integral. The key assumption in this first-order approach is weak scattering so that
the pressure on the surface of the scatterer is approximated by the incident pressure.
Elastic mode conversion, multiple scattering, and resonance are neglected. The total
pressure is taken to be the sum of the incident (p;) and scattered fields (ps)

p(r, 1) = pi(r, 1) + ps(r, 1) (8.4)

If we consider either an object slightly different from its surroundings, such as a piece
of tissue suspended in water, or local mild fluctuations from a homogeneous region
within tissue, the Born approximation is appropriate. These small fluctuations (f)
from the local average of the host material (2) are usually expressed as the following
for density and compressibility perturbations:

p(r) = p, + pg(r) (8.5a)
K(r) = Kq + K¢ () (8.5Db)

which are rewritten in the more convenient form,
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Ve = (K — Ka) [Ka (8.6a)
70 = (pr — pa)/ Py (8.6b)

For an incident plane wave and with primed coordinates representing the scattering
surface, an expression for the scattered pressure in spherical coordinates (Morse and
Ingard, 1968) is

ps(r) = JV {K*9:r0)p(ro) — div[y,(ro) - Vop(r0)] } G(r/ro)dV (8.72)

in which standard 7y coordinates are used for the scatterer, k is the local average wave
number, 0 is the angle between the incident plane wave direction and the vector r to
the receiving point, and G is the usual Green’s function,

G(r/ro) = exp (ik|r — ro|) /4n|r — 7o (8.7b)

Here the Fourier transform of the object function is recognizable in Eq. (8.7a) with
the exponent of the Green’s function helping out. This relationship indicates that
objects with sharp edges or corners will be strong scattering centers.

Nassiri and Hill (1986) have derived results from this integral under the Born
approximation for a sphere of radius @ and a disk of radius a and thickness »

respectively,
eikr kl
Pss(r) = TE (y,c + 7, cos 9) (sinksa — ksa cos ka) (8.8a)
e*" hk2a? J1(ksa)
psd(r) _TT())K +yp Cos 0) ks(}l (88b)

where ks = 2k sin (0/2). An often-used term for scattering is the differential scattering
cross section, o4(0), defined as “the fraction of power of a plane progressive wave
disturbance incident on the scatterer that is scattered per unit angle.” Nassiri and Hill
(1986) provide cross sections for the sphere and disk,

2 2
os(0) = B:—S (7 + 7, cos 0) (sinksa — ksa cos ksa)] (8.9a)
hk2a? Ti(ksa)]”
aq(0) = {T (7 + 7, cos0) lksa ] (8.9b)

8.2.4 Scattering Summary

In summary, specular reflectors have a reflected pressure that does not vary with
frequency. At the other extreme, diffusive scatterers much smaller than a wavelength
have a parabolic pressure dependence on frequency, according to Eq. (8.2a) in the
small ka range (ka < 0.35). In between these extremes, the exact solution (Hickling,
1962) for arigid sphere and the Born approximation are backscattered pressures what
rise from a value of zero at ka = 0, and undulate with a periodicity related to the
interference between the front and back surfaces of the sphere, and asymptotically
approach the specular reflection value.
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8.3 ROLE OF TRANSDUCER DIFFRACTION AND FOCUSING

The previous chapter stressed that the point-spread function (the ability of the excited
transducer to resolve an ideal point scatterer) varies with position and orientation.
The discussion in the last section on scattering objects presented results for incident
plane waves. In reality, a complicated field pattern from a transducer is incident on a
scattering object, not a plane wave. This pattern is then reradiated as a secondary
source and scattered in a way dependent on the object’s shape and size related to its
wave number. In the simplest case, such as an object in the focal plane of a narrow-
band transducer, where a jinc or sinc type beam cross section function might occur,
the amplitude varies across the object and the phase changes sign at each spatial
sidelobe. Inclusion of these kinds of effects is necessary in a more accurate model.

A simple approach to include these effects is to build on the model given in Section
7.4.1 by adding a scattering term (s). In the time domain, the overall response can be
written as

Z/()(Z, 7, t) = eRT(t)*tht(za 7, t)*thr(zs 7, t)*rS(T, t) (8109.)

where egr(#) is the round-trip signal of the transducer from Section 7.4.1, and the »’s
are the diffraction impulse responses for the transmitter and receiver. The frequency
counterpart of this equation is

VO Z, 9f ERT f)Ht Z, ;f z3 )f Z, 7, f) (Slob)

These descriptions, which are reasonably accurate simplifications of the actual process
in that it is broken down into identifiable factors, are already becoming rather
complicated. For this reason, for simulation purposes, the models of scattering objects
are often represented by many ideal rigid point scatterers with different reflection
amplitudes organized in the shape of desired scattering objects or tissue. Using the
scattered pressure for a rigid sphere, from Eq. (8.2), S can be expressed as an ensemble
of ideal point targets each positioned at 7;,,

k*a’ 3cosl] 4
—ik(r—r,) 811
ZSn3|r—rn[ 2 }e ( )
where frequency is contained in k, S,, is a constant, and a corresponding time domain
version is
a’ 3cos 0] 0*6(t — |r — 14| /co)
I . 1-— 8.11b
st 1) Zn: 3c3|r — 1 [ 2 } or? ( )

Another important pulse-echo case of interest is the plane or mirror scatterer at depth
Z.» (Carpenter and Stepanishen, 1984). This pulse-echo configuration (illustrated in
Figure 8.7a) is equivalent to an identical transmitter—receiver pair separated by 2Z,,
with a reflection factor (RF) included for a partially reflecting flat mirror (Chen and
Schwartz, 1994; Chen et al., 1997). From Figure 8.7b, this RF becomes a transmission
factor (TF) TF = RF(2Z,,), for a partially transparent membrane for the equivalent
two-transducer configuration. The overall transfer function can be recognized as a
modified diffraction loss (see Section 6.4),
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Figure 8.7 (A) Mirror or plane reflector config-
uration. (B) Equivalent transducer pair configuration.

DLgi(2Zun, ) = exp ( — ik2Z,)RF,,DL(2Z,, ) (8.12)

A few cases have been worked out in the time domain. Rhyne (1977) derived a time
domain equivalent for the circular piston and an ideal mirror. He called it the
“impulse response of the radiation coupling filter.”

8.3.1 Time Domain Born Approximation Including Diffraction

Jensen (1991) has reformulated the Born approximation in the time domain and has
included the electromechanical and diffraction field effects of the transmitting and
receiving transducers. Jensen points out that the scattered field can be expanded into
higher-order terms that represent multiple scattering, but that a first-order approxi-
mation is usually sufficient. We can show that with a slight rearrangement of his results
below, his formulation is similar in concept to the pulse-echo case of Eq. (8.10a).

vo(t) = err(t) ¢ fm(re) r hpelre, 15 1) (8.13a)
where vy is the round-trip pulse-echo voltage, 7 is the vector to the position on the
scattering object, and 7, is the vector to the center of the receiving transducer,
lasze(rca 7, t)
c} or?
and Hy, () = h;(t);h,(t), from Section 7.4.1. Also, an inhomogeneity scattering func-
tion is

hpe(re, 1, ) = (8.13b)

fn(r) = Ap(r.)/poy — 2Ac(r.) /co (8.13¢)

that represents the small changes of density and the speed of sound from their
nonperturbed average values,

Ap(r) = p(») — po (8.14a)
Ac(r) = c(r) —co (8.14b)

Note that this definition of £, is slightly different than the standard definitions of Egs.
(8.5-8.6). However, it can be recognized as the scattering function of Eq. (8.10a),

_ [n 0?0t —1/co)
o ot?

s(ry t) (8.15a)
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and
2
S, f) = C—ffm (8.15b)
0

if the double differential operator is shifted from Eq. (8.13b) to the scattering
function. The function f,,(r) represents the actual physical inhomogeneities or objects
that are distorted by a time convolution and a spatial convolution, according to Eq.
(8.13a) during the scattering process.

The overall scattering process can be rewritten as

Vo(t) = err(t)" Hpe(re, 1, 1) s(r, 1) (8.15¢)
Vo(f) = Err(f)Hpe(re, 7, 1)S(r, ) (8.15d)

As an example of how this approach may be used, consider a mirror placed at the focal
plane of a circularly symmetric transducer where z,, = F. Chen et al. (1997) and Chen
and Schwartz (1994) have shown that the response is a very weak function of
frequency there, so that the round-trip response, vy(f), would correspond to the
function egr(t), as shown for a measurement in Figure 8.8. A point scatterer placed

T T L 1
11 ESSENE UUORSORRRNRNN AU Y prveey = FraPres !
: : : B| — Differentiated flat plate

0.8 x Point scatterer

0.6
0.4

0.2

Normalized amplitude [V/IVminl]
o

-0.6

-0.8
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Time [us]

Figure 8.8 (A) Pulse-echo response (vo = egr) for a flat plate (--) placed at Z,, = F. (B) Doubly
differentiated (——) (0?err/0t?). Normalized pulse-echo to (C). (C) A normalized measurement of a
pulse-echo from the tip of an optical fiber also placed at the focal point of the same spherically focused
3.5-MHz transducer (from Szabo et al., 2004, Acoustical Society of America).
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also at the focus of this transducer would be expected to have the differential
scattering characteristic of Eq. (8.15a). In this case, the overall response is propor-
tional to 0%egr/0t>. This result is shown to be the case in Figure 8.8b and it is
compared to data (Figure 8.8¢) (Szabo et al., 2004).

Jensen (1996) has included a point scatterer approach for tissue representation
with reflection strengths proportional to values obtained from the Born approxima-
tion in his Field II simulation program. The Field II program is based on Eq. (8.13a)
and includes methods for implementing different array and transducer geometries
with apodization, beamforming (including static and dynamic focusing), absorption
effects, and the ability to create synthetic phantoms made from an organized set of
point scatterers (Jensen and Munk, 1997). In Figure 8.9a, an organized set of
weighted point scatterers represents an optical image of the right kidney and liver.
In Figure 8.9b, an image is simulated as seen by a 128-element, 7-MHz phased array.
Details can be found in Jensen and Nikolov (2000). In addition, the user interface for
Field Il is through a series of MATLAB scripts. This program is available for public use
on the World Wide Web and can be found by searching for Field Il or on J. A. Jensen’s
web site www.es.oerstd.dtu.dk/staffjag/field/index.html.

8.4 ROLE OF IMAGING

8.4.1 Imaging Process

A comprehensive viewpoint of imaging is necessary to include the major effects in-
volved: beamforming and the spatially varying point spread function (p.s.f.) the extent
of the scattering objects, angles of inclination of beams to these objects, image line
sampling rate, interpolation, and presentation. The steps in the imaging process that
include all these effects are shown schematically in Figure 8.10 and are listed below.

Images are constructed from a number of acoustic “lines” or vectors usually
organized in a sequential pattern. Even though an acoustic vector appears as a thin
line in an image after conversion by envelope detection into an image line, each line
physically represents a time record of three-dimensional (3D) scattered waves from
different depths. The process of image formation is explained by the following
sequence of events with reference to letters denoting stages in Figure 8.10:

1. (a) A pulse packet, having 3D spatial extent, travels along the beam vector axis z
and changes shape according to its p.s.f. field characteristics.

2. (b) After transmission along an acoustic vector direction, the traveling acoustic
pulse is scattered over a broad angular range by a series of objects that are each
located at a scattering depth z; and correspond to time delays z;/c.

3. (c) Angular portions of the series of reflections are intercepted by the receiving
pulse-echo transducer. Each echo is at a time delay approximately equal to
2z;/c.

4. (d) These intercepted waves are integrated over the surface of the receiving
transducer with appropriate weighting and time delays added for focusing and
beamforming.
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Figure 8.9 (A) Synthetic phantom scatter map of weighted point scatterers
based on optical image of right kidney and liver, based on data from the Visible
Human Project. (B) Gray-scale simulated B-mode image of the right kidney and
liver created by Field Il program (courtesy of ). A. Jensen, Technical University of
Denmark).
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5. (e) The integration of Step 4 has reduced the 3D scattered signals to a one-
dimensional (1D) time record of length 2z, /c, where z,,., corresponds to
the maximum scan depth selected for the image.

(f) The time record is envelope detected.

7. (g) The amplitude of this envelope-detected time record is logarithmically
compressed and processed nonlinearly so that a larger dynamic range of
weak to strong echoes can be presented in the same image.

8. (h),(i) The next vector in a prescribed sequence of vector directions and spatial
increments or directions repeats Steps 1-6.

9. (j) Once the line sequence is completed, all the lines are interpolated or ““scan-
converted” to form a filled-in pulse-echo image from a number of image lines
arranged in their correct geometrical attitude.

10. (k) The image is converted to gray-scale mapping for final presentation.

S

8.4.2 A Different Attitude

As described in Chapter 1, early ultrasound images were formed by either mechanical
translation or freehand with a mechanically sensed movement of a transducer. The
vector direction coresponding to each transducer position was controlled or sensed
and then displayed in its correct attitude (direction) on a cathode-ray tube (CRT) (see
Figure 1.10). When the sequence of lines was completed, the image was created either
from a long-term persistence of the phosphor on the CRT or through a long-term
photographic exposure. As explained in Chapter 1, the two main movements were
translational and rotational. The former is now associated with the rectangular format
of linear arrays, and the latter is associated with the sector scans of phased arrays.
Early on, workers found that the best images were those that combined a rotational
(rocking) motion with translation, and this combination became known as compound
imaging. Another combination in which rotational movements are added to the ends
of translation movements is called contiguous imaging (see Figure 1.3).

As we have seen, in general, scattering from an object occurs over a wide angular
extent, but only a portion may be intercepted by a receiving transducer. Furthermore,
the direction of insonification is extremely important for determining in which
direction sound will be scattered. For example, when sound is nearly parallel (large
oblique angle) to the left ventricle wall, very little is reflected back toward the
transducer. Figure 8.11 shows another example, in which a cylinder with a radius of
curvature is large relative to a wavelength. The images strongly depend on its curva-
ture and the angle of insonification, so that only the parts of the surface nearly
perpendicular to the beam are effective at specularly backscattering sound to the
transducer. Each image is a partial view that does not portray the cylinder as a
complete circular object.

Perceived resolution in an image is dependent not only on the extent of the spatial
impulse response for a specific beam, but also on the spacing and orientation of the
vector lines themselves. To determine adequate sampling, consider a simple sector
scan example. For an unapodized round-trip beam in the azimuth plane at the focal
length, the beam-shape is approximately a sinc? function from Section 7.3. The first
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Figure 8.10 (A) Pulse packet (Step 1). (B) Pulse scattered by objects (Step 2). (C) Scattered wave
fronts intercepted by receiving transducers (Step 3). (D) Receiving transducers integrate and focus
signals (Step 4). (E) One-dimensional time record created (Step 5). (F) Envelope detection (Step 6).
(G) Nonlinear processing of amplitude (Step 7). (H) Next line repeats previous steps until frame is
complete (Step 8). (I) Scan lines arranged geometrically. (J) Interpolation and gray-scale mapping
completes image (Step 9).
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Figure 8.11 (Top) Three images of a cylindrical reflector insonified at steering angles of (A) 17°, (B)
0°, and (C) —17° by a 5-12 MHz linear array. (Bottom) Plots of the corresponding pulse-echo amplitudes
for each angle (from Entrekin et al., 2000, with permission of Kluwer Academic/Plenum Publishers).

Amplitude

Angle (/L)

Figure 8.12 Adjacent point spread functions for a focal plane,
centered at different angles, indicate that angular separation is
achieved for A0 ~ A/L.

nulls of this function occur when the argument is equal to &, or 0 = arcsinA/L ~ A/L,
as illustrated in Figure 8.12. To achieve full system resolution, Nyquist sampling at
0/2 should be applied (Steinberg, 1976; von Ramm and Smith, 1983). For example,
for a 2.5-MHz transducer with L = 30 mm, 0 = 0.02 radian or 1.15°, for a scan
angular sampling increment of 0.57° or about 157 lines in a 90° sector.
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This approach is an oversimplification because it is based on targets that also have
an angular variation; however, targets are better described in linear or rectangular
coordinates. For example, an arc length s depends on depth 7 according to s = rA0.
Because resolution is spatially varying with depth, a linear target can be severely
oversampled close to the transducer where many sector lines traverse it. At distances
past the focal region, the target may not be resolved, not because of an adequate
sampling rate but because the beamwidth may be too wide. This sampling criterion
presented earlier is conservative and provides a reasonable estimate. Apodization
produces broader beams that would result in a wider sampling rate requirement.
For linear scanning, the same method can be applied with the argument in terms of
x and z so that the lateral sampling increment becomes related to the F number
(Section 7.4.3), Ax = AF#/2.

Unlike the optical cases, acoustic waves have a measurable phase. Sampling ap-
proaches based on both magnitude and phase can lead to an improvement in reso-
lution. These methods preserve phase and include it in a different interpolation
scheme than the one outlined previously. Phase itself can provide an alternative
picture of backscattered signals. Also, phase can provide complimentary information
about backscattering. Phase images for medical ultrasound have been proposed and
implemented commercially (Ferrari et al., 1982).

Besides resolution, image contrast is important; it is the ability to identify objects
against a background. This thought leads us to the concept of signal-to-noise in an
image. The scan depth beyond which the image is lost to electronic noise is called the
“penetration distance,” as discussed in Chapter 4. This effect is mainly due to tissue
absorption and the imaging system (front-end design), and it is somewhat dependent
on the efficiency and size (focal gain) of the array. A different type of imaging noise
occurs in an image even when there is enough signal; this interfering textural pattern
leads us to the curious ultrasound imaging artifact of speckle.

8.4.3 Speckle

Apart from the larger tissue structures in an ultrasound image, there is a textural
overlay on different types of tissue, as mentioned in connection with Figure 8.1. This
granular texture is called “speckle” after a similar effect in laser optics, even though
the physical mechanisms are somewhat different (Abbott and Thurstone, 1979). In
optics, intensity plays a dominant role. In ultrasound, however, the phase and ampli-
tude effects are important, as well as the way pulse envelope data are displayed on a
gray scale (no amplitude is assigned to black and maximum amplitude is assigned to
white). For many years, users of ultrasound systems assigned a diagnostic value to the
appearance of speckle, and they assumed it was tissue microstructure. This discussion
will examine the causes of speckle and show that speckle is an illusion more depend-
ent on the measuring system than on the tissue itself (Wells and Halliwell, 1981;
Thijssen and Oosterveld, 1986). Also, speckle is detrimental because it reduces both
image contrast (the ability to see desired structure against a background) and the
distinction of subtle gradations and boundaries in tissue structure. At the end of this
section, methods to reduce speckle will be reviewed.
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Even though a clinical image contains much more than speckle, in order to
understand the effects of speckle in isolation, it is helpful to start with a medium
filled with small weak scatterers and no other larger structures. In reality, tissue is filled
with small inhomogeneities. Bamber and Dickinson (1980) created a scattering model
in which tissue compressibility varied about a mean value. They found that the speckle
was determined by the spatial impulse response and not the fluctuations.

A more common alternative is to view the scattering medium as homogeneous but
filled with tiny rigid point scatterers that can be assigned some scattering strength
value, as in Eq. (8.11b). The size of each of these ideal scatterers is beyond the
resolution capability of the imaging system; nonetheless, these small scatterers can
have a profound effect on the image. In a typical pulse-echo situation, a bundle of
energy formed by the point-spread function is sent into tissue and is partially scattered
along its path. At any instant of time, this energy bundle has a finite extent and weights
the scatterers according to the spatial impulse response at that location (as discussed
in Section 8.3.1). The extent of the influence of this 3D pulse is called the isochronous
volume, which is depicted in two dimensions (2D) in Figure 8.13 (Foster et al., 1983).
Note that scatterers in the same isochronous volume produce a backscatter that
corresponds to a specific time delay region over a wide angular range. Because

3-Dimensional scattering volume

f/2.4 Spherically
focused transducer

3

Isochronous volumes

Figure 8.13 Transducers illuminating point scatterers in different 3D iso-
chronous volumes (from Foster et al., 1983, with permission of Dynamedia, Inc.).
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individual scatterers in the same volume at different angles have the same time delay,
there is an ambiguity in backscattering with angle.

For the simulation of speckle in the second or point scatterers model, the contri-
butions of the spatial impulse responses at each scatterer are summed and added. The
spacing between vector or image lines also plays a role. An arrangement of scatterers,
along with related images, is illustrated by Figure 8.14. While an exact reproduction
of speckle pattern is impossible without a knowledge of the actual positions of the

Figure 8.14 stimulated images for random scatterers in a volume, including a simulated
spherical 2.6-mm diameter void. (A) Randomly distributed point scatterers represented with ampli-
tude weights shown as dark and light points against a homogeneous gray background 8 mm x 8 mm
(line shown for scale = 1 mm). (B) Gray-scale representation of all the summed and weighted pulse-
echo impulse response functions for all points lying in the 3D volume. (C) Simulated rf image of the
random scattering medium. (D) Simulated B-scan image after envelope detection showing the
formation of speckle and the presence of a cyst (from Foster et al, 1983, with permission of
Dynamedia, Inc.).
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scatterers, simulations are remarkably effective in recreating the look of speckle (as
seen in Figure 8.15). Here, Foster et al. (1983) compared simulated images of exactly
the same arrangement of point scatterers with the corresponding images for three
different transducer combinations at the University of Toronto. Speckle is an illusion
despite its deceiving appearance as a tissue texture.

Experiment Simulation

f/5.7-1/5.7

fr2.4-f/2.4

Loteral direction

f/2.4-cone(30°)
hybrid

~ 1mm

— Axial direction >

Figure 8.15 Comparison of simulated speckle and data for three different transducer com-
binations (from Foster et al., 1983, with permission of Dynamedia, Inc.).
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Speckle in simulation is the constructive and destructive interference of point-
spread functions scattered at apparently random specific physical locations. Speckle in
a clinical image is generated mainly by constructive and destructive interference
of subresolution tissue scatterers at fixed spatial locations. The resulting images of
these subresolution scatterers are not random but deterministic, and they can be
reproduced exactly if the transducer is returned to the same position, as can be easily
demonstrated with a tissue-mimicking phantom. This feature of speckle is used to
track tissue movement and displacement, as well to correct for aberration (to be
discussed in Chapter 9).

8.4.4 Contrast

The effect of speckle can be quantified by a “contrast ratio” (CR) and a signal-to-noise
ratio (SNR). A classic imaging problem is quantifying the ability to define a cyst object
against a speckle background. This contrast ratio is simply the average gray-scale
brightness level in the cyst compared to its surround,

o Aout — Ain

Aout "l‘Ain
where A;, is the average signal level in the cyst, and Aoy is that in the surrounding
material. Note that a value of +1 is for good contrast; values close to zero indicate
poor contrast. For example, the contrast ratios for a 2.6-mm diameter cyst, of Figure
8.14), is 0.37 £ 0.04. For comparison, contrast ratios for a cyst for the transducer
combinations, depicted (without a cyst) in the top, middle, and bottom of Figure 8.15
are 0.30 £ 0.04, and 0.37 & 0.04, respectively. These ratios are governed by the first-
order statistics of the speckle (Flax et al., 1981).

The probability density function (p.d.f.) for fully developed speckle can be ap-
proximated by a Rayleigh distribution based on a random walk assumption that the
phase is randomly distributed between 0 and 2z. The Rayleigh probability density
distribution, plotted in Figure 8.16, is given by

p(A) = (2A/A?) exp(—A/A?) (8.16)

CR (8.16)

in which A is brightness or amplitude and A? is the mean of the squared amplitudes.

In general, the probability density function for the envelope amplitude in an image
is governed by a K-distribution (Jakeman and Tough, 1987; Weng and Reid, 1991;
Chen et al., 1994; Dutt and Greenleaf; 1995; Thijssen, 2000) that leads to a signal-to-
noise ratio,

VAT +1/2)
VAT( + 1) — 220+ 1/2)

where 7 is the effective number of scatterers within a resolution cell defined by the full
width half maximum (FWHM) in axial and lateral dimensions of the point-spread
function. This ratio approaches that of a Rayleigh p.d.f. when # is large (7 > 10).
For this case, the SNR = 1.91, as confirmed by many independent measurements. For

SNR =

(8.17)
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Figure 8.16 Rayleigh distribution compared to histograms of echo brightness or ampli-
tude for an experimental image and a simulated one (from Foster et al., 1983, with permission
of Dynamedia, Inc.).

tissue with structure, a Rician is more appropriate (Insana et al., 1986; Thijssen,
1992). It is important to realize that these statistics apply only to video data that have
not undergone nonlinear processing. The use of the SNR belongs to first-order
analysis of images.

Line-to-line aspects of images have been analyzed by second-order statistics.
Wagner et al. (1983) and Smith et al. (1987) showed that the average size of speckle
is related to an autocovariance function. Their conclusion can be summarized by the
following steps. The relation between pressure at two different positions, X; and X, is
conventionally described by an autocorrelation function defined for an incoherent
source as (Wagner et al., 1983; Mallart and Fink, 1991)

Ry(X1, Xa, f) = (P(X1, 1), P*(Xa, ) (8.18)

in which P is pressure at positions X; and X5, f is frequency, the brackets indicate an
average over an ensemble of the scattering media, and * denotes complex conjugate.
Another useful function is the covariance,

Cr(X1, Xo) = Re(Xi, Xa) — (P(X1)) (P (X)) (8.192)
The second term is zero, so that the spatial autocovariance function is
Cp(AX) = Rp(AX) (8.19b)

where AX = X, — X, and the value used is often normalized to Cp(0). Pressure must
be related to the point-spread function, which for the simplest case, a square piston
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source is proportional to a sinc function. In the focal plane of this transducer, z = F, if
absorption is neglected. Then for the lateral direction,

Cre(AX) = By sinc®(fo, AX)" sinc? (£, AX) (8.20)

in which the spatial frequency along the lateral x direction is f,, = L/(AF), and By is a
constant. Similarly, for a Gaussian spectrum varying as exp ( —z%/2¢2) axial auto-
covariance is

Cp(AX) = B, exp[—(A2)* /407 (8.21)
These results can provide the average speckle size found from the correlation cell
size,
[ G@x)
.= dAX 8.22
| %o (822

For the example of the rectangular transducer, the correlation lateral and axial cell
sizes become

Sex = 0.874F /L = 0.87 /f,, (8.23a)
S, = 0.91co/Af = 1.37/Af (8.23b)

where the last equation is in millimeters (mm) when the —6-dB bandwidth is in
megahertz (MHz) and Cy in (mm1/us).

For example, for a 2.5-MHz array that is 25 mm long and focused at 50 mm, the
resolution from Chapter 6 is 0.46 mm, and the correlation cell size in the focal plane is
1.04 mm, from Eq. (8.23a). For a 60%, —6-dB fractional bandwidth, the axial
correlation cell size is 0.91 mm. Other examples of autocovariance functions for
lateral and axial ranges of the transducer combinations from Foster et al. (1983)
(discussed in Section 8.4.3), are plotted in Figure 8.17.

Note that the results so far are for focal planes. Speckle size close to the transducer,
for example, is much finer than that in the focal plane, yet the resolution is much
poorer; this is an interesting counterintuitive result for those who associate speckle
size with resolution or tissue microstructure. Later workers (Oosterveld et al., 1985;
Huisman and Thijssen, 1998) found that lateral speckle size is strongly dependent on
depth even after correction for diffraction and absorption effects.

8.4.5 van Cittert-Zernike Theorem

To complete the description of scattering objects, it is necessary to include the
properties of random scattering media illuminated by the field of a focusing trans-
ducer. Somewhat surprisingly, the backscattered field from a random arrangement
of small particles can be correlated. This interesting property can be formalized
by the van Cittert—Zernike theorem. From Eq. (8.18), Mallart and Fink (1991)
make a number of simplifications that include the Fresnel approximation and
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Figure 8.17 Plots of simulated and averaged-experimental lateral and axial covariance coefficients
for the three transducer combinations used for Figure 8.15 (from Foster et al., 1983, with permission of

Dynamedia, Inc.).
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X1 = (x1, 2), X2 = (x2, 2); the use of a narrow time window (short pulse); and a
diffuse random scattering medium that is a separable function of frequency and space,

(0, Py 1) = 70(AOX: —X2) (8.24)
They show that
Ryt 22, 2, /) = 200 [ [AGod - 6 -, @259

in which A(x) = A(x) exp 1[i2n/(z4)]x - x} and A is the aperture weighting function, so

Ry(r, 2, 2, f) =2 D R,er — x) (8.25b)

The van Cittert—Zernike theorem can be stated as follows for the ultrasound case
(Mallart and Fink, 1991): “The spatial covariance of the field at points X; and X; of
an observation plane is equal to the Fourier transform of the source aperture function
A(X) taken at spatial frequency f = AX/(4z) where z is the distance between the source
and the observation plane.” Recall that the inverse Fourier transform of a power
spectrum is the autocorrelation function,

3G = J GNG (™™ df =glt) +g'(— 1) =g g" (8.26)
In practical terms, this theorem means that the spatial covariance function in the focal
plane is proportional to the autocorrelation of the two-dimensional (2D) aperture
function. As shown in Figure 8.18 for a 1D aperture with a weighting function A(x, 0,
0), the field is backscattered by random tiny scatterers over a narrow time window as
an energy pattern proportional to the autocorrelation of the aperture weighting,
A ®A*. For a uniformly weighted aperture, A(x, 0, 0) = [[ (x/L), so R, is propor-
tional to the triangle function, A(x/L). Here the physical explanation is as follows:
The aperture radiates an energy pattern at its focal plane that is proportional to a sinc
function squared. This energy pattern is reflected by random scatterers back to the
transducer, where the spatial covariance at the aperture is the Fourier transform of
this energy diagram. Because of the way Eq. (8.25b) was derived, wave fronts need to
be brought into phase (time-aligned) before applying the theorem. Some of the
surprising results of this theorem are that the spatial covariance pattern in a focal
plane is independent of focal length, F number, and frequency and depends only on
the autocorrelation function of the aperture (Trahey et al., 1986b; Mallart and Fink,
1991). Thus, the longer the aperture, the wider the spatial covariance and the greater
the region of spatial coherence of speckle. The signal-to-noise ratio (SNR) at a
receiver varies inversely with spatial covariance, so to increase SNR, a wider receiver
is needed. Away from the focal zone, decorrelation is more rapid (Trahey et al.,
1986b).This theorem is useful for locating regions where the speckle is well-correl-
ated for speckle tracking applications (Bamber, 1993). In general, the applications of
the van Cittert—Zernike theorem to real tissue needs further work because in tissue
characterization, the exceptional deviation from normal tissue structure is of interest
(Liu and Waag, 1995).
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Figure 8.18 (Top) Energy pattern in focal plane is proportional to magnitude of Fourier transform
(of aperture) squared. (Bottom) Energy pattern reflected by random scatterers back to the aperture,
where the spatial covariance is the Fourier transform of this energy pattern, according to the van Cittert—
Zernike theorem (from Mallart and Fink, 1991, Acoustical Society of America.)

Two transmit—receive systems can be compared by the correlation between received
signals. Walker and Trahey (1995) have shown that correlation p(f), as a function of
frequency between a system denoted by subscript “0”” and another called ““1,” is

oo

| TAT0(X, f) * Aro X, NDIATI(X, f) * AR (X, H]7dX
b (8.27)

p(f) = =
¢ | AT0(X, )+ AroX, 17X [ [[AT1(X, ) * Ari (X, )][7dX

where the convolution is in the direction X = [x y] in the aperture planes, and “T”
and “R” denote the transmitter and receiver in the focal plane, respectively.
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8.4.6 Speckle Reduction

Many ways to reduce speckle have been proposed. Some of these have been reviewed
by Bamber (1993). Most of these approaches involve a kind of diversity so
that speckle effects can be averaged, minimized, or broken up. Several methods of
compounding can be explored through Eq. (8.27). Trahey et al. (1986b) show that to
reduce speckle effectively, N-independent speckle images are needed to reduce
speckle by a factor v/N. Breaking the overall aperture up into subapertures is a kind
of spatial compounding that involves a trade-off between speckle reduction
and resolution. For example, dividing the aperture in half and averaging images
reduces speckle by /2 (Trahey et al., 1986b), but this arrangement also degrades
resolution at the focus by a factor of two. Frequency compounding (Melton and
Magnin, 1984; Trahey et al.,1986a) involves summing multiple images created from
signals filtered at different center frequencies and bandwidths; this approach has
enjoyed recent commercial success because of the availability of broad bandwidth
transducers. Spatial compound imaging, which creates images from several angular
views, was discussed in Chapter 1 and by Trahey et al., 1986b; and Entrekin et al.,
2000. Examples of the implementation of real-time speckle reduction methods can
be found in Chapter 10.
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9.1 INTRODUCTION

Until now, tissues have been treated as homogeneous elastic media with acoustic
characteristics such as impedance, speed of sound, absorption and dispersion, and
scattering. Tables of values of tissue characteristics are summarized in Appendix B,
and many more can be found in Duck (1990). It is fair to say that at this point in time,
there is much more that researchers do not know about the acoustic and elastic
properties of tissues. This state of knowledge is in part due to simplified views of
tissue as either uniform or random in structure.

Tissue is much more interesting than that! Living tissue is full of structure, move-
ment, and organization on several length scales. It is nonlinear both elastically and
dynamically. Tissue is continually adapting and self-regulating, growing and reprodu-
cing, becoming diseased, healing and repairing, altering metabolism, and interacting
with other organs.

This chapter addresses some of the problems posed by the complexity of tissue.
First, it reviews a method for classifying scattering from tissues on several length
scales. Second, it presents actual measurements of heterogeneous tissue structure, as
well as their impact on scattering. Third, this chapter examines recent developments
in tissue characterization (the science of inferring tissue properties from ultrasound
measurements), including dynamic as well as static methods. Fourth, it discusses
adaptive means of measuring tissue characteristics and compensating for their un-
desirable effects, such as aberration. Finally, this chapter gives ways of simulating
wave propagation in more realistic tissues.

9.2 SCATTERING FROM TISSUES

The similarity of the acoustic properties of tissues is primarily due to their high water
content. The main constituents of the body are water (60%), protein (17%), and lipids
(15%) (Greenleaf and Sehgal, 1992). In addition to blood, cells are bathed in fluid
(interstitial) and have fluid within them (intracellular), as well as minerals and ions.
Groups of similar cells (the basic building blocks) are organized into tissues. Different
types of tissues are combined to perform specific functions as an organ, such as the
heart or liver. Greenleaf and Sehgal (1992) provide more details of how tissues
function and maintain homeostatis (equilibrium) in response to changing external
factors (injury and disease).

They have also proposed a classification scheme for tissue scattering that is quite
useful. In their terminology, Class 0 scattering is associated with molecular solvent
effects on a length scale of 10* A (107'm). This type of scattering is due to



9.2 SCATTERING FROM TISSUES 245

macromolecular effects, which produce absorption and sound speed dispersion (dis-
cussed in Chapter 4). Class 1 scattering is caused by the concentrations of living cells
being higher than 25 per resolution cell, and it is diffusive according to its length scale,
ka << 1. Class 2, which is diffractive on a length scale, is scattering from the structure
of tissue in concentrations lower than one per resolution cell. While Class 1 scatterers
would result in speckle or measurable aggregate (combined) effects, Class 2 scatterers
are independent and distinguishable through their unique space- and frequency-
dependent characteristics. Class 3 scattering is specular on a length scale, ka >> 1,
and is associated with organ and vessel boundaries. A fourth category, Class 4, applies
to tissue in motion such as blood.

In a typical ultrasound image of the liver, as given by Figure 9.1, are examples of
several scattering types. From the need to compensate for absorption, asindicated by the
time gain compensation (TGC) profile not shown but disucssed (Section 4.5), we
conclude that Class 0 scatterers are present. The speckle indicates Class 1 scatterers
(ka << 1). Small vessels correspond to a Class 2 scatterer. Finally, the liver boundaries
are Class 3 scatterers.

Figure 9.2 introduces frequently used terms for tissue. Tissue regions that can be
represented by one value of a parameter at every spatial point are ‘“homogeneous.”
Global values of parameters are assigned to each region that is homogeneous. Waves

PHILIPS

Class 1

Figure 9.1 Uiltrasound image of a liver showing four types of scattering effects (courtesy of Philips
Medical Systems).
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Figure 9.2 General terminology for tissue structures:
(A) Homogeneous. (B) Inhomogeneous. (C) Heteroge-
neous. (D) Isotropic. (E) Anisotropic.
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crossing region boundaries may experience reflection and transmission effects, pos-
sible mode conversion, refraction, and changes in sound speed and absorption,
according to the appropriate length scales. For our purposes, the term ““‘inhomo-
geneous” is used for tissues that are predominantly the same type with small fluctu-
ations about a mean value (as depicted in Fig. 9.2b). In Figure 9.2c, a region enclosing
a group of contiguous regions with different characteristics is called “heterogeneous.”
In this case, the tissue properties of the enclosed region vary with spatial position
either through smaller subregions or, in the limit, from point to point. The term
“isotropic” applies to tissue properties that do not vary with angular orientation (as in
Figure 9.2d). If the properties do vary with the angle of insonification, then they are
“anisotropic” (as in Figure 9.2¢). Anisotropy occurs when tissue structure has a
preferential structural orientation, such as muscular fibers.

It is helpful to know the general properties of homogeneous tissue first. The more
important ones are listed in Table B2 in Appendix B. In this table, both the absorption
and backscattering loss (at 180°) components of attenuation are listed. Recall that
attenuation has both absorption and scattering components,

o = o+ o 9.1)

Absorption is considered to be propagating energy that is converted to heat through
mechanisms such as viscous and thermal conduction effects (as discussed in Section
4.1.2). These characteristics would fall under the Class 0 scattering and be assigned to
homogeneous tissue regions. The scattering loss is caused by the partial interception
by the receiving transducer of the angular distribution of backscattered energy.
Another way of interpreting this scattering is that it occurs on several length scales
simultaneously due to tissue structure. In addition to absorption (Class 0), this type of
scattering may include Class 1 or diffusive subwavelength scattering. Typically, scat-
tering loss is less than 20% of the overall attenuation for soft tissue, but there are
exceptions (Nassiri and Hill, 1986a).

A way to determine how much energy is scattered away from the receiving trans-
ducer is to measure scattering as a function of angle. This approach also can aid in
separating the contributions of changes in the density (dipole directivity) from those
of the elastic constant (monopole directivity), each of which have a different angular
scattering dependence, as was indicated by the Born approximation in Section
8.2.3.1. Nassiri and Hill (1986a, 1986b) have developed inhomogeneous statistical
models for tissue based on the Born approximation and have obtained good experi-
mental agreement. In this case, there are many effective scatterers per resolution cell,
so that Class 1 scattering, in a statistical way, results in different scattering patterns. In
addition, all tissue has loss that increases with frequency; therefore, all tissue includes
Class 0 scattering.

Another Class 1 scatterer is blood. Blood cells have been modeled as subwave-
length-sized spheres, cylinders, or disks (explained briefly in Section 8.2.2. and
treated in more detail in Section 11.3). Flowing blood also falls in the Class 4 category.

An example of a Class 2 scatterer is an isolated microcalcification in the
breast. Anderson et al. (1998) used a spherical scatterer as a model for this case.
Their calculations for elastic and inelastic spheres are shown in Figure 9.3 for an
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Figure 9.3 (Top) Magnitude of far-field scattering from a hy-
droxyapatite sphere simulated by a Faran model as an elastic sphere
(solid line) and as a rigid sphere (dashed line). (Bottom) Correspond-
ing phases scaled by —1/ka to allow comparison with Hickling’s results
(from Anderson et al., 1998, IEEE).

approximately Gaussian pulse with a 60% fractional bandwidth. By comparing these
results with data (Figure 9.4), they concluded that microcalcifications behaved as elastic
scatterers. This type of scatterer corresponds to a one-per-resolution cell or a Class 2.

9.3 PROPERTIES OF AND PROPAGATION IN HETEROGENEOUS TISSUE

9.3.1 Properties of Heterogeneous Tissue

Limited information is available on tissue-scattering properties in part because of
the difficulty of making the measurements. Part of the problem in measuring
tissue properties is the correction for system effects such as transducer spectral
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Figure 9.4 The magnitude spectra of radio frequency echoes
from suspected in vivo microcalcifications in two different subjects.
The similarity of the prominent peaks and nulls in the spectra to
those of the elastic simulation of Figure 9.3 indicates elastic behavior.
Higher absorption in the second case (bottom) reduces amplitudes at
higher frequencies (from Anderson et al., 1998, IEEE).

characteristics and directivity. In addition, scattering itself, in the frequency range
commonly employed for medical imaging, is frequency dependent. The inferring of
tissue properties from transducer measurements is an ongoing worldwide effort called
“tissue characterization,” which is described more fully in Section 9.5.

Before methods of tissue characterization are described, some of the issues and
complexities of acoustic propagation in real tissue need to be examined. A number of
early studies are summarized by Li (1997) and Bamber (1998). Because most ultra-
sound imaging is done through abdominal and chest walls, these have been studied
extensively at the University of Rochester. Measurement-corrected data of the acous-
tic properties of abdominal and chest walls provide more direct information about the
local spatial fluctuations of tissue properties.
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The measurement of wall properties consisted of placing the wall specimen in a
sealed chamber that has acoustically transparent windows and is filled with water.
This chamber was aligned in a water tank between a diverging transmitter-transducer
with a wide directivity and a mechanically scanned linear array acting as a receiver on
the upper side of the specimen. For the chest walls (Hinkelman et al., 1997), a 96-
element linear array designed to have small elements, 0.21 mm x 0.4 mm, was elec-
tronically switched, one element at a time, at each of 50 lateral positions to create a
matrix of recorded-through transmission pulses equal to 96 x 50 = 4800 positions. A
reference database was also recorded with no specimen in the tank. The effects of
measurement geometry were removed by fitting a surface to the arrival time wave
fronts and subtracting the fit from the data. The following features of the data were
tabulated: waveform similarity, arrival time and energy level fluctuations, and full
width half maximum (FWHM) correlation lengths. An average reference pulse was
correlated with each pulse in a set to obtain a measure of waveform similarity, time
delay fluctuations, and correlation lengths. Energy waveform values were calculated
by integrating the squared amplitudes of the received signals. The resulting chest wall
data are shown in Figure 9.5 as pictures of the two-dimensional spatial fluctuations of
16 samples, presented as pairs depicting time delay and energy fluctuations. The top
row is a water reference. Note the similarity of features in most pairs.

Measurements for abdominal walls are compared to this data in Figure 9.6. The
average root mean square (r.m.s) time delay fluctuations for 16 chest wall samples is
21 ns, as compared with 56 ns for abdominal walls. Just as speckle has been analyzed
statistically, radio frequency (RF) data can be interpreted that way also. Correlation
lengths, for example, can reveal both local and statistical information about the
spacing between scatterers. Recall that in a convolution operation, the integrand
consists of one function flipped from right to left and multiplied by another function
(Appendix A); but in correlation, there is no flipping involved, so that it is expressed
as r(t) = x(¢)*y( — t). FWHM correlation lengths for chest walls and abdominal walls,
for example, were 2.5 mm and 5.8 mm. The implications of these localized time
domain delay differences are discussed in Section 9.8.

9.3.2 Propagation in Heterogeneous Tissue

The effect of tissue structure on wave propagation was also studied by the University
of Rochester group. Hinkelman et al. (1996) developed a method for staining a cross
section of an abdominal wall to identify tissue types. The stained wall cross sections
were digitized and assigned acoustic values appropriate to each tissue type, as
depicted by Figure 9.7. Mast et al. (1998, 1999) and Hinkelman et al. (1998) used
these data to model plane wave propagation with a finite-difference time domain
program through an abdominal wall, as depicted for sequential times in Figure 9.8.
Multiple scattering, refraction, and aberration are responsible for the complicated
exiting wavefront. Smaller scatterers provide a low level of reverberation that
trails after the larger, directly transmitted main wavefront; these signals contribute
to image clutter. Simulations of focused beams propagating through abdominal walls,
based on these data under linear and nonlinear conditions, are examined in Section
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Figure 9.5 Arrival time and energy level fluctuations for two water
paths and intercostal spaces of 16 chest wall samples. The first and third
columns are arrival time panels; the second and fourth panels depict
energy level fluctuations. The top row depicts two water measurements
for reference. In the left panel of each pair, arrival time difference is shown
on a linear scale with a maximum arrival time fluctuation of 150 ns repre-
sented by white and a minimum arrival time fluctuation of 250ns
represented by black. In the right panel of each pair, energy level fluctu-
ations are shown on a logarithmic scale with a maximum positive excursion
of 15 dB represented by white and a maximum negative excursion of 25 dB
represented by black. In all panels, the horizontal coordinate is the array
direction and spans a distance of 14.28 mm in 0.21-mm increments, while
the vertical coordinate corresponds to position of the array in elevation
and spans a distance of 11.60 mm with points interpolated from measure-
ments at 0.40-mm intervals to produce data at 0.20-mm increments (from
Hinkelman et al., 1997, Acoustical Society of America).
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Figure 9.6 Comparison of chest wall and abdominal wall
wavefront distortion statistics. In each chart, the average and stan-
dard deviation of the measurements within each group are shown.
(from Hinkelman et al., 1997, Acoustical Society of America).
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Figure 9.7 Cross-sectional tissue map of an abdominal wall with assigned acoustic
properties (from Mast et al., 1997) (see also color insert).

Figure 9.8 Propagation of a plane wave through a section of the abdominal wall sample depicted in
Figure 9.7. Panels (A)~(D) show the upward progression of the main wavefront through the muscle layer
including an aponeurosis comprised of fat and connective tissue, resulting in time-shift aberration across
the wavefront. The area shown in each frame is 16.0 mm in height and 18.7 mm in width. The temporal
interval between frames is 1.7 ms. Tissue is color coded according to that of Figure 9.7, while gray
background represents water. Wavefronts are shown on a bipolar logarithmic scale with a 30-dB dynamic
range. The wavefront represents a 3.75 MHz tone burst with white representing maximum positive
pressure and black representing maximum negative pressure. A cumulative delay of about 0.2 ms,
associated with propagation through the aponeurosis, is indicated by the square bracket in panel (D)
(from Mast et al., 1997, Acoustical Society of America) (see also color insert).

12.5.5. A calculated, focused wavefront from an array propagating through the breast
is illustrated by Figure 9.9. Note the nearly circular wavefronts scattered off the tips of
vertical septa, which appear to be the main disrupters of the plane wavefront. A
sequential simulation of a plane wave propagating between ribs in a chest wall (shown
in Figure 9.10) reveals multiple scattering from ribs that was observed in data sets
(Hinkelman et al., 1997; Mast et al., 1999).
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Figure 9.9 Aconverging focused pulse wavefront from a virtual array
and secondary scattered wavefronts at an instant of time during propaga-
tion through a representative breast tissue map. The wavefront is superim-
posed on the map and displayed on a 60-dB bipolar logarithmic gray scale.
In the map, dark gray denotes connective tissue or skin and light gray
denotes fat (from Tabei et al., 2003, Acoustical Society of America).

Scattering from real tissue includes three contributions. These simulations show
only transmitted waves; however, they demonstrate that the main direct wavefronts
are followed by a complex pattern of waves diffracted from tissue structures. The
calculations provide a more realistic depiction of wave propagation (even though they
are planar) than previous treatments of homogeneous tissue layers; however, they do
not include the granularity necessary to include the third contribution, which is
speckle. In summary, propagation in tissue has three parts: main wavefronts, lower
level waves from diffracting structures, and speckle (diffusive waves from subwave-
length tissue structures).

9.4 ARRAY PROCESSING OF SCATTERED PULSE-ECHO SIGNALS

If complicated scattering from heterogeneous tissue occurs, what is its effect on
imaging? In Section 8.4.1, the steps of the imaging process were identified. First, a
three-dimensional pulse packet from a focused beam races through tissue along a
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Figure 9.10 Simulation of 2.3-MHz plane wave tone burst wavefront propagating through a chest
tissue map. In each map, blue denotes skin and connective tissue, cyan denotes fat, purple denotes
muscle, orange denotes bone, and green denotes cartilage. Blood vessels appear as small water-filled
(white) regions. Logarithmically compressed wavefronts are shown on a bipolar scale with black repre-
senting minimum pressure, white representing maximum pressure, and a dynamic range of 57 dB. Each
panel shows an area that spans 28.27 mm horizontally and 21.20 mm vertically (from Mast et al., 1999,
Acoustical Society of America) (see also color insert).

designated vector direction, and it changes shape at each depth according to its point-
spread function. Second, multiple scattering of the pulse happens at the depth loca-
tion of each scatterer (z;/c) over a broad angular range. Third, parts of the scattered
wavefronts are intercepted by each element acting as a receiver with wide directivity
at times (2z;/c). Each element has a distinct spatial location and, therefore, intercepts
different parts of scattered wavefronts and converts them into an electrical time
record (volts).

We now have a look at a hidden aspect of imaging—what happens inside the
beamformer after the three steps in the imaging process described earlier—when real
data are received from a heart (Szabo and Burns, 1997). For the formation of an image
line, array elements receive a time stream of data. In this example, 54 time records
from active elements of a 2.5-MHz, 64-element phased array are shown in Figure 9.11
for an apical view of a heart. These time traces were captured in real time in the process
of forming a cardiac sector image and are shown after focusing time alignment. Events
between time samples 3200-3500 are caused by specular tissue reflections, and those
events between 2200-2700 belong to a lung artifact. An ideal reflector will be aligned
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Figure 9.11 Raw RF data from line 72 (+8.25 degree steer direction) of an apical window data set.
The data are shown for 54 traces of a 64-element transducer (traces 6-59) and for the time sample range
of 1800-3600 or 90 us. The horizontal events between time samples 3200-3500 correspond to specular
tissue reflections, while the events between 2200-2700 correspond to a lung artifact. The data have
been normalized to the maximum value in the plot (maximum = 65) (from Szabo and Burns, 1997,
reprinted with permission of Kluwer Academic/Plenum Publishers).

across all traces and will form a horizontal wavefront. The wavefront at time sample
3300 comes close to this ideal, but it neither extends across all elements nor lines up
completely across traces. Irregularities in terms of depth (vertical) time alignment
along a wavefront are caused by aberration effects. What is surprising are the smaller
signals, many of which are aligned across several traces; therefore, they cannot be
random. These groups of similar waveforms, extending across a few traces and
combining to form small wavefronts not aligned horizontally, indicate multiple scat-
ters illuminated at various angles of incidence and reflecting in other angles according
to their scattering shape (similar to those discussed in the last section).
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What happens to all this information? The beamformer sums all these traces from
elements into a final single-time record, which, after envelope detection, becomes a
line in the image. This kind of beamformer operates on the principle of coherence
(explained in Chapter 7). After focusing delay alignment, each time record is summed.
Coherent waveforms, aligned in time, form large signals. Many of the smaller wave-
forms, which are coherent only across a few traces when summed with adjacent
nonaligned signals in the same time slot, are suppressed. This summation processing
shows the beauty and simplicity of the linear beamformer; coherent signals add, and
noncoherent signals are rejected and appear as random, low-level clutter and speckle.
Even though it is currently awkward in hardware and computationally intensive to
utilize raw RF data such as that shown in Figure 9.11, beamformed RF data is utilized
routinely by the methods of tissue characterization.

9.5 TISSUE CHARACTERIZATION METHODS

9.5.1 Introduction

The science of ultrasonic tissue characterization (UTC) is the untangling of
hidden patterns in pulse-echo data to extract more information about tissue function
and pathology than that seen in conventional images (Thijssen, 2000). Tissue charac-
terization, as was originally conceived by Dr. J. J. Wild and J. M. Reid in 1952 (see
Section 1.2), was a type of remote, painless ultrasound telehistology (a noninvasive
way of determining the health of tissue or organ function through calculations and
parameterized inferences from ultrasound data). The application of tissue character-
ization to detection of cirrhosis in the liver by Wells et al. (1969) and Mountford
and Wells (1972) marked a turning point in the serious application of these methods.
Hill and Chivers (1972) contributed to a scientific examination of scattering
from tissue with the hope of retrieving quantitative data. Since then, this branch of
medical ultrasound has undergone considerable development. Methods now include
specialized measurements, signal processing, statistical analysis, and parameterized
imaging.

In order to place these diverse UTC approaches in perspective, we can use the
diagram in Figure 9.12, which serves as an introduction to the remaining contents of
this chapter. The topics included here stretch the conventional use of the term “tissue
characterization” but fit the definitions given previously. Most of UTC is based on RF
signals either from beamformers prior to detection in imaging systems or from
specialized measurements. The methods based exclusively on processing of RF data
are basic spectral method, spectral features, integrated backscatter, and signal pro-
cessing. Even conventional Doppler (see Chapter 11) can be considered to be a signal
processing type of UTC because it calculates parameters based on RF pulse-echo data
from flowing blood (Taylor and Wells, 1989). A number of other signal processing
methods, such as color flow imaging (which determines blood flow velocity) and
others that detect tissue movement and provide calculations and/or parameterized
displays, will be described in Chapters 10 and 11.
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Figure 9.12 Diagram of ultrasound tissue characterization applications.

Several approaches can utilize video or RF data, the main one being texture
analysis. Elastography, a collection of ways of imaging the stiffness of tissue use, can
use either video or RF data. On the far right of Figure 9.12 are adaptive signal
processing methods, such as aberration correction, that not only sense differences in
tissue parameters but also alter the function of the imaging system in response to these
sensed changes. Aside from the signal processing methods covered in the next two
chapters, the topics in the diagram will be described in the following sections.

The breadth of the UTC science can only be highlighted briefly in this chapter.
Whole books (Greenleaf and Sehgal, 1992; Shung and Thieme, 1993) have been
written on these topics, and regular conferences on these topics such as the Tissue
Characterization Symposia have been held for more than 25 years. From the last
section, it is obvious that backscatter from real tissue is messy, which is why this field
presents interesting challenges. Nonetheless, if we expand the concept of UTC to
encompass the areas in Figure 9.12, there are a number of success stories and exciting
developments for the future. Section 9.6 presents several UTC applications.

The usual starting point of UTC analysis is acquisition of raw RF signals because, as
will be evident in the next chapter, the imaging systems add nonlinear processing on
top of envelope detection to make images presentable over a large dynamic range. It is
also possible to obtain tissue information from the video information in the image
itself after removing this nonlinear processing, as discussed later.

9.5.2 Fundamentals

The foundations for UTC were explained in Chapter 8. A major goal in UTC is
inverting or revealing the properties of the tissue through a backscatterer or another
measured ultrasound parameter. A second, but even more important, goal is to
use this acquired information to distinguish between states of tissue (healthy or
diseased) or to detect changes in tissue property in response to a stimulus or, over
longer periods of time, in response to natural processes or medication. A key problem
in the untangling is undoing or correcting the spatial varying properties of the
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measurement or imaging process. For example, a homogeneous tissue would appear
to be inhomogeneous in an image simply from the variations in pressure
from diffraction and absorption effects along the beam axes. These problems will
be clarified soon. UTC approaches range from “proof of concept” experiments
involving single lines of RF data from tissue samples iz vitro (outside the body) to
those involving data acquisition and processing from a system imaging a body in
real time.

Since many of the physical aspects of these problems overlap, it is easier to start
with the simplest approach. A framework for understanding the factors involved is
essential (the central block diagram in Figure 2.14 is helpful for identifying factors
symbolizing the physical mechanisms involved). These factors can be consolidated
into an expanded version of Eq. (8.10b) for the received output voltage,

VO(Z) 7y f) = ERT(f)At(Z9 7, f)Ht(za 7, f)HT(zs 7y f)Af(zs 7, f)FG(Z3 f)S(Z, 7, f) (923)

or, in terms of power (within a constant factor),
VoV = ExrEirAA HH!A,A FGFLSS® (9.2b)

where F;(z,f), a symbol for a generic filter and/or linear amplifier function, has been
added. From a UTC viewpoint, the unknown tissue properties are frequency- and
angle-dependent scattering and sometimes, frequency-dependent absorption, but
these charateristics are distorted by the interrogating acoustic beam and the limita-
tions of the electroacoustic transduction process. The beam and transducer act as
imperfect samplers, both spatially (including geometric orientation, as well as limited
angular range) and spectrally. The scattering properties are the sought-after signatures
of the targets, and the effects of the array and transduction are somehow removed
by calibration and compensated for, or minimized by, a number of methods. Most
UTC approaches depend on comparisons of data to a comprehensive model of
backscattering from tissue, such as, Egs. (9.2a)-(9.2b) provide. An alternative is
to extract attenuation rather than to backscatter information (Ce’spedes and
Ophir, 1990).

Certain objects have unique scattering signatures in the frequency domain and, as a
result, most of tissue characterization is done in the frequency domain. The most
often-used parameter is the “‘backscattering coefficient.” Sigelmann and Reid (1973)
proposed a method for extracting a backscattering coefficient from power reflected
from a volume containing scatterers such as blood with reference to the power
reflected from a known flat plate. One of the first applications of backscatterer
measurements was to blood by Shung et al. (1976). A recent twist on this theme is
the use of blood as a reference scatterer to characterize nearby tissue (Pedersen et al.,
2003). Measurements of blood are given in more detail in Chapter 11.

9.5.3 Backscattering Definitions

Most of the tissue characterization spectral methods are based on several assumptions
to simplify the factors in Eq. (9.2) (Reid, 1993). The incident wave on the scatterer
is assumed to be nearly plane insofar as a small volume of the scatterer is concerned
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(a situation almost satisfied near the focal plane of a focusing transducer or the far
field of a nonfocusing transducer). The scatterer or inhomogeneity in tissue is taken to
be a small weak spherical scatterer that can be described well by the Born approxima-
tion, Eq. (8.8a). In terms of spectra, it is convenient to work with scattered power
(W), which is related to the incident intensity (I;) by

W = a.l; (9.3)

where o, is the scattering cross section. This reasoning, for a spherical scatterer, leads
to the scattered intensity,

I, = o,1; /4nr? 9.4)

For a backscatterer that varies with angle, a differential scattering cross section is
more appropriate, as

oql;i = W, /4n 9.5)

where the power is divided by 47 steradians in a unit sphere. Conversely, the total
scattering cross section is the differential scattering cross section integrated over the
solid angle about a spherical surface. In practice, the total cross section can be the sum
of individual cross sections or may be integrated over a distribution of scatterers.
Finally, there is the scattering cross section per unit volume, defined by

o= J ndv (9.6a)
v

or

o4 = J n4av (9.6b)
v

where 7 has units of inverse length compared to a cross section that has units of area.

9.5.4 The Classic Formulation

As discussed in Chapter 8, the scattering process involves the entire volume of tissue
intercepted by the acoustic beam; therefore, a volume integration over this volume is
involved for transmit. Likewise, the location of the receive beam relative to the
scatterer (if it is not coincident with the transmit direction) is involved over the
intercepted scattered volume; therefore, in general, two volume integrations are
needed. Finally, a calibration method is convenient to obtain a more absolute mea-
surement. In the original approach, a substitution method was applied to the problem.
A nearly ideal plane reflector was placed in the position of the scattering volume
under identical insonification conditions, and the voltage was recorded. The power
ratio of scattered power to reference-reflected power gives an expression for mean
value of the backscatter coefficient 5, (Reid, 1993) in an abbreviated form,

| ErrEgAdA;HH;AAXFGEESS* (dro') (dro)’ — (Vo(HVE ()7

= 9-7
1] ExtE A HoH:AAFGFs (dro ) (dra) Ve DWVey(DAAS1 O

14(f)
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where A, and A; are attenuation factors appropriate for the different sample and
reference paths, A is an overall attenuation correction factor, S, is an effective
beam cross-sectional area, integration is over pulse length, (I = c¢(t —t1)/2) and the
intersection volume of the coincident beams, and 7 is the distance to the center of the
sample.

In the original formulation, simplifications were made about the far field and
beamwidth of the transducer and gate length of the received pulse, and after correc-
tion for the absorption of the sample and the water path, this ratio was shown to be
proportional to the squared magnitude of the output voltage from the scattered region
to the squared magnitude of the reference voltage. This narrowband approach was
subsequently endorsed by the American Institute of Ultrasound in Medicine (1990)
and led to further extensions of the original method.

9.5.5 Extensions of the Original Backscatter Methodology

Work at the University of Wisconsin (Madsen et al., 1984) provided a more general
model for broadband applications and focusing transducers. Further work there,
based on statistical continuum models, (Chen et al., 1993; Chen and Zagzebski,
1996) has shown that the backscatter increases with the number density of scatterers
per volume fraction as a function of frequency. Waag and Astheimer (1993) developed
a generalized backscattering approach for noncoincident transmitter and receivers.
A way of extending the methodology to broadband applications (O’Donnell et al.,
1979; Thomas et al., 1989), called the integrated backscatter approach, will be
explained separately.

A more recent evolution of the original method, illustrated in Figure 9.13, is a
general broadband approach to finding the backscatter coefficient (Chen et al., 1997)
that utilizes a calibration waveform from a flat plate to obtain Eg7(f) (see Section 8.3.,
Eq. (8.12)) and provides an analytical formulation for the entire pressure distribution
in the beam as a function of frequency. Their expression is

i (f) _ <Vo(f)VE§(f)> ’Dref(zzreﬁf)
T Vi Qs NV, 2, D TE AIDL(r, )

‘ 2

(9.8a)

where D,y is the equivalent diffraction loss, DLegiv, from Eq. (8.12); Vs is the
Fourier transform of round-trip output voltage err(t) at 2z,,s (explained in Section
8.3.1), A is an attenuation factor for the tissue and water paths taken outside of the
diffraction integral (described in Section 7.9.4); and TF ' is the overall transmission
factor from water to tissue and from tissue to water (on the return path),
2
ﬁ:4 — M (9.8b)
(1+22/Zy)
where Z; is the coupling medium or water to the tissue, Z, is the acoustic tissue
impedance, and Dj is a diffraction correction term that is known analytically or can be
approximated (Chen et al., 1997). The last correction term is an improvement over
other methods because it corrects for diffraction as a function of both frequency and
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Figure 9.13 Configuration for classic backscatter measure-
ment using the substitution method. (Top) Tissue measurement
setup shown for a focusing transducer. (Bottom) Calibration setup
with acoustic mirror.

distance in a convenient way; the tissue sample distance does not have to coincide
with the reference distance. In addition, it includes the influence of the entire beam
rather than a —3-dB beamwidth, as was used in the original method. This method has
been found to be in excellent agreement with data, even for strongly focused trans-
ducers (Machado and Foster, 1999) after attenuation correction (D’Astous and Foster,
1986) was applied. This general method reduces to the Sigelmann—Reid technique
under similar experimental conditions for nonfocusing transducers and to the ap-
proach of Madsen et al. (1984) for focusing transducers when the effect of the finite
receive gate (a sliding time window, often apodized) is neglected.

9.5.6 Integrated Backscatter

Another approach that has been extremely successful for cardiac and other applica-
tions (discussed in more detail in Section 9.6.2) is integrated backscatter, which was
developed at Washington University. The relative broadband integrated backscatter
can be expressed as the ratio of the power spectrum averaged over the effective
bandwidth of the transducer relative to that from a standard plane reflector in the
focal zone of the transducer (O’Donnell et al., 1979; Thomas et al., 1989),
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fo+

Af
5 — Vo(h)I” g — ffooo|vo(t)|2dt
Ve (DT | @) dt

(9.9)
fo—Af ‘

where the signal power spectrum is |Vo(f)|2, that of the reference is |V,ef(f)|2, and Af
is half the useable bandwidth, and the power or Parseval’s theorem from Appendix A
has been used to relate the frequency and time domain. Note that |vo(z)| is the
envelope of the output time signal. Integrated backscatter can be corrected for
attenuation, depending on the application.

An interesting property of the envelope |[Vy(¢)| comes from the Fourier transform
property is that the area in one domain is equal to the value of its transform at zero.
Consider a simple example such as a Gaussian modulated sinusoidal time waveform,
like those considered in Chapter 2, which is centered on delay time # = t4.1,, = 22/c.
If the envelope of the received signal is e(¢) = |v(2)|, then the value of the envelope at
t = tqclay OF equivalently, at the peak of a delayed signal, is

e(t _ tdelay) _ 9——1 {E(f)e—izﬂffdelay} (9.10a)
epeak = e(o)lt:tdelay — J E(}()eilnf(t*t[ielay)dflt:tdelay = J E(f)df (910b)
eyt~ | IE(PdF 9.100

Where for a useable bandwidth, we assume that |E(f)| ~ E(f) and that, alternatively, a
similar result for the integral of the absolute value of the spectrum could be obtained
by taking the absolute value of the whole integrand of the inverse Fourier transform
and by using Schwartz’s inequality.

9.5.7 Spectral Features

Other useful spectral features for tissue characterization have been proposed by Lizzi
et al. (1983), Lizzi and Feleppa (1993), and Lizzi et al. (1997). By analyzing the
frequency response of spherical scatterers of different sizes, they concluded that the
slope of the backscattered spectrum, once corrected for attenuation and calibrated to
a reflection from a plate (as in the other classical methods), was indicative of the size
of the scatterers. Corrected data, in other words, were fit by a least-squares method,
and the intercept and slope became useful spectral features. The intercept is related to
the acoustic concentration (related to the scatterer volume concentration and the
relative acoustic impedance). Finally, the midband slope value is also valuable and
related in a statistical sense to integrated backscatter (Lizzi et al., 1997). Lizzi’s group
was also one of the first to appreciate that scattered power over small adjacent
distances (Ax, etc.) was a spatial autocorrelation function in three dimensions.
These autocorrelation functions are Rp(Ax, Ay), directivity; Rg(Az), the axial time
gate; and Rp(Az), the relative impedance.
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A classic UTC experiment is to tell the size of small subwavelength scatterers from
the backscatter alone. Well, not quite alone. A reference model for the expected
backscatter for a small sphere, such as that derived by ]. J. Faran, Jr. (described in
Section 8.2.3.1), is calculated over the frequency range of interest and compared to
the backscatter.

Several research groups have studied the backscatter coefficient of many spheres in
suspension without multiple scattering (Ueda and Ozawa, 1985; Romijn et al., 1989).
Thijssen (2000) has shown that the slope of the backscattering coefficient at low
frequencies (small ka) is related to the size of the scatterers (20 to 500 um), as did Lizzi
et al. (1983). In addition, Bridal ez al. (1996) applied the standard methodology to a
—6-dB spatial resolution cell of polystyrene beads in argose over a frequency range of
5-65 MHz with attenuation correction and renormalization. They compared their
data to the Faran elastic sphere scattering theory. (It is remarkable that the size of
scatterers as small as one sixth of a wavelength can be determined from the slope of
their backscatter coefficient (shown in Figure 9.14)). Excellent absolute agreement for
the spectral characteristics of spheres was also obtained by Hall et al. (1997). Cha-
turvedi and Insana (1996) explored the errors and limits of determining the sizes of
small scatterers.

9.6 APPLICATIONS OF TISSUE CHARACTERIZATION

9.6.1 Radiology and Ophthalmic Applications

Determining the scatterers per unit volume can be helpful in discriminating between
healthy and abnormal tissues. The slope of the backscatter coefficient approach has
been successfully applied to eye tumors (Feleppa et al., 1986; Romijn et al., 1991;
Thijssen et al., 1991), animal model melanomas (Romijn et al., 1989), renal glomeruli
size estimation (Hall et al., 1996), and many other cases. In addition, it is sometimes
possible to decipher a scattering component that is related to structural patterns in
tissue (Thijssen, 2000).

Fellingham and Sommer (1984) predicted that the regularity of tissue structure
would result in periodic peaks in the autocorrelation of backscattered pressure and
that disease would disrupt this structure. By examining the RF data from in vitro
samples of the liver and spleen, they were able to show some differences in “mean
scatterer spacing” on the scale of millimeters for some diseased states.

An often-used technique in tissue characterization is to calculate and extract a
relevant parameter, such as the midband value of the backscattering coefficient, and
create a visual map of this parameter using a color map superimposed on the original
B-mode image. Better discrimination is achieved by combining features (Lizzi et al.,
1997; Lizzi and Feleppa, 1993). In some cases, even combined features are not
enough because of overlapping regions. Feleppa et al. (2001) demonstrated that by
using advanced techniques, such as neural network classification, differences between
healthy and cancerous tissues in the prostate can still be determined. A combination
of prostate-specific antigen (PSA) and spectral features were used to identify the
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Figure 9.14 Comparison for simulation (solid lines) of backscatter from a sphere to backscatter
data (dashed lines) as a function of ka. Theory was used to calculate the differential backscatter cross
section for a single polystyrene sphere. Each data set is renormalized to align it to the single scatterer
cross section curve (from Bridal et al., 1996, Acoustical Society of America).
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Figure 9.15 Images of the central plane of a prostate gland having an ultrasonically-occult anterior
tumor as viewed from the apex of the prostate. (A) Computer-generated envelope-detected ‘B-mode’
image. (B) Grey-scale cancer-likelihood image (white = maximum likelihood). (C) Color-encoded overlay
on a midband parameter image depicting the two highest levels of likelihood in red and orange. (D)
Corresponding histological section that shows a 12-mm tumor protruding through the anterior surface
and several smaller circular intracapsular foci of cancer and neoplasia as manually demarcated in ink bv the
pathologist (from Feleppa et al., 2001, reprinted with permission of Dynamedia, Inc.) (see also colorinsert).

likelihood of cancer occurring in different regions, as shown in the parameterized
images of Figure 9.15. Note that the 12-mm tumor was not visible in conventional
imaging and not identified by palpitation.

9.6.2 Cardiac Applications

Tissue characterization of the dynamic movements of the heart has led to new
diagnostic tools, as well as a better understanding of heart function. Some background
on the heart will be helpful in explaining how the heart is characterized by ultrasound
methods. The heart is a tireless pump that squeezes out blood on myocardial contrac-
tion (systole) and fills up during the expansion phase (diastole). The heart pumps
approximately 5-15 L of blood a minute. The strength of the heart is contained in the
band of circumferential fibers that do the squeezing. Because these fibers have a
preferential-organized direction, they have anisotropic acoustic properties (as plotted
in Figure 9.16). Miller et al. (1989; 1998) measured these characteristics at Washing-
ton University, and their significant research on the heart is summarized in this section
and in more detail in review articles.

These characteristics of anisotropy have been modeled well by the Born approxi-
mation for scattering from cylinders. This modeling shows that the direction of
insonification relative to the arrangement of myocardial fibers is important. When
the fibers are aligned perpendicular to the sound beam, maximum reflection occurs;
when the fibers are parallel, reflection is minimum. Two important consequences of
these effects (shown in Figure 9.17) are the variation of integrated backscatter and
frequency-averaged attenuation with angle (Mottley and Miller, 1988; 1990). Both of
these effects are seen in every cardiac image and are important in interpreting what is
seen in these images.

Now imagine the heart twisting, moving, and stretching during each cardiac cycle
so that the angle of insonification to the heart from a fixed location, such as the short
axis acoustic window, keeps changing with time. One might think that it is totally
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Figure 9.16 Arrangement of muscle layers of the heart showing the preferential directions of
microfibers in the layers that cause anisotropy (courtesy of |. G. Miller).
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backscatter of the heart caused by anisotropy of myofibers (from Miller
etal., 1998, IEEE).
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hopeless to attempt an interpretation of such a complicated configuration, but dy-
namic tissue characterization comes to the rescue. By looking at integrated back-
scatter features of the cardiac cycle, like those in Figure 9.18, researchers at
Washington University were able to identify abnormalities of the heart. Accounting
and correcting for anisotropy helps to determine a baseline pattern so that pathologies
can be more readily identified.

Because heart diseases are major killers and debilitators, it is worth asking “What
are the main pathologies of the heart?”” The most important blood suppliers to the
heart are the coronary arteries. Atherosclerosis is a disease in which the arteries are
narrowed by plaque (a soft pasty material that can calcify), become fibrotic, or form
into vulnerable plaque (a dangerous unstable sort that can turn into a thrombosis or
blood clot). A symptom of atherosclerosis is arteriosclerosis (a hardening of the
arteries). Ischemia is reduced blood flow as a result of mechanical obstruction of an
artery. An infarct is tissue death caused by ischemia. A heart attack, or myocardial
infarct, is the death of muscle cells of the heart and is often caused by the closing of an
already constricted passage by a blood clot. Reperfusion is a mechanical (angioplasty)
or chemical means (thrombolytic agents) of replenishing blood flow to an injured

area to preserve heart function and reduce mortality and severe side effects of
heart attacks.

Time delay of cyclic variation

Time delay

is the ratio
1 \ of these

intervals

Integrated
backscatter (dB)

ECG

Figure 9.18 Characterization of the cyclic variation of integrated backscatter in terms of the
variation in magnitude and the time delay relative to the start of systole, normalized to the systole
interval (from Miller et al., 1998, IEEE).



9.6 APPLICATIONS OF TISSUE CHARACTERIZATION 269

Because the ability of the heart to function is severely compromised by these
diseases, the heart cycle is affected. In particular, the features of the heart cycle
described in Figure 9.18 can be used in identifying effects of disease such as infarcts,
ischemia, and myopathy (a disease affecting the contractility of the heart), as well
as the effects of reperfusion and other types of therapy. The effectiveness of
using these features, after correction for the effects of anisotropy, are illustrated by
Figure 9.19.

Ongoing studies of the heart have led to real-time improvements in echocardiol-
ogy. For example, the need to capture both the weak and strong reflections from the
muscle fibers has led to an anisotropic rational gain compensation method, as well as
to a lateral gain compensation capability. The use of integrated backscatter was part of
an algorithm to provide automatic real-time boundary detection of the left ventricle.
These methods will be discussed in more detail in Chapter 10. The application of
ultrasound contrast agents in combination with signal processing methods has also
been highly successful in the diagnosis and tissue characterization of the heart (to be
explained in Chapter 14).

9.6.3 High-Frequency Applications

High-frequency ultrasound is opening up new tissue landscapes not seen at conven-
tional frequencies below 15 MHz. Three major high-frequency applications are
utilizing the increased resolution to identify plaque in blood vessels intravascular
ultrasound (IVUS), to reveal cellular structures and to examine small animals. These
uses are opening up new insights into the progress of disease and cell death in vivo.
The following discussion will show that high-frequency imaging is not just conven-
tional imaging scaled down in resolution.

Consider a high-frequency spherically focusing transducer operating at 100 MHz
with an F# = 1.33 (Sherar et al., 1987; Foster et al., 1993) with an axial resolution of
28 um and a FWHM of 17.5um, as depicted in Figure 9.20. We can estimate a
resolution cell volume as a —6-dB FWHM ellipsoid with a major axial axis and
equal minor lateral axes in terms of wavelengths as in Figure 7.20, as
T
6
which gives a volume of 4.52 x 103um? for a center frequency of 100 MHz, a value
that is 1000 times smaller than that for a more conventional B-mode frequency of
10 MHz, 4.52 x 106um?>.

What difference does this size make? Consider that cell size is on the order of
microns. In a study of leukemia cells (Czarnota et al., 1997), the cell density was
measured as approximately 1073 /um?. For this case, there would be 4.5 cells in a
resolution cell at 100 MHz and 4500 cells at 10 MHz. Recall the class distinctions for
scattering from Section 9.2 (Class 1 or diffusive scatterers are 25 or more per
resolution cell, and Class 2 or diffractive scatterers are 1 per resolution cell). At
100 MHz, the scatterers are on the borderline between Classes 1 and 2; whereas, at
10 MHz, they are between Classes 1 and 0. At the higher frequency, scattering is more

Vol = = (1.872)(1.172)* = 1.34¢} /3 9.11)
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Figure 9.19 Results of a study of 15 patients with scars from old myocardial
infarcts. Zones of scar exhibit reduced magnitude and increased time delay relative to
healthy (noninfarct sites in the same patients (from Miller et al., 1989, IEEE).
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Figure 9.20 100-MHz backscatter microscope. (A) Sketch of beam and transmit
signal. (B) Backscatter signal versus time. (C) Pulse-echo envelope. (D) Gate located at
peak of echo envelope. Beam is scanned across an area consisiting of 256 x 256 measure-
ments (from Sherar et al., 1987, reprinted with permission of Nature, Macmillan Magazines
Limited).

critically dependent on the size and arrangement of the individual scatterers, even
though they are not resolvable.

To make this difference clearer, a high-frequency detection of the process of apop-
tosis will be discussed. Apoptosis is programmed cell death that can occur in cancer,
embroynic development, or neurodegenerative disorders or can occur from diseases
such as heart attacks or organ transplants or as a deliberate result of drug therapy.

In Figure 9.21 are a series of noninvasive images of programmed cell death by a
toxic drug of apoptotic acute myeloid leukemia cells, taken by a 40-MHz ultrasound
backscatter microscope (Czarnota et al., 1999; 2001). Note the strong increase in
backscatter brightness of speckle as the apoptotic process is maximized at 48 hours.
The corresponding optical microscope views show differences in the size and arrange-
ment of individual cells. At the 6-hour point, 95% of the cells underwent nuclear
condensation or fragmentation; the nuclear diameter, originally 70% of the cell
diameter, shrank to a nuclear diameter that is 40% of the cell diameter.

Because the cells themselves could not be resolved in the images, tissue character-
ization, in the form of spectral analysis developed by Lizzi’s group and described in
Section 9.5.7, was applied to the RF data from the images (Kolios et al., 2002).
Analysis of leukemia cells demonstrated significant changes in the scattering slope and
in the midband value of the slope, which increased by 13 dB between healthy and
apoptotic cells (shown in Figure 9.22). The slope values correlated with a decreasing
mean scatterer radius.

As indicated by Figure 9.21, there are noticeable changes in the patterns and sizes
of the cells during the process of apoptosis, and the number of cells on the order of a
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Figure 9.21 Ultrasound imaging of apoptosis and correlative histology. Sequential panels
show cells at 0, 6, 12, 24, and 48 hours after treatment with a toxic drug. Each panel is approximately
5mm wide. (Top row) 40-MHz ultrasound backscatter images of cells. (Bottom row) Optical micro-
scopic images of stained cells; field of view is approximately 50 um (from Czarnota et al., 1999; 2001,
reprinted with permission from Nature Publishing Group).

resolution cell is still countable. Unlike imaging at lower conventional frequencies,
the backscatter appears to be more related to the specific arrangement of cells. Work is
underway (Baddour et al., 2002) to develop an ensemble model in which each cell is
modeled as an elastic Faran—Hickling sphere (see Sections 8.2.3 and 9.2), and differ-
ent patterns of cells, such as those in Figure 9.23, can be incorporated to mimic those
observed during apoptosis. The model is producing results that match the observation
that backscatter increases as the cells die and as their lattice structure becomes more
randomized.

High-frequency, noninvasive backscatter imaging has been used for high-resolution
internal evaluation of blood vessels (IVUS), the eye, and skin (Knapik et al., 2000).
Modes normally associated with conventional ultrasound, such as pulsed Doppler
(Christopher et al., 1997) and color flow imaging (Goertz et al., 2000) (real-time
modes described in detail in Chapter 11), have been miniaturized to work at high
frequencies.

Surprisingly, one of the main motivations for creating a fully functional high-
frequency imaging system is the mouse (Foster et al., 2000). Mice share 90% of the
same genes as humans, and many of their organs, such as the heart, liver, and kidneys,
are similar to that of humans. Therefore, a mouse can serve as a model for human
physiology and metabolism. The life span of a mouse is 18 to 33 months, and a
human’s is 50 to 90 years; therefore, 1 mouse day is roughly like 1 human month in
terms of its equivalent length. Researchers can alter the mouse genome in predictable
ways to express selected traits or susceptibility to disease. These transgenic mice can
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Figure 9.22 spectral features of backscatter from leukemia at indicated times after
exposure to a toxic drug. (A) Plot of spectral slope (solid curve, right axis) and midband slope
value. (B) Plot of theoretical predictions of spectral slope versus scatterer radius compared to
data from a 34-MHz transducer (from Kolios et al., 2002, with permission from the World
Federation of Ultrasound in Medicine and Biology).



274

CHAPTER 9 SCATTERING FROM TISSUE AND TISSUE CHARACTERIZATION

(000000000

il

Figure 9.23 A few possible cell ensemble packings (only cell nuclei are shown). From left: perfect
crystal, cell locations are allowed some degree of randomization, nucleus diameters are allowed some
degree of randomization, both cell locations and nucleus diameters are randomized (from Baddour et al.,
2002, IEEE).

serve as models of disease progression as well as models of the effects of healing
therapies and treatment strategies on an accelerated time scale.

High-frequency ultrasound can be used to study the physiology and morphology of
mice noninvasively. High-resolution images of the internal growth of mice are now
possible, as shown by the sequence of mouse embryo images in Figure 9.24 (Turnbull
et al., 1995; Aristizabal et al., 1998; Srinivasan et al., 1998; Turnbull, 1999; Turnbull
et al., 1999). These remarkable images are revealing growth patterns in ways never
seen before.

In addition to cardiovascular disease, the progression of cancer has been studied
(Turnbull et al., 1996). Skin cancer or melanomas were monitored with 50-MHz
ultrasound imaging from detection until their growth to a few millimeters in a few
days. Sizes from images agreed to within a few percentage with the measured size of
excised tumors.
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Figure 9.24 40-MHz ultrasound images of a live
mouse embryo during development (courtesy of D.H.
Turnbull).
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Figure 9.25 Uiltrasonic B-mode images of human malignant melanoma tumors grown in mice
(each row is a different mouse), immediately before laser irradiation during photodynamic treatment
(0h), and at two different time points after treatment (from Baddour et al., 2002, /EEE).

Baddour et al. (2002) investigated the effect of photodynamic cancer therapy
on human malignant melanoma in mice and monitored changes with 40-MHz
ultrasound imaging. As shown in Figure 9.25, edema appeared as a bright region
in the treated area, visible in the image 4 hours after treatment. By 26 hours, the
edema had almost disappeared, and a very bright region was observed in the treated
area. In these images, a combination of both high resolution and increased backscatter
can be seen. As resolution increases, the number of scatterers per resolution cell
dramatically decreases, yet the physical size of the cells stays the same; therefore,
the cell size in wavelengths increases. What may be possible in the future is to take
advantage of both the improved image definition and the added benefit of additional
tissue structural information hidden in the backscatter (described earlier in this
section).
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9.6.4 Texture Analysis and Image Analysis

Most often, RF data are examined by individual lines; however, larger-scale structural
information about tissues can also be found by combining data from different lines.
Multiple line analysis can be done either in the RF or video domain.

As discussed earlier in Section 8.4.3, speckle is in part an artifact of the measure-
ment system; however, textural differences in localized image regions can be indica-
tive of tissue microstructure. Speckle and the image itself are also strongly affected by
tissue absorption and diffraction, complicating the classification of tissue. Patterns in
an image can be examined by second-order statistics in terms of the spatial autocovar-
iance function. Thijssen (2000) points out that these statistics change with the number
of scatterers within the resolution cell and other factors interfere.

Earlier methods did not account for these effects. Coolen et al. (1999) examined
these sources of variability using first-order (mean and signal-to-noise ratios) and
second-order statistics from the co-occurrence matrix of the data. After they corrected
the video data for nonlinear imaging system effects, such as preprocessing and
compression (to be described in Chapter 10), they found that the chief causes of
variability were speckle noise and intervening inhomogeneous tissue along acoustic
paths. By comparing these features with healthy liver and tumors, they were able to
detect differences. Huisman and Thijssen (1998) investigated iz vivo video data for
the liver, and after exclusion of small blood vessels from their analysis, they dis-
covered an inhomogeneous parenchyma background, fluctuations they hypothesized
to be small perfusion variations on a subsegmental scale.

Another approach to overcome the interfering factors was developed by Hao et al.
(2000). A gradient co-occurrence matrix and features from wavelet analysis were
combined to form a vector for each pixel. At each location, this vector was compared
to others on a global basis, as well as to its nearest neighbors on a “geographic
similarity” basis for regional classification. This method was applied to 8.5-MHz
intracardiac images of a pig under controlled laboratory conditions, and segmentation
regions were compared to physicians’ classification and histology (as shown in
Figure 9.26).

9.7 ELASTOGRAPHY

B-mode ultrasound imaging, while an excellent all-around means of examining tissue,
is poor at distinguishing stiff tissue from soft or compliant tissue. An important class
of tissue, such as tumors and cirrhosis of the liver, grow out of the same tissue matrix
material, and as a result, even though these types of tissue are stiffer or more fibrotic,
they can be invisible under normal B-mode imaging. Palpation, a common method
for looking for tumors or nodules in the breast, consists of pressing tissue by hand and
looking for smaller displacements for hard nodules than those expected for soft tissue.

Ways of improving the ultrasonic contrast and detection of lesions, especially deep
ones, were examined to replace the inexact and often fallible method of palpation.
Sarvazyan (1993) suggested that high tissue contrast could be obtained by using shear
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Ischemic Infarction Normal Ischemic Infarction Normal

Figure 9.26 Segmentation of the ischemic myocardium. (A) Original ultrasound image. (B) The
pathology gross image of the heart. (C) Three regions predicted by a cardiologist. (D) The segmented
classification results (reprinted with permission from Hao, et al., Ultrasonics Symp. Proc., 2000, IEEE) (see
also color insert).

waves; however, the transduction of shear waves and high absorption losses proved to
be difficult barriers.

An appreciation for the elastic nature of tissue (presented in Section 3.3), which
included shear waves, eventually led to a new area of investigation called elastogra-
phy. Elastography, a branch of tissue characterization, is the measurement and/or
depiction of the elastic properties of tissues. At the present time, elastography is an
active area of research with already demonstrated clinical potential. While this term
encompasses a number of diverse techniques, these techniques can be roughly cat-
egorized into three groups (shown in Figure 9.27). The dynamic method, sonoelasti-
city, incorporates a low-frequency vibrational source to shake the tissue in addition to
the imaging transducer. Elastography, as originally conceived, consists of a static (or
quasi-static) application of pressure during imaging. A newer set of applications,
which is called “organic™ here, relies on the natural movements of the body to supply
the deformation of tissue needed for elastographic data.
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Figure 9.27 Main types of elastography: (A) sonoelasticity, (B) quasistatic,
and (C) organic.

The basic operating principle of elastography involves the comparison of the
spatial arrangement of tissue initially at equilibrium to itself after deformation. Recall
Figure 3.8, which depicts a finger depressing a rectangular solid. As the vertical
dimension of the block is decreased by the vertical pressure applied, the initial stress
(T') is converted to lateral strains that cause the sides to bulge out. Mathematically,
this phenomena is described by Hooke’s law, T = C: S, Eq. (3.41b). Components of
strain are combinations of the spatial derivatives of displacements in different direc-
tions, and stress and strain are related through a 6x6 elastic modulus matrix (C),
which was described in Section 3.3.1. Elastography, then, is usually a determination of
the relative displacements caused by a static or dynamic deformation, as well as a
creation of a strain amplitude image. With more information, such as knowledge of
the stress field at equilibrium and other factors, different elastic moduli can be
calculated and represented as a parameterized image. Reviews of elastography can
be found in Gao et al. (1996) and Ophir et al. (2000).

Early antecedents and forms of tissue elasticity detection were reviewed by Gao
et al. (1996). One of the first successful forms of real-time elastography was sono-
elasticity (Lerner et al., 1988; Parker and Lerner, 1992). As indicated in Figure 9.27a,
a low-frequency (20-1000 Hz) vibration source was applied to the tissue of interest.
This excitation caused the tissue to respond, and, depending on the shape of the tissue
or organ and its structure and elastic boundary conditions, to resonate and form
multiple reflected modes. These responses were detected by a modified color flow
imaging system (a mode normally used to create an image of blood flow through
Doppler detection, as described in Chapters 10 and 11). The resulting parameterized
image was visualized as a green overlay on the B-mode image, with green-scale
brightness proportional to vibration amplitude. Stiffer nonresponsive regions had
lower amplitudes; for example, a hard tumor would appear as a dark region (as
illustrated by Figure 9.28). Gao et al. (1995) derived a theory for sonoelasticity
based on shear waves in a lossy elastic (viscoelastic) medium. Rubens et al. (1995)
demonstrated that the sonoelasticity detected prostate cancer in vitro in real-time
with better sensitivity than B-mode imaging. They found that 64% of pathologically
confirmed tumors detected by this method were invisible by standard imaging.

Several groups have contributed to a growing body of research centered on
methods that involve the deformation of tissue under an applied quasi-static load.
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C

Figure 9.28 Diffuse carcinoma demonstrated at multiple frequencies in a 69-year-old man
with no palpable abnormality and a serum PSA level of 6.7 ng/mL. (A) Standard prone transverse
ultrasound image obtained at the base of the prostate demonstrates somewhat heterogeneous
echo-texture. (B) Corresponding sonoelasticity image obtained at 50 Hz shows poor vibration
diffusely, most pronounced posteriorly on the right (*). (C) A second section of the base,
obtained slightly caudal to (A), shows a heterogeneous gray-scale pattern. (D) Corresponding
sonoelasticity image obtained at 150-Hz documents absent bilateral posterior and right anterior
vibration (from Rubens et al., 1995, reprinted by permission of RSNA) (see also color insert).
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Figure 9.27b Ophir et al. (2000) provides a comprehensive review of methods.
Typically, a frame of RF lines is obtained for the tissue at equilibrium in a “precom-
pression” state. Next, a small static uniaxial plane force is applied to the tissue, and
once equilibrium is reached again for this ‘““postcompression” state, another frame of
RF data is acquired. The overall change in axial length is small (dz/z < 1%), so the
postcompression time records are shorter by 2dz/c. These RF lines are zero-padded to
the same length as the precompression data, and corresponding lines from the frames
are cross-correlated. Locations from cross-correlation peaks from this operation
indicate the delay changes of the deformations. Local axial strain can be estimated
from the delay changes in a time window,

tnt1 — Iy

Sy = 2 (9.12)
where t,, is the time shift for segment or time window #. The estimates of local strain
for all RF lines can be combined to produce a strain image. A similar operation can be
applied to obtain lateral strain and create two-dimensional images of strain (not just
axial strain images). The amount of force applied must be enough to overcome noise
but not great enough to cause decorrelation effects and remain in the linear range of
elasticity. Two review articles (Gao et al., 1996; Ophir et al., 2000) detail a number of
signal processing improvements (Insana et al., 1996), as well as a theoretical frame-
work for estimating the quality of elastograms (Varghese and Ophir, 1997). Doyley
et al. (2001) evaluated the performance of a freehand approach to creating strain
elastograms using speckle tracking (Trahey et al., 1988).

Elastography has been applied to a number of tissues, including the prostate
(Rubens et al., 1995; Krouskopf et al., 1998; Kallel et al., 1999a), breast (Parker
and Lerner, 1992; Ce’spedes et al. 1993; Garra et al., 1997; Krouskopf et al., 1998),
liver and kidney (Parker and Lerner, 1992), and muscle (Ce’spedes et al. 1993;
Levinson et al., 1995), as well as to high intensity focused ultrasound (HIFU)-induced
lesions in soft tissue (Kallel et al., 1999b). An example of a strain image made with the
quasi-static method is given by Figure 9.29.

In these applications, the tissue was assumed to be stationary. In organic elasto-
graphy (depicted in Figure 9.27c), the tissue deformation comes from the natural
rhythms of the body. In particular, heartbeat can be an appropriate stimulus. Two
major applications use the heartbeat as an appropriate stimulus: arterial contractions
(de Korte et al., 1997; 2000) for IVUS imaging, and the heart motion itself (Konofa-
gou et al., 2002) for echocardiology. Examples of IVUS elastograms are shown with
the stimulus waveforms in Figure 9.30.

In addition to one-dimensional and two-dimensional strain images, orthogonal
image planes can be acquired for the out-of-plane (or elevation plane) strain compo-
nent to obtain a three-dimensional estimate of strain (Konofagou and Ophir, 1998).
Either longitudinal or shear strain can be displayed. Without this extra data, a plane
stress or plane strain approximation is made for image plane data. In fact, a number of
approximations are often made in elastography, such as the isotropy, incompress-
ibility, and linear elasticity of tissue. Fortunately, for isotropic materials, there are only
two independent elastic moduli (as described in Section 3.3.1).



282

CHAPTER 9 SCATTERING FROM TISSUE AND TISSUE CHARACTERIZATION

Figure 9.29 rarasagittal views near and at the center of a canine prostate in vitro, obtained from a
Diasonics Spectra scanner at 5 MHz. (Top row) Axial strain elastograms, where white represents regions
of low strain, and black represents regions of high strain. The apex is on the right, and the base is on the
left. Observe the clear depiction of the urethra and of some of the ducts, the excellent contrast between
the outer and the inner gland, and the visualization of the verumontanum as a low strain area located at
the distal central part of the urethra (two center images). In these elastograms, black = soft; white =
hard. (Bottom row) The corresponding sonograms from which the elastograms were computed (from
Kallel et al., 1999a, reprinted with permission of Dynamedia, Inc.).
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pressure [mmHg]
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1.0

Figure 9.30 Reproducibility of IVUS elastography with elastic stimuli. The upper panel
shows the physiologic signals. Echo frames acquired near end-diastole were used to determine
the elastograms. The elastograms indicate that the plaque between 9 and 3 o’clock has high strain
values, indicating soft material. The remaining part has low strain values, indicating hard material.
At 6 o’clock a calcified spot is visible in the echogram, corroborating the low strain values (from de
Korte et al., 2000, IEEE) (see also color insert).
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Because strain images are difficult to interpret, attempts have been made to calculate
an elastic modulus and present it as an ““elastic modulus” or “stiffness” image. Most
often, the shear modulus is meant. One approach to finding this modulus is to either
measure or assume the form of the stress field, in addition to measuring the strain field,
and to invert Hooke’s law. Other moduli (Ophir et al., 1999) can be determined and
displayed, such as Young’s modulus or Poisson’s ratio (defined in Section 3.3.1).
Alternatives are to predict the strain with a forward model, given the Young’s modulus
as a function of position, forces, and specific boundary conditions (O’Donnell et al.
1994; Skovoroda et al., 1994, 1995). Barbone and Bamber (2002) have examined the
conditions necessary to obtain a unique solution for these inversions.

Most often, under clinical circumstances, information is incomplete. Gao et al.
(1996) identified four areas that would aid the development of elastography. The first
is expanding the limited amount of data on the elastic properties of different tissues
(Fung, 1981), especially the differences between healthy and pathological types. The
second involves a more complete accounting and incorporation of the spatial and
spectral properties of mechanical sources in the methods used. Third, as this chapter
has emphasized, the complex nature of tissue structure, responses, anisotropy, and
losses need to be accounted for and modeled in a more realistic fashion. Fourth, very
little is known about the in vivo boundary conditions of the tissues under examina-
tion; this information is necessary for more accurate inversions.

Despite these growth areas, elastography is already providing unique and valuable
clinical information, especially for cancer detection, that cannot be obtained by other
methods. As more information about the elastic characteristics of tissue is gathered
and as the challenges of clinical application and signal processing are met, indications
are that elastography will evolve into a valuable tissue characterization and ultrasound
imaging method.

A combined imaging mode is magnetic resonance elastography (Greenleaf et al.,
1998). By modulating the frequency and phase of a transverse acoustic wave relative
to the magnetic field gradient of a magnetic resonance imaging (MRI) scanner, it is
possible to image the progression of trasverse waves. From a computation of the local
wavelength and knowledge of the density of the material, a quantitative image of the
shear modulus can be created.

9.8 ABERRATION CORRECTION

If the design of a typical ultrasound standard-phased array beamformer is based on
propagation into a homogeneous medium with speed of sound of 1.54 mm/ps, how
well does it work in body with heterogeneous tissue? To first order, array imaging
works reasonably well, mainly because of the similarity among the sound speeds in
different types of tissues (discussed in Section 1.2). These beamformers depend on
coherent phasing of identical waveforms, but as seen in Section 9.4, propagation in
real tissue breaks up wavefronts and amplitude consistency. As a result, less than ideal
performance is achieved (as discussed in Section 7.9.1 for defective or imperfect array
elements). It is well known that some people are difficult to image. These topics lead
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us to the subject of aberration (a term for focusing errors) and the possibility of
correcting for these body propagation effects to recover the potential available in an
imaging system.

The first place people have looked for the causes of aberration is the body wall,
which can act as a dirty acoustic window by causing spatially localized differences in
amplitude and time delay to waves from different elements in an array (as explained in
Section 9.3.1). A cross section of an abdominal wall (as illustrated by Figure 9.7)
indicates heterogeneity (the presence of several tissue types), inhomogeneity (vari-
ations within a type of tissue), and an irregular thickness. From the simulation, the
wavefront of an incoming plane wave is broken up due to a number of effects:
scattering, reverberation, refraction, and the cumulative differences in time delay
passages through different thicknesses of the wall.

A variety of aberration correction methods have been devised to solve this difficult
problem. Solutions usually involve two steps: determining the degree of aberration
and correcting for it in an adaptive way. In addition, some methods are suited for real-
time correction; others are novel algorithms for corrections based on previous infor-
mation. Different classes of approaches are reviewed briefly as follows and end with a
summary of the problems left to be solved.

Adaptive methods of aberration correction have been reviewed by Steinberg
(1992), Ng et al. (1994), and Yi (1997). The earliest reported method was by Muller
and Buffington (1974) for improving images degraded by atmospheric effects in
telescopes. They showed that by maximizing the intensity integral | in the image
plane through real-time adjustments of time delay,

J= le(u, v)dudy 9.13)

the image can be corrected. Steinberg points out that this operation is equivalent to a
multilag spatial correlation operation.

Unlike the astronomical case, small “beacon” point targets are not readily available
in the body for the error-determining calibration step; therefore, these methods (Fink,
1992; Thomas and Fink, 1996) are limited in their application to medical ultrasound.
In certain cases, like for kidney stones, they provide an alternative (Wu et al., 1991).

In the 1980s, research on microwave antennas and ultrasound demonstrated that
random backscatter, such as that from tissue, can provide measurement of the phase
error (Flax and O’Donnell, 1988; O’Donnell and Flax, 1988; Attia and Steinberg,
1989). Another approach was based on the idea embodied in Eq. (9.13), adjusting
element delays to maximize regions of target brightness as a quality factor for both
point like and diffuse targets (Nock et al., 1989; Trahey et al., 1990). These methods
are based on the premise that the distortions occur in a thin-phase screen adjacent to
the transducer. The disruption of coherence is considered to be primarily a phasing
effect. Cross-correlation of signals on adjacent elements using a known reference or
beacon target or, more practically, random backscatter from tissue, can provide
measurement of the phase error. Once the error is known, a delay of the opposite
sign and equal to the error is applied to compensate for aberration. Iteration can
be applied to reduce the error.
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There are a variety of implementations involving adjacent elements, groups of
elements, or a summed array waveform for the reference waveform used for each
correlation (Ng et al., 1994). Those using a small correction reference region are more
sensitive to missing or partially inoperable elements (O’Donnell and Engeler, 1992),
cumulative errors, and noise than others using larger refence areas. However, because
of the van Cittert—Zernike theorem (see Section 8.4.5), elements decorrelate more
toward the ends of the array for random scatterers, and this effect presents a possible
limitation for large arrays. For 1.5-dimensional (1.5D) arrays, larger separations
between elevation rows can cause delay jumps that are difficult to overcome in
some situations.

With access to body wall measurements, Wang’s group at the University of Roches-
ter explored aberration correction for one-dimensional (1D) to two-dimensional (2D)
arrays (Liu and Wang, 1995, 1998). They simulated aberration by passing a spherical
wave front through the distortions of actual measured abdominal body wall data.
Their method consisted of calculating a reference waveform based on all the wave-
forms received by the array and their cross-correlation properties, smoothing the
delays obtained by cross-correlating each waveform by the reference waveform,
correcting for known geometric delays, backpropagating the wavefront using an
angular spectrum-of-waves approach until a waveform similarity criterion was maxi-
mized, smoothing the wavefront again to remove unusual spikes, and adjusting the
wavefront by using arrival time estimates for time shift compensation. While this
method is definitely not real-time, it showed that by backpropagating, lower beam
sidelobes could be obtained.

This extra step indicates that the infinitely thin phase screen, assumed in other
methods, may not be valid, and an approximation to a finite thickness wall could be
obtained by placing the phase screen within the locaton of the wall. Further studies
showed that improvements could be obtained by correcting the transmitted wave-
forms (Lacefield and Waag, 2001) as well as the received wavefronts, and by utilizing
2D arrays (Liu and Wang, 1998).

Li (1997) pointed out another overlooked problem in aberration correction: an
overemphasis on the focal plane. The focal plane assumption inherent in most correc-
tion approaches is that the waveforms from all the elements should be identical or
“redundant” under ideal conditions. Away from the focal plane, however, waveforms
are no longer identical. Also, for echoes from unknown target distributions, there is no
prior knowledge of what the wavefront was, even without aberrations. To overcome
these problems, Li proposed a new common midpoint method in the near Fresnel zone
(see Section 6.6.2); midpoint methods have been applied in seismic imaging. Li et al.
(1997) applied the algorithm to phantoms and volunteers and found an improvement
in approximately half the cases. A version of this method is evolving (Li, 2000; Li and
Robinson, 2000a, 2000b) and has been demonstrated on phantoms.

Perhaps the most challenging aberration correction problem is the female breast
(Zhu and Steinberg, 1993). In early experiments on aberration correction concen-
trated on the liver (O’Donnell and Flax, 1988), amplitude fluctuations were found to
be negligible. The heterogeneity of the female breast causes significant refraction and
multiple scattering, as is evident from measurements (Zhu and Steinberg, 1994)



286

CHAPTER 9 SCATTERING FROM TISSUE AND TISSUE CHARACTERIZATION

and simulation (Tabei et al., 2003) and is seen in Figure 9.9. Zhu and Steinberg (1993)
and Zhu, Steinberg, and Arenson (1993) conclude that amplitude as well as phase must
be corrected for aberration. Liu and Wang (1994) and Odegaard et al. (1996) also
reported that amplitude correction could be significant. Zhu and Steinberg (1993)
show calculations supporting the need for 2D arrays for aberration correction in order
to maintain high-quality imaging with low beam sidelobe levels for good contrast
resolution. Others investigating 2D apertures for aberration correction include Trahey
(1991), Liu and Wang (1995), Li and Robinson (2000a), and O’Donnell and Li (1991).

The most ambitious attempt at real-time adaptive imaging is reported by Rigby
et al. (1998). Their system consisted of a 128-channel imaging GE LOGIQ 700 system
modified to measure and modify delays to each active element with the computing
power of 56 PC processors. Active elements of a 2.5-3.75 MHz 1.75D array could be
selected via a multiplexer. The array configuration was a 6-row x 96-column linear
array arranged like a 1.5D array except symmetric rows were not connected. The
correction algorithm was similar to channel-to-channel correlation (Flax and O’Don-
nell, 1988; O’Donnell and Engeler, 1992) except a beam-summed waveform was used
as a reference for each image line. Corrections were iterated frame-to-frame. Im-
proved images were demonstrated on a phantom with a phase screen aberrator and a
liver. Their report ended with two questions: Does the aberration correction provide
any significant improvement in ultrasound imaging? Is the effort required to build the
required 2D array system worthwhile?

Aberration correction remains a technological challenge. As the more realistic
tissue simulations in Figures 9.8-9.10 show, there are many ways wavefront distortion
occurs. The RF element data of a cardiac-phased array (plotted in Figure 9.11) reveals
that wavefronts, even after normal focusing, are not aligned, are often tilted, and do
not extend across all elements. In addition, an imaging transducer compresses a body
wall, and its position varies with natural body motions. More on aberration can be
found in Section 12.5.5, which shows the effect of body walls on harmonic imaging
(see Figures 12.19-12.21), which provides partial imaging improvements.

9.9 WAVE EQUATIONS FOR TISSUE

For a homogeneous tissue medium with loss, the appropriate wave equation from
Chapter 4 is

10
Vzp—%a—g—L,*p:O (9.14a)

This wave equation translates into the frequency domain in the following form for
pressure (P):

V2P — k3P — y(w)P =0 (9.14b)
where

Y(w) = —o(w) — ifg(w) (9.14¢)
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is from Chapter 4, and the wave number is ky = w/cy.

In order to include local variations in sound speed and density as a function of
position, the wave equations must change. The wave equation form most frequently
used for the Born approximation (Fellingham and Sommer, 1984; Jensen, 1991;
Ystad et al., 1996; Angelsen, 2000) is adapted here to include general frequency
power law loss. If the density and compressibility as a function of position are divided
into an ambient term with a subscript (@) and a small perturbation term denoted by
subscript (f) (Ystad et al., 1996),

p(r) = pa(r) + ps(r) (9.15a)
K(r, w) = Ka(r, w) + K (r, w) (9.15b)
and the following are introduced:
str) = z/ g 3 (9.15¢)
) = ZZ E:; (9.15d)
Then the wave equation in the frequency domain can be written as
(V2 + k3P — y(P = —k3¢(r)P + V[V (r)VP)] (9.16a)
in which
ki(r, w) = w?/e3(r) = & p, (r)a(r) (9.16b)
and
y(r, ) = —a(r, [) = ig(r, f) (9.16¢)

and the definitions in Chapter 4 for a(f), Eq. (4.6a), and f;(f), Eq. (4.18), can be used
except that ay(r) and a4 (r) are now functions of position. The time domain counter-
part of Eq. (9.16a) can be written as

_cnd*p

—S—=5—L,(r)xp = 2 W—i—V[\I’(r)VP] (9.17)

where L, (r), from Eq. (4.17), is now a function of position through «(r).

Note that the left-hand side of these wave equations can be considered to be the
part describing propagation through the homogeneous ambient or average tissue
material (Ystad et al., 1996; Angelsen, 2000). This part of the equation provides
geometric propagation through large-scale homogeneous regions. If the right-hand
side is replaced by a delta function, o(r — r9), the solution is a freely propagating
Green’s function (Ystad et al., 1996; Angelsen, 2000), modified for losses and disper-
sion. The right-hand side of Egs. (9.2a)—(9.2b) represent perturbations to this back-
ground average value.

Full linear wave equations used for calculations of propagation in heterogeneous
tissue are treated in more detail in Mast et al. (1997) and Wojcik et al. (1997).
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10.1T INTRODUCTION

The modern diagnostic imaging system is continuing to evolve and, as a result, is
becoming more complicated with new modes and features. System functions are the
last blocks added to the overall block diagram (see Figure 2.14). This chapter introduces
the basic principles of an imaging system and discusses signal processing techniques.
Doppler and color flow imaging are deferred until the next chapter. An amazing variety
of transducer types have been invented and adapted to specific clinical uses; therefore,
the major clinical uses of ultrasound imaging systems need to be considered also.

In Figure 10.1, the external parts of an ultrasound imaging system are shown. The
image display is mounted on a chassis with wheels for portability. On the right side,

Display

System control

panel
Transducers

Transducer

Peripheral devices connector bays

On/off
Reset

Wheel
Assembly
Foot pedal :

Figure 10.1 External parts of an ultrasound imaging
system (courtesy of Philips Medical Systems).
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several transducer arrays are stored, awaiting use, and they are attached to the system
through several transducer connector bays in the front. Below the display is a
keyboard and a number of knobs and switches for controlling the system. Peripheral
devices, such as recording media and extra connectors, can be seen. The all-important
on/off switch, which is sometimes difficult to find, is also identified.

10.2 TRENDS IN IMAGING SYSTEMS

Ultrasound imaging systems fall into the following commonly used categories: port-
able, low-end, mid-range, and high-end. The high-end systems are those with the
latest and largest number of state-of-the-art features, and they generally produce the
best images. Each manufacturer has unique features, called market differentiators,
which distinguish their system from others manufactured by the same company, as
well from those made by other companies. Over time, some features, because of the
competitive nature of the industry, may migrate in altered form to imaging systems of
rival manufacturers. Needless to say, because high-end systems have the most features
and options, they are the most expensive. A mid-range system does not have some of
the high-end features but has a full complement of options necessary to produce very
good images in a variety of clinical applications. Low-end systems are usually limited
in their functionality and are often designed to cover specific clinical applications.
There are exceptions to these general categories.

The ultrasound imaging industry is undergoing dynamic change. One trend is that
the new high-end features tend to migrate downward to mid-range systems and
eventually to low-end systems over time. This migration is in part caused by the
need to replace existing features with new ones to grow the market. Another
major force is the parallel development in allied fields such as computation and
electronics of enabling technologies (the invisible wind of change discussed in
Chapter 1). These developments have already had a profound effect on what is
possible with ultrasound as exemplified by the fully functional, portable imaging
systems now available.

Portable imaging systems, which are a relatively new development, may provide a
more restricted range of options (e.g., fewer transducers) or be fully functional with
several transducer options in an extremely small package at a very low cost. Four
portable systems were shown in Figure 1.13.

The Minivisor, the first fully portable, self-contained imaging system (mentioned in
Chapter 1), is included for historical reference. The Sonosite system was the first
modern portable of comparable size (about 6 Ibs) and achieved its portability through
custom designed ASICS. OptiGo, a portable also based on specialized chips, was
designed for cardiac applications. Both of these systems offer color flow imaging
and automated features to aid users. The Terason 2000 system achieves its small size
and flexibility by leveraging laptop technology and its unique proprietary low power
charge domain processor chip. The fully functional 128-channel system consists of a
laptop, a 10-0z processor box, and the transducer. These systems were featured in an
issue of the Thoraxcentre Journal (2001).
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10.3 MAJOR CONTROLS

Because there are many controls for a typical ultrasound imaging system and their
organization and names vary considerably from manufacturer to manufacturer, the
following description is a short list of the major controls according to function. Note
that even though the number of actual controls on an imaging system may seem
bewildering at first, most systems start in a default set of control settings or “presets”
that are optimized for a particular clinical application or transducer, so that with
clinical training and moderate effort, such as the adjustment of the time gain compen-
sation (TGC) controls, a reasonably good image can be obtained quickly.

A close-up of the system control panel of the same imaging system from Figure
10.1 is illustrated in Figure 10.2. On the right side, the TGC slide controls, transmit
focus controls, and scan depth controls are evident.

The main controls identified in the system control panel (depicted in Figure 10.2)
are the following:

Probe or transducer selection: Typically two to four transducers can be plugged

into connectors in the imaging system, so this switch allows the user to activate one

of the arrays at a time.

Mode selection: This provides the means for selecting a mode of operation, such as

2B-mode, color flow, M-mode, or Doppler, individually or in combination (duplex

or triplex operation).

Depth of scan control: This adjusts the field of view (scan depth in centimeters).

Focus or transmit focal length selection: This allows the location of the transmit

focal length to be moved into a region of interest. The depth location of the focal

plane is usually indicated by a > symbol. (Multiple transmit foci can be selected in a

Transmit level

Keyboard Presets Volume

DDDm
55

depth

Probe
select

selection / Video \

Trackball control/record Freeze

Figure 10.2 Keyboard and display of an ultrasound imaging system (courtesy of Philips Medical
Systems).
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splice or multiple transmit mode at the sacrifice of frame rate). In pulsed wave
Doppler mode, the location of the focal length is often controlled by the center of
the Doppler gate position.

Time gain compensation (TGC) controls (also depth gain compensation, time gain
control, sensitivity-time control, etc.): These controls offset the loss in signal
caused by tissue absorption and diffraction variations; they are usually in the
form of slides for controlling amplifier gain individually in each contiguous axial
time range. The image depth dimension is divided into a number of zones or
stripes, each of which is controlled by a TGC control (discussed in Section 4.6).
On some systems, these gains are adjusted automatically based on signal levels in
different regions of the image. Some systems also provide the capability to adjust
gains in the lateral direction (lateral gain compensation or additional control in the
horizontal dimension). Other systems may have an automatic means of setting
these controls based on parameters sensed in the signals in the image, sometimes
called “automatic TGC.”

Transmit level control: This adjusts drive amplitude from transmitters (it is done
automatically on some systems). In addition to this control, a number of other
factors alter acoustic output (discussed in more detail in Chapters 13 and 15).
Feedback on acoustic output level is provided by thermal and mechanical indices
on the display (also discussed in more detail in Chapters 13 and 15). A freeze
control stops transmission of acoustic output.

Display controls: Primarily, these controls allow optimization of the presentation
of information on the display and include a logarithmic compression control,
selection of preprocessing and postprocessing curves, and color maps, as well as
the ability to adjust the size of the images from individual modes selected for
multimode operation. Provision is usually available for recording video images,
playing them back, and comparing and sending them in various formats.

10.4 BLOCK DIAGRAM

The hidden interior of a digital imaging system is represented functionally by a
generic simplified block diagram (shown by Figure 10.3). For now, the general
operation of an imaging system is discussed (more details will be presented later).

A description of this block diagram follows:

User interface: Most of the blocks are hidden from the user, who mainly sees the
keyboard and display, which are part of a group of controls called the “user interface.”
This is the part of the system by which the user can configure the system to work in a
desired mode of operation. System displays showing software configurable menus and
controls (soft-keys) in combination with knobs or slider controls and switches, as well
as the main image display monitor, provide visual feedback that the selected mode is
operating. The user interface provides the means of getting information in and out of
the system through connectors to the system. Main connections include a computer
hookup to a local area network (LAN) to Digital Imaging and Communication in
Medicine (DICOM) communication and networking, and to peripherals such as
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Figure 10.3 Block diagram of a generic digital ultrasound imaging system.

printers. Various recording devices, such as VCRs, and memory storage devices, such
as read/write CD-ROMSs and DAT drives, can be attached.

Controller (computers): A typical system will have one or more microprocessors or
a PC that directs the operation of the entire system. The controller senses the settings
of the controls and input devices, such as the keyboard, and executes the commands
to control the hardware to function in the desired mode. It orchestrates the necessary
setup of the transmit and receive beamformers as well as the signal processing, display,
and output functions. Another important duty of the computer is to regulate and
estimate the level of acoustic output in real time.

Front end: This grouping within the scanner is the gateway of signals going in and
out of the selected transducer. Under microprocessor transmit control, excitation
pulses are sent to the transducer from the transmitter circuitry. Pulse-echo signals
from the body are received by array elements and go through individual user-adjustable
TGC amplifiers to offset the weakening of echoes by body attenuation and diffraction
with distance. These signals then pass on to the receive beamformer.

Scanner (beamforming and signal processing): These parts of the signal chain
provide the important function of organizing the many signals of the elements into
coherent timelines of echoes for creating each line in the image. The transmit
beamformer sends pulses to the elements. Echo signals pass through an analog-to-
digital (A/D) converter for digital beamforming. In addition, the scanner carries out
signal processing, including filtering, creation of quadrature signals, and different
modes such as Doppler and color flow.

Back end: This grouping of functions is associated with image formation, display,
and image metrics. The input to this group of functions is a set of pulse-echo envelope
lines formed from each beamformed radiofrequency (RF) data line. Image formation
is achieved by organizing the lines and putting them through a digital scan converter
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that transforms them into a raster scan format for display on a video or PC monitor.
Along the way, appropriate preprocessing and postprocessing, log compression, and
color or gray-scale mapping are completed. Image overlays containing alpha-numeric
characters and other information are added in image planes. Also available in the back
end are various metric programs, such as measuring the length of a fetal femur,
calculating areas, or performing videodensitometry. Controls are also available for
changing the format of the information displayed.

10.5 MAJOR MODES

The following are major modes on a typical imaging system:
Angio (mode): This is the same as the power Doppler mode (see Figure 11.23).
B-mode: This is a brightness-modulated image in which depth is along the z axis and
azimuth is along the x axis. [tis also known as ““B-scan” or “2D mode.” The position of
the echo is determined by its acoustic transit time and beam direction in the plane.
Alternatively, an imaging plane contains the propagation or depth axis (see Figure 9.1).
Color flow imaging (mode): A spatial map is overlaid on a B-mode gray-scale image
that depicts an estimate of blood flow mean velocity, indicating the direction of
flow encoded in colors (often blue away from the transducer and red toward it),
the amplitude of mean velocity by brightness, and turbulence by a third color
(often green). It is also known as a “color flow Doppler.” Visualization is usually
two-dimensional (2D) but can also be three-dimensional (3D) or four-dimensional
(4D) (see Figure 10.6a).
Color M-mode: This mode of operation has color flow depiction at the same vector
location where depth is the y deflection (fast time), and the x deflection is the same
color flow line shown as a function of slow time. This mode displays the time history
of a single color flow line at the same spatial position over time (see Figure 11.24).
Continuous wave (CW) Doppler: This Doppler mode is sensitive to the Doppler
shift of blood flow all along a line (see Figure 11.13).
M-mode: This mode of operation is brightness modulated, where depth is the y
deflection (fast time), and the x deflection is the same imaging line shown as a
function of slow time. This mode displays the time history of a single line at the
same spatial position over time (see Figure 10.4).
Doppler mode: This is the presentation of the Doppler spectrum (continuous wave
or pulsed wave).
Color Doppler (mode): A 2D Doppler image of blood flow is color-coded to show
the direction of flow to and away from the transducer (see Figure 10.6a).
Power Doppler (mode): This color-coded image of blood flow is based on intensity
rather than on direction of flow, with a paler color representing higher intensity.
It is also known as “angio” (see Figure 11.23).
Pulsed wave Doppler: This Doppler mode uses pulses to measure flow in a region
of interest (see Figures 11.15 and 11.21).
Duplex: Presentation of two modes simultaneously: usually 2D and pulsed (wave)
Doppler (see Figure 10.5).
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Figure 10.4 Duplex M-mode image. The insert (above right of the sector image) shows the
orientation of the M-mode (courtesy of Philips Medical Systems).
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Figure 10.5 Time-sequenced image formats. (A) Basic linear (transla-
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pound (translation and rotation at each active aperture position).
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imaging segment. Described as a contiguous imaging format in Chapter 1 (courtesy of Philips
Medical Systems) (see also color insert).
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Triplex: Presentation of three modes simultaneously: usually 2D, color flow, and
pulsed Doppler (see Figures 11.13 and 11.15)

2D: (B-mode) imaging in a plane, with the brightness modulated

3D: This is a image representation of a volume or 3D object, such as the heart or
fetus. Surface rendering can be used to visualize surfaces. Another image presenta-
tion is volume rendering, in which surfaces can be semitransparent or 2D slice
planes through the object. Alternatively, there is simultaneous viewing of different
2D slice planes (side by side).

4D: A 3D image moving in time

Zoom: Video zoom is a magnification of a region of interest in the video image.
Alternatively, acoustic zoom is a magnification of the region of interest in which
acoustic and/or imaging parameters are modified to enhance the image, such as
placing the transmit focus in the region of interest and/or increasing the number of
image lines in the region.

10.6 CLINICAL APPLICATIONS

Diagnostic ultrasound has found wide application for different parts of the human
body, as well as in veterinary medicine. The major categories of ultrasound imaging
are listed below.

Major Imaging Categories:

Breast: Imaging of female (usually) breasts

Cardiac: Imaging of the heart

Gynecologic: Imaging of the female reproductive organs

Radiology: Imaging of the internal organs of the abdomen

Obstetrics (sometimes combined with Gynecologic as in OB/GYN): Imaging of
fetuses in vivo

Pediatrics: Imaging of children

Vascular: Imaging of the (usually peripheral as in peripheral vascular) arteries and
veins of the vascular system (called “cardiovascular” when combined with heart
imaging)

Specialized applications have been honored by their own terminology. Many of these

terms were derived from the location of the acoustic window where the transducer is
placed, as well as the application. “Window” refers to an access region or opening
through which ultrasound can be transmitted easily into the body. Note that trans-
ducers most often couple energy in and out of the body through the use of an externally
applied couplant, which is usually a water-based gel or fluid placed between the
transducer and the body surface. Transducers, in addition to being designed ergonomi-
cally to fit comfortably in the hand for long periods of use, are designed with the
necessary form factors to provide access to or through the windows described later.

Major Imaging Applications:
(Note that “intra” (from Latin) means into or inside, “‘trans” means through or

across, and “‘endo” means within.)

Endovaginal: Imaging the female pelvis using the vagina as an acoustic window
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Intracardiac: Imaging from within the heart

Intraoperative: Imaging during a surgical procedure

Intravascular: Imaging of the interior of arteries and veins from transducers
inserted in them

Laproscopic: Imaging carried out to guide and evaluate laparoscopic surgery made
through small incisions

Musculoskeletal: Imaging of muscles, tendons, and ligaments

Small parts: High-resolution imaging applied to superficial tissues, musculature,
and vessels near the skin surface

Transcranial: Imaging through the skull (usually through windows such as the
temple or eye) of the brain and its associated vasculature

Transesophageal: Imaging of internal organs (especially the heart) from specially
designed probes made to go inside the esophagus

Transorbital: Imaging of the eye or through the eye as an acoustic window
Transrectal: Imaging of the pelvis using the rectum as an acoustic window
Transthoracic: External imaging from the surface of the chest

10.7 TRANSDUCERS AND IMAGE FORMATS

10.7.1 Image Formats and Transducer Types

Why do images come in different shapes? The answer depends on the selected
transducer, without which there would be no ultrasound imaging system. Our discus-
sion emphasizes types of arrays (the most prevalent form of transducers in ultrasound
imaging). The focus will be on widely used physical forms of arrays adapted for
different clinical applications and their resulting image formats.

Early ultrasound imaging systems employed single-element transducers, which
were mechanically scanned in an angular or linear direction or both (as described
in Chapter 1). Most of these transducers moved in a nearly acoustically transparent
cap filled with a coupling fluid. The first practical arrays were annular arrays that
consisted of a circular disk cut into concentric rings, each of which could be given a
delayed excitation appropriate for electronic focusing along the beam axis. These
arrays also had to be rotated or scanned in a cap, and they provided variable focusing
and aperture control for far better imaging than is available with fixed-focus, single-
element transducers. A detailed description of the design and performance of a real-
time, digital 12-element annular array ultrasound imaging system is available in Foster
et al. (19892, 1989b).

Another early array was the linear array (discussed in Chapter 1). The linear array
may have up to 300-400 elements, but at any specific time, only a few (forming an
active element group) are functioning at a time. The active contiguous elements form
the active aperture. At one end of the array, an active element group turns on, as
selected by a multiplexer (also called a “mux”’) that is receiving commands from the
beamformer controller. Refer to Figure 10.5a, where the active elements are shaded to
generate line number 7. After the first pulse echoes are received for the first image
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vector line (centered in the middle of this group), an element nearest the end of the
array is switched off and the element next to the other end of the group is added as a
new element. In this way, the next sequential line (numbered n+1) is formed, and this
“tractor-treading” process continues as the active group slides along the length of the
array, picking up and dropping an element at each line position. Switches are neces-
sary if the number of elements in the array exceeds the number of receive channels
available. The overall image format is rectangular in shape.

The main difference between a linear and a phased array is steering. The phased
array has an active aperture that is always centered in the middle of the array, but the
aperture may vary in the number of elements excited at any given time (discussed
shortly). As shown in Figure 10.5¢, the different lines are formed sequentially by
steering until a sector (an angular section of a circle), usually about 90° in width, is
completed. The phased array has a small “footprint” or contact surface area with the
body. A common application for this type of an array is cardiac imaging, which
requires that the transducer fit in the intercostal spaces between the ribs (typically
10-14 mm). The advantage of this array is that despite its small physical size, it can
image a large region within the body.

Because it was easier to produce a fixed focal delay without steering for each line,
linear arrays were the first to appear commercially (recall Chapter 1). In this tradition,
convex linear arrays combined the advantage of a larger angular image extent with
ease of linear array focusing without the need for electronic steering. Convex arrays
may be regarded as linear arrays on a curved surface. As depicted in Figure 10.5b, a
convex array has a similar line sequencing to a linear array except that its physical
curvature directs the image line into a different angular direction. Because of the lack
of steering, linear and convex arrays have a relaxed requirement for periodicity 1-3
wavelengths rather than the % wavelength usually used for phased arrays.

Recent exceptions to this approach are linear arrays with finer periodicity so that
they can have limited steering capability either for Doppler or color flow imaging. In
this case, once the extent of steering is decided, periodicity can be determined from
grating lobe calculations (see Chapter 7). Two common applications are parallelogram
(also known as a steered linear) and trapezoidal imaging, in which sector-steered
image segments are added to the ends of a rectangular image in a contiguous fashion
(shown in Figure 10.5d). Actual imaging examples are given by Figure 10.7.

Another use of more finely sampled linear arrays with steering capabilities is
compound imaging. As shown in Figure 10.5e, compound imaging is a combination
of limited steering by an active group and translation of the active group to the next
position for the next set of lines or image vectors. More information and imaging
examples of a real-time implementation of this method will be discussed in Section
10.11.4.

The number of active elements selected for transmission is usually governed by a
constant F number (F#). The —6-dB full width half maximum (FWHM) beamwidth
can be shown to be approximately FWHM = 0.41F/L = 0.4AF# from Eq. (6.9¢). To
achieve a constant lateral resolution for each deeper focal length (F), the aperture (L)
is increased to maintain a constant F# until the full aperture available is reached. In a
typical image, one transmit focal length is selected along with dynamic focusing on
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Figure 10.7 Transmit focusing of fetal head with (A) a single focus zone and (B) multiple
spliced focal zones (courtesy of Siemens Medical Solutions, Inc. Ultrasound Group).
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Figure 10.8 SieScape or panoramic image made by a transducer swept along a body surface
(courtesy of Siemens Medical Solutions, Inc. Ultrasound Group).

receive. At the expense of frame rate, it is possible to improve resolution by transmit-
ting at several different transmit focal lengths in succession and then splicing together
the best parts. The strips or time ranges contain the best lateral resolution (like a layer
cake) to make a composite image of superb resolution (Maslak, 1985). See Figure 10.7
for an example. For this method, a constant F# provides a similar resolution in each
of the strips as focal depth is increased.

To overcome the small field of view limitation in typical ultrasound images, a
method of stitching together a panoramic view (such as that shown in Figure 10.8)
was invented. Even though the transducer is scanned freehand across the skin surface
to be imaged, advanced image processing is used to combine the contiguously scanned
images in real time (Tirulmalai et al., 2000). Other modes can also be shown in this
type of presentation.

10.7.2 Transducer Implementations

Driven by many clinical needs, transducers appear in a wide variety of forms and sizes
(as indicated by Figure 10.9). From left to right in this figure, there is a transesopha-
geal probe mounted on the end of a gastroscope, a convex array, a linear array,
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Figure 10.9 Transducer family portrait. From left to right, transesophageal array with positioning
assembly, convex (curved) linear array, linear array, stand alone CW Doppler probe, phased array,
transthoracic motorized rotatable phased array, and high-frequency intraoperative linear array (courtesy
of Philips Medical Systems).

a “stand-alone” CW Doppler two-element transducer, a phased array, a motorized
transthoracic array with an internal motor drive for 3D acquisition, and an intrao-
perative probe. The transesophageal probe (shown at the tip in the top center of the
figure) is mounted in a gastroscope assembly (at extreme left of figure) to provide
flexible positioning control of the transducer attitude within the throat. Transesopha-
geal arrays couple through the natural fluids in the esophagus and provide cleaner
windows to the interior of the body (especially the heart) than transducers applied
externally through body walls. The endovaginal and transrectal probes (not shown)
are designed to be inserted. The intraoperative and specialty arrays provide better
access for surgical and near-surface views in regions sometimes difficult to access.
These probes can provide images before, during, or after surgical procedures.

The more conventional linear, curved linear, and phased arrays have typical
azimuth apertures that vary in length from 25 to 60 mm and elevation apertures
that are 2-16 mm, depending on center frequency and clinical application. Recall
that the aperture size in wavelengths is a determining factor. The number of elements
in a 1D array vary from 32 to 400. Typical center frequencies range from 1 MHz (for
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harmonic imaging) to 15 MHz (for high-resolution imaging of superficial structures).
As discussed in Chapter 6, there has been a trend toward wider fractional bandwidths,
which now range from 30-100%.

At first, array systems functioned at only one frequency because of the narrow
fractional bandwidth available. As transducer design improved, wider bandwidth
allowed for operation at a higher imaging frequency simultaneously with a lower-
frequency narrowband Doppler or color flow mode (as indicated in Figure 10.10b).
This dual frequency operation was made possible by two different transmit frequen-
cies combined with appropriate receive filtering, all operating within the transducer
bandwidth. The next generation of transducers made possible imaging at more than
one frequency, as well as operation of the Doppler-like modes (see Figure 10.10c¢). At
the present time (with new materials), this direction is continuing so that a single
transducer array can function at multiple center frequencies (as shown in Figure
10.10d). This type of bandwidth means that one transducer can replace two or
three others, permit harmonic imaging with good sensitivity, and provide higher
image quality (to be described in Section 10.11.3). Broad bandwidths are also essen-
tial for harmonic imaging (to be described in Chapter 12).

Figure 10.10 Stages of transducer bandwidth development. (A) Narrowband. (B) Dual mode.
(C) Multiple mode. (D) Very wide band.
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10.7.3 Multidimensional Arrays

As discussed in Chapter 7, most arrays are 1D with propagation along the z axis and
electronic scanning along the x axis to form the imaging plane. Focusing in the
elevation or yz plane is accomplished through a fixed focal length lens. A hybrid
approach (a 1.5D array) achieves electronic focusing in the elevation plane by forming
a coarsely sampled array in the y dimension at the expense of more elements. This
number is a good compromise, however, compared to a complete 2D array, which
usually requires about an 7> channel count compared to # channels for 1D arrays.
A way of reducing the number of electronic channels needed is to decrease the active
number of elements to form a sparse array. All of these considerations were compared
in Chapter 7. The main advantages of electronic focusing in the elevation are not only
flexibility, but also improved resolution from coincident focusing in both planes and
dynamic receive focusing in both planes simultaneously. The description of a real-
time, fully populated 2D array with a nonstandard architecture is postponed until
Section 10.11.6.

10.8 FRONT END

The front end is the mouth of the imaging system; it can talk and swallow. It
has a number of channels, each of which has a transmitter and a switch (including
a diode bridge) that allows the passage of high voltage transmit pulses to the trans-
ducer elements but blocks these pulses from reaching sensitive receivers (refer to the
block diagram of Figure 10.3). Echoes return to each receiver, which consists of
amplifiers in series, including one that has a variable gain for TGC under user control.
The output of each channel is passed on to the receive beamformer.

10.8.1 Transmitters

The heartbeat of the system is a series of synchronized and precisely timed primitive
excitation pulses (illustrated by Figure 10.11). The major factor in this heartbeat is the
scan depth selected (s;). The length of a line or vector, since each line has a vector
direction, is simply the round-trip travel time (2s;/co). As soon as one line has
completed its necessary round-trip time, another line is launched in the next incre-
mental direction required. For a simple linear array, the next line is parallel to the last
one, whereas in a sector format, the next line is incremented through steering by a
small angle.

The timing pulses associated with these events are the start of frame pulse,
followed by the start of transmit. This last pulse actually launches a group of transmit
pulses in parallel with the required delays to form a focused and steered beam from
each active array element. The exact timing of these transmit pulses was described in
Chapter 7. This process is repeated for each vector until the required number of lines
(N) has been completed, after which a new start-of-frame timing pulse is issued by the
system transmitter clock.
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Figure 10.11 Pulse generation sequencing in an im-
aging system.

The rhythm of the system heartbeat can be interpreted as a repetitive timing
sequence with a duty cycle. For the example shown in Figure 10.11, assume a scan
depth of s; = 150 mm, as well as 5 lines per frame and 6 active elements. The round-
trip time for one line is 2s5/c = 200 ps; this will be the start of the transmit pulse
interval between each line. The time for a full frame is N lines/frame or, in this case,
5 x 200 ps/frame = 1000 ps/frame or 1000 frames/sec. The number of lines is only 5
for this example. A more realistic number of lines is 100, in which case the time for a
full frame would be 20 ms or a frame rate of 50 frames/sec.

Finally, depicted in the bottom of Figure 10.11 is a sequence of delayed pulses (one
for each active element of the array) to steer and focus the beam for that line. Note
that these pulses are launched in parallel with each start of transmit. These transmit
pulses have a unique length or shape for the mode and frequency chosen. For
example, instead of one primitive transmit pulse such as a single cycle of a sine
wave for 2D imaging, a number (1) of primitive pulses in succession can be sent to
form an elongated pulse for Doppler mode. The duty cycle is taken to be the ratio of
the length of the basic transmit sequence per line divided by the round-trip time. In
practice, a vector line may be repeated by another one in the same direction or by one
in a different mode in a predetermined multimode sequence necessary to build a
duplex or a triplex image (Szabo et al., 1988).

10.8.2 Receivers

In order to estimate the dynamic range needed for a front end, typical echo levels in
cardiac imaging will be examined. Numbered amplified backscattered echoes from
the heart are illustrated by Figure 10.12b for the beam path shown through a cross
section of the heart in Figure 10.12a (Shoup and Hart, 1988). With reference to the
indexing of the echoes, the first waveform corresponds to feed-through during the
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Echo no. 1 2 3 4 5 6 7

Figure 10.12 (A) Echo path through the heart. AW = anterior wall, RV = right
ventricle, IVS = intraventricular septum, LV = left ventricle, AO = aortic valve, M = mitral
valve, PW = posterior wall. (B) Amplified echoes corresponding to path in (A) (from Shoup
and Hart, 1988, IEEE).

excitation pulse. Echo 2 is caused by the reflection factor (RF) between the fat in the
chest wall and muscle of the anterior wall; this kind of signal is on the average about
—55 dB below that obtained from a perfect (100%) reflector. Echo 3 is the echo from
the reflection between blood and the tissue in the wall; it has a similar absolute level.
Between echoes 3 and 4 is the backscatter from blood, which is at the absolute level of
—70 dB compared to a 100% reflector and falls below the scale shown. The large echo
number 7 is from the posterior wall lung interface; it is a nearly perfect reflector (close
to 0 dB absolute level). In order to detect blood and the lung without saturating, the
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receivers require a dynamic range of at least 70 dB for cardiac imaging. TGC amplifi-
cation (mentioned in Chapter 4) was applied to the echoes in Figure 10.12b. The
absolute values of the echoes were determined independently from RF data and
a reference reflector. There is an individual front-end amplifier for each channel
(usually 64 or 128 total) in the system. Each amplifier typically covers a range of
55-60dB. For digital conversion, sampling rates of 3-5 times the highest center
frequency are needed to reduce beamforming quantization errors (Wells, 1993). A
means of time shifting for the dynamic receive beamformer at higher rates, closer to 10
times the center frequency, would be preferable to achieve low beam sidelobes (Foster
et al., 1989). Modern imaging systems can have dynamic ranges in excess of 100 dB,
and some have the sensitivity to image blood directly in B-mode at high frequencies
(see Chapter 11) and to detect weak harmonic signals (see Chapters 14 and 15).

10.9 SCANNER

10.9.1 Beamformers

In Chapter 7, the operation of transmit and receive beamformers was discussed. The
practical implementation of these beamformers involves trade-offs in time and amp-
litude quantization. In addition, more complicated operations have been imple-
mented. In order to speed up frame rate, basic parallel beamforming is a method of
sending out a wide transmit beam and receiving several receive beams (as explained in
Section 7.4.3). The discussion of real-time compound imaging (Entrekin et al., 2000),
which involves the ability of the beamformer to send out beams along multiple vector
directions from the same spatial location in a linear array, is deferred until Section
10.11.4.

10.9.2 Signal Processors

10.9.2.1 Bandpass filters

This signal processing part of the system takes the raw beamformed pulse-echo data
and selectively pulls out and emphasizes the desired signals, combines them as needed,
and provides real and quadrature signals for detection and modal processing. This
section covers only processing related to B-mode imaging. Chapter 11 covers color
flow imaging and Doppler processing. Digital filters operate on the data from the A/D
converters (shown in the block diagram, Figure 10.3). Bandpass filtering is used to
isolate the selected frequency range for the desired mode within the transducer
passband (recall Figure 10.10). The data may also be sent to several bandpass filters
to be recombined later in order to reduce speckle (see Section 10.11.3). Another
important function of bandpass filtering is to obtain harmonic or subharmonic signals
for harmonic imaging (to be covered in more detail in Chapter 12). In Chapter 4,
absorption was shown to reduce the effective center of the signal spectrum with
depth. The center frequency and shape of bandpass filters can be made to vary with
depth to better track and amplify the desired signal (see Section 10.11.2).
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10.9.2.2 Matched filters

Another important related signal processing function is matched filtering. In the
context of ultrasound imaging, this type of filter has come to mean the creation of
unique transmit sequences, each of which can be recognized by a matched filter. One
of the key advantages of this approach is that the transmit sequence can be expanded
in time at a lower amplitude and transmitted at a lower peak pressure amplitude
level, with benefits for reducing bioeffects (see Chapter 15) and contrast agent effects
(see Chapter 14). Other major advantages include the ability to preserve axial reso-
lution with depth, and increased sensitivity and tissue penetration depth.

Matched filtering actually begins with the transmit pulse sequence. In this case, the
transmit waveform is altered into a special shape or sequence, s(¢). This transmission
encoding can be accomplished by sending a unique sequence of primitive pulses of
different amplitudes, polarities, and/or interpulse intervals. In the case of binary
sequences, a “bit” is a primitive pulse unit that may consist of, for example, half an
RF cycle or several RF cycles.

Two classic types of transmit waveforms, x(f), a coded binary sequence and a
chirped pulse, have been borrowed from radar and applied to medical ultrasound
(Lee and Ferguson, 1982; Lewis, 1987; Cole, 1991; O’Donnell, 1992; Chiao and
Hao, 2003). The appropriate matched filter in these cases is x*(—t). The purpose of a
matched filter is to maximize signal-to-noise, defined as the ratio of the peak instant-
aneous output signal power to the root mean square (r.m.s.) output noise power
(Kino, 1987). A simple explanation of how the output power can be maximized can
be given through Fourier transforms. Consider a filter response,

y(t) = x(t) = b(t) (10.1)

where x(2) is the input, y(¢) is the output waveform, and 4 (¢) represents the filter. Let
the matched filter be

h(t) = Ax*(—t) (10.2)
where A is a constant and * represents the conjugate. For this filter, the output
becomes

y(t) = Ax(t) * x*(—t) = AJ x(t)x*(t — t)dr = AJ x*(t) x(r + t)dx (10.3)

but from the Fourier transform, the output can be rewritten as

y(t) :AJOO X(HX* (e df :Ar XA df (10.4)

—00 —00

In other words, the matched filter choice of Eq. (10.2) leads to an autocorrelation
function, Eq. (10.3), which automatically maximizes the power spectrum, Eq. (10.4)
(Bracewell, 2000) and consequently, maximizes the ratio of the peak signal power to
the r.m.s. noise power (Kino, 1987).

A simple example of a coded waveform is a three bit Barker code. This code can be
represented graphically (shown in Figure 10.13), or it can be represented mathemati-
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cally as the binary sequence [+1+1—1]. Binary codes have unique properties and
solve the following mathematical puzzle: What sequence of ones and minus ones,
when correlated with itself, will provide a gain in output (y) with low sidelobes?

In the top of Figure 10.13 is a plot of the correlation filter h(¢) against unit time
increments. Recall that the convolution operation involves flipping the second wave-
form right to left in time and integrating (see Appendix A). Physically, correlation is
the operation of convolution of x(¢) * x*(—z). This integration consists of a double
reversal in time (once for the convolution operation and once for the receive filter).
The net result is a receive waveform that is back to its original orientation in time. The
operation is simplified to sliding one waveform, x(t), past the second, x(¢), left to
right. Each row in this figure shows an input waveform sliding from left to right, one
time unit interval at a time, until the waveform has passed through the correlator.
Integration at each slot is easy: First, determine the amplitude values of h(#) and x(¢)
multiplied together, such as —1 x —1 = 1, at each time interval overlap position;
second, sum all the product contributions from each time interval in the overlap
region to obtain the amplitude value for the time position in the row. In the last row,
connect the dots at each time interval to get y(¢). The repeating triangular shapes
within y(#) can be recognized as the convolution, or correlation in this case, of two
equal rectangles, I1(¢), that slide past each other to form triangle functions; these steps
complete the description of y(#) between the dots we calculated in Figure 10.13. Note
the main features of y(¢): a peak equal to 7 bits (three) and two satellite time sidelobes
of amplitude —1. From maximum amplitudes of plus or minus one, a gain of three has
been achieved by encoding.
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Fortunately, MATLAB makes these kinds of calculations trivial. We can obtain
graphical results with three lines of code:

x=[011-10];
y = x corr(x) (10.5)
plot(y);

The first line forms the Barker sequence, allowing for zeros to get the full depiction of
the output. The autocorrelation function is the cross-correlation function xcorr.m
with one argument. The reader is encouraged to play with the program barkerplot.m
to verify that as the number of bits, N, is increased, the peak increases in proportion
and the ratio of peak amplitude level to maximum sidelobe level improves.

A family of codes with more impressive performance is the pseudo-random binary
M-sequence code of ones and zeros that is shown in the lower right-hand corner of
Figure 10.14 (Carr et al., 1972) along with the output, y(#). Here the sidelobe ratio
is —15.84 dB. Note that for an acoustic transmitter, ones and zeros may translate
into either a series of “ones” (regarded as positive primitive pulses, +1) and
“zeros” (regarded as primitive pulses with a 180° phase reversal or negative-going

pulses, —1).
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Figure 10.14 Theoretical plot of amplitude versus bit period for the correlation of a 31-bit
maximal length (M) sequence. The peak-to-sidelobe ratio for this sequence is —15.84dB (from Carr
et al., 1972, IEEE).
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There are several families of codes, each with advantages and disadvantages. Each
bit or primitive pulse alone will evoke a round-trip response from the transducer,
which fixes the minimum resolution available. In the usual case without a coded
sequence, a transmit pulse might consist of a half-period pulse or a full-period pulse
(e.g., a single sine wave) corresponding to the desired frequency of excitation. Receive
amplitude levels can be raised by increasing the applied transmit voltage. At some
pressure level (described in Chapter 15), a fixed limit is reached for safety reasons so
that the voltage can no longer be increased. One advantage of coded sequences is that
a relatively low voltage A can be applied, and a gain of NA is realized on reception
after the correlation process. Another advantage of coded sequences is that certain
orthogonal codes, such as Golay codes, allow the simultaneous transmission of a
number of beams in different vector directions, which are sorted out on decoded
reception through matched correlators (Lee and Ferguson, 1982; Shen and Ebbini,
1996; Chiao et al., 1997; Chiao and Hao, 2003) as is shown in Figure 10.15.

Another important class of coded matched filter functions are chirps (Lewis, 1987;
Cole, 1991; Genis et al., 1991). A methodology borrowed from radar, a transmit
waveform, x(¢), consists of a linear swept frequency modulated (FM) pulse of dur-
ation T. The result of matched filtering is a high-amplitude short autocorrelation
pulse. If a chirp extends over a bandwidth B, the correlation gain (G) through a
matched filter x*(—#), a mirror image chirp, is G = TB (Kino, 1987). Examples of a
chirp and compressed pulses from flat targets are given in Figure 10.16. A third
waveform depicts the transmitted upchirp waveform. A useful parameter is the
instantaneous frequency, defined as

1\ d¢
fi= (E) 0 (10.6)

where ¢ is the phase of the analytic signal as a function of time (see Appendix A). For
the transmit chirp of Figure 10.16, the instantaneous frequency as a function of time
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Figure 10.15 Simultaneous multibeam encoded ultrasound imaging system (from Shen and
Ebbini, 1996, IEEE).
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is an ascending line from 5 to 9 MHz. The second panel from the top of Figure 10.16
shows the received echoes for a glass plate. After passing through the matched filter,
these echoes are compressed to give excellent resolution and indicate multiple in-
ternal reflections into the top panel. A pair of similar echo signals for a plastic plate
with higher internal absorption is shown in the lower two panels of Figure 10.16. The
pros and cons of this methodology are discussed in the previous references. Both
orthogonal codes and chirped waveform matched filters have been implemented on
commercial systems.

10.10 BACK END

10.10.1 Scan Conversion and Display

The main function of the back end (refer to Figure 10.3, the block diagram) is to take
the filtered RF vector line data and put it into a presentable form for display. These
steps are the final ones in the process of imaging (described in detail in Section 8.4).
An imaging challenge is to take the original large dynamic range, which may be
originally on the order of 120 dB, and reduce it down to about 30 dB, which is the
maximum gray-scale range that the eye-brain system can perceive. The limits and
description of human visual perception is beyond the scope of this work, and they are
described in more detail in Sharp (1993). As we have seen, the initial step is taken by
the TGC amplifiers, which reduce the dynamic range to about 55-60 dB. The beam-
formed digitized signals are converted to real (I) and quadrature (Q) components
(delayed from the I signal by a quarter of the fundamental period). These components
can be combined to obtain the analytic envelope of the signal through the operation
V12 + Q%

In Figure 10.17, the envelope detection begins the back-end processing. This step is
followed by an amplifier that can be controlled by the user to operate linearly at one
extreme, or as a logarithmic amplifier at the other extreme, or as a blend between the
two extremes to achieve further dynamic range compression. For example, in the case
in which soft-tissue detail and bright specular targets coexist in the same image, the
logarithmic characteristic of the amplifier can reduce the effects of the specular
reflections on the high end of the scale. The preprocessing step, not done in all
systems, slightly emphasizes weak signals as the number of bits is reduced, for
example, from 10-7 bits after digitization.

So far, a number of vectors (lines with direction) have undergone detection,
amplification, preprocessing (if any), and resampling to a certain number of points
per line for suitable viewing. In order to make a television or PC-style rectangular
image, this information has to be spatially remapped by a process called scan conver-
sion. If the vectors were displayed in their correct spatial positions, the data would
have missing information when overlaid on a rectangular grid corresponding to pixel
locations in a standard raster scan, such as the NTSC TV. Sector scanning is one of the
more challenging formats to convert to TV format (as illustrated by Figure 10.18). An
enlargement of the polar coordinate scan lines overlaid on the raster rectangular pixel
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Figure 10.17 Block diagram for back-end processing used for image display (courtesy of Philips
Medical Systems).

grid indicates the problem. Not only do the scan lines rarely intersect the pixel
locations, but also each spatial position in the sector presents a different interpolation
because the vectors change angle and are closer toward the apex of the sector.
Early attempts at interpolation caused severe artifacts, such as Moire’s pattern, and
unnatural steps and blocks in the image. This problem can be solved by a 2D inter-
polation method (Leavitt et al., 1983), which is shown in the bottom of Figure 10.18.
The actual vector points are indicated along the bold scan lines with the pixel
locations marked by crosses. To obtain the interpolation at a desired point (Z), first
the radius from the apex to the intended pixel point is determined. Second, the
angle of a radial line passing through Z is found. The generalized 2D interpolation
formula is

Z(r, 0) = > S(r — nAr, 0 — mAO) Z(nAr, mA0) (10.7)

where S is a 2D triangular function.

The next step is one in which the amplitudes in the rectangular format undergo a
nonlinear mapping called postprocessing. A number of postprocessing curves are
selectable by the user to emphasize low- or high-amplitude echoes for the particular
scan under view. This choice determines the final gray-scale mapping, which is usually
displayed along with the picture. In some cases, pure B-mode images undergo an
additional color mapping (sometimes called colorization) in order to increase the
perceived dynamic range of values. Finally, a digital-to-analog (D/A) conversion occurs
for displaying the converted information. The usual video controls such as brightness
and contrast are also available, but they play a minor role compared to the extensive
nonlinear mapping processes the data has undergone. Image plane overlays are used to
present graphic and measurement information. Color flow display (to be covered in
Chapter 11) also undergoes scan conversion and is displayed as an image plane
overlaid on the gray-scale B-mode plane. In addition, most systems have the capability
to store a sequence of frames in internal memory in real time for cine loop display.

10.10.2 Computation and Software

Software plays an indispensable and major role in organizing, managing, and control-
ling the information flow in an imaging system, as well as in responding to external
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Figure 10.18 (A) Image vectors in a sector scan display overlaid on
desired rectangle format. (B) Magnified view comparing vector data in
polar coordinates to rectangular pixel positions (Reprinted by permission
of Hewlett Packard, from Leavitt et al., 1983, Hewlett Packard).
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control changes or interrupts. First, it starts and stops a number of processes such as
the transmit pulse sequence. Interrupts or external control changes by the user are
sensed, and the appropriate change commands are issued. The master controller may
have other slave microprocessors that manage specific functional groups, such as
beamforming, image scan conversion and display, calculations and measurements of
on-screen data, hardware, and digital signal processing (DSP) chips. The controller
also manages external peripheral devices such as storage devices and printers as well
as external communication formats for LAN and DICOM. The controller also super-
vises the real-time computation of parameters for the output display standard (to be
described in Chapter 15), as well as acoustic output management and control.

10.11 ADVANCED SIGNAL PROCESSING

10.11.1 High-End Imaging Systems

The difference between a basic ultrasound imaging system and a high-end system is
image quality. High-end systems employ advanced signal processing to achieve supe-
rior images. Acuson was the first to recognize that a “high-end” system could be
successful in the clinical marketplace. The first Acuson images were known for their
spatial resolution, contrast, and image uniformity (Maslak, 1985). Soon other manu-
facturers took up the challenge, and the striving for producing the best image con-
tinues today.

Three examples of advanced processing for enhancing image quality are attenu-
ation compensation, frequency compounding, and spatial compounding (Schwartz,
1993). Usually separate signal processing paths and functions are combined in new
ways to achieve improved images. In Figure 10.19 is a block diagram of an ultrasound
imaging system; it has several differences from the block diagram of Figure 10.3. To
the right of the transducer are scanner functions: beamforming and filtering. The
remaining functions are back-end functions of image detection, logarithmic compres-
sion, and frame generation. At the bottom of the figure are a number of new blocks
(numbered 1-4). Not all the steps of image information are included in this diagram,
which is more symbolic and emphasizes differences in signal processing more than
traditional imaging architectures. Controlling software to manage the interplay be-
tween different functions is assumed.

10.11.2 Attenuation and Diffraction Amplitude Compensation

TGC is an approach available to imaging system users to manually adjust for the
changes in echo-amplitude caused by variations in beam-formation along the beam
axis and by absorption. Better image improvements can be obtained by analyzing the
video data and adaptively remapping the gain in an image in a 2D sense. At least two
different approaches have appeared in literature (Melton and Skorton, 1981; Hughes
and Duck, 1997). The first method senses differences in RF backscatter and adaptively
changes TGC gains. The second analyzes each line of video data to read just the
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Figure 10.19 Imaging system architecture with signal processing en-
hancements. The lower blocks are numbered as (1) steering function, (2)
spectral weighting function, (3) gain function, and (4) weighting function
(courtesy of G. A. Schwartz, Philips Medical Systems).

intensity levels as a function of time, based on an algorithm, and it leads to an
image renormalized at each spatial point. This last approach is more suitable for
imaging systems because it can be accomplished in software without major hardware
changes.

Using this method as an example, we return to Figure 10.19, block 3 (gain
function). The triangle above it symbolizes a variable gain control. A line of video
data, corrected for previous video processing and TGC settings, passes through the
amplifier and is sent down to the gain control or video analyzer software (not shown
in diagram). This line of data is analyzed by an adaptive attenuation estimation
algorithm, and the renormalization factor or new gain is determined for each time
sample and is sent back through the adjusted amplifier. Only the renormalized values
of video 