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Preface

This second half of Volume 1 of this Handbook follows Volume 1A, which was published
in 2002. The contents of these two tightly integrated parts taken together come close to a
realization of the program formulated in the introductory survey “Principal Structures” of
Volume 1A.

The present volume contains surveys on subjects in four areas of dynamical systems: Hy-
perbolic dynamics, parabolic dynamics, ergodic theory and infinite-dimensional dynamical
systems (partial differential equations). These areas, with the exception of the last one, are
also represented in Volume 1A.

In Volume 1A the chapters in hyperbolic dynamical systems cover uniformly hyperbolic
dynamical systems (general properties, Markov partitions and Gibbs measures, periodic
orbits andζ -functions) and hyperbolic dynamical systems arising in Riemannian geometry.
The present volume (1B) contains chapters on nonuniformly hyperbolic dynamical systems
(to which the survey on Hyperbolic dynamics and Riemannian geometry in Volume 1A is
closely related), on partially hyperbolic dynamical systems and on homoclinic bifurcations,
dominated splitting and robust transitivity (both of which have developed rapidly in the
last few years), as well as an account of random dynamics, which covers aspects of an
area related to hyperbolic dynamics and complements the survey on random dynamics in
Volume 1A. Taken together, this volume and Volume 1A thereby provide a comprehensive
overview of both the foundations and the current state of art in hyperbolic dynamics and
immediately adjacent areas.

In addition to an overview in the chapter “Principal Structures”, parabolic dynamics is
represented in Volume 1A by a detailed discussion of unipotent homogeneous systems in
Section 3 of the chapter on dynamics of subgroup actions on homogeneous spaces and by
the entire chapter on rational billiards and flat structures. The latter area has experienced
explosive growth in recent years and the existing expository literature is far from sufficient.
Anton Zorich showed great vision and exercised spirited leadership resulting in a cluster
of chapters in the present volume on the subject of parabolic dynamics written by leading
researchers in the area.

Volume 1A covers several aspects of ergodic theory, including the core subjects of en-
tropy, isomorphisms and Kakutani equivalence as well as the ergodic theory of smooth or
algebraic dynamical systems, and the chapter on actions of “large” groups. The present
volume expands the treatment of ergodic theory with four additional chapters covering
spectral theory, joinings and combinatorial constructions, ergodic theorems, multiple re-
currence and related topics, and relations with topological dynamics. The coverage of er-
godic theory in these two parts of Volume 1, while somewhat less comprehensive than that
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vi Preface

of hyperbolic dynamics, is considerably more broad and thorough than that provided in
other existing sources.

The final cluster of chapters in the present volume, for which Sergei Kuksin provided
inspiration and leadership, discusses partial differential equations from the point of view
of dynamical systems. The first of these is about attractors, the other two are about Hamil-
tonian PDE in finite and infinite volume, respectively.

Some of the subjects introduced and outlined in the survey “Principal Structures” in
Volume 1A will be covered in the forthcoming Volume 3 of this Handbook. Among those
are certain aspects of elliptic dynamics, such as KAM theory and its applications, as well
as complex dynamics.

We would like to thank the authors of the chapters in this pair of volumes for investing
their time so generously in this project, and for writing surveys of such high quality. We
also owe much gratitude to Sergei Kuksin and Anton Zorich for the efforts they invested
in the sections of the present volume on infinite-dimensional and parabolic dynamics, re-
spectively. Numerous other mathematicians took interest in the project and read drafts of
various surveys or major portions thereof. This resulted in numerous valuable suggestions.
This interest also provided great encouragement for the authors and editors and helped to
bring this extensive project to successful completion. We are also grateful for the expertise
and craftsmanship that Elsevier and VTeX employed to produce volumes of the highest
quality.

We are indebted to Kathleen Hasselblatt and Svetlana Katok for their support and pa-
tience while we worked on this volume.

Boris Hasselblatt and Anatole Katok
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Partially hyperbolic dynamical systems 3

1. Introduction

1.1. Motivation

1.1.1. Smooth ergodic systemsThe flows and maps that arise from equations of motion
in classical mechanics preserve volume on the phase space, and their study led to the de-
velopment of ergodic theory.

In statistical physics, the Boltzmann–Maxwell ergodic hypothesis, designed to help de-
scribe equilibrium and nonequilibrium systems of many particles, prompted a search for
ergodic mechanical systems. In geometry, the quest for ergodicity led to the study of geo-
desic flows on negatively curved manifolds, where Eberhard Hopf provided the first and
still only argument to establish ergodicity in the case of nonconstantly negatively curved
surfaces [57]. Anosov and Sinai, in their aptly entitled work “Some smooth Ergodic Sys-
tems” [10] proved ergodicity of geodesic flows on negatively curved manifolds of any
dimension.

With the development of the modern theory of dynamical systems and the availabil-
ity of the Birkhoff ergodic theorem the impetus to find ergodic dynamical systems and
to establish their prevalence grew stronger. Birkhoff conjectured that volume-preserving
homeomorphisms of a compact manifold are generically ergodic.

1.1.2. Hyperbolicity The latter 1960s saw a confluence of the investigation of ergodic
properties with the Smale program of studying structural stability, or, more broadly, the
understanding of the orbit structure of generic diffeomorphisms. The aim of classifying
(possibly generic) dynamical systems has not been realized, and there are differing views
of whether it will be. Current efforts in this direction are related to the Palis conjecture
(see [4]). A promising step towards understanding generic smooth systems would clearly
be an understanding of structurally stable ones, and one of the high points in the theory
of smooth dynamical systems is that this has been achieved: Structural stability has been
found to characterize hyperbolic dynamical systems [2].

Structural stability implies that all topological properties of the orbit structure are ro-
bust. Of these, topological transitivity has a particularly natural measurable analog, namely,
ergodicity. On one hand, then, robust topological transitivity of hyperbolic dynamical sys-
tems motivated the search for broader classes of dynamical systems that are robustly tran-
sitive [29]. On the other hand, this, and the fact that volume-preserving hyperbolic dynam-
ical systems are ergodic (with respect to volume) may have led Pugh and Shub to pose a
question at the end of [56] that amounts to asking whether ergodic toral automorphisms
arestably ergodic, i.e., whether all their volume-preservingC1 perturbations are ergodic.
They later conjectured that stable ergodicity is open and dense among volume-preserving
partially hyperbolicC2 diffeomorphisms of a compact manifold.

1.1.3. Partial hyperbolicity In this chapter we aim to give an account of significant re-
sults about partially hyperbolic systems. The pervasive guiding principle in this theory is
that hyperbolicity in the system provides the mechanism that produces complicated dynam-
ics in both the topological and statistical sense, and that, with respect to ergodic properties,
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it does so in essence by overcoming the effects of whatever nonhyperbolic dynamics may
be present in the system.

We should point out from the start that the desired dynamical qualities (such as transitiv-
ity and ergodicity) are of an indecomposability type and evidently fail, for example, for the
Cartesian product of an Anosov diffeomorphism with the identity. Accordingly, suitable
extra hypotheses of some sort will always be present to exclude this obvious reducibility
and other less obvious ones (Section 7).

The ideas and methods in the study of partially hyperbolic dynamical systems extend
those in the theory of uniformly hyperbolic dynamical systems, parts of which are briefly
presented in [2], and go well beyond that theory in several aspects. Outside of these hand-
book volumes, accounts of uniformly hyperbolic dynamical systems from many points
of view abound; [62] provides a textbook exposition that provides sufficient background.
A condensed version of the material from [62] on hyperbolicity is contained in [30], which
adds a useful account of absolute continuity and ergodicity in that context. Partial hyper-
bolicity is also surveyed in [34,79], with different emphasis. The one source that provides
the most proofs of results only stated here is [71], which we recommend for further study
of the subject. The study of partial hyperbolicity developed with two objects in mind: sta-
ble ergodicity and robust transitivity. We pay more attention to the first of these, and the
recent book by Bonatti, Díaz and Viana [16] covers the second one in more detail.

1.1.4. Extensions of classical complete hyperbolicityWhile classical hyperbolicity ap-
peared in the 1960s, partial hyperbolicity was introduced in the early 1970s by Brin and
Pesin [29] motivated by the study of frame flows, and it also arose naturally from the work
of Hirsch, Pugh and Shub on normal hyperbolicity [56].

Partial hyperbolicity is but one possible extension of the notion of classical (complete)
hyperbolicity, or, in fact, a pair of extensions. Classical hyperbolicity can be described as
requiring that the possible uniform rates of exponential relative behavior of orbits come in
two collections on either side of 1 or by requiring that the Mather spectrum of the system
(Section 2.3) consists of parts inside and outside of the unit circle. Partial hyperbolicity (in
the broad sense, Definition 2.1) merely requires that the Mather spectrum consists of two
parts that are separated by some circle centered at the origin (not necessarily the unit circle),
and partial hyperbolicity (in the now prevalent narrower sense, Definition 2.7) requires that
the Mather spectrum has 3 annular parts of which the inner one lies inside the unit circle
and the outer one lies outside of the unit circle (Theorem 2.16).

There has been some shift in terminology over time, and what exactly is meant by “par-
tial hyperbolicity” without a further attribute often has to be inferred from the context.
Furthermore, there are still minor variations in naming the various “flavors” of this notion.
Partial hyperbolicity in the broad sense is the concept for which one can extend the theory
of invariant distributions and foliations from the context of classical complete hyperbolic-
ity in the most direct way (the corresponding results are presented in Sections 2 and 3).
These are also the results that describe the stability of trajectories and usually precede the
study of topological and ergodic properties of the system. Accordingly, in those early days,
“partially hyperbolic” by itself referred to the broader notion in Definition 2.1. (This notion
is also known in the study of ordinary differential equations as the presence of adichotomy.
We will not use this synonym.) The results on central and intermediate distributions and
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foliations as well as accessibility are of interest principally when one considers partially
hyperbolic systems in the narrower sense of Definition 2.7, where a central direction is
present (as well as two more directions that have stronger contraction and expansion, re-
spectively). This therefore used to be called “partial hyperbolicity in the narrow sense”,
but recent work has so much focused on this situation that “in the narrow sense” is usually
dropped. In this respect we conform to the current majority choice, but retain the option
of emphasizing greater generality by using the notion of partial hyperbolicity in the broad
sense of Definition 2.1.

One can weaken the notion of partial hyperbolicity in the broad sense to a semiuniform
one, namely to that of having adominated splitting[4], where the rates are separated by a
uniform factor but the location of the gap is allowed to vary with the point (see p. 44). Put
differently, partial hyperbolicity directly constrains the Mather spectrum (see Section 2.3)
and the presence of a dominated splitting does not. Since partial hyperbolicity implies the
presence of a dominated splitting, results proved for dynamical systems with a dominated
splitting apply to those as in Definition 2.1. Dominated splittings appear in work directed
at the (strong) Palis conjecture (that theC1-generic diffeomorphism is eitherΩ-stable or
the limit of diffeomorphisms with homoclinic tangencies or hetero-dimensional cycles)
[4], but the objectives of this chapter versus those in that by Pujals and Sambarino [4] are
fairly different. As one intriguing connection one might point out that it seems reasonable
to suppose that the presence of a dominated splitting may be necessary for stable ergod-
icity [4,79]; indeed, this is true for an open dense set of such systems ([14], see also [79,
Theorem 19.1]). On the other hand, stably ergodic systems need not be partially hyperbolic
[89]. Close on the heels of the introduction of partial hyperbolicity came another funda-
mental extension of the theory of uniformly hyperbolic dynamical systems in a different
direction. Relaxing the assumption on uniform rates by hypotheses on the Lyapunov expo-
nents leads to the study of the much broader class of nonuniformly hyperbolic dynamical
systems, which has flourished since the 1970s and is presented in [1,13]. While this is an
extension in a different direction, there are significant points of intersection with the theory
of partial hyperbolicity, some of which we mention in due course (see Definition 6.3), and
whose importance is likely to grow.

Indeed, it is natural to proceed further to the study of systems in which both uniformity
and completeness of hyperbolicity are dropped, and this theory of nonuniformly partially
hyperbolic dynamical systems is described in [1].

1.2. Outline

This chapter consists of three major portions, each of which is summarized below. The
first of these introduces the basic definitions and those parts of the theory that are most
directly analogous to corresponding ones in the theory of uniformly hyperbolic systems.
The second part examines the central and intermediate distributions and foliations, which
has a quite different character. The third part explores accessibility, ergodicity and stable
ergodicity.

1.2.1. Basic notions and results (Sections 2 and 3)We first (in Section 2) present vari-
ous definitions of partial hyperbolicity as well as basic examples. Conceptually the most
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“compact” way of thinking about uniform partial versus complete hyperbolicity is in terms
of the Mather spectrum (Section 2.3), where partial hyperbolicity amounts to having other
possibilities for the radii and number of rings.

We then proceed to a discussion of the invariant structures associated with the various
spectral rings. These come in two fundamentally distinct classes. Section 3 is an unsur-
prising generalization of the stable manifold theory for uniformly hyperbolic dynamical
systems to partially hyperbolic ones. It produces, in the presence of different rates of con-
traction or expansion, a hierarchy of fast stable or fast unstable manifolds that corresponds
to collections of “inner” or “outer” rings of the Mather spectrum, respectively. We briefly
discuss their regularity, including absolute continuity, which is important for the ergodic
theory of partially hyperbolic systems. Neither the phenomena nor the methods here are
particularly unexpected given any familiarity with the classical stable manifold theory.

1.2.2. Central and intermediate foliations (Sections 4–6)The study of the central distri-
bution turns out to be quite a different matter. The Hirsch–Pugh–Shub theory of normal
hyperbolicity helps control both the (moderate) regularity of its leaves and provide some
robustness under perturbation—once the central foliation is known to exist. Existence is a
rather delicate matter and is known only under several rather stringent assumptions, while
nonexistence is an open property. We present some weak forms of integrability that are
more easily obtained. Here the integral manifolds for different points may intersect with-
out coinciding, i.e., one does not obtain a foliation in the proper sense.

Considering this as the study of the invariant structures associated with the central ring of
the Mather spectrum, it is natural to do the same with other rings in the Mather spectrum as
well, and the associated intermediate distributions and foliations turn out to be even more
delicate.

Sections 4 and 5 study primarily topological aspects of these distributions and foliations,
and in Section 6 we turn to measurable aspects. We discuss, using examples and general
constructions, the possible failure of the central foliation to be absolutely continuous. On
one hand we present results to the effect that even when the central distribution is integrable
to a foliation with smooth leaves, absolute continuity may indeed fail in the worst possible
way: There is a set of full measure that intersects almost every leaf in a bounded number
of points only. On the other hand, there is evidence to support the widely held surmise that
singularity of the central foliation is not only possible, but indeed typical. It would not be
an overstatement to say that for a partially hyperbolic system to be stably ergodic its central
foliation has to fail to be absolutely continuous in most cases. See Section 6.2 for details.

1.2.3. Accessibility and ergodicity As we will explain more carefully, the previously
mentioned Hopf argument to establish ergodicity relies on the local product structure; in a
uniformly hyperbolic dynamical system any two nearby points have a heteroclinic point,
i.e., the local stable leaf of one point intersects the local unstable of the other. In particu-
lar, one can take a short curve in the local stable leaf of the first point to the intersection
point and concatenate it with a short arc in the unstable manifold of the second point to
join the points by what one then calls aus-path (Definition 7.1). In a partially hyperbolic
system this certainly fails when the two foliations are jointly integrable, such as in the
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case of (Anosov× identity). A priori there could be a whole spectrum of intermediate
possibilities:
• the foliations are jointly integrable in some places but not in others,
• the foliations are both subordinate to a common foliation with leaves of dimension

larger than the sum of stable and unstable dimensions,
• nearby points might only be connectible byus-paths with long arcs,
• it might take multiple concatenations ofus-paths.

Whether any of these possibilities are indeed realizable remains to be seen. But it is con-
jectured that generically only one possibility occurs: Any two points are accessible, i.e.,
can be connected by aus-path with finitely many legs.

Accordingly, 2 sections of this chapter are devoted to the notion ofaccessibility, which
has become a central idea in the study of partially hyperbolic systems. Section 7 presents
this concept, and this enables us to present next the Pugh–Shub ergodicity theory of par-
tially hyperbolic dynamical systems in Section 8.

Finally, we discuss Sinai–Ruelle–Bowen measures (or “physical measures”) in the last
section.

1.3. Other sources

The definitive account of the theory of partially hyperbolic dynamical systems at this point
is the book [71] by Pesin, and much of this chapter follow parts of that book closely.
Other important recent surveys (with a slightly different emphasis) include [34,79]. Much
of the technical foundation for the subtler results about the invariant foliations in partially
hyperbolic dynamical systems is provided by [56] (see also [55]). This chapter concentrates
more on stable ergodicity than robust transitivity, and [16] covers the latter in more detail.

As we mentioned above, the more basic theory of uniformly hyperbolic dynamical sys-
tems is surveyed in part in [2], and [62] provides a textbook exposition that provides suffi-
cient background.

The theory of nonuniformly hyperbolic dynamical systems is a different extension of the
theory of uniformly hyperbolic dynamical systems and is presented in [1].

2. Definitions and examples

2.1. Definition of partial hyperbolicity

Our basic definitions require 2-sided estimates of the norms of images of linear maps, and
it will be convenient to have a compact notation at our disposal. SupposeV,W are normed
linear spaces,A :V →W a linear map andU ⊂ V . Then we define thenormandconorm
of A restrictedtoU by

‖A �U‖ := sup
{‖Av‖/‖v‖ | v ∈U � {0}},

‖�A �U�‖ := inf
{‖Av‖/‖v‖ | v ∈U � {0}}.
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2.1.1. Partial hyperbolicity in the broad senseThe first and broader definition of partial
hyperbolicity is modeled on that of hyperbolicity, where the rates of exponential behavior
are separated by the unit circle, by considering separation by a different circle:

DEFINITION 2.1. Consider a manifoldM , an open subsetU and an embedding
f :U→M with an invariant setΛ. Then f is said to bepartially hyperbolic (in the
broad sense) onΛ, orΛ is said to be a partially hyperbolic invariant set off in the broad
sense [29] ifΛ is closed and there exist numbers 0< λ < µ, c > 0, and subspacesE1(x)

andE2(x) for all x ∈Λ, such that
(1) E1(x) andE2(x) form an invariant splitting of the tangent space, i.e.,

TxM =E1(x)⊕E2(x),

dxfE1(x)=E1
(
f (x)
)
, dxfE2(x)=E2

(
f (x)
); (2.1)

(2) if n ∈ N then‖dxf n �E1(x)‖ � cλn andc−1µn � ‖�dxf n �E2(x)�‖.
If λ < 1 the subspaceE1(x) is stable (in the usual sense [2]) and will be denoted byEs(x).
If µ> 1 the subspaceE2(x) is unstable, and we use the notationEu(x).

Clearly, eitherλ < 1 or µ > 1 (or both) and without loss of generality we assume the
former.

REMARK 2.2. In [55, p. 53] this is called (absolute) “pseudo-hyperbolicity”, and in [94],
“ (λ,µ)-splitting”.

A diffeomorphismf of a smooth compact Riemannian manifold is said to bepartially
hyperbolic in the broad senseif the whole manifold is a partially hyperbolic set forf in
the broad sense.

2.1.2. Lyapunov metrics If 0 < λ < λ′ < µ′ < µ define theLyapunov inner productor
Lyapunov metric〈·, ·〉′ by

〈v,w〉′x :=
∞∑
k=0

〈
df kv, df kw

〉
f k(x)

λ′−2k for v,w ∈E1(x),

〈v,w〉′x :=
∞∑
k=0

〈
df−kv, df−kw

〉
f−k(x)µ

′2k for v,w ∈E2(x),

〈v,w〉′x := 〈v1,w1〉′x + 〈v2,w2〉′x

for v = v1+ v2 ∈ TxM andw =w1+w2 ∈ TxM with v1,w1 ∈E1(x) andv2,w2 ∈E2(x).
The inducedLyapunov normin TxM is denoted by‖ · ‖′x . Then�(E1(x),E2(x))

′ = π/2,
‖v‖x/

√
2� ‖v‖′x � c‖v‖x , and‖df �E1(x)‖′ � λ′, ‖df−1 �E2(x)‖′ � (µ′)−1.
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PROPOSITION2.3. An embeddingf is partially hyperbolic in the broad sense if and only
if there are a(not necessarily smooth) Riemannian metric‖ · ‖, numbers

0< λ1 � µ1< λ2 � µ2 withµ1< 1, (2.2)

and an invariant splitting

TxM =E1(x)⊕E2(x), dfEi(x)=Ei
(
f (x)
)

for i = 1,2 (2.3)

of the tangent bundle such thatE1(x)⊥E2(x) for everyx ∈Λ and

λ1 � ‖�df �E1(x)�‖ � ‖df �E1(x)‖ � µ1,

λ2 � ‖�df �E2(x)�‖ � ‖df �E2(x)‖ � µ2.

2.1.3. Invariant distributions A few basic observations are quite easy to make:

PROPOSITION 2.4. Consider a manifoldM , an open setU ⊂ M and an embedding
f :M→U with a compact partially hyperbolic invariant setΛ. Then, using the notations
of Definition2.1,

(1) E1(x)= {v ∈ TxM | ∃a > 0, γ ∈ [λ,µ) ∀n ∈ N, ‖dxf nv‖ � aγ n‖v‖}.
(2) E2(x)= {v ∈ TxM | ∃b > 0, κ ∈ (λ,µ] ∀n ∈ N, ‖dxf nv‖ � bκn‖v‖}.
(3) E1(x) andE2(x) are continuous, so
(4) there existsk > 0 such that�(E1(x),E2(x))� k for all x ∈Λ.
(5) There existsε > 0 such that ifẼ ⊂ TM is an invariant distribution for which

dimẼ1(x) = dimE1(x) and �(Ẽ1(x),E1(x)) � ε for everyx ∈ Λ then Ẽ1(x) =
E1(x), and likewise forE2(x).

On the other hand, going beyond continuity is a rather more substantial achievement.
This goes back to Anosov in the hyperbolic case and to Brin and Pesin [29] in the present
context. The most general version is in [24]:

THEOREM 2.5. E1(x) andE2(x) are Hölder continuous, i.e., there existC,α > 0 such
that �(Ei(x),Ei(y))� Cρ(x, y)α for all x, y ∈Λ and i = 1,2. Indeed, the Hölder expo-
nent can be controlled through the hyperbolicity estimates: In the context of Proposition2.3
any

α <
logλ2 − logµ1

logµ2
(2.4)

admits aC > 0 for which�(E1(x),E1(y))� Cρ(x, y)α , and there is an analogous esti-
mate for the Hölder exponent ofE2.

One should not expect the distributionE1 to be smooth even in the case of Anosov
diffeomorphisms. The first example of a nonsmooth stable distribution was constructed
by Anosov in [9]. Hasselblatt [52] has shown that for a “typical” Anosov diffeomorphism
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the stable and unstable distributions are only Hölder continuous with Hölder exponent no
larger than that in (2.4) (see also [53]). Moreover, high regularity has in several classes
of hyperbolic systems been shown to occur only for algebraic systems [2]. Nevertheless,
there are situations where these distributions areC1 (see, e.g., [2,52,56]):

(1) under thepinching conditionµ1
λ2
µ2< 1,1

(2) if the distributionE1 is of codimension one.

REMARK 2.6. Our definition of partial hyperbolicity (in the broad sense) corresponds
to what is also known asabsolute partial hyperbolicity(absolute pseudo-hyperbolicity in
[55, p. 53]) as opposed to a weakerrelative (or pointwise) partial hyperbolicity(relative
pseudo-hyperbolicity in [55, p. 62f]). While for the former we have

sup
x∈M

‖df �E1(x)‖
(

inf
x∈M
∥∥(df �E2(x)

)−1∥∥)−1
< 1,

the latter is defined such that

sup
x∈M

‖df �E1(x)‖
(∥∥(df �E2(x)

)−1∥∥)−1
< 1.

See [56] where other refined versions of absolute and relative hyperbolicity are introduced.
It should be stressed that one can develop essentially the whole stability theory of partially
hyperbolic systems assuming only relative partial hyperbolicity (or, rather, the presence
of a dominated splitting, see p. 44 and [4]). However, the study of ergodic and topological
properties of partially hyperbolic systems needs the stronger assumption of absolute partial
hyperbolicity.2

2.1.4. Partial hyperbolicity The study of partially hyperbolic systems with a view to
ergodicity has concentrated on those with a triple splitting that includes a central direction
of weakest contraction and expansion:

DEFINITION 2.7. An embeddingf is said to bepartially hyperboliconΛ if there exist
numbersC > 0,

0< λ1 � µ1< λ2 � µ2< λ3 � µ3 with µ1< 1< λ3 (2.5)

and an invariant splitting into stable, central and unstable directions

TxM =Es(x)⊕Ec(x)⊕Eu(x),
dxfE

τ (x)=Eτ (f (x)), τ = s, c, u, (2.6)

1By (2.4),E1 is Lipschitz in this case.
2We would like to thank M. Viana for pointing this out to us.
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such that ifn ∈ N then

C−1λn1 � ‖�dxf n �Es(x)�‖ � ‖dxf n �Es(x)‖ � Cµn1,

C−1λn2 � ‖�dxf n �Ec(x)�‖ � ‖dxf n �Ec(x)‖ � Cµn2,

C−1λn3 � ‖�dxf n �Eu(x)�‖ � ‖dxf n �Eu(x)‖ �Cµn3.

In this case we setEcs :=Ec ⊕Es andEcu :=Ec ⊕Eu.

REMARK 2.8. By Theorem 2.5 each subbundleEτ for τ = u, s, c, cu, cs is Hölder con-
tinuous.

There is a Lyapunov metric that is fully adapted to this situation:

PROPOSITION2.9. An embedding is partially hyperbolic if and only if there exists a Rie-
mannian metric for which there are numbersλi,µi, i = 1,2,3,as in(2.5)and an invariant
splitting (2.6) into pairwise orthogonal subspacesEs(x), Ec(x) andEu(x) such that

λ1 � ‖�dxf �Es(x)�‖ � ‖dxf �Es(x)‖ � µ1,

λ2 � ‖�dxf �Ec(x)�‖ � ‖dxf �Ec(x)‖ � µ2,

λ3 � ‖�dxf �Eu(x)�‖ � ‖dxf �Eu(x)‖ � µ3. (2.7)

2.1.5. The cone criterion Verifying partial hyperbolicity appears to require finding the
invariant distributions first, so it is useful to have a more obviously robust criterion that is
easier to verify. For hyperbolic dynamical systems this goes back principally to Alekseev
[7,2].

Given a pointx ∈M , a subspaceE ⊂ TxM and a numberα > 0, define theconeat x
centered aroundE of angleα by

C(x,E,α)= {v ∈ TxM |�(v,E) < α}.
PROPOSITION2.10. An embeddingf is partially hyperbolic in the broad sense if and
only if there areα > 0 and two continuous cone familiesC1(x,α) = C(x,E1(x),α) and
C2(x,α)= C(x,E2(x),α) for which

dxf
−1(C1(x,α)

)⊂ C1
(
f−1(x),α

)
, dxf

(
C2(x,α)

)⊂ C2
(
f (x),α

)
(2.8)

as well as

‖dxf � C1(x,α)‖ � µ1< λ2 � ‖�dxf � C2(x,α)�‖. (2.9)

The evident advantage of this definition is that one can verify it having only approxima-
tions ofE andF in Definition 2.1, and these approximations need not be invariant in order
for suitable cones around them to satisfy (2.8) and (2.9).
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PROPOSITION2.11. An embeddingf is partially hyperbolic if and only if there are fam-
ilies of stable and unstable cones

Cs(x,α)= C(x,Es(x),α), Cu(x,α)= C(x,Eu(x),α)
and of center-stable cones or center-unstable cones

Ccs(x,α)= C(x,Ecs(x),α), Ccu(x,α)= C(x,Ecu(x),α),
where

Ecs(x)=Ec(x)⊕Es(x), Ecu(x)=Ec(x)⊕Eu(x),

such that

dxf
−1(Cs(x,α))⊂ Cs(f−1(x),α

)
, dxf

(
Cu(x,α)

)⊂ Cu(f (x),α),
dxf

−1(Ccs(x,α))⊂ Ccs(f−1(x),α
)
, dxf

(
Ccu(x,α)

)⊂ Ccu(f (x),α)
(2.10)

and there are0<µ1< λ2 � µ2< λ3 withµ1< 1< λ3 such that

‖dxf � Cs(x,α)‖ � µ1, λ3 � ‖�dxf � Cu(x,α)�‖,
‖dxf � Ccs(x,α)‖ � µ2, λ2 � ‖�dxf � Ccu(x,α)�‖. (2.11)

2.2. Examples of partially hyperbolic systems

2.2.1. The time-t map of a hyperbolic flow Let ϕt be a flow on a compact smooth Rie-
mannian manifoldM with a hyperbolic invariant setΛ. Givent ∈ R, the mapϕt is partially
hyperbolic onΛ with 1-dimensional central direction generated by the vector field.

2.2.2. Frame flows Let V be a closed orientedn-dimensional manifold of negative sec-
tional curvature andM = SV the unit tangent bundle ofV . Let alsoN be the space of
positively oriented orthonormaln-frames inT V . This produces a fiber bundleπ :N→M

where the natural projectionπ takes a frame into its first vector. The associated structure
groupSO(n−1) acts on fibers by rotating the frames, keeping the first vector fixed. There-
fore, we can identify each fiberNx with SO(n − 1) wheregt is the geodesic flow. The
frame flowΦt acts on frames by moving their first vectors according to the geodesic flow
and moving the other vectors by parallel translation along the geodesic defined by the first
vector. For eacht , we have thatπ ◦ Φt = gt ◦ π . The frame flowΦt preserves the mea-
sure that is locally the product of the Liouville measure with normalized Haar measure on
SO(n−1). The time-t map of the frame flow is a partially hyperbolic diffeomorphism (for
t �= 0). The center bundle has dimension 1+ dimSO(n − 1) and is spanned by the flow
direction and the fiber direction.
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2.2.3. Direct products Let f :U →M be an embedding with a compact hyperbolic set
Λ⊂M andEsf (x),E

u
f (x) the stable and unstable subspaces atx ∈Λ. Also, letg :U ′ →N

be an embedding with a compact invariant setK such that

max
x∈Λ ‖df �Esf (x)‖<min

y∈K ‖�dg(y)�‖ � max
y∈K ‖dg(y)‖<min

x∈Λ ‖�df �Euf (x)�‖.

ThenF :M ×N→M ×N , F(x, y)= (f (x), g(y)) is partially hyperbolic onΛ×K .
Particular cases areg being the identity map ofN or a rotation ofN = S1.

2.2.4. Skew products Let f :U →M be an embedding with a compact hyperbolic set
Λ⊂M andEsf (x), E

u
f (x) the stable and unstable subspaces atx ∈Λ. Also, letgx :Ux →

N be a family of embeddings ofUx ⊂ N that depend smoothly onx ∈ Λ and have a
common compact invariant setK such that

max
x∈Λ ‖df �Esf (x)‖ <min

x∈Λmin
y∈K ‖�dgx(y)�‖ � max

x∈Λ max
y∈K ‖dgx(y)‖

<min
x∈Λ ‖�df �Euf (x)�‖. (2.12)

The mapF :Λ×⋂x Ux →M ×N given byF(x, y) = (f (x), gx(y)) is partially hyper-
bolic onΛ×K .

A particular case is obtained by takingΛ=M , K = N = S1, α :M→M smooth and
gx =Rα(x) (rotation byα(x)). The map

F = Fα :M × S1 →M × S1,

F (x, y)= (f (x),Rα(x)(y)), x ∈M, y ∈ S1,

is partially hyperbolic with 1-dimensional central direction.

2.2.5. Group extensions An “algebraic” version of the previous example is a group ex-
tension over an Anosov diffeomorphism. LetG be a compact Lie group andϕ :M→ G

a smooth function onM with values inG. Define the mapF = Fϕ :M ×G→M ×G by

F(x, y)= (f (x),ϕ(x)g), x ∈M, g ∈G.

The mapF is partially hyperbolic since left translations are isometries ofG in the bi-
invariant metric. Iff preserves a smooth probability measureν then F preserves the
smooth probability measureν × νG whereνG is the (normalized) Haar measure onG.

2.2.6. Partially hyperbolic systems on3-dimensional manifolds It is an open problem to
describe compact smooth Riemannian manifolds that admit partially hyperbolic diffeomor-
phisms. To admit the splitting into stable, unstable and center distribution the dimension of
the manifold must be at least three, so it is natural to inquire first, which 3-manifolds sup-
port partially hyperbolic diffeomorphisms. The torusT3 does, because an automorphism
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given by an integer matrix with eigenvaluesλ, 1, λ−1, where|λ| �= 1, is partially hyper-
bolic, as is any sufficiently small perturbation (Corollary 2.18). Recently, Brin, Burago and
Ivanov have begun a study of partially hyperbolic dynamical systems on 3-manifolds, and
interesting results have already been obtained.

THEOREM 2.12 (Brin, Burago and Ivanov [26]).A compact3-dimensional manifold
whose fundamental group is finite does not carry a partially hyperbolic diffeomorphism.

This implies that there are no partially hyperbolic diffeomorphisms on the 3-dimensional
sphereS3.

We should mention a result that can be viewed as a precursor to Theorem 2.12. L. Díaz,
E. Pujals and R. Ures showed that a robustly transitive diffeomorphism of a 3-manifoldM

(i.e., a diffeomorphism all of whoseC1 perturbations are topologically transitive) is gener-
ically partially hyperbolic in the broad sense, and if the center-unstable bundle is integrable
then the fundamental group ofM is infinite [40]. This was extended to arbitrary dimension
by Bonatti, Díaz and Pujals [15]: Generically the homoclinic class of any periodic saddle
is either contained in the closure of an infinite set of sinks or sources (Newhouse phenom-
enon), or admits a dominated splitting; in particular, robust transitivity implies dominated
splitting (see also p. 44 and [4, Section 5]).

One may ask a question complementary to the previous one: Of what type can partially
hyperbolic diffeomorphisms of 3-manifolds be? The known robustly transitive or stably
ergodic ones are

• perturbations of skew-products over an Anosov diffeomorphism onT2,
• perturbations of the time-1 map of a transitive Anosov flow,
• some derived-from-Anosov diffeomorphisms onT3.

Pujals has speculated (see [20]) that this is indeed a complete list, and recent work by Bon-
atti and Wilkinson [20] makes it plausible that such a classification of transitive partially
hyperbolic diffeomorphisms of 3-manifolds might hold: They show that the homoclinic
geometry of a single periodic orbit can determine much of the global orbit structure. (Note
that volume-preserving such diffeomorphisms are generically transitive by Theorems 7.9
and 7.12.)

Specifically, in the case of a skew product a periodic orbit arises from a periodic point
for the base diffeomorphism and hence comes with nearby homoclinic periodic orbits that
are also embedded circles. Their first result turns this observation around:

THEOREM 2.13 (Bonatti–Wilkinson [20]).Let f be a transitive partially hyperbolic dif-
feomorphism of a compact3-manifoldM with an embedded invariant circleγ such that
there is some(sufficiently large) δ for whichWs

δ (γ ) ∩Wu
δ (γ )� γ has a connected com-

ponent that is a circle. Then, possibly after passing to on orientable cover, M is a circle
bundle overT2 and f is conjugate to a topological skew-product over a linear Anosov
mapA of T2, i.e., to a map ofM that preserves the fibration and projects toA.

In the case of the time-1 map of a transitive Anosov flow the homoclinic curves to an
invariant circle are noncompact. The corresponding result is a little less complete than the
previous one.
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THEOREM 2.14 (Bonatti–Wilkinson [20]).Let f be a dynamically coherent(Defini-
tion 4.4) partially hyperbolic diffeomorphism of a compact3-manifoldM with a closed
periodic center leafγ such that each center leaf inWs

loc(γ ) is periodic forf . Then the
center foliation supports a continuous flow conjugate to a transitive expansive flow.

It is conjectured and seems likely to be true that the expansive flows that arise here are
in turn topologically conjugate to Anosov flows.

2.3. The Mather spectrum

An embeddingf with a compact invariant setΛ generates a continuous linear operatorf∗
on the Banach spaceΓ 0(TΛM) of continuous vector fieldsv onΛ by the formula

(f∗v)(x)= df v
(
f−1(x)

)
.

The spectrumQ=Qf of the complexification off∗ is called theMather spectrumof the
dynamical systemf onΛ, and it provides alternative ways of expressing our various hy-
perbolicity conditions as well as more detailed information about separation of expansion
and contraction rates:

THEOREM 2.15 (Mather [64,71]). If nonperiodic orbits off are dense inΛ then
(1) any connected component of the spectrumQ is a ring (or annulus) Qi = {z ∈ C |

λi � |z| � µi} around0 with radii λi andµi , where0< λ1 � µ1 < · · ·< λt � µt
and t � dimM ;

(2) the invariant subspaceHi ∈ Γ 0(TM) of f∗ corresponding to the componentQi of
the spectrum is a module over the ring of continuous functions;

(3) the collection of the subspacesEi(x) = {v(x) ∈ Tx | v∈Hi} constitutes adf -
invariant continuous distribution onM and

TxM =
t⊕
i=1

Ei(x) for all x ∈M.

Since density of nonperiodic orbits is an easy consequence of hyperbolicity assumptions,
one can characterize various classes of dynamical systems using their Mather spectra.

THEOREM 2.16 (Mather [64,71]).
(1) A diffeomorphismf is Anosov if and only if1 is not contained in its Mather spec-

trumQ.
(2) A diffeomorphismf is partially hyperbolic onΛ in the broad sense if and only if its

Mather spectrum(overΛ) is contained in a disjoint union of two nonempty rings,
Q⊂Q1 ∪Q2 withQ1 lying inside of the unit disk orQ2 lying outside of the unit
disk.

(3) A diffeomorphismf is partially hyperbolic onΛ if and only if its Mather spectrum
(overΛ) is contained in a disjoint union of three nonempty rings,Q⊂Q1∪Q2∪Q3
withQ1 lying inside of the unit disk andQ3 lying outside of the unit disk.
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While [64,71] state these results only forΛ=M , the proofs readily extend to invariant
subsets.

It is natural to expect that the Mather spectrum is stable under small perturbations of
dynamical systems, and the most straightforward approach to establishing this would be to
show that the action induced on vector fields by a perturbation is close to the original such
action. Unfortunately this is always false. The expected result about the Mather spectrum
nevertheless turns out to be true:

THEOREM 2.17 (Pesin [70,71]).LetM be a compact manifold, f :M→M a diffeomor-
phism whose nonperiodic orbits are dense. Let

Qf =
t⋃
i=1

Qf,i

be the decomposition of its Mather spectrum into nonempty disjoint ringsQf,i with radii

0< λf,1 � µf,1< · · ·< λf,t � µf,t .

Let also

TM =
t⊕
i=1

Ef,i

be the corresponding decomposition of the tangent bundle intodf -invariant subbundles
Ef,i, i = 1, . . . , t . Then for any sufficiently smallε > 0 there exists a neighborhoodη of f
in Diff 1(M) such that for anyg ∈ η:

(1) the Mather spectrumQg is a union of disjoint componentsQg,i , each being con-
tained in a ring with radiiλg,i � µg,i satisfying

|λf,i − λg,i |� ε, |µf,i −µg,i |� ε;

(2) the distributionEg,i corresponding to the componentQg,i satisfies

max
x∈M �

(
Ef,i(x),Eg,i(x)

)
� Lδα � ε,

whereδ = dC1(f, g) andL> 0, α > 0 are constants.

As usual, Diffq(M) is the space ofCq diffeomorphisms with theCq topology.

COROLLARY 2.18. Anosov systems, partially hyperbolic systems, and partially hyper-
bolic diffeomorphisms form open subsets inDiff q(M), q � 1.

REMARK 2.19. While a componentQf,i of the spectrum off may be a ring, the corre-
sponding componentQg,i of the spectrum ofg may consist of several rings. To illustrate
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this situation consider an Anosov flowϕt on a smooth manifoldM and observe that the
Mather spectrum ofϕ0 = Id is the unit circle while the Mather spectrum ofϕt for t �= 0
(which is partially hyperbolic) contains at least two more additional rings.

REMARK 2.20. There are 3 general situations in which partial hyperbolicity is known to
be stable. First, we just saw that this is the case when the entire manifold is a partially
hyperbolic set (Corollary 2.18). Second, Theorem 2.17 extends to partially hyperbolic at-
tractors because attractors are stable under perturbation, so partially hyperbolic attractors
are also stably partially hyperbolic. Finally, when the partially hyperbolic set is a normally
hyperbolic manifold then Theorem 4.3 below together with Theorem 2.17 gives persistence
of partial hyperbolicity.

There are also some particular cases when partially hyperbolic sets survive under small
perturbations, such as when a partially hyperbolic setΛ is the direct product of a locally
maximal hyperbolic set and a compact manifold. Indeed,Λ is foliated by leaves of its
center foliation and can be viewed as a normally hyperbolic lamination in the sense of
[56]. Its stability follows from Theorem 4.11. Partially hyperbolic sets of this type appear
in bifurcation theory (see [48,59]).

3. Filtrations of stable and unstable foliations

3.1. Existence and subfoliation

For hyperbolic dynamical systems the classical Stable-Manifold Theorem [2] establishes
that the stable and unstable distributions are each tangent to a unique foliation. A moder-
ate adaptation of the Stable-Manifold Theorem yields analogous but more finely stratified
information when the Mather spectrum consists of a larger number of rings (see [71] and
the references therein). We should mention that the word foliation is used here in a looser
sense than in differential geometry. Even in the case of Anosov diffeomorphisms these
foliations are partitions into smooth manifolds that may only admit (Hölder) continuous
foliation charts; for hyperbolic sets the foliation locally only fills a Cantor set times a disk
(see [2,80]).

DEFINITION 3.1. A partitionW of M is called afoliation ofM with smooth leavesor
simply foliation if there existδ > 0 and� > 0 such that for eachx ∈M ,

1. the elementW(x) of the partitionW containingx is a smooth�-dimensional injec-
tively immersed submanifold; it is called the (global) leaf of the foliation atx; the
connected component of the intersectionW(x)∩B(x, δ) that containsx is called the
local leaf atx and is denoted byV (x);

2. there exists a continuous mapϕx :B(x, δ)→ C1(D,M) (whereD ⊂ R� is the unit
ball) such that for everyy ∈M ∩B(x, δ) the manifoldV (y) is the image of the map
ϕx(y) :D→M .

The functionϕx(y, z)= ϕx(y)(z) is called thefoliation coordinate chart. This function is
continuous and has continuous derivative∂

∂z
ϕx .

A continuousk-dimensional distributionE onM is said to be
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(1) weakly integrableif for each pointx ∈M there is an immersed completeC1 man-
ifold W(x) which containsx and is everywhere tangent toE, i.e.,TyW(y)= E(y)
for eachy ∈W(x) [26]. We callW(x) an integral manifold ofE throughx (note
that a priori the integral manifoldsW(x)may be self-intersecting and may not form
a partition ofM);

(2) integrableif there is a foliation whose tangent bundle isE;
(3) uniquely integrableif there is a foliationW with k-dimensional leaves such that any

C1 curveσ :R →M satisfyingσ̇ (t) ∈ E(σ(t)) for all t , is contained inW(σ(0))
(in particular,TxW(x)=E(x) for all x ∈M);

(4) locally uniquely integrableif for eachx ∈M there is ak-dimensional smooth sub-
manifoldWloc(x) and α(x) > 0 such that a piecewiseC1 curve σ : [0,1] → M

is contained inWloc(x) so long asσ(0) = x, σ̇ (t) ∈ E(σ(t)) for t ∈ [0,1] and
lengthσ < α(x). (In this caseE is integrable and the integral foliation is unique.)

THEOREM 3.2 (Hirsch, Pugh and Shub [55], Brin and Pesin [29], [71]).Supposef is
an embedding with a compact invariant setΛ on which the tangent space admits adf -
invariant splitting

TΛM =
t⊕
i=1

Ei (3.1)

with

λi < ‖�df �Ei(x)�‖ � ‖df �Ei(x)‖<µi (3.2)

for all x ∈Λ, where

0< λ1 � µ1< · · ·< λt � µt . (3.3)

(1) If µk < 1 then the distribution

F sk =
k⊕
i=1

Ei

is uniquely integrable and the maximal integral manifolds of this distribution gen-
erate a foliationWs

k ofM . The global leafWs
k (x) throughx ∈M is aC1-immersed

submanifold ofM .
(2) If λk > 1 then an analogous statement holds for the distribution

Fuk =
t⊕
i=k
Ei;

the corresponding foliation isWu
k and its leaves areWu

k (x), x ∈M .
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(3) The foliationWs
k is f -invariant and contracting, i.e., for anyx ∈M, y ∈Ws

k (x) and
n� 0,

ρsk
(
f n(x), f n(y)

)
� C(λk + ε)nρsk(x, y),

whereε is such that0< ε <min{λk+1 − µk,1− µk}, C = C(ε) > 0 is a constant
independent ofx, y and n, and ρsk is the distance inWs

k (x) induced by the Rie-
mannian metric.

(4) The foliationWu
k is f -invariant and contracting underf−1.

(5) If f isCq thenWs
k (x) andWu

k (x) areCq .

Thus, for an embeddingf with a compact invariant set� satisfying (3.1) the two filtra-
tions of distributions

F s1 ⊂ F s2 ⊂ · · · ⊂ F s� , F um ⊃ Fum+1 ⊃ · · · ⊃ Fut
integrate to filtrations of foliations

Ws
1 ⊂Ws

2 ⊂ · · · ⊂Ws
� , Wu

m ⊃Wu
m+1 ⊃ · · · ⊃Wu

t ,

where� is maximal andm is minimal such thatµ� < 1 andλm > 1 (note thatm= �+ 1
or �+ 2).Ws

k is called thek-stable foliationandWu
k the k-unstable foliationfor f . If f

is partially hyperbolic the foliationsWs = Ws
� andWu = Wu

m are called thestableand
unstablefoliations.

THEOREM 3.3 (Hirsch, Pugh and Shub [56, Theorem 6.1]).Under the assumptions of
Theorem3.2 and with1 � k < � (respectively, m � k < t), the foliationWs

k subfoliates
the foliationWs

k+1 (respectively,Wu
k+1 subfoliatesWu

k ). For everyx ∈M the leavesWs
k (y)

dependCnk smoothly ony ∈Ws
k+1(x), wherenk is the largest integer such thatµk < λ

nk
k+1.

An analogous statement holds forWu
k .

3.2. Absolute continuity

The fact that the stable and unstable foliations may not admit smooth local foliation charts
prevents us from applying the classical Fubini theorem to conclude that a set that intersects
each local leaf in a set of full (leaf-) measure must itself be of full measure. Anosov [9]
identified this as the central technical point in the ergodic theory of hyperbolic dynamical
systems (in the Hopf argument, see [57,10,30] and Section 7, p. 34). In this subsection
and the next we explain that while, due to the absence of smooth foliation charts, it seems
possible that the foliations might be singular in the measure-theoretic sense (see Section 6),
the needed property of absolute continuity still holds for the stable and unstable foliations.
We will later see that the central direction is much less well behaved.

The first step is absolute continuity of the holonomy maps.
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DEFINITION 3.4. LetW be a foliation of a manifoldM with smooth leaves and forx ∈M ,
r > 0 consider the family

L(x)= {V (w): w ∈ B(x, r)} (3.4)

of local manifolds, whereV (w) is the connected component containingw of W(w) ∩
B(x, r) andB(x, r) is the ball centered atx of radiusr .

Choose two local disksD1 andD2 that are transverse to the familyL(x), and define the
holonomy mapπ = π(x,W) :D1 → D2 (generated by the family of local manifolds) by
setting

π(y)=D2 ∩ V (w) if y =D1 ∩ V (w) andw ∈ B(x, r).

The holonomy mapπ is a homeomorphism onto its image.
Let m denote the Riemannian volume. Given a submanifoldD in M , let mD be the

Riemannian volume onD induced by the restriction of the Riemannian metric toD.

THEOREM 3.5 (Brin and Pesin [29], Pugh and Shub [75,77], [13,71]).Let f be a par-
tially hyperbolic C2 diffeomorphism of a compact smooth manifoldM . Given x ∈ M
and two transverse disksD1 andD2 to the familyL(x) of local stable manifoldsV (y),
y ∈ B(x, r), the holonomy mapπ is absolutely continuous(with respect to the measures
mD1 andmD2) and the JacobianJac(π) := dmD2/d(π∗mD1) (Radon–Nikodym derivative)
is bounded from above and bounded away from zero.

The Jacobian of the holonomy map at a pointy ∈D1 can be computed by the following
formula:

Jac(π)(y)=
∞∏
k=0

Jac(df k(π(y))f
−1|Tf k(π(y))f k(D2))

Jac(df k(y)f−1|Tf k(y)f k(D1))
.

In particular, the infinite product on the right-hand side converges.
The issue of absolute continuity as it affects the ergodic theory of hyperbolic and par-

tially hyperbolic dynamical systems can be put in this form: IfE ⊂ B(x, q) is a Borel set of
positive volume, can the intersectionE ∩ V (y) have zero Lebesgue measure (with respect
to the Riemannian volume onV (y)) for almost everyy ∈E?

Theorem 3.5 is the main step towards ruling out this pathology for the stable and unstable
foliations.

THEOREM 3.6. Letf be a partially hyperbolicC2 diffeomorphism of a compact smooth
manifoldM , ν a smoothf -invariant probability measure onM . Then the conditional
measures on eachV (w) are absolutely continuous with respect to the induced Riemannian
volume, and likewise for transversals.
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To state this more precisely, letνV (w) be the conditional measures onV (w) for w ∈
B(x, r) and consider the measurable partitionξ of

Q(x) :=
⋃

w∈B(x,r)
V (w)

into local manifolds, identifying the factor spaceQ(x)/ξ with an open transverse diskD.
Denote byν̂D the factor measure generated by the partitionξ (supported onD), bymV (w)
the Riemannian volume onV (w), and bymD the Riemannian volume onD. Then Theo-
rem 3.6 is meant to say that

(1) the measuresνV (w) andmV (w) are equivalent forν-almost everyw ∈ B(x, r);
(2) the factor measurêνD is equivalent to the measuremD .

As a consequence

dνV (w)(y)= κ(w,y)dmV (w)(y)

for everyw ∈ B(x, r) andy ∈ V (w), whereκ(w,y) is continuous and satisfies the homo-
logical equation

κ
(
f (w),f (y)

)= Jac(df �E(y))
Jac(df �E(w)) κ(w,y).

It follows that

κ(w,y)=
∞∏
i=0

Jac(df �E(f i(y)))
Jac(df �E(f i(w))) .

By the Hölder continuity of the distributionE (see Theorem 2.5), the product converges.
The absolute continuity property of local stable manifold described in Theorem 3.6 fol-

lows from absolute continuity of the holonomy map (see Theorem 3.5). However, the con-
verse does not hold.

4. Central foliations

4.1. Normal hyperbolicity

The notion of normal hyperbolicity in dynamical systems was introduced by Hirsch, Pugh
and Shub in [55] (see also [56]; a particular case of normal hyperbolicity was considered
by R. Sacker [84] in his work on partial differential equations). The theories of normal
hyperbolicity and partial hyperbolicity are closely related in their results and methods.
Moreover, the former provides techniques to study integrability of the central distribution
and robustness of the central foliation for partially hyperbolic systems (see Sections 4.3
and 4.4).
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DEFINITION 4.1. Letq � 1,M a Cq compact connected Riemannian manifold (with-
out boundary),U ⊂M open,f :U →M a Cq embedding, andN = Nf a compactC1

f -invariant submanifold ofM , i.e.,f (N)= N . The mapf is said to benormally hyper-
bolic toN if f is partially hyperbolic on (or “along”)N , i.e., there is an invariant splitting

TxM =Es(x)⊕ TxN ⊕Eu(x)
with dfEs(x)=Es(f (x)) anddfEu(x)=Eu(f (x)) (4.1)

for everyx ∈N , such that

λ1 � ‖�df �Es(x)�‖ � ‖df �Es(x)‖ � µ1,

λ2 � ‖�df � TxN�‖ � ‖df � TxN‖ � µ2,

λ3 � ‖�df �Eu(x)�‖ � ‖df �Eu(x)‖ � µ3, (4.2)

where 0< λ1 � µ1< λ2 � µ2< λ3 � µ3 andµ1< 1< λ3.

Similarly to Theorem 2.5, the splitting (4.1) is Hölder continuous.
By the Local-Stable-Manifold Theorem one can construct, for everyx ∈N , local stable

and unstable manifolds,V s(x) andV u(x), respectively, atx, such that
(1) x ∈ V s(x), x ∈ V u(x);
(2) TxV s(x)=Es(x), TxV u(x)=Eu(x);
(3) if n ∈ N then

ρ
(
f n(x), f n(y)

)
� C(µ1 + ε)nρ(x, y) for y ∈ V s(x),

ρ
(
f−n(x), f−n(y)

)
� C(λ3 − ε)nρ(x, y) for y ∈ V u(x),

whereC > 0 is a constant andε > 0 is sufficiently small.
Set

V so(N)=
⋃
x∈N

V s(x) and V uo(N)=
⋃
x∈N

V u(x). (4.3)

These are topological manifolds called localstableandunstablemanifolds ofN . They are
f -invariant and

N = V so(N)∩ V uo(N).
THEOREM 4.2 (Hirsch, Pugh and Shub [56, Proposition 5.7, Theorem 3.5]).V uo(N) and
V so(N) are Lipschitz continuous and indeed smooth submanifolds ofM .

In [56], Hirsch, Pugh and Shub used the Hadamard method for constructing local stable
and unstable manifolds throughN . Their approach does not rely on the existence of local
stable manifolds through individual pointsx ∈N but instead, builds local stable and unsta-
ble manifolds throughN as a whole. Of course, a posteriori one can derive (4.3). Hirsch,
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Pugh and Shub obtained more complete information on local stable and unstable manifolds
throughN . In particular, they showed that a normally hyperbolic manifoldN survives un-
der small perturbation of the system, thus establishing stability of normal hyperbolicity.

THEOREM 4.3 (Hirsch, Pugh and Shub [56, Sections 4–6]).Let f be aCq embedding
with q � 1 that is normally hyperbolic to a compact smooth manifoldN ,

�u := max
{
j ∈ {0, . . . , q} | µ1< λ

j

2

}
,

� := min{�s, �u},
�s := max

{
j ∈ {0, . . . , q} | µj2 < λ3

}
, (4.4)

whereλi andµi , i = 1,2,3, are as in Definition4.1.Then
(1) Existence: there exist locallyf -invariant submanifoldsV so(N) andV uo(N) tangent

toEs ⊕ TN andEu ⊕ TN , respectively.
(2) Uniqueness: if N ′ is an f -invariant set which lies in anε-neighborhoodUε(N)

ofN , for sufficiently smallε, thenN ′ ⊂ V so(N)∪ V uo(N).
(3) Characterization: V so(N) (respectively, V uo(N)) consists of all pointsy for which

ρ(f n(y),N)� r for all n� 0 (respectively, n� 0) and some smallr > 0; indeed,
ρ(f n(y),N)→ 0 exponentially asn→+∞ (respectively, asn→−∞).

(4) Smoothness: V so(N) and V uo(N) are submanifolds inM of classC�s andC�u ,
respectively; in particular, N is aC� submanifold.

(5) Lamination: V so(N) andV uo(N) are fibered byV s(x) andV u(x), x ∈N ; see(4.3).
For everyδ > 0 there existr > 0 andε > 0 such that

(6) for every embeddingg of classCq with dC1(f, g) � ε, there exists a smooth sub-
manifoldNg , invariant underg, to whichg is normally hyperbolic; Ng lies in an
r-neighborhoodUr(Nf ) ofNf ;

(7) V sog (N) ∈ C�s , V uog (N) ∈ C�u andNg ∈ C� (where the numbers�s , �u, and � are

given by(4.4)); they depend continuously ong in theC1 topology;
(8) there exists a homeomorphismH :Ur →M which isδ-close to the identity map in

theC0 topology and such thatH(Nf )=Ng .

4.2. Integrability of the central foliation and dynamical coherence

LetM be a compact smooth Riemannian manifold andf :M→M a diffeomorphism that
is partially hyperbolic with adf -invariant splitting of the tangent bundle (2.6) satisfying
(2.7). The central distributionEc may not, in general, be integrable as Section 5.1 below
illustrates. Nonintegrability is an open property (Theorem 4.9).

We describe some conditions that guarantee integrability of the central distribution. In
fact, these conditions guarantee the stronger property of unique integrability, which we
introduce now.

DEFINITION 4.4. A partially hyperbolic embedding is said to bedynamically coherentif
Ecs andEcu are integrable to foliationsWcs andWcu, respectively.



24 B. Hasselblatt and Ya. Pesin

In this caseEc is integrable to thecentral foliationWc for whichWc(x) =Wcu(x) ∩
Wcs(x), each leaf ofWcs is foliated by leaves ofWc andWs , and each leaf ofWcu is
foliated by leaves ofWc andWu.

Note that these assumptions do not imply that the integral foliations are unique, so it
is not clear whether the central subbundle is uniquely integrable in this case. [17] demon-
strates that Hölder continuous distributions may have many different integral foliations. On
the other hand, there is no known example in which a central subbundle is integrable and
not uniquely integrable.

Brin communicated the following result, whose proof is essentially contained in [26]:

THEOREM 4.5. If the central subbundle is uniquely integrable then the system is dynam-
ically coherent, and the center-stable and center-unstable subbundles are also uniquely
integrable.

DEFINITION 4.6. A foliationW ofM is said to bequasi-isometricif there area > 0 and
b > 0 such thatρW(x, y) � a · ρ(x, y)+ b for everyx ∈M and everyy ∈W(x), where
ρW is the distance along the leaves ofW .

A partially hyperbolic embeddingf is said to becenter-isometricif it acts isometrically
in the central direction, i.e.,‖df (x)v‖ = ‖v‖ for everyx ∈Λ andv ∈Ec(x).

Denote byM̃ the universal cover ofM and byW̃ s andW̃u the lifts of the stable and
unstable foliations tõM .

THEOREM 4.7 (Brin [25,71]). LetM be a compact smooth Riemannian manifold and
f :M→M a diffeomorphism which is partially hyperbolic with adf -invariant splitting
of the tangent bundle(2.6)satisfying(2.7).

If W̃ s andW̃u are quasi-isometric in the universal cover̃M , then the distributionsEcs ,
Ecu andEc are locally uniquely integrable.

If f is center-isometric then the central distributionEc is locally uniquely integrable.

As we mentioned above the central distribution may not be integrable. However, it is
often weakly integrable (Definition 3.1), and this weak integrability persists under small
perturbations:

THEOREM4.8 (Brin, Burago and Ivanov [26]).Letf be a partially hyperbolic diffeomor-
phism ofM . Assume the distributionsEcsf ,Ecuf andEcf are weakly integrable. Then there is

aC1 neighborhoodU of f such that everyg ∈ U is a partially hyperbolic diffeomorphism
whose distributionsEcsg , Ecug andEcg are weakly integrable.

So long as one stays safely within the partially hyperbolic context this weak integrability
is also a closed property:

THEOREM 4.9 (Brin, Burago and Ivanov [26]).Let {fn}n�0 be a sequence of partially
hyperbolic diffeomorphisms ofM . Assume that

(1) fn→ g in theC1 topology;
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(2) the distributionsEcsfn , E
cu
fn

andEcfn are weakly integrable for alln;
(3) all fn have the same hyperbolicity constants(2.5).

Theng is partially hyperbolic and the distributionsEcsg ,Ecug andEcg are weakly integrable.

4.3. Smoothness of central leaves via normal hyperbolicity

Theorem 4.3 gives a fair amount of information about normally hyperbolic submanifolds.
Since the center foliation, if defined, is “essentially” normally hyperbolic in that the strong
contraction and expansion act transversely to it, one would like to apply Theorem 4.3 to
this situation. Hirsch, Pugh and Shub developed a construction which allows one to do this.

Let f be a partially hyperbolic diffeomorphism with adf -invariant splitting of the tan-
gent bundle (2.6) satisfying (2.7) and withEc integrable. Forr > 0 letUr(Wc(x))⊂M be
the tubular neighborhood of radiusr of the leafWc(x). Consider the manifold that is the
disjoint union

Mr =
⋃
x∈M

Ur
(
Wc(x)

)
. (4.5)

For sufficiently smallε, 0< ε < r , the mapf induces a diffeomorphismF :Mε →Mr

which is normally hyperbolic to the submanifold

N =
⋃
x∈M

Wc(x)⊂Mε.

The manifoldsMε andN are not compact but complete. Theorem 4.3 extends to this
situation because the proof relies only on the existence of a tubular neighborhood of the
normally hyperbolic manifold, a uniform lower bound for the radius of injectivity of the
exponential map, and uniform estimates (4.2). We have all this at our disposal since the
manifoldM is compact and the central foliationWc is integrable. This yields a corollary
of Theorem 4.3:

THEOREM 4.10. Let f :M →M be a partially hyperbolic embedding with integrable
central distribution. ThenWc(x) ∈ C� for everyx ∈M , where� is as in(4.4).

4.4. Robustness of the central foliation

A far less straightforward application of the Hirsch–Pugh–Shub construction can be used
to produce robustness of the central foliationWc under small perturbation of the system;
the subtlety of the matter is evidenced by the requirement that this foliation be smooth.

THEOREM 4.11 (Hirsch, Pugh and Shub [56, Theorem 7.5]).Assume that the central
distributionEc for f is integrable, that the corresponding foliationWc is smooth and that
g is a Cq diffeomorphism sufficiently close tof in theC1 topology. Theng is partially
hyperbolic with integrable central distributionEcg .
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The direct approach suggested above is carried out in [71], but this result is usually
obtained as an immediate corollary of Theorems 4.13 and 4.15 below, whose proofs exploit
plaque expansivity and pseudo-orbits.

In general, we do not have a smooth central foliation. Moreover, even if the central fo-
liation for f were smooth, the central foliation for a “typical” perturbation off would
not be. Thus the assumptions of integrability and smoothness are not jointly robust; only
integrability persists if we assume both at the outset. In [56], Hirsch, Pugh and Shub in-
troduced a property of the central foliation forf calledplaque expansivitythat is weaker
than smoothness (see Theorem 4.13 below) but still guarantees integrability of the central
distribution for sufficiently small perturbations off and furthermore persists itself under
small perturbations (see Theorem 4.15 below).

DEFINITION 4.12. LetW be a foliation of a compact smooth manifoldM whose leaves
areCr smooth immersed submanifolds of dimensionk. Given a pointx ∈M , we call the
setP(x) ⊂W(x) aCr plaqueof W at x if P(x) is the image of aCr embedding of the
unit ballD ⊂ Rk into W(x). A plaquationP for W is a collection of plaques such that
every pointx ∈M is contained in a plaqueP ∈ P .

Let {xn}n∈Z be a pseudo-orbit forf (see [3,2]). We say that the pseudo-orbitrespectsa
plaquationP for W if for every n ∈ Z the pointsf (xn) andxn+1 lie in a common plaque
P ∈P .

Assume that the foliationW is invariant under a diffeomorphismf of M . We say that
f is plaque expansivewith respect toW if there existsε > 0 with the following property:
if {xn}n∈Z and{yn}n∈Z areε-pseudo-orbits which respectW and if ρ(xn, yn) � ε for all
n ∈ Z thenxn andyn lie in a common plaque for alln ∈ Z.

Note that plaque expansivity does not depend on the choice of either the Riemannian
structure inM or the plaquationP for W . It is indeed weaker than smoothness:

THEOREM 4.13 (Hirsch, Pugh and Shub [56, Theorem 7.2]).Letf be a partially hyper-
bolic diffeomorphism. Assume that the central distributionEc is integrable and the central
foliationWc is smooth. ThenWc is plaque expansive.

REMARK 4.14. If df �Ec(x) acts as an isometry for everyx ∈M then the central distri-
butionEc is integrable by Theorem 4.7, and the central foliationWc is plaque expansive
(see [56, Section 7]).

THEOREM4.15 (Hirsch, Pugh and Shub [56, Theorem 7.1]).Letf :M→M . If f is par-
tially hyperbolic with the central distributionEcf for f integrable andf plaque expansive

with respect to the central foliationWc
f then the same holds for any sufficientlyC1-close

diffeomorphismg (with respect toEcg andWc
g ).
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5. Intermediate foliations

The central distribution we studied in the previous section corresponds to the central ring in
the Mather spectrum, and it is now natural to study the structures associated with other in-
termediate rings (as opposed to the inner- and outermost ones, which figured in Section 3).

Consider a diffeomorphismf of classCq of a compact Riemannian manifoldM admit-
ting adf -invariant splitting (3.1) satisfying (3.2) and (3.3). Given 1< k < t with µk < 1
we now discuss the integrability problem for the invariant distributionEk , called theinter-
mediatedistribution.

5.1. Nonintegrability of intermediate distributions

In general,Ek is not integrable as we now illustrate with an example that goes back to
Smale [88] and appears in [62, Section 17.3] as well as [92, p. 1549], where it provides
an example of a diffeomorphism that is normally hyperbolic with respect to a smooth,
1-dimensional foliation and not conjugate to the time-1 map of any Anosov flow (and can
be shown to be stably ergodic using the methods of [49]).

Consider theHeisenberg groupof matrices

H =
{(1 x z

0 1 y

0 0 1

)
: (x, y, z) ∈ R

}

with the usual matrix multiplication: in(x, y, z) coordinates it is given by

(x1, y1, z1)× (x2, y2, z2)= (x1 + x2, y1 + y2, z1 + z2 + x1y2).

The center ofH is the 1-parameter subgroup(1 0 z

0 1 0
0 0 1

)
.

Thus,H is a 3-dimensional, simply connected, non-Abelian nilpotent group. Its Lie algebra
is

L(H)=
{(0 x z

0 0 y

0 0 0

)
: (x, y, z) ∈ R

}

with generators

X =
(0 1 0

0 0 0
0 0 0

)
, Y =

(0 0 0
0 0 1
0 0 0

)
, Z =

(0 0 1
0 0 0
0 0 0

)
.

Then[X,Y ] = Z while all other Lie brackets of generators are zero.
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Let G = H × H be the Lie group with generatorsX1, Y1,Z1,X2, Y2,Z2 such that
[Xi,Yi] = Zi and all other brackets of generators are zero. Its Lie algebra is

L(G)=
{(
A 0
0 B

) ∣∣A,B ∈ L(H)
}
.

The groupH has an obvious integer lattice of matrices with entries inZ which generates
an integer lattice inG. We need another lattice inG however.

Consider the number fieldK = {a + b√5 | a, b ∈ Q}. It possesses a unique nontrivial
automorphismσ such thatσ(a + b√5)= a − b√5.

LetΓ be the subgroup ofG given by expId γ , where expId :L(G)→G is the exponential
map and

γ :=
{(
A 0
0 σ(A)

) ∣∣A ∈ L(H) with entries in the algebraic integers inK
}

⊂ L(G)

with σ(A)ij = σ(Aij ). It can be shown thatΓ is a lattice [62, Section 17.3]. Define a Lie
algebra automorphismΦ onL(G) by

Φ(X1)= λ1X1, Φ(Y1)= λ2
1Y1, Φ(Z1)= λ3

1Z1,

Φ(X2)= λ−1
1 X2, Φ(Y2)= λ−2

1 Y2, Φ(Z2)= λ−3
1 Z2,

whereλ1 = 3+√
5

2 andλ2 = 3−√
5

2 . There exists a unique automorphismF :G→G with
dF|Id =Φ. Sinceλ1 andλ2 are units inK, that is integers whose inverses are also integers,
andσ(λ1)= λ2 we haveF(Γ )= Γ . Thus,F projects to an Anosov diffeomorphismf of
Γ \G.

The invariant splitting forf is T (Γ \G)=Es⊕Eu, whereEs is the 3-dimensional dis-
tribution generated byX2, Y2 andZ2 andEu is the 3-dimensional distribution generated
by X1, Y1 andZ1. Observe thatEu = P ⊕Q whereP is the 2-dimensional distribution
generated byX1, Y1 andQ is the 1-dimensional distribution generated byZ1. The distri-
butionP is intermediate and is not integrable. To see this note that the generatorsX1, Y1
andZ1 induce three vector fieldsx1, y1 andz1 ong ∈ Γ \G such thatx1(g), y1(g) ∈ P(g)
andz1(g) ∈Q(g) for anyg ∈ Γ \G. Since the distributionP is smooth, by the Frobenius
theorem, its integrability would imply that the Lie bracket[x1, y1] of vector fieldsx1 and
y1 lies inP , contrary to[X1, Y1] = Z1.

It follows from Theorem 4.9 that nonintegrability in this example is an open property.

5.2. Invariant families of local manifolds

Recall that we assume there is adf -invariant splitting (3.1) satisfying (3.2) and (3.3) and
we consider 1< k < t for which µk < 1. The preceding example notwithstanding, there



Partially hyperbolic dynamical systems 29

are positive results for the integrability problem for the invariant distributionEk . After all,
if 1 < k < t then the intermediate distributionEk is the central distribution in the splitting

TM =
(
k−1⊕
j=1

Ej

)
⊕Ek ⊕

(
t⊕

j=k+1

Ej

)
,

so we can apply results of Sections 4.3 and 4.4.

REMARK 5.1. For
⊕k−1
j=1Ej and

⊕t
j=k+1Ej to be integrable we need this to correspond

to a standard partially hyperbolic situation, which by (2.5) requiresµk−1< 1 (this follows
from our assumptionµk < 1) as well asλk+1> 1. By (3.2) and (3.3) this means thatf is
an Anosov diffeomorphism.

Theorem 4.10 gives the class of smoothness of the leaves of the foliationWk whenEk is
integrable:

THEOREM 5.2. With the notations of(3.2)and (3.3),supposeηk andmk are the largest
integers such thatµk−1 < λ

ηk
k andµk < λ

mk
k+1, respectively, and letnk = min{ηk,mk}. If

Ek is integrable then the leaves of the corresponding intermediate invariant foliationWk
areCnk .

Note that the assumptions are closely related to those of Theorem 3.3, but the conclusion
is complementary. The present result asserts smoothness of leaves, whereas Theorem 3.3
is about smooth dependence of the leaves on a base point (when those leaves are known to
be as smooth as the diffeomorphism by Theorem 3.2).

As to robustness of the integral foliationWk , we wish to apply Theorem 4.15.

THEOREM 5.3. AssumeWk is plaque expansive(e.g., smooth) and thatλk+1 > 1. Let g
be aCq diffeomorphism sufficiently close tof in theC1 topology. By Theorem2.17,g pos-
sesses an invariant distribution(Ek)g corresponding toEk . This distribution is integrable
and the corresponding foliation(Wk)g is plaque expansive.

Since the diffeomorphismf in the last theorem is Anosov by Remark 5.1 so isg. By the
structural stability theorem,f andg are topologically conjugate by a Hölder homeomor-
phismh which is close to the identity map. It follows thath(Wk) is ag-invariant foliation
whose leaves are Hölder continuous submanifolds. Theorem 5.3 shows that the leaves of
this foliation are indeed smooth of classC�.3

Even if the distributionEk is integrable its leaves may not beCq . To explain this phe-
nomenon consider the linear mapA(x,y)= (λx,µy) of the plane, where 0< λ < µ< 1.
The origin is an attracting fixed point. Thex-axis can be geometrically characterized as
consisting of pointsP for which

ρ(0,AnP )� λnρ(0,P ).
3h(Wk) is an integral foliation because by a lemma of Hirsch–Pugh–Shub, normally hyperbolic manifolds are

unique and robust in theC0 topology.
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On the other hand any curveγC = {(x, y): x = Cy logλ/logµ} is invariant underA and
consists of pointsP for which

ρ(0,AnP )� µnρ(0,P ).

Note that for logλ/ logµ /∈ N (nonresonance) these curves are only finitely differentiable
except for they-axis (corresponding toC = 0). Therefore, there is no “obvious” choice of
a local leaf and it seems unlikely that the intermediate foliation will happen to include the
leaf that is infinitely differentiable.

However, ifµk < 1 and some specialnonresonancecondition holds, smooth leaves are
realizable: the distributionEk admits an invariant family of local manifolds{Vk(x)}x∈M
which are as smooth as the mapf is—but they may not constitute a foliation.

THEOREM 5.4 (Pesin [70]).Fix k such that0< λk � µk < 1 and assume thenonres-
onance conditionN := [logλ1/ logµk] + 1 � q and if j = 1, . . . ,N , 1 � i < k then
[(λk)j , (µk)j ] ∩ [λi,µi] = ∅.

Then for everyx ∈M there exists a local submanifoldVk(x) such that:
(1) x ∈ Vk(x) andTxVk(x)=Ek(x);
(2) f (Vk(x))⊂ Vk(f (x));
(3) Vk(x) ∈ Cq ;
(4) for anyx ∈M the collection of local manifolds{Vk(x)}x∈M is the only collection of

CN local manifolds that satisfiesTxVk(x)=Ek(x), f (Vk(x))⊂ Vk(f (x)), and

sup
1�s�N

sup
x∈M

‖dsVk(x)‖ � const.

REMARK 5.5. The nonintegrable intermediate distributionP for the diffeomorphism in
Section 5.1 does not satisfy the nonresonance condition.

5.3. Lack of smoothness of the intermediate foliations

The following example illustrates the possible lack of smoothness of leaves for interme-
diate distributions. Consider an automorphismA of the torusT3 with eigenvaluesλi ,
i = 1,2,3, such that 0< λ1< λ2< 1< λ3. We have an invariant splitting

TT3 =
3⊕
i=1

Ei,A.

Assume logλ1/ logλ2 /∈ Z (nonresonance), and letN = [logλ1/ logλ2] + 1.
Consider the foliationW2,A associated toE2,A. By Theorem 5.2 anyC∞ diffeomor-

phismf sufficientlyC1-close toA possesses an invariant foliationW2,f tangent toE2,f
and withCN−1 leaves. In general, the leavesW2,f (x) cannot be more thanCN−1 smooth
for a “large” set of pointsx ∈M . Hence, they are different from the local submanifolds
given by the preceding theorem, since these submanifolds are of classCN (indeed, of class
C∞ in this particular case).



Partially hyperbolic dynamical systems 31

THEOREM 5.6 (Jiang, de la Llave and Pesin [61]).In any neighborhoodη of A in the
spaceDiff 1(T3) there existsG ∈ η such that

(1) G is aC∞ diffeomorphism and topologically conjugate toA;
(2) G admits an invariant splitting

TT3 =
3⊕
i=1

Ei,G

with Ei,G close toEi,A and integrable; the integral manifoldWi,G(x) passing
throughx is of classCN−1 but notCN for somex ∈ T3;

(3) the set of points{x |Wi,G(x) is not of classCN } is a residual subset ofT3.

6. Failure of absolute continuity

Let W be a foliation ofM with smooth leaves andV (x), x ∈M , the local leaf passing
throughx. In our discussion of the stable and unstable foliations in Section 3 we discussed
the question of absolute continuity:

If E ⊂ B(x, q) is a Borel set of positive volume, can the intersectionE ∩V (y)
have zero Lebesgue measure (with respect to the Riemannian volume onV (y))
for almost everyy ∈E?

6.1. An example of a foliation that is not absolutely continuous

We describe a scheme due to Katok for producing partially hyperbolic maps whose central
foliation fails to be absolutely continuous in the strongest possible way: there is a set of full
measure that intersects each leaf of the foliation in at most one point. This phenomenon is
known as “Fubini’s nightmare” since the Fubini theorem fails with respect to this foliation
in the strongest possible way. (An example of this construction on an annulus was widely
circulated from 1992 [32], and in 1997 a version on the square was published [65].) We
thank Keith Burns for providing the presentation rendered here.

LetA be the hyperbolic automorphism of the torusT2 defined by the matrix(
2 1
1 1

)
.

There is a family{ft | t ∈ [0,1]} of diffeomorphisms preserving the aream and satisfying
the following conditions:

(1) ft is a small perturbation ofA for everyt ∈ [0,1];
(2) ft depends smoothly ont ;
(3) l′(t) �= 0, wherel(t) is the larger eigenvalue of the derivative offt at its fixed point.

The diffeomorphismsft are all Anosov, conjugate toA, and ergodic with respect tom. For
any s andt in [0,1], the mapsfs andft are conjugate via a unique homeomorphismhst
close to the identity, i.e.,ft = hst ◦fs ◦h−1

st . The homeomorphismhst is Hölder continuous.
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Letmst be the pushforward ofm by hst . Thenmst is an ergodic invariant measure forft .
Using the condition onl(t) and the following lemma, we see thatm �=mst unlesss = t .

LEMMA 6.1 (de la Llave [39]).Supposef,g :T2 → T2 are smooth area-preserving
Anosov diffeomorphisms that are conjugate via an area-preserving homeomorphismh.
Letp be a periodic point forf with least periodk. ThenDf k(p) andDgk(h(p)) have the
same eigenvalues up to sign.

PROOF. Let λ and λ′ be the eigenvalues ofDf k(p) andDgk(h(p)), respectively, that
lie inside the unit circle. Sincef and g are area-preserving, the other eigenvalues of
Df k(p) andDgk(h(p)) are 1/λ and 1/λ′, respectively. Choosex ∈Wu

loc(p;f )� {p} and
y ∈Ws

loc(p;f )� {p} that are not equal top. LetRn be the smallest “rectangle” bounded
by (parts of)Ws

loc(p;f ), Ws
loc(f

−kn(x);f ), Wu
loc(p;f ), andWu

loc(f
kn(y);f ). Let R′

n

be the smallest “rectangle” bounded by (parts of)Ws
loc(h(p);g), Ws

loc(h(f
−kn(x));g),

Wu
loc(h(p);g), andWu

loc(h(f
kn(y));g). Then

lim
n→∞

area(Rn+1)

area(Rn)
= λ2k and lim

n→∞
area(R′

n+1)

area(Rn)
= λ′2k.

On the other hand, the conjugacyh takesRn toR′
n for anyn. Sinceh is area-preserving, it

follows thatλ=±λ′. �

A point is genericwith respect to an invariant measure if the forward and backward
Birkhoff averages of any continuous function are defined at the point and are equal to
integral of the function with respect to the measure. Ifx is generic forfs with respect tom,
thenhst (x) is generic forft with respect tomst and hence is not generic forft with respect
tom, unlesss = t . (To see this, note that the Birkhoff averages of a continuous functionϕ

along theft -orbit of hst (x) are the same as the Birkhoff averages ofϕ ◦ hst along thefs
orbit of x.)

Now consider the diffeomorphismF :T2 × [0,1] → T2 × [0,1] given byF(x, t) =
(ft (x), t). We have just observed that for anyx ∈ T2 the setH(x) = {(h0t (x), t) | t ∈
[0,1]} contains at most one element of the setG of points(y, t) ∈ T2 × [0,1] such thaty
is generic forft with respect tom.

Now, F is a small perturbation ofA× Id[0,1] and thus partially hyperbolic. It follows
from Theorem 4.11 thatF has a center foliation whose leaves are small perturbations of
the intervals{x} × [0,1] for x ∈ T2. SinceF maps the toriT2 × {t} into themselves, it is
easily seen that the leaves ofWc

F are�-normally hyperbolic for any�, and hence areC∞
by Theorem 4.10. On the other hand, for eachx ∈ T2, the leaf ofWc

F that passes through
(x,0) ∈ T2 × [0,1] isH(x).

The setG of generic points forF has full measure with respect tom in each torus
T2 × {t} and hence has full Lebesgue measure inT2 × [0,1], but, as observed above, it
intersects each center leaf in at most one point.

To construct an analogous example onT2 × S1 use two periodic points simulta-
neously instead of the one fixed point. The example here is constructed in such a
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way that l(t) = l(s)⇒ t = s. For a continuous parametrization usingt ∈ S1 this will
not work, but starting from the mapA2 instead, which has several fixed points, we
use perturbations for which the largest eigenvaluesl1(t) and l2(t) at two fixed points
x1(t) and x2(t) satisfy l1(t) = l1(s) and l2(t) = l2(s) ⇒ t = s (mod1). For exam-
ple, make l′1(t) > 0 on (0,1/2), l′1(t) < 0 on (1/2,1) and l′2(t) = 0 on (0,1/2),
l′1(t) > 0 on(1/2,3/4), l′2(t) < 0 on(3/4,1).

6.2. Pathological foliations

We saw earlier that even in terms of existence, uniqueness and smoothness of leaves the
central foliation is a rather more delicate entity than the members of the stable and unstable
filtrations, and the preceding example shows that if there is a central foliation at all it may
fail to be absolutely continuous. It turns out that this is not at all exceptional.

Let A be an area-preserving linear hyperbolic automorphism of the 2-dimensional
torusT2. Consider the mapF =A× Id of the 3-dimensional torusT3 = T2×S1. Any suffi-
ciently smallC1 perturbationG of F is uniformly partially hyperbolic with 1-dimensional
central distribution. The latter is integrable to a continuous foliationWc ofM with compact
leaves (they are diffeomorphic toS1; this foliation can be shown to be Hölder continuous
[80]). There is a perturbationG of F which preserves volume and has nonzero Lyapunov
exponents in the central direction [87] (see also [42]). In this case the central foliation is
not absolutely continuous: for almost everyx ∈M the conditional measure (generated by
the Riemannian volume) on the leafWc(x) of the central foliation passing throughx has
finite support [83].

We describe a more general version of this result. Let(X, ν) be a probability space
andf :X→ X an invertible transformation that preserves the measureν and is ergodic
with respect toν. LetM be ann-dimensional smooth compact Riemannian manifold and
ϕ :X→ Diff 1+α(M). Assume that the skew-product transformation

F :X×M→X×M, F(x, y)= (f (x),ϕx(y))
is Borel measurable and possesses an invariant ergodic measureµ on X ×M such that
π∗µ= ν, whereπ :X×M→X is the projection.

Forx ∈X andk ∈ Z defineϕ(k)x :M→M by

ϕ(k+1)
x = ϕf k(x) ◦ ϕ(k)x ,

whereϕ(0)x = Id. Since the tangent bundle toM is measurably trivial the derivative map of
ϕ along theM direction gives a cocycle

A :X×M ×Z → GL(n,R),

whereA(x, y, k)= dyϕ(k)x . If log+ ‖dϕ‖ ∈ L1(X×M,µ) then the Multiplicative Ergodic
Theorem and ergodicity ofµ imply that the Lyapunov exponentsχ1 < · · · < χ� of this
cocycle are constant forµ-almost every(x, y).
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THEOREM 6.2 (Ruelle and Wilkinson [83]).If for someγ > 0 the functionϕ satisfies

log+ ‖dϕ‖γ ∈ L1(X, ν), (6.1)

where‖ · ‖γ is theγ -Hölder norm, and ifχ� < 0 then there exists a setS ⊂X×M of full
measure andk ∈ N such thatcard(S ∩ ({x} ×M))= k for almost everyx ∈X.

This phenomenon is rather typical.

DEFINITION 6.3. A partially hyperbolic diffeomorphism that preserves a smooth measure
is said to havenegative central exponentsif the Lyapunov exponents in the central direction
are negative almost everywhere.

CONJECTURE6.4. The central foliation of a “typical” partially hyperbolic diffeomor-
phism with negative central exponents is not absolutely continuous.

Mañé proved (unpublished) that if the central foliation is one-dimensional and has com-
pact leaves then this foliation is not absolutely continuous provided the Lyapunov exponent
in the central direction is nonzero on a set of positive measure.4 Hirayama and Pesin [54]
showed that the central foliation is not absolutely continuous if it has compact leaves and
f is “central dissipative”, i.e., the sum of the central exponents is nonzero on a set of posi-
tive measure (here, negative, positive or zero exponents can be present). Note that partially
hyperbolic central dissipative diffeomorphisms whose central foliation has compact leaves
form an open set in the space ofC1 diffeomorphisms and that any partially hyperbolic
diffeomorphism whose central foliation has compact leaves can be perturbed to become
central dissipative.

This motivates the question whether one can perturb a partially hyperbolic system with
all central Lyapunov exponents zero to a system with negative central exponents. This has
been shown to be true in some particular cases (see [8,43,12,14]) but remains unknown
otherwise.

CONJECTURE6.5. Given a partially hyperbolic dynamical systemf whose central Lya-
punov exponents are zero, there exists a partially hyperbolic dynamical system with nega-
tive central exponents arbitrarily close tof .

7. Accessibility and stable accessibility

We now begin our study of the ergodic theory of partially hyperbolic dynamical systems.
The strategy for establishing ergodicity is based on suitable extensions of the Hopf argu-
ment [57], see also [62, p. 217], and we describe it here in order to explain the main object
of the present section.

The Hopf argument establishes ergodicity of a uniformly hyperbolic diffeomorphism as
follows. By the Birkhoff Ergodic Theorem, ergodicity means that for everyL1-function

4We thank A. Wilkinson for providing us with this information.
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ϕ (by L1-densityϕ is without loss of generality continuous, hence uniformly continuous
by compactness) the time averages or Birkhoff averagesϕn := 1

n

∑n−1
i=0 ϕ ◦ f n converge

to a constant a.e. Uniform continuity ofϕ and the contraction of stable leaves imply that
the limit function is constant on stable leaves, and likewise for “backwards” time averages
(obtained analogously fromf−1) on unstable leaves. Since the Birkhoff Ergodic Theorem
implies that the forward and backward limits exist and agree a.e., one deduces that these
are constant a.e. from the fact that this holds on stable and unstable leaves separately, using
absolute continuity: “Almost everywhere on almost every leaf” is the same as “almost
everywhere”.

For partially hyperbolic dynamical systems the same argument can be attempted, but first
of all, one cannot use all three foliations because the Hopf argument relies on contraction in
either forward or backward time to conclude that an invariant function is constant on leaves.
The center foliation lacks this feature (and may, moreover, fail to be absolutely continuous
as we have seen, which would cause problems in the later stage of the argument). On
the other hand, in this case it is not clear that any two nearby points have a heteroclinic
point. Put differently, in the hyperbolic situation one can join any two nearby points by
a path consisting of two short segments, one each in a stable and an unstable leaf. (We
call such a path aus-path.) This may not be the case in a partially hyperbolic system, as
one sees, for example, in the case of Cartesian products of a hyperbolic dynamical system
with the identity, which are evidently not ergodic. More to the point, joint integrability of
the stable and unstable foliations limits these connections to pairs of points that lie in the
same joint stable–unstable leaf. This motivates interest in how joint integrability can fail.
It is conceivable, for example, that there are situations in which the foliations are jointly
integrable in some places but not in others, or cases in which they are not jointly integrable
but nevertheless both subordinate to a common foliation the dimension of whose leaves is
larger than the sum of stable and unstable dimensions. Whether these are possible is not
very well understood, and the question of which of these situations may occur in examples
is of interest in its own right.

In terms of salvaging the Hopf argument, say, it would be natural to make the assumption
that any two nearby points can be joined by aus-path consisting of two short segments in
a stable and unstable leaf, respectively (“accessibility by aus-path with short legs”). This
should be relatively easy to use. Under the name of “local transitivity” it was imposed by
Brin and Pesin [29], but it turned out to be too restrictive to be widely applicable. Therefore
one wishes to explore weaker assumptions that are still strong enough to yield topological
or measurable irreducibility. One can relax this assumption by allowing “long legs”, i.e.,
by requiring only that two nearby points be connected by aus-path whose stable and
unstable pieces may be rather long. On the other hand, one may allow the connection to
be established by a path consisting of a multitude of pieces that lie alternatingly in stable
and unstable leaves. If one simultaneously drops the requirement that the legs be short, one
obtains the notion of accessibility that is now in use.

While it is intuitive to present this notion in terms of paths, and these are used in proving
topological transitivity, they are not employed in proofs of ergodicity. The most obvious
technical difficulty with these would be that the transition points between stable and unsta-
ble segments must have the same forward and backward Birkhoff averages for the function
at hand in order for the Hopf argument to work. But this may be tricky to arrange. There-
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fore one argues directly with the algebras of sets in the proofs of ergodicity, as explained
in the next section.

7.1. The accessibility property

DEFINITION 7.1. Let f be a partially hyperbolic diffeomorphism of a compact Rie-
mannian manifoldM .

Two pointsp,q ∈M are said to beaccessible, if there are pointszi ∈ M with z0 =
p, z� = q, such thatzi ∈ V α(zi−1) for i = 1, . . . , � and α = s or u. The collection of
points z0, z1, . . . , z� is called theus-path connectingp and q and is denoted variously
by [p,q]f = [p,q] = [z0, z1, . . . , z�]. (Note that there is an actual path fromp to q that
consists of pieces of smooth curves on local stable or unstable manifolds with thezi as
endpoints.)

Accessibility is an equivalence relation and the collection of points accessible from a
given pointp is called theaccessibility classof p.

A diffeomorphismf is said to have theaccessibility propertyif the accessibility class
of any point is the whole manifoldM , or, in other words, if any two points are accessible.

If f has the accessibility property then the distributionEs ⊕ Eu is not integrable (and
therefore, the stable and unstable foliations,Ws andWu, are not jointly integrable). Other-
wise, the accessibility class of anyp ∈M would be the leaf of the corresponding foliation
passing throughp.

There is a weaker version of accessibility which provides a useful tool in studying topo-
logical transitivity off .

DEFINITION 7.2. Givenε > 0, we say thatf is ε-accessibleif for every open ballB of
radiusε the union of accessibility classes passing throughB isM .

An equivalent requirement is that the accessibility class of any point should enter every
open ball of radiusε, i.e., beε-dense. Clearly, iff is accessible then it isε-accessible
for anyε. It is not hard to check that a perturbation of an accessible dynamical system is
ε-accessible:

PROPOSITION7.3. If a partially hyperbolic diffeomorphismf has the accessibility prop-
erty andε > 0 then

(1) there exist� > 0 andR > 0 such that for anyp,q ∈M one can find aus-path that
starts atp, ends within distanceε/2 of q, and has at most� legs, each of them with
length at mostR;

(2) there exists a neighborhoodU of f in the spaceDiff 2(M) such that everyg ∈ U is
ε-accessible.

Often, an “almost-everywhere” accessibility notion is adequate:
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DEFINITION 7.4. We say thatf has theessential accessibility propertyif the partition
of M by the accessibility classes is trivial in the measure-theoretical sense, i.e., any mea-
surable set that consists of accessibility classes has measure zero or one.

7.2. Accessibility and topological transitivity

It is not hard to see that accessibility plus volume-preservation produce a fair amount of
recurrence.

DEFINITION 7.5 [3]. Givenε > 0 we say that an orbit isε-denseif the points of the orbit
form anε-net. Clearly, a trajectory{f n(x)}n∈Z is everywhere dense inM if and only if it
is ε-dense for everyε > 0.

We say that a pointx ∈M is forward (respectively,backward) recurrentif for any r > 0
there existsn > 0 (respectively,n < 0) such thatf n(x) ∈ B(x, r). If a point x is forward
(respectively, backward) recurrent then for anyr > 0 there exists a sequencenk →+∞
(respectively,nk →−∞) such thatf nk (x) ∈ B(x, r).

THEOREM 7.6 (Burns, Dolgopyat and Pesin [31]).If a partially hyperbolic diffeomor-
phismf is ε-accessible and preserves a smooth measure then almost every orbit off is
ε-dense.

PROOF. Fix an open ballB of radiusε. Say that a point isgood if it has a neighborhood
of which almost every point has an iterate inB. We must show that everyp ∈M is good.

Fix p ∈ M . Sincef is ε-accessible, there is aus-path [z0, . . . , zk] with z0 ∈ B and
zk = p. Thenz0 is good, and we show by induction onj that eachzj is good.

If zj has a neighborhoodN such thatO(x)∩B �= ∅ for almost everyx ∈N let S be the
subset ofN consisting of points with this property that are also both forward and backward
recurrent. By the Poincaré Recurrence Theorem [3, Theorem 3.4.1],S has full measure
in N . If x ∈ S andy ∈Ws(x) ∪Wu(x) thenO(y) ∩ B �= ∅. The absolute continuity of
the foliationsWs andWu means that

⋃
x∈S(Ws(x) ∪Wu(x)) has full measure in the set⋃

x∈N(Ws(x)∪Wu(x)), which is a neighborhood ofzj+1. �

COROLLARY 7.7 (Brin [22]). Let f be a partially hyperbolic diffeomorphism of a com-
pact Riemannian manifoldM that preserves a smooth measure onM and has the acces-
sibility property. Then for almost every pointx ∈M the trajectory{f n(x)}n∈Z is dense
inM . In particular, f is topologically transitive.

REMARK 7.8. In fact, Brin proved this using only that every point is nonwandering. This
holds in particular when the map preserves a smooth measure as well as when periodic
points are dense.

One can relax accessibility to essential accessibility:
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THEOREM 7.9 (Burns, Dolgopyat and Pesin [31]).If a partially hyperbolic diffeomor-
phismf is essentially accessible and preserves a smooth measure then it is topologically
transitive.

The assumption thatf preserves a smooth measure cannot be dropped in general.

THEOREM7.10 (Niţică and Török [66]).ConsiderF = f × Id :M×S1 →M×S1, where
f is a C1 Anosov diffeomorphism ofM . There exists aC1 neighborhood ofF whose
elements are accessible but not topologically transitive.

PROOF. By Theorem 7.12 below (see also Theorem 7.13) there is aC1-open andC1-
dense set of accessibleC1-small perturbations ofF , so it suffices to construct an open set
of nontransitive diffeomorphisms. Chooseh ∈ Diff 1(S1) as close to the identity as desired
with h having an attracting fixed point. There are open neighborhoodsU,V ⊂ S1 of this
point withh(Ū)⊂ V ⊂ V̄ ⊂U . If g := f × h theng(M × Ū )⊂M ×V and any map that
isC0-close tog has the same property. Note that such a transformation is not topologically
transitive because each positive semiorbit has at most one element in the open setM ×
(U � V̄ ). �

7.3. Stability of accessibility

Accessibility allows one to salvage the Hopf argument for ergodicity. Since we are also
interested in stable ergodicity, it is natural to begin by looking at stable accessibility.

DEFINITION 7.11. A diffeomorphismf is said to bestably accessibleif there exists a
neighborhoodU of f in the space Diff1(M) (or in the space Diff1(M,ν) whereν is an
f -invariant Borel probability measure) such that any diffeomorphismg ∈ U has the acces-
sibility property.

7.3.1. General theory The study of stable accessibility is based on thequadrilateral ar-
gumentfirst introduced by Brin [23]. Roughly speaking it goes as follows (we assume for
simplicity that the central distributionEc is integrable). Given a pointp ∈M , consider a
4-leggedus-path [z0, z1, z2, z3, z4] originating atz0 = p. We connectzi−1 with zi by a
geodesicγi lying in the corresponding stable or unstable manifold and we obtain the curve
Γp =⋃1�i�4 γi . We parameterize it byt ∈ [0,1] with Γp(0)= p.

If the distributionEs ⊕Eu were integrable (and hence, the accessibility property forf

would fail) the endpointz4 = Γp(1) would lie on the leaf of the corresponding foliation
passing throughp. Therefore, one can hope to achieve accessibility if one can arrange a
4-leggedus-path in such a way thatΓp(1) ∈Wc(p) andΓp(1) �= p. In this case the path
Γp can be homotoped through 4-leggedus-paths originating atp to the trivial path so
that the endpoints stay inWc(p) during the homotopy and form a continuous curve. Such
a situation is usually persistent under small perturbations off and hence leads to stable
accessibility.
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We note that all current applications of stable accessibility are to dynamically coherent
systems.

The first substantial result is that the accessibility property isC1 generic in the space of
partially hyperbolic diffeomorphisms, volume-preserving or not.

THEOREM 7.12 (Dolgopyat and Wilkinson [44]).Let q � 1, f ∈ Diff q(M) (or f ∈
Diff q(M,ν), whereν is a smooth invariant measure onM) be partially hyperbolic. Then
for every neighborhoodU ⊂ Diff 1(M) (respectively, U ⊂ Diff 1(M,ν)) of f there exists a
Cq diffeomorphismg ∈ U that isstablyaccessible.

An outline of the proof of this theorem in the special case when the central distribution
Ec is 1-dimensional and integrable can be found in [71].

In the special case when the partially hyperbolic diffeomorphism has 1-dimensional
center bundle, accessibility can be shown to be an open dense property in the space of
diffeomorphisms of classC2 (see [41]).

7.3.2. Results in special casesTheorem 7.12 can be improved in some special cases. In
the remainder of this subsection we consider skew products over Anosov diffeomorphisms
satisfying (2.12), time-t maps of suspension flows and group extensions over Anosov dif-
feomorphisms. These systems are partially hyperbolic and hence so are small perturba-
tions. Their central distribution is integrable and the corresponding central foliation has
compact smooth leaves. The proofs of accessibility exploit various versions of Brin’s
quadrilateral argument, and outlines can be found in [71].

7.3.3. Skew products over Anosov diffeomorphismsIn the context of Section 2.2.4 we
get

THEOREM 7.13 (Niţică and Török [66]). If M is a connected manifold then there is a
neighborhood ofF in Diff q(M×S1) or Diff q(M×S1, ν×m) in which stable accessibility
is open and dense.

7.3.4. Special flows

THEOREM 7.14 (Brin [21], Talitskaya [90], [71]). Let Tt be the special flow(see
[3, Sections 1.3j, 2.2j, 5.2j, 6.5d])over aCq Anosov diffeomorphism with roof function
H :M → R+. There exists an open and dense setU of Cq functionsH :M → R+ such
that the special flowTt is stably accessible.

7.3.5. Group extensions Let G be a compact connected Lie group,f :M → M a Cq

Anosov diffeomorphism, andϕ :M→G aCq function. Consider theG-extension

F = Fϕ :M ×G→M ×G, Fϕ(x, y)=
(
f (x),ϕ(x)y

)
of f . See Section 2.2.
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THEOREM 7.15 (Brin [23], Burns and Wilkinson [36]).For every neighborhoodU ⊂
Cq(M,G) of ϕ there is aψ ∈ U such thatFψ is stably accessible. In other words, stably
accessible group extensions are dense in the space ofCq group extensions over the Anosov
diffeomorphismf .

7.3.6. Time-t maps of an Anosov flowLet ϕt be an Anosov flow on a compact smooth
Riemannian manifoldM . It turns out that stable accessibility of the time-1 diffeomor-
phism depends on whether the distributionEs ⊕Eu is integrable, i.e., whether the stable
and unstable foliations,Ws andWu, of the time-1 map are jointly integrable. First, let us
comment on joint integrability.

Fix ε > 0. Given a pointx ∈M , consider a local smooth submanifold

Π(x)=
⋃

y∈Bu(x,ε)

⋃
−ε�τ�ε

ϕτ (y)

throughx. Forx, x′ ∈M let πx,x′ :Π(x)→Π(x′) be the holonomy map generated by the
family of local stable manifolds. The foliationsWs andWu are jointly integrableif for
everyy ∈Π(x) the image of the local unstable leafV u(y) underπx,x′ is the local unstable
leafV u(πx,x′(y)).

THEOREM 7.16 (Burns, Pugh and Wilkinson [35]).Assume the stable and unstable foli-
ations of the flow are not jointly integrable. Then the time-1 mapϕ1 is stably accessible.

By verifying the hypotheses of Theorem 7.16 one can establish stable accessibility of
the time-1 map for

(1) geodesic flows on negatively curved manifolds (more generally, contact flows; Ka-
tok and Kononenko [63]);

(2) C2 volume-preserving flows on compact 3-manifolds that are not special flows with
a constant height function (Burns, Pugh and Wilkinson [35]).

We close this section with two conjectures about accessibility.

CONJECTURE7.17. A partially hyperbolic dynamical system with the accessibility prop-
erty is stably accessible.

This conjecture fails if one replaces accessibility by essential accessibility due to an
example by Brin [34].

CONJECTURE7.18 [76]. The space of stably accessible partially hyperbolic dynamical
systems is open and dense in theCr topology for anyr � 1. (This is known forr = 1 by
[44].)
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8. The Pugh–Shub ergodicity theory

8.1. Conditions for ergodicity

Let f be aC2 diffeomorphism of a smooth compact Riemannian manifoldM that is par-
tially hyperbolic and that preserves a smooth measureν. To study ergodicity off one uses
a version of the Hopf argument [2,62,30,71] adapted to the case of partially hyperbolic
systems.

Let B be the Borelσ -algebra ofM . Say thatx, y ∈M are stably equivalent if

ρ
(
f n(x), f n(y)

)→ 0 asn→+∞,
and unstably equivalent if

ρ
(
f n(x), f n(y)

)→ 0 asn→−∞.
Stable and unstable equivalence classes induce two partitions ofM , and we denote byS
andU the Borelσ -algebras they generate. Recall that for an algebraA ⊂ B its saturated
algebra is the set

Sat(A)= {B ∈ B: there existsA ∈A with ν(A�B)= 0
}
.

It follows from the Hopf argument thatf is ergodic if

Sat(S)∩Sat(U)= T , (8.1)

whereT is the trivial algebra.
For an Anosov diffeomorphismf the stable equivalence class containing a pointx is

the leafWs(x) of the stable foliation. Similarly, the unstable equivalence class containing
x is the leafWu(x) of the unstable foliation. Theσ -algebraS consists of those Borel sets
S for whichWs(x)⊂ S wheneverx ∈ S, and theσ -algebraU consists of those Borel sets
U for whichWu(x)⊂ U wheneverx ∈U . The relation (8.1) holds by absolute continuity
of stable and unstable foliations, which proves ergodicity for Anosov diffeomorphisms.

If a diffeomorphismf is partially hyperbolic the stable and unstable foliationsWs and
Wu of M also generate Borelσ -algebrasMs andMu, respectively, soS ⊂ Ms and
U ⊂Mu (note that stable and unstable sets containing a pointx may be larger thanWs(x)

andWu(x) due to possible contractions and expansions along the central directions). It
follows that

Sat(S)∩Sat(U)⊂ Sat(Ms)∩ Sat(Mu).

If f is accessible then Sat(Ms ∩Mu)= T . In fact, essential accessibility (Definition 7.4)
is enough. Iff is essentially accessible then ergodicity would follow from

Sat(Ms)∩ Sat(Mu)⊂ Sat(Ms ∩Mu) (8.2)

(the opposite inclusion is obvious). We describe conditions that guarantee this.
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THEOREM 8.1. A volume-preserving essentially accessible dynamically coherent par-
tially hyperbolic diffeomorphism is ergodic if it has Lipschitz continuous center foliation
and Lipschitz continuous stable and unstable holonomy maps between center transversals.

PROOF. (8.2) follows from the conditions of the theorem. �

The assumptions on Lipschitz continuity are very strong and “typically” fail (see Sec-
tion 6.2). On one hand, the modern work in the field has found ways to circumvent the
requirement that the center foliation be Lipschitz continuous, and on the other hand, in the
presence of dynamical coherence, Lipschitz continuity of the holonomies between center
transversals is obtained from the following condition.

DEFINITION 8.2 [37]. We say thatf is center-bunchedif max{µ1, λ
−1
3 }< λ2/µ2 in (2.7).

This definition due to Burns and Wilkinson imposes a much weaker constraint than ear-
lier versions; in fact, their results assume an even weaker condition one might call “point-
wise center bunching”: max{µ1(p),λ

−1
3 (p)} < λ2(p)/µ2(p) for every pointp, where

µi(p) andλi(p) are pointwise bounds on rates of expansion and contraction. This point-
wise condition always holds when dimEc = 1, and they show in [37] that this assumption
suffices to get the following.

THEOREM 8.3. A C2 volume-preserving partially hyperbolic essentially accessible(dy-
namically coherent) center-bunched diffeomorphism is ergodic.

Grayson, Pugh and Shub [49] proved this theorem for small perturbations of the time
one map of the geodesic flow on a surface of constant negative curvature. Wilkinson in her
thesis extended their result to small perturbations of the time-1 map of the geodesic flow
on an arbitrary surface of negative curvature. Then Pugh and Shub in [77,78] proved the
theorem assuming a stronger center bunching condition. The proof of the theorem in the
form stated here (with a weaker center bunching condition) was obtained by Burns and
Wilkinson in [37].

REMARK 8.4. Burns and Wilkinson recently announced that the assumption of dynamical
coherence is not needed in Theorem 8.3 [38].

Together with the comments on Definition 8.2 this in particular gives the following.

COROLLARY 8.5. AC2 volume-preserving essentially accessible partially hyperbolic dif-
feomorphism withdimEc = 1 is ergodic.

This corollary was also announced recently by F. Rodriguez Hertz, J. Rodriguez Hertz
and R. Ures [82].
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The way to establish (8.2) without absolute continuity of the center-stable and center-
unstable foliation is through the use of a collection of special sets at every pointx ∈M
calledJuliennes, Jn(x).5 We shall describe a construction of these sets which assures that

(J1) Jn(x) form a basis of the topology.
(J2) Jn(x) form a basis of the Borelσ -algebra. More precisely, letZ be a Borel set;

a pointx ∈Z is said to beJulienne denseif

lim
n→+∞

ν(Jn(x)∩Z)
ν(Jn(x))

= 1.

LetD(Z) be the set of all Julienne dense points ofZ. Then

D(Z)= Z (mod 0).

(J3) IfZ ∈ Sat(Ms)∩Sat(Mu), thenD(Z) ∈ Sat(Ms ∩Mu).
Properties (J1)–(J3) imply (8.2).

Note that the collection of ballsB(x,1/n) satisfies requirements (J1) and (J2) but not
(J3). Juliennes can be viewed as balls “distorted” by the dynamics in the following sense.
Fix an integern� 0, a pointx ∈M and numbersτ, σ such that 0< τ < σ < 1. Denote by

Bsn(x, τ )=
{
y ∈Ws(x) | ρ(f−k(x), f−k(y)

)
� τ k
}
,

Bun (x, τ )=
{
y ∈Wu(x) | ρ(f k(x), f k(y))� τ k},

and define the Julienne

Jn(x) :=
[
J csn (x)×Bun(x, τ )

]∩ [Bsn(x, τ )× J cun (x)],
where the local foliation products

J csn (x)= Bsn(x, τ )×Bc(x,σn), J cun (x)= Bun(x, τ )×Bc(x,σn)
are thecenter-stableandcenter-unstable Juliennes, andBc(x,σn) is the ball inWc(x) cen-
tered atx of radiusσn. One may think ofJn(x) as a substitute forBsn(x, τ )×Bc(x,σn)×
Bun(x, τ ), which is only well defined if the stable and unstable foliations are jointly inte-
grable.

The proof of (J1)–(J3) is based on the following properties of Juliennes:
(1) scaling: if k � 0 thenν(Jn(x))/ν(Jn+k(x)) is bounded, uniformly inn ∈ N;
(2) engulfing: there is�� 0 such that, for anyx, y ∈M , if Jn+�(x)∩ Jn+�(y) �= ∅ then

Jn+�(x)∪ Jn+�(y)⊂ Jn(x);
(3) quasi-conformality: there isk � 0 such that ifx, y ∈M are connected by an arc

on an unstable manifold that has length� 1 then the holonomy mapπ :V cs(x)→
V cs(y) generated by the family of local unstable manifolds (see Section 3.2) satisfies
J csn+k(y)⊂ π(J csn (x))⊂ J csn−k(y).

5They resemble slivered vegetables as used in consommé Julienne, said to be attributed to the chef Jean Julien
in 1722 by François Massialot (Le nouveau cuisinier royal et bourgeois ou cuisine moderne, reprint 2003 by
Eibron Classics).
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The properties (1) and (2) are possessed by the family of balls in Euclidean space and
they underlie the proof of the Lebesgue Density Theorem. One can use these properties to
show that Juliennes are density bases. The center-unstable Juliennes are a density basis on
Wcu(x) with respect to the smooth conditional measureνWcu onWcu(x), the center-stable
Juliennes are a density basis onWcs(x) with respect to the smooth conditional measure
νWcs onWcs(x), and the Juliennes are a density basis onM with respect to the smooth
measureν.

Juliennes,Jn(x), are small but highly eccentric sets in the sense that the ratio of their
diameter to their inner diameter increases withn (the inner diameter of a set is the diameter
of the largest ball it contains). In general, sets of such shape may not form density bases,
but Juliennes do because their elongation and eccentricity are controlled by the dynamics;
in particular, they nest in a way similar to balls.

Quasi-conformality is what is needed to prove Property (J3). Roughly speaking it means
that the holonomy map (almost) preserves the shape of Juliennes.

CONJECTURE8.6. A partially hyperbolic dynamical system preserving a smooth measure
and with the accessibility property is ergodic.

8.2. The Pugh–Shub stable ergodicity theorem

DEFINITION 8.7. Let q � 1. A Cq diffeomorphismf of a compactCq Riemannian
manifoldM preserving a smooth measureν is said to bestably ergodicif any C1-small
perturbation off preservingν is ergodic.

Stable ergodicity imposes some conditions on the map. Bochi, Fayad and Pujals [14]
showed that there is an open and dense set ofC1+α stably ergodic (with respect to a
smooth measure) diffeomorphisms with nonzero Lyapunov exponents (this answers a prob-
lem posed in [31]).

A stably ergodic diffeomorphismf need not be partially hyperbolic [89]. However, it
possesses adominated splitting, i.e., the tangent space splits into two invariant subspaces
E andF such that forn ∈ N,∥∥df n �E(x)

∥∥∥∥df−n � F
(
f n(x)

)∥∥� Cλn

with uniform C > 0 and 0< λ < 1. This was proved by Arbieto and Matheus assuming
thatf is C1+ε and volume preserving [11]. On the other hand iff is a symplectic stably
ergodic diffeomorphism thenf must be partially hyperbolic [58].

To establish stable ergodicity of a partially hyperbolic diffeomorphismf one can check
whether the hypotheses of Theorem 8.3 are stable under small perturbations.

(1) If f is dynamically coherent and the central foliationWc is of classC1 then every
diffeomorphismg which is sufficiently close tof in theC1 topology is dynamically
coherent (see Theorems 4.11 and 4.15).

(2) If f is center-bunched then every diffeomorphismg which is sufficiently close tof
in theC1 topology is center-bunched.
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Thus, for dynamically coherent center-bunched partially hyperbolic diffeomorphisms, sta-
ble ergodicity follows from stable accessibility:

THEOREM 8.8 [78,79]. A (dynamically coherent) center-bunched stably(essentially) ac-
cessible partially hyperbolic diffeomorphism that preserves a smooth measureν and has
a smooth or plaque-expansive center foliation is stably ergodic(and stably K[62, Sec-
tions 3.6k, 3.7j], [36, Corollary 1.2]).

REMARK 8.9. As noted in Remark 8.4, Burns and Wilkinson recently announced that the
assumption of dynamical coherence is not needed in this result [38].

CONJECTURE8.10 [76]. A partially hyperbolic dynamical system preserving a smooth
measure and with the accessibility property is stably ergodic. (This would follow from
Conjectures7.17and8.6.)

A proof of this conjecture in the case when the central distribution is one-dimensional
was recently announced by F. Rodriguez Hertz, J. Rodriguez Hertz and R. Ures [82].

CONJECTURE8.11 [76]. Stably ergodic diffeomorphisms are open and dense in the space
of Cr partially hyperbolic dynamical systems forr � 1. (This would follow from Conjec-
tures7.18and8.6.)

Combining Theorem 8.8 with the results in Section 7.3 we obtain several classes of
stably ergodic systems:

8.2.1. Skew product maps over Anosov diffeomorphismsIf F = f × Id :M×S1 →M×
S1 then there is a neighborhoodU of F in Diff 2(M × S1) or Diff2(M × S1, ν ×m) such
that stable ergodicity is open and dense inU (herem is the length).

8.2.2. Special flows over Anosov diffeomorphismsThere exists an open and dense set of
Cq functionsH :M→ R+ such that the special flowTt with the roof functionH is stably
ergodic. Field, Melbourne and Török [46] strengthened this result.

THEOREM 8.12. For r > 0, there exists aCr -open and dense subsetA in the space of
strictly positiveCr (roof) functions such that for everyH ∈A the special flowTt with the
roof functionH is stably mixing. If r � 2 thenA is open in theC2 topology andC∞ roof
functions areC[r]-dense inA.

8.2.3. Group extensions over Anosov diffeomorphismsIf Fϕ :M × G→ M × G is a
group extension then for every neighborhoodU ⊂ Cq(M,G) of the functionϕ there exists
a functionψ ∈ U such that the diffeomorphismFψ is stably ergodic.

Burns and Wilkinson obtained a complete characterization of stable ergodicity for group
extensions over volume-preserving Anosov diffeomorphisms. Namely, we say that the map
h :M × Y →M × Y of classCq+α is analgebraic factorof theCq+α group extensionFϕ
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if Y = H \ G, whereH is a closed subgroup ofG, and there exists aCq+α function
Φ :M→G/H for which the following diagram is commutative:

M ×G Fϕ−−−−→ M ×G
πΦ

� �πΦ
M ×H \G h−−−−→ M ×H \G

where πΦ(x,g) = (x,Φ(x)−1g) (and Φ(x)−1 = {g−1 | g ∈ Φ(x)} is an element of
H \G).

THEOREM 8.13. Let f :M→M be aCq+α volume-preserving Anosov diffeomorphism
of an infranilmanifold, G a compact, connected Lie group andϕ :M→G a Cq+α map.
If the group extensionFϕ is not stably ergodic then it has an algebraic factorh :M ×H \
G→M ×H \G, where one of the following holds:

(1) H �=G, andh is the product off with IdH\G;
(2) h is normal,H \G is a circle, andh is the product off with a rotation;
(3) h is normal, H \G is a d-torus, andh = fψ whereψ is homotopic to a constant

and mapsM into a coset of a lower-dimensional Lie subgroup of thed-torus.
If Fϕ has an algebraic factor of type(1), it is not ergodic; if Fϕ has an algebraic factor
of type(2) but none of type(1) then it is ergodic, but not weakly mixing; otherwiseFϕ is
Bernoulli. In addition, Fϕ is stably ergodic if and only if it is stably ergodic within skew
products.

Applying this result to the case when the groupG is semisimple, one can show thatFϕ
is stably ergodic if and only if it is ergodic.

Field, Melbourne and Török [46] studied stable ergodicity of group extensions over hy-
perbolic sets and generalized earlier results in [6,47,68,91]. Letf be aC2 diffeomorphism
of a compact smooth manifoldM possessing a locally maximal hyperbolic setΛ which
is not a periodic orbit. Letµ be the unique equilibrium measure onΛ corresponding to
a Hölder continuous potential (sof |Λ is ergodic with respect toµ). Consider a compact
connected Lie groupG with the Haar measurem.

THEOREM 8.14. For r > 0 there exists aCr -open and dense subsetA⊂ Cr(M,G) such
that for everyϕ ∈ A the group extensionFϕ is ergodic with respect to the measureν =
µ×m. If f |Λ is topologically mixing thenFϕ is mixing with respect toν.

In other words, iff |Λ is topologically transitive (respectively, topologically mixing)
then the stably ergodic (respectively, stably mixing) group extensions form an open and
dense set in the space ofCr group extensions for anyr > 0.

8.2.4. Time-t maps of Anosov flowsIf the stable and unstable foliations of an Anosov
flow are not jointly integrable then the time-t map fort �= 0 is stably ergodic.
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Theorem 7.16 provides a strong dichotomy between joint integrability of the strong fo-
liations and (stable) accessibility. The paper in which this theorem is proved also produces
a clean dichotomy between joint integrability and (stable) ergodicity:

THEOREM 8.15 (Burns, Pugh and Wilkinson [35]).The time-1 map of a volume-preserv-
ing Anosov flow is stably ergodic unless the strong stable and strong unstable foliations for
the flow are jointly integrable.

The proof follows the line of argument in [49] and uses the crucial fact that the holonomy
maps are not just continuous but indeed Hölder continuous with Hölder exponent close to 1
(see [80]) so that these maps do not distort Juliennes too much.

In the special case of flows on 3-manifolds one can strengthen this result and show that
the time-1 map is stably ergodic if and only if the flow is not a suspension flow over an
Anosov diffeomorphism with a constant roof function. In particular,the time-1 map of a
volume-preserving topologically mixingC2 Anosov flow is stably ergodic. As a corollary
one has that the time-1 map of geodesic flows on a closed negatively curved Riemannian
surface is stably ergodic (this result was earlier obtained by Wilkinson [92]).

8.2.5. Frame flows There are also several cases in which the frame flow and its time-t

maps are known to be ergodic [33]:

THEOREM 8.16. Let Φt be the frame flow on ann-dimensional compact smooth Rie-
mannian manifold with sectional curvatures between−Λ2 and−λ2. Then in each of the
following cases the flow is ergodic, K ([62, Sections 3.6k, 3.7j], [5, Section 4.3]),and even
Bernoulli [5, Sections 6–7],and the time-1 map of the frame flow is stably ergodic and
stably K:

(1) if the curvature is constant(Brin [22]);
(2) for a set of metrics of negative curvature which is open and dense in theC3 topology

(Brin [22]);
(3) if n is odd andn �= 7 (Brin and Gromov[27]);
(4) if n is even, n �= 8, andλ/Λ> 0.93 (Brin and Karcher[28]);
(5) if n= 7 andλ/Λ> 0.99023. . . (Burns and Pollicott[33]);
(6) if n= 8 andλ/Λ> 0.99023. . . (Burns and Pollicott[33]).

Ergodicity of the frame flow was proved by the authors cited in each case; [33] pointed
out the K and Bernoulli property and used [36, Corollary 1.2] (which relies on [29]) to
deduce those of the time-1 maps across all cases.

8.3. Ergodicity and stable ergodicity for toral automorphisms

Theorem 8.16 has as a particular consequence that the time-1 map of the frame flow of
a manifold with negative curvature is stably ergodic in all cases where it is known to be
ergodic. At the end of [56] Hirsch, Pugh and Shub posed a question that might be inter-
preted as asking whether every ergodic automorphism of then-torus is stably ergodic. In
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this context ergodicity is easily characterized by the property that the automorphism has
no eigenvalue that is a root of unity [51].

The dissertation of Rodriguez Hertz [81] answers the question in the affirmative for
dimension up to 5:

THEOREM 8.17 (Rodriguez Hertz [81]).Every ergodic linear automorphism of a torus
of dimension up to5 is stably ergodic. (But for dimension4 only with respect toC22

perturbations.)

This result arises, in fact, as a consequence of rather more general ones.

DEFINITION 8.18. An automorphism ofTn none of whose eigenvalues is a root of the
unity and whose characteristic polynomial is irreducible over the integers and not a poly-
nomial in t i for anyi � 2 is said to be a pseudo-Anosov automorphism.

THEOREM 8.19 (Rodriguez Hertz [81]).If n� 6 then any pseudo-Anosov automorphism
of Tn with dimEc = 2 is stably ergodic with respect to theC5 topology, and ifn= 4 then
any pseudo-Anosov automorphism ofTn is stably ergodic with respect to theC22 topology.

Rodriguez Hertz derives Theorem 8.17 from Theorem 8.19 by showing that ergodic
automorphisms ofT4 are either Anosov or pseudo-Anosov and ergodic automorphisms of
T5 are Anosov (and hence clearly stably ergodic). In fact, the odd-dimensional case is much
simplified by his observation that ifn is odd andA ∈ SL(n,Z) has irreducible characteristic
polynomial thenA is Anosov. The remaining substance of the work therefore lies in the
casesn= 4 andn� 6, in each of which Rodriguez Hertz studies a dichotomy concerning
accessibility. He considers the accessibility classes (lifted to the universal cover) for such
a perturbation and shows that these are either all trivial (they intersect each stable leaf in a
point) or else must all be equal toRn [81, Theorem 5.1]. The latter implies accessibility,
and in the former case an application of KAM-theory (or, forn= 4, a separate theorem of
Moser) then establishes smooth conjugacy of the foliations to those of the linear system,
which yields essential accessibility. Rodriguez Hertz can then apply Theorem 8.3 in either
case.

His result prompted Pugh and Shub to make their earlier question more explicit in the
following form:

PROBLEM [79]. Is every ergodic toral automorphism stably ergodic in theCr topology for
somer?

9. Partially hyperbolic attractors

A partially hyperbolic setΛ for a diffeomorphismf of a compact manifoldM is called a
partially hyperbolic attractorif there is a neighborhoodU of Λ such thatf (U)⊂U and

Λ=
⋂
n∈Z

f n(U).
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An important property of a partially hyperbolic attractor is as follows.

THEOREM 9.1. Wu(x)⊂Λ for everyx ∈Λ.

Any diffeomorphismg sufficiently close tof possesses a partially hyperbolic attractor
which lies in a small neighborhood ofΛ.

An invariant Borel probability measureµ on Λ is said to be au-measureif the con-
ditional measuresµu(x) generated byµ on local unstable leavesV u(x) are absolutely
continuous with respect to the Riemannian volume onV u(x).

Consider a smooth measureν on U with the density functionψ with respect to the
Riemannian volumem, i.e.,

suppψ ⊂U,
∫
U

ψ dm= 1.

The sequence of measures

νn = 1

n

n−1∑
i=0

f i∗ν

is the evolution of the measureν under the systemf . Even if the sequenceνn does not
converge, any limit measureµ is supported onΛ.

THEOREM 9.2 (Pesin and Sinai [72]).Any limit measure of the sequence of measuresνn
is anf -invariantu-measure onΛ.

We describe another approach for constructingu-measures onΛ. Forx ∈Λ andy ∈ V u(x)
consider the function

κ(x, y)=
n−1∏
i=0

J (df �Eu(f i(y)))
J (df �Eu(f i(x))) .

Define the probability measurẽmn onVn(x)= f n(V u(x)) by

dm̃n(y)= cnκ
(
f n(x), y

)
dmVn(x) for y ∈ Vn(x),

m̃n on V un (x) = f n(V u(x)) by wherecn is normalizing factor andmVn(x) is the Rie-
mannian volume onVn(x) induced by the Riemannian metric. We define the Borel measure
mn onΛ by

mn(A)= m̃n
(
A∩ Vn(x)

)
,

whenA⊂Λ is a Borel set. One can show thatmn(A)=m0(f
−n(A)).
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THEOREM 9.3 (Pesin and Sinai [72]).Any limit measure of the sequence of measuresmn
is anf -invariantu-measure onΛ.

While Theorem 9.2 describesu-measures as a result of the evolution of an ab-
solutely continuous measure in a neighborhood of the attractor, Theorem 9.3 determines
u-measures as limit measures for the evolution of an absolutely continuous measure sup-
ported on a local unstable manifold. One can deduce Theorem 9.2 from Theorem 9.3 and
the proof of the latter, presented in [72], exploits a method which allows one to avoid the
use of Markov partitions—the classical tool to prove existence of SRB-measures for hy-
perbolic attractor (in general, a partially hyperbolic attractor does not have any Markov
partition).

Assume now that the unstable distributionEu splits into the sum of two invariant sub-
distributionsEu =E1⊕E2 with E1 expanding more rapidly thanE2. One can viewf as a
partially hyperbolic diffeomorphism withE1 as the new unstable distribution (andE2⊕Ec
as the new center distribution) and constructu-measures, associated with this distribution,
according to Theorem 9.3.

THEOREM 9.4. Anyu-measure associated with the distributionEu is a u-measure asso-
ciated with the distributionE1.

The proof of this theorem can be easily obtained from the fact that the leaves of the
W1(y) depend smoothly ony ∈Wu(x), see Theorem 3.3.

If Λ is a hyperbolic attractor andf � Λ is topologically transitive then there exists a
uniqueu-measure. This may not be true for a general partially hyperbolic attractor and
some additional strong conditions are necessary to guarantee uniqueness.

Let us denote byχ(x, v) the Lyapunov exponent at the pointx ∈ Λ and the vector
v ∈ TxM .

Let ν be an invariant Borel probability measure onΛ. We say thatΛ hasnegative cen-
tral exponentswith respect toν if there exists a setA ⊂Λ of positive measure such that
χ(x, v) < 0 for everyx ∈A andv ∈Ec(x).

THEOREM 9.5 (Burns, Dolgopyat and Pesin [31]).If ν is au-measure with negative cen-
tral exponents then every ergodic component off �A of positive measure is open(mod 0).

Using this result one can provide conditions which guarantee uniqueness or that there is
at most a finite number ofu-measures.

THEOREM 9.6 (Burns, Dolgopyat and Pesin [31]).Assume that there exists au-measure
ν with negative central exponents. Assume, in addition, that for almost everyx ∈ Λ the
trajectory{f n(x)} is everywhere dense inΛ. Thenf �Λ is ergodic with respect toν.

One can show that if for everyx ∈ Λ the global strongly unstable manifoldWu(x) is
dense then almost every orbit is dense. Moreover, under this assumption there is a unique
u-measure which is also an SRB-measure forf .
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THEOREM 9.7 (Bonatti and Viana [19]).Let f be aC2 diffeomorphism possessing a
partially hyperbolic attractorΛ. Assume that for everyx ∈ Λ and every diskDu(x) ⊂
Wu(x) centered atx, we have thatχ(y, v) < 0 for a positive Lebesgue measure subset of
pointsy ∈Du and every vectorv ∈Ec(y). Thenf has at most finitely manyu-measures.

THEOREM 9.8 (Alves, Bonatti and Viana [8]).Assume thatf is nonuniformly expanding
along the center-unstable direction, i.e.,

lim sup
n→∞

1

n

n∑
j=1

log‖df−1 �Ecu
f j (x)

‖< 0 (9.1)

for all x in a positive Lebesgue measure setA⊂M . Thenf has an ergodic SRB-measure
supported in

⋂∞
j=0 f

j (M). Moreover, if the limit in (9.1) is bounded away from zero then
A is contained(mod0) in the union of the basins of finitely many SRB-measures.

Let Λ = Λf be a partially hyperbolic attractor forf . It is well known that anyC1

diffeomorphismg which is sufficiently close tof in theC1 topology possesses a partially
hyperbolic attractorΛg which lies in a small neighborhood ofΛf . The following statement
shows thatu-measures depend continuously on the perturbation.

THEOREM 9.9 (Dolgopyat [42]).Letfn be a sequence ofC2 diffeomorphisms converging
to a diffeomorphismf in theC2 topology. Let alsoνn be au-measure forfn. Assume that
the sequence of measuresνn converges in the weak topology to a measureν. Thenν is a
u-measure forf .

The following statement describes a version of stable ergodicity for partially hyperbolic
attractors.

THEOREM 9.10. Assume that there exist au-measureν = νf for f with negative central
exponents. Assume also that for everyx ∈Λf the global strongly unstable manifoldWu(x)

is dense inΛf . Then anyC2 diffeomorphismg which is sufficiently close tof also has
negative central exponents on a set that has positive measure with respect to au-measure
νg ; this measure is the only SRB-measure forg andg �Λg is ergodic with respect toνg .

The following statement provides conditions which guarantee uniqueness ofu-measures.

THEOREM 9.11 (Bonatti and Viana [19]).Let f be aC2 diffeomorphism possessing a
partially hyperbolic attractorΛ. Assume that

(1) there existx ∈Λ and a diskDu(x)⊂Wu(x) centered atx for whichχ(y, v) < 0 for
a positive Lebesgue measure subset of pointsy ∈Du and every vectorv ∈Ec(y);

(2) every leaf of the foliationWu is dense inΛ.
Thenf has a uniqueu-measure and it is ergodic. The support of this measure coincides
withΛ.
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The measureν in this theorem is a Sinai–Ruelle–Bowen (SRB) measure (for the defini-
tion and some relevant results on SRB-measures see [1, Section 14]).
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Introduction

The goal of this chapter is to describe the contemporary status of nonuniform hyperbolicity
theory. We present the core notions and results of the theory as well as discuss recent
developments and some open problems. We also describe essentially all known examples
of nonuniformly hyperbolic systems. Following the principles of the handbook we include
informal discussions of many results and sometimes outline their proofs.

Originated in the works of Lyapunov [171] and Perron [194,195] the nonuniform hyper-
bolicity theory has emerged as an independent discipline in the works of Oseledets [192]
and Pesin [198]. Since then it has become one of the major parts of the general dynamical
systems theory and one of the main tools in studying highly sophisticated behavior asso-
ciated with “deterministic chaos”. We refer the reader to the article [5] by Hasselblatt and
Katok in volume 1A of the handbook for a discussion on the role of nonuniform hyper-
bolicity theory, its relations to and interactions with other areas of dynamics. See also the
article [4] by Hasselblatt in the same volume for a brief account of nonuniform hyperbol-
icity theory in view of the general hyperbolicity theory, and the book by Barreira and Pesin
[35] for a detailed presentation of the core of the nonuniform hyperbolicity theory.

Nonuniform hyperbolicity conditions can be expressed in terms of the Lyapunov expo-
nents. Namely, a dynamical system is nonuniformly hyperbolic if it admits an invariant
measure with nonzero Lyapunov exponents almost everywhere. This provides an efficient
tool in verifying the nonuniform hyperbolicity conditions and determines the importance
of the nonuniform hyperbolicity theory in applications.

We emphasize that the nonuniform hyperbolicity conditions areweak enoughnot to
interfere with the topology of the phase space so that any compact smooth manifold of
dimension� 2 admits a volume-preservingC∞ diffeomorphism which is nonuniformly
hyperbolic. On the other hand, these conditions arestrong enoughto ensure that anyC1+α
nonuniformly hyperbolic diffeomorphism has positive entropy with respect to any invariant
physicalmeasure (by physical measure we mean either a smooth measure or a Sinai–
Ruelle–Bowen (SRB) measure). In addition, any ergodic component has positive measure
and up to a cyclic permutation the restriction of the map to this component is Bernoulli.
Similar results hold for systems with continuous time.

It is conjectured that dynamical systems of classC1+α with nonzero Lyapunov expo-
nents preserving a given smooth measure are typical in some sense. This remains one of
the major open problems in the field and its affirmative solution would greatly benefit and
boost the applications of the nonuniform hyperbolicity theory. We stress that the systems
under consideration should be of classC1+α for someα > 0: not only the nonuniform hy-
perbolicity theory forC1 systems is substantially less interesting but one should also expect
a “typical” C1 map to have some zero Lyapunov exponents (unless the map is Anosov).

In this chapter we give a detailed account of the topics mentioned above as well as many
others. Among them are:

(1) stable manifold theory (including the construction of local and global stable and
unstable manifolds and their absolute continuity);

(2) local ergodicity problem (i.e., finding conditions which guarantee that every ergodic
component of positive measure is open(mod0));
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(3) description of the topological properties of systems with nonzero Lyapunov expo-
nents (including the density of periodic orbits, the closing and shadowing properties,
and the approximation by horseshoes); and

(4) computation of the dimension and the entropy of arbitrary hyperbolic measures.
We also describe some methods which allow one to establish that a given system has
nonzero Lyapunov exponents (for example, SRB-measures) or to construct a hyperbolic
measure with “good” ergodic properties (for example, the Markov extension approach).
Finally, we outline a version of nonuniform hyperbolicity theory for systems with singu-
larities (including billiards).

The nonuniform hyperbolicity theory covers an enormous area of dynamics and despite
the scope of this survey there are several topics not covered or barely mentioned. Among
them are nonuniformly hyperbolic one-dimensional transformations, random dynamical
systems with nonzero Lyapunov exponents, billiards and related systems (for example,
systems of hard balls), and numerical computation of Lyapunov exponents. For more in-
formation on these topics we refer the reader to the articles in the handbook [2,3,7–9]. Here
the reader finds the ergodic theory of random transformations [8,3] (including a “random”
version of Pesin’s entropy formula in [8]), nonuniform one-dimensional dynamics [10,7],
ergodic properties and decay of correlations for nonuniformly expanding maps [10], the dy-
namics of geodesic flows on compact manifolds of nonpositive curvature [9], homoclinic
bifurcations and dominated splitting [11] and dynamics of partially hyperbolic systems
with nonzero Lyapunov exponents [6]. Last but no least, we would like to mention the arti-
cle [2] on the Teichmüller geodesic flows showing in particular, that the Kontsevich–Zorich
cocycle over the Teichmüller flow is nonuniformly hyperbolic [99].

Although we included comments of historical nature concerning some main notions and
basic results, the chapter is not meant to present a complete historical account of the field.

1. Lyapunov exponents of dynamical systems

Let f t :M → M be a dynamical system with discrete time,t ∈ Z, or continuous time,
t ∈ R, of a smooth Riemannian manifoldM . Given a pointx ∈M , consider the family of
linear maps{dxf t } which is calledthe system in variationsalong the trajectoryf t (x). It
turns out that for a “typical” trajectory one can obtain a sufficiently complete information
on stability of the trajectory based on the information on the asymptotic stability of the
“zero solution” of the system in variations.

In order to characterize the asymptotic stability of the “zero solution”, given a vector
v ∈ TxM , define theLyapunov exponentof v atx by

χ+(x, v)= lim
t→+∞

1

t
log
∥∥dxf tv∥∥.

For everyε > 0 there existsC = C(v, ε) > 0 such that ift � 0 then∥∥dxf tv∥∥� Ce(χ+(x,v)+ε)t‖v‖.
The Lyapunov exponent possesses the following basic properties:
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1. χ+(x,αv)= χ+(x, v) for eachv ∈ V andα ∈ R \ {0};
2. χ+(x, v +w)� max{χ+(x, v),χ+(x,w)} for eachv,w ∈ V ;
3. χ+(x,0)=−∞.

The study of the Lyapunov exponents can be carried out to a certain extent using only these
three basic properties. This is the subject of the abstract theory of Lyapunov exponents (see
[35]). As a simple consequence of the basic properties we obtain that the functionχ+(x, ·)
attains only finitely many values onTxM \ {0}. Letp+(x) be the number of distinct values
and

χ+
1 (x) < · · ·< χ+

p+(x)(x),

the values themselves. The Lyapunov exponentχ+(x, ·) generates the filtrationV+
x of the

tangent spaceTxM ,

{0} = V +
0 (x)� V +

1 (x)� · · · � V +
p+(x)(x)= TxM,

whereV +
i (x)= {v ∈ TxM: χ+(x, v)� χ+

i (x)}. The number

k+i (x)= dimV +
i (x)− dimV +

i−1(x)

is themultiplicity of the valueχ+
i (x). We have

p+(x)∑
i=1

k+i (x)= dimM.

The collection of pairs

Spχ+(x)= {(χ+
i (x), k

+
i (x)
)
: 1� i � p+(x)

}
is called theLyapunov spectrumof the exponentχ+(x, ·).

The functionsχ+
i (x), p

+(x), andk+i (x) areinvariant underf and (Borel)measurable
(but not necessarily continuous).

One can obtain another Lyapunov exponent forf by reversing the time. Namely, for
everyx ∈M andv ∈ TxM let

χ−(x, v)= lim
t→−∞

1

|t | log
∥∥dxf tv∥∥.

The functionχ−(x, ·) possesses the same basic properties asχ+(x, ·) and hence, takes on
finitely many values onTxM \ {0}:

χ−
1 (x) > · · ·> χ−

p−(x)(x),
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wherep−(x)� dimM . Denote byV−
x the filtration ofTxM associated withχ−(x, ·):

TxM = V −
1 (x)� · · · � V −

p−(x)(x)� V −
p−(x)+1(x)= {0},

whereV −
i (x)= {v ∈ TxM: χ−(x, v)� χ−

i (x)}. The number

k−i (x)= dimV −
i (x)− dimV −

i+1(x)

is themultiplicity of the valueχ−
i (x). The collection of pairs

Spχ−(x)= {(χ−
i (x), k

−
i (x)
)
: i = 1, . . . , p−(x)

}
is called theLyapunov spectrumof the exponentχ−(x, ·).

We now introduce the crucial concept of Lyapunov regularity. Roughly speaking it as-
serts that the forward and backward behavior of the system along a “typical” trajectory
comply in a quite strong way.

A point x is calledLyapunov forward regular pointif

lim
t→+∞

1

t
log
∣∣detdxf

t
∣∣= p+(x)∑

i=1

k+i (x)χ
+
i (x).

Similarly, a pointx is calledLyapunov backward regularif

lim
t→−∞

1

|t | log
∣∣detdxf

t
∣∣= p−(x)∑

i=1

k−i (x)χ
−
i (x).

If a point x is forward (backward) regular then so is any point along its trajectory and we
can say that the whole trajectory is forward (backward) regular. Note that there may be
trajectories which are neither forward nor backward regular and that forward (backward)
regularity does not necessarily imply backward (forward) regularity (an example is a flow
in R3 that progressively approaches zero and infinity when time goes to+∞, oscillating
between the two, but which tends to a given point when time goes to−∞).

Givenx ∈M , we say that the filtrationsV+
x andV−

x comply if:

1. p+(x)= p−(x) def= p(x);
2. the subspacesEi(x)= V +

i (x) ∩ V −
i (x), i = 1, . . . , p(x), form a splitting of the tan-

gent space

TxM =
p(x)⊕
i=1

Ei(x).

We say that a pointx is Lyapunov regularor simplyregular if:
1. the filtrationsV+

x andV−
x comply;
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2. for i = 1, . . . , p(x) andv ∈Ei(x) \ {0} we have

lim
t→±∞

1

t
log
∥∥dxf tv∥∥= χ+

i (x)=−χ−
i (x)

def= χi(x)

with uniform convergence on{v ∈Ei(x): ‖v‖ = 1};

3. lim
t→±∞

1

t
log
∣∣detdxf

t
∣∣= p(x)∑

i=1

χi(x)dimEi(x).

Note that ifx is regular then so is the pointf t (x) for any t and thus, one can speak of
the whole trajectory as being regular.

In order to simplify our notations in what follows, we will drop the superscript+ from
the notation of the Lyapunov exponents and the associated quantities if it does not cause
any confusion.

The following criterion for regularity is quite useful in applications. Denote by
V (v1, . . . , vk) thek-volume of the parallelepiped defined by the vectorsv1, . . . , vk .

THEOREM 1.1 (see [69]).If x is Lyapunov regular then the following statements hold:
1. for any vectorsv1, . . . , vk ∈ TxM there exists the limit

lim
t→±∞

1

t
logV
(
dxf

tv1, . . . , dxf
tvk
);

if, in addition, v1, . . . , vk ∈Ei(x) andV (v1, . . . , vk) �= 0 then

lim
t→±∞

1

t
logV
(
dxf

tv1, . . . , dxf
tvk
)= χi(x)k;

2. if v ∈Ei(x) \ {0} andw ∈Ej(x) \ {0} with i �= j then

lim
t→±∞

1

t
log
∣∣sin � (dxf tv, dxf tw)∣∣= 0.

Furthermore, if these properties hold thenx is Lyapunov regular.

Forward and backward regularity of a trajectory does not automatically yields that the fil-
trations comply and hence, forward and backward regularity do not, in general, imply Lya-
punov regularity. Roughly speaking the forward behavior of a trajectory may not depend on
its backward behavior while Lyapunov regularity requires some compatibility between the
forward and backward behavior expressed in terms of the filtrationsVχ+ andVχ− . How-
ever, if a trajectory{f n(x)} returns infinitely often to an arbitrary small neighborhood of
x asn→±∞ one may expect the forward and backward behavior to comply in a certain
sense.

The following celebrated result of Oseledets [192] gives a rigorous mathematical de-
scription of this phenomenon and shows that regularity is “typical” from the measure-
theoretical point of view.
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THEOREM 1.2 (Multiplicative Ergodic Theorem).If f is a diffeomorphism of a smooth
Riemannian manifoldM , then the set of Lyapunov regular points has full measure with
respect to anyf -invariant Borel probability measure onM .

This theorem is a particular case of a more general statement (see Section 5.3).
The notion of Lyapunov exponent was introduced by Lyapunov [171], with background

and motivation coming from his study of differential equations. A comprehensive but
somewhat outdated reference for the theory of Lyapunov exponents as well as its appli-
cations to the theory of differential equations is the book of Bylov, Vinograd, Grobman
and Nemyckii [69] which is available only in Russian. A part of this theory is presented in
modern language in [35].

The notion of forward regularity originated in the work of Lyapunov [171] and Perron
[194,195] in connection with the study of the stability properties of solutions of linear
ordinary differential equations with nonconstant coefficients (see [35] for a detailed dis-
cussion).

2. Examples of systems with nonzero exponents

2.1. Hyperbolic invariant measures

Smooth ergodic theory studies topological and ergodic properties of smooth dynamical
systems with nonzero Lyapunov exponents. Letf be a diffeomorphism of a complete (not
necessarily compact) smooth Riemannian manifoldM . The mapf should be of class at
leastC1+α , α > 0. We assume that there exists anf -invariant setΛ with the property that
for everyx ∈ Λ the values of the Lyapunov exponent atx are nonzero. More precisely,
there exists a numbers = s(x), 1� s < p(x) such that

χ1(x) < · · ·< χs(x) < 0< χs+1(x) < · · ·< χp(x)(x). (2.1)

We say thatf has nonzero exponents onΛ. Let us stress that according to our definition
there should always be at least one negative value and at least one positive value of the
exponent.

Assume now thatf preserves a Borel probability measureν onM . We callν hyperbolic
if (2.1) holds for almost everyx ∈M . It is not known whethera diffeomorphismf which
has nonzero exponents on a setΛ possesses a hyperbolic measureν with ν(Λ)= 1.

In the caseν is ergodic the values of the Lyapunov exponent are constant almost every-
where, i.e.,ki(x)= kνi andχi(x)= χνi for i = 1, . . . , p(x)= pν . The collection of pairs

Spχν = {(χνi , kνi ): i = 1, . . . , pν
}

is called theLyapunov spectrum of the measure. The measureν is hyperbolic if none of the
numbersχνi in its spectrum is zero.

We now discuss the case of dynamical systems with continuous time. Letf t be a smooth
flow on a smooth Riemannian manifoldM . It is generated by a vector fieldX onM such



Smooth ergodic theory and nonuniformly hyperbolic dynamics 67

thatX(x)= df t (x)
dt

|t=0. Clearly,χ(x, v)= 0 for everyv in the direction ofX(x), i.e., for
v = αX(x) with someα ∈ R.

We say thatthe flowf t has nonzero exponents on an invariant setΛ if for every x ∈Λ
all the Lyapunov exponents, but the one in the direction of the flow, are nonzero, at least
one of them is negative and at least one of them is positive. More precisely, there exists a
numbers = s(x), 1� s < p(x)− 1 such that

χ1(x) < · · ·< χs(x) < χs+1(x)= 0< χs+2(x) < · · ·< χp(x)(x), (2.2)

whereχs+1(x) is the value of the exponent in the direction ofX(x).
Assume now that a flowf t preserves a Borel probability measureν onM . We callν

hyperbolicif (2.2) holds for almost everyx ∈M .
There are two classes of hyperbolic invariant measures on compact manifolds for which

one can obtain a sufficiently complete description of its ergodic properties. They are:
1. smooth measures, i.e., measures which are equivalent to the Riemannian volume with

the Radon–Nikodym derivative bounded from above and bounded away from zero
(see Section 11);

2. Sinai–Ruelle–Bowen measures(see Section 14).
Dolgopyat and Pesin [88] proved that any compact manifold of dimension� 2 admits a

volume-preserving diffeomorphism with nonzero Lyapunov exponents, and Hu, Pesin and
Talitskaya [126] showed that any compact manifold of dimension� 3 admits a volume-
preserving flow with nonzero Lyapunov exponents; see Section 13.1 for precise statements
and further discussion. However, there are few particular examples of volume-preserving
systems with nonzero Lyapunov exponents. In the following subsections we present some
basic examples of such systems to illustrate some interesting phenomena associated with
nonuniform hyperbolicity.

2.2. Diffeomorphisms with nonzero exponents on the2-torus

The first example of a diffeomorphism with nonzero Lyapunov exponent, which is not an
Anosov map, was constructed by Katok [134]. This is an area-preserving ergodic (indeed,
Bernoulli) diffeomorphismGT2 of the two-dimensional torusT2 which is obtained by a
“surgery” of an area-preserving hyperbolic toral automorphismA with two eigenvalues
λ > 1 andλ−1< 1. The main idea of Katok’s construction is to destroy the uniform hyper-
bolic structure associated withA by slowing down trajectories in a small neighborhoodU
of the origin (which is a fixed hyperbolic point forA). This means that the time, a trajectory
of a “perturbed” mapGT2 stays inU , gets larger and larger the closer the trajectory passes
by the origin, while the map is unchanged outsideU . In particular, it can be arranged that
the trajectories, starting on the stable and unstable separatrices of the origin, have zero
exponents and thus,GT2 is a not an Anosov map. Although a “typical” trajectory may
spend arbitrarily long periods of time inU , the average time it stays inU is proportional to
the measure ofU and hence, is small. This alone does not automatically guarantee that a
“typical” trajectory has nonzero exponents. Indeed, one should make sure that between the
time the trajectory enters and exitsU a vector in small cone around the unstable direction
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of A does not turn into a vector in a small cone around the stable direction ofA. If this
occurs the vector may contract, while travelling outsideU , so one may loose control over
its length.

The construction depends upon a real-valued functionψ which is defined on the unit
interval[0,1] and has the following properties:

1. ψ is aC∞ function except at the origin;
2. ψ(0)= 0 andψ(u)= 1 for u� r0 where 0< r0< 1;
3. ψ ′(u) > 0 for every 0< u< r0;
4. the following integral converges:∫ 1

0

du

ψ(u)
<∞.

Consider the diskDr centered at 0 of radiusr and a coordinate system(s1, s2) in Dr
formed by the eigendirections ofA such that

Dr =
{
(s1, s2): s

2
1 + s22 � r2}.

Observe thatA is the time-one map of the flow generated by the following system of
differential equations:

ṡ1 = s1 logλ, ṡ2 =−s2 logλ.

Fix a sufficiently small numberr1> r0 and consider the time-one mapg generated by the
following system of differential equations inDr1:

ṡ1 = s1ψ
(
s21 + s22

)
logλ, ṡ2 =−s2ψ

(
s21 + s22

)
logλ. (2.3)

Our choice of the functionψ guarantees thatg(Dr2) ⊂ Dr1 for somer2 < r1, and thatg
is of classC∞ in Dr1 \ {0} and coincides withA in some neighborhood of the boundary
∂Dr1. Therefore, the map

G(x)=
{
A(x) if x ∈ T2 \Dr1,
g(x) if x ∈Dr1,

defines a homeomorphism of the torusT2 which is aC∞ diffeomorphism everywhere
except at the origin. The mapG(x) is a slowdown of the automorphismA at 0.

Denote byWu andWs the projections of the eigenlines inR2 to T2 corresponding to
the eigenvaluesλ andλ−1. SetW =Wu ∪Ws andX = T2 \W . Note that the setW is
everywhere dense inT2.

Let x = (0, s2) ∈Dr1 ∩Ws . For a vertical vectorv ∈ TxT2,

χ(x, v)= lim
t→+∞

log|s2(t)|
t

= lim
t→+∞

(
log
∣∣s2(t)∣∣)′ = lim

t→+∞
(−ψ(s2(t)2) logλ

)
,
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wheres2(t) is the solution of (2.3) with the initial conditions2(0) = s2. In view of the
choice of the functionψ , we obtain thatχ(x, v)= 0. Similarly,χ(x, v)= 0 wheneverx,
v ∈Wu. In particular,G is not an Anosov diffeomorphism.

Choosex ∈X \Dr1 and define the stable and unstable cones inTxT2 = R2 by

Cs(x)= {(v1, v2) ∈ R2: |v1| � α|v2|
}
,

Cu(x)= {(v1, v2) ∈ R2: |v2| � α|v1|
}
,

wherev1 ∈Wu, v2 ∈Ws and 0< α < 1/4. The formulae

Es(x)=
∞⋂
j=0

dG−jCs
(
Gj(x)

)
, Eu(x)=

∞⋂
j=0

dGjCu
(
G−j (x)

)
define one-dimensional subspaces atx such thatχ(x, v) < 0 for v ∈Es(x) andχ(x, v) > 0
for v ∈ Eu(x). The mapG is uniformly hyperbolic onX \Dr1: there is a numberµ > 1
such that for everyx ∈X \Dr1,

∥∥dG|Es(x)∥∥� 1

µ
,

∥∥dG−1|Eu(x)∥∥� 1

µ
.

One can show that the stable and unstable subspaces can be extended toW \ {0} to form
two one-dimensional continuous distributions onT2 \ {0}.

The mapG preserves the probability measuredν = κ−1
0 κ dm wherem is area and the

densityκ is a positiveC∞ function that is infinite at 0. It is defined by the formula

κ(s1, s2)=
{
(ψ(s21 + s22))−1 if (s1, s2) ∈Dr1,

1 otherwise,

and

κ0 =
∫

T2
κ dm.

Consider the mapϕ of the torus given by

ϕ(s1, s2)= 1√
κ0(s

2
1 + s22)

(∫ s21+s22
0

du

ψ(u)

)1/2

(s1, s2) (2.4)

in Dr1 andϕ = Id in T2 \Dr1. It is a homeomorphism and is aC∞ diffeomorphism except
at the origin. It also commutes with the involutionI (t1, t2) = (1− t1,1− t2). The map
GT2 = ϕ ◦G ◦ ϕ−1 is of classC∞, area-preserving and has nonzero Lyapunov exponents
almost everywhere. One can show thatGT2 is ergodic and is a Bernoulli diffeomorphism.
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2.3. Diffeomorphisms with nonzero exponents on the2-sphere

Using the diffeomorphismGT2 Katok [134] constructed a diffeomorphisms with nonzero
exponents on the 2-sphereS2. Consider a toral automorphismA of the torusT2 given by
the matrixA= ( 5 8

8 13

)
. It has four fixed pointsx1 = (0,0), x2 = (1/2,0), x3 = (0,1/2) and

x4 = (1/2,1/2).
For i = 1,2,3,4 consider the diskDir centered atxi of radiusr . Repeating the con-

struction from the previous section we obtain a diffeomorphismgi which coincides with
A outsideDir1. Therefore, the map

G1(x)=
{
A(x) if x ∈ T2 \D,
gi(x) if x ∈Dir1,

defines a homeomorphism of the torusT2 which is aC∞ diffeomorphism everywhere
expect at the pointsxi . HereD =⋃4

i=1D
i
r1

. The Lyapunov exponents ofG1 are nonzero
almost everywhere with respect to the area.

Consider the map

ϕ(x)=
{
ϕi(x) if x ∈Dir1,
x otherwise,

whereϕi are given by (2.4) in each diskDir2. It is a homeomorphism ofT2 which is aC∞
diffeomorphism everywhere expect at the pointsxi . The mapG2 = ϕ ◦G1◦ϕ−1 is of class
C∞, area-preserving and has nonzero Lyapunov exponents almost everywhere.

Consider the mapζ :T2 → S2 defined by

ζ(s1, s2)=
(
s21 − s22√
s21 + s22

,
2s1s2√
s21 + s22

)
.

This map is a double branched covering and isC∞ everywhere except at the pointsxi ,
i = 1,2,3,4, where it branches. It commutes with the involutionI and preserves the area.
Consider the mapGS2 = ζ ◦G2◦ζ−1. One can show that it is aC∞ diffeomorphism which
preserves the area and has nonzero Lyapunov exponents almost everywhere. Furthermore,
one can show thatGS2 is ergodic and indeed, is a Bernoulli diffeomorphism.

2.4. Analytic diffeomorphisms with nonzero exponents

We describe an example due to Katok and Lewis [138] of a volume-preserving analytic
diffeomorphism of a compact smooth Riemannian manifold. It is a version of the well-
known blow-up procedure from algebraic geometry.

SettingX = {x ∈ Rn: ‖x‖> 1} consider the mapϕ :Rn \ {0}→X given by

ϕ(x)= (‖x‖
n + 1)1/n

‖x‖ x.
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It is easy to see thatϕ has Jacobian 1 with respect to the standard coordinates onRn.
LetA be a linear hyperbolic transformation ofRn. The diffeomorphismf = ϕ ◦A◦ϕ−1

extends analytically to a neighborhood of the boundary which depends onA. This follows
from the formula

ϕ ◦A ◦ ϕ−1(x)=
(‖x‖n − 1

‖x‖ + 1

‖Ax‖n
)1/n

Ax.

Let (r, θ) be the standard polar coordinates onX so thatX = {(r, θ): r > 1, θ ∈ Sn−1}.
Introducing new coordinates(s, θ), wheres = rn−1, observe that these coordinates extend
analytically across the boundary and have the property that the standard volume form is
proportional tods ∧ dθ . Let B be the quotient ofX̄ under the identification of antipodal
points on the boundary. The mapf induces a mapF of B which preserves the volume
form ds ∧ dθ , has nonzero Lyapunov exponents and is analytic.

2.5. Pseudo-Anosov maps

Pseudo-Anosov maps were singled out by Thurston in connection with the problem of
classifying diffeomorphisms of a compactC∞ surfaceM up to isotopy (see [240,95]).
According to Thurston’s classification, a diffeomorphismf of M is isotopic to a homeo-
morphismg satisfying one of the following properties (see [95, Exposé 9]):

1. g is of finite order and is an isometry with respect to a Riemannian metric of constant
curvature onM ;

2. g is a “reducible” diffeomorphism, that is, a diffeomorphism leaving invariant a
closed curve;

3. g is apseudo-Anosov map.
Pseudo-Anosov maps are surface homeomorphisms that are differentiable except at most

at finitely many points calledsingularities. These maps minimize both the number of pe-
riodic points (of any given period) and the topological entropy in their isotopy classes.
A pseudo-Anosov map is Bernoulli with respect to an absolutely continuous invariant mea-
sure withC∞ density which is positive except at the singularities (see [95, Exposé 10]).

We proceed with a formal description. Let{x1, . . . , xm} be a finite set of points andν a
Borel measure onM . WriteDa = {z ∈ C: |z|< a}.

We say that(F , ν) is ameasured foliationofM with singular pointsx1, . . . , xm if F is
a partition ofM for which the following properties hold:

1. there is a collection ofC∞ chartsϕk :Uk → C for k = 1, . . . , � and some��m with⋃�
k=1Uk =M ;

2. for eachk = 1, . . . ,m there is a numberp = p(k)� 3 of elements ofF meeting atxk
such that:
(a) ϕk(xk)= 0 andϕk(Uk)=Dak for someak > 0;
(b) if C is an element ofF thenC ∩Uk is mapped byϕk to a set{

z: Im
(
zp/2
)= constant

}∩ ϕk(Uk);
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(c) the measureν|Uk is the pullback underϕk of∣∣Im(dzp/2)∣∣= ∣∣Im(z(p−2)/2dz
)∣∣;

3. for eachk >m we have:
(a) ϕk(Uk)= (0, bk)× (0, ck)⊂ R2 ≡ C for somebk , ck > 0;
(b) if C is an element ofF thenC ∩Uk is mapped byϕk to a segment{

(x, y): y = constant
}∩ ϕk(Uk);

(c) the measureν|Uk is given by the pullback of|dy| underϕk .
The elements ofF are calledleavesof the foliation, andν a transversemeasure. For
k = 1, . . . ,m, each pointxk is called ap(k)-prong singularityof F and each of the leaves
of F meeting atxk is called aprong of xk . If, in addition, we allow single leaves ofF
to terminate in a point (called aspine, in which case we setp = 1 above), then(F , ν) is
called ameasured foliation with spines.

The transverse measure is consistently defined on chart overlaps, because wheneverUj ∩
Uk �= ∅, the transition functionsϕk ◦ ϕ−1

j are of the form

(
ϕk ◦ ϕ−1

j

)
(x, y)= (hjk(x, y), cjk ± y),

wherehjk is a function, andcjk is a constant.
A surface homeomorphismf is calledpseudo-Anosovif it satisfies the following prop-

erties:
1. f is differentiable except at a finite number of pointsx1, . . . , xm;
2. there are two measured foliations(F s , νs) and (Fu, νu) with the same singular-

ities x1, . . . , xm and the same number of prongsp = p(k) at each pointxk , for
k = 1, . . . ,m;

3. the leaves of the foliationsF s andFu are transversal at nonsingular points;
4. there areC∞ chartsϕk :Uk → C for k = 1, . . . , � and some� � m, such that for

eachk we have:
(a) ϕk(xk)= 0 andϕk(Uk)=Dak for someak > 0;
(b) leaves ofF s are mapped byϕi to components of the sets{

z: Rezp/2 = constant
}∩Dak ;

(c) leaves ofFu are mapped byϕi to components of the sets{
z: Im
(
zp/2
)= constant

}∩Dak ;

(d) there exists a constantλ > 1 such that

f (F s , νs)= (F s , νs/λ) and f (Fu, νu)= (Fu, λνu).
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If, in addition, (F s , νs) and(Fu, νu) are measured foliations with spines (withp = p(k)
= 1 when there is only one prong atxk), thenf is called ageneralized pseudo-Anosov
homeomorphism.

We call F s andFu the stableand unstable foliations, respectively. At each singular
pointxk , with p = p(k), thestableandunstable prongsare, respectively, given by

P skj = ϕk−1
{
ρeiτ : 0� ρ < ak, τ = 2j + 1

p
π

}
,

P ukj = ϕk−1
{
ρeiτ : 0� ρ < ak, τ = 2j

p
π

}
,

for j = 0, 1, . . . , p− 1. We define thestableandunstable sectorsatxk by

Sskj = ϕk−1
{
ρeiτ : 0� ρ < ak,

2j − 1

p
π � τ � 2j + 1

p
π

}
,

Sukj = ϕk−1
{
ρeiτ : 0� ρ < ak,

2j

p
π � τ � 2j + 2

p
π

}
,

respectively, forj = 0, 1, . . . , p− 1.
Sincef is a homeomorphism,f (xk)= xσk for k = 1, . . . ,m, whereσ is a permutation

of {1, . . . ,m} such thatp(k) = p(σk) andf maps the stable prongs atxk into the stable
prongs atxσk (provided the numbersak are chosen such thatak/λ2/p � aσk ). Hence, we
may assume thatσ is the identity permutation, and

f (P skj )⊂ P skj and f−1(P ukj )⊂ Pukj
for k = 1, . . . ,m andj = 0, . . . , p− 1. Consider the map

Φkj :ϕk(S
s
kj )→{z: Rez� 0},

given by

Φkj (z)= 2zp/2/p,

wherep = p(k). Write Φkj (z) = s1 + is2 and z = t1 + it2, wheres1, s2, t1, t2 are real
numbers. Define a measureν on each stable sector by

dν|Sskj = ϕ∗kΦ∗
kj (ds1ds2)

if k = 1, . . . ,m, j = 0, . . . , p(i)− 1, and on each “nonsingular” neighborhood by

dν|Uk = ϕ∗k (dt1dt2)

if k > m. The measureν can be extended to anf -invariant measure with the following
properties:
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1. ν is equivalent to the Lebesgue measure onM ; moreover,ν has a density which is
smooth everywhere except at the singular pointsxk , where it vanishes ifp(k) � 3,
and goes to infinity ifp(k)= 1;

2. f is Bernoulli with respect toν (see [95, Section 10]).
One can show that the periodic points of any pseudo-Anosov map are dense.

If M is a torus, then any pseudo-Anosov map is an Anosov diffeomorphism (see [95,
Exposé 1]). However, ifM has genus greater than 1, a pseudo-Anosov map cannot be
made a diffeomorphism by a coordinate change which is smooth outside the singularities
or even outside a sufficiently small neighborhood of the singularities (see [105]). Thus, in
order to find smooth models of pseudo-Anosov maps one may have to apply some non-
trivial construction which is global in nature. In [105], Gerber and Katok constructed, for
every pseudo-Anosov mapg, aC∞ diffeomorphism which is topologically conjugate tof
through a homeomorphism isotopic to the identity and which is Bernoulli with respect to
a smooth measure (that is, a measure whose density isC∞ and positive everywhere).

In [104], Gerber proved the existence of real analytic Bernoulli models of pseudo-
Anosov maps as an application of a conditional stability result for the smooth models
constructed in [105]. The proofs rely on the use of Markov partitions. The same results
were obtained by Lewowicz and Lima de Sá [164] using a different approach.

2.6. Flows with nonzero exponents

The first example of a volume-preserving ergodic flow with nonzero Lyapunov exponents,
which is not an Anosov flow, was constructed by Pesin in [196]. The construction is a
“surgery” of an Anosov flow and is based on slowing down trajectories near a given trajec-
tory of the Anosov flow.

Let ϕt be an Anosov flow on a compact three-dimensional manifoldM given by a vector
field X and preserving a smooth ergodic measureµ. Fix a pointp0 ∈M . There is a co-
ordinate systemx, y, z in a ballB(p0, d) (for somed > 0) such thatp0 is the origin (i.e.,
p0 = 0) andX = ∂/∂z.

For eachε > 0, letTε = S1 ×Dε ⊂ B(0, d) be the solid torus obtained by rotating the
disk

Dε =
{
(x, y, z) ∈ B(0, d): x = 0 and(y − d/2)2 + z2 � (εd)2

}
around thez-axis. Every point on the solid torus can be represented as(θ, y, z) with θ ∈ S1

and(y, z) ∈Dε.
For every 0� α � 2π , consider the cross-section of the solid torusΠα = {(θ, y, z):

θ = α}. We construct a new vector field̃X onM \ Tε. We describe the construction of
X̃ on the cross-sectionΠ0 and we obtain the desired vector field̃X|Πα on an arbitrary
cross-section by rotating it around thez-axis.

Consider the Hamiltonian flow given by the HamiltonianH(y, z)= y(ε2 − y2 − z2). In
the annulusε2 � y2 + z2 � 4ε2 the flow is topologically conjugated to the one shown in
Figure 1. However, the Hamiltonian vector field(−2yz,3y2 + z2 − ε2) is not everywhere
vertical on the circley2 + z2 = 4ε2. To correct this consider aC∞ functionp : [ε,∞)→
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Fig. 1. A cross-sectionΠα and the flowϕ̃t .

[0,1] such thatp|[ε,3ε/2] = 1, p|[2ε,∞)= 0, andp is strictly decreasing in(3ε/2,2ε).
The flow defined by the system of differential equations

{
y′ = −2yzp(

√
y2 + z2),

z′ = (3y2 + z2 − ε2)p(
√
y2 + z2)+ 1− p(√y2 + z2),

has now the behavior shown in Figure 1. Denote byϕ̄t andX̄ the corresponding flow and
vector field in coordinatesx, y, z.

By changing the time one can obtain a flowϕ̄t in the annulusε2 � y2+ z2 � 4ε2 so that
the new flowϕ̃t preserves the measureµ. As a result we have a smooth vector fieldX̃ on
M \ Tε such that the flow̃ϕt generated bỹX has the following properties:

1. X̃|(M \ T2ε)=X|(M \ T2ε);
2. for any 0� α,β � 2π , the vector fieldX̃|Πβ is the image of the vector field̃X|Πα

under the rotation around thez-axis that movesΠα ontoΠβ ;
3. for every 0� α � 2π , the unique two fixed points of the flow̃ϕt |Πα are those in the

intersection ofΠα with the hyperplanesz=±εd ;
4. for every 0� α � 2π and(y, z) ∈D2ε \ intDε, the trajectory of the flow̃ϕt |Πα pass-

ing through the point(y, z) is invariant under the symmetry(α, y, z)  → (α, y,−z);
5. the flowϕ̃t |Πα preserves the conditional measure induced by the measureµ on the

setΠα .
The orbits of the flowsϕt andϕ̃t coincide onM \T2ε , the flowϕ̃t preserves the measure

µ and the only fixed points of this flow are those on the circles{(θ, y, z): z = −εd} and
{(θ, y, z): z= εd}.
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OnT2ε \ intTε consider the new coordinatesθ1, θ2, r with 0� θ1, θ2< 2π andεd � r �
2εd such that the set of fixed points ofϕ̃t consists of those for whichr = εd , andθ1 = 0
or θ1 = π .

Define the flow onT2ε \ intTε by

(θ1, θ2, r, t)  →
(
θ1, θ2 +

[
2− r/(εd)]4t cosθ1, r

)
,

and letX̂ be the corresponding vector field. Consider the flowψt onM \ intTε generated
by the vector fieldY onM \ intTε,

Y(x)=
{
X(x), x ∈M \ intT2ε,
X̃(x)+ X̂(x), x ∈ intT2ε \ intTε.

The flow ψt has no fixed points, preserves the measureµ and forµ-almost everyx ∈
M \ T2ε,

χ(x, v) < 0 if v ∈Es(x) and χ(x, v) > 0 if v ∈Eu(x),
whereEu(x) andEs(x) are respectively stable and unstable subspaces of the Anosov flow
ϕt atx.

SetM1 =M \ Tε and consider a copy(M̃1, ψ̃t ) of the flow (M1,ψt ). Gluing the man-
ifolds M1 and M̃1 along their boundaries∂Tε one obtains a three-dimensional smooth
Riemannian manifoldD without boundary. We define a flowFt onD by

Ftx =
{
ψtx, x ∈M1,
ψ̃t x, x ∈ M̃1.

It is clear that the flowFt is smooth and preserves a smooth hyperbolic measure.

2.7. Geodesic flows

Our next example is the geodesic flow on a compact smooth Riemannian manifold of
nonpositive curvature. LetM be a compact smoothp-dimensional Riemannian manifold
with a Riemannian metric of classC3.

Thegeodesic flowgt acts on the tangent bundleTM by the formula

gt (v)= γ̇v(t),
whereγ̇v(t) is the unit tangent vector to the geodesicγv(t) defined by the vectorv (i.e.,
γ̇v(0)= v; this geodesic is uniquely defined). The geodesic flow generates a vector fieldV

on TM given by

V (v)= d(gt (v))
dt

∣∣∣∣
t=0
.

SinceM is compact the flowgt is well defined for allt ∈ R and is a smooth flow.
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We recall some basic notions from Riemannian geometry of nonpositively curved
manifolds (see [92,91] for a detailed exposition). We endow the second tangent space
T (TM) with a special Riemannian metric. Letπ : TM →M be the natural projection (i.e.,
π(x, v) = x for eachx ∈M and eachv ∈ TxM) andK :T (TM)→ TM the linear (con-
nection) operator defined byKξ = (∇Z)(t)|t=0, whereZ(t) is any curve inTM such that
Z(0) = dπξ , d

dt
Z(t)|t=0 = ξ and∇ is the covariant derivative. Thecanonical metricon

T (TM) is given by

〈ξ, η〉v = 〈dvπξ, dvπη〉πv + 〈Kξ,Kη〉πv.

The setSM⊂ TM of the unit vectors is invariant with respect to the geodesic flow, and is
a compact manifold of dimension 2p − 1. In what follows we consider the geodesic flow
restricted toSM.

The study of hyperbolic properties of the geodesic flow is based upon the description
of solutions of the variational equation for the flow. This equation along a given trajectory
gt (v) of the flow is theJacobi equationalong the geodesicγv(t):

Y ′′(t)+RXYX(t)= 0. (2.5)

HereY(t) is a vector field alongγv(t),X(t) = γ̇ (t), andRXY is the curvature operator.
More precisely, the relation between the variational equations and the Jacobi equation (2.5)
can be described as follows. Fixv ∈ SM andξ ∈ TvSM. Let Yξ (t) be the unique solution
of (2.5) satisfying the initial conditionsYξ (0)= dvπξ andY ′

ξ (0)=Kξ . One can show that
the mapξ  → Yξ (t) is an isomorphism for whichdgt vπdvgt ξ = Yξ (t) andKdvgtξ = Y ′

ξ (t).
This map establishes the identification between solutions of the variational equation and
solutions of the Jacobi equation (2.5).

Recall that the Fermi coordinates{ei(t)}, for i = 1, . . . , p, along the geodesicγv(t) are
obtained by the timet parallel translation alongγv(t) of an orthonormal basis{ei(0)} in
Tγv(0)M wheree1(t)= γ̇ (t). Using these coordinates we can rewrite Equation (2.5) in the
matrix form

d2

dt2
A(t)+K(t)A(t)= 0, (2.6)

whereA(t) = (aij (t)) andK(t) = (kij (t)) are matrix functions with entrieskij (t) =
Kγv(t)(ei(t), ej (t)).

Two pointsx = γ (t1) andy = γ (t2) on the geodesicγ are calledconjugateif there
exists a nonidentically zero Jacobi fieldY alongγ such thatY(t1)= Y(t2)= 0. Two points
x = γ (t1) andy = γ (t2) are calledfocal if there exists a Jacobi fieldY alongγ such that
Y(t1)= 0, Y ′(t1) �= 0 and d

dt
‖Y(t)‖2|t=t2 = 0.

We say that the manifoldM has:
1. no conjugate pointsif on each geodesic no two points are conjugate;
2. no focal pointsif on each geodesic no two points are focal;



78 L. Barreira and Ya. Pesin

3. nonpositive curvatureif for any x ∈M and any two vectorsv1, v2 ∈ TxM the sec-
tional curvatureKx(v1, v2) satisfies

Kx(v1, v2)� 0. (2.7)

If the manifold has no focal points then it has no conjugate points and if it has nonpositive
curvature then it has no focal points.

From now on we consider only manifolds with no conjugate points. The boundary value
problem for Equation (2.6) has a unique solution, i.e., for any numberss1, s2 and any
matricesA1,A2 there exists a unique solutionA(t) of (2.6) satisfyingA(s1) = A1 and
A(s2)=A2.

PROPOSITION2.1 (Eberlein [90]).Givens ∈ R, letAs(t) be the unique solution of Equa-
tion (2.6)satisfying the boundary conditions: As(0)= Id (whereId is the identity matrix)
andAs(s)= 0. Then there exists the limit

lim
s→∞

d

dt
As(t)

∣∣∣∣
t=0

=A+.

We define thepositive limit solutionA+(t) of (2.6) as the solution that satisfies the initial
conditions:

A+(0)= Id and
d

dt
A+(t)

∣∣∣∣
t=0

=A+.

This solution is nondegenerate (i.e., detA+(t) �= 0 for every t ∈ R) and A+(t) =
lims→+∞As(t).

Similarly, lettings→−∞, define thenegative limit solutionA−(t) of Equation (2.6).
For everyv ∈ SMset

E+(v)= {ξ ∈ TvSM:
〈
ξ,V (v)

〉= 0 andYξ (t)=A+(t)dvπξ
}
, (2.8)

E−(v)= {ξ ∈ TvSM:
〈
ξ,V (v)

〉= 0 andYξ (t)=A−(t)dvπξ
}
, (2.9)

whereV is the vector field generated by the geodesic flow.

PROPOSITION2.2 (Eberlein [90]).The following properties hold:
1. the setsE−(v) andE+(v) are linear subspaces ofTvSM;
2. dimE−(v)= dimE+(v)= p− 1;
3. dvπE−(v)= dvπE+(v)= {w ∈ TπvM: w is orthogonal tov};
4. the subspacesE−(v) and E+(v) are invariant under the differentialdvgt , i.e.,
dvgtE

−(v)=E−(gtv) anddvgtE+(v)=E+(gtv);
5. if τ : SM→ SM is the involution defined byτv =−v, then

E+(−v)= dvτE−(v) and E−(−v)= dvτE+(v);
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6. if Kx(v1, v2)�−a2 for somea > 0 and allx ∈M , then‖Kξ‖ � a‖dvπξ‖ for every
ξ ∈E+(v) andξ ∈E−(v);

7. if ξ ∈E+(v) or ξ ∈E−(v), thenYξ (t) �= 0 for everyt ∈ R;
8. ξ ∈E+(v) (respectively, ξ ∈E−(v)) if and only if〈

ξ,V (v)
〉= 0 and ‖dgt vπdvgt ξ‖ � c

for everyt > 0 (respectively, t < 0) and somec > 0;
9. if the manifold has no focal points then for anyξ ∈E+(v) (respectively, ξ ∈E−(v))

the functiont  → ‖Yξ (t)‖ is nonincreasing(respectively, nondecreasing).

In view of properties 6 and 8, we haveξ ∈E+(v) (respectively,ξ ∈E−(v)) if and only
if 〈ξ,V (v)〉 = 0 and‖dvgt ξ‖ � c for t > 0 (respectively,t < 0), for some constantc > 0.
This observation and property 4 justify to callE+(v) andE−(v) thestableandunstable
subspaces.

In general, the subspacesE−(v) andE+(v) do not span the whole second tangent space
TvSM. Eberlein (see [90]) has shown that if they do spanTvSM for everyv ∈ SM, then
the geodesic flow is Anosov. This is the case when the curvature is strictly negative. For a
general manifold without conjugate points consider the set

∆ =
{
v ∈ SM: lim

t→∞
1

t

∫ t
0
Kπ(gsv)(gsv, gsw)ds < 0

for everyw ∈ SMorthogonal tov

}
. (2.10)

It is easy to see that∆ is measurable and invariant undergt . The following result shows
that the Lyapunov exponents are nonzero on the set∆.

THEOREM 2.3 (Pesin [198]).Assume that the Riemannian manifoldM has no conjugate
points. Then for everyv ∈ ∆ we haveχ(v, ξ) < 0 if ξ ∈ E+(v) and χ(v, ξ) > 0 if ξ ∈
E−(v).

The geodesic flow preserves the Liouville measureµ on the tangent bundle. Denote by
m the Lebesgue measure onM . It follows from Theorem 2.3 that if the set∆ has positive
Liouville measure then the geodesic flowgt |∆ has nonzero Lyapunov exponents almost
everywhere. It is, therefore, crucial to find conditions which would guarantee that∆ has
positive Liouville measure.

We first consider the two-dimensional case.

THEOREM2.4 (Pesin [198]).LetM be a smooth compact surface of nonpositive curvature
K(x) and genus greater than1. Thenµ(∆) > 0.

In the multi-dimensional case one can establish the following criterion for positivity of
the Liouville measure of the set∆.
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THEOREM 2.5 (Pesin [198]).LetM be a smooth compact Riemannian manifold of non-
positive curvature. Assume that there existx ∈M and a vectorv ∈ SxM such that

Kx(v,w) < 0

for any vectorw ∈ SxM which is orthogonal tov. Thenµ(∆) > 0.

One can show that ifµ(∆) > 0 then the set∆ is open(mod 0) and is everywhere dense
(see Theorem 17.7 below).

3. Lyapunov exponents associated with sequences of matrices

In studying the stability of trajectories of a dynamical systemf one introduces the sys-
tem of variations{dxf m, m ∈ Z} and uses the Lyapunov exponents for this systems
(see Section 1). Consider a family of trivializationsτx of M , i.e., linear isomorphisms
τx :TxM→ Rn wheren= dimM . The sequence of matrices

Am = τfm+1(x) ◦ dfm(x)f ◦ τ−1
fm(x) :R

n→ Rn

can also be used to study the linear stability along the trajectoryfm(x).
In this section we extend our study of Lyapunov exponents for sequences of matrices

generated by smooth dynamical systems to arbitrary sequences of matrices. This will also
serve as an important intermediate step in studying Lyapunov exponents for the even more
general case of cocycles over dynamical systems.

3.1. Definition of the Lyapunov exponent

Let A+ = {Am}m�0 ⊂ GL(n,R) be a one-sided sequence of matrices. SetAm =
Am−1 . . .A1A0 and consider the functionχ+ :Rn→ R∪ {−∞} given by

χ+(v)= χ+(v,A+)= lim
m→+∞

1

m
log‖Amv‖. (3.1)

We make the convention log0=−∞, so thatχ+(0)=−∞.
The functionχ+(v) is called theforward Lyapunov exponent ofv (with respect to the

sequenceA+). It has the following basic properties:
1. χ+(αv)= χ+(v) for eachv ∈ Rn andα ∈ R \ {0};
2. χ+(v +w)� max{χ+(v),χ+(w)} for eachv, w ∈ Rn;
3. χ+(0)=−∞.
As an immediate consequence of the basic properties we obtain that there exist a pos-

itive integerp+, 1 � p+ � n, a collection of numbersχ1 < χ2 < · · · < χp+ , and linear
subspaces

{0} = V0 � V1 � V2 � · · · � Vp+ = Rn
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such thatVi = {v ∈ Rn: χ+(v)� χi}, and ifv ∈ Vi \ Vi−1, thenχ+(v)= χi for eachi =
1, . . . , p+. The spacesVi form thefiltration Vχ+ of Rn associated withχ+. The number

ki = dimVi − dimVi−1

is called themultiplicity of the valueχi , and the collection of pairs

Spχ+ = {(χi, ki): i = 1, . . . , p+
}

theLyapunov spectrumof χ+. We also set

ni = dimVi =
i∑
j=1

kj .

In a similar way, given a sequence of matricesA− = {Am}m<0, define thebackward Lya-
punov exponent(with respect to the sequenceA−) χ− :Rn→ R∪ {−∞} by

χ−(v)= χ−(v,A−)= lim
m→−∞

1

|m| log‖Amv‖, (3.2)

whereAm = (Am)−1 . . . (A−2)
−1(A−1)

−1 for eachm < 0. Let χ−
1 > · · · > χ−

p− be the

valuesof χ−, for some integer 1� p− � n. The subspaces

Rn = V −
1 � · · · � V −

p− � V −
p−+1 = {0},

whereV −
i = {v ∈ Rn: χ−(v) � χ−

i }, form thefiltration Vχ− of Rn associated withχ−.
The number

k−i = dimV −
i − dimV −

i+1

is themultiplicity of the valueχ−
i , and the collection of pairs

Spχ− = {(χ−
i , k

−
i ): i = 1, . . . , p−

}
is theLyapunov spectrumof χ−.

In the case when the sequence of matrices is obtained by iterating a given matrixA, i.e.,
Am = Am the Lyapunov spectrum is calculated as follows. Take all the eigenvalues with
absolute valuer . Then logr is a value of the Lyapunov exponent and the multiplicity is
equal to the sum of the multiplicities of the exponents with this absolute value.

Equality (3.1) implies that for everyε > 0 there existsC+ = C+(v, ε) > 0 such that if
m� 0 then

‖Amv‖� C+e(χ
+(v)+ε)m‖v‖. (3.3)
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Similarly, (3.2) implies that for everyε > 0 there existsC− = C−(v, ε) > 0 such that if
m� 0 then

‖A−mv‖� C−e(χ
−(v)+ε)m‖v‖. (3.4)

Given vectorsv1, . . . , vk ∈ Rn, we denote byV(v1, . . . , vk) the volume of thek-paral-
lelepiped formed byv1, . . . , vk . The forward andbackwardk-dimensional Lyapunov ex-
ponents of the vectorsv1, . . . , vk are defined, respectively, by

χ+(v1, . . . , vk)= χ+(v1, . . . , vk,A+)= lim
m→+∞

1

m
logV(Amv1, . . . ,Amvk),

χ−(v1, . . . , vk)= χ−(v1, . . . , vk,A−)= lim
m→−∞

1

|m| logV(Amv1, . . . ,Amvk).

These exponents depend only on the linear space generated by the vectorsv1, . . . , vk . Since
V(v1, . . . , vk)�

∏k
i=1‖vi‖ we obtain

χ+(v1, . . . , vk)�
k∑
i=1

χ+(vi). (3.5)

A similar inequality holds for the backward Lyapunov exponent.

The inequality (3.5) can be strict. Indeed, consider the sequence of matricesAm = ( 2 0
0 1

2

)
and the vectorsv1 = (1,0), v2 = (1,1). We haveχ+(v1)= χ+(v2)= log2. On the other
hand, since detAm = 1, we haveχ+(v1, v2)= 0< χ+(v1)+ χ+(v2).

3.2. Forward and backward regularity

We say that a sequence of matricesA+ is forward regularif

lim
m→+∞

1

m
log|detAm| =

n∑
i=1

χ ′
i , (3.6)

whereχ ′
1, . . . , χ

′
n are the finite values of the exponentχ+ counted with their multiplicities.

By (3.5), this is equivalent to

lim
m→+∞

1

m
log|detAm| �

n∑
i=1

χ ′
i .

The forward regularity is equivalent to the statement that there exists a positive definite
symmetric matrixΛ such that

lim
m→∞‖AmΛ−m‖ = 0, lim

m→∞
∥∥ΛmA−1

m

∥∥= 0. (3.7)
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Let A+ = {Am}m�0 andB+ = {Bm}m�0 be two sequences of matrices. They are called
equivalentif there is a nondegenerate matrixC such thatAm = C−1BmC for everym� 0.
Any sequence of linear transformations, which is equivalent to a forward regular sequence,
is itself forward regular.

The Lyapunov exponentχ+ is said to be
1. exact with respect to the collection of vectors{v1, . . . , vk} ⊂ Rn if

χ+(v1, . . . , vk)= lim
m→+∞

1

m
logV(Amv1, . . . ,Amvk);

2. exactif for any 1� k � n, the exponentχ+ is exact with respect to every collection
of vectors{v1, . . . , vk} ⊂ Rn.

If the Lyapunov exponent is exact then in particular forv ∈ Rn one has

χ+(v)= lim
m→+∞

1

m
log‖Amv‖;

equivalently (compare with (3.3) and (3.4)): for everyε > 0 there existsC = C(v, ε) > 0
such that ifm� 0 then

C−1e(χ
+(v)−ε)m � ‖Amv‖ �Ce(χ+(v)+ε)m.

THEOREM 3.1 (Lyapunov [171]).If the sequence of matricesA+ is forward regular, then
the Lyapunov exponentχ+ is exact.

The following simple example demonstrates that the Lyapunov exponentχ+ may be
exact even for a sequence of matrices which is not forward regular. In other words, the
existence of the limit in (3.1) doesnotguarantee that the Lyapunov exponentχ+ is forward
regular.

EXAMPLE 3.2. LetA+ = {Am}m�0 be the sequence of matrices whereA0 =
(

1 0
2 4

)
and

Am = ( 1 0
−2m+1 4

)
for eachm� 1 so thatAm = ( 1 0

2m 4m
)

for everym� 1. Given a vectorv =
(a, b) �= (0,0) we haveχ+(v)= log2 if b = 0, andχ+(v)= log 4 if b �= 0. This implies
that χ+ is exact with respect to every vectorv. Let v1 = (1,0) and v2 = (0,1). Then
χ+(v1) = log 2 andχ+(v2) = log4. Since detAm = 4m we obtainχ+(v1, v2) = log4.
Therefore,χ+ is exact with respect to{v1, v2}, and hence with respect to every collection
of two vectors. On the other hand,

χ+(v1, v2)= log4< log2+ log4= χ+(v1)+ χ+(v2)

and the sequence of matricesA+ is not forward regular.

In the one-dimensional case the situation is different.

PROPOSITION3.3. A sequence of numbersA+ ⊂ GL(1,R)= R \ {0} is forward regular
if and only if the Lyapunov exponentχ+ is exact.
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We now present an important characteristic property of forward regularity which is very
useful in applications. We say that a basisv = (v1, . . . , vn) of Rn is normal with respect
to the filtrationV = {Vi : i = 0, . . . , p+} if for every 1� i � p+ there exists a basis ofVi
composed of vectors from{v1, . . . , vn}.

THEOREM 3.4 (see [69]).A sequence of matricesA+ is forward regular if and only if for
any normal basisv of Rn with respect to the filtrationVχ+ and any subsetK ⊂ {1, . . . , n},
we have:

1. χ+({vi}i∈K)= lim
m→+∞

1

m
logV
({Amvi}i∈K)=∑

i∈K
χ+(vi);

2. if σm is the angle between the subspacesspan{Amvi : i ∈K} andspan{Amvi : i /∈K},
then

lim
m→+∞

1

m
log|sinσm| = 0.

A sequence of matricesA− = {Am}m<0 is calledbackward regularif

lim
m→−∞

1

|m| log|detAm| =
n∑
i=1

χ̃ ′
i ,

whereχ̃ ′
1, . . . , χ̃

′
n are the finite values ofχ− counted with their multiplicities.

Given a sequenceA− = {Am}m<0, we construct a new sequenceB+ = {Bm}m�0 by
settingBm = (A−m−1)

−1. The backward regularity ofA− is equivalent to the forward
regularity ofB+. This reduction allows one to translate any fact about forward regularity
into a corresponding fact about backward regularity.

For example, the backward regularity of the sequence of matricesA− implies that the
Lyapunov exponentχ− is exact. Moreover, if the Lyapunov exponentχ− is exact (in
particular, if it is backward regular) then

χ−(v)= lim
m→−∞

1

|m| log‖Amv‖

for everyv ∈ Rn. This is equivalent to the following: for everyε > 0 there existsC =
C(v, ε) > 0 such that ifm� 0 then

C−1e−(χ−(v)−ε)m � ‖A−mv‖� Ce−(χ−(v)+ε)m.

3.3. A criterion for forward regularity of triangular matrices

Let A+ = {Am}m�0 be a sequence of matrices. One can write eachAm in the form
Am = RmTm, whereRm is orthogonal, andTm is lower triangular. In general, the diag-
onal entries ofTm alone donot determine the values of the Lyapunov exponent associated
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with A+. Indeed, letA+ = {Am}m�0 be a sequence of matrices whereAm = ( 0 −1/2
2 0

)
for

eachm> 0. We haveAm = RmTm, whereRm = ( 0 −1
1 0

)
is orthogonal andTm = ( 2 0

0 1/2

)
is

diagonal. SinceAm2 =−Id, we obtainχ+(v,A+)= 0 for everyv �= 0 whereas the values
of the Lyapunov exponent forT = {Tm}m�0 are equal to± log2.

However, in certain situations one can reduce the study of sequences of arbitrary ma-
trices to the study of sequences of lower triangular matrices (see Section 5.3). Therefore,
we shall consider sequences of lower triangular matrices and present a useful criterion of
regularity of the Lyapunov exponent. This criterion is used in the proof of the Multiplica-
tive Ergodic Theorem 5.5, which is one of the central results in smooth ergodic theory. We
write log+ a = max{loga,0} for a positive numbera.

THEOREM 3.5 (see [69]). LetA+ = {(amij )}m�0 ⊂ GL(n,R) be a sequence of lower tri-
angular matrices such that:

1. for eachi = 1, . . . , n, the following limit exists and is finite:

lim
m→+∞

1

m

m∑
k=0

log
∣∣akii∣∣ def= λi;

2. for anyi, j = 1, . . . , n, we have

lim
m→+∞

1

m
log+
∣∣amij ∣∣= 0.

Then the sequenceA+ is forward regular, and the numbersλi are the values of the Lya-
punov exponentχ+ (counted with their multiplicities but possibly not ordered).

Let us comment on the proof of this theorem. If we count each exponent according to its
multiplicity we have exactlyn exponents. To verify (3.6) we will produce a basisv1, . . . , vn
which is normal with respect to the standard filtration (i.e., related with the standard basis
by an upper triangular coordinate change) such thatχ+(vi)= λi .

If the exponents are ordered so thatλ1 � λ2 � · · ·� λn then the standard basis is in fact
normal. To see this notice that while multiplying lower triangular matrices one obtains a
matrix whose off-diagonal entries contain a polynomially growing number of terms each
of which can be estimated by the growth of the product of diagonal terms below.

However, if the exponents are not ordered that way then an elementei of the standard
basis will grow according to the maximal of the exponentsλj for j � i. In order to pro-
duce the right growth one has to compensate the growth caused by off-diagonal terms by
subtracting from the vectorei a certain linear combination of vectorsej for whichλj > λi .
This can be done in a unique fashion. The detailed proof proceeds by induction.

A similar criterion of forward regularity holds for sequences of upper triangular matri-
ces.

Using the correspondence between forward and backward sequences of matrices we
immediately obtain the corresponding criterion for backward regularity.



86 L. Barreira and Ya. Pesin

3.4. Lyapunov regularity

Let A= {Am}m∈Z be a sequence of matrices inGL(n,R). SetA+ = {Am}m�0 andA− =
{Am}m<0. Consider the forward and backward Lyapunov exponentsχ+ andχ− specified
by the sequenceA, i.e., by the sequencesA+ andA−, respectively; see (3.1) and (3.2).
Denote by

Vχ+ = {V +
i : i = 1, . . . , p+} and Vχ− = {V −

i : i = 1, . . . , p−}

the filtrations ofRn associated with the Lyapunov exponentsχ+ andχ−.
We say that the filtrationsVχ+ andVχ− complyif the following properties hold:

1. p+ = p− def= p;
2. there exists a decomposition

Rn =
p⊕
i=1

Ei

into subspacesEi such that ifi = 1, . . . , p then

V +
i =

i⊕
j=1

Ej and V −
i =

p⊕
j=i
Ej

(note that necessarilyEi = V +
i ∩ V −

i for i = 1, . . . , p);
3. if v ∈Ei \ {0} then

lim
m→±∞

1

m
log‖Amv‖ = χi,

with uniform convergence on{v ∈Ei : ‖v‖ = 1}.
We say that the sequenceA is Lyapunov regularor simplyregular if:
1. A is simultaneously forward and backward regular (i.e.,A+ is forward regular and

A− is backward regular);
2. the filtrationsVχ+ andVχ− comply.
Notice that the constant cocycle generated by a single matrixA (see Section 3.1) is

Lyapunov regular since

p∑
i=1

χi dimEi = log|detA|.

PROPOSITION3.6. If A is regular then:
1. the exponentsχ+ andχ− are exact;
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2. χ−
i =−χi , dimEi = ki , and

lim
m→±∞

1

m
log
∣∣det(Am|Ei)

∣∣= χiki .
Simultaneous forward and backward regularity of a sequence of matricesA is not suf-

ficient for Lyapunov regularity. Forward (respectively, backward) regularity does not de-
pend on the backward (respectively, forward) behavior ofA, i.e., form� 0 (respectively,
m� 0). On the other hand, Lyapunov regularity requires some compatibility between the
forward and backward behavior which is expressed in terms of the filtrationsVχ+ andVχ− .

EXAMPLE 3.7. Let

Am =
{( 2 0

0 1/2

)
if m� 0,( 5/4 −3/4

−3/4 5/4

)
if m< 0.

Note that(
2 0
0 1/2

)
=R−1

(
5/4 −3/4
−3/4 5/4

)
R,

whereR is the rotation byπ/4 around 0. We haveχ+(1,0) = χ−(1,1) = log 2 and
χ+(0,1) = χ−(1,−1) = − log2. Hence,V +

1 �= V −
1 , and thus,A is not regular. On the

other hand, since detAm = 1, we have

χ+(v1, v2)= χ−(v1, v2)= log 2− log 2= 0,

and the exponentsχ+(v1, v2) andχ−(v1, v2) are exact for any linearly independent vectors
v1, v2 ∈ R2. Therefore, the sequenceA is simultaneously forward and backward regular.

4. Cocycles and Lyapunov exponents

4.1. Cocycles and linear extensions

In what follows we assume thatX is a measure space which is endowed with aσ -algebra
of measurable subsets and thatf :X→X is an invertible measurable transformation. For
most substantive statements we will assume thatf preserves a finite measure.

A function A :X × Z → GL(n,R) is called alinear multiplicative cocycle overf or
simply acocycleif the following properties hold:

1. for everyx ∈X we haveA(x,0)= Id and ifm, k ∈ Z then

A(x,m+ k)=A
(
f k(x),m

)
A(x, k); (4.1)

2. for everym ∈ Z the functionA(·,m) :X→ GL(n,R) is measurable.
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If A is a cocycle, thenA(f−m(x),m)−1 =A(x,−m) for everyx ∈X andm ∈ Z.
Given a measurable functionA :X→ GL(n,R) andx ∈X, define the cocycle

A(x,m)=
A(f

m−1(x)) . . .A(f (x))A(x) if m> 0,
Id if m= 0,
A(fm(x))−1 . . .A(f−2(x))

−1
A(f−1(x))

−1
if m< 0.

The mapA is called thegeneratorof the cocycleA. One also says that the cocycleA is
generatedby the functionA. Each cocycleA is generated by the functionA(·)=A(·,1).

The sequences of matrices that we discussed in the previous section are cocycles over
the shift mapf :Z → Z, f (n)= n+ 1.

A cocycleA overf induces alinear extensionF :X×Rn→X×Rn of f toX×Rn,
or a linear skew product, defined by

F(x, v)= (f (x),A(x)v).
In other words, the action ofF on the fiber overx to the fiber overf (x) is given by the
linear mapA(x). If π :X×Rn→X is the projection,π(x, v)= x, then the diagram

X×Rn
F−−−−→ X×Rn

π

� �π
X

f−−−−→ X

is commutative. Notice that for eachm ∈ Z,

Fm(x, v)= (fm(x),A(x,m)v).
Linear extensions are particular cases of bundle maps of measurable vector bundles which
we now consider. LetE andX be measure spaces andπ :E → X a measurable map.
One says thatE is a measurable vector bundleoverX if for every x ∈ X there exists
a measurable subsetYx ⊂ X containingx such that there exists a measurable map with
measurable inverseπ−1(Yx)→ Yx × Rn. A bundle mapF :E→ E over a measurable
mapf :X→X is a measurable map which makes the following diagram commutative:

E
F−−−−→ E

π

� �π
X

f−−−−→ X

The following proposition shows that from the measure theory point of view every vector
bundle over a compact metric space is trivial, and hence, without loss of generality, one
may always assume thatE =X×Rn. In other words every bundle map ofE is essentially
a linear extension provided that the base spaceX is a compact metric space.
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PROPOSITION 4.1. If E is a measurable vector bundle over a compact metric space
(X, ν), then there is a subsetY ⊂ X such thatν(Y ) = 1 andπ−1(Y ) is (isomorphic to)
a trivial vector bundle.

4.2. Cohomology and tempered equivalence

Let A :X→ GL(n,R) be the generator of a cocycleA over the invertible measurable
transformationf :X→ X . The cocycleA acts on the linear coordinatevx on the fiber
{x} × Rn of X × Rn by vf (x) = A(x)vx . Let L(x) ∈ GL(n,R) be a linear coordinate
change in each fiber, given byux = L(x)vx for eachx ∈ X. We assume that the func-
tion L :X→ GL(n,R) is measurable. Consider the functionB :X→ GL(n,R) for which
uf (x) = B(x)ux . One can easily verify that

A(x)= L(f (x))−1
B(x)L(x),

and thatB generates a new cocycleB overf . One can naturally think of the cocyclesA
andB as equivalent. However, since the functionL is in general only measurable, without
any additional assumption onL the measure-theoretical properties of the cocyclesA andB
can be very different. We now introduce a sufficiently general class of coordinate changes
which make the notion of equivalence productive.

Let Y ⊂X be anf -invariant nonempty measurable set. A measurable functionL :X→
GL(n,R) is said to betempered onY with respect tof or simply tempered onY if for
everyx ∈ Y we have

lim
m→±∞

1

m
log
∥∥L(f m(x))∥∥= lim

m→±∞
1

m
log
∥∥L(f m(x))−1∥∥= 0.

A cocycle overf is said to betempered onY if its generator is tempered onY . If the real
functionsx  → ‖L(x)‖, ‖L(x)−1‖ are bounded or, more generally, have finite essential
supremum, then the functionL is tempered with respect to any invertible transformation
f :X→ X on anyf -invariant nonempty measurable subsetY ⊂ X. The following state-
ment provides a more general criterion for a functionL to be tempered.

PROPOSITION4.2. Letf :X→X be an invertible transformation preserving a probabil-
ity measureν, andL :X→ GL(n,R) a measurable function. If

log‖L‖, log
∥∥L−1
∥∥ ∈ L1(X, ν),

thenL is tempered on some set of fullν-measure.

LetA,B :X→ GL(n,R) be the generators, respectively, of two cocyclesA andB over
an invertible measurable transformationf , andY ⊂X a measurable subset. The cocycles
A andB are said to beequivalent onY or cohomologous onY , if there exists a measurable
functionL :X→ GL(n,R) which is tempered onY such that for everyx ∈ Y , we have

A(x)= L(f (x))−1
B(x)L(x). (4.2)
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This is clearly an equivalence relation and if two cocyclesA andB are equivalent, we
write A ∼Y B. Equation (4.2) is calledcohomology equation.

It follows from (4.2) that for anyx ∈ Y andm ∈ Z,

A(x,m)= L(f m(x))−1B(x,m)L(x). (4.3)

Proposition 4.2 immediately implies the following.

COROLLARY 4.3. If L :X→ R is a measurable function such thatlog‖L‖, log‖L−1‖
∈ L1(X, ν) then any two cocyclesA andB satisfying(4.3)are equivalent cocycles.

We now consider the notion of equivalence for cocycles over different transformations.
Let f :X→ X andg :Y → Y be invertible measurable transformations. Assume thatf

andg aremeasurably conjugated, i.e., thath ◦ f = g ◦ h for some invertible measurable
transformationh :X→ Y . LetA be a cocycle overf andB a cocycle overg. The cocycles
A andB are said to beequivalentif there exists a measurable functionL :X→ GL(n,R)
which is tempered onY with respect tog, such that for everyx ∈ Y , we have

A
(
h−1(x)

)= L(g(x))−1
B(x)L(x).

4.3. Examples and basic constructions with cocycles

We describe various examples of measurable cocycles over dynamical systems. Perhaps the
simplest example is provided by the rigid cocycles generated by a single matrix. Starting
from a given cocycle one can build other cocycles using some basic constructions in er-
godic theory and algebra. Thus one obtains power cocycles, induced cocycles, and exterior
power cocycles.

Let A be a measurable cocycle over a measurable transformationf of a Lebesgue
spaceX. We will call a cocycleA rigid if it is equivalent to a cocycle whose genera-
tor A is a constant map. Rigid cocycles naturally arise in the classical Floquet Theory
(where the dynamical system in the base is a periodic flow), and among smooth cocycles
over translations on the torus with rotation vector satisfying a Diophantine condition (see
[93,153] and the references therein). In the setting of actions of groups other thanZ and
R rigid cocycles appear in the measurable setting for actions of higher rank semisimple
Lie groups and lattices in such groups (see [261]), and in the smooth setting for hyperbolic
actions of higher rank Abelian groups (see [140,141]).

Givenm� 1, consider the transformationf m :X→X and the measurable cocycleAm
overf m with the generator

Am(x)
def=A(f m−1(x)

)
. . .A(x).

The cocycleAm is called themth power cocycleof A.
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Assume thatf preserves a measureν and letY ⊂X be a measurable subset of positive
ν-measure. By Poincaré’s Recurrence Theorem the setZ ⊂ Y of pointsx ∈ Y such that
f n(x) ∈ Y for infinitely many positive integersn, has measureν(Z) = ν(Y ). We define
the transformationfY :Y → Y (mod0) as follows:

fY (x)= f kY (x)(x), wherekY (x)= min
{
k � 1: f k(x) ∈ Y}.

The functionkY and the mapfY are measurable onZ. We callkY the (first) return timeto
Y andfY the (first) return mapor induced transformationonY .

PROPOSITION 4.4 (see, for example, [77]).The measureν is invariant underfY , the
functionkY ∈ L1(X, ν) and

∫
Y
kY dν = ν(⋃n�0f

nY ).

SincekY ∈ L1(X, ν), it follows from Birkhoff’s Ergodic Theorem that the function

τY (x)= lim
k→+∞

1

k

k−1∑
i=0

kY
(
f iY (x)
)

is well defined forν-almost allx ∈ Y and thatτY ∈ L1(X, ν).
If A is a measurable linear cocycle overf with generatorA, we define theinduced

cocycleAY overfY to be the cocycle with the generator

AY (x)=AkY (x)(x).
Finally, given a cocycleA we define the cocycleA∧k :X × Z → (GL(n,R))∧k by

A∧k(x,m) = A(x,m)∧k (see Section 5.1 for the definition of exterior power). We call
A∧k thek-fold exterior power cocycleof A.

4.4. Hyperbolicity of cocycles

The crucial notion of nonuniformly hyperbolic diffeomorphisms was introduced by Pesin
in [197,198]. In terms of cocycles this is the special case of derivative cocycles (see Sec-
tion 6.1). Pesin’s approach can readily be extended to general cocycles.

Consider a family of inner products〈·, ·〉 = {〈·, ·〉x : x ∈ X} on Rn. Given x ∈ X we
denote by‖ · ‖x the norm and by�(·, ·)x the angle induced by the inner product〈·, ·〉x . In
order to simplify the notation we often write‖ · ‖ and�(·, ·) omitting the reference pointx.

Let Y ⊂X be anf -invariant nonempty measurable subset. Let alsoλ,µ :Y → (0,+∞)
andε :Y →[0, ε0], ε0> 0, bef -invariant measurable functions such thatλ(x) < µ(x) for
everyx ∈ Y .

We say that a cocycleA :X × Z → GL(n,R) overf is nonuniformly partially hyper-
bolic in the broad senseif there exist measurable functionsC,K :Y → (0,+∞) such that

1. for everyx ∈ Y ,

eitherλ(x)eε(x) < 1 or µ(x)e−ε(x) > 1; (4.4)
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2. there exists a decompositionRn =E1(x)⊕E2(x), depending measurably onx ∈ Y ,
such thatA(x)E1(x)=E1(f (x)) andA(x)E2(x)=E2(f (x));

3. (a) forv ∈E1(x) andm> 0,∥∥A(x,m)v∥∥� C(x)λ(x)meε(x)m‖v‖;

(b) for v ∈E2(x) andm< 0,∥∥A(x,m)v∥∥� C(x)µ(x)meε(x)|m|‖v‖;

(c) �(E1(f
m(x)),E2(f

m(x)))�K(fm(x)) for everym ∈ Z;
(d) form ∈ Z,

C
(
f m(x)

)
� C(x)e|m|ε(x), K

(
f m(x)

)
�K(x)e−|m|ε(x).

We say that a cocycleA :X × Z → GL(n,R) overf is nonuniformly(completely) hy-
perbolicif the requirement (4.4) is replaced by the following stronger one: for everyx ∈ Y ,

λ(x)eε(x) < 1<µ(x)e−ε(x).

PROPOSITION4.5. If a cocycleA overf is partially hyperbolic in the broad sense, then
for everyx ∈ Y ,

1. A(x,m)E1(x)=E1(f
m(x)) andA(x,m)E2(x)=E2(f

m(x));
2. for v ∈E1(x) andm< 0,∥∥A(x,m)v∥∥� C

(
f m(x)

)−1
λ(x)me−ε(x)|m|‖v‖;

3. for v ∈E2(x) andm> 0,∥∥A(x,m)v∥∥� C
(
f m(x)

)−1
µ(x)me−ε(x)m‖v‖.

The setY is nested by the invariant setsYλµε for which λ(x) � λ, µ(x) � µ and
ε(x) � ε, i.e.,Y =⋃Yλµε andYλ′µ′ε′ ⊂ Yλ′′µ′′ε′′ providedλ′ � λ′′, µ′ � µ′′ andε′ � ε′′.
On each of these sets the above estimates hold withλ(x), µ(x) andε(x) replaced byλ, µ
andε, respectively.

Even when a cocycle is continuous or smooth one should expect the functionsλ, µ, ε,
C andK to be only measurable, the functionC to be unbounded andK to have values
arbitrarily close to zero.

If these functions turn to be continuous we arrive to the special case of uniformly hyper-
bolic cocycles. More precisely, we say that the cocycleA :X × Z → GL(n,R) overf is
uniformly partially hyperbolic in the broad senseif there exist 0< λ<µ<∞, λ < 1, and
constantsc > 0 andγ > 0 such that the following conditions hold:

1. there exists a decompositionRn =E1(x)⊕E2(x), depending continuously onx ∈ Y ,
such thatA(x)E1(x)=E1(f (x)) andA(x)E2(x)=E2(f (x));



Smooth ergodic theory and nonuniformly hyperbolic dynamics 93

2. (a) forv ∈E1(x) andm> 0,∥∥A(x,m)v∥∥� cλm‖v‖;

(b) for v ∈E2(x) andm< 0,∥∥A(x,m)v∥∥� cµm‖v‖;

(c) �(E1(f
m(x)),E2(f

m(x)))� γ for everym ∈ Z.
The principal example of uniformly hyperbolic cocycles are cocycles generated by

Anosov diffeomorphisms and more generally Axiom A diffeomorphisms. The principal
examples of nonuniformly hyperbolic cocycles are cocycles with nonzero Lyapunov expo-
nents.

We will see below that a nonuniformly hyperbolic cocycle on a setY of full measure
(with respect to an invariant measure) is in fact, uniformly hyperbolic on a setYδ ⊂ Y of
measure at least 1− δ for arbitrarily smallδ > 0. This observation is crucial in studying
topological and measure-theoretical properties of such cocycles. However, the “parame-
ters” of uniform hyperbolicity, i.e., the numbersc andγ may vary withδ approaching
∞ and 0, respectively. We stress that this can only occur with a subexponential rate. We
proceed with the formal description.

4.5. Regular sets of hyperbolic cocycles

Nonuniformly hyperbolic cocycles turn out to be uniformly hyperbolic on some compact
but noninvariant subsets, calledregular sets. They are nested and exhaust the whole space.
Nonuniform hyperbolic structure appears then as a result of deterioration of the hyperbolic
structure when a trajectory travels from one of these subsets to another. We first intro-
duce regular sets for arbitrary cocycles and then establish their existence for nonuniformly
hyperbolic cocycles.

Let A be a cocycle overX andε :X→ [0,+∞) an f -invariant measurable function.
Given 0< λ< µ<∞, λ < 1, and�� 1, denote byΛ� =Λ�λµ the set of pointsx ∈X for
which there exists a decompositionRn =E1x ⊕E2x such that for everyk ∈ Z andm> 0,

1. if v ∈A(x, k)E1x then∥∥A(f k(x),m)v∥∥� �λmeε(x)(m+|k|)‖v‖

and∥∥A(f k(x),−m)v∥∥� �−1λ−me−ε(x)(|k−m|+m)‖v‖;

2. if v ∈A(x, k)E2x then∥∥A(f k(x),−m)v∥∥� �µ−meε(x)(m+|k|)‖v‖
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and∥∥A(f k(x),m)v∥∥� �−1µme−ε(x)(|k+m|+m)‖v‖;

3. �(E1f k(x),E2f k(x))� �−1e−ε(x)|k|.

The setΛ� is called aregular set(or aPesin set).
It is easy to see that these sets have the following properties:
1. Λ� ⊂Λ�+1;
2. form ∈ Z we havef m(Λ�)⊂Λ�′ , where

�′ = �exp
(|m|sup

{
ε(x): x ∈Λ�});

3. the setΛ=Λλµ def=⋃��1Λ
� is f -invariant;

4. if X is a topological space andA andε are continuous then the setsΛ� are closed
and the subspacesE1x andE2x vary continuously withx ∈Λ� (with respect to the
Grassmannian distance).

Every cocycleA overf , which is nonuniformly hyperbolic on a setY ⊂ X, admits a
nonempty regular set. Indeed, for each 0< λ < µ <∞, λ < 1, and each integer�� 1 let
Y � ⊂X be the set of points for which

λ(x)� λ < µ� µ(x), C(x)� � and K(x)� �−1.

We haveY � ⊂ Y �+1, Y � ⊂Λ� andE1x =E1(x), E2x =E2(x) for everyx ∈ Y .

4.6. Lyapunov exponents for cocycles

We extend the notion of Lyapunov exponent to cocycles over dynamical systems.
Let A be a cocycle over an invertible measurable transformationf of a measure space

X with generatorA :X→ GL(n,R). Note that for eachx ∈ X the cocycleA generates a
sequence of matrices{Am}m∈Z = {A(fm(x))}m∈Z. Therefore, every cocycle can be viewed
as a collection of sequences of matrices which are indexed by the trajectories off . One
can associate to each of these sequences of matrices a Lyapunov exponent.

However, one should carefully examine the dependence of the Lyapunov exponent when
one moves from a sequence of matrices to another one (see Proposition 4.6 below). This is
what constitutes a substantial difference in studying cocycles over dynamical systems and
sequences of matrices (see Sections 5.1 and 5.3 below). We now proceed with the formal
definition of the Lyapunov exponent for cocycles.

Consider the generatorA :X → GL(n,R) of the cocycleA. Given a point(x, v) ∈
X×Rn, we define theforward Lyapunov exponent of(x, v) (with respect to the cocycleA)
by

χ+(x, v)= χ+(x, v,A)= lim
m→+∞

1

m
log
∥∥A(x,m)v∥∥.
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Note that the numberχ+(x, v) does not depend on the norm‖ · ‖ induced by an inner
product onRn. With the convention log0= −∞, we obtainχ+(x,0) = −∞ for every
x ∈X.

There exist a positive integerp+(x)� n, a collection of numbers

χ+
1 (x) < χ

+
2 (x) < · · ·< χ+

p+(x)(x),

and a filtrationV+
x of linear subspaces

{0} = V +
0 (x)� V +

1 (x)� · · · � V +
p+(x)(x)= Rn,

such that:
1. V +

i (x)= {v ∈ Rn: χ+(x, v)� χ+
i (x)};

2. if v ∈ V +
i (x) \ V +

i−1(x), thenχ+(x, v)= χ+
i (x).

The numbersχ+
i (x) are called thevaluesof the Lyapunov exponentχ+ atx. The num-

ber

k+i (x)= dimV +
i (x)− dimV +

i−1(x)

is called themultiplicity of the valueχ+
i (x). We also write

n+i (x)
def= dimV +

i (x)=
i∑
j=1

k+j (x).

TheLyapunov spectrumof χ+ atx is the collection of pairs

Sp+x A= {(χ+
i (x), k

+
i (x)
)
: i = 1, . . . , p+(x)

}
.

Observe thatk+i (f (x))= k+i (x) and hence, Sp+
f (x)

A= Sp+x A.

PROPOSITION4.6. The following properties hold:
1. the functionsχ+ andp+ are measurable;
2. χ+ ◦ f = χ+ andp+ ◦ f = p+;
3. A(x)V +

i (x)= V +
i (f (x)) andχ+

i (f (x))= χ+
i (x).

For every(x, v) ∈X×Rn, we set

χ−(x, v)= χ−(x, v,A)= lim
m→−∞

1

|m| log
∥∥A(x,m)v∥∥.

We call χ−(x, v) the backward Lyapunov exponent of(x, v) (with respect to the cocy-
cle A). One can show that for everyx ∈ X there exist a positive integerp−(x) � n, the
values

χ−
1 (x) > χ

−
2 (x) > · · ·> χ−

p−(x)(x),
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and thefiltration V−
x of Rn associated withχ− atx,

Rn = V −
1 (x)� · · · � V −

p−(x)(x)� V −
p−(x)+1(x)= {0},

such thatV −
i (x)= {v ∈ Rn: χ−(x, v)� χ−

i (x)}. The number

k−i (x)= dimV −
i (x)− dimV −

i+1(x)

is called themultiplicity of the valueχ−
i (x). We define theLyapunov spectrumof χ− at x

by

Sp−x A= {(χ−
i (x), k

−
i (x)
)
: i = 1, . . . , p−(x)

}
.

Any nonuniformly (partially or completely) hyperbolic cocycle has nonzero Lyapunov ex-
ponents. More precisely,

1. If A is a nonuniformly partially hyperbolic cocycle (in the broad sense) onY , then

Y ⊂ {x ∈X: χ+(x, v) �= 0 for somev ∈ Rn \ {0}}.
2. If A is a nonuniformly hyperbolic cocycle onY , then

Y ⊂ {x ∈X: χ+(x, v) �= 0 for all v ∈ Rn
}
.

The converse statement is also true but is much more difficult. It is a manifestation of
the Multiplicative Ergodic Theorem 5.5 of Oseledets. Namely, a cocycle whose Lyapunov
exponents do not vanish almost everywhere is nonuniformly hyperbolic on a set of full
measure (see Theorem 5.11).

Lyapunov exponents of a cocycle are invariants of a coordinate change which satisfies
the tempering property as the following statement shows.

PROPOSITION4.7. LetA andB be equivalent cocycles onY over a measurable transfor-
mationf :X→ X , andL :X→ GL(n,R) a measurable function satisfying(4.2) that is
tempered onY . If x ∈ Y then:

1. the forward and backward Lyapunov spectra coincide atx, i.e.,

Sp+x A= Sp+x B and Sp−x A= Sp−x B;

2. L(x) preserves the forward and backward filtrations ofA andB, i.e.,

L(x)V +
i (x,A)= V +

i (x,B), i = 1, . . . , p+(x),

and

L(x)V −
i (x,A)= V −

i (x,B), i = 1, . . . , p−(x).
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5. Regularity and Multiplicative Ergodic Theorem

5.1. Lyapunov regularity

We extend the concept of regularity to cocycles over dynamical systems. LetA be a cocycle
over an invertible measurable transformationf of a measure spaceX. As we saw, given
x ∈X, the cocycleA generates the sequence of matrices{Am}m∈Z = {A(fm(x))}m∈Z.

We say thatx is forward (respectively, backward) regular for A if the sequence of
matrices{A(fm(x))}m∈Z is forward (respectively, backward) regular.

Clearly, if x is a forward (respectively, backward) regular point forA then so is the
point f m(x) for everym ∈ Z. Furthermore, ifA andB are equivalent cocycles onY then
the pointy ∈ Y is forward (respectively, backward) regular forA if and only if it is forward
(respectively, backward) regular forB.

Consider the filtrationsV+ = {V+
x }x∈X andV− = {V−

x }x∈X of Rn associated with the
Lyapunov exponentsχ+ andχ− specified by the cocycleA. For eachx ∈X these filtra-
tions determine filtrationsV+

x andV−
x of the Lyapunov exponentsχ+(x, ·) andχ−(x, ·)

for the sequence of matrices{Am}m∈Z = {A(fm(x))}m∈Z.
We say that the filtrationsV+ andV− comply at a pointx ∈X if the filtrationsV+

x and
V−
x comply with respect to the sequence of matrices{A(fm(x))}m∈Z. In other words, the

filtrationsV+ andV− comply atx ∈X if the following properties hold:

1. p+(x)= p−(x) def= p(x);
2. there exists a decomposition

Rn =
p(x)⊕
i=1

Ei(x) (5.1)

into subspacesEi(x) such thatA(x)Ei(x)=Ei(f (x)) and fori = 1, . . . , p(x),

V +
i (x)=

i⊕
j=1

Ej(x) and V −
i (x)=

p(x)⊕
j=i
Ej (x);

3. if v ∈Ei(x) \ {0} then

lim
m→±∞

1

m
log
∥∥A(x,m)v∥∥= χ+

i (x)=−χ−
i (x)

def= χi(x),

with uniform convergence on{v ∈Ei(x): ‖v‖ = 1}.
We call the decomposition (5.1) theOseledets’ decompositionat the pointx.

Property 2 requires some degree of compatibility between forward and backward regu-
larity and is equivalent to the following: fori = 1, . . . , p(x) the spaces

Ei(x)= V +
i (x)∩ V −

i (x) (5.2)

satisfy (5.1).
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A point x ∈ X is said to beLyapunov regularor simply regular for A if the following
conditions hold:

1. x is simultaneously forward and backward regular forA;
2. the filtrationsV+ andV− comply atx.
The set of regular points isf -invariant. IfA andB are equivalent cocycles onY then

y ∈ Y is regular forA if and only if it is regular forB. Under fairly general assumptions
the set of regular points has full measure with respect to any invariant measure (see Theo-
rem 5.5).

For each integerk, 1 � k � n, let (Rn)∧k be the space of alternatingk-linear forms
on Rn. For any linear transformationA of Rn, thek-fold exterior powerA∧k of A is the
unique linear transformationA∧k of (Rn)∧k such that

A∧k(v1 ∧ · · · ∧ vk)=Av1 ∧ · · · ∧Avk

for anyv1, . . . , vk ∈ (Rn)∧1 ≡ Rn. One can define an inner product in(Rn)∧k by requiring
that for anyv1 ∧ · · · ∧ vk , w1 ∧ · · · ∧wk ∈ (Rn)∧k ,

〈v1 ∧ · · · ∧ vk,w1 ∧ · · · ∧wk〉 = detB,

whereB = (bij ) is the k × k matrix with entriesbij = 〈vi,wj 〉 for eachi and j . The
induced norm satisfies the following properties:

1. ‖v1 ∧ · · · ∧ vk‖ � ‖v1 ∧ · · · ∧ v�‖ · ‖v�+1 ∧ · · · ∧ vk‖ for any� < k;
2. for every linear transformationsA, B of Rn and 1� k, � � n the induced operator

norm in(Rn)∧k satisfies:
(a) ‖(AB)∧k‖ � ‖A∧k‖ · ‖B∧k‖;
(b) ‖A∧(k+�)‖ � ‖A∧k‖ · ‖A∧�‖ � ‖A‖k+�;
(c) ‖A∧k‖ = ∏kj=1dj , where d1 � d2 � · · · � dn � 0 are the eigenvalues of

(A∗A)1/2.

PROPOSITION5.1. Letx ∈X be a regular point forA. The following statements hold:
1. the exponentsχ+(x, ·) andχ−(x, ·) are exact;
2. for i = 1, . . . , p(x),

(a) dimEi(x)= k+i (x)= k−i (x) def= ki(x);
(b) for any vectorsv1, . . . , vki(x) ∈Ei(x) with V (v1, . . . , vki(x)) �= 0,

lim
m→±∞

1

m
logV
(
A(x,m)v1, . . . ,A(x,m)vki (x)

)= χi(x)ki(x);
3. for k = 1, . . . , n,

lim
m→±∞

1

m
log
∥∥A(x,m)∧k∥∥= k∑

j=1

χ ′
n−j+1(x).
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Identifying the spaceEi(f m(x))with Rki (x) one can rewrite property 2b in the following
way: for i = 1, . . . , p(x),

lim
m→±∞

1

m
log
∣∣det
(
A(x,m)|Ei(x)

)∣∣= χi(x)ki(x).
Furthermore, for every regular pointx ∈ X, 1 � i, j � p(x) with i �= j , and every

distinct vectorsv,w ∈Hi(x),

lim
m→±∞

1

m
log
∣∣sin�
(
Ei
(
fm(x)

)
,Ej
(
f m(x)

))∣∣= 0,

i.e., the angles between any two spacesEi(x) andEj(x) can grow at most subexponen-
tially along the orbit ofx, and

lim
m→±∞

1

m
log
∣∣sin�(dxf mv, dxf mw)

∣∣= 0.

5.2. Lyapunov exponents and basic constructions with cocycles

PROPOSITION 5.2. For everyx ∈ X and everyv ∈ Rn, if the exponentχ+(x, v,A) is
exact, thenχ+(x, v,Am) is exact and

χ+(x, v,Am)=mχ+(x, v,A).

It follows that if x ∈ X is Lyapunov regular with respect to the cocycleA then so it is
with respect to the cocycleAm. Moreover, the Oseledets’ decomposition at a regular point
x ∈X for the cocycleA provides the Oseledets’ decomposition atx for the cocycleAm.

PROPOSITION 5.3. Let A be a measurable cocycle overf and Y ⊂ X a measurable
subset of positiveν-measure. For ν-almost everyx ∈ Y and everyv ∈ Rn, if χ+(x, v,A)
is exact thenχ+(x, v,AY ) is exact and

χ+(x, v,AY )= τY (x)χ+(x, v,A).

It follows thatν-almost everyx ∈ Y is regular with respect to the cocycleAY if and only
if it is regular with respect to the cocycleA. Moreover, the Oseledets’ decomposition atx

for A provides the Oseledets’ decomposition atx for AY .

PROPOSITION 5.4. For everyx ∈ X, k = 1, . . . , n, and v1 ∧ · · · ∧ vk ∈ (Rn)∧k , if the
exponentχ+(x, vi,A) is exact fori = 1, . . . , k, thenχ+(x, v1 ∧ · · · ∧ vk,A∧k) is exact
and

χ+(x, v1 ∧ · · · ∧ vk,A∧k)= k∑
i=1

χ+(x, vi,A).
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It follows that if x ∈ X is Lyapunov regular with respect to the cocycleA then so
it is with respect to the cocycleA∧k . Moreover, from the Oseledets’ decomposition⊕s(x)
i=1 Ei(x) at a regular pointx ∈ X for the cocycleA we obtain the Oseledets’ decom-

position ⊕
i1,...,ik

Ei1(x)
∧1 ∧ · · · ∧Eik (x)∧1

of (Rn)∧k atx for the cocycleA∧k .

5.3. Multiplicative Ergodic Theorem I: Oseledets’ approach

Lyapunov regularity is a strong condition which imposes certain requirements on the for-
ward and backward behavior of trajectories. It is also not easy to verify this condition.
Nevertheless, it turns out that Lyapunov regularity is “typical” in the measure-theoretical
sense.

THEOREM5.5 (Multiplicative Ergodic Theorem, Oseledets [192]; see also [35] and [175]).
Letf be an invertible measure preserving transformation of a Lebesgue space(X, ν) and
A a measurable cocycle overf whose generator satisfies the following integrability con-
dition:

log+ ‖A‖, log+
∥∥A−1
∥∥ ∈ L1(X, ν), (5.3)

wherelog+ a = max{loga,0}. Then the set of regular points forA has fullν-measure.

Let us notice that property (5.3) holds for any cocycleA :X→ GL(n,R) for which there
is a positive constantc such that‖A(x)±1‖ � c for ν-almost allx ∈X.

For one-dimensional cocycles, i.e., cocycles with values inGL(1,R), the Multiplicative
Ergodic Theorem amounts to Birkhoff’s Ergodic Theorem since

log
∣∣A(x,m)∣∣= m−1∑

j=0

log
∣∣A(f j (x))∣∣.

The main idea of Oseledets in proving the Multiplicative Ergodic Theorem is to reduce the
general case to the case of triangular cocycles and then use a version of Theorem 3.5 to
establish regularity.

The reduction to triangular cocycles goes as follows. First one constructs an extension
of the transformationf ,

F :X× SO(n,R)→X× SO(n,R),
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whereSO(n,R) is the group of orthogonaln× n matrices. Given(x,U) ∈X × SO(n,R)
one can apply the Gram–Schmidt orthogonalization procedure to the columns of the matrix
A(x)U and write

A(x)U =R(x,U)T (x,U), (5.4)

whereR(x,U) is orthogonal andT (x,U) is lower triangular (with positive entries on the
diagonal). The two matricesR(x,U) andT (x,U) are uniquely defined, and their entries
are linear combinations of the entries ofU . Set

F(x,U)= (f (x),R(x,U)).
Consider the projectionπ : (x,U)  →U . By (5.4), we obtain

T (x,U)= ((π ◦ F)(x,U))−1
A(x)π(x,U). (5.5)

Let Ã and T be two cocycles overF defined respectively byÃ(x,U) = A(x) and
T (x,U) = T (x,U). Since‖U‖ = 1 for everyU ∈ SO(n,R), it follows from (5.5) that
the cocyclesÃ and T are equivalent onX × SO(n,R). Therefore a point(x,U) ∈
X×SO(n,R) is regular forÃ if and only if it is regular forT .

By the Representation Theorem for Lebesgue spaces we may assume thatX is a com-
pact metric space and thatf :X→ X is Borel measurable. LetM be the set of all Borel
probability measures̃ν onX× SO(n,R) which satisfy

ν̃
(
B × SO(n,R)

)= ν(B) (5.6)

for all measurable setsB ⊂ X. ThenM is a compact convex subset of a locally convex
topological vector space. The mapF∗ :M→M defined by

(F∗ν̃)(B)= ν̃
(
F−1B

)
is a bounded linear operator. By the Tychonoff Fixed Point Theorem, there exists a fixed
point ν̃0 ∈M for the operatorF∗, i.e., a measurẽν0 such that̃ν0(F

−1B)= ν̃0(B) for every
measurable setB ⊂X× SO(n,R). By (5.6), we conclude that the set of regular points for
A has fullν-measure if and only if the set of regular points forÃ has full ν̃0-measure, and
hence, if and only if the set of regular points forT has full ν̃0-measure.

We may now assume thatA(x)= (aij (x)) is a lower triangular matrix (i.e.,aij (x)= 0
if i < j ). Write A(x)−1 = (bij (x)) and note thatbii(x) = 1/aii(x) for eachi. By (5.3),
log+ |aij |, log+ |bij | ∈ L1(X, ν). It follows from Birkhoff’s Ergodic Theorem that for
ν-almost everyx ∈X,

lim
m→+∞

1

m
log+
∣∣aij (fm(x))∣∣= lim

m→−∞
1

m
log+
∣∣bij (f m(x))∣∣= 0. (5.7)

Note that∣∣log|aii |
∣∣= log+|aii | + log−|aii | = log+|aii | + log+|bii |. (5.8)
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By (5.3) and (5.8), we obtain log|aii | = − log|bii | ∈ L1(X, ν). Birkhoff’s Ergodic The-
orem guarantees the existence of measurable functionsλi ∈ L1(X, ν), i = 1, . . . , n, such
that forν-almost everyx ∈X,

lim
m→+∞

1

m

m−1∑
k=0

log
∣∣aii(f k(x))∣∣= lim

m→−∞
1

m

−1∑
k=m

log
∣∣bii(f k(x))∣∣= λi(x). (5.9)

Let Y ⊂X be the set of points for which (5.7) and (5.9) hold. It is a set of fullν-measure.
The proof is concluded by showing thatY consists of regular points forA. Indeed, by The-
orem 3.5, the sequence{A(fm(x))}m∈Z is simultaneously forward and backward regular
for everyx ∈ Y . Moreover, the numbersλi(x) are the forward Lyapunov exponents counted
with their multiplicities (but possibly not ordered), and are the symmetric of the backward
Lyapunov exponents counted with their multiplicities (but possibly not ordered either).

We conclude thatp+(x)= p−(x) def= p(x) andχ−
i (x)=−χ+

i (x) for i = 1, . . . , p(x). The
hardest and more technical part of the proof is to show that the spacesE1(x), . . . ,Ep(x)(x),
defined by (5.2), satisfy (5.1).

Consider the setN of points which arenot Lyapunov regular. This set has zero mea-
sure with respect toany invariant Borel probability measure but in general is not empty.
For example, for the derivative cocycle (see Section 6.1 below) generated by a volume-
preserving Anosov diffeomorphism the set of nonregular points has positive Hausdorff
dimension provided that the Riemannian volume isnot the measure of maximal entropy
(see [37]).

On another end, Herman [114] (see also Section 7.3.1) and Walters [245] constructed
examples of continuous cocycles with values inSL(2,R) over uniquely ergodichomeo-
morphisms of compact metric spaces for which the set of nonregular points is not empty.

Furman [101] found additional conditions on the cocycle over a uniquely ergodic home-
omorphism which guarantee thateverypoint is Lyapunov regular. Namely, the generator
of the cocycle should be either

(1) continuously diagonalizable, i.e., continuously equivalent to a diagonal matrix, or
(2) one-point Lyapunov spectrum, or
(3) continuously equivalent to aneventually positive function, i.e., for somen � 0 all

the entries ofA(x,n) are positive.

5.4. Multiplicative Ergodic Theorem II: Raghunathan’s approach

We describe another approach to the proof of the Multiplicative Ergodic Theorem due to
Raghunathan [211]. It exploits the Subadditive Ergodic Theorem. The work of Raghu-
nathan also contains an extension to local fields (such as the fieldQp of p-adic numbers).

Let f :X→ X be a measurable transformation. A measurable functionB :X × Z →
R \ {0} is called asubadditive cocycle overf if for every x ∈ X the following properties
hold:

1. B(x,0)= 1;
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2. if m, k ∈ Z then

B(x,m+ k)� B
(
f k(x),m

)+B(x, k).

If A :X×Z → GL(n,R) is a multiplicative cocycle overf (see (4.1)), thenB = log‖A‖
is a subadditive cocycle. Indeed, by (4.1),

log
∥∥A(x,m+ k)∥∥� log

∥∥A(f k(x),m)∥∥+ log
∥∥A(x, k)∥∥.

The following statement is an immediate consequence of Kingman’s Subadditive Ergodic
Theorem (see [215]).

THEOREM 5.6. Let f be an invertible measure preserving transformation of a Lebesgue
space(X, ν), andA a measurable multiplicative cocycle overf whose generator satisfies
(5.3).Then there existf -invariant measurable functionsϕ+ :X→ R andϕ− :X→ R such
that for ν-almost everyx ∈X,

ϕ+(x)= lim
m→+∞

1

m
log
∥∥A(x,m)∥∥=− lim

m→−∞
1

m
log
∥∥A(x,m)−1

∥∥,
ϕ−(x)= lim

m→−∞
1

m
log
∥∥A(x,m)∥∥=− lim

m→+∞
1

m
log
∥∥A(x,m)−1

∥∥.
Moreoverϕ+, ϕ− ∈ L1(X, ν) and∫

X

ϕ+ dν = lim
m→+∞

1

m

∫
X

log
∥∥A(x,m)∥∥dν(x)

= − lim
m→−∞

1

m

∫
X

log
∥∥A(x,m)−1

∥∥dν(x),∫
X

ϕ− dν = lim
m→−∞

1

m

∫
X

log
∥∥A(x,m)∥∥dν(x)

= − lim
m→+∞

1

m

∫
X

log
∥∥A(x,m)−1

∥∥dν(x).
As an immediate corollary we obtain that the values of the Lyapunov exponentsχ+

i (x)

andχ−
i (x) are integrable functions provided that (5.3) holds.

Let A be a measurable multiplicative cocycle over a transformationf . For eachi =
1, . . . , n the function log‖A∧i‖ is a subadditive cocycle.

We present now Raghunathan’s version of the Multiplicative Ergodic Theorem 5.5. Let
us stress that Raghunathan considered the case of noninvertible transformations but his
methods can be adapted to invertible transformations and we state the corresponding re-
sult here; we refer the reader to Section 5.7 where we consider the case of noninvertible
transformations.
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THEOREM 5.7 (Raghunathan [211]).Letf be an invertible measure preserving transfor-
mation of a Lebesgue space(X, ν), and A a measurable multiplicative cocycle overf
whose generator satisfies(5.3).Then there exists a setY ⊂X of full ν-measure such that
if x ∈ Y then:

1. x is a regular point forA;
2. there exist matricesA+

x andA−
x such that

lim
m→±∞

(
A(x,m)∗A(x,m)

)1/(2|m|) =A±
x ;

3. the distinct eigenvalues ofA+
x are the numberseχ1(x), . . . , eχs(x)(x);

4. the distinct eigenvalues ofA−
x are the numberseχ1(x), . . . , eχs(x)(x).

5.5. Tempering kernels and the Reduction Theorem

The results in the previous sections allow one to obtain a “normal form” of a general
measurable cocycle associated with its Lyapunov exponent. Let us begin with the simple
particular case of a rigid cocycleA, i.e., a cocycle whose generator is a constant mapA

(see Section 4.6). It is easy to see that the cocycleA is equivalent to the rigid cocycleB
whose generator is the Jordan block form of the matrixA. We considerB as the “normal
form” of A, and say thatA is reduced toB.

A general measurable cocycleA satisfying the integrability condition (5.3) is so to speak
“weakly” rigid, i.e., it can be reduced to a constant cocycle up to an arbitrarily small er-
ror. We consider this constant cocycle as a “normal form” ofA. More precisely, by the
Oseledets–Pesin Reduction Theorem 5.10 below givenε > 0, there exists a cocycleAε
which is equivalent toA and has block form, such that the generatorAiε of each block
satisfies

eχi(x)−ε‖v‖�
∥∥Aiε(x)v∥∥� eχi(x)+ε‖v‖

for each regular pointx and eachv ∈ Ei(x), where{Ei(x): i = 1, . . . , p(x)} is the Os-
eledets’ decomposition atx (see (5.1)). We say thatAε is thereduced formof A.

To proceed with the description of normal forms we first introduce a family of inner
products〈·, ·〉 = 〈·, ·〉x on Rn for x ∈X. We start with the following auxiliary result.

PROPOSITION5.8. For eachε > 0 and each regular pointx ∈X for A, the formula

〈u,v〉′x,i =
∑
m∈Z

〈
A(x,m)u,A(x,m)v

〉
e−2χi(x)m−2ε|m| (5.10)

determines a scalar product onEi(x).
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For a fixedε > 0 we introduce a new inner product onRn by

〈u,v〉′x =
p(x)∑
i=1

〈ui, vi〉′x,i ,

whereui andvi are the projections of the vectorsu andv overEi(x) along
⊕
j �=i Ej (x).

We call 〈·, ·〉′x a Lyapunov inner product atx, and the corresponding norm‖ · ‖′x a Lya-
punov norm atx. The sequence of weights{e−2χi(x)m−2ε|m|}m∈Z in (5.10) is called aPesin
Tempering Kernel. The value of〈u,v〉′x depends on the numberε. The Lyapunov inner
product has the following properties.

PROPOSITION5.9. The following properties hold:
1. The inner product〈·, ·〉′x depends measurably on the regular pointx.
2. For every regular pointx ∈X andi �= j , the spacesEi(x) andEj(x) are orthogonal

with respect to the Lyapunov inner product.

A coordinate changeCε :X→ GL(n,R) is called aLyapunov change of coordinatesif
for each regular pointx ∈X andu, v ∈ Rn it satisfies:

〈u,v〉x =
〈
Cε(x)u,Cε(x)v

〉′
x
. (5.11)

Note that the identity (5.11) does not determine the functionCε(x) uniquely.
The following result known as Oseledets–Pesin Reduction Theorem provides a complete

description of normal forms for cocycles.

THEOREM 5.10 (see [139]). Let f :X→ X be an invertible measure preserving trans-
formation of the Lebesgue space(X, ν), andA a measurable cocycle overf . Givenε > 0
and a regular pointx,

1. there exists a Lyapunov change of coordinatesCε which sends the orthogonal de-
composition

⊕p(x)

i=1 Rki (x) to the decomposition
⊕p(x)

i=1 Ei(x) of Rn;
2. the cocycleAε(x)= Cε(f (x))−1A(x)Cε(x) has the block form

Aε(x)=
A1

ε(x)

. . .

A
s(x)
ε (x)

 , (5.12)

where each blockAiε(x) is aki(x)× ki(x)matrix, and the entries are zero above and
below the matricesAiε(x);

3. each blockAiε(x) satisfies

eχi(x)−ε �
∥∥Aiε(x)−1

∥∥−1 �
∥∥Aiε(x)∥∥� eχi(x)+ε;

4. if the integrability condition(5.3)holds then the mapCε is temperedν-almost every-
where, and the spectra ofA andAε coincideν-almost everywhere.
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In the particular case of cocycles with values inGL(2,R) Thieullen [239] showed that
if the two Lyapunov exponents are equal the cocycle is conjugate to one of the following:
a rotation cocycle, an upper triangular cocycle, or a diagonal cocycle modulo a rotation by
π/2.

An important manifestation of the Oseledets–Pesin Reduction Theorem is a criterion of
nonuniform hyperbolicity (partial or complete) of measurable cocycles via the values of
their Lyapunov exponents.

THEOREM 5.11. Let f :X→ X be an invertible measure preserving transformation of
the Lebesgue space(X, ν), andA a measurable cocycle overf whose generator satisfies
(5.3).Then the following properties hold:

1. if the set

Zph =
{
x ∈X: χ+(x, v) �= 0 for somev ∈ Rn \ {0}}

has measureν(Zph) > 0 thenA is nonuniformly partially hyperbolic in the broad
sense on some setWph ⊂ Zph with ν(Wph)= ν(Zph);

2. if the set

Zh =
{
x ∈X: χ+(x, v) �= 0 for all v ∈ Rn \ {0}}

has measureν(Zh) > 0 thenA is nonuniformly hyperbolic on some setWh ⊂ Zh
with ν(Wh)= ν(Zh).

This theorem was first proved by Pesin in [198] for the special case of derivative cocycles
(see the definition of the derivative cocycle in the next section) but the argument can readily
be extended to the case of general cocycle.

The proof of this crucial statement is based upon the following observation. Given a
regular pointx and a smallε there exists a numberm(x, ε) such that form�m(x, ε),

χi − ε � 1

n
log
∥∥Amix∥∥� χi + ε, −χi − ε � 1

n
log
∥∥A−m

ix

∥∥� −χi + ε,

and

−χi − ε � 1

n
log
∥∥Bmix∥∥� −χi + ε, χi − ε � 1

n
log
∥∥B−m
ix

∥∥� χi + ε,

whereAmix = A(x,nm)|Ei(x) andBmix = B(x,m)|E∗
i (x) with E∗

i (x) the dual space to
Ei(x). Here

B(x,m)=
 (A(x)

∗)−1(A(f (x))∗)−1 · · · (A(f m−1(x))∗)−1 if m> 0,
Id if m= 0,
A(f−1(x))

∗
A(f−2(x))

∗ · · ·A(f m(x))∗ if m< 0.
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Set

D±
1 (x, ε)= min

1�i�s
min

0�j�m(x,ε)
{
1,
∥∥Ajix∥∥e(−χi±ε)j ,∥∥Bjix∥∥e(χi±ε)j},

D±
2 (x, ε)= max

1�i�s
max

0�j�m(x,ε)
{
1,
∥∥Ajix∥∥e(−χi±ε)j ,∥∥Bjix∥∥e(χi±ε)j}

and

D1(x, ε)= min
{
D+

1 (x, ε),D
−
1 (x, ε)

}
,

D2(x, ε)= max
{
D+

2 (x, ε),D
−
2 (x, ε)

}
,

D(x, ε)= max
{
D1(x, ε)

−1,D2(x, ε)
}
.

The functionD(x, ε) is measurable, and ifm� 0 and 1� i � p then

D(x, ε)−1e(±χi−ε)m �
∥∥A±m

ix

∥∥�D(x, ε)e(±χi+ε)m,

D(x, ε)−1e(±χi−ε)m �
∥∥B±m
ix

∥∥�D(x, ε)e(±χi+ε)m. (5.13)

Moreover, ifd � 1 is a number for which the inequalities (5.13) hold for allm � 0 and
1� i � p with D(x, ε) replaced byd thend �D(x, ε). Therefore,

D(x, ε) = inf
{
d � 1: the inequalities (5.13) hold for alln� 0

and 1� i � p with D(x, ε) replaced byd
}
. (5.14)

We wish to compare the values of the functionD(x, ε) at the pointsx andf j (x). We
introduce the identification mapτx : (Rn)∗ → Rn such that〈τx(ϕ), v〉 = ϕ(v)wherev ∈ Rn

andϕ ∈ (Rn)∗.
Let {vmk : k = 1, . . . , �} be a basis ofEi(f m(x)) and{wmk : k = 1, . . . , �} the dual basis

of E∗
i (f

m(x)). We haveτfm(x)(wmk )= vmk . Denote byAim,j andBim,j the matrices corre-
sponding to the linear mapsAm

if j (x)
andBm

if j (x)
with respect to the above bases. We have

that

Aij,0
(
Bij,0
)∗ = Id,

where∗ stands for matrix transposition. Hence, for everym> 0 the matrix corresponding
to the mapAm

if j (x)
is

Aim,j =Aim+j,0
(
Aij,0
)−1 =Aim+j,0

(
Bij,0
)∗
.

Therefore, in view of (5.13), we obtain that ifm> 0 then∥∥Am
if j (x)

∥∥�D(x, ε)2e(χi+ε)(m+j)+(−χi+ε)j =D(x, ε)2e2εj e(χi+ε)m,∥∥Am
if j (x)

∥∥�D(x, ε)−2e(χi−ε)(m+j)+(−χi−ε)j =D(x, ε)−2e−2εj e(χi−ε)m,
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if m> 0 andj −m� 0 then∥∥A−m
if j (x)

∥∥�D(x, ε)2e(χi+ε)(j−m)+(−χi+ε)j =D(x, ε)2e2εj e(−χi+ε)m,∥∥A−m
if j (x)

∥∥�D(x, ε)−2e(χi−ε)(j−m)+(−χi−ε)j =D(x, ε)−2e−2εj e(−χi−ε)m,

and ifm> 0 andm− j � 0 then∥∥A−m
if j (x)

∥∥�D(x, ε)2e(χi+ε)(m−j)+(−χi+ε)j =D(x, ε)2e2εj e(−χi+ε)m,∥∥A−m
if j (x)

∥∥�D(x, ε)−2e(χi−ε)(m−j)+(−χi−ε)j =D(x, ε)−2e−2εj e(−χi−ε)m.

Similar inequalities hold for the mapsBm
if j (x)

. Comparing this with the inequalities (5.13)

applied to the pointf j (x) and using (5.14) we conclude that ifj � 0, then

D
(
f j (x), ε

)
�D(x, ε)2e2εj . (5.15)

Similar arguments show that ifj � 0, then

D
(
f−j (x), ε

)
�D(x, ε)2e−2εj . (5.16)

It follows from (5.15) and (5.16) that ifj ∈ Z, then

D
(
f j (x), ε

)
�D(x, ε)2e2ε|j |,

thus establishing the subexponential behavior of the constant along the trajectory necessary
for nonuniform hyperbolicity.

Another important manifestation of the Oseledets–Pesin Reduction Theorem is a crucial
property of the Lyapunov inner norms. It states that the functionx  → ‖v(x)‖′x/‖v(x)‖x is
tempered on the set of regular points for every measurable vector fieldX " x  → v(x) ∈
Rn \ {0}. We recall that a positive functionK :X→ R is calledtemperedon a setZ ⊂X
if for any x ∈Z,

lim
m→±∞

1

m
logK
(
f m(x)

)= 0. (5.17)

THEOREM 5.12 (see [139]).For every measurable vector fieldX " x  → v(x) ∈ Rn \ {0},
the functionx  → ‖v(x)‖′x/‖v(x)‖x is tempered on the set of regular points.

The proof uses a technical but crucial statement known as the Tempering Kernel Lemma.

LEMMA 5.13 [139]. Let f :X→ X be a measurable transformation. If K :X→ R is a
positive measurable function tempered on some subsetZ ⊂ X, then for anyε > 0 there
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exists a positive measurable functionKε :Z→ R such thatK(x) � Kε(x) and if x ∈ Z
then

e−ε � Kε(f (x))

Kε(x)
� eε.

Note that iff preserves a Lebesgue measureν on the spaceX, then any positive function
K :X→ R with logK ∈ L1(X, ν) satisfies (5.17). The following is now an immediate
consequence of Theorem 5.12.

THEOREM 5.14. Givenε > 0 there is a positive measurable functionKε :X→ R such
that if x ∈X is a regular point then:

1. Kε(x)e−ε|m| �Kε(f m(x))�Kε(x)eε|m| for everym ∈ Z;
2. n−1/2‖v‖x � ‖v‖′x �Kε(x)‖v‖x for everyv ∈ Rn.

5.6. The case of flows

We briefly discuss counterparts to the results in the above sections for flows. Let(X, ν) be
a Lebesgue space.

The measurable mapϕ :R×X→X is called ameasurable flowonX if

ϕ0 = Id, and ϕt ◦ ϕs = ϕt+s for everyt, s ∈ R. (5.18)

A measurable flowϕ :R × X→ X is called ameasure preserving flowif ϕt
def= ϕ(t, ·) is

ν-invariant for everyt ∈ R.
We note that given a family{ϕt : t ∈ R} of measurable mapsϕt :X→X satisfying (5.18)

one can define a measurable flowϕ :R×X→X by ϕ(t, x)= ϕt (x).
A measurable functionA :X × R → GL(n,R) is called alinear multiplicative cocycle

overϕ or simply acocycleif for everyx ∈X the following properties hold:
1. A(x,0)= Id;
2. if t , s ∈ R then

A(x, t + s)=A
(
ϕt (x), s

)
A(x, t).

The cocycleA induceslinear extensionsFt :X×Rn→X×Rn by the formula

Ft(x, v)=
(
ϕt (x),A(x, t)v

)
.

Given(x, v) ∈X×Rn, theforward Lyapunov exponent of(x, v) (with respect to the cocy-
cleA) given by

χ+(x, v)= χ+(x, v,A)= lim
t→+∞

1

t
log
∥∥A(x, t)v∥∥.
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For everyx ∈X, there exist a positive integerp+(x)� n, a collection of values

χ+
1 (x) < χ

+
2 (x) < · · ·< χ+

p+(x)(x),

and linear spaces

{0} = V +
0 (x)� V +

1 (x)� · · · � V +
p+(x)(x)= Rn,

such that:
1. V +

i (x)= {v ∈ Rn: χ+(x, v)� χ+
i (x)};

2. if v ∈ V +
i (x) \ V +

i−1(x), thenχ+(x, v)= χ+
i (x).

The number

k+i (x)= dimV +
i (x)− dimV +

i−1(x)

is themultiplicity of the valueχ+
i (x). In a similar way the quantity

χ−(x, v)= χ−(x, v,A)= lim
t→−∞

1

|t | log
∥∥A(x, t)v∥∥

is thebackward Lyapunov exponent of(x, v) (with respect to the cocycleA). There exist a
positive integerp−(x)� n, a collection ofvalues

χ−
1 (x) > · · ·> χ−

p−(x)(x)

and thefiltration V−
x of Rn associated withχ− atx,

Rn = V −
1 (x)� · · · � V −

p−(x)(x)� V −
p−(x)+1(x)= {0},

whereV −
i (x)= {v ∈ Rn: χ−(x, v)� χ−

i (x)}. The number

k−i (x)= dimV −
i (x)− dimV −

i+1(x)

is themultiplicity of the valueχ−
i (x).

Write V+ = {V+
x }x∈X andV−

x = {V−
x }x∈X. The filtrationsV+ andV− complyat the

pointx ∈X if the following properties hold:

1. p+(x)= p−(x) def= p(x);
2. there exists a decomposition

Rn =
p(x)⊕
i=1

Ei(x)
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into subspacesEi(x) such thatA(x, t)Ei(x)=Ei(ϕtx) for everyt ∈ R and

Vi(x)=
i⊕
j=1

Ej(x) and V −
i (x)=

p(x)⊕
j=i
Ej (x);

3. χ+
i (x)=−χ−

i (x)
def= χi(x);

4. if v ∈Ei(x) \ {0} then

lim
t→±∞

1

t
log
∥∥A(x, t)v∥∥= χi(x),

with uniform convergence on{v ∈Ei(x): ‖v‖ = 1}.
A point x is forward regularfor A if the following limit exists

lim
t→+∞

1

t
log
∣∣detA(x, t)

∣∣= p+(x)∑
i=1

χ+
i (x)k

+
i (x),

and isbackward regularfor A if the following limit exists:

lim
t→−∞

1

|t | log
∣∣detA(x, t)

∣∣= p−(x)∑
i=1

χ−
i (x)k

−
i (x).

Finally, a pointx is Lyapunov regularor simplyregular for A if
1. x is simultaneously forward and backward regular forA;
2. the filtrationsV+ andV− comply atx.

THEOREM 5.15 (Multiplicative Ergodic Theorem for flows).Letϕ be a measure preserv-
ing flow of a Lebesgue space(X, ν) such thatϕt is invertible for everyt ∈ R. Let alsoA
be a measurable cocycle overϕ such that

sup
−1�t�1

log+
∥∥A(·, t)∥∥ ∈ L1(X, ν). (5.19)

Then the set of regular points forA has fullν-measure.

Given ε > 0 and a regular pointx ∈ X, we introduce a family of inner products〈·, ·〉x
on Rn by setting

〈u,v〉′x =
∫

R

〈
A(x, t)u,A(x, t)v

〉
e−2χi(x)t−2ε|t | dt

if u, v ∈ Ei(x), and〈u,v〉′x = 0 if u ∈ Ei(x) andv ∈ Ej(x) with i �= j . We call 〈·, ·〉′x a
Lyapunov inner product atx, and the corresponding norm‖ · ‖′x a Lyapunov norm atx.



112 L. Barreira and Ya. Pesin

One can show that there exists a tempered functionKε :X→ R such that ifx ∈ X is a
regular point andv ∈ Rn then

n−1/2‖v‖x � ‖v‖′x �Kε(x)‖v‖x.

We recall that a positive functionK :X→ R is calledtemperedon a setZ ⊂X if for any
x ∈Z,

lim
t→±∞

1

m
logK(ϕtx)= 0.

THEOREM 5.16 (Reduction Theorem for flows).Letϕ be a measure preserving flow of a
Lebesgue space(X, ν) such thatϕt is invertible for everyt ∈ R. Let alsoA be a measurable
cocycle overϕ. Given ε > 0 and a regular pointx, there exists a Lyapunov change of
coordinatesCε with the following properties:

1. the cocycleAε(x, t)= Cε(ϕtx)−1A(x, t)Cε(x) has the block form

Aε(x, t)=
A1

ε(x, t)

. . .

Ap(x)ε (x, t)

 ,
where each blockAiε(x, t) is a ki(x)× ki(x) matrix, and the entries are zero above
and below the matricesAiε(x, t);

2. each blockAiε(x) satisfies

eχi(x)t−ε
∣∣t ∣∣ � ∥∥Aiε(x, t)−1

∥∥−1 �
∥∥Aiε(x, t)∥∥� eχi(x)t+ε|t |;

3. if the integrability condition(5.19)holds then the mapCε is temperedν-almost every-
where, and the spectra ofA andAε coincideν-almost everywhere.

5.7. The case of noninvertible dynamical systems

Consider a measure preserving transformationf :X→X of a Lebesgue space(X, ν) (the
mapf need not be invertible). We assume thatν is a probability measure. Given a mea-
surable functionA :X→ GL(n,R) andx ∈X, define theone-sided cocycleA :X× N →
GL(n,R) by

A(x,m)=A(f m−1(x)
)
. . .A
(
f (x)
)
A(x).

Note that the cocycle equation (4.1) holds for everym,k ∈ N. Given (x, v) ∈ X × Rn,
define theforward Lyapunov exponentof (x, v) (with respect toA) by

χ+(x, v)= χ+(x, v,A)= lim
m→+∞

1

m
log
∥∥A(x,m)v∥∥.
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However, since the mapf and the matricesA(x) may not be invertible, one may not in
general define a backward Lyapunov exponent. Therefore, we can only discuss the forward
regularity forA. One can establish a Multiplicative Ergodic Theorem in this case.

THEOREM 5.17. Let f be a measure preserving transformation of a Lebesgue space
(X, ν), andA a measurable cocycle overf such thatlog+ ‖A‖ ∈ L1(X, ν). Then the set
of forward regular points forA has fullν-measure and forν-almost everyx ∈X and every
subspaceF ⊂E+

i (x) such thatF ∩E+
i−1(x)= {0} we have

lim
m→+∞

1

m
log inf

v

∥∥A(x,m)v∥∥= lim
m→+∞

1

m
log sup

v

∥∥A(x,m)v∥∥= χ+
i (x),

with the infimum and supremum taken over{v ∈ F : ‖v‖ = 1}.

When the matrixA(x) is invertible for everyx ∈ X and log+ ‖A‖, log+ ‖A−1‖ ∈
L1(X, ν) for somef -invariant Lebesgue measureν, one can show that for the cocycle
induced byA on the inverse limit off the set ofregular points has fullν-measure.

5.8. The case of nonpositively curved spaces

Karlsson and Margulis [132] obtained an extension of the noninvertible case of the Multi-
plicative Ergodic Theorem 5.5 to some nonpositively curved spaces.

Let (Y,ρ) be a complete metric space.Y is called:
1. convexif any two pointsx, y ∈ Y have amidpoint, i.e., a pointz for which

ρ(z, x)= ρ(z, y)= 1

2
ρ(x, y);

2. uniformly convexif it is convex and there is a strictly decreasing continuous function
g on [0,1] such thatg(0)= 1 and for anyx, y,w ∈ Y and midpointmxy of x andy,

ρ(mxy,w)

R
� g
(
ρ(mxy,w)

R

)
,

whereR = max{ρ(x,w),ρ(y,w)};
3. nonpositively curved(in the sense of Busemann) if it is convex and for anyx, y, z

∈ Y and any midpointsmxz of x andz andmyz of y andz,

ρ(mxz,myz)�
1

2
ρ(x, y).

If Y is uniformly convex then midpoints are unique.
Examples of nonpositively curved spaces include uniformly convex Banach spaces (e.g.,

Hilbert spaces orLp for 1<p <∞), Cartan–Hadamard manifolds (e.g., Euclidean spaces,
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hyperbolic spaces orGL(n,R)/O(n,R)), and more generally CAT(0) spaces (e.g., Euclid-
ean buildings orR-trees).

A continuous mapγ : I → Y (I is an interval) is called a (unit speed minimizing)geo-
desicif for any s, t ∈ I ,

ρ
(
γ (s), γ (t)

)= |s − t |.
If Y is convex then any two points can be joined by a geodesic and ifY is uniformly convex
then this geodesic is unique.

A geodesicγ : [0,∞)→ Y is called aray if the limit lim t→∞ γ (t) does not exist. The
two raysγ1 andγ2 are calledasymptoticif ρ(γ1(t), γ2(t))� const fort � 0. We denote by
[γ ] the set of all rays asymptotic toγ and byY(∞) the ideal boundary ofY , i.e., the set of
all classes of asymptotic rays.

Let D ⊂ Y be a nonempty subset. A mapϕ :D→ D is called asemicontraction(or
nonexpanding) if ρ(ϕ(v),ϕ(z))� d(y, z) for all y, z ∈D. Isometries are semicontractions.

Let us fix a semigroupS of semicontractions and equip it with the Borelσ -algebra
associated with the compact-open topology onS. Fix y ∈ Y . Consider a cocycleA with
values inS over an ergodic transformationf of a measure space(X,µ). Let A :X→ X

be the generator.

THEOREM 5.18 (Karlsson and Margulis [132]).Assume that∫
X

ρ
(
y,A(x)y

)
dµ(x) <∞.

Then for almost everyx ∈X the following limit exists:

lim
m→∞

1

m
d
(
y,A(x,m)y

)= a, (5.20)

and if a > 0 then for almost everyx ∈ X there exists a unique geodesic rayγ (·, x) in Y
starting aty such that

lim
m→∞

1

m
d
(
γ (an, x),A(x,m)y

)= 0

and hence, A(·,m)y converges to[γ ] in Y ∪ Y(∞).
The existence of the limit in (5.20) is an easy corollary of Kingman’s Subadditive Er-

godic Theorem.
Consider the symmetric spaceY = GL(n,R)/O(n,R) and a cocycleA with values in

O(n,R) over an ergodic transformationf of a measure space(X,µ). LetA :X→X be the
generator. Fix a pointy ∈O(n,R). Forg ∈ GL(n,R) let λi be the eigenvalues of(gg∗)1/2
whereg∗ is the transpose ofg. The distance inY betweeny andgy is

ρ(y, gy)=
(
n∑
i=1

(logλi)
2

)1/2

.
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A geodesic starting aty is of the formγ (t)= etH y whereH is a symmetric matrix. Then
Λ= eH is a positive definite symmetric matrix. We have that

lim
n→∞

1

m
d
(
Λ−my,A(m,x)−1y

)= 0

for almost everyx ∈X. In view of (3.7) this means thatx is forward regular.
Theorem 5.18 has interesting applications to random walks and Hilbert–Schmidt oper-

ators (see [132]). It is shown in [132] with an explicit example that there is no invertible
version of Theorem 5.18, i.e., there is in general no two-sided geodesic approximating both
the forward and backward orbitsm  →A(x,±m)y.

5.9. Notes

The term “Multiplicative Ergodic Theorem” was introduced by Oseledets in [192] where
he presented the first proof of the theorem.

In [183], Millionshchikov announced a somewhat independent proof of the Multiplica-
tive Ergodic Theorem which is based on some subtle properties of the action of the differ-
ential with respect to the Lyapunov exponents.1 Mañé used similar properties in his proof
of the entropy formula (see Section 12.2).

Other proofs of the Multiplicative Ergodic Theorem were obtained by Ruelle [215], by
Mañé [175] (see also [173]),2 and by Goldsheid and Margulis [106]. A simpler version of
the Multiplicative Ergodic Theorem was considered by Johnson, Palmer and Sell [130],3

and related topics were discussed by Sacker and Sell [221,222,226] and by Johnson [129].
In [145], Kifer established a “random” version of the Multiplicative Ergodic Theorem—

for compositions of independent identically distributed transformations of a measurable
vector bundle. His proof is built on the work of Furstenberg and Kifer [102] (see also
Chapter III in [146]). Under more restrictive conditions a similar result was obtained by
Carverhill [70]. See the book by Arnold [23] for a detailed description of various versions
of the Multiplicative Ergodic Theorem and related questions in the random dynamical
systems setup.

There are also infinite-dimensional versions of the Multiplicative Ergodic Theorem.
Namely, it was extended by Ruelle [216] to Hilbert spaces (following closely his finite-
dimensional approach in [215]), and by Mañé in [173] to compact transformations in Ba-
nach spaces (see also Thieullen [238] for the case of not necessarily compact transforma-
tions). The proof due to Goldsheid and Margulis also extends to the infinite-dimensional
case (see [106]).

1Millionshchikov’s proof was never published as a solid piece; instead, it is scattered through a series of papers
with cross-references and is difficult to comprehend.

2In both [215] and [175] a slightly weaker version of Lyapunov regularity, then the one we introduced in
Section 5.1, is considered but the proofs contain arguments which are indeed, sufficient to establish a stronger
version.

3They established some but not all properties of Lyapunov regularity referring the reader to the original work
of Oseledets.
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6. Cocycles over smooth dynamical systems

6.1. The derivative cocycle

Let f :M →M be a diffeomorphism of a smoothn-dimensional Riemannian manifold.
Givenx ∈M , setX = {fm(x)}m∈Z. Identifying the tangent spacesTfm(x)M with Rn one
can introduce the cocycleAx = {dfm(x)f }m∈Z over the transformationf :X→ X. It is
called thederivative cocycleassociated with the diffeomorphismf and the pointx. The
Lyapunov exponentχ+ of x specified by the derivative cocycle is the Lyapunov exponent
specified by the diffeomorphismf at the pointx.

The “individual” derivative cocyclesAx depend on the individual trajectories
{f m(x)}m∈Z. We now introduce the “global” cocycle associated withf . One can represent
M as a finite union

⋃
i ∆i of differentiable copies∆i of then-simplex such that:

1. in each∆i one can introduce local coordinates in such a way thatT∆i can be iden-
tified with∆i ×Rn;

2. all the nonempty intersections∆i ∩∆j , for i �= j , are(n−1)-dimensional manifolds.
In each∆i the derivative off can be interpreted as a linear cocycle. This implies that
df :M→ Rn can be interpreted as a measurable linear cocycleA with dxf to be the matrix
representation ofdxf in local coordinates. We callA thederivative cocyclespecified by
the diffeomorphismf . It does not depend on the choice of the decomposition{∆i}. Indeed,
if we choose another decomposition{∆′

i}, then the coordinate change in∆i ∩∆′
j sending

one representation to the other one is effected by maps which are uniformly bounded to-
gether with their derivatives, their inverses, and the inverses of their derivatives. Hence, by
Proposition 4.2, the coordinate change is tempered and the two cocycles corresponding to
the two decompositions{∆i} and{∆′

i} are equivalent.
We remark that ifν is anf -invariant Borel probability measure onM then the decom-

position{∆i} can be chosen such thatν(∂∆i)= 0 for everyi.

6.2. Nonuniformly hyperbolic diffeomorphisms

We say that a diffeomorphismf is nonuniformly partially hyperbolic in the broad senseif
so is the derivative cocycle generated byf . More precisely, this means4 thatf possesses
an invariant Borel subsetΛ⊂M such that there exist:

(a) numbersλ andµ, 0< λ<µ, λ < 1;
(b) a sufficiently small numberε > 0 and Borel functionsC,K :Λ→ (0,∞);
(c) subspacesE1(x) andE2(x), x ∈Λ,

which satisfy the following conditions:
1. the subspacesE1(x) andE2(x) depend measurably onx and form an invariant split-

ting of the tangent space, i.e.,

TxM =E1(x)⊕E2(x),

dxfE1(x)=E1
(
f (x)
)
, dxfE2(x)=E2

(
f (x)
); (6.1)

4For simplicity, we consider here only one of the nested subsets in the definition of nonuniformly hyperbolic
cocycles; see Section 4.4.
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2. for v ∈E1(x) andn > 0,

‖dxf nv‖ � C(x)λneεn‖v‖; (6.2)

3. for v ∈E2(x) andn < 0,

‖dxf nv‖ � C(x)µneε|n|‖v‖; (6.3)

4. the angle

� (E1(x),E2(x)
)
�K(x); (6.4)

5. for n ∈ Z,

C
(
f n(x)

)
� C(x)eε|n|, K

(
f n(x)

)
�K(x)e−ε|n|. (6.5)

Condition (6.5) means that estimates (6.2)–(6.4) may deteriorate along the trajectory with
subexponential rate. We stress that the rates of contraction along stable subspaces and
expansion along unstable subspaces are exponential and hence, prevail.

Furthermore,f is nonuniformly partially hyperbolicon anf -invariant Borel subset
Λ⊂M if there exist:

(a) numbersλ, λ′, µ, andµ′ such that 0< λ< 1<µ andλ < λ′ � µ′ <µ;
(b) a sufficiently small numberε > 0 and Borel functionsC,K :Λ→ (0,∞);
(c) subspacesEs(x), Ec(x), andEu(x), x ∈Λ,

which satisfy the following conditions:
1′. the subspacesEs(x), Ec(x), andEu(x) depend measurably onx and form an in-

variant splitting of the tangent space, i.e.,

TxM =Es(x)⊕Ec(x)⊕Eu(x),
dxfE

s(x)=Es(f (x)), dxfE
c(x)=Ec(f (x)),

dxfE
u(x)=Eu(f (x));

2′. the subspacesEs(x) andEu(x) satisfy (6.2) and (6.3); in addition, forv ∈ Ec(x)
andn ∈ Z,

C(x)−1(λ′)ne−εn‖v‖� ‖dxf nv‖ � C(x)(µ′)neεn‖v‖;
3′. the subspacesEs(x) andEu(x) satisfy (6.4); in addition,� (Es(x),Ec(x))�K(x)

and � (Eu(x),Ec(x))�K(x);
4′. the functionsC(x) andK(x) satisfy (6.5).
In the caseEc(x)= 0 we say thatf is nonuniformly(completely) hyperboliconΛ.
Throughout this chapter we deal with three types of nonuniform hyperbolicity: the par-

tial hyperbolicity in the broad sense, its stronger version of partial hyperbolicity (some-
times called partial hyperbolicity in the narrow sense), and yet the stronger complete hyper-
bolicity (sometimes simply called nonuniform hyperbolicity). We shall refer to subspaces
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E1(x) and, respectively,Es(x) asstablesubspaces, toEc(x) ascentralsubspaces and to
Eu(x) asunstablesubspaces. In the case of general nonuniform partial hyperbolicity in the
broad sense the subspacesE2(x) may not be unstable as some vectors may contract under
the action ofdf .

It should be stressed that principle results describing local behavior of the system (such
as Stable Manifold Theorem 8.8 and Absolute Continuity Theorems 10.1 and 11.1) as well
as some results of a global nature (such as construction of global invariant manifolds in
Section 9 and of the pseudo-π -partition in Theorem 11.16 and the lower bound for the
metric entropy in Theorem 12.11) need only nonuniform partial hyperbolicity in the broad
sense. On the other hand, more advanced results describing ergodic and topological proper-
ties of the system require stronger nonuniform complete hyperbolicity, see Sections 11–16.

Consider a diffeomorphismf which is nonuniformly partially hyperbolic in the broad
sense on an invariant setΛ. Given� > 0, we introduce theregular set(of level �) by

Λ� =
{
x ∈Λ: C(x)� �,K(x)� 1

�

}
.

Without loss of generality we may assume that the setsΛ� are closed (otherwise they can
be replaced by their closuresΛ�).

We describe a special inner product in the tangent bundleTΛ which is known as the
Lyapunov inner product. It provides a convenient technical tool in studying nonuniform
hyperbolicity. Choose numbers 0< λ′ <µ′ <∞ such that

λeε < λ′, µ′ <µe−ε.

We define a new inner product〈·, ·〉′x , as follows. Set

〈v,w〉′x =
∞∑
k=0

〈
df kv, df kw

〉
f k(x)

λ′−2k

if v,w ∈E1(x), and

〈v,w〉′x =
∞∑
k=0

〈
df−kv, df−kw

〉
f−k(x)µ

′2k

if v,w ∈E2(x).
Using (6.2) and (6.3) one can verify that each series converges. We extend〈·, ·〉′x to all

vectors inTxM by declaring the subspacesE1(x) andE2(x) to be mutually orthogonal
with respect to〈·, ·〉′x , i.e., we set

〈v,w〉′x = 〈v1,w1〉′x + 〈v2,w2〉′x,

wherev = v1 + v2 andw =w1 +w2 with v1,w1 ∈E1(x) andv2,w2 ∈E2(x).
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The norm induced by the Lyapunov inner product is called theLyapunov normand is
denoted by‖ ·‖′. We emphasize that the Lyapunov inner product, and hence, the norm‖ ·‖′
depend on the choice of numbersλ′ andµ′.

The Lyapunov inner product has several important properties:
1. the angle between the subspacesE1(x) andE2(x) in the inner product〈·, ·〉′x is π/2

for eachx ∈Λ;
2. ‖Ax‖′ � λ′ and‖Bx−1‖′ � (µ′)−1;
3. the relation between the Lyapunov inner product and the Riemannian inner product

is given by

1√
2
‖w‖x � ‖w‖′x �D(x)‖w‖x,

wherew ∈ TxM and

D(x)= C(x)K(x)−1[(1− λeε/λ′)−1 + (1−µ′/(µe−ε)
)−1]1/2

is a measurable function satisfying (in view of (6.5))

D
(
f m(x)

)
�D(x)e2ε|m|, m ∈ Z. (6.6)

Properties 1 and 2 show that the action of the differentialdf is uniformlypartially hy-
perbolic in the broad sense with respect to the Lyapunov inner product.

For a partially hyperbolic in the broad senseC1+β diffeomorphismf the subspaces
E1(x) andE2(x) depend continuously on the pointx in a regular set. Indeed, one can
prove a stronger statement.

THEOREM 6.1. The distributionE1(x) depends Hölder continuously onx ∈Λ�, i.e.,

d
(
E1(x),E2(y)

)
� Cρ(x, y)α,

whereC > 0 and α ∈ (0,1] are constants, and d is the distance in the Grassmannian
bundle of TM generated by the Riemannian metric.

This theorem is a particular case of a more general result which we now state.
A k-dimensional distributionE on a subsetΛ of a differentiable manifoldM is a family

of k-dimensional subspacesE(x) ⊂ TxM , x ∈ Λ. A Riemannian metric onM naturally
induces distances inTM and in the space ofk-dimensional subspaces inTM. The Hölder
continuity of a distributionE can be defined using these distances. However, by the Whit-
ney Embedding Theorem, every manifoldM can be embedded inRN with a sufficiently
largeN . If M is compact, the Riemannian metric onM is equivalent to the distance‖x−y‖
induced by the embedding. The Hölder exponent does not change if the Riemannian met-
ric is changed for an equivalent smooth metric, while the Hölder constant may change. We
assume in Theorem 6.2, without loss of generality, that the manifold is embedded inRN .
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For a subspaceA⊂ RN and a vectorv ∈ RN , set

dist(v,A)= min
w∈A‖v−w‖,

i.e., dist(v,A) is the length of the difference betweenv and its orthogonal projection toA.
For subspacesA, B in RN , define

dist(A,B)= max
{

max
v∈A,‖v‖=1

dist(v,B), max
w∈B,‖w‖=1

dist(w,A)
}
.

A k-dimensionaldistributionE defined on a setΛ⊂ RN is calledHölder continuouswith
Hölder exponentα ∈ (0,1] andHölder constantL> 0 if there existsε0> 0 such that

dist
(
E(x),E(y)

)
�L‖x − y‖α

for everyx, y ∈Λ with ‖x − y‖� ε0.
The subspacesE1,E2 ⊂ RN are said to beκ-transverseif ‖v1 − v2‖ � κ for all unit

vectorsv1 ∈E1 andv2 ∈E2.

THEOREM 6.2 (Brin [59]). LetM be a compactm-dimensionalC2 submanifold ofRN

for somem<N , andf :M→M aC1+β map for someβ ∈ (0,1). Assume that there exist
a setΛ⊂M and real numbers0< λ<µ, c > 0, andκ > 0 such that for eachx ∈Λ there
are κ-transverse subspacesE1(x),E2(x)⊂ TxM with the following properties:

1. TxM =E1(x)⊕E2(x);
2. ‖dxf nv1‖ � cλn‖v1‖ and ‖dxf nv2‖ � c−1µn‖v2‖ for every v1 ∈ E1(x), v2 ∈
E2(x), and every positive integern.

Then for everya >maxz∈M ‖dzf ‖1+β , the distributionE1 is Hölder continuous with ex-
ponent

α = logµ− logλ

loga − logλ
β.

6.3. Regularity of the derivative cocycle

We say that a pointx ∈M is Lyapunov forwardf -regular (or simply forward regular),
Lyapunov backwardf -regular (or simply backwardf -regular), or Lyapunovf -regular
(or simplyregular), respectively, if it is forward regular, backward regular, or regular with
respect to the cocycleAx .

We recall that for any regular pointx ∈ M there exist an integers(x) � n, numbers
χ1(x) < · · ·< χs(x)(x) and a decomposition

TxM =
s(x)⊕
i=1

Ei(x) (6.7)
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into subspacesEi(x) such that forv ∈Ei(x) \ {0} andi = 1, . . . , s(x),

lim
m→±∞

1

m
log‖dxf mv‖ = χi(x)

with uniform convergence on{v ∈Ei(x): ‖v‖ = 1}. Write ki(x)= dimHi(x).
Assume that there existsC > 0 such that‖dxf ‖, ‖dxf−1‖ � C for everyx ∈M . Note

that this property holds whenM is compact. Then the derivative cocycle satisfies the condi-
tion (5.3), and by the Multiplicative Ergodic Theorem 5.5 the set of regular points (as well
as the sets of forward and backward regular points) is nonempty. Moreover, the following
statement is an immediate consequence of Theorem 5.5.

THEOREM 6.3. Let f be a diffeomorphism of a smooth Riemannian manifold. Then the
set of regular points has full measure with respect to anyf -invariant Borel probability
measure with compact support.

The set of points which are not regular is negligible from the measure-theoretical point
of view, since it has zero measure with respect to any Borel invariant measure. However,
this set may be large with respect to other characteristics. For example, it may have positive
Lebesgue measure, positive Hausdorff dimension, or positive topological entropy.

Theorem 6.3 does not allow one to determine whether a given trajectory is regular (or
forward regular or backward regular). We now present some criteria which guarantee for-
ward and backward regularity of individual trajectories.

Let us first notice that ifx is a fixed point or a periodic point forf then the cocycleAx
is rigid with generatorA= dxf (if x is a fixed point) orA= dxf p (if x is a periodic point
of periodp).

We now consider the case of an arbitrary pointx.

PROPOSITION6.4. Letf be a diffeomorphism of a smooth Riemannian manifoldM .
1. If x ∈M is such that

χ+(x, v1, . . . , vk)= lim
m→+∞

1

m
logV (dxf

mv1, . . . , dxf
mvk)

(that is, χ+(x, v1, . . . , vk) is exact), for any choice of linearly independent vectors
v1, . . . , vk ∈ TxM andk = 1, . . . , n, thenx is forward regular.

2. If x ∈M is such that

χ−(x, v1, . . . , vk)= lim
m→−∞

1

|m| logV (dxf
mv1, . . . , dxf

mvk)

(that is, χ−(x, v1, . . . , vk) is exact), for any choice of linearly independent vectors
v1, . . . , vk ∈ TxM andk = 1, . . . , n, thenx is backward regular.

We also formulate a criterion for regularity.
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PROPOSITION6.5. Let f be a diffeomorphism of a smooth Riemannian manifoldM and
x ∈M . Assume that:

1. χ+(x, v1, . . . , vk) and χ−(x, v1, . . . , vk) are exact for any choice of linearly inde-
pendent vectorsv1, . . . , vk ∈ TxM andk = 1, . . . , n;

2. s+(x)= s−(x) def= s(x) andχ+
i (x)=−χ−

i (x) for i = 1, . . . , s(x);

3.
⊕s(x)
i=1(V

+
i (x) ∩ V −

i (x))= Rn where{V +
i } and{V −

i } are filtrations associated with
the Lyapunov exponentsχ+ andχ−.

Thenx is regular.

The diffeomorphismf acts on the cotangent bundleT ∗M by its codifferential

d∗x f :T ∗
f (x)M→ T ∗

x M

defined by

d∗x f ϕ(v)= ϕ(dxf v), v ∈ TxM, ϕ ∈ T ∗
f (x)M.

We denote the inverse map by

d ′xf = (d∗x f )−1 :T ∗
x M→ T ∗

f (x)M.

Let ν be an ergodicf -invariant Borel measure. There exist numberss = sν , χi = χνi , and
ki = kνi for i = 1, . . . , s such that

s(x)= s, χi(x)= χi, ki(x)= ki (6.8)

for ν-almost everyx. The collection of pairs

Spχ(ν)= {(χi, ki): 1� i � s
}

is called theLyapunov spectrumof the measureν.
A diffeomorphismf is a dynamical system with nonzero Lyapunov exponentsif there

exists an ergodicf -invariant Borel probability measureν onM—ahyperbolic measure—
such that the set

Λ = {x ∈ L: there exists 1� k(x) < s(x)
with χk(x)(x) < 0 andχk(x)+1(x) > 0

}
has full measure.

Consider the set̃Λ = Λ̃ν of those points inΛ which are Lyapunov regular and satisfy
(6.8). By the Multiplicative Ergodic Theorem 5.5, we haveν(Λ̃)= 1. For everyx ∈ Λ̃, set

Es(x)=
k⊕
i=1

Ei(x) and Eu(x)=
s⊕

i=k+1

Ei(x).
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THEOREM 6.6. The subspacesEs(x) andEu(x), x ∈ Λ̃, have the following properties:
1. they depend Borel measurably onx;
2. they form a splitting of the tangent space, i.e., TxM =Es(x)⊕Eu(x);
3. they are invariant,

dxfE
s(x)=Es(f (x)) and dxfE

u(x)=Eu(f (x)).
Furthermore, there existε0> 0, Borel functionsC(x, ε) > 0 andK(x, ε) > 0, x ∈ Λ̃ and
0< ε � ε0 such that

4. the subspaceEs(x) is stable:if v ∈Es(x) andn > 0, then

‖dxf nv‖� C(x, ε)e(χk+ε)n‖v‖;
5. the subspaceEu(x) is unstable:if v ∈Eu(x) andn < 0, then

‖dxf nv‖� C(x, ε)e(χk+1−ε)n‖v‖;
6. � (Es(x),Eu(x))�K(x, ε);
7. for everym ∈ Z,

C
(
fm(x), ε

)
� C(x, ε)eε|m| and K

(
fm(x), ε

)
�K(x, ε)e−ε|m|.

We remark that condition 7 is crucial and is a manifestation of the regularity property.
It follows from Theorem 6.6 thatf is nonuniformly completely hyperbolic oñΛ.

6.4. Cocycles over smooth flows

Let ϕt be a smooth flow on a smoothn-dimensional Riemannian manifoldM . It is gener-
ated by the vector fieldX onM given by

X (x)= dϕt (x)
dt

∣∣∣∣
t=0
.

For everyx0 ∈ M the trajectory{x(x0, t) = ϕt (x0): t ∈ R} represents a solution of the
nonlinear differential equation

v̇ =X (v)

on the manifoldM . This solution is uniquely determined by the initial conditionx(x0,0)=
x0.

Given a pointx ∈M and the trajectory{ϕt (x): t ∈ R} passing throughx we introduce
thevariational differential equation

ẇ(t)=A(x, t)w(t), (6.9)
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where

A(x, t)= dX (ϕt (x)).
This is a linear differential equation along the trajectory{ϕt (x): t ∈ R} known also as the
linear variational equation.

The Lyapunov exponent generated by the cocycleA is defined by

χ+(x, v)= lim
t→+∞

1

t
log
∥∥w(t)∥∥,

wherew(t) is the solution of (6.9) with initial conditionw(0)= v, and is called theLya-
punov exponent of the flowϕt . In particular, one can speak of trajectories which areforward
or backward regular, and (Lyapunov) regular.

Note that every periodic trajectory is regular. However, this is not true in general for
nonperiodic trajectories. For example, consider a flow on the unit sphere with the North and
the South poles to be, respectively, attracting and repelling points, and without other fixed
points. If the coefficients of contraction and expansion are different then every trajectory
of the flow (except for the North and the South poles) is nonregular.

One can establish a criterion for regularity of individual trajectories (see [35]). However,
it is not a simple task to apply this criterion and check whether a given trajectory is regular.
On the other hand, letν be a Borel measure which is invariant under the flowϕt . It is easy
to see that the derivative cocycleA(x, t) satisfies

sup
−1�t�1

log+
∥∥A(·, t)∥∥ ∈ L1(M,ν).

The Multiplicative Ergodic Theorem for flows (see Theorem 5.15) implies that almost
every trajectory with respect toν is Lyapunov regular.

We say that a smooth flowϕt is nonuniformly hyperbolicif it possesses an invariant
Borel subsetΛ⊂M such that there exist:

(a) numbers 0< λ< 1<µ;
(b) a sufficiently small numberε > 0 and Borel functionsC,K :Λ→ (0,∞);
(c) subspacesEs(x) andEu(x), x ∈Λ,

which satisfy conditions 1′–4′ in the definition of nonuniform partial hyperbolicity with
Ec(x)= X (x). Note that for everyt the diffeomorphismϕt is nonuniformly partially hy-
perbolic with one-dimensional central subspace.

Assume that a smooth flowϕt possesses an invariant Borel subsetΛ and an invariant
Borel measureν with ν(Λ) = 1 such thatχ(x, v) �= 0 for almost everyx ∈ Λ and every
v ∈ TxM not colinear withX . Assume also that for thesex there are vectorsv,w ∈ TxM
such thatχ(x, v) > 0 andχ(x,w) < 0. Then the flowϕt is nonuniformly hyperbolic onΛ.

7. Methods for estimating exponents

The absence of zero Lyapunov exponents implies nonuniform hyperbolicity. In fact, this
seems to be one of the most “practical” universal ways to establish weak hyperbolic be-
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havior. We discuss a powerful method which allows one to verify that Lyapunov exponents
do not vanish. It was suggested by Wojtkowski in [248] and is a significant generalization
of the initial approach by Alekseev (see [14–16]) to build an invariant family of unstable
cones.

Theconeof sizeγ > 0 centered aroundRn−k in the product spaceRn = Rk ×Rn−k is

Cγ =
{
(v,w) ∈ Rk ×Rn−k: ‖v‖< γ ‖w‖}∪ {(0,0)}.

Note that{0} ×Rn−k ⊂ Cγ for everyγ .
Consider a cocycleA over an invertible measurable transformationf :X→X preserv-

ing a Borel probability measureν onX, and letA :Rn → GL(n,R) be its generator. As-
sume that there existγ > 0 anda > 1 such that forν-almost everyx ∈ Rn:

1. A(x)Cγ ⊂ Cγ ;
2. ‖A(x)v‖ � a‖v‖ for everyv ∈ Cγ .

Then the largest Lyapunov exponent can be shown to be positiveν-almost everywhere.
Indeed,n− k values of the Lyapunov exponent, counted with their multiplicities, are pos-
itive.

Wojtkowski’s great insight is that condition 1 alone is in fact sufficient to establish pos-
itivity of the values of the Lyapunov exponent. The importance of this observation is that
condition 1 is of pure qualitative nature and thus, no estimates on the growth of vectors
inside the cone are required.

It turns out that Wojtkowski’s approach can be described in a more general and more
convenient framework elaborated by Burns and Katok in [136]. This approach, in turn, is
a further development of that by Lewowicz in [162,163] and Markarian in [179] and is
based on the notion of infinitesimal Lyapunov function (see Section 7.1 below; see also
Section 7.2 for the version of this approach in the case of cocycles with values in the
symplectic group).

In the later work Wojtkowski himself strengthened his original approach and, using re-
sults of Potapov on monotone operators of a linear space generated by a quadratic form,
obtained estimates of Lyapunov exponents for cocycles with values in the semigroup of
matrices preserving the form (see [249]). These results apply to estimate Lyapunov expo-
nents for Hamiltonian dynamical systems as well as to the Boltzmann–Sinai gas of hard
spheres and the system of falling balls in one dimension (see [249] for more details and
references therein).

7.1. Cone and Lyapunov function techniques

Let Q :Rn → R be a continuous function which is homogeneous of degree one (i.e.,
Q(αv)= αQ(v) for anyv ∈ Rn andα ∈ R) and takes on both positive and negative values.
The subset

C+(Q) def= {0} ∪Q−1(0,+∞)⊂ Rn (7.1)
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is called thepositive(generalized) cone associated withQ or simply thepositive cone
ofQ. Similarly,

C−(Q) def= {0} ∪Q−1(−∞,0)⊂ Rn (7.2)

is thenegative(generalized) cone associated toQ or thenegative cone ofQ. The maximal
dimension of a linear subspaceL⊂ Rn such thatL⊂ C+(Q) (respectively,L⊂ C−(Q))
is calledpositive(respectively,negative) rankofQ and is denoted byr+(Q) (respectively,
r−(Q)). We clearly haver+(Q) + r−(Q) � n, and sinceQ takes on both positive and
negative values, we haver+(Q)� 1 andr−(Q)� 1. We call the functionQ completeif

r+(Q)+ r−(Q)= n. (7.3)

For example, consider the function

Q(v)= signK(v, v) · ∣∣K(v, v)∣∣1/2, (7.4)

whereK is a nondegenerate indefinite quadratic form.Q is complete and its positive and
negative ranks are equal to the number of positive and negative eigenvalues of the quadratic
formK , respectively.

More generally, letλ be a positive real number andKλ a real function onRn which is
homogeneous of degreeλ (i.e.,Kλ(αv) = αλKλ(v) for anyv ∈ Rn andα > 0) and takes
on both positive and negative values. Define a homogeneous functionQ of degree one by

Q(v)= signKλ(v) ·
∣∣Kλ(v)∣∣1/λ.

We say thatKλ is completeif Q is complete, and we define the positive and negative cones,
and positive and negative ranks ofKλ as those ofQ.

LetA :X×Z → GL(n,R) be a cocycle, andF :X×Rn→X×Rn its linear extension
defined by

F(x, v)= (f (x),A(x)v),
whereA(x)=A(x,1) is the generator ofA.

A real-valued measurable functionQ onX × Rn is called aLyapunov function for the
extensionF or for the cocycleA (with respect to a measureν in X) if there exist positive
integersr+Q andr−Q such that forν-almost everyx ∈X,

1. the functionQx given byQx(v) =Q(x,v) is continuous, homogeneous of degree
one and takes on both positive and negative values;

2. Qx is complete andr+(Qx)= r+Q andr−(Qx)= r−Q ;

3. Qf(x)
(
A(x)v

)
�Qx(v) for all v ∈ Rn. (7.5)

The numbersr+Q andr−Q are called thepositiveandnegative ranksof Q.
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WhenQ is a Lyapunov function, it follows from (7.5) that forν-almost everyx ∈X,

A(x)C+(Qx)⊂ C+(Qf (x)),

A
(
f−1(x)

)−1
C−(Qx)⊂ C−(Qf−1(x)). (7.6)

A Lyapunov functionQ on X × Rn is calledstrict if the inequality in (7.5) is strict for
everyv �= 0 andeventually strictif for ν-almost everyx ∈X there exists a positive integer
m=m(x) such that for everyv ∈ Rn \ {0},

Qfm(x)
(
A(x,m)v

)
>Qx(v) (7.7)

and

Qf−m(x)
(
A(x,−m)v)<Qx(v). (7.8)

If a Lyapunov functionQ is eventually strict then by (7.5), forν-almost everyx ∈X the
inequalities (7.7) and (7.8) hold for allm�m(x).

WhenQ is a strict Lyapunov function, it follows from (7.5) that

A(x)C+(Qx)� C+(Qf (x)),

A
(
f−1(x)

)−1
C−(Qx)� C−(Qf−1(x)) (7.9)

for ν-almost everyx ∈ X. Furthermore, ifQ is an eventually strict Lyapunov function it
follows from (7.7) and (7.8) that

A(x,m)C+(Qx)� C+(Qfm(x)),

A(x,−m)−1C−(Qx)� C−(Qf−m(x)) (7.10)

for ν-almost everyx ∈X and everym�m(x).
The following result establishes a criterion for nonvanishing Lyapunov exponents.

THEOREM 7.1 (Burns and Katok [136]).If A possesses an eventually strict Lyapunov
functionQ then

1. A hasν-almost everywherer+Q positive andr−Q negative values of the Lyapunov ex-
ponent counted with their multiplicities;

2. for ν-almost everyx ∈X we have

E+(x)=
∞⋂
m=1

A
(
f−m(x),m

)
C+(Qf−m(x))⊂ C+(Qx)

and

E−(x)=
∞⋂
m=1

A
(
f m(x),−m)C−(Qfm(x))⊂ C−(Qx).
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Lyapunov functions are intimately related to the invariant families of cones. Here we
give a detailed description of this relationship.

A (generalized) coneC in Rn is a homogeneous set (i.e.,αv ∈ C wheneverv ∈ C and
α ∈ R) such thatC \ {0} is open. In particular,C need not be convex and intC need not be
connected. Therank of C is the maximal dimension of a linear subspaceL⊂ Rn which is
contained inC. We denote it byr(C). Thecomplementary conêC toC is defined by

Ĉ = (Rn \ C̄)∪ {0}.

Obviously the complementary cone tôC is C. We haver(C) + r(Ĉ) � n and this in-
equality may be strict (this is the case for example, whenC �= Rn but C̄ = Rn). A pair of
complementary conesC andĈ is calledcompleteif r(C)+ r(Ĉ)= n.

LetA :X×Z → GL(n,R) be a cocycle overX with generatorA :X→ GL(n,R). Con-
sider a measurable family of conesC = {Cx : x ∈ X} in Rn. Given a measureν in X, we
say that

1. C is completeif the pair of complementary cones(Cx, Ĉx) is complete forν-almost
everyx ∈X;

2. C is A-invariant if for ν-almost everyx ∈X,

A(x)Cx ⊂ Cf (x), A
(
f−1(x)

)−1
Ĉx ⊂ Ĉf−1(x).

LetC be anA-invariant measurable family of cones. We say that
1. C is strict if for ν-almost everyx ∈X,

A(x)Cx �Cf (x), A
(
f−1(x)

)−1
Ĉx � Ĉf−1(x);

2. C is eventually strictif for ν-almost everyx ∈ X there existsm = m(x) ∈ N such
that

A(x,m)Cx � Cfm(x), A(x,−m)−1Ĉx � Ĉf−m(x).

Let C be a completeA-invariant measurable family of cones inRn. Any Lyapunov
functionQ :X×Rn→ R satisfying

Cx = C+(Qx), Ĉx = C−(Qx) for ν-almost everyx ∈X

is called aLyapunov function associated withC. Any completeA-invariant measurable
family of cones has an associated Lyapunov function. It is given by

Q(x,v)=
{
d(v/‖v‖, ∂Cx)‖v‖ if v ∈ Cx ,
−d(v/‖v‖, ∂Cx)‖v‖ if v ∈ Ĉx .

Furthermore, if a complete invariant family of cones is strict (respectively, eventually strict)
then any of its associated Lyapunov functions is strict (respectively, eventually strict).

The above discussion allows us to rephrase Theorem 7.1 in the following fashion.
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THEOREM 7.2. If (5.3)holds for somef -invariant measureν, and there exists a complete
A-invariant measurable family of conesC = {Cx : x ∈X}, then

1. A hasν-almost everywherer+Q positive andr−Q negative values of the Lyapunov ex-
ponent counted with their multiplicities;

2. for ν-almost everyx ∈X we have

E+(x)=
∞⋂
m=1

A
(
f−m(x),m

)
Cf−m(x) ⊂ Cx

and

E−(x)=
∞⋂
m=1

A
(
f m(x),−m)Ĉf m(x) ⊂ Ĉx.

LetQ be a Lyapunov function onX × Rn for a cocycleA. We consider the family of
conesC = {Cx : x ∈X} in Rn given by

Cx = C+(Qx).

Conditions 2 and 3 in the definition of Lyapunov function imply thatC is complete and
A-invariant. Note that the complementary coneĈx is not always equal to the coneC−(Qx),
and thusQ may not be a Lyapunov function associated withC. However, we havêCx =
C−(Qx) provided that for eachv such thatQx(v)= 0 one can findw arbitrarily close to
v such thatQx(w) > 0. Furthermore, ifQ is strict (respectively, eventually strict) thenC
is strict (respectively, eventually strict).

7.2. Cocycles with values in the symplectic group

Let A :X × Z → GL(n,R) be a cocycle andQ a homogeneous function of degree one
onX × Z. Consider the corresponding families of conesC+(Qx) andC−(Qx) given by
(7.1) and (7.2). IfQ is complete (see (7.3)) and (7.6) holds, thenQ is a Lyapunov func-
tion. Moreover, if (7.9) (respectively, (7.10)) holds thenQ is strict (respectively, eventually
strict). On the other hand, if condition (7.6) is satisfied only with respect to the family of
conesC+(Qx) thenQ may not be a Lyapunov function. However, this does occur for
some interesting classes of cocycles and cones. The most important case for applications
involves cocycles with values in the symplectic group Sp(2m,R),m� 1, and the so-called
symplectic cones which we define later.

We begin with the simple case ofSL(2,R) cocycles.
We call a cone inRn connectedif its projection to the projective spaceRPn−1 is a

connected set. A connected cone inR2 is simply the union of two opposite sectors bounded
by two different straight lines intersecting at the origin plus the origin itself. By a linear
coordinate change such a cone can always be reduced to the following standard cone:

S = {(v,w) ∈ R: vw > 0
}∪ {(0,0)}.
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THEOREM 7.3 (see [136]).If a cocycle with values in SL(2,R) has an eventually strictly
invariant family of connected conesC = {Cx : x ∈ X}, then it has an eventually strict
Lyapunov functionQ such that forν-almost everyx ∈X the functionQx has the form(7.4)
and its zero set coincides with the boundary of the coneCx .

Let us now proceed with the general symplectic case. We denote byω the standard
symplectic form inR2m,

ω(v,w)=
m∑
i=1

(viwm+i −wivm+i ),

and byK the following nondegenerate quadratic form of signature zero:

K(v)=
m∑
i=1

vivm+i .

The cone

S = {v ∈ R2m: K(v) > 0
}∪ {0}

is called thestandard symplectic cone. The image of this cone under an invertible linear
symplectic map (i.e., a map with values in Sp(2m,R)) is called asymplectic cone.

LetL1 andL2 be two transverse Lagrangian subspaces in a 2m-dimensional symplectic
space(H,ω), i.e., complementarym-dimensional subspaces on which the symplectic form
ω vanishes identically. Then for anyv ∈H there is a unique decomposition

v = v1 + v2 with vi ∈ Li for i = 1,2.

Let

KL1,L2(v)= ω(v1, v2) and CL1,L2 =K−1
L1,L2

((0,∞))∪ {0}.

ThenCL1,L2 is a symplectic cone andKL1,L2 is the corresponding quadratic form.
It is easy to see (for example, by a direct calculation for the case of standard cones),

that for a given symplectic coneC in a symplectic space there are exactly two isolated
Lagrangian subspacesL1 andL2 that belong to the boundary ofC and thatC = CL1,L2 or
C = CL2,L1. Thus, the coneC canonically determines the formK ,

K(C)=KL1,L2 or K(C)=KL2,L1,

depending on whether the formKL1,L2 or the formKL2,L1 is positive onC.
For example, the standard coneS isCL1,L2, where

L1 =
{
(x,0): x ∈ Rm

}
and L2 =

{
(0, x): x ∈ Rm

}
.
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PROPOSITION 7.4. Let H and H ′ be two 2m-dimensional spaces, L1,L2 ⊂ H and
L′

1,L
′
2 ⊂H ′ pairs of transverse Lagrangian subspaces andT :H →H ′ a symplectic lin-

ear transformation such thatT CL1,L2 ⊂ CL1,L2. Then for allv ∈H \ {0} we have

KL′1,L′2(T v) > KL1,L2(v).

Proposition 7.4 immediately implies the following relation between invariant cone fam-
ilies and Lyapunov functions.

THEOREM 7.5 (see [136]).LetA :X→ Sp(2m,R) be a cocycle over a measurable trans-
formationf :X→X which preserves a measureν. If A has an eventually strictly invariant
family of symplectic conesC = {Cx : x ∈X}, then it also has an eventually strict Lyapunov
functionQ such that forν-almost everyx ∈ X the functionQx has the form(7.4) with a
quadratic formK = Kx of signature zero. Furthermore, the zero set of the functionQx
coincides with the boundary of the coneCx .

Combining Theorem 7.5 with Theorem 7.1 we immediately obtain the following.

COROLLARY 7.6. If a cocycleA :X→ Sp(2m,R) satisfies(5.3) and has an eventually
strictly invariant family of symplectic cones, then the linear extensionF of f hasν-almost
everywherem positive andm negative values of the Lyapunov exponent.

7.3. Lyapunov exponents estimates for some particular cocycles

The cone techniques provide some general methodology for establishing positivity of Lya-
punov exponents for cocycles and in particular, for dynamical systems. However, in some
particular cases one can use more effective tools and obtain sharper estimates of Lyapunov
exponents.

7.3.1. Herman’s method We describe a method due to Herman [115] for obtaining a
lower bound for the maximal Lyapunov exponent of a holomorphic cocycle with values in
a Banach algebra, in particular, with values inCp. This method is based on some properties
of pluri-subharmonic functions.

For r > 0, let

Bn(0, r)= {(z1, . . . , zn) ∈ Cn: |zi | � r, 1� i � n
}

be the closed ball and

Tnr =
{
(z1, . . . , zn) ∈ Cn: |zi | = r, 1� i � n

}
the torus inCn. Let alsof :U → Cn be a holomorphic function in a neighborhoodU of
Bn(0, r) satisfyingf (0)= 0, f (Bn(0, r))⊂ Bn(0, r), andf (Tnr )⊂ Tnr . We also consider
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a Banach algebraB over C and a cocycleA :Tnr × N → B overf with values inB. We
have

A(z,m)=A(fm−1(z)
)
. . .A
(
f (z)
)
A(z),

whereA :X→ B is the generator of the cocycle. Denote by

ρ(B)= lim
m→∞‖Bm‖1/m = inf

m�1
‖Bm‖1/m

the spectral radius of the elementB ∈ B (where‖ · ‖ is the norm inC).

THEOREM 7.7. If f preserves the Lebesgue measureµ in Tnr , andA is a holomorphic
map in a neighborhood ofBn(0, r) with values in a Banach algebraB, then the cocycleA
overf with generatorA satisfies

lim
m→∞

1

m

∫
Tnr

log
∥∥A(z,m)∥∥dµ(z)� logρ

(
A(0)
)
.

To see this set

am =
∫

Tnr

log
∥∥A(z,m)∥∥dµ(z).

Since the functionz  → log‖A(z,m)‖ is pluri-subharmonic for eachm (see [122]),

am � log
∥∥A(0, z)∥∥= log

∥∥A(0)m∥∥.
Therefore,

inf
m�1

am

m
� logρ

(
A(0)
)
.

Sincef preservesµ, the sequenceam is subadditive and thus,

lim
m→∞

am

m
= lim
m→∞

am

m
= inf
m�1

am

m

and the desired result follows.

7.3.2. Parameter-exclusion techniquesIn [258], Young considered aC1 family of co-
cycles over irrational rotationsRα(x) by 2πα with generatorsAt :S1 → SL(2,R) such
that |At(x)| ≈ χ (uniformly in t andx) whereχ > 0 is a number. The cocycles are not
uniformly hyperbolic. The statement is thatfor sufficiently largeχ and for a generic fam-
ily the set of parameters(α, t), for which the Lyapunov exponents of(Rα,At ) are≈±χ ,
has nearly full measure. The proof exploits a parameter-exclusion procedure which goes
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back to the work of Jacobson [128] and of Benedicks and Carleson [40]: inductively, one
identifies certain regions of criticality, studies orbit segments that begin and end near those
regions and tries to concatenate long blocks of matrices that have been shown to be hyper-
bolic; parameters are deleted to ensure the hyperbolicity of the concatenated blocks, and
the induction moves forward.

The parameter-exclusion techniques is used to study hyperbolic and ergodic properties
of Hénon-like attractors, see Section 14.4.

7.3.3. Open set of nonuniformly hyperbolic cocycles with values in SL(2,R) In [257],
Young constructed an open set, in theC1 topology, of cocycles with values inSL(2,R)
over a hyperbolic automorphismT of the 2-torusT2 such that every cocycle in this set has
positive Lyapunov exponent but is not uniformly hyperbolic.

Chooseλ >
√
µ+1 whereµ> 1 is the eigenvalue of the matrixT (the other eigenvalue

is µ−1). Givenε > 0, we define a cocycle overT with the generatorAε :T2 → SL(2,R)
as follows. Let 0< β < 2π be a number,Jε ⊂ S1 an interval, andϕε :T2 → R/2πR aC1

function such that
1. ϕε ≡ 0 outside ofJε × S1;
2. onJε × S1, ϕε increases monotonically from 0 to 2π along the leaves ofWu;
3. onϕ−1

ε [β,2π − β], the directional derivatives ofϕε along the leaves ofWu are� 1
ε
.

The cocycleAε is defined to be

Aε(x)=
(
λ 0
0 1

λ

)
◦Rϕε(x),

whereRθ is the rotation by the angleθ . The statement is thatone can chooseβ and, for all
sufficiently smallε, the intervalJε and a neighborhoodUε ofAε in C1(T2,SL(2,R)) such
that for anyB ∈ Uε the cocycle overT with the generatorB is not uniformly hyperbolic
and has a positive Lyapunov exponent with respect to the Lebesgue measure.

7.3.4. Cocycles associated with the Jacobi–Perron (JP) algorithmThis algorithm is a
higher-dimensional generalization of the continued fraction algorithm and is used to con-
struct simultaneous rational approximations of real numbers (see [225,154]). The mapf

defining the JP algorithm acts on thed-dimensional cubeI d by the formula

f (x)=
(
x2

x1
mod 1, . . . ,

xd

x1
mod 1,

1

x1
mod 1

)
providedx1 �= 0. The mapf preserves a probability measureν which is absolutely contin-
uous with respect to the Lebesgue measure in the cube and is ergodic with respect toν.

The JP algorithm associates to almost every pointx ∈ I d a matrixA(x) such thatx can
be expressed asx = a1 ◦ · · · ◦ an ◦ f n(x) wherean are the projective maps defined by the
matricesAn =A(f n−1(x)) in the spaceRn ⊂ Pn. Thed + 1 points

Jn = a1 ◦ · · · ◦ an(0), . . . , Jn+d = a1 ◦ · · · ◦ an+d(0)
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form a simplexσn(xa) in Rd which containsx. Its asymptotic form turns out to be deter-
mined by the Lyapunov exponents of the measureν. The latter are closely related to the
Lyapunov exponentsχi , i = 1, . . . , d + 1, of the cocycle overf generated by the matrix
functionA=A(x).

In [60], Broise-Alamichel and Guivarc’h showed that for the JP algorithm:
1.
∑d+1
i=1 χi = 0 andχ1> χ2> · · ·> χd+1;

2. χ1 + χd+1> 0.
In the cased = 2 we have thatχ2< 0.

7.3.5. Partially hyperbolic cocycles over locally maximal hyperbolic setsLet f be a
diffeomorphism of a compact smooth manifold possessing a locally maximal hyperbolic
setΛ. Assume thatf |Λ is topologically transitive. Letµ be an equilibrium measure onΛ
corresponding to a Hölder continuous potentialϕ.

Consider a cocycleA overf with values inSL(p,R) and letA be the generator of the
cocycle. We assume thatA depends smoothly onx and that it is dominated by the hyper-
bolicity of f , i.e.,A(x) expands vectors less than the minimum expansion induced bydxf

on the unstable subbundle andA(x) contracts vectors less than the minimum contraction
induced bydxf on the stable subbundle. In other words, the cocycle is partially hyperbolic
onX×Rp.

In [50], Bonatti, Gómez-Mont and Viana showed that the maximal Lyapunov exponent
of µ, χµ, is zero only in the following very special situation: there exists a continuous fam-
ily of probability measuresmx,x ∈Λ, on the projective spaceCPp−1 which is simultane-
ously invariant underf , and under the holonomies along the strongly stable and strongly
unstable foliations. One can deduce from here that the set of cocycles with a nonzero upper
Lyapunov exponent with respect to all the equilibrium measures is an open and dense set
in theC1 topology. It is also shown that for genericC1 families of cocycles with finitely
many parameters, the set of parameters for which the upper Lyapunov exponent is zero for
some equilibrium measure is discrete.

8. Local manifold theory

We consider the problem of local stability of trajectories for nonuniformly partially and
completely hyperbolic systems. This includes constructing local stable and unstable mani-
folds and studying their properties. Let us emphasize that the construction of stable (unsta-
ble) manifolds can be carried out if only one nonuniformly hyperbolic trajectory is present,
i.e., the nonuniformly partially (or completely) hyperbolic setΛ consists of a single trajec-
tory. In particular, the construction does not involve any invariant measure.

There are two well-known methods of building local stable manifolds originated in
works of Hadamard [111] and Perron [194,195]. Hadamard’s approach is more geomet-
rical and can be effected for Lipschitz (not necessarily differentiable) maps while Perron’s
approach allows more flexibility.

These methods work well in the case of uniform hyperbolicity and extending them to
nonuniformly hyperbolic systems faces substantial problems. One of them is that the size
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of local stable manifolds may deteriorate along the trajectory and indeed, may become ar-
bitrarily small. The crucial requirement (6.5) in the definition of nonuniform hyperbolicity
provides a control of the deterioration: it can occur with at most subexponential rate.

Both Hadamard and Perron methods allow substantial generalizations to sequences of
local diffeomorphisms (instead of iterations of a single diffeomorphism) or maps of Banach
spaces (instead of Euclidean spaces), etc.

8.1. Nonuniformly hyperbolic sequences of diffeomorphisms

Let fm :Um→ Rn,m ∈ Z (Um ⊂ Rn is an open set) be a (two-sided) sequence ofC1 local
diffeomorphisms, and{〈·, ·〉m}m∈Z a (two-sided) sequence of metrics. WriteF = {fm}m∈Z.
We assume thatfm(0)= 0.

We say thatF is nonuniformly hyperbolicif so is the sequence of matrices{Am}m∈Z =
{d0fm}m∈Z.

Let Rn = E1
m ⊕ E2

m be the invariant splitting associated with nonuniform hyperbolic
structure. For everym ∈ Z and(x, y) ∈Um one can writefm in the form

fm(x, y)=
(
Amx + g1

m(x, y),Bmy + g2
m(x, y)

)
,

whereAm = d0fm|E1
m andBm = d0fm|E2

m are linear invertible transformations andgm =
(g1
m,g

2
m) :Um→ Rn areC1 maps satisfyinggm(0)= 0, d0gm(0)= 0.

Set

σm = sup
{‖d(x,y)gm‖: (x, y) ∈Um

}
, σ = sup{σm: m ∈ Z}.

Note thatσ need not be finite in general.
Let A= {Am}m∈Z andB = {Bm}m∈Z. Define new sequences of matrices{Am}m∈Z and

{Bm}m∈Z using

Am =
{
Am−1 . . .A1A0 if m> 0,
Id if m= 0,
(Am)

−1 . . . (A−2)
−1(A−1)

−1 if m< 0.

We also set

Fm =
{
fm−1 ◦ · · · ◦ f1 ◦ f0 if m> 0,
Id if m= 0,
(fm)

−1 ◦ · · · ◦ (f−2)
−1 ◦ (f−1)

−1 if m< 0,

whenever it is defined. The map(Am,Bm) is a linear approximation ofFm in a neigh-
borhood of 0. We shall describe in the following sections how the stability of the linear
approximation effects the stability of the sequence ofC1 local diffeomorphisms.
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8.2. Admissible manifolds and the graph transform

Let γ > 0, k,n ∈ N, k < n be given. A mapϕ :U → Rn−k with U ⊂ Rk is called
γ -Lipschitzif for everyx, x′ ∈U ,∥∥ϕ(x)− ϕ(x′)∥∥� γ ‖x − x′‖.

A setV ⊂ Rn is said to be
1. An admissible(s, γ )-set if there exists aγ -Lipschitz mapϕ :U ⊂ Rk → Rn−k such

that

V = Graph(ϕ)= {(x,ϕ(x)): x ∈U}.
If, in addition,ϕ is differentiable thenV is called anadmissible(s, γ )-manifold.

2. An admissible(u, γ )-setif there exists aγ -Lipschitz mapϕ :U ⊂ Rn−k → Rk such
that

V = Graph(ϕ)= {(ϕ(x), x): x ∈U}.
If, in addition,ϕ is differentiable thenV is called anadmissible(u, γ )-manifold.

Givenγ > 0, letΓ (u,γ ) be the space of sequences{Vm}m∈Z of admissible(u, γ )-sets
such that 0∈ Vm. We define a metric onΓ (u,γ ) by

dΓ (u,γ )
({V1m}m∈Z, {V2m}m∈Z

)= sup
{
dm(ϕ1m,ϕ2m): m ∈ Z

}
,

where

dm(ϕ1m,ϕ2m)= sup

{‖ϕ1m(x)− ϕ2m(x)‖
‖x‖ : x ∈U \ {0}

}
andVim = Graph(ϕim) for eachm ∈ Z and i = 1,2. Sinceϕ1m(0) = ϕ2m(0) = 0, and
ϕ1m andϕ2m areγ -Lipschitz we havedm(ϕ1m,ϕ2m) � 2γ and the metricdΓ (u,γ ) is well
defined. One can verify thatΓ (u,γ ) is a complete metric space.

We define thegraph transformG :Γ (u,γ )→ Γ (u,γ ) induced byF on Γ (u,γ ) by
G({Vm}m∈Z)= {fm(Vm)}m∈Z.

PROPOSITION8.1. If Vm is an admissible(u, γ )-set such that

σm � (µ′ − λ′)γ
(1+ γ )2 , (8.1)

thenfmVm is an admissible(u, γ )-set.

It follows that under assumption (8.1) the mapG is well defined.
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PROPOSITION8.2. Assume that

σ <
µ′ − λ′

2(1+ γ ) .

Then the graph transformG is a contraction onΓ (u,γ ).

As an immediate corollary we obtain existence of(u, γ )-sets.

THEOREM 8.3. Assume that

σ � (µ′ − λ′)γ
(1+ γ )2 and σ <

µ′ − λ′
2(1+ γ ) . (8.2)

Then there exists a unique family{V um}m∈Z of admissible(u, γ )-sets such that0∈ V um and
fm(V

u
m)= V um+1.

Note that forγ < 1 the second inequality in (8.2) follows from the first one.
We now briefly describe how to obtain similar results for(s, γ )-manifolds. For every

m ∈ Z and(x, y) ∈ fm(Um) one can writef−1
m in the form

f−1
m (x, y)= (A−1

m x + h1
m(x, y),B

−1
m y + h2

m(x, y)
)
,

wherehm = (h1
m,h

2
m) :fm(Um)→ Rn is aC1 map satisfyinghm(0) = 0 andd0hm = 0.

Let

τm = sup
{‖d(x,y)hm‖: (x, y) ∈ fmUm

}
, τ = sup{τm: m ∈ Z}.

THEOREM 8.4. Assume that

τ � (µ′ − λ′)γ
λ′µ′(1+ γ )2 and τ <

µ′ − λ′
2λ′µ′(1+ γ ) .

Then there exists a unique family{V sm}m∈Z of admissible(s, γ )-sets such that0∈ V sm and
fm(V

s
m)= V sm+1.

The following theorem substantially strengthen the above result by claiming that(s, γ )

and(u, γ )-sets are indeed smooth manifolds.

THEOREM 8.5 (Katok and Mendoza [139]).Let {fm}m∈Z be a nonuniformly hyperbolic
sequence ofC1 local diffeomorphisms defined on the wholeRn. Givenγ > 0 and a suffi-
ciently smallσ > 0, there exist a unique family{V sm}m∈Z ofC1 admissible(s, γ )-manifolds
and a unique family{V um}m∈Z ofC1 admissible(u, γ )-manifolds such that:

1. 0∈ V sm ∩ V um;
2. fm(V sm)= V sm+1 andfm(V um)= V um+1;
3. T0V

s
m =Esm andT0V

u
m =Eum;
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4. if (x, y) ∈ V sm then∥∥fm(x, y)∥∥� (1+ γ )(λ+ σm)
∥∥(x, y)∥∥

and if (x, y) ∈ V um then∥∥fm(x, y)∥∥�
(
µ/(1+ γ )− σm

)∥∥(x, y)∥∥,
where0< λ< 1<µ;

5. for every(1+ γ )(λ+ σ) < ν < µ/(1+ γ )− σ and(x, y) ∈ Rn, if there existsC > 0
such that∥∥Fm+k ◦F−1

m (x, y)
∥∥� Cνk

∥∥(x, y)∥∥
for everyk � 0 then(x, y) ∈ V sm, and if there existsC > 0 such that

∥∥Fm+k ◦F−1
m (x, y)

∥∥� Cνk
∥∥(x, y)∥∥

for everyk � 0 then(x, y) ∈ V um.

Notice that an admissible(s, γ )-manifold (respectively,(u, γ )-manifold) is also an ad-
missible(s, γ ′)-manifold (respectively,(u, γ ′)-manifold) for everyγ ′ > γ . Therefore, the
uniqueness property in Theorem 8.5 implies that both families{V sm}m∈Z and{V um}m∈Z are
independent ofγ . These families are called, respectively,family of invariants-manifolds
andfamily of invariantu-manifolds. They can be characterized as follows.

PROPOSITION8.6. For eachγ ∈ (0,√µ′/λ′ − 1) and each sufficiently smallσ > 0:
1. if

ν ∈ ((1+ γ )(λ+ σ),µ/(1+ γ )− σ )
then

V sm =
{
(x, y) ∈ Rn: lim

k→+∞
1

k
log
∥∥Fm+k ◦F−1

m (x, y)
∥∥< logν

}
and

V um =
{
(x, y) ∈ Rn: lim

k→−∞
1

|k| log
∥∥Fm+k ◦F−1

m (x, y)
∥∥<− logν

}
;

2. if (1+ γ )(λ+ σ) < 1<µ/(1+ γ )− σ then
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V sm =
{
(x, y) ∈ Rn: lim

k→+∞
1

k
log
∥∥Fm+k ◦F−1

m (x, y)
∥∥< 0

}
=
{
(x, y) ∈ Rn: sup

k�0

∥∥Fm+k ◦F−1
m (x, y)

∥∥<∞
}

= {(x, y) ∈ Rn: Fm+k ◦F−1
m (x, y)→ 0 ask→+∞}

and

V um =
{
(x, y) ∈ Rn: lim

k→−∞
1

|k| log
∥∥Fm+k ◦F−1

m (x, y)
∥∥< 0

}
=
{
(x, y) ∈ Rn: sup

k�0

∥∥Fm+k ◦F−1
m (x, y)

∥∥<∞
}

= {(x, y) ∈ Rn: Fm+k ◦F−1
m (x, y)→ 0 ask→−∞}.

The following result provides some additional information on higher differentiability of
(s, γ )- and(u, γ )-manifolds.

THEOREM 8.7. LetF be a sequence ofCr local diffeomorphisms, for somer > 0. Then
the unique family{V um}m∈Z of admissible(u, γ )-sets given by Theorem8.3 is composed of
Cr manifolds.

8.3. Hadamard–Perron Theorem: Perron’s method

We describe a version of Perron’s approach to the proof of the Stable Manifold Theorem
which originated in [197] and allows one to construct stable (and unstable) invariant man-
ifolds along a single nonuniformly partially hyperbolic trajectory in the broad sense.5

Let f be aC1+α diffeomorphism of a compact smooth Riemannian manifoldM and
x ∈M . Assume thatf is nonuniformly partially hyperbolic in the broad sense on the set
Λ= {f n(x)}n∈Z (see Section 6.2). We obtain the local stable manifold in the form

V (x)= expx
{(
x,ψ(x)

)
: x ∈ B1(r)

}
, (8.3)

whereψ :B1(r)→ E2(x) is a smooth map, satisfyingψ(0) = 0 anddψ(0) = 0, E1(x),

E2(x) are invariant distributions in the tangent space (see (6.1)), andB1(r) ∈E1(x) is the
ball of radiusr centered at the origin. The numberr = r(x) is called thesizeof the local
stable manifold.

We now describe how to construct the functionψ . Fix x ∈M and consider the map

f̃x = exp−1
f (x) ◦f ◦ expx :B1(r)×B2(r)→ Tf (x)M,

5In [197], the system is assumed to preserve a hyperbolic smooth measure. However, the proof does not use this
assumption and readily extends to the case of a single nonuniformly partially hyperbolic trajectory in the broad
sense. This was observed in [215].
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which is well defined ifr is sufficiently small. HereB2(r) is the ball of radiusr in E1(x)

centered at the origin. The map̃f can be written in the following form:

f̃x(v1, v2)=
(
Axv1 + g1x(v1, v2),Bxv2 + g2x(v1, v2)

)
,

wherev1 ∈E1(x) andv2 ∈E2(x). Furthermore,

Ax :E1(x)→E2
(
f (x)
)

and Bx :E2(x)→E2
(
f (x)
)

are linear maps. The mapAx is a contraction and the mapBx is an expansion. Sincef is
of classC1+α we also have forg = (g1, g2),∥∥gx(v)∥∥� C1‖v‖1+α (8.4)

and ∥∥dgx(v)− dgx(w)∥∥� C1‖v−w‖α, (8.5)

whereC1> 0 is constant (which may depend onx).
In other words the mapf̃x can be viewed as a small perturbation of the linear map

(v1, v2)  → (Axv1,Bxv2) by the mapgx(v1, v2) satisfying conditions (8.4) and (8.5) in a
small neighborhoodUx of the pointx.

Note that size ofUx depends onx and may decay along the trajectory ofx with subex-
ponential rate (see (6.6)). This requires a substantial modification of the classical Perron’s
approach.

Proceeding further with Perron’s approach we identify each of the tangent spaces
Tfm(x)M with Rp = Rk×Rp−k (recall thatp = dimM and 1� k < p) via an isomorphism
τm such thatτm(E1(x))= Rk andτm(E2(x))= Rp−k . The mapF̃m = τm+1 ◦ Fm ◦ τm−1

is of the form

F̃m(v1, v2)=
(
Amv1 + g1m(v1, v2),Bmv2 + g2m(v1, v2)

)
, (8.6)

whereAm :Rk → Rk andBm :Rp−k → Rp−k are linear maps, andg :Rn→ Rk is a non-
linear map defined for eachv1 ∈ B1(r0)⊂ Rk andv2 ∈ B2(r0)⊂ Rp−k . With respect to the
Lyapunov inner product these maps satisfy:

‖Am‖′ � λ′,
(∥∥B−1

m

∥∥′)−1 � µ′, where 0< λ′ <min{1,µ′}, (8.7)

and

gm(0)= 0, dgm(0)= 0,∥∥dgm(v)− dgm(w)∥∥′ � C2γ
−m‖v−w‖′α,

where

λ′α < γ < 1, 0< α � 1, C > 0
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(see (8.5)). We now state a general version of the Stable Manifold Theorem.

THEOREM 8.8 (Pesin [197]).Letκ be any number satisfying

λ′ < κ <min
{
µ′, γ 1/α}. (8.8)

There existD > 0 andr0> r > 0, and a mapψ :B1(r)→ Rp−k such that:
1. ψ is of classC1+α andψ(0)= 0, dψ(0)= 0;
2. ‖dψ(v)− dψ(w)‖′ �D‖v−w‖′α for anyv,w ∈ B1(r);
3. if m� 0 andv ∈ B1(r) then(

m−1∏
i=0

F̃i

)(
v,ψ(v)

) ∈ B1(r)×B2(r),

∥∥∥∥∥
(
m−1∏
i=0

F̃i

)(
v,ψ(v)

)∥∥∥∥∥
′
�Dκm

∥∥(v,ψ(v))∥∥′,
where

∏m−1
i=0 F̃i denotes the compositioñFm−1 ◦ · · · ◦ F̃0 (with the convention that∏−1

i=0 F̃i = Id);
4. givenv ∈ B1(r) andw ∈ B2(r), if there is a numberK > 0 such that(

m−1∏
i=0

F̃i

)
(v,w) ∈ B1(r)×B2(r),

∥∥∥∥∥
(
m−1∏
i=0

F̃i

)
(v,w)

∥∥∥∥∥
′
�Kκm

for everym� 0, thenw =ψ(v);
5. the numbersD andr depend only on the numbersλ′, µ′, γ , α, κ , andC.

We outline the proof of the theorem. Consider the linear spaceΓκ of sequences of vectors
z= {z(m) ∈ Rp}m∈N satisfying

‖z‖κ = sup
m�0

(
κ−m
∥∥z(m)∥∥′)<∞.

Γκ is a Banach space with the norm‖z‖κ . Givenr > 0, set

W = {z ∈ Γκ : z(m) ∈ B1(r)×B2(r) for everym ∈ N
}
.

Since 0< κ < 1 the setW is open. Consider the mapΦκ :B1(r0)×W → Γκ given by

Φκ(y, z)(0)=
(
y,−

∞∑
k=0

(
k∏
i=0

Bi

)−1

g2k
(
z(k)
))
,
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and form> 0,

Φκ(y, z)(m) = −z(m)+
((

m−1∏
i=0

Ai

)
y,0

)

+
(
m−1∑
n=0

(
m−1∏
i=n+1

Ai

)
g1n
(
z(n)
)
,

−
∞∑
n=0

(
n∏
i=0

Bi+m

)−1

g2n+m
(
z(n+m))).

Using conditions (8.7)–(8.8) one can show that the mapΦκ is well defined, continuously
differentiable overy andz andΦκ(0,0)= (0,0). Moreover,Φκ is of classC1 with partial
derivatives given by

∂yΦκ(y, z)(m)=Aκ (z)− Id,

where

(
Aκ (z)

)
t (m) =

(
m−1∑
n=0

(
m−1∏
i=n+1

Ai

)
dg1n
(
z(n)
)
t (n),

−
∞∑
n=0

(
n∏
i=0

Bi+m

)−1

dg2n+m
(
z(n+m))t (m+ n)

)
.

Furthermore,∥∥Aκ(z1)−Aκ(z2)
∥∥� C‖z1 − z2‖ακ , (8.9)

whereC > 0 is a constant. We have, in particular, that∂zΦκ(y,0) = −Id and the map
∂zΦκ(y, z) is continuous. Therefore, the mapΦκ satisfies the conditions of the Implicit
Function Theorem, and hence, there exist a numberr � r0 and a mapϕ :B1(r)→W of
classC1 with

ϕ(0)= 0 and Φκ
(
y,ϕ(y)

)= 0. (8.10)

Note that the derivatives∂yΦκ and∂zΦκ are Hölder continuous. It is clear for the former
and follows for the latter in view of (8.9):∥∥∂zΦκ(y1, z1)− ∂zΦκ(y2, z2)

∥∥
�
∥∥∂zΦκ(y1, z1)− ∂zΦκ(y1, z2)

∥∥+ ∥∥∂zΦκ(y1, z2)− ∂zΦκ(y2, z2)
∥∥

= 2
∥∥Aκ(z1)−Aκ(z2)

∥∥� CM‖z1 − z2‖ακ .
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There is a special version of the Implicit Function Theorem for maps with Hölder contin-
uous derivatives (see [35]) which enables one to obtain an explicit estimate of the number
r and to show that it depends only onλ′, µ′, γ , α, κ , andC.

We now describe some properties of the mapϕ. Differentiating the second equality in
(8.10) with respect toy we obtain

dϕ(y)=−[∂zΦκ(y,ϕ(y))]−1
∂yΦκ
(
y,ϕ(y)

)
.

Settingy = 0 in this equality yields

dϕ(0)(m)=
(
m−1∏
i=0

Ai,0

)
.

One can write the vectorϕ(y)(m) in the form

ϕ(y)(m)= (ϕ1(y)(m),ϕ2(y)(m)
)
,

whereϕ1(y)(m) ∈ Rk andϕ2(y)(m) ∈ Rp−k . It follows from (8.10) that ifm� 0 then

ϕ1(y)(m)=
(
m−1∏
i=0

Ai

)
y +

m−1∑
n=0

(
m−1∏
i=n+1

Ai

)
g1n
(
ϕ(y)(n)

)
(8.11)

and

ϕ2(y)(m)=−
∞∑
n=0

(
n∏
i=0

Bi+m

)−1

g2n+m
(
ϕ(y)(n+m)). (8.12)

These equalities imply that

ϕ1(y)(m+ 1)=Amϕ1(y)(m)+ g1m
(
ϕ1(y)(m),ϕ2(y)(m)

)
,

ϕ2(y)(m+ 1)= Bmϕ2(y)(m)+ g2m
(
ϕ1(y)(m),ϕ2(y)(m)

)
.

Indeed, iterating the first equality “forward” one easily obtains (8.11). Rewriting the second
equality in the form

ϕ2(y)(m)= B−1
m ϕ2(y)(m+ 1)−B−1

m g2m
(
ϕ1(y)(m),ϕ2(y)(m)

)
and iterating it “backward” yields (8.12).

Thus, we obtain that the functionϕ(y) is invariant under the family of maps̃Fm, i.e.,

F̃m
(
ϕ(y)(m)

)= ϕ(y)(m+ 1).

The desired mapψs is now defined byψ(v)= ϕ2(v)(0) for eachv ∈ Bs(r).
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Applying the above result to a diffeomorphismf which is nonuniformly partially hy-
perbolic in the broad sense along the trajectory of a pointx ∈M we obtain the following
version of the Stable Manifold Theorem.

THEOREM 8.9. There exists a local stable manifoldV (x) such thatx ∈ V (x), TxV (x)=
E1(x), and fory ∈ V (x) andn� 0,

ρ
(
f n(x), f n(y)

)
� T (x)λneεnρ(x, y), (8.13)

whereT :Λ→ (0,∞) is a Borel function satisfying

T
(
f m(x)

)
� T (x)e10ε|m|, m ∈ Z. (8.14)

In [208], Pugh constructed an explicit example of a nonuniformly completely hyper-
bolic diffeomorphism of a 4-dimensional manifold of classC1 (and not of classC1+α for
anyα > 0) for which the statement of Theorem 8.9 fails. More precisely, there exists no
manifold tangent toE1(x) such that (8.13) holds on some open neighborhood ofx. This
example illustrates that the assumptionα > 0 in Theorem 8.9 is crucial. Barreira and Valls
[38] have shown that there is a class ofC1 vector fields that are notC1+α for anyα > 0
whose nonuniformly hyperbolic trajectories possess stable manifolds.6

One can obtain a more refined information about smoothness of local stable manifolds.
More precisely, letf be a diffeomorphism of classCp+α , with p � 1 and 0< α � 1.
Assume thatf is nonuniformly partially hyperbolic in the broad sense along a trajectory
of a pointx ∈M . Then the local stable manifoldV (x) is of classCp; in particular, iff
is of classCp for somep � 2, thenV (x) is of classCp−1 (and even of classCp−1+α
for any 0< α < 1). These results are immediate consequences of the following version of
Theorem 8.8.

THEOREM 8.10 (Pesin [197]).Assume that the conditions of Theorem8.8 hold. In addi-
tion, assume that:

1. gm are of classCp for somep � 2;
2. there existsK > 0 such that for�= 1, . . . , p,

sup
z∈B
∥∥d�gm(z)∥∥′ �Kγ−m, sup

z∈B
∥∥d�hm(z)∥∥′ �Kγ−m,

whereB = B1(r0)×B2(r0) (see(8.6));
3. for z1, z2 ∈ B and someα ∈ (0,1),∥∥dpgm(z1)− dpgm(z2)∥∥′ �Kγ−m(‖z1 − z2‖′)α.

If ψ(u) is the map constructed in Theorem8.8, then there exists a numberN > 0, which
depends only on the numbersλ′, µ′, γ , α, κ , andK , such that:

6A similar statement holds for diffeomorphisms, see L. Barreira and C. Valls,Existence of stable manifolds for
nonuniformly hyperbolicC1 dynamics, Discrete Contin. Dynam. Systems, to appear.
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1. ψ is of classCp+α ;
2. supu∈B1(r)

‖d�ψ(u)‖′ �N for �= 1, . . . , p.

In [209], Pugh and Shub strengthened the above result and showed that in fact, iff is of
classCp for somep � 2, thenV (x) is also of classCp.

In the case of diffeomorphisms which are nonuniformly partially hyperbolic, in particu-
lar, nonuniformly completely hyperbolic, there is a symmetry between the objects marked
by the index “s” and those marked by the index “u”. Namely, when the time direction is
reversed the statements concerning objects with index “s” become the statements about
the corresponding objects with index “u”. In these cases we shall denote the local stable
manifold atx by V s(x). We can also construct the local unstable manifolds.

THEOREM 8.11 (Unstable Manifold Theorem).Let f be aC1+α diffeomorphism of a
compact smooth Riemannian manifoldM which is nonuniformly partially hyperbolic along
the trajectory of a pointx ∈M . Then there exists a local unstable manifoldV u(x) such
thatx ∈ V u(x), TxV u(x)=Eu(x), and ify ∈ V u(x) andn� 0 then

ρ
(
f n(x), f n(y)

)
� T (x)µneε|n|ρ(x, y),

whereT :Λ→ (0,∞) is a Borel function satisfying(8.14).

Stable Manifold Theorem 8.9 was first established by Pesin in [197]. His proof is built
upon classical work of Perron. Katok and Strelcyn [142] extended Stable Manifold Theo-
rem to smooth maps with singularities (see Section 18). They essentially followed Pesin’s
approach. Ruelle [215] obtained another proof of Theorem 8.9, based on his study of per-
turbations of the matrix products in the Multiplicative Ergodic Theorem 5.5. Fathi, Her-
man, and Yoccoz [94] provided a detailed exposition of Theorem 8.9 which essentially
follows the approaches of Pesin and Ruelle. Pugh and Shub [209] proved Stable Manifold
Theorem for nonuniformly partially hyperbolic systems using graph transform techniques.

On another direction, Liu and Qian [166] established a version of Theorem 8.9 for ran-
dom maps (see the article by Kifer and Liu [8] in this volume). One can extend the Stable
Manifold Theorem 8.9 to infinite-dimensional spaces. Ruelle [216] proved this theorem
for Hilbert spaces, closely following his approach in [215], and Mañé [173] considered
Banach spaces (under certain compactness assumptions on the dynamics).

8.4. Stable Manifold Theorem for flows

Let ϕt be a smooth flow on a compact smooth Riemannian manifoldM . The following is
an analog of Theorem 8.9 for flows.

THEOREM 8.12. Assume thatϕt is nonuniformly hyperbolic along a trajectoryϕt (x).
Then there exists a local stable manifoldV s(x) satisfying:

(a) x ∈ V s(x),
(b) TxV s(x)=Es(x),
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(c) if y ∈ V s(x) and t > 0 then

ρ
(
ϕt (x),ϕt (y)

)
� T (x)λt eεtρ(x, y),

whereT :Λ→ (0,∞) is a Borel function such that fors ∈ R,

T
(
ϕs(x)
)
� T (x)e10ε|s|.

The proof of Theorem 8.12 can be obtained by applying Theorem 8.9 to the diffeomor-
phismf = ϕ1 (that is nonuniformly partially hyperbolic). We callV s(x) a local stable
manifoldatx.

By reversing the time one can construct alocal unstable manifoldV u(x) atx. It has the
properties similar to those of the stable manifold.

8.5. Continuity and sizes of local manifolds

Recall that the size of the local stable manifoldV (x) at a pointx ∈ Λ (with Λ as in
Section 8.3) is the numberr = r(x) that is determined by Theorem 8.8 and such that (8.3)
holds. It follows from statement 5 of Theorem 8.8 that the sizes of the local stable manifold
at a pointx and any pointy = f m(x) along the trajectory ofx are related by

r
(
f m(x)

)
�Ke−ε|m|r(x), (8.15)

whereK > 0 is a constant.
Assume now thatf is nonuniformly partially hyperbolic in the broad sense on an in-

variant setΛ, and letν be anf -invariant ergodic Borel measure withν(Λ) = 1. For all
sufficiently large� the regular setΛ� has positive measure. Therefore, the trajectory of
almost every point visitsΛ� infinitely many times. It follows that for typical pointsx the
function r(f m(x)) is an oscillating function ofm which is of the same order asr(x) for
many values ofm. Nevertheless, for some integersm the valuer(f m(x)) may become as
small as it is allowed by (8.15). Let us emphasize that the rate with which the sizes of
the local stable manifoldsV (f m(x)) decreases asm→+∞ is smaller than the rate with
which the trajectories{f m(x)} and{f m(y)}, y ∈ V (x) approach each other.

It follows from statement 5 of Theorem 8.8 that the sizes of local manifolds are bounded
from below on any regular setΛ�, i.e., there exists a numberr� > 0 that depends only on�
such that

r(x)� r� for x ∈Λ�. (8.16)

Local stable manifolds depend uniformly continuously onx ∈Λ� in theC1 topology, i.e.,
if xn ∈Λ� is a sequence of points converging tox thendC1(V (xn),V (x))→ 0 asn→∞.
Furthermore, by the Hölder continuity of stable distributions, local stable manifolds de-
pend Hölder continuously onx ∈Λ�. More precisely, for every�� 1, x ∈Λ�, and points
z1, z2 ∈ V (x),

d
(
Tz1V (x), Tz2V (x)

)
� Cρ(z1, z2)α,
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whereC > 0 is a constant depending only on�.
In the case whenf is nonuniformly partially hyperbolic on an invariant subsetΛ we

have, for almost everyx ∈ Λ, the local stable and unstable manifolds. Their sizes vary
along the trajectory according to (8.15) and are bounded below by (8.16) on any regular
setΛ�.

Finally, if f is nonuniformly completely hyperbolic on an invariant subsetΛ then con-
tinuity of local stable and unstable manifolds on a regular setΛ� implies that there ex-
ists a numberδ� > 0 such that for everyx ∈ Λ� andy ∈ Λ� ∩ B(x, δ�) the intersection
V s(x) ∩ V u(y) is nonempty and consists of a single point which depends continuously
(and in fact, Hölder continuously) onx andy.

8.6. Graph transform property

There is a version of the Stable Manifold Theorem known as Graph Transform Property
(usually referred to as Inclination Lemma orλ-Lemma).

Consider aC1+α diffeomorphismf which is nonuniformly partially hyperbolic in the
broad sense along the trajectory of a pointx ∈M . Choose numbersr0, b0, andc0 and for
everym� 0, set

rm = r0e−εm, bm = b0µ
−meεm, cm = c0e−εm.

Consider the classΨ of C1+α functions on{(m,v): m � 0, v ∈ B1(rm)} with values
ψ(m,v) ∈ E2(f

−m(x)) (whereB1(rm) is the ball inE1(f
−m(x)) centered at 0 of ra-

diusrm) satisfying the following conditions:∥∥ψ(m,0)∥∥� bm, max
v∈B1(rm)

∥∥dψ(m,v)∥∥� cm.

THEOREM 8.13. There are positive constantsr0, b0, and c0 such that for everyψ ∈ Ψ
one can find a functioñψ ∈ Ψ for which

F−1
m

({(
v,ψ(m,v)

)
: v ∈ B1(rm)

})⊃ {(v, ψ̃(m+ 1, v)
)
: v ∈ B1(rm+1)

}
for all m� 0.

8.7. Regular neighborhoods

Let f :M → M be aC1+α diffeomorphism of a compact smoothn-dimensional Rie-
mannian manifoldM which is nonuniformly completely hyperbolic on an invariant setΛ.
Viewing df as a linear cocycle overf we shall use the theory of linear extensions of cocy-
cles (see Section 4) to construct a special coordinate system for every regular pointx ∈Λ.
Applying the Reduction Theorem 5.10, givenε > 0 and a regular pointx ∈M , there exists
a linear transformationCε(x) :Rn→ TxM such that:
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1. the matrix

Aε(x)= Cε(f x)−1 ◦ dxf ◦Cε(x)

has the Lyapunov block form (5.12) (see Theorem 5.10);
2. {Cε(f m(x))}m∈Z is a tempered sequence of linear transformations.
For every regular pointx ∈M there is a neighborhoodN(x) of x such thatf acts in

N(x) very much like the linear mapAε(x) in a neighborhood of the origin.
Denote byΛ the set of regular points forf and byB(0, r) the standard Euclideanr-ball

in Rn centered at the origin.

THEOREM 8.14 (Katok and Mendoza [139]).For everyε > 0 the following properties
hold:

1. there exists a tempered functionq :Λ → (0,1] and a collection of embeddings
Ψx :B(0, q(x))→M for eachx ∈ Λ such thatΨx(0) = x and e−ε < q(f x)/q(x)
< eε; these embeddings satisfyΨx = expx ◦Cε(x), whereCε(x) is the Lyapunov
change of coordinates;

2. if fx
def= Ψ−1

f x ◦ f ◦ Ψx :B(0, q(x)) → Rn, then d0fx has the Lyapunov block
form (5.12);

3. theC1 distancedC1(fx, d0fx) < ε in B(0, q(x));
4. there exist a constantK > 0 and a measurable functionA :Λ→ R such that for

everyy, z ∈ B(0, q(x)),

K−1ρ(Ψxy,Ψxz)� ‖y − z‖ �A(x)ρ(Ψxy,Ψxz)

with e−ε < A(f x)/A(x) < eε.

We note that for eachx ∈Λ there exists a constantB(x)� 1 such that for everyy, z ∈
B(0, q(x)),

B(x)−1ρ(Ψxy,Ψxz)� ρ′x(expx y,expx z)� B(x)ρ(Ψxy,Ψxz),

whereρ′x(·, ·) is the distance on expx B(0, q(x)) with respect to the Lyapunov metric‖ ·‖′x .
By Lusin’s Theorem, givenδ > 0 there exists a set of measure at least 1− δ wherex  →
B(x) as well asx  →A(x) in Theorem 8.14 are bounded.

For each regular pointx ∈Λ the set

R(x)
def= Ψx
(
B
(
0, q(x)

))
is called aregular neighborhoodof x or aLyapunov chartatx.

We stress that the existence of regular neighborhoods uses the fact thatf is of class
C1+α in an essential way.
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9. Global manifold theory

Let f :M →M be aC1+α diffeomorphism of a smooth compact Riemannian mani-
fold M which is nonuniformly partially hyperbolic in the broad sense on an invariant set
Λ ⊂ M . Starting with local stable manifolds we will construct global stable manifolds
for f .

In the case of uniformly partially hyperbolic systems (in the broad sense) global mani-
folds are integral manifolds of the stable distributionE1. The latter is, in general, continu-
ous but not smooth and hence, the classical Frobenius method fails. Instead, one canglue
local manifolds to obtain leaves of the foliation.

In the case of nonuniformly hyperbolic systems (in the broad sense) the stable distribu-
tionE1 may not even be continuous but measurable. The resulting “foliation” is measurable
in a sense but has smooth leaves.

9.1. Global stable and unstable manifolds

Given a pointx ∈Λ, theglobal stable manifoldis given by

W(x)=
∞⋃
n=0

f−n(V (f n(x))). (9.1)

This is a finite-dimensional immersed smooth submanifold of classCr+α if f is of class
Cr+α . It has the following properties which are immediate consequences of the Stable
Manifold Theorem 8.8.

THEOREM 9.1. If x, y ∈Λ, then:
1. W(x)∩W(y)= ∅ if y /∈W(x);
2. W(x)=W(y) if y ∈W(x);
3. f (W(x))=W(f (x));
4. W(x) is characterized as follows:

W(x)=
{
y ∈M: lim

n→∞
1

n
logρ
(
f n(x), f n(y)

)
< logλ

}
(see Section6.2 for the definition ofλ).

Note that local stable manifolds are not uniquely defined. Indeed, one can choose a
“smaller” submanifold containingx and lying insideV (x), and view it as a “new” local
manifold atx. However, such variations in the choice of local manifolds do not effect the
global stable manifolds in the following sense. Fixx ∈ Λ. Consider its trajectoryf n(x).
For eachn� 0, choose a ballBn ⊂ V (f n(x)) centered atf n(x) of radiusrn > 0.
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THEOREM 9.2. Assume thatrn+1> rne
−εn. Then

W(x)=
∞⋃
n=0

f−n(Bn).

We give another useful characterization of global stable manifolds in the case when
the diffeomorphismf possesses an invariant measureµ. Given � > 1, consider the reg-
ular setΛ�. For x ∈ Λ�, denote byni(x) > 0 the successive moments of time for which
f ni(x)(x) ∈Λ�. For almost everyx ∈Λ� the sequence{ni(x)} is unbounded.

THEOREM 9.3 (Pesin [198]).For almost everyx ∈Λ�,

W(x)=
∞⋃
n=0

f−ni (x)(V (f ni(x)(x))).
We recall that a partitionW of M is called afoliation ofM with smooth leavesif there

existδ > 0, q > 0, andk ∈ N such that for eachx ∈M ,
1. the elementW(x) of the partitionW containingx is a smoothk-dimensional im-

mersed submanifold; it is called the (global) leaf of the foliation atx; the connected
component of the intersectionW(x)∩B(x, δ) that containsx is called thelocal leaf
atx and is denoted byV (x);

2. there exists a continuous mapϕx :B(x, q)→ C1(D,M) (whereD ⊂ Rk is the unit
ball) such that for everyy ∈ B(x, q) the manifoldV (y) is the image of the map
ϕx(y) :D→M .

The functionΦx(y, z)= ϕx(y)(z) is called thefoliation coordinate chart. This function is
continuous and has continuous derivative∂Φx

∂z
.

In this section we deal only with foliations with smooth leaves and simply call them
foliations. One can extend the notion of foliation to compact subsets ofM (see [118] for
more details).

In view of Theorem 9.1 global stable manifolds form a partition ofΛ. Whenf is uni-
formly (partially) hyperbolic onΛ (which is compact), this partition is a foliation. Whenf
is nonuniformly(partially) hyperbolic this partition is a “measurable” foliation in a certain
sense (note that the partition by global manifolds maynot be a measurable partition). We
shall not discuss measurable foliations in this section (see Section 11.3 where we consider
a very special class of such partitions).

Assume now thatf is nonuniformly hyperbolic in the narrow sense on a setΛ. For every
x ∈Λ we define theglobal stable manifoldWs(x) as well asglobal unstable manifoldby

Wu(x)=
∞⋃
n=0

f n
(
V u
(
f−n(x)

))
.

This is a finite-dimensional immersed smooth submanifold (of classCr+α if f is of class
Cr+α) invariant underf .
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THEOREM 9.4 (Pesin [198]).If x, y ∈Λ, then:
1. Wu(x)∩Wu(y)= ∅ if y /∈Wu(x);
2. Wu(x)=Wu(y) if y ∈Wu(x);
3. Wu(x) is characterized as follows:

Wu(x)=
{
y ∈M: lim

n→∞
1

n
logρ
(
f−n(x), f−n(y)

)
<− logµ

}
(see Section6.2 for the definition ofµ).

We describe global manifolds for nonuniformly hyperbolic flows. Letϕt be a smooth
flow onM which is nonuniformly partially hyperbolic on an invariant setΛ. For every
x ∈Λ we define theglobal stable manifoldatx by

Ws(x)=
⋃
t>0

ϕ−t
(
V s
(
ϕt (x)
))
. (9.2)

This is a finite-dimensional immersed smooth submanifold of classCr+α if ϕt is of class
Cr+α . It satisfies statements 1–3 of Theorem 9.1. Furthermore, for everyy ∈Ws(x) we
haveρ(ϕt (x),ϕt (y))→ 0 ast→+∞ with an exponential rate.

We also define theglobal weakly stable manifoldatx by

Wsc(x)=
⋃
t∈R

Ws
(
ϕt (x)
)
.

It follows from (9.2) that

Wsc(x)=
⋃
t∈R

ϕt
(
Ws(x)

)
.

Furthermore, for everyx ∈Λ define theglobal unstable manifoldatx by

Wu(x)=
⋃
t>0

ϕt
(
V u
(
ϕ−t (x)

))
.

These are finite-dimensional immersed smooth submanifolds of classCr+α if ϕt is of class
Cr+α . They satisfy statements 1–3 of Theorem 9.1.

We also define theglobal weakly unstable manifoldatx by

Wuc(x)=
⋃
t∈R

Wu
(
ϕt (x)
)
.

It follows from (9.2) that

Wsc(x)=
⋃
t∈R

ϕt
(
Ws(x)

)
, Wuc(x)=

⋃
t∈R

ϕt
(
Wu(x)

)
.

Global (weakly) stable and unstable manifolds form partitions of the setΛ.
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9.2. Filtrations of stable manifolds

Given a pointx ∈Λ, consider the Oseledets decomposition atx,

TxM =
p(x)⊕
j=1

Ej(x).

Sets(x)= max{j : χj (x) < 0} and fori = 1, . . . , s(x),

Fi(x)=
i⊕
j=1

Ej(x).

The Stable Manifold Theorem 8.9 applies to the distributionFi(x) and provides aC1+α
local stable manifoldVi(x). It is characterized as follows: there existsr(x) > 0 such that

Vi(x)=
{
y ∈ B(x, r(x)): lim

n→+∞
1

n
logd
(
f n(x), f n(y)

)
< χi(x)

}
.

Local stable manifolds form thefiltration of local stable manifoldsatx:

x ∈ V1(x)⊂ V2(x)⊂ · · · ⊂ Vs(x)(x). (9.3)

We define theith global stable manifoldatx by

Wi(x)=
∞⋃
n=0

f−n(Vi(f n(x))).
It is a finite-dimensional immersed smooth submanifold of classCr+α if f is of class
Cr+α . It does not depend on the particular choice of local stable manifolds in the sense
of Theorem 9.2 and has the following properties which are immediate corollaries of the
Stable Manifold Theorem 8.8.

THEOREM 9.5. If x, y ∈Λ, then:
1. Wi(x)∩Wi(y)= ∅ if y /∈Wi(x);
2. Wi(x)=Wi(y) if y ∈Wi(x);
3. f (Wi(x))=Wi(f (x));
4. Wi(x) is characterized by

Wi(x)=
{
y ∈M: lim

n→+∞
1

n
logd
(
f n(x), f n(y)

)
< χi(x)

}
.

For eachx ∈Λ we have thefiltration of global stable manifolds

x ∈W1(x)⊂W2(x)⊂ · · · ⊂Ws(x)(x).
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Consider the case whenf is a nonuniformly partially hyperbolic diffeomorphism on anf -
invariant setΛ. In a similar way, letu(x)= min{j : χj (x) > 0} and fori = u(x), . . . , p(x),

Gi(x)=
p(x)⊕
j=i
Ej (x).

The Unstable Manifold Theorem 8.11 applies to the distributionGi(x) and provides a
C1+α local manifoldVi(x). It is characterized as follows: there existsr(x) > 0 such that

Vi(x)=
{
y ∈ B(x, r(x)): lim

n→−∞
1

|n| logd
(
f n(x), f n(y)

)
<−χi(x)

}
.

We obtain thefiltration of local unstable manifoldsatx:

x ∈ Vu(x)(x)⊂ Vu(x)+1(x)⊂ · · · ⊂ Vp(x)(x).

Finally, we haveV s(x)= Vs(x)(x) andV u(x)= Vu(x)(x).7
We define theith global unstable manifoldatx by

Wi(x)=
∞⋃
n=0

f n
(
Vi
(
f−n(x)

))
.

It is a finite-dimensional immersed smooth submanifold of classCr+α if f is of class
Cr+α . It does not depend on the particular choice of local unstable manifolds in the sense
of Theorem 9.2 and is characterized as follows:

Wi(x)=
{
y ∈M: lim

n→−∞
1

|n| logd
(
f n(x), f n(y)

)
<−χi(x)

}
.

For eachx ∈Λ we have thefiltration of global unstable manifolds

x ∈Wu(x)(x)⊂Wu(x)+1(x)⊂ · · · ⊂Wp(x)(x).

Finally, consider a diffeomorphismf which is a nonuniformly completely hyperbolic on
anf -invariant setΛ.

Givenr ∈ (0, r(x)) we denote byBi(x, r)⊂ Vi(x) the ball centered atx of radiusr with
respect to the induced metric onVi(x).

By Theorem 8.14 there exists a special Lyapunov chart atx associated with the Oseledets
decomposition atx:

7This notation is a bit awkward as the superscriptss andu stand for the words “stable” and “unstable”, while
s(x) andu(x) are numbers. It may get even more confusing since the functionss(x) andu(x), being measurable
and invariant, are constant almost everywhere with respect to any invariant measure and the constant value is
often denoted bys andu. We hope the reader will excuse us for such an abuse of notation.
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1. there exists a local diffeomorphismϕx :Ux → Rn with the property that the spaces
Ei = ϕx(expx Ei(x)) form an orthogonal decomposition ofRn;

2. the subspacesFk = ϕx(expx Fk(x)) andGk = ϕx(expx Gk(x)) are independent ofx;
3. if i = 1, . . . , p(x) andv ∈Ei(x) then

eλi(x)−τ
∥∥ϕx(expx v)

∥∥�
∥∥ϕf (x)(expf (x) dxf v)

∥∥� eλi(x)+τ
∥∥ϕx(expx v)

∥∥;
4. there is a constantK and a tempered functionA :Λ→ R such that ify, z ∈Ux then

K‖ϕxy − ϕxz‖ � d(y, z)�A(x)‖ϕxy − ϕxz‖;

5. there exists̃r(x) ∈ (0, r(x)) such thatBi(x, r̃(x))⊂ Vi(x)∩Ux for everyx ∈Λ and
i = 1, . . . , k(x) with λi(x) �= 0. Moreover, for 1� i � s(x), the manifoldsϕx(Vi(x))
are graphs of smooth functionsψi :Fi → Fi+1 and foru(x) � i � p(x), of smooth
functionsψi :Gi → Gi−1; the first derivatives ofψi are bounded by 1/3.

It follows that for 1� i � s(x),

f
(
Vi(x)∩Ux

)⊂ Vi(f (x))∩Uf (x)
and foru(x)� i � p(x),

f−1(Vi(x)∩Ux)⊂ Vi(f−1(x)
)∩Uf−1(x).

9.3. Lipschitz property of intermediate stable manifolds

Local manifoldVk(y) in (9.3) depends Lipschitz continuously ony ∈ Vk+1(x) ∩ Λ� for
everyk < s(x). In order to state this result explicitly we shall first introduce the holonomy
maps associated with families of local stable manifolds. Fix� � 1 andx ∈ Λ�. Given
transversalsT 1, T 2 ⊂ Vk+1(x) to the family of local stable manifolds

Lk(x)=
{
Vk(w): w ∈Λ� ∩B(x, r)},

we define theholonomy map

πk :Q�(x)∩ T 1 →Q�(x)∩ T 2

using the relation

πk(y)= T 2 ∩ Vk(w), wherey = T 1 ∩ Vk(w) andw ∈Q�(x)∩B(x, r).

THEOREM 9.6 (Barreira, Pesin and Schmeling [36]).Given�� 1, x ∈Λ�, and transver-
salsT 1, T 2 ⊂ Vk+1(x) to the familyLk(x), the holonomy mapπk is Lipschitz continuous
with Lipschitz constant depending only on�.



Smooth ergodic theory and nonuniformly hyperbolic dynamics 155

The setΛ can be decomposed into setsΛβ in which the numbersk(x), dimEi(x),
andλi(x) are constant for eachi. For every ergodic measureµ invariant underf there
exists a uniqueβ for which the setΛβ has fullµ-measure. From now on we restrict our
consideration to a subsetΛβ ⊂Λ and setk(x)= k, s(x)= s, u(x)= u, andλi(x)= λi for
eachi andx ∈Λβ .

Given� > 0, consider the setΛ′
β� defined by{

x ∈Λβ : ρ(x) >
1

�
, A(x) < �, �

(
Ei(x),

⊕
j �=i
Ej (x)

)
>

1

�
, i = 1, . . . , k

}
.

Let Λβ� be the closure ofΛ′
β�. For eachx ∈ Λ′

β� there exists an invariant decomposi-

tion TxM =⊕p(x)

i=1 Ei(x), filtration of local stable manifoldsVi(x) and Lyapunov chart
(Ux,ϕx) at x (see the previous section). In particular, the functionsρ(x) andA(x) can be
extended toΛ′

β� such thatρ(x) > 1/�,A(x) < �, and � (Ei(x),
⊕
j �=i Ej (x)) > 1/� for

i = 1, . . . , k. The setΛβ� is compact andΛβ� ⊂Λβ(�+1),Λβ =⋃�>0Λβ� (mod 0).
Let us fixc > 0, � > 0, x ∈Λβ�, andy′ ∈Λβ� ∩ Bi+1(x, c/�). For eachi < s, consider

two local smooth manifoldsTx andTy′ in Vi+1(x), containingx andy′, respectively, and
transverse toVi(z) for all z ∈Λβ� ∩Bi+1(x, c/�). The holonomy map

πi = πi(Tx, Ty′) :Tx ∩Λβ� ∩Bi+1(x, c/�)→ Ty′

is given by

πi(x
′)= Vi(x′)∩ Ty′

with x′ ∈ Tx . This map is well defined ifc is sufficiently small (c may depend on� but
does not depend onx andy).

THEOREM9.7. Letf be aC1+α diffeomorphism. For each� > 0, i < s, x ∈Λβ�, andy′ ∈
Λβ� ∩Bi(x, c/�) the holonomy mapπi(Tx, Ty′) is Lipschitz continuous with the Lipschitz
constant depending only onβ and�.

10. Absolute continuity

Let f be aC1+α diffeomorphism of a compact smooth Riemannian manifoldM . We de-
scribe one of the most crucial properties of local stable and unstable manifolds which is
known asabsolute continuity.

Consider a foliation with smooth leavesW ofM (see Section 9.2). Fixx ∈M and letξ
be the partition of the ballB(x, q) by local manifoldsV (y), y ∈ B(x, q).

The absolute continuity property addresses the following question:

If E ⊂ B(x, q) is a Borel set of positive volume, can the intersectionE ∩V (y)
have zero Lebesgue measure (with respect to the Riemannian volume onV (y))
for almost everyy ∈E?
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If the foliationW is indeed, smooth then due to the Fubini theorem, the intersection
E ∩ V (y) has positive measure for almost ally ∈ B(x, q). If the foliation is only contin-
uous the absolute continuity property may not hold. A simple example which illustrates
this paradoxical phenomenon was constructed by Katok (see below). A continuous but not
absolutely continuous foliation does not satisfy the conditions of the Fubini theorem—a set
of full Lebesgue measure may meet almost every leaf of the foliation at a single point—the
phenomenon known as “Fubini’s nightmare”. Such pathological foliations appears generi-
cally in the stable ergodicity theory (see Section 13.8).

A celebrated result by Anosov claims that the stable and unstable invariant foliations
for Anosov diffeomorphisms are absolutely continuous. We stress that generically these
foliations are not smooth and therefore, the absolute continuity property is not at all trivial
and requires a deep study of the structure of these foliations.

In [21], Anosov and Sinai suggested an approach to absolute continuity which is based
on the study of the holonomy maps associated with the foliation. To explain this, consider
a foliationW . Givenx, choose two transversalsT 1 andT 2 to the family of local mani-
folds V (y), y ∈ B(x, q). The holonomy map associates to a pointz ∈ T 1 the pointw =
V (z)∩T 2. This map is a homeomorphism. If it is absolutely continuous (see the definition
below) for all pointsx and transversalsT 1 andT 2 then the absolute continuity property
follows.

For nonuniformly hyperbolic diffeomorphisms the study of absolute continuity is tech-
nically much more complicated due to the fact that the global stable and unstable manifolds
may not form foliations (they may not even exist for some points inM) and the sizes of
local manifolds may vary wildly from point to point. In order to overcome this difficulty
one should define and study the holonomy maps associated with local stable (or unstable)
manifolds on regular sets.

10.1. Absolute continuity of stable manifolds

Let Λ be the set of nonuniformly partially hyperbolic points in the broad sense forf so
that conditions (6.2)–(6.5) hold. Let also{Λ�: �� 1} be the associated collection of regular
sets. We assume thatΛ is nonempty. Without loss of generality we may assume that each
setΛ� is compact. We haveΛ� ⊂ Λ�+1 for every�. Furthermore, the stable subspaces
E1(x) depend continuously onx ∈ Λ� and their sizes are bounded away from zero by a
numberr� (see (8.16)).

Fix x ∈Λ�, a numberr , 0< r � r�, and set

Q�(x)=
⋃

w∈Λ�∩B(x,r)
V (w), (10.1)

whereB(x, r) is the ball atx of radiusr . Consider the family of local stable manifolds

L(x)= {V (w): w ∈Λ� ∩B(x, r)}
and a local open submanifoldT which isuniformly transverse to it. For sufficiently small
r we can choseT such that the set exp−1

x T is the graph of a smooth mapψ :B2(q) ⊂
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E2(x)→ E1(x) (for someq > 0) with sufficiently smallC1 norm. In this caseT inter-
sects each local stable manifoldV (w) ∈ L(x) and this intersection is transverse. We will
consider local open submanifolds constructed only in this way and call themtransversals
to the familyL(x). We also say that the mapψ representsT .

Let T 1 andT 2 be two transversals to the familyL(x). We define theholonomy map

π :Q�(x)∩ T 1 →Q�(x)∩ T 2

by setting

π(y)= T 2 ∩ V (w), if y = T 1 ∩ V (w) andw ∈Q�(x)∩B(x, r).
The holonomy mapπ is a homeomorphism onto its image. It depends onx, �, T 1, andT 2.
Set

∆
(
T 1, T 2)= ∥∥ψ1 −ψ2

∥∥
C1, (10.2)

where the mapsψ1 andψ2 representT 1 andT 2, respectively.
Given a smooth submanifoldW in M , we denote byνW the Riemannian volume onW

induced by the restriction of the Riemannian metric toW . We denote by Jac(π)(y) the
Jacobian of the holonomy mapπ at the pointy ∈Q�(x) ∩ T 1 specified by the measures
νT 1 andνT 2.

THEOREM 10.1 (Absolute Continuity). Given� � 1, x ∈ Λ�, and transversalsT 1 and
T 2 to the familyL(x), the holonomy mapπ is absolutely continuous(with respect to the
measuresνT 1 andνT 2) and the JacobianJac(π) is bounded from above and bounded away
from zero.

REMARK 10.2.
(1) One can obtain an explicit formula for the Jacobian. Namely, for everyy ∈Q�(x)∩

T 1,

Jac(π)(y)=
∞∏
k=0

Jac(df k(π(y))f
−1|Tf k(π(y))f k(T 2))

Jac(df k(y)f−1|Tf k(y)f k(T 1))

(in particular, the infinite product on the right-hand side converges).
(2) In the case whenf is nonuniformly hyperbolic onΛ, one can show that the Jacobian

Jac(π) satisfies∣∣Jac(π)− 1
∣∣� C∆(T 1, T 2), (10.3)

whereC > 0 is a constant and∆(T 1, T 2) is given by (10.2).
(3) If the holonomy mapπ is absolutely continuous then the foliationW has the ab-

solute continuity property (see Theorem 11.1). However, the absolute continuity
property of the foliationW does not necessarily imply that the holonomy mapπ is
absolutely continuous.
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The first basic proof of the Absolute Continuity theorem for nonuniformly partially hy-
perbolic diffeomorphisms (in the broad sense) was obtained by Pesin in [197]. A more
conceptual and lucid proof (but for a less general case of nonuniform complete hyper-
bolicity) can be found in [35]. A somewhat different approach to absolute continuity was
suggested by Pugh and Shub (see [209]).

Let us outline the main idea of the proof following the line of Pesin’s argument. To
estimate the Jacobian Jac(π) choose a small open setA⊂ T 1 and letB = π(A)⊂ T 2. We
need to compare the measuresνT 1(A∩Λ�) andνT 2(B ∩Λ�). Consider the imagesfm(A)
andf m(B),m> 0, which are smooth submanifolds ofM . Whenm increases the setsA∩
Λ� andB ∩Λ� may get stretched and/or shrunk in the “unstable” directionE2. This may
occur with at most an exponential uniform rateγ with someλ < γ <min{1,µ}. On the
other hand, the distance between the setsf m(A∩Λ�) andf m(B ∩Λ�) gets exponentially
small with a uniform rateλ′ whereλ < λ′ < γ .

We then cover the setfm(A∩Λ�) andf m(B∩Λ�) by specially chosen open sets whose
sizes are of orderγm such that the multiplicity of these covers is finite and depends only on
the dimension ofT 1. More precisely, given a pointw ∈Λ� ∩B(x, r), let yi = V (w)∩ T i ,
i = 1,2. Fix a numberq > 0. In view of Theorem 8.13 there exists an open neighborhood
T im(w,q)⊂ T im of the pointfm(yi) such that

T im(w,q)= expwm
{(
ψim(v), v

)
: v ∈ B2(qm)

}
,

where the mapψim :B2(qm)→E1(f
m(w)) representsT im(w,q) andB2(qm)⊂E1(f

m(w))

is the ball centered at zero of radiusqm = qγm. If q = q(m) is sufficiently small then for
anyw ∈Λ� ∩B(x, r) andk = 0, . . . ,m we have that

f−1(T ik (w,q))⊂ T ik−1(w,q), i = 1,2.

We now compare the measuresνT 1
m
|T 1
m(w,q) andνT 2

m
|T 2
m(w,q) for sufficiently largem.

LEMMA 10.3. There existsC1 > 0 such that the following holds: for anym > 0 there
existsq0 = q0(m) > 0 such that for any0< q � q0 we have

C−1
1 �

νT 1
m
(T 1
m(w,q))

νT 2
m
(T 2
m(w,2q))

� C1.

LEMMA 10.4. For any sufficiently largem > 0 there are pointswj ∈Λ� ∩ B(x, r), j =
1, . . . , p = p(m) and a numberq = q(m) > 0 such that the setsW1

m(wj , q) form an open
cover of the setfm(Q�(x) ∩ T 1) (see(10.1))of finite multiplicity which depends only on
the dimension ofT 1.

For sufficiently largem the setsT 2
m(w,2q) cover the setfm(B ∩Λ�). It follows from

Lemmas 10.3 and 10.4 that the ratio of the measures of the setsfm(A∩Λ�) andf m(B ∩
Λ�) is bounded.
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To return back to the measureνT 1(A∩Λ�) we use the well-known relation

νT 1

(
A∩Λ�)= ∫

fm(A∩Λ�)
Jac
(
df−m|Tyf m

(
T 1))dνfm(T 1)(y).

Similar relation holds for the measuresνT 2(B ∩ Λ�) and νfm(T 2)(f
m(B ∩ Λ�)). It re-

mains to estimate the ratio of the Jacobians of the pullbacksdf−m|Tyf m(T 1) and
df−m|Tπ(y)f m(T 2) for y ∈ f m(A ∩Λ�). To do this choose a pointz ∈ f−m(T im(w,q))
and setzm = f m(z) and

Di(z,m)= Jac
(
dzmf

−m|TzmT im(w,q)
)
.

LEMMA 10.5. There existC2 > 0 andm1(�) > 0 such that for everyw ∈ Λ� ∩ B(x, r)
andm�m1(�) one can findq = q(m) such that

C−1
2 �
∣∣∣∣D2(y2

m,m)

D1(y1
m,m)

∣∣∣∣� C2,

and forz ∈ f−m(T 1
m(w,q)),

C−1
2 �
∣∣∣∣D1(zm,m)

D1(y1
m,m)

∣∣∣∣� C2.

This result allows one to compare the measures of the preimages underf−m of T 1
m(w,q)

andT 2
m(w,q). More precisely, the following statement holds.

LEMMA 10.6. There existC3> 0 andm2(�) > 0 such that ifw ∈Λ� ∩ B(x, r) andm�
m2(�), then one can findq = q(m) such that

C−1
3 � νT 1(f−m(T 1

m(w,q)))

νT 2(f−m(T 2
m(w,q)))

�C3.

10.2. Nonabsolutely continuous foliation

We describe an example due to Katok of a nonabsolutely continuous foliation (another
version of this example can be found in [185]; see also Section 6.2 of the Chapter “Par-
tially hyperbolic dynamical systems” by B. Hasselblatt and Ya. Pesin in this volume [6]).
Consider a hyperbolic automorphismA of the torusT2 and let{ft : t ∈ S1} be a family of
diffeomorphisms preserving the aream and satisfying the following conditions:

1. ft is a small perturbation ofA for everyt ∈ S1;
2. ft depends smoothly ont ;
3. the functionh(t) = hm(ft ) is strictly monotone in a small neighborhood oft = 0

(herehm(ft ) is the metric entropy of the diffeomorphismft ).
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Note that for any familyft the entropy is given by

h(t)=
∫

T2
log
∥∥dxft |Eut (x)∥∥dm(x),

whereEut (x) denotes the unstable subspace offt at the pointx (see Section 14). Hence,
one can modifyA in a small neighborhood such thath(t) is strictly monotone.

We introduce the diffeomorphismF :T2×S1 → T2×S1 byF(x, t)= (ft (x), t). Since
ft is sufficiently close toA, they are conjugate via a Hölder homeomorphismgt , i.e.,
ft = gt ◦A ◦ g−1

t . Givenx ∈ T2, consider the set

H(x)= {(gt (x), t): t ∈ S1}.
It is diffeomorphic to the circleS1 and the collection of these sets forms anF -invariant
foliationH of T2 × S1 = T3 with F(H(x))=H(A(x)). Note thatH(x) depends Hölder
continuously onx. However, the holonomy maps associated with the foliationH are not
absolutely continuous. To see this consider the holonomy map

πt1,t2 :T2 × {t1}→ T2 × {t2}.

We have that

π0,t (x,0)=
(
gt (x), t

)
and F

(
π0,t (x,0)

)= π0,t
(
A(x),0

)
.

If the mapπ0,t (with t being fixed) were absolutely continuous the measure(π0,t )∗mwould
be absolutely continuous with respect tom. Note that each mapft is ergodic (it is conjugate
to the ergodic mapA) and hence,m is the only absolutely continuousft -invariant proba-
bility measure. Thus,(π0,t )∗m=m. In particular,h(t)= h(0). Since the entropy function
h(t) is strictly monotone in a small neighborhood oft = 0, the mapgt is not absolutely
continuous for smallt and so is the mapπ0,t .

This example is a particular case of a more general situation of partially hyperbolic
systems with nonintegrable central foliations, see [117].

11. Smooth invariant measures

In this section we deal with dynamical systems on compact manifolds which preserve
smooth measures and are nonuniformly hyperbolic on some invariant subsets of positive
measure (in particularly, on the whole manifold). We will present a sufficiently complete
description of ergodic properties of the system. Note that most complete results (for exam-
ple, on ergodicity,K-property and Bernoulli property) can be obtained when the system
is completely hyperbolic. However, some results (for example, on Pinsker partition) hold
true if only partial hyperbolicity in the broad sense is assumed. One of the main technical
tools to in the study is the absolute continuity property of local stable and unstable invariant
manifolds established in the previous section.
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11.1. Absolute continuity and smooth measures

We begin with a more detailed description of absolute continuity of local stable and unsta-
ble manifolds for diffeomorphisms with respect to smooth measures.

Let f be aC1+α diffeomorphism of a smooth compact Riemannian manifoldM without
boundary and letν be asmooth measure, i.e., a probability measure which is equivalent
to the Riemannian volumem. Let alsoΛ be the set of nonuniformly partially hyperbolic
points in the broad sense forf . We assume thatν(Λ)= 1.

Consider a regular setΛ� of positive measure. For everyx ∈Λ� we have the filtration
of stable subspaces atx:

0∈ F1(x)⊂ F2(x)⊂ · · · ⊂ Fs(x)(x)

and the corresponding filtration of local stable manifolds atx:

x ∈ V1(x)⊂ V2(x)⊂ · · · ⊂ Vs(x)(x)

(see Section 9.2). SinceVk(x) depends continuously onx ∈Λ�, without loss of generality
we may assume thats(x)= s, dimVk(x)= dk for everyx ∈Λ� and 1� s � p. Fix x ∈Λ�
and consider the family of local stable manifolds

L�k(x)=
{
Vk(y): y ∈ B(x, r)∩Λ�

}
.

For y ∈ B(x, r) ∩Λ�, denote bymk(y) the Riemannian volume onVk(w) induced by the
Riemannian metric onM . Consider the set

P �k (x, r)=
⋃

y∈B(x,r)∩Λ�
Vk(w)

and its partitionξk by local manifoldsVk(y). Denote byνk(y) the conditional measure on
Vk(y) generated by the partitionξk and the measureν. The factor spaceP �(x, r)/ξk can
be identified with the subset

Ak(x)=
{
w ∈ T : there isy ∈Λ� ∩B(x, r) such thatw = T ∩ Vk(y)

}
,

whereT is a transverse to the familyL�k .

THEOREM 11.1. The following statements hold:
1. for ν-almost everyy ∈Λ� ∩ B(x, r), the measuresνk(y) andmk(y) are equivalent,

i.e.,

dνk(y)(z)= κk(y, z)dmk(y)(z),

whereκk(y, z), z ∈ Vk(y) is the density function;
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2. κk(y, z)=
∞∏
i=0

Jac(df |Fk(f i(z)))
Jac(df |Fk(f i(y))) ;

3. the functionκk(y, z) is Hölder continuous;
4. there isC = C(�) > 0 such that

C−1dmk(y)(z)� dνk(y)(z)�Cdmk(y)(z);

5. mk(x)(V k(x) \Λ)= 0 for ν-almost everyx ∈Λ.

We now consider the case whenΛ is a nonuniformly completely hyperbolic set forf .
The above results apply to the families of local stable and unstable manifolds. For
y ∈ B(x, r) ∩Λ� let ms(y) andmu(y) be the Riemannian volumes onV s(y) andV u(y),
respectively. Let alsoξ s andξu be the partitions ofB(x, r) by local stable and unstable
manifolds, andνs(y) (respectively,νu(y)) the conditional measures onV s(y) (respec-
tively, V u(y)) generated byν and the partitionsξ s (respectively,ξu). Finally, let ν̂s (re-
spectively,ν̂u) be the factor measures.

THEOREM 11.2. The following statements hold:
1. for ν-almost everyy ∈Λ� ∩ B(x, r) the measuresνs(y) andms(y) are equivalent;

moreover, dνs(y)(z)= κ(y, z)dms(y)(z) where

κ(y, z)=
∞∏
i=0

Jac(df |Es(f i(z)))
Jac(df |Es(f i(y))) ;

2. the factor measureŝνs is equivalent to the measuremu(x)|Ak(x);
3. ms(x)(V s(x) \Λ)= 0 for ν-almost everyx ∈Λ;
4. similar statements hold for the family of local unstable manifolds.

11.2. Ergodic components

The following statement is one of the main results of smooth ergodic theory. It describes
the decomposition of a hyperbolic smooth invariant measure into its ergodic components.

THEOREM 11.3 (Pesin [198]).Let f be aC1+α diffeomorphism of a smooth compact
Riemannian manifoldM and ν an f -invariant smooth(completely) hyperbolic measure
onM . There exist invariant setsΛ0,Λ1, . . . such that:

1.
⋃
i�0Λi =Λ, andΛi ∩Λj = ∅ wheneveri �= j ;

2. ν(Λ0)= 0, andν(Λi) > 0 for eachi � 1;
3. f |Λi is ergodic for eachi � 1.
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The proof of this theorem exploits a simple yet deep argument due to Hopf [121]. Con-
sider the regular setsΛ� of positive measure and letx ∈Λ� be a Lebesgue point. For each
r > 0 set

P �(x, r)=
⋃

y∈Λ�∩B(x,r)
V s(y).

Clearly,P �(x, r) has positive measure. It turns out that for a sufficiently smallr = r(�) the
set

Q(x)=
⋃
n∈Z

f n
(
P �(x, r)

)
is an ergodic component, i.e., the mapf |Q(x) is ergodic. Indeed, given anf -invariant
continuous functionϕ, consider the functions

ϕ̄(x)= lim
n→∞

1

2n+ 1

n∑
k=−n

ϕ
(
f k(x)
)
,

ϕ+(x)= lim
n→∞

1

n

n∑
k=1

ϕ
(
f k(x)
)

and ϕ−(x)= lim
n→∞

1

n

n∑
k=1

ϕ
(
f−k(x)

)
which are well defined forν-almost every pointx. We also have that̄ϕ(x) = ϕ+(x) =
ϕ−(x) outside a subsetN ⊂M of zero measure.

Sinceρ(f n(z), f n(w))→ 0 asn→∞ andϕ is continuous, we obtain

ϕ̄(z)= ϕ+(z)= ϕ+(w)= ϕ̄(w).
Notice that the continuous functions are dense inL1(M,ν) and hence, the functions of the
form ϕ̄ are dense in the set off -invariant Borel functions.

It remains to show that the function̄ϕ(z) is constant almost everywhere. By Theo-
rem 11.2 there exists a pointy ∈ (Λ� ∩ B(x, r)) \ N such thatmu(y)(V u(y) ∩ N) = 0
(recall thatνs(y) andνu(y) are, respectively, the measures induced onV s(y) andV u(y)
by the Riemannian volume). Let

P s =
⋃
V s(w),

where the union is taken over all pointsw ∈Λ�∩B(x, r�) for which, respectively,V s(w)∩
V u(y) ∈N . By absolute continuity property, we haveν(P s)= 0.

Let z1, z2 ∈ P �(x, r) \ (P s ∪ N). There are pointswi ∈ Λ� ∩ B(x, r) such thatzi ∈
V s(wi) for i = 1, 2. Note that the intersectionV s(wi) ∩ V u(y) is nonempty and consists
of a single pointyi , i = 1,2. We have that

ϕ̄(z)(z1)= ϕ̄(z)(y1)= ϕ̄(z)(y2)= ϕ̄(z)(z2)
and the ergodicity off |Q(x) follows.
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Since almost every pointx ∈Λ is a Lebesgue point ofΛ� for some�, the invariant sets
Q(x) cover the setΛ (mod 0) and there is at most countable many such sets. We denote
them byQ1,Q2, . . . . We haveν(Qi) > 0 for eachi � 1, and the setΛ0 =Λ \⋃i�1Qi
has zero measure. Sincef |Qi is ergodicQi ∩Qj = ∅ (mod0) wheneveri �= j . If we set
Λn =Qn \⋃n−1

i=1 Qi thenΛi ∩Λj = ∅ andν(Qi)= ν(Λi) > 0.
We describe an example of a diffeomorphism with nonzero Lyapunov exponents that

has more than one ergodic component. Consider the diffeomorphismGT2 of the torus
T2 constructed in Section 2.2. This map is ergodic. The punched torusT2 \ {0} is C∞-
diffeomorphic to the manifoldT2 \ Ū , whereU is a small open disk around 0 and̄U
denotes its closure. Therefore, we obtain aC∞ diffeomorphismFT2 of the manifoldT2\U
with FT2|∂U = Id. We have thatFT2 preserves a smooth measure, has nonzero Lyapunov
exponents, and is ergodic.

Let (M̃, F̃T2) be a copy of(M,FT2). By gluing the manifoldsM andM̃ along∂U we
obtain a smooth compact manifoldM without boundary and a diffeomorphismF of M
which preserves a smooth measure and has nonzero Lyapunov exponents almost every-
where. However, the mapF is not ergodic and has two ergodic components of positive
measure (M andM̃).

Similarly, one can obtain a diffeomorphism with nonzero Lyapunov exponents withn

ergodic components of positive measure for an arbitraryn. However, it does not seem
feasible to push this construction further and obtain a diffeomorphism with nonzero Lya-
punov exponents with countably many ergodic components of positive measure. Such an
example was constructed by Dolgopyat, Hu and Pesin in [87] using a different approach.
It illustrates that Theorem 11.3 cannot be improved.

EXAMPLE 11.4. There exists a volume-preservingC∞ diffeomorphismf of the three-
dimensional torusT3 with nonzero Lyapunov exponents almost everywhere and countably
many ergodic components which are open(mod0).

The construction starts with a linear hyperbolic automorphismA :T2 → T2 which has
at least two fixed pointsp andp′. The desired mapf is obtained as a perturbation of the
mapF =A× Id of the three-dimensional torusT3 = T2 × S1. More precisely, consider a
countable collection of intervals{In}∞n=1 on the circleS1, where

I2n =
[
(n+ 2)−1, (n+ 1)−1], I2n−1 =

[
1− (n+ 1)−1,1− (n+ 2)−1].

Clearly,
⋃∞
n=1 In = (0,1) and intIn are pairwise disjoint.

The main result in [87] states that for anyk � 2 andδ > 0, there exists a mapg of the
three-dimensional manifoldM = T2 × I such that:

1. g is aC∞ volume-preserving diffeomorphism ofM ;
2. ‖F − g‖Ck � δ;
3. for all 0�m<∞,Dmg|T2 × {z} =DmF |T2 × {z} for z= 0 and 1;
4. g is ergodic with respect to the Riemannian volume and has nonzero Lyapunov ex-

ponents almost everywhere.
Applying this result, for eachn, one can construct aC∞ volume-preserving ergodic

diffeomorphismfn :T2 × [0,1]→ T2 × [0,1] satisfying
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1. ‖F − fn‖Cn � e−n2
;

2. Dmfn|T2 × {z} =DmF |T2 × {z} for z= 0 or 1 and all 0�m<∞;
3. fn has nonzero Lyapunov exponentsµ-almost everywhere.
LetLn : In→[0,1] be the affine map andπn = (Id,Ln) :T2× In→ T2×[0,1]. The de-

sired mapf is given byf |T2 × In = π−1
n ◦fn ◦πn for all n andf |T2 × {0} = F |T2 × {0}.

Note that for everyn > 0 and 0�m� n,∥∥DmF |T2 × In − π−1
n ◦Dmfn ◦ πn

∥∥
Cn

�
∥∥π−1
n ◦ (DmF −Dmfn) ◦ πn

∥∥
Cn

� e−n2 · (n+ 1)n→ 0

asn→∞. It follows thatf isC∞ onM and it has the required properties.
In the following section we describe a result (see Theorem 11.9) which provides some

additional conditions guaranteeing that the number of ergodic component in Theorem 11.3
is finite. Roughly speaking one should require that:

(1) the global stable (or unstable) foliation extends to a continuous foliation of the man-
ifold and

(2) the Lyapunov exponentsχi(x) are away from zero uniformly overx.
We now consider the case of a smooth flowϕt on a compact manifoldM preserving a

smooth hyperbolic measureν. We also assume thatν vanishes on the set of fixed points
of ϕt .

Since the time-one map of the flow is nonuniformly partially hyperbolic we conclude
that the families of local stable and unstable manifolds possess the absolute continuity
property. This is a key fact which allows one to study the ergodic properties of nonuni-
formly hyperbolic flows.

THEOREM 11.5 (Pesin [198]).There exist invariant setsΛ0,Λ1, . . . such that
1.
⋃
i�0Λi =Λ, andΛi ∩Λj = ∅ wheneveri �= j ;

2. ν(Λ0)= 0, andν(Λi) > 0 for eachi � 1;
3. ϕt |Λi is ergodic for eachi � 1.

Using the flow described in Section 2.6 one can construct an example of a flow with
nonzero Lyapunov exponents which has an arbitrary finite number of ergodic components.

11.3. Local ergodicity

Consider aC1+α diffeomorphism of a compact manifoldM preserving a smooth hyper-
bolic measure. In this section we discuss thelocal ergodicity problem—under what condi-
tions ergodic components are open (up to a set of measure zero).

In this connection the following two problems are of interest:

PROBLEM 11.6. Is there a volume-preserving diffeomorphism which has nonzero Lya-
punov exponents almost everywhere such that some (or even all) of its ergodic components
with positive measure are not open(mod 0)?
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PROBLEM 11.7. Is there a volume-preserving diffeomorphism which has nonzero Lya-
punov exponents on an open(mod0) and dense setU such thatU has positive but not full
measure? Is there a volume preserving diffeomorphism with the above property such that
f |U is ergodic?

The main obstacles for local ergodicity are the following:
1. the stable and unstable distributions are measurable but not necessarily continuous;
2. the global stable (or unstable) leaves may not form a foliation;
3. the unstable leaves may notexpandunder the action off n (note that they are defined

as being exponentiallycontractingunderf−n, so that they are determined by the
negativesemitrajectory); the same is true for stable leaves with respect to the action
of f−n.

There are three different ways to obtain sufficient conditions for local ergodicity. Each
of them is based on requirements which eliminate one or more of the above mentioned
obstacles.

1. The first one is due to Pesin [198]. It requires a special structure of the global stable
or unstable manifolds and is used to establish local ergodicity of geodesic flows (see
Section 17).

2. The second one is due to Katok and Burns [136]. Its main advantage is that it relies
on requirements on the local behavior of the system.

3. The third one is due to Liverani and Wojtkowski [169]. It deals with symplectic dy-
namical systems and is an adaptation of the Sinai method (that was developed for
billiard dynamical systems; see [233]) to nonuniformly hyperbolic dynamical sys-
tems (both smooth and smooth with singularities; see Section 18).

1. We first describe the approach in [198]. Roughly speaking it requires that the stable
(or unstable) leaves form a foliation of a measurable subset of full measure inM . First,
we extend the notion of foliation ofM with smooth leaves, introduced in Section 9.2, to
foliation of a measurable subset.

Given a subsetX ⊂M , we call a partitionξ of X a (δ, q)-foliation ofX with smooth
leavesor simply a(δ, q)-foliation ofX if there exist continuous functionsδ :X→ (0,∞)
andq :X→ (0,∞) and an integerk > 0 such that for eachx ∈X:

1. there exists a smooth immersedk-dimensional submanifoldW(x) containingx for
whichξ(x)=W(x)∩X whereξ(x) is the element of the partitionξ containingx; the
manifoldW(x) is called the (global) leaf of the (δ, q)-foliation atx; the connected
component of the intersectionW(x) ∩ B(x, δ(x)) that containsx is called thelocal
leaf atx and is denoted byV (x);

2. there exists a continuous mapϕx :B(x, q(x))→ C1(D,M) (D ⊂ Rk is the open unit
ball) such that for everyy ∈ X ∩ B(x, q(x)) the manifoldV (y) is the image of the
mapϕx(y) :D→M .

For everyx ∈ X andy ∈ B(x, q(x)) we setU(y) = ϕ(y)(D) and we call it thelocal
leaf of the(δ, q)-foliation aty. Note thatU(y)= V (y) for y ∈X.

The following result establishes the local ergodicity property in the case when the stable
(or unstable) foliation forf extends to a continuous foliation ofM with smooth leaves.
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THEOREM 11.8 (Pesin [198]).Let f be aC1+α diffeomorphism of a compact smooth
Riemannian manifoldM preserving a smooth measureν and nonuniformly hyperbolic on
an invariant setΛ. Assume thatν(Λ) > 0 and that there exists a(δ, q)-foliationW of Λ
such thatW(x)=Ws(x) for everyx ∈Λ (whereWs(x) is the global stable manifold atx;
see Section8). Then every ergodic component off of positive measure is open(mod0) in
Λ (with respect to the induced topology).

This theorem provides a way to establish the ergodicity of the mapf |Λ. Namely, under
the conditions of Theorem 11.8 every ergodic component off of positive measure that
lies inΛ is open(mod0), hence, the setΛ is open(mod 0) and, if f |Λ is topologically
transitive, thenf |Λ is ergodic.

In general, a diffeomorphismf preserving a smooth hyperbolic measure may have
countably many ergodic components which are open(mod 0) (see Example 11.4). We de-
scribe a criterion which guarantees that the number of open(mod 0) ergodic components
is finite.

THEOREM11.9. Letf be aC1+α diffeomorphism of a compact smooth Riemannian man-
ifoldM preserving a smooth measureν and nonuniformly hyperbolic on an invariant setΛ.
Assume thatν(Λ) > 0 and that there exists a continuous foliationW of M with smooth
leaves such thatW(x) =Ws(x) for everyx ∈Λ. Assume, in addition, that there exists a
numbera > 0 such that for almost everyx ∈M ,∣∣χi(x)∣∣> a. (11.1)

Thenf |Λ has at most finitely many ergodic components of positive measure.

To see this observe that assumption (11.1) allows one to apply Proposition 13.16 and
find a numberr > 0 with the following property: for almost everyx ∈Λ there isn= n(x)
such that the size of a local unstable manifoldV u(f n(x)) is at leastr . Let x be a density
point ofΛ. Consider the set

P(x, r)=
⋃

y∈V u(f n(x))
Bs(y, r),

whereBs(y, r) is the ball inWs(y) centered aty of radiusr . This set is contained in an
ergodic component. It is also open and contains a ball of radiusε > 0 which does not
depend onx. Thus, every ergodic component contains a ball of radiusε.

For a general diffeomorphism preserving a smooth hyperbolic measure, one should not
expect the unstable (and stable) leaves to form a(δ, q)-foliation for some functionsδ(x)
and q(x). In order to explain why this can happen consider a local unstable manifold
V u(x) passing through a pointx ∈ Λ. For a typicalx and sufficiently large�, the set
V u(x) ∩Λ� has positive Riemannian volume (as a subset of the smooth manifoldV u(x))
but is, in general, a Cantor-like set. When the local manifold is moved forward a given time
n one should expect a sufficiently small neighborhood of the setV u(x) ∩Λ� to expand.
Other pieces of the local manifold (corresponding to bigger values of�) will also expand
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but with smaller rates. As a result the global leafWu(x) (defined by (9.1)) may bend
“uncontrollably”—the phenomenon that is yet to be observed but is thought to be “real”
and even “typical” in some sense. As a result the mapx  → ϕx in the definition of a(δ, q)-
foliation may not be, indeed, continuous.

Furthermore, the global manifoldWu(x) may be “bounded”, i.e., it may not admit an
embedding of an arbitrarily large ball inRk (wherek = dimWu(x)). This phenomenon is
yet to be observed too.

The local continuity of the global unstable leaves often comes up in the following setting.
Using some additional information on the system one can build an invariant foliation whose
leaves contain local unstable leaves. This alone may not yet guarantee that global unstable
leaves form a foliation. However, one often may find that the local unstable leaves expand
in a “controllable” and somewhat uniform way when they are moved forward. We will
see below that this guarantees the desired properties of unstable leaves. Such a situation
occurs, for example, for geodesic flows on compact Riemannian manifolds of nonpositive
curvature (see Section 17.1).

We now state a formal criterion for local ergodicity.

THEOREM 11.10 (Pesin [198]).Let f be aC1+α diffeomorphism of a compact smooth
Riemannian manifold, preserving a smooth hyperbolic measureν, and nonuniformly hy-
perbolic on an invariant setΛ of full measure. Let alsoW be a(δ, q)-foliation ofΛ with
the following properties:

1. W(x)⊃ V s(x) for everyx ∈Λ;
2. there exists a numberδ0 > 0 and a measurable functionn(x) on Λ such that for

almost everyx ∈Λ and anyn� n(x),

f−n(V s(x))⊃ BW (f−n(x), δ0
)
.

Then every ergodic component off of positive measure is open(mod 0).

In the case of one-dimensional(δ, q)-foliations the second condition of Theorem 11.10
holds automatically and hence, can be omitted.

THEOREM 11.11 (Pesin [198]).LetW be a one-dimensional(δ, q)-foliation ofΛ, satis-
fying the following property: W(x)⊃ V s(x) for everyx ∈Λ. Then every ergodic compo-
nent off of positive measure is open(mod0). Moreover,Ws(x)=W(x) for almost every
x ∈Λ.

One can readily extend Theorems 11.10 and 11.11 to the case when the setΛ is open
(mod 0) and has positive (not necessarily full) measure as well as to dynamical systems
with continuous time.

THEOREM 11.12. Let f be aC1+α diffeomorphism of a compact smooth Riemannian
manifold preserving a smooth measureν and nonuniformly hyperbolic on an invariant
setΛ. Assume thatΛ is open(mod0) and has positive measure. Let alsoW be a(δ, q)-
foliation of Λ which satisfies properties1 and 2 in Theorem11.10.Then every ergodic
component off |Λ of positive measure is open(mod0).
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THEOREM 11.13. Let ϕt be a smooth flow of a compact smooth Riemannian manifold
preserving a smooth measureν and nonuniformly hyperbolic on an invariant setΛ. Assume
thatΛ is open(mod0) and has positive measure. Let alsoW be a(δ, q)-foliation ofΛ with
the following properties:

1. W(x)⊃ V s(x) for everyx ∈Λ;
2. there exists a numberδ0 > 0 and a measurable functiont (x) on Λ such that for

almost everyx ∈Λ and anyt � t (x),

ϕ−t
(
V s(x)

)⊃ BW (ϕ−t (x), δ0).
Then every ergodic component of the flowϕt |Λ of positive measure is open(mod 0).

2. We now describe the approach in [136] to study the local ergodicity. A continuous
functionQ : TM → R is called aninfinitesimal eventually strict Lyapunov functionfor f
over a setU ⊂M if:

1. for eachx ∈ U the functionQx =Q|TxM is homogeneous of degree one, and takes
on both positive and negative values;

2. there exist continuous distributionsDsx ⊂ Cs(x) andDux ⊂ Cu(x) such thatTxM =
Dsx ⊕Dux for all x ∈U , where

Cs(x)=Q−1((−∞,0))∪ {0} and Cu(x)=Q−1((0,∞))∪ {0};

3. for everyx ∈U , n ∈ N, f n(x) ∈U , andv ∈ TxM ,

Qfn(x)(dxf
nv)�Qx(v);

4. for ν-almost everyx ∈ U there existk = k(x), � = �(x) ∈ N such thatf k(x) ∈ U ,
f−�(x) ∈U , and forv ∈ TxM \ {0},

Qfk(x)
(
dxf

kv
)
>Qx(v) and Qf−�(x)

(
dxf

−�v
)
<Qx(v).

A functionQ is called aninfinitesimal eventually uniform Lyapunov functionfor f over a
setU ⊂M if it satisfies conditions 1–3 and the following condition: there existsε > 0 such
that forν-almost everyx ∈M one can findk = k(x), �= �(x) ∈ N for which f k(x) ∈ U ,
f−�(x) ∈U , and ifv ∈ TxM \ {0} then

Qfk(x)
(
dxf

kv
)
>Qx(v)+ ε‖v‖

and

Qf−�(x)
(
dxf

−�v
)
<Qx(v)− ε‖v‖.

The following result gives a criterion for local ergodicity in terms of infinitesimal Lyapunov
functions.
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THEOREM 11.14 (Katok and Burns [136]).The following properties hold:
1. If f possesses an infinitesimal eventually strict Lyapunov functionQ over an open

setU ⊂M , then almost every ergodic component off on the set
⋃
n∈Z f

n(U) is
open(mod0).

2. If f possesses an infinitesimal eventually uniform Lyapunov functionQ over an open
setU ⊂M , then every connected component of the set

⋃
n∈Z f

n(U) belongs to one
ergodic component off . Moreover, if U is connected thenf |U is a Bernoulli trans-
formation.

This theorem was first proved by Burns and Gerber [65] for flows in dimension 3.
We sketch the proof of this theorem. WhenQ is an infinitesimal eventually strict Lya-

punov function, given a compact setK ⊂U , one can use the uniform continuity ofx  →Qx

on the setK , and requirement 3 in the definition of Lyapunov function to show that the
size of the stable and unstable manifolds onK is uniformly bounded away from zero. Fur-
thermore, using requirement 4 one can show that forν-almost every pointz ∈M there
exist θ = θ(z) > 0 and a neighborhoodN of z such that forν-almost everyx ∈ N and
y ∈ V u(x) ∩ N the tangent spaceTyV u(x) is in theθ -interior ofCu(y). A similar state-
ment holds for stable manifolds.

Together with requirement 2 this implies that the stable and unstable manifolds have
almost everywhere a “uniform” product structure; namely, for almost everyx ∈ U there
exist a neighborhoodN(x) of x andδ > 0 such that:

1. V s(y) andV u(y) have size at leastδ for almost everyy ∈N(x);
2. V s(y)∩ V u(z) �= ∅ for (ν × ν)-almost every(y, z) ∈N(x)×N(x).

The proof of statement 1 follows now by applying the Hopf argument.
WhenQ is an infinitesimal eventually uniform Lyapunov function, the functionθ(z) is

uniformly bounded away from zero. This can be used to establish that for everyx (and
not only almost everyx) there exists a neighborhoodN(x) of x andδ > 0 with the above
properties. A similar argument now yields the first claim in statement 2. The last claim is
an immediate consequence of Theorem 11.19.

3. Finally we outline the approach in [169] to study the local ergodicity in the sym-
plectic case. This approach is built upon a method which was developed by Sinai [233] in
his pioneering work on billiard systems. It has been later improved by Sinai and Chernov
[234] and by Krámli, Simányi and Szász [152] who considered semidispersing billiards.

LetM be a smooth compact symplectic manifold of dimension 2d with the symplectic
formω. Let alsof :M→M be a symplectomorphism (i.e., a diffeomorphism ofM which
preserves the symplectic structure).

Fix x ∈M . A subspaceV ⊂ TxM is calledLagrangianif V is a maximal subspace on
whichω vanishes (it has dimensiond). Given two transverse Lagrangian subspacesV1 and
V2 define thesectorbetween them by

C = C(V1,V2)=
{
v ∈ TxM: ω(v1, v2)� 0 for v = v1 + v2, vi ∈ Vi, i = 1,2

}
.
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Define the quadratic form associated with an ordered pair of transverse Lagrangian sub-
spacesV1 andV2 by

Q(v)=Q(V1,V2, v)= ω(v1, v2) for v = v1 + v2, vi ∈ Vi, i = 1,2.

Using this quadratic form we can write the coneC(V1,V2) in the form

C(V1,V2)=
{
v ∈ TxM: Q(v)� 0

}
.

We define the interior of the cone by

intC(V1,V2)=
{
v ∈ TxM: Q(v) > 0

}
.

We assume that two continuous subbundles of transverse Lagrangian subspaces are cho-
sen in an open (not necessarily dense) subsetU ⊂ M . We denote them by{V1(x)}x∈U
and {V2(x)}x∈U , respectively. Forx ∈ U let C(x) = C(V1(x),V2(x)) and C′(x) =
C(V2(x),V1(x)).

If x ∈U andf n(x) ∈U let us define

σ(dxf
n)= inf

v∈intC(x)

√
Q(V1(x),V2(x), dxf nv)

Q(V1(x),V2(x), v)
.

THEOREM 11.15. Assume that the following conditions hold:
1. Monotonicity condition: if x ∈U andf k(x) ∈U for k � 0 then

dxf
kC(x)⊂ C(f k(x));

2. Strict monotonicity condition: for almost every pointx ∈ U there existn > 0 and
m< 0 such thatf n(x), f m(x) ∈U and

dxf
nC(x)⊂ intC

(
f n(x)

)∪ {0}, dxf
mC′(x)⊂ intC′(f m(x))∪ {0}. (11.2)

Then for anyn� 1 and any pointx ∈ U such thatf n(x) ∈ U andσ(dxf n) > 1 there is a
neighborhood ofx which is contained in one ergodic component off .

It follows from this theorem that ifU is connected and every point in it is strictly
monotone (i.e., (11.2) holds) then

⋃
k∈Z f

k(U) belongs to one ergodic component off .
This is a symplectic version of Theorem 11.14. We observe that Theorem 11.15 is a par-
ticular case of a more general result by Liverani and Wojtkowski for smooth dynamical
systems with singularities (see Section 18).

11.4. Pinsker partition,K-property and Bernoulli property

In the ergodic theory there is a hierarchy of ergodic properties of which ergodicity (or the
description of ergodic components) is the first and weakest one. Among the stronger prop-
erties are (weak and strong) mixing,K-property (including the description of the Pinsker
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or π -partition) and the strongest among them—the Bernoulli property (or the description
of Bernoulli components). The latter means essentially that the system is isomorphic in the
measure-theoretical sense to the classical Bernoulli scheme.

We shall see that dynamical systems with nonzero Lyapunov exponents (nonuniformly
hyperbolic systems) have all of these properties with respect to smooth invariant measures.

Let f :M→M be aC1+α diffeomorphism of a smooth compact Riemannian manifold
M preserving a smooth measureν. Assume thatf is nonuniformly partially hyperbolic in
the broad sense on an invariant setΛ of positive measure. For everyx ∈Λ we have that

χ1(x) < · · ·< χs(x)(x) < 0� χs(x)+1(x) < · · ·< χp(x)(x),

whereχi(x), i = 1, . . . , p(x), are the distinct values of the Lyapunov exponent atx each
with multiplicity ki(x). We also have the filtration of local (stable) manifolds atx,

x ∈ V1(x)⊂ V2(x)⊂ · · · ⊂ Vs(x)(x), (11.3)

as well as the filtration of global (stable) manifolds atx,

x ∈W1(x)⊂W2(x)⊂ · · · ⊂Ws(x)(x) (11.4)

(see Section 9.2). Fixj > 0 andm> 0 and consider the sets

Λj,m = {x ∈Λ: dimWj(x)=m
}
, Λ̂j,m =

⋃
x∈Λj,m

Wj (x). (11.5)

For somej andm we have thatν(Λj,m) > 0. Note thatWj(x)⊂Λj,m (mod 0) for almost
everyx ∈Λj,m. Hence,Λ̂j,m =Λj,m (mod0).

Consider the partitionWj of Λ̂j,m by global manifoldsWj(x). In general, this partition
is not measurable. However, one can construct a special subpartition ofWj which we call
pseudoπ -partition forf |Λj,m—whenf is nonuniformlycompletelyhyperbolic on the set
Λ this partition is theπ -partition forf |Λj,m, i.e., the maximal partition with zero entropy.

We denote the measurable hull of a partitionξ by H(ξ) and we use the notationε for
the partition by points.

THEOREM 11.16. There exists a measurable partitionη= ηj,m of Λ̂j,m with the follow-
ing properties:

1. for almost everyx ∈Λj,m the setCη(x) is an open(mod0) subset ofWj(x);
2. f η� η;
3. η+ =∨∞

i=0f
iη= ε;

4.
∧0
i>−∞ f iη=H(Wj );

5. if f is nonuniformly completely hyperbolic onΛ thenH(Wj )= π(f |Λj,m).

Sinai [232, Theorem 5.2] proved this theorem for a class of dynamical systems with
transverse foliation. Pesin [198] adapted this approach for nonuniformly hyperbolic dy-
namical systems.
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We stress that the measurable hullH(Wj ) does not depend onj (see statement 1 of
Theorem 11.17); this is a manifestation of the Lipschitz property of intermediate stable
manifolds (see Theorem 9.6). One can estimate the entropy off with respect toη from
below (see Theorem 12.11).

In order to construct the partitionη, given � > 1, consider the regular setΛ�. For a
sufficiently smallr = r(�) > 0 andx ∈Λ�, set

P �j (x)=
⋃

y∈Λ�∩B(x,r)
Vj (y), Q(x)=

∞⋃
n=−∞

f n
(
P �j (x)

)
. (11.6)

It suffices to construct the partitionη on the setQ(x). Consider the partitioñξ of P �j (x)

by local manifoldsVj (y), y ∈Λ� ∩B(x, r). Adding the elementQ(x) \ P �j (x) we obtain
a partition ofQ(x) which we denote byξ . The partition

η= ξ− =
∨
i�0

f iξ

has the desired properties.
In [160], Ledrappier and Young constructed a special countable partition ofM of finite

entropy which is a refinement of the partitionη. We describe this partition in Section 16.3.
An important manifestation of Theorem 11.16 is the establishment of theK-property

of a C1+α diffeomorphismf which preserves a smooth measureν and is nonuniformly
completely hyperbolic on an invariant setΛ of positive measure. By Theorem 11.3 the set
Λ can be decomposed into ergodic componentsΛi , i = 1,2, . . . , of positive measure. Fix
i and denote byηj the measurable partition ofΛi associated with the foliationWj , see
Theorem 11.16.

THEOREM 11.17 (Pesin [198]).The following properties hold:
1. H(Wj1|Λ̂i) = H(Wj2|Λ̂i) = π(f |Λi) for any 1 � j1 < j2 � s or s + 1 � j1 <

j2 � p;
2. theπ -partition of f |Λi is finite and consists ofni elementsΛki , k = 1, . . . , ni , such

thatf (Λki )=Λk+1
i , k = 1, . . . , ni − 1 andf (Λni )=Λ1

i ;
3. f ni |Λki is aK-automorphism.

We now discuss the Bernoulli property. There are examples in general ergodic theory of
systems which haveK-property but fail to be Bernoulli. This cannot happen for smooth
systems with nonzero exponents: Bernoulli property holds automatically as long as the
system has theK-property (indeed, the mixing property is already sufficient).

THEOREM 11.18. Let f be aC1+α diffeomorphism of a smooth compact Riemannian
manifoldM preserving a smooth hyperbolic measureν. Assume thatf is weakly mixing
with respect toν. Thenf is a Bernoulli automorphism.
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Ornstein and Weiss [191] established the Bernoulli property for geodesic flows on com-
pact manifolds of negative curvature. Pesin [198] used a substantially more general ver-
sion of their approach to prove Theorem 11.18. The proof exploits the characterization of
a Bernoulli map in terms ofvery weakly Bernoulli partitions(see [191]). More precisely,
there is a finite measurable partitionα of the manifoldM whose elements have piecewise
smooth boundaries and arbitrarily small diameter. Indeed, one can construct a sequence of
such partitionsα1 � α2 � · · · such thatαn→ ε. The proof goes to show that each partition
αn is very weakly Bernoulli and the result follows. An important technical tool of the proof
is the refined estimate (10.3) of the Jacobian of the holonomy map.

Combining Theorems 11.17 and 11.18 we obtain the following Spectral Decomposition
Theorem for systems with nonzero Lyapunov exponents preserving smooth measures.

THEOREM 11.19. For eachi � 1 the following properties hold:
1. Λi is a disjoint union of setsΛji , for j = 1, . . . , ni , which are cyclically permuted

byf , i.e., f (Λji )=Λj+1
i for j = 1, . . . , ni − 1, andf (Λnii )=Λ1

i ;

2. f ni |Λji is a Bernoulli automorphism for eachj .

We consider the case of dynamical systems with continuous time. Letϕt be aC2 flow on
a smooth compact Riemannian manifoldM preserving a smooth measureν and nonuni-
formly hyperbolic onM . By Theorem 11.5,M can be decomposed into ergodic compo-
nentsΛi , i = 1,2, . . . , of positive measure. Applying Theorem 11.16 to the nonuniformly
partially hyperbolic diffeomorphismϕ1|Λi we obtain the following result.

THEOREM 11.20 (Pesin [198]).There exists a partitionη= ηi ofΛi for which:
1. for almost everyx ∈Λi the elementCη(x) is an open(mod 0) subset ofWs(x);
2. ϕ1η� η;
3.
∨∞
i=0ϕiη= ε;

4.
∧0
i>−∞ ϕiη=H(Ws)= π(ϕi |Λi).

The following result establishes theK-property of the flowϕt on the setΛi . For sim-
plicity we will drop the indexi. We remind the reader that a flowϕt is aK-flow if and only
if the diffeomorphismϕt is aK-automorphism for everyt ∈ R.

THEOREM11.21 (Pesin [198]).Assume that the flowϕt |Λ has continuous spectrum. Then
it is a Bernoulli flow and in particular, aK-flow.

The following result is an immediate consequence of this theorem.

COROLLARY 11.22. Letϕt be a smooth flow on a compact smooth Riemannian manifold
M preserving a smooth measureν. Assume thatν is hyperbolic and thatϕt is mixing with
respect toν. Thenϕt is a Bernoulli flow.
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12. Metric entropy

A crucial idea in Smooth Ergodic Theory is that sufficient instability of trajectories yields
rich ergodic properties of the system. The entropy formula is in a sense a “quantitative man-
ifestation” of this idea and is yet another pearl of Smooth Ergodic Theory. It expresses the
Kolmogorov–Sinai entropyhν(f ) of a diffeomorphism, preserving a smooth hyperbolic
measure, in terms of the values of the Lyapunov exponent.

12.1. Margulis–Ruelle inequality

Let f be aC1 diffeomorphism of a compact smooth manifoldM . The following very
general result provides an upper bound for the entropy off with respect to any Borel
invariant probability measureν.

THEOREM 12.1 (Margulis–Ruelle inequality).The following estimate holds:

hν(f )�
∫
M

Σ+ dν(x), (12.1)

where

Σ+ =
∑

i: χi(x)>0

ki(x)χi(x).

In the case of volume-preserving diffeomorphisms this estimate was obtained by Mar-
gulis (unpublished). The inequality in the general case was established by Ruelle in [212]
(see also [35] and [175]).

We sketch the proof of the theorem. By decomposingν into its ergodic components we
may assume without loss of generality thatν is ergodic. Thens(x) = s andki(x) = ki ,
χi(x) = χi are constantν-almost everywhere for each 1� i � s. Fix m > 0. SinceM is
compact, there existstm > 0 such that for every 0< t � tm, y ∈M , andx ∈ B(y, t) we
have

1

2
dxf

m
(
exp−1

x B(y, t)
)⊂ exp−1

fmx f
m
(
B(y, t)

)⊂ 2dxf
m
(
exp−1

x B(y, t)
)
,

where for a setA⊂ TzM andz ∈M , we writeαA= {αv: v ∈A}.
There is a special partition of the manifoldM which is described in the following state-

ment.

LEMMA 12.2. Givenε > 0, there is a partitionξ ofM such that:
1. diamξ � tm/10 andhν(f m, ξ)� hν(f m)− ε;
2. for every elementC ∈ ξ there exist ballsB(x, r) andB(x, r ′), such thatr < 2r ′ �
tm/20 andB(x, r ′)⊂ C ⊂ B(x, r);
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3. there exists0< r < tm/20 such that ifC ∈ ξ thenC ⊂ B(y, r) for somey ∈M , and
if x ∈ C then

1

2
dxf

m
(
exp−1

x B(y, r)
)⊂ exp−1

fmx f
mC ⊂ 2dxf

m
(
exp−1

x B(y, r)
)
.

To construct such a partition, givenα > 0, consider a maximalα-separated setΓ , i.e.,
a finite set of points for whichd(x, y) > α wheneverx, y ∈ Γ . Forx ∈ Γ set

DΓ (x)=
{
y ∈M: d(y, x)� d(y, z) for all z ∈ Γ \ {x}}.

Obviously,B(x,α/2)⊂DΓ (x)⊂ B(x,α). Note that the setsDΓ (x) corresponding to dif-
ferent pointsx ∈ Γ intersect only along their boundaries, i.e., at a finite number of subman-
ifolds of codimension greater than zero. Sinceν is a Borel measure, if necessary, we can
move the boundaries slightly so that they have zero measure. Thus, we obtain a partitionξ

with diamξ � α which can be chosen to satisfy

hν(f
m, ξ) > hν(f

m)− ε and diamξ < tm/10.

This guarantees the properties in the lemma.
Continuing with the proof of the theorem observe that

hν(f
m, ξ) = lim

k→∞Hν
(
ξ |f mξ ∨ · · · ∨ f kmξ)

� Hν(ξ |f mξ)=
∑
D∈fmξ

ν(D)H(ξ |D)

�
∑
D∈fmξ

ν(D) log card{C ∈ ξ : C ∩D �= ∅}, (12.2)

whereH(ξ |D) is the entropy ofξ with respect to the conditional measure onD induced
by ν. The following is a uniform exponential estimate for the number of elementsC ∈ ξ
which have nonempty intersection with a given elementD ∈ f mξ .
LEMMA 12.3. There exists a constantK1> 0 such that forD ∈ f mξ ,

card{C ∈ ξ : D ∩C = ∅}�K1 sup
{‖dxf ‖mn: x ∈M},

wheren= dimM .

This can be shown by estimating the volume of each elementC and using property 2 of
the partitionξ .

We also have an exponential bound for the number of those setsD ∈ f mξ which contain
regular points. Namely, givenε > 0, letRm = Rm(ε) be the set of forward regular points
x ∈M which satisfy the following condition: fork >m andv ∈ TxM ,

ek(χ(x,v)−ε)‖v‖�
∥∥dxf kv∥∥� ek(χ(x,v)+ε)‖v‖.
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LEMMA 12.4. If D ∈ f mξ has nonempty intersection withRm then there exists a constant
K2> 0 such that

card{C ∈ ξ : D ∩C �= ∅}�K2e
εm
∏
i: χi>0

em(χi+ε)ki .

To establish the inequality note that

card{C ∈ ξ : D ∩C �= ∅}� vol(B)(diamξ)−n,

where vol(B) denotes the volume of

B = {y ∈M: d
(
y,expfm(x)

(
dxf

m
(
exp−1

x B ′)))< diamξ
}

andB ′ = B(x,2 diamC′) for someC′ ∈ ξ such thatC′ ∩ Rm �= ∅ andf m(C′) =D, and
somex ∈ C′ ∩ f−m(Rm). Up to a bounded factor, vol(B) is bounded by the product of
the lengths of the axes of the ellipsoiddxf m(exp−1

x B ′). Those of them that correspond to
nonpositive exponents are at most subexponentially large. The remaining ones are of size
at mostem(χi+ε), up to a bounded factor, for all sufficiently largem. Thus,

vol(B1) � Kemε(diamB)n
∏
i: χi>0

em(χi+ε)ki

� Kemε(2 diamξ)n
∏
i: χi>0

em(χi+ε)ki ,

for some constantK > 0. The lemma follows.
By Lemmas 12.3 and 12.4 and (12.2), we obtain

mhν(f )− ε = hν(f m)− ε � hν(f m, ξ)

�
∑

D∩Rm �=∅
ν(D)

(
logK2 + εm+m

∑
i: χi>0

(χi + ε)ki
)

+
∑

D∩Rm=∅
ν(D)
(
logK1 + nm logsup

{‖dxf ‖: x ∈M})
� logK2 + εm+m

∑
i: χi>0

(χi + ε)ki

+ (logK1 + nm logsup
{‖dxf ‖: x ∈M})ν(M \Rm).

By the Multiplicative Ergodic Theorem 5.5, we have
⋃
m�0Rm(ε)=M (mod 0) for every

sufficiently smallε. It follows that

hν(f )� ε+
∑
i: χi>0

(χi + ε)ki .

Letting ε→ 0 we obtain the desired upper bound.
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As an immediate consequence of Theorem 12.1 we obtain an upper bound for the topo-
logical entropyh(f ) of a diffeomorphismf . Namely,

h(f )= sup
ν
hν(f )� sup

ν

∫
M

Σ+ dν, (12.3)

where the suprema are taken over allf -invariant Borel probability measures onM .
In general inequalities (12.1) and (12.3) can be strict. In fact, as the following exam-

ple shows, there areC∞ diffeomorphisms for whichh(f ) < infν
∫
M
Σ+ dν, and hence,

hν(f ) <
∫
M
Σ+ dν for any invariant measureν.

EXAMPLE 12.5 (Figure-Eight; Bowen and Katok (see [135])). Letf be a diffeomorphism
of the two-dimensional sphereS2 with three repelling fixed pointsp1,p2,p3 and one sad-
dle fixed pointq. Suppose that the stable and unstable manifolds of the pointq form
two loopsγ1, γ2 that divideS2 into three regionsA1, A2, andA3. For i = 1,2,3, we
havepi ∈ Ai and any point inAi \ {pi} tends, respectively, toγ1, γ2, andγ1 ∪ γ2. Thus,
anyf -invariantfinite measureν is supported on the finite set{p1,p2,p3, q}. Therefore,
hν(f )= 0 while

∫
M
Σ+ dν > c > 0 for somec independent ofν. In addition, we have

h(f )= sup
ν
hν(f ) < inf

ν

∫
M

Σ+ dν,

where the supremum and infimum are taken over allf -invariant Borel probability mea-
sures onS2.

EXAMPLE 12.6 (Two-dimensional horseshoes). LetΛ be a basic set (i.e., a locally max-
imal hyperbolic set), of a topologically transitive Axiom A surface diffeomorphism of
classC1. McCluskey and Manning [182] showed that for everyx ∈ Λ the Hausdorff di-
mension of the setWu(x)∩Λ is the unique roots of Bowen’s equation

P
(−s log‖df |Eu‖)= 0,

whereP is the topological pressure onf |Λ. In particular,s is independent ofx.
Assume thats < 1. Sinces  → P(−s log‖df |Eu‖) is decreasing, we obtain

P
(− log‖df |Eu‖)< 0.

By the Variational Principle for the topological pressure, for everyf -invariant measureν,

hν(f ) <

∫
Λ

log
∥∥dxf |Eu(x)∥∥dν(x)= ∫

Λ

Σ+ dν

(we use here Birkhoff’s Ergodic Theorem and the fact that dimEu = 1).
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Note thathν(f−1) = hν(f ) and the Lyapunov exponents off−1 are those off taken
with opposite sign. Therefore, it follows from Theorem 12.1 that

hν(f )� −
∫
M

∑
i: χi(x)<0

χi(x)ki(x) dν(x).

Set

a =
∫
M

∑
i: χi(x)>0

χi(x)ki(x) dν(x)

and

b=−
∫
M

∑
i: χi(x)<0

χi(x)ki(x) dν(x).

In Example 12.5 one can choose the eigenvalues ofdf at the critical points, and the mea-
sureν to guarantee any of the relations:a < b or a = b or a > b. One can also show that if
ν is the Riemannian volume onM , thena = b.

An important manifestation of Margulis–Ruelle’s inequality is that positivity of topo-
logical entropy implies the existence of at least one nonzero Lyapunov exponent.

COROLLARY 12.7. If the topological entropy of aC1 diffeomorphismf of a compact
manifold is positive, then there exists an ergodicf -invariant measure with at least one
positive and one negative Lyapunov exponent.

For surface diffeomorphisms, Corollary 12.7 means that any diffeomorphism with pos-
itive topological entropy possesses an ergodic invariant measure whose Lyapunov expo-
nents are all nonzero.

Let us point out that the positivity of topological entropy can sometimes be determined
using pure topological information. For example, theorems of Manning [177], Misiurewicz
and Przytycki [186,187], and Yomdin [253,254] relate the topological entropy to the action
of the diffeomorphism on the homology groups (see also [133]); see Section 15.5.

Other immediate consequences of Theorem 12.1 are as follows.

COROLLARY 12.8. Let ν be a measure which is invariant under aC1 diffeomorphism
f of a compact manifold. If hν(f ) > 0 thenν has at least one positive and one negative
Lyapunov exponent.

For surface diffeomorphisms, Corollary 12.8 implies that ifhν(f ) > 0 then the Lya-
punov exponents ofν are all nonzero, i.e.,ν is hyperbolic (see Sections 10.1 and 15).

COROLLARY 12.9. We have

h(f ) � dimM × inf
m�1

1

m
log+ sup

x∈M
‖dxf m‖

= dimM × lim
m→∞

1

m
log+ sup

x∈M
‖dxf m‖.
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12.2. The entropy formula

Let f :M →M be aC1+α diffeomorphism,α > 0 andν an f -invariant measure which
is absolutely continuous with respect to the Riemannian volume. The main result of this
section is thePesin entropy formulawhich expresses the entropy off with respect toν via
its Lyapunov exponents. It was first proved by Pesin in [198]. The proof relies on properties
of the unstable foliation and in particular, absolute continuity. Another proof of the entropy
formula was obtained by Mañé in [172] (see also [175]). It does not involve directly the
existence of stable and unstable foliations but instead uses some subtle properties of the
action of the differentialdf with respect to the Lyapunov exponents in the presence of a
smooth invariant measure.

THEOREM 12.10 (Pesin [198]).The following formula holds true:

hν(f )=
∫
M

Σ+ dν. (12.4)

In view of the Margulis–Ruelle inequality we only need to establish the lower bound

hν(f )�
∫
M

∑
i: χi(x)>0

ki(x)χi(x) dν(x),

or equivalently (by replacingf by f−1 and using Theorem 5.5)

hν(f )� −
∫
M

∑
i: χi(x)<0

ki(x)χi(x) dν(x).

This inequality is a corollary of a more general result which we now state.
Let f :M→M be aC1+α diffeomorphism of a smooth compact Riemannian manifold

M preserving a smooth measureν and nonuniformly partially hyperbolic in the broad sense
on an invariant setΛ of positive measure. For everyx ∈Λ we have that

χ1(x) < · · ·< χs(x)(x) < 0� χs(x)+1(x) < · · ·< χp(x)(x),

whereχi(x), i = 1, . . . , p(x), are the distinct values of the Lyapunov exponent atx each
with multiplicity ki(x). We also have the filtration of local (stable) manifolds (11.3) as well
as the filtration of global (stable) manifolds (11.4) atx. Givenj > 0 andm> 0, consider
the sets (11.5). Note thatν(Λj,m) > 0 for somej andm andWj(x) ⊂Λj,m (mod0) for
almost everyx ∈Λj,m. Hence,Λ̂j,m =Λj,m (mod 0).

Consider the partitionη= ηj,m of Λ̂j,m constructed in Theorem 11.16.
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THEOREM 12.11 (Pesin [199]).The entropy off with respect toη admits the following
estimate from below:

hν(f, η)� −
∫
Λj,m

j∑
i=1

ki(z)χi(z) dν(z).

We shall sketch the proof of the theorem. Given� > 0 consider the regular setΛ�. For
sufficiently smallr = r(�) andx ∈ Λ� consider also the setsP �,j (x) andQ(x) defined
by (11.6). Letν̃ be the measure onQ(x) given for any measurable subsetA ⊂Q(x) by
ν̃(A)= ν(A)(ν(Q(x))−1. It suffices to show that

h
(
f |Q(x), η)� −

∫
Q(x)

j∑
i=1

ki(z)χi(z) dν̃(z). (12.5)

Consider the function

g(z)=
j∏
i=1

exp
(
χi(z)
)ki (z).

Givenε > 0, letQp = {z ∈Q(x): pε < g(z)� (p+1)ε}. It suffices to show the inequality
(12.5) for the restrictionf̄ = f |Qp and the measurēν defined byν̄(A)= ν(A)(ν(Qp))−1

for any measurable subsetA⊂Qp .
SetJn(z)= Jac(df n|TzWj (z)). It follows from the Multiplicative Ergodic Theorem 5.5

that there exists a positive Borel functionT (z, ε), z ∈Qp andε > 0 such that forn > 0,

Jn(z)� T (z, ε)g(z)exp(εn).

Set fort � 0,

Qtp =
{
z ∈Qp: T (z, ε)� t

}
.

We have that for anyα > 0 and all sufficiently larget ,

ν̄
(
Qtp
)
� 1− α. (12.6)

It follows from Theorem 10.1 that there existsC1 = C1(t) > 0 such that for anyz ∈Qtp
andn > 0,

νj (z)
(
f n
(
Cη(z)
))

� C1J
n(z). (12.7)

Denote byBη(z, r) the ball inCη(z) centered atz of radiusr .

LEMMA 12.12. For anyβ > 0 there existsq = q(t) and a subsetAt ⊂Qtp such that:
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1. ν̄(Qtp \At)� β;
2. for anyz ∈At the elementCη(z) contains the ballBη(z, q).

Denote byνη(z) the conditional measure on the elementCη(z) of the partitionη gener-
ated by the measureν. For everyz ∈At ,

C−1
4 � dνη(z)

dmj (z)
� C4, (12.8)

whereC4 = C4(t) > 0 is a constant independent ofz. For anyn > 0,

hν̄(f )= 1

n
hν̄(f

n)� 1

n
H(f nη|η).

We use here the fact that

η= η− =
∨
i�0

f iη

(see Theorem 11.16). It follows from (12.6)–(12.8) that for everyx ∈At andn > 0,

H
(
f̄ nη|Cη(z)

) = −
∫
Cη(x)

νη(Cη(x)∩Cfnη(z))
νη(Cη(y))

dνη(y)

� − log
[
C2

4C1t
(
(p+ 1)ε

)n
eεnV
(
Bη
(
z, q(t)

))−1]= In, (12.9)

whereV (Bη(z, q(t))) is the Riemannian volume of the ballBη(z, q(t)). We have that
V (Bη(z, q(t)))� C5q

m(t) whereC5> 0 is a constant. It follows that

In � − log
(
C2

4C1t
)(
C5q

m(t)
)−1 − n(log

(
(p+ 1)ε

)+ ε)
� C6 − n

(
logg(z)+ ε). (12.10)

By (12.6) and statement 1 of Lemma 12.12, we obtain thatν̄(Qp \At)� α+β. Therefore,
integrating inequality (12.9) over the elementsCη(x) and taking (12.10) into account we
conclude that

1

n
H
(
f̄ nη|η) � 1

n
Inν̄
(
At
)
� 1

n

∫
Qp

In dν̄(1− αβ)

�
∫
Qp

j∑
i=1

ki(z)χi(z) dν̄(z)− γ,

whereγ can be made arbitrary small ifε, α, andβ are chosen sufficiently small andn
sufficiently large. The desired result follows.

In the two-dimensional case the assumption thatf ∈ C1+α can be relaxed for a residual
set of diffeomorphisms.
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THEOREM 12.13 (Tahzibi [237]).LetM be a compact smooth surface. There exists a
residual subsetG in the spaceDiff 1(M,m) of C1 volume preserving diffeomorphisms of
M such that everyf ∈ G satisfies the entropy formula(12.4).Moreover, G contains all
volume-preserving diffeomorphisms of classC1+α .

The main idea of the proof is the following. In the two-dimensional case a volume-
preserving diffeomorphismf has at most one positive Lyapunov exponentsχ+(x) almost
everywhere. Forf ∈ Diff 1(M,m) setL(f ) = ∫

M
χ+(x) dµ. One can show that the set

of continuity points of the functionsL(f ) andhm(f ) is residual in theC1 topology. Let
f be a continuity point. One obtains the entropy formula forf by approximatingf by a
sequencefn of C1+α diffeomorphisms for which the entropy formula (12.4) holds.

Ledrappier and Strelcyn [142] extended the entropy formula to SRB-measures invariant
underC1+α diffeomorphisms (see Section 14) and Ledrappier and Young [160] obtained a
general version of the entropy formula for arbitraryC2 diffeomorphisms (see Section 16.1).

13. Genericity of systems with nonzero exponents

13.1. Existence of diffeomorphisms with nonzero exponents

Presence of an Anosov diffeomorphismf on a compact Riemannian manifoldM imposes
strong conditions on the topology of the manifold. For example,M should admit two fo-
liations with smooth leaves (invariant underf ). Anosov diffeomorphisms are only known
to exist on multi-dimensional tori or more generally on factors of nilpotent Lie groups. On
the contrary nonuniform hyperbolicity imposes no restrictions on the topology ofM .

THEOREM 13.1 (Dolgopyat and Pesin [88]).Given a compact smooth Riemannian mani-
foldM �= S1 there exists aC∞ volume-preserving Bernoulli diffeomorphismf ofM with
nonzero Lyapunov exponents almost everywhere.

Let us comment on the proof of this theorem.

1. Katok [134] proved this theorem in the two-dimensional case. His argument goes as
follows. Consider the diffeomorphismGS2 of the sphere, constructed in Section 2.3. It has
four singularitypointspi = ζ(xi). Let ξ be aC∞ map which blows up the pointp4. Con-
sider the mapGD2 = ξ ◦GS2 ◦ ξ−1 of the closed unit diskD2. It is aC∞ diffeomorphism
which preserves the area, has the Bernoulli property and nonzero Lyapunov exponents
almost everywhere.

The diskD2 can be embedded into any surface. This is a corollary of a more general
statement (see [134]).

PROPOSITION13.2. Given ap-dimensional compactC∞ manifoldM and a smooth mea-
sureµ onM , there exists a continuous maph :Dp →M (Dp is the unit ball inRp) such
that

1. the restrictionh| intDp is a diffeomorphic embedding;
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2. h(Dp)=M ;
3. µ(M \ h(Dp))= 0;
4. h∗m= µ wherem is the volume inRp.

Note thatGD2 is identity on the boundary∂D2. Moreover, one can choose the function
ψ in the construction of mapsGT2 andGS2 such that the mapGD2 is “sufficiently flat”
near the boundary of the disk.

More precisely, letρ = {ρn} be a sequence of nonnegative real-valued continuous func-
tions onDp which are strictly positive inside the disc. LetC∞

ρ (D
p) be the set of allC∞

functions onDp satisfying the following condition: for anyn� 0 there exists a sequence
of numbersεn > 0 such that for all(x1, . . . , xp) ∈Dp for whichx2

1 + · · ·+ x2
p � (1− εn)2

we have ∣∣∣∣∂nh(x1, . . . , xp)

∂i1x1 . . . ∂
ipxp

∣∣∣∣< ρn(x1, . . . , xp),

wherei1, . . . , ip , are nonnegative integers andi1 + · · · + ip = n.
Any diffeomorphismG of the discDp can be written in the formG(x1, . . . , xp) =

(G1(x1, . . . , xp), . . . ,Gp(x1, . . . , xp)). Set

Diff ∞ρ (Dp)=
{
g ∈ Diff ∞(Dp): Gi(x1, . . . , xp)− xi ∈ C∞

ρ (D
p), i = 1, . . . , p

}
.

PROPOSITION13.3 (Katok [134]).Given a compactC∞ Riemannian manifoldM there
exists a sequence of functionsρ such that for anyG ∈ Diff ∞ρ (Dp) the mapg defined as

g(x)= h(G(h−1(x))) for x ∈ h(intDp) andg(x)= x otherwise, is aC∞ diffeomorphism
ofM (the maph is from Proposition13.2).

The functionψ can be chosen so thatGD2 ∈ Diff ∞ρ (D2) and hence, the mapf , defined
asf (x)= h(GD2(h−1(x))) for x ∈ h(intDp) andf (x)= x otherwise, has all the desired
properties: it preserves area, has nonzero Lyapunov exponents and is a Bernoulli map.

2. For any smooth compact Riemannian manifoldM of dimensionp = dimM � 5,
Brin [58] constructed aC∞ volume-preserving Bernoulli diffeomorphism which has all
but one nonzero Lyapunov exponents. His construction goes as follows.

Let A be a volume-preserving hyperbolic automorphism of the torusTp−3 andϕt the
suspension flow overA with the roof function

H(x)=H0 + εH̃ (x),

whereH0 is a constant and the functioñH(x) is such that|H̃ (x)| � 1. The flowϕt is an
Anosov flow on the phase spaceYp−2 which is diffeomorphic to the productTp−3×[0,1],
where the toriTp−3 × {0} andTp−3 × {1} are identified by the action ofA. Consider the
skew product mapR of the manifoldN =D2 × Yn−2 given by

R(z)=R(x, y)= (GD2(x),ϕα(x)(y)
)
, z= (x, y), (13.1)
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whereα :D2 → R is a nonnegativeC∞ function which is equal to zero in a small neigh-
borhoodU of thesingularity set{q1, q2, q3} ∩ ∂D2 and is strictly positive otherwise. The
mapR is of classC∞ and preserves volume. One can choose the functionH̃ (x) such that
R is a Bernoulli diffeomorphism which has all but one nonzero Lyapunov exponents (the
zero exponent corresponds to the direction of the flowϕt ).

Brin proved that there exists a smooth embedding of the manifoldYp−2 into Rp. It fol-
lows that there is a smooth embeddingχ1 :D2 × Yp−2 →Dp which is a diffeomorphism
except for the boundary∂D2 × Yp−2. Using Proposition 13.2 one can find a smooth em-
beddingχ :Dp →M which is a diffeomorphism except for the boundary∂Dp. Since the
mapR is identity on the boundary∂D2×Yp−2 the maph= (χ1 ◦χ) ◦R ◦ (χ1 ◦χ)−1 has
all the desired properties.

3. Dolgopyat and Pesin [88] constructed the required mapP as a small perturbation
of the mapR (defined by (13.1)). The diffeomorphismP can be found in the formP =
ϕ ◦ R whereϕ(x, y) = (x,ϕx(y)) andϕx :Yp−2 → Yp−2, x ∈ N , is a family of volume
preservingC∞ diffeomorphisms satisfyingdC1(ϕx, Id)� ε. To construct such a family fix
a sufficiently small numberγ > 0, any pointy0 ∈ Yp−2, and a pointx0 ∈D2 such that

G
j

D2

(
B(x0, γ )

)∩B(x0, γ )= ∅, −N < j <N, j �= 0,

G
j

D2

(
B(x0, γ )

)∩ ∂D2 = ∅, −N < j <N.

Set∆= B(x0, γ )× B(q0, γ ) and choose a coordinate system{ξ1, ξ2, η1, . . . , ηp−2} in ∆
such thatx = (ξ1, ξ2), y = (η1, . . . , ηp−2), dm= dx dy (recall thatm is the volume) and

Ecϕt (y0)= ∂

∂η1
, Esϕt (y0)=

(
∂

∂η2
, . . . ,

∂

∂ηk

)
,

Euϕt (y0)=
(

∂

∂ηk+1
, . . . ,

∂

∂ηp−2

)

for somek, 2� k < p− 2. Letψ(t) be aC∞ function with compact support. Set

τ = 1

γ 2

(‖ξ1‖2 + ‖ξ2‖2 + ‖η1‖2 + · · · + ‖ηp−2‖2)
and define

ϕ−1
x (y) =

(
ξ1, ξ2, η1 cos

(
εψ(τ)

)+ η2 sin
(
εψ(τ)

)
,

−η1 sin
(
εψ(τ)

)+ η2 cos
(
εψ(τ)

)
, η3, . . . , ηp−2

)
.

The familyϕx determines the mapϕ so that the mapP = ϕ ◦ R is a volume-preserving
Bernoulli diffeomorphism with nonzero Lyapunov exponents.
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4. We discuss the case dimM = 3. Consider the manifoldN =D2 × S1 and the skew
product mapR,

R(z)=R(x, y)= (GD2(x),Rα(x)(y)
)
, z= (x, y), (13.2)

whereRα(x) is the rotation by the angleα(x) andα :D2 → R is a nonnegativeC∞ function
which is equal to zero in a small neighborhood of the singularity set{q1, q2, q3}∩ ∂D2 and
is strictly positive otherwise.

We define a perturbationP of R in the formP = ϕ ◦ R. Consider a coordinate system
ξ = {ξ1, ξ2, ξ3} in a small neighborhood of a pointz0 ∈N such thatdm= dξ and

EcR(z0)=
∂

∂ξ1
, EsR(z0)=

∂

∂ξ2
, EuR(z0)=

∂

∂ξ3
.

Letψ(t) be aC∞ function with compact support. Setτ = ‖ξ‖2/γ 2 and define

ϕ−1(ξ) = (ξ1 cos
(
εψ(τ)

)+ ξ2 sin
(
εψ(τ)

)
,

−ξ1 sin
(
εψ(τ)

)+ ξ2 cos
(
εψ(τ)

)
, ξ3
)
. (13.3)

One can choose the functionα(x) and the pointz0 such that the mapP has all the desired
properties.

5. We now proceed with the case dimM = 4. Consider the manifoldN =D2 ×T2 and
the skew product mapR defined by (13.2) whereRα(x) is the translation by the vector
α(x) and the functionα(x) is chosen as above. Consider a perturbationP of R in the form
P = ϕ ◦R and choose the mapϕ as above to ensure that∫

N

[
χc1(z,P )+ χc2(z,P )

]
dz < 0,

whereχc1(z,P ) � χc2(z,P ) are the Lyapunov exponents ofP along the central subspace
EcP (z). One can further perturb the mapP in theC1 topology to a mapP̄ to guarantee that∫

N

[
χc1(z, P̄ )+ χc2(z, P̄ )

]
dz < 0,

∫
N

[
χc1(z, P̄ )− χc2(z, P̄ )

]
dz� ε,

whereχc1(z, P̄ ) � χc2(z, P̄ ) are the Lyapunov exponents ofP̄ along the central subspace
Ec
P̄
(z) andε > 0 is sufficiently small. This can be done using the approach described in the

proof of Theorem 13.8 (this is one of the reasons whyP̄ is close toP in theC1 topology
only). The mapP̄ has all the desired properties.

13.2. Existence of flows with nonzero exponents

In [126], Hu, Pesin and Talitskaya established a continuous time version of Theorem 13.1.
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THEOREM 13.4. Given a compact smooth Riemannian manifoldM of dimM � 3, there
exists aC∞ volume-preserving Bernoulli flowϕt such that atm-almost every pointx ∈M
it has nonzero Lyapunov exponent except for the exponent in the direction of the flow.

We sketch the proof of this theorem. Assume first that dimM � 5. Consider the map

R =GD2 ×A :D2 ×Tp−3 →D2 ×Tp−3,

wherep = dimM , GD2 is the above constructed diffeomorphism of the two-dimensional
disk with nonzero Lyapunov exponents andA is a linear automorphism of the torusTp−3.

Consider further the suspension flowgt overR with the roof functionH = 1 and the
suspension manifoldK =D2×Tp−3×[0,1]/∼, where∼ is the identification(x, y,1)=
(GD2(x),A(y),0). Denote byZ the vector field of the suspension flow.

Finally, consider the suspension flowht overA with the roof functionH = 1 and the
suspension manifoldL= Tp−3×[0,1]/∼, where∼ is the identification(y,1)= (Ay,0).
Let N = D2 × Tp−3 × [0,1]/ ∼, where∼ is the identification(x, y,1) = (x,Ay,0) for
anyx ∈D2, y ∈ Tp−3.

The proof goes by showing that there exists a volume-preservingC∞ diffeomorphism
F :K→N so that the vector fieldY = dFZ is divergence free and

Y(x, y, t)= (Y1(x, y, t),0,1
)
.

Choose aC∞ function a :D2 → [0,1] which vanishes on the boundary∂D2 with all
its partial derivatives of any order, strictly positive otherwise anda(x) = 1 outside small
neighborhood of the boundary. Define the vector fieldV onN by

V (x, y, t)= (Y1(x, y, t),0, a(x)
)
.

The flow onK corresponding to the vector fielddF−1VF is volume-preserving, has
nonzero Lyapunov exponents (except for the exponent in the flow direction) and is
Bernoulli. The manifoldK can be embedded intoM and this embedding carries over the
flow into a flow onM with all the desired properties.

13.3. Genericity conjecture

Little is known about genericity of systems with nonzero Lyapunov exponents. On any
manifoldM of dimension dimM � 2 and for sufficiently larger there are open sets of
volume-preservingCr diffeomorphisms ofM which possess positive measure sets with all
of the exponents to be zero: these sets consist of codimension one invariant tori on which
the system is conjugate to a Diophantine translation (see [71,116,251,252]).

In this regard the following conjecture is of a great interest in the field.

CONJECTURE13.5. Let f be aC1+α diffeomorphism of a compact smooth Riemannian
manifoldM preserving a smooth measureµ. Assume thatf has nonzero Lyapunov expo-
nents almost everywhere. Then there exists a neighborhoodU of f in Diff 1+α(M,µ) and
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aGδ-setA⊂ U such that any diffeomorphismg ∈A has nonzero Lyapunov exponents on
a setAg of positive measure.

13.4. C1-genericity for maps

We stress that the assumption on the regularity off (i.e.,f is of classC1+α) is crucial: in
theC1 topology one should expect quite a different behavior. Let us describe some relevant
results. We first consider the case of a compact surfaceM .

THEOREM 13.6 (Bochi [46]). There exists a residual subsetU in the space of area pre-
servingC1 diffeomorphisms such that anyf ∈ U is either Anosov or has zero Lyapunov
exponents almost everywhere.

This theorem was first announced by Mañé around 1983. Although the proof was never
published a sketch of it appeared in [174] (see also [176] for a symplectic version of this
result). A version of Theorem 13.6 for manifolds of higher dimension was obtained by
Bochi and Viana in [49].

Let f be a volume-preserving ergodicC1 diffeomorphism of a compact smooth Rie-
mannian manifoldM andx a Lyapunov regular point forf . Consider the Oseledets de-
composition (6.7) along the orbit ofx and two subspacesEi(x) andEj(x) corresponding
to two distinct values of the Lyapunov exponent,χi > χj (sincef is ergodic these values
do not depend onx). Given a pointy in the orbit ofx there ism=m(y, i, j)� 1 such that

∥∥df m|Ei(y)∥∥ · ∥∥df m|Ej(y)∥∥� 1

2
.

Letm(y)= maxi,j m(y, i, j). We say that the Oseledets decomposition has thedominated
propertyif m(y) does not depend ony. In other words, the fact thatdf n eventually expends
Ei(y) more thanEj(y) can be observed in finite timeuniformly over the orbit off . The
dominated property implies that the angles between the Oseledets subspaces are bounded
away from zero along the orbit.

THEOREM 13.7 (Bochi and Viana [47–49]).Let M be a compact smooth Riemannian
manifold. There exists a residual subsetU in the space of volume-preservingC1 diffeo-
morphisms such that for anyf ∈ U and almost everyx ∈M the Oseledets decomposition
is either dominated along the orbit ofx or is trivial, i.e., all Lyapunov exponents atx are
zero.

This theorem is a corollary of the following result that provides necessary conditions for
continuity of Lyapunov exponentsχi(f, x) overf . Forj = 1, . . . , p− 1 define

LEj (f )=
∫
M

[
χ1(f, x)+ · · · + χj (f, x)

]
dm(x).
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It is well known that the function

f ∈ Diff 1(M,m)→ LEj (f )

is upper-semicontinuous.

THEOREM 13.8 (Bochi and Viana [49]).Letf0 ∈ Diff 1(M,m) be such that the map

f ∈ Diff 1(M,m)→ (LE1(f ), . . . ,LEp−1(f )
) ∈ Rp−1

is continuous atf = f0. Then for almost everyx ∈ M the Oseledets decomposition is
either dominated along the orbit ofx or is trivial.

The main idea of the proof can be described as follows (we borrow this description from
[49]). If the Oseledets decomposition is neither dominated nor trivial over a set of orbits of
positive volume then for somei and arbitrary largem there exist infinitely many iterates
yj = f nj (x) for which

∥∥df m|E−
i (y)
∥∥∥∥(df m|E+

j (y)
)−1∥∥> 1

2
, (13.4)

where

E+
i (y)=E1(y)⊕ · · · ⊕Ei(y)

and

E−
i (y)=Ei+1(y)⊕ · · · ⊕Ep(y)(y).

Applying a small perturbation one can move a vector originally inE+
i (y) to E−

i (y) thus
“blending” different expansion rates.

More precisely, fixε > 0, sufficiently largem and a pointx ∈M . For n much bigger
thanm choose an iteratey = f �(x) with �≈ n

2 as in (13.4). By composingdf with small
rotations near the firstm iterates ofy one can cause the orbit of somedf �x v ∈ E+

i (y) to
move toE−

i (z). This creates a perturbationg = f ◦ h which preserves the orbit segment
{x, . . . , f n(x)} and is such thatdgsxv ∈E+

i during the first� iterates anddgsxv ∈E−
i during

the lastn − � − m ≈ n
2 iterates. We wish to conclude thatdgnx lost some expansion if

compared todf nx . To this end we compare thekth exterior products of these linear maps
with k = dimE+

i . We have

∥∥∧p(dgnx )∥∥� exp

(
n

(
χ1 + · · · + χk−1 + 1

2
(χk + χk+1)

))
,
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where the Lyapunov exponents are computed at(f, x). Notice thatχk+1 = λ̂i+1 is strictly
smaller thanχk = λ̂i . This local procedure is then repeated for a positive volume set of
pointsx ∈M . Using the fact that

LEk(g)= inf
n

1

n

∫
M

log
∥∥∧p(dgnx )∥∥dm

one can show that LEk(g) drops under such arbitrary small perturbations contradicting
continuity.

For the above construction to work one should arrange various intermediate perturba-
tions around eachf s(y) not to interfere with each other nor with other iterates ofx in
the time interval{0, . . . , n}. One can achieve this by rescaling the perturbationg = f ◦ h
near eachf s(y) if necessary to ensure that its support is contained in a sufficiently small
neighborhood of the point. In a local coordinatew aroundf s(y) rescaling corresponds to
replacingh(w) by rh(w/r) for some smallr > 0. This does not affect the value of the
derivative atf s(y) nor theC1 norm of the perturbation and thus it can be made close to
f in theC1 topology. It is not clear whether the argument can be modified to work inCq

with q > 1.
One can establish a version of Theorem 13.7 in the symplectic case.

THEOREM 13.9 (Bochi and Viana [49]).LetM be a compact smooth Riemannian mani-
fold. There exists a residual subsetU in the space ofC1 symplectic diffeomorphisms such
that everyf ∈ U is either Anosov or has at least two zero Lyapunov exponents at almost
everyx ∈M .

13.5. C0-genericity for cocycles

We now describe a version of Theorem 13.7 for linear cocycles.
Let S ⊂ GL(n,R) be an embedded submanifold (with or without boundary). We say that

S is accessibleif it acts transitively on the projective spaceRPn−1. More precisely, for any
C > 0, ε > 0 there arem> 0 andα > 0 with the following property: givenξ, η ∈ RPn−1

with � (ξ, η)� α and anyA0, . . . ,Am−1 ∈ S with ‖A±1
i ‖ � C one can findÃ0, . . . , Ãm−1 ∈

S such that‖Ai − Ãi‖ � ε and

Ã0, . . . , Ãm−1(ξ)=A0, . . . ,Am−1(η).

LetX be a compact Hausdorff space andf :X→X a homeomorphism preserving a Borel
probability measureµ. Let alsoA :X × Z → GL(n,R) be the cocycle overf generated
by a functionA :X→ GL(n,R).

THEOREM 13.10 (Bochi and Viana [49]).For any accessible setS ⊂ GL(n,R) there ex-
ists a residual setR⊂ C(X,S) such that for everyA ∈R and almost everyx ∈X either
all Lyapunov exponents of the cocycleA, generated byA, are equal to each other or the
Oseledets decomposition forA (see(5.1)) is dominated.
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This result applies to cocycles associated with Schrödinger operators. In this case
X = S1, f :S1 → S1 is an irrational rotation,f (x) = x + α, and the generatorA :S1 →
SL(2,R) is given by

A(θ)=
(
E − V (θ) −1

1 0

)
,

whereE ∈ R is the total energy andV :S1 → R is the potential energy. The cocycle
generated byA is a point of discontinuity for the Lyapunov exponents, as functions of
V ∈ C0(S1,R), if and only if the exponents are nonzero andE lies in the spectrum of the
associated Schrödinger operator (E lies in the complement of the spectrum if and only if
the cocycle is uniformly hyperbolic which for cocycles with values inSL(2,R) is equiv-
alent to domination; see also Ruelle [214], Bourgain [55] and Bourgain and Jitomirskaya
[56]).

ForV ∈ Cr(S1,R) with r = ω,∞, Avila and Krikorian [25] proved the following result
on nonuniform hyperbolicity for Schrödinger cocycles:if α satisfies the recurrent Dio-
phantine condition(i.e, there are infinitely manyn > 0 for which thenth image ofα under
the Gauss map satisfies the Diophantine condition with fixed constant and power) then
for almost everyE the Schrödinger cocycle either has nonzero Lyapunov exponents or is
Cr -equivalent to a constant cocycle.

For someC1-genericity results on positivity of the maximal Lyapunov exponents see
Sections 7.3.3 and 7.3.5.

13.6. Lp-genericity for cocycles

Let (X,µ) be a probability space andf :X→ X a measure preserving automorphism.
Consider the cocycleA :X × Z → GL(n,R) overf generated by a measurable function
A :X→ GL(n,R). We endow the spaceG of these functions with a specialLp-like topol-
ogy. Set for 1� p <∞,

‖A‖p =
(∫
X

∥∥A(x)∥∥p dµ(x))1/p

and

‖A‖∞ = esssup
x∈X

‖A‖.

We have 0� ‖A‖p � ∞. ForA,B ∈ G let

τp(A,B)= ‖A−B‖p +
∥∥A−1 −B−1

∥∥
p

and

ρp(A,B)= τp(A,B)

1+ τp(A,B) .
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Here we agree that‖A− B‖p =∞ or ‖A−1 − B−1‖p =∞ if and only if ρp(A,B)= 1.
One can check thatρp is a metric onG and that the space(G, ρp) is complete.

Assume thatf is ergodic. Following Arbieto and Bochi [22] we denote byGIC ⊂ G the
subset of all mapsA satisfying the integrability condition (5.3) and byGOPS the subset of
all thoseA ∈ GIC which have one-point spectrum, i.e., for which the Lyapunov spectrum of
the cocycleA consists of a single point. It turns out that the “one-point spectrum property”
is typical in the following sense (see Arbieto and Bochi [22]; an earlier but weaker result
is obtained by Arnold and Cong in [24]).

THEOREM 13.11 (Arbieto and Bochi [22]).Assume thatf is ergodic. ThenGOPS is a
residual subset ofGIC in theLp topology for any1� p � ∞.

The proof of this result is based upon the study of the functionsΛk :GIC → R, k =
1, . . . , n, given by

Λk(A)=
∫
X

(
χ1(A,x)+ · · · + χk(A,x)

)
dµ(x).

THEOREM 13.12 (Arbieto and Bochi [22]).The following statements hold:
1. the functionΛk is upper-semicontinuous(i.e., for anyA ∈ GIC andε > 0 there exists
δ > 0 such thatΛk(B) <Λk(A)+ ε for anyB ∈ GIC with ρp(A,B) < δ);

2. the functionΛn is continuous;
3. if f is ergodic thenΛk is continuous atA ∈ GIC if and only ifA ∈ GOPS.

For some other results on genericity of cocycles with low differentiability see [53].

13.7. Mixed hyperbolicity

We consider the situation ofmixedhyperbolicity, i.e., hyperbolicity is uniform throughout
the manifold in some but not all directions. More precisely, we assume thatf is partially
hyperbolic, i.e., the tangent bundleTM is split into threedf -invariant continuous subbun-
dles

TM=Es ⊕Ec ⊕Eu. (13.5)

The differentialdf contracts uniformly overx ∈ M along thestrongly stablesubspace
Es(x), it expands uniformly along thestrongly unstablesubspaceEu(x), and it can act
either as nonuniform contraction or expansion with weaker rates along thecentraldirection
Ec(x). More precisely, there exist numbers

0< λs < λ
′
c � 1� λ′′c < λu
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such that for everyx ∈M ,

λ′c‖v‖�
{‖dxf (v)‖ � λs‖v‖, v ∈Es(x),
‖dxf (v)‖ � λ′′c‖v‖, v ∈Ec(x),
λu‖v‖� ‖dxf (v)‖, v ∈Eu(x).

We say that a partially hyperbolic diffeomorphism preserving a smooth measureµ has
negative central exponentson a setA of positive measure ifχ(x, v) < 0 for everyx ∈ A
and every nonzerov ∈ Ec(x). The definition ofpositive central exponentsis analogous.
Partially hyperbolic systems with negative (positive) central exponents as explained above
were introduced by Burns, Dolgopyat and Pesin [64] in connection to stable ergodicity of
partially hyperbolic systems (see below). Their work is based upon earlier results of Alves,
Bonatti and Viana [19] who studied SRB-measures for partially hyperbolic systems for
which the tangent bundle is split into two invariant subbundles, one uniformly contracting
and the other nonuniformly expanding (see Section 14.3).

Forx ∈M one can construct local stable manifoldsV s(x) and local unstable manifolds
V u(x) and their sizes are bounded away from zero uniformly overx ∈M . In addition, for
x ∈ A one can constructlocal weakly stable manifoldsV sc(x) whose size varies withx
and may be arbitrary close to zero.

THEOREM 13.13 (Burns, Dolgopyat and Pesin [64]).Let f be aC2 diffeomorphism of
a compact smooth Riemannian manifoldM preserving a smooth measureµ. Assume that
there exists an invariant subsetA ⊂M with µ(A) > 0 on whichf has negative central
exponents. Then every ergodic component off |A is open(mod0) and so is the setA.

To see this let us take a density pointx ∈A and consider the sets

P(x)=
⋃
y∈V sc

V u(y), Q(x)=
⋃
n∈Z

f n
(
P(x)
)
. (13.6)

P(x) is open and so isQ(x). Using absolute continuity of local unstable manifolds and
repeating argument in the proof of Theorem 11.3 we obtain thatf |Q(x) is ergodic.

In general, one should not expect the setA to be of full measure nor the mapf |A to be
ergodic. We introduce a sufficiently strong condition which guarantees this.

We call two pointsp,q ∈ M accessibleif there are pointsp = z0, z1, . . . , z�−1,

z� = q, zi ∈M , such thatzi ∈ V u(zi−1) or zi ∈ V s(zi−1) for i = 1, . . . , �. The collection of
pointsz0, z1, . . . , z� is called aus-pathconnectingp andq. Accessibility is an equivalence
relation. The diffeomorphismf is said to have theaccessibility propertyif any two points
p,q ∈M are accessible and to have theessential accessibility propertyif the partition into
accessibility classes is trivial (i.e., a measurable union of equivalence classes must have
zero or full measure).

A crucial manifestation of the essential accessibility property is that the orbit of almost
every pointx ∈M is dense inM . This implies the following result.

THEOREM 13.14 (Burns, Dolgopyat and Pesin [64]).Let f be aC2 partially hyperbolic
diffeomorphism of a compact smooth Riemannian manifoldM preserving a smooth mea-
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sureµ. Assume thatf has negative central exponents on an invariant setA of positive
measure and is essentially accessible. Thenf has negative central exponents on the whole
ofM , the setA has full measure, f has nonzero Lyapunov exponents almost everywhere,
andf is ergodic.

Accessibility plays a crucial role in stable ergodicity theory. AC2 diffeomorphismf
preserving a Borel measureµ is calledstably ergodicif any C2 diffeomorphismg which
is sufficiently close tof in the C1 topology, which preservesµ, is ergodic. Volume-
preserving Anosov diffeomorphisms are stably ergodic.

THEOREM 13.15 (Burns, Dolgopyat and Pesin [64]).Under the assumption of Theo-
rem13.14,f is stably ergodic.

One can show that indeed,f is stably Bernoulli, i.e., anyC2 diffeomorphismg which
is sufficiently close tof in theC1 topology, which preservesµ, is Bernoulli.

The proof of Theorem 13.15 is based upon some delicate properties of Lyapunov expo-
nents for systems with mixed hyperbolicity which are of interest by themselves.

1. Since the mapf is ergodic the values of the Lyapunov exponents are constant almost
everywhere. Therefore,

χ(x, v)� a < 0 (13.7)

uniformly overx andv ∈Ec(x). It follows that∫
M

log
∥∥df |Ec(x)∥∥dµ� a < 0.

Since the splitting (13.5) depends continually on the perturbationg of f we obtain that∫
M

log
∥∥df |Ecg(x)∥∥dµ� a

2
< 0

(we assume thatg is sufficiently close tof and preserves the measureµ). This, in turn,
implies thatg has negative central exponents on a setAg of positiveµ-measure.

2. Condition (13.7) allows one to estimate the sizes of global weakly stable manifolds
along a typical trajectory ofg.

PROPOSITION13.16. Under the assumption(13.7)there is a numberr > 0 such that for
anyC2 diffeomorphismg which is sufficiently close tof in theC1 topology and for any
x ∈ Ag one can findn � 0 such that the size of the global manifoldWsc(g−n(x)) is at
leastr .

The proof of this statement uses the notion ofσ -hyperbolic times which is of interest by
itself and provides a convenient technical tool in studying the behavior of local manifolds
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along trajectories. It was introduced by Alves in [17] (see also [19]) but some basic ideas
behind this notion go back to the work of Pliss [205] and Mañé [175]. Given a partially hy-
perbolic diffeomorphismf and a number 0< σ < 1, we call the numbern aσ -hyperbolic
time forf at x if for every 0� j � n,

j∏
k=1

∥∥df |Ecf (f k−n(x))∥∥� σ j . (13.8)

It is shown by Alves, Bonatti and Viana in [19] that iff satisfies (13.7) then any point
x ∈ Af has infinitely many hyperbolic times. The proof of this statement is based on a
remarkable result known as Pliss lemma. Although technical this lemma provides an im-
portant observation related to nonuniform hyperbolicity.

LEMMA 13.17 (Pliss [205]; see also [175, Chapter IV.11]).Let H � c2 > c1 > 0 and
ζ = (c2 − c1)/(H − c1). Given real numbersa1, . . . , aN satisfying

N∑
j=1

aj � c2N and aj �H for all 1 � j �N,

there are� > ζN and1< n1< · · ·< n� �N such that

nj∑
j=n+1

aj � c1(Ni − n) for each0� n < ni, i = 1, . . . , �.

Alves and Araújo [18] estimated the frequency ofσ -hyperbolic times. More precisely,
givenθ > 0 andx ∈M we say that the frequency ofσ -hyperbolic timesn1< n2< · · ·< n�
at x exceedsθ if for largen we haven� � n and�� θn. We also introduce the functionh
onM which is defined almost everywhere and assigns tox ∈M its firstσ -hyperbolic time.

THEOREM 13.18. If for someσ ∈ (0,1) the functionh is Lebesgue integrable then there
are σ̂ > 0 and θ > 0 such that almost everyx ∈ M has frequency of hyperbolic times
bigger thanθ .

We return to the proof of the proposition. As we saw the mapg also satisfies (13.7).
Applying (13.8) tog we obtain that there is a numberr > 0 such that for anyσ -hyperbolic
timen and 0� j � n,

diam
(
gj
(
Bsc
(
g−n(x), r

)))
� σ j ,

whereBsc(y, r) is the ball in the global manifoldWsc(y) centered aty of radiusr . Since
σ < 1 and the hyperbolic timen can be arbitrary large this ensures thatgn(Bsc(g−n(x), r))
lies in the local manifoldV sc(x) and hence,Bsc(g−n(x), r) is contained in the global
manifoldWsc(g−n(x)).
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3. The perturbationg possesses theε-accessibility propertywhereε = dC1(f, g). This
means that for any two pointsp,q ∈M there exists aus-path connectingp with the ball
centered atq of radiusε. Althoughε-accessibility is weaker then accessibility it still allows
one to establish ergodicity of the perturbationg. Indeed, choosing a density pointx ∈ Ag
and a numbern such that the size ofWsc(g−n(x)) is at leastr we obtain that the setP(x)
(see (13.6)) contains a ball of radiusr � 2ε.

13.8. Open sets of diffeomorphisms with nonzero Lyapunov exponents

It is shown in [51] that any partially hyperbolic diffeomorphismf0 with one-dimensional
central direction preserving a smooth measureµ can be slightly perturbed such that the
new mapf is partially hyperbolic, preservesµ and has negative central exponents (hence,
the results of the previous section apply tof ). This result was first obtained by Shub
and Wilkinson [229] in the particular case whenf0 is the direct product of a hyperbolic
automorphism of two-torus and the identity map of the circle. The perturbation that remove
zero exponents can be arranged in the form (13.3). The proof in the general case is a
modification of the argument in [229] (see also [34] and [84]).

One can use this observation to obtain an open set of non-Anosov diffeomorphisms
with nonzero Lyapunov exponents on multi-dimensional tori. Consider a diffeomorphism
f0 = A × Id of the torusTp = Tp−1 × S1, p � 3, whereA is a linear hyperbolic au-
tomorphism ofTp−1. It is partially hyperbolic and preserves volume. Letf be a small
C2 perturbation off0 preserving volume and having negative central exponents. One can
arrange the perturbationf to have the accessibility property. Then any volume-preserving
C2 diffeomorphismg which is sufficiently close tof is ergodic and has nonzero Lyapunov
exponents almost everywhere.

Note thatg is partially hyperbolic and the central distributionEc is one dimensional.
By a result in [118] this distribution is integrable and the leavesWc of the corresponding
foliation are smooth closed curves which are diffeomorphic to circles. The foliationWc is
continuous (indeed, it is Hölder continuous) but is not absolutely continuous (see [229]).
Moreover, there exists a setE of full measure and an integerk > 1 such thatE intersects
almost every leafWc(x) at exactlyk points (see [219]; the example in Section 10.2 is of
this type).

14. SRB-measures

We shall consider hyperbolic invariant measures which are not smooth. This includes, in
particular, dissipative systems for which the support of such measures is attracting invari-
ant sets. A general hyperbolic measure may not have “nice” ergodic properties: its ergodic
components may be of zero measure and it may have zero metric entropy. There is, how-
ever, an important class of hyperbolic measures known as SRB-measures (after Sinai, Ru-
elle and Bowen). They appear naturally in applications due to the following observation.
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Let f be a diffeomorphism of a smooth Riemannianp-dimensional manifoldM . An
open setU ⊂M is called atrapping regionif f (U)⊂ U (whereĀ denotes the closure of
the setA). The closedf -invariant set

Λ=
⋂
n�0

f n(U)

is anattractor for f so thatf is dissipative inU .
Consider the evolution of the Riemannian volumem underf , i.e., the sequence of mea-

sures

νn = 1

n

n−1∑
k=0

f k∗m, (14.1)

where the measuref k∗m is defined byf k∗m(A) = m(f−1(A)) for any Borel setA ⊂
Fk(U). Any limit measureν of this sequence is supported onΛ. If indeed, the se-
quence (14.1)convergesthe limit measureν is thephysical(or natural) measure onΛ.
The latter plays an important role in applications and is defined by the following property:
for any continuous functionϕ onM , calledobservable, andm-almost every pointx ∈U ,

lim
n→∞

1

n

n−1∑
k=0

ϕ
(
f k(x)
)= ∫

M

ϕ dν. (14.2)

We call ν anSRB-measureif there is a setB = B(ν) ⊂ U of positive Lebesgue measure
such that for any continuous observableϕ the identity (14.2) holds forx ∈ B (in this case
Λ is aMilnor attractor, see [184]). The setB(ν) is thebasin of attractionof ν.

Assume that form-almost every pointx ∈ U the Lyapunov exponentsχi(x), i =
1, . . . , p, are not equal to zero. More precisely, there is a number 1� k(x) < p such
thatχi(x) < 0 for i = 1, . . . , k(x) andχi(x) > 0 for i = k(x)+ 1, . . . , p. It is not known
whetherunder this assumption the measureν is hyperbolic.

We stress that a physical measure need not be an SRB-measure as Example 12.5 of the
figure-eight attractor shows. In the following sections we give another (equivalent) defin-
ition of SRB-measures in the case when these measures are hyperbolic. We also discuss
their ergodic properties, and present some examples of systems with SRB-measures (for
a somewhat less elaborated account of SRB-measures see [1]). In uniformly hyperbolic
dynamics SRB-measures are examples of more general Gibbs measures (see the recent ex-
cellent survey on this topic by Ruelle [218]). It is an open problem to extend the theory of
Gibbs measures to nonuniformly hyperbolic dynamical systems.

14.1. Definition and ergodic properties of SRB-measures

Let f be aC1+α diffeomorphism of a compact smooth Riemannian manifoldM andν
a hyperbolic invariant measure forf . Denote byΛ = Λν the set of points with nonzero



198 L. Barreira and Ya. Pesin

Lyapunov exponents. We have thatν(Λ) = 1. Fix a regular setΛ� of positive measure,
a pointx ∈Λ�, and a number 0< r < r� (see (8.16)). Set

R�(x, r)=
⋃

y∈Λ�∩B(x,r)
V u(y)

and denote byξ�(x) the partition ofR�(x, r) by local unstable manifoldsV u(y), y ∈
Λ� ∩B(x, r).

A hyperbolic measureν is called anSRB-measureif for every � > 0 and almost every
x ∈ Λ�, y ∈ Λ� ∩ B(x, r), the conditional measureνu(y), generated byν and partition
ξ�(x) on V u(y), is absolutely continuous with respect to the Riemannian volumemu(y)

onV u(y).
There is a measurable density functionκ(y, z), z ∈ V u(y), such thatdνu(y)(z) =

κ(y, z) dmu(y)(z). The following result gives a description of the density functionκ(y, z).

THEOREM 14.1. For anyy ∈Λ� ∩B(x, r) andz ∈ V u(y),

κ(y, z)=
∞∏
i=1

J (df−1|Eu(f−i (z)))
J (df−1|Eu(f−i (y)))

.

The density functionκ(y, z) is Hölder continuous and strictly positive.
SRB-measures have ergodic properties similar to those of smooth measures. The proofs

of the corresponding results use Theorem 14.1 and are modifications of arguments in the
case of smooth measures (those proofs in the latter case use only absolute continuity of
local unstable manifolds), see Ledrappier [156].

THEOREM 14.2. There exist invariant setsΛ0,Λ1, . . . such that:
1.
⋃
i�0Λi =Λ, andΛi ∩Λj = ∅ wheneveri �= j ;

2. ν(Λ0)= 0, andν(Λi) > 0 for eachi � 1;
3. f |Λi is ergodic for eachi � 1.

THEOREM14.3. There exists a measurable partitionη ofΛwith the following properties:
1. for almost everyx ∈Λ the elementCη(x) is open(mod0) subset ofWu(x);
2. f η� η;
3. η+ =∨∞

i=0f
iη= ε;

4.
∧0
i>−∞ f iη=H(Wu)= π(f |Λ)= ν (the trivial partition ofΛ);

5. for eachi = 1,2, . . . theπ -partition off |Λi is finite and consists ofni elementsΛki ,
k = 1, . . . , ni , such thatf (Λki )=Λk+1

i , k = 1, . . . , ni − 1, andf (Λni )=Λ1
i .

THEOREM 14.4.
1. f ni |Λki is a Bernoulli automorphism.
2. If the mapf |Λ is mixing then it is a Bernoulli automorphism.
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3. (Ledrappier and Strelcyn[158]) The entropy off is

hν(f )= hν(f, η)=
∫
M

∑
i: χi(x)>0

ki(x)χi(x) dν(x).

Let ν be an SRB-measure for aC1+α diffeomorphism of a compact smooth Riemannian
manifoldM andΛ the set of points with nonzero Lyapunov exponents. We have that
ν(Λ)= 1 andV u(x)⊂Λ (mod 0) for almost everyx ∈Λ. In view of the absolute conti-
nuity of local stable manifolds we obtain that the set

⋃
x∈Λ V s(x) has positive volume. As

an immediate corollary of this observation we have the following result.

THEOREM14.5. AC1+α diffeomorphism of a compact smooth Riemannian manifold pos-
sesses at most countably many ergodic SRB-measures. The basin of attraction of every
SRB-measure has positive volume.

14.2. Characterization of SRB-measures

It turns out that the entropy formula (see statement 3 of Theorem 14.4) completely charac-
terizes SRB-measures.

THEOREM14.6. For a Borel measureν invariant under aC2 diffeomorphism, the entropy
formula holds if and only ifν is an SRB-measure.

This characterization was first established by Ledrappier [156] for systems with nonzero
Lyapunov exponents and in the general case by Ledrappier and Young (see [159]; see also
Section 16.1 for a discussion of this result). It is also shown in [159] that the Radon–
Nikodym derivativesdνu(x)/dmu(x) are strictly positive functions which areC1 along
unstable manifolds.

Qian and Zhu [210] extended the notion of SRB-measures toC2 endomorphism via their
inverse limits. They also established the entropy formula and the same characterization of
SRB-measures as in the above theorem.

14.3. Existence of SRB-measures I: Some general results

We describe here results on existence of SRB-measures in some general situations.

1. A topologically transitive Anosov diffeomorphismf possesses an ergodic SRB-
measure: it is the limit of the sequence of measures (14.1). This result extends to uniformly
hyperbolic attractors, i.e., attractors which are hyperbolic sets. For “almost Anosov” dif-
feomorphisms Hu [123] found conditions which guarantee existence of SRB-measures,
while Hu and Young [125] described examples of such maps with no finite SRB-measures
(see the articles [4, Section 3.6] and [1, Section 3] for relevant definitions and details).
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2. More generally, consider a partially hyperbolic attractorΛ, i.e., an attractor such that
f |Λ is partially hyperbolic (see Section 9 in the chapter “Partially hyperbolic dynamical
systems” by B. Hasselblatt and Ya. Pesin in this volume [6]). Observe thatWu(x)⊂Λ for
everyx ∈Λ.

Let ν be an invariant Borel probability measure supported onΛ. Given a pointx ∈Λ,
and a small numberr > 0, set

R(x, r)=
⋃

y∈Λ∩B(x,r)
V u(y).

Denote byξ(x) the partition ofR(x, r) by V u(y), y ∈ Λ ∩ B(x, r). Following [204] we
call ν au-measureif for almost everyx ∈Λ andy ∈Λ∩B(x, r), the conditional measure
νu(y), generated byν and partitionξ(x) onV u(y), is absolutely continuous with respect
tomu(y).

THEOREM 14.7 (Pesin and Sinai [204]).Any limit measure of the sequence of measures
(14.1)is au-measure onΛ.

Since partially hyperbolic attractors may not admit Markov partitions, the proof of this
theorem exploits quite a different approach than the one used to establish existence of
SRB-measures for classical hyperbolic attractors (see Section 19 where this approach is
outlined).

In general, the sequence of measures (14.1) may not converge and some strong condi-
tions are required to guarantee convergence.

THEOREM 14.8 (Bonatti and Viana [52]).Assume that:
1. every leaf of the foliationWu is everywhere dense inΛ;
2. there exists a limit measureν for the sequence of measures(14.1) with respect to

whichf has negative central exponents.
Then the sequence of measures(14.1) converges and the limit measure is the unique
u-measure onΛ. It is an SRB-measure.

Every SRB-measure onΛ is au-measure. The converse statement is not true in general
but it is true in the following two cases:

(a) Λ is a (completely) hyperbolic attractor;
(b) f has negative central exponents.

Here are two results in this direction.

THEOREM 14.9 (Alves, Bonatti and Viana [19]).Assume thatf is nonuniformly expand-
ing along the center-unstable direction, i.e.,

lim
n→∞

1

n

n∑
j=1

log
∥∥df−1|Ecu

f j (x)

∥∥< 0 (14.3)
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for all x in a positive Lebesgue measure setA⊂M . Thenf has an ergodic SRB-measure
supported in

⋂∞
j=0f

j (M). Moreover, if the limit in (14.3)is bounded away from zero then
A is contained(mod0) in the union of the basins of finitely many SRB-measures.

THEOREM 14.10 (Burns, Dolgopyat and Pesin [64]).Letν be au-measure onΛ. Assume
that there exists an invariant subsetA⊂Λ withµ(A) > 0 on whichf has negative central
exponents. Assume also that for everyx ∈Λ the global unstable manifoldWu(x) is dense
inΛ. Thenν is the onlyu-measure forf andf has negative central exponents atν-almost
everyx ∈ Λ; hence, (f, ν) is ergodic, ν is an SRB-measure and its basin contains the
topological basin ofΛ (mod0).

3. The following general statement links convergence of the sequence of measures
(14.1) to the existence of SRB-measures.

THEOREM 14.11 (Tsujii [241]). Let f be aC1+α diffeomorphism of a compact smooth
Riemannian manifoldM andA⊂M a set of positive volume such that for everyx ∈A the
sequence of measures

1

n

n−1∑
i=0

δf k(x)

converges weakly to an ergodic hyperbolic measureνx . If the Lyapunov exponents atx
coincide with those ofνx thenνx is an SRB-measure for Lebesgue almost everyx ∈A.

4. In [259], Young suggested an axiomatic approach for constructing SRB-measures. It
is built upon her work on tower constructions for nonuniformly hyperbolic systems and
presents the system as a Markov extension (see Appendix A). This approach is a basis
to establish existence of SRB-measures for Hénon-type attractors as well as existence of
absolutely continuous invariant measures for some piecewise hyperbolic maps and logistic
maps.

Let f be aC1+α diffeomorphism of a compact smooth Riemannian manifoldM .
An embedded diskγ ⊂M is called anunstable diskif for any x, y ∈ γ the distance

ρ(f−n(x), f−n(y))→ 0 exponentially fast asn→∞; it is called astable diskif for any
x, y ∈ γ the distanceρ(f n(x), f n(y))→ 0 exponentially fast asn→∞.

We say that a setΛ has ahyperbolic product structureif there exist a continuous family
of unstable disksΓ u = {γ u} and a continuous family of stable disksΓ s = {γ s} such that

1. dimγ u + dimγ s = dimM ;
2. theγ u-disks are transversal to theγ s -disks with the angles between them bounded

away from zero;
3. eachγ u-disk meets eachγ s -disk at exactly one point;
4. Λ= (⋃γ u)∩ (⋃γ s).

We impose some conditions on the mapf (see conditions (P1)–(P5) below) which guaran-
tee the existence of an SRB-measure forf . Roughly speaking they mean that there exists
a setΛ with a hyperbolic product structure and a return mapf R from Λ to itself such
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thatf is a Markov extension overf R (see Appendix A). More precisely, we assume the
following.

(P1) There existsΛ⊂M with a hyperbolic product structure and such thatµγu{γ u∩Λ}
> 0 for everyγ u ∈ Γ u.

(P2) There are pairwise disjoint subsetsΛ1,Λ2, . . .⊂Λ with the properties that
1. eachΛi has a hyperbolic product structure and its defining families can be

chosen to beΓ u andΓ si ⊂ Γ s ; we callΛi an s-subset; similarly, one defines
u-subsets;

2. on eachγ u-disk,µγu{(Λ \⋃Λi)∩ γ u} = 0;
3. there existsRi � 0 such thatf Ri (Λi) is au-subset ofΛ; moreover, for allx ∈
Λi we require thatf Ri (γ s(x))⊂ γ s(f Ri (x)) andf Ri (γ u(x))⊃ γ u(f Ri (x));

4. for eachn, there are at most finitely manyi′s withRi = n;
5. minRi �R0 for someR0> 0 depending only onf .

Condition (P2) means that the setΛ has the structure of a “horseshoe”, however, infi-
nitely many branches returning at variable times.

In order to state remaining conditions (P3)–(P5) we assume that there is a function
s0(x, y)—a separation timeof the pointsx andy—which satisfy:

(i) s0(x, y)� 0 and depends only on theγ s -disks containing the two points;
(ii) the maximum number of orbits starting fromΛ that are pairwise separated before

timen is finite for eachn;
(iii) for x, y ∈Λ, s0(x, y)�Ri + s0(f Ri (x), f Ri (y)); in particular,s0(x, y)�Ri ;
(iv) for x ∈Λi , y ∈Λj , i �= j butRi =Rj , we haves0(x, y) < Ri − 1.

Conditions (iii) and (iv) describe the relations betweens0(x, y) and returns toΛ, namely,
that points in the sameΛi must not separate before they return, while points in distinctΛ′

is
must first separate if they are to return simultaneously.

We assume that there existC > 0 andα < 1 such that for allx, y ∈ Λ the following
conditions hold:

(P3) contraction alongγ s -disks: ρ(f n(x), f n(y))� Cαn for all n� 0 andy ∈ γ s(x);
(P4) backward contraction and distortion alongγ u: for y ∈ γ u(x) and 0� k � n <

s0(x, y), we have
(a) ρ(f n(x), f n(y))� Cαs0(x,y)−n;

(b) log
n∏
i=k

detdf u(f i(x))

detdf u(f i(y))
� Cαs0(x,y)−n;

(P5) convergence ofd(f i |γ u) and absolute continuity ofΓ s :
(a) fory ∈ Γ s(x) andn� 0,

log
∞∏
i=k

detdf u(f i(x))

detdf u(f i(y))
� Cαn;
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(b) for γ, γ ′ ∈ Γ u defineΘ :γ ∩Λ→ γ ′ ∩Λ byΘ(x)= γ s(x) ∩ γ ′. ThenΘ is
absolutely continuous and

d(Θ−1∗ µγ ′)

dµγ
(x)=

∞∏
i=0

detdf u(f i(x))

detdf u(f i(Θ(x)))
.

In [259], Young showed that a mapf satisfying conditions (P1)–(P5) admits a Markov
extension (see Appendix A). As an important corollary one has the following result.

THEOREM 14.12 (Young [259]).Assume that for someγ ∈ Γ u,∫
γ∩Λ

R dµγ <∞.

Thenf admits an SRB-measure.

14.4. Existence of SRB-measures II: Hénon attractors

Constructing SRB-measures for nonuniformly hyperbolic dissipative systems is a chal-
lenging problem and few examples have been successfully studied.

In Section 19 we will discuss existence of SRB-measures for uniformly hyperbolic dis-
sipative maps with singularities possessing generalized hyperbolic attractors. The behavior
of trajectories in these systems is essentially nonuniformly hyperbolic.

An example of nonuniformly hyperbolic dissipative systems possessing SRB-measures
is the Hénon map. It was introduced by Hénon in 1977 (see [113]) as a simplified model for
the Poincaré first return time map of the Lorenz system of ordinary differential equations.
The Hénon family is given by

Ha,b(x, y)=
(
1− ax2 + by, x).

Hénon carried out numerical studies of this family and suggested the presence of a
“chaotic” attractor for parameter values neara = 1.4 andb = 0.3. Observe that forb = 0
the familyHa,b reduces to the logistic familyQa . By continuity, givena ∈ (0,2), there is
a rectangle in the plane which is mapped byHa,b into itself. It follows thatHa,b has an
attractor providedb is sufficiently small. This attractor is called theHénon attractor.

In the seminal paper [40], Benedicks and Carleson, treatingHa,b as small perturba-
tions ofQa , developed highly sophisticated techniques to describe the dynamics near the
attractor. Building on this analysis, Benedicks and Young [41] established existence of
SRB-measures for the Hénon attractors and described their ergodic properties.

THEOREM 14.13. There existε > 0 andb0 > 0 such that for every0< b � b0 one can
find a set∆b ∈ (2 − ε,2) of positive Lebesgue measure with the property that for each
a ∈∆b the mapHa,b admits a unique SRB-measureνa,b.
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In [42], Benedicks and Young studied ergodic properties of the measureνa,b showing
that besides being Bernoulli this measure has exponential decay of correlations and satisfies
a central limit theorem. More precisely, they proved the following result.

Let f be a transformation of a Lebesgue spaceX preserving a probability measureν
andL be a class of functions onX. We say thatf hasexponential decay of correlations
for functions inL if there is a numberτ < 1 such that for every pair of functionsϕ,ψ ∈ L
there is a constantC = C(ϕ,ψ) > 0 such that for alln� 0,∣∣∣∣∫ ϕ(ψ ◦ f n)dν −

∫
ϕ dν

∫
ψ dν

∣∣∣∣�Cτn
(see Appendix A for more information on decay of correlations). Further, we say thatf

satisfies acentral limit theoremfor ϕ with
∫
ϕ dν = 0 if for someσ > 0 and allt ∈ R,

ν

{
1√
n

n−1∑
i=0

ϕ ◦ f i < t
}
→ 1√

2πσ

∫ t
−∞

e−u2/2σ2
du

asn→∞.

THEOREM 14.14 [42]. With respect toνa,b the mapHa,b
1. has exponential decay of correlations for Hölder continuous functions(the rate of

decay may depend on the Hölder exponent);
2. satisfies the central limit theorem for Hölder continuous functions with zero mean;

the standard deviationσ is strictly positive if and only ifϕ �= ψ ◦ f − ψ for some
ψ ∈ L2(ν).

In [246], Wang and Young introduced a 2-parameter family of maps of the plane to
which the above results extend. This family is defined as follows.

Let A= S1 × [−1,1] and a 2-parameter familyTa,b :A→ A, a ∈ [a0, a1], b ∈ [0, b1],
be constructed via the following four steps.

StepI. Let f :S1 → S1 satisfies theMisiurewicz conditions: if C = {x: f ′(x)= 0} then
1. f ′′ �= 0 for all x ∈ C;
2. f has negative Schwarzian derivative onS1 \C;
3. f n(x) �= x and|(f n)′(x)| � 1 for anyx ∈ S1 andn ∈ Z;
4. infn�0d(f

n(x),C) > 0 for all x ∈ C.
Observe that forp ∈ S1 with infn�0d(f

n(p),C) > 0, and anyg sufficiently close tof
in theC2 topology there is a unique pointp(g) having the same symbolic dynamics with
respect tog asp does with respect tof . If fa is a 1-parameter family throughf with fa
sufficiently close tof in theC2 topology for alla we letp(a) = p(fa). For x ∈ C we
denote byx(a) the corresponding critical point offa .

StepII. Let fa :S1 → S1 be a 1-parameter family for whichf = fa∗ for somea∗ ∈
[a0, a1] with f as in Step I. We assume that the followingtransversality conditionholds:
for everyx ∈ C andp = f (x),

d

dx
fa
(
x(a)
) �= d

da
p(a) ata = a∗.
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StepIII. Let fa,b :S1 × {0} → A be a 2-parameter family which is an extension of the
1-parameter family in Step II, i.e.,fa,0 = fa andfa,b is an embedding forb > 0.

StepIV. Let Ta,b :A→A be an extension offa,b in such a way thatTa,0 ⊂ S1 →A and
Ta,b mapsA diffeomorphically onto its image forb > 0. Assume also that the following
nondegeneracy conditionholds:

∂yTa∗,0(x,0) �= 0 wheneverf ′
a∗(x)= 0.

For a version of this construction in higher dimensions see [247].
On another direction, Mora and Viana [188] modified Benedicks and Carleson’s ap-

proach in a way which allowed them to treat Hénon-like maps using some techniques from
the general bifurcation theory such as homoclinic tangencies. Later Viana [244] extended
results from [188] to higher dimensions; see [170] for a more detailed account of these
results and further references.

15. Hyperbolic measures I: Topological properties

One can extend some techniques widely used in the theory of locally maximal hyperbolic
sets to measures with nonzero exponents. These tools are not only important for appli-
cations but they provide a crucial nontrivial geometric structure to measures with nonzero
exponents. In particular, one can close recurrent orbits, shadow pseudo-orbits, construct al-
most Markov covers, and determine the cohomology class of Hölder cocycles by periodic
data.

Let f be aC1+α diffeomorphism of a compact Riemannian manifoldM , for some
α > 0, andν anf -invariant hyperbolic probability measure.

15.1. Closing and shadowing lemmas

We address the following two fundamental problems:
1. Given a recurrent pointx is it possible to find a nearby periodic pointy which follows

the orbit ofx during the period of time that the points in the orbit ofx return very
close tox?

2. Given a sequence of points{xn} with the property that the image ofxn is very close
to xn+1 for everyn (such a sequence{xn} is called apseudo-orbit), is it possible to
find a pointx such thatf n(x) is close toxn for everyi? In other words, if a sequence
of points{xn} resembles an orbit can one find a real orbit that shadows (or closely
follows) the pseudo-orbit?

This sort of problems are known respectively asclosing problemandshadowing prob-
lem, while the corresponding properties are called theclosing propertyand theshadowing
property.

The following result by Katok [135] establishes the closing property for nonuniformly
hyperbolic diffeomorphisms.
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THEOREM 15.1. For every� > 0 andη > 0 there existsδ = δ(�, η) > 0 with the following
property: if x ∈Λ� andf m(x) ∈Λ� with d(f m(x), x) < δ, then there existsz= z(x) such
that

1. z is a hyperbolic periodic point forf with f m(z)= z;
2. for i = 0, . . . ,m,

d
(
f i(z), f i(x)

)
� ηA�max

{
eεi, eε(m−i)

}
,

whereA� is a constant depending only on�.

An immediate corollary of this result is the existence of periodic orbits in a regular set
Λ� of a nonuniformly hyperbolic diffeomorphism. In fact, a stronger result holds. Denote
by Perh(f ) the set of hyperbolic periodic points forf .

THEOREM 15.2 (Katok [135]).We havesuppν ⊂ Perh(f ).

The proof of Theorem 15.2 is an application of Theorem 15.1. Fixx0 ∈ suppµ, α > 0
and�� 1 such thatµ(B(x0, α/2)∩Λ�) > 0. Chooseδ > 0 according to Theorem 15.1 and
such thatηA� < α/2 and a setB ⊂ B(x0, α/2) ∩Λ� of positive measure and diameter at
mostδ. By the Poincaré Recurrence Theorem, forµ-almost everyx ∈ B there exists a pos-
itive integern(x) such thatf n(x)(x) ∈ B and hence,d(f n(x)(x), x) < δ. By Theorem 15.1,
there exists a hyperbolic periodic pointz of periodn(x) such thatd(x, z) < α/2, and thus
d(x0, z) < d(x0, x)+ d(x, z) < α.

A further application of Theorem 15.1 is the following statement.

COROLLARY 15.3. For an ergodic measureν, if all the Lyapunov exponents off are neg-
ative(respectively, all are positive) on a set of fullν-measure, thensuppν is an attracting
(respectively, repelling) periodic orbit.

See also Corollaries 15.7, 15.15, and 15.16 below for related results.
We now present an analog of the shadowing lemma for nonuniformly hyperbolic dif-

feomorphisms. Givena ∈ Z ∪ {−∞} andb ∈ Z ∪ {∞}, a sequence{xn}a<n<b is called an
ε-orbit or ε-pseudo-orbit for f if d(xn+1, xn) < ε for all a < n < b. It is δ-shadowedby
the orbit ofx if d(xn, f n(x)) < δ for all a < n < b.

Given� > 0, denote by

Λ̃� =
⋃
x∈Λ�

R(x),

whereR(x) is a regular neighborhood ofx (see Section 8.7).

THEOREM 15.4 (Katok and Mendoza [139]).For every sufficiently smallα > 0 there
existsβ = β(α, �) such that given aβ-pseudo-orbit{xm} ⊂ R̃�, there existsy ∈M such
that its orbitα-shadows{xm}.
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The following result is a nonuniformly hyperbolic version of the famous Livshitz theo-
rem that determines the cohomology class of Hölder cocycles by periodic data.

THEOREM 15.5 (Katok and Mendoza [139]).Let ϕ :M → R be a Hölder continuous
function such that for each periodic pointp withfm(p)= p we have

∑m−1
i=0 ϕ(f

i(p))= 0.
Then there exists a Borel measurable functionh such that forν-almost everyx,

ϕ(x)= h(f (x))− h(x).
15.2. Continuous measures and transverse homoclinic points

In the neighborhood of any transverse homoclinic point there exists a hyperbolic horseshoe,
that is, a (uniformly) hyperbolic invariant set obtained by a horseshoe-like construction
(see, for example, [137, Theorem 6.5.5]). This phenomenon persists under small perturba-
tions. It turns out that transverse homoclinic points are present whenever the diffeomor-
phism possesses hyperbolic continuous measures.

THEOREM15.6 (Katok [135]).Letν be a continuous and nonatomic Borel invariant mea-
sure. Then

1. suppν is contained in the closure of the set of hyperbolic periodic points that have
transverse homoclinic points;

2. if ν is ergodic, thensuppν is contained in the closure of the set of transverse homo-
clinic points of exactly one hyperbolic periodic point.

Let Pm(f ) be the number of periodic points off of periodm.

COROLLARY 15.7. Let ν be a continuous and nonatomic Borel invariant measure. Then
f has a compactf -invariant setΛ⊂M such that

1. lim
m→∞

1

m
logPm(f )� h(f |Λ) > 0; (15.1)

2. Λ is a horseshoe forf , i.e., Λ is a (uniformly) hyperbolic set forf and f |Λ is
topologically conjugate to a topological Markov chain.

In particular,h(f ) > 0 whenever there exists a continuous nonatomic hyperbolic in-
variant measure. One can strengthen Theorem 15.6 and obtain a Spectral Decomposition
Theorem for hyperbolic measures.

THEOREM 15.8 (Katok and Mendoza [139]).For each� > 0, the Pesin setΛ� can be
decomposed into finitely many closedf -invariant setsΛi such that for eachi there exists
xi ∈M withΛi ⊂ {f n(xi): n ∈ Z}.
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Set now

χ(x)= min
{∣∣χi(x)∣∣: 1� i � s

}
,

whereχi(x) are the values of the Lyapunov exponent atx. If ν is an ergodic hyperbolic
measure, thenχ(x)= χν , whereχν is a nonzero constant.

THEOREM 15.9 (Katok and Mendoza [139]).Let ν be ergodic. If x ∈ suppν, then for
any ρ > 0, any neighborhoodsV of x andW of suppν, and any continuous functions
ϕ1, . . . , ϕk , there exists a hyperbolic periodic pointz ∈ V such that:

1. the orbit ofz is contained inW ;
2. χ(z)� χν − ρ;
3. if m(z) is the period ofz, then fori = 1, . . . , k,

∣∣∣∣∣ 1

m(z)

m(z)−1∑
k=0

ϕi
(
f k(x)
)− ∫

M

ϕi dν

∣∣∣∣∣< ρ.
Theorem 15.9 has the following consequence.

COROLLARY 15.10. If {fn}n�1 is a sequence ofC1+α diffeomorphisms converging tof
in theC1 topology, then for eachn� 1, fn has a hyperbolic invariant probability measure
νn such that{νn}n�1 converges weakly toν. Furthermore, νn may be chosen such that
suppνn ⊂ Perh(fn) for eachn� 1.

An application of Corollary 15.10 to a constant sequence of diffeomorphisms yields the
following result.

COROLLARY 15.11. For aC1+α diffeomorphismf :M→M of a compact smooth man-
ifold one of the following mutually exclusive alternatives holds:

1. the measures supported on hyperbolic periodic points are weakly dense in the set of
hyperbolic measures;

2. there are no hyperbolic measures(and hence, there are no hyperbolic periodic
points).

Corollaries 15.10 and 15.11 suggest a “weak stability” of hyperbolic measures.
The estimate (15.1) can be strengthened in the following way to become somewhat a

multiplicative estimate.

THEOREM15.12 (Ugarcovici [242]).Assume thathν(f ) > 0. If ν is not a locally maximal
ergodic measure in the class off -invariant ergodic measures then there exist multiplica-
tively enough periodic orbits which are equidistributed with respect toν. In other words,
for anyr > 0 and any collection of continuous functionsϕ1, . . . , ϕk there exist a sequence
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nm→∞ and setsPnm = Pnm(r,ϕ1, . . . , ϕk) of periodic orbits of periodnm such that for
anyz ∈ Pnm ,∣∣∣∣∣ 1

nm

nm∑
i=1

ϕi
(
f l(z)
)− ∫ ϕi dν

∣∣∣∣∣< r
and

lim
m→∞

cardPnm
enmhν(f )

� 1.

15.3. Entropy, horseshoes, and periodic points

Recall that a setΛ is a horseshoe for a diffeomorphismf if there exists, k and sets
Λ0, . . . ,Λk−1 such thatΛ = Λ0 ∪ · · · ∪Λk−1, f k(Λi) = Λi , f (Λi) = Λi+1 modk, and
f k|Λ0 is conjugate to a full shift ins symbols. For a horseshoeΛ we set

χ(Λ)= inf{χν : suppν is a periodic orbit onΛ}.

THEOREM 15.13 (Katok and Mendoza [139]).Assume thatν is ergodic andhν(f ) > 0.
Then for anyε > 0 and any continuous functionsϕ1, . . . , ϕk onM , there exists a hyperbolic
horseshoeΛ such that:

1. h(f |Λ) > hν(f )− ε;
2. Λ is contained in anε-neighborhood ofsuppν;
3. χ(Λ) > χν − ε;
4. there exists a measureν0 supported onΛ such that fori = 1, . . . , k,∣∣∣∣∫

M

ϕi dν0 −
∫
M

ϕi dν

∣∣∣∣< δ.
We outline the proof of this result. Given� � 1, let ζ be a finite measurable partition

of M refining the partition{Λ�,M \Λ�}. Fix r > 0. For eachm� 1, letΛ�m be the set of
pointsx ∈Λ� such thatf q(x) ∈ ζ(x) for someq ∈ [m,(1+ r)m], and∣∣∣∣∣1s

s−1∑
j=0

ϕi
(
f j (x)

)− ∫
M

ϕ dν

∣∣∣∣∣< r2
for s � m and i = 1, . . . , k. Using Birkhoff’s Ergodic Theorem, one can show that
ν(Λ�m)→ ν(Λ�) asm→∞. From now on we choosem such thatν(Λ�m) > ν(Λ

�)− r .
Given δ > 0, there exists a cover{R(x1), . . . ,R(xt )} of Λ� by closed rectangles (with
xi ∈Λ�m) and numbersλ ∈ (0,1), satisfyinge−χν−δ < λ < e−χν+δ , andγ > 0 such that

1. Λ� ⊂⋃ti=1B(xi, δ), with B(xi, δ)⊂ intR(xi) for eachi;
2. diamR(xi) < r for eachi;
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3. if x ∈Λ� ∩B(xi, δ) andfm(x) ∈Λ� ∩B(xj , δ) for somem> 0, then the connected
componentC(R(xi) ∩ f−m(R(xj )), x) of R(xi) ∩ f−m(R(xj )) containingx is an
admissible(s, γ )-rectangle inR(xi) andf m(C(R(xi) ∩ f−m(R(xj )), x)) is an ad-
missible(u, γ )-rectangle inR(xj );

4. for k = 0, . . . ,m,

diamf k
(
C
(
R(xi)∩ f−m(R(xj )), x))� 3 diamR(xi)max

{
λk,λm−k

}
.

Here anadmissible(s, γ )-rectangleis the set of points{
(v,u) ∈ [−h,h]2: u= θψ1(v)+ (1− θ)ψ2(v), 0� θ � 1

}
,

whereψ1 andψ2 are two(s, γ )-curves (for someh � 1 and some appropriate parame-
trization in each Lyapunov chart; see Section 8.2). The definition of(u, γ )-rectangles is
analogous. The cover can be easily obtained from the behavior of(s, γ )- and(u, γ )-curves
under iteration byf , and by using Theorem 15.1 to establish the last property.

LetEm ⊂Λ�m be an(m, ε)-separated set of maximal cardinality. By the Brin–Katok for-
mula for the metric entropy, there exist infinitely manym such that cardEm � em(hν(f )−r).
For eachq ∈ [m,(1+ r)m], let Vq = {x ∈ Em: f q(x) ∈ ζ(x)} and letn be the value of
q that maximizes cardVq . Sinceemr > mr we have cardVn � em(hν(f )−3r). Consider now
the valuej for which card(Vn ∩R(xj )) is maximal. Then

card
(
Vn ∩R(xj )

)
� 1

t
cardVn � 1

t
em(hν(f )−3r). (15.2)

Each point x ∈ Vn ∩ R(xj ) returns to the rectangleR(xj ) in n iterations, and
thus C(R(xj ) ∩ f n(R(xj )), f n(x)) is an admissible(u, γ )-rectangle inR(xj ) and
f−n(C(R(xj ) ∩ f n(R(xj )), f n(x))) is an admissible(s, γ )-rectangle inR(xj ). This
follows from the fact thatd(xj , x) < δ and d(f n(x), xj ) < δ, and from property 2
of the cover. Ify ∈ C(R(xj ) ∩ f−n(R(xj )), x) then by the last property of the cover,
d(f i(x), f i(y)) � 3r for i = 0, . . . , n. This implies that given a pointy ∈ C(R(xj ) ∩
f−n(R(xj )), x) \ {x}, we must havey /∈ Vn; otherwise it would contradict the separability
of Vn. Hence, there exist cardVn disjoint admissible(s, γ )-rectangles mapped byf n onto
cardVn admissible(u, γ )-rectangles.

Let

Λ(m)=
⋃
l∈Z

f nl
( ⋃
x∈Vn∩R(xj )

C
(
R(xj )∩ f−n(R(xj )), x)).

The mapf n|Λ(m) is conjugate to the full shift on card(Vn ∩ R(xj )) symbols. Now ob-
serve that for eachy ∈ Λ(m) its orbit remains in the union of the regular neighborhoods
R(xj ), . . . ,R(f

n(xj )), and thusf n|Λ(m) is a hyperbolic horseshoe.
The entropy off n|Λ(m) equals logcard(Vn ∩R(xj )). By (15.2),

h
(
f |Λ(m))= 1

n
logcard

(
Vn ∩R(xj )

)
� 1

n
log

1

t
em(hν(f )−3r).
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Sincem/n > 1/(1+ r), we obtain the desired properties.
The following are immediate consequences of Theorem 15.13.

COROLLARY 15.14. Assume thatν is ergodic andhν(f ) > 0. There exists a sequence of
f -invariant measuresνn supported on hyperbolic horseshoesΛn such that:

1. νn→ ν in the weak* topology;
2. if hν(f ) > 0 thenhνn(f )→ hν(f ).

COROLLARY 15.15. Assume thatν is ergodic andhν(f ) > 0. Givenε > 0,

hν(f )� lim
m→∞

1

m
log+ card

{
x ∈M: f m(x)= x andχ(x)� χ(ν)− ε}.

In particular,

h(f )� lim
m→∞

1

m
log+ Pm(f ).

In the two-dimensional case, any measure with positive entropy is hyperbolic (see Corol-
lary 12.8). Therefore, Corollary 15.15 implies the following relation between periodic
points and topological entropy.

COROLLARY 15.16. For anyC1+α diffeomorphismf of a two-dimensional manifold,

h(f )� lim
m→∞

1

m
log+Pm(f ). (15.3)

In the multi-dimensional case, the inequality (15.3) does not hold for arbitrary diffeo-
morphisms.

The following result shows that hyperbolic measures persist underC1 perturbations.
This is a consequence of the structural stability of hyperbolic measures.

COROLLARY 15.17. Assume thatν is ergodic andhν(f ) > 0. GivenC1+α diffeomor-
phismsfn for eachn � 1 such thatfn converges tof in the C1 topology, there exist
fn-invariant ergodic measuresνn satisfying the following properties:

1. νn→ ν in the weak topology;
2. hνn(fn)→ hν(f );
3. χνn → χν .

15.4. Continuity properties of entropy

It follows from Theorem 15.13 that

h(f )= sup
{
h(f |Λ): Λ is a hyperbolic horseshoe

}
.
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The following two results describe continuity-like properties of topological and metric
entropies on the space of diffeomorphisms. The first result deals with diffeomorphisms of
classC1+α and follows from Corollary 15.17 and the structural stability of horseshoes.

THEOREM 15.18. The topological entropy on the space ofC1+α diffeomorphisms of a
given surface is lower-semicontinuous.

The second result deals withC∞ diffeomorphisms.

THEOREM 15.19. For aC∞ mapf :M→M of a compact manifold
1. the mapµ  → hµ(f ) is upper-semicontinuous on the space off -invariant probability

measures onM ;
2. the mapf  → h(f ) is upper-semicontinuous.

The first statement is due to Newhouse [190] and the second one was established in-
dependently by Newhouse [190] and Yomdin [253]. We refer to [190] for references in
the case of interval maps. It follows from Theorems 15.18 and 15.19 that the topological
entropy is continuous forC∞ diffeomorphisms of a given compact surface.

15.5. Yomdin-type estimates and the entropy conjecture

In [227, §V], Shub conjectured that for anyC1 mapf :M→M of a compact manifold,

h(f )� logσ(f∗), (15.4)

wheref∗ :H∗(M,R)→H∗(M,R) is the linear map induced byf on the total homology
ofM ,

H∗(M,R)=
dimM⊕
i=0

Hi(M,R)

and

σ(f∗)= lim
n→∞‖f n∗ ‖1/n = max

{
σ(f∗i ): i = 0, . . . ,dimM

}
is the spectral radius off∗. This is referred to as theentropy conjecture. For aC1+α dif-
feomorphismf one could use (15.4) if available to establish positivity of the topological
entropy and hence, existence of a measure with some positive Lyapunov exponents and the
associated nontrivial stochastic behavior (see Section 15.2). We give here an account of the
results in the direction of the conjecture (see also the survey by Katok [133] for the status
of the conjecture prior to 1986).

In the case of the first homologyf∗1 :H1(M,R)→ H1(M,R) we have the following
result for arbitrary continuous maps.
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THEOREM 15.20 (Manning [177]).If f is a continuous map of a smooth compact mani-
fold thenh(f )� logσ(f∗1).

There exists a stronger version of Theorem 15.20 due to Katok [133] with the number
logσ(f∗1) replaced by the so-called algebraic entropy of the action induced byf on the
(not necessarily commutative) fundamental groupπ1(M). It follows from Theorem 15.20
and Poincaré duality that the entropy conjecture holds for any homeomorphism of a mani-
foldM with dimM � 3 (see [177]).

In the case of the top homology group the following result holds (recall thatf∗dimM is
the same as multiplication by the degree degf ).

THEOREM 15.21 (Misiurewicz and Przytycki [187]).If f is a C1 map of a compact
smooth manifold, thenh(f )� log|degf |.

In particular, this implies that the entropy conjecture holds for any smooth map of a
sphere (in any dimension) and any smooth map of a compact manifold with dimension at
most 2.

On some manifolds the entropy conjecture turns out to hold for arbitrary continuous
maps.

THEOREM 15.22 (Misiurewicz and Przytycki [186]).The entropy conjecture holds for
any continuous map of a torus(in any dimension).

Since any Anosov automorphism of the torus is topologically conjugate to an algebraic
automorphism (see [137, Theorem 18.6.1]), we conclude that iff is an Anosov diffeomor-
phism of a torus, thenh(f )= logσ(f∗).

Shub formulated the entropy conjecture in connection with the problem of defining the
simplest diffeomorphisms in each isotopy class of diffeomorphisms. From this point of
view, it is important to discuss the entropy conjecture for example for structurally sta-
ble diffeomorphisms. In [228], Shub and Sullivan described an open and dense subset (in
theC0-topology) of the set of structurally stable diffeomorphisms for which the entropy
conjecture holds. Later Shub and Williams obtained a more general result which does no
require the nonwandering set to have zero dimension.

THEOREM 15.23 (Shub and Williams [230]).The entropy conjecture holds for any ax-
iom A no-cycles diffeomorphism.

More recently Yomdin established theC∞ version of the entropy conjecture with an
approach using semialgebraic geometry.

THEOREM 15.24 (Yomdin [253,254]).The entropy conjecture holds for anyC∞ map of
a compact manifold.
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Yomdin also proved more generally that for aCk mapf :M→M of a compact mani-
fold, with 1� k � ∞, andj = 0, . . . ,dimM ,

h(f )+ j
k

lim
n→∞

1

n
logmax

x∈M ‖dxf n‖ � vj (f )� logσ(f∗j ).

Herevj (f ) is the exponential growth rate ofj -volumes,

vj (f )= sup lim
n→∞

1

n
log vol

(
f n(A)

)
,

where the supremum is taken over all submanifoldsA⊂M of dimensionj , and the volume
is counted with multiplicities. Newhouse proved earlier in [189] thath(f ) � maxj vj (f )
for a C1+α map of a compact manifold. In particular, we haveh(f ) = maxj vj (f ) =
logσ(f∗) for aC∞ map.

16. Hyperbolic measures II: Entropy and dimension

16.1. Entropy formula

We describe results of Ledrappier and Young [159,160] including the general formula for
the entropy of a diffeomorphism. Letf be aC2 diffeomorphism of a compact smooth
Riemannian manifoldM preserving a Borel measure onM . For a regular pointx ∈M and
i = 1, . . . , u(x)= max{i: λi(x) > 0}, consider theith-unstable global manifoldWi(x) of
f atx (see Section 9.2). We introduce the notion of the entropy “along” theWi -foliation.

Forn > 0, andε > 0 set

Vi(x,n, ε)=
{
y ∈Wi(x): ρWi

(
f k(x), f k(y)

)
< ε for 0� k < n

}
.

Consider a measurable partitionξ ofM . We say thatξ is subordinateto theWi -foliation if
for ν-almost everyx ∈M we haveξ(x)⊂Wi(x) andξ(x) contains an open neighborhood
of x in the topology ofWi(x). Let {νi(x)} be the system of conditional measures associated
with ξ . Define

hi(x, ξ)= lim
ε→0

lim
n→∞

−1

n
logνi(x)

(
Vi(x,n, ε)

)
,

h̄i (x, ξ)= lim
ε→0

lim
n→∞−1

n
logνi(x)

(
Vi(x,n, ε)

)
.

THEOREM 16.1 [160]. The following properties hold:
1. hi(x) := hi(x, ξ) = h̄i (x, ξ) for ν-almost everyx ∈M , independently of the choice

of the partitionξ ;
2.
∫
M
hu(x)(x) dν(x)= hν(f ).
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The numberhi(x) is called thelocal entropyof f atx along theWi -foliation.
We also consider the pointwise dimension of conditional measures “along” theWi -

foliation. LetBi(x, r) be the ball inWi(x) centered atx of radiusε andξ a measurable
partition subordinate toWi . For a regular pointx ∈M define

diν(x, ξ)= lim
r→0

logνi(x)(Bi(x, r))

logr
, d̄iν(x, ξ)= lim

r→0

logνi(x)(Bi(x, r))

logr
.

THEOREM 16.2 [160]. The following properties hold:
1. diν(x) := diν(x, ξ)= d̄ iν(x, ξ) for ν-almost everyx ∈M , independently of the choice

of the partitionξ ;
2. 0� diν(x)− di−1

ν (x)� dimEi(x) for 2� i � u(x).

The numberdiν(x) is called thepointwise dimensionof ν along theWi -foliation. The
numberdiν(x)−di−1

ν (x) can be interpreted as a “transverse dimension” ofν on the quotient
Wi/Wi−1 (recall that each leaf ofWi is foliated by leaves ofWi−1).

In the particular casesi = s andi = u the quantities

dsν(x)
def= lim
r→0

logνsx(B
s(x, r))

logr
, duν (x)

def= lim
r→0

logνux (B
u(x, r))

logr

are calledstableandunstable local(pointwise) dimensionsof ν. They are well defined for
almost everyx ∈M and are constant almost everywhere; we denote these constants bydsν
andduν . Set alsod0

ν (x)= 0.

THEOREM 16.3 [160]. The metric entropy of aC2 diffeomorphismf is expressed by the
following formula:

hν(f )=
∫
M

u(x)∑
i=1

λi(x)
(
diν(x)− di−1

ν (x)
)
dν(x).

The proof goes by showing that forν-almost everyx ∈M andi = 2, . . . , u(x),

h1(x)= λ1(x)d
1
ν (x), hi(x)− hi−1(x)= λi(x)

(
diν(x)− di−1

ν (x)
)
.

To prove this Ledrappier and Young constructed a special countable partitionP of M of
finite entropy related to the Pinsker partition (see Theorem 11.16). Given integersk, � ∈ N
we also consider the partitionP lk =

∨l
n=−k f−nP .

THEOREM 16.4 [159,160].Let ν be ergodic. Given0< ε < 1, there exists a setΓ ⊂M
of measureν(Γ ) > 1− ε/2, an integern0 � 1, and a numberC > 1 such that for every
x ∈ Γ and any integern� n0, the following statements hold:

1. for all integersk, l � 1,

C−1e−(l+k)h−(l+k)ε � ν
(
P lk(x)
)
� Ce−(l+k)h+(l+k)ε, (16.1)
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C−1e−kh−kε � νsx
(
P0
k (x)
)
� Ce−kh+kε, (16.2)

C−1e−lh−lε � νux
(
P l0(x)
)
�Ce−lh+lε, (16.3)

whereh= hν(f );

2. ξ s(x)∩
⋂
n�0

Pn0 (x)⊃ Bs(x, e−n0),

ξu(x)∩
⋂
n�0

P0
n(x)⊃ Bu(x, e−n0); (16.4)

3. e−dsn−nε � νsx
(
Bs(x, e−n)

)
� e−dsn+nε, (16.5)

e−dun−nε � νux
(
Bu(x, e−n)

)
� e−dun+nε; (16.6)

4. Panan (x)⊂ B(x, e−n)⊂P(x), (16.7)

P0
an(x)∩ ξ s(x)⊂ Bs(x, e−n)⊂P(x)∩ ξ s(x), (16.8)

Pan0 (x)∩ ξu(x)⊂ Bu(x, e−n)⊂P(x)∩ ξu(x), (16.9)

wherea is the integer part of2(1+ ε)max{λ1,−λp,1};
5. if Qn(x) is defined by

Qn(x)=
⋃

Panan (y)

where the union is taken overy ∈ Γ for which

Pan0 (y)∩Bu(x,2e−n) �= ∅ and P0
an(y)∩Bs(x,2e−n) �= ∅;

then

B(x, e−n)∩ Γ ⊂Qn(x)⊂ B(x,4e−n), (16.10)

Bs(x, e−n)∩ Γ ⊂Qn(x)∩ ξ s(x)⊂ Bs(x,4e−n), (16.11)

Bu(x, e−n)∩ Γ ⊂Qn(x)∩ ξu(x)⊂ Bu(x,4e−n). (16.12)

We outline the construction of the partitionP , and discuss its relation to the Pinsker
partition (compare with Theorem 11.16). We proceed in a manner similar to that in Sec-
tion 11.4. Consider a regular setΛ� with ν(Λ�) > 0. For a sufficiently smallr = r(�) > 0
andx ∈Λ�, set

P �(x)=
⋃

y∈Λ�∩B(x,r)
V u(y), Q(x)=

∞⋃
n=−∞

f n
(
P �(x)

)
.

Sinceν is ergodic the setQ(x) has full ν-measure. Letξ be the partition ofQ(x) by
local unstable manifoldsV u(y), y ∈ Λ� ∩ B(x, r), and the elementQ(x) \ P �(x). Then
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ξ+ =∨i�0f
iξ is the Pinsker partition subordinate to the partition into global unstable

manifolds.
Let nowΛ ⊂ M be the set of regular points, andΨx :B(0, q(x))→ M a family of

Lyapunov charts forx ∈ Λ (see Theorem 8.14). Fixδ > 0 and consider a partitionP of
finite entropy satisfying:

1. P is “adapted” to the Lyapunov charts in the sense that the elements of the partition
P+ =∨∞

n=0f
nP satisfy for eachx ∈Λ,

P+(x)⊂ Ψx
({
y ∈ B(0, q(x)): ∥∥(Ψ−1

f−n(x) ◦ f−n ◦Ψx
)
(y)
∥∥� δq

(
f−n(x)

)});
2. hν(f,P)� hν(f )− ε;
3. the partitionP refines{E,M \ E} for some measurable setE of positive measure

such that there exists a transversalT toWu with the following property: if an element
C ∈ ξ+ intersectsE, thenT intersectsC in exactly one point.

Ledrappier and Young [159] have shown that a certain partition constructed by Mañé in
[172] possesses property 1. Property 3 is related to the construction of “transverse metrics”
to ξ+. Namely, consider the partitionsη1 = ξ+ ∨ P+ andη2 = P+. One can construct a
special metric onη2(x)/η1 for everyx ∈⋃n�0f

n(E).
One can obtain the inclusions (16.4) from the fact that the partitionP is adapted to the

Lyapunov charts. Since the Lyapunov exponents at almost every point are constant, (16.7),
(16.8), and (16.9) follow from (16.4) and an appropriate choice ofa. The inequalities
(16.5) and (16.6) are easy consequences of existence of the stable and unstable pointwise
dimensionsdsν and duν (see Theorem 16.7). The inclusions (16.10) are based upon the
continuous dependence of stable and unstable manifolds in theC1+α topology on the base
point in each regular set. The inclusions in (16.11) and (16.12) follow readily from (16.10).

Property (16.1) is an immediate corollary of Shannon–McMillan–Breiman’s Theorem
applied to the partitionP . Properties (16.2) and (16.3) follow from “leaf-wise” versions of
this theorem. More precisely, Ledrappier and Young have shown (see [160, Lemma 9.3.1]
and [159, Proposition 5.1]) that forν-almost everyx,

lim
n→∞−1

n
logνux
(
Qn0(x)

)= hν(f ),
whereQ is any partition of finite entropy. SincePn0 (x)⊃ (ξ+ ∩P)n0(x), we conclude that

lim
n→∞−1

n
logνux
(
Pn0 (x)

)
� hν(f ) (16.13)

for ν-almost everyx. Moreover, using the fact thatP is adapted to the Lyapunov charts
one can show that the partitionP additionally possesses the property that givenδ > 0 there
existsn0 � 0 such thatPn0 (x) ∩ ξu(x) ⊂ Vu(x)(x, n, δ) for ν-almost everyx and every
n� n0 (see [160, Lemma 9.3.3]). It follows from Theorem 16.1 that forν-almost everyx,

lim
n→∞

−1

n
logνux
(
Pn0 (x)

)
� lim
δ→0

lim
n→∞

−1

n
logνux
(
Vu(x)(x, n, δ)

)
= hν(f ). (16.14)
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Putting together (16.13) and (16.14) we obtain (16.3). A similar argument can be used to
obtain (16.2).

Note that the Margulis–Ruelle inequality is an immediate corollary of Theorem 16.3
and so is the fact that any measureν with absolutely continuous conditional measures on
unstable manifolds satisfies Pesin’s entropy formula.

16.2. Dimension of measures. Local dimension

For a Borel measureν on a complete metric spaceX define theHausdorff dimension
dimHν, andlower andupper box dimensions, dimBν, anddimBν by

dimHν = inf
{
dimH Z: ν(Z)= 1

}
,

dimBν = lim
δ→0

inf
{
dimBZ: ν(Z)� 1− δ},

dimBν = lim
δ→0

inf
{
dimBZ: ν(Z)� 1− δ},

where dimH Z, dimBZ anddimBZ are respectively the Hausdorff dimension, lower and
upper box dimensions of the setZ. It follows from the definition that

dimHν � dimBν � dimBν.

Another important characteristic of dimension type ofν is its information dimension. Given
a partitionξ of X, define theentropy ofξ with respect toν by

Hν(ξ)=−
∑
Cξ

ν(Cξ ) logν(Cξ ),

whereCξ is an element of the partitionξ . Given a numberε > 0, set

Hν(ε)= inf
{
Hν(ξ): diamξ � ε

}
,

where diamξ = maxdiamCξ . We define thelower andupper information dimensions ofν
by

I (ν)= lim
ε→0

Hν(ε)

log(1/ε)
, Ī (ν)= lim

ε→0

Hν(ε)

log(1/ε)
.

Young established a powerful criterion that guarantees the coincidence of the Hausdorff
dimension and lower and upper box dimensions of measures as well as their lower and
upper information dimensions. Define thelocal (pointwise) dimensionof ν by

dν(x)= lim
r→0

logν(B(x, r))

logr
, (16.15)
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whereB(x, r) is the ball centered atx of radiusr (provided the limit exists). It was intro-
duced by Young in [255] and characterizes the local geometrical structure ofν with respect
to the metric inX. If the limit in (16.15) does not exist we consider the lower and upper
limits and introduce respectivelythe lowerandupper local(pointwise) dimensionsof ν at
x and we denote them bydν(x) andd̄ν(x).

THEOREM 16.5 (Young [255]).Let X be a compact metric space of finite topological
dimension andν a Borel probability measure onX. Assume that

dν(x)= d̄ν(x)= dν (16.16)

for ν-almost everyx ∈X. Then

dimHν = dimBν = dimBν = I (ν)= Ī (ν)= dν.

A measureν satisfying (16.16) is calledexact dimensional.
We will discuss the problem of existence of the limit in (16.15) for hyperbolic invariant

measures. This problem is often referred to as the Eckmann–Ruelle conjecture. Its affirma-
tive solution was obtained by Barreira, Pesin and Schmeling in [36].

THEOREM 16.6. Let f be aC1+α diffeomorphism of a smooth Riemannian manifoldM
without boundary, and ν an f -invariant compactly supported hyperbolic ergodic Borel
probability measure. Thenν is exact dimensional and

dν = dsν + duν .

In general, when the measureν is not ergodic the stable and unstable local dimensions
as well as the local dimension itself depend on the pointx. In this case one can prove that
for ν-almost everyx ∈M ,

dν(x)= dsν(x)+ duν (x).

Let us comment on the proof of Theorem 16.6. The upper bound for the pointwise di-
mension ofany Borel f -invariant measureν was obtained by Ledrappier and Young in
[160].

THEOREM 16.7. Letf be aC2 diffeomorphism ofM . For ν-almost everyx ∈M ,

d̄ν � dsν + duν + dimEc(x).

In the case when the measureν is hyperbolic (i.e., dimEc(x) = 0 for ν-almost every
x ∈M) this result can be extended toC1+α diffeomorphisms (not necessarilyC2). Bar-
reira, Pesin and Schmeling [36] have shown that

d̄ν � dsν + duν .
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The lower bound for the pointwise dimension,dν � dsν + duν , is an immediate corollary of
Theorem 16.9.

Young proved Theorem 16.6 for surface diffeomorphisms.

THEOREM 16.8 (Young [255]).Let f be aC1+α diffeomorphism of a smooth compact
surfaceM and ν a hyperbolic ergodic measure with Lyapunov exponentsλ1

ν > 0> λ2
ν .

Then

dν = d̄ν = hν(f )
(

1

λ1
ν

− 1

λ2
ν

)
.

Let us point out that neither of the assumptions of Theorem 16.6 can be omitted. Pesin
and Weiss presented an example of a Hölder homeomorphism with Hölder constant ar-
bitrarily close to 1 whose ergodic measure of maximal entropy is not exact dimensional
(see [203]). Ledrappier and Misiurewicz [157] constructed an example of a smooth map
of a circle preserving an ergodic measure with zero Lyapunov exponent which is not exact
dimensional. Kalinin and Sadovskaya [131] strengthened this result by showing that for a
residual set of circle diffeomorphisms with irrational rotation number the unique invariant
measure has lower pointwise dimension 0 and upper pointwise dimension 1 for almost
every point inS1.

16.3. Local product structure of hyperbolic measures

The following principle result establishes a crucial property of hyperbolic measures: these
measures have asymptotically “almost” local product structure.

THEOREM 16.9 (Barreira, Pesin and Schmeling [36]).Let f be aC1+α diffeomorphism
of a smooth Riemannian manifoldM without boundary, andν an f -invariant compactly
supported hyperbolic ergodic Borel probability measure. Then for everyδ > 0 there exist
a setΛ ⊂M with ν(Λ) > 1− δ such that for everyx ∈ Λ and every sufficiently smallr
(depending onx), we have

rδνsx
(
Bs(x, r)

)
νux
(
Bu(x, r)

)
� ν
(
B(x, r)

)
� r−δνsx

(
Bs(x, r)

)
νux
(
Bu(x, r)

)
.

The proof of Theorem 16.9 uses the crucial Markov property of the special countable
partitionP ofM constructed in Theorem 16.4.

THEOREM 16.10 (Barreira, Pesin and Schmeling [36]).For everyx ∈ Γ andn� n0,

Panan (x)∩ ξ s(x)=P0
an(x)∩ ξ s(x);

Panan (x)∩ ξu(x)=Pan0 (x)∩ ξu(x).

Note that any SRB-measure possesses a stronger property of local product structure and
so does any Gibbs measure on a locally maximal hyperbolic set.
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We emphasize that Theorem 16.9 is not trivial even for measures supported on locally
maximal uniformly hyperbolic sets. In this situation the stable and unstable foliations need
not be Lipschitz (in fact, they are “generically” not Lipschitz), and in general, the measure
need not have a local product structure despite the fact that the set itself does.

Let us illustrate Theorems 16.6 and 16.9 by considering the full shiftσ on the spaceΣp
of two-sided infinite sequences of numbers in{1, . . . , p}. This space is endowed with the
usual “symbolic” metricdβ , for each fixed numberβ > 1, defined as follows:

dβ
(
ω1,ω2)=∑

i∈Z

β−|i|∣∣ω1
i −ω2

i

∣∣,
whereω1 = (ω1

i ) andω2 = (ω2
i ).

Let ν be aσ -invariant ergodic measure onΣp. By Shannon–McMillan–Breiman’s The-
orem, forν-almost everyω ∈Σp,

lim
n→∞− 1

2n+ 1
logν
(
Cn(ω)

)= hν(σ ), (16.17)

wereCn(ω) is the cylinder atω of “size” n. SinceCn(ω) is the ball in the symbolic met-
ric centered atω of radiusβn, the quantity in the right-hand side in (16.17) is the local
dimension ofν atω. Thus, Shannon–McMillan–Breiman’s Theorem claims that the local
dimension ofν is almost everywhere constant and that the common value is the measure-
theoretical entropy ofν.

Further, fixω= (ωi) ∈Σp. The cylinderCn(ω) can be identified with the direct product
C+
n (ω)×C−

n (ω) where

C+
n (ω)=

{
ω̄= (ω̄i): ω̄i = ωi for i = 0, . . . , n

}
and

C−
n (ω)=

{
ω̄= (ω̄i): ω̄i = ωi for i =−n, . . . ,0}

are the “positive” and “negative” cylinders atω of “size” n. Define measures

ν+n (ω)= ν|C+
n (ω) and ν−n (ω)= ν|C−

n (ω).

It follows from Theorem 16.9 that for everyδ > 0 there exist a setΛ⊂Σp with ν(Λ) > 1−
δ and an integerm� 1 such that for everyω ∈Λ and every sufficiently largen (depending
onω), we have

β−δ|n|ν+n+m(ω)× ν−n+m(ω)� ν|Cn(ω)� βδ|n|ν+n−m(ω)× ν−n−m(ω).

17. Geodesic flows on manifolds without conjugate points

For a long time geodesic flows have played an important stimulating role in developing
the hyperbolic theory. Already in the beginning of the 20th century Hadamard and Morse,



222 L. Barreira and Ya. Pesin

while studying the statistics of geodesics on surfaces of negative curvature, observed that
the local instability of trajectories is the prime reason for the geodesic flow to be ergodic
and topologically transitive. The further study of geodesic flows has led researchers to
introduce different classes of hyperbolic dynamical systems (Anosov systems, uniformly
partially hyperbolic systems, and nonuniformly hyperbolic systems). On the other hand,
geodesic flows always were one of the main areas for applying new advanced methods
of the hyperbolic theory of dynamical systems. This in particular, has led to some new
interesting results in differential and Riemannian geometry.

17.1. Ergodic properties of geodesic flows

Consider the geodesic flowgt on a compact smooth Riemannianp-dimensional manifold
M without conjugate points. The flow preserves the Liouville measureµ on the tangent
bundle. Let the set∆ be given by (2.10). We assume that∆ is of positive Liouville measure.
By Theorem 2.3 the geodesic flow is nonuniformly hyperbolic on∆ and hence, the results
of Section 11.2 apply and show that ergodic components ofgt |∆ are of positive Liouville
measure (see Theorem 11.3). Indeed, under some mild geometric assumptions the geodesic
flow on ∆ is ergodic. To see this we will first observe that every ergodic component of
positive measure is open(mod0) and then will use a remarkable result by Eberlein on
topological transitivity of geodesic flows.

To establish local ergodicity ofgt |∆ we shall describe two invariant foliations (known as
the stable and unstable horospherical foliations) ofSM, W− andW+, such thatWs(x)=
W−(x) andWu(x)=W+(x) for almost everyx ∈∆.

We denote byH the universal Riemannian cover ofM , i.e., a simply connectedp-
dimensional complete Riemannian manifold for whichM = H/Γ whereΓ is a dis-
crete subgroup of the group of isometries ofH , isomorphic toπ1(M). According to the
Hadamard–Cartan theorem, any two pointsx, y ∈H are joined by a single geodesic which
we denote byγxy . For anyx ∈ H , the exponential map expx :Rp → H is a diffeomor-
phism. Hence, the map

ϕx(y)= expx

(
y

1− ‖y‖
)

(17.1)

is a homeomorphism of the openp-dimensional unit diskD ontoH .
Two geodesicsγ1(t) andγ2(t) in H are said to beasymptoticif

sup
t>0
ρ
(
γ1(t), γ2(t)

)
<∞.

The asymptoticity is an equivalence relation, and the equivalence classγ (∞) correspond-
ing to a geodesicγ is called apoint at infinity. The set of these classes is denoted by
H(∞) and is called theideal boundaryof H . Using (17.1) one can extend the topology of
the spaceH to H̄ =H ∪H(∞) so thatH̄ becomes a compact space.



Smooth ergodic theory and nonuniformly hyperbolic dynamics 223

The mapϕx can be extended to a homeomorphism (still denoted byϕx ) of the closed
p-dimensional diskD̄ =D ∪ Sp−1 ontoH̄ by the equality

ϕx(y)= γy(+∞), y ∈ Sp−1.

In particular,ϕx mapsSp−1 homeomorphically ontoH(∞).
For any two distinct pointsx andy on the ideal boundary there is a geodesic which joins

them. This geodesic is uniquely defined if the Riemannian metric is of strictly negative
curvature (i.e., if inequality (2.7) is strict). Otherwise, there may exist a pair of distinct
pointsx, y ∈H(∞) which can be joined by more than one geodesic. If the manifold has
no focal points there exists a geodesic isometric embedding intoH of an infinite strip of
zero curvature which consists of geodesics joiningx andy. This statement is know as the
flat strip theorem.

The fundamental groupπ1(M) of the manifoldM acts on the universal coverH by
isometries. This action can be extended to the ideal boundaryH(∞). Namely, if p =
γv(+∞) ∈H(∞) andζ ∈ π1(M), thenζ(p) is the equivalent class of geodesics which are
asymptotic to the geodesicζ(γv(t)).

We now describe the invariant foliations for the geodesic flow.
Fix a pointx ∈H and a vectorv ∈ SH. Consider a sequence of vectorsvn ∈ SH, vn→ v,

a sequence of pointsxn ∈H , xn→ x and a sequence of numberstn→∞. Denote byγn the
geodesic joining the pointsxn andγvn(tn). Since the sequence of vectorsγ̇n(0) is compact
the sequence of geodesics has a limit geodesic. Following [200] we say that the manifold
M satisfies theasymptoticity axiomif for any choice ofxn, x ∈ H , vn, v ∈ SH, xn → x,
vn → v and tn →∞ any limit geodesic of the sequence of geodesicγn is asymptotic to
the geodesicγ .

If the manifoldM satisfies the asymptoticity axiom then the sequenceγn, indeed, con-
verges toγ . Moreover, given a geodesicγ and a pointx ∈H , there exists a unique geodesic
γ ′ passing throughx and asymptotic toγ .

PROPOSITION17.1 (Pesin [200]).If the manifoldM has no focal points then it satisfies
the asymptoticity axiom.

We consider the distributionsE− andE+ introduced by (2.8) and (2.9).

PROPOSITION17.2 (Pesin [200]).Assume that the manifoldM satisfies the asymptoticity
axiom. Then the distributionsE− andE+ are integrable. Their integral manifolds form
continuous foliations of SM with smooth leaves. These foliations are invariant under the
geodesic flow.

Denote byW− andW+ the foliations ofSMcorresponding to the invariant distributions
E− andE+. These foliations can be lifted fromSM to SH and we denote these lifts by
W̃− andW̃+, respectively.

Givenx ∈H andp ∈H(∞), set

L(x,p)= π(W̃−(v)
)
,



224 L. Barreira and Ya. Pesin

wherex = π(v) andp = γv(∞). The setL(x,p) is called thehorospherethroughx cen-
tered atp.

We summarize the properties of the foliations and horospheres in the following state-
ment.

PROPOSITION17.3. The following statements hold:
1. for anyx ∈H andp ∈H(∞) there exists a unique horosphereL(x,p) centered at
p which passes throughx; it is a limit in theC1 topology of spheresSp(γ (t), t) as
t→+∞ whereγ is the unique geodesic joiningx andp;

2. the leafW−(v) is the framing of the horosphereL(x,p) (x = π(v) and p =
γv(+∞)) by orthonormal vectors which have the same direction as the vectorv (i.e.,
they are“ inside” the horosphere). The leafW+(v) is the framing of the horosphere
L(x,p) (x = π(v) and p = γv(−∞) = γ−v(+∞)) by orthonormal vectors which
have the same direction as the vectorv (i.e., they are“outside” the horosphere);

3. for everyζ ∈ π1(M),

ζ
(
L(x,p)

)= L(ζ(x), ζ(p)),
dvζ W̃

−(v)= W̃−(dvζv), dvζ W̃
+(v)= W̃+(dvζv);

4. for everyv,w ∈ SH, for whichγv(+∞) = γw(+∞) = p, the geodesicγw(t) inter-
sects the horosphereL(π(v),p) at some point.

THEOREM 17.4 (Pesin [200]).Assume that the manifoldM satisfies the asymptoticity
axiom. Assume also that the set∆ has positive Liouville measure. Then for almost every
v ∈ SM we have thatW−(v)=Ws(v) andW+(v)=Wu(v).

By Theorem 11.8 we conclude that ergodic components ofgt |∆ of positive measure are
open(mod0). In particular, the set∆ is open(mod0). See Theorem 2.5 that gives sufficient
conditions for the set∆ to be of positive Liouville measure.

We describe the topological transitivity of geodesic flows. Following Eberlein [89] we
say that the manifoldM satisfies theuniform visibility axiomif for any ε > 0 there exists
R =R(ε) > 0 such that from each pointx ∈H any geodesic segmentγ with d(x, γ )�R
is visible at an angle less thanε.

PROPOSITION17.5 (Eberlein [89]).The following statements hold:
1. if a manifold satisfies the uniform visibility axiom with respect to a Riemannian met-

ric then it satisfies this axiom with respect to any other Riemannian metric with no
conjugate points;

2. a manifold of nonpositive curvature satisfies the uniform visibility axiom if its univer-
sal cover does not admit an isometric geodesic embedding ofR2;

3. a compact two-dimensional manifoldM of genus� 1 satisfies the uniform visibility
axiom;

4. if M satisfies the uniform visibility axiom the it also satisfies the asymptoticity axiom.
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THEOREM 17.6 (Eberlein [89]).Assume that the compact manifoldM satisfies the uni-
form visibility axiom. Then the geodesic flowgt is topologically transitive.

The following principal result is an immediate corollary of Theorems 17.4 and 17.6.

THEOREM 17.7. LetM be a compact smooth Riemannian manifold without focal points
satisfying the uniform visibility axiom. If the set∆ has positive Liouville measure then it is
open(mod0) and is everywhere dense. The geodesic flowgt |∆ is nonuniformly hyperbolic
and ergodic. Indeed, gt |∆ is Bernoulli.

The Bernoulli property follows from Theorem 11.21 and from a result by Arnold (see
[20, §23]) implying that the geodesic flow has continuous spectrum.

It is an open problem whether the set∆ has full Liouville measure. Brin and Burago
have proved this under the additional assumption that the set of negative curvature inM

has finitely many connected components. The same result was obtained by Hertz who used
different methods. None of these results is published.

Further results on ergodic and topological properties of geodesic flows on manifolds
of nonpositive curvature were obtained by Knieper [147–149]. His celebrated result es-
tablishes existence and uniqueness of the measure of maximal entropy thus extending the
classical result by Margulis to nonpositively curved manifolds. Knieper also obtained mul-
tiplicative asymptotic bounds for the growth of volume of spheres (and hence, also that
of balls) and the number of periodic orbits. For a detailed account of this work see the
chapter [9].

In [109,110], Gunesch strengthened Knieper’s results and obtained precise asymptotic
formulae for the growth of volume of spheres and the number of homotopy classes of
periodic orbits for the geodesic flow on rank 1 manifolds of nonpositive curvature. This
extends results by Margulis to the nonuniformly hyperbolic case.

Let M be a compact Riemannian manifold of nonpositive curvature. Given a tangent
vectorv ∈ SM, rank(v) is the dimension of the space of parallel Jacobi fields along the
geodesicγv . The minimum of rank(v) over allv ∈ SM is called therank of M , rank(M).
If rank(v)= rank(M) the geodesicγv and the corresponding vectorv are calledregular. It
is easy to see that 1� rank(M)� dimM .

The following result describes the fundamental rank rigidity for nonpositively curved
manifolds. It was obtained independently by Ballmann [32] (see also [33]) and by Burns
and Spatzier [66] (see also [91]).

THEOREM 17.8. LetM be a compact smooth Riemannian manifold of nonpositive cur-
vature with irreducible universal coverH . Then the manifold has either rank1 or H is a
symmetric space of higher rank.

In other words, the universal cover of a nonpositively curved manifold can be repre-
sented as a product of Euclidean, symmetric, and rank 1 spaces.
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THEOREM 17.9 (see [109,110]).
1. Givenx ∈H , let br(x)= vol(B(x, r)) be the Riemannian volume of the ball centered

at x of radiusr in the universal coverH ofM . Then

br(x)∼ c(x)ehr ,

wherec(x) is a continuous function onM andh= h(gt ) is the topological entropy
of the geodesic flow.

2. Let P(t) be the number of homotopy classes of periodic orbits of length at mostt .
Then

P(t)∼ 1

ht
eht .

Observe that unlike in the case of negatively curved manifolds, for nonpositively curved
manifolds there may be uncountably many periodic geodesics homotopic to a given one
but they all have the same length.

17.2. Entropy of geodesic flows

For v ∈ SM let v⊥ be the set of vectorsw ∈ SM which are orthogonal tov. Consider the
linear mapSv :v⊥ → v⊥ defined by the equality:Svw =Kξ(w), whereξ(w) is the vector
in E−(v) such thatdπξ(w)=w.

THEOREM 17.10. For a Riemannian metric of classC4 of nonpositive curvatureSv
is a linear self-adjoint operator of the second quadratic form for the horosphere
L(π(v), γv(+∞)) at the pointπ(v) (which is a submanifold inH of classC2).

Denote by{ei(v)}, i = 1, . . . , p − 1, the orthonormal basis inv⊥ consisting of eigen-
vectors ofSv . LetKi(v) be the corresponding eigenvalues. The numbersKi(v) are called
theprincipal curvaturesand the directions determined by the vectorsei(v) thedirections
of principal curvaturesfor the limit sphere atπ(v).

THEOREM 17.11 (Pesin [201], Freire and Mañé [100]).
1. The entropy of the geodesic flow is

hµ
(
g1)=−

∫
M

p−1∑
i=1

Ki(v) dµ(v)=−
∫
M

trSv dµ(v),

whereµ is the Liouville measure andtrSv denotes the trace ofSv .
2. Let ν be agt -invariant probability measure. Then

hµ
(
g1)� −

∫
M

trSv dν(v).



Smooth ergodic theory and nonuniformly hyperbolic dynamics 227

Statement 1 of Theorem 17.11 is analogous to a result of [234] for dispersing billiards.
For the topological entropyh(gt ) of the geodesic flow on manifolds without conjugate

points Freire and Mañé [100] established the following formula.

THEOREM 17.12.

h
(
gt
)= lim

r→∞
logvol(B(x, r))

r
,

wherex ∈ H is a point in the universal cover ofM (the limit exists and does not depend
onx).

18. Dynamical systems with singularities: The conservative case

18.1. General systems with singularities

In this and the following sections we shall discuss how the core results of smooth ergodic
theory can be extended to dynamical systems with singularities (where the map or its dif-
ferential are discontinuous). We consider two cases: the conservative one when the system
preserves volume and the dissipative one when the system possesses an attractor. The main
example in the first case is billiards while the main example in the second case is the Lorenz
attractor. In both cases the system is uniformly hyperbolic either on the whole phase space
or in an neighborhood of the attractor. However, the presence of singularities may effect
the behavior of trajectories in a crucial way so that along some trajectories Lyapunov ex-
ponents are zero. We shall describe some general conditions on the singularity set which
guarantee that Lyapunov exponents along the “majority” of trajectories are nonzero and
methods of nonuniform hyperbolicity theory apply.

LetM be a compact smooth Riemannian manifold andS ⊂M a closed set. Following
Katok and Strelcyn [142] we call a mapf :M \ S→ f (M \ S) a map with singularities
and the setS thesingularity setfor f if the following conditions hold:

(A1) f is aC2 diffeomorphism;
(A2) there exist constantsC1> 0 anda � 0 such that∥∥d2

xf
∥∥�C1ρ(x,S)

−a, x ∈M \ S,∥∥d2
xf

−1
∥∥�C1ρ(x,S

−)−a, x ∈ f (M \ S),

whereS− = {y ∈M: there arez ∈ S andzn ∈M \S such thatzn→ z, f (zn)→ y}
is thesingularity setfor f−1.

Letµ be a probability measure onM invariant underf . We assume that

(A3)
∫
M

log+ ‖df ‖dµ<∞ and
∫
M

log+
∥∥df−1

∥∥dµ <∞;
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(A4) for everyε > 0 there exist constantsC2> 0 andb ∈ (0,1] such that

µ
({
x ∈M: ρ(x,S) < ε

})
� C2ε

b.

Condition (A2) means that the derivative off may grow with a “moderate” polynomial
rate near the singularity set and condition (A4) implies thatµ(S)= 0, i.e., the singularity
set is “small”.

Conditions (A1)–(A4) constitute the basis of the Katok–Strelcyn theory and allow one to
extend results of smooth ergodic theory to smooth systems with singularities. In particular,
at every Lyapunov regular point with nonzero Lyapunov exponents one can construct local
stable and unstable manifolds, establish the crucial absolute continuity property, describe
ergodic properties of the map with respect to a smooth hyperbolic invariant measure and
obtain the entropy formula.

We shall now proceed with a formal description. SetN+ = {x ∈M: f n(x) /∈ S for all
n� 0} and letN =⋂n�0f

n(N+). For eachα ∈ (0,1) andγ > 0 set

Ωα,γ = {x ∈N : ρ
(
f n(x),A

)
� γ α|n| for everyn ∈ Z

}
.

PROPOSITION18.1. We have thatµ(N)= 0 andµ(Ωα,γ )→ 1 asγ → 0.

To see this note that

N \Ωα,γ = {x ∈N : ρ
(
f n(x),A

)
< γα|n| for somen ∈ Z

}
and hence, by (A4),

µ(N \Ωα,γ ) �
∑
n∈Z

µ
({
x ∈N : ρ

(
f n(x),A

)
< γα|n|

})
�
∑
n∈Z

µ
({
x ∈X: ρ(x,A) < γα|n|

})
�
∑
n∈Z

C2γ
aαa|n| � 2C2γ

a

1− αa .

Let Λ ⊂M \ N be the set of points with nonzero Lyapunov exponents. We assume that
µ(Λ) > 0 and we consider the collection of regular setsΛ�, �� 1, forf (see Section 4.5).
Denote by

Λ�,α,γ =Λ� ∩Ωα,γ .

From now on we fix a sufficiently large� > 0, α = α(�) andγ = γ (�) such that the set
A� =Λ�,α(�),γ (�) has positive measure.

As an immediate corollary of Proposition 18.1 we obtain the following statement.
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THEOREM 18.2 (Stable manifold theorem).Letf be a diffeomorphism with singularities
satisfying conditions(A1)–(A4).Then for everyx ∈ A� there exists a local stable manifold
V s(x) such thatx ∈ V s(x), TxV s(x)=Es(x), and fory ∈ V s(x) andn� 0,

ρ
(
f n(x), f n(y)

)
� T (x)λneεnρ(x, y),

whereT :X→ (0,∞) is a Borel function satisfying

T
(
fm(x)

)
� T (x)e10ε|m|, m ∈ Z.

Furthermore, for everyx ∈ A� there exists a local unstable manifoldV u(x) which have
similar properties.

When a point moves underf its stable (and/or unstable) manifold may “meet” the sin-
gularity set and be cut by it into several pieces whose sizes, in general, may beuncontrol-
lably small. It is condition (A4) that allows one to control this process for almost every
trajectory, see Proposition 18.1. In particular, the size of the local manifoldsV s(x) and
V u(x) may depend on the pointx and may deteriorate along the trajectory but only with
subexponential rate. Moreover, local manifolds satisfy the absolute continuity property, see
Section 10.1. This provides the basis for obtaining a complete description of ergodic and
topological properties of the system including:

(1) descriptions of ergodic andK-components (see Theorems 11.3 and 11.17),
(2) the entropy formula8 (see Theorems 12.1 and 12.10), and
(3) density of periodic points (see Theorem 15.2).
Liverani and Wojtkowski [169] designed a method which allows one to study local er-

godicity of smooth systems with singularities. The systems to which this method applies
are defined axiomatically by a number of conditions. They include some assumptions on
the singularity set, existence of invariant cone families which are monotone and strictly
monotone (see Section 11.3), and an adaptation of the Sinai–Chernov Ansatz for billiards
(see [75]).

Other results on local ergodicity of smooth systems with singularities were obtained by
Chernov [72], Markarian [178], and Vaienti [243] (for some particular map).

In [250], Wojtkowski and Liverani introduced a special class of dynamical systems with
singularities—conformally Hamiltonian systems with collisions. They are determined by a
nondegenerate 2-formΘ and a functionH (called Hamiltonian). The form does not have
to be closed butdΘ = γ ∧Θ for some closed 1-formγ . This condition guarantees that,
at least locally, the formΘ can be multiplied by a nonzero function to give a bona fide
symplectic structure (such a structure is calledconformally symplectic). Examples of sys-
tems with conformally symplectic structure include the Gaussian isokinetic dynamics and
the Nosé–Hoover dynamics. The main result in [250] claims that the Lyapunov spectrum
of the corresponding conformally Hamiltonian flow is symmetric. This recovers and gen-
eralizes results by Benettin, Galgani, Giorgilli and Strelcyn [43], Dettmann and Morriss

8To establish the upper bound for the entropy, one needs to assume, in addition to (A2), that‖dxf ‖ �
C1ρ(x,S)

−a and‖dxf−1‖ �C1ρ(x,S
−)−a ; see [142] for details.
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[79,80], Garrido and Galavotti [103], Dellago, Posch and Hoover [78], and Bonetto,
Galavotti and Garrido [54].

18.2. Billiards

We consider billiards in the plane which form a special class of maps with singularities.
Let Q be a compact connected subset ofR2 such that∂Q consists of a finite number of
curves of classC3. The billiard flow in Q is generated by the free motion of a particle
in the interior ofQ, with unit speed and elastic reflections at the boundary (reflection is
elastic if the angle of reflection equals the angle of incidence). The flow acts on the unit
tangent bundleSQbut is not well defined in the corners of∂Q. It can be shown that the
billiard flow preserves the Liouville measure onSQ. We refer to [77] for more details.

Consider the setX ⊂ SQconsisting of the unit vectors inSQat the boundary∂Q and
pointing insideQ. The billiard map onQ is defined as the first return mapf :X→ X

induced by the billiard flow. Given(q, v) ∈X, its imagef (q, v) is the point(q ′, v′) ∈X,
whereq ′ andv′ are the position and velocity of the particle with initial condition(q, v)
immediately after the next reflection at∂Q. We introduce the coordinates(s, θ) for a point
(q, v) ∈ X wheres is the length of∂Q up toq measured with respect to a given point in
∂Q andθ ∈ [−π/2,π/2] is the angle that the vectorv makes with the inward normal of
∂Q at q. We endowX with the Riemannian metricds2 + dθ2. The billiard map preserves
the measuredν = (2c)−1 cosθ ds dθ wherec is the length of∂Q.

The billiard map, in general, is not well defined everywhere inX. Let Z be the set of
corners of∂Q, i.e., the points where∂Q is not of classC1, and letq ′ �= q be the first point
of ∂Q where the particle with initial condition(q, v) ∈X hits ∂Q. Thenf is not defined
on the set

S+ = {(q, v) ∈X: q ′ ∈Z or the segmentqq ′ is tangent to∂Q atq ′
}
.

Thus,f is not defined at(q, v) if the particle with initial condition(q, v) either hits a corner
of ∂Q or reflects at∂Q with a null angle. DefineR :X→ X by R(s, θ)= (s,π − θ) for
(s, θ) ∈X. The mapf−1 is not defined on the setS− = RS+. One can show that the sets
S+ andS− consist of a finite number of curves of classC2 that intersect only at their
endpoints (see [142]). They are called respectively thesingularity setsfor f andf−1. For
eachn > 0, the sets wheref n andf−n are not defined are, respectively,

S+n = S+ ∪ f−1S+ ∪ · · · ∪ f−n+1S+,

S−n = S− ∪ f S− ∪ · · · ∪ f n−1S−.

Let

S+∞ =
⋃
n>0

S+n , S−∞ =
⋃
n>0

S−n and S∞ = S−∞ ∩ S+∞.

The points inS+∞ (respectively,S−∞) hit a corner of∂Q after a finite number of iterations
of f (respectively,f−1). The points inS∞ hit a corner of∂Q after a finite number of
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iterations off and after a finite number of iterations off−1, and thus they have orbits of
finite length. Clearly,ν(S+n )= ν(S−n )= 0 for everyn > 0.

According to the former observations, there exists an integerm> 0 such that the setsX\
S+ andX \S− consist both of a finite number of open connected sets, sayX+

1 , . . . ,X
+
m and

X−
1 , . . . ,X

−
m , such thatf :X+

i →X−
i is aC2 diffeomorphism fori = 1, . . . ,m. Therefore,

the billiard mapf is a map with singularities onX (in this caseS = S+). Following Katok
and Strelcyn [142] we will describe a sufficiently large class of billiards which satisfy
conditions (A1)–(A7).

THEOREM 18.3. Let f be a billiard map onQ. If ∂Q is piecewiseC2, has finite length,
and has a uniformly bounded curvature, then condition(A3) holds with respect to the
measureν.

For example, any billiard whose boundary is a union of a finite number of closed arcs
and closed curves of classC2 satisfies the hypotheses of Theorem 18.3.

To establish condition (A4) we consider the classPk , k � 2, of billiards whose boundary
is a union of a finite number of intervals and strictly convex or strictly concaveCk curves.

THEOREM 18.4. Letf be a billiard map of classPk , k � 2. Then the singularity set forf
is a union of a finite number of closed curves of classCk−1 of finite length and of a finite
number of isolated points. In particular, f satisfies condition(A4).

We now discuss condition (A2). Letγ be a strictly convex smooth curve in the plane.
For eachp ∈ γ , let �1 be the oriented tangent line toγ atp (one-sided tangent line ifp is
an endpoint ofγ ), and let�2 be the line throughp orthogonal to�1. Orienting the line�2 in
a suitable way, one can assume that in a neighborhood ofp, with respect to the orthogonal
coordinate system given by�1 and�2, the curveγ is the graph of a smooth strictly convex
function (that we also denote byγ ). We consider the classΠk , k � 2, of billiards inPk for
which there existsC > 0 such that all strictly convex pieces of∂Q satisfy

(s − t)γ ′(s)− γ (s)+ γ (t)
γ (s)− γ (t)− (s − t)γ ′(t) � C

for everys �= t in a neighborhood of zero (at the endpoints we consider appropriate one-
sided neighborhoods of zero). It is shown in [142] that the classΠk includes the billiards
in Pk for which the following holds: for eachγ of classCm+2 as above,γ (i)(0) = 0 for
2� i �m− 1, andγ (m)(0) �= 0.

THEOREM 18.5 [142]. Any billiard mapf ∈Πk , k � 3, satisfies condition(A2).

It follows from Theorems 18.3–18.5 that billiard maps of classΠk , k � 3, satisfy con-
ditions (A1)–(A4). Thus, the results of the previous section apply. Particular cases include
dispersing (Sinai’s) billiards and some semidispersing billiards. Recall that a curveΓ in
the boundary∂Q of a billiard isdispersing, focusing, or flat if Γ is, respectively, strictly
concave outward (with respect toQ), strictly convex outward, orΓ is a straight segment.
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We denote byΓ−, Γ+, andΓ0 the unions of the curves forming∂Q that are, respectively,
dispersing, focusing, and flat. A billiard is calleddispersingif Γ+ = Γ0 = ∅, andsemidis-
persingif Γ+ = ∅, Γ− �= ∅.

We refer to the survey [63] for more details. See also the collection of surveys in [236].

19. Hyperbolic attractors with singularities

In this section we consider dissipative hyperbolic dynamical systems with singularities.
They possess attractors and act uniformly hyperbolic in their vicinity. However, due to
singularities the behavior of trajectories is effectively nonuniformly hyperbolic. We call
these attractors generalized hyperbolic attractors. They were introduced by Pesin in [202].
Examples include Lorenz attractor, Lozi attractor and Belykh attractor. We describe a con-
struction SRB-measures for these systems.

19.1. Definitions and local properties

Let M be a smooth Riemannian manifold,K ⊂M an open bounded connected set and
N ⊂K a closed set. Let alsof :K \N→K be a map satisfying the following conditions:

(H1) f is aC2 diffeomorphism from the open setK \N onto its image;
(H2) there exist constantsC > 0 andα � 0 such that

‖dxf ‖ � Cρ(x,N+)−α,
∥∥d2
xf
∥∥� Cρ(x,N+)−α, x ∈K \N,∥∥dxf−1

∥∥� Cρ(x,N−)−α,
∥∥d2
xf

−1
∥∥� Cρ(x,N−)−α, x ∈ f (K \N),

whereN+ =N ∪ ∂K is thesingularity setfor f andN− = {y ∈K: there arez ∈
N+ andzn ∈K \N+ such thatzn→ z, f (zn)→ y} is thesingularity setfor f−1.

Set

K+ = {x ∈K: f n(x) /∈N+ for all n ∈ N
}

and

D =
⋂
n∈N

f n(K+).

The setΛ= D̄ is called theattractor. We have that

D =Λ \
⋃
n∈Z

f n(N+)

and that the mapsf andf−1 are defined onD, with f (D)=D.
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Let us fixε > 0 and set for�� 1,

D+
ε,� =
{
z ∈Λ: ρ

(
f n(z),N+)� �−1e−εn for n� 0

}
,

D−
ε,� =
{
z ∈Λ: ρ

(
f−n(z),N−)� �−1e−εn for n� 0

}
,

D±
ε =
⋃
��1

D±
ε,�, D0

ε =D+ ∩D−
ε .

The setD0
ε is f - andf−1-invariant andD0

ε ⊂ D for every ε. This set is an “essential
part” of the attractor and in general, may be empty. Even if it is not it may not support any
f -invariant Borel finite measure. We say thatΛ is observableif

(H3) for all sufficiently smallε the setD0
ε supports anf -invariant Borel finite measure.

We shall provide some conditions that ensure thatΛ is observable. GivenA ⊂ Λ, write
f−1(A) = {z ∈ Λ \ N+: f (z) ∈ A}. We denote byU(ε,N+) the openε-neighborhood
(in K) of N+, by Mf the family off -invariant Borel probability measures onΛ and by
ϕ(z)= ρ(z,N+).

PROPOSITION19.1. The setΛ is observable if one of the following conditions holds:
1. there existsµ ∈Mf such thatµ(D) > 0 and

∫
Λ
| logϕ|dµ <∞;

2. there existC > 0, q > 0 such that for anyε > 0 andn ∈ N,

ν
(
f−n(U(ε,N+)∩ f n(K+)

))
� Cεq (19.1)

(hereν is the Riemannian volume inK).

Let us stress that condition (19.1) is similar to condition (A4) for conservative systems
with singularities.

Denote byC(x,α,P ) the cone atx ∈ M (α > 0 is a real number andP is a linear
subspace ofTxM), composed of all vectorsv ∈ TxM for which

� (v,P )= min
w∈P

� (v,w)� α.

We say thatΛ is ageneralized hyperbolic attractorif there existC > 0, λ ∈ (0,1), a func-
tion α(z), and two fields of subspacesP s(z),P u(z)⊂ TzM , dimP s(z)= q, dimPu(z)=
p − q (p = dimM) for z ∈ K \ N+ such that the conesCs(z) = Cs(z,α(z),P s(z)) and
Cu(z)= C(z,α(z),P u(z)) satisfy the following conditions:

(H4) the angle betweenCs(x) andCu(x) is uniformly bounded away from zero over
x ∈M \ S; in particular,Cs(x)∩Cu(x)= ∅;

(H5) df
(
Cu(x)

)⊂ Cu(f (x)) for anyx ∈M \ S,
df−1(Cs(x))⊂ Cs(f−1(x)

)
for anyx ∈ f (M \ S);
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(H6) for anyn > 0,

‖df nv‖� Cλ−n‖v‖ for anyx ∈N+, v ∈ Cu(x),
‖df−nv‖ �Cλ−n‖v‖ for anyx ∈ f n(N+), v ∈ Cs(x).

Givenz ∈D, the subspaces

Es(z)=
⋂
n�0

df−nCs
(
f n(z)
)
, Eu(z)=

⋂
n�0

df nCu
(
f−n(z)

)
satisfy

(E1) TzM =Es(z)⊕Eu(z), Es(z)∩Eu(z)= {0};
(E2) the angle betweenEs(z) andEu(z) is uniformly bounded away from zero;
(E3) for eachn� 0,

‖df nv‖ � Cλn‖v‖, v ∈Es(z),
‖df−nv‖ � C−1λ−n‖v‖, v ∈Eu(z).

The subspacesEs(z) andEu(z) determine a uniform hyperbolic structure forf on the
setD. One can construct local stable and unstable manifoldsV s(z), V u(z), at every point
z ∈D0

ε ; in fact, local stable (respectively, unstable) manifolds can be constructed for every
z ∈D+

ε (respectively, for everyz ∈D−
ε ). Sincef has singularities the “size” of local man-

ifolds is a measurable (not continuous) function onD0
ε , despite the fact that the hyperbolic

structure onD is uniform. The size can deteriorate along trajectories but with subexponen-
tial rate; it is uniform over the points inD0

ε,�.

To simplify our notations we drop the subscriptε from inD±
ε ,D±

ε,�,D
0
ε,�, etc.

PROPOSITION19.2. V u(z)⊂D− for anyz ∈D−.

LetA⊂Λ. Define

f̂ (A)= f (A \N+), f̂−1(A)= f̂−1(A \N−).

The setsf̂ n(A) andf̂−n(A) for n > 1 are defined in the same way. Givenz ∈D0 we set

Ws(z)=
⋃
n�0

f̂−n(V s(f n(z))), Wu(z)=
⋃
n�0

f̂ n
(
V u
(
f−n(z)

))
.

The setWs(z) is a smooth embedded, but possibly not connected, submanifold inK . It is
called theglobal stable manifoldat z. If y ∈Ws(z) then all imagesf n(y), n� 0, are well
defined. Similar statements hold forWu(z), theglobal unstable manifoldat z.
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For y ∈ Ws(z) denote byBs(y, r) the ball inWs(z) of radius r centered aty (we
restrict ourselves to a connected component ofWs(z)). Fix r > 0 and takey ∈ Ws(z),
w ∈ Bs(y, r), n� 0 (respectively,y ∈Wu(z), w ∈ Bu(y, r), n� 0). We have

ρs
(
f n(y), f n(w)

)
� Cµnρs(y,w)

and, respectively,

ρu
(
f−n(y), f−n(w)

)
� Cµnρu(y,w),

whereC = C(r) > 0 is a constant,ρs andρu are respectively the distances induced byρ
onWs(z) andWu(z).

19.2. SRB-measures: Existence and ergodic properties

We outline a construction of SRB-measures for diffeomorphisms with generalized hyper-
bolic attractors. Denote byJu(z) the Jacobian of the mapdf |Eu(z) at a pointz ∈D0. Fix
� > 0, z ∈D0

� , y ∈Wu(z), andn > 0, and set

κn(z, y)=
n−1∏
j=0

Ju(f−j (z))
J u(f−j (y))

.

PROPOSITION19.3. The following properties hold:
1. For any�� 1 andz ∈D0

� , y ∈Wu(z) there exists the limit

κ(z, y)= lim
n→∞κn(z, y) > 0.

Moreover, there is r1
� > 0 such that for anyε > 0, r ∈ (0, r1

� ) one can findN =
N(ε, r) such that for anyn�N ,

max
z∈D0

�

max
y∈B̄u(z,r)

∣∣κn(z, y)− κ(z, y)∣∣� ε.
2. The functionκ(z, y) is continuous onD0

� .
3. For anyz ∈D0

� andy1, y2 ∈Wu(z),

κ(z, y1)κ(y1, y2)= κ(z, y2).

Fix � � 1, z ∈ D0
� and letB(z, r) be a ball inK centered atz of radiusr . Define a

rectangleat z by

Π =Π(z, r)=
⋃

y∈B(z,r)∩D0
�

Bu
([y, z], r),
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where [y, z] = V u(y) ∩ V s(z). Consider the partitionξ = ξ(Π) of Π(z, r) by the sets
Cξ (y)= Bu([y, z], r), y ∈ B(z, r)∩D0

� . This partition is continuous and measurable with
respect to any Borel measureµ onΛ.

Fix z ∈ D0
� and a rectangleΠ = Π(z, r) at z. Assume thatµ(Π) > 0 and denote by

µξ (y), y ∈ B(z, r)∩D0
� the family of conditional measures on the setsCξ (y). We say that

µ is anSRB-measureif for any �� 0, z ∈D0
� , andΠ =Π(z, r) with µ(Π) > 0,

dµξ (y
′)= r(y)κ([z, y], y′)dνu(y′).

Here νu is the Riemannian volume onWu(z) induced by the Riemannian metric,y ∈
B(z, r)∩D0

� , y
′ ∈ Bu([z, y], r) andr(y) is the “normalizing factor”,

r(y)=
(∫
Bu([y,z],r3� )

κ
([z, y], y′)dνu(y′))−1

.

Denote byM′
f the family of measuresµ ∈ Mf for which µ(D0) = 1 and byMu

f the
family of SRB-measures inM′

f . Any µ ∈M′
f is a measure with nonzero Lyapunov ex-

ponentsχ1(x), . . . , χp(x) and if µ is ergodic the functionχi(x) are constantµ-almost
everywhere. We denote the corresponding values byχiµ and assume that

χ1
µ � · · ·� χqµ > 0> χq+1

µ � · · ·� χpµ .

Fix z ∈D0
� , r > 0 and set

U0 = Bu(z, r), Ũ0 =U0, Ũn = f (Un−1), Un = Ũn \N+,

and

c0 = 1, cn =
(
n−1∏
k=0

Ju
(
f k(z)
))−1

.

We define measures̃νn onUn by

dν̃n(y)= cnκ
(
f n(z), y

)
dνu(y), n� 0,

and measuresνn onΛ by

νn(A)= ν̃n(A∩Un), n� 0, (19.2)

for each Borel setA⊂Λ.
We say that the attractorΛ satisfies condition (H7) if there exist a pointz ∈ D0 and

constantsC > 0, t > 0, ε0> 0 such that for any 0< ε � ε0 andn� 0,

νu
(
V u(z)∩ f−n(U(ε,N+)

))
�Cεt .
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If Λ satisfies condition (H7) thenνn(A) = ν0(f
−nA)) for any n > 0 and any Borel set

A⊂Λ.

THEOREM 19.4 (Pesin [202]).Assume thatΛ is a generalized hyperbolic attractor satis-
fying condition(H7).Then there exists a measureµ ∈Mu

f supported onD0 which satisfies
conditions1 and2 of Proposition19.1.

We outline the proof of the theorem. Letz ∈D0 be the point mentioned in condition (H7)
andνk the sequence of measures onΛ as in (19.2). Consider the sequence of measures on
Λ defined by

µn = 1

n

n−1∑
k=0

νk. (19.3)

First, using condition (H7), one can show that for anyγ > 0 there exists�0> 0 such that
µn(D

0
� ) � 1− γ for anyn > 0 and� � �0. It follows that some limit measureµ for the

sequence of measuresµn is supported onD0. Next, one can prove thatµ is f -invariant
and an SRB-measure onΛ.

From now on we assume thatΛ is a generalized hyperbolic attractor satisfying condi-
tion (H7) and thatµ ∈Mu

f , µ(D0)= 1. We will describe the ergodic properties ofµ.

PROPOSITION19.5. For µ-almost everyz ∈D0,

µu
(
D0 ∩ V u(z))= 1. (19.4)

Fix z ∈D0 for which (19.4) holds and choose� such thatνu(D0
� ∩ V u(z)) > 0. LetW

be a smooth submanifold in a small neighborhood ofV u(z) of the form

W = {expz
(
w,ϕ(w)

)
: w ∈ I ⊂Eu(z)},

whereI is an open subset andϕ : I → Es(z) is a diffeomorphism.W has the same di-
mension asV u(z) and is transverse toV s(y) for all y ∈ D0

� ∩ V u(z). Consider the map
p :D0

� ∩ V u(z)→ W wherep(y) is the point of intersection ofV s(y) andW . We de-
note byνW the measure onW induced by the Riemannian metric onW (considered as a
submanifold ofM). One can prove the following result using arguments in the proof of
Theorem 10.1.

PROPOSITION19.6. The measurep∗νu is absolutely continuous with respect toνW .

Fix z ∈D0 and for each� > 0 set

Q(�, z)=
⋃

y∈D0
�∩V u(z)

V s(y)∩Λ.
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One can show that forµ-almost everyz ∈ Λ and any sufficiently large� > 0 we have
µ(Q(�, z)) > 0 and the setQ =⋃n∈Z f

n(Q(�, z)) is an ergodic component of positive
measure for the mapf |Λ. This implies the following description of the ergodic properties
of the mapf |Λ with respect to the SRB-measureµ.

THEOREM 19.7 (Pesin [202]).Letµ ∈Mu
f . Then there exist setsΛi ⊂Λ, i = 0,1,2, . . . ,

such that:
1. Λ=⋃i�0Λi ,Λi ∩Λj = ∅ for i �= j , i, j = 0,1,2, . . .;
2. µ(Λ0)= 0,µ(Λi) > 0 for i > 0;
3. for i > 0,Λi ⊂D, f (Λi)=Λi , f |Λi is ergodic;
4. for i > 0, there exists a decompositionΛi =⋃nij=1Λ

j
i , ni ∈ N, where

(a) Λj1i ∩Λj2i = ∅ for j1 �= j2;

(b) f (Λji )=Λj+1
i for j = 1,2, . . . , ni − 1, andf (Λnii )=Λ1

i ;
(c) f ni |Λ1

i is isomorphic to a Bernoulli automorphism;
5. the metric entropyhµ(f |Λ) satisfies

hµ(f |Λ)=
∫
Λ

u(x)∑
i=1

χi(x) dµ(x),

whereχ1(x),χ2(x), . . . , χu(x)(x) is the collection of positive values of the Lyapunov
exponent, counted with multiplicities;

6. there exists a partitionη ofΛ with the following properties:
(a) for µ-almost everyx ∈Λ the elementCη(x) of the partitionη is an open subset

in Wu(x);
(b) f η � η,

∨
k�0f

kη = ε, ∧k�0f
kη = ν(Wu), whereν(Wu) is the measurable

hull of the partition ofΛ consisting of single leavesWu(x) if x ∈D0 and single
points{x} if x ∈Λ \D0;

(c) h(f |Λ,η)= hµ(f |Λ).
Set

Ws(Λ)=
⋃
z∈D0

Ws(z).

The following is a direct consequence of Proposition 19.1 and Theorem 19.7.

THEOREM 19.8 (Pesin [202]).Letµ ∈Mu
f . Then for any setΛi with i > 0 as in Theo-

rem19.7we have:
1. the Riemannian volume ofWs(Λi) is positive;
2. there existsAi ⊂Λ such thatµ(Ai)= µ(Λi) and for anyz ∈Ws(Ai) and any con-

tinuous functionϕ onM there exists the limit

lim
n→∞

1

n

n−1∑
k=0

ϕ
(
f k(z)
)= 1

µ(Λi)

∫
Λi

ϕ dµ.
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Using the above results one can now describe the class of all SRB-measures onΛ.

THEOREM 19.9 (Pesin [202]).There exists setsΛn, n = 0,1,2, . . . and measuresµn ∈
Mu
f , n= 1,2, . . . , such that:
1. Λ=⋃n�0Λn,Λn ∩Λm = ∅ for n �=m;
2. the Riemannian volume ofWs(Λn)∩Ws(Λm) is zero forn �=m, n,m> 0;
3. for n > 0, Λn ⊂ D, f (Λn) = Λn, µn(Λn) = 1, and f |Λn is ergodic with respect

toµn;
4. for n > 0, there existkn > 0 and a subsetAn ⊂Λn such that

(a) the setsAn,i = f i(An) are pairwise disjoint fori = 1, . . . , kn − 1 andAn,kn =
An,1,Λ=⋃kn−1

i=1 An,i ;
(b) f kn |An,1 is a Bernoulli automorphism with respect toµn;

5. if µ ∈Mu
f , thenµ=∑n>0αnµn with αn � 0 and

∑
n>0αn = 1;

6. if ν is a measure onK absolutely continuous with respect to the Riemannian volume
andνn = ν|Ws(Λn), n > 0, then

lim
k→∞

1

k

k−1∑
i=1

f i∗νn = µn.

To conclude let us mention a connection between SRB-measures and condition (H7).
Notice that any accumulation point of the sequence of measures in (19.3) is an SRB-
measure (this essentially follows from Theorem 19.4). We describe a special property of
such measures.

PROPOSITION19.10. If µ is the SRB-measure constructed in Theorem19.4 then there
existsε0> 0 such that for anyε ∈ (0, ε0) and anyn > 0,

µ
(
U(ε,N+)

)
�Cεt , (19.5)

whereC > 0, t > 0 are constants independent ofε andn.

We have seen that condition (H7) is sufficient to prove the existence of an SRB-measure
on a generalized hyperbolic attractor. We will now show that it is “almost” necessary.

PROPOSITION 19.11. Let µ ∈ Mu
f (µ is an SRB-measure onΛ and µ(D0) = 1) sat-

isfy (19.5) for some constantsC, t , ε. Then forµ-almost every pointz ∈ D0 there exists
ε(z) > 0 such that condition(H7) holds with respect toz and anyε ∈ (0, ε(z)).

19.3. Examples

We now consider a number of examples of maps with generalized hyperbolic attractor
whenM is a two-dimensional manifold. First we formulate some general assumptions
which guarantee the validity of properties (H3) and (H7). Letf be a map satisfying con-
dition (H1) and assume that:
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(G1) K =⋃mi=1K
i , withKi to be a closed sets, intKi ∩ intKj = ∅ wheneveri �= j ,

∂Ki =
ri⋃
j=1

Nij ∪
qi⋃
j=1

Mij ,

whereNij andMij are smooth curves, and

N =
m⋃
i=1

ri⋃
j=1

Nij , ∂K =
m⋃
i=1

qi⋃
j=1

Mij ;

(G2) f is continuous, and differentiable on eachKi , i = 1, . . . ,m;
(G3) f possesses two families of stable and unstable conesCs(z) andCu(z), z ∈K \⋃m

i=1 ∂K
i ;

(G4) the unstable coneCu(z) at z depends continuously onz ∈ Ki and there exists
α > 0 such that for anyz ∈Nij \ ∂Nij , v ∈ Cu(z), and any vectorw tangent toNij
we have� (v,w)� α;

(G5) there existsτ > 0 such thatf k(N)∩N = ∅, k = 0, . . . , τ andaτ > 2 where

a = inf
z∈K\N inf

v∈Cu(z)‖dzf v‖> 1.

THEOREM 19.12 (Pesin [202]).If f satisfies conditions(H1) and (G1)–(G5), then it
also satisfies condition(H7) for any z ∈ D0 and (19.1) (in particular, f satisfies condi-
tion (H3)).

Assume now thatf satisfies conditions (H1)–(H2), (G1)–(G2), (G4), and (instead of
(G3) and (G5)) the following holds:

(G3′) ρ(f k(N),n)�Aexp(−γ k), k = 1,2, . . . ,
whereA > 0 is a constant andγ > 0 is sufficiently small (when compared withλ; in
particular,f k(N) ∩N = ∅, k = 1,2, . . .). Thenf satisfies condition (H7) for anyz ∈D0

and condition (H3).
We now describe some particular two-dimensional maps with generalized hyperbolic

attractors.

Lorenz type attractors. Let I = (−1,1) andK = I ×I . Let also−1= a0< a1< · · ·<
aq < aq+1 = 1. Set

Pi = I × (ai, ai+1), i = 0, . . . , q, �= I × {a0, a1, . . . , aq, aq+1}.

Let T :K \ �→K be an injective map,

T (x, y)= (f (x, y), g(x, y)), x, y ∈ I, (19.6)

where the functionsf andg satisfy the following conditions:
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(L1) f andg are continuous on̄Pi and

lim
y↗ai

f (x, y)= f−
i , lim

y↗ai
g(x, y)= g−i ,

lim
y↘ai

f (x, y)= f+
i , lim

y↘ai
g(x, y)= g+i ,

wheref±
i andg±i do not depend onx, i = 1,2, . . . , q;

(L2) f andg have continuous second derivatives onPi and if (x, y) ∈ Pi , i = 1, . . . , q,
then

df (x, y)= B1
i (y − ai)−ν

1
i
(
1+A1

i (x, y)
)
,

dg(x, y)= C1
i (y − ai)−ν

2
i
(
1+D1

i (x, y)
)

whenevery − ai � γ , and

df (x, y)= B2
i (ai+1 − y)−ν3

i
(
1+A2

i (x, y)
)
,

dg(x, y)= C2
i (ai+1 − y)−ν4

i
(
1+D2

i (x, y)
)

wheneverai+1 − y � γ , whereγ > 0 is sufficiently small,B1
i , B2

i , C1
i , C

2
i are

some positive constants, 0� ν1
i , ν2

i , ν3
i , ν4

i < 1, andA1
i (x, y),A

2
i (x, y),D

1
i (x, y),

D2
i (x, y) are continuous functions, which tend to zero wheny→ ai or y→ ai+1

uniformly overx; furthermore, the norms of the second derivatives‖fxx‖, ‖fxy‖,
‖gxy‖, and‖gxx‖ are bounded;

(L3) we have the inequalities

‖fx‖< 1,
∥∥g−1
y

∥∥< 1,

1− ∥∥g−1
y

∥∥ · ‖fx‖> 2
√∥∥g−1

y

∥∥ · ‖gx‖ · ∥∥g−1
y fy
∥∥,∥∥g−1

y

∥∥ · ‖gx‖< (1− ‖fx‖
)(

1− ∥∥g−1
y

∥∥),
where‖ · ‖ = maxi=0,...,q sup(x,y)∈Pi | · |.

The class of maps satisfying (L1)–(L3) was introduced in [13]. It includes the famous
geometric model of the Lorenz attractor. The latter can be described as follows.

THEOREM 19.13. Assume that�= I × {0}, K = I × I , and thatT :\�→K is a map of
the form(19.6)where the functionsf andg are given by

f (x, y)= (−B|y|ν0 +Bx sgny|y|ν + 1
)
sgny,

g(x, y)= ((1+A)|y|ν0 −A)sgny.

If 0 < A < 1, 0< B < 1/2, ν > 1, and 1/(1 + A) < ν0 < 1, then T satisfies condi-
tions(L1)–(L3).
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The class of maps introduced above is somewhat representative.

THEOREM 19.14. On an arbitrary smooth compact Riemannian manifold of dimension
at least3 there exists a vector fieldX having the following property: there is a smooth
submanifoldS such that the first-return mapT induced onS by the flow ofX satisfies
conditions(L1)–(L3).

We now describe the ergodic and topological properties of the maps with Lorenz type
attractors.

THEOREM 19.15 (Pesin [202]).The following properties hold:
1. A mapT satisfying(L1)–(L3) also satisfies conditions(H1), (H2) and the attractor
Λ for T is an observable generalized hyperbolic attractor; the stable(unstable) cone
at each pointz ∈K is the set of vectors having angle at mostπ/6 with the horizontal
(vertical) line.

2. The stable laminationWs can be extended to a continuousC1-foliation inK .
3. Assume that one of the following condition holds:

(a) νji = 0, i = 1, . . . , q, j = 1,2,3,4;
(b) ρ(T n(f±

i , g
±
i ), �)� Ci exp(−γ n) for anyn� 0, i = 1, . . . , q (Ci > 0 are con-

stants independent ofn; γ is sufficiently small).
ThenT satisfies conditions(G1)–(G5) (as well as(G1), (G2), (G3′), and (G4)). In
particular, it satisfies condition(H7) for anyz ∈D0 and(19.1).

The existence of an SRB-measure for the classical geometric model of Lorenz attractor
(whenK is a square, and� consists of a single interval) was shown in [62]. The proof uses
Markov partitions. If the stable foliationWs is smooth (it takes place, for example, wheng
does not depend onx) the existence of an SRB-measure follows from a well-known result
in the theory of one-dimensional maps (one can show thatΛ is isomorphic to the inverse
limit of a one-dimensional piecewise expanding map for which(ai, ai+1), i = 0, . . . , q, are
intervals of monotonicity; see [13] for details and references).

We now give an example of Lorenz type attractor for which the discontinuity set consists
of countable number of intervals and the corresponding map has countable number of
components of topological transitivity. Consider a one-dimensional mapg(y), y ∈ [0,1],
given by

g(y)=
{ 1
n+2 + 2

2n+1y if 1
n+1 � y < 2n+1

2(n+1) ,

2n+1
2(n+1) + 1

2(n+1) y if 2n+1
2(n+1) � y < 1

n
,

for n = 1,2,3, . . . . One can show that there exists a functionf (x, y) such that the map
T (x, y) = (f (x, y), g(y)) satisfies conditions (L1)–(L3). However, each setΛ ∩ I ×
[1/(n+ 1),1/n] is a component of topological transitivity forT .
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Lozi type attractors. Let c > 0, I = (0, c), K = I × I , and 0= a0< a1< · · ·< aq <
aq+1 = c. Set�= {a0, a1, . . . , aq, aq+1} × I and letT :K→K be an injective continuous
map

T (x, y)= (f (x, y), g(x, y)), x, y ∈ I,

satisfying the following conditions:
Loz1. T |(K \ �) is aC2-diffeomorphism and the second derivatives of the mapsT and

T −1 are bounded from above;
Loz2. Jac(T ) < 1;
Loz3. inf{(| ∂f

∂x
| − | ∂f

∂y
|)− (| ∂g

∂x
| + | ∂g

∂y
|)} � 0;

Loz4. inf{| ∂f
∂x
| − | ∂f

∂y
|} def= u > 1;

Loz5. sup{(| ∂f
∂x
| + | ∂g

∂y
|)/(| ∂f

∂x
| − | ∂f

∂y
|)2}< 1;

Loz6. there existsN > 0 such thatT k(�)∩ �= ∅ for 1� k �N anduN > 2.
This class of maps was introduced by Young in [256]. It includes the map

T (x, y)= (1+ by − a|x|, x) (19.7)

which is obtained from the well-known Lozi map by a change of coordinates (see [161]).
It is easy to verify that there exist open intervals ofa andb such that (19.7) takes some
square[0, c] × [0, c] into itself and satisfies Loz1–Loz6.

THEOREM 19.16 (Pesin [202]).The following properties hold:
1. A mapT satisfyingLoz1–Loz6also satisfies conditions(H1), (G1)–(G5),and the at-

tractorΛ for T is an observable generalized hyperbolic attractor; the stable(respec-
tively, unstable) cone at each pointz ∈K has a vertical(respectively, horizontal) line
as the center line. This map also satisfies condition(H7) for anyz ∈D0 and(19.1).

2. The stable laminationWs can be extended to a continuousC0-foliation inK .

Belykh type attractors. Let I = [−1,1],K = I×I , and�= {(x, y): y = kx}. Consider
the map

T (x, y)=
{
(λ1(x − 1)+ 1, λ2(y − 1)+ 1) for y > kx,
(µ1(x + 1)− 1,µ2(y + 1)− 1) for y < kx.

In the caseλ1 = µ1, λ2 = µ2 this map was introduced by Belykh in [39] and was the
simplest model in the so-called phase synchronization theory.

THEOREM 19.17. The following properties hold:
1. Assume that

0< λ1<
1

2
, 0<µ1<

1

2
, 1< λ2<

2

1− |k| , 1<µ2<
2

1− |k| , |k|< 1.
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ThenT is a map fromK \ � into K satisfying conditions(H1), (G1)–(G4),and the
attractorΛ for T is a generalized hyperbolic attractor(the stable and unstable one-
dimensional subspaces at each pointz ∈D0 are respectively horizontal and vertical
lines; the stable and unstable cones at each pointz ∈K are the set of vectors having
angle at mostπ/4 with the horizontal or vertical lines).

2. If λ2> 2 andλ2> 2, thenT satisfies condition(G5),and hence, condition(H7) for
anyz ∈D0 and(19.1).
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Appendix A. Decay of correlations, by Omri Sarig

A.1. Introduction

One way of saying that a probability preserving transformation(X,B,m,T ) has unpre-
dictable dynamics is to claim that the results of a ‘measurement at time zero’f (x) and
a ‘measurement at timen’ g(T nx) are correlated very weakly for largen. The cor-
relation coefficient of two random variablesf1, f2 is defined to beCov(f1,f2)‖f1‖2‖f2‖2

, where

Cov(f1, f2) :=
∫
f1f2 −

∫
f1
∫
f2. This suggests the following definition:

DEFINITION 1. A probability preserving transformation(X,B,m,T ) is calledstrongly
mixing if for everyf,g ∈ L2, Cov(f, g ◦ T n) := ∫ fg ◦ T n − ∫ f ∫ g −→

n→∞0.

It is natural to ask for the speed of convergence (the faster it is the less predictable the
system seems to be). Unfortunately, without extra assumptions, the convergence can be
arbitrarily slow: For all sequencesεn ↓ 0 and all 0�= g ∈ L2 s.t.

∫
g = 0, ∃f ∈ L2 with

Cov(f, g ◦ T n) �=O(εn).9
We will therefore refine the question stated above and ask:How fast doesCov(f, g ◦T n)

→ 0 for f,g in a given collection of functionsL � L2? The collectionL varies from
problem to problem. In practice, the challenge often reduces to the problem of identifying
a class of functionsL which is large enough to generateB, but small enough to admit
analysis.

9Otherwise, the functionalsϕn(f ) := 1
εn

∫
fg ◦ T n are pointwise bounded onL2, whence by the Banach–

Steinhaus theorem uniformly bounded. But‖ϕn‖ = 1
εn

‖g‖2 →∞ (Y. Shalom).
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We discuss this problem below. The literature on this subject is vast, and cannot be
covered in an appendix of this size. We will therefore focus on themethodsused to attack
the problem, rather than their actual application (which is almost always highly nontrivial,
but also frequently very technical). The reader is referred to Baladi’s book [28] for a more
detailed account and a more complete bibliography.

In what follows, (X,B,m,T ) is a probability preserving transformation, andL is a
collection of square integrable functions. We assume for simplicity thatT is noninvertible
(the methods we describe below can be applied in invertible situations, but are easier to
understand in the noninvertible setting). A key concept is:

DEFINITION 2. Thetransfer operator(or dual operator, or Frobenius–Perron operator)
of T is T̂ :L1 → L1 whereT̂ f is the uniqueL1-function s.t.:

∀g ∈ L∞,
∫
g · T̂ f =

∫
g ◦ T · f.

The definition ofT̂ is tailored to make the following statement correct: Ifdµ= f dm,
thendµ ◦ T −1 = T̂ f dm. Thus,T̂ is the action ofT on density functions.

It is easy to check that̂T is a positive operator, a contraction (i.e.,‖T̂ f ‖1 � ‖f ‖1) and
that‖T̂ f ‖1 = ‖f ‖1 for all f � 0. TheT -invariance ofm implies thatT̂ 1= 1. The relation
betweenT̂ and Cov(f, g ◦ T n) is the following identity:

Cov(f, g ◦ T n)=
∫ [
T̂ nf −

∫
f

]
g. (A.1)

We see that the asymptotic behavior of Cov(f, g ◦ T n) can be studied by analyzing the
asymptotic behavior of̂T n asn→∞. This is the viewpoint we adopt here.

A.2. Spectral gap and exponential decay of correlations

SupposeL is a Banach space of square integrable functions s.t. 1∈ L, T̂ (L) ⊆ L, and
‖ · ‖L � ‖ · ‖1. We already mentioned that 1 is an eigenvalue ofT̂ . The operatorPf := ∫ f
is a projection onto its eigenspace.

We say thatT̂ has aspectral gapin L, if the spectrum of̂T −P ∈ Hom(L,L) is a proper
subset of the open unit disc, or equivalently, if theL-spectral radius of̂T − P , which we
denote byρL, is strictly less than one.

To see the connection with decay of correlations, note thatT̂ n−P = (T̂ −P)n, because
T̂ P = P T̂ andP 2 = P . Therefore, ifρL < λ< 1, f ∈ L andg ∈ L∞, then

∣∣Cov(f, g ◦ T n)∣∣� ∫ ∣∣g(T̂ − P)nf ∣∣� ‖g‖∞
∥∥(T̂ − P)nf ∥∥L

=O(λn)‖f ‖L‖g‖∞.

Thus, a spectral gap inL implies exponential decay of correlations inL.
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The question arises how to find a spaceL such thatT̂ :L→ L has a spectral gap. We
discuss two general methods. The first establishes a spectral gap directly, and the second
indirectly.

A.2.1. Double norm inequalities Consider the action ofT on mass distributionsf dm. If
T is very chaotic, then its action will tend to flatten the mountains off dm and to fill-up its
crevices. After many iterations, the irregularity of the original mass distribution disappears,
and the shape of̂T nf dm≡ (f dm) ◦ T −n depends only on the size (total mass) off dm,
and not on its shape.

It is a deep insight of Doeblin and Fortet [81] that this phenomena is captured by the
following double norm inequality, and that this inequality can be used to establish a spectral
gap:

‖T̂ nf ‖L � θn‖f ‖L +M‖f ‖C (n ∈ N).

Here‖ · ‖L measures regularity (Lipschitz, BV, etc.),‖ · ‖C measures size (L∞, L1, etc.),
and 0< θ < 1,M > 0 are independent ofn. We present the functional-analytic machinery
in the form given by Ionescu-Tulcea and Marinescu [127] (see Hénon [112] for refine-
ments):

THEOREM A.1 (Doeblin and Fortet, Ionescu-Tulcea and Marinescu).Let C ⊇ L be two
Banach spaces such thatL-bounded sets are precompact inC, and such that

xn ∈ L, sup‖xn‖L <∞, ‖xn − x‖C → 0

⇒ x ∈ L, and ‖x‖L � sup‖xn‖L.
LetS be a bounded linear operator onL. If ∃M,H > 0, 0< θ < 1 s.t. for all x ∈ L,

sup
n�1

‖Snx‖C �H‖x‖L and ‖Sx‖L � θ‖x‖L +M‖x‖C,

thenS =∑pi=1λiPi + N wherep <∞, P 2
i = Pi , PiPj = 0 (i �= j), PiN = NPi = 0,

dim Im(Pi) <∞, and‖Nn‖ =O(κn) for some0< κ < 1.

In other words, the theorem gives sufficient conditions for theL-spectrum ofS to consist
of a compact subset of the open unit disc, and a finite number of eigenvaluesλi with finite
multiplicity. The assumptions of the theorem clearly also imply that|λi | � 1 for all i.

It follows that if S has no eigenvalues of modulus one other than a simple eigenvalue
λ= 1, thenS has a spectral gap. This is always the case for the transfer operator as soon as
L⊂ L1 and(X,B,m,T ) is exact (i.e.,

⋂∞
n=1T

−nB = {∅,X}modm). Indeed, a theorem of
M. Lin [165] says that for exact systems‖T̂ nf ‖1 −→

n→∞0 for all f ∈ L1 with integral zero,

so there can be no nonconstantL1-eigenfunctions with eigenvalueλ such that|λ| = 1.
The key step in applying the double-norm method is the choice of Banach spacesL

andC: It is here that the specifics of the dynamics enter the picture. We indicate some
typical choices (our list is by no means complete).
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Maps with Markov partitions can be studied in terms of their symbolic dynamics using
the sup norm for ‘size’ and the (symbolic) Hölder norm for ‘regularity’ (see Ruelle [213],
Bowen [57] for finite partitions, and Aaronson and Denker [12] for infinite partitions).
The resulting spaces depend on the Markov partition, and they therefore change when the
map is perturbed. This makes the study of some stability questions difficult. In the case of
Anosov diffeomorphisms, there is an alternative choice of Banach spaces due to Gouëzel
and Liverani [108] and Blank, Keller and Liverani [45] which avoids symbolic dynamics,
and is thus better suited to the study of such issues.

Without Markov partitions, it is not reasonable to expect the transfer operator to preserve
Hölder continuity, and a different choice forL is needed. In one-dimensional systems,
one can sometime use the choiceL = BV, C = L1, see Lasota and Yorke [155], Rychlik
[220], Hofbauer and Keller [119], Baladi and Keller [29], Keller [143], and Baladi [28]
and references therein.

The multi-dimensional non-Markovian expanding case is more intricate, because of the
absence of a canonicalBV norm, and because of the difficulty in controlling the propa-
gation of singularities in high iterates. Various generalizations of the BV norm have been
suggested in this context, see Saussol [224] and Buzzi and Keller [67], and references
therein.

Skew-products, i.e., maps of the form(x, ξ)  → (T x,fx(ξ)), can also be treated using
double norm inequalities, at least when the transfer operator ofT is well behaved. Addi-
tional conditions are required, however, to guarantee mixing: it is possible for the transfer
operator of the skew product to have nontrivial eigenvalues of modulus one, even whenT

is mixing. We refer the reader to the works by Kowalski [151], Dolgopyat [86], Parry and
Pollicott [193], Field, Melbourne and Török [98], and references therein.

A.2.2. Cones This method is to find a cone of functionsC such thatT̂ (C)⊆ C. If T̂ (C)
is sufficiently ‘small’ inC, then span{T̂ nf } converges exponentially fast to span{1} (the
precise statements follow shortly). This convergence can then be used to derive a spectral
gap on a suitable space, or to prove exponential decay of correlations inC directly.

We present the necessary machinery due to G. Birkhoff [44], and introduced to the study
of decay of correlations by Liverani [167] (see also Ferrero and Schmitt [97] and Bakhtin
[26,27]).

A subsetC of a normed vector spaceV is acone, if f ∈ C,λ > 0⇒ λf ∈ C. A cone
is calledproper if C ∩−C = ∅, convexif f,g ∈ C⇒ f + g ∈ C, andclosedif C ∪ {0} is
closed.Hilbert’s projective metricis the following pseudo-metric onC:

Θ(f,g) := log

(
inf{µ> 0: g � µf } ∪ {0}
sup{λ > 0: λf � g} ∪ {∞}

)
, wheref � g⇔ g − f ∈ C.

Alternatively, Θ(f,g) = log β
∗
α∗ where α∗, β∗ are the best constants in the inequality

α∗f � g � β∗f . Observe thatΘ(αf,βg) = Θ(f,g) for all α,β > 0: Θ measures the
distance between the directions generated byf,g, not betweenf,g themselves.
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THEOREM A.2 (G. Birkhoff). Let C be a closed convex proper cone inside a normed
vector space(V ,‖ · ‖), and letS :V → V be a linear operator such thatS(C) ⊆ C. If
∆ := sup{Θ(Sf,Sg): f,g ∈ C}<∞, thenS contractsΘ uniformly:

Θ(Sf,Sg)� tanh

(
∆

4

)
Θ(f,g) (f, g ∈ C). (A.2)

In particular, if we can find a closed convex proper coneC ⊂ L1 which contains the
constants and for whicĥT (C)⊂ C and∆<∞, then the iteration of (A.2) gives for every
f ∈ L1, Θ(T̂ nf,Pf )=Θ(T̂ nf, T̂ nPf )� tanhn−1(∆4 )∆, and this tends to zero exponen-
tially. (Recall thatPf = ∫ f .) We see that theΘ-distance between the rays determined by
T̂ nf andPf tends to zero geometrically.

The next step is to estimate theL1-distance between̂T nf andPf . In general, this
step depends on the cone in a noncanonical way, and cannot be described in a general
terms. If we add the assumption that all functions inC are nonnegative and thatf,g ∈ C,
f ± g ∈ C⇒‖f ‖1 � ‖g‖1, then the situation simplifies considerably, because in this case
(see, e.g., [167]),

∥∥∥∥ f

‖f ‖1
− g

‖g‖1

∥∥∥∥
1
� eΘ(f,g) − 1 (f, g ∈ C).

Since‖T̂ nf ‖1 = ‖f ‖1 = ‖Pf ‖1 wheneverf � 0, we see that for allf ∈ C,

‖T̂ nf − Pf ‖1= ‖f ‖1

∥∥∥∥ T̂ nf

‖T̂ nf ‖1
− Pf

‖Pf ‖1

∥∥∥∥
1
�
(
eΘ(T̂

nf,T̂ nPf ) − 1
)‖f ‖1

=O(ρn)‖f ‖1

with ρ = tanh∆4 . It now follows from (A.1) that|Cov(f, g ◦ T n)| = O(ρn)‖f ‖1‖g‖∞
uniformly for f ∈ C,g ∈ L∞ and we proved exponential decay of correlations.

The assumptionf,g ∈ C, f ±g ∈ C⇒‖f ‖1 � ‖g‖1 is not satisfied in many dynamical
situations of interest. In these cases other relations between the Banach distance and Hilbert
distance occur, depending on the type of the cone that is used. We refer the reader to [167]
for methods which handle this difficulty.

Finally, we mention that Birkhoff’s inequality can be generalized for operators map-
ping one cone to another cone (see Liverani [167, Theorem 1.1]). This is important in
nonuniformly expanding situations, where one is forced to consider a chain of cones
T̂ (Ci)� Ci+1, see Maume-Deschamps [181] for examples.

A.2.3. Decay of correlations for flows We now turn from discrete time to continuous
time.



Smooth ergodic theory and nonuniformly hyperbolic dynamics 249

Let σt :X→ X be a strongly mixing probability preserving semiflow on(X,B,m,T ).
The decay of correlations ofσt is captured by the asymptotic behavior ast →∞ of the
correlation function:10

ρ(t) :=
∫
f · g ◦ σt dµ−

∫
f dµ

∫
g dµ (t > 0).

In order to keep the exposition as simple as possible, we assume that the semiflow is
given as asuspensionover a mapT :Σ→Σ with roof functionr :Σ→ R+:

X = {(x, ξ) ∈Σ ×R: 0� ξ < r(x)
}
,

σt (x, ξ)= (x, ξ + t) with the identifications(x, ξ)∼ (T x, ξ − r(x)),
dm(x, ξ)= 1∫

r dµ
(µ× dξ)

∣∣∣∣
X

.

The reader may want to think ofΣ ,Σ × {0} as of a Poincaré section for the (semi)flow
with section mapT :Σ→Σ , and first return time functionr :Σ→ R. This is the standard
way to obtain such a representation.

The main difficulty in continuous time is that the decay of correlations ofσt depends in a
subtle way on the properties ofr :Σ→ R+ andT :Σ→Σ as apair. There are examples
of Ruelle [217] and Pollicott [206] which show thatσt may not have exponential decay of
correlations, even whenT :Σ → Σ does. In fact, they exhibit (strongly mixing) suspen-
sions over the same section map which have exponential decay of correlations with one
roof function, but not with another. In the other direction, there are examples by Kocergin
[150] and Khanin and Sinai [144] of mixing suspension flows built overnonmixing base
transformations (see Fayad [96] for the decay of correlations for examples of this type).

It is only recently that Chernov [73] has identified the properties ofT andr which are
responsible for super-polynomial mixing for Anosov flows, and that Dolgopyat [82] has
shown how to use these properties to show that the rate of mixing is in fact exponential for
smooth observables, thus settling a problem that has remained open since the early days of
hyperbolic dynamics.

Ruelle [217] and Pollicott [206,207] suggested to studyρ(t) ast→∞ by considering
the analytic properties of its Fourier transform

ρ̂(s) :=
∫ ∞

−∞
e−ist ρ(t)1[0,∞)(t) dt =

∫ ∞

0
e−ist ρ(t) dt,

and then appealing to a suitable Tauberian theorem, for example [231, IX.14]:

PROPOSITIONA.3. If ρ̂(s) extends analytically to a strip{s = x + iy: |y| < ε} and the
functionsR " x  → ρ̂(x + iy) (|y|< ε) are absolutely integrable, with uniformly bounded
L1-norm, then|ρ(t)| =O(e−ε0t ) for every0< ε0< ε.

10This is a standard abuse of terminology:ρ(t) is the covariance, not the correlation.
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To apply this method, we must first find an analytic extension ofρ̂ to some horizontal
strip, and then control the growth of this extension.

The starting point is a formula for̂ρ(s) in terms of the transfer operator̂T of T . To
obtain such a formula we break

∫∞
0 dt into

∫ r(x)−ξ
0 +∑n�1

∫ rn+1(x)−ξ
rn(x)−ξ in accordance to

the timest when the flow ‘hits the roof’ (here and throughoutrn =∑n−1
k=0 r ◦ T k). Setting

E(s) := ∫
X

∫ r(x)−ξ
0 e−ist fg ◦ σt dt dm, and

f̂s(x) :=
∫ r(x)

0
e−isξ f (x, ξ) dξ, ĝs(x) :=

∫ r(x)
0

eisξ g(x, ξ) dξ,

and assumingf,g both have integral zero and
∫
r dµ= 1, we obtain

ρ̂(s)=E(s)+
∞∑
n=1

∫
Σ

T̂ n
(
eisrn f̂s

)
ĝs dµ≡E(s)+

∞∑
n=1

∫
Σ

T̂ ns (f̂s)ĝs dµ,

whereT̂s is defined byT̂s :F  → T̂
(
eisrF
)
.

The point of this representation is that, as long asr is bounded,s  → T̂s has an obvious
extension tos ∈ C. WhenT̂ has a spectral gap, one can study the analyticity of this exten-
sion using the analytic perturbation theory of bounded linear operators (Pollicott [207]).
The termE(s) is of no importance, because it is an entire function ofs.

The integrability conditions of Proposition A.3 turn out to be more delicate. The problem
is to control the infinite sum; the termE(s) can be handled in a standard way under some
reasonable assumptions ong. This sum is majorized by‖f̂s‖∞‖ĝs‖L

∑
n�1‖T̂ ns ‖, so is

natural to try to bound
∑
n�1‖T̂ ns ‖ in some stripS = {s = x + iy: |y|< ε}, at least for|x|

large. This amounts to considering expressions of the form

T̂ ns F = T̂ n(eixrne−yrnF ) (s = x + iy ∈ S)

and showing that the cancellation effect ofeixrn is powerful enough to makêT ns small. It is
at this point that the counterexamples of Ruelle and Pollicott we mentioned before behave
badly, and where additional structure is required.

In the case of Anosov flows, Dolgopyat was able to carry out the estimate using Cher-
nov’s ‘axiom of uniform nonintegrability’.11 We present his result in a special case, where
this axiom is satisfied, and in a weaker form than that used in his paper. The reader is
referred to [82] for more general statements.

THEOREM A.4 (D. Dolgopyat).Let gt be a geodesic flow on the unit tangent bundle
of a smooth, compact, negatively curved surfaceM . There exist a Poincaré sectionΣ ,
a Banach spaceL, and anε > 0 s.t.

∑
n�1‖T̂ ns ‖ =O(|Re(s)|α) for some0< α < 1 and

all s ∈ {s = x + iy: |y|< ε} with |Re(s)| large.

11‘Nonintegrability’ here refers to foliations, not functions.
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We get

∣∣ρ̂(s)∣∣ � ∣∣E(s)∣∣+ ‖f̂s‖∞‖ĝs‖L
∞∑
n=1

‖T̂ ns ‖

= ∣∣E(s)∣∣+ ‖f̂s‖∞‖ĝs‖LO
(∣∣Re(s)

∣∣α).
Under certain smoothness assumptions onf,g, ‖f̂s‖∞,‖ĝs‖L, |E(s)| can be shown to

decay fast enough so that the integrability conditions of Proposition A.3 hold. Exponential
decay of correlations follows.

We end this section by mentioning the works of Pollicott [207] and Baladi and Vallée
[30] for versions of Dolgopyat’s estimate for semiflows over piecewise expanding maps
of the interval, Dolgopyat’s study of exponential and rapid mixing for generic hyperbolic
flows [83,85], the paper by Stoyanov [235] for the case of open billiard flows, and the
recent paper by Liverani [168] for an extension of Dolgopyat’s work to contact Anosov
flows.

A.3. No spectral gap and subexponential decay of correlations

There are examples (typically nonuniformly hyperbolic systems) where the decay of cor-
relations is slower than exponential. Obviously, the transfer operator for these examples
cannot have a spectral gap. We discuss two methods which can be used in this case.

Both methods rely on Kakutani’sinduced transformationconstruction, which we now
review. Let (X,B,m,T ) be a probability preserving transformation and fixA ∈ B with
m(A) �= 0. By Poincaré’s Recurrence Theorem,

ϕA(x) := 1A(x) inf{n� 1: T nx ∈A}

is finite a.e., soTA :A→A given byTA(x)= T ϕA(x)(x) is well defined almost everywhere.
The mapTA is called theinduced transformationonA. It is known that ifT preservesm,
thenTA preserves the measuremA(E) :=m(E|A).

Observe that one iteration ofTA corresponds to several iterations ofT , soTA is more
‘chaotic’ thanT . As a result,T̂A averages densities much faster thanT̂ , and it is natural
to expect it to behave better as an operator. The first method we describe applies when
T̂A has better spectral properties thanT̂ . The second applies when it has better distortion
properties.

A.3.1. Renewal theory This is a method for determining the asymptotic behavior ofT̂ n

when T̂ has no spectral gap but̂TA does. Define the following operators onL1(A) =
{f ∈ L1: f is zero outsideA}:

Tnf := 1AT̂
n(f 1A) and Rnf := 1AT̂

n(f 1[ϕA=n]).
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Now form the generating functionsT (z) := I +∑n�1 z
nTn, R(z) :=∑n�1 z

nRn. Note

thatR(1)= T̂A. Therenewal equationis the following identity [223]:

T (z)= (I −R(z))−1 (|z|< 1
)
.

The left-hand side contains information onTn which are almost the same asT̂ n (Tnf =
T̂ nf on A wheneverf ∈ L1(A)), whereas the right-hand side involvesR(z) which is a
(singular) perturbation ofR(1)= T̂A.

The spectral gap ofR(1), if it exists, allows us to analyzeR(z) using perturbation theory.
The analytic problem we are facing is how to translate information onR(z) to information
onT (z). If R(z) were an ordinary power series with nonnegative coefficients, this problem
would be covered by classical renewal theory. The following result [223] is an operator
theoretic version of parts of this theory. In what follows,D = {z ∈ C: |z|< 1}:

THEOREM A.5 (O. Sarig).LetTn be bounded linear operators on a Banach spaceL such
thatT (z)= I +∑n�1 z

nTn converges inHom(L,L) for everyz ∈ D. Assume that:

1. Renewal Equation:for everyz ∈ D, T (z)= (I −R(z))−1 whereR(z)=∑n�1 z
nRn,

Rn ∈ Hom(L,L) and
∑‖Rn‖<∞.

2. Spectral Gap:the spectrum ofR(1) consists of an isolated simple eigenvalue at1 and
a compact subset ofD.

3. Aperiodicity:the spectral radius ofR(z) is strictly less than one for allz ∈ D̄ \ {1}.
LetP be the eigenprojection ofR(1) at 1. If

∑
k>n ‖Rk‖ =O(1/nβ) for someβ > 2 and

PR′(1)P �= 0, then for alln,

Tn = 1

µ
P + 1

µ2

∞∑
k=n+1

Pn +En,

whereµ is given byPR′(1)P = µP , Pn =∑�>n PR�P , andEn ∈ Hom(L,L) satisfy
‖En‖ =O(1/n�β�).

Gouëzel has relaxed some of the conditions of this theorem, and has shown how to get
higher order terms in this asymptotic expansion [107].

In the special caseTnf = 1AT̂ n(f 1A), Rnf = 1AT̂ n(f 1[ϕA=n]), one checks thatµ =
1

m(A)
, Pf = 1A 1

m(A)

∫
A
f dm, Pnf = 1A 1

m(A)2

∑
�>n m[ϕA > �]

∫
A
f dm. The theorem

then implies that iff,g are supported insideA, g ∈ L∞, f ∈ L, then

gT̂ nf = g
∫
f + g

∞∑
k=n+1

m[ϕA > k]
∫
f + gEnf.

It follows from (A.1) that if‖ · ‖1 � ‖ · ‖L, then

Cov(f, g ◦ T n)=
( ∞∑
k=n+1

m[ϕA > k]
)∫

f

∫
g+O(n−�β�).
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This is often enough to determine Cov(f, g ◦ T n) up to asymptotic equivalence (see [223,
107] for examples). In particular, unlike the other methods we discuss here, the renewal
method—when applicable—yields lower bounds, not just upper bounds for the decay of
correlations.

A.3.2. Coupling Fix a setA, and consider two positive functionsf,g such that‖f ‖1 =
‖g‖1. The coupling method for estimating‖T̂ nf − T̂ ng‖1 is based on the following heuris-
tic: Suppose∃ε1 > 0 such thatT̂ f = ε11A + f1, T̂ g = ε11A + g1 with f1, g1 positive. If
δ1 := 1− ‖f1‖1‖f ‖1

andn > 1, then

T̂ nf − T̂ ng ≡ T̂ n−1f1 − T̂ n−1g1 and ‖f1‖1 = ‖g1‖1 = (1− δ1)‖f ‖1.

A fraction δ1 of the total mass was ‘coupled’ and cancelled out. We now iterate this pro-
cedure. If this is possible, then∃fk > 0 andεk, δk such thatT̂ fk = fk+1 + εk1A and
‖fk‖1 = ‖gk‖1 =∏ki=1(1− δi)‖f ‖1, whereδi = 1− ‖fi‖1‖fi−1‖1

. For alln >N ,

∥∥T̂ nf − T̂ ng∥∥1 = ∥∥T̂ n−NfN − T̂ n−NgN
∥∥

1 �
∥∥T̂ n−NfN∥∥1 + ∥∥T̂ n−NgN∥∥1

= ‖fN‖1 + ‖gN‖1 = 2
N∏
i=1

(1− δi)‖f ‖1.

If we start withg = Pf , we get an upper bound for‖T̂ nf − Pf ‖1 which we can then
translate using (A.1) to an upper bound for Cov(f,h ◦ T n) for all h ∈ L∞.

The upper bound that we get depends on how much we were able to ‘couple’ away
at every stage. It is a deep insight of L.-S. Young [259,260] that this can be done very
efficiently in many important nonuniformly hyperbolic systems, if the setA is such that
the induced transformationTA is a piecewise onto map with uniform bounded distortion.

We describe the class of examples which can be treated this way abstractly. The reader
interested in applications to ‘real’ systems is referred to Bálint and Tóth [31], Markarian
[180], Chernov [74], Chernov and Young [76], Young [259] for a treatment of Billiard
systems; Young [260], Bruin, van Strien and Luzzatto [61], and Holland [120] for interval
maps; and Benedicks and Young [42] and Buzzi and Maume-Deschamps [68] for some
higher-dimensional examples.

A L.-S. Young toweris a nonsingular conservative transformation(∆,B,m,F ) equipped
with a generating measurable partition{∆�,i : i ∈ N, �= 0, . . . ,Ri − 1} with the following
properties:

(T1) The measure of∆�,i is positive and finite for everyi and�, andm(∆0) <∞ where
∆0 =⊎i�1∆0,i .

(T2) g.c.d.{Ri : i = 1,2,3, . . .} = 1.
(T3) If � + 1< Ri , thenF :∆�,i → ∆�+1,i is a measurable bijection, andm|∆�+1,i ◦

F |∆�,i =m|∆�,i .
(T4) If �+ 1=Ri , thenF :∆�,i →∆0 is a measurable bijection.
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(T5) LetR :∆0 → N be the functionR|∆0,i ≡ Ri and setϕ := log
dm|∆0

dm|∆0◦FR
. ϕ has an

a.e. version for which∃C > 0, θ ∈ (0,1) s.t.∀i and∀x, y ∈∆0,i ,∣∣∣∣∣
R(x)−1∑
k=0

ϕ
(
Fkx
)− R(y)−1∑

k=0

ϕ
(
Fky
)∣∣∣∣∣<Cθs(FRx,FRy),

wheres(x, y)= min{n� 0: (FR)nx, (FR)ny lie in distinct∆0,i}.

THEOREM A.6 (L.-S. Young). Suppose(∆,B,m,F ) is a probability preserving L.-S.
Young tower withθ as above. SetL := {f :∆→ R: sup|f (x)− f (y)|/θs(x,y) <∞}, and
defineR̂(x) := inf{n� 0: Fn(x) ∈∆0}. For everyf ∈ L andg ∈ L∞,

1. if m[R̂ > n] =O(n−α) for someα > 0, then|Cov(f, g ◦ T n)| =O(n−α);
2. if m[R̂ > n] = O(ρn0) with 0< ρ0 < 1, then |Cov(f, g ◦ T n)| = O(ρn) for some

0< ρ < 1;

3. if m[R̂ > n] =O(ρn
γ

0
0 ) with 0< ρ0< 1, 0< γ0 � 1, then|Cov(f, g ◦T n)| =O(ρnγ )

for some0< ρ < 1, 0< γ < γ0.

We remark that ifm[R̂ > n] - n−α , then the bound in (1) was shown to be optimal in a
particular example by Hu [124] and in the general case using the methods of the previous
subsection by Sarig [223] and Gouëzel [107].
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1. Introduction

1.1. Hyperbolic dynamics

A feature of many real-life phenomena in areas as diverse as physics, biology, finance,
economics, and many others, is therandom-likebehaviour of processes which neverthe-
less are clearlydeterministic. On the level of applications this dual aspect has proved very
problematic. Specific mathematical models tend to be developed either on the basis that
the process is deterministic, in which case sophisticated numerical techniques can be used
to attempt to understand and predict the evolution, or that it is random, in which case prob-
ability theory is used to model the process. Both approaches lose sight of what is probably
the most important and significant characteristic of the system which is precisely that it is
deterministicand has random-like behaviour. The theory of Dynamical Systems has con-
tributed a phenomenal amount of work showing that it is perfectly natural for completely
deterministic systems to behave in a very random-like way and achieving a quite remark-
able understanding of the mechanisms by which this occurs.

We shall assume that the state space can be represented by a compact Riemannian man-
ifold M and that the evolution of the process is given by a mapf :M → M which is
piecewise differentiable. Following an approach which goes back at least to the first half
of the 20th century, we shall discuss how certain statistical properties can be deduced from
geometrical assumptions onf formulated explicitly in terms of “hyperbolicity” assump-
tions on thederivative mapDf of f . This is often referred to asHyperbolic Dynamicsor
Smooth Ergodic Theory. The basic strategy is to construct certain geometrical structures
(invariant manifolds, partitions) which imply some statistical/probabilistic properties of the
dynamics. A striking and pioneering example of this is the work of Hopf on the ergodicity
of geodesic flows on manifolds of negative curvature [80]. The subject has grown enor-
mously since then to become of one of the key areas in the modern theory of Dynamical
Systems. This is reflected in the present handbook in which several surveys, see [1–3,5,
7–9] address different facets of the theory in the case ofdiffeomorphisms.

The main focus of these notes will be on the analogous theory forendomorphisms. In this
case the hyperbolicity conditions reduce toexpansivityconditions. We shall concentrate
here on three particular types of results about expanding maps: the existence of Markov
structures, the existence of absolutely continuous invariant probability measures, and esti-
mates on the rates of decay of correlations. See also [13] for a more detailed treatment of
the theory and other results such as stochastic stability.

1.2. Expanding dynamics

We start with the basic definition of an expanding map.

DEFINITION 1. We say thatf :M→M is (nonuniformly)expandingif there existsλ > 0
such that

lim inf
n→∞

1

n

n−1∑
i=0

log
∥∥Df−1

f i(x)

∥∥−1
> λ (∗)
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for almost everyx ∈ M . Equivalently, for almost everyx ∈ M there exists a constant
Cx > 0 such that

n−1∏
i=0

∥∥Df−1
f i(x)

∥∥−1 � Cxeλn

for everyn� 1.

Notice that the condition log‖Df−1
x ‖−1> 0, which is equivalent to‖Df−1

x ‖−1> 1 and
which in turn is equivalent to‖Df−1

x ‖< 1, implies thatall vectors in all directions are con-
tracted by the inverse ofDfx and thus thatall vectors in all directions areexpandedbyDfx ;
the intuitively more obvious condition log‖Dfx‖> 0, which is equivalent to‖Dfx‖> 1,
implies only that there isat leastone direction in which vectors are expanded byDfx . Thus
a map is nonuniformly expanding if every vector is asymptotically expanded at a uniform
exponential rate. The constantCx can in principle be arbitrarily small and indicates that an
arbitrarily large number of iterates may be needed before this exponential growth becomes
apparent.

The definition and the corresponding results can be generalized to the case in which the
expansivity condition holds only on an invariant set of positive measure instead of on the
entire manifoldM . In the special case in which condition(∗) holds ateverypointx and the
constantC can be chosen uniformly positive independent ofx we say thatf is uniformly
expanding. Thusuniformly expandingis a special case ofnonuniformly expanding. The
terminology is slightly awkward for historical reasons: uniformly expanding maps have
traditionally been referred to simply as expanding maps whereas this term should more
appropriately refer to the more general (i.e. possibly nonuniformly) expanding case. We
shall generally say thatf is strictly nonuniformly expanding iff satisfies condition(∗)
but is strictly not uniformly expanding. A basic theme of these notes is to discuss the
difference between uniformly and nonuniformly expanding maps: how the nonuniformity
affects the results and the ideas and techniques used in the proofs and how differentdegrees
of nonuniformitycan be quantified.

Nonuniform expansivity is a special case ofnonuniform hyperbolicity. This concept
was first formulated and studied by Pesin [128,129] and has since become one of the main
areas of research in dynamical systems, see [46,168,27] and [1] by Barreira and Pesin in
this volume, for extensive and in-depth surveys. The formal definition is in terms ofnon-
zero Lyapunov exponentswhich means that the tangent bundle can be decomposed into
subbundles in which vectors either contract or expand at an asymptotically exponential
rate. Nonuniformexpansivitycorresponds to the case in which all the Lyapunov exponents
are positive and therefore all vectors expand asymptotically at an exponential rate. The
natural setting for this situation is that of (noninvertible) local diffeomorphisms whereas
the theory of nonuniform hyperbolicity has been developed mainly for diffeomorphisms
(however see also [142] and [1, Section 5.8]). For greater generality, and also because this
has great importance for applications, we shall also allow various kinds of critical and/or
singular points forf or its derivative.
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1.3. General overview of the notes

We first review the basic notions of invariant measure, ergodicity, mixing, and decay of
correlations in order to fix the notation and to motivate the results and techniques. In Sec-
tion 3 we discuss the key idea of aMarkov Structureand sketch some of the arguments
used to study systems which admit such a structure. In Sections 4–6, we give a histori-
cal and technical survey of many classes of systems for which results are known, giving
references to the original proofs whenever possible, and sketching in varying amounts of
details the construction of Markov structures in such systems. In Section 7 we present
some recent abstract results which go towards a general theory of nonuniformly expanding
maps. In Section 8 we discuss the important problem of verifying the geometric nonuni-
form expansivity assumptions in specific classes of maps. Finally, in Section 9 we make
some concluding remarks and present some open questions and conjectures.

The focus on Markov structures is partly a matter of personal preference; in some cases
the results can be proved and/or were first proved using completely different arguments
and techniques. Of particular importance is the so-calledFunctional–Analyticapproach in
which the problems are reformulated and reduced to questions about the spectrum of a
certain linear operator on some functional space. There are several excellent survey texts
focussing on this approach, see [23,101,163]. In any case, however, it is hard to see how the
study of systems in which the hyperbolicity or expansivity isnonuniformcan be carried out
without constructing or defining some kind of subdivision into subsets on which relevant
estimates satisfy uniform bounds. The Markov structures to be described below provide
one very useful way in which this can be done and give some concrete geometrical struc-
ture. It seems very likely that these structures will prove useful in studying many other fea-
tures of nonuniformly hyperbolic or expanding systems such as their stability, persistence,
and even existence in particular settings. Another quite different way to partition a set sat-
isfying nonuniform hyperbolicity conditions is with so-calledPesinor regular sets, see
[1, Section 4.5]. These sets play a very useful role in the general theory of nonuniform hy-
perbolicity for diffeomorphisms, for example, in the construction of the stable and unstable
foliations.

2. Basic definitions

In this section we review, for convenience, the basic definitions of invariant measure, er-
godicity, mixing and decay of correlations. We shall also present these definitions in such
a way as to motivate the results given later. A more extensive review of these ideas can be
found in the general survey [4] in Vol. 1A of this handbook.

We shall always assume thatM is a smooth, compact, Riemannian manifold of dimen-
siond � 1. For simplicity we shall call the Riemannian volumeLebesgue measure, denote
it bym or | · | and assume that it is normalized so thatm(M)= |M| = 1. We letf :M→M

denote a Lebesgue-measurable map. In practice we shall always assume significantly more
regularity onf , e.g., thatf isC2 or at least piecewiseC2, but the main definitions apply in
the more general case off measurable. All measures onM will be assumed to be defined
on the Borelσ -algebra ofM .
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2.1. Invariant measures

For a setA ∈M and a mapf :M→M we definef−1(A)= {x: f (x) ∈A}.

DEFINITION 2. We say that a probability measureµ onM is invariant underf if

µ
(
f−1(A)

)= µ(A)
for everyµ-measurable setA⊂M .

A given measure can be invariant for many different maps. For example Lebesgue
measure on the circleM = S1 is invariant for the identity mapf (θ) = θ , the rotation
f (θ) = θ + α for anyα ∈ R, and the covering mapf (θ) = κθ for anyκ ∈ N. Similarly,
for a given pointp ∈M , the Dirac-δ measureδp defined by

δp(A)=
{

1, p ∈A,
0, p /∈A,

is invariant for any mapf for whichf (p)= p. On the other hand, a given mapf can admit
many invariant measures. For exampleanyprobability measure is invariant for the identity
mapf (x)= x and, more generally, any map which admits multiple fixed or periodic points
admits as invariant measures the Dirac-δ measures supported on such fixed points or their
natural generalizations distributed along the orbit of the periodic points. There exist also
maps that do not admit any invariant probability measures. However some mild conditions,
e.g., continuity off , do guarantee that there exists at least one.

A first step in the application of the theory and methods of ergodic theory is to intro-
duce some ways of distinguishing between the various invariant measures. We do this by
introducing various properties which such measures may or may not satisfy. Unless we
specify otherwise we shall useµ to denote a generic invariant probability measure for a
given unspecified mapf :M→M .

2.2. Ergodicity

DEFINITION 3. We say thatµ is ergodicif there does not exist a measurable setA with

f−1(A)=A and µ(A) ∈ (0,1).

In other words, any fully invariant setA, i.e. a set for whichf−1(A) = A, has either
zero or full measure. This is a kind ofindecomposabilityproperty of the measure. If such
a set existed, its complementB =Ac would also be fully invariant and , in particular, both
A andB would be also forward invariant:f (A)= A andf (B)= B. Thus no point origi-
nating inA could ever intersectB and vice-versa and we essentially have two independent
dynamical systems.
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Simple examples such as the Dirac-δp measure on a fixed pointp are easily shown to be
ergodic, but in general this is a highly nontrivial property to prove. A lot of the techniques
and methods to be described below are fundamentally motivated by the basic question of
whether some relevant invariant measures are ergodic. It is known that Lebesgue measure
is ergodic for circle rotationsf (θ) = θ + α whenα is irrational and for covering maps
f (θ)= κθ whenκ ∈ N is � 2 (the proof of ergodicity for the latter case will be sketched
below). Irrational circle rotations are very special because they do not admit any other
invariant measures besides Lebesgue measure. On the other hand covering maps have infi-
nitely many periodic points and thus admit infinitely many invariant measures. It is some-
times easier to show that certain examples are not ergodic. This is clearly true for example
for Lebesgue measure and the identity map since any subset is fully invariant. A less trivial
example is the mapf : [0,1]→ [0,1] given by

f (x)=


2x if 0 � x � 1/4,
−2x + 1 if 1/4� x < 1/2,
2x − 1/2 if 1/2� x � 3/4,
−2x + 5/2 if 3/4� x � 1.

Lebesgue measure is invariant, but the intervals[0,1/2) and [1/2,1] are both backward
(and forward) invariant. This example can easily be generalized by defining two differ-
ent Lebesgue measure preserving transformations mapping each of the two subintervals
[0,1/2) and[1/2,1] into themselves.

The fundamental role played by the notion of ergodicity is due to the well-known and
classicalBirkhoff Ergodic Theorem. We give here only a special case of this result.

THEOREM [30,31]. Letf :M→M be a measurable map and letµ be an ergodic invari-
ant probability measure forf . Then, for any functionϕ :M→ R in L1(µ), i.e. such that∫
ϕ dµ<∞, and forµ almost everyx we have

1

n

n∑
i=1

ϕ
(
f i(x)
)→ ∫ ϕ dµ.

In particular, for any measurable setA⊂M , lettingϕ = 1A be the characteristic function
ofA, we have forµ almost everyx ∈M ,

#{1� j � n: f j (x) ∈A}
n

→ µ(A). (1)

Here #{1 � j � n: f j (x) ∈ A} denotes the cardinality of the set of indicesj for which
f j (x) ∈ A. Thus theaverage proportion of timewhich the orbit of a typical point spends
in A convergespreciselyto theµ-measure ofA. Notice that the convergence of this pro-
portion asn→∞ is in itself an extremely remarkable and nonintuitive result. The fact that
the limit is given a priori byµ(A) means in particular that this limit isindependent of the
specific initial conditionx. Thusµ-almost every initial condition has the same statistical
distribution in space and this distribution depends only onµ and not even on the mapf ,
except implicitly for the fact thatµ is ergodic and invariant forf .
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2.3. Absolute continuity

Some care needs to be taken when applying Birkhoff’s ergodic theorem to maps which
admit several ergodic invariant measures. Consider, for example, the circle mapf (θ) =
10θ . This maps preserves Lebesgue measure and also has several fixed points, e.g.,
p = 0.2222. . . , on which we can consider the Dirac-δp measure. Both these measures
are ergodic. Thus an application of Birkhoff’s theorem says that “almost every” point
spends an average proportion of time converging tom(A) in the setA but also that “al-
most every” point spends an average proportion of time converging toδp(A) in the setA.
If m(A) �= δp(A) this may appear to generate a contradiction.

The crucial observation here is that the notion ofalmost everypoint is always under-
stoodwith respect to a particular measure. Thus Birkhoff’s ergodic theorem asserts that
for a given measureµ there exists a set̃M ⊂M with µ(M̃)= 1 such that the convergence
property holds for everyx ∈ M̃ and in general it may not be possible to identifyM̃ ex-
plicitly. Conversely, ifX ∈M satisfiesµ(X)= 0 then no conclusion can be drawn about
whether (1) holds for any point ofX. Returning to the example given above we have the
following situation: the convergence (1) of the time averages toδp(A) can be guaranteed
only for points belonging to a minimal set of full measure. But in this case this set reduces
to the single pointp for which (1) clearly holds. On the other hand the single pointp

clearly has zero Lebesgue measure and thus the convergence (1) tom(A) is not guaranteed
by Birkhoff’s Theorem. Thus there is no contradiction.

An important point therefore is that the information provided by Birkhoff’s ergodic the-
orem depends on the measureµ under consideration. Based on the premise that Lebesgue
is the given “physical” measure and that we consider a satisfactory description of the dy-
namics one which accounts for a sufficiently large set of points from the point of view of
Lebesgue measure, it is clear that ifµ is a Dirac-δ measure on a fixed point it gives essen-
tially no useful information. On the other hand, ifµ is Lebesgue measure itself then we
do get a convergence result that holds for Lebesgue almost every starting condition. The
invariance of Lebesgue measure is a very special property but much more generally we can
ask about the existence of ergodic invariant measuresµ which areabsolutely continuous
with respect tom.

DEFINITION 4. µ is absolutely continuous with respect tom if

m(A)= 0 implies µ(A)= 0

for every measurable setA⊂M .

In this case, Birkhoff’s theorem implies that (1) holds for all points belonging to a set
M̃ ⊂ M with µ(M̃) = 1 and the absolute continuity ofµ with respect tom therefore
implies thatm(M̃) > 0. Thus the existence of an ergodicabsolutely continuous invariant
probability (acip) µ implies some control over the asymptotic distribution of at least a set
of positive Lebesgue measure. It also implies that such points tend to have a dynamics
which is nontrivial in the sense that it is distributed over some relatively large subset of
the space as opposed to converging, for example, to some attracting fixed point. Thus it
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indicates that there is a minimum amount of inherentcomplexityas well asstructure. This
motivates the basic question:

1. Under what conditions doesf admit an ergodic acip?

This question is already addressed explicitly by Hopf [79] for invertible transformations.
Interestingly he formulates some conditions in terms of the existence of what are essen-
tially some induced transformations, similar in some respects to the Markov structures to
be defined below.1 In these notes we shall discuss what is effectively a generalization of
this basic approach.

2.4. Mixing

Birkhoff’s ergodic theorem is very powerful but it is easy to see that the asymptotic space
distribution given by (1) does not necessarily tell the whole story about the dynamics of
a given mapf . Indeed these conclusions depend not onf but simply on the fact that
Lebesgue measure is invariant and ergodic. Thus from this point of view the dynamics of
an irrational circle rotationf (θ)= θ + α and of the mapf (θ)= 2θ are indistinguishable.
However it is clear that they give rise to very different kinds of dynamics. In one case, for
example, nearby points remain nearby for all time, whereas in the other they tend to move
apart at an exponential speed. This creates a kind ofunpredictabilityin one case which is
not present in the other.

DEFINITION 5. We say that an invariant probability measureµ is mixing if∣∣µ(A∩ f−n(B)
)−µ(A)µ(B)∣∣→ 0

asn→∞, for all measurable setsA,B ⊆M .

Notice that mixing implies ergodicity and is therefore a stronger property. Thus a natural
follow up to question 1 is the following. Suppose thatf admits an ergodicacipµ.

2. Under what conditions isµ mixing?

Early work in ergodic theory in the 1940’s considered the question of the genericity
of the mixing property is in various spaces of systems [75,137,138,78,89] but, as with
ergodicity, in specific classes of systems it is generally easier to show that a system is
not mixing rather than that it is mixing. For example it is immediate that irrational circle
rotations are not mixing. On the other hand it is nontrivial that maps of the formf (θ)= κθ
for integersκ � 2 are mixing.

To develop an intuition for the concept of mixing, notice that mixing is equivalent to the
condition∣∣∣∣µ(A∩ f−n(B))

µ(B)
−µ(A)

∣∣∣∣→ 0

1Hopf’s result is the following: suppose that for every measurable partitionP of the manifoldM and every
stopping time functionp such that the imagesf p(ω)(ω) for ω ∈ P are all disjoint, the union of all images has
full measure. Thenf admits an absolutely continuous invariant probability measure.
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asn→∞, for all measurable setsA,B ⊆M , with µ(B) �= 0. In this form there are two
natural interpretations of mixing, one geometrical and one probabilistic. From a geometri-
cal point of view, recall thatµ(f−n(B)) = µ(B) by the invariance of the measure. Then
one can think off−n(B) as a “redistribution of mass” and the mixing condition says that
for largen the proportion off−n(B) which intersectsA is just proportional to the measure
of A. In other wordsf−n(B) is spreading itself uniformly with respect to the measureµ.
A more probabilistic point of view is to think ofµ(A∩ f−n(B))/µ(B) as the conditional
probability of havingx ∈ A given thatf n(x) ∈ B, i.e. the probability that the occurrence
of the eventB today is a consequence of the occurrence of the eventA n steps in the past.
The mixing condition then says that this probability converges to the probability ofA, i.e.
asymptotically, there is no causal relation between the two events. This is why we say that
a mixing system exhibitsstochastic-likeor random-likebehaviour.

2.5. Decay of correlations

It turns out that mixing is indeed a quite generic property at least under certain assumptions
which will generally hold in the examples we shall be interested in. Thus apparently very
different systems admit mixingacip’s and become, in some sense, statistically indistin-
guishable at this level of description. Thus it is natural to want to dig deeper in an attempt
relate finer statistical properties with specific geometric characteristics of systems under
considerations. One way to do this is to try to distinguish systems which mix at different
speeds. To formalize this idea we need to generalize the definition of mixing. Notice first
of all that the original definition can be written in integral form as∣∣∣∣∫ 1A∩f−n(B) dµ−

∫
1A dµ

∫
1B dµ

∣∣∣∣→ 0,

where1X denotes the characteristic function of the setX. This can be written in the equiv-
alent form∣∣∣∣∫ 1A(1B ◦ f n)dµ−

∫
1A dµ

∫
1B dµ

∣∣∣∣→ 0

and this last formulation now admits a natural generalization by replacing the characteristic
functions with arbitrary measurable functions.

DEFINITION 6. For real valued measurable functionsϕ,ψ :M→ R we define thecorre-
lation function2

Cn(ϕ,ψ)=
∣∣∣∣∫ ψ(ϕ ◦ f n)dµ−

∫
ψ dµ

∫
ϕ dµ

∣∣∣∣.
2The derivation of the correlation function from the definition of mixing as given here does not perhaps cor-

respond to the historical development. I believe that the notion of decay of correlation arose in the context of
statistical mechanics and was not directly linked to abstract dynamical systems framework until the work of
Bowen, Lebowitz, Ruelle and Sinai in the 1960’s and 1970’s [152,32,153,126,33].
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In this context, the functionsϕ andψ are often calledobservables. If µ is mixing, the
correlation function decays to zero whenever the observablesφ,ψ are characteristic func-
tions. It is possible to show that indeed it decays also for many other classes of functions.
We then have the following very natural question. Suppose that the measureµ is mixing,
fix two observablesϕ,ψ, and letCn = Cn(ϕ,ψ).

3. DoesCn decay at a specificratedepending only onf ?

The idea behind this question is that a system may have an intrinsicrate of mixing
which reflects some characteristic geometrical structures. It turns out that an intrinsic rate
does sometimes exist and is in some cases possible to determine, but only by restricting
to a suitable class of observables. Indeed, a classical result says that even in the “best”
cases it is possible to choose subsetsA,B such that the correlation functionCn(1A,1B)
of the corresponding characteristic functions decays at an arbitrarily slow rate. Instead
positive results exist in many cases by restricting to, for example, the space of observables
of bounded variation, or Hölder continuous, or even continuous with non-Hölder modulus
of continuity. Once the spaceH of observables has been fixed, the goal is to show that there
exists a sequenceγn→ 0 (e.g.,γn = e−αn or γn = n−α for someα > 0) depending only on
f andH, such that for any twoϕ,ψ ∈H there exists a constantC = C(ϕ,ψ) (generally
depending on the observablesϕ,ψ ) such that

Cn � Cγn

for all n� 1. Ideally we would like to show thatCn actually decays likeγn, i.e. to have both
lower and upper bounds, but this is known only in some very particular cases. Most known
results at present are upper bounds and thus when we say that the correlation functions
decays at a certain rate we will usually mean that it decaysat leastat that rate. Also, most
known results deal with Hölder continuous observables and thus, to simplify the presenta-
tion, we shall assume that we are dealing with this class unless we mention otherwise.

We shall discuss below several examples of systems whose correlations decay at differ-
ent rates, for example,exponential, polynomialor evenlogarithmic, and a basic theme of
these notes will be gain some understanding abouthow andwhy such differences occur
and what this tells us about the system.

3. Markov structures

In this section we define the notion of a “Markov structure” and sketch the proof of the fact
that the existence of a Markov structure implies the existence of an absolutely continuous
invariant probability measure.

DEFINITION 7. f :M→M admits (or, is) aMarkov mapif there exists a finite or count-
able partitionP (mod 0) ofM into open sets with smooth boundaries such thatf (ω)=M
for every partition elementω ∈ P andf |ω is a continuous nonsingular bijection.

We recall that a partition mod 0 ofM means that Lebesgue almost every point belongs
to the interior of some partition elements. Also,f |ω is nonsingular if|A| > 0 implies
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|f (A)|> 0 for every (measurable)A⊂ ω. These two conditions together immediately im-
ply that the full forward orbit of almost every point always lies in the interior of some
partition element. The conditionf (ω)=M is a particularly strong version of what is gen-
erally referred to as the Markov property where it is only required that the image of eachω

be a continuous nonsingular bijection onto some union of partition elements and not nec-
essarily all ofM ; see, for example, [4] for general definitions. The stronger requirement
we use here is sometimes called a Bernoulli or Gibbs–Markov property. A significant gen-
eralization of this definition allows the partition element to be just measurable sets and not
necessarily open; the general results to be given below apply in this case also. However we
shall not need this for any of the applications which we shall discuss.

A natural but extremely far-reaching generalization of the notion of a Markov map is the
following

DEFINITION 8. f :M →M admits aninduced Markov mapif there exists an open set
∆ ⊂ M , a partitionP (mod 0) of∆ and a return time functionR :∆→ N, piecewise
constant on each element ofP , such that the induced mapF :∆→∆ defined byF(x)=
f R(x) is a Markov map.

Again, the condition that∆ is open is not strictly necessary. Clearly iff is Markov to
begin with, it trivially admits an induced Markov map with∆=M andR ≡ 1. However,
as we shall see below, this is a much more general definition and many systems turn out to
admit an induced Markov map. The notion of induced Markov map is a fairly classical no-
tion in ergodic theory. The first use of this concept, in the specific context of nonuniformly
expanding dynamics, is probably due to Jakobson in the late 1970’s and early 1980’s, see
Section 3.2 in [6]. Since then it has played an increasingly important role in the theory and,
in some sense, the main theme of this survey is precisely to describe the development of
the theory of nonuniformly expanding maps from this point of view. Recent results suggest
that the existence of an induced Markov map (with some additional conditions to be stated
below) is essentially equivalent to nonuniform expansivity.

For the rest of this section we shall suppose thatF :∆→ ∆ is an induced Markov
map associated to some mapf :M →M . We callP the Markov partition associated to
the Markov mapF . SinceP is assumed to be countable, we can define an indexing set
ω = {0,1,2, . . .} of the Markov partitionP . Then, for any finite sequencea0a1a2 . . . an
with ai ∈ I, we can define thecylinder set of ordern by

ω(n)a0a1...an

{
x: F i(x) ∈ ωai for 0� i � n

}
.

Inductively, givenωa0a1...an−1, thenωa0a1...an is the part ofωa0a1...an−1 mapped toωan byFn.
The cylinder sets define refinements of the partitionP . We letω(0) denote generic elements
of P(0) = P andω(n) denote generic elements ofP(n). Notice that by the nonsingularity
of the mapF on each partition element and the fact thatP is a partition mod 0, it follows
that eachP(n) is also a partition mod 0 and that Lebesgue almost every point in∆ falls
in the interior of some partition element ofP for all future iterates. In particular almost
everyx ∈ ∆ has an associated infinite symbolic sequencea(x) determined by the future
iterates ofx in relation to the partitionP . To get the much more sophisticated results on
the statistical properties off we need first of all the following two additional conditions.



Nonuniformly expanding maps 277

DEFINITION 9. F :∆→∆ hasintegrableor summablereturn times if∫
∆

R(x)dx =
∑
ω∈P

|ω|R(ω) <∞.

DEFINITION 10. F :∆→∆ has the (volume)bounded distortionproperty if there exists
a constantD > 0 such that for alln� 1 and any measurable subsetω̃(n) ⊂ ω(n) ∈ P(n) we
have

1

D
|ω̃(n)|
|ω(n)| � |f n(ω̃(n))|

|f n(ω(n))| � D |ω̃(n)|
|ω(n)| . (2)

This means that the relative measure of subsets of a cylinder set of any leveln are
preserved up to some factorD under iteration byf n. A crucial observation here is that the
constantD is independent ofn. Thus in some sense the geometrical structure of any subset
of ∆ reoccurs at every scale inside each partition element ofP(n) up to some bounded
distortion factor. This is in principle a very strong condition but we shall see below that
it is possible to verify it in many situations. We shall discuss in the next section some
techniques for verifying this condition in practice. First of all we state the first result of this
section.

THEOREM 1. Suppose thatf :M → M admits an induced Markov map satisfying the
bounded distortion property and having summable return times. Then it admits an ergodic
absolutely continuous invariant probability measureµ.

This result goes back to the 1950’s and is often referred to as theFolklore Theoremof
dynamics. We will sketch below the main ideas of the proof, see also [6, Section 3.1] for a
particularly compact proof.

First we state a much more recent result which applies in the same setting but takes the
conclusions much further in the direction of mixing and rates of decay of correlations. First
of all we shall assume without loss of generality that the greatest common divisor of all
values taken by the return time functionR is 1. If this were not the case all return times
would be multiples of some integerk � 2 and the measureµ given by the theorem stated
above would clearly not be mixing. If this is the case however, we could just consider the
mapf̃ = f k and the results to be stated below will apply tof̃ instead off . We define the
tail of the return timesas the measure of the set

Rn =
{
x ∈∆: R(x) > n

}
of points whose return times is strictly larger thann. The integrability condition implies
thatR(x) <∞ for almost every point and thus

|Rn|→ 0
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asn→∞. However there is a range of possibleratesof decay of|Rn| all of which are com-
patible with the integrability condition. L.-S. Young observed and proved that a bound on
the decay of correlations for Hölder continuous observables can be obtained from bounds
on the rate of decay of the tail of the return times.

THEOREM 2 [169,170]. Suppose thatf :M→M admits an induced Markov map satisfy-
ing the bounded distortion property and having summable return times. Then it admits an
ergodic(and mixing) absolutely continuous invariant probability measure. Moreover, the
correlation function for Hölder continuous observables satisfies the following bounds:
Exponential tail: If ∃α > 0 such that |Rn| = O(e−αn), then ∃α̃ > 0 such thatCn =

O(e−α̃n).
Polynomial tail: If ∃α > 1 such that|Rn| =O(n−α), thenCn =O(n−α+1).

Other papers have also addressed the question of the decay of correlations for similar
setups mainly using spectral operator methods [169,36,115,37,116]. We remark that the re-
sults about the rates of decay of correlations generally require an a priori slightly stronger
form of bounded distortion than that given in (2). The proof in [170] uses a very geo-
metrical/probabilisticcoupling argumentwhich appears to be quite versatile and flexible.
Variations of the argument have been applied to prove the following generalizations which
apply in the same setting as above (in both cases we state only a particular case of the
theorems proved in the cited papers).

The first one extends Young’s result to arbitrarily slow rates of decay. We say that
ρ :R+ → R+ is slowly varying(see [10]) if for ally > 0 we have limx→∞ ρ(xy)/ρ(x)
= 0. A simple example of a slowly varying function is the functionρ(x)= e(logx)/(log logx).
Let R̂n =∑n̂�n Rn̂.
THEOREM 3 [77]. The correlation function for Hölder continuous observables satisfies
the following bound:

Slowly varying tail: If R̂n = O(ρ(n)) where ρ is a monotonically decreasing to zero,
slowly varying, C∞ function, thenCn =O(ρ(n)).

The second extends Young’s result to observables with very weak, non-Hölder, modulus
of continuity. We say thatψ : I → R has alogarithmic modulus of continuityγ if there
existsC > 0 such that for allx, y ∈ I we have∣∣ψ(x)−ψ(y)∣∣� C∣∣log|x − y|∣∣−γ .
For both the exponential and polynomial tail situations we have the following

THEOREM 4 [110]. There existsα > 0 such that for allγ sufficiently large and observ-
ables with logarithmic modulus of continuityγ , we haveCn =O(n−α).

These general results indicate that the rate of decay of correlations is linked to what is
in effect thegeometrical structureof f as reflected in the tail of the return times for the
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induced mapF . From a technical point of view they shift the problem of the statistical
properties off to the problem of the geometrical structure off and thus to the (still highly
nontrivial) problem of showing thatf admits an induced Markov map and of estimating the
tail of the return times of this map. The construction of an induced map in certain examples
is relatively straightforward and essentially canonical but the most interesting constructions
require statistical arguments to even show that such a map exists and to estimate the tail
of the return times. In these cases the construction is not canonical and it is usually not
completely clear to what extent the estimates might depend on the construction.

We now give a sketch of the proof of Theorem 1. The proofs of Theorems 2–4 are
in a similar spirit and we refer the interested reader to the original papers. We assume
throughout the next few sections thatF :∆→ ∆ is the Markov induced map associated
to f : I → I andP(n) are the family of cylinder sets generated by the Markov partition
P =P(0) of∆. We first define a measureν on∆ and show in that it isF -invariant, ergodic,
and absolutely continuous with respect to Lebesgue. Then we define the measureµ on I
in terms ofν and show that it isf -invariant, ergodic, and absolutely continuous.

3.1. The invariant measure forF

We start with a preliminary result which is a consequence of the bounded distortion prop-
erty.

3.1.1. The measure of cylinder setsA straightforward but remarkable consequence of the
bounded distortion property is that the measure of cylinder sets tends to zero uniformly.

LEMMA 3.1.

max
{∣∣ω(n)∣∣; ω(n) ∈P(n)

}→ 0 asn→ 0.

Notice that in the one-dimensional case, the measure of an interval coincides with its
diameter and so this implies in particular that the diameter of cylinder sets tends to zero,
implying the essential uniqueness of the symbolic representation of itineraries.

PROOF. It is sufficient to show that there exists a constantτ ∈ (0,1) such that for every
n� 0 and everyω(n) ⊂ ω(n−1) we have∣∣ω(n)∣∣/∣∣ω(n−1)

∣∣� τ. (3)

Applying this inequality recursively then implies|ω(n)| � τ |ω(n−1)| � τ2|ω(n−2)| � · · · �
τn|ω0|� τn|∆|. To verify (3) we shall show that

1− |ω(n)|
|ω(n−1)| =

|ω(n−1)| − |ω(n)|
|ω(n)| = |ω(n−1) \ω(n)|

|ω(n)| � 1− τ. (4)

To prove (4) let first of allδ = maxω∈P |ω|< |∆|. Then, from the definition of cylinder sets
we have thatFn(ω(n−1))=∆ and thatFn(ω(n)) ∈P =P(0), and therefore|Fn(ω(n))| � δ
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or, equivalently,|Fn(ω(n−1) \ ω(n))| � |∆| − δ > 0. Thus, using the bounded distortion
property we have

|ω(n−1) \ω(n)|
|ω(n)| � 1

D
|Fn(ω(n−1) \ω(n))|

|Fn(ω(n))| � |∆| − δ
|∆|D

and (4) follows choosingτ = 1− ((|∆| − δ)/|∆|D). �

The next property actually follows only from the conclusions of Lemma 3.1 rather than
from the bounded distortion property itself. It essentially says that it is possible to “zoom
in” to any given set of positive measure.

LEMMA 3.2. For any ε > 0 and any Borel setA with |A| > 0 there existsn � 1 and
ω(n) ∈P(n) such that∣∣A∩ω(n)∣∣� (1− ε)∣∣ω(n)∣∣.
PROOF. Fix someε > 0. Suppose first of all thatA is compact. Then, using the proper-
ties of Lebesgue measure it is possible to show that for anyη > 0 there exists an integer
n� 1 and a collectionIη = {ωn} ⊂P(n) such thatA⊂⋃ωη ω(n) and|ωη| � |A| + η. Now

suppose by contradiction that|ω(n) ∩A| � (1− ε)|ω(n)| for everyω(n) ∈ ωη for any given
η > 0. Using that fact that theω(n) ∈ ωη are disjoint and thus

∑ |ω(n)| = |ωη|, this implies
that

|A| =
∑

ω(n)∈ωη

∣∣ω(n) ∩A∣∣� (1− ε)
∑

ω(n)∈ωη

∣∣ω(n)∣∣� (1− ε)(|A| + η).
Sinceη can be chosen arbitrarily small after fixingε this gives a contradiction. IfA is
not compact we can approximate if from below in measure by compact sets and repeat
essentially the same argument. �

3.1.2. Absolute continuity The following estimate also follows immediately from the
bounded distortion property. It says that the absolute continuity property ofF on parti-
tion elements is preserved up to arbitrary scale with uniform bounds.

LEMMA 3.3. LetA⊂∆ andn� 1. Then∣∣F−n(A)
∣∣�D|A|.

PROOF. The Markov property implies thatF−n(A) is a union of disjoint sets each con-
tained in the interior of some elementω(n) ∈ P(n). Moreover, eachω(n) is mapped byFn

to∆ with uniformly bounded distortion, thus we have|F−n(A)∩ω(n)|/ω(n) � D|A|/|∆|
or, equivalently,|F−n(A)∩ω(n)|� D|A||ω(n)|/|∆|. Therefore

∣∣F−n(A)
∣∣= ∑

ω(n)∈P(n)

∣∣F−n(A)∩ω(n)∣∣� D|A|
|∆|

∑
ω(n)∈P(n)

∣∣ω(n)∣∣=D|A|. �
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3.1.3. The pull-back of a measureFor anyn� 1 and BorelA⊆∆, let

νn(A)= 1

n

n∑
i=0

∣∣F−i (A)
∣∣.

It is easy to see thatνn is a probability measure on∆ and absolutely continuous with
respect to Lebesgue. Moreover, Lemma 3.3 implies that the absolute continuity property is
uniform inn andA in the sense thatνn(A)� D|A| for anyA and for anyn� 1. By some
standard results of functional analysis, this implies the following

LEMMA 3.4. There exists a probability measureν and a subsequence{νnk } such that, for
every measurable setA,

νnk (A)→ ν(A)� D|A|. (5)

In particularA is absolutely continuous with respect to Lebesgue.

3.1.4. Invariance To show thatν isF -invariant, letA⊂∆ be a measurable set. Then, by
(5) we have

ν
(
F−1(A)

) = lim
k→∞

1

nk

nk−1∑
i=0

∣∣F−(i+1)(A)
∣∣

= lim
k→∞

[
1

nk

nk−1∑
i=0

∣∣F−1(A)
∣∣− |A|

nk
+ |F−nk (A)|

nk

]
.

Since |A| and |f−n(A)| are both uniformly bounded by 1, we have|A|/nk → 0 and
|F−nk (A)|/nk → 0 ask→ 0. Therefore

ν
(
F−1(A)

) = lim
k→∞

[
1

nk

nk−1∑
i=0

∣∣F−1(A)
∣∣− |A|

nk
+ |F−nk (A)|

nk

]

= lim
k→∞

1

nk

nk−1∑
i=0

∣∣F−1(A)
∣∣= ν(A).

Thereforeν is F -invariant.

3.1.5. Ergodicity and uniquenessLet A⊂ I be a measurable set withF−1(A)= A and
µ(A) > 0. We shall show thatν(A)= |A| = 1. This implies both ergodicity and uniqueness
of ν. Indeed, if ν̃ were another such measure invariant absolutely continuous measure,
there would be have to be a setB with F−1(B) = B and ν̃(B) = 1. But in this case we
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would have also|B| = 1 and thusA = Bmod0. This is impossible since two absolutely
continuous invariant measures must have disjoint support.

To prove that|A| = 1, letAc =∆ \A denote the complement ofA. Notice thatx ∈ Ac
if and only if F(x) ∈ Ac and thereforeF(Ac) = Ac. By Lemma 3.2, for anyε > 0 there
exists somen� 1 andω(n) ∈P(n) such that|A∩ω(n)|� (1− ε)|ω(n)| and therefore∣∣Ac ∩ω(n)∣∣� ε∣∣ω(n)∣∣.
Using that fact thatFn(ω(n))= I and the invariance ofAc haveFn(ω(n) ∩Ac)=Ac. The
bounded distortion property then gives

|Ac| = |Fn(ω(n) ∩Ac)|
|Fn(ω(n))| � D |ω(n) ∩Ac|

|ω(n)| � Dε.

Sinceε is arbitrary this implies|Ac| = 0 and thus|A| = 1.

3.2. The invariant measure forf

We now show how to define a probability measureµ which is invariant for the original
mapf and satisfies all the required properties.

3.2.1. The probability measureµ We let νω denote the restriction ofν to the partition
elementω ∈ P , i.e. for any measurable setA ⊂ ∆ we haveνω(A) = ν(A ∩ ω). Then
ν(A) =∑ω∈P νω(A). Then, for any measurable setA ⊆ M (we no longer restrict our
attention to∆) we define

µ̂(A)=
∑
ω∈P

R(ω)−1∑
j=0

νω
(
f−j (A)

)
.

Notice that this is a sum of nonnegative terms and is uniformly bounded since

µ̂(A)� µ̂(M) =
∑
ω∈P

R(ω)−1∑
j=0

νω
(
f−j (M)

)=∑
ω∈P

R(ω)−1∑
j=0

νω(M)

=
∑
ω∈P

R(ω)ν(ω) <∞

by the assumption on the summability of the return times. Thus it defines a finite measure
onM and from this we define a probability measure by normalizing to get

µ(A)= µ̂(A)/µ̂(M).
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3.2.2. Absolute continuity The absolute continuity ofµ is an almost immediate conse-
quence of the definition and the absolute continuity ofµ. Indeed,|A| = 0 impliesν(A)= 0
which impliesνω(A)= 0 for all Iω ∈ P , which therefore implies that we have

R(ω)−1∑
j=0

νω
(
f−j (A)

)= 0

and thereforeµ(A)= 0.

3.2.3. Invariance Recall first of all that by definitionf R(ω)(ω) = ∆ for any ω ∈ P .
Therefore, for anyA⊂M we have

f−R(ω)(A)∩ω= F |−1
ω (A)∩ω,

whereF |−1
ω denotes the inverse of the restrictionF |ω of F to ω (notice thatf−R(ω)(A)∩

ω= ∅ if A∩∆= ∅). In particular, using the invariance ofν underF , this gives∑
ω∈P

ν
(
f−R(ω)(A)∩ω)=∑

ω∈P
ν
(
F−1|ω(A)∩ω

)= ν(F−1(A)
)= ν(A).

Using this equality we get, for any measurable setA⊆ I ,

µ
(
f−1(A)

) =∑
ω∈P

R(ω)−1∑
j=0

νω
(
f−(j+1)(A)

)

=
∑
ω∈P

R(ω)−1∑
j=0

ν
(
f−(j+1)(A)∩ω)

=
∑
ω∈P

ν
[(
f−1(A)∩ω)+ · · · + (f−R(ω)(A)∩ω)]

=
∑
ω∈P

R(ω)−1∑
j=1

ν
(
f−j (A)∩ω)+∑

ω∈P

(
f−R(ω)(A)∩ω)

=
∑
ω∈P

R(ω)−1∑
j=1

ν
(
f−j (A)∩ω)+ ν(A)

=
∑
ω∈P

R(ω)−1∑
j=0

ν
(
f−j (A)∩ω)= µ(A).

3.2.4. Ergodicity and uniquenessErgodicity ofµ follows immediately from the ergod-
icity of ν since every fully invariant set for of positive measure must intersect the image
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of some partition elementω and therefore must have positive (and therefore full) measure
for ν and therefore must have full measure forµ. Notice however that we can only claim a
limited form of uniqueness for the measureµ. Indeed, the support ofµ is given by

supp(µ)=
⋃
ω∈P

Rk−1⋃
j=0

f j (Ik)

which is the union of all the images of all partition elements. Thenµ is indeed the unique
ergodic absolutely continuous invariant measure on this set. However in a completely ab-
stract setting there is no way of saying that supp(µ)=M nor that there may not be other
relevant measures inM \ supp(ν).

3.3. Expansion and distortion estimates

The application of the abstract results discussed above to specific examples involves three
main steps:

• Combinatorial construction of the induced map;
• Verification of the bounded distortion property;
• Estimation of the tail of the return times function and verification of the integrability

of the return times.
We shall discuss some of these step in some detail in relation to some of the specific case

as we go through them below. Here we just make a few remarks concerning the bounded
distortion property and in particular the crucial role played byregularity andderivative
conditions in these calculations.

We begin with a quite general observation which relates the bounded distortion condition
to a property involving the derivative ofF . Let F :∆→ ∆ be a Markov map which is
continuously differentiable on each element of the partitionP . We let detDFn denote the
determinant of the derivative of the mapFn.

DEFINITION 11. We say thatF hasuniformly bounded derivative distortionif there exists
a constantD > 0 such that for alln� 1 andω ∈ P (n) we have

Dist(f n,ω) := max
x,y∈I (n)

log
detDFn(x)

detDFn(y)
� D. (6)

Notice that this is just the infinitesimal version of the bounded distortion property and
indeed it is possible to show that this condition implies the bounded distortion property. In
the one-dimensional setting and assumingJ ⊂ ω to be an open set, this implication follows
immediately from the Mean Value Theorem. Indeed, in one dimension the determinant
of the derivative is just the derivative itself. Thus, the Mean Value Theorem implies that
there existsx ∈ Iω such that|Df n(x)| = |DFn(ω)|/|ω| andy ∈ J such that|DF(y)| =
|DFn(J )|/|J |. Therefore

|ω|
|J |

|Fn(J )|
|Fn(ω)| =

|Fn(J )|/|J |
|Fn(ω)|/|ω| =

|DFn(y)|
|DFn(x)| � D. (7)
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To verify (6) we use the chain rule to write

log
|detDFn(x)|
|detDFn(y)| = log

n−1∏
i=0

|detDF(F i(x))|
|detDF(F i(x))| =

n−1∑
i=0

log
|detDF(F i(x))|
|detDF(F i(y))| .

Now adding and subtracting|detDF(F i(y))|/|detDF(F i(y))| and using that fact that
log(1+ x) < x for x > 0 gives

log
|detDF(F i(x))|
|detDF(F i(y))| � log

( |detDF(F i(x))− detDF(F i(y))|
|detDF(F i(y))| + 1

)
� |detDF(F i(x))− detDF(F i(y))|

|detDF(F i(y))| .

Therefore we have

log
|detDFn(x)|
|detDFn(y)| �

n−1∑
i=0

|detDF(F i(x))− detDF(F i(y))|
|detDF(F i(y))| . (8)

The inequality (8) gives us the basic tool for verifying the required distortion properties
in particular examples.

4. Uniformly expanding maps

In this section we discuss maps which areuniformlyexpanding.

4.1. The smooth/Markov case

We say thatf is uniformly expanding if there exist constantsC,λ > 0 such that for all
x ∈M , all v ∈ TxM , and alln� 0, we have∥∥Df nx (v)∥∥�Ceλn‖v‖.

We remark once again that this is a special case of the nonuniform expansivity condition.

THEOREM 5. Let f :M → M be C2 uniformly expanding. Then there exists a unique
acipµ [136,68,125,139,22,96,164,97].The measureµ is mixing and the correlation func-
tion decays exponentially fast[153,127,33,140].

The references given here use a variety of arguments some of which use the remarkable
observation that uniformly expanding maps are intrinsicallyMarkov in the strong sense
given above, with∆ =M , a finite number of partition elements and return timeR ≡ 1
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(this is particularly easy to see in the case of one-dimensional circle mapsf :S1 → S1).
Thus the main issue here is the verification of the distortion condition.

One way to show this is to show that there is a uniform upper bound independent ofn

for the sum in (8) above. Indeed, notice first of all that the expansivity condition implies
in particular that|detDF(F i(y))| � Ceλi � C > 0 for everyy, and theC2 regularity
condition implies that detDf is Lipschitz: there existsL> 0 such that|detDF(F i(x))−
detDF(F i(y))| � L|F i(x)− F i(y)| for all x, y ∈M . Substituting these inequalities into
(8) we get

n−1∑
i=0

|detDF(F i(x))− detDF(F i(y))|
|detDF(F i(y))| � L

C

n−1∑
i=0

∣∣F i(x)− F i(y)∣∣. (9)

The next, and final, step uses the expansivity condition as well as, implicitly, the Markov
property in a crucial way. Indeed, let diamM denote the diameter ofM , i.e. the maximum
distance between any two points inM . The definition ofP(n) implies thatω is mapped
diffeomorphically toM by Fn and thus

|diamM| � ∣∣Fn(x)− Fn(y)∣∣� Ceλ(n−i)∣∣F i(x)− F i(y)∣∣
for everyi = 0, . . . , n− 1. Therefore

n−1∑
i=0

∣∣F i(x)− F i(y)∣∣� diamM

C

n−1∑
i=0

e−λ(n−i) � diamM

C

∞∑
i=0

e−λi . (10)

Substituting back into (9) and (8) gives a bound for the distortion which is independent
of n.

The regularity condition on detDF can be weakened somewhat but not completely.
There exist examples of one-dimensional circle mapsf :S1 → S1 which areC1 uniformly
expanding (and thus Markov as above) but for which the uniqueness of the absolutely
continuous invariant measure fails [134,56], essentially due to the failure of the bounded
distortion calculation. On the other hand, the distortion calculation above goes through
with minor modifications as long as detDF is just Hölder continuous. In some situations,
such as the one-dimensionalGauss mapf (x)= x−1 mod1 which is Markov but for which
the derivativeDf is not even Hölder continuous, one can compensate by taking advantage
of the large derivative. Then it is possible to show directly that the right-hand side of (8) is
uniformly bounded, even though (9) does not hold.

4.2. The non-Markov case

The general (non-Markov) piecewise expanding case is significantly more complicated and
even the existence of an absolutely continuous invariant measure is no longer guaranteed
[98,70,135,159,49]. One possible problem is that the images of the discontinuity set can
be very badly distributed and cause havoc with any kind ofstructure. In the Markov case
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this does not happen because the set of discontinuities gets mapped to itself by definition.
Also the possibility of components beingtranslatedin different directions can destroy on
a global level the local expansiveness given by the derivative. Moreover, where results
exist for rates of decay of correlations, they do not always apply to the case of Hölder
continuous observables, as technical reasons sometimes require that different functions
spaces be considered which are more compatible with the discontinuous nature of the maps.
We shall not explicitly comment on the particular classes of observables considered in each
case.

In the one-dimensional case these problems are somewhat more controllable and rel-
atively simple conditions guaranteeing the existence of an ergodic invariant probability
measure can be formulated even in the case of a countable number of domains of smooth-
ness of the map. These essentially require that the size of the image of all domains on which
the map isC2 be strictly positive and that certain conditions on the second derivative are
satisfied [98,11,34,35]. In the higher-dimensional case, the situation is considerably more
complicated and there are a variety of possible conditions which can be assumed on the
discontinuities. The conditions of [98] were generalized to the two-dimensional context in
[90] and then to arbitrary dimensions in [69,48,160]. There are also several other papers
which prove similar results under various conditions, we mention [12,51,53,50,148,54]. In
[47,62] it is shown that conditions sufficient for the existence of a measure aregenericin a
certain sense within the class of piecewise expanding maps.

Estimates for the decay of correlations have been proved for non-Markov piecewise
smooth maps, although again the techniques have had to be considerably generalized. In
terms of setting up the basic arguments and techniques, a similar role to that played by
[98] for the existence of absolutely continuous invariant measures can be attributed to [91,
76,143] for the problem of decay of correlations in the one-dimensional context. More re-
cently, alternative approaches have been proposed and implemented in [99,100,169]. The
approach of [169] has proved particularly suitable for handling some higher-dimensional
cases such as [52] in which assumptions on the discontinuity set are formulated in terms of
topological pressureand [18,73] in which they are formulated asgeometrical nondegener-
acyassumptions anddynamical assumptions on therate of recurrenceof typical points to
the discontinuities. The construction of an induced Markov map is combined in [64] with
Theorem 4 to obtain estimates for the decay of correlations of non-Hölder observables
for Lorenz-like expanding maps. We remark also that the results of [18,73] apply to more
general piecewise nonuniformly expanding maps, see Section 7. It would be interesting to
understand the relation between the assumptions of [18,73] and those of [52].

5. Almost uniformly expanding maps

Perhaps the simplest way to relax the uniform expansivity condition is to allow some fixed
(or periodic) pointp to have a neutral eigenvalue, e.g., in the one-dimensional setting
|Df (p)| = 1, while still requiring all other vectors in all directions over the tangent spaces
of all points to be strictly expanded by the action of the derivative (though of course not
uniformly since the expansion must degenerate near the pointp). Remarkably this can
have extremely dramatic consequences on the dynamics.
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There are some recent results for higher-dimensional systems [131,81,71] but a more
complete picture is available the one-dimensional setting and thus we concentrate on this
case. An initial motivation for these kinds of examples arose from the concept ofintermit-
tencyin fluid dynamics. A class of one-dimensional maps expanding everywhere except
at a fixed point was introduced by Manneville and Pomeau in [114] as a model of inter-
mittency since numerical studies showed that orbits tend to spend a long timetrappedin
a neighbourhood of the fixed point with relatively shortbursts of chaotic activityoutside
this neighbourhood. Recent work shows that indeed, these long periods of inactivity near
the fixed point are a key to slowing down the mixing process and obtaining examples of
systems with subexponential decay of correlations.

We shall consider interval mapsf which are piecewiseC2 with aC1 extension to the
boundaries of theC2 domains and for which the derivative is strictly greater than 1 every-
where except at a fixed pointp (which for simplicity we can assume lies at the origin)
whereDf (p)= 1. For definiteness, let us suppose that on a small neighbourhood of 0 the
map takes the form

f (x)≈ x + x2φ(x),

where≈ means that the terms on the two sides of the expression as well as their first
and second order derivatives converge asx→ 0. We assume, moreover, thatφ is C∞ for
x �= 0; the precise form ofφ determines the precise degree ofneutralityof the fixed point,
and in particular affects the second derivativeD2f . It turn out that it plays a crucial role in
determining the mixing properties and even the very existence of an absolutely continuous
invariant measure. For the moment we assume also a strong Markov property: each domain
of regularity off is mapped bijectively to the whole interval. The following result shows
that the situation can be drastically different from the uniformly expanding case.

THEOREM 6 [130]. If f isC2 at p (e.g., φ(x)≡ 1) thenf does not admit any acip.

Note thatf has the same topological behaviour as a uniformly expanding map, typical
orbits continue to wander densely on the whole interval, but the proportion of time which
they spend in various regions tends to concentrate on the fixed point, so that, asymptoti-
cally, typical orbits spend all their time near 0. It turns out that in this situation there exists
an infinite (σ -finite) absolutely continuous invariant measure which gives finite mass to
any set not containing the fixed point and infinite mass to any neighbourhood ofp [154].

The situation changes if we relax the condition thatf beC2 atp and allow the second
derivativeD2f (x) to diverge to infinity asx→ p. This means that the derivative increases
quickly as one moves away fromp and thus nearby points are repelled at a faster rate. This
is a very subtle change but it makes all the difference.

THEOREM 7. If φ is of the formφ(x)= x−α for someα ∈ (0,1), then[130,83]f admits
an ergodic acipµ and [84,102,170,131,147,82,72]µ is mixing with decay of correlations

Cn =O
(
n1−1/α).
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If φ(1/x) = logx log(2) x . . . log(r−1) x(log(r) x)1+α for somer � 1, α ∈ (−1,∞), where
log(r) = log log. . . log repeatedr times, then[77] f admits a mixing acipµ with decay of
correlations

Cn =O
(
log(r) n

)−α
.

Thus, the existence of an absolutely continuous invariant measure as in the uniformly
expanding case has been recovered, but the exponential rate of decay of correlation has
not. We can think of the indifferent fixed point as having the effect ofslowing downthis
process by trapping nearby points for disproportionately long time. The estimates in [147,
82,72] include lower bounds as well as upper bounds. The approach in [170] using Markov
induced maps applies also to non-Markov cases and [77] can also be generalized to these
cases.

The proofs of Theorem 7 do not use directly the fact thatf is nonuniformly expand-
ing. Indeed the fact thatf is nonuniformly expanding does not follow automatically from
the fact that the map is expanding away from the fixed pointp. However we can use the
existence of theacip to show that this condition is satisfied. Indeed by Birkhoff’s Ergodic
Theorem, typical points spend a large proportion of time nearp but also a positive pro-
portion of time in the remaining part of the space. More formally, by a simple application
of Birkhoff’s Ergodic Theorem to the function log|Df (x)|, we have that, forµ-almost
everyx,

lim
n→∞

1

n

n−1∑
i=0

log
∣∣Df (f i(x))∣∣→ ∫ log|Df |dµ > 0.

The fact that
∫

log|Df |dµ > 0 follows from the simple observation thatµ is absolutely
continuous, finite, and that log|Df |> 0 except at the neutral fixed point.

6. One-dimensional maps with critical points

The general theory of one-dimensional maps is extremely advanced and sophisticated, see
the survey [6] in this volume. We shall concentrate here on the particular case of nonuni-
formly expanding one-dimensional maps. This is another class of systems which can ex-
hibit various rates of decay of correlations, but where the mechanism for producing these
different rates is significantly more subtle. The most general set-up is that of a piecewise
smooth one-dimensional mapf : I → I with some finite setC of critical/singular points
at whichDf = 0 orDf =±∞ and/or at whichf may be discontinuous. There are at least
two ways to quantify the “uniformity”: of the expansivity off in ways that get reflected in
different rates of decay of correlations:
• To consider the rate of growth of the derivatives along the orbits of the critical points;
• To consider theaveragerate of growth of the derivative alongtypicalorbits.

In this section we will concentrate on the first, somewhat more concrete, approach and
describe the main results which have been obtained over the last 20–25 years. We shall
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focus specifically on the smooth case since this is where most results have been obtained.
Some partial generalization to the piecewise smooth case can be found in [104]. The second
approach is somewhat more abstract but also more general since it extends naturally to the
higher-dimensional context where critical points are not so well defined and/or cannot play
such a fundamental role. The main results in this direction will be described in Section 7
below in the framework of a general theory of nonuniformly expanding maps.

6.1. Unimodal maps

We consider the class ofC3 interval mapsf : I → I with some finite setC of nonflat critical
points. We recall thatc is a critical point ifDf (c)= 0; the critical point is nonflat if there
exists an 0< �<∞ called theorderof the critical point, such that|Df (x)| ≈ |x−c|�−1 for
x nearc; f is unimodal if it has only one critical point, and multimodal if it has more than
one. Several results to be mentioned below have been proved under a standard technical
negative Schwarzian derivativecondition which is a kind of convexity assumption on the
derivative off , see [117] for details. Recent results [93] indicate that this condition is often
superfluous and thus we will not mention it explicitly.

The first result on the statistical properties of such maps goes back to Ulam and von
Neumann [161] who showed that thetop unimodal quadratic map,f (x) = x2 − 2 has
an acip. Notice that this map is actually a Markov map but does not satisfy the bounded
distortion condition due to the presence of the critical point. It is possible to construct
an induced Markov map forf which does satisfy this condition and gives the result, but
Ulam and von Neumann used a more direct approach, taking advantage of the fact thatf

is a Chebyshev polynomial and thus in particular using that fact thatf is C1 conjugate
to a piecewise-linear uniformly expanding Markov map, for which Lebesgue measure is
invariant and ergodic. This implies that the pull-back of the Lebesgue measure by the
conjugacy is anacip for f . A similar strategy was exploited also in [45,141]. However, the
existence of a smooth conjugacy is extremely rare and such an approach is not particularly
effective in general.

More general and more powerful approaches have allowed the existence of anacip to be
proved under increasingly general assumptions on the behaviour of the critical point. Let

Dn(c)=
∣∣Df n(f (c))∣∣.

Notice that the derivative along the critical orbit needs to be calculated starting from the
critical value and not from the critical point itself for otherwise it would be identically 0.

THEOREM 8. Letf : I → I be a unimodal map with negative Schwarzian derivative. Then
f admits an ergodic acip if the following conditions hold(each condition is implied by the
preceding ones):

• The critical point is pre-periodic[85];
• The critical point is nonrecurrent[85,119];
• Dn→∞ exponentially fast[60,123];
• Dn→∞ sufficiently fast so that

∑
n D

1/�
n <∞ [124];

• Dn→∞ [43].
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If Dn→∞ exponentially fast then some power off is mixing and exhibits exponential
decay of correlations[92] (and [167] with additional bounded recurrence assumptions on
the critical point).

Notice that the condition of [43] is extremely weak. In fact they show that it is sufficient
for Dn to be eventually bounded below by some constant depending only on the order of
the critical point. However even this condition is not optimal as there are examples of maps
for which lim infDn = 0 but which still admit an ergodicacip. It would be interesting to
know whether an optimal condition is even theoretically possible: it is conceivable that a
complete characterization of maps admitting acip’s in terms of the behaviour of the critical
point is not possible because other subtleties come into play.

6.2. Multimodal maps

Many arguments and techniques used in the context of unimodal maps have turned out to
be almost too sophisticated for their own good and difficult to generalize to the multimodal
setting. Until recently there have been almost no results available, not even on the existence
of acip’s, for multimodal maps. A significant breakthrough was achieved by implementing
the strategy of constructing induced Markov maps and estimating the rate of decay of the
tail. This strategy yields also estimates for various rates of decay in the unimodal case and
extends very naturally to the multimodal case.

THEOREM 9 [42]. Letf by a multimodal map with a finite set of critical points of order�
and suppose that∑

n

D
−1/(2�−1)
n <∞

for each critical pointc. Then there exists an ergodic acipµ for f . Moreover, some power
of f is mixing and the correlation function decays at the following rates:
Polynomial case:If there existsC > 0, τ > 2�− 1 such that

Dn(c)� Cnτ

for all c ∈ C andn� 1, then, for any τ̃ < τ−1
�−1 − 1, we have

Cn =O
(
n−τ̃
)
.

Exponential case:If there existC,β > 0 such that

Dn(c)� Ceβn

for all c ∈ C andn� 1, then there exist̃β > 0 such that

Cn =O
(
e−β̃n
)
.
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These results gives previously unknown estimates for the decay of correlations even
for unimodal maps in the quadratic family. For example, they imply that the so-called
Fibonacci maps[112] exhibit decay of correlation at rates which are faster than any poly-
nomial. It seems likely that these estimates are essentially optimal although the argument
only provides upper bounds. The general framework of [110] applies to these cases to
provide estimates for the decay of correlation for observable which satisfy weaker than
Hölder conditions on the modulus of continuity. The condition for the existence of anacip
have recently been weakened to the summability condition

∑
D

−1/�
n <∞ and to allow

the possibility of critical points of different orders [44]. Some improved technical expan-
sion estimates have been also obtained in [59] which allow the results on the decay of
correlations to apply to maps with critical points of different orders.

Based on these results, the conceptual picture of the causes of slow rates of decay of
correlations appears much more similar to the case of maps with indifferent fixed points
than would appear at first sight: we can think of the case in which the rate of growth ofDn
is subexponential as a situation in which the critical orbit isneutralor indifferentand points
which land close to the critical point tend to remain close to (“trapped” by) its orbit for a
particularly long time. During this time orbits are behaving “nongenerically” and are not
distributing themselves over the whole space as uniformly as they should. Thus the mixing
process is delayed and the rate of decay of correlations is correspondingly slower. When
Dn grows exponentially, the critical orbit can be thought of (and indeedis) a nonperiodic
hyperbolic repellingorbit and nearby points are pushed away exponentially fast. Thus there
is no significant loss in the rate of mixing, and the decay of correlations is not significantly
slowed down notwithstanding the presence of a critical point.

6.3. Benedicks–Carleson maps

We give here a sketch of the construction of the induced Markov map for a class of uni-
modal maps. We shall try to give a conceptually clear description of the main steps and
ingredients required in the construction. The details of the argument are unfortunately par-
ticularly technical and a lot of notation and calculations are carried out only to formally
verify statements which are intuitively obvious. It is very difficult therefore to be at one
and the same time conceptually clear and technically honest. We shall therefore concen-
trate here on the former approach and make some remarks about the technical details which
we omit or present in a simplified form.

Let

fa(x)= x2 − a

for x ∈ I = [−2,2] and

a ∈Ωε = [2− ε,2]

for someε > 0 sufficiently small. The assumptions and the details of the proof require the
introduction of several additional constants, some intrinsic to the maps under consideration
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and some auxiliary for the purposes of the argument. In particular we suppose that there is
aλ ∈ (0, log2) and constants

λ. α. δ̂. δ > 0,

wherex . y means thaty must be sufficiently small relative tox. Finally, to simplify
the notation we also letβ = α/λ. We restrict ourselves to parameter valuesa ∈Ωε which
satisfy theBenedicks–Carlesonconditions:

Hyperbolicity: There existC > 0 such that

Dn �Ceλn, ∀n� 1;

Slow recurrence:

|cn|� e−αn, ∀n� 1.

In Section 8 on p. 304 we sketch a proof of the fact that these conditions are satisfied for
a positive measure set of parameters inΩε (for any λ ∈ (0, log2) andanyα > 0). They
are therefore reasonably generic conditions. Assuming them here will allow us to present
in a compact form an almost complete proof. During the discussion we shall make some
comments about how the argument can be modified to deal with slower rates of growth of
Dn and arbitrary recurrence patterns of the critical orbit.

We remark that the overall strategy as well as several details of the construction in the
two arguments (one proving that the hyperbolicity and slow recurrence conditions occur
with positive probability and the other proving that they imply the existence of anacip)
are remarkably similar. This suggests a deeper, yet to be fully understood and exploited,
relationship between the structure of dynamical space and that of parameter space.

We let

∆= (δ, δ)⊂ (−δ̂, δ̂)= ∆̂

denoteδ and δ̂ neighbourhood of this critical pointc. The aim is to construct a Markov
induced map

F :∆→∆.

We shall do this in three steps. We first define an induced mapf p :∆→ I which is essen-
tially based on the time during which points in∆ shadow the critical orbit. The shadowing
timep is piecewise constant on a countable partition of∆ but the images of partition ele-
ments can be arbitrarily small. Then we define an induced mapf E :∆→ I which is still
not Markov but has the property that the images of partition elements are uniformly large.
Finally we define the Markov induced mapFR :∆→∆ as required.
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6.4. Expansion outside∆

Before starting the construction of the induced maps, we state a lemma which gives some
derivative expansion estimates outside the critical neighbourhood∆.

LEMMA 6.1. There exists a constantC > 0 independent ofδ such that forε > 0 suffi-
ciently small, all a ∈Ωε, f = fa , x ∈ I andn� 1 such thatx,f (x), . . . , f n−1(x) /∈∆ we
have ∣∣Df n(x)∣∣� δeλn
and if, moreover, f n(x) ∈ ∆̂ and/orx ∈ f (∆̂) then∣∣Df n(x)∣∣� Ceλn.

Notice that the constantC and the exponentλ do not depend onδ or δ̂. This allows us to
chooseδ̂ andδ small in the following argument without worrying about this affecting the
expansivity estimates given here. In general of course both the constantsC andλ depend on
the size of this neighbourhood and it is an extremely useful feature of this particular range
of parameter values that they do not. In the context of the quadratic family these estimates
can be proved directly using the smooth conjugacy of the top mapf2 with the piecewise
affine tent map, see [161,103]. However there are general theorems in one-dimensional
dynamics to the effect that one has uniform expansivity outside an arbitrary neighbourhood
of the critical point under extremely mild conditions [113] and this is sufficient to treat the
general case in [42].

6.5. Shadowing the critical orbit

We start by defining a partition of the critical neighbourhoods∆ and∆̂. For any integer
r � 1 let Ir = [e−r , e−r+1) andI−r = (−e−r+1,−e−r ] and, for eachr � r

δ̂
+ 1, let Îr =

Ir−1 ∪ Ir ∪ Ir+1. We can suppose without loss of generality thatrδ = logδ−1 and r
δ̂
=

log δ̂−1 are integers. Then

∆= {0} ∪
⋃

|r|�rδ+1

Ir0 and ∆̂= {0} ∪
⋃

|r|�r
δ̂
+1

Ir .

This is one of the minor technical points of which we do not give a completely accurate
description. Strictly speaking, the distortion estimates to be given below require a further
subdivision of eachIr into r2 subintervals of equal length. This does not affect significantly
any of the other estimates. A similar partition is defined in Section 8.1.2 on p. 307 in
somewhat more detail. We remark also that the need for the two neighbourhoods∆ and∆̂
will not become apparent in the following sketch of the argument. We mention it however
because it is a crucial technical detail: the region∆̂ \∆ acts as abuffer zonein which we
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can choose to apply the derivative estimates of Lemma 6.1 or the shadowing argument of
Lemma 6.2 according to which one is more convenient in a particular situation.

Now let

p(r)= max
{
k :
∣∣f j+1(x)− f j+1(c)

∣∣� e−2αj , ∀x ∈ Îr , ∀j < k
}
.

This definition was essentially first formulated in [28] and [29]. The key characteristic is
that it guarantees a bounded distortion property which in turn allows us to make several
estimates based on information about the derivative growth along the critical orbit. Notice
that the definition in terms ofα is based crucially on the fact that the critical orbit satisfies
the slow recurrence condition. We mention below how this definition can be generalized.

LEMMA 6.2. For all pointsx ∈ Îr andp = p(r) we have∣∣Df p+1(x)
∣∣= ∣∣Df (x)∣∣ · ∣∣Df p(x0)

∣∣� e(1−7β)r .

Recall thatβ = α/λ can be chosen arbitrarily small.

PROOF. First of all, using the bounded recurrence condition, the definition of the binding
period, and arguing as in the distortion estimates for the uniformly expanding maps above,
it is not difficult to show that there is a constantD1, depending onα but independent ofr
andδ, such that for allx0, y0 ∈ f (Îr ) and 1� k � p,∣∣∣∣Df k(x0)

Df k(y0)

∣∣∣∣�D1. (11)

Using the definition ofp this implies

e−2α(p−1) � |xp−1 − cp−1| �D−1
1

∣∣Dfp−1(c0)
∣∣|x0 − c0| �D−1

1 eλ(p−1)e−2r

and thusD1e
−2αpe2α � eλpe−λe−2r . Rearranging gives

p+ 1� logD1 + 2α+ 2λ+ 2r

λ+ 2α
� 3r

λ
(12)

as long as we chooseδ so thatrδ is sufficiently large in comparison to the other constants,
none of which depend onδ. Moreover,

De−2r
∣∣Dfp(x0)

∣∣� D|x0 − c0|
∣∣Dfp(x0)

∣∣� |xp − cp| � e−2αp

and therefore, using (12), we have|Dfp(x0)| � D−1e2r e−2αp � D−1e(2−6α/λ)r . Since
x ∈ Îr we have|Df (x)| = 2|x − c|� 2e−(r+2) and therefore∣∣Dfp+1(x)

∣∣= ∣∣Dfp(x0)
∣∣∣∣Df (x)∣∣� e−2D−1e(2−6β)re−r � e−2D−1e(1−6β)r .

This implies the result as long as we chooserδ large enough. �
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Thus we have a first induced mapFp :∆→ I given byFp(x)= f p(x)(x) wherep(x)=
p(r) for x ∈ I±r which is uniformly expanding. Indeed notice thatDfp(x)(x)→ ∞ as
x→ c. However there is no reason for which this map should satisfy the Markov prop-
erty and indeed, an easy calculation shows that the images of the partition elements are
∼ e−7βr → 0 and thus not even of uniform size.

The notion of shadowing can be generalized without any assumptions on the recurrence
of the critical orbit in the following way, see [42]: let{γn} be a monotonically decreasing
sequence with 1> γn > 0 and

∑
γn <∞. Then forx ∈∆, let

p(x) := max
{
p:
∣∣f k(x)− f k(c)∣∣� γk∣∣f k(c)− c∣∣, ∀k � p− 1

}
.

A simple variation of the distortion calculation used above shows that the summability of
γn implies that (11) holds with this definition also. Analogous bounds onDn will reflect the
rate growth of the derivative along the critical orbit. If the growth ofDn is subexponential,
the binding period will last much longer because the interval|f k(x)− f k(c)| is growing
at a slower rate. The generality of the definition means that it is more natural to define a
partition Ip as the “level sets” of the functionp(x). The drawback is that we have much
less control over the precise size of these intervals and their distance from the critical point.
Some estimates of the tail{x > p} can be obtained and it turns out that these are closely
related to the rate of growth ofDn and to those of the return time function for the final
induced Markov map. This is because the additional two steps, the escape time and the
return time occur exponentially fast. Thusthe only bottleneck is the delay caused by the
long shadowing of the critical orbit.

6.6. The escape partition

Now letJ ⊂ I be an arbitrary interval (which could also be∆ itself). We want to construct
a partitionP of J and a stopping timeE :J → N constant on elements ofP with the
property that for eachω ∈P , f E(ω)(ω)≈ δ. We think ofδ as being our definition oflarge
scale; we callE(ω) theescapetime ofω, we call the intervalf E(ω)(ω) andescape interval,
and callP theescape timepartition ofJ .

The construction is carried out inductively in the following way. Letk � 1 and suppose
that the intervals withE < k have already been defined. Letω be a connected component
of the complement of the set{E < k} ⊂ J. We consider the various cases depending on
the position off k(ω). If f k(ω) contains∆̂ ∪ Ir

δ̂
∪ I−r

δ̂
then we subdivideω into three

subintervals satisfying the required properties, and letE = k on each of them. Iff k(ω) ∩
∆ = ∅ we do nothing. Iff k(ω) ∩ ∆ �= ∅ but f k(ω) does not intersect more than two
adjacentIr ’s then we say thatk is aninessential returnand define the correspondingreturn
depthby r = max{|r|: f k(ω) ∩ Ir �= ∅}. If f k(ω) ∩∆ �= ∅ andf k(ω) intersects at least
three elements ofI, then we simply subdivideω into subintervalsωr in such a way that
eachωr satisfiesIr ⊂ f k(ωr) ⊂ Îr . For r > rδ we say thatωr has an essential return at
time k with an associated return depthr . For all otherr , theωr are escape intervals, and
for these intervals we setE = k. Finally we consider one more important case. Iff k(ω)

contains∆ as well as (at least) the two adjacent partition elements then we subdivide as
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described above except for the fact that we keep together that portion ofω which maps
exactly to∆. We let this belong to the escape partitionP but, as we shall see, we also let it
belong to the final partition associated to the full induced Markov map.

This purely combinatorial algorithm is designed to achieve two things, neither one of
which follows immediately from the construction:

(1) Guarantee uniformly bounded distortion on each partition element up to the escape
time;

(2) Guarantee that almost every point eventually belongs to the interior of a partition
elementω ∈ P .

We shall not enter into the details of the distortion estimates here but discuss the strategy
for showing thatP is a partition mod 0 ofJ . Indeed this follows from a much stronger
estimate concerning the tail of the escape time function: there exists a constantγ > 0 such
that for any intervalJ with |J | � δ we have

∣∣{x ∈ J : E(x)� n
}∣∣= ∑

ω′∈P
E(ω′)�n

|ω′| � e−γ n|J |. (13)

The argument for proving (13) revolves fundamentally around the combinatorial infor-
mation defined in the construction. More specifically, forω ∈ P let r1, r2, . . . , rs denote
the sequence of return depths associated to essential return times occurring beforeE(ω′),
and letE(ω) =∑si=0 rs . Notice that this sequence may be empty ifω escapes without
intersecting∆, in this case we setE(ω)= 0. We now split the proof into three steps:

Step1. Relation between escape time and return depths.The first observation is that the
escape time is bound by a constant multiple of the sum of the return depths: there exists a
κ depending only onλ such that

E(ω)� κE(ω). (14)

Notice that a constantT0 should also be added to take care of the case in whichE(ω)= 0,
corresponding to the situation in whichω has an escape the first time that iterates ofω

intersect∆. Sinceω is an escape, it has a minimum size and the exponential growth outside
∆ gives a uniform bound for the maximum number of iterates within which such a return
must occur. Since this constant is uniform it does not play a significant role and we do not
add it explicitly to simplify the notation. For the situation in whichE(ω) > 0 it is sufficient
to show that each essential return with return depthr has the next essential return or escape
within at mostκr iterations. Again this follow from the observation that the derivative is
growing exponentially on average during all these iterations: we have exponential growth
outside∆ and also exponential growth on average during each complete inessential binding
period. This implies (14). From (14) we then have∑

ω∈P(ω)
E(ω)�n

|ω| �
∑
ω∈P(ω)

E(ω)�n/κ

|ω|. (15)
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Thus it is enough to estimate the right-hand side of (15) which is saying that there is an
exponentially small probability of having a large total accumulated return depth before
escaping, i.e. most intervals escape after relatively few and shallow return depths. The
strategy is perfectly naive and consists of showing that the size of interval with a certain
return depthE is exponentially small inE and that there cannot be too many so that their
total sum is still exponentially small.

Step2. Relation between size ofω and return depth.The size of each partition element
can be estimated in terms of the essential return depths in a very coarse, i.e. nonsharp, way
which is nevertheless sufficient for your purposes. The argument relies on the following
observation. Every return depth corresponds to a return which is followed by a binding
period. During this binding period there is a certain overall growth of the derivative. During
the remaining iterates there is also derivative growth, either from being outside∆ or from
the binding period associated to some inessential return. Therefore a simple application of
the Mean Value Theorem gives

|ω|� e− 1
2λE(ω). (16)

Step3. The cardinality of theω with a certain return depth.It therefore remains only to
estimate the cardinality of the set of elementsω which can have the same value ofE . To
do this, notice first of all that we have a bounded multiplicity of elements ofP(ω) which
can share exactly the same sequence of return depths. More precisely this corresponds to
the number of escaping intervals which can arise at any given time from the subdivision
procedure described above, and is therefore less thanr

δ̂
. Moreover, every return depth is

bigger thanrδ and therefore for a given sequencer1, . . . , rs we must haves � E/rδ . There-
fore lettingη = r−1

δ , choosingδ sufficiently small the result follows from the following
fact: LetNk,s denote the number of sequences(t1, . . . , ts), ti � 1 for all i, 1� i � s, such
that
∑s
i=1 ti = k. Then, for allη̂ > 0, there existsη > 0 such that for any integerss, k with

s < ηk we have

Nk,s � eη̂k. (17)

Indeed, applying (17) we get that the total number of possible sequences isNk =∑ηE
s=1NE,s � ηEeη̂E � e2η̂E . Taking into account the multiplicity of the number of ele-

ments sharing the same sequence we get the bound on this quantity as� r
δ̂
e2η̂E � e3η̂E .

Multiplying this by (16) and substituting into (15) gives the result.
To prove (17), notice first of all thatNk,s can be bounded above by the number of ways

to chooses balls from a row ofk + s balls, thus partitioning the remainingk balls into at
most s + 1 disjoint subsets. Notice also that this expression is monotonically increasing
in s, and therefore

Nk,s �
(
k + s
s

)
=
(
k + s
k

)
�
(
(1+ η)k
k

)
= [(1+ η)k]!

(ηk)!k! .
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Using Stirling’s approximation formulak! ∈ [1,1 + 1
4k ]

√
2πkkke−k , we haveNk,s �

[(1+η)k](1+η)k
(ηk)ηkkk

� (1+η)(1+η)kη−ηk � exp{(1+η)k log(1+η)−ηk logη}� exp{((1+η)η−
η logη)k}. Clearly(1+ η)η− η logη→ 0 asη→ 0. This completes the proof of (13).

6.7. The return partition

Finally we need to construct the full induced Markov map. To do this we simply start
with ∆ and construct the escape partitionP of ∆. Notice that this is a refinement of the
binding partition into intervalsIr . Notice also that the definition of this escape partition
allows as a special case the possibility thatf E(ω)(ω)=∆. In this case of courseω satisfies
exactly the required properties and we let it belong by definition to the partitionQ and
define the return time ofω asR(ω)= E(ω). Otherwise we consider each escape interval
J = f E(ω)(ω) and use it as a starting interval for constructing and escape partition and
escape time function. Again some of the partition elements constructed in this way will
actually have returns to∆. These we define to belong toQ and let their return time be the
sum of the two escape times, i.e. the total number of iterations since they left∆, so that
f R(ω)(ω) =∆. For those that do not return to∆ we repeat the procedure. We claim that
almost every point of∆ eventually belongs to an element which returns to∆ in a good
(Markov) way at some point and that the tail estimates for the return time function are not
significantly affected, i.e. they are still exponential.

The final calculation to support this claim is based on the following fairly intuitive ob-
servation. Once an intervalω has an escape, it has reached large scale and therefore it will
certainly cover∆ after some uniformly bounded number of iterations. In particular it con-
tains some subinterval̃ω⊂ ω which has a return toδ with at most this uniformly bounded
number of iterates after the escape. Moreover, and crucially, the proportion ofω̃ in ω is
uniformly bounded below, i.e. there exists a constantξ > 0 independent ofω such that

|ω̃| � ξ |ω|. (18)

Using this fact we are now ready to estimate the tail of return times,|{ω ∈Q |R(ω) > n}|.
The argument is again based on taking into account some combinatorial information related
to the itinerary of elements of the final partitionQ. In particular we shall keep track of the
number of escape timeswhich occur before timen for all elements whose return is greater
thann. First of all we let

Q(n) = {ω ∈Q |R(ω)� n}. (19)

Then, for each 1� i � n we let

Q(n)i = {ω ∈Q(n) |Ei−1(ω)� n < Ei(ω)
}

(20)



300 S. Luzzatto

be the set of partition elements inQ(n) who have exactlyi escapes. Amongst those we
distinguish those with a specific escape combinatorics. More precisely, for(t1, . . . , ti) such
that tj � 1 and

∑
tj = n, let

Q(n)i (t1, . . . , ti )=
{
ω ∈Q(n)i

∣∣ k∑
j=1

tj =Ek(ω), 1� k � i − 1

}
. (21)

We then fix some smallη > 0 to be determined below and write∣∣{ω ∈Q |R(ω)� n}∣∣=∑
i�n

∣∣Q(n)i ∣∣=∑
i�ηn

∣∣Q(n)i ∣∣+ ∑
ηn<i�n

∣∣Q(n)i ∣∣. (22)

By (18) we have|Q(n)i | � (1− ξ)i , which gives

∑
ηn<i�n

∣∣Q(n)i ∣∣� ∑
ηn<i�n

(1− ξ)i � (1− ξ)ηn ≈ e−γξ n (23)

for someγξ > 0. Now letω ⊂ ω̃ ∈ PEi be one of the nonreturning parts of an intervalω̃

that had itsith escape at timeEi . Note thatf Ei (PEi+1|ω)=P(f Ei (ω)).
Therefore ∑

ω′⊂ω
Ei+1(ω

′)�Ei+n

|ω′| � e−γ n|ω|, (24)

whereγ is as in (13). LetQ(n)i denote the set of intervalsω ∈ Q that have preciselyi
escapes before timen then∑

ω∈Q(n)(E1,...,Ei )

|ω| � e−γ n|∆|. (25)

Therefore using again the combinatorial counting argument and the inequality (17) we get∑
i�ηn

= ∣∣Q(n)i ∣∣=∑
i�ηn

∑
(t1,...,ti )

∣∣Q(n)i (t1, . . . , ti )∣∣� ∑
i�ηn

Nn,ie
−γ n|∆|

� eη̂ne−γ n. (26)

Recall that by (17)̂η can be chosen arbitrarily small by choosingη small. Thus, combining
(23) and (26) and substituting into (22) we get∣∣{ω ∈Q |R(ω)� n}∣∣� e−γξ n + e(η̂−γ )n � e−cn.
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7. General theory of nonuniformly expanding maps

The intuitive picture which emerges from the examples discussed above is that of ade-
fault exponential mixing rate for uniformly expanding systems and Hölder continuous ob-
servables. However it is clear that general nonuniformly expanding systems can exhibit a
variety of rates of decay. Sometimes these rates can be linked to properties of specificneu-
tral orbits which canslow downthe mixing process. However it is natural to ask whether
there is some intrinsic information related to the very definition of nonuniform expansiv-
ity which determines the rate of decay of correlation. We recall thatf is nonuniformly
expanding if there existsλ > 0 such that for almost everyx ∈M ,

lim inf
n→∞

1

n

n−1∑
i=0

log
∥∥Df−1

f i(x)

∥∥−1
> λ. (∗)

Although the constantλ > 0 is uniform for Lebesgue almost every point, the convergence
to the lim inf is not generally uniform.

A measure of nonuniformityhas been proposed in [16] based precisely on the idea of
quantifying the rate of convergence. The measure has been shown to be directly linked
to the rate of decay of correlations in [17] in the one-dimensional setting and in [18] in
arbitrary dimensions, in the case of polynomial rates of decay. Recently the theory has been
extended to cover the exponential case as well [73]. We give here the precise statements.

7.1. Measuring the degree of nonuniformity

7.1.1. The critical set Let f :M→M be a (piecewise)C2 map. Forx ∈M we letDfx
denote the derivative off at x and define‖Dfx‖ = max{‖Dfx(v)‖: v ∈ TxM, ‖v‖ = 1}.
We suppose thatf fails to be a local diffeomorphism on some zero measurecritical setC
at whichf may be discontinuous and/orDf may be discontinuous and/or singular and/or
blow up to infinity. Remarkably, all these cases can be treated in a unified way asproblem-
atic points as will be seen below. In particular we can define a natural generalization of the
nondegeneracy (nonflatness) condition for critical points of one-dimensional maps.

DEFINITION 12. Thecritical set C ⊂ M is nondegenerateif m(C) = 0 and there is a
constantβ > 0 such that for everyx ∈ M \ C we have dist(x,C)β � ‖Dfxv‖/‖v‖ �
dist(x,C)−β for all v ∈ TxM , and the functions logdetDf and log‖Df−1‖ are locally
Lipschitzwith Lipschitz constant� dist(x,C)−β .

From now on we shall always assume these nondegeneracy conditions. We remark that
the results to be stated below are nontrivial even when the critical setC is empty andf is
a local diffeomorphism everywhere. For simplicity we suppose also thatf is topologically
transitive, i.e. there exists a pointx whose orbit is dense inM . Without the topological tran-
sitivity condition we would just get that the measureµ admits a finite number of ergodic
components and the results to be given below would then apply to each of its components.
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7.1.2. Expansion and recurrence time functionsSince we have no geometrical informa-
tion aboutf we want to show that the statistical properties such as the rate of decay of
correlations somehow depends on abstract information related to the nonuniform expan-
sivity condition only. Thus we make the following

DEFINITION 13. Forx ∈M , we define theexpansion time function

E(x)= min

{
N :

1

n

n−1∑
i=0

log
∥∥Df−1

f i(x)

∥∥−1 � λ/2, ∀n�N
}
.

By condition(∗) this function is defined and finite almost everywhere. It measures the
amount of time one has to wait before the uniform exponential growth of the derivative
kicks in. If E(x) was uniformly bounded, we would essentially be in the uniformly expand-
ing case. In general it will take on arbitrarily large values and not be defined everywhere. If
E(x) is largeonly on asmallset of points, then it makes sense to think of the map as being
not very nonuniform, whereas, if it is large on a large set of points it is in some sense, very
nonuniform. We remark that the choice ofλ/2 in the definition of the expansion time func-
tion E(x) is fairly arbitrary and does not affect the asymptotic rate estimates. Any positive
number smaller thanλ would yield the same results.

We also need to assume some dynamical conditions concerning the rate of recurrence of
typical points near the critical set. We letdδ(x,C) denote theδ-truncateddistance fromx
to C defined asdδ(x,C)= d(x,C) if d(x,C)� δ anddδ(x,C)= 1 otherwise.

DEFINITION 14. We say thatf satisfies the property ofsubexponential recurrenceto the
critical set if for anyε > 0 there existsδ > 0 such that for Lebesgue almost everyx ∈M ,

lim sup
n→+∞

1

n

n−1∑
j=0

− logdistδ
(
f j (x),C

)
� ε. (∗∗)

We remark that although condition(∗∗) might appear to be a very technical condition,
it is actually quite natural and in factalmostnecessary. Indeed, suppose that an absolutely
continuous invariant measureµ did exist forf . Then, a simple application of Birkhoff’s
Ergodic theorem implies that condition(∗∗) is equivalent to the integrability condition∫

M

∣∣log distδ(x,S)
∣∣dµ <∞

which is simply saying that the invariant measure does not give too much weight to a
neighbourhood of the discontinuity set.

Again, we want to differentiate between different degrees of recurrence in a similar way
to the way we differentiated between different degrees of nonuniformity of the expansion.
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DEFINITION 15. Forx ∈M , we define therecurrence time function

R(x)= min

{
N � 1:

1

n

n−1∑
j=0

− logdistδ
(
f j (x),C

)
� 2ε, ∀n�N

}
.

Then, for a map satisfying both conditions(∗) and(∗∗) we let

Γn =
{
x: E(x) > n orR(x) > n

}
,

Notice thatE(x) andR(x) are finite almost everywhere and thusΓn → 0. It turns out
that the rate of decay of|Γn| is closely related to the rate of decay of correlations. In the
statement of the theorem we letCn denote the correlation function for Hölder continuous
observables.

THEOREM 10. Let f :M→M be a transitiveC2 local diffeomorphism outside a nonde-
generate critical setC, satisfying conditions(∗) and(∗∗). Then

(1) [15] f admits an acipµ. Some power off is mixing.
(2) [16,18,17]Suppose that there existsγ > 0 such that

|Γn| =O(n−γ ).

Then

Cn =O
(
n−γ+1).

(3) [73] Suppose that there existsγ > 0 such that

|Γn| =O(e−γ n).

Then there existsγ ′ > 0 such that

Cn =O
(
e−γ ′n
)
.

7.2. Viana maps

A main application of the general results described above are a class of maps known as
Viana or Alves–Vianamaps. Viana maps were introduced in [162] as an example of a
class of higher-dimensional systems which are strictlynot uniformly expanding but for
which the nonuniform expansivity condition is satisfied and, most remarkably, ispersistent
under smallC3 perturbations, which is not the case for any of the examples discussed
above. These maps are defined as skew-products on a two-dimensional cylinder of the
form f : S1 ×R → S1 ×R,

f (θ, x)= (κθ, x2 + a + ε sin 2πθ
)
,
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whereε is assumed sufficiently small anda is chosen so that the one-dimensional quadratic
mapx  → x2 + a for which the critical point lands after a finite number of iterates onto a
hyperbolic repelling periodic orbit (and thus is agood parameter value and satisfies the
nonuniform expansivity conditions as mentioned above). The mapκθ is taken modulo 2π ,
and the constantκ is a positive integer which was required to be� 16 in [162] although
it was later shown in [55] that any integer� 2 will work. The sin function in the skew
product can also be replaced by more general Morse functions.

THEOREM 11. Viana maps
• [162] satisfy(∗) and(∗∗). In particular they are nonuniformly expanding;
• [12,19]are topologically mixing and have a unique ergodic acip(with respect to two-

dimensional Lebesgue measure);
• [18] have super-polynomial decay of correlations: for anyγ > 0 we have

Cn =O(n−γ );

• [24,73]have stretched exponential decay of correlations: there existsγ > 0 such that

Cn =O
(
e−γ

√
n
)
.

8. Existence of nonuniformly expanding maps

An important point which we have not yet discussed is the fact that the verification of
the nonuniform expansivity assumptions is a highly nontrivial problem. For example, the
verification that Viana maps are nonuniformly expanding is one of the main results of
[162]. Only in some special cases can the required assumptions be verified directly and
easily. The definition of nonuniform expansivity is in terms of asymptotic properties of the
map which are therefore intrinsically not checkable in any given finite number of steps.
The same is true also for the derivative growth assumptions on the critical orbits of one-
dimensional maps as in Theorems 8 on p. 290 and 9 on p. 291. A perfectly legitimate
question is therefore whether these conditions actually do occur for any map at all. More-
over, recent results suggest that this situation is at best extremely rare in the sense that the
set of one-dimensional maps which have attracting periodic orbits, and in particular do not
have anacip, is open and densein the space of all one-dimensional maps [74,111,94,150,
95]. However, this topological point of view is only one way of defining “genericity” and
it turns out that for general one-parameter families of one-dimensional maps, the set of
parameters for which anacipdoes exist can havepositive Lebesgue measure(even though
it may be topologicallynowhere dense).

We give here a fairly complete sketch (!) of the argument in a special case, giving the
complete description of the combinatorial construction and just brief overview of how the
analytic estimates are obtained. For definiteness and simplicity we focus on the family

fa(x)= x2 − a
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for x ∈ I = [−2,2] and

a ∈Ωε = [2− ε,2]

for someε > 0.

THEOREM 12 [86]. For everyη > 0 there exists anε > 0 and a setΩ∗ ⊂Ωε such that
for all a ∈Ω∗, fa admits an ergodic absolutely continuous invariant probability measure,
and such that

|Ω∗|> (1− η)|Ωε|> 0.

There exist several generalizations of this result for families of smooth maps [86,28,144,
155,118,157,158,87,165,149,88] and even to families with completely degenerate (flat)
critical points [156] and to piecewise smooth maps with critical points [108,107]. The
arguments in the proofs are all fundamentally of a probabilistic nature and the conclusions
depend on the fact that iff is nonuniformly expanding for a large number of iteratesn
then it has a “high probability” of being nonuniformly expanding forn+ 1 iterates. Thus,
by successively deleting those parameters which fail to be nonuniformly expanding up to
some finite number of iterates, one has to delete smaller and smaller proportions. Therefore
a positive proportion survives all exclusions.

In Section 8.1 we give the formal inductive construction of the setΩ∗. In Sections 8.2
and 8.3 we prove the two main technical lemmas which give expansion estimates for orbit
starting respectively outside and inside some critical neighbourhood. In Section 8.4 we
prove the inductive step in the definition ofΩ∗ and in Section 8.5 we obtain the lower
bound on the size of|Ω∗|.

The proof involves several constants, some intrinsic to the family under consideration
and some auxiliary for the purposes of the construction. The relationships between these
constants and the order in which they are chosen is quite subtle and also crucial to the
argument. However this subtlety cannot easily be made explicit in such a sketch as we shall
give here. We just mention therefore that there are essentially only two intrinsic constants:
λ which is the expansivity exponent outside some (in fact any) critical neighbourhood, and
ε which is the size of the parameter intervalΩε. λ can be chosenfirst and is essentially
arbitrary as long asλ ∈ (0, log 2); ε needs to be chosenlast to guarantee that the auxiliary
constants can be chosen sufficiently small. The main auxiliary constants areλ0 which can
be chosen arbitrarily in(0, λ) and which gives thetargetLyapunov exponent of the critical
orbit for good parameters, and

λ. α. δ̂ = δι. δ > 0

which are chosen in the order given and sufficiently small with respect to the previous ones.
During the proof we will introduce also some “second order” auxiliary constants which
depend on these. Finally we shall use the constantC > 0 to denote a generic constant
whose specific value can in different formulae.
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8.1. The definition ofΩ∗

We let c0 = c0(a) = fa(0) denote thecritical value of fa and for i � 0, ci = ci(a) =
f i(c0). Forn� 0 andω⊆Ω letωn = {cn(a); a ∈ ω} ⊆ I.Notice that fora = 2 the critical
value maps to a fixed point. Therefore iterates of the critical point for parameter values
sufficiently close to 2 remain in an arbitrarily small neighbourhood of this fixed point for
an arbitrarily long time. In particular it is easy to see that all the inductive assumptions to
be formulated below hold for allk �N whereN can be taken arbitrarily large ifε is small
enough. This observation will play an important role in the very last step of the proof.

8.1.1. Inductive assumptionsLet Ω(0) = Ω andP(0) = {Ω(0)} denote the trivial par-
tition of Ω . Given n � 1 suppose that for eachk � n − 1 there exists a setΩ(k) ⊆ Ω
satisfying the following properties.

Combinatorics: For the moment we describe the combinatorial structure as abstract data,
the geometrical meaning of this data will become clear in the next section. There exists
a partitionP(k) ofΩ(k) into intervals such that eachω ∈P(k) has an associateditinerary
constituted by the following information. To eachω ∈ P(k) is associated a sequence
0 = θ0 < θ1 < · · · < θr � k, r = r(ω) � 0 of escape times. Escape times are divided
into three categories, i.e.substantial, essential, andinessential. Inessential escapes pos-
sess no combinatorial feature and are only relevant to the analytic bounded distortion
argument to be developed later. Substantial and essential escapes play a role in split-
ting itineraries into segments in the following sense. Let 0= η0 < η1 < · · · < ηs � k,
s = s(ω) � 0 be the maximal sequence of substantial and essential escape times.
Between any of the twoηi−1 and ηi (and betweenηs and k) there is a sequence
ηi−1 < ν1 < · · · < νt < ηi , t = t (ω, i) � 0 of essential return times(or essential re-
turns) and between any two essential returnsνj−1 andνj (and betweenνt andηi ) there
is a sequenceνj−1<µ1< · · ·<µu < νj , u= u(ω, i, j)� 0 of inessential return times
(or inessential returns). Following essential and inessential return (respectively escape)
there is a time interval[νj + 1, νj + pj ] (respectively[µj + 1,µj + pj ]) with pj > 0
called thebinding period. A binding period cannot contain any return and escape times.
Finally, associated to each essential and inessential return time (respectively escape) is
a positive integerr called thereturn depth(respectivelyescape depth).

Bounded Recurrence: We define the functionE (k) :Ω(k) → N which associates to each
a ∈Ω(k) the total sum of all essential return depths of the elementω ∈ P(k) containing
a in its itinerary up to and including timek. Notice thatE (k) is constant on elements of
P(k) by construction. Then, for alla ∈Ω(k),

E (k)(a)� αk. (BR)k

Slow Recurrence: For alla ∈Ω(k) and alli � k we have∣∣ci(a)∣∣� e−αi . (SR)k

Notice thatα can be chosen arbitrarily small as long asε is small in order for this to
hold for all i �N .
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Hyperbolicity: For alla ∈Ω(k),∣∣(f k+1
a

)′
(c0)
∣∣� Ceλ0(k+1). (EG)k

Bounded Distortion: Critical orbits with the same combinatorics satisfy uniformly com-
parable derivative estimates: For everyω ∈P(k), every pair of parameter valuesa, b ∈ ω
and everyj � ν + p + 1 whereν is the last return or escape before or equal to timek

andp is the associated binding period, we have

|(f ja )′(c0)|
|(f jb )′(c0)|

�D and
|c′j (a)|
|c′j (b)|

� D. (BD)k

Moreover, if k is a substantial escape a similar distortion estimate holds for allj � l
(l is the next chopping time) replacingD by D̃ andω by any subintervalω′ ⊆ ω which
satisfiesω′

l ⊆ ∆+. In particular forj � k, the mapcj :ω→ ωj = {cj (a): a ∈ ω} is a
bijection.

8.1.2. Definition ofΩ(n)andP(n) Forr ∈ N, letIr = [e−r , e−r+1), I−r =−Ir and define

∆+ = {0} ∪
⋃

|r|�rδ++1

Ir and ∆= {0} ∪
⋃

|r|�rδ+1

Ir ,

where rδ = logδ−1, rδ+ = ι logδ−1. We can suppose without loss of generality that
rδ, rδ+ ∈ N. For technical reasons related to the distortion calculation we also need to
subdivide eachIr into r2 subintervals of equal length. This defines partitionsI,I+ of
∆+ with I = I+|∆. An interval belonging to either one of these partitions is of the form
Ir,m with m ∈ [1, r2]. Let I �r,m andIρr,m denote the elements ofI+ adjacent toIr,m and let

Îr,m = I �r,m ∪ Ir,m ∪ Iρr,m. If Ir,m happens to be one of the extreme subintervals ofI+ then
let I �r,m or Iρr,m, depending on whetherIr,m is a left or right extreme, denote the intervals

(−δι− δι

(logδ−ι)2 − δι] or [δι, δι+ δι

(logδ−ι)2 ), respectively. We now use this partition to define

a refinementP̂(n) of P(n−1). Letω ∈ P(n−1). We distinguish two different cases.

Nonchopping times: We say thatn is a nonchopping time forω ∈P(n−1) if one (or more)
of the following situations occur:

(1) ωn ∩∆+ = ∅;
(2) n belongs to the binding period associated to some return or escape timeν < n

of ω;
(3) ωn∩∆+ �= ∅ butωn does not intersect more than two elements of the partitionI+.

In all three cases we letω ∈ P̂(n). In cases (1) and (2) no additional combinatorial infor-
mation is added to the itinerary ofω. In case (3), ifωn ∩ (∆ ∪ I±rδ ) �= ∅ (respectively,
ωn ⊂∆+ \ (∆ ∪ I±rδ ), we say thatn is an inessential return time (respectively inessen-
tial escape time) forω ∈ P̂(n). We define the corresponding depth byr = max{|r|:
ωn ∩ Ir �= ∅}.
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Chopping times: In all remaining cases, i.e. ifωn∩∆+ �= ∅ andωn intersects at least three
elements ofI+, we say thatn is a chopping time forω ∈ P(n−1). We define a natural
subdivision

ω= ω� ∪
⋃
(r,m)

ω(r,m) ∪ωρ,

so that eachω(r,m)n fully contains a unique element ofI+ (though possibly extending
to intersect adjacent elements) andω�n and ωρn are components ofωn \ (∆+ ∩ ωn)
with |ω�n| � δι/(logδ−ι)2 and |ωρn | � δι/(logδ−ι)2. If the connected components of
ωn \ (∆+ ∪ ωn) fail to satisfy the above condition on their length we just glue them
to the adjacent interval of the formw(r,m)n . By definition we let each of the resulting
subintervals ofω be elements ofP̂(n). The intervalsω�,ωρ andω(r,m) with |r| < rδ
are calledescape componentsand are said to have ansubstantial escapeandessential
escape, respectively, at timen. The corresponding values of|r|< rδ are the associated
essential escape depths. All other intervals are said to have anessential returnat time
n and the corresponding values of|r| are the associatedessential return depths.We re-
mark that partition elementsI±rδ do not belong to∆ but we still say that the associated
intervalsω(±rδ,m) have a return rather than an escape.

This completes the definition of the partition̂P(n) ofΩ(n−1) and of the functionE (n) on
Ω(n−1). We define

Ω(n) = {a ∈Ω(n−1): E (n)(a)� αn
}
. (27)

Notice thatE (n) is constant on elements of̂P(n). ThusΩ(n) is the union of elements of
P̂(n) and we can define

P(n) = P̂(n)|Ω(n) .

Notice that the combinatorics and the recurrence condition(BR)n are satisfied for every
a ∈ Ω(n) by construction. In Section 8.4 we shall prove that conditions(EG)n, (SR)n,

(BD)n all hold forΩ(n). Then we define

Ω∗ =
⋂
n�0

Ω(n).

In particular, for everya ∈Ω∗, the mapfa has an exponentially growing derivative along
the critical orbit and thus, in particular, by Lemma 8 admits an ergodicacip. In Section 8.5
we prove that|Ω∗|> 0.

We recall that a sketch of the proof of the existence of an induced Markov map under
precisely the hyperbolicity and slow recurrence assumptions given here is carried out in
Section 6.3. As mentioned there, the strategy for construction of the induced Markov map
is remarkably similar to the strategy for the construction carried out here for estimating the
probability that such conditions hold. The deeper meaning of this similarity is not clear.
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8.2. Expansion outside the critical neighbourhood

On some deep level, the statement in Theorem 12 depends essentially on the following
result which we have already used in Section 6.3.

LEMMA 8.1. There exists a constantC > 0 independent ofδ such that forε > 0 suffi-
ciently small, all a ∈Ωε, f = fa , x ∈ I andn� 1 such thatx,f (x), . . . , f n−1(x) /∈∆ we
have ∣∣Df n(x)∣∣� δeλn
and if, moreover, f n(x) ∈∆+ and/orx ∈ f (∆+) then∣∣Df n(x)∣∣�Ceλn.

In the proof of the theorem we will use some other features of the quadratic family and
of the specific parameter intervalΩε but it is arguable that they are inessential and that the
statement of Lemma 8.1 are to a certain extent sufficient conditions for the argument. It
would be very interesting to try to prove the main theorem using only the properties stated
in Lemma 8.1. On a general “philosophical” level, this is based on the general principle,
which goes back at least to the pioneering paper of Jakobson [86], that uniform hyperbol-
icity for all parametersin most of the state spaceimplies nonuniform hyperbolicity inall
the state spacefor most parameters.

8.3. The binding period

Next we make precise the definition of thebinding periodwhich is part of the combina-
torial information given above. Letk � n− 1,ω ∈ P(k) and suppose thatk is an essential
or inessential return or escape time forω with return depthr . Then we define thebinding
periodof ωk as

p(ωk)= min
a∈ω
{
p
(
ck(a)
)}
,

where

p
(
ck(a)
)= min

{
i:
∣∣ck+1+i (a)− ci(a)

∣∣� e−2αi}. (28)

This is the time for which the future orbit ofck(a) can be thought of asshadowingor being
bound tothe orbit of the critical point (that is, in some sense, the number of iterations for
which the orbit ofc(a) repeats its early history after thekth iterate). We will obtain some
estimates concerning the length of this binding period and the overall derivative growth
during this time.
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LEMMA 8.2. There exist constantsτ0 > 0 andγ1 ∈ (0,1) such that the following holds.
Let k � n− 1,ω ∈ P(k) and suppose thatk is an essential or inessential return or escape
time forω with return depthr . Letp = p(ωk). Then for everya ∈ ω we have

p � τ0 log
∣∣ck(a)∣∣−1

< k (29)

and

∣∣Dfp+1(ck(a))∣∣� Cer(1−γ1) � Ce
1−γ1
τ0
(p+1)

(30)

and, if k is an essential return or an essential escape, then

|ωk+p+1|� Ce−γ1r . (31)

To simplify the notation we writex = ck(a) andx0 = ck+1(a) and omit the dependence
on the parametera where there is no risk of confusion. The first step in the proof is to obtain
a bounded distortionestimate during binding periods: there exists a constantD1(α0, α1)

independent ofx, such that for alla ∈ ω, all y0, z0 ∈ [x0, c0] and all 0� j � min{p−1, k}
we have ∣∣∣∣ (f j )′(z0)(f j )′(y0)

∣∣∣∣<D1.

This follows from the standard distortion calculations as in (8) on p. 285, using the upper
bounde−2αi from the definition of binding in the numerator and the lower bounde−αi
from the bounded recurrence condition(SR)k in the denominator. Notice that for this rea-
son the distortion bound is formally calculated for iteratesj � min{p−1, k} (the bounded
recurrence condition cannot be guaranteed for iterates larger thank). The next step how-
ever gives an estimate for the duration of the binding period and implies thatp < k and
therefore the distortion estimates do indeed hold throughout the duration of the binding pe-
riod. The basic idea for the upper bound onp is simple. The length of the interval[x0, c0]
is determined by the length of the interval[x, c] which isck(a). The exponential growth of
the derivative along the critical orbit and the bounded distortion imply that this interval is
growing exponentially fast. The condition which determines the end of the binding period
is shrinking exponentially fast. Some standard mean value theorem estimates using these
two facts give the result. Finally the average derivative growth during the binding is given
by the combined effect of the small derivative of orderck(a) at the return to the critical
neighbourhood and the exponential growth during the binding period. The result then intu-
itively boils down to showing that the binding period is long enough to (over) compensate
the small derivative at the return.

The final statement in the lemma requires some control over the way that the derivatives
with respect to the parameter are related to the standard derivatives with respect to a point.
This is a fairly important point which will be used again and therefore we give a more
formal statement.
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LEMMA 8.3. There exists a constantD2> 0 such that for any1 � k � n− 1,ω ∈ P(k−1)

anda ∈ ω we have

D2 �
|c′k(a)|

|Df ka (c0)|
� D2

and, for all 1� i < j � k + 1, there exists̃a ∈ ω such that

1

D2

∣∣Df j−i
ã

(
ci(ã)
)∣∣� |ωj |

|ωi | �D2
∣∣Df j−i

ã

(
ci(ã)
)∣∣. (32)

PROOF. The second statement is a sort ofparameter mean value theoremand follows
immediately from the first one and the standard mean value theorem. To prove the first one
let F :Ω × I → I be the function of two variables defined inductively byF(a, x)= fa(x)
andFk(a, x)= F(a,f k−1

a x). Then, forx = c0, we have

c′k(a)= ∂aF k(a, c0)= ∂aF
(
a,f k−1

a c0
)=−1+ f ′

a(ck−1)c
′
k−1(a).

Iterating this expression gives

−c′k(a) = 1+ f ′
a(ck−1)+ f ′

a(ck−1)f
′
a(ck−2)+ · · ·

+ f ′
a(ck−1)f

′
a(ck−2) . . . f

′
a(c1)f

′
a(c0)

and dividing both sides by(f k)′(c0)= f ′
a(ck−1)f

′
a(ck−2) . . . f

′
a(c1)f

′
a(c0) gives

c′k(a)
(f ka )

′(c0)
= 1+

k∑
i=1

1

(f i)′(c0)
. (33)

The result then depends on making sure that the sum on the right-hand side is bounded
away from−1. Since the critical point spends an arbitrarily large numberN of iterates
in an arbitrarily small neighbourhood of a fixed point at which the derivative is−4 we
can bound an arbitrarily long initial part of this sum by−1/2. By the exponential growth
condition the tail of the sum is still geometric and by takingN large enough we can make
sure that this tail is less than 1/2 in absolute value. �

Returning to the proof of Lemma 8.2 we can use the parameter/space derivative bound
to extend the derivative expansion result to the entire intervalωk and therefore to estimate
the growth of this interval during the binding period.

8.4. Positive exponents in dynamical space

Using a combination of the expansivity estimates outside∆ and the binding period esti-
mates for returns to∆ it is possible to prove the inductive step stated above.
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The slow recurrence condition is essentially an immediate consequence of the parameter
exclusion condition.

The exponential growth condition relies on the following crucial and nontrivial obser-
vation: the overall proportion of bound iterates is small. This follows from the parameter
exclusion condition which bounds the total sum of return depths (an estimate is required to
show that inessential return do not contribute significantly to the total) and the binding pe-
riod estimates which show that the length of the binding period is bounded by a fraction of
the return depth. This implies that the overall derivative growth is essentially built up from
the free iterates outside∆ and this gives an overall derivative growth at an exponential rate
independent ofn.

The bounded distortion estimates again starts with the basic estimate as in (8) on p. 285.
By Lemma 8.3 it is sufficient to prove the estimate for the space derivativesDf k ; in-
tuitively this is saying that critical orbits with the same combinatorics satisfy the same
derivative estimates. The difficulty here is that although the images of parameter intervals
ω are growing exponentially, they do not satisfy a uniformbackward exponentialbound
as required to carry out the step leading to (9) on p. 286; also images ofω can come ar-
bitrarily close to the critical point and thus the denominator does not admit any uniform
bounds. The calculation therefore is technically quite involved and we refer the reader to
published proofs such as [103] for the details. Here we just mention that the argument in-
volves decomposing the sum into “pieces” corresponding to free and bound iterates and
estimating each one independently, and taking advantage of the subdivision of the critical
neighbourhood into intervalIr each of which is crucially further subdivided into further
r2 subintervals of equal length. This implies that the contribution to the distortion of each
return is at most of the order of 1/r2 instead of order 1 and allows us to obtain the desired
conclusion using the fact that 1/r2 is summable inr .

8.5. Positive measure in parameter space

Recall thatP̂(n) is the partition ofΩ(n−1) which takes into account the dynamics at time
n and which restricts to the partitionP(n) of Ω(n) after the exclusion of a certain elements
of P̂(n). Our aim here is to develop some combinatorial and metric estimates which will
allow us to estimate the measure of parameters to be excluded at timen.

The first step is to take a fresh look at the combinatorial structure and “reformulate it”
in a way which is more appropriate. To eachω ∈ P̂(n) is associated a sequence 0= η0 <

η1< · · ·< ηs � n, s = s(ω)� 0 of escape times and a corresponding sequence of escaping
componentsω ⊆ ω(ηs) ⊆ · · · ⊆ ω(η0) with ω(ηi) ⊆Ω(ηi) andω(ηi) ∈ P(ηi ). To simplify the
formalism we also define some “fake” escapes by lettingω(ηi) = ω for all s + 1 � i � n.
In this way we have a well-defined parameter intervalω(ηi) associated toω ∈ P̂(n) for each
0 � i � n. Notice that for two intervalsω, ω̃ ∈ P̂(n) and any 0� i � n, the corresponding
intervalsω(ηi) andω̃(ηi ) are either disjoint or coincide. Then we define

Q(i) =
⋃

ω∈P̂(n)
ω(ηi)



Nonuniformly expanding maps 313

and letQi = {ω(ηi)} denote the natural partition ofQ(i) into intervals of the formω(ηi).
Notice thatΩ(n−1) = Q(n) ⊆ · · · ⊆ Q(0) = Ω(0) andQn = P̂(n) since the numbers of
escape times is always strictly less thann and therefore in particularω(ηn) = ω for all
ω ∈ P̂(n). For a givenω= ω(ηi) ∈Qi, 0� i � n− 1, we let

Q(i+1)(ω)= {ω′ = ω(ηi+1) ∈Qi + 1: ω′ ⊆ ω}
denote all the elements ofQi + 1 which are contained inω and letQi + 1(ω) denote the
corresponding partition. Then we define a function∆Ei :Q(i+1)(ω)→ N by

∆Ei(a)= Eηi+1(a)− Eηi(a).

This gives the total sum of all essential return depths associated to the itinerary of the
elementω′ ∈Qi + 1(ω) containinga, between the escape at timeηi and the escape at time
ηi+1. Clearly∆Ei(a) is constant on elements ofQi + 1(ω). Finally we let

Qi + 1(ω,R)= {ω′ ∈Q(i+1): ω′ ⊆ ω, ∆Ei(ω′)=R}.
Notice that the entire construction given here depends onn. The main motivation for this
construction and is the following

LEMMA 8.4. There exists a constantγ0 ∈ (0,1− γ1) such that the following holds. For
all i � n− 1,ω ∈Qi andR � 0 we have∑

ω̃∈Qi+1(ω,R)

|ω̃| � e(γ1+γ0−1)R|ω|. (34)

This says essentially that the probability of accumulating a large total return depth be-
tween one escape and the next is exponentially small. The strategy for proving this re-
sult is straightforward. We show first of all that for 0� i � n − 1, ω ∈ Qi, R � 0 and
ω̃ ∈Qi + 1(ω,R) we have

|ω̃| � e(γ1−1)R|ω|. (35)

The proof is not completely straightforward but depends on the intuitively obvious fact that
an interval which has a deep return must necessarily be very small (since it is only allowed
to contain at most three adjacent partition elements at the return). Notice, moreover, that
this statement on its own is not sufficient to imply (34) as there could be many small
intervals which together add up to a lot of intervals having large return. However we can
control to some extent the multiplicity of these intervals and show that we can choose an
arbitrarily smallγ0 (by choosing the critical neighbourhood∆ sufficiently small) so that
for all 0� i � n− 1,ω ∈Q(i) andR � rδ , we have

#Q(i+1)
n (ω,R)� eγ0R. (36)
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This depends on the observation that eachω has an essentially unique (uniformly bounded
multiplicity) sequence of return depths. Thus the estimate can be approached via purely
combinatorial arguments very similar to those used in relation to Equation (17). Choosing
δ small means the sequences of return depths have terms bounded below byrδ which can be
chosen large, and this allows the exponential rate of increase of the combinatorially distinct
sequences withR to be taken small. Combining (35) and (36) immediately gives (34).

Now choose someγ2 ∈ (0,1− γ0 − γ1) and let

γ = γ0 + γ1 + γ2> 0.

For 0� i � n− 1, andω ∈Qi, write∑
ω′∈Qi+1(ω)

eγ2∆Ei(ω′)|ω′| =
∑

ω′∈Qi+1(ω,0)

|ω′| +
∑
R�rδ

eγ2R
∑

ω′∈Qi+1(ω,R)

|ω′|.

By (34) we then have∑
ω′∈Qi+1(ω,0)

|ω′| +
∑
R�rδ

eγ2R
∑

ω′∈Qi+1(ω,R)

|ω′|�
(

1+
∑
R�rδ
e(γ0+γ1+γ2−1)R

)
|ω|. (37)

SinceEn=∆E0+ · · · +∆En− 1 and∆Ei is constant on elements ofQi we can write∑
ω∈Qn

eγ2En(ω)|ω| =
∑

ω(1)∈Q1(ω(0))

eγ2∆E0(ω(1))
∑

ω(2)∈Q2(ω(1))

eγ2∆E1(ω(2)) . . .

∑
ω(n−1)∈Qn−1(ω(n−2))

eγ2∆En−1(ω(n−1))
∑

ω=ω(n)∈Qn
eγ2∆En−1(ω(n))|ω|.

Notice thenestednature of the expression. Applying (37) repeatedly gives∫
Ω(n−1)
eγ2En =

∑
ω∈Qn

eγ2En(ω)|ω|�
(

1+
∑
R�rδ

e(γ−1)R
)n

|Ω|. (38)

The definition ofΩ(n) gives∣∣Ω(n−1)
∣∣− ∣∣Ω(n)∣∣= ∣∣Ω(n−1) \Ω(n)∣∣= ∣∣{ω ∈ P̂(n) =Qn: eγ2En � eγ2αn

}∣∣
and therefore using Chebyshev’s inequality and (38) we have

∣∣Ω(n−1)
∣∣− ∣∣Ω(n)∣∣� e−γ2αn

∫
Ω(n−1)

eγ2En �
[
e−γ2α

(
1+
∑
R�rδ

e(γ−1)R
)]n

|Ω|

which implies

∣∣Ω(n)∣∣� ∣∣Ω(n−1)
∣∣− [e−γ2α

(
1+
∑
R�rδ

e(γ−1)R
)]n

|Ω|
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and thus

|Ω∗|�
(

1−
∞∑
j=N

[
e−γ2α

(
1+
∑
R�rδ

e(γ−1)R
)]j)

|Ω|.

ChoosingN sufficiently large, by takingε sufficiently small, guarantees that the right-hand
side is positive.

9. Conclusion

In this final section we make some concluding remarks and present some questions and
open problems.

9.1. What causes slow decay of correlations?

The general theory described in Section 7 is based on a certain way of quantifying the
intrinsic nonuniformity off which does not rely on identifying particular critical and/or
neutral orbits. However, the conceptual picture according to which slow rates of decay
are caused by a slowing down process due to the presence of neutral orbits can also be
generalized. Indeed, the abstract formulation of the concept of a neutral orbit is naturally
that of an orbit with a zero Lyapunov exponent. The definition of nonuniform expansivity
implies that almost all orbits have uniformly positive Lyapunov exponents but this does
not exclude the possibility of some other point having a zero Lyapunov exponent. It seems
reasonable to imagine that a point with a zero Lyapunov exponent couldslow downthe
overall mixing process in a way which is completely analogous to the specific examples
mentioned above. Therefore we present here, in a heuristic form, a natural conjecture.

CONJECTURE1. Supposef is nonuniformly expanding. Thenf has exponential decay of
correlations if and only it has no invariant measures with all zero Lyapunov exponents.

An attempt to state this conjecture in a precise way reveal several subtle points which
need to be considered. We discuss some of these briefly. LetM denote the space of
all probability f -invariant measuresµ on M which satisfy the integrability condition∫

log‖Dfx‖dµ <∞. Then by standard theory, see also [1, Section 5.8], we can apply
a version of Oseledets’ Theorem for noninvertible maps which says that there exist con-
stantsλ1, . . . , λk with k � d , and a measurable decompositionTxM = E1

x ⊕ · · · ⊕ Ekx of
the tangent bundle overM such that the decomposition is invariant by the derivative and
such that for allj = 1, . . . , k and for all non zero vectorsv(j) ∈Ejx we have

lim
n→∞

1

n

n−1∑
i=0

log
∥∥Df nx (v(j))∥∥= λj .



316 S. Luzzatto

The constantsλ1, . . . , λk are called theLyapunov exponentsassociated to the measureµ.
The definition of nonuniform expansivity implies that all Lyapunov exponents associated
to theacipµ are� λ and thus uniformly positive, but it certainly does not exclude the pos-
sibility that there exist some other (singular with respect to Lebesgue) invariant probability
measure with some zero Lyapunov exponent. This is the case, for example, for the maps of
Section 5 for which the Dirac measure on the indifferent fixed point has a zero Lyapunov
exponent.

Thus one way to state precisely the above conjecture is to claim thatf has exponen-
tial decay of correlations if and only if all Lyapunov exponents associated to all invariant
probability measure inM are uniformly positive. Of course, a priori, there may also be
some exceptional points, not typical for any measure inM, along whose orbit the deriv-
ative expands subexponentially and which therefore might similarly have a slowing down
effect. Also it may be that one zero Lyapunov exponent along one specific direction may
not have a significant effect whereas a measure for which all Lyapunov exponents were
zero would. Positive results in the direction of this conjecture include the remarkable ob-
servation that local diffeomorphisms for which all Lyapunov exponents for all measures
are positive, must actually be uniformly expanding [14,57,58] and thus in particular have
exponential decay of correlations. Moreover, in the context of one-dimensional smooth
maps with critical points it is known that in the unimodal case exponential growth of the
derivative along the critical orbit (the Collet–Eckmann condition) implies uniform hyper-
bolicity on periodic orbits [120] which in turn implies that all Lyapunov exponents of all
measures as positive [41] and the converse is also true [122]. Thus Conjecture 1 is true in
the one-dimensional unimodal setting.

We remark that the assumption of nonuniform expansion is crucial here. There are sev-
eral examples of systems which have exponential decay of correlations but clearly have
invariant measures with zero Lyapunov exponents, e.g., partially hyperbolic maps or maps
obtained as time-1 maps of certain flows [65–67]. These examples however are not nonuni-
formly expanding, and are generallypartially hyperbolicwhich means that there are two
continuous subbundles such that the derivative restricted to one subbundle has very good
expanding properties or contracting properties and the other subbundle has the zero Lya-
punov exponents. For reasons which are not at all clear, this might bebetterfrom the point
of view of decay of correlations than a situation in which all the Lyapunov exponents of the
absolutely continuous measure are positive but there is someembeddedsingular measure
with zero Lyapunov exponent slowing down the mixing process. Certainly there is still a
lot to be understood on this topic.

9.2. Stability

The results on the existence of nonuniformly expanding maps for open sets or positive
measure sets of parameters are partlystability results. They say that certain properties of a
system, e.g., being nonuniformly expanding, are stable in a certain sense. We mention here
two other forms of stability which can be investigated.



Nonuniformly expanding maps 317

9.2.1. Topological rigidity The notion of (nonuniform) expansivity is, a priori, com-
pletely metrical: it depends on the differentiable structure off and most constructions
and estimates related to nonuniform expansivity require delicate metric distortion bounds.
However the statistical properties we deduce (the existence of anacip, the rate of decay of
correlation) are objects and quantities which make sense in a much more general setting.
A natural question therefore is whether the metric properties are really necessary or just
very useful conditions and to what extent the statistical properties might depend only on the
underlying topological structure off . We recall that two mapsf :M→M andg :N→N

aretopologically conjugate, f ∼ g, if there exists a homeomorphismh :M→N such that
h◦f = g ◦h. We say that a property off is topologicalor depends only on thetopological
structureof f if it holds for all maps in the topological conjugacy class off .

The existence of an absolutely continuous invariant measure is clearly not a topolog-
ical invariant in general: ifµf is an acip for f then we can defineµg = h∗µf by
µg(A) = µf (h−1(A)) which gives an invariant probability measure but not absolutely
continuous unless the conjugating homeomorphismh is itself absolutely continuous. For
example, the map of Theorem 6 has noacip even though it is topologically conjugate to a
uniformlyexpanding Markov map. However it turns out, quite remarkably, that there are
many situations in the setting of one-dimensional maps with critical points in which the
existence of anacip is indeed a topological property (although there are also examples in
which it is not [39]). Topological conditions which imply the existence of anacip for uni-
modal maps were given in [38,146,40]. In [121] (bringing together results of [122,133])
it was shown that the exponential growth condition along the critical orbit for unimodal
maps (which in particular implies the existence of anacip, see Theorem 8) is a topological
property. A counterexample to this result in the multimodal case was obtained in [132].
However it was shown in [109] that in the general multimodal case, if all critical points are
genericwith respect to theacip, then the existence of anacipstill holds for all maps in the
same conjugacy class (although not necessarily the genericity of the critical points).

We emphasize that all these results do not rely on showing that all conjugacies in ques-
tion are absolutely continuous. Rather they depend on the existence of some topological
property which forces the existence of anacip in each map in the conjugacy class. These
acip’s are generallynot mapped to each other by the conjugacy.

9.2.2. Stochastic stability Stochastic stability is one way to formalize the idea that the
statistical properties of a dynamical systems arestableunder small random perturbations.
There are several positive results on stochastic stability for uniformly expanding [166,26,
61] and nonuniformly expanding maps in dimension 1 [25,21] and higher [20,19]. See [13]
for a comprehensive treatment of the results.

9.3. Nonuniform hyperbolicity and induced Markov maps

The definition of nonuniform hyperbolicity in terms of conditions(∗) and(∗∗) given above
are quite natural as they are assumptions which do not a priori require the existence of an
invariant measure. However they do imply the existence of anacipµ which has all positive
Lyapunov exponents. Thus the system(f,µ) is also nonuniformly expanding in the more
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abstract sense ofPesin theory, see [1]. The systematic construction of induced Markov
maps in many examples and under quite general assumptions, as described above, natu-
rally leads to the question of whether such a construction is always possible in this abstract
setting. Since the existence of an induced Markov map implies nonuniform expansivity this
would essentially give an equivalent characterization of nonuniform expansivity. A general
result in this direction has been given for smooth one-dimensional maps in [145]. It would
be interesting to extend this to arbitrary dimension. A generalization to nonuniformly hy-
perbolic surface diffeomorphisms is work in progress [105].

It seems reasonable to believe that the scope of application of induced Markov towers
may go well beyond the statistical properties of a mapf . The construction of the induced
Markov map in [145], for example, is primarily motivated by the study if the Hausdorff
dimension of certain sets. A particularly interesting application would be a generalization
of the existence (parameter exclusion) argument sketched in Section 8. Even in a very
general setting, with no information about the mapf except perhaps the existence of an
induced Markov map, it is natural to ask about the possible existence of induced Markov
maps for small perturbations off . If, moreover, the existence of an induced Markov map
were essentially equivalent to nonuniform expansivity then this would be a question about
the persistence of nonuniform expansivity under small perturbations.

CONJECTURE2. Suppose thatf is nonuniformly expanding. Then sufficiently small per-
turbations off have positive probability of also being nonuniformly expanding.

Using the Markov induced maps one could define, even in a very abstract setting, acrit-
ical region∆ formed by those points that have very large return time. Then outside∆

one would have essentially uniform expansivity and these, as well as the Markov structure,
would essentially persist under small perturbations. One could then perturbf and, up to
parameter exclusions, try to show that the Markov structure can be extended once again to
the whole of∆ for some nearby mapg.

9.4. Verifying nonuniform expansivity

The verification of the conditions of nonuniform hyperbolicity are a big problem on both
a theoretical and a practical level. As mentioned in Section 8, for the important class of
one-dimensional maps with critical point, nonuniform expansivity occurs with positive
probability but for sets of parameters which are topologically negligible and thus essen-
tially impossible to pinpoint exactly. The best we can hope for is to show they occur with
“very high” probability in some given small range of parameter values.

However even this is generally impossible with the available techniques. Indeed, all ex-
isting argument rely on choosing asufficiently smallparameter intervalcentredon some
sufficiently goodparameter value. The closeness to this parameter value is then used to ob-
tain the various conditions which are required to start the induction. However the problem
then reduces to showing that such a good parameter value exists in the particular parameter
interval of interest, and this is again both practically and theoretically impossible in gen-
eral. Moreover, even if such a parameter value was determined (as in the special case of
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the “top” quadratic map) existing estimates do not control the size of the neighbourhood
in which the good parameters are obtained nor the relative proportion of good parameters.
For example, there are no explicit bounds for the actual measure of the set of parameters
in the quadratic family which have anacip. A standard coffee-break joke directed towards
authors of the papers on the existence of such maps is that so much work has gone into
proving the existence of a set of parameters which as far as we know might be infinites-
imal. Moreover, there just does not seem to be any even heuristic argument for believing
that such a set is or is not very small. Thus, for no particular reason other than a reaction
to these coffee-break jokers (!), we formulate the following

CONJECTURE3. The set of parameters in the quadratic family which admit an acip is
“ large”.

For definiteness let us say that “large” means at least 50% but it seems perfectly reason-
able to expect even 80% or 90%, and of course we mean here those parameters between
the Feigenbaum period doubling limit and the top map. An obvious strategy for proving (or
disproving) this conjecture would be to develop a technique for estimating the proportion
of maps having anacip in any given small one-parameter family of maps. The large para-
meter interval of the quadratic family could then be subdivided into small intervals each
and the contribution of each of these small intervals could then be added up.

A general technique of this kind would also be interesting in a much broader context
of applications. As mentioned in the introduction, many real-life systems appear to have a
combination of deterministic and random-like behaviour which suggests that some form of
expansivity and/or hyperbolicity might underly the basic driving mechanisms. In modelling
such a system it seems likely that one may obtain a parametrized family and be interested
in a possibly narrow range of parameter values. It would be desirable therefore to be able
to obtain a rigorous prove of the existence of stochastic like behaviour such as mixing with
exponential decay of correlations in this family and to be able to estimate the probability
of such behaviour occurring. An extremely promising strategy has been proposed recently
by K. Mischaikow. The idea is to combine nontrivial numerical estimates with the geomet-
ric and probabilistic parameter exclusion argument discussed above. Indeed the parameter
exclusion argument, see Section 8, relies fundamentally on an induction which shows that
the probability of being excluded at timen are exponentially small inn. The implemen-
tation of this argument however also requires several delicate relations between different
system constants to be satisfied and in particular no exclusions to be required before some
sufficiently largeN so that the exponentially small exclusions occurring forn >N cannot
cumulatively add up to the full measure of the parameter interval under consideration. The
assumption of the existence of a particularly good parameter valuea∗ and the assumption
that the parameter interval is a sufficiently small neighbourhood ofa∗ are used in all exist-
ing proofs to make sure that certain constants can be chosen arbitrarily small or arbitrarily
large thus guaranteeing that the necessary relations are satisfied. Mischaikow’s suggestion
is to reformulate the induction argument in such a way that the inductive assumptions can,
at least in principle, be explicitly verified computationally. This requires the dependence
of all the constants in the argument to be made completely explicit in such a way that the
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inductive assumptions boil down to a finite set of open conditions on the family of maps
which can be verified with finite precision in finite time.

Besides the interest of the argument in this particular setting this could perhaps de-
velop into an extremely fruitful interaction between the “numerical” and the “geomet-
ric/probabilistic” approach to Dynamical Systems, and contribute significantly to the ap-
plicability of the powerful methods of Dynamical Systems to the solution and understand-
ing of real-life phenomena.

REMARK. Since this survey was written, significant progress has been made on the gen-
eral strategy proposed by Mischaikow, mentioned above. A first explicit rigorous lower
bound for the set of good parameters in the quadratic family has been obtained in [106].
The argument is completely analytic and restricted to a small parameter interval near the
“top” of the family. The paper, however, contains a general formula for the relative mea-
sure of good parameters in terms of a small number of constants, all explicitly computable
within a finite number of steps. The most difficult constants to calculate are those related
to the expansivity outside a critical neighbourhood, as in Lemma 8.1 above. These require
some nontrivial numerical analysis arguments which have recently been developed in [63].
It can be expected therefore that some reasonable estimates for the overall proportion of
good parameters in the quadratic family will be obtained by combining these two argu-
ments. The author has recently become aware of numerical computations of Simó and
Tatjer [151] which provide reasonably reliable lower bounds for the set of regular para-
meters in the quadratic family, of the order of about 10% of the interval of parameters for
which interesting dynamics occurs.
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[6] M. Jakobson and G.́Swiątek,One-dimensional maps, Handbook of Dynamical Systems, Vol. 1A, B. Has-
selblatt and A. Katok, eds, Elsevier, Amsterdam (2002), 599–666.

[7] G. Knieper,Hyperbolic dynamics and Riemannian geometry, Handbook of Dynamical Systems, Vol. 1A,
B. Hasselblatt and A. Katok, eds, Elsevier, Amsterdam (2002), 453–545.

[8] M. Pollicott, Periodic orbits and zeta functions, Handbook of Dynamical Systems, Vol. 1A, B. Hasselblatt
and A. Katok, eds, Elsevier, Amsterdam (2002), 409–452.

[9] E. Pujals and M. Sambarino,Homoclinic bifurcations, dominated splitting and robust transitivity, Hand-
book of Dynamical Systems, Vol. 1B, B. Hasselblatt and A. Katok, eds, Elsevier, Amsterdam (2006),
327–378.

Other sources

[10] J. Aaronson,An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, Vol. 50,
Amer. Math. Soc. (1997).

[11] R.L. Adler,F -expansions revisited, Recent Advances in Topological Dynamics, Proc. Conf., Yale Univ.,
New Haven, Conn., 1972, in honor of Gustav Arnold Nedlund, Lecture Notes in Math., Vol. 318, Springer,
Berlin (1973), 1–5.

[12] J.F. Alves,SRB measures for non-hyperbolic systems with multidimensional expansion, Ann. Sci. École
Norm. Sup. (4)33 (2000), 1–32.

[13] J.F. Alves,Statistical analysis of nonuniformly expanding dynamical systems(2003), Preprint.
[14] J.F. Alves, V. Araujo and B. Saussol,On the uniform hyperbolicity of some nonuniformly hyperbolic

systems, Proc. Amer. Math. Soc.131 (4) (2003), 1303–1309.
[15] J.F. Alves, C. Bonatti and M. Viana,SRB measures for partially hyperbolic systems whose central direction

is mostly expanding, Invent. Math.140 (2000), 351–398.
[16] J.F. Alves, S. Luzzatto and V. Pinheiro,Markov structures and decay of correlations for non-uniformly

expanding maps on compact manifolds of arbitrary dimension, Electron. Res. Announc. Amer. Math. Soc.
9 (2003), 26–31.

[17] J.F. Alves, S. Luzzatto and V. Pinheiro,Lyapunov exponents and rates of mixing for one-dimensional maps,
Ergodic Theory Dynam. Systems24 (2004), 637–657, DOI 10.1017/S0143385703000579.

[18] J.F. Alves, S. Luzzatto and V. Pinheiro,Markov structures and decay of correlations for non-uniformly
expanding maps, Ann. Inst. H. Poincaré Anal. Non Linéaire (2004), to appear.

[19] J.F. Alves and M. Viana,Statistical stability for robust classes of maps with non-uniform expansion, Er-
godic Theory Dynam. Systems22 (2002), 1–32.

[20] V. Araújo, Infinitely many stochastically stable attractors, Nonlinearity14 (2001), 583–596.
[21] V. Araújo, M. Viana and S. Luzzatto,Weak expansion implies stochastic stability, in progress.
[22] A. Avez, Propriétés ergodiques des endomorphisms dilatants des variétés compactes, C. R. Acad. Sci.

Paris Sér. A–B266 (1968), A610–A612 (in French).
[23] V. Baladi,Decay of correlations, Smooth Ergodic Theory and Its Applications, Seattle, WA, 1999, Proc.

Sympos. Pure Math., Vol. 69, Amer. Math. Soc., Providence, RI (2001), 297–325.
[24] V. Baladi and S. Gouëzel,A note on stretched exponential decay of correlations for the Viana–Alves map,

http://front.math.ucdavis.edu/math.DS/0311189, Preprint.
[25] V. Baladi and M. Viana,Strong stochastic stability and rate of mixing for unimodal maps, Ann. Sci. École

Norm. Sup. (4)29 (1996), 483–517.
[26] V. Baladi and L.-S. Young,On the spectra of randomly perturbed expanding maps, Comm. Math. Phys.

156 (1993), 355–385.
[27] L. Barreira and Y.B. Pesin,Lyapunov exponents and smooth ergodic theory, University Lecture Series,

Vol. 23, Amer. Math. Soc., Providence, RI (2002), ISBN 0-8218-2921-1.
[28] M. Benedicks and L. Carleson,On iterations of1− ax2 on (−1,1), Ann. of Math.122 (1985), 1–25.
[29] M. Benedicks and L. Carleson,The dynamics of the Hénon map, Ann. of Math.133 (1991), 73–169.
[30] G.D. Birkhoff, Proof of the ergodic theorem, Proc. Nat. Acad. Sci. USA17 (1931), 656–660.



322 S. Luzzatto

[31] G.D. Birkhoff, What is the ergodic theorem?Amer. Math. Monthly49 (1942), jstor, 222–226.
[32] R. Bowen,Markov partitions for AxiomA diffeomorphisms, Amer. J. Math.92 (1970), 725–747.
[33] R. Bowen,Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math.,

Vol. 470, Springer-Verlag, Berlin (1975).
[34] R. Bowen,Bernoulli maps of the interval, Israel J. Math.28 (1977), 161–168.
[35] R. Bowen,Invariant measures for Markov maps of the interval, Comm. Math. Phys.69 (1979), 1–17, with

an afterword by Roy L. Adler and additional comments by Caroline Series.
[36] X. Bressaud,Subshifts on an infinite alphabet, Ergodic Theory Dynam. Systems19 (1999), 1175–1200.
[37] X. Bressaud, R. Fernández and A. Galves,Decay of correlations for non-Hölderian dynamics. A coupling

approach, Electron. J. Probab.4 (3) (1999), 19 pp. (electronic).
[38] H. Bruin, Topological conditions for the existence of invariant measures for unimodal maps, Ergodic

Theory Dynam. Systems14 (1994), 433–451.
[39] H. Bruin, The existence of absolutely continuous invariant measures is not a topological invariant for

unimodal maps, Ergodic Theory Dynam. Systems18 (1998), 555–565.
[40] H. Bruin, Topological conditions for the existence of absorbing Cantor sets, Trans. Amer. Math. Soc.350

(1998), 2229–2263.
[41] H. Bruin and G. Keller,Equilibrium states forS-unimodal maps, Ergodic Theory Dynam. Systems18

(1998), 765–789.
[42] H. Bruin, S. Luzzatto and S. van Strien,Decay of correlations in one-dimensional dynamics, Ann. Sci.

École Norm. Sup.36 (2003), 621–646.
[43] H. Bruin, W. Shen and S. van Strien,Invariant measures exist without a growth condition, Comm. Math.

Phys.241 (2003), 287–306.
[44] H. Bruin and S. van Strien,Existence of absolutely continuous invariant probability measures for multi-

modal maps, Global Analysis of Dynamical Systems, Inst. Phys., Bristol (2001), 433–447.
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[96] K. Krzyżewski and W. Szlenk,On invariant measures for expanding differentiable mappings, Studia Math.
33 (1969), 83–92.

[97] A. Lasota,Invariant measures and functional equations, Aequationes Math.9 (1973), 193–200.
[98] A. Lasota and J.A. Yorke,On the existence of invariant measures for piecewise monotonic transformations,

Trans. Amer. Math. Soc.186 (1973), 481–488 (1974).
[99] C. Liverani,Decay of correlations for piecewise expanding maps, J. Statist. Phys.78 (1995), 1111–1129.

[100] C. Liverani,Decay of correlations, Ann. of Math. (2)142 (1995), 239–301.
[101] C. Liverani,Invariant measures and their properties. A functional analytic point of view(2004), http://

www.mat.uniroma2.it/liverani/rev.html, Preprint.
[102] C. Liverani, B. Saussol and S. Vaienti,Conformal measure and decay of correlation for covering weighted

systems, Ergodic Theory Dynam. Systems18 (1998), 1399–1420.
[103] S. Luzzatto,Bounded recurrence of critical points and Jakobson’s theorem, The Mandelbrot Set, Theme

and Variations, London Math. Soc. Lecture Note Ser., Vol. 274, Cambridge Univ. Press, Cambridge (2000),
173–210.

[104] S. Luzzatto, M. Holland and K. Diaz-Ordaz,Mixing properties of one-dimensional Lorenz-like maps with
critical points and discontinuities with infinite derivative, Stochastics and Dynamics (2005), to appear.

[105] S. Luzzatto and F. Sanchez-Salas,Markov structures for nonuniformly hyperbolic surface diffeomor-
phisms, in progress.

[106] S. Luzzatto and H. Takahashi,Computable conditions for the occurrence of non-uniform hyperbolicity in
families of one-dimensional maps(2005), Preprint.

[107] S. Luzzatto and W. Tucker,Non-uniformly expanding dynamics in maps with singularities and criticalities,
Inst. Hautes Études Sci. Publ. Math. (1999), 179–226.

[108] S. Luzzatto and M. Viana,Positive Lyapunov exponents for Lorenz-like families with criticalities,
Astérisque (2000), xiii, 201–237, Géométrie complexe et systèmes dynamiques (Orsay, 1995) (in Eng-
lish, with English and French summaries).

[109] S. Luzzatto and L. Wang,Topological invariance of generic non-uniformly expanding multimodal maps,
http://front.math.ucdavis.edu/math.DS/0307030, Preprint.

[110] V. Lynch,Decay of correlations for non-Hölder continuous observables, Discrete Contin. Dynam. Systems
(2005), to appear.

[111] M. Lyubich,Dynamics of quadratic polynomials. I, II, Acta Math.178 (1997), 185–247, 247–297.
[112] M. Lyubich and J. Milnor,The Fibonacci unimodal map, J. Amer. Math. Soc.6 (1993), 425–457.
[113] R. Mañé,Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys.100 (1985),

495–524.
[114] P. Manneville and Y. Pomeau,Intermittent transition to turbulence in dissipative dynamical systems,

Comm. Math. Phys.74 (1980), 189–197.
[115] V. Maume-Deschamps,Correlation decay for Markov maps on a countable state space, Ergodic Theory

Dynam. Systems21 (2001), 165–196.
[116] V. Maume-Deschamps,Projective metrics and mixing properties on towers, Trans. Amer. Math. Soc.353

(2001), 3371–3389 (electronic).



Nonuniformly expanding maps 325

[117] W. de Melo and S. van Strien,One-dimensional dynamics: The Schwarzian derivative and beyond, Bull.
Amer. Math. Soc. (N.S.)18 (1988), 159–162.

[118] W. de Melo and S. van Strien,One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzge-
biete (3) [Results in Mathematics and Related Areas (3)], Vol. 25, Springer-Verlag, Berlin (1993).

[119] M. Misiurewicz,Absolutely continuous measures for certain maps of an interval, Inst. Hautes Études Sci.
Publ. Math.53 (1981), 17–51.

[120] T. Nowicki,A positive Liapunov exponent for the critical value of anS-unimodal mapping implies uniform
hyperbolicity, Ergodic Theory Dynam. Systems8 (1988), 425–435.

[121] T. Nowicki and F. Przytycki,Topological invariance of the Collet–Eckmann property forS-unimodal maps,
Fund. Math.155 (1998), 33–43.

[122] T. Nowicki and D. Sands,Non-uniform hyperbolicity and universal bounds forS-unimodal maps, Invent.
Math.132 (1998), 633–680.

[123] T. Nowicki and S. van Strien,Absolutely continuous invariant measures forC2 unimodal maps satisfying
the Collet–Eckmann conditions, Invent. Math.93 (1988), 619–635.

[124] T. Nowicki and S. van Strien,Invariant measures exist under a summability condition for unimodal maps,
Invent. Math.105 (1991), 123–136.

[125] W. Parry,On theβ-expansions of real numbers, Acta Math. Acad. Sci. Hungar.11 (1960), 401–416 (in
English, with Russian summary).

[126] O. Penrose and J.L. Lebowitz,On the exponential decay of correlation functions, Comm. Math. Phys.39
(1974), 165–184.

[127] V.T. Perekrest,Exponential mixing inC-systems, Uspekhi Mat. Nauk29 (1974), 181–182 (in Russian).
[128] Ya. Pesin,Families of invariant manifolds corresponding to non-zero characteristic exponents, Math.

USSR Izv.10 (1976), 1261–1302.
[129] Ya.B. Pesin,Characteristic Lyapunov exponents and smooth ergodic theory, Russian Math. Surveys324

(1977), 55–114.
[130] G. Pianigiani,First return map and invariant measures, Israel J. Math.35 (1980), 32–48.
[131] M. Pollicott and M. Yuri,Statistical properties of maps with indifferent periodic points, Comm. Math.

Phys.217 (2001), 503–520.
[132] F. Przytycki, J. Rivera-Letelier and S. Smirnov,Equivalence and topological invariance of conditions for

non-uniform hyperbolicity in the iteration of rational maps, Invent. Math.151 (2003), 29–63.
[133] F. Przytycki and S. Rohde,Porosity of Collet–Eckmann Julia sets, Fund. Math.155 (1998), 189–199.
[134] A.N. Quas,Non-ergodicity forC1 expanding maps andg-measures, Ergodic Theory Dynam. Systems16

(1996), 531–543.
[135] A.N. Quas,Most expanding maps have no absolutely continuous invariant measure, Studia Math.134

(1999), 69–78.
[136] A. Rényi,Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar.

8 (1957), 477–493.
[137] V. Rohlin, A “general” measure-preserving transformation is not mixing, Doklady Akad. Nauk SSSR

(N.S.)60 (1948), 349–351 (in Russian).
[138] M. Rosenblatt,A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sci. USA42

(1956), 43–47.
[139] D. Ruelle,Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys.9 (1968), 267–278.
[140] D. Ruelle,A measure associated with axiom-A attractors, Amer. J. Math.98 (1976), 619–654.
[141] D. Ruelle,Applications conservant une mesure absolument continue par rapport àdx sur [0,1], Comm.

Math. Phys.55 (1977), 47–51 (in French, with English summary).
[142] D. Ruelle,Characteristic exponents and invariant manifolds in Hilbert space, Ann. of Math. (2)115

(1982), 243–290.
[143] M. Rychlik, Bounded variation and invariant measures, Studia Math.76 (1983), 69–80.
[144] M.R. Rychlik,Another proof of Jakobson’s theorem and related results, Ergodic Theory Dynam. Systems

8 (1988), 93–109.
[145] F.J. Sánchez-Salas,Dimension of Markov towers for non uniformly expanding one-dimensional systems,

Discrete Contin. Dynam. Systems9 (2003), 1447–1464.
[146] D. Sands,Topological conditions for positive Lyapunov exponents(1995), http://topo.math.u-psud.fr/

~sands/Papers/thesis.ps, Preprint.



326 S. Luzzatto

[147] O. Sarig,Subexponential decay of correlations, Invent. Math.150 (2002), 629–653.
[148] B. Saussol,Absolutely continuous invariant measures for multidimensional expanding maps, Israel J.

Math.116 (2000), 223–248.
[149] S. Senti,Dimension of weakly expanding points for quadratic maps, Bull. Soc. Math. France131 (2003),

399–420.
[150] W. Shen,On the metric properties of multimodal interval maps andC2 density of Axiom A, Preprint.
[151] C. Simó and J.C. Tatjer,Windows of attraction of the logistic map, European Conference on Iteration

Theory (Batschuns, 1989), World Scientific, River Edge, NJ (1991), 335–342.
[152] Ja.G. Sinai,Markov partitions and U-diffeomorphisms, Funkcional. Anal. i Priložen.2 (1968), 64–89 (in

Russian).
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1. Introduction

For a long time (mainly since Poincaré) it has been a goal in the theory of dynamical sys-
tems to describe the dynamics from the generic viewpoint, that is, describing the dynamics
of “big sets” (residual, dense, etc.) of the space of all dynamical systems.

It was briefly thought in the sixties that this could be realized by the so-called hyperbolic
systems with the assumption that the tangent bundle over the limit setL(f ) (see definition
in Section 4.3) splits into two complementary subbundlesTL(f )M = Es ⊕ Eu such that
vectors inEs (respectivelyEu) are uniformly forward (respectively backward) contracted
by the tangent mapDf (see Chapter 1, Principal structures (Hasselblatt and Katok), in
Volume 1A of this handbook). Under this assumption, the limit set decomposes into a
finite number of transitive sets such that the asymptotic behavior of any orbit is described
by the dynamics in the trajectories in those finitely many transitive sets. Moreover, this
topological description allows to get the statistical behavior of the system. In other words,
hyperbolic dynamics on the tangent bundle characterizes the dynamics over the manifold
from a geometrical–topological and statistical point of view.

Nevertheless, uniform hyperbolicity was soon realized to be a property less universal
than it was initially thought: it was shown that there are open sets in the space of dynamics
which are nonhyperbolic. The initial mechanism to show this nonhyperbolic robustness
(see [1,90]) was the existence of open sets of diffeomorphisms exhibiting hyperbolic pe-
riodic points of different indices (i.e. different dimension of their stable manifolds) inside
a transitive set. Indeed, Shub’s construction leads to an open set of transitive diffeomor-
phisms onT 4 exhibiting hyperbolic periodic points of different indices. Related to this is
the notion of hetero-dimensional cycle where two periodic points of different indices are
linked through the intersection of their stable and unstable manifolds (notice that at least
one of the intersections is nontransversal).

In all the above examples the underlying manifolds must be of dimension at least three
and so the case of surfaces was still unknown at the time. It was shown through the seminal
works of Newhouse (see [59,61,63]) that hyperbolicity was not dense in the space ofCr -
diffeomorphisms of compact surfaces (however, let us point out that in theC1-topology
it is still open!). The underlying mechanism here was the presence of a homoclinic tan-
gency leading to the nowadays so-called “Newhouse phenomenon”, i.e. residual subsets of
diffeomorphisms displaying infinitely many periodic attractors.

These results naturally pushed some aspects of the theory of dynamical systems in dif-
ferent directions:

1. The study of the dynamical phenomena obtained from homoclinic bifurcations (i.e.
the unfolding of homoclinic tangencies or hetero-dimensional cycles);

2. The characterization of universal mechanisms that could lead to robustly (meaning
any perturbation of the initial system) nonhyperbolic behavior;

3. The study and characterization of isolated transitive sets that remain transitive for all
nearby systems (robust transitivity);

4. The dynamical consequences of weaker forms of hyperbolicity.
As we will show, these problems are all related to each other. In many cases, such rela-

tions provide a conceptual framework, as the hyperbolic theory did for the case of trans-
verse homoclinic orbits.
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Besides, we mentioned that two basic mechanisms were found to the obstruction of
hyperbolicity, namelyhetero-dimensional cyclesandhomoclinic tangencies. In the early
80’s Palis conjectured that these are very common in the complement of the hyperbolic
systems:

PALIS CONJECTURE.
1. EveryCr -diffeomorphism of a compact manifoldM can beCr -approximated by one

which is hyperbolic or by one exhibiting a hetero-dimensional cycle or by one ex-
hibiting a homoclinic tangency;

2. WhenM is a two-dimensional compact manifold everyCr -diffeomorphism ofM can
beCr -approximated by one which is hyperbolic or by one exhibiting a homoclinic
tangency.

This conjecture may be considered as a starting point to obtain a generic description
of Cr -diffeomorphisms. If it turns out to be true, we may focus on the two mechanisms
mentioned above in order to understand the dynamics. Nevertheless, the unfolding of these
homoclinic bifurcations is still mainly a local study.

The above conjecture was proved [79] (see Section 4.2) for the case of surfaces and the
C1-topology. When the manifold has dimension greater than two, it is still open despite
some progress, but still in theC1-topology. The case of higher topologies (Cr, r � 2) is,
at this point, far from being solved.

We would like to emphasize that this chapter attempts to give some insight into the
problems mentioned above but it is not meant to be a complete survey of the subject. For
this, we apologize both to the reader and to those whose works we have not cited.

We also want to point out that in the case of conservative systems, a successful theory
has been developed where the KAM theorem is the major highlight. In the present chapter
we focus on nonconservative systems; however, in Section 5.4 we mention some results
for the conservative case.

In Section 2.2, we introduce the notion of dominated splitting that has been a cornerstone
for addressing the conjecture of stability and the above-mentioned conjecture. Also this
notation plays an important role in the characterization of robustly transitive systems.

In Section 4.1 we focus the attention on diffeomorphisms of surfaces and we address the
Palis conjecture for surface diffeomorphisms.

In Section 5 the examples of nonhyperbolic robustly transitive systems and their relation
with the notion of dominated splitting are explained.

In the last section, some of the previous issues are revisited for the case of flow.
Many of the definitions used here can be found in Chapter 1, Principal structures (B. Has-

selblatt and A. Katok), in Volume 1A of this handbook.

2. A weaker form of hyperbolicity: Dominated splitting

2.1. Introduction

In the theory of differentiable dynamics, i.e. the study of the asymptotic behavior of orbits
{f n(x)} whenf :M →M is a diffeomorphism of a compact Riemannian manifoldM,
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one may say that a fundamental problem is to understand how the dynamics of the tangent
mapDf controls or determines the underlying dynamics off .

So far, this program has been solved for hyperbolic dynamics by the so-called Spectral
Decomposition Theorem (see Theorem 4.3.1 in Section 4.3).

There were, basically, two ways to relax hyperbolicity. One, called partial hyperbolicity,
allows the tangent bundle to split intoDf -invariant subbundlesTM =Es ⊕Ec⊕Eu, and
the behavior of vectors inEs,Eu is similar to the hyperbolic case, but vectors inEc may
be neutral for the action of the tangent map. In the other, nonuniform hyperbolicity (or
Pesin theory), where the tangent bundle splits for points a.e. with respect to some invariant
measure, and vectors are asymptotically contracted or expanded at a rate that may depend
on the base point.

Since the latter case considers a measure-theoretic framework, one cannot expect to
obtain a description from the point of view of topological dynamics (see Barreira–Pesin in
the present volume for an account of nonuniform hyperbolicity). In the former, there is no
general theory regarding its consequences for the topological dynamics (although there are
many important results, mostly from the ergodic point of view; see, for instance, Chapter 1,
Partially hyperbolic dynamical systems (Hasselblatt and Pesin), in this handbook, and [24,
76,3,29]).

There is also another category which includes the partially hyperbolic systems:dom-
inated splitting. Although partially hyperbolic systems arose in a natural way (time-one
maps of Anosov flows, frame flows, group extensions), the concept of dominated splitting
was introduced independently by Mañé, Liao and Pliss, as a first step in the attempt to prove
that structurally stable systems satisfy a hyperbolic condition on the tangent map. In fact,
under the assumption ofC1-structural stability, the closure of the periodic points exhibits
dominated splitting. Nevertheless, in the last decades there has been a large amount of re-
search on this concept showing that it is not just a technical concept but appears naturally
when one tries to understand robust phenomena.

It is believed that a robust dynamic phenomenon must be reflected in the tangent map.
This turns out to be true, for instance, in the case of structural stability, robust transitivity
and lack of tangencies. These last two subjects will be discussed in the next sections.

After that, a natural question arises: what are the properties of a system having domi-
nated splitting? In other words, is it possible to describe the dynamics of a system having
dominated splitting?

In few words, we could say that a general strategy to deal with many of the problems
mentioned before is the following: first, it is shown that for some kind of robust phenom-
enon (stability, transitivity, lack of tangencies) the limit set exhibits dominated splitting;
later, one tries to extract information from this kind of dynamics in the tangent bundle.
However, this main issue is far from being understood except forC2-surface maps as we
will see in Sections 4.1 and 4.3.

2.2. Definition and general remarks

DEFINITION 2.2.1. Anf -invariant setΛ is said to havedominated splittingof indexi (or
just dominated splitting) if there is a decomposition of its tangent bundle into two invariant
subbundlesTΛM =E ⊕ F, such that:
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1. dimE(x)= i;
2. There existC > 0 and 0< λ< 1 such that∥∥Df n/E(x)∥∥∥∥Df−n

/F(f n(x))

∥∥ � Cλn, for all x ∈Λ, n� 0.

The constantλ is called a constant of domination.

NOTE. It is assumed that none of the subbundles are trivial (otherwise, the other one has
a uniform hyperbolic behavior: contracting or expanding).

Let us explain briefly the meaning of the above definition. It says that, forn large, the
“greatest expansion” ofDf n onE is less than the “greatest contraction” ofDf n onF and
by a factor that becomes exponentially small withn. In other words, every direction not
belonging toE must converge exponentially fast under iteration ofDf to the directionF .

As in the hyperbolic case, the subbundlesE andF depend continuously on the base
point. The following lemma is elementary but nevertheless important.

LEMMA 2.2.1. LetΛ be anf -invariant set exhibiting dominated splitting of indexi. Then
Λ̄ (the closure ofΛ) exhibits a dominated splitting of indexi (with the same constant of
domination).

Notice that on an invariant set different dominated splittings may coexist. As a trivial
example consider a periodic pointp of periodn having a simple Lyapunov spectrum, i.e.
all the eigenvalues ofDf n/TpM have (algebraic) multiplicity one. In this case the periodic
point admits a dominated splitting of indexi for anyi = 1, . . . ,dimM − 1.

It is straightforward to check that a hyperbolic set has a dominated splitting. On the other
hand, it is trivial to find examples of sets having dominated splitting without being hyper-
bolic. A simple one is a nonhyperbolic periodic point where the spectrum is not contained
in S1. Another example is an attracting (or repelling) invariant closed curve supporting
an irrational rotation. More sophisticated examples are partially hyperbolic systems. See
Section 5 for this kind of examples.

Another simple yet useful property is that dominated splitting cannot be destroyed by
small perturbations:

LEMMA 2.2.2. Let f :M→M be a diffeomorphism and letΛ be a compact set having
dominated splittingTΛM = E ⊕ F . Then, there exist an open setU containingΛ and
a C1-neighborhoodU(f ) such that for anyg ∈ U(f ) there is a dominated splitting over
any compactg-invariant setΛg ⊂U . Moreover, the constant of domination can be chosen
uniformly. The setU is called an admissible neighborhood ofΛ.

2.3. Sufficient conditions for dominated splitting

In this section we will explain a technique mainly developed by Mañé to show the existence
of a dominated splitting.
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First we recall a fundamental result inC1-dynamics: the so-called genericC1-closing
lemma proved by C. Pugh (see [74] and [75]).

THEOREM 2.3.1. Ω(f )= Per(f ) for aC1-generic(i.e. residual) set of diffeomorphisms.

This result opens the possibility of carrying information about the periodic points to the
whole nonwandering set. Recall that also generically it follows that the periodic points
are hyperbolic, so for each periodic pointp there is a natural hyperbolic decomposition
of the tangent bundle over the periodic orbit in two complementary directionsEs ⊕ Eu.
Therefore, a natural question arises:can the tangent bundle decomposition over the peri-
odic points be extended to the nonwandering set? Here dominated splitting plays the key
role. The main idea is that if the angles of the eigenspaces of hyperbolic periodic points
are bounded away from zero in a robust way then there must be a dominated splitting. Let
us explain this in a more precise way, and we refer to [47] for details. We first introduce a
simple yet powerful perturbation technique (in theC1-topology) due to Franks.

LEMMA 2.3.1 [35, Lemma 1.1].LetM be a closedn-manifold andf :M→M be aC1-
diffeomorphism, and let a neighborhoodU(f ) of f be given. Then, there existU0(f ) ⊂
U(f ) and δ > 0 such that ifg ∈ U0(f ), S ⊂M is a finite set, S = {p1,p2, . . . , pm} and
Li , i = 1, . . . ,m, are linear mapsLi :TMpi → TMf (pi) satisfying‖Li − Dpig‖ � δ,
i = 1, . . . ,m, then there exists̃g ∈ U(f ) satisfyingg̃(pi) = g(pi) andDpi g̃ = Li , i =
1, . . . ,m. Moreover, if U is any neighborhood ofS then we may choosẽg so thatg̃(x)=
g(x) for all x ∈ {p1,p2, . . . , pm} ∪ (M\U).

These results say, for instance, that any small perturbation of the linear maps along a
periodic orbit can be realized through a diffeomorphism nearby. Now let us introduce the
definition of angle between subspaces.

DEFINITION 2.3.1. LetE andF be two subspaces ofRd such thatE ⊕ F = Rd . Hence
dim(F )= dim(E⊥) andF is the graph of the linear mapL :E⊥ → E defined as follows:
givenw ∈ F there exists a unique pair of vectorsv ∈E⊥ andu ∈E, such thatv + u=w.
DefineL(v) = u obtaining that graph(L) = F . We define the angle� (E,F ) betweenE
andF as‖L‖−1. In particular,� (E,E⊥)=+∞.

DEFINITION 2.3.2. Letf :M→M be a diffeomorphism. The index of a hyperbolic peri-
odic pointp of f is the dimension of the stable manifold ofp. We will denote by Peri (f )
the set of hyperbolic periodic points of indexi.

The next theorem is essentially due to Mañé [48]. The techniques are rather involved so
we will give an outline of the main ideas to help the reader to go through the details.

THEOREM 2.3.2. Assume that there is a neighborhoodU(f ) such that

� (Es(p,g),Eu(p,g))> γ > 0
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for everyg ∈ U(f ) and p ∈ Peri (g). Then there is dominated splitting of indexi over
Peri (f ).

OUTLINE OF PROOF. The best way to understand the argument is by contraposition: ab-
sence of dominated splitting forces the presence of arbitrarily small angles.

The first step is to prove the domination at the end of the period of each periodic point,
meaning the following: there exits 0< λ < 1 such that ifp is a hyperbolic periodic point
of indexi of f then:∥∥Df np/Es(p)∥∥∥∥Df−np

/Eu(p)

∥∥� λnp ,

wherenp is the period ofp. Otherwise we do not have uniform contraction at the end

of the period onDf
np
/Es(p) nor onDf

−np
/Eu(p). Thus, we can perturb to obtain a hyperbolic

periodic pointpg of index i of a diffeomorphismg close tof having one eigenvalue less
but close to one and another eigenvalue greater but also close to one. From this it is possible
to construct arbitrarily small perturbations for which the angle between the subspacesEs

andEu is arbitrarily small.
For the second and last step, let us assume that we do not have a dominated splitting

over Peri (f ). Then there is a periodic pointp of f whose period is arbitrarily large (say
k), and for somem large we have∥∥Df j |Es(p)∥∥ · ∥∥Df−j |Eu(f j (p)(x))∥∥� 1/2, 1� j �m.

In some sense, this means that the action of the action ofDf along the piece of orbit
p,f (p), . . . , f m(p) is neutral, although at the end of the period we have domination, that
we may assume is due to contraction at the end of the period onEs .

Next, define Ti :Tf i(p)M → Tf i(p)M such that Ti |Es(f i(p)) = (1 + ε)Id and
Ti |Eu(f i(p)) = Id andLi = Ti ◦ Dff i−1(p). Here, the numberε is small enough in or-
der to still have contraction onEs(p) at the end of the period, i.e. underLn−1 ◦ · · · ◦ L0.
Let us see the effect of this perturbation: take a spaceS close toEu(p). Then, due to
the expansion added inEs alongp,f (p), . . . , f m(p), we have thatLm ◦ · · · ◦L0(S) will
“fall down” to the direction ofEs , meaning that the angle betweenLm ◦ · · · ◦ L0(S) and
Es(f m(p)) is small. On the other hand, due to the domination, at the end of the period
we will have thatLn ◦ · · · ◦L0(S) is “up” again, meaning thatLn ◦ · · · ◦L0(S) andEu(p)
are close again. Thus, adding another perturbation onLn so thatLn ◦ · · · ◦ L0(S) = S
and using Franks lemma we findg near f so thatp is hyperbolic periodic point of
g andEs(p,g) = Es(p,f ) andEu(p,g) = S, and we have “destroyed” the angle at
gm(p)= f m(p) (i.e. we have shown that it is less thanγ ). �

3. Homoclinic tangencies

3.1. The dynamics near a homoclinic tangency

In this section we will mention some of the dynamical phenomena related to the presence
of homoclinic tangencies.
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For that, first we recall that the stable and unstable sets

Ws(p)= {y ∈M: dist
(
f n(y), f n(p)

)→ 0 asn→∞},
Wu(p)= {y ∈M: dist

(
f n(y), f n(p)

)→ 0 asn→−∞}
areCr -injectively immersed submanifolds whenp is a hyperbolic periodic point off .

DEFINITION 3.1.1. Letf :M→M be a diffeomorphism. We say thatf exhibits a ho-
moclinic tangency if there is a hyperbolic periodic pointp of f such that the stable and
unstable manifolds ofp have a nontransverse intersection.

It is important to say that a homoclinic tangency is (locally) easily destroyed by a small
perturbation of the invariant manifolds. To get open sets of diffeomorphisms where each
system exhibits an homoclinic tangency, Newhouse studied systems where the homoclinic
tangency is associated to an invariant hyperbolic set with the property that it has large frac-
tal dimension. In fact, he studied the intersection of the local stable and unstable manifolds
of a hyperbolic set (for instance, a classical horseshoes), where this kind of hyperbolic
sets, roughly speaking, can be visualized as a product of two Cantor sets with the property
that the fractal dimension of these Cantor sets (more specifically, the thickness) is large.
Newhouse’s construction depends on how the fractal dimension varies with perturbation
of the dynamics and actually this is the main reason that his construction works in the
C2-topology. In fact, Newhouse’s construction is based on the continuous dependence of
the fractal dimension (thickness) onC2-perturbations. A similar construction in theC1-
topology leading to same phenomena is unknown (results in the opposite direction can be
found in [95]).

After the seminal works of Newhouse, no other results were obtained in the direction to
understand the dynamics induced by unfolding homoclinic tangencies, specially in the case
of one-parameter families. In the study of bifurcations of a generic one-parameter family
of surface diffeomorphisms having a generic homoclinic tangency at a parameter value,
the arithmetic difference of two Cantor sets appears in a natural way (see [69]). The Cantor
sets that appear in this context are regular on the line, that is, they are defined by expansive
maps and have a sort of self-similarity property, which means, roughly speaking, that a
small part of them is diffeomorphic to a large part with uniformly bounded distortion. In
this context, in [68] some results were obtained on homoclinic bifurcations associated to a
basic set which ensures full density of hyperbolicity on the parameter line, provided that
the Hausdorff dimension of the basic set is less than one. Palis, in [66], conjectured that for
generic pairs of regular Cantor sets of the real line, either their arithmetic difference has
Lebesgue measure equal to zero or otherwise it contains an interval. The latter statement
should correspond in the context of homoclinic bifurcations to open sets of tangencies.
Regarding the second part of Palis conjecture, a partial result was obtained in [71] and
later in [58] it was proved that if the sum of the Hausdorff dimensions of two Cantor sets
is greater than one, then in almost all cases, there exist translations of these Cantor sets
whose intersection has Hausdorff dimension greater than one.
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Other fundamental dynamic prototypes were found in the context of this bifurcation,
namely the so-called cascade of bifurcations, the Hénon-like strange attractor [11,50] (in-
finitely many coexisting ones [27]), and superexponential growth of periodic points [40].

Despite the rich dynamics that appear after the unfolding of a homoclinic tangency, Palis
conjectured (see [67]) that for a generic one-parameter family of surface maps unfolding a
homoclinic tangency, the set of parameter values corresponding to diffeomorphisms with
infinitely many sinks or infinitely many Hénon-like attractors has (Lebesgue) measure zero.

In this direction it is announced in [72] that given a surface diffeomorphismsf0 such
that the maximal invariant set in an open setV is the union of a horseshoe and a quadratic
tangency between the stable and unstable foliations of this horseshoe such that the dimen-
sion of the horseshoe is larger than but close to one, then for most diffeomorphismsf close
to f0, the maximalf -invariant set inV is a nonuniformly hyperbolic horseshoe, with dy-
namics of the same type as met in Hénon attractors. In particular, most diffeomorphisms
(in a measure-theoretical point of view for parameters in one-parameter families) do not
exhibit attracting periodic points.

In higher dimension, many of the previous results were generalized (see [70,84,57]).
As it was mentioned at the beginning when we referred to the Newhouse’s techniques,

all the previous results hold when at leastC2-diffeomorphisms are considered. However,
the coexistence of infinitely many sinks or sources forC1-diffeomorphisms on three-
dimensional manifolds was obtained in [18].

3.2. Dominated splitting versus tangencies

In this section we will deal with diffeomorphism that cannot be approximated by ones
exhibiting a homoclinic tangency.

DEFINITION 3.2.1. Letf :M →M be aCr -diffeomorphism. We say thatf is Cr far
from tangencies if there exists a neighborhoodU(f ) in theCr -topology such that nog ∈
U(f ) exhibits a homoclinic tangency (see Definition 3.1.1).

The next theorem says that the lack (in a robust way) of the presence of homoclinic
tangency guarantees the existence of a dominated splitting. It was originally proved in [79]
for surface diffeomorphisms and extended to higher dimensions by L. Wen in [97].

THEOREM 3.2.1. Let f :M → M be a diffeomorphism which isC1 far from tangen-
cies. ThenPeri (f ) (see Definition2.3.2) has dominated splitting of indexi, where i =
1, . . . ,dimM − 1.

IDEA OF PROOF. We will give some insight of the proof of the above theorem in the case
of surface diffeomorphisms and at the end we will comment on higher dimensions. Based
on Theorem 2.3.2, it is enough to show that the angles of the eigenspaces of hyperbolic
periodic points of indexi (index 1 for surfaces) are uniformly bounded away from zero in
aC1-neighborhood off . Thus, arguing by contradiction, we must show that if these angles
can be arbitrarily small then we can find a diffeomorphism nearby exhibiting a homoclinic
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tangency. So letp be a hyperbolic periodic point such that the stable and unstable spaces
have an arbitrarily small angle. For the sake of simplicity, assume that the stable and unsta-
ble manifolds ofp coincides in a neighborhood ofp with the stable and unstable spaces in
a local chart. The idea is to push a fundamental domain in the local stable manifold to have
a tangency with the unstable manifold. Nevertheless, some estimates must be done and we
refer to [79] to see the details. The idea in higher dimension is the same. However, there is
the main difference that makes the proof much more technically involved: in a hyperbolic
periodic point of index 1 of a surface diffeomorphism the size (or shape) of a fundamental
domain on the local stable manifold can be estimated fromDf/Es(p) while in higher di-
mension, the shape or “eccentricity” could be out of control. To overcome this difficulty,
it is required that no homoclinic tangency can be created associated toanyhyperbolic pe-
riodic point and not just those of indexi. In other words, a bad shape or eccentricity on
a fundamental domain of a hyperbolic periodic point of indexi is related to a bad angle
(after some perturbation) between the stable and unstable subspaces of another periodic
point of different index. �

4. Surface diffeomorphisms

4.1. Dynamical consequences of the dominated splitting.
Sufficient conditions for hyperbolicity

The presence of homoclinic tangencies has many analogies with the presence of critical
points for one-dimensional endomorphisms. On one hand, homoclinic tangencies corre-
spond in the one-dimensional setting to preperiodic critical points and it is known that
their bifurcation leads to complex dynamics. On the other hand, Mañé (see [49]) showed
that for regular and generic one-dimensional endomorphisms, the absence of critical points
is enough to guarantee hyperbolicity. This result raises the question about the dynamical
properties of surface maps exhibiting no homoclinic tangencies. As dominated splitting
prevents the presence of tangencies, we could say that domination plays for surface diffeo-
morphisms the role that the noncritical behavior does for one-dimensional endomorphisms.

One may ask whether a set having dominated splitting is hyperbolic. Two necessary
conditions follow trivially: all the periodic points in the set must be hyperbolic and no
attracting (repelling) closed invariant (periodic) curve supporting an irrational rotation is
in the set.

The next result says that these two conditions are also sufficient as long as the diffeo-
morphism is smooth enough. It is the analog of a one-dimensional theorem by Mañé (see
[49]).

THEOREM 4.1.1 [79]. Let f ∈ Diff 2(M2) and assume thatΛ ⊂ Ω(f ) is a compact in-
variant set exhibiting a dominated splitting and such that each periodic point inΛ is hy-
perbolic. Then,Λ=Λ1∪Λ2 whereΛ1 is a hyperbolic set andΛ2 consists of a finite union
of normally hyperbolic periodic simple closed curvesC1, . . . ,Cn such thatfmi :Ci → Ci is
conjugate to an irrational rotation(mi denotes the period ofCi ).
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The proof of the above theorem exceeds the scope of this chapter. Nevertheless, let us
mention the main four steps:

StepI. It is sufficient to prove thatΛ is hyperbolic under the above conditions and to
assume thatΛ has neither a normally hyperbolic invariant curve supporting an irrational
rotation nor attracting or repelling periodic points.

StepII. Due to the dominated splitting, the fact thatf is C2, and that all the periodic
points are of saddle type, two locally invariant manifoldsWcs

ε (x),W
cu
ε (x), which are of

classC2, pass through each pointx ∈Λ. One of the main problems is that, although these
manifolds are locally invariant, they do not have (a priori) any dynamic meaning at all.

StepIII. Considering the fact that these central manifolds are one dimensional and of
classC2, we are able to prove that they have a dynamic meaning. Indeed,Wcs

ε (x) is a
stable manifold andWcu

ε (x) is an unstable manifold.
StepIV. For everyx ∈Λ we have∑

n�0

∣∣f n(Wcs
ε (x)
)∣∣<∞ and

∑
n�0

∣∣f−n(Wcu
ε (x)
)∣∣<∞,

where| · | means length. This is enough to prove the hyperbolicity onΛ.
In the next subsection we will give an explanation of Step I, the main technique to obtain

Step III, and finally we will give a rather complete proof of Theorem 4.1.1 in a particular
case (see Theorem 4.1.4).

4.1.1. Getting rid of attracting and repelling closed curves and periodic attractors–
repellers First it is proved that the number of closed curves that could appear in a set
having dominated decomposition is finite. This is established by showing that the basin
of attraction of each attracting curve has a uniform size. More precisely one proves that
the diameter of the curves do not go to zero (otherwise the splittingE ⊕ F must have a
“singularity”). Afterwards, sincef mn :Cn→ Cn is conjugate to an irrational rotation, they
support only one invariant measure with zero Lyapunov exponent along theF direction
and this implies (using the domination) that the fiberE is contractive, which implies that
the basin of attraction ofCn has uniform size. So, if there are infinitely many such curves,
we will get an intersection of two different basins, which is a contradiction. Therefore,
these normally hyperbolic closed curves are isolated in our set. Notice that the periodic at-
tractors or repellers are isolated inΛ as well. Thus, if we remove all the periodic attractors
or repellers and all the invariant closed curves supporting an irrational rotation, we obtain
a compact invariant set̃Λ as in the next theorem:

THEOREM 4.1.2. Letf ∈ Diff 2(M2) and letΛ̃ be a compact invariant set having a dom-
inated splittingT/ΛM = E ⊕ F such that the periodic points off in Λ̃ are hyperbolic
of saddle type(i.e. of index1) and Λ̃ does not contain any normally hyperbolic periodic
simple closed curveC such the restriction to it is conjugate to an irrational rotation. Then
Λ̃ is a hyperbolic set.

Further explanation must be done to conclude Theorem 4.1.1 from Theorem 4.1.2: we
must show thatΛ has finitely many periodic attractors or repellers. This is done by showing
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that, ifΛ had infinitely many of them, then they would accumulate (in the Hausdorff sense)
in Λ̃, a contradiction.

4.1.2. Nonexistence of wandering intervalsIn this section we provide a useful tool in
order to understand dynamic properties of one-dimensional central manifolds under the
assumption of dominated splitting. The results of this section hold not only for surface
diffeomorphism but for diffeomorphisms on manifolds of any dimension, provided the
dominated splitting is codimension one, that is, one of the subbundles of the splitting has
dimension one, sayF . Although there is not much difference, we still assume that we are
working in dimension two.

DEFINITION 4.1.1. Letf :M→M be aC2-diffeomorphism,Λ a compact invariant set
having dominated splitting andV an admissible neighborhood (see Lemma 2.2.2). Let
U be an open set containingΛ such thatŪ ⊂ V . We say that aC2-arcI in M (i.e. aC2-
embedding of the interval(−1,1)) is aδ-E-arc or δ-E-intervalprovided that the following
two conditions hold:

1. f n(I )⊂U , n� 0, and|f n(I )| � δ for all n� 0;
2. f n(I ) is always transverse to theE-direction.

In other words, aδ-E-arc is an arc that does not grow in length in the future and always
remains transversal to theE subbundle.

The next result is a fundamental tool in the understanding the behavior of the action of
the differential map when expansion or contraction along a subspace is known on a large
step. It is an important tool for studying sets with a dominated splitting. Although this tool
is purely arithmetic, we will state it in a different way for our future purposes.

LEMMA 4.1.1 (Pliss Lemma [73]).Given a diffeomorphismf and 0< γ1 < γ2, there
existN =N(γ1, γ2, f ) andc= c(γ1, γ2, f ) > 0 with the following property: givenx ∈M,
a subspaceS ⊂ TxM such that for somen�N we have(denotingSi =Df i(S))

n∏
i=0

‖Df/Si‖ � γ n1 ,

there exist0� n1< n2< · · ·< nl � n such that

j∏
i=nr

‖Df/Si‖� γ j−nr2 , r = 1, . . . , l, nr � j � n.

Moreover, l � cn.

The integersni from the lemma above are known in the recent literature ashyperbolic
times.

The next theorem characterizes the dynamic of aδ-E-arc. It says that such an arc cannot
be “wandering”.
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THEOREM 4.1.3. There existsδ0 such that ifI is a δ-E-interval withδ � δ0, then one of
the following properties holds:

1. ω(I) = ⋃x∈I ω(x) is a normally hyperbolic periodic simple closed curveC and
fm
/C :C → C (wherem is the period ofC) is conjugate to an irrational rotation;

2. ω(I)⊂ Per(f/V ) wherePer(f/V ) is the set of the periodic points off in V . More-
over, one of the periodic points inω(I) is not hyperbolic of saddle type.

SKETCH OF PROOF. In the sequel,λ will be the constant of domination.
Step1. First, for eachn we takeIn the maximalδ-E-arc that containsf n(I ). It is proved

that there are infinitely manyni ’s such that forIni we get thatE is a uniform contracting di-
rection (which could be not true for everyIn). This implies that for anyx ∈ Ini there is a sta-
ble manifoldWs

ε (x) of uniform size. So we can consider the boxWs
ε (Ini )=

⋃
x∈Ini W

s
ε (x).

Furthermore, for theseni ’s it is possible to compare (uniformly for any box) the one-
dimensional length ofIni with the two-dimensional volume of the boxWs

ε (Ini ), i.e. there
is a constantK such thatK vol(Ws

ε (Ini ))� |Ini |, whereK is independent ofni .
Step2. There existni < nj such that

Ws
ε (Ini )∩Ws

ε

(
f nj−ni (Ini )

) �= ∅. (1)

If this is not the case, a contradiction with the maximality of theIni is shown.
Step3. The fact thatWs

ε (Ini ) ∩Ws
ε (f

nj−ni (Ini )) �= ∅ for someni < nj will imply the
conclusion of the theorem.

Now we will explain these steps in more detail. Coming back to the intervalsIn, consider
the sequence of positive integersnj such that|Inj |� |Ik| for anyk > nj .

Observe that this implies that for anyk > 0 there is somexk ∈ Inj such that‖Df k|Fxk ‖ � 1

and since the iterates ofInj remain small (less thanδ) it follows that there isβ small such
that‖Df k|Fx‖< (1+ β)k for anyx ∈ Inj . Using the domination property and ifβ is small
enough (which is obtained takingδ0 small), we get that∥∥Df k|Ex∥∥< [λ(1+ β)]k = λk1 for anyx ∈ Inj andk � 0, (2)

whereλ1 < 1. Now consider all the positive integersni such that (2) holds. In particular,
every point inIni has a stable manifold of uniform size.

Let λ2 be such thatλ < λ2< λ1< 1. ConsiderN =N(λ2, λ1) from Pliss Lemma 4.1.1.
It follows (assuming for simplicity thatni+1 − ni �N = 1) that:∥∥Df ni+1−j

|Ex
∥∥> λj2 for anyx ∈ f j (Ini ) and 0� j < ni+1 − ni. (3)

This implies that theF direction behaves as an expanding direction for iterates betweenni
andni+1. In fact, (3) implies that given 0� j < ni+1 − ni , we have

∥∥Df−(ni+1−j)
|Fx

∥∥< ( λ
λ2

)j
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for anyx ∈ Ini+1. In particular,

|I−(ni+1−j)|<
(
λ

λ2

)j
|Ini+1|. (4)

We are about to finish Step 2. Let us assume thatWs
ε (Inr )∩Ws

ε (Inj )= ∅ for everyr, j .
Using that we can compare volume with length.

∞∑
i>0

|Ini |<∞,

which together with (4) implies

∞∑
n>0

|In|<∞,

and arguing as in Schwarz’s proof of the Denjoy Theorem for somen large, we may find
an arcJn containing properly eachIn such thatJn is aδ-interval, which is a contradiction
with the maximality ofIn for everyn.

Now let us explain Step 3. Letm = nj − ni . If |f km(Ini )| → 0 as k → ∞, then
ω(Ini ) consists of a periodic orbit. Indeed, if|f km(Ini )| → 0, then |f k(Ini )| → 0 as
k → ∞. Let p be an accumulation point off k(Ini ), that is,f kj (Ini )→ p for some
kj → ∞, and so,f kj+m(Ini ) → f m(p). But by the property we are assuming, i.e.
Ws
ε (Ini ) ∩ Ws

ε (f
nj−ni (Ini )) �= ∅, we havef kj+m(Ini )→ p, implying thatp is a peri-

odic point. Thus, for anyx ∈ Ini we have thatω(x) consists only of periodic orbits, and so
ω(x) is single periodic orbitp. Since|f k(Ini )| → 0 we conclude thatω(Ini ) is the orbit of
the periodic pointp. By the way we chooseIni , we havef ni (I )⊂ Ini and soω(I) consists
of a periodic orbit, as the thesis of the theorem requires.

On the other hand, if|f km(Ini )| does not go to zero, we take a sequencekj such that
f kjm(Ini )→ L for some arcL (which is at leastC1, and hasF as its tangent direction).
Now f (kj+1)m(Ini )→ L′ andfm(L) = L′. Moreover, by (1),L ∪ L′ is an interval (with
F as its tangent direction). Let

J =
⋃
n�0

f nm(L).

We claim that there are only two possibilities: eitherJ is an arc or a simple closed curve.
To prove this, notice thatf nm(L) is a δ-E-interval for anyn � 0. In particular, for any
x ∈ J there existsε(x) such thatWcs

ε(x)(x) is stable manifold forx, and so

W(J)=
⋃
x∈J
Wcs
ε(x)(x)

is a neighborhood ofJ .
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We only have to show that, givenx ∈ J, there exists a neighborhoodU(x) such that
U(x) ∩ J is an arc. This implies thatJ is a simple closed curve or an interval. Thus, take
x ∈ J, in particularx ∈ f n1m(L). TakeU an open interval,x ∈U ⊂ f n1m(L) and letU(x)
be a neighborhood ofx such thatU(x)⊂W(J) and such thatU(x) ∩ L1 ⊂ U whereL1
is any interval containingf n1m(L), transverse to theE-direction and|L1| � 2δ0 (this is
always possible ifδ0 is small). Now lety ∈ J ∩U(x). We have to prove thaty ∈U . There
is n2 such thaty ∈ f n2m(L). Since

f n1m(L)= lim
j
f kjm+n1m(Ini ),

f n2m(L)= lim
j
f kjm+n2m(Ini )

and both have nonempty intersection withU(x), we conclude for somej that
f kjm+n1m(Ini ) andf kjm+n2m(Ini ) are linked by a local stable manifold. Hencef n1m(L)∪
f n2m(L) is an arcL1 transverse to theE-direction with |L1| � 2δ0. Thereforey ∈
U(x)∩L1 ⊂U as desired, completing the proof thatJ is an arc or a simple closed curve.

In caseJ is an arc, sincef m(J )⊂ J, it follows that for anyx ∈ I, ω(x) is anω-limit
point of a point inJ , hence a periodic orbit, completing the proof in this case. On the other
hand, ifJ is a simple closed curve, which is of classC2 because it is normally hyperbolic
(attractive), then we have two possibilities. Iff m/J :J → J has rational rotation number,
then we can see thatω(Ini ) consists of a union of periodic points, and the same happens
to I . If fm/J :J → J has irrational rotation number, then it is conjugate to an irrational
rotation, and denotingC = J , we have thatω(I) is as in the first property of the thesis of
the theorem. �

DEFINITION 4.1.2. We say that the pointx is Lyapunov stable (in the future) if given
ε > 0 there existsδ > 0 such thatf n(Bδ(x))⊂ Bε(f n(x)) for any positive integern.

As a consequence of Theorem 4.1.3 we get:

COROLLARY 4.1.1. Letf :M→M be aC2-diffeomorphism of a finite-dimensional com-
pact Riemannian manifoldM and letΛ be a set having a codimension-one dominated
splitting. Then there exists a neighborhoodV ofΛ such that iff n(x) ∈ V for any positive
integern andx is Lyapunov stable, one of the following holds:

1. ω(x) is a periodic orbit;
2. ω(x) is a normally attractive periodic curve supporting an irrational rotation.

4.1.3. Outline of proof of Theorem 4.1.1 in a particular caseThe proof of Theorem 4.1.1
and in particular the last “two steps” are extremely involved, so we will explain them in a
case where some of the main ideas are present. Indeed, let us give a rather complete proof
of the following theorem (compare with Theorem 4.1.2):

THEOREM 4.1.4. Letf ∈ Diff 2(M2) whereM2 is the two torus. Assume thatΩ(f )=M
has dominated splittingTM =Es ⊕F , Es is a contractive subbundle and all the periodic
points are hyperbolic. Thenf is Anosov.
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The proof (or outline of proof) will be done through several lemmas. In what follows we
always assume that we are under the conditions of the above theorem.

LEMMA 4.1.2. Through anyx ∈M passes an arcWcu
ε (x) of classC2 and always tangent

to F .

SKETCH OF PROOF. SinceF is integrable, we do have an arcWcu
ε (x) throughx and

tangent toF . In order to prove that it is of classC2, by [38], we need to prove the so-called
2-domination, that is, there existλ < 1 and a positive constantC such that for any positive

integern it follows that
|Df n|E |
|Df n|F |2

<Cλn. �

LEMMA 4.1.3. Under the above conditions the distributionF is uniquely integrable
and determines an unstable foliation, i.e. if x, y belong to the same leaf we have that
dist(f−n(x), f−n(y))→ 0 asn→∞.

SKETCH OF PROOF. Let x ∈M be any point and denote byWcu
ε (x) any arc of lengthε

containingx and tangent toF at every point. Let us show that, givenδ, there existsε1 such
that |f−n(Wcu

ε1
(x))| < δ for any n � 0 (where| · | means length). Otherwise, there exist

εn→ 0 andmn→∞ such that∣∣f−j (Wcu
εn
(x)
)∣∣� δ, 0� j � n, and

∣∣f−mn(Wcu
εn
(x)
)∣∣= δ.

Taking an accumulation arcI of f−mn(Wcu
εn
(x)) we conclude thatTxI = F(x) for any

x ∈ I and |f n(I )| � δ for any n � 0. That is,I is a δ-E-arc and from Theorem 4.1.3
we get a contradiction with our assumptions. In the same way it can be shown that
|f−n(Wcu

ε (x))| → 0 asn→∞. The conclusion of the lemma follows from [38]. �

From the lemma above, we conclude thatf is conjugate to an Anosov diffeomorphism.
Indeed, a simple way to prove it is by showing thatf is expansive and by [45] our claim
follows. In particular we have a Markov partition ofM , sayR= {R1, . . . ,Rm}. From this
partition we can construct another Markov partition by taking preimages and intersecting
with the original one, i.e. for anyn > 0 we defineRn = {f−n(Ri) ∩ Rj , 1 � i, j � m,
Ri ∈R} as a new Markov partition (whose “unstable” size decreases withn).

Let Ri be any rectangle of the Markov partitionR. Forx ∈ int(Ri) we denote byJi(x)
the connected component ofWu(x)∩Ri that containsx. ThisJi(x) is an arc with endpoints
in the “stable boundary” ofRi .

LEMMA 4.1.4. There existsK > 0 such that ifRi is any rectangle of the Markov partition
andx ∈ int(Ri) we have that

j=n∑
j=0

∣∣f−j (Ji(x))∣∣<K
as long asf−j (x) /∈Ri , 1� j � n.
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SKETCH OF PROOF. Take zk ∈ Rk for every rectangle of the Markov partition and let
Ik = Jk(zk). Denote byΠk :Rk → Ik the projection along the stable foliation. Since the
stable foliation isC1 (because its codimension is one) we conclude that there existsC > 0
such that iflu is any arc in the unstable foliation contained inRk then

C−1|lu| �
∣∣Π(lu)∣∣�C|lu|.

Now, let x ∈ Ri and letn be as in the lemma. We claim that if for some 1� j1 < j2 �
n we have thatf−j1(x) and f−j2(x) belong to the same rectangleRk of the partition
thenΠk(f−j1(Ji(x))) andΠk(f−j2(Ji(x))) are disjoint arcs inIk . Otherwise, from the
properties of the Markov partitions we conclude thatf−(j2−j1)(x) ∈ Ri, a contradiction.
Therefore

j=n∑
j=0

∣∣f−j (Ji(x))∣∣� C k=m∑
k=1

|Ik| =K. �

Let us observe thatK from the lemma above is “independent” of the Markov partition,
i.e. the sameK works if in the lemma we replace the Markov partitionR by the parti-
tion Rn.

Recall that we want to prove thatf is Anosov, that is, we would like to show that the
distributionF is expanding.

LEMMA 4.1.5. If f is not Anosov, then there exists a setΛ0 which is not hyperbolic but
with the property that any compact invariant proper subset ofΛ0 is hyperbolic. Moreover,
Λ0 is a transitive set.

SKETCH OF PROOF. The existence ofΛ0 follows from Zorn’s lemma. Besides, if for any
x ∈ Λ0 we haveα(x) � Λ0 then it follows that‖Df−n

/F(x)‖ → 0, i.e.Λ0 is hyperbolic.
Thus, there is somex such thatα(x)=Λ0; in other words,Λ0 is transitive. �

At this point we come to the heart of the proof of the theorem. We will show that a
transitive setΛ0 such that any compact invariant proper subset is hyperbolic (and which
is not an invariant circle supporting an irrational rotation) must be hyperbolic, leading to a
contradiction with Lemma 4.1.5. For the sake of simplicity, we will explain the argument
assuming a supplementary condition: there isx ∈Λ0 such thatx /∈ ω(x).

In this case we can take a Markov partition so that ifR(x) is the rectangle of the Markov
partitionR containingx then we have thatR(x)∩ {f n(x): n� 1} = ∅. On the other hand,
sinceΛ0 is transitive, there existxn ∈Λ0∩R(x) andmn→∞ such thatf−j (xn) /∈R(x),
1� j < mn, andf−mn(xn) ∈R(x). Fix k =mn large enough so that|f−n(JR(x)(y))|< r
for n� k, wherer is small enough. This condition will be explained later on.

LetR be the connected component off−mn(R(x))∩R(x) that containsxn, that isR =
Rmn(x). Now, lety ∈ R ∩Λ0 and assume thatf−j (y) /∈ R, 1� j < m, andf−m(y) ∈ R.
Let us show that‖Df−m

/F(y)‖< 1/2. First, notice thatm� k. Thus,
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/F(y)

∥∥
�
∥∥Df−k

/F (f−(m−k)(y))
∥∥ · ∥∥Df−(m−k)

/F (y)

∥∥
� |f−k(JR(x)(f−(m−k)(y)))|

|JR(x)(f−(m−k)(y))| exp(K0K)
|f−(m−k)(JR(y))|

|JR(y)| exp(K0K)

�
∣∣f−(m−k)(JR(y))∣∣ |f−k(JR(x))|

|JR(x)(f−(m−k)(y))|
1

|JR(x)(f−(m−k)(y))| exp(2K0K)

� rC 1

L
exp(2K0K).

Let us explain the constants above:C is the length distortion along the projection of the
stable foliation,L is the minimum length ofJR(x)(z), z ∈ R(x), andK0 is a Lipschitz
constant of log(Df ) along the unstable foliation. Hence, ifr is small enough we obtain
our claim. Now we may conclude. Letz be any point inΛ0. If α(z) �Λ0 it follows that
‖Df−n

F(z)‖ → 0 asn→ ∞. On the other hand, ifα(x) = Λ0 then for somen0 we have
thaty = f−n0(z) ∈ R and returns to it infinitely many times. Since at each return time the
derivative is less than 1/2, we are done.

4.2. Generic results in theC1-topology and consequences

The first result we would like to state is a proof of the Palis conjecture for surface diffeo-
morphisms in theC1-topology:

THEOREM 4.2.1 [79]. Let M2 be a two-dimensional compact manifold and letf ∈
Diff 1(M2). Then, f can beC1-approximated either by a diffeomorphism exhibiting a ho-
moclinic tangency or by an AxiomA diffeomorphism.

OUTLINE OF PROOF. Let f be aC1-diffeomorphism far from tangencies (see Definition
3.2.1). We would like to show thatf can be approximated by an Axiom A diffeomor-
phism. We may assume thatf satisfies some generic (i.e. residual) conditions: satisfies
Lemma 2.3.1, it is Kupka–Smale and it is a continuity point of the mapsg→ Γi(g) =
Peri (g), i = 0,1,2. From Theorem 3.2.1 we get that Per1(f ) has dominated splitting. From
this, it may be proved that anyC1-diffeomorphism close tof has a dominated splitting
over the nonwandering set, except perhaps finitely many periodic attractors or repellers.
Thus, takeg, aC2-diffeomorphism, which isC1-close tof , is Kupka–Smale and has no
invariant curves supporting an irrational rotation (this isCr -generic). For this diffeomor-
phismg we apply Theorem 4.1.1 and we conclude thatΩ(g) is hyperbolic. Since it is also
Kupka–Smale, andg is a surface diffeomorphism we can conclude thatg is an Axiom A
diffeomorphism. �

An almost immediate consequence is:
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COROLLARY 4.2.1. Let MS be the set of Morse–Smale diffeomorphisms, MS its closure,
and considerU = Diff 1(M2)− MS. Then, there exists an open and dense setR in U such
that everyf ∈R has a transverse homoclinic orbit. In particular, the closure of the interior
of the set formed by the diffeomorphisms having(topological) zero entropy is equal toMS.

The following theorem is a result obtained by Mañé in [48].

THEOREM 4.2.2. There exists a residual setR in Diff 1(M2) such that for anyf ∈R one
of the following holds:

1. f is AxiomA;
2. f has infinitely many periodic attractors;
3. f has infinitely many periodic repellers.

SKETCH OF PROOF. Let R1 be the residual set in Diff1(M2) such that anyf ∈R1 is a
continuity point of the mapsg→ Γi(g)= Pi(g), i = 0,2. If f ∈R1 does not satisfy either
2 nor 3 above thenf and any nearby diffeomorphism has finitely many periodic attractors
and repellers, and hence cannot be approximated by one exhibiting a homoclinic tangency.
So, it can be approximated by an Axiom A one. �

The above theorem has a different extension to higher dimension (see [19]).
In [80] the following theorem was also obtained.

THEOREM4.2.3. LetM2 be a two-dimensional compact manifold and letf ∈ Diff ∞(M2)

such that its topological entropy is not locally constant. Thenf can beC1-approximated
by a diffeomorphism exhibiting a homoclinic tangency.

At this point it is important to mention that anyC1+α(α > 0)-diffeomorphism of a
two-dimensional manifold with positive topological entropy that has an invariant set has a
closed invariant setΓ such thatf |Γ is topologically conjugate to a topological Markov
shift and the topological entropyh(f |Γ ) > 0 (see [42] for details).

4.3. Spectral decomposition

In this section we will go further in the understanding the dynamics of dominated splitting
over the limit set on surfaces.

DEFINITION 4.3.1. The limit set off :M→M is

L(f )=
⋃
x∈M

(
ω(x)∪ α(x)),

whereω(x) andα(x) are theω-limit andα-limit sets, respectively.

We will now state a classical theorem in hyperbolic dynamics (see [92] and Chapter 3,
Hyperbolic dynamical systems (Hasselblatt), in Volume 1A of this handbook).
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THEOREM 4.3.1 (Spectral Decomposition Theorem).Let f :M → M be a diffeomor-
phism such thatL(f ) is hyperbolic. Then the periodic points are dense inL(f ) and we
can decompose the limit set into a finitely many compact transitive invariant disjoint sets
L(f ) = Λ1 ∪ Λ2 ∪ · · · ∪ Λk . Moreover, eachΛi , i = 1, . . . , k, can be decomposed into
finitely many compact disjoint setsΛi =Λi1 ∪ · · · ∪Λini such thatf (Λij ) =Λij̃ where

j̃ = j + 1(modni) and f ni/Λij is topologically mixing(indeed, Λij is a homoclinic class,
i.e. an equivalence class ofx ∼ y :⇔Wu(x) transversely intersectsWs(y) or vice versa).

REMARK 4.3.1. The Spectral Decomposition Theorem is usually stated for Axiom A
diffeomorphisms. However, we think that stating it when the limit set is hyperbolic is the
right setting (notice that whenf is Axiom A, thenL(f )=Ω(f )).

A similar description can be obtained for surface diffeomorphisms having dominated
splitting over the limit setL(f ) as long as the system is smooth enough (C2):

THEOREM 4.3.2 [81]. Let f ∈ Diff 2(M2) and assume thatL(f ) has a dominated split-
ting. ThenL(f ) can be decomposed intoL(f )= I ∪ L̃(f )∪R such that

1. I is a set of periodic points with bounded periods and contained in a disjoint union
of finitely many normally hyperbolic periodic arcs or simple closed curves;

2. R is a finite union of normally hyperbolic periodic simple closed curves supporting
an irrational rotation;

3. L̃(f ) can be decomposed into a disjoint union of finitely many compact invariant
and transitive sets. The periodic points are dense iñL(f ) and at most finitely many
of them are nonhyperbolic periodic points. The (basic) sets above are the union of
finitely many(nontrivial) homoclinic classes. Furthermore, f /L̃(f ) is expansive.

Roughly speaking, the above theorem says that the dynamics of aC2-diffeomorphism
having dominated splitting can be decomposed into two parts: one where the dynamics
consists on periodic and almost periodic motions (I,R) with the diffeomorphism acting
equicontinuously; and another, where the dynamics are expansive and similar to the hyper-
bolic case.

Two immediate consequences follow from the previous theorem. First, anyC2-diffeo-
morphism with dominated splitting overL(f ) with a sequence of periodic pointspi with
unbounded periods must exhibit a nontrivial homoclinic classH(pi0, f ) �= ∅ and hence:

COROLLARY 4.3.1. The topological entropy of aC2-diffeomorphism of a compact sur-
face having dominated splitting overL(f ) and having a sequence of periodic points with
unbounded periods is positive.

Second, using Theorem 3.2.1 and the above one, it can be proved that:

COROLLARY 4.3.2. Let f ∈ Diff 2(M2) having infinitely many sinks or sources with un-
bounded period. Then, f can beC1-approximated by a diffeomorphism exhibiting a ho-
moclinic tangency.
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Let us comment briefly the proof of Theorem 4.3.2. The starting point is Theorem 4.1.1:
the breakdown of hyperbolicity of a system with dominated splitting is due either to the
presence of irrational rotations or to the presence of nonhyperbolic periodic points (and
they could be extremely degenerate). The following theorem provides a way to deal with
the presence of nonhyperbolic periodic points.

THEOREM 4.3.3. Letf :M→M be aC2-diffeomorphism of a two-dimensional compact
Riemannian manifoldM and letΛ be a compact invariant set having dominated splitting.
Then, there exists an integerN1 > 0 such that any periodic pointp ∈Λ whose period is
greater thanN1 is a hyperbolic periodic point of saddle type(i.e. index1).

In Section 4.3.1 we will give an outline of the proof of previous theorem. Now, denote
by PerN1 the set of hyperbolic periodic point of index 1 with period greater thanN .

THEOREM 4.3.4. Let f ∈ Diff 2(M2) and assume thatPer1(f ) has dominated splitting.

Then, there existsN > 0 such thatPerN1 (f ) can be decomposed into the disjoint union

of finitely many homoclinic classes. Moreover, PerN1 (f ) contains at most finitely many
nonhyperbolic periodic points andf

/PerN1 (f )
is expansive.

Thus, the final step in the proof Theorem 4.3.2 is to show thatL̃(f ) ⊂ PerN1 (f ). As
the reader might guess, these final steps seem to be similar to the hyperbolic case. In fact
they are, but let us explain why. In the hyperbolic case, the description of the dynamics
follows from a fundamental tool: at each point there are transverse invariant manifolds of
uniform size and these manifolds have a dynamic meaning (points in the “stable” one are
asymptotic to each other in the future, and points in the “unstable” one are asymptotic to
each other in the past). Under the sole assumption of dominated splitting, even if locally
invariant manifolds do exist, they do not have any dynamic meaning at all. However, in the
two-dimensional case, using the fact that these locally invariant manifolds are one dimen-
sional together with smoothness, we are able to prove that these manifolds already have a
dynamic meaning, perhaps not of uniform size, but enough to proceed to a description of
the dynamics.

4.3.1. Sketch of proof of Theorem 4.3.3Arguing by contradiction, assume that the con-
clusion of Theorem 4.3.3 is not true. Then, there exists a sequencepn of periodic points
whose periods are unbounded and they are not hyperbolic periodic points of saddle type.
LetΛ0 be the set of limit points of the orbits of the pointspn, i.e.

Λ0 =
⋂
m�0

⋃
n�m

O(pn).

This set is compact invariant and, since it is a subset ofΛ, has a dominated splitting.
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Assume first that either all the periodic points inΛ0 are hyperbolic orΛ0 does not
contain any periodic points at all. Then, by Theorem 4.1.1, we conclude thatΛ0 is a
union of a hyperbolic set and a finite union of periodic simple normally hyperbolic closed
curves. Since given a neighborhood ofΛ0 there existsn0 such that, for anyn � n0, the
orbit of pn is contained in this neighborhood, we get a contradiction. In fact, the orbits
of pn cannot accumulate on the periodic simple closed curves since they are normally
hyperbolic (attracting or repelling curves). Thus,Λ0 is a hyperbolic set and so the max-
imal invariant set in an admissible compact neighborhood ofΛ0 is hyperbolic as well.
In particular, for sufficiently largen, pn lies on this maximal invariant set and so it must
be a hyperbolic periodic point of saddle type, a contradiction and so our assumption is
false.

Therefore,Λ0 must contain a nonhyperbolic periodic pointp, and we have that the orbits
of a subsequence of{pn} (with unbounded periods) accumulate onp. This contradicts the
following result:

THEOREM 4.3.5. Letf be aC2-diffeomorphism of a compact surfaceM andΛ⊂Ω(f )
be a compact set having a dominated splitting. Let p ∈ Λ be a nonhyperbolic periodic
point and denote byNp its period. Then, there exists a neighborhoodUp of p such that
any periodic pointq ∈Λ with period greater than2Np and whose orbit intersectsUp is a
hyperbolic periodic point of saddle type.

SKETCH OF PROOF. Letp be a nonhyperbolic periodic point andq a periodic point whose
orbit goes through a very small neighborhood ofp. We would like to show thatq is hy-
perbolic of saddle type, that is,‖Df nq|Fq‖ > 1 and‖Df nq|Eq‖ < 1 wherenq is the period
of q.

The idea is to split the orbit ofq into pieces outside the neighborhood ofp and inside it.
On one hand, we show that outside any neighborhood ofp, the derivative along the

F -direction for any trajectory is uniformly bounded away from zero, i.e.‖Df n|Fx‖> c > 0

for f i(x) /∈ Up, i = 1, . . . , n (notice that this does not rule out thatq might be a periodic
attractor).

On the other hand, when a trajectory is going through a tiny neighborhood ofp, not
only does it not lose expansion (although the derivative ofp along theF -direction might
be one) but it has a good expansion along theF -direction from the first time that the point
goes intoUp until the last time that remains in it (even if the exponential rate is close to
one), i.e. iff (x) /∈ Up, x, . . . , f−n(x) ∈ Up andf−(n+1)(x) /∈ Up then‖Df n|Fx‖ > 2/c.
Let us explain this idea better.

First we consider a small central unstable segmentJ containingx. Observe that since a
long trajectory ofx is insideUp, J is close to the central unstable manifold ofp. Let us
consider a segmentI in a fundamental domain of the central unstable manifold ofp, ob-
tained as the “projection ofJ on the central unstable manifold ofp along the central stable
foliation”. We show that the lengths off−k(I ) andf−k(J ) are uniformly comparable for
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any 1� k � n and we conclude that

∥∥Df−n
/F(x)

∥∥� |f−n(J )|
|J | exp

(
K0

n−1∑
j=0

∣∣f−j (J )
∣∣)

≈ |f−n(I )|
|I | exp

(
K0

n−1∑
j=0

∣∣f−j (I )
∣∣)� |f−n(I )|

|I | exp
(
K0
∣∣Wcu
ε (p)
∣∣).

Since forn large|f−n(I )| is arbitrarily small, we get the desired inequality. �

4.4. Dynamical determinant in the presence of a dominated splitting

Few results have been stated about the existence of an ergodic measure for invariant sets
exhibiting a dominated splitting for a surface map. In some cases, the scheme proposed
in [39] could be applied for systems with dominated splitting. In that paper it is proved that
for a system that is Anosov on the whole torus except over a neutral fixed point, an SRB
measure with absolutely continuous conditional measure on unstable manifolds does not
exist.

A u-Gibbs state is an ergodic invariant probability measure, whose induced measures
along the Pesin unstable manifolds are absolutely continuous with respect to Lebesgue
measure (see Chapter 1, Partially hyperbolic dynamical systems (Hasselblatt and Pesin),
in this handbook). An invariant probability measureµ is called a physical measure if there

is a set of positive Lebesgue measure of pointsx such that1
n

∑n−1
k=0 δf k(x) weakly converges

toµ asn→∞. We say that a compact invariant setΛ is an attracting set if there is an open
neighborhoodU such thatΛ=⋂n>0f

n(U). LetΛj be a basic set in the decomposition
given in the previous section, and assume thatΛj is an attracting set which does not contain
any periodic points with unstable eigenvalue equal to 1. In this case, the results in [23] may
be adapted tof|Λj , proving that it possesses a single uµ-Gibbs state which is also a physical
measure. Let us call SRB measure a uµ-Gibbs state which is also a physical measure. The
results in [26] (see also [33]) indicate that the unique SRB measureµ furnished before has
exponential rates of mixing (for Lipschitz observables).

In [7], a real analytic compact surface diffeomorphismf is considered, for which the
tangent space over the limit set admits a dominated splitting. Baladi et al. studied its dy-
namical determinantdf (z),

df (z)= exp−
∑
n�1

zn

n

∑
x∈Fix∗ f n

1

|Det(Df n(x)− Id)| ,

where Fix∗ f n denotes the (finite) set of fixed points off n with no zero Lyapunov expo-
nents. The results in the present section indicate that the definition fordf (z) given above is
appropriate under the assumption of dominated decomposition. Moreover, it is proved that
df (z) is either an entire function or an analytic function in a “slit plane”. In particular, once
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the contribution of the hyperbolic sinks has been removed,df (z) is analytic in a disc of
radius larger than one in all cases where it is known thatf admits a unique exponentially
mixing SRB probability measure.

The analysis of the dynamical determinant uses the dichotomy proved in Theorem 4.3.2
which says thatΩ = I∪L̃(f )∪R, whereR is a finite union of normally hyperbolic closed
curves on whichf is conjugate to an irrational rotation,I is contained in a finite union
of normally hyperbolic arcs on which some iterate off is the identity, andeitherf |Λ is
Axiom A or there is a finite spectral decomposition ofΛ (Λ=⋃1�j�n Λj together with
local product structure) and hyperbolicity is violated onΛ (only) through the presence of
finitely many periodic orbits with a single zero Lyapunov exponent.

In order to state the result more precisely in an efficient way, first notice thatdf (z)

coincides withdf |Λ(z) and then observe thatΛ = Λ′ ∪ P whereP is a finite union of
isolated (hyperbolic) sinks and sources with multipliers (eigenvalues ofDfp, p � 1, the
period)λE,λF . It is easy to check that the dynamical determinantdf |P is a finite product
of

df |sink(z) =
∞∏
j=0

∞∏
k=0

(
zP − λ−jE λ−kF

)
, |λE,F |< 1,

df |source(z) =
∞∏
j=0

∞∏
k=0

(
zP − λ−j+1

E λ−k+1
F

)
, |λE,F |> 1.

The infinite products above clearly converge, and define entire functions with an obvious
zero-set (in particular,df |sink(z) is zero-free in the open unit disk and admits a single
zero on the closed disk, which is simple atz = 1, while df |source(z) admits a first zero at
1/(λEλF ) which is inside the open disk).

So, we may therefore concentrate on the dynamical determinant off |Λ. For that, we
take the setN composed of all nonhyperbolic periodic pointsp of f . For eachp ∈ N
we takeP = P(p) being the period ofp, λE,λF , the eigenvalues ofDfP (p) and the
following subsetΣ(p) of C which is defined as:

1. {z | zP ∈ [−1,1]} if λF =−1 and|λE |< 1;
2. {z | zP ∈ [min{0,ΛE},1]} if λF = 1 and|λE |< 1;
3. {z | zP ∈ λ−1

F [−1,1]} if λE =−1 and|λF |> 1;
4. {z | zP ∈ λ−1

F [min{0,Λ−1
F },1]} if λE = 1 and|λF |> 1.

Now, the result can be summarized as follows:

THEOREM4.4.1. Letf :M→M be a real analytic diffeomorphism of a compact analytic
Riemannian surface. Assume thatf admits a dominated splitting over the nonwandering
setΩ and letΛ be the(almost) hyperbolic component in the spectral decomposition ofΩ .
Let Λj be an element in the spectral decomposition ofΛ which is not an isolated sink
or source, and letNj be the finite(possibly empty) set of nonhyperbolic periodic points
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in Λj . Thendf |Λj (z) is holomorphic in the plane, slit plane, or multiply slit plane defined
by {

z ∈ C | 1/z /∈
⋃
p∈N

Σ(p)

}
.

In other words:
1. If all periodic points inΛj are hyperbolic, thendf |Λj (z) is an entire function with no

zeroes in the open unit disc. The pointz= 1 is a zero if and only ifΛj is an attractor.
It is then a simple zero, and the only zero of unit modulus ifΛj is mixing.

2. If there exist periodic points inΛj with multipliers λE < 1 and |λF | = ±1, then
df (z) is analytic and nonzero in the disc of radius 1, with a possibly nonpo-
lar singularity atz = ±1, and it admits an analytic extension to a (multiply) slit
plane.

3. If there exist periodic points with multipliers|λE | = ±1 andλF > 1 in Λj , but no
periodic orbits with both Lyapunov exponents nonpositive, lettingλF be the multi-
plier of smallest modulus, thendf (z) is analytic and nonzero in the disc of radius 1,
and it may be analytically extended to the disc of radius|λF | > 1, with a possibly
nonpolar singularity atz = λF , and a further analytic extension to a (multiply) slit
plane.

SKETCH OF PROOF. Recall the spectral decomposition stated forΩ(f ) presented above.
In the first case, sinceR does not contain any periodic orbits and the periodic points
in I have one Lyapunov exponent zero, the results of Rugh (see [86,87]) on the dy-
namical determinants of hyperbolic analytic maps immediately imply thatdf (z) is
an entire function. The key point in Rugh’s analysis, inspired by Ruelle’s [85] sem-
inal study (in the case when the dynamical foliations are analytic), was to express
df (z) as a quotient of the Grothendieck–Fredholm determinants of two nuclear oper-
ators, proving also that zeros in the denominator are always canceled by the numera-
tor.

In the second case, other techniques to investigatedf (z) are used. Note first that
if f is real analytic with dominated decomposition overΛ, then the setI in the
spectral decomposition from [79] is a finite union of closed curves, withI ∩ Λ = ∅.
(It is easy to construct examples whereI is not empty: just take a real analytic flow on
the sphere with both poles as sources and the equator as limit set.) In a nutshell,df (z)

is morally the determinant of a transfer operator, the building blocks of which are ei-
ther “good”, i.e. of the hyperbolic type studied in [86,87], or approximate direct prod-
ucts of a one-dimensional hyperbolic operator and a one-dimensional parabolic opera-
tor describing the local jet at nonhyperbolic periodic points. For the parabolic operator,
we adapt the analysis of one-dimensional analytic dynamics with neutral fixed points,
also due to Rugh [88], to this setting. The crucial tool to do this is an approximate Fa-
tou coordinate for parabolic points. We prove thatdf (z) is an analytic function in a “slit
plane”. �
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5. Nonhyperbolic robustly transitive systems

As we said in the introduction, there are manifolds of dimension at least 3 supporting dif-
feomorphisms that are both robustly transitive and nonhyperbolic (r � 1). Many of these
examples show a weaker form of hyperbolicity: they are either partially hyperbolic or they
exhibit a dominated splitting. The notion of partial hyperbolicity and different examples
of it are discussed in Section 5.1. The nonhyperbolic robustly transitive examples are de-
scribed in Section 5.2. In Section 5.3 it is proved that having a dominated splitting is a
necessary condition forC1-robust transitivity. The results are discussed in Section 5.3. We
point out that the mentioned result is only known in theC1-topology.

5.1. Partial hyperbolicity

We start with the definition of partial hyperbolicity.

DEFINITION 5.1.1. Given a closed invariant setΛ we say that it is strongly partially
hyperbolic ifTΛM =Ess⊕Ec⊕Euu and there are constants 0< σ−1< γ−1< 1< γ < σ
such that

‖Df|Essx ‖< σ−1< σ <
∥∥Df−1

|Euu
∥∥−1 ∀x ∈Λ,

‖Df|Essx ‖
∥∥Df−1

|Ec
f−1(x)

∥∥< γ−1, ‖Df|Ecx‖
∥∥Df−1

|Euu
f−1(x)

∥∥< γ−1 ∀x ∈Λ.

We say thatΛ is partially hyperbolic ifTΛM = Es ⊕ Ecu and there are constants 0<
σ < γ < 1 such that

‖Df|Esx‖< σ ∀x ∈Λ,
‖Df|Esx‖

∥∥Df−1
|Ec
f−1(x)

∥∥< γ ∀x ∈Λ.

It is well known that the subbundlesEss andEuu are uniquely integrable and hence we
have two foliations inM called the (strong) stable one, denoted byF ss(f ) and the (strong)
unstable one, denoted byFuu(f ) which are tangent toEss andEuu, respectively. We will
denote byF ss(x, f ) and byFuu(x,f ) the leaves of these foliations passing through the
pointx.

On the other hand, every diffeomorphismg :M→M sufficientlyC1-close to a partially
hyperbolic diffeomorphismf is also partially hyperbolic and therefore it has two invariant
foliationsF ss(g),Fuu(g).

The subbundlesEc, Ecs =Ess ⊕Ec andEcu = Ec ⊕Euu (called center, center-stable
and center-unstable subbundle, respectively) are not (in general) integrable. However, we
can choose a continuous family of locally invariant manifolds tangent to them.

For references about these results, see Chapter 1, Partially hyperbolic dynamical systems
(Hasselblatt and Pesin), in this handbook.
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DEFINITION 5.1.2. Letf :M→M be aCr -diffeomorphism. We say thatf is robustly
transitiveif there is aCr -neighborhoodU(f ) of f such that everyg ∈ U(f ) is transitive
(i.e. has a dense orbit).

We will consider different constructions of robustly transitive partially hyperbolic sys-
tems. We list some of them:

1. Product and skew products of a hyperbolic system with a nonhyperbolic one.
2. Derived from Anosov: bifurcation of Anosov maps or maps isotopic to an Anosov

system and perturbations of these maps.
3. Time-one map of an Anosov flow. In this category we have to consider the following

types of Anosov flows:
(a) Anosov flows which are suspensions of an Anosov map;
(b) Anosov flows which are not suspensions.

The first type of examples is built over a product manifold where product diffeomor-
phisms act. More precisely, we take transitive Anosov diffeomorphismsA onM and non-
hyperbolic transitive diffeomorphismsg on a manifoldN with the property that the largest
and weakest expansion ofDg is dominated by the hyperbolic direction ofA. In other
words, given the splittingTM =Es ⊕Eu for A, it is assumed that

‖DA|Es‖
m{Dg} < λ and

‖Dg‖
‖DA|Eu‖ < λ

for someλ < 1 and wherem{L} is the minimum norm ofL, i.e.m{L} = ‖L−1‖−1. Then,
the product map is considered:

A× g :M ×N→M ×N,
(A× g)(x, y)= (A(x), g(y)).

Observe that the map is partially hyperbolic (becauseg is not hyperbolic) and the central
subbundle is given byTN . Moreover, the central foliation has the property that each central
leaf is the manifoldN . This example is transitive, not necessarily robustly transitive, and
we will show in the next section that it can be perturbed to get a robustly transitive system.

A similar construction is the so-calledskew productwhich consists of choosing a map

G :M→ Diff r (N)

with the property that for anyx ∈M it follows that

‖DA|Es‖
m{D[G(x)]} < λ and

‖D[G(x)]‖
‖DA|Eu‖ < λ.

Then, the following map is considered:

A×G :M ×N→M ×N,
(A×G)(x, y)= (A(x),G(x)(y)).



Homoclinic bifurcations, dominated splitting, and robust transitivity 355

Observe that for this type of examples, the manifoldM ×N is foliated by leaves home-
omorphic toN and this foliation is normally hyperbolic. Therefore, it follows that for any
perturbation, there is a central foliation whose central leaves are also homeomorphic toN .

In some cases, it is possible to prove that this kind of system (as we will show later) can
be either approximated by a robustly transitive system or by an Axiom A system.

The second kind of example cannot be built as a product and the central leaves are not
necessarily compact. In fact, in some cases the central foliation is uniquely integrable and
each central leaf is dense; in this case, we say that the central foliation is minimal. To
obtain these examples, an Anosov map is taken and a deformation of the system isotopic
to the initial map is performed, with the property that some direction remains hyperbolic
and other fails to be hyperbolic. See Mañé’s example explained in the next subsection.

The dynamical properties of the third type of example depend strongly on whether they
are or are not suspensions. The suspension case is constructed from the suspension (with
constant roof one) of an Anosov mapA acting onM . The suspension flowϕAs exhibits a
splittingEs ⊕ [∂sϕAs ] ⊕Eu whereEs andEu are the invariant directions ofA and[∂sϕAs ]
is the flow direction.

The time-one mapϕA1 is not hyperbolic since the flow trajectory is neither expanded
not contracted. In this case, observe that the central leaves are flow trajectories. Some of
the trajectories are compact (the ones associated to periodic trajectories and induced by
periodic orbits of the mapA) and some other trajectories are not compact.

It is also possible to get examples of Anosov flows which are not suspensions. For that,
we refer to [22] and the well-known geodesic flow on manifolds of negative curvature.

In all the previous constructions it is necessary to check that the system (or at least a
perturbation of it) is robustly transitive.

5.2. Examples of nonhyperbolic robustly transitive systems

The first examples of robustly nonhyperbolic systems (examples of robustly transitive sys-
tems which are not Anosov) were given by M. Shub (see [90]), who considered skew prod-
ucts on the 4-torus of an Anosov with a Derived from Anosov diffeomorphisms. Then,
R. Mañé (see [47]) reduced the dimension of such examples by showing that certain De-
rived of Anosov diffeomorphisms on the 3-torus are robustly transitive.

For a long time these examples remained the unique known ones. Later, Diaz, studying
the unfolding of hetero-dimensional cycles, produced maximal invariant sets that are ro-
bustly transitive and nonhyperbolic. These ideas were pushed, in [17], where new classes of
nonhyperbolic robustly transitive diffeomorphisms were presented on manifolds other than
then-dimensional torus and satisfying a weaker form of hyperbolicity. Moreover, a general
construction of maximal invariant set which is robustly transitive and nonhyperbolic was
also shown. In resume, the examples given in [17] are basically:

1. Perturbations of the time-one map of any transitive Anosov flow.
2. Perturbations of(A, idN) :Tn × N → Tn × N , whereA is a transitive Anosov dif-

feomorphism on then-dimensional torusTn andN is any compact manifold. In this
example the nonhyperbolic central direction is chosen tangent to the fibers{.,N}
providing in this way examples of robustly transitive diffeomorphism having central
direction with arbitrary dimension.
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3. Perturbations of(f, idN) :Λ×N→Λ×N , whereΛ is a hyperbolic basic piece for
f andN is any compact manifold.

Later, in [23], examples without hyperbolic subbundles were introduced:
1. Examples of robustly transitive diffeomorphisms onT 3 without any stable bundle,

that is,TM =Ecs ⊕Eu, whereEcs is indecomposable and nonhyperbolic.
2. Examples of robustly transitive diffeomorphisms onT 4 without any hyperbolic bun-

dle (stable or unstable), that is,TM = Ecs ⊕ Ecu is a dominated splitting where
EcsandEcu are indecomposable and nonhyperbolic.

In the next subsections we give a rough idea how these examples are constructed and we
outline the arguments that prove that these systems are robustly transitive. We follow the
construction initially done by the authors (performing some modification in some cases)
and in Section 5.2.5 a condition is given that allows to obtain the same examples from a
different point of view.

5.2.1. Shub’s example Let f :T2 → T2 be an Anosov diffeomorphism having two fixed
points p and q. Sincef is Anosov,TT2 = Ess ⊕ Euu with ‖Df/Ess‖ < λ < 1 and
‖Df−1

/Euu‖< λ.

Now, consider a smooth family of torus diffeomorphismsgx :T2 → T2 indexed byx ∈
T2 such that:

• TT2 = Es(gx)⊕Ec(gx) invariant underD(gx) with ‖D(gx)/Es(gx)‖< µ < µ1 < 1
andµ<µ1< ‖D(gx)/Ec(gx)‖ � µ−1;

• gx preserves cone fieldsCs andCcu for all x ∈ T2;
• gp is Anosov andgq is a DA (derived from Anosov) map;
• gx(p)= p for everyx, andp is an attractor forgq .
It is assumed (taking a power off if necessary) thatλ < µ. Next, let us define the map

on T4 which is a skew product and is the candidate to be robustly transitive:

F :T2 ×T2 → T2 ×T2, F (x, y)= (f (x), gx(y)).
It is not difficult to show thatF is partially hyperbolic:T(x,y)T4 = Ess(x, y) ⊕

Es(x, y) ⊕ Ec(x, y) ⊕ Eu(x, y). SetEs = Ess ⊕ Es . Let us show that the stable folia-
tion (tangent toEss ⊕Es ) is minimal. First observe that

Ws
({p} ×T2)= ⋃

z∈T2

Wss(p, z)=Wss(p,f )×T2

and hence is dense inT2 ×T2. Moreover, sincegp is Anosov, we have that

Ws(p, z)=
⋃

y∈Ws(z,gp)
Wss(p, y)

is dense inT2 ×T2 for all (p, z) ∈ {p} ×T2.
On the other hand, if(z,w) ∈ T2×T2 thenWuu((z,w))∩Ws({p}×T2) �= ∅. From this

it follows that the stable foliationF ss (whose leaves are tangent toEss ⊕Es ) is minimal.
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Then, it can be proved that this property holds for any small perturbation of the initial map.
Observe that if the strong stable foliation is minimal then the system is transitive. Since it is
proved that the strong foliation of any (small) perturbation of the initial system is minimal,
it follows that the initial system is robustly transitive.

5.2.2. Mañé’s example Mañé showed that certain Derived-from-Anosov map are ro-
bustly transitive. To prove that, first he considered a linear Anosov mapA :T3 → T3 hav-
ing three real eigenvalues, 0< λ < 1< λ2 < λ3. Observe that there are three invariant
foliations, each associated to one eigenvalue, which correspond to the projections toT3 of
the eigenspaces associated to each eigenvalue. In particular, the foliation associated to the
central eigenvalue (called central foliation) is minimal, i.e. each central leaf is dense.

Now, a Derived-from-Anosov map is obtained by performing a perturbation in a small
neighborhoodD of the fixed point. More precisely, the Derived-from-Anosov map is ob-
tained in such a way that the following properties hold:

1. The central foliation of the initial Anosov system is preserved;
2. The new system keeps two hyperbolic directions;
3. In the complement ofD the new system is equal to the initial one;
4. In the small neighborhoodD, two points of different indices appear as a conse-

quences of a bifurcation of the fixed point.
The last item implies that the expansion of the central direction is lost. On one hand,

observe that the new systems have the property that the central foliation remains minimal.
Moreover, it verifies a property called plaque expansiveness (see [38]). As a consequence
of this property, it follows that for any perturbation there exists a unique central foliation
which is also minimal. On the other hand, using the facts that the regionD is small and the
unstable leaves grow exponentially, it is shown that any unstable leaf of a fixed length has
a point whose orbit remains in the complement ofD and whose central direction therefore
expands. This allows to show that any central segment containing this point has length
growing to infinity under positive iterates. All these properties together imply transitivity.
In fact, given an open setU , an iterate of it will contain a point that expands along the
central direction, and so the iterates ofU will start to grow along the central direction and
using the density of any central leaf, the density of the iterates is obtained.

5.2.3. Bonatti–Diaz’s construction Now we will explain the arguments used in [30]
and [17] to get robustly transitive diffeomorphisms or sets. The authors use a geometrical
construction calledblender. It is said thatf has a center-stable blender (center-unstable
blender)Γ associated to a hyperbolic saddlep of indexk if Γ is a hyperbolic invariant set
contained in the homoclinic class ofp and there are an open setD of embeddings of the
diskDk−1 inM and aC1-neighborhoodU of f such that, for everyg ∈ U , any discD ∈D
intersects the closure ofWs

ε (Γg, g) (respectivelyWu
ε (Γg, g)), whereΓg is the continuation

of the hyperbolic setΓ for g andWs
ε (Γg, g) is the local stable manifold of the invariant

setΛg andWu
ε (Γg, g) is the local unstable manifold of the invariant setΛg .

One way to construct a center-blender in a three-dimensional manifold is to construct
a hyperbolic maximal invariant setΓ associated to a periodic pointp such that for the
continuation ofp for g close tof it follows thatΠss(Ws

ε (pg) ∩ Γ ) contains an interval,
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whereΠss is the projection along the strong stable direction to some central direction
contained in the local stable manifold ofp.

Now, using these blenders, let us show a general strategy to guarantee robust transitivity.
Let f be partially hyperbolic in the whole manifold with nontrivial splittingTM = Es ⊕
Ec ⊕Eu such that:

1. f has two periodic pointsp andq of indices one and two, respectively;
2. f has a center-unstable blenderΓ associated toq;
3. There is a constantL> 0 such that any strong stable segment of length larger thanL

intersects the local unstable manifoldΓ , and any strong unstable segment of length
larger thanL intersects the local stable manifold ofq.

It follows from this assumption thatf is a nonhyperbolic robustly transitive map. The
nonhyperbolicity follows from the presence of points of different indices. Properties 2
and 3 imply transitivity: by property 3, any strong leaf of length larger thanL is caught
by the blender, and the dynamic is mixed inside it. In fact, given any open set we get that
some future iterates will intersect the local stable manifold of the pointq (the iterates grow
along unstable leaves and by property 3 reach the local stable ofq); for any other open set
it follows that some negative iterate of it will intersect the blenderΓ and hence the unstable
manifold ofq. These two facts imply that both sets under iteration will intersect. On the
other hand, we get that the blender is robust and property 3 also holds for a perturbation
of f and this implies the robustness of transitivity.

These arguments are used in [17] to prove that the time-one map of a transitive Anosov
flow and the product of an Anosov diffeomorphism by the identity map defined on a com-
pact manifoldN are in the closure of the set of robustly transitive diffeomorphisms. In
both cases, the dynamics is perturbed along a compact central leaf (along a closed orbit of
the flow in the case of the time-one map of an Anosov flow and along a periodic central
leaf for the product and skew product) to get a pair of periodic orbits of different index and
then the construction of a blender with these points is performed.

5.2.4. Robustly transitive diffeomorphisms without any hyperbolic directionsWe will
now explain the ideas (given in [23]) of the construction of robustly transitive diffeomor-
phisms without any hyperbolic directions. This construction follows closely the example
by Mañé.

Consider a linear Anosov mapA of the torusT4 having 4 real eigenvalues, 0< λ1 <

λ2< 1< λ3< λ4. Then chooseA-invariant cone fieldsCcu corresponding to the expand-
ing eigenvaluesλ3 andλ4 andCcs around the contracting eigenvalues. Now, take two small
boxesC1 andC2, and consider a diffeomorphismf coinciding withA outside the boxes
C1 andC2, and verifying the following:

1. f contains a fixed pointp in C1 (of index 2) with a complex eigenvalue with
eigenspace insideCcs and a fixed pointq (of index 1) with eigenspace also inCcs .
This implies thatCcs does not contain a hyperbolic stable direction: the existence
of the contracting complex eigenvalue implies that any stable subbundle has to be of
dimension 2, but the point being of index 1 implies that such bundle has dimension
at most one.
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2. f contains a fixed pointp2 in C2 (of index 2) with an expanding complex eigenvalue
and having a fixed pointq2 of index 1. Arguing as before, these properties prevent
the existence of a hyperbolic unstable subbundle.

To assure thatf is robustly transitive the following properties also hold:
1. Df (respectivelyDf−1) preserves the cone fieldCcu (respectivelyCcs ) and uni-

formly expands the area in this cone field;
2. The restriction off to the complement ofC1 uniformly expands the vectors inCcu;
3. The restriction off−1 to the complement ofC2 uniformly expands the vectors inCcs .
Choosing sufficiently thin cone fields, one obtains that there exists a constantL> 0 such

that every center-unstable diskDcu (tangent toCcu) of radius larger thanL intersects any
center-stable diskDcs (tangent toCcs ) of radius larger thanL.

Arguing as in Mañé’s example, but using the uniform expansion of the area inCcu

instead of the uniform expansion of the vectors, it is shown that every center-unstable disk
D contains a point whose forward orbit remains in the complement ofC1 and this allows
to show (as in Mañé example) thatf n(D) contains a center-unstable disk of radius larger
thanL for every largen > 0. The same argument shows that the large negative iterates of
any center-stable diskD contain a center-stable disk of radius larger thanL. This implies
transitivity off .

5.2.5. Sufficient conditions for robust transitivityThe mentioned examples of robustly
transitive systems which are partially hyperbolic share the strongest property: not only are
they robustly transitive but also (at least) one of the strong foliations is robustly minimal,
that is, every leaf is dense in the manifold.

DEFINITION 5.2.1. Letf :M→M be a partially hyperbolic diffeomorphism. It is said
thatF ss(f ) is robustly minimalif there exists aC1-neighborhoodU(f ) such thatF ss(g)
is minimal for every diffeomorphismg ∈ U(f ).

Recall that if (for instance)F ss(f ) is robustly minimal thenf is robustly transitive, i.e.
every diffeomorphismC1-close tof is transitive.

All the examples of robust transitivity considered are based either on a property of the
initial system or on a geometric construction. But,does there exist a necessary and suffi-
cient condition on partially hyperbolic systems for transitivity to be equivalent to robust
transitivity? Can this property be characterized in terms of the dynamics of the tangent
map? This is clear for Anosov maps, where transitivity implies robust transitivity, but what
about nonhyperbolic maps?

In [83] partially hyperbolic systems having at least one minimal strong foliation are
studied and sufficient conditions are given in order to guarantee that this foliation remains
minimal underCr -perturbations. Before we enunciate the sufficient condition, let us intro-
duce a notation: given a linear isomorphismL :V →W between normed vector spaces,
we denote bym{L} the minimum norm ofL, i.e.m{L} = ‖L−1‖−1.

DEFINITION 5.2.2 (Property SH). Let f ∈ Diff r (M) be a partially hyperbolic diffeomor-
phism. We say thatf exhibits the property SH (or has the property SH), if there exist
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λ0> 1,C > 0 such that for anyx ∈M there existsyu(x) ∈Fuu1 (x, f ) (the ball of radius 1
in Fuu(x,f ) centered atx) for which

m
{
Df n/Ec(f m(yu(x)))

}
>Cλn0 for anyn > 0, m > 0.

In other words, it is required that in any disk of radius 1 in any leaf ofFuu(f ) there is
a pointyu where the central bundleEc has a uniform expanding behavior along the future
orbit of yu. A nice image of the above is the existence of a hyperbolic set (withEc being
part of the unstable bundle) such that the local stable manifold of this hyperbolic set is a
global section to the foliationFuu(f ).

Using this property the next theorem follows.

THEOREM 5.2.1. Let f ∈ Diff r (M) be a partially hyperbolic diffeomorphism satisfy-
ing the property SH and such that the(strong) stable foliationF ss(f ) is minimal. Then,
F ss(f ) is robustly minimal.

A similar result for the foliationFuu(f ) holds provided thatf−1 satisfies the prop-
erty SH. As an immediate consequence anyf that satisfies the conditions of the previous
theorem is robustly transitive.

It is also possible to use the previous theorem to reconstruct the examples by Shub, Mañé
and Bonatti–Diaz.

Let us mention here that in [21] it is shown thatC1-generically, for a robustly transitive
diffeomorphism on a three-dimensional manifoldM3 one of the (strong) foliations is min-
imal. On the other hand, the following natural question remains: is property SH necessary
for robustly transitive partially hyperbolic systems?

SKETCH OF THE PROOF OFTHEOREM 5.2.1. The proof of Theorem 5.2.1 relies on the
three following facts:

1. If the property SH holds then any open set has a positive iterate that contains a central
unstable disc of a fixed size;

2. The property SH is robust under perturbation;
3. For any small perturbation of the initial map, it follows that any leaf of the strong

stable foliation is “almost” dense.
The last item means that given a positive constantδ, any leaf of the strong stable foliation

of any small perturbation isδ-dense. On one hand, by item 2 the property SH holds for any
perturbation so by item 1 it follows that any open set has a positive iterate that contains
a central unstable disc of a fixed size chosen for the initial system. On the other hand,
by item 3, any leaf of the strong stable foliation of any small perturbation isδ-dense.
Therefore, ifδ is small, given a close perturbation of the initial system, it follows that
some positive iterate of any open set intersects any strong stable leaf. So, the strong stable
foliation of the perturbed system is also minimal.

This key property that guarantees the robustness of stable foliation of a partially hyper-
bolic diffeomorphism can be formulated in the following way:Some Hyperbolicity on the
central distributionEc at some points.
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5.3. Robust transitivity and dominated splitting

The previous examples lead to two natural questions:
• Is there a characterization of robustly transitive sets in terms of the tangent map?
• Can we describe the dynamics under the assumption of either partial hyperbolicity or

dominated splitting?
Both questions have a partial answer: it is known thatC1-robust transitivity implies

dominated splitting, however, in a generic setting the converse of the previous assertion is
unknown.

In the sequel, we will say that a compact invariant setΛ for a diffeomorphismf is a
C1-robustly transitive set, ifΛ is a transitive maximal invariant set (i.e. there isU such
thatΛ=⋂n∈Z f

n(U) andΛ has a dense orbit) and for anyg C1-close tof it follows that
Λg =⋂n∈Z g

n(U) is also a transitive set.
The next result, proved in dimension two in [48], dimension three in [32] and in greater

dimension in [19], shows that these two questions are closely related. In fact, some kind of
dynamics on the tangent bundle is implied by robust transitivity:

THEOREM5.3.1. Any robustly transitive set of aC1-diffeomorphism exhibits a dominated
splitting such that its extremal bundles are uniformly volume contracted or expanded.

In dimension two, the set is hyperbolic (see [48]); in dimension three the sets exhibit a
partially hyperbolic splitting (see [32]) and just a dominated splitting in higher dimension.

This last theorem can also be formulated in the following way:

THEOREM 5.3.2 [19]. There is a residual subset ofC1-diffeomorphisms such that for any
diffeomorphism in the residual set any homoclinic class of a periodic point(the closure of
the intersection of the stable and unstable manifold of it) either has dominated splitting or
it is contained in the closure of infinitely many sources or sinks.

In the particular case of dimension two, the following result proved in [48] is more
general:

THEOREM5.3.3 [48]. There is a residual subset ofC1-diffeomorphisms that either satisfy
AxiomA or exhibit infinitely many sources or sinks.

First, we give a sketch of the proof of Theorem 5.3.3. Later we explain how the argu-
ments work in higher dimension.

As in the proof of the dominated splitting versus tangencies, a key element in the proof
is that in theC1-topology any small perturbation of the derivative of a diffeomorphism
f along a periodic orbitp can be performed dynamically as aC1-perturbation off (see
Lemma 2.3.1).

5.3.1. Sketch of the proof of Theorem 5.3.3The proof of the theorem in dimension two
establishes that given aC1-diffeomorphismf such that the number of sinks and repellers
for any diffeomorphismC1-close tof is constant, thenf is an Axiom A diffeomorphism.
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To show that, it is necessary to prove that the limit set is hyperbolic. This is done in two
steps:

• StepI: the limit set exhibits a dominated splitting;
• StepII: this dominated splitting is hyperbolic.
To get the first step, letP be a set of periodic hyperbolic saddles of a diffeomor-

phismf . Since we are working in theC1-topology, theC1-closing lemma allows us to
assume that the periodic points are dense in the limit set. OverP , the natural splitting
TPM =⋃p∈P Es(p)⊕Eu(p) is considered whereEs(p) andEu(p) are the eigenspaces
ofDf np , andnp is the period of the periodic pointp. The goal is to prove that this splitting
is a dominated splitting and so can be extended toΛ. To this end, it is shown that if the
splitting over the periodic points is not uniformly dominated, then by an arbitrarily small
perturbation of the derivative off along the orbit of somep ∈P , a matrix is obtained that
has complex eigenvalues of modulus different from one. In other words, by a perturbation
either a new sink or a new repeller is obtained, contradicting the hypothesis that no sinks
or repellers can be created by perturbation. More precisely, first we use Theorem 2.3.2 that
states:if the splittingEs ⊕Eu overP is not dominated, then there is an arbitrarily small
perturbation of the derivative off along the orbit of a pointp ∈ P such that the angle
between the eigenspaces of the corresponding matrix is arbitrarily small.

Finally, we apply

CLAIM 5.3.1. SupposeA ∈ GL(2,R) has two different real eigenvalues whose eigenspaces
form an angle less thanε. Then there ist ∈ [−ε, ε] such that the matrixRt ◦A has a pair
of conjugate complex eigenvalues(Rt is the rotation byt).

To prove this claim, identifying the projective space withS1, observe thatA acts on
S1 as a Morse–Smale diffeomorphism with one sink and one repeller close to each other.
Then, composing with a small rotation, a new map with irrational rotation is obtained
which corresponds to the fact thatRt ◦A has a complex eigenvalue.

After it is proved that the limit set has dominated splitting, it is shown that the splitting
is in fact hyperbolic using the fact that neither sinks nor repellers can be created by pertur-
bations. To do this, theErgodic Closing Lemmais used. This lemma states that with full
probability any recurrent orbit can be shadowed by a periodic orbit of a systemC1-close
to the initial one. Before stating this result, we need some definitions.

DefineBε(f, x) as the set of pointsy ∈M such thatd(f n(x), y)� ε for some integern
and defineΣ(f ) to be those pointsx ∈M such that for every neighborhoodU ⊂ Diff 1(M)

of f and for everyε > 0 there areg ∈ U andy ∈ Bε(f, x) such thaty ∈ Per(g), g = f
onM � Bε(f, x) andd(f j (x), gj (y))� ε for all j such that 0� j �m, wherem is the
g-period ofy.

THEOREM5.3.4 (Ergodic Closing Lemma [48]).If f ∈ Diff 1(M) thenΣ(f ) has measure
one for everyf -invariant probability measure on the Borel sets ofM .

An equivalent statement of Theorem 5.3.4 is the following:

Let f ∈ Diff 1(M) and letµ be an invariant measure off . Then, there exist a sequence
{gn} of C1-diffeomorphisms converging in theC1-topology tof and a sequence of mea-
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sures{µn} invariant for gn such that eachµn is supported on a periodic orbit and the
sequence of measures converges toµ in the weak topology.

Using this version, it is possible to prove that if one of the subbundles of the dom-
inated splitting is not hyperbolic, then it is possible to create a sink or a repeller for a
C1-perturbation.

Indeed, let us assume thatF is not expanding. Then, there is an invariant measureµ

such that∫
|Df|F(x)|µ� 0.

By the Ergodic Closing Lemma, for anyδ > 0 there isg C1-close tof and an invariant
measureν supported on a periodic point such thatν is δ-close toµ in the weak topology.
Using the facts that the dominated splitting depends continuously on the perturbation and
the support ofν is close to the support ofµ, it follows that over the support ofν there is
a splittingEg ⊕ Fg with the property that the directionFg is close toF . So∫

|Dg|Fg(x)|ν � δ.

Since the support ofν is a periodic orbit, it follows that the eigenvalue along theFg di-
rection is close to 0. Then, by aC1-perturbation this eigenvalue can be made smaller than
zero. From the domination property it follows that the other eigenvalue is also smaller than
zero. And this implies that a sink has been created, which is a contradiction to the fact that
it is assumed that neither sinks nor repellers can be created by perturbations.

So, it has been proved that the limit set is hyperbolic. Then, the limit set can be decom-
posed into a finite union of maximal invariant transitive sets. It follows that the no-cycle
condition holds; if it is not the case, it is possible to create a tangency by perturbation and
this leads to the appearance of either sinks or repellers. Then, if the limit set is hyperbolic
and the no-cycle condition holds, from the fact that we are dealing with surface maps it
follows that the limit set coincides with the nonwandering set.

5.3.2. Sketch of the proof of Theorem 5.3.2. Dominated splitting versus homothetiesIn
the two-dimensional argument presented above we considered a linear cocycle defined over
periodic points and its perturbations, without any information about the dynamics of the
set of periodic points. These ideas for the two-dimensional case, when they are considered
in any dimension, allow to get the following lemma that has a similar proof as in the two-
dimensional case:

LEMMA 5.3.1. Let Pk be the set of periodic hyperbolic saddles of indexk and let
Esk(p) ⊕ Eun−k(p) be the natural splitting induced by the stable and unstable directions
of the periodic pointsp ∈Pk . If this splitting is not dominated, then by an arbitrarily small
C1-perturbation it is possible to change the index of some saddlep ∈ P .
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Observe that if 2� k � n− 2, the bifurcations mentioned in Lemma 5.3.1 do not break
the transitivity and so they may occur in robustly transitive dynamics. In fact this holds
in the examples considered. Moreover,C1-robustly transitive nonhyperbolic diffeomor-
phisms generically exhibit periodic points of different indices. This follows from the fact
thatdiffeomorphism is hyperbolic if all periodic points of anyC1-perturbation are hyper-
bolic.

Thus, in higher dimension, it is necessary to work out the dynamics generated by dif-
ferent periodic points acting in a homoclinic class. Using this argument it is shown that
if there is no dominated splitting then it is possible to perturb the derivative off along a
periodic orbit in order to change the corresponding matrix into a homothety, and hence,
after another perturbation, we get a sink or a source for a diffeomorphism close tof .

To perform this argument, first, a dense subsetK in H(p,f ) of periodic points homo-
clinically related withp is taken, and we reduce the study to this set of periodic orbits. As
any dominated splitting extends to the closure, the lack of dominated splitting onH(p,f )

implies also the lack of it for the setK . Then, given two (for simplicity fixed) hyperbolic
saddlesp andq, it can be assumed that they are homoclinically related (their invariant
manifolds intersect transversally) and so there is a horseshoe containingp andq and some
points of intersection of their invariant (stable and unstable) manifolds. Using this, it fol-
lows that there are periodic points passing first arbitrarily close top and later toq, and so
on. Moreover, it is possible to assume that the time spent in the complement of a neigh-
borhood containingp andq is uniformly bounded. To be more precise, given any family
{n1,m1, . . . , nk,mk} of arbitrarily large positive integers, there is a natural numberr (in-
dependent ofni andmi ) and a saddlez of H(p,f ) of periodt = kr +Σi(ni +mi) whose
orbit spends alternatelyni consecutive iterates close top andmi consecutive iterates close
to q. This means that the derivative off in z is like

Df t(z)= T2 ◦Dfmk(q) ◦ T1 ◦Df nk (p) ◦ · · · ◦ T2 ◦Dfm1(q) ◦ T1 ◦Df n1(p),

whereT1 and T2 are called the transitions fromp to q and fromq to p, respectively.
These two transitions correspond to a bounded number of iterations and can be adapted
by small perturbations in order that their contribution to the product vanishes asni and
mi go to infinity, thus the noise introduced by these transitions is negligible, provided
thatni andmi are large enough. In other words, to multiply derivatives corresponding to
different homoclinically related periodic points may make sense and the resulting linear
maps (almost) correspond to the derivative along the orbit of another periodic saddle of the
homoclinic class.

This kind of argument also shows that in any homoclinic class there is a dense subset of
periodic points whose derivative at the period can be turned diagonalizable with positive
eigenvalues of multiplicity one, by a small perturbation of the derivative along the orbit.

Now, if no dominated splitting exists at all, we will have the following situation: there
are a linear mapA ∈ GL(R,n), linear mapsA1,A2, . . . ,An−1 in GL(R,n) and a basis
B = {v1, . . . , vn} of Rn such thatA is diagonal in this basis and ifLi is the space generated
by vi , thenAj keeps the subspacesL1, . . . ,Lj−1,Lj+2, . . . ,Ln invariant and permutes
the spacesLj andLj+1. In the previous situation, the matricesA andAi correspond to
the derivatives off at periodic pointsp, {pi}. The information thatLj andLj+1 are per-
muted follows from the fact that we are assuming that there is no dominated splitting: in



Homoclinic bifurcations, dominated splitting, and robust transitivity 365

fact, if restricted to a two-dimensional subspace a dominated decomposition in two sub-
bundles does not exist, using Claim 5.3.1, after perturbation we can get that the derivative
restricted to this direction acts as a two-dimensional map with complex eigenvalue and so
considering iterates of the same map we can assume that there are two invariant subspaces
that are interchanged. On the other hand, since we can consider the transition, we can also
consider all the possible products of the mapsA,A1,A2, . . . ,An−1. A simple result of
linear algebra shows that some of these products are homotheties. The idea is that, as the
matricesAi produce permutations of the eigenspaces ofA which generate the group of all
permutations of these eigenspaces, it is possible to mix the multipliers, obtaining a matrix
having essentially the same rate of expansion in all directions.

The construction above shows that a robustly transitive set always admits a dominated
splitting (so the dominated splitting is defined). To get that the extremal directions are
volume expansive, the Ergodic Closing Lemma is applied. Observe that, sinceE1 does not
admit any dominated subsplitting, the arguments above guarantee that (after a perturbation)
we can produce a homothety inE1. Now, if E1 is not uniformly volume contracting, by
using the Ergodic Closing Lemma we get a homothety (inE1) at a point which is volume
expanding or (at least) whose rate of contraction of volume is close to one. So (after a
new perturbation if necessary) we get a homothety by a factor greater than 1. Finally, the
domination of the splitting implies that any bundleEj is expanding, thus this saddle point
is a source.

5.4. Some results for conservative systems

The same kind of question and dichotomies can be formulated for conservative maps.
In [19], the following theorem was proved.

THEOREM 5.4.1. For volume-preserving maps, C1-generically the homoclinic classes ei-
ther have dominated splitting or are accumulated by periodic points at which the derivative
is the identity.

This result is a generalization to higher dimension of a result due to Newhouse (see [62])
for conservative surface diffeomorphisms:

THEOREM 5.4.2. For a compact two-dimensional manifoldM there exists a residual sub-
setB inside theC1-conservative diffeomorphisms ofM such that iff ∈ B then eitherf is
an Anosov system or the elliptic periodic points off are dense inM .

In [4] a so-called Pasting Lemma was proved and it states that iff is aC1+α-volume-
preserving map with a periodic point such thatDf np = Id (np is the period ofp and Id is
the identity map) then it is possible to find aC1-volume-preserving mapg C1-close tof
such thatp is also a periodic point forg and there is a neighborhoodU of p such thatgnp

is the identity map inU . As a corollary of this and the result in [19], the following theorem
is proved in [4].
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THEOREM 5.4.3. Any robustly transitive volume-preservingC1-diffeomorphism exhibits
a dominated splitting such that its extremal bundles are uniformly volume contracted or
expanded.

It is worth to mention that as a consequence of a closing lemma for chain recurrent
points proved in [16], the same paper establishes that:

THEOREM 5.4.4. C1-generically the volume-preserving diffeomorphisms are transitive.

A chain recurrent point is a point such that for everyε > 0 there exists a sequence of
pointsx = x0, x1, . . . , xn = x0 with dist(f (xi)− xi+1) < ε. The closing lemma for chain
recurrent points states thatC1-generically the chain recurrent set coincides with the closure
of the set of periodic points.

Also about volume-preserving diffeomorphisms similar dichotomies as the one in Theo-
rem 5.3.2 can be stated. Recalling that for an invariant measure we can obtain the Oseledets
splitting and it is possible to calculate the Lyapunov exponents, the following theorem char-
acterizes continuity of Lyapunov exponents for volume-preservingC1-diffeomorphisms.
In fact, in [14] it was proved that:

THEOREM 5.4.5. Letµ be the normalized Lebesgue measure on a compact manifoldM .
If f ∈ Diff 1(M) is a continuity point for the map

Diff 1
µ(M)→Rd, g→ (λ1(g,µ), . . . , λd(g;µ)

)
then, for almost every pointx ∈M ,

1. either all Lyapunov exponentsλi(f ;x)= 0 for 1� i � d ,
2. or the Oseledets splitting off is dominated on the orbit ofx.

Many of these results can be obtained also if one replaces robust transitivity by stable
ergodicity. In [13], it is proved thatC1-stably ergodic maps in the conservative category
are Bernoulli maps exhibiting dominated splitting.

More precisely, letM be a compact manifold of dimensiond � 2, and letµ be a vol-
ume measure inM . Takeα > 0 and let Diff1+αµ (M) be the set ofµ-preservingC1+α-

diffeomorphisms, endowed with theC1-topology. LetSE ⊂ Diff 1+α
µ (M) be the set of sta-

bly ergodic diffeomorphisms (i.e. the set of diffeomorphisms such that every sufficiently
C1-closeC1+α-conservative diffeomorphism is ergodic).

THEOREM 5.4.6 [13]. There is an open and dense setR⊂ SE such that iff ∈R thenf
is nonuniformly hyperbolic, that is, all Lyapunov exponents off are nonzero. Moreover,
everyf ∈R admits a dominated splitting.

REMARK 5.4.1. It is not true that every stably ergodic diffeomorphism can be approxi-
mated by a partially hyperbolic system (in the weaker sense), by the examples in [23] and
proved in [93].
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The proof of Theorem 5.4.6 goes through three steps:
Step1. A stably ergodic (or stably transitive) diffeomorphismf must have a dominated

splitting. This is true because if it does not, [19] permits to perturbf and create a periodic
point whose derivative is the identity. Then, using the Pasting Lemma proved in [4] (for
whichC1+α-regularity is an essential hypothesis), one breaks transitivity.

Step2. A result in [15] (which is a refinement of a technique developed in [91]) gives a
perturbation off such that the sum of the Lyapunov exponents “inside” each of the bundles
of the (finest) dominated splitting is nonzero.

Step3. Using a result proved in [14], we find another perturbation such that the Lya-
punov exponents in each of the bundles become almost equal. (If we attempted to make
the exponents exactly equal, we could not guarantee that the perturbation isC1+α .) Since
the sum of the exponents in each bundle varies continuously, we conclude that there are no
zero exponents.

5.5. Robust transitivity and hetero-dimensional cycles

In dimension higher than two, another kind of homoclinic bifurcation breaks the hyper-
bolicity: the so-called hetero-dimensional cycles (intersection of the stable and unstable
manifolds of points of different indices, see [30] and [31]). More precisely:

DEFINITION 5.5.1. LetM be and letf ∈ Diff r (M) (r � 1). If f has a pair of hyperbolic
saddlesP andQ with different indices, that is, different dimensions of their unstable sub-
spaces and ifWs(P ) andWu(Q) have nonempty intersection, and the same forWu(P )

andWs(Q) then we say thatf has ahetero-dimensional cycleassociated toP andQ.

It follows immediately from the definition that hetero-dimensional cycles can only exist
in dimension at least 3.

In particular, the unfolding of these cycles implies the existence of striking dynamics
such as the appearance of nonhyperbolic robustly transitive sets and the explosion of ho-
moclinic classes (see Theorem 5.5.1 below). Moreover, it is possible to prove the following:

Letf ∈ Diff 1(M) andΛf (U)=⋂n∈Z g
n(U) be maximal invariant nonhyperbolicC1-

robustly transitive sets. Then, there isg C1-close tof such thatg exhibits a hetero-
dimensional cycle contained inΛg(U)=⋂n∈Z g

n(U).

In the same sense, these cycles play the role for the partial hyperbolic theory as trans-
verse intersection play for the hyperbolic theory. In the paper [20] the interplay between
hetero-dimensional cycles and robustly transitive systems in any dimension is studied.

To show the richness of hetero-dimensional cycles we present one theorem related to
them. For simplicity, we suppose that the periodic pointsP andQ in the cycle are actually
fixed points. In addition, we always assume:

(a) (codimension 1) the saddlesP andQ have indicesp andq = p+ 1, respectively,
(b) (quasi-transversality) the manifoldsWs(P ) andWu(Q) intersect transversely, and

the intersection betweenWu(P ) andWs(Q) is quasi-transverse.
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The next theorem asserts that the homoclinic classes ofP andQ often explode, and be-
come intermingled (nonempty intersection) when the cycle is unfolded.

We say that a parameterized family{ft }t∈[−1,1] of diffeomorphisms unfolds generi-
cally a hetero-dimensional cycle off = f0 if there are open disksKut ∈ Wu(Pt ) and
Kst ∈Ws(Qt), depending continuously ont such thatKu0 ∩Ks0 contains a point of quasi-
transverse intersection, and the distance betweenKst andKut increases with positive ve-
locity when t increases. HerePt andQt denote the continuations forft of the periodic
pointsP andQ.

THEOREM 5.5.1 [30]. There is a nonempty open set ofC1-parameterized families of dif-
feomorphisms{ft }t∈[−1,1] unfolding generically a heteroclinical cycle off = f0, such that
for all small positivet ,

1. The transverse intersection betweenWs(Pt ) andWu(Qt) is contained in the homo-
clinic class ofQt ;

2. The homoclinic class ofPt is contained in the homoclinic class ofQt .

Let d be the dimension of the ambient manifoldM . The key fact behind the previous
theorem is that, for every small positivet, the (d − p)-dimensional manifoldWs(Pt ) is
contained in the closure ofWs(Qt). This makes the stable manifold ofQt , which has
dimensiond − p − 1, behave like a manifold of dimension one unit greater. The proof of
the theorem relies on a reduction of the dynamics to a family of iterated function systems
on the interval.

6. Flows and singular splitting

For flows, a striking example is in [46], given by the solutions of the polynomial vector
field inR3:

X(x,y, z)=


ẋ =−αx + αy,
ẏ = βx − y − xz
ż=−γ z+ xy,

(5)

whereα,β, γ are real parameters. This equation was derived by Lorenz from the works
done by Saltzman [89] concerning thermal fluid convection. Numerical experiments per-
formed by Lorenz (forα = 10,β = 28 andγ = 8/3) suggested the existence, in a robust
way, of a transitive strange attractor toward which tends a full neighborhood of positive
trajectories of the above system. That is, the strange attractor could not be destroyed by
any perturbation of the parameters. Most important, the attractor contains an equilibrium
point (0,0,0), and hence cannot be hyperbolic. The work of Lorenz raised a number of
mathematical questions that are among the leitmotifs in the development of the theory of
dynamical systems.

Notably, only now, three and a half decades after this remarkable work, it was proved
in [94] that the solutions of (5) satisfy such a property for valuesα,β, γ near the ones
considered by Lorenz.
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However, already in the mid-seventies, the existence of robust nonhyperbolic attractors
was proved for flows introduced independently in [2,36] (see also [37,97]) which we now
call geometric models for Lorenz attractors. In particular, they exhibit, in a robust way, an
attracting transitive set with an equilibrium (singularity). Moreover, the properties of these
geometric models allow one to extract very complete dynamical information.

A natural question arises:are such features present for any robustly transitive set of a
flow?

In [54] a positive answer for this question is given:

THEOREM6.0.1. C1-robustly transitive sets with singularities on closed3-manifolds have
the following properties:

1. There are either proper attractors or proper repellers;
2. The eigenvalues at the singularities satisfy the same inequalities as the corresponding

ones at the singularity in a Lorenz geometrical model;
3. There are partially hyperbolic sets with a volume-expanding central direction.

The presence of a singularity prevents these attractors from being hyperbolic. But they
exhibit a weaker form of hyperbolicity namedsingular hyperbolic splitting. This class of
vector fields contains the Axiom A systems, the geometric Lorenz attractors and the sin-
gular horseshoes in [44], among other systems. Currently, there is a rather satisfactory
and complete description of singular hyperbolic vector fields defined on three-dimensional
manifolds (but the panorama in higher dimensions remains open). The first consequence
of this result is that every orbit inany robust attractor has a direction of exponential di-
vergence from nearby orbits (positive Lyapunov exponent). Another consequence is that
robust attractors always admit an invariant foliation whose leaves are forward contracted
by the flow, showing that any robust attractor with singularities displays similar properties
to those of the geometrical Lorenz model. In particular, in view of the result of Tucker [94],
the Lorenz attractor generated by the Lorenz equations much resembles a geometrical one.

Moreover, related to the partial hyperbolic structure for three-dimensional flows, it is
proved in a sequel of works that these sets are expansive, the periodic orbits are dense (in
the case that the set is an attractor), and it has a spectral decomposition (see [65,9,5]).

On the other hand, for the case of flows, a new kind of bifurcation appears that leads to a
new dynamics distinct from the ones for diffeomorphism: the so-calledsingular cycles(cy-
cles involving singularities and periodic orbits, see [8,51,55,53] for examples of dynamics
in the sequel of the unfolding of it). In particular, these cycles lead to the creation of ro-
bust singular hyperbolic sets as it is shown in the papers [55,53]. Systems exhibiting these
cycles are dense among open set of systems exhibiting a singular hyperbolic splitting.

Moreover, recently A. Arroyo and F. Rodriguez Hertz (see [6]), studying the dynamical
consequences of the dominated splitting for the Linear Poincaré flow, proved the following:

THEOREM 6.0.2. Any three-dimensional flow can beC1-approximated by a flow exhibit-
ing a homoclinic tangency either by a singular cycle or by a hyperbolic one.
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6.1. Sketch of the proof of Theorem 6.0.1

In this section we discuss Theorem 6.0.1 stated before, in other words, we will explain
the dynamical structure of compact transitive sets (there are dense orbits) of flows on
3-manifolds which arerobustunder smallC1-perturbations.

To state our results in a precise way, let us fix some notations and recall some definitions
and results proved elsewhere.

Throughout,M is a boundaryless compact manifold andX r (M) denotes the space of
Cr -vector fields onM endowed with theCr -topology,r � 1. LetX ∈X r (M), and letXt ,
t ∈ R, denote the flow induced byX. A compact invariant setΛ of X is isolatedif there
exists an open setU ⊃Λ, calledisolating block, such thatΛ=⋂t∈R Xt(U). If U above
can be chosen such thatXt(U)⊂U for t > 0, we say that the isolated setΛ is anattracting
set.

A compact invariant setΛ of X is transitive if it coincides with theω-limit set of an
X-orbit. An attractor is a transitive attracting set. Arepelleris an attractor for the reversed
vector field−X. An attractor (or repeller) which is not the whole manifold is calledproper.
An invariant set ofX is nontrivial if it is neither a periodic point nor a singularity. With
this concept we define:

An isolated setΛ of aC1-vector fieldX is robustly transitive if it has an isolating block
U such that

ΛY (U)=
⋂
t∈R
Yt (U)

is both transitive and nontrivial for anyY C1-close toX.

Related to robustly transitive sets the following theorem is proved.

THEOREM 6.1.1. A robustly transitive set containing singularities of a flow on a closed
3-manifold is either a proper attractor or a proper repeller.

As a matter of fact, the previous result will follow from a general result onn-manifolds,
n� 3, settling sufficient conditions for an isolated set to be an attracting set:

(a) all its periodic points and singularities are hyperbolic and
(b) it robustly contains the unstable manifold of either a periodic point or a singularity.
The previous result is false in dimension greater than three; a counterexample can be ob-

tained by multiplying the geometric Lorenz attractor by a hyperbolic system in such a way
that the directions supporting the Lorenz flow be normally hyperbolic. It is false as well in
the context of boundary-preserving vector fields on 3-manifolds with boundary [44]. The
converse to this theorem is also not true: proper attractors (or repellers) with singularities
are not necessarily robustly transitive, even if their periodic points and singularities are
hyperbolic in a robust way.

To motivate the next results about singularities of robustly transitive sets for flows dis-
playing singularities, recall that the geometric Lorenz attractorL is a proper robustly tran-
sitive set with a hyperbolic singularityσ such that ifλi , 1� i � 3, are the eigenvalues ofL
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atσ , thenλi , 1� i � 3, are real and satisfyλ2< λ3< 0<−λ3< λ1 [37]. Inspired by this
property we say that a singularityσ is Lorenz-like forX if the eigenvaluesλi , 1� i � 3,
of DX(σ) are real and satisfyλ2< λ3< 0<−λ3< λ1.

If σ is a Lorenz-like singularity forX then the strong stable manifoldWss
X (σ ) exists.

Moreover, dim(Wss
X (σ ))= 1, andWss

X (σ ) is tangent to the eigenvector direction associated
to λ2. Given a vector fieldX ∈ X r (M), we letΣ(X) be the set of singularities ofX. If Λ
is a compact invariant set ofX we letΣX(Λ) be the set of singularities ofX in Λ.

The next result shows that the singularities of robustly transitive sets on closed 3-
manifolds are Lorenz-like.

THEOREM 6.1.2. Let Λ be a robustly transitive set ofX ∈ X 1(M) with a singularity.
Then, either forY = X or Y = −X, everyσ ∈ ΣY (Λ) is Lorenz-like forY and satisfies
Wss
Y (σ )∩Λ= {σ }.
In light of these results, a natural question arises: can one achieve a general description

of the structure of robust attractors for flows exhibiting singularities? In this direction we
prove: if Λ is a robust attractor forX containing singularities then it is partially hyper-
bolic with volume-expanding central direction. To state this result in a precise way, let us
introduce some definitions and notations.

LetΛ be a compact invariant transitive set ofX ∈X r (M), c > 0, and 0< λ< 1. We say
thatΛ has a(c, λ)-dominated splitting if the bundle overΛ can be written as a continuous
DXt -invariant sum of subbundlesTΛ =Es ⊕Ecu, such that ifT > 0 andx ∈Λ then

(a) Es is one dimensional;
(b) The bundleEcu contains the direction ofX, and∥∥DXT /Esx∥∥ · ∥∥DX−T /EcuXT (x)

∥∥< cλT .
Ecu is called the central direction ofTΛ.

A compact invariant transitive setΛ of X is partially hyperbolic if Λ has a(c, λ)-
dominated splittingTΛM = Es ⊕ Ecu such that the bundleEs is uniformly contracting,
that is, for everyT > 0, and everyx ∈Λ, we have‖DXT /Esx‖< cλT .

For x ∈Λ andt ∈ R we letJ ct (x) be the absolute value of the determinant of the linear
mapDXt/Ecux :Ecux → EcuXt (x)

. We say that the subbundleEcuΛ of the partially hyperbolic

setΛ is volume-expandingif J ct (x) � ceλt , for everyx ∈ Λ and t � 0 (in this case we
say thatEcuΛ is (c, λ)-volume-expandingto indicate the dependence onc,λ). With all these
definitions in mind, we introduce the following

DEFINITION 6.1.1 (Singular hyperbolicity). Let Λ be a compact invariant transitive set
of X ∈ X r (M) with singularities. We say thatΛ is a singular hyperbolic setfor X if all
the singularities ofΛ are hyperbolic, andΛ is partially hyperbolic with volume expanding
central direction.

This is the property that describes robust attractors of flows with singularities.

THEOREM 6.1.3. Robust attractors ofX ∈ X 1(M) containing singularities are singular
hyperbolic sets forX.
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Now we will summarize the sketch of the proof of the previous statement.
In view of the previous results one can assume that every singularity ofX is Lorenz-like

and has (for instance) two negative eigenvalues. Consider the splitting with three directions
defined over the set of regular closed orbits of the vector field, denoted byEss⊕[X]⊕Euu,
whereEss andEuu are the stable and unstable directions andX is the flow direction. For
simplicity let us assume that the setΛ is the closure of the periodic orbits ofX. The objec-
tive is to extend this splitting to the closure of the regular closed orbits to get a dominated
splitting. In general, this is not possible due to the presence of the equilibria; in fact, for
periodic orbits getting close to the singularities, the angle between the flow direction and
the unstable direction is getting small. Thus it is not possible to extend this splitting in a
dominated way to the wholeΛ. The idea now is to consider the splittingEss ⊕Ec, where
Ec = [X] ⊕ Euu, defined over the periodic orbits and extend it to its closure (that is the
whole setΛ). For that it is enough to prove that such a splitting is dominated. To obtain the
domination one proves that given any small neighborhoodV of the finite set of singulari-
ties ofΛ and any pointp in a regular closed orbit that does not meet this vicinity, the angle
betweenEss(p) andEc(p) is uniformly bounded from below. Otherwise, after a pertur-
bation a repeller or a sink can be created, contradicting the robust transitivity. On the other
hand, the analysis near the singularity is the following. Since all the singularities have one-
dimensional unstable manifolds and are Lorenz-like, there is a splittingEss ⊕Es ⊕Euu.
Then it is proved thatEss(p)→ Ess(σ ) andEc(p)→ Es(σ )⊕Euu(σ ) asp approaches
the singularityσ . If it is not the case, it is proved after two turns nearby the singularities,
by a small perturbation either a sink or a repeller is created, contradicting again the robust
transitivity. From the two previous facts it follows that the angles betweenEss andEc are
persistently bounded away from zero and as in the case of diffeomorphisms, this allows to
prove the domination of the splittingEss ⊕Ec.

6.2. Dynamical consequences of singular hyperbolicity

We will list some properties that give us a nice description of the dynamics of robustly
transitive sets with singularities, and in particular, for robust attractors.

The first two properties do not depend either on the fact that the set is robustly transitive
or an attractor.

LEMMA 6.2.1. Let Λ be a singular hyperbolic set ofX ∈ X 1(M). Then any invariant
compact setΓ ⊂Λ without singularities is a hyperbolic set.

Recall that, givenx ∈M , andv ∈ TxM , the Lyapunov exponent ofx in the direction
of v is

γ (x, v)= lim inf
t→∞

1

t
log
∥∥DXt(x)v∥∥.

We say thatx has positive Lyapunov exponent if there isv ∈ TxM suchγ (x, v) > 0.
The next two results show that important features of hyperbolic attractors and of the

geometric Lorenz attractor are present for singular hyperbolic attractors, and so, for robust
attractors with singularities:
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LEMMA 6.2.2. A singular hyperbolic attractorΛ of X ∈ X 1(M) has uniform positive
Lyapunov exponent at every orbit.

Currently, there is a rather satisfactory and complete description of singular hyperbolic
attractors on three-dimensional manifolds (again, the panorama in higher dimensions re-
mains open). In [5] it is proved that for transitive singular hyperbolic attractors the set of
periodic orbits is dense; moreover, it is made of a unique homoclinic class. For that, a the-
orem of existence of unstable manifolds is obtained, not for the whole set but for a subset
which is visited infinitely many times by a residual subset of the attractor. Such theorem
has an important consequence that there is a characterization ofC1-robustly transitive at-
tractors with singularities.

More precisely, even in the presence of equilibrium points in a singular hyperbolic at-
tractor there are local unstable manifolds of uniform size, not for the whole attractor but
for a subset of it which is visited infinitely many times by points in a residual subset of it.
As a first consequence, the following theorem about the set of periodic orbits is obtained.
Denote by Per(Λ) the set of periodic orbits ofΦt in Λ.

THEOREM6.2.1. LetΛ be a transitive singular hyperbolic attractor for the flowΦt . Then
cl(Per(Λ))=Λ.

The same techniques give the following

THEOREM6.2.2. LetΛ be a transitive singular hyperbolic attractor for the flowΦt . Then
there is a periodic orbitp whose homoclinic class(see Theorem4.3.1)is dense inΛ.

However, there are examples of singular hyperbolic sets which do not have any periodic
orbits at all (see [52]). Such sets are not attractors and nor are they robust.

Theorem 6.2.1 is useful also for obtaining statistical properties (recall the definition of
SRB measure given in Volume 1A of this handbook). In fact, the following theorem was
proved in [28].

THEOREM 6.2.3. If Λ is a singular hyperbolic transitive attractor of aC1+α-vector
field, α > 0, with dense periodic orbits, then it has an SRB measure.

Therefore, as a consequence of this result and Theorem 6.2.1, it follows that:

COROLLARY 6.2.1. If Λ is a singular hyperbolic transitive attractor of aC1+α-vector
field, α > 0, it has an SRB measure.

A FEW WORDS ABOUT THE PROOF OFTHEOREM 6.2.1. Observe that for a singular
hyperbolic splitting, the integrability of the strong stable bundle allows us to find stable
manifolds of uniform sizeεs > 0 on any point ofU ; that is, for anyx ∈ U there is aC1-
interval, sayWs

εs
(x), such that for any pointy on it we have thatd(Φt (x),Φt (y))→ 0

whent→∞. In the case of a singularity it corresponds to the stable manifold associated
to the strongest contracting eigenvalueWss

loc(σ ).
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For unstable manifolds such a construction may be impossible on regular points. How-
ever, associated to any regular pointx ∈ Λ there is a family of two-dimensional sec-
tions Nxt whose size depends on the pointxt and which is transversal to the flow;
herext := Φt(x). According to this section we can write the family of holonomy maps
between these transversal sections, for anyt ∈ R,

Gtx : Dom
(
Gtx
)⊂Nx −→Nxt .

Consider someε > 0. The unstable manifold of sizeε of a regular pointx ∈Λ is

W̃u
ε (x)=

{
y ∈M | y ∈ Dom

(
G−t
x

)
and dist

(
G−t
x (y), x−t

)→ 0, t→∞}.
Of course,W̃u

ε (x) ⊂ Nx . On the other hand, there is someε̃ > 0 for which the central
unstable manifold exists on any pointx of a singular hyperbolic setΛ; according to [38].
Denote these central manifolds byWcu

ε̃
(x). Also denote byL(Y ) the limit set ofY .

Now we can state the theorem about suitable unstable manifolds for a singular hyper-
bolic attractor, which was the main goal of this chapter.

THEOREM 6.2.4. LetX ∈ X 1(M), Λ ⊂M be a transitive singular hyperbolic attractor
andU ⊃ Λ an open neighborhood contained in its basin of attraction. Then there is a
neighborhoodU(X)⊂X 1(M) such that for allY ∈ U(X) there is a subsetK(Y)⊂ΛY :=⋂
t�0Yt (U), εu > 0 andλu < 0 that

1. For anyy ∈K(Y), we have thatWcu
εu
(y)∩Ny = W̃u

εu
(y);

2. For anyy ∈ Ŵu
εu
(x) there is an unbounded sequenceti > 0 such that

dist
(
G−ti
x (y), x−ti

)
<C exp(tiλu);

3.
⋃
t>T0

⋃
y∈K Φ−t (y) is an open and dense set inΛY ∩L(Y ), for anyT0> 0.

In order to prove this theorem, first a system of transversal sections associated to the
passage through a neighborhood of each equilibrium point is found. Among the systems
of transversal sections, some of them present an induced map with a kind of Markovian
property and uniform expansion. However, to guarantee the existence of such transversal
sections, a deep analysis of the dynamics inside a neighborhood of the singularities and
also the combinatorics between them are needed. More precisely, it is necessary to study
the local holonomy maps between transversal sections in general.
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Introduction

Since the time of Newton it became customary to describe the law of motion of a me-
chanical system by a solutionX(t) of an ordinary differential equation with a given initial
conditionX(0)= x. The dynamical systems ideology developed only in the 20th century
suggested to look at the evolution of the whole phase space of initial conditions (and not
only of a specificx) under the action of an appropriate group (or semigroup) of transforma-
tionsF t , called a flow in view of the natural analogy with hydrodynamics, so that a solution
X(t) with an initial conditionx can be written asF tx. Among early explicit manifesta-
tions of this approach was the celebrated Poincaré recurrence theorem whose statement
concerns only almost all initial conditions and it has nothing to say about a specific one.

A similar but much later development occurred with stochastic dynamics. Stochastic
differential equations (SDEs) were introduced by Itô at the beginning of the 1940s giving
an explicit construction of diffusion processes which were studied in the 1930s by Kol-
mogorov via partial differential equations and measures in their path spaces. For about
40 years it was customary to consider (random) solutionsX(t,ω) at time t > 0 of an
SDE with a fixed initial conditionX(0,ω)= x and the distribution of corresponding ran-
dom paths was usually of prime interest. Around 1980 several mathematicians discovered
that solutions of SDEs can also be represented in a similar to the deterministic case form
X(t,ω) = F tωx where the familyF tω is called a stochastic flow (see [107]) and for each
t > 0 and almost allω it consists of diffeomorphisms.

With the development of dynamical systems in the 20th century it became increasingly
clear that discretizing time and considering iterations of a single transformation is quite
beneficial both as a tool to study the original flow generated by an ordinary differential
equation, for instance, via the Poincaré first-return map, and as a rich source of new mod-
els which cannot appear in the continuous time (especially, ordinary differential equations)
framework but provide an important insight into the dynamics which is free from continu-
ous time technicalities. The next step is an observation that the evolution of physical sys-
tems is time dependent by its nature, and so they could be better described by compositions
of different maps rather than by repeated applications of exactly the same transformation.
It is natural to study such problems for typical, in some sense, sequences of maps picked at
random in some stationary fashion. This leads to random transformations, i.e., to discrete
time random dynamical systems (RDS).

Random transformations were discussed already in 1945 by Ulam and von Neumann
[159] and few years later by Kakutani [74] in the framework of random ergodic theorems
and their study continued in the 1970s in the framework of relative ergodic theory (see
[157] and [109]) but all this attracted only a marginal interest. The appearance of sto-
chastic flows as solutions of SDEs gave a substantial push to the subject and towards the
end of the 1980s it became clear that powerful dynamical systems tools united with the
probabilistic machinery can produce a scope of results which comprises now the theory of
RDS. Emergence of additional structures in SDEs motivated probabilists to have a close
look at the theory of smooth dynamical systems. This brought to this subject such notions
as Lyapunov exponents, invariant manifolds, bifurcations, etc., which had to be adapted
to the random diffeomorphisms setup. Moreover, an introduction of invariant measures of
random transformations enables us to speak about such notions as the (relative) entropy,
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the variational principle, equilibrium states, and the thermodynamic formalism which were
developed in the deterministic case in the second half of the 20th century. The probabilistic
state of mind requires here to assume as little as possible about the stochasticity which
drives random transformations unlike the approach in the classical ergodic theory where
all measure (probability) spaces are usually assumed to be separable.

During last 20 years a lot of work was done on various aspects of RDS and some of
it is presented in 5 books [82,118,47,7,49] written on this subject. The theory of RDS
found its applications in statistical physics (see [152]), economics (see [155]), meteorol-
ogy (see [56]) and in other fields. In this survey we describe several important parts of
ergodic theory of RDS but we do not try to fulfil an impossible task to cover everything
that was done in this subject. This survey consists of 5 sections among which 4 sections
exhibit the theory of RDS and Section 5 deals with random perturbations of dynamical
systems. Section 1 deals with the general ergodic theory and the topological dynamics of
random transformations. The general setup of random transformations together with no-
tations we use in this survey are introduced in Section 1.1 which contains basic results
about the measure-theoretic (metric) entropy and generators for random transformations.
Section 2 deals with constructions of random stable and unstable manifolds for RDS while
Section 3 exhibits results about relations between Lyapunov exponents and the (relative)
entropy such as Ruelle’s inequality and Pesin’s formula for RDS. In short, Sections 2 and 3
describe results which comprise what can be called as Pesin’s theory for random diffeo-
morphisms and endomorphisms whose original deterministic version is exhibited in the
article by Barreira and Pesin [1] in this volume. Section 4 exhibits the scope of results re-
lated to or relying upon the thermodynamic formalism ideology and constructions adapted
to random transformations.

Section 5 about random perturbations of dynamical systems stands quite apart from other
sections. The reason for its inclusion to this survey is two-fold. First, some popular models
of random perturbations, where we apply at random small perturbations of a given map,
lead to random transformations. Secondly, the study of both RDS and random perturbations
are motivated to some extent by an attempt to understand various stability properties of
dynamical systems. The first paper [135] which rises the problem of stability of dynamical
systems under random perturbations appeared already in 1933 but until the 1960s this
question had not attracted substantial attention. At that time random perturbations only of
dynamical systems with simple dynamics were studied (see [80] and [164]) and only in the
1970s the most interesting case of systems with complicated (chaotic) dynamics had been
dealt with (see [81]). Various probabilistic results on diffusion perturbations of systems
with simple dynamics can be found in [64]. On the other hand, random perturbations of
chaotic dynamical systems are described in [83] (see also [27]). Since then new methods
and results have appeared and we will describe also some recent results concerning random
perturbations of certain types of nonuniformly hyperbolic systems. We will see also how
random perturbations can serve as a tool in computations of chaotic dynamical systems on
a computer which, in fact, goes back to Ulam [158].

Among main topics related to RDS which are not covered by this survey are: stochastic
bifurcations theory which is not yet complete but some parts of it can be found in [7],
topological classification of random cocycles which is described in [47], and infinite-
dimensional RDS which play an important role in various models described by partial
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differential equations with a random noise, e.g., random force (see, for instance, [50,62,
163]).

1. Basic structures of random transformations

1.1. Entropy and generators

The setup of this survey consists of a complete probability space(Ω,F ,P) together with
a P-preserving invertible mapϑ , of a Polish space(X,B) with the Borelσ -algebraB,
and of a setE ⊂Ω ×X measurable with respect to the productσ -algebraF × B. A bun-
dle RDSF over (Ω,F ,P, ϑ) is generated by mappingsFω :Eω → Eϑω so that the map
(ω, x)→ Fωx is measurable. The family{Fω, ω ∈Ω} is called a random transformation
and eachFω maps the fiberEω = {x ∈ X: (ω, x) ∈ E} to Eϑω. The mapΘ :E → E de-
fined byΘ(ω,x) = (ϑω,Fωx) is called the skew product transformation. Observe that
Θn(ω,x) = (ϑnω,Fnωx) whereFnω = Fϑn−1ω ◦ · · · ◦ Fϑω ◦ Fω for n � 0, F 0

ω = id, and,
if Fω, ω ∈Ω , are invertible transformations,Fnω = F−1

ϑ−nω ◦ · · · ◦F−1
ϑ−2ω

◦F−1
ϑ−1ω

for n�−1

whereF−1
ω = (Fω)−1. Clearly,Θ is invertible if and only if allFω, ω ∈Ω , are invertible.

Denote byPP(Ω×X) the space of probability measures onΩ×X having the marginal
P onΩ and setPP(E)= {µ ∈PP(Ω ×X): µ(E)= 1}. Any µ ∈PP(E) onE disintegrates
dµ(ω,x) = dµω(x)dP(ω) (see, for instance, [57, Section 10.2]) whereµω are regular
conditional probabilities with respect to theσ -algebraFE formed by all sets(A×X)∩ E
with A ∈ F . This means thatµω is a probability measure onEω for P-a.a.ω and for any
measurable setR ⊂ E , P-a.s.µω(R(ω))= µ(R|FE ), whereR(ω)= {x: (ω, x) ∈ R}, and
soµ(R)= ∫ µω(R(ω)) dP(ω). It is easy to see thatµ ∈ PP(E) isΘ-invariant if and only
if Fωµω = µϑω P-almost surely (a.s.) and the space of such measures will be denoted by
IP(E).

Let R= {Ri} be a finite or countable partition ofE into measurable sets thenR(ω) =
{Ri(ω)}, Ri(ω) = {x ∈ Eω: (ω, x) ∈ Ri} is a partition ofEω. For µ ∈ PP(Ω × X) the
conditional entropy ofR givenσ -algebraFE is defined by

Hµ(R|FE ) = −
∫ ∑

i

µ(Ri |FE ) logµ(Ri |FE ) dP

=
∫
Hµω
(
R(ω)
)
dP(ω), (1.1.1)

whereHµω(A) denotes the usual entropy of a partitionA. The relative entropyh(r)µ (Θ) of
Θ which will be called also the fiber entropyhµ(F ) of the bundle RDSF with respect to
µ ∈ IP(E) is defined by the formula

h(r)µ (Θ)= hµ(F )= sup
Q
hµ(F,Q), (1.1.2)
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where

hµ(F,Q)= h(r)µ (Θ,Q)= lim
n→∞

1

n
Hµ

(
n−1∨
i=0

(
Θi
)−1Q
∣∣∣FE

)
(1.1.3)

is called the fiber entropy ofF or the relative entropy ofΘ with respect to a partitionQ
and
∨

denotes the join of partitions. The supremum in (1.1.2) is taken over all finite or
countable measurable partitionsQ= {Qi} of E with finite conditional entropy

Hµ(Q|FE ) <∞, (1.1.4)

and theP-a.s. limit in (1.1.3) exists in view of subadditivity of the conditional entropy (see
[142, §5], or [82, Section 2.1]).

Observe that ifQ = {Qi} is a partition ofE thenQ(n) =∨n−1
i=0 (Θ

i)−1Q is a partition

of E consisting of sets{Q(n)j } such that the corresponding partitionQ(n)(ω)= {Q(n)j (ω)},
Q
(n)
j (ω)= {x: (ω, x) ∈Q(n)j } of Eω has the formQ(n)(ω)=∨n−1

i=0 (F
i
ω)

−1Q(ϑiω), where
Q(ω)= {Qj(ω)},Qj(ω)= {x ∈ Eω: (ω, x) ∈Qj } partitionsEω. This together with (1.1.1)
yield

hµ(F,Q)= lim
n→∞

1

n

∫
Hµω

(
n−1∨
i=0

(
F iω
)−1Q
(
ϑiω
))
dP(ω). (1.1.5)

This way of obtaining the fiber entropy is more in line with the spirit of random dynamical
systems. It is not difficult to see (see [82, Section 2.1] and [31]) that the resulting entropy
remains the same taking the supremum in (1.1.2) only over partitionsQ of E into sets
Qi of the formQi = (Ω × Pi) ∩ E , whereP = {Pi} is a partition ofX into measurable
sets, so thatQi(ω)= Pi ∩ Eω. The Abramov–Rohlin formulahµ(Θ)= h(r)µ (Θ)+ hP(ϑ)

(see [2]), wherehµ(Θ) andhP(ϑ) are usual entropies of the corresponding measure pre-
serving transformations, relates different entropies emerging in this setup though in many
interesting cases onlyh(r)µ (Θ) is finite among these three (see [82, Theorem II.1.2]).
It is easy to see thatan(ω) = Hµω(

∨n−1
i=0 (F

i
ω)

−1Q(ϑiω)) is a subadditive process and
(1.1.5) together with the subadditive ergodic theorem (see, for instance, [82, §A.2]) yield
h
(r)
µ (Θ,Q)= hµ(F,Q)=

∫
limn→∞ 1

n
an dP. If, in addition,P is ergodic then this formula

remains trueP-a.s. without integrating againstP.
Set

Q̂∞
E (ω)=

∞∨
i=−∞

(
F iω
)−1QE

(
ϑiω
)

if Θ is invertible and

Q̂∞
E (ω)=

∞∨
i=0

(
F iω
)−1QE

(
ϑiω
)

if Θ is noninvertible.
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DEFINITION 1.1.1. Givenµ ∈ IP(E), a countable or finite measurable partitionQE of E
is called a fiberµ-generator ofF or relativeµ-generator ofΘ if P-a.s.Q̂∞

E (ω) generates
the restriction of theσ -algebraB to Eω up to sets ofµω-measure zero. IfQE = {Qi}
with QE (ω) = {Qi(ω)} and−∞ � m � n � ∞ then a sequence(ξm, ξm+1, . . . , ξn) will
be called the(ω,m,n,Q)-name ofx ∈ Eω if F iωx ∈Qξi (ϑiω) for all i =m,m+ 1, . . . , n.
An (ω,−∞,∞,Q)-name will be called just an(ω,Q)-name.

In the light of this definition it is clear thatQ is a relativeµ-generator if there exists a
measurable set̃E ⊂ E with µ(Ẽ)= 1 such that anyx, y ∈ Ẽω = {z ∈ Eω: (ω, z) ∈ Ẽ}, x �= y
have different(ω,Q)-names.

Using general properties of the conditional entropy the following version of the relative
Kolmogorov–Sinai theorem has been proved in a slightly less general setup in [31, Theo-
rem 2.4] (see also [82, Lemma II.1.5]) and it appears in the present setup (with the same
proof) in [32, Theorem 2.3.3].

THEOREM 1.1.2. If Q is a fiberµ-generator ofF thenhµ(F )= hµ(F,Q).

As usual, we say thatϑ is aperiodic (with respect toP) if P{ω ∈Ω: ∃n, ϑnω= ω} = 0.
The following relative version of Krieger’s theorem [105] has been proved in [102].

THEOREM 1.1.3. Suppose thatΘ is invertible, µ ∈ IP(E) is ergodic, ϑ is aperiodic and
hµ(F ) < log� for some integer� > 1. Then there exists a relativeµ-generatorQ consist-
ing of � sets.

The proof of Theorem 1.1.3 proceeds in the following way. First, we construct�-element
partitions ofEω for ω belonging to a set ofP-measure close to 1. This is done via coding
using most but not all levels of Rohlin’s towers (see [78]) constructed inΩ . These partitions
mostly do not change on further steps and we do modifications mainly on the complement
ω-set. The partition constructed on the first step carries already most of the entropy. After
that we employ repeatedly the second step which enables us to encode points more and
more precisely, i.e., to increase the resolution of partitions. This is done using few levels of
Rohlin’s towers whose number can be estimated via conditional entropies of refinements
of partitions.

The aperiodicity assumption onϑ means that our random transformations are, indeed,
random, at least, mildly. If(Ω,F ,P) is, in addition, a Lebesgue space, i.e., theσ -algebra
F is separableP-mod0 (which is not a very natural assumption from the probabilistic
point of view as we indicated this in Introduction) then we do not have to assume ape-
riodicity of ϑ and in this case Theorem 1.1.3 is a generalization of Krieger’s theorem.
Indeed, sinceϑ is ergodic it is either aperiodic or purely periodic. In the former case we
use Theorem 1.1.3 and in the latter casehP(ϑ)= 0, and so by [2],hµ(Θ)= hµ(F ) < log�.
Then Theorem 1.1.3 follows from Krieger’s original result, since, of course, any absolute
generating partition forF is also its relative generating partition.

Under the Lebesgue space assumption on the probability space(Ω,F ,P) there is an-
other proof of Theorem 1.1.3 suggested by A. Danilenko after he learned about the proof
from [102]. His argument is based on an orbit equivalence ofϑ to aP-preserving invertible
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ergodic transformationϑ ′ with hP(ϑ
′)= 0 which holds true assuming that(Ω,F ,P) is a

Lebesgue space (see [58]). Ifϑ ′(ω)= ϑk(ω)ω then definingΘ ′(ω, x)= (ϑk(ω)ω,F k(ω)ω x)

we obtain from [2] together with [144] thathµ(Θ ′)= h(r)µ (Θ ′)= h(r)µ (Θ). Thushµ(Θ ′) <
log� and applying the original Krieger theorem we obtain an absolute generating partition
P for Θ ′ with � elements. The proof concludes by the crucial observation that while this
partition may not be an absolute generator forΘ it is always a relative generator forΘ ,
i.e., a fiber generator forF . This follows since knowingω and theP-name of(ω, x)
with respect toΘ also gives us theP-name of(ω, x) with respect toΘ ′ (the orbit is
F -measurable) and this in turn determines(ω, x) uniquely. Although brief, this proof re-
lies on several highly nontrivial theorems including Krieger’s theorem itself. On the other
hand, the original proof of the relative theorem in [102] is simpler than the proof of the
absolute result since no care needs to be taken to encode bases of Rohlin towers. Another
advantage of this approach is that essentially the same technique works for the construction
of topological generators discussed in Section 1.3 where the orbit equivalence considera-
tions do not help. Finally, the above orbit equivalence arguments require that(Ω,F ,P) be
a Lebesgue space whereas in the proof from [102] the random mechanism is quite arbi-
trary and, in particular, this probability space can be nonseparable, which is natural from
the probabilistic point of view.

Next, we state a relative version of another important result in the entropy theory of dy-
namical systems the Shannon–McMillan–Breiman theorem which is used, in particular, in
the proof of Theorem 1.1.3. Its proof in a bit less general setup can be found, for instance,
in [82, Theorem 2.5] and in [31, Theorem 4.2] and it appears in the present setup (with,
essentially, the same proof) in [32, Theorem 2.2.5]. LetQ = {Qi} be a finite or count-
able measurable partition ofE with fiber partitionsQ(ω) = {Qi(ω)} of Eω. For anyµ ∈
PP(Ω×X) the conditional information ofQ given aσ -algebraFE is defined by (see [132])

Iµ(Q|FE )(ω) = −
∑
i

IQi(ω) logµ(Qi |FE )(ω)

= −
∑
i

IQi(ω) logµω
(
Qi(ω)

)= Iµω(Q(ω)), P-a.s., (1.1.6)

where{µω} is the factorization ofµ andIA denotes the indicator of a setA, i.e.,IA(x)= 1
if x ∈ A and= 0, otherwise. Recall, that the fibers of the partitionQ(n) =∨n−1

i=0 (Θ
i)−1Q

have the formQ(n)(ω)=∨n−1
i=0 (F

i
ω)

−1Q(ϑiω). For anyx ∈ Eω denote byQ(n)(ω, x) the
element of the partitionQ(n)(ω) which containsx.

THEOREM 1.1.4. Suppose thatµ ∈ IP(E) factorizes into{µω} and letQ be a finite or
countable measurable partition ofE withHµ(Q|FE ) <∞. Then

lim
n→∞

1

n
Iµω
(
Q(n)(ω)

)= Eµ(f |JΘ)(ω), µ-a.s. and inL1(E,µ), (1.1.7)
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where f (ω,x) = − logµω(Q(1)(ω, x)|Q(∞)(ω))(x) µ-a.s. where Q(∞)(ω) is the σ -
algebra generated by allQ(n)(ω), n � 0, and JΘ is theσ -algebra ofΘ-invariant sets.
If µ is ergodic then

lim
n→∞

1

n
logµω

(
Q(n)(ω, x)

)=−hµ(F,Q), µ-a.s. (1.1.8)

For fiber (relative) isomorphism theory, in particular, the characterization of a fiber iso-
morphism of random Bernoulli shifts (see Section 4.1) by their fiber entropy we refer the
reader to [157] and [67].

1.2. Topological pressure and variational principle

In this section we consider continuous RDS acting on compact metric fibers, i.e., in the
setup of Section 1.1 we assume thatX is a compact metric space, all fibersEω ⊂ X are
compact,Eω �= ∅ P-a.s., andFω :Eω → Eϑω is continuousP-a.s. It follows from a relative
version of the Krylov–Bogolyubov theorem or from the Markov–Kakutani fixed point the-
orem that under these conditions the set ofΘ-invariant measuresIP(E) is not empty (see
[7, Theorem 1.5.10] or [49, Corollary 6.13]). The exposition of this section follows [99]
and all proofs of results mentioned below can be found there.

For eachn ∈ N and a positive random variableε = ε(ω) define a family of metricsdωε,n
onEω by the formula

dωε,n(x, y)= max
0�k<n

(
d
(
Fkωx,F

k
ωy
)(
ε
(
ϑkω
))−1)

, x, y ∈ Eω,

whereF 0
ω is the identity map. It is not difficult to see thatE (2) = {(ω, x, y): x, y ∈ Eω}

belongs to the productσ -algebraF × B2 (as a graph of a measurable multifunction,
see [44, Proposition III.13]). Since for anyk ∈ N and a numbera the set{(ω, x, y) ∈
E (2): d(F kωx,F kωy) � aε(ϑkω)} is measurable with respect to this productσ -algebra we
conclude thatdωε,n(x, y) depends measurably on(ω, x, y) ∈ E (2). Denote byBx(ω, ε,n)
the closed ball inEω centered atx of radius 1 with respect to the metricdωε,n. Fordωε,1 and
Bx(ω, ε,1) we will write simply dωε andBx(ω, ε), respectively. We say thatx, y ∈ Eω are
(ω, ε,n)-close ifdωε,n(x, y)� 1.

DEFINITION 1.2.1. A setQ⊂ Eω is called(ω, ε,n)-separated ifx, y ∈Q, x �= y implies
dωε,n(x, y) > 1.

Due to the compactness ofEω there exists a smallest natural numbersn(ω, ε) such that
card(Q)� sn(ω, ε) <∞ for every(ω, ε,n)-separated setQ. Moreover, there always exists
a maximal(ω, ε,n)-separated setQ in the sense that for everyx ∈ Eω with x /∈ Q the
setQ ∪ {x} is not (ω, ε,n)-separated anymore. IfQ is maximal(ω, ε,n)-separated, then
Eω =⋃x∈QBx(ω, ε,n).

For each measurable in(ω, x) and continuous inx ∈ Eω function f on E set‖f ‖1 =∫ ‖f (ω)‖∞ dP where‖f (ω)‖∞ = supx∈Eω |f (ω,x)|. Denote byL1
E (Ω,C(X)) the space
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of such functionsf with ‖f ‖1<∞. If we identify f andg provided‖f − g‖1 = 0 then
L1
E (Ω,C(X)) becomes a Banach space with the norm‖ · ‖1. Forf ∈ L1

E (Ω,C(X)), n� 1,
a positive random variableε, and an(ω, ε,n)-separated setQ⊂ Eω set

Zn(ω,f,Q)=
∑
x∈Q

exp
(
Snf (ω,x)

)
,

where

(Snf )(ω,x)=
n−1∑
i=0

f
(
ϑiω,F iωx

)= n−1∑
i=0

f ◦Θi(ω,x),

and

πF (f )(ω, ε,n)= sup
{
Zn(ω,f,Q): Q is an(ω, ε,n)-separated subset ofEω

}
.

Since all summands inZn(ω,f,Q) are positive and any(ω, ε,n)-separated set can be com-
pleted to a maximal one, the supremum above can be taken only over maximal(ω, ε,n)-
separated sets. The following auxiliary result which relies on slightly modified arguments
from [31] provides basic measurability properties needed in what follows.

LEMMA 1.2.2. For any n ∈ N and a positive random variableε = ε(ω) the function
πF (f )(ω, ε,n) is measurable inω and for eachδ > 0 there exists a family of maximal
(ω, ε,n)-separated setsGω ⊂ Eω satisfying

Zn(ω,f,Gω)� (1− δ)πF (f )(ω, ε,n) (1.2.1)

and depending measurably onω in the sense thatG = {(ω, x): x ∈Gω} ∈ F × B which
means also that the mappingω  →Gω is measurable with respect to the Borelσ -algebra
induced by the Hausdorff topology on the spaceK(X) of compact subsets ofX. In partic-
ular, the supremum in the definition ofπF (f )(ω, ε,n) can be taken only over measurable
in ω families of(ω, ε,n)-separated sets.

In view of the above result, for eachf ∈ L1
E (Ω,C(X)) and any positive random variable

ε we can set

πF (f )(ε)= lim sup
n→∞

1

n

∫
logπF (f )(ω, ε,n) dP(ω). (1.2.2)

DEFINITION 1.2.3. The fiber topological pressure ofF (or the relative topological pres-
sure ofΘ) is the map

πF :L1
E
(
Ω,C(X)

)→ R∪ {∞}, whereπF (f )= lim
ε→0

πF (f )(ε), (1.2.3)
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and the limit taken overnonrandomε exists sinceπF (f )(ε) is monotone inε and, in fact,
limε→0 above equals supε>0. The quantityhtop(F )= h(r)top(Θ)= πF (0) is called the fiber
topological entropy ofF or the relative topological entropy ofΘ .

We will show at the end of this section that as in the deterministic case (see [162, §9.1])
it is possible to obtainπF (f ) via covers in place of(ω, ε,n)-separated sets.

REMARK 1.2.4. Since any two metrics on the compactX compatible with its topology
are uniformly continuous with respect to each other then any such metric will yield the
same relative topological pressureπF (f ) as defined above, i.e., the latter depends only on
the topology ofX.

REMARK 1.2.5. Sometimes (see, for instance, [109] and [31]) the relative topological
pressure is introduced via “weakly”(ω, ε,n)-separated setsQ, wherex, y ∈ Q, x �= y
implies dωε,n(x, y) � 1, which are less convenient in applications but lead, obviously, to
the same quantityπF (f ). If the supremum in the definition ofπF (f )(ω, ε,n) is taken
over “weakly” (ω, ε,n)-separated sets then the corresponding random variables remain
measurable and, in fact, the supremum can be taken over measurable families of such sets.

Definition 1.2.3 provokes immediately two natural questions whether the relative topo-
logical pressure remains the same if the order of lim sup and the integral in (1.2.2) is re-
versed and, also, what happens ifπF (f ) is defined via randomε.

PROPOSITION1.2.6. For anyf ∈ L1
E (Ω,C(X)),

πF (f ) =
∫

lim
ε→0

lim sup
n→∞

1

n
logπF (f )(ω, ε,n) dP(ω)

=
∫

lim
ε→0

lim inf
n→∞

1

n
logπF (f )(ω, ε,n) dP(ω) (1.2.4)

and if P is ergodic(with respect to the action ofϑ ) then(1.2.4)holds trueP-a.s. without
taking integrals in the right-hand side.

Next, we compare definitions of the relative topological pressure corresponding to ran-
dom and nonrandomε. For any compact subsetY ⊂ X denote byNY (r) the minimal
number of closed balls of diameterr which coverY .

LEMMA 1.2.7. Let ε andδ be positive random variables andAε,δ = {ω: δ(ω) > 1
2ε(ω)}.

Then for any maximal(ω, δ, n)-separated setQ,

πF (f )(ω,n, ε)� exp

(
n−1∑
i=0

Rε,δ
(
ϑiω
))
Zn(ω,f,Q), (1.2.5)
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whereRε,δ(ω)= κ(f )ε (ω)+ IAε,δ (ω)(2‖f (ω)‖∞ + logNEω(ε(ω))),

κ(f )ε (ω)= sup
{∣∣f (ω,x)− f (ω,y)∣∣: x, y ∈ Eω, d(x, y)� ε(ω)

}
,

andIA(ω)= 1 if ω ∈A and = 0 ifω /∈A.

COROLLARY 1.2.8. For anyn ∈ N and each positiveδ letQδ,nω be a measurably depend-
ing onω family of maximal(ω, δ, n)-separated sets(which exist in view of Lemma1.2.2).
Then

πF (f ) =
∫

lim
δ→0

lim sup
n→∞

1

n
logZn

(
ω,f,Qδ,nω

)
dP(ω)

= lim
δ→0

lim sup
n→∞

1

n

∫
logZn

(
ω,f,Qδ,nω

)
dP(ω). (1.2.6)

Moreover, if P is ergodic then(1.2.6) remains trueP-a.s. without taking the integral in
the right-hand side and then the first equality in(1.2.6)holds true without assuming mea-
surable dependence ofQδ,nω on ω. Furthermore, the result remains the same iflim sup is
replaced bylim inf.

Observe thatNY (r) is nonincreasing and right continuous inr and it is lower semi-
continuous inY on the spaceK(X) of compact subsets ofX considered with the Haus-
dorff topology. It follows that{(Y, r) ∈K(X)× (0,∞): NY (r)� n} is a closed set in the
product topology ofK(X)× (0,∞) for anyn ∈ N+ and, in particular,NY (r) is measur-
able in the pair(Y, r) with respect to the product Borelσ -algebra. Since for any positive
random variableε = ε(ω) the mapψ :Ω  →K(X)× (0,∞) defined byψ(ω)= (Eω, ε(ω))
is measurable thenN ◦ψ(ω)=NEω(ε(ω)) is measurable.

DEFINITION 1.2.9. We say that a positive random variableε belongs to the classN and
write ε ∈N if∫

logNEω
(
ε(ω)
)
dP(ω) <∞. (1.2.7)

SinceNX(r)�NEω(r) for all ω this holds true if, in particular,∫
logNX

(
ε(ω)
)
dP(ω) <∞.

The latter is satisfied if, for instance, the upper Minkowski (box) dimension

DX = lim sup
r→0

logNX(r)

− logr
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of X is finite and− ∫ logε(ω)dP(ω) <∞. Note also that

logNY
(
min(r1, r2)

) = max
(
logNY (r1), logNY (r2)

)
� logNY (r1)+ logNY (r2),

and so ifε, δ ∈ N then min(ε, δ) ∈ N . ThusN is a directed set and, clearly, it contains
also all positive constants.

The following result which makes sense for deterministic dynamical systems, as well,
shows that the same relative topological pressure is obtained taking randomε ∈ N and,
essentially,N is the largest class of positive random variables which yields something
reasonable.

PROPOSITION1.2.10. Letf ∈ L1
E (Ω,C(X)); then

lim
ε
N→0

πF (f )(ε)= sup
ε∈N

πF (f )(ε)= πF (f ), (1.2.8)

where the left-hand side is the limit along the directed setN . On the other hand, if 2ε /∈N
then
∫

logπF (f )(ω, ε,n) dP(ω)=∞ for all n ∈ N.

Setβ(ε)n (ω) = sup{γ > 0: dωε,n(x, y) � 1 providedx, y ∈ Eω, d(x, y) � γ }, which is a

continuity characteristic of the bundle RDSF . It is easy to see from Lemma 1.2.2 thatβ(ε)n
is a random variable. For a givenn ∈ N+ we can replaceϑ by ϑn and consider the bundle
RDSFn defined by(F n)kω = Fnϑ(k−1)nω

◦ · · · ◦ Fnϑnω ◦ Fnω .

COROLLARY 1.2.11 (cf. [31, Theorem 5.5]).Letf ∈ L1
E (Ω,C(X)) then for anyn ∈ N+,

πFn(Snf )� nπF (f ). (1.2.9)

If β(ε)n ∈N for any constantε > 0 then

πFn(Snf )= nπF (f ). (1.2.10)

Next, we turn to the relative variational principle for bundle RDS. Its first proof was
given in [109] in the particular case whenΩ is compact,E is a compact subset ofΩ ×X,
Θ is continuous and only continuous functions onΩ ×X are considered. Later the result
was extended in [31] to the RDS with the trivial bundle whereE =Ω×X though the proof
there contains some inaccuracies and unnecessary conditions. First, we state the following
result parts of which appeared already in several places [109,32,49,7].

LEMMA 1.2.12. For µ,µn ∈ PP(E), n = 1,2, . . . , write µn ⇒ µ if
∫
f dµn →

∫
f dµ

asn→∞ for anyf ∈ L1
E (Ω,C(X)) which introduces a weak∗ topology inPP(E). Then

(i) The spacePP(E) is compact in this weak∗ topology;
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(ii) For any sequenceνk ∈ PP(E), k = 0,1,2, . . . , the set of limit points in the above
weak∗ topology of the sequenceµ(n) = 1

n

∑n−1
k=0Θ

kνn asn→∞ is not empty and
it is contained inIP(E);

(iii) Letµ,µn ∈PP(E), n= 1,2, . . . , andµn⇒ µ asn→∞. LetP = {P1, . . . ,Pk} be
a finite partition ofX satisfying

∫
µω(∂Pω)dP(ω)= 0, whereµω are disintegra-

tions ofµ and∂Pω =⋃ki=1 ∂(Pi ∩Eω) is the boundary ofPω = {P1∩Eω, . . . ,Pk ∩
Eω}. Denote byR the partition ofΩ ×X into setsΩ × Pi . Then

lim sup
n→∞

Hµn(R|FE )�Hµ(R|FE ).

Observe that though in [99] this Lemma 1.2.12(iii) has been proved under the assump-
tion that(Ω,F ,P) is a Lebesgue space, in fact, employing Theorem 3.17 from [49] all as-
sertions remain true (with, essentially, the same proof) also without this assumption. Now
we can state the main result of this section called the fiber (relative) variational principle
whose proof can be found in [99].

THEOREM 1.2.13. LetF be a continuous bundle RDS onE andf ∈ L1
E (Ω,C(X)). Then

πF (f )= sup

{
hµ(F )+

∫
f dµ: µ ∈ IP(E)

}
. (1.2.11)

In order to obtain the fiber topological pressureπF (f ) via covers it will be conve-
nient to use the notion of a random setS which is just the collectionS of fibersS(ω) =
{x ∈ Eω: (ω, x) ∈ S} of a measurable with respect toF ×B setS ⊂ E which we denote by
the same letter and which, in fact, is the graph of the mapS :Ω→ 2X . If all fibers S(ω)
are open (closed) subsets ofEω in its induced fromX topology we callS an open (closed)
random set. A collectionA = {a} of random sets will be called a random cover ofE if
Eω =⋃a∈A a(ω) for all ω ∈Ω where, again,a(ω)= {x: (ω, x) ∈ a} and it will be called
an open random cover if alla ∈A are open random sets. For eachf ∈ L1

E (Ω,C(X)) and a
finite open random coverA= {a} of E set

π̃F (f )(ω,A,n)

= inf

{ ∑
b∈B(ω)

sup
x∈b
e(Snf )(ω,x): B(ω) is a finite subcover ofA(n)(ω)

}
(1.2.12)

whereA(ω) = A ∩ Eω = {a(ω), a ∈ A}, A(n)(ω) = ∨n−1
k=0(F

k
ω)

−1A(ϑkω), andC ∨ D
for coversC andD is the cover whose elements are all nonempty intersectionsc ∩ d ,
c ∈ C, d ∈ D. Clearly, A(n)(ω) is an open cover ofEω and the infimum in (1.2.12)
is taken over all its finite subcovers which exist sinceEω is compact. It turns out that
π̃F (f )(ω,A,n) is measurable inω. Indeed,A(n)(ω) is theω-fiber of the open random
coverA(n) =∨n−1

k=0(Θ
k)−1A. Let A = {a1, . . . , am}. For each stringξ = (ξ0, . . . , ξn−1),

1 � ξi �m setaξ (ω) =⋂n−1
k=0(F

k
ω)

−1aξk (ϑ
kω) ∈ A(n)(ω) which is anω-fiber of the ran-

dom set
⋂n−1
k=0(Θ

k)−1aξk . For each collectionΨ of such strings denote byΩΨ the subset of
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Ω such that for eachω ∈ΩΨ ,
⋃
ξ∈Ψ aξ (ω)= Eω. SinceΩΨ = {ω: Eω \⋃ξ∈Ψ aξ (ω)= ∅}

it follows from Proposition 2.4 in [49] (see also [44, p. 80]) thatΩΨ is measurable. Inter-
sections ofΩΨ for differentΨ yield a finite measurable partition ofΩ . On each element
of this partition the infimum in (1.2.12) is, in fact, the minimum taken over a finite number
of subcovers determined by corresponding string collectionsΨ which yields immediately
that π̃F (f )(ω,A,n) is measurable. Furthermore, it is easy to see that

π̃F (f )(ω,A,n+ k)� π̃F (f )(ω,A,n)π̃F (f )(ϑnω,A, k).

Hence by the subadditive ergodic theorem (see, for instance, [82])P-a.s. the limit

π̃F (f )(A)= lim
n→∞

1

n
logπ̃F (ω,A,n)

exists though it can be random ifP is not assumed to be ergodic. Next, we set

π̃F (f )= sup
A

∫
π̃F (f )(A)dP,

where the supremum is taken over all finite open random covers ofE . By modifying slightly
the arguments of Section 2.3 in [82] we derive thatπ̃F (f )= πF (f ). It can be shown also
that we arrive at the same quantityπ̃F (f ) if we start with (nonrandom) open coversA of
X in place of random covers as above, defineπ̃F (f )(ω,A,n) by (1.2.12) withA(ω) =
A∩ Eω, and proceed as above.

In conclusion observe that the relations between the fiber entropy, the volume growth
and the growth in the homology group under the actions of random smooth maps were
obtained in [103].

1.3. Expansivity and topological generators

In this section we will assume thatP is ergodic invariant measure ofϑ and will deal with
the same setup as in Section 1.2, i.e., when random transformationsFω are continuous and
fibersEω are compact, but some of the results will require allFω :Eω→ Eϑω to be homeo-
morphisms. By this reason we will need here a larger class of metrics than in Section 1.2.
Namely, for any positive random variableε = ε(ω), x, y ∈ Eω, andm,n ∈ Z, m< n intro-
duce a family of metrics on eachEω by

dωε;m,n(x, y)= max
m�k<n

(
d
(
Fkωx,F

k
ωy
)(
ε
(
ϑkω
))−1)

allowingm to be negative ifFω ’s are invertible (i.e., homeomorphisms in our case). Denote
alsodωε,n = dωε;0,n, dωε,±n = dωε;−n,n. ForQ,E ⊂ Eω we say thatE (ω, ε,n)-spansQ if for
any y ∈ Q there isx ∈ E so thatdωε,n(x, y) � 1. Denote byrn(Q,ω, ε) the minimum
cardinality of a set which(ω, ε,n)-spansQ. If K ⊂ Eω is compact thenrn(K,ω, ε) <∞.
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For each compactK ⊂ Eω and any positive random variableε = ε(ω) ∈N define

r(K,ω, ε)= lim sup
n→∞

1

n
logrn(K,ω, ε) (1.3.1)

and

hF (K,ω)= lim
ε
N→0

r(K,ω, ε), (1.3.2)

where the limit is taken over the directed setN introduced in Definition 1.2.9 and it exists
in view of monotonicity ofr(K,ω, ε) in ε. Similarly to [99] it follows that the limit re-
mains the same if we take it over only constantε→ 0. LetBx(ω, ε,n), Bx(ω, ε,±n), and
Bx(ω, ε;m,n) be the closed ball inEω centered atx and having the radius 1 with respect to
the metricsdωε,n, d

ω
ε,±n, anddω

ε;m,n, respectively. Fordωε,1 andBx(ω, ε,1) we write simply
dωε andBx(ω, ε).

Set

Γε(x,ω)=
⋂
n�1

Bx(ω, ε,±n) or Γε(x,ω)=
⋂
n�1

Bx(ω, ε,n)

provided we assume or do not assume the invertibility ofFω ’s, respectively. Define

h∗F (ω, ε)= sup
x∈Eω

hF
(
Γε(x,ω),ω

)
. (1.3.3)

Observe that

F−1
ω Γε(Fωx,ϑω)= Γε(x,ω),

and so

rn
(
Γε(x,ω),ω, δ

)
� rn−1

(
Γε(Fωx,ϑω),ϑω, δ

)
for any positive random variableδ. Hence

hF
(
Γε(x,ω),ω

)
� hF
(
Γε(Fωx,ϑω),ϑω

)
and sinceFωEω = Eϑω we conclude thatP-a.s.

h∗F (ω, ε)� h∗F (ϑω, ε)

and by ergodicity ofϑ it follows that h∗F (ω, ε) = constP-a.s. and from now on it will
be denoted byh∗F (ε). Observe thath∗F (ε) is the same for allε such thatε(ω) � diamEω
P-a.s. and it coincides then with the fiber topological entropyhtop(F ) of F introduced in
Definition 1.2.3 via separated sets but the same quantity can be easily obtained employing
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spanning sets as above (see [82, Sections 2.2 and 2.3]). In view of monotonicity ofh∗F (ε)
in ε the limit

h∗F = lim
ε
N→0

h∗F (ε) (1.3.4)

exists andh∗F � htop(F ). Similarly to [99] it follows that this limit remains the same if it is
taken only over constantε→ 0.

DEFINITION 1.3.1. F will be called fiber (relative) expansive with an expansivity char-
acteristicε ∈ N if P-a.s.Γε(x,ω) = x for all x ∈ Eω. F will be called fiber (relative)
h-expansive ifh∗F (ε)= 0 for someε ∈N andF will be called fiber (relative) asymptoti-
cally h-expansive ifh∗F = 0.

DEFINITION 1.3.2. A finite or countable partitionQ = {Qi} of E into measurable sets
Qi will be called a fiber (relative) topological generator providedx = y wheneverP-a.s.
Θn(ω,x) andΘn(ω,y) belong to the same element ofQ for all n ∈ Z or for all n ∈ N in
the invertible or in the noninvertible case, respectively. In other words,P-a.s. any points
x, y ∈ Eω, x �= y have different(ω,Q)-names.

The emphasis here is that all pointsx �= y on the same fiberEω must be separated. This
implies thatQ is a generator for any invariant measure whose marginal onΩ is P but, in
fact, it is a much more stringent requirement which cannot be satisfied in many nonrelative
situations. The following result has been proved in [102].

THEOREM 1.3.3. Suppose thatϑ is aperiodic, Fω are homeomorphisms, h∗F = 0 and
htop(F ) < log� for some integer� > 1 then there exists a fiber topological generator con-
sisting of� sets.

The ideologies of the proofs of Theorems 1.1.3 and 1.3.3 are somewhat similar, only in
the case of Theorem 1.3.3 we employε-entropiesh∗F (ε) (and not conditional entropies as
in Theorem 1.1.3) in order to estimate the number of levels of Rohlin’s towers needed to
encode points more and more precisely on subsequent steps of our inductive construction.
We stress that Theorem 1.3.3 does not have a counterpart in the usual deterministic theory
without strong additional assumptions since, for instance, the only generator for the identity
transformation is the partition into points. Observe also that the fiber generating partitions
constructed in Theorems 1.1.3 and 1.3.3 enable us to represent the system as a random
symbolic shift (see Section 4.1).

Next, we proceed to the further study of fiber (relative) topological entropy-like char-
acteristics (introduced in the deterministic case in [129]) which both clarify the condition
h∗F = 0 from Theorem 1.3.3 and enable us to derive another important result about the
upper semi-continuity of the fiber metric entropy of fiber expansive random continuous
transformations. LetP(X) denote the set of all covers of the spaceX containing a fi-
nite subcover and letU(X) be the set of all open finite covers ofX. ForA ∈ P(X) we
write AnF (ω) =

∨n−1
k=0(F

k
ω)

−1A(ϑkω) whereA(ω) = A ∩ Eω is the induced cover ofEω
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by elementsa ∩ Eω, a ∈ A. For any nonempty setY ⊂ X and a coverA ∈ P(X) write
N(Y,A) = min{card(C): C ⊂ A, Y ⊂⋃C} andN(∅,A) = 1. ForA,B ∈ P(X) we set
alsoN(A(ω)|B(ω)) = maxb∈B N(b ∩ Eω,A). As usual, forA,B ∈ P(X) we write also
A 0 B if A is a refinement ofB, i.e., elements ofB are unions of some elements ofA.
Similarly to (1.2)–(1.10) in [129] we have that for anyA,B,C,D ∈P(X),

N
(
A(ω)|B(ω))�N(C(ω)|D(ω)) (1.3.5)

providedC 0A andB 0D,

N
(
(Fω)

−1A(ϑω)|(Fω)−1B(ϑω)
)
�N
(
A(ϑω)|B(ϑω)), (1.3.6)

N
(
A(ω)∨B(ω)|C(ω))�N(A(ω)|C(ω))N(B(ω)|A(ω)∨C(ω)), (1.3.7)

N
(
A(ω)∨B(ω)|C(ω)∨D(ω))�N(A(ω)|C(ω))N(B(ω)|D(ω)), (1.3.8)

N
(
A(ω)
)
�N
(
B(ω)
)
N
(
A(ω)|B(ω)), (1.3.9)

writing N(A(ω)) in place ofN(A(ω)|α(ω)) providedα(ω) is the trivial cover ofEω, and

N
(
A(ω)|B(ω))�N(A(ω)|C(ω))N(C(ω)|B(ω)). (1.3.10)

By (1.3.6) and (1.3.8) it is easy to see that the sequencean(ω)= logN(AnF (ω)|BnF (ω)) is
subadditive, and so the subadditive ergodic theorem (see, for instance, [82]) implies that
P-a.s. the limit

hF (A|B)= lim
n→∞

1

n
logN
(
AnF (ω)|BnF (ω)

)
(1.3.11)

exists, it is not random and

hF (A|B)�
∫

logN
(
A(ω)|B(ω))dP(ω). (1.3.12)

The numberhF (A|B) will be called the fiber conditional entropy ofF on a coverA with
respect to a coverB. If B is the trivial cover andA is an open cover ofX thenhF (A|B) is
the fiber topological entropyhtop(F,A) of F with respect to the coverA, and so by (1.3.5),

htop(F,A)� hF (A|B) (1.3.13)

for anyB ∈ P(X).
Observe that by (1.3.5),

hF (A|B)� hF (C|D) if C 0A andB 0D. (1.3.14)

Thus there exists a limit (which may be finite or infinite) over the directed setU(X),

hF (B)= lim
A∈U(X)

hF (A|B)= sup
A∈U(X)

hF (A|B) (1.3.15)
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which will be called the fiber conditional entropy ofF with respect to a coverB.
By (1.3.14),

hF (A)� hF (B) for A0 B, (1.3.16)

and so we can take the limit once more

hF = lim
B∈U(X)

hF (B)= inf
B∈U(X)

hF (B) (1.3.17)

which is called the fiber conditional entropy ofF . In view of (1.3.13),

htop(F )� hF . (1.3.18)

Observe also that writingAnF (ω) andBnF (ω) in (1.3.9) in place ofA(ω) andB(ω), respec-
tively, then taking log, dividing byn and passing to the limit asn→∞ we obtain

htop(F,A)� htop(F,B)+ hF (A|B). (1.3.19)

Taking here supremum overA ∈ U(X) we have

htop(F )� htop(F,B)+ hF (B). (1.3.20)

Similarly, we obtain also from (1.3.10) that

hF (A|B)� hF (A|C)+ hF (C|B). (1.3.21)

The following result (proved in [102]) connectsh∗F (ε) introduced in the first part of this
section with fiber conditional entropieshF (A).

PROPOSITION 1.3.4. Let ε ∈ N andA,E ∈ U(X) satisfydiamA(ω) � ε(ω) < 1
2L(ω)

whereL = L(ω) is a random variable such thatL(ω) is a Lebesgue number(see, for
instance, [82]) of the coverE(ω). Then

hF (A)� h∗F (ε)� hF (E). (1.3.22)

It follows thatF is asymptotically fiberh-expansive if and only ifhF = 0.

In view of (1.3.18) it follows, in particular, that the asymptotic fiberh-expansivity as-
sumption of Theorem 1.3.3 holds true if the fiber topological entropy ofF is zero.

Let A = {a1, . . . , ar} be a finite Borel partition ofX then we can choose compact sets
bi ⊂ ai , i = 1, . . . , r , such that∫

µω
(
ai(ω) \ bi(ω)

)
dP(ω) < ε,
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whereai(ω) = ai ∩ Eω andbi(ω) = bi ∩ Eω. Then settingb0 = X \⋃ri=1bi we obtain a
partitionB = {b0, b1, . . . , br} of X and (see the proof of (2.5) in [99]),

hµ(F, Ã)� hµ(F, B̃)+ 1, (1.3.23)

whereÃ= {ã1, . . . , ãr} andB̃ = {b̃0, b̃1, . . . , b̃r} are partitions ofE into setsãi = E∩(Ω×
ai) for i = 1, . . . , r andb̃i = E ∩ (Ω×bi) for i = 0,1, . . . , r . Observe thatC = {c1, . . . , cr}
with ci = b0 ∪ bi , i = 1, . . . , r , is an open cover ofX and

N
(
B(ω)|C(ω))� 2, (1.3.24)

whereB(ω)= B ∩ Eω andC(ω)= C ∩ Eω are corresponding induced covers ofEω. Em-
ploying (1.3.12), (1.3.21), (1.3.23) and (1.3.24) together with standard properties of the
conditional entropy (see, for instance, [82, Section 2.1]) we derive similarly to Proposi-
tion 4.2 in [129] that

hµ(F )� hµ(F,D)+ hF (D) (1.3.25)

for anyµ ∈ IP(E) and each finite partitionD = {d1, . . . , dr} of E obtained from a finite
Borel partitionD̃ = {d̃1, . . . , d̃r} of X by takingdi = E ∩ (Ω × d̃i ).

Now we are ready to derive the upper semi-continuity of the metric fiber entropyh·(F ) :
IP(E)→ R̄ with respect to the narrow topology onPP(E) where a convergenceν→ µ

means that
∫
f dν → ∫ f dµ for any f ∈ L1

E (Ω,C(X)) (see Chapter 3 in [49]). Set
h∗µ(F )= lim supν→µ hν(F )− hµ(F ).

THEOREM 1.3.5. Let F be a continuous bundle RDS(i.e., all Fω are continuous maps)
andµ ∈ IP(E). Then

h∗µ(F )� h∗F . (1.3.26)

In particular, if F is fiber asymptoticallyh-expansive(i.e., h∗F = 0) thenhµ(F ) as a func-
tion of µ ∈ PP(E) is upper semi-continuous in the narrow topology onIP(E). Hence, in
this case there exists a maximizing measure in the variational principle(1.2.11) (which is
called an equilibrium state).

PROOF. Assume, first, thathtop(F ) = ∞ and show that in this caseh∗F = ∞, as well,
implying (1.3.26). Indeed, by (1.3.20) this would follow ifhtop(F,B) <∞ for B ∈ U(X).
But by the subadditivity arguments

htop(F,B) = lim
n→∞

1

n

∫
logN
(
BnF (ω)

)
dP(ω)= inf

n�1

1

n

∫
logN
(
BnF (ω)

)
dP(ω)

�
∫

logN
(
B(ω)
)
dP(ω) <∞

as N(B(ω)) is bounded by the number of elements inB ∈ U(X). Now assume that
htop(F ) <∞, and so by the variational principle Theorem 1.2.13 all fiber metric entropies
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are finite, as well. LetA = {a1, . . . , ar} ∈ U(X). Take a coverB = {b1, . . . , br} ∈ U(X)
such that̄bi ⊂ ai for i = 1, . . . , r . Then take continuous functionsϕi :X→[0,1] such that
ϕi(x)= 1 for x ∈ b̄i andϕi(x)= 0 for x /∈ ai , i = 1, . . . , r . For someα ∈ [0,1] we have∫

µω

(
Eω ∩

r⋃
i=1

ϕ−1
i (α)

)
dP(ω)= 0.

Hence the finite Borel partitionC = {c1, . . . , cr} of X consisting of setsc1 = ϕ−1
1 [α,1],

c2 = ϕ−1
2 [α,1] \ ϕ−1

1 [α,1], . . . , cr = ϕ−1
r [α,1] \⋃r−1

i=1 ϕ
−1
i [α,1] satisfies

∫
µω

(
Eω ∩

r⋃
i=1

∂ci

)
dP(ω)= 0.

We also have thatai ⊃ ci , i = 1, . . . , r . For each fixedn we have also∫
µω
(
∂C

(n)
F (ω)

)
dP(ω)= 0.

It follows from (1.1.1) and Theorem 3.17 in [49] that there exists an open in the narrow
topology neighborhoodUn ⊂ IP(E) of µ such that

1

n
Hµ
(
C
(n)
F |FE

)
� 1

n
Hν
(
C
(n)
F |FE

)− ε
wheneverν ∈ Un. Thus by (1.3.16), (1.3.25) and the subadditivity of the conditional en-
tropy (see [142, §5] or [82, §2.1]),

hµ(F ) � hµ(F,C)= lim
n→∞

1

n
Hµ
(
C
(n)
F |FE

)
� lim sup

n→∞
sup
ν∈Un

1

n
Hν
(
C
(n)
F |FE

)− ε � lim sup
n→∞

sup
ν∈Un

hν(F,C)− ε

� lim sup
n→∞

sup
ν∈Un

hν(F )− hF (C)− ε � lim sup
ν→µ

hν(F )− ε

taking into account thatC 0 A. Sinceε is arbitrary we obtainh∗µ(F ) � hF (A) and since
A is arbitrary, as well, (1.3.26) follows. �

2. Smooth RDS: Invariant manifolds

2.1. Smooth RDS

Set-up. In this section we discuss local, differential properties of a smooth RDS. Let
(Ω,F ,P) be a probability space andϑ : (Ω,F ,P)←↩ a measure-preserving transforma-
tion which represents the time evolution of the driving noise system. Note that in this



400 Yu. Kifer and P.-D. Liu

sectionϑ will not be assumed invertibleexcept indicated otherwise. We will always as-
sume thatM is a smooth compact Riemannian manifold without boundary. Let Diffr (M)

(r � 1 is an integer) be the space ofCr diffeomorphisms ofM , endowed with the usualCr

topology (see [70]). Let now

F :Ω→ Diff r (M), ω  → Fω

be a Borel measurable map and consider the RDS, denoted by the same notationF , over
(Ω,F ,P, ϑ) generated by the random transformation{Fω: ω ∈ Ω}. To remark,F is a
bundle RDS, as defined in Section 1.1, withE =Ω ×M . The Borelσ -algebra ofM will
be denoted byB, and

Θ :Ω ×M→Ω ×M, (ω,x)  → (ϑω,Fωx)

is the corresponding skew product transformation.

Polish noise systems.Unlike in the other sections, in this and the next one we some-
times have to be a little more careful about the measurable structure of(Ω,F ,P). Specif-
ically, we will assume for some cases thatΩ is a Polish space (i.e., a separable topolog-
ical space with a complete metric) andF is its Borelσ -algebra (when this assumption
is made, we will indicate explicitly). In such a case(Ω,F ,P, ϑ) will be called aPolish
system. This assumption arises due partially to the need to work with Lebesgue spaces and
their measurable partitions (see [142] for a detailed treatment of this topic) for many of
our purposes. A measure-theoretic result states that a Polish space with a Borel probabil-
ity measure and with the completion of its Borelσ -algebra with respect to this measure
constitutes a Lebesgue space (see also [142]). Another nice property of Polish spaces is
Lusin’s theorem which says that a measurable function is in fact continuous outside of a
set of arbitrarily small measure. More precisely, letX be a Polish space,E a topological
space with a countable basis,µ a Borel probability measure onX, andf :X→E a Borel
map. Then for eachε > 0 there is a compact setK ⊂X such thatµ(X \K)� ε andf |K
is continuous (see [21]). This property will enable us to prove some kind of continuous
dependence of local stable or unstable manifolds of an RDSF on (ω, x) ∈Ω ×M , which
is necessary for constructing suitable measurable partitions needed in the treatment of en-
tropy formulae and SRB measures. We further remark that, when only the Borelσ -algebra
of a Polish space is concerned, one can just use part of the topology and may treat it as
a compact metric space. In fact, if(Ω,O) is a Polish space with topologyO, then there
exists a topologyO′ ⊂O such that(Ω,O′) is compact metrizable and has the same Borel
σ -algebra as(Ω,O) [71]. This fact is a fundamental structural property of Polish spaces
and it is very helpful to overcome difficulties brought about by the noncompactness ofΩ

(see [12,121]).

Examples. The following are some examples of Polish measure-preserving systems
which often serve as canonical models of driving noise in the theory of RDS.

(i) HereΩ = Diff r (M)Z
+

or Ω = Diff r (M)Z (r � 1 is an integer, cf. Remark 2.2.19),
endowed with the product topology. It is well known thatΩ with this topology is a Pol-
ish space (see, e.g., [118, Chapter V]). Nowϑ :Ω → Ω is the left shift operator, i.e.,
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(ϑω)n = ωn+1 for ω= (ωn) ∈Ω , n ∈ Z+ or Z, andP is a Borel probability measure onΩ
which is invariant with respect toϑ . This corresponds to the usual product of random dif-
feomorphisms by consideringF :Ω→ Diff r (M), ω  → ω0. Specifically, the caseP = νZ+

orP = νZ, whereν is a Borel probability measure on Diffr (M), corresponds to the classical
product of i.i.d. (independent and identically distributed) random diffeomorphisms [82].

(ii) Consider the classical Wiener space(Ω,F ,P). HereΩ = {ω: ω(·) ∈ C(R+,Rd),
ω(0)= 0} (for the one-sided time case) orΩ = {ω: ω(·) ∈ C(R,Rd), ω(0)= 0} (for the
two-sided time case), endowed with the metric

d(ω,ω′)=
+∞∑
n=1

2−n
(

sup
|t |�n

∣∣ω(t)−ω′(t)
∣∣∧ 1
)
, ω,ω′ ∈Ω,

which makesΩ a Polish space,F is its Borelσ -algebra andP is the Wiener measure
onΩ . Now for each fixedt �= 0,ϑt :Ω→Ω defined by(

ϑtω
)
(·)= ω(t + ·)−ω(t), ω ∈Ω,

preservesP and it is ergodic. The coordinate process on(Ω,F ,P) describes the classical
Brownian motion and(Ω,F ,P, ϑ1) serves as a canonical noise model driving the RDS
generated by the time discretization of a stochastic flow of diffeomorphisms arising from
the solution of a stochastic differential equation (see [7, Chapter 2] for details).

STANDING HYPOTHESES FORSECTION 2.
• F is aCr (r � 1 integer) RDS over(Ω,F ,P, ϑ), as defined just above;
• µ is an invariant measure ofF , i.e.,µ is a probability on(Ω ×M,F × B) which

isΘ-invariant and which has marginalP onΩ . Its disintegrationµω, ω ∈Ω will be
called thesample measuresof µ.

2.2. Stable invariant manifolds

Lyapunov exponents.By a trivialization argument on the measure-preserving system
Θ : (Ω × M,µ)←↩, one can easily have the following reformulation of the celebrated
Oseledec multiplicative ergodic theorem (MET) [131,147].

THEOREM 2.2.1. Assume thatF is of classC1 (i.e., r = 1) and assume the integrability
condition∫

log+ |DxFω|dµ(ω,x) <+∞ (2.2.1)

(where log+ a := max{loga,0}). Then there exists a measurable set∆0 ⊂ Ω ×M such
thatµ(∆0)= 1 and for each(ω, x) ∈∆0 there are numbers

−∞� λ(1)(ω, x) < λ(2)(ω, x) < · · ·< λ(r(ω,x))(ω, x) <+∞
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(measurable in(ω, x)) and an associated nested sequence of subspaces ofTxM ,

{0} = V (0)(ω, x)⊂ V (1)(ω, x)⊂ · · · ⊂ V (r(ω,x))(ω, x)= TxM
(also measurable in(ω, x)) satisfying

lim
n→+∞

1

n
log|DxFnωξ | = λ(i)(ω, x)

for ξ ∈ V (i)(ω, x) \ V (i−1)(ω, x), 1� i � r(ω, x).

Eachλ(i)(ω, x) is called aLyapunov exponentof F at (ω, x),

m(i)(ω, x) := dimV (i)(ω, x)− dimV (i−1)(ω, x)

is called itsmultiplicity, and{(λ(i)(ω, x),m(i)(ω, x)): 1� i � r(ω, x)} theLyapunov spec-
trum of F at (ω, x). The reader is referred to [7,8,23] and the survey [117] for many other
interesting results on Lyapunov exponents of RDS, especially of i.i.d. RDS.

Stable manifolds: introductory remarks.Lyapunov exponents describe the exponential
growth rates of the norms of vectors under successive actions of derivatives of the random
diffeomorphisms. The invariant manifold theory is a nonlinear counterpart of the linear
theory of Lyapunov exponents. We first give a rough description of this theory. Corre-
sponding to each negative Lyapunov exponentλ(i)(ω, x) < 0 at a typical point(ω, x), one
can consider the collection of points of the manifold whose orbits under successive actions
of the random maps will cluster with that ofx at least with the same exponential rate as
the exponentλ(i)(ω, x), i.e.,

Ws,i(ω, x) :=
{
y ∈M: lim sup

n→+∞
1

n
logd(Fnωx,F

n
ωy)� λ(i)(ω, x)

}
, (2.2.2)

whered(·, ·) is the metric onM induced by the Riemannian norm. This collection of points
is clearly invariant in the sense that

FωW
s,i(ω, x)=Ws,i(ϑω,Fωx).

However, the crucial thing here is that, ifF is of classC2 (or C1+α with α ∈ (0,1]) and
some integrability condition on theC2 (or C1+α)-norm of the random mapsFω is sat-
isfied, the setWs,i(ω, x), as a subset of the manifoldM , can be shown to have a nice
submanifold structure (it is actually the image ofV (i)(ω, x) under an injective immersion
of at least classC1) and hence will be called thestable manifoldof F at (ω, x) associated
with the exponentλ(i)(ω, x). The stable manifolds have another important property, i.e.,
the so-called “absolute continuity property” which says that maps defined by sliding along
theWs,i -manifolds between two discs transverse to these submanifolds take Lebesgue zero
sets to Lebesgue zero sets. In the case of a deterministicC2 (orC1+α) diffeomorphism pre-
serving an absolutely continuous (with respect to the Lebesgue on the manifold) reference
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measure, construction of such invariant families of submanifolds, via the crucial technical
devices of the Lyapunov metric (or norm) and regular neighborhoods, together with the
treatment of the absolute continuity property constitutes a substantial part of what is often
called Pesin theory, due to the landmark works of Pesin in the mid-seventies (see [134]
for a systematic account of this theory). This invariant manifold treatment paved the way
to a series of deep ergodic–theoretic results of the system, and it (especially the absolute
continuity property) serves as a bridge which allows us to pass from local differential prop-
erties of the dynamics to the study of its global metric behaviors. For example, one of the
most striking of these results is the so-called Pesin entropy formula which expresses the
entropy of the dynamical system through its Lyapunov exponents (see [134] and see also
[110] for a substantial development of this theory). What we described above is a partial
version for the RDSF of Pesin’s stable manifold treatment, and in this section we will
present the related results in a more detailed way. Before doing this, we first remark that
our presentation below is more orientated towards dealing with entropy formula of Pesin
type for the RDSF (in Section 3) and is adopted from [118, Chapter III] (see the refer-
ences therein and [51] for an account of related works), which goes mainly along Pesin’s
original scheme (a combination of ergodic theory, contraction principle of Banach spaces
and graph transformation method). We indicate that [118, Chapter III] deals with only the
i.i.d. case but the treatment is identical for the general stationary case. Ruelle’s alterna-
tive approach [147], which makes use of a perturbation method and is more analytic in
nature, can also be adapted to the random case (see [43]). In fact, this latter approach has
the advantage of an easier adaptability to the random case as well as to Hilbert spaces
[149,153], but an adaption of it suitable for the purpose of dealing with entropy formula
does not yet exist. We also remark that invariant manifolds have been constructed for RDS
under various conditions and for various purposes by many authors, we refer the reader to
[7, Chapter 7] for a comprehensive account.

We now proceed to the more precise statement of the related results. In the rest of Sec-
tion 2.2 we will always assume thatF is of classC2 (i.e., r = 2) and satisfies∫

log+ |Fω|C2 dP(ω) <+∞, (2.2.3)

where|f |C2 is the usualC2-norm of f ∈ Diff 2(M) (see, e.g., [118, Chapter II] for the
definition). See Remark 2.2.18 for a discussion about the case ofF beingC1+α .

Lyapunov norms and regular neighborhoods.Let ∆0 ⊂Ω ×M be the Oseledec for-
ward regular set of(F,µ) as introduced in Theorem 2.2.1 (note that (2.2.3) implies (2.2.1)),
and put

∆= {(ω, x) ∈∆0: λ(1)(ω, x) >−∞}. (2.2.4)

Let [a, b], a < b� 0, be a closed interval ofR. Define

∆a,b =
{
(ω, x) ∈∆: λ(1)(ω, x) < a andλ(i)(ω, x) /∈ [a, b] for all i

}



404 Yu. Kifer and P.-D. Liu

and assume that∆a,b �= ∅. For (ω, x) ∈∆a,b andn, l ∈ Z+, set

E0(ω, x)=
⋃

λ(i)(ω,x)<a

V (i)(ω, x), H0(ω, x)=E0(ω, x)
⊥,

En(ω,x)=DxFnωE0(ω, x), Hn(ω,x)=DxFnωH0(ω, x), n > 0,

F n,0ω = id, F n,lω = Fϑn+l−1ω ◦ · · · ◦ Fϑnω, l > 0,

S
n,l
(ω,x)

= [DFnωxFn,lω ]∣∣En(ω,x), U
n,l
(ω,x)

= [DFnωxFn,lω ]∣∣Hn(ω,x)
(note that in generalH0(ω, x) may not be invariant, i.e.,DxFωH0(ω, x) �=H0(Θ(ω,x))).
Fix arbitrarily 0< ε < (b − a)/200 which is sufficiently small as compared withb − a
(which is something like spectral gap).

Let now (ω, x) ∈∆a,b. The vectors inE0(ω, x) andH0(ω, x) have respectively expo-
nential growth rates smaller thana and bigger thanb under actions ofDxFnω , this implies
that the forward orbit ofx under actions ofFnω , n � 0, has a kind of nonuniform partial
hyperbolicity. Actually, there is the following

LEMMA 2.2.2 (Nonuniform partial hyperbolicity).There exists a measurable function
l :∆a,b × Z+ → (0,+∞) such that forµ-a.e. (ω, x) ∈ ∆a,b and for all n, l ∈ Z+ one
has

l(ω, x,n+ l)� l(ω, x,n)eεl (2.2.5)

and
(1) |Sn,l(ω,x)ξ | � l(ω, x,n)e(a+ε)l |ξ | for ξ ∈En(ω,x);
(2) |Un,l(ω,x)η|� l(ω, x,n)−1e(b−ε)l |η| for η ∈Hn(ω,x);
(3) γ (En+l (ω, x),Hn+l (ω, x))� l(ω, x,n)−1e−εl , whereγ (·, ·) denotes the angle be-

tween the two related subspaces.

The inequality (2.2.5) implies that the estimates (1)–(3) of Lemma 2.2.2 may get worse
along the trajectory (whenn, l increase) but relatively very slowly (i.e., with an exponential
rate which is very small as compared with the spectral gapb− a). Such things play a basic
role in the study of nonuniform (partial) hyperbolicity and they are actually consequences
of ergodic theorems.

The next important step is to introduce a sequence of new norms‖ · ‖(ω,x),n, n � 0,
onTFnωxM =En(ω,x)⊕Hn(ω,x), calledLyapunov norms(or metric), along the forward
orbit ofµ-a.e.(ω, x) ∈∆a,b so that these norms do not change “seriously” the original Rie-
mannian norm (i.e., the difference increases withn at most with an exponential rate which
is very small as compared withb − a) and some kind of uniform (partial) hyperbolicity
can be read by means of them. This is done in the following lemma.

LEMMA 2.2.3 (Lyapunov norms).For µ-a.e. (ω, x) ∈ ∆a,b one can define a sequence
of norms‖ · ‖(ω,x),n, n� 0 (depending measurably on(ω, x)), on TFnωxM = En(ω,x)⊕
Hn(ω,x) such that
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(1) ‖Sn,l(ω,x)ξ‖(ω,x),n+1 � ea+2ε‖ξ‖(ω,x),n for ξ ∈En(ω,x);
(2) ‖Un,l(ω,x)η‖(ω,x),n+1 � eb−2ε‖η‖(ω,x),n for η ∈Hn(ω,x);
(3) 1

2|ζ | � ‖ζ‖(ω,x),n � Aεl(ω,x,0)2e2εn|ζ | for ζ ∈ TFnωxM , whereAε is a constant
depending only onε.

To construct stable manifolds, another important device is the following regular neigh-
borhoods lemma, which says that, forµ-a.e. (ω, x) ∈ ∆a,b, along the forward orbit
{Fnωx}+∞

n=0 there exists a sequence of neighborhoodsN(ω,x),n of Fnωx whose sizes vary
with n relatively very slowly (in a similar sense as before) and on whichFϑnω act like
very much their derivatives atFnωx (with respect to the Lyapunov norms). A condition
like (2.2.3) rather than one on theC1-norm of the random maps is perhaps necessary for
this lemma.

LEMMA 2.2.4 (Regular neighborhoods).There exists a measurable functionr :∆a,b →
(0,+∞) such that forµ-a.e. (ω, x) ∈∆a,b, all n ∈ Z+ and any given0< δ � 1 the map

Φ(ω,x),n := exp−1
Fn+1
ω x

◦Fϑnω ◦ expFnωx :{
ξ ∈ TFnωxM: ‖ξ‖(ω,x),n � δr(ω,x)e−3εn}→ T

Fn+1
ω x

M

is well defined and

Lip‖·‖(Φ(ω,x),n −DFnωxFϑnω)� δ,

where Lip‖·‖(·) denotes the Lipschitz constant taken with respect to‖ · ‖(ω,x),n and
‖ · ‖(ω,x),n+1.

Local stable manifolds. Then, using the standard graph transformation methods (see,
e.g., [61, Appendix] or [118, Chapter III]), one can construct for each typical(ω, x) ∈
∆a,b a sequence of local stable manifolds associated withλ(ia)(ω, x), the largest Lyapunov
exponent smaller thana, along the forward orbit ofx under actions ofFnω . The results are
summarized in the following theorem.

THEOREM 2.2.5 (Local stable manifolds).For µ-a.e. (ω, x) ∈ ∆a,b there exists a se-
quence ofC1,1 embeddeddimE0(ω, x)-dimensional discs{Ws,ia

loc ((ω, x), n)}+∞
n=0 in M to-

gether with positive numbersα(ω,x), β(ω,x) andγ (ω,x) (all measurable in(ω, x), pos-
sibly depending ona, b andε) such that the following hold true for eachn ∈ Z+:

(1) There exists aC1,1 map

h(ω,x),n :On(ω,x)→Hn(ω,x),

whereOn(ω,x) is an open subset ofEn(ω,x) which contains{ξ ∈En(ω,x): |ξ |<
α(ω,x)e−5εn}, satisfying

(i) h(ω,x),n(0)= 0;
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(ii) Lip (h(ω,x),n) � β(ω,x)e7εn, Lip(D·h(ω,x),n) � β(ω,x)e7εn (with respect to
| · |);

(iii) Ws,ia
loc ((ω, x), n) = expFnωx Graph(h(ω,x),n) and it is tangent toEn(ω,x) at

pointFnωx.
(2) FϑnωW

s,ia
loc ((ω, x), n)⊂Ws,ia

loc ((ω, x), n+ 1).

(3) ds(F n,lω y,F
n,l
ω z) � γ (ω,x)e2εne(a+4ε)lds(y, z), y, z ∈ Ws,ia

loc ((ω, x), n), l ∈ Z+,

whereds( , ) denotes the distance alongWs,ia
loc ((ω, x),m) for m ∈ Z+ induced by

their inherited Riemannian metric as submanifolds ofM .

From now on we will use the following notations:

W
s,ia
loc (ω, x) :=Ws,ia

loc

(
(ω, x),0

)
,

(2.2.6)
Es,ia (ω, x) :=E0(ω, x)= V (ia)(ω, x).

In case of(Ω,F ,P, ϑ) being a Polish system, some kind of continuous dependence of the
discWs,ia

loc (ω, x) on (ω, x) can be obtained and it will be needed to deal with entropy
formula problems (i.e., to construct suitable measurable partitions ofΩ × M subordi-
nate to stable or unstable manifolds of the RDS(F,µ)). To describe precisely this kind
of continuity property, we recall the definition of a continuous family ofC1 embedded
k-dimensional discs.

DEFINITION 2.2.6. LetX be a metric space and let{Dx}x∈X be a collection of subsets
of M . We call {Dx}x∈X a continuous family ofC1 embeddedk-dimensional discs inM
if there is a finite open cover{Ui}li=1 of X such that for eachUi there exists a continu-
ous mapθi :Ui → Emb1(Dk,M) such thatθi(x)Dk = Dx for eachx ∈ Ui , whereDk =
{ξ ∈ Rk: ‖ξ‖< 1}.

With the help of Lusin’s theorem, one further obtains (see [12])

COMPLEMENT TO THEOREM 2.2.5 (Continuous dependence).Assume moreover that
(Ω,F ,P, ϑ) is a Polish system and endowΩ × M with the product metric. Given k,
1� k � dimM , put∆a,b,k = {(ω, x) ∈∆a,b: dimEs,ia (ω, x)= k}. Then the submanifolds
W
s,ia
loc (ω, x) given in Theorem2.2.5for µ almost all(ω, x) ∈∆a,b,k can be chosen to have

the following additional property: There are a countable number of measurable subsets
Λm,m= 1,2, . . . , of∆a,b,k such thatµ(

⋃
mΛm)= µ(∆a,b,k) and{Ws,ia

loc (ω, x)}(ω,x)∈Λm
is a continuous family ofC1 embeddedk-dimensional discs inM (in fact, on eachΛm the
Lyapunov norm‖ · ‖(ω,x),0 depends continuously on(ω, x) and there existsrm > 0 such

thatWs,ia
loc (ω, x)= expx Graph(h(ω,x),0|{ξ∈Es,ia (ω,x): ‖ξ‖(ω,x),0<rm})).

Forµ-a.e.(ω, x) ∈∆a,b it can be shown (see also [118]) that

Ws,ia (ω, x)=
+∞⋃
n=0

(F nω)
−1W

s,ia
loc

(
(ω, x), n

)
, (2.2.7)
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whereWs,ia (ω, x) is defined by (2.2.2) (note thatWs,ia (ω, x) is determined only by the
exponentλ(ia)(ω, x)), and hence it is the image ofV (ia)(ω, x) under an injective immer-
sion of classC1,1. This also implies thatWs,ia

loc ((ω, x),0) is an open piece ofWs,ia (ω, x)

which containsx and on which the exponential contraction can be read “immediately”
(Theorem 2.2.5(3)). Hence it can be regarded as alocal stable manifoldassociated with
λ(ia)(ω, x) and this justifies our notationsWs,ia

loc and (2.2.6). Now, by considering a count-
able number of sets of the type∆a,b (e.g., considering∆a,b for all rationala < b� 0), one
obtains the following

THEOREM2.2.7 (Global stable manifolds).Let∆ be as defined by(2.2.4).For (ω, x) ∈∆
withλ(1)(ω, x) < 0, letλ(1)(ω, x) < · · ·< λ(p(ω,x))(ω, x) be the strictly negative Lyapunov
exponents ofF at (ω, x), and let

Ws,1(ω, x)⊂ · · · ⊂Ws,p(ω,x)(ω, x)

be defined by(2.2.2).Then forµ-a.e. (ω, x) ∈ ∆ \ {(ω, x) ∈ ∆: λ(1)(ω, x) � 0} and for
each1 � i � p(ω,x),Ws,i(ω, x) is the image ofV (i)(ω, x) under an injective immersion
of classC1,1 and is tangent toV (i)(ω, x) at pointx; in addition, for y ∈Ws,i(ω, x) one
has

lim sup
n→+∞

1

n
logds(F nωx,F

n
ωy)� λ(i)(ω, x),

whereds( , ) denotes the distance alongFnωW
s,i(ω, x) =Ws,i(Θn(ω,x)) induced by its

inherited Riemannian metric as a submanifold ofM .

REMARK 2.2.8. Givenλ < 0, let∆λ = {(ω, x) ∈ ∆: λ(1)(ω, x) < λ andλ(i)(ω, x) �= λ
for all i}. Then forµ-a.e.(ω, x) ∈∆λ, lettingλ(j)(ω, x) be the largest Lyapunov exponent
which is smaller thanλ, one has

Ws,j (ω, x)=
{
y ∈M: lim sup

n→+∞
1

n
logd(Fnωx,F

n
ωy)� λ

}
.

From this it follows that forµ-a.e.(ω, x) ∈∆ \ {(ω, x) ∈∆: λ(1)(ω, x)� 0} the (global)
stable manifoldWs(ω,x) of F at (ω, x), defined by

Ws(ω,x)=
{
y ∈M: lim sup

n→+∞
1

n
logd(Fnωx,F

n
ωy) < 0

}
,

satisfies

Ws(ω,x)=Ws,p(ω,x)(ω, x)

and hence is the image ofEs(ω,x) :=⋃λ(i)(ω,x)<0V
(i)(ω, x) under an injective immer-

sion of classC1,1 and is tangent toEs(ω,x) at pointx.



408 Yu. Kifer and P.-D. Liu

Hölder continuity of subbundles.Now we touch briefly upon the absolute continuity
property of the stable manifoldsWs,i(ω, x). HereF beingC2 (or C1+α) with condition
(2.2.3) and the consequent Hölder continuity (inx) of the subbundles ofTM consisting
of tangent spaces of these submanifolds are essential for this kind of absolute continuity
property. We first describe the notion of Hölder continuity of a subbundle ofTM . Let
Λ ⊂M be a set. A family{Ex}x∈Λ of subspacesEx ⊂ TxM is said to belocally Hölder
continuouswith exponentσ > 0 and constantL> 0 if for someρ > 0 one has

d(Ex,Ey)� Ld(x, y)σ for all x, y ∈Λ with d(x, y) < ρ,

whered(Ex,Ey) is the distance betweenEx andEy (see [39] or [118, Chapter III] for the
definition).

For aC1+α (0< α � 1) mapf :M→M we set

|Df |Hα = sup
x∈M

|Dxf | + sup
x,y∈M

d(Dxf,Dyf )

d(x, y)α
,

whered(Dxf,Dyf ) denotes the distance betweenDxf andDyf (see also [39] or [118,
Chapter III] for the definition, and admit here 0/0 = 1). The following result is adopted
from [39].

LEMMA 2.2.9. Let {fk :M→M}+∞
k=1 be a sequence ofC1+α maps which satisfy

n∏
k=1

|Dfk|Hα � K̂eĉn for all n ∈ N,

whereK̂ > 0, ĉ > 0. Fix Ĉ � 1, â < b̂, γ̂ > 0 and letΛ
Ĉ,â,b̂,γ̂

be the(maybe empty) set of
pointsx ∈M for which there exists a splitting

TxM =Ex ⊕ Fx
such that the angle betweenEx andFx satisfies

γ (Ex,Fx)� γ̂

and for alln ∈ N one has∣∣Dx(fn ◦ · · · ◦ f1)ξ
∣∣� Ĉeân|ξ | for ξ ∈Ex,∣∣Dx(fn ◦ · · · ◦ f1)η
∣∣� Ĉ−1eb̂n|η| for η ∈ Fx.

Then the family{Ex}x∈Λ
Ĉ,â,b̂,γ̂

is locally Hölder continuous with the Hölder exponent and
constant depending only on the related constants appearing above.

The integrability condition (2.2.3) implies the following (see [118])
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LEMMA 2.2.10. For theC2 RDSF satisfying(2.2.3),the following hold true:
(1) limn→+∞ 1

n
log
∏n−1
k=0 |DFϑkω|H1 =: c(ω) <+∞ exists forP-a.e. ω.

(2) There exists a measurable setΓ0 ⊂ Ω with P(Γ0) = 1 and there is a measurable
functionK :Γ0 → (0,+∞) such that for everyω ∈ Γ0,

n−1∏
k=0

|DFϑkω|H1 �K(ω)e2c(ω)n for all n ∈ N.

LetΛm be a set as given in Complement to Theorem 2.2.5. Fix arbitrarilyK > 0, c > 0
and put

Λm,K,c =
{
(ω, x) ∈Λm: ω ∈ Γ0 andK(ω)�K, c(ω)� c

}
.

Then, by Lemmas 2.2.9 and 2.2.10, one obtains the following (see [118])

PROPOSITION2.2.11 (Local Hölder continuity).In the circumstances of Complement to
Theorem2.2.5.LetΛm,K,c be as defined above and putΛm,K,c(ω) = {x ∈M: (ω, x) ∈
Λm,K,c} for ω ∈ Ω . Then for eachω ∈ Ω the mapz  → Es,ia (ω, z) is locally Hölder
continuous on the set

⋃
x∈Λm,K,c(ω) W

s,ia
loc (ω, x) with the Hölder exponent and constant

depending only on the related numbers appearing in the definition ofΛm,K,c.

Absolute continuity. We are now in the right position to discuss the absolute continuity
property. To be more precise, we first explain the idea of an absolutely continuous family
of C1 embeddedk-dimensional discs inM . Let Λ ⊂M be a set and let{Dx}x∈Λ be a
continuous family ofC1 embeddedk-dimensional discs inM such thatDy ∩Dz = ∅ if
y, z ∈ Λ andy �= z. Let x0 ∈ Λ andp,q ∈ Dx0, and letWp,Wq be twoC1 embedded
(dimM − k)-dimensional discs transversal toDx0 at p and q, respectively. Then there
exist two open pieceŝWp and Ŵq of Wp andWq , respectively, such that the so-called
Poincaré map

P
Ŵp,Ŵq

: Ŵp ∩
(⋃
x∈Λ

Dx

)
→ Ŵq ∩

(⋃
x∈Λ

Dx

)
, Ŵp ∩Dx  → Ŵq ∩Dx

is a homeomorphism between̂Wp ∩ (⋃x∈ΛDx) and Ŵq ∩ (⋃x∈ΛDx). The family of
C1 embedded discs{Dx}x∈Λ is said to beabsolutely continuousif each of its Poincaré
mapsP

Ŵp,Ŵq
takes Lebesgue zero sets to Lebesgue zero sets (here Lebesgue refers to the

Lebesgue measure onWp orWq induced by the inherited Riemannian structure).
With the help of the previous technical lemmas and Proposition 2.2.11, one can adopt

the proof of the absolute continuity property of stable manifolds for a deterministic map
[133,19,77]) to the random case, obtaining

THEOREM 2.2.12 (Absolute continuity).LetΛm,K,c be a set as introduced above. Then
for P-a.e. ω ∈Ω the family ofC1 embeddedk-dimensional discs{Ws,ia

loc (ω, x)}x∈Λm,K,c(ω)
is absolutely continuous.
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We refer the reader to [112,111] and [118, Sections III.5 and III.6] for alternative (and
more precise) statements and related estimates on the Jacobian ofP

Ŵp,Ŵq
, etc.

Partitions subordinate to stable manifolds.Take the assumption of(Ω,F ,P, ϑ) being
Polish. As in the deterministic case, the absolute continuity property Theorem 2.2.12 has
some important consequences. One of them is the genericity with respect to Lebesgue or
the physical relevance of SRB measures ofF (for the deterministic case see [145,137]; for
the case of a hyperbolic RDS see [166,115]). Another one is the fact that smooth (i.e., ab-
solutely continuous with respect to the Lebesgue) measures onM have smooth conditional
measures on the stable manifolds ofF (this fact is used mainly for the purpose of dealing
with entropy formula of Pesin type, but physically more important is the SRB property,
i.e., the smoothness of conditional measures on unstable manifolds, see Section 3). Here
we present a formulation of the latter. Intuitively speaking, letω ∈Ω and letV ⊂M be a
Borel set. Assume thatV =⋃Vx is the disjoint union of a continuous family of embedded
discs (Vx denotes the disc containingx) and eachVx is an open piece ofWs,i(ω, x) for
a fixed 1� i � dimM . Let ν be a Borel probability measure onM with ν(V ) > 0, and
let νx be the conditional probability measure ofν on Vx . The fact we alluded to above
means that, ifν2 Leb, thenνx 2 λx for ν-a.e.x ∈ V , whereλx is the Lebesgue measure
onWs,i(ω, x) induced by its inherited Riemannian structure as a submanifold ofM . To
describe this property precisely, we need to appeal to the theory of conditional measures
associated with measurable partitions of Lebesgue spaces, for which the reader is referred
to [141]. It is for this reason that we assumeΩ being Polish:(Ω ×M,Bµ(Ω ×M),µ)
defines a Lebesgue space allowing for “nice” partitions, whereBµ(Ω ×M) denotes the
completion of the Borelσ -algebra ofΩ ×M with respect toµ. Note that the partition
of Ω ×M into the globalWs,i -manifolds{ω} ×Ws,i(ω, x) is in general not measurable.
However, one can use (and construct) a finer but measurable partition ofΩ×M into pieces
of localWs,i -manifolds and one can take the pieces to be open in the submanifold topol-
ogy (neglecting sets ofµ-measure 0). This leads to the following two definitions. Here we
will confine ourselves to theWs -manifolds case for simplicity of presentation. The general
Ws,i -manifolds case can be considered analogously by restricting the partition to the sub-
set{(ω, x): i � r(ω, x) andλ(i)(ω, x) < 0} of Ω ×M (which is, neglecting aµ-null set,
the union of someWs,i -manifolds, i.e., a set of the form

⋃[{ω} ×Ws,i(ω, x)], see [118,
Lemma IV.2.2]). In what follows we will useξ(x) to denote the element of a partitionξ of
a spaceX which contains the pointx ∈X.

DEFINITION 2.2.13. LetF be over a Polish system(Ω,F ,P, ϑ) and assumeλ(1)(ω, x) >
−∞ µ almost everywhere. A measurable partitionη of (Ω ×M,Bµ(Ω ×M),µ) is said
to be subordinate toWs -manifoldsof (F,µ) if for µ-a.e.(ω, x) ∈ Ω ×M , η(ω,x) ⊂
{ω} ×M , ηω(x) := {y: (ω, y) ∈ η(ω,x)} ⊂Ws(ω,x) and it contains an open neighbor-
hood of x in Ws(ω,x), this neighborhood being taken in the submanifold topology of
Ws(ω,x) (Ws(ω,x) := {x} if λ(i)(ω, x)� 0 for all i).

Such partitions always exist (see Section 3).



Random dynamics 411

DEFINITION 2.2.14. Take the assumptions in Definition 2.2.13. We say thatµ has smooth
conditional measures onWs -manifoldsif for every measurable partitionη subordinate to
Ws -manifolds of(F,µ) one has

µ
η

(ω,x)2 λs(ω,x), µ-a.e.(ω, x),

where{µη(ω,x)}(ω,x)∈Ω×M is a canonical system of conditional measures ofµ associated

with η, µη(ω,x) is regarded as a measure onηω(x) by identifying η(ω,x) = {ω} × ηω(x)
with ηω(x), andλs(ω,x) is the Lebesgue measure onWs(ω,x) induced by its inherited
Riemannian structure as a submanifold ofM (λs(ω,x) := δx if Ws(ω,x)= {x}).

The consequence of Theorem 2.2.12 we discussed just above can now be formulated as
follows (see [118, Proposition IV.2.1] for an analogous proof).

COROLLARY 2.2.15. Take the assumptions in Definition2.2.13.If µ2 P × Leb, thenµ
has smooth conditional measures onWs -manifolds.

REMARK 2.2.16. It is easy to show thatµ2 P×Leb is equivalent toµω2 LebP-a.e.ω,
whereµω, ω ∈Ω , are the sample measures (or the disintegration) ofµ.

REMARK 2.2.17. Ifλ(1)(ω, x)=−∞ holds on a set of positiveµ-measure, then Corol-
lary 2.2.15 is true with the arguments being restricted to the set{(ω, x): λ(1)(ω, x) >−∞},
which is the union of someWs -manifolds (neglecting aµ-null set).

REMARK 2.2.18 (Random endomorphisms). LetCr(M,M) be the space of allCr (r � 1
is an integer) maps fromM to itself, endowed with the usualCr topology. Let the RDS
F over(Ω,F ,P, ϑ) be defined by replacing Diffr (M) with Cr(M,M). Assume thatµ is
an invariant measure ofF . Under the same integrability condition as (2.2.1), the Lyapunov
spectrum(λ(i)(ω, x),m(i)(ω, x)), 1� i � r(ω, x), can be defined forµ-a.e.(ω, x) in the
same way as in the random diffeomorphisms case. Whenr � 2 and the same integrability
condition as (2.2.3) is satisfied, almost all the stable manifold arguments presented in this
section hold with possibly a slight modification. For example, Theorem 2.2.5 and Com-
plement to Theorem 2.2.5 hold verbatim, one still has the expression (2.2.7) for the global
stable manifolds, but they may lose the property of being a nice submanifold ofM since
nowFnω may be noninvertible and may havesingularities(i.e., points at which the deriv-
atives ofFnω are degenerate). We refer the reader to [154,149,116] for more details about
properties of stable manifolds of endomorphisms.

REMARK 2.2.19 (C1+α hypothesis). In the arguments of this and next sections we of-
ten make the specific assumption thatF is C2 (as opposed toC1+α for someα ∈ (0,1]),
with the integrability condition (2.2.3) being supposed on theC2-norms. One reason is that
this assumption will be needed for the treatment of relations between entropy, Lyapunov
exponents and dimension, where we often require the map space to be Polish or at least
separable so that Lusin’s theorem can be applied (note thatC1,α(M,M) is in general not
separable, see [106]; it is not clear to the author if this assumption can be reduced to a
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C1+α one by a suitable trick for these purposes). But under analogousC1+α assumptions
invariant manifolds can still be constructed along Pesin’s line (possibly with a bit loss of
order of smoothness) or by adapting Ruelle’s approach. Note however thatC1 assump-
tions are usually not sufficient for the invariant manifold theory, especially for the absolute
continuity property (see [136] for a counterexample).

2.3. Unstable invariant manifolds, Oseledec manifolds

In this section we assume that(Ω,F ,P, ϑ) is measurably invertible. In addition toFnω ,
n� 0,ω ∈Ω , one can also consider the backward compositions of random maps

Fnω := F−1
ϑnω ◦ · · · ◦ F−1

ϑ−1ω
, n < 0, ω ∈Ω.

Under the integrability condition∫ (
log+ |DxFω| + log+

∣∣Dx(Fω)−1
∣∣)dµ(ω,x) <+∞, (2.3.1)

the Oseledec MET, applied to the invertible systemΘ : (Ω ×M,µ)←↩, tells that there
exists a measurable set∆ such thatµ(∆)= 1,Θ∆=∆ and for each(ω, x) ∈∆ one has
the Lyapunov exponents ofF at (ω, x),

−∞< λ(1)(ω, x) < λ(2)(ω, x) < · · ·< λ(r(ω,x))(ω, x) <+∞

and an associated measurable (in(ω, x)) splitting

TxM =E(1)(ω, x)⊕ · · · ⊕E(r(ω,x))(ω, x) (2.3.2)

which satisfy

lim
n→+∞

1

n
log|DxF±

ω ξ | = ±λ(i)(ω, x) for 0 �= ξ ∈E(i)(ω, x),

1 � i � r(ω, x). (2.3.2) will be called theOseledec splittingof F at (ω, x) andE(i)(ω, x)
will be called anOseledec space. From basic properties of Lyapunov exponents it follows
thatV (i)(ω, x)=⊕j�i E

(j)(ω, x) andm(i)(ω, x)= dimE(i)(ω, x) for µ-a.e.(ω, x).

Unstable manifolds. In a way analogous to (2.2.2), we define theunstable manifoldof
F at (ω, x) associated with a positive exponentλ(j)(ω, x) > 0 as

Wu,j (ω, x)=
{
y ∈M: lim sup

n→+∞
1

n
logd(F−n

ω x,F−n
ω y)� −λ(j)(ω, x)

}
. (2.3.3)

As can be easily seen, the unstable manifolds ofF are just the stable manifolds of the RDS
over (Ω,F ,P, ϑ−1) generated by the measurable mapω  → F−1

ϑ−1ω
fromΩ to Diff r (M).
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Thus,the verbatim counterpart of all the stable manifold arguments of Section2.2 can be
obtained for the unstable manifolds ofF , provided that it is of classC2 and satisfies(2.3.1)
together with∫

log+
∣∣(Fω)−1

∣∣
C2 dP(ω) <+∞. (2.3.4)

For example, for a closed interval[c, d], 0� c < d , one defines

∆c,d =
{
(ω, x) ∈∆: λ(i)(ω, x) /∈ [c, d] for all i andd < λ(r(ω,x))(ω, x)

}
.

Setting

E0(ω, x)=
⊕

d<λ(j)(ω,x)

E(j)(ω, x), H0(ω, x)=E0(ω, x)
⊥

and consideringF−n
ω , n � 0, one can obtain forµ-a.e. (ω, x) ∈ ∆c,d a local unstable

manifoldWu,jd
loc (ω, x) associated withλ(jd )(ω, x), the smallest Lyapunov exponent larger

thand . It is the expx -image of the graph of aC1,1 maph(ω,x),0 from an open neighborhood
of 0 inE0(ω, x) toH0(ω, x), and it has the property

du(F−n
ω y,F−n

ω z)� γε(ω,x)e(−d+4ε)n du(y, z)

for y, z ∈Wu,jd
loc (ω, x) andn� 0, wheredu( , ) denotes the distance alongF−m

ω W
u,jd
loc (ω, x)

for m � 0, ε is a sufficiently small (as compared withd − c) positive number andγε(·)
is a measurable function on∆c,d related toε. For each(ω, x) ∈∆ minus aµ-null set, if
λ(j)(ω, x) > 0 for somej andλ(q(ω,x))(ω, x) < · · · < λ(r(ω,x))(ω, x) are all the strictly
positive exponents ofF at (ω, x), letting

Wu,r(ω,x)(ω, x)⊂ · · · ⊂Ws,q(ω,x)(ω, x) (2.3.5)

be the corresponding nested family of unstable manifolds ofF associated with these expo-
nents, then eachWu,j (ω, x), q(ω,x)� j � r(ω, x) is the image of

⊕
j�k�r(ω,x)E

(k)(ω, x)

under an injective immersion of classC1,1, is tangent to this subspace at pointx and has
the additional property

lim sup
n→+∞

1

n
logdu(F−n

ω x,F−n
ω y)� −λ(j)(ω, x)

for y ∈ Wu,j (ω, x), where du( , ) denotes the distance alongF−n
ω Wu,j (ω, x) =

Wu,j (Θ−n(ω,x)), moreover, the(global) unstable manifoldof F at (ω, x) defined by

Wu(ω,x)=
{
y ∈M: lim sup

n→+∞
1

n
logd(F−n

ω x,F−n
ω y) < 0

}
(2.3.6)
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satisfies

Wu(ω,x)=Wu,q(ω,x)(ω, x).

We leave to the reader all the other statements analogous to those in Section 2.2.
We remark that measurable partitions of(Ω ×M,Bµ(Ω ×M),µ) subordinate toWu-

manifolds ofF and smoothness of conditional measures ofµ on theWu-manifolds give
rise to the definition of a very important property—SRB property—ofµ which can also be
characterized by an entropy formula of Pesin type. We will deal with this topic in Section 3.

As indicated in Section 2.2, there can be various types of results concerning the stable
and unstable manifolds of an RDS for various purposes and under various conditions. For
example, under the integrability condition∫ (

log+ |Fω|C2 + log+
∣∣(Fω)−1

∣∣
C2

)
dP(ω) <+∞, (2.3.7)

one can develop for(F,µ), due to its invertibility, a completely analogous counterpart of
[134, Theorems 4.1–4.3]. This counterpart uses the splittingTxM =E0(ω, x)⊕H0(ω, x),
whereE0(ω, x) =⊕1�i�k E

(i)(ω, x) andH0(ω, x) =⊕k+1�i�r(ω,x) E
(i)(ω, x) which

areDxFω-invariant, i.e.,DxFωE0(ω, x) = E0(Θ(ω,x)) and similarly forH0(ω, x). In
this way it can avoid constructing a sequence of local stable or unstable manifolds at one
point (as opposed to our Theorem 2.2.5), and it can give dynamical characterizations as
well as some additional interesting properties of the local invariant manifolds. However,
such local invariant manifolds are essentially unique since they are open subsets of the
corresponding global ones. There have also been some results on higher order smoothness
of the invariant manifolds, for which we refer to [7, Part III], [153] and [43].

Oseledec manifolds.We end this subsection with a remark on Oseledec manifolds. As-
sume the integrability condition (2.3.7). For simplicity of presentation we assume(F,µ)

being ergodic and letλ(1) < · · · < λ(r) be its Lyapunov exponents. Note that, if we take
the closed interval[a, b] with λ(i) /∈ [a, b] for all i but without the assumptionb � 0,
techniques similar to those for the proof of our Theorem 2.2.5 yield forµ-a.e.(ω, x) the
existence of aC1 embedded disc inM , called apseudo local stable manifoldof F at(ω, x)
and denoted byŴps

[a, b](ω, x), which is the expx -image of the graph of aC1 map from an

open subset ofEpsa (ω,x) :=⊕λ(i)<a E
(i)(ω, x) to Epua (ω,x) :=⊕λ(j)>a E

(j)(ω, x) and
which is locally invariant and tangent toEpsa (ω,x) at x. Here thelocal invariancemeans
thatFω maps an open neighborhood ofx in Ŵps

[a,b](ω, x) into Ŵps
[a,b](Θ(ω,x)). Similarly,

considering the backward application of the random maps gives forµ-a.e.(ω, x) the ex-
istence of anotherC1 embedded disc inM , called apseudo local unstable manifoldof F
at (ω, x) and denoted byŴpu

[a,b](ω, x), which is the expx -image of the graph of aC1 map

from an open subset ofEpua (ω,x) toEpsa (ω,x) and which is locally invariant and tangent
toEpua (ω,x) atx. Let now[a, b] and[c, d] be two intervals such that they contain noλ(i),
b < c and[b, c] ∩ {λ(i): 1 � i � r} �= ∅. Forµ-a.e.(ω, x) defineŴ[b,c](ω, x) to be the in-
tersectionŴpu

[a,b](ω, x)∩ Ŵps
[c,d](ω, x). It can be shown that̂W[b,c](ω, x) is aC1 embedded

disc inM which is locally invariant and tangent toE[b,c](ω, x) :=⊕λ(i)∈[b,c]E(i)(ω, x)
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at x (see [51] for a detailed treatment). When[b, c] contains only one exponentλ(i),
Ŵ[b,c](ω, x) is called alocal Oseledec manifoldof F at (ω, x) associated withλ(i); and
when [b, c] contains more exponentŝW[b,c](ω, x) is called ageneralized local Oseledec
manifoldof F at (ω, x) associated with the exponents in[b, c]. We remark that such man-
ifolds usually depend on the construction process and are not essentially unique. When
[b, c] contains, respectively, only the zero exponent, all the negative or all the positive expo-
nents, the corresponding (suitably constructed) local Oseledec manifold defines a classical
local central, stable or unstable manifold. The Oseledec manifolds theory has applications
in the linearization (or Hartmann–Grobman) theory and bifurcation theory of random dy-
namical systems. We again refer the reader to [7, Part III] for a comprehensive treatment
of this topic and for an account of previous works [38,137,51], etc.

2.4. Invariant manifolds for continuous time RDS

RDS with continuous time are of great interest due to their generation by random and
stochastic differential equations (see [7, Chapter 2] for a comprehensive treatment of this
generation theory). Here the time set will beT = R+ or T = R and the underlying noise
system will be modelled by a measure-preserving flow(Ω,F ,P, {ϑt }t∈T ). Let the mani-
foldM be as given previously and letr � 1 be an integer. In this section, by aCr RDSF on
M over(Ω,F ,P, {ϑt }t∈T )we will mean a family of maps{F tω ∈ Diff r (M): t ∈ T , ω ∈Ω}
such thatF tωx is measurable in(t,ω, x), F 0

ω = id, F t+sω = F tϑsω ◦ F sω for all s, t ∈ T and
ω ∈Ω , and the derivatives, up tor orders, ofF tωx with respect tox are continuous in(t, x).
Note that we requireF tω being a diffeomorphism even whenT = R+ (this holds automati-
cally whenT = R), but the RDS withT = R+ defined here appear typically in the setting
of the classical stochastic differential equations (see, e.g., [107]). As one can easily expect,
under suitable integrability conditions on the norms of the random maps, almost all the
previous results in this section can be carried over to a continuous time RDS by reducing
the problem to its time-one system.

Let F be as defined just above andµ an F -invariant measure, i.e., a probability on
(Ω×M,F×B)which has marginalP onΩ and is invariant underΘt :Ω×M→Ω×M ,
(ω, x)  → (ϑtω,F tωx) for all t ∈ T (such measures always exist, see [7, Chapter 1]). We
first consider forward applications of the random maps. If the integrability condition∫ (

sup
0�t�1

log+
∣∣DxF tω∣∣+ sup

0�t�1
log+
∣∣(DxF tω)−1∣∣)dµ(ω,x) <+∞ (2.4.1)

is satisfied, then Theorem 2.2.1 holds for(F,µ) with n being replaced byt and with
λ(1)(ω, x) >−∞ for µ-a.e.(ω, x) (see [7]). DefineWs,i(ω, x), thestable manifoldof F at
(ω, x) associated with exponentλ(i)(ω, x) < 0, in a way analogous to (2.2.2) by replacing
nwith t . Then we have the following (see [43] or [118, Chapter V] for an analogous proof):

THEOREM 2.4.1 (Global stable manifolds).If F is of classC2 and satisfies∫ (
sup

0�t�1
log+
∣∣F tω∣∣C2 + sup

0�t�1
log+
∣∣(F tω)−1∣∣

C2

)
dP(ω) <+∞, (2.4.2)
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then the statements of Theorem2.2.7hold for (F,µ) with n being replaced byt and with
∆ being replaced by a measurable set of fullµ measure.

A local stable manifold theorem can be stated as follows (see [118, Theorem V.2.3] for
a proof and see [43] for a similar result).

THEOREM 2.4.2 (Local stable manifolds).Take the assumptions of Theorem2.4.1.Given
λ < 0, put∆λ = {(ω, x): (ω, x) is forward regular in the sense of Oseledec, λ(i)(ω, x) �= λ
for all i and λ(1)(ω, x) < λ}. Then forµ-a.e. (ω, x) ∈ ∆λ there exists aC1,1 embedded
discWs,λ

loc (ω, x) in M together with positive numbersα(ω,x), β(ω,x) and γ (ω,x), all
measurable in(ω, x) and possibly depending onλ, such that:

(1) Ws,λ
loc (ω, x) contains x and is tangent toV (iλ)(ω, x) at x, where λ(iλ)(ω, x)

is the largest exponent smaller thanλ, and Ws,λ
loc (ω, x) = expx Graph(h(ω,x))

whereh(ω,x) : {ξ ∈ V (iλ)(ω, x): |ξ |< α(ω,x)} → V (iλ)(ω, x)⊥ is aC1,1 map with
h(ω,x)(0)= 0 andLip(h(ω,x)), Lip(D·h(ω,x)) � β(ω,x).

(2) For y, z ∈Ws,λ
loc (ω, x) and for all t � 0 one has

ds
(
F tωy,F

t
ωz
)
� γ (ω,x)eλtds(y, z),

whereds( , ) denotes the distance along the submanifoldsF tωW
s,λ
loc (ω, x).

If it is assumed moreover that(Ω,F ,P, {ϑt }t∈T ) is a Polish system andω  → F 1
ω is a

measurable map fromΩ to Diff2(M), then results similar to Complement to Theorem 2.2.5
etc. can clearly be formulated in the present setting.

For the case ofT = R, it is also clear that results analogous to those in Section 2.3
concerning unstable manifolds hold true for aC2 RDSF over (Ω,F ,P, {ϑt }t∈R) which
satisfies the integrability condition (2.4.2) (see [7] for results concerning Oseledec mani-
folds).

Stochastic flows. A classical model of continuous time RDS which is of particular
interest is a stochastic flow of diffeomorphisms (or a Brownian motion in the diffeomor-
phisms group), and such stochastic flows are basically in a one-to-one correspondence to
stochastic differential equations (generally with vector field valued driving Brownian mo-
tions, see [22] and [107]). It is usually defined as follows.

DEFINITION 2.4.3. Let (Ω̂, F̂ , P̂) be a probability space. A random process{ψt :
(Ω̂, F̂ , P̂)→ Diff r (M)}t�0 is calleda stochastic flow ofCr diffeomorphismsif it has
the following properties:

(1) for any 0� t0 � t1 � · · ·� tn, ψti ◦ψ−1
ti−1

, 1� i � n, are independent;
(2) for any 0� s � t , the distribution ofψt ◦ψ−1

s depends only ont − s;
(3) with probability one{ψt }t�0 has continuous sample paths, i.e., the mapt  → ψt(ω̂)

is a continuous map fromR+ to Diff r (M) for P̂-a.e.ω̂;
(4) ψ0 = id P̂-a.e.
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Note that the probability space(Ω̂, F̂ , P̂) may not be born with âP-preserving trans-
formation group{ϑ̂ t }t�0. One can however consider the path space(Ω,F), whereΩ =
{ω = {ω(t)}t�0: ω(·) is a continuous map fromR+ to Diff r (M) with ω(0) = id} andF
is its natural Borelσ -algebra. LetP be the probability on(Ω,F) induced byP̂ via the
measurable map

Σ : (Ω̂, F̂)→ (Ω,F), ω̂  → {ψt(ω̂)}t�0.

Then it is preserved by the transformation group{ϑt }t�0 on Ω defined by(ϑtω)(·) =
ω(t + ·) ◦ ω(t)−1 (see, e.g., [118, p. 121]). The coordinate process on(Ω,F ,P), i.e.,
F tω := ω(t) for ω ∈Ω andt � 0 defines then an RDSF over (Ω,F ,P, {ϑt }t�0). As can
be seen below, measure-theoretic results obtained forF can usually be carried back to
{ψt }t�0 via the mapΣ , so a stochastic flow defined above can be essentially included in
our framework of continuous time RDS.

Let now{ψt }t�0 be a stochastic flow as given in Definition 2.4.3. It holds automatically
that ∫ (

sup
0�t�T

log+
∣∣ψt(ω̂)∣∣Cr + sup

0�t�T
log+
∣∣ψt(ω̂)−1

∣∣
Cr

)
dP̂(ω̂) <+∞ (2.4.3)

for any T > 0, where|f |Cr denotes theCr -norm of f ∈ Diff r (M) (see [118, Proposi-
tion V.1.2] for a proof which is a slight modification of the proof of an even stronger
statement in [84]). Whenr = 2, (2.4.3) clearly implies (2.4.2) for the RDSF defined just
above.

Let Pt (x, ·), t � 0, x ∈ M , be the transition probabilities of the one-point Markov
process associated with{ψt }t�0, i.e., Pt (x,A) = P̂{ω̂: ψt(ω̂)x ∈ A} for Borel A ⊂ M .
Let ρ be a Borel probability measure onM which is stationary for this Markov process
(i.e.,ρ(A)= ∫ Pt (x,A)dρ(x) for all BorelA⊂M and allt � 0; such a measure always
exists, see [82, Chapter V]). ThenP×ρ constitutes an invariant measure of the continuous
time RDSF defined just above [82, Lemma I.2.3]. Thus, by the measure-preserving prop-
erty of the map(Ω̂ ×M, P̂× ρ)→ (Ω ×M,P× ρ), (ω̂, x)  → (Σω̂, x), one easily knows
that, if the stochastic flow{ψt }t�0 is of classC2, the stable manifolds statements given by
Theorems 2.4.1 and 2.4.2 hold true withµ, (ω, x) andF tω being replaced respectively by
P̂× ρ, (ω̂, x) andψt(ω̂) (the Lyapunov exponents together with their multiplicities are es-
sentially nonrandom in this case, see, e.g., [118, Chapter V]). The reader is referred to [7]
for an account of various works on stochastic flows of diffeomorphisms by Baxendale and
others and to Section 3.3 for entropy formula of Pesin type for such flows.

3. Relations between entropy, exponents and dimension

In this section we present some results concerning the relationship between the (Kolmogo-
rov–Sinai) entropy, Lyapunov exponents and some dimensional characteristics of an RDS.
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3.1. Entropy formula of Pesin type

In this section we assume thatϑ : (Ω,F ,P)←↩ is a (possibly noninvertible) measure-
preserving transformation of a probability space and the RDSF over(Ω,F ,P, ϑ) is gen-
erated by a measurable map

F :Ω→ Cr(M,M), ω  → Fω.

Entropy revisited. In Section 1.1 the entropy was defined for a bundle RDS over an
invertible system(Ω,F ,P, ϑ). When(Ω,F ,P, ϑ) is possibly noninvertible, entropy can
be defined in the same way. Namely, let in our present settingξ be a finite Borel partition
ofM , the limit

hµ(F, ξ) := lim
n→+∞

1

n

∫
Hµω

(
n−1∨
k=0

(
Fkω
)−1
ξ

)
dP(ω) (3.1.1)

always exists since

1

n

∫
Hµω

(
n−1∨
k=0

(
Fkω
)−1
ξ

)
dP(ω)= 1

n
Hµ

(
n−1∨
k=0

Θ−kπ−1
2 ξ

∣∣∣π−1
1 F
)
, (3.1.2)

whereπ1 :Ω×M→Ω , (ω, x)  → ω is the projection to the first factor,π2 :Ω×M→M ,
(ω, x)  → x is the projection to the second, and the limit of the right-hand side of (3.1.2)
exists asn→+∞ [82, Theorem II.1.1]; theentropyof (F,µ) is defined by

hµ(F )= sup
{
hµ(F, ξ): ξ a finite Borel partition ofM

}
.

This notion describes the average information creation rate by actions onM of the ran-
dom sequence of maps and it coincides with the relative (or conditional) entropy ofΘ :
(Ω ×M,µ)←↩ (with respect toπ−1

1 F = FE whereE =Ω ×M) defined by (1.1.2) and
(1.1.3), namely,

hµ(F )= h(r)µ (Θ). (3.1.3)

In many cases this coincidence enables us to investigate the entropy of an RDS via the
classical (conditional) entropy theory.

As with a deterministic transformation, just considering finite or countable partitions
of the manifold is not enough to investigate various properties of the entropy of an RDS,
in some cases one has to appeal to finer (noncountable) partitions (for example, parti-
tions into pieces of stable or unstable manifolds). This was made possible by the theory
of conditional entropies associated with measurable partitions (i.e., partitions which can
be approximated by finite or countable ones) of Lebesgue spaces (see [142] for the the-
ory). When(Ω,F ,P, ϑ) is Polish,(Ω ×M,Bµ(Ω ×M),µ) defines a Lebesgue space,
which will be written as(Ω ×M,µ) for simplicity of notation. In this case withϑ being
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assumed measurably invertible, one can obtain the entropyhµ(F ) by the formula [118,
Theorem 0.5.1]

h(r)µ (Θ)= sup
ξ

Hµ

(
ξ

∣∣∣ +∞∨
k=1

Θ−kξ ∨ σ0

)
, (3.1.4)

where the supremum is taken over the set of all measurable partitions of(Ω ×M,µ) and
σ0 = {{ω} ×M: ω ∈ Ω}. This means that, if one takes for eachω ∈ Ω a partitionξω
of M such thatξ := {{ω} × ξω(x): ω ∈Ω, x ∈M} constitutes a measurable partition of
(Ω ×M,µ), then (3.1.1) can be extended by

hµ(F, ξ) := Hµ
(
ξ

∣∣∣ +∞∨
k=1

Θ−kξ
)

=
∫
Hµω

(
ξω

∣∣∣ +∞∨
k=1

(
Fkω
)−1
ξϑkω

)
dP(ω) (3.1.5)

and one can obtain the entropyhµ(F ) by taking the supremum ofhµ(F, ξ) over the set
of all such measurable partitionsξ . For more information about relative (or conditional)
entropy of measure-preserving transformations of Lebesgue spaces see [118, Chapter 0]
which is a partial modification of the usual entropy arguments given in [142].

Ruelle inequality. Roughly speaking, Lyapunov exponents and entropy provide two
different ways of measuring the dynamical complexity of an RDS: The Lyapunov expo-
nents measure geometrically how fast nearby orbits diverge (due to the corresponding in-
variant manifolds theory) or how fast volume elements are expanded (by sums of the expo-
nents), and the entropy measures from the pointview of information the complexity related
to such dynamical behaviors. In general, there is the following inequality (3.1.6) relating
these two kinds of quantities.

THEOREM 3.1.1 (Ruelle inequality). Let F be of classC1 (i.e., r = 1) and assume
log+ |Fω|C1 ∈ L1(Ω,P) where |f |C1 = supξ∈TM, |ξ |=1 |Df ξ | for f ∈ C1(M,M). Then
for anyF -invariant measureµ one has

hµ(F )�
∫ ∑

i

λ(i)(ω, x)+m(i)(ω, x) dµ. (3.1.6)

The inequality (3.1.6) was first proved by Ruelle [146] (also by Margulis in an unpub-
lished work) for a deterministicC1 map, and it was first extended to i.i.d. RDS by Kifer
[82]. When(Ω,F ,P, ϑ) is measurably invertible, Theorem 3.1.1 was proved in [11]. We
include below a proof of the result in its general form stated above. The reader is referred
to Ruelle [150] for an elaboration of the inequality for infinite dimensional RDS, which is
suitable for applications to the Navier–Stokes time evolution.
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LEMMA 3.1.2. Let ξn, n = 1,2, . . . , be a sequence of finite measurable partitions ofM

such thatdiamξn→ 0 asn→+∞ (wherediamξn := supC∈ξn diamC). Then

hµ(F )= lim
n→+∞hµ(F, ξn).

PROOF. Fix ε > 0 arbitrarily small and choose a finite measurable partitionα of M such
thathµ(F )� hµ(F,α)+ ε. Identifyingπ−1

2 ξn with theσ -algebra generated by it, one has,
by [118, Theorem 0.4.2],

hµ(F,α) = hπ
−1
1 F
µ

(
Θ,π−1

2 α
)

� hπ
−1
1 F
µ

(
Θ,π−1

2 ξn
)+Hµ(π−1

2 α|π−1
2 ξn ∨ π−1

1 F
)

= hµ(F, ξn)+
∫
Hµω(α|ξn) dP(ω).

This implies that for sufficiently largen,

hµ(F )� hµ(F, ξn)+ 2ε,

sinceHµω(α|ξn)→ 0 for everyω asn→+∞. This proves the lemma. �

PROOF OFTHEOREM 3.1.1. We first make the following additional assumptions:M is
a compact subset of(Rd ,‖ · ‖), U is an open 2r0-neighborhood ofM for somer0 > 0,
F :Ω→ C1(U,U), ω→ Fω is a measurable map such thatFωM ⊂M for eachω and∫

Ω

log+ sup
x∈U

‖DxFω‖dP(ω) <+∞. (3.1.7)

This generates an RDSF on U over (Ω,F ,P, ϑ) and letµ be anF -invariant measure
concentrated onΩ ×M .

For ad × d matrix A with real entries we will use a singular value decomposition of
it, A = Q1∆Q2, whereQ1,Q2 are unitary matrices and∆ is a diagonal matrix whose
diagonal elements will be denoted as 0� δ1(A)� δ2(A)� · · ·� δd(A).

Let k ∈ N. Writeω ∈Ωk if for all x, y ∈ B(M, r0) with ‖x − y‖ � r0
k

we have∥∥Fωy − Fωx −DxFω(y − x)∥∥� ‖y − x‖ (3.1.8)

and ∣∣δi(DyFω)− δi(DxFω)∣∣� 1

2
, 1� i � d,

which clearly implies that

1

2
� max{1, δi(DyFω)}

max{1, δi(DxFω)} � 2, 1� i � d. (3.1.9)
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One can check that eachΩk is measurable andP(Ωk)→ 1 ask→+∞.
For eachk ∈ N take a maximalr0

k
-separated setEk ofM , i.e., a subsetEk ofM such that

d(x, y) >
r0
k

for anyx, y ∈ Ek with x �= y and for anyz ∈M there is an elementx ∈ Ek
satisfyingd(x, z)� r0

k
. We then define a finite measurable partitionξk = {ξk(x): x ∈ Ek}

of M such that, with respect to the inherited topology ofM as a subset ofRd , ξk(x) ⊂
int(ξk(x)) and int(ξk(x))= {z ∈M: ‖z− x‖< ‖z− y‖ for all y ∈Ek with y �= x}. Clearly
ξk(x)⊂ B(x, r0k ) for all x ∈Ek and diamξk � r0

k
. Then, by Lemma 3.1.2,

hµ(F )= lim
k→+∞hµ(F, ξk). (3.1.10)

For eachξk ,

hµ(F, ξk)

= lim
n→+∞

1

n
Hµ

(
n−1∨
l=0

Θ−lπ−1
2 ξk

∣∣∣π−1
1 F
)

= lim
n→+∞

1

n

n−1∑
l=1

Hµ

(
Θ−l(π−1

2 ξk
) ∣∣∣ l−1∨
i=0

Θ−i(π−1
2 ξk
)∨ (π−1

1 F
))

+ lim
n→+∞

1

n
Hµ
(
π−1

2 ξk|π−1
1 F
)

� lim
n→+∞

1

n

n−1∑
l=1

Hµ
(
Θ−l(π−1

2 ξk
)∣∣Θ−(l−1)(π−1

2 ξk
)∨Θ−(l−1)(π−1

1 F
))

=Hµ
(
Θ−1(π−1

2 ξk
)∣∣(π−1

2 ξk
)∨ π−1

1 F
)

=
∫
Hµω
(
(Fω)

−1ξk|ξk
)
dP(ω)

=
∫
Ωk

Hµω
(
(Fω)

−1ξk|ξk
)
dP(ω)+

∫
Ω\Ωk

Hµω
(
(Fω)

−1ξk|ξk
)
dP(ω)

=:Mk +mk.

In what follows we estimateMk andmk . Let ω ∈ Ω . Let Nk(ω,x) be the number of
elements ofξk which intersectFωξk(x) for x ∈Ek . By (3.1.8),

Fωξk(x) ⊂ FωB
(
x,
r0

k

)
⊂ B
(
Fωx +DxFωB

(
0,
r0

k

)
,
r0

k

)
= Fωx +B

(
DxFωB

(
0,
r0

k

)
,
r0

k

)
.
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Hence, ifξk(x′)∩ Fωξk(x) �= ∅, then

B

(
x′, r0

2k

)
∩
[
Fωx +B

(
DxFωB

(
0,
r0

k

)
,

2r0
k

)]
�= ∅.

SinceB(x′, r02k ), x
′ ∈Ek are disjoint, one has

Nk(ω,x)�K(ω,x) := C(d)
d∏
j=1

max
{
δj (DxFω),1

}
,

whereC(d) is a constant depending only ond . Thus

Hµω
(
(Fω)

−1ξk|ξk
)
�
∑
x∈Ek

µω
(
ξk(x)
)
logK(ω,x)

=
∑
x∈Ek

∫
ξk(x)

logK(ω,x)dµω(y)

� logC(d)+ d log2+
∫
M

d∑
j=1

log+ δj (DyFω)dµω(y)

(by (3.1.9))

and we then have

Mk � logC(d)+ d log2+
∫
Ω

∫
M

d∑
j=1

log+ δj (DyFω)dµω(y)dP(ω). (3.1.11)

We next estimateNk(ω,x) for ω ∈ Ω \Ωk . We now cannot make use of (3.1.8) and
instead we will use the following estimate:

‖Fωy − Fωz‖ � Lk(ω)‖y − z‖

for all k � 2 andy, z ∈ B(M, r0
k
) with ‖y − z‖ � r0

k
, where

Lk(ω) := sup
x∈B(M, r0

k
)

‖DxFω‖.

Let k � 2. Then for eachx ∈Ek ,

Fωξk(x)⊂ FωB
(
x,
r0

k

)
⊂ B
(
Fωx,Lk(ω)

r0

k

)
.
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Thus,Nk(ω,x) cannot exceed the maximal number of disjoint balls with radiusr0
k

which
intersectB(Fωx, (Lk(ω)+ 1) r0

k
), and hence

Nk(ω,x)� C′(d)max
{
Lk(ω),1

}d
,

whereC′(d) is a constant depending only ond . It then follows that

Hµω
(
(Fω)

−1ξk|ξk
)
�
∑
x∈Ek

µω
(
ξk(x)
)
logNk(ω,x)

� logC′(d)+ d log+Lk(ω)

� logC′(d)+ d log+L2(ω)

and hence

mk � logC′(d)+ d
∫
Ω\Ωk

log+L2(ω)dP(ω). (3.1.12)

(3.1.7) implies that log+L2(ω) ∈ L1(Ω,P). This together with (3.1.12) yields

lim sup
k→+∞

mk � logC′(d) (3.1.13)

sinceP(Ω \Ωk)→ 0 ask→+∞. By (3.1.10), (3.1.11) and (3.1.13) one has

hµ(F ) � lim sup
k→+∞

Mk + lim sup
k→+∞

mk

� C′′ +
∫
Ω

∫
M

d∑
j=1

log+ δj (DyFω)dµω(y)dP(ω),

whereC′′ = logC(d)+ d log 2+ logC′(d).
Considering the RDSFn generated by the mapω  → Fnω for anyn� 1 in the arguments

above yields

hµ(F ) = lim
n→+∞

1

n
hµ(F

n)

� lim
n→+∞

1

n

[
C′′ +
∫
Ω×M

d∑
j=1

log+ δj (DyFnω)dµ(ω,y)
]

=
∫ ∑

j

λ(j)(ω, y)+m(j)(ω, y) dµ(ω,y).

Finally we show why we can make the additional assumptions introduced at the be-
ginning of the proof to prove Theorem 3.1.1. LetM and F be as given in the state-
ment of Theorem 3.1.1 and letm0 = dimM . Let h be aC∞ embedding ofM into
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R2m0+1. We will identifyM andTM , respectively, with their images underh andDh. Let
ν(M)= {(x, v) ∈M ×R2m0+1: v⊥TxM} be the normal bundle ofM . Then there isr0> 0
such thatNr0(M) := {(x, v) ∈ ν(M): ‖v‖< r0} is equal toB(M, r0) (Nr0(M) is called a
tubular neighborhood ofM , see, e.g., [60]). DefinêFω = Fω ◦ π :B(M, r0)→ B(M, r0),
ω ∈ Ω , whereπ :ν(M)→M is the natural projection, and let̂F be the RDS generated
by these maps. ClearlŷF satisfies the additional assumptions alluded to above. Since all
Riemannian metrics onM are equivalent (duo toM being compact) andDxF̂ωv = 0 for
v ∈ TxNr0(M) with v⊥TxM , all the positive Lyapunov exponents of(F̂ ,µ) coincide with
those of(F,µ). hµ(F̂ ) is clearly equal tohµ(F ). This completes the proof. �

Pesin formula. For a deterministicC2 (or C1+α) diffeomorphismf onM and anf -
invariant measureρ, Pesin [134] proved that (3.1.6) will be an equality ifρ is smooth (i.e.,
absolutely continuous with respect to the Lebesgue measure onM) and this equality is
known as thePesin(entropy) formula. The following theorem extends the result of Pesin
to RDS composed of random endomorphisms (maybe noninvertible and with singularities,
i.e., points at which the derivative is degenerate).

THEOREM 3.1.3 (Pesin formula).Let F be of classC2 (i.e., r = 2) with log+ |Fω|C2 ∈
L1(Ω,P) and logD̂(Fω) ∈ L1(Ω,P) where D̂(Fω) := infx∈M |detDxFω|. Assume that
(Ω,F ,P, ϑ) is Polish. Letµ be anF -invariant measure. If µω 2 Leb for P-a.e. ω, then
there holds the equality

hµ(F )=
∫ ∑

i

λ(i)(ω, x)+m(i)(ω, x) dµ. (3.1.14)

REMARK 3.1.4. When(Ω,F ,P, ϑ) is assumed moreover measurably invertible, the in-
tegrability condition logD̂(Fω) ∈ L1(Ω,P) can be suppressed in Theorem 3.1.3 [116].

REMARK 3.1.5. When(Ω,F ,P, ϑ) is Polish and noninvertible, a probabilityµ on
(Ω ×M,F ×B(M)) with marginalP onΩ isΘ-invariant if and only if∫

ϑ−1{ω}
Fω′µω′ dPω(ω′)= µω, P-a.e.ω,

where{Pω}ω∈Ω is a canonical system of conditional measures ofP associated with the
partition{ϑ−1{ω}: ω ∈Ω} of Ω .

Theorem 3.1.3 was first proved by Ledrappier and Young [112] for i.i.d. random diffeo-
morphisms and then in [116,119] in the present form. See Section 3.3 for reformulation
of this theorem for i.i.d. RDS which are of particular interest from the point of view of
Markov processes. We present below a description of the main ingredients of the proof.

Jacobian. One ingredient is to overcome the difficulty caused by the fact that the ran-
dom maps here are in general not one-to-one but the usual inverse limit space method does
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not seem helpful. The notion of the Jacobian of a measure-preserving transformation in-
troduced by [132] turns out to be very useful for dealing with local homeomorphisms. The
definition is as follows.

Let f :X→ Y be a measure-preserving transformation between two probability spaces
(X,A, ν) and(Y,B, ρ). Assume that there is a countable measurable partitionα = {Ai} of
X (ν-mod0) such that for eachAi the mapfi := f |Ai :Ai → Y is absolutely continuous,
that is,

(i) fi is injective;
(ii) fi(A) is measurable ifA is a measurable subset ofAi ;

(iii) ρ(fi(A))= 0 if A⊂Ai is measurable andν(A)= 0.
By (i) and (ii) we can define a measureνfi on eachAi by νfi (A)= ρ(fi(A)) for measur-
able setA⊂ Ai . By (iii), νfi is absolutely continuous with respect toνi := ν|Ai . Define a
measurable functionJ (f ) :X→ R+ by

J (f )(x)= dνfi
dνi

(x) if x ∈Ai.

It is easy to see that the definition ofJ (f ) is independent of the choice of partitionα, and
we will call J (f ) theJacobianof f . Clearly,J (f )(x)� 1 forµ-a.e.x ∈X. As an exercise,
consider the following simple situation: iff :M→M is aC1 map with no singularities
andν is a Borel probability onM such thatν2 Leb, thenf : (M,ν)→ (M,f ν) admits a
JacobianJ (f ) given by

J (f )(x)= (Lf l)(f x)
l(x)

|detDxf |, ν-a.e.x ∈M, (3.1.15)

wherel is the density ofν with respect to the Lebesgue andLf l is defined by

(Lf l)(x)=
∑
y:fy=x

l(y)

|detDyf | (3.1.16)

(note thatLf l = l ν-a.e. is equivalent tof ν = ν).
We now state a very useful property of this notion. Assume moreover that(X,A, ν) and

(Y,B, ρ) are both Lebesgue spaces. Ifξ is a measurable partition ofY , by {νf−1ξ
x }x∈X and

{ρξy }y∈Y we will denote, respectively, a canonical system of conditional measures ofν and
ρ associated withf−1ξ andξ .

LEMMA 3.1.6 [116]. Take the assumptions just above. Let ξ be a measurable partition
of Y . Assume thatA⊂X is a measurable set such thatν(A) > 0 andfA := f |A :A→ fA

is injective. Then forν-a.e. x ∈A one has

ν
f−1ξ
x (B)=

∫
fB

1

J (f ) ◦ f−1
A

dρ
ξ

f (x)

for all measurable setsB ⊂ (f−1ξ)(x)∩A.
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Let ε be the partition ofY into single points. Letα = {Ai} be the partition introduced just
above forf . By takingA=Ai andB = {x} in Lemma 3.1.6, we obtain [132, Lemma 10.5]
which says that

logJ (f )(x)=− logνf
−1ε
x

({x}) for ν-a.e.x. (3.1.17)

If f :M→M is aC2 expanding map andν is the unique smooth invariant measure off ,
then, by (3.1.17), one has

hν(f )�Hν
(
ε|f−1ε

)=−
∫

logνf
−1ε
x

({x})dν(x)= ∫ logJ (f )(x) dν(x)

which together with (3.1.16) and the Ruelle inequality gives the Pesin formula for(f, ν).
This simple proof is due to Ledrappier and Young. For a generalC2 mapf onM pre-
serving a smooth measureν, one can think of replacing each single point in the above
arguments with a piece of stable manifold. Then Lemma 3.1.6 allows us to analyze the
contribution to the information creation made by actions on such pieces off restricted to
each area on which the map is injective. The idea is similar for the random case, see outline
of the proof of Theorem 3.1.3 given below.

We remark on another component of the proof of Theorem 3.1.3. It consists in analysis
along the stable manifolds of(F,µ), only for which the smoothness ofµω can be used
since(Ω,F ,P, ϑ) andFω, ω ∈Ω , may be noninvertible. The smoothness ofµω, ω ∈Ω ,
implies thatµ has smooth (i.e., absolutely continuous) conditional measures on the stable
manifolds (Corollary 2.2.15) and this allows one to measure information creation along
these manifolds in terms of the Lebesgue measures on them. This statement is seemingly
unreasonable since intuitively it has something to do only with the negative exponents, but
now the positive and the negative exponents do not play a symmetric role (consider, e.g., an
expanding map and see also Proposition 3.3.7(1)). Here is an intuitive explanation which is
very incomplete and technically inaccurate, but it would tell roughly how the use of stable
manifolds can lead to the relation of the entropy and the positive exponents. Letξ be a
finite Borel partition ofM . For notations to make sense we assume thatFω is invertible for
P-a.e.ω. One can rewrite the term in (3.1.1) under the integration signal in the following
way:

Hµω

(
n−1∨
k=0

(
Fkω
)−1
ξ

)
=HFnωµω

(
n−1∨
k=0

Fn−k
ϑkω
ξ

)
.

In this way the contraction goes into the picture of information creation. Replacingξ by
a partition into pieces of the stable manifolds and using the conditional entropy theory,
the determinants|detDxFnω | and |det(DxFnω |Es(ω,x))| would play a major role since the
former roughly determines thelocal volume change rate ofFnω : (M,µω)→ (M,Fnωµω)

(see (3.1.15)) and the letter roughly determines the volume change rate under the action
of Fω along the stable manifold. Finally the entropyhµ(F ) turns out to be determined
by 1

n
log(|detDxFnω |/|det(DxFnω |Es(ω,x))|) (the quotient after the logarithm signal may be
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regarded as the volume expansion rate in the expanding direction), whose integration gives
that of the sum of the positive exponents.

SKETCH OF THE PROOF OFTHEOREM 3.1.3. By Theorem 3.1.1, it remains to prove

hµ(F )�
∫ ∑

i

λ(i)(ω, x)+m(i)(ω, x) dµ. (3.1.18)

Let Γ ⊂Ω ×M be aµ-full set such thatΘΓ ⊂ Γ and each point inΓ is regular in the
sense of Oseledec. SetI = {(ω, x) ∈ Γ : λ(i)(ω, x) � 0, 1� i � r(ω, x)} and∆ = Γ \I .
DefineWs(ω,x)= {x} for (ω, x) ∈ I .

In what follows we writeλ = Leb. Recall that, by assumption,µω 2 λ for P-a.e.ω.
Construct then a measurable partitionη of (Ω×M,µ)which has the following properties:

(i) Θ−1η � η (i.e., (Θ−1η)(ω,x) ⊃ η(ω,x) for µ-a.e. (ω, x)), σ := {{ω} × M:
ω ∈Ω} � η;

(ii) η is subordinate toWs -manifolds of(F,µ);
(iii) for everyB ∈ B(Ω ×M) the function(ω, x)  → λs(ω,x)(ηω(x)∩Bω) is measurable

andµ-a.e. finite, whereBω = {y: (ω, y) ∈ B} andλs(ω,x) is the Lebesgue measure
onWs(ω,x) induced by its inherited Riemannian structure as a submanifold ofM

(λs
(ω,x)

= δx if Ws(ω,x)= {x});
(iv) (µω)

ηω
x 2 λs(ω,x) for µ-a.e.(ω, x), where(µω)

ηω
x is the conditional measure ofµω

onηω(x).
Let η be as given above. By a computation similar to [116, (4.8)] one has

hµ(F )� lim
n→+∞

1

n
Hµ(η|Θ−nη ∨ σ)

if

Hµ(η|Θ−nη ∨ σ) <+∞ (3.1.19)

for all n� 1. Hence, in order to prove (3.1.18), it is sufficient to prove that for everyn� 1
there hold (3.1.19) and

1

n
Hµ(η|Θ−nη ∨ σ)�

∫ ∑
i

λ(i)(ω, x)+mi(ω,x) dµ. (3.1.20)

Fix n� 1 arbitrarily. By the definition of conditional entropies one has

Hµ(η|Θ−nη ∨ σ) = −
∫

logµΘ
−nη∨σ

(ω,x)

(
η(ω,x)

)
dµ(ω,x)

= −
∫
Ω

∫
M

log(µω)
(Fnω)

−1ηϑnω
x

(
ηω(x)
)
dµω(x)dP(ω),
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where{νξz }z∈X denotes a canonical system of conditional measures ofν associated with a
measurable partitionξ of a Lebesgue space(X,A, ν).

Sinceµ2 λ× P we can define

φ = dµ

d(λ× P)

which implies

φω(·) := φ(ω, ·)= dµω
dλ
(·)

for P-a.e.ω. PutΛ = {(ω, x): φ(ω,x) > 0}. By Remark 3.1.5,Fnωµω(M \ Λϑnω) = 0
for P-a.e.ω. Then it can be checked thatFnω : (Λω ∩ (F nω)−1Λϑnω,µω)→ (Λϑnω,F

n
ωµω)

admits the Jacobian

J (Fnω)(x)=
(LFnωφω)(Fnωx)

φω(x)
|detDxF

n
ω |

(see (3.1.15)).
Define a Borel measureλ∗ onΩ ×M by

λ∗(B)=
∫
λs(ω,x)
(
ηω(x)∩Bω

)
dµ(ω,x) for BorelB ∈Ω ×M.

Sinceµ(B)= ∫ (µω)ηωx (ηω(x)∩Bω)dµ(ω,x) and(µω)
ηω
x 2 λs(ω,x), we haveµ2 λ∗. Put

g(ω,x)= dµ

dλ∗
(ω, x).

We then have forµ-a.e.(ω, x),

g(ω,y)= d(µω)
ηω
x

dλs(ω,x)
(y), λs(ω,x)-a.e.y ∈ ηω(x).

Define forµ-a.e.(ω, x) ∈Ω ×M ,

Wn(ω,x)= (µω)(F
n
ω)

−1ηϑnω
x

(
ηω(x)
)
,

Xn(ω,x)= φ(ω,x)

φ ◦Θn(ω,x)
g ◦Θn(ω,x)
g(ω,x)

,

Yn(ω,x)=


|detDxFnω |Es (ω,x)|
|detDxFnω | if (ω, x) ∈∆,
1

|detDxFnω | if (ω, x) ∈ I,

Zn(ω,x)=
∫
ηϑnω(F

n
ωx)

Φn(ω,y) d(µϑnω)
ηϑnω
Fnωx

(y),
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where

Φn(ω,y) := dF
n
ωµω

dµϑnω
(y)= (LFnωφω)(y)

φϑnω(y)
.

Wn,Xn,Yn,Zn are all measurable andµ-a.e. finite. The proof will be completed after
one proves the four claims below.

Claim 1. Wn = XnYn
Zn

µ-a.e. onΩ ×M ;

Claim 2. logYn ∈ L1(Ω ×M,µ) and

−
∫

1

n
logYn dµ=

∫ ∑
i

λ(i)(ω, x)+m(i)(ω, x) dµ.

Claim 3. logZn ∈ L1(Ω ×M,µ) and
∫

logZn dµ� 0.
Claim 4. logXn ∈ L1(Ω ×M,µ) and

∫
logXn dµ= 0.

Claim 1 is the key point and we present its proof below. In order to prove the claim, it
suffices to prove that forµ-a.e.(ω, x) one has

Wn(ω,y)= Xn(ω,y)Yn(ω,y)
Zn(ω,y)

, (µω)
ηω
x -a.e.y ∈ ηω(x). (3.1.21)

For P-a.e.ω choose a countable Borel partition{Anω,i}+∞
i=1 of M such thatFnω,i := Fnω |Anω,i

is injective for eachi. Then, forµ-a.e.(ω, x), we have for any measurableB ⊂ ηω(x),

(µω)
ηω
x (B) =

1

Wn(ω,x)
(µω)

(Fnω)
−1ηϑnω

x (B)

= 1

Wn(ω,x)

∑
i

(µω)
(Fnω)

−1ηϑnω
x (Bi)

(
Bi = B ∩Anω,i

)
= 1

Wn(ω,x)

∑
i

∫
FnωBi

1

J (Fnω) ◦ (F nω,i)−1
d(Fnωµω)

ηϑnω
Fnωx

(by Lemma 3.1.6)

= 1

Wn(ω,x)Zn(ω,x)

∑
i

∫
FnωBi

Φn(ω,y)

J (Fnω) ◦ (F nω,i)−1(y)
d(µϑnω)

ηϑnω
Fnωx

= 1

Wn(ω,x)Zn(ω,x)

×
∑
i

∫
FnωBi

Φn(ω,y)

J (Fnω) ◦ (F nω,i)−1(y)
g(ϑnω,y)dλsΘn(ω,x)

= 1

Wn(ω,x)Zn(ω,x)
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×
∑
i

∫
Bi

Φn(ω,F
n
ωy)

J (Fnω)(y)
g
(
Θn(ω,y)

)∣∣det(DyF
n
ω |Es(ω,y))

∣∣dλs(ω,x)
= 1

Wn(ω,x)Zn(ω,x)

×
∫
B

φ(ω,y)

φ(Θn(ω,y))
Yn(ω,y)g

(
Θn(ω,y)

)
dλs(ω,x).

On the other hand,

(µω)
ηω
x (B)=

∫
B

g(ω,y) dλs(ω,x).

From the arbitrariness ofB it follows that forµ-a.e.(ω, x),

φ(ω,y)

φ(Θn(ω,y))
Yn(ω,y)g

(
Θn(ω,y)

)= g(ω,y)
for λs(ω,x)-a.e.y ∈ ηω(x). This proves (3.1.21) since(µω)

ηω
x 2 λs(ω,x) andWn(ω,y) =

Wn(ω,x), Zn(ω,y)= Zn(ω,x) for anyy ∈ ηω(x). This proves Claim 4. �

In the rest of this section we consider Pesin entropy formula for some particular RDS.
Let f be a (deterministic)C2 map (maybe noninvertible and with singularities) onM

preserving a smooth (i.e., absolutely continuous) probability measureµ. Then, by consid-
ering the one-point spaceΩ = {f }, Theorem 3.1.3 together with Remark 3.1.4 implies
that the Pesin formula holds true for the systemf : (M,µ)←↩. If f is aC2 expanding map
onM (i.e., there existsa > 1 such that|Dfv| � a|v| for all v ∈ TM) andµ is the unique
smooth invariant measure off , then

hµ(f )=
∫ ∑

i

λ(i)(x)m(i)(x) dµ=
∫

log|detDxf |dµ;

if A :Kp →Kp is a surjective group endomorphism of ap-dimensional torus andm is the
Haar measure onKp , then

hm(A)=
∑
|λi |>1

log|λi |,

whereλ1, . . . , λp are the eigenvalues of the linear transformationÂ :Rp → Rp that cov-
ersA. The latter two results were proved previously in other ways (see [125, Section IV.5]
and [162, Section 8.4], respectively), and now they can be obtained as corollaries of the
general result Theorem 3.1.3.

Entropy formula for expanding in average RDS’s.As applications of Theorem 3.1.3
we consider expanding RDS. PutΩ = Cr(M,M)Z (endowed with the product topology)
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and letP be a Borel probability distribution onΩ which is invariant under the left shift
operatorϑ onΩ . Let F be the RDS generated by the coordinate process on(Ω,P), i.e.,
by the mapω→ Fω := ω0, ω = (ωi)i∈Z ∈Ω . Assume that forP-a.e.ω the mapFω has
no singularities. Define|f |−

C1 = infξ∈TM,|ξ |=1 |Df ξ | for f ∈ C1(M,M). If log |Fω|−C1 ∈
L1(Ω,P) and with probability one we have

lim
n→+∞

1

n

n−1∑
k=0

log|Fϑkω|−C1 =: a(ω) > 0 (3.1.22)

(the limit exists forP-a.e.ω by Birkhoff ergodic theorem),F is then said to beexpanding
in average. This model was introduced in [79] (see also Section 4.2) and thermodynamic
formalism for this model was developed there. Now letF be such an RDS and assume
moreover that it is of classC2 (i.e., r = 2) and log+ |Fω|C2 ∈ L1(Ω,P). Then there exists
a uniqueF -invariant measureµ whose sample measures are almost all equivalent to the
Lebesgue (see [79, Theorem B]; one can verify the conditions required there under the
present assumptions). By Theorem 3.1.3, Pesin formula holds true for(F,µ). It is easy to
see that the condition (3.1.22) implies that the smallest Lyapunov exponent ofF is positive
µ almost everywhere and hence

hµ(F )=
∫

log|detDxFω|dµ(ω,x).

Small random perturbations of expanding maps.Let F be as given in the last para-
graph and letr = 2. If P is concentrated onΩε := Bε(f )Z, whereε > 0 andBε(f ) is
the ε-neighborhood of aC2 expanding mapf :M →M in C2(M,M) (endowed with a
C2-metric), the RDSF can be regarded as a small random perturbation of the expanding
mapf . Suppose that for each sufficiently smallε > 0 we are given such an RDS, which
will be denoted byFε, and the corresponding distributionPε onΩ is ergodic (if it is not
ergodic, the extension of the following results is straightforward by using the ergodic de-
composition method). Whenε is small enough, there is a uniqueFε-invariant measure
µε whose sample measures can be chosen so that, for eachω ∈Ωε, µε,ω is equivalent to
the Lebesgue with aC1 densitylε,ω = dµε,ω/d Leb. Let l0 be aC1 density of the unique
smoothf -invariant measureµ0 with respect to the Lebesgue. Then one has

lim
ε→0

sup
ω∈Ωε

sup
x∈M
∣∣lε,ω(x)− l0(x)∣∣= 0. (3.1.23)

Moreover, the measureµε is ergodic. These results were proved in [91] and [16] by using
random transfer operator method (see those papers for detailed treatments and for more
information). Let(λ(i)ε ,m

(i)
ε ), 1 � i � rε, be the Lyapunov spectrum of(Fε,µε). Then,

from Theorem 3.1.3 and (3.1.23) there follows

COROLLARY 3.1.7. For sufficiently smallε > 0 one has

hµε (Fε)=
∑
i

λ(i)ε m
(i)
ε
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and

lim
ε→0

hµε (Fε)= hµ0(f ).

We remark that the second statement of this corollary can also be obtained as a special
case of [33, Proposition 3.5].

3.2. Relationship between entropy, exponents and dimension

Set-up. In this section we assume thatϑ : (Ω,F ,P)←↩ is Polish and measurably in-
vertible. The RDSF over(Ω,F ,P, ϑ) is generated by a measurable map

F :Ω→ Diff 2(M), ω  → Fω

satisfying (2.3.7), i.e.,∫ (
log+ |Fω|C2 + log+

∣∣(Fω)−1
∣∣
C2

)
dP(ω) <+∞.

Letµ be anF -invariant measure.

Pesin formula and SRB measures.Careful observation makes it plausible that the in-
formation creation is caused by the expansion in the positive iterations of the random maps
and the contracting and neutral directions in the positive iterations do not contribute to the
entropy. This is made precise by the following proposition which tells that the entropy is
determined by the action of the random maps on the unstable manifolds. For a measurable
partitionξ of a Lebesgue space(X,A, ν) we will denote byB(ξ) theσ -algebra generated
by ξ (see [142] for the definition).

PROPOSITION3.2.1. Let(F,µ) be given. Then there exists a measurable partitionη, finer
than{{ω} ×M: ω ∈Ω}, of (ω×M,µ) which has the following properties:

(1) η is subordinate toWu-manifolds of (F,µ), i.e., for µ-a.e. (ω, x), ηω(x) ⊂
Wu(ω,x) and it contains an open neighborhood ofx in Wu(ω,x) (with the sub-
manifold topology) (Wu(ω,x) := {x} if λ(i)(ω, x)� 0 for all i);

(2) Θ−1η� η;
(3)
∨+∞
n=0Θ

−nη is equal to the partition into single points, andB(
∧+∞
n=0Θ

nη) = Bu
(µ-mod0),whereBu := {B ∈ Bµ(Ω ×M): B =⋃(ω,x)∈B{ω} ×Wu(ω,x)};

(4) hµ(F )=Hµ(Θ−1η|η)= ∫ Hµω((Fω)−1ηϑω|ηω)dP(ω).

Proof of the existence of such a partition is relatively easy whenµ is an SRB mea-
sure (whose definition will be given below) because the hardest part (4) can be obtained
with the help of estimating the entropy via the positive exponents (for a deterministic map
see [108]). For a general invariant measureµ it is necessary to consider explicitly the role
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played by the zero exponent and the proof is much harder. For a deterministic diffeomor-
phism the result is due to [110, Part I]. For the extension to(F,µ) see [12].

Noting that∫ ∑
i

λ(i)(ω, x)+m(i)(ω, x) dµ=
∫

log
∣∣det(DxFω|Eu(ω,x))

∣∣dµ,
whereEu(ω,x)=⊕λ(i)(ω,x)>0E

(i)(ω, x), by Proposition 3.2.1(4) one can expect an esti-
mate sharper than Ruelle inequality (3.1.6) if the conditional measures ofµ on the unstable
manifolds are compatible with the Lebesgue measures on these manifolds. This leads to
the notion of SRB (Sinai–Ruelle–Bowen) measures.

DEFINITION 3.2.2. An invariant measureµ of F is called anSRB measureif it has ab-
solutely continuous conditional measures onWu-manifolds, i.e., for every measurable par-
tition η of (Ω ×M,µ) subordinate toWu-manifolds of(F,µ) one has

µ
η

(ω,x)2 λu(ω,x) for µ-a.e.(ω, x), (3.2.1)

whereµη(ω,x) is the conditional measure ofµ onη(ω,x)= {ω}×ηω(x), which is identified
with ηω(x), andλu(ω,x) is the Lebesgue measure onWu(ω,x) (λu(ω,x) := δx if Wu(ω,x)=
{x}).

REMARK 3.2.3. Letη be a measurable partition subordinate toWu-manifolds of(F,µ).
By the transitivity of conditional measures, forP-a.e.ω one has

(µω)
ηω
x = µη(ω,x) for µω-a.e.x,

where{(µω)ηωx }x∈M is a canonical system of conditional measures ofµω associated with
the partitionηω ofM . So the SRB property ofµ implies thatµω has absolutely continuous
conditional measures on the unstable manifolds forP-a.e.ω.

It turns out that the SRB property ofµ is equivalent to the equation

Hµ
(
Θ−1η|η)= ∫ log

∣∣det(DxFω|Eu(ω,x))
∣∣dµ,

whereη is given in Proposition 3.2.1. This can be stated as the following

THEOREM 3.2.4. Let (F,µ) be given. Then

hµ(F )=
∫ ∑

i

λ(i)(ω, x)+m(i)(ω, x) dµ (3.2.2)

holds if and only ifµ is an SRB measure.
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REMARK 3.2.5. (3.2.1) actually implies that, forµ-a.e.(ω, x), µη(ω,x) is equivalent to
λu(ω,x), more precisely, there exist a countable number of open setsUn(ω,x) of Wu(ω,x)

such that
⋃
n Un(ω,x) ⊂ ηω(x), λu(ω,x)(ηω(x) \

⋃
n Un(ω,x)) = 0 and on eachUn(ω,x)

the densityρ = µη(ω,x)/λu(ω,x) is strictly positive and satisfies

ρ(y)

ρ(z)
=

+∞∏
i=1

Ju(Θ−i (ω, z))
J u(Θ−i (ω, y))

, y, z ∈Un(ω,x),

whereJu(ω,x)= |det(DxFω|Eu(ω,x))|. This is an analog of [110, Corollary 6.2], a proof
was given in [118] for an i.i.d. RDS and the proof is the same for the present(F,µ).

REMARK 3.2.6. Ifµω2 Leb for P-a.e.ω, thenµ is an SRB measure. This follows from
the absolute continuity property of the unstable manifolds of(F,µ) and is the analog of
Corollary 2.2.15 for unstable manifolds. However,µω 2 Leb for P-a.e.ω turns out to be
a singular phenomenon whenF is a canonical i.i.d. RDS andµ is a Markov measure (see
Section 3.3).

SRB measures were first defined by Sinai [156] for Anosov diffeomorphisms, then by
Ruelle [145] for Axiom A attractors and by Bowen and Ruelle [37] for Axiom A flows.
In his original study, Sinai [156] showed (using Markov partitions and symbolic dynam-
ics) that, ifµ satisfies the absolute continuity condition defining the SRB measures for an
Anosov diffeomorphism, thenµ is in fact a Gibbs state in the sense of equilibrium statisti-
cal mechanics. As noted by Ruelle [145], the Gibbs property is equivalent to a variational
principle which is in turn the same thing as the Pesin entropy formula. Using Pesin theory,
the SRB property was later extended to nonuniformly (even partially) hyperbolic dynam-
ical systems by Ledrappier and Strelcyn [108], which proves that the SRB property of an
invariant measure implies Pesin formula for aC2 (or C1+α) diffeomorphism. The inverse
implication is much harder to establish and was proved by Ledrappier and Young [110,
Part I]. The result for i.i.d. diffeomorphisms was then treated in [112] and [118]. Finally
Theorem 3.2.4 was confirmed in [12]. Whenµω 2 Leb for P-a.e.ω, it is also possible to
derive (3.2.2) along the line of [124], see [10].

Besides being characterized as those measures satisfying Pesin entropy formula, SRB
measures have their physical importance: they represent the asymptotic (long time) behav-
ior of initial points in a set of positive Lebesgue measure. This was elaborated by Ruelle
[145] for Axiom A attractors and by Pugh and Shub [137] for nonuniformly hyperbolic
diffeomorphisms. We refer to the brief and excellent lecture notes [153] and [167] for
more information about SRB measures. See [166,115] for the physical relevance of SRB
measures for small random perturbations of Axiom A attractors. One can expect that Pugh
and Shub’s result alluded to above could be extended to(F,µ) (by using the absolute
continuity property of stable manifolds).

REMARK 3.2.7. See Ruelle [152] for applications of Theorems 3.1.1 and 3.2.4 in the
study of positivity of (statistical mechanics) entropy production in nonequilibrium statisti-
cal mechanics when a thermostat acting by random forces is present.
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Generalized entropy formula.As stated in Young [167], one way to understand the
results Proposition 3.2.1, Theorems 3.1.1 and 3.2.4 is as follows: information creation is
caused exactly by the expansion in the random maps; when the measure is SRB, all (in the
topological sense) the expansion is employed to make entropy, hence we have the Pesin
formula; a strict inequality signifies some “wasted” expansion, which can happen only if
the invariant measure has “holes” on the unstable manifolds. This naturally leads to the
following question: for a non-SRB measure, how to describe the part of the expansion
which contributes to the entropy, and what is the precise relation between the entropy and
the expansion? This problem is answered by the next theorem. It involves dimensions of
conditional measures of the invariant measure on various layers of the unstable manifolds,
which allow one to distinguish between contributions to the entropy made by expansions in
different directions. For simplicity of presentation we introduce the definition for ergodic
(F,µ). For our purpose it is more convenient to write the Lyapunov exponents of(F,µ)

in the following way:

+∞> λ1> λ2> · · ·> λr >−∞. (3.2.3)

Assumeλ1> 0. Letλ1> · · ·> λq be all the positive exponents and denote simply by

W1(ω, x)⊂W2(ω, x)⊂ · · · ⊂Wq(ω,x)

the corresponding nested family of unstable manifolds ofF at (ω, x). Fix arbitrarily 1�
i � q and letη be a measurable partition of(Ω ×M,µ) subordinate to theWi -mani-
folds of (F,µ) (the definition is analogous to theWu-manifolds case). For a typicalω, let
{(µω)ηωx }x∈M be a canonical system of conditional measures ofµω associated withηω (see
Remark 3.2.3). DefineBiω(x, r)= {y ∈Wi(ω,x): di(x, y) < r} wheredi( , ) denotes the
distance alongWi(ω,x). Then, the limit

δi := lim
r→0

log(µω)
ηω
x (B

i
ω(x, r))

logr
(3.2.4)

can be shown to exist and to be constant forµ-a.e.(ω, x). The numberδi is clearly indepen-
dent of the choice ofη and will be called thedimension ofµω, ω ∈Ω on theWi -manifolds.
Numberγi , defined by

γi =
{
δ1 for i = 1,

δi − δi−1 for 2� i � q,

is called apartial dimension, it can be regarded as the dimension ofµω, ω ∈Ω , “in the
direction of the Oseledec spaceE(i) corresponding toλi ” or as the “transverse dimension”
of µω, ω ∈Ω , onWi/Wi−1. Whenµ is not ergodic, the definitions are analogous.

THEOREM 3.2.8. For (F,µ) the following generalized entropy formula:

hµ(F )=
∫ ∑
i: λi(ω,x)>0

λi(ω, x)γi(ω, x) dµ (3.2.5)

holds true.
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The fundamental formula (3.2.5), as well as the existence of the limit (3.2.4), was elab-
orated by Ledrappier and Young [110, Part II] for a deterministicC2 diffeomorphism
f :M →M . The extension to(F,µ) follows essentially the same line of [110, Part II]
and is due to [138] (this paper deals with an i.i.d. RDS, but the argument remains almost
the same for the present(F,µ)).

Note that (3.2.5) implies the Ruelle inequality for(F,µ) becauseγi(ω, x) �mi(ω,x)
(mi(ω,x) is the multiplicity of λi(ω, x)) for 1 � i � q(ω,x). Whenµ is SRB one has
γi(ω, x)=mi(ω,x) and hence (3.2.5) gives the Pesin formula.

Dimension of hyperbolic measures ofF . Another related important problem concerns
dimension of the sample measuresµω, ω ∈Ω , themselves. Letν be a Borel probability
measure on a finite-dimensional manifoldN . If the limit

dν(x) := lim
r→0

logν(B(x, r))

logr
(3.2.6)

exists atν-a.e.x ∈N , ν is then said to beexact dimensionalanddν(x) is called thepoint-
wise dimensionof ν at x. The existence of the limit (3.2.6) signifies its importance by
the following crucial fact due to Young [165]: Ifdν(x) exists and is equal to a constant
α for ν-a.e.x, then the Hausdorff dimension, the lower and the upper box dimension as
well as several other dimension type characteristics of the measureν coincide and the
common value isα. Let nowf :M →M be aC2 (or C1+α) diffeomorphism andµ an
ergodicf -invariant measure. Though the pointwise dimensions of conditional measures
of µ on various layers of the stable and unstable manifolds can be shown well defined (as
mentioned in the last paragraph), the existence of the limit (3.2.6) defining the pointwise
dimensiondµ(x) turns out to be more subtle. It was conjectured by Eckmann and Ruelle
that, if µ is hyperbolic (i.e., iff has no zero Lyapunov exponentµ almost everywhere),
then the pointwise dimensiondµ(x) exists and is constant forµ-a.e.x, the constantdµ
is equal to the sum of the pointwise dimensions, denoted bydsµ andduµ, respectively, of
conditional measures ofµ on the stable and unstable manifolds, i.e.,

dµ = dsµ + duµ.

This conjecture had remained a long-standing open problem in the interface of dimension
theory and dynamical systems, and it was finally proved by Barreira, Pesin and Schmel-
ing [20] (see that paper for previous substantial progress by Ledrappier, Young and oth-
ers). The following theorem is an extension to the RDS(F,µ) of the main result from [20]
(see [120]).

THEOREM 3.2.9. Let the RDS(F,µ) be given. Assume thatµ is ergodic(i.e., ergodic
with respect toΘ) andhyperbolic (i.e., F has no zero exponentµ almost everywhere). Let
ηs (respectivelyηu) be a measurable partition of(Ω×M,µ) subordinate toWs -manifolds
(respectivelyWu-manifolds) of (F,µ). Letµs(ω,x) (respectivelyµu(ω,x)) be the conditional
measure ofµ onηs(ω,x) (respectivelyηu(ω,x)). Then one has the following:
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(1) for everyε > 0 there exists a setΛ′ ⊂Ω ×M with µ(Λ′) > 1− ε and constants
κ � 1, ρ0> 0 such that for every(ω, x) ∈Λ′ and everyρ ∈ (0, ρ0),

ρεµs(ω,x)

(
Bsω

(
x,
ρ

κ

))
µu(ω,x)

(
Buω

(
x,
ρ

κ

))
� µω
(
B(x,ρ)

)
� ρ−εµs(ω,x)

(
Bsω(x, κρ)

)
µu(ω,x)

(
Buω(x, κρ)

);
(2) for P-a.e. ω, µω is exact dimensional and atµω-a.e. x,

dµω(x)= dsµω(x)+ duµω(x), (3.2.7)

the three quantities in(3.2.7)are constant forµ-a.e. (ω, x).
Whenµ is not ergodic, µω is still exact dimensional forP-a.e. ω and (3.2.7)is true at

µ-a.e. (ω, x).

3.3. I.i.d. RDS

Set-up. In this section we consider a particular class of RDS which is of great interest
from the point of view of Markov processes and which is closely related to solutions of
classical stochastic differential equations (see [117] for a brief review). This class of RDS
is defined by assuming that the random maps chosen at different time steps are independent
and identically distributed. More precisely, letϑ : (Ω,F ,P)←↩ be a measure-preserving
map of a probability space and letF be an RDS over(Ω,F ,P, ϑ) generated by a measur-
able map

F :Ω→ Cr(M,M), ω  → Fω

(r � 0). If Fϑn·, n� 0, andn < 0 whenϑ is measurably invertible, are independent (they
are clearly identically distributed), thenF is said to bei.i.d. In the rest of this sectionF
will always be such an i.i.d. RDS.

We recall the following canonical model which is of particular interest. TakeΩ =
Cr(M,M)Z

+
, endowed with the product topology and the Borelσ -algebra (note thatΩ is

Polish for integer 0� r <∞). Letϑ :Ω→Ω be the left shift operator, i.e.,(ϑω)n = ωn+1

for ω= (ωn) ∈Ω , and letP = νZ+
for some Borel probabilityν onCr(M,M). The coor-

dinate mapF :Ω→ Cr(M,M), ω  → ω0 defines then an i.i.d. RDSF over(Ω,F ,P, ϑ).
We will call it a one-sided canonical i.i.d. RDS; this model corresponds to that introduced
and systematically studied by Kifer [82]. Atwo-sided canonical i.i.d. RDSis defined sim-
ilarly by takingΩ = Cr(M,M)Z andP = νZ.



438 Yu. Kifer and P.-D. Liu

Stationary measures.A specific feature of an i.i.d. RDSF is that it naturally induces
a family of Markov processes (i.e., its one-point motions) onM whose transition probabil-
itiesP(x, ·), x ∈M , are defined by

P(x,A)= P{ω: Fωx ∈A} for BorelA⊂M.
A Borel probability measureρ onM is called astationary measureof F if it is stationary
for the Markov kernelP(x, ·), x ∈M , i.e.,

ρ(A)=
∫
P(x,A)dρ(x) for BorelA⊂M

which is equivalent to

ρ(A)=
∫
(Fωρ)(A)dP(ω) for BorelA⊂M.

Such measures always exist and a systematic study of their ergodic properties was pre-
sented in [82]. We present below two properties of them. LetΘ :Ω ×M←↩ be the skew
product transformation ofF .

PROPOSITION3.3.1 [130]. Let F be a one-sided canonical i.i.d. Cr (0 � r � ∞) RDS.
Then:

(1) a probabilityρ onM is stationary forF if and only ifP × ρ isΘ-invariant, i.e., it
is an invariant measure ofF ;

(2) a stationary measureρ ofF is ergodic from the viewpoint of Markov processes(see,
e.g., [82]) if and only if(F,P× ρ), or equivalently(Θ,P× ρ), is ergodic.

Proposition 3.3.1 shows the relation between stationary and invariant measures for a
one-sided canonical i.i.d. RDS. For the two-sided case one has

PROPOSITION3.3.2. LetF be a two-sided canonical i.i.d. Cr RDS(0 � r <∞ sinceΩ
is assumed being Polish here). Then the set of stationary measures ofF corresponds in a
one-to-one way to the set of forward Markov invariant measures ofF (that is, the set of
thoseF -invariant measuresρ∗ whose almost every sample measureρω depends only on
the past(. . . ,ω−2,ω−1) of ω), with the correspondence being given by

ρ  → ρ∗ with ρω := lim
n→+∞F

n
ϑ−nωρ, P-a.e. ω

and

ρ∗  → ρ :=
∫
ρω dP(ω).

Moreover, for a given stationary measureρ of F , the correspondingρ∗ is the unique
F -invariant measure whose natural projection onCr(M,M)Z

+ ×M is νZ+ × ρ, andρ is
ergodic from the pointview of Markov processes if and only if(F,ρ∗) is ergodic.
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See [7, Theorems 1.7.2 and 2.1.8] for a proof and for more information.

Entropy formula for i.i.d. RDS. An interesting phenomenon due to presence of noise is
that for an i.i.d. RDS and a stationary measure the Pesin formula “always” holds true and
the corresponding sample measures are almost surely SRB if the RDS is “sufficiently” ran-
dom [112]. To state the results precisely, we first reformulate the definition of the entropy
in this particular setting. AssumeF is i.i.d. andρ is a stationary measure ofF . For a finite
Borel partitionξ ofM , let

hρ(F, ξ)= lim
n→+∞

1

n

∫
Hρ

(
n−1∨
k=0

(
Fkω
)−1
ξ

)
dP(ω) (3.3.1)

(the limit exists, see [82, Theorem II.1.3] for a similar proof), and define theentropyof
(F,ρ) ashρ(F ) := suphρ(F, ξ), with the supremum being taken over the set of all finite
Borel partitions ofM . Let ν be the probability onCr(M,M) induced by the mapΩ →
Cr(M,M), ω  → Fω. Denote byF̂ the one-sided canonical i.i.d. RDS withP̂ = νZ+

, and
by F̃ the two-sided one with̃P = νZ. Thenhρ(F ) can be related to the previous notion of
entropy by

hρ(F )= hP̂×ρ(F̂ )= hρ∗(F̃ ), (3.3.2)

whereP̂× ρ andρ∗ are given by Propositions 3.3.1 and 3.3.2, respectively (see [116]).
Assume thatF isC1 and∫

log+ |DxFω|d(P× ρ)(ω,x) <+∞.

Then forρ-a.e.x there exist numbers (depending only and measurably onx) r(x),

−∞� λ(1)(x) < λ(2)(x) < · · ·< λ(r(x))(x) <+∞

such that forP-a.e.ω there are subspaces

{0} = V (0)(ω, x)⊂ V (1)(ω, x)⊂ · · · ⊂ V (r(x))(ω, x)= TxM

satisfying

lim
n→+∞

1

n
log|DxFnωξ | = λ(i)(x)

for ξ ∈ V (i)(ω, x) \ V (i−1)(ω, x), 1 � i � r(x), with m(i)(x) := dimV (i)(ω, x) −
dimV (i−1)(ω, x) also depending only and measurably onx. We will call (λ(i)(x),m(i)(x)),
1 � i � r(x), the Lyapunov spectrumof (F,ρ) at x. This result is shown in [82] for a



440 Yu. Kifer and P.-D. Liu

one-sided canonical i.i.d. RDS. The extension to(F,ρ) is straightforward by defining the
Lyapunov spectrum of(F,ρ) atρ-a.e.x as that of(F̂ , ρ) via the measure-preserving map

Σ : (Ω,P)→ (Cr(M,M)Z+
, νZ+)

, ω  → (Fω,Fϑω, . . .).

Applying Theorems 3.1.1 and 3.1.3 to the RDSF̂ with invariant measureνZ+ × ρ, we
have

COROLLARY 3.3.3 (Ruelle inequality for i.i.d. RDS).Assume thatF is C1 (i.e., r = 1)
and log+ |Fω|C1 ∈ L1(Ω,P). Then for any stationary measureρ of F ,

hρ(F )�
∫ ∑

i

λ(i)(x)+m(i)(x) dρ(x).

COROLLARY 3.3.4 (Pesin formula for i.i.d. RDS).Assume thatF isC2 andlog+ |Fω|C2 ∈
L1(Ω,P), logD(Fω) ∈ L1(Ω,P). Let ρ be a stationary measure ofF . If ρ 2 Leb, then
one has

hρ(F )=
∫ ∑

i

λ(i)(x)+m(i)(x) dρ(x).

If the i.i.d. RDSF is sufficiently random in the sense that its transition probabilities have
a density with respect to the Lebesgue, i.e., if there is a Borel functionp :M ×M→ R+
such that for everyx ∈M one has

P(x,A)=
∫
A

p(x, y) d Leb(y) for BorelA⊂M,

then all its stationary measuresρ satisfyρ2 Leb (see, e.g., [118, Section IV.1]).
From Corollary 3.3.4 and Theorem 3.2.4 there follows

COROLLARY 3.3.5 (SRB property of sample measures).Let F be a two-sided canoni-
cal i.i.d. RDS such thatFω ∈ Diff 2(M) for P-a.e. ω. Assume the integrability conditions
log+ |Fω|C2, log+ |(Fω)−1|C2 ∈ L1(Ω,P). Letρ be a stationary measure ofF . If ρ2 Leb,
then almost all the sample measuresρω, ω ∈Ω , are SRB, or, precisely speaking, the mea-
sureρ∗ given by Proposition3.3.2is SRB.

REMARK 3.3.6 (Nonsmoothness of sample measures). Take the assumptions of Corol-
lary 3.3.5. Then the SRB sample measuresρω, ω ∈ Ω , are almost all smooth (i.e.,
ρω2 Leb for P-a.e.ω) if and only if Fωρ = ρ for P-a.e.ω. Equivalently (and roughly
speaking), if the latter condition does not hold, the time evolution on the phase space will
destroy with full probability (note thatP is now ergodic) the smoothness ofρ in some con-
tracting directions but improves it in the stretching directions, ensuring the SRB property of
the sample measures (recall the pictures in Proposition 3.3.2 and Corollary 3.3.5; see also
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Theorem 3.3.11 below). The fact stated above can be proved as follows. Note that, ifρω2
Leb forP-a.e.ω, the absolute continuity property of the stable and unstable manifolds im-
plies thatρ∗ is SRB both forF and its time reversal, yielding

∫ ∑
i λ
(i)(x)m(i)(x) dρ(x)=

0 by the Pesin formulae. By using the interesting result Proposition 3.3.7 below, one proves
Fωρ = ρ for P-a.e.ω. The inverse implication is obvious.

PROPOSITION3.3.7 [24,82].LetF be an i.i.d. RDS withFω ∈ Diff 1(M) for P-a.e. ω and
log+ |Fω|C1 ∈ L1(Ω,P). Letρ be a stationary measure ofF . If ρ2 Leb, then

(1)
∑
i λ
(i)(x)m(i)(x)� 0, ρ-a.e. x;

(2)
∑
i λ
(i)(x)m(i)(x)= 0, ρ-a.e. x if and only ifFωρ = ρ for P-a.e. ω.

Ruelle inequality and Pesin formula for stochastic flows of diffeomorphisms.Let
{ψt }t�0 be a stochastic flow ofCr (r ∈ N) diffeomorphisms over a probability space
(Ω̂, F̂ , P̂) as introduced by Definition 2.4.3. For the discrete time case the defini-
tion is analogous and the discussion below will be similar (but the integrability of
log+ |ψ1(ω̂)|Cr + log+ |ψ1(ω̂)

−1|Cr with respect toP̂ does not hold automatically, as op-
posed to the continuous time case, and has to be assumed). So here we only deal with
the continuous time case. Letρ be a stationary measure of{ψt }t�0. Let (λ(i)(x),m(i)(x)),
1� i � r(x), ρ-a.e.x ∈M be the Lyapunov spectra of({ψt }t�0, ρ) (see [118, Chapter V]).
For an arbitrarily fixedt0> 0, one can define theentropy of({ψt }t�0, ρ) with respect tot0,
writtenht0ρ ({ψt }t�0), in a way similar to (3.3.1) by replacingFkω with ψkt0(ω̂). It turns out
that

ht0ρ
({ψt }t�0

)= t0h1
ρ

({ψt }t�0
)

[82] and hence the particular choice of the time step lengtht0 does not matter for the notion
of the entropy of({ψt }t�0, ρ). Then, by Corollaries 3.3.3 and 3.3.4, one has

COROLLARY 3.3.8. For every stationary measureρ of aC1 stochastic flow{ψt }t�0 one
has the Ruelle inequality

h1
ρ

({ψt }t�0
)
�
∫ ∑

i

λ(i)(x)+m(i)(x) dρ. (3.3.3)

If {ψt }t�0 isC2 andρ2 Leb, then the Pesin formula holds, that is, (3.3.3)is an equality.

If {ψt }t�0 arises from a smooth nondegenerate Stratonovich stochastic differential equa-
tion, then it has a unique stationary measureρ and this measure has smooth density with
respect to the Lebesgue (see [72]). So in this case one has the Pesin formula.

Endomorphisms followed by time-ε-maps of stochastic flows.As an application of
Corollary 3.3.4 we consider the following random perturbation model introduced in [18].
Suppose thatf :M→M is aC2 map with no singularities. We consider the situation that
a particlex ∈ M jumps tof x and it then performs a diffusion for the timeε > 0 (see
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also [83] for a systematic treatment of this set-up). More precisely, letX0,X1, . . . ,Xd be
Cr (r � 4, for example) vector fields onM , and consider the SDE of Stratonovich type

dξt =X0(ξt ) dt +
d∑
i=1

Xi(ξt ) ◦ dBit , (3.3.4)

where{(B1
t , . . . ,B

d
t )}t�0 is a standardd-dimensional Brownian motion defined on a prob-

ability space(Ω̂, F̂ , P̂). Realizing the solution of (3.3.4) as a stochastic flow ofC2 diffeo-
morphisms{ψt : (Ω̂, F̂ , P̂)→ Diff 2(M)}t�0, we consider the randomly perturbed process
generated by compositions of random maps

· · · ◦ g(ω̂2) ◦ g(ω̂1),

whereω̂1, ω̂2, . . . ∈ (Ω̂, P̂) are chosen independently and

g(ω̂i)=ψε(ω̂i) ◦ f.
Now we are only concerned with the distribution of the random sequence of maps, hence
the randomly perturbed process introduced above is just the RDSFε generated by the
coordinate process on the canonical probability space(Ω,Pε), whereΩ = C2(M,M)Z

+
,

Pε = νZ+
ε andνε is the distribution onC2(M,M) induced by the map

Σ : (Ω̂, F̂ , P̂)→ C2(M,M), ω̂  →ψε(ω̂) ◦ f.
For anyε > 0 the probabilityPε satisfies the integrability conditions in Corollary 3.3.4
(see [116]). If SDE (3.3.4) is nondegenerate, namelyX1, . . . ,Xd span the tangent space
of M , then the transition probabilities ofFε have a density with respect to the Lebesgue
and hence every stationary measureρ of Fε satisfiesρ2 Leb. Then, by Corollary 3.3.4,
we have the following

COROLLARY 3.3.9. Letf ∈ C2(M,M)with no singularities and assume that SDE(3.3.4)
is nondegenerate. Letε > 0 and letρ be a stationary measure ofFε. Then the Pesin formula
holds true for(Fε, ρ).

In what follows we assume thatf is aC2 expanding map. Whenε is small,Fε is expand-
ing in average [116] and it has a unique absolutely continuous stationary measuredρε =
lεd Leb (see [117] for a review).lε can be obtained as the eigenfunction with

∫
lεd Leb= 1

of the simple eigenvalue 1 of theintegratedtransfer operatorLFε :C1(M)→ C1(M) de-
fined by

(LFε l)(x)=
∫
(Lgl)(x) dνε(g) for l ∈ C1(M),

whereLg is defined by (3.1.16), and it satisfies|lε − l0|C1 → 0 asε→ 0, wherel0 =
dµ0/d Leb andµ0 is the unique smooth invariant measure off (see [18] and [151] for
these results). One then has the following conclusion [116]:
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PROPOSITION 3.3.10. For sufficiently smallε > 0, (Fε, ρε) has no negative Lyapunov
exponents and hence

hρε (Fε) =
∫ ∑

i

λ(i)(x)m(i)(x) dρε(x)

=
∫ ∫

log
∣∣detDx

(
ψε(ω̂) ◦ f

)∣∣dρε(x) dP̂(ω̂).

Moreover, one has

lim
ε→0

hρε (Fε)= hµ0(f ).

A dimension formula. In the deterministic case, it was conjectured by Yorke et al. [63]
that the Hausdorff dimension of an ergodic SRB measure is “generically” equal to its Lya-
punov dimension; this was proved to be true by Young [165] for surface diffeomorphisms,
but when the phase space has dimension greater than 2 the conjecture has not been math-
ematically verified (see [59] for a detailed review of this topic). However, Ledrappier and
Young [111] showed that the conjectured scenario is indeed mathematically true inanydi-
mension if the dynamical system is subjected to certain types of sufficiently random noise.
This means that for an i.i.d. RDS composed of random diffeomorphisms with some condi-
tions to guarantee genuine randomness, the Hausdorff dimension of the sample measures
corresponding to an ergodic stationary measure is almost surely equal to the Lyapunov di-
mension. Below we recall briefly the related notions and formulate this notable result in a
more precise way.

Let F be a two-sided canonical i.i.d. RDS such thatFω ∈ Diff 2(M) for P-a.e.ω and
log+ |Fω|C2, log+ |(Fω)−1|C2 ∈ L1(Ω,P). Let ρ be an ergodic stationary measure ofF
and ρ∗ the correspondingF -invariant measure (see Proposition 3.3.2). Now it is more
convenient to write all the Lyapunov exponents of(F,ρ), or equivalently of(F,ρ∗), as

+∞> λ1> λ2> · · ·> λr >−∞.
Assumeλ1 > 0 since otherwise the statements below will hold rather trivially. By Theo-
rem 3.2.9, ifρ∗ is hyperbolic, then forP-a.e.ω the pointwise dimensiondρω(x) is well
defined and is constant forρω-a.e.x. We will denote this constant by dim(ρω) (which is in
fact constant forP-a.e.ω) and call it thedimensionof ρω. TheLyapunov dimensionof the
family of sample measures{ρω} is defined as

D(λ1, . . . , λr ) :=
dimM if

∑K
j=1mj = dimM,∑K

j=1mj − 1
λK+1

∑K
j=1λjmj otherwise,

(3.3.5)

with K being the largest integer so that
∑K
j=1λjmj � 0, wheremi = dimE(i)(ω, x). If

ρ 2 Leb, then, by Proposition 3.3.7, one always has
∑
i λimi � 0 with

∑
i λimi = 0 if
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and only ifρω = ρ, P-a.e. Clearly for the special case
∑
i λimi = 0 one has dim(ρω) =

D(λ1, . . . , λr ) = dimM , P-a.e. Under further conditions the coincidence of dim(ρω) and
D(λ1, . . . , λr ) is obtained for the general case in the following theorem, where we will
employ the “backward derivative process” naturally induced byF (with P = νZ) on the
Grassmannian manifold Gr(M) whose transition probabilities are given by

Q(v,Γ )= ν{ω: D(Fω)
−1v ∈ Γ }, v ∈ Gr(M), BorelΓ ⊂ Gr(M)

(recall Gr(M) =⋃dimM
k=1 Gr(M,k) and Gr(M,k) is the manifold ofk-dimensional sub-

spaces ofTM).

THEOREM 3.3.11 (A dimension formula due to Ledrappier and Young [111]).Let F be
as given above and letρ be an ergodic stationary measure ofF such thatρ 2 Leb and
λi �= 0 for all i. Take the hypothesis that for allv ∈ Gr(M) the transition probabilityQ(v, ·)
is absolutely continuous with respect to the Lebesgue onGr(M). Then forP-a.e. ω,

dim(ρω)=D(λ1, . . . , λr ). (3.3.6)

The hypothesis in the theorem is a sufficient randomness condition which appears quite
naturally, especially in the setting of stochastic flows arising from SDE. IfF is generated
by the time-1 maps of the solution flow ofC∞ SDE (3.3.4), then the hypothesis is satis-
fied if the operatorL=−X̃0 +∑dk=1 X̃

2
k onC∞(Gr(M)) is hypoelliptic, whereX̃k is the

natural lifting ofXk to Gr(M), 0 � k � d . Particularly, ifd � dimM + (dimM)2, then
there is an open and dense subset in the space of(d + 1)-tuples of vector fields onM
on which the hypothesis is satisfied (see [111] for details and for further references). To
obtain the desired result (3.3.6), the above hypothesis can be replaced by the weaker one
that, forρ-a.e.x andj = K + 1, K + 2 (K being given in (3.3.5)), the distribution of
ω  →⊕i�j E

(i)(ω, x) is smooth on the Grassmannian manifold of
∑
i�j mi -dimensional

subspaces ofTxM , or by a nonlinear version formulated in terms of two-point processes
on M . In fact, the latter ones are more directly related to the key ideas of the proof
(which consist in estimating the transverse dimension ofρω with respect to theWs,j -
manifolds).

4. Thermodynamic formalism and its applications

In this section we will describe the construction of Gibbs measures and equilibrium states
for certain classes of random transformations in the way usually called the thermodynamic
formalism and will apply this machinery to limit theorems and fractal dimensions.
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4.1. Random subshifts

In this section we describe an important class of random transformations called one- and
two-sided random subshifts of finite type. This setup is generated by a positive integer
valued random variable�= �(ω) on (Ω,P) satisfying∫

log�dP<∞ (4.1.1)

together with a measurable family of�(ω)× �(ϑω)-matricesA(ω)= (aij (ω)) with 0 and
1 entries having no zero row. We defineEω = {x = (x0, x1, . . .): xi ∈ {1, . . . , �(ϑiω)} and
axixi+1(ϑ

iω)= 1 ∀i = 0,1, . . .} in the one-sided case andEω = {x = (. . . , x−1, x0, x1, . . .):
xi ∈ {1, . . . , �(ϑiω)}andaxixi+1(ϑ

iω) = 1 ∀i = . . . ,−1,0,1, . . .} in the two-sided case
and, as before,E = {(ω, x): ω ∈Ω , x ∈ Eω}. In both one- and two-sided casesFω :Eω →
Eϑω is defined as the left shift(Fωx)i = xi+1 and the corresponding random transformation
F is called in these circumstances a random subshift of finite type. IfA(ω) has no zeros
then we callF a random full shift. This setup can also be described in terms of random
graphs or networks (see [96]). Observe that multidimensional random subshifts of finite
type motivated by some statistical mechanics models (such as spin-glasses) were studied
in [93].

The spacesEω are closed imbedded subsets of the compact spaceX = Z̄+ × Z̄+ × · · · ,
in the one-sided case, or ofX = · · · × Z̄+ × Z̄+ × · · ·, in the two-sided case which are
infinite products of the one-point compactificationZ̄ = Z∪ {∞} of Z with the metric onX
given by

d(x, x̃)=
∑
i

2−|i|
∣∣∣∣ 1xi − 1

x̃i

∣∣∣∣, (4.1.2)

where we sum ini ∈ N in the one-sided case or ini ∈ Z in the two-sided case. Clearly, the
shiftsFω :Eω→ Eϑω are continuous and the corresponding bundle RDS is fiber expansive
(see Definition 1.3.1) with the expansivity characteristicε(ω)= (�(ω))−2. Hence, not only
the variational principle (1.2.11) holds true in this setup for any functionf ∈ L1

E (Ω,C(X))
but also according to Theorem 1.3.5 there exists an equilibrium state for such anf , i.e.,
a measureµ ∈ IP(E) maximizing in (1.2.11). Observe that (4.1.1) implies that the fiber
topological pressureπF (f ) of anyf ∈ L1

E (Ω,C(X)) is finite and, in particular, the fiber
topological entropy is finite, as well. Next, we will be interested in conditions which ensure
the uniqueness of equilibrium states.

Both in the one- and two-sided subshift cases we set for any measurable functionf =
f (ω,x) onE ,

varn f (ω)= sup
{∣∣f (ω,x)− f (ω, x̃)∣∣: xi = x̃i ∀|i|< n}.

We will assume that∫
sup
x

∣∣f (ω,x)∣∣dP(ω) <∞ (4.1.3)
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and

varn f (ω)�Kf (ω)e−κn (4.1.4)

for some constantκ > 0 and a random variableKf =Kf (ω) > 0 such that∫
lnKf (ω)dP(ω) <∞ in the one-sided case (4.1.5)

and ∫
Kf (ω)dP(ω) <∞ in the two-sided case. (4.1.6)

A random subshift of finite typeF is called topologically mixing if there exists a
Z+ = {1,2, . . .}-valued random variablẽN = Ñ(ω) <∞ on (Ω,F ,P) so that forP-
a.a.ω, A(ϑ−Ñω) . . .A(ϑ−2ω)A(ϑ−1ω) is a matrix with positive entries. This property
is equivalent to existence of random variablesN = N(ω) < ∞ and Ñ = Ñ(ω) < ∞
such that for anyn � N(ω) and k � Ñ(ω) the matricesA(ω)A(ϑω) . . .A(ϑnω) and
A(ϑ−kω)A(ϑ−k+1ω) . . .A(ϑ−1ω) have only positive entries. The main goal of this section
is to establish the following result.

THEOREM 4.1.1. Assume thatF is countably generated(separable) σ -algebra, F is a
topologically mixing random(one- or two-sided) subshift of finite type and that a mea-
surable functionf :E → R satisfies(4.1.3)–(4.1.6).Then there exists a unique probability
measureµ= µf ∈ PP(E), called a fiber(or relative) Gibbs measure(or state) for a po-
tential f , such that for some random variablesCf = Cf (ω) > 0 and λf = λf (ω) > 0
satisfying∫

| lnCf |dP<∞ and
∫

| lnλf |dP<∞ (4.1.7)

we have

C−1
f �

µω
{
x̃ ∈ Eω: x̃i = xi ∀i = 0,1, . . . , n− 1

}
exp
(∑n−1

i=0 (f ◦Θi(ω,x)− lnλ(ϑiω))
) � Cf (4.1.8)

for all x ∈ Eω and P-a.a. ω, where {µω} are disintegrations ofµ. Moreover, µ is Θ-
invariant and it is the uniqueΘ-invariant probability measure maximizing in the varia-
tional principle(1.2.11)so that

πF (f )=
∫

lnλf (ω)dP = hµ(F )+
∫
f dµ, (4.1.9)

i.e., µ is the unique equilibrium state forf . Furthermore, if P is ergodic(mixing) with re-
spect toϑ thenµ is ergodic(mixing) with respect toΘ . The disintegrations satisfy certain
nonuniformω-wise decay of correlations property(see Lemma6.3 in [98]).
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There exist several approaches to the proof of Theorem 4.1.1. The first approach ap-
peared in [91] and extended in [79] works for a wide class of random expanding trans-
formations including random subshifts of finite type. This method is an extension to the
random (relative) situation of arguments from [161]. The paper [79] contains also a statisti-
cal mechanics motivated treatment of a part of Theorem 4.1.1. A proof based on projective
metrics of a part of Theorem 4.1.1 suggested in [35] imposes more restrictive conditions
requiring random variables� andKf to be constants. It is possible also to follow the strat-
egy described in the classical exposition [36] adjusting it to the random setup though this
way is longer than the method of [91] and [79]. Observe also that in [69] Gibbs measures
were constructed for more general random transformations (under the condition of random
(relative) specification) than just topologically mixing subshifts of finite type.

First, we will assume thatP is ergodic with respect toϑ since for otherwise we can
restrict our attention to its ergodic components in the ergodic decomposition. Next, we will
reduce the two-sided case to the one-sided one. Following the standard definition we will
say that two functionsf,g ∈ L1

E (Ω,C(X)) (with L1
E (Ω,C(X)) defined at the beginning of

Section 1.2) are cohomologous if there exists another functionu ∈ L1
E (Ω,C(X)) such that

for all x ∈ Eω andP-a.a.ω,

f (ω,x)= g(ω,x)− u(ω,x)+ u ◦Θ(ω,x). (4.1.10)

Clearly, if f, g ∈ L1
E (Ω,C(X)) are cohomologous and Theorem 4.1.1 holds true forf

then it holds true forg, as well. Next, we will show that in the case of a two-sided sub-
shift for anyf satisfying (4.1.3), (4.1.4), and (4.1.6) there existsg cohomologous tof
satisfying (4.1.3), (4.1.4), and (4.1.6) and such thatf (ω,x)= f (ω, x̃) wheneverx, x̃ ∈ Eω
andxi = x̃i for all i � 0. This will imply that we can restrict our attention to the proof of
Theorem 4.1.1 in the case of one-sided subshifts. Namely, for eacht andω, 1� t � �(ω)
choose measurably inω a sequence{aωk,t }∞k=−∞ ∈ Eω with aω0,t = t . Definerω :Eω → Eω
by rω(x)= x∗ wherex∗k = xk for k � 0 andx∗k = aωk,x0

for k < 0. Then

u(ω,x)=
∞∑
j=0

(
f ◦Θj(ω,x)− f ◦Θj (ω, rω(x))). (4.1.11)

Since(F jωx)i = (F jωrω(x))i provided−j � i <∞ we obtain by (4.1.4) that

∣∣f ◦Θj(ω,x)− f ◦Θj (ω, rω(x))∣∣�Kf (ϑjω)e−κj . (4.1.12)

By (4.1.6) (in fact, here (4.1.5) is enough) the series (4.1.11) converges for allx ∈ Eω
andP-a.a.ω andu ∈ L1

E (Ω,C(X)). Now it is easy to check directly (cf. [36]) thatg =
f − u+ u ◦Θ satisfies the above requirements.

In what follows we will deal exclusively with one-sided random subshifts assuming
thatf satisfies the conditions (4.1.3)–(4.1.5). The random Ruelle–Perron–Frobenius (RPF)
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operatorLωf corresponding to a functionf maps functions onEω to functions onEϑω by
the formula

Lωf q(x)=
∑

z∈F−1
ω x

ef (ω,z)q(z), x ∈ Eϑω. (4.1.13)

The main step in the construction of Gibbs measures of Theorem 4.1.1 is the following
fiber or relative version of the Ruelle–Perron–Frobenius (RPF) theorem.

THEOREM 4.1.2. Let F be a topologically mixing one-sided random subshift of finite
type and a functionf satisfies the conditions(4.1.3)–(4.1.5).Then there exists a triple
consisting of a positive random variableλ = λ(ω), of a positive measurable in(ω, x)
and continuous inx functionh = h(ω) = h(ω,x), and of a measurable inω family of
probability measuresνω onEω such that

Lωf h(ω)(x)= λ(ω)h(ϑω,x), (Lωf )∗νϑω = λ(ω)νω, and∫
Eω
h(ω,x) dνω(x)= 1. (4.1.14)

PROOF. The existence ofνω andλ= λ(ω) satisfying(Lωf )∗νϑω = λ(ω)νω is just a conse-
quence of the Schauder–Tichonoff fixed point theorem (see [91]). The next step is to show
the existence ofh= h(ω,x). Set

Rω =
∞∑
l=1

Kf
(
ϑ−lω
)
e−κl, ρ(x, x̃)= e−min{j�0: xj �=x̃j }, (4.1.15)

providedx, x̃ ∈ Eω. It follows by (4.1.5) and the Borel–Cantelli lemma thatRω <∞ P-a.s.
Denote alsoRω(x, x̃)=Rω(ρ(x, x̃))κ and define a family of cones of continuous functions
onEω by

Λω =
{
q: q � 0,

∫
q dνω = 1 andq(x)� eγRω(x,x̃)q(x̃) if x0 = x̃0

}
, (4.1.16)

whereγ � 1 is a constant. Clearly, 1∈Λω and we claim that (cf. [91]),

(
λ(ω)
)−1LωfΛω ⊂Λϑω for anyγ � 1. (4.1.17)

Indeed, ifq ∈Λω then by the choice ofνω,

(
λ(ω)
)−1
∫
q d(Lωf )∗νϑω =

∫
q dνω = 1.
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Next, letx, x′ ∈ Eϑω andx0 = x′0. For eachy ∈ F−1
ω x there is exactly oney′ ∈ F−1

ω x′ such
thaty′0 = y0. Thus by (4.1.4), (4.1.13), (4.1.15) and (4.1.16) for anyq ∈Λω andγ � 1,

Lωf q(x) =
∑

y∈F−1
ω x

ef (ω,y)q(y)

�
∑

y′∈F−1
ω x

ef (ω,y
′)q(y′)exp

(
Kf (ω)e

−κ(ρ(x, x′))κ + γ e−κRω(x, x′))
� eγRϑω(x,x′)Lωf q(x′)

proving (4.1.17). Furthermore,Λω is, clearly, closed and convex. We assert thatΛω is also
bounded and compact. Indeed, by (6.10) in [98] for anyq ∈Λω,

q �Gωeγ e
−1
, (4.1.18)

where

Gω = λ(ω) . . . λ
(
ϑN(ω)ω

)
exp

(
N(ω)−1∑
j=0

∥∥f (ϑjω)∥∥∞
)

andN = N(ω) was defined just before the statement of Theorem 4.1.1. Hence we obtain
that for anyq ∈Λω,∣∣q(x)− q(x̃)∣∣� ∣∣eγRω(x,x̃) − 1

∣∣Gωeγ e−1
(4.1.19)

which implies the equicontinuity ofΛω and its compactness follows by the Arzela–Ascoli
theorem. Thus the product

ΛωZ = · · · ×Λϑ−1ω ×Λω ×Λϑω × · · ·

with the product topology is a nonempty, convex and compact space.
Define the mapΦω onΛω

Z
which sends a sequence{qi} ∈ΛωZ to a sequence{(Φωq)i}

by the formula

(Φωq)i =
(
λ
(
ϑi−1ω

))−1Lϑi−1ω
f qi−1. (4.1.20)

By (4.1.17),ΦωΛω
Z
⊂Λω

Z
and by the Schauder–Tychonoff theorem we derive the existence

of a fixed point ofΦω which we denote byhω = {hωi } and put, finally,h(ϑiω, x)= hωi (x)
which satisfies, clearly, (4.1.14). Observe that sinceϑ is ergodic it is either aperiodic or
purely periodic. In the former case there is no problem with the above definition ofh(ϑiω)

and in the latter case we choosehω to be periodic sequences which is possible sinceΦω

preserves corresponding spaces of periodic sequences of functions. Observe that we do not
claim at this point thathω depends measurably onω (though we could apply some theorem
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on a measurable choice to ensure this) but this follows automatically from some asymptotic
formulas (see [91] and [79]) which also imply the uniqueness assertions of Theorem 4.1.2.

Next we show thath(ω) > 0. Indeed, setLω,nf = Lϑn−1ω
f ◦ · · · ◦Lϑωf ◦Lωf . If h(ω,x)= 0

for somex ∈ Eω then in view of

Lϑ
−nω,n
f h(ϑ−nω)(x)=

( −1∏
i=−n

λ
(
ϑiω
))
h(ω,x)

we conclude thath(ϑ−nω,y) = 0 wheneverFn
ϑ−nωy = x. For C > 0 large enough the

setΓC = {ω: Rω � C, Gω � C} has positiveP-measure. Then forP-almost allω we
can define successive timesni = ni(ω)→ ∞ as i → ∞ whenϑ−niω ∈ ΓC . It follows
by (4.1.19) that the familyh(ϑ−niω), i = 1,2, . . . , is equi-continuous and so the asser-
tion thath(ϑ−niω, y)= 0 wheneverFni

ϑ−ni ωy = x would yield that‖h(ϑ−niω)‖∞ → 0 as
i→∞ contradicting the equality

∫
h(ϑ−niω)dνϑ−ni ω = 1, which completes the proof of

Theorem 4.1.2. �

In fact, the tripleλ(ω),h(ω), νω satisfying (4.1.4) is unique but this requires further
arguments. Define

µω = hωνω. (4.1.21)

Let q be a bounded measurable function onEϑω. Then∫
q dµϑω =

∫
qh(ϑω)dνϑω =

(
λ(ω)
)−1
∫
q
(
Lωf h(ω)

)
dνϑω

= (λ(ω))−1
∫

Lωf
(
h(ω) · (q ◦ Fω)

)
dνϑω =

∫
h(ω)(q ◦ Fω)dνω

=
∫
q dFωµω.

Hence

Fωµω = µϑω. (4.1.22)

It turns out that{µω} are disintegrations of the unique Gibbs measureµ for f which has the
properties described in Theorem 4.1.1. This can be proved following the strategy of [36]
via a series of lemmas such as Lemmas 6.1–6.4 from [98] together with the variational
principle (1.2.11) and Theorem 3.2 from [79] which gives ergodicity and mixing ofµ.
A somewhat shorter proof based on the (deterministic) approach from [161] had been ex-
hibited in [91] and extended in [79]. If the random variablesKf andN introduced before
Theorem 4.1.1 were, in fact, constants then already the method of [91] does the job but in
the general case of randomKf andN some additional arguments should be employed as
explained in Section 3 of [79] in order to overcome nonuniformity inω.
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The key point of the approach from [161] extended for random subshifts in [91] and [79]
is the characterization ofµ as the unique probability measure whose disintegrations satisfy
(see Proposition 2.3 in [91] and the item (d) in Theorem 3.1 from [79]),

(Lωlogg(ω))
∗µϑω = µω (4.1.23)

for P-a.a.ω whereg(ω) = ef (ω)h(ω)(λ(ω)h(ϑω) ◦ Fω)−1. In fact, µω for P-a.a.ω is
obtained via the limit∫

q dµω = lim
n→∞Lω,nlogg(ω)q (4.1.24)

for any continuous functionq on Eω. It remains to verify (4.1.21). Indeed, letmω =
h(ω)νω. Then∫

qd(Lωlogg)
∗mϑω =

∫
h(ϑω)Lωloggq dνϑω

= (λ(ω))−1
∫

Lωf
(
h(ω)q

)
dνϑω =

∫
h(ω)q dνω

=
∫
q dmω.

Hence(Lωlogg)
∗mϑω =mω and by uniqueness we obtainmω = µω. Observe that

(
λ
(
ϑn−1ω

)
. . . λ(ϑω)λ(ω)

)−1Lω,nf q = h(ϑnω)Lω,nlogg

(
q

h(ω)

)
.

This together with (4.1.21) and (4.1.24) yield

lim
n→∞
(
λ
(
ϑn−1ω

)
. . . λ(ϑω)λ(ω)

)−1(
h(ϑnω)

)−1Lω,nf q =
∫
q dνω. (4.1.25)

Employing (4.1.25) for an arbitrary continuousq and forq = 1 and dividing one formula
by the other we obtain

lim
n→∞

Lω,nf q

Lω,nf 1
=
∫
q dνω, (4.1.26)

and so the measuresνω are determined uniquelyP-a.s. Nowλ(ω) = ((Lωf )∗νϑω)(Eω) is
determined uniquely, as well. In order to prove the uniqueness ofh observe that by The-
orem 3.2 from [79] the measureµ is an ergodic invariant measure of the skew product
transformationΘ and since all such measures satisfying (4.1.23) (constructed may be with
different functionsh) must be equivalent toν by (4.1.21) we conclude that all suchµ
should coincide. Finally, since now bothµω andνω are uniquely defined thenh(ω)= dµω

dνω
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is also determined uniquelyP-a.s. It follows from the assertion (f) of Theorem 3.1 in [79]
(see also [35]) thatµ satisfies (4.1.8), i.e., it is a Gibbs measure for the potentialf and,
moreover, it is the unique equilibrium state forf (see Theorem 3.2(iii) from [91] and
Theorem A in [79]). By Theorem 3.2 from [79] the measureµ is mixing with respect to
Θ wheneverP is mixing with respect toϑ . Certainω-wise mixing ofµ is obtained in
Lemma 6.3 from [98].

Among important examples of fiber Gibbs measures are random Markov and random
Bernoulli measures. Their construction is the following. Letpi(ω) � 0, i = 1, . . . , �(ω),
andpij (ω)� 0, i = 1, . . . , �(ω), j = 1, . . . , �(ϑω), be measurable inω families of prob-

ability vectors and probability matrices, i.e.,
∑�(ω)
i=1 pi(ω)= 1 and

∑�(ϑω)
j=1 pij (ω)= 1 ∀i,

such that
∑�(ω)
i=1 pi(ω)pij (ω)= pj (ϑω). For any cylinder setCωα0,...,αn

= {x ∈ Eω: xi = αi
∀i = 0,1, . . . , n} put

µω(C
ω
α0,...,αn

)= pα0(ω)pα0α1(ω) . . . pαn−1αn

(
ϑn−1ω

)
.

Employing the Kolmogorov extension theorem we conclude thatµω can be extended
uniquely to the whole Borelσ -algebra onEω and this construction produces a measurably
depending onω family of probability measuresµω on Eω such thatFωµω = µϑω where
Fω is the left shift. Hence, the probability measureµ given bydµ(ω,x)= dµω(x)dP(ω)
isΘ-invariant and it is called a random (fiber) Markov measure and the corresponding pair
(F,µ) is called a random Markov shift. Setaij (ω) = 1 if pij (ω) > 0 andaij (ω) = 0 if
pij (ω)= 0. Then the matricesA(ω)= (aij (ω)) determine a subshift of finite type and we
assume that it is topologically mixing as defined at the beginning of this section. Of course,
the same condition can be expressed in terms of products of matrices(pij (ω)). Then it fol-
lows from Theorem 4.1.1 and also can be verified directly (cf. [94] and Section 4.3 below)
thatµ is the Gibbs measure for the potentialf (ω,x) = lnpx0x1(ω). If pij (ω) = pj (ω)
does not depend oni then the corresponding measureµ obtained as above is called a ran-
dom (fiber) Bernoulli measure and the pair(F,µ) is called in this case a random Bernoulli
shift.

4.2. Random expanding and hyperbolic transformations

We start with the simpler case of random expanding in average endomorphisms and again
assume that theσ -algebraF is countably generated. In this setupEω ’s for all ω coin-
cide with one compact connectedd-dimensionalC2 Riemannian manifoldM (though a
more general case of manifoldsMω depending onω may be considered, as well) and all
Fω :M→M areC2 endomorphisms ofM such that

log
∥∥DF−1

ω

∥∥, log‖DFω‖ ∈ L1(Ω,P), (4.2.1)

and

α =
∫

log
∥∥DF−1

ω

∥∥dP(ω) < 0, (4.2.2)
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whereDFω is the differential ofFω and‖Df ‖ = supx∈M ‖Dxf ‖ for anyC1 mapf ofM .
Again, we define a random RPF operatorLωf by (4.1.13) and assume thatf (ω)’s are Hölder
continuous, i.e.,∣∣f (ω,x)− f (ω,y)∣∣�Kf (ω)(d(x, y))κ ∀x, y ∈M (4.2.3)

(where d(·, ·) is the distance function onM) for someκ > 0 and a random variable
Kf (ω) > 0 satisfying (4.1.5). Then the corresponding analogy of Theorems 4.1.1 and 4.1.2
holds true.

THEOREM 4.2.1. Let F be a randomC2 endomorphism ofM satisfying(4.2.1) and
(4.2.2)and letf = f (ω,x) be a function onΩ×M satisfying(4.2.3), (4.1.3),and(4.1.5).
Then there exists a unique triple consisting of a positive random variableλ = λ(ω), of a
positive measurable in(ω, x) and continuous inx functionh= h(ω)= h(ω,x), and of a
measurable inω family of probability measuresνω onM such that(4.1.14)holds true. Fur-
thermore, the measureµ whose disintegrations have the formµω = h(ω)νω isΘ-invariant
and ergodic(mixing) wheneverP is ergodic(mixing). Furthermore, µ is the unique equi-
librium state forf , i.e., it is the uniqueΘ-invariant probability measure satisfying(4.1.9).

Letm be the normalized Riemannian volume onM and

f (ω,x)=− ln
dm ◦ Fω
dm

(x)=− ln |JacDxFω|,

whereJacdenotes the Jacobian with respect to Riemannian inner products in tangent
spaces. Thenf satisfies the above conditions and the corresponding objectsλ(ω), h, νω,
µω constructed for suchf have the formλ(ω) = 1, νω = m, and µω = h(ω)m which
yield the uniqueΘ-invariant measureµ whose disintegrationsµω are equivalent to the
Riemannian volumem onM .

This result has been proved in [91] and [79]. Observe that such results for both random
subshifts of finite type and random expanding transformations can be dealt with simulta-
neously as explained in Section 6 of [98]. Note also that under excessively restrictive con-
ditions random Markov partitions for random expanding transformations were constructed
in [34] which provides a longer way to prove Theorem 4.2.1 reducing it to the symbolic
setup of random subshifts of finite type considered in Section 4.1. We note that equilibrium
states were constructed in [100] also for one-dimensional random piecewise expanding in
average maps which has applications to randomf -expansions, in particular, to continued
fractions with random digits. Transformations here may have unbounded derivatives and
infinitely many branches which result in infinite entropy for some measures and the def-
inition of equilibrium states should use the information instead. Another difficulty is the
possible presence of neutral points such as 1 for the Gauss mapx→ { 1

x
} which is related

to continued fractions and the study of the fiber (relative) thermodynamic formalism for
it yields, in particular, a computation of the Hausdorff dimension of distributions of con-
tinued fractions with random digits (see [100]). Observe also thatΘ-invariant measures
with absolutely continuous disintegrations were studied also for multidimensional random
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piecewise smooth expanding maps in [41] and [40]. Some results about equilibrium states
for random nonuniformly expanding maps were obtained in [6]. Observe that without the
invertibility assumption on the base transformationϑ onΩ the equilibrium states theory
of even expanding RDS encounters certain difficulties and corresponding results should
undergo substantial modifications (see [14,52,53]) in comparison with the case of an in-
vertibleϑ considered above.

Next, we turn our attention to random (uniformly) hyperbolic diffeomorphisms follow-
ing [68]. The proofs of the results below are indicated in [68] but we admit that they
are not written yet with all necessary details. The corresponding results for random hy-
perbolic diffeomorphism obtained via small perturbations of a deterministic hyperbolic
diffeomorphism can be found in [115]. LetM be a smoothd-dimensional Riemannian
manifold. We say thatΛ= {Λ(ω): ω ∈Ω} is a random compact set if eachΛ(ω)⊂M is
compact and the map(x,ω)→ d(x,Λ(ω)) is measurable, whered is the Riemannian
distance onM . A random variableg :Ω → R+ will be called tempered, if it satisfies
limn→±∞ 1

n
logg(ϑnω)= 0 P-a.s.

DEFINITION 4.2.2. A random compact nonempty setΛ = {Λ(ω): ω ∈ Ω} is called in-
variant underF , if FωΛ(ω)=Λ(ϑω) for P-almost allω ∈Ω . Such aΛ is called a random
hyperbolic set forF if there exist an open setV with a compact closurēV , tempered ran-
dom variablesλ > 0, α > 0, C > 0, and subbundlesΓ u(ω) andΓ s(ω) of the tangent
bundleTΛ(ω), depending measurably onω, such that

(1) For P-almost all (a.a.)ω ∈ Ω there exist a measurable inω family of open
setsU(ω) such that{x: d(x,Λ(ω)) < α(ω)} ⊂ U(ω) ⊂ V , FωU(ω) ⊂ V , and
Fω restricted toU(ω) is a diffeomorphism and both log+ supx∈U(ω) ‖DxFω‖ and
log+ supx∈U(ω) ‖(DxF)−1

ω ‖ belong toL1(Ω,P);
(2) TΛ(ω) = Γ u(ω) ⊕ Γ s(ω), DFωΓ u(ω) = Γ u(ϑω), DFωΓ s(ω) = Γ s(ϑω),

� (Γ u(ω),Γ s(ω))� α(ω) P-a.s., where� (Γ u(ω),Γ s(ω)) denotes the minimal an-
gle betweenΓ u(ω) andΓ s(ω);

(3) for n ∈ N andλ(n,ω)= λ(ω) . . . λ(ϑn−1ω) andP-a.a.ω,

‖DFnωξ‖ �C(ω)λ(n,ω)‖ξ‖ for ξ ∈ Γ s(ω)

and

‖DF−n
ω η‖ � C(ϑ−nω)λ(n,ϑ−nω)‖η‖ for η ∈ Γ u(ω);

(4)
∫

logλdP< 0;
(5) logα ∈ L1(Ω,P).

If, in addition,FωU(ω) ⊂ U(ϑω) P-a.s.
⋂∞
n=0F

n
ϑ−nωU(ϑ

−nω) = Λ(ω) then we callΛ
a random hyperbolic attractor ofF . If M is compact and allΛ(ω) coincide withM and
satisfy assumptions above then we will callF a random Anosov diffeomorphism.

Observe that the subbundlesΓ u(ω) = {Γ ux (ω): x ∈ Λ(ω)}, Γ s(ω) = {Γ sx (ω): x ∈
Λ(ω)} are necessarily continuous inx ∈Λ(ω), since the inequalities in (3) being true for
sequencesξn ∈ Γ sxn(ω), ηn ∈ Γ uxn(ω) such thatξ = limn→∞ ξn ∈ Γ sx (ω), η= limn→∞ ηn ∈
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Γ ux (ω), x = limn→∞ xn remain true forξ and η. By ergodicity ofϑ , dimΓ u(ω) and
dimΓ s(ω) are constantP -a.s.

Actually, (3) can be replaced by the following weaker condition.
(3′) There existsn ∈ N such that∫

log‖DFnω |Γ s(ω)‖dP(ω) < 0,
∫

log‖DF−n
ω |Γ u(ω)‖dP(ω) < 0.

This property already provides the needed contracting/expanding splitting relying on the
ergodic theorem. For the same reason we could replace the random variableλ in Defini-
tion 4.2.2 by a constant via a change of the tempered random variableC. We arrive here at
a nonuniform inω ∈Ω but uniform inx ∈Λ(ω) kind of hyperbolicity: due to the random
variableC the time of the onset of expansion and contraction of the linear map restricted
to the subbundles depends on chance. This problem can be resolved with the help of ran-
dom Lyapunov norms (see Lemma 2.2.3 above and [7, Section 4.3]). Characterizations of
random hyperbolic sets via random norms and random cones can be found in [68]. The
equivalence of definitions of random hyperbolic sets via a splitting of the tangent bun-
dle as above and via random cones follows from general results exhibited in Section 6.6
from [75].

The following example of a random hyperbolic set was discussed in [115].

EXAMPLE 4.2.3. Assume that a deterministic (local) diffeomorphismf has a hyperbolic
invariant setΛf . Let U(f ) be a smallC1 neighborhood off so that anyg ∈ U(f ) has a
hyperbolic invariant setΛg close toΛf . Now any measurable mapF :Ω→ U(f ) so that
F(ω)= Fω ∈ U(f ) generates an RDSF having a random hyperbolic setΛ(ω). Moreover,
by the structural stability theorem there exist random Hölder continuous homeomorphisms
hω :Λ→Λ(ω) such thathϑω ◦ f = Fω ◦ hω.

Another more explicit example of a random Anosov diffeomorphism appeared originally
in [9] (in the preprint form in 1995).

EXAMPLE 4.2.4. Letσ :Ω → Ω be aP-preserving ergodic invertible map and assume
thatϑ = σ 2 is also ergodic. Then we define for a random variablen :Ω→ N with logn ∈
L1(Ω,P) a torus automorphismFA on the 2-torusM = T2 via linear lifts onR2 of the
form

A(ω)=
(

1+ n(ω)n(σω) n(σω)

n(ω) 1

)
.

Denote by[k1, k2, . . .] the continued fraction

1

k1 + 1

k2 + · · ·
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and seta(ω)= [n(ω),n(σω),n(σ 2ω), . . .], b(ω)= [n(σ−1ω),n(σ−2ω), . . .]. Define

ξ(ω)=
(
a(ω)

−1

)
, η(ω)=

(
1
b(ω)

)
,

λ(ω)= a(ω)a(σω), γ (ω)= 1

b(σω)b(σ 2ω)
.

ThenA(ω)ξ(ω) = λ(ω)ξ(ϑω), A(ω)η(ω) = γ (ω)η(ϑω), λ(ω) < 1, γ (ω) > 1, and so,
ξ andη span the contracting and expanding (in average) directions, respectively, to make
the whole torus a random hyperbolic set forFA.

As in the deterministic case it is possible to integrate the hyperbolic splitting in order to
obtain random local stable and unstable manifolds (cf. Section 2.2).

THEOREM4.2.5. For anyx ∈Λ(ω) there exist embeddedC1 manifoldsV sx (ω) andV ux (ω)
(called local stableand unstable manifold,respectively) tangent toΓ sx (ω) and Γ ux (ω),
respectively, at x such thatV sx (ω) andV ux (ω) depend measurably onω and for fixedω ∈Ω
continuously onx ∈Λ(ω), FωV sx (ω)⊂ V sFωx(ϑω), F−1

ω V ux (ϑω)⊂ V uF−1
ω x
(ω),

V sx (ω)∩ V ux (ω)= {x} (4.2.4)

and there exist tempered random variablesC′ and λ′ such that for anyy ∈ V sx (ω), z ∈
V ux (ω) andP-a.a. ω,

distV s
Fnωx

(ϑnω)(F
n
ωx,F

n
ωy)� C′(ω)λ′(n,ω)distV sx (ω)(x, y),

distV u
F
−n
ω x

(ϑ−nω)(F
−n
ω x,F−n

ω z)�C′(ϑ−nω)λ′(n,ϑ−nω)distV ux (ω)(x, z),

whereλ′(n,ω)= λ′(ω) . . . λ′(ϑn−1ω) anddistV sx (ω) is the distance inV sx (ω) induced by the
random norms on the tangent bundle, extended to some neighborhood ofΛ(ω) and used
for the description of the hyperbolicity properties. Moreover, the angle betweenV sx (ω) and
V ux (ω) at x is not less thanc(ω) for some random variablec > 0 with logc ∈ L1(Ω,P).

Observe that in the case of Example 4.2.3 taking into account Hölder continuity of con-
jugating homeomorphismshω random stable and unstable manifolds are obtained directly
as images underhω of deterministic stable and unstable manifolds for the unperturbed
diffeomorphismf . As a consequence of a continuous dependence ofV sx (ω), V

u
x (ω) on

x ∈Λ(ω), of a measurable dependence onω, and (4.2.4) we obtain the following result.

COROLLARY 4.2.6. There exists a small tempered random variableγ > 0 such that for all
x, y ∈Λ(ω) with d(x, y)� γ (ω) the intersection ofV sx (ω) andV uy (ω) consists precisely
of one point inM which is denoted by[x, y]ω. The mapping[., .]ω : {(x, y) ∈ Λ(ω) ×
Λ(ω): d(x, y)� γ (ω)} →M depends measurably onω and is continuous for each fixed
ω ∈Ω .
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Observe that a transversal intersection of random stable and unstable manifolds of the
same point which is called a random homoclinic point leads also to a random hyperbolic
set (see [66]). Next, we will introduce the following important notions.

DEFINITION 4.2.7. We say that the random hyperbolic setΛ has a local product structure,
if for P-almost allω ∈Ω , x, y ∈Λ(ω) with d(x, y)� γ (ω) we have that[x, y]ω ∈Λ(ω).

It is easy to see that if a deterministic hyperbolic setΛ in Example 4.2.3 has the local
product structure then the random oneΛ(ω) will also have it in the sense of the above
definition provided the neighborhoodU(f ) in Example 4.2.3 is small enough.

DEFINITION 4.2.8. Letδ be a strictly positive random variable. Then for anyω ∈ Ω
a sequence{yn}n∈Z inM is called an(ω, δ) pseudo-orbit ofF if

d(yn+1,Fϑnωyn)� δ
(
ϑn+1ω

)
for all n ∈ Z.

For a strictly positive random variableε and anyω ∈Ω the orbit of a pointx ∈M is said
to (ω, ε)-shadow the(ω, δ) pseudo-orbit{yn}n∈Z if

d(Fnωx, yn)� ε(ϑnω) for all n ∈ Z.

The following result is important, in particular, in a construction of random Markov
partitions.

PROPOSITION4.2.9 (Random Shadowing Lemma).Assume that the random hyperbolic
setΛ has a local product structure. Then for every tempered random variableε > 0
there exists a tempered random variableβ > 0 such thatP-a.s. every(ω,β) pseudo-orbit
{yn}n∈Z with yn ∈Λ(ϑnω) can be(ω, ε)-shadowed by the orbit of a pointx ∈Λ(ω). If 2ε
is chosen as an expansivity characteristic(see Definition1.3.1),then the shadowing point
x is unique. Moreover, if theyn’s are chosen to be random variables such that forP-almost
all ω ∈Ω the sequence{yn(ω)}n∈Z is an(ω,β) pseudo-orbit, then the starting pointx(ω)
of the corresponding(ω, ε)-shadowing orbit depends measurably onω.

Again, in the case of Example 4.2.3 the proof is simple as we can employ the determin-
istic shadowing lemma forf and obtain its random version using the conjugation by the
random homeomorphismshω. Next, we introduce random Markov partitions which serve
as an important tool for the study of random hyperbolic sets.

DEFINITION 4.2.10. Assume that the random hyperbolic setΛ has a local product struc-
ture (with a corresponding random variableγ ). A nonempty subsetR of someΛ(ω) is
called a rectangle, if it has diameter less thanγ (ω) andx, y ∈ R implies that[x, y]ω ∈ R.
Moreover such a rectangleR is called proper, if it is closed inΛ(ω) and if it is the closure
of the interior ofR as a subset ofΛ(ω).

A (random) Markov partition ofΛ is a family of finite coversR(ω) = {R1(ω), . . . ,

R�(ω)(ω)} of Λ(ω) which depends measurably onω ∈Ω and satisfiesP-a.s.
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(1) eachRi(ω) is a proper rectangle;
(2) intRi(ω)∩ intRj (ω)= ∅, if i �= j ;
(3) Fω(V sx (ω)∩Ri(ω))⊂ V sFωx(ϑω)∩Rj (ϑω) for x ∈ intRi(ω), Fωx ∈ intRj (ϑω);
(4) Fω(V ux (ω)∩Ri(ω))⊃ V uFωx(ϑω)∩Rj (ϑω) for x ∈ intRi(ω), F(ω)x ∈ intRj (ϑω).

Here local invariant manifolds are used with a size that is given by an expansivity charac-
teristic. We refer to conditions (3) and (4) as Markov properties.

THEOREM 4.2.11. If the random hyperbolic setΛ has local product structure, then there
exists a random Markov partition ofΛ for F . If F has theC1+γ , γ > 0, norm whose
logarithm belongs toL1(Ω,P) then the number of rectangles in the partition is a random
variable�= �(ω) ∈ N with ln� ∈ L1(Ω,P).

Clearly, in the case of Example 4.2.3 random Markov partitions can be obtained as
images under the conjugating mapshω of deterministic Markov partitions forf Let
A(ω)= (aij (ω), i = 1, . . . , �(ω), j = 1, . . . , �(ϑω)) be matrices with 0 and 1 entries such
thataij (ω)= 1 if FωRi(ω)∩Rj(ϑω) �= 0 andaij (ω)= 0, otherwise. Define

Eω =
{
ξ = (. . . , ξ−1, ξ0, ξ1, . . .): ξi ∈

{
1, . . . , �

(
ϑiω
)}

andaξiξi+1

(
ϑiω
)= 1 ∀i}

and letσ be the left shift. It follows from the definition of random hyperbolic sets and of
random Markov partitions that for anyξ ∈ Eω there exists a uniqueπω(ξ) ∈ Λ(ω) such
that

πω(ξ)=
⋂
n�0

(
(F nω)

−1Rξn(ϑ
nω)∩ Fn

ϑ−nωRξ−n(ϑ
−nω)
)

andπω :Eω→Λ(ω) is a continuous map semi-conjugatingσ andF , i.e.,

πϑωσ = Fωπω.
In fact,πω is one-to-one except for points of the set

∂R(ω)=
⋃
n�0

(
(F nω)

−1
(⋃

i

∂Ri(ϑ
nω)

)
∪ Fn

ϑ−nω

(⋃
i

∂Ri(ϑ
−nω)
))

which satisfies

Fω∂R(ω)⊂ ∂R(ϑω).
SetD(ω)= π−1

ω ∂R(ω); then

σD(ω)⊂D(ϑω). (4.2.5)

It is not clear how to introduce general verifiable conditions onF which ensure topologi-
cal mixing of the random subshift of finite typeσ constructed above. Still, for some spe-
cific models, in particular, for Examples 4.2.4 and 4.2.3 it is possible to construct random
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Markov partitions such that the corresponding random subshift of finite typeσ will be topo-
logically mixing. In the case of Example 4.2.3 it suffices to assume that the unperturbed
diffeomorphismf is topologically mixing on a basic hyperbolic setΛ and that the pertur-
bation neighborhoodU(f ) isC1 small enough. Letf = f (ω,x) be a function onΩ ×M
satisfying (4.2.3) whenx, y ∈Λ(ω) withKf satisfying (4.2.3). Then we can define a func-
tion f̃ (ω, ξ)= f (ω,πωξ) which will satisfy conditions of Theorem 4.1.1. Hence there ex-
ists a unique probability measure (equilibrium state) such thatπσ (f̃ )= hµ̃(σ )+

∫
f̃ dµ̃.

Sinceµ̃ is ergodic and positive on cylinder sets we can derive from (4.2.5) similarly to [36]
that
∫
µ̃ω(D(ω))dP(ω) = 0. This enables us to define disintegrationsµω = πωµ̃ω of a

Θ-invariant measureµ satisfying (4.1.9). In particular, taking

f (ω,x)=− ln |detDxFω|Γ ux (ω)|

and assuming that theC1+γ , γ > 0, norm ofF belongs toL1(Ω,P) we obtain random
Sinai–Ruelle–Bowen (SRB) measuresµ whose disintegrationsµω have absolutely contin-
uous conditional measures on unstable manifolds (see Theorem 4.3 in [68] and [115]). Sup-
pose thatP-a.s.Fω areC2 perturbations (not necessarily very small) of one (deterministic)
diffeomorphismF0 having a hyperbolic setΛ so thatFω,F0 andF−1

ω ,F−1
0 preserve cor-

responding expanding nonrandom cones. Then random SRB measures can be constructed
more directly without random Markov partitions employing the method exhibited in [13].

An attempt to deal with continuous time hyperbolic RDS, i.e., with stochastic flows,
has been made in Section 5 of [68]. Still, at present there are neither final definitions nor
substantial results concerning this situation. In the continuous time case RDS can be gen-
erated either by stochastic or by random differential equations (see [7, Chapter 2]). There
are no examples of (spatially uniform) hyperbolic stochastic flows given by nondegenerate
stochastic differential equations. It is easier to generate what could be called hyperbolic sto-
chastic flows by random differential equations. Even then there is an important difference
from the deterministic case, namely, there is no flow direction, i.e., the one-dimensional
invariant subbundle tangent to orbits. Observe that the structural stability of hyperbolic
flows theorem does not help much in constructing easy workable examples as in the dis-
crete time case since perturbations of hyperbolic flows conjugate to it with time change
and we still do not have much control in the random one-dimensional “flow” direction.
Random hyperbolic type splittings yield random stable and unstable manifolds (see [68])
but it is not clear how to proceed any further. So we restrict ourselves by considering
the following model example from [68]. Suppose that vector fieldsB1, . . . ,Bk are taken
from a smallC2 neighborhood of one vector fieldB which generates an Anosov flow. Let
νt = νt (ω) be a continuous time Markov chain with the finite state space{1, . . . , k} and set
B(ϑtω,x)= Bνt (ω)(x). This defines a cocycleF(t,ω) for ω ∈Ω given by

dF(t,ω)x

dt
= B(ϑtω,F (t,ω)x).

One can consider, for instance, a “random geodesic flow” when several close metrics of
negative curvature are switched at random times (whenνt moves from state to state).
Clearly, some expanding and contracting cones will be preserved for forward and back-
ward actions, respectively, and it is not difficult to see that this model admits an invariant
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random hyperbolic splitting. The sum of the dimensions of stable and unstable subbundles
is one less than the dimension of the manifold as in the deterministic case but now there
is no good control of the action on the additional one-dimensional subbundle. Though we
cannot provide thermodynamic formalism constructions of equilibrium states for the above
model in its full generality one very particular case of it can be dealt with. Namely, assume
thatBj = qjB whereqj are positive functions onM andB is a (nonrandom)C2 vector
field generating onM a transitive Anosov flowf t . ThenF(t,ω) is obtained fromf t by a
random time change and both flows have the same orbits. Using a Markov partition forf t

we can representF(t,ω) as a suspension over a nonrandom subshift of finite type with a
random ceiling function (see [98]). A more general random time change will lead to a sus-
pension over a random subshift of finite type if we require that the corresponding random
ceiling function is uniformly bounded away from zero and infinity in order to satisfy the
assumptions from [98].

4.3. Markov chains with random transitions

In this section we will discuss Markov chains with random transition probabilities which
are both ideologically close to RDS and also emerge directly in the study of random
Markov subshifts of finite type described at the end of Section 4.1. Our exposition will fol-
low mainly [94] though we will mention some other related papers, as well. Let(Ω,F ,P)
andϑ be as before,Y be a compact space andG be a measurable subset ofΩ × Y with
compact fibersGω = {x: (ω, x) ∈ G}. Suppose that for eachω ∈ Ω andx ∈ Gω we are
given a Borel probability measurePω(x, ·) on Gϑω Borel measurably depending on the
pair (ω, x). By the Kolmogorov extension theorem, for eachx ∈ Gω, there is a unique
probability measurePωx on the product spaceGω = Gω × Gϑω × Gϑ2ω × · · · such that un-
der Pωx the coordinate maps{Zωn , n � 0} become a time inhomogeneous Markov chain
starting atx and evolving according to{Pϑnω}, i.e.,Zωn+1 ∈ Γ ⊂ Gϑn+1ω with probabil-

ity Pϑ
nω(y,Γ ) providedZωn = y ∈ Gϑnω. In this way, one can think of(Ω,F ,P, ϑ) as

a random stationary environment for the Markov chainsZωn . Note, that in the physical
literature parameters considered for each specific state of the environment (ω-wise) are
often called quenched (which we call here fiber or relative) and parameters averaged in the
environment or parameters related to the Markov chains with the averaged transition prob-
abilities

∫
Pω(x, ·) dP(ω) are called annealed. In the case whenGω ≡ Y is a countable set

the ergodic theory for such Markov chains was studied in a series of papers (see references
in [94]) with rather different motivations. Observe that we have changed the notations here
with respect to other sections denoting random spaces byG and not byE as before by the
reason that in an application of such Markov chains to random Markov subshifts of finite
type discussed below these subshifts act on the product spaceEω = Gω and not onGω.

Forx ∈ Gω and a BorelΓ ⊂ Gϑnω, set

Pω(n, x,Γ )=
∫
. . .

∫
Pω(x, dy1)P

ϑω(y1, dy2) . . . P
ϑn−1ω(yn−1,Γ ).

Thus,Pω(n, x, ·) is then-step transition probability of the Markov chainZωn . Our main
assumption here is that there exist random variablesN =Nω ∈ Z+ = {1,2, . . .} andγω > 0
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and a family of measuresmω from the spaceP(Gω) of probability measures onGω such
that forP-a.a.ω ∈Ω , anyx ∈ Gϑ−Nω, and each BorelΓ ⊂ Gω,

Pϑ
−Nω(N,x,Γ )� γωmω(Γ ). (4.3.1)

Clearly, (4.3.1) is a randomized version of the classical Doeblin condition and it turns out
that it implies also a randomized version of Doeblin’s conclusion.

THEOREM 4.3.1. Suppose that(4.3.1)holds true but no topological assumptions onY
andGω are made. Then forP-a.a.ω there exists a unique family of probability measures
µω onGω satisfying

µωP
ω = µϑω (4.3.2)

measurably depending onω and such that for someκ = κω ∈ (0,1), C = C(ω) ∈ (0,∞),
anyx ∈ Gϑ−nω, and a Borel setΓ ⊂ Gω,

∣∣Pϑ−nω(n, x,Γ )−µω(Γ )∣∣� C(ω)(1− κω)n. (4.3.3)

Furthermore, if in addition to(4.3.1)we have also the upper bound

Pϑ
−Nω(N,x,Γ )� γ−1

ω mω(Γ ), N =Nω, (4.3.4)

then for anyn�Nω there exist densities

pϑ
−nω(n, x, y)= dP

ϑ−nω(n, x, ·)
mω

(y),

pω(y)= dµω

dmω
(y) ∀x ∈ Gϑ−nω, ∀y ∈ Gω, (4.3.5)

and we have

sup
x,y

∣∣pϑ−nω(n, x, y)− pω(y)∣∣� C(ω)(1− κω)n. (4.3.6)

The above setup includes finite Markov chains with random transition probabilities
whereGω = {1, . . . , �(ω)} with a random variable�(ω) ∈ Z+ satisfying

∫
�dP < ∞.

The transition probabilities are given here by�(ω) × �(ϑω) matricesPω = (Pωij ), i =
1, . . . , �(ω), j = 1, . . . , �(ϑω). Consider the productsPω(n) = PωPϑω . . .P ϑn−1ω and
assume that there exists a random variableN = Nω such that forP -a.a.ω the ma-
trix Pϑ

−Nω(N) has positive entries. Then (4.3.1) holds true wheremω is the uniform
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measure onGω. By Theorem 4.3.1 there exist unique probability vectorspω = (pωi ),
i = 1, . . . , �(ω), such that

pωPω = pϑω. (4.3.7)

Next consider the space of sequencesEω = Gω × Gϑω × · · · = {x = (x0, x1, . . .), xi ∈
Gϑiω} together with the left shiftFω :Eω → Eϑω. Let Cωξ0,...,ξn = {x ∈ Eω: xi = ξi ∀i =
0,1, . . . , n} be a cylinder set. Define the probability measuresν

p,P
ω onEω setting

νp,Pω (Cωξ0,...,ξn)= pωξ0Pωξ0ξ1 . . . P ϑ
n−1ω

ξn−1ξn

which is legitimate in view of Kolmogorov’s extension theorem. By (4.3.7) it follows easily
that

Fων
p,P
ω = νp,Pϑω . (4.3.8)

The measureν having disintegrationsνp,Pω is the invariant measure of the RDSF deter-
mined byFω above and we arrive again at a Markov subshift of finite type considered at the
end of Section 4.1. Theorem 4.3.1 implies in this case exponentially fastω-wise mixing
of disintegrations and the ergodicity (mixing) ofν wheneverP is ergodic (mixing) with
respect toϑ (see Proposition 2.2 in [94]) though we know these facts already for general
Gibbs measures by Section 4.1. Next, letG be as above. We exhibit a random Perron–
Frobenius type theorem for random operators which resembles Theorem 4.1.2 considered
in the case of random subshifts of finite type. LetRω, ω ∈ Ω , be a family of bounded,
nonnegative operators mapping a bounded Borel functiong onGϑω to a functionRωg on
Gω by the formula

Rωg(x)=
∫
Rω(x, dy)g(y). (4.3.9)

Assume that there exist random variablescω > 0 andN =Nω ∈ Z+ and a family of prob-
ability measuresmω ∈P(Gω) such that forP-a.a.ω, anyx ∈ Gω, and each BorelΓ ⊂ Gω,

Rϑ
−Nω(N,x,Γ )� cωmω(Γ ) (4.3.10)

and

suppRϑ
−Nω(N,x, ·)= suppmω. (4.3.11)

HereRω(n, x,Γ )= ∫ . . . ∫ Rω(x, dy1) . . .R
ϑn−1ω(yn−1,Γ ). When in addition to (4.3.10)

we assume that

Rϑ
−Nω(N,x,Γ )� c−1

ω mω(Γ ) (4.3.12)

then (4.3.11) is automatically satisfied.
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THEOREM 4.3.2. There exist uniquely defined numbersλ(ω) > 0, positive functionsh(ω)
on Gω, and measuresνω ∈ P(Gω) (dependent measurably onω if F is countably gener-
ated) such that for anyx ∈ Gω andΓ ⊂ Gϑω,∫

dνω(x)R
ω(x,Γ )= λ(ω)νϑω(Γ ) (4.3.13)

and ∫
h(ϑω,y)Rω(x, dy)= λ(ω)h(ω,x). (4.3.14)

Furthermore, for someC(ω) > 0, κ = κω ∈ (0,1), anyx ∈ Gϑ−nω, and a BorelΓ ⊂ Gω,

∣∣(λ(ϑ−nω) . . . λ
(
ϑ−1ω
))−1(

h(ϑ−nω,x)
)−1
Rϑ

−nω(n, x,Γ )− νω(Γ )
∣∣

� C(ω)(1− κ)n. (4.3.15)

If also the upper bound(4.3.12)holds true then for anyn�Nω there are densities

rϑ
−nω(n, x, y)= dR

ϑ−nω(n, x, ·)
dmω

(y),

rω(y)= dνω

dmω
(y) ∀x ∈ Gϑ−nω, y ∈ Gω, (4.3.16)

and

sup
x,y

∣∣(λ(ϑ−(n−1)ω) . . . λ(ω)
)−1(

h(ϑ−nω,x)
)−1
rϑ

−nω(n, x, y)h(ω,y)− rω(y)∣∣
� C(ω)(1− κ)n. (4.3.17)

The above result enables us to obtain a Donsker–Varadhan type formula in a random en-
vironment which in certain sense is similar to the relative variational principle for random
transformations. Namely, for any measurable inω family of continuous functionsϕ = {ϕω}
onGω letRω =Rωϕ be the operator given by the formula

Rωg(x)=
∫
g(y)eϕϑω(y)P ω(x, dy); (4.3.18)

and letλ(ω)ϕ be the corresponding random variable appearing in Theorem 4.3.2. In addi-
tion to (4.3.10), assume that∫

sup
x∈Gω

∣∣ϕω(x)∣∣dP(ω) <∞. (4.3.19)
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Then lnλ(ω)ϕ is integrable and the following variational formula holds true:

Q(ϕ)
def=
∫

logλ(ω)ϕ dP(ω)= sup
η

(∫
ϕ dη− I (η)

)
, (4.3.20)

where the supremum is taken over the spacePP(Ω×Y) of probability measures onΩ×Y
with the disintegrationdη(ω,x)= dηω(x) dP(ω) and

I (η)≡− inf
u

∫
log

(
Pωu(ϑω)

u(ω)

)
dηω dP(ω), (4.3.21)

the infimum being taken over measurable familiesu = {u(ω)} of positive continuous
functions onGω such that

∫
supx | logu(ω)(x)|dP(ω) <∞. It turns out that for a wide

class of familiesϕ = {ϕ(ω)} of continuous functionsϕ(ω) on Gω there exists a unique
µ= µϕ ∈ PP(Ω × Y) such that

Q(ϕ)=
∫
ϕ dµ− I (µ). (4.3.22)

If eachGω is a finite set{1, . . . , �(ω)} then it is natural to takemω to be the uniform
measure onGω and Theorem 4.3.2 yields a Perron–Frobenius type theorem for random
positive matrices. Observe that the first construction of Gibbs measures for Anosov dif-
feomorphisms in [156] used the classical Perron–Frobenius theorem for random matrices
but later the Ruelle–Perron–Frobenius theorem enabled a more direct construction as de-
scribed in [36]. In the random case we used from the beginning the latter approach but
Theorem 4.3.2 reveals a close connection between thermodynamic formalism type con-
structions for random transformations and related results for Markov chains with random
transitions and random positive operators.

The construction of the tripleλ(ω),h(ω), νω in Theorem 4.3.2 is similar to Theo-
rem 4.1.2 but then we useRω,λ(ω) and h(ω) in order to construct a random Markov
operator satisfying conditions of Theorem 4.3.1 and via the latter result we derive remain-
ing assertions of Theorem 4.3.2. Once Markov chains with random transitions are defined
it is natural to proceed to other standard problems of the theory of Markov chains such
as their asymptotic behavior which is related to existence of bounded and positive “har-
monic” functions. It turns out that random harmonic functions with respect to Markov
chains with random transitions can be defined, as well (see [101]). It is especially interest-
ing to study such questions for random walks on groups whose increments are independent
but have stationarily changing distributions (see [101] and [73]). In particular, existence of
random bounded harmonic functions can be characterized via certain entropy characteris-
tics. If the group in question is the group of invertible matrices we end up with products
of independent matrices whose distributions form a stationary process and we can obtain
results concerning, for instance, simplicity of the Lyapunov spectrum for such products
and to develop a theory which extends many of well-known results concerning products of
independent identically distributed random matrices (see [101]).
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4.4. Limit theorems

In this section we will discuss the fiber (ω-wise) central limit theorem and the law of
iterated logarithm type results for random transformations and for Markov chains with
random transitions following [98], as well, as someω-wise large deviations results. For
the proof of Theorems 4.4.1–4.4.5 below we refer the reader to [98]. We employ here
the standard notations and setup as in previous sections and we assume thatP is ergodic
with respect toϑ . The setup includes here also aΘ-invariant measureµ ∈ PP(E) with
disintegrations{µω} and a measurable family ofσ -algebrasFωm,n, n�m, ω ∈Ω , of sets
from Eω such that

Fωm,n ⊂Fωm′,n′ if m′ �mandn′ � n andF−1
ω Fϑωm,n =Fωm+1,n+1. (4.4.1)

The uniform mixing (φ-mixing) coefficient is defined by

φωi,j = sup
A∈Fω0,i ,µω(A) �=0,B∈Fωj,∞

∣∣∣∣µω(A∩B)
µω(A)

−µω(B)
∣∣∣∣, j > i. (4.4.2)

Let ϕ = ϕ(ω,x)= ϕω(x) be a measurable function onE so thatϕω as a function onEω is
Fω0,∞-measurable, and so in view of (4.4.1),ϕϑiω ◦ F iω is Fωi,∞-measurable as a function
on Eω. The setup includes also a measurable setQ ⊂ Ω with P(Q) > 0 and the corre-
sponding sequence of hitting times

ki+1(ω)= min
{
k > ki(ω): ϑ

kω ∈Q} with k0 ≡ 0. (4.4.3)

Set

ψω = ϕω −Eµωϕω, Ψ (ω,x)= Ψω(x)=
k1(ω)−1∑
i=0

ψ ◦Θi(ω,x),

c(ω)= (Eµω |ψω|2)1/2, C(ω)= (Eµω |Ψω|2)1/2,
dn(ω)=

(
Eµω
(
ψω −Eµω(ψω|Fω0,n)

)2)1/2
,

and

Dn(ω)=
(
Eµω
(
Ψω −Eµω(Ψω|Fω0,n)

)2)1/2
,

whereEν always denotes the expectation (i.e., the integral) with respect to a probability
measureν andEν(·|·) is the corresponding conditional expectation. Observe that

C(ω)�
k1(ω)−1∑
i=0

c
(
ϑiω
)

and Dn(ω)�
k1(ω)−1∑
i=0

dn−i
(
ϑiω
)
. (4.4.4)
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Set τ = ϑk1(ω), Φω = Fk1(ω)ω , andT (ω,x) = (τω,Φωx). Since we assume also that
P is ergodic, it is well known (see, for instance, [48]) thatτ is an ergodic measure pre-
serving transformation on the space(Q,PQ) wherePQ(A) = P(A∩Q)

P(Q)
. Denote byEQ

the restriction ofE to Q × X and byµQ the normalized restriction ofµ to EQ, i.e.,
dµQ(ω,x)= dµω(x)dPQ(ω). It follows thatµQ is invariant under the action ofT .

THEOREM 4.4.1. Let φj = supω,i�1φ
ω
ki(ω),ki+j (ω) and βj = (EPQD2

kj
)1/2 and suppose

that

∞∑
j=1

φ
1/2
j <∞, (4.4.5)

∞∑
j=1

βj <∞, (4.4.6)

and

EPQ

(
k1(ω)−1∑
i=0

c ◦ ϑi
)2

<∞. (4.4.7)

ThenP-a.s.,

σ 2 = lim
n→∞

1

n
Eµω

(
n−1∑
j=0

ψϑjω ◦ Fjω
)2

= P(Q)

(
EµQΨ

2 +
∞∑
l=1

EµQ
(
Ψ
(
Ψ ◦ T l))) (4.4.8)

and the series in the right-hand side of(4.4.8) converges. Furthermore, P-a.s. for any
numbera,

lim
n→∞µω

{
x ∈ Eω:

1√
n

n−1∑
i=0

ψ ◦Θi(ω,x)� a
}

= 1

σ
√

2π

∫ a
−∞
e
− x2

2σ2 dx, (4.4.9)

i.e., for P-a.a. ω theµω-distribution ofn−1/2∑n−1
i=0 (ψ ◦ Θi)ω converges to the normal

distribution with zero mean and the varianceσ 2 which in caseσ = 0 is understood as the
unit mass at0.Finally, σ = 0 if and only if there exists a functionη onEQ fromL2(EQ,µQ)
such thatµQ-a.s.,

Ψ ◦ T = η ◦ T − η. (4.4.10)



Random dynamics 467

Furthermore, assume thatσ > 0 and setρ(t)= (2t log logt)1/2 and fork = 0,1, . . . , n−1,

ηn(t)= σ−1n−1/2

(
k−1∑
j=0

ψ ◦Θj + (nt − k)ψ ◦Θk
)

for t ∈
[
k

n
,
k+ 1

n

)
,

ζn(t)=
(
ρ
(
σ 2n
))−1

(
k−1∑
j=0

ψ ◦Θj + (nt − k)ψ ◦Θk
)

for t ∈
[
k

n
,
k+ 1

n

)
.

ThenµQ-a.s. ηn converges in distribution asn→∞ to the standard Wiener process on the
time interval[0,1] (the invariance principle in the central limit theorem) and the invari-
ance principle for the law of iterated logarithm(LIL) holds true, as well. Namely, µQ-a.s.
the sequence of functions{ζn(·), n � 3/σ 2} is relatively compact in the spaceC[0,1]
(of continuous functions on[0,1] considered with the supremum norm) and the set of its
limit points asn→∞ coincides with the setK of absolutely continuousx ∈ C[0,1] with∫ 1

0 (ẋ(t))
2dt � 1.

This result can be proved via the classical characteristic functions technique though
another technique based on nonstationary backwards martingale differences approxima-
tion and martingale limit theorems which also works here is often more convenient since
there is no need in an explicit uniform mixing condition with respect to a certain fam-
ily of σ -algebras as in Theorem 4.4.1. The corresponding setup includes the same ob-
jects as above, but now in place of a family ofσ -algebrasFωm,n we consider another

family of σ -algebrasT ωl = (F lω)−1T ϑlω0 whereT ω0 for eachω is the restriction of the
σ -algebraF to Eω. ThenT ωl , l = 0,1, . . . , is a nonincreasing sequence ofσ -algebras
on Eω. Let uω :L2(Eϑω,µϑω)→ L2(Eω,µω) be an isometry operator acting by the for-
mula uωϕ(x) = ϕ(Fωx) and letu∗ω :L2(Eω,µω)→ L2(Eϑω,µϑω) be its conjugate de-
fined by

∫
ϕ(u∗ωϕ̃) dµϑω =

∫
(uωϕ)ϕ̃ dµω for anyϕ ∈ L2(Eϑω,µϑω) andϕ̃ ∈ L2(Eω,µω).

It is easy to see thatuωu∗ω :L2(Eω,µω) → L2(Eω,µω) is the orthogonal projection
to uωL2(Eϑω,µϑω) and the last set is exactly the set ofT ω1 -measurable functions in

L2(Eω,µω). Introduce also the operatorUω = uk1(ω)ω , whereunω = uω ◦ uϑω ◦ · · · ◦ uϑn−1ω,
and letU∗

ω be its conjugate.

THEOREM4.4.2. Assume that(4.4.7)holds true and that the following two conditions are
satisfied:

EPQ

∞∑
n=0

∣∣Eµω(Ψω(Ψ ◦ T n)ω
)∣∣<∞ (4.4.11)

and

EPQEµω

( ∞∑
n=0

|U∗n
τ−nωΨτ−nω|

)2

<∞, (4.4.12)
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whereU∗n
ω = U∗

τn−1ω
◦ · · · ◦ U∗

τωU
∗
ω. ThenP-a.s. (4.4.8) and (4.4.9) hold true and the

criterion (4.4.10)for σ = 0 remains valid, as well. Moreover, assuming thatσ > 0 the
invariance principles stated in Theorem4.4.1hold true.

Observe that a similar result has been proved also in [143]. Next, we discuss specific
examples of processes in random environments and random transformations for which
either mixing conditions of Theorem 4.4.1 or convergence conditions of Theorem 4.4.2
needed for martingale differences approximations hold true. First, we consider the case
whenµω ’s are Markov measures observing that the random Doeblin condition (4.3.1) is
suffice for the uniform mixing condition of Theorem 4.4.1 to hold true. LetZωn be a Markov
chain in a random stationary environment introduced at the beginning of Section 4.3 and
suppose that probability measuresµω onEω = Gω × Gϑω × · · · are determined by

µω
{
x ∈ Eω: Zω1 (x) ∈ Γ1, Z

ω
2 (x) ∈ Γ2, . . . , Z

ω
n (x) ∈ Γn

}
=
∫
Gω
ηω(dx0)

∫
Γ1

. . .

∫
Γn−1

Pω(x0, dx1) . . .

× Pϑn−2ω(xn−2, dxn−1)P
ϑn−1ω(xn−1,Γn), (4.4.13)

whereΓi is a measurable subset ofGϑiω and measuresηω ∈ P(Gω) satisfyηωPω = ηϑω.
Existence and uniqueness of such measuresηω is ensured by Theorem 4.3.1 whenever the
random Doeblin condition (4.3.1) holds true. Letσ -algebrasFωm,n be generated by all sets
of the form{x: Zωl (x) ∈ Γ }, l =m,m+ 1, . . . , n, for measurableΓ ⊂ Eϑlω.

THEOREM 4.4.3. Let (4.3.1) holds true with someN = Nω, γω > 0. SetQ = QL =
{ω: max(Nω,γ−1

ω ) � L} for a sufficiently largeL so thatP(Q) > 0 and suppose that
ki(ω)’s are defined by(4.4.3).Then the condition(4.4.5)holds true. Thus ifϕ is a measur-
able function onE as in Theorem4.4.1satisfying the conditions(4.4.6)and (4.4.7) then
(4.4.8)and (4.4.9)hold true, as well. If ϕω(x) = ϕω(Zω0 (x)) is, in fact, a function onY
(and, as before, ψω = ϕ(ω)−Eµωϕ(ω)) then(4.4.9)can be written in the form

lim
n→∞µω

{
x ∈ Eω:

1√
n

n−1∑
k=0

ψϑkω
(
Zωk (x)

)
� a
∣∣∣Zω0 (x)= x0

}

= lim
n→∞µω

{
x ∈ Eω:

1√
n

n−1∑
k=0

ψϑkω
(
Zωk (x)

)
� a
}

= 1

σ
√

2π

∫ a
−∞
e
− u2

2σ2 du (4.4.14)

which is satisfied for any initial pointx0 ∈ Gω. A corresponding LIL described in Theo-
rem 2.1 holds true for this case, as well, as the invariance principles for both CLT and
LIL.
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Next we deal with one-sided random subshifts of finite type considered in Section 3.1.1.
Let Fωm,n, m� n <∞, be the finiteσ -algebra generated by cylinder setsCαm,αm+1,...,αn =
{x = (x0, x1, . . .): xi = αi for i =m,m+1, . . . , n} and letFωm,∞ be the minimalσ -algebra
containing

⋃
n�mFωm,n.

THEOREM 4.4.4. Suppose that{Fω} is a random topologically mixing subshift of finite
type, (4.1.1)is satisfied, theσ -algebrasFωm,n are defined as above, and a measurable fam-
ily of probability measuresµω is constructed by a functionf satisfying(4.1.3)–(4.1.5)so
that (4.1.14), (4.1.21)and (4.1.22)hold true. Then one can choose a setQ in the form
Q=QL = {ω: Lω � L} with P(Q) > 0, for some random variableLω which can be con-
structed explicitly so that the condition(4.4.5)will be satisfied. Thus by Theorem4.4.1 if
(4.4.6)and (4.4.7)are satisfied then(4.4.8)and (4.4.9)hold true together with the char-
acterization(4.4.10)of the caseσ = 0. The corresponding LIL follows, as well, as the
invariance principles for both CLT and LIL.

This theorem had been applied in [115] in order to obtain anω-wise central limit theorem
as above for RDS described in Example 4.2.3. Next we will describe a similar result for
random expanding in average transformations.

THEOREM4.4.5. Assume thatFω,ω ∈Ω , areC2 endomorphisms of a compact connected
C2 Riemannian manifoldM satisfying(4.2.1)and (4.2.2).Suppose that the measuresµω
are constructed by Theorem4.2.1with a functionf satisfying(4.1.3), (4.1.5),and (4.2.3)
and that a functionϕ = ϕ(ω,x) ( for which the CLT is going to be proved) is Hölder
continuous inx, i.e., it also satisfies(4.2.3) with, say, the same exponentκ > 0 and a
random variableKϕ(ω) > 0 such that

EPQ

(
k1(ω)−1∑
j=0

(‖ϕϑjω‖ +Kϕ(ϑjω))
)2

<∞, (4.4.15)

with k1 given by(4.4.3).Then one can choose a setQ in the formQ=QL = {ω: Lω � L}
with P(Q) > 0 and a random variableLω which can be constructed explicitly so that
the conditions(4.4.11)and (4.4.12)of Theorem4.4.2will be satisfied, and so(4.4.8)and
(4.4.9)together with the characterization of the caseσ = 0 hold true, as well, as the cor-
responding LIL.

We will conclude this section with a description of large deviations results for random
transformations. Consider the occupational measures

ζ nω = 1

n

n−1∑
k=0

δϑkω,Zωk
∈ P(Ω × Y) (4.4.16)
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(whereδz denotes the unit mass atz) in the case of Markov chains with random transition
probabilities and

ζ nω = 1

n

n−1∑
k=0

δ(ϑkω,F kωx)
∈P(Ω ×X) (4.4.17)

in the case of random transformations. The following result has been proved in [94] em-
ploying general large deviations results from [87] together with Theorem 4.3.2 and the
variational formula (4.3.20) considerations.

THEOREM 4.4.6. Suppose that Markov chains with random transition probabilitiesZωn
satisfy the random Doeblin condition(4.3.1).ThenP-a.s. for any x ∈ Y and closed set
K ⊂P(Ω × Y),

lim sup
n→∞

1

n
logPωx {ζ nω ∈K} � − inf

ν∈K IP(ν) (4.4.18)

and for any open setG⊂P(Ω × Y),

lim inf
n→∞

1

n
logPωx {ζ nω ∈G}� − inf

ν∈GIP(ν), (4.4.19)

wherePωx is the path space probability for the processZωn starting atx andIP(ν)= I (ν)
with I (η) given by(4.3.21)if η ∈P(Ω × Y) andI (η)=∞, otherwise.

In the case of random expanding transformations and topologically mixing random sub-
shifts of finite type the corresponding theorem has been established in [89] and [91] as
a consequence of results from [87] together with Theorems 4.1.1 and 4.2.1 above. Large
deviations for random transformations taken from a smallC2 neighbourhood of a diffeo-
morphism near a basic hyperbolic set (see Example 4.2.3) were derived in [121].

THEOREM 4.4.7. Suppose that{Fω} is either a random topologically mixing subshift of
finite type as in Theorem4.4.4satisfying(4.1.1)or a random expanding in averageC2

endomorphism of a compact Riemannian manifoldM satisfying(4.2.1)and(4.2.2).LetX
be the product spacēZ+ × Z̄+ × · · · in the subshifts case andX =M in the expanding
transformations case. Suppose that the measuresµω are constructed by Theorems4.2.1
or 4.1.1, respectively, for a functionf satisfying(4.1.3)–(4.1.5)or (4.1.3), (4.1.5),and
(4.2.3),respectively. ThenP-a.s. for closed setK ⊂P(Ω ×X),

lim sup
n→∞

1

n
logµω{ζ nω ∈K} � − inf

ν∈K If (ν) (4.4.20)

and for any open setG⊂P(Ω ×X),

lim inf
n→∞

1

n
logµω{ζ nω ∈G}� − inf

ν∈GIf (ν), (4.4.21)
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whereIf (ν)= πF (f )−
∫
f dν−hν(F ) if ν ∈ PP(Ω×X) isΘ-invariant andIf (ν)=∞,

otherwise. The relations(4.4.20) and (4.4.21) remain true if we replaceµω there by
the normalized Riemannian volumem and takef (ω,x) = − ln |JacDxFω| as in Theo-
rem4.2.1.

4.5. Random fractals

In this section we apply thermodynamical formalism machinery for random transforma-
tions exhibited in Sections 4.1–4.3 to the study of fractal dimensions of random sets
and random measures emerging naturally in various expansions. We start with random
base expansions following [95]. The general setup includes as before an ergodic mea-
sure preserving transformationϑ of a probability space(Ω,F ,P) with a countably gen-
eratedσ -algebraF and aZd+-valued random vectorm(ω)= (m1(ω), . . . ,md(ω)), ω ∈Ω ,
mi(ω) ∈ Z+ = {1,2, . . .} such that for alli = 1, . . . , d ,

0<
∫

logmi dP =
∫

logm1dP<∞. (4.5.1)

For anyx = (x1, . . . , xd) ∈ [0,1)d we can write

x =
∞∑
j=0

xj (ω)
(
M
(
ϑjω
) · · ·M(ϑω)M(ω))−1

, (4.5.2)

whereM(ω) is thed × d diagonal matrix with the diagonal elementsm1(ω), . . . ,md(ω)

andxj (ω)= (x1j (ω), . . . , xdj (ω)) are row vectors withxij (ω) ∈ {0,1, . . . ,mi(ϑjω)− 1}.
This expansion is always possible since forxi ∈ [0,1) we can setxi0(ω) = [ximi(ω)],
where[·] denotes the integer part, and

xij (ω)=
[
mi(ω)mi(ϑω) . . .mi

(
ϑjω
)(
x −

j−1∑
n=0

xin(ω)

mi(ω) . . .mi(ϑnω)

)]
(4.5.3)

after xi0(ω), . . . , xi,j−1(ω) have been already defined. Thus zero tails are permitted but
the tails withxij (ω) =mi(ϑjω)− 1 ∀j � n are not. Whend = 1 we arrive at an expan-
sion with random digits of numbersx in the semi-open unit interval[0,1) with respect to
random stationarily changing basesm(ω),m(ϑω), . . . , i.e.,

x =
∞∑
n=0

xn(ω)

m(ω) . . .m(ϑnω)
(4.5.4)

(random base expansions) and whenm(ω) = m is not random we are back to the usual
expansion with respect to a fixed basem.
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Define the transformationsFω : [0,1)d →[0,1)d andΘ :Ω × [0,1)d →Ω × [0,1)d by
the formulas

(Fωx)i =mi(ω)xi −
[
mi(ω)xi

]
∀i = 1, . . . , d andx = (x1, . . . , xd) ∈ [0,1)d (4.5.5)

and

Θ(ω,x)= (ϑω,Fωx). (4.5.6)

It is convenient to identify[0,1)d with the d-dimensional torusTd , and so we assume
that the expansion (4.5.2) is given for points ofTd . ThusFω becomes a random smooth
expanding transformation ofTd . For any x ∈ Td and ω ∈ Ω set φ(ω,x) = x0(ω) ∈
Zd+. Then x1(ω) = (Fωx)0(ϑω) = (φ ◦ Θ)(ω,x), and so by induction, assuming that
(φ ◦Θi−1)(ω, x)= xi−1(ω), we obtain(

φ ◦Θi)(ω, x)= (φ ◦Θi−1)(ϑω,Fωx)= (Fωx)i−1(ϑω)= xi(ω). (4.5.7)

This connection between the expansion (4.5.2) and the skew product transformationΘ en-
ables us to apply the machinery of previous sections in computations of fractal dimensions
of random sets related to this expansion.

For anyk, l ∈ Zd+ set

Nωkl(x,n)=
∣∣{j � 0, j < n: m

(
ϑjω
)= k, xj (ω)= l − 1

}∣∣ and

Nωl (x,n)=
∑
k∈Zd+

Nωkl(x,n), (4.5.8)

where 1 = (1, . . . ,1) ∈ Zd+ and |{·}| denotes the number of elements in a set{·}. Let
r = (rk, k ∈ Zd+) be an infinite probability vector andA= (akl, k, l ∈ Zd+) be an infinite
probability matrix such thatakl = 0 unlessl � k wherel = (l1, . . . , ld)� k = (k1, . . . , kd)

means thatli � ki ∀i = 1, . . . , d . Set

Uωr =
{
x ∈ [0,1)d : lim

n→∞
1

n
Nωl (x,n)= rl for all l ∈ Zd+

}
(4.5.9)

and

V ωA =
{
x ∈ [0,1)d : lim

n→∞
1

n
Nωkl(x, n)= qkakl for all k, l ∈ Zd+

}
, (4.5.10)

whereqk = P{m= k}. It is easy to check thatP-a.s.,

FωV
ω
A = V ϑωA and FωU

ω
r =Uϑωr . (4.5.11)
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Thus, clearly,

HD(Uωr )= HD
(
Uϑωr
)

and HD(V ωA )= HD
(
V ϑωA
)
, (4.5.12)

whereHD(·) denotes the Hausdorff dimension of a set in brackets, and sinceϑ is ergodic
andHD(Uωr ), HD(V ωA ) depend measurably onω we conclude that withP-probability one,

HD(Uωr )= const and HD(V ωA )= const. (4.5.13)

The following result is proved in [95].

THEOREM 4.5.1 (see [95]).With P-probability one,

HA = HD(V ωA )=
−∑k∈Zd+ qk

∑
l�k akl logakl∫

logm1dP
, (4.5.14)

and so HD(V ωA )= d if and only ifakl =∏di=1 k
−1
i for all l � k and anyk = (k1, . . . , kd) ∈

Zd+ such thatqk �= 0. In the last case with probability oneV ωA has also the Lebesgue
measure one. The setsUωr have the Lebesgue measure one forP-a.a. ω if and only if
rl =∑k�l qk∏di=1 k

−1
i for all l ∈ Zd+. Furthermore, for P -a.a. ω,

HD(Uωr )= sup
A∈Aqr

HA, (4.5.15)

where the supremum in(4.5.15)is taken over the setAqr of all infinite probability matrices
A= (akl) such thatakl = 0 unlessl � k andqA= r with q and r considered as the row
vectors(i.e.,

∑
k∈Zd+ qkakl = rl ∀l ∈ Zd+). The setAqr is nonempty if and only if

∑
l∈R
ql �
∑
l∈R
rl (4.5.16)

for anyR ∈R whereR is the collection of all filters inZd+, i.e., the subsetsR ⊂ Zd such
that if l ∈R and l � k thenk ∈ R. If (4.5.16)does not hold true for someR ∈R then with
probability oneUωr is empty.

The above theorem gives Hausdorff dimensions of everywhere dense fractal random
sets. Next, we deal with Hausdorff dimensions of random compact sets and, in particular,
random Cantor-like sets which are random repellers for random transformationsF defined
above. LetEω, ω ∈Ω , be a measurable family of compact subsets ofTd satisfying

FωEω = Eϑω (4.5.17)

with Fω given by (4.5.5). SetE = {(ω, x): x ∈ Eω}. Then we have the setup of Section 1.2
and we can speak about the fiber topological entropyhtop(F,E) of F restricted to theE
introduced in Definition 1.2.3. The following result is proved in [95].
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THEOREM 4.5.2. With P-probability one,

HD(Eω)= htop(F,E)∫
logm1dP

. (4.5.18)

A natural subclass of setsEω satisfying the conditions of Theorem 4.5.2 consists of random
Cantor-like sets obtained by choosing a measurable family of finite subsetsΨ (ω)⊂ {l− 1:
l ∈ Zd+, l � m(ω)} = L(ω) and settingEω = {x ∈ Td : xj (ω) ∈ Ψ (ϑjω) ∀j = 0,1, . . .}.
If with positive probabilityΨ (ω) �= L(ω) then forP-a.a.ω Eω are proper closed subsets
of Td which are naturally to call random Cantor sets. They are statistically self similar in
the sense that ifαj ∈ Ψ (ϑjω), j = 0,1, . . . , n− 1, then looking at the intersection ofEω
with the cylinderCωα0,...,αn−1

= {x ∈ Td : xj (ω) = αj ∀j = 0,1, . . . , n− 1} and rescaling

by means ofM(ϑn−1ω) . . .M(ω), whereM(ω) is the same as in (4.5.2), we obtainEϑnω,
namely,Fnω(Eω ∩Cωα0,...,αn−1

)= Eϑnω which has the same distribution asEω. Observe that
htop(F,E) for such setsEω is equal to

∫
log|Ψ (ω)|dP(ω). More general family of sets

Eω satisfying (4.5.17) can be obtained by taking a measurable family of matricesB(ω)=
(bkl(ω), k, l ∈ Zd+, k �m(ω), l �m(ϑω)) with 0 and 1 entries and by settingEω = {x ∈
Td : bxi(ω)+1,xi+1(ω)+1 = 1 ∀i = 0,1, . . .}. In this case withP-probability one,

htop(F,E)= lim
n→∞

1

n
log
∥∥B(ϑn−1ω

)
. . .B(ϑω)B(ω)

∥∥. (4.5.19)

This example is connected with random subshifts of finite type considered in Section 4.1.
Random transformations considered in Theorem 4.5.2 are particular cases of random

conformal maps acting on their random repellers which are defined in the following way.
Let (Ω,P) andϑ be as before,M be aC2 locally compact Riemannian manifold, and
Fω,ω ∈Ω be a measurable family ofC2 maps ofM such that there exist a compact set
M0 ⊂M with nonempty interior intM0 and a functionλω(x) satisfying:

(i) DxFω = λω(x)Iωx ∀x ∈M0, ω ∈Ω,

whereDxFω is the differential ofFω atx andIωx is an isometry of the tangent space
TxM ontoTFωxM;

(ii) With probability one infx∈M0 λω(x) > 1;
(iii) If γ0(ω) = supx∈M0

logλω(x) and γ1(ω) = supx∈M0
| log maxi | ∂λω(x)∂xi

|| then∫
(γ0 + γ1) dP<∞.

Assume also the mixing condition saying that for any open setU ⊂M0 there existsN =
Nω such thatFNω U ⊃M0. As an example of maps satisfying the above conditions we may
keep in mind algebraic endomorphisms of the torusTd given by integer valued matrices
L= (lij ) such that

∑d
j=1 lij lkj = δikλ2

L for someλL > 1 independent ofi whereδik = 1 if

i = k and= 0, otherwise. Thenλ−1
L L is an orthogonal matrix and the conditions above are

satisfied forFω taken out of this family of endomorphisms withλω(x) depending onω but
not onx. Now letEω, ω ∈Ω , be a measurable family of compact sets satisfying (4.5.17)
andEω ⊂M1 ∀ω ∈Ω for some compact setM1 ⊂ intM0. Denote byπF (ψ,E) the fiber
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topological pressure ofF restricted toE = {(ω, x): x ∈ Eω} for a random functionψ (see
Definition 1.2.3). The following result proved in [95] is a random version of the Bowen–
Ruelle formula for the Hausdorff dimension of conformal repellers.

THEOREM 4.5.3. Letϕω(x)=− logλω(x). Then under assumptions above forP-a.a. ω,

HD(Eω)= t0 if πF (t0ϕ,E)= 0. (4.5.20)

If λω(x), and soϕω(x), are independent ofx onE then

HD(Eω)= htop(F,E)∫
logλω dP(ω)

. (4.5.21)

It is not difficult to see that the Minkowski (box) dimensions of random setsEω from The-
orems 4.5.2 and 4.5.3 are the same as their Hausdorff dimensions. For random compact
repellers of nonconformal random maps this may already be not true (see [95]). Haus-
dorff dimensions of other random sets obtained via random geometric constructions and as
attractors of random iterated function systems were computed in [92].

More general randomf -expansions, the corresponding random transformations and
their random invariant measures were studied in [100]. The main part of this paper deals
with an extension of the relative thermodynamic formalism to this situation, the construc-
tion of random Gibbs measures and an application of this machinery to the computation of
their Hausdorff dimensions. Observe that the study of random invariant measures, in par-
ticular, random Gibbs measures is interesting even for deterministic transformations such
as the Gauss mapFx = {x} of the interval[0,1] which emerges in the continued fraction
expansion. Consider, for instance, a sequence of independent positive integer valued ran-
dom variablesAω,Aϑω,Aϑ2ω, . . . with distributionspω,pϑω,pϑ2ω, . . . and letXω be the
continued fraction with digitsAω,Aϑω,Aϑ2ω, . . . . Then the distributionµω of Xω satis-
fiesFµω = µϑω P-a.s. and we arrive at a random invariant measure of the Gauss mapF .
The Hausdorff dimension of this measure has been computed in [100] and it is always less
than 1.

5. Random perturbations of dynamical systems

5.1. Markov chain type perturbations

The theory of random perturbations of dynamical systems deals either with discrete time
models where each iteration of a deterministic transformationF is followed by a small
noise (which can be chosen in various ways) which amounts to a Markov chainXεn,
n= 0,1,2, . . . , or with a continuous time setup whose main model is a diffusion Markov
processXεt , t � 0, generated by differential operatorsLε = εL+ B, ε > 0, whereL is a
second order elliptic differential operator andB is a vector field considered as a first or-
der differential operator which generates a flowF t determined by the differential equation
d(F tx)/dt = B(F tx), t � 0. The importance of the latter model is, of course, its connec-
tion with partial differential equations and with so-called singular perturbations problems
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there. On the other hand, the discrete time model does not necessarily require a differ-
entiable structure and it allows more flexibility in choices of transformations, noises and
ambient spaces. The processesXεt , t ∈ Z+ or t ∈ R+, are viewed as random perturbations
of the dynamical systemF t . Not surprisingly the behavior ofXεt depends crucially on dy-
namical properties ofF t both on bounded time intervals, which is clear, and also when
t → ∞, which is more interesting. Of course, this behavior depends also on the noise
type but we are especially interested in parameters of the processXεt which approximate
corresponding parameters of the dynamical systemF t for a large and natural class of per-
turbations. We deal mainly with the discrete time setup indicating from time to time the
corresponding results for the continuous time case when they exist.

Let F :M→M be a continuous map of a compact metric spaceM and{Qεx, x ∈M,
ε > 0} be a family of probability distributions onM Borel measurably dependent onx on
and such that for any continuous functiong,

lim
ε→0

sup
x∈M

∣∣∣∣ ∫
M

g(y)Qεx(dy)− g(x)
∣∣∣∣= 0. (5.1.1)

Markov chainsXεn, n= 0,1,2, . . . , with transition probabilities

P ε(x,Γ )= P{Xεn+1 ∈ Γ |Xεn = x} =QεFx(Γ ) (5.1.2)

(whereP is the probability on the corresponding probability space) are called random
perturbations of the dynamical systemFn, n ∈ N. A probability measureµε onM is called
an invariant measure of the Markov chainXεn if∫

M

dµε(x)P ε(x,Γ )= µε(Γ ) (5.1.3)

for any Borel setΓ ⊂M . The following simple result established originally in [80] is a
starting point in the study of stability of invariant measures of dynamical systems.

THEOREM 5.1.1. Suppose that(5.1.1)–(5.1.3)hold true and

(w)lim
vei→0

µεi = µ (5.1.4)

(where(w)lim denotes the limit in the weak sense) for some subsequenceεi → 0. Thenµ
is an invariant measure of the mapF (i.e.,µ(F−1Γ )= µ(Γ ) for any Borel setΓ ⊂M).

In physical applications it is natural to think about measuresµ obtained as limits of
µε as more stable to random perturbations and so having more physical sense than other
invariant measures. Especially, this is true whenµε converges weakly toµ asε→ 0 for
a natural class of perturbations in which caseµ is naturally to be called stochastically
stable and physically relevant (as real systems are subject to random perturbations). In the
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continuous time case of diffusionsXεt generated by an elliptic operatorLε as above defined
on a compact smooth manifoldM the transition probabilitiesP ε(t, x, ·) of Xεt satisfy

lim
ε→0

sup
x∈M

∣∣∣∣ ∫
M

g(y)P ε(t, x, dy)− g(x)
∣∣∣∣= 0 (5.1.5)

for any continuous functiong, and so Theorem 5.1.1 yields that any limit in the weak sense
of invariant measures of the processXεt is an invariant measure of the flowF t .

It is natural to believe that under general circumstances all weak limits of invariant mea-
suresµε of the processesXε are supported by attractors. To make this precise, recall, that
a finite sequence of pointsx1, . . . , xn is called aδ-pseudo orbit if dist(Fxi, xi+1) < δ for
all i = 1, . . . , n− 1. We say thaty is attainable fromx and writey 0 x if for any δ > 0
there exists aδ-pseudo-orbit starting atx and ending aty. We also have an equivalence
relation writingx ∼ y whenevery 0 x andx 0 y. By the definition we setx ∼ x. We call
a compact setK an attractor if there exists an open setV ⊃ K such thatFV̄ ⊂ V and⋂
n�0F

nV =K . The proof of the following result can be found in [85].

THEOREM 5.1.2. Suppose that there exists only a finite number of equivalence classes in
M and assume that the processXε exits “much faster” from small neighborhoods of nonat-
tractors than from small neighborhoods of attractors( for the precise condition see[85]).
Then all weak limit points asε→ 0 of invariant measuresµε of Xε have supports in the
union of attractors.

Other results in this direction can be found in [148] and [65]. We refer the reader also
to [126] where the behavior of certain random perturbations in a vicinity of an attractor is
studied.

In general, it is necessary to take in the above result all attractors since if we take a local
perturbation (i.e., each distributionQεx is supported by a small neighborhood ofx) then
starting in a small neighborhood of an attractorK the processXε will never leave the open
setV appearing in the definition of an attractor, and so there is an invariant measureµε of
Xε whose support is contained inV . It follows that all limit points of suchµε have supports
in K . For more specific perturbations it is possible to indicate a subset of attractors which
support limiting measures. Suppose that for any open setU ⊂M uniformly in x ∈M ,

lim
ε→0

ε logP ε(x,U)=− inf
y∈U ρ(x, y), (5.1.6)

whereρ � 0 is a continuous function onM ×M . Set

D(x,y)= inf

{
n−1∑
i=0

ρ(xi, xi+1): n� 1, x0 = x, xn = y
}
.

The function measures “the difficulty” for the processXε to go fromx to y and it induces
another preorder writingy 0ρ x if D(x,y) = 0. This yields aρ-equivalence relation if
we write x ∼ρ y providedy 0ρ x and x 0ρ y. It turns out that in these circumstances



478 Yu. Kifer and P.-D. Liu

it is possible to give a more precise description of attractors which support limit points
of invariant measuresµε of Xε (see [86]). For a continuous time diffusion processXεt
generated by a second order elliptic differential operatorLε = εL+B as described above
this was done much earlier in [164] (see also [64]). In this case the functionalB should be
defined by

D(x,y)= inf
t�0

inf
ϕ0=x,ϕt=y

∫ t
0

∥∥B(ϕs)− ϕ̇s∥∥2ds,
where the infimum is taken over absolutely continuous curvesϕs , ϕ̇s denotes the tangent
(speed) vector of this curve atϕs , and‖ · ‖ denotes the Riemannian norm in the tangent
bundle constructed by means of coefficients in second derivatives of the elliptic opera-
tor L. Observe that a more difficult question about weights which limiting measures give
to various attractors has been solved only in very particular cases.

As we mentioned this above, in general, there is no way to say that limiting measures
prefer some attractors rather than others as their supports, i.e., that some attractors are
more stable under random perturbations than others, since the answer strongly depends on
a chosen type of random perturbations. On the other hand, a more delicate question about
a most stable to a natural class of random perturbations invariant measure ofF on a tran-
sitive attractorK makes sense. Namely, we want to study situations when the normalized
restriction toK of any limit (with respect to this natural class of random perturbations)
measureµ coincides with a fixedF -invariant probability measureν onK which is nat-
urally to be called stable under random perturbations and thus having a physical sense.
This question is especially important for dynamical systems with abundance of invariant
measures, in particular, for chaotic dynamical systems. The most well-understood subclass
of the latter is Axiom A systems, in particular, Anosov systems for which the question on
random perturbations can be answered rather satisfactory.

In order to obtain more specific results we have to deal with more restricted classes
of dynamical systems and random perturbations. We assume now thatM is a compact
C2 d-dimensional Riemannian manifold andF is eitherC2 diffeomorphism orC2 en-
domorphism ofM . We assume that the distributionsQε in the definition of transition
probabilitiesP ε of processesXε have densitiesqε with respect to the Riemannian vol-
umem on M , i.e.,Qεy(Γ ) =

∫
Γ
qεy(z) dm(z) for any Borel setΓ ⊂ M . Moreover, we

suppose that there exist constantsα,β,C > 0, β < 1 and a family of nonnegative func-
tions {rx(ξ), x ∈ M, ξ ∈ TxM}, whereTxM denotes the tangent space atx, such that∫
rx(ξ) dξ = 1 and

qεx(y) � ε−d
(
(1+ εα)rx

(
1

ε
Exp−1

x y

)
IU
εβ
(x)(y)

+Ce− α
ε

dist(x,y)IM\U
εβ
(x)(y)

)
, (5.1.7)

where the functionsrx serve as local scales,IU(y)= 1 if y ∈U and = 0, otherwise,Uδ(x)
is an openδ-ball aroundx, and Expx :TxM→M denotes the exponential map. We assume
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furthermore thatqεx(y) is uniformly Lipschitz continuous in bothx andy in the domain of
positivity of this function and theδ-neighborhood of the boundary of this domain has the
Lebesgue measure of orderδ (see details in [83, Section II.2.1]). This condition is satis-
fied for many natural perturbationsQε such asQεx being the distribution of the diffusion
particle starting atx and moving timeε orQεx being the (local) uniform distribution in the
ε-ball aroundx.

Recall, that a compactF -invariant setΛ ⊂ Rd is called hyperbolic ifF is a dif-
feomorphism of a neighborhood ofΛ to its image and there is a continuous splitting
x + Rd = Γ sx ⊕ Γ ux , x ∈ Λ, into linear subspacesΓ sx andΓ ux such thatDFΓ sx = Γ sFx
andDFΓ ux = Γ uFx , whereDF is the differential ofF , and‖DFnξ‖ � Ce−γ n‖ξ‖ and
‖DF−nη‖ � Ce−γ n‖η‖ whenn � 0, ξ ∈ Γ sx , η ∈ Γ ux , x ∈ Λ, whereC > 0, γ > 0 are
constants. A setΛ is called basic hyperbolic if:

(a) Λ is hyperbolic;
(b) the periodic orbits ofF restricted toΛ are dense inΛ;
(c) F is topologically transitive onΛ;
(d) there exists an open setUΛ ⊃Λ such thatΛ=⋂n∈ZF

nUΛ.
If, moreover,

FUΛ ⊂UΛ and Λ=
⋂
n�0

FnUΛ, (5.1.8)

thenΛ is called a hyperbolic attractor. In the continuous time case a compactF t -invariant
setΛ is called hyperbolic if there is a continuous splittingx + Rd = Γ sx ⊕ Γ 0

x ⊕ Γ ux ,
x ∈ Λ, with Γ s andΓ u satisfying the same properties as above and withΓ 0

x being the
one-dimensional linear subspace generated by a vector fieldB such thatdF

t x
dt

= B(F tx).
Such aΛ is called basic hyperbolic if it has no fixed points and (b)–(d) above hold true. If,
in addition, (5.1.8) holds true forF = F 1 thenΛ is called a hyperbolic attractor.

Forx ∈Λ letJt (x) be the absolute value of the Jacobian of the linear mapDF t :Γ ux →
Γ u
F tx

. Define

ϕ(u)(x)=− logJ1(x) and ϕ(u)(x)=−dJt (x)
dt

∣∣∣∣
t=0

(5.1.9)

in the discrete and the continuous time cases, respectively. It is known (see [37] and Chap-
ter 20 in [75]) that both in the discrete and the continuous time cases ifΛ is a hyperbolic
attractor andF = F 1 then for any Hölder continuous functiong there exists a unique
F -invariant (flow invariant in the continuous time case) probability measureµg onΛ such
that

RΛ(g)= sup
µ

(∫
g dµ+ hµ(F )

)
=
∫
g dµg + hµg (F ), (5.1.10)

whereRΛ(g) is called the topological pressure ofg, hµ(F ) is the entropy ofF with respect
to µ, and the supremum is taken over allF -invariant probability measures onΛ. Suchµg
is called the equilibrium state forg. If g = ϕ(u) then the correspondingµg = µSRB

Λ is called
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the Sinai–Ruelle–Bowen (SRB) measure. IfΛ is a hyperbolic attractor thenRΛ(ϕ(u))= 0
andµSRB

Λ is characterized by the equality

hµSRB
Λ
(F )=−

∫
Λ

ϕ(u)(x) dµSRB
Λ (x). (5.1.11)

If F is aC2 endomorphism ofM and‖DF−nη‖ � Ce−γ n‖η‖ whenn� 0 for all η ∈
TM thenF is called an expanding map ofM . It is known (see [125]) that in this caseF
preserves a measureµSRB

M which is equivalent to the Riemannian volume, such measure is
unique, and it is also characterized by the equality similar to (5.1.11) (withΛ=M).

First, we formulate a result concerning perturbations in a neighborhood of a hyperbolic
attractor.

THEOREM 5.1.3. Let Λ ⊂ M be a hyperbolic attractor andUΛ satisfies(5.1.8) and,
moreover, FUΛ ⊂ UΛ. Assume that the distributionsQε of random perturbations satisfy
conditions(5.1.7)and, in addition,

qεx(y)= 0 if x ∈ FUΛ andy /∈UΛ. (5.1.12)

Then starting inUΛ the Markov chainsXε stay inUΛ forever and their invariant measures
µε in UΛ converge in the weak sense toµSRB

Λ .

We observe that some regularity condition, such as the existence of densitiesqεy of mea-
suresQεy is necessary in order to obtain Theorem 5.1.3. Indeed, consider the following

example. LetM = T2 be the two-dimensional torus andG be its automorphism with no
eigenvalues equal 1 in absolute value, for instance,

G=
(

2 1
1 1

)
.

Now letF be a smallC2 perturbation ofG so thatF is an Anosov diffeomorphism ofT2

conjugate toG by means of a Hölder continuous homeomorphismh, i.e.,h ◦G= F ◦ h.
Assume that the SRB measureµSRB for F is different from its measure with maximal
entropyµ0. Observe that the Lebesgue measure� on T2 is both the SRB measure and
the measure with maximal entropy forG. It is not difficult to see thatµ0 = h�. Now
let Xε be Markov chains with transition probabilitiesP ε(x,Γ ) which are random per-
turbations of iterates ofG satisfying conditions of Theorem 5.1.3 and letµε be the in-
variant measure ofXε. Then, by Theorem 5.1.3,µε converges weakly asε→ 0 to �.
Now defineX̃εn = hXεn which is a family of Markov chains whose transition probabilities
P̃ ε(x,Γ )= P ε(h−1x,h−1Γ ) satisfy the definition (5.1.1)–(5.1.2) of random perturbations
of F with Q̃εy(Γ )=Qεh−1y

(h−1Γ ). Thenhµε is the invariant measure of̃Xε and, clearly,

hµε converges weakly asε→ 0 toh�= µ0 �= µSRB.
Next we formulate a global result.
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THEOREM 5.1.4. Suppose that the limit set ofF in M consists of a finite number of
basic hyperbolic sets. Assume that the distributionsQε of random perturbations satisfy
the condition(5.1.7)but in place of(5.1.12)assume that there existγ, δ > 0 such that

qεx(y)� ε−dγ wheneverdist(x, y)� δε. (5.1.13)

Then conditions of Theorem5.1.2hold true and any limit in the weak sense of invariant
measuresµε of Markov chainsXε is a linear combination of SRB measures on hyperbolic
attractors. The similar result holds true in the continuous time case whenXεt are diffu-
sions generated by second order nondegenerate elliptic differential operatorsεL+B with
smooth coefficients while the vector fieldB generates a flowF t whose limit set consists
of a finite number of basic hyperbolic sets(and then no additional assumptions on per-
turbations are needed). WhenF is an expanding endomorphism and perturbations satisfy
conditions(5.1.7) then all invariant measuresµε of Markov chainsXεn converge in the
weak sense toµSRB

M .

The main part of the proof of Theorems 5.1.3 and 5.1.4 is to show that all limits in
the weak sense of measuresµε have in the hyperbolic case conditional measures on the
unstable foliation absolutely continuous with respect to the Lebesgue measures there and
in the expanding case these limits are absolutely continuous with respect to the Lebesgue
measure onM . This identifies the limit uniquely as the SRB measure. Indeed, this property
yields (5.1.11) which characterizes the SRB measure. Similar results were proved in [83]
and [128] for random perturbations of model Lorenz type systems and in [76] for random
perturbations of maps of the interval satisfying Misiurewicz’s condition. Random perturba-
tions of piecewise expanding maps and other related problems are discussed in [27] which
contains also some counterexamples to stochastic stability of smooth invariant measures in
the setup under consideration (see also [29]). The papers [30,28] and the book [27] discuss
also the spectral stability of the Perron–Frobenius operator under deterministic and ran-
dom perturbations. Recently, the stability of the corresponding SRB measure (in the sense
of weak convergence as above) has been established in [25] with respect to certain random
perturbations (in particular, parameter random perturbations) of Hènon-like maps. Observe
that under the conditions of [25] the Markov chainsXεn can be represented (because of the
two-dimensional flat phase space) as compositions of random transformations which are
smallC2 perturbations of the Hènon-like map in question enabling the authors to apply
crucial for their method distortion arguments for their random maps.

Next, we will discuss another approach to the stochastic stability based on variational
formulas and convexity arguments. In the discrete time case assume in addition to (5.1.7)
that the densitiesqεx(y) are positive and continuous in both arguments which makes the
transition densitiespε(x, y) = qεFx(x) of Markov chainsXεn positive and continuous, as
well. In the continuous time case transition densitiespε(t, x, y) for time t from x to y of
diffusionsXεt are automatically positive and continuous provided the generatorLε = εL+
B of Xε is nondegenerate. For each continuous functionV onM consider the operators
T ε(V ) acting on continuous functionsg onM by the formula

T ε(V )g(x)=Eεxg(Xε1)exp(Aε), (5.1.14)
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whereAε = V (Xε1) in the discrete time case andAε = ∫ 1
0 V (X

ε
s ) ds in the continuous time

case. The logarithm of the principal eigenvalue of this operator can be obtained via the
limit

λε(V )= lim
n→∞

1

n
ln
∥∥(Tε(V ))n∥∥, (5.1.15)

where‖ · ‖ denotes the supremum norm. It follows from [55] thatλε(V ) satisfies the vari-
ational formula

λε(V )= sup
µ

(∫
M

V dµ− I ε(µ)
)
, (5.1.16)

where the supremum is taken over all probability measures onM and in the discrete time
case

I ε(µ)=− inf
u>0, u is continuous

∫
M

ln

(
P εu

u

)
dµ,

whereP εu(x)= ∫ pε(x, y)u(y) dm(y), and in the continuous time case

I ε(µ)=− inf
u>0, u is C2

∫
M

Lεu

u
.

The functionalI ε(µ) is lower semicontinuous, and so for any continuous functionV there
exists a probability measureµεV such that

λε(V )=
∫
M

V dµεV − I ε(V ). (5.1.17)

Moreover, by Proposition 3.1 from [88] ifV is Hölder continuous then such measureµεV
is unique andµε0 is the unique invariant measure of the Markov processXε.

THEOREM 5.1.5. Suppose that the limit set ofF (or of the flowF t in the continuous time
case) consists of a finite number of basic hyperbolic setsΛ1, . . . ,Λκ and in the discrete
time case in addition to(5.1.7)assume that for someα > 0, β ∈ (0,1),

qεx(y)� ε−d
(
1− εα)rx(1

ε
Exp−1

x y

)
(5.1.18)

whenevery ∈Uεβ (x) (while in the continuous time case we assume only the nondegeneracy
of the operatorL). Then

lim
ε→0

λε(V )= max
1�i�κ

π
Λi
F

(
ϕ
(u)
Λi

+ V ), (5.1.19)

whereπΛiF is the topological pressure(see[162] and Section1.2above) of F restricted to

Λi andϕ(u)Λi is defined by(5.1.9)for F restricted toΛi .
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Recall (see [162] and Section 1.2 above) that the topological pressureπ
Λi
F satisfies the

variational formula

π
Λi
F

(
V + ϕ(u)Λi

)= sup
µ

(∫
V dµ− Ii(µ)

)
, (5.1.20)

whereIi(µ) = − ∫ ϕ(u)Λi dµ − hµ(F ) if µ is anF -invariant probability measure onΛi
andIi(µ) = ∞, otherwise. Since herehµ(F ) is an upper semicontinuous function ofµ
(see [162]) thenIi(µ) is a lower semicontinuous functional, and so for any continuous
functionV there exists a probability measureµ0

V,Λi
onΛi (called an equilibrium state)

such that

π
Λi
F

(
V + ϕ(u)Λi

)= ∫ V dµ0
V,Λi

− Ii
(
µ0
V,Λi

)
. (5.1.21)

Moreover, it is known thatϕ(u)Λi is Hölder continuous and ifV is also Hölder continuous

then (see [37] and [75]) a probability measureµ0
V,Λi

onΛi satisfying (5.1.21) is unique.

Let ϕ(u) be a continuous function onM which coincides withϕ(u)Λi on eachΛi . Since any
F -invariant measure is supported by

⋃
i Λi we can write now the variational principle in

the form

πF
(
V + ϕ(u))= sup

µ

(∫
V dµ− Ii(µ)

)
= max

1�i�κ
π
Λi
F

(
ϕ
(u)
Λi

+ V ), (5.1.22)

whereI (µ)=− ∫ ϕ(u)M dµ− hµ(F ) if µ is anF -invariant probability measure onM and
I (µ)=∞, otherwise. Now the supremum (5.1.22) is attained at several measures but all
of them are linear combinations of equilibrium statesµ0

V,Λi
. SinceI ε(µ) and I (µ) are

convex lower semicontinuous nonnegative functionals it follows from (5.1.16), (5.1.19),
and (5.1.22) by convex analysis arguments (see Proposition 3.2 in [88]) that any weak
limit as ε→ 0 of measuresµεV maximizing in (5.1.16) belongs to the set ofF -invariant
measures maximizing in (5.1.22). Thus we arrive at the following result.

THEOREM 5.1.6. Suppose that the conditions of Theorem5.1.5hold true. Then for any
continuous functionV all limit points of measuresµεV are equilibrium statesµ0

V of F
corresponding to the functionV + ϕ(u), i.e.,

πF
(
V + ϕ(u))= ∫ V dµ0

V − I(µ0
V

)
. (5.1.23)

All equilibrium statesµ0
V are linear combinations of measuresµ0

V,Λi
. If V ≡ 0 then the

maximummax1�i�κ π
Λi
F (ϕ

(u)
Λi

+V ) is zero and it is attained at attractors only. If this maxi-
mum is attained at only one attractorΛj andV is Hölder continuous thenµεV converges in
the weak sense asε→ 0 toµ0

V,Λj
(which is unique in this case). In particular, whenV = 0

we obtain that any weak limit asε→ 0 of invariant measuresµε0 of Markov processesXε

is a linear combination of SRB measures on hyperbolic attractors.
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Observe that Theorem 5.1.6 requires a stronger than (5.1.13) condition (5.1.18) but,
on the other hand, it describes the behavior asε→ 0 of a large class of measures than
Theorems 5.1.3 and 5.1.4. Furthermore, Theorems 5.1.5 and 5.1.6 exhibit the similarity of
variational formulas for the principal eigenvalue and for the topological pressure and they
show how the former is being transformed into the latter in the random perturbations setup
when the perturbation parameter tends to zero.

5.2. Random perturbations via random transformations

Let F be a continuous map of a compact metric spaceM and letνε , ε > 0, be a family of
probability measures on the space of continuous mapsC(M,M) ofM considered with the
uniform metricρ such that for anyδ > 0,

νε
({
f ∈ C(M,M): ρ(f,F ) > δ})→ 0 asε→ 0. (5.2.1)

For any BorelΓ ⊂M set

P ε(x,Γ )=QεFx(Γ )= νε
({
f ∈ C(M,M): f x ∈ Γ }) (5.2.2)

and for anyy /∈ FM we can defineQεy as the unit mass aty. Then, clearly, (5.1.1) holds true
and the Markov chainsXεn with transition probabilitiesP ε(x, ·) are random perturbations
of the dynamical systemFn, n ∈ N. This setup can be considered also in the framework
of (i.i.d.) random transformations defined on the product probability space as follows. Let
Ω = (C(M,M))Z, Pε = νZ

ε , F be the product of Borelσ -algebras onC(M,M), andϑ be
the left shift on the sequence spaceΩ . Now for anyω = (. . . ,ω−1,ω0,ω1, . . .) we define
Fω = Fω,ε = ω0. ThenXεn(ω)= Fnωx = Fϑn−1ω ◦ · · · ◦Fϑω ◦Fωx providedXε0 = x. In fact,
according to Section 1.1 from [82] any Markov chain can be represented as a composition
of independent random transformations but this general result does not help in applications
to random perturbations. In order to obtain specific results the initial mapF should be cho-
sen from certain classes of transformations and random mapsFω are usually chosen from
small neighborhoods ofF . LetF be aC2 diffeomorphism of a compact Riemannian man-
ifold M which has a hyperbolic attractorΛ⊂M with UΛ satisfying (5.1.8) and, moreover,
FUΛ ⊂UΛ. Let

Dα,β(f )=
{
g: ρC1(f, g)� α andL(Dg)� β

}
,

whereρC1(·, ·) is theC1 distance,L(·) is the Lipschitz constant, andDg is the differential
of g.

THEOREM 5.2.1 (see [166]).Let F,Λ,UΛ,Dα,β(F ) be as above withα small enough
andβ > L(DF). Letνε be a Borel probability measure with support inDα,β(F ) such that
νε tends in the weak sense asε→ 0 to the unit mass atF and for eachε > 0 andx ∈ ŪΛ
the probability measureP ε(x, ·) defined by(5.2.2)is absolutely continuous with respect to
the Lebesgue measure onM . Then any invariant measureµε of the corresponding Markov
chainXεn converges in the weak sense to the SRB measureµSRB

Λ .
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Random perturbations of Theorem 5.2.1 enable us to use directly diffeomorphisms close
toF which are also hyperbolic and whose differentials preserve one expanding cone in the
tangent bundle. It is not difficult to understand from here that applications of the corre-
sponding random diffeomorphisms smooth out measures in the unstable direction with the
result that any weak limit ofµε has conditional measures on the unstable foliation ab-
solutely continuous with respect to the Lebesgue measures there and the assertion follows.
Next, we will see that also in the above setup we can apply the approach based on varia-
tional formulas discussed at the end of Section 5.2 but now we have to employ the fiber
variational principle of Section 1.2. Denote byπεF (V ) the fiber topological pressure for
random transformationsFω = Fω,ε constructed viaPε of a bounded measurable function
Vω(x) = V (ω,x) onΩ ×M which is continuous inx (see Definition 1.2.3). Byπ0

F (V )

we denote the topological pressure ofV for the mapF .

THEOREM 5.2.2 (see [90]).Under the conditions of Theorem5.2.1 for each functionV
as above,

lim
ε→0

πεF (V )= π0
F (V ). (5.2.3)

By the same convex analysis arguments as in Theorem5.1.6it follows that all weak limits of
measures maximizing in the fiber variational principle(1.2.11)for πεF (V ) are maximizing
measures in the variational principle forπ0

F (V ). Taking hereVω(x) to be a continuous

extension fromΛ to ŪΛ of the functionϕ(u)ω (x)=− ln |detDxFω|Γ ux (ω)|, whereΓ u(ω) is
the unstable subbundle ofFω, we obtain that SRB measures of random transformations
Fω,ε converge weakly asε→ 0 to the SRB measure ofF . Integrating inω the conclusion
of Theorem5.2.1follows.

Recently stochastic stability of attractors and nonuniformly expanding maps with re-
spect to this type of random perturbations has been studied in [5] and [3], respectively. In
particular, [3] provides not only sufficient but also some necessary conditions on perturba-
tions to have stochastic stability of nonuniformly expanding maps. Random perturbations
considered in this section of nonuniformly hyperbolic diffeomorphisms with dominated
splitting were studied in [4].

Considering random perturbations of a smooth map (of a diffeomorphism) by means of
random smooth maps (of random diffeomorphisms) we may be interested in conditions
which ensure stability of various parameters of the map (of the diffeomorphism) such as
the topological pressure, the entropy, Lyapunov exponents etc. in the sense that the corre-
sponding fiber (relative) parameters of the perturbed random transformations converge to
them (similarly to Theorem 5.2.2) as the perturbation tends to zero. In particular, we men-
tion [113] which studies the stability of Lyapunov exponents of a diffeomorphism from
this point of view.

Random perturbations of random transformations type became popular, especially, in
lower-dimensional dynamics and also for random perturbations of (piecewise) expanding
maps. In both cases the Ruelle–Perron–Frobenius operator plays an important role in the
study of an unperturbed map and the corresponding operator for such random perturba-
tions also can be written down and its comparison with the unperturbed one leads often
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to required proofs. This approach has been first exhibited in [46] in the study of random
perturbations of a mapF of the interval[−1,1] satisfying, so-called, Collet–Eckmann
conditions. In order to define perturbations close to the boundary points we have either
to assume thatF extends to a neighborhood of the interval[−1,1], or to assume that
F [−1,1] ⊂ (−1,1), or to identify the end points of the interval and consider addition
on the circle. In place of a mapF we consider random mapsFω,εx = Fx + fω,ε where
fω,ε is a random variable distributed on[−1,1] with the densitygε(x) = ε−1g(ε−1x)

whereg > 0 and
∫ 1
−1g(x)dx = 1. Next, we apply these random maps independently and

arrive at a Markov chainXεn whose transition operatorP ε acts by the simple formula
P εq(x)= ∫ gε(x − Fy)q(y) dy. The conjugate of this operator acts on measures and ap-
plying its iterates to an initial distribution we obtain in the limit invariant measures ofXεn.
Moreover, we can study the evolution of densities under the action of this operator which
can give some information about densities of such invariant measures and lead not only
to a proof of their weak convergence to some invariant measure ofF but also to con-
vergence of densities in some sense. In [18] this method has been applied to piecewise
expanding one-dimensional maps. An extension of this method in [26] led to the proof of
weak convergence asε→ 0 of invariant measures of perturbationsXεn described above to
the absolutely continuous invariant measure of a one-dimensional unimodal mapF sat-
isfying Benedicks–Carleson conditions and a further extension based on the analysis of
the spectrum of the (averaged or annealed) Ruelle–Perron–Frobenius operator yielded the
proof also ofL1-convergence of densities of invariant measures ofXεn in the same situation
(see [17]). Observe that random tower constructions introduced in [15] may help to study
random perturbations (of the above type) of nonuniformly expanding transformations, as
well as random SRB measures of random nonuniformly expanding transformations.

In all works on random perturbations of one-dimensional maps described in the previous
paragraph the authors dealt with additive perturbations independent of the point in the
interval where they are applied. This excluded the interesting class of random parametric
perturbations. Namely, letFλ(x)= 4λx(1− x), λ,x ∈ [0,1], and

Xεn = Fλ(1+εζn) ◦ · · · ◦ Fλ(1+εζ1), n ∈ N, (5.2.4)

whereζ1, . . . , ζn, . . . are independent identically distributed on[−1,1] random variables,
ε < λ−1−1 if λ ∈ (0,1) and ifλ= 1 the random variablesζn are required to be distributed
on [−1,0]. SinceFλ(1+εζ1)x − Fλx = 4εζ1x(1− x) the additive perturbation depends on
the point where it is applied, and so such perturbations cannot be considered within the
setup described in the previous paragraph. The following result has been proved in [45].

THEOREM 5.2.3. Suppose that the distribution of random variablesζn has a Lipschitz
continuous density with respect to the Lebesgue measure on[−1,1] if λ < 1 and on[−1,0]
if λ= 1. Then there exists a setΛ⊂ [0,1] of positive Lebesgue measure such that for any
λ ∈ Λ the mapFλ has an absolutely continuous invariant measureµλ and asε→ 0 the
densities of invariant measuresµελ of Markov chainsXεn defined by(5.2.4)converge in the
L1-sense to the density ofµλ.
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5.3. Computations via random perturbations

In view of the increasing role of computers in the study of dynamical systems and the
growing importance of chaotic dynamical systems in modelling physical processes more
and more researchers are trying to justify computations of various parameters of such sys-
tems. The difficulty here lies in the very definition of a chaotic system which is based on
the notion of a “sensitive dependence on initial conditions”. Thus, in view of roundoff er-
rors a computer orbit of a chaotic system very fast loses track of a true orbit and it is not
clear what one obtains as a result of computations. Some people put forward the results
on stability of dynamical systems under random perturbations as a justification of these
computations. Since roundoff errors are not random (unless one employs a special algo-
rithm which uses random roundoffs) it hardly makes sense to use random perturbations
results as a justification of these computations. On the other hand, it turns out that random
perturbations can be used for computations themselves, i.e., instead of trying to compute
a dynamical system, in question, we can make computations of its small random pertur-
bations. We exhibit here results showing that this provides a robust method for making
computations for chaotic dynamical systems though precise statements concern only the
uniformly hyperbolic and (piecewise) expanding maps and the Misiurewicz type maps of
the interval.

We will consider here random perturbations of dynamical systems relevant to com-
puter simulations. In view of roundoffs any computer deals with a discrete space rather
than with a continuous one and it is not difficult to understand that a computer simula-
tion of random perturbations of a dynamical system should be represented by discretized
random perturbations of an original continuous dynamical system. For instance, letSδ
be a δ-lattice in Rd and define the transition probabilities of random perturbations by
P ε(x,U)= P ε,δ(x,U)= |Sδ ∩Bε(Fx)|−1|Sδ ∩U ∩Bε(Fx)| where|A| denotes the num-
ber of points in a setA andBr(y) is a closedr-ball centered aty. Considering a hyperbolic
attractorΛ (or an expanding endomorphism) and random perturbations on a substantially
larger scaleε than the discretization stepδ (which can be viewed as the precision of a com-
puter) it follows from [97] that invariant measures of corresponding Markov chains weakly
converge asδ 	 ε1+c→ 0, c > 0, to the Sinai–Ruelle–Bowen (SRB) measure onΛ. Simi-
lar results hold true for maps of the interval satisfying the Misiurewicz condition and such
“almost” hyperbolic sets as the geometric Lorenz attractor. Observe that discretizations of
piecewise expanding maps and justifications of their computations via random perturba-
tions can be found in [27]. In the case of a hyperbolic attractorΛ with localized random
perturbations and in the case of a map of the intervalI it suffices to consider latticesSδ
only in a small neighborhood ofΛ or on I , respectively, and so one obtains a Markov
chain onSδ with a finite number of states whose invariant measures (stationary distribu-
tions) can be found by solving a system of linear equations. These results mean also that
typical paths of a random perturbation visit different sets with frequencies close to their
SRB measure which says in the one-dimensional case that the corresponding measure can
be approximated by histograms constructed by typical paths. In practice, every path may be
considered as typical when independent random errors are added on each step of iterations
since for large numbers of iterations it is extremely improbable to get a nontypical path
and it seems that this is a quite stable self correcting algorithm for evaluation of invariant
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measures and it should work faster for the same precision than methods based on solv-
ing systems of linear equation. Observe that similar results can be obtained for continuous
time dynamical systems, i.e., for flows, considering either random perturbations of time-
one maps or taking space-time discretizations of corresponding diffusion perturbations of
flows.

Another possible procedure for approximating the absolutely continuous invariant mea-
sure of a mapF of an interval was suggested by Ulam [158, Section 4] where this
measure is conjectured to be close to the invariant measure of the finite Markov chain
with transition probabilitiespij =m(Vi ∩ F−1Vj )/m(Vi) wherem is the Lebesgue mea-
sure and{Vi} is a finite partition of the interval into subintervals with small length. For
one-dimensional piecewise expanding maps this problem was studied in many papers
(see [27,122,54] and references therein). A similar construction can be considered in any
dimension with appropriate partitions of a neighborhood of an invariant set. If we set
P ε(x,U ∩ Vj ) = pijm(U ∩ Vj )/m(Vj ), providedx ∈ Vi and ε is the maximal diame-
ter of elements of the partition then we arrive at a model of random perturbations. It turns
out that Ulam’s approximations can be justified also for multidimensional expanding maps
but in a general hyperbolic situation it is not clear whether the Ulam approach leads to the
SRB measure.

In order to formulate precise results letSδ be a cubicδ-lattice in Rd andF be aC2

diffeomorphism of an open neighborhoodUΛ of its hyperbolic attractorΛ andΛ⊂UΛ ⊂
Rd . Consider random perturbationsXε,δn of iteratesFn of F which are Markov chains
with transition probabilitiesP ε,δ(x, ·)=Qε,δFx(·) whereQε,δy ∈ P(Sδ), y ∈ Rd , is a family

of measures which can be written in the formQε,δy (G) =∑z∈G qε,δy (z) with qε,δy (z) =
Q
ε,δ
y ({z}), z ∈ Sδ , satisfying the following properties:

(i) qε,δy (z)= 0 if y ∈ FUΛ andz /∈UΛ;
(ii) There exist constantsα,C > 0, α < 1 and a family of nonnegative functions

{ry(z), y, z ∈ Rd} such that

qε,δy (z)� C
(
δ

ε

)d
e−

α
ε
|z−y| for all z ∈ Sδ andy ∈ Rd (5.3.1)

and

qε,δy (z)�
(
1+ εα)(δ

ε

)d
ry

(
z− y
ε

)
(5.3.2)

provided|z− y| � ε1−α andz ∈ Sδ;
(iii) For anyy, z, v,w ∈ Rd ,∫

ry(v) dv = 1 and ry(z)� Ce−α|z−y|, (5.3.3)∫
∂V+
y (γ )

ry(v) dv � C(γ + δ), (5.3.4)
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and

ry(z)� rv(w)+Cmax(ρ, δ)+ I∂V+
x (Cρ)

(z)ry(z), (5.3.5)

whereρ = |y − v| + |z − w|, V +
y = {v ∈ Rd : ry(v) > 0}, ∂V +

y (γ ) denotes the
γ -neighborhood of the boundary∂V +

y of V +
y , andIA(x) = 1 if x ∈ A and= 0,

otherwise.

THEOREM5.3.1 (see [97]).LetΛ be a hyperbolic attractor as above and suppose that the
conditions(i)–(iii) hold true. Letµε,δ be an invariant measure of the Markov chainXε,δn
having the support in̄UΛ. Thenµε,δ weakly converges asε→ 0 to the SRB measureµSRB

Λ

providedδ � ε1+c for some fixedc > 0. If suppQε,δy ⊃ Bρε(y)∩ Sδ for all y and a fixedρ
thenµε,δ is unique providedε, δ are small enough.

The proof of Theorem 5.3.1 proceeds by modifying arguments of the proof of Theo-
rem 5.1.3 in order to show that any weak limitµ of measuresµε,δ is anF -invariant prob-
ability measure onΛ having conditional measures on unstable manifolds with bounded
densities with respect to the Riemannian volume there which yields the result similarly to
Theorem 5.1.3.

Next we discuss Ulam’s approximations (see also [27]). LetM be a compactd-dimen-
sional Riemannian manifold andF :M→M be aC2 expanding endomorphism of it. Let
Vε = {Vi, i = 1, . . . ,Nε}, ε > 0, be a family of finite partitions ofM such that:

(i ′) intVi = V̄i ∀i and∃κ > 0 such that eachVi contains a ball of radiusκε and is
contained in a ball of radiusκ−1ε;

(ii ′) the(d − 1)-dimensional volume of each boundary∂Vi is bounded byκ−1εd−1;
(iii ′) all Vi ’s have the same volumeCεεd with κ �Cε � κ−1.
The Ulam Markov chainsXεn considered on the manifoldM have transition probabilities

P ε(x,U)=
Nε∑
j=1

pij
m(Vj ∩U)
m(Vj )

, pij = m(Vi ∩ F
−1Vj )

m(Vi)
, (5.3.6)

providedx ∈ Vi , wherem denotes the Riemannian volume onM .

THEOREM 5.3.2. Invariant measures of “Ulam’s Markov chains”Xεn constructed by an
expandingC2 endomorphismF of a compact manifold and a family of partitionsVε sat-
isfying (i ′)–(iii ′) weakly converge asε→ 0 to the unique absolutely continuous invariant
measure ofF .

The main point in the proof of Theorem 5.3.1 (as well, as of Theorem 5.1.3 from Sec-
tion 5.2) concerns certain estimates of probabilities for the Markov chainX

ε,δ
n to stay in a

tube around an orbit{F iz, i = 0, . . . , n} which are done via the linearization of the map
F near this orbit, i.e., by dealing with its differential instead, and then one has to study
corresponding Markov chains in linear spaces considered in Section 2.2 of [83]. A simi-
lar Markov chain representation can be done for Ulam’s model with the crucial difference
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that now Markov chains become sums of dependent and not independent random vectors
as in [83], and so the argument there for main estimates does not go through. This is due
to the fact that in Ulam’s method whenx moves through the boundary of an element of
the partition the transition probabilitiesP ε(x, ·) jump in the way that (5.3.2) and (5.3.5)
cannot be both satisfied. IfF is an expanding endomorphism then it is still possible to
show directly for Ulam’s model that the “tube” probabilities, in question, satisfy desired
estimates which yields the weak convergence of invariant measures ofXεn to the smooth
invariant measure ofF . In the hyperbolic case if for Ulam’s method one takes Markov
partitions then desired estimates for “tube” probabilities are valid and the weak conver-
gence of invariant measures ofXεn to the SRB measure follows though this has no practical
applications since it is hardly possible to compute Markov partitions for nonlinear trans-
formations. On the other hand, if boundaries of elements of the partition are not pieces of
stable and unstable manifolds then the situation becomes rather complicated and it is not
clear whether Ulam’s approach works in this situation.

6. Concluding remarks

6.1. Some open problems in RDS

We will discuss here some open problems in random dynamics which seem to us most
important for further development of this subject. In Section 4.2 we gave a definition of
random hyperbolic sets but the global definition of random Axiom A diffeomorphisms
and their properties are not quite clear yet except for the case when they are picked at
random from a smallC2 neighborhood of a deterministic Axiom A diffeomorphism as in
Example 4.2.3. We note that some important general notions of dynamical systems such
as nonwandering points and, in particular, periodic points may not play a natural role in
the random setup. It seems that some deterministic results do not have natural extensions
for the random setup and, on the other hand, some results on random transformations may
have no counterparts for the deterministic case assuming that transformations are truly
random, for instance, thatϑ acts onΩ aperiodically or has positive entropy, etc. As an ex-
ample of such results we can mention the existence of finite relative topological generators
(a relative topological version of Krieger’s theorem) described in Section 1.3.

We start the discussion on open problems with basic questions concerning random
Anosov diffeomorphismsFω of the d-dimensional torusTd (see Definition 4.2.2). The
deterministic version of the following is a well-known theorem (see, for instance, Sec-
tion 18.6 in [75]).

CONJECTURE6.1.1. For any random Anosov diffeomorphismFω, ω ∈ Ω , of Td there
exists a random Anosov automorphismAω, ω ∈ Ω , and a random homeomorphismhω,
ω ∈Ω , of Td such thatAω = h−1

ϑωFωhω andAω is in the same homotopy class asFω, i.e.,
they induce the same action in the fundamental groupZd of Td .

In order to prove this result, one shows, first, that the linear actionsF̃ω induced byFω
in the fundamental group produce a random Anosov automorphism. Next, it is necessary
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to construct a random semiconjugacy which should be similar to arguments in the random
Hartman–Grobman theorem (see Section 7.4 in [7]). The final part of the proof should
yield that, in fact, this semiconjugacy is the required random conjugacy. The deterministic
proof employs, usually, periodic points which are rare in the random setup and, it seems,
some form of random shadowing (see Proposition 4.2.9) should be used instead. Observe
that if all realizations of a random Anosov (more generally, hyperbolic) diffeomorphism
are close to the same deterministic one then the former is randomly conjugate to the latter
which follows via the shadowing (see [115]). The existence ofP-a.s. smooth conjugations
hω is less clear (cf. [75, pp. 640–641]). It is easy to see that ifhω is a random conjugation
and probability measuresmω satisfyAωmω =mϑω P-a.s. then the measuresµω = hωmω
satisfyFωµω = µϑω P-a.s. and ifhω is smoothP-a.s. then Lyapunov exponents ofA with
respect tom and ofF with respect toµ must be the same.

It would be interesting also to verify in the random situation the following rigidity state-
ment which concerns atypically smooth stable and unstable foliations.

CONJECTURE6.1.2. AnyC∞ random Anosov diffeomorphism ofTd with P-a.s.C∞
random stable and unstable foliations isC∞ random conjugate to a random Anosov auto-
morphism ofTd .

The topological pressure of a Hölder continuous potentialg, the corresponding equilib-
rium state and its entropy for an Anosov diffeomorphismF are known to depend smoothly
both ong and onF in an appropriate sense. A random extension of this result has not been
dealt with properly as yet which would be important for various applications.

PROBLEM 6.1.3. Show that the fiber topological pressure of a random Hölder potentialg

for a random Anosov diffeomorphismF depend smoothly ong andF in an appropriate
sense and that the same is true for the corresponding equilibrium state and its fiber entropy.

Periodic orbits play an extremely important role in the deterministic dynamics, espe-
cially, for hyperbolic dynamical systems where already definition of some important ob-
jects, such as theζ -function, relies on periodic orbits. In the random setup it is not quite
clear what should play their role, in general. It is shown in [42] that standard results about
the deterministic zeta function such as its analytic extension fail for its straightforward
random version. One of problems whose solution is given in the deterministic case via
periodic orbits is Livschitz’s theorem (see [75, Section 19.2]). Its random counterpart can
be described in the following way. LetFω, ω ∈Ω , be a random Anosov diffeomorphism
of Td .

CONJECTURE6.1.4. Letϕω = ϕω(x) be a measurable function satisfying the random
Hölder condition|ϕω(x) − ϕω(y)| � Kϕ(ω)(d(x, y))

α whereα > 0 is a constant and∫
logKϕ dP<∞. Assume that

∫
ϕ dµ= 0 for anyΘ-invariant measure (whereΘ is the

skew product transformation) having the marginalP on Ω . Then there exist a random
variableh= h(ω) with

∫
hdP = 0 and a measurable functionψω = ψω(x) satisfying the

random Hölder condition as above with the sameα > 0 and some log integrable random
variableKψ(ω) such thatϕ =ψ ◦Θ −ψ + h.
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Observe also that periodicity (and a more general notion of recurrence) plays an impor-
tant role also in the theory of usual Markov chains and it would be interesting to develop
a corresponding notion for Markov chains with random transition probabilities considered
in Section 4.3 which would substantially enhance their theory.

An interesting study of periodicity for random dynamical systems has been recently
done in [104]. Suppose that the fibersΓ (ω)= {x: (ω, x) ∈ Γ } of a measurable setΓ ⊂ E
satisfyFωΓ (ω)= Γ (ϑω) P-a.s. ThenΓ is called sometimes a random invariant set . By
ergodicity ofϑ either the number #Γ (ω) of elements ofΓ (ω) is infinite P-a.s. or it is
finite P-a.s. and in the latter case it is constantP-a.s. A finite random invariant setΓ with
#Γ (ω) = N P-a.s. has been called in [104] a random periodic orbit of periodN . If such
Γ does not contain a proper nonempty random invariant subset thenΓ is said to have
minimal periodN . Assuming thatϑN is ergodic a random pointx(ω) has been called a
random periodic point of periodN if FNω x(ω) = x(ϑNω) P-a.s. Such anN is called the
minimal period ifF lωx(ω) �= x(ϑlω) with positive probability for alll ∈ {1, . . . ,N − 1}.
If random mapsFω act on the lineR and assuming thatϑN is ergodicN random points
xi(ω) ∈ R, wherex1< x2< · · ·< xN P-a.s., are called in [104] a random periodic cycle of
periodN , if there exists a deterministicN -permutationπ such thatFωxi(ω)= xπ(i)(ϑω).
Such anN is called the minimal period ifF lωx1(ω) �= x1(ϑ

lω) with positive probability for
all l ∈ {1, . . . ,N−1}. It turns out that these notions are not quite the same, in particular, the
existence of a random periodic orbit of minimal periodN does not imply, in general, the
existence of a random periodic point of minimal periodN and the latter does not imply, in
general, the existence of a random periodic cycle of minimal periodN (see Theorem 4.15
in [104]). The main result in [104] is the following random version of the Sharkovsky type
theorem.

THEOREM 6.1.5. LetF be a RDS withFω being continuous maps ofR and assume that
ϑn is ergodic for alln ∈ N. Let {x1(ω), . . . , xN(ω)} be a random periodic cycle of minimal
periodN , wherex1< · · ·< xN P-a.s. Then for anyl
N , where
 denotes the Sharkovsky
ordering, F has a random periodic orbit of minimal periodl or 2l. Letϑ be weakly mixing
and assume thatF has a random periodic orbit of minimal period three. Then it also has
a random periodic orbit of minimal periodl or 2l for all l ∈ N.

Periodic orbits are also somewhat involved in the proof of the thermodynamic formalism
constructions forβ-transformations in [160] and by this reason a corresponding extension
to the randomβ-transformations encounters difficulties and has not be done yet (see the
corresponding discussion in Section 4 of [100]). Observe that existence of random ab-
solutely continuous invariant measures for such transformations was derived in [41] and
[40] shows that they have an exponential decay of correlations property.

Among other interesting questions which would be important to understand is the mean-
ing of the fiber (relative) spectrum for random transformations. This could be important
both for an extension of the classical spectral theory of dynamical systems to the random
setup and, for instance, for a characterization of random Anosov diffeomorphisms via an
appropriate gap in a random version of Mather’s spectrum (see [127]). Observe that (fiber)
relative discrete spectrum is easier to define and some results based on it appeared already
in the literature (see [114] and references therein).
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We mention also the basic problem of representations of Markov chains by appropri-
ate classes of random transformations discussed in Section 1.1 of [82] which asks about
conditions on transition probabilitiesP(x, ·) of a Markov chainXn which enable us to
find a probability measureµ on a nice family of transformationsΦ (homeomorphisms,
smooth maps, diffeomorphisms, automorphisms, linear transformations, etc.) such that
P(x,Γ ) = µ{F ∈ Φ: Fx ∈ Γ }. ThenXn can be viewed as a composition of indepen-
dent identically distributed random maps with the distributionµ. Apart from a theoretical
interest of this problem such representations can be useful in proving various results about
Markov chains. For instance, an appropriate representation of this sort has been recently
employed in [25] in the study of random perturbations of the Hènnon-like maps. In spite
of some progress in this problem achieved in [139] and [140] there are no sufficiently gen-
eral results about such representations by families of maps mentioned above and a further
research on this problem is needed.

Discrete time random hyperbolic dynamical systems are still in a relatively good shape
in comparison to stochastic flows where in view of noninvariance of the flow direction no
substantial theory of hyperbolic RDS has been developed as yet which remains an impor-
tant standing problem.

6.2. Remarks on random perturbations

In conclusion we will discuss a bit the current situation with the theory of random perturba-
tions. After a relatively complete theory of random perturbations of uniformly hyperbolic
dynamical systems there were hopes to extend these theory to a wide class of nonuniformly
hyperbolic dynamical systems so that in spite of their deterministic instability they could
be considered stable in some probabilistic sense. This program has not been realized and
it does not seem feasible nowadays. Moreover, this program has lost some of its original
romantic lustre since unlike natural smoothness assumptions on deterministic perturba-
tions there exist no widely acceptable standard on the type of random perturbations. In
the continuous time case the diffusion type random perturbations is the most natural and,
essentially, the only reasonable setup. On the other hand, in the discrete time case much
more general random perturbations can be considered but, nevertheless, in order to obtain
the stability results described in Theorem 5.1.3 certain assumptions (which are not so easy
to justify from a physical point of view) are needed (as the example after Theorem 5.1.3
shows). Most of the recent results about random perturbations are just extensions of some
deterministic results and they concern only some rather restricted classes of random pertur-
bations of some families of nonuniformly hyperbolic dynamical systems (see [3] and [4]).
It is important to extend the study to more general natural classes of random perturbations
of different families of nonuniformly hyperbolic systems. For instance, it is not known yet
whether the stochastic stability holds true under general conditions of the Pesin theory.

PROBLEM 6.2.1. Suppose thatf is aC2 diffeomorphism of a compact Riemannian man-
ifold M preserving a probability measureµ equivalent to the Riemannian volumem on
M or even suppose thatµ=m. Assume thatµ is ergodic and that there are no zero Lya-
punov exponents with respect toµ. Prove (or construct a counterexample) thatµ is stable
to random perturbations (in the sense of Section 5.2) satisfying the condition (5.1.7).
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In order to advance the theory of random perturbations it would be very important to
construct various examples of transitive dynamical systems unstable to reasonable random
perturbations (i.e., for example, satisfying conditions of Section 5.2) in the sense, for in-
stance, that invariant measures of random perturbations do not converge to SRB measures
(assuming they exist) of dynamical systems under consideration.

PROBLEM 6.2.2. Construct an example of a topologically transitiveC2 diffeomorphismf
of a compact Riemannian manifoldM preserving an ergodic probability measureµ equiv-
alent to the Riemannian volumem onM such thatµ is not stable to random perturbations
(in the sense of Section 5.2) satisfying the condition (5.1.7), i.e., that invariant measures
µε of the random perturbationsXε do not converge weakly toµ.

Coupled map lattices attracted a substantial attention recently, in particular, as discrete
time models describing turbulence. It would be interesting to generalize the results on
stochastic stability of SRB measures with respect to (rather special) random perturbations
of (weakly) coupled (expanding) map lattices obtained in [123].
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1. Introduction to Veech surfaces

We give a gentle introduction to the basics of Veech surfaces, with an emphasis on the
Veech Dichotomy, followed by a sketch of the present state of the literature. These notes
arose from lectures for a summer school held at the Institute de Mathématiques de Luminy
in June 2003. We thank the participants, especially Jayadev Athreya who prepared an initial
set of notes, and other speakers for various comments.

1.1. From billiards to flat surfaces

1.1.1. Billiards A seemingly innocuous problem is to analyze the billiard flow on
rational-angle Euclidean polygons. That is, given a polygon whose angles are rational
multiples ofπ , consider the trajectories of an ideal point mass, that moves at a constant
speed without friction in the interior of the polygon and enjoys elastic collisions with the
boundary—angles of incidence and reflection are equal.

For more on billiards and related matters, see [45] and [3] as well as the chapters of
Eskin, Forni and Masur.

1.1.2. Unfolding We now describe the unfolding process for rational billiards. Given a
billiard trajectory (that avoids the vertices) beginning at a side of a rational angle polygon,
this yields a surface. The process has arisen in various guises, see in particular Katok and
Zemlyakov [29].

Given a collision with a side we reflect thepolygonalong the side, obtaining a mirror
image of the original polygon, on which the billiard now continues in its original direction,
instead of reflecting off the side. Continuing this processad infinitum, we would obtain a
laundry line (a ray in the plane), along which various copies of the polygon are strung. But,
since our polygon has rational angles, there are only finitely many possible angles of inci-
dence of our chosen trajectory with these copies. Thus, the billiard eventually exits a copy
of the polygon in a side that is parallel with the initial side. We now identify these sides by
translation; we continue this process, considering any unpaired side that the billiards meets
as the new initial side. The result is a new polygon with various ‘opposite’ sides identified;
on this ‘flat surface’, the billiard moves along straight line segments, up to translation.

The 1-formdz on the complex plane induces a 1-form on our surface. There is a unique
complex structure on the surface such that this 1-form is holomorphic. The process thus
results in a Riemann surface with a distinguished Abelian differential (that is, holomorphic
1-form). There is a close relationship between the flows on the flat surface and various
properties of the 1-form.

Unfolding: Two examples.First, let us consider billiards in the unit square, see Fig-
ure 1. Suppose our billiard trajectory starts near the bottom left corner (the origin) and has
slope 1> s > 0. Thus it collides initially with the right side. We reflect about this side
to get a mirror image of the square upon which our trajectory continues with this slope.
The next side it hits is the top of the new (right) square; reflecting about that side we get a
third square that sits above the second (bottom right) square. Continuing this procedure, we
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Fig. 1. Unfolding; square table to torus surface.

Fig. 2. Surface from triangle; same translation surface. (Identify parallel sides by translation.)

eventually end up with four copies of our original square; we can appropriately translate
one of the copies so as to form a larger square. As an exercise, the reader should now check
that we can follow all billiard paths within this larger square, if we identify opposite sides
by translation. Thus, a torus is formed. Each trajectory of the billiard flow is mapped to a
trajectory for the linear flow in the same direction on the torus.

If we now take the isosceles triangle with angles(π/5,π/5,3π/5) as our initial table, the
unfolding process yields a star-shaped polygon with opposite sides identified, see Figure 2.

(The reader should note that differing billiard trajectories give apparently different poly-
gons, but should show that these differences are accounted for by the translations of the
various identified sides!) This is a compact, oriented topological surface. An easy Euler
characteristic calculation shows that it has genus two.
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The identifications of the sides lead to interesting identifications of the vertices. While
the “outside” vertices of the stellated pentagon collapse to a point with angle 2π , the “in-
side” vertices yield a point with total angle 6π ! (This phenomenon did not arise in our first
example—the large square with its sides identified—as there the vertices are identified to
a single point of angle 2π .) Indeed, a Gauss–Bonnet calculation will now confirm that our
surface is of genus two.

This difference between our genus two and genus one examples reflects the fact that
while the torus is naturally flat (its universal cover is the Euclidean planeR2), a genus 2
surface is naturally hyperbolic (universal coverH2), andcannot be forced to be flat.

1.1.3. From 1-forms to surfacesNow consider a pair(X,ω), a Riemann surfaceX with
a holomorphic 1-formω. Locally (i.e., in each coordinate patch)ω = f (w)dw. Given a
pointp0 ∈X, we define new coordinates by the map

z(p)=
∫ p
p0

ω.

In these coordinates,ω= dz locally.
If we change base points in some small patch, then our coordinates change by a transla-

tion:

c :=
∫ p
p0

ω−
∫ p
p1

ω=
∫ p1

p0

ω.

Sincec does not depend onp, our transition maps are of the formz  → z+ c. Thus the pair
(X,ω) gives a structure which is reasonably called atranslation surface.

We need to take care in the above discussion. At a zero of multiplicityk, locally we have
ω = zk dz, henceω = d(zk+1/(k + 1)). That is, instead of the surface locally resembling
the complex planeC (as it does away from the zeros), at a zero the surface instead locally
resembles the(k + 1)-fold cover ofC via the mapz  → zk+1. Thus, the total angle around
the zero is 2π(k + 1).

By your favorite general theorem about Riemann surfaces (either Gauss–Bonnet or
Riemann–Roch), the total number of zeros (counting multiplicity) of the Abelian differ-
entialω is 2g− 2, whereg is the genus of the surfaceX.

Fixing the orders of all zeros, we call the associated subset of translation surfaces a
stratum. Thus, we have a stratum for each integer partition of 2g − 2. See [2] for more
discussion of these matters.

1.1.4. SL(2,R)-action and Veech groupsThe group SL(2,R) acts on the space of trans-
lation surfaces: a pair(X,ω) is given by its charts, with coordinate functions to the complex
plane (and all transition maps are translations). We will now considerC with its natural
structure as the real plane. Given a matrixA ∈ SL(2,R), the new pointA ◦ (X,ω) is the
surface whose charts are the charts for(X,ω), with coordinate functions post-composed
with the linear action ofA on R2. This action preserves orders of zeros, it thus preserves
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each stratum. Note that an element of SO(2,R) acts on a translation surface as a (piece-
wise) rotation; this action corresponds to multiplyingω by a non-zero complex number of
norm one.

We denote the stabilizer of(X,ω) under the action of SL(2,R) by SL(X,ω). Re-
call that SL(2,R) does not act faithfully on the upper half-plane; it is the projective
group PSL(2,R) that does so. We define theVeech group, PSL(X,ω), to be the image
of SL(X,ω) in PSL(2,R).

Examples revisited. For the torus, we consider the maps

(x, y)  → (x, x + y mod 1)

and

(x, y)  → (x + y mod 1, y).

These areDehn twistsabout the curves corresponding to thex- andy-axes, respectively.
Their derivatives are given by the matricesA1 =

(
1 0
1 1

)
andA2 =

(
1 1
0 1

)
, respectively. We

have thatAi ∈ SL(C/Z2, dz)= SL(2,Z). The reader should verify this last equality!
For our genus two example, we can decompose the surface into two vertical cylinders

of height and width(h1,w1) and(h2,w2), see Figure 3. On each cylinder we can define a
Dehn twist via

(x, y)  → (x, y +µ−1x modh
)
,

where following tradition, themodulusof the cylinder isµ = w/h. Note that each Dehn
twist is constant on the vertical sides of the corresponding cylinder; we can certainly glue

Fig. 3. Vertical cylinders.
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them together to get a globally defined function. But, in order to preserve our flat structure,
a diffeomorphism must have its derivative (off of the singularities) constant in our coordi-
nates. We call such mapsaffine diffeomorphisms, and denote the group that they form by
Aff (X,ω).

Thus, in order to construct an affine diffeomorphism of the surface from these Dehn
twists we must be able to take some power of each twist so that the resulting derivatives
agree. For this, we must haverµ1 = sµ2 for some integersr ands; in words:the moduli of
the cylinders must be rationally related. In this example, we get very lucky and the moduli
are in fact the same. The reader is encouraged to check this trigonometry!

This stellated pentagon has its Veech group generated by an element of order five—the
obvious rotation—and an element of order two. Can you find ‘the’ element of order two?
On a related surface—the Golden Cross, see say [25] or [35]—it acts as a square root of
the famous “hyperelliptic involution” of the surface.

We must emphasize that it is very rare that the Dehn twists on cylinders match up to give
a global affine diffeomorphism!

1.2. The Veech Dichotomy

Recall the theorem of Weyl for geodesic flow on the torus: in any rational directionθ ,
all orbits are closed, whereas the flow in any irrational direction is uniquely ergodic: it
is ergodic with respect to a unique non-atomic measure, which is (induced by) Lebesgue
measure. Veech proved an analogous result for a class of particularly nice surfaces.

We can define directionsθ of flow on a given translation surface(X,ω): use the coordi-
nate charts to pull-back from the real plane the straight lines of directionθ . The directional
flow Fθ is the map fromX×R+ toX sending pairs(x, t) to x′, wherex′ is lengtht from x
along a line segment in the directionθ . Of course, the true definition ofFθ recognizes that
the translation surface has singularities! There is a theorem of Kerckhoff–Masur–Smillie
[31] that for a fixed translation surface(X,ω), for almost every directionθ the flowFθ is
uniquely ergodic. See [2] for related discussion.

We say thatFθ is periodic if the surface decomposes into a finite number of cylinders
in the directionθ , and furthermore these cylinders have pairwise commensurable moduli:
µi/µj ∈ Q. Note that it is not necessary that the actual period lengths of the cylinders be
the same, nor even commensurable—as the vertical flow on our genus two example already
shows!

Recall that the Veech group of(X,ω) is defined such that it acts on the hyperbolic
plane. We say that such a group is alattice if the quotient space under this action has finite
(induced) hyperbolic area. In this setting, we also say that SL(X,ω) is a lattice. (There are
several ways of defining the term lattice; this definition works in our setting.)

THEOREM 1 (Veech Dichotomy1). Let (X,ω) be a translation surface. SupposeSL(X,ω)
is a lattice inSL(2,R). Then for each directionθ , the flowFθ is either periodic or uniquely
ergodic.

1The authors of [3] have asked us to point out that this clarifies their statement of the Veech Dichotomy.
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If SL(X,ω) is a lattice, then(X,ω) is called a Veech surface. The theorem states that
a Veech surface has dynamical properties similar to the touchstone surface, the square
torus. In what follows, we will sketch a proof—coming from Veech’s original proof [48],
especially as adapted by Vorobets [51].

1.3. Structure of Veech groups

A separatrix is a geodesic line emanating from a singularity, asaddle connectionis a
separatrix connecting singularities (with no singularities on its interior). To each saddle
connection we can associate aholonomy vector: we ‘develop’ the saddle connection to the
plane by using local coordinates, the difference vector defined by the planar line segment
is the holonomy vector.

1.3.1. Discreteness The following theorem seems to be in the folklore of the subject,
our proof is modeled on that of Proposition 3.1 of [51]. See [2] for a second proof of this
fundamental result.

PROPOSITION1. Let (X,ω) be a translation surface. Then the set of holonomy vectors of
saddle connections, Vsc(X,ω), is discrete inR2.

SKETCH OF PROOF. We assume that the surface does admit singularities. Since there are
only finitely many of these singularities, it is clear that every pointp of the surface admits
some positiveε(p) such that there is a punctured disk of radiusε(p) centered atp that is
void of singularities.

Choose any vectorv ∈ R2. At each singularity, form every geodesic ray of holonomyv.
Each ray is in general a sequence of saddle connections followed by a separatrix. Since
there are only finitely many singularities and the total angle at any of these is finite, there
are only finitely many of these geodesic rays. Letε = min(ε(p)), wherep runs over the
endpoints of the paths of these geodesic rays.

Clearly, there is no saddle connection ending within the puncturedε-disk about the end
point of any of our geodesic rays. But, this means thatv cannot be the limit of holonomy
vectors of saddle connections. Sincev was arbitrary, we find thatVsc(X,ω) is discrete.�

1.3.2. Non-cocompactnessAgain following Vorobets, one has an easy proof of the fol-
lowing result, originally due to Veech [48].

LEMMA 2. Let (X,ω) be a translation surface. Then the groupSL(X,ω) is a discrete
subgroup ofSL(2,R).

SKETCH OF PROOF. Any A ∈ SL(2,R) acts so as to send saddle connections of(X,ω)

to saddle connections ofA ◦ (X,ω). Let {An} ⊂ SL(X,ω) be a sequence approaching
the identity (where SL(2,R) has its usual topology),An → I . Let v,w,∈ Vsc(X,ω) be
linearly independent. ThenAnv→ v andAnw→ w. By discreteness ofVsc(X,ω), for n
sufficiently large,Anv = v andAnw =w. But v andw are linearly independent; they form
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a basis forR2. Hence, for all largen we have thatAn = I . We conclude that SL(X,ω) is
discrete. �

Standard terminology: a discrete subgroup of SL(2,R) is aFuchsian group.
Similarly, SL(X,ω) is never cocompact: SL(X,ω) beingcocompactwould simply mean

that in the natural quotient topology SL(X,R)/SL(X,ω) is compact. We disprove this by
finding a continuous (non-negative) real valued function on SL(2,R) that is constant on
cosets, but has no minimum value.

Consider the functionΛ : SL(2,R)→ R+, given byA  → l(A ◦ (X,ω)), wherel(X,ω)
denotes the length of the shortest saddle connection. If SL(X,ω) were cocompact, the
functionΛ would have a minimum, sayα > 0.

But, take any saddle connection. We can normalize by rotating(X,ω) so that this saddle
connection is in the vertical direction; we can send the length to zero via thegeodesic flow:
gt :=
(
et/2 0
0 e−t/2

)
. Since both rotation and geodesic flow are realized in SL(2,R), we clearly

have a contradiction to the minimality ofα. We conclude that SL(X,ω) is not cocompact.

1.3.3. Parabolic elements It is a well-known fact for Fuchsian groups that any non-
cocompact lattice must have a parabolic element; see, say, [28]. Conjugating the group,
the parabolic fixed point may be taken to be infinity, the parabolic then acts as a trans-
lation; the quotient can be informally envisioned as having a cone with missing point at
infinity, a cusp.

The following is a restatement of Lemma 3.7 of [51].

LEMMA 3. LetΓ ⊂ SL(2,R) be a non-cocompact lattice, such thatgtΓ is divergent(i.e.,
leaves every compact set) in SL(2,R)/Γ . Then there is anα �= 0 with hα =

(
1 0
α 1

) ∈ Γ .

Thus, ifΓ is a lattice, the only way a trajectory of the geodesic flow on SL(2,R)/Γ can
escape to infinity is via a cusp.

1.3.4. Affine diffeomorphisms and Veech groupsIn fact, SL(X,ω) is the group of deriv-
atives of orientation-preserving affine diffeomorphisms. To sketch a proof of this, we take
(X,ω) normalized such thatX has area one with respect to the area form,dλ, induced
by ω. Let φ be an orientation-preserving affine diffeomorphism of(X,ω). The derivative
of φ is its Jacobian derivative in the usual sense. With the real structure of the translation
surface, this derivative is a constant (off of the singularities) 2× 2 real matrix. Thus

1=
∫
X

dλ=
∫
φ−1(X)

∣∣Jac(φ)
∣∣dλ= ∣∣Jac(φ)

∣∣.
Thus, the derivative ofφ is of determinant one. In brief: Area preserving implies determi-
nant one. (By the way, it is a significant fact that the “derivative” map has finite kernel in
Aff (X,ω), [48]: anyφ whose derivative is the identity is certainly an automorphism of the
complex structure ofX, in genus greater than one, there are only finitely many of these.)
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1.4. Proof of the Veech Dichotomy

Rotations leave the underlying structure unchanged, we can thus suppose that the ver-
tical direction is non-uniquely ergodic. This is only possible ifgtω is divergent, that is if
gtSL(X,ω) leaves every compact set of the quotient SL(2,R)/SL(X,ω); this follows from
Masur’s criterion, see Theorem 3 of [2] and the sketch of its proof, given in §3 there. This
criterion is key to the proof; it is closely related to a combinatorial criterion of Bosher-
nitzan for non-unique ergodicity of an interval exchange transformation [10,47] and the
discussion in [2].

By hypothesis, SL(X,ω) is a lattice; by our basic facts, it has a parabolic element. In
fact, since the vertical direction is divergent, there is a parabolic element of the type given
in Lemma 3. The next lemma shows that the existence of a parabolic element implies
important geometric information about the translation surface(X,ω).

LEMMA 4. Lethα be as above. If hα ∈ SL(X,ω), thenX decomposes into a finite number
of vertical cylinders of moduliµi = pi

qi
α, pi, qi ∈ Z.

PROOF. Denote the affine map with derivativehα by φ. Let Σ be the set of singu-
lar points on(X,ω). Then, φ acts by permutation onΣ . At eachpi ∈ Σ , we have
outgoing separatrices—geodesics emanating from the singularities, see Figure 4. Let
{L1,L2, . . . ,Lk} denote the set of outgoing separatrices in the vertical direction. Then
φ also acts on this set by permutation; by passing to a powerψ = φn, we can assume that
ψ fixes both every singularity and each of theLi .

The affine diffeomorphismψ acts up to translation exactly as its derivative; the deriva-
tive fixes the vertical direction, and henceψ restricted to anyLi acts as a pure translation.
Since a translation with a fixed point can only be the identity, we conclude thatψ fixes
each vertical separatrixLi pointwise.

Fig. 4. Vertical saddle connections. (Three outgoing, giving also three incoming.)
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We claim that eachLi is in fact an outgoing saddle connection. Indeed, if a separatrixL

is not a saddle connection, then it must in fact be dense in some open subsetU of X. But if
Li is dense in someU , thenψ is identity onU ; sincehα �= I , this leads to a contradiction.

Next, we claim that ALL vertical leaves are closed. Consider an arbitrary pointp ∈ X
not lying on any of ourLi . Let Ft denote the vertical flow onX. If Ft (p) is not closed,
then it is dense in some minimal component—see the proof of Theorem 1.8 of [3]. On the
other hand,Ft (p) does not encounter any singularity, as we have assumed thatp is not
on any of theLi . Hence,p flows in parallel with theLi ; in particular, the distance of any
Ft (p) to theLi cannot be made arbitrarily small. Thus,Ft (p) is certainly not dense; it
must be closed.

We now have a cylinder decomposition of(X,ω) in the vertical direction. The powers
of the affine Dehn twist of a given vertical cylinder are of derivative

( 1 0
kµ 1

)
whereµ is the

modulus. Sincedψ = ( 1 0
nα 1

)
is constant, the moduli of the various vertical cylinders are

all rational multiples ofα. �

So we have the Veech Dichotomy: if the flow is not uniquely ergodic, it gives a divergent
trajectory inH/PSL(X,ω), thus there is a parabolic element in SL(X,ω), and we can then
decompose our surface into cylinders with commensurable moduli.

REMARK 1. Note that the theorem leads to a simple necessary condition for a surface to
be Veech: in each direction with a cylinder decomposition, the moduli of the cylinders must
be commensurable. That is, if there are two cylinders with moduliµ1,µ2,µ1/µ2 /∈ Q, we
are not on a Veech surface. In fact, a Veech surface has a cylinder decomposition in the
direction of any of its saddle connections.

Consider our basic example, the square torus. In this case, SL(X,ω) = SL(2,Z); it is
thus a lattice, and Veech’s result recovers the result we mentioned as a theorem of Weyl.

1.5. Arithmeticity

1.5.1. Theorem of Gutkin and JudgeFor surfaces that can be tiled by squares—called,
most simply,square-tiled surfaces—we have that SL(X,ω) is commensurateto SL(2,Z)
(the groups share a common finite index subgroup) and thus(X,ω) is a Veech surface. Any
lattice that has a SL(2,R)-conjugate commensurate to SL(2,Z) is calledarithmetic. (This
weaker type of relationship between groups is calledcommensurability.) Let us say that
a surface(X,ω) is tiled by parallelogramsif it is in the SL(2,R) orbit of a square-tiled
surface.

One has the following theorem of Gutkin–Judge, for a simple proof see [22].

THEOREM 5 (Gutkin–Judge).The surface(X,ω) is tiled by parallelograms if and only if
SL(X,ω) is arithmetic.

In particular this theorem proves that all square-tiled surfaces are Veech, since any arith-
metic group is a lattice. This implies that any square-tiled surface satisfies the Veech alter-
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native; this difficult result had previously been shown by Veech [47] using Boshernitzan’s
criterion.

1.5.2. Consequences and examplesNote that an arithmetic group need not be contained
in SL(2,Z). For example, consider the surface given by two unit volume squares placed
one on top of the other. This is a degree 2 cover of the torus, with a one-cylinder decompo-
sition, of modulus 1/2. Thus, in SL(X,ω) we have the element

( 1 1/2
0 1

)
, that is obviously

not in SL(2,Z).
Another square-tiled surface provides a cautionary example. There exist oriented affine

diffeomorphisms of parabolic derivative that are not formed by taking powers of Dehn
twists in the cylinder decomposition of the corresponding fixed direction. (However, as
Veech [47] showed, some finite power of such an affine diffeomorphism is given in such
a manner.) Consider the genus two square-tiled surface formed by 3 squares stacked one
on top of the other, with top and bottom identified, and side segments identified such that
there is a single singularity of total angle 6π . Then one can show that there is an affine
diffeomorphism of derivative

(
1 0
1 1

)
; however, it is the cube of this matrix that corresponds

to the fundamental vertical Dehn twist here. For more on this, see [22].
The Gutkin–Judge result implies that any surface of arithmetic Veech group is a

branched cover of the torus, with branching above one sole point. In general there are
surfaces that have the same (or commensurate) Veech group, but are not related by any tree
of finite covers that are “balanced”, see [25].

The groupΓ = 〈( 1 3
0 1

)
,
(

1 0
3 1

)〉
is not commensurable to any Veech group [18]. Indeed, it

is known that any Veech group with a hyperbolic element of trace inQ must be arithmetic
[30,34], and in particular a lattice. The groupΓ however, is not a lattice, but possesses
hyperbolic elements. Note that any finite-index subgroupH of Γ then includes hyperbolic
elements with rational trace. The same is thus true for any group commensurable toΓ , and
our result follows.

In any fixed stratum, the set of square-tiled surfaces of that stratum is dense. Indeed,
integration ofω along its periods relative to the singularities provides local coordinates
for the stratum, see [1]; these coordinates are contained inQ+ iQ exactly when(X,ω) is
square-tiled. Thus, density ofQ+ iQ in C gives the result. On the other hand, Gutkin and
Judge gave an argument showing that in any stratum the set of Veech surfaces is of measure
zero (ifg � 2)—see [2] for the definition of this measure. This is loosely analogous to the
fact that the rationals are of measure zero in the real numbers.

1.5.3. Non-arithmetic surfaces existNon-arithmetic lattice Veech groups exist. In fact,
our other favorite example—the surface arising from the(π/5, π/5, 3π/5)-triangle—has
Veech group that contains〈S,R〉, whereS is the aforementioned diffeomorphism that in-
duces the Dehn twist on each of the two vertical cylinders, andR the order five rotation. In
fact, this is the entire Veech group. This group is a lattice; moreover, it is non-arithmetic.

This Veech group is (conjugate to) a well-known group, a so-calledHecke group. The
Hecke group of indexn is Γn = 〈z→ −1/z, z→ z + 2 cos(π/n)〉. The group above is
conjugate toΓ5. In fact, Veech showed that each Hecke group of odd indexn, as well as
a subgroup of index two in each even index case, is also realized as a Veech group. All
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but three of these are non-arithmetic groups, and are known to be pairwise incommensu-
rable [33].

2. State of the art

In this new century, two perspectives on Veech groups have been fruitful. The first, of a
longer tradition, employs so-called scissor invariants of linear flows on the translation sur-
face(X,ω). The second, pioneered by McMullen [34], emphasizes the algebro-geometric
aspects of the Riemann surfaceX imposed by characteristics of SL(X,ω).

2.1. Background: Scissor invariants

Kenyon and Smillie [30] introduced an invariant for translation surfaces, called theJ -
invariant; this invariant is an extension of the Sah–Arnoux–Fathi invariant used for the
study of interval exchange transformations. Calta [11] has recently used theJ -invariant to
characterize the Veech surfaces in the stratum of genus 2 surfaces with a single singularity;
this stratum is denotedH(2), see §2 of [2].

DEFINITION 1. Let P be a planar polygon of verticesv1, . . . , vn. We defineJ (P ) as
v1 ∧ v2 + v2 ∧ v3 + · · · + vn−1 ∧ vn + vn ∧ v1 ∈ R2 ∧Q R2.

This is indeed a scissors invariant, in the following sense.

PROPOSITION2. Suppose thatP = P1 ∪ · · · ∪ Pk is a cellular decomposition ofP into
polygonsPi . ThenJ (P )= J (P1)+ · · · + J (Pk).

Now, any translation surface can be given as a finite union of polygons, with appropriate
side identification; indeed, some authors define the notion of translation surface in this way,
see Definition 4 of [2]. If(X,ω) is a translation surface, and(X,ω) = P1 ∪ · · · ∪ Pk is a
cellular decomposition ofΣ into polygonsPi , then we defineJ (X,ω) as the sum of the
J (Pi).

THEOREM 6 (Kenyon–Smillie).The valueJ (X,ω) is independent of choice of polygonal
cellular decomposition of(X,ω).

One has the possibility of studying various projections of theJ -invariant. In particular,
the Sah–Arnoux–Fathi invariant can be recovered in this manner. Consider

πxx :R2 ∧R2 → R∧R,(
a

b

)
∧
(
c

d

)
 → a ∧ c.

We defineJxx as πxx(J ) and Jyy analogously. LetT : I → I be an interval exchange
transformation on a real intervalI , with the lengths of theith subinterval denoted byλi ,
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1� i � n. Fori ∈ {1, . . . , n}, let ti ∈ R denote the translation applied to theith subinterval.
The Sah–Arnoux–Fathi invariant is defined as

SAF(T )=
n∑
j=1

λj ∧ tj ∈ R∧Q R.

The set of all interval exchange transformations onI forms a group under composition
of functions; Arnoux [5], see also [4], showed that the SAF-invariant defines a group homo-
morphism toR∧Q R. Furthermore, since the commutator subgroup of the group of interval
exchange transformations is a simple group, the SAF-invariant gives what is essentially the
only non-trivial homomorphism defined on the group.

The fundamental property of the SAF-invariant is its invariance under induction:

PROPOSITION3 (Arnoux). LetT be an interval exchange transformation on an intervalI ,
and suppose thatK ⊂ I is a subinterval that meets every orbit ofT . Let S denote the
interval exchange transformation induced onK byT . ThenSAF(S)= SAF(T ).

The following is crucial in the work of Calta.

REMARK 2. One easily shows that ifT is periodic, then SAF(T ) = 0. Furthermore,
an interval exchange transformationT of three subintervals is periodic if and only if
SAF(T ) = 0. This last is directly related to rotations: letRα denote the rotation of angle
α ∈ R; this map of the circle to itself is periodic if and only ifα ∈ Q.

Note, however, Arnoux and Yoccoz [8] constructed an interval exchange transformation
T of 7 subintervals with SAF(T ) = 0, but such thatT is minimal, and in fact uniquely
ergodic. The geometry of this interval exchange transformation is extremely interesting,
see [6].

The invariance under induction of interval exchange transformation of the SAF-invariant
affords the possibility of defining an SAF-invariant for a measured foliationF of a surface:
Choose a normalized full transversalI for F , thus in particular this intervalI meets all
leaves ofF , and define SAF(F)= SAF(T ), whereT is the interval exchange transforma-
tion defined onI by the first return map along leaves ofF . This invariant is independent
of choice ofI .

Kenyon and Smillie easily show the following.

PROPOSITION4. Let (X,ω) be a translation surface. ThenJxx(X,ω) equals theSAF-
invariant for the vertical foliation of(X,ω); similarly, Jyy(X,ω) equals theSAF-invariant
for the horizontal foliation of(X,ω).

It is deft use of theJ -invariant that allows Kenyon–Smillie to reach the main result
of [30], that in turn lead to the following sobering result.

THEOREM 7 (Kenyon–Smillie, Puchta).Suppose thatT is an acute, non-isosceles,
rational-angled triangle, and that (X,ω) is the translation surface associated toT by
the usual unfolding process. Then(X,ω) is a Veech surface if and only ifT has angles:
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(a) (π/4,π/3,5π/12),
(b) (π/5,π/3,7π/15), or
(c) (2π/9,π/3,4π/9).

Kenyon and Smillie also show that an acute, isosceles, rational-angled triangle gives a
Veech surface if and only if the smallest angle is of the formπ/n.

2.2. Results of Calta

A translation surface(X,ω) is said to becompletely periodicif for every direction whose
linear flow admits a periodic orbit, and hence a cylinder,(X,ω) admits a decomposition
into cylinders in this direction. Clearly, Veech surfaces are completely periodic. The con-
verse is in general false; consider the slit torus examples of [2], see also [26,35]. However,
one has the following.

THEOREM 8 (Calta). A translation surface belonging toH(2) is completely periodic if
and only if it is a Veech surface.

Furthermore, in this stratum, every non-arithmetic Veech surface is “quadratic” in the
sense that up a change within the SL(2,R)-orbit, all of its (absolute) periods are contained
in some real quadratic field. Here, theabsolute periodsof (X,ω) are the periods ofω:
p(γ )= ∫

γ
ω with γ ∈H1(X,Z); thus the result is thatp(H1(X,Z))⊂ Q(

√
d)× Q(

√
d),

with d > 0 a non-square integer. Amongst all quadratic translation surfaces, Calta gives
equations distinguishing the Veech surfaces.

The main idea of the proof is to introduce the following intermediate property. Here,
given a directionv, the projectionJvv is defined analogously toJxx andJyy .

DEFINITION 2. A direction is called ahomological directionfor (X,ω) if it is the direction
of some absolute period ofω. A translation surface hasPropertyX if for every homological
directionv one hasJvv = 0.

Every periodic direction of course has a representative inp(H1(X,Z)); Property X may
be thought of as being “virtually” completely periodic—every direction that is a candidate
to be completely periodic passes the test of vanishing of the corresponding projection of
theJ -invariant.

Calta’s proof of Theorem 8 consists of showing that for translation surfaces ofH(2) the
three properties are equivalent: Property X, completely periodic, Veech. One easily shows
that Property X does imply complete periodicity here—this is an application of Remark 2,
and strongly depends on the genus being 2. The converse is significantly more complicated,
and Calta uses explicit quadratic equations. A number theoretic argument shows that the
SL(2,R)-orbit of a translation surface with Property X is closed inH(2); by Smillie’s
Theorem, announced in [49], the surface must then be Veech.

An analogous discussion allows Calta to show that the completely periodic surfaces of
the remaining stratum of genus 2 translation surfaces,H(1,1), are also quadratic, and to
again give explicit equations.
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One can give a geometric interpretation of Calta’s work, that can be compared to the
appearance of Hilbert modular surfaces in the work of McMullen, see below. Beginning
with a completely periodic surface inH(1,1), consider the SL(2,R)-orbits of the surface
found by fixing the absolute periods and deforming the relative periods; here “relative”
means relative to the singularities. Thus, one considers the SL(2,R)-orbits of the various
surfaces found by varying the position of the zeros ofω. The result,M, is aclosedsub-
manifold ofH(1,1) ∪H(2) of real dimension 5. The intersection ofM with H(2) is a
finite union of SL(2,R)-orbits of Veech surfaces.

2.3. McMullen’s approach

The approach emphasized by McMullen [34] studies properties of the Riemann surfaceX

implied by hypotheses on the group SL(X,ω). Any affine diffeomorphismφ of (X,ω) is
such that the pull-back mapφ∗ acts onH 1(X,R) so as to preserve the two dimensional
real subspaceV generated by the real and imaginary parts ofω. If φ has derivativeDφ
hyperbolic of tracet , thenT ∗ := φ∗ + (φ∗)−1 acts onV as multiplication byt . McMullen
relates this to the structure of the endomorphism ring of the Jacobian ofX.

2.3.1. Algebro-geometric backgroundWe briefly recall some standard terminology and
results from algebraic geometry, see the textbooks [20,17,15]; the classic reference on
Abelian varieties is [40]; for a constructive treatment of real multiplication see [9], as well
as [43]. See [21] or [46] for an introduction to the study by the school of F. Hirzebruch of
the geometry and arithmetic of Hilbert modular surfaces. Our discussion closely follows
§4 of [36].

The Jacobian. Key to our discussion is theg-complex dimensional vector spaceΩ(X)
of 1-forms on a Riemann surfaceX of genusg. Indeed, whereas the results discussed so
far are related to the flat structure induced onX by integration of a single 1-form, we now
fix a base point and consider integration of a vector whose entries form a basis forΩ(X).
This gives a map toCg that is only well defined after dividing by the lattice formed by
the integrals along closed curves. The result is the famedAbel–Jacobi mapfrom X to the
complex torus defined as theJacobian varietyof X, Jac(X).

The celebratedRiemann Relationsshow that Jac(X) is aprincipally polarized Abelian
variety: It is in particular a complex torus equipped with an embedding into complex pro-
jective space. Expressing Jac(X) asΩ∗(X)/H1(X,Z), one avatar of the polarization is as
a symplectic form onH1(X,Z). In fact, the intersection pairing onH1(X,Z) gives this
symplectic form. Of course, as real vector spaces,Ω∗(X) andH1(X,R) are isomorphic;
we can thus viewΩ∗(X) asH1(X,R) with a complex structure. See Chapter 4 of [12] for
a discussion of related canonical isomorphisms.

Real multiplication by a field; eigenforms.Given any principally polarized Abelian
varietyA ∼= Cg/Λ, the polarization ofA equipsΛ ∼= H1(A,Z) ∼= Z2g with a symplectic
form. Theendomorphism ringEnd(A) consists of the Lie group homomorphisms ofA;
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each endomorphism respects the Hodge decompositionH 1(A,C) ∼= H(1,0) ⊕H(0,1) and
induces an endomorphism ofΛ.

A field K is calledtotally real if it is a number field all of whose embeddings fixing
Q have image inR. Given a totally real fieldK with [K : Q] = g, we say thatA admits
real multiplicationby K if there is a faithful representationρ : K → End(A) ⊗ Q such
that eachρ(κ) is self-adjoint with respect to the induced symplectic form onΛ⊗ Q. The
holomorphic 1-forms onA form theg-dimensionalC-vector spaceΩ(A)∼=H(1,0). Since
ρ(K) respects the Hodge decomposition,K acts onΩ(A) in a complex linear fashion.
An eigenvector for this action is called aneigenformfor the real multiplication ofA. The
action can always be diagonalized:Ω(A) =⊕Cωi for g eigenformsωi , thus there are
eigenforms for any real multiplication.

In the case thatA= Jac(X), we can speak ofω ∈Ω(X) as being an eigenform. Indeed,
given real multiplication on Jac(X)∼=Ω(X)∗/H1(X,Z), one finds that the eigenforms are
exactly the eigenvectors for the dual action onΩ(X). Theeigenform locusin ΩMg is the
space of(X,ω) with ω an eigenform.

REMARK 3. With only slight complication of the above, one can define real multiplication
on an Abelian variety of complex dimensiong by a productK of totally real fieldsKi , with∑[Ki : Q] = g.

Endomorphisms to real multiplication.The integral pointso = K ∩ End(A) of ele-
ments ofK which act as endomorphisms ofA form anorder of K . That is,o is a finite-
index subring ofOK , whereOK is the product of the rings of algebraic integers of theKi .
Of course, given an ordero ⊂K , and any faithful representation ofo as self-adjoint endo-
morphisms ofA, there is an induced real multiplication ofA byK .

Indeed, suppose that some totally real algebraic integert acts as an endomorphismT on
an Abelian varietyA. Then one finds thatZ[t] ⊂ End(A), by extending the mapt  → T in
the usual manner. Tensoring withQ, one finds thatA admits real multiplication byQ(t).
Thus, a single endomorphism can induce real multiplication by a field.

Families with real multiplication by an order.The appropriate level of abstraction is
obtained by fixing a symplectic form on a latticeL ∼= Z2g , and considering the injective
homomorphismsρ which sendo to End(L) as self-adjoint endomorphisms. One then says
thatA admitsreal multiplication by(o, ρ) if there is a symplectic isomorphism ofL with
H1(A,Z) such thatρ(o) coincides with the restriction of End(A).

The space of all Abelian varieties admitting real multiplication by some(ρ,o) can be
determined in the following constructive manner. Tensoring the rank twoo-moduleL with
R allows us to find a decomposition into orthogonal eigenspaces, each of real dimension
two:L⊗R ∼=⊕g

i=1Si . Fix i, and choose some positively ordered symplectic basis(ai, bi)

for Si ; to eachτi ∈ H, we have anR-linear map fromC to Si induced by sending 1 toai
andτi to bi . Note that in particular this map respects the orientation ofR2 ∼= Si .

Eachτ := (τ1, . . . , τg) ∈ Hg thus determines an isomorphism of real vector spaces that
takesL⊗R to Cg and thus induces a symplectic structure onCg ; the image ofL⊗ 1 is a
lattice. The quotient,Aτ , of Cg by this lattice has real multiplication by(o, ρ).
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Every Abelian variety admitting real multiplication by(o, ρ) arises in this fashion. In-
deed, given someA= Cg/Λ, takeΛ asL and use the symplectic form given by the princi-
pal polarization. Choose an integral basis forΛ and a compatible splitting ofCg ; we may
assume that the basis ofΛ is of the form(1, bi) with bi ∈ H. With τ = (b1, . . . , bg), we
find thatAτ =A.

Hilbert modular varieties. GivenL and(o, ρ) as above, let Sp(L⊗R)∼= Sp(2g,R) de-
note theR-linear operators onL⊗R which respect the symplectic form. Those symplectic
automorphisms that commute with the action ofo preserve the splittingL⊗R ∼=⊕g

i=1Si .
Therefore, each such automorphism acts on the set of complex structures onL⊗ R that
are compatible with the splitting. Since these complex structures are indexed byHg , one
finds that the subgroup of symplectic automorphisms that commute with the action ofo is
the image of an injective homomorphismι : SL(2,R)g → Sp(L⊗ R). The integral points
Γ (o, ρ) := ι(SL(2,Z)g) are exactly the automorphisms of the symplectico-moduleL. The
groupΓ (o, ρ) acts isometrically onHg as elements of SL(2,Z)g , the finite volume quo-
tient X(o, ρ) := Γ (o, ρ)\Hg , called theHilbert modular varietyof (o, ρ), parametrizes
pairs(A,o → End(A)) compatible withρ. There is a natural forgetful map fromX(o, ρ)
to Ag , the coarse moduli space of principally polarized Abelian varieties—one forgets the
mapso→ End(A).

Multiplication by a real quadratic order. Wheng = 2, there are two facts that simplify
the above. First, it is well known that the orderso in real quadratic fields are uniquely
determined by their discriminantsD =D(o) ∈ Z; we thus writeoD . Second, for each such
oD , there is essentially a unique representationρD :oD → Z4 which respects the standard
symplectic form onZ4; see say Theorem 2 of [43]. One thus finds a single Hilbert modular
surface for each discriminant,XD :=X(oD,ρD).

Furthermore, one can give an explicit model for each of these. Letσ denote the non-
trivial element in Gal(K/Q); forM ∈ SL(2,K), letMσ denote the matrix whose elements
are the images byσ of the corresponding elements ofM . Then SL(2,K) acts onH2 by
M ◦ (z1, z2) = (Mz1,Mσ z2), where elements of SL(2,R) act onH in the usual manner.
One can show thatXD ∼= SL(2,oD)\H2.

For each of theseXD , the forgetful map toA2 is generically 2-to-1: homomorphisms
from oD to End(A) are conflated with their compositions withσ . This forgetful map fac-
tors through thesymmetric Hilbert modular surfaceformed as the quotient ofXD by the
involution induced by the standard permutation onH × H. The image variety inA2 is
called aHumbert surface, after the work of G. Humbert in the late 19th century.

2.3.2. McMullen’s action by the trace fieldWith φ an affine diffeomorphism of hy-
perbolic derivativeDφ having tracet , considerT = φ∗ + (φ∗)−1 acting onH1(X,R).
Sinceφ preserves intersections, it is easy to show thatT is self-adjoint with respect to the
corresponding symplectic form. Since the pull-back of any affine diffeomorphism leaves
V ⊂ H 1(X,R) invariant,T leaves invariant the annihilator ofV , defined as the space of
cycles upon which all elements ofV vanish.

In genus two, the annihilator and its orthogonal complement are both of real dimen-
sion two, giving thus complex lines inΩ∗(X). The self-adjointT acts on each of these
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eigenspaces as multiplication by a real number. That is to say,T induces an endomorphism
of Jac(X). Whent is quadratic overQ, the mapt  → T as discussed in the treatment of real
multiplication in Section 2.3.1 shows that Jac(X) admits real multiplication byK = Q(t).

The fieldK is independent of choice of hyperbolic element in SL(X,ω); see the appen-
dix of [30] for the following: since thoseφ with Dφ hyperbolic are in factpseudo-Anosov
maps, earlier results allow one to prove both that

(1) K is the full trace fieldof SL(X,ω), defined as the field generated by adjoining to
Q the traces of all elements of the group; and

(2) [K : Q] � g.
Furthermore, see say Lemma 8 on p. 167 of [16],t is an algebraic integer.

2.3.3. Projecting orbits toMg andAg The projectionπ :ΩMg →Mg is constant on
orbits of SO(2,R). On the other hand, the stabilizer ofz = i under the transitive action
of SL(2,R) by Möbius transformations on the Poincaré upper half-plane,H, is SO(2,R).
There is thus a mapH → Mg that factors through SL(X,ω)\H. In fact, it is of great
importance that this image inMg is isometrically immersed with respect to the so-called
Teichmüller metric, see [13] for discussion of this metric in terms related to SL(2,R). The
image inMg is an algebraic curve if and only if SL(X,ω) is a lattice, in which case this
image is called aTeichmüller curvein Mg .

TheTorelli mapτ :Mg →Ag is defined by sending eachX to Jac(X); for a discussion
of the geometry of this map, see [41]. In dimensiong = 2, in factA2 = τ(M2) 4 H1,
whereH1 is the locus of Abelian varieties that split as a product of two polarized elliptic
curves. In particular, the Torelli map has dense open image inA2; there is thus a tendency
in the literature to slur over the distinction of certain loci as being in one or the other of
the spacesM2 andA2. For simplicity, call the mapΩMg →Ag , given by composing the
Torelli map withπ , the projection toAg .

2.3.4. A selection of results The fundamental observation of McMullen is that as soon as
a translation surface(X,ω) with X of genus 2 admits a hyperbolic element in SL(X,ω),
then Jac(X) admits real multiplication by the trace field of SL(X,ω), with ω an eigenform
for this multiplication. The following result, false in higher genus, is crucial to McMullen’s
study in genus two.

THEOREM 9 (McMullen). The eigenform locus inΩM2 is SL(2,R)-invariant.

The main result of McMullen on Teichmüller curves inM2 is the following

THEOREM 10 (McMullen). Suppose thatSL(X,ω) is a non-arithmetic lattice andX is
of genus2. Then theSL(2,R)-orbit of (X,ω) projects toA2 to be an algebraic curve
contained in some symmetric Hilbert modular surface.

In fact, Remark 3 can be invoked to show that in genus 2 if SL(X,ω) is arithmetic, then
Jac(X) admits real multiplication byQ × Q, and the SL(2,R)-orbit then projects to an
appropriate symmetric Hilbert modular surface [36].

The previous theorem easily leads to the following result, which can also be deduced
from Calta’s results.
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THEOREM 11 (McMullen). Suppose that(X,ω) ∈H(2). If there is a hyperbolic element
in SL(X,ω), then(X,ω) is a Veech surface.

The situation is completely different forH(1,1). Indeed, letD denote the translation
surface given by identifying by translation opposite sides of the regular decagon. In [37],
McMullen conjectured, and in [38] proved, the following

THEOREM 12 (McMullen). The only non-arithmetic Veech surface ofH(1,1) is D.

McMullen [37] gives an algorithm for determining those(X,ω) whose SL(2,R)-orbit
projects to a Hilbert modular surface for a given discriminant of order. In particular, he
shows that Veech’s original examples of a double pentagon and a double decagon account
for all lattice groups giving rise to curves on the symmetric Hilbert modular surface of real
multiplication by the order with discriminantD = 5.

REMARK 4. For reasons of time and space, we have not discussed an important aspect of
the projections of SL(2,R)-orbits inΩMg to each ofMg andAg : These projections are
isometries for the appropriate metrics. This result is due to Kra [32]. This isometry is in
some sense what allows one to use the structure of the homogeneous spaceAg to study
Veech groups. As well, there are many curves in moduli space, but very few of them are
isometrically embedded with respect to the Teichmüller metric.

Using the above, McMullen [36] proves an analog of the celebrated Ratner Theorem,
see [1].

THEOREM 13 (McMullen). The closure of theSL(2,R)-orbit of any (X,ω) ∈ ΩM2

projects toM2 as exactly one of the following: an algebraic curve; a Hilbert modular
surface; all of M2.

In recent work, M. Möller [39] has extended McMullen’s result for lattice SL(X,ω). In
particular, forg > 2, he shows that even though the action by the trace field identified by
McMullen may not extend to the full Jacobian ofX, it does identify special properties,
which he studies in terms of variation of Hodge structures. (For an introduction to this
study of splittings of bundles generalizing the study of the Hodge decomposition, see [50].)
An isogenyof an Abelian variety is a surjective morphism of algebraic varieties to some
Abelian variety, and this morphism is a group homomorphism, of finite kernel. (Isogenous
Abelian varieties are thus morally equivalent.)

THEOREM 14 (Möller). Suppose thatSL(X,ω) is a lattice. Then theSL(2,R)-orbit of
(X,ω) projects toAg to be an algebraic curve contained in the locus parametrizing
Abelian varietiesA splitting up to isogeny to a productA1 × A2, whereA1 admits real
multiplication by the trace field ofSL(X,ω).
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2.4. Infinitely generated Veech groups

In [49], Veech asked if a SL(X,ω) can ever be an infinitely generated Fuchsian group. This
has recently been answered in the affirmative [26,35].

THEOREM 15 [26]. For each genusg � 4, there exist(Y,α) ∈ΩMg with SL(Y,α) infi-
nitely generated. In particular, the genus four translation surface arising from the triangle
of angles(3π/10,3π/10,2π/5) has infinitely generated Veech group.

THEOREM 16 (McMullen). Suppose that(X,ω) ∈ΩM2 is such thatSL(X,ω) admits a
hyperbolic element. Then the limit set ofSL(X,ω) is the full boundary∂H. Furthermore,
there exist infinitely many distinct(X,ω) ∈ΩM2 with SL(X,ω) infinitely generated.

2.4.1. Commonalities of proofs Other than the specifics of the examples, the proofs of
these two results have common logic, both beginning with the fact that a non-lattice Fuch-
sian group whose limit set is all of∂H must be infinitely generated. Now, it is often quite
easy to show that the Veech group of a given translation surface is not a lattice: simply
exhibit a saddle connection in whose direction the surface does not admit a decomposition
into cylinders of commensurable moduli.

To show that the limit set of the Veech groups under consideration in the two theo-
rems have all of∂H as limit sets, both proofs show that theparabolic directionsof the
corresponding translation surfaces—that is, the directions for which there is a cylinder de-
composition with commensurable moduli, and thus a corresponding parabolic element in
the group—form a dense set in the unit circle of all directions. In both cases, one exhibits
some pointp ∈X such that every direction in which there is a separatrix passing through
p is in fact a parabolic direction. This is the difficult step in each proof.

2.4.2. Sketch: Proof of Theorem 16Suppose thatX is of genus two and SL(X,ω) admits
a hyperbolic element, of trace sayt . Let K = Q(t) be the trace field. By results of the
appendix of [30], one can assume that the relative (to the singularities ofω) periods of
ω onX lie in K(i). Let φ be an affine diffeomorphism corresponding to the hyperbolic
element. As in the previous section,T ∗ := φ∗+(φ∗)−1 acts as multiplication byt onV , the
real subspace spanned inH 1(X,R) by the real and imaginary parts ofω. Once again, we let
σ denote the non-trivial Galois group element. One finds thatT ∗ thus acts as multiplication
by σ(t) on the subspaceV σ spanned by the real and imaginary parts ofσ(ω). SinceT ∗ is
appropriately self-adjoint,V andV σ are orthogonal. One thus has that the integral overX

of each ofω∧σ(ω) andω∧σ(ω) is zero, where the bar here denotes complex conjugation.
From this,

∫
X
ρ ∧ σ(ρ) = 0 whenρ is the closed real form associated to any directional

flow of slope inP1(K)=K ∪ {∞}.
However, iff is the interval exchange transformation on a transversal of the measured

foliation associated toρ, then
∫
X
ρ ∧ σ(ρ) = flux(f ), where flux(f ) is a version of the

SAF-invariant introduced by McMullen, theGalois flux: Suppose that all the translations
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for some interval exchange transformationT are contained in some quadratic number
fieldK , then one defines

flux(T )=
n∑
j=1

λjσ (tj ) ∈ R.

Now, if this flux vanishes, then the directional flow forρ cannot be uniquely ergodic.
But, Masur’s criterion now tells us thatgtSL(X,ω) leaves every compact set. This im-
plies in turn that there are very short saddle connections on the corresponding translation
surfacesgt ◦ (X,ω) for larget . Using the quadratic nature ofK , elementary Diophantine
approximation considerations (to wit: quadratic numbers cannot be well approximated by
rationals) then allow McMullen to conclude that fort sufficiently large, such a short saddle
connection must in fact lie in the direction of the foliation. Restricting to genus 2, he then
can give a complete analysis of such loops, to conclude that either the foliation is periodic,
or else surgery along a leaf presents(X,ω) as a connected sum of irrationally foliated tori.
In particular, it turns out that if there is a Weierstrass point lying on a saddle connection in
the direction of flow forρ, then this a parabolic direction.

However (upon developing(X,ω) such that a singularity lies at the origin, every de-
veloped image of), each non-singular Weierstrass point has coordinates inK . Thus, any
separatrix passing through a non-singular Weierstrass point lies in a direction whose slope
is in P1(K). From the above, this direction is hence a parabolic direction. But, for any given
point of a translation surface, the directions of separatrices passing through this point are
dense, see say Lemma 1 of [26]. The density of parabolic limit points then follows.

REMARK 5. A side-product of the above is that a Veech surface of genus two defined over
Q(

√
d) allows a normalization such that the set of slopes of its periodic directions equals

Q(
√
d)∪ {∞}, see also [11]. This is specific to genus two, see [7].

McMullen [36] gives an infinite family of genus two translation surfaces of infinitely
generated Veech group by explicit construction, see Figure 1 there. Indeed, given 3 squares,
of side length 1,a anda + 1, respectively, one can place these squares so as to construct a
genus two surface. Ifa is irrational of the formb− 1+√

b2 − b+ 1 for non-zerob ∈ Q,
then the Veech group of the translation surface is infinitely generated.

2.4.3. Sketch: Proof of Theorem 15On the other hand, the proof of Theorem 15 con-
structs examples by use of ramified covers of Riemann surfacesf :Y →X: the pull-back
α = f ∗(ω) can have an infinitely generated group even if SL(X,ω) is a lattice. (Some
background for this can be found in [24].) Indeed, suppose that the ramification is at the
singularities ofω and at a pointp—called aconnection point—such that every separatrix
of (X,ω) passing throughp extends to a saddle connection. Again by Lemma 1 of [26],
this is a dense set of directions. Since SL(X,ω) is a lattice, the direction of any saddle con-
nection is a parabolic direction; one easily shows that each of our dense set of parabolic
directions for(X,ω) is also a parabolic direction for(Y,α). It follows that the parabolic
limit points of SL(Y,α) are dense.
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The main part of the proof of Theorem 15 consists of showing that there are(X,ω)

with connection pointsp such that the corresponding SL(Y,α) is not a lattice. For this, it
suffices to show that one can find points that are at the same time connection points and
have infinite orbit under the group of oriented affine diffeomorphisms. Amusingly enough,
the genus two example of Figure 2 admits such points. After an innocuous normalization,
these are the points of coordinates inQ(

√
5) (other than the regular Weierstrass points,

which are given by the middle of the sides). This results from the fact that the parabolic
(limit) points ofΓ5 (recall that this is the Veech group here, up to a normalization) isQ(

√
5)

[33]. This latter fact can be recovered by direct use of Remark 5. By way of [24], one
then finds that the translation surface to which the triangle angles(3π/10,3π/10,2π/5)
unfolds is a ramified cover of the genus two example, with ramification above singularities
and connection points.

In [27], it is shown that the geometry of the projection toMg of the SL(2,R)-orbit
of such(Y,α) is very complicated: SL(Y,α) has infinitely many non-equivalent parabolic
points and infinitely many “infinite ends”.

2.5. Classification

The fundamental classification problem of determining when two given translation sur-
faces are in the same SL(2,R)-orbit seems far from being resolved. Indeed, this remains
open even for square-tiled surfaces, with the exception of the stratumH(2).

In the setting of square-tiled surfaces, it suffices to classify theprimitive square-tiled
surfaces: those such that the lattice generated by their relative periods isZ2. One easily
shows that in this setting SL(X,ω)⊂ SL(2,Z). There is an action of SL(2,Z) on the set
of primitive square-tiled surfaces of fixed number of squares,n; two such surfaces are in
the same SL(2,R)-orbit if and only if they are in the same SL(2,Z)-orbit.

In H(2), the position of the Weierstrass points give an invariant for the SL(2,Z)-action.
Informally: given a surface of our type, we develop in such a manner that a singularity
lies at the origin, the six Weierstrass points then each has coordinates that are integers are
half-integers. To be more precise, one explicitly parametrizes the square-tiled surfaces of
H(2), as in [14,52].

PROPOSITION5 [22]. The number of integer coordinate Weierstrass points of a square-
tiled surface ofH(2) is invariant under the action ofSL(2,Z).

If the numbern of square tiles is even, there are two such Weierstrass points; ifn is odd,
there are either three or one such point. The invariant completely classifies the orbits.

THEOREM17 ([22], McMullen). Given an integern� 3; the square-tiled surfaces ofH(2)
form twoSL(2,Z)-orbits if n is odd andn� 5; they form a single orbit if eithern is even
or n= 3.

The theorem was first proved in [22] for primen. McMullen generalized this to not only
square-tiled surfaces, but also so as to give an analogous result for all Veech surfaces of
H(2).
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Fig. 5. A square-tiled surface with SL(X,ω)= SL(2,Z).

Combining Theorem 17 with a counting formula given by [14] shows that the genus
of Teichmüller curves defined by primitive square-tiled surfaces tends to infinity with the
number of tiles. This can be compared with the fact that there are no explicitly known
Teichmüller curves of positive genus arising from non-arithmetic surfaces ofH(2). (One
expects that in fact almost all of these are of positive genus.)

One can also show the group SL(X,ω) for a primitive square-tiled surface is a con-
gruence subgroup of SL(2,Z) only in the case of surfaces of three square tiles. See [44]
for an example of a non-congruence subgroup, and [23] for the general case. Neverthe-
less, there are non-trivial examples of square-tiled surfaces whose group is exactly the full
group SL(2,Z), see [44]. There has been work on this phenomenon by Herrlich, Schmoll,
as well as by Möller. We thank M. Möller for kindly providing Figure 5, which represents
one such surface.

2.6. Questions

We conclude with some more open questions.
1. Is there a general converse to the Veech Dichotomy (as found by McMullen for genus
g = 2)?

2. Which Fuchsian groups are realized as Veech groups?
3. Is there an algorithm for determining the Veech group of a general translation sur-

face?
4. Do there exist non-trivial Veech groups without parabolic elements?
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1. Three definitions of translation surface or flat surface and examples

In this survey article we describe the ergodic theory of flows on translation surfaces. We
relate this theory to the dynamics of the SL(2,R)-action on the moduli space of trans-
lation surfaces. We describe recent results on the diagonal subgroup also known as the
Teichmüller geodesic flow and results on the unipotent flow.

There is considerable overlap of material here with the survey article [4] as well as with
the survey article of T. Schmidt and P. Hubert in this handbook [2].

We are going to give three (equivalent) definitions of translation surface. Equivalently,
these will be called flat surface with trivial linear holonomy or just flat surfaces. The first
definition is via charts. The second definition is the most geometric and is by glued poly-
gons. The third definition is complex analytic. They arise as the flat structure associated to
a holomorphic 1-form on a Riemann surface. We will indicate (but not provide a complete
proof) their equivalence.

LetM be a closed topological surface, of genusg � 1.

DEFINITION 1. A translation surface consists of a finite set of points (the singularity set)
Σ = {x1, x2, . . . , xm} and an open cover ofM − Σ by sets{Uα} together with charts
φα :Uα → R2 such that for allα,β, with Uα ∩Uβ �= ∅,

φαφ
−1
β (v)= v+ c.

At each singular point the surface has a 2πc cone singularity.

Specifically, since the Euclidean metric on the plane is preserved by translations, the
notion of direction and parallel lines makes sense on the complement of the singularity set.
In fact we get a metricds, by pulling back the Euclidean metric on the plane via these
coordinate charts. In this metric geodesics that do not go through singularities are straight
lines in a fixed direction, and such geodesics never intersect themselves, except possibly to
close up.

DEFINITION 2. For each directionθ and each nonsingular pointp define the flowφt (p)
to be the point obtained after moving in the directionθ for time t , starting atp.

The flowφt :X→X preserves the natural Euclidean measure (normalized to have total
area one) on the surface. It is defined for all time only on the set of full measure of points
that do not run into a singularity either in forwards or backwards time. A major part of
these notes will be devoted to describing ergodic properties of this flow.

At each singular point we writeds2 = dr2 + (cr dθ)2, a conical singularity written in
polar coordinates. We requirec to be a positive integer. Forc = 1, we simply recover the
Euclidean metric. Ifc > 1, we have a 2πc cone angle. We can think of a point with a 2πc
cone angle as 2c Euclidean half discs glued together along half lines—for the casec = 2
see Figure 1.

The total angle around each vertex is required to be 2πc, c a positive integer.
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Fig. 1. Flat surface near a singularity.

Geodesics can change direction if they go through a singular point. A pair of straight
lines through the singular point form a geodesic if the angle between them is at least 2π .

Metrically we can also describe these as flat surfaces with conical singularities of the
above type and trivial linear holonomy. The latter means that parallel transport of a vector
around a path missing the singularities comes back to the same vector. This explains why
these surfaces are also calledflat surfaces with trivial linear holonomy.

DEFINITION 3. A saddle connection is a geodesic joining two of the singularities with no
singularities in its interior.

In each coordinate chart it is a straight line in the Euclidean metric. An oriented saddle
connection determines a vector called theholonomy vectorof the saddle connection.

It is a standard fact (see [26]) that between any two points there is a unique geodesic in
any homotopy class. In particular, there is a unique geodesic joining any two singularities
in each homotopy class. The geodesic is a union of saddle connections. We sketch an
argument which says that the set of holonomy vectors of saddle connections is a discrete
subset ofR2. This fact is used in the proof of Veech dichotomy and is implicit in any
discussion of counting problems. (See the articles of Hubert–Schmidt and Eskin in this
handbook.) Another sketch is given in [2].

Lift the metric to the universal cover, to give a complete metric on the hyperbolic plane.
Fix a Dirichlet fundamental domainF for the action of the covering group. LetD be its
diameter. A ball of radiusR+D about a base point inF intersects only a finite number of
translates ofF . Any saddle connection of length at mostR must lift to a saddle connection
joining a singularity inF to a singularity in a ball of radiusR+D. There are only finitely
many such points and hence only finitely many such saddle connections.

As mentioned in the article of P. Hubert and T. Schmidt [2], the SL(2,R) action on flat
surfaces can be defined as postcomposition with charts—we discuss this action in more
detail later.

Our next definition of a flat surface is the most geometric and often useful when we need
to visualize these objects.



Ergodic theory of translation surfaces 531

Fig. 2. Slit torus example.

DEFINITION 4. A translation surfaceis a finite union of Euclidean polygons{∆1,∆2,

. . . ,∆n} such that
• the boundary of every polygon is oriented so that the polygon lies to the left;
• for every 1� j � n, for every oriented sidesj of ∆j there is a 1� k � n and an

oriented sidesk of ∆k so thatsj and sk are parallel and of the same length. They
are glued together in the opposite orientation by a parallel translation. (Note that this
means that as one moves along a glued edge, one polygon appears to the left, the other
to the right.)

It follows that the total angle around each vertex is 2πc, c a positive integer. Note that
when we speak of Euclidean polygons we fix their embedding into a standard Euclidean
plane up to a parallel translation. In particular we distinguish two polygons obtained one
from the other by a nontrivial rotation. Another way to say the same thing is that we equip
a translation surface with a choice of vertical direction.

The rational billiard table examples (see [2]) yield surfaces of this form. However, note
that in general we do not require the angles of the polygons to be rational, as is the case for
the billiards. The best way to see this definition is by considering a few examples:

The first example is a regular octagon with opposite sides identified. This gives rise to
a surface of genus two with one singularity of angle 6π (all the vertices collapse to one
point, yielding an angle 8(3π/4)). This is an example of a Veech surface which satisfies the
Veech dichotomy (see [2]). Namely for any direction, either all the orbits in that direction
are closed or equally distributed.

Another example also gives a surface in genus two but which turns out to have very
different ergodic properties.

Consider a 1× 1/2 rectangle with a barrier of lengthα/2 hanging down from the top of
the rectangle at its midpoint: that is, a vertical line segment from(1/2,1/2) to (1/2,1/2−
α/2). billiards in this polygon gives rise [2] to a surface with opposite sides identified (of
side length two), with two slits of lengthα inside it (see Figure 2). The left side of the
left slit is identified with the right side of the right slit, and the right side of the left slit
is identified with the left side of the right one. The rectangle with slits yields a torus with
two holes, when opposite sides are identified, and when the slits are glued, the result is a
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genus two surface. There are two singularities, each with a 4π cone angle coming from the
endpoints of the glued slit.

In fact this example illustrates the definition by polygons. There are four generalized
7-gons, each of which has six vertex angles ofπ/2 and one angle 2π .

Whenα is rational, the surface is a Veech surface and the Veech group is a finite index
subgroup of SL(2,Z). These are particular examples of arithmetic Veech surfaces.

Now in general, since the gluings of the polygons are realized by parallel translations,
it is clear that a surface satisfying the definition by polygons satisfies the definition by
charts. Conversely, one can show that a translation surface has a triangulation by geodesic
triangles so a surface satisfying the first definition satisfies the second.

The third definition is complex-analytic.

DEFINITION 5. A translation surface is given by a pair(X,ω) whereX is a Riemann
surface andω is a holomorphic 1-form (Abelian differential) onX.

Recall that this means that to each holomorphic chartz is assigned a holomorphic func-
tion f (z) such that in an overlapping chartζ with functiong(ζ ), the relation is

g(ζ )
dζ

dz
= f (z).

In the article of P. Hubert and T. Schmidt [2] they show how to go from a pair(X,ω) to
a collection of charts where the transition maps are translations, i.e., our first definition
(zeroes of the 1-form correspond to singularities, etc.). Specifically in a neighborhood of a
pointp0 which is not a zero ofω there are holomorphic coordinatesz defined by

z(p)=
∫ p
p0

ω

which giveω = dz. In an overlapping neighborhood similarly defined coordinatesz′ will
satisfy

z′ = z+ c

so that the change of coordinates is a translation. At a zero of orderk in appropriate coor-
dinates

ω= zkdz= d
(
zk+1

k + 1

)
and so the surface is locally ak+1 fold cover over the complex plane. This means that the
zero of orderk gives rise to a singularity with cone angle 2π(k + 1).

In this language the (affine) holonomy of a saddle connectionβ coincides with
∫
β
ω =∫

β
dz, where we have identified the complex numbers withR2, and so we can consider the

holonomy to be a complex number (with real and imaginary parts) or as a vector.
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To get from the first definition to this one, simply pull back the natural 1-formdz via
the charts. This defines a holomorphic 1-formω on the surface. The cone singularity gives
rise to a zero ofω.

2. Spaces of translations surfaces and Riemann surfaces

For the rest of this article we will use the notation(X,ω) to refer to a translation surface.
A translation surface has three pieces of topological data: the genus, the set of zeros,

and the multiplicity of the singularities. We can represent the topological data byα =
(α1, α2, . . . , αk), whereαi denotes the order of theith zero. It is classical and in any case
follows from either an Euler characteristic argument or from the Gauss–Bonnet theorem
that

k∑
i=1

αi = 2g − 2.

For example, given the dataα = (2), the surface has genus two with one singularity with
cone angle 6π . Givenα = (1,1), the genus is still two, but with two singularities, each of
cone angle 4π .

We want to consider the space of all translation surfaces with fixed topological data. For
this, we need to define an equivalence relation on such surfaces.

We say that two surfaces are equivalent, if there is an orientation preserving isome-
try from one to the other preserving the given preferred direction. This definition distin-
guishes between polygons that differ by rotations. In the complex analytic definition, it
distinguishes between(X,ω) and(X, eiθω).

DEFINITION 6. Given topological dataα, we define the moduli spaceH(α) as the space
of translation surfaces with topological dataα together with a choice of direction under the
above equivalence relation. If we add the condition that the surfaces have area 1 we denote
the resulting space byH1(α). These moduli spaces are also called strata.

On the other hand for any genusg we may define the Riemann moduli spaceMg as the
space of Riemann surfaces of genusg up to conformal equivalence. Every closed Riemann
surface of genusg > 1 carries a metric of constant curvature−1 in its conformal class, so
Mg is also the space of hyperbolic metrics on a surface up to equivalence by isometries.

For eachα = (α1, . . . , αk), defineg by 2g − 2=∑ki=1αi . There is then a map

π :H(α)→Mg

which sends(X,ω) to X. The map only remembers the complex structure on the surface
defined by the Abelian differential.

As a main motivating example, let us consider the space of tori with specified directions,
i.e.,H(∅). Recall that while two tori differing by a rotation are identical as metric spaces,
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the vertical direction on each torus is distinct, so we do not consider them the same point—
as opposed to the moduli space of Riemann surfacesM1 where these are the same point.

The space of toriH(∅) can also be viewed as the space of unit volume lattice
in R2 (together with a specified direction), which is identified with the symmetric space
SL(2,R)/SL(2,Z) (if one ignores the direction, we get insteadH2/SL(2,Z), the moduli
space of toriM1).

In general the moduli spacesH(α) are not necessarily connected, though each has no
more than three connected components. The components have been classified by Kontse-
vich and Zorich [18].

If we allow reflections as well as translations in gluings (or equivalently, allow transi-
tions to be of the formz  → ±z+ c), we get quadratic differential and the classification is
different.

3. SL(2,R)-action and invariant measures

Recall from the survey paper of Hubert and Schmidt [2] the SL(2,R)-action. In the lan-
guage of polygons, we can define the action as follows. Given a translation surface(X,ω)

(i.e., a finite collection of polygons{∆i}) and a matrixA ∈ SL(2,R), we define the transla-
tion surfaceA · (X,ω) by the collection of polygons{A∆i}. The gluing pattern is preserved
since linear maps preserve parallel lines. One can check that the definition does not depend
on how one represents the surface as a union of polygons.

In the language of complex analysis, the action of the rotation

rθ =
(

cosθ sinθ
−sinθ cosθ

)
is the same as multiplying the Abelian differentialω by eiθ .

The action of a matrix in SL(2,R) does not change the topological data of a flat surface.
Thus, for each stratumH(α), we have an SL(2,R)-action. We are interested in defining a
measureµ onH1(α) which is invariant under this action.

We do this by defining coordinates for this space, and then pulling back natural Lebesgue
measure on the coordinate space. Our first coordinates will arise from our “visual” defini-
tion of the moduli space using polygons.

Suppose{∆i}, a collection of polygons, represents a point inH(α). It is obvious that
there is some finite collection of sidesv1, v2, . . . , vN which determine the surface. For
example, for a flat torus, the surface is determined by two sidesv1, v2 of a parallelogram.
For the surface to be inH1(∅) one has the further condition that the area determined by
the polygon isone, which we denote byv1 ∧ v2 = 1. Another example is the octagon, for
which we need four vectors (once a side is determined, so is its opposite).

Thesevi yield local coordinates forH(α) giving a mapφ :H(α)→ (R2)N . We consider
Lebesgueλ measure on(R2)N , restricted to the hypersurface corresponding to the area 1
surfaces and defineµ= φ∗λ. This measure is independent of the choice of coordinates and
the way the surface is cut into polygons (in particular the number of polygons may change,
but the number of sides necessary to determine the surface does not).
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A more formal way to see this definition, is by starting with the surface(X,ω), and
its set of singularitiesΣ . Consider the relative homology groupH1(X,Σ;Z). This is an
N = 2g + n − 1 dimensional space, wheren is the number of singularities. Fix a basis
{β1, β2, . . . , βN }. Define coordinates for(X,ω) by {∫

βi
ω} ∈ R2N . Once again consider

Lebesgue measure on the image of this map, and pull it back to get a measure onH(α).
This is more easily seen to be invariant of choices—in particular, any change of basis is a
determinant one matrix. For the same reason it is invariant under the SL(2,R)-action.

Returning to the torus, recall that the space of tori is

H1(∅)= SL(2,R)/SL(2,Z).

It has finite volume because SL(2,Z) is a lattice in SL(2,R). We can see this directly be-
cause the space of tori (without normalization) is simply the set of all pairs of noncolinear
vectorsv1, v2 ∈ R2. This space clearly has infinite Lebesgue measure. When restricting
to the area one tori, the space is noncompact, since the vectorv1 can be arbitrarily short.
However the spaceH1(∅) has finite volume because of the easily proven fact:

µ
{
(v1, v2) ∈ R2 ×R2: |v1 ∧ v2| � 1

}
<∞.

A similar computation explains the finite measure in general. We will sketch this expla-
nation. In A. Eskin’s survey article [1] he explains how to actually compute the measures
of these spaces.

On any flat surface(X,ω), consider a closed geodesic in some direction which does
not hit any singularities. Then there is a cylinder, containing this curve, which is filled
with closed curves, parallel of the same length. If we make it as large as possible, it is
called a metric cylinder. Ifg > 1, the boundary of the metric cylinder is a union of saddle
connections. It turns out that for each genusg, there is a universal constantC(g) such that
if diam(X,ω) � C(g), there is a metric cylinder on the surface such that the distanceh

across the cylinder satisfiesh ∼ diam(X,ω); that is, they are comparable up to a definite
factor.

Since the measure is defined by the holonomy along saddle connections, the measure of
the part of moduli space corresponding to surfaces of diameter at mostC(g) is finite. On the
part of the moduli space consisting of surfaces with large diameter, the above consideration
says that these (area 1) surfaces have cylinders with small circumference and large distance
across them. We can take as part of the basis for the homology a curve parallel to the
cylinder with holonomyv1 and a curve across the cylinder with holonomy vectorv2. But
recalling that

µ
{
(v1, v2) ∈ R2 ×R2: |v1 ∧ v2| � 1

}
<∞,

we have that the measures of these “cusps” are finite, and thus we have the following
theorem. Complete proofs can be found in [28] and [22].

THEOREM 1. For each stratumH1(α), µ(H1(α)) <∞.
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4. Ergodicity of flows defined by translation surfaces

In this section we begin the discussion of the properties of the flowφt defined for each
directionθ .

To avoid the problem of measures which are concentrated on the singular set, we con-
sider only measures supported on thepunctured surfaceX−Σ .

The first notion is purely topological. We will say that the flow in directionθ is minimal
if there are no closed curves in directionθ . Equivalently, other than a finite number of
saddle connections, every orbit that does not run into a singularity is dense, and if an orbit
runs into a singularity in forward (respectively backwards) time then it is dense in backward
(respectively forward) time.

Recall that a flow is ergodic if any invariant set has measure zero or measure one. Letν

be surface area. In this case the Birkhoff ergodic theorem states that forf ∈ L1(X, ν), and
for almost allp,

lim
T→∞

1

T

∫ T
0
f
(
φt (p)
)
dt =
∫
X

f dν.

If this convergence holds for every pointp, and every continuous functionf , the flow is
said to be uniquely ergodic. This is equivalent to saying that the measureν is the unique
normalized flow-invariant measure onX \Σ .

For motivation, we once again turn to the case of the torusR2/(Z ⊕ Z). If the direc-
tion θ has rational slope, then every orbit is closed. On the other hand, ifθ has irrational
slope, then the flow is minimal, and moreover by the classical theorem of Weyl, the flow is
uniquely ergodic.

However, even in the case of the torus there is a flow constructed by Furstenberg [13],
which is minimal, but not uniquely ergodic. For a general treatment of the subject of
nonunique ergodicity, see Section 14.5 of the book [15] and Sections 12.3 and 12.4 of [14].

We now want to exhibit a minimal nonuniquely ergodic example on a translation surface
of genus 2. Veech [27] considered the following dynamical system. Take a pair of unit
circles and mark off a segment of lengthβ on each circle in the counterclockwise direction
with one endpoint at(1,0). Start on one circle and rotate counterclockwise by angleθ

until the point lands in the segment. Then switch to the corresponding point on the other
circle, rotate byθ until the orbit lands in the segment again, switch back to the first circle
and so forth. Veech showed that for any irrationalθ with unbounded partial quotients in
its continued fraction expansion, there are irrationalβ so that the dynamical system is
minimal, but not uniquely ergodic. What happens is that sets of orbits of positive measure
spend asymptotically more than half their time on one circle and less than half the time on
the other.

This dynamical system can be seen to be equivalent to the billiard flow on the billiard
table with a slit described in Figure 2. Recall, it was given by a rectangular 1× 1/2 table
with a slit of lengthα/2 = (1− β)/2 hanging down from the midpoint of the top side.
The surface(X,ω) associated to has genus two, with two singular points, each with angle
4π . It is formed from a 2× 1 rectangle with a pair of slits and appropriate identifications.
Now take two circles in the vertical direction. The first follows one side of the slit and then



Ergodic theory of translation surfaces 537

Fig. 3. Sheet interchange.

a vertical segment of lengthβ joining the two singularities and which passes through the
point (1/2,1)∼ (1/2,0). The second follows the other slit and passes through(3/2,1)∼
(3/2,0). The first return map to those circles of a flow in directionθ , gives the dynamical
system described by Veech.

In this section we show how to build these minimal nonergodic examples geometrically.
Additional details can be found in [4].

THEOREM 2. Whenβ is irrational there are uncountably many directionsθ such that the
flow in directionθ is minimal and not ergodic.

In order to prove the theorem we will view the surface(X,ω) differently. Cut the surface
along the pair of dotted vertical lines that go fromP toQ in Figure 2. The result is a pair
of tori each with a hole consisting of the pair of vertical lines. Each torus then can be
thought of as a standard square toriT slit along a segmentw0 going fromp1 = (0,0) to
p2 = (0, α). The surface(X,ω) is reformed by gluing the tori together pairwise alongw0.
The union of this pair of slits partitions the surface(X,ω) into two piecesAw0 andBw0 of
equal area.

We will look for other slitsw′ defining(X,ω). That is, we want another pair of saddle
connectionsw′ joining p1 to p2 so that their union also splits(X,ω) into two pieces of
equal area. The new slitw′ will cut the original slit, and so the new partitionAw′ ∪Bw′ of
(X,ω) will differ from the original.

On the universal coverR2 of the torusT , the new slitw′ is a line from(0,0) to (m,α+n)
for some integersm,n. The condition that the pair of slitsw′ divide (X,ω) is equivalent to
the condition thatm andn are both even. Equivalently, onT ,w′ intersectsw an odd number
of times in its interior. It is also equivalent to saying thatw andw′ are homologous mod(2)
on T . Then the change in partition on(X,ω) measured byc = (Aw ∩ Bw′) ∪ (Bw ∩Aw′)
is a union of an even number of parallelograms with sides onw andw′ (here thought of as
vectors). Thus the area ofc is bounded by 2|w×w′| (see Figure 3).
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The main step in the proof is to find uncountably many sequences{wn} of vectors deter-
mining partitions{An,Bn} such that

∞∑
n=1

ν(An+1�An) <∞.

Hereν is area on the surface. The directions of any sequence of these vectors will converge
to a limiting directionθ . Assuming that such sequences can be found, we show first that
the flow in directionθ is not ergodic.

Let

A∞ = lim inf An = {x: ∃N : x ∈An, ∀n�N}

and letB∞ be defined similarly. The condition
∑
ν(An+1�An) <∞ and the Borel–

Cantelli lemma imply

ν{x: x ∈An�An+1 infinitely manyn} = 0

soν((X,ω)\(A∞ ∪B∞))= 0. By symmetry, we getν(A∞)= ν(B∞)= 1.
Now we claim thatA∞ is a.e. invariant under the flow{φt } in directionθ , i.e.,

ν
(
φt (A∞)�A∞

)= 0

for all timest . Assume that the claim is false so that there is someδ > 0 andt0 such that

ν
(
φt0(A∞)�A∞

)
� δ > 0. (1)

Without loss of generality we may assume that the limiting direction is vertical. It fol-
lows from the summability condition on the areas that

hn→ 0,

wherehn is the horizontal component of the holonomy ofwn. (Recall the holonomy is a
vector.) Pickn such that

ν(An�A∞) < δ/8 (2)

and

t0hn < δ/8. (3)

The flow invariance of the measure, (2), (1) and the triangle inequality imply

ν
(
φt0(An)�An

)
> δ − 2δ/8= 3δ/4.
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Thus at timet0 at least 3δ/8 of the measure ofAn flows to its complement. However if
a point crosseswn, the boundary ofAn at time t0 of the flow, its vertical distance town
must be at mostt0. The set of points whose vertical distance town is at mostt0 lie in a
parallelogram whose sides arewn and a vertical segment of lengtht0. The area of such a
parallelogram ishnt0< δ/8 by (3). We have a contradiction, proving the claim.

From the claim there is an argument that says there is a setA′ with ν(A′ �A∞)= 0 such
thatA′ is φt invariant. This implies that the flow in directionθ is not ergodic completing
the first step.

Let us return to finding an uncountable number of sequences ofwn satisfying the con-
dition

∑
n ν(An+1�An) <∞. We wish to show that the limiting directions are distinct

for then we will have constructed an uncountable number of nonergodic directions. This
will guarantee an uncountable number ofminimal nonergodic directions, since in a non-
minimal direction there is a saddle connection, and there are only countably many saddle
connections.

Fix any sequenceρn such that
∑
ρn <∞. We will build an infinite directed tree with

each “parent” vertexwj leading to a pair of “child” verticeswj+1. At level j there will be
2j vertices. Each vertex will correspond to a pair(pj , qj ) which will yield a slit joining
(0,0) to (pj , qj + α).

Letw0 = (0, α) and suppose inductively we have found 2j vectorswj = (pj , qj +α) at

stagej . For any pair(pj , qj ) form the ratio
qj+α
pj

, the slope of the slit. Defineδj to be the
minimum distance between the slopes of any pair of distinctwj at levelj . For any(pj , qj )
we will look for integer solutionsr, s of

2
∣∣pj s − (qj + α)r∣∣< ρj .

Sinceα is irrational, so is each
pj
α+qj , and so there are infinitely many coprime solutions

(r, s) of the above inequality. Choose any two sets of solutions(rj , sj ) so that

ρj

(qj + α)(qj + α+ 2sj )
� δj /4

and for each, setpj+1 = pj + 2rj ; qj+1 = qj + 2sj and then

wj+1 = (pj+1, qj+1 + α).

A direct calculation also shows that

ν(Aj+1�Aj) < 2|wj+1 ×wj | � 4
∣∣pj sj − (qj + α)rj ∣∣< 2ρj ,

giving the desired summability condition.
The proof will be complete when we show that the directions of a sequence ofwj con-

verge and distinct sequences give distinct limiting directions. A calculation shows∣∣∣∣ pjqj + α − pj+1

qj+1 + α
∣∣∣∣� δj /4;
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that is, the distance between the slopes of a parent and child is at mostδj /4. The triangle
inequality says that the distance between slopes of children of the same parent is at most
δj /2 and soδj+1< δj/2.

Since the distance between the slopes of a parent and a child goes to 0, the slopes of the
verticeswj of any geodesic in the tree converges.

We finally show that limits of slopes ofwj along distinct geodesics are different. For
suppose two geodesicsl1, l2 are different for the first time at levelj with verticesw1

j ,w
2
j

(thought of as parents). Letθ1, θ2 be the limiting slopes of the vertices alongli . Since the
slope of each child at levelm + 1 is within δm/4 of the slope of the parent at levelm,
summing the geometric series says that the difference of the slope ofθi and the slope of
wij is smaller thanδj /2. Since the slopes ofw1

j ,w
2
j are at leastδj apart, we must have

θ1 �= θ2.

5. Further results on unique ergodicity

The above construction was generalized recently [11] to show that on any translation sur-
face in genus 2 which is not a Veech surface there is some direction for which the flow
is minimal and not ergodic. A natural question is which translation surfaces have minimal
nonergodic directions. Veech surfaces do not, due to the Veech Dichotomy (which was
proved in [2]).

The existence of minimal nonergodic directions led to work about their prevalence. For
each(X,ω), define NE(X,ω) to be the set ofθ ∈ [0,2π) such that the flowφt in the θ
direction is not ergodic. Equivalently, NE(X,ω) is the set ofθ such that the flowφt in the
vertical direction ofeiθω, is not ergodic. In [16] it was shown that the Lebesgue measure
of NE(X,ω) is 0. The idea of the proof is the following. Let

rθ =
(

cosθ sinθ
−sinθ cosθ

)
be the rotation group in SL(2,R) and let

gt =
(
et 0
0 e−t

)
be the diagonal group.

The action of the diagonal subgroup is known as Teichmüller geodesic flow, since im-
ages of these orbits under the projectionπ to the Riemann moduli spaceMg are geodesics
in the Teichmüller metric onMg .

One shows that for larget most points on the circlegt rθ (X,ω) are not near the cusp in
moduli space. This is combined with the following theorem [21] (whose proof is sketched
in the next section).

THEOREM 3. Suppose(X,ω) is a translation surface. Suppose the flow in the vertical
direction is not uniquely ergodic. ThenXt = πgt (X,ω) eventually leaves every compact
set inMg . That is, the Teichmüller geodesic associated to(X,ω) is divergent.
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We note that this theorem is also one of the ingredients in the proof of the Veech di-
chotomy [2].

We continue with some remarks about Theorem 3. It is a basic fact that the moduli space
Mg is noncompact. The reason is that one may have a sequence of surfaces and curves on
those surfaces whose lengths in the hyperbolic metric (assumeg > 1) go to zero. Such
surfaces cannot converge to a compact surface. On the other hand it is a basic fact [24]
that this is the only way to leave compact sets inMg . Namely, ifXn is a sequence that
eventually leaves every compact set, then there is a sequence of curvesγn such that the
length ofγn (in the hyperbolic metric onXn) goes to zero.

It is easy to see that if there is a closed leaf in the vertical direction (in particular, the
flow is not minimal) ofω, thenXt eventually leaves every compact set ofMg . Namely,
sincegt shrinks lengths in the vertical direction by a factor ofet , the length in the flat
metric of gt (X,ω) of any closed vertical leaf goes to 0. If there were a subsequence of
Xt converging to a compact surfaceX0, there would be a further subsequence ofgt (X,ω)

converging to some(X0,ω0). This(X0,ω0) would assign 0 length to a closed curve, which
is impossible.

In the minimal case there are no closed vertical leaves. This means that under the flowgt
the length of anyfixedcurveγ must go to infinity in the flat metric ofgt (X,ω) ast→∞.
What the Theorem 3 says is that there is a sequence of distinct simple closed curvesγn
such that for anyε > 0, for sufficiently larget there is a curveγn = γn(t) such that the
length ofγn in the flat metric ofgt (X,ω) is smaller thanε.

The measure 0 result was generalized by Veech [29] to Borel probability measures on
[0,2π) that satisfy certain growth conditions. Normalized Cantor–Lebesgue measure on
the Cantor middle third set is an example of such a measure.

Further work concerns the Hausdorff dimension of NE(X,ω). In [22] it was shown that
for each component of each stratum (other than several low dimensional exceptional cases
covered by the Weyl theorem) there is aδ > 0 such that forµ a.e.(X,ω) in the component,
NE(X,ω) has Hausdorff dimensionδ. The construction of these nonergodic directions on
a generic surface uses a method similar to that described in the Veech example.

In [21] it was shown that the Hausdorff dimension of NE(X,ω) is always bounded by
1/2. The proof of this result is also based on Theorem 3 and estimates on counting saddle
connections. As discussed above, Theorem 3 says that forθ ∈ NE(X,ω), for all large times
there is a short saddle connection. Typically there may be many such short intersecting
saddle connections at any given time, and this collection of short saddle connections change
with time. However one can make a choice of a short saddle connection in this collection
at any time so that successive choices aredisjoint. Thus the proof amounts to estimating
the size of the set of anglesθ such that along the orbitgt rθ (X,ω) there is a sequence of
saddle connections that become successively short, and such that each is disjoint from its
predecessor. This problem can be reduced to counting problems for saddle connections.
There is an estimate [20,12] which says that the number of saddle connections of length
T grows at most quadratically inT , and another estimate which says for fixed saddle
connection of lengthl, the number ofdisjointsaddle connections of length at mostL grows
roughly linearly inL/l. The comparison of linear growth and quadratic growth accounts
for the dimension 1/2.
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Y. Cheung [8] has shown that this estimate is sharp. Specifically, suppose an irrationalα

satisfies a Diophantine condition that for somes > 0 there are no fractionsp/q that satisfy

|α − p/q|< 1

qs
. (4)

Then for the rectangular table with a slit of lengthα/2 described in Section 4, dimNE(X,ω)
= 1/2.

6. Boshernitzan’s Theorem and sketch of proof of Theorem 3

Before we turn to the proof of the Theorem 3, we state an alternative criterion for diver-
gence, given by Boshernitzan [7], formulated in terms of interval exchange map.

If we consider the flow in the vertical direction, then by considering the first return to a
piece of horizontal transversalI , we obtain an interval exchange mapT , whose discontinu-
ity points correspond to leaves that run into singular points before returning toI . Suppose
T exchangesk intervals. LetT (n) be thenth iterate ofT . It will be an interval exchange on
approximatelykn intervals. Letmn denote the length of the shortest of these intervals.

THEOREM 4 [7]. If T is not uniquely ergodic, thennmn→ 0.

This is slightly weaker than Theorem 3 as it only guarantees divergence of the geodesic
in a stratum, whereas Theorem 3 guarantees divergence in moduli space.

To explain the difference, in a stratumH(α1, . . . , αk) wherek > 1, one may leave com-
pact sets by a sequence of translation surfaces such that a pair of singularities come close
together. If no closed curve becomes short then one stays in a compact set ofMg .

Now the reason that the criterionnmn → 0 implies divergence in the stratum is as fol-
lows. The discontinuity points onI of the interval exchangeT (n) are points of the form
T (−l)(x) for l � n, wherex is a discontinuity point ofT . Hence each interval yields a
saddle connection crossing it such that the vertical component of its holonomy has length
O(n). However, the short interval yields a saddle connectionγn such that in addition, the
horizontal component of its holonomy isO(mn). Sincenmn → 0, for some interval of
times t , the length of both the vertical and horizontal component ofγn in the metric of
gt (X,ω) are small. One can show that for any timet there is such aγn.

We are now ready to sketch the proof of Theorem 3. Let{φt } denote the vertical flow
of ω. As explained above, we can assume it is minimal but not uniquely ergodic. The set
of invariant probability measures forφt is a finite dimensional convex set and the extreme
points are mutually singular ergodic measures. For sake of argument assume there are
exactly twoν1, ν2. (The general case is almost the same.) Sinceνi is invariant under the
vertical flow, for any horizontal intervalI , the measureνi decomposes into

νi = µi × dy,
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whereµi is an ergodic measure onI invariant under the first return mapψ andy is the
coordinate in the vertical direction. Since theνi are mutually singular, so are theµi andI
can be chosen so that

µ1(I ) �= µ2(I ).

Let χI be the indicator function ofI . We sayx is generic forµi if

lim
N→∞

1

N

N−1∑
n=0

χI
(
ψn(x)

)= µi(I ).
Thus ifxi is a generic point ofµi then

lim
N→∞

1

N

N−1∑
n=0

χI
(
ψn(x1)

) �= lim
N→∞

1

N

N−1∑
n=0

χI
(
ψn(x2)

)
. (5)

It is a fact thatµi almost all points ofI are generic forµi .
We argue by contradiction. If the theorem is false, there is a sequence of timestn→∞

andX0 such thatXtn → X0 ∈Mg . Since the part ofH1(α) that lies over a compact set
of Mg is also compact, by passing to further subsequences, we can assume there isω0 an
Abelian differential onX0 such thatgtn(X,ω)→ (X0,ω0).

Let xi ∈ I be generic forµi , i = 1,2. We follow the image ofxi under the flowgtn
and denote its image bygtn(xi). Note that each term in the sequencegtn(xi) is a point on
a different Riemann surfaceXi that evolves over time. Since the surfaces in question are
compact, by passing to further subsequences we can assume that there existsyi ∈X0 such
that gtn(xi)→ yi . Since the surfaceX0 is connected, and the set of generic points is of
full measure for eachµi and each of these sets is invariant underφt , it is not hard to show
that we can pickxi generic forµi such thaty1, y2 lie on the same horizontal lineh1 of the
limiting translation surface(X0,ω0). We will show that this contradicts (5).

Let l1, l2 short vertical lines of(X0,ω0) throughy1, y2 and letR be the Euclidean rec-
tangular box with vertical sidesl1 and l2 and one horizontal sideh1. If l1, l2 are chosen
small enough,R will have no singularities in its interior. Then the number of intersections
of every connected horizontal line of(X0,ω0) with l1 will differ with the number of its
intersections withl2 by at most 1.

For i = 1,2, let li,n denote bounded segments of the vertical leaf ofgtn(X,ω) through
gtn(xi) of equal length such thatli,n → li . Thus forn sufficiently large, with small error,
every horizontal segment ofgtn(X,ω) intersectingl1,n will intersectl2,n. In particular, this
is true for the long horizontal segmentgtn(I ). Pulling back bygtn , we see thatg−1

tn
(li,n) are

very long vertical leaves of the same length with respect to the original(X,ω) throughx1
andx2, such that the ratio of the number of their intersections withI is approximately 1.
But this is a contradiction to (5).

We describe how the Veech nonergodic example described earlier fits into the above
theorem. The theorem says that for all large enough timet there is a curveγ (t) onXt with
small hyperbolic length; the curve depends on the time. There is a sequence of dividing
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curves formed from slitswj = (pj , qj +α) such that eachwj becomes short in hyperbolic
length for afinite interval of time before it becomes long. It is a standard fact in hyperbolic
geometry [6] that intersecting curves are never simultaneously short, so the intervals of
times that different slits are short in hyperbolic length are disjoint. The slit curves therefore
cannot account for all the short curves in the familyXt . What happens is that each slit
divides the surface into a pair of tori, and before that slit curve becomes long, a(rj , sj )

curve on each torus becomes short, where recall from the construction,pj+1 = pj + 2rj ,
qj+1 = qj +2sj . This also occurs for a finite interval of time before becoming long. It stays
short until the next slit becomes short, defining a new pair of tori and the process repeats.

One way to think about why such examples are impossible in genus one, is that on a
torus there are no disjoint nonhomotopic curves.

7. Further results on dynamics of actions of subgroups of SL(2,R)

The first set of results have to do with the Teichmüller flow. The converse to Theorem 3
is not true. It is possible to construct examples of divergent geodesics such that the flow
φt in the vertical direction is uniquely ergodic [10]. Another interesting line of work has
concerned the rate of divergence of geodesicsgt (X,ω). Cheung [9] has recently shown
that one can find geodesics with arbitrarily slow rates of divergence. Let(X,ω) ∈H(1,1)
be a surface which is a double cover over the torus and which is not a Veech surface.
(An example is given by the slit torus considered in Section 4 with irrationalα.) Then
given any functionR(t)→∞ there is a directionθ so thatπgt (X, eiθω) diverges in moduli
space inMg , and such that

τ
(
πgt
(
X,eiθω

)
,π
(
X,eiθω

))
<R(t)

for all larget . Hereτ(·, ·) is the Teichmüller metric onMg .
He also showed that ifα satisfies (4) ande0 > max(2, s), then there is a Hausdorff

dimension 1/2 of directionsθ ∈ NE(X,ω) such that the sublinear rate of divergence

r+(θ)= lim sup
t→∞

logτ(πgt (X, eiθω),π(X, eiθω))

logt
� 1− 1

e0

holds. It would be interesting to know if slow rates of divergence in general implies unique
ergodicity.

It is known [19,28] that the flowgt is ergodic with respect to the natural “Lebesgue”
measureµ on each component of each stratum. For the principal stratum (all simple zeroes)
this implies in particular that the projection to the Riemann moduli space of almost every
geodesic is dense. Thus the set of cobounded geodesicsgt (X,ω); those geodesics whose
projection to the moduli space remain in some compact set (depending on the geodesic)
has measure 0. One can then ask about the Hausdorff dimension of the set of cobounded
geodesics.

The case ofg = 1 is classical. SupposeX is the standard square torus andω is the
1-formei(π/2−α) dz. The lines in directionα are vertical with respect toω. The behavior of
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gt (X,ω) in the moduli space SL(2,R)/SL(2,Z) is determined by the continued fraction
expansion ofα. In particular, the orbit is cobounded iffα has bounded partial quotients.
The set of these irrational numbers has measure 0 and Hausdorff dimension 1.

The result for general(X,ω) is recent work of Kleinbock and Weiss [17]. They show
that for any(X,ω), the set ofθ ∈ [0,2π) such thatgt (X, eiθω) is cobounded has Hausdorff
dimension 1.

Other interesting and important recent work in the dynamics in moduli space has been
inspired by the dynamics of flows of subgroups ofG acting onG/Γ , whereG is a Lie
group andΓ is a lattice subgroup. (See [3] for a survey.)

The most important analogy is with the horocycle flow

hs =
(

1 s

0 1

)
.

The Kleinbock–Weiss theorem is in turn based on work of Minsky and Weiss [23] on
the horocycle flow. LetH denote this subgroup. It is a basic principle thatgt orbits can be
quite wild. For example, the closure can be a Cantor set. On the other handH orbits are
constrained. In SL(2,R)/SL(2,Z) every horocycle orbit is either closed or dense. It is a
basic question in the subject to find allH orbit closures of points(X,ω) and all measures
invariant under the action ofH . (See the article by Eskin in these proceedings for more on
this problem, which one can call the Ratner problem in moduli space.)

Veech [29] showed that horocycle orbits do not diverge in the stratum. Minsky and
Weiss gave a quantitative version of this result which shows that horocycle orbits spend
most of their time in a compact set. To explain their result, introduce the terminology of
l(γ, (X,ω)) to represent the length of the saddle connectionγ with respect to the metric of
(X,ω), andKε the set of(X,ω) such that for every saddle connectionγ , l(γ, (X,ω))� ε.

THEOREM 5. There are positive constantsC,α,ρ0 depending only on the topology of
the surface such that if(X,ω), an interval I ⊂ R and 0 � ρ � ρ0 satisfy the following
condition:

• for any saddle connectionγ there iss ∈ I such thatl(γ,hs(X,ω))� ρ,
then for anyε > 0,

∣∣{s ∈ I : hs(X,ω) /∈Kε}∣∣� C( ε
ρ

)α
|I |.

Another recent result of Smillie and Weiss [25] classifiesminimalsets for the horocycle
flow. A set is minimal if it is invariant, closed, and there is no proper invariant closed subset.
The authors first describe examples of minimal sets and then show thateveryminimal set
is given by such an example. To describe the examples suppose in the horizontal direction
all leaves of(X,ω) are closed so that(X,ω) decomposes into a union of cylinders each of
which is swept out by closed horizontal leaves. LetO =H(X,ω). Then

• Every (Y,σ ) ∈ O admits a cylinder decompositionC1 ∪ · · · ∪ Cr where eachCi is
swept out by closed horizontal leaves.
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• There is an isomorphism betweenO and ad dimensional torus whered is the di-
mension of theQ linear subspace ofR spanned by the moduli ofC1, . . . ,Cr . The
isomorphism conjugates theH -action onO with a one parameter translational flow.

• The restriction of theH -action toO is minimal.
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1. Introduction

The Kontsevich–Zorich cocycle, introduced in [25], is a cocycle over the Teichmüller flow
on the moduli space of holomorphic (quadratic) differentials. The study of the dynamics
of this cocycle, in particular of its Lyapunov structure, has important applications to the
ergodic theory of interval exchange transformations (i.e.t.’s) and related systems such as
measured foliations, flows ontranslation surfacesand rational polygonal billiards (see the
article by H. Masur [5] in this handbook). The Kontsevich–Zorich cocycle is a continuous-
time version of a cocycle introduced by G. Rauzy [35] as a “continued fractions algorithm”
for i.e.t.’s and later studied by W. Veech, in his work on the unique ergodicity of the generic
i.e.t. [38], and A. Zorich [45,46] among others.

1.1. Deviation of ergodic averages and other applications

Zorich (see [44,46,47]) made the key discovery that typical trajectories of generic (ori-
entable) measured foliations on surfaces of higher genus (or equivalently of generic i.e.t.’s
with at least 4 intervals) deviate from the mean according to a power law with exponents
determined by the Lyapunov exponents of the cocycle.

In [45] he began a systematic study of the Lyapunov spectrum of the cocycle and con-
jectured, on the basis of careful numerical experiments, that all of its Lyapunov exponents
are non-zero and simple. He also observed that, as a consequence of the close connection
between the cocycle and the Teichmüller geodesic flow, the simplicity of the top exponent,
sometimes called thespectral gapproperty, is equivalent to the (non-uniform) hyperbolic-
ity of the Teichmüller flow, which had been proved earlier by W. Veech [40].

The applications of the Kontsevich–Zorich cocycle to the dynamics of i.e.t.’s and related
systems are not limited to the deviation of ergodic averages. The spectral gap property of
the cocycle also plays an important role in recent results of Marmi, Moussa and Yoccoz
[27,28] on thecohomological equationfor generic i.e.t.’s, which improve on previous work
of the author [19].

In a different direction, A. Avila and the author [7] have recently shown that the posi-
tivity of the second exponent (for surfaces of higher genus) implies that almost every i.e.t.
which is not a rotation is weakly mixing and that the generic directional flow on the generic
translation surface of higher genus is weakly mixing as well. This result answers in the
affirmative a longstanding conjecture on the dynamics of i.e.t.’s. Special cases of the con-
jecture were earlier settled by A. Katok and A. Stepin [24] (for i.e.t.’s on 3 intervals) and
W. Veech [39] (for i.e.t.’s on any number of intervals, but with special combinatorics).

1.2. Renormalization for parabolic systems

The role of the Kontsevich–Zorich cocycle can be explained by the somewhat vague obser-
vation that it provides arenormalization dynamicsfor i.e.t.’s (and related systems). Such
systems provide fundamental examples ofparabolicdynamics, which by definition is char-
acterized by sub-exponential (polynomial) divergence of nearby orbits.
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All systems with behavior intermediate betweenelliptic, characterized by no or “very
slow” divergence of nearby orbits, andhyperbolic, characterized by exponential divergence
of nearby orbits, can be roughly classified as parabolic. A classical example of parabolic
dynamics is the horocycle flow (on a surface of constant negative curvature). For i.e.t.’s
(and related systems) there is no infinitesimal divergence of orbits, but parabolic orbit
divergence is produced over time by the presence of singularities.

Key generic features of parabolic dynamics include unique ergodicity, polynomial devi-
ation of ergodic averages from the mean and presence of invariant distributional obstruc-
tions, which are not measures, to the existence of smooth solutions of the cohomological
equation. The elliptic, parabolic and hyperbolic paradigms are described in depth in the
survey by B. Hasselblatt and A. Katok [3] in this handbook.

Parabolic (and elliptic) systems are often studied by means of appropriate renormaliza-
tion schemes which enable to understand the dynamics of the generic system in a given
family through the study of an auxiliary hyperbolic system. The hyperbolic system (renor-
malization) can in turn be studied by means of the well-developed tools of hyperbolic
theory (Lyapunov exponents, invariant manifolds, Pesin theory, Lifschitz theory).

The Teichmüller flow and the Kontsevich–Zorich cocycle (and related systems such as
the Rauzy–Zorich induction [35,45] or Veech “zippered rectangles” flow [38] and the cor-
responding cocycles) provide an effective renormalization scheme for i.e.t.’s and related
systems.

Other well-known examples of renormalization include the classical Gauss map, which
renormalizes rotations of the circle, and the geodesic flow (on a surface of constant negative
curvature), which renormalizes the corresponding horocycle flow.

A tentative systematic approach to renormalization for a class of parabolic flows of
algebraic nature, called “pseudo-homogeneous” flows, which includes conservative flows
on surfaces, classical horocycle flows and nilflows in dimension 3, has been proposed by
the author in [20].

1.3. Contents

In this article we outline the author’s proof [21] of a substantial part of theZorich conjec-
tureon the Lyapunov spectrum of the Kontsevich–Zorich cocycle.

ZORICH CONJECTURE. The Lyapunov exponents for the canonical absolutely continuous
invariant measure on any connected component of any stratum of the moduli space are all
non-zero and distinct.

In [21] we have proved that the exponents are all non-zero, hence the cocycle is by
definition non-uniformly hyperbolic. The full Zorich conjecture, which affirms that the
Lyapunov spectrum issimple, that is, all Lyapunov exponents are distinct, was left open
in [21] in genus higher than 3. A proof based on ideas different from ours has been recently
announced by A. Avila and M. Viana [8]. In this outline, we have chosen to restrict our-
selves to the proof of the positivity of the second exponent (Corollary 6.3) which is easier
to explain and already contains all the main ideas of our method. As we have mentioned
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above, this is the key property in applications to i.e.t.’s (deviations of ergodic averages,
weak-mixing). In passing we give a new, rather elementary,completeproof of the spectral
gap property (Theorem 2.2).

We then present a rather unexpected example of anSL(2,R)-invariant measure sup-
ported on a closed Teichmüller disk in genus 3 for which the second and the third Lyapunov
exponents are zero (Corollary 7.4). This example shows that (in genus greater than 3) the
Zorich conjecture does not hold for allSL(2,R)-invariant measures on the moduli space.
The significance of this conclusion is best understood in the perspective of the ergodic
theory ofrational polygonal billiards. In fact, for the generic directional flow on a fixed
rational polygonal billiard the questions on deviation of ergodic averages and weak mix-
ing are wide open, except for special cases, as a consequence of the fact that holomorphic
differentials arising from rational billiards form a zero Lebesgue measure subset of the
moduli space (see the survey by H. Masur and S. Tabachnikov [6] in this handbook on the
dynamics of rational polygonal billiards).

Finally, we present the bulk of our proof of a representation theorem forZorich cycles
(Theorem 8.2). The phase space of the Kontsevich–Zorich cocycle is a (orbifold) vector
bundle over the moduli space of holomorphic (quadratic) differentials on Riemann surfaces
with fiber at each holomorphic differential given by the real homology (or cohomology)
of the underlying Riemann surface. This bundle is sometimes called thereal homology
(or cohomology) bundle. Zorich cycles (or cocycles) are the homology (or cohomology)
classes forming the invariant stable/unstable space of the Kontsevich–Zorich cocycle. For
a generic (holomorphic) quadratic differential, leaves of the horizontal/vertical measured
foliation “wind around a surface” deviating from a straight line (spanned by the Schwartz-
man’s asymptotic cycle) in the direction of Zorich cycles in the real homology of the sur-
face (see [44,47] or [48, Appendix D]).

We prove that Zorich cycles can be represented in terms of special closed currents on
the surface (in the sense of de Rham) related to the horizontal/vertical measured foliation,
calledbasic currents. Basic currents for measured foliations are in turn closely related to
invariant distributionsappearing as obstructions to the existence of smooth solutions of
the cohomological equation for directional flows on translation surfaces or for i.e.t.’s [19,
27,28].

1.4. Organization

In Section 2 we review some background on the dynamics of the Teichmüller flow on the
moduli space of holomorphic (quadratic) differentials.

In Section 3 we give our definition of the Kontsevich–Zorich cocycle and state the main
theorem on its Lyapunov spectrum (Theorem 3.1).

In Section 4 we derive the variational formulas which describe the evolution of coho-
mology classes and their norms under the action of the cocycle (Lemmas 4.2 and 4.3).

In Section 5 bounds (upper and lower) on the second Lyapunov exponent are derived
from the variational formulas of Section 4. The upper bound is easily obtained and allows
us to immediately prove the spectral gap property (Theorem 2.2). The proof of the lower
bound is harder since there are subtle cancellations.
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Following [25] we take a harmonic analysis point of view (boundary behavior of har-
monic functions, Brownian motion) on the generic Teichmüller disk which happens to
be an isometric copy of the Poincaré disk. In concrete terms, we compute formulas for
the hyperbolic gradient and Laplacian of the norm of a (fixed) cohomology class along a
Teichmüller disk (Lemma 5.2). These formulas allow us to prove a lower bound for the
second exponent in terms of the lowest eigenvalue of a Hermitian form which represents
a ‘Hodge curvature’ of the real cohomology bundle. However, we have yet to prove that
such a bound is non-trivial, that is, strictly positive. In fact, the Hodge curvature is degen-
erate on a real analytic subvariety of codimension 2 of the moduli space of holomorphic
differentials.

In Section 6 we describe such a subvariety that we have called thedeterminant locus
since it coincides with the locus where the determinant of the Lie derivative of the clas-
sical period matrix along the Teichmüller flow vanishes (Lemma 6.1). The proof that the
second exponent is positive on all connected components of all strata of the moduli space
is reduced to the statement that no connected component of a stratum is contained in the
determinant locus (Theorem 6.2). The proof of this theorem, based on asymptotic formulas
for the period matrix and its Lie derivative near appropriate boundary points of the moduli
space, is only sketched here. The complete argument can be found in [21, Section 4].

In Section 7 we answer in the affirmative a question asked by W. Veech on whether
there exist Teichmüller disks entirely contained in the determinant locus. Our example
consists of a closed Teichmüller disk in genus 3 (in the stratum of holomorphic differentials
with 4 simple zeroes) generated by a non-primitive Veech surface obtained as a 2-sheeted
branched cover over the square torus with 4 branching points of order 2. Such a Veech
surface has appropriate symmetries, stable under theSL(2,R)-action, which imply that
the Hodge curvature has the minimal rank 1 (Theorem 7.3). It follows that of the 3 non-
negative exponents of the Kontsevich–Zorich cocycle only one (the trivial one) is non-zero
on the corresponding closedSL(2,R)-orbit (Corollary 7.4).

Finally, in Section 8 we prove the representation theorem for Zorich cycles. The proof
is based on the variational formulas of Section 4, on a Cheeger-type lower bound for the
smallest eigenvalue of the flat Laplacian on a translation surface, equivalent to a Poincaré
inequality for the appropriate Sobolev norms (Lemma 8.3), and on the logarithmic law for
geodesic in the moduli space of holomorphic (quadratic) differentials [31].

2. Elements of Teichmüller theory

In this section we recall a few definitions and results of Teichmüller theory which are
essential to understanding the material treated in later sections.

Let Tg,Qg be theTeichmüller spacesof complex (conformal) structures and of holo-
morphic quadratic differentials on a surface of genusg � 1. The spacesTg andQg can be
roughly described as follows:

Tg := {complex (conformal) structures}/Diff +0 (M),

Qg := {holomorphic quadratic differentials}/Diff +0 (M), (1)
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where Diff+0 (M) is the group of orientation preserving diffeomorphisms of the surface
M which are isotopic to the identity (equivalently, it is the connected component of the
identity in the Lie group of all orientation preserving diffeomorphisms ofM).

If g � 2, the spaceTg is topologically equivalent to an open ball of real dimension
6g−6. In fact, a theorem of L. Ahlfors, L. Bers and S. Wolpert states thatTg has a complex
structure holomorphically equivalent to that of a Stein (strongly pseudo-convex) domain
in C3g−3 [9, §6], or [32, Chapters 3, 4 and Appendix §6]. The spaceQg of holomorphic
quadratic differentials is a complex vector bundle overTg which can be identified to the
cotangent bundle ofTg . If g = 1, the Teichmüller spaceT1 of elliptic curves (complex
structures onT 2) is isomorphic to the upper half planeC+ and the Teichmüller spaceQ1
of holomorphic quadratic differentials on elliptic curves is a complex line bundle overT1
[32, Example 2.1.8].

LetRg ,Mg be themoduli spacesof complex (conformal) structures and of holomorphic
quadratic differentials on a surface of genusg � 1. The spacesRg andMg can be roughly
described as the quotient spaces:

Rg := Tg/Γg, Mg :=Qg/Γg, (2)

whereΓg denotes themapping class groupDiff +(M)/Diff +0 (M). If g = 1, the mapping
class group can be identified with the latticeSL(2,Z) which acts on the upper half plane
C+ in the standard way. The moduli spaceR1 := C+/SL(2,Z) is a non-compact finite
volume surface with constant negative curvature, called themodular surface. The moduli
spaceM1 can be identified to the cotangent bundle of the modular surface.

TheTeichmüller(geodesic) flow is a Hamiltonian flow onMg , defined as the geodesic
flow with respect to a natural metric onRg called theTeichmüller metric. Such a met-
ric measures the amount ofquasi-conformal distortionbetween two different (equivalent
classes of) complex structures inRg . In the higher genus case, the Teichmüller metric is
not Riemannian, but onlyFinsler (that is, the norm on each tangent space does not come
from an Euclidean product) and, as H. Masur proved, does not have negative curvature
in any reasonable sense [9, §3 (E)]. Ifg = 1, the Teichmüller metric coincides with the
Poincaré metric on the modular surfaceR1 [32, 2.6.5], in particular it is Riemannian with
constant negative curvature.

In order to obtain a more geometric description of the Teichmüller flow, we introduce
below a natural action of the Lie groupSL(2,R) onQg (see also [4, §1.4] or [5, §3], in
this handbook). This action is equivariant with respect to the action of the mapping class
group, hence it passes to the quotientMg .

A holomorphic quadratic differentialq naturally defines two transversemeasured foli-
ations(in the Thurston’s sense [37,17]), thehorizontalfoliation Fq and thevertical folia-
tion F−q :

Fq :=
{
Im
(
q1/2)= 0

}
, with transverse measure

∣∣Im (q1/2)∣∣,
F−q :=

{
Re
(
q1/2)= 0

}
, with transverse measure

∣∣Re
(
q1/2)∣∣. (3)

Vice versa, any pair(F ,F⊥) of transverse measure foliations determines a complex
structure and a holomorphic quadratic differentialq such thatF = Fq andF⊥ = F−q .
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Transversality for measured foliations is taken in the sense thatF andF⊥ have a common
setΣ of (saddle) singularities, have the same index at each singularity and are transverse
in the standard sense onM \Σ . The setΣ of common singularities coincides with the set
Σq of zeroes of the holomorphic quadratic differentialq ≡ (F ,F⊥).

The SL(2,R)-action onQg is defined as follows. Every 2× 2 matrix A ∈ SL(2,R)
acts naturally by left multiplication on the (locally defined) pair of real-valued 1-forms
(Im(q1/2),Re(q1/2)). The resulting (locally defined) pair of 1-forms defines a new pair
of transverse measured foliations, hence a new complex structure and a new holomorphic
quadratic differentialA · q.

The Teichmüller flowGt is given by the action of the diagonal subgroup diag(e−t , et )
onQg (on Mg). In other terms, if we identify holomorphic quadratic differentials with
pairs of transverse measured foliations as explained above, we have:

Gt(Fq,F−q) :=
(
e−tFq, etF−q

)
. (4)

In geometric terms, the action of the Teichmüller flow on quadratic differentials induces
a one-parameter family of deformations of the conformal structure which consist in con-
tracting along vertical leaves (with respect to the horizontal length) and expanding along
horizontal leaves (with respect to the vertical length) by reciprocal (exponential) factors.

The reader can compare the definition in terms of theSL(2,R)-action with the analogous
description of the geodesic flow on a surface of constant negative curvature (such as the
modular surface). In fact, ifg = 1 the above definition reduces to the standard Lie group
presentation of the geodesic flow on the modular surface: the unit sub-bundleM(1)

1 ⊂M1
of all holomorphic quadratic differentials of unit total area on elliptic curves can be iden-
tified with the homogeneous spaceSL(2,R)/SL(2,Z) and the geodesic flow on the mod-
ular surface is then identified with the action of the diagonal subgroup ofSL(2,R) on
SL(2,R)/SL(2,Z).

We list below, following [41,25], the main structures carried by the Teichmüller
spaceQg and by the moduli spaceMg of quadratic differentials (see also [5, §2] and
[48, §4]):

(1) Mg is a (stratified) analytic space (orbifold); each stratumMκ (corresponding to
fixing the multiplicitiesκ := (k1, . . . , kσ ) of the zeroes{p1, . . . , pσ } of the quadratic
differentials) isSL(2,R)-invariant and, in particular,Gt -invariant.

(2) The total area functionA :Mg → R+,

A(q) :=
∫
M

|q|,

is SL(2,R)-invariant; hence theunit bundle M(1)
g := A−1({1}) and its strata

M(1)
κ :=Mκ ∩M(1)

g areSL(2,R)-invariant and, in particular,Gt -invariant.
LetMκ be a stratum oforientablequadratic differentials, that is, quadratic differ-

entials which are squares of holomorphic 1-forms. In this case, the natural numbers
(k1, . . . , kσ ) are all even.

(3) The stratum of squaresMκ has a locally affine structure modeled on the affine space
H 1(M,Σκ ;C), withΣκ := {p1, . . . , pσ }. Local charts are given by the period map
q→[q1/2] ∈H 1(M,Σκ ;C).
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(4) The Lebesgue measure on the Euclidean spaceH 1(M,Σκ ;C), normalized so that
the quotient torus

H 1(M,Σκ ;C)/H 1(M,Σκ ;Z⊕ ıZ)

has volume 1, induces an absolutely continuousSL(2,R)-invariant measureµκ on
Mκ . The conditional measureµ(1)κ induced onM(1)

κ is SL(2,R)-invariant, hence
Gt -invariant.

The ergodic theory of the Teichmüller flow begins with the natural questions whether
the measureµ(1)κ has finite total mass and whether it is ergodic for the Teichmüller flow
on M(1)

κ . However, it was discovered by W. Veech [41] thatM(1)
κ has in general several

connected components. M. Kontsevich and A. Zorich [26] have been able to obtain a com-
plete classification of the connected components of the strata. Taking this phenomenon into
account, the following result holds:

THEOREM 2.1 [30,40]. The total volume of the measureµ(1)κ on M(1)
κ is finite and the

Teichmüller geodesic flowGt is ergodic on each connected component ofM(1)
κ .

Since the measureµ(1)κ has finite total mass, the Poincaré recurrence theorem applies.
This is the core of Masur’s proof [30] of the unique ergodicity for almost all i.e.t.’s and
measured foliations, a statement known as theKeane conjecture(see the article by H. Ma-
sur [5] in this handbook on the ergodic theory of measured foliations, i.e.t.’s and translation
surfaces).

Poincaré recurrence for a suitable “renormalization” flow (on the space of “zippered rec-
tangles”) is also the key idea of Veech’s proof of the Keane conjecture [38]. In [40] Veech
further investigated the ergodic theory of the Teichmüller flow and proved that the Teich-
müller flow is non-uniformly hyperbolic, in the sense that all of itsLyapunov exponents,
except one corresponding to the flow direction, are non-zero.

We recall that a Lyapunov exponent is the asymptotic exponential rate of expansion of
a (tangent) vector along the orbit of a point in the phase space of a dynamical system. The
Oseledec’sMultiplicative Ergodic Theorem[34,23] establishes their existence as appropri-
ately defined limits, for almost all points with respect to any ergodic invariant probability
measure. The theory of Lyapunov exponents forcocyclesover (smooth) dynamical systems
is explained in [23, §S.1], and in the survey [1] in this handbook.

The Lyapunov spectrum (that is, the collection of Lyapunov exponents) of the Teich-
müller flow with respect to any ergodic invariant probability measureµ onM(1)

κ is known
to have symmetries. In fact, it can be written as follows [45, §5], [25, §7], [47, §2.3]:

2�
(
1+ λµ2

)
� · · ·� (1+ λµg

)
�

σκ−1︷ ︸︸ ︷
1= · · · = 1�

(
1− λµg

)
� · · ·� (1− λµ2

)
� 0� −(1− λµ2 )� · · ·� −(1− λµg )

� −1= · · · = −1︸ ︷︷ ︸
σκ−1

� −(1+ λµg )� · · ·� −(1+ λµ2 )� −2. (5)
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By the ergodicity statement of Theorem 2.1, the non-uniform hyperbolicity of the Teich-
müller flow, proved by W. Veech in [40], can be formulated as follows:

THEOREM 2.2 [40]. Let µ denote the normalized absolutely continuous SL(2,R)-
invariant ergodic measure on any connected componentC(1)κ of a stratumM(1)

κ ⊂M(1)
g of

the moduli space of orientable holomorphic quadratic differentials of unit total area. The
non-negative numberλµ2 satisfies the inequality:

λ
µ
2 < λ

µ
1 = 1. (6)

M. Kontsevich and A. Zorich have interpreted the non-negative numbers

λ
µ
1 = 1� λµ2 � · · ·� λµg (7)

asLyapunov exponentsof a cocycle over the Teichmüller flow that will be described below.
This cocycle is obtained as the natural (fiber-wise linear) lift of the Teichmüller flow to an
appropriate vector bundle over the moduli space. The non-negative Lyapunov exponents
of the Kontsevich–Zorich cocycle turn out to be exactly the numbers in (7).

In this paper we discuss the Lyapunov spectrum and the Oseledec’s splitting of this co-
cycle. In particular, we give a new elementary proof of the inequality (6) foranyergodic
probability measure on a stratum of orientable holomorphic quadratic differentials (The-
orem 5.1) and we outline the proof of the inequalityλµ2 > 0, whenµ is the normalized
absolutely continuousSL(2,R)-invariant ergodic measure on any connected component
of a stratum of the moduli space of orientable holomorphic quadratic differentials (Corol-
lary 6.3).

3. The Kontsevich–Zorich cocycle

M. Kontsevich (and A. Zorich) [25] have introduced a (multiplicative) ‘renormalization’
cocycle over the Teichmüller geodesic flow. This cocycle is a continuous-time version of
a cocycle introduced by G. Rauzy [35] as a “continued fractions algorithm” for i.e.t.’s,
and later studied by W. Veech, in his work on the Keane conjecture [38], and A. Zorich
[45,46] among others. Zorich was motivated by the study of the asymptotic behavior in
homology of (long) typical leaves of orientable measured foliations on closed surfaces of
higher genus, which he initiated in [44].

Let Qg be the Teichmüller space of holomorphic quadratic differentials on Riemann
surfaces of genusg � 2. TheKontsevich–Zorich cocycleGKZ

t can be defined as the quotient
cocycle, with respect to the action of the mapping class groupΓg , of the trivial cocycle

Gt × id :Qg ×H 1(M,R)→Qg ×H 1(M,R). (8)

The cocycleGKZ
t acts on the orbifold vector bundle

H1
g(M,R) :=

(
Qg ×H 1(M,R)

)
/Γg (9)
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over the moduli spaceMg = Qg/Γg of holomorphic quadratic differentials. The base
dynamics of the Kontsevich–Zorich cocycle is the Teichmüller geodesic flowGt onMg .
Note that the mapping class group acts naturally on the cohomologyH 1(M,R) by pull-
back. We recall that the real homologyH1(M,R) and the real cohomologyH 1(M,R) of an
orientable closed surfaceM are endowed with a natural symplectic form (the intersection
form) and are (symplectically) isomorphic by Poincaré duality.

Since the vector bundleH1
g(M,R) has a symplectic structure, the Lyapunov spectrum

of the cocycleGKZ
t (with respect to anyGt -invariant ergodic probability measureµ on

M(1)
g ) is symmetric:

λ
µ
1 � · · ·� λµg � 0� −λµg � · · ·� −λµ1 . (10)

The non-negative part of the Kontsevich–Zorich spectrum (10) coincides with the num-
bers (7) which appear in the Lyapunov spectrum (5) of the Teichmüller flow. This relation
can be explained as follows. By Section 2 the tangent spaceTMκ ≡Mκ×H 1(M,Σκ ;C)
locally. There is a surjective mapH 1(M,Σκ ;C)→ H 1(M,C) which neglects cohomol-
ogy classes dual to cycle joining two singularities. Such classes are responsible for the
(trivial) part of the Lyapunov spectrum (5) consisting ofσκ − 1 repeated 1’s and−1’s. Let
thenH1

κ (M,C) be the bundle over the moduli space with fiberH 1(M,C). There is the
following natural isomorphism of vector bundles overMκ :

H1
κ (M,C)≡ C⊗H1(M,R)≡ R2 ⊗H1(M,R), (11)

induced by the corresponding isomorphism on the fibers. The tangent cocycleTGt of the
Teichmüller geodesic flow onH1(M,C) can then be written in terms of the Kontsevich–
Zorich cocycle:

TGt = diag
(
et , e−t

)⊗GKZ
t onR2 ⊗H1(M,R). (12)

Formula (12) implies that the non-trivial Lyapunov spectrum ofTGt onH1(M,C) can be
obtained as a union of the translations of the Lyapunov spectrum ofGKZ

t by ±1, hence (5)
follows (see also [48, §5.7]).

We will discuss the main ideas of the proof of the following result originally conjec-
tured by A. Zorich in [45] for the Rauzy–Veech–Zorich cocycle, a discrete-time version
of the Kontsevich–Zorich cocycle, and by M. Kontsevich (and A. Zorich) in [25] for the
Kontsevich–Zorich cocycle (see also [48, §5.6]):

THEOREM 3.1 [21, Theorem 8.5].Let µ denote the absolutely continuous SL(2,R)-
invariant ergodic probability measure on any connected componentC(1)κ of a stratum
M(1)
κ ⊂ M(1)

g of the moduli space of orientable holomorphic quadratic differentials of

unit total area. The Lyapunov exponents ofGKZ
t overC(1)κ satisfy the inequalities:

λ
µ
1 = 1> λµ2 � · · ·� λµg > 0. (13)
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The inequalityλµ1 = 1> λµ2 is the content of Veech’s Theorem 2.2. We will give a
complete new proof below. The other non-trivial inequality in (13) isλµg > 0. We will
describe the strategy of the proof thatλµ2 > 0. The full proof of the theorem for genusg � 3
is more complicated but it does not require substantial new ideas. TheZorich conjecture
states that the exponents in (13) are all distinct, that is, the Lyapunov spectrum of the
cocycle issimple. A proof of the conjecture, which yields as a corollary an independent
proof of Theorem 3.1 based on completely different methods, has been recently given by
A. Avila and M. Viana [8].

4. Variational formulas

The Kontsevich–Zorich cocycle can be written in the form of an O.D.E. in a fixed Hilbert
space. This is accomplished as follows. LetRq be (degenerate) Riemannian metric induced
by a holomorphic quadratic differentialq and letωq be the corresponding area form. With
respect to a holomorphic local coordinatez = x + iy, the quadratic differentialq has the
form q = φ(z) dz2, whereφ is a locally defined holomorphic function, and, consequently,

Rq =
∣∣φ(z)∣∣1/2(dx2 + dy2)1/2, ωq =

∣∣φ(z)∣∣dx ∧ dy. (14)

The metricRq is flat, it is degenerate at the finite setΣq of zeroes ofq and, if q is ori-
entable, it has trivial holonomy, henceq induces a structure oftranslation surfaceonM .
It follows that, if q is orientable, there exists a (unique) frame{S,T } of the tangent bundle
ofM overM \Σq with the following properties [19, §2]:

(1) The frame{S,T } is orthonormal with respect to the Riemannian metricRq on
M \Σq ;

(2) The vector fieldS[T ] is tangent to the oriented horizontal [vertical] foliationFq
[F−q ] in the positive direction.

LetL2
q(M) := L2(M,ωq) the space of complex-valued, square-integrable functions and

H 1
q (M) be the (Sobolev) subspace of functionsv ∈ L2

q(M) such thatSv ∈ L2
q(M) and

T v ∈ L2
q(M). The flows generated by the vector fieldsS, T preserves the area formωq . In

fact, the 1-forms

ıSωq = Im
(
q1/2) and ıT ωq =−Re

(
q1/2) (15)

are closed and the Lie derivatives

LSωq = dıSωq + ıSdωq = 0,

LT ωq = dıT ωq + ıT dωq = 0. (16)

Hence, the vector fieldsS,T yield densely defined anti-symmetric (in fact, essentially
skew-adjoint) operators on the Hilbert spaceL2

q(M). In addition, these operators commute
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in the following sense. Let(·, ·)q denote the inner product inL2
q(M). For all functions

v1, v2 ∈H 1
q (M),

(Sv1, T v2)q = (T v1, Sv2)q . (17)

In conclusion, there is a well-defined action of the commutative Lie algebraR2 onL2
q(M)

by essentially skew-adjoint operators [19].
The above properties are not surprising since, with respect to a local canonical (holomor-

phic) coordinatez= x + ıy at a pointp ∈M \Σq , the holomorphic quadratic differential
q = dz2, the metricRq is Euclidean, the area formωq = dx ∧ dy and the vector fields
S = ∂/∂x, T = ∂/∂y. The formulas forS, T in a neighbourhood of a zerop ∈Σq of even
orderk � 2 are given in [19, (2.7)].

A key idea in [19,21] is to consider theCauchy–Riemann operatorsdetermined by an
orientable quadratic differential.

LEMMA 4.1 [19, Proposition 3.2].Letq be an orientable quadratic differential onM . The
Cauchy–Riemann operators

∂±q := S ± iT
2

(18)

with (dense) domainH 1
q (M) ⊂ L2

q(M) are closed and have closed range of finite codi-

mension equal to the genus ofM . Let M±
q ⊂ L2

q(M) be the subspaces of meromorphic,
respectively, anti-meromorphic, functions. The following orthogonal splittings hold:

L2
q(M)= Ran

(
∂+q
)⊕M−

q = Ran
(
∂−q
)⊕M+

q . (19)

The spacesM±
q consist of all meromorphic, respectively anti-meromorphic, functions

with poles atΣq of orders bounded above in terms of the multiplicities of the pointsp ∈Σq
as zeroes of the quadratic differentialq. The complex dimension ofM±

q can therefore be
computed by the Riemann–Roch theorem and it is equal to the genus ofM . By (17) the
adjoint operators(∂±q )∗ are extensions of the operators−∂∓q . It follows that the kernels of
(∂±q )∗ are the subspacesM∓

q , respectively, hence the splitting (19) follows immediately
by Hilbert space theory.

(Absolute) real cohomology classes onM can be represented in terms of meromorphic
(or anti-meromorphic) functions inL2

q(M). In fact, by the theory of Riemann surfaces [16,

III.2], any c ∈H 1(M,R) can be represented as the real part of a holomorphic differential
h onM . Let q be an orientable holomorphic quadratic differential onM and letq1/2 a
holomorphic square root ofq. The quotienth/q1/2 is a meromorphic function onM with
poles at the setΣq of zeroes ofq. A computation shows thatm+ = h/q1/2 ∈ L2

q(M), hence
m+ ∈M+

q . The followingrepresentationof cohomology classes therefore holds:

c ∈H 1(M,R)↔ c= Re
[
m+ · q1/2], m+ ∈M+

q . (20)
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The mapM+
q →H 1(M,R) given by the representation (20) is bijective and it is in factiso-

metric if M+
q is endowed with the Euclidean structure induced byL2

q(M) andH 1(M,R)
with theHodge productrelative to the complex structure of the Riemann surfaceMq car-
rying the holomorphic quadratic differentialq ∈Mg .

Let q ∈Q(1)κ andc ∈H 1(M,R). Letqt :=Gt(q) be the orbit ofq under the Teichmüller
flow and ct := GKZ

t (c) the orbit of c under the Kontsevich–Zorich cocycle. LetMt the

Riemann surface carryingqt ∈Q(1)κ . By (20),

ct = Re
[
m+
t · q1/2

t

] ∈H 1(Mt ,R), (21)

wherem+
t ∈M+

t , the space of meromorphic function onMt which are inL2
q(M). At this

point, we have to make the following crucial remark. By the very definition of the Teich-
müller flow Gt , the area formωt of the metricRt induced by the quadratic differential
qt is constant. Hence the Hilbert spaceL2

q(M) is invariant under the action of the Teich-

müller flow onQ(1)κ . Let M±
t ⊂ L2

q(M) be the subspaces of meromorphic, respectively,
anti-meromorphic, functions on the Riemann surfaceMt . Such spaces are, respectively,
the kernels of the adjoints of the Cauchy–Riemann operators∂∓t , related to the holomor-
phic quadratic differentialqt . By Lemma 4.1, the dimension ofM±

t is constant equal
to the genusg � 1 of M . It can be proved that{M±

t | t ∈ R} are smooth families of
g-dimensional subspaces of the fixed Hilbert spaceL2

q(M).

Let π±
q :L2

q(M)→ M±
q denote the orthogonal projection onto the finite-dimensional

subspace of meromorphic, respectively anti-meromorphic, functions. It follows immedi-
ately from (19) that, for everyu ∈ L2

q(M), there exist functionsv± ∈H 1
q (M) such that

u= ∂+q v+ + π−
q (u)= ∂−q v− + π+

q (u). (22)

Let π±
t :L2

q(M)→ M±
t denote the orthogonal projections in the (fixed) Hilbert space

L2
q(M). By definition, the projectionsπ±

t coincide with the projectionsπ±
q for q = qt , for

any t ∈ R.

LEMMA 4.2 [21, Lemma 2.1].The Kontsevich–Zorich cocycle is described by the follow-
ing variational formulas:{

m+
t = ∂+t vt + π−

t (m
+
t ),

d
dt
m+
t = ∂−t vt − π−

t (m
+
t ).

(23)

PROOF. By the definition (4) of the Teichmüller flowGt , the quadratic differentialqt :=
Gt(q) and the related Cauchy–Riemann operators∂±t can be explicitly written in terms of
q and of corresponding frame{S,T }. In fact, we have Re(q1/2

t )≡ et Re(q1/2), Im(q1/2
t )≡

e−t Re(q1/2) and

St ≡ e−t S, Tt ≡ etT , ∂±t ≡ e
−t S ± ietT

2
; (24)
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hence, by straightforward computations,

d

dt
q

1/2
t ≡ qt1/2, d

dt
∂±t ≡−∂∓t . (25)

Equation (23) in the statement of the lemma follows from the formulas (25) by a computa-
tion based on the following two remarks. First, since the functionm+

t is meromorphic on
the Riemann surfaceMt , it satisfies the equation∂+t m+

t ≡ 0 in the weak sense inL2
q(M).

It follows that, by taking a time derivative,

−∂−t m+
t + ∂+t

(
d

dt
m+
t

)
≡ 0. (26)

Second, by the definition (8) of the cocycleGKZ
t , the one-parameter family of cohomology

classesct := GKZ
t (c) is locally constant, that is,ct ≡ c ∈ H 1(M,R). It follows that the

time derivative of the 1-form Re(m+
t q

1/2
t ) is equal to zero inH 1(M,R), hence it is an

exact form. There exists therefore a functionUt ∈H 1(M) such that

Re

[(
d

dt
m+
t +m+

t

)
q

1/2
t

]
= dUt . (27)

A straightforward computation based on formulas (26), (27) and on the splittings (22) for
q = qt , applied to the functionsm+

t ∈M+
t ⊂ L2

q(M) anddm+
t /dt ∈ L2

q(M), concludes the
argument. In fact, the splitting in the first line of (23) is simply the first splitting in (22) for
q = qt , applied to the functionm+

t ∈M+
t ⊂ L2

q(M). It is therefore an identity which de-

termines the functionvt ∈H 1
q (M) up to an additive constant. The second line is a formula

for the derivativedm+
t /dt written in terms of the second splitting in (22) forq = qt . �

An immediate consequence of Lemma 4.2 is the following result on the variation of the
Hodge norm of cohomology classes under the action of the Kontsevich–Zorich cocycle.
LetBq :L2

q(M)×L2
q(M)→ C be the complex bilinear form given by

Bq(u, v) :=
∫
M

uvωq, for all u,v ∈ L2
q(M). (28)

LEMMA 4.3 [21, Lemma 2.1′]. The variation of the Hodge norm‖ct‖, which coincides
with theL2

q -norm |m+
t |0 under the identification(21), is given by the following formulas:

(a)
d

dt

∣∣m+
t

∣∣2
0 =−2 ReBq

(
m+
t

)=−2 Re
∫
M

(
m+
t

)2
ωq,

(b)
d2

dt2

∣∣m+
t

∣∣2
0 = 4

{∣∣π−
t

(
m+
t

)∣∣2
0 −Re

∫
M

(
∂+t vt
)(
∂−t vt
)
ωq

}
. (29)
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PROOF. The formulas (29) can be immediately deduced from (23) by taking into ac-
count theGt -invariance of the inner product inL2

q(M) and the orthogonality of the split-
tings (19), (22) forq = qt . �

5. Bounds on the exponents

Lemma 4.2 immediately implies Veech’s Theorem 2.2. In fact, we have

THEOREM 5.1 [21, Corollary 2.2].Let µ denote any ergodicGt -invariant probability
measure on the moduli spaceM(1)

g of orientable holomorphic quadratic differentials of
unit total area. The Lyapunov exponents of the Kontsevich–Zorich cocycleGKZ

t with re-
spect to the ergodic measureµ satisfy the following inequality:

λ
µ
1 = 1> λµ2 . (30)

PROOF. By formula (a) in (29),

d

dt
log
∣∣m+
t

∣∣2
0 =−2

ReBq(m
+
t )

|m+
t |20

. (31)

Since by the Schwarz inequality,∣∣Bq(m+
t

)∣∣= ∣∣(m+
t ,m

+
t

)
q

∣∣� ∣∣m+
t

∣∣2
0, (32)

Equation (31) implies that the upper Lyapunov exponent

λ
µ
1 := lim sup

T→±∞
1

T
log
∣∣m+
T

∣∣
0 � 1. (33)

Moreover, the 1-dimensional subspace of complex constant functions is invariant under the
flow of Equation (23), since form+

t ∈ C, the functionvt ≡ 0 and the orthogonal projection
π−
t (m

+
t )≡m+

t ∈ C. By the definition of the isomorphism (20), this corresponds to the fact
that the planeEq ⊂H 1(M,R) generated by the cohomology classes{Re(q1/2), Im(q1/2)}
is invariant under the cocycleGKZ

t . The Lyapunov exponents ofGKZ
t restricted to this plane

are±1, as it can be seen directly from the definition or by the formula (31) in the case of
purely real or purely imaginary constant functions. Henceλ

µ
1 = 1. The exponentλµ2 is the

top Lyapunov exponent ofGKZ
t on the bundle with fiberH 1(Mq,R)/Eq . Under the iso-

morphism (20), the vector spaceH 1(Mq,R)/Eq is represented by meromorphic functions
with zero average(orthogonal to constant functions). It can be seen that the subspace of
zero average meromorphic functions is invariant under the flow of Equation (23). Let

Λ+(q) := max

{ |Bq(m+)|
|m+|20

∣∣m+ ∈M+
q \ {0},

∫
M

m+ωq = 0

}
. (34)
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By averaging (31) over the interval[0, T ], taking the upper limit and applying the Birkhoff
ergodic theorem with respect to theGt -invariant measureµ to the r.h.s., we have that, if
m+

0 ∈M+
q has zero average, forµ-almost allq ∈Mκ ,

lim sup
T→+∞

1

T
log
∣∣m+
T

∣∣
0 �
∫
Mκ

Λ+(q) dµ(q). (35)

Since, by the Schwarz inequality (32),Λ+(q)� 1 for all q ∈Mκ , it is sufficient to prove
thatΛ+(q) < 1 on a positive measure set. In fact,Λ+(q)= 1 if and on only if there exists
a non-zeromeromorphic function with zero averagem+ ∈M+

q such that|(m+,m+)q | =
|m+|20. A well-known property of the Schwarz inequality then implies that there exists

λ ∈ C such thatm+ = λm+. However, it cannot be so, since in that casem+ would be
meromorphic and anti-meromorphic, hence constant, and by the zero average condition it
would be zero. We have therefore proved thatΛ+(q) < 1 for all q ∈Mκ . The argument is
completed. �

The proof oflower boundson the Lyapunov exponents of the Kontsevich–Zorich co-
cycle relies on the formula (29), (b), for the second derivative. Unfortunately, the r.h.s of
the formula contains two terms and, while the first is at least clearly non-negative, the sign
of second appears to be oscillating in a way difficult to control. In order to overcome this
difficulty, we follow an idea of [25] which consists in averaging over the orbits of the circle
groupSO(2,R) in the stratumMκ .

Let SL(2,R) q be an orbit ofSL(2,R) in Mκ . For almost allq ∈ Mκ , the quotient
SL(2,R) q/SO(2,R) is a copy of the Poincaré disk, in the sense that it is an immersed
two-dimensional disk on which the Teichmüller metric reduces to the standard Poincaré
metric (with curvature−4). Such a disk is called aTeichmüller disk(see [32, 2.6.5]).

Thehyperbolic Laplacianof the Hodge norm of a cohomology class on a Teichmüller
disk can be computed as follows. We write formula (29), (b), for all quadratic differentials
in a SO(2,R)-orbit, we then average with respect to the Haar measure onSO(2,R). The
averaging eliminates the ‘bad’ second term in the r.h.s. of formula (29), (b) (the oscillation
is canceled!).

LEMMA 5.2 [21, Lemma 3.2].The following formulas hold for the hyperbolic gradient
∇h and the hyperbolic Laplacian&h of the norm of a cohomology class on a Teichmüller
disk:

(a) ∇h
∣∣m+
z

∣∣2
0 =−2

(
ReBq
(
m+), ImBq(m+)),

(b) &h
∣∣m+
z

∣∣2
0 = 8
∣∣π−
q

(
m+)∣∣2

0. (36)

Hence, by a straightforward calculation,

&h log
∣∣m+
z

∣∣
0 = 4

|π−
z (m

+
z )|20

|m+
z |20

− 2
|Bq(m+

z )|2
|m+
z |40

� 2
|π−
z (m

+
z )|20

|m+
z |20

. (37)
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An analysis of the solutions of the hyperbolic Poisson equation, combined with the Os-
eledec’s theorem on the existence of Lyapunov exponents and Birkhoff ergodic theorem,
leads to the following lower bound. Let

Λ−(q) := min

{ |π−
q (m

+)|20
|m+|20

∣∣m+ ∈M+
q \ {0}

}
. (38)

THEOREM5.3 [21, Theorem 3.3].Letµ be anyGt -ergodic SL(2,R)-invariant probability
measure onM(1)

κ . The second Lyapunov exponentλµ2 of the Kontsevich–Zorich cocycle
with respect to the measureµ, satisfies the following lower bound:

λ
µ
2 �
∫
M(1)

κ

Λ−(q) dµ(q). (39)

Theorem 5.3 shows that to be able to prove thatλ
µ
2 > 0 it is sufficient to prove

that the non-negative continuous functionΛ− :M(1)
g → R is strictly positive at some

q ∈ supp(µ) ⊂ Mκ . Hence we are led to consider the locus{Λ− = 0} in the moduli
spaceM(1)

g .

6. The determinant locus

Let π−
q be as above the orthogonal projection on the subspaceM−

q ⊂ L2
q(M) of anti-

meromorphic functions. Let Hq be the non-negative definite Hermitian form on the sub-
spaceM+

q ⊂ L2
q(M) defined as follows. For all(m+

1 ,m
+
2 ) ∈M+

q ×M+
q ,

Hq
(
m+

1 ,m
+
2

) := (π−
q

(
m+

1

)
,π−
q

(
m+

2

))
q
. (40)

The non-negative numberΛ−(q) is by definition thesmallest eigenvalueof the Hermitian
form Hq . The locus{Λ− = 0} coincides therefore with the set of quadratic differentials
for which the Hermitian form Hq is degenerate, that is, represented by ag × g Hermitian
matrix with zero determinant.

There is a close relation between the Hermitian form Hq and the derivative of the clas-
sicalperiod matrixalong the Teichmüller trajectory in the moduli space determined by the
quadratic differentialq onM .

Let us recall the definition of the period matrix. LetM be a marked Riemann surface of
genusg � 2 and let{a1, b1, . . . , ag, bg} ⊂ H1(M,Z) be acanonical homology basis(see
[16, III.1]), characterized by the property that, for alli, j ∈ {1, . . . , g},

ai ∩ aj = bi ∩ bj = 0 and ai ∩ bj = δij . (41)

In other terms, a canonical homology basis is a symplectic basis with respect to the sym-
plectic structure on the real homologyH1(M,R) given by the (algebraic) intersection
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form∩. Let {θ1, . . . , θg} be the dual basis of the space of holomorphic (Abelian) differen-
tials onM , characterized by the conditionsθi(aj )= δij , for all i, j ∈ {1, . . . , g}. Theg×g
complex matrixΠ given by

Πij (M) :=
∫
bj

θi, i, j ∈ {1, . . . , g}, (42)

is theperiod matrixof the marked Riemann surfaceM . The period matrix yields a holo-
morphic mappingΠ :Tg →Sg on the Teichmüller space of Riemann surfaces with values
in theSiegel spaceSg of g × g complex symmetric matrices with positive definite imagi-
nary part.

Let q ∈Q(1)g be a holomorphic quadratic differential on the Riemann surfaceMq . Let
(Mt , qt ) :=Gt(Mq,q), for t ∈ R, be the Teichmüller orbit of(Mq, q) in the Teichmüller

spaceQ(1)g . The equation

det

[
d

dt
Π(Mt)

∣∣∣∣
t=0

]
= 0 (43)

defines a real analytic hypersurfaceD(1)g ⊂Q(1)g of real codimension 2. In other words, the

hypersurfaceD(1)g is the locus where the derivative of the period matrix in the direction of
the Teichmüller flow is degenerate.

It is immediate to see that Equation (43), hence the locusD
(1)
g , is invariant under change

of marking onM , that is, invariant under the action of the mapping class groupΓg . It

follows that the projectionD(1)g := D(1)g /Γg of D(1)g into the moduli spaceM(1)
g is well

defined. The real analytic hypersurfaceD(1)g ⊂M(1)
g of real codimension 2 was introduced

in [21, §4], and called thedeterminant locus. The following lemma holds.

LEMMA 6.1 [21, Lemma 4.1].The locus{Λ− = 0} ⊂M(1)
g coincides with the determi-

nant locusD(1)g .

PROOF. Let {m+
1 , . . . ,m

+
g } be an orthonormal basis ofM+

q ⊂ L2
q(M). The (symmet-

ric) matrix B(q) of the projection operatorπ−
q :M+

q → M−
q , with respect to the bases

{m+
1 , . . . ,m

+
g } ⊂M+

q and{m+
1 , . . . ,m

+
g } ⊂M−

q , and the Hermitian non-negative matrix

H(q) of the Hermitian form Hq , with respect to the basis{m+
1 , . . . ,m

+
g }, are given by the

following formulas:

Bij (q)= Bq
(
m+
i ,m

+
j

)= (m+
i ,m

+
j

)
q
,

H(q)= B(q)∗B(q)= B(q)B(q). (44)

The quotientsφ+i := θi/q1/2 are meromorphic functions onMq with poles atΣq , which
belong to the spaceL2

q(M). The system{φ+1 , . . . , φ+g } is a basis of the spaceM+
q .



568 G. Forni

The infinitesimal deformation of the complex structure of the Riemann surfaceMq in-

duced by the Teichmüller flow in the direction of the quadratic differentialq ∈Q(1)g can
be represented by a canonicalBeltrami differentialµq := |q|/q, hence by Rauch’s formula
[22, Proposition A.3]:

d

dt
Πij (Mt)

∣∣∣∣
t=0

=
∫
M

θiθjµq =
∫
M

φ+i φ
+
j ωq = Bq

(
φ+i , φ

+
j

)
. (45)

Since{φ+1 , . . . , φ+g } is a basis ofM+
q , there exists a non-singularg × g complex matrix

C(q) such that

φ+i =
g∑
j=1

Cij (q)m
+
j and C(q)C(q)∗ = Im(Π). (46)

In fact, by [16, III.2.3],

(
φ+i , φ

+
j

)
q
= i

2

∫
M

θi ∧ θj

= i

2

g∑
k=1

{∫
ak

θi

∫
bk

θj −
∫
bk

θi

∫
ak

θj

}
= Im(Πij ). (47)

By (45) and (46),∣∣∣∣det

(
d

dt
Πij (Mt)

∣∣∣∣
t=0

)∣∣∣∣= ∣∣detC(q)B(q)C(q)t
∣∣= ∣∣detC(q)

∣∣2 ∣∣detB(q)
∣∣

= det Im(Π)
[
detH(q)

]1/2
. (48)

Since Im(Π) is positive definite, the Hermitian form Hq is degenerate, henceΛ−(q)= 0,

if and only if q ∈D(1)g . �

The geometry of the determinant locus, in particular with respect to the foliation of the
moduli spaceM(1)

g by orbits of theSL(2,R)-action, plays an important role in the study
of Lyapunov exponents of the Kontsevich–Zorich cocycle (and of the Teichmüller flow).
We have proved the following non-trivial result:

THEOREM 6.2 [21, Theorem 4.5].Let M(1)
κ be any stratum of the moduli space of ori-

entable holomorphic quadratic differentials. No connected component ofM(1)
κ is con-

tained in the determinant locus. In fact, the following stronger result holds. Let

Λ1(q)≡ 1�Λ2(q)� · · ·�Λg(q)� 0 (49)
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be the eigenvalues of the Hermitian formHq in decreasing order. Let C(1)κ denote any

connected component ofM(1)
κ . We have:

sup
q∈C(1)κ

Λi(q)= 1, for all i ∈ {1, . . . , g}. (50)

The proof of Theorem 6.2 shows that the supremum of the (continuous) functionsΛi is
achieved at a certain kind ofboundary pointsof the moduli space which can be found in the
closure of any connected component of any stratum. The argument is based on asymptotic
expansions for the period matrix (and its derivatives) [18, Chap. III], [29,43], [21, §4].

The simplest and most intuitive choice of the appropriate boundary points is the disjoint
sums ofg tori with 2g − 2 paired punctures. At these points, the period matrix and its
derivative along the Teichmüller flow are diagonal with all diagonal entries different from
zero. It follows that the Hermitian form Hq is non-degenerate. In fact, it is immediate to
see thatΛ1 = · · · = Λg = 1. Riemann surfaces pinched alongg − 1 (separating) cycles
homologous to zero converge to boundary points of that type.

Unfortunately, quadratic differentials on such pinched surfaces cannot in general belong
to a stratum with a zero of high multiplicity as the pinching parameters converge to zero.
In order to overcome this difficulty and treat all strata, we have considered a different type
of boundary points. Such points are given by meromorphic quadratic differentials on Rie-
mann spheres with 2g paired punctures, having poles of order 2 with strictly positive real
residues at all punctures, equal at paired punctures (the residue of a quadratic differential
at a polep ∈M is the standard residue of the holomorphic 1-formzφ(z) dz with respect
to a holomorphic coordinatez :M→ C such thatz(p)= 0 andq = φ(z) dz2).

A basic step of the proof of Theorem 6.2 consists in constructing in every connected
component of every stratumMκ of the moduli space a family of quadratic differentials on
Riemann surfaces pinched along a set ofg distinct closed regular trajectories spanning a
Lagrangian subspacein homology. The limit of any such family as the pinching parameters
converge to zero is a meromorphic quadratic differential on a Riemann sphere of the type
just described. The period matrix and its derivative converge to a diagonal matrix only in
theprojectivesense, but this is enough for the proof.

As a corollary of Theorems 5.3 and 6.2, we obtain

COROLLARY 6.3 [21, Corollary 4.5′]. Letµ be the normalized absolutely continuous in-
variant measure on any connected componentC(1)κ of a stratumM(1)

κ of the moduli space
of orientable holomorphic quadratic differentials of unit total area. The second Lyapunov
exponents ofGKZ

t overC(1)κ is strictly positive, in fact

λ
µ
2 �
∫
M(1)

κ

Λ−(q) dµ(q) > 0. (51)

The proof of Theorem 3.1 is complete only ifg = 2. If g � 3, the complete proof of
the theorem is based on formulas similar to (37) for the logarithm of thek-volume of
k-dimensional isotropic subspaces ofH 1(M,R), for all k ∈ {1, . . . , g}. Unfortunately, only
in the casek = g these computations yield a closed formula for the Lyapunov exponents,
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that is, independent of the Oseledec’s splitting of the real cohomology bundleH1
κ (M,R).

As a consequence, the complete proof of Theorem 3.1 is rather convoluted and beyond the
scope of this paper. In the casek = g we find a somewhat different version of a formula
discovered by M. Kontsevich and A. Zorich:

THEOREM 6.4 ([25] and [21, Corollary 5.3]).Letµ be the normalized absolutely contin-
uous invariant measure on any connected componentC(1)κ of a stratumM(1)

κ of the moduli
space of orientable holomorphic quadratic differentials of unit total area. The Lyapunov
exponents ofGKZ

t overC(1)κ satisfy the following formula:

λ
µ
1 + · · · + λµg =

∫
M(1)

g

(
Λ1(q)+ · · · +Λg(q)

)
dµ(q). (52)

We remark that, sinceΛ1(q) ≡ λµ1 = 1, the above formula yields a closed formula for
the sumλµ2 + · · · + λµg , hence for the second exponentλµ2 if g = 2. We do not know of any
other closed formulas for single exponents or partial sums of them ifg � 3.

Kontsevich (and Zorich) [25] have conjectured that the sums of the Lyapunov expo-
nents (52) are rational numbers for all connected components of all strata. These numbers
are conjecturally related to the Siegel–Veech constants which arise in counting problems
for embedded flat cylinders or saddle-connections on translation surfaces [42,13]. Siegel–
Veech constants can in turn be computed (exactly!) by formulas expressing them in terms
of the volumes of connected components of strata [14,15] (see the article by A. Eskin [2]
in this handbook on counting problems, Siegel–Veech constants and volumes of strata).

7. An example

The problem of describing the intersections ofSL(2,R)-orbits of quadratic differentials
with the determinant locusD(1)g ⊂M(1)

g is in general open. SinceD(1)g is by its very de-
finition invariant under the action of the circle subgroupSO(2,R), this problem can be
reduced to the one of describing the intersection of the projectionD(1)g /SO(2,R) of the

determinant locus with Teichmüller disks inside the quotient spaceM(1)
g /SO(2,R).

The determinant locus has real codimension 2 while Teichmüller disks have dimen-
sion 2, hence it is natural to expect that the intersection with agenericdisk be either empty
or a discrete (possibly countable) set. In many cases, it is immediate to see that the in-
tersection is non-empty. Examples of Teichmüller disks with non-empty intersection are
provided by quadratic differentials with symmetries.

W. Veech asked whether there exists a Teichmüller disk (in the moduli space ofori-
entablequadratic differentials) entirely contained in the projection of the determinant lo-
cus. We will show below that the answer to this question is affirmative by exhibiting an ex-
ample in genusg = 3. It should be remarked that we can prove that the answer to Veech’s
question is negative in genusg = 2.

The idea behind our example is to consider (orientable) holomorphic quadratic differen-
tials with appropriate symmetries which are stable under theSL(2,R)-action. We are able
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to answer a refined version of Veech’s question which has immediate consequences for the
Lyapunov exponents of the Kontsevich–Zorich cocycle. We introduce a natural filtration

R(1)g (1)⊂R(1)g (2)⊂ · · · ⊂R(1)g (g − 1)=D(1)g (53)

of the determinant locusD(1)g by the sets

R(1)g (k) :=
{
q ∈M(1)

g |Λk+1(q)= · · · =Λg(q)= 0
}
. (54)

It is immediate to see thatR(1)g (k) is a real analytic subvariety of the moduli space (de-
scribed by the vanishing of all minors of orderk + 1 of the derivative of the period ma-
trix along the Teichmüller flow), invariant under the action of the circle group, for all
k ∈ {1, . . . , g − 1}.

We will describe below a closedSL(2,R)-orbit contained not only in the determinant
locusD(1)3 but in the smaller locusR(1)3 (1). We do not know whether there are similar
examples in any genusg � 3.

The relevance of the locusR(1)g (1) is given by the following vanishing result for the
Lyapunov exponents of the Kontsevich–Zorich cocycle:

COROLLARY 7.1. Let µ be an SL(2,R)-invariant ergodic probability measure on the
moduli spaceM(1)

g . If supp(µ)⊂R(1)g (1), then

λ
µ
2 = · · · = λµg = 0. (55)

PROOF. It can be proved that the Kontsevich–Zorich formula (52) holds for anySL(2,R)-
invariant ergodic probability measure onM(1)

g . Hence the result follows. �

We are unable to prove by our methods stronger vanishing results, based on conditions
of type supp(µ)⊂Rg(k) for k > 1.

Letq ∈Q(1)g be a holomorphic (orientable) quadratic differential with a non-trivial group
Aut(q) of symmetries. The group Aut(q) ⊂ Aut(Mq) is defined as the subgroup formed
by all automorphismsa ∈ Aut(Mq) such thata∗(q) = q. There is a natural unitary ac-
tion (by pull-back) of Aut(q) on the finite-dimensional Euclidean spaceM+

q ⊂ L2
q(M) of

meromorphic functions.
For anya ∈ Aut(q), let {m+

1 (a), . . . ,m
+
g (a)} be an orthonormal basis of eigenvectors

and let{u1(a), . . . , ug(a)} the corresponding eigenvalues for the unitary operator induced
by a onM+

q . Let Ba(q) be the matrix of the projection operatorπ−
q :M+

q →M−
q , with

respect to the bases{m+
1 (a), . . . ,m

+
g (a)} ⊂M+

q and{m+
1 (a), . . . ,m

+
g (a)} ⊂M−

q , that is

Baij (q)= Bq
(
m+
i (a),m

+
j (a)
)= ∫

M

m+
i (a)m

+
j (a)ωq. (56)

For anyI, J ⊂ {1, . . . , g} with #(I )= #(J ), letBaI,J (q) be the minor of the matrixBa(q)
with entriesBaij (q) for i ∈ I andj ∈ J .
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LEMMA 7.2. Let q ∈ Q(1)g be a holomorphic quadratic differential with a non-trivial
groupAut(q) of symmetries. For anya ∈ Aut(q),∏

i∈I

∏
j∈J
ui(a)uj (a) �= 1 7⇒ detBaI,J (q)= 0. (57)

PROOF. Sincea ∈ Aut(q), by (56) and by change of variables, we have

Baij (q)=
∫
M

a∗m+
i (a)a

∗m+
j (a)ωq = ui(a)uj (a)Baij (q). (58)

The result follows. �

LetQ0 be the stratum ofmeromorphicquadratic differentials with 4 simple poles on the
(punctured) Riemann sphereP1(C). The corresponding moduli spaceM(1)

0 of meromor-
phic quadratic differentials with unit total area consists of a singleSL(2,R)-orbit.

Let κ = (1,1,1,1) and letMκ the stratum of holomorphic differentials (on Riemann
surfaces of genusg = 3) with 4 simple zeroes. LetV ⊂Mκ be subvariety of all orientable
quadratic differentials obtained as the pull-back of a meromorphic quadratic differential
q0 ∈Q0 by a 4-sheeted branched covering, branched over the 4 poles ofq0 (with branching
order equal to 4 at each pole).

The subvarietyV (1) = V ∩M(1)
κ consists of a single closedSL(2,R)-orbit. In fact, it can

be described as the (closed)SL(2,R)-orbit of the (non-primitive) Veech surfaceobtained
as a 2-sheeted branched cover of the torusC/(Z ⊕ ıZ), branched over the 4 half-integer
points (Z/2 ⊕ ıZ/2)/(Z ⊕ ıZ) (see the article by P. Hubert and T. Schmidt [4] in this
handbook on the theory of Veech surfaces).

THEOREM 7.3. The closed SL(2,R)-orbit V (1) ⊂M(1)
κ is entirely contained in the locus

R3(1).

PROOF. Let q ∈ V (1). By definition there exists a 4-sheeted branched coveringz :Mq →
P1(C), branched over 4 (distinct) pointsx1, . . . , x4 ∈ P1(C) and a meromorphic quadratic
differentialq0 onP1(C), with 4 simple poles at the pointsx1, . . . , x4 such thatq = z∗(q0).
The Riemann surfaceMq is a genus 3 surface determined by the algebraic equation:

w4 = (z− x1)(z− x2)(z− x3)(z− x4). (59)

The group Aut(Mq) of all automorphisms of the Riemann surfaceMq is cyclic of order 4,
generated by the automorphisma :Mq →Mq given by

a(z,w)= (z, ıw). (60)

The divisors of the meromorphic functionsz,w and of the meromorphic differentialdz are
of the following form:
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(z)= P1P2P3P4

Q1Q2Q3Q4
, (w)= X1X2X3X4

Q1Q2Q3Q4
,

(dz)= X3
1X

3
2X

3
3X

3
4

Q2
1Q

2
2Q

2
3Q

2
4

, (61)

wherez−1{0} = {P1, . . . ,P4}, z−1{∞} = {Q1, . . . ,Q4} andX1, . . . ,X4 are the branching
points of the coveringz :Mq → P1(C). It follows that the differentials

θ1 := dz

w2
, θ2 := dz

w3
, θ3 := zdz

w3
, (62)

form a basis of the space of holomorphic differentials onMq which diagonalizes the action
of the group Aut(Mq) on the vector space of holomorphic differentials onMq . In fact,
by (60) and (62), the action of the automorphisma ∈ Aut(Mq) on the basis (62) is diagonal
with eigenvalues−1 (with multiplicity 1) andı =√−1 (with multiplicity 2):

a∗(θ1)=−θ1, a∗(θ2)= ıθ2, a∗(θ3)= ıθ3. (63)

The orientable quadratic differentialsq ∈ V (1) is therefore equal toθ2
1 (up to multiplication

by a non-zero complex number) and the spectrum of the action ofa ∈ Aut(q) on the space
M+
q ⊂ L2

q(M) of meromorphic functions consists of the eigenvalues

u1(a)= 1, u2(a)=−ı, u3(a)=−ı. (64)

It follows that q ∈ R(1)3 (1). In fact, by Lemma 7.2 all entriesBaij (q) = 0 for all (i, j) �=
(1,1), hence the matrixBa(q) and, consequently, the Hermitian form Hq have rank 1. The
argument is concluded. �

By Corollary 7.1, we have

COROLLARY 7.4. The normalized SL(2,R)-invariant measureµ supported on the closed
SL(2,R)-orbit V (1) is an SL(2,R)-invariant ergodic probability measure onM(1)

3 such
that

λ
µ
2 = λµ3 = 0. (65)

8. Invariant sub-bundles

By Oseledec’s theorem [34], [1, §5], for almost all holomorphic quadratic differentials
q ∈M(1)

κ , the fiberH 1(Mq,R) of the cohomology bundleH1
κ(M,R) has a direct splitting

H 1(Mq,R)=E+
q ⊕E−

q ⊕E0
q, (66)
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whereE+
q ,E−

q andE0
q are the subspaces of cohomology classes with, respectively, strictly

positive, strictly negative and zero Lyapunov exponent. Since the cohomology bundle has
a symplectic structureE+

q andE−
q are isotropic subspaces of the same dimension. In fact,

according to Theorem 3.1,E0
q = {0} andE+

q , E−
q are Lagrangian. We will not rely below

on this result, hence the results of this section will be independent of the non-uniform
hyperbolicity of the Kontsevich–Zorich cocycle.

The homology cycles in the Poincaré dual ofE+
q , E−

q are called (following I. Nikolaev
and E. Zhuzhoma [33, §7.9.3]) theZorich cyclesfor the horizontal, respectively, vertical,
measured foliation of the quadratic differentialq. Zorich cycles for an orientable measured
foliationsF are a generalization of theSchwartzman’s asymptotic cyclewhich coincides
with the Poincaré dual of the cohomology class of the closed 1-formηF such thatF :=
{ηF = 0}.

In fact, by unique ergodicity, the Schwartzman’s cycle yields the direction of the lead-
ing term in the asymptotic behavior in homology of a typical leaf of a generic orientable
measured foliation on a surface of genusg � 1, while Zorich cycles yield the direction of
the firstg terms (under the hypothesis that the cocycle is non-uniformly hyperbolic) as the
length of the leaf gets large. The remainder in this asymptotics, that is, the distance in ho-
mology of the typical leaf from the space of all Zorich’s cycles, stays uniformly bounded
(see [44,47] or [48, Appendix D]).

We will outline below the proof of arepresentation theoremwhich states that all Zorich
cycles (or rather the corresponding dual cohomology classes) can be represented in terms
of currentsof order 1 satisfying certain properties with respect to the measured foliationF .

A basic current(of dimension 1) for a measured foliationF (with singularities at a
finite setΣF ⊂M) is a 1-dimensional currentC (in the sense of G. de Rham [12], that is,
a continuous functional on the vector space of smooth 1-forms with compact support) on
M \ΣF which satisfies the vanishing conditions

ıXC = LXC = 0, (67)

for all smooth vector fieldsX with compact support inM \ΣF tangent to the leaves of
the foliationF . (The operation of contractionıX and Lie derivativeLX are extended to
currents in the standard distributional sense [36, Chapter IX, §3].)

Basic currents are a distributional generalization of basic forms, a well-known notion
in the geometric theory of foliations. SinceM has dimension 2, a current of dimension 1
satisfying (67) is closed, hence it represents, by the generalized de Rham theorem (see [12,
Theorem 12], or [36, Chapter IX, §3, Theorem I]) a cohomology class inH 1(M \ΣF ,R).

Let q ∈Q(1)κ be an orientable quadratic differential. LetB±q(M) be, respectively, the
space of basic currents for the measured foliationsF±q (we recall thatFq is the horizontal
foliation andF−q the vertical foliation). Let{S,T } be the orthonormal frame of the tangent
bundle described in Section 4 and{ηT , ηS} be the dual frame of the cotangent bundle,
which is defined by

ηT := −ıT ωq = Re
(
q1/2), ηS := ıSωq = Im

(
q1/2). (68)

For the statement of the representation theorem, the notion of order of a current, taken
with respect to a scale ofSobolev spaces, is crucial. LetΣq be the set of the zeroes ofq.
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A current onM \Σq hasorderr ∈ N if it extends to a continuous functional on the Sobolev
spaceHrq (M) of all L2

q forms withL2
q derivatives (with respect to the vector fieldsS, T )

up to orderr . We remark that under this definition the order of a current is not uniquely
defined. In fact, a current of orderr has also orderr ′ for all r ′ � r .

Let Br±q(M) ⊂ B±q(M) be the subsets of basic currents of orderr . There is a close
relation between basic currents (of orderr) and invariant distributions(of order r). An
S-invariant, respectivelyT -invariant, distribution (of orderr) is a distributional solutionD
(of orderr) of the equation

SD = 0, respectively TD = 0. (69)

We have proved in [19] that invariant distributions of finite order for the vector fieldS,
respectivelyT , yield a complete system of obstructions to the existence of smooth solutions
u to thecohomological equation

Su= f, respectively T u= f, (70)

in the following sense. There existsγ > 1 such that for almost all quadratic differentials
q ∈M(1)

κ and for any functionf ∈Hrq (M) which belongs to the kernel of allS-invariant,
respectivelyT -invariant, distributions of orderr , the cohomological equationSu= f , re-
spectivelyT u= f , has a solutionu ∈Hsq (M) for all s < r − γ (finite loss of derivatives).

The following result describes the relation between basic currents andS-invariant,
T -invariant distributions:

LEMMA 8.1 [21, Lemma 6.6].A currentC ∈ Brq(M), respectivelyC ∈ Br−q(M), if and
only if C = D · ηS , respectivelyC = D · ηT , whereD is an S-invariant, respectively a
T -invariant, distribution of orderr ∈ N.

The main result of this section states that, for almost allq ∈M(1)
κ , the Poincaré dual of

every Zorich cycle is the cohomology class of a basic current oforder 1. It can be proved
that the natural cohomology maps

B1±q(M)→H 1(M \Σq,R)

are injective and their imagesH 1,1
±q (M,R) satisfy the inclusions

H
1,1
±q (M,R)⊂H 1(M,R)⊂H 1(M \Σq,R).

We can finally state the representation theorem for Zorich cycles:

THEOREM 8.2 [21, Theorem 8.3].For almost allq ∈M(1)
κ , we have

E+
q =H 1,1

q (M,R), E−
q =H 1,1

−q (M,R). (71)

(The Poincaré duals of Zorich cycles for a generic orientable measured foliationF are
represented by basic currents forF of Sobolev order1).
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We will outline below the proof of the main part of Theorem 8.2, that is, the inclusions
E±
q ⊂H 1,1

±q (M,R). The argument is based on the followingCheeger-type estimatefor the
constant in thePoincaré inequality(equivalently, for the first non-trivial eigenvalue of the
Laplace–Beltrami operator of the flat metricRq induced by the quadratic differentialq
onM).

TheDirichlet formof the metricRq , introduced in [19, (2.6)], is defined as the Hermitian
form on the Hilbert spaceL2

q(M) given by

Q(u, v) := (Su,Sv)q + (T u,T v)q . (72)

The domain of the Dirichlet formQ is the Sobolev spaceH 1
q (M)≡H 1(M) of functions

u ∈ L2
q(M) such thatSu,T u ∈ L2

q(M).

LEMMA 8.3 [21, Lemma 6.9].There is a constantKg,σ > 0 such that the following holds.

Let q ∈Q(1)g be a holomorphic(orientable) quadratic differential, let Σq be the set of its
zeroes and letσ := #(Σq). Denote by‖q‖ theRq -length of the shortest geodesic segment
with endpoints inΣq . Then, for anyv ∈H 1

q (M), the following inequality holds:

∣∣∣∣v− ∫
M

vωq

∣∣∣∣
0
� Kg,σ

‖q‖ Q(v, v)1/2. (73)

The proof of Lemma 8.3 follows closely Cheeger’s proof (see [11] or [10, Chapter III,
D.4]) for the case of a smooth Riemann metric. The degenerate (or singular) character
of the metricRq at the finite setΣq does not affect Cheeger’s argument. Moreover, we
are able to give an explicit estimate of Cheeger’sisoperimetric constantin terms of the
quantity‖q‖.

PARTIAL PROOF OFTHEOREM 8.2. We prove the inclusionE+
q ⊂ H 1,1

q (M,R). The in-

clusionE−
q ⊂H 1,1

−q (M,R) can be proved by a similar argument.

Let q ∈ Q(1)κ be any Oseledec regular point of the Kontsevich–Zorich cocycle and let
ct :=GKZ

t (c), t ∈ R, be the orbit under the cocycle of a cohomology classc ∈H 1(M,R).
Let M+

t be the space of meromorphic functions, with respect to the complex structure
induced by the quadratic differentialqt :=Gt(q) ∈Q(1)κ , which belong the spaceL2

qt
(M).

According to the representation formula (20), for eacht ∈ R there exists a function
m+
t ∈M+

t such that

ct = Re
[
m+
t q

1/2
t

]
. (74)

Since theL2
q norm is invariant under the action Teichmüller flow on the Teichmüller space,

the spaceM+
t ⊂ L2

q(M) for all t ∈ R, and it can be proved that the mapt→m+
t ∈ L2

q(M)

is smooth.
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There exist a measurable functionK1 > 0 onM(1)
κ and an exponent 0< λ < 1 such

that, if c ∈E+
q , the Hodge norm

‖c‖qt =
∣∣m+
t

∣∣
0 �K1(q)

∣∣m+
0

∣∣
0 exp
(−λ|t |), t � 0. (75)

Sincect ≡ c ∈H 1(M,R) (by the definition (8) ofGKZ
t ), there exists a unique zero average

functionUt ∈ L2
q(M) such that

dUt = Re
[
m+
t q

1/2
t

]− Re
[
m+

0 q
1/2]. (76)

It follows that, by the variational formula (23), the functionUt satisfies the following
Cauchy problem inL2

q(M):{
d
dt
Ut = 2 Re(vt ),

U0 = 0
(77)

(if the functionvt ∈H 1(M) in (23) is chosen with zero average).
For any (orientable) quadratic differentialq ∈Q(1)κ , by the commutativity property (17)

of the vector fieldsS, T , the Dirichlet form can be written as

Q(v, v)= ∣∣∂±q v∣∣20, for all v ∈H 1
q (M)

(where∂±q are the Cauchy–Riemann operators introduced in Section 4).

Since the functionvt ∈ H 1
q (M) ≡ H 1(M) in (23) is chosen with zero average, by

the Poincaré inequality Lemma 8.3 and by the orthogonality of the decomposition (19),
(22) forq = qt , we have

|vt |0 �Kg,σ‖qt‖−1
∣∣∂+t vt ∣∣0 �Kg,σ‖qt‖−1

∣∣m+
t

∣∣
0, (78)

where‖qt‖ denotes as above the length of the shortest geodesic segment with endpoints in
the set of zeroes of the quadratic differentialqt with respect to the induced metric.

It follows, by formulas (75), (77) and (78), that there exists a measurable function
K2> 0 onM(1)

κ such that, ifc ∈E+
q ,∣∣∣∣ ddt Ut

∣∣∣∣
0
� 2|vt |0 �K2(q)

∣∣m+
0

∣∣
0‖qt‖−1 exp

(−λ|t |), t � 0. (79)

SinceU0 = 0, by Minkowski’s integral inequality, formula (79) implies the following esti-
mate:

|Ut |0 �K2(q)
∣∣m+

0

∣∣
0

∫ |t |

0
e−λ|s|‖qs‖−1ds, t � 0. (80)



578 G. Forni

By the logarithmic law for the Teichmüller geodesic flow on the moduli space, proved
by H. Masur in [31], the following estimate holds for almost all quadratic differentials
q ∈M(1)

κ (see [31, Proposition 1.2]):

lim sup
t→±∞

− log‖qt‖
log|t | � 1

2
. (81)

It follows that, for almost allq ∈ M(1)
κ , the integral in formula (80) converges ast →

−∞, hence the family of functions{Ut | t � 0} is uniformly bounded in the Hilbert space
L2
q(M).

Let U ∈ L2
q(M) be any weak limit ofUt as t → −∞ (which exists since bounded

subsets of separable Hilbert spaces are sequentially weakly compact). By contraction of
the identity (76) with the vector fieldS and by taking the limit ast→−∞, we have

SUt =−Re
(
m+

0

)+ et Re
(
m+
t

)
, t � 0;

SU =−Re
(
m+

0

)
. (82)

The identities in (82) hold in the sense of distributions. It follows by a straightforward
computation that there exists a distributionD such that

dU =−Re
[
m+

0 q
1/2]+D · ηS. (83)

In fact, dU = SU ηT + T UηS , hence by (68) the identity (83) holds withD := T U −
Im(m+

0 ). SinceU ∈ L2
q(M) the distributionD has Sobolev order 1 and the currentC :=D ·

ηS is a basic current of order 1 for the horizontal foliationFq representing the cohomology
classc ∈E+

q .

In fact, it is immediate by (83) thatC is closed and representsc= Re[m+
0 q

1/2]. Finally,
C is basic forFq = {ηS = 0} since, ifX is any vector fields tangent toFq onM \Σq , we
have in the distributional sense:

ıXC =D · ıXηS =D · 0= 0,

LXC = ıXdC + dıXC = 0. (84)

Otherwise, sinceC is closed and by a standard formuladC = SD · ωq , the distributionD
is S-invariant, henceC is basic forFq by Lemma 8.1. �
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Abstract

In this series of lectures, we describe some counting problems in moduli space and outline
their connection to the dynamics of theSL(2,R) action on moduli space. Much of this is
presented in analogy with the space of latticesSL(n,R)/SL(n,Z).

1. LECTURE 1: Counting problems and volumes of strata

Recall thatΩn = SL(n,R)/SL(n,Z) is the space of covolume 1 lattices inRn. This space
is non-compact, since we can have arbitrarily short vectors in a lattice.

We will refer to moduli spaces of translation surfaces as defined in the lectures by
Howard Masur in this handbook [3, Definition 6] asstrata. Note that the case ofn = 2
in the space of lattices and the case of the stratumH1(∅) boil down to the same thing,
since we are considering the space of unit area holomorphic 1-forms on tori, which is
given bySL(2,R)/SL(2,Z).

Let B(R) be the ball of radiusR centered at 0 inRn. For a given lattice∆ ∈Ωn, we
would like to find out how many lattice points, that is, how many points of∆ are contained
in B(R).

It is immediately clear that for a fixed lattice∆, asR→∞,∣∣∆∩B(R)∣∣∼ Vol
(
B(R)
)= Vol

(
B(1)
)
Rn (1)

(i.e. the number of lattice points is asymptotic to the volume). However, this is not uniform
in ∆. A uniform upper bound can be given as follows:

Let Rn be endowed with a Euclidean structure. Given a subspaceL of Rn, we say it is
∆-rational ifL ∩∆ is a lattice inL. We defined(L) to be the volume ofL/(∆ ∩ L). We
then define the functionα by

α(∆)= sup
1

d(L)
,

where the supremum is taken over all∆-rational subspacesL. We have the following result
(see [25]): there is a constantC, depending only on the dimensionn so that for all∆ ∈Ωn,∣∣∆∩B(1)∣∣<Cα(∆). (2)

This estimate follows from what is called “the geometry of numbers”.
The analogous problem in moduli space is as follows: letH(β) be a stratum, i.e. a moduli

space of translation surfaces (defined in [3, Definition 6]), and letS = (X,ω) ∈ H(β).
Recall (see, e.g., [3, §1.1]) that the holonomy of a curveγ onS is given by

hol(γ )=
∫
γ

ω.
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Let

Vsc(S)=
{

hol(γ ): γ is a saddle connection onS
}
,

so thatVsc(S) ⊂ C , R2 (saddle connections are defined in [3, Definition 3]). Note that
Vsc(S) is a discrete subset ofR2, but it is not, in general, a subgroup. We are interested in
|Vsc(S)∩B(1)|, i.e. the number of saddle connections of length at most 1 onS.

The result is as follows: Fixε > 0. Then there is a constantc= c(β, ε) such that for all
S ∈H(β) of area 1,∣∣Vsc(S)∩B(1)∣∣� c

�(S)1+ε
, (3)

where�(S) is the length of the shortest saddle connection onS.
The proof of this result (which can be found in [9]) is more difficult than that of (2).

It uses techniques developed by Margulis for the quantitative version of the Oppenheim
conjecture (see Lecture 3), as well as induction on the genus.

The following construction and its analogues play a key role. For any function of
compact supportf ∈ Cc(Rn), let f̂ (∆) =∑v∈∆\0f (v). Note that iff = χB(1), we get

f̂ (∆)= |∆∩B(1)|. We have theSiegel formula: For anyf ∈ Cc(Rn),
1

µ(Ωn)

∫
Ωn

f̂ (∆)dµ(∆)=
∫

Rn
f dλ, (4)

whereµ is Haar measure onΩn = SL(n,R)/SL(n,Z), andλ is Lebesgue measure onRn.
The generalization of this formula to moduli space was developed, so the legend goes, by

Veech while he listened to Margulis lecture on the Oppenheim conjecture. Forf ∈ Cc(R2)

we define the Siegel–Veech transform̂f (S)=∑v∈Vsc(S) f (v). Just as above, iff = χB(1),
f̂ counts the number of saddle connections of length� 1.

Just as we had the Siegel formula for lattices, here we have theSiegel–Veech formula:
There is a constantb(β) such that for anyf ∈ Cc(R2), we have

1

µ(H1(β))

∫
H1(β)

f̂ (S) dµ(S)= b(β)
∫

R2
f, (5)

whereµ is the naturalSL(2,R) invariant measure onH1(β), whereH1(β)⊂H(β) is the
hypersurface of translation surfaces of area 1 (this measure is defined in [3, §3], or in the
next section).

Let us sketch the proof of this result (essentially from [28], also reproduced in [9]). The
first step (which is by far the most technical) is to show thatf̂ ∈ L1(H1(β)), so that the
left-hand side is finite. This can be deduced, e.g., from (3). Having done this, we denote
the quantity on the left-hand side of (5) byϕ(f ).

Thus we have a linear functionalϕ :Cc(R2)→ R, i.e. a measure. But it also has to be
SL(2,R) invariant. Only Lebesgue measure andδ0, the delta measure at 0 areSL(2,R)
invariant. Thus we haveϕ(f )= af (0)+ b ∫

R2 f . It remains to showa = 0. Consider the
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limit of indicator functionsf = χB(R) asR→ 0. Both sides of the equation tend to 0, so
we have thata = 0, and thus our result.

Returning to lattices, we can apply literally the same arguments to prove the Siegel
formula (4). Note that nothing was special about dimension 2 in the above proof sketch.
Thus, we have almost proved (4) as well. To be precise, we currently have:

1

µ(Ωn)

∫
Ωn

f̂ (∆)dµ(∆)= b
∫

Rn
f dλ,

for some constantb. We need to showb= 1. Here, we once again usef = χB(R), but this
time considerR→∞. Recall thatf̂ (∆)= |∆ ∩ B(R)| ∼ Vol(B(R)), for R→∞ and∆
fixed. Thus, we getb= 1, and the Siegel formula.

We should remark that for the space of lattices the proof of the Siegel formula indicated
above is not the easiest available. In fact, it is possible to avoid proving a priori thatf̂ ∈
L1(Ωn). See [26] or [5] or [27] for the details.

We now show how to use the Siegel formula to calculate the volumes of the spacesΩn.
We first prove a variant of the formula. Recall thatv ∈∆ is primitive if there is no integer
n so thatv/n ∈∆. The analogue of (1) for counting primitive vectors is

∣∣∆prim ∩B(R)∣∣∼ 1

ζ(n)
Vol
(
B(1)
)
Rn, (6)

whereζ(n) is Riemann’s zeta function. Now forf ∈ Cc(Rn), let

f̃ (∆)=
∑
v∈∆

′
f (v),

where the prime indicates that we are summing over primitive vectors only. Now the proof
of the Siegel formula given above shows that

1

µ(Ωn)

∫
Ωn

f̃ (∆)dµ(∆)= 1

ζ(n)

∫
Rn
f dλ. (7)

The rest of the argument is heuristic. Considerf = χB(ε) for some small positiveε. We
have thatf̃ (∆)= 0 unless∆ has a primitive vector of length less thanε. Note that ifv is a
primitive short vector, then so is−v. It turns out that we can, in the limit asε→ 0, ignore
the contribution to the integral of the lattices which have more then two primitive short
vectors; thus we may assume thatf̃ (∆)= 2. Now, letv any one of the two primitive short
vectors in∆, and consider a basis for∆ containingv. We may subtract multiples ofv from
the other elements of the basis, to make them as short as possible. After this “reduction”
procedure is complete, we get a basis for∆ containingv where all the other elements
are almost orthogonal tov. Then these other basis elements form an arbitrary lattice of
dimensionn− 1, i.e. an element ofΩn−1. Thus, the left-hand side of (7) is approximately

2

µ(Ωn)

1

2
Vol
(
B(ε)
)
µ(Ωn−1),
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where the factor of 2 came from the value off̃ , the factor of12 Vol(B(ε)) came from the
integral overv ∈ Rn, and the factorµ(Ωn−1) came from the integral over the rest of the
basis (and we assumed thatf̃ is always either 0 or 1). The right-hand side of (7) is exactly
equal to 1

ζ(n)
Vol(B(ε)).

Doing this more carefully, and taking into account the normalizations of the measures
(to be defined in the next lecture), we get, after sendingε→ 0,

1

ζ(n)
= n− 1

n

µ(Ωn−1)

µ(Ωn)
. (8)

Now after iterating the above formula, we get the desired formula for the volume:

µ(Ωn)= 1

n
ζ(2)ζ(3) . . . ζ(n). (9)

The above could be justified rigorously, but this is usually not done since (8) and (9) can
be obtained from (7) in an easier way (see [26] or [5] or [27]). However, the analogue of the
argument presented here is the only way we currently know how to proceed in the case of
translation surfaces. This was done in [11] where we obtained the following result, which
corresponds to (8). For any stratum (i.e. moduli space of translation surfaces)H1(β), the
coefficientb(β) involved in (5) can be expressed in the following form:

b(β)=
∑
α<β

c(α,β)
µ(H1(α))

µ(H1(β))
, (10)

where the sum is over lower dimensional strataα (which lie at the “boundary” ofH1(β)),
andc(α,β) are explicitly known rational numbers.

We note that (10) fails as a method for calculating the volumes, since (unlike the lattice
case) we do not have an independent formula forb(β). In the second lecture we will show
that the volumes can be computed in a different way; then (10) can be used to evaluate
b(β). Also, we will see in the third lecture thatb(β) is the answer to a certain natural
counting problem. The numbersb(β), called the Siegel–Veech constants, appear in some
other contexts as well, in particular in connection with the Lyapunov exponents of the
geodesic flow (see, e.g., [1, end of §6]).

2. LECTURE 2: Lattice points and branched covers

In this lecture we describe briefly another strategy for calculating volumes of moduli spaces
of translation surfaces, which also has a parallel for the space of lattices. Recall that we
are considering the moduli spacesH(β) of translation surfaces with singularity structure
β = (β1, β2, . . . , βn), whereβi ∈ N,

∑
βi = 2g− 2. Let the set of singularities be denoted

byΣ . We have|Σ | = n, and we have the first relative homology group ofS relative toΣ
(with coefficients inZ):

H1(S,Σ;Z)= Z2g+n−1.
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We can pick a basis for the relative homology by selectingg a-cycles,g b-cycles (from
absolute homology), andn− 1 relative cycles, where a relative cycle is a path with starts
at some point ofΣ and ends at a different point ofΣ .

Fix a Z-basisγ1, γ2, . . . , γk of H1(S,Σ;Z), wherek = 2g + n− 1. We recall the fol-
lowing fact (see [14]):

THEOREM 1. The map(X,ω)→ (hol(γ1), . . . ,hol(γk)) from H(β)→ (R2)k is a local
coordinate system.

By pulling back Lebesgue measure on(R2)k , we obtain a normalized measureν on
H(β). (For more details on the above construction, see [3, §3].) Now, we would like to
define a measure on the hypersurfaceH1(β).

This is similar to the lattice setting, where if we pick a basisv1, v2, . . . , vn for our lattice
∆ ⊂ Rn, we get a matrix inMn(R) by letting vi be theith column. Note that since our
lattice is unit volume, our matrix has determinant 1. We have a natural (Lebesgue) measure
ν onMn(R). Consider the det= 1 hypersurfaceΩ1 (i.e. SL(n,R)). We define a measure
µ on this space as follows: letE ⊂Ω1, and letC1(E) be the cone overE (i.e. the union
of all line segments which start at the origin and end at a point ofE). We defineµ(E)=
ν(C1(E)). This yields a finite measure since we are considering a fundamental domain
under theSL(n,Z)-action. This is in fact the measure used in the previous section in the
case of lattices.

Returning to the setting of translation surfaces, recall that the area of our surfaceS =
(X,ω) is given by

area(S)= 1

2i

∫
X

ω ∧ ω̄= 1

2i

g∑
i=1

∫
ai

ω̄

∫
bi

ω−
∫
bi

ω̄

∫
ai

ω,

whereai andbi are thea- andb-cycles onX, respectively.
This gives that the area is a quadratic form in the local coordinate system, i.e.

area(X,ω)=Q(hol(γ1), . . . ,hol(γk)
)
.

However, it is a degenerate form, since it only depends on the absolute cyclesai andbi . We
can mimic the lattice picture now: we defineµ(E)= ν(C1(E)) for any subsetE ⊂H1(β).
This is the measure used in the previous section for the case of translation surfaces.

In what follows, we should really work inside each local coordinate chart as in Theo-
rem 1 and then sum over the charts at the end (see [12, §3.2]). But to simplify the presenta-
tion, we pretend there is only one chart. LetF ⊂H1(β) denote a fundamental domain (for
the relation of equivalence of translation surfaces) with rectifiable boundary, so that each
translation surface corresponds to a unique point inF . Then,

µ
(
H1(β)

)= µ(F)= ν(C1(F)
)
.
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We now make a cosmetic step. LetCR(F) denote the cone ofF extended to the hyper-
surface of areaR-surfaces. Clearly,

µ
(
H1(β)

)= ν(C1(F)
)= ν(CR(F))

Rk
.

We have the following fact:∣∣CR(F)∩ (Z2)k∣∣∼ ν(CR(F))
asR→∞, i.e. the number of lattice points in a cone is asymptotic to the volume. Usually
this is used to estimate the number of lattice points, but here we use this in reverse and
estimate the volume by the number of lattice points. Thus, we get that

µ
(
H1(β)

)= ν(CR(F))
Rk

∼ |CR(F)∩ (Z2)k|
Rk

,

or, equivalently,∣∣CR(F)∩ (Z2)k∣∣∼ µ(H1(β)
)
Rk. (11)

Equation (11) is not useful unless we can find an interpretation of the points ofCR(F)∩
(Z2)k . This is given by the following:

LEMMA 2. S = (X,ω) ∈ CR(F)∩ (Z2)k if and only ifX is a holomorphic branched cover
of the standard torus of degree� R, ω is the pullback ofdz under the covering map, and
all singularities branch over the same point.

PROOF. Since S ∈ CR(F), area(S) � R. By definition, S ∈ (Z2)k is equivalent to
hol(γ1), . . . ,hol(γk) ∈ Z2. Fix a non-singular pointz0 on S, and defineπ :S→ T , where
T is the standard torus, byπ(z)= ∫ z

z0
ω. Since

∫
γ
ω ∈ Z+ iZ for any closed curve or sad-

dle connectionγ , this is a well-defined covering map with all singularities branching over
the same point. Since the torus is unit volume, the area ofS is equal to the degree of the
covering. �

Let Nβ(d) denote the number1 of branched covers ofT of degreed with branching
typeβ. (Note thatNβ(d) is defined in purely combinatorial terms.)

Combining Lemma 2 with (11), we obtain the following: asR→∞,

R∑
d=1

Nβ(d)∼ µ
(
H1(β)

)
Rk. (12)

1In order for Theorem 3 below to hold, we should, when definingNβ(d), weigh each cover by the inverse of
its automorphism group. However, this does not affect the asymptotics and can be ignored here.
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(This relation was discovered by Kontsevich and Zorich, and independently by Masur and
the author.) Thus, we can computeµ(H1(β)) if we can compute the asymptotics of the
left-hand side of (12). This is a purely combinatorial problem.

Suppose we are considering a degreed cover of the torus. Consider the standard basis
a andb of curves on the torus (when the torus is viewed as the unit square, the curves
correspond to the sides of the square). They give rise to permutations of the sheets, that is,
elements of the symmetric groupSd . We will abuse notation by denoting these permuta-
tions also bya andb. Singularity types of covers correspond to different conjugacy classes
of the commutatoraba−1b−1. A simple zero is a transposition, a double zero a three cy-
cle, a two simple zeroes is a product of two transpositions, etc. (So, for example, if we
are considering the stratumH(1,1), the commutator will be in the same conjugacy class
as a product of two transpositions.) The number of pairs(a, b) ∈ Sd × Sd satisfying such
a commutation relation can be expressed as a sum over the characters of the symmetric
groupSd .

However, simply looking at the conjugacy class of the commutator permutation does
not guarantee that the resulting surface is connected. We wish to count only the connected
covers. However, the disconnected ones dominate the count. If one knows the number of
disconnected covers exactly, one can compute the number of connected covers (by using
inclusion/exclusion to subtract off all the possible ways a cover can disconnect). Unfor-
tunately, as one does that, the firstn terms in the asymptotic formula cancel. Still, it is
possible, using the exact formula for the number of disconnected covers in [4], to carry out
the computation (see [12]). The result, is a fairly messy but computable formula for the
volumeµ(H1(β)).

There are two consequences of the above computations worth mentioning:

THEOREM 3. The generating functionFβ(q)=∑∞
d=0Nβ(d)q

d is a quasi-modular form,
that is, it is a polynomial in the Eisenstein seriesGk(q), k = 2,4,6.

THEOREM 4. π−2gµ(H1(β)) ∈ Q, whereg is the genus of any surface inH(β).

Both of the above theorems were conjectured by Kontsevich. Further work showed that
they hold also for the connected components of strata, and that similar results hold for
spaces of quadratic differentials. We remark that Theorem 4 implies that the Siegel–Veech
constants are rational.

For the space of lattices, one can carry out the same construction. The main difference
is that one ends up countingunbranchedcovers of the standard torusT n, or what is equiv-
alent, sublattices of the standard latticeZn. By computing the number of sublattices ofZn

of index at mostR, and sendingR→∞, it is not difficult to reproduce (9).

3. LECTURE 3: The Oppenheim conjecture and Ratner’s theorem

3.1. Counting cylinders and saddle connections

Recall thatVsc(S)= {hol(γ ): γ is a saddle connection onS} whereS = (X,ω) is a trans-
lation surface. We also define the analogous set:
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V (S)= {hol(γ ): γ is a closed geodesic onS not passing through singularities
}
.

Note that any such closed geodesic is part of a cylinder (see [3, §3]), and all the closed
geodesics in the cylinder have the same holonomy. Thus,|V (S) ∩B(R)| is the number of
cylinders onS of length at mostR.

Masur proved the following:

THEOREM 5. For all translation surfacesS in a compact set, there are constantsc1 and
c2 so that forR. 1,

c1R
2<
∣∣V (S)∩B(R)∣∣� ∣∣Vsc(S)∩B(R)∣∣< c2R2.

The upper bound is proved in [17] and the lower bound is proved in [16]. The proof of
the lower bound depends on the proof of the upper bound. Another proof of both the upper
and lower bounds with explicit constants was given by Vorobets in [29] and [30]. Also
see [9] for yet another proof of the upper bound, which is influenced by ideas of Margulis.

We also note that there is a dense set of directions with a closed trajectory and thus a
cylinder.

The following theorem, gives asymptotic formulas for the number of saddle connections
and cylinders of closed geodesics on a fixed surface. It was first proved in this form in [9],
but many of the ideas came from [28], where a slightly weaker version was proved.

THEOREM 6. For a.e. S ∈H1(β), we have∣∣Vsc(S)∩B(R)∣∣∼ πb(β)R2,

whereVsc(S) is the collection of vectors inR2 given by holonomy of saddle connections
onS, andb(β) is the Siegel–Veech constant from Lecture1 (whose value is given by(10)).

Similarly, for cylinders of closed geodesics, we have that there is a constantb1(β) so
that ∣∣V (S)∩B(R)∣∣∼ πb1(β)R

2,

whereV (S) is the collection of vectors given by holonomy along(imprimitive) closed geo-
desics not passing through singularities, and b1(β) is the associated Siegel–Veech con-
stant.

The following exposition will be along the lines of [9], which was heavily influenced
by [28]. To simplify the notation, we only deal with the case of saddle connections. Define
gt =
(
et 0
0 e−t
)

andrθ =
(

cosθ sinθ−sinθ cosθ

)
. Letf be the indicator function of the trapezoid defined

by the points

(1,1), (−1,1), (−1/2,1/2), (1/2,1/2).
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Fig. 1. Lemma 7.

LEMMA 7. We have∫ 2π

0
f (gt rθ v) dθ ≈

{
2e−2t if et/2� ‖v‖� et ,
0 otherwise.

PROOF. LetU denote the trapezoid. Note that

f (gt rθ v) �= 0 ⇔ gt rθv ∈U ⇔ rθv ∈ g−1
t U. (13)

The setg−1
t U is the shaded region in Figure 1. From (13) it is clear that the integral in

Lemma 7 is equal to (2π times) the fraction of the circle which lies inside the shaded region
g−1
t U . If v is too long or too short (not drawn), then the circle would completely miss the

shaded region, and the integral would be zero. If it does not miss, then (2π times) the
fraction of the circle in the shaded region is approximately 2e−2t , independent of‖v‖. �

We now prove Theorem 6. Summing our formula from Lemma 7 over allv ∈ Vsc(S) and
recalling the definition of theSiegel–Veech transform̂f (S)=∑v∈Vsc(S) f (v), we get

1
2e

2t
∫ 2π

0
f̂ (gt rθS) dθ ≈

∣∣Vsc(S)∩B(et)∣∣− ∣∣Vsc(S)∩B(et/2)∣∣.
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Writing R = et , we can rewrite this as

1
2R

2
∫ 2π

0
f̂ (gt rθS) dθ ≈

∣∣Vsc(S)∩B(R)∣∣− ∣∣Vsc(S)∩B(R/2)∣∣. (14)

This equation is key to the counting problem, since the right-hand side counts saddle con-
nections in an annulus, and the left-hand side is an integral over (part of) anSL(2,R) orbit.
(The fact that we only have approximate equality does not affect the leading order asymp-
totics.) Now we are supposed to use some sort of ergodic theory to analyze the behavior of
integral on the left-hand side of (14) ast→∞ (or equivalently asR→∞).

There is an ergodic theorem of Nevo [19] which implies that2 for almost allS ∈H1(β),
and provided thatf̂ ∈ L1+ε(H1(β)), the integral converges to 2π

∫
H1(β)

f̂ (S) dS =
2πb(β)

∫
R2 f . The assertion that̂f ∈ L1+ε can be verified using (3). This immediately

implies Theorem 6. �

However, this approach is afailure if one wants to prove things about billiards in rational
polygons: our theorems hold for almost every pointS, and the set of translation surfaces
arising from rational polygons has measure zero.

3.2. Oppenheim’s conjecture

We now describe a counting problem for lattices which has a solution very similar to the
above approach. (In fact, the results in this subsection predated and heavily influenced the
discussion in the previous subsection.) LetQ=Q(x1, x2, . . . , xn) be a indefinite irrational
quadratic form inn variables which is not a multiple of a rational form. In 1929 Oppenheim
conjectured the following: forn� 5,Q(Zn) is dense inR. This was proved forn� 3 by
Margulis in 1986 [15], using methods from dynamics and ergodic theory.

We will now assume thatQ has signature(p, q), with p � 3 andq � 1. In [7], the
following quantitative version of the conjecture is proved:∣∣{x ∈ Zn: ‖x‖� T , a �Q(x)� b

}∣∣∼ c(Q)(b− a)T n−2. (15)

This is very similar to our above problem with saddle connections: we want to consider
the lattice points in the ball of radiusT intersected with the region in between the two
hypersurfacesQ(x)= a andQ(x)= b.

To solve this, one writes an integral very similar to the previous problem: this time, our
compact group which we are integrating over isH = SO(Q) ∩ SO(n) and our diagonal
subgroup, denoted byat , has 1’s in every diagonal entry except the first and last, where
they areet ande−t , respectively. Our integral is as follows:T n−2

∫
H
f̂ (ath∆Q)dh, where

∆Q is a certain lattice inRn associated toQ.

2The theorem of Nevo used here is about a generalSL(2,R) action, and uses nothing about the geometry of the
moduli space.
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Hence, if one makes a formal analogy between the spaces of translation surfaces and the
spaces of lattices, the problem of counting saddle connections corresponds to the quanti-
tative Oppenheim conjecture. There is an important difference between the two problems:
unlike the saddle connection case where the result is “almost everywhere”, we can prove
the asymptotic formula (15) for ALL quadratic formsQ not proportional to rational forms
(and (15) fails for multiples of rational forms). This is due to the theorems we describe in
the next part of the lecture, which are collectively known as Ratner’s theorem. A major
unsolved question is whether or not there is a version of Ratner’s theorem for the action on
the moduli space of translation surfaces. An affirmative answer would allow us to prove an
asymptotic formula for billiards in every rational polygon (and every translation surface).

For more details on Oppenheim’s conjecture and its solution, see [2, §3.3a, §5.1].

3.3. Ratner’s theorem

Recall theBirkhoff Ergodic Theorem(see, e.g., [13, Theorem 4.1.2]):

THEOREM8 (Birkhoff). Let(X,µ) be a measure space withµ(X)= 1,and letT :X→X

be a ergodic measure preserving transformation. Letf :X→ R be inL1(X,µ). Then, for
almost everyx ∈X, we have that

lim
N→∞

1

N

N−1∑
i=0

f
(
T ix
)= ∫

X

f dµ. (16)

This is a great theorem, but the “almost every” is fatal for most applications to number
theory. We would like to know what happens for those other points as well, and Ratner’s
theorem can describe the behavior in certain settings.

First, however, recall thatT :X→X is said to beuniquely ergodicif there is a unique
invariant probability measureµ onX.

We have the following consequence of unique ergodicity: ifT is uniquely ergodic, and
X is compact, then (assumingf in continuous) the convergence in Birkhoff’s theorem
holds for all x ∈ X. To see this, letνN(f ) = 1

N

∑N−1
i=0 f (T

ix). SinceX is compact, the
set of probability measures onX is weak-∗ compact, so there is a subsequenceνnj and a
probability measureν∞ so thatνnj → ν∞. Its easy to see thatν∞ is an invariant measure
for T , soν∞ = µ. This is equivalent to (16).

Thus we can see that understanding the set of invariant measures is very important (or
in particular, the set of ergodic invariant measures, since any invariant measure is a convex
combination of ergodic measures). The other key issue in the topological setting is under-
standing the closure of orbits, and the two are related, since there will be invariant measures
supported on orbit closures. This is the subject matter of Ratner’s theorem (see [20–24]).

We now describe the setting. LetG be a semisimple Lie group with finite center (for
example,G = SL(n,R)). Let Γ be a lattice inG (not necessarily cocompact, e.g.,Γ =
SL(n,Z)), and letU be a one parameter unipotent subgroup (for example,ut =

(
1 t
0 1

)
). We

let U act onG/Γ by left multiplication on cosets (forn= 2, this action is the horocycle
flow).
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The following theorem is stated somewhat informally, e.g., [24] or [2, §3.3c] for precise
statements.

THEOREM 9 (Ratner).
(1) The closure of everyU -orbit is algebraic: that is, for all x ∈G/Γ , there is a closed

subgroupL⊂G such thatUx = Lx, and thatL ∩ xΓ x−1 is a lattice inL (so that
Lx is a closed subset ofG/Γ ).

(2) Every ergodicU -invariant measureν is algebraic, that is there exists a subgroupL
andx ∈G/Γ , such thatν is theL-invariant measure on the closed subsetLx.

(3) Every orbit is uniformly distributed in its closure, that is, for everyx ∈G there ex-
ists a(not necessarily proper) subgroupL of G such thatLx = Ux is closed, and
1
T

∫ T
0 f (utx) dt→

∫
f (y)dµL(y) as t→∞, whereµL is theL-invariant proba-

bility measure onLx.

The second part of the theorem is the most difficult. The other two parts are essentially
consequences of part 2. Also note that Birkhoff’s theorem yields that for allε > 0 there is a
setB of measure< ε so that outside ofB, the convergence is uniform. Dani and Margulis
obtained an explicit description ofB using part 2 of Ratner’s theorem (see [6]).

One eventual goal is to prove a version of Ratner’s theorem for theSL(2,R) action on
H1(β). That is, we would like to classify invariant measures, orbit closures, and prove
uniform distribution, for both the fullSL(2,R) action, and for the horocycle flow (which
is defined to be the action onH1(β) of the subgroup

(
1 ∗
0 1

)
of SL(2,R)).

One partial result in this direction is due to McMullen [18]: he has classified theSL(2,R)
orbit closures and invariant measures for the moduli space of genus 2 surfaces (i.e. the strata
H(1,1) andH(2)). Note that the integral in (14) is over large circles inSL(2,R), which
can be approximated well by horocycles. Thus the horocycle flow is directly relevant to the
counting problem. For other very partial results in this direction see [8] and [10], where
this program (i.e. measure classification with respect to the horocycle flow and application
to counting) has been carried out in the very special case of branched covers of Veech
surfaces.
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Introduction

Recurrent–wandering, conservative–dissipative, contracting–expanding, deterministic–
chaotic, isometric–mixing, periodic–turbulent, distal–proximal, the list can go on and on.
These (pairs of) words—all of which can be found in the dictionary—convey dynamical
images and were therefore adopted by mathematicians to denote one or another mathemat-
ical aspect of a dynamical system.

The two sister branches of the theory of dynamical systems calledergodic theory(or
measurable dynamics) andtopological dynamicsuse these words to describe different but
parallel notions in their respective theories and the surprising fact is that many of the cor-
responding results are rather similar. In the following chapter we have tried to demonstrate
both the parallelism and the discord between ergodic theory and topological dynamics.
We hope that the subjects we chose to deal with will successfully demonstrate this dual-
ity.

The table of contents gives a detailed listing of the topics covered. In the first part we
have detailed the strong analogies between ergodic theory and topological dynamics as
shown in the treatment of recurrence phenomena, equicontinuity and weak mixing, distal-
ity and entropy. In the case of distality the topological version came first and the theory of
measurable distality was strongly influenced by the topological results. For entropy theory
the influence clearly was in the opposite direction. The prototypical result of the second
part is the statement that any abstract measure probability preserving system can be repre-
sented as a continuous transformation of a compact space, and thus in some sense ergodic
theory embeds into topological dynamics.

We have not attempted in any way to be either systematic or comprehensive. Rather
our choice of subjects was motivated by taste, interest and knowledge and to great ex-
tent is random. We did try to make the survey accessible to non-specialists, and for this
reason we deal throughout with the simplest case of actions ofZ. Most of the discus-
sion carries over to non-invertible mappings and toR actions. Indeed much of what
we describe can be carried over to general amenable groups. Similarly, we have for the
most part given rather complete definitions. Nonetheless, we did take advantage of the
fact that this chapter is part of a handbook and for some of the definitions, basic no-
tions and well known results we refer the reader to volume I of this handbook, mainly
to Chapters 1, by B. Hasselblatt and A. Katok, and 2, by J.-P. Thouvenot. Finally, we
should acknowledge the fact that we made use of parts of our previous expositions [87]
and [36].

We made the writing of this survey more pleasurable for us by the introduction of a
few original results. In particular the following results are entirely or partially new. The-
orem 1.2 (the equivalence of the existence of a Borel cross-section with the coincidence
of recurrence and periodicity), most of the material in Section 4 (on topological mild-
mixing), all of Subsection 7.4 (the converse side of the local variational principle) and
Subsection 7.6 (on topological determinism).
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Part 1. Analogies

1. Poincaré recurrence vs. Birkhoff’s recurrence

1.1. Poincaré recurrence theorem and topological recurrence

The simplest dynamical systems are the periodic ones. In the absence of periodicity the
crudest approximation to this is approximate periodicity where instead of some iterateT nx

returning exactly tox it returns to a neighborhood ofx. We refer the reader to [1, Chap-
ter 1, Section 2.3], in the first volume of this handbook, for a short review of recurrence in
topological dynamics.

The first theorem in abstract measure dynamics is Poincaré’s recurrence theorem which
asserts that for a finite measure preserving system(X,B,µ,T ) and any measurable setA,
µ-a.e. point ofA returns toA (see [1, Chapter 1, Theorem 3.4.1]). The proof of this basic
fact is rather simple and depends on identifying the set of pointsW ⊂ A that never re-
turn toA. These are called thewandering pointsand their measurability follows from the
formula

W =A∩
( ∞⋂
k=1

T −k(X \A)
)
.

Now for n � 0, the setsT −nW are pairwise disjoint sincex ∈ T −nW means that the
forward orbit of x visits A for the last time at momentn. Sinceµ(T −nW) = µ(W)
it follows that µ(W) = 0 which is the assertion of Poincaré’s theorem. Noting that
A∩ T −nW describes the points ofA which visitA for the last time at momentn, and that
µ(
⋃∞
n=0T

−nW)= 0 we have established the following stronger formulation of Poincaré’s
theorem.

THEOREM 1.1. For a finite measure preserving system(X,B,µ,T ) and any measurable
setA, µ-a.e. point ofA returns toA infinitely often.

Note that only sets of the formT −nB appeared in the above discussion so that the
invertibility of T is not needed for this result. In the situation of classical dynamics, which
was Poincaré’s main interest,X is also equipped with a separable metric topology. In such
a situation we can apply the theorem to a refining sequence of partitionsPm, where each
Pm is a countable partition into sets of diameter at most 1/m. Applying the theorem to a
fixedPm we see thatµ-a.e. point comes to within 1/m of itself, and since the intersection
of a sequence of sets of full measure has full measure, we deduce the corollary thatµ-a.e.
point ofX is recurrent.

This is the measure theoretical path to the recurrence phenomenon which depends on
the presence of a finite invariant measure. The necessity of such measure is clear from
considering translation by one on the integers. The system is dissipative, in the sense that
no recurrence takes place even though there is an infinite invariant measure.

There is also a topological path to recurrence which was developed in an abstract setting
by G.D. Birkhoff. Here the above example is eliminated by requiring that the topological
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spaceX, on which our continuous transformationT acts, be compact. It is possible to show
that in this setting a finiteT -invariant measure always exists, and so we can retrieve the
measure theoretical picture, but a purely topological discussion will give us better insight.

A key notion here is that of minimality. A non-empty closed,T -invariant setE ⊂X, is
said to beminimal if F ⊂ E, closed andT -invariant impliesF = ∅ or F = E. If X itself
is a minimal set we say that the system(X,T ) is aminimal system.

Fix now a pointx0 ∈X and consider

ω(x0)=
∞⋂
n=1

{
T kx0: k � n

}
.

The points ofω(x0) are calledω-limit points ofx0 (ω = last letter of the Greek alphabet)
and in the separable casey ∈ ω(x0) if and only if there is some sequenceki →∞ such
thatT ki x0 → y. If x0 ∈ ω(x0) thenx0 is called apositively recurrent point.

Clearlyω(x0) is a closed andT -invariant set. Therefore, in any non-empty minimal set
E, any pointx0 ∈ E satisfiesx0 ∈ ω(x0) and thus we see that minimal sets have recurrent
points.

In order to see that compact systems(X,T ) have recurrent points it remains to show
that minimal sets always exist. This is an immediate consequence of Zorn’s lemma applied
to the family of nonempty closedT -invariant subsets ofX. A slightly more constructive
proof can be given whenX is a compact and separable metric space. One can then list a
sequence of open setsU1,U2, . . . which generate the topology, and perform the following
algorithm:

1. setX0 =X,
2. for i = 1,2, . . . ,

if
⋃∞
n=−∞ T −nUi ⊃Xi−1 putXi =Xi−1, else putXi =Xi−1 \⋃∞

n=−∞ T −nUi .
Note thatXi �= ∅ and closed and thusX∞ = ⋂∞

i=0Xi is non-empty. It is clearly
T -invariant and for anyUi , if Ui ∩ X∞ �= ∅ then

⋃∞
−∞ T −n(Ui ∩ X∞) = X∞, which

shows that(X∞, T ) is minimal.

1.2. The existence of Borel cross-sections

There is a deep connection between recurrent points in the topological context and ergodic
theory. To see this we must consider quasi-invariant measures. For these matters it is better
to enlarge the scope and deal with continuous actions ofZ, generated byT , on acomplete
separable metric spaceX. A probability measureµ defined on the Borel subsets ofX is
said to bequasi-invariantif T ·µ∼ µ. Define such a system(X,B,µ,T ) to beconserva-
tive if for any measurable setA, TA⊂A impliesµ(A \ TA)= 0.

It is not hard to see that the conclusion of Poincaré’s recurrence theorem holds for such
systems; i.e. ifµ(A) > 0, thenµ-a.e.x returns toA infinitely often. Thus once againµ-a.e.
point is topologically recurrent. It turns out now that the existence of a single topologically
recurrent point implies the existence of a non-atomic conservative quasi-invariant measure.
A simple proof of this fact can be found in [57] for the case whenX is compact—but the
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proof given there is equally valid for complete separable metric spaces. In this sense the
phenomenon of Poincaré recurrence and topological recurrence are “equivalent” with each
implying the other.

A Borel setB ⊂X such that each orbit intersectsB in exactly one point is called aBorel
cross-sectionfor the system(X,T ). If a Borel cross-section exists, then no non-atomic
conservative quasi-invariant measure can exist. In [83] it is shown that the converse is also
valid—namely if there are no conservative quasi-invariant measures then there is a Borel
cross-section.

Note that the periodic points of(X,T ) form a Borel subset for which a cross-section
always exists, so that we can conclude from the above discussion the following statement
in which no explicit mention is made of measures.

THEOREM 1.2. For a system(X,T ), with X a completely metrizable separable space,
there exists a Borel cross-section if and only if the only recurrent points are the periodic
ones.

REMARK 1.3. Already in [44] as well as in [22] one finds many equivalent conditions for
the existence of a Borel section for a system(X,T ). However one doesn’t find there explicit
mention of conditions in terms of recurrence. Silvestrov and Tomiyama [77] established the
theorem in this formulation forX compact (usingC∗-algebra methods). We thank A. Lazar
for drawing our attention to their paper.

1.3. Recurrence sequences and Poincaré sequences

We will conclude this section with a discussion of recurrence sequences and Poincaré se-
quences. First for some definitions. Let us say thatD is arecurrence setif for any dynam-
ical system(Y,T ) with compatible metricρ and anyε > 0 there is a pointy0 and ad ∈D
with

ρ
(
T dy0, y0

)
< ε.

Since any system contains minimal sets it suffices to restrict attention here to minimal
systems. For minimal systems the set of suchy ’s for a fixedε is a dense open set.

To see this fact, letU be an open set. By the minimality there is someN such that for
anyy ∈ Y , and some 0� n� N , we haveT ny ∈ U . Using the uniform continuity ofT n,
we find now aδ > 0 such that ifρ(u, v) < δ then for all 0� n�N

ρ(T nu, T nv) < ε.

Now let z0 be a point inY andd0 ∈D such that

p
(
T d0z0, z0

)
< δ. (1)
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For some 0� n0 � N we haveT n0z0 = y0 ∈ U and from (1) we getρ(T d0y0, y0) < ε.
Thus points thatε return form an open dense set. Intersecting overε→ 0 gives a denseGδ
in Y of pointsy for which

inf
d∈D ρ

(
T dy, y

)= 0.

Thus there are points which actually recur along times drawn from the given recurrence
set.

A nice example of a recurrence set is the set of squares. To see this it is easier to prove
a stronger property which is the analogue in ergodic theory of recurrence sets.

DEFINITION 1.4. A sequence{sj } is said to be aPoincaré sequenceif for any finite mea-
sure preserving system(X, B, µ, T ) and anyB ∈ B with positive measure we have

µ
(
T sj B ∩B)> 0 for somesj in the sequence.

Since any minimal topological system(Y,T ) has finite invariant measures with global
support,µ any Poincaré sequence is recurrence sequence. Indeed for any presumptive con-
stantb > 0 which would witness the non-recurrence of{sj } for (Y,T ), there would have
to be an open setB with diameter less thanb and having positiveµ-measure such that
T sj B ∩B is empty for all{sj }.

Here is a sufficient condition for a sequence to be a Poincaré sequence:

LEMMA 1.5. If for everyα ∈ (0, 2π)

lim
n→∞

1

n

n∑
k=1

eiαsk = 0

then{sk}∞1 is a Poincaré sequence.

PROOF. Let (X,B,µ,T ) be a measure preserving system and letU be the unitary operator
defined onL2(X,B,µ) by the action ofT , i.e.

(Uf )(x)= f (T x).

LetH0 denote the subspace of invariant functions and for a set of positive measureB, let
f0 be the projection of 1B on the invariant functions. Since this can also be seen as a con-
ditional expectation with respect to theσ -algebra of invariant setsf0 � 0 and is not zero.
Now since1B − f0 is orthogonal to the space of invariant functions its spectral measure
with respect toU doesn’t have any atoms at{0}. Thus from the spectral representation we
deduce that inL2-norm∥∥∥∥∥1

n

n∑
1

Usk (1B − f0)

∥∥∥∥∥
L2

−→ 0
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or ∥∥∥∥∥
(

1

n

n∑
1

Usk1B

)
− f0

∥∥∥∥∥
L2

−→ 0

and integrating against1B and using the fact thatf0 is the projection of1B we see that

lim
n→∞

1

n

n∑
1

µ
(
B ∩ T −skB

)= ‖f0‖2> 0

which clearly implies that{sk} is a Poincaré sequence. �

The proof we have just given is in fact von Neumann’s original proof for the mean
ergodic theorem. He used the fact thatN satisfies the assumptions of the proposition, which
is Weyl’s famous theorem on the equidistribution of{nα}. Returning to the squares Weyl
also showed that{n2α} is equidistributed for all irrationalα. For rationalα the exponential
sum in the lemma needn’t vanish, however the recurrence along squares for the rational
part of the spectrum is easily verified directly so that we can conclude that indeed the
squares are a Poincaré sequence and hence a recurrence sequence.

The converse is not always true, i.e. there are recurrence sequences that are not Poincaré
sequences. This was first shown by I. Kriz [61] in a beautiful example (see also [87, Chap-
ter 5]). Finally here is a simple problem.

PROBLEM. If D is a recurrence sequence for all circle rotations is it a recurrence set?

A little bit of evidence for a positive answer to that problem comes from looking at a
slightly different characterization of recurrence sets. LetN denote the collection of sets of
the form

N(U, U)= {n: T −nU ∩U �= ∅} (U open and non-empty),

whereT is a minimal transformation. Denote byN ∗ the subsets ofN that have a non-
empty intersection with every element ofN . ThenN ∗ is exactly the class of recurrence
sets. For minimal transformations, another description ofN(U, U) is obtained by fixing
somey0 and denoting

N(y0, U)=
{
n: T ny0 ∈U

}
.

ThenN(U, U) = N(y0, U) − N(y0, U). Notice that the minimality ofT implies that
N(y0, U) is a syndeticset (a set with bounded gaps) and so anyN(U, U) is the set of
differences of a syndetic set. ThusN consists essentially of all sets of the formS − S

whereS is a syndetic set.
Given a finite set of real numbers{λ1, λ2, . . . , λk} andε > 0 set

V (λ1, λ2, . . . , λk; ε)=
{
n ∈ Z: max

j

{‖nλj‖< ε}},



Measurable and topological dynamics 605

where‖ · ‖ denotes the distance to the closest integer. The collection of such sets forms a
basis of neighborhoods at zero for a topology onZ which makes it a topological group.
This topology is called theBohr topology. (The corresponding uniform structure is totally
bounded and the completion ofZ with respect to it is a compact topological group called
theBohr compactificationof Z.)

Veech proved in [79] that any set of the formS − S with S ⊂ Z syndetic contains a
neighborhood of zero in the Bohr topologyup to a set of zero density. It is not known if in
that statement the zero density set can be omitted. If it could then a positive answer to the
above problem would follow (see also [33]).

2. The equivalence of weak mixing and continuous spectrum

In order to analyze the structure of a dynamical systemX there are, a priori, two possi-
ble approaches. In the first approach one considers the collection ofsubsystemsY ⊂ X
(i.e. closedT -invariant subsets) and tries to understand howX is built up by these sub-
systems. In the other approach one is interested in the collection offactorsX

π→ Y of the
systemX. In the measure theoretical case the first approach leads to the ergodic decom-
position and thereby to the study of the “indecomposable” or ergodic components of the
system. In the topological setup there is, unfortunately, no such convenient decomposition
describing the system in terms of its indecomposable parts and one has to use some less
satisfactory substitutes. Natural candidates for indecomposable components of a topologi-
cal dynamical system are the “orbit closures” (i.e. the topologically transitive subsystems)
or the “prolongation” cells (which often coincide with the orbit closures), see [5]. The
minimal subsystems are of particular importance here. Although we can not say, in any
reasonable sense, that the study of the general system can be reduced to that of its minimal
components, the analysis of the minimal systems is nevertheless an important step towards
a better understanding of the general system.

This reasoning leads us to the study of the collection of indecomposable systems (er-
godic systems in the measure category and transitive or minimal systems in the topological
case) and their factors. The simplest and best understood indecomposable dynamical sys-
tems are the ergodic translations of a compact monothetic group (a cyclic permutation
on Zp for a prime numberp, the “adding machine” on

∏∞
n=0 Z2, an irrational rotation

z  → e2πiαz on S1 = {z ∈ C: |z| = 1} etc.). It is not hard to show that this class of ergodic
actions is characterized as those dynamical systems which admit a model(X,X ,µ,T )
whereX is a compact metric space,T :X→X a surjective isometry andµ is T -ergodic.
We call these systemsKroneckeror isometricsystems. Thus our first question concern-
ing the existence of factors should be: given an ergodic dynamical systemX which are
its Kronecker factors? Recall that a measure dynamical systemX = (X,X ,µ,T ) is called
weakly mixingif the product system(X ×X,X ⊗X ,µ× µ,T × T ) is ergodic. The fol-
lowing classical theorem is due to von Neumann. The short and elegant proof we give was
suggested by Y. Katznelson.

THEOREM 2.1. An ergodic systemX is weakly mixing iff it admits no non-trivial Kro-
necker factor.
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PROOF. SupposeX is weakly mixing and admits an isometric factor. Now a factor of a
weakly mixing system is also weakly mixing and the only system which is both isometric
and weakly mixing is the trivial system (an easy exercise). Thus a weakly mixing system
does not admit a non-trivial Kronecker factor.

For the other direction, ifX is non-weakly mixing then in the product spaceX×X there
exists aT -invariant measurable subsetW such that 0< (µ×µ)(W) < 1. For everyx ∈X
let W(x) = {x′ ∈ X: (x, x′) ∈W } and letfx = 1W(x), a function inL∞(µ). It is easy to
check thatUT fx = fT −1x so that the mapπ :X→ L2(µ) defined byπ(x)= fx, x ∈X, is
a Borel factor map. Denoting

π(X)= Y ⊂ L2(µ) and ν = π∗(µ),

we now have a factor mapπ : X → (Y, ν). Now the function‖π(x)‖ is clearly measurable
and invariant and by ergodicity it is a constantµ-a.e.; say‖π(x)‖ = 1. The dynamical
system(Y, ν) is thus a subsystem of the compact dynamical system(B,UT ), whereB is the
unit ball of the Hilbert spaceL2(µ) andUT is the Koopman unitary operator induced byT
on L2(µ). Now it is well known (see, e.g., [36]) that a compact topologically transitive
subsystem which carries an invariant probability measure must be a Kronecker system and
our proof is complete. �

Concerning the terminology we used in the proof of Theorem 2.1, B.O. Koopman, a stu-
dent of G.D. Birkhoff and a co-author of both Birkhoff and von Neumann, introduced the
crucial idea of associating with a measure dynamical systemX = (X,X ,µ,T ) the unitary
operatorUT on the Hilbert spaceL2(µ). It is now an easy matter to see that Theorem 2.1
can be re-formulated as saying that the systemX is weakly mixing iff the point spectrum
of the Koopman operatorUT comprises the single complex number 1 with multiplicity 1.
Or, put otherwise, that the one-dimensional space of constant functions is the eigenspace
corresponding to the eigenvalue 1 (this fact alone is equivalent to the ergodicity of the dy-
namical system) and that the restriction ofUT to the orthogonal complement of the space
of constant functions has a continuous spectrum.

We now consider a topological analogue of this theorem. Recall that a topological system
(X,T ) is topologically weakly mixingwhen the product system(X ×X,T × T ) is topo-
logically transitive. It isequicontinuouswhen the family{T n: n ∈ Z} is an equicontinuous
family of maps. Again an equivalent condition is the existence of a compatible metric with
respect to whichT is an isometry. And, moreover, a minimal system is equicontinuous
iff it is a minimal translation on a compact monothetic group. We will need the following
lemma.

LEMMA 2.2. Let (X,T ) be a minimal system andf :X→ R a T -invariant function with
at least one point of continuity(for example this is the case whenf is lower or upper semi-
continuous or more generally when it is the pointwise limit of a sequence of continuous
functions), thenf is a constant.

PROOF. Let x0 be a continuity point andx an arbitrary point inX. Since{T nx: n ∈ Z} is
dense and as the valuef (T nx) does not depend onn it follows thatf (x)= f (x0). �
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THEOREM 2.3. Let (X,T ) be a minimal system then(X,T ) is topologically weakly mix-
ing iff it has no non-trivial equicontinuous factor.

PROOF. Suppose(X,T ) is minimal and topologically weakly mixing and letπ : (X,T )→
(Y,T ) be an equicontinuous factor. If(x, x′) is a point whoseT × T orbit is dense in
X × X then (y, y′) = (π(x),π(x′)) has a dense orbit inY × Y . However, if (Y,T ) is
equicontinuous thenY admits a compatible metric with respect to whichT is an isometry
and the existence of a transitive point inY × Y implies thatY is a trivial one-point space.

Conversely, assuming that(X×X,T ×T ) is not transitive we will construct an equicon-
tinuous factor(Z,T ) of (X,T ). As (X,T ) is a minimal system, there exists aT -invariant
probability measureµ on X with full support. By assumption there exists an open
T -invariant subsetU of X × X, such that clsU := M � X × X. By minimality the
projections ofM to bothX coordinates are onto. For everyy ∈ X let M(y) = {x ∈ X:
(x, y) ∈M}, and letfy = 1M(y) be the indicator function of the setM(y), considered as
an element ofL1(X,µ).

Denote byπ :X→ L1(X,µ) the mapy  → fy . We will show thatπ is a continuous
homomorphism, where we considerL1(X,µ) as a dynamical system with the isometric
action of the group{UnT : n ∈ Z} andUT f (x) = f (T x). Fix y0 ∈ X and ε > 0. There
exists an open neighborhoodV of the closed setM(y0) with µ(V \M(y0)) < ε. Since
M is closed the set mapy  →M(y),X→ 2X is upper semi-continuous and we can find a
neighborhoodW of y0 such thatM(y) ⊂ V for everyy ∈W . Thus for everyy ∈W we
haveµ(M(y) \M(y0)) < ε. In particular,µ(M(y)) � µ(M(y0)) + ε and it follows that
the mapy  → µ(M(y)) is upper semi-continuous. A simple computation shows that it is
T -invariant, hence, by Lemma 2.2, a constant.

With y0, ε andV,W as above, for everyy ∈W , µ(M(y) \M(y0)) < ε andµ(M(y))=
µ(M(y0)), thusµ(M(y)∆M(y0)) < 2ε, i.e.‖fy − fy0‖1< 2ε. This proves the claim that
π is continuous.

Let Z = π(X) be the image ofX in L1(µ). Sinceπ is continuous,Z is compact. It is
easy to see that theT -invariance ofM implies that for everyn ∈ Z andy ∈ X, fT −ny =
fy ◦ T n so thatZ is UT -invariant andπ : (Y,T )→ (Z,UT ) is a homomorphism. Clearly
(Z,UT ) is minimal and equicontinuous (in fact isometric). �

Theorem 2.3 is due to Keynes and Robertson [58] who developed an idea of Fursten-
berg [23]; and independently to K. Petersen [71] who utilized a previous work of
W.A. Veech [79]. The proof we presented is an elaboration of a work of McMahon [67]
due to Blanchard, Host and Maass [13]. We take this opportunity to point out a curious
phenomenon which recurs again and again. Some problems in topological dynamics—like
the one we just discussed—whose formulation is purely topological, can be solved using
the fact that aZ dynamical system always carries an invariant probability measure, and
then employing a machinery provided by ergodic theory. In several cases this approach is
the only one presently known for solving the problem. In the present case however purely
topological proofs exist, e.g., the Petersen–Veech proof is one such.
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3. Disjointness: measure vs. topological

In the ring of integersZ two integersm andn have no common factor if wheneverk|m and
k|n thenk = ±1. They are disjoint ifm · n is the least common multiple ofm andn. Of
course inZ these two notions coincide. In his seminal paper of 1967 [24], H. Furstenberg
introduced the same notions in the context of dynamical systems, both measure-preserving
transformations and homeomorphisms of compact spaces, and asked whether in these cat-
egories as well the two are equivalent. The notion of a factor in, say the measure category,
is the natural one: the dynamical systemY = (Y,Y, ν, T ) is a factor of the dynamical
systemX = (X,X ,µ,T ) if there exists a measurable mapπ :X→ Y with π(µ)= ν that
T ◦ π = π ◦ T . A common factor of two systemsX andY is thus a third systemZ which
is a factor of both. Ajoining of the two systemsX andY is any systemW which admits
both as factors and is in turn spanned by them. According to Furstenberg’s definition the
systemsX andY aredisjoint if the product systemX × Y is the only joining they admit.
In the topological category, a joining of(X,T ) and(Y,S) is any subsystemW ⊂ X × Y
of the product system(X × Y,T × S) whose projections on both coordinates are full; i.e.
πX(W)=X andπY (W)= Y . (X,T ) and(Y,S) aredisjoint if X×Y is the unique joining
of these two systems. It is easy to verify that if(X,T ) and(Y,S) are disjoint then at least
one of them is minimal. Also, if both systems are minimal then they are disjoint iff the
product system(X× Y,T × S) is minimal.

In 1979, D. Rudolph, using joining techniques, provided the first example of a pair of
ergodic measure preserving transformations with no common factor which are not dis-
joint [73]. In this work Rudolph laid the foundation of joining theory. He introduced the
class of dynamical systems having “minimal self-joinings” (MSJ), and constructed a rank
one mixing dynamical system having minimal self-joinings of all orders.

Given a dynamical systemX = (X,X ,µ,T ) a probability measureλ on the product
of k copies ofX denotedX1,X2, . . . ,Xk , invariant under the product transformation and
projecting ontoµ in each coordinate is ak-fold self-joining. It is called anoff-diagonalif
it is a “graph” measure of the formλ= gr(µ,T n1, . . . , T nk ), i.e.λ is the image ofµ under
the mapx  → (T n1x,T n2x, . . . , T nkx) of X into

∏k
i=1Xi . The joiningλ is a product of

off-diagonalsif there exists a partition(J1, . . . , Jm) of {1, . . . , k} such that (i) for eachl,
the projection ofλ on

∏
i∈Jl Xi is an off-diagonal, (ii) the systems

∏
i∈Jl Xi , 1 � l � m,

are independent. An ergodic systemX hasminimal self-joinings of orderk if every k-fold
ergodic self-joining ofX is a product of off-diagonals.

In [73] Rudolph shows how any dynamical system with MSJ can be used to construct a
counter example to Furstenberg’s question as well as a wealth of other counter examples
to various questions in ergodic theory. In [53] del Junco, Rahe and Swanson were able to
show that the classical example of Chacón [17] has MSJ, answering a question of Rudolph
whether a weakly but not strongly mixing system with MSJ exists. In [39] Glasner and
Weiss provide a topological counterexample, which also serves as a natural counterexam-
ple in the measure category. The example consists of two horocycle flows which have no
non-trivial common factor but are nevertheless not disjoint. It is based on deep results of
Ratner [72] which provide a complete description of the self joinings of a horocycle flow.
More recently an even more striking example was given in the topological category by
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E. Lindenstrauss, where two minimal dynamical systems with no nontrivial factor share a
common almost 1-1 extension [64].

Beginning with the pioneering works of Furstenberg and Rudolph, the notion of join-
ings was exploited by many authors; Furstenberg (1977) [25], Rudolph (1979) [73], Veech
(1982) [82], Ratner (1983) [72], del Junco and Rudolph (1987) [54], Host (1991) [48], King
(1992) [59], Glasner, Host and Rudolph (1992) [37], Thouvenot (1993) [78], Ryzhikov
(1994) [74], Kammeyer and Rudolph (1995) (2002) [56], del Junco, Lemańczyk and
Mentzen (1995) [52], and Lemańczyk, Parreau and Thouvenot (2000) [63], to mention a
few. The negative answer to Furstenberg’s question and the consequent works on joinings
and disjointness show that in order to study the relationship between two dynamical sys-
tems it is necessary to know all the possible joinings of the two systems and to understand
the nature of these joinings.

Some of the best known disjointness relations among families of dynamical systems are
the following:
• id ⊥ ergodic,
• distal⊥ weakly mixing ([24]),
• rigid ⊥ mild mixing ([28]),
• zero entropy⊥ K-systems ([24]),

in the measure category and
• F -systems⊥ minimal ([24]),
• minimal distal⊥ weakly mixing,
• minimal zero entropy⊥ minimal UPE-systems ([10]),

in the topological category.

4. Mild mixing: measure vs. topological

DEFINITION 4.1. LetX = (X,X ,µ,T ) be a measure dynamical system.
(1) The systemX is rigid if there exists a sequencenk ↗∞ such that

limµ
(
T nkA∩A)= µ(A)

for every measurable subsetA of X. We say thatX is {nk}-rigid.
(2) An ergodic system ismildly mixingif it has no non-trivial rigid factor.

These notions were introduced in [28]. The authors show that the mild mixing property
is equivalent to the following multiplier property.

THEOREM 4.2. An ergodic systemX = (X,X ,µ,T ) is mildly mixing iff for every ergodic
(finite or infinite) measure preserving system(Y,Y, ν, T ), the product system

(X× Y,µ× ν,T × T ),

is ergodic.
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Since every Kronecker system is rigid it follows from Theorem 2.1 that mild mixing
implies weak mixing. Clearly strong mixing implies mild mixing. It is not hard to con-
struct rigid weakly mixing systems, so that the class of mildly mixing systems is properly
contained in the class of weakly mixing systems. Finally there are mildly but not strongly
mixing systems; e.g., Chacón’s system is an example (see Aaronson and Weiss [2]).

We also have the following analytic characterization of mild mixing.

PROPOSITION4.3. An ergodic systemX is mildly mixing iff

lim sup
n→∞

φf (n) < 1,

for every matrix coefficientφf , where forf ∈ L2(X,µ),‖f ‖ = 1, φf (n) := 〈UT nf,f 〉.
PROOF. If X → Y is a rigid factor, then there exists a sequenceni → ∞ such that
UT ni → id strongly onL2(Y, ν). For any functionf ∈ L2

0(Y, ν) with ‖f ‖ = 1, we
have limi→∞ φf (ni) = 1. Conversely, if limi→∞ φf (ni) = 1 for someni ↗ ∞ and
f ∈ L2

0(X,µ),‖f ‖ = 1, then limi→∞UT ni f = f . Clearlyf can be replaced by a bounded
function and we letA be the sub-algebra ofL∞(X,µ) generated by{UT nf : n ∈ Z}. The
algebraA defines a non-trivial factorX → Y such thatUT ni → id strongly onL2(Y, ν). �

We say that a collectionF of nonempty subsets ofZ is afamily if it is hereditary upward
andproper (i.e.A⊂ B andA ∈F impliesB ∈F , andF is neither empty nor all of 2Z).

With a familyF of nonempty subsets ofZ we associate thedual family

F∗ = {E: E ∩ F �= ∅,∀F ∈F}.
It is easily verified thatF∗ is indeed a family. Also, for families,F1 ⊂ F2 ⇒ F∗

1 ⊃ F∗
2 ,

andF∗∗ =F .
We say that a subsetJ of Z hasuniform density1 if for every 0< λ< 1 there exists an

N such that for every intervalI ⊂ Z of length>N we have|J ∩ I | � λ|I |. We denote by
D the family of subsets ofZ of uniform density 1. It is also easy to see thatD has the finite
intersection property.

Let F be a family of non-empty subsets ofZ which is closed under finite intersections
(i.e. F is a filter). Following [26] we say that a sequence{xn: n ∈ Z} in a topological
spaceX F -convergesto a pointx ∈X if for every neighborhoodV of x the set{n: xn ∈ V }
is in F . We denote this by

F- lim xn = x.
We have the following characterization of weak mixing for measure preserving systems

which explains more clearly its name.

THEOREM 4.4. The dynamical systemX = (X,X ,µ,T ) is weakly mixing iff for every
A,B ∈X we have

D- limµ(T −nA∩B)= µ(A)µ(B).
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An analogous characterization of measure theoretical mild mixing is obtained by con-
sidering the families ofIP andIP∗ sets. AnIP-set is any subset ofZ containing a subset
of the formIP{ni} = {ni1 + ni2 + · · · + nik : i1< i2< · · ·< ik}, for some infinite sequence
{ni}∞i=1. We letI denote the family ofIP-sets and call the elements of the dual familyI∗,
IP∗-sets. Again it is not hard to see that the family ofIP∗-sets is closed under finite inter-
sections. For a proof of the next theorem we refer to [26].

THEOREM 4.5. The dynamical systemX = (X,X ,µ,T ) is mildly mixing iff for every
A,B ∈X we have

I∗- limµ(T −nA∩B)= µ(A)µ(B).

We now turn to the topological category. Let(X,T ) be a topological dynamical system.
For two non-empty open setsU,V ⊂X and a pointx ∈X set

N(U,V )= {n ∈ Z: T nU ∩ V �= ∅}, N+(U,V )=N(U,V )∩Z+
and N(x,V )= {n ∈ Z: T nx ∈ V }.

Notice that sets of the formN(U,U) are symmetric.
We say that(X,T ) is topologically transitive(or just transitive) if N(U,V ) is non-

empty wheneverU,V ⊂X are two non-empty open sets. Using Baire’s category theorem
it is easy to see that (for metrizableX) a system(X,T ) is topologically transitive iff there
exists a denseGδ subsetX0 ⊂X such thatOT (x)=X for everyx ∈X0.

We define the familyFthick of thick setsto be the collection of sets which contain arbi-
trary long intervals. The dual familyFsynd=F∗

thick is the collection ofsyndetic sets—those
setsA⊂ Z such that for some positive integerN the intersection ofA with every interval
of lengthN is non-empty.

Given a familyF we say that a topological dynamical system(X,T ) is F -recurrentif
N(A,A) ∈ F for every non-empty open setA ⊂ X. We say that a dynamical system is
F -transitive if N(A,B) ∈ F for every non-empty open setsA,B ⊂ X. The class ofF -
transitive systems is denoted byEF . E.g., in this notation the class oftopologically mixing
systemsis Ecofinite, where we call a subsetA ⊂ Z co-finite whenZ \ A is a finite set. We
write simplyE = Einfinite for the class ofrecurrent transitivedynamical systems. It is not
hard to see that whenX has no isolated points(X,T ) is topologically transitive iff it is
recurrent transitive. From this we then deduce that a weakly mixing system is necessarily
recurrent transitive.

In a dynamical system(X,T ) a pointx ∈X is awandering pointif there exists an open
neighborhoodU of x such that the collection{T nU : n ∈ Z} is pairwise disjoint.

PROPOSITION4.6. Let (X,T ) be a topologically transitive dynamical system; then the
following conditions are equivalent:

(1) (X,T ) ∈ Einfinite.
(2) The recurrent points are dense inX.
(3) (X,T ) has no wandering points.
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(4) The dynamical system(X∞, T ), the one point compactification of the integers with
translation and a fixed point at infinity, is not a factor of(X,T ).

PROOF. (1)⇒ (4) If π :X→X∞ is a factor map then, clearlyN(π−1(0),π−1(0))= {0}.
(4) ⇒ (3) If U is a non-empty open wandering subset ofX then {T jU : j ∈ Z} ∪

(X \⋃{T jU : j ∈ Z}) is a partition ofX. It is easy to see that this partition defines a
factor mapπ :X→X∞.

(3) ⇒ (2) This implication is a consequence of the following:

LEMMA 4.7. If the dynamical system(X,T ) has no wandering points then the recurrent
points are dense inX.

PROOF. For everyδ > 0 put

Aδ =
{
x ∈X: ∃j �= 0, d(T jx, x) < δ

}
.

ClearlyAδ is an open set and we claim that it is dense. In fact givenx ∈X andε > 0 there
existsj �= 0 with

T jBε(x)∩Bε(x) �= ∅.

If y is a point in this intersection thend(T −j y, y) < 2ε. Thus forε < δ/2 we havey ∈Aδ
andd(x, y) < ε. Now by Baire’s theorem

A=
∞⋂
k=1

A1/k

is a denseGδ subset ofX and each point inA is recurrent. �

(2) ⇒ (1) GivenU,V non-empty open subsets ofX andk ∈ N(U,V ) let U0 be the
non-empty open subsetU0 = U ∩ T −kV . Check thatN(U0,U0)+ k ⊂ N(U,V ). By as-
sumptionN(U0,U0) is infinite and a fortiori so isN(U,V ). This completes the proof of
Proposition 4.6. �

A well known characterization of the classWM of topologically weakly mixing systems
is due to Furstenberg:

THEOREM 4.8. WM = Ethick.

Following [6] we call the systems inEsynd topologically ergodicand writeTE for this
class. This is a rich class as we can see from the following claim from [40]. HereMIN is
the class of minimal systems andE the class ofE-systems; i.e. those transitive dynamical
systems(X,T ) for which there exists a probability invariant measure with full support.

THEOREM 4.9. MIN,E ⊂ TE.
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PROOF. (1) The claim forMIN is immediate by the well known characterization of min-
imal systems:(X,T ) is minimal iff N(x,U) is syndetic for everyx ∈ X and non-empty
openU ⊂X.

(2) Given two non-empty open setsU,V inX, choosek ∈ Z with T kU ∩V �= ∅. Next set
U0 = T −kV ∩U , and observe thatk +N(U0,U0)⊂N(U,V ). Thus it is enough to show
thatN(U,U) is syndetic for every non-empty openU . We have to show thatN(U,U)
meets every thick subsetB ⊂ Z. By Poincaré’s recurrence theorem,N(U,U) meets every
set of the formA−A= {n−m: n,m ∈A} with A infinite. It is an easy exercise to show
that every thick setB contains someD+(A)= {an − am: n > m} for an infinite sequence
A= {an}. Thus∅ �=N(U,U)∩±D+(A)⊂N(U,U)∩±B. SinceN(U,U) is symmetric,
this completes the proof. �

We recall (see the previous section) that two dynamical systems(X,T ) and(Y,T ) are
disjoint if every closedT ×T -invariant subset ofX×Y whose projections onX andY are
full, is necessarily the entire spaceX × Y . It follows easily that when(X,T ) and(Y,T )
are disjoint, at least one of them must be minimal. If both(X,T ) and(Y,T ) are minimal
then they are disjoint iff the product system is minimal. We say that(X,T ) and(Y,T ) are
weakly disjointwhen the product system(X×Y,T ×T ) is transitive. This is indeed a very
weak sense of disjointness as there are systems which are weakly disjoint from themselves.
In fact, by definition a dynamical system is topologically weakly mixing iff it is weakly
disjoint from itself.

If P is a class of recurrent transitive dynamical systems we letP� be the class of recur-
rent transitive dynamical systems which are weakly disjoint from every member ofP

P� = {(X,T ): X× Y ∈ E for every(Y,T ) ∈P
}
.

We clearly haveP ⊂ Q ⇒ P� ⊃ Q� andP��� = P�.
For the discussion of topologically mildly mixing systems it will be convenient to deal

with families of subsets ofZ+ rather thanZ. If F is such a family then

EF = {(X,T ): N+(A,B) ∈F for every non-empty openA,B ⊂X}.
Let us call a subset ofZ+ a SIP-set(symmetricIP-set), if it contains a subset of the form

SIP{ni} =
{
nα − nβ > 0: nα,nβ ∈ IP{ni} ∪ {0}},

for anIP sequenceIP{ni} ⊂ Z+. Denote byS the family ofSIPsets. It is not hard to show
that

Fthick ⊂ S ⊂ I

(see [26]). HenceFsyndetic⊃ S∗ ⊃ I∗, henceEsynd⊃ ES∗ ⊃ EI∗ , and finally

E�
synd⊂ E�

S∗ ⊂ E�
I∗ .
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DEFINITION 4.10. A topological dynamical system(X,T ) is calledtopologically mildly
mixing if it is in ES∗ and we denote the collection of topologically mildly mixing systems
by MM = ES∗ .

THEOREM 4.11. A dynamical system is inE iff it is weakly disjoint from every topologi-
cally mildly mixing system:

E = MM�.

And conversely it is topologically mildly mixing iff it is weakly disjoint from every recurrent
transitive system:

MM = E�.

PROOF. (1) SinceES∗ is non-vacuous (for example, every topologically mixing system is
in ES∗ ), it follows that every system inE�

S∗ is in E .
Conversely, assume that(X,T ) is in E but (X,T ) /∈ E�

S∗ , and we will arrive at a con-
tradiction. By assumption there exists(Y,T ) ∈ ES∗ and a non-dense non-empty open in-
variant subsetW ⊂X× Y . ThenπX(W)=O is a non-empty open invariant subset ofX.
By assumptionO is dense inX. Choose open non-empty setsU0 ⊂ X andV0 ⊂ Y with
U0 × V0 ⊂W . By Proposition 4.6 there exists a recurrent pointx0 in U0 ⊂O. Then there
is a sequenceni →∞ such that for theIP-sequence{nα} = IP{ni}∞i=1, IP- lim T nαx0 = x0
(see [26]). Choosei0 such thatT nαx0 ∈ U0 for nα ∈ J = IP{ni}i�i0 and setD = SIP(J ).
GivenV a non-empty open subset ofY we have:

D ∩N(V0,V ) �= ∅.

Thus for someα,β andv0 ∈ V0,

T nα−nβ
(
T nβ x0, v0

)= (T nαx0, T
nα−nβ v0

) ∈ (U0 × V )∩W.

We conclude that

{x0} × Y ⊂ clsW.

The fact that in anE system the recurrent points are dense together with the observation
that{x0} × Y ⊂ clsW for every recurrent pointx0 ∈O, imply thatW is dense inX× Y , a
contradiction.

(2) From part (1) of the proof we haveE = E�
S∗ , henceE� = E��

S∗ ⊃ ES∗ .
Suppose(X,T ) ∈ E but (X,T ) /∈ ES∗ , we will show that(X,T ) /∈ E�. There exist

U,V ⊂ X, non-empty open subsets and anIP-setI = IP{ni} for a monotone increasing
sequence{n1< n2< · · ·} with

N(U,V )∩D = ∅,
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where

D = {nα − nβ : nα,nβ ∈ I, nα > nβ}.

If (X,T ) is not topologically weakly mixing thenX ×X /∈ E hence(X,T ) /∈ E�. So we
can assume that(X,T ) is topologically weakly mixing. Now inX×X

N(U × V,V ×U)=N(U,V )∩N(V,U)=N(U,V )∩−N(U,V ),

is disjoint fromD ∪ −D, and replacingX by X × X we can assume thatN(U,V ) ∩
(D ∪ −D) = ∅. In fact, if X ∈ E� thenX × Y ∈ E for every Y ∈ E , thereforeX ×
(X× Y) ∈ E and we see that alsoX×X ∈ E�.

By going to a subsequence, we can assume that

lim
k→∞nk+1 −

k∑
i=1

ni =∞

in which case the representation of eachn ∈ I asn = nα = ni1 + ni2 + · · · + nik ; α =
{i1< i2< · · ·< ik} is unique.

Next lety0 ∈ {0,1}Z be the sequencey0 = 1I . LetY be the orbit closure ofy0 in {0,1}Z
under the shiftT , and let[1] = {y ∈ Y : y(0)= 1}. Observe that

N
(
y0, [1]

)= I.
It is easy to check that

IP- lim T nαy0 = y0.

Thus the system(Y,T ) is topologically transitive withy0 a recurrent point; i.e.(Y,T ) ∈ E .
We now observe that

N
([1], [1])=N(y0, [1]

)−N(y0, [1]
)= I − I =D ∪−D ∪ {0}.

If X× Y is topologically transitive then in particular

N
(
U × [1],V × [1]) = N(U,V )∩N([1], [1])

= N(U,V )∩ (D ∪−D ∪ {0})= infinite set.

But this contradicts our assumption. ThusX×Y /∈ E and(X,T ) /∈ E�. This completes the
proof. �

We now have the following:
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COROLLARY 4.12. Every topologically mildly mixing system is weakly mixing and topo-
logically ergodic:

MM ⊂ WM ∩ TE.

PROOF. We haveES∗ ⊂ E = E�
S∗ , hence for every(X,T ) ∈ ES∗ ,X×X ∈ E , i.e. (X,T ) is

topologically weakly mixing. And, as we have already observed the inclusionFsyndetic⊃
S∗, entailsTE = Esynd⊃ ES∗ = MM. �

To complete the analogy with the measure theoretical setup we next define a topological
analogue of rigidity. This is just one of several possible definitions of topological rigidity
and we refer to [38] for a treatment of these notions.

DEFINITION 4.13. A dynamical system(X,T ) is calleduniformly rigid if there exists a
sequencenk ↗∞ such that

lim
k→∞ sup

x∈X
d
(
T nkx, x

)= 0,

i.e. limk→∞ T nk = id in the uniform topology on the group of homeomorphism ofH(X)

of X. We denote byR the collection of topologically transitive uniformly rigid systems.

In [38] the existence of minimal weakly mixing but nonetheless uniformly rigid dynam-
ical systems is demonstrated. However, we have the following:

LEMMA 4.14. A system which is both topologically mildly mixing and uniformly rigid is
trivial .

PROOF. Let (X,T ) be both topologically mildly mixing and uniformly rigid. Then

Λ= cls{T n: n ∈ Z} ⊂H(X)

is a Polish monothetic group.
Let T ni be a sequence converging uniformly to id, the identity element ofΛ. For a

subsequence we can ensure that{nα} = IP{ni} is anIP-sequence such thatIP- lim T nα = id
in Λ. If X is non-trivial we can now find an open ballB = Bδ(x0) ⊂ X with T B ∩ B
= ∅. PutU = Bδ/2(x0) andV = T U ; then by assumptionN(U,V ) is anSIP∗-set and in
particular:

∀α0 ∃α,β > α0, nα − nβ ∈N(U,V ).

However, sinceIP- lim T nα = id, we also have eventually,T nα−nβU ⊂ B; a contradic-
tion. �

COROLLARY 4.15. A topologically mildly mixing system has no non-trivial uniformly
rigid factors.
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We conclude this section with the following result which shows how these topological
and measure theoretical notions are related.

THEOREM 4.16. Let (X,T ) be a topological dynamical system with the property that
there exists an invariant probability measureµ with full support such that the associated
measure preserving dynamical system(X,X ,µ,T ) is measure theoretically mildly mixing
then(X,T ) is topologically mildly mixing.

PROOF. Let (Y,S) be any system inE ; by Theorem 4.11 it suffices to show that
(X×Y,T ×S) is topologically transitive. SupposeW ⊂X×Y is a closedT ×S-invariant
set with intW �= ∅. LetU ⊂X,V ⊂ Y be two non-empty open subsets withU × V ⊂W .
By transitivity of (Y,S) there exits a transitive recurrent pointy0 ∈ V . By theorems of
Glimm and Effros [44,22], and Katznelson and Weiss [57] (see also Weiss [83]), there
exists a (possibly infinite) invariant ergodic measureν onY with ν(V ) > 0.

Let µ be the probability invariant measure of full support onX with respect to which
(X,X ,µ,T ) is measure theoretically mildly mixing. Then by [28] the measureµ× ν is
ergodic. Sinceµ× ν(W) � µ× ν(U × V ) > 0 we conclude thatµ× ν(Wc) = 0 which
clearly impliesW =X× Y . �

We note that the definition of topological mild mixing and the results described above
concerning this notion are new. However independently of our work Huang and Ye in a
recent work also define a similar notion and give it a comprehensive and systematic treat-
ment [50]. The first named author would like to thank E. Akin for instructive conversations
on this subject.

Regarding the classesWM andTE let us mention the following result from [86].

THEOREM 4.17.

TE = WM�.

For more on these topics we refer to [26,4,86,6,49] and [50].

5. Distal systems: topological vs. measure

As noted above the Kronecker or minimal equicontinuous dynamical systems can be con-
sidered as the most elementary type of systems. What is then the next stage? The clue in the
topological case, which chronologically came first, is to be found in the notion of distality.
A topological system(X,T ) is calleddistal if

inf
n∈Z
d(T nx,T nx′) > 0

for everyx �= x′ in X. It is easy to see that this property does not depend on the choice
of a metric. And, of course, every equicontinuous system is distal. Is the converse true?
Are these notions one and the same? The dynamical system given on the unit disc
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D = {z ∈ C: |z| � 1} by the formulaT z = zexp(2πi|z|) is a counter example, it is dis-
tal but not equicontinuous. However it is not minimal. H. Furstenberg in 1963 noted that
skew products over an equicontinuous basis with compact group translations as fiber maps
are always distal, often minimal, but rarely equicontinuous [23]. A typical example is the
homeomorphism of the two torusT2 = R2/Z2 given byT (x, y) = (x + α,y + x) where
α ∈ R/Z is irrational. Independently and at about the same time, it was shown by L. Aus-
lander, L. Green and F. Hahn that minimal nilflows are distal but not equicontinuous [7].
These examples led Furstenberg to his path breaking structure theorem [23].

Given a homomorphismπ : (X,T )→ (Y,T ) let Rπ = {(x, x′): π(x)= π(x′)}. We say
that the homomorphismπ is an isometric extensionif there exists a continuous function
d :Rπ → R such that for eachy ∈ Y the restriction ofd to π−1(y)× π−1(y) is a metric
and for everyx, x′ ∈ π−1(y) we haved(T x,T x′)= d(x, x′).

If K is a compact subgroup of Aut(X,T ) (the group of homeomorphisms ofX commut-
ing with T , endowed with the topology of uniform convergence) then the mapx  → Kx

defines a factor map(X,T )
π→ (Y,T ) with Y =X/K andRπ = {(x, kx): x ∈X, k ∈K}.

Such an extension is called agroup extension. It turns out, although this is not so easy to
see, that when(X,T ) is minimal thenπ : (X,T )→ (Y,T ) is an isometric extension iff
there exists a commutative diagram:

(X̃, T )

π̃

ρ

(X,T )

π

(Y,T )

where(X̃, T ) is minimal and(X̃, T )
π̃→ (X,T ) is a group extension with some compact

groupK ⊂ Aut(X̃, T ) and the mapρ is the quotient map from̃X ontoX defined by a
closed subgroupH of K . ThusY = X̃/K andX = X̃/H and we can think ofπ as a
homogeneous space extensionwith fiberK/H .

We say that a (metrizable) minimal system(X,T ) is anI systemif there is a (countable)
ordinal η and a family of systems{(Xθ , xθ )}θ�η such that (i)X0 is the trivial system,
(ii) for every θ < η there exists an isometric homomorphismφθ :Xθ+1 → Xθ , (iii) for a
limit ordinal λ � η the systemXλ is the inverse limit of the systems{Xθ }θ<λ (i.e.Xλ =∨
θ<λ(Xθ , xθ )), and (iv)Xη =X.

THEOREM 5.1 (Furstenberg’s structure theorem).A minimal system is distal iff it is an
I-system.

W. Parry in his 1967 paper [70] suggested an intrinsic definition of measure distality.
He defines in this paper a property of measure dynamical systems, called “admitting a
separating sieve”, which imitates the intrinsic definition of topological distality.
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DEFINITION 5.2. LetX be an ergodic dynamical system. A sequenceA1 ⊃ A2 ⊃ · · · of
sets inX with µ(An) > 0 andµ(An)→ 0, is called aseparating sieveif there exists a
subsetX0 ⊂ X with µ(X0) = 1 such that for everyx, x′ ∈ X0 the condition “for every
n ∈ N there existsk ∈ Z with T kx,T kx′ ∈An” implies x = x′, or in symbols:

∞⋂
n=1

(⋃
k∈Z

T k(An ×An)
)
∩ (X0 ×X0)⊂∆.

We say that the ergodic systemX is measure distalif either X is finite or there exists a
separating sieve.

Parry showed that every measure dynamical system admitting a separating sieve has zero
entropy and that anyT -invariant measure on a minimal topologically distal system gives
rise to a measure dynamical system admitting a separating sieve.

If X = (X,X ,µ,T ) is an ergodic dynamical system andK ⊂ Aut(X) is a compact
subgroup (where Aut(X) is endowed with the weak topology) then the systemY = X/K
is well defined and we say that the extensionπ : X → Y is a group extension. Using (5)
we can define the notion of isometric extension or homogeneous extension in the measure
category. We will say that an ergodic systemadmits a Furstenberg towerif it is obtained
as a (necessarily countable) transfinite tower of measure isometric extensions. In 1976 in
two outstanding papers [88,89] R. Zimmer developed the theory of distal systems (for
a general locally compact acting group). He showed that, as in the topologically distal
case, systems admitting Parry’s separating sieve are exactly those systems which admit
Furstenberg towers.

THEOREM 5.3. An ergodic dynamical system is measure distal iff it admits a Furstenberg
tower.

In [65] E. Lindenstrauss shows that every ergodic measure distalZ-system can be rep-
resented as a minimal topologically distal system. For the exact result see Theorem 13.4
below.

6. Furstenberg–Zimmer structure theorem vs. its topological PI version

Zimmer’s theorem for distal systems leads directly to a structure theorem for the general
ergodic system. Independently, and at about the same time, Furstenberg proved the same
theorem [25,26]. He used it as the main tool for his proof of Szemerédi’s theorem on
arithmetical progressions. Recall that an extensionπ : (X,X ,µ,T )→ (Y,Y, ν, T ) is a
weakly mixing extensionif the relative product systemX ×

Y
X is ergodic. (The system

X ×
Y

X is defined by theT × T invariant measure

µ ×
ν
µ=
∫
Y

µy ×µy dν(y),

onX×X, whereµ= ∫
Y
µy dν(y) is the disintegration ofµ overν.)
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THEOREM6.1 (The Furstenberg–Zimmer structure theorem).LetX be an ergodic dynam-
ical system.

(1) There exists a maximal distal factorφ : X → Z with φ is a weakly mixing extension.
(2) This factorization is unique.

Is there a general structure theorem for minimal topological systems? Here, for the first
time, we see a strong divergence between the measure and the topological theories. The
culpability for this divergence is to be found in the notions of proximality and proximal
extension, which arise naturally in the topological theory but do not appear at all in the
measure theoretical context. In building towers for minimal systems we have to use two
building blocks of extremely different nature (isometric and proximal) rather than one
(isometric) in the measure category. A pair of points(x, x′) ∈ X × X is calledproximal
if it is not distal, i.e. if infn∈Z d(T

nx,T nx′) = 0. An extensionπ : (X,T )→ (Y,T ) is
calledproximalif every pair inRπ is proximal. The next theorem was developed gradually
by several authors (Veech, Glasner, Ellis and Shapiro, and McMahon [80,30,66,81]). We
need first to introduce some definitions. We say that a minimal dynamical system(X,T )

is strictlyPI (proximal isometric) if it admits a tower consisting of proximal and isometric
extensions. It is called aPI systemif there is a strictly PI minimal system(X̃, T ) and
a proximal extensionθ : X̃→ X. An extensionπ :X→ Y is a RIC extension(relatively
incontractible) if for everyn ∈ N and everyy ∈ Y the set of almost periodic points inXny =
π−1(y)×π−1(y)×· · ·×π−1(y) (n times) is dense. (A point is calledalmost periodicif its
orbit closure is minimal.) It can be shown that a every isometric (and more generally, distal)
extension is RIC. Also every RIC extension is open. Finally a homomorphismπ :X→ Y

is calledtopologically weakly mixingif the dynamical system(Rπ ,T ×T ) is topologically
transitive.

The philosophy in the next theorem is to regard proximal extensions as ‘negligible’ and
then the claim is, roughly (i.e. up to proximal extensions), that every minimal system is a
weakly mixing extension of its maximal PI factor.

THEOREM 6.2 (Structure theorem for minimal systems).Given a metric minimal system
(X,T ), there exists a countable ordinalη and a canonically defined commutative diagram
(the canonical PI-Tower)

X

π

X0

θ̃0

π0

σ1

X1

θ̃1

π1

pt Y0
θ0

Z1
ρ1

Y1
θ1

· · · Xν

πν

σν+1

Xν+1

πν+1

˜θν+1 · · · Xη =X∞

π∞

· · · Yν Zν+1
ρν+1

Yν+1
θν+1

· · · Yη = Y∞
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where for eachν � η,πν is RIC, ρν is isometric, θν, θ̃ν are proximal extensions andπ∞ is
RIC and topologically weakly mixing extension. For a limit ordinal ν, Xν,Yν,πν , etc. are
the inverse limits(or joins) of Xι,Yι,πι, etc. for ι < ν. ThusX∞ is a proximal extension
of X and a RIC topologically weakly mixing extension of the strictly PI-systemY∞. The
homomorphismπ∞ is an isomorphism(so thatX∞ = Y∞) iff X is a PI-system.

We refer to [34] for a review on structure theory in topological dynamics.

7. Entropy: measure and topological

7.1. The classical variational principle

For the definitions and the classical results concerning entropy theory we refer to Chapter 1
of [1]; Section 3.7 for measure theory entropy and Section 4.4 for metric and topological
entropy. Chapter 2 of [1] has a short review of basic measure entropy theory. The varia-
tional principle asserts that for a topologicalZ-dynamical system(X,T ) the topological
entropy equals the supremum of the measure entropies computed over all the invariant
probability measures onX. It was already conjectured in the original paper of Adler, Kon-
heim and McAndrew [3] where topological entropy was introduced; and then, after many
stages (mainly by Goodwyn, Bowen and Dinaburg; see, for example, [18]) matured into a
theorem in Goodman’s paper [45].

THEOREM 7.1 (The variational principle).Let (X,T ) be a topological dynamical system,
then

htop(X,T )= sup
{
hµ: µ ∈MT (X)

}= sup
{
hµ: µ ∈Merg

T (X)
}
.

This classical theorem has had a tremendous influence on the theory of dynamical sys-
tems and a vast amount of literature ensued, which we will not try to trace here (see
[1, Chapter 1, Theorem 4.4.4]). Instead we would like to present a more recent devel-
opment.

7.2. Entropy pairs and UPE systems

As we have noted in the introduction, the theories of measurable dynamics (ergodic theory)
and topological dynamics exhibit a remarkable parallelism. Usually one translates ‘ergod-
icity’ as ‘topological transitivity’,‘weak mixing’ as ‘topological weak mixing’, ‘mixing’ as
‘topological mixing’ and ‘measure distal’ as ‘topologically distal’. One often obtains this
way parallel theorems in both theories, though the methods of proof may be very different.

What is then the topological analogue of being a K-system? In [9] and [10] F. Blanchard
introduced a notion of ‘topologicalK ’ for Z-systems which he called UPE (uniformly
positive entropy). This is defined as follows: a topological dynamical system(X,T ) is
called a UPE system if every open cover ofX by two non-dense open setsU andV has
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positive topological entropy. A local version of this definition led to the concept of an
entropy pair. A pair(x, x′) ∈X×X, x �= x′, is an entropy pair if for every open coverU =
{U,V } of X, with x ∈ int(Uc) andx′ ∈ int(V c), the topological entropyh(U) is positive.
The set of entropy pairs is denoted byEX = E(X,T ) and it follows that the system(X,T )
is UPE iff EX = (X × X) \ ∆. In generalE∗ = EX ∪ ∆ is a T × T -invariant closed
symmetric and reflexive relation. Is it also transitive? When the answer to this question
is affirmative then the quotient systemX/E∗

X is the topological analogue of the Pinsker
factor. Unfortunately this need not always be true even when(X,T ) is a minimal system
(see [42] for a counter example).

The following theorem was proved in Glasner and Weiss [41].

THEOREM 7.2. If the compact system(X,T ) supports an invariant measureµ for which
the corresponding measure theoretical system(X,X ,µ,T ) is aK-system, then(X,T ) is
UPE.

Applying this theorem together with the Jewett–Krieger theorem it is now possible to
obtain a great variety of strictly ergodic UPE systems.

Given aT -invariant probability measureµ on X, a pair (x, x′) ∈ X × X, x �= x′ is
called aµ-entropy pair if for every Borel partitionα = {Q,Qc} of X with x ∈ int(Q)
andx′ ∈ int(Qc) the measure entropyhµ(α) is positive. This definition was introduced
by Blanchard, Host, Maass, Martínez and Rudolph in [11] as a local generalization of
Theorem 7.2. It was shown in [11] that for every invariant probability measureµ the set
Eµ of µ-entropy pairs is contained inEX.

THEOREM 7.3. Every measure entropy pair is a topological entropy pair.

As in [41] the main issue here is to understand the, sometimes intricate, relation between
the combinatorial entropyhc(U) of a coverU and the measure theoretical entropyhµ(γ )
of a measurable partitionγ subordinate toU .

PROPOSITION7.4. Let X = (X,X ,µ,T ) be a measure dynamical system. SupposeU =
{U,V } is a measurable cover such that every measurable two-set partitionγ = {H,Hc}
which(as a cover) is finer thanU satisfieshµ(γ ) > 0; thenhc(U) > 0.

Since for aK-measureµ clearly every pair of distinct points is inEµ, Theorem 7.2
follows from Theorem 7.3. It was shown in [11] that when(X,T ) is uniquely ergodic the
converse of Theorem 7.3 is also true:EX =Eµ for the unique invariant measureµ onX.

7.3. A measure attaining the topological entropy of an open cover

In order to gain a better understanding of the relationship between measure entropy pairs
and topological entropy pairs one direction of a variational principle for open covers (The-
orem 7.5 below) was proved in Blanchard, Glasner and Host [12]. Two applications of
this principle were given in [12]; (i) the construction, for a general system(X,T ), of
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a measureµ ∈ MT (X) with EX = Eµ, and (ii) the proof that under a homomorphism
π : (X,µ,T )→ (Y, ν, T ) every entropy pair inEν is the image of an entropy pair inEµ.

We now proceed with the statement and proof of this theorem which is of independent
interest. The other direction of this variational principle will be proved in the following
subsection.

THEOREM 7.5. Let (X,T ) be a topological dynamical system, andU an open cover ofX,
then there exists a measureµ ∈MT (X) such thathµ(α)� htop(U) for all Borel partitions
α finer thanU .

A crucial element of the proof of the variational principle is a combinatorial lemma
which we present next. We letφ : [0,1]→ R denote the function

φ(x)=−t logt for 0< t � 1; φ(0)= 0.

Let L = {1,2, . . . , �} be a finite set, called thealphabet; sequencesω= ω1 . . .ωn ∈ Ln, for
n � 1, are calledwords of lengthn on the alphabetL. Let n andk be two integers with
1� k � n.

For every wordω of lengthn and every wordθ of lengthk on the same alphabet, we
denote byp(θ |ω) the frequency of appearances ofθ in ω, i.e.

p(θ |ω) = 1

n− k + 1

× card{i: 1� i � n− k+ 1, ωiωi+1 . . .ωi+k−1 = θ1θ2 . . . θk}.
For every wordω of lengthn on the alphabetL, we let

Hk(ω)=
∑
θ∈Lk

φ
(
p(θ |ω)).

LEMMA 7.6. For everyh > 0, ε > 0, every integerk � 1 and every sufficiently large
integern,

card
{
ω ∈ Ln: Hk(ω)� kh

}
� exp
(
n(h+ ε)).

REMARK. It is equally true that, ifh� log(cardL), for sufficiently largen,

card
{
ω ∈ Ln: Hk(ω)� kh

}
� exp
(
n(h− ε)).

We do not prove this inequality here, since we have no use for it in the sequel.

PROOF. The casek = 1. We have

card
{
ω ∈ Ln: H1(ω)� h

}=∑
q∈K

n!
q1! · · ·q�! , (2)
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whereK is the set ofq = (q1, . . . , q�) ∈ N� such that

�∑
i=1

qi = n and
�∑
i=1

φ

(
qi

n

)
� h.

By Stirling’s formula, there exist two universal constantsc andc′ such that

c

(
m

e

)m√
m�m! � c′

(
m

e

)m√
m

for everym> 0. From this we deduce the existence of a constantC(�) such that for every
q ∈K ,

n!
q1! · · ·q�! � C(�)exp

(
n

�∑
i=1

φ

(
qi

n

))
� C(�)exp(nh).

Now the sum (2) contains at most(n+ 1)� terms; so that we have

card
{
ω ∈ Ln: H1(ω)� h

}
� (n+ 1)�C(�)exp(nh)� exp

(
n(h+ ε))

for all sufficiently largen, as was to be proved.
The casek > 1. For every wordω of lengthn� 2k on the alphabetL, and for 0� j < k,

we letnj be the integral part ofn−j
k

, andω(j) the word

(ωj+1 . . .ωj+k) (ωj+k+1 . . .ωj+2k) . . . (ωj+(nj−1)k+1 . . .ωj+nj k)

of lengthnj on the alphabetB = Lk .
Let now θ be a word of lengthk on the alphabetL; we also considerθ as an element

of B. One easily verifies that, for every wordω of lengthn on the alphabetL,∣∣∣∣∣p(θ |ω)− 1

k

k−1∑
j=0

p
(
θ |ω(j))∣∣∣∣∣� k

n− 2k+ 1
.

The functionφ being uniformly continuous, we see that for sufficiently largen, and for
every wordω of lengthn onL,

∑
θ∈B

∣∣∣∣∣φ(p(θ |ω))− φ
(

1

k

k−1∑
j=0

p
(
θ |ω(j)))∣∣∣∣∣< ε2

and by convexity ofφ,

1

k

k−1∑
j=0

H1
(
ω(j)
)= 1

k

k−1∑
j=0

∑
θ∈B

φ
(
p
(
θ |ω(j)))� ε

2
+
∑
θ∈Lk

φ
(
p(θ |ω))= ε

2
+Hk(ω).



Measurable and topological dynamics 625

Thus, ifHk(ω)� kh, there exists aj such thatH1(ω
(j))� ε

2 + kh.
Now, givenj and a wordu of lengthnj on the alphabetB, there exist�n−nj k � �2k−2

wordsω of lengthn onL such thatω(j) = u. Thus for sufficiently largen, by the first part
of the proof,

card
{
ω ∈ Ln: Hk(ω)� kh

}
� �2k−2

k−1∑
j=0

card

{
u ∈ Bnj : H1(u)�

ε

2
+ kh
}

� �2k−2
k−1∑
j=0

exp
(
nj (ε+ kh)

)
� �2k−2k exp

(
n

(
ε

k
+ h
))

� exp
(
n(h+ ε)). �

Let (X,T ) be a compact dynamical system. As usual we denote byMT (X) the set of
T -invariant probability measures onX, and byMerg

T (X) the subset of ergodic measures.
We say that a partitionα is finer than a coverU when every atom ofα is contained

in an element ofU . If α = {A1, . . . ,A�} is a partition ofX, x ∈ X andN ∈ N, we write
ω(α,N,x) for the word of lengthN on the alphabetL = {1, . . . , �} defined by

ω(α,N,x)n = i if T n−1x ∈Ai, 1� n�N.

LEMMA 7.7. LetU be a cover ofX, h= htop(U),K � 1 an integer, and{αl : 1� l �K} a
finite sequence of partitions ofX, all finer thanU . For everyε > 0 and sufficiently largeN ,
there exists anx ∈X such that

Hk
(
ω(αl,N,x)

)
� k(h− ε) for everyk, l with 1� k, l �K.

PROOF. One can assume that all the partitionsαl have the same number of elements� and
we letL = {1, . . . , �}. For 1� k �K andN �K , denote

Ω(N,k)= {ω ∈ LN : Hk(ω) < k(h− ε)
}
.

By Lemma 7.3, for sufficiently largeN

card
(
Ω(N,k)

)
� exp
(
N(h− ε/2)) for all k �K.

Let us choose such anN which moreover satisfiesK2< exp(Nε/2). For 1� k, l �K , let

Z(k, l)= {x ∈X: ω(αl,N,x) ∈Ω(N,k)
}
.

The setZ(k, l) is the union of card(Ω(N,k)) elements of(αl)
N−1
0 . Now this partition

is finer than the coverUN−1
0 , henceZ(k, l) is covered by

card
(
Ω(N,k)

)
� exp
(
N(h− ε/2))
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elements ofUN−1
0 . Finally,⋃

1�k,l�K
Z(k, l)

is covered byK2 exp(N(h− ε/2)) < exp(Nh) elements ofUN−1
0 . As every subcover of

UN−1
0 has at least exp(Nh) elements,⋃

1�k,l�K
Z(k, l) �=X.

This completes the proof of the lemma. �

PROOF OF THEOREM 7.5. LetU = {U1, . . . ,U�} be an open cover ofX. It is clearly
sufficient to consider Borel partitionsα of X of the form

α = {A1, . . . ,A�} with Ai ⊂Ui for everyi. (3)

Step1: Assume first thatX is 0-dimensional.
The family of partitions finer thanU , consisting of clopen sets and satisfying (3) is

countable; let{αl : l � 1} be an enumeration of this family. According to the previous
lemma, there exists a sequence of integersNK tending to+∞ and a sequencexK of
elements ofX such that:

Hk
(
ω(αl,NK,xK)

)
� k
(
h− 1

K

)
for every 1� k, l �K. (4)

Write

µK = 1

NK

NK−1∑
i=0

δT ixK .

Replacing the sequenceµK by a subsequence (this means replacing the sequenceNK by
a subsequence, and the sequencexK by the corresponding subsequence preserving the
property (4)), one can assume that the sequence of measuresµK converges weak∗ to a
probability measureµ. This measureµ is clearlyT -invariant. Fixk, l � 1, and letF be an
atom of the partition(αl)

k−1
0 , with nameθ ∈ {1, . . . , �}k . For everyK one has

∣∣µK(F)− p(θ |ω(αl,NK,xK))∣∣� 2k

NK
.

Now asF is clopen,

µ(F)= lim
K→∞µK(F)= lim

K→∞p
(
θ |ω(αl,NK,xK)

)
hence

φ
(
µ(F)
)= lim

K→∞φ
(
p
(
θ |ω(αl,NK,xK)

))
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and, summing overθ ∈ {1, . . . , �}k , one gets

Hµ
(
(αl)

k−1
0

)= lim
K→∞Hk

(
ω(αl,NK,xK)

)
� kh.

Finally, by sendingk to infinity one obtainshµ(αl)� h.
Now, asX is 0-dimensional, the family of partitions{αl} is dense in the collection of

Borel partitions ofX satisfying (3), with respect to the distance associated withL1(µ).
Thus,hµ(α)� h for every partition of this kind.

Step2: The general case.
Let us recall a well known fact: there exists a topological system(Y,T ), whereY is

0-dimensional, and a continuous surjective mapπ :Y →X with π ◦ T = T ◦ π .
(Proof: asX is a compact metric space, it is easy to construct a Cantor setK and a

continuous surjectivef :K→X. Put

Y = {y ∈KZ: f (yn+1)= Tf (yn) for everyn ∈ Z
}

and letπ :Y →X be defined byπ(y)= f (y0).
Y is a closed subset ofKZ—where the latter is equipped with the product topology—

and is invariant under the shiftT onKZ. It is easy to check thatπ satisfies the required
conditions.)

Let V = π−1(U) = {π−1(U1), . . . , π
−1(Ud)} be the preimage ofU underπ ; one has

htop(V)= htop(U)= h. By the above remark, there existsν ∈M(Y,T ) such thathν(Q)�
h for every Borel partitionQ of Y finer thanV . Let µ = ν ◦ π−1 the measure which is
the image ofν underπ . One hasµ ∈MT (X) and, for every Borel partitionα of X finer
thanU , π−1(α) is a Borel partition ofY which is finer thanV with

hµ(α)= hν
(
π−1(α)

)
� h.

This completes the proof of the theorem. �

COROLLARY 7.8. Let (X,T ) be a topological system, U an open cover ofX and α a
Borel partition finer thanU , then, there exists aT -invariant ergodic measureµ onX such
thathµ(α)� htop(U).

PROOF. By Theorem 7.5 there existsµ ∈ MT (X) with hµ(α) � htop(U); let µ =∫
ω
µω dm(ω) be its ergodic decomposition. The corollary follows from the formula

∫
hµω(α)dm(ω)= hµ(α). �
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7.4. The variational principle for open covers

Given an open coverU of the dynamical system(X,T ), the results of the previous subsec-
tion imply the inequality

sup
µ∈MT (X)

inf
α0U

hµ(α)� htop(U).

We will now present a new result which will provide the fact that

sup
µ∈MT (X)

inf
α0U

hµ(α)= htop(U)

thus completing the proof of a variational principle forU . In fact we will obtain the explicit
formula:

htop(U)= max
µ∈MT (X)

inf
α0U

hµ(α).

To the best of our knowledge this is the first time that such an explicit formula is given for
the topological entropy of a single open cover.

We first need a universal version of the Rohlin lemma.

PROPOSITION7.9. Let(X,T ) be a(Polish) dynamical system and assume that there exists
onX a T -invariant aperiodic probability measure. Given a positive integern and a real
numberδ > 0 there exists a Borel subsetB ⊂X such that the setsB,T B, . . . , T n−1B are
pairwise disjoint and for every aperiodicT -invariant probability measureµ ∈MT (X) we
haveµ(

⋃n−1
j=0T

jB) > 1− δ.

PROOF. Fix N (it should be larger thann/δ for the required heightn and errorδ). The set
of points that are periodic with period�N is closed. Any point in the complement (which
by our assumption is non-empty) has, by continuity, a neighborhoodU with N disjoint
forward iterates. There is a countable subcover{Um} of such sets since the space is Polish.
TakeA1 =U1 as a base for aKakutani sky-scraper{

T jAk1: j = 0, . . . , k − 1; k = 1,2, . . .
}
,

Ak1 =
{
x ∈A1: rA1(x)= k

}
,

whererA1(x) is the first integerj � 1 with T jx ∈A1. Next set

B1 =
⋃
k�1

[(k−n−1)/n]⋃
j=0

T jnAk1,

so that the setsB1, T B1, . . . , T
n−1B1 are pairwise disjoint.
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Remove the fullT orbit of U1 from the space and repeat to findB2 using as a base for
the next Kakutani sky-scraperA2 defined asU2 intersected with the part ofX not removed
earlier. (Note that, by the proof of Poincaré’s recurrence theorem, the set of points which
are in the full orbit but not in the forward orbit ofU1 is a wandering set, whence of universal
measure zero, and can therefore be ignored.)

Proceed by induction to define the sequenceBi, i = 1,2, . . . , and setB =⋃∞
i=1Bi . By

Poincaré recurrence for any aperiodic invariant measure we exhaust the whole space except
for n iterates of the unionA of the bases of the Kakutani sky-scrapers. By construction
A =⋃∞

m=1Am hasN disjoint iterates so thatµ(A) � 1/N for everyµ ∈MT (X). Thus
B,T B, . . . , T n−1B fill all but n/N < δ of the space uniformly over the aperiodic measures
µ ∈MT (X). �

Let (X,T ) be a dynamical system andU = {U1,U2, . . . ,U�} a finite open cover. We
denote byA the collection of all finite Borel partitionsα which refineU , i.e. for every
A ∈ α there is someU ∈ U with A⊂U . We set

ȟ(U)= sup
µ∈MT (X)

inf
α∈A

hµ(α) and ĥ(U)= inf
α∈A

sup
µ∈MT (X)

hµ(α).

PROPOSITION 7.10. Let (X,T ) be a dynamical system, U = {U1,U2, . . . ,U�} a finite
open cover, then

(1) ȟ(U)� ĥ(U),
(2) ĥ(U)� htop(U).

PROOF. (1) Givenν ∈MT (X) andα ∈A we obviously havehν(α)� supµ∈MT (X) hµ(α).
Thus

inf
α∈A

hν(α)� inf
α∈A

sup
µ∈MT (X)

hµ(α)= ĥ(U),

and therefore alsǒh(U)� ĥ(U).
(2) Choose forε > 0 an integerN large enough so that there is a subcoverD ⊂ UN−1

0 =∨N−1
j=0 T

−jU of cardinality 2N(htop(U)+ε). Apply Proposition 7.9 to find a setB such that

the setsB,T B, . . . , T N−1B are pairwise disjoint and for everyT -invariant Borel probabil-
ity measureµ ∈MT (X)we haveµ(

⋃N−1
j=0 T

jB) > 1−δ. ConsiderDB = {D∩B: D ∈D},
the restriction of the coverD toB, and find a partitionβ of B which refinesDB . Thus each
elementP ∈ β has the form

P = Pi0,i1,...,iN−1 ⊂
(
N−1⋂
j=0

T −jUij

)
∩B,

where
⋂N−1
j=0 T

−jUij represents a typical element ofD. Next use the partitionβ of B to

define a partitionα = {Ai : i = 1, . . . , �} of
⋃N−1
j=0 T

jB by assigning to the setAi all sets
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of the formT jPi0,i1,...,ij ,...,iN−1 whereij = i (j can be any number in[0,N − 1]). On the
remainder of the spaceα can be taken to be any partition refiningU .

Now if N is large andδ small enough then

hµ(α)� htop(U)+ 2ε. (5)

Here is a sketch of how one establishes this inequality. Forn . N we will estimate
Hµ(α

n−1
0 ) by counting how many(n,α)-names are needed to cover most of the space. We

takeδ > 0 so that
√
δ2 ε. DenoteE = B ∪ T B ∪ · · · ∪ T N−1B (so thatµ(E) > 1− δ).

Define

f (x)= 1

n

n∑
i=0

1E(T ix),

and observe that 0� f � 1 and∫
X

f (x)dµ(x) > 1− δ,

sinceT is measure preserving. Therefore
∫
(1− f ) < δ and (Markov’s inequality)

µ
{
x: (1− f )� √

δ
}

� 1√
δ

∫
(1− f )� √

δ.

It follows that for pointsx in G= {f > 1−√
δ}, we have the property thatT ix ∈ E for

mosti in [0, n].
PartitionG according to the values ofi for whichT ix ∈ B. This partition has at most

∑
j� n

N

(
n

j

)
� n

N

(
n

n/N

)

sets, a number which is exponentially small inn (if N is sufficiently large).
For a fixed choice of these values the times when we are not inE take onlyn

√
δ values

and there we have< ln
√
δ choices.

Finally whenT ix ∈ B we have at most 2(N(htop(U)+ε)) names so that the total contribu-
tion is< 2(N(htop(U)+ε)) nN .

Collecting these estimations we find that

H
(
αn−1

0

)
< n
(
htop(U)+ 2ε

)
,

whence (5). This completes the proof of the proposition. �

We finally obtain:
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THEOREM 7.11 (The variational principle for open covers).Let (X,T ) be a dynamical
system, U = {U1,U2, . . .Uk} a finite open cover and denote byA the collection of all finite
Borel partitionsα which refineU , then

(1) for everyµ ∈MT (X), infα∈A hµ(α)� htop(U), and
(2) there exists a measureµ0 ∈MT (X) with hµ0(α)� htop(U) for every Borel partition

α ∈A.

(3) htop(U)= max
µ∈MT (X)

inf
α0U

hµ(α)= inf
α0U

hµ0(α).

(4) htop(U)= ȟ(U)= ĥ(U).

PROOF. (1) This assertion can be formulated by the inequalityȟ(U)� htop(U) and it fol-
lows by combining the two parts of Lemma 7.10.

(2) This is the content of Theorem 7.5.
(3) Combine assertions (1) and (2).
(4) Clearly follows from (3). �

7.5. Further results connecting topological and measure entropy

Given a topological dynamical system(X,T ) and a measureµ ∈ MT (X), let π :
(X,X ,µ,T )→ (Z,Z, η, T ) be themeasure-theoreticalPinsker factor of(X,X ,µ,T ),
and letµ= ∫

Z
µz dη(z) be the disintegration ofµ over(Z,η). Set

λ=
∫
Z

(µz ×µz)dη(z),

the relatively independent joining ofµ with itself overη. Finally letΛµ = supp(λ) be the
topological support ofλ in X×X. Although the Pinsker factor is, in general, only defined
measure theoretically, the measureλ is a well defined element ofMT×T (X ×X). It was
shown in Glasner [32] thatEµ =Λµ \∆.

THEOREM 7.12. Let (X,T ) be a topological dynamical system and letµ ∈MT (X).
(1) Eµ =Λµ \∆ andΛµ =Eµ ∪ {(x, x): x ∈ supp(µ)}.
(2) clsEµ ⊂Λµ.
(3) If µ is ergodic with positive entropy thenclsEµ =Λµ.

One consequence of this characterization of the set ofµ-entropy pairs is a description of
the set of entropy pairs of a product system. Recall that anE-system is a system for which
there exists a probability invariant measure with full support.

COROLLARY 7.13. Let (X1, T ) and(X2, T ) be two topologicalE-systems then:
(1) EX1×X2 = (EX1 ×EX2)∪ (EX1 ×∆X2)∪ (∆X1 ×EX2).
(2) The product of two UPE systems is UPE.

Another consequence is:
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COROLLARY 7.14. Let (X,T ) be a topological dynamical system, P the proximal rela-
tion onX. Then:

(1) For everyT -invariant ergodic measureµ of positive entropy the setP ∩Eµ is resid-
ual in theGδ setEµ ofµ entropy pairs.

(2) WhenEX �= ∅ the setP ∩ EX is residual in theGδ setEX of topological entropy
pairs.

Given a dynamical system(X,T ), a pair(x, x′) ∈X×X is called aLi–Yorke pairif it is
a proximal pair but not an asymptotic pair. A setS ⊆X is calledscrambledif any pair of
distinct points{x, y} ⊆ S is a Li–Yorke pair. A dynamical system(X,T ) is calledchaotic
in the sense of Li and Yorkeif there is an uncountable scrambled set. In [14] Theorem 7.12
is applied to solve the question whether positive topological entropy implies Li–Yorke
chaos as follows.

THEOREM 7.15. Let (X,T ) be a topological dynamical system.
(1) If (X,T ) admits aT -invariant ergodic measureµ with respect to which the mea-

sure preserving system(X,X ,µ,T ) is not measure distal then(X,T ) is Li–Yorke
chaotic.

(2) If (X,T ) has positive topological entropy then it is Li–Yorke chaotic.

In [15] Blanchard, Host and Ruette show that in positive entropy systems there are also
many asymptotic pairs.

THEOREM 7.16. Let (X,T ) be a topological dynamical system with positive topological
entropy. Then:

(1) The set of pointsx ∈ X for which there is somex′ �= x with (x, x′) an asymptotic
pair, has measure1 for every invariant probability measure onX with positive en-
tropy.

(2) There exists a probability measureν onX ×X such thatν a.e. pair (x, x′) is Li–
Yorke and positively asymptotic; or more precisely for someδ > 0

lim
n→+∞d(T

nx,T nx′)= 0, and

lim inf
n→+∞d(T

−nx,T −nx′)= 0, lim sup
n→+∞

d(T −nx,T −nx′)� δ.

7.6. Topological determinism and zero entropy

Following [55] call a dynamical system(X,T ) deterministicif every T -factor is also a
T −1-factor. In other words every closed equivalence relationR ⊂ X × X which has the
propertyT R ⊂ R also satisfiesT −1R ⊂ R. It is not hard to see that an equivalent con-
dition is as follows. For every continuous real valued functionf ∈ C(X) the function
f ◦ T −1 is contained in the smallest closed subalgebraA ⊂ C(X) which contains the
constant function1 and the collection{f ◦ T n: n� 0}. The folklore question whether the
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latter condition implies zero entropy was open for awhile. Here we note that the affirmative
answer is a direct consequence of Theorem 7.16 (see also [55]).

PROPOSITION7.17. Let(X,T ) be a topological dynamical system such that there exists a
δ > 0 and a pair(x, x′) ∈X×X as in Theorem7.16(2).Then(X,T ) is not deterministic.

PROOF. Set

R = {(T nx,T nx′): n� 0
}∪ {(T nx′, T nx): n� 0

}∪∆.
ClearlyR is a closed equivalence relation which isT -invariant but notT −1-invariant. �

COROLLARY 7.18. A topologically deterministic dynamical system has zero entropy.

PROOF. Let (X,T ) be a topological dynamical system with positive topological entropy;
by Theorem 7.16(2) and Proposition 7.17 it is not deterministic. �

Part 2. Meeting grounds

8. Unique ergodicity

The topological system(X,T ) is calleduniquely ergodicif MT (X) consists of a single ele-
mentµ. If in additionµ is a full measure (i.e. suppµ=X) then the system is calledstrictly
ergodic(see [1, Chapter 1, Section 4.3]). Since the ergodic measures are characterized as
the extreme points of the Choquet simplexMT (X), it follows immediately that a uniquely
ergodic measure is ergodic. For a while it was believed that strict ergodicity—which is
known to imply some strong topological consequences (like in the case ofZ-systems, the
fact thateverypoint of X is a generic point and moreover that the convergence of the
ergodic sumsAn(f ) to the integral

∫
f dµ, f ∈ C(X) is uniform)—entails some severe

restrictions on the measure-theoretical behavior of the system. For example, it was believed
that unique ergodicity implies zero entropy. Then, at first some examples were produced to
show that this need not be the case. Furstenberg in [24] and Hahn and Katznelson in [46]
gave examples of uniquely ergodic systems with positive entropy. Later in 1970 R.I. Jewett
surprised everyone with his outstanding result: every weakly mixing measure preserving
Z-system has a strictly ergodic model [51]. This was strengthened by Krieger [60] who
showed that even the weak mixing assumption is redundant and that the result holds for
every ergodicZ-system.

We recall the following well known characterizations of unique ergodicity (see [36, The-
orem 4.9]).

PROPOSITION 8.1. Let (X,T ) be a topological system. The following conditions are
equivalent.

(1) (X,T ) is uniquely ergodic.
(2) C(X)= R+B, whereB = {g− g ◦ T : g ∈ C(X)}.
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(3) For every continuous functionf ∈ C(X) the sequence of functions

Anf (x)= 1

n

n−1∑
j=0

f (T jx)

converges uniformly to a constant function.
(4) For every continuous functionf ∈ C(X) the sequence of functionsAn(f ) converges

pointwise to a constant function.
(5) For every functionf ∈ A, for a collectionA ⊂ C(X) which linearly spans a uni-

formly dense subspace ofC(X), the sequence of functionsAn(f ) converges point-
wise to a constant function.

Given an ergodic dynamical systemX = (X,X ,µ,T ) we say that the system̂X =
(X̂, X̂ , µ̂, T ) is a topological model(or just a model) forX if (X̂, T ) is a topological sys-
tem,µ̂ ∈MT (X̂) and the systemsX andX̂ are measure theoretically isomorphic. Similarly
we say that̂π : X̂ → Ŷ is atopological modelfor π : X → Y whenπ̂ is a topological factor
map and there exist measure theoretical isomorphismsφ andψ such that the diagram

X

π

φ

X̂

π̂

Y
ψ

Ŷ

is commutative.

9. The relative Jewett–Krieger theorem

In this section we will prove the following generalization of the Jewett–Krieger theorem
(see [1, Chapter 1, Theorem 4.3.10]).

THEOREM 9.1. If π : X = (X,X ,µ,T )→ Y = (Y,Y, ν, T ) is a factor map withX er-
godic andŶ is a uniquely ergodic model forY then there is a uniquely ergodic modelX̂
for X and a factor map̂π : X̂ → Ŷ which is a model forπ : X → Y.

In particular, takingY to be the trivial one point system we get:

THEOREM 9.2. Every ergodic system has a uniquely ergodic model.

Several proofs have been given of this theorem, e.g., see [18] and [8]. We will sketch a
proof which will serve the relative case as well.
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PROOF OFTHEOREM 9.1. A key notion for this proof is that of auniformpartition whose
importance in this context was emphasized by G. Hansel and J.-P. Raoult [47].

DEFINITION 9.3. A setB ∈X is uniform if

lim
N→∞ ess-supx

∣∣∣∣∣ 1

N

N−1∑
0

1B(T
ix)−µ(B)

∣∣∣∣∣= 0.

A partitionP is uniform if, for allN , every set in
∨N

−N T −iP is uniform.

The connection between uniform sets, partitions and unique ergodicity lies in Proposi-
tion 8.1. It follows easily from that proposition that ifP is a uniform partition, say into
the sets{P1, P2, . . . ,Pa}, and we denote byP also the mapping that assigns tox ∈X, the
index 1� i � a such thatx ∈ Pi , then we can mapX to {1, 2, . . . , a}Z =AZ by:

π(x)= ( . . . ,P(T −1x
)
,P(x),P(T x), . . . ,P(T nx), . . .

)
.

Pushing forward the measureµ by π , givesπ ◦ µ and the closed support of this measure
will be a closed shift invariant subset, sayE ⊂ AZ. Now the indicator functions of finite
cylinder sets span the continuous functions onE, and the fact thatP is a uniform partition
and Proposition 8.1 combine to establish that(E, shift) is uniquely ergodic. This will not
be a model for(X, X , µ, T ) unless

∨∞
−∞ T −iP = X modulo null sets, but in any case

this does give a model for a non-trivial factor ofX.
Our strategy for proving Theorem 9.2 is to first construct a single non-trivial uniform

partition. Then this partition will be refined more and more via uniform partitions until we
generate the entireσ -algebraX . Along the way we will be showing how one can prove a
relative version of the basic Jewett–Krieger theorem. Our main tool is the use of Rohlin
towers. These are setsB ∈X such that for someN, B, T B, . . . , T N−1B are disjoint while⋃N−1

0 T iB fill up most of the space. Actually we need Kakutani–Rohlin towers, which are
like Rohlin towers but fill up the whole space. If the transformation does not have rational
numbers in its point spectrum this is not possible with a single height, but two heights that
are relatively prime, likeN andN+1 are certainly possible. Here is one way of doing this.
The ergodicity of(X,X ,µ,T ) with µ non-atomic easily yields, for anyn, the existence of
a positive measure setB, such that

T i B ∩B = ∅, i = 1,2, . . . , n.

With N given, choosen � 10 ·N2 and findB that satisfies the above. It follows that the
return time

rB(x)= inf{i > 0: T ix ∈ B}

is greater than 10·N2 onB. Let

B� =
{
x: rB(x)= �

}
.
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Since� is large (ifB� is non-empty) one can write� as a positive combination ofN and
N × 1, say

�=Nu� + (N + 1)v�.

Now divide the column of sets{T iB�: 0 � i < �} into u�-blocks of sizeN andv�-blocks
of sizeN +1 and mark the first layer of each of these blocks as belonging toC. Taking the
union of these marked levels (T iB� for suitably choseni) over the various columns gives
us a setC such thatrC takes only two values—eitherN orN + 1 as required.

It will be important for us to have at our disposal K–R towers like this such that the
columns of say the second K–R tower are composed of entire subcolumns of the earlier
one. More precisely we want the baseC2 to be a subset ofC1—the base of the first tower.
Although we are not sure that this can be done with just two column heights we can guar-
antee a bound on the number of columns that depends only on the maximum height of the
first tower. Let us define formally:

DEFINITION 9.4. A setC will be called the base of aboundedK–R tower if for someN ,⋃N−1
0 T iC =X up to aµ-null set. The leastN that satisfies this will be called theheight

of C, and partitioningC into sets of constancy ofrC and viewing the whole spaceX as a
tower overC will be called the K–R tower with columns the sets{T iC�: 0 � i < �} for
C� = {x ∈ C: rC(x)= �}.

Our basic lemma for nesting these K–R towers is:

LEMMA 9.5. Given a bounded K–R tower with baseC and heightN , for anyn sufficiently
large there is a bounded K–R tower with baseD contained inC whose column heights are
all at leastn and at mostn+ 4N .

PROOF. We take an auxiliary setB such thatT i B ∩ B = ∅ for all 0< i < 10(n+ 2N)2

and look at the unbounded (in general) K–R tower overB. Using the ergodicity it is easy to
arrange thatB ⊂ C. Now let us look at a single column overBm, with m� 10(n+ 2N)2.
We try to put down blocks of sizen+ 2N andn+ 2N + 1, to fill up the tower. This can
certainly be done but we want our levels to belong toC. We can refine the column overBm
into a finite number of columns so that each level is either entirely withinC or in X \ C.
This is done by partitioning the baseC according to the finite partition:

m−1⋂
i=0

T −1{C, X \C}.

Then we move the edge of each block to the nearest level that belongs toC. The fact that
the height ofC isN means that we do not have to move any level more thanN − 1 steps,
and so at most we lose 2N − 2 or gain that much thus our blocks, with bases now all inC,
have size in the interval[n, n+ 4N ] as required. �
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It is clear that this procedure can be iterated to give an infinite sequence of nested K–R
towers with a good control on the variation in the heights of the columns. These can be
used to construct uniform partitions in a pretty straightforward way, but we need one more
lemma which strengthens slightly the ergodic theorem. We will want to know that when we
look at a bounded K–R tower with baseC and with minimum column height sufficiently
large that for most of the fibers of the towers (that is forx ∈ C, {T ix: 0 � i < rC(x)}) the
ergodic averages of some finite set of functions are close to the integrals of the functions.
It would seem that there is a problem because the base of the tower is a set of very small
measure (less than 1/min column height) and it may be that the ergodic theorem is not valid
there. However, a simple averaging argument using an intermediate size gets around this
problem. Here is the result which we formulate for simplicity for a single functionf :

LEMMA 9.6. Let f be a bounded function and(X,X ,µ,T ) ergodic. Givenε > 0, there
is an n0, such that if a bounded K–R tower with baseC has minimum column height at
leastn0, then those fibers overx ∈ C: {T ix: 0� i < rC(x)} that satisfy∣∣∣∣∣ 1

rC(x)

rC(x)−1∑
i=0

f (T ix)−
∫
X

f dµ

∣∣∣∣∣< ε
fill up at least1− ε of the space.

PROOF. Assume without loss of generality that|f | � 1. For aδ to be specified later find
anN such that the set ofy ∈X which satisfy∣∣∣∣∣ 1N

N−1∑
0

f (T iy)−
∫
f dµ

∣∣∣∣∣< δ (6)

has measure at least 1− δ. Let us denote the set ofy that satisfy (6) byE. Suppose now
thatn0 is large enough so thatN/n0 is negligible—say at mostδ. Consider a bounded K–R
tower with baseC and with minimum column height greater thann0. For each fiber of this
tower, let us ask what is the fraction of its points that lie inE. Those fibers with at least
a
√
δ fraction of its points not inE cannot fill up more than a

√
δ fraction of the space,

becauseµ(E) > 1− δ.
Fibers with more than 1−√

δ of its points lying inE can be divided into disjoint blocks
of sizeN that cover all the points that lie inE. This is done by starting atx ∈ C, and
moving up the fiber, marking the first point inE, skippingN steps and continuing to the
next point inE until we exhaust the fiber. On each of theseN -blocks the average off is
within δ of its integral, and since|f | � 1 if

√
δ < ε/10 this will guarantee that the average

of f over the whole fiber is withinε of its integra. �

We are now prepared to construct uniform partitions. Start with some fixed non-trivial
partition P0. By Lemma 9.6, for any tall enough bounded K–R tower at least 9/10 of
the columns will have the 1-block distribution of eachP0-name within 1

10 of the actual
distribution. We build a bounded K–R tower with baseC1(1) and heightsN1, N1+1 with
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N1 large enough for this to be valid. It is clear that we can modifyP0 to P1 on the bad
fibers so that now all fibers have a distribution of 1-blocks within1

10 of a fixed distribution.
We call this new partitionP1. Our further changes inP1 will not change theN1, N1 + 1
blocks that we see on fibers of a tower over our ultimateC1. Therefore, we will get a
uniformity on all blocks of size 100N1. The 100 is to get rid of the edge effects since we
only know the distribution across fibers over points inC1(1).

Next we apply Lemma 9.6 to the 2-blocks inP1 with 1/100. We chooseN2 so large
thatN1/N2 is negligible and so that any uniform K–R tower with height at leastN2 has
for at least 99/100 of its fibers a distribution of 2-blocks within 1/100 of the globalP1
distribution. Apply Lemma 9.5 to find a uniform K–R tower with baseC2(2) ⊂ C1(1)
such that its column heights are betweenN2 andN2 + 4N1. For the fibers with goodP1
distribution we make no change. For the others, we copy on most of the fiber (except for
the top 10·N2

1 levels) the correspondingP1-name from one of the good columns. In this
copying we also copy theC1(1)-name so that we preserve the blocks. The final 10· N2

1
spaces are filled in withN1, N1 + 1 blocks. This gives us a new base for the first tower
that we callC1(2), and a new partitionP2. The features ofP2 are that all its fibers over
C1(2) have good (up to 1/10) 1-block distribution, and all its fibers overC2(2) have good
(up to 1/100) 2-block distributions. These will not change in the subsequent steps of the
construction.

Note too that the change fromC1(1), to C1(2), could have been made arbitrarily small
by choosingN2 sufficiently large.

There is one problem in trying to carry out the next step and that is, the filling in of the
top relatively small portion of the bad fibers after copying most of a good fiber. We cannot
copy an exact good fiber because it is conceivable that no fiber with the precise height
of the bad fiber is good. The filling in is possible if the column heights of the previous
level are relatively prime. This was the case in step 2, because in step 1 we began with a
K–R tower heightsN1,N1 + 1. However, Lemma 9.5 does not guarantee relatively prime
heights. This is automatically the case if there is no rational spectrum. If there are only
a finite number of rational points in the spectrum then we could have made our original
columns with heightsLN1, L(N1 + 1) with L being the highest power so thatT L is not
ergodic and then worked with multiples ofL all the time. If the rational spectrum is infinite
then we get an infinite group rotation factor and this gives us the required uniform partition
without any further work.

With this point understood it is now clear how one continues to build a sequence of
partitionsPn that converge toP andCi(k)→ Ci such that theP-names of all fibers over
points inCi have a good (up to 1/10i ) distribution ofi-blocks. This gives the uniformity
of the partitionP as required and establishes

PROPOSITION9.7. Given anyP0 and anyε > 0 there is a uniform partitionP such that
d(P0,P) < ε in the�1-metric on partitions.

As we have already remarked the uniform partition that we have constructed gives us
a uniquely ergodic model for the factor system generated by this partition. We need now
a relativized version of the construction we have just carried out. We formulate this as
follows:
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PROPOSITION9.8. Given a uniform partitionP and an arbitrary partitionQ0 that refines
P , for anyε > 0 there is a uniform partitionQ that also refinesP and satisfies

‖Q0 −Q‖1< ε.

Even though we write things for finite alphabets, everything makes good sense for count-
able partitions as well and the arguments need no adjusting. However, the metric used to
compare partitions becomes important since not all metrics on�1 are equivalent. We use
always:

‖Q−Q‖1 =
∑
j

∫
X

|1Qj − 1Qj |dµ,

where the partitionsQ and Q are ordered partitions into sets{Qj }, {Qj } respec-
tively. We also assume that theσ -algebra generated by the partitionP is non-atomic—
otherwise there is no real difference between what we did before and what has to be done
here.

We will try to follow the same proof as before. The problem is that when we redefineQ0
to Q we are not allowed to change theP-part of the name of points. That greatly restricts
us in the kind of names we are allowed to copy on columns of K–R towers and it is not
clear how to proceed. The way to overcome the difficulty is to build the K–R towers inside
the uniform algebra generated byP . This being done we look, for example, at our first
tower and the first change we wish to make inQ0. We divide the fibers into a finite number
of columns according to the height and according to theP-name.

Next each of these is divided into subcolumns, calledQ0-columns, according to the
Q0-names of points. If aP-column has some good (i.e. good 1-block distribution ofQ0-
names)Q0-subcolumn it can be copied onto all the ones that are not good. Next notice
that aP-column that contains not even one goodQ0-name is a set defined in the uni-
form algebra. Therefore if these sets have small measure then for some large enough
N , uniformly over the whole space, we will not encounter these bad columns too many
times.

In brief the solution is to change the nature of the uniformity. We do not make all of
the columns of the K–R tower good—but we make sure that the bad ones are seen infre-
quently, uniformly over the whole space. With this remark the proof of the proposition is
easily accomplished using the same nested K–R towers as before—but inside the uniform
algebra.

Finally the J–K theorem is established by constructing a refining sequence of uniform
partitions and looking at the inverse limit of the corresponding topological spaces. Notice
that ifQ refinesP , and both are uniform, then there is a natural homeomorphism fromXQ
ontoXP . The way in which the theorem is established also yields a proof of the relative
J–K theorem, Theorem 9.1. �

Using similar methods E. Lehrer [62] shows that in the Jewett–Krieger theorem one can
find, for any ergodic system, a strictly ergodic model which is topologically mixing.
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10. Models for other commutative diagrams

One can describe Theorem 9.1 as asserting that every diagram of ergodic systems of the
form X → Y has a strictly ergodic model. What can we say about more complicated com-
mutative diagrams? A moments reflection will show that a repeated application of Theo-
rem 9.1 proves the first assertion of the following theorem.

THEOREM 10.1. Any commutative diagram in the category of ergodicZ dynamical sys-
tems with the structure of an inverted tree, i.e. no portion of it looks like

Z
α β

X Y

(7)

has a strictly ergodic model. On the other hand there exists a diagram of the form(7) that
does not admit a strictly ergodic model.

For the proof of the second assertion we need the following theorem.

THEOREM 10.2. If (Z,η,T ) is a strictly ergodic system and(Z,T )
α→ (X,T ) and

(Z,T )
β→ (Y,T ) are topological factors such thatα−1(U) ∩ β−1(V ) �= ∅ whenever

U ⊂ X and V ⊂ Y are non-empty open sets, then the measure-preserving systemsX =
(X,X ,µ,T ) andY = (Y,Y, ν, T ) are measure-theoretically disjoint. In particular this is
the case if the systems(X,T ) and(Y,T ) are topologically disjoint.

PROOF. It suffices to show that the mapα × β :Z→X × Y is onto since this will imply
that the topological system(X × Y,T ) is strictly ergodic. We establish this by showing
that the measureλ= (α × β)∗(η) (a joining ofµ andν) is full; i.e. that it assigns positive
measure to every set of the formU × V with U andV as in the statement of the theorem.
In fact, since by assumptionη is full we have

λ(U × V )= η((α× β)−1(U × V ))= η(α−1(U)∩ β−1(V )
)
> 0.

This completes the proof of the first assertion. The second follows since topological dis-
jointness of(X,T ) and(Y,T ) implies thatα× β :Z→X× Y is onto. �

PROOF OFTHEOREM 10.1. We only need to prove the last assertion. TakeX = Y to be
any non-trivial weakly mixing system, thenX × X is ergodic and the diagram

X × X
p1 p2

X X

(8)
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is our counter example. In fact if (7) is a uniquely ergodic model in this situation then it is
easy to establish that the condition in Theorem 10.2 is satisfied and we apply this theorem
to conclude thatX is disjoint from itself. Since in a non-trivial systemµ×µ and gr(µ, id)
are different ergodic joinings, this contradiction proves our assertion. �

11. The Furstenberg–Weiss almost 1-1 extension theorem

It is well known that in a topological measure space one can have sets that are large topo-
logically but small in the sense of the measure. In topological dynamics when(X,T ) is
a factor of(Y,T ) and the projectionπ :Y → X is one to one on a topologically large set
(i.e. the complement of a set of first category), one calls(Y,T ) analmost1-1 extensionof
(X,T ) and considers the two systems to be very closely related. Nonetheless, in view of
the opening sentence, it is possible that the measure theory of(Y,T ) will be quite different
from the measure theory of(X,T ). The following theorem realizes this possibility in an
extreme way (see [29]).

THEOREM11.1. Let(X,T ) be a non-periodic minimal dynamical system, and letπ :Y →
X be an extension of(X,T ) with (Y,T ) topologically transitive andY a compact met-
ric space. Then there exists an almost1-1 minimal extension, π̄ : (Y ,T )→ (X,T ) and a
Borel subsetY0 ⊂ Y with a Borel measurable mapθ :Y0 → Y satisfying(1) θT = T θ ,
(2) π̄θ = π , (3) θ is 1-1onY0, (4)µ(Y0)= 1 for anyT -invariant measureµ onY .

In words, one can find an almost 1-1 minimal extension ofX such that the measure
theoretic structure is as rich as that of an arbitrary topologically transitive extension ofX.

An almost 1-1 extension of a minimal equicontinuous system is called analmost auto-
morphicsystem. The next corollary demonstrates the usefulness of this modelling theorem.
Other applications appeared, e.g., in [41] and [20].

COROLLARY 11.2. Let (X,X ,µ,T ) be an ergodic measure preserving transformation
with infinite point spectrum defined by(G,ρ) whereG is a compact monothetic group
G = {ρn}n∈Z. Then there is an almost1-1 minimal extension of(G,ρ) (i.e. a minimal
almost automorphic system), (Z̃, σ ) and an invariant measureν onZ such that(Z,σ, ν)
is isomorphic to(X,X ,µ,T ).

12. Cantor minimal representations

A Cantor minimal dynamical systemis a minimal topological system(X,T )whereX is the
Cantor set. Two Cantor minimal systems(X,T ) and(Y,S) are calledorbit equivalent(OE)
if there exists a homeomorphismF :X→ Y such thatF(OT (x)) = OS(Fx) for every
x ∈ X. Equivalently: there are functionsn :X→ Z andm :X→ Z such that for every
x ∈ X F(T x) = Sn(x)(Fx) andF(T m(x)) = S(Fx). An old result of M. Boyle implies
that the requirement that, say, the functionn(x) be continuous already implies that the
two systems areflip conjugate; i.e. (Y,S) is isomorphic either to(X,T ) or to (X,T −1).
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However, if we require that bothn(x) andm(x) have at most one point of discontinuity we
get the new and, as it turns out, useful notion ofstrong orbit equivalence(SOE). A complete
characterization of both OE and SOE of Cantor minimal systems was obtained by Giordano
Putnam and Skau [31] in terms of an algebraic invariant of Cantor minimal systems called
thedimension group. (See Glasner and Weiss [43] for further results, and Glasner [35] for
a review of the subject of orbit equivalence in Cantor minimal dynamical systems.)

We conclude this section with the following remarkable theorems, due to N. Ormes
[68], which simultaneously generalize the theorems of Jewett and Krieger and a theorem
of Downarowicz [19] which, given any Choquet simplexQ, provides a Cantor minimal
system(X,T ) with MT (X) affinely homeomorphic withQ. (See also Downarowitcz and
Serafin [21], and Boyle and Downarowicz [16].)

THEOREM 12.1.
(1) Let (Ω,B, ν, S) be an ergodic, non-atomic, probability measure preserving, dynam-

ical system. Let (X,T ) be a Cantor minimal system such that wheneverexp(2πi/p)
is a (topological) eigenvalue of(X,T ) for somep ∈ N it is also a (measurable)
eigenvalue of(Ω,B, ν, S). Let µ be any element of the set of extreme points of
MT (X). Then, there exists a homeomorphismT ′ :X→ X such that(i) T and T ′
are strong orbit equivalent, (ii) (Ω,B, ν, S) and (X,X ,µ,T ′) are isomorphic as
measure preserving dynamical systems.

(2) Let (Ω,B, ν, S) be an ergodic, non-atomic, probability measure preserving, dynam-
ical system. Let (X,T ) be a Cantor minimal system andµ any element of the set
of extreme points ofMT (X). Then, there exists a homeomorphismT ′ :X→X such
that (i) T andT ′ are orbit equivalent, (ii) (Ω,B, ν, S) and (X,X ,µ,T ′) are iso-
morphic as measure preserving dynamical systems.

(3) Let (Ω,B, ν, S) be an ergodic, non-atomic, probability measure preserving dy-
namical system. Let Q be any Choquet simplex andq an extreme point ofQ.
Then there exists a Cantor minimal system(X,T ) and an affine homeomorphism
φ :Q→MT (X) such that, with µ = φ(q), (Ω,B, ν, S) and (X,X ,µ,T ) are iso-
morphic as measure preserving dynamical systems.

13. Other related theorems

Let us mention a few more striking representation results.
For the first one recall that a topological dynamical system(X,T ) is said to beprime

if it has no non-trivial factors. A similar definition can be given for measure preserving
systems. There it is easy to see that a prime system(X,X ,µ,T ) must have zero entropy.
It follows from a construction in [76] that the same holds for topological entropy, namely
any system(X,T ) with positive topological entropy has non-trivial factors. In [85] it is
shown that any ergodic zero entropy dynamical system has a minimal model(X,T ) with
the property that any pair of points(u, v) not on the same orbit has a dense orbit inX×X.
Such minimal systems are necessarily prime, and thus we have the following result:

THEOREM 13.1. An ergodic dynamical system has a topological, minimal, prime model
iff it has zero entropy.
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The second theorem, due to Glasner and Weiss [41], treats the positive entropy systems.

THEOREM 13.2. An ergodic dynamical system has a strictly ergodic, UPE model iff it has
positive entropy.

We also have the following surprising result which is due to Weiss [84].

THEOREM 13.3. There exists a minimal metric dynamical system(X,T ) with the prop-
erty that for every ergodic probability measure preserving system(Ω,B,µ,S) there exists
a T -invariant Borel probability measureν onX such that the systems(Ω,B,µ,S) and
(X,X , ν, T ) are isomorphic.

In [65] E. Lindenstrauss proves the following:

THEOREM 13.4. Every ergodic measure distalZ-systemX = (X,X ,µ,T ) can be repre-
sented as a minimal topologically distal system(X,T ,µ) withµ ∈Merg

T (X).

This topological model need not, in general, be uniquely ergodic. In other words there are
measure distal systems for which no uniquely ergodic topologically distal model exists.

PROPOSITION13.5.
(1) There exists an ergodic non-Kronecker measure distal system(Ω,F ,m,T ) with

non-trivial maximal Kronecker factor(Ω0,F0,m0, T ) such that(i) the extension
(Ω,F ,m,T )→ (Ω0,F0,m0, T ) is finite to one a.e. and(ii) every non-trivial factor
map of(Ω0,F0,m0, T ) is finite to one.

(2) A system(Ω,F ,m,T ) as in part(1) does not admit a topologically distal strictly
ergodic model.

PROOF. (1) Irrational rotations of the circle as well as adding machines are examples of
Kronecker systems satisfying condition (ii). There are several constructions in the litera-
ture of ergodic, non-Kronecker, measure distal, two point extensions of these Kronecker
systems. A well known explicit example is the strictly ergodic Morse minimal system.

(2) Assume to the contrary that(X,µ,T ) is a distal strictly ergodic model for
(Ω,F ,m,T ). Let (Z,T ) be the maximal equicontinuous factor of(X,T ) and letη be
the unique invariant probability measure onZ. Since by assumption(X,µ,T ) is not Kro-
necker it follows thatπ :X→ Z is not one to one. By Furstenberg’s structure theorem
for minimal distal systems(Z,T ) is non-trivial and moreover there exists an intermediate
extensionX→ Y

σ→ Z such thatσ is an isometric extension. A well known construction
implies the existence of a minimal group extensionρ : (Ỹ , T )→ (Z,T ), with compact
fiber groupK , such that the following diagram is commutative (see Section 5 above). We
denote byν the unique invariant measure onY (the image ofµ) and letν̃ be an ergodic
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measure oñY which projects ontoν. The dotted arrows denote measure theoretic factor
maps.

(X,µ)

π(Ω0,m0) (Y, ν)

σ

(Ỹ , ν̃)
φ

ρ,K

(Z,η)

Next form the measureθ = ∫
K
Rkν̃ dmK, wheremK is Haar measure onK and for each

k ∈K ,Rk denotes right translation byk on Ỹ (an automorphism of the system(Ỹ , T )). We
still haveφ(θ)= ν.

A well known theorem in topological dynamics (see [75]) implies that a minimal distal
finite to one extension of a minimal equicontinuous system is again equicontinuous and
since(Z,T ) is the maximal equicontinuous factor of(X,T ) we conclude that the exten-
sionσ :Y →Z is not finite to one. Now the fibers of the extensionσ are homeomorphic to
a homogeneous spaceK/H , whereH is a closed subgroup ofK . Considering the measure
disintegrationθ = ∫

Z
θz dη(z) of θ over η and its projectionν = ∫

Z
νz dη(z), the disin-

tegration ofν over η, we see that a.e.θz ≡ mK andνz ≡ mK/H . SinceK/H is infinite
we conclude that themeasure theoretical extensionσ : (Y, ν)→ (Z,η) is not finite to one.
However considering the dotted part of the diagram we arrive at the opposite conclusion.
This conflict concludes the proof of the proposition. �

In [69] Ornstein and Weiss introduced the notion of tightness for measure preserving
systems and the analogous notion of mean distality for topological systems.

DEFINITION 13.6. Let(X,T ) be a topological system.
(1) A pair (x, y) in X ×X is mean proximalif for some (hence any) compatible met-

ric d

lim sup
n→∞

1

2n+ 1

n∑
i=−n

d(T ix, T iy)= 0.

If this lim sup is positive the pair is calledmean distal.
(2) The system(X,T ) is mean distalif every pair withx �= y is mean distal.
(3) Given aT -invariant probability measureµ onX, the triple(X,µ,T ) is calledtight

if there is aµ-conull setX0 ⊂ X such that every pair of distinct points(x, y) in
X0 ×X0 is mean distal.
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Ornstein and Weiss show that tightness is in fact a property of the measure preserving
system(X,µ,T ) (i.e. if the measure system(X,X ,µ,T ) admits one tight model then
every topological model is tight). They obtain the following results.

THEOREM 13.7.
(1) If the entropy of(X,µ,T ) is positive and finite then(X,µ,T ) is not tight.
(2) There exist strictly ergodic non-tight systems with zero entropy.

Surprisingly the proof in [69] of the non-tightness of a positive entropy system does not
work in the case when the entropy is infinite which is still open.

J. King gave an example of a tight system with a non-tight factor. Following this he and
Weiss [69] established the following result. Note that this theorem implies that tightness
and mean distality are not preserved by factors.

THEOREM 13.8. If (X,X ,µ,T ) is ergodic with zero entropy then there exists a mean-
distal system(Y, ν, S) which admits(X,X ,µ,T ) as a factor.
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This survey primarily deals with certain aspects of ergodic theory, i.e. the study of groups
of measure preserving transformations of a probability (Lebesgue) space up to a met-
ric isomorphism [8, Section 3.4a]. General introduction to ergodic theory is presented in
[8, Section 3]. Most of that section may serve as a preview and background to the present
work. Accordingly we will often refer to definitions, results and examples discussed there.
For the sake of convenience we reproduce some of the basic material here as need arises.

Here we will deal exclusively with actions of Abelian groups; for a general introduction
to ergodic theory of locally compact groups as well as in-depth discussion of phenomena
peculiar to certain classes of non-Abelian groups see [4]. Furthermore, we mostly concen-
trate on the classical case of cyclic systems, i.e. actions ofZ andR. Differences between
those cases and the higher-rank situations (basicallyZk andRk for k � 2) appear already
at the measurable level but are particularly pronounced when one takes into account addi-
tional structures (e.g., smoothness).

Expository work on the topics directly related to those of the present survey includes the
books by Cornfeld, Fomin and Sinai [29], Parry [124], Nadkarni [114], Queffelec [128],
and the first author [78] and surveys by Lemańczyk [104] and Goodson [64]. Our bibli-
ography is far from comprehensive. Its primary aim is to provide convenient references
where proofs of results stated or outlined in the text could be found and the topics we
mention are developed to a greater depth. So we do not make much distinction between
original and expository sources. Accordingly our references omit original sources in many
instances. We make comments about historical development of the methods and ideas de-
scribed only occasionally. These deficiencies may be partially redeemed by looking into
expository sources mentioned above. We recommend Nadkarni’s book and Goodson’s sur-
vey in particular for many references which are not included to our bibliography. Good-
son’s article also contains many valuable historical remarks.

1. Spectral theory for Abelian groups of unitary operators

1.1. Preliminaries

1.1.1. Spectral vs. metric isomorphism.Any measure preserving actionΦ of a groupG
on a measure space(X,µ) generates a unitary representation ofG in the Hilbert space
L2(X,µ) by Ug :ϕ  → ϕ ◦ Φg−1. For an action ofZ generated byT :X→ X the nota-
tion UT for the operatorU1 is commonly used; often this operator is called Koopman
operator since this connection was first observed in [95]. If two actions are isomorphic
then the corresponding unitary representations inL2 are unitarily equivalent, hence any
invariant of unitary equivalence of such operators defines an invariant of isomorphism.
Such invariants are said to bespectral invariantsor spectral properties. Actions for which
the corresponding unitary representations are unitarily equivalent are usually calledspec-
trally isomorphic. We will use terms “unitarily equivalent” and “unitarily isomorphic” in-
terchangeably.

Let us quickly describe the difference between the spectral and metric isomorphism for
groups of unitary operators generated by measure preserving actions. In addition to the
structure of Hilbert space which is preserved by any unitary operator, the spaceL2(X,µ)
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has an extra multiplicative structure. There is a certain subtlety in describing this structure
in purely algebraic terms since the product of two functions fromL2(X,µ) may not be an
L2 function so the whole space is not a ring with respect to addition and multiplication.
There are however various dense subsets (e.g., bounded functions) for which multiplication
is always defined; a proper abstract description leads to the notion ofunitary ring [136].

An easier way to capture the essential part of the multiplicative structure which avoids
many technical complications is as follows. First there is preferred element, the constant
function equal to one which is the multiplicative unity. Second, there arethe idempo-
tentscharacterized by the equationf 2 = f which evidently correspond to characteris-
tic functions. Products of characteristic functions correspond to intersection of the sets:
χA1 · χA2 = χA1∩ A2 and hence the union is also recovered:χA1∪A2 = χA1 + χA2 −
χA1∩A2 = χA1 + χA2 − χA1 · χA2.

Now let us call a unitary operatorU :L2(X,µ)→ L2(Y, ν) multiplicative if it takes
idempotents into idempotents and preserves the product of such elements. Assuming that
(X,µ) and (Y, ν) are Lebesgue spaces [8, Section 3.2b], [141,86] such an operator is
generated by an isomorphism of measure spaces,h : (Y, ν)→ (X,µ), i.e.U(f ) = f ◦ h.
Naturally, the Koopman operator generated by a measure preserving transformation of a
Lebesgue space is multiplicative.

This can summarized as follows:

PROPOSITION1.1. Unitary representations generated by measure preserving actions of
a groupG are metrically isomorphic if and only is they are unitarily equivalent via a
multiplicative operator.

A closed subspaceH ⊂ L2(X,µ) is called aunitary ∗-subalgebraif H is invariant
under complex conjugation, bounded functions are dense inH and product of any two
bounded functions fromH is again inH . In this case characteristic functions generateH

andH defines ameasurable partitionξ of the spaceX in the following way.

PROPOSITION1.2. Any unitary∗-subalgebra consists of all functions inL2(X,µ) which
are constant mod0 on elements of a measurable partition. If a unitary∗-subalgebra isUT
invariant then the corresponding measurable partition isT invariant and defines a factor
of the measure preserving transformationT .

For a more detailed description see [21, Section 5], [141].
For a general discussion of spectral properties for groups of measure preserving transfor-

mations see [4]. In the remainder of this section we will discuss the case of locally compact
Abelian groups. In the rest of the survey we will restrict our considerations to the classical
cases of automorphisms and flows, i.e. actions ofZ andR correspondingly (and primarily
the former) with only occasional comments related to actions of other groups.

1.1.2. Duality for locally compact Abelian groups[126, Chapter 6], [115, Section 31].
LetG be a locally compact second countable topological Abelian group. AcharacterofG
is a continuous homomorphismχ :G→ S1. Characters form a group which is often called
the dual groupof G and is denoted byG∗. There is a natural locally compact topology
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onG∗. It can be described as topology of uniform convergence on compact sets or, equiva-
lently, as the weakest topology which makes any evaluation mapeg :χ  → χ(g) continuous.
Obviouslyeg :G∗ → S1 thus defined is a continuous character ofG∗. The Pontrjagin Du-
ality Theorem asserts that any continuous character ofG∗ has the formeg and that element
g ∈G is uniquely defined [126, Section 40], [115, Section 31.6]. This is usually expressed
in an attractive compact form

G∗∗ =G.

A useful addition to the Pontrjagin Duality is the observation thatG∗ is compact if and
only if G is discrete. In what follows the groupG will be assumed not compact, but it may
be discrete or continuous.

There are natural functorial properties of the duality, all easily derived from the fact
that arrows in natural homomorphisms get reversed. For example, the dual to the direct
sum of finitely many groups is the direct sum of their duals, the dual to the direct sum
of countably many groups is the direct product of the duals, and there is a natural duality
between subgroups and factors, and between direct and inverse limits.

EXAMPLE 1.3. Z∗ = S1 = R/Z, (Zk)∗ = Tk = Rk/Zk , (Rk)∗ = Rk , Furthermore,
(Z∞)∗ = T∞, whereZ∞ is the discrete direct sum of countably many copies ofZ and
T∞ is the compact direct product of countably many copies ofS1.

EXAMPLE 1.4. The multiplicative group of roots of unity of degrees 2n, n= 1,2, . . . , with
discrete topology is the direct limit of cyclic groups of order 2n, n = 1,2, . . . . Its dual is
the compact additive groupZ2 of dyadic integers, which is the inverse limit of such cyclic
groups. By replacing 2 with a natural numberm one gets roots of unity of degreesmn,
n= 1,2, . . . , and them-adic integers correspondingly.

Using the duality between direct sums and direct products one sees that the dual to the
group of all roots of unity is the direct product of thep-adic integers

∏
Zp over all prime

numbersp.

Here is another example of the duality between direct and inverse limits.

EXAMPLE 1.5. The dual to the groupZ[1/2] of rational numbers whose denominators are
powers of 2 (which is a direct limit of free cyclic groups) is the dyadic solenoid

S2
def= {(z1, z2, . . .): z1 ∈ S1, z2n+1 = zn,n= 1,2, . . .

}
.

1.2. The spectral theorem

1.2.1. Formulation in the general case.A characterχ can be viewed as a one-dimen-
sional unitary representation of the group, namely the elementg ∈ G acts onC by the
multiplication byχ(g). Every irreducible unitary representation of an Abelian group is
one-dimensional (see, e.g., [115, Section 31.7]). The spectral theorem states essentially
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that every unitary representation of such a group in a separable Hilbert allows a canon-
ical decomposition into a (in general, continuous) direct sum (i.e. direct integral) of
characters. In this the spectral theorem represents a special case of the general theorem
about the decomposition of a unitary group representation into irreducible representations
[4, Theorem 3.1.3] (see [38] for a proof), but since in the Abelian case the structure of irre-
ducible representations is simple and well understood it is considerably more specific than
the general case.

Thus in the case of Abelian groups the spectral theorem gives a full collection of mod-
els for all unitary representations together with a necessary and sufficient condition for
equivalence of such models.

LetG be a locally compact second countable Abelian group,ν be aσ -finite Borel mea-
sure on the dual groupG∗ andm be aν-measurable function onG∗ with values inN∪∞.
LetHν,m be the subspace of theν-measurable square integrable functionsϕ :G∗ → l2 such
that at a pointχ ∈G∗ all but the firstm(χ) coordinates ofϕ(χ) vanish. The spaceHν,m is
a separable Hilbert space with respect to the scalar product

〈ϕ,ψ〉 =
∫
G∗

(
ϕ(χ),ψ(χ)

)
l2
dν.

The groupG acts unitarily on the spaceHν,m by the natural scalar multiplications:

Uν,mg ϕ(χ)= χ(g)ϕ.
THEOREM 1.6 (The spectral theorem).Any continuous in the strong operator topology
unitary representation ofG in a separable Hilbert space is unitarily equivalent to a repre-
sentationUν,m.

Furthermore, representationsUν1,m1 and Uν2,m2 are unitarily equivalent if and only
if measuresν1 and ν2 are equivalent(i.e. have the same null-sets) andm1 = m2 almost
everywhere.

REMARK. Since everyσ -finite measure is equivalent to a finite measure, one can assume
without loss of generality that in the spectral theorem the measureν is finite. If the group
G is discrete (and henceG∗ is compact) this is a customary assumption. However, in the
case of a continuous group, such asR, the most natural measure on the dual group, the
Haar measure, is not finite. Accordingly, in the spectral theorem instead of finiteness ofν

one assumes only local finiteness.

1.2.2. Sketch of proof for single operator.We outline a proof of the spectral theorem in
the particular case of the action of a single operatorU on a Hilbert spaceH .

DEFINITION 1.7. Consider a unitary operatorU acting on a Hilbert spaceH . LetHf be
the norm closure of the linear span of theUnf , n ∈ Z. The spaceHf is calledthe cyclic
subspacegenerated byf .

Let us denote the scalar product inH by 〈·, ·〉 and letθ be the natural cyclic coordinate
onS1.
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THEOREM 1.8. There exists a positive measureνf on S1 = R/Z with total mass‖f ‖2

such that for the unitary operator

M :L2(S1, νf
)→ L2(S1, νf

)
, g  → e2πiθg,

there exists an isometryV betweenHf andL2(S1, νf ) which conjugates the restriction of
U toHf andM (i.e. VU =MV ), such thatVf = 1 (the constant function onS1) and

〈f,Unf 〉 = ν̂f (n), n ∈ Z. (1.1)

PROOF. If (1.1) holds then the correspondenceUnf → e2πinθ , n ∈ Z, extends to the isom-
etry V with desirable properties. Thus it is sufficient to prove (1.1), i.e. to show that the
correlation coefficients〈f,Unf 〉 are Fourier coefficients of a measure. For that consider
the following sequence of positive measures:

νN,f =
∥∥∑N

n=1 e
2πinθUnf

∥∥2
N

dθ.

One can calculate the Fourier coefficients of these measures directly. In particular, if
|k|�N , then

ν̂N,f (k) = 1

N

∫
S1
e−2πikθ

∑
1�m,n�N

〈
e2πimθUmf, e2πinθUnf

〉
dθ

= 1

N

∫
S1

∑
1�m,n�N

e2πi(m−n−k)θ 〈Um−nf,f 〉dθ = N − |k|
N

〈f,Ukf 〉.

This equality fork = 0 means that the total mass ofνN,f is constant,νN,f (S1) = ‖f ‖2.
Since for anyk ∈ Z, the Fourier coefficientŝνN,f (k) converge to〈f,Ukf 〉, this implies
thatνN,f converge weakly to a measureνf onS1 satisfying (1.1). �

The measureνf is calledthe spectral measureassociated tof . If UT is the Koopman
operator acting onL2(X,µ) andf ∈ L2(X,µ) is a real-valued function, then the measure
νf is symmetric with respect to the real axis.

We now state an important lemma, due to Wiener, which identifies all the invariant
subspaces for the action of the operatorM :g  → e2πiθg in L2(S1, ν).

LEMMA 1.9. If ν is a positive finite measure onS1 and K is a closedM-invariant
subspace ofL2(S1, ν) then there exists a measurable setE ⊂ S1 such thatK =
{f ∈ L2(S1, ν): f = 0 on Ec}.

PROOF. The projection of the constant function 1 onK , PK1, is a characteristic function
since if for everyn ∈ Z,∫

(1−PK1)e2πinθPK1dν = 0
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thenPK1(1−PK1)= 0, ν almost everywhere. This implies existence of a measurable set
E such thatPK1= χE and 1−PK1= χEc . �

As an immediate corollary one obtains

THEOREM 1.10. LetU be a unitary operator acting onH . Letg1 andg2 be two elements
in H such that the measuresνg1 andνg2 are mutually singular. Then

Hg1 ⊥Hg2.

Furthermore

Hg1+g2 =Hg1 ⊕Hg2.

Finally, if there existsf ∈ H such thatHf1 ⊂ Hf , Hf2 ⊂ Hf andHf1 ⊥ Hf2, then the
measuresνg1 andνg2 are mutually singular.

PROOF. This is an easy consequence in the circle model, constructed in Theorem 1.8, for
the action ofU on a cyclic subspace. For, since invariant subspaces are entirely character-
ized by subsets of the circle, we see that two such subspaces are orthogonal if and only if
the corresponding sets are disjoint. In particular, a vector whose spectral measure has full
support is cyclic. �

DEFINITION 1.11. LetU act onH as before. Themaximal spectral typeνU of the op-
eratorU is a positive measure onS1 (which is defined up to equivalence) such that for
everyf ∈H the measureνf is absolutely continuous with respect toνU and no measure
absolutely continuous with respect toνU but not equivalent toνU has the same property.

In the case of an action ofZ the Spectral Theorem 1.6 which gives a complete set of
invariants for a unitary operator, takes the following form.

THEOREM 1.12. Let the unitary operatorU act onH . There exists a family of positive
measures onS1, uniquely defined up to equivalence,

ν1 � ν2 � ν3 � · · ·� νn � · · · ,

whereν1 is the maximal spectral typeνU , such that the action ofU on H is unitarily
isomorphic to the action ofM (the multiplication bye2πiθ ) on the orthogonal sum⊕

i�1

L2(S1, νi
)
.

SKETCH OF PROOF. The theorem follows from the observation that iff andg in H have
the property thatνf ∼ νg , then the two actions ofU onH⊥

f andH⊥
g are unitarily equiv-

alent. This can be seen as it suffices to check that the restrictions ofU to the invariant
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spacesH⊥
f ∩ Hf,g andH⊥

g ∩ Hf,g are equivalent. HereHf,g denotes the invariant sub-
space generated byf andg. These two spaces are cyclic and it is easily checked that they
have equivalent spectral measures. �

REMARK. Alternatively, one can take a sequence ofν1 measurable sets inS1, Ai , i � 1,
Ai+1 ⊂Ai such thatνi = ν1 · χAi .

1.3. Spectral representation and principal constructions

One of the advantages of the spectral representation is that it behaves nicely under the
natural functorial constructions.

1.3.1. Restrictions. For the representationUν,m all closed invariant subspaces can be de-
scribed. We will denote bylm2 the subspace ofl2 which consists of all vectors for which all
but firstm coordinates vanish. The following statement generalizes the Wiener Lemma 1.9.

THEOREM 1.13. Any Uν,m invariant closed subspace ofHν,m is determined by aν-

measurable field of closed subspacesLχ ⊂ lm(χ)2 , where by definitionl∞2 = l2, and consists
of all ϕ such thatϕ(χ) ∈ Lχ .

PROOF. First, consider the case of a cyclic subspace forUν,m generated byf ∈ Hν,m.
SinceUν,m acts by scalar multiplications, the subspaceHf of all functions proportional to
f on the set

Sf
def= {χ ∈G∗: f (χ) �= 0

}
and vanishing onG∗ \ Sf , is Uν,m invariant. The maximal spectral type on the subspace
Hf is the restriction ofν to the setSf . But thenf generates this subspace since by the
Wiener Lemma 1.9 any invariant subspace ofHf consists of functions vanishing on a
certain subset ofSf of positiveν-measure and hence it cannot containf .

Now consider an arbitrary invariant subspaceH . It is generated by a finite or countable
set of functionsf1, . . . . Every cyclic subspaceHfn determines a subsetSfn and a fieldLn,χ
of one-dimensional subspaces onSfn . The sum of those subspaces at eachχ ∈G∗ forms
a ν-measurable field of subspacesLχ and since every functiong with values inLχ is the
limit of linear combinations of functions with values inLn,χ , we conclude thatg ∈H . �

1.3.2. Direct products. Similarly it is easy to represent the Cartesian product of repre-
sentations of the formUν,m in a similar form.

THEOREM 1.14. The Cartesian product of representationsUν,m andUν
′,m′

is unitarily
equivalent to the representationUν+ν′,m+m′

.
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1.3.3. Tensor products. The tensor product of representationsUν,m andUν
′,m′

can be
described as follows. Take the groupG∗ ×G∗ = (G×G)∗ with the measureν × ν′. Let
m(χ1, χ2) =m1(χ1) ·m2(χ2). Consider the spaceHν×ν′,m. The groupG acts diagonally
on that space:

(Ugϕ)(χ1, χ2)= χ1(g)χ2(g)ϕ(χ1, χ2).

This is a representation of the tensor product ofUν,m andUν
′,m′

. From this representation
the spectral representation of the tensor product can be deduced. We do this explicitly for
the case of two Koopman operators in Section 4.1.3.

1.4. Spectral invariants

DEFINITION 1.15. For a given unitary representation ofG the equivalence class of the
measureν in a unitarily equivalent representationUν,m is calledthe maximal spectral type
of the representation. The functionm is calledthe multiplicity function.

The maximal spectral type and the multiplicity function form a complete set of invariants
for a unitary representation of a locally compact Abelian group.

1.4.1. Maximal spectral type. The maximal spectral type is an equivalence class of mea-
sures on the locally compact groupG∗. In the two classical casesG = Z andG = R the
maximal spectral type is a class of measures on the circle and the real line correspond-
ingly. The first of those cases has already been discussed in Section 1.2.2, the second is
summarized in Section 1.4.4 below.

The crudest distinction among measures is between atomic and continuous. Any mea-
sure uniquely decomposes into an atomic (discrete) and continuous part and this decom-
position is invariant under equivalence of measures. Atoms in the maximal spectral type
correspond to the eigenvectors for the representation: the characteristic function of such an
atom is an eigenfunction.

If the maximal spectral type is atomic the representation is said to havepure point spec-
trum. There is a difference with the notion of discrete spectrum common in many areas of
analysis. The spectrum may be pure point but the eigenvalues may be dense inG∗ or, more
generally the eigenvalues may not be isolated; in other words, the spectrum as a set does
not have to be discrete. Since genuine discrete spectrum appears in ergodic theory only
in some trivial situations the term “discrete spectrum” is sometimes used instead of “pure
point”.

On the other hand, in our setting there is a special continuous measure onG∗, the Haar
measureλ; any measure absolutely continuous with respect to Haar is called simplyab-
solutely continuous. Any non-atomic measure singular with respect to the Haar measure is
referred to as simplysingular. Thus, an arbitrary measure onG∗ allows a unique decom-
position into atomic, absolutely continuous and singular parts invariant under equivalence.
Representations whose maximal spectral type is atomic, absolutely continuous, or singular
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are referred to correspondingly as representations withpure point, absolutely continuous,
or singular spectrum.

Theorems 1.6 and 1.13 easily imply

COROLLARY 1.16. The maximal spectral type of the restriction of a representation to any
closed invariant subspace is absolutely continuous with respect to the maximal spectral
type of the representation.

1.4.2. Correlation coefficients. Similarly to the case of a single operator (Definition 1.7)
for a unitary representationU ofG in a Hilbert spaceH with the scalar product〈·, ·〉, every
elementv ∈H determines thecyclic spaceHv , the minimal closedU -invariant subspace
which containsv.

Theorem 1.13 implies that an invariant subspace is cyclic if and only if for almost every
with respect to the maximal spectral typeχ ∈G∗ the spaceLχ has dimension at most one.
The maximal spectral type in the spaceHv is represented by the measureνv , calledthe
spectral measure ofv, where

〈
v,U(g)v

〉= ∫
G∗
χ(g)dνv.

Similarly to the case of the single operator (Section 1.2.2) these scalar products are often
called the correlation coefficientsof the elementv. Notice that the spectral measure is
always finite, since‖v‖2 = νv(G∗).

REMARK. Correlation coefficients can be viewed as the Fourier transform of the measure.
It is useful to remember that the Fourier transform is linear and that the product of Fourier
transforms corresponds to the convolution of measures. In ergodic theory convolutions
appears in connection with multiplication of functions in the study of Cartesian products
(Section 4.1.3) as well as in situation when multiplicative structure is well related with
the spectral picture, such as the pure point spectrum (see Section 3.5), Gaussian systems
(Section 6.4.1), and Gaussian Kronecker systems (Section 6.4.3).

For the representationUν,m the cyclic space determined by a functionϕ consists of all
functions whose values are proportional to those ofϕ. This implies thatνϕ = |ϕ|2ν and
hence

COROLLARY 1.17. For any finite measureµ absolutely continuous with respect to the
maximal spectral type there existsv ∈H such thatνv = µ.

Recall that a set in a topological space is calledresidualif its complement is the union
of countably many nowhere dense sets. In the spaceHν,m the set of elements which do not
vanish is residual. Thus we obtain from Theorem 1.6.

COROLLARY 1.18. The spectral measures for a residual set of elements belong to the
maximal spectral type.
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1.4.3. Multiplicity function

DEFINITION 1.19. Anessential valuen ∈ N∪{∞} of the spectral multiplicityfor a unitary
representation of an Abelian groupG is any number such that the multiplicity functionm
takes valuen on a set of non-zero measure with respect to the maximal spectral type.

Themaximal multiplicityis the supremum of essential values.
The representation is said to have ahomogeneous spectrumif there is only one essential

value of the spectral multiplicity. This value is then calledthe multiplicity of the homoge-
neous spectrum. If the only essential value is 1, the representation is said to havesimple
spectrum.

Simple spectrum is equivalent to cyclicity of the whole space: there exists a vectorv such
that the linear combinations of vectorsUg(v), g ∈G, are dense. Homogeneous spectrum
of multiplicity m (finite or infinite) can be characterized as follows:

There exists a decomposition of the spaceH into an orthogonal sum ofm cyclic sub-
spaces such that the restrictions of the representation into all of those subspaces are uni-
tarily equivalent.

The following closely related fact which follows immediately from Theorems 1.6
and 1.14, is often used in ergodic theory and is central in relating various symmetries
with spectral properties (see Section 5.8).

COROLLARY 1.20. SupposeU is a unitary representation of a locally compact Abelian
groupG in the Hilbert spaceH . Suppose thatH decomposes into the orthogonal sum of
k ∈ N ∪ {∞} invariant subspaces and the restrictions ofU to all of those subspaces are
unitarily equivalent. Then all essential values of the spectral multiplicity are multiples ofk.

Given a collection of elementsv1, . . . , vk ∈ H , the subspaceHv1,...,vk is defined as the
minimal closedU -invariant subspace which containsv1, . . . , vk . It follows directly from
Theorems 1.6 and 1.13 that the maximal multiplicity of a representationU is equal to the
infimum of k such thatH = Hv1,...,vk . In particular, if there is no such finite collection
v1, . . . , vk then the maximal multiplicity is infinite; this does not imply though that∞ is
an essential value.

In ergodic theory it often happens that one can construct sequences of cyclic subspaces,
or, more generally, subspaces generated by a given number of vectors, which approximate
every vector sufficiently well. Existence of such a sequence allows to estimate maximal
spectral multiplicity from above thus improving the criterion above. For av ∈ H and a
closed subspaceL ⊂ H let us denote as before byPLv the orthogonal projection of the
vectorv ontoL.

THEOREM 1.21. LetU be a unitary operator on the Hilbert spaceH . If for every ortho-
normalm-tuple of vectorsv1, . . . , vm ∈H , there existsw ∈H such that the cyclic subspace
generated byw,Hw satisfies:

i=m∑
i=1

‖PHwvi‖2> 1
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then the maximal spectral multiplicity ofU is �m− 1.
In particular if m= 2 the representation has simple spectrum.

PROOF. If the spectral multiplicity ofU is �m, and ifν is the spectral measure ofU we
can find, by the spectral Theorem 1.12, a setA in S1 such that there exists aU -invariant
subspaceK of H restricted to whichU is isomorphic to the sum ofm copiesKi , i =
1, . . . ,m, of the action ofM on L2(S1, χAν) (M as in Theorem 1.8). We choose forvi ,
i = 1,2, . . . ,m, the functionsχA/ν(A)1/2, i = 1,2, . . . ,m, of the above model. Then there
existswi ∈Ki , i = 1,2, . . . ,m, andw′ orthogonal toK such thatw =∑i=mi=1 wi +w′. Let
w̃ =∑i=mi=1 wi . ThenPHw̃

vi =PHw
vi .

Now, if W is an invariant subspace of
⊕i=m
i=1 L

2(S1, χAν)=H, exactly the same proof
as the one which was used for the Wiener lemma gives:(vi(x),PWvi(x))= ‖PWvi(x)‖2

(the scalar product is taken inH). This says that the restriction ofPW to the fiber atx
is a projection on a subspaceWx . Therefore,

∑i=m
i=1 ‖PWv(x)‖2 = dimWx . In our case,

dimHw(x)= 1 for ν almost allx, and we get, ifB is the support of the spectral measure
of w,
∑i=m
i=1 ‖PHw

vi‖2 = ν(B)/ν(A)� 1. �

1.4.4. Spectral theorem and spectral invariants for one-parameter groups of unitary oper-
ators. By the Stone Theorem any continuous one-parameter groups of unitary operators
Ut : t ∈ R, Ut+s = Ut · Us in a Hilbert spaceH has the formUt = expitA whereA is
a Hermitian operator (A∗ = A). Notice thatA is not necessarily bounded. Nevertheless
A is uniquely defined on a dense subset as−i dUt

dt
|t=0. The operatorA or sometimes the

skew-Hermitian operator−iA is called the (infinitesimal) generatorof the groupUt . The
spectral theorem for one-parameter groups of unitary operators takes the following form.

THEOREM 1.22. LetUt = expitA be a one-parameter groups of unitary operators in a
Hilbert space onH continuous in the strong operator topology. There exists a family of
locally finite positive measures onR uniquely defined up to equivalence(and called the
spectral types for the group)

ν1 � ν2 � ν3 � · · ·� νn � · · ·

such that the action ofUt onH is unitarily isomorphic to the multiplication bye2πitx ) on
the orthogonal sum⊕

i�1

L2(R, νi).

Accordingly the Hermitian infinitesimal generatorA acts as multiplication by the indepen-
dent variablex in eachL2(R, νi).

Notice that in this case the maximal spectral type and multiplicity function for each indi-
vidual operatorUt are defined on the circle: they are obtained from the spectral types of the
group via the standard projectionπt :R → S1, πt (s)= expits. Thus spectral multiplicity
of individual operators tend to be greater than for the group. A typical example is the case
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of Lebesgue spectrum: every non-identity elements of a one-parameter group of unitary
operators with simple Lebesgue spectrum has countable Lebesgue spectrum.

Here is a simple but useful criterion of Lebesgue spectrum for one-parameter groups:

PROPOSITION1.23. If the one-parameter group of unitary operatorsUt is unitarily equiv-
alent to the renormalized groupUst for any s > 0, thenUt has homogeneous Lebesgue
spectrum.

PROOF. It follows from the assumption that the infinitesimal generatorA of Ut is unitarily
equivalent tosA. But the spectral measures ofsA are obtained from those ofA by applying
the multiplication bys on the real line. Hence the spectral measures are invariant under
these multiplications and Lebesgue is the only type satisfying this property. �

2. Spectral properties and typical behavior in ergodic theory

Now we will consider a single unitary operatorU :H → H , or, equivalently, a unitary
representation of the groupZ. The spectral measures in this case are measures on the
circleS1 (see Section 1.2.2). We will always assume that all measures we are considering
are finite. Most of the discussion below can be extended straightforwardly to the case
of discrete Abelian groups while in the continuous case certain subtle points appear. We
will address some of these points for the case of one-parameter groups of operators, i.e.
representations ofR.

A NOTE ON TERMINOLOGY. We will apply the spectral notions discussed below for uni-
tary operators to measure preserving transformations if the Koopman operator in the or-
thogonal complement to the constants possesses the corresponding property. Thus we will
speak about transformations with Lebesgue spectrum, mixing, mildly mixing, rigid, and so
on. From now on, the scalar product will usually be denoted by(·, ·).

2.1. Lebesgue spectrum

2.1.1. Correlation decay. The maximal spectral type in a cyclic subspaceL ⊂ H is
Lebesgue if and only if there existsv ∈ L such that the iteratesUnv, n ∈ Z, form an
orthogonal basis inL. There are natural sufficient conditions for absolute continuity of the
spectral measure, e.g., a certain decay rate for the correlation coefficients, such asl2, but
non of such conditions is necessary since anL1 function on the circle may have very slowly
decaying Fourier coefficients. The most general decay condition sufficient to guarantee that
the spectral measure is actually equivalent to Lebesgue is an exponential decay

(v,Unv)� cexp
(−β|n|)

for some positive numbersc andβ. For, in this case the Fourier transform of the sequence
(v,Unv) is a real-analytic function on the circle; it is nonnegative since it is a density of a
measure and by analyticity it can only have finitely many zeroes.
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The corresponding condition in the continuous time case is particularly useful because
in that case there is no convenient direct counterpart of the orthogonality condition above.

2.1.2. Countable Lebesgue spectrum in ergodic theory.A particular type of spectrum
which is ubiquitous in ergodic theory iscountable Lebesgue spectrum, i.e. the Lebesgue
maximal spectral type with the multiplicity function identically equal to∞. The following
criterion is evident from the definition.

A unitary operatorU :H → H has countable Lebesgue spectrum if and only if there
exists an infinite-dimensional closed subspaceH0 ⊂H such that

(i) H0 andUnH0 are orthogonal forn > 0 (or, equivalently forn �= 0), and
(ii) H =⊕n∈ZU

nH0.
As we already mentioned in the case of one-parameter group of operators if the infini-

tesimal generatorA of the group has simple Lebesgue spectrum (i.e. the maximal spectral
type is the type of Lebesgue measure on the line) then the unitary operators exp(−itA)
have countable Lebesgue spectrum for everyt �= 0. Still the term “countable Lebesgue
spectrum” is reserved for the case where the generator has Lebesgue spectrum of infinite
multiplicity.

Here is a good illustration of how countable Lebesgue spectrum appears in ergodic the-
ory.

EXAMPLE 2.1. Consider an automorphismA of a compact Abelian groupG. It preserves
Haar measureχ and the Koopman operator maps characters into characters. The characters
form an orthonormal basis inL2(G,χ). The cyclic subspace of each character is either
finite-dimensional (and hence the spectral measure is atomic and the eigenvalues are roots
of unity) or Lebesgue where the orbit of the character is infinite. Thus the spectrum ofUA
in L2

0(G,χ) is in general a combination of pure point and Lebesgue. IfA is ergodic (see
Section 3.3) the first case does not appear and the spectrum is Lebesgue. It is not difficult
to show that the number of orbits in the dual group is always infinite so Lebesgue spectrum
is always countable.

This conclusion extends with a slight modification to a more general class ofaffine maps
on compact Abelian groups. Such a map is a product (composition) of an automorphism
and a translation. In this case again the spectrum in general is a combination of pure point
and countable Lebesgue, however it can be mixed even in the ergodic case, see Exam-
ples 3.17 and 3.18.

Other standard examples of transformations with countable Lebesgue spectrum are
Bernoulli shifts introduced in Example 3.10 (see also [8, Section 3.3e]) and, more gen-
erally, transitive Markov shifts [8, Section 3.3f].

2.1.3. Hyperbolic and parabolic paradigms

Positive entropy,K-property, hyperbolic behavior. The main source of the presence of
countable Lebesguepart in the spectrum is positivity of entropy [8, Theorem 3.7.13], [12];
in particular, the completely positive entropy (theK-property) implies that the spectrum in
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the orthogonal complementL2
0 to the constants is countable Lebesgue [8, Theorem 3.6.9],

[12].
This kind of behavior appears in systems withhyperbolicandpartially hyperbolicbe-

havior [8, Section 6], [7,1,9]. Example 2.1 in the case when the groupG is a torusTn pro-
vides simple particular cases for both hyperbolic and partially hyperbolic situations. For, in
this case the automorphism is determined by an integern×nmatrix with determinant±1.
The hyperbolic case corresponds to the situation when the matrix has no eigenvalues of ab-
solute value one; partially hyperbolic case appears when there are some such eigenvalues
but no roots of unity among them. See [8, Sections 5.1h and 6.5a].

Zero entropy; parabolic behavior.Countable Lebesgue spectrum also appears in many
zero entropy systems, sometimes accompanied by a pure-point part. This is typical for the
parabolic paradigm [8, Section 8] which appears in particular in many systems of alge-
braic origin and their modifications. See Examples 3.17 and 3.18, Section 6.2.2 and [10]
(especially Section 2.3a).

Horocycle flows. Now we will describe a particularly characteristic example of par-
abolic system which show how Lebesgue spectrum follow from a renormalization argu-
ments.

Let X be the manifoldX = SL(2,R)/Γ whereΓ is a discrete subgroup of finite co-
volume inSL(2,R). Consider the following one-parameter subgroup ofSL(2,R): Ht =( 1 t

0 1

)
, t ∈ R.

The action ofHt by left translations on the right homogeneous spaceX preserves the
measurem onX induced by the Haar volume inSL(2,R). Let us denote this actionht ; it
is called thehorocycle flow.

PROPOSITION2.2. Every transformationht , t �= 0 has countable Lebesgue spectrum.

PROOF. Consider the one-parameter diagonal subgroup ofSL(2,R);Gt =
(
et 0
0 e−t
)

and the

corresponding left action ofGt onX by gt ; the latter is called thegeodesic flow.1

Direct calculation shows that the commutation relationGtHsG−t = Hset holds and
hencegthsg−t = hset . Thus the flowsht and hst for any positives are metrically and
hence spectrally isomorphic. Hence by Proposition 1.23 the horocycle flow has homo-
geneous Lebesgue spectrum and each transformationht , t �= 0 has countable Lebesgue
spectrum. �

In fact, it is also true that the horocycle flow (i.e. its infinitesimal generator) has count-
able Lebesgue spectrum. For this it is enough to show that there are countably many mu-
tually orthogonal subspaces inL2(X,m) simultaneously invariant under the geodesic and
horocycle flows. Then the above argument can be applied separately to each of those sub-
spaces producing Lebesgue spectrum there.

To find such subspaces one can use elements of theory of unitary representations for
semisimple Lie groups; in this caseSL(2,R). Namely, notice that the whole groupSL(2,R)

1The geometric terminology came from the interpretation ofSL(2,R) as the unit tangent bundle to the hyper-
bolic planeH2 which can be identified with the symmetric spaceSO(2)\SL(2,R), see, e.g., [79, Section 17.5].
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acts by left translations onX and the corresponding Koopman operators produce a uni-
tary representation ofSL(2,R) in L2(X,m). Consider the compact subgroup of rota-
tions SO(2) ⊂ SL(2,R). One sees easily that the action of that group decomposes into
eigenspaces corresponding all the characters. Each such eigenspace is invariant under the
whole groupSL(2,R).

2.2. Mixing and recurrence

2.2.1. Mixing. (See also [8, Section 3.6h].) A measureµ on the circle is calledmix-
ing (or sometimesRajchman) if its Fourier coefficients (correlation coefficients)µ̂n =∫
S1 z

n dµ(z) converge to 0 asn→±∞.
By the Riemann–Lebesgue lemma any absolutely continuous measure is mixing. How-

ever there are many mixing singular measures as well. To see this notice that the corre-
spondence between taking convolutions and multiplication of Fourier coefficients implies
the following

PROPOSITION2.3. Convolution of two mixing measures is mixing. If for a measureµ and
for somem themth convolutionµ(m) = µ ∗ · · · ∗ µ of µ with itself is mixing, thenµ is
mixing.

EXAMPLE 2.4. LetC be the projection of the standard (ternary) Cantor set on the unit
interval to the circle. Construct the “uniform” measureµ onC by assigning the measures
1/2n to the intersection ofC with the intervals ofnth order.2 This measure is obviously
singular. It is however mixing. This can be seen by looking at the convolutionµ ∗ µ of
µ with itself. The convolution is absolutely continuous, and hence mixing (its density is
easy to calculate). Thus the Fourier coefficients ofµ which are square roots of Fourier
coefficients ofµ ∗µ also vanish at infinity.

PROPOSITION2.5. Any measure absolutely continuous with respect to a mixing measure
is mixing.

PROOF. Let µ be a mixing measure andρ ∈ L1(S1,µ). We need to show thatρµ is a
mixing measure. We will prove decay of correlation coefficients without assuming non-
negativity ofρ. First, notice that multiplication by the independent variable correspond to
the shift in Fourier coefficients and hence preserves the decay of correlation coefficients
at infinity. Second, this decay is a linear property. Thus for any trigonometric polynomial
p the correlation coefficients of the complex measurepµ decay at infinity. Since trigono-
metric polynomials are dense inL1(S1,µ), the same property holds forρµ. �

REMARK. The above argument naturally can be applied to the case of Lebesgue measure
and thus it gives a proof of the Riemann–Lebesgue Lemma.

2This is the Hausdorff measure corresponding to the exponentlog 2
log 3 which is equal to the Hausdorff dimension

of C.
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Mixing measures can be characterized in a geometric way as being asymptotically uni-
formly distributed. LetEn :S1 → S1 be thenth power map:En(z) = zn. The pull-back
f ∗µ of the measureµ under a transformationf is defined byf ∗µ(A)= µ(f−1A) for any
µ-measurable setA.

PROPOSITION2.6. A measureµ on the circle is mixing if and only if the sequence(En)∗µ
weakly converges to Lebesgue measure asn→±∞.

PROOF. Since themth Fourier coefficient of the measure(En)∗µ is equal toµ̂mn, mixing
implies that every non-zero Fourier coefficient of(En)∗µ converges to 0 asn→±∞ while
the zero Fourier coefficients of all those measures are equal to one. Convergence of Fourier
coefficients for probability measures on the circle is equivalent to weak convergence. This
proves the “only if” part.

Conversely, weak convergence implies that the first Fourier coefficients of(En)
∗µwhich

are equal tôµn converge to zero asn→±∞ implying mixing. �

By Proposition 2.5 mixing is a property of an equivalence class of measures. This justi-
fies the following definition.

DEFINITION 2.7. A unitary operator is calledmixing if some (and hence any) measure of
maximal spectral type is mixing.

In fact, mixing can characterized directly:

PROPOSITION2.8. A unitary operatorU is mixing if and only ifUn converges to0 in the
weak operator topology asn→∞.

2.2.2. Rigidity and pure point spectrum.(See also [8, Section 3.6e].) Rigidity is a prop-
erty of spectral measures which is opposite to mixing in a natural way.

DEFINITION 2.9. A measureµ on the circle is calledrigid (or sometimes aDirichlet
measure) ifµ̂nk → µ(S1) for some sequencenk →∞.

The contrast between rigidity and mixing is seen from the following geometric charac-
terization.

PROPOSITION2.10. The measureµ is rigid if and only if for certain sequencenk →∞
the sequence of measures(Enk )

∗µ weakly converges to aδ-measure.

LEMMA 2.11. If for a certain sequencenk →∞ µ̂nk → αµ(S1) where|α| = 1, then for
anym ∈ Z, µ̂mnk → αmµ(S1).

PROOF. Fixing m, for every ε, there existsk0 such that fork > k0 if Ak = {θ ∈ S1:
|e2πinkθ − e2πiα| > ε}, thenm(Ak) < ε2. The conclusion now follows from the fact that,
for complex numbersz1 andz2 such that|z1| = |z2| = 1, |zm1 − zm2 |�m|z1 − z2|. �
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PROOF OF THE PROPOSITION. If (Enk )
∗µ→ δα , then by Lemma 2.11 for any natural

numberp, (Epnk )
∗µ→ δαp and we are able to produce a sequencelk = pknk such that

(Elk )
∗µ→ δ1, which is just rigidity since the first Fourier coefficient of the measure

(Elk )
∗µ) is equal toµ̂lk . This also gives the converse. �

COROLLARY 2.12. Any measure absolutely continuous with respect to a rigid measure is
rigid.

Thus rigidity like mixing is also a property of an equivalence class of measures and
hence one can speak aboutrigid unitary operators.

PROPOSITION2.13. Any atomic measure onS1 is rigid.

PROOF. For any atomic measure all but arbitrary small measure is concentrated on a finite
set. But for any finite setλ1, . . . , λn ∈ S1 one can find a sequencenk → ∞ such that
λ
nk
i → 1, i = 1, . . . , n. �

For a given unitary operatorU the closure of powersUn, n ∈ Z in the strong opera-
tor topology is a useful object whose structure is related to the spectral properties ofU .
First, all of its elements are unitary operators, and it forms a Polish Abelian group under
composition. Let us denote this group byG(U).

It follows from the definition of rigidity that the operatorU is rigid if and only if the
groupG(U) is perfect.

Notice that the group of Koopman operators is a closed subgroup of the group of all
unitary operators in the strong operator topology (this is not true in weak topology). Thus
we have the following useful corollary.

COROLLARY 2.14. Any rigid measure preserving transformationT of Lebesgue space
has an uncountable centralizer, i.e. there are uncountably many measure preserving trans-
formations commuting withT .

In fact, unitary operators with pure point spectrum (i.e. operators whose maximal spec-
tral type is atomic) can be characterized by a property stronger than rigidity.

PROPOSITION2.15. A unitary operatorU has pure point spectrum if and only if the group
G(U) is compact.

Thus, for any transformation with pure point spectrum a certain compact Abelian group
can be associated. It is not surprising then that such transformations can be represented
as shifts on compact Abelian groups. See Section 3.4.3 for a detailed discussion. At the
moment we just notice that given a compact Abelian groupG any translation onG pre-
serves Haar measureχ and has pure point spectrum since characters are eigenfunctions for
it and characters form an orthonormal basis inL2(G,χ). Let us illustrate this by some con-
crete examples. Recall that a measure preserving transformation isergodicif any invariant
measurable set is either a null-set or has null-set complement.
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EXAMPLE 2.16.
(1) Circle rotation. Let for α ∈ R

Rα :S1 → S1, Rαx = x + α (mod 1).

This rotation is ergodic if and only ifα is irrational.
(2) Translation on the torus. For a vectorα = (α1, . . . , αn) ∈ Rn the translationTα of

then-torus

Tαx = x + α (mod 1)

is ergodic with respect to Haar measure is and only ifα1, . . . , αn and 1 are indepen-
dent over rationals.

The translation vectorα is sometimes called the vector offrequenciesand the
rational relations between its components are calledresonances. Even if there are
no resonances there may be near resonances which play important role in causing
complications when the translation is modified in some way.

(3) Adding machineor odometer. An adding machineis an ergodic transformation with
pure point spectrum all of whose eigenvalues are roots of unity. In other words, it is
an ergodic shift on the dual to a subgroup ofQ/Z, or by duality on a factor of the
group of ideles (Example 1.4). It can also can be characterized as the inverse limit
of cyclic permutations.

For example, a translationTx0 on the groupZp of p-adic integers (p prime) is
ergodic is and only ifx0 is not divisible byp.

(4) Shifts on solenoids. A solenoid is the inverse limit of tori of the same dimension.

2.2.3. Mild and weak mixing. (See also [8, Sections 3.6f,g].)

DEFINITION 2.17. A measureµ on the circle is calledmildly mixing if no measure ab-
solutely continuous with respect toµ is rigid.

Notice that given a sequencenk →∞, the space of all functionsf ∈ L2(X,µ) for which
U
nk
T f → f is a unitary∗-subalgebra. Hence by Proposition 1.2 ifUT is not mildly mixing,
T has a rigid factor. Thus

T is mildly mixing if and only if it has no non-trivial rigid factors.

Proposition 2.13 implies that any mildly mixing measure is continuous (non-atomic).
The following characterization justifies calling non-atomic measuresweak (or weakly)
mixing.

Recall that a subsetS ⊂ Z is called aset of full densityif

lim
n→∞

S ∩ [−n,n]
2n+ 1

= 1.
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PROPOSITION2.18. A measureµ on the circle is non-atomic if and only if for a setS of
full density

lim
n∈S,n→±∞ µ̂n = 0.

SKETCH OF PROOF. Let ∆ be the diagonal ofS1 × S1. Fubini’s theorem implies that
(µ× µ)(∆)=∑ |µ̂({λ})|2, where the summation is taken over the atoms ofµ. Now we
have ∫

1

N

N∑
n=1

exp
(
2iπn(x − y))d(µ×µ)= 1

N

N∑
n=1

|µ̂n|2.

By Lebesgue theorem the left-hand side of this last equality converges, whenN→+∞, to
µ×µ(∆). A simple calculation shows the equivalence between limN→∞ 1

N

∑N
1 |µ̂n|2 = 0

and

lim
n∈S,n→±∞ µ̂n = 0

for a setS of full density. �

While checking convergence along a sequence of full density may present problems
there is an alternative criterion which is often convenient in the context of ergodic theory.

PROPOSITION2.19. An equivalence class of measures onS1 is non-atomic if and only if
there exists a sequencenk →∞ such that for any measureµ from this class(or, equiva-
lently, for anL1 dense set of such measures) µ̂nk → 0.

2.2.4. An elliptic paradigm

Diophantine and Liouvillean behavior.Simple rigid spectrum, whether atomic, mixed
or continuous, is the second type (after countable Lebesgue spectrum) ubiquitous in er-
godic theory and other branches of dynamics. These spectral properties are associated
with the elliptic behavior [8, Section 7] in its two manifestations, Diophantine and Li-
ouvillean [47]. Simplicity of the spectrum relies on criteria like Theorem 1.21, rigidity on
Proposition 2.10.

Diophantine paradigm is associated with rather simple and fully understood type of be-
havior: pure point spectrum with frequency vector which avoids too close near resonances,
see Example 2.16(2); it is of great importance in classical mechanics due to KAM the-
ory [30].

Liouvillean behavior is associated with simple singular (and usually continuous) rigid
spectrum and with a very fast periodic approximation, see Proposition 5.39, and for more
details, [81,78]; it is typical in the weak topology in the space of measure preserving trans-
formations and various other spaces of dynamical systems, see Theorems 5.47 and 5.49,
[47,78]. Although more exceptional from the point of view of classical and Hamiltonian
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mechanics, it is still unavoidable in typical perturbations of completely integrable systems,
twist maps and so on [70].

Time change in linear flows onT2. We will present now the most classical and very
simple situation where non-trivial Liouvillean behavior appears.

We begin with an irrational linear flow on the two-dimensional torus. We will denote
cyclic coordinates onT2 by x andy. Given a vectorγ = (γ1, γ2) the flow{T tγ } is generated
by the constant vector field with coordinatesγ1, γ2 and has the form

T tγ (x, y)= (x + tγ1, y + tγ2) (mod 1).

We assume that the slopeγ1/γ2 is irrational which is equivalent to minimality or ergodicity
of the flow.

Now consider a time change of the flow. Namely take a positiveC∞ function ρ and
consider the flow generated by the vector field(ργ1, ργ2). Denote the new flow by{St }.
This flow preserves the smooth measureρ−1λ. It is also rigid, and has simple spectrum. If
the numberγ1/γ2 is Diophantine, i.e. there exist positive numbersN andC such that for
any integersp andq,

|γ1/γ2 − p/q|>C/qN

then there exists aC∞ diffeomorphism preserving the orbits which conjugates the flow
{St } to a linear flow and hence has pure point spectrum. This goes back to Kolmogorov
[94], see [8, Section 7.3], [78, Section 11.2] for proofs and discussions. Thus in the Dio-
phantine situation the orbit structure of time changes is rigid.

On the other hand, if the slope is not a Diophantine number then generically in theC∞
topology forρ the flow{St } is weakly mixing [42] (see also [78, Section 13.3] for related
results and historical discussion). Furthermore, for some special values of the slope one
can find a real-analyticρ for which the flow has mixed spectrum [48]. We will continue
discussion of this and similar situations in Section 5.6.3.

2.3. Homogeneous systems

We briefly mention now a very important class of dynamical systems which is discussed
in much greater detail in [10]; see also [4], especially Section 3.

Let G be a Lie group,Γ ⊂ G a lattice, i.e. a discrete group with the factor of finite
volume (compact or not). Ahomogeneous dynamical systemis the action of a subgroup
H ⊂G on the homogeneous spaceG/Γ by left translations. Both horocycle and geodesic
flows are examples of homogeneous dynamical systems whereH is a one-parameter sub-
group. Even more basic examples are translations on the torus or one-parameter groups of
such translations (linear flows).

Homogeneous systems possess large symmetry since any such system is a part of a
transitive action ofG by left translations. Due to this symmetry spectral analysis of ho-
mogeneous dynamical systems can be carried out with the help of the theory of unitary
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representations of Lie groups (see [10, Section 2.3]). While ergodic properties of homoge-
neous flows may be complicated and surprising (see Section 6.2.2) their spectral properties
are rather simple.

If H is a one-parameter subgroup ofG the left action byH is called ahomogeneous
flow.

THEOREM 2.20 [25]. The spectrum of any homogeneous flow is the sum of pure point and
countable Lebesgue.

A similar conclusion holds forhomogeneous maps, i.e. the homogeneous actions ofZ;
this of course follows immediately from Theorem 2.20 for most homogeneous maps since
such maps are parts of homogeneous flows.

This is similar to the case of automorphisms and affine maps on compact Abelian groups
(Section 2.1.2).

3. General properties of spectra for measure preserving transformations and
group actions

3.1. The realization problem and the spectral isomorphism problem

3.1.1. Formulation of the problems.Unitary operators which appear as Koopman oper-
ators associated with measure preserving transformations and, more generally, group ac-
tions, possess some special properties. The interface between the unitary operator theory
(and the theory of unitary group representations), and ergodic theory centers on two general
problems:

SPECTRAL REALIZATION PROBLEM. What are possible spectral properties for a Koop-
man operator or a group of such operators?

SPECTRAL ISOMORPHISM PROBLEM. Given two Koopman operatorsUT andUS (or
groups) which are unitarily equivalent (i.e. have the same spectral invariants) what ex-
tra information is needed to conclude that the measure preserving transformationsT andS
(or the corresponding group actions) are isomorphic? More specifically, one is interested
in the cases when such extra non-spectral invariants can be reasonably described, and, in
particular, when they are not needed at all.

Both of those problems go back to the founding text of the modern ergodic theory, the
1932 article by John von Neumann [155]. Concerning the Spectral Realization Problem
there are very few known restrictions, all of them quite general. The proofs are not difficult
and all results in this direction will be presented in the rest of this section.

Still, many simply sounding questions are unanswered. Here is a famous example.

PROBLEM 3.1. Does there exist a measure preserving transformation whose Koopman op-
erator has simple Lebesgue spectrum (or even Lebesgue spectrum of bounded multiplicity)
in L2

0(X,µ).
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On the other hand, there is a large number of “positive” results asserting existence of
measure preserving transformations with specific properties. This is achieved via a variety
of specific constructions. Essentially the whole later part of this survey is dedicated to the
development of these constructions and presenting specific examples, sometimes natural,
sometimes “exotic”.

3.1.2. Elementary restrictions

Invariance of constants.The most basic restriction on the spectral realization is pres-
ence of eigenvalue 1 in the spectrum, since constants are invariant functions. Thus the
maximal spectral type of any Koopman operator always has an atom at 1. Due to this sim-
ple observation by spectral properties of a measure preserving transformation one usually
means the corresponding properties of the operatorUT in the orthogonal complement to
the space of constants, i.e. the spaceL2

0(X,µ) of square-integrable functions with zero
average. Sometimes, however, it is useful to remember presence of the atom at one which
we will naturally denote byδ1. Letµ0 be a measure of maximal spectral type in the space
L2

0(X,µ). Thenµ, the maximal spectral type inL2(X,µ) can be represented byµ0 + δ1.
Consider the convolution

µ ∗µ= (µ0 + δ1) ∗ (µ0 + δ1)= µ0 ∗µ0 +µ0 + δ1 = µ0 ∗µ0 +µ>µ

(equality and inequality signs refer to measure types).
This simple fact can be expressed in a way useful for the discussion of the convolution

problem (Section 3.5).

PROPOSITION3.2. The maximal spectral typeµ of the Koopman operator in the whole
spaceL2(X,µ) is dominated by its convolutionµ ∗µ.

Symmetry of the spectrum.Another, almost equally basic, is the symmetry of both the
maximal spectral type and the multiplicity function with respect to the involutionχ →
χ−1 of the dual groupG∗. This immediately follows from the fact the Koopman operator
preserves the complex conjugation inL2(X,µ).

In particular this implies the following restriction of the spectral realization.

PROPOSITION3.3. Any Koopman operator is unitarily isomorphic to its inverse.

3.2. Rokhlin lemma and its consequences

3.2.1. The Rokhlin lemma. Recall that an action of a group is calledfree if the stationary
subgroup of almost every point in the space is trivial; forZ this means aperiodicity.

The Rokhlin lemma gives a way to produce an approximate section for a free action for
certain kinds of discrete groups, and therefore to control large pieces of orbits on a large
part of the space.
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In general, this is related to the existence of sets in the group which tile it. A setA

in a groupG is said totile G if there exists a family of elements ofG, gi , i ∈ I , such
thatG =⋃i∈I giA and the setsgiA are mutually disjoint. All countable Abelian groups
can be endowed with Fölner sequences such that every set in the sequence tiles the group,
and therefore a version of the Rokhlin lemma can be stated in this framework. The proper
setting for the most general version of the Rokhlin lemma is in fact for actions of countable
amenable group. In this case there need not be any set in a Fölner sequence which tiles the
group. However the group can always be almost tiled by a finite number of elements in the
Fölner sequence which furthermore can be chosen as invariant as one wishes. This gives
rise to the Ornstein–Weiss version of the Rokhlin lemma for amenable groups which has
many important applications and in particular is the first key step in extending the Ornstein
isomorphism theory to actions of arbitrary amenable groups [121,122].

Rokhlin [137] considered onlyZ actions, see [12, Section 5] for a proof in that case.
Here we consider a free measure preserving action ofZd on a measure space(X,µ), see
[28,84].

THEOREM 3.4. Consider a free action ofZd on (X,µ) generated byd commuting au-
tomorphismsT1, T2, . . . , Td . For everyε > 0, and an integerN , there exists a setF ⊂ X
such that the setsT n1

1 T
n2
2 , . . . , T

nd
d F , 0 � n1, n2, . . . , nd � N − 1, are mutually disjoint

and their union has measure greater than1− ε.

REMARK. Notice that the assumption of freeness which is natural in the ergodic theory
setting is very restrictive in other branches of dynamics such as topological dynamics [8,
Section 2] or theory of smooth dynamical systems [8, Section 5] since periodic orbits form
an important ingredient of the orbit structure in many cases. For example, for hyperbolic
systems [8, Section 6] periodic orbits are dense.

PROOF. To simplify notations we consider the cased = 2, i.e. we consider aZ2 action on
(X,µ) generated by two commuting measure preserving transformationsS andT . Fix an
integerL>N2/ε2. Since the action is free one can find, using the ergodic decomposition
(Section 3.3), a measurable setA such that:

(1) the setsSiT j (A), −L< i, j <+L are pairwise disjoint
(2)µy(A) > 0 for almost everyy in the ergodic decomposition.
Thus

⋃
m�0,n�0S

mT nA = X and there existsM ′ such that for allM > M ′,
µ(
⋃

0�m,n�M S
mT nA) > 1 − ε2. For an elementx ∈ X its itinerary is an elementω

in {0,1}Z×Z whereωi,j = 1 if SiT jx is in A, ωi,j = 0 otherwise. We callM-itinerary
the restriction of the previous itinerary to the values of(i, j) which lie inside the square
CM = {(i, j): 0 � i, j �M − 1}. An itineraryω being given, we considerYω ⊂ Z2 the
union of these indices(i, j) ∈ Z2 such thatωi,j = 1. We call(Cy, y ∈ Yω) the tiling of R2

determined by the Voronoi cells

Cy =
{
x: |x − y|< |x − y′| for all y′ �= y in Yω

}
.

For every such cellCy ,we cally its center. We consider the partitionPM of A whose atoms
are made of points which have the sameM-itinerary. A cellCy being given, we considerTy
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the union of the squares of the tiling ofZ2 by squares of sizeN with base pointy which lie
entirely insideCy . Each squarec in Ty is of the form (ic, jc � i, j � ic+N−1, jc+N−1);
(ic, jc) is called the base of the squarec. Assume that

(3)M is large enough (and in particular greater thanM ′) so that the union of thosey in
A such thatCy is not contained in a square of size less thanε2M occupies a fraction less
thatε2 of A.

For p ∈ PM with itinerary ωp, we considerFp the union ofSicT jc (p) for all ic, jc
which are the bases of squares inTy for all y ∈ Yωp such thatCy is entirely inCM . Let
F =⋃p∈PM Fp. Clearly the setsSiT jF , (i, j) ∈ CN are pairwise disjoint. (1), (2) and (3)
imply that the measure of their union is greater than 1− ε. �

3.2.2. Density of the maximal spectral type.An important corollary of the Rokhlin
lemma is the following restriction on the spectral realization.

THEOREM 3.5. The support of the spectral measure of the Koopman operator for an ape-
riodic transformation is the whole circleS1.

PROOF. If λ is not in the support of the spectral measure ofUT thenUT − λ × Id is
invertible inL2(X,A,m). However, for everyε, for everyλ there existsf ∈ L2(X) such
that‖f ‖ = 1 and‖UT f − λf ‖< ε. This is sufficient to imply what we asserted. Givenε
andλ, we constructf in the following way: taken2 1/ε, and take a setF , given by the
Rokhlin lemma, such that the family of setsT iF , 0� i � n− 1, is a disjoint family and
such that the measure of their union is� 1− ε. Define nowf as taking the constant value
λi onT iF , 0� i � n− 1, 1 on the complement of the union of theT iF . �

3.2.3. Combinatorial constructions. Rokhlin lemma has an interesting “negative” as-
pect. It implies that all asymptotic behavior of a measure preserving transformation de-
pends on sets of arbitrary small measure and hence can be altered in an arbitrary way
by changing the action on such a set. In the case of a single transformation this can be
rephrased by saying that if one defines theuniform topologyby the metric

du(T ,S)= µ{x: T x �= Sx}

then

PROPOSITION3.6. Conjugates of any aperiodic transformation are dense in the uniform
topology in the set of all aperiodic measure preserving transformations.

PROOF. Fixing n andε construct Rokhlin towers with givenn andε for two aperiodic
transformationsT andS. Thus the towers have the formT iF andSiF ′, i = 0,1, . . . , n−1,
correspondingly. Without loss of generality we may assume that thebasesF andF ′ of two
towers have the same measure. Pick some measure preserving transformationh :F → F ′
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and defineH on T iF asSi ◦ h ◦ T −i for every i = 0,1, . . . , n − 1. CompleteH in an
arbitrary way to a measure preserving transformation ofX. Obviously

H ◦ T ◦H−1 = S on
n−1⋃
i=0

SiF ′,

hence

du
(
H ◦ T ◦H−1, S < ε

)
. �

This is somewhat deceptive however. Small sets determining asymptotic behavior be-
come more and more complicated as their measure decreases.

A related fact is that the baseF of a Rokhlin tower and its images although of small
measure normally become “diffused” all over the space. The idea of looking at transfor-
mations for which the level sets of Rokhlin towers stay sufficiently “compact” leads to the
notion of rank (Section 5.2.2) and the concept ofperiodic approximation(Section 5.4) as
well as to the class of constructions known ascutting and stackingdiscussed in Section 5.2.

3.3. Ergodicity and ergodic decomposition

3.3.1. Definitions

DEFINITION 3.7. A measure preserving transformationT : (X,µ)→ (X,µ) is ergodicif
1 is a simple eigenvalue of the Koopman operatorUT .

Equivalently,T is ergodic is anyT -invariant measurable setA is either null (µ(A)= 0)
or co-null (µ(X \A)= 0).

For an arbitrary measure preserving transformationT consider the spaceIT of invariant
functions for the Koopman operatorUT . This space is generated by characteristic func-
tions of invariant sets and by multiplicativity the product ofUT -invariant functions is also
UT invariant. ThusIT is a unitary subalgebra ofL2(X,µ) (Proposition 1.2) and hence it
defines a factor ofT on whichT obviously acts as the identity. Denote the measurable
partition corresponding to that factor byηT . The transformationT acts on elements of this
partition preserving the system of conditional measures. Ergodic Decomposition Theorem
[8, Theorem 3.4.3] states that for almost everyc ∈ ηT T acts ergodically with respect to
the conditional measureµc. See [8, Sections 4.2d, 4.2e] for a more detailed discussion and
references to detailed proofs.

DEFINITION 3.8. A measure preserving transformation is calledtotally ergodicif any of
its non-zero powers is ergodic.

Total ergodicity is equivalent to the absence of roots of unity (other than 1 itself) among
the eigenvalues. The inverse limit of totally ergodic transformations is totally ergodic.
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Adding machines from Example 2.16(3) are interesting examples of ergodic but not to-
tally ergodic transformations. This simple property is important in various non-spectral
aspects of ergodic theory. A typical situation where total ergodicity plays a role is the fol-
lowing: when one considers the ergodic averages of anL2 function taken at iterates which
are perfect squares, there is convergence inL2 and also almost everywhere (this is a deep
theorem of Bourgain [23]); however the limit is the integral of the function only in the case
when the transformation is totally ergodic.

3.3.2. Ergodicity and spectrum. Thus, the study of spectral properties of general mea-
sure preserving transformations can be separated into two questions: (i) finding ergodic
decomposition, in particular establishing ergodicity, and (ii) studying spectral properties
of the operators which appear on the ergodic components. Establishing ergodicity for a
particular transformation or a class of transformation may be highly non-trivial. However
in this survey we will primary (although not exclusively) discuss spectral and other closely
related properties for ergodic measure preserving transformations. The argument for sep-
arating the study of ergodic decomposition from spectral analysis in the ergodic case may
be illustrated by the following example which demonstrate that some properties of ergodic
decomposition are non-spectral.

EXAMPLE 3.9. LetT andS be two ergodic measure preserving transformations on the
measure spaces(X,µ) and (Y, ν) respectively. For any 0< t < 1 consider the space

Xt
def= X ∪ (Y × [0, t]) with the probability measureµt

def= (1 − t)µ + ν × λ, whereλ
is Lebesgue measure. LetTt be defined onXt asT on theX part and asS × Id on the
Y × [0, t]. Obviously the spaces of ergodic components forXt for different t are not iso-
morphic because this space contains exactly one atom of measuret . HenceTt for different
t are not isomorphic. However, they are spectrally isomorphic since they all have count-
able multiplicity for the eigenvalue one and the spectrum in the orthogonal complement to
invariant functions is the union of the spectrum ofUT and the spectrum with the maximal
spectral type ofUS and countable multiplicity.

3.3.3. Difference between spectral and metric isomorphism in the ergodic case

Entropy as an extra invariant. The following classical example shows that the Spectral
Isomorphism Problem is non-trivial even in the ergodic situation.

EXAMPLE 3.10. Consider the Bernoulli shiftσN on the spaceΩN of bi-infinite se-
quences of an alphabetN symbols provided with the product measureµp wherep =
(p0, . . . , pN−1) is a probability distribution on the alphabet.

The spectrum of this transformation is always countable Lebesgue. This can be readily
seen as follows. Let forn ∈ Z, Hn be the subspace ofL2

0(ΩN,µp) of all functions which
depend only on coordinatesωk of the sequenceω ∈ΩN with k � n. By definition of the
shift one hasUσNHn = Hn+1. The spacesHn generateL2

0(ΩN,µp) since every function
can be approximated by a function which depends only on finitely many coordinates. Sim-
ilarly
⋂
n∈ZHn = {0}. Now letGn be the orthogonal complement toHn in Hn+1. Obvi-
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ously these spaces are infinite-dimensional; they are orthogonal to each other by definition,
UσNGn =Gn+1 and

⊕
n∈ZGn = L2

0(ΩN,µp).

However theentropy−∑N−1
i=0 pi logpi is an invariant of metric isomorphism [8, Sec-

tion 3.7] so there are uncountably many non-isomorphic measure preserving transforma-
tion with countable Lebesgue spectrum.

This example directly extends to the case ofZk actions and less directly to the
continuous-time case [12].

In the case of zero entropy extra invariants including Kushnirenko’s sequence entropy
[97] andslow entropy[8, Section 3.7l], [83] sometimes distinguish spectrally isomorphic
systems; see [97] for a classical example of non-isomorphic flows with countable Lebesgue
spectrum and zero entropy which are distinguished by sequence entropy.

Asymmetry of metric isomorphism.Entropy shares with the spectral invariants the
property of being symmetric with respect to the reversal of time [8, Section 3.7i(4)] and
thus never distinguishes a transformation from its inverse. However there are instances
whereT andT −1 are not metrically isomorphic. The earliest examples of that phenomena
were found in 1968 by S. Malkin [110] and are not particularly exotic: the spectrum is
simple and the transformation itself is a two-point extension of an irrational rotationRα
with only four discontinuity points. These transformations have zero entropy. An interest-
ing criterion which helps to decide whether a transformationT is conjugate to its inverse
is in [66]. It implies for example that is the square of the conjugating mapS is ergodic then
all essential values of the multiplicity function forT are even.

3.4. Pure point spectrum and extensions

3.4.1. Multiplicative structure of eigenfunctions.As we pointed out, ergodicity is a spec-
tral invariant: it is equivalent to 1 being a simple eigenvalue.

The complex conjugate of an eigenfunction is also an eigenfunction with the complex
conjugate eigenvalue.

Ergodicity implies that eigenfunctions have constant absolute value: ifUT f = λf then

UT (f · f̄ )=UT (f ) ·UT (f̄ )= λλ̄f f̄ = f f̄ ,

hencef f̄ ≡ const. Furthermore, both the eigenfunctions and the eigenvalues for an er-
godic transformation form a group invariant under complex conjugation. Consequently
linear combinations of eigenfunctions form an∗-algebra and hence theirL2 closure is an
invariant unitary∗-subalgebra ofL2(X,µ) which we will denote byK(T ). Thus by Propo-
sition 1.2K(T ) determines a factor ofT called theKronecker factorof T . We will denote
this factor transformation byTK; it is the maximal factor with pure point spectrum [156,
29]. The measurable partition corresponding to the Kronecker factor will also be denoted
by K(T ).
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3.4.2. The isomorphism theorem.In the case of pure point spectrum the Spectral Isomor-
phism Problem has a complete and optimal solution.

THEOREM 3.11 (von Neumann Discrete Spectrum Theorem).Any two ergodic measure
preserving transformations with pure point spectrum that are spectrally isomorphic(i.e.
have the same groups of eigenvalues) are metrically isomorphic. A complete system of
invariants is given by the countable subgroupΓ ⊂ S1 of eigenvalues.

SKETCH OF PROOF. Let T : (X,µ)→ (X,µ) be an ergodic measure preserving transfor-
mation with pure point spectrum and letΓ be the group of eigenvalues forUT . Let x0 be a
common Lebesgue point for all eigenfunctions ofUT . Denote for each eigenvalueγ ∈ Γ
by fγ the unique eigenfunction for which the Lebesgue value atx0 is 1. Then

fγ1γ2 = fγ1fγ2. (3.1)

Now identifyΓ with the group of characters of the compact dual groupΓ ∗ and denote the
character onΓ ∗ corresponding to the evaluation atγ by χγ . Thus, we have orthonormal
bases{fγ }γ∈Γ and {χγ }γ∈Γ in the Hilbert spacesL2(X,µ) andL2(Γ ∗, λ) correspond-
ingly, whereλ is the normalized Haar measure.

Now extend the correspondencefγ → χγ by linearity to a unitary operator
V :L2(X,µ)→ L2(Γ ∗, λ), which is multiplicative on the eigenfunctions by (3.1) and
preserves complex conjugation. Their finite linear combinations are dense inL2(X,µ), so
V is generated by a measure preserving invertible transformationH : (X,µ)→ (Γ ∗, λ).
One immediately sees thatVUT V −1χγ (s) = γχγ (s) = χγ (s0s) for any s ∈ Γ ∗, hence
H ◦ T ◦H−1 = Ls0. �

For another proof see Section 4.1.2(6). See also [29, Section 12.2] for yet another proof
and detailed discussion.

3.4.3. Representation by compact Abelian groups translations

THEOREM 3.12. An ergodic transformation with pure point spectrum whose group of
eigenvalues isΓ is metrically isomorphic to the translation on the compact groupΓ ∗
of characters ofΓ , considered as a discrete group, by the characters0 that defines the
inclusionΓ ↪→ S1. The invariant measure is Haar measure.

Furthermore, every countable subgroup of the unit circle appears as the group of eigen-
values for an ergodic measure preserving transformations of a Lebesgue space with pure
point spectrum.

Thus, translations on compact Abelian groups provide universal models for ergodic
transformation with pure point spectrum. This justifies looking for criteria of ergodicity
for such translations as well as considering characteristic examples.

PROPOSITION 3.13. TranslationTh0 on a compact Abelian groupH , Th0(h) = hh0 is
ergodic with respect to Haar(Lebesgue) measure if and only if for any characterχ ∈H ∗
χ(h0) �= 1.
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Furthermore, ergodicity with respect to Haar measure is equivalent to topological tran-
sitivity, minimality and unique ergodicity.

Recall that theweak topologyon the group of all measure preserving transformations of
a Lebesgue space coincides with the strong operator topology for the Koopman operators.

PROPOSITION3.14. The centralizer of an ergodic translationTh0 on a compact Abelian
groupH in the weak topology on the group of all Haar measure preserving transformations
ofH consists of all translations ofH .

This implies that ergodic transformations with pure point spectrum possess a certain
kind of rigidity: Isomorphism and factor maps between such systems are rather limited.

Notice that the centralizer described in Proposition 3.14 coincides with the closure
G(UT ) of the powers ofUT . By Proposition 2.15 ifT has pure point spectrum thenG(UT )
is a compact Abelian group. The multiplication byUT is a translation on that group which
preserves Haar measureχ . It follows from Theorems 1.6 and 3.11 that

PROPOSITION3.15. If a measure preserving transformationT has pure point spectrum
than the multiplication byUT on (G(UT ),χ) is metrically isomorphic toT .

3.4.4. Invariance of the spectrum with respect to the discrete part.By comparing the cor-
relation coefficients for an arbitrary functiong ∈ L2

0 with those of the functionf · g where
f is an eigenfunction of absolute value one with the eigenvalue exp2πiα one sees that
the spectral measureλgf is obtained fromλg by rotation byα. The same argument applies
to orthogonal functions with the same spectral measure. Hence we obtain the following
general spectral property of measure preserving transformations.

THEOREM 3.16. The maximal spectral type and the multiplicity function of the operator
UT induced by an ergodic measure preserving transformationT is invariant under multi-
plication by any eigenvalue.

3.4.5. The Kronecker factor. By Theorem 3.12 the Kronecker factor defined in 3.4.1 is
isomorphic to a particular translation on the dual to the group of eigenvalues. The Kro-
necker factor is the simplest example of acharacteristic factorfor an ergodic measure
preserving transformation. Other examples include the maximal distal factor defined in the
next subsection whose characteristic property appears in Proposition 4.5.

As was explained in Section 1.1.1T itself is isomorphic to a skew product transforma-
tion over its Kronecker factor.

EXAMPLE 3.17 (Affine twist on the torus). An affinemap of an Abelian group is a com-
position of an automorphism and a translation. Fix an irrational numberα and consider the
following affine map ofT2:

Aα(x, y)= (x + α,x + y) (mod 1).
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This map has mixed spectrum. The Kronecker factor is the circle rotationRα , the spectrum
in the orthogonal complement to this factor is countable Lebesgue. This is the simplest
example of a transformation with aquasi-discrete spectrum[13].

Transformations with quasi-discrete spectrum provide easiest examples of ergodic spec-
trally isomorphic transformations with zero entropy which are not metrically isomorphic.
This possibility was mentioned in a different context in Section 3.3.3. Here is a simple
example in the present context.

EXAMPLE 3.18. Consider the following affine map onT3,

Bα(x, y, z)= (x + α,x + y, y + z) (mod 1).

The mapsAα andBα are spectrally isomorphic. In both cases there is the same pure point
part (the Kronecker factor is the rotationRα) plus countable Lebesgue spectrum in the
orthogonal complement. HoweverAα is a factor ofBα and a simple argument shows that
any multiplicative correspondence must preserve this factor [13].

Proposition 3.14 provides for certain restrictions on isomorphisms between transforma-
tions with a pure point component in the spectrum. Such a transformation is an extension
of its Kronecker factor. A particularly interesting case is those of afinite extensionswhen
the measurable partitionK(T ) has finite elements. By ergodicity it follows that the number
of elements is almost everywhere constant, say, equal ton, and hence such a transforma-
tion is metrically isomorphic to a skew product transformation onH ×{0,1, . . . , n− 1} of
the form

T (x,m)= (Thx,σxm),

whereσx ∈ Sn, the permutation group. We will briefly return to this subject in Section 3.6.3
and in more detail is Section 5.8.

3.4.6. Distal systems. Transformations with quasi-discrete spectrum and finite exten-
sions are specimens of a more general class of systems which appears in many cases, in
particular in the Furstenberg ergodic theoretical proof of the Szemeredi’s theorem) [60,2].

DEFINITION 3.19. Consider an ergodic transformation(Y,B,µ,S), a compact groupG
with a closed subgroupH and a measurable mappingφ :Y →G. Call the quotientG/H
Z and equipZ with the Borel algebraC and the Haar measureν. The transformation
Sφ acting onX = Y × Z by Tφ(y, z) = (S(y),φ(y)z) leaves the product measureµ× ν
invariant.Sφ is called anisometric extensionof S.

DEFINITION 3.20. A transformationT is said to bedistal if there exists a countable fam-
ily of T -invariant factor algebras indexed by ordinalsAη, η � η0, such thatA1 = ν (the
trivial algebra),Aη0 =A, for everyξ < η, Aξ ⊂Aη, T restricted toAη+1 is an isometric
extension of its restriction toAη and if ξ is a limit ordinal,Aξ = lim ↑Aη, (η ↑ ξ).



Spectral properties in ergodic theory 681

PROPOSITION3.21. Every ergodic measure preserving transformation has a unique max-
imal distal factor, i.e. a distal factor such that any other distal factor is contained in it.

The distal factor contains Kronecker factor and is another example of a characteristic
factor. It is trivial if and only if the transformation is weakly mixing. On the other hand, it
may contain functions whose spectral type is mixing or even Lebesgue as in Examples 3.17
and 3.18.

Thus it is not defined in spectral terms.

3.5. The convolution problem

3.5.1. Discrete and mixed spectrum.In this section we will mean by the maximal spec-
tral type of a transformation the maximal spectral type in the whole spaceL2 including the
atomδ1 as was discussed in Section 3.1.2. Notice that the group property of the eigenvalues
can be expressed equivalently as equivalence of the maximal spectral type of an ergodic
transformation with pure point spectrum and its convolution. Thus we obtain the following
statement which strengthens Proposition 3.2 in this case.

COROLLARY 3.22. An atomic measureµ on the unit circle belongs to the maximal spec-
tral type of the Koopman operator for an ergodic measure preserving transformation if and
only ifµ is equivalent toµ ∗µ.

Furthermore, Theorem 3.16 is equivalent to the following statement.

COROLLARY 3.23. If µ is a measure of the maximal spectral type for an ergodic measure
preserving transformation andµd its atomic part then the convolutionµ∗µd is equivalent
toµ.

3.5.2. Continuous spectrum.Observations above lead to a following question related to
the general Spectral Realization Problem.

PROBLEM 3.24. What are connections between the maximal spectral type of an ergodic
measure preserving transformation and its convolution with itself?

We will see below (Theorem 5.15, Propositions 5.43 and 5.44, and Theorem 5.49) that in
general those measures are not directly connected. On the other hand, let us notice that for
a weakly mixing transformationT the Cartesian powersT × T , T × T × T , etc. including
the infinite Cartesian powerT (∞) can be easily analyzed spectrally. In particular, ifµ is
the maximal spectral type ofUT in L2

0 then for anyn ∈ N ∪∞ the maximal spectral type
of then Cartesian power ofT is equal to

n∑
i=1

µ(i),
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whereµ(n) is the convolution ofn copies ofµ. In particular, the measure
∑∞
n=1µ

(n), the
maximal spectral type ofT (∞), is equivalent to its convolution. (See also Section 4.1.3.)
This implies the following partial result related to the Spectral Realization Problem.

PROPOSITION3.25. If the class of a non-atomic measureµ appears as the maximal spec-
tral type of an ergodic measure preserving transformation then for anyn ∈ N ∪ {∞} the
class of the measure

∑n
i=1µ

(i) also appears a maximal spectral type of an ergodic mea-
sure preserving transformation.

An effective method for realizing maximal spectral types is given by the construction of
Gaussian dynamical systems (Section 6.4). It implies one of the few general results in the
direction of realization of spectral types.

THEOREM 3.26. Any non-atomic measureµ on the unit circle symmetric under the re-
flection in the real axis and equivalent toµ ∗µ appears as a measure of maximal spectral
type of an ergodic measure preserving transformation.

This theorem follows directly from Proposition 6.12 by taking the Gaussian transforma-
tion Tµ.

3.6. Summary

3.6.1. General restrictions. In this section we have described all known general restric-
tions on the spectral properties of ergodic measure preserving transformations which then
has to be taken into account in the discussion of the Spectral Realization Problem. For the
sake of convenience let us summarize these restrictions:

Let T be an ergodic measure preserving transformation of a Lebesgue space. Then the
Koopman operatorUT has the following properties:

(1) One is always a simple eigenvalue ofUT .
(2) All eigenvalues are simple and form a finite or countable subgroup of the unit circle

S1 ⊂ C.
(3) The maximal spectral type and the multiplicity function are symmetric under the

reflection in the real axis.
(4) The maximal spectral type and the multiplicity function are invariant under multi-

plication by the eigenvalues.
(5) The support of the maximal spectral type is the whole circle.

3.6.2. Realization results. Possibility of particular spectral properties for Koopman op-
erators is proven by demonstrating pertinent examples which may either appear in the
course of study of specific classes of systems or are constructed on demand. The state of
our knowledge for the cases of the full spectral invariants or even just the maximal spec-
tral type is much less advanced then for the case of the possible sets of values for the
multiplicity function.
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For the former problem there are very few results asserting that a given specific set
of spectral data or even a given maximal spectral type can be realized. Theorem 3.26 is
almost an exception in that respect. On the other hand, there are many examples showing
possibility of realization of certain properties of the spectral type. An outstanding example
is the possibility (see Theorem 5.15) and in fact genericity of the mutual singularity of the
maximal spectral type inL2

0(X,µ) and all its convolutions discussed in Section 5.4 and [78,
Section 3.3], which demonstrates an extreme “negative” situation for the Problem 3.24.
Another example is extreme “thinness” of the maximal spectral type for a generic measure
preserving transformation which follows from very fast periodic approximation, cyclic (see
Section 5.4), or, more generally, homogeneous [78, Section 5] which is a spectral property
[78, Corollary 5.3].

In one considers the spectral multiplicity by itself, in other words, asks about what sub-
sets ofN ∪ ∞ appear as the sets of essential values of the multiplicity function for the
Koopman operator inL2

0, the constructive approach goes much further toward a definitive
answer. No restrictions on the set of essential values are known and there is an impressive
list of sets which do appear as well as certain technology which allows to add many new
examples once some key cases have been constructed. Here is an incomplete list of cases
when realization is possible:

(1) If s subsetS ⊂ N is realized thenS ∪ {∞} is realized.
(2) Any finite or infinite subset ofN containing1 [65,100].
(3) Any finite or infinite subset of even numbers containing2.
(4) {2,3}, {3,6} [78].
(5) {n} for anyn ∈ N [17].
So one may venture to conjecture that no restriction on the set of essential values of

spectral multiplicity inL2
0 exist.

Let us mention that the notion of multiplicity makes sense also for the action of the
Koopman operator inLp. An open question is the following: Does every transformation
have simple spectrumL1? An equivalent way to formulate the question is to ask whether
for every ergodic transformationT , there exists anL1 functionφ such that theL1 closure
of the linear span of theT nφ is the whole ofL1. More generally, does there exist, for
everyp < q a transformation whose Koopman operator has a cyclic vector inLp but has
no cyclic vector inLq?

3.6.3. Extra-spectral information. Theorem 3.4.2 proved by von Neumann in [155] orig-
inally arose some hope that spectrum may serve as a basis of classification for measure
preserving transformations up to metric isomorphism.

It later became apparent that for certain classes systems with non-trivial Kronecker fac-
tors such as finite or compact group extensions metric isomorphisms exhibit certain rigid-
ity properties. The simplest of those is of course is Proposition 3.14, namely the fact that
for an ergodic translation on a compact Abelian group measurable centralizer coincides
with algebraic one (other translations) and hence every measurable isomorphism between
two such translations is algebraic. Since the Kronecker factors of isomorphic transforma-
tions should match this restricts isomorphisms between extensions [19,13,110]. In some
cases this allows a complete metric classification of extensions. Abramov’s classification
of transformations with quasi-discrete is a prime example [13]. In other situations classifi-
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cation depends on cohomology classes of certain cocycles which may or may not behave
regularly. Rigidity phenomena also appear in certain weakly mixing transformations, for
example for those where measurable centralizer is sufficiently small. The notion of self-
joining discussed in Section 4.3 is a useful tool of studying rigidity properties beyond pure
point spectrum and simple extensions.

There are some exceptional cases when continuous spectrum provides the complete met-
ric invariant in analogy with the pure point spectrum case. The Kronecker Gaussian sys-
tems provide the prime example, see Section 6.4.3 [54]. In is not quite clear to what extent
very thin continuous spectral measures with strong arithmetic properties (concentration
around roots of unity of particular orders) may carry substantial information about metric
isomorphism; this information is certainly not complete as [110] and similar examples with
continuous spectrum show.

In general, natural non-spectral invariants do not match well with the spectrum. One
example where classification of systems with a fixed spectral type looks hopeless is the
case of countable Lebesgue spectrum. Recall that everyK-system has countable Lebesgue
spectrum. On the other hand, every ergodic transformation with positive entropy induces a
K-automorphism on some subset, see Theorem 5.65 [120]. Thus any positive entropy class
of Kakutani equivalent transformations contains a transformation with countable Lebesgue
spectrum. But complete classification up to Kakutani equivalence does not seem more
feasible than classification up to metric isomorphism. For basic information on Kakutani
(monotone) equivalence see [75,118] and for a summary [12, Section 13].

4. Some aspects of theory of joinings

4.1. Basic properties

See [12, Section 3.1, 3.2]. Unlike the other parts of this survey in this section we will often
indicate theσ -algebra of measurable sets in our description of dynamical systems. The
reason is that we will consider several different invariant measures for the same transfor-
mation.

4.1.1. Definitions

DEFINITION 4.1. Given two dynamical systems (measure preserving transformations)T

acting on(X,A,m) andS acting on(Y,B,µ), a joining is a probability measureλ on the
Cartesian product(X×Y,A⊗B) which isT ×S invariant and such thatλ(A×Y)=m(A)
for all A in A andλ(X×B)= µ(B) for all B in B.

Joining of several transformations are defined similarly. Joinings were introduced by
H. Furstenberg [59]. It is a powerful tool in a great variety of questions in ergodic the-
ory, both spectral and non-spectral. The survey [151] presents a compact treatment of the
subject. The book [62] contains extensive information about joinings and in fact repre-
sents an attempt to develop the core part of ergodic theory around that notion. See also
[6, Section 1.3] for interesting insights and especially for comparison of relevant measure-
theoretic and topological concepts and results.
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Note that the set of joinings is never empty since there is always theindependent joining
λ=m×µ but this may be the only one, see Section 4.2.

4.1.2. Principal constructions. We list now several basic constructions related to join-
ings. We will restrict ourselves to the case of two transformations since multiple joinings
usually are treated similarly.

(1) Ergodic decomposition of a joining.When two systems are ergodic, there always ex-
ists an ergodic joining between them. For, ergodic components of a joining measure
between ergodic systems are joinings too.

(2) Factors as joinings.Considering two systems given as in the definition we callV
andH the algebrasA × YandX × B respectively. IfH ⊂ V (λ) (by which we
mean that for every setA in H there exist a setB in V such thatλ(A∆B) = 0)
then (Y,B,µ,S) is a factor of(X,A,m,T ). (For this we need that both measure
spaces are Lebesgue.) Conversely, ifφ is the factor map fromX to Y , andA×B is
a rectangle inA⊗ B, the joining defined byλ(A× B) = m(A ∩ φ−1(B)) satisfies
the inclusionH⊂ V .

(3) Isomorphisms as joinings.In the same way a joiningλ such thatV =H (λ) defines
an isomorphism between the two transformations, with the same converse as before:
An isomorphism gives rise to a joining for whichV =H.

Weak isomorphism means that there exists two joiningsλ1 andλ2 such thatH⊂
V (λ1) andV ⊂H (λ2).

(4) Relatively independent joining over a common factor.If two transformations have
isomorphic factors, a useful construction is therelatively independent joiningabove
this common factor. IfA1 andB1 are the two invariant subalgebras ofA andB
respectively such thatT restricted toA1 is isomorphic toS restricted toB1, we
extend the joiningλ1 between these two algebras given by the isomorphism as in (3)
which identifies them (we call the global algebra of this objectC) to a joiningλC of
the whole product in such a way thatA andB are relatively independent givenC.
This is done by defining, for a product setA × B its λC measure by taking the
integral for the measureλ1 of the product ofEA11A×EB11B . This makes sense as
λ1 is a measure onA1 ⊗B1.

(5) Topology in the set of joinings.We introduce a topology in the set of joinings of
(X,A,m,T ) and(Y,B,µ,S) in the following way: TakeAn, n� 1, andBn, n� 1,
two sequences of sets dense inA andB respectively (the density is for the topol-
ogy associated to the distance between sets which is the measure of the symmetric
difference). Given two joiningsλ1 andλ2 define

δ(λ1, λ2)=
∑
m,n�1

1

2m+n
× ∣∣λ1(Am ×Bn)− λ2(Am ×Bn)

∣∣.
δ is obviously a distance. The set of joinings is compact in the topology generated
by this distance.

(6) Proof of Theorem 3.4.2 via joinings.There is a nice proof using joinings, due to
Lemánczyk and Mentzen [106] of the von Neumann Isomorphism Theorem 3.4.2.
We are going to show that any ergodic joining between two such transformations
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(which always exists by (1)) is in fact an isomorphism. TheL2 space of both trans-
formations is generated by the eigenfunctions (because they have discrete spectrum),
and since the joining is ergodic, every eigenvalue in this joining must be simple. But
by spectral isomorphism both transformations have the same eigenvalues and there-
fore the corresponding eigenfunctions for the ergodic joining are necessarilyL2(V)
andL2(H) measurable. This forcesV =H for our joining whence the announced
isomorphism.

4.1.3. Spectral analysis of Cartesian products.Since there is always the independent
joining between any two transformations it is appropriate now to describe the spectral
properties of the Cartesian product of two measure preserving transformations with respect
to the product measure. The Koopman operator of the Cartesian (direct) productT × S is
isomorphic to the tensor product ofUT andUS . This is a particular case of the tensor
products of representations described in Section 1.3.3. Assume that the maximal spectral
types of the two Koopman operators are represented by the measuresµ andν (including
theδ measure at 1) with multiplicity functionsm andm′.

PROPOSITION4.2. The maximal spectral type ofT × S is represented by the convolution
µ ∗ ν.

The multiplicity functionm at the pointλ ∈ S1 is calculated as follows: take the product
µ× ν on the two-dimensional torusT2 and consider the system of conditional measures
with respect to the partition ofT2 into the “diagonal” circlesλ1 + λ2 = c.

(1) If the conditional measure atc = λ is not supported in the finite number of points
thenm(λ)=∞.

(2) Otherwise, let the support of the conditional measure be the points(λ1
1, λ

1
2), . . . ,

(λn1, λ
n
2). Then

m(λ)=
n∑
i=1

m1
(
λi1
)×m2

(
λi2
)
.

A similar albeit more complicated description can be given in the case of Cartesian
product of several transformations.

4.2. Disjointness

Joinings provide a good way to compare transformations; more precisely, how far is the
isomorphism class of a transformation from that of another. We saw that when two trans-
formations are isomorphic, there is a joining which identifiesV andH. At the opposite
end, two transformations are said to bedisjoint when the product joining is the only join-
ing between them. (That is for every joiningλ, V ⊥H(λ).) This notion was introduced by
H. Furstenberg in his seminal paper [59]. One may say that disjoint transformations have
as little is common as possible, e.g., no common factors since if there is one there is also
the relatively independent joining over it.
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Disjointness is also a tool, if we know that the restrictions of a transformationT to two
invariant algebras are disjoint, to show independence of these algebras. The simple obser-
vation that the identity is disjoint from any ergodic transformation has shown surprising
efficiency in various contexts.

PROPOSITION4.3. Two transformations whose spectral types are mutually singular are
disjoint. In particular, rigid transformations are disjoint from mildly mixing transforma-
tions.

PROOF. Assume thatT1 andT2 are two transformations with spectral typesν1 andν2 on
the orthogonal complement of constants which are mutually singular. Consider a joiningλ

between them and letf andg be inL2(V) andL2(H) respectively, both with 0 integral.
The projection off in Hg (the cyclic subspace generated byg) for the joiningλ has a
spectral measure which is absolutely continuous both with respect toν1 andν2 and must
therefore be 0. This says that

∫
fg dλ= 0, andλ is the product measure. �

PROPOSITION4.4. Distal transformations are disjoint from weakly mixing transforma-
tions.

More generally, joinings allow to give a characterization of the maximal distal factor
defined in 3.4.3–6.

Call a transformationweakly mixing relative to a factorif its relatively independent
joining with itself above the given factor is ergodic.

PROPOSITION 4.5. The maximal distal factor is the smallest factor algebra relative to
which the transformation is weakly mixing.

Since transformations with positive entropy have Bernoulli factors we see that

PROPOSITION4.6. Any two transformations with positive entropy are not disjoint.

PROPOSITION4.7. K-automorphisms are disjoint from0-entropy transformations.

Here is a nice application of this last fact which goes back to the original paper of
Furstenberg [59]. It is sometimes called the possibility of perfect filtering.

THEOREM 4.8. Assume that are given two independent stationary processes(Xn) and
(Yn) such that(Xn) generates aK-automorphism and such that(Yn) generates a zero
entropy transformation. Assume furthermore thatX0 andY0 are both inL2. Then(Xn) is
measurable with respect to the(Xn + Yn) process. That is to say the(Xn) process can be
recovered from the system perturbed by a random noise(Zn)= (Xn + Yn).

PROOF. Consider the relatively independent joining of(Xn,Zn) with itself above(Zn).
This is a triple(Xn,Zn,X′

n) such that(X′
n,Zn) is a copy of(Xn,Zn) and (Xn) and

(X′
n) are relatively independent over(Zn). (In the previous constructions, we identify a
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process to the measure preserving transformation to which it gives rise.)(Y ′
n)= (Zn−X′

n)

is obviously isomorphic to(Yn) and thereforeK . (X′
n + Y ′

n) = (Xn + Yn). We compute
E(Xn − X′

n)
2 = E(Xn − X′

n)(Y
′
n − Yn). As (Xn) and (Yn) are independent (as well as

(X′
n) and(Yn) as a consequence of the disjointness of 0-entropy transformations withK-

automorphisms), we get that the preceding expectation is 0 and therefore thatXn =X′
n a.e.

which is saying that(Xn) is measurable with respect to the(Zn) process. �

Note that this can be considered an extension of the same statement obtained under
the spectral hypothesis that the spectral measures of the two processes(Xn) and(Yn) are
mutually singular.

4.3. Self-joinings

4.3.1. Basic properties. Every transformation is isomorphic to itself which is reflected
by the presence of the trivial diagonal joining: the measure∆ onX× X defined by

∆(A×B)=m(A∩B)

is a self-joining. Studying the collection of all joinings of a transformation with itself and
the structure of such joinings provides deep insights into the orbit structure of the system.
In particular presence of few joinings indicates a certain rigidity of the orbit structure
while abundance of joinings indicates its richness and “plasticity”. Thus, the family of
self-joinings∆n, n� 1, defined by∆n = (Id×T n)∗∆ is quite interesting.

(1) T is mixing if and only if∆n → m×m. Self-joinings of higher order are closely
related to mixing of higher order.

(2) T is rigid if there exists a sequenceni such that∆ni → Id.
(3) If S is an automorphism which commutes withT , then there is a joining∆S =

(Id×S)∗∆. As a consequence of Section 4.1.2(3) it is equivalent for a self-joining
λ to be of this form, or to satisfyV =H(λ).

Something analogous to Proposition 4.4 for weakly mixing but not mixing transforma-
tions follows from a recent work of F. Parreau (unpublished) who proved that if a trans-
formationT is weakly mixing and not mixing, it possesses a non-trivial factor which is
disjoint from all mixing transformations. A starting point for the construction of this factor
is the consideration of a non-trivial limit for∆ni .

It can be useful to consider joinings from a more functional analytic viewpoint [143].
Assume that we are given a linear operatorφ :L2(X,A,m)→ L2(Y,B,µ) satisfying the
following properties:UT φ = φUS , φ1= 1, φ∗1= 1, φ(f )� 0 if f � 0.

Then the measureλ defined byλ(A×B)= ∫
B
φ(1A) gives a joining.

The converse is obvious: given a joiningλ take forφ the conditional expectation with
respect toH restricted toL2(V). As an application, we see that ifλ is a self-joining of
(X,A,m,T ) with itself, and ifT has simple spectrum thenλ is S × S invariant for every
automorphismS which commutes withT . Thereforeλ is a self-joining for theS-action.
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4.3.2. Joinings and group extensions.There is an important theorem, due to Veech,
which contains many of the compactness arguments which appear in ergodic theory.

THEOREM 4.9. Consider an ergodic transformation(X,A,m,T ) together with a factor
(a T invariant subalgebra) B. The following statements are equivalent:

(1) Almost all ergodic components of the relatively independent joining of(X,A,m,T )
with itself aboveB identifyV andH.

(2) There exists a compact groupG and a measurable mappingφ : (X,B)→ G such
that (X,A,m,T ) is isomorphic to the skew product on(XB,B,m) × (G,G,µG)
(µG the Haar measure onG) given byT (x, g) = (T x,φ(x)g) by an isomorphism
which is the identity restricted toB. (This is to compare with isometric extensions
which have been defined in3.4.9.)

4.3.3. Minimal self-joinings. D. Rudolph [140] introduced, for a transformation, the no-
tion of minimal self-joinings, which basically says that a transformation has no other join-
ings with itself than the obvious ones, and proved existence of mixing transformations with
that property.

DEFINITION 4.10. A weakly mixing transformation(X,A,m,T ) has minimal self-
joinings (MSJ) if the following is true: for alln � 2 any ergodic joiningλ of n copies of
(X,A,m,T ) (λ is a probability measure on

∏n
1(Xi,Ai ) invariant under

∏n
i=1Ti , which

satisfies

λ

(
Ai ×
∏
j �=i
Xj

)
=mi(Ai)

for all 1 � i � n and allAi ∈Ai . (Xi,Ai ,mi, Ti), 1 � i � n, is a copy of(X,A,m,T ))
satisfies the following: the set[1, n] can be decomposed into a disjoint union of subsetsEk ,
1� k � r , such that:

(1) The algebras

Bk =
⊗
i∈Ek

Ai ×
∏
j∈Eck

Xj , 1� k � r,

areλ-independent.
(2) For every 1� k � r there exists integers

ni1, ni2, . . . , nis−1 (s = |Ek|)
such thatλ restricted toBk is exactly(

Id×T ni1 × T ni2 × · · · × T nis−1
)
∗∆.

∆ is the diagonal measure.

Since factors and commuting transformations other than powers produce joinings of
types other than those described in the definition of MSJ as an immediate corollary of the
definition we obtain
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PROPOSITION4.11. Any MSJ transformation has no factors and its centralizer consists
only of its powers.

Weak mixing is not a restriction here since a pure point spectrum transformation has
many self-joinings coming from the centralizer and presence of a non-trivial Kronecker
factor provides for the independent joining over it. In fact one can show more.

PROPOSITION4.12. Any MSJ transformation is mildly mixing.

PROOF. If T is MSJ and has a rigid factor the factor must be the wholeT . But then by
Proposition 2.14T has an uncountable centralizer. �

We will see later that non-mixing MSJ transformations exist (Theorems 5.12 and 5.13).

4.3.4. Minimal self-joinings for flows and simple transformations.A transformation
from a flow cannot have minimal self-joinings since it commutes not only with its powers
but also with other transformations from the flow. This is taken into account in the defini-
tion of minimal self-joinings for flows. More generally, it turned out to be useful to have a
notion which is somewhat weaker than minimal self-joining and which roughly speaking
allows for joinings coming from non-trivial commuting transformations. This was done by
Veech [152]. The class of simple transformations which he defined includes in particular
transformations from flows with minimal self-joinings as well as certain rigid transforma-
tions.

DEFINITION 4.13. A weakly mixing transformation issimpleif the following property is
true:

For all n� 2 any ergodic joiningλ of n copies of(X,A,m,T ) satisfies the following:
the set[1, n] can be decomposed into a disjoint union of subsetsEk , 1� k � r , such that:

(1) The algebras

Bk =
⊗
i∈Ek

Ai ×
∏
j∈Eck

Xj , 1� k � r,

areλ-independent.
(2) For every 1� k � r the |Ek| algebrasA〉 ×

∏
j �=i , i ∈ Ek , areλ-identical (which

is the same as saying that there exists|Ek| automorphisms commuting withT , Sj
such thatλ restricted toBk is exactly(

∏
j∈Ek Sj )∗∆).

We note that we could have labeled these two definitions according to the number of
copies which were used. But in fact a theorem of Glasner, Host and Rudolph [63] asserts
that as soon as the definition is satisfied for a joining of three copies, it is satisfied for any
number of copies. It is not known whether the definition for two copies only would suffice
to imply that it is satisfied for three copies (and therefore for any number of copies).

It follows from Theorem 4.9 that ifT is simple, it is a compact group extension of any
of its non-trivial factors.
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By Section 4.1(2) two ergodic transformations with isomorphic common factors are
never disjoint. In general the converse is not true. However the following holds [34]:

THEOREM4.14. Two simple transformations with no isomorphic common factors are dis-
joint.

4.3.5. Mixing properties and joinings. We saw that∆n → m×m is equivalent to mix-
ing. The study of self-joinings of higher order is closely related to higher order mixing
properties. The next definition is due to del Junco and Rudolph [34].

DEFINITION 4.15. An ergodic transformation(X,A,m,T ) is said to bepairwise inde-
pendently determinedif the following is true: for every integerk a joiningλ of k copies
of (X,A,m,T ) which is such that any two of thek factors of the product of thek copies
are pairwise independent(λ) must be the product joining (which is the one for which the
k factors are globally independent).

One immediate fact is the following: if a transformation is mixing and pairwise inde-
pendently determined, it is mixing of all orders. B. Host [72] has proved the following
important theorem:

THEOREM 4.16. An ergodic transformation with singular spectral measure is pairwise
independently determined.

COROLLARY 4.17. A mixing transformation with singular spectral measure is mixing of
all orders.

The last corollary is one of the few deep structural results in ergodic theory. It sheds
light on a long-standing unsolved problem (Does mixing apply mixing of all orders?) by
giving an affirmative answer in one of the “most suspicious” cases. See also Theorems 5.18
and 5.19.

Let us remark that a simple transformation is one which is 2-simple (that is every ergodic
joining of two copies of the transformation is either product measure or identifiesV andH)
and pairwise independently determined. In case of anR action, V. Ryzhikov [143] has
proved that it is always true that 2-simplicity implies pairwise independently determined
(and therefore simplicity).

There are no examples known of transformations which are weakly mixing, have 0 en-
tropy, and which are not pairwise independently determined.

5. Combinatorial constructions and applications

5.1. From Rokhlin lemma to approximation

5.1.1. Genericity in the weak and uniform topologies.Let us recall definitions of the two
principal topologies in the group of all measure preserving transformations of a Lebesgue
space(X,µ) [68].
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The uniform topology first mentioned in Section 3.2.3 is quite strong: it is defined by
the metric

du(T ,S)= µ{x: T x �= Sx} (5.1)

invariant by both left and right multiplications.
Notice however that it is weaker than the topology induced from the uniform operator

topology on the Koopman operators which is simply discrete.
The weak topology which appeared in Section 3.4.3 is metrizable but no canonical two-

side invariant metric similar to (5.1) is available to define it. One way to define a metric is
to pick a countable dense collection of measurable setsA1, . . . and define the distance as

dw(T ,S)=
∞∑
n=1

µ(T An∆SAn). (5.2)

This topology coincides with the topology induced from the strong operator topology on
Koopman operators. Weak topology is weaker than uniform and aperiodic transformations
are dense in weak topology. Hence the density of conjugates of any aperiodic transforma-
tion in all aperiodic transformations in uniform topology (Proposition 3.6) implies

PROPOSITION5.1. Conjugates of any aperiodic transformation are dense in the group of
all measure preserving transformations in weak topology.

Here is an immediate corollary which due to the Baire Category Theorem plays a great
role in proving existence and abundance of measure preserving transformations with many
interesting properties including spectral ones.

COROLLARY 5.2. Any conjugacy invariantGδ in weak topology set which does not con-
tain transformations with sets of periodic points of positive measure is dense and hence
residual.

This fact is widely used in existence proofs.
Another related method is to establish a property via checking its approximate versions

which can be shown to be satisfied on open dense sets. This works with properties which
can be expressed by the behavior along an unspecified subsequence of iterates (e.g., er-
godicity, rigidity, weak mixing) but not along the whole sequence (mixing, Lebesgue spec-
trum).

5.1.2. Towers and cityscapes

DEFINITION 5.3. Ann-towerin a Lebesgue space(X,µ) is a collection of disjoint subsets
F1, . . . ,Fn of equal measure together with measure preserving transformationsTi :Fi →
Fi+1, i = 1, . . . , n− 1.

The setsFi are called thelevelsof the tower; in particular, the setF1 is called thebase
of the tower and the setFn theroof of the tower.
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The union of all levels is called thesupportof the tower.
The numbern is sometimes called theheightof the tower. The quantitynµ(F1), i.e. the

measure of tower’s support, is called themeasureor thesizeof the tower.

We will say that the towerT agreeswith a measure preserving transformationT if
T = Ti on theith level of the tower.

The Rokhlin Theorem 3.4 says that for every aperiodic measure preserving transfor-
mationT , there exists arbitrarily high (or long) towers of measure arbitrary close to one
which agrees withT . If the measure of a Rokhlin tower is greater thann

n+1 then the image
of its roof must overlap with the base. And if the size is very close to one then most of
the roof is mapped into the base. However the Rokhlin Theorem says nothing about how
most of the roof is mapped into the base. Thus an approximation of a measure preserving
transformation by a single tower does not say much about the asymptotic properties of the
transformation apart from the crudest one, the aperiodicity.

DEFINITION 5.4. Acityscapeis a union of disjoint towers, in general, of varying heights.
The measureof a cityscape is defined as the sum of measures of towers comprising the
cityscape.

A cityscapeagreeswith a measure preserving transformationT if every tower compris-
ing it agrees withT .

5.1.3. Uniform approximation. In order to make certain conclusions from approximation
of a measure preserving transformation by towers, or more generally, cityscapes the latter
should in some sense be representative of theσ -algebra of all measurable sets. This of
course makes sense only if one considers not a single approximation but a sequence of
such approximations. A useful model to visualize the requirement of being representative
is to think ofX as a metric space and of the levels of the towers (or of towers comprising
the cityscape) as sets of small diameter. In this situation every fixed measurable set can
be approximated up to a set of small measure by a union of levels and combinatorics of
transformations in towers approximates the dynamics of the map at sufficiently long time
ranges.

This model is suggestive but restrictive in two ways: first, the appropriate topological
structure is not always available, and second, even if it is, the levels need not really be sets
of small diameter: only after throwing away a set of small measure the intersections of
the levels with the remainder would have this property. Anyway, there is a purely measure
theoretic way to formulate the property we have in mind as well as its variations.

Every measurable partitionξ of the spaceX generates theσ -algebraB(ξ) of setsmea-
surable with respect to the partition. For every setA ∈ B(ξ) one can find another setA′
which is the union of elements ofξ such that the symmetric difference ofA andA′ is a
null-set.

To each cityscapeC we associate partitionξ(C) on the space whose elements are level
of towers comprising the cityscape and the complement to the union of all such levels.

Recall that the sequence of measurable partitionsηn→ ε asn→∞, if for every mea-
surable setA⊂X there exists a sequence of sets

An ∈ B(ηn) such thatµ(A∆An)→ 0 asn→∞.
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This notion can be reformulated as follows. We will say that partitionξ δ-refinesparti-
tion η if for everyA ∈ B(η) there existsA′ ∈ B(ξ) such thatµ(A∆A′) < δ. Thenξn→ ε

if for any finite partitionη and everyδ > 0 there existsN =N(η, δ) such that forn�N ,
ξn ε-refinesη.

DEFINITION 5.5. A sequenceCn of cityscapes is calledexhaustiveif ξ(Cn) → ε as
n→∞.

DEFINITION 5.6. An exhaustive sequence of cityscapes which agrees with a measure pre-
serving transformationT is called auniform approximationof T .

It follows from the Rokhlin Theorem 3.4 that every measure preserving transformation
allows a uniform approximation. To see that one needs to take a Rokhlin tower and split
its base in such a way that the partition into levels of resulting towers would be a refine-
ment of a given partition. However if one restricts the type of cityscapes (e.g., consider
cityscapes consisting of a single tower or a fixed number of towers) existence of a uniform
approximation becomes a restrictive property and implies interesting properties ofT , see
Section 5.2.2.

Uniform approximation and its variations are used to produce measure preserving trans-
formations with interesting properties. We will consider three ways to produce such ap-
proximations: cutting and stacking, coding with respect to a given generating partition,
and periodic approximation.

5.2. Cutting and stacking and applications

5.2.1. The method of cutting and stacking.(See also [138].) The cutting and stacking
method is a particular way to produce inductively an exhaustive sequence of cityscapes
which form a uniform approximation of a measure preserving transformation.

At nth step a cityscapeCn is defined. The transformation is thus defined everywhere
except for the roofs of the towers fromCn and a certain setAn which is the complement
to the union of supports of the towers in the cityscape. Then each tower ofCn is divided
into towers and new levels are added fromAn to some of the towers. Then the roofs of
most of new towers are mapped into bases of other towers. This produces the cityscape
Cn+1 and the setAn+1 ⊂An. Specifically, those parts of the bases of old towers which do
not belong to the images of the roofs of extended old towers serve as bases of new towers.
Each new tower is defined by an itinerary, namely a sequence of old towers which are
visited in succession. This is why the construction is called cutting and stacking: bases of
old towers are cut according to the itineraries and this new thin towers are stacked on top
of each other.

The list of important examples constructed with the cutting and stacking method is
quite large. Let us mention the “Chacon transformation” described below in Section 5.2.3,
the rank one mixing transformations (Section 5.2.4), the first examples of Ornstein of
K-automorphisms which are not Bernoulli later developed in [119] (as well as his coun-
terexamples to the Pinsker conjecture), the Feldman examples of non-standard transforma-
tions with zero entropy [51]. To illustrate the usefulness of the method for other groups let
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us mention [83] where the cutting and stacking method is used to construct examples of
Zk andRk actions withk � 2 where individual elements have zero entropy which cannot
be realized by diffeomorphisms of compact manifolds with respect to any Borel measure.
We will mention other specific constructions in due course.

5.2.2. Approximations with towers or large size; rank

DEFINITION 5.7 [117]. A measure preserving transformationT hasrank oneif it admits
uniform approximation by single towers.

Equivalently,T is rank one if for every finite partitionη and everyδ > 0 there is a tower
T which agrees withT and such that the partitionξ(T ) into the levels of the tower and the
complement to its supportδ-refines the partitionη.

Importance of the rank one property for the spectral theory of measure preserving trans-
formations is based on the following fact.

PROPOSITION5.8. Any rank one transformation has simple spectrum and is hence er-
godic.

PROOF. Consider a towerT of heightn approximatingT with baseF . The images of
the characteristic functionξF underUiT , i = 0,1, . . . , n− 1, are characteristic functions of
the disjoint levels of the tower. Thus there is a cyclic subspace which contains all charac-
teristic functions of the levels of the tower and their linear combinations. Consider these
cyclic subspaces for an exhaustive sequence of towers. From the approximation property
it follows that for any givenf ∈ L2(X,µ) projections to these cyclic subspaces converge
to f . Hence by Theorem 1.21,UT has simple spectrum. �

The spectral multiplicity estimates based on uniform approximation can be obtained
under more general conditions than rank one.

DEFINITION 5.9. An ergodic transformationT is locally rank oneif there existsa > 0
such that for every finite partition

η= (p0,p1, . . . , pl)

and for everyε > 0, there exists a towerT of size� a and a partition

η̄= (p̄0, p̄1, . . . , p̄l)

of T whose elements are unions of levels such that

l∑
s=0

m(p̄s \ ps) < ε.

We call any numbera satisfying the above definition anorder of T .
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REMARK. Property of local rank one of ordera is equivalent to existence of a uniform
approximation by cityscapes where one tower has measure at leasta.

If the transformationT allows uniform approximation by cityscapes withk towers, the
transformation is said to haverank no greater thank. Since in each cityscape at least one
tower has measure at least 1/k any transformation of rank no greater thank is locally rank
one of order at least 1/k. The following theorem generalizes Proposition 5.8.

THEOREM 5.10. If an ergodic transformation is locally rank one of ordera, its spectral
multiplicity is bounded by[1/a].

SKETCH OF PROOF. As before in the proof of Proposition 5.8 this easily follows form the
definition and Theorem 1.21. Givenk = [1/a] + 1 orthonormal functionsf1, f2, . . . , fk ,
we first approximate them inL2 by finite valued functions. We callη the partition which
makes all these finite valued functions measurable. We consider a towerT with baseF
which locally approximates this partition (as in the definition) and which is sufficiently
long to have the ergodic theorem giving that the frequency of appearances of each set inη

in the tower is close to its measure. If we take forH the cyclic space generated byξF , we
see that the conditions of Theorem 1.21 are satisfied. �

Simplicity of the spectrum does not force anything on the rank of the transformation,
see [52,36,108] for examples of transformations with simple spectrum which are not lo-
cally rank one. The relations between rank and spectral multiplicity have been thoroughly
studied by J. Kwiatkowski and Y. Lacroix [99].

Another interesting property of local rank one transformations is related to Kakutani
equivalence theory.

PROPOSITION5.11 [80]. Any locally rank one transformation is standard(zero entropy
loosely Bernoulli, sometimes also called loosely Kronecker), i.e. it is induced by any
odometer and any irrational circle rotation and induces any of those transformations.

Ferenczi [52] and De la Rue [36] (see Theorem 6.23) constructed transformations with
simple spectrum which are not standard and therefore also not locally rank one.

5.2.3. Chacon transformation[26]. The Chacon Transformation which is a particular
rank one transformation is one of the jewels of ergodic theory. As we shall see, it can be
used as a source of examples with interesting, often exotic, properties. Its particular interest
is that while it exhibits very moderate and rather regular pattern of orbit growth properties
it does not fit into either of the three main paradigms of smooth ergodic theory: elliptic
(Section 2.2.4), hyperbolic and parabolic (Section 2.1.3). Smooth realization of this map is
unknown and seems to be beyond the reach of available methods.

The transformation is defined inductively on the unit interval equipped with Lebesgue
measureI . At stagen, there areh(n) intervals of equal lengthI1, I2, . . . , Ih(n) andT maps
Ik ontoIk+1, 1� k � h(n)−1, by translations.T is not defined onIh(n). To go from stage
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n to stagen+ 1, we divide the intervalI1 into three intervals of equal length,I1
1 , I

2
1 , I

3
1 ,

and therefore divide the tower

τn =
h(n)−1⋃
i=0

T iI1

into three columns

τ
j
n =

h(n)−1⋃
i=0

T iI
j

1 ,

1 � j � 3. We now pick an intervalJn disjoint fromτn with length equal to the length of
I1
1 and defineτn+1 mapping by translationsT h(n)−1I1

1 ontoI2
1 thenT h(n)−1I2

1 ontoJn and
finally Jn onto I3

1 (as all these intervals have the same width). The intervalI1
1 is thus the

basis of a new towerτn+1 of height 3h(n)+ 1. It is easy to adjust the length of the interval
at stage 0 (h(0) = 1) in such a way that the limit transformationT will be defined onI .
This transformation is rank one since the sequence of towers defines a refining sequence
of partitions into intervals of length going to 0 which will generate the Lebesgue algebra.

THEOREM 5.12. The Chacon transformation is weakly mixing but not mixing.

PROOF. Absence of mixing is a consequence of the fact that any setA which is the union
of intervals inτn satisfies

m
(
A∩ T h(n)A)� 1

3
m(A).

Weak mixing comes from the fact that iff is an eigenfunction corresponding to the eigen-
valueλ, λ �= 1, then givenε > 0, there will be ann and a levelJ in τn on whichf will not
vary by more thanε on a fraction 9/10 of J . Call a the value to whichf is close onJ .
But T h(n)f will be close toλna on a third ofJ , andT h(n)+1f will be close toλn+1a on
another third ofJ , forcing∣∣λna − λn+1a

∣∣< ε,
|λ− 1|< ε. As ε was arbitrary, we obtain a contradiction. �

The following theorem is due to del Junco, Rahe and Swanson [33].

THEOREM 5.13. The Chacon transformation has minimal self-joinings.

Note that on immediate consequence of the definition implies that a transformation with
MSJ commutes only which its powers and has no non-trivial factors. Thus the Chacon
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transformation is not rigid since the centralizer of a rigid transformation contains its orbit
closure which is perfect and hence uncountable and has no rigid factors. Hence

COROLLARY 5.14. The Chacon transformation is mildly mixing but not mixing.

The Chacon transformation can be used to give an answer to the convolution problem.
In fact M. Lemánczyk first proved that ifσ is the spectral measure of the Chacon transfor-
mation, thenσ ∗σ ⊥ σ . This was extended by A. Prikhod’ko and V. Ryzhikov [127] to the
following.

THEOREM 5.15. Let σ be the spectral measure of the Chacon transformation. Then for
everyn �=m, σ ∗n ⊥ σ ∗m.

For other methods of proving singularity of convolutions see Propositions 5.43 and 5.44
and Theorem 5.49.

A transformation with minimal self-joinings can be used as a “building block” for a
great variety of examples. D. Rudolph in [140] developed a useful unifying concept of
“counterexample machine”. Very roughly, the counterexample machine can be thought of
as a functor from the category of permutations of the set of integersN to measure preserv-
ing transformations. The arrows in the first category are injectionsN → N which are such
that together with the corresponding permutations, they make the diagram commutative.
In this last category, for example, it is easy to see that weak isomorphism does not imply
isomorphism.

An interesting open question is related with Kakutani equivalence. The Chacon trans-
formation itself is standard by Proposition 5.11, but it is not known whether its Cartesian
square is standard.

5.2.4. Rank one mixing transformations.There is a method, due to D. Ornstein [117], to
construct “random” rank one transformations which almost surely show very interesting
properties.

We are given two sequences of integersp(n) andt (n) and a family of integers

an,i , 1 � i � p(n), an,i � t (n).

The construction is as in the Chacon example, with a towerτn which is made ofh(n)
intervalsI1, I2, . . . , Ih(n) of equal length such that

T Ik = Ik+1, 1� k � h(n)− 1,

and the map acts by translations. To go toτn+1, I1 is divided this time inp(n) intervals
of equal length, producingp(n) columnsτ in,1 � i � p(n), and τn+1 is constructed by
stackingτ i+1

n onto τ in, 1 � i � p(n)− 1, after the insertion, between the last level ofτ in
and the basis ofτ i+1

n of an,i intervals (which all have the same length);tn is chosen so that
tn � hn−1 and tn → ∞. These added intervals are called spacers. The randomness is on
thean,i which are chosen independently, such that for givenn, all thean,i take values on
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[1, tn] which uniform probability 1/t (n). In this probability space, a pointω is the sequence
of an,i , 1� i � p(n), n� 1, and to every suchω corresponds a rank one transformationTω.
D. Ornstein has proved:

THEOREM 5.16. In the previous model, almost surelyTω is mixing.

We have seen (Proposition 5.8) that rank one transformations have simple spectrum, the
fact that they could be mixing made them interesting candidates for examples with simple
Lebesgue spectrum. However J. Bourgain [24] has proved

THEOREM 5.17. In the previous model, almost surely the spectral measure ofTω is sin-
gular with respect to Lebesgue measure.

In fact it looks quite plausible that every rank one transformation has purely singular
spectral measure. This is justified by the previous theorem which implies by Host’s theorem
that these transformations are almost surely mixing of all orders, and by the following result
of S. Kalikow [73].

THEOREM 5.18. A mixing rank one transformation is mixing of all orders.

V. Ryzhikov [142] has extended the previous theorem to the following:

THEOREM 5.19. A mixing finite rank transformation is mixing of all orders.

It is not known whether the same holds for mixing locally rank one transformations.
As as consequence of the theorem of Kalikow, J. King proved

THEOREM 5.20. A mixing rank one transformation has minimal self-joinings.

This implies in particular that a mixing rank one transformation commutes only with its
powers (this was proved in the original paper of Ornstein) and has no factors.

For a long time existence of mixing rank one transformations was only known through
the construction of Ornstein. Much later T. Adams [14] gave an explicit construction of
mixing rank one transformations (the staircase Smorodinsky’s rank one where the spacers
are added in such a way that they follow the shape of a staircase). And recently B. Fayad
has constructedC1 flows which are mixing and rank one (as flows) [45].

5.2.5. Riesz products and spectra of rank one transformations.Riesz products appear
naturally as spectral measures in several natural examples in ergodic theory. For detailed
definitions and extensive discussion of the subject see [114, Chapter 16]. Riesz products
in the context of ergodic theory first appeared in the paper by Ledrappier [102], where a
certain finite extension of a system with pure point spectrum is shown to have a component
in its spectral measure which is a Riesz product. It is important and interesting because
there exist in many cases explicit criteria which can determine whether the corresponding
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measures are singular or absolutely continuous [125]. Riesz products occur also explicitly
as components of the spectral measure of many substitutions [128].

A revival of the use of Riesz product techniques arose from already mentioned result of
Bourgain (Theorem 5.17) where he first gives an explicit formula for the spectral measure
of the general rank one transformation. Such measures can be viewed as generalized Riesz
products. In his proof, Bourgain produces, using the fact that for any ergodic transformation
(X,A,m,T ), for any functionf in L2, almost surely the sequence of measures

1

N

∣∣∣∣∣
k=N∑
k=1

f (T kx)e2iπkθ

∣∣∣∣∣
2

dθ

converges weakly toνf , the spectral measureνT of the general rank one transformation as
a generalized Riesz product

n=∞∏
n=1

|Pn|2.

This can be seen exactly in the same way as in the proof of Theorem 1.8. By the weak
convergence we mean that the measures

∏n=N
n=1 |Pn|2dθ converge weakly to the spectral

measureνT . The polynomialsPn(θ) are equal to

(
p(n)
)−1/2

p(n)−1∑
k=0

e
2πi(kh(n)+∑j=kj=1 a(j,n)θ).

This is obtained by applying the previous formula to the characteristic functions of the base
of the towerτ1. Then Bourgain shows that it is sufficient to prove singularity for a product
of a subsequence of the previous polynomials which are dissociated and to which classical
Riesz product techniques can be applied. Note that the mixing property can not be verified
by the use of this formula.

The same ideas are present in the paper of Klemes [89] where he shows that the spectral
measure of the Adams example [14] is singular. It is also with a proof in the same spirit that
El Abdalaoui [40] has shown that if we endow the Cartesian product of the parameter space
of the Ornstein example with the product measure, for almost every pairω,ω′, Tω andTω′
have mutually singular spectral measures (and are therefore disjoint by Proposition 4.3).

5.2.6. Cutting and stacking and orbit growth.In Sections 5.2.3 and 5.2.4 we described
constructions of rank one transformations where interesting behavior is achieved by time
delays in the return from a part of the roof of the single tower to its base. For the Chacon
transformation this delay was by time one on one third of the tower and for rank one mixing
transformations the delays were uniformly distributed in an appropriate sense. Thus non-
trivial combinatorics was achieved by the distribution of the delay times.

These examples represent instances of intermediate orbit growth; not slow elliptic and
not exponential hyperbolic or uniform polynomial parabolic like horocycle flows (Sec-
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tion 6.2.2). They probably are best described are being outside of three principal para-
digms. This fits well with the fact that no smooth realization for Chacon transformation
is known and for rank one mixing map realization has only been achieved inC1 which is
considered somewhat pathological in the smooth setting.

We should point out that interesting behavior (but not mixing or even mild mixing)
may be achieved also in the context of fast cyclic approximation (elliptic behavior) (see
Section 5.4.2) which can be interpreted as uniform approximation with single towers and
direct return of most of the roof to the base. In this case there are spacers too but their effect
becomes noticeable only after running the cycle for many times.

5.2.7. Constructions with many towers.At the other end of the spectrum of possibilities
for cutting and stacking lie situations where the number of towers grows and the roofs of
towers at an inductive step are mapped to the base in a complicated way. All positive en-
tropy examples constructed by cutting and stacking necessarily have such structure as well
as examples with subexponential but still substantial orbit growth such as transformations
from the actions in [83]. The most straightforward way to carry out such constructions is
to match the roofs to the bases more or less independently. This method allows to produce
any desirable speed and regularity of orbit growth by controlling the number of towers in
the approximating cityscapes.

In such constructions if spacers are not used at all (in other words, if at every step
the cityscapeCn fills the whole space) the resulting transformation has an odometer (Ex-
ample 2.16(3)) as a factor. In order to achieve weak mixing, not speaking of mixing or
K-property, spacers are needed in addition to the distribution of roofs. Non-isomorphic
K-automorphisms with the same entropy from [119] as well as non-loosely BernoulliK-
automorphisms from [51] are examples produced by cutting and stacking constructions of
that type. The original Feldman example has been extended [118] to provide uncountably
many zero entropy transformations which are pairwise not equivalent.

There are various types of cutting and stacking constructions: the ones we mentioned are
based on the idea that a fixed pattern is repeated at every stage. Some others alternate two
very different patterns. A typical one in that class is the Rothstein’s construction of non-
loosely Bernoulli transformation [138]: there is an alternation of stages where independent
cutting and stacking is performed thereby creating so many names that most of them are
far apart in thef̄ distance (based on the Kakutani distance between string of symbols) and
is next followed by a stage where names are just repeated twice, which has an effect of
dropping the entropy without altering too much the separation of names previously created
in f̄ metric.

Very beautiful cutting and stacking constructions have been found by C. Hoffman [71]:
he has developed a version of Rudoplh’s counterexample machine (see Section 5.2.3) for
K-automorphisms and in particular, produced two weakly isomorphic but not isomorphic
K-automorphisms with finite entropy.

5.3. Coding

The coding constructions are very close to symbolic dynamics, see [8, Section 2.6] for an
overview of that subject. For a comprehensive introduction and many interesting examples
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see [109]. In some of those constructions invariant measure is given as is the case for in-
terval exchange transformations (Section 5.3.1) in others it is not fixed from the beginning
but is constructed as the asymptotic distribution on the chosen names as for substitution
dynamical systems discussed in Section 5.3.2.

To put the coding-based constructions into the general framework of the inductive com-
binatorial constructions we consider a space with a partition into “symbols” of an “al-
phabet” and define certain rules by which allowable words are produced. Similarly to the
cutting and stacking (uniform approximation) constructions the coding method is very gen-
eral since any ergodic finite entropy transformation allows a finite generator and hence a
symbolic representation [96]. However when we speak of combinatorial constructions of
coding type we mean certain recursive procedures which allow inductively to produce dis-
tributions of longer words from those of shorter ones.

Now we will consider several specific classes of such constructions.

5.3.1. Interval exchange transformations

Definition and parametrization. Considern � 2 andπ an irreducible permutation of
{1, . . . , n}. A permutationπ is calledirreducible if π{1, . . . , d} �= {1, . . . , d}, 1 � d < n.
Let∆ be the simplex inRn,

λ= (λi), 1� i � n,λi � 0,
i=n∑
i=1

λi = 1.

The unit intervalI = [0,1) is divided into semi-open intervalsId = [∑i<d λi,∑i�d λi),
1� d � n.

The interval exchange transformationTπ,λ acts on everyId by a translation in such a
way that the intervals are rearranged according to the permutationπ . That is, onId , Tπ,λ
is the translation by

∑
π(i)<π(d) λi −

∑
i<d λi .

Interval exchange transformations preserve Lebesgue measure. Sometimes more general
transformations which change orientation on some of the intervals are also considered.

Interval exchange transformations are briefly mentioned in [8, Sections 4.3g and 8.4]
and more thoroughly discussed in [11, Section 6]. For an elementary self-contained intro-
duction to the subject see [79, Section 14.5]. The area has developed into a major subject
of research with some of the deepest and most beautiful results and constructions in the
whole of ergodic theory. Some of the recent work in the area is described in [5].

The parameter space for the set of exchanges ofn intervals is the simplex of the lengths
of the intervals multiplied by the finite set of irreducible permutations. Notice that dynam-
ics obviously depend on the choice of parameters and is fairly simple in some cases. For
example, if allλ’s are rational all points are periodic albeit with different periods. This
is of course similar to the case of translations on the torus. Another similarity with toral
translations is prevalence of minimality.

THEOREM 5.21 ([79, Corollary 14.5.12], originally appeared in [85]).If one excludes
from the simplex of lengths intersections with countably many hyperplanes then every orbit
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of the interval exchange transformation corresponding to the remaining set of parameters
is dense.

The proof is based on the observation that unless there is a “saddle connection”, i.e. an
orbit segment beginning and ending in discontinuity points then all orbits are dense. For
an irreducible interval exchange any type of saddle connection generates a rational relation
between the lengths of the intervals.

However, ergodic properties of interval exchange transformations with respect to
Lebesgue measure exhibit more complicated dependence of the parameters than is the
case with toral translations. The same apply to the question of unique ergodicity.

Finiteness properties. The following three theorems summarize the basic distinctive
properties of interval exchange transformations which do not depend on the choice of para-
meters and which can be described as something like “finiteness of dynamical complexity”.
The key observation here is that the transformation induced by an exchange onn intervals
on any interval, however small, is again an exchange of at mostn+ 1 intervals.

THEOREM 5.22 [76]. An aperiodic interval exchange transformation onk intervals is of
finite rank at mostk. Furthermore, it is rank k by intervals: that is all the levels of the
towers which appear in the definition of finite rank are intervals. Furthermore these towers
fill the whole space.

Unlike the general finite rank (or even rank one) property this kind of uniform approxi-
mation implies absence of mixing.

THEOREM 5.23 ([11, Theorem 6.10], originally proved in [76]).An interval exchange
transformation is never mixing.

Another consequence of Theorem 5.22 is an estimate on the number of ergodic measures
and the spectral multiplicity of any such measure.

THEOREM5.24. An aperiodic interval exchange transformation ofn intervals has at most
n− 1 ergodic Borel probability invariant measures. Spectral multiplicity of the transfor-
mation with respect to any invariant measure(ergodic or not) does not exceedn.

The estimate on the number of ergodic measures can be improved. The best estimate
which depends only on the number of intervals isn/2 for n even (this includes unique
ergodicity of irrational rotation forn= 2) andn−1/2 for n odd. This estimate is sharp for
the reverse permutationπ(i)= n− i. On the other hand, there is a sharp estimate for any
permutation which depends not only on the number of intervals but on the permutationπ .
For a “generic” combinatorics, the resulting estimate is slightly aboven/4. This may sound
mysterious but becomes transparent when one constructs for any interval exchange trans-
formation an oriented surface with a flow for which the original transformation serves as a
section map on a certain arc connecting two (not necessarily different) saddles. The sharp
estimate for the number of ergodic invariant measures is the genus of the surface which
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depends only on the permutationπ . See [79, Theorem 14.7.6] for the inequality and [145]
for constructions of minimal examples with any number of ergodic measures between one
and the genus. Satayev’s method in [145] makes use of symmetry in a way somewhat sim-
ilar to that used in the construction of transformations with given values of multiplicity in
the spectrum which we discuss in Section 5.8.4.

Typical behavior in the parameter space: direct methods.Finiteness of the number of
ergodic invariant measures implies in particular that Lebesgue measure has finite number
of ergodic components. Hence one may ask when an interval exchange transformation is
ergodic with respect to Lebesgue measure, or, which is even more natural in the present
context when Lebesgue measure is the only invariant measure for an interval exchange
transformation. This is one of the few places in this survey when we do not have ergodic-
ity given a priori or following from a construction but discuss conditions for ergodicity
instead.

The answer is easy and explicit forn = 2 and 3 because in those cases the surface
discussed above is a torus.

In both cases the only irreducible permutations are reverse permutations. Exchange of
two intervals of lengthsλ and 1− λ becomes the circle rotationRλ once the interval[0,1)
is identified with the circle. Thus irrationality ofλ is equivalent to unique ergodicity.

The situation is only slightly more complicated for the exchange of three intervals of
lengthsλ1, λ2 and 1− λ1 − λ2 in reverse order. Direct inspection shows that this transfor-
mation is identified with the transformation induced by the rotationR 1−λ1

1+λ2

on any interval

of length λ2
1+λ2

. Hence the interval exchange is ergodic with respect to Lebesgue measure

if and only if it is uniquely ergodic and this happens exactly when the number1−λ1
1+λ2

is
irrational.

For n � 4 the picture becomes considerably more complicated. First, there is no more
dichotomy between periodicity and unique ergodicity. Necessary and sufficient conditions
for ergodicity with respect to Lebesgue measure or unique ergodicity (which are also not
equivalent anymore) are not available. However, the following fundamental result holds.

THEOREM 5.25. Almost every with respect to Lebesgue measure on the simplex of length
interval exchanges transformations is uniquely ergodic.

This theorem was originally proved independently by Veech [153] and Masur [111]
using advanced indirect methods which are discussed below. Shortly afterwards Bosher-
nitzan [22] found a direct (albeit fairly complicated) proof based on the following sufficient
criterion for unique ergodicity.

For a given interval exchange transformations letξ be the partition into its intervals
of continuity andξn =∨n−1

k=0 T
k
π,λξ be the iterated partition. Notice that the number of

elements inξn grows linearly withn. Aperiodicity of the transformation is equivalent to
fact that the maximal length of elements inξn goes to zero asn→ ∞. Let mn be the
minimallength of an element inξn. Givenε > 0 we will call positive integern ε-regular if
mn � ε

n
.
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An interval exchange transformation satisfiesproperty Pif for any l � 2 there existsλ(l)
such that there are infinitely many sequences ofε-regular numbers of lengthl, n1, . . . , nl
with ni+1> 2ni , i = 1, . . . , l−1, andnl < λn1. Any set of natural numbers which contains
such sequences will be calledessential.

THEOREM 5.26. Any interval exchange transformation which satisfies property P is
uniquely ergodic.

Now consider a family of interval exchange transformations parametrized by a space
Ω with a probability measureµ. For a givenε let u(n, ε) be the measure of the set of
parameters for which the numbern is ε-regular for the corresponding interval exchange
transformation.

A family of interval exchange transformations parametrized byΩ satisfiescollective
property Pif for any ε > 0 one can findδ > 0 and a single essential setA(ε) such that
u(n, δ) > 1− ε for all n ∈A(ε).

PROPOSITION5.27. If a family satisfies collective property P then almost every element
in the family satisfies property P.

One can show that for any admissible permutation the whole simplex of interval ex-
change transformations with this permutation and with Lebesgue measure satisfies collec-
tive propertyP . Theorem 5.25 then follows from Proposition 5.27 and Theorem 5.26.

An earlier and more elementary example of use of direct methods for showing preva-
lence of certain properties concerns spectral properties of exchanges of three intervals.

Many interesting phenomena in ergodic theory can be realized within the class of inter-
val exchange transformations. In particular, this is connected with a possibility to realize
certain kinds of symmetry within this class. Notice in particular that any piecewise constant
finite extension of a rotation (or, more generally of an interval exchange transformation)
can be represented as an interval exchange transformation. See Section 5.8.4.

THEOREM 5.28 [81]. Almost every exchange of three intervals has simple singular con-
tinuous spectrum.

This result follows form existence of both good cyclic approximation and good approx-
imation of type(n,n+ 1) (Section 5.4.2), which are constructed using properties of ap-
proximation of parameters by rationals, and Propositions 5.39 and 5.40.

Renormalization dynamics and advanced results.A powerful indirect approach to the
study of interval exchange transformations is based on renormalization type dynamics in-
troduced by Rauzy [133]. It was first developed by Veech [153] for his proof of Theo-
rem 5.25. Let us mention a couple of relevant results.

Veech [154] has proved:

THEOREM 5.29. Almost every interval exchange transformation is of rank one.
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Recently Avila and Forni [20] solved the long-standing open problem.

THEOREM 5.30. Almost every interval exchange transformation is weakly mixing.

The following related question by Veech remains open.

PROBLEM 5.31. Is it true that almost every interval exchange ofm� 3 intervals is simple?

5.3.2. Substitution dynamical systems.Another interesting class of examples related to
symbolic dynamics comes from what is called substitutions. Literature on substitution dy-
namical systems is quite extensive, maybe a bit out of proportion of the place of the subject
within the general context of ergodic theory and symbolic dynamics. In particular, a de-
tailed albeit not fully up-to-date account of the spectral properties for this class of systems
exists in book form [128]. We restrict ourselves to the definition and a couple of interesting
examples.

We consider a finite setA= {0,1,2, . . . , n− 1}. We letA∗ =⋃k�1A
k be the set of all

finite words in the alphabet ofA.

DEFINITION 5.32. Asubstitutionζ onA is a map fromA to A∗. It defines a map from
A∗ toA∗ in the following way: ifx = x0x1 . . . xn ∈A∗, then

ζ(x)= ζ(x0)ζ(x1) . . . ζ(xn).

This obviously extends to a map fromAN toAN .

We consider substitutions such that
(a) the length ofζ n(i) goes to infinity whenn→∞ for everyi ∈A,
(b) there exists a symbol 0 inA such thatζ(0) starts with(0),
(c) there exists an integerk such that for every twoi, j ∈A, ζ k(i) containsj .
A substitution satisfying (a), (b) and (c) is calledprimitive. The most famous transfor-

mation which can be described by a substitution is theMorse sequence, which is defined
on the alphabet 0,1 by

ζ(0)= 01, ζ(1)= 10.

THEOREM5.33. Given a primitive substitutionζ any fixed pointx = ζ(x), x ∈AN (which
is easily shown to exist) has on orbit closureX on which the shiftT is a uniquely ergodic
transformation(independent of the fixed point).

THEOREM 5.34. All the transformations(X,T ) as described in the previous theorem are
finite rank transformations.

Another important example is theRudin–Shapiro sequencewhich is generated by the
following primitive substitution on 4 symbols:

ζ(0)= 02, ζ(1)= 32, ζ(2)= 01, ζ(3)= 31.
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The remarkable spectral property of the transformationT associated to the Rudin–
Shapiro sequence is the following, first proved by T. Kamae [74]

THEOREM 5.35. T has a Lebesgue component in its spectral measure.

SinceT is of finite rank, this impliesUT is a unitary operator with finite spectral multi-
plicity and a Lebesgue component in its spectrum. We note however thatUT also has a dis-
crete component in its spectrum. This is one of very few known examples with Lebesgue
component of finite multiplicity in the spectrum. Other examples are discussed in Sec-
tion 5.8.5; these constructions are somewhat more flexible than Rudin–Shapiro; in partic-
ular, they can be made weakly mixing (Theorem 5.75).

Notice that no examples are known with asimpleLebesgue component in the spectrum
as well as with Lebesgue (or absolutely continuous) spectrum of finite multiplicity.

5.4. Periodic approximation

The method of periodic approximations is in a number of respects parallel and comple-
mentary to the cutting and stacking method. It is based on the ideas of fast approximation
of a measure preserving transformations in weak as opposed to uniform topology. This
allows to define approximating transformations everywhere if need arises. The method has
been introduced in [81]; see also [29]. For the most up-to-date albeit not comprehensive
presentation of the methods and some of its applications see [78]. We mostly follow the
last source in this section.

5.4.1. Periodic processes.Let (X,µ) be a Lebesgue space. Aperiodic tower t is an
ordered sequence of disjoint subsetst = {c1, . . . , ch} of X having equal measure which we
will usually denotem(t). The numberh = h(t) will be called the heightof the towert .
Associated with a tower, there will be a cyclic measure-preserving permutationσ sending
c1 to c2, c2 to c3, etc., andcn to c1. The setc1 will be calledthe baseof the tower.

DEFINITION 5.36. A periodic processis a collection of disjoint towers coveringX, to-
gether with an equivalence relation among these towers which identifies their bases. A pe-
riodic process which consists of a single tower is called acyclic process.

The notion of periodic tower is a counterpart of the notion of tower in the construction of
uniform approximation while the notion of periodic process corresponds that of cityscape
from Section 5.1.2.

The partition into all elements of all towers will normally be denoted byξ , sometimes
with indices. The permutationσ sends every element ofξ into the next element of its tower
in cyclic order. Another partition naturally associated with a periodic process consists of
the unions of bases of towers in each equivalence class and their images under the iterates
of σ , where when we go beyond the height of a certain tower in the class we drop this
tower and continue until the highest tower in the equivalence class has been exhausted. We
will denote this partition byη, with appropriate indices. Obviouslyη� ξ .
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DEFINITION 5.37. The sequence(ξn, ηn, σn) of periodic processes is calledexhaustiveif
ηn → ε asn→ ∞, i.e. for every measurable setA ⊂ X there exists a sequence of sets
An ∈ B(ηn) such thatµ(A∆An)→ 0 asn→ ∞. An exhaustive sequence of periodic
processes(ξn, ηn, σn) is calledconsistentif for every measurable setA⊆X, the sequence
σnA converges to a setB, i.e.µ(σnA∆B)→ 0 asn→∞.

Sinceξn � ηn, then for an exhaustive sequence of periodic processes,ξn→ ε asn→∞.
For a consistent exhaustive sequence of periodic processes, independently of particular re-
alizations ofσn as measure-preserving transformations, the sequence{σn} converges in
the weak topology. For a given transformationT and an exhaustive sequence of peri-
odic processes(ξn, ηn, σn), a sufficient condition for the weak convergence ofσn → T

is d(ξn, T ,σn)=∑c∈ξn µ(T c∆σnc)→ 0 asn→∞.

DEFINITION 5.38. If the last condition is satisfied we will say that the exhaustive se-
quence of periodic processes(ξn, ηn, σn) forms aperiodic approximationof T . In particu-
lar, if the periodic processes are cyclic the periodic approximation is calledcyclic.

5.4.2. Speed of approximation.The type of approximation is defined in [78, Defini-
tion 1.9]. It involves a somewhat technical equivalence relation between sequences of pe-
riodic processes. However there is going to be no ambiguity for natural types of approxi-
mation discussed below, such as cyclic, type(n,n+ 1) and so on. Given a typeT = {τn}
in that sense defined above and a sequenceg(n) of positive numbers, we will say that
a measure preserving transformationT admits a periodic approximation of type{τn} with
speedg(n) if for a certain subsequence{nk} there exists an exhaustive sequence of periodic
processes(ξk, ηk, σk) of typeτnk such that

d(ξk, T ,σk) < g(nk).

The speed of approximation will usually be measured against a certaincharacteristic para-
meterq depending on the type. There is a natural notion of a good speed of approximation,
which generally means that a typical orbit of the limit transformation reproduces the be-
havior of one of the orbits of the approximation for sufficiently many periods. Usually
the characteristic parameterq is chosen in such a way thatgood approximation means
approximation with any speed of the formg(q)= o(1/q). In the particular case of cyclic
approximation the only parameter for a cyclic process is the heightq of its single tower,
which naturally serves as the characteristic parameter. Cyclic approximation with speed
o(1/q) is usually calledgood cyclic approximation. Good cyclic approximation is char-
acteristic for the elliptic paradigm in smooth ergodic theory (see Section 2.2.4). Principal
properties of transformations allowing good cyclic approximation which are thus typical
for the elliptic paradigm are summarized in the following proposition. When it is possible
we also describe weaker conditions.

PROPOSITION5.39. If T admits a good cyclic approximation then:
(1) T is ergodic. This remains true for a cyclic approximation with speed(4− θ)/q for

any fixedθ > 0 [81,29].
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(2) T is not mixing. This remains true for the speed(2− θ)/q, θ > 0 [81,29].
(3) The maximal spectral type ofT is singular [81]. This remains true for speed

(1− θ)/n for anyθ > 0 [78,Section3].
(4) T is rigid [81]. This property implies(3).
(5) T is standard; this remains true for the speed(2− θ)/q, θ > 0.
(6) T is rank one.
(7) T has simple spectrum. This follows from(6). This property remains true for speed

(1− θ)/q for anyθ > 0 [81,29].

Good cyclic approximation does not allow to distinguish between transformations with
pure point, mixed or continuous spectrum. In fact, every ergodic transformation with pure
point spectrum admits good cyclic approximation [75, Section 8]. Here we give an example
of another approximation property which guarantees weak mixing.

The type of periodic approximation is generated by periodic processes equivalent to
processes consisting of two substantial towerst1, t2 whose heights differ by 1. Equivalently
the heights of the two towers are equal ton andn+ 1 and for somer > 0,

m(t1) > r/n and m(t2) > r/n. (5.3)

This type of approximation is said to be oftype(n,n+ 1). This type of approximation is
related with the rank two property (see Section 5.2.2) and it implies rank two if the speed
is sufficiently high; however the extra property that the roof of each tower returns mostly
to the base of the same tower makes it stronger. For approximation of type(n,n+ 1) the
choice of the characteristic parameter is ambiguous. There are two natural ways to define
it according to what properties of the limit transformationT we want to study. Namely,
we can either take the characteristic parametersq as the length of one of the cycles (n or
n+ 1), or as the periodn(n+ 1) of the permutationσ . We will call the approximation of
type(n,n+ 1) with speedo(1/n) goodand the approximation with speedo(1/n(n+ 1))
excellent. One some occasions it will be necessary to assume that the two towers involved
in the approximation are equivalent. This simply insures that the partitions generated by
the union of the bases of the towers and the iterates of this set is fine. The corresponding
approximation will be calledlinked approximation of type(n,n+ 1).

PROPOSITION5.40 [82, Theorem 5.1].If a transformationT admits a good linked ap-
proximation of type(n,n+ 1) or if T is ergodic and admits a good approximation of type
(n,n+ 1) thenT has continuous spectrum.

SKETCH OF PROOF. The proof is very similar to the proof of weak mixing for the Chacon
transformation (Theorem 5.12). Namely an eigenfunction with eigenvalueλ would have to
be almost constant on a typical level of the linked towers and hence on the base. But since
return to the base happens mostly in two successive momentsn andn+ 1 which implies
that bothλn andλn+1 are close to one and hence in the limitλ = 1 which contradicts
ergodicity. �

The property of approximation of type(n,n + 1) (linked or not) is compatible with
cyclic approximation with arbitrary high speed. This allows to demonstrate in very simple
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concrete examples how transformations admitting good periodic approximation may have
mixed or continuous spectrum, see, for example, Theorem 5.28. Another historically im-
portant two-parametric family of examples is the two point extension of the rotationRα
with the switch of levels on the interval[0, β]. For almost every(α,β) the spectrum in the
space of “odd” functions is simple, singular and continuous.

5.4.3. Further properties and applications.Some more elaborate versions of periodic
approximation either compatible with fast cyclic approximation or not produce interesting
properties.

PROPOSITION5.41. If T admits an excellent linked approximation of type(n,n+1) then
the maximal spectral multiplicityMT×T (cf. 4.1)of T ×T is finite and is less than or equal
to 2[1/2r(1− r)], wherer is the constant from(3.6).In particular, if r > 1/2−√

3/6 then
MT×T � 4.

SKETCH OF PROOF. The Cartesian square of the periodic process approximatingT is a
periodic process approximatingT × T which, in this case, includes two substantial towers
of heightn(n+1) and each of these towers has measure at leastr(1− r). For this periodic
process, the length of the maximal cycle is equal to the period of the permutationσ × σ .
Furthermore, if the original approximation is excellent then the approximation ofT × T
is good when measured against this parameter. We consider the invariant subspace gener-
ated by characteristic functions of the bases of two towers of heightn(n+ 1) and apply
Theorem 1.21 to this subspace. �

There is a natural generalization of an approximation of type(n,n+ 1) which is use-
ful for dealing with higher Cartesian powers. It involves several substantial towers whose
heights are consecutive integers. A version of this property is also crucial in the proof
of the genericity of the following useful property due to Stepin and Oseledec [148]; see
also [149].

DEFINITION 5.42. Given 0� α � 1, a measure-preserving transformationT is calledα-
weak mixingif for some sequencenk →∞ and for every setA,

lim
k→∞µ

(
T nkA∩A)= αµ(A)2 + (1− α)µ(A).

An equivalent formulation ofα-weak mixing is that the operatorsUnkT converge in the
weak operator topology to(1− α) Id + αPc wherePc is the orthogonal projection to
the one-dimensional space of constants. 0-weak mixing corresponds to rigidity, whereas
1-weak mixing corresponds to the usual notion of weak mixing. Although the terminology
may suggest it,α-weak mixing does not implyβ-weak mixing forβ < α. On the contrary,
α-weak mixing for anyα > 0 implies 1-weak mixing.

PROPOSITION 5.43. If T is α-weak mixing for some0< α < 1 and ρ is the maximal
spectral type forUT |L0

2(X,µ)
, then all of the convolutionsρ(m) form= 1,2, . . . are pairwise

singular.
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Now let us show how to deriveα-weak mixing from an approximation. We consider a
process withs linked towerst1, . . . , ts of consecutive heightsq, q+1,q+2, . . . , q+ s−1,
whereq will serve as the parameter for good approximation. Ifm(ti) = µi , i = 1, . . . , s,
we will call such an approximation alinked approximation of type(q, q+1, . . . , q+ s−1;
µ1, . . . ,µs ).

PROPOSITION5.44. Givenα, 0� α � 1, if T admits a good linked approximation of type(
q, q + 1, . . . , q + s − 1; 1− α

q
,

α

(q + 1)(s − 1)
, . . . ,

α

(q + s − 1)(s − 1)

)
for an arbitrary larges, thenT is α-weak mixing.

An application ofα-weak mixing, given by del Junco and Lemańczyk [32], is that it
implies a kind of “rigidity of joinings” property.

THEOREM 5.45. Let (X,A,m,T ) be α-weakly mixing with0< α < 1. ConsiderS =∏
i∈N(Xi,Ai ,mi, Ti), where(Xi,Ai ,mi, Ti) is a copy of(X,A,m,T ) for eachi ∈N . If

B is anS invariant subalgebra of
∏
i∈M Ai restricted to whichS acts isomorphically to a

factor ofT , thenB is a factor of someAi .

The proof uses Proposition 5.43 and the property is already sufficient to produce, with
the help of the same techniques, some of the examples which can be obtained using trans-
formations which have minimal self-joinings. The authors have given an extension of the
notion ofα-weak mixing,(α1, α2, . . . , αs)-weak mixing, such that transformations which
satisfy it can be used as building blocks to exhibit most of the examples of the “coun-
terexample machine” of D. Rudolph. It is interesting that this can be reached out of purely
spectral properties. However(α1, α2, . . . , αs)-weak mixing transformations are only pro-
duced through constructions involving some grafting of “mixing rank one type” objects,
which hinders any simple presentation.

B. Fayad [46] developed a novel concept of periodic approximation where at each given
moment only a small part of the space returns close to itself but over the time most points
experience this return infinitely many times. The goal was to find a criterion of singular
spectrum which is compatible with mixing. Abstract description of the property in purely
measurable terms in somewhat cumbersome and in [46] a structure of metric space is
assumed. Then the property ofslowly coalescent periodic approximationinvolves systems
of balls of decreasing size returning to themselves at exponentially growing moments of
time with exponentially small relative error in such a way that almost every point belongs
to infinitely many such balls.

PROPOSITION5.46. Any transformation which admits slowly coalescent periodic approx-
imation has singular spectrum(not necessarily continuous).

5.4.4. Genericity of periodic approximation[78, Section 2]. Many important properties
generic for measure preserving transformations in weak topology can be deduced for the
following result (see [78, Theorem 2.1]).
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THEOREM 5.47. Given a typeT = {τn} and a speedg(n), the set of all measure-
preserving transformations of a Lebesgue space which admit a periodic approximation
of typeT with speedg(n) is a residual set(i.e. it contains a denseGδ set) in the weak
topology.

In particular, all properties discussed earlier in this section which follow form a certain
type of periodic approximation belong to this category. For convenience we formulate this
as a separate statement.

COROLLARY 5.48. A generic measure preserving transformation in the weak topology
is weakly mixing(hence ergodic), rigid (hence is not mildly mixing), has simple singular
spectrum such that the maximal spectral type inL2

0 together with all its convolutions are
mutually singular and supported by a thin set on any given scale.

We will see later that one can add to this list homogeneous spectrum of multiplicity two
for the Cartesian square, see Section 5.8.2, and other properties.

5.5. Approximation by conjugation

5.5.1. General scheme.Approximation by conjugation is a method of producing trans-
formations admitting fast periodic approximation as well as some other transformations
with interesting properties by conjugating elements (usually periodic) of actions of com-
pact groups (usuallyS1, but sometimesTk and others) and taking limits in various topolo-
gies. This method is particularly suitable for smooth realizations of measure preserving
transformations with various properties. It was first introduced in [18]; this is still the basic
source on the subject. For an account of some recent development as well as an up-to-date
perspective on the topic see [47]. A purely measurable version of the method and some
of its applications are described in [78, Section 8]. Since most applications of the method
still deal with the smooth situation, we will present the set-up and results for that case. We
present a general overview of the method following [47].

LetM be a differentiable manifold with a non-trivial smooth circle actionS = {St }t∈R,
St+1 = St , preserving a smooth volume. Every smoothS1 action preserves a smooth vol-
umeν which can be obtained by taking any volumeµ and averaging it with respect to
the action:ν = ∫ 1

0 (St )∗µdt . Similarly S preserves a smooth Riemannian metric onM
obtained by averaging of any smooth Riemannian metric.

Volume preserving maps with various interesting, often surprising, topological and er-
godic properties are obtained as limits of volume preserving periodic transformations

f = lim
n→∞fn, wherefn =HnSαn+1H

−1
n (5.4)

with αn = pn
qn

∈ Q and

Hn = h1 ◦ · · · ◦ hn, (5.5)
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where everyhn is a volume preserving diffeomorphism ofM that satisfies

hn ◦ Sαn = Sαn ◦ hn. (5.6)

In certain versions of the method the diffeomorphismshn are chosen not preserving the
volume but distorting it in a controllable way; this, for example, is the only interesting
situation whenM is the circle (see, e.g., [79, Section 12.6]).

Usually at stepn, the diffeomorphismhn is constructed first, andαn+1 is chosen after-
wards close enough toαn to guarantee convergence of the construction. For example, it is
easy to see that for the limit in (5.4) to exist in theC∞ topology it is largely sufficient to
ask that

|αn+1 − αn|� 1

2nqn‖Hn‖Cn
. (5.7)

The power and fruitfulness of the method depend on the fact that the sequence of diffeo-
morphismsfn is made to converge while the conjugatesHn diverge often “wildly” albeit
in a controlled (or prescribed) way. Dynamics of the circle actions and of their individual
elements is simple and well-understood. In particular, no element of such an action is er-
godic or topologically transitive, unless the circle action itself is transitive, i.e.M = S1. To
provide interesting asymptotic properties of the limit typically the successive conjugates
spread the orbits of the circle actionS (and hence also those of its restriction to the sub-
groupCq of orderq for any sufficiently largeq) across the phase spaceM making them
almost dense, or almost uniformly distributed, or approximate another type of interesting
asymptotic behavior. Due to the high speed of convergence this remains true for sufficiently
long orbit segments of the limit diffeomorphism. To guarantee an appropriate speed of ap-
proximation extra conditions on convergence of approximations in addition to (5.7) may
be required.

There are many variations of the construction within this general scheme. In different
versions of the approximation by conjugation method one may control the asymptotic be-
havior of almost all orbits with respect to the invariant volume, or of all orbits. Somewhat
imprecisely we will call those versions ergodic and topological.

Ergodic constructions deal with measure-theoretic (ergodic) properties with respect to a
given invariant volume, such as the number of ergodic components (in particular ergodic-
ity), rigidity, weak mixing, mixing, further spectral properties. Topological constructions
deal with minimality, number of ergodic invariant measures (e.g., unique ergodicity) and
their supports, presence of particular invariant sets, and so on.

Control over behavior of the orbits of approximating periodic diffeomorphismsfn in
(5.4) on thenth step of the construction is typically provided by taking an invariant under
Sαn (and hence underS 1

qn

) collection of “kernels”, usually smooth balls, and redistributing

them in the phase space in a prescribed fashion (alsoS 1
qn

invariant). In ergodic construc-

tions one requires the complement to the union of the kernels to have small volume and
hence most orbits ofS (and consequently of any finite subgroupCq for a sufficiently
largeq) to spend most of the time inside the kernels. In the topological versions the ker-
nels need to be chosen in such a way thateveryorbit of S spends most of the time inside
the kernels. This requires more care and certain attention to the geometry of orbits.
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A natural way of selecting the kernels, their intended images, and constructing a map
hn satisfying (5.6) is by taking a fundamental domain∆ for Sαn (or, equivalently, forS 1

qn

)

choosing kernels and images inside∆, constructing a diffeomorphism of∆ to itself iden-
tical near its boundary which sends kernels into their intended images, and extending the
map to the imagesS k

qn

, k = 1, . . . , qn − 1, by commutativity. This method in particular is

used in the construction of ergodic diffeomorphisms conjugate to a rotation on manifolds
other than the circle as well as in a number of constructions where topological proper-
ties are involved. However in order to achieve other ergodic properties, for example weak
mixing, it is necessary to use more general constructions.

5.5.2. Generic constructions. The first group of results obtained by the approximation
by conjugation method deals with realization of certain ergodic properties in the category
of C∞ diffeomorphisms of a compact manifold preserving a smooth volume, i.e. a volume
given by a positiveC∞ function in every localC∞ coordinate system. First recall that all
volumes with fixed total volume on a given manifold are conjugate by aC∞ diffeomor-
phism [113]. Before we start listing properties which can be produced in the framework
of the method it is useful to mention that the constructions come in two different vari-
eties which will be called generic and non-generic; justification for this terminology will
become apparent soon.

In the constructions of the first kind (generic) it is sufficientto control the behavior
of approximating and hence resulting diffeomorphisms on a series of growing but unre-
lated time scales. To carry out those construction the commutativity condition (5.6) is not
necessary. In fact the conjugating mapsHn while formally can be written as products as
in (5.5) are not constructed as such. Instead an approximate version of the desired property
is achieved by conjugation and care is taken that the sequencefn converges. The approx-
imate pictures may look quite whimsical (see, e.g., the original weak mixing construction
in [18, Section 5] and a modern version in [67]), but as long as a diffeomorphism is close
enough to conjugates of rotations appearing in such pictures the property is guaranteed.
A natural setting for those constructions is categorical. One considers the spaceA, the
closure of diffeomorphisms of the formgStg−1 in C∞ topology. Here we fix a volumeν
invariant by the actionS and consider allC∞ diffeomorphismsg preservingν. Notice that
A is a complete metrizable space and hence Baire category theorem can be used.

This was first noticed in [18, Section 7] in connection with ergodic properties with re-
spect to the invariant volume and was used in [41] to control topological properties. In fact,
for a proof of genericity inA of a property exhibited by a construction of this sort no ac-
tual inductive construction is needed. One just needs to show that an approximate picture
at each scale appears for an open dense subset of conjugates of rotations. If appearance in
an approximate picture at infinitely many growing scales guarantees the property then by
the Baire category theorem the property holds for a denseGδ subset onA.

THEOREM 5.49. For any positive functiong(n) the spaceA contains a denseGδ subset
of weakly mixing diffeomorphisms which admit cyclic approximation with the speedg [18].
Furthermore, transformations in that set areα-weak mixing for everyα, 0� α � 1.

If the actionS is fixed point free thenA contains a denseGδ subset of uniquely ergodic
diffeomorphisms[41].
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Even if the actionS has fixed points or if the manifoldM has a boundary the number
of invariant measures can be controlled and is generically the minimal possible. Here is a
nice low-dimensional example.

LetM be one of three manifolds: the discD2, the annulus[0,1] × S1 or the sphereS2,
λ Lebesgue measure andS action by rotations (uniquely defined on the disc and the an-
nulus and defined by a choice of axis on the sphere). Let us call Lebesgue measure on the
manifold, theδ-measures at the fixed points of the rotations and Lebesgue measures on the
boundary components thenatural measures.

THEOREM5.50 [47, Theorem 3.3].LetM beD2, [0,1]×S1 or S2, andSt be the standard
action by rotations. Diffeomorphisms that have exactly three ergodic invariant measures,
namely the natural measures onM , form a residual set in the spaceA′: the closure in the
C∞ topology of the conjugates of rotations with conjugates fixing the fixed points ofS and
every point of the boundary.

5.5.3. Non-generic constructions.In the constructions of the second kind approxima-
tions at different steps of the construction are linked and hence in principlethe asymp-
totic behavior of the resulting diffeomorphism is controlled for all times. Constructions of
this kind appear most naturally when the resulting diffeomorphism is constructed to be
measure-theoretically conjugate to a map of a particular kind, but they also appear when
one constructs transformations with more than one ergodic component [157]. This cate-
gory also includes mixing constructions which were first introduced for time changes for
flows on higher-dimensional tori [43,44] and were developed in [47, Section 6] in the con-
text of the approximation by conjugation method. In the latter case one needs to start from
a smooth action of a torus rather than of a circle.

Non-standard realizations of Liouvillean rotations.Recall that a numberα is called
Liouvillean if it allows approximation by rationals better than any negative power of de-
nominators.

THEOREM 5.51. Letα be an arbitrary Liouvillean number. Then arbitrary close toSα in
C∞ topology there exists a diffeomorphism preserving the volumeν, ergodic and measur-
ably conjugate to the rotationRα .

This result was proved in [18, Section 4] for a dense set ofα; the proof for arbitrary
Liouvilleanα is forthcoming [49].

Let us explain why this result may be considered definitive.
In the case of the disc or the annulus with the standard action by rotations the diffeomor-

phisms in question act as rotationsRα on boundary component(s).
Numbers other than Liouvillean are calledDiophantine. For Diophantine rotation num-

bers such a realization on the disc or annulus (with rotation on the boundary) is impossible
since due to M. Herman’s “last geometric theorem” (to be published posthumously) any
such diffeomorphism has uncountably many invariant circles and hence cannot be ergodic.
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Other realization results. Possibilities of realizing of particular transformations or
members of particular families within the framework of the approximation by conjuga-
tion method has not been explored systematically; see [47, Section 7] for a sample of open
questions as well as a discussion of prospects and difficulties. As is the case or rotations
it looks that realization is often possible for certain subsets of transformations from finite-
or infinite-parameter families for the sets of parameters which are residual but very “thin”
in the metric sense. However, unlike the rotation situation it is hard to expect definitive
results. We restrict ourselves to a sample of results for that kind.

THEOREM 5.52 [18, Section 6].For any natural numbern there is a dense set of vectors
α = (α1, . . . , αn) ∈ Rn whose coordinates satisfy no rational relation such that there exist
a diffeomorphismf ∈A arbitrary close toSβ for someβ and measurably conjugate to the
translationTα on the torusTn.

There exists a dense in the product topology set of vectorsα = (α1, α2, . . .) ∈ R∞ whose
coordinates satisfy no rational relation such that there exist a diffeomorphismf ∈A arbi-
trary close toSβ for someβ and measurably conjugate to the translation

Tα :x→ x + α (mod 1)

on the torusT∞.

THEOREM 5.53. Arbitrary close to any transformationSβ for anyβ there exists a non-
standard ergodic diffeomorphism.

The proof is based on a smooth realization of a version of Feldman’s construction de-
scribed in [78, Section 8].

5.5.4. Toral actions and mixing transformations.The use of approximation type tech-
niques to produce mixing transformations and flows was pioneered by B. Fayad [43]. He
used reparametrizations of linear flows on the tori of dimension� 3 to produce mixing by
carefully controlling behavior of the sequence of overlapping time scales. See Section 5.6.3
for a brief outline of the method. In [47] the techniques of reparametrization of linear flows
on T3 were combined with the explicit approximation by conjugation methods. The basic
setting is a compact smooth manifoldM with non-trivial smoothT3 actionS = {Sv}v∈R3,
Sv+k = Sv if k ∈ Z3 and a smooth volumeµ preserved byS .

THEOREM 5.54 [47, Theorem 6.2].There exists a sequenceγn ∈ Q3 and a sequenceHn
of diffeomorphisms preservingµ such that the sequenceHnStγnH

−1
n converges in theC∞

topology to a flow preservingµ and mixing for this measure.

5.6. Time change

5.6.1. General results. Given a flow,Tt , the operation oftime changeproduces a flow
with the same orbits asTt but evolving at a different speed and with an invariant measure
accordingly changed with a suitable density.
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Time changes can be described in terms ofR-valued untwisted one-cocycles over the
flow, see [8, Section 1.3m] for a discussion in very general context and [78, Section 9.3]
for basic definitions in the specific setting of flows. This operation is important in the topo-
logical and differentiable dynamics where the time change is assumed correspondingly
continuous and differentiable. We already discussed a specific case of time change in Sec-
tion 2.2.4.

Since every flow by Ambrose–Kakutani theorem can be represented as a special flow
over a measure preserving transformation, the time change produces a special flow over the
same transformation with a different roof function. In particular, if the roof functionsϕ and
ψ for special flows over the same measure preserving transformationT arecohomologous,
i.e.

φ = ϕ + h ◦ T − h
for a measurable functionh then the special flows are isomorphic. The functionh which
in the case of ergodicT is uniquely defined mod 0 up to a constant is sometimes called
transfer function.

The basic properties which are preserved by any time change are ergodicity (more gen-
erally, the structure of the decomposition into ergodic components) and the property of
entropy to be zero, a positive number, or infinity. Other spectral and non-spectral invariants
are in general not preserved.

Still it is a meaningful question to ask how the spectral properties of a flow may be
modified by a time change.

Two basic general results in this direction show that stochastic properties may be im-
proved by a proper time change. They are due to Kochergin [90] and Ornstein and
Smorodinsky [120] correspondingly.

THEOREM 5.55.
(1) For any ergodic flow there exists a time change which is mixing[90].
(2) For any ergodic flow with positive entropy there exists a time change which is a

K-flow [120].
In both cases the time change can be chosen arbitrary close to identity in a variety of

senses; for example, if a flow is represented as a special flow over a transformation the roof
function can be changed arbitrary little in the uniform norm.

5.6.2. Continuous and almost differentiable time changes.It is interesting and in fact
remarkable that in the continuous category the time changes described in the previous the-
orem can be made continuous and in differentiable category “almost” differentiable (with
derivative discontinuous only at one point). This follows from the analysis of cohomol-
ogy classes of cocycles which produce time changes. If two cocycles are cohomologous
then corresponding time changes are metrically isomorphic by a conjugacy which moves
each point along its orbit according to the solution of the cocycle equation. We follow the
presentation of [78, Section 10.2].

THEOREM 5.56. LetL⊂ L1(X,µ) be a linear subspace ofL1 dense in theL1 topology
and closed in theL∞ topology(uniform convergence almost everywhere). Then for every
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f ∈ L1(X,µ) the setLf = {h ∈ L: h is cohomologous tof } is dense in theL∞ topology
in the set{h ∈ L,

∫
hdµ= ∫ f dµ}.

If we putL = C(X), the space of all continuous functions, we immediately obtain the
following statement which was originally proved in [120].

COROLLARY 5.57. LetX be a compact metric space, µ be a Borel probability nonatomic
measure onX, T :X→ X be a measure-preserving transformation(not necessarily con-
tinuous). Then every real-valued cocyclef ∈ L1(X,µ) is cohomologous to a continuous
cocycle. Moreover the set of continuous cocycles cohomologous tof is dense in uniform
topology in the space of all continuous functions with the same integral asf .

Corollary 5.57 can be strengthened by specifying the values of a continuous function co-
homologous tof on any closed setF so thatµ(X\F) > 0. Pushing the method described
above a bit further one obtains the result advertized above which looks quite striking at
first glance.

THEOREM 5.58. LetM be a compact differentiable manifold, µ be a Borel probability
measure onM , T :M → M be a measure-preserving transformation. Then every real-
valued cocyclef ∈ L1(M,µ) is cohomologous to a continuous cocyclef̄ which is contin-
uously differentiable except at a single point.

SKETCH OF PROOF. First, one finds a continuous cocyclef1 cohomologous tof which
is continuously differentiable outside a ballB1 of radius, say, 1/2 and can be extended
to a continuously differentiable function. This is possible by a stronger version of Corol-
lary 5.57 mentioned above. Then one approximatesf1 in uniform topology by a contin-
uously differentiable cocycleg1 which coincides withf outsideB1. If the L1 norm of
f1 − g1 is small enough one can find a cocyclef2 cohomologous tof1 (and hence tof )
which coincides withf1 outside a smaller ballB2 ⊂ B1 of radius 1/4 and extends to a
continuously differentiable function and such that the support of the transfer functionψ1
has measure less than 1/2. Continuing by induction one constructs on thenth step the
cocyclefn continuously differentiable outside of a ballBn ⊂ Bn−1 of radius 2n+1 which
coincides withfn−1 outside of the ballBn−1 and extends to a continuously differentiable
function and such that a transfer functionψn connectingfn with fn−1 is supported on
a set of measure less than 2n. In the limit the functionf̄ = limn→∞ fn is continuous
everywhere and continuously differentiable outside of the single point

⋂∞
n=1Bn. By the

Borel–Cantelli lemma the series
∑∞
n=1ψn converges and hence gives a transfer function

betweenf1 andf̄ . Sincef1 is cohomologous tof this finishes the proof. �

5.6.3. Regular time change in various classes of systems.Notice that the property of
almost differentiability in Theorem 5.58 cannot be replaced by any reasonableuniform
property stronger than continuity.

Hyperbolic and parabolic systems.For example, Hölder time changes behave quite
differently for many classes of dynamical systems such as Anosov flows or special flows
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over subshifts of finite type [79, Section 19.2], [78, Sections 11.3–4]. In those cases on the
one hand, there are infinitely many moduli for existence of ameasurablesolution of the
cohomological equation, and, on the other, robustness of spectral properties. The spectrum
is either countable Lebesgue or that plus pure point component with single frequency. The
latter is impossible for example for contact Anosov flows. Thus, in the hyperbolic (and to
a certain extent partially hyperbolic situation [78, Section 11.5]) spectral properties exhibit
robustness under reasonably regular time changes with the countable Lebesgue spectrum
prevailing.

A somewhat similar albeit more subtle and less understood situation exists for parabolic
systems. Since these effects are in essence different from those produced by combinatorial
constructions which dominate this part of the survey we will discuss the topic later in
Section 6.3.

Elliptic systems: codimension one.Now we will consider specific situations where in-
teresting effects can be achieved by producing a nice (smooth, analytic Hölder, etc.) time
change with interesting properties by means of a construction which successfully controls
behavior at various time scales. In this respect this class of constructions fits with the gen-
eral theme of this part of the survey. We already discussed time changes in a linear flow on
the two-dimensional torus in Section 2.2.4. We will discuss the situation in more detail and
comment on methods used. First, notice that for any irrational slope and for a sufficiently
smooth time change (or, equivalently, the roof function for the special flow) the resulting
flow (or the time one transformations) allows sufficiently good cyclic approximation to
guarantee simple singular spectrum and the absence of mixing, see Proposition 5.39; the
latter property also follows under much weaker assumptions from Theorem 5.61 below.
Weak mixing of course does not follow from cyclic approximation. It can be produced
by several different methods. To produce genericity one can use perturbation with small
sinusoidal waves similar to those described below for producing mixing in higher dimen-
sion. A more interesting method deals with the study of special flows with a fixed roof
function and varying translation in the base. This method leads to a conclusion that, while
other types of behavior are possible, under certain assumptions, weak mixing is the only
alternative to at least measurable conjugacy to the linear flow.

First, if the roof function is a trigonometric polynomial of if the translation is Diophan-
tine and the function isC∞ then the roof function is cohomologous (with the transfer
function which is correspondingly itself a trigonometric polynomial of aC∞ function)
to its average and hence the flow is smoothly conjugate to a constant time suspension or,
equivalently to a linear flow.

Shklover [146] proved the following converse to the statement about trigonometric poly-
nomials.

THEOREM 5.59. For any real-analytic functionf other than trigonometric polynomials
(in other words those with infinitely many non-zero Fourier coefficients) there is always an
α such that the special flow overRα with the roof functionf is weakly mixing.

A more quantitative statement connecting the approximation in the base with the decay
of Fourier coefficients for the roof function is in [78, Theorem 13.7].
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THEOREM 5.60. Leth(x)=∑n�=0hn exp2πinx be aC2 real valued function onS1 with
zero average. Suppose for a certain sequence of rational numberspn/qn,

qn|α − pn/qn|∑∞
k=1 |hkqn |

→ 0 and
|hqn |∑∞
k=1 |hkqn |

> c > 0.

Then for anyh0 andr the cocycleexp ir(h0+h(z)) is not a coboundary and consequently
the special flow overRα with the roof functionh0 + h(z) is weakly mixing.

Developing this method and using new ideas involving a central limit theorem to treat the
case of intermediate approximation Fayad and Windsor proved in [50] that under stronger
conditions on regularity of decay of Fourier coefficients than in Theorem 5.60 (satisfied,
for example, when they are close enough to a geometric progression) there is a dichotomy
between solvability of the cohomological equation inL2 (and hence the pure point spec-
trum with two “right” frequencies) and weak mixing.

The following general criterion for absence of mixing was found in [76].

THEOREM 5.61. Any special flow with the roof function of bounded variation over an
interval exchange transformation is not mixing.

The proof is based on using the return properties of the base transformation (Theo-
rem 5.22) and the bounded variation of the roof function to show that returns in the base
produce returns for the flow within a bounded time. Thus since a bounded from below pro-
portion of measure returns close to itself in the base at a certain sequence of time moments
growing to∞ the same can be said about a fixed proportion of measure for the flow for a
sequence of fixed length time segments. This contradicts mixing.

This result has been recently strengthened by Fraczek and Lemańczyk.

THEOREM 5.62 [57]. Any special flow with the roof function of bounded variation over
an ergodic interval exchange transformation is disjoint from any mixing flow.

Mixing can be produced with a minimal loss of regularity. For example, any Lipschitz
time change in a linear flow onT2 is not mixing by Theorem 5.61. One the other hand
Kochergin proved the following converse to that statement.

THEOREM 5.63 [93]. For any modulus of continuityω weaker than Lipschitz, i.e. such
that limt→0

t
ω(t)

= 0 one can find a linear flow onT 2 and a time change with modulus of
continuityω which is mixing.

Equivalently, one can find a rotationRα and a functionf with modulus of continuityω
such that the special flow overRα with the roof functionf is mixing.

The construction is of inductive character producing approximate mixing on growing but
overlapping time scale and is somewhat similar to a more subtle and specialized version of
the general construction from [90].
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Elliptic systems: higher codimension.An essential new phenomenon for time changes
in linear flows onTk , k � 3, or, equivalently, in special flows over translations onTk ,
k � 2, is a possibility of mixing in very regular situations including real analytic [43].
This is a very special situation impossible in the Diophantine context and non-generic in
Liouvillean. It is produced by an inductive combinatorial construction which we briefly
outline for the case of a special flow over a translation ofT2 with coordinates(x, y).

If we assume that the rotation in thex direction is periodic with periodn consider an
addition to a given roof function of the forma sin 2πnx then the successive returns will
develop sinusoidal waves which at the time scale grater thann will produce approximate
mixing for sets transversal to thex direction. Now we add a very small translation in thex
direction to keep this effect for the perturbed system for a long enough time until the effect
of a similar perturbation in they direction of much greater frequency but much smaller
magnitude takes over. This relies on a proper very special choice of periodic approxima-
tions in thex andy direction. The scales when mixing is produced by the stretching in
the two directions overlap but because of the independence of the perturbations they do
not interfere and cancel each other. Thus genuine albeit fairly slow mixing is achieved for
the limit transformation whose base translation has the form(α,β) with α =∑∞

k=1
1
nk

,

β =∑∞
k=1

1
mk

with nk 2mk 2 nk+1 and the roof function is of the form

∞∑
k=1

ak sinnkx + bk sinmky (5.8)

with ak . bk . ak+1. The construction can be carried out in such a way that the func-
tion (5.8) is real analytic.

There are variations of this method where instead of sinusoidal waves different more
elaborate shapes are used. For example, using some version of Dirichlet kernels one can
combine mixing with Fayad’s criterion of slowly coalescent periodic approximation for
singularity of the spectrum which is compatible with mixing, see Proposition 5.46.

THEOREM 5.64 [46]. There exists aC∞ time change of a linear flow onT3 which is
mixing and has singular spectrum.

5.7. Inducing

The operation analogous to time change in the discrete case is the operation of inducing.
The natural topology in the space of measurable subsets of a given space(X,µ) is given
by the metric

d(A,B)= µ(A∆B).

Denote the collection of all classes mod 0 of measurable sets provided with this metric
by X .

The following result is a counterpart of Theorem 5.55.
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THEOREM 5.65.
(1) Any ergodic transformation induces mixing on a dense inX class of sets[58].
(2) Any ergodic transformation with positive entropy inducesK-automorphisms on a

dense inX class of sets[120].

The method of proving Theorems 5.55 and 5.65 is similar in spirit to cutting and stacking
constructions albeit limited to introduction of spacers since the return maps for the towers
are fixed.

De la Rue improved the first statement of the previous theorem:

THEOREM 5.66 [35]. An ergodic transformation induces a transformation with Lebesgue
spectrum on a dense inX class of sets.

Multiplicity of Lebesgue spectrum in this construction is not known. Thus the following
problem is open:

PROBLEM 5.67. Does any ergodic transformation with zero entropy induce a transforma-
tion with countable Lebesgue spectrum?

De la Rue in [36] has produced a spectral type which cannot be obtained in a standard
transformation, i.e. on any induced of an irrational rotation. We will discuss this result
based on the theory of Gaussian dynamical systems in Section 6.4.3.

Positive answer to the following problem would require an essentially new construction.

PROBLEM 5.68. Does any ergodic transformation with zero entropy induce a transforma-
tion with simple spectrum?

Conze [27] has proved that it is in fact generic that an induced of an ergodic transforma-
tion is weakly mixing. Notice that mixing is not generic.

In [78, Section 7] transformations induced by a standard transformation on various sets
are considered. The following result is parallel to Theorem 5.47.

THEOREM 5.69. LetT be a standard measure-preserving transformation. Given a typeT
and a speedg(n), the set of allA ∈ X such that the induced transformationTA admits a
periodic approximation of typeT with speedg(n) is a residual set inX .

All the standard corollaries follow such as simple continuous singular spectrum which
is mutually singular with all its convolutions. Since inducing (and the inverse operation of
taking aspecial transformationwhich is the discrete time equivalent of the special flow)
involves cohomological equations with integer values, interesting questions related with
behavior of regular (analytic, smooth, etc.) real-valued cocycles which played the central
role in Section 5.6.3 do not have direct equivalents in this setting.
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5.8. Spectral multiplicity, symmetry and group extensions

5.8.1. Introduction. Most of this section deals with the realization problem for various
sets of essential values of spectral multiplicity; see the preview in Section 3.6.2. Success in
treating of this problem via appropriate constructions is based on the combination of two
principal elements:

(i) Symmetrywhich allows to produce for certain classes of transformations various
intertwining operators inL2 (often but not always coming from commuting mea-
sure preserving transformations) which interchanges various subspaces and hence
guarantees that certain parts of the spectrum come with multiplicity, and

(ii) Approximationwhich shows that “minimal” multiplicities compatible with the sym-
metry are actually realized. Approximation properties come from combinatorial
constructions. Sometimes it is sufficient to consider generic data within a given class
of transformations; in other cases more careful inductive process might be needed.

The subtlety of using approximation techniques is in that it is not always sufficient to
produce approximation which allows to obtain an above estimate for the multiplicity using
Theorem 1.21 or something similar but (in the case of non-homogeneous spectrum) one
needs separate estimates in various subspaces responsible for parts of the spectrum with
different values of the multiplicity function.

5.8.2. Homogeneous spectrum of multiplicity two and Cartesian products.Ergodic mea-
sure preserving transformations with homogeneous spectrum of multiplicity two were
found simultaneously and independently by Ryzhikov [144] and Ageev [16]. They used
approach of [78] and improved the estimate given by Proposition 5.41.

THEOREM5.70. For a generic in the weak topology measure preserving transformationT

the Cartesian squareT × T has homogeneous spectrum with multiplicity two.

PROOF. The symmetry here is the involutionJ : (x, y)  → (y, x) which guarantees that
essential values of the spectral multiplicity are even (see Proposition 4.2) and the approxi-
mation is, first, good cyclic approximation forT which insure simple spectrum and hence,
multiplicity two for the part of the spectrum coming from functions depending only on
one coordinate and, second, a slightly generalized version of good approximation of type
(n,n + 1) (see Section 5.4.2). Namely, for a given natural numberm we will consider
a good linked approximation of type(n,n + m) by periodic processes with two towers
whose size is bounded away from zero and heights differing bym. Existence of this kind
of approximation guarantees that weak limit of powers ofT contains a linear combination
α Id+(1−α)T . This of course means that the limit ofUT n in the strong operator topology
containsα Id + (1− α)UT .

It is sufficient to prove that the maximal spectral multiplicity ofUT×T is at most two.
Thus the theorem will follow from the following lemma

LEMMA 5.71. If T admits a good cyclic approximation and a good approximation of type
(n,n+m) for any naturalm andf is a cyclic vector forUT then the functionsf (x)f (y)
andf (x)f (T y) generateL2.
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PROOF. Sincef is a cyclic vector forUT the functions of the formf (T kx)f (T my) gener-
ateL2 for the Cartesian product. Thus it is sufficient to show that any function of the form
f (x)f (T my) belongs to the space generated byf (x)f (y) andf (x)f (T y) which we will
denote byH . To simplify notations let us denotef (T mx)f (T ky) bym×k and use similar
notation for linear combinations of such functions. From the invariance one gets for every
m ∈ Z,

m×m ∈H and m× (m+ 1) ∈H.

Thus from the approximation criterion(α0+ (1− α)m) × (α0+ (1− α)m) ∈ H hence
by invariance 0×m+m× 0∈H . Similarly by taking limits of some iterates of 0× 1 we
obtain 0×m+ (m− 1)× 1∈H and hence

m× 0+ (m− 1)× 1∈H. (5.9)

Using these inclusions inductively form= 2,3, . . . we obtain thatm×0∈H . Form= 2
one obtains 0×2+1×1∈H and hence 0×2∈H . Assuming thatk×0∈H for k �m, in
particular,(m−1)×0∈H and hencem×1∈H we get from (5.9) that(m+1)×0∈H . �

This finishes the proof of the theorem. �

Looking back at the structure of the spectrum for the Cartesian square described in
Proposition 4.2 we deduce interesting arithmetic structure of the maximal spectral type for
a transformationT whose Cartesian square has spectrum of multiplicity two. First, any
measureµ of the maximal spectral type is singular with respect to its convolutionµ ∗ µ
and, second for almost every with respect toµ ∗µ λ ∈ S1 the conditional ofµ×µ on the
circleλ1λ2 = λ is concentrated in two symmetric points(λ0

1, λ
0
2) and(λ0

2, λ
0
1).

A more sophisticated analysis allows to describe essential values of spectral multiplicity
for themth Cartesian power of a generic measure preserving transformation where the
symmetry is given by the symmetric groupSm of permutations of components and where
the maximal spectral multiplicity is at leastm!.

THEOREM 5.72 [144,16].For a generic measure preserving transformationT themth,
m � 3, Cartesian powerT (m) hasm − 1 different values of the spectral multiplicity:
m,m(m− 1),m(m− 1)(m− 2), . . . ,m!.

5.8.3. Homogeneous spectrum of arbitrary multiplicity and group actions.Measure pre-
serving transformations with homogeneous spectrum of arbitrary multiplicity (including
new examples with multiplicity two) were recently found by Ageev [17] using a different
type of symmetry. His main idea is quite brilliant although in retrospect it looks natural.

Ageev considers the following groupGm. It is a finite extension ofZm and has genera-
torsT1, . . . , Tm, S whereT1, . . . , Tm commute,T1 ·T2 · · · · ·Tm = Id andTi+1 = S ·Ti ·S−1

for i = 1, . . . ,m− 1. Notice thatSm commutes withT1, . . . , Tm and thus the groupGm is
anm-fold extension of the Abelian group with generatorsT1, . . . , Tm−1, S

m.
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THEOREM 5.73. For a generic actionα of the groupGm by measure preserving trans-
formations of Lebesgue space the transformationα(Sm) has homogeneous spectrum of
multiplicitym.

The upper bound on the spectral multiplicity is provided by simplicity of the spectrum
for S; this can be achieved using a proper version of periodic approximation theory for
actions ofGm. It is a standard corollary of the Spectral Theorem 1.8 that then the spec-
trum of themth power has multiplicity at mostm. Spectral theory for this group provides
for symmetry. In particular ifS is weakly mixing (which can also be guaranteed by ap-
proximation arguments) there arem mutually orthogonalSm invariant subspaces where
the restriction of the Koopman operator are unitarily equivalent so by Corollary 1.20 the
values of spectral multiplicity are multiples ofm.

5.8.4. Non-homogeneous spectrum, group extension and factors.These examples which
produced successively more general sets of values of spectral multiplicities from{1,m}
[134], to finite [135] and infinite [65] sets containing 1 and invariant under taking the least
common multiple, to arbitrary sets containing 1 [100], are all based on finite and, more
generally, compact group extensions of transformations admitting good cyclic approxima-
tion with cocycles possessing certain symmetry. The idea actually goes back to the work of
Oseledets [123] who was the first to construct an example of a measure preserving trans-
formation with non-simple spectrum of bounded multiplicity. However, his upper estimate
based on Theorem 5.24 was very crude. Oseledets’ example was the starting point for
Robinson who introduced finer methods of estimating the multiplicity from above. Here
we will describe Robinson’s first construction since it shows both the symmetry and ap-
proximation elements in a clear and suggestive way. We follow [78].

We will considerT , the double group extension of a transformationT0. T :X×Z/mZ×
Fp → X × Z/mZ × Fp wherep is a prime number specified below andFp is the finite
field with p elements, of the following special form

T (x, y, z)= (T0x, γ (x)+ y,φ(y)+ z
)
. (5.10)

Hereγ :X→ Z/mZ is a measurable function which will be specified to provide approxi-
mation properties needed to the above estimate of the spectral multiplicity. For anym there
exists a prime numberp and an isomorphismφ :Zm →G ⊆ Fp, whereG is a subgroup
of the multiplicative groupF∗

p of the finite fieldFp with p elements. These are the data
which go to the second extension.

THEOREM 5.74. For a generic in weak topologyT0 and a generic inL1 set of cocycles
γ the transformationT defined by(5.10) is weakly mixing and has{1,m} as the set of
essential values of the spectral multiplicity.

REMARK. In fact, genericity arguments are not necessary as the proof below shows.
The required conditions are certain approximation properties which can be guaranteed by
choosing, for example, a certain exchange of three intervals asT0 and a certain piecewise
constant function asγ .
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PROOF. Associated with a finite group extension there is a natural orthogonal decomposi-
tion of L2 into UT -invariant subspaces corresponding to the characters of the group. The
additive characters ofFp are given byχw(z)= exp2πizw/p wherew ∈ Fp, so that ifT
is given by (5.10) we obtain an invariant orthogonal decomposition

L2(X×Z/mZ× Fp)=
⊕
w∈Fp

Hw,

where

Hw = {χw(z)f (x, y): f ∈ L2(X×Z/mZ)
}
.

Let us define a permutationσ :Fp → Fp by σ(w)= φ(1)w. Forw �= 0 we also define the
operator

Sw :Hw →Hσ(w) by Sw
(
χw(z)f (x, y)

)= χσ(w)f (x, y + 1).

Sinceχσ(w)(φ(y)) = χw(φ(y + 1)), one hasUT |Hσ(w) · Sw = Sw · UT |Hw . Now let us

examine the permutationσ . It fixes 0 and hasm′ = p−1
m

cycles of lengthm. This explains
how the operatorsSw permute the subspacesHw. We will choose an arbitrary element
θk , k = 1, . . . ,m′, from thekth cycle ofσ , and forj = 0, . . . ,m − 1 we will define the
subspace

Hj =Hσj (θ1) ⊕Hσj (θ2) ⊕ · · · ⊕Hσj (θm′ ).

We will also define

H ∗ =H0.

It is clear thatL2(X×Z/mZ× Fp)=H ∗ ⊕H 0 ⊕ · · · ⊕Hm−1. The linear operator

Sj :Hj →Hj+1, j �= ∗,

is defined in the natural way so that

Sj |HwHw =Hσ(w) ⊆Hj+1.

It follows that

Sj ·UT |Hj =UT |HJ+1 · Sj

and thus since the spectra in all of the spacesHj are identical, the maximal spectral multi-
plicity of T is at leastm. To obtain the estimate of the maximal spectral multiplicity forT
from above we will need two types of approximation for the first extensionT1. In particu-
lar, these will guarantee thatUT1, or equivalentlyUT |H ∗ , has simple continuous spectrum.
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They are, (i) a good linked approximation of type(n,n + 1) (see Proposition 5.40) and
(ii) a certain good approximation withm towers of equal height, which are related to each
other by shifts(x, y)→ (x, y + k). By extending the approximation forT1 to the second
extension, we obtain from (ii): (iii) a good approximation forT with m towers. Since at
least one of the towers has size close to 1/m, Theorem 5.10 implies that maximal spectral
multiplicity for T is no greater thanm. This in particular implies ergodicity ofT since
otherwise there would be invariant functions in everyHj in addition to constants contra-
dicting the above estimate for the spectral multiplicity. This in turn implies weak mixing
since otherwise there would be eigenfunctions with the same eigenvalue in everyHj and
their ratios would produce non-constant invariant functions. By a combinatorial analysis
of the approximating cocyclesγn, measurable with respect to the partitions involved in the
approximation ofT0, one can show that (i), (ii) and (iii) hold for a generic set of cocycles
γ in theL1 topology. Since the maximal spectral types in allHj are identical the above
estimate of the maximal spectral multiplicity bym implies that the spectra in those sub-
spaces are simple and with maximal spectral type singular with respect to that inH ∗. This
implies that set of essential values of spectral multiplicity is{1,m}. �

For constructions with many values of spectral multiplicity the algebraic or “symmetry”
part is more complicated but similar in principle. For infinite sets of values finite exten-
sions are not sufficient and other compact group extensions are used. The most general
case is represented by [100, Algebraic Lemma]. Approximation part has to be done differ-
ently though. The above estimate is not sufficient to conclude that all components in the
spectrum which come from the algebraic construction are mutually singular and have max-
imal possible multiplicity. The solution is to consider approximation constructions directly
for operators in invariant subspaces, to produce simple spectrum for those operators and
guarantee mutual singularities of spectra.

5.8.5. Finite extensions and spectral properties.In [69] a construction was found which
produced finite extensions of simple systems with certain functions with Lebesgue spectral
measure. Based on this work Matthew and Nadkarni [112] have constructed a two points
extension of an adding machine which they showed has a Lebesgue component of mul-
tiplicity 2. The Matthew–Nadkarni example involves a construction of a cocycle over the
adding machine which takes values inZ/2Z in such a way that the corresponding two
point extension possesses a natural partition in two sets of equal measures whose iterates
are pairwise independent. By replacing the adding machine in the base and modifying the
construction appropriately Ageev [15] proved

THEOREM5.75. For anyn� 1 there exists a weakly mixing transformation with essential
values of spectral multiplicity{1,2n} where the component of multiplicity2n is Lebesgue.

The construction is also a finite extension, but this time, of a weakly mixing rank one
transformation. See also [103] for examples with Lebesgue component of any given even
multiplicity in the spectrum.
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6. Key examples outside combinatorial constructions

6.1. Introduction

Of the four principal classes of systems which appear in smooth dynamics, two, hyper-
bolic and (typical) partially hyperbolic, are well understood from the point of view of
ergodic theory. Modulo some sufficiently trivial modifications ergodic behavior of such
systems with respect to an absolutely continuous invariant measure (as well as some other
good invariant measures, such as maximal entropy or more general Gibbs measures) is de-
scribed by the Bernoulli model which has countable Lebesgue spectrum and is classified
up to a measurable isomorphism by the single invariant, entropy [3, Sections 2.3 and 3].
On the other hand, it is worth noticing that certain partially hyperbolic systems exhibit
complicated and non-standard ergodic behavior. For example there are partially hyperbolic
volume preserving diffeomorphisms which areK but not Bernoulli [77].

Elliptic systems admit in addition to the basic model of the toral translation a variety
of behaviors which are well modeled by several kinds of combinatorial constructions dis-
cussed above.

The remaining class, parabolic systems, characterized by moderate and more or less
uniform growth of orbit complexity do not naturally appear in the context of combinatorial
constructions. In fact, it would be fair to say that many of the examples of the greatest
intrinsic interest produced by combinatorial construction display phenomena which are
difficult to render in the smooth situation.

In the next two sections we briefly review ergodic properties of two classes of parabolic
systems which appear most naturally and are best understood. Key results concerning those
systems are among the deepest in the field of ergodic theory and they yield remarkable ap-
plications outside the field, see [10]. In the last section we discuss another class of examples
which came from probability theory and which provide a remarkably flexible and power-
ful tool for the spectral realization problem; in particular, the first example of a measure
preserving transformation with simple continuous spectrum was found among Gaussian
systems by Girsanov in 1958 [61] almost a decade earlier than direct methods based on
rank and periodic approximation were developed.

6.2. Unipotent homogeneous systems

6.2.1. Definitions and simple examples.A homogeneous system has naturally defined
linear part namely the adjoint action on the Lie algebra ofG.

If all eigenvalues of the linear part of a homogeneous map are equal to one the map is
calledunipotent. A one-parameter group of unipotent maps is called aunipotent flow. If the
linear part is semisimple, i.e. linearizable over complex numbers the flow acts by isometries
with respect to a Riemannian metric and hence the spectrum is always pure point. Linear
flows on the torus are examples; more generally this can happen on Euclidean manifolds
(see Section 1.4b and Theorem 2.3.3 in [10]).

More interesting behavior appears when the linear part has non-trivial Jordan blocks. For
example, mixture of pure point and countable Lebesgue spectrum appears in homogeneous
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flows on nilpotent groups which in many respects are similar to unipotent affine maps on
the torus like those in Examples 3.17 and 3.18.

6.2.2. Horocycle flows and propertyR. Horocycle flows which appeared in Section 2.1.3
are the simplest and best understood non-trivial examples among unipotent flows on ho-
mogeneous spaces of semisimple Lie groups.

We showed that they have countable Lebesgue spectrum which appears quite often in
ergodic theory. However, beyond that horocycle flows possess very striking ergodic prop-
erties which imply strong rigidity statements. These properties are summarized in the fol-
lowing theorems due to M. Ratner [130]:

THEOREM 6.1. If λ is an ergodic self-joining of a horocycle flow which is not the product
measure, then it is a finite extension of its two marginals.

REMARK. This statement is very close to simplicity. Simplicity is saying thatV =H, here
we have thatV andH both have finite fibers inV ∨H.

THEOREM 6.2. Horocycle flows have the pairwise independently determined property
(see Definition4.15).

This implies mixing of all orders for the horocycle flows. As a consequence of these
theorems, Ratner has obtained the following rigidity results:

THEOREM 6.3. If two horocycle flows are measure theoretically isomorphic they are al-
gebraically isomorphic.

THEOREM 6.4. Every factor of a horocycle flow is algebraic.

THEOREM6.5. The time one transformation of every horocycle flow is a factor of a simple
transformation. In case the subgroupγ is maximal and not arithmetic[4, Section1.5c],
the horocycle flow has minimal self-joinings as anR action.

A key property for the understanding of the horocycle flow is theR property of Ratner
which can be formulated in a general context.

Let Tt be a flow on a metric space withσ -compact metricd preserving a Borel measure.

DEFINITION 6.6. The flowTt has the propertyRp, p �= 0 if the following is true:
For everyε > 0 andN > 0 there existα(ε), δ(ε,N) > 0 and a subsetA(ε,N)⊂X such

thatm(A) > 1− ε with the property that ifx, y ∈A andd(x, y) < δ(ε,N) andy is not on
theTt orbit of x, then there areL= L(x, y) andM =M(x,y)� N with M/L� α such
that if

K
+−(x, y)= {n ∈ Z ∩ [L,L+M]: d(Tnp(x), T(n±1)p(y)

)
< ε
}
,
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then

|K+|/M > 1− ε or |K−|/M > 1− ε.

It is remarkable that this property of “slow relative drift of nearby points” is also satisfied
by the Chacon transformation.

It is not known how far theR-property is from simplicity.

PROBLEM 6.7. Does there exist a flow satisfying theR-property such that its time one
map is disjoint from all simple transformations?

6.2.3. Ratner theory. Recall that spectral properties of unipotent homogeneous systems
are fairly standard: as for all homogeneous systems in general the mixture of pure point and
countable Lebesgue spectrum. In the most interesting case of unipotent maps and flows on
homogeneous spaces of semisimple Lie groups the spectrum is countable Lebesgue.

On the other hand, these systems exhibit very interesting ergodic properties beyond
spectrum. For example, they provide examples of infinitely many systems with countable
Lebesgue spectrum and zero entropy which are pairwise not Kakutani equivalent, namely
different Cartesian powers of any horocycle flow [129]. The distinguishing invariant is of
“slow entropy” type but adapted to the Kakutani rather than Hamming metrics in the spaces
of sequences coding orbit segments; see [75] for the discussion of metrics and [83] for a
general discussion of these invariants.

Isomorphisms, factors and joining between unipotent systems can be systematically
studied with the powerful tool, the Ratner Measure Rigidity Theorem [132] which basi-
cally states that any invariant Borel probability ergodic measure is of algebraic nature. For
a detailed exposition of Ratner theory and its applications see [10, Section 3].

It is worth noticing that while great attention has been paid to the number theoretical
applications of Ratner’s rigidity for unipotent systems there has been no systematic study
of its implications to the ergodic theory of such actions, as has been done for the horocycle
flows. Certainly it deserves to be looked at.

6.3. Effects of time change in parabolic systems

We will now complete the discussion of Section 5.6.3 of known spectral and other ergodic
properties which appear under sufficiently nice time change in principal classes of systems.

6.3.1. Time change in horocycle flows.Let v be the vector field generating a horocycle
flow. In [98] it is proved that ifC1 time change is not too large, namely iff − Lf > 0
whereL is the derivative with respect to the geodesic flow then the flow generated by
f v is mixing. The idea of the proof is of course to show that there is enough uniform
twist across the orbits so that a small piece gets spread sufficiently uniformly across the
space. However, the rate of mixing is not controlled well enough to guarantee absolutely
continuous or Lebesgue spectrum. Still this looks plausible.
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CONJECTURE6.8. Any flow obtained by a sufficiently smooth time change from a horocy-
cle flow has countable Lebesgue spectrum.

Cohomological equations over the horocycle flows has been throughly studied by
Flaminio and Forni in [53]; see [78, Section 11.6.2] for a summary. While the results
(growing number of invariant distributions of increasing orders) indicate complex struc-
ture of measurable isomorphism classes they do not shed direct light on spectral or other
ergodic properties of time changes.

In an earlier work Ratner [131] shows that rigidity of isomorphisms between horocycle
flows is partly inherited by time changes with very moderate degree of regularity in the
sense that isomorphic time changes appear only for isomorphic horocycle flows. A key
ingredient in the proof is showing propertyR for this class of time changes.

6.3.2. Flows on surfaces of higher genus.Another class of parabolic systems after unipo-
tent homogeneous systems is represented by area preserving flows on surfaces with finitely
many fixed points. In this case the section maps on transversals are one-dimensional, in fact
they are interval exchange transformations. On the other hand, the slowdown near a fixed
point leads to strong stretching which albeit not uniform in space is somewhat similar in
effects with the uniform transverse stretching in unipotent systems.

A model example. The simplest example where it is evident that the slowdown and
not transverse dynamics plays the main role in determining the asymptotic behavior is a
flow on T2 obtained from an irrational linear flow by slowing down near a single point. In
order to have a absolutely continuous measure preserved the inverse of the velocity change
function must be integrable and the measure will still have a singularity. An alternative
way is to change the flow in a neighborhood of a point so that in a local linear coordinate
system(x, y) in which the linear flow is generated by the vector field∂/∂x and hence
is Hamiltonian with Hamiltonian functiony to have the new flow with the Hamiltonian
which locally has the formy(x2 + y2)k and gradually changes toy. One can make the
change carefully so that the section map on a circle which still be a rotation and the flow
will be isomorphic to the special flow with the roof function smooth except of one point
near which it has an integrable singularity of a power type. In contrast with the case when
the roof function has bounded variation such a flow is mixing [91]. The method is similar
to that of [98] albeit the estimates are more subtle. Notice that unlike the latter case flows
here the direction of stretching is different on two sides of the singularity.

Degenerate and non-degenerate saddles.A natural class of systems of this kind con-
sists of area preserving flows on surfaces of genus� 2 with singularities of the saddle type.
To include the previous example one may also allow a finite number of stopping points. The
section map on a transversal is an interval exchange transformation and return time func-
tion has singularities at the endpoints of the intervals. There is an interesting difference
between non-degenerate saddles (zeroes of the first order for the vector field) and other
degenerate saddles which include stopping points (the latter can be considered as saddles
with two separatrices). Non-degenerate saddles produce milder symmetriclogarithmicsin-
gularities of the return time functions whereas others produce power singularities; in the
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latter case if the flow is ergodic it is mixing [91]. This in particular implies the following
existence result:

THEOREM 6.9. There is an area preserving mixing flow of classC∞ on any close surface
other than the sphere, projective plane and Klein bottle.

On the other hand, if the section map happens to be a rotation then any flow with only
non-degenerate saddles is not mixing [92].

An interesting phenomenon appears when the singularities of the return time function
are logarithmic but asymmetric; this still may produce mixing [87]. This situation appears,
for example, on the torus for a flow with a separatrix loop.

Thus sufficiently strong stretching due to power or asymmetric logarithmic singularities
of the return time function produces mixing while slightly weaker symmetric logarithmic
singularities do not if the base transformation is a rotation (this can be explained from the
point of view of Fourier analysis, see [105]). However mixing properties of typical flows
on higher genus surfaces, namely flows with zeroes of order one, remain unknown.

PROBLEM 6.10. Does there exist a mixing special flow over an interval exchange trans-
formation with the roof function smooth except for symmetric logarithmic singularities at
the interval endpoints?

Also little is known about the spectral properties of mixing flows. Some estimate of
correlation decay have been obtained but they are too weak to conclude that the spectrum
is absolutely continuous. Nothing is also known about multiplicity of the spectrum.

Cohomological equations.Cohomological equations over interval exchange transfor-
mations and related classification of flows on surfaces have been studied by Forni in two
very powerful papers [55,56]. Those results contain some of the deepest insights into in-
terplay between ergodic theory and harmonic analysis. There are important applications to
the speed of convergence of ergodic averages for various classes of functions. See [5] for
an exposition of Forni’s work.

However, as is the case with horocycle flows, there are no direct implications for spectral
and other invariant under metric isomorphism ergodic properties of the flows.

6.4. Gaussian and related systems

6.4.1. Spectral analysis of Gaussian systems.For a detailed introduction to the subject
see [29, Chapter 14].

Recall that from the “classical” ergodic point of view, given a measure preserving trans-
formationT on a measure space(X,µ) and a measurable functionf onX, the sequence
Yn = f ◦ T n, n ∈ Z, defines a stationary stochastic process. A stochastic process can then
be considered as a measure preserving transformation together with a measurable func-
tion f .
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DEFINITION 6.11. A stationary processXn,n ∈ Z, with zero mean defined on a proba-
bility space(Ω,A,P ) is calledGaussianif for all n ∈ Z, m ∈ N the law of them-tuple
(Xn,Xn+1, . . . ,Xn+m−1) is Gaussian (and independent ofn). The shift transformationTσ
defined byT (Xn)n∈Z = (Xn+1)n∈Z is obviously measure preserving. It is often called the
Gaussian dynamical systemgenerated by the processXn.

The spectral measure of the Koopman operator associated toT restricted to the closure
of the space of linear combinations ofXn is called thespectral measure of the Gaussian
process.

We will soon see how this measure determines the maximal spectral type of the corre-
sponding Gaussian dynamical system. The covariance matrix of the stationary Gaussian
processXn, n ∈ Z, E(XnXn+m) is entirely determined by the spectral measureσ :

E(XnXn+m)=
∫
S1
eixm dσ.

Conversely, given a positive symmetric measureσ on the circle, there exists a stationary
Gaussian process with zero meanXσn , n ∈ Z, with associated shift transformationTσ such
that

E(XnXn+m)=
∫
S1
eixm dσ.

A way to constructXσn is to first consider a probability space(Ω,A,P ) on which a
family Zn, n ∈ Z, is defined, consisting of independent Gaussian random variables with
lawN(0,1) and withH being theL2-closure of the linear span of theZn, n ∈ Z. TheZn
are thus an orthonormal basis forH and every element inH is a random variable with zero
mean and a Gaussian distribution law. Consider the operatorUσ onH which is isometric
to the unitary operatorM on L2(S1, dσ ) defined byg→ eixg (as in Theorem 1.1), by
means of an isometryV betweenH andL2(S1, dσ ). (Uσ = V −1MV .) Then

Xσn =Unσ
(
V −11
)
, n ∈ Z,

is a Gaussian process which obviously satisfies

E
(
XσnX

σ
n+m
)= ∫

S1
eixm dσ.

Let B(H) be the smallestσ -algebra which makes all elements inH measurable. Then
L2(B(H)) is the direct sum of orthogonal spacesH(n), n ∈ N (the Wiener chaos) where
H(n) is the orthocomplement of the direct sum of theH(k), 1� k � n− 1, in the closure
of the linear space generated by the polynomials of degreen in variables which are inH .
These spaces are invariant underUTσ and the spectral measure ofUTσ restricted toH(n)

is then-fold convolutionσ (n). Thus we can calculate the maximal spectral type of the
Gaussian system.
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PROPOSITION6.12. The maximal spectral type of the Gaussian transformationTσ is the
sum of the spectral measureσ and all it convolutionsσ (n).

COROLLARY 6.13. Tσ is ergodic only whenσ is non-atomic, and in that case it is weakly
mixing.

If a symmetric measureσ on S1 is the sum of two symmetric measuresσ1 and σ2
which are mutually singular,Tσ is isomorphic to the direct productTσ1 × Tσ2. Therefore,
decomposingσ as the sum of its singular partσs and of its absolutely continuous partσa ,
we see that, since a Gaussian process with singular spectral measure has 0 entropy,Tσ is
isomorphic to a factor of the product of a zero entropy transformation by an infinite entropy
Bernoulli shift, and is itself of this form, as an application of general theorems. If in the
preceding construction, we consider the more general situation where the operatorU on
H has no longer simple spectrum, we still obtain a transformation, which is no longer
described by a single Gaussian process, which we callgeneralized Gaussian. Generalized
Gaussian processes share many properties with ordinary Gaussian processes.

A version of the generalized Gaussian construction for more general groups provides a
general way to construct many spectrally (and hence metrically) non-isomorphic actions
by measure preserving transformations [4, Section 4.4]. For such groups as semisimple
Lie groups of rank� 2 and lattices in such groups whose actions possess strong rigidity
properties which render many standard constructions trivial this is the only known way to
produce many non-isomorphic actions.

6.4.2. Spectral multiplicity for Gaussian systems.In order forUTσ to have simple spec-
trum it is necessary for allσ (n) to be pairwise singular.

On the other hand, the spectrum is simple if there is a setK such that (i)K ∪−K has
full σ -measure, and (ii) all its elements are independent over the rationals, that is if

λ1, . . . , λn ∈K, and (m1, . . . ,mn) ∈ Zn \ {0}, then m1λ1 + · · · +mnλn �= 0.
(6.1)

We use here additive coordinate on the circleS1 = R/Z. The first proof of existence of a
measure preserving transformation with a simple but not pure point spectrum was given
by Girsanov in [61] using the Gaussian system of this kind. A stronger condition which
implies (6.1) is the following:
(K) Every continuous function on the setK of modulus1 is a uniform limit of characters.

A closed set satisfying condition(K) is called aKronecker set. D. Newton [116] first used
Kronecker sets to construct Gaussian systems with simple spectrum. His examples were
Gaussian systems with spectral measures supported by the union of a Kronecker setK

and−K . Let us call such a measureKronecker. Also using a construction of a mixing
measure suggested by Rudin [139] Newton found a mixing Gaussian transformation with
simple spectrum.

PROPOSITION6.14. For Gaussian systems the multiplicity function is multiplicative al-
most everywhere with respect to a measure of the maximal spectral type.
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COROLLARY 6.15. Either the spectrum of a Gaussian transformation is simple or the
maximal spectral multiplicity is unbounded.

PROPOSITION6.16. There existsσ such thatTσ has non-simple spectrum and for which
the multiplicity function is finite almost everywhere.

Corollary 6.15 and Proposition 6.16 explain why finding systems with non-simple spec-
trum of bounded multiplicity was considered an interesting problem when Gaussian sys-
tems and their modifications provided the only models with interesting spectral proper-
ties. After the initial success in the study of Gaussian systems there was a hope to orga-
nize a good part of ergodic theory around a generalized version of the Gaussian model
reflected in [147]. One of the original impulses which led to the development of the
theory or periodic approximations and similar geometric methods came from attempts
to understand how restrictive were the assumptions on which this approach was based.
The answer on the occasion was that they almost never held in natural geometric situa-
tions.

6.4.3. Spectrally defined isomorphism in Gaussian and similar systems.Foias and
Stratila in [54] showed that Newton’s examples have a remarkable property which makes
them similar to transformations with pure point spectrum, in fact like translations on
continuum-dimensional tori.

THEOREM 6.17. Let σ be a Kronecker measure. Then if (X,A,m,T ) is ergodic and if
f ∈ L2(X) satisfiesνf = σ , the processT nf , n ∈ Z, is Gaussian.

One important consequence of this theorem is the following [150].

THEOREM 6.18. Let σ be a Kronecker measure andTσ the associated Gaussian trans-
formation. All ergodic self-joinings ofTσ remain generalized Gaussian.

One can prove that the conclusion of this theorem holds for measuresσ such that the
associated GaussianTσ has simple spectrum. Those processes such that all their ergodic
joinings remain generalized Gaussian are called GAG and are the subject of a compre-
hensive study in [107]. They can be thought of as a limit of a product of pairwise disjoint
simple transformations. Let us say thatσ for which the conclusion of Theorem 6.17 holds
has theF.S.-property. There are examples in [107] where measures satisfying the F.S.-
property have as supportS the union of two disjoint Kronecker sets withoutS itself being
Kronecker. An interesting question is the following:

PROBLEM 6.19. Does there exist a mixing measure which possesses the F.S.-property?

F. Parreau (unpublished) has produced a mildly mixing measure with the F.S.-property.
Notice that Kronecker systems are rigid. This is a direct consequence of the property of
Kronecker sets that every continuous function is a uniform limit of characters. The rigidity
is just this statement applied to the constant function 1. We are now going to show that, with
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the use of Gaussian processes, it is easy to produce two transformations which are weakly
isomorphic but not isomorphic. Given a Gaussian processXσn to which we associate the
shift transformationTσ (acting on(X,A,m)), if we letH be theL2-closure of the linear
span ofXσn , n ∈ Z, we have seen that every unitary operatorU onH gives rise to a measure
preserving transformationτU (the one coming from the Gaussian processes associated to
U whenH is decomposed into an orthogonal sum ofU -cyclic subspaces). If we take

UX =−X,

the mapτU is an involution which commutes withTσ ; theσ -algebraB of τU -invariant sets
defines a factor (which we call̂Tσ ) of Tσ and

L2(B)=
∑
n�0

H(2n).

Such a factor was first defined by Newton and Parry. We takeσ such thatσ is continuous
andσ (n) ⊥ σ (m), n �=m. We define

T1 =
∏
k∈N

Tk,σ ,

where everyTk,σ , k ∈ N, is a copy ofTσ and

T2 = T̂σ × T1.

It is therefore obvious thatT1 andT2 are weakly isomorphic.

THEOREM 6.20. T1 andT2 are weakly isomorphic but not isomorphic.

PROOF. In L2 of the space on whichT1 lives,UT1 (the unitary operator associated toT1)
has spectral measureσ on∑

k∈N

⊕Hk =H.

The spectral measure ofUT1 onH
⊥

is singular with respect toσ (because of the hypothesis
onσ ). Again, because

σ (2n) ⊥ σ,

the spectral measure ofUT2 on H
⊥
2 is singular with respect toσ . (H 2 is

∑
k∈N ⊕Hk in

the space on whichT2 lives.) Therefore, ifT1 andT2 are isomorphic then the associated
isometry must sendH ontoH 2, which is impossible. �
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Note that it is also very easy to construct weakly isomorphic but not isomorphic trans-
formations from a transformation which has MSJ (and therefore from Chacon transfor-
mations). This was done by D. Rudolph before the Gaussian example described above.
The first example of two weakly isomorphic but not isomorphic transformations is due
to S. Polit. Kwiatkowski, Lemánczyk and Rudolph [101] have constructed an example
of two smooth dynamical systems which are weakly isomorphic but not isomorphic. The
following result by De la Rue shows that Girsanov examples and more general transforma-
tions with simple spectrum coming from the Gaussian construction are quite different from
transformations with simple spectrum constructed by more geometric methods in earlier
parts of this survey.

THEOREM 6.21 [37]. A Gaussian transformation cannot be locally rank one.

Another result in a similar vein was proved by del Junco and Lemańczyk [31] who
extended an earlier result by Thouvenot [151].

THEOREM 6.22. Gaussian transformations are disjoint from simple transformations.

One more striking property of Kronecker Gaussian systems is the De la Rue result [36]
mentioned before that there are maximal spectral types which appear for zero entropy
ergodic transformations but not for standard ones (Kakutani equivalent to adding machines
and irrational rotations). This follows form the Foias–Stratila theorem and the following
fact proved by De la Rue.

THEOREM 6.23. There exists a Kronecker measure such that the corresponding Gaussian
transformation is not standard.

An interesting open problem tying together the themes of this section and Section 5.5 is
the following:

PROBLEM 6.24. Does there exist a volume preserving diffeomorphism of a compact dif-
ferentiable manifold which is measurably conjugate to a Gaussian system?

More specifically, given a non-trivial volume preserving smooth actionS of S1 on a
compact differentiable manifoldM , does there exist a diffeomorphism measurably con-
jugate to a Kronecker Gaussian system in the spaceA, the closure of conjugates of the
elements ofS (see Section 5.5.2)?
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1. Introduction

The main focus of this survey is the mutually perpetuating interplay between ergodic the-
ory, combinatorics and Diophantine analysis.

Ergodic theory has its roots in statistical and celestial mechanics. In studying the long
time behavior of dynamical systems, ergodic theory deals first of all with such phenomena
as recurrence and uniform distribution of orbits.

Ramsey theory, a branch of combinatorics, is concerned with the phenomenon of preser-
vation of highly organized structures under finite partitions.

Diophantine analysis concerns itself with integer and rational solutions of systems of
polynomial equations.

To get a feeling about possible connections between these three quite distinct areas of
mathematics, let us consider some examples.

1.1. Fermat’s theorem over finite fields

Our first example is related to Fermat’s last theorem. Givenn ∈ N, whereN, here and
throughout this survey, represents the set of positive integers, and a primep, consider
the equationxn + yn ≡ zn (modp). This equation (as well as its more general version
axn+byn+czn ≡ 0 (modp)) was extensively studied in the 19th and early 20th centuries.
(See [50, Chapter 26] for information on the early work and [118, Chapter XII] for more
recent developments and extensions.) We are going to prove, with the help of ergodic and
combinatorial considerations, the following theorem.

THEOREM 1.1. For fixedn ∈ N and a large enough primep, the polynomialf (z, y) =
zn − yn represents the finite fieldZp = Z/pZ. In other words, for any c ∈ Zp there exist
z, y ∈ Z∗

p = Zp \ {0}, such thatc= zn − yn.

Puttingc = xn immediately gives the following result, which was proved by Schur in
1916. (See also [49].)

COROLLARY 1.2 [126]. For fixed n ∈ N and large enough primep, the equation
xn + yn ≡ zn (modp) has nontrivial solutions.

In the course of the proof of Theorem 1.1 we shall utilize the following classical fact due
to F. Ramsey [117]. For a nice discussion which puts Ramsey’s theorem into the perspective
of Ramsey theory, see [72]. In what follows,|A| denotes the cardinality of a setA.

THEOREM 1.3. For anyn, r ∈ N there exists a constantc = c(n, r) such that if a setA
satisfies|A| � c and the set[A]2 of two-element subsets ofA is partitioned intor cells
(or, as we will often say, is r-colored): [A]2 =⋃ri=1Ci , then there exists a subsetB ⊂ A
satisfying|B|> n and such that for somei, 1� i � r , [B]2 ⊂ Ci . (In this case we say that
[B]2 is monochromatic.)
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We shall also be using the following abstract version of the Poincaré recurrence theorem
(cf. [115, pp. 69–72]).

THEOREM 1.4. Assume thatµ is a finitely-additive probability measure on a measurable
space(X,B), and let a groupG (which is not necessarily infinite or commutative) act
on (X,B,µ) by measure preserving transformationsTg , g ∈ G. LetA ∈ B with µ(A) =
a > 0 and let an integerk satisfyk > � 1

a
�. If |G| � k, then for anyk distinct elements

g1, g2, . . . , gk ∈G there exist1� i < j � k such thatµ(A∩ T
gig

−1
j
A) > 0.

PROOF. If the statement does not hold, then for anyi �= j , µ(TgiA∩ Tgj A)= 0. But then

µ(
⋃k
i=1TgiA)=

∑k
i=1µ(TgiA)= ka > 1, in contradiction withµ(X)= 1. �

REMARK 1.5. If one measures the triviality of a mathematical statement by the triviality
of its proof, one can only wonder how and why a statement as trivial as Theorem 1.4 can
lead to interesting applications. Yet it does! In particular, we shall utilize it in the proof of
Theorem 1.1 and, at least implicitly, on few more occasions. (See Theorems 1.11 and 1.12
below. See also [10] for additional examples and more discussion.)

PROOF OF THEOREM 1.1. Let ν be the normalized counting measure onZp. Noting
that the indexr of the multiplicative subgroupΓ = {xn: x ∈ Z∗

p} in Z∗
p is at mostn,

we get, forp sufficiently large,ν(Γ ) � 1
n+1. Let a1, . . . , ar ∈ Z∗

p, wherer � n, be such
thatZ∗

p =
⋃r
i=1Γ ai is the partition ofZ∗

p into disjoint cosets ofΓ . LetA= {2j , 1� j <
log2p}. InterpretingA as a subset ofZ∗

p, we note that since all the differences 2j − 2i ,

1 � i < j < log2p are distinct, there is a natural bijection between the set[A]2 of two-
element subsets ofA and the set∆(A)= {2j −2i , 1� i < j < log2p} ⊆ Zp. The partition
Z∗
p =
⋃r
i=1Γ ai naturally induces a partition (coloring) of∆(A). Assuming thatp is large

enough, we get by Theorem 1.3 a subsetB ⊂ A with the property that|B| > n and such
that the set of differences of distinct elements fromB, ∆(B), is monochromatic, i.e. for
somei0 ∈ {1,2, . . . , r}, ∆(B)⊂ Γ ai0. But thenΓ itself also contains a set of differences,
namely∆(Ba−1

i0
).

Let us apply now Theorem 1.4 to the action ofZp on itself by translations:x→ x + g,
g ∈ Zp. Let c ∈ Z∗

p be arbitrary. Consider the setBa−1
i0
c ⊂ Γ c. Since|Ba−1

i0
c| = |B|> n,

we have by Theorem 1.4 that there is an elementx in the set of differences∆(Ba−1
i0
c),

such thatν(Γ ∩ Γ − x) > 0. Noting thatx is of the formgc, whereg ∈∆(Ba−1
i0
c)⊂ Γ ,

we have(Γ ∩ Γ − gc) �= 0, which impliesgc ∈ Γ − Γ = {zn − yn: z, y ∈ Z∗
p}. Utilizing

the fact thatg ∈ Γ , we getc ∈ Γ − Γ . Sincec ∈ Z∗
p was arbitrary (and since, trivially,

0∈ Γ − Γ ) we finally getZp = Γ − Γ . �

We leave it to the reader to check that routine adaptation of the proof above allows one to
show that for fixedn the polynomialf (z, y)= zn − yn represents any large enough finite
field. While this result has also a more traditional number-theoretical proof (see [125]), the
“soft” method utilized in the proof of Theorem 1.1, gives, after appropriate modifications,
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the following more general result, which so far has no conventional proof. We shall provide
the proof at the end of Section 5.

THEOREM 1.6 [35]. Let F be an infinite field and letΓ be a multiplicative subgroup of
finite index inF ∗ = F \ {0}. Then

Γ − Γ = {x − y: x, y ∈ Γ } = F.

While Theorem 1.1 is stronger than Schur’s result (Corollary 1.2), the following key
lemma from [126] is of independent interest as one of the earliest results of Ramsey theory.

THEOREM 1.7. For anyr ∈ N, there exists a positive constantc= c(r) such that for any
integerN � c, any r-coloring {1,2, . . . ,N} =⋃ri=1Ci yields a monochromatic solution
of the equationx + y = z.

PROOF. The result almost immediately follows from Ramsey’s theorem (Theorem 1.3
above) via an argument similar to the one utilized in the proof of Theorem 1.1. (Schur’s
original proof was somewhat longer, but completely elementary.) Observe that ifr is fixed
andN is sufficiently large, then one of theCi contains the set of differences of a 3-element
setA= {a1, a2, a3}. The desired result then follows by settingx = a3 − a2, y = a2 − a1,
z= a3 − a1. �

To derive Corollary 1.2 from Theorem 1.7, one considers the partition of{1,2, . . . ,
p − 1} induced by the partition ofZ∗

p into disjoint cosets of the multiplicative group
Γ = {xn: x ∈ Z∗

p}. It then follows from Theorem 1.7 that there exists a cosetΓ c and
x, y, z ∈ Γ c such that (both inN and inZp) x + y = z. Writing, for somexn1 , y

n
1 , z

n
1 ∈ Γ ,

x = xn1c, y = yn1c, z= zn1c, we get, after the cancellation,xn1 + yn1 ≡ zn1 (modp).

1.2. Hilbert’s theorem

Arguably, the earliest nontrivial result of Ramsey theory is the following theorem which
D. Hilbert utilized in [82] in order to show that if the polynomialp(x, y) ∈ Z[x, y] is
irreducible, then there existsn ∈ N such thatp(x,n) ∈ Z[x] is also irreducible. Givend
distinct integersx1, . . . , xd , define thed-cube generated byx1, . . . , xd byQ(x1, . . . , xd)=
{∑di=1 εixi, εi ∈ {0,1}}.

THEOREM 1.8 [82]. For anyd, r ∈ N and any partitionN =⋃ri=1Ci , one of theCi con-
tains infinitely many translates of ad-cube.

We shall see below that Hilbert’s theorem admits a very simple proof based on a version
of Poincaré recurrence theorem. But first we are going to formulate and discuss Hindman’s
classical Finite Sums Theorem, proved in [83], which contains both Schur’s and Hilbert’s
theorems as very special cases.
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DEFINITION 1.9. Let(xi)∞i=1 ⊂ N. The IP set generated by the sequence(xi)
∞
i=1 is the set

FS(xi)∞i=1 of finite sums of elements of(xi)∞i=1 with distinct indices:

FS(xi)
∞
i=1 =

{
xα =
∑
i∈α
xi, α ⊂ N,1� |α|<∞

}
.

1.3. IP sets and Hindman’s finite sum theorem

IP sets can be viewed as a natural generalization of the notion of ad-cube (if one disregards
the following subtle distinction: while the verticesxi of the d-cube are supposed to be
distinct, no such assumption is made in Definition 1.9). This explains the term IP (coined
by H. Furstenberg and B. Weiss in [65]): Infinite-dimensional Parallelepiped.

THEOREM1.10 [83]. For any finite partition ofN, one of the cells of the partition contains
an IP set.

The original proof of Theorem 1.10 in [83] was, in Hindman’s own words, “horren-
dously complicated.” It therefore comes as a pleasant surprise that Hindman’s theorem
admits a short and easy proof. The following simple proposition is the key to proofs of
Hindman’s and many other results of a similar nature.

THEOREM1.11. LetS be a family of nonempty sets inN. If S has the following property:
(i) for anyA ∈ S there exist arbitrarily larget ∈ N such that

A∩ (A− t) ∈ S,

then for anyA ∈ S and anyd ∈ N, there existt1 < t2 < · · · < td such thatA contains
infinitely many translates of thed-cubeQ(t1, t2, . . . , td ). If the following stronger property
holds:

(ii) for anyA ∈ S there exist arbitrarily larget ∈A such that

A∩ (A− t) ∈ S,

then eachA ∈ S contains an IP set.

PROOF. Let A ∈ S and lett1 be such thatA1 = A ∩ (A− t1) ∈ S . By assumption, there
existst2> t1 such thatA2 =A1∩ (A1− t2) ∈ S . ButA2 =A∩ (A− t1)∩ (A− t2)∩ (A−
(t1 + t2)) and so it is clear that, for anya ∈ A2, one hasa +Q(t1, t2)⊂ A. Continuing in
this fashion one gets, afterd steps,t1< t2< · · ·< td such thatAd =⋂α∈Fd (A− tα) ∈ S ,
whereFd is the set of all subsets of{1,2, . . . , d} andtα =∑α∈Fd ti . Then anya ∈Ad has
the property thata +Q(t1, t2, . . . , td ) ⊂ Ad ⊂ A, which proves the first assertion of the
theorem. Now, let us assume that property (ii) holds. It is easy to see that by choosing at
each stepti ∈ Ai−1, whereA0 = A, one gets, for anyd ∈ N, Q(t1, t2, . . . , td) ⊂ A. This
clearly implies thatFS(ti)∞i=1 ⊂A and we are done. �
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Recall that, for a setA ⊂ N, the upper densityd̄(A) is defined by d̄(A) =
lim supN→∞

|A∩{1,2,...,N}|
N

. It is easy to see, by trivial adaptation of the proof of The-
orem 1.4 above, that if̄d(A) > 0 then there exist arbitrarily larget ∈ N such that
d̄(A ∩ (A − t)) > 0. Applying Theorem 1.11, we have now the following result which,
in view of the fact that for any finite partitionN =⋃ri=1Ci at least one of theCi has
positive upper density, may be considered as a strengthening of Hilbert’s Theorem 1.8.

THEOREM 1.12. LetA⊂ N have positive upper density. Then for anyd ∈ N, there exist
t1< t2< · · ·< td such that the set{

a ∈A: a +Q(t1, t2, . . . , td)⊂A
}

has positive upper density. In particular, A contains infinitely many translates
a +Q(t1, t2, . . . , td ) with a ∈A.

REMARK 1.13. One says that Theorem 1.12 is adensityversion of Theorem 1.8, which
is a result aboutpartitions. While we were lucky to produce a rather trivial proof of this
density result, usually this is not the case. As we shall see in detail in Section 4, the density
versions of partition results are much deeper and have rather involved and sophisticated
proofs.

As we shall momentarily see, Hindman’s theorem also follows from Theorem 1.11. To
make the derivation possible, one needs only to find a familyS of subsets ofN which satis-
fies condition (ii) and has the property that for any finite partitionN =⋃ri=1Ci , one of the
Ci belongs toS . This is best achieved by utilizingβN, the Stone–̌Cech compactification of
N interpreted as the space of ultrafilters onN. To be more precise, one utilizes the fact that,
with respect to a naturally inherited operation extending the addition inN, βN is a compact
semitopological semigroup and, as such, has an idempotent. Any such idempotent allows
one to introduce a certain{0,1}-valued measureµ on the power setP(N) which, in turn,
provides the sought after familyS by the ruleA ∈ S ⇔ µ(A)= 1.

The properties of such measures are described in the following proposition, the proof of
which will be given in Section 3. (See Theorem 3.3 below.)

PROPOSITION1.14. There exists a finitely additive{0,1}-valued probability measureµ
on the spaceP(N) of all subsets ofN which is “almost shift-invariant” in the following
sense. For anyC ⊂ N withµ(C)= 1, the set

TC = {n ∈ N: µ(C − n)= 1
}

(1.1)

satisfiesµ(TC)= 1.

We are now in a position to give a proof of Hindman’s theorem.

PROOF OFTHEOREM 1.10. Letµ be an almost shift-invariant measure as described in
Proposition 1.14, and letN =⋃ri=1Ci be a finite partition. Sinceµ is a probability mea-
sure,µ(

⋃r
i=1Ci) = 1, which, by finite additivity and{0,1}-valuedness, implies that one
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of theCi , call it C, satisfiesµ(C) = 1. By (1) we haveµ(TC) = 1, which implies that
µ(C ∩ TC) = 1. It follows that the set{n ∈ C: µ(C − n) = 1} is of full measure and, in
particular, that property (ii) in Theorem 1.11 is satisfied. HenceC contains an IP set and
we are done. �

REMARK 1.15. Hindman’s theorem finds numerous applications in ergodic theory, topo-
logical dynamics, and Diophantine analysis. Some of these will be discussed in this survey.
Before moving on with our discussion, we want to record here the following equivalent ver-
sion of Hindman’s theorem, which can be interpreted as “indestructibility” of IP sets under
finite partitions.

THEOREM 1.16. For any finite partition of an IP set, one of the cells of the partition
contains an IP set.

We leave the elementary derivation of Theorem 1.16 from Hindman’s theorem to the
reader. (The other direction is trivial due to the fact thatN = FS(2i )∞i=1.) On a more so-
phisticated level, offered by the familiarity withβN, Theorem 1.16 becomes an immediate
consequence of the proof of Hindman’s theorem given above. Indeed, one can show that
any IP set inN is the support of an almost shift-invariant measure. (See Theorem 3.4 be-
low.)

1.4. Van der Waerden theorem: combinatorial and dynamical versions

Our next example is the celebrated van der Waerden theorem.

THEOREM 1.17 [130,131]. For any r ∈ N and any finite partitionN =⋃ri=1Ci , one of
theCi contains arbitrarily long arithmetic progressions.

We remark that one cannot, in general, expect to get in Theorem 1.17 an infinite arith-
metic progression in one of theCi . Indeed, let us representN as the union of disjoint
intervals of increasing length and alternately color them red and blue. This obviously gives
a two-coloringN =R ∪B without an infinite monochromatic progression.

Another remark is that Theorem 1.17 implies the following, ostensibly stronger, finitistic
version.

THEOREM 1.18. For any r, l ∈ N there existsc = c(r, l) such that ifN � c, then for any
partition {1,2, . . . ,N} =⋃ri=1Ci , one of theCi contains an arithmetic progression of
lengthl.

PROOF OFTHEOREM 1.18 VIA THEOREM 1.17. Assume by way of contradiction that
Theorem 1.18 fails. Then there exist natural numbersr, l and, for anyN ∈ N, an inter-
val I with |I | � N and anr-coloring of I , which we will find convenient to view as
a mappingf : I → {1,2, . . . , r}, such thatI contains no monochromatic progression of
length l. Calling suchr-colorings (and the corresponding intervals)APl-free, we may
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assume without loss of generality thatAPl-free intervalsIn, n ∈ N tile N and satisfy
|In+1| � 2|In|. Given anr-coloring f : I → {1,2, . . . , r} of an intervalI , let us call the
r-coloring defined byf̃ : I → {r + 1, r + 2, . . . ,2r} a disjoint copy off if for all k ∈ I ,
f (k)= f̃ (k)− r . To finish the argument, let us replace, for everyn ∈ N, theAPl-free col-
oringsf2n : I2n → {1,2, . . . , r} by their disjoint copies ˜f2n : I2n → {r + 1, r + 2, . . . ,2r}.
This results in a 2r-coloring ofN which has no monochromatic arithmetic progressions of
lengthl, which contradicts Theorem 1.17. �

While in Khintchine’s book [91] van der Waerden’s theorem is called a “pearl of number
theory,” it should, perhaps, be more properly called a pearl of geometry. Indeed, it is not
hard to see that van der Waerden’s theorem is equivalent to the following result, which not
only has an apparent geometric flavor, but also is suggestive of natural multidimensional
extensions.

THEOREM 1.19. For any finite partitionZ =⋃ri=1Ci , one of theCi has the property that
for any finite setF ⊂ Z, there exista ∈ Z, and b ∈ N such thataF + b = {ax + b: x ∈
F } ⊂ Ci . In other words, one of theCi contains a homothetic copy of any finite set.

Here is the formulation of the multidimensional analogue of Theorem 1.19. It was first
proved by Grünwald (Gallai), who apparently never published his proof. (Grünwald’s au-
thorship is acknowledged in [116, p. 123].)

THEOREM 1.20. For any d ∈ N and any finite partitionZd =⋃ri=1Ci , one of theCi
has the property that for any finite setF ⊂ Zd , there existn ∈ N, and v ∈ Zd such that
nF + v = {nx + v: x ∈ F } ⊂ Ci .

We shall now formulate yet another, dynamical, version of the (multidimensional) van
der Waerden theorem. The idea to apply the methods of topological dynamics to partition
results is due to H. Furstenberg and B. Weiss. (See [65].)

THEOREM1.21. (Cf. [65, Theorem 1.4].)Letd ∈ N, ε > 0,and letX be a compact metric
space. For any finite set of commuting homeomorphismsTi :X→X, i = 1,2, . . . , k, there
existx ∈X andn ∈ N such that

diam
{
x,T n1 x,T

n
2 x, . . . , T

n
k x
}
< ε.

The reader will find various proofs of Theorem 1.21 in Sections 2 and 3. For now, we
shall confine ourselves to the proof of the equivalence of Theorems 1.20 and 1.21.

THEOREM 1.20 ⇒ THEOREM 1.21. Let y ∈ X be arbitrary. For a vectorm =
(m1,m2, . . . ,mk) ∈ Zk , write T my = T m1

1 T
m2
2 · · ·T mkk y. SinceX is compact, there exists

a finite family of open balls of radiusε/2, call it {Bi}ri=1, which coversX. Assign to each

m ∈ Zk the minimali for which T my ∈ Bi . This produces a finite coloringZk =⋃r ′i=1Ci
(wherer ′ � r). Let S = {0, e1, . . . , ek}, whereei are the standard unit vectors. By Theo-
rem 1.20, there existn ∈ N andv ∈ Zk such thatnS+ v is monochromatic. But this means
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thatT vy,T v+ne1y, . . . , T v+nek y all belong to the sameε2-ball. Writing x = T vy and noting
thatT nei = T ni , i = 1,2, . . . , k, we get diam{x,T n1 x,T n2 x, . . . , T nk x}< ε. �

THEOREM 1.21⇒ THEOREM 1.20. Ther-colorings ofZd (viewed as mappings from
Zd to {1,2, . . . , r}) are naturally identified with the points of the compact product space
Ω = {1,2, . . . , r}Zd . For m = (m1,m2, . . . ,md) ∈ Zd , let |m| = max1�i�d |mi |. Intro-
duce a metric onΩ by defining, for any pairx, y ∈ Ω , ρ(x, y) = inf{ 1

n
: x(m) =

y(m) for m with |m| < n}. It is easy to see that the metricρ is compatible with the prod-
uct topology and thatρ(x, y) < 1 ⇔ x(0) = y(0). Let F = {a1, a2, . . . , ak} ⊂ Zd . De-
fine the homeomorphismsTi :Ω→Ω, i = 1,2, . . . , k, by (Tix)(m)= x(m+ ai), and set,
for n = (n1, n2, . . . , nk) ∈ Zk , T n = T n1

1 T
n2
2 · · ·T nkk . Let nowx(m) be the element ofΩ

corresponding to the coloringZd =⋃ri=1Ci (in other words, for anym ∈ Zd , x(m) = i
iff m ∈ Ci ). Let X = {T nx}n∈Zk be the orbital closure ofx in Ω . Note that for any
δ > 0 and anyy ∈ X, there existsm ∈ Zk with ρ(T mx,y) < δ. Settingε = 1 in Theo-
rem 1.21, we can findy ∈ X andn ∈ N such that diam{y,T n1 y, . . . , T nk y} < 1. Choos-
ing u = (u1, . . . , uk) ∈ Zk so that the element of the orbitT ux is close enough toy, and
also such thatT ni (T

mx) are close enough toT ni y for i = 1,2, . . . , k, we shall still have
diam{T ux,T uT n1 x, . . . , T uT nk x}< 1. This implies that, forv = u1a1+u2a2+ · · ·+ukak ,
x(v) = x(v + na1) = · · · = x(v + nak), which means that the setv + nF is monochro-
matic. �

1.5. Density Ramsey theory

In accordance with the general philosophy of Ramsey Theory (see [9] for more discus-
sion), one should expect the density version of Theorem 1.20 to hold true as well. While
the proof of this density version is far from being trivial, its formulation is easily guess-
able (see Theorem 1.23 below). It is also natural to expect that the dynamical form of
the multidimensional van der Waerden theorem, our Theorem 1.21, can be “upgraded” in
such a way that it gives a dynamical equivalent to the density version of Theorem 1.20.
Theorem 1.24 below, proved in [60], confirms these expectations. To present the historical
development in its natural order, we should mention that already the density version of the
one-dimensional van der Waerden theorem, conjectured by Erdős and Turán in the mid-
thirties in [53], proved quite recalcitrant and was settled only in 1975 by Szemerédi [127].
A few years later, Furstenberg [57] gave a completely different, ergodic-theoretical proof
of Szemerédi’s theorem, thereby starting a new area of dynamics which is today called
Ergodic Ramsey Theory. The multidimensional Szemerédi theorem proved in [60] was the
first result in the long and impressive line of dynamical proofs of various combinatorial
and number-theoretical results, most of which still do not have a conventional proof. Many
of these results will be discussed in the subsequent sections. See [65,60,63,63,64,97,98,
23–25,29,31,30,67]. We note that recently purely combinatorial proofs have been given
for the multidimensional Szemerédi theorem based on an extension of the Szemerédi reg-
ularity lemma [71,106,119,120,128]. See also the remarkable recent preprint by B. Green
and T. Tao [73] where (a modification of) the ergodic approach to Szemerédi’s theorem is
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blended with the techniques of the analytic number theory to establish the striking fact that
the primes contain arbitrarily long arithmetic progressions.

DEFINITION 1.22. Letd ∈ N andE ⊂ Zd .
(i) The upper density ofE, d̄(E), is defined by

d̄(E)= lim sup
N→∞

|E ∩ [−N,N ]d |
(2N + 1)d

.

(ii) The upper Banach density ofE, d∗(E), is defined by

d∗(E)= lim sup
Ni−Mi→∞,1�i�d

∣∣E ∩∏di=1[Mi,Ni − 1]∣∣∏d
i=1(Ni −Mi)

.

Here are now combinatorial and dynamical formulations of the density version of the
multidimensional van der Waerden theorem. (Cf. [60].)

THEOREM1.23 (Multidimensional Szemerédi Theorem).Letd ∈ N, and letE ⊂ Zd have
positive upper Banach density. For any finite setF ⊂ Zd , there existn ∈ N andv ∈ Zd such
thatnF + v ⊂E.

THEOREM 1.24. Let (X,B,µ) be a probability measure space. For any finite set
{T1, . . . , Tk} of commuting measure preserving transformations ofX and for anyA ∈ B
withµ(A) > 0, there existsn ∈ N such that

µ
(
A∩ T −n

1 A∩ T −n
2 A∩ · · · ∩ T −n

k A
)
> 0.

1.6. Furstenberg’s correspondence principle

To see that Theorem 1.23 follows from Theorem 1.24, one can use a correspondence prin-
ciple, introduced by Furstenberg in [57] in order to derive Szemerédi’s theorem from an
ergodic multiple recurrence result which he established in [57] and which corresponds to
takingTi = T i, i = 1,2, . . . , k, in Theorem 1.24.

For the proof of the following version of Furstenberg’s correspondence principle, see
[31, Proposition 7.2]. See also Theorem 5.8 in Section 5 for a general form of Furstenberg’s
correspondence principle for amenable (semi)groups.

THEOREM1.25. Letd ∈ N. For any setE ⊂ Zd with d∗(E) > 0, there exists a probability
measure preserving system(X,B,µ, {T n}n∈Zd ) and a setA ∈ B with µ(A)= d∗(E) such
that for all k ∈ N andn1,n2, . . . ,nk ∈ Zd one has

d∗
(
E ∩ (E − n1)∩ · · · ∩ (E − nk)

)
� µ
(
A∩ T n1A∩ · · · ∩ T nkA

)
.
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We leave it to the reader to verify (with the help of Theorem 1.25) that Theorem 1.24
implies Theorem 1.23. Here is a simple proof of the other implication (the idea behind this
proof will also be used in the proof of Lemma 5.10 in Section 5).

THEOREM 1.23 ⇒ THEOREM 1.24. Assume, by way of contradiction, that there ex-
ist a probability measure space(X,B,µ), commuting measure preserving transforma-
tions T1, T2, . . . , Tk of X, and a setA ∈ B with µ(A) > 0 such that for alln ∈ N,
µ(A ∩ T −n

1 A ∩ · · · ∩ T −n
k A) = 0. Deleting, if needed, a set of measure zero fromA, we

may and will assume that one actually hasA∩ T −n
1 A∩ · · · ∩ T −n

k A= ∅ for all n ∈ N. For
n = (n1, n2, . . . , nk), write T n = T n1

1 T
n2
2 · · ·T nkk and let

fN(x)= 1

(2N + 1)k
∑

n∈[−N,N ]k
1A(T

nx), N = 1,2, . . . .

Note that 0� fN(x)� 1 for all x ∈X andN ∈ N and that
∫
fN dµ= µ(A). Letf (x)=

lim supN→∞ fN(x). By Fatou’s lemma, we have∫
f dµ=

∫
lim sup
N→∞

fN dµ� lim sup
N→∞

∫
fN dµ= µ(A).

It follows that there existsx0 ∈X such that lim supfN(x0)= f (x0)� µ(A). Hence for
some increasing sequenceNi →∞, one has

lim
i→∞fNi (x0)= lim

i→∞
1

(2Ni + 1)k
∑

n∈[−Ni,Ni ]k
1A(T

nx0)= f (x0)� µ(A).

This implies that the setE = {n ∈ Zk: T nx0 ∈ A} has positive upper density. (We ac-
tually showed that̄d(E) � µ(A).) By Theorem 1.23, the setE contains a configuration
of the formnF + v, whereF = {0, e1, e2, . . . , ek}, n ∈ N, andv ∈ Zk (whereei are the
standard unit vectors). This implies thatA ∩ T −n

1 A ∩ · · · ∩ T −n
k A �= ∅, which contradicts

the assumption made above. �

It is perhaps of interest to observe that while the combinatorial version of the multi-
dimensional van der Waerden theorem follows immediately from Theorem 1.23 by the
observation that for any finite partitionZd = ⋃ri=1Ci , at least one of theCi satisfies
d̄(Ci) � 1/r , the derivation of Theorem 1.21 from Theorem 1.24 is less trivial, and de-
pends on the fact that for anyZd -action by homeomorphisms of a compact space, there
exists an invariant measure.

1.7. Hales–Jewett theorem

We would like to formulate still another important extension of van der Waerden’s theorem,
the powerful Hales–Jewett theorem.
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Consider the following generalization of tic-tac-toe: there arer players which are tak-
ing turns in placing the symbolss1, . . . , sr in the k × k × · · · × k (n times) array, which
one views as thenth Cartesian powerAn of a k-element setA = {a1, a2, . . . , ak}. (In the
classical tic-tac-toe, we haver = 2, k = 3, n = 2.) It is convenient to think of the sym-
bols s1, . . . , sr as colors, and to identify the elements of the arrayAn as the setWn(A)
of words of lengthn over the alphabetA. We are going to define now the notion of a
combinatorial linein An. Let Ã= A ∪ {t} be an extension of the alphabetA, obtained by
adding a new symbolt . Let Wn(t) be the set of words of lengthn over Ã in which the
symbol t occurs. Given a wordw(t) ∈Wn(t), let us define a combinatorial line as a set
{w(a1),w(a2), . . . ,w(ak)} obtained by substituting fort the elements ofA. For example,
the word 13t241t2 over the alphabet{1,2,3,4,5} ∪ {t} gives rise to the combinatorial line
{13124112,13224122,13324132,13424142,13524152}. The goal of the players is to ob-
tain a monochromatic combinatorial line. The following celebrated theorem of Hales and
Jewett [75] implies that for fixedr, k and large enoughn, the first player can always win.

THEOREM 1.26. Let r, k ∈ N. There existsc = c(k, r) such that ifn � c, then, for
any r-coloring of the setWn(A) of words of lengthn over thek-letter alphabetA =
{a1, a2, . . . , ak}, there is a monochromatic combinatorial line.

Taking A = {0,1, . . . , l − 1} and interpretingWn(A) as integers in basel having at
mostn digits in their basel expansion, we see that in this situation, the elements of a
combinatorial line form an arithmetic progression of lengthl (with difference of the form
d =∑k−1

i=0 εi l
i , whereεi = 0 or 1). Thus van der Waerden’s theorem is a corollary of

Theorem 1.26.
Take nowA to be a finite fieldF . ThenWn(F)= Fn has the natural structure of ann-

dimensional vector space overF . It is easy to see that, in this case, a combinatorial line is
an affine linear one-dimensional subspace ofFn. We have therefore the following corollary
of the Hales–Jewett theorem.

THEOREM 1.27. LetF be a finite field. For anyr ∈ N there existsc= c(r) such that ifV
is a vector space overF having dimension at leastc, then for anyr-coloringV =⋃ri=1Ci ,
one of theCi contains an affine line.

One of the signs of the fundamental nature of the Hales–Jewett theorem is that one can
easily derive from it its multidimensional version. (This fact will be especially appreci-
ated by anyone who tried to derive from van der Waerden’s theorem its multidimensional
version.) Lett1, t2, . . . , tm bem variables and letw(t1, t2, . . . , tm) be a word of lengthn
over the alphabetA ∪ {t1, . . . , tm}. (We assume, of course, that the lettersti do not be-
long toA.) If, for somen, w(t1, . . . , tm) is a word of lengthn in which all of the vari-
ablest1, t2, . . . , tm occur, the result of the substitution{w(t1, t2, . . . , tm)}(t1,t2,...,tm)∈Am =
{w(ai1, ai2, . . . , aim): aij ∈A,j = 1,2, . . . ,m} is called a combinatorialm-space.

Observe now that if we replace the original alphabetA by Am, then a combinatorial
line inWn(Am) can be interpreted as anm-space inWnm(A). Thus, we have the following
ostensibly stronger theorem as a corollary of Theorem 1.26.
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THEOREM 1.28. Let r, k,m ∈ N. There existsc = c(r, k,m) such that ifn � c, then for
any r-coloring of the setWn(A) of words of lengthn over thek-letter alphabetA, there
exists a monochromaticm-space.

Theorem 1.28 obviously implies the following multidimensional extension of Theo-
rem 1.27.

THEOREM 1.29. Let F be a finite field. For any r,m ∈ N, there existsc = c(r,m) such
that if V is a vector space overF having dimension at leastc, then for anyr-coloring
V =⋃ri=1Ci , one of theCi contains anm-dimensional affine space.

We leave it to the reader to derive from Theorem 1.28 the multidimensional van der
Waerden theorem and an extension of Theorem 1.27 pertaining tom-dimensional affine
subspaces ofFn. See Section 2 for a proof of the Hales–Jewett theorem and for more
discussion and applications.

1.8. Sárközy–Furstenberg theorem

Our next example is the following surprising theorem, which was proved independently by
Sárközy and Furstenberg, and which has interesting links with spectral theory, Diophantine
approximations, combinatorics, and dynamical systems. (See [124,57–59,90].)

THEOREM 1.30. LetE ⊂ N be a set of positive upper density, and letp(n) ∈ Z[n] be a
polynomial withp(0)= 0. Then there existx, y ∈E andn ∈ N such thatx − y = p(n).

This result is perhaps more surprising than any of the theorems formulated above. One
can surely expect the set of differences of a large set to be even larger. For example, if,
for E ⊂ N, d∗(E) > 0, then it is not hard to show that the set of differencesE − E =
{x − y: x, y ∈ E} is syndetic, i.e. has bounded gaps. (See, for example, [58, Proposi-
tion 3.19], or [9, pp. 8–9].) But there is, a priori, no obvious reason for the setE−E to be
so “well spread” as to nontrivially intersect the set of values taken by any integer-valued
polynomial vanishing at zero. The following dynamical counterpart of Theorem 1.30, due
to Furstenberg, is just as striking. (See [57, Proposition 1.3], and [58, Theorem 3.16].)

THEOREM 1.31. For any invertible probability measure preserving system(X,B,µ,T ),
anyA ∈ B with µ(A) > 0, and any polynomialp(n) ∈ Z[n] with p(0) = 0, there exists
n ∈ N such thatµ(A∩ T p(n)A) > 0.

REMARKS.
(1) One can derive Theorem 1.30 from Theorem 1.31 by utilizing Furstenberg’s corre-

spondence principle. In the other direction, one can, for example, mimic the argu-
ment that was used above to derive Theorem 1.24 from Theorem 1.23.

(2) One should, of course, view Theorem 1.31 as a refinement of the Poincaré recur-
rence theorem. While the classical Poincaré recurrence theorem only tells us that
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a typical point returns, under the evolution laws of the dynamical system, to a set
of positive volume in the phase space, Theorem 1.31 tells us that this will happen
along any prescribed in advance sequence of “polynomial” times. However, when
compared with the Poincaré recurrence theorem, Theorem 1.31 is a rather deep re-
sult. This is, in particular, manifested by the fact that all the known proofs of the
Theorem 1.31 prove actually more than stated.

Furstenberg’s proof of Theorem 1.31 utilizes the spectral theorem for unitary operators.
The proof that we have chosen to present here is “softer” in the sense that it avoids the
usage of the spectral theorem and thereby is susceptible to further generalizations. (See
Theorems 4.27 and 4.30 below.)

We shall need the following useful result, which can be viewed as a Hilbert space version
of the classical van der Corput difference theorem in the theory of uniform distribution.

THEOREM 1.32 (van der Corput trick).Let (un)n∈N be a bounded sequence in a Hilbert
spaceH. If for everyh ∈ N it is the case that

lim
N→∞

1

N

N∑
n=1

〈un+h,un〉 = 0

(where〈·, ·〉 denotes the scalar product inH), thenlimN→∞‖ 1
N

∑N
n=1un‖ = 0.

PROOF. Observe that for anyε > 0 and anyH ∈ N, if N is large enough then

∥∥∥∥∥ 1

N

N∑
n=1

un − 1

N

1

H

N∑
n=1

H−1∑
h=0

un+h

∥∥∥∥∥< ε.
But,

lim sup
N→∞

∥∥∥∥∥ 1

N

1

H

N∑
n=1

H−1∑
h=0

un+h

∥∥∥∥∥
2

� lim sup
N→∞

1

N

N∑
n=1

∥∥∥∥∥ 1

H

H−1∑
h=0

un+h

∥∥∥∥∥
2

= lim sup
N→∞

1

N

N∑
n=1

1

H 2

H−1∑
h1,h2=0

〈un+h1, un+h2〉 � B

H
,

whereB = supn∈N ‖un‖2. SinceH was arbitrary, we are done. �
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PROOF OFTHEOREM 1.31. LetH= L2(X,B,µ) and letU :H→H be the unitary op-
erator induced byT :

(Uf )(x)= f (T x), f ∈ L2(X,B,µ).

Let, for eacha ∈ N,

Ha = {f : Uaf = f },

H(a)erg=
{
f :

∥∥∥∥∥ 1

N

N−1∑
n=0

Uanf

∥∥∥∥∥→ 0

}
.

The classical ergodic splitting (with respect toUa), H =Ha ⊕H(a)erg, leads to the fol-
lowing, more suitable for our goals, splitting ofH into “rational spectrum” and “totally
ergodic” parts. Let

Hrat=
{
f : ∃a ∈ N: Uaf = f }= ∞⋃

a=1

Ha,

Htot.erg. =
{
f : ∀a ∈ N,

∥∥∥∥∥ 1

N

N−1∑
n=0

Uanf

∥∥∥∥∥→ 0

}
=

∞⋂
a=1

H(a)erg.

It is easy to check now thatH⊥
rat=Htot.erg. and thatH=Hrat⊕Htot.erg. Let 1A = f +g,

wheref ∈Hrat, g ∈Htot.erg.. We remark that since 1A � 0 and
∫

1A dµ= µ(A) > 0, one
hasf � 0, f �= 0. Indeed,f minimizes the distance fromHrat to 1A, and the function
max{f,0} (which, as is not too hard to check, also belongs toHrat) would do at least
as well in minimizing this distance. This remark equally applies, for anya ∈ N, to the
orthogonal projectionfa of 1A ontoHa . Note also that

∫
fa dµ= µ(A).

We are going to show that limN→∞ 1
N

∑N−1
n=0 µ(A∩T p(n)A) exists and is positive. Note

that, in view of the orthogonal decomposition 1A = f + g, we have:

µ
(
A∩ T p(n)A) = ∫ (f + g)Up(n)(f + g)dµ

=
∫
fUp(n)f dµ+

∫
gUp(n)g dµ.

We shall show first that limN→∞ 1
N

∑N−1
n=0

∫
gUp(n)g dµ= 0 (and hence it will remain

to show that

lim
N→∞

1

N

N−1∑
n=0

µ
(
A∩ T p(n)A)= lim

N→∞
1

N

N−1∑
n=0

∫
fUp(n)f dµ > 0).
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Note that sinceg ∈Htot.erg., one has, for any linear polynomialp(n) with integer coeffi-
cients, limN→∞‖ 1

N

∑N−1
n=0 U

p(n)g‖ = 0.
We shall use the van der Corput trick to inductively reduce the situation to this linear

case. Letun =Up(n)g,n ∈ N. We have:

〈un+h,un〉 =
〈
Up(n+h)g,Up(n)g

〉= 〈Up(n+h)−p(n)g, g〉.
Notice that, for any fixedh ∈ N, the degree of the polynomialp(n+ h)− p(n) equals

degp(n)− 1. Using the fact that strong convergence implies weak convergence, we have
by the induction hypothesis:

lim
N→∞

1

N

N∑
n=1

〈un+h,un〉 = lim
N→∞

1

N

N∑
n=1

〈
Up(n+h)−p(n)g, g

〉= 0.

It follows from Theorem 1.32 that limN→∞‖ 1
N

∑N−1
n=0 U

p(n)g‖ = 0 and hence

lim
N→∞

1

N

N−1∑
n=0

∫
gUp(n)g dµ= 0.

It remains now to prove that limN→∞ 1
N

∑N−1
n=0

∫
fUp(n)f dµ > 0. Note first that the ex-

istence of this limit is almost obvious. Indeed, sincef ∈Hrat, it is enough to check only
the case whenf belongs to one of theHa , in which case there is practically nothing to
check since, for suchf , the sequenceUp(n)f , n ∈ N, is periodic.

To see that the limit in question is strictly positive, choosea ∈ N so that‖f − fa‖ is
close to zero (wherefa is the orthogonal projection off onHa). Note now that ifn ∈ aN
thenp(n) is divisible bya, and hence

∫
faU

p(n)fa dµ= ∫ f 2
a dµ� (µ(A))2. This clearly

implies the positivity of the limit

lim
N→∞

1

N

N−1∑
n=0

∫
fUp(n)f dµ= lim

N→∞
1

N

N−1∑
n=0

µ
(
A∩ T p(n)A). �

We will conclude the introductory section here. Each of the examples above is a small
fragment of a much bigger picture. In the subsequent sections, we shall try to supply more
facts and details so that the reader will be able to see better both the multiple interconnec-
tions between various theorems of Ergodic Ramsey Theory and the general direction of the
flow of current developments.
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2. Topological dynamics and partition Ramsey theory

2.1. Introduction

In various applications, one would like not only to be able to find certain types of mono-
chromatic configurations for any finite coloring of a highly organized structure, such asN
or an infinite vector space over a finite field, but also to know that these configurations are
plentiful. There are many notions of largeness which one can use to measure the abundance
of sought-after configurations. One of these notions is that ofsyndeticity. A subsetS in N
is syndetic if finitely many translates ofS coverN, i.e. for somek anda1, a2, . . . , ak ∈ N,
one has

⋃k
i=1(S − ai) = N. (This definition can be easily adapted to make sense in any

semigroup.)
A stronger notion of largeness which we will presently introduce with the help of IP

sets (see Definition 1.9) not only implies syndeticity, but has also the finite intersection
property.

DEFINITION 2.1. A setE ⊆ N is said to be IP∗ if it has nontrivial intersection with any
IP set.

It is not too hard to see that any IP∗ set is syndetic. Indeed, if an IP∗ setS were not
syndetic, then its complement would contain an infinite union of intervals[an, bn] with
bn − an →∞, and it is not hard to show that any such union of intervals contains an IP
set, which leads to a contradiction with the assumption thatS is an IP∗ set.

Let us show now that the family of IP∗ sets has the finite intersection property. It is
enough to prove that ifS1, S2 are IP∗ sets, thenS1 ∩ S2 is as well. LetE be an arbitrary
IP set and consider the partitionE = (E ∩ S1) ∪ (E ∩ Sc1). By Hindman’s theorem (see
Theorem 1.10), eitherS1 orSc1 has to contain an IP setE1. But, it is clear that it has to beS1,
sinceS1 is IP∗, and henceS1 ∩E1 �= ∅, which implies thatE1 ⊂E ∩ S1. Now, sinceS2 is
also an IP∗ set, we haveE1∩S2 �= ∅, which implies that(E∩S1)∩S2 =E∩ (S1∩S2) �= ∅.

2.2. IP van der Waerden theorem

We are going to formulate and prove now the so-called IP van der Waerden theorem
(proved first in [65]) which, in particular, will tell us that the set of differences of mono-
chromatic arithmetic progressions always to be found in any finite coloring ofZ is an IP∗
set. At the same time, this IP van der Waerden theorem is powerful enough to imply not
only Theorem 1.20, but also Theorem 1.29. The proof presented below is taken from [11]
and is based on the proof of the multidimensional van der Waerden’s theorem in [37]. We
need first to introduce a few more definitions, and some notation.

An F -sequencein an arbitrary spaceY is a sequence{yα}α∈F indexed by the set
F of the finite nonempty subsets ofN. If Y is a (multiplicative) semigroup, one says
that anF -sequence defines anIP-systemif for any α = {i1, i2, . . . , ik} ∈ F , one has
yα = yi1yi2 · · ·yik . IP-systems should be viewed as generalized semigroups. Indeed, if
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α ∩ β = ∅, thenyα∪β = yαyβ . We shall often use this formula for setsα,β satisfying
α < β.

We will be working with IP-systems generated by homeomorphisms belonging to a com-
mutative groupG acting minimally on a compact spaceX. (Recall that(X,G) is aminimal
dynamical system if for each nonempty open setV ⊂X there existS1, . . . , Sr ∈G so that⋃r
i=1SiV =X.)

THEOREM 2.2. Let X be a compact topological space andG a commutative group of
its homeomorphisms such that the dynamical system(X,G) is minimal. For any non-
empty open setV ⊆X, anyk ∈ N, any IP-systems{T (1)α }α∈F , . . . , {T (k)α }α∈F inG and any
α0 ∈F , there existsα ∈F , α > α0, such thatV ∩ T (1)α V ∩ · · · ∩ T (k)α V �= ∅.

PROOF. We fix a nonempty openV ⊆X andS1, . . . , Sr ∈G with the property thatS1V ∪
S2V ∪ · · · ∪ SrV = X. (The existence ofS1, . . . , Sr is guaranteed by the minimality of
(X,G).) The proof proceeds by induction onk. The casek = 1 is almost trivial, but we
shall do it in detail to set up the notation in a way that indicates the general idea.

So, let {Ti}∞i=1 be a fixed sequence of elements inG and {Tα}α∈F the IP-system
generated by{Ti}∞i=1. (This means of course that for any finite nonempty setα =
{i1, i2, . . . , im} ⊂ N, one hasTα = Ti1Ti2 · · ·Tim .)

Now we construct a sequenceW0,W1, . . . of nonempty open sets inX so that:
(i) W0 = V ;

(ii) T −1
n Wn ⊆Wn−1,∀n� 1;

(iii) eachWn,n� 1, is contained in one of the setsS1V,S2V, . . . , SrV . (We recall that
S1V ∪ S2V ∪ · · · ∪ SrV =X.)

To defineW1, let t1, 1� t1 � r , be such thatT1V ∩ St1V = T1W0 ∩ St1V �= ∅; letW1 =
T1W0 ∩ St1V . If Wn was already defined, then lettn+1 be such that 1� tn+1 � r and
Tn+1Wn ∩ Stn+1V �= ∅, and letWn+1 = Tn+1Wn ∩ Stn+1V . By the construction, eachWn
is contained in one of theS1V, . . . , SrV , so there will necessarily be two natural numbers
i < j and 1� t � r such thatWi ∪Wj ⊆ StV (pigeonhole principle!). LetU = S−1

t Wj
andα = {i + 1, i + 2, . . . , j}. We have

T −1
α U = T −1

i+1T
−1
i+2 · · ·T −1

j S−1
t Wj = S−1

t T
−1
i+1T

−1
i+2 · · ·T −1

j Wj

⊆ S−1
t T

−1
i+1T

−1
i+2 · · ·T −1

j−1Wj−1 ⊆ · · · ⊆ S−1
t T

−1
i+1Wi+1 ⊆ S−1

t Wi ⊆ V.

So,U ⊆ TαV andU ⊆ V which impliesV ∩ TαV �= ∅.
Notice that since the pairi < j for which there existst with the propertyWi ∪Wj ⊆ StV

could be chosen with arbitrarily largei, it follows that the setα = {i + 1, . . . , j} for which
V ∩ TαV �= ∅ could be chosen so thatα > α0.

Assume now that the theorem holds for anyk IP-systems inG. Fix a nonempty
set V and k + 1 IP-systems{T (1)α }α∈F , . . . , {T (k+1)

α }α∈F . We shall also fix the home-
omorphismsS1, . . . , Sr ∈ G (whose existence is guaranteed by minimality) satisfying
S1V ∪ · · · ∪ SrV =G. We shall inductively construct a sequenceW0,W1, . . . of nonempty
open sets inX and an increasing sequenceα1< α2< · · · in F so that
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(a) W0 = V ,
(b) (T (1)αn )

−1Wn ∪ (T (2)αn )−1Wn ∪ · · · ∪ (T (k+1)
αn )−1Wn∪⊆Wn−1 for all n� 1, and

(c) eachWn,n� 1 is contained in one of the setsS1V, . . . , SrV .
To defineW1, apply the induction assumption to the nonempty open setW0 = V and

IP-systems{(
T (k+1)
α

)−1
T (1)α
}
α∈F , . . . ,

{(
T (k+1)
α

)−1
T (k)α
}
α∈F .

There existsα1 ∈F such that

V ∩ (T (k+1)
α1

)−1
T (1)α1

V ∩ · · · ∩ (T (k+1)
α1

)−1
T (k)α1

V

=W0 ∩
(
T (k+1)
α1

)−1
T (1)α1

W0 ∩ · · · ∩ (T (k+1)
α1

)−1
T (k)α1

W0 �= ∅.

Applying T (k+1)
α1 , we get

T (k+1)
α1

W0 ∩ T (1)α1
W0 ∩ · · · ∩ T (k)α1

W0 �= ∅.

It follows that for some 1� t1 � r

W1 := T (1)α1
W0 ∩ T (2)α1

W0 ∩ · · · ∩ T (k+1)
α1

W0 ∩ St1V �= ∅.

Clearly,W0 andW1 satisfy (b) and (c) above forn= 1.
If Wn−1 and αn−1 ∈ F have already been defined, apply the induction assump-

tion to the nonempty open setWn−1 (and the IP-systems{(T (k+1)
α )−1T

(1)
α }α∈F , . . . ,

{(T (k+1)
α )−1T

(k)
α }α∈F ) to getαn > αn−1 such that

Wn−1 ∩
(
T (k+1)
αn

)−1
T (1)αn Wn−1 ∩ · · · ∩ (T (k+1

αn

)−1
T (1)αn Wn−1 �= ∅,

and hence, for some 1� tn � r ,

Wn := T (1)αn Wn−1 ∩ · · · ∩ T (k+1)
αn

Wn−1 ∩ StnV �= ∅.

Again, thisWn clearly satisfies the conditions (b) and (c).
Since, by the construction, eachWn is contained in one of the setsS1V, . . . , SrV , there

is 1� t � r such that infinitely many of theWn are contained inStV . In particular, there
exists i as large as we please andj > i so thatWi ∪ Wj ⊆ StV . Let U = S−1

t Wj and
α = αi+1 ∪ · · · ∪ αj .

Notice thatU ⊆ V , and for any 1�m� k + 1, (T (m)α )−1U ⊆ V . Indeed,(
T (m)α

)−1
U = (T (m)αi+1∪···∪αj

)−1
S−1
t Wj

= S−1
t

(
T (m)αi+1

)−1 · · · (T (m)αj

)−1
Wj

⊆ S−1
t

(
T (m)αi+1

)−1 · · · (T (m)αj−1

)−1
Wj−1 ⊆ · · ·

⊆ S−1
t

(
T (m)αi+1

)−1
Wi+1 ⊆ S−1

t Wi ⊆ V.
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It follows that U ∪ (T (1)α )−1U ∪ · · · ∪ (T (n+1)
α )−1U ⊆ V , and this, in turn, implies

V ∩ T (1)α V ∩ · · · ∩ T (k+1)
α V �= ∅. �

COROLLARY 2.3. If X is a compact metric space andG a commutative group of
its homeomorphisms, then for anyk IP-systems{T (1)α }α∈F , . . . , {T (k)α }α∈F in G, any
α0 ∈ F , and anyε > 0 there existα > α0 and x ∈ X such that the diameter of the set
{x,T (1)α x, . . . , T

(k)
α x} is smaller thanε.

PROOF. If (X,G) is minimal, then the claim follows immediately from Theorem 2.2. If
not, then pass to a minimal, nonempty, closedG-invariant subset ofX. (Such a subset
always exists by Zorn’s lemma.) �

COROLLARY 2.4. Under the conditions of Corollary2.3, one can find, for anym ∈ N,
finite setsα1< α2< · · ·< αm andx ∈X such thatx and all the pointsT (i1)α1 x,T

(i2)
α2 x, . . . ,

T
(im)
αm x, i1, . . . , im ∈ {1,2, . . . , k}, belong to the same open ball of radiusε.

PROOF. The result follows by simple iteration. Assume that the group generated by
T
(i)
α , i = 1,2, . . . , k, acts onX in a minimal fashion. LetV be an open ball of radiusε.

By Theorem 2.2, for anyα0 ∈F , there existsα1> α0 such that

V1 = V ∩
k⋂
i=1

(
T (i)α1

)−1
V �= ∅.

Applying Theorem 2.2 again, one getsα2> α1 such that

V2 = V1 ∩
k⋂
i=1

(
T (i)α1

)−1
V1 = V ∩

k⋂
i1,i2=1

(
T i1α1
T i2α2

)−1
V �= ∅.

Let Vk be the nonempty set obtained as the result ofk iterations of this procedure. It is
easy to see that anyx ∈ Vk satisfies the claim of the corollary. �

The following corollary of Theorem 2.2 is a refinement of the multidimensional van der
Waerden theorem.

COROLLARY 2.5. For any r, d, k ∈ N, any IP sets(n(1)α )α∈F , (n(2)α )α∈F , . . . , (n(k)α )α∈F
in N, any finite setF = {u1, u2, . . . , uk} ⊂ Zd and any partitionZd =⋃ri=1Ci , there exist
i ∈ {1,2, . . . , r}, α ∈F andv ∈ Zd such that

v+ {n(1)α u1, n
(2)
α u2, . . . , n

(k)
α uk
}⊂ Ci.

REMARK. Taking d = 1, all (n(i)α )α∈F identical andF = {0,1, . . . , k}, one obtains the
fact that for any finite coloringN =⋃ri=1Ci and anyk ∈ N, the set{n ∈ N: for some
a ∈ Z, {a, a + n, . . . , a + (k − 1)n} is monochromatic} is IP∗.
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PROOF. Notice that Corollary 2.3 implies that for any commuting homeomorphisms
T1, T2, . . . , Tk of a compact spaceX, anyε > 0 and any IP sets(n(1)α )α∈F , (n(2)α )α∈F , . . . ,
(n
(k)
α )α∈F in N, there existsx ∈ X andα ∈ F such that diam{x,T n(1)α1 x, . . . , T

n
(k)
α

k x} < ε.
The desired combinatorial result follows now by the argument which is practically identical
to one used in the Introduction in the derivation of Theorem 1.20 from Theorem 1.21.�

Let us show that Theorem 1.29 is also derivable from Theorem 2.2. We shall find it more
convenient to deal with the following equivalent form of Theorem 1.29.

THEOREM2.6. LetF be a finite field andVF an infinite vector space overF . For any finite
coloringVF =⋃ri=1Ci and anym ∈ N, there exists a monochromatic affinem-space, that
is, anm-dimensional affine subspace.

Before embarking on the proof of Theorem 2.6, let us briefly explain why Theorems 1.29
and 2.6 are equivalent. Clearly one has only to show that Theorem 2.6 implies Theo-
rem 1.29. This follows from the compactness of the space ofr-colorings ofVF . Assuming
without loss of generality thatVF is countably infinite, observe that, as an Abelian groups,
VF is isomorphic to the direct sumF∞ of countably many copies ofF :

F∞ = {g = (a1, a2, . . .): ai ∈ F and all but finitely manyai = 0
}= ∞⋃

n=1

Fn,

whereFn = {g = (a1, a2, . . .): ai = 0 for i > n} ∼= F ⊕ · · · ⊕ F (n times).
For g = (a1, a2, . . .) ∈ F∞, let |g| be the minimal natural number such thatai = 0 for

all i � |g|. Note that|g| = 0 if and only ifg = 0 = (0,0, . . .). We will identify the space of
r-colorings ofVF with Ω = {1,2, . . . , r}F∞ . For any pairx = x(g), y = y(g), g ∈ F∞, of
elements ofΩ , let

ρ(x, y)= inf
n∈N

{
1

n
: x(g)= y(g) for g with |g|< n

}
.

One readily checks thatρ is a metric onΩ with the propertyρ(x, y)= 1⇔ x(0) �= y(0).
Moreover,(Ω,ρ) is a compact space, and it is the compactness of(Ω,ρ) which, as we
shall now see, is behind the fact that Theorem 2.6 implies Theorem 1.29.

Assume that Theorem 2.6 holds true but Theorem 1.29 does not. Then, there exist
r,m ∈ N such that for anyn ∈ N, there exists anr-coloringFn =⋃ri=1Ci with no mono-
chromatic affinem-subspace. Viewing each such coloring as a mapfn :Fn→{1,2, . . . , r}
and extendingfn, for eachn ∈ N, arbitrarily to a mapgn :F∞ → {1,2, . . . , r}, we obtain
the sequence(gn)n∈N of elements of the compact space{1,2, . . . , r}F∞ , which, by com-
pactness, has a convergent subsequence(gni )i∈N. The limiting coloringg = limi→∞ gni
will also not have monochromatic affinem-subspaces, which contradicts Theorem 2.6.

PROOF OF THEOREM 2.6. Fixm IP-systems{g(i)α }α∈F , i = 1,2, . . . ,m, such that, for
eachi, Span{g(i)α , α ∈ F} is an infinite subset inVF . We will show a stronger fact that,
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for any partitionVF =⋃ri=1Ci , one of theCi contains an affinem-space of the form

h + Span{g1, . . . , gm} with gj ∈ {g(j)α }α∈F . In other words, we will show that the set of
orderedm-tuples(g1, . . . , gm) such that, for someh, h+Span{g1, . . . , gm} ⊂ Ci is an IP∗
set in them-fold direct sumF∞ ⊕ · · · ⊕ F∞ (where the notion of IP∗ is defined in the
obvious sense).

We start with showing that one can always findα1 ∈ F and i ∈ {1,2, . . . , r} so that
the one-dimensional affine subspaceh+ {cg(i)α1 , c ∈ F } is contained inCi . Forh ∈ VF , let
Th :Ω → Ω be defined by(Thx)(g) = x(g + h). ClearlyTh is a homeomorphism ofΩ
for everyh ∈ VF . Let ξ ∈ Ω be the element inΩ corresponding to the partitionVF =⋃r
i=1Ci , i.e. ξ(g) = i⇔ g ∈ Ci . Finally, letX ⊆Ω be the orbital closure ofξ(g): X =

{Thξ,h ∈ Vf }.
Use now the IP system{g(1)α }α∈F to define, for everyc ∈ F , c �= 0, an IP system of home-

omorphismsT (c)α := T
cg
(1)
α
, α ∈ F . In this way, we get|F | − 1 IP systems of commuting

homeomorphisms ofX. Applying Corollary 2.3 to the spaceX and the IP systemsT (c)α and
takingε < 1, we get a pointx1 ∈X andα1 ∈F such that the diameter of{T

cg
(1)
α1
, c ∈ F } is

less than 1. This impliesx1(0)= x1(cg
(1)
α1 ) for everyc ∈ F . Since the orbit{Thξ,h ∈ VF }

is dense inX, there existsh1 ∈ VF such that(Th1ξ)(g) andx1(g) agree on allg satisfy-

ing |g| � |g(1)α1 |. If ξ(h1) = i, thenCi contains the affine lineh1 + {cg(1)α1 , c ∈ F }. (We,

of course, took care in choosingα1 so thatg(1)α1 �= 0, which is possible in view of our as-

sumptions on{g(i)α }α∈F .) Introducing now the IP systemsT
cg
(2)
α
, c ∈ F,c �= 0, and applying

Corollary 2.4, we will findx2 ∈X andα2> α1 such that

diam{T
c1g

(1)
α1 +c2g(2)α2

x2: c1, c2 ∈ F }< 1

(again, our assumption allows us to chooseα2 so thatg(1)α1 andg(2)α2 are linearly independent
in VF ). Similarly to the argument above, it follows now that for someh2 ∈ VF the affine 2-
spaceh2 + Span{g(1)α1 , g

(2)
α2 } is monochromatic. After repeating this procedurem− 2 more

times, we will get the desired monochromatic affinem-space. �

2.3. A simultaneous proof of van der Waerden and Hales–Jewett theorems

We are going now to give still another proof of van der Waerden’s theorem. This proof has
the advantage that, when properly interpreted, it gives also a proof of the Hales–Jewett the-
orem. To stress the affinity between the van der Waerden theorem and that of Hales–Jewett,
this “double” proof is given in two parallel columns having many identical portions. To
ease the presentation and to emphasize the correspondence between the number-theoretical
and set-theoretical notions, we will abide by the following notational agreement: “+” will
be used both for addition inN and for operation of taking (disjoint) unions of sets, “−” will
be used not only for subtraction inN (when the minuend is not smaller than the subtrahend)
but also instead of the set-theoretical difference “\” in expressions of the formA\B where
B ⊆A. The sign “·” will be used for both the multiplication inN and for the operation of
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taking the Cartesian products (and will often be omitted). The sign “<” will mean either
the usual inequality “�” or the set-theoretical containment “⊆”. “0” will mean either zero
or the empty set∅. For any setE, F(E) will mean the set of finite subsets (including the
empty set) ofE.

Let (X,ρ) be a compact metric space. Letq ∈ N.

Denote the set of nonnegative integers
by FF . Let T be a continuous self-mapping
of X. LetA be a set consisting ofq pairwise
distinct natural numbers

A= {pi ∈ N: i = 1, . . . , q};

assume without loss of generality thatp1<

p2< · · ·<pq .

Let S be an infinite set, denoteF(S)
by FF . Let V = {1, . . . , q} × S and let
(T a)a∈F(V ) be an action ofF(V ) on X.
(That is,T is a mapping fromF(V ) into the
set of continuous self-mappings ofX satis-
fying the following condition: ifa ∩ b = ∅,
then T a∪b = T aT b.) Put pi = {1, . . . , i},
i = 1, . . . , q, anda = {p1, . . . , pq}.

We are going to prove the following (two) proposition(s):

PROPOSITION2.7 [24, Proposition L].For any ε > 0 there existsN ∈ FF , such that for
anyx ∈X there existn<N , n �= 0, anda < pq(N − n) such that for anyp ∈A,

ρ(T a+pnx,T ax) < ε.

REMARK 2.8. Let us show how Proposition 2.7 implies the “classical” Hales–Jewett
theorem. (See Theorem 1.26 above.) First, we pass to the combinatorial version of
Proposition 2.7: letr, q ∈ N; there existsM ∈ N such that forN = {1, . . . ,M} and
V = {1, . . . , q} × N , given anr-coloring ofF(V ) one can find a nonemptyn < N and
a < {1, . . . , q} × (N − n) such that the setL = {a ∪ ({1} × n), a ∪ ({1,2} × n), . . . , a ∪
({1, . . . , q} × n)} is monochromatic. Second, we identifyF(V ) with F({1, . . . , q})M ,
D↔ (D1, . . . ,DM) whereDi =D ∩ ({1, . . . , q} × {j}), j = 1, . . . ,M , and define a map-
ping ϕ from F(V ) to the “M-dimensional cube”Q = {0, . . . , q}M by ϕ(D1, . . . ,DM) =
(|D1|, . . . , |DM |). Now, anyr-coloring ofQ induces anr-coloring ofF(V ), and theϕ-
image of a monochromatic setL as in the assertion above is just a monochromatic line
in Q.

PROOF. We will prove this proposition by induction onq. DefineB by

B = {pi − p1, i = 2, . . . , q}.

SinceB containsq − 1 elements, we may assume that the statement to prove is valid for
B, that is, for anyε > 0, there existsN ∈ FF such that for anyx ∈ X there existn < N ,
a < (pq − p1)(N − n), such thatn �= 0 and for everyr ∈ B one hasρ(T a+rnx, T ax) < ε.

Let ε > 0. Letk ∈ N be such that among anyk + 1 points ofX there are two points at a
distance less thanε/2.
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Putε0 = ε/2k. By the induction hypothesis, there existsN0 ∈FF such that for anyx ∈X
there existn<N0 anda < (pq − p1) · (N0 − n) such thatn �= 0 and for everyr ∈ B one
hasρ(T a+rnx, T ax) < ε0.

Let ε1> 0 be such that the inequalityρ(y1, y2) < ε1 implies the inequality

ρ
(
T by1, T

by2
)
< ε/2k

for any b < pqN0. Let N1 ∈ FF be such thatN1 ∩ N0 = 0 (this disjointness condition
concerns the part of Proposition 2.7 dealing with the Hales–Jewett theorem only) and for
any x ∈ X there existn < N1 anda < (pq − p1)(N1 − n) such thatn �= 0 and for every
r ∈ B one hasρ(T a+rnx, T ax) < ε1.

Continue this process: assume thatε0, . . . , εi andN0, . . . ,Ni ∈ FF have been already
chosen. Letεi+1> 0 be such that the inequalityρ(y1, y2) < εi+1 implies the inequality

ρ
(
T by1, T

by2
)
< ε/2k

for any b < pq(N0 + · · · + Ni). Let Ni+1 ∈ FF be such thatNi+1 ∩ (N0 ∪ · · · ∪ Ni) = 0
(again, this disjointness condition is relevant for the Hales–Jewett part of Proposition 2.7
only) and for anyx ∈ X there existn < Ni+1 anda < (pq − p1)(Ni+1 − n), such that
n �= 0 and for everyr ∈ B one hasρ(T a+rnx, T ax) < εi+1.

Continue the process of choosingεi , Ni up toi = k, and putN =N0 + · · · +Nk .
Now fix an arbitrary pointx ∈X.
Applying the definition ofNk to the point

yk = T p1Nkx,

find nk <Nk , nk �= 0, andak < (pq − p1)(Nk − nk) such that for everyr ∈ B we have

ρ
(
T rnk+ak yk, T akyk

)
< εk.

Then, applying the definition ofNk−1 to the point

yk−1 = T p1(Nk+Nk−1)+ak x,

find nk−1 < Nk−1, nk−1 �= 0, andak−1 < (pq − p1)(Nk−1 − nk−1) such that for every
r ∈ B we have

ρ
(
T rnk−1+ak−1yk−1, T

ak−1yk−1
)
< εk−1.

Continue this process: suppose that we have already foundnk, . . . , ni , ak, . . . , ai . Ap-
plying the definition ofNi−1 to the point

yi−1 = T p1(Nk+···+Ni−1)+ak+···+ai x,
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find ni−1 <Ni−1, ni−1 �= 0, andai−1 < (pq −p1)(Ni−1− ni−1) such that for everyr ∈ B
we have

ρ
(
T rni−1+ai−1yi−1, T

ai−1yi−1
)
< εi−1.

Continue the process of choosingni , ai up toi = 0.
For every 0� i � k we have 0�= ni <Ni andai < (pq − p1)(Ni − ni);

therefore, for any 0� i � j � k we have

p(nj + · · · + ni)+ aj + · · · + a0

+ p1(Nj + · · · +N0 − nj − · · · − n0)

< pq(nj + · · · + ni+1)

+ (pq − p1)(Nj − nj + · · ·
+N0 − n0)

+ p1(Nj + · · · +N0 − nj − · · · − n0)

= pq(N0 + · · · +Nj).
(2.1)

besides,Ni ∩Nl = 0 for i �= l. Therefore, for
any 0� i � j � k we have(
p(nj + · · · + ni)+ aj + · · · + a0

+ p1(Nj + · · · +N0 − nj − · · · − n0)
)

∩ (aj+1 + (p− p1)nj+1
)= 0.

(2.2)

And, for any 0� j � k,

ak + · · · + a0 + p1(Nk + · · · +N0 − nj − · · · − n0)

< (pq − p1)(Nk − nk + · · · +N0 − n0)

+ p1(Nk + · · · +N0 − nj − · · · − n0)

< pq(Nk + · · · +N0 − nj − · · · − n0). (2.3)

Define pointsxi , i = 0, . . . , k, by

xi = T ak+···+a0+p1(Nk+···+N0−ni−···−n0)x.

We are going to show that for any 0� i � j � k and anyp ∈A,

ρ
(
T p(nj+···+ni+1)xj , xi

)
� ε

2k
(j − i). (2.4)

We will prove this by induction onj − i; whenj = i the statement is trivial. We will derive
the validity of (2.4) fori, j , wherei < j , from its validity for i, j − 1.

By the definition ofnj ,

ρ
(
T aj+(p−p1)nj yj , T

aj yj
)
< εj ,
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where

yj = T p1(Nk+···+Nj )+ak+···+aj+1x.

So, by the choice ofεj (and (2.1)),

ρ
(
T p(nj−1+···+ni+1)+aj−1+···+a0+p1(Nj−1+···+N0−nj−1−···−n0)T aj+(p−p1)nj yj ,

T p(nj−1+···+ni+1)+aj−1+···+a0+p1(Nj−1+···+N0−nj−1−···−n0)T aj yj
)
< ε/2k.

Using the definition ofyj , xj (and (2.2)), we see

T p(nj−1+···+ni+1)+aj−1+···+a0+p1(Nj−1+···+N0−nj−1−···−n0)T aj+(p−p1)nj yj

= T p(nj+···+ni+1)+ak+···+a0+p1(Nk+···+N0−nj−···−n0)x

= T p(nj+···+ni+1)xj

and

T p(nj−1+···+ni+1)+aj−1+···+a0+p1(Nj−1+···+N0−nj−1−···−n0)T aj yj

= T p(nj−1+···+ni+1)+ak+···+a0+p1(Nk+···+N0−nj−1−···−n0)x

= T p(nj−1+···+ni+1)xj−1.

Since, by the induction hypothesis,

ρ
(
T p(nj−1+···+ni+1)xj−1, xi

)
� ε

2k
(j − i − 1),

we obtain (2.4).
By the choice ofk, among thek + 1 pointsx0, . . . , xk there are two, sayxi , xj , 0� i <

j � k, for whichρ(xi, xj ) < ε/2. Put

n= nj + · · · + ni+1,

a = ak + · · · + a0 + p1(Nk + · · · +N0 − nj − · · · − n0).

Thenxj = T ax and

ρ(T a+pnx,T ax) = ρ(T pnxj , xj )
� ρ(T pnxj , xi)+ ρ(xj , xi) < ε(j − i)/2k + ε/2� ε.

Furthermore,n<N , n �= 0 anda < pq(N − n) by (2.3). This proves Proposition 2.7.�
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2.4. Polynomial van der Waerden theorem

We shall formulate now a polynomial extension of the multidimensional van der Waerden’s
theorem which was obtained in [23]. We leave it to the reader to formulate the combinato-
rial equivalent of this result. (See also Theorems 2.12 and 2.14 below.)

THEOREM 2.9. Let (X,ρ) be a compact metric space, let T1, . . . , Tt be commuting home-
omorphisms ofX and letpi,j , i = 1, . . . , k, j = 1, . . . , t , be polynomials taking on integer
values on the integers and vanishing at zero. Then, for any positiveε, there existx ∈X and
n ∈ N such that

ρ
(
T
pi,1(n)

1 T
pi,2(n)

2 · · ·T pi,t (n)t x, x
)
< ε (2.5)

for all i = 1, . . . , k simultaneously. Moreover, the set{n ∈ Z: ∀ε > 0,∃x ∈X such that∀i ∈
{1,2, . . . , k}, (2.5) is satisfied} is an IP∗ set.

We provide now a proof of a special case. Let(X,ρ) be a compact metric space and
let T be a homeomorphism ofX. Let ε > 0; we will find x ∈ X and n ∈ N such that
ρ(T n

2
x, x) < ε.

Without loss of generality we will assume that the system(X,T ) is minimal. We shall
find a sequencex0, x1, x2, . . . of points ofX and a sequencen1, n2, . . . of natural numbers
such that

ρ
(
T (nm+···+nl+1)

2
xm,xl
)
< ε/2 for everyl,m ∈ Z+, l < m (2.6)

(whereZ+ = {0,1,2, . . .}). SinceX is compact, for somel < m one will haveρ(xm,xl) <
ε/2; together with (2.6) this will giveρ(T (nm+···+nl+1)

2
xm,xm) < ε.

Choosex0 ∈ X arbitrarily and putn1 = 1, x1 = T −n2
1x0. Let ε1 < ε/2 be such that

ρ(T n
2
1y, x0) < ε/2 for everyy for which ρ(y, x1) < ε1. Using the “linear” van der Waer-

den theorem, findy1 ∈ X andn2 ∈ N such thatρ(y1, x1) < ε1/2 andρ(T 2n1n2y1, y1) <

ε1/2. Putx2 = T −n2
2y1; then

ρ
(
T n

2
2x2, x1

)= ρ(y1, x1) < ε1/2< ε/2;
also,

ρ
(
T 2n1n2+n2

2x2, x1
)
� ρ
(
T 2n1n2y1, y1

)+ ρ(y1, x1) < ε1

and, hence, by the choice ofε1,

ρ
(
T (n1+n2)

2
x2, x0
)= ρ(T n2

1T 2n1+n2
2x2, x0

)
< ε/2.

Suppose thatxm, nm have been found; let us findxm+1, nm+1. Chooseεm, 0< εm < ε/2,
guaranteeing the implication

ρ(y, xm) < εm 7⇒ ρ
(
T (nm+···+nl+1)

2
y, xl
)
< ε/2, l = 0, . . . ,m− 1,
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and (using the linear van der Waerden theorem) findym, nm+1 such that

ρ(ym,xm) < εm/2,

ρ
(
T 2(nm+···+nl+1)nm+1ym,ym

)
< εm/2, l = 0, . . . ,m− 1.

Puttingxm+1 = T −n2
m+1ym, we obtain

ρ
(
T 2(nm+···+nl+1)nm+1+n2

m+1xm+1, xm
)

� ρ
(
T 2(nm+···+nl+1)nm+1ym,ym

)+ ρ(ym,xm) < εm, l = 0, . . . ,m− 1,

and, hence, by the choice ofεm,

ρ
(
T n

2
m+1xm+1, xm

)
< ε/2

and

ρ
(
T (nm+1+···+nl+1)

2
xm+1, xl

)
< ε/2 for l = 0, . . . ,m− 1.

REMARK. We leave it to the reader to check that the proof above shows actually that a
numbern with the property that, for somex, ρ(T n

2
x, x) < ε can be chosen from any IP

set.

2.5. Polynomial Hales–Jewett theorem

We are going to formulate now the polynomial extension of the Hales–Jewett theorem
which was obtained in [24]. Like its “linear” special case, the polynomial Hales–Jewett
theorem has many equivalent formulations. The one we have chosen to present here is a
natural extension of Proposition 2.7.

THEOREM 2.10. Let (X,ρ) be a compact metric space. For fixedd, q ∈ N, let PN be
the set of subsets of{1,2, . . . ,N}d × {1,2, . . . , q}. Let T (c), c ∈ PN , be a family of self-
mappings ofX such thata ∩ b = ∅ impliesT (a ∪ b) = T (a)T (b). Then for anyx ∈ X
and anyε > 0 there existN ∈ N, a ∈ PN and a nonempty setγ ⊆ {1,2, . . . ,N} such that
a∩(γ d×{1,2, . . . , q}) �= ∅ andρ(T (a∪(γ d×{i})x, T (a)x) < ε for everyi = 1,2, . . . , q.

Here is the combinatorial version of Theorem 2.10. We leave it to the reader to verify
that it is indeed equivalent to Theorem 2.10. (In one direction, the argument is similar to
that in Remark 2.8 above. See also [9, pp. 45–47], and [24, Proposition 3.3].)

THEOREM 2.11 [24, Theorem PHJ].For anyr, d, q ∈ N there existsN =N(r, d, q) such
that for anyr-coloring of the setPN of subsets of{1,2, . . . ,N}d ×{1,2, . . . , q} there exist
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a ∈ PN and a nonempty setγ ⊆ {1,2, . . . ,N} with a ∩ (γ d × {1,2, . . . , q})= ∅ and such
that the sets

a, a ∪ (γ d × {1}), a ∪ (γ d × {2}), . . . , a ∪ (γ d × {q})
are all of the same color.

We will formulate now some corollaries of the polynomial Hales–Jewett theorem. The
density versions of these results (or, rather, the ergodic counterparts of these density ver-
sions) will be discussed in Section 4. The following result extends and refines the polyno-
mial van der Waerden theorem.

THEOREM 2.12 [24, Theorem 0.14].For any t,m ∈ N, any polynomial mapping
P :Zt → Zm satisfyingP(0)= 0, any finite setF ⊂ Zt and any finite coloringχ :Zm →
{1,2, . . . , r}, there isl ∈ {1,2, . . . , r} such that the set{

(n1, . . . , nt ): there isa ∈ Zm such thatχ
(
a + P(n1v1, . . . , ntvt )

)= l
for all v = (v1, . . . , vt ) ∈ F

}
is an IP∗ set inZt .

The following proposition corresponds to the special caset = 2q, m= 1, P(n1, k1, n2,

k2, . . . , nq, kq) =∑qi=1niki andF = {(1,1,0, . . . ,0), (0,0,1,1,0, . . . ,0), . . . , (0,0, . . . ,
0,0,1,1)}.
PROPOSITION2.13. Let (n(1)i )i∈N, (k

(1)
i )i∈N, . . . , (n

(q)
i )i∈N, (k

(q)
i )i∈N be sequences inZ

and let(n(1)α )α∈F , (k(1)α )α∈F , . . . , (n(q)α )α∈F , (k(q)α )α∈F be (additive) IP sets generated by
these sequences. Then for any finite coloring ofZ there exists a monochromatic set of the
form {

a, a + n(1)γ k(1)γ , a + n(2)γ k(2)γ , . . . , a + n(q)γ k(q)γ
}

for somea ∈ N and a finite nonemptyγ ⊂ N.

One can also derive from the polynomial Hales–Jewett theorem an analogue of the poly-
nomial van der Waerden theorem which is valid in any commutative ring. The following
corollary of Theorem 2.11 contains the combinatorial counterpart of Theorem 2.9 as a
special case.

THEOREM 2.14 [24, Theorem 0.17].Let W and V be vector spaces over an infinite
field K , let P :W → V be a polynomial mapping withP(0) = 0, and letF ⊂ W be a
finite set. If V =⋃ri=1Ci is a finite coloring ofV , then:

(i) There exista ∈ V andn ∈K , n �= 0 such that the set

a + P(nF)= {a + P(nv): v ∈ F}
is monochromatic.
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(ii) For somel ∈ {1,2, . . . , r} the set{
n ∈K: there existsa ∈ V such thata + P(nv) ∈ Ci for all v ∈ F}

is an IP∗ set.

2.6. Nilpotent van der Waerden theorem

Observing that the various versions of van der Waerden’s theorem are linked with recur-
rence theorems for commuting homeomorphisms of a compact metric space, one is nat-
urally inclined to inquire whether these recurrence results can be generalized to a non-
commutative situation. The answer, in general, is NO. (See [58, p. 40], and [20].) The
following theorem, due to A. Leibman [97], shows that, when the homeomorphisms gen-
erate a nilpotent group, the answer is YES. Note that Leibman’s theorem is, at the same
time, a generalization of the polynomial van der Waerden theorem, Theorem 2.9 above.

THEOREM2.15. Let(X,ρ) be a compact metric space, let homeomorphismsT1, . . . , Tt of
X generate a nilpotent group and letpi,j , i = 1, . . . , k, j = 1, . . . , t , be polynomials taking
on integer values on the integers and vanishing at zero. Then, for any positiveε, there

existx ∈X andn ∈ N such thatρ(T
pi,1(n)

1 T
pi,2(n)

2 · · ·T pi,t (n)t x, x) < ε for all i = 1, . . . , k
simultaneously.

To get the feeling of some of the ideas behind the proof of Theorem 2.15 let us con-
sider the simplest noncommutative situation. Let(X,ρ) be a compact metric space and
let homeomorphismsT andS of X do not commute but be such thatR = [T ,S] commute
with bothT andS; the groupG generated byT andS is then two-step nilpotent. Letε > 0;
our goal is to findx ∈X andn ∈ N such that bothρ(T nx, x) < ε andρ(Snx, x) < ε.

Without loss of generality we will assume thatX is minimal with respect to the action of
the groupG. The sequenceSnT −n, n ∈ N, inG can be written as a “polynomial sequence”
(ST −1)nRn(n−1)/2. Since the homeomorphismsST −1 andR commute, we have, by the
polynomial van der Waerden theorem that, for anyδ > 0 there existsy ∈X such that, for
somen ∈ N, one hasρ(SnT −ny, y) < δ. We will first show that the set of points with
this property is dense inX: for any open setV ⊆ X we will find y ∈ V such that, for
somen ∈ N, both T ny,Sny ∈ V . SinceX is minimal with respect to the action ofG
and compact, there existP1, . . . ,Pk ∈G such that

⋃k
i=1P

−1
i V =X. Let δ be a Lebesgue

number for this cover. For anyP = T aSbRc ∈G we have

P−1SnT −nP = SnT −n[SnT −n,P ] = (ST −1)nRn(n−1)/2[S,T ]an[T ,S]−bn

= (ST −1)nRn(n−1)/2−(a+b)n, n ∈ N.

All these “polynomial sequences” lie in the commutative group generated byST −1 andR.
Thus, by the polynomial van der Waerden theorem, there existz ∈X andn ∈ N such that
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ρ(P−1
i SnT −nPiz, z) < δ for all i = 1, . . . , k. Hence, there existsi ∈ {1, . . . , k} such that

z ∈ P−1
i V andP−1

i SnT −nPiz ∈ P−1
i V , i = 1, . . . , k. It remains to puty = Piz.

We will now construct a sequencex0, x1, x2, . . . of points ofX and a sequencen1, n2, . . .

of positive integers such that

ρ
(
T nm+···+nl+1xm,xl

)
< ε/2 and ρ

(
Snm+···+nl+1xm,xl

)
< ε/2

for everyl,m ∈ Z+, l < m. (2.7)

SinceX is compact, for somel < m we will haveρ(xm,xl) < ε/2; together with (2.7) this
impliesρ(T nm+···+nl+1xm,xm) < ε andρ(Snm+···+nl+1xm,xm) < ε.

Using the polynomial van der Waerden theorem find a pointx0 ∈ X and an integer
n1 ∈ N such thatρ(Sn1T −n1x0, x0) < ε/2. Putx1 = T −n1x0, thenρ(T n1x1, x0)= 0< ε/2
andρ(Sn1x1, x0) < ε/2.

Suppose now thatxm, nm satisfying (2.7) have been found for allm � k; we will find
xk+1, nk+1. Chooseδ, 0< δ < ε/2, such thatρ(y, xk) < δ impliesρ(T nk+···+nl+1y, xl) <

ε/2 andρ(Snk+···+nl+1y, xl) < ε/2 for all l = 0, . . . , k−1. Findyk in theδ/2-neighborhood
of xk andnk+1 ∈ N such thatρ(Snk+1T −nk+1yk, yk) < δ/2. Putxk+1 = T −nk+1yk , then
ρ(T nk+1xk+1, xk) < δ/2 < ε/2 and ρ(Snk+1xk+1, xk) < δ < ε/2. By the choice ofδ
this impliesρ(T nk+1+···+nl+1xk+1, xl) < ε/2 andρ(Snk+1+···+nl+1xk+1, xl) < ε/2 for all
l = 0, . . . , k − 1.

2.7. Nilpotent Hales–Jewett theorem

We want to conclude this section by discussing a nilpotent version of the polynomial
Hales–Jewett theorem, which was obtained in [26]. But first we want to give a formu-
lation of a corollary of the polynomial Hales–Jewett theorem, which will be suggestive of
the further, nilpotent generalization.

WriteF ′ =F ∪∅ (whereF , as before, denotes the set of finite nonempty subsets ofN).
LetG be a commutative (semi)group. A mappingP :F ′ →G is anIP polynomial of degree
0 if P is constant, and, inductively, is anIP polynomial of degree� d if for any β ∈ F ′
there exists an IP polynomialDβP :F ′(N \ β)→G of degree� d − 1 (whereF ′(N \ β)
is the set of finite subsets ofN \ β), such thatP(α ∪ β) = P(α) ∪ (DβP )(α) for every
α ∈F ′ with α ∩ β = ∅. We have the following theorem.

THEOREM 2.16 [24]. LetG be an Abelian group of self-homeomorphisms of a compact
metric space(X,ρ) and letP1,P2, . . . ,Pk be IP polynomials mappingF ′ into G and
satisfyingPi(∅) = 1G for all i ∈ {1, . . . , k}. Then for anyε > 0 there existx ∈ X and a
nonemptyα ∈F ′ such thatρ(Pi(α)x, x) < ε for i = 1, . . . , k.

It is proved in [24, Theorem 8.3], that ifG is an Abelian group then a mapping
P :F ′ → G is an IP polynomial of degree� d if and only if there exists a family
{g(j1,...,jd )}(j1,j2,...,jd )∈Nd of elements ofG such that for anyα ∈ F ′ one hasP(α) =



Combinatorial and Diophantine applications of ergodic theory 777∏
(j1,...,jd )∈αd g(j1,...,jd ). This characterization of IP polynomials makes sense in the nilpo-

tent setup as well. Given a nilpotent groupG, let us call a mappingP :F ′ →G an IP poly-
nomial if for somed ∈ N there exists a family{g(j1,...,jd )}(j1,...,jd )∈Nd of elements ofG and
a linear order< on Nd such that for anyα ∈ F ′ one hasP(α)=∏<

(j1,...,jd )∈αd g(j1,...,jd ).
(The entries in the product

∏< are multiplied in accordance with the order<.) We can for-
mulate now the nilpotent version of the polynomial Hales–Jewett theorem, which contains
many results formulated above, in particular Theorems 1.29, 2.9 and 2.15, as special cases.

THEOREM 2.17 [26, Theorem 0.24].LetG be a nilpotent group of self-homeomorphisms
of a compact metric space(X,ρ) and letP1, . . . ,Pk :F ′ → G be polynomial mappings
satisfyingP1(∅) = · · · = Pk(∅) = 1G. Then, for any ε > 0, there existx ∈ X and a non-
emptyα ∈F ′ such thatρ(Pi(α)x, x) < ε for all i = 1,2, . . . , k.

The following corollary of Theorem 2.17 can be viewed as the nilpotent generalization
of Hilbert’s theorem (see Theorems 1.8 and 1.12). It is worth noting that, unlike Hilbert’s
theorem which had an easy proof, the nilpotent version of it is far from being trivial.

THEOREM 2.18 [26, Theorem 5.5].LetG be an infinite nilpotent group. For anyk, r ∈ N
there existN ∈ N such that for anyg(i)j ∈ G, 1 � i � k, 1 � j � N , and anyr-coloring
of G there exist a nonempty setα ⊆ {1,2, . . . ,N} and infinitely manyh ∈ G such that
for hi =∏j∈α g(i)j , i = 1, . . . , k (where the entries are multiplied in the natural order of
j ∈ N), all the productshhi1hi2 · · ·hil with 0 � l � k and distincti1, i2, . . . , il are of the
same color.

Finally, we formulate a corollary of the nilpotent Hales–Jewett theorem which may be
viewed as an extension of Theorem 1.29. See [26, Theorem 5.9], for yet another nilpotent
extension of Theorem 1.29.

THEOREM 2.19 [26, Theorem 5.8].For any r, q, c ∈ N and prime integerp there exists
k ∈ N such that ifF is a field of characteristicp and of cardinality at leastk, then for
any r-coloring of the groupG of q × q upper triangular matrices overF with unit diag-
onal, there exist a subgroupH of G with |Hq | � c andh ∈ G such that the cosethH is
monochromatic.

3. Dynamical, combinatorial, and Diophantine applications of βN

In this section, we shall discuss briefly the Stone–Čech compactification of the natural
numbers,βN, and indicate some of its connections with an applications to topological
dynamics, combinatorics, and the theory of Diophantine approximations.

We start with some general definitions and facts. The reader will find the missing details
in [9, Section 3], and [12]. (See also [85] for a comprehensive treatment of topological
algebra in Stone–̌Cech compactifications and applications thereof.)
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3.1. Definition and properties ofβN

An ultrafilter p on N is a maximal filter, namely a family of subsets ofN satisfying the
following conditions (the first three of which constitute, for a nonempty family of sets, the
definition of afilter).

(i) ∅ /∈ p,
(ii) A ∈ p andA⊂ B imply B ∈ p,

(iii) A ∈ p andB ∈ p imply A∩B ∈ p,
(iv) (maximality) if r ∈ N andN =⋃ri=1Ai then, for somei ∈ {1,2, . . . , r}, Ai ∈ p.
The space of ultrafilters onN is denoted byβN; it has a natural topology which turns

it into a universal compactification ofN, the so-called Stone–Čech compactification. (See
more on that in [85].)

A convenient way of looking at ultrafilters is to identify each ultrafilterp with a finitely
additive {0,1}-valued probability measureµp on the power setP(N). This measureµp
is naturally defined by the requirementµp(A) = 1 iff A ∈ p and it follows immediately
from the conditions (i) through (iv) above thatµp(∅)= 0,µp(N)= 1 and that for any fi-
nite disjoint collectionA1, . . . ,Ar of subsets ofN, one hasµp(

⋃r
i=1Ai)=

∑r
i=1µp(Ai).

Without saying so explicitly, we will always think of ultrafilters as such measures, but we
will prefer to writeA ∈ p rather thatµp(A)= 1.

Any n ∈ N naturally defines an ultrafilter{A⊂ N: n ∈A}. Such ultrafilters, which can be
viewed as “delta measures” concentrated at points ofN, are calledprincipal and, alas, are
the only ones which can be constructed without the use of Zorn’s lemma (see [45, pp. 161–
162]). Since many of the constructions in topological dynamics and ergodic theory use
this or that equivalent of Zorn’s lemma, we will not be bothered by this, notwithstanding
the fact that there is certainly some importance in knowing which mathematical results are
Zorn lemma free.

Suppose thatC is a family of subsets ofN which has the finite intersection property.
Then there is somep ∈ βN such thatC ∈ p for eachC ∈ C. Indeed, let

C̃ = {B ⊂P(N): B has the finite intersection property andC ⊂ B
}
.

Clearly,C̃ �= ∅ (sinceC ∈ C̃). Also, the union of any chain iñC is a member of̃C. By Zorn’s
lemma there is a maximal memberp of C̃, which is actually maximal with respect to the
finite intersection property and hence a member ofβN.

To see that nonprincipal ultrafilters exist, take for example

C = {A⊂ N: Ac = N \A is finite}.

Clearly C has the finite intersection property, so there is an ultrafilterp ∈ βN such that
C ∈ p for all C ∈ C. It is easy to see that suchp cannot be principal.

For another example, take

D =
{
A⊂ N: d(A)= lim

n→∞
|A∩ {1,2, . . . , n}|

n
= 1

}
.



Combinatorial and Diophantine applications of ergodic theory 779

Again,D clearly satisfies the finite intersection property. Ifp is any ultrafilter for which
D ⊂ p, then any member ofp has positive upper density. (Ifd(A) = 0, thenAc =
(N \A) ∈D.)

These examples hint that the spaceβN is quite large. It is indeed: the cardinality ofβN
equals that ofP(P(N)) ([69, 6.10(a)]).

Let us say now a few words about topology inβN. GivenA ⊂ N, let A = {p ∈ βN:
A ∈ p}. The setG = {A: A⊂ N} forms a basis for the open sets (and a basis for the closed
sets). To see thatG is indeed a basis for a topology onβN observe that ifA,B ⊂ N, then
A ∩ B = A∩B. Also, N = βN and hence

⋃
A∈G A = βN. (Notice also thatA ∪ B =

A∪B.) With this topology,βN satisfies the following.

THEOREM 3.1. βN is a compact Hausdorff space.

PROOF. Let K be a cover ofβN by sets belonging to the baseG = {A: A ⊂ N}. Let
C ⊂ P(N) be such thatK = {A: A ∈ C}. Assume thatK has no finite subcover. Consider
the familyD = {Ac: A ∈ C}. There are two possibilities (each leading to a contradiction):

(i) D has the finite intersection property. Then, as shown above, there exists an ultra-
filter p such thatAc ∈ p for eachAc ∈ D. Sincep is an ultrafilter,Ac ∈ p if and only if
A /∈ p. On the other hand, sinceK coversβN, for some elementA of the coverp ∈A, or
equivalentlyA ∈ p, a contradiction.

(ii) D does not have the finite intersection property. Then for someA1, . . . ,Ar ∈ C one
has
⋂r
i=1A

c
i = ∅, or

⋃r
i=1Ai = N, which implies that

⋃r
i=1Ai = βN. Again, this is a

contradiction, as we assumed thatK has no finite subcover.
As for the Hausdorff property, notice that ifp,q ∈ βN are distinct ultrafilters then since

each of them is maximal with respect to the finite intersection property, neither of them
is contained in the other. IfA ∈ p \ q, thenAc ∈ q \ p, which means thatA andAc are
disjoint neighborhoods ofp andq. �

REMARK. Being a nice compact Hausdorff space,βN is in many respects quite a strange
object. We mentioned already that its cardinality is that ofP(P(N)). It follows thatβN is
not metrizable, as otherwise, being a compact and hence separable metric space, it would
have cardinality not exceeding that ofP(N). Another curious feature ofβN is that any
infinite closed subset ofβN contains a homeomorphic copy of all ofβN. (See [69, ex. 6O6,
p. 97], or [85, Theorem 3.59, p. 67].)

3.2. The semigroup operation inβN

SinceN = βN, it is natural to attempt to extend the operation of addition from (the densely
embedded)N to βN. Since ultrafilters are measures (principal ultrafilters being just the
point measurescorresponding to the elements ofN), it comes as no surprise that the exten-
sion we look for takes the form of aconvolution. What is surprising, however, is that the
algebraic structure ofβN was explicitly introduced only relatively recently (in [44]). In the



780 V. Bergelson

following definition,A− n (whereA⊂ N, n ∈ N) is the set of allm for whichm+ n ∈A.
Forp,q ∈ N, define

p+ q = {A⊂ N:
{
n ∈ N: (A− n) ∈ p} ∈ q}.

REMARKS.
(1) Note that in much of the literature, including [85], what we have written asp+ q is

denoted asq + p.
(2) It is not hard to check that for principal ultrafilters the operation+ corresponds to

addition inN.
(3) Despite the somewhat forbidding phrasing of the operation just introduced in set-

theoretical terms, the perspicacious reader will notice the direct analogy between
this definition and the usual formulas for convolution of measuresµ,ν on a locally
compact groupG (cf. [81, 19.11]):

µ ∗ ν(A)=
∫
G

ν
(
x−1A
)
dµ(x)=

∫
G

µ
(
Ay−1)dν(y).

(4) Before checking the correctness of the definition, a word of warning: the operation
+ just introduced (which will turn out to be well defined and associative) is badly
noncommutative. This seems to contradict our intuition since(N,+) is commuta-
tive and in the case ofσ -additive measures on Abelian semi-groups convolution
is commutative. The explanation: our ultrafilters, being onlyfinitely additive mea-
sures, do not obey the Fubini theorem, which is behind the commutativity of the
usual convolution.

Let us show thatp+ q is an ultrafilter. Clearly∅ /∈ p+ q. LetA,B ∈ p+ q. This means
that{n ∈ N: (A−n) ∈ p} ∈ q and{n ∈ N: (B−n) ∈ p} ∈ q. Sincep andq are ultrafilters,
we have:{

n ∈ N: (A∩B)− n ∈ p}
= {n ∈ N: (A− n) ∈ p}∩ {n ∈ N: (B − n) ∈ p} ∈ q.

Assume now thatA⊂ N, A /∈ p+ q. We want to show thatAc ∈ p+ q. SinceA /∈ p+ q,
we know that{n ∈ N: (A− n) ∈ p} /∈ q, or, equivalently,{n ∈ N: (A− n) ∈ p}c ∈ q. But
this is true precisely when{n ∈ N: (Ac − n) ∈ p} ∈ q, which is the same asAc ∈ p+ q. It
follows thatp+ q ∈ βN.

Let us now check the associativity of the operation+. LetA⊂ N andp,q, r ∈ βN. One
has:

A ∈ p+ (q + r)⇔ {n ∈ N: (A− n) ∈ p} ∈ q + r
⇔ {m ∈ N:

({
n ∈ N: (A− n) ∈ p}−m) ∈ q} ∈ r

⇔ {m ∈ N:
{
n ∈ N: (A−m− n) ∈ p} ∈ q} ∈ r

⇔ {m ∈ N: (A−m) ∈ p+ q} ∈ r⇔A ∈ (p+ q)+ r.
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THEOREM 3.2. For any fixedp ∈ βN the functionλp(q)= p+q is a continuous self map
of βN.

PROOF. Let q ∈ βN and letU be a neighborhood ofλp(q). We will show that there exists
a neighborhoodB of q such that for anyr ∈ B, λp(r) ∈ U . LetA⊂ N be such thatλp(q)=
p+ q ∈A⊂ U . ThenA ∈ p+ q. Let us show that the set

B = {n ∈ N: (A− n) ∈ p}
will do for our purposes. Indeed, by the definition ofp + q, B ∈ q, or, in other words,
q ∈ B. If r ∈ B thenB = {n ∈ N: (A− n) ∈ p} ∈ r . This means thatA ∈ p + r = λp(r),
or λp(r) ∈A ∈ U . �

With the operation+, βN becomes, in view of Theorem 3.2, a compactleft topological
semigroup.

THEOREM 3.3. If (G,∗) is a compact left topological semigroup(i.e. for anyx ∈G the
functionλx(y)= x ∗ y is continuous) thenG has an idempotent.

REMARK. For compacttopological semigroups(i.e. with an operation which is continuous
in both variables), this result is due to Numakura [108]; for left topological semigroups the
result is due to Ellis [51].

PROOF. Let

G = {A⊂G: A �= ∅,A is compact, A ∗A= {x ∗ y: x, y ∈A} ⊂A}.
SinceG ∈ G, G �= ∅. By Zorn’s lemma, there exists a minimal elementA ∈ G. If x ∈ A,
thenx ∗A is compact and satisfies

(x ∗A) ∗ (x ∗A)⊂ (x ∗A) ∗ (A ∗A)⊂ (x ∗A) ∗A⊂ x ∗ (A ∗A)⊂ x ∗A.
Hencex ∗A ∈ G. But x ∗A⊂A ∗A⊂A, which implies thatx ∗A=A. Thusx ∈ x ∗A,
which implies thatx = x ∗y for somey ∈A. Now considerB = {z ∈A: x ∗z= x}. The set
B is closed (sinceB = λ−1

x ({x})), and we have just shown thatB is nonempty. Ifz1, z2 ∈ B
thenz1∗z2 ∈A∗A⊂A andx ∗ (z1∗z2)= (x ∗z1)∗z2 = x ∗z2 = x. SoB ∈ G. ButB ⊂A
and henceB =A. Sox ∈ B which givesx ∗ x = x. �

For a fixedp ∈ βN we shall call a setC ⊂ N p-big if C ∈ p. The notion of largeness
induced by idempotent ultrafilters is special (and promising) in that it inherently has a
shift-invariance property. Indeed, ifp ∈ βN with p+ p = p then

A ∈ p⇔A ∈ p+ p⇔ {n ∈ N: (A− n) ∈ p} ∈ p.
A way of interpreting this is that ifp is an idempotent ultrafilter, thenA is p-big if and
only if for p-manyn ∈ N the shifted set(A− n) is p-big. Or, still somewhat differently:
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A⊂ N is p-big if for p-almost alln ∈ N the set(A− n) is p-big. This is the reason why
specialists in ultrafilters called such idempotent ultrafilters “almost shift invariant” in the
early seventies (even before the existence of such ultrafilters was established).

REMARK. The reader is invited to check that ifp is an idempotent ultrafilter, then for any
a ∈ N, aN ∈ p. This, in particular, implies that suchp cannot be a principal ultrafilter.
(This can also be deduced from the fact that(N,+) has no idempotents.)

3.3. The analogy between idempotent ultrafilters and measure preserving systems. A new
glimpse at Hindman’s theorem

Each idempotent ultrafilterp ∈ βN induces a “measure preserving dynamical system” with
the phase spaceN, σ -algebraP(N), measurep, and “time” being the “p-preserving”N-
action induced by the shift. The two peculiarities about such a measure preserving system
are that the phase space is countable and that the “invariant measure” is only finitely ad-
ditive and is preserved by our action not for all, but for almost all instances of “time.”
Notice that the “Poincaré recurrence theorem” trivially holds: IfA ∈ p then, since there
arep-manyn for which (A− n) ∈ p, one has, for any suchn, A∩ (A− n) ∈ p.

As we saw in the Introduction, it is this defining property of idempotent ultrafilters
(arranged there as Proposition 1.14) which is all that one needs for the proof of Hindman’s
theorem.

The following result gives the “ultrafilter explanation” of Theorem 1.16 in the Introduc-
tion. We shall also need it in the proof of Theorem 3.5 below.

THEOREM 3.4. For any sequence(xi)i∈N in N there is an idempotentp ∈ βN such that
FS((xi)i∈N) ∈ p.

SKETCH OF THE PROOF. Let Γ =⋂∞
n=1 FS((xi)∞i=n). (The closures are taken in the nat-

ural topology ofβN.) Clearly,Γ is compact and nonempty. It is not hard to show that
Γ is a subsemigroup of(βN,+). Being a compact left-topological semigroup,Γ has
an idempotent. Ifp ∈ Γ is an idempotent, thenΓ = Γ " p which, in particular, implies
FS((xi)∞i=1) ∈ p. �

The spaceβN has also another natural semigroup structure, namely, the one inherited
from the multiplicative semigroup(N, ·), and is a left topological compact semigroup with
respect to this structure too. In particular, there are (many) multiplicative idempotents,
namely ultrafiltersq with the property

A ∈ q⇔{n ∈ N: A/n ∈ q} ∈ q
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(whereA/n := {m ∈ N: mn ∈ A}). By complete analogy with the proof of (the additive
version of) Hindman’s theorem, one can show that any member of a multiplicative idem-
potent contains a multiplicative IP set, namely a set of finite products of the form

FP(yn)
∞
n=1 =

{∏
i∈α
yi : α ⊂ N, 1� |α|<∞

}
.

It follows that for any finite partitionN =⋃ri=1Ci there arei, j ∈ {1,2, . . . , r} such
thatCi contains an additive IP set andCj contains a multiplicative IP set. The following
theorem due to Hindman shows that one can always havei = j .

THEOREM 3.5 [84]. For any finite partitionN =⋃ri=1Ci , there existsi ∈ {1,2, . . . , r}
and sequences(xn)∞n=1 and(yn)∞n=1 in N such that

FS
(
(xn)

∞
n=1

)∪ FP
(
(yn)

∞
n=1

)⊆ Ci.
PROOF. Let Γ be the closure inβN of the set of additive idempotents. We claim that
p ∈ Γ if and only if everyp-large setA contains an additive IP set. Indeed, ifA ∈ p ∈ Γ ,
thenA is a (clopen) neighborhood ofp. It follows that there existsq ∈A with q + q = q.
ThenA ∈ q and by Hindman’s theorem,A contains an IP set. Conversely, ifA is a basic
neighborhood ofp and for some(xn)∞n=1, FS((xn)∞n=1) ⊆ A, then by Theorem 3.4, there
exists an idempotentq with FS((xn)∞n=1) ∈ q, which impliesA ∈ q, and hencep ∈ Γ .

We will show now thatΓ is a right ideal in(βN, ·). Let p ∈ Γ, q ∈ βN, and let
A ∈ p · q. Then {x ∈ N: Ax−1 ∈ p} ∈ q and, in particular,{x ∈ N: Ax−1 ∈ p} is non-
empty. Letx be such thatAx−1 ∈ p. Sincep ∈ Γ , there exists a sequence(yn)∞n=1 with
FS((yn)∞n=1)⊆ Ax−1, which impliesFS((xyn)∞n=1)⊆ A and sop · q ∈ Γ . We see thatΓ
is a compact subsemigroup in(βN, ·) and hence contains a multiplicative idempotent. To
finish the proof, let

⋃r
i=1Ci = N and letp ∈ Γ satisfyp · p = p. Let i ∈ {1,2, . . . , r} be

such thatCi ∈ p. Then, sincep ∈ Γ, Ci contains an additive IP set. Also, sincep is a
multiplicative idempotent,Ci contains a multiplicative IP set. We are done. �

REMARKS.
(1) For an elementary proof of Theorem 3.5, see [22].
(2) Theorem 3.13 below shows that for any finite partition

⋃r
i=1Ci = N one of theCi

has interesting additional properties. In particular, one of theCi can be shown to
contain in addition to an additive and a multiplicative IP sets, also arbitrarily long
arithmetic and arbitrarily long geometric progressions.

3.4. Minimal idempotents

Seeing how much mileage one can get by sheer analogy between idempotent ultrafilters
and measure preserving systems, it would be natural to inquire (in a hope that this can lead
to interesting new results) whether there is a class of idempotents which could be likened
to a minimal topological system (with an invariant measure).
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To answer this question, let us extend the shift operationσ :n→ n+ 1, n ∈ N, from N
to βN, by the ruleq→ q + 1 (where 1 denotes the principal ultrafilter of sets containing
the integer 1), and consider the topological dynamical system(βN, σ ).

It is customary to refer to a subsetI of a semigroup(S,+) as a right (respectively,
left) ideal if I + S ⊆ I (respectively,S + I ⊆ I ). The following theorem establishes the
connection between minimal subsystems of(βN, σ ) and minimal right ideals in(βN,+).
THEOREM 3.6. The minimal closed invariant subsets of the dynamical system(βN, σ )
are precisely the minimal right ideals of(βN,+).
PROOF. We first observe that closedσ -invariant sets inβN coincide with right ideals.
Indeed ifI is a right ideal, i.e. satisfiesI + βN ⊆ I , then for anyp ∈ I one hasp + 1∈
I + βN ⊆ I , so thatI is σ -invariant. On the other hand, ifS is a closedσ -invariant set in
βN andp ∈ S, thenp+ βN = p+N = p+N ⊆ S = S, which impliesS + βN ⊆ S.

Now the theorem follows from a simple general fact that any minimal right ideal in a
compact left-topological semigroup(G, ·) is closed. Indeed, ifR is a right ideal in(G, ·)
andx ∈ R, thenxG is compact as the continuous image ofG and is an ideal. Hence the
minimal ideal containingx is compact as well. (The fact thatR contains a minimal ideal
follows by an application of Zorn’s lemma to the nonempty family{I : I is a closed right
ideal ofG andI ⊆R}.) �

Our next step is to observe that any minimal right ideal in(βN,+), being a compact
left-topological semigroup, contains, by Theorem 3.3, an idempotent.

DEFINITION 3.7. An idempotentp in (βN,+) is calledminimalif p belongs to a minimal
right ideal.

THEOREM 3.8. Any minimal subsystem of(βN, σ ) is of the form(p+ βN, σ ) wherep is
a minimal idempotent in(βN,+).
PROOF. It is obvious that, for anyp ∈ (βN,+), p + βN is a right ideal. To see that
any minimal right ideal is of this form, take anyq ∈ R and observe thatq + βN ⊆ R +
βN ⊆ R. SinceR is minimal, we getq + βN = R. In particular, one can takeq to be an
idempotent. �

We shall need the following definition in order to formulate some immediate corollaries
of Theorem 3.8.

DEFINITION 3.9. A setA ⊆ N is piecewise syndetic if it can be represented as an inter-
section of a syndetic set with an infinite union of intervals[an, bn], wherebn − an→∞.

REMARK. It is not hard to see thatA⊆ N is piecewise syndetic if and only if there exists
a finite setF ⊂ N such that the family{⋃

t∈F
(A− t)− n: n ∈ N

}
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has the finite intersection property. While this description of piecewise syndeticity looks
somewhat forbidding, it has the advantage of making sense in any semigroup. As we shall
see in the proof of Corollary 3.10 below, it is this form of the definition of piecewise
syndeticity which is much easier to check when dealing with minimal idempotents.

COROLLARY 3.10. Letp be a minimal idempotent in(βN,+).
(i) For anyA ∈ p the setB = {n: (A− n) ∈ p} is syndetic.

(ii) AnyA ∈ p is piecewise syndetic.

PROOF. Statement (i) follows immediately from the fact that(p + βN, σ ) is a minimal
system. Indeed, note that the assumptionA ∈ p just means thatp ∈A, i.e.A is a (clopen)
neighborhood ofp. Now, in a minimal dynamical system every pointx is uniformly recur-
rent, i.e. visits any of its neighborhoodsV along a syndetic set. This implies that the set
{n: p+ n ∈A} = {n: A ∈ p+ n} = {n: A− n ∈ p} is syndetic.

(ii) Since the setB = {n: A − n ∈ p} is syndetic, the union of finitely many shifts of
B coversN, i.e. for some finite setF ⊂ N one has

⋃
t∈F (B − t) = N. So, for anyn ∈ N

there existst ∈ F such thatn ∈ B − t , or n+ t ∈ B. By the definition ofB this implies
(A − (n + t)) ∈ p. It follows that for anyn the set

⋃
t∈F (A − t) − n belongs top, and

consequently, the family{⋃t∈F (A− t)−n: n ∈ N} has the finite intersection property. By
the remark above, this is equivalent to piecewise syndeticity ofA. �

REMARK. It follows from part (ii) of Corollary 3.10 that for any finite partitionN =⋃r
i=1Ci , one of theCi is piecewise syndetic, and moreover for any finite partition of a

piecewise syndetic set, one of the cells of the partition is again piecewise syndetic. One
can show that (with the appropriately arranged definition of piecewise syndeticity) this re-
sult holds for any infinite semigroup. (In the case of the semigroup(N,+), this fact can be
proved in an elementary fashion, and is apparently originally due to T. Brown [42].)

3.5. Ultrafilter proof of van der Waerden’s theorem

Note that it follows from the definition above that ifA is a syndetic set inN, then, for
some finite setF ⊂ N, the set

⋃
t∈F (A− t) contains arbitrarily long intervals. It follows

now from Theorem 1.18 that any piecewise syndetic set contains arbitrarily long arithmetic
progressions. (Since any piecewise syndetic set has positive upper Banach density, this fact
also follows from Szemerédi’s theorem, but this would be an overkill.)

On the other hand, it is clear that since for any minimal idempotentp ∈ βN and any finite
partition N =⋃ri=1Ci , one of theCi belongs top, van der Waerden’s theorem follows
from the following result. The proof below is a slight modification of the proof in [16].
(Cf. also [63].)

THEOREM 3.11. Let p ∈ (βN,+) be a minimal idempotent and letA ∈ p. ThenA con-
tains arbitrarily long arithmetic progressions.
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PROOF. Fix k ∈ N and letG= (βN)k . Clearly,G is a compact left topological semigroup
with respect to the product topology and coordinatewise addition. Let

E0 =
{(
a, a + d, . . . , a + (k − 1)d

)
: a ∈ N, d ∈ N∪ {0}},

I0 =
{(
a, a + d, . . . , a + (k − 1)d

)
: a, d ∈ N

}
.

Clearly,E0 is a semigroup inNk andI0 is an ideal ofE0. LetE = clGE0 andI = clG I0
be, respectively, the closures ofE0 andI0 in G. It follows by an easy argument, which
we leave to the reader, thatE is a compact subsemigroup ofG andI is a two-sided ideal
of E. Let nowp ∈ (βN,+) be a minimal idempotent and let̃p = (p,p, . . . ,p) ∈G. We
claim thatp̃ ∈ I and that this implies that each member ofp contains a lengthk arithmetic
progression. Indeed, assume thatp̃ ∈ I and letA ∈ p. ThenA × · · · × A = (A)k is a
neighborhood ofp̃. Hencep̃ ∈ (A)k ∩ clG I0 = clG(Ak ∩ I0), which impliesAk ∩ I0 �= ∅.
It follows that for somea, d ∈ N (a, a + d, . . . , a + (k − 1)d) ∈ Ak which finally implies
{a, a + d, . . . , a + (k − 1)d} ⊂A.

So it remains to show that̃p ∈ I . We check first that̃p ∈ E. Let A1,A2, . . . ,Ak ∈ p.
ThenA1×A2×· · ·×Ak " p̃. If a ∈⋂ki=1Ai then(a, a, . . . , a) ∈ (A1×A2×· · ·×Ak)∩
E0 which impliesp̃ ∈E.

Now, sincep is a minimal idempotent, there is a minimal right idealR of (βN,+)
such thatp ∈ R. Sincep̃ ∈ E, p̃ + E is a right ideal ofE and there is a minimal right
ideal R̃ of E such that̃R ⊆ p̃ +E. Let q̃ = (q1, q2, . . . , qk) be an idempotent iñR. Then
q̃ ∈ p̃ + E and for somẽs = (s1, s2, . . . , sk) in E we getq̃ = p̃ + s̃. We shall show now
thatp̃ = q̃ + p̃. Indeed, fromq̃ = p̃+ s̃ we get, for eachi = 1,2, . . . , k, qi = p+ si . This
impliesqi ∈ R and sinceR is minimal,qi + βN = R. Hencep ∈ qi + βN. Let, for each
i = 1,2, . . . , k, ti ∈ βN be such thatp = qi + ti . Thenqi + p = qi + qi + ti = qi + ti = p
and so we obtained̃p = q̃ + p̃.

To finish the proof, we observe thatp̃ = q̃ + p̃ implies p̃ ∈ q̃ + E = R̃ which, in its
turn, impliesp̃ ∈ I (since, as it is not hard to see, any minimal right ideal is contained in a
two-sided ideal). We are done. �

3.6. Central sets

DEFINITION 3.12. A setA⊆ N is called additively (respectively, multiplicatively) central
if there is a minimal idempotentp ∈ (βN,+) (respectively,p ∈ (βN, ·)), such thatA ∈ p.

As theorems above indicate, central sets are an ideal object for Ramsey-theoretical appli-
cations. For example, central sets in(N,+) not only are large (i.e. piecewise syndetic) but
also are combinatorially rich and, in particular, contain IP sets and arbitrarily long arith-
metic progressions. Similarly, the multiplicative central sets in(N, ·) (namely, the members
of minimal idempotents in(βN, ·)) are multiplicatively piecewise syndetic, contain finite
products sets (i.e. the multiplicative IP sets), arbitrarily long geometric progressions, etc.

The following theorem obtained in collaboration with N. Hindman may be viewed as an
enhancement of Theorem 3.5 above.
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THEOREM 3.13 [19, p. 312].For any finite partitionN = ⋃ri=1Ci , one ofCi is both
additively and multiplicatively central.

SKETCH OF THE PROOF. LetM = cl{p: p is a minimal idempotent in(βN,+)}. Then
one can show thatM is a right ideal in(βN, ·) (see [19, Theorem 5.4, p. 311]). LetR ⊆M
be a minimal right ideal and pick an idempotentq = q · q in R. Let i ∈ {1,2, . . . , r} be
such thatCi ∈ q. Sinceq is a minimal idempotent in(βN, ·), Ci is central in(N, ·). Since
Ci ∈ q andq ∈M , there is some minimal idempotentp in (βN,+) with Ci ∈ p. HenceCi
is also central in(N,+). �

The following theorem supplies a useful family of examples of additively and multi-
plicatively central sets inN.

THEOREM 3.14 [22, Lemma 3.3].For any sequence(an)∞n=1 and an increasing se-
quence(bn)∞n=1 in N,

⋃∞
n=1{an, an + 1, an + 2, . . . , an + bn} is additively central and⋃∞

n=1{an · 1, an · 2, . . . , an · bn} is multiplicatively central.

The original definition of central sets in(N,+), due to H. Furstenberg, was made in the
language of topological dynamics. Before introducing Furstenberg’s definition of central-
ity, we want first to recall some relevant dynamical notions.

Given a compact metric space(X,d), a continuous mapT :X→X and not necessarily
distinct pointsx1, x2 ∈X, one says thatx1, x2 areproximal, if for some sequencenk →∞
one hasd(T nkx1, T

nkx2)→ 0.
A point which is proximal only to itself is calleddistal. In case all the points ofX are

distalT is called a distal transformation and(X,T ) is called a distal system.
Recall that a pointx in a dynamical system(X,T ) is calleduniformly recurrentif for

any neighborhoodV of x the set{n: T nx ∈ V } is syndetic. Since in a minimal system any
point is uniformly recurrent and since any compact topological system has a minimal sub-
system, any topological system has a uniformly recurrent point. A stronger statement, due
to J. Auslander [3] and R. Ellis [52] says that in a dynamical system on a compact metric
space, any point is proximal to a uniformly recurrent point. (Note that this, in particular,
implies that any distal point is uniformly recurrent.)

We are now ready to formulate Furstenberg’s original definition of central sets in(N,+).
For the proof of the equivalence of this definition to Definition 3.12 above, see Theo-
rem 3.22.

DEFINITION 3.15. (See [58, p. 161].) A subsetS ⊆ N is acentralset if there exists a sys-
tem(X,T ), a pointx ∈X, a uniformly recurrent pointy proximal tox, and a neighborhood
Uy of y such thatS = {n: T nx ∈Uy}.

In order to prove the equivalence of the two definitions of centrality, we need to intro-
duce first the notion of convergence along ultrafilters. As we shall see, this notion allows
one to better understand distality, proximality, and recurrence in topological dynamical
systems. We would like to point out that some proofs involving ultrafilters are similar to
known proofs involving the so-called Ellis enveloping semigroup. This is not surprising
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in view of the fact that the Ellis semigroup is a particular type of compactification and, as
such, is in many respects similar to the universal object, the Stone–Čech compactification.
In particular, it allows one to much more easily deal with combinatorial applications of
topological dynamics.

Given an ultrafilterp ∈ βN and a sequence(xn)n∈N in a topological spaceX, one writes
p-limn∈N xn = y if, for every neighborhoodU of y, one has{n: xn ∈ U} ∈ p. It is easy to
see that ifX is a compact Hausdorff space, thenp-limn∈N xn exists and is unique for any
sequence(xn)n∈N in X.

THEOREM 3.16. LetX be a compact Hausdorff space and letp,q ∈ βN. Then for any
sequence(xn)n∈N in X one has

(q + p)-lim
r∈N

xr = p-lim
t∈N

q-lim
s∈N

xs+t . (3.1)

In particular, if p is an idempotent, andq = p, one has

p-lim
r∈N

xr = p-lim
t∈N

p-lim
s∈N

xs+t .

PROOF. Let x = (q + p)-limr∈N xr . Given a neighborhoodU of x we have{r: xr ∈U} ∈
q + p. Recalling that a setA ⊆ N is a member of ultrafilterq + p if and only if {n ∈ N:
(A− n) ∈ q} ∈ p, we get{

t :
({s: xs ∈U} − t) ∈ q}= {t : {s: xs+t ∈U} ∈ q} ∈ p.

This means that, forp-manyt, q-lims∈N xs+t ∈U and we are done. �

PROPOSITION3.17. Let (X,T ) be a topological system and letx ∈ X be an arbitrary
point. Given an idempotent ultrafilterp ∈ βN, let p-limn∈N T

nx = y. Thenp-limn∈N T
ny

= y. If x is a distal point(i.e. x is proximal only to itself) thenp-limn∈N T
nx = x.

PROOF. Applying Theorem 3.16 (and the fact thatp+ p = p), we have

p-lim
n∈N

T ny = p-lim
n∈N

T n p-lim
m∈N

T mx = p-lim
n∈N

p-lim
m∈N

T m+nx = p-lim
n∈N

T nx = y.

If x is a distal point, then the relationsp-limn∈N T
nx = y = p-limn∈N T

ny clearly imply
x = y and we are done. �

REMARK. Note that Proposition 3.17 implies that a continuous distal self-mapT of a
compact metric space is onto. It follows thatT is invertible andT −1 is also distal.

Let R be a minimal right ideal inβN. By Theorem 3.8 above,(R,σ ), whereσ :p→
p+1, is a minimal (nonmetrizable) system. Given a topological system(X,T ) and a point
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x ∈X, let ϕ :R→X be defined byϕ(p)= p-limn∈N T
nx. Observe that if the setY ⊆ X

is defined byY = {p-limn∈N T
nx: p ∈R}, then the following diagram is commutative:

R
σ−→ R

ϕ ↓ ↓ ϕ
Y

T−→ Y

It follows that (Y,T ) is a minimal system. We will use this observation in the proof of
the following result.

PROPOSITION3.18. If (X,T ) is a minimal system then for anyx ∈ X and any minimal
right idealR in βN there exists a minimal idempotentp ∈R such thatp-lim T nx = x.

PROOF. By the observation above,X = {p-limn∈N T
nx, p ∈ R}. It follows that the set

Γ = {p ∈R: p-limn∈R T nx = x} is nonempty and closed. We claim thatΓ is a semigroup.
Indeed, ifp,q ∈ Γ , one has:

(p+ q)-lim
n∈N

T nx = q-lim
n∈N

T n p-lim
m∈N

T mx = x.

By Theorem 3.3,Γ contains an idempotent which has to be minimal since it belongs toR.
We are done. �

We shall need the following simple fact in the proofs below. The proof is immediate and
is left as an exercise for the reader.

THEOREM 3.19. Let (X,T ) be a topological system, R a minimal right ideal inβN, and
let x ∈X be a point inX. The following are equivalent:

(i) x is uniformly recurrent;
(ii) there exists a minimal idempotentp ∈R such thatp-limn∈N T

nx = x.

It follows from Proposition 3.17 that for any topological system(X,T ), any x ∈ X,
and any idempotent ultrafilterp, the pointsx and y = p-limn∈N T

nx are proximal. (If
(X,T ) is a distal system theny = x.) The following theorem gives a partial converse of
Proposition 3.17.

THEOREM3.20. If (X,T ) is a topological system andx1, x2 are proximal, not necessarily
distinct points, and if x2 is uniformly recurrent, then there exists a minimal idempotent
p ∈ βN such thatp-limn∈N T

nx1 = x2.

PROOF. Let I = {p ∈ βN: p-limn∈N T
nx1 = p-limn∈N T

nx2}. It is not hard to see thatI
is a nonempty closed subset ofβN. One immediately checks thatI is a right ideal. Let
R be a minimal right ideal inI . Sincex2 is uniformly recurrent, its orbital closure is a
minimal system. By Proposition 3.18, there exists a minimal idempotentp ∈ R such that
p-lim T nx2 = x2. Thenp-limn∈N T

nx1 = p-limn∈N T
nx2 = x2 and we are done. �
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One can give a similar proof to the following classical result due to J. Auslander [3] and
R. Ellis [52].

THEOREM 3.21. Let (X,T ) be a topological system. For any x ∈ X there exists a uni-
formly recurrent pointy in the orbital closure{T nx}n∈N , such thatx is proximal toy.
(In fact, we will prove that for any minimal right idealR ⊂ βN there exists a minimal
idempotentp ∈R such thatp-limn∈N T

nx = y.)

PROOF. Let R be a minimal ideal inβN and letp be a (minimal) idempotent inR. Let
y = p-limn∈N T

nx. Clearly,y belongs to the orbital closure ofx. By Proposition 3.17, the
pointsx andy are proximal. By Theorem 3.19,y is uniformly recurrent. We are done.�

We are in position now to establish the equivalence of two notions of central that were
discussed above. (In [70, Proposition 4.6] Glasner anticipated this result by showing that,
if S is a countable Abelian group, then a subset ofS is central as defined above if and only
if it satisfies conditions similar to Furstenberg’s dynamical definition of “central”.)

THEOREM 3.22. The following properties of a setA⊆ N are equivalent:
(i) (Cf. [58,Definition8.3])There exists a topological system(X,T ), and a pair of(not

necessarily distinct) pointsx, y ∈X wherey is uniformly recurrent and proximal to
x, such that for some neighborhoodU of y one has:

A= {n ∈ N: T nx ∈U}.

(ii) (See Definition3.12 above, see also[19, Definition 3.1]) There exists a minimal
idempotentp ∈ (βN,+) such thatA ∈ p.

PROOF. (i) ⇒ (ii) By Theorem 3.20, there exists a minimal idempotentp, such that
p-limn∈N T

nx = y. This implies that for any neighborhoodU of y the set{n ∈ N:
T nx ∈U} belongs top.

(ii) ⇒ (i) The idea of the following proof is due to B. Weiss. LetA be a member of a
minimal idempotentp ∈ βN. LetX = {0,1}Z, the space of bilateral 0–1 sequences. Endow
X with the standard metric, which turns it into a compact space:

d(ω1,ω2)= inf

{
1

n+ 1
: ω1(i)= ω2(i) for |i|< n

}
.

Let T :X→X be the shift operator:T (ω)(n)= ω(n+1). ThenT is a homeomorphism of
X and(X,T ) is a topological dynamical system. ViewingA as a subset ofZ, let x = 1A ∈
X. Finally, lety = p-limn∈N T

nx. By Proposition 3.17,x andy are proximal. Also, since
p is minimal,y is, by Theorem 3.19, a uniformly recurrent point. We claim thaty(0)= 1.
Indeed, defineU = {z ∈ X: z(0) = y(0)}, and note that, sincey = p-limn∈N T

nx and
A ∈ p, one can findn ∈A such thatT nx ∈U . But sincex = 1A, (T nx)(0)= 1. But then,
given n ∈ Z, we have:T nx ∈ U ⇔ (T nx)(0) = 1 ⇔ x(n) = 1 ⇔ n ∈ A. It follows that
A= {n ∈ Z: T nx ∈U} and we are done. �
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Let (X,T ) be a topological system. In [58], a pointx ∈ X is called IP∗ recurrent if
for any neighborhoodU of x, the set{n ∈ N: T nx ∈ U} is an IP∗ set. It is easy to
see that a pointx is IP∗ recurrent if and only if for any idempotentp ∈ βN, one has
p-limn∈N T

nx = x. Note that the property of a pointx being IP∗ recurrent is much stronger
than that of uniform recurrence (which, by Theorem 3.19, is equivalent to the fact that
for someminimal idempotentp, one hasp-limn∈N T

nx = x.) While, in a minimal sys-
tem, every point is uniformly recurrent, there are minimal systems having no IP∗ recurrent
points. For example, any minimal topologically weakly mixing system has this property.
(See [58, Theorem 9.12].) The following theorem shows that distal points (and no others)
are IP∗ recurrent.

THEOREM 3.23. Let (X,T ) be a dynamical system andx ∈X. The following are equiva-
lent:

(i) x is a distal point;
(ii) x is IP∗ recurrent.

PROOF. (i) ⇒ (ii) By Proposition 3.17, for any idempotentp, the points x and
p-limn∈N T

nx are proximal. Sincex is distal, this may happen only ifx = p-lim T nx.
But this means thatx is an IP∗ recurrent point.

(ii) ⇒ (i) If x is not distal, then there existsy �= x, such thatx andy are proximal.
But then, by Theorem 3.20, there exists an idempotentp such thatp-lim T nx = y. Since
y �= x, this contradicts (ii). �

3.7. Diophantine applications

We shall conclude this section with some Diophantine applications of distal minimal sys-
tems. The results which we are going to describe can be viewed as enhancements of classi-
cal theorems due to Kronecker, Hardy and Littlewood, and Weyl, and will be based on the
following characterization of distal systems. A setE ⊂ N is called IP∗+ if it is a translation
of an IP∗ set.

THEOREM 3.24. Assume that(X,T ) is a minimal system. Then it is distal if and only if
for anyx ∈X and any open setU ⊆X the set{n: T nx ∈U} is IP∗+.

PROOF. Assume that(X,T ) is distal. By minimality, there existsn0 ∈ N such that
T n0x ∈U . By Theorem 3.23, the set{n: T n(T n0x) ∈ U} is IP∗ which, of course, implies
that the set{n: T nx ∈U} is IP∗+.

Assume now that for anyx1, x2 and a neighborhoodU of x2 the set{n: T nx1 ∈ U}
is IP∗+. We will find it convenient to call an IP∗+ set A ⊆ N proper if A is not IP∗
(i.e. A is a nontrivial shift of an IP∗ set and, moreover, this shifted IP∗ set is not IP∗).
If T were not distal, then for some distinct pointsx1, x2 and idempotentsp,q one
would have:p-limn∈N T

nx1 = x2, q-limn∈N T
nx2 = x1 and alsop-limn∈N T

nx2 = x2,
q-limn∈N T

nx1 = x1 (see Theorem 3.20 and Proposition 3.17). LetU be a small enough
neighborhood ofx2. Then, sincep-limn∈N T

nx1 = x2, the setS = {n: T nx1 ∈ U} is a
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member ofp, and hence cannot be a proper IP∗+ set. But, sinceq-limn∈N T
nx1 = x1, the

setS cannot be an improper IP∗+ set (that is, an IP∗ set) either: ifU is small enough,S /∈ q.
SoT has to be distal. We are done. �

The following theorem was obtained by Hardy and Littlewood in [78] and may be
viewed as a polynomial extension of a similar “linear” theorem due to Kronecker [95].

THEOREM 3.25. If the numbers1, α1, . . . , αk are linearly independent overQ, then for
anyd ∈ N and anykd intervalsIlj ⊂ [0,1], l = 1, . . . , d; j = 1, . . . , k, the set

Γdk =
{
n ∈ N: nlαj mod1∈ Ilj , l = 1, . . . , d; j = 1, . . . , k

}
is infinite.

In 1916, H. Weyl [136] introduced the notion of uniform distribution and obtained many
strong results extending and enhancing the earlier work of Kronecker, Hardy and Lit-
tlewood and others on Diophantine approximations. Perhaps the most famous result ob-
tained in [136] was the theorem on uniform distribution of the sequencep(n) (mod 1),
n = 1,2, . . . , wherep(n) is a real polynomial having at least one irrational coefficient
other than the constant term. This theorem also admits a nice ergodic proof, via the study
of a class of affine transformations of the torus, due to Furstenberg [56].

In connection to the Hardy–Littlewood theorem, Weyl was able to show in [136] that
the setΓdk has positive density equal to the product of the lengths ofIij . This also can
be shown by using the dynamical approach of Furstenberg. In the following theorem, we
show that the affine transformations of the kind treated by Furstenberg in [56] can also be
utilized to prove the following strengthening of the Hardy–Littlewood theorem.

THEOREM3.26. Under the assumptions and notation of Theorem3.25,the setΓdk is IP∗+.

PROOF. To make the formulas more transparent we shall putd = 3. It will be clear that
the same proof gives the general case.

We start with the easily checkable claim that ifTα :T3 → T3 is defined byTα(x, y, z)=
(x+α,y+2x+α, z+3x+3y+α) thenT nα (0,0,0)= (nα,n2α,n3α). This transformation
T is distal (easy) and minimal. The last assertion can actually be derived from the case
k = 1 of Hardy–Littlewood theorem above, but also can be proved directly. (For example,
this fact is a special case of Lemma 1.25, p. 36 in [58].) Our next claim is that if the numbers
1, α1, α2, . . . , αk are linearly independent overQ, then the product mapT = Tα1×· · ·×Tαk
(acting onT3k) is distal and minimal as well. (The distality is obvious, and the minimality
follows, again, from an appropriately modified Lemma 1.25 in [58].) By minimality ofT ,
the orbit of zero inT3k is dense, and this, together with Theorem 3.24, gives the desired
result. �

We conclude this section by formulating a general result which may be proved by refin-
ing the techniques used above.
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THEOREM3.27. If real polynomialsp1(t),p2(t), . . . , pk(t) have the property that for any
nonzero vector(h1, h2, . . . , hk) ∈ Zk the linear combination

∑k
i=1hipi(t) is a polynomial

with at least one irrational coefficient other than the constant term then for anyk subinter-
valsIj ⊂ [0,1], j = 1, . . . , k, the set{

n ∈ N: pj (n) mod1∈ Ij , j = 1, . . . , k
}

is IP∗+.

4. Multiple recurrence

4.1. Introduction

One of the common features of the topological multiple recurrence results which were dis-
cussed in the previous sections is that they have streamlined, and often relatively short,
proofs. In particular, in proving these theorems, one does not have to analyze and dis-
tinguish between various types of dynamical behavior which the topological system may
possess. In other words, the proofs evolve without taking into account the possibly intri-
cate structure of the system. The situation with measure-theoretical multiple recurrence is,
at least at present, quite different. All of the known proofs of dynamical theorems such
as the ergodic Szemerédi theorem and other more recent and stronger multiple recurrence
results, which will be discussed in this section, are complicated by the fact that systems
with different types of dynamical behavior require different types of arguments. Yet, these
proofs have a certain (and, in the opinion of the author, quite beautiful) structure which, in
some “big” sense, is the same in different proofs.

Our plan for this section is as follows. In Subsection 4.1, we shall analyze the proof of
Furstenberg’s ergodic Szemerédi theorem, and, in particular, provide complete proofs of
some important special cases.

In Subsection 4.2, we will give an overview of (the proofs of) the major multiple recur-
rence results (as well as their density counterparts) which have appeared since the publi-
cation of Furstenberg’s groundbreaking paper [57]. An attempt will be made to emphasize
the common features of these proofs and to highlight the subtle points. The flow of the dis-
cussion in Subsection 4.2 will eventually lead us to some quite recent results and natural
open problems.

4.2. Furstenberg’s ergodic Szemerédi theorem

This subsection is devoted to the thorough discussion of the proof of Furstenberg’s ergodic
Szemerédi theorem, which corresponds to the caseTi = T i in Theorem 1.24 formulated in
the Introduction.

4.2.1. Statement of the theorem

THEOREM 4.1 [57]. For any probability measure preserving system(X,B,µ,T ), any
A ∈ B with µ(A) > 0 and anyk ∈ N, there existsn ∈ N such thatµ(A ∩ T −nA ∩ · · · ∩
T −knA) > 0.
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Actually, we do not know how to prove Theorem 4.1 without proving, at least super-
ficially, a little bit more. (The situation here is analogous to what we encountered when
discussing and proving the Sárközy–Furstenberg theorem—see Theorem 1.31 and the sub-
sequent remarks.)

Here is the version of Theorem 4.1 which we will find convenient to work with.

THEOREM 4.2. For any probability measure preserving system(X,B,µ,T ), anyA ∈ B
withµ(A) > 0, and anyk ∈ N, one has:

lim inf
N→∞

1

N

N−1∑
n=0

µ(A∩ T −nA∩ · · · ∩ T −knA) > 0.

REMARK 4.3. As a matter of fact, the result proved by Furstenberg in [57] establishes that

lim inf
N−M→∞

1

N −M
N−1∑
n=M

µ(A∩ T −nA∩ · · · ∩ T −knA) > 0.

This implies (via the Furstenberg correspondence principle) not only that any set of pos-
itive upper density inN contains arithmetic progressions but that the differences of these
progressions form a syndetic set. This fact, in turn, follows from a much stronger IP Sze-
merédi theorem proved by Furstenberg and Katznelson in [63]. (See Theorems 4.31 and
4.32 below.) One of the reasons we have chosen to deal with the formulation as in Theo-
rem 4.2 is that it has a simpler proof which nevertheless will allow us to stress the main
ideas and will naturally serve as the basis for a discussion of possible extensions.

There are a few assumptions that we may make without loss of generality.
First, we can assume that the measureµ is nonatomic. (This follows from the fact that

the atoms ofµ generate an invariant sub-σ -algebra, and Theorems 4.1 and 4.2 are trivially
satisfied in the case of atomic measure spaces.)

Second, we can assume that the space(X,B,µ) is Lebesgue, i.e. is isomorphic to the
unit interval with Lebesgue measure. Indeed, given the setA ∈ B, we can pass, if needed,
to a T -invariant separable sub-σ -algebra ofB with respect to which all of the functions
fn = 1A(T nx) and their finite products are measurable. By Caratheódory’s theorem (see
[123, Chapter 15, Theorem 4]) any separable atomless measure algebra(X,B,µ) with
µ(X) = 1 is isomorphic to the measure algebraL induced by the Lebesgue measure on
the unit interval. This isomorphism carriesT into a Lebesgue-measure preserving isomor-
phism ofL, which by the classical theorem due to von Neumann (see [123, Chapter 15,
Theorem 20]) admits realization as a point mapping.

Finally, we can assume that the measure preserving systems that we are dealing with
are invertible. Indeed, assuming the invertibility of the measure preserving transformations
occurring in the formulations of multiple recurrence theorems such as Theorem 1.24 or
Theorem 4.2, not only makes the proofs more convenient, but also is sufficient for combi-
natorial applications. On the other hand, it is not hard to show that in the case of measure
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preserving actions of commutative semigroups with cancellation, the general case follows
from the invertible one. See, for example, [58, Chapter 7, Section 4].

These remarks apply also to the other multiple recurrence results formulated below, and
we will tacitly keep the above assumptions throughout the rest of this survey.

We could also assume that the measure preserving transformationT in the formulation
of Theorems 4.1 and 4.2 is ergodic. Despite the fact that this would make some of the
arguments somewhat simpler, we have chosen not to do so since, in more general situations
such as, say, the multidimensional ergodic Szemerédi theorem (Theorem 1.24 above), one
can assume only that the action of the multidimensional group is ergodic, which does
not help things too much. We will however allow ourselves to assume ergodicity ofT in
dealing with a particular case of Theorem 4.2, namely the casek = 2, where, as we shall
see below, one can thereby get a short proof via a special argument.

4.2.2. Some special cases.To get a better insight we begin by discussing some pertinent
special cases.

Theorem 4.2 is clearly trivial ifT is periodic, i.e. if for somem, T m = Id. The next case,
in order of complexity, is that ofT being almost periodic, say a translation by an irrational
α on the unit circle. Let‖x‖ denote the distance from a real numberx to the nearest
integer. Ifα is irrational, then, as it is easy to see, for anyε > 0, the set{n ∈ Z: ‖nα‖< ε}
is syndetic. (It is actually IP∗.) Hence for a syndetic set ofn, the operatorT n is ε-close to
the identity operator (in the strong topology on the space of operators). It follows that, in
this case, for anyε > 0 the set{n: |µ(A∩T −nA∩ · · · ∩T −knA)−µ(A)|< ε} is syndetic,
which is clearly more than enough for our purposes.

A slightly more general class of measure preserving systems, for which a similar argu-
ment works, is the class of so-calledcompact systems(another term: systems with discrete
spectrum). These are defined by the requirement that anyf ∈ L2(X,B,µ) is compact, i.e.
the closure of the orbit{T nf }n∈Z in L2 is compact. To see that this is indeed only a slightly
more general situation, note that one can show (see [77, Theorem 4]) that if(X,B,µ,T ) is
a compact ergodic system, then it is conjugate to a translation on a compact Abelian group.
Now, if (X,B,µ,T ) is a compact system andA ∈ B with µ(A) > 0, then, as before, the
set{n: ‖T nf − f ‖< ε} is syndetic and we see that in this case Theorem 4.2 holds for the
same reason as in the case of the irrational translation.

Let us assume now that the system(X,B,µ,T ) is such that no nonconstant function
f ∈ L2 is compact. In particular, this means that the unitary operator induced onL2 by T
(and which, by the customary abuse of notation, we will often be denoting also byT ) has no
nontrivial eigenfunctions. Measure preserving systems with this property were introduced,
under the namedynamical systems with continuous spectra, in [92] and form one of the
most important classes of measure preserving systems. Today, such systems are called
weakly mixing systems. We refer the reader to [18] and [1, Section 3.6], for an overview
of mixing properties of measure preserving systems. As we shall see below, Theorem 4.2
can be verified for weakly mixing transformations with relative ease. Before showing this,
we want to summarize various equivalent forms of weak mixing in the following theorem.
For the proofs see [92] (where the stress is placed on measure preservingR-actions), [86],
or any of the more modern texts such as [76,135], or [113]. Note that in most books, either
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(i) or (ii) below is taken as the “official” definition of weak mixing, whereas the original
definition in [92] corresponds to condition (vi).

THEOREM 4.4. LetT be an invertible measure preserving transformation of a probability
measure space(X,B,µ). LetUT denote the operator defined on measurable functions by
(UT f )(x)= f (T x). The following conditions are equivalent:

(i) For anyA,B ∈ B

lim
N→∞

1

N

N−1∑
n=0

∣∣µ(A∩ T −nB)−µ(A)µ(B)∣∣= 0;

(ii) For anyA,B ∈ B there is a setP ⊂ N of density zero such that

lim
n→∞, n/∈P µ(A∩ T −nB)= µ(A)µ(B);

(iii) T × T is ergodic on the Cartesian square of(X,B,µ);
(iv) For any ergodic probability measure preserving system(Y,D, ν, S) the transfor-

mationT × S is ergodic onX× Y ;
(v) If f is a measurable function such that for someλ ∈ C, UT f = λf a.e., thenf =

const a.e.;
(vi) For f ∈ L2(X,B,µ) with

∫
f = 0 consider the representation of the positive defi-

nite sequence〈UnT f,f 〉, n ∈ Z, as a Fourier transform of a measureν on T:

〈
UnT f,f

〉= ∫
T

e2πinx dν, n ∈ Z

(this representation is guaranteed by Herglotz theorem, see[80]). Thenν has no
atoms.

As we shall see below, it is the relativized version of weak mixing, that is, the notion of
weak mixing relative to a factor, that plays an important role in the analysis of the structure
of an arbitrary dynamical system and which is behind the proof of Theorem 4.2. First, let
us verify the validity of Theorem 4.2 for weakly mixing systems.

THEOREM 4.5. If (X,B,µ,T ) is a weakly mixing system, then for anyk ∈ N and any
fi ∈ L∞(X,B,µ), i = 1,2, . . . , k, one has:

lim
N→∞

1

N

N−1∑
n=0

T nf1T
2nf2 · · ·T knfk =

∫
f1dµ

∫
f2dµ · · ·

∫
fk dµ

in theL2-norm.
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Theorem 4.5 implies that for anyfi ∈ L∞, i = 0,1, . . . , k, one has

lim
N→∞

1

N

N−1∑
n=0

∫
f0T

nf1 · · ·T knfk =
∫
f0dµ

∫
f1dµ · · ·

∫
fk dµ.

Puttingfi = 1A, i = 0,1, . . . , k, gives us

lim
N→∞

1

N

N−1∑
n=0

µ(A∩ T −nA∩ · · · ∩ T −knA)= (µ(A))k+1
.

As a matter of fact, Theorem 4.5 implies that for some setE ⊂ N having zero density,
one has

lim
n→∞
n/∈E

µ(A∩ T −nA∩ · · · ∩ T −knA)= µ(A)k+1. (4.1)

To see this, note first that, sinceT is weakly mixing, it follows from Theorem 4.4,
(iii) and (iv), that not onlyT × T is ergodic, but also(T × T ) × T = T × T × T and
(T × T × T ) × T = (T × T ) × (T × T ) are ergodic (onX3 andX4 respectively). But
thenT × T is weakly mixing. Applying Theorem 4.5 toT × T and performing routine
manipulations one gets, for anyfi ∈ L∞, i = 0,1, . . . , k,

lim
N→∞

1

N

N−1∑
n=0

(∫
f0T

nf1 · · ·T knfk dµ−
∫
f0dµ

∫
f1dµ · · ·

∫
fk dµ

)2

= 0,

which implies (4.1).
In the proof of Theorem 4.5, we shall utilize the following version of the van der Corput

trick (cf. Theorem 1.32). For the proof see, for example, [25, p. 445].

THEOREM 4.6. Let (un)n∈N be a bounded sequence in a Hilbert spaceH. If for every
h ∈ N it is the case thatlimN→∞ 1

N

∑N
n=1〈un+h,un〉 exists and if

lim
H→∞

1

H

H∑
h=1

lim
N→∞

1

N

N∑
n=1

〈un+h,un〉 = 0,

thenlimN→∞‖ 1
N

∑N
n=1un‖ = 0.

PROOF OFTHEOREM 4.5. Since any weakly mixing system is ergodic, the claim of the
theorem trivially holds fork = 1. To see how the induction works, consider the casek = 2.
Since the case when one off1, f2 is constant brings us back tok = 1, we can assume, in
view of the identityf = (f − ∫ f )+ ∫ f , that

∫
f1dµ = 0. Let nowun = T nf1T

2nf2.
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By the ergodicity ofT , we have:

lim
N→∞

1

N

N∑
n=1

〈un+h,un〉 = lim
N→∞

1

N

N∑
n=1

∫
T n+hf1T

2n+2hf2T
nf1T

2nf2dµ

= lim
N→∞

1

N

N∑
n=1

∫
T hf1T

n+2hf2f1T
nf2dµ

= lim
N→∞

1

N

N∑
n=1

∫ (
f1T

hf1
)
T n
(
f2T

2hf2
)
dµ

=
∫
f1T

hf1dµ

∫
f2T

2hf2dµ.

We remark now that ifT is weakly mixing, thenT 2 is also weakly mixing and hence
T × T 2 is ergodic (on the product space(X × X,B × B,µ × µ)). Writing f1 ⊗ f2 for
f1(x)f2(y) and using the ergodicity ofT × T 2 we have:

lim
H→∞

1

H

H∑
h=1

∫
f1T

hf1dµ

∫
f2T

2hf2dµ

= lim
H→∞

1

H

H∑
h=1

∫
(f1 ⊗ f2)

(
T × T 2)h(f1 ⊗ f2) d(µ×µ)

=
(∫

f1 ⊗ f2d(µ×µ)
)2

=
(∫

f1dµ

)2(∫
f2dµ

)2

= 0.

The result now follows from Theorem 4.6. Note now that the same argument (in which
one uses the ergodicity ofT × T 2 × · · · × T k) works for generalk. We are done. �

REMARK 4.7.
(1) It is not hard to show that if the system(X,B,µ,T ) is such that for anyf1, f2 ∈

L∞(X,B,µ), one has limN→∞ 1
N

∑N
n=1T

nf1T
2nf2 =

∫
f1dµ

∫
f2dµ in theL2-

norm, thenT is weakly mixing.
(2) By using a modification of Theorem 4.6, which pertains to the uniform Cesàro av-

erages 1
N−M
∑N−1
n=M xn (see, for example, Remark 2.2 in [25]), one can show that in

Theorem 4.5 one actually has

lim
N−M→∞

1

N −M
N−1∑
n=M

T nf1T
2nf2 · · ·T knfk =

∫
f1dµ

∫
f2dµ · · ·

∫
fk dµ,
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which implies

lim
N−M→∞

1

N −M
N−1∑
n=M

µ(A∩ T −nA∩ · · · ∩ T −knA)= µ(A)k+1.

(3) The reader is invited to check that the proof above actually gives the following more
general result, first proved in [6].

THEOREM 4.8. Assume that, for k � 2,T1, T2, . . . , Tk are commuting measure preserving
transformations on a probability space(X,B,µ). Then the following are equivalent:

(i) For anyf1, f2, . . . , fk ∈ L∞(X,B,µ) one has

lim
N→∞

1

N

N∑
n=1

T n1 f1T
n
2 f2 · · ·T nk fk =

∫
f1dµ

∫
f2dµ · · ·

∫
fk dµ in L2.

(ii) For anyi �= j , TiT
−1
j is ergodic onX andT1 × T2 × · · · × Tk is ergodic onXk .

The two special cases of Theorem 4.2, which we verified above, correspond on a spec-
tral level to two complementary classes of unitary operators, namely those having discrete
spectrum and continuous spectrum. While these two cases are much too special to allow us
to conclude the proof of Theorem 4.2 for generalk, they are sufficient fork = 2 (which con-
stitutes the first nontrivial case of Theorem 4.2). These two special cases are also important
in that they indicate a possible line of attack which we will discuss after first completing
the proof fork = 2.

4.2.3. The case ofk = 2

PROOF OFTHEOREM 4.2 FOR k = 2. Assume first thatT is ergodic, and consider the
following splitting ofL2(X,B,µ)=H. H=Hc⊕Hwm, where theT -invariant subspaces
Hc andHwm are defined as follows:

Hc = Span{f ∈H: there existsλ ∈ C with Tf = λf }
= {f ∈H: the orbit(T nf )n∈Z is precompact in norm topology

}
,

Hwm =H⊥
c =
{
f ∈H: ∀g ∈H, lim

N→∞
1

N

N−1∑
n=0

∣∣〈T nf,g〉∣∣= 0

}
.

(We remark in passing that this splitting is valid for any unitary operator, and moreover,
can be defined in such a way that it makes sense for any group of unitary operators.)

Writing f for 1A let f = fc + fwm wherefc ∈Hc, fwm ∈Hwm. Note thatfc � 0 and∫
fc dµ= µ(A), while

∫
fwm dµ= 0. The nonnegativity offc follows from an argument

similar to the one used in the proof of Theorem 1.31 to establish the nonnegativity of the
projection of 1A on the spaceHrat. Note also that applying this argument again to 1− fc
gives us that 0� fc � 1. Sincefwm = 1A−fc, it follows also thatfwm satisfies|fwm|� 1.
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Using the decompositionf = fc + fwm, we have

1

N

N−1∑
n=0

T nf T 2nf = 1

N

N−1∑
n=0

T nfcT
2nfc +

N−1∑
n=0

T nfcT
2nfwm

+ 1

N

N−1∑
n=0

T nfwmT
2nfc + 1

N

N−1∑
n=0

T nfwmT
2nfwm.

We claim that the last three expressions (in whichfwm occurs) have zero limit inL2 as
N→∞. To see this the reader is invited to reexamine the proof of Theorem 4.5 and to ob-
serve that it was actually shown there that ifϕ ∈Hwm, then for anyψ ∈H= L2(X,B,µ),
one has (assuming that at least one ofϕ,ψ is bounded):

lim
N→∞

∥∥∥∥∥ 1

N

N−1∑
n=0

T nϕT 2nψ

∥∥∥∥∥= lim
N→∞

∥∥∥∥∥ 1

N

N−1∑
n=0

T nψT 2nϕ

∥∥∥∥∥= 0.

So, we see that inL2,

lim
N→∞

1

N

N−1∑
n=0

T nf T 2nf = lim
N→∞

1

N

N−1∑
n=0

T nfcT
2nfc,

if the latter limit exists. But the existence of this limit clearly follows from the fact
that this is certainly the case when one substitutes forfc a finite linear combination
of eigenfunctions ofT and that eigenfunctions span the spaceHc. So we have that
limN→∞ 1

N

∑N−1
n=0 T

nf T 2nf also exists inL2, and hence

lim
N→∞

1

N

N−1∑
n=0

∫
f T nf T 2nf dµ = lim

N→∞
1

N

N−1∑
n=0

∫
1AT

n1AT
2n1A dµ

= lim
N→∞

1

N

N−1∑
n=0

µ
(
A∩ T −nA∩ T −2nA

)
exists as well.

It remains to establish the positivity of the limit in question. Note that, for bounded
g1, g2 ∈Hc, one hasg1 · g2 ∈Hc, and hencefwm is orthogonal toT nfcT 2nfc. We have:

lim
N→∞

1

N

N−1∑
n=0

µ
(
A∩ T −nA∩ T −2nA

)

= lim
N→∞

1

N

N−1∑
n=0

∫
f T nfcT

2nfc dµ
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= lim
N→∞

1

N

N−1∑
n=0

∫
(fc + fwm)T nfcT 2nfc dµ

= lim
N→∞

1

N

N−1∑
n=0

∫
fcT

nfcT
2nfc dµ.

Note now that sincefc is a compact function, the set{
n ∈ Z: ‖T nfc − fc‖< ε

}
is syndetic for everyε > 0, and hence the set

Sε =
{
n ∈ Z:

∣∣∣∣∫ fcT nfcT 2nfc dµ−
∫
f 3
c dµ

∣∣∣∣< ε}
is also syndetic. Note also that

∫
f 3
c dµ� (

∫
fc)

3 = (µ(A))3.
Therefore, ifε is small enough, we shall have

lim
N→∞

1

N

N−1∑
n=0

µ
(
A∩ T −nA∩ T −2nA

)
� lim
N→∞

1

N

∑
n∈Sε∩[0,N−1]

µ
(
A∩ T −nA∩ T −2nA

)
> 0.

To finish the proof of this special case one uses the ergodic decomposition. It is not hard
to see that in the nonergodic case, both the convergence and the positivity of the limit hold
as well. We omit the details. �

As a bonus, we have obtained the fact that for any measure preserving system
(X,B,µ,T ) and anyf,g ∈ L∞, limN→∞ 1

N

∑N−1
n=0 T

nf T 2ng exists inL2 and equals

limN→∞ 1
N

∑N−1
n=0 T

nfcT
2ngc, wherefc, gc denote the orthogonal projections off,g

on Hc. One, naturally, would like to know whether, in general, one has the convergence
of the expressions of the form1

N

∑N−1
n=0 T

nf1T
2nf2 · · ·T knfk , wherefi ∈ L∞(X,B,µ),

i = 1,2, . . . , k. For k = 3 the positive answer to this question was provided in [47] for
totally ergodicT and in full generality in [66,138] and [87]. The recalcitrant problem of
establishing the convergence for generalk was solved only recently, in the remarkable work
of B. Host and B. Kra [88] and T. Ziegler [139]. See Section 5 below for a discussion of
various convergence results which are suggested by combinatorial applications of ergodic
theory. See also Appendices A and B written by A. Leibman and A. Quas and M. Wierdl
which deal with convergence issues. Note, however, that while the study of convergence
is more fundamental from the point of view of ergodic theory, it is (multiple) recurrence,
i.e. the positivity of the expressions likeµ(A ∩ T −nA ∩ T −2nA ∩ · · · ∩ T −knA), which
is needed for combinatorial and number-theoretic applications. (Nonetheless, convergence



802 V. Bergelson

results may, in some cases, provide the shortest path to establishing recurrence. This point
is certainly supported by the proof of Theorem 1.31 and the above discussion of thek = 2
case of Theorem 4.2. See also Theorem 5.21(i) below.)

4.2.4. The structure of ergodic systems.We return now to our discussion of Theorem 4.5.
It turns out that fork > 2, the Hilbertian splitting utilized above fork = 2 is no longer suf-
ficient, and in order to establish multiple recurrence one has to undertake a deeper study of
the structure of general measure preserving systems. In order to describe the main points
of Furstenberg’s approach, we will review first some general facts. For more information
and missing details, the reader is encouraged to consult [57,58] and [61]. Our presenta-
tion below follows mainly [61] where a simplified proof of Theorem 4.2 is presented. The
only significant point of departure from [61] is in the treatment of compact extensions (see
Definition 4.15 below), where we will use a “soft” argument based on van der Waerden’s
theorem. One of the reasons for this choice is that coloring theorems seem to be indis-
pensable in proving more sophisticated multiple recurrence results and we want to use this
opportunity to acquaint the reader with this technique.

Given two probability measure spaces(X,B,µ) and (Y,D, ν) and a mapπ :X→ Y

such thatπ−1(D)⊂ B andπµ= ν, we say that(X,B,µ) is anextensionof (Y,D, ν), and
that(Y,D, ν) is afactor of (X,B,µ).

Under mild conditions on the regularity of the space(X,B,µ) (which are usually satis-
fied in the case of Lebesgue spaces—our standing assumption), one can associate with the
factor(Y,D, ν) a family of measures{µy}y∈Y on (X,B) with the following properties:

(i) For eachf ∈ L1(X,B,µ) one hasf ∈ L1(X,B,µy) for a.e.y ∈ Y .
(ii) The functiong(y)= ∫ f dµy belongs toL1(Y,D, ν) and∫ (∫

f (x)dµy(x)

)
dν =
∫
f (x)dµ(x).

(iii) If f is measurable with respect toπ−1(D), then∫
f dµπ(x) = f (x) a.e.

Using the family{µy}y∈Y , we will write µ = ∫ µy dν(y) (which means that, for any
A ∈ B, µ(A)= ∫ µy(A)dν(y)) and refer to this decomposition as thedisintegrationof µ
with respect to the factor(Y,D, ν).

For any 1� p � ∞ one can define theconditional expectationoperatorE(·|Y) from
Lp(X,B,µ) toLp(Y,D, ν) by the formula

E(f |Y)(y)=
∫
f dµy, f ∈ L2(X,B,µ).

Clearly, forf � 0, one hasE(f |Y)� 0 andE(1|Y)= 1. Also, by property (ii) above,
one has

∫
f dµ= ∫ E(f |Y)dν.
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Note that, given the measure space(X,B,µ), there is a natural 1-1 correspondence
between its factors and sub-σ -algebras ofB. This correspondence allows one to iden-
tify the spaceL2(Y,D, ν) with a closed subspace ofL2(X,B,µ) which is of the
form L2(X,B1,µ), whereB1 = π−1(D). This, in turn, leads to a convenient interpre-
tation of conditional expectation operator as the orthogonal projectionL2(X,B,µ)→
L2(X,B1,µ)∼= L2(Y,D, ν).

For anyf ∈ L∞(Y,D, ν) (viewed as a bounded function inL2(X,B,µ) which is mea-
surable with respect toB1), one hasE(gf |Y)= fE(g|Y). For more details on conditional
expectation operators see [58, Chapter 5, Section 3] or [36, Section 34].

Suppose now that(X1,B1,µ1) and (X2,B2,µ2) are extensions of(Y,D, ν) and
π1 :X1 → Y , π2 :X2 → Y are the corresponding measure preserving mappings. One can
form thefibre productspace(X,B,µ), where

X =X1 ×Y X2 =
{
(x1, x2) ∈X1 ×X2: π1(x1)= π2(x2)

}
,

B is the restriction ofB1 × B2 to X, andµ is defined via the disintegrations{µ(1)y }y∈Y ,

{µ(2)y }y∈Y by the formula

µ(A)= (µ1 ×Y µ2)(A)=
∫ (
µ(1)y ×µ(2)y

)
(A) dν(y).

The notions of extension, factor, and fibre product are naturally extended to measure
preserving systems. Given two probability measure preserving systemsX = (X,B,µ,T )
andY = (Y,D, ν, S), one says thatX is an extension ofY , andY a factor ofX, if the
corresponding mapπ :X→ Y is not only measure preserving but also satisfiesSπ(x) =
πT (x) for a.e.x ∈X. We have now the following formulas:

(iii) For almost everyy ∈ Y , T µy = µSy , meaningµy(T −1A)= µSy(A) for anyA ∈ B.
(iv) For anyf ∈ L2(X,B,µ), SE(f |Y)=E(Tf |Y).
When the systemX = (X,B,µ,T ) is not ergodic, it has a natural nontrivial factor

Xinv = (X,Binv,µ,T ), whereBinv is theσ -algebra ofT -invariant sets inB. It is not hard
to see that the disintegration ofµ corresponding to this factor is nothing but the classical
ergodic decomposition ofµ (which was treated first in [133]). Another natural example of
a factor, which we have, implicitly, encountered already, is associated with the spaceHc
of compact functions. Indeed, one has the following theorem.

THEOREM 4.9. (Cf. [93, Theorem 2.2].)Let (X,B,µ,T ) be a probability measure pre-
serving system and letBc be the smallestσ -algebra inB with respect to which the elements
of Hc are measurable. ThenBc is T -invariant andHc ∼= L2(X,Bc,µ).

Clearly, (X,Bc,µ,T ) is a maximal compact factor. As we have already mentioned
above, ifT is ergodic, the system(X,Bc,µ,T ) is conjugate to a translation on a com-
pact Abelian group (see [77, Theorem 4]). In this case,(X,Bc,µ,T ) is often called the
(maximal) Kronecker factor.

We can formulate now a criterion in terms of factors for a system to be weakly mixing.
(Note that this is just a new way of expressing a familiar concept.)
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THEOREM 4.10. A probability measure preserving system is weakly mixing if and only if
it has no nontrivial compact factors.

In order to prove Theorem 4.2, one has to study the relativized notions of weak mixing
and compactness with respect to a factor.

To define a weak mixing extension, one needs the notion of a relative product of measure
preserving systems. LetX1 = (X1,B1,µ1, T1) andX2 = (X2,B2,µ2, T2) be extensions of
Y = (Y,D, ν, S). We claim that the measureµ1 ×Y µ2 is (T1 × T2)-invariant, that is, for
any measurableA ⊆ X1 ×Y X2 one hasµ1 ×Y µ2((T1 × T2)

−1A) = µ1 ×Y µ2(A). One
needs only to verify this for the sets of the formA=A1×A2 whereAi ∈ Bi . By definition
of µ1 ×Y µ2 we have

µ1 ×Y µ2
(
(T1 × T2)

−1(A1 ×A2)
)

=
∫
µ(1)y ×µ(2)y

(
T −1

1 A1 × T −1
2 A2
)
dν(y)

=
∫
T1µ

(1)
y × T2µ

(2)
y (A1 ×A2) dν(y)=

∫
µ
(1)
Sy ×µ(2)Sy (A1 ×A2) dν(y)

=
∫
µ(1)y ×µ(2)y (A1 ×A2) dSν(y)=

∫
µ(1)y ×µ(2)y (A1 ×A2) dν(y)

= µ1 ×Y µ2(A1 ×A2),

and soX1×Y X2 = (X1×X2,B1×B2,µ1×Y µ2, T1×T2) is a measure preserving system,
which is called the relative product ofX1 andX2 (with respect toY ).

DEFINITION 4.11. The systemX = (X,B,µ,T ) is an ergodic extensionof Y =
(Y,D, ν, S) if the only T -invariant sets inB are preimages of the invariant sets inD.
The systemX is aweakly mixing extensionof Y if X ×Y X is an ergodic extension ofY .

One can show that most properties of the “absolute” weak mixing (and in particular,
items (i) through (iv) in Theorem 4.4) extend, with obvious modifications, to statements
about relative weak mixing. For example, one has the following fact.

THEOREM 4.12. (Cf. [58, Proposition 6.2].)A measure preserving system(X,B,µ,T ) is
a weak mixing extension of(Y,D, ν, S) if and only if for anyA1,A2 ∈ B one has

lim
N→∞

1

N

N−1∑
n=0

∫ (
µy(A1 ∩ T −nA2)−µy(A1)µy(T

−nA2)
)2
dν(y)= 0.

Moreover, by using Theorem 4.6, one can obtain (by an argument analogous to the one
used in the proof of Theorem 4.5) the following result.
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THEOREM 4.13. If (X,B,µ,T ) is a weak mixing extension of(Y,D, ν, S), then for any
A0,A1, . . . ,Ak ∈ B one has

lim
N→∞

1

N

N−1∑
n=0

∫ (
µy
(
A0 ∩ T −nA1 ∩ T −2nA2 · · · ∩ T −knAk

)
−µy(A0)µy(T

−nA1) · · ·µy(T −knAk)
)2
dν(y)= 0.

4.2.5. Multiple recurrence in the general case.Let us say, following [61], that a system
X = (X,B,µ,T ) has the SZ property, or thatT is SZ, if Theorem 4.2 holds forX. (For
example, as we have already seen above, compact and weakly mixing systems do have the
SZ property.)

We have now the following corollary of Theorem 4.13:

THEOREM 4.14 [61, Theorem 8.4].If (X,B,µ,T ) is weakly mixing extension of
(Y,D, ν, S) and the transformationS is SZ, then(X,B,µ,T ) has the SZ property.

PROOF. LetA ∈ B with µ(A) > 0 and denotef = 1A. Note that ifa > 0 is small enough
then the setA1 = {y: E(1A|Y)(y) � a} satisfiesν(A1) > 0. It follows now from Theo-
rem 4.13 (and the formulaE(f |Y)(y)= ∫ f dµy ) that, sinceE(1A|Y)� a · 1A1,

1

N

N−1∑
n=0

µ(A∩ T −nA∩ · · · ∩ T −knA)

>
1

2
ak+1 · 1

N

N−1∑
n=0

ν(A1 ∩ S−nA1 ∩ · · · ∩ S−knA1)

for all large enoughN . The result now follows from the assumption that(Y,D, ν, S) has
the SZ property. �

We will define now relatively compact extensions and show that an analogue of Theo-
rem 4.14 holds. Unlike Theorem 4.14, which is a more or less straightforward extension of
Theorem 4.5, the argument needed for the treatment of compact extensions (the mere def-
inition of which is, in our opinion, much less trivial than that of weak mixing extensions)
is perhaps the most subtle part of the proof of Theorem 4.2.

DEFINITION 4.15. LetX = (X,B,µ,T ) be an extension ofY = (Y,D, ν, S). Call a func-
tion f ∈ L2(X,B,µ) almost periodic, or an AP-function,relative to Y if for any ε > 0
there existr ∈ N and functionsg1, g2, . . . , gr ∈ L2(X,B,µ) such that, for everyn ∈ Z,
min1�s�r ‖T nf − gs‖L2(µy)

< ε for almost everyy ∈ Y . We say thatX is a compact

extensionof Y if AP-functions are dense inL2(X,B,µ).
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Clearly any compact system (i.e. a system for which the subspaceHc coincides with
L2(X,B,µ)) is a compact extension of the trivial one-point system. Note that in this case
every element ofL2(X,B,µ) is an AP-function.

A less trivial example and, in a sense, a typical one is given by so-called isometric
extensions. LetY = (Y,D, ν, S) be an arbitrary system and letZ be a compact metric
space equipped with a probability measureη onBZ , the (completion of the)σ -algebra of
Borel sets inZ. Suppose thatG is a compact group of isometries ofZ and define for some
measurable familyσ(y) of elements ofG a transformationT onX = Y ×Z by

T (y, z)= (Sy,σ (y)z).
One can verify that the systemX = (Y × Z,D × BZ, ν × η,T ) is a compact extension
of Y . Perhaps the shortest path to this verification is to consider the case ofZ a sphere
andG its group of rotations, using the fact that finite-dimensional spaces of spherical
functions are invariant under rotations, and these are dense inL2(Z), and to observe that a
similar argument works for general isometric extensions. Note that for nontrivial isometric
extensions it is no longer true that everyL2 function is AP relatively to the given factor.
Even functions of the simple formf (y)e2πiz (whereZ is the circle) will not be AP unless
f is bounded.

The importance of weakly mixing and compact extensions lies with the fundamental
fact, established by Furstenberg in the course of his proof of Szemerédi’s theorem, that any
systemX = (X,B,µ,T ) appears in a chain (possibly transfinite),X → ·· · → Xα+1 →
Xα → ·· · → X1 → X0, in which the individual linksXα+1 → Xα are either compact or
weakly mixing extensions. (As a matter of fact, one can take all of the extensions, with the
possible exception of the last linkX = Xη+1 → Xη, to be compact.)

The topological predecessor of this ergodic-theoretical structure theorem is a similar
structure theorem, also due to Furstenberg, for distal systems, which states that any distal
system can be seen as a tower ofisometricextensions. See [56] for details. The structure
theory of distal systems works for general locally compact group actions, which hints that
measure theoretical structure theory can also be established in this generality. This was
done in independent work of Zimmer. (See [140,141].)

Returning to the discussion of the proof of Theorem 4.2, we are in position now to
describe the general scheme of the proof. As we shall show in detail below, ifX is a com-
pact extension ofY andY has the SZ property, thenX also does. Now, one can show
by a routine argument that any totally ordered by inclusion family of factors of a sys-
tem (X,B,µ,T ) which have the SZ property has a maximal element. (See [61, Proposi-
tion 7.1].) But then it follows from the structure theorem cited above that this maximal
factor has to be(X,B,µ,T ) itself, which gives Theorem 4.2. A somewhat shorter (or,
rather, less involved) path, which avoids the full strength of the structure theorem, is via
the following proposition.

THEOREM 4.16 [61, Theorem 5.10].If X = (X,B,µ,T ) is an extension ofY =
(Y,D, ν, S) which is not relatively weak mixing, then there exists a strictly intermediate
factorX∗ betweenY andX such thatX∗ is a compact extension ofY .
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Either way, all that is needed now to bring the proof of Theorem 4.2 to conclusion is the
following result.

THEOREM 4.17. If X = (X,B,µ,T ) is a compact extension ofY = (Y,D, ν, S) and Y

has the SZ property, thenX also does.

PROOF. We shall utilize van der Waerden’s theorem on arithmetic progressions. To make
the ideas clear (and to stress the relevance of van der Waerden’s theorem), let us first
go back to the “absolute” case and show how the proof works when(X,B,µ,T ) is
a compact system. LetA ∈ B with µ(A) > 0, let f = 1A and let, for a givenε > 0,
g1, g2, . . . , gr be elements of the compact setK = {T nf }n∈Z such that for anyn ∈ Z
there isj = j (n) in {1,2, . . . , r} satisfying‖T nf − gj(n)‖< ε. This naturally defines an
r-coloringZ =⋃ri=1Ci , and by van der Waerden’s theorem, there existsj ∈ {1,2, . . . , r}
such that for somem ∈ Z andn ∈ N one has‖T m+inf − gj‖< ε, i = 0,1, . . . , k, which
implies diam{T mf,T m+nf, . . . , T m+knf } < 2ε (in L2(X,B,µ)). Note that the set of
possiblen with this property has positive lower density (and, in fact, is syndetic and
even IP∗—see the remark following Corollary 2.5). SinceT is an isometry, we have
diam{f,T nf, . . . , T knf } < 2ε, and hence by choosingε small enough, we see that for
a “large” set ofn,

∫
f T nf · · ·T knf dµ= µ(A∩T −nA∩ · · · ∩T −knA) is arbitrarily close

toµ(A). This certainly implies that

lim inf
N→∞

1

N

N−1∑
n=0

µ(A∩ T −nA∩ · · · ∩ T −kn) > 0.

The scheme of usage of van der Waerden’s theorem in the case of relatively compact
extensions is similar but a little bit more sophisticated. Before embarking on the proof, let
us make some convenient reductions. First, note that deleting from a given setA ∈ B with
µ(A) > 0 portions for whichµy(A)� 1

2µ(A) removes less than half of the measure from
A, and hence we can assume without loss of generality that there exists a setA1 ∈D with
ν(A1) � 1

2µ(A) and such that, fory ∈ A1, µy(A) � 1
2µ(A) and fory /∈ A1, µy(A) = 0.

Second, one can show that, by removing additional arbitrarily small portions fromA, one
can assume thatf = 1A is compact relative toY . (See for the details [61, p. 548] or [58,
Theorem 6.13].)

Fix a small enoughε > 0 and functionsg1, g2, . . . , gr (one of which is assumed to be 0)
such that for anyn ∈ Z,

min
1�s�r
∥∥T nf − gs

∥∥
y
< ε for a.e.y ∈ Y.

Let N be such that for anyr-coloring of {1,2, . . . ,N} one has a monochromatic pro-
gression of lengthk + 1, and assume that for the setA1 ∈ D described above and some
c1 > 0, the setRN = {n ∈ N: ν(A1 ∩ S−nA1 ∩ · · · ∩ S−nNA1) > c1} is of positive
lower density. We shall show that there exist constantsc2 > 0 andM ∈ N such that for
any n ∈ RN there existsd ∈ {1,2, . . . ,M} with µ(A ∩ T −dnA ∩ · · · ∩ T −k(dn)A) > c2.
This, clearly, will imply thatX has the SZ property. Note that for everyy ∈ A1 and
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n ∈ RN one hasSiny ∈ A1, i = 0,1, . . . ,N . Now, for eachy ∈ A1 and eachn ∈ RN ,
the inequalities min1�s�r ‖T inf − gs‖y < ε, i = 1,2, . . . ,N , define anr-coloring of
{1,2, . . . ,N}. By van der Waerden’s theorem, there exists a monochromatic arithmetic
progression{i, i + d, . . . , i + kd} ⊂ {1,2, . . . ,N} which implies that, for somegs(y) = g,
‖T (i+jd)nf −g‖y < ε for j = 0,1, . . . , k. This, in turn, implies that‖T jdnf −g‖Siny < ε.
It remains now to choose a progression{i, i + d, . . . , i + kd} which occurs for a setA2 of
y of measure at leastν(A1)

P
, whereP is the total number of possibilities for the choice of a

(k+1)-element progression from{1,2, . . . , n}. Note that, sinceA2 ⊂A1, for eachy ∈A2,
one hasµSiny(A)� 1

2µ(A). This implies that (ifε is small enough)

µSiny(A∩ T −dnA∩ · · · ∩ T −k(dn)A) > µSiny(A)− (k + 1)ε >
1

3
µ(A).

Integrating over the setA2, we get

µ(A∩ T −dnA∩ · · · ∩ T −k(dn)A)� 1

3
µ(A)ν(A2)�

1

3P
µ(A)ν(A1)= c2.

We are done. �

4.3. An overview of multiple recurrence theorems

Furstenberg’s proof of the ergodic Szemerédi theorem was the starting point of a new area:
Ergodic Ramsey Theory. In this subsection we shall discuss various multiple recurrence
results which are dynamical versions of corresponding Ramsey-theoretical density state-
ments, and which have, so far, no conventional proof. While the proofs of these results
are rather involved (which is manifested, in particular, by the length of papers such as [62,
64,98,31,28]), they have a conspicuous commonality of the main structural features. One
of our intentions in the following discussion is to stress the structural analogies between
various proofs, while paying attention to new ideas whose introduction is necessary in the
course of establishing new, stronger, and more refined results.

For a warm-up, let us start the discussion with the density version of Theorem 2.6.
Let VF be a countably infinite vector space over a finite fieldF . As in Section 2, let us

identify VF with the direct sumF∞ of countably many copies ofF :

F∞ = {g = (a1, a2, . . .): ai ∈ F and all but finitely manyai = 0
}= ∞⋃

n=1

Fn,

whereFn = {g = (a1, a2, . . .), ai ∈ F,ai = 0 for i > n}.
We shall say that a setE ⊂ VF ∼= F∞ has positive upper densityif d̄F∞(E) =

lim supN→∞
|E∩Fn|
|Fn| > 0.

THEOREM 4.18. Any set of positive upper density in the vector spaceVF contains arbi-
trarily large affine subspaces.
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Note that sinceF is a finite field, saying “arbitrarily large” in the formulation above is
tantamount to saying “of arbitrarily large dimension.”

We now formulate an ergodic-theoretical theorem which is analogous to Theorem 4.2
and which implies Theorem 4.18.

THEOREM 4.19. For any measure preserving action(Tg)g∈F∞ on a probability measure
space(X,B,µ) and for anyA ∈ B withµ(A) > 0, one has

lim inf
n→∞

1

|Fn|
∑
g∈Fn

µ

(⋂
c∈F
TcgA

)
> 0.

For the derivation of Theorem 4.18 from Theorem 4.19, one can use the following
version of Furstenberg’s correspondence principle. Both the version below and the result
stated above as Theorem 1.25 are special cases of Theorem 5.8, which will be proved in
the next section.

THEOREM4.20. For any setE ⊂ F∞ with d̄F∞(E) > 0, there exists a probability measure
preserving system(X,B,µ, (Tg)g∈F∞) and a setA ∈ B withµ(A)= d̄F∞(E) such that for
all k ∈ N and anyg1, g2, . . . , gk ∈ F∞ one has

d̄F∞(E ∩E − g1 ∩ · · · ∩E − gk)� µ(A∩ Tg1A∩ · · · ∩ TgkA).

Noting that the set{cg}c∈F forms a one-dimensional subspace ofVF ∼= F∞, we see that
Theorem 4.19 immediately implies, via Furstenberg’s correspondence principle, that for
someg �= 0, d̄F∞(

⋂
c∈F (E − cg)) > 0 and hence for anyx ∈⋂c∈F (E − cg), the one-

dimensional affine space{x + cg}c∈F is contained inE.
To obtain the full strength of Theorem 4.18, one can use the following “iterational”

trick (which is very similar to that utilized in the proof of Theorem 1.12). Namely, use
Theorem 4.19 to findg1 = (b1, b2, . . . , bk,0,0, . . .) �= 0 with the property that the setA1 =⋂
c∈F Tcg1A has positive measure. Apply now Theorem 4.19 to the restriction of the action

(Tg)g∈F∞ to the subgroupG1 ⊂ F∞ which is defined by

G1 =
{
g = (a1, a2, . . .) ∈ F∞: a1, a2, . . . , ak = 0

}
.

In other words, the supports of elements fromG1 are disjoint from the support of our
g1 = (b1, b2, . . . , bk,0,0, . . .). Note also thatG1 is isomorphic to the direct sum of count-
ably many copies ofF , and hence is isomorphic toF∞. Find nowg2 ∈G1 with the prop-
erty thatA2 =⋂c∈F Tcg2A1 has positive measure, and continue in this fashion. Afterm

steps of this iterational procedure, we will have found elementsg1, g2, . . . , gm such that the
setAm =⋂c1,c2,...,cm∈F Tc1g1+c2g2+···+cmgmA has positive measure. It follows now from
Theorem 4.20 that̄dF∞(

⋂
c1,c2,...,cm∈F E − (c1g1 + · · · + cmgm)) > 0, and this clearly im-

plies thatE contains (many) affinem-dimensional subspaces.
Let us now comment briefly on the proof of Theorem 4.19. It is not hard to check that

Theorem 4.19 holds in the two “extremal” cases, namely the case when the action(Tg)g∈F
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is compact (which, as before, means that for anyf ∈ L2(X,B,µ) the orbit{Tgf }g∈F∞ is
precompact), and the weakly mixing case (which can be defined, for example, by postulat-
ing the absence of compact functions). Moreover, the proof in each of these two cases is
very similar to the analogous case of Theorem 4.2. Perhaps a few remarks are in order to
clarify the situation with weak mixing for actions of(Tg)g∈F∞ . First, one can check that,
like in the case ofZ-actions, weak mixing forF∞-actions can be characterized in a variety
of ways, all parallel to those occurring in the formulation of Theorem 4.4. (This remark ac-
tually applies to—properly defined—weak mixing actions of any countable or even locally
compact group. See, for example, [33,12,18].)

Second, one can check that an analogue of Theorem 4.6 also holds for more general
groups (here the right generality is that of amenable groups; see more discussion in the
next section).

Now, one can define, in complete analogy to Definitions 4.11 and 4.15 the notions of
relative weak mixing and relative compactness. The analogues of Theorems 4.12, 4.14,
and 4.16 can also be established in a more or less similar fashion. So to finish the proof,
one has to show that the multiple recurrence property lifts to compact extensions. As the
perspicacious reader has probably guessed by now, one can use here the natural analogue
of van der Waerden’s theorem, namely Theorem 1.27.

4.3.1. Furstenberg–Katznelson’s multidimensional Szemerédi theorem.Let us discuss
now the multidimensional Szemerédi theorem or, rather, its measure-theoretical twin, The-
orem 1.24. Here is the version which actually was proved by Furstenberg and Katznelson
in [60].

THEOREM 4.21. For any commuting measure preserving transformationsT1, T2, . . . , Tk
of a probability space(X,B,µ) and for anyA ∈ B withµ(A) > 0 one has

lim inf
N→∞

1

N

N−1∑
n=0

µ
(
A∩ T −n

1 A∩ · · · ∩ T −n
k A
)
> 0.

The main new difficulty which one faces when dealing withk general commuting trans-
formations is that they generate aZk-action, which may have different dynamical prop-
erties along the sub-actions of different subgroups. In other words, while Theorem 4.2
was about the joint behavior ofk commuting transformations of a special form, namely
T ,T 2, . . . , T k , in Theorem 4.21 we have to studyk commuting transformations which are
in, so to say, general position. This complicates the underlying structure theory, which has
to be “tuned up” to reflect the more complicated situation when different operators in the
group generated byT1, . . . , Tk have different dynamical properties. What saves the day is
Theorem 4.24 below, which is at the core of Furstenberg and Katznelson’s proof of Theo-
rem 4.21.

We need first to introduce some pertinent definitions. While these definitions make sense
for any measure preserving group actions (and are given below a general formulation for
future reference), the reader should remember that in the discussion of the proof of The-
orem 4.19, the groupG which occurs in the next two definitions is meant to stand forZk

(and hence the subgroups ofG are themselves isomorphic toZl for some 0� l � k).
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DEFINITION 4.22. (Cf. Definition 6.3 in [58].) An extension(X,B,µ, (Tg)g∈G) of
(Y,D, ν, (Sg)g∈G) is a weakly mixing extension if for everyg0 ∈ G, g0 �= e, the sys-
tem (X,B,µ,Tg0) is a weakly mixing extension of(Y,D, ν, Sg0) (in the sense of Defi-
nition 4.11).

DEFINITION 4.23. (Cf. Definition6.5 in [58].) Assume that(X,B,µ, (Tg)g∈G) is an ex-
tension of(Y,D, ν, (Sg)g∈G). This extension is calledprimitive if G is a direct prod-
uct of two subgroups,Gc × Gwm, so that (X,B,µ, (Tg)g∈Gc) is a compact exten-
sion of (Y,D, ν, (Sg)g∈Gc) and (X,B,µ, (Tg)g∈Gwm) is a weakly mixing extension of
(Y,D, ν, (Sg)g∈Gwm).

REMARK. We did not explicitly define the notion of compact extension for this more
general situation because it is verbatim the same as Definition 4.15. (One just has to replace
“for every n ∈ Z” by “for every g ∈G”.) This should be juxtaposed with Definition 4.22
which, while still coinciding with Definition 4.11 whenG = Z, has the emphasis not on
the weak mixing behavior of the group action(Tg)g∈G, but on the behavior ofZ-actions
generated by elementsg ∈G, g �= e.

We are now ready to formulate the theorem which provides the main ingredient in the
pertinent structure theory. The reader should keep in mind that in the theorem belowG

stands forZk .

THEOREM 4.24. If X = (X,B,µ, (Tg)g∈G) is an extension ofY = (Y,D, ν, (Sg)g∈G),
then there is an intermediate factorZ such thatZ is a primitive extension ofY .

As was the case with Theorem 4.2, one can show that there is always a maximal factor
for which Theorem 4.19 is valid. So, in view of Theorem 4.24, it remains only to make sure
that the multiple recurrence property in question lifts to primitive extensions. This can be
achieved by an argument which puts together the ideas behind the proofs of Theorems 4.14
and 4.17. The fact that primitive extensions utilize the appropriate splitting ofZk plays
a crucial role. In dealing with the compact part of this splitting, one uses this time the
multidimensional van der Waerden theorem. For full details, see [60] and [58, Chapter 7].

4.3.2. Polynomial Szemerédi theorem.Note that the coloring theorems used in the proofs
of Theorems 4.2, 4.19, and 4.21 are all corollaries of the IP van der Waerden theorem
(which was discussed in detail in Section 2). This suggests that there exists perhaps a
more general theorem which bears the same relation to the IP van der Waerden theorem
(Theorem 2.2 above) as, say, Theorem 4.1 to the (one-dimensional) van der Waerden the-
orem, and has Theorems 4.2, 4.19, and 4.21 as corollaries. Such a result, which is called
the ergodic IP Szemerédi theorem, was established by Furstenberg and Katznelson in [62]
and will be briefly discussed below. But before turning our attention to the Furstenberg–
Katznelson IP Szemerédi theorem, we want to discuss the polynomial extension of Sze-
merédi’s theorem obtained in [23]. While the paper [23], which appeared in 1996, is more
recent than the 1985 paper [62], the structure theory which is utilized in [23] is the same
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as that needed for the proof of Theorem 4.21, whereas in [62] the authors deal with IP
systems and develop the nontrivial and complicated IP version of structure theory.

Here then is the formulation of the polynomial Szemerédi theorem.

THEOREM 4.25 [23, Theorem B′]. Let r, l ∈ N and letP :Zr → Zl be a polynomial
mapping satisfyingp(0) = 0. For anyS ⊆ Zl with d∗(S) > 0 and any finite setF ⊂ Zr ,
there isn ∈ N andu ∈ Zl such thatu+ P(nF)⊂ S.

In order to formulate an ergodic result which would imply Theorem 4.25, let us first
reformulate Theorem 4.25 in coordinate form.

THEOREM 4.26 [23, Theorem B].For l ∈ N, let S ⊆ Zl satisfyd∗(S) > 0. Let p1,1(n),

. . . , p1,t (n),p2,1(n), . . . , p2,t (n), . . . , pk,1(n), . . . , pk,t (n) be polynomials with rational
coefficients taking integer values on the integers and satisfyingpi,j (0) = 0, i = 1, . . . , k,
j = 1, . . . , t . Then, for any v1, . . . , vt ∈ Zl , there existn ∈ N and v ∈ Zl such that
v +∑tj=1pi,j (n)vj ∈ S for eachi ∈ {1,2, . . . , k}.

To see that Theorem 4.25 implies Theorem 4.26, takek = r and apply Theorem 4.25 to
the polynomial mappingP :Zr → Zl defined by

P(n1, n2, . . . , nr)=
t∑
j=1

r∑
i=1

pi,j (ni)vj

and the finite setF = {(1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0,0, . . . ,1)} ⊂ Zr .
To see that Theorem 4.25 follows from Theorem 4.26, letP :Zr → Zl be a polynomial

mapping satisfyingP(0) = 0 and letF = {w1, . . . ,wk} be an arbitrary finite set inZr .
Letting t = l in Theorem 4.26, define polynomialspi,j (n) by

pi,j (n)= P(nwi)j , n ∈ N, i = 1,2, . . . , k, j = 1,2, . . . , l.

Let v1, v2, . . . , vl denote the unit vectors from the standard basis inZl . Then, by Theo-
rem 4.26 one has, for somen ∈ N andu ∈ Zl ,

u+ P(nwi)= u+
t∑
j=1

P(nwi)j vj ∈ S, i = 1,2, . . . , k,

which is the same asu+ P(nF)⊂ S.
We formulate now an ergodic theoretic result which implies (via Furstenberg’s corre-

spondence principle) Theorems 4.25 and 4.26, and which may be viewed as a measure
preserving analogue of the topological polynomial van der Waerden theorem, Theorem 2.9
above. (See also Theorem 4.43 below.)

THEOREM 4.27 [23, Theorem A].Let, for somet, k ∈ N, p1,1(n), . . . , p1,t (n),p2,1(n),

. . . , p2,t (n), . . . , pk,1(n), . . . , pk,t (n) be polynomials with rational coefficients taking inte-
ger values on the integers and satisfyingpi,j (0)= 0, i = 1,2, . . . , k, j = 1,2, . . . , t . Then,
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for any probability space(X,B,µ), commuting invertible measure preserving transforma-
tionsT1, T2, . . . , Tt ofX and anyA ∈ B withµ(A) > 0, one has

lim inf
N→∞

1

N

N−1∑
n=0

µ

(
A∩

t∏
j=1

T
−pi,j (n)
j A∩

t∏
j=1

T
−p2,j (n)

j A∩ · · · ∩
t∏
j=1

T
−pn,j (n)
j A

)
> 0.

To get a feeling for how general Theorem 4.27 is (though this feeling, on a combinatorial
level, should be provided by the formulation of Theorem 4.25), let us note that as a special
case one has, for example, the following refinement of Theorem 4.21.

THEOREM 4.28. For any commuting invertible measure preserving transformations
T1, . . . , Tk of a probability space(X,B,µ), any polynomialsp1(n), . . . ,pk(n) which
have rational coefficients, take integer values on the integers, and satisfypi(0) = 0,
i = 1,2, . . . , k, anyA ∈ B withµ(A) > 0, one has

lim inf
N→∞

1

N

N−1∑
n=0

µ
(
A∩ T −p1(n)

1 A∩ T −p2(n)

2 A∩ · · · ∩ T −pk(n)
k A

)
> 0.

The proof of Theorem 4.27 in [23] can be described as a “polynomialization” of the
proof of Theorem 4.21. To ease the discussion, let us put in Theorem 4.28Ti = T and
consider the expression

lim inf
N→∞

1

N

N−1∑
n=0

µ
(
A∩ T −p1(n)A∩ T −p2(n)A∩ · · · ∩ T −pk(n)A

)
.

Assume first thatf = 1A is a compact function. In this special case the positivity of the
lim inf above easily follows from the following simple fact.

LEMMA 4.29. Suppose thatp1(n),p2(n), . . . , pk(n) are polynomials with rational coef-
ficients which take integer values on integers and satisfypi(0)= 0, i = 1,2, . . . , k. Let T
be an isometry of a compact metric space(X,ρ). Then for anyε > 0 there exists a point
x ∈X such that the set

⋂k
i=1{n: ρ(T pi(n)x, x) < ε} is syndetic.

To prove Lemma 4.29, one can, for example, invoke the fact that ifT is an isometry then
the dynamical system(X,T ) is semisimple, i.e. is a disjoint union of minimal systems.
Now, it is not hard to show that if the topological system(X,T ), whereT is an isometry,
is minimal, then it is topologically isomorphic (conjugate) to a minimal translation on a
compact Abelian group. The desired result then can be deduced from Weyl’s result on
polynomial Diophantine approximation. Alternatively, one can observe that Lemma 4.29
is a corollary of the polynomial van der Waerden theorem (Theorem 2.9 above).

If (X,B,µ,T ) is weakly mixing, then the result in question also holds, due to the fol-
lowing refinement of Theorem 4.5.
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THEOREM 4.30 [8]. Let (X,B,µ,T ) be an invertible weakly mixing system. Assume that
the polynomialspj (n), j = 1,2, . . . , k, take integer values on integers, have degree greater
than or equal to one, and satisfy the conditionpi(n)− pj (n) �≡ const,i �= j . Then for any
fi ∈ L∞(X,B,µ) one has

lim
N→∞

1

N

N−1∑
n=0

T p1(n)f1T
p2(n)f2 · · ·T pk(n)fk =

∫
f1dµ

∫
f2dµ · · ·

∫
fk dµ

in L2-norm.

Puttingfi = 1A, i = 1,2, . . . , k, multiplying by 1A and integrating gives us

lim
N→∞

1

N

N−1∑
n=0

µ
(
A∩ T −p1(n)A∩ T −p2(n)A∩ · · · ∩ T −pk(n)A

)= µ(A)k+1.

The proof of Theorem 4.30 is achieved by an inductive procedure, based on Theo-
rem 4.6, which is sometimes called PET-induction. See [8] for details.

The proof of Theorem 4.27 in its full generality takes, of course, some more work, but
with the help of the polynomial van der Waerden theorem and the appropriately general
form of Theorem 4.30, one is able to push the statement through the primitive extensions.
See [23] for the details.

4.3.3. IP Szemerédi theorem.We pass now to the discussion of the IP Szemerédi theorem
which was obtained by Furstenberg and Katznelson in [62]. The reader is encouraged to
review the definition of an IP system introduced before the formulation of the IP van der
Waerden theorem (Theorem 2.2) and to juxtapose the formulations of Theorem 2.2 and the
following statement.

THEOREM 4.31. (See [62, Theorem A].)Let (X,B,µ) be a probability space andG an
Abelian group of measure-preserving transformations ofX. For anyk ∈ N, any IP systems
{T (1)α }α∈F , {T (2)α }α∈F , . . . , {T (k)α }α∈F in G, and anyA ∈ B with µ(A) > 0 there exists
α ∈F such that

µ
(
A∩ T (1)α A∩ T (2)α A∩ · · · ∩ T (k)α A

)
> 0.

The proof of the IP Szemerédi theorem is achieved via a sophisticated structure theory
which could be viewed as an IP variation on the theme of primitive extensions discussed
above. Curiously enough, it is not the IP van der Waerden theorem, but the more powerful
Hales–Jewett theorem which has to be used when dealing with the IP version of compact
extensions. We will give more details on the proof of Theorem 4.31 below, but first we
want to discuss some of its corollaries.

Note that, since the notion of an IP set is a generalization of a (semi)group, the notion of
an IP system of commuting invertible measure preserving transformations generalizes the
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notion of a measure preserving action of a countable Abelian group. It follows that The-
orems 4.2, 4.19, and 4.21 are immediate corollaries of Theorem 4.31. It also follows, via
an appropriate version of Furstenberg’s correspondence principle, that, on a combinator-
ial level, Theorem 4.21, the IP Szemerédi theorem, implies the multidimensional version
of Szemerédi’s theorem (Theorem 1.23 above) as well as Theorem 4.18. However, the IP
Szemerédi theorem gives more! For example, it follows from it that the sets of configura-
tions, always to be found in sets of positive density inZk or F∞, are abundant in the sense
that the set of parameters of these configurations form IP∗ sets. (See the discussion at the
beginning of Section 2.)

One can derive these IP∗ versions of combinatorial results from the following corollary
of Theorem 4.31. The IP and IP∗ sets in an Abelian group are defined in complete (and
obvious) analogy to the definitions in Sections 1 and 2 which were geared towardsN.

THEOREM 4.32. Let (X,B,µ) be a probability space, and letG be a countable Abelian
group. For any k commuting measure preserving actions(T (1)g )g∈G, (T (2)g )g∈G, . . . ,
(T
(k)
g )g∈G ofG on (X,B,µ) and anyA ∈ B withµ(A) > 0, the set{

g ∈G: µ
(
A∩ T (1)g A∩ T (2)g A∩ · · · ∩ T (k)g A

)
> 0
}

is an IP∗ set inG.

Note that since any IP∗ set inN is obviously syndetic, Theorem 4.32 implies, for exam-
ple, the following fact.

COROLLARY 4.33. For any commuting transformationsT1, T2, . . . , Tk of a probability
space(X,B,µ) and anyA ∈ B with µ(A) > 0, the set{n ∈ N: µ(A ∩ T −n

1 A ∩ T −n
2 A ∩

· · · ∩ T −n
k A) > 0} is syndetic.

Note that the conclusion of Corollary 4.33 would follow from Theorem 4.21 if one would
be able to replace in its formulation the statement involving the regular Cesàro averages:

lim inf
N→∞

1

N

N−1∑
n=0

µ
(
A∩ T −n

1 A∩ · · · ∩ T −n
k A
)
> 0

by a similar, but stronger, statement, involving “uniform” averages:

lim inf
N−M→∞

1

N −M
N−1∑
n=M

µ
(
A∩ T −n

1 A∩ · · · ∩ T −n
k A
)
> 0.

It is perhaps instructive to pinpoint the exact place in the proof of Theorem 4.21 (or its
earlier version, Theorem 4.2) that does not work for the uniform Cesàro averages. This
analysis will also allow the reader to get a better feeling for why one is forced to use the
Hales–Jewett theorem. Careful examination of the proof reveals that it is actually only the
case of compact extensions which causes the trouble.
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Let us briefly review the main ingredients of the proof of Theorem 4.2. First, if the sys-
tem(X,B,µ,T ) is compact, we saw that the set{n ∈ Z: |µ(A∩ T −nA∩ · · · ∩ T −knA)−
µ(A)| < ε} is syndetic. Second, as was mentioned in Remark 4.7, in the case when
(X,B,µ,T ) is weakly mixing, one has, for anyA ∈ B with µ(A) > 0,

lim
N−M→∞

1

N −M
N−1∑
n=M

µ(A∩ T −nA∩ · · ·T −knA)= (µ(A))k+1
,

and hence, in this case, the set{
n ∈ Z:

∣∣µ(A∩ T −nA∩ · · · ∩ T −knA)− (µ(A))k+1∣∣< ε}
is syndetic.

One can check that the case of relative weak mixing also works for uniform averages.
However, it is the case of relatively compact extensions where the syndeticity property is
lost in the passage to the extension. Indeed, in the proof of Theorem 4.17 we show that
if X = (X,B,µ,T ) is a relatively compact extension ofY = (Y,D, ν, S) andA ∈ B with
µ(A) > 0, then there is a setA1 ∈ D with ν(A1) > 0 and a numberM ∈ N such that
for any n which is good for multiple recurrence ofA, in Y , there is a multipledn with
d �M , which is good for multiple recurrence ofA in X. So even if one would know in
advance that the setRA1 = {n1, n2, . . .} of multiple returns ofA1 is a syndetic set, the set
of multiplesRA = {d1n1, d2n2, . . .} while being still of positive upper density (due to the
fact thatdi �M for all i), is no longer guaranteed to be syndetic, as it is not hard to see on
some trivial examples.

A possible solution of this problem is to use a more powerful coloring theorem instead of
van der Waerden’s. It turns out that the Hales–Jewett theorem (see Theorems 1.26 and 1.28)
which, as we saw in Section 2 (see Proposition 2.7) is very close to van der Waerden’s,
is strong enough to supply the missing link needed to assure that the syndeticity can be
pushed through the transfinite induction. This added strength allows one to get the better
result:

lim inf
N−M→∞

1

N −M
N−1∑
n=M

µ
(
A∩ T −n

1 A∩ · · · ∩ T −n
k A
)
> 0.

(See [104, Section 5.2], for a presentation of the syndetic version of Theorem 4.2 via the
Hales–Jewett theorem.)

We give now more details on the proof of the IP Szemerédi theorem. First, let us intro-
duce, following [58] and [62], some pertinent terminology.

Let us recall that any sequence indexed by the set of nonempty subsets ofN is called
an F -sequence. In particular, IP sets and IP systems that we have dealt with in earlier
sections are examples ofF -sequences. As before, we will be writing, forα,β ∈F , α < β
(or β > α) if maxα <minβ. Assume that a collection of setsαi ∈ F , i = 1,2, . . . , has
the propertyαi < αi+1 for all i ∈ N. The setF (1) = {⋃i∈β αi : β ∈F} is called an IP ring.
Observe thatF can be viewed as an IP set in the commutative semigroup(N,∪), generated
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by the singletons{i}, i ∈ N. By the same token, the IP ringF (1) can be viewed as an IP set
in (N,∪) which is generated by the “atoms”αi , i ∈ N, and hence has the same structure as
F . More formally, let us define a mappingϕ :F →F (1) by ϕ(β)=⋃i∈β αi . Clearly,ϕ is
bijective and “structure preserving.” It follows that any sequence indexed by the elements
of an IP ring may itself be viewed as anF -sequence.

The following is a version of Hindman’s theorem, which will be needed below. The
reader should have no problem establishing its equivalence to Theorem 1.10.

THEOREM 4.34. For any finite partitionF =⋃ri=1Ci , one ofCi contains an IP ring.

DEFINITION 4.35. Assume that(xα)α∈F is anF -sequence in a topological spaceX. Let
x ∈ X and letF (1) be an IP ring. We shall write IP-limα∈F (1) xα = x if for any neighbor-
hoodU of x there existsα0 = α0(U) such that, for anyα ∈ F (1) with α > α0, one has
xα ∈U .

One has now the following IP version of the classical Bolzano–Weierstrass theorem.

THEOREM 4.36. (Cf. [58, Theorem 8.14] and [62, Theorem 1.3].)If (xα)α∈F is anF -
sequence in a compact metric spaceX, then there exist an IP ringF (1) andx0 ∈ X such
that theF -sequence(xα)α∈F (1) has an IP-limit inX:

IP-lim
α∈F (1)

xα = x0.

SKETCH OF THE PROOF. The proof goes along the lines of the classical “dichotomic”
proof of the Bolzano–Weierstrass theorem, in which one replaces the pigeonhole principle
by the (much more powerful) Hindman’s theorem. For givenε > 0, let (Bi)ri=1 be a finite
family of open balls of radiusε/2 which covers the compact spaceX. By Theorem 4.34 one
can extract an IP ringF (1) so that theF -sequence(xα)α∈F (1) has all of its elements within
distance less thanε of one another. The proof is concluded by the diagonal procedure.�

REMARK. The notions and properties of IP convergence are very similar to those of the
convergence along an idempotent ultrafilter, which was introduced and discussed in Sec-
tion 3. One could advance this analogy even further by introducingβF , the Stone–̌Cech
compactification ofF . We have preferred to stick to IP convergence for two reasons. First,
this allows us to follow more closely the work of Furstenberg and Katznelson in [62]. Sec-
ond, IP-limits seem, at least as of now, to be a more convenient tool for dealing with the
polynomial extensions of the IP Szemerédi theorem. (See Theorems 4.40 and 4.43 below.)

The following result is an IP analogue of Proposition 3.17 above. For the (short) proof
see [58, Lemma 8.15], or [62, p. 124].

THEOREM 4.37. Let {Tα}α∈F be an IP system of continuous transformations of a metric
spaceX. Assume that, for somex, y ∈X, IP-limα∈F Tαx = y. ThenIP-limα∈F Tαy = y.
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Assume now that(Uα)α∈F is an IP system generated by commuting unitary opera-
tors acting on a separable Hilbert spaceH. By using the fact that the closed ballBR =
{x ∈H: ‖x‖�R} is a compact metrizable space in the weak topology, one has the follow-
ing result.

THEOREM 4.38 [62, Theorem 1.7].If {Uα}α∈F is an IP system of commuting unitary
operators on a Hilbert spaceH, then there is an IP ringF (1) such that the IP subsystem
{Uα}α∈F (1) converges weakly. Moreover, if one hasIP-limα∈F Uα = P weakly, thenP is
an orthogonal projection.

SKETCH OF THE PROOF. Since, clearly,‖P ‖ � 1, one needs only to show thatP 2 = P .
But this follows from Theorem 4.37. �

The projectionP occurring in the above theorem is an orthogonal projection on the
space ofrigid elements, i.e. elementsR, satisfyingUαf → f . Note also that, by a
classical exercise,Uαf → f weakly if and only ifUαf → f strongly. Assuming that
IP-limα∈F Uα = P weakly, we have now the following decomposition ofH:

H=Hr ⊕Hm, where

Hr =
{
f ∈H: IP-lim

α∈F
Uαf = f

}
,

Hm =
{
f ∈H: IP-lim

α∈F
Uαf = 0 weakly

}
.

The reader should view this splitting as the IP analogue of the splittingH=Hc ⊕Hwm
which was utilized in the proof of Theorem 4.2. This analogy is the starting point of the
long list of facts about IP systems of commuting measure preserving transformations which
parallel the familiar results pertaining to the structure theory of measure preserving systems
and multiple recurrence. For example, whenH = L2(X,B,µ) and the operatorsUα are
induced by measure preserving transformationsTα on the probability measure space, the
spaceHr of rigid functions can be represented, in complete analogy to Theorem 4.6, as
L2(X,B1,µ), where theσ -algebraB1 consists of setsA for which the indicator function
1A is rigid. One can go even further and define the notions of relatively rigid and relatively
mixing extensions. There is also an IP analogue of the van der Corput trick. (See, for
example, Lemma 5.3 in [62].) To handle relatively rigid (or relatively compact, as they
are called in [62]) extensions, one uses the Hales–Jewett theorem. Finally (and mainly due
to the fact that one deals with a finitely generated group of IP systems), one also has an
analogue of primitive extensions and a theorem analogous to Theorem 4.24. (See Theorem
7.10 in [62].)

While many details of the corresponding results demand much work and have to be
worked out with care, it is shown in [62] that all this can be glued together to obtain the
proof of the IP Szemerédi theorem.

4.3.4. IP versions of polynomial theorems.Being encouraged by the IP Szemerédi theo-
rem, one can ask whether the polynomial Szemerédi theorem (Theorem 4.27) also admits
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an IP version. This question is already not trivial in the case of single recurrence, and we
address it in this context first.

For an arbitrary invertible probability measure preserving system(X,B,µ,T ), a set
A ∈ B with µ(A) > 0, and a polynomialp(n) which takes integer values on the integers
and satisfiesp(0)= 0, consider the set

RA = {n: µ(A∩ T p(n)A) > 0
}
.

As we have shown in the course of the proof of Theorem 1.31, one has
limN→∞ 1

N

∑N−1
n=0 µ(A ∩ T p(n)A) > 0, which clearly implies thatRA has positive upper

density. Moreover, by using a modification of the van der Corput trick (Theorem 1.32)
which deals with limits of the form limN−M→∞ 1

N−M
∑N−1
n=M xn, one can show that

limN−M→∞ 1
N−M
∑N−1
n=M µ(A∩ T p(n)A) > 0, which implies that, in fact, the setRA is

syndetic.
In order to obtain an IP version of Theorem 1.31, which would guarantee that the set

RA is an IP∗ set, one has to switch from Cesàro limits to IP limits. The following theorem,
which is a special case of a more general result proved in [17], not only implies thatRA
is indeed an IP∗ set, but actually shows that for anyε > 0, the set of returns with large
intersections,{n: µ(A∩ T p(n)A) > µ(A)2 − ε} is also IP∗.

THEOREM 4.39. (See [9, Theorem 3.11].)Assume thatp(t) ∈ Q[t] satisfiesp(Z) ⊆ Z
andp(0)= 0. Then for any invertible probability measure preserving system(X,B,µ,T ),
anyA ∈ B with µ(A) > 0, and any IP set(nα)α∈F ⊂ N, there exists an IP-ringF (1) ⊂ F
such that

IP-lim
α∈F (1)

µ
(
A∩ T p(nα)A)� µ(A)2.

The crucial role in the proof of Theorem 4.39 is played by the fact (obtained with the
help of an IP version of van der Corput’s trick) that there is an IP ring such that (denoting
byUT the unitary operator onL2(X,B,µ) which is induced byT ) one has

IP-lim
α∈F (1)

U
p(nα)
T = P weakly,

whereP is an orthogonal projection. In particular, it is the fact thatP is an orthogonal
projection which enables one to get large intersections along the sequence(p(nα))α∈F (1) .
Here is the proof:

IP-lim
α∈F (1)

µ
(
A∩ T p(nα)A)

= IP-lim
α∈F (1)

〈
U
p(nα)
T 1A,1A

〉
= 〈P1A,1A〉 = 〈P1A,P1A〉〈1,1〉� 〈P1A,1〉2 = 〈1A,1〉2 = µ(A)2.
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While the proof of Theorem 4.39 is, in many respects, just an IP analogue of the proof of
Theorem 1.31 above, there is one important distinction which we want to mention here. As
we saw in the proof of Theorem 1.31, the splittingH=Hrat⊕Htot.erg. worksfor all p(n) ∈
Z[n]. A novel feature encountered in the proof of the IP analogue of Theorem 1.31 is that
the splitting ofH= L2(X,B,µ) which enables one to distinguish between different kinds
of asymptotic behavior ofUp(n)T along an IP set(nα)α∈F may depend on the polynomial
p(n).

However, a much more important novelty which is encountered when one deals with
IP analogues of polynomial recurrence theorems is that one has now a bigger family of
functions, namely the IP polynomials which form the IP analogue of the conventional
polynomials, and for which the IP versions of familiar theorems make sense. Examples of
IP polynomial recurrence results in topological dynamics were given in Section 2 (see, for
example, Theorems 2.9 and 2.12). The results which we are going to formulate now can
be characterized as polynomial IP extensions of Theorems 1.31 and 4.27, and involve a
natural subclass of IP polynomials which can be obtained in the following way.

Let q(t1, . . . , tk) ∈ Z[t1, . . . , tk] and let (n(i)α )α∈F , i = 1,2, . . . , k, be IP sets. Then
q(α) = q(n

(1)
α , n

(2)
α , . . . , n

(k)
α ) is an example of an IP polynomial. For example, if

degq(t1, . . . , tk)= 2, thenq(α) will typically look like

g(α)=
s∑
i=1

n(i)α m
(i)
α +

r∑
i=1

k(i)α .

The following result, obtained in [17], extends Theorem 4.39 to the case of several com-
muting transformations and to the family of IP polynomials described above.

THEOREM 4.40 [17, Corollary 2.1]. Suppose that(X,B,µ) is a probability space and
that {T1, T2, . . . , Tt } is a collection of commuting invertible measure preserving trans-
formations ofX. Suppose that(n(i)α )α∈F ⊂ N are IP sets, i = 1,2, . . . , k, and that
pj (x1, . . . , xk) ∈ Z[x1, . . . , xk] satisfypj (0,0, . . . ,0)= 0 for j = 1,2, . . . , t . Then for any
measurableA⊆X, there exists an IP-ringF (1) ⊂F such that

IP-lim
α∈F (1)

µ

(
A∩

t∏
i=1

T
pi(n

(1)
α ,n

(2)
α ,...,n

(k)
α )

i A

)
� µ(A)2.

Theorem 4.40 is obtained in [17] as a corollary of the following general fact about fami-
lies of unitary operators, which can be viewed as a polynomial variation of Theorem 4.38.
Note that the IP-ringF (1) which occurs in the formulation, always exists due to the com-
pactness of the weak topology.

THEOREM 4.41 [17, Theorem 1.8].Suppose thatH is a Hilbert space, (Ui)ti=1 is a
commuting family of unitary operators onH, (pi(x1, . . . , xk))

t
i=1 ⊂ Z[x1, . . . , xk] satisfy



Combinatorial and Diophantine applications of ergodic theory 821

pi(0,0, . . . ,0) = 0 for 1 � i � t , and that(n(i)α )α∈F are IP sets for1 � j � t . Suppose
thatF (1) is an IP-ring such that for eachf ∈H,

IP-lim
α∈F (1)

(
t∏
i=1

U
pi(n

(1)
α ,...,n

(k)
α )

i

)
f = P(p1,...,pt )f

exists in the weak topology. ThenP(p1,...,pt ) is an orthogonal projection. Projections of this
type commute, that is, if also(qi(x1, . . . , xk))

t
i=1 ⊂ Z[x1, . . . , xk] satisfyqi(0,0, . . . ,0)= 0

for 1 � i � t , then

P(p1,...,pt )P(q1,...,qt ) = P(q1,...,qt )P(p1,...,pt ).

An interesting feature of the proof of Theorem 4.40 is the usage of the following exten-
sion of Hindman’s theorem, due independently to K. Milliken and A. Taylor. (See [105]
and [129].)

THEOREM 4.42 [105,129]. Suppose thatF (1) is an IP-ring, l, r ∈ N, and

{
(α1, . . . , αl) ∈

(
F (1)
)l : α1< α2< · · ·< αl

}= r⋃
i=1

Ci.

Then there existsj , 1� j � r , and an IP-ringF (2) ⊂F (1) such that

{
(α1, . . . , αl) ∈

(
F (2)
)l : α1< α2< · · ·< αl

}⊂ Cj .
The next natural step is to (try to) extend Theorem 4.40 to a multiple recurrence result.

The following theorem obtained (as a corollary of a more general result) in [32], which we
will call the IP polynomial Szemerédi theorem, is an IP extension of Theorem 4.27. (Cf.
Theorem 2.9 above.)

THEOREM4.43 [32, Theorem 0.9].Suppose we are givenr commuting invertible measure
preserving transformationsT1, . . . , Tr of a probability space(X,B,µ). Let k, t ∈ N and
suppose thatpi,j (n1, . . . , nk) ∈ Q[n1, . . . , nk] satisfypi,j (Zk)⊆ Z andpi,j (0,0, . . . ,0)=
0 for 1� i � r , 1� j � t . Then for everyA ∈ B withµ(A) > 0, the set

RA =
{
(n1, . . . , nk) ∈ Zk: µ

(
t⋂
j=1

(
r∏
i=1

T
pi,j (n1,...,nk)

i

)
A

)
> 0

}

is an IP∗ set inZk .

We collect some of the corollaries of Theorem 4.43 in the following list.
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(i) Already for k = 1, Theorem 4.43 gives a refinement of the polynomial Szemerédi
theorem (Theorem 4.27). Indeed, it says that the set{

n ∈ Z: µ
(
A∩ T p11(n)

1 T
p12(n)

2 · · ·T p1r (n)
r A∩ · · · ∩ T pt1(n)1 T

pt2(n)

2 · · ·T ptr (n)r A
)

> 0
}

is IP∗, hence syndetic, hence of positive lower density.
(ii) Theorem 4.43 also enlarges the family of configurations which can always be found

in sets of positive upper Banach density inZn. For example, using Furstenberg’s
correspondence principle, one obtains the following fact, in which the reader will
recognize the density version of Theorem 2.12.

THEOREM 4.44. LetP :Zr → Zl , r, l ∈ N, be a polynomial mapping satisfyingP(0)= 0,
and letF ⊂ Zr be a finite set. Then for any setE ⊂ Zl with d∗(E) > 0 and any IP sets
(n
(i)
α )α∈F , i = 1, . . . , r , there existu ∈ Zl andα ∈F such that{

u+ P (n(1)α x1, n
(2)
α x2, . . . , n

(r)
α xr
)
: (x1, . . . , xr ) ∈ F

}⊂ S.
See [17] for additional applications, both to combinatorics and to ergodic theory.
The proof of Theorem 4.43 that is given in [32] is quite cumbersome (partly due to the

fact that in order to push the statement through the transfinite induction over the factors
with “manageable” behavior, one has to formulate and prove an even more general result).
In a way, it is apolynomializationof the proof of the IP Szemerédi theorem in [62]. Not be-
ing able to go through the details of the proof here, we would like to mention the two com-
binatorial facts which play a decisive role in the proof. One of them is the Milliken–Taylor
theorem, formulated above as Theorem 4.42. The other one is the polynomial Hales–Jewett
theorem, Theorem 2.11.

4.3.5. The density version of Hales–Jewett theorem.We are going to discuss now the
density versions (and their ergodic counterparts) of three more partition theorems which
we encountered in Sections 1 and 2.

We start with Theorem 1.26, the Hales–Jewett theorem. As we saw in Section 2, some
major corollaries of the Hales–Jewett theorem, such as the multidimensional van der Waer-
den theorem and the so-called geometric Ramsey theorem, Theorem 1.27, follow from the
IP van der Waerden theorem. The streamlined measure theoretical extension of the IP van
der Waerden theorem, the IP Szemerédi theorem (Theorem 4.31) allows one to get the
density versions of these corollaries. The IP Szemerédi theorem is, however, still not gen-
eral enough to give the density version of the Hales–Jewett theorem. This density version,
which we will refer to below as dHJ, was established by Furstenberg and Katznelson in
[64]. Here is one of a few equivalent formulations of dHJ.

THEOREM 4.45 [64, Theorem E].There is a functionR(ε, k), defined for allε > 0 and
k ∈ N, so that ifA is a set withk elements,WN(A) consists of words inA with lengthN ,
and ifN � R(ε, k), then any subsetS ⊂WN(A) with |S| � εkN contains a combinatorial
line.
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In order to formulate the ergodic counterpart of Theorem 4.45 which was proved in [64],
we shall need the following definition.

DEFINITION 4.46. (See [64, Definition 2.7].) Let W(k) denote the free semigroup
over thek-element alphabet{1,2, . . . , k}. Given k sequences{T (1)n }∞n=1, {T (2)n }∞n=1, . . . ,

{T (k)n }∞n=1 of invertible measure preserving transformations of a probability space(X,B,µ),
define, for eachw = (w(1),w(2), . . . ,w(k)) ∈W(k),

T (w)= T w(1)1 T
w(2)
2 · · ·T w(k)k .

The family(T (w),w ∈W(k)) is called aW(k)-system.

Here is now the ergodic formulation of dHJ.

THEOREM 4.47. (See [64, Proposition 27].)Let {T (w),w ∈W(k)} be aW(k)-system of
invertible measure preserving transformations of a probability space(X,B,µ). For any
A ∈ B withµ(A) > 0, there exists a combinatorial line(l(t))t∈{1,2,...,k} in W(k) such that

µ
(
T
(
l(1)
)−1
A∩ T (l(2))−1

A∩ · · · ∩ T (l(k))−1
A
)
> 0.

The proof of Theorem 4.47, while following the general scheme of the other proofs dis-
cussed above, is significantly more involved, mainly due to the fact that the transformations
forming theW(k)-system need not commute. (As a matter of fact, in the case where the
W(k)-system is formed by commutative transformations, the situation is reduced to the IP
Szemerédi theorem.) Despite the absence of commutativity, the proof of Theorem 4.47 has
a strong IP flavor. In particular, the authors use the IP version of the van der Corput trick,
Theorem 4.37, and a (noncommutative) version of Theorem 4.38. Much more importantly,
the authors are using aninfinitary combinatorial result which is a simultaneous extension
of the Hindman, Milliken–Taylor, and Hales–Jewett theorems. This combinatorial fact was
also obtained by Carlson. (See [63,43] and [14].)

Before moving on with our discussion, we would like to stress that while Theorem 4.47
deals with an action of a free finitely generated semigroup, namelyW(k), it is a result
about rather special configurations inW(k).

4.3.6. Multiple recurrence for nilpotent and solvable groups.Another multiple recur-
rence theorem involving a noncommutative group is Leibman’s nil-Szemerédi theorem
obtained in [98], which is a density version of his nil-van der Waerden theorem (Theo-
rem 2.15), and, at the same time, is an extension of Theorem 4.27.

THEOREM 4.48. (Cf. [98, Theorem NM].)Let k, t, r ∈ N. Assume thatG is a nilpotent
group of measure preserving transformations of a probability measure space(X,B,µ). Let
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pi,j (n1, . . . , nk) ∈ Z[n1, . . . , nk] with pi,j (Zk) ⊆ Z andpi,j (0,0, . . . ,0) = 0, 1� i � r ,
1� j � t . Then for everyA ∈ B withµ(A) > 0 and anyT1, T2, . . . Tr ∈G, the set{

(n1, . . . , nk) ∈ Zk: µ

(
t⋂
j=1

(
r∏
i=1

T
pi,j (n1,...,nk)

i

)
A

)
> 0

}

is a syndetic set inZk .

In his proof, Leibman builds a nilpotent version of primitive extensions similar to, but
more sophisticated (due to the noncommutativity) than that which was introduced in [60].
We will describe it now. LetY be a measure space and let{Xi}i∈I be a system of measure
spaces of the formXi = Y × Fi , i ∈ I ; then the measure spaceX = Y ×∏i∈I Fi is called
a relatively direct product ofXi , i ∈ I , overY .

DEFINITION 4.49. (Cf. [98, Definition 11.10].) LetG be a finitely generated nilpotent
group. An extensionX = (X,B,µ, (Tg)g∈G) of a systemY = (Y,D, ν, (Sg)g∈G) is prim-
itive if X is (isomorphic to) the relatively direct product overY of a system{Xi}i∈I of
measure spaces so that

(i) the transformationsTg , g ∈G, onX permute the spacesXi in the product: for any
g ∈G andi ∈ I one hasTg(Xi)=Xj for somej ∈ I ;

(ii) if T = Tg preservesXi , i.e. Tg(Xi) = Xi , then the action ofT on Xi is either
compact relative toY or weak mixing relative toY .

Modulo this definition, the structure theorem for measure preserving actions of a fi-
nitely generated nilpotent group is the same as the structure theorem forZk-actions, The-
orem 4.24 above.

THEOREM4.50 [98, Theorem 11.11].If G is a finitely generated nilpotent group andX =
(X,B,µ, (Tg)g∈G) is an extension ofY = (Y,D, ν, (Sg)g∈G), then there is an intermediate
factorZ such thatZ is a primitive extension ofY .

It is worth mentioning that the structure similar to that appearing in the case of measure
preserving actions of nilpotent groups can already be observed on the unitary level.

THEOREM 4.51 [99, Theorem N].Let {Tg} be a unitary action of a finitely generated
nilpotent groupG on a Hilbert spaceH. ThenH is representable as the direct sum of a
system{Li}i∈I of closed pairwise orthogonal subspaces so that:

(i) the operatorsTg , g ∈ G, permute the subspacesLi : for any g ∈ G and i ∈ I one
hasTg(Li )= Lj for somej ∈ I ,

(ii) if T = Tg preservesLi , i.e. if T (Li ) = Li , then eitherT is scalar onLi or T is
weakly mixing onLi .

Another interesting feature of Leibman’s proof of Theorem 4.48 is that in order to lift
the recurrence property in question to relatively compact extensions, a coloring theorem is
employed which is close in spirit to Theorem 2.17.
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Leibman’s nil-Szemerédi theorem naturally leads to the question whether the assump-
tions can be further relaxed and whether, in particular, an analogue of Theorem 1.24 holds
true if the measure preserving transformationsT1, T2, . . . , Tk generate a solvable group.
Note that any finitely generated solvable group is either of exponential growth or is vir-
tually nilpotent, i.e. contains a nilpotent group of finite index. (See, for example, [121].)
Since Theorem 4.48 easily extends to virtually nilpotent groups, the question boils down
to solvable groups of exponential growth. The following result, proved in [27], shows, in a
strong way, that for solvable groups of exponential growth the answer to the above question
is NO.

THEOREM 4.52 [27, Theorem 1.1(A)].Assume thatG is a finitely generated solvable
group of exponential growth. There exist a measure preserving action(Tg)g∈G of G on a
probability measure space(X,B,µ), elementsg,h ∈G, and a setA ∈ B with µ(A) > 0
such thatTgnA∩ ThnA= ∅ for all n �= 0.

4.3.7. Density version of polynomial Hales–Jewett theorem—a conjecture.We conclude
this section by formulating a conjecture about a density version of the polynomial Hales–
Jewett theorem which, if true, extends both the partition polynomial Hales–Jewett theo-
rem (Theorem 2.11) and the density version of the “linear” Hales–Jewett theorem (Theo-
rem 4.45). Forq, d,N ∈ N, letMq,d,N be the set ofq-tuples of subsets of{1,2, . . . ,N}d :

Mq,d,N = {(α1, α2, . . . , αq): αi ⊂ {1,2, . . . ,N}d , i = 1,2, . . . , q
}
.

CONJECTURE4.53. For anyq, d ∈ N andε > 0, there existsC = C(q, d, ε) such that if
N > C and a setS ⊂ Mq,d,n satisfies |S|

|Mq,d,N | > ε thenS contains a “simplex” of the

form: {
(α1, α2, . . . , αq), (α1 ∪ γ d,α2, . . . , αq), (α1, α2 ∪ γ d, . . . , αq), . . . ,
(α1, α2, . . . , αq ∪ γ d)

}
,

whereγ ⊂ N is a nonempty set andαi ∩ γ d = ∅ for all i = 1,2, . . . , q.

5. Actions of amenable groups

5.1. Generalities

One of the most striking theorems in mathematics, known as the Hausdorff–Banach–Tarski
paradox (see [79] and [5]), claims that given any two bounded setsA andB in Rn, n� 3,
each having nonempty interior, one can partitionA into finitely many disjoint parts and
rearrange them by rigid motions ofRn to formB. What makes this fact even more striking
is that (as was shown by Banach in [4]) the analogous result does not take place inR or R2.

It was von Neumann who, in his fundamental work [132], showed that the phenom-
enon of “paradoxicality” is related not so much to the structure of the spaceRn, but rather
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to the group of transformations which is used to rearrange the elements of the partition.
In particular, von Neumann introduced and studied in [132] a class of groups which he
called “messbar” (measurable) and which do not allow for “paradoxical decompositions.”
These groups are called nowadays amenable (see [111, p. 137], for the origin of the term
amenable) and are known to have connections to many mathematical areas, including prob-
ability theory, geometry, theory of dynamical systems and representation theory. As we
shall see in this section, countable amenable semigroups provide also a natural frame-
work for Furstenberg’s correspondence principle. (See [74,114,112] for a comprehensive
treatment of different aspects of amenability in the general framework of locally compact
groups. See also [134] for a thorough and accessible discussion of amenability for discrete
groups with the stress on connections to the Hausdorff–Banach–Tarski paradox.)

DEFINITION 5.1. LetG be a discrete semigroup. Forx ∈ G andA ⊂ G, let x−1A =
{y ∈ G: xy ∈ A} andAx−1 = {y ∈ G: yx ∈ A}. A semigroupG is calledleft-amenable
(correspondingly,right-amenable) if there exists a finitely additive probability measure on
the power setP(G) satisfyingµ(A) = µ(x−1A) (correspondingly,µ(A) = µ(Ax−1) for
all A ∈ P(G) andx ∈G). We say thatG is amenableif it is both left- and right-amenable.

It is easy to see (cf. [134, p. 147]) that a semigroupG is amenable if and only if there
exists aninvariant meanon the spaceB(G) of real-valued bounded functions onG, that
is, a positive linear functionalL :B(G)→ R satisfying

(i) L(1G)= 1,
(ii) L(fg) = L(gf ) = L(f ) for all f ∈ B(G) andg ∈ G, wherefg(t) := f (tg) and

gf (t) := f (gt).
The existence of an invariant mean is only one item from a long list of equivalent proper-

ties, (see, for example, [134, Theorem 10.11]), some of which, such as the characterization
of amenability given in the next theorem, are far from being obvious and, moreover, are
valid for groups (or special classes of semigroups) only. One of the advantages of dealing
with groups is that for groups, the notions of left and right amenability coincide. (For an
easy proof of this fact see, for example, [81, Theorem 17.11].)

We will find the following characterization of amenability for discrete groups, which
was established by Følner in [54], to be especially useful. (See also [107] for a simplified
proof.)

THEOREM 5.2. A countable groupG is amenable if and only if it has a left Følner se-
quence, namely a sequence of finite setsFn ⊂ G, n ∈ N, with |Fn| → ∞ and such that
|Fn∩gFn|

|Fn| → 1 for all g ∈G.

REMARK 5.3.
(1) A right Følner sequence is defined (in an obvious way) as a sequence of finite sets

Fn ⊂ G, n ∈ N, for which |Fn| → ∞ and |Fn∩Fng
|Fn| → 1 for all g ∈ G. While in

noncommutative groups not every left Følner sequence is necessarily a right Følner
sequence and vice versa, it is not hard to show that the existence of a sequence of
either type in a semigroup implies the corresponding one-sided version of amenabil-
ity. As was mentioned above, ifG is a group, this is actually enough to get two-sided
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amenability. The hard part of Theorem 5.2 is establishing the existence of a Følner
sequence.

(2) Theorem 5.2 is also valid for semigroups possessing the cancellation law. See [107]
for details.

(3) Theorem 5.2 can also be extended to general locally compact groups. See [74] for
details.

It is not known how to construct Følner sequence in a general amenable group de-
fined, say, by a finite set of generators and relations. On the other hand, in many con-
crete, especially Abelian, situations, one has no problem finding a Følner sequence. For
example, it is easy to see that the setsFn which occurred in the proof of Theorem 2.6,
form a Følner sequence inF∞. The reader should also have no problem verifying that
d-dimensional parallelepipedsΠn = [a(1)n , b(1)n ] × [a(2)n , b(2)n ] × · · · × [a(d)n , b(d)n ], where
min1�i�d |ai − bi | →∞ asn→∞, form a Følner sequence inZd . Let us indicate how
one can construct a Følner sequence in the cancellative Abelian semigroup(N, ·).

Let (an)n∈N be an arbitrary sequence inN and let

Fn =
{
anp

i1
1 p

i2
2 · · ·pinn : 0� ij � kj,n, j = 1,2, . . . , n

}
,

wherekj,n is a doubly indexed sequence of positive integers such that, for everyj , kj,n→
∞ asn→∞, and{pn} is the sequence of primes taken in arbitrary order. It is not hard to
check that{Fn}n∈N is a Følner sequence in(N, ·).

The following theorem summarizes some general facts about amenable (semi)groups
which were established already in [132]. (For accessible proofs, see [74, Chapter 1] and
[134, Theorem 10.4].)

THEOREM 5.4.
(i) Any Abelian semigroup is amenable.

(ii) Homomorphic images and subgroups of amenable groups are amenable.
(iii) If N is a normal subgroup of an amenable groupG, thenG/N is amenable.
(iv) If N is a normal subgroup of a groupG, and if bothN andG/N are amenable,

thenG is amenable.
(v) If a groupG is a union of a family of amenable subgroups{Hα}α∈I so that for any

Hα,Hβ there existsHγ withHγ ⊃Hα ∪Hβ , thenG is amenable.

It follows that the class of amenable groups is quite rich. In particular, it contains all
solvable groups, since they can be obtained from Abelian groups by successive extensions
with the help of Abelian groups. It follows also that a group is amenable if and only if
all of its finitely generated subgroups are amenable. This, in turn, implies that all locally
finite groups (i.e. the groups in which every finite subset generates a finite subgroup) are
amenable.

On the other hand, the groupF2 = 〈a, b〉 (the free group on two generators) and hence
any group containing it as a subgroup, is not amenable.

To see thatF2 is not amenable, one can argue as follows. LetF2 = A+ ∪ A− ∪ B+ ∪
B− ∪ {e}, wheree is the unit ofF2 (the “empty” word) and the setsA+, A−, B+, andB−
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consist of the reduced words starting witha, a−1, b, andb−1 respectively. Assume thatµ
is a finitely additive probability measure onP(F2) satisfyingµ(A)= µ(gA) for anyA ∈
P(F2) andg ∈ F2. Clearly,µ({e})= 0. (If µ({e})= c > 0, then, by translation invariance
of µ, for anyn ∈ N, µ({bn})= c and the set{e, b, b2, . . . , bN }, whereN � 1

c
, would have

measure bigger than one.) Assume thatµ(A+)= c > 0. (The same proof will work for any
other set of our partition which has positive measure.) LetAn = bnA, n� 0. Clearly, the
setsAn are disjoint and, by translation invariance, have the same measurec > 0. It follows
that the set

⋃N
n=0An, where, as before,N � 1

c
, has measure bigger than one, which gives

a contradiction. (Note that the simple argument used here is similar to that utilized in the
proof of the abstract version of the Poincaré recurrence theorem, Theorem 1.4.)

It follows now that groups such asSL(n,Z) with n � 2 or SO(3,R) (with the discrete
topology) are not amenable, since one can show that they contain a subgroup isomorphic
to F2. As was observed by von Neumann in [132], it is the latter fact that is behind the
Hausdorff–Banach–Tarski paradox. See [134] for a reader-friendly explanation of this fact.
On the other hand, not every nonamenable group has to contain a subgroup isomorphic
to F2. Moreover, nonamenable groups can even be periodic. (See [109,110] and [112,
p. 182].)

As is well known to aficionados, many classical notions and results pertaining to
1-parameter group actions extend naturally to amenable groups. Here is, for example, a
version of von Neumann’s ergodic theorem for actions of countable amenable groups.

THEOREM 5.5. LetG be a countable amenable group. Assume that(Ug)g∈G is an an-
tirepresentation ofG as a group of unitary operators acting on a Hilbert spaceH (i.e.
Ug1Ug2 = Ug2g1 for all g1, g2 ∈ G). Let P be the orthogonal projection on the space
Hinv = {f ∈ H: Ugf = f ∀g ∈ G}. Then for any left Følner sequence(Fn)n∈N in G,
one has

lim
n→∞

∥∥∥∥ 1

|Fn|
∑
g∈Fn

Ugf − Pf
∥∥∥∥= 0.

SKETCH OF THE PROOF. It is not hard to check that, in complete analogy toZ-actions,
the orthogonal complement ofHinv in H, which we will denote byHerg, coincides with
the spaceSpan{f −Ugf : f ∈H, g ∈G}. So it remains to verify that onHerg, the limit in
question is zero. It is enough to check this for elements of the formf −Ug0f . We have:∥∥∥∥ 1

|Fn|
∑
g∈Fn

Ug(f −Ug0f )

∥∥∥∥
=
∥∥∥∥ 1

|Fn|
∑
g∈Fn

Ugf − 1

|Fn|
∑
g∈Fn

Ug0gf

∥∥∥∥
=
∥∥∥∥ 1

|Fn|
∑
g∈Fn

Ugf − 1

|Fn|
∑
g∈g0Fn

Ugf

∥∥∥∥� |Fn∆g0Fn|
|Fn| ‖f ‖.

Since, by the definition of a left Følner sequence,|Fn∆g0Fn||Fn| −→
n→∞ 0, we are done. �
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Recall that a measure preserving action(Tg)g∈G of a groupG on a probability space
(X,B,µ) is ergodic if any setA ∈ B which satisfiesµ(TgA∆A) = 0 for all g ∈ G has
either measure zero or measure one. The reader should have no problem in verifying the
following corollary of Theorem 5.5.

THEOREM 5.6. Assume that(Tg)g∈G is an ergodic measure preserving action of a count-
able amenable groupG. Then for any(left or right) Følner sequence(Fn)n∈N of G, and
anyA1,A2 ∈ B, one has

1

|Fn|
∑
g∈Fn

µ(A1 ∩ TgA2) −→
n→∞ µ(A1)µ(A2).

Here is another useful result, whose proof can be transferred almost verbatim from the
proof of the classical Bogoliouboff–Kryloff theorem. (See, for example, [135, Theorem 6.9
and Corollary 6.9.1].)

THEOREM 5.7. Let (Tg)g∈G be an action of an amenable groupG by homeomorphisms
of a compact metric spaceX. Then there is a probability measure on the Borelσ -algebra
B(X) such that for anyA ∈ B(X) and anyg ∈G, one hasµ(A)= µ(TgA).

REMARK. Unlike the von Neumann ergodic theorem, the pointwise theorem for actions of
amenable groups is a much harder and more delicate result, which was proved in the right
generality (that is, for any locally compact amenable group and for functions inL1) only
recently, in a remarkable paper of E. Lindenstrauss [103]. For a comprehensive survey of
pointwise ergodic theorems for general group actions see [2].

We are now going to discuss Ramsey-theoretical aspects of amenable groups.
Given a countable amenable groupG and, say, a left Følner sequence{Fn}n∈N inG, one

can define the upper density with respect to{Fn}n∈N by d̄{Fn}(E) = lim supn→∞
|E∩Fn|
|Fn| ,

E ⊂G. Note that it immediately follows from the definition of a left Følner sequence that
for all g ∈ G andE ⊂ G, one hasd̄{Fn}(gE) = d̄{Fn}(E). By analogy with some known
results about sets of positive density in Abelian or nilpotent groups which were discussed
in previous sections, one can expect that large sets inG, i.e. sets having positive upper
density with respect to some Følner sequence, will contain some nontrivial configurations.
The results which we will formulate below support this point of view and lead to a general
conjecture, which will be formulated at the end of this section.

5.2. Correspondence principle for countable amenable groups

We start by formulating and proving a version of Furstenberg’s correspondence principle
for countable amenable groups.
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THEOREM5.8. (See [11, Theorem 6.4.17].)LetG be a countable amenable group and as-
sume that a setE ⊂G has positive upper density with respect to some left Følner sequence
{Fn}n∈N: d̄{Fn}(E)= lim supn→∞

|E∩Fn|
|Fn| > 0. Then there exists a probability measure pre-

serving system(X,B,µ, (Tg)g∈G) and a setA ∈ B withµ(A)= d̄{Fn}(E) such that for any
k ∈ N andg1, . . . , gk ∈G, one has

d̄{Fn}
(
E ∩ g−1

1 E ∩ · · · ∩ g−1
k E
)
� µ
(
A∩ T −1

g1
A∩ · · ·T −1

gk
A
)
.

PROOF. We show first that there exists a left-invariant meanL on the spaceB(G) of
bounded real-valued functions onG such that

(i) L(1E)= d̄{Fn}(E),
(ii) for any k ∈ N and anyg1, . . . , gk ∈G, one has

d̄{Fn}
(
E ∩ g−1

1 E ∩ · · · ∩ g−1
k E
)
� L(1E · 1

g−1
1 E

· · · · · 1
g−1
k E
).

Let S be the (countable) family of subsets ofG of the form
⋂k
j=1g

−1
j E, where

k ∈ N and gj ∈ G, j = 1,2, . . . , k. By using the diagonal procedure, we can pass
to a subsequence{Fni }∞i=1 of our Følner sequence such that for our setE we have

d̄{Fn}(E) = limi→∞
|E∩Fni ||Fni | and for any S ∈ S the limit L(S) = limi→∞

|S∩Fni ||Fni | =
limi→∞ 1

|Fni |
∑
g∈Fni 1S(g) exists. Observe that for a typical setS =⋂kj=1g

−1
j E ∈ S this

will give

d̄{Fn}

(
k⋂
j=1

g−1
j E

)
= lim sup

n→∞

∣∣(⋂k
j=1g

−1
j E
)∩ Fn∣∣

|Fn|

� lim
i→∞

∣∣(⋂k
j=1g

−1
j E
)∩ Fni ∣∣

|Fni |

= L
(
k⋂
j=1

1
g−1
j E

)
.

Extending by linearity, we will get a positive linear functionalL on the subspace
V ⊂ B(G) of finite linear combinations of characteristic functions of sets inS . Note
that it follows from the definition of a left Følner sequence that this functionalL on V
is left-invariant, i.e. for anyf ∈ V andg ∈ G, one hasL(f ) = L(gf ), where as before
gf (t)= f (gt).

To extendL from V to B(G), define the Minkowski functionalP(f ) by P(f ) =
lim supi→∞ 1

|Fni |
∑
g∈Fni f (g). Clearly, for anyf1, f2 ∈ B(G), one hasP(f1 + f2) �

P(f1)+ P(f2), and for any nonnegativet , P(tf )= tP (f ). Note also that, onV , L(f )=
P(f ). By the Hahn–Banach theorem, there is an extension ofL (which we will denote by
L as well) toB(G) satisfyingL(f )� P(f ) for all f ∈ B(G). Clearly,L is a left-invariant
mean satisfying conditions (i) and (ii) above.
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Finally, in preparation for the next stage of the proof, let us note thatL can be naturally
extended to the spaceBC(G) of complex valued bounded functions. We shall continue to
denote this extension byL.

Let nowf (h) = 1E(h) be the characteristic function ofE and letA be the uniformly
closed and closed under conjugation functional algebra generated by the functionf and
all of the functions of the formgf , whereg ∈G. ThenA is a separable (G is countable
and linear combinations with rational coefficients are dense inA) commutative C∗-algebra
with respect to the sup norm. By the Gelfand representation theorem,A is isomorphic to
an algebra of the formC(X), whereX is a compact metric space. The linear functionalL,
which we constructed above, induces a positive linear functionalL̃ onC(X). By the Riesz
representation theorem, there exists a regular measureµ on the Borelσ -algebraB of X
such that for anyϕ ∈A,

L(ϕ)= L̃(ϕ̃)=
∫
X

ϕ̃ dµ,

whereϕ̃ denotes the image ofϕ in C(X). Notice that since the Gelfand transform, estab-
lishing the isomorphism betweenA andC(X), preserves the algebraic operations, and
since the characteristic functions of sets are the only idempotents inC(X), it follows
that the imagef̃ of our f (h) = 1E(h) is the characteristic function of some setA ⊂ X:
f̃ (x)= 1A(x). This gives

d̄{Fn}(E)= L(1E)= L̃(1A)=
∫
X

1A dµ= µ(A).

Notice also that the translation operatorsϕ(h)→ ϕ(gh), ϕ ∈ A, g ∈ G, form an anti-
action ofG onA, which induces an anti-action(Tg)g∈G onC(X) defined for anyϕ ∈A by
(Tg)ϕ̃ = gϕ̃. The transformationsTg , g ∈G are C∗-isomorphisms ofC(X) (since they are
induced by C∗-isomorphismsϕ→g ϕ of A). Now, it is known that algebra isomorphisms
of C(X) are induced by homeomorphisms ofX, which we, by a slight abuse of notation,
will also be denoting byTg , g ∈G. These homeomorphismsTg :X→X form an action of
G onX and preserve the measureµ. To see this, letC ∈ B and letϕ ∈A be the preimage
of 1C (so thatϕ̃ = 1C ). For an arbitraryg ∈G we have:

µ(C) =
∫
X

1C(x)dµ(x)= L̃(ϕ̃)= L(ϕ)= L(gϕ)= L̃(gϕ̃)

= L̃(ϕ̃(Tgx))= ∫
X

1C(Tgx)dµ(x)=
∫

1
T −1
g C
(x) dµ(x)

= µ(T −1
g C
)
.

Notice also that sinceL(1)= 1,µ(X)= L̃(1X)= 1. It follows that(X,B,µ, (Tg)g∈G)
is a probability measure preserving system. (As a bonus, we have that, in this representa-
tion, the measure preserving transformationsTg are homeomorphisms of a compact metric
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space.) We finally have, forf = 1E , g0 = e, and anyg1, . . . , gk ∈G:

d̄{Fn}

(
k⋂
j=0

g−1
j E

)
� L
(
k∏
j=0

gj f

)
= L̃
(
k∏
j=0

gj f̃

)

= L̃
(
k∏
j=0

(
(Tgj )f

))= ∫
X

k∏
j=0

1
T −1
gj

A= µ
(
k⋂
j=0

T −1
gj
A

)
.

We are done. �

REMARK 5.9. It is not hard to modify the proof above to make Theorem 5.8 valid for
any countable amenable semigroup possessing a left Følner sequence. As a matter of fact,
Furstenberg’s correspondence principle can be extended to general countable amenable
semigroups if, instead of using Følner sequences, one defines a setE ⊂G to be large if for
some left-invariant meanL on B(G), one hasL(1E) > 0. (See [31, Theorem 2.1].) The
proof in [31] is different also in that it avoids the usage of the Gelfand transform. See also
Remark 6.4.21 in [11], which describes an approach to the proof of Theorem 5.8 which
does not make use of C∗-algebras.

The following useful lemma will be used repeatedly in the sequel. (Note that while,
in view of the pending applications, it is arranged in the amenable set-up, the lemma is
actually completely general and has, in principle, very little to do with amenability.)

LEMMA 5.10. (Cf. [7, Theorem 1.1].)Let {Fn}n∈N be a(left or right) Følner sequence
in a countable amenable semigroupG, let (X,B,µ) be a probability space, and let, for
everyg ∈ G, there be givenAg ∈ B with µ(Ag) � a > 0. Then there exists a setS ⊂ G
with d{Fn}(S)�A, such that for any finite setF ⊂ S one hasµ(

⋂
g∈F Ag) > 0.

PROOF. For any finite setF ⊂G, letAF =⋂g∈F Ag . Deleting, if needed, a set of measure
zero from

⋃
g∈GAg , we may and will assume that ifAF �= 0 thenµ(AF ) > 0. Let now

fn(x)= 1

|Fn|
∑
g∈Fn

1Ag (x).

Note that 0� fn(x) � 1 for all x and that
∫
fn dµ � a > 0 for all n ∈ N. Let f (x) =

lim supn→∞ fn(x). By Fatou’s lemma, we have∫
X

f dµ=
∫
X

lim sup
n→∞

f dµ� lim sup
n→∞

∫
X

fn dµ� a.

Thus
∫
X
f dµ� a and, sinceµ(X)= 1, there existsx0 ∈X such that

lim sup
n→∞

fn(x0)= f (x0)� a.
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It follows that there is a sequenceni →∞ such that

fni (x0)= 1

|Fni |
∑
g∈Fni

1Ag (x) −→
i→∞ f (x0)� a. (5.1)

Let P = {g ∈G: x0 ∈ Ag}. It follows from (5.1) thatd̄{Fn}(P )� a, and, sincex0 ∈ Ag
for all g ∈ P , we have thatµ(AF ) > 0 for every finite nonemptyF ⊂ P . �

Applying Theorem 5.8 (more precisely, the version of Theorem 5.8 for semigroups pos-
sessing a Følner sequence), we immediately obtain the following result.

COROLLARY 5.11. Let {Fn}n∈N be a left Følner sequence in an amenable semigroupG,
and letE ⊂G satisfyd̄{Fn}(E)= c > 0. Then there exists a setP ⊂G with d̄{Fn}(P )� c
such that for anyg1, . . . , gk ∈ P , d̄{Fn}(

⋂k
i=1g

−1
i E) > 0.

In order to formulate another application of Lemma 5.10, we need to introduce first the
following definition.

DEFINITION 5.12. LetG be a countable semigroup. A setR ⊂ G is called a set of
measurable recurrenceif for any measure preserving action(Tg)g∈G on a probability
space(X,B,µ) and anyA ∈ B with µ(A) > 0, there existsg ∈ R, g �= e, such that
µ(A∩ T −1

g A) > 0.

Different semigroups have all kinds of peculiar sets of recurrence. For example, it fol-
lows from Theorem 1.31 that for any polynomialp(n) ∈ Z[n] with p(0) = 0, the set
{p(n): n ∈ Z} is a set of measurable recurrence forZ-actions. Moreover, Theorem 4.39
tells us that for any IP set(nα)α∈F ⊂ N, the set{p(nα): α ∈ F} is a set of measurable
recurrence. More generally, one can show (see [17]) that, for anyp1(n), . . . , pk(n) ∈ Z[n]
satisfyingpi(0)= 0, i = 1, . . . , k, and any IP sets(n(1)α )α∈F , . . . , (n(k)α )α∈F , the set{

p1
(
n(1)α
)
, . . . , pk

(
n(k)α
)
: α ∈F

}⊂ Zk

is a set of measurable recurrence. Sets of the form{1+ 1
k
: k ∈ N} can be shown to be sets

of measurable recurrence for the multiplicative group of positive rationals. This list can be
continued indefinitely.

The following theorem shows that, for countable amenable semigroups possessing a
Følner sequence, the notion of a set of measurable recurrence coincides with the notion of
“density recurrence”:

THEOREM 5.13. Let S be an amenable semigroup having a left Følner sequence. Then
R ⊂ S is a set of measurable recurrence if and only if for any left Følner sequence{Fn}n∈N

inG and anyE ⊂G with d̄{Fn}(E) > 0 there existsg ∈R, g �= e, such thatE∩g−1E �= ∅.

PROOF. In one direction, the claim of the theorem immediately follows from Fursten-
berg’s correspondence principle. So, it remains to show that if for any left Følner sequence
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{Fn}n∈N andE ⊂G with d̄{Fn}(E) > 0 there existsg ∈R, g �= e, such thatE ∩ g−1E �= ∅,
thenR is a set of measurable recurrence. Let(Tg)g∈G be a measure preserving action on
a probability space(X,B,µ) and letA ∈ B with µ(A) > 0. It follows from (the proof of)
Lemma 5.10 that we may assume that, ifA∩ T −1

g A �= ∅, thenµ(A∩ T −1
g A) > 0, and that

there exist a setP ⊂G with d̄{Fn}(P )� µ(A), and a pointx ∈X such that, for anyg ∈ P ,
one hasTgx ∈A.

By our assumptions, there existsg ∈ R, g �= e, such thatP ∩ g−1P �= ∅. Letting h ∈
P ∩ g−1P , we haveh,gh ∈ P . It follows thatThx ∈ A andTghx = Tg(Thx) ∈ A. This
implies that, simultaneously,Thx ∈ A andThx ∈ T −1

g A, which givesA ∩ T −1
g A �= ∅ and,

hence,µ(A∩ T −1
g A) > 0. We are done. �

The following version of Theorem 5.13 is valid for any amenable semigroup. (See [31,
Theorem 2.2].)

THEOREM 5.14. Suppose thatS is a countable left amenable semigroup. ThenR ⊂ S is a
set of measurable recurrence if and only if for every left-invariant meanL and everyE ⊂ S
withL(1E) > 0, one hasE ∩ g−1E �= ∅ for someg ∈R, g �= e.

REMARK 5.15. One can show that both Furstenberg’s correspondence principle and The-
orem 5.13 fail forR-actions. Indeed, it is proved in [15] that

(i) For anyα > 0, {nα: n ∈ N} is a set of measurable recurrence for (continuous) mea-
sure preservingR-actions.

(ii) For all but countably manyα > 1, one can find a measurable setE ⊂R such that

d(E)= lim
t→∞

m(E ∩ [0, t])
t

= 1

2

andE ∩ (E − nα)= ∅ for all n ∈ N.

5.3. Applications to multiplicatively large sets

DEFINITION 5.16. A setE ⊆ N is called multiplicatively large if for some Følner se-
quence{Fn}n∈N in (N, ·), one hasd̄{Fn}(E) > 0.

We shall use now Lemma 5.10 to obtain some new results about multiplicatively large
sets.

We start by remarking that the notions of largeness for sets inN, which are based on
additive and multiplicative structures, are different. For example, the setO of odd natural
numbers has (additive!) density12 with respect to any Følner sequence in(N,+). On the
other hand, it is not hard to see that the setO will have zero density along any Følner se-
quence in(N, ·). In the other direction, consider, for example, a Følner sequence{anFn}n∈N

in (N, ·), which is defined as follows. Let

Fn =
{
p
i1
1 p

i2
2 · · ·pinn ,0� ij � n,1� j � n

}
,
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wherepi , i = 1,2, . . . , are primes in arbitrary order, and let the integersan satisfyan >
|Fn|, n ∈ N. Let nowS =⋃∞

n=1anFn. It is easy to see thatS has zero additive density with
respect to any Følner sequence in(N,+). At the same time,S has multiplicative density
one with respect to the Følner sequence{anFn}n∈N.

As may be expected by mere analogy with additively large sets, multiplicatively large
sets always contain (many) geometric progressions. (This can be derived, for example,
with the help of the IP Szemerédi theorem, see Section 4.2.) It turns out, however, that
multiplicatively large sets also contain arbitrarily long arithmetic progressions and some
other, somewhat unexpected, configurations.

THEOREM 5.17. (See [13, Theorem 3.2].)Any multiplicatively large setE ⊆ N contains
arbitrarily long arithmetic progressions.

PROOF. Invoking Furstenberg’s correspondence principle, let(X,B,µ, (Tn)n∈N) be the
corresponding measure preserving system (where(Tn)n∈N is a measure preserving ac-
tion of (N, ·)), and letA ∈ B be the set of positive measure corresponding toE. Let
An = T −1

n A. Clearly,µ(A)= µ(An) for all n ∈ N. By Lemma 5.10, there exists an addi-
tively large setS with the property that for any finiteF ⊂ S, one hasµ(

⋂
n∈F T −1

n A) > 0.
Using Szemerédi’s theorem, we get, for arbitraryk ∈ N, an arithmetic progressionPk =
{n+ id: i = 0,1, . . . , k − 1} ⊂ S such that

µ

(⋂
n∈Pk

T −1
n A

)
> 0.

Applying again Furstenberg’s correspondence principle, we see that the set
⋂
n∈Pk E/n

is multiplicatively large and, in particular, nonempty. This implies that, for somen ∈ N,
E ⊃mPk . �

By working a little bit harder, one can show that any multiplicatively large set contains
geoarithmeticprogressions, namely configurations of the form{bqj (a+ id): 0 � i, j � n}.
(See [13, Theorem 3.11].) The following result describes yet another type of geoarithmetic
configurations, which can always be found in multiplicatively large sets. (See [13] for
more results on, and a discussion of, the combinatorial richness of multiplicatively large
sets inN.)

THEOREM 5.18. (See [13, Theorem 3.15].)LetE ⊂ N be a multiplicatively large set. For
anyk ∈ N, there exista, b, d ∈ N such that{

b(a + id)j : 0� i, j � k
}⊂E.

5.4. Multiple recurrence for amenable groups

We shall address now the question about possible amenable extensions of the multiple
recurrence results discussed in Section 4. While it is not clear at all how to even formulate
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an amenable generalization of the one-dimensional Szemerédi theorem (either ergodic or
combinatorial), it is, curiously enough, not too hard to guess what should be an amenable
version of the multidimensional Szemerédi theorem.

CONJECTURE 5.19. Let G be a countable amenable group with a Følner sequence
{Fn}n∈N. Let (T (1)g )g∈G, . . . , (T (k)g )g∈G bek pairwise commuting measure preserving ac-
tions ofG on a probability measure space(X,B,µ). (“Pairwise commuting” means here
that for any1 � i �= j � k and anyg,h ∈G, one hasT (i)g T

(j)
h = T (j)h T

(i)
g .) Then for any

A ∈ B withµ(A) > 0 one has:

lim
n→∞

1

|Fn|
∑
g∈Fn

µ
(
A∩ T (1)g A∩ T (1)g T (2)g A∩ · · · ∩ T (1)g T (2)g · · ·T (k)g A

)
> 0.

REMARK 5.20. The “triangular” expressions

A∩ T (1)g A∩ T (1)g T (2)g A∩ · · · ∩ T (1)g T (2)g · · ·T (k)g A

appearing in the formulation above, seem to be the “right” configurations to consider. See
the discussion and the counterexamples in [20].

The following theorem lists the known instances of the validity of Conjecture 5.19.

THEOREM 5.21. Conjecture5.19holds true in the following situations:
(i) [30] For k = 2.

(ii) [34] For generalk but under the additional assumption that each of the following
actions is ergodic:

(
T
(k)
g

)
g∈G,(

T
(k−1)
g ⊗ T (k−1)

g T
(k)
g

)
g∈G,

...(
T
(2)
g ⊗ T (2)g T

(3)
g ⊗ · · · ⊗ T (2)g T

(3)
g · · ·T (k)g

)
g∈G,(

T
(1)
g ⊗ T (1)g T

(2)
g ⊗ · · · ⊗ T (1)g T

(2)
g · · ·T (k)g

)
g∈G.

(In this case, the limit in question equals(µ(A))k+1.)

While the casek = 2 corresponds to the intersection of three sets only, it allows one to
derive some interesting combinatorial corollaries, some of which are brought together in
the following theorem.
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THEOREM 5.22.
(i) [30, Theorem6.1] SupposeG is a countable amenable group and thatE ⊂G×G

has positive upper density with respect to a left Følner sequence{Fn}n∈N forG×G.
Then the set{
g ∈G: there exists(a, b) ∈G×G such that

{
(a, b), (ga, b), (ga, gb)

}⊂E}
is a synetic set in G.

(ii) [30, Corollary 7.2] Suppose thatG is a countable amenable group, r ∈ N,
G×G×G=⋃ri=1Ci . Then the set{

g ∈G: there existi,1 � i � r, and(a, b, c) ∈G×G×G such that{
(a, b, c), (ga, b, c), (ga, gb, c), (ga, gb,gc)

}⊂ Ci}
is a syndetic set inG.

(iii) [31, Theorem3.4] Suppose thatG is a countable amenable group and thatG =⋃r
i=1Ci is a finite partition. LetA= {g ∈G: [G : C(g)]<∞}, whereC(g) is the

centralizer ofg. If [G :A] = ∞, then there existx, y ∈ G and i, 1 � i � r , with
xy �= yx and such that{x, y, xy, yx} ⊂ Ci .

We conclude this section by fulfilling the promise made in Section 1:

PROOF OFTHEOREM 1.6. LetA= {a1, a2, . . .} ⊂ Γ be an infinite set. Denoting by[A]2
the set of two-element subsets ofA, let us define a finite coloring of[A]2 by assigning
to each{ai, aj } ∈ [A]2, i < j , the coset(ai − aj )Γ . (This coloring is finite sinceΓ is
of finite index inF ∗.) We will apply now the infinite version of Ramsey’s theorem (see
[72, Theorem 5, p. 16]), which says that for any finite coloring of the set of two-element
subsets[P ]2 of an infinite setP there exists an infinite subsetP1 ⊂ P such that the set of
two-element subsets ofP1, [P1]2, is monochromatic. It follows that there isc ∈ F ∗ and an
infinite setB = {an1, an2, . . .} ⊂A such that each member of[B]2 has the same color,cΓ .
This, in turn, says thatani − anj ∈ cΓ for all i < j . Writing bi = c−1ani , we see thatΓ
itself contains an infinite difference set{bi − bj }i<j .

Using now the amenability of the Abelian groupF , let µ be a finitely additive
translation-invariant probability measure onP(F ). Since there are only finitely many
disjoint cosets ofΓ in F ∗ and since, clearly,µ({0}) = 0, one of the cosets, call itcΓ ,
has to satisfyµ(cΓ ) > 0. Let x ∈ F ∗ be an arbitrary element and consider the sets
cΓ + xbi , i ∈ N. Applying the familiar by now reasoning, we see that for somei < j ,
µ((cΓ +xbi)∩ (cΓ +xbj )) > 0. This implies thatcΓ ∩ (cΓ −x(bi −bj )) �= ∅, which, in
turn, gives usx(bi − bj ) ∈ cΓ − cΓ . Sincebi − bj ∈ Γ , we getx ∈ cΓ − cΓ , and, since
x was arbitrary, it gives usF = cΓ − cΓ , and, after the cancellation,F = Γ − Γ . We are
done. �

REMARK 5.23. The methods used in the above proof can be applied to more general
(and not necessarily commutative) rings. Some of the generalizations are given in [35].
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By invoking stronger combinatorial theorems, such as the IP-Szemerédi theorem, one can
actually show that ifF is an infinite field andΓ is a multiplicative subgroup of finite index
in F ∗, then for any finite setS ⊂ F there isγ ∈ Γ such thatγ + S = {γ + x: x ∈ S} ⊂ Γ .
This, in turn, implies that there exists a finitely additive translation-invariant probability
measureµ onF such thatµ(Γ )= 1.

6. Issues of convergence

This relatively short section is devoted to the discussion of ergodic theorems which are
related to combinatorial and number-theoretic applications of ergodic theory.

Various convergence results and conjectures that we have already encountered in the
previous sections typically emerged as a means of establishing various recurrence results.
Yet, from a purely ergodic-theoretical point of view, these results are of significant in-
terest on their own. While, in order to obtain combinatorial corollaries, one is perfectly
satisfied with establishing the positivity of a lim inf of Cesàro averages (see, for example,
Theorem 4.2), the ideology and tradition of ergodic theory immediately leads to questions
whether the limit of a pertinent Cesàro sum exists in norm or almost everywhere.

These questions usually lead to the development of new strong analytic techniques
which, in turn, not only provide deeper knowledge about the structure of dynamical sys-
tems, but also enhance our understanding of the mutually perpetuating connections be-
tween ergodic theory, combinatorics, and number theory.

Consider, for example, Theorem 1.31. As we have seen in Section 1, a convenient way of
showing that, for any measure preserving system(X,B,µ,T ), anyA ∈ B with µ(A) > 0,
and any polynomialp(n) ∈ Z[n] satisfyingp(0) = 0, one hasµ(A ∩ T p(n)A) > 0, is to
consider the averages

1

N

N−1∑
n=0

µ(A∩ T p(n)A)

and to show that the limit of these averages is positive. This implies that the set

{
n ∈ N: µ(A∩ T p(n)A) > 0

}
(6.1)

has positive upper density, which, in turn, implies that the equationx − y = p(n) has
“many” integer solutions(x, y,n) with x, y ∈E, n ∈ N. At this point the interests of com-
binatorial number theory and conventional ergodic theory part. While the Cesàro averages
are of little help if one wants to undertake the more refined study of the set (6.1) (see The-
orem 4.39 and the discussion preceding it), it is the focus of the classical ergodic theory on
the equidistribution of orbits, which makes the following question interesting.
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QUESTION 6.1. Given an invertible probability measure preserving system(X,B,µ,T ),
a polynomialp(n) ∈ Z[n] and a functionf ∈ Lp(X,B,µ), wherep � 1, is it true that

lim
N→∞

1

N

N−1∑
n=0

f (T p(n)x) (6.2)

exists almost everywhere?

Note that while the norm convergence of the averages (6.2) is not hard to establish
(we did it at the end of Section 1 forp = 2, which almost immediately implies the norm
convergence in anyLp space forp � 1), the pointwise convergence is quite a bit harder.
It was J. Bourgain who developed in the late eighties a powerful technique which allowed
him to answer Question 6.1 in the affirmative first forp = 2 [39] and soon after for any
p > 1 [40]. The casep = 1 is still open and is perhaps one of the central open problems in
that branch of ergodic theory which deals with almost everywhere convergence.

For an excellent survey of Bourgain’s methods and a thorough discussion of various
positive and negative results on pointwise ergodic theorems, the reader is referred to [122].
See also Appendix B, where A. Quas and M. Wierdl present a reader-friendly simplified
proof of Bourgain’s theorem on a.e. convergence along the set of squares (i.e. forp(n)=
n2) for functions in theL2 space.

In view of the multiple recurrence results discussed in Section 4, the following question
naturally suggests itself.

QUESTION 6.2. Let T1, T2, . . . , Tk be invertible measure preserving transformations
which act on a probability space(X,B,µ) and generate a nilpotent group. Is it true that for
any polynomialspi(n) ∈ Z[n] andfi ∈ L∞(X,B,µ), i = 1,2, . . . , k,

lim
N→∞

1

N

N−1∑
n=0

f1
(
T
p1(n)

1 x
)
f2
(
T
p2(n)

2 x
) · · ·fk(T pk(n)k x

)
(6.3)

exists in theL2 norm? Almost everywhere?

We are going to describe the status of current knowledge in the following brief com-
ments.

The only known result on almost everywhere convergence fork > 1 is due, again, to
Bourgain, who showed in [41] that fork = 2, p1(n)= an, p2(n)= bn, a, b ∈ Z, the limit
in (6.3) exists a.e. for anyf1, f2 ∈ L∞. (It is not hard to show that this implies also the a.e.
result for anyf1, f2 ∈ L2.)

Assume now thatT1 = T2 = · · · = Tk = T . As was already mentioned in Section 4, the
convergence of the averages

1

N

N−1∑
n=0

f1(T
nx)f2(T

2nx) · · ·fk(T knx) (6.4)
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in L2 norm was only recently established by Host and Kra [88] and, independently, Ziegler
[139]. Appendix A, written by A. Leibman, gives, among other things, a glimpse into the
structure of the proofs contained in the impressive papers [88] and [139]. (While the main
result proved in Appendix A is somewhat special and deals with the so-calledcharacter-
istic factorsfor the averages1

N

∑N−1
n=0 f1(T

a1nx)f2(T
a2nx) · · ·fk(T aknx), the apparatus

and techniques utilized there should provide the reader with a better understanding of the
methods involved in the study of the averages (6.4).)

The following result, obtained very recently by A. Leibman [101], shows that the Host–
Kra and Ziegler theorems can be extended to polynomial expressions.

THEOREM 6.3 [101]. For T1 = T2 = · · · = Tk = T , the averages(6.3)converge inL2.

It was shown in [66] that ifT is totally ergodic (i.e.T n is ergodic for anyn �= 0), then
for anyf,g ∈ L∞(X,B,µ), one has

lim
N→∞

1

N

N−1∑
n=0

f1(T
nx)f2
(
T n

2
x
)= ∫ f1dµ

∫
f2dµ

in theL2 norm.
The following theorem, proved in [55], gives a nice generalization of this fact.

THEOREM6.4 [55]. Assume that(X,B,µ,T ) is an invertible totally ergodic system. Then
for any rationally independent polynomialsp1(n),p2(n), . . . , pk(n) ∈ Z[n] and anyfi ∈
L∞(X,B,µ), i = 1,2, . . . , k, one has

lim
N→∞

1

N

N−1∑
n=0

f1
(
T p1(n)x

)
f2
(
T p2(n)x

) · · ·fk(T pk(n)x)
=
∫
f1dµ

∫
f2dµ · · ·

∫
fk dµ.

TheL2-convergence of the averages1
N

∑N−1
n=0 f1(T

n
1 x)f2(T

n
2 x) for commutingT1, T2

(wheref1, f2 ∈ L∞(X,B,µ)) was established in [46]. The following result, obtained in
[25], provides a nilpotent extension of this fact.

THEOREM 6.5 [25]. Let T1, T2 be measure preserving transformations of a probability
space(X,B,µ) generating a nilpotent group. Then for anyf1, f2 ∈ L∞(X,B,µ),

lim
N→∞

1

N

N−1∑
n=0

f1
(
T n1 x
)
f2
(
T n2 x
)

(6.5)

exists in theL2 norm.
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REMARK 6.6. Similarly to the situation with recurrence (see Theorem 4.52), one can show
that if T1, T2 generate a solvable group of exponential growth, then the averages (6.5) do
not always converge. See Theorem 1.1(B) in [27].

Due to our specific interest in ergodic theorems related to the material surveyed in the
previous sections, we have focused here only on rather special (but important) convergence
issues. For more information on pointwise convergence, the reader is referred to [94] and
[68] as well as to the survey [122] mentioned above and the article of A. Nevo [2], in this
volume.
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Appendix A. Host–Kra and Ziegler factors and convergence of multiple ergodic
averages, by A. Leibman

A.1. Multiple ergodic averages

Thenonconventional, or multipleergodic averages

1

N

N∑
n=1

T nf1 · · · · · T knfk, (A.1)

whereT is a measure preserving transformation of a probability measure spaceX and
f1, . . . , fk are (bounded) measurable functions onX, were introduced by H. Furstenberg
in his ergodic-theoretical proof of Szemerédi’s theorem [57]. In order to prove Szemerédi’s
theorem, it was sufficient to show that, in the casef1 = · · · = fk � 0, �≡ 0, the lim inf of
the averages (A.1) is nonzero, and Furstenberg had confined himself to proving this fact.
The question whether the limit of the multiple ergodic averages exists inL1-sense was an
open problem for more than twenty years, until it was answered positively by Host and Kra
[88] and, independently, by Ziegler [139]. The way of solving this problem was suggested
in [57]: one has to determine a factorZ of X which is characteristicfor the averages
(A.1), which means that the limiting behavior of (A.1) only depends on the conditional
expectation offi with respect toZ:∥∥∥∥∥ 1

N

N∑
n=1

(
T nf1 · · · · · T knfk − T nE(f1|Z) · · · · · T knE(fk|Z)

)∥∥∥∥∥
L1(X)

−→
N→∞ 0
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for anyf1, . . . , fk ∈ L∞(X), or equivalently, that limN→∞ 1
N

∑N
n=1T

nf1 · · · · ·T knfk = 0
whenever one ofE(fi |Z), i = 1, . . . , k, is equal to 0. Once a characteristic factorZ has
been found, the problem is restricted to the system(Z,T ); one therefore succeeds if he/she
manages to show that every system(X,T ) possesses a characteristic factor with a relatively
simple structure, so that the convergence of averages (A.1) can be easily established for it.
For example, under the assumption thatT is ergodic, one can show that the Kronecker
factorK of X is characteristic for the two-term averages1

N

∑N
n=1T

nf1 · T 2nf2 (see [57];
see also Section 4.2 of this survey). SinceK has a structure of a compact Abelian group
on whichT acts as a translation, it is not hard to see that the averages above converge for
f1, f2 ∈ L∞(K).

A k-step nilsystemis a pair(N,T ) whereN is a compact homogeneous space of ak-step
nilpotent groupG andT is a translation ofN defined by an element ofG. WhenG is a
nilpotent Lie group,N is calleda k-step nilmanifold; if G is an inverse limit of nilpotent
Lie groups,N is calleda k-step pro-nilmanifold. After Conze and Lesigne had shown
[46–48] that the characteristic factor for the three-term multiple ergodic averages is a two-
step nilsystem, it was natural to conjecture that the characteristic factor for the averages
(A.1) with arbitraryk is a(k−1)-step nilsystem. Host and Kra, and, independently, Ziegler
have confirmed this conjecture by constructing such factors.

Ziegler’s factorsYk−1(X,T ), k = 2,3, . . . , are characteristic for the averages of the form

lim
N→∞

1

N

N∑
n=1

T a1nf1 · · · · · T aknfk (A.2)

for any a1, . . . , ak ∈ Z. Ziegler’s construction is a (very complicated) extension of that
of Conze and Lesigne: she obtains the factorYk(X,T ) as a product ofYk−1(X,T )

and a compact Abelian groupH so thatT acts as a skew-product transformation on
Yk(X,T ) = Yk−1(X,T )×H , T (y,h)= (T y,h+ ρ(y)), with ρ satisfying certain condi-
tions that allow one to impose onYk(X,T ) the structure of ak-step pro-nilmanifold withT
being a translation on it. She also shows thatYk−1(X,T ) is the minimal factor ofX which
is characteristic for all averages of the form (A.2), and the maximal factor ofX having the
structure of a(k − 1)-step pro-nilmanifold.

Host and Kra used another, very elegant construction. They first describe the character-
istic factor for the (numerical) averages of the form

lim
Nk→∞

1

Nk

Nk∑
nk=1

· · · lim
N1→∞

1

N1

N1∑
n1=1

∫
X

∏
ε1,...,εk∈{0,1}

T ε1n1+···+εknkfε1,...,εk . (A.3)

(These averages are not introduced in [88] explicitly, but can be clearly observed in the
very construction of the Host–Kra factors; see Proposition A.9 below.) While the ex-
pression (A.3) looks forbidding, it is quite natural. (For instance, whenk = 2 it is just
limN2→∞ 1

N2

∑N2
n2=1 limN1→∞ 1

N1

∑N1
n1=1

∫
X
f0,0 ·T n1f1,0 ·T n2f0,1 ·T n1+n2f1,1.) The cor-

responding characteristic factor, which will be denoted byZk−1(X,T ), can be easily
constructed inductively (we will describe this construction below), and Host and Kra



Combinatorial and Diophantine applications of ergodic theory 843

prove that, for eachk, the factorZk−1(X,T ) possesses a structure of a(k − 1)-step pro-
nilmanifold. The averages (A.3) turn out to be “universal”: successive applications of the
van der Corput lemma (see [8]; see also Theorems 1.32 and 4.6 of the main text) allow one
to majorize by the averages (A.3), with suitablek = k(l), all averages of the form

lim
N→∞

1

|ΦN |
∑
u∈ΦN

T ϕ1(u)f1 · · · · · T ϕl(u)fl, (A.4)

where ϕ1, . . . , ϕl are linear functionsZd → Z and {ΦN }∞N=1 is any Følner sequence
in Zd . (The averages (A.3) also majorize the “polynomial” averages of the form
limN→∞ 1

|ΦN |
∑
u∈ΦN T

p1(u)f1 · · · · ·T pl(u)fl , wherep1, . . . , pl are polynomialsZd → Z;

see [89] and [101].) It follows that the factorsZk(X,T ), with k = k(l), are characteristic
for the averages (A.4). In particular, it is shown in [88] thatZk−1(X,T ) is characteristic
for the averages (A.1), and in [89] thatZk(X,T ) is characteristic for the averages of the
form (A.2).

In this note we first describe the Host–Kra construction. We then show that the Host–
Kra factors associated with a nontrivial powerT l of a transformationT are the same as the
factors associated withT itself. (In [89] this was done for the case of a totally ergodicT
only; we give a different proof of this fact.) Next, we prove that, actually, fork � 2 already
Zk−1(X,T ) is characteristic for the averages (A.4) and, in particular, (A.2). (The existence
of the limit (A.4) will now follow from two facts: (i)(Zk−1(X,T ), T ) is isomorphic to a
nil-system on a pro-nilmanifold, and (ii) the averages (A.4) converge for such a nilsystem;
for a (quite nontrivial) proof of the first fact see [88], for a proof of the second fact see
[102] and [100].) As a corollary, we obtain that the Host–Kra factorsZk−1(X,T ) coin-
cide with the corresponding Ziegler factorsYk−1(X,T ). Indeed, being a(k − 1)-step pro-
nilmanifold,Zk−1(X,T ) is a factor ofYk−1(X,T ); on the other hand, sinceYk−1(X,T ) is
the minimal characteristic factor for the averages (A.2), it is a factor ofZk−1(X,T ).

A.2. Construction of Host–Kra factors

We will set up some terminology and notation. We will assume that the measure spaces we
deal with are regular, that is, are metric spaces endowed with a probability Borel measure.
(Any separable measure preserving system has a regular model; see, for example, [58,
Chapter 5].) Letπ :X→ V be a measurable mapping from a measure space(X,B,µ)
to a measure space(V ,D, ν). If π is measure preserving, that is,µ(π−1(A)) = ν(A) for
all A ∈ D, V is calleda factor of X. (Note that hereV is a factor of a space, not of a
dynamical system.) We will denote byXv the fiberπ−1(v), v ∈ V . Let f ∈ L1(X); then
µf (D)=

∫
π−1(D)

f dµ is a (signed) measure onV absolutely continuous with respect to
ν. By the Radon–Nikodym theoremdµf /dν is an integrable function onV ; it is denoted
byE(f |V ) and is called theconditional expectationof f with respect toV . The fibersXv ,
v ∈ V , may be given a structure of measure spaces with probability measuresµv , v ∈ V ,
such that

∫
Xv
f dµv =E(f |V )(v) for all f ∈ L1(X). (See [58, Chapter 5].) We will refer

to the partitionX =⋃v∈V Xv as tothe decomposition ofX with respect toV .
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If (V ,D, ν) is a factor of(X,B,µ), with π :X→ V being the factorization mapping,
thenπ−1(D) is a sub-σ -algebra ofB, which we will identify withD. Conversely, with any
sub-σ -algebraD of B a factorV of X is associated; roughly speaking,V is the partition of
X induced byD. (One can constructV in the following way. Choose a countable system
{Dn}n∈N generatingD. (Such a system may not, actually, exist; we then take a countable
system that generates the subsets fromD up to measure zero.) For eachn, let D0

n = Dn
andD1

n =X \Dn. PutV = {0,1}N, and for eachv = (e1, e2, . . .) ∈ V putXv =⋂∞
n=1D

en
n .

This defines a mappingX→ V , Xv  → {v}; a measure onV is inherited fromX.)
Let (V ,D, ν) be a factor of(X,B,µ) andπ :X→ V be the factorization mapping.The

relative squareX ×V X is the subspace{(x1, x2): π(x1) = π(x2)} =⋃v∈V Xv × Xv of
X × X, with the measureµ ×V µ = ∫

V
µv × µv dν thereon. A mappingX ×V X→ V

is naturally defined by(x1, x2)  → π(x1)(= π(x2)), and turnsV into a factor ofX ×V X
with fibers(X×V X)v =Xv ×Xv , v ∈ V , so that

⋃
v∈V Xv ×Xv is the decomposition of

X ×V X with respect toV . (Note that, if we start with aσ -subalgebraD of B, the space
representing the corresponding factorV is not defined canonically, andX ×V X is only
defined up to measure zero. Usually, no new underlying space is introduced forV , andV
is simply taken to be the nonregular measure space(X,D,µ). The relative squareX×V X
is then defined asX2 with the measure given by(µ×V µ)(A×B)= ∫

V
µv(A)µv(B)dν,

A,B ∈ B. We use the “set-theoretical” approach to make the geometric picture more trans-
parent. This however leads to some delicate problems related to the fact that our construc-
tions are only defined up to measure zero. The reader is referred to [58, Chapter 5] for a
detailed treatment of measure-theoretical issues.) To simplify notation, starting from this
moment we will not designate measures; for each space appearing below it will be clear
from the context what measure is assumed thereon.

Now letT be a measure preserving transformation ofX. We will denote byI(X,T ) the
σ -algebra ofT -invariant measurable subsets ofX and byI (X,T ) the factor ofX associ-
ated withI(X,T ). The decompositionX =⋃v∈I (X,T ) Xv of X with respect toI (X,T )
is then the ergodic decomposition ofX. To simplify notation, we will writeX ×T X for
X×I (X,T ) X.

The Host–Kra factors ofX with respect toT are constructed in the following way. One
putsX[0]

T = X, T [0] = T , and whenX[k]
T and T [k] have been defined for certaink, let

X
[k+1]
T = X[k]

T ×T [k] X[k]
T and letT [k+1] be the restriction ofT [k] × T [k] on X[k+1]

T . For

anyk = 0,1, . . . , X[k]
T is a measurable subspace ofX2k ; let Zk(X,T ) be the minimalσ -

algebra onX such thatI(X[k]
T , T

[k]) ⊆ Zk(X,T )⊗2k . Thekth Host–Kra factorZk(X,T )
of X with respect toT is the factor ofX associated withZk(X,T ).

Assume that(V ,D) is a factor ofX such that the fibersXv , v ∈ V , areT -invariant,
T (Xv)=Xv . Since “life is independent” in distinct fibersXv , we have:

LEMMA A.1. For anyk, the spacesX[k]
T and I (X[k]

T , T
[k]) decompose with respect toV

to, respectively,
⋃
v∈V (Xv)

[k]
T and

⋃
v∈V I ((Xv)

[k]
T , T

[k]).

PROOF. LetX =⋃α∈I (X,T ) Xα be the decomposition ofX with respect toI (X,T ), that
is, the ergodic decomposition ofX. Elements of theσ -algebraD ⊆ B are preserved
by T , thusD ⊆ I(X,T ), andV is a factor ofI (X,T ). Let I (X,T ) =⋃v∈V Iv be the
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decomposition ofI (X,T ) with respect toV . For (almost) everyv ∈ V the decomposi-
tionXv =⋃α∈Iv Xα is the ergodic decomposition ofXv , and thusI (Xv,T )= Iv . Hence,⋃
v∈V I (Xv,T ) is the decomposition ofI (X,T ) with respect toV . Now,

X
[1]
T =

⋃
α∈I (X,T )

Xα ×Xα =
⋃
v∈V

⋃
α∈IXv,T

Xα ×Xα =
⋃
v∈V

(Xv)
[1]
T .

(To be accurate, we also have to check that the measure onX
[1]
T agrees with this decompo-

sition. It does:

µ×I (X,T ) µ=
∫
I (X,T )

µα ×µα dα =
∫
V

∫
Iv

µα ×µα dα dv =
∫
V

µv dv.)

We then proceed by induction onk. �

Let
⋃
i∈V Xi be a finite measurable partition ofX. The finite setV can then be con-

sidered as a factor ofX (with measure defined byν({i}) = µ(Xi), and the fibersXi
having measuresµi = µ/µ(Xi), i ∈ V ). For this case, Lemma A.1 says thatX[k]

T and

I (X
[k]
T , T

[k]) partition to, respectively,
⋃
i∈V (Xi)

[k]
T and

⋃
i∈V I ((Xi)

[k]
T , T

[k]). It follows

that I(X[k]
T , T

[k]) = ∏i∈V I((Xi)[k]T , T [k]), and thatZk(X,T ) = ∏i∈V Zk(Xi, T ) and
Zk(X,T )=⋃i∈V Zk(Xi, T ).
A.3. Host–Kra factors forT l

Our first goal is to investigate the Host–Kra factors associated withT l , l �= 0.

THEOREM A.2. For any l �= 0 and k � 1 the kth Host–Kra factorZk(X,T l) of X with
respect toT l coincides with thekth Host–Kra factorZk(X,T ) of X with respect toT .

PROOF. We fix a nonzero integerl. It follows from Lemma A.1 that it suffices to prove
Theorem A.2 for an ergodicT only. We first assume thatT l is also ergodic. Given a
measure preserving transformationS of a measure spaceY , let us denote byEλ(Y,S) the
eigenspace ofS inL1(Y ) corresponding to the eigenvalueλ, Eλ(Y,S)= {f ∈ L1(Y ): Sf =
λf }. In particular,E1(Y,S) is the space ofS-invariant integrable functions onY , which we
will denote byL(Y,S). �

LEMMA A.3. (Cf. [89].) Let S be a measure preserving transformation of a measure
spaceY . If Sl is ergodic, thenI (Y × Y,Sl × Sl)= I (Y × Y,S × S).

PROOF. Sl is ergodic means thatEλ(Y,S) = {0} for all λ �= 1 with λl = 1. We have
L(Y × Y, (S × S)l)⊆ span{Eλ(Y × Y,S × S): λl = 1}. For anyλ ∈ C, |λ| = 1, the space
Eλ(Y × Y,S × S) is spanned by the functions of the formf ⊗ g wheref ∈ Eλ1(Y,S)

and g ∈ Eλ2(Y,S) with λ1λ2 = λ. For such a function,fg ∈ Eλ(Y,S). If λ �= 1 and
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λl = 1, we havefg = 0; sinceS is ergodic, |f | = const and|g| = const, so either
f = 0 or g = 0. Thus, for anyλ �= 1 with λl = 1 we haveEλ(Y × Y,S × S) = {0}.
Hence,L(Y × Y,Sl × Sl) ⊆ E1(Y × Y,S × S) = L(Y × Y,S × S). With the evident op-
posite inclusionL(Y × Y,S × S) ⊆ L(Y × Y,Sl × Sl) this impliesI(Y × Y,Sl × Sl) =
I(Y × Y,S × S). �

LEMMA A.4. (Cf. [89].) Let T be a measure preserving transformation of a measure
spaceX. If T l is ergodic thenX[k]

T l
= X[k]

T and I (X[k]
T l
, (T l)[k]) = I (X[k]

T , T
[k]) for all

k � 0.

PROOF. For k = 0 the statement is trivial. Assume by induction that, for somek � 0,
Y = X[k]

T l
= X[k]

T and I = I (Y, (T l)[k]) = I (Y,T [k]). ThenX[k+1]
T l

= X[k+1]
T = Y ×I Y .

Let Y =⋃α∈I Yα be the decomposition ofY with respect toI and for eachα ∈ I let
Sα = T [k]|Yα . By the induction assumptionSlα is ergodic onYα for everyα ∈ I , thus by
Lemma A.1 and Lemma A.3 applied to the systems(Yα,Sα),

I
(
Y ×I Y, (T l)[k] × (T l)[k]

)
=
⋃
α∈I
I
(
Yα × Yα,Slα × Slα

)
=
⋃
α∈I
I (Yα × Yα,Sα × Sα)= I

(
Y ×I Y, T [k] × T [k]). �

It follows thatZk(X,T l) = Zk(X,T ) for all k � 0, which proves Theorem A.2 in the
caseT l is ergodic.

Now assume thatT is ergodic whereasT l is not. We may assume thatl is a prime
integer. In this caseX is partitioned, up to a subset of measure 0, to measurable subsets
X0, . . . ,Xl−1 such thatT (Xi)=Xi+1 for all i ∈ Zl . (We identify{0, . . . , l− 1} with Zl =
Z/(lZ) in order to have(l − 1)+ 1= 0.)

LEMMA A.5. LetX be a disjoint union of measure spacesX0, . . . ,Xl−1 and letT be an
invertible measure preserving transformation ofX such thatT (Xi)=Xi+1, i ∈ Zl . Then
X0, . . . ,Xl−1 ∈Z1(X,T ).

PROOF. We may assume thatT is ergodic; otherwise we pass to the ergodic components
of X with respect toT . ThenX[1]

T = X2 andT [1] = T × T . The “diagonal”W = X2
0 ∪

· · · ∪X2
l−1 ⊆X[1]

T is T [1]-invariant and thereforeW is Z1(X,T )⊗Z1(X,T )-measurable.
By Fubini’s theorem the “fibers”X0, . . . ,Xl−1 of W areZ1(X,T )-measurable. �

LEMMA A.6. Let Y be a disjoint union of measure spacesY0, . . . , Yl−1 and letS be an
invertible measure preserving transformation ofY such thatS(Yi) = Yi+1, i ∈ Zl . Then
Y ×S Y is partitioned to

⋃
i,j∈Zl

Yi,j whereYi,i = Yi ×Sl Yi for all i ∈ Zl , and for all
i, j, s, t ∈ Zl , (Ss × St )|Yj,j is an isomorphism betweenYi,j and Yi+s,j+t . In particular,
(S×S)(Yi,j )= Yi+1,j+1 for all i, j , thus the subsetsVi =⋃j∈Zl

Yj,j+i , i ∈ Zl , areS×S-

invariant and partitionY ×S Y , and IdY0 × Si is an isomorphism betweenV0 andVi .
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PROOF. We first determineI (Y,S). Let A be a measurableS-invariant subset ofY . Let
Ai = A ∩ Yi , i ∈ Zl . ThenA0 is Sl-invariant, andAi = Si(A0) for i ∈ Zl . So, the map-
ping A  → A ∩ Y0 is an isomorphism betweenI(Y,S) andI(Y0, S

l), which induces an
isomorphism betweenI (Y,S) andI (Y0, S

l).
Let Y0 =⋃α∈I Y0,α be the decomposition ofY0 with respect toI = I (Y0, S

l). For every
α ∈ I andi ∈ Zl \ {0} defineYi,α = Si(Y0,α) andYα =⋃i∈Zl

Yi,α . ThenY =⋃α∈I Yα is
the decomposition ofY with respect toI . We have

Y
[1]
S =
⋃
α∈I
Yα ×S Yα =

⋃
α∈I

⋃
i,j∈Zl

Yi,α × Yj,α =
⋃
i,j∈Zl

⋃
α∈I
Yi,α × Yj,α =

⋃
i,j∈Zl

Yi,j ,

whereYi,j =⋃α∈I Yi,α × Yj,α . In particular,Yi,i =⋃α∈I Yi,α × Yi,α = Yi ×Sl Yi for all
i ∈ Zl . �

LEMMA A.7. Let X be a disjoint union of measure spacesX0, . . . ,Xl−1 and letT be
an invertible measure preserving transformation ofX such thatT (Xi) = Xi+1, i ∈ Zl .
Then for anyk � 0, X[k]

T can be partitioned, X[k]
T =⋃lkj=1Wj , into T [k]-invariant mea-

surable subsetsW1, . . . ,Wlk , such thatW1 =⋃i∈Zl
(Xi)

[k]
T l

with T [k]((Xi)[k]T l )= (Xi+1)
[k]
T l

for eachi, and for eachj = 2, . . . , lk there exists an isomorphismτj :W1 →Wj , which in
each coordinate is given by a power ofT (that is, if πn :X[k] →X, n= 1, . . . ,2k , are the
projection mappings, for eachn there existsm ∈ Z such thatπn ◦ τj = T m ◦ πn|W1).

PROOF. We use induction onk; for k = 0 the statement is trivial. Assume that it holds
for somek � 0. Then by Lemma A.1,X[k+1]

T =⋃lkj=1Wj ×T [k] Wj . The isomorphisms

τj betweenW1 andWj , commuting withT [k], induce isomorphismsτj × τj between
W1×T [k] W1 andWj ×T [k] Wj , j = 1, . . . , lk , andτj × τj acts on coordinates as powers of
T if τj does. Thus, we may focus onW1 ×T [k] W1 only.

By Lemma A.6 applied toW1 =⋃i∈Zl
(Xi)

[k]
T l

andT [k]|W1, W1 ×T [k] W1 is partitioned

into T [k] × T [k] = T [k+1]-invariant subsetsV0, . . . , Vl−1 such that

V0 =
⋃
i∈Zl

(Xi)
[k]
T l

×(T [k])l (Xi)
[k]
T l

=
⋃
i∈Zl

(Xi)
[k+1]
T l

andV1, . . . , Vl−1 are isomorphic toV0 by isomorphisms whose projections on the factors
(Xi)

[k]
T l

coincide with some powers ofT [k]. �

END OF THE PROOF OFTHEOREM A.2. Assume thatT is ergodic onX, l is a prime inte-
ger andT l is not ergodic onX. Let k � 1. Ignoring a subset of measure 0 inX, partitionX
to measurable subsetsX0, . . . ,Xl−1 such that, for eachi, T (Xi)=Xi+1. Let k � 1 and let
W1, . . . ,Wlk be as in Lemma A.7. SinceX0, . . . ,Xl−1 areT l-invariant, by Lemma A.1 we
haveI(X[k], (T l)[k]) = ∏i∈Zl

I(X[k]
i , (T

l)[k]) andZk(X,T l) = ∏i∈Zl
Zk(Xi, T l). Any

T [k]-invariant measurable subsetA of W1 =⋃i∈Zl
(Xi)

[k]
T l

has formA=⋃i∈Zl
Ai where

Ai ∈ I(Xi, (T l)[k]) andT [k](Ai)= Ai+1, i ∈ Zl . Thus,I(W1, T
[k])⊆ I(X[k], (T l)[k])⊆
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Zk(X,T l)⊗2k . SinceZk(X,T l) is T -invariant andWn = τn(W1) whereτn is an isomor-
phism acting on each coordinate as a power ofT , I(Wn,T [k])⊆Zk(X,T l)⊗2k for anyn.
Hence,Zk(X,T )⊆Zk(X,T l).

We will now show that for anyi ∈ Zl and anyB ∈ I(X[k]
i , (T

l)[k]) one hasB ∈
Zk(X,T )⊗2k ; this will imply that Zk(X,T l) ⊆ Zk(X,T ). PutAj = (T [k])j−i (B), j ∈
Zl , andA = ⋃j∈Zl

Aj . ThenA ∈ I(W1, T
[k]) ⊆ Zk(X,T )⊗2k . By Lemma A.5,Xi ∈

Z1(X,T )⊆Zk(X,T ), thus(Xi)
[k]
T l

∈Zk(X,T )⊗2k , and thereforeB =Ai =A∩ (Xi)[k]T l ∈
Zk(X,T )⊗2k . �

A.4. Characteristic factors for multiple averages

We now pass to our second result:

THEOREM A.8. For anyk � 2, anyd ∈ N, any linear functionsϕ1, . . . , ϕk :Zd → Z and
any Følner sequence{ΦN }∞N=1 in Zd , Zk−1(X,T ) is a characteristic factor for the aver-
ages 1

|ΦN |
∑
u∈ΦN T

ϕ1(u)f1 · · · · · T ϕk(u)fk in L1(X), that is,

lim
N→∞

∥∥∥∥ 1

|ΦN |
∑
u∈ΦN

(
T ϕ1(u)f1 · · · · · T ϕk(u)fk

− T ϕ1(u)E
(
f1|Zk−1(X,T )

) · · · · · T ϕk(u)E(fk|Zk−1(X,T )
))∥∥∥∥

L1(X)

= 0

(A.5)

for anyf1, . . . , fk ∈ L∞(X).

In order to prove Theorem A.8 we will first show thatZk−1(X,T ) is a characteristic
factor for averages of a very special form. Let us bring more facts from [88]. Starting
from this moment, we will only be considering real-valued functions onX. Givenf0, f1 ∈
L∞(X), by the ergodic theorem we have

lim
N→∞

1

N

N∑
n=1

∫
X

f0 · T nf1 =
∫
I (X,T )

E
(
f0|I (X,T )

) ·E(f1|I (X,T )
)

=
∫
X

[1]
T

f0 ⊗ f1.

Applying this twice we get, forf0,0, f0,1, f1,0, f1,1 ∈ L∞(X),

lim
N2→∞

1

N2

N2∑
n2=1

lim
N1→∞

1

N1

N2∑
n1=1

∫
X

f0,0 · T n1f1,0 · T n2f0,1 · T n1+n2f1,1
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= lim
N2→∞

1

N2

N2∑
n2=1

lim
N1→∞

1

N1

N2∑
n1=1

∫
X

(
f0,0 · T n2f0,1

) · T n1
(
f1,0 · T n2f1,1

)

= lim
N2→∞

1

N2

N2∑
n2=1

∫
X[1]
(f0,0 ⊗ f1,0) · T n2(f0,1 ⊗ f1,1)

=
∫
X[2]
(f0,0 ⊗ f1,0)⊗ (f0,1 ⊗ f1,1).

By induction, for anyk and any collectionfε1,...,εk ∈ L∞(X), ε1, . . . , εk ∈ {0,1},

lim
Nk→∞

1

Nk

Nk∑
nk=1

· · · lim
N1→∞

1

N1

N1∑
n1=1

∫
X

∏
ε1,...,εk∈{0,1}

T ε1n1+···+εknkfε1,...,εk

=
∫
X[k]

⊗
ε1,...,εk∈{0,1}

fε1,...,εk

(where the tensor product is taken in a certain order, which we do not specify here).
For k ∈ N and f ∈ L∞(X) the seminorm‖|f ‖|T ,k associated withT is defined by

‖|f ‖|T ,k = (
∫
X

[k]
T

f⊗2k )1/2
k
. Equivalently,

‖|f ‖|2kT ,k = lim
Nk→∞

1

Nk

Nk∑
nk=1

· · · lim
N1→∞

1

N1

N1∑
n1=1

∫
X

∏
ε1,...,εk∈{0,1}

T ε1n1+···+εknkf.

It is proved in [88] that for anyf1, . . . , f2k ∈ L∞(X) one has∣∣∣∣∣
∫
X

[k]
T

2k⊗
j=1

fj

∣∣∣∣∣�
2k∏
j=1

‖|fj‖|T ,k.

For anyk ∈ N andf ∈ L∞(X) we have

‖|f ‖|2kT ,k =
∫
X

[k]
T

f⊗2k =
∫
I (X

[k−1]
T ,T [k−1])

E
(
f⊗2k−1|I(X[k−1]

T , T [k−1]))2.
Since I(X[k−1]

T , T [k−1]) ⊆ Zk−1(X,T )
⊗2k−1

, one has ‖|f ‖|T ,k = 0 whenever
E(f |Zk−1(X,T ))= 0.

PROPOSITIONA.9. For anyk � 2, nonzero integersl1, . . . , lk and a collectionfε1,...,εk ∈
L∞(X), ε1, . . . , εk ∈ {0,1}, if E(fε1,...,εk |Zk−1(X,T ))= 0 for someε1, . . . , εk then

lim
Nk→∞

1

Nk

Nk∑
nk=1

· · · lim
N1→∞

1

N1

N1∑
n1=1

∫
X

∏
ε1,...,εk∈{0,1}

T ε1l1n1+···+εklknkfε1,...,εk = 0.
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PROOF. Let l be a common multiple ofl1, . . . , lk . Since, by Theorem A.2,Zk−1(X,T
l)=

Zk−1(X,T ), E(fε1,...,εk |Zk−1(X,T ))= 0 implies‖|fε1,...,εk‖|T l,k = 0.
Let ri = l/ li , i = 1, . . . , k. We have

lim
Nk→∞

1

Nk

Nk∑
nk=1

· · · lim
N1→∞

1

N1

N1∑
n1=1

∫
X

∏
ε1,...,εk∈{0,1}

T ε1l1n1+···+εklknkfε1,...,εk

= 1

r1 · · · rk
rk−1∑
mk=0

· · ·
r1−1∑
m1=0

lim
Nk→∞

1

Nk

Nk∑
nk=1

· · · lim
N1→∞

1

N1

N1∑
n1=1∫

X

∏
ε1,...,εk∈{0,1}

T ε1ln1+···+εklnk (T ε1l1m1+···+εklkmkfε1,...,εk
)

= 1

r1 · · · rk
rk−1∑
mk=0

· · ·
r1−1∑
m1=0

∫
X

[k]
T l

⊗
ε1,...,εk∈{0,1}

T ε1l1m1+···+εklkmkfε1,...,εk .

And for anymε1,...,εk ∈ Z, ε1, . . . , εk ∈ {0,1},∣∣∣∣∫
X

[k]
T l

⊗
ε1,...,εk∈{0,1}

T mε1,...,εk fε1,...,εk

∣∣∣∣
�

∏
ε1,...,εk∈{0,1}

∣∣∣∣∣∣T mε1,...,εk fε1,...,εk ∣∣∣∣∣∣T l,k
=

∏
ε1,...,εk∈{0,1}

∣∣∣∣∣∣fε1,...,εk ∣∣∣∣∣∣T l,k = 0. �

Letϕ :Zd → Z be a nonzero linear function, that is, a function of the formϕ(n1, . . . , nd)=
a1n1 + · · · + adnd with a1, . . . , ad ∈ Z not all zero. Then for any measure preserv-
ing system (Y,S), any f ∈ L1(Y ) and any Følner sequence{ΦN }∞N=1 in Zd one

has limN→∞ 1
|ΦN |
∑
u∈ΦN S

ϕ(u)f = E(f |I (Y,Sl)) = limN→∞ 1
N

∑N
n=1S

lnf , wherel =
gcd(a1, . . . , ad). Applying this factk times, we come to the following generalization of
Proposition A.9:

PROPOSITION A.10. For any k � 2, positive integersdi ∈ N, nonzero linear functions
ϕi :Zdi → Z, Følner sequences{Φi,N }∞N=1 in Zdi , i = 1, . . . , k, and a collection of
functionsfε1,...,εk ∈ L∞(X), ε1, . . . , εk ∈ {0,1}, if E(fε1,...,εk |Zk−1(X,T )) = 0 for some
ε1, . . . , εk then

lim
Nk→∞

1

|Φk,Nk |
∑

uk∈Φk,Nk
· · · lim

N1→∞
1

|Φ1,N1|
∑

u1∈Φ1,N1∫
X

∏
ε1,...,εk∈{0,1}

T ε1ϕ1(u1)+···+εkϕk(uk)fε1,...,εk = 0.

The proof of Theorem A.8 will be based on the following lemma:
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LEMMA A.11. For any linear functionsϕ1, . . . , ϕk :Zd → Z and any f1, . . . , fk ∈
L∞(X),

lim sup
N→∞

∥∥∥∥ 1

|ΦN |
∑
u∈ΦN

T ϕ1(u)f1 · · · · · T ϕk(u)fk
∥∥∥∥
L2(X)

�
(

lim
N1→∞

1

|ΦN1|2
∑

(v1,w1)∈Φ2
N1

lim
Nk→∞

1

|ΦNk |2

∑
(vk,wk)∈Φ2

Nk

· · · lim
N2→∞

1

|ΦN2|2
∑

(v2,w2)∈Φ2
N2

∫
X

∏
ε1,ε2,...,εk∈{0,1}

T ε1ϕ1(v1−w1)+ε2(ϕ1−ϕ2)(v2−w2)+···+εk(ϕ1−ϕk)(vk−wk)f1

)1/2k

·
k∏
i=2

‖fi‖L∞(X).

PROOF. Let {ΦN }∞N=1 be a Følner sequence inZd . We will use the van der Corput lemma
in the following form: if {fu}u∈Zd is a bounded family of elements of a Hilbert space, then

lim sup
N→∞

∥∥∥∥ 1

|ΦN |
∑
u∈ΦN

fu

∥∥∥∥2

� lim sup
N1→∞

1

|ΦN1|2
∑

v,w∈ΦN1

lim sup
N→∞

1

|ΦN |
∑
u∈ΦN

〈fu,fu+v−w〉.

We may assume that|f2|, . . . , |fk| � 1. By the van der Corput lemma we have:

lim sup
N→∞

∥∥∥∥ 1

|ΦN |
∑
u∈ΦN

T ϕ1(u)f1 · · · · · T ϕk(u)fk
∥∥∥∥2
L2(X)

� lim sup
N1→∞

1

|ΦN1|2
∑

v,w∈ΦN1

lim sup
N→∞

1

|ΦN |
∑
u∈ΦN

∫
X

T ϕ1(u)f1 · · · · · T ϕk(u)fk

· T ϕ1(u+v−w)f1 · · · · · T ϕk(u+v−w)fk
= lim sup
N1→∞

1

|ΦN1|2
∑

v,w∈ΦN1

lim sup
N→∞

1

|ΦN |
∑
u∈ΦN

∫
X

T ϕ1(u)
(
f1 · T ϕ1(v−w)f1

) · · · ·
· T ϕk(u)(fk · T ϕk(v−w)fk)
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= lim sup
N1→∞

1

|ΦN1|2
∑

v,w∈ΦN1

lim sup
N→∞

1

|ΦN |∑
u∈ΦN

∫
X

T ϕ1(u)−ϕk(u)(f1 · T ϕ1(v−w)f1) · · · ·

· T ϕk−1(u)−ϕk(u)(fk−1 · T ϕk−1(v−w)fk−1
) · (fk · T ϕk(v−w)fk)

= lim sup
N1→∞

1

|ΦN1|2∑
v,w∈ΦN1

lim sup
N→∞

∫
X

(
1

|ΦN |
∑
u∈ΦN

T (ϕ1−ϕk)(u)(f1 · T ϕ1(v−w)f1
) · · · ·

· T (ϕk−1−ϕk)(u)(fk−1 · T ϕk−1(v−w)fk−1
)) · (fk · T ϕk(v−w)fk)

� lim sup
N1→∞

1

|ΦN1|2∑
(v,w)∈Φ2

N1

lim sup
N→∞

∥∥∥∥ 1

|ΦN |
∑
u∈ΦN

T (ϕ1−ϕk)(u)(f1 · T ϕ1(v−w)f1
) · · · ·

· T (ϕk−1−ϕk)(u)(fk−1 · T ϕk−1(v−w)fk−1
)∥∥∥∥
L2(X)

.

By the induction hypothesis, applied to the linear functionsϕi − ϕk :Zd → Z and to the
functionsfi · T ϕi(v−w)fi ∈ L∞(X), i = 1, . . . , k− 1, for any(v,w) ∈ Z2d we have

lim sup
N→∞

∥∥∥∥ 1

|ΦN |
∑
u∈ΦN

T (ϕ1−ϕk)(u)(f1 · T ϕ1(v−w)f1
) · · · ·

· T (ϕk−1−ϕk)(u)(fk−1 · T ϕk−1(v−w)fk−1
)∥∥∥∥
L2(X)

�
(

lim
Nk→∞

1

|ΦNk |2
∑

(vk,wk)∈Φ2
Nk

· · · lim
N2→∞

1

|ΦN2|2
∑

(v2,w2)∈Φ2
N2

∫
X

∏
ε2,...,εk∈{0,1}

T ε2(ϕ1−ϕ2)(v2−w2)+···+εk(ϕ1−ϕk)(vk−wk)(f1 · T ϕ1(v−w)f1
)) 1

2k−1

=
(

lim
Nk→∞

1

|ΦNk |2
∑

(vk,wk)∈Φ2
Nk

· · · lim
N2→∞

1

|ΦN2|2
∑

(v2,w2)∈Φ2
N2

∫
X

∏
ε1,ε2,...,εk∈{0,1}

T ε1ϕ1(v−w)+ε2(ϕ1−ϕ2)(v2−w2)+···+εk(ϕ1−ϕk)(vk−wk)f1

) 1
2k−1

.
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Thus,

lim sup
N→∞

∥∥∥∥ 1

|ΦN |
∑
u∈ΦN

T ϕ1(u)f1 · · · · · T ϕk(u)fk
∥∥∥∥
L2(X)

�
(

lim sup
N1→∞

1

|ΦN1|2
∑

(v,w)∈Φ2
N1

(
lim
Nk→∞

1

|ΦNk |2
∑

(vk,wk)∈Φ2
Nk

· · ·

lim
N2→∞

1

|ΦN2|2
∑

(v2,w2)∈Φ2
N2

∫
X

∏
ε1,ε2,...,εk∈{0,1}

T ε1ϕ1(v−w)+ε2(ϕ1−ϕ2)(v2−w2)+···+εk(ϕ1−ϕk)(vk−wk)f1

) 1
2k−1
)1

2

�
(

lim
N1→∞

1

|ΦN1|2
∑

(v,w)∈Φ2
N1

lim
Nk→∞

1

|ΦNk |2
∑

(vk,wk)∈Φ2
Nk

· · ·

lim
N2→∞

1

|ΦN2|2
∑

(v2,w2)∈Φ2
N2

∫
X

∏
ε1,ε2,...,εk∈{0,1}

T ε1ϕ1(v−w)+ε2(ϕ1−ϕ2)(v2−w2)+···+εk(ϕ1−ϕk)(vk−wk)f1

) 1
2k

. �

PROOF OFTHEOREM A.8. Because of the multilinearity of (A.5), it suffices to show that
limN→∞ 1

|ΦN |
∑
u∈ΦN T

ϕ1(u)f1 · · · · · T ϕk(u)fk = 0 inL1(X) wheneverE(f1|Zk−1(X,T ))

= 0. We may assume that the functionsϕ1, . . . , ϕk are all nonzero and distinct. Then,
combining Lemma A.11 and Proposition A.10, applied to the nonzero linear functions
ϕ1(v − w), (ϕ1 − ϕ2)(v − w), . . . , (ϕ1 − ϕk)(v − w) on Z2d and the Følner sequence
{Φ2
N }∞N=1 in Z2d , we get limN→∞ 1

|ΦN |
∑
u∈ΦN T

ϕ1(u)f1 · · · · · T ϕk(u)fk = 0 in L2(X) and

so, inL1(X). �
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Appendix B. Ergodic averages along the squares, by A. Quas and M. Wierdl

B.1. Enunciation of the result

In this note we want to present a proof of the almost everywhere convergence of the ergodic
averages along the sequence of squares.
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THEOREM B.1. Letτ be a measurable, measure preserving transformation of theσ -finite
measure space(X,*,µ).

Then, for f ∈ L2, the averages

Stf (x)= 1

t

∑
n�t
f
(
τn

2
x
)

converge for almost everyx ∈X.

The theorem is due to J. Bourgain. To keep our presentation as continuous as possible,
we present historical remarks, and cite references in the last section, Section B.6.

B.2. Subsequence lemma

The main idea of the proof is to analyze the Fourier transformŜt (α)= 1/t
∑
n�t e

2πin2α of
the averages. This analysis permits us to replace the averagesSt by other operators that are
easier to handle. The replaceability of the sequence(St ) by another sequence(At ) means
that we have an inequality of the form∫ ∑

t

|Stf −Atf |2< c
∫

|f |2. (B.1)

Now, if somehow we prove that the sequence(Atf (x)) converges for a.e.x, then the above
inequality implies, since its left-hand side is finite forf ∈ L2, that the sequence(Stf (x))
converges a.e. as well.

Well, we will not be able to prove an inequality of the type (B.1) exactly. In the real
inequality, we will be able to have an inequality where thet runs through a lacunary se-
quence. But this is quite all right since it is enough to prove the a.e. convergence of the
(Stf ) along a lacunary sequence:

LEMMA B.2. For σ > 1 denote

I = Iσ = {t | t = σn for some positive integern}.

Suppose that for each fixedσ > 1, the sequence(Stf )t∈I converges a.e.
Then the full(St ) sequence converges a.e.

PROOF. We can assume that the functionf is nonnegative. For a givent , choosek so that
σk � t < σk+1. We can then estimate as

Stf (x)�
1

σk

∑
n�σk+1

f
(
τn

2
x
)= σ · Sσk+1f (x),
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and similarly, we haveσ−1 · Sσkf (x)� Stf (x). This means that

σ−1 · lim
k
Sσkf (x)� lim inf

t
Stf (x)� lim sup

t
Stf (x)� σ · lim

k
Sσkf (x).

Choosing nowσp = 22−p , we get that limk Sσkpf (x) is independent ofp for a.e.x, and, by
the above estimates, it is equal to limt Stf (x). �

For the rest of the proof, we fixσ > 1, and unless we say otherwise, we always assume
that t ∈ I = Iσ .

DEFINITION B.3. If two sequences(At ) and(Bt ) of L2 → L2 operators satisfy∫ ∑
t∈Iσ

|Atf −Btf |2< c
∫

|f |2; f ∈ L2,

then we say that(At ) and(Bt ) areequivalent.

B.3. Oscillation and an instructive example

One standard way of proving a.e. convergence for the usual ergodic averages
1/t
∑
n�t f (τ

nx) is to first prove a maximal inequality, and then note that there is a natural
dense class for which a.e. convergence holds.

Unfortunately, the second part of this scheme does not work for the averages along the
squares, since there is no known class of functions for which it would be easy to prove a.e.
convergence of the averages.

Instead, for the squares, we will prove a so calledoscillation inequality: for any t (1) <
t(2) < · · · with t (k) ∈ I , there is a constantc so that we have∫ ∑

k

sup
t (k)<t<t(k+1)

|Stf − St(k+1)f |2 � c
∫
f 2. (B.2)

We leave it to the reader to verify why an oscillation inequality implies a.e. convergence of
the sequence(Stf ). We also leave it to the reader to verify that if two operator sequences
(At ) and(Bt ) are equivalent and(At ) satisfies an oscillation inequality, then so does(Bt ).

An important remark is that by the so calledtransference principleof Calderón,
it is enough to prove the inequality in (B.2) on the integersZ which we consider
equipped with the counting measure and the right shift. In this case, we haveStf (x) =
1/t
∑
n�t f (x + n2).

To see how Fourier analysis can help in proving an oscillation inequality, let us
look at a simpler example first: the case of the usual ergodic averagesUtf (x) =
1/t
∑
n�t f (x + n) (by the transference principle, we only need to prove the oscillation

inequality on the integers).
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Let us assume that we already know the maximal inequality∫
Z

sup
t∈Iσ

|Utf |2 � c ·
∫

Z

|f |2.

For the Fourier transform̂Ut(α)= 1/t
∑
n�t e

2πinα , α ∈ (−1/2,1/2), we easily obtain the
estimates∣∣Ût (α)− 1

∣∣� c · t · |α|; (B.3)

∣∣Ût (α)∣∣� c

t · |α| . (B.4)

The first estimate is effective (nontrivial) when|α| < 1/t and it says that̂Ut(α) is close
to 1. The second estimate is effective when|α|> 1/t , and it says that then|Ût (α)| is small.
In other words, the estimates in (B.3) and (B.4) say that the function1(−1/t,1/t)(α) captures
the “essence” of̂Ut(α). How? Let us define the operatorAt via its Fourier transform as
Ât (α)= 1(−1/t,1/t)(α). The great advantage of the(At ) is that it is a monotone sequence
of projections. We’ll see in a minute how this can help. First we claim that the sequences
(Ut ) and(At ) are equivalent. To prove this claim, start by observing that

Ûtf (α)= Ût (α) · f̂ (α); Âtf (α)= Ât (α) · f̂ (α),

and then estimate, using Parseval’s formula, as∫
Z

∑
t∈I

|Atf −Utf |2 =
∫ 1/2

−1/2

∑
t∈I

∣∣Ât (α)− Ût (α)∣∣2 · ∣∣f̂ (α)∣∣2dα
�
∫ 1/2

−1/2

∣∣f̂ (α)∣∣2dα · sup
α

∑
t∈I

∣∣Ût (α)− Ât (α)∣∣2
=
∫

Z

f 2 · sup
α

∑
t∈I

∣∣Ût (α)− Ât (α)∣∣2.
It follows that it is enough to prove the inequality

sup
α

∑
t∈I

∣∣Ût (α)− Ât (α)∣∣2<∞.

To see this, for a fixedα, divide the summation ont into two parts,t < |α|−1 andt > |α|−1.
For the caset < |α|−1, use the estimate in (B.3) and in caset > |α|−1 use the estimate in
(B.4). In both cases, we end up with a geometric progression with quotient 1/σ .

Since (Ut ) and (At ) are equivalent and(Ut ) satisfies a maximal inequality, the op-
eratorsAt also satisfy a maximal inequality. But then the sequence(Atf (x)) satis-
fies an oscillation inequality. To see this, first note that ift (k) � t � t (k + 1) then
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Atf (x)−At(k+1)f (x)=At(At(k)f (x)−At(k+1)f (x)). It follows, that∫
Z

sup
t (k)<t<t(k+1)

|Atf −At(k+1)f |2 =
∫

Z

sup
t

∣∣At(At(k)f −At(k+1)f )
∣∣2

� c ·
∫

Z

|At(k)f −At(k+1)f |2,

since the sequence(At ) satisfies a maximal inequality. But now the oscillation inequality
follows from the inequality∫

Z

∑
k

|At(k)f −At(k+1)f |2 �
∫

Z

f 2.

This inequality, in turn, follows by examining the Fourier transform of the left-hand side.
Now the punchline is that the ergodic averages(Ut ) also satisfy the oscillation inequality

since(Ut ) and(At ) are equivalent.
Let us summarize the scheme above: the maximal inequality for(Ut ) implies a maxi-

mal inequality for the(At ) since the two sequences are equivalent. But the(At ), being a
monotone sequence of projections, satisfy an oscillation inequality. But then, again appeal-
ing to the equivalence of the two sequences, the(Ut ) satisfies an oscillation inequality.

What we have learned is that if a sequence of operators(Btf ) satisfies a maximal in-
equality, and it is equivalent to a monotone sequence(At ) of projections, then(Btf ) sat-
isfies an oscillation inequality.

In the remaining sections we will see that the scheme of proving an oscillation inequality
for the averages along the squares(St ) is similar, and ultimately it will be reduced to
proving a maximal inequality for a monotone sequence of projections.

B.4. Periodic systems and the circle method

The difference between the usual ergodic averages and the averages along squares is that
the squares are not uniformly distributed in residue classes. Indeed, for example no number
of the form 3n− 1 is a square. This property of the squares is captured well in the behav-
ior of the Fourier transform,̂St (α) = 1/t

∑
n�t e

2πin2α : for a typical rationalα = b/q,

limt→∞ Ŝt (α) is nonzero (while it would be 0 if the squares were uniformly distributed
modq).

We need some estimates on the Fourier transformŜt (α). Since we will often deal with
the functione2πiβ , we introduce the notatione(β) = e2πiβ . Also, the estimates for the
Fourier transform̂St (α) are simpler if instead of the averages1

t

∑
n�t τ

n2
f (x)we consider

the weighted averages 1/t
∑
n2�t (2n − 1)τn

2
f (x). The weight 2n − 1 is motivated by

n2 − (n− 1)2 = 2n− 1. Everything we said about the averages along the squares applies
equally well to these new weighted averages. Furthermore, it is an exercise in summation
by parts to show that the a.e. convergence of the weighted and nonweighted averages is
equivalent.
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So from now on, we use the notation

Stf (x)= 1

t

∑
n2�t

(2n− 1)τn
2
f (x).

Let Λ̂(α) = limt Ŝt (α). By Weyl’s theorem,Λ̂(α) = 0 for irrational α and for rational
α = b/q, if b/q is in reduced terms, we have the estimate∣∣Λ̂(b/q)∣∣� c

q1/2
. (B.5)

This inequality tells us that while the squares are not uniformly distributed in residue
classes modq, at least they try to be:̂Λt(b/q)→ 0 asq→∞.

Now the so-calledcircle methodof Hardy and Littlewood tells us about the structure of
Ŝt (α). Let us introduce the notationsP(t) = t1/3, Q(t) = 2t/P (t)= 2t2/3. According to
the circle method, we have the following estimates∣∣Ŝt (α)− Λ̂(b/q) · Ût (α − b/q)∣∣� c · t−1/6,

whenq � P(t), |α − b/q|< 1/Q(t), (B.6)∣∣Ŝt (α)∣∣< c · t−1/6, otherwise, (B.7)

where recall thatUt denotes the usual ergodic averages soÛt (β) = 1/t
∑
n�t e(nβ). In

other words, the estimate above tells us thatŜt (α) is close toΛ̂(b/q) · Ût (α− b/q) if α is
close to a rational pointb/q with small denominator, and otherwise|Ŝt (α)| is small.

Given these estimates, it is easy to see that the sequence(St ) is equivalent to the sequence
(At ) defined by its Fourier transform as

Ât (α)=
∑
b/q

q�P(t)

Λ̂(b/q) · Ût (α − b/q) · 1(−1/Q(t),1/Q(t))(α − b/q).

It remains to prove an oscillation inequality for theAt . To do this, first we group thoseb/q
for whichq is of similar size:

Ep =
{
b/q | 2p � q < 2p+1}.

By the estimates in (B.5), we have

sup
b/q∈Ep

∣∣Λ̂(b/q)∣∣� c · 2−p/2. (B.8)

Note also that ifb/q ∈Ep then the termΛ̂(b/q) occurs in the definition ofAt only when
t > 23p. Define the operatorAp,t by its Fourier transform as

Âp,t (α)=
∑

b/q∈Ep
Λ̂(b/q) · Ût (α − b/q) · 1(−1/Q(t),1/Q(t))(α − b/q), t > 23p.
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Using the triangle inequality for the summation inp, we see that an oscillation inequality
for (At ) would follow from the inequality∫

Z

∑
k

sup
t (k)<t<t(k+1)

|Ap,tf −Ap,t (k+1)f |2 � c · p
2

2p
·
∫

Z

f 2. (B.9)

We have learned in the previous section, Section B.3, that it is useful to try work with
projections. As a step, we introduce the operatorsBp,t defined via

B̂p,t (α)=
∑

b/q∈Ep
Λ̂(b/q) · 1(−1/t,1/t)(α − b/q), t > 23p.

Note that for eachα there is at most oneb/q ∈ Ep so that1(−1/t,1/t)(α − b/q) �= 0 or
1(−1/Q(t),1/Q(t))(α − b/q) �= 0 for somet > 23p. Fix α and letb/q be the corresponding
point ofEp. Hence, using the estimates in (B.3), (B.4), and (B.8), we get∣∣Âp,t (α)− B̂p,t (α)∣∣� c · 2−p/2 ·min

{
t |α− b/q|, (t |α− b/q|)−1}; t > 23p.

It follows that we can replace the(Ap,t ) by the(Bp,t ):∫
Z

∑
t>23p

|Ap,tf −Bp,tf |2 � c · 2−p ·
∫

Z

f 2.

In order to prove the required oscillation inequality for theBp,t , we make one more reduc-
tion. Namely, we claim that definingCp,t by

Ĉp,t (α)=
∑

b/q∈Ep
1(−1/t,1/t)(α − b/q), t > 23p

(soĈp,t is justB̂p,t without the multipliersΛ̂(b/q)), we need to prove∫
Z

∑
k

sup
t (k)<t<t(k+1)

|Cp,t −Cp,t (k+1)|2 � c · p2 ·
∫

Z

f 2. (B.10)

To see that this is sufficient, define the functiong by its Fourier transform as

ĝ(α)=
∑

b/q∈Ep
Λ̂(b/q) · 1(−2−3p,2−3p)(α − b/q) · f̂ (α).

Indeed, thenBp,tf (x)= Cp,tg(x) and
∫

Z
g2 � c · 2−p

∫
Z
f 2 by (B.8).

Now, theCp,t form a monotone (int) sequence of projections, and hence they will
satisfy the oscillation inequality in (B.10) once they satisfy the maximal inequality∫

Z

sup
t>23p; t∈I

|Cp,t |2 � c · p2 ·
∫

Z

f 2. (B.11)



860 V. Bergelson

To encourage the reader, we emphasize that our only remaining task is to prove the in-
equality in (B.11) above.

B.5. The main inequality

Since the least common multiple of the denominators of rational numbers in the setEp is
not greater than 2cp2p and the distance between two elements ofEp is at least 2−2p, the
estimate in (B.11) follows from the following result

THEOREM B.4. Let 0< δ < 1/2 and e(α1), e(α2), . . . , e(αJ ) be distinct complexQth
roots of unity with|αi −αj |> δ/2 for i �= j . We assume thatδ−1 �Q. Define fort ∈ I the
projectionsRt by

R̂t (α)=
∑
j�J

1(−1/t,1/t)(α − αj ).

Then we have, with an absolute constantc,∫
Z

sup
t�δ−1; t∈I

|Rtf |2 � c · (log logQ)2 ·
∫

Z

|f |2.

We restrict the range ont to t � δ−1, because then the sum making upRt contains
pairwise orthogonal elements—as a result of the separation hypothesis|αi − αj |> δ/2.

PROOF. Two essentially different techniques will be used to handle the supremum. The
first technique will handle the rangeδ−1 � t �Q4, and the other technique will handle the
remainingt > Q4 range.

Let us start with proving the inequality∫
Z

sup
δ−1�t�Q4; t∈I

|Rtf |2 � c · (log logQ)2 ·
∫

Z

|f |2. (B.12)

We can assume thatQ4 is a power ofσ , sayQ4 = σS , and then the rangeδ−1 � t �Q4 can
be rewritten asc logδ−1 � s � S, where we take logs to baseσ . Introduce the monotone
sequence of projectionsPs =RσS−s , s � S − c logδ−1. All follows from∫

Z

sup
s�S−c logδ−1

|Psf |2 � c · log2S ·
∫

Z

|f |2.

It is clearly enough to show the inequality for dyadicS − c logδ−1:∫
Z

sup
s�2M

|Psf |2 � c ·M2 ·
∫

Z

|f |2.
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For each integerm�M consider the sets

Hm = {P(d+1)·2m − Pd·2m | d = 0,1, . . . ,2M−m − 1
}
.

If the dyadic expansion ofs is s =∑m�M εm · 2m, whereεm is 0 or 1, then for some
Xm ∈Hm, Ps =∑m�M εm ·Xm. It follows that∣∣Psf (x)∣∣2 �M ·

∑
m�M

∣∣Xmf (x)∣∣2.
For eachm, we have∣∣Xmf (x)∣∣2 �

∑
d�2M−m

∣∣P(d+1)·2mf (x)− Pd·2mf (x)
∣∣2,

hence ∫
Z

sup
s�2M

|Psf |2 �M ·
∫

Z

∑
m�M

∑
d�2M−m

∣∣P(d+1)·2mf (x)− Pd·2mf (x)
∣∣2

�M ·
∑
m�M

∑
s�2M

∫
Z

|Ps+1f − Psf |2

�M2 ·
∫

Z

|f |2,

where we are using for the second inequality the fact that thePs are a monotone sequence
of projections.

Let us now handle the remaining range fort . We want to prove∫
Z

sup
t>Q4

|Rtf |2 � c ·
∫

Z

|f |2. (B.13)

It seems best if we replace the operatorsRt by the operators

Atf (x)= 1

t

∑
n�t

∑
j�J

e(nαj )f (x + n).

This replacement is possible if we prove the following two inequalities∫
Z

∑
t>δ−2

|Atf −Rtf |2 � c ·
∫

Z

|f |2 (B.14)

and ∫
Z

sup
t>Q4

|Atf |2 � c ·
∫

Z

|f |2. (B.15)
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Let us start with proving (B.14). By Parseval’s formula, we need to prove

sup
α

∑
t

∣∣Ât (α)− R̂t (α)∣∣2<∞.

Fix α. Without loss of generality we can assume that of theαj , the pointα1 is closest
to α. Possibly dividing the sum overj into two parts and reindexing them, we assume that
α1< · · ·< αJ . Using the separation hypothesis|αi − αj |> δ/2, we have that|α − αj |>
(j − 1)δ/2 for j > 1.

For t � 1/|α − α1| we can thus estimate (recall thatÛt (β)= 1/t
∑
n�t e(nβ)) as

∣∣Ât (α)− R̂t (α)∣∣ � ∣∣Ût (α − α1)− 1
∣∣+ ∑

2�j�J

∣∣Ût (α − αj )∣∣
� c ·
(
t |α − α1| +

∑
2�j�J

1

t (j − 1)δ

)
� c · (t |α − α1| + logJ/(δt)

)
� c · (t |α − α1| + δ−2/t

)
,

where for the second inequality we used (B.3) and (B.4) and for the last estimate we used
thatJ � δ−1. Summing this estimate overt ∈ I with δ−2 � t � 1/|α − α1| we get a finite
bound independent ofα.

For t > 1/|α − α1|, we have

∣∣Ât (α)− R̂t (α)∣∣� ∑
1�j�J

∣∣Ût (α − αj )∣∣� c · δ−2

t
,

which, upon summing over the full rangeδ−2< t , again gives a finite bound independent
of α.

Let us single out a consequence of inequality (B.14): there is a constantc so that∫
Z

|Atf |2 � c ·
∫

Z

|f |2; t > δ−2. (B.16)

Our only remaining task is to prove inequality (B.15).
For a givent , letq be the largest integer so thatqQ2 � t . Note thatq �Q2 sincet > Q4.

We can estimate as∣∣∣∣∑
n�t

∑
j�J

e(nαj )f (x + n)
∣∣∣∣

�
∣∣∣∣ ∑
n�qQ2

∑
j�J

e(nαj )f (x + n)
∣∣∣∣+ ∣∣∣∣ ∑

qQ2<n�t

∑
j�J

e(nαj )f (x + n)
∣∣∣∣. (B.17)
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We estimate the second term on the right trivially as∣∣∣∣ ∑
qQ2<n�t

∑
j�J

e(nαj )f (x + n)
∣∣∣∣� J ·

∑
qQ2<n�(q+1)Q2

∣∣f (x + n)∣∣.
With this, we have

sup
t>Q4

(
1

t

∣∣∣∣ ∑
qQ2<n�t

∑
j�J

e(nαj )f (x + n)
∣∣∣∣)2

� sup
q�Q2

(
J

qQ2
·

∑
qQ2<n�(q+1)Q2

∣∣f (x + n)∣∣)2

by Cauchy’s inequality

� sup
q�Q2

J 2 ·Q2

qQ2
·
∑
qQ2<n�(q+1)Q2 |f (x + n)|2

qQ2

�
∑
q�Q2

J 2

q2
· 1

Q2

∑
qQ2<n�(q+1)Q2

∣∣f (x + n)∣∣2.
Integrating the last line, we obtain the bound

∑
q�Q2

J 2

q2
·
∫

Z

|f |2 � c · J
2

Q2

∫
Z

|f |2 � c ·
∫

Z

|f |2

sinceJ �Q.
Let us now handle the first term on the right of (B.17). Sincee(αj ) satisfies

e((mQ2 + h)αj ) = e(hαj ) (this is the first and last time we use that thee(αj ) areQth
roots of unity), we can write, definingT g(x)= g(x +Q2),∣∣∣∣1t ∑

n�qQ2

∑
j�J

e(nαj )f (x + n)
∣∣∣∣� ∣∣∣∣1q ∑

m�q
T m

1

Q2

∑
h�Q2

∑
j�J

e(hαj )f (x + h)
∣∣∣∣.

By the ergodic maximal inequality, applied toT , the�2 norm of our maximal operator is
bounded by the�2 norm of

1

Q2

∑
h�Q2

∑
j�J

e(hαj )f (x + h).

But the estimate in (B.16) says, the�2 norm of the above is bounded independently ofQ

sinceQ2> δ−2 by assumption. �



864 V. Bergelson

B.6. Notes

More details. More details and references can be found in [122]. In particular, the
circle method and the transference principle are described in complete details—though no
proof of the main inequality of Bourgain, Theorem B.4, is given. The inequalities (B.6)
and (B.7) appear as (4.23) and (4.24) in [122].

Theorem B.1. The result is due to Bourgain [39]. He later extended the result tof ∈
Lp, p > 1; cf. [40]. The casep = 1 is the most outstanding unsolved problem in this
subject.

Idea of proof. The basic structure of the proof is that of Bourgain’s [40] but we used
ideas from Lacey’s paper [96] as well—not to mention some personal communication with
M. Lacey.

Other sequences.The sequence of primes is discussed in [137]. But we’d like to em-
phasize that theL2 theory of the primes is identical to the case of the squares. The only
difference is in the estimates in (B.6) and (B.7).

A characterization of sequences which are good for the pointwise and mean ergodic
theorems can be found in [38].
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1. Introduction

In recent years a number of significant results and developments related to pointwise er-
godic theorems for general measure-preserving actions of locally compact second count-
able (lcsc) groups have been established, including the solution of several long-standing
open problems. The exposition that follows aims to survey some of these results and their
proofs, and will include, in particular, an exposition of the following results.

(1) A complete solution to the ball averaging problem on Lie, and more generally lcsc,
groups of polynomial volume growth. Namely, a proof that for any metric quasi-
isometric to a word metric (and in particular, Riemannian metrics on nilpotent Lie
groups), the normalized ball averages satisfy the pointwise ergodic theorem inL1.
This brings to a very satisfactory close a long-standing problem in ergodic theory,
dating at least to Calderon’s 1952 paper on groups satisfying the doubling condition.

(2) In fact, two independent solutions will be described regarding the ball averaging
problem in the case of connected Lie groups with polynomial volume growth, but
both have the following in common. They resolve, in particular, a long-standing
conjecture in the theory of amenable groups, dating at least to F. Greenleaf’s 1969
book [58]. The conjecture asserts that the sequence of powers of a neighborhood on
an amenable group constitute an asymptotically invariant sequence, namely has the
Følner property. This conjecture was disproved for solvable groups with exponential
growth, but has been now verified for groups with polynomial growth.

(3) The pointwise ergodic theorem inL1 for a tempered sequence of asymptotically
invariant sets was established recently, improving on the case ofL2 established ear-
lier. This result resolves the long-standing problem of constructingsomepointwise
ergodic sequence inL1 on anarbitrary amenable group. The ideas of the two avail-
able proofs will be briefly described.

(4) A new and streamlined account of the classical Dunford–Zygmund method will
be described. This account allows the derivation of pointwise ergodic theorems for
asymptotically invariant sequence on any lcsc amenable algebraic (or Lie) group
over any local field, generalizing the Greenleaf–Emerson theorem. It also allows the
construction of pointwise ergodic sequences on any lcsc algebraic (or Lie) group
over any local field, generalizing Templeman’s theorem for lcsc connected groups.

(5) A general spectral method will be described for the derivation of pointwise ergodic
theorems for ball averages on Gelfand pairs. This method will be demonstrated for
the ball averages on any lcsc simple algebraic group (over any local field). Pointwise
theorems will be demonstrated also for the natural singular spherical averages on
some of the Gelfand pairs.

(6) The proof of a pointwise ergodic theorem for actions of the free groups, generalizing
Birkhoff’s and Wiener’s theorems forZ andZd will be described, using the general
spectral method referred to above.

(7) The derivation of pointwise ergodic theorems for actions of simple algebraic groups
with an explicit exponentially fast rate of convergence to the ergodic mean will be
described. The same result will be described also for certain discrete lattice sub-
groups.
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(8) Some ergodic theorems for semisimple Lie groups of real rank at least two will
be described, which are in marked contrast to the results that Euclidean analogs
might suggest, a contrast which has its roots in the exponential volume growth on
semisimple groups.

Our goal is to elucidate some of the main ideas used in the proof of the pointwise er-
godic theorems alluded to above. Our account of the pointwise ergodic theorems for groups
with polynomial volume growth will be quite detailed, as these results are very recent and
have not appeared before elsewhere. However, in the case of the spectral method, we have
specifically attempted to give an account of the proofs which is as elementary as pos-
sible and demonstrated using the simplest available examples. The motivation for these
choices is that the spectral methods which we employ require considerable background in
the structure theory and representation theory of semisimple Lie groups, as well as classi-
cal singular integral theory. At this time these methods are not yet part of the standard tool
kit in ergodic theory, and consequently it seems appropriate to give an exposition which
focuses on the ergodic theorems and explains some of the main ideas in their proof, but
requires as little as possible by way of background.

We have also tried to emphasized the pertinent open problems in the theory, many of
which are presented along the way.

Ergodic theorems for actions of connected Lie groups, and particularly equidistribution
theorems on homogeneous spaces and moduli spaces, have been developed and used in a
rapidly expanding array of applications, many of which are presented in the two volumes
of the present handbook. Thus it seems reasonable to limit the scope of our discussion in
the present exposition and concentrate specifically on pointwise ergodic theorems, which
have not been treated elsewhere.

We must note however that even within the more limited scope of pointwise ergodic
theorems for general group actions our account has some important omissions. We men-
tion some of these below, and offer as our rationale the fact that there already exist good
expositions of these topics in the literature, some of which are referred to below. These
omissions includes the analytic theory of homogeneous nilpotent Lie groups, and in partic-
ular the extensive theory of convolution operators, harmonic analysis, maximal functions
and pointwise convergence theorems for diverse averages on Euclidean spaces, Heisen-
berg (-type) groups, homogeneous nilpotent groups and harmonicAN -groups (see [141]
and [38] for an introduction to some of these topics). They also include the extensive re-
sults on equidistribution on homogeneous spaces (see [41] and [138] for surveys, [57] for
some new results), as well as the general theory of actions of amenable locally compact
second countable (lcsc) groups (see [121], and [134,92,154] for more recent results). An-
other omission is the mean ergodic theorem for semisimple groups proved in [150], and
other ergodic theorems on moduli spaces and their applications, which are described in
detail in the present volume.

It is also natural to include in a discussion of maximal inequalities for group actions a
discussion of convolution operators, particularly radial averages on general lcsc groups and
their homogeneous spaces. This subject, for which the theory is very incomplete receives
only very scant mention here, and we refer to [111] for a short survey and many open
problems.
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2. Averaging along orbits in group actions

2.1. Averaging operators

Let G be a locally compact second countable (lcsc) group,X an lcsc space on whichG
acts (continuously) as a group of homeomorphisms, or more generally, a standard Borel
space on whichG acts (measurably) by Borel automorphisms. Letm be aG-invariant
σ -finite Borel measure onX. TheG-action onX gives rise to a representationπ of G as
a group of isometries of the Banach spacesLp(X), given byπ(g)f (x) = f (g−1x), and
for 1 � p <∞ the representationπ :G→ Iso(Lp(X)) of G into the isometry group is
strongly continuous.

For any Borel probability measure onG, we can consider the averaging opera-
tor given, for everyf ∈ Lp(X), 1 � p � ∞, by π(µ)f (x) = ∫

G
f (g−1x)dµ(g) =∫

G
π(g)f (x) dµ(g). The last equation is well-defined, and does indeed determine unam-

biguously an element ofLp(X), and let us very briefly recall the well-known arguments
proving this fact. Fix two Borel measurable functionsfi , i = 1,2, onX, which have finite
Lp-norm and are equal almost everywhere, andh ∈ Lq(X), q the dual exponent. Then
by Fubini’s theorem form-almost allx ∈ X the two functionsg  → fi(g

−1x)h(x) are
µ-integrable and equal, and so the values

∫
G
fi(g

−1x)dµ(g) = π(µ)fi(x) are equal for
m-almost allx ∈ X. Hence the latter integral, denoted byπ(µ)f , uniquely determines a
function class (namely up tom-measure zero) for anyf ∈ Lp(X). Furthermore,π(µ)f
has finiteLp-norm, and in fact by Hölder’s inequality‖π(µ)f ‖p � ‖f ‖p. In addition,
π(µ)f defined above coincides, as an element ofLp(X), with the Lebesgue integral
(w.r.t.µ) of the Banach-space valued measurable function (strongly continuous if 1� p <
∞) given byg  → π(g)f fromG toLp(X). Detailed proofs of these well-known facts can
be found in [44, Chapter III, §11, Theorem 17, Chapter VIII, §7].

2.1.1. The regular representation and the action by convolutions.Consider the case
whereX = G, and the measurem = mG is left-invariant Haar measure. Then the oper-
atorsλ(g)f (x) = f (g−1x) are isometric in everyLp(G,mG), andg  → λ(g) is the left
regular representation. Ifµ is absolutely continuous with densitydµ= b(g)dmG(g), then
the operatorλ(µ) is the operator of left convolution byµ:

λ(µ)f (x)=
∫
G

f
(
g−1x
)
b(g)dmG(g)= µ ∗ f (x).

We can similarly consider the right regular representation ofG, given byρ(g)f (x) =
f (xg). Of course, in generalρ(g) is not an isometric operator inLp(G,mG), unless the
left Haar measuremG is also right-invariant, namely unlessG is unimodular. Note also
that the operatorρ(µ) is given byρ(µ)f (x)= ∫

G
f (xg)b(g) dmG(g), and is equal to the

convolution operatorf ∗ µ∨ if and only if G is unimodular (hereµ∨(A) = µ(A−1)). In
particular ifG is unimodular and the measureµ is symmetric (namely satisfiesµ∨ = µ),
thenρ(µ)f = f ∗µ.
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2.2. Ergodic theorems

We will generally consider a family of probability measuresµt (t ∈ R+) onG, such that
t  → µt isw∗-continuous as a map intoM(G)= C0(G)

∗. Usually eachµt will have com-
pact support, depending ont .

We will focus our attention on the case of probability-measure preserving actions,
namely we assume that(X,B,m) is probability space, andG is a group of measure-
preserving transformationsg :X→X, andm(gA)=m(A). Here the probability measures
µt onG can be regarded as family of averaging operators producing a sampling method
along the group orbitsG · x of G in X, viaπ(µt )f (x)=

∫
G
f (g−1x)dµt (g).

Ergodicity of theG-action is defined as usual by the condition that everyG-invariant
integrable function is constant almost everywhere.

Our main goal below will be to establish a pointwise ergodic theorem inLp for inter-
esting families of averagesµt onG, in a general ergodic action(X,m). By that we mean
establishing the following convergence theorem:

lim
t→∞π(µt )f (x)=

∫
X

f dm.

Form-almost everyx ∈X, and in theLp-norm, for allf ∈ Lp(X), where 1� p <∞.
The ergodicity condition above is of course equivalent to the condition that theσ -algebra

I of G-invariant sets is the trivial subalgebra ofB, consisting of sets of measure zero or
one. In a general, not necessarily ergodic action we can consider the conditional expec-
tation operatorE :L1(X,B)→ L1(X,I), and the sampling error along an orbit takes the
form |π(µt )f (x) − Ef (x)|. We recall that it is a well-known consequence of the stan-
dard ergodic decomposition theorem that in order to establish a pointwise ergodic theorem
in an arbitrary action, it suffices to establish it for ergodic actions. In more detail, if for
everyf ∈ Lp(X) limt→∞ π(µt )f (x)=

∫
X
f dm almost everywhere for every probability-

preserving ergodic action, then limt→∞ π(µt )f (x)= Ef (x) almost everywhere for every
probability-preserving action. We shall therefore often assume in what follows that the
G-action is ergodic, when convenient.

In general, one would like to allow as many choices of sampling methodsµt as possible,
since different choices play absolutely crucial roles in different applications. A very basic
distinction that arises is between the following cases:

(1) µt is absolutely continuousw.r.t. Haar measure onG. A fundamental question is to
understand the case whenµt = βt are the normalized averages on a ball of radiust

and centere w.r.t. an invariant metric onG. This includes, for example, an invariant
Riemannian metric on a connected Lie group, or a word metric on an lcsc group.

(2) µt is a singular measure, namely non-atomic and supported on a closed subset ofG

of Haar measure zero. This includes, whenG is a Lie group, closed submanifolds
of positive codimension inG, for example,µt = σt the normalized averages on a
sphere oft and centere defined using the restriction to the sphere of an invariant
Riemannian metric.

(3) µt is a discrete(atomic) measure. This includes averages supported on discrete
subgroups, for example, whenµt is supported on a lattice subgroup ofG, or averages
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supported on integer points in a subvariety, whenG is a real algebraic group defined
overQ, for example.

We will begin by considering some absolutely continuous measures and some singular
measures, and will comment on the important and interesting problem of discrete averages
later, in Sections 10.5, 12.3 and 13. It is interesting to note that our discussion below
will make it clear that the analysis of singular averages (for example, sphere averages) is
a natural and indispensable ingredient in developing the theory of absolutely continuous
averages, when the groups in question have exponential volume growth.

We note also that we will devote much of our attention in what follows to the study
of averages defined geometrically via an invariant metric on the group, such as ball aver-
ages, shell averages and spherical averages. However, the spectral methods described in
Sections 9–12 below apply more generally and are not confined to radial averages. For
semisimple groups, for example, we will consider in Section 12 also horospherical and
many other non-radial averages.

2.3. Maximal functions

The maximal function associated with the family of averaging operatorsµt is defined by,
for f ∈ Lp(X):

M∗
µf (x)= f ∗

µ(x)= sup
t∈R+

∣∣π(µt )f (x)∣∣.
Let us hasten to note that in general it is not a-priori clear that the maximal function is

well-defined and measurable for function classes inLp(X), and indeed, this is not always
the case (see Section 2.3.1 below for further discussion).

We recall that a strong maximal inequality is anLp-norm inequality for the maximal
function, of the form‖M∗

µf ‖p � Cp‖f ‖p, ∀f ∈ Lp(X), where 1<p � ∞. A weak-type
maximal inequality is an estimate of the distribution function associated with the maximal
function. Of particular interest is the weak-type(1,1) maximal inequality given by:

m
{
x ∈X;f ∗

µ(x) > δ
}

� C

δ
‖f ‖1, ∀f ∈ L1(X).

In the case of probability-measure-preserving actions it is natural to consider the maxi-
mal function given (for ergodic actions) by the following formula:

f̃ ∗
µ(x)= sup

t�0

∣∣∣∣π(µt )f (x)− ∫
X

f dm

∣∣∣∣.
The quantity

∫
X
f dm is called the space average of the functionf , andπ(µt )f (x) are

called the time averages along the orbitG · x. Therefore,f̃ ∗
µ(x) is a bound for the largest

error performed when sampling the values off along theG-orbit of x ∈X, usingµt as the
sampling method. The strongLp-Maximal inequality:‖f̃ ∗

µ‖p � Cp‖f ‖p bounds the total
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size of the error performed during the sampling process by the size of the function sampled,
size being measured here by theLp-norm. Similarly, the weak-type maximal inequality
bounds the size of the set where the sampling error is larger than a fixed positive constant
in terms of the size of theL1-norm of f . In the case of general, not necessarily ergodic
actions, the space average

∫
X
f dm must be replaced by the conditional expectationEf

of f w.r.t. theσ -algebra ofG-invariant functions. Of course, when(X,m) is a probability
space, the operators̃f ∗

µ andf ∗
µ satisfy exactly the same maximal inequalities and so we

will continue with the analysis of just one of them, whose choice will be dictated by the
problem at hand.

Finally, we recall thatL(logk L)(X) denotes the subspace ofL1(X) consisting of func-
tions for which

∫
X
|f (log+ f )k|dm(x) is finite.

2.3.1. Measurability of the maximal function.The maximal function isnot necessarily
a well-defined measurable function, even for very natural choices of the averaging opera-
torsµt . Let us first note that if the averagesµt are all absolutely continuous with respect
to Haar measure onG, and t  → µt is continuous w.r.t. theL1(G) norm, then for every
f ∈ Lp(X), and form-almost everyx ∈X, t  → π(µt )f (x) is a continuous function oft ,
see, e.g., [44, Chapter VIII, §7, p. 686]. It then follows thatf ∗

µ is indeed measurable, since
the supremum may be taken of the countable set of rational numbers. However, absolute
continuity is not a necessary condition for measurability of the maximal function, and we
will discuss below many singular averages which give rise to a measurable maximal func-
tion.

Indeed absolute continuity is not necessary even for the continuity oft  → π(µt )f (x),
for almost everyx ∈X. Thus, for example, whenµt = σt are the sphere averages onRn,
n � 3, such a result for say bounded functions with bounded support, is established in
[36, II.4], see also [141, Chapter XI, §3.5 ].

Interestingly, forRn (and other connected Lie groups) measurability of the maximal
functions seems closely connected to considerations related to curvature, as is indicated
by the following fact. Let∂Qt denote the family of sets in the groupG = R2 given by
the boundaries of squaresQt centered at the origin, and letqt denote the usual (uniformly
distributed, linear Lebesgue) probability measure on∂Qt . Let σt be the rotation-invariant
probability measure on the circleSt = ∂Bt of radius t centered at the origin. Then the
maximal functionf ∗

q is notalways measurable, even whenf is the characteristic function
of a measurable set of finite measure, butf ∗

σ is measurable for suchf [14].
Clearly, when the action ofG onX is a continuous action on a locally compact second

countable (lcsc) space, the maximal functionf ∗
µ(x) = supt∈R+ |π(µt )f (x)| is certainly

measurable provided thatf ∈ Cc(X) and in additiont  → ∫
G
f (g−1x)dµt is continuous

for everyf ∈ Cc(X). This condition will be satisfied by all the averages we will discuss
below. A maximal inequality forf ∗

µ whenf ∈ Cc(X) serves as ana-priori inequality,
and is used to extend both the measurability off ∗

µ as well as the maximal inequality to
the appropriate Lebesgue spaces. We refer to [106, Appendix A] and [114, §2.2] for more
information on these arguments.
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2.4. A general recipe for proving pointwise ergodic theorems

A proof of a pointwise ergodic theorem for a family of bounded operatorsπ(µt ) = Tt
acting inLp(X,m) for some 1� p <∞ can be obtained using the following four-step
recipe.

(1) Prove a mean ergodic theorem inLp(X) for the averages, namely show that
limt→∞‖Ttf − ∫

X
f dm‖p = 0.

(2) Find a dense subspace of functionsV ⊂ Lp(X) for which pointwise convergence
holds, namely limt→0Ttf (x)=

∫
X
f dm, for almost allx ∈X, and for allf ∈ V .

(3) Establish a strongLp-maximal inequalityfor the maximal functionf ∗(x) =
supt�0 |Ttf (x)|, wheref ∈ Lp(X), namely‖f ∗‖p � Cp‖f ‖p.

(4) Use interpolation theory, either real or complex, to establish a maximal inequality
for the action ofTt in Ls(X), s �= p.

We recall that the fact that (2) and (3) taken together imply pointwise convergence almost
everywhere ofTtf (x) for everyf ∈ Lp(X) is a formulation of the well-known Banach
principle (see, e.g., [53]). The identification of the limit is achieved in (1), by the mean
ergodic theorem. Obviously, many variations are possible on this basic theme, for example,
the use of weak-type maximal inequalities, variational maximal inequalities, establishing
the maximal inequality in (3) only on an a-priori dense subspace, as well as applying a
wide array of interpolation methods.

Thus the basic problems we shall address below are establishing maximal inequalities
for the familyµt , the corresponding pointwise convergence theorems for a dense subspace,
the identification of the limit in the ergodic theorem, and applying interpolation techniques
in the Lebesgue spacesLp(X).

3. Ergodic theorems for commutative groups

3.1. Flows of1-parameter groups: Birkhoff ’s theorem

In order to motivate the discussion below, let us start very concretely by considering one
of the most basic example in ergodic theory. This will serve as our point of departure for
several later developments.

EXAMPLE 3.1 (Lines in R2 with an irrational slope). Let � = sw, s ∈ R, be a line in
R2 with an irrational slope, and letf be a function on the spaceX = T2 = R2/Z2 (i.e.
Z2-periodic function onR2). Let Ts = Rsw :X→ X denote the transformation given by
translation onX, and letm denote the translation-invariant probability measure onX. We
note thatm is in fact theuniqueprobability measure onX invariant under the transforma-
tion Ts , s �= 0 a fact which is immediate upon considering the Fourier coefficients of such
an invariant measure. The time averages off along the orbit of� passing throughx are
defined byβtf (x)= 1

2t

∫ t
−t f (Tsx) ds.

Recall the following classical results for the probability space(X,m) and the transfor-
mationsTs :
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(1) Weyl’s Equidistribution Theorem.∀f ∈ C(X), ∀x ∈X:

lim
t→∞βtf (x)=

∫
X

f (u)dm(u)= space average off.

(2) Wiener’s Differentiation Theorem. ∀f ∈ L1(X):

lim
t→0

βtf (x)= f (x), for almost allx ∈X.

(3) Birkhoff ’s Pointwise Ergodic Theorem for flows.∀f ∈ L1(X):

lim
t→∞βtf (x)=

∫
X

f dm, for almost allx ∈X.

(4) Birkhoff ’s Pointwise Ergodic Theorem for invertible transformations.The aver-
agesβn(Z)f (x) = 1

2n+1

∑n
k=−n f (T k1 (x), satisfy conclusion (1) and (3), namely

1
2n+1

∑n
k=−n f (T k1 x) have the same convergence properties as their continuous

analogs.

Anticipating some later developments let us note that the classical ergodic averagesβt
are absolutely continuous measures on the line�, and in fact constitute the normalized av-
erages on a ball of radiust in R, w.r.t. an invariant Riemannian metric (which is unique
here up to scalar).βn(Z) are the normalized ball averages w.r.t. the induced invariant met-
ric on the integer latticeZ. This metric is here also a word metric onZ w.r.t. the set of
generators{±1}.

Let us further note the following:
(1) The equidistribution theorem stated in (1) holds in fact under the sole condition that

X be a compact metric space, andTs a homeomorphism (or a 1-parameter group
of homeomorphisms) possessing auniqueinvariant probability measure. The case
X = Tn was originally considered by H. Weyl.

(2) The differentiation theorem stated in (2) holds in fact for any standard measure space
(X,m), and any 1-parameter group of measure-preserving transformations. This re-
sult is due to N. Wiener [155, Theorem III′], and his proof combines Lebesgue’s
and Hardy–Littlewood’s [68] differentiation theorems on the real line with a prin-
ciple of local transfer to a general measure-preserving flow (see the discussion in
Section 5.4.2 for more details).

(3) The pointwise ergodic theorems stated in (3) and (4) hold in fact for any probability
space(X,m), and any invertible measure preserving transformation or 1-parameter
group, under the sole condition of ergodicity. This is the content of Birkhoff’s theo-
rem [12].

Actions of the real line with an invariant probability measure exist in great abundance.
We mention briefly the following examples, focusing mostly on those that will reappear
again later.
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EXAMPLE 3.2.
(1) Any complete, divergence free vector field on a Riemannian manifold generates an

associated volume-preserving flow. The total Riemannian volume if of course finite
if the manifold is compact.

(2) In particular, the geodesic flow on a compact Riemannian manifold gives anR-
action preserving a finite volume. This includes the geodesic flow on a compact (or
more generally, finite volume) locally symmetric space.

(3) The horocycle flow on a compact (or finite volume) surface of constant negative
curvature also gives a volume-preserving flow. Similarly, analogous flows can be
defined for all locally-symmetric spaces associated with semisimple Lie groups, by
considering actions of one-parameter unipotent subgroups.

(4) Any 1-parameter subgroup of the connected Lie groupG acting by translations on
G/Γ , whereΓ is a discrete lattice subgroup ofG.

Actions ofZ with invariant measure are just as abundant. Indeed, bothZ andR have the
all-important property that each of their actions by homeomorphisms of a compact metric
space possesses at least one invariant ergodic measure, and this fact gives of course rise to a
vast collection of examples. We mention here however only one, which will be particularly
important in what follows. LetG be any lcsc group, andΓ ⊂G a lattice. Then any element
g ∈G, as well as any subgroupH ⊂G act by measure-preserving transformations on the
probability space(G/Γ,m). This includes the case whereΓ is a lattice in a simple non-
compact algebraic group over a locally compact non-discrete field. In the latter case, the
Howe–Moore mixing theorem asserts the remarkable fact that the action of every element
g is not only ergodic, but in fact mixing, provided only that the powers ofg are not confined
to a compact subgroup, and thatG has no compact factors. We recall that mixing means
that the correlations〈T nf,f ′〉 converge to zero, iff or f ′ has zero integral.

We remark that equidistribution forevery orbit does not hold in many of the exam-
ples above, e.g., for the case of geodesic flows on compact surfaces of constant negative
curvature. Convergence foreveryorbit fails even if the function is assumed continuous, or
even smooth. The restriction toalmostevery starting point is thus essential in the pointwise
ergodic theorem.

3.2. Flows of commutative multi-parameter groups: Wiener’s theorem

Naturally, the next problem to consider is the generalization of the pointwise ergodic theo-
rem from the case of a one-parameter flow to that of several commuting flows, and in par-
ticular from ball averages in actions ofR (or Z) to ball averages in actions ofRd (or Zd ).
This problem was solved by N. Wiener in [155], where he introduced several key ideas that
came to play an important role in the further development of ergodic theory for groups with
polynomial volume growth, and more generally amenable groups. We will focus below on
Wiener’s covering lemma [155, Lemma C′], and the introduction of a transfer principle
[155, Proof of Theorem IV′]. These arguments are geometric by nature and in particular,
as already noted by Wiener, they apply equally well to ball averages onRd or the lattice
Zd , as well as to many other averages, e.g., on Euclidean cells centered at the origin (see
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also Pitt’s discussion [126]). Even further, they were generalized by A. Calderon [19] to
apply to certain non-commutative groups with polynomial volume growth. In Section 5
we will present these arguments and generalizations thereof, but before delving into the
proofs, it may be instructive to consider some examples to which Wiener’s (or Pitt’s) the-
orem applies.

EXAMPLE 3.3.
(1) Let Ln denote the space of unimodular lattices inRn. ClearlySLn(R) acts onLn,

and the action is easily seen to be transitive. The stability group of the latticeZn is
SLn(Z), so that we can identifyLn with the homogeneous spaceSLn(R)/SLn(Z).
The latter space carries a finite measurem which isSLn(R)-invariant, and we nor-
malize it to be a probability measure. We fix a given non-trivial representation of
SL3(R) in SLn(R), and letA∼= {atbs | (t, s) ∈ R2} denote the two-dimensional vec-
tor group of diagonal matrices inSL3(R)⊂ SLn(R), n� 3. Then for allf ∈ L1(Ln)
and for almost everyx ∈ Ln

lim
r→∞

1

πr2

∫
t2+s2�r2

f (atbsx) dt ds =
∫
Ln
f (x) dm.

(2) LetA1, . . . ,Ad bed commutingn×nmatrices with integer entries and determinant
{±1}, and consider their natural action onTn = Rn/Zn by group automorphisms.
Then, for everyf ∈ L1(Tn) and almost everyx ∈ Tn

lim
r→∞

1

(2r + 1)d
∑

−r�ij�r
f
(
A
i1
1 · · ·Aidd x

)= ∫
Tn
f (x) dm

provided every integrable function invariant underA1, . . . ,Ad is constant. This is
the case if at least one of theAi has no roots of unity as eigenvalues, for example.

(3) Consider the compact Abelian groupK = (Z/2Z)Z
2
, with Haar measure given

by the natural product measure. TheZ2-action by coordinate shifts is an ergodic
measure-preserving action by automorphisms of the compact Abelian groupK .
Denoting bya1 and b1 unit translations in the direction of the axes, we have:
∀f ∈ L1(K) and for almost everyx ∈K

lim
n→∞

1

|Bn ∩Z2|
∑

(k,m)∈Z2;k2+m2�n2

f (akbmx)=
∫
K

f (x)dm.

The example above can of course be greatly generalized, by replacingZ2 be other
infinite Abelian groups, replacingZ2 by other compact groups, and also considering
the extensive collection of closed shift-invariant subgroups arising in such actions.
This gives rise to a wealth of ergodic measure preserving actions of multi-parameter
groups by automorphisms of compact Abelian groups. For a discussion of this topic
and its connections to commutative algebra and number theory we refer to [135].
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In Section 5 we will considerably expand the scope of the discussion, formulate the
ball averaging problem in ergodic theory and describe the complete solution of the ball
averaging problem for all lcsc groups with polynomial volume growth. This result consti-
tutes a common generalization of the pointwise and maximal ergodic theorems of Birkhoff,
Wiener and Calderon, and brings to a satisfactory close a long line of development in er-
godic theory. The result depends on some very recent developments and has not appeared
before elsewhere. The proof is based on the arguments of Wiener and Calderon, together
with one further ingredient, namely the asymptotic invariance (under translation) of the
balls in these groups. This fact was recently established for connected Lie groups of poly-
nomial volume growth by two interesting independent arguments which we will describe.
In the general case of lcsc group asymptotic invariance of the balls ultimately depends also
on considerations introduced by M. Gromov in his celebrated theorem [63] asserting that
groups with polynomial volume growth are virtually nilpotent.

We will have on a number of occasions to use results on the (polynomial or exponential)
volume growth of balls in most of the groups that will come under consideration below,
and so we therefore now turn to this issue.

4. Invariant metrics, volume growth, and ball averages

4.1. Growth type of groups

LetG be a compactly generated locally compact second countable (lcsc) group. IfV is a
compact set generatingG, namely

⋃
n∈N V

n =G, we can define a distance function|g|V
onG via |g|V = min{n; g ∈ V n}, whereV 0 = {e} andV n = V ·V · · ·V is the set ofn-fold
products of elements ofV . The distance function is inversion-invariant if and only if the set
V is symmetric, namelyV = V −1, a condition equivalent to the symmetry of the function
dV (g,h)= |g−1h|V . We will assumeV = V −1 from now on, and then the associated func-
tion dV is a left-G-invariant metric onG, which we will call the word metric determined
byV . SinceG is lcsc, for somen ∈ N V n contains an open set and thenmG(V n+k) > 0 for
all k ∈ N, wheremG is (any) Haar measure. ClearlyV nV k = V n+k , and thus the sequence
logmG(V n) is subadditive, and it follows that the limit limn→∞ 1

n
logmG(V n)= hV exists.

It is straightforward to see that ifhV > 0 for someV , thenhV ′ > 0 for any other compact
generating setV ′ (and any Haar measure). IfhV > 0 G is called a group of exponential
volume growth, and ifhV = 0 for some, or equivalently, all compact generating setsV ,
G is called a group of subexponential growth (and it is then necessarily unimodular). In
that case we can consider the quantity lim supn→∞

logmG(V n)
logn = qV , and we recall the well

known fact that ifqV <∞ for one compact generating setV , thenqV ′ <∞ for any other
compact generating setV ′. In fact, in this case there exists a unique 0< q(G) <∞ de-
pending only onG, such that the ratiomG(V n)/nq is bounded forn ∈ N, for anyV as
above. This follows immediately from the fact that for large enoughk, a ball of radiusk
of one metric contains a ball of radiusck of the second metric, and is contained is a ball
of radiusCk of the second metric, wherec � C are fixed positive constants. IfqV <∞
for some compact generating set thenG is called a group of polynomial volume growth,
and if hV = 0 andqV =∞ for some compact generating setV , thenG is called a group
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of intermediate growth. As is well known, this possibility does in fact arise (see [42] for
an accessible exposition of such a group, constructed by R. Grigorchuk). However, such
groups do not arise as subgroups of connected Lie groups or algebraic groups.

We have used the metrics of the formdV described above to define the growth type of
a groupG. There are of course many other left-invariant metrics on a group, but since
invariant metrics can be easily rescaled, not all of them will give the same growth type.
For example, taking the metricd(t, s)= log(1+ |t − s|) onG= R, we obtain an invariant
metric whose balls centered at 0 (denotedBt ) satisfymR(Bt )= exp(t)− 1, namely have
exponential growth. It therefore natural to define a left-invariant metricd onG to be admis-
sible, if the quantitieshd = limt→∞ 1

t
logmG(Bt ) andqd = lim supt→∞

logmG(Bt )
logt exhibit

the same behavior as the quantitieshV andqV defined by the metricsdV associated with
compact generating setsV . In other words,hd > 0 iff hV > 0, andqd <∞ iff qV <∞. In
the sequel, we will consider only admissible metrics onG.

4.2. Invariant metrics

In general, we can letG be an lcsc group, and letN :G → R+ be a continuous
proper function satisfyingN(gh) � C(N(g)+ N(h)), namely a quasi-norm onG. Then
dN(g,h)= N(g−1h) defines a left-invariant quasi-metric onG. We can consider the sets
BNt = {g ∈G;N(g)� t} and the normalized measuresβNt with densityχBNt /mG(B

N
t ).

WhenG is say a connected Lie group andN is sufficiently regular, it is also possible
to define for every positive radiust the natural probability measureσNt supported on
∂BNt = SNt = {g ∈G;N(g)= t}. Our discussion below can be in principle extended to
this more general context, but in the interest of simplicity we will restrict ourselves to a
discussion of functions of the formN(g) = d(e, g) whered is an invariant admissible
metric (so that the constantC in the definition of a quasi-norm is equal to 1). We remark
that one interesting natural set of examples consist of homogeneous invariant quasi-norms
on homogeneous connected nilpotent Lie groups. Such quasi-norms give rise to a quasi-
distance which is not necessarily a metric, but in fact an equivalent homogeneous invariant
norm can always be found. We refer, e.g., to [141, Chapter XIII, §5 and §7B] and [69] for
more on this topic.

Another important general example of a left-invariant metric is the functiond(g,h) =
log(1+ ‖τ(g)−1τ(h)‖), where‖ · ‖ is a symmetric operator (or even just linear) norm on
Mn(R), andτ :G→ GLn(R) is a faithful linear representation (and we assume thatd is
admissible).

It is natural to introduce certain properties of metrics that facilitate the discussion and
are relevant to questions of growth and ball averaging. Let us start by defining two notions
of equivalence between metrics.

DEFINITION 4.1. Consider two metric space(X,d) and (X′, d ′) and a function
f :X→X′.

(1) Y ⊂ X is calledC-dense inX if there existsC � 0 such that everyx ∈ X is at
distance at mostC from Y .
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(2) f is called aQuasi-isometry, if f satisfies, for someB,b > 0 and allx, y ∈X
1

B
d ′
(
f (x), f (y)

)− b� d(x, y)� Bd ′
(
f (x), f (y)

)+ b
and in additionf (X) isC-dense.

(3) f is called aCoarse-isometry, if f satisfies, for someb� 0 and allx, y ∈X

d ′
(
f (x), f (y)

)− b� d(x, y)� d ′
(
f (x), f (y)

)+ b
and in additionf (X) isC-dense.

Next, consider the following possibilities regarding approximate analogs to geodesics in
a metric space.

DEFINITION 4.2. Let(X,d) be a metric space. The metricd is called
(1) Discretely coarsely geodesic[2] if there existsC � 0 such that for anyx, y ∈ X

it is possible to find a finite sequence of pointsx = x0, x1, . . . , xn = y satisfying
d(xi−1, xi)�C, 1� i � n, andd(x, y)=∑ni=1d(xi−1, xi).

(2) Asymptotically geodesic[15] if for every ε > 0 there existsCε > 0, such that given
x, y ∈ X, it is possible to find a finite sequence of pointsx = x0, x1, . . . , xn = y
satisfyingd(xi−1, xi)� Cε, 1� i � n, andd(x, y)� (1− ε)∑ni=1d(xi−1, xi).

(3) Monotone[148] if there existsC � 1 such that for anyx, y ∈X it is possible to find
a finite sequence of pointsx = x0, x1, . . . , xn = y satisfyingd(xi−1, xi) � C, and
d(x, xi−1)+ 1� d(x, xi), 0< i � n.

The precise behavior of the volume growth functionmG(Bt ) for balls defined by an
admissible metricd on an lcsc groupG is a very important characteristic from several
perspectives, and is fundamental in consideration related to ergodic theorems, as we shall
see below. The volume growth problem has seen some important recent progress, which
we will describe in Sections 4.4 and 4.5. But before doing so, let us first formulate the
following basic problem in ergodic theory.

4.3. The ball averaging problem in ergodic theory

Our discussion so far, including of course the description of the basic pointwise ergodic
theorems of Birkhoff and Wiener for Abelian groups, leads naturally to the formulation of
the following problems.

Let G be an lcsc group,d an admissible metric onG, Bt the corresponding balls of
radiust and centere, and letβt be normalized ball averages onG. By this we mean that
βt are the absolutely continuous probability measures onG whose density with respect to
left Haar measuremG onG is the characteristic function ofBt , normalized bymG(Bt ).

WhenG is a connected Lie group, a particularly basic case arises whend is the distance
function onG associated to a left-invariant Riemannian metric onG. Note that in this case,



886 A. Nevo

we can also consider the spheresSt , and the probability measuresσt supported onSt , which
is given canonically by the volume form arising from the restriction of the Riemannian
metric to the spheres. In general, whenG is lcsc and the metric assumes integer values, we
can consider the sequenceσt , t ∈ N, of probability measures defined by the restriction of a
left Haar measure to the sphere. Anticipating some of the developments of the succeeding
sections, we formulate the following.

(1) The ball averaging problem: Establish whenβt satisfies the pointwise ergodic
theorem inL1 (or at least in everyLp, 1< p <∞), namely for every ergodic
probability-preserving action

lim
t→∞π(βt )f (x)=

∫
X

f dm, for almost allx ∈X

and in theLp-norm.
(2) Sphere averaging problem: Establish when there existsp0<∞ such that the sphere

averagesσt satisfy the pointwise ergodic theorem inLp, p > p0, namely

lim
t→∞π(σt )f (x)=

∫
X

f dm, for almost allx ∈X

and in theLp-norm.
(3) Spherical differentiation: For G a connected Lie group,d a Riemannian metric,

establish when the singular spherical differentiation theorem holds forf ∈ Lp,
p > p0, namely

lim
t→0

π(σt )f (x)= f (x), for a.e.x.

It is evident that the first two problems raised above are inextricably linked with the
study of volume growth for balls and spheres, to which we now turn.

4.4. Exact volume growth

4.4.1. Exact polynomial volume growth.WhenG has polynomial volume growth the
discussion of Section 4.1 allows us only to conclude that there exists a positive numberq,
such that for any Haar measure and any admissible metric onG, we have the following
estimate for the volume of balls defined by the metric:mG(Bt )�C(G,d)tq . WhenG has
exponential volume growthh, we can only conclude thatcε(h− ε)t �mG(Bt )� Cε(h+
ε)t for every ε > 0. As we shall see below, these estimates are entirely unsatisfactory
for many purposes, and so it is natural to introduce the following definitions (see [64,
Definition I.2]).

DEFINITION 4.3.
(1) The pair(G,d) is said to have exacttqect volume growth if the ballsBt defined by

the left-invariant admissible metricd satisfy

lim
t→∞

mG(Bt )

Ctq expct
= 1

for some non-negativeq, c andC (which are necessarily uniquely determined).
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(2) The pair(G,d) is said to have stricttqect volume growth if

btq expct �mG(Bt )� Btq expct

for some non-negativeq andc (which are necessarily uniquely determined) and two
positive constantsb� B.

Important recent progress has been obtained in establishing strict or exact volume growth
in several context. We will describe the developments regarding exact growth in the present
section, and regarding strict growth in the following one.

The most obvious examples of groupsG and metricsd with exacttq (namely polyno-
mial) volume growth are:

(1) G= Rk , andd the metric defined by any norm onRk .
(2) G=Hn = Cn×R the Heisenberg groups, with the metric determined by the homo-

geneous normN(z, t)= (‖z‖4 + t2)1/4.
(3) More generally,G a connected nilpotent homogeneous group, withd the metric

derived from a homogeneous norm.
In these examples the homogeneity of the metric onG, namely the fact thatBt = αt (B1)

(where αt is the dilation automorphism group) immediately implies thatmG(Bt ) =
mG(B1)t

q , whereq is the homogeneous dimension. Thus in particular the polynomial vol-
ume growth for homogeneous metrics is exact. Riemannian metrics are not homogeneous
in general, and here, under one further assumption, the following result was established by
P. Pansu.

THEOREM 4.4 [123]. LetG be a simply connected nilpotent Lie group admitting a lattice
subgroupΓ . Then

(1) G has exact polynomial volume growth w.r.t. any Riemannian metric onG which is
Γ -invariant.

(2) Any latticeΓ in G has exact polynomial volume growth with respect to any word
metric.

Pansu’s theorem has the following two consequences [123] (see also the discussion in
[42, Chapter VII.C]).

COROLLARY 4.5.
(1) Every discrete group containing a finitely generated nilpotent group of finite index

has exact polynomial volume growth with respect to any word metric. Indeed, by a
well-known result of Malcev, Γ can be embedded as a lattice in a simply connected
nilpotent Lie group.

(2) Every discrete groupΓ with polynomial volume growth has exact polynomial vol-
ume growth with respect to any word metric. Indeed, by Gromov’s theorem[63],
Γ is virtually nilpotent, namely contains a nilpotent subgroup of finite index.

We note that a sharper form of Pansu’s theorem has been established by M. Stoll [137],
namely that|#Bt −Ctq |� Btq−1 for 2-step nilpotent groups.
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For a simply connected nilpotent Lie groupG, the condition thatG contains a lattice
subgroup is equivalent to the condition that the Lie algebra ofG admits a basis with ra-
tional structure constants. Thus there exists only a countable set of such groups. So while
Pansu’s theorem (in combination with Gromov’s) imply exact volume growth for every
discrete group with polynomial growth, it leaves much to be desired in the case of general
connected nilpotent Lie groups (and more generally lcsc groups with polynomial growth).
Very recently, E. Breuillard has obtained a solution to this problem in the simply connected
nilpotent case, in the following form.

THEOREM 4.6 (Exact polynomial volume growth for simply connected nilpotent Lie
groups [15]).LetG be a simply connected nilpotent Lie groupG, let H be a closed co-
compact subgroup(e.g.,H =G), and letd be anH -invariant Riemannian or word metric
onG. ThenG has exact polynomial volume growth with respect tod . In fact, the conclusion
holds for any locally bounded, proper, asymptotically geodesic metricd .

The method of proof used in [15] is motivated by [123], and is based on showing that the
ratio of the volume of the balls defined byd is asymptotically the same as the volume of the
balls defined by an appropriate Carnot–Caratheodory metric onG. For the latter the scaling
property of the volume is clear, and thus exactness for the volume of thed-balls follows.
Furthermore, exactness is also proved in [15] for metrics on some connected non-nilpotent
Lie groups of polynomial volume growth. Here use is made of the construction of the nil-
shadow of such a group, and this allows the reduction of the problem to the nilpotent case.
In view of the structure theorem for general lcsc groups of polynomial volume growth
which will be discussed further in Section 5.5, the methods developed in [15] may well
lead to a complete solution of the problem of establishing exact growth on an arbitrary lcsc
group of polynomial volume growth.

4.4.2. Exact exponential volume growth.Important recent progress on exact growth has
recently been obtained also for a class of groups with exponential volume growth, namely
semisimple Lie groups. Let us first note that a very natural choice for a metric on semi-
simple groups is the bi-K-invariant Riemannian metric on the group which is associated
with the Killing form (K a maximal compact subgroup). The exactt r−1 exp2‖ρ‖t volume
growth (see Section 10.4 for notation) of balls in this case follows, for example, from the
sharper results of [86] on the asymptotic volume of the spheres, but can also be proved
more directly.

Another natural family of metrics is given as follows. Fix a linear representationτ

of G into GLn(R), fix any (vector-space) norm‖ · ‖ on Mn(R), and let d(g,h) =
log(1 + ‖τ(g−1)τ (h)‖). d will be symmetric if ‖g−1‖ = ‖g‖, and satisfy the triangle
inequality if ‖gh‖ � ‖g‖‖h‖, e.g., if ‖ · ‖ is a symmetric operator norm ofMn(R). The
following general result has been established by A. Gorodnik and B. Weiss.

THEOREM 4.7 (Exact volume growth for semisimple Lie groups [57]).LetG be a con-
nected semisimple Lie group with finite center, τ :G→ GLn(R) a linear representation,
and‖ · ‖ any norm onMn(R). Then the sets given byGt = {g ∈G; d(e, g)� t} have exact
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tq expct volume growth, for someq andc > 0 depending on the representationτ and the
norm‖ · ‖.

4.5. Strict volume growth

4.5.1. Strict polynomial growth. A thorough investigation of growth as well as strict
growth has been conducted by Y. Guivarc’h [64] (see also [78] and [6]). For connected
Lie groups with polynomial volume growth, and so in particular for nilpotent Lie groups,
the fundamental result on stricttq -volume growth for word metrics is as follows.

THEOREM 4.8 (Strict volume growth for nilpotent groups [64, Theorem II.3]).LetG be
any connected Lie group of polynomial growth. Then any word metric, and thus also any
metric quasi-isometric to a word metric, and in particular invariant Riemannian metric
has strict polynomial volume growth.

Furthermore, it is noted in [64] that since a finitely generated torsion free nilpotent group
can always be embedded in a simply connected Lie group, strict volume growth holds for
word metrics on countable nilpotent groups. Thus, using Gromov’s theorem [63], strict
growth holds for countable discrete groups of polynomial volume growth.

4.5.2. The volume doubling condition.One fundamental consequence of strict polyno-
mial volume growth is the volume doubling condition, introduced by Calderon. Since our
discussion centers around the ball averaging problem, we formulate it in the following
form.

DEFINITION 4.9 (Calderon’s doubling volume condition[19]). G is said to satisfy the
doubling volume condition w.r.t. the invariant admissible metricd if the balls Bt =
{g; d(g, e)� t} satisfymG(B2t ) � C(G,d)mG(Bt ), for all t > 0. HeremG denote some
(left or right) Haar measure onG.

REMARK 4.10.
(1) Clearly the volume doubling condition immediately implies thatmG(B2n) �

C(G,d)nmG(B1), and so it follows that(G,d) has polynomial volume growth and
is therefore unimodular.

(2) Clearly when(G,d) satisfies exact polynomial volume growth, the balls satisfy the
doubling condition. But in fact, for the doubling condition already strict polynomial
volume growth is sufficient. Thus for connected Lie groups of polynomial growth
or for discrete nilpotent groups, volume doubling follows from Theorem 4.8.

4.5.3. Strict exponential volume growth.For semisimple Lie groups, using the polar co-
ordinates on semisimple group, it can be easily established that any bi-K-invariant Rie-
mannian metric (K a maximal compact subgroup) have stricttq expct volume growth,
with q andc > 0 depending on the metric. More generally, a bi-K-invariant metric onG
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which restricts to a Weyl-group-invariant norm on the Lie algebra of a (split) Cartan sub-
group (see Section 10.4 for the definitions), will be called norm-like. The following recent
result of H. Abels and G. Margulis [2] establishes that norm-like metrics are the yardsticks
for very general metrics onG, as follows.

THEOREM 4.11 (Word metrics on semisimple groups are coarsely isometric to norm-like
metrics [2]). LetG be a connected semisimple Lie group with finite center, anddV a word
metric onG, associated with a bounded symmetric open set. Then there exists a bi-K-
invariant norm-like metricd such that|dV − d| is bounded onG×G.

We note that in fact the last result holds more generally for all reductive algebraic groups,
and for every left-invariant coarsely geodesic quasi-metric onG satisfying certain natural
properness and boundedness condition, and refer to [2] for the details.

COROLLARY 4.12. The balls associated with a norm-like distance on a semisimple Lie
group have stricttq expct volume growth, and hence also the balls defined bydV have the
same property.

As to discrete groups with exponential volume growth, let us recall the following result
due to M. Coornaert [31]. LetΓ be a word-hyperbolic group, andS a finite symmetric set
of generators. Then the spheres, and hence also the balls, have strict expct volume growth,
namelybexpct � |St | � B expct .

Finally, let us note that establishing exact, and even strict volume growth is an open prob-
lem for most other groups and metrics. For some further results in this direction regarding
discrete groups we refer to the [42].

4.6. Balls and asymptotic invariance under translations

Before formulating the ergodic theorems for balls on groups with polynomial volume
growth, consider the following properties of the family of balls inG. These properties
obviously hold under the assumption of exact polynomial volume growth, and they are
easily seen to be mutually equivalent.

PROPOSITION4.13. Let (G,d) have exact polynomial volume growth w.r.t. the ballsBt
defined by an admissible invariant metricd onG. Then the following properties hold

(1) The volume of the ball is asymptotically stable, namely for everyr > 0,

lim
t→∞

mG(Bt+r )
mG(Bt )

= 1.

(2) The volume of a shell is asymptotically negligible when compared with the volume
of the ball, namely for everyr > 0,

lim
t→∞

mG(Bt+r \Bt)
mG(Bt )

= 0.
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(3) The ball averages are asymptotically invariant under(right) convolution, namely for
everyr > 0,

lim
t→∞‖βt ∗ βr − βt‖L1(G) = 0.

(4) The balls are asymptotically uniformly invariant under(right) translations, namely
for every compact setQ⊂G,

lim
t→∞

mG(Bt ·Q∆Bt)
mG(Bt )

= 0.

(5) The balls are asymptotically invariant under(right) translations, namely for every
g ∈G,

lim
t→∞

mG((Btg)∆Bt )

mG(Bt )
= 0.

This very pleasant property of balls is discussed in F. Greenleaf [58], where the question
is raised whether it holds for balls defined by a word metric, for all lcsc groups admitting
anysequence of asymptotically invariant compact sets of positive finite Haar measure. It
is referred to in [58] as the localization conjecture, as it locates a specific asymptotically
invariant sequence in the group—namely the powers of a compact neighborhood of the
identity. In this generality the conjecture is false, and in fact fails already for theax + b
group, as shown in [100]. In fact, a general result is that for connected exponential solvable
Lie groups, no subsequence of the sequence of balls w.r.t. a Riemannian metric (say) can
be asymptotically invariant, as shown in [127].

Nevertheless, for some groups of polynomial growth the localization conjecture was
very recently given two very interesting independent solutions, each yielding significantly
more information that just asymptotic invariance. One solution is due to E. Breuillard,
applies to all word metrics on simply connected nilpotent Lie groups (as well as some
further Lie groups of polynomial volume growth) and in fact gives the sharper result that
the volume growth of balls is exact, and hence they are of course asymptotically invariant.
In fact the result applies to more general metrics—see Theorem 4.6.

Another solution is due to R. Tessera [148], applies also to all word metrics on con-
nected Lie groups with polynomial volume growth, and also yields a result sharper than
asymptotic invariance. Indeed, the fact that the volume of the shell of widthr namely
mG(Bt+r \ Bt) is asymptotically negligible when compared to the volume of the ball
mG(Bt ), can be given a precise quantitative form, as follows.

THEOREM 4.14 (Balls satisfying the doubling condition are asymptotically invariant
[148]). LetG be an lcsc group, and letd be a word metric satisfying the doubling condi-
tion. Then there exist positive constantsδ andC, such thatmG(Bt+1 \Bt)� Ct−δmG(Bt )
for all t ∈ N. In particular, the sequence of ballsBt is asymptotically invariant.

In fact, in [148] a more general result is proved, namely the same estimate is established
for every monotone metric on a metric-measure space. We remark that the doubling con-
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dition follows from strict growth, a result established by Y. Guivarc’h for connected Lie
groups of polynomial volume growth and stated in Theorem 4.8.

For completeness, we indicate here the elegant elementary argument given in [148] for
word metrics in the group case, which proves Theorem 4.14.

PROOF. LetV ⊂G be a compact symmetric neighborhood of the identity, andd the corre-
sponding left invariant word metric. LetBn be the sequence of ball centered at the identity,
and letCn,n+k = Bn+k \ Bn be the shell of widthk and inner radiusn. We are interested
in comparing the size of the shellCn−1,n and the ballBn. To do that, first note that the
doubling condition is equivalent to the statement that for some fixed positive constantc

independent ofn, |Bn| = |C0,n| � c|Cn,2n| = |B2n \Bn|.
Thus a natural generalization of the doubling condition from balls to shells would be the

estimate|Cm−k,m| � c|Cm,m+k|, for some fixed constantc and allk �m.
Assuming this estimate for the moment, consider the following disjoint union of shell

whose width doubles at each step:

Dj = Cn−1,n ∪Cn−2,n−1 ∪Cn−4,n−2 ∪ · · · ∪Cn−2j ,n−2j−1 = Cn−2j ,n,

Dj+1 is obtained by adding one more shell toDj , and the foregoing estimate (taking
k = 2j ,m= n− 2j ) implies that the last shell added toDj to produceDj+1 satisfies

|Cn−2j+1,n−2j |� c|Cn−2j ,n| = c|Dj |.

Thus|Dj+1| � (1+ c)|Dj | and hence|Dj | � (1+ c)j |Cn−1,n|. Letting i = [log2n], note
that clearlyDi ⊂ Bn and hence

|Bn|� |Di |� (1+ c)i |Cn−1,n| � 1

2
(1+ c)logn|Cn−1,n| = 1

2
nlog2(1+c)|Cn−1,n|.

Thus the size of the shell does indeed satisfy|Cn−1,n| � Bn−δ|Bn|.
Now to obtain the estimate|Cm−k,m| � c|Cm,m+k|, one uses the doubling condition, as

follows. First, note that by the triangle inequality, for 1� k � n/4

Bk ·Cn−2k,n−2k+1 ⊂ Cn−4k,n and Cn,n+4k ⊂ B8kCn−2k,n−2k+1.

Let xi, i ∈ I be a maximalk-net inCn−2k,n−2k+1, namely such thatBk(xi) ∩ Bk(xj )= ∅
if i �= j . By maximality, we haveCn−2k,n−2k+1 ⊂⋃i∈I B2k(xi) and thereforeCn,n+4k ⊂⋃
i∈I B10k(xi). However, the doubling condition clearly implies that|B10k| � A|Bk|, and

thus we conclude that

|Cn−4k,n| � |Cn−2k,n−2k+1|�
∑
i∈I

∣∣Bk(xi)∣∣� 1

A

∑
i∈I

∣∣B10k(xi)
∣∣� 1

A
|Cn,n+4k|.

The inequality|Cm−k,m| � c|Cm,m+k| for all k �m follows similarly. �
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5. Pointwise ergodic theorems for groups of polynomial volume growth

Our main purpose in this section is to give a complete account of the proofs of the following
results, which generalize Birkhoff’s, Wiener’s and Calderon’s pointwise ergodic theorems.
We start with the following basic result, which is a variation on the classical results devel-
oped by Wiener [155], Riesz [131] and Calderon [19], and relies on their arguments.

THEOREM 5.1 (Pointwise ergodic theorem for groups with volume doubling, asymptot-
ically invariant balls).Let G be locally compact second countable group of polynomial
volume growth with respect to the admissible metricd . If the family of ballsBt satisfies the
doubling condition and is asymptotically invariant under translations, then the family of
ball averagesβt defined byd satisfies the pointwise ergodic theorem inLp, 1� p <∞.

Recall now that according to Theorem 4.6, balls w.r.t. word metrics on (say) simply con-
nected nilpotent Lie groups have exact polynomial growth. Thus they satisfy the doubling
condition and are asymptotically invariant under translations. Together with Theorem 5.1
this proves the following result, due to E. Breuillard.

THEOREM 5.2 (Pointwise ergodic theorem for simply connected nilpotent Lie groups
[15]).

(1) LetG be a simply connected nilpotent Lie group. Letd be the distance function de-
rived from aG-invariant Riemannian metric, a homogeneousG-invariant metric, or
a word metric, andβt the corresponding ball averages. Thenβt satisfy the pointwise
ergodic theorem in everyLp, 1� p <∞.

(2) The same result holds for any finitely generated nilpotent group, with d any word
metric.

We note that the result for discrete nilpotent groups follows already from Pansu’s Theo-
rem (Theorem 4.4).

An alternative proof of a generalization of Theorem 5.2 follows by combining Guiv-
arc’h’s results on growth, and Tessera’s result on asymptotic invariance. Recall that The-
orem 4.14 asserts that the doubling condition implies asymptotic invariance. Theorem 4.8
establishes that connected Lie groups of polynomial volume growth have strict polynomial
growth and thus satisfy the doubling condition. Thus together with Theorem 5.1, these
results imply pointwise convergence inL1 of ball averages, for every Lie group of polyno-
mial volume growth.

In fact, utilizing fully the results concerning growth in [64], together with Losert’s struc-
ture theorem [93] for lcsc groups of polynomial volume growth based on Gromov’s the-
orem [63], it is possible to give a complete solution to the ball averaging problem for all
metrics (quasi-isometric to) word metrics on all lcsc groups of polynomial volume growth.
We formulate this results as follows, and will outline its proof in Section 5.5.

THEOREM 5.3 (Pointwise ergodic theorem for groups with polynomial volume growth).
For every locally compact second countable groupG of polynomial volume growth, the
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family of ball averagesβt defined by any word metric satisfies the pointwise ergodic theo-
rem inLp, 1� p <∞. The same holds true for the balls determined by any left-invariant
metric quasi-isometric with a word metric.

In the next four subsections of the present section we will give a complete proof of
Theorem 5.1, demonstrating the four steps called for by the recipe of Section 2.3. In the
fifth we will describe the ingredients needed to complete the proof of Theorem 5.3.

PROOF OFTHEOREM 5.1. Given a group of polynomial volume growth with asymptoti-
cally invariant balls, the plan of the proof is to follow the four steps outlined in the recipe
of Section 2.3, and we start with

5.1. Step I: The mean ergodic theorem

For the proof of the mean ergodic Theorem we will use here a standard variant of F. Riesz’s
[131] classical proof of von Neumann’s mean ergodic theorem.

First let us note thatL2(X) is the direct (orthogonal) sum of the subspacesI consisting
of G-invariant vectors, andK= span{(π(g)− I )f ; f ∈ L2(X), g ∈G}. Now note that if
h ∈K is of the formh= π(g)f − f , then clearly,∥∥π(βt )h∥∥L2(X)

= ∥∥(π(βt )π(g)− π(βt ))f ∥∥L2(X)

� ‖βt ∗ δg − βt‖L1(G)‖f ‖L2(X).

But since by Proposition 4.13(4), ast→∞
1

mG(Bt )
mG(Btg∆Bt)→ 0

we have limt→∞ π(βt )h= 0 in L2-norm for a dense set ofh ∈K, hence for allh ∈K, by
an obvious approximation argument.

Since clearlyπ(βt )f = f for everyf ∈ I, we conclude that for everyf ∈ L2(X) =
K⊕ I

lim
t→∞
∥∥π(βt )f − Ef

∥∥
L2(X)

= 0,

whereE is the projection on the spaceI of G-invariant vectors, so that the mean ergodic
theorem holds inL2(X). The mean ergodic theorem also holds in everyLp(X), 1� p <
∞, by standard approximation argument, using the fact thatL∞ is norm-dense in everyLp.

5.2. Step II: Pointwise convergence on a dense subspace

Let 1� p <∞, and consider the space

K′ = span
{
h= π(g)f − f ; f ∈ L∞(X), g ∈G}
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and the spaceI ofG-invariant functions inL∞(X). The sum of these two spaces is dense in
Lp(X), as follows from the following two facts. First, everyu ∈ Lq(X) (where 1

p
+ 1
q
= 1)

which integrates to zero against every function inK′ is aG-invariant function, sinceL∞ is
norm-dense in everyLp. Second, sinceu is measurable w.r.t. theσ -algebra ofG-invariant
functions, if it integrates to zero against the characteristic function of everyG-invariant
set, then necessarilyu= 0.

Now again as in Riesz’s argument of Section 5.2, ifh = π(g)f − f then for almost
everyx ∈X

∣∣π(βt )h(x)∣∣= ∣∣π(βt ∗ δg − βt )f (x)∣∣� 2‖f ‖L∞(X)
mG(Bt )

mG(Btg∆Bt)→ 0.

Thusπ(βt )f (x)→
∫
X
f dm almost everywhere for everyf in the dense subspaceK′ ⊕ I

of Lp(X).

REMARK 5.4. Anticipating some arguments needed in the sequel, we note that the proof
of the mean ergodic theorem is based solely on property (5) in Proposition 4.13 above,
namely asymptotic invariance under translation. The same remark applies to the proof of
the existence of a dense subspace where pointwise convergence holds.

5.3. Step III: The maximal inequality for ball averages

The maximal inequality for ball averages will be established in two stages, in Sections 5.4.1
and 5.4.2. First the maximal inequality for the special action of the ball averages by con-
volution on the group manifold will be established, using the volume doubling condition
which holds in all groups of strict polynomial volume growth. Then a transfer principle
will be formulated, which will allow us to deduce the maximal inequality for an arbitrary
action from its validity for convolutions.

5.3.1. Maximal inequality for convolutions: the volume doubling condition.The method
of proof of the weak-type(1,1)maximal inequality for convolutions which we will present
originates in Wiener’s proof for balls inRd . It was later observed by Calderon [19] that
the proof only depends on the fact that the volume of a Euclidean ball of a given radius is
bounded by a fixed multiple of the volume of a ball of half the radius. In [19] this volume
doubling condition is introduced for more general families of setsNt ⊂ G, but here we
will continue to focus on the ball averaging problem.

We now turn to the covering lemma, which we reproduce in the original finite form given
in [155, Lemma C′].

LEMMA 5.5 (Wiener–Calderon covering argument [155,19]).Assumed is an admissible
metric on a lcsc groupG, which satisfies the doubling volume condition. Then every finite
family of balls{Bti , i ∈ I } in G contains a subfamily{Btj , j ∈ J ⊂ I } of disjoint balls
whose total volumemG(

⋃
j∈J Btj ), is at leastδ · mG(⋃i∈I Bti ), whereδ = δ(G) > 0.

Thus the total volume of the disjoint subcover is at least a fixed fraction of the total volume
of the original family.
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PROOF. The volume doubling condition obviously implies thatmG(Bt ) � δmG(B3t ).
I being finite, choose one of the balls in the family which has maximal radius, and la-
bel it Bt1. Consider now the subfamily{Bt ′i ; i′ ∈ I ′ ⊂ I } of all balls intersectingBt1. The
union of all the ballsBt ′i , i

′ ∈ I ′, is contained in a ball of radius at most three times that
of Bt1, with the same center. Therefore keepingBt1 and deleting all other balls intersecting
it, we keep at least a fractionδ of the total volume of the subfamily{Bt ′i ; i′ ∈ I ′}. We there-
fore put the indext1 in J , and apply the same argument again to the family{Bti ; i ∈ I \ I ′},
which consists only of balls disjoint fromBt1. Proceeding finitely many times, we obtain
a disjoint sequence of balls whose total volume occupies at least a fractionδ of the total
volumemG(

⋃
i∈I Bti ). �

A variant of the previous argument is the following covering lemma, which can be
proved in much the same way—see [97, Chapter IV, §1] for a more general formulation.

LEMMA 5.6 (Vitali covering lemma).Assumed is an admissible metric on an lcsc
group G, whose balls satisfy the doubling volume condition. Given any setA of pos-
itive Haar measure, there exists a disjoint sequence of ballsBti , i ∈ N, satisfying
mG(A \⋃i∈NBti )= 0.

Using Lemma 5.5, the following maximal inequality was proved by Calderon [19] (for
more general families of sets), following [155]. It generalizes the Hardy–Littlewood max-
imal inequality for averages on the real line, as well as Wiener’s maximal inequality for
balls in Euclidean space.

THEOREM5.7 (Maximal inequality for convolutions with ball averages satisfying the dou-
bling condition [155,19]).Assumed is an admissible metric on an lcsc groupG, whose
balls satisfy the doubling volume condition. Then the family of ball averagesβt satisfies
the weak-type(1,1)-maximal inequality for convolutions, given by

mG

{
g ∈G; sup

0<t<∞
∣∣F ∗ βt (g)

∣∣> ε}� C(G)

ε
‖F‖L1(G).

PROOF. SinceG is unimodular and the balls are symmetric, each of the measuresβt is
symmetric. The convolution operators are thus given by (see Section 2.1)

F ∗ βt (g)= 1

mG(Bt )

∫
Bt

F (gh)dmG(h)= 1

mG(Bt )

∫
y∈Bt (g)

F (y) dmG(y),

whereBt(g) = gBt (e) is the ball of radiust and centerg. We denote as usualF ∗
β =

supt>0 |F ∗ βt (g)|. Since|F ∗ βt (g)| � |F | ∗ βt (g) we can and will assume thatF � 0,
without loss of generality. LetUε = {g ∈G; F ∗

β (g) > ε}, and letW ⊂ Uε be compact. By
definition, for eachw ∈W there is a ballBrw(w)=wBrw(e) with centerw and radiusrw
satisfying

mG
(
Brw(e)

)=mG(Brw(w))< 1

ε

∫
y∈Brw (w)

F (y) dmG(y).
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There exists a finite covering ofW using the collection of open ballswBrw(e), and let
us denote a finite covering family by{Bi; i ∈ I }. By Lemma 5.5 we can choose a finite
disjoint subfamily{Bj ; j ∈ J } whose union retains at least a fractionδ(G) of the measure
of the union of the ballsBi , i ∈ I . Combining these two estimates,

mG(W)�mG
(⋃
i∈I
Bi

)
� 1

δ(G)
mG

(⋃
j∈J
Bj

)

� 1

δ(G)ε

∫
∪j∈J Bj

F (g)dmG(g)�
1

δ(G)ε
‖F‖L1(G).

Taking the supremum over all compact sets contained inUε we conclude that the same
estimate holds for the measure of the setUε and this concludes the proof of the weak-type
(1,1) maximal inequality. �

We have thus established the maximal weak-type(1,1) inequality for the family of
operatorsF  → F ∗ βt of right convolutions by the ball averagesβt .

REMARK 5.8. The covering arguments of Lemmas 5.6 and 5.7 described above fail for
groups with exponential volume growth. However, the maximal inequality for ball averages
acting by convolutions is often true, as we shall see below. Thus for semisimple Lie groups
G the action of the ball averages by convolution on the symmetric spaceG/K satisfies the
weak-type(1,1)maximal inequality, as shown in [143]. There does not seem to be an lcsc
group for which the weak type(1,1) maximal inequality for admissible ball averages is
known to fail, for convolutions or otherwise. We refer to [111] for more information on
this subject.

5.3.2. Maximal inequality for general actions: the transfer principle.We now come to a
basic observation whose origin is in Wiener’s proof of the maximal inequality for ball aver-
ages in actions ofRd , and was subsequently considerably generalized and expanded (as we
shall see below). Wiener recognized that in order to prove the maximal inequality for ball
averages in a measure-preserving action of the group on ageneral space, it is sufficient to
prove the maximal inequality for theaction of the group on itself by translation, provided
that the balls are asymptotically invariant. This observation was later termed the transfer
principle, and the idea underlying it is the following (see [155, proof of Theorem IV′]).
Apply the operatorβr to the functionf t , which isf restricted to the subsetBt · x of the
G-orbit of x in X. Replacingβrf (x) by βrf t (x) produces an error which is controlled by
the (normalized) difference in volumes betweenBr+t andBt . Since(|Br+t \Bt |)/|Bt | → 0,
it follows that we may consider in effect (almost) every orbit individually. Thus maximal
inequalities for functions onX are reduced to maximal inequalities forconvolution op-
eratorson the group manifold. We will give here first a very simple formulation of the
transfer principle for strong maximal inequalities, and defer a more general formulation to
Section 6.

Explicitly, let d(g,h) be a left-invariant admissible metric onG, and let|g| = d(e, g).
Then clearly|gh| � |g| + |h|. Consider as usual the familyβt of probability measures on
G defined by the balls.
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THEOREM5.9 (The transfer principle for ball averages on groups with polynomial volume
growth). Supposeρ(βt ), 0� t � r , satisfy the strongLp-maximal inequality∥∥∥ sup

0<t�r
ρ(βt )F

∥∥∥
p

� Cp‖F‖p

for F ∈ Lp(G), and some1<p <∞, whereρ is the right regular representation. Then
(1) π(βt ) satisfy the maximal inequality

∥∥∥ sup
0<t�r

∣∣π(βt )f ∣∣∥∥∥
p

� Cp
(
mG(BR)

mG(BR−r )

)1/p

‖f ‖p

in Lp(X), for any measure preserving actionπ ofG on aσ -finite measure spaceX.
HereR � 2r is any positive number.

(2) In particular, if limR→∞mG(BR)/mG(BR−r )= 1, andβt , 0< t <∞ satisfies the
maximal inequality for right convolutions on the group manifold, thenβt satisfies
the maximal inequality in any measure-preserving action.

PROOF. Givenf ∈ Lp(X), fix x ∈X and define:Fx(g)= f (g−1x)= π(g)f (x) if |g| �
R andFx(g)= 0 otherwise. Clearly, if|g| �R− r, |h| � r , thenFx(gh)= π(g)π(h)f (x).
Now integrate overh w.r.t. the measureβt , t � r . Then we clearly haveπ(g)π(βt )f (x)=
ρ(βt )Fx(g), as long as|g| �R− r . Taking the supremum over 0� t � r of thepth power,
we obtain:

π(g) sup
0<t�r

∣∣π(βt )f (x)∣∣p = sup
0<t�r

∣∣ρ(βt )Fx(g)∣∣p.
Now integrate w.r.t.g ∈ BR−r (recall thatG is unimodular), and use the maximal inequality
for ρ(βt ), to get:∫

BR−r
π(g) sup

0<t�r

∣∣π(βt )f (x)∣∣p dg�
∫
G

sup
0<t�r

∣∣ρ(βt )Fx(g)∣∣p dg
� Cpp
∫
G

∣∣Fx(g)∣∣p dg.
SinceFx(g) has support inBR , the last integral equalsCpp

∫
BR

|Fx(g)|p dg. Finally, we
integrate overX and use the fact thatG is measure preserving, to obtain:∫

BR−r

∫
X

π(g) sup
0<t�r

∣∣π(βt )f (x)∣∣p dmdg � Cpp
∫
BR

∫
X

∣∣f (g−1x
)∣∣p dm(x)dg.

Hence ∥∥∥ sup
0<t�r

∣∣π(βt )f ∣∣∥∥∥
p

� Cp
( |BR|
|BR−r |

)1/p

‖f ‖p.
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This concludes the proof of the maximal inequality stated in part (1). The proof of (2) is
an immediate consequence. �

REMARK 5.10. A similar argument establishes also the weak-type(1,1) maximal in-
equality for the ball averages. We have elected to present first the proof of the strongLp-
maximal inequality, for simplicity. The transfer of the weak-type(1,1)maximal inequality
will be demonstrated in greater generality in Section 6 below.

5.4. Step IV: Interpolation arguments

Thus far, taking Remark 5.10 for granted, we have established the weak-type(1,1) maxi-
mal inequality for general measure-preserving actions ofG, together with the mean ergodic
theorem and pointwise convergence on a dense subspace. According to the recipe of Sec-
tion 2.3, Theorem 5.1 has therefore been established forf ∈ L1(X). To conclude the proof
of Theorem 5.1 is an easy matter and it remains only to note the following.

The familyβt consists of Markov operators, and clearly eachπ(βt ) has norm bounded
by 1 as an operator onL1(X) andL∞(X). It is clear that

sup
t>0

∣∣π(βt )f (x)∣∣= f ∗
β (x)� ‖f ‖L∞(X).

Given the weak-type(1,1)-maximal inequality for ball averages in an arbitrary measure-
preserving action, by Marcinkiewicz’s interpolation theorem,f ∗

β satisfies the strongLp-
maximal inequality for 1<p <∞.

This concludes the proof of Theorem 5.1. �

5.5. Groups of polynomial volume growth: general case

We now proceed with

PROOF OFTHEOREM 5.3. According to Theorem 5.1, to show that the balls of a given
admissible metricd on a groupG with polynomial volume growth satisfy the pointwise
ergodic theorem, it suffices to show that they are asymptotically invariant under transla-
tions and volume doubling. By Theorem 4.14, in fact a sufficient condition for asymptotic
invariance is that the balls satisfy the volume doubling property. As noted already above, if
the balls have strict polynomial volume growth, then they clearly satisfy the doubling vol-
ume condition. Furthermore, if the balls for a given metric have strict polynomial growth,
then it is clear that the balls with respect to any quasi-isometric metric also have strict
polynomial growth, and thus also satisfy the doubling condition. Therefore Theorem 5.3
will be completely proved once we establish the following

PROPOSITION5.11. Given any lcsc groupG with polynomial volume growth,G has strict
polynomial volume growth w.r.t. any metric quasi-isometric to a word metric.
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PROOF. The argument utilizes the definitive results on strict polynomial growth of Lie
groups, obtained by Y. Guivarc’h [64], together with a structure theorem for lcsc groups
with polynomial volume growth obtained by V. Losert [150], generalizing Gromov’s result
[63] in the discrete case.

Thus according to [150, Theorem 2] any lcsc group with polynomial volume growthG

admits a normal seriesC >R>N >Gwith C andG/N compact,R/C a connected solvable
Lie group of polynomial volume growth, andN/R a finitely generated discrete nilpotent
group.

By [64, Theorem I.4],G has strict growth ifG/C does, so we may assumeC = {e}.
R is a closed subgroup ofG, and thus has polynomial growth by [64, Theorem I.2]. Now
by [64, Theorem I.4], sinceN is normal and co-compact inG, it has a growth function
equivalent to that ofG, and henceN has polynomial growth, andG has strict growth
if N does. So it suffices to show thatN has strict growth, and sinceR is solvable, and
N/R nilpotent, it follows thatN is a solvable Lie group with connected componentR

and polynomial volume growth. Thus by [64, Theorem III.5] it follows thatN has strict
polynomial volume growth. �

We remark that Proposition 5.11, in combination with Theorem 4.14, implies of course
the following fact, which we record for completeness.

PROPOSITION5.12. LetG be an lcsc group with polynomial volume growth, d any metric
quasi-isometric to a word metric, andBt the corresponding balls. Then

(1) The ballsBt are asymptotically invariant under translation.
(2) The shellsCt = Bt+1 \ Bt satisfymG(Ct) � Ct−δmG(Bt ), for some positiveδ

andC, for t � 1.

5.5.1. Subsequence theorem for groups with subexponential growth.Let us note the fol-
lowing regarding pointwise ergodic theorems for subsequences of ball averages.

(1) Calderon’s original formulation [19] of his pointwise ergodic theorem did not
prove or assume strict polynomial volume growth, but instead noted that the
doubling condition implies the following property for the volume of the balls.
There exists a setD ⊂ R of density 1, such that for anys > 0, we have
limt→∞mG(Bt±s)/mG(Bt )= 1. Thus, using the arguments above, it is shown
in [19] that the pointwise ergodic theorem holds forπ(βt )f (x), provided that as
t → ∞ it assumes only values from the setD. Thus it was shown in [19] that in
every group satisfying the doubling condition, there is a subsequenceβtn satisfying
the pointwise ergodic theorem inL1.

(2) Similarly, subexponential growth (which is equivalent to polynomial volume growth
in the connected Lie group case but not in general) implies that a subsequence of the
sequence of balls is asymptotically invariant. Hence in particular the mean ergodic
theorem is true for the subsequence.

(3) For a discrete subgroup of exponential growth, it follows easily from the definition
that no subsequence of balls can be a Følner sequence. We recall that it has been
established in [127] that whenG is a connected solvable Lie group and has exponen-
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tial volume growth, again no subsequence of the sequence of balls is asymptotically
invariant.

6. Amenable groups: Følner averages and their applications

6.1. The transfer principle for amenable groups

As we shall see presently, inspection of the proof of Theorem 5.9 reveals that the condition
which is essential for the transfer principle to hold (for an arbitrary familyµt of probability
measures with compact supports, not justβt ) is the existence of a sequence of setsFn
(given there by the ballsBn) with the following property.

DEFINITION 6.1 (Følner conditions). A sequenceFn of compact sets of positive Haar
measure in an lcsc groupG is called

(1) (right)Følner sequenceif for everyg ∈G

lim
n→∞

η(Fng∆Fn)

η(Fn)
= 0;

(2) (right)uniform Følner sequenceif for any given compact setQ⊂G we have,

lim
n→∞

η(FnQ∆Fn)

η(Fn)
= 0.

It then follows also that for every compact setQ

lim
n→∞

η(FnQ)

η(Fn)
= 1,

whereη is right Haar measure onG.

The fact that the existence of a Følner sequence is sufficient for the validity of a transfer
principle (generalizing that of Wiener [155]) was proved in various different formulations
by a number of authors, starting with Calderon [20], followed by Coifman and Weiss [30],
Emerson [46], Herz [72] and Tempelman [147].

The existence of a Følner sequence in an lcsc groupG is equivalent toG being amenable,
and as is well-known, polynomial volume growth implies amenability, but there are many
amenable groups of exponential volume growth. Thus the Følner condition yields a signif-
icantly more general transfer principle than Theorem 5.9. We now turn to the formulation
and proof of a version of the transfer principle for amenable groups that will be found
useful below.

THEOREM 6.2 (The transfer principle for amenable groups).Letµt , 0< t <∞, be prob-
ability measures with compact supports on an lcsc groupG. Assume that fort � R we
havesupp(µt )⊂Q, whereQ is a compact subset(possibly depending onR). Supposeη is
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right Haar measure onG, and thatµt ,0� t �R, satisfy the following maximal inequality
for F ∈ Lp(G,η), where1<p <∞∥∥∥∥ sup

0<t�R

∣∣∣∣ ∫
G

F(gh)dµt (h)

∣∣∣∣∥∥∥∥
Lp(G,η)

� Cp‖F‖Lp(G,η).

(1) If A is any compact set of positive measure inG, thenπ(µt ) satisfy the strongLp-
maximal inequality

∥∥∥ sup
0<t�R

∣∣π(µt )f ∣∣∥∥∥
p

� Cp
(
η(AQ)

η(A)

)1/p

‖f ‖p

for any measure preserving actionπ ofG on aσ -finite measure space(X,m).
(2) If the weak-type(1,1)-maximal inequality holds for the action by translation,

namely forF ∈ L1(G,η)

η
{
g ∈G; sup

0<t�R

∣∣F(gh)dµt (h)∣∣> δ}< C
δ
‖F‖L1(G,η).

Then for any measure-preserving action on(X,m) the following weak-type(1,1)-
maximal inequality holds(for anyA as in(1))

m
{
x ∈X; sup

0<t�R

∣∣π(µt )f (x)∣∣> δ}< η(AQ)
η(A)

C

δ
‖f ‖L1(X).

(3) WhenAn satisfieslimn→∞ η(An ·Q)/η(An) = 1, the maximal inequalities forµt
hold inLp(X), 1<p <∞ (with the same bound as inLp(G)) namely∥∥∥ sup

0<t�R

∣∣π(µt )f ∣∣∥∥∥
Lp(X)

�Cp‖f ‖Lp(X)

and

m
{
x ∈X; sup

0<t�R

∣∣π(µt )f (x)∣∣> δ}< C
δ
‖f ‖L1(X).

(4) Finally, if An satisfy the foregoing condition for every compactQ (namely ifAn
form a right uniform Følner sequence) and the assumption regarding the maximal
inequalities for convolutions is satisfied forR =∞, then so is the conclusion.

PROOF. (1) Givenf ∈ Lp(X), 1<p <∞, fix x ∈X and a compact setA⊂G of positive
measure, and define:

FA(g)= f
(
g−1x
)= π(g)f (x) if g ∈A, and FA(g)= 0 otherwise.

Clearly, if k ∈A andh ∈Q, thenFAQ(kh)= π(k)π(h)f (x).
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By assumptionQ contains the support ofµt , 0< t � R, and we can therefore integrate
the last equation overh ∈Q w.r.t. the measureµt and write, as long ask ∈A

π(k)π(µt )f (x)=
∫
G

FAQ(kh)dµt (h).

Taking the supremum over 0< t �R of thepth power, we obtain:

π(k) sup
0<t�R

∣∣π(µt )f (x)∣∣p = sup
0<t�R

∣∣∣∣ ∫
G

FAQ(kh)dµt (h)

∣∣∣∣p.
Now integrate overk ∈A using right-invariant Haar measureη, and extend the integra-

tion to all ofG on the right-hand side. This yields the obvious inequality∫
A

π(k) sup
0<t�R

∣∣π(µt )f (x)∣∣p dη(k)� ∫
G

sup
0�t�R

∣∣∣∣ ∫
G

FAQ(kh)dµt (h)

∣∣∣∣p dη(k)
using the strongLp-maximal inequality which we assumed for the right-hand side, together
with the fact that (by definition)FAQ is supported inAQ ⊂ G, we obtain that the last
integral is bounded by:

C
p
p

∫
G

∣∣FAQ(g)∣∣p dη(g)= Cpp ∫
AQ

∣∣FAQ(g)∣∣p dη(g).
Finally, we integrate both sides of the inequality overX, and use Fubini’s theorem to

obtain: ∫
A

∫
X

π(k) sup
0<t�R

∣∣π(µt )f (x)∣∣p dm(x)dη(k)
� Cp
∫
AQ

∫
X

∣∣f (g−1x
)∣∣p dm(x)dη(g).

Hence since theG-action is measure preserving:∥∥∥ sup
0<t�R

∣∣π(µt )f ∣∣∥∥∥
Lp(X)

� Cp
(
η(AQ)

η(A)

)1/p

‖f ‖Lp(X).

This concludes the proof of part (1) of the theorem.
(2) As to part (2), fix a compact setA, and let us define the set

D(δ)=
{
(k, x) ∈A×X; sup

0<t�R
π(k)
∣∣π(µt )f (x)∣∣> δ}.

The first coordinate sections ofD(δ) are given, for eachk ∈A, by

Dk(δ)=
{
x ∈X; sup

0<t�R
π(k)
∣∣π(µt )f (x)∣∣> δ}.
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In particular, the set whose measure we are interested in estimating is

De(δ)=
{
x ∈X; sup

0<t�R

∣∣π(µt )f (x)∣∣> δ}.
Note that clearly,Dk(δ)= k(De(δ)), and since eachk ∈G is measure preserving, we have
m(Dk(δ))=m(De(δ)) for everyk ∈A.

The second coordinate sections ofD(δ) are given, for eachx ∈X, by

Dx(δ)=
{
k ∈A; sup

0<t�R

∣∣∣∣ ∫
G

π(kh)f (x) dµt (h)

∣∣∣∣> δ}.
By Fubini’s theorem, we have

η×m(Dδ)=
∫
X

η
(
Dx(δ)

)
dm(x)=

∫
A

m
(
Dk(δ)
)
dη(k)= η(A)m(De(δ)).

Now by assumption, the action by translation satisfies the weak-type(1,1)-maximal
inequality. Keeping the notation introduced in the proof of part (1), we have
|π(k)π(µt )f (x)| �

∫
G
|F |AQ(kh)dµt (h) if k ∈A, h ∈Q. Hence

η
(
Dx(δ)

)
� η
{
k ∈A; sup

0<t�R

∣∣∣∣ ∫
G

∣∣FAQ(kh)∣∣dµt(h)∣∣∣∣> δ}.
Combining the two foregoing arguments, we conclude

η(A)m
(
De(δ)
)= ∫

X

η
(
Dx(δ)

)
dm(x)�

∫
X

C

δ
‖FAQ‖L1(G,η) dm(x)

finally, using the fact thatG is measure-preserving and the definition ofFAQ, we obtain

m
(
De(δ)
)=m{x ∈X; sup

0<t�R

∣∣π(µt )f (x)∣∣> δ}� η(AQ)

η(A)

C

δ
‖f ‖L1(X)

and the proof of part (2) is complete.
(3) Part (3) follows immediately upon applying the following arguments. IfAn satisfies

for every compact setQ⊂G

lim
n→∞

η(AnQ)

η(An)
= 1

we take the limit asn→∞ in part (1) and conclude that for eachQ,∥∥∥ sup
0<t�R

∣∣π(µt )f ∣∣∥∥∥
Lp(X)

�Cp‖f ‖Lp(X).
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(4) SinceCp is fixed and independent ofQ, we therefore choose a sequence of com-
pact setsQm ⊂ Qm+1 whose union isG. Thus supp(µt ) ⊂ Qm for t � Rm, where
Rm → ∞. Applying the foregoing result to each setQm, a straightforward application
of the monotone convergence theorem or Fatou’s lemma allows us to conclude that also

∥∥f ∗
µ

∥∥
Lp(X)

=
∥∥∥ sup

0<t<∞
∣∣π(νt )f ∣∣∥∥∥

Lp(X)
� Cp‖f ‖Lp(X).

A similar argument proves the corresponding result for the weak-type(1,1) maximal in-
equality, and for the caseR→∞.

This concludes the proof of the transfer principle of amenable groups. �

REMARK 6.3. The formulation of the transfer principle in Theorem 6.2 is similar to the
one given by Tempelman in [145, Chapter 5, §1.4]. It differs somewhat from those of
Calderon [19], Emerson [46] and Coifman and Weiss [30]. The latter formulations all con-
sider the transfer of an arbitrary operatorT onL1

loc(G) satisfying the following properties.
(1) T is sublinear,
(2) T commutes with right translations,
(3) T is semilocal, i.e. if supp(F )⊂ C then supp(T F )⊂QC, for some fixed compact

setQ depending onT ,
(4) T maps the spaceL1

loc into the space of continuous functions onG.
Under these condition, if the operatorT is bounded onLp(G), the transferred operator is
defined and is bounded onLp(X)with the same bound, for an arbitrary measure-preserving
action. The same holds for the maximal function associated with a sequenceTn of such
operators. In the context of convolution operators, condition (4) would usually require
the absolute continuity of the measureµt . However, we would like to emphasize that the
transfer principle is valid also for any familyµt of singular measures onG (many of which
will appear below) and does not require absolute continuity.

REMARK 6.4. Let us note further that in the transfer principle formulated in Theorem 6.2
(as compared to Theorem 5.9)

(1) The family of measuresµt whose maximal inequalities are being transfered is arbi-
trary, and in particular the measures are not required to be symmetric (or, as already
noted, absolutely continuous).

(2) G need not be unimodular, and furthermore the Følner sequence which guarantees
the validity of the transfer principle can be arbitrary and no growth conditions (such
as the doubling condition) on it are assumed.

(3) A principle of local transfer, namely when all the measuresµt on G have their
support contained in a fixed compact set, holds without any restriction at all on the
groupG, which need not be amenable in this case.

(4) Similar results can be easily formulated for semigroup actions. Note that then we
must consider theanti-representationπ ′(g)f (x) = f (gx) (satisfying π ′(hg) =
π ′(g)π ′(h)), and the operatorsπ ′(µt )f (x)=

∫
G
f (gx)dµt .
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6.2. Generalizations of the doubling condition: regular Følner sequences

In Section 6.1 it was established that the transfer principle for amenable groups is a direct
consequence of the existence of a Følner sequence, and hence is valid for any amenable
group. Thus to obtain a maximal inequality forµt in a general action of an amenable groups
G it suffices to establish a maximal inequality for the action ofG by right translation. This
problem turns out to be a very difficult one for many of the most natural averagesµt . So
far, we have seen in Section 5 how to prove such a result for balls w.r.t. an admissible met-
ric, provided they satisfy the doubling volume condition, which then implies polynomial
volume growth.

Calderon’s original doubling volume condition [19] is formulated for an increasing
family Nt of compact symmetric neighborhoods of the identity, which generateG, and
satisfiesNtNs ⊂ Nt+s together withmG(N2t ) � CmG(Nt). A group possessing such a
family is necessarily unimodular, so any Haar measure can be taken. Note that for balls
Bt w.r.t. an invariant metric,B2t = Bt · Bt , so Calderon’s condition can be written as
mG(B

−1
t ·Bt)�CmG(Bt ).

Thus, a natural generalization of the doubling condition of [19] (as well as the conditions
considered by Pitt [126] and Cotlar [33]), is given by the following condition, introduced
by A. Tempelman [146].

DEFINITION 6.5 (Regular sequences[146]). A sequenceNk of sets of positive finite mea-
sure in an lcsc groupG is called regular if

mG
(
N−1
k ·Nk

)
� CmG(Nk)

for someC independent ofk, and a left Haar measuremG onG.

Regular sequences have been utilized to prove the following result, proved in [147,26,
11] for the unimodular case, and in [46] for general amenable groups. (For simplicity of
notation, we switch to anti-representations ofG here.)

THEOREM 6.6 (Pointwise ergodic theorem for regular Følner sequences [146,26,11,46]).
AssumeG is an amenable lcsc group, mG left Haar measure, andNk ⊂G is an increas-
ing left Følner sequence, with

⋃
k∈NNk = G, satisfyingmG(N

−1
k Nk) � CmG(Nk), i.e.

a regular sequence. Then
(1) The maximal operatorsupk∈N | 1

mG(Nk)

∫
Nk
F (gh)dmG(g)| satisfies the weak-type

(1,1) and strongLp maximal inequalities forF ∈ Lp(G,mG).
(2) The operatorsπ(ηk)f (x) = 1

mG(Nk)

∫
g∈Nk f (gx)dmG(g) satisfy the weak-type

(1,1) and strongLp maximal inequalities, in every measure-preserving action of
G on (X,m).

(3) The sequenceηk satisfies the pointwise ergodic theorem inL1, for every probability
measure preserving action ofG.

As to the proof of Theorem 6.6, we note the following. Given the transfer principle of
Theorem 6.2, to obtain the maximal inequalities stated in part (2) of Theorem 6.6, it suffices
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to prove the maximal inequality stated in part (1) for translations. The proof of the latter is
similar to that of the corresponding result for ball averages discussed in Section 5, and uses
a natural generalization of the covering arguments employed by Wiener and Calderon to
the present context. Namely, it is shown that under the condition of regularity, given a finite
set of translates{Nkgi; k ∈K, i ∈ I } which covers a given compact setF , it is possible to
select a subcover consisting ofdisjoint translates, which still covers a fixed fraction ofF .
The weak-type(1,1) inequality then follows as in Section 5.

To get the full pointwise ergodic theorem stated in Theorem 6.6(3), one needs also,
according to the recipe of Section 2.3, a mean ergodic theorem and pointwise convergence
on a dense subspace. We thus note the following

PROPOSITION6.7 (Mean ergodic theorem for Følner sequences).For every Følner se-
quenceFn on an amenable lcsc groupG, the normalized averages onFn satisfy the mean
ergodic theorem inL2(X) in every probability preserving action. Furthermore, there exists
in everyLp(X), 1� p <∞, a dense subspace on which pointwise convergence holds.

PROOF. Looking at the proofs given in Sections 5.2 and 5.3 of the corresponding state-
ments, it is clear that they are valid for every Følner sequence, as already noted there.�

REMARK 6.8.
(1) A practical criterion for the existence of a regular Følner sequence has never been

found. In particular it seems unknown which connected amenable Lie groups with
exponential volume growth (if any) posses such a sequence. For the latter class a
pointwise ergodic theorem will be proved for certain Følner sequences in Section 7,
using a different approach.

(2) It was shown in [92] that there exists a discrete amenable group of exponential vol-
ume growth (the “lamplighter” group) for which no regular Følner sequence exists.

6.3. Subsequence theorems: tempered Følner sequences

The discussion of Section 6.2 does not resolve the problem of the existence of a Følner se-
quence which satisfies the pointwise ergodic theorem inL1 in anarbitrary lcsc amenable
group. This problem was resolved inL2 using a more general condition, which was intro-
duced by A. Shulman (see [145, Chapter 5]) for this purpose, as follows.

DEFINITION 6.9 (Tempered sequences). A sequence of sets of positive finite measureNk
in G is called tempered if for some fixedC

mG
(
Ñ−1
n ·Nn+1

)
� CmG(Nn+1),

whereÑn =⋃k�n Nk .
We note that this condition is very different from the regularity condition of Section 6.2.

Indeed, regularity is primarily a growth condition, and it is often incompatible with the
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Følner property, as noted in [60]. Furthermore, regular Følner sequences have never been
found and are unlikely to exist in groups with exponential volume growth. On the other
hand, temperedness is primarily an invariance condition, implying that the(n+ 1)th set is
almost invariant under (inverse) left translations by all then previously chosen sets. Thus
an easy induction argument shows that starting with any Følner sequence, one can choose
a tempered subsequence [92, Proposition 1.4].

It was shown by A. Shulman that the averages associated with a tempered Følner se-
quence satisfy the pointwise ergodic theorem inL2 (see [145, §5.6]). The complete result
in L1 has been established by E. Lindenstrauss [92], as follows.

THEOREM 6.10 (Pointwise ergodic theorem for tempered Følner sequences [92]).LetNk
be a tempered left Følner sequence on an amenable lcsc groupG. The normalized averages
ηkf (x) = 1

mG(Nk)

∫
Nk
f (gx)dg satisfy the pointwise ergodic theorem, and the weak-type

(1,1) maximal inequality inL1, in every probability-preserving action ofG. Thus every
amenable lcsc group admits a Følner sequence satisfying the pointwise ergodic theorem
in L1.

As to the proof of Theorem 6.10, we note that it proceeds as usual by establishing the
weak-type(1,1) maximal inequality for the operatorsηk acting onX = G, and then
appeals to the transfer principle of Theorem 6.2. The maximal inequality uses a cov-
ering argument inG, where the covering sets are taken from the set of all translates
F = {Nng; n ∈ N, g ∈G}. The proof of the covering argument introduces an important
new probabilistic technique to the discussion, as follows. Given a compact setF ⊂G to be
covered, it is shown that a probability distribution can be introduced on the set of subcol-
lections ofF , such that typically (w.r.t. the probability distribution) a random subcollection
consists of almost disjoint sets, and these cover most ofF , approximately evenly. This al-
lows the construction of a subcover which retains at least a fixed fraction of the measure
of the original setF , and which is almost disjoint, and thus the weak-type(1,1)-maximal
follows in a manner similar to the proof of Theorem 5.9.

We note that another proof of the same result is due to B. Weiss [154]. The proof es-
tablishes a weak-type(1,1)-maximal inequality for averaging with respect to a tempered
Følner sequence, based of a covering argument for the family of translates of the sequence.
The covering lemma is based on an interesting direct combinatorial argument utilizing
temperedness, and is thus a deterministic one.

REMARK 6.11. The process of refining a given Følner sequence to a tempered subse-
quence may be rather drastic, namely the resulting subsequence may be very sparse. Thus
in [92, Corollary 5.6] it is shown that any tempered Følner sequence on the lamplighter
group must satisfy limk→∞ |Nk+1|/|Nk| = ∞, and in particular be of super-exponential
growth. A question raised in [92] is whether there always exists a Følner sequence with
exponential growth satisfying the pointwise ergodic theorem inL1.
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7. A non-commutative generalization of Wiener’s theorem

The present section is devoted to an exposition of some non-commutative generaliza-
tions of Birkhoff’s and Wiener’s pointwise ergodic theorems. These results are based on a
method introduced independently by Dunford [43] and Zygmund [156], and first utilized
in their proof of a fundamental result on (dominated) pointwise convergence of averages
of product type on the product of several not-necessarily-commuting one-parameter flows.
We will demonstrate below that the method can be applied to yield a large collection of
pointwise convergence theorems and strong maximal inequalities for families of measures
on groups, provided the groups can be represented as a product of more basic flows, for ex-
ample one-parameter flows. The Dunford–Zygmund method is thus an ideal tool for prov-
ing ergodic theorems for connected Lie groups, when they admit global Lie coordinates of
the second kind, and as we shall see also for algebraic groups, which admit a variety of de-
composition theorems. In particular, the method was used by Emerson and Greenleaf [60]
to give a proof of a pointwise ergodic theorem for certain sequences of Følner averages
on any connected amenable group. Below we will present the proof of a generalization of
the Dunford–Zygmund theorem, as well as a sharper form of the Greenleaf–Emerson theo-
rem. We will also give a proof of a pointwise ergodic theorems for groups with an Iwasawa
decomposition, generalizing Tempelman’s theorem for connected Lie groups. Finally we
will indicate further results based on these methods, which apply for example to general
algebraic groups (see [112] for details).

We note however that the averages that the Dunford–Zygmund method apply to are of
a very specific form, and in particular they usually bear no resemblance to ball averages
w.r.t. an invariant metric on the group.

7.1. The Dunford–Zygmund method

Let us start by formulating and proving the Dunford–Zygmund theorem in the most basic
special case. As will become clear below, however, this case already demonstrates the main
ideas involved.

PROPOSITION 7.1 (The pointwise ergodic theorem for two non-commuting flows [43,
156]). Let ut , t ∈ R, and vs , s ∈ R, be two not-necessarily-commutingR-flows, namely
representations ofR as measure preserving transformations of a probability space(X,m).
Then

(1) The strongLp-maximal inequality, 1 < p � ∞, holds for rectangle averages,
namely

∥∥∥∥ sup
T ,S>0

∣∣∣∣ 1

4T S

∫ T
−T

∫ S
−S
utvsf dt ds

∣∣∣∣∥∥∥∥
p

� Cp‖f ‖p.
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(2) LetU (resp. V) be the conditional expectation w.r.t. theσ -algebra of sets invariant
under everyut , t ∈ R (resp. everyvs , s ∈ R). Then for everyf ∈ Lp(X), 1< p <
∞, and for almost everyx ∈X

lim
min(T ,S)→∞

1

4T S

∫ T
−T

∫ S
−S
utvsf (x) dt ds = UVf (x)

and the convergence is also in theLp-norm.
(3) Pointwise convergence also holds forf ∈ L(logL)(X).

PROOF. (1) The maximal inequality stated follows from the following simple observa-
tions. As usual assume without loss of generality thatf � 0, and then clearly

sup
0<T�T0,0<S�S0

1

4T S

∫ T
−T

∫ S
−S
utvsf (x) dt ds

� sup
0<T�T0

1

2T

∫ T
−T
ut

(
sup
0<S

1

2S

∫ S
−S
vsf (x) ds

)
dt

�M∗
U

(
M∗
V f
)
(x).

Now the maximal functionM∗
V f , associated with the averages 1/2S

∫ S
−S vs ds, has anLp-

norm bound, by the maximal inequality for one-parameter flows, which is a consequence
of Theorem 5.7. The same of course holds for the maximal functionM∗

U which is associ-

ated with the averages 1/2T
∫ T
−T ut dt . Hence the maximal inequality for averaging over

|t | � T , |s| � S follows. The desired strong maximal inequality then follows from the
monotone convergence theorem.

(2) According to the recipe of Section 2.3, given the maximal inequality, pointwise al-
most everywhere convergence follows provided it can be established on a dense subspace
of Lp(X) (p <∞). We again apply the analog of Riesz’s argument [131] used in the proof
of Theorem 5.3 and define the spaceK= span{vsf − f | s ∈ R, f ∈ L∞(X)}. The sum of
K and the space of{vs; s ∈ R}-invariant functions is dense inLp(X), 1� p <∞. Now if
h= (vs0f − f ) ∈K, then forS � |s0|, and everyT > 0∣∣∣∣ 1

2T

∫ T
−T
ut

(
1

2S

∫ S
−S
vs(vs0f − f )(x) ds

)
dt

∣∣∣∣� 2|s0| · ‖f ‖∞
S

−→ 0

asS→∞. Therefore

lim
min(S,T )→∞

1

2T

∫ T
−T
ut

(
1

2S

∫ S
−S
vs(vs0f − f )(x) ds

)
dt = 0.

Of course, ifh is vs -invariant, then the expression

1

4T S

∫ T
−T

∫ S
−S
utvsh(x) ds dt = 1

2T

∫ T
−T
uth(x) dt
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converges almost everywhere by Birkhoff’s theorem. Thus pointwise convergence holds on
a dense subspace, and using the maximal inequality, also for everyf ∈ Lp(X), 1<p � ∞.

(3) The identification of the limit is obtained as follows. For anyf ∈ Lp(X):∥∥∥∥ 1

4T S

∫ T
−T

∫ S
−S
utvsf ds dt − UVf

∥∥∥∥
p

�
∥∥∥∥ 1

2T

∫ T
−T
ut

(
1

2S

∫ S
−S
vsf ds − Vf

)
dt

∥∥∥∥
p

+
∥∥∥∥ 1

2T

∫ T
−T
utVf dt − UVf

∥∥∥∥
p

.

Using the norm convergence toVf of the averages1
2S

∫ S
−S vsf ds, and the fact that each

operator 1
2T

∫ T
−T ut dt is a contraction we can estimate the norm of the first summand. The

norm of the second summand is estimated by the norm convergence of1
2T

∫ T
−T uthdt to

Uh, h= Vf . We conclude that the limit of the foregoing expression as min(S,T )→∞ is
0, and the proof of convergence inLp is complete.

(4) For the proof of pointwise convergence forf ∈ L(logL)(X) we refer the reader to
the original argument in [156]. �

REMARK 7.2 (On the identification of the limit in Theorem7.1).
(1) It is obvious that Theorem 7.1 and its proof admit extensive generalizations. Thus,

for example, we can replaceU andV by any Abelian (not necessarily connected)
Lie (semi)group, and replace the interval averages by any other Følner averages
satisfying the pointwise and maximal ergodic theorem. Furthermore, similar con-
clusions holds for any finite sequenceU1, . . . ,Uk of Abelian (semi)groups. We will
comment on this fact and some further generalizations below.

(2) Anticipating some arguments that will occur later on, note that in the proof of
part (2), the asymptotic invariance of the intervals[−S,S] ⊂ V under translation
plays an essential role in the proof. It provides an estimate in the pointwise conver-
gence argument for the bounded functions in question which isuniform in T , and
depends only on the size ofS, allowing the argument to proceed.

(3) A key problem in utilizing Theorem 7.1 is to make the identification of the possible
limits in Theorem 7.1 more precise. For example, if the intersection of the ranges of
the two projectionsU andV reduces to the constant functions, when is it true that
the limit in the theorem is the projection on the constants, namely

∫
X
f dm? Note

thatUf is not necessarilyV-invariant iff is.

REMARK 7.3 (Unrestricted convergence andL(logL)-results).
(1) It was established already in [156] that the existence of the pointwise limit stated in

part (2) of Theorem 7.1 holds for functionsf ∈ L(logL)k−1(X), in the case ofk
one-parameter flows. We refer to [50] for a more general result.

(2) On the other hand, we note that it is essential for the argument given in the proof
of Theorem 7.1 that we consider the strong maximal inequality—given by anorm
inequality inLp. Weak-type inequalities cannot be treated by the same argument,
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and indeed there is no weak-type(1,1) maximal inequality for general two non-
commuting flows. For general multi-parameter flows, and in fact even for commut-
ing ones, pointwise convergence inL1 does not always hold. For a counterexample
(for an action ofZd ) see [88, §6.1]. This phenomenon is due to the fact that in The-
orem 7.1 we allowunrestricted convergence, meaning that in the rectangle averages
the side lengthsT andS are chosen independently. Such general rectangles behave
differently than squares—for which pointwise convergence inL1 does hold for com-
muting flows, by Wiener’s theorem. The situation here is analogous to the classical
discussion of maximal inequalities for unrestricted rectangle averages onRd , and
the maximal inequality of Theorem 7.1 can be viewed as a non-commutative gen-
eralization of the Jessen–Marcinkiewicz–Zygmund maximal inequality—see, e.g.,
[50] or [141, Chapter X, §2.2] for a discussion.

Let us make the following simple observation, which will be found useful below.

REMARK 7.4. Under the condition of Theorem 7.1, if at least one of the groupsU or V
is ergodic on(X,m) then the following pointwise ergodic theorem holds, forf ∈ Lp(X),
1<p <∞, and almost everyx ∈X:

lim
min(T ,S)→∞

1

4T S

∫ T
−T

∫ S
−S
utvsf (x) dt ds =

∫
X

f dm.

Indeed, the assumption amounts to the fact thatV or U coincide with the projectionf  →∫
X
f dm. Since in any case

∫
X
Uf dm= ∫

X
Vf dm= ∫

X
f dm, the conclusion follows.

We now note the following natural generalization of Theorem 7.1, as well as [60, Theo-
rem 7.1], which will be used below.

THEOREM 7.5 [112]. Let U andV be lcsc group, and assume thatV is amenable. Let
ET ⊂ U andFS ⊂ V be compact sets of finite Haar measure. Assume thatFS is a Følner
family, and that both families of normalized averages satisfy the pointwise ergodic theorem
and strong maximal inequality inLp, 1<p <∞. LetU andV act by measure-preserving
transformations on a probability space(X,m). Then

(1) The strongLp-maximal inequality, 1<p �∞, holds for the averages given by∥∥∥∥ sup
T ,S>0

∣∣∣∣ 1

mU(ET )mV (FS)

∫
ET

∫
FS

uvf dmU(u)dmV (v)

∣∣∣∣∥∥∥∥
p

� Cp‖f ‖p.

(2) LetU (resp. V) be the conditional expectation w.r.t. theσ -algebra of sets invariant
under everyu ∈U (resp. everyv ∈ V ). Then for everyf ∈ Lp(X), 1<p <∞, and
for almost everyx ∈X

lim
min(T ,S)→∞

1

mU(ET )mV (FS)

∫
ET

∫
FS

uvf (x) dmU(u)dmV (v)= UVf (x)

and the convergence is also in theLp-norm.
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(3) If eitherU or V act ergodically, then the limit satisfiesUVf (x)= ∫
X
f dm.

(4) If bothET andFS satisfy the weak-type maximal inequality inL1, then pointwise
convergence holds also forf ∈ L(logL)(X).

REMARK 7.6. The proof of Theorem 7.5 proceeds using an argument similar to the one
given in the proof of Theorem 7.1 (and Remark 7.4). We note however that the Følner
property ofV plays a crucial role in the pointwise result. If we are interested only in norm
convergence, then the assumptions thatV is amenable andFS are Følner are not necessary,
andFS can be any family of sets onV for which the mean ergodic theorem holds. This
fact follows easily using the argument in the proof of part (3) of Theorem 7.1.

We also note that if both families of averagesET andFS satisfy the weak-type max-
imal inequality inL1, then the combined averages satisfy the maximal inequality in
L(logL)(X). This is a general property of the composition of two maximal operators both
satisfying the weak-type maximal inequality, which is due to [50]. We refer to [112] for
the details.

7.2. The ergodic theory of semidirect products

Continuing now with our theme of establishing pointwise ergodic theorems for group ac-
tions, assume now that the two groupsU andV that figure in Theorem 7.5 generate an
lcsc group. Thus we letG = UV be a semidirect product, whereV >G is a closed nor-
mal subgroup, andU a closed subgroup ofG, so thatG ∼= U?<V . The multiplication in
U?<V is given by(u1, v1)(u, v) = (u1u,u

−1v1u · v), and the explicit isomorphism be-
tweenU?<V andG is given byψ : (u, v)  → uv. The left Haar measure onU?<V is given
by the following well-known recipe.

LEMMA 7.7. The mapψ :U?<V → G is homeomorphism that maps the product of the
two left Haar measuresmU ×mV on the product spaceU × V to a left Haar measure on
G∼=U?<V .

PROOF. The claim amount to the fact that forf ∈ Cc(G), writing f (uv) = F(u, v), the
integral given by∫

G=UV
f (uv)dψ∗(mU ×mV )(uv)=

∫
U?<V F(u, v) dmU(u)dmV (v)

is invariant under left translations. But sinceV is normalized byU , andmU , mV are left-
invariant, translating byg = u1v1 we get:∫

UV

f
(
(u1v1uv)

)
dψ∗(mU ×mV )

=
∫
U

(∫
V

F
(
u1u,u

−1v1u · v
)
dmV (v)

)
dmU(u)
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=
∫
U

(∫
V

F (u1u,v) dmV (v)

)
dmU(u)

=
∫
U×V

F (u, v) dmU dmV =
∫
UV

f (uv)dψ∗(mU ×mV ). �

Lemma 7.7 allows us to state a pointwise ergodic theorem for averages defined by certain
sets of product type onG=UV , taken with the normalized left Haar measure as follows.

THEOREM 7.8 (Pointwise ergodic theorem for semidirect products with normal amenable
subgroup [112]).Let G = UV be a semidirect product as above, whereV > G is an
amenable subgroup. LetET ⊂ U andFS ⊂ V be as in Theorem7.5.Assume thatG acts
ergodically by measure-preserving transformations on a probability space(X,m). Then
for everyf ∈ Lp(X), 1<p <∞, and almost everyx ∈X we have

lim
min(T ,S)→∞

1

mU(ET )mV (FS)

∫
u∈ET

∫
v∈FS

uvf (x) dmU(u)dmV (v)

=
∫
X

f dm= lim
min(T ,S)→∞

1

mG(QT,S)

∫
QT,S

gf (x) dmG(g),

where the convergence is also in theLp-norm. HereQT,S ⊂G is the image ofET ×FS ⊂
U × V under the multiplication mapψ , and the average is w.r.t. the restriction of left-
invariant Haar measure onG toQT,S .

Furthermore, if the familiesET andFS satisfy the weak-type maximal inequality inL1,
then the averages onQT,S satisfy the maximal inequality inL(logL).

PROOF. The fact that the pointwise (and the norm) limit exist follows from Theorem 7.5,
and the limit is given byUVf . The only remaining issue is to identify the limit. But since
V is a normal subgroup ofG, for every functionh invariant underV , its translateπ(g)h is
also invariant underV . Therefore the spaceIV of V -invariant functions isG-invariant, and
hence it is also invariant under the projectionU , which is the limit in the strong operator
topology of 1

mU(ET )

∫
ET
udmU(u). HenceU maps the spaceIV into the spaceIV ∩ IU

of functions invariant under bothU andV . SinceG is ergodic, the latter space consists of
the constant functions only, and hence the functionUVf ∈ IU ∩IV is a constant. Its value
must be

∫
X
f dm since the operatorsπ(u) andπ(v) are measure-preserving, andU andV

are conditional expectations. The assertion regardingQT,S follows from Lemma 7.7. For
the last assertion stated, see Remark 7.6. �

We note that Theorem 7.8 generalizes [60, Theorem 7.1], which considers the case where
G is amenable, and identifies the limit only whenQTn,Sn is assumed to be a Følner se-
quence. In the case of amenable semidirect products it is possible to use Følner families on
the constituent groups to construct explicitly a Følner family onG, a fact due to F. Green-
leaf [59, Theorem 5.3], whose formulation follows.

THEOREM 7.9 (Construction of Følner sequence in semidirect products [59, Theo-
rem 5.3]). AssumeG is an amenable lcsc group, andG = UV is a semidirect product,
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whereU andV are closed subgroups withV normal. LetET ⊂ U andFS ⊂ V be Følner
families. Then

(1) There exist subsequencesTn andSn such that the setsJn =QTn,Sn ⊂G associated
withETn andFSn constitute a Følner sequence inG.

(2) Jn can be chosen to be an increasing sequence whose union coversG, providedET
andFS have the same properties.

7.3. Structure theorems and ergodic theorems for amenable groups

Theorem 7.8 and Theorem 7.9 can be exploited together with some structure theorems
for various classes of lcsc groups to produce a variety of pointwise and maximal ergodic
theorems. The first such result was established by F. Greenleaf and W. Emerson for con-
nected amenable lcsc groups in [60, Theorem 3.1], and was later extended to all connected
lcsc groups by A. Tempelman [145, Chapter 6, Theorem 8.4]). We will give a streamlined
account of the connections between the structure theory of some classes of lcsc groups
and the ergodic theorems they satisfy, and this will allow us to derive extensions of these
results in several directions. Succinctly put, we can establish pointwise ergodic theorems
for groups of the formG = KP , whereK is compact andS solvable and normal, and
also more generally for groupsG = KP whereK is compact andP amenable, but not
necessarily normal.

To begin with, we have the following corollary of Theorem 7.8.

THEOREM 7.10 (Pointwise ergodic theorem for algebraically connected amenable alge-
braic groups and connected amenable Lie groups [112]).Let G be an amenable lcsc
group, andH = UV be any decomposition into a semidirect product of two closed sub-
group, whereV is normal. Assume that(keeping the notation of Theorem7.8)ET ⊂U and
FS ⊂ V satisfy the pointwise ergodic theorem inLp, 1<p <∞, and thatFS is Følner.

(1) The familyQT,S ⊂H also satisfies the pointwise ergodic theorem inLp, 1< p <
∞, asmin{T ,S}→∞ independently, namely in every ergodicH -space

lim
min{T ,S}→∞

1

mG(QT,S)

∫
QT,S

gf (x) dm=
∫
X

f dm.

(2) Every algebraically connected amenable algebraic groupG over a locally compact
non-discrete field admits a closed normal co-compact subgroupH with a semidi-
rect product structureH =UV , withET ⊂U andFS ⊂ V satisfying the conclusion
in (1).For a certain compact subgroupK ⊂G, the normalized averages on the com-
pact sets(of positive Haar measure inG) Q′

T ,S = KET FS , satisfy the conclusion
in (1).

(3) The same conclusion holds for a connected amenable Lie groupG, provided its
maximal compact normal subgroupC is trivial. In general, the conclusion holds for
the averagesQ′′

T ,S ⊂G which are the inverse images ofQ′
T ,S ⊂G/C.

PROOF. The convergence statement in part (1) is of course an immediate consequence of
Theorem 7.8.
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Parts (2) and (3) state, first, that the groupsG in the relevant category satisfy a structure
theorem. For algebraic groups overF , this fact follows without difficulty from the fact that
G has homomorphic image with finite kernel, which has a finite index subgroup isomorphic
to a subgroupL of a proper parabolic subgroup ofGL(n,F ) (see, e.g., [64, Theorem IV.2].
ForL a decomposition of the formL = KAN is valid, whereN is the unipotent radical
(which is nilpotent),A is Abelian (and thusS = AN is solvable), andK compact. The
existence ofET andFS with the required properties on the component groups (or simply
onG itself) is thus clear as soon as the averagesFS are shown to exist on unipotent groups.
This can be done by induction on the dimension, for instance.

As to connected Lie groups, assume that the maximal compact normal subgroup is triv-
ial. ThenG is well-known to be a compact extension of a solvable Lie group, i.e.G=KS,
K compact,S closed normal solvable and co-compact (see, e.g., [64, Theorem IV.3],
or [60]). The existence of a semidirect product decomposition forS with ET andFS as
required follows, e.g., as in [60].

To complete the proof of (2) and (3), assume that the averages constructed fromET
andFS on a co-compact normal subgroupH =UV converge pointwise to anH -invariant
function. IfG = KH , K compact, then we claim that the averagesQ′

T ,S onG converge
pointwise to aG-invariant function. This follows sinceH is normal, and hence its space
of invariants is invariant underG, and hence underK . Thus iff is anH -invariant limit of
the averages onH , the average of its translates byK is still anH -invariant function. Thus
f is aG-invariant function, hence the constant

∫
G
f dm whenG acts ergodically.

Finally, to complete the case of connected Lie groups, note that clearly any limit of the
averagesQ′′

T ,S = mC ∗ Q′′
T ,S ∗ mC is aC-invariant function. We therefore consider the

space ofC-invariant functions, which is aG-invariant subspace on whichG acts viaG/C.
The preceding argument applies, and any limit ofQ′′

T ,S is indeed invariant underG. �

REMARK 7.11.
(1) We note that by Theorem 7.9 a subsequence of setsQ′

Tn,Sn
can be chosen which is

an increasing sequence of Følner setsJn in G, whose union coversG, and which
satisfies the pointwise ergodic theorem inLp, 1< p <∞. Thus Theorem 7.10
generalizes the pointwise ergodic theorem for connected amenable Lie groups due
to F. Greenleaf and W. Emerson [60].

(2) In the proof given in [60, Theorem 3.1], the identification of the limit is achieved
only by restricting the averages, and choosing sequencesTn → ∞ andSn → ∞
where the averagesQTn,Sn can be guaranteed to form a Følner sequenceJn. Then
the strong limit of this sequence of averages must be projection ontoG-invariant
function (by Proposition 6.7), hence the constant

∫
X
f dm in the ergodic case. The

pointwise ergodic theorem is asserted in [60, Theorem 3.1] only for averaging along
such Følner sequences in connected amenable Lie groups.

(3) Nevertheless, in fact pointwise convergence to the ergodic mean holds more gener-
ally, for the unrestricted averages onQT,S , as Theorem 7.10 show. Furthermore the
assumption of amenability ofG is also superfluous, as Theorem 7.8 shows. Indeed,
as we saw the identification of the limit as a product of conditional expectations that
the Dunford–Zygmund method provides, can replace the assumption of the exis-
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tence of global Følner sets inG. Together with the existence of a normal amenable
subgroup, this allows the conclusion that the limit must be the ergodic mean.

(4) Note also that theexistence problemfor such a Følner sequence in anarbitrary lcsc
amenable group (not necessarily connected Lie) has been solved by the pointwise
ergodic theorem for tempered Følner sequences, which holds in fact inL1 (and not
onlyLp, 1<p <∞), as stated in Theorem 6.10.

The Dunford–Zygmund method provides a great deal of useful information even in the
case where the groupG in question does not have any semidirect product structure, for
example ifG is a simple group. We now turn to discuss this possibility.

7.4. Structure theorems and ergodic theorems for non-amenable groups

Let us first recall the following well-known result regarding Haar measure (see, e.g., [52,
Chapter V, §3, Proposition 12]), which generalizes Lemma 7.7. We remark that for Lie
groups (and by the same argument for algebraic groups over locally compact non-discrete
fields) a very simple proof is given, e.g., in [54, Chapter 2, §2.4], see also [84, Chapter V,
§6].

LEMMA 7.12 (Haar measure on general products).LetG be an lcsc group, and letP and
K be two closed subgroups, such thatP ∩K is compact. Assume thatG= PK . Then for
everyf ∈ Cc(G) we have

(1)
∫
G

f (g)dmG(g)=
∫
P×K

f (pk)
∆G(k)

∆K(k)
dmP (p)dmK(k),

wheremG, mP andmK are left-invariant Haar measures, and∆K and∆G are the
modular functions ofK andG.

(2) In particular, if G is unimodular, then∫
G

f (g)dmG(g)=
∫
P×K

f (pk)dmP (p)∆K
(
k−1)dmK(k)

=
∫
P×K

f (pk)dmP (p)dηK(k),

wheredηK =∆K(k−1) dmK is right-invariant Haar measure onK .
(3) If in additionK is unimodular, thendmG = dmP dmK .

Perhaps the simplest family of groups which are not semidirect products and for which
Lemma 7.12 applies is the family of groupsG with an Iwasawa decomposition. Namely
G contains two closed subgroupP andK , with P amenable andK compact, such that
G = PK , and neither subgroups is normal. This family however is extremely important,
since as is well known, it contains all connected lcsc groups and all algebraically connected
algebraic groups over locally compact non-discrete fields.
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Together with Theorem 7.8, Lemma 7.12 can be used to derive a variety of pointwise
and maximal ergodic theorems for averaging on compact sets with respect to Haar-uniform
measure on them. Let us start with the following result, which utilizes also Theorem 7.10.
We note that the third and fourth part of the following theorem generalize results of A. Tem-
pelman [145, Chapter 6, Theorems 8.6, 8.7].

THEOREM 7.13 (Pointwise ergodic theorem for groups with an Iwasawa decomposition
[112]). LetG be a non-amenable lcsc group with an Iwasawa decomposition, G = PK ,
with P amenable and closed, andK compact. LetET ⊂ P be a family of sets, giving rise
to averages(w.r.t. left Haar measure onP ) satisfying the maximal and pointwise ergodic
theorem inLp, 1<p <∞. Then

(1) The Haar uniform averages on the setsRT = ETK ⊂G (normalized by left Haar
measure onG) satisfy the maximal inequality inLp, 1<p <∞.

(2) In every probabilityG-space in whichP acts ergodically, the averages in(1) con-
verge pointwise to the ergodic mean, for everyf ∈ Lp, 1<p <∞.

(3) Every algebraically connected algebraic group over a locally compact non-discrete
field, and every connected lcsc group, admit an Iwasawa decompositionG= PK ,
and a familyET ⊂ P such that in every ergodic action ofG and for everyf ∈ Lp,
1<p <∞,

lim
T→∞

1

mG(RT )

∫
RT

gf (x) dmG(g)=
∫
X

f dm, for almost allx ∈X.

(4) Under the same assumption as in(3), pointwise convergence and the weak-type
(1,1)-maximal inequality hold in fact forf ∈ L1(X), provided that the averages
onET ⊂ P satisfy the same properties. Such averagesET can be chosen in every
algebraically connected semisimple algebraic group.

SKETCH OF PROOF. Parts (1) and (2) are immediate consequences of Lemma 7.12 and
Theorem 7.5. (In fact Theorem 7.5 is superfluous in the present simple case, which can be
deduced directly.)

Part (3) involves three ingredients. First, every algebraically connected semisimple al-
gebraic group has an Iwasawa decomposition, and in particular, so does every connected
semisimple Lie group with finite center. A general algebraic group is a semidirect product
of a semisimple componentM without compact factors, and an amenable (and algebraic)
radical. Taking the product of the amenable radical and the minimal parabolic subgroup
of the semisimple componentM we clearly obtain an Iwasawa decomposition. Similarly,
every connected non-amenable lcsc groupG has a compact normal subgroupK0 such that
G/K0 is a connected semisimple Lie group without compact factors and with trivial center.
Clearly the inverse image of a minimal parabolic subgroup ofG/K0 again gives rise to an
Iwasawa decomposition inG.

The second ingredient is the fact that the subgroupP figuring in the Iwasawa decom-
position described above does admit setsET which satisfy the pointwise and maximal
ergodic theorem inLp, 1< p <∞. This of course follows in both cases considered here
from Theorem 7.10.
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The third ingredient is the fact thatP in the Iwasawa decomposition above does in-
deed always act ergodically ifG does. This fact follows from the Howe–Moore mixing
theorem [74] (see also [75]), as follows. The vanishing at infinity of matrix coefficients
of unitary representations without invariant vectors of a simple algebraic groupH implies
that every element whose powers are not confined to a compact subgroup ofH acts ergod-
ically in ergodicH -spaces. This can be used to show thatP as defined above is always
ergodic in ergodicG-spaces, in both cases. Indeed, everyP -invariant function is invariant
under the solvable radicalS of P . The latter is a normal subgroup ofG, and soG leaves
invariant the space ofS-invariant functions. On the latter spaceG acts vis its factor group
G/S, which is a semisimple group. Factoring further by the maximal compact normal fac-
tor ofG/S we are thus reduced to the case of a semisimple group without compact factors,
where the Howe–Moore mixing theorem can be applied.

As to part (4), we are considering the composition of the averages associated withET ⊂
P (taken with normalized left-invariant Haar measure onP ), composed with the constant
bounded operator given by averaging on the compact setK . It is clear by definition that
if the maximal function associated with averaging onET satisfies the weak-type(1,1)
maximal inequality in its own right, then it will still have this property when composed
with a fixed bounded operator. Now for algebraically connected algebraic groups,G =
PK =ANK , whereA is a split torus. It follows thatA admits a family of Følner sets with
a pointwise and weak-type maximal theorem inL1, and thus we can compose the averages
on A with a fixed average on a compact set inN and averaging onK . The integration
functional f  → ∫

X
f dm is invariant under such operators, and so the limit is still the

ergodic mean. We refer to [112] for more details. �

EXAMPLE 7.14 (Groups of graph automorphisms with an Iwasawa decomposition). We
note that the class of Iwasawa groups is very extensive, and contains many lcsc groups
which are not algebraic. For example, consider a closed non-compact boundary-transitive
subgroupG of the group of automorphisms of a bi-regular tree, or more generally of the au-
tomorphism group of a locally finite graphs with infinitely many ends. The stability group
P of a point in the boundary is a closed amenable subgroup, and it has a compact comple-
mentK with G=KP . It is not hard to show thatP itself has the structure of a semidirect
productP = Z?<KP , whereKP is compact (see [104] for the details). HenceP fulfills
the hypotheses of Theorem 7.10 and so has Følner setsET satisfying the pointwise and
maximal theorems inLp, 1< p <∞. By Theorem 7.13,RT = ETK satisfies the maxi-
mal and pointwise theorem inG-actions in whichP acts ergodically. However, by [95],
typically for such groupsG the subgroupP is indeed ergodic, and even mixing in every
ergodic action ofG, so the conclusion of part (3) of Theorem 7.13 holds in the context
as well. A similar conclusion applies in other contexts as well, e.g., for certain groups of
automorphisms of a product of bi-regular trees, which act transitively on the product of the
boundaries of the trees.

REMARK 7.15. We note that it is possible to use Theorem 7.8 to deduce a completely
different pointwise and maximal ergodic theorems for the algebraic groups in question.
Indeed, represent an algebraic groupG =ML as a semidirect product of a semisimple
algebraic group without compact factors and an amenable radicalL. Take the setsFS ⊂
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L provided by Theorem 7.10. If we can findET ⊂ M which satisfy the maximal and
pointwise ergodic theorem inLp, 1< p <∞, then by Theorem 7.8, the same will hold
for the setsQT,S ⊂ G. Now, as we will see below, in every semisimple algebraic group
without compact factors, the natural ball averages onG, bi-invariant under a maximal
compact subgroup, do indeed satisfy the pointwise and maximal theorems. Thus another
pointwise ergodic theorem is obtained from Theorem 7.8, different than Theorem 7.13. We
refer to [112] for more details.

REMARK 7.16. The result stated in Theorem 7.13 can be greatly improved in many cases.
For example, consider simple algebraic groups over a locally compact non-discrete field.
Then for many ergodic actions of such a group (in fact for all actions if its split rank is at
least two), it is possible to establish the following property, which is in striking contrast to
the ergodic theorems we have been considering thus far. The convergence of the horospher-
ical averages (see Section 12.2) associated with an Iwasawa decomposition to the ergodic
mean takes place at an exponentially fast rate for almost every point. Furthermore this rate
can be described explicitly, and (for groups of split rank at least two) is independent of the
action altogether, namely it depends only on the group and the averages chosen. We will
discuss this phenomenon in greater detail below in Theorem 12.6, and we refer to [108]
and [112] for full details.

7.5. Groups of bounded generation

As noted in Remark 7.2, the Dunford–Zygmund theorem applies to any finite sequence of
(say) one-parameter flows. Thus the Dunford–Zygmund method produces pointwise and
maximal theorems for averages on subsets of Lie groups which admit global coordinates
of the second kind. A natural extension of this concept here is thatG can be parametrized
by a product of (say) Abelian closed subgroups (none of which need to be normal or
connected). Thus the method applies to an extensive class of lcsc groups, namely all lcsc
groups of bounded generation, i.e. allowing global coordinates with coordinate subgroups
isomorphic toR or Z. By the same token, we could allow any finite sequence of amenable
subgroups to be taken here, provided we take Følner averages satisfying the maximal and
pointwise ergodic theorem.

It should be noted however, that in the present generality, the averages that are con-
structed by the Dunford–Zygmund method are usually no longer Haar-uniform averages
on compact subsets with an explicit geometric or algebraic description. Giving up both the
assumption of asemidirectproduct decomposition, as well as unimodularity of the compo-
nent groups, implies that the averages defined in terms of global coordinates will involve
certain densities w.r.t. Haar measure, and will be supported on certain compact sets arising
from the product. Both the sets and the densities may be difficult to compute, in general.

To illustrate the point, let us formulate the following consequence of the Dunford–
Zygmund method for subsets of lcsc groups admitting global coordinates of the second
kind (compare [145, Chapter 6, Theorem 8.4]).

THEOREM 7.17 (Pointwise ergodic theorem for boundedly generated lcsc groups).Let
G be an lcsc group, and suppose thatF ⊂G containsn closed amenable subgroupsUi ,
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1 � i � n, (for example, isomorphic toZ, R, Qp or Q∗
p) such that the mapψ :U1 ×

· · · × Un → F given byψ(un, . . . , u1) = un · · ·u1 is surjective. Let (X,B,m) be a stan-
dard Borel probabilityG-space. LetEiRi ⊂ Ui be Følner sets satisfying the pointwise and
maximal ergodic theorem inLp, 1< p <∞. Then asmin{Ri,1� i � n}→∞, for every
f ∈ Lp, 1<p <∞,

T (Rn, . . . ,R1)f (x)

=
∫
EnRn

· · · ∫
E1
R1
π(un · · ·u1)f (x) dmUn(un) · · · dmU1(u1)

mUn(E
n
Rn
) · · ·mU1(E

1
R1
)

−→ Un · · ·U1f (x)

for m-almost allx ∈ X, and in theLp-norm. The corresponding maximal function satis-
fies a strong maximal inequality inLp, 1< p <∞. Furthermore, pointwise convergence
also holds forf ∈ L(logL)n−1(X), provided the averages onEiRi satisfy the weak-type

maximal inequality inL1 for 1� i � n.

We note that discrete groups of bounded generation, where each component group is
cyclic, have attracted quite a bit of attention. It was shown by [21] that for any ring of inte-
gersO of an algebraic number field, the groupSLn(O) is of bounded generation, provided
n� 3. In fact, one can take all the cyclic subgroups to be generated by elementary matri-
ces, whose number is estimated by an explicit function ofn (for an estimate in the case
of SLn(Z) see [3]). The problem of determining which arithmetic groups are boundedly
generated has been shown to be closely connected to the congruence subgroup problem
(see [129] and [94]). It was established in [144] that it is typically the case thatS-arithmetic
lattices in connected simply-connected absolutely simple algebraic groups defined over a
number field, which have split rank at least two have the property of bounded generation.

Thus Theorem 7.17 gives the corollary that on all of these lattices the averages described
in Theorem 7.17 satisfy a maximal inequality and converge pointwise. If at least one of the
cyclic subgroups act ergodically, then the limit in Theorem 7.17 is

∫
X
f dm. This is the

case for example if the action of the latticeΓ ⊂G is a restriction toΓ of an ergodic action
of G, as follows from the Howe–Moore mixing theorem.

REMARK 7.18. Let us note that the following question remains unresolved by the dis-
cussion of the present section. LetG be an lcsc group with the structure indicated in
Theorem 7.17. Does the family of operatorsT (R1, . . . ,Rn) of Theorem 7.17 satisfy the
unrestricted pointwise ergodic theorem inLp, 1<p <∞, namely

lim
min(Ri)→∞T (R1, . . . ,Rn)f (x)→

∫
X

f dm

pointwise almost everywhere and inLp-norm, in every ergodic action ofG? We remark
that in the original Dunford–Zygmund formulation, the flows need not satisfy any relation,
and thus no further information can be expected on the resulting limit operator. Here we
assume that the component groups in question at least all lie in one and the same lcsc
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group. This does indeed imply that the limit operator is invariant under the group in fa-
vorable cases, but the general case remains unresolved. This problem is unresolved even
for the case of connected amenable Lie groups which admit an iterated semidirect prod-
uct structure of the formU1?<(U2?<(· · · (?<Un))), see [60]. It constitutes an interesting
challenge even for simply-connected nilpotent Lie groups, particularly since the Emerson–
Greenleaf theorem can be used in this context as an important ingredient in the proof by
M. Ratner [130] of strict measure rigidity for actions of unipotent subgroups of solvable
groups.

Let us also note that for a connected Lie groupG, the averages given byT (Rn, . . . ,R1)

in Theorem 7.17 and in Theorem 7.5 are usually very different than balls w.r.t. an invariant
Riemannian metric. Whether there exists some choices of the parametersRi which will
give a family of averages which are comparable to balls w.r.t. an invariant Riemannian
metric does not seem to be known, in general.

7.6. From amenable to non-amenable groups: some open problems

We have focused in the present section on pointwise ergodic theorems for amenable and
non-amenable lcsc groups which have a common origin, namely the Dunford–Zygmund
method. In the succeeding chapters we will return to the theme of establishing pointwise
and maximal theorems for radial (and other geometric) averages for group actions. In con-
trast to Section 5 which considered groups of polynomial volume growth, our emphasis
below will be on non-amenable groups (and thus with exponential volume growth), and
particularly on connected semisimple Lie group, and more generally semisimple algebraic
groups. Before continuing with the pointwise theory of radial averages, however, let us note
the following fundamental problems related to mean ergodic theory and equidistribution,
as well as certain pointwise convergence problems, all of which are unresolved.

(1) The Mean Ergodic Theorem.
Given any strongly continuous isometric representationτ :G→ Iso(V ) to the

isometry group of a Banach spaceV , we can consider the operatorτ(µ) =∫
G
τ(g)dµ(g) ∈ End(V ), which constitutes a convex average of the isometric

operatorsτ(g), g ∈ suppµ. If there exists a projectionE :V → V I where V I

is the closed subspace ofτ(G)-invariant vectors, then a result establishing that
‖τ(µt )f − Ef ‖→ 0 ast→∞ is called a mean ergodic theorem for the familyµt
in the representationτ . The study of such results for averages onG= R orG= Z is
an extensive field, which forms one of the classical themes of operator ergodic the-
ory and fixed point theory. It was also to some extent pursued for Følner averages on
amenable groups, see, e.g., [119]. We note however that this problem is largely un-
resolved for many of the natural averagesµt on groupsG with exponential volume
growth, even in the case of unitary representation in Hilbert spaces. For example,
even for connected amenable Lie groups with exponential volume growth and the
ball averages w.r.t. an invariant Riemannian metric this problem is completely open.
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(2) The equidistribution problem.
WhenX is a compact metric space andG acts continuously, it is of course natural

to ask under what conditions can we conclude that equidistribution holds forall
orbits w.r.t. the invariant measure. Namely, when does

lim
t→∞π(µt )f (x)=

∫
X

f dm

for every continuous functionf ∈ C(X) andeveryx ∈X hold ? Whenµt are Følner
averages on an amenable group equidistribution holds if and only ifm is the unique
G-invariant probability measure onX. This fact, which can be proved in the same
way as in the classical case ofZ, clearly accounts for at least some of the popularity
that Følner averages enjoy as an averaging method along the orbits. Results of this
type have not been established, or disproved, for any non-amenable group, for any
family of averagesµt . The main source of the difficulty lies of course in the fact
that taking the weak∗ limit of a subsequence of the measuresµt ∗ δx , it is usually
not possible to show that the limiting measure is invariant under the group. In the
special case of homogeneous spaces of connected Lie groups, an extensive theory
of equidistribution has been developed. For a recent comprehensive discussion of
equidistribution of orbits of non-amenable groups acting on homogeneous algebraic
varieties we refer to [57].

(3) Amenable groups of exponential volume growth.
The ball averaging problem is completely open when the groupG is a connected

amenable Lie group of exponential volume growth. Namely, it is even unknown
whetherβt , defined w.r.t. an invariant Riemannian metric, converges pointwise inL2

(or in anyLp). We note that since ball averages do not form a regular family, do not
have the Følner property, and in general are not comparable to the product averages
of Theorem 7.17, none of the methods discussed thus far applies. In fact as noted
in (1) above even the mean ergodic theorem has not been established.

(4) Pointwise convergence: theL1-problem.
It is unknown if for a left-invariant Riemannian metric onany connected Lie

group of exponential volume growth. the normalized ball averagesβt satisfy the
pointwise ergodic theorem inL1. This has not been established even in one case, as
far as we know. Furthermore, in Theorem 7.10 the averages to which the Dunford–
Zygmund method applies are shown to converge only forf ∈ L(logL). Thus in the
class of exponential solvable Lie groups for example, the only pointwise ergodic
theorem inL1 established so far is for a tempered sequence of Følner averages—see
Section 6.3.

8. Spherical averages

In the following three sections, we will again concentrate on radial analysis, namely con-
sider averages on balls associated with an invariant metric onG. However, we will now
concentrate on the case whenG has exponential volume growth, and our prime exam-
ples will be non-compact semisimple Lie and algebraic groups. These groups being non-
amenable, they do not admit an asymptotically invariant sequence and no transfer principle
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has been established for them. The volume of balls obviously does not satisfy the doubling
property, and so the Wiener covering argument, even for convolutions, does not apply. Thus
none of the arguments that were useful in the polynomial volume growth case is relevant
here.

Nevertheless it is possible to develop a systematic theory of radial averages which elu-
cidates the basic analytic facts about them (such as maximal inequalities for convolutions)
and to establish ergodic theorems satisfied in general measure-preserving actions of the
group.

Two key ideas that will be employed in our analysis are as follows. First, for simplicity
of exposition, let us assume that the volume of the balls has exact exponential growth in
terms of the radius (as is indeed the case for split rank one groups). Clearly the volume of a
shell of unit width, namelyBt+1 \Bt , occupies a fixed proportion of the volume of the ball
Bt+1. It then follows that the ball averages and the shell averages have equivalent maximal
operators, so that we can restrict the discussion to the shell averages. On the other hand,
the maximal function for the shell averages in Euclidean space is in fact equivalent to the
maximal function for thesingularspherical averages (see [111] for more details). As we
shall see below, the first key idea is that it is the ideas and techniques of classical singular
integral theory, and particularly Tauberian theory, that are most suitable for the analysis of
shell (and hence ball) averages on semisimple groups with exponential volume growth. The
second key idea is to apply spectral methods based on the unitary representation theory of
the group in question to prove maximal inequalities and pointwise convergence theorems.
This is indeed possible in the case of radial averages on semisimple Lie and algebraic
groups, but also in many other cases, namely whenever the singular sphere averages all
commute under convolution. Our methods will thus apply in principle to all lcsc groups that
admit a radial commutative convolution structure, even to amenable ones, and in fact give
rise to some interesting results regarding singular averages also on groups of polynomial
volume growth.

As we shall see below, the geometric reduction from ball averages to shell averages
together with the use of spectral methods from singular integral theory and the unitary
representations theory of the groups restricted to the commutative convolution subalgebra
will serve to replace the growth and Følner conditions on the group used in the polynomial
volume growth case, and the existence of the algebraic semidirect product structure and the
Dunford–Zygmund method used otherwise. Before turning to a discussion of the analytic
tools involved, we present some basic examples which will serve to motivate our analysis
and demonstrate its scope, and formulate some of the pertinent results which will be proved
later on. We begin with the following fundamental result on singular averages onRn.

8.1. Euclidean spherical averages

Our first example of an ergodic measure preserving action ofR was the flow given by an
irrational line on the 2-torus (see Example 3.1). Let us now note that there is an equally
basic problem related to geometric averaging on the plane, as follows.

EXAMPLE 8.1 (Circles in R2 and spheres inRn). Let us denote bySt a circle of radius
t and center 0 inR2. Let σt denote the normalized rotation-invariant measure onSt , and
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we consider the radial averages (= spherical means) thatσt define onR2. If f a function
on R2, define:

π(σt )f (v)=
∫
w∈St

f (v +w)dσt (w).

In analogy with Example 3.1 in Section 3.1, we focus on the action of the spherical
means as operators on function spaces onT2, namely the action onZ2-periodic functions.
We can then consider the natural problems of equidistribution, pointwise almost every-
where convergence to the space average, and (singular!) differentiation. These problems
have all been resolved, and we recall the following results, which we formulate for the
action of the spherical means on then-torus, for use in later comparisons.

(1) Equidistribution of spheres.
∀v ∈ Tn, ∀f ∈ C(Tn)

lim
t→∞π(σt )f (v)=

∫
T2
f dm (Exercise!).

(2) Maximal inequality for sphere averages.
∀f ∈ Lp(Tn), p > n

n−1,∥∥∥sup
t>0

∣∣π(σt )f ∣∣∥∥∥
Lp(Tn)

� Cp(n)‖f ‖Lp(Tn).

(3) Singular spherical differentiation.
∀f ∈ Lp(Tn), p > n

n−1,

lim
t→0

π(σt )f (v)= f (v), for almost allv ∈ Tn.

(4) Pointwise Ergodic Theorem for sphere averages.
∀f ∈ Lp(Tn), p > n

n−1,

lim
t→∞π(σt )f (v)=

∫
Tn
f dm, for almost allv ∈ Tn.

REMARK 8.2.
(1) The identification of the limit in (1) and (4) as the space average of the function

(namely the mean ergodic theorem), is a simple exercise in spectral theory as will
also be seen more generally below. The equidistribution theorem can be proved us-
ing a variant of the classical argument of Weyl for the action of a translation on
Tn—it requires only the vanishing at infinity of the characters of the convolution al-
gebra of radial averages, which is a consequence of the Riemann–Lebesgue lemma.

(2) The fundamental result underlying the pointwise convergence theorems (3) and (4)
is the maximal inequality (2), which is due to E. Stein (see [142]) forn� 3 and to
J. Bourgain [14] forn= 2. The range ofp stated is best possible.
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(3) As usual, the pointwise convergence in the ergodic theorem (and the differentiation
theorem) follows if it holds on a dense subspace. The existence of such a subspace
was first established forn� 3 in [80], and forn= 2 in [90].

(4) The spherical averagesσt being singular measures onRn accounts for the non-
trivial restriction on the rangep for which the pointwise ergodic theorem holds. This
phenomenon was not encountered in the discussion of the absolutely continuous
averages that appeared thus far in the previous sections.

(5) The discrete analog of the spherical means are the averages over integer points lying
on a discrete sphereSk ∩ Zn. Maximal inequalities for the convolution operators
defined by such averages onZn were recently established forn� 5 in [96].

REMARK 8.3 (Measurability of singular maximal functions). Since the averagesσt are
singular, it is not clear why the maximal functionf ∗

σ is well-defined and measurable even
for one function class inLp(Tn), including the function class 0. The maximal inequality
and pointwise theorem should be interpreted as asserting, in particular, that for any two
representativesf andf ′ of a given function class, there exists a co-null set such that for
v in this set, bothπ(σt )f (v) andπ(σt )f ′(v) exist for all t > 0 simultaneously and are
equal. Then the supremum in the maximal inequality and the limit in the ergodic theorem
are indeed well-defined.

This material problem is discussed in detail, e.g., in [141, Chapter XI, §3.5] or alterna-
tively in [36, II.4], and we will content ourselves here with noting that supt>0 |σtf (v)| is
clearly defined for allv and constitutes a measurable function iff is continuous onTn.
The strongLp-maximal inequality for continuous functions (which is sometimes referred
to as an a-priori inequality) can then be used to define and prove the measurability and
theLp boundedness of the maximal function for allLp-functions. This remark applies to
all other maximal inequalities that will appear in the sequel, since the spaces we consider
can always be assume to be compact metric with theG-action continuous—see [106] for
details.

Another basic set-up in which spherical averages appear naturally is furnished by the
Heisenberg groups.

EXAMPLE 8.4 (Cn-spheres in the Heisenberg group). Let Hn = Cn × R denote the
Heisenberg group, and letσt denote the normalized rotation invariant measure on the
sphereSt ⊂ Cn with center 0 (which we callCn-spheres). LetHn(Z) be the discrete sub-
group of integer points of the Heisenberg group. Consider the homogeneous space given
byUn =Hn(Z)\Hn, which is compact nilmanifold with a transitive (right)Hn-action. We
then have the following results

(1) Equidistribution ofCn-spheres inUn.
∀v ∈Un, ∀f ∈ C(Un)

lim
t→∞π(σt )f (v)=

∫
Un

f dm.

(2) Maximal inequality forCn-sphere averages.
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∀f ∈ Lp(Un), n > 1,p > 2n
2n−1,

∥∥∥sup
t>1

∣∣π(σt )f ∣∣∥∥∥
Lp(Un)

� Cp(n)‖f ‖Lp(Un).

(3) SingularCn-sphere differentiation onUn.
∀f ∈ Lp(Un), p > 2n

2n−1, n > 1

lim
t→0

π(σt )f (v)= f (v), for almost allv ∈Un.

(4) Pointwise Ergodic Theorem forCn-sphere averages.
∀f ∈ Lp(Un), n > 1,p > 2n

2n−1,

lim
t→∞π(σt )f (v)=

∫
Un

f dm, for almost allu ∈Un.

REMARK 8.5.
(1) The mean ergodic theorem and also the equidistribution theorem here can be proved

spectrally, again in a manner analogous to Weyl’s classical equidistribution theo-
rem onTn. A necessary ingredient in this approach is thus the classification of all
the characters of the commutative convolution algebra generated by theCn-sphere
averages on the Heisenberg group.

(2) Thep-range in (2) and (4) are the best possible for the action onUn, and in fact for
general probability-preserving actions of the reduced Heisenberg group. This result
was established in [116].

(3) The maximal inequality for convolutions on the Heisenberg group itself, namely for
the operator supt>0 |f ∗ σt |, was recently established in [101] forp > 2n

2n−1, ex-
cluding the casen= 1. This implies the differentiation theorem, and by the transfer
principle for singular averages stated in Theorem 6.2 the same maximal inequality
holds for any probability-preserving action of the Heisenberg group, and the point-
wise theorem holds as well. Another proof of this result was given by [102]. The
rangep > 2n−1

2n−2 for n > 1 was established earlier in [116].
(4) Note that in the result aboveσt are singular averages supported onsubvarieties

of codimension2, rather than codimension one as in the case of ordinary spheres
(see [36] for the corresponding result for the spheres of codimension one associated
with the natural homogeneous norm). Results for even more singular averages on
certain nilpotent Lie groups appear in [101].

Let us now pass from the considerations above regarding spherical averages in the fa-
miliar setting of nilpotent groups, and consider the ergodic theory of spherical averages
for lcsc groups which are of exponential volume growth, and non-amenable. We will start
with the simplest example, namely that of the isometry groups of hyperbolic space, acting
on homogeneous spaces with finite volume.
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8.2. Non-Euclidean spherical averages

EXAMPLE 8.6 (Spheres in hyperbolic space). LetM be a compact (or finite volume) Rie-
mann surface, andΓ = π1(M) its fundamental group.Γ is naturally identified with a lat-
tice subgroup of the isometry groupG= PSL2(R)= Iso(H2) of the hyperbolic planeH2.
G acts by translations on the homogeneous spaceΓ \ G, and ifK ⊂ G is the maximal
compact subgroup of rotations fixing a pointx, thenM can be identified with the dou-
ble coset spaceΓ \G/K . Denote the unique probability measure supported on a sphere
of radiust and centerp in hyperbolic spaceH2 =G/K , which is invariant under the ro-
tations fixingx, by σ̃t (x). Given any (continuous, say) function onM , we can lift it to a
Γ -periodic function onH2 and average it w.r.t.̃σt (x). We denote the result of this operation
by π(σt )f (x).

More generally, ifHn denotes hyperbolicn-space, andΓ is a lattice inG = Iso(Hn),
we can consider the homogeneous spaceM = Γ \G/K , K a maximal compact subgroup
fixing x ∈ Hn.M is ann-dimensional Riemannian manifold of constant negative sectional
curvature providedΓ is torsion free. We then define the averaging operatorsπ(σt )f (x)

corresponding to the spherical meansσ̃t (x), acting onΓ -periodic functions onHn =G/K .
We denote the uniqueG-invariant probability measure onΓ \G bym, as well as its projec-
tion ontoM = Γ \G/K . We can now state the following results (for general dimensionn).

(1) Equidistribution of spheres in compact hyperbolic homogeneous spaces.
WhenM is compact,∀x ∈M , ∀f ∈ C(M)

lim
t→∞π(σt )f (x)=

∫
M

f dm.

(2) Maximal inequality for sphere averages in hyperbolic finite-volume homogeneous
spaces.
For anyM of finite volume,∀f ∈ Lp(M), p > n

n−1, n � 2, and for almost every
x ∈M∥∥∥sup

t>0

∣∣π(σt )f ∣∣∥∥∥
Lp(M)

� Cp(n)‖f ‖Lp(M).

(3) Singular spherical differentiation in hyperbolic homogeneous spaces.
∀f ∈ Lp(M), p > n

n−1, n� 2 and for almost everyx ∈M

lim
t→0

π(σt )f (x)= f (x).

(4) Pointwise Ergodic Theorem for sphere averages in hyperbolic finite-volume homo-
geneous spaces.
For anyM of finite volume,∀f ∈ Lp(M), p > n

n−1, and almost everyx ∈X

lim
t→∞π(σt )f (x)=

∫
M

f dm.
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REMARK 8.7.
(1) The equidistribution of spheres was first proved by G.A. Margulis, who used the

mixing property of the geodesic flow. Also the same result holds for any hyperbolic
homogeneous space of finite volume, not only compact ones, provided we restrict
the functionf to be continuous of compact support. Further proofs of these results
were also given by [82,136] and [85]. We note that mixing of the geodesic flow
in the case of constant negative curvature is fairly straightforward, as it follows
from the general fact that the matrix coefficients of irreducible non-trivial unitary
representations of the isometry group of hyperbolic space vanish at infinity. This
fact was noted already by Fomin and Gelfand [55], and was later generalized to the
Howe–Moore mixing theorem [74].

(2) TheL2-maximal inequality in (2) and the pointwise ergodic theorem in (4) were
proved in [106] for dimM > 2. Interpolation arguments were used in [107] and
[115] to establish the range asp > n

n−1, which is best possible. The case ofn= 2 is
treated in [110], and is based on the results of [76].

(3) The differentiation theorem and the maximal inequality for convolutions onHn,
n > 2, is due to [45], and forn = 2 to [76]. Using the transfer principle of Theo-
rem 6.2 (but for the local operator sup0<t�1 |π(σt )f (x)| only!) this result holds also
onM .

8.3. Radial averages on free group

EXAMPLE 8.8 (Spheres in the free group). Let F2 be the free group on two generators
F2 = F2(a, b), wherea andb are two free generators. The symmetric generating setS =
{a, b, a−1, b−1} determines a word length onF2 given by (see the discussion in Section 4.1)

|w|S = min{k; w = si1 · · · sik , sij ∈ S,1� j � k}.

d(u, v) = |u−1 · v|S is a metric onF2, which is invariant under the action ofF2 on itself
by left translations. The word metric determines the corresponding spheres and balls, and
thus also the normalized averaging operatorsσn andβn on them.

Now consider the sphereSd ⊂ Rd+1, whered � 2, and letA andB be two orthogonal
linear transformations onSd . Clearly, the assignmenta  →A andb  → B extends uniquely
to a homomorphismF2  → Od(R), which defines an action ofF2 by orthogonal trans-
formations onSd . This action preserves, in particular, the rotation-invariant probability
measurem on the sphere. Let us assume for simplicity that the image ofF2 is contained in
the connected component of the identity inOd(R).

(1) Equidistribution of spherical averages on free group orbits in the unit sphere.
∀x ∈ Sd , ∀f ∈ C(Sd)

lim
t→∞π(σt )f (x)=

∫
Sd
f dm.
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(2) Mean ergodic theorem for spherical averages on free group orbits in the unit sphere.
∀f ∈ L2(Sd)

lim
t→∞

∥∥∥∥π(σt )f −
∫

Sd
f dm

∥∥∥∥
L2(Sd )

= 0.

(3) Maximal inequality for spherical averages on free group orbits in the unit sphere.
∀f ∈ Lp(Sd), p > 1, and for almost everyx ∈ Sd∥∥∥sup

t>0

∣∣π(σt )f ∣∣∥∥∥
Lp(Sd )

�Cp‖f ‖Lp(Sd ).

(4) Pointwise Ergodic Theorem for spherical averages on free group orbits in the unit
sphere.
∀f ∈ Lp(Sd), p > 1, and almost everyx ∈X

lim
t→∞π(σt )f (x)=

∫
Sd
f dm.

REMARK 8.9.
(1) The equidistribution result was proved by V. Arnold and A. Krylov in [4], where

in fact they consider an arbitrary connected homogeneous space of a compact Lie
group, rather than just the sphere. Furthermore, the question of generalizing von
Neumann mean ergodic theorem and Birkhoff’s pointwise ergodic theorem for the
sphere and ball averages on the free group is raised explicitly in [4]. The analogous
problems for averages on the group of isometries of hyperbolicn-space in also raised
there.

(2) The mean ergodic theorem for general probability-preserving action of the free
group onr generators was proved by Y. Guivarc’h [66]. The formulation is slightly
different, asserting the convergence (in the strong operator topology) of the opera-
torsσ ′n = 1

2(σn+σn+1). This modification is necessary because in a general ergodic
action a functionf might satisfyπ(σn)f = (−1)nf , a situation that does not arise
onSd because of our density assumption. For more on this periodicity phenomenon,
see Section 10.5 below.

(3) The maximal inequality and the pointwise ergodic theorem forσ ′n acting onL2

functions were established in [105], for all measure-preserving ergodic actions of
the free groups. The extension toLp, p > 1, was established in [114].

All the foregoing examples fall under our general theme of study, which is the analysis
of averaging operators arising from families of probability measuresµt on an lcsc groupG
in a probability-measure-preserving action ofG.

(1) In Example 3.1 the group of course is the real line�∼= R, acting by translations on
T2 = R2/Z2, µt = βt = ball averages onR.

(2) In Example 8.1, the group isR2, again acting by translation onT2 = R2/Z2, and
µt = σt = the normalized circle averages onR2.
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(3) In Example 8.3 the group is the Heisenberg groupHn = Cn × R, acting by transla-
tions on the homogeneous spaceUn = Hn(Z) \Hn andµt = σt are theCn-sphere
averages supported inCn ⊂Hn.

(4) In Example 8.5 the group is Iso(Hn), the measures are the unique bi-K-invariant
measuresσt onG projecting to the normalized rotation-invariant measureσ̃t on a
sphere of radiust and center[K] in Hn =G/K , and the action is on the homoge-
neous spaceΓ \G, with its unique invariant probability measure.

(5) In Example 8.8 the group isF2 and the space isSd with its unique isometry-invariant
probability measurem.

9. The spectral approach to maximal inequalities

We now turn to an exposition of a spectral approach to ergodic theorems for certain lcsc
groups, including semisimple Lie and algebraic groups, and some of their lattices. We will
start by demonstrating the method for the basic case of ball and sphere averages in the most
accessible connected Lie groups, as follows.

9.1. Isometry groups of hyperbolic spaces

Our basic set-up and notation will be as follows:
(1) Hn = hyperbolic n-dimensional space, with connected isometry groupG =

Iso0(Hn).
(2) St (x)= sphere of radiust with centerx ∈ Hn.
(3) σ̃t (x) = normalized measure onSt (x), invariant under the group of rotations fix-

ing x.
(4) σt = the spherical averages onG. These are given byσt = mK ∗ δat ∗mK , where

{at , t ∈ R} satisfiesd(ato, o) = |t |, namely its orbit througho = [K] in the sym-
metric spaceHn =G/K is a geodesic.σt is the unique bi-K-invariant probability
measure onG projecting ontoσ̃t .

(5) (X,m) a compact metric space with a continuousG-action, wherem is aG-invariant
probability measure.

(6) Radial averages (= spherical means) are defined by, forf ∈ C(X),

π(σt )f (x)=
∫
G

f
(
g−1x
)
dσt (g).

The basic example discussed in Section 8.2 for the set-up above arises when choosing
Γ to be a discrete group of isometries with fundamental domain of finite volume. Then for
f ∈ C(Γ \G), namely aΓ -periodic function onHn, the averages above give

π(σt )f (x)= average off onSt (x) w.r.t. σ̃t (x).

REMARK 9.1. We note that the assumption above that our basic BorelG-space with
G-invariant probability measure is a compact metricG-space is without loss of generality,



932 A. Nevo

as noted in [106]. In that case for eachF ∈ C∞
c (G), and everyf ∈ C(X), the function

h= π(F)f has the property thatg  → h(g−1x) is aC∞-function onG, for everyx ∈ X.
Clearly the space of such functions is dense inC(X) in the uniform norm, and also in every
Lp(X), in theLp-norm, 1� p <∞. We will thus consider below differentiation operators
applied to functions inC∞

c (G) ∗C(X) in a general action without further comment.

9.2. Commutativity of spherical averages

To analyze the spherical means, we use the following basic observation, originating with
Gelfand and Selberg in the 1950’s.

PROPOSITION9.2. The spherical averagesσt = σt (o) on Iso(Hn) commute with one an-
other under convolution.

PROOF. Consider a one-parameter group of isometriesA = {at , t ∈ R}, whose orbit
through a given pointo forms a geodesic inHn, namelyd(ato, o) = |t |. Now the prob-
ability measuremK ∗ δat ∗mK onG projects underG→G/K to the unique rotation in-
variant probability measure onG/K , supported on a sphere of radiust and centero= [K].
Sinced(ato, o) = d(o, a−t o), andK is transitive on each sphere with centero, we have
at = ka−t k′, and soKatK = Ka−tK . Hence the inversion mapg  → g−1 restricts to the
identity on bi-K-invariant sets, functions and measures, but also reverses the order of con-
volution. Nowσt ∗ σs is bi-K-invariant sinceσt andσs are, and hence

(σt ∗ σs)∨ = σt ∗ σs = σ∨s ∗ σ∨t = σs ∗ σt . �

NOTATION. We denote the algebra of bounded complex bi-K-invariant Borel measures on
G byM(G,K).

Given any strongly continuous unitary representationπ ofG on a Hilbert spaceH, each
elementµ of M(G,K) is mapped to a bounded operatorπ(µ). The mapµ  → π(µ) is a
continuous algebra homomorphism, commuting with the involutions onM(G,K) and on
EndH. WhenM(G,K) is commutative, we denote byA the closure in the operator norm
topology ofπ(M(G,K)), which is a commutative algebra closed under the adjoint opera-
tion, and so a commutativeC∗-algebra. Thus we can appeal to the following fundamental
result.

SPECTRAL THEOREM. LetA be a commutative norm-closed algebra of bounded opera-
tors on a Hilbert spaceH, closed under taking adjoints. Consider the∗-spectrumΣ∗(A)
of A, consisting of continuous complex∗-characters ofA, with thew∗-topology inherited
from the dualA∗ ofA. Everyf ∈H determines a spectral measureνf onΣ∗(A), and the
action of an operatorµ ∈A is given by the formula:

〈
π(µ)f,f

〉= ∫
ϕ∈Σ∗(A)

ϕ(µ)dνf (ϕ).
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Functional calculus. The spectral theorem forA implies that for any bounded measur-
able functionF onΣ∗(A), π(F) can be interpreted as a bounded operator onH, given by
the formula〈

π(F)f,f
〉= ∫

ϕ∈Σ∗(A)
F (ϕ)dνf (ϕ).

Furthermore, the functional calculus can be extended to more general distributions on the
spectrum, including measures and also derivative operators. We will make extensive use of
these facts below.

9.3. Littlewood–Paley square functions

We now turn to a proof of the following

THEOREM 9.3 (Pointwise ergodic theorem inL2 for sphere and ball averages on Iso(Hn),
n > 2, [106]). The sphere averagesσt and the ball averagesβt on Iso(Hn) satisfy the
pointwise ergodic theorem and the strong maximal inequality inL2(X), if n > 2, for any
probability measure-preserving action ofG.

For simplicity of exposition, we will consider the following
Model case: Proof of the pointwise ergodic theorems forσt andβt in SL2(C)-actions on

compact metric spaces.
The proof proceeds along the following steps (we suppress the notationπ for the repre-

sentation for ease of notation):
(1) First, consider theuniform averageµt of the spherical measuresσs , 0< s � t , and

use Proposition 9.2 to write:

µt = 1

t

∫ t
0
σs ds =mK ∗ 1

t

∫ t
0
δas ds ∗mK.

Since 1
t

∫ t
0 δas ds are the Birkhoff averages onR ∼= A, they satisfy a strong

maximal inequality in everyLp, 1< p <∞. It follows immediately that also
‖f ∗
µ‖p �Cp‖f ‖p.

(2) Next, compareσt to their uniform averageµt . Using Remark 9.1, for every func-
tion f ∈ C∞

c (G) ∗C(X), the functiong  → f (g−1x) is aC∞ function onG (and
thuss  → σsf (x) isC∞ on R+), and we can write:

σtf (x)−µtf (x)= 1

t

∫ t
0
s
d

ds
σsf (x) ds.

By the Cauchy–Schwarz inequality:

∣∣σtf (x)−µtf (x)∣∣� 1

t

(∫ t
0
s ds

∫ t
0
s

∣∣∣∣ dds σsf (x)
∣∣∣∣2ds)1/2

.
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(3) Estimating, we have:

sup
t�0

∣∣σtf (x)∣∣� sup
t�0

∣∣µtf (x)∣∣+R(f,x),
where we define:

R(f,x)2 =
∫ ∞

0
s

∣∣∣∣ dds σsf (x)
∣∣∣∣2ds.

R(f, x) is called the Littlewood–Paley square function.
(4) We have by (3):∥∥f ∗

σ

∥∥
2 �
∥∥f ∗
µ

∥∥+ ∥∥R(f, ·)∥∥2.
We now compute the norm of the square function by the spectral theorem, namely
by going over to the Fourier–Gelfand transform side. We obtain, recalling thatΣ∗
denotes the∗-spectrum ofA=M(G,K), andνf the spectral measure determined
by f onΣ∗:

∥∥R(f, ·)∥∥22= ∫
X

∫ ∞

0
s

∣∣∣∣ dds σsf (x)
∣∣∣∣2ds dm(x)

=
∫ ∞

0
s

∥∥∥∥ dds σsf
∥∥∥∥2
L2(X)

ds =
∫ ∞

0
s

∫
Σ∗

∣∣∣∣ dds ϕz(σs)
∣∣∣∣2dνf (z).

Here we have obtained a spectral expression for the distributiond
ds
σs , using the

functional calculus in the commutative algebraA of spherical averaging operators.
We refer to [106, §6, Lemma 4] for more on this argument.

(5) We can conclude that if the expression:

Φ(z)=
∫ ∞

0
s

∣∣∣∣ dds ϕz(σs)
∣∣∣∣2ds

has auniform spectral estimate, namely a bound independent ofz, asϕz varies
over the spectrumΣ∗, then the strongL2-maximal inequality is proved.

(6) We recall (see [70, Chapter IV, §5] for full details) that forG= SL2(C) the char-
acters ofM(G,K) are given by

ϕz(σt )= sinh(zt)

zsinh(t)
, ϕ0(σt )= t

sinht
.

The continuous (i.e. bounded)∗-characters are parametrized by:
(i) z= iλ, λ real;Principal series, or

(ii) z= a wherea is real and 0< a � 1; Complementary series.
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(7) For the principal series, part (6) implies immediately that the∗-characters de-
cay exponentially in the distance,uniformly inλ, with fixed rate. Furthermore for
SL2(C) the explicit expression above yields∣∣∣∣ ddt ϕiλ(σt )

∣∣∣∣� C(1+ t)exp(−t).

ThereforeΦ(iλ)� CΦ(0) <∞, ∀λ ∈ R.
Note however the foregoing estimate fails for the second derivative, namely the

second derivative isnotbounded uniformly inλ.
(8) For the complementary series, the∗-characters decay arbitrarily slowly, and in

fact, if a = 1− ε, thenϕa(σt )∼= cε exp(−εt). Furthermore, it can easily be proved
directly from the formula in (6) that here∣∣∣∣ ddt ϕa(σt )

∣∣∣∣� ε exp(−εt)

and therefore∫ ∞

0
s

∣∣∣∣ dds ϕa(σt )
∣∣∣∣2ds � ε2

∫ ∞

0
s exp(−2εs) ds � C <∞.

For future reference we also note that in fact for every derivative of the comple-
mentary series characters∣∣∣∣ dkdtk ϕ1−ε(σt )

∣∣∣∣� Ckεk exp(−εt).

(9) Thus we have established thatΦ(z)� C <∞ asϕz ranges over the spectrumΣ∗,
and this suffices to prove the (a-priori) strongL2-maximal inequality for the sphere
averagesσt . Of course, it follows immediately that the ball averagesβt satisfy the
same maximal inequality, being convex averages of the sphere averages.

(10) The mean ergodic theorem for Iso(Hn) is of course a consequence of the Fomin–
Gelfand result [55], or more generally the Howe–Moore mixing theorem [74],
which in particular establishes decay of non-trivial continuous characters of the
algebraA. In other words, limt→∞ ϕz(σt )= 0, and by the spectral theorem it fol-
lows immediately that whenG is ergodic

〈
π(σt )f,f

〉= ∫
ϕ∈Σ∗

ϕ(σt ) dνf (ϕ)−→
∫
X

f dm.

In the SL2(C)-case, the latter conclusion also follows upon inspection of the ex-
plicit form of the characters. The mean ergodic theorem for the balls is an easy
consequence.
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(11) According to the recipe of Section 2.3, the last step left is to prove the pointwise
convergence ofπ(σt )f (x) for a dense set of functionsf . Here, since the balls, and
certainly the spheres, are not Følner sets, the variants of Riesz’s argument used in
the amenable case cannot be applied. A more technical argument has to employed,
described briefly as follows. Decompose the spectrum as a unionΣ ′ =⋃ε>0Σε,
whereΣε = {ϕz; |z| � 1− ε}. We can then use the fact that each of the characters
appearing inΣε has (exponential) decay int of a fixed positive rateδ(ε). Consider
now functionsf which are sufficientlyL2-smooth, and whose spectral measureνf
is supported inΣε. Such functions can be shown to satisfy the desired conclusion,
namelyπ(σt )f (x) converges almost everywhere, using Sobolev-space arguments.
Finally, the set of all such functions asε→ 0 is dense in the set ofK-invariant
functions, and this completes the proof in the case of sphere averages, and the
case of ball averages easily follows. We refer to [106] for more details on these
arguments.

9.4. Exponential volume growth: ball versus shell averages

Theorem 9.3 established the strong maximal inequality and pointwise ergodic theorem in
L2 for sphere and ball averages. Of course, for the absolutely continuous ball averages one
would expect a similar result inL1, or at least inLp, 1< p <∞. TheL1-problem is still
open, and we now describe the proof of the following.

THEOREM 9.4 (Pointwise ergodic theorem inLp, 1 < p < ∞, for ball averages on
Iso(Hn) [107,115]). The ball averagesβt satisfy the pointwise ergodic theorem and strong
maximal inequality inLp(X), p > 1, for all dimensionsn� 2.

Model case: Proof of the pointwise ergodic theorems forβt on SL2(C).
(1) The ball averagesβt satisfy, fort � 1:

βt =
∫ t

0(sinhs)2σs ds∫ t
0(sinhs)2ds

� C1e
−2t
∫ t

0
e2sσs ds.

(2) Consider the shell average, fort � 1, and the corresponding maximal function, given
by:

γt =
∫ 1

0
σt−s ds, f ∗

γ (x)= sup
t�1

∣∣π(γt )f (x)∣∣.
(3) We now use the exponential volume growth of balls inG, in order to boundf ∗

β by
f ∗
γ . Sinceγt is the uniform average of spheres with radius in[t − 1, t] (heret � 1),

this amounts to comparing the average on a ball of radiusr to the maximum of the
averages on annuli of width one and radii bounded byr . Thus, using the foregoing
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estimate of the densities, forf � 0 we have

βtf (x)� C1e
−2t
∫ t

0
e2sσsf (x) ds

� C1e
−2t

( [t]−1∑
k=0

∫ t−k
t−k−1

e2sσsf (x) ds + γ1f (x)

)

� C1

[t]−1∑
k=0

e−2kγt−kf (x)+C1γ1f (x)

� C1

( ∞∑
k=0

e−2k

)
sup

1�s�t
γsf (x)+C1γ1f (x)� 4C1f

∗
γ (x).

Hence it suffices to prove the maximal inequality for the shell averages. One advantage
thatγt offers is that the exponential density that weighs the sphere averages inβt no longer
appears, and we can use classical methods of Fourier analysis to estimate the Gelfand
transform without difficulty. In the next section we will estimate the rate of decay of the
transform, and then apply some analytic interpolation techniques to estimate certain max-
imal functions associated with the (regularized) shell averagesγt . These techniques will
allow us to convertL2-boundedness results for square functions associated with the deriv-
ative of (regularized) shell averages, toLp-boundedness results for the maximal function
associated with the shells themselves.

This completes the proof of Theorem 9.4 for ball averages, provided we prove the cor-
responding result for the shell averages. �

9.5. Square functions and analytic interpolation

We will presently show how to pass from the norm boundedness of the square functions
in L2 to best-possibleLp results, via analytic interpolation. This technique is most easily
implemented for the shell averages, a fact that motivates their introduction to our discus-
sion. However, by the discussion of Section 9.4, to complete the proof of Theorem 9.4, it
suffices indeed to consider the shell averages and prove the following.

THEOREM 9.5 (Pointwise ergodic theorem for shell averagesγt on Iso(Hn), n� 2, [107,
115]). The shell averagesγt satisfy the pointwise ergodic theorem and the strong maximal
inequality inLp(X), p > 1, for all dimensionsn� 2.

Model case: Proof of the pointwise ergodic theorems forγt on SL2(C).
(1) First, let us smooth the shell averages by the usual procedure, and define, fort � 1:

γ̃t =
∫

R

ψ(t − s)σs ds,
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whereψ is a positive smooth function identically one on[0,1], vanishing outside
[−1,2].

(2) We would like now to consider all the derivative operatorsd
k

dsk
γ̃s , and bound the

expressions

Φk(z)=
∫ ∞

1
s2k−1
∣∣∣∣ dkdsk ϕz(γ̃s)

∣∣∣∣2ds
independently ofz, namely uniformly on the spectrumΣ∗(A), as in Section 9.2.

(3) For shell averages (unlike the case of the singular sphere averagesσs ) the smooth-
ing allows uniform control (asλ→∞) of any given derivative ofprincipal series
characters. Indeed, recall that forSL2(C) these characters are given bysinλt

λsinht . Thus
the desired boundedness is an easy consequence of classical 1-dimensional Fourier
theory, since here the problem reduces to estimating the decay inλ of the Fourier
transform of a smooth compactly-supported function on the line. As is well-known,
the decay in this case is faster than any polynomial inλ, and the boundedness of the
integral above follows.

(4) Arbitrarily high derivatives of thecomplementary seriescharacters can also be con-
trolled, in fact even when evaluated onσt , and therefore also for̃γt . This was already
noted in Section 9.3, part (8), and can be proved by differentiating the explicit form
of the characters.

(5) Therefore, using the functional calculus for the distributions corresponding to higher
derivatives, thekth-order square functions

Rk(f, x)
2 =
∫ ∞

1
s2k−1
∣∣∣∣ dkdsk γ̃sf (x)

∣∣∣∣2ds
have anL2-norm bound.

(6) Now use the Riemann–Liouville fractional integral family of operators (see, e.g.,
[140]), and embed̃γt in an analytic family of operatorsTz, z ∈ C. By the analytic
interpolation theorem, anL2-norm bound for the derivative of̃γt appearing in a
square function can be converted to anLp-norm bound for the operator supt�1 γ̃t .
This is done by interpolating against the maximal inequality that the uniform av-
erages1

t

∫ t
0 γ̃s ds satisfy in everyLp, p > 1. The latter result was noted for the

averagesµt =
∫ t

0
1
t
σs ds in Section 9.3, part (1), and of course it follows in exactly

the same way in the present case. We refer to [107] and [115] for the details.

9.6. TheLp-theorem for sphere averages onIso(Hn)

It is of course natural to complete also the discussion of the maximal inequality for the
sphere averages, whose boundedness was established inL2, and prove the best possible
results inLp. Indeed, a variant of the method of analytic interpolation via the Riemann–
Liouville fractional integrals can be applied toσt also, in order to embed it in an analytic
family of operators. This method yields the following:
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THEOREM 9.6 (Pointwise ergodic theorem for the sphere averagesσt on Iso(Hn),
n > 2, [107,115]).The sphere averagesσt on Iso(Hn), n > 2, satisfies the pointwise er-
godic theorem and strong maximal inequality inLp, p > n

n−1, which is the best possible
range.

PROBLEM 9.7. The pointwise ergodic theorem andLp, p > 2 maximal inequality for
sphere averages in general measure-preserving actions of Iso(H2) is an open problem.

REMARK 9.8.
(1) The constraint on theLp-range of the maximal inequality for spheres in hyper-

bolic space is the same as the Euclidean constraint. The constraint is determined by
the rate of decay (in the spectral variable) of the Fourier–Gelfand transform of the
spherical measure on a sphere of radius one. We note that the counter-example in
the Euclidean case for boundedness of the maximal operator inL

n
n−1 can be taken

to be a local one [142]. Namely, it is given by a function of compact support and
a singularity at the origin (say), and thus theLp-constraint arises already from the
local operators sup0<t�1σt . Now since hyperbolic spheres (in the ball model) are
just off-center Euclidean spheres, the Euclidean local counter-example is also a hy-
perbolic counter-example [107, §5.4]. The point is thus to show that there are no
further constraints in the hyperbolic case.

(2) The complementary series poses a serious challenge in the analysis employed to
prove the maximal inequality sup1�t<∞ σt for the sphere averages on the groups
Iso(Hn). This is the result of the arbitrarily slow rate of decay of the complementary
series characters. To control the norm of square functions, it is necessary to prove
derivative estimates for the spherical functions of the complementary series which
are significantly better than the standard Harish Chandra estimates. This problem
takes a sizable part of the effort in [107] and [115].

(3) Let us emphasize that the behavior of the averagesγt is in marked contrast to the
Euclidean case. In the hyperbolic set-up, the maximal operators associated withγt
andβt are in fact equivalent. But the Euclidean shell averages satisfy the same max-
imal inequalities as the sphere averages, and not the same maximal inequalities as
the ball averages. This fact is a reflection of the difference between polynomial and
exponential volume growth, and for more on this matter we refer to [113] and [111].

(4) Recalling our comments in the introduction to Section 8, we note that the only avail-
able proof of the maximal inequality for the ball averagesβt in Lp, namely the proof
described in Sections 9.3–9.5 above, makes use of differentiation theory of the sin-
gular averagesσt . This is also in marked contrast to the Euclidean (or polynomial
volume growth) case, where the singular sphere averages did not play any role.

(5) A more geometric approach to obtain theLp, p > 1, maximal inequality for balls in
every dimension greater than two, is to start withSL2(C) and use an analog of the
“method of rotations”. Namely, embed Iso(H3)⊂ Iso(Hn) as the stability group of
a totally geodesic subspace. Then the Cartan polar coordinates decompositionsG=
KAK in the two groups can be aligned. SinceA is one-dimensional, the maximal
inequalities for the ball averages in Iso(Hn) follows from those ofσt in Iso(H3).
However, this leaves out Iso(H2), where the spherical functions estimate are the
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hardest case. For spheres, the range ofp where the strong maximal inequality holds
improves with dimension, so this method does not give optimal results.

10. Groups with commutative radial convolution structure

The methods outlined in the previous section have a wide scope of applications, and have
been developed into a systematic spectral approach to the proof of pointwise ergodic theo-
rems for radial averages on lcsc groups admitting a commutative radial convolution struc-
ture. In the present section we will indicate some of the results obtained in this direction,
and comment on some of the open problems.

10.1. Gelfand pairs

Let us recall the following well known definition

DEFINITION 10.1 (Gelfand pairs). A Gelfand pair(G,K) consists of an lcsc groupG,
and a compact subgroupK ⊂G, such that the algebraM(G,K) of bounded Borel mea-
sures onG which are bi-K-invariant is commutative, or equivalently, the convolution al-
gebraL1(G,K) of bi-K-invariantL1-functions is commutative. We remark thatG is then
necessarily unimodular.

EXAMPLE 10.2 (Some examples of Gelfand pairs).
(1) G a connected semisimple Lie group,K a maximal compact subgroup. This exten-

sive family includes:
(i) G = SO(n,1) = Iso(Hn) the isometry group of the simply connected Rie-

manniann-manifold of constant negative curvature,K = SO(n) the group of
rotations fixing a point. Thus hereM(G,K) is the usual algebra of radial aver-
ages on hyperbolic space.

Similarly,G= SU(n,1), the isometry group of complex hyperbolic space,
K the maximal compact subgroup fixing a point.

(ii) G = O(p,q), the isometry group of simply-connected pseudo-Riemannian
manifold of signature(p, q) and constant curvature,K =Op(R)×Oq(R).

(iii) G = SLn(C), the general Linear group, which is the isometry group of the
space of positive definite matrices,K = SUn(C) the unitary group.

(iv) G= Spn(R), the symplectic group,K = Sp(n).
(2) S = K?<p, a Cartan motion group. HereK is a maximal compact subgroup of a

semisimple Lie groupG, andp the fixed-point-subspace of a Cartan involution on
the semisimple Lie algebrag. Examples include:

(i) The Euclidean motion groupS =On(R)?<Rn,K =On(R). HereM(G,K) is
the usual algebra of radial measures onRn.

(ii) The Heisenberg motion group,S = Un(C)?<Hn, K = Un(C). HereM(G,K)
is the algebra of radial measures onHn generated by theCn-spheres.
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(iii) S = On(R)?<Symn(R), K = On(R), whereSymn(R) is the space ofn × n
symmetric matrices, and the action ofOn(R) is by conjugation.

(3) G a connected semisimple algebraic Chevalley group over a locally compact non-
discrete field,K = a good compact open subgroup. Examples include:
(i) G= PGL2(Qp),K = PGL2(Ẑp). HereG/K is a(p+1)-regular tree,M(G,K)

the algebra of radial averages on the regular tree.

(ii) G= SLn(Qp), K = SLn(Ẑp). HereG acts by isometries of an affine building,
andM(G,K) is a commutative subalgebra of the convolution Hecke algebra of
double cosets of an Iwahori subgroup.

(4) G= Aut(Tr1,r2) the automorphism group of the semihomogeneous bi-partite tree of
valenciesr1 andr2,Ki the maximal compact subgroup fixing a vertex of valencyri .
Further examples of Gelfand pairs(G,K) arise from certain closed non-compact
boundary-transitive subgroups of the group of automorphisms of a finite product of
such trees.

The foregoing list is a very partial one (for a discussion of some more examples of
amenable Gelfand pairs see, e.g., [7,8]). However already the groups mentioned (together
with other groups possessing a radial convolution structure, e.g., the free groups) give rise
to a large collection of interesting measure-preserving actions. We mention briefly only the
following.

EXAMPLE 10.3 (Some examples of measure-preserving actions).
(1) SL2(R) acts (transitively) on the unit tangent bundle of a compact Riemann surface

M = π1(M) \ SL2(R), preserving a volume form of finite total mass.
(2) SLn(R) acts (transitively) on the space of unimodular latticesLn in Rn, namely

Ln = SLn(Z) \ SLn(R), preserving a volume form of finite total mass. Of course,
any subgroup ofSLn(R) also acts onLn.

(3) More generally, any subgroupH of a semisimple algebraic groupG acts on the
probability spaceΓ \G, whereΓ is a lattice subgroup, e.g.,
(i) G= SL2(R)× SL2(R) andΓ = SL2(Z[

√
d]) under the skew diagonal embed-

ding γ  → (γ, τ (γ )), τ the Galois automorphism ofZ[√d], d a square free
positive integer.

(ii) G= SL2(R)×SL2(Qp), Γ = SL2(Z[ 1
p
]) an irreducible lattice inG.

(4) Γ = Fk the free group, for example embedded as a lattice inG = PGL2(Qp), as
Z[ 1
p
]-points in an appropriate quaternion algebra, andX any action ofG, e.g., on a

compact locally symmetric space.
(5) Γ = SL2(Z), and the action by group automorphisms ofT2, or onSL2(R)/Γ , Γ a

lattice.

Again, this list is very partial, but it already clearly demonstrates that establishing a
pointwise (or mean) ergodic theorem (preferably with error term), a strong maximal in-
equality or a differentiation theorem gives rise to diverse applications, depending on the
family µt to which it applies, and the group and action involved. We will mention here
some applications only very briefly, just to motivate our discussion, and without attempt-



942 A. Nevo

ing to explain them further. Rather, we will concentrate below on the proof of the ergodic
theorems themselves.

EXAMPLE 10.4 (Some applications of ergodic theorems and maximal inequalities).
(1) Boundedness properties of natural singular integrals on homogeneous spaces.
(2) Integral geometry on locally symmetric spaces, e.g., singular spherical differenti-

ation, and pointwise equidistribution of spheres and other singular subvarieties in
homogeneous spaces.

(3) Evaluation of the main term in counting lattice points on homogeneous algebraic
varieties.

(4) Estimating error terms in problems of Diophantine approximation on homogeneous
algebraic varieties and homogeneous spaces.

10.2. Pointwise theorems for commuting averages: general method

We now assume(G,K) is a Gelfand pair, and as usual(X,m) denotes an ergodic prob-
ability measure preserving action ofG. The spectral approach outlined in Section 9 to
pointwise convergence is based on applying certain geometric properties of the convo-
lution structure ofM(G,K), together with the tools of harmonic analysis on Abelian
Banach algebras, in order to prove pointwise convergence when the elements of the al-
gebra are represented as averaging operators onLp(X). Since we consider representa-
tions arising from a measure-preserving and thus unitary action ofG, the homomorphism
π :M(G,K)→ EndL2(X) is a∗-homomorphism. Furthermore, an algebra representation
arising from a unitary representation of the group, gives rise to∗-characters (also called
(G,K)-spherical functions), which can all be identified withpositive-definitecontinuous
bounded functions on the group—see [54, Chapter I] and [70, Chapter IV]. The basic mea-
sures inM(G,K) areσg =mK ∗ δg ∗mK , g ∈G. Every other bi-K-invariant probability
measure onG is a convex combination of these. Note that in the discussion of Section 9, the
one-parameter groupA= {at , t ∈ R} was a fixed group of hyperbolic isometries, and there
it was enough to considerσt =mK ∗ δat ∗mK . Many other possibilities for the choice of
the averages arise in practice, and it is not necessary to restrict to averages associated with
one-parameter groups, or even to one parameter family of averages—we refer to [113] for
some examples and more details. Nevertheless, for simplicity of exposition, let us choose
a family of bi-K-invariant probability measuresνt , t ∈ R (not necessarily of the form
mK ∗ δat ∗ mK ), and explain briefly the ingredients sufficient for a proof of the ergodic
theorems and maximal inequalities in this case. We will also comment briefly in the next
section on the various problem that arise along the way. The recipe for the proof proceeds
along the following steps.

(1) Identify the positive-definite∗-spectrumΣ∗(A). Prove that for every non-trivial
positive-definite∗-characterϕz ∈ Σ∗(A) (i.e. every non-constant positive-definite
spherical function)

lim
t→∞ϕz(νt )= 0.
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Conclude thatνt satisfy themean ergodic theorem:

lim
t→∞

∥∥∥∥νtf −
∫
X

f dm

∥∥∥∥
L2(X)

= 0.

(2) Analyze the behavior inz of ϕz(νt ) and d
k

dtk
ϕz(νt ) ast→∞ (for a pointwise ergodic

theorem) and ast→ 0 (for a differentiation theorem).
(3) Establish the existence of a dense set of functions inL2 whereνtf (x) converges

pointwise almost everywhere, using the spectral decomposition ofA in L2(X),
estimates of the positive-definite∗-characters, and Sobolev space arguments
(see [106]).

(4) Establish a maximal inequality inLp, p > 1, for an averaged versionµt of νt ,
for example the uniform averagesµt = 1

t

∫ t
0 νs ds. This may be achieved using a

number of methods, depending on the case at hand, as follows.
(I) First possibility [106]: Use a maximal inequality for the radial components

of νt , namely for the averagesνt determine on the Abelian groupA, when a
Cartan polar decompositionG=KAK is available. Namely use the represen-
tation ofνt as a convex combination of the basic measuresσg =mK ∗ δa ∗mK ,
a the Cartan component ofg.

(II) Second possibility [114]: Use a central limit theorem for the transient random
walk associated withν1 and conclude that (for fixed positive constantsc andC)

µn � C

cn+ 1

cn∑
k=0

ν∗k1 .

Then use the Hopf–Dunford–Schwarz maximal inequality for uniform aver-
ages ofν∗k1 . Finally, argue that for some constantB, µt � Bµ[t]+1, [t] the
integer part oft [99].

(III) Third possibility [105]: Establish the following subadditive convolution in-
equality given by (for fixed positive constantsc andC)

µt ∗µs � C(µct +µcs),

using convolution estimates on the group. The subadditive convolution in-
equality in the group algebra is sufficient to deduce strong maximal inequality
in L2, in every action of the group (see also Section 10.5 below). A strong
maximal inequality inLp, p > 1, can be deduced if an iterated form of the
subadditive inequality is established, for the productsµt1 ∗µt2 ∗ · · · ∗µtn .

(5) Estimate the difference|σt−µt | using an appropriate Littlewood–Paley square func-
tion. For the particular case of uniform averagesµt , as noted in Section 9.3:

νt −µt = 1

t

∫ t
0
s
d

ds
νs ds
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and

∣∣νtf (x)∣∣� ∣∣µtf (x)∣∣+(∫ ∞

0
s

∣∣∣∣ dds νsf (x)
∣∣∣∣2ds)1/2

.

Sof ∗
ν (x)� f ∗

µ(x)+R(f,x).
(6) Transfer the estimate of theL2-norm of the square functionR(f,x) to the Fourier–

Gelfand transform side, using the functional calculus in the commutative algebraA.
Namely, show that∥∥R(f, ·)∥∥22 � ‖f ‖2

2 sup
z∈Σ∗(A)

Φ(z)2,

where:

Φ(z)2 =
∫ ∞

0
s

∣∣∣∣ dds ϕz(νs)
∣∣∣∣2ds.

(7) Use the estimates of the characters and their derivative in (2) to show thatΦ(z) has a
boundindependent ofz. Do the same for the square functionsRk(f, x) correspond-
ing to higher derivatives.

(8) To convertL2-norm bounds for the square functions associated with the deriv-

ative operatorsd
k

dsk
νs , to anLp-norm bound for the maximal functionf ∗

ν (x) =
supt>0 |νtf (x)|, embedνt and their derivatives (and integrals) in an analytic family
of operators. For example, we have utilized in Section 9.4(6) the Riemann–Liouville
fractional integral operators in the case ofµt (for the use of other families see [115]).
This allows the use of the analytic interpolation theorem to interpolate between the
maximal inequality for the derivative operators inL2, and theLp-maximal inequal-
ity for the uniform averagesµt , for p > 1. The latter maximal inequalities are a
consequence of the methods indicated in part (4) of the present recipe.

10.3. Pointwise theorems and the spectral method: some open problems

Each ingredient in the recipe outlined in Section 10.2 above poses certain difficulties, de-
pending on the Gelfand pair and the family of averages under consideration.

We indicate briefly some of the open problems that arise, taking the example of semi-
simple Lie and algebraic groups.

(1) The classification of positive-definite spherical functions (namely the∗-characters
ofL1(G,K) that arise in the representations under consideration) on semisimple Lie
(and algebraic) groups is far from complete, for many infinite families of groups.

(2) Even when the classification is complete, the best estimates for the derivatives of
the spherical functions are far from sufficient to prove the ergodic theorems for
(say) the sphere averages. It is thus necessary to establish decay estimates uniformly
over the positive-definite∗-spectrum, which considerably improve Harish Chandra’s
classical estimates, for example.
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(3) In semisimple Lie (or algebraic) groups of real (or split) rank greater than two radial
averages more singular that Riemannian spheres occur very naturally. For very sin-
gular averages of high codimension, optimal results require very precise estimates
of the spherical functions, including along the different singular directions in the ra-
dial variableH ∈ a = Lie(A), whereG=KAK is the Cartan decomposition. Such
estimates are usually not available for higher rank groups.

(4) The latter phenomenon manifests itself even in the case of product groups, where
spheres and balls are a convex average of spheres and balls on the component
groups, taken with exponential weights. The complexity of the convolution struc-
ture makes it difficult to estimate the spherical functions and their derivatives, when
evaluated on these averages. In particular, the best possible range ofLp maximal
inequalities for sphere averages is not known.

(5) For sphere averages on Iso(H2), the maximal inequality in not valid inL2 (as in the
case of the Euclidean plane). A similar problems arises for Cartan motion groups, for
example, the Heisenberg groupH1. This makes the spectral methods much less ef-
fective, and indeed in these cases, the pointwise ergodic theorem for sphere averages
in general actions of the group has not been established. Note that the convolution
case for Iso(H2) has been settled in [76], but in the absence of a transfer principle
for non-amenable groups, this result has no bearing on the case of general ergodic
actions.

(6) Spectral methods and analytic interpolation theory do not give maximal inequalities
and ergodic theorems inL1. This is an open problem even for the ball averages, on
all semisimple groups, and in particular, forG= SL2(C). Note that a general weak-
type (1,1)-maximal inequality for ball averages on semisimple groups, acting by
convolutions on the symmetric space, has been established in [143]. Again, however,
the absence of a transfer principle renders this result irrelevant for the case of general
ergodic actions.

While the list of problems above certainly poses some formidable challenges, in many
interesting situations these challenges can be surmounted, and the general spectral method
outlined in Section 10.2 can be implemented (for sphere averages, say). This is true partic-
ularly in the case of the action by convolution, which is much more explicit than a general
action. This fact is demonstrated by the examples discussed in Section 8.1, namely the
maximal inequalities for convolution with spheres in Euclidean spaces [142], Heisenberg
groups [36,116,102], and hyperbolic spaces of dimensionn� 3 [45], or dimensionn= 2
[76]. By the discussion in Section 9, maximal inequalities for sphere averages can also be
established for general ergodic actions ofG = Iso(Hn), n > 2. More generally, the spec-
tral method gives the best possible range ofp where the maximal inequality and pointwise
ergodic theorem for sphere averages hold, for any simple Lie group of real rank one [115]
(exceptSL2(R)).

We will present in the following two sections further examples where the spectral
method can be fully or partially implemented for sphere averages, and in the following
section, further examples where it can be implemented for ball averages. We first turn to
the case of singular averages on higher real-rank semisimple groups, which is far from
completely solved, and exhibits many of the problems referred to in Section 10.3. The
only available results on singular averages on higher-real rank groups were obtained in the
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case of complex group, which we discuss in Section 10.4. In Section 10.5 we will consider
some totally disconnected Gelfand pairs, as well as some of their discrete lattice subgroups,
to which the spectral method applies. In particular we will prove the ergodic theorems of
spheres in the free groupsFk , noted in Section 8.3.

10.4. Sphere averages on complex groups

We begin by a brief reminder of the basic relevant set-up and notation. LetG denote a
connected semisimple Lie group with finite center and without non-trivial compact factors,
g its Lie algebra. Letθ denote a Cartan involution onG andg, and letg = k ⊕ p be the
corresponding Cartan decomposition, so thatk is the Lie subalgebra corresponding to a
connected maximal compact subgroupK . Leta ⊂ p denote a maximal Abelian subalgebra,
and letΦ(a,g) = Φ ⊂ a∗ denote the (real) root system ofa in g. Let gα denote the root
space corresponding toα ∈Φ, andg = m⊕ a⊕ ∑α∈Φ gα the root space decomposition.
Fix a system of simple roots∆ ⊂ Φ, the corresponding ordering ofa∗ = hom(a,R) and
the system of positive rootsΦ+, and letρ denote half the sum of the positive roots. Let
W =W(a,g) denote the Weyl group of the root system,a+ the positive Weyl chamber, and
a+ its closure. LetA = expa denote the Lie subgroup corresponding toa, A+ = expa+
andA+ its closure. The Cartan (or polar coordinates) decomposition inG is given by
G=KA+K andg = k1e

H(g)k2, whereH(g) is thea+ component ofg. Let 〈 , 〉 denote the
Killing form on g, and letd denote the induced Riemannian metric on the symmetric space
G/K . Then the restriction of〈 , 〉 to a is an inner product, and we haved(exp(H)o, o)=√〈H,H 〉 for all H ∈ a, whereo = [K] denotes our choice of origin inG/K . We recall
that the Cartan polar coordinates decomposition yield the following integration formula for
Haar measure onG (see [70, p. 186] or [54]):∫

G

f (g)dmG(g)=
∫
K

∫
a+

∫
K

f (keH k′)ξ(H)dmK(k)dH dmK(k′).

Hereξ(H) =∏α∈Φ+(sinhα(H))mα ,H ∈ a+, mα = dimR gα , andmG, mK denotes Haar
measures onG andK , dH denotes Lebesgue measure ona.

We can now formulate the following result for complex semisimple Lie groups.

THEOREM 10.5 (Pointwise ergodic theorem for sphere averages on complex groups [40]).
LetG be a connected complex semisimple Lie group with finite center. Fix a regular direc-
tionH ∈ a, and letσHt =mK ∗δexptH ∗mk . Letσt denote the Riemannian sphere averages.
In every measure-preserving action ofG, we have

(1) The averagesσHt satisfy the pointwise ergodic theorem, strong maximal inequality
and the singular differentiation theorem inLp, p > pG. Here pG is an explicit
computable constant, and, e.g., for G= SLn(C), pG = 2n−1

2n−2.
(2) The Riemannian sphere averagesσt satisfy the pointwise ergodic theorem, maximal

inequality and singular differentiation theorem inL2.

We remark that it is not known whether the range ofp stated in Theorem 10.5(1) is
optimal.
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Theorem 10.5 is proved using the general method described in Section 10.2. A key ingre-
dient is thus to establish the right spectral estimates that allow control of the Littlewood–
Paley square function. The relevant spectral estimate are given as follows.

THEOREM 10.6 (Uniform spectral estimates for positive-definite spherical functions on
complex groups [40]).For G as in Theorem10.5, the following holds for non-trivial
positive-definite spherical functionsϕλ, and forH ∈ a+∣∣∣∣ dkdtk ϕλ(exp(tH)

)∣∣∣∣�Ck(G,H)(1+ ‖λ‖)k−γ exp
(−κtρ(H)).

Hereγ = γG depend only onG. Furthermoreκ depends only onG and is strictly positive,
providedG has no SL2(C)-factors(equivalently, G is complex and satisfies propertyT ).
Otherwiseκ is still strictly positive but depends also onλ.

Theorem 10.6 implies that thekth Littlewood–Paley square function associated with the
operatorsσHt satisfies‖Rk(f, ·)‖2 � Ck‖f ‖2, as long ask � γ . Thus the spectral method
of Section 10.2 applies, and this proves Theorem 10.5.

The proof of Theorem 10.6 uses the explicit form of the spherical functions given by
Harish Chandra’s formula in the complex case. It is based on a method of descent, which
allows writing a spherical function onG as a sum of multiples of spherical functions on
lower-dimensional complex subgroups. Such a decomposition is defined for everyλ ∈ a∗,
and the multiples that occur depend onλ. Choosing the optimal decomposition for eachλ,
a rate of decay inλ is obtained, which depends only on the root system. We remark that the
classical Harish Chandra estimate only provides an estimate which amounts topolynomial
growth in the spectral parameter, rather thanpolynomial decayas in Theorem 10.6. Thus
the Harish Chandra estimate cannot be used to establish the uniform spectral estimates nec-
essary in order to bound the Littlewood–Paley square functions, that the spectral method
presented above calls for.

The exponential decay int established in Theorem 10.6 holds uniformly for all positive-
definite spherical functions, and is a consequence of the results of M. Cowling and R. Howe
on matrix coefficients of unitary representations with a spectral gap of semisimple groups,
which we will describe further in the next section.

Let us now turn to discuss maximal inequalities and ergodic theorems in the completely
different set-up of totally disconnected lcsc groups, and some of their lattice subgroups. In
the next section we consider groups of tree automorphisms, and in 11.3 we will discuss
higher-rank groups and lattices.

10.5. Radial structure on lattice subgroups: a generalization of Birkhoff ’s theorem

The general spectral method presented in Section 10.2 has some remarkable applications
to certain countable groups which are not in themselves Gelfand pairs. In particular these
application leads to a very natural generalization of Birkhoff’s pointwise ergodic theorem
as well of Hopf’s maximal inequality. To explain it, consider the regular treeTk of constant
valencyk � 3, and its group of graph automorphismsG= Aut(Tk), which acts transitively
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on the tree. The groupK of automorphisms stabilizing a given vertexo is compact, and
Tk can be identified withG/K . The orbits ofK in Tk = G/K are precisely the spheres
Sn(o) with o as a center. A simple direct computation shows that ifSn denotes the operator
of averaging a function on the treeTk on a sphere of radiusn, then this sequence of op-
erators satisfy the recurrence relationS1Sn = 1

k
Sn−1 + k−1

k
Sn+1. It follows immediately

that eachSn is a polynomial inS1, and thus the algebra generated by these operators is
cyclic and commutative. It is easy to see that each operatorSn can be identified with a
(right) convolution operator onG, namely with convolution by the double cosetKgK cor-
responding the sphereSn(o) (aK-orbit inG/K). Thus it follows that(G,K) is a Gelfand
pair, and sinceL1(G,K) =M(G,K) is cyclic, and satisfies the second-order recurrence
relation with constant coefficients given by the identity above, it is not difficult to give its
characters and∗-characters in explicit form, as we shall see below.

Now note that the whenk = 2r is even, the Cayley graphX(Fr , S) of the free group on
r generators determined by a setS of r free generators and their inverses, has the structure
of a 2r-regular tree. The free group in question acts as a groupΓ of automorphisms of
the Cayley graph, via its action by left translations and thus embeds inG. Furthermore the
Γ -action is of course simply transitive, andΓ intersects trivially with the stability group
of every vertex. It is easily seen that the operatorSn of averaging on a sphere with radius
n in the Cayley graph can be given as an operator of (right) convolution on the groupΓ ,
namely convolution by the measureσn, the uniform probability measure on a sphere of
radiusn in the free group, w.r.t. the word metric defined byS. Indeed:

ρΓ (σn)f (w)= f ∗ σn(w)= 1

|Sn|
∑

|x|S=n
f
(
wx−1)= 1

|Sn|
∑

d(w,u)=n
f (u)

= Snf (w).

Thus we conclude that the algebra generated by the averaging operators on spheres in the
treeT2r embeds as acommutative subalgebraA of the convolution algebra�1(Fr ) (which
in itself is of course, as non-commutative as a group algebra can be). It follows that every
unitary representation ofFr gives rise to a∗-representation of the commutative algebraA,
and thus the general spectral method explained in Section 10.2 applies.

Note that in fact the identification explained above of the algebra generated by the op-
erators of averaging on spheres in the Cayley graph, with the algebra generated in�1(Γ )

by the operators of right convolution byσn holds more generally for every discrete group
Γ with generating setS. Thus the method of Section 10.2 applies whenever the automor-
phism groupG of the Cayley graph, together with the stability groupK of a vertex form a
Gelfand pair.

Continuing with the case of the free groups, we recall that the spectrum ofA(Fr ) is given
as follows (where we defineq = 2r − 1). The solutions to the second-order recurrence
relation satisfied in the algebra are

ϕz(σn)= c(z)q−nz + c(1− z)q−n(1−z), z �= 1

2
+ ijπ

logq
,

c(z)= q1−z − qz−1

(q + 1)(q−z − qz−1)
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and:

ϕz(σn)=
(

1+ nq − 1

q + 1

)
(−1)jnq−n/2, z= 1

2
+ ijπ

logq
.

A necessary and sufficient condition forϕz to be a continuous character (on the closed
subalgebra of�1(Fr ) generated by the spheres) is that it be bounded, and this condition is
equivalent to 0� Rez� 1. The unitary representation ofFr in L2(X), extended to�1(Fr ),
assigns toσ1 a self-adjoint operator. Consequently, the valuesϕz(σ1)= γ (z) are real, for
thoseϕz that occur in the spectrum ofσ1 in L2(X). It is easily verified thatγ (z) is real iff
Rez= 1

2, or Imz= ijπ
logq . The image of this set underγ is the∗-spectrum ofA(Fr ). Note

that forz and 1− z the same character obtains, so we can assume that 0� Rez� 1
2. Note

also that the characters corresponding toz = s and toz = s + ijπ
logq differ by sign only:

ϕ
s+ ijπ

logq
(σn)= (−1)jnϕs(σn). In particular, the sign characterε, given byε(σn)= (−1)n,

is obtained at the pointsz= i(2j+1)π
logq .

The∗-spectrum is naturally divided to the principal series charactersϕz where Rez= 1
2,

and the complementary, wherez= s + ijπ
logq , wheres is real and 0� s � 1

2.
The comparison with the case of the spherical functions on the groupSL2(C) is evident

(see Section 9.3(6)), save of course for the fact thatA(Fr ) has a unit, and thus its spectrum
is compact.

In order to demonstrate some of the phenomena that arise here, let us consider in ad-
dition to the free group also the groupsΓ (r,h) = G1 ∗ G2 · · · ∗ Gr , the free product of
r finite groups each of orderh, wherer � 2, h � 2, r + h > 4, with generating setS =⋃r
i=1Gi \ {e}. Here we defineq(Γ (r,h))= (r − 1)(h− 1).
The sphere averages onΓ (r,h) also commute, and also satisfy a second-order recur-

rence relation with constant coefficients. Indeed, again this algebra is closely related to a
Gelfand pair, this time associated with the group of automorphisms of a semihomogeneous
tree (see [104] and [105] for more details).

The spectrum ofΓ (r,h) can thus be analyzed similarly, with one significant difference
compared to that ofFr . At the pointiπ/ logq = iζ the special character that obtains is of
the form (see [105, §2.3])

ϕiζ (σn)= ciζ (−1)n + c1−iζ (−1)nq−n.

Hereciζ = 1 andc1−iζ = 0 if and only if h = 2. Indeedc(iζ ) = q−(r−1)−1−h+2
r(h−1)(1−q−1)

, and so
c(iζ )= 1 iff Γ = Γ (r,2) or Γ = Fk . We defineciζ = c(Γ ).

Given a probability-preserving action of one of the groupsΓ (r,h) or Fr , let us denote
by E ′ the orthogonal projection on the subspace ofL2(X) given by ker(π(σ1)−ϕiζ (σ1)I ).
Note that the latter subspace consists of functions satisfying:π(σn)f = (−1)nf in the case
of the free groups andΓ (r,2), but not otherwise.

As usual letE be the projection on the space ofΓ -invariant functions (Ef = ∫
X
f dm in

the ergodic case). Recall that we definedσ ′n = 1
2(σn + σn+1), and let(X,m) be aΓ -space

whereE ′ �= 0.
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We can nor formulate the following result.

THEOREM 10.7 (Ergodic theorems for radial averages on free products [105]).For Γ =
Γ (r,h) or Γ = Fk and(X,m) (as above), the following holds:

(1) σn andβn satisfy the maximal inequality inL2(X), but are not mean(and hence not
pointwise) ergodic sequences inL2(X).

(2) The sequencesσ ′n is a pointwise ergodic sequence inL2(X).
(3) σ2n converges toE + c(Γ )E ′, which is a conditional expectation operator w.r.t.

a Γ -invariant sub-σ -algebra iffΓ = Γ (r,2) or Γ = Fk .
(4) β2n converges toE+c(Γ )q(Γ )−1

q(Γ )+1E ′, which is not a conditional expectation operator

on aΓ -invariant sub-σ -algebra.
The convergence is for each functionf ∈ L2(X), pointwise almost everywhere and in the
norm ofL2(X).

REMARK 10.8. We have chosen to focus onL2 for simplicity of exposition. The strong
maximal inequality forσn (and thusσ ′n andβn) holds in fact in everyLp, 1< p <∞, as
can be verified using the argument in [114].

REMARK 10.9 (The ball averaging problem: some counterexamples). Recalling the ball
averaging problem in ergodic theory stated in Section 4.3, we see that Theorem 10.7 paints
a rather complicated picture of the possibilities. First, note that the ball averagesβn donot
form a mean (and of course, pointwise) ergodic sequences, and neither does the sequence
of spheresσn. This fact was originally observed in [10], by constructing an ergodic action
of F2 where the special characterσn  → (−1)n of A is realized by an joint eigenfunction of
the algebraA acting inL2. Thus the ball average problem does not have a positive solution
for general groups. However, Theorem 10.7 shows that this periodicity phenomenon is the
only obstruction, and in factσ2n andβ2n do converge pointwise. Furthermore, note that the
limit of σ2n is the conditional expectation w.r.t. theΓ -invariantσ -algebra of sets invariant
under a subgroup of index at most two in the case whereΓ is a free group, but this is
not the case for the groupsΓ (r,h), h > 2. For the ball averagesβ2n the limit is not a
projection operator (and thus not a conditional expectation) at all. Thus it appears that the
identification of the exact possible limits of subsequences ofσn andβn is a rather delicate
problem, which seems inaccessible at this time, for general word-hyperbolic groups, say.
The only exception thus far are those groups for which the spectral considerations above
(or some variants, see [105]) apply.

The situation just described is of course a reflection of non-amenability, since the balls
do not have the Følner property of asymptotic invariance, and so a limit of a subsequence
of βn need not posses any invariance properties w.r.t. theΓ -action.

We remark that it was conjectured in [18, §9] that for every word-hyperbolic groupΓ ,
and every symmetric set of generators the averagesσ2nf converge pointwise to a function
f ′ invariant under the groupΓ2 generated by all words of even length. However consider
the groupsΓ = Γ (r,h), h > 2, and a functionf ∈ L2(X) which realizes the characterϕiζ
of the algebraA. Then according to the formula above forϕiζ

lim
n→∞π(σ2n)f (x)= lim

n→∞ϕiζ (σ2n)f (x)= ciζ f (x).
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Thus the limit does exist, butf is not a function invariant underΓ2, being an eigenfunction
of eachπ(σ2n) with eigenvalue different than 1.

REMARK 10.10 (Generalization of Birkhoff ’s theorem). Given an arbitrary invertible
measure preserving transformationT on a probability spaceX, Birkhoff’s pointwise er-
godic theorem asserts that for anyf ∈ L1(X), the averages off along an orbit ofT ,

namely the expressionsf (T
−nx)+···+f (T nx)

2n+1 converge, for almost allx ∈ X, to the limit

f̃ (x), wheref̃ is the conditional expectation off w.r.t. theσ -algebra ofT -invariant sets.
Part of our quest to establish ergodic theorems for group actions can thus be motivated
by the following obvious and natural question which presents itself. Giventwo arbitrary
invertible measure preserving transformationsT andS, find a geometrically natural way
to average a functionf along the orbits of the group generated byT andS, so as to obtain
the same conclusion.

Of course ifT and S happen to commute, then, according to the discussion in Sec-
tion 5, the expressions 1

(2n+1)2
∑

−n�n1,n2�n f (T
n1Sn2x) converge for almost allx ∈ X,

for any f ∈ L1(X), and again the limit is the conditional expectation off w.r.t. the
σ -algebra of sets invariant underT andS. In other words, the pointwise ergodic theorem
holds for finite-measure-preserving actions of the free Abelian group on two generators,
namelyZ2. However, it is clear that when choosing generically two volume-preserving
diffeomorphisms of a compact manifold, or two orthogonal transformations of the Euclid-
ean unit sphere, or in general two measure preserving maps of a given measure space, the
group generated by them is not Abelian, and in fact, it is generically free.

The answer to the problem above is then to find an averaging sequence satisfying a
pointwise ergodic theorem for finite-measure-preserving actions of the free non-Abelian
group on two generators. The first choice that one would consider by direct analogy with
Birkhoff’s and Wiener’s theorems (forZ andZd ), would be the normalized ball averages
w.r.t. a set of free generators. For the free group this problem has been settled, using the
spectral methods described above, by the following result.

THEOREM 10.11 (Generalization of Birkhoff’s theorem [114]).Consider the free group
Fr , r � 2, with symmetric free generating setS. Let (X,m) be a probability-preserving
ergodic action. Then

(1) The sequenceσ ′n = 1
2(σn + σn+1) satisfies the strong maximal inequality and is a

pointwise ergodic sequence inLp, for 1<p <∞.
(2) The sequenceβn satisfies the pointwise ergodic inLp, 1< p <∞, if and only if

L2(X) does not contains a non-zero functionf0 satisfyingπ(w)f0 = (−1)|w|f0 for
everyw ∈ Fr .

(3) If such an eigenfunctionf0 is present then it is unique, has constant absolute value,
andβnf0 does not converge. For anyf ∈ Lp(X), 1<p <∞,

lim
n→∞β2nf (x)=

∫
X

f dm+ r − 1

r

∫
X

f f0dm · f0(x)

pointwise and in theLp-norm.
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PROBLEM 10.12. We note that the weak-type maximal inequality inL1 for the sphere
averages (or equivalently, the ball averages) on the free group is an open problem.

REMARK 10.13. Note that the pointwise ergodic theorem for the free finitely generated
groupFk implies a corresponding one for any factor group ofFk , namely for any finitely
generated group, just as Wiener’s theorem forZd implies the corresponding result for
any finitely generated Abelian group. However, the weights that must be taken on the
factor group are those induced by the canonical factor map, and these usually bear little
resemblance to the intrinsic ball and sphere averages on the factor group.

REMARK 10.14 (Sphere averages on free algebras). We note that the same spectral meth-
ods that were employed for sphere averages in the group algebra of the free group can
be used more generally for other free algebras in various varieties. For example, consider
the free associative algebra onr non-commutative elements. This algebra has of course a
natural length function, and clearly the algebra of radial elements is commutative (under
convolution), and satisfy a first-order recurrence relation. It is thus a simple exercise to
develop the spectral theory of the∗-representations of the subalgebra of radial elements.
These include representation where each generator is mapped to bounded self-adjoint con-
traction on a Hilbert space, and we thus obtain a pointwise ergodic theorem for the powers
of the self-adjoint operator which is the uniform average of ther contractions. Similarly,
we can consider the free algebra onr non-commuting idempotents, where again we have
a commutative subalgebra of radial elements. The∗-spectrum can be determined here
too, again by solving a second-order recurrence relation with constant coefficients. The
∗-representations include those where each generator is mapped to a self-adjoint projec-
tion. We thus obtain in particular a pointwise ergodic theorem for the radial averages of
(non-commuting) conditional expectations on a probability space.

In Theorem 10.7 we already considered the convolution algebras of the free prod-
ucts Zp ∗ · · · ∗ Zp which are the free groups generated byr elements of orderp. The
∗-representations here are given by the unitary representations of the groups, and the spher-
ical functions can again be explicitly determined from a second-order recurrence relation
(see, e.g., [105] for their description).

There are further examples of free algebras in other varieties, where the radial elements
form a commutative subalgebra whose∗-spectrum can be determined using a recurrence
relation. In all of these cases a mean and pointwise ergodic theorem for sphere averages in
∗-representations is obtained, with the sole obstruction given by periodicity phenomena,
when they occur.

REMARK 10.15 (Boundary transitive subgroups of tree automorphisms). Let us note that
the group algebra of the simple algebraic groupPGL2(Qp) also contains an isomorphic
copy of the algebraA of even radial averages on the treeTp+1. This follows from the fact
that the group has a faithful representation as a group of automorphisms of the regular
tree, which is transitive on the boundary. Again the averaging operators on the tree can be
represented as convolution operators onPGL2(Qp). However, here the Howe–Moore mix-
ing theorem [74] applies, namely the matrix coefficients of unitary representations with-
out invariant unit vectors vanish at infinity on an algebraically connected simple group.
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This implies that the sign character of the algebraA cannot appear in ergodic actions of
PSL2(Qp), and bothβ2n andσ2n converge pointwise and in norm to the ergodic mean, in
everyLp, 1<p <∞, as follows from [105] and [114]. A similar analysis holds for many
closed non-compact boundary-transitive subgroups of the group of automorphisms of a
semihomogeneous tree [105]. The analog of the Howe–Moore theorem here was proved
in [95].

REMARK 10.16 (Non-commutative Hecke algebras). We note that further natural algebra
structures appear in the setting of groups of automorphisms of semihomogeneous tree,
and more generally groups of automorphisms of the Bruhat–Tits buildings of semisimple
algebraic groups over locally compact totally disconnected non-discrete fields. These are
the Hecke algebrasL1(Q \G/Q) of double cosets of a compact open subgroupQ under
convolution, which are non-commutative in general, but have the property that all of their
irreducible∗-representations have a uniformly bounded degree [9]. Particularly significant
among these algebras is the Iwahori algebra, consisting of double cosets of an Iwahori
subgroup. In the case of the groupAut(Tr1,r2), (r1 �= r2) for example, the Iwahory subgroup
can be identified with the stability group of an edge, and thus it is contained in the two
non-conjugate maximal compact open subgroup stabilizing one of the vertices of the edge.
Thus the commutative algebra associated with a Gelfand pair structure on the group is
contained as a subalgebra of the Iwahori algebra in this case (and others). The spectrum of
the Iwahori algebra on a semihomogeneous tree can be easily determined (see, e.g., [104]),
and it appears naturally when analyzing the spectrum of some natural convolution algebras
in certain lattices ofAut(Tr1,r2) (r1 �= r2). These include for example the groupsZp ∗ Zq ,
and so also the groupPSL2(Z)= Z2 ∗Z3. Thus it is possible also to use non-commutative
harmonic analysis on Hecke algebras to derive ergodic theorems for discrete groups. This
possibility was explored in the case of semihomogeneous trees in [105], but it is natural to
expect that it can be developed much further.

REMARK 10.17. We note that an alternative proof of the ergodic theorems for spheres
on the free group was developed by A. Bufetov [18]. The method is based on the theory
of Markov processes rather than on spectral theory, and will be discussed further in Sec-
tion 12.4, together with some other ergodic theorems on free groups and other Markov
groups.

11. Actions with a spectral gap

We now turn to a discussion of a fundamental phenomenon that appears in the study of
non-amenable algebraic groups, and which has no analog in the theory of amenable groups.
Utilizing it, we will be able to greatly expand the scope of the radial ergodic theorems on
semisimple algebraic groups, obtain quantitative estimates in the pointwise ergodic theo-
rems, and also obtain a host of results on a diverse array of non-radial averages.

The phenomenon in question is the existence of properly ergodic (i.e. non-transitive)
actions with a spectral gap. We define the latter property in the form most convenient for
our purposes here, as follows.
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DEFINITION 11.1 (Spectral gaps).
(1) A strongly continuous unitary representationπ of an lcsc groupG is said to have

a spectral gap if‖π(µ)‖< 1, for some (or equivalently, all) absolutely continuous
symmetric probability measureµ whose support generateG as a group.

(2) Equivalently,π has a spectral gap if the Hilbert space does not admit an asymptoti-
cally-G-invariant sequence of unit vectors, namely a sequence satisfying
limn→∞‖π(g)vn − vn‖ = 0 uniformly on compact sets inG.

(3) A measure preserving action ofG on aσ -finite measure space(X,m) is said to
have a spectral gap if the unitary representation ofG in the space orthogonal to the
space ofG-invariant functions has a spectral gap. Thus in the case of an ergodic
probability-preserving action, the representation in question is on the spaceL2

0(X)

of function of zero integral.
(4) An lcsc groupG is said to haveKazhdan’s propertyT [83] provided every strongly

continuous unitary representation which does not haveG-invariant unit vectors has
a spectral gap.

REMARK 11.2.
(1) The equivalence between (1) and (2) is a standard argument in spectral theory and

can be found, e.g., in [99].
(2) The phenomenon of spectral gaps does not occur for properly ergodic probability-

preserving actions of amenable groups. Indeed, in any such actionX, there exists
a non-trivial sequence of setsAn ⊂ X whose measures satisfy 0< c < m(An) <
C < 1 for all n, which is asymptotically invariant, namely limn→∞m(gAn∆An)=
0 uniformly on compact sets inG [132]. It follows immediately that‖π(µ)‖L2

0(X)
=

1 for everyprobability measureµ onG.
(3) We recall the well-known fact that amenability of an lcsc group (namely the ex-

istence of a Følner sequence) can be characterized by the condition that the left
regular representationλG satisfiesλG(µ)= 1, for at least one (or equivalently, all)
absolutely continuous symmetric probability measureµ whose support generateG
as a group.

In the realm of non-amenable algebraic groups, actions preserving aσ -finite measure
which have a spectral gap are quite ubiquitous, and we briefly indicate some examples.

EXAMPLE 11.3 (Some examples of actions with a spectral gap).
(1) G a non-amenable group,X =G, and the action is by left translations, w.r.t. Haar

measure.
(2) G a connected semisimple Lie group, and the action is by isometries of the Rie-

mannian symmetric spaceG/K . More generally, the action on a reductive sym-
metric space of the formG/H , whereH is the fixed-point-group of an involutive
automorphism ofG.

(3) G a simple algebraic group, and the action by translation on the homogeneous
spaceG/L, whereL is a proper algebraic unimodular subgroup [65], e.g., the action
of SLn(R) on the space of symmetric matrices, or the action ofSp(n,R) on R2n.
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(4) Similarly, forG a simple algebraic group the action by translations on the homoge-
neous spaceG/� where� ⊂G is a discrete subgroup which is not Zariski dense
(see, e.g., the discussion in [77]).

(5) τ :G→H a representation of a semisimple algebraic groupG in a simple algebraic
groupH ,∆⊂H a lattice subgroup, andG acts onX =∆ \H , a locally symmetric
space of finite volume viaτ .

(6) If G is a simple algebraic group of split-rank at least two thenG has propertyT
(see, e.g., [97]), and then of courseanyunitary representation without invariant unit
vectors has a spectral gap.

11.1. Pointwise theorems with exponentially fast rate of convergence

The utility of a spectral gap in a given representationπ is in the fact that typically, given
a natural familyµt of probability measures onG, not only do we have‖π(µt )‖ < 1 for
eacht > 0, but in fact (as we shall see presently) the far stronger conclusion that the norms
decay exponentially int holds, namely:∥∥π(µt )∥∥� Cµ exp(−δµt),

whereδµ > 0 depends on the familyµt .
WhenG= SL2(C), for example, the spectral gap condition is equivalent with the con-

dition that the∗-spectrum that arise in the representationπ of M(G,K) contains only
complementary series charactersϕa with parameter satisfyinga � 1− θ , θ = θ(X) > 0
(except for the trivial character). The exponential decay of the operator norms ofσt , for
example, follows immediately upon evaluating the charactersϕz on the sphereSt . It also
follows easily forγt andβt upon integratingϕz against these measures, as we will see
below.

The exponentially decaying norm estimate above is a most useful fact, which as we
shall see gives rise to an interesting new phenomenon in ergodic theory, namely pointwise
ergodic theorems with an explicit exponentially fast rate of convergence to the ergodic
mean, for properly ergodic actions. The validity of the norm estimate follows from spectral
estimates that we will consider in more detail in Section 11.2. But to illustrate the point,
we now turn to our first use of such estimates, namely the following pointwise ergodic
theorem with an error term for the bi-K-invariant averagesβt on a simple Lie group, and
to its proof. We recall that the averagesβt we shall consider are defined as theK-invariant
lifts to G of theK-invariant probability measures on ballsBt w.r.t. the Killing form on the
symmetric spaceG/K , with center[K] and radiust . This family generalizes the case of
hyperbolic space considered in Section 9.

THEOREM 11.4 (Pointwise ergodic theorem with exponentially fast rate of convergence
for ball averages on semisimple Lie groups in actions with a spectral gap [99]).LetG be
connected non-compact semisimple Lie group with finite center, and let theG-action onX
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have a spectral gap. Then the ball averagesβt converge pointwise exponentially fast to the
ergodic mean. More precisely∀f ∈ Lp(X), p > 1, and for almost everyx ∈X:∣∣∣∣βtf (x)− ∫

X

f dm

∣∣∣∣� Bp(f, x)exp(−θpt), θp > 0,

whereθp depends onp,G andX.
Furthermore, the integer-radius sphere averagesσn also converge pointwise exponen-

tially fast to the ergodic mean.

Model case: Proof for ball averagesβt in ergodic actions of SL2(C) with a spectral gap.
Recall that we are assuming here that the∗-spectrum determined by the representation

π0 of G = SL2(C) andM(G,K) on L2
0(X) (the space of functions with zero integral),

contains only complementary series charactersϕa with parameter satisfyinga � 1 − θ ,
θ = θ(X) > 0. We denote the spectrum byΣ∗(π0). The proof proceeds along the following
steps.

(1) Sincea � 1− θ < 1, we have, using the explicit form of the characters (see Sec-
tion 9.3):∣∣ϕa(σt )∣∣� B exp(−θt)

and hence we have the following exponential decay estimate on the norm of the
sphere averages

‖σt‖L2
0→L2

0
= sup
z∈Σ∗(π0)

∣∣ϕz(σt )∣∣� B exp(−θt).

(2) Similarly, for the ball averages, using the estimate of their density:

‖βt‖L2
0→L2

0
� C exp(−2t)

∫ t
0

exp(2s)‖σs‖L2
0→L2

0
ds

� CB exp(−2t)
∫ t

0
exp
(
(2− θ)s)ds �C′ exp(−θt).

(3) For integer radius balls (and similarly, spheres) acting inL2
0, we have:

∞∑
n=0

∥∥∥∥exp

(
θ

2
n

)
βnf

∥∥∥∥2
2
�

∞∑
n−0

exp(−θn)‖f ‖2
2<∞,

equivalently:

∞∑
n=0

∫
X

∣∣∣∣exp

(
θ

2
n

)
βnf (x)

∣∣∣∣2dm<∞
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and so

sup
n�0

∣∣∣∣exp

(
θ

2
n

)
βnf (x)

∣∣∣∣2 �
∞∑
n=0

∣∣∣∣exp

(
θ

2
n

)
βnf (x)

∣∣∣∣2 = C(f,x)2<∞

for almost allx ∈X.
(4) We can therefore conclude:

(A) βn (and σn) satisfies theexponential-maximal inequalityin L2
0(X) stated

in (3), and
(B) βn (andσn) converges pointwise exponentially fastto the ergodic mean for

f ∈ L2, i.e. for almost everyx ∈X:∣∣∣∣βnf (x)− ∫
X

f dm

∣∣∣∣� C(f −
∫
X

f dm,x

)
exp

(
−θn

2

)
.

(5) The natural generalization of statements (A) and (B) in (4) above are of course true
in everyLp0 , p > 1, by the Riesz–Thorin interpolation theorem.

(6) Now note that the foregoing arguments show in fact a more general result, namely
that the same conclusion holds for every sequenceβtk with

∑
k∈N exp(−1

2θtk) <∞. Fix such a sequencetk , and given a pointt , choose the closest point to it (which
we assume is at a distance at most one), and denote it bytn. Now write for f
bounded:∣∣∣∣βtf (x)− ∫

X

f dm

∣∣∣∣� ∣∣βtf (x)− βtnf (x)∣∣+ ∣∣∣∣βtnf (x)− ∫
X

f dm

∣∣∣∣.
The second term is bounded (using part (3) above, and replacing the integers by
the sequencetk ∈ R) by

C′
(
f −
∫
X

f dm,x

)
exp

(
−1

2
θtn

)
,

where∥∥∥∥C′
(
f −
∫
X

f dm, ·
)∥∥∥∥

2
� B‖f ‖2 � B‖f ‖∞.

As to the first term, note that the familyβt is uniformly (locally) Lipschitz con-
tinuous (w.r.t. theL1(G)-norm), and the functionf is bounded. It follows that the
first term is bounded by|t − tn|‖f ‖∞.

(7) Let us choose the sequencetk fine enough, so that it satisfies|t− tn| � exp(−1
4θn).

This can be achieved by dividing the interval[n,n + 1] to 2 + [exp(θn/4)]
equally spaced points, and the resulting sequence still satisfies the condition∑
k∈N exp(−1

2θtk) <∞ stated in (6). We can then use the argument of (6) for
the sequencetk to estimate both the first and the second term.
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The estimate in (6) immediately implies the following, which we call an
(L∞,L2)-exponential maximal inequality:∥∥∥∥sup

t>0
exp

(
1

4
θt

)∣∣∣∣βtf (x)− ∫
X

f dm

∣∣∣∣∥∥∥∥
L2

� C2‖f ‖∞.

(8) We can now conclude that for every bounded functionf the expression

sup
t>0

exp

(
1

4
θt

)∣∣∣∣βtf (x)− ∫
X

f dm

∣∣∣∣= B(f,x)
is finite almost everywhere, and the conclusion of Theorem 11.4 is thus established
for f in L∞.

(9) We now note that the strong maximal inequality for ball averages of Theorem 9.4
namely∥∥∥sup

t>0
βtf

∥∥∥
p

� Cp‖f ‖p, p > 1,

can be established very easily for balls with exact exponential growth in actions
with a spectral gap. Indeed, clearly exact exponential volume growth implies that
for a fixed constantB we haveβt � Bβ[t]+1, t � 1, as measures onG. Thus the
maximal inequality for the family of all balls follows from its validity for the se-
quence of balls with integer radii. The boundedness of the latter maximal function
is an elementary conclusion of exponential decay of the operator norm, as follows
from an obvious variation on the arguments presented in parts (3) and (4).

(10) Finally, we can use the analytic interpolation theorem again. This time we interpo-
late between the exponential maximal inequality stated in (7) (fromL∞ toL2) and
the strong maximal inequality (fromLp toLp, p > 1) for the ball averages, stated
in (9). We then obtain an(Lp,Lr)-exponential maximal inequality (in the obvious
notation) and hence exponential pointwise convergence to the ergodic mean, for
everyf ∈ Lp, 1< p <∞. We refer to [99] for the details. This concludes the
outline of the proof of Theorem 11.4.

The proof above is complete for actions ofSL2(C) with a spectral gap, and similar ar-
guments also yields the general case of ball averages on semisimple groups in actions with
a spectral gap. One uses spectral estimates of spherical functions, resulting in the expo-
nential decay of the operator norm (see the discussion in the following section). Further,
the monotonicity propertyβt � Cβ[t]+1 of the ball averages is valid here and follows from
strict tq expct-volume growth of the balls, which is a relatively straightforward conse-
quence of the structure theory of semisimple Lie groups. The monotonicity is utilized to
deduce the strong maximal inequality inLp, 1< p <∞, of the operator supt>0βt from
the discrete version supn∈N βn (see more on this argument in Section 12). It is also nec-
essary to establish that the ball averages are uniformly locally Lipschitz continuous in the
L1(G)-norm. We refer to [99,108] for the details.
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11.2. The spectral transfer principle

Spectral estimates for spherical functions are crucial to the successful implementation of
the spectral approach to maximal inequalities and pointwise ergodic theorems that was out-
lined in the preceding section. The uniform derivative estimates necessary for the proof of
the maximal inequalities for spheres (and other singular averages) are usually very difficult
and have not been established in general. However the basic exponential decay estimate
for the operator norm of radial averages such as spheres and balls (acting in an irreducible
unitary representation, say) hold in great generality and depend only on basic structural
features that hold for all simple algebraic groups over locally compact non-discrete fields.

These estimates were developed in various forms by M. Cowling [35] and R. Howe
[73], as well as C.C. Moore [74], U. Haagerup [39] and Borel and Wallach [13]. An elegant
exposition to the case ofSLn(R) appears in [75], and the strategy outlined there was used by
H. Oh [117,118] to obtain definitive quantitative results for semisimple algebraic groups.
We summarize some of these results as follows.

THEOREM 11.5 (Decay estimate andLp-integrability of matrix coefficients).
(1) [35] Let G be a simple non-compact connected Lie group with finite center. For

every irreducible non-trivial unitary representation(π,H) of G, and every two
K-finite vectorsu,v ∈ H, the associated matrix coefficientψu,v(g) = 〈π(g)u, v〉
has the following two properties.
(a) The matrix coefficient satisfies an exponential decay estimate along the

groupG:∣∣ψu,v(g)∣∣= ∣∣〈π(g)u, v〉∣∣�Cu,v exp
(−δπd(K,gK)),

whered denotes the distance function associated with the Riemannian metric
given by the Killing form on the symmetric spaceG/K .

(b) The matrix coefficientψu,v(g) = 〈π(g)u, v〉 belongs toLp(G), for somep =
p(π) <∞.

(2) [117, Theorem 1.1]The same estimate holds for infinite-dimensional irreducible
unitary representations of any simple algebraic group over a locally compact non-
discrete fieldF with CharF �= 2, whereK is a good maximal compact subgroup
ofG (see[22, §3.5])andd(gK,K) the metric induced onG/K by its inclusion in
the Bruhat–Tits building ofG.

(3) [35], [118, §5.7]WhenG has propertyT , the same estimates hold in both cases
for K-finite vectors in any unitary representation ofG, which does not have
G+-invariant unit vectors.

REMARK 11.6.
(1) We note that in this set-up,G can be defined to have propertyT if and only if

p(π) � p(G) <∞ for all irreducible non-trivial unitary representations, i.e. the
spectral estimate depends only onG and holds uniformly for all the representations.
Equivalently infπ δπ > 0 for all representationsπ with a spectral gap.
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(2) PropertyT holds for all simple algebraic groups of split-rank at least two, but also
for some simple real Lie groups of real-rank one—see [97] for a discussion.

(3) We remark that even more precise quantitative estimate for the decay of positive
definite spherical functions have been developed and refer the reader to the reference
cited above.

(4) Finally,G+ is the group generated by the split unipotent subgroups ofG (see [97,
Chapter I, §§1.5, 2.3] for a discussion). It is normal and co-compact inG, and is
of finite index inG whenever the characteristic of the field is zero. In particular, it
coincides withG whenG is a connected semisimple Lie group without compact
factors.

Note that for anyn � p/2, Theorem 11.5 implies thatψu,v(g)n ∈ L2(G). This fact
implies, much as in the Peter–Weyl theorem for compact groups, the following result due
to M. Cowling in the real semisimple case, and R. Howe and C.C. Moore in general.

THEOREM 11.7 (Spectral Transfer Principle [35,74]).LetG be as in Theorem11.5.If the
representationπ ofG has a spectral gap, there existsn= n(π) such that

π⊗n ⊂∞ · λG,

where∞ · λG denotes the direct sum of countably many copies of the regular representa-
tion ofG, π⊗n then-fold tensor power of the representationπ , and⊂ denote a unitary
isomorphism onto a subrepresentation. If G has propertyT then there exists a uniform
boundn(π)� n(G) <∞ for all representationsπ with spectral gap(and conversely).

This result has the following explicit spectral estimate as a corollary:

THEOREM 11.8 (Uniform norm estimate of arbitrary measures onG in arbitrary represen-
tations with a spectral gap [108, Theorem 1.1]).LetG be a group as in Theorem11.5.Let
π be any unitary representation ofG with a spectral gap. Letµ be any probability measure
onG. Then∥∥π(µ)∥∥�

∥∥λG(µ)∥∥1/n(π).
In particular, if (X,m) is a probability-preserving ergodic action ofG with a spectral gap,
then ∥∥π(µ)∥∥

L2
0(X)

�
∥∥λG(µ)∥∥1/n(π0).

Note that it follows easily from the spectral estimate of Theorem 11.5(1) that typically,
given a familyµt of radial probability measures onG satisfying mild natural growth con-
ditions, we have anexponential decay estimate on the convolution norm:∥∥λG(µt )∥∥� exp(−δt), δ = δ(µ) > 0.
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In particular this visibly holds for sphere averages, balls averages, a host of variations of
shell averages [113], and many other radial averagesµt onG.

As we shall see in Section 12, it is possible to use Theorem 11.8, in conjunction with the
arguments of Section 11.1 to establish exponential-maximal inequalities for a wide class of
non-radial familiesµt , as well as exponential pointwise convergence to the ergodic mean.
But before turning to non-radial averages let us mention an application of the spectral
transfer principle in the radial case, namely establish the pointwise ergodic theorems in the
case of totally disconnected simple algebraic groups.

11.3. Higher-rank groups and lattices

We have encountered in Section 10.5 totally disconnected Gelfand pairs which appeared
as groups acting on semihomogeneous trees. A more general natural set of geometries to
consider is that of affine Bruhat–Tits buildings, in particular those associated with semi-
simple algebraic groups over locally compact totally disconnected non-discrete fields. The
case of totally disconnected simple algebraic groups of (split) rank one reduces to that of
closed boundary-transitive group of automorphisms of semihomogeneous trees. Thus the
pointwise ergodic theorems for sphere and ball averages on them are completely resolved
by Theorem 10.7 together with Remark 10.8 and Remark 10.15.

Consider now the case of a simple algebraic group over locally compact totally dis-
connected non-discrete fieldF of split rank at least two. Such a groupG has a good
compact open subgroupK giving rise to a Gelfand pair structure (see, e.g., [22, §3.5
and Theorem 4.1] and the references there). Furthermore, as follows immediately from
Theorem 11.5, the spherical functions associated with(G,K) decay exponentially with
a uniform bound, when the group is simple of split rank greater than one. More pre-
cisely, positive-definite spherical functions associated with irreducible non-trivial repre-
sentations are bounded by a function which decays exponentially fast to zero as a function
of d(gK,K), whered is theG-invariant distance on the building, as is the case when
G/K is a Riemannian symmetric space. The same holds true for matrix coefficients of
unitary representations without invariant unit vectors. It follows that the spectral norm of
the convolution operators associated with the bi-K-invariant ball averagesβn onG decays
exponentially inn. Together with the spectral transfer principle for these groups, which
follows from the estimate just described, Theorem 11.8 implies that the norm ofπ0(βn) in
L2

0(X) for any ergodic actionX decays exponentially also, with a fixed bound, indepen-
dent ofX. Using the arguments brought in the proof of Theorem 11.4 (for integer radius
only, this time!) the exponential norm decay estimate gives a proof of the following result.

THEOREM 11.9 (Pointwise ergodic theorem with exponentially fast rate of convergence
for simple algebraic groups).LetG andK be as in Theorem11.5.Let βn be the bi-K-
invariant ball averages andσn the sphere averages. AssumeG has split rank at least two,
or more generally, propertyT . Then for any action ofG on a probability space which is
ergodic underG+, for all f ∈ Lp(X), 1<p <∞, and almost everyx ∈X∣∣∣∣π(βn)f (x)− ∫

X

f dm

∣∣∣∣� Cp(f, x)exp(−nδp),
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whereδp > 0 depends only onG andp. The same result holds also for the sphere averages
σn. Furthermore‖Cp(f, ·)‖Lp(X) � Bp‖f ‖Lp(X), and so the maximal functions associated
with the spheres(and balls) satisfy an exponential-maximal inequality inLp0 (X).

Finally, the same holds true for any action of a group as in Theorem11.5,provided that
it has a spectral gap, but withδp here depending also on the action.

Thus we see that the ball and sphere averages converge exponentially fast to the ergodic
mean from almost every starting point, with a fixed rate independent of the starting point
as well as the action.

Recall that our discussion in Section 10.5 of totally disconnected Gelfand pairs extended
also to some of their lattices. Note that the free group appeared in our discussion there as
a group of automorphisms of the tree which acts simply transitively on the vertices. The
fact that the group algebra of the free group contained an isomorphic copy of the algebra
of radial averaging operators on the tree followed without difficulty.

The discussion is not limited of course to groups acting on semihomogeneous trees,
and this set-up can be expanded considerably, as follows. In [23] the authors have con-
structed groups acting simply transitively on the vertices of certain affine buildings of
rank 2, namely thẽA2-buildings. Furthermore, such groups have been constructed forÃn-
buildings (which are of rankn) for any n in [25]. As noted already, a simple algebraic
groupsG always contains a good compact open subgroup such that(G,K) is a Gelfand
pair (see, e.g., [22]), and thus for appropriately chosen lattices one can expect to find an
isomorphic copy of the Gelfand pair algebraL1(G,K) in the group algebra�1(Γ ) of the
lattice. In [24] the authors have succeeded in showing that such a commutative algebra does
occur in the group algebras of some of the discrete groups constructed in [23]. Furthermore
they analyzed its structure and∗-representations, even in the case where the discrete groups
do not arise as lattices in simple algebraic groups. An interesting new feature that arise here
is the fact that the discrete groups in question satisfy propertyT , a fact that is proved in [24]
directly from the representation theory of the commutative algebra in question. These re-
sults are very interesting in the context of ergodic theory, as they demonstrate the following
rather remarkable phenomenon (based on the results of [24] and [128]).

THEOREM 11.10 (Uniform pointwise ergodic theorem for some groups with propertyT ).
There exists a discrete groupΓ with a finite generating setS, with the following property.
For some fixed positiveδ > 0 depending only on(Γ,S), and every ergodic probability
preserving action ofΓ on (X,m), for all f ∈ L2, and almost everyx ∈X∣∣∣∣π(σn)f (x)− ∫

X

f dm

∣∣∣∣� C2(f, x)exp(−nδ).

In fact, there are infinitely manỹA2 groups satisfying the property above. The same result
holds of course inLp, 1<p <∞, with δp > 0 (but this is an open problem inL1!).

This phenomenon is of course, in striking contrast to the behavior of averages on discrete
amenable groups in classical ergodic theory. It raises the following intriguing problem,
which however seems quite inaccessible at this time.
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PROBLEM 11.11. Does the phenomenon described in Theorem 11.10 occur foreverydis-
crete group with propertyT , and for every set of generators on it?

12. Beyond radial averages

The spectral methods introduced in Section 11, together with some further arguments, can
be used to prove a diverse variety of (not necessarily radial) pointwise ergodic theorems
on semisimple Lie and algebraic groups. When the action has a spectral gap, it is possible
to establish exponentially fast rate of convergence for general families of probability mea-
suresµt , which are decidedly non-radial. Such families often have a great deal of intrinsic
geometric interest and occur naturally in applications. We now turn to an exposition of
some of these results, referring for more details to [108] and [113].

12.1. Recipe for pointwise theorems with rate of convergence

12.1.1. Estimating convolution norms.When discussing the ergodic theory of a general
family µt of probability measures on a semisimple Lie groupG, the first step is to establish
exponential decay estimates on the norms of the convolution operatorsλG(µt ). This will
be then converted by the spectral transfer principle (Theorem 11.7 and Theorem 11.8) to
norm decay estimates in an arbitrary measure-preserving action with a spectral gap.

There exists a fundamental estimate of the convolution norms when the averagesµt are
absolutely continuous, and it is given in terms of theLp(G)-norms of the densities ofµt .
The validity of such an estimate is called the Kunze–Stein phenomenon, established in [89]
for G= SL2(R) and in [34] in general. The precise formulation is as follows.

THEOREM 12.1 (Kunze–Stein phenomenon [89,34]).Given a connected semisimple Lie
groupG with finite center, for every1 � p < 2 there exists a constantKp satisfying:
‖F ∗ f ‖2 �Kp‖F‖p‖f ‖2, for everyF ∈ Lp(G) andf ∈ L2(G).

We will refer to any lcsc group satisfying the estimate of Theorem 12.1 a Kunze–Stein
group.

12.1.2. Monotonicity, Hölder continuity, and norm decay.Suppose then that indeed for
some 1< r < 2 we have‖µt‖Lr(G) � C exp(−θt), θ > 0, for a familyµt of absolutely
continuous measures on a semisimple Lie groupG. It follows from Theorem 12.1 and
Theorem 11.8 that in any probability-preserving action ofG with a spectral gap, the sum∑∞
n=0‖µn‖2

L2
0

is finite. It follows easily that the operator supn∈N |µnf (x)| satisfies the

strong maximal inequality inLp, 1< p <∞. (In fact, it satisfies an exponential maxi-
mal inequality inL2

0(X), see Section 11.1.) We would like to use the boundedness of the
maximal function for the sequenceµn in order to prove a strongLp-maximal inequality
for µt , t ∈ R. To that end, recall the use we made in Section 11.1 of the estimates for the
volume growth of the balls, namely the fact that we could dominate the measureβt by
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Cβ[t]+1, C fixed. Thus it is natural to introduce the following conditions on general proba-
bility measuresµt [99,108], generalizing the conditions used already for the ball averages
in Section 11.

DEFINITION 12.2. A familyµt of probability measures on an lcsc groupG is
(1) Monotone, ifµt � Cµ[t]+1, as measures onG (whereC is fixed, independent of

t > 0).
(2) Uniformly locally Hölder continuous, if forF ∈ L∞(G) andt > 0∣∣µt+s(F )−µt(F )∣∣� Csa‖F‖∞, 0< s � 1.

We can generalize the arguments used in Section 11 and formulate a recipe for proving
pointwise convergence with exponentially fast rate, using the monotonicity, local Hölder
continuity and exponential decay of norms, as follows. (We refer to Section 11.1 for an
example of the method, and [99,108] and [113] for more details on its use and applications.)

Recipe for pointwise ergodic theorems with exponentially fast rate of convergence.To
prove the strong maximal inequality forµt , we follow the following steps.

(1) Let f ∈ L2(X) be a non-negative function onX. Then, sinceπ(µt )f (x) �
Cπ(µ[t]+1)f (x), we have∥∥∥sup

t>0
π(µt )f (x)

∥∥∥2
L2(X)

� C2
∥∥∥ sup
n∈N

π(µn)f (x)

∥∥∥2
L2(X)

� C2‖f ‖2
L2(X)

.

(2) The previous argument clearly extends to everyLp, 1< p <∞, using the Riesz–
Thorin interpolation theorem.

(3) Using the estimate‖π(µt )‖L2
0(X)

� C exp(−θt), the argument in (1) can be used

to prove an exponential maximal inequality for the operators exp(1
2θtk)µtk in L2

0,
wheretk is a sequence such that the sum of the norms converges. Repeat the argu-
ment inLp0 (X).

(4) Now distribute exp(1
4θn) equally spaced points in the interval[n,n+ 1]. Then ap-

proximateπ(µt )f by π(µtn)f using the closest pointtn to t in the sequencetk .
Estimate the difference using the exponential maximal inequality for the entire se-
quenceµtk , and the local Hölder regularity of the familyµt , applied whenf is a
bounded function.

(5) The previous argument gives an(L∞,L2)-exponential maximal inequality, which
says that the exponential-maximal function forf bounded has anL2 norm bound
in term of theL∞-norm of f . Now interpolate against the usual strong maximal
inequality inLp proved in step (1), using the analytic interpolation theorem.

Thus the recipe above establishes the following result.

THEOREM 12.3 (Pointwise ergodic theorem with exponentially fast rate of convergence
for general averages on semisimple Lie groups [108]).LetG be a connected semisimple
Lie group with finite center(or any Kunze–Stein group). Letft ∈ L1(G) satisfyft � 0,and∫
G
ft (g) dg = 1. Assume that the family of probability measuresµt with densityft form a
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monotone and uniformly locally Hölder continuous family. Assume that‖ft‖Lr(G) � Ce−θt
for some1< r < 2 and someθ > 0. Let (X,m) be a probability-preserving action ofG,
and assume that the unitary representationπ0 ofG onL2

0(X) satisfiesπ⊗n
0 ⊂∞·λG. Then

π(µt ) satisfies a pointwise ergodic theorem with exponentially fast rate of convergence to
the ergodic mean inLp, 1< p <∞. In particular, for everyf ∈ Lp(X), and for almost
everyx ∈X,∣∣∣∣π(µt )f (x)− ∫

X

f dm

∣∣∣∣� Bp(x,f )exp

(
− θp

2n
t

)
, θp > 0.

Furthermore an exponential(Lp,Lr)-maximal inequality holds in everyLp, 1<p <∞.

As we shall now demonstrate, Theorem 12.3 applies to some interesting geometric av-
erages, as follows.

12.2. Horospherical averages

Theorem 12.3 requires in its assumptions an estimate on the convolution norm‖λG(µt )‖.
Let us therefore note that the majorization principle due to C. Herz ([71], see [37] for a dis-
cussion) has a corollary which is very useful in this regard, due to M. Cowling, U. Haagerup
and R. Howe [39]. The corollary in question allows us to estimate the norm of the convo-
lution operatorλG(f ) onL2(G), by radialization, as follows.

THEOREM 12.4 (Estimating convolution norms by radialization [39]).LetG be a(non-
compact) semisimple algebraic group over a locally compact non-discrete field. Then the
following holds for every measurable functionF

∥∥λG(F )∥∥�
∫
G

(∫
K

∫
K

∣∣F(kgk′)∣∣2dk dk′)1/2

Ξ(g)dg,

whereΞ(g) is the Harish ChandraΞ function, namely the fundamental positive-definite
positive spherical function onG.

REMARK 12.5.
(1) ForSL2(C),Ξ(at )= ϕ0(at )= t

sinht , and in particular, it decays exponentially in the
distancet in hyperbolic space.

(2) In general, the Harish ChandraΞ -function on connected semisimple Lie groups
has the same behavior: it decays exponentially in the distance on the symmetric
spaceG/K . More preciselyΞ(g)� C exp(−c|g|) (c > 0), where|g| = d(gK,K),
d the invariant distance onG/K derived from the Riemannian structure given by the
Killing form. The same holds true for general semisimple algebraic groups, where
instead of the Riemannian distance on the symmetric space we consider the natural
distance on the Bruhat–Tits building.
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The estimate of Theorem 12.4 yields an estimate of the convolution normλG(f ) of a
non-radial function in terms of an associated radial function, which is much easier to con-
trol. In particular, together with Theorem 12.3 it gives a simple and explicit integral crite-
rion for a familyft ∈ L1(G), t ∈ R+, to satisfy a strong exponential-maximal inequality
in everyLp(X), 1<p �∞.

A particularly interesting example to consider is that of horospherical averages, defined
as follows.

LetG=KAN be an Iwasawa decomposition of a connected semisimple Lie group with
finite center. Recall from Section 10.4 that Haar measuremG can be normalized so that in
horospherical coordinates it is given by (see [54] or [70, Chapter I, Proposition 5.1])∫

G

f (g)dg =
∫
K×A×N

f (keHn)e2ρ(H) dk dH dn,

whereρ is half the sum of the positive roots. Now letht denote the absolutely continuous
probability measure onG whose density is given byχUt /mG(Ut ), whereUt = {keHn |
k ∈K, ‖H‖ � t, n ∈N0}. HereN0 is a fixed compact neighborhood of the identity inN .
Applying Theorem 12.4 and Theorem 12.3, we obtain the following sample result.

THEOREM 12.6 (Pointwise ergodic theorem with exponentially fast rate of convergence
for horospherical averages in action with a spectral gap [108]).Let G be a connected
semisimple Lie group with finite center, ht the horospherical averages. Let (X,m) be a
probability-preserving action whose unitary representationπ0 in L2

0(X) has a spectral
gap. Then

(1) ‖λG(ht )‖ � C exp(−θt), θ > 0.
(2) If π⊗n

0 ⊂∞ · λG, then for everyf ∈ Lp(X), 1<p <∞, and almost everyx ∈X∣∣∣∣π(ht )f (x)− ∫
X

f dm

∣∣∣∣� Bp(x,f )exp

(
− θp

2n
t

)
,

whereθp > 0.

REMARK 12.7.
(1) Againht actually satisfies a more precise estimate, namely an exponential(Lp,Lr)-

maximal inequality (see [108] for details).
(2) Theorem 12.6 can be established also for other averages defined by horospherical

coordinates. As an example, consider the case of a real-rank-one group. Then the
groupA = {at ; t ∈ R} figuring in the Iwasawa decomposition is one-dimensional,
and letI1 denote the unit interval inR. Thent + I1 is a unit interval with centert ,
and letJt = {kasn | k ∈K, s ∈ t + I1, n ∈N0}. Then the Haar-uniform averagesjt
onJt satisfy the conclusion Theorem 12.6.

(3) We note that it is interesting to compare the horospherical averagesht and jt to
the averages constructed in the proof of Theorem 7.13. Note that here the point-
wise ergodic theorem is strengthened to yield an explicit exponentially fast rate of
convergence to the ergodic mean.
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(4) Another interesting comparison is betweenjt and the averagesmK ∗ δat appearing
in the mean ergodic theorem of W. Veech [150].

(5) Similar results can of course be established for semisimple algebraic groups.

12.3. Averages on discrete subgroups

We have commented throughout our discussion on the problem of comparing between the
ball averages on an lcsc group, and the discrete ball averages on its lattice subgroups. In
the case homogeneous of nilpotent groups such as ofZd ⊂ Rd andHn(Z)⊂Hn, the com-
parison was completely straightforward: proofs of maximal inequalities on the Lie group
can be easily adapted to prove maximal inequalities on the discrete lattice, and then the
transfer principle implies that they hold ineverymeasure-preserving action (see Section 5
for the details).

In Sections 10.5 and 11.3 we have encountered a select group of extra symmetric lattices
in some simple algebraic groups over local fields, and other totally disconnected Gelfand
pairs(G,K). In such a latticeΓ , the group algebra�1(Γ ) contains an isomorphic copy of
the commutative convolution algebraM(G,K), and most of the basic problems in spectral
theory and ergodic theory pertaining to these averages onΓ are reducible to the corre-
sponding problems forM(G,K). This gives a satisfactory solution to the basic questions
in spectral and ergodic theory for the corresponding averages onΓ , provided that the rep-
resentation theory of the commutative algebraM(G,K) is sufficiently well understood.

However, in the set-up of general latticesΓ in non-amenable Gelfand pairs, and even
semisimple algebraic groups, there is usually no direct connection betweenM(G,K) and
�1(Γ ), and the basic problems in ergodic theory cannot be resolved using this method.
Note that the absence of a transfer principle implies that a result on a maximal inequal-
ity for convolutions on the discrete lattice has no bearing on the case of a general action.
Furthermore, the natural discrete ball averages (w.r.t. a word metric) on the lattice do not
commute in general, and so there is no natural commutative algebra whose spectral theory
can be used to establish even a mean ergodic theorem for the averages. Thus establish-
ing a pointwise, or even mean, ergodic theorem for the discrete uniform ball averages in
arbitrary measure preserving action ofΓ is a challenging goal, outside the short (but in-
teresting) list of examples in Sections 10.5 and 11.3. Nevertheless, it is possible to make
considerable progress on this problem, at least for certain natural averages onΓ , although
these are usually not comparable to balls w.r.t. a word metric. These very recent results are
based on three principle, namely induction of actions from the latticeΓ to the groupG,
a duality principle which controls discrete averages on the latticeΓ by certain (non-radial)
absolutely continuous averages on the groupG, and ergodic theorems for sufficiently gen-
eral non-radial averages on the groupG. These results will be reported in [56].

For a general lattice of a semisimple Lie group, we will content ourselves here with
the following partial result, which applies the spectral transfer principle, and establishes a
pointwise ergodic theorem for the lattice in actions of the group. It exemplifies the natural
procedure of estimating discrete convolution operators in terms of absolutely continuous
ones, by reducing the problem to geometric comparison for the translation action onG,
and thus obtaining an estimate of convolution norm.
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More precisely, letβk = 1
volBk

χBk (g) (whereBk is the bi-K-invariant lift of a ball of
radiusk in G/K). Let Γ be a lattice subgroup ofG, let Bk(Γ ) = Bk ∩ Γ , and letbk =

1
|Bk(Γ )|

∑
γ∈Bk(Γ ) γ . We have:

THEOREM12.8 (Pointwise ergodic theorems for lattice averages inG-actions with a spec-
tral gap [108]).LetΓ ⊂G be a lattice in a connected semisimple Lie groupG with finite
center. Then the sequencebk ∈ �1(Γ ) satisfies:

(1) ‖λΓ (bk)‖ �C exp(−θk). Here

0< θ < θβ(G)= lim
t→∞−1

t
log
∥∥λG(βt )∥∥.

(2) In anyΓ -action satisfyingπ⊗n
0 ⊂∞· λΓ , and in particular in any action ofG with

a spectral gap, for anyf ∈ Lp(X), 1<p <∞, and for almost everyx ∈X∣∣∣∣bkf (x)− ∫
X

f dm

∣∣∣∣�C(x,f )exp

(
− θ

2n
k

)
.

Clearly, the spectral estimate for convolutions stated in (1), together with norm estimate
provided by the spectral transfer principle (see Theorem 11.8) implies the exponentially
fast pointwise convergence in (2). Such spectral estimates can be established for many
other discrete groups, and not only for lattices. In fact, the unitary representation ofΓ

in L2(G) is equivalent with countably many copies of the unitary representation ofΓ in
�2(Γ ). Thus any sequence of measuresνn ∈ �1(Γ ) with ‖λΓ (νn)‖�2(Γ ) � exp(−θn) will
satisfy the conclusion of Theorem 12.8.

The challenge of establishing spectral norm estimates for convolution operators on dis-
crete groups has attracted considerable attention, and one particularly interesting approach
was to establish the even stronger property of rapid decay [67,79], one of whose formu-
lations is as follows. Assumed is a word metric, and letL(γ ) = d(e, γ ). Then for some
s = s(Γ, d)� 0, someC = C(Γ,d) > 0, and every finitely supported functionf ∈ �1(Γ ),∥∥λΓ (f )∥∥� C

∥∥f · (1+L)s∥∥
�2(Γ )

.

From this estimate it follows that if in addition the spheres (or balls) have stricttq expct-
exponential growth (withc > 0) then the spectral norm decays exponentially fast. We note
that strict tq expct-volume growth has been established in the case of word metrics on
word-hyperbolic groups in [31], so that every discrete hyperbolic subgroup of a connected
semisimple Lie group satisfies the conclusions on Theorem 12.8, w.r.t. balls defined by a
word metric on it (see [108, Corollary 3.3]).

The rapid decay property has been established in a number of interesting cases, includ-
ing all word-hyperbolic groups [79], uniform lattices inSL3(R) andSL3(C) [91], certain
lattices acting on rank-two Bruhat–Tits building [128], and groups acting properly on cube
complexes [27]. However stricttq expct-volume growth has not been established in gen-
eral for uniform lattices or cube complex groups, and constitutes a completely open prob-
lem for general discrete (sub)groups.
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13. Weighted averages on discrete groups and Markov operators

In this section we will consider briefly some applications of the general theory of Markov
operators to ergodic theorems for group actions. We divide the section into three parts,
dealing with applications of ergodic and maximal theorems for the following sequences:

(1) uniform averages of powers of a single Markov operator,
(2) subadditive sequences of self-adjoint Markov operators,
(3) powers of a single self-adjoint Markov operator.

13.1. Uniform averages of powers of a Markov operator

In our discussion so far we have put a great deal of emphasis on proving ergodic theorems
for Haar-uniform averages on geometrically significant sets. A different approach, which
has long roots in ergodic theory and the theory of Markov processes is to relax the require-
ment of uniform averages and allow weighted ergodic theorems. Thus we can consider for
a discrete group a sequences of averages of the form

∑
γ∈Γ ν(γ )δγ , whereν is a general

probability measure onΓ . One ergodic theorem that can be obtained here is for the se-
quence of averagesνn =∑nk=0 ν

∗n, namely the uniform average of convolution powers
of a single measure. It follows immediately from the general theory of non-negative con-
tractions developed by Hopf and Dunford and Schwartz (see, e.g., [44] for an extensive
exposition) that the sequenceπ(νn) satisfies the weak-type(1,1) maximal inequality in
L1, and converges pointwise to aπ(ν)-invariant function, in every probability-preserving
action ofΓ . In particular, if the support ofν generatesγ as a group, then the limit is a
Γ -invariant function, namely

∫
X
f dm whenΓ acts ergodically.

The ergodic theorem for the uniform averages of powers of a Markov operator can be
used to obtain weighted ergodic theorems for actions of several transformations also in an-
other manner, namely using the construction of skew product actions. This useful idea has
been introduced already by S. Kakutani in his proof of the random ergodic theorem [81] for
almost all sequences of transformations chosen independently (or according to a Markov
measure) from a finite set (say). Thus for a probability-preserving action ofFSr , the free
semigroup onr non-commuting elements, one can form the skew productΩr ×X, where
Ωr is the topological Markov chain consisting of infinite words in the free generators of
the free semigroup. Consider the transformationT (ω,x)= (Sω,ω1x) whereS :Ωr →Ωr
is the forward shift, andω1 the first letter ofω. One takes the natural probability measurep
onΩr associated with uniform weights on the generatorsS (or any other Markov measure
onΩr ), and the measurep × m on Ωr × X. Ergodicity of T and theFSr -action onX
are equivalent [81], and thus the uniform averages of powers of the operatorT satisfy the
pointwise ergodic theorem, by the Hopf–Dunford–Schwartz theorem, so that

lim
n→∞

1

n+ 1

n∑
k=0

F
(
Skω,ωkωk−1 · · ·ω1x

)= ∫
Ωr×X

F(ω,x)dp dm.

Now apply the foregoing result to the functionsF(ω,x) = f (x) on the skew prod-
uct Ωr × X which are lifted fromX, and take expectations w.r.t. the probabilityp
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onΩr . Then one obtains a pointwise ergodic theorem inL1(X) for the uniform averages
µn = 1

n

∑n
k=0σk of the sphere averages on the free semigroup (or more general weights

determined by an arbitrary Markov measure onΩr ).
Note however that the passage to expected values implies that we can not conclude that

the weak-type(1,1)-maximal inequality in valid forf ∗
µ .

This application of Kakutani’s random ergodic theorem in the context of ergodic theo-
rems for free groups is due to R. Grigorchuk [61,62]. The idea of using skew products and
the theory of Markov operators is developed further in [62] and [16,17]. Indeed, the method
is suitable for operator averages for Banach space representations which do not arise from
measure-preserving action [61,16], requires the measurem on X to be merely station-
ary, and not necessarily invariant [62], and applies also when the weights taken along the
group orbit depend on the starting point [62]. However, in general these results establish
weighted ergodic theorems, which bear no discernible relation to the uniform averages of
spheres w.r.t. a word metric. The only exception is in the case where the Markov measure
is associated with all the generators inS having equal probability. We remark that the same
analysis applies also to the free group, and not only the free semigroup.

We note that the maximal and pointwise ergodic theorem inL2 for the uniform averages
of the spheres averages was proved in [105], and forf ∈ L1 in [114]. The proof in [114]
is also probabilistic and quite elementary, and does not require spectral theory. It uses
the standard estimates of the central limit theorem for convolution powers of a binomial
distribution onN, and Hopf’s maximal inequality (see a particularly simple proof by Garcia
of the latter in [53]). Indeed, it is shown that the sum of convolution powers ofσ1 dominates
the uniform average of spheres, or more precisely:

µn = 1

n

n∑
k=0

σk � C

3n+ 1

3n∑
k=0

σ ∗k1 .

Thus it follows immediately that the maximal functionf ∗
µ satisfies the weak-type(1,1)-

maximal inequality, by the maximal inequality for the average of powers. Furthermore, it is
clear that on functions of the formh= f −π(σ1)f the sequenceπ(µn)h converges point-
wise, and this implies the pointwise ergodic theorem as usual by the recipe of Section 2.4.

We record the facts described above as follows:

THEOREM 13.1. The sequenceµn = 1
n+1

∑n
k=0σk of uniform averages of spheres on the

free group satisfied the weak-type(1,1)-maximal inequality inL1 and is a pointwise er-
godic sequence inLp, for all 1� p <∞.

Thus it appears that the sequence of uniform averages of the sphere averagesµn =
1
n

∑n
k=0σk is a natural sequence of weighted averages to consider, and we may inquire for

which discrete groups Theorem 13.1 is satisfied for a word metric. We next turn to consider
a method which establishes at least the maximal inequality inL2 for µn, for a certain class
of groups. This method was first employed in [105] to prove the maximal and pointwise er-
godic theorem inL2 for the averagesµn onFk . It also does not use spectral considerations,
and is based on a general subadditive maximal inequality, which we consider below.



Pointwise ergodic theorems for actions of groups 971

13.2. Subadditive sequences of Markov operators, and maximal inequalities
on hyperbolic groups

Let us introduce the following definition.

DEFINITION 13.2 (Subadditive sequences, see [105]). A sequenceTn of operators on
L2(X) will be called asubadditive sequence of self-adjoint Markov operatorsif it satisfies
the following:

(1) Tn = T ∗
n , ‖Tn‖ � 1.

(2) Tnf � 0 if f � 0, Tn1= 1.
(3) There exist a constantC0> 0, a positive integerk, and a fixed non-negative bounded

operatorB onL2(X) such that:

TnTmf (x)� C0
(
Tknf (x)+ Tkmf (x)

)+Bf (x)
for all bounded and nonnegativef ∈ L2.

We can now state the following subadditive maximal inequality, proved independently
in [5] and [105].

THEOREM 13.3 (Subadditive maximal inequality [5,105]).Let Tn be a subadditive se-
quence of self adjoint Markov operators. Definef ∗(x)= supn�0 |Tnf (x)|. Then‖f ∗‖2 �
C‖f ‖2 for all f ∈ L2. We can takeC = 2C0 + ‖B‖.

We note that the subadditive maximal inequality of Theorem 1 generalizes similar results
due to E.M. Stein [139,140] and B. Weiss [153]. In particular, it was applied in [139,140]
to prove a pointwise ergodic theorem for the even powers of positivity-preserving self-
adjoint contractions onL2. Also, it is noted in these references that it implies the pointwise
convergence of martingales inL2, as well as Birkhoff’s pointwise ergodic theorem inL2.
The origin of this maximal inequality is attributed in [140,153] to A. Kolmogoroff and
G. Seliverstoff [87], and to R.E.A.C. Paley [122].

It is reasonable to expect that for a large class of discrete groupsΓ , the sequence
of averagesµn ∈ �1(Γ ) will satisfy the subadditive inequality given byµn ∗ µm �
C(µkn + µkm) + b. When this inequality holds in�1(Γ ), thenTn = π(µn) is a subad-
ditive sequence of self-adjoint Markov operators onL2 in any finite-measure-preserving
action, and therefore will satisfy the strong maximal inequality inL2.

This is indeed the case at least in the following context.

THEOREM 13.4 (Subadditive inequality for word-hyperbolic groups [51]).Let Γ be a
non-elementary word-hyperbolic group, S a finite symmetric generating set. Then there
exist constants1< q <∞ and 0< C <∞, depending only on(Γ,S), such that the fol-
lowing inequalities hold:

(1) σt ∗ σs � C
∑2s
j=0q

−(s− 1
2j)σt−s+j if t � s.

(2) µn ∗µm � C(µ2n +µ2m).
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Combining the foregoing results, we have

THEOREM 13.5 (Maximal inequality for word-hyperbolic groups [51]).LetΓ be a word-
hyperbolic group, S a finite symmetric generating set. Then the sequenceµn satisfies the
strong maximal inequality inL2(X), i.e. ‖f ∗

µ‖2 � C(Γ,S)‖f ‖2 for everyf ∈ L2(X).

We remark that an elementary word-hyperbolic group is a finite extension ofZ, and the
subadditivity ofµn in this case (for free generators) is of course easily verified (see [140]
for the case ofN).

As usual, given the maximal inequality forµn in L2, to complete the proof of the point-
wise ergodic theorem it suffices (see Section 2.4) to find a dense set of functionsf ∈ L2

whereπ(µn)f (x)→
∫
X
f dm, almost everywhere and in theL2-norm. For hyperbolic

groups, a sufficient condition is the existence of a dense set of functionsf ∈ L2 satisfying
the following exponential mixing condition:|〈π(γ )f,f 〉| � Cf exp(−cf |γ |), for some
cf > 0 (see [51]). However, in general these issues are far from being resolved, and we
thus formulate the following.

PROBLEM 13.6 (Analogs of von Neumann and Birkhoff theorems for word-hyperbolic
groups).

(1) Is the mean ergodic theorem valid for the averagesµn on every word-hyperbolic
group? Is the pointwise ergodic theorem valid forµn in L2, or evenL1?

(2) Is there any finitely generated group for which the subadditive convolution inequal-
ity fails for the averagesµn?

13.3. The powers of a self-adjoint Markov operators

For aself-adjointMarkov operator a result much sharper than the Hopf–Dunford–Schwartz
ergodic theorem was subsequently proved independently by E. Stein [104] and J.C. Rota
[133], using two entirely different methods. In both cases, the results proved imply as
a special case that when the measureν is symmetric, then not only does the sequence
of uniform averagesπ(µn) = 1/(n + 1)

∑n
k=0π(νk) converge, but already the sequence

of powersπ(ν∗2n) converge, pointwise almost everywhere, and in theLp-norm, at least
for 1 < p <∞. The limit is aπ(ν∗2)-invariant function, and thus invariant under the
group generated by the support ofν∗2. We note that the passage to even powers reflect
the same periodicity phenomenon that was encountered in Section 10.5 with regard to the
free groups. Namely it reflects the fact thatπ(ν)may have an eigenfunctionf0 with eigen-
value (−1), or equivalently that the commutative convolution algebra generated by the
powers ofν may have the an eigenfunctionf0 ∈ L2(X) realizing the sign character of the
algebraν∗n  → (−1)n.

Both results mentioned above apply to general self-adjoint Markov operatorsP and not
only to convolution powers, but in this generality, it was established by D. Ornstein [120]
that pointwise convergence usually fails to hold inL1 for the powers ofP 2.

Stein’s method is spectral, and can be viewed as a special case of the general method
described in Section 10.2, where the commutative algebra is taken to be simply the con-
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volution algebra�1(N), corresponding to the algebra generated by powers of a single op-
erator. The continuous∗-representation are given here simply by self-adjoint contraction
operators, and the∗-characters are given byϕλ(k)= λk , whereλ ∈ [−1,1]. This point of
view was developed in [105], where Stein’s method was generalized to apply, e.g., to the
radial algebra on free groups.

Rota’s method depends on probabilistic considerations, and reduces the pointwise con-
vergence theorem for the even powers of a self-adjoint Markov operator to the pointwise
convergence theorem for martingales, on an auxiliary probability space constructed from
the Markov operator in question. In was shown in [133] that in fact pointwise convergence
holds forf ∈ L(logL)(X).

In [18] A. Bufetov has constructed, for a given action of the free groupFr on a space
(X,m), and a given free generating setS, a Markov operatorP on the setX × S, which
is not self-adjoint, but such that the operators(P ∗)nP n are comparable to the action of the
sphere averages onFr on the spaceX. Rota’s theorem applies to such sequence and the
pointwise convergence ofσ2nf to a function invariant under words of even length follows,
in L(logL)(X).

14. Further developments

14.1. Some non-Euclidean phenomena in higher-rank groups

In the present section we return to the set-up of connected semisimple Lie groups, and
we would like to demonstrate the fact that exponential volume growth on semisimple Lie
groups (and more general lcsc groups) can be used to derive a number of non-standard
maximal inequalities and pointwise convergence results which have no Euclidean analog.
This phenomenon occurs for actions of semisimple algebraic groups of split rank at least
two, or for direct products of lcsc groups. To illustrate some of these results, let us consider
the simplest case whereG= L1 ×L2 is a product of two real-rank one groups, sayL1 =
L2 ∼= PSL2(R) for definiteness. We attempt to prove maximal inequalities for the product
groupG based on maximal inequalities of its factorsLi . The ball averages on the factor
groupsLi are given in this case by (choosing the curvature onH2 appropriately)

βt =
∫ t

0 sinhsσs ds∫ t
0 sinhs ds

.

Let us defineDt = {(u, v); u2 + v2 � t2}, and letγ (i)t (resp.σ (i)t ) be the unit shell (resp.
sphere) averages on the real-rank one groupLi . Then the ball averagesβGt on the product
groupG= L1 ·L2 satisfy the following estimate:

βGt =
∫
Dt

|sinhusinhv|σ (1)|u| σ
(2)
|v| dudv∫

Dt
|sinhusinhv|dudv � B

∑
Dt∩N2 expnexpmγ (1)n γ

(2)
m∑

Dt∩N2 expnexpm
.

On the left-hand side we have the integral w.r.t. theG-invariant Riemannian volume,
which in geodesic polar coordinates is given by the integral w.r.t. the density|sinhusinhv|
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on a disc of radiust in R2. Using the Weyl group symmetry, this integral is equal to four
times its value onDt ∩ R2+. On the right-hand side the integral was then further replaced
by the weighted sum of integrals (w.r.t. the uniform Euclidean measure) on unit squares
whose lower left-hand corner is a lattice point of norm at mostt . The weight attached to
each unit square is the obvious one: we estimate the function sinhusinhv on the square
whose lower left-hand corner is(n,m) by C expnexpm. Since the shell averages onLi
satisfy the strong maximal inequality inLp, 1< p � ∞, by Theorem 9.6, it follows that
the same holds for the operatorsβGt = βL1×L2.

The support ofγ (1)t γ
(2)
s , (t, s) ∈ R2+, has radial coordinates ina+ ∼= R2+ which constitute

(theW -orbit of) a square of unit side length, whose lower left hand corner is the element
(tH1, sH2). But now note that already the family of unit square averagesγ

(1)
t γ

(2)
s (for

arbitrary non-negatives andt) satisfy a strong maximal inequality inLp, p > 1. Indeed,
each square average as above is the product of two one-dimensional shell (or “interval”,
in this context) averages on real rank one groups, and Theorem 9.5 applies to the shell
averages onL1 andL2. As a result, the strong maximal inequalities which hold for the unit
square averages in an arbitrary measure-preserving action ofG, also hold for anarbitrary
family of sets which admit a reasonable covering by unit squares, not only for the discs
described above (which correspond to the radial coordinates of ball averages w.r.t. the
Riemannian Killing metric).

It is possible to greatly expand the scope and generality of results of this kind, and
apply them to all higher-rank semisimple groups. In particular they yield a pointwise er-
godic theorem for uniform averages supported on an arbitrary sequence of bi-K-invariant
sets which are reasonably covered by “cube averages” of a fixed size, provided they leave
eventually any given compact set. In particular these arguments apply to a wide array of
bi-K-invariant averages which occupy an exponentially decaying fraction of the volume
of a ball. This improves the results we previously described for the shells, which occupy
a fixedproportion of the volume of the ball. To illustrate these points, let us define the
following simple geometric property of sets in the vector spacea.

DEFINITION 14.1 (ConditionA(c,C)). A measurable setE ⊂ a (of finite measure) satis-
fies conditionA(c,C) if for every H ∈ E, there existsH ′ ∈ E, satisfying the conditions
‖H −H ′‖ � C, andbc(H ′)⊂E. Herebc(H ′) is a ball of radiusc and centerH ′ in a.

Clearly, any union of sets satisfying conditionA(c,C) also satisfies it. Equally clearly, all
balls of radius at least a fixed constant satisfy conditionA(c,C) for some(c,C). The same
holds for Euclidean cells (= cubes) of fixed side length. Thus any union of such sets (with
fixed (c,C)) also satisfies the condition.

Now view a as the Lie algebra of a split Cartan subgroup of a connected semisimple
Lie group with finite center. For a Weyl group invariant setE ⊂ a letK exp(E)K =R(E)
be the radialization ofE, and letνE be the normalized average onR(E), namely the
normalized restriction of Haar measure to this set. We can now formulate the following

THEOREM 14.2 (Pointwise ergodic theorem for general sequences of bi-K-invariant aver-
ages [113]).LetG be a connected semisimple Lie group with finite center. Then
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(1) The maximal function

A∗f (x)= sup
{∣∣π(νE)f (x)∣∣; E ⊂ a, and E satisfies conditionA(c,C)

}
satisfies the strong maximal inequality in everyLp, 1<p <∞.

(2) LetEn be any sequence of measurable sets satisfying conditionA(c,C). Assume that
limn→∞ volG(En ∩ bt )/volG(En)= 0, for everyt > 0, wherebt is a ball of radius
t in a with center0. AssumingG simple, the averagesνEn satisfy the pointwise
ergodic theorem inLp, 1< p <∞. For G semisimple, the same conclusion holds,
provided we assume the previous condition also for the projection ofEn to any
factor group.

The phenomenon described in Theorem 14.2 allows for a choice of very general se-
quences, and does not seem to have any Euclidean analog. We refer to [113] for further
details.

14.2. Best possible rate of convergence in the pointwise theorem

The pointwise ergodic theorems with exponentially fast speed of convergence for ball aver-
ages can be considerably sharpened, and the best possible rate of convergence can be deter-
mined. Furthermore, exponentially fast pointwise convergence can be proved even for the
sphere averages on real-rank one groups (in the range ofp where pointwise convergence
actually holds forLp functions!). This requires spectral arguments which are considerably
more elaborate than those we have presented here, and the details can be found in [110].

14.3. Added in proof

We note the following very recent developments that have taken place since the final ver-
sion of the present survey was submitted.

14.3.1. Exact polynomial volume growth.E. Breuillard has completed the proof of the
following remarkable result.

THEOREM 14.3. On every lcsc group of polynomial volume growth, the balls w.r.t. any
word metric have exact polynomial volume growth. In fact, the same holds true for every
invariant asymptotically geodesic pseudo-metric on the group.

This result provides an alternative proof of the general case of the localization con-
jecture, namely the fact that the balls are asymptotically invariant under translations, from
which the pointwise ergodic theorem inL1 follows—see the discussion in Sections 4 and 5.
We note that in the case of connected Lie groups, precise results are obtained by Breuillard
regarding the actual geometric shape of the balls, and not just their volume asymptotics.
The passage from the Lie case to the general case uses the results of Guivarc’h [64] and
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Jenkins [79] on growth, and of Gromov [63] and Losert [93] on the structure of groups of
polynomial volume growth. Thus the theorem considerably sharpens Proposition 5.11 of
Section 5.5, where we have used these results to deduce strict polynomial growth. Details
can be found in the preprint “The asymptotic shape of metric balls in groups of polynomial
growth” by E. Breuillard.

14.3.2. Exact exponential volume growth.Given a linear representationτ :G→ GLn(R)
of a semisimple groupG, and a vector space norm onMn(R), one can consider (say) the
distance function log‖g‖. It was noted in Theorem 4.7 of Section 4.4 that in [57] it was
shown that the balls of radiust w.r.t. such a distance function have exacttq exp(ct) growth.
F. Maucourant has developed an alternative approach to this result which yields that in
fact after scaling by the volume growth one obtainsw∗ convergence to a limiting Radon
measure onMn(R). Details can be found in the preprint “Homogeneous asymptotic limits
of Haar measure of semisimple linear groups and their lattices”, by F. Maucourant.

14.3.3. The ergodic theory of lattice subgroups.It is possible to develop general point-
wise ergodic theorems forarbitrary actionsof a latticeΓ in a semisimple groupG. Such
theorems apply to the discrete averages on lattice points in balls w.r.t. a distance functions
on the groupG. We note here a sample result formulated in the simplest case, and refer
to [56] for a full discussion.

Let βk = 1
volBk

χBk (g), whereBk is the bi-K-invariant lift of a ball of radiusk in G/K .

Let Γ be a lattice subgroup ofG, let Bk(Γ )= Bk ∩ Γ , and letbk = 1
|Bk(Γ )|

∑
γ∈Bk(Γ ) γ .

We have:

THEOREM 14.4 (Pointwise ergodic theorem for general lattice actions [56]).LetΓ ⊂G
be a lattice in a connected semisimple Lie groupG with finite center. Then the sequence
bk ∈ �1(Γ ) satisfies, in every ergodic probability preserving action ofΓ , for any f ∈
Lp(X), 1<p <∞, and for almost everyx ∈X:

(1) limk→∞ bkf (x)=
∫
X
f dm.

(2) In any ergodic action ofΓ with a spectral gap(and thus in every ergodic action
if Γ has propertyT ), there existsδp = δp(X) > 0, such that for anyf ∈ Lp(X),
1<p <∞, and for almost everyx ∈X∣∣∣∣bkf (x)− ∫

X

f dm

∣∣∣∣�Cp(x,f )exp(−δpk).

If Γ has propertyT , thenδp depends only onΓ , and not onX.

In reference to Theorem 14.4, note that in Theorem 12.8 a similar conclusion is asserted,
but only for those actions ofΓ arising from actions ofG. However the rate of exponential
convergence obtained in Theorem 12.8 is in general faster. Also note that in Theorem 11.10
the best possible rate of exponential convergence is obtained for balls w.r.t. aword metric
on the lattice, whereasbk are not associated with a word metric. However in Theorem 11.10
the lattices (and the metrics) are severely restricted.
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We note that the same result holds for balls (and many of their subsets) w.r.t. a large class
of distance functions on the group, and allows the calculation of the main term as well as
an estimate of an error term in many lattice point counting problems. We refer to [56] for
details.

14.3.4. The ball averaging problem for word metrics on semisimple groups.As noted
in Theorem 4.11, word metrics on semisimple groups are coarsely isometric to norm-like
metrics. It is possible to utilize this fact and obtain a solution of the ball averaging problem
in this context. We formulate for simplicity the following basic special case.

THEOREM 14.5 (Pointwise ergodic theorem for word metric balls on simple Lie groups).
The balls defined by any word metric on a connected simple Lie group with finite center
satisfy the pointwise ergodic theorem inLp, 1<p <∞.

In fact, a similar result holds for all algebraically connected semisimple algebraic
groups, at least in actions whereG+ acts ergodically. The convergence is exponentially
fast almost surely, if the action has a spectral gap. Details will appear in the paper “On the
ball averaging problem in ergodic theory”, currently under preparation.

14.3.5. Further reading. The present survey aimed for the most part to indicate just the
bare outlines of the relevant arguments appearing in the proofs of the ergodic theorems
cited, and most details are of course left out. The reader wishing to learn more about some
of these arguments is referred to the detailed comprehensive exposition in the forthcom-
ing book “Théorèmes Ergodiques pour les Actions de Groupes”. This book is the result
of a collaborative effort initiated by the late Martine Babillot, with the participation of
C. Anantharaman, J.-Ph. Anker, A. Batakis, A. Bonami, B. Demange, F. Havard, S. Grel-
lier, Ph. Jaming, E. Lesigne, P. Maheux, J.-P. Otal, B. Schapira and J.-P. Schreiber. The
book contains a wealth of information on ergodic theorems for group actions, including an
elaboration of a number of the topics mentioned in the survey.
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0. Introduction

Partial differential equations and systems describe evolution of time-dependent functions
and vector fieldsu(x, t) wherex is a spatial variable andt is time. We consideru(x, t) with
a fixedt as an element of a function spaceE and obtain a vector-functionu(t). Therefore,
a partial differential equation or system can be written in the form

∂tu=F
(
u(t)
)
, (1)

where the operatorF(u) includes partial derivatives ofu with respect to spatial variables
x = (x1, . . . , xn). This equation looks like an ordinary differential equation and one may
try to use methods from the theory of finite-dimensional dynamical systems to study the
dynamics generated by (1). Dynamics can be studied locally and globally. The local the-
ory of equilibria, periodic solutions and their perturbations is very rich and includes their
stability, bifurcations, theory of local invariant manifolds through them (see [99,203,230,
291,344,360]). Here we mostly consider global aspects of dynamics.

The dynamics generated by (1) with initial data in a function spaceE can be described
by the solution semigroup

St :u(0)  → u(t)

that acts in the spaceE. WhenF(u(·)) does not depend ont explicitly, the solution oper-
atorsSt satisfy the semigroup identity

St+τ = StSτ , t � 0, τ � 0, S0 = 1. (2)

The long-time behavior of solutions of such equations can be adequately described in
terms of global attractors of the equations. In many problems the influence of initial data
has vanished after a long time has elapsed, therefore permanent regimes are of impor-
tance. The simplest permanent regimes are described by time-independent functions that
are solutions of the equationF(u) = 0. Such regimes are important but very special and
it is widely believed that time-dependent permanent regimes are of importance, in partic-
ular they describe turbulence in hydrodynamics (see [102,341]). Time-dependent regimes
may include time-periodic, time quasiperiodic and chaotic regimes; their common feature
is that they are defined for all times, positive and negative. A mathematically rigorous
description of such regimes and related questions of asymptotic behavior and stability is
given by the theory of attractors. The theory of global attractors of PDE is developed in
works of many mathematicians, see the list of references and in particular the books [55,
98,209,270,338,353,363,371] and references therein. Here we give a brief sketch of basic
ideas, approaches and directions of research in this field. We also try to complement recent
reviews [331] and [336] on related subjects from this series.

The central concept of the theory we discuss here is a global attractor. Since the termi-
nology used in the theory of global attractors of PDE was changing with time we give a
brief review of the history of related concepts. A discussion of the concept of an attractor
in the theory of finite-dimensional dynamical systems is given by Milnor [308]. Usually an
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attractor of a semigroup (a semiflow in different terminology) is understood as an invariant
set that attracts its neighborhood, it equals the omega-limit set of a neighborhood of the
attractor (see [308] for different variants of this definition). Here we call such an attractor
a local attractor. A dynamical system may have several local attractors, for example sev-
eral stable equilibria or stable periodic solutions with different domains of attraction. In
the dynamical systems generated by PDE local attractors are often considered, see [102,
230,291,341,378]. Sometimes a smaller attractor is considered, namely a set which attracts
most of the points of the neighborhood, such an object is called a minimal attractor by
Milnor [308], where the reader can find exact definitions. Before 1982 in the research on
global dynamics of PDE, in particular in the works of Ladyzhenskaya [261,262], Foias and
Temam [181], Henry [230], the attracting sets were presented as omega-limit sets of a large
ball and characterized as maximal invariant bounded sets. An absorbing ball in connection
with a description of the long-time dynamics of the two-dimensional Navier–Stokes sys-
tem was found by Foias and Prodi [175]. The invariant set that is the omega-limit set of
an absorbing ball was constructed by Ladyzhenskaya [261,262] for the two-dimensional
Navier–Stokes system. One of results of [37,40] is that the invariant set constructed by
Ladyzhenskaya is the global attractor in the modern terminology, namely it attracts all
bounded sets in the norm-induced topology of the energy space. The seminal work of La-
dyzhenskaya [262] is the first work where a global attractor of a PDE was constructed
and its important properties described; in particular, the invertibility of dynamics on the
attractor was proven. Ladyzhenskaya [262] also proved that a trajectory on the attractor
is uniquely determined by its finite-dimensional projection, this theorem is the first in the
important direction of research of finite-dimensionality of attractors of PDE; the research
was continued by Mallet-Paret [286], Foias and Temam [181], Mañe [289], Foias, Temam,
Manley and Treve [172], Babin and Vishik [39,42] and in many subsequent papers; for
more details and references see Section 2.1.

Dynamical systems generated by PDE have their specifics. The description of dynamics
usually is given in terms of inequalities that are formulated in terms of function norms, this
makes them uniform in corresponding normed spaces; the inequalities describe uniformly
behavior of solutions with initial data from a bounded set in such a space. A natural de-
scription of dynamics should take into account these features. The following definition of
a maximal attractor in terms of attraction of all bounded sets was given and was used as
a basis for a systematic approach to the study of global dynamics of parabolic, damped
hyperbolic equations and the Navier–Stokes system in a series of papers of Babin and
Vishik published in 1982–1983 [37,38,40,39,42] and in many subsequent papers. In these
works the existence of maximal attractors was proven for general multidimensional par-
abolic systems, two-dimensional Navier–Stokes system and damped wave equations; the
basic properties of the attractors were described; in particular, upper and lower estimates
of the Hausdorff dimension of attractors were obtained and a regular structure of attractors
for parabolic and hyperbolic equations with a global Lyapunov function was described. We
quote in the introduction the definition from [39,42], the earlier definitions in [37,38,40]
did not include the closedness (or compactness) as a requirement.

DEFINITION. A maximal attractorof a semigroup{St } in a Banach spaceE is a bounded
closed setA with the following two properties:
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(i) A is invariant, that isStA=A for all t � 0;
(ii) A attracts all bounded sets inE, that is δE(StB,A)→ 0 as t → ∞ for every

bounded setB.

This definition explicitly describes the domain of attraction, that is the whole Banach
spaceE and, more important, explicitly specifies the attraction ofStu0 to A. Namely, the
attraction is assumed to be uniform with respect to a boundedu0 ∈ B. Compared with the
concept of a maximal invariant set that was used before in the dynamical theory of PDE
this definition explicitly includes the topology of the attraction. This distinction is impor-
tant in the infinite-dimensional case when the same space may be endowed with two non-
equivalent topologies, for example the norm-induced and the weak topology of a Hilbert
space. The maximal invariant set can be the same, but the attraction is understood in dif-
ferent ways and this difference is a major point of research, especially when the dynamics
generated by equations in unbounded domains and damped hyperbolic problems is con-
sidered; very often the same set with the attraction in the weak topology is called a weak
attractor. Before 1982–1983 in the literature on dynamical properties of PDE the attractors
were considered (as omega-limit sets) but the attraction as such was not discussed.

In addition to properties of dynamics in PDE mentioned above there is the following
motivation for this definition. Firstly, the maximal attractor is determined uniquely by the
semigroup{St }, that is by the operatorF in (1) and by the spaceE. Secondly, the definition
does not include a specific construction of the attractor.

After 1983 the above definition of a maximal attractor or its minor variations became
a standard definition in the theory of global attractors of PDE (see [55,363,209,101,270,
98,353,336] and references therein) but the nameglobal attractoris now used more often.
Sometimes this object is called auniversal attractor(see [363]). We originally used the
term maximal attractor to point out that the domain of attraction is maximal (namely the
whole space) and that it is a maximal invariant set. Note that under natural assumptions
the maximal attractor is a maximal invariant bounded set and a minimal closed set that at-
tracts all bounded sets; the latter property is not in a perfect match with the name maximal
attractor, but wise people say that nothing is perfect. The termminimal closed B-global
attractor used by Ladyzhenskaya [270] for the same object is very precise but seems to be
too long. One has to take into account that originally in the theory of infinite-dimensional
dynamical systems the definition of a global attractor given in [212] did not include the
attraction of bounded sets, and the global attractor was defined as a set that attractedStu0
for all u0 ∈E; this terminology was used until 1984, see [214, p. 46]. Note that a set which
was called a global attractor in the old terminology is usually smaller than the maximal
attractor (or the global attractor in the modern terminology). By 1981 the general theory of
maximal invariant sets of infinite-dimensional semigroups was developed by Billotti and
La Salle [66], Hale, La Salle and Slemrod [212], Massatt [292,293]. Important concepts of
asymptotically smooth semigroups were introduced by Hale, La Salle and Slemrod [212]
and existence of maximal invariant sets of asymptotically smooth semigroups was proved;
non-trivial sufficient conditions for the asymptotic smoothness were found; relations be-
tween different concepts of attraction were studied; see [206,208,209,336] for details and
references. This theory in particular includes theorems on existence of maximal bounded
invariant sets that attract all bounded sets, see [214]. One has to note though that before
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1984 the attraction of bounded sets in the literature on abstract semigroups in infinite-
dimensional spaces was considered among other properties such as attraction of points,
attraction of compact sets and their neighborhoods and was not a subject of special interest
(see, for example, [207, Chapter 4], [214]). The main application of the general theory was
the dynamics of retarded functional differential equations, we could not find in the litera-
ture on Partial Differential Equations published before 1982 a paper where a theorem on
attraction of every bounded set to an attractor of an equation with partial derivatives was
formulated or proved.

In this review we try to pay attention to the aspects of the dynamics of PDE which
distinguish this subject from the theory of finite-dimensional dynamical systems and from
the abstract theory of infinite-dimensional dynamical systems.

The theory of infinite-dimensional systems generated by PDE includes technical com-
plications that are absent in the finite-dimensional theory:

• Semigroup operatorsSt often are defined only fort � 0 and cannot be extended for
−∞< t <∞.

• Infinite-dimensional function spaces are not locally compact.
• Dynamics in infinite-dimensional spaces for given initial data as a rule does not allow

an explicit description, therefore only a collective description is available, usually in
terms of inequalities.

• Solutions with bounded energy can blow-up in a finite time.
• Uniqueness of solutions may be difficult to establish (3D Navier–Stokes system).
• The dependence on initial data may be non-smooth even when non-linear operators

are polynomial thanks to infinite-dimensional effects (strongly non-linear monotonic
parabolic equations).

More importantly, the dynamics generated by PDE has completely new features:
• Dimension of the global attractor can be considered as a large parameter, this allows

to study the asymptotic behavior of the dimension.
• The spatial variables allow one to classify functions from invariant sets according to

their geometric properties:
(i) number of zeros;
(ii) homotopy type;

(iii) symmetry properties.
• Interaction of spatial and temporal behavior (dependence of the dimension of the at-

tractor and the fragmentation complexity of the attractor on the volume of the spatial
domain).

Therefore, the central problems studied in the theory of global attractors of PDE include:
• Reduction in some sense of infinite-dimensional systems to finite-dimensional.
• Characterization of the attraction in different topologies, exponential attraction, track-

ing property.
• Interconnection of spatial properties of solutions and their dynamical properties.
• Expression of characteristics of attractors in terms of physical parameters of the prob-

lems.
• Relation of the properties of dynamics (for example, the existence of a global attrac-

tor) with the number of spatial variables and the growth of non-linearities.
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One has to take into account that there are obvious similarities between the infinite-
dimensional and finite-dimensional cases. For example, the construction of a global attrac-
tor as an omega-limit set works in both cases. The theory of local invariant manifolds and
foliations is similar to the finite-dimensional theory. Though the semigroups generated by
parabolic operators are not invertible (cannot be extended to negative times) the technical
difficulties that arise in many cases can be solved and do not lead to significant differences.

We pay here more attention to the aspects of the theory which are specific to the infinite-
dimensional case. There are completely new phenomena, for example, the dimension of the
global attractors tends to infinity when the viscosity tends to zero; such behavior and its
asymptotics makes sense only in an infinite-dimensional situation. Another phenomenon
that has no simple analogues in the finite-dimensional case is the presence of a spatial vari-
able in addition to the time variable. Relations between spatial and time variables manifest
themselves most clearly in the case of an unbounded or a very large domain, for exam-
ple the growth of the dimension of attractor and its fragmentation complexity when the
domain increases, or the trivialization of dynamics on the attractor of the Navier–Stokes
system in unbounded channels near spatial infinity. Many aspects of the theory of attractors
are important for applications, in particular to geophysics and meteorology (see [279,280,
278]). In particular, the dimension of attractor estimates the number of degrees of free-
dom of the dynamical system which describes long time behavior of a physical system.
A global attractor also contains all the information on the instability of the dynamical sys-
tem (see [55]).

The purpose of this chapter is to give a sketch of the core of the classical theory of
attractors with a minimum of technicalities and to point to major directions in which the
theory develops. We do not intend to give the most general results, but rather we want
to show the ideas in the simplest possible way. We prefer to present results with simple
formulations rather than the most general results and give references to the literature for
possible generalizations. We do not give here detailed proofs; if the formulations of results
are very technical, we refer to original papers for details. Since this review reflects scientific
interests of the author, inevitably not all directions in the theory of global attractors of PDE
are represented with the same degree of detail. The author apologizes that many interesting
papers are not discussed in this review.

1. Global attractors of semigroups

Here we discuss basic concepts related to dynamics in infinite-dimensional spaces.

1.1. Basic definitions and existence of attractors

Absorption and attraction. LetE be a complete metric space with distanceρ(x1, x2) and
a semigroup of (non-linear) operators{St , t � 0} act inE:

St :E→E, t � 0.
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Everywhere we assume that operatorsStu are continuous with respect tou in the metric
of E and are bounded. We introduce a non-symmetric distance (sometimes it is called a
semidistance)δE(B1,B2) from a setB1 to a setB2,

δE(B1,B2)= sup
x1∈B1

inf
x2∈B2

ρ(x1, x2). (3)

A set B is invariant if StB ⊂ B, for all t � 0; often a set with this property is called
positive invariant. A setB is strictly invariant ifStB = B for all t � 0; if B ⊂ StB the set
B is callednegative invariant.

DEFINITION 1.1.1. A bounded setB0 is called anabsorbing setof {St } if for every
bounded setB there existsT such thatStB ⊂ B0 for all t � T .

Semigroups that possess a bounded absorbing set are often calledbounded dissipative;
when the statement holds only for one-point (or compact) setsB a semigroup is called
point (compact) dissipative. Often a semigroup that has a bounded absorbing set is called
dissipative. For a discussion of the terminology and general concepts see [336].

When {St } has a bounded absorbing setB0 and the operatorsSt are continuous and
bounded, the set

B0T = closureE

(⋃
t�T

StB0

)
(4)

is also absorbing and is invariant. Therefore existence of a bounded absorbing set is equi-
valent to existence of a closed bounded invariant absorbing set.

A setB0 is called anattracting set(in a spaceE) if for every bounded setB

lim
t→∞ δE

(
St (B),B0

)= 0. (5)

DEFINITION 1.1.2. A setA is called the global attractor of{St } inE if it has the following
three properties:

(i) A is compact;
(ii) A is strictly invariant:StA=A for all t ;

(iii) A is an attracting set for{St } in E, that is

δE
(
St (B),A

)→ 0 ast→∞

for every bounded setB.

The following properties characterize global attractors. A global attractor is the minimal
set among all compact sets which attract all bounded sets. A global attractor is the maximal
set among all bounded strictly invariant sets (see [55,209,270,353,363]). Sometimes global
attractors are called maximal attractors or minimal attractors. Note that if a global attractor
exists it is unique.
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REMARK. We most often use the above definition and the theorems which we formulate
below in the situation whenE is a Banach space with the distanceρ(x1, x2)= ‖x1−x2‖E .
The general definition and theorems are useful when we use the weak topology of a ball in
a separable Hilbert space or when functions are defined on unbounded domains and we use
the topology generated by convergence on bounded subdomains of the unbounded domain
(for example, such topology is widely used in the theory of trajectory attractors). Another
important example is the case when a semigroup is defined only on an invariant subset of a
Banach space which does not coincide with the entire space. See [55,57,209,228,363,353,
270,336] for details and examples. In particular, one may find a very detailed discussion
of different aspects of general theorems on existence of attractors and the history of the
question in [353]. A similar definition of attraction can be given in terms of topology of
the function space rather than its metric, see [44,55].

WhenE is a separable reflexive Banach space and we use the topology generated by
the weak convergence (or a metricρ on an absorbing ball which induces the weak conver-
gence) we call the global attractor(E,Ew)-attractor or a weak attractor to distinguish it
from the attractor in the norm-induced topology.

A curveu(t), −∞< t <∞, is called a trajectory of{St } if St1u(t2)= u(t1 + t2) for all
−∞< t2<∞, 0< t1<∞.

The following important property of a global attractor is equivalent to its strict invari-
ance.

For every pointa ∈ A there exists a bounded trajectoryu(t) of {St } defined for all
−∞< t <+∞ such thatu(0)= a.

Existence theorems.We formulate basic existence theorems from the theory of global
attractors. More details are given in the books and reviews [55,363,353,336,270,228]. De-
tailed treatments of general aspects of the theory of existence of attractors of operator
semigroups is given in [209,353,336].

We consider an operator semigroup{St } in a complete metric spaceE. The operators
St are everywhere assumed to be continuous bounded (non-linear) operators inE. Most
often in the applications presented in this chapter the complete metric spaceE is a Banach
space.

THEOREM1.1.3. Let a semigroup{St } of continuous operators have a bounded absorbing
setB0 such that the set

⋃
t�0St (B0) is bounded and let{St } have a compact attracting set.

Then{St } has a global attractorA. The attractorA is defined as an omega-limit set ofB0
by the following formula

A=
⋂
T

B̃(T ), whereB̃(T )= closureE

(⋃
t�T

StB0

)
. (6)

(For proofs and variants see [55,209,270,336,353,228,59].) Theorem 1.1.3 is sufficient
in many applications, but its conditions can be relaxed, below we give a more general
theorem from which it follows.
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Following Ladyzhenskaya [265] we call a semigroup{St } asymptotically compactif for
any bounded setB such that the set{StB, t � τ } is bounded for someτ every sequence
Stnzn with zn ∈ B andtn→+∞ is relatively compact.

A semigroup is calledasymptotically smoothif for any bounded invariant setB there
exists a compact setB1 = B1(B) such that limt→∞ δE(St (B),B1) = 0 (see [212]). The
condition of being asymptotically compact is equivalent to being asymptotically smooth,
see [336]; see [336,353] for a discussion of general properties of such semigroups. We
prefer the term asymptotically compact by two reasons: first, this property is not related to
the differentiability of operatorsSt ; second, in unbounded domains higher smoothness of
functions does not imply compactness.

THEOREM 1.1.4. Let a semigroup{St } of continuous operators satisfy the following con-
ditions:

(i) {St } is asymptotically compact;
(ii) {St } is point dissipative(that is there exists a bounded setB0 such that for every

point z Stz ∈ B0 for all t � t0(z));
(iii) for any bounded setB there existsτ = τ(B) such that the set{StB, t � τ } is

bounded.
Then{St } has a global attractorA.

As a simple corollary of Theorem 1.1.3 we obtain the following statement.

COROLLARY 1.1.5. Let {St } have a bounded absorbing ball. Let operatorsSt for t � 0
be continuous and uniformly bounded on bounded sets. LetSt be compact for everyt > 0.
Then{St } has a global attractor.

REMARK. For parabolic equations in bounded domains it is sufficient to use Corol-
lary 1.1.5. Applications to damped hyperbolic equations, degenerate parabolic equations,
mixed parabolic–hyperbolic systems, equations in unbounded domains when the semi-
group operators are not compact require more general Theorem 1.1.3.

REMARK. WhenE is a Banach space the attractor defined by (6) is a connected set and
contains an equilibrium, see [209,270,353]. Trivial examples (a setE formed by two points
and a setE that coincides with a circle) show that there exist global attractors in metric
spaces which are not connected sets and there exists a global attractor in a metric space
which does not contain an equilibrium.

More on the attraction. A semigroup{St } that acts in a separable Hilbert spaceH may
be studied from different points of view. One may consider the topology inH generated
by the Hilbert norm. Another choice is to use the weak topology inH , this topology re-
stricted to a bounded ball is metrizable; the spaceH endowed with the weak topology we
denote byHw. The same setA can be a global attractor in the norm-induced topology or
in a weak topology (a weak attractor) in the same space; it can also be an attractor in a
norm that is stronger than the norm ofH (see below the definition of(E,E1)-attractors).
Since the norm-induced topology is stronger, the attraction in the norm-induced topology
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δH (StB,A)→ 0 implies thatδHw(StB,A)→ 0 ast→∞, therefore the attraction in the
norm-induced topology contains more information. One has to note that bounded sets are
precompact in the weak topology ofHw and this makes construction of a compact attract-
ing set more straightforward. There are examples of semigroups (for example, semigroups
generated by non-linear monotonic operators with a monotonic principal part, see [55], or
by general parabolic systems in unbounded domains in spaces of functions that do not de-
cay at infinity, see [57]) with non-compact operators for which the existence of attractors is
proven only in the weak topology. One has to take into account that the proof of continuity
of operatorsSt in the weak topologyHw in many cases is not much harder than the proof
of continuity of operatorsSt in the norm-induced topologyH .

In many cases the attraction property of semigroups generated by parabolic equations
and systems is proven in a stronger norm than the norm of the spaceH where the semi-
group acts. For example, the semigroup defined in a Sobolev spaceH0(Ω) can attract
bounded inH0(Ω) sets in the stronger norm ofH2(Ω). To describe such a situation Babin
and Vishik [44,55] introduced the following definition.

DEFINITION 1.1.6. LetE1, E be two metric spaces andE1 ⊂ E or E ⊂ E1. A strictly
invariant setA is called(E,E1)-attractor ifδE1(StB,A)→ 0 ast→∞ for any bounded
in E setB.

See [44,55] for examples of(E,E1)-attractors. In particular, whenE = H , E1 = Hw
we have a weak attractor. Note that the spaceE defines bounded sets andE1 defines
the topology, therefore in this definitionE1 can be a topological space (not necessarily a
Banach space or a metric space, see [44,55]).

It is worth noticing that when the domainΩ is bounded, the norm-induced topology in
H2−ε(Ω) with arbitrary smallε > 0 is weaker than the weak topology ofH2(Ω)w . For
example, the existence of the global attractorA in H1(Ω) in the norm-induced topology
implies much weaker attraction toA than the existence of(H1(Ω),H2(Ω)w)-attractor,
therefore the weakness of a weak attractor is relative.

REMARK. Using a pair of spaces as in the definition of(E,E1)-attractor often is instru-
mental in dealing with equations in unbounded domains, see Mielke and Schneider [305],
Mielke [303].

REMARK. Pointwise attraction in the norm different from the norm of the Banach spaceE

was considered already in [212], a systematic study of the attraction to global attractors of
PDE in stronger (or weaker) norms or in the weak topology in terms of(E,E1)-attractors
was done in [44].

REMARK. Usually the smoothness of functions on the attractor is determined by the
smoothness of the forcing term and by the boundary. We note that the attraction can be
in a stronger norm than boundedness of solutions (see [55]) since the difference of two
functions fromH1 may belong toH2. Regularity of functions on attractors and attraction
in stronger norms are studied in [44,55,200]. In particular, whenf and∂Ω are infinitely
smooth the attractorA consists of infinitely smooth functions (see [363]).
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Unbounded attractors. In the definition of a global attractor we have imposed the com-
pactness condition. When a semigroup acts in a Banach space one may consider un-
bounded, locally compact attractors. Non-trivial examples of unbounded, locally compact
attractors of PDE are given by Chepyzhov and Goritskii [92].

1.2. Equilibria and local invariant manifolds

A global attractor always contains all equilibria and unstable manifolds through them. This
fact was used in [39,202] (see also [55]) to obtain lower estimates of dimension of global
attractors.

DEFINITION 1.2.1. A pointz is anequilibrium pointof {St } if Stz= z for all t .

Sincez does not depend ont , for semigroups defined by (1),z satisfies the equation
F(z)= 0.

DEFINITION 1.2.2. Anunstable manifoldMun(z) through an equilibrium pointz of St
is the set of all pointsv ∈ E such thatStv is defined for allt � 0 andStv→ z in E as
t→−∞.

If {St } has a global attractorA andz is an equilibrium point of{St }, thenMun(z)⊂A.

DEFINITION 1.2.3. Astable manifoldM−(z) through an equilibrium pointz of St is the
set of all pointsv ∈E such thatStv is defined for allt � 0 andStv→ z in E ast→+∞.

The behavior of a dynamical system near an equilibrium is described by the theorem
on stable and unstable manifolds of semigroups in Banach spaces; this theorem is fairly
similar to the finite-dimensional theorem. We formulate the theorem skipping technical
details, in particular the differentiability conditions (see [55,230] for details; see also [61,
62,89] for more details, generalizations and more references).

LetSt be a non-linear differentiable (of classCα , α � 1) semigroup in a Banach spaceE.
Let a pointz be an equilibrium ofSt , that isStz = z for all t � 0. The differentialsS′t (z)
form a semigroup of linear bounded operators inE. The properties of this semigroup play
important role; the behavior ofSt nearz is in many respects similar to that ofS′t (z). The
most important assumption is the existence of a circular gap in the spectrum ofS′t (z).
Namely, we assume that the spectrum ofS′t (z) does not contain a circle|ζ | = ρt in the
complex plane. We conclude that the spectrum is divided by the circle into two parts:
externalσ+ and internalσ−. Therefore, the Banach spaceE splits into two complementary
invariant subspacesE+(ρ) andE−(ρ), S′t (z)E−(ρ) ⊂ E−(ρ), S′t (z)E+(ρ) = E+(ρ) for
all t � 0. We assume thatE+(ρ) is finite-dimensional.

Under these conditions, the non-linear semigroups havelocal invariant manifolds
M+(z, ρ) andM−(z, ρ) through a pointz in a neighborhood ofz which are tangent re-
spectively toE+(ρ) andE−(ρ) (the local manifolds may be non-unique). A setM is
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called local invariant (in a neighborhood ofz) if the assumptionsu ∈M andSτu stays in
the neighborhood ofz for 0� τ � t imply thatStu ∈M .

Whenρ = 1 M+(z, ρ) is called a local unstable manifold ofSt , M−(z, ρ) is called a
local stable manifold ofSt . When|ζ | = 1 is in the spectrum, andρ < 1M+(z, ρ) is called
acenter-unstable manifoldof St .

THEOREM 1.2.4. There exists a local unstable manifoldM+(z, ρ) which in a neighbor-
hood ofz is a graph of a function of classCα fromE+(ρ) to E−(ρ),M+(z, ρ) is tangent
to E+(ρ) at z. In the neighborhood ofz,M+(z, ρ) is locally invariant with respect toSt .
The following attraction estimate

δE
(
Stu,M+(z, ρ)

)
� c′(ρ − ε)t , 0� τ � t, (7)

holds whenSτu is in the neighborhood ofz for 0 � τ � t . Whenρ � 1, St is extended
insideM+(z, ρ) to negativet and

δE(Stu, z)� c′′(ρ + ε)t , t � 0. (8)

If there are many circular gaps|ζ | = ρti with points of the spectrum between them,
picking differentρi one can find many different local invariant manifolds ofSt nearz.
Intersections of these manifolds are also smooth local invariant manifolds. Therefore, local
non-linear dynamics nearz is in many respects similar to the linear dynamics ofS′t (z). Note
that the spectrum ofS′t (z) in applications equals the exponent of the spectrum ofF ′(z)
whereF ′(z) is the differential ofF in (1) and in (18). A circular gap in the spectrum of
S′t (z) corresponds to a gap{lnρ − ε1 � Reλ� lnρ + ε1} in the spectrum ofF ′(z).

A common way to study the local behavior near an equilibriumz is by using cut-off
functions. Namely, (1) is replaced by the following equation

∂tv =F ′(z)v + ϕ(L‖v‖E)(F(z+ v)−F ′(z)v
)
, (9)

where a smooth cut-off functionϕ(s) = 1 when|s| � 1, ϕ(s) = 0 when|s| � 2. Equa-
tion (9) generates a semigroup{S0

t } that coincides with the original semigroup{St }
nearz. The semigroup{S0

t } is close to the linear semigroup{S′t (z)} whenM . 1, since
ϕ(L‖v‖E) = 0 for ‖v‖E � 2/L and, roughly speaking, for largeL one has to consider
smallv and observe thatϕ(L‖v‖E)(F(z+ v)−F ′(z)v)= O(L−2), its Lipschitz constant
is O(vL−1) and one may expect the Lipschitz constant to be small. These statements can
be made precise for typical parabolic and hyperbolic equations if the spaceE is chosen in
a proper way, see, for example, [55,230].

DEFINITION 1.2.5. If the unit circleρ = 1 is not in the spectrum ofS′t (z) the equilibrium
point z is called hyperbolic.

Whenz is hyperbolic the local unstable manifoldM+(1) coincides with the intersection
of the unstable manifoldM+(z) with a neighborhood ofz.
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REMARK. To prove the existence of an unstable manifold of a hyperbolic equilibrium
point one can treat directlySt not using (9). This is important when non-smooth norms are
used, like the norm inCα(Ω). See [42] and Section 5.3 in [55] for details.

Tracking property. If a trajectoryu(t) = Stu0 spends long time near an equilibriumz,
then there exists a trajectorỹu(t) that lies on a finite-dimensional invariant manifold
M+(z, ρ), this trajectory approximatesu(t) very well (with an exponential error estimate).
The approximatioñu(t) is called a tracking trajectory (or a shadowing trajectory).

THEOREM1.2.6. LetSt be close to a linear semigroup near an equilibriumz. Let |ζ | = ρ,
ρ < 1 be not in the spectrum ofS′1(z). Then there exists a small neighborhoodO of the
pointz and a constantC that have the following property. If u(t)= Stu0 ∈O for 0� t � T
then there exists̃u0 ∈M+(z, ρ) and ũ(t)= St ũ0 ∈M+(z, ρ) that satisfies the inequality∥∥ũ(t)− u(t)∥∥

E
� Cρt , for 0� t � T . (10)

In particular, if u(t)→ z as t→∞, there exists̃u(t)= St ũ0 ∈M+(z, ρ) such that∥∥ũ(t)− u(t)∥∥
E

� Cρt , for 0� t <∞. (11)

Note that if the spectrum ofS′t (z) has many circular gaps, one may find differentũ(t)
for different ρ. In particular, for parabolic problems in bounded domains one may take
ρ arbitrary small, drastically increasing the accuracy of approximation at the expense of
increasing the dimension ofM+(z, ρ).

1.3. Inertial manifolds

The fact that the global attractorA is finite-dimensional is quite remarkable. One though
has to take into account that this set may have a non-regular structure. To describe the dy-
namics on the attractor one may try to include it into a larger but still finite-dimensional
exponentially attracting manifoldM which is invariant with respect toSt and contains the
attractor. If this is done, the dynamics onM is given by a system of ODE and such a system
could be used for numerical simulations. The best possible solution is to describeM as a
graph of a smooth (or, at least, Lipschitz) function defined on a finite-dimensional subspace
of the function space. Such an object is called an inertial manifold. An inertial manifold is
a global variant of the local invariant manifoldM+(z, ρ) in Theorem 1.2.4. Inertial man-
ifolds exist when there is a wide enough gap in the spectrum of the linear part of the
equation. Existence of inertial manifolds is proven for a number of systems, in particular
for low-dimensional parabolic equations and systems, for the Kuramoto–Sivashinsky equa-
tion (see for details Foias, Nicolaenko, Sell and Temam [173], Foias, Sell and Titi [180],
Foias, Sell and Temam [178,179], Temam [363], Sell and You [353]). The theory of inertial
manifolds is well developed, see [134,353] and references therein. Here we give only the
definition and we try to illustrate this object comparing it with local invariant manifolds
discussed above. We give the definition of the inertial manifold following [363,119,353].
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DEFINITION 1.3.1. An inertial manifoldM is a graph of a Lipschitz function which
domain is a finite-dimensional linear subspace ofE. It is positive invariant,StM⊂M.
The manifoldM attracts all trajectories of the semigroup exponentially.

Since the definition is global, to apply this definition to semigroups generated by PDE
usually one has to modify the non-linearity outside an absorbing ball as in (9) to make it
globally Lipschitz. To prove the existence of an inertial manifold instead of using smallness
of the non-linearity that is used in local theorems one may use other parameters. A natural
large parameter is the dimension of the manifold. Analysis of the construction of local
invariant manifolds shows that whenρ lies in a wide enough gap in the spectrum ofS′1(z)
(equivalently, logρ lies in a wide enough gap in the spectrum ofF ′(z)) one can take a
smallL in (9) and still prove existence of an invariant manifold. In fact, one does not need
z to be an equilibrium, one can take, for example,z= 0. The gap condition on consecutive
eigenvaluesλN,λN−1 of F ′(0) is of the form

λN − λN−1 � c(λN + λN−1)
p, (12)

wherec is a constant andp, 0� p < 1, depends on the properties of the non-linearity, see
for details [363,353]. TypicallyλN ∼ Nq , and one has to assumeq − 1> qp and to take
largeN to satisfy (12).

The invariant inertial manifold enjoys all the properties ofM+(z, ρ), ρ < 1. In particular
the tracking property holds, that is for any trajectoryu(t)= Stu0 there exists a tracking tra-
jectory ũ(t) on the inertial manifoldM such that (11) holds (see [180,353] and references
therein).

The gap should be large relative to the Lipschitz constant of the non-linearity. Clearly,
in the local theory, since the Lipschitz constant is small for largeL any spectral gap will
do. One though has to take into account difficulties which arise when the non-linearity
includes unbounded operators.

WhenL is small, the semigroupS0
t generated by (9) coincides with the original semi-

groupSt in a large ball‖z − u‖ � L−1. For smallL this ball contains an absorbing ball
and the attractor ofSt , therefore the long-time dynamics ofSt is described by the modified
equation. The large spectral gap condition is restrictive, but there are important equations
that satisfy this condition (see [287,353,363]). EigenvaluesλN ,N = 1,2, . . . , of a second-
order elliptic differential operatorA (for example,A=−& where& is the Laplacian with
Dirichlet boundary condition in a boundedd-dimensional domainΩ) have asymptotical
behaviorλN ∼ CN2/d asN → ∞. Therefore in a generic case one may expect gaps to
behave likeC[(N + 1)2/d − N2/d ] and, generally speaking, large gaps are absent when
d � 2. Nevertheless, existence of inertial manifolds is proven in some high-dimensional
cases by Mallet-Paret and Sell [287].

An approach to approximate long-time dynamics constructively is based on the con-
struction of approximate inertial manifolds, see [179,185,186,195,363] and references
therein. For the approach based on construction of approximating algebraic and analytic
sets see [185].

Inertial manifolds and approximate inertial manifolds are constructed for many equa-
tions in mathematical physics, see in particular [67,110,322,353,367,384].
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1.4. Exponential attractors

Another important notion of the theory of infinite-dimensional dynamical systems is an
exponential attractor, also called aninertial set(see [134,133,131,34]).

DEFINITION 1.4.1. A setE ⊂ E is called an exponential attractor of the semigroup{St }
in the Banach spaceE if the following three conditions hold:

(i) E is compact and has a finite fractal dimension;
(ii) E is invariant (not strictly)StE ⊂ E for all t � 0;

(iii) there exist positive constantsc andc′ such that for allt � 0 and for every bounded
setB ⊂E

δE(StB,E)� c′ exp[−ct].

Note that points (i) and (iii) of this definition are more restrictive than the corresponding
points of Definition 1.1.2 and point (ii) is less restrictive. For the definition of a fractal
dimension see Section 3. If an exponential attractor exists, it always contains the global
attractor,A⊂ E . An exponential attractor is non-unique. The simplest examples of expo-
nential attractors are given by regular attractors of semigroups with a Lyapunov function,
since the tracking property includes exponential attraction, see [42,54,55]. It is remarkable
that the existence of an exponential attractor can be proven for very general systems.

Existence of an exponential attractor for 2D Navier–Stokes system, reaction–diffusion
systems and damped wave equations is proven by Eden, Foias and Nicolaenko [132]; see
also [133,134,131,125]. The theory of exponential attractors in Hilbert spaces is expanded
to Banach spaces by Dung and Nicolaenko [131]. Exponential attractors of reaction–
diffusion systems in unbounded domains are constructed by Babin and Nicolaenko [34],
see also Efendiev, Miranville and Zelik [137]. Fabrie, Galusinski and Miranville [142]
study behavior of exponential attractors when damped wave equation degenerates into a
parabolic equation. Exponential attractors of generalized Cahn–Hilliard equation are con-
structed by Miranville [310]. Exponential attractors for non-autonomous evolution equa-
tions are constructed by Miranville [309,311] based on the theory of trajectory attractors
of Chepyzhov and Vishik [97].

1.5. Hausdorff and fractal dimension

A fundamental characteristic of an attractor of a dynamical system is its dimension. The
physical meaning of the dimension of an attractor is, roughly speaking, the number of de-
grees of freedom required to describe the large-time dynamics of a dynamical system. The
attractor may be a very complicated set, so a definition of dimension has to be applicable
to general sets.

First, we give the definition of theHausdorff dimensionof a set in a Banach space.
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If K is a compact set, we consider finite coveringsCK of K by ballsBri (xi) of radiusri
centered atxi , Bri (xi)= {u: ‖u− xi‖E < ri}. We denote by|CK | the maximum ofr for
the coveringCK . Let

µα,ε(K)= inf|CK |�ε
∑
i

rαi . (13)

We define the Hausdorff measure by the formula

µα(K)= lim
ε→0

µα,ε(K), (14)

the measureµα(K) equals∞ for smallα and equals 0 for largeα. The Hausdorff dimen-
sion is defined as

dimH(K)= inf
{
α: µα(K)= 0

}
. (15)

Note that sinceE is infinite-dimensional, dimH(K) may be infinity.
Now, we definethe fractal dimensionof a compact setK .
We consider all finite coverings ofK by ballsBε(xi) of radiusε centered atxi with a

fixed radiusε. We denote byn(ε,K) the minimum number of balls in such a covering. The
number

Hε(K)= log2
(
n(ε,K)

)
(16)

is called Kolmogorovε-entropyof the setK . The box-counting dimension (fractal dimen-
sion) ofK is

dimF(K)= lim sup
ε→0

Hε(K)
log2(1/ε)

. (17)

We always have

dimH(K)� dimF(K).

Note that ifK is a smooth compactd-dimensional manifold (or a piecewise smooth
manifold, or a manifold with a boundary) that lies inE, thend = dimH(K) = dimF(K).
An important property of the fractal dimension is the existence of Mañé’s projection (see
Mañé [289]). Namely, if a setK has dimension dimF(K), there exists a projection onto a
linear subspace with dimensiond < 2 dimF(K)+1 which is one-to-one onK . We give the
following refinement of the Mañé’s theorem (see [134,174]):

THEOREM 1.5.1. LetH be a Banach space andX be a compact subset ofE with fractal
dimensiondimFX < d/2 with an integerd . LetE(d) be ad-dimensional linear subspace
of E. Then the set of linear projectionsP from E ontoE(d) which are one-to-one from
X ontoPE ⊂ E(d) is a residual set in the operator topology(a set is residual if it is the
complement of a countable union of nowhere dense sets).
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REMARK. Conditions for the inverse Mañé projection to be Hölder continuous fromPX

toX are given by Eden, Foias, Nicolaenko and Temam [134], Foias and Olson [174], Hunt
and Kaloshin [236].

A fundamental problem is to estimate the dimension of the attractor or, more generally,
of an invariant set of a semigroup{St }. Methods for estimating its dimension essentially
use the properties of the linear operatorsS′t obtained by the differentiation ofStu0 with
respect tou0. When the operatorsStu0 are Fréchet differentiable with respect tou0, the
differentialS′t (u0) is defined by the formulav(t)= S′t (u0)v0 wherev(t) is the solution of
the variation equation

∂tv(t)=F ′(u(t))v(t), v(0)= v0, (18)

whereu(t)= S′t u0; (18) is obtained by formal differentiation of (1) (see for examples and
details [55]).

DEFINITION 1.5.2. LetH be a Banach space. An operatorS is uniformly quasidifferen-
tiable on a setX ⊂H and a linear operatorS′(u) is a quasidifferential ofS onX at a point
u ∈X if

sup
u,v∈X

0<|u−v|�ε

‖Su− Sv − S′(u)(v − u)‖H
‖v− u‖H → 0 asε→ 0. (19)

WhenX is an open setS′(u) is the differential andS is called differentiable. In applica-
tions,S′(u) usually coincides with the operatorS′ obtained by the formal differentiation
of S. We call S′(u) a quasidifferential becausev ∈ X may be not an arbitrary element
of H . Note that in some cases estimate (19) holds foru,v ∈X ⊂H (and not for arbitrary
u,v ∈H ) sinceX in applications consists of more regular functions than a general function
from H (for example, we may apply it whenH = H0(Ω) andX is bounded inH1(Ω)).
We say that quasidifferentialsS′(u) are uniformly bounded onX when

sup
u∈X
∥∥S′(u)∥∥L(H,H) <∞,

where‖S′(u)‖L(H,H) is the operator norm.

The following theorem of Mañé [289] shows that under natural conditions a compact
invariant set has a finite fractal dimension. LetL1(H,H) be the set of bounded linear
operatorsS′ fromH toH which can be split in the following way:S′ = S′1 + S′2 whereS′1
is compact and‖S′2‖< 1.

THEOREM1.5.3. LetX ⊂H be a compact, negatively invariant set of an operatorS,X ⊂
SX, let S be differentiable in a neighborhood ofX and the differentialS′(u) continuously
depend onu. LetS′(u) ∈ L1(H,H) for anyu ∈X. ThendimF(X) <∞.
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One of the central problems of the theory of global attractors is to estimate the dimension
of the attractor in terms of parameters of the problem. The most precise estimations of
Hausdorff and fractal dimension of invariant sets of semigroups which do not possess a
global Lyapunov function are based on the study of the evolution of volume elements
under the dynamics.

Let H be a Hilbert space. IfEd ⊂ H is a d-dimensional linear subspace, then a lin-
ear operatorL maps ad-dimensional ellipsoidBd ⊂ Ed into a d-dimensional ellipsoid
L(Bd) ⊂ L(Ed). In a Hilbert space, a volumevold(Bd) of a d-dimensional ellipsoid is
well-defined. For a bounded operatorL in a Hilbert spaceH , the quantityωd(L), which
measures the changes ofd-dimensional volumes under action ofL, is defined as

ωd(L)= sup
Bd

vold(L(Bd))

vold(Bd)
,

the supremum being over alld-dimensional ellipsoids. IfBd is a ball,ωd(L)= α1 . . . αd ,
whereαj is the length ofj th axis of the ellipsoidL(Bd). Clearly,α2

j coincides withj th
eigenvalue of the operatorL∗L when the spectrum ofL∗L is discrete. For details, see [55,
363]. We only note here that whenL is compact,ωd(L)→ 0 asd→∞. A global version
of ωd(S′(u)) is

ω̄d = sup
u∈X

ωd
(
S′(u)
)
. (20)

We will give a sketch of the theory of estimates of fractal and Hausdorff dimension of
global attractors of semigroups of PDE in Section 2.1.

Instability dimension of a semigroup.When a dynamical system is globally stable (that
is it has a one-point global attractor) we have

sup
t�0

∥∥St (u)− St (v)∥∥→ 0 if ‖u− v‖→ 0.

We say that the stabilization dimension of{St } is not greater thand if there exists a
d-dimensional subspaceE(d) and a linear projectionPd in E ontoE(d) such that

sup
t�0

∥∥St (u)− St (v)∥∥E → 0 if ‖u− v‖E + sup
t�0

∥∥Pd(St (u)− St (v))∥∥E → 0.

(21)

We call the minimum of suchd that (21) holdsinstability dimensionof the semigroup{St }
and denote it dimS({St }).

The following theorem shows a relation between the stability properties of the semi-
group and properties of its global attractor. It shows that the fractal dimension of the global
attractor not only estimates the number of the degrees of freedom of the permanent regimes
but also the number of unstable directions of the semigroup.
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THEOREM 1.5.4. LetH be a Banach space. Let {St } be a semigroup inH with operators
Stu, t ∈ [0, T ], uniformly continuous inu on every bounded set for everyT and{St } pos-
sesses a global attractorA and2 dimF(A) < d whered is an integer. ThendimS({St })� d .

The proof follows from observations made by Babin and Vishik [49] (see also The-
orem 8.1.2 of [55]) and from Mañé’s Theorem 1.5.1. Namely, the attraction property
of A implies that‖Stv −w1(t)‖E + ‖Stu−w2(t)‖E � ε for t � T (ε), wherewi(t) ∈A.
From continuity we see that‖Stv − Stu‖ � ε when t � T (ε), ‖v − u‖ � δ(ε). If
supt�0‖Pd(St (u)− St (v))‖E � ε then

∥∥Pd(w1(t)−w2(t)
)∥∥
E

�
∥∥Pd(St (u)− St (v))∥∥E + ‖Pd‖

(∥∥Stv−w1(t)
∥∥
E
+ ∥∥Stu−w2(t)

∥∥
E

)
�
(
2‖Pd‖ + 1

)
ε.

Since any one-to-one mappingPd from a compact setA intoE(d) has a continuous inverse
we conclude that‖w1(t)−w2(t)‖ � ε2(ε), ε2(ε)→ 0 asε→ 0. Therefore fort � T (ε)∥∥St (u)− St (v)∥∥E �

∥∥w1(t)−w2(t)
∥∥
E
+ ε � ε2(ε)+ ε

and for allt � 0∥∥St (u)− St (v)∥∥E � ε2(ε)+ ε
if ‖v− u‖ � δ(ε), sup

t�0

∥∥Pd(St (u)− St (v))∥∥E � ε

which implies (21).

Entropy of infinite-dimensional sets.Sometimes attractors have infinite dimension. In
particular, global attractors of equations in unbounded domains and attractors of non-
autonomous equations may have infinite dimension. When the attractor has infinite dimen-
sion it still can be much thinner than a ball in a Banach space. One still can use Kolmogorov
ε-entropyHε(K) to characterize a compactK even when it has infinite dimension. Esti-
mates of Kolmogorov entropy of attractors of parabolic equations in unbounded domains
are discussed in Section 5. Note that according to (17) the fractal dimension ofK is finite
whenHε(K) tends to infinity not faster thanC log2(1/ε) with a finiteC. WhenHε(K)
tends to infinity faster one may introduce different characteristics of the growth or to write
explicit estimates. In particular, following [257] and [98] one may introduce functional
dimension adf(K) and metric orderq(K)

adf(K)= lim sup
ε→0+

log2 Hε(K)
log2 log2(1/ε)

, q(K)= lim sup
ε→0+

log2 Hε(K)
log2(1/ε)

. (22)
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1.6. Fragmentation complexity of attractors

Though a global attractor is a connected set, dynamics on it can be fragmented. We call
a subsetX ⊂ A a subattractor ofA if X is a compact, stable, strictly invariant subset
of A and there exists an open in topology ofA invariant neighborhoodO(X) ⊂ A of
X which is invariant,StO(X) ⊂ O(X), t � 0, and such thatX attractsO(X), namely
δE(StO(X),X)→ 0 ast→∞. For example, ifz ∈A is a stable equilibrium point,{z} is
a subattractor. Another examples include a stable cycle (a periodic trajectory), or a stable
invariant torus. Now we define an intrinsic characteristic of the dynamics onA, namely
thefragmentation numberFr(A).

DEFINITION 1.6.1. Let @X = {Xj , j = 1, . . . ,N} be a collection of subattractors of a
global attractorA,Xj ⊂A,Xj ∩Xi = ∅ whenj �= i, such a collection is called a subfrag-
mentation ofA of rankN . The fragmentation numberFr(A)�∞ is a supremum of ranks
N of all possible subfragmentations ofA. We call log2 Fr(A) fragmentation complexityof
the attractorA.

Obviously, one can takeX1 =A, thereforeFr(A)� 1, log2 Fr(A)� 0.

REMARK. Note that a global attractorA of a semigroup in a metric space may have a high
dimension and have zero fragmentation complexity when there exists a trajectory which
is everywhere dense on the attractor. Though the temporal behavior of a solution may be
complex, the attractor can be recovered with a high precision using only one trajectory.
When the fragmentation complexity is large, one has to use many trajectories.

The following theorem follows from the invariance principle of La Salle which holds for
semigroups with a Lyapunov functions (see Section 3.2 for the definitions).

THEOREM1.6.2. If {St } has a global attractorA and a global Lyapunov functionL which
is continuous on the attractor and the set of equilibria is finite, then the fragmentation
numberFr(A) coincides with the number of stable equilibria(local minima ofL).

We give an elementary example whenFr(A) = ∞. An ordinary differential equation
∂tu= f (u) with

f (u)=−u4 sin

(
1

u

)
whenu �= 0, f (0)= 0 (23)

generates a semigroup inR. The semigroup has the global attractorA= [− 1
π
, 1
π
]. There

are infinitely many stable pointsz ∈A andN(A)=∞. Note though that a generic, arbi-
trary smallC1 perturbation off (u) in (23) makesFr(A) finite.

The above example shows that a robust characteristic of the complexity should include
families of equations.
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For a family of attractorsA(θ) whereθ ∈Θ is a parameter (for example,θ = f wheref
is the function which determines the non-linearity) from a parameter spaceΘ we introduce
the fragmentation number and complexity

Fr
(
A(Θ)
)= inf

θ∈Θ Fr
(
A(θ)
)
, L

(
A(Θ)
)= log2 Fr

(
A(Θ)
)
. (24)

Estimates from below of the fragmentation number for gradient systems of PDE are
given in [17,18], lower bounds for the fragmentation complexity of the global attractor
of a reaction–diffusion equation in a large domainΩ ⊂ Rd for a given non-linearity are
given in [24,3] and in Section 4 of this chapter, namely log2 Fr(A) � c|Ω|, where|Ω| is
d-dimensional volume ofΩ .

If ΩN , N = 1,2, . . . , is a one-parameter family of domains,ΩN ⊂ΩN ′ whenN <N ′
and
⋃
N ΩN = Rd , and the attractorsA(θ) = A(θ,ΩN) lie in a space of functions

overΩN , we introduce theaverage spatial complexityof the attractor

cmp(θ)= lim
N→∞ inf

log2 Fr(A(θ,ΩN))
|ΩN | , cmp(Θ)= lim

N→∞ inf
log2 Fr(A(Θ,ΩN))

|ΩN | ,

(25)

where|ΩN | is the volume of the domainΩN .
Below in Section 4 we give estimates from belowcmp(Θ)� c > 0 and estimates from

abovecmp(Θ)�C for the average spatial complexity of attractors of parabolic and hyper-
bolic equations.

1.7. Dependence on parameters

Under very mild conditions a global attractorupper semicontinuouslydepends on parame-
ters that are involved in the equations. First results on upper semicontinuous dependence on
a parameter of global attractors for semigroups with a global Lyapunov function were ob-
tained by Hale [208]. For general semigroups upper semicontinuity of global attractors was
proven first by Babin and Vishik [46], similar results were obtained by Hale [209], Hale
and Raugel [215]. For details and further results see [55,209,336]. Here we follow [46]
(in a less general setting for simplicity), since the approach of [46] is geometrically trans-
parent. Namely, the upper semicontinuity can be derived from the following principle: if a
compact set lies in the productE×Θ0, then its sectionE×{θ}, θ ∈Θ0, depends onθ up-
per semicontinuously. This observation is used to prove thatA(θ) upper semicontinuously
depends on a parameterθ in the following way. If Equation (1) depends on a parameterθ ,

∂tu=F(u, θ) (26)

we have a semigroup{St (θ)} that depends on the parameterθ . We assume that parameter
θ takes values in a compact subsetΘ0 of a metric spaceΘ and consider the action ofSt in
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the product spacẽE =E ×Θ . One may consider(u, θ) as a new variable and introduce a
new semigroup{S̃t } in the product space:

S̃t : (u, θ)  →
(
St (θ)u, θ

)
.

Abusing notation we say thatSt (θ0) is defined onE × θ0 as well as onE.
The following general result of [46] shows that under natural assumptions global attrac-

torsSt (θ) upper semicontinuously depend onθ .

THEOREM 1.7.1. Let S̃t have a global attractorÃ ⊂ E × Θ0. Then the setsA(θ0) =
Ã ∩ {θ = θ0} are global attractors of semigroupsSt (θ0), and the setsA(θ0) upper semi-
continuously inE depend onθ0 ∈Θ0, that is

δE
(
A(θ),A(θ0)

)→ 0 asθ→ θ0. (27)

Existence of the global attractor̃A can be proven based on Theorems 1.1.3 and 1.1.4.
The main condition of these theorems is the existence of a compact attracting set. We call a
setB0 uniformly (with respect toθ0) attracting if for any bounded setB ⊂E and any open
neighborhoodO(B0) of B0 there existsT = T (B) such that for allt � T (B), θ0 ∈Θ0

St (θ0)
(
X(θ0)∩B

)⊂O(B0).

SinceΘ0 is compact, ifB0 is uniformly attracting compact set forSt (θ0) thenB0 ×Θ0 is
a compact attracting set for̃St . From Theorem 1.1.3 we obtain the following result of [46].

THEOREM 1.7.2. Assume that there exists a uniformly attracting compact setB0. Assume
also thatS̃t are continuous onE ×Θ0 and uniformly bounded on a neighborhood ofB0.
Then there exists the global attractor̃A of S̃t . For everyθ ∈ Θ0 there exists a global
attractorA(θ) of the semigroupSt (θ) andA(θ) upper semicontinuously depends onθ .

The case of a sequence of equations with non-linearitiesFn(u), n= 1, . . . , which con-
verge to a limit non-linearityFn(u)→ F∞(u) when n→ ∞ can be put in the above
framework by settingθ0n = 1

n
, θ∞ = 0 F(u, 1

n
) = Fn(u); in this case the compact set of

parametersΘ0 =⋃∞
n=1{ 1

n
} ∪ 0.

Theorem 1.7.1 is sufficient if one needs to prove upper semicontinuous dependence on
parameters for applications to strongly non-linear and semilinear parabolic equations and
systems, damped hyperbolic problems and other problems, see [46,55] for details. These
problems include, in particular, the Galerkin approximations of orderN to the 2D Navier–
Stokes system. It is proven by Babin and Vishik in [46] that the attractorA(N) of the
Galerkin system upper semicontinuously depends onN whenN→∞,

δH1

(
A(N),A(∞))→ 0 asN→∞. (28)

HereA(∞) is the attractor of the 2D Navier–Stokes system; see [46,55] for details. Similar
results for approximations of parabolic and damped hyperbolic equations were obtained by
Hale, Lin and Raugel [213].
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The case when the dependence on a parameter is singular is more difficult. As an exam-
ple we consider the damped wave equation

ε∂2
t u+ γ ∂tu=&u− f (u)− g(x), u|∂Ω = 0 (29)

with ε < 0, whenε→ 0 the hyperbolic equation (29) turns into a parabolic equation. The
semigroup generated by (29) written in the form of a system similarly to (101) acts on
two-component vectors(u,p). Its attractorAε lies in the spaceE1 defined in (102). When
ε = 0 the parabolic equation describes dynamics ofu-component only, its attractorA lies
in the spaceu ∈W2

2 (Ω)∩{u|∂Ω = 0}. Nevertheless, one can express∂tu from the parabolic
equation and set foru ∈Ap = 1

γ
[&u− f (u)− g], the pairs(u,p) lie in E1. If we denote

the set of pairs byA0 the following upper semicontinuity holds:

δE1−ε (Aε,A0)→ 0 asε→+0.

For more details see [50,215,55,336].
Non-trivial examples of upper semicontinuity in the case of a singular dependence on a

parameter include results on dependence on the shape of domains when the domain is thin
and changes its dimension in the limit. Upper semicontinuity for such problems is proven
by Hale and Raugel [216,217,219,221]. More examples of singularly perturbed systems
that couple hyperbolic and parabolic PDE or PDE and ODE are studied by Vishik and
Skvortsov [372,373,357], Fitzgibbon, Parrott and You [166].

Lower semicontinuous dependence on parameters.Since the distanceδE from one set to
another is not symmetric, (27) does not imply thatδE(A(θ0),A(θ))→ 0 asθ → θ0, that
is the dependence may be not lower semicontinuous. Lower semicontinuous dependence
of attractors on a parameter is proven only for semigroups that possess a global Lyapunov
function and have only hyperbolic equilibria, see [46,54,55,209,336]. Easily verifiable con-
ditions that guarantee lower semicontinuity for general semigroups are not yet known. It
is proven though that the lower semicontinuity is a generic property, see Babin and Pilyu-
gin [35].

As Theorem 1.7.1 shows, upper semicontinuity requires very mild assumptions on the
semigroup, so one usually may take for granted thatA(θ) depends onθ upper semicon-
tinuously. When lower semicontinuity also holds, one has a continuous dependence onθ ,
that is

δE
(
A(θ),A(θ0)

)+ δE(A(θ0),A(θ))→ 0 (30)

asθ → θ0. Global attractors of semigroups that possess a global Lyapunov function and
have only hyperbolic equilibria Holder continuously depend onθ , namely

δE
(
A(θ),A(θ0)

)+ δE(A(θ0),A(θ))� C|θ0 − θ |q, η > 0.

This fact is proven in [46], it directly follows from the non-trivial exponential attraction
estimate (56) of [46] (see Theorem 2.3.9) to the attractor, and from the estimate∥∥St (θ)u− St (θ0)u0

∥∥
E

�C
(‖u‖E + ‖u0‖E

)(‖u− u0‖ + |θ0 − θ |
)
eαt .
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An elementary computation shows thatq = η/(η+α)with η from (56), see for details [55].

1.8. Toy models

In this subsection we discuss several toy models which are much simpler than the equations
we study later but still can be used to illustrate properties of global attractors.

Toy model 1.8.1. We consider a very simple ODE that generates a semigroup inR1

∂ty = y
(
1− y2). (31)

Obviously,

1

2
∂t |y|2 = |y|2 − |y|4.

This equation implies that∂t |y|2 � 0 when |y|2 � 1. Therefore every segmentBR =
{y: −R � y � R} with R > 1 is an absorbing set for{St } generated by (31) inR1. The
semigroup has three equilibriaz1 = −1, z2 = −0, z3 = 1. The global attractorA of the
semigroup coincides with the segmentB1 = {y: −1 � y � 1}. Note that every trajectory
y(t) of the semigroup tends to one of the three pointszi ast→∞. The attractor is a larger
set sinceSt (BR) with R > 1 must include points±1 and sinceSt (BR) is a connected set it
must include the whole segmentB1. The dimension ofA is 1, the fragmentation number
Fr(A)= 2. A similar equation

∂ty =−y[(1− y2)2 + θ], θ � 0, (32)

demonstrates the general property of global attractors: the upper semicontinuous de-
pendence of the global attractorA(θ) on the parameterθ . When θ > 0 the global at-
tractor is one pointy = 0. Whenθ = 0 the global attractor is the segment{y: −1 �
y � 1}. ObviouslyδR(A(θ),A(0))→ 0 whenθ → 0 (in fact, δR(A(θ),A(0)) = 0) but
δR(A(0),A(θ))= 1 for θ > 0.

Toy model 1.8.2. We consider in the planeR2 the Van der Pol system

∂tu= u+ βu⊥ − |u|2u, (33)

whereu= (x, y) ∈ R2, |u|2 = (x2 + y2), u⊥ = (−y, x), β � 0.
Multiplication of (33) byu yields the equation for the norm|u|

1

2
∂t |u|2 = |u|2 − |u|4. (34)

This equation implies that∂t |u|2 � 0 when |u|2 � 1. Therefore every ballBR = {u:
|u| � R} with R > 1 is an absorbing set for{St } generated by (33) inR2. Note that (34)
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implies that the circle|u|2 = 1 is a strictly invariant set, it is a local attractor. The global
attractorA of the semigroup coincides with the discB1

A= {u: |u| � 1
}
.

Whenβ �= 0 there is one unstable equilibriumu= 0. Whenβ = 0 the set of equilibria
consists ofu = 0 and of the circle|u| = 1. Whenβ = 0 the semigroup{St } has a global
Lyapunov function

F(u)=−1

2
|u|2 + 1

4
|u|4.

This function satisfies the inequality

∂tF (u)=−(|u|2 − |u|4)2 (35)

andF(u) is strictly decreasing when(|u|2 − |u|4)2 �= 0. This is true forβ �= 0 too, but in
the latter case the stationary set ofF(u), that is set{u: |u|2 − |u|4 = 0} does not consist
of equilibria and in this case we do not call such a Lyapunov function a global Lyapunov
function. The dimension of the attractor is 2, the fragmentation numberFr(A) = 1, the
fragmentation complexity logFr(A)= 0.

Toy model 1.8.3. To illustrate the introduced concepts in an infinite-dimensional situation
we consider a model equation

∂tu=−A0u− f0(u), (36)

whereA0 is a self-adjoint operator in a Hilbert spaceH with the orthonormal basisej

A0ej = λj ej , j = 1, . . . ,

and for everyu ∈H we have the eigenvector expansion

u=
∞∑
j=1

uj ej .

One may takeA0 = −& + c where& is the Laplace operator with appropriate bound-
ary conditions,c > 0 is a constant. The numeration of eigenvalues is in increasing order,
λj+1 � λj , λj →∞ asj→∞. LetN0 be the number of non-positive eigenvalues

λN0 � 0, λN0+1> 0.

The action of the non-linearityf0 in the eigenbasis is written as follows

f0(u)=
∞∑
j=1

u3
j ej .



Global attractors in PDE 1009

Equation (36) can be written in the basisej in the form

∂tuj =−λjuj − u3
j , j = 1, . . . ,

which is similar to (31). A solution of (36) is given by

u(t)=
∞∑
j=1

uj (t)ej .

It can be split into two parts

u(t)= u+(t)+ u−(t),

u+(t)=
N0∑
j=1

uj (t)ej , u−(t)=
∞∑

j=N0+1

uj (t)ej .

We have the inequality∥∥u−(t)∥∥H �
∥∥u(0)∥∥

H
exp(−λN0+1t).

This estimate is uniform when initial datau(0) belong to a bounded setB in H . In the
invariant linear subspaceEN0 with the basise1, . . . , eN0 the global attractorA+ ⊂ EN0 is
determined by the inequalities

|uj |�
√−λj , j = 1, . . . ,N0.

One can easily estimate the attraction rate:

δ
(
u+(t),A+

)
� C
(∥∥u+(0)∥∥H )e−2λN0 t whenλN0 > 0, (37)

δ
(
u+(t),A+

)
� C
(∥∥u+(0)∥∥H ) 1

1+√
t

whenλN0 = 0. (38)

The attractorA⊂H of (36) is given by

A= {u ∈H : u− = 0, u+ ∈A+}.

The dimension of the attractor dimH A = dimF A = N0, the fragmentation number
Fr(A)= 2N0. WhenλN0 > 0 the following exponential attraction property holds:

δH
(
St (B),A

)
� C(B)exp(−ηt), whereη= min(λN0+1,2λN0), (39)

for every bounded setB; whenλN0 = 0 the rate of attraction is algebraic like in (38).
Therefore, whenλN0 > 0 A is anexponential attractor.
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One may drastically increase the rate of convergence to an attractor slightly increasing
it but losing the strict invariance. We take a larger subspace with the basise1, . . . , eN1,
N1>N0 and take a neighborhoodOr(A+) in EN0. We set

E =Or(A+)+
N1∑

j=N0+1

uj ej ,

N1∑
j=N0+1

|uj |2 � r2, E ⊂H,

with an arbitrary smallr . Now we have

δH
(
St (B),E

)
�C(B)exp(−ηt), whereη= λN1+1.

The setE is invariant,StE ⊂ E but it is not strictly invariant,StE �= E . This toy example
shows that by expanding the global attractor a little and increasing its dimension one may
drastically increase the rate of convergence to it and obtain an exponential attractor. A non-
trivial generalization of this idea leads to the proof of existence of an exponential attractor
of a dynamical system, see [134].

We use the setA constructed in this example as an illustration to one more important
concept in the theory of dynamical systems, namely unstable and stable manifolds through
an equilibrium point of a semigroup. Clearly, ifλN0 < 0 the subspaceEN0 = E0+ is the
unstable manifold passing through zero of the linear semigroupSt generated by (36). When
λN0 = 0 the subspaceEN0 is called the center-unstable manifold ofSt through zero.

The center-unstable manifold of this semigroup is non-zero ifλ1 � 0, it has the basis
e1, . . . , eN0 with λ1, . . . , λN0 � 0, λN0+1> 0. The stable manifold of the linear semigroup
through zero is a linear subspace with the basiseN0+1, . . . .

This toy model illustrates the simplest properties of global attractors: the setA is an
attracting set, it is compact; moreover, it is finite-dimensional. It is invariant, that is onA
every trajectoryu(t) can be extended to−∞< t <+∞. WhenA0 =−&+ cI where&
is a negative operator, forc= 0 the attractor consists of only one point zero. The non-trivial
attractorA is a result of the perturbationcI , with sufficiently largec > 0 that creates insta-
bility. Of course non-linear PDE are much more complicated than this toy model. Still for
many semilinear cases one may consider their global attractor as a result of perturbation of
the linear equation by the non-linear term and an external forcing. Finite-dimensional non-
linear models (for example, the Lorenz system) show that the structure of such a set may
be very complicated and this set does not look like a smooth manifold neither locally nor
globally. Nevertheless, many observations are still true. The global attractor is a compact,
finite-dimensional (in the sense which will be discussed below) set. This set is invariant,
that is dynamics on the attractor is invertible. And this set uniformly attracts all solutions
of the dynamical problem, with bounded initial data.

Toy model 1.8.4. Consider a system of ODE in the plane similar to (33) (we use the same
notation)

∂tu=−(|u|2 − 1
)2
u+ (|u|2 − 1

)
u⊥. (40)
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The global attractorA of this system is a disc|u| � 1. Since

∂t |u|2 =−2
(|u|2 − 1

)2|u|2,
every solutionu(t) with |u(t)|> 1 tends toA, |u(t)| → 1 ast→+∞. But the attraction
is slow, |u|2 − 1 � |u(0)|2(2t + C)−1 when t → ∞. Note that every point on the circle
{|u| = 1} is an equilibrium. At the same time, the polar angleθ of every solution satisfies
∂t θ = |u|2 − 1. A simple analysis shows that the variation of the angleθ of a solution with
|u(t)|> 1 is unbounded whent→∞ since∫ ∞

0

(|u|2 − 1
)
dt �
∣∣u(0)∣∣2∫ ∞

1
(2t +C)−1dt =∞.

Therefore the omega-limit set of every non-equilibrium trajectoryu(t) coincides with the
whole circle {|u| = 1}. ThereforeFr(A) = 1. Note that (40) has a Lyapunov function
L(u)= |u|2.

2. Properties of attractors

2.1. Upper and lower estimates of Hausdorff and fractal dimension

Here we present theorems on the Hausdorff and fractal dimensions of strictly invariant sets.
According to the definition of the dimension, to estimate it one has to use coverings ofA
by small balls. The possibility to prove the finite dimensionality of the global attractor for
a semigroup in an infinite-dimensional space, in particular, for a semigroup corresponding
to the 2D Navier–Stokes system, is based on three fundamental facts. The first fact is the
invariance propertyStA=A (or negative invarianceA⊂ StA) which implies that if one
has a covering ofA by a family of ballsBr + uj thenSt (Br + uj ) is also a covering ofA.
The second fact is the differentiability of the operatorsStu with respect tou. Thanks to
the differentiability, one can locally approximate the action ofSt on a ballBr + uj by
S′t (uj )Br . To describe the third fact we consider here the case of a semilinear operator
F(u)= νAu+F0(u)− g in Equation (1) which takes the form

∂tu+ νAu+F0
(
u(t)
)= g, (41)

whereA is a linear operator,g is a given forcing term. The non-linear partF0 is assumed
to be a differentiable in some sense operator,F ′

0 being its differential and

F ′ = νA+F ′
0. (42)

The differentialS′t (u0)v0 = v(t) satisfies the variation equation (18), which for the semi-
linear equation takes the form

∂tv+ νAv+F ′
0

(
u(t)
)
v = 0, v(0)= v0, (43)
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with u(t)= Stu0. The third fact is that in many cases the linear operatorsS′t (u0) have the
smoothing property and therefore are compact (though it is not necessary for dimension
estimates). The eigenvaluesβ2t

1 , β
2t
2 , . . . of the operatorS′∗t St are positive and, sinceS′t

is compact,βn → 0 asn→∞. Therefore for ad-dimensional measureµd(S′t (u0)Br) �
Cβt1β

t
2 · · ·βtdµd(Br) and, ifd is large,µd(S′t (u0)Br)� Cβtµd(Br) with β < 1. Therefore,

for larget , µd(S′t (u0)Br)� µd(Br)/4 and, if the linear approximation works for smallr ,
we getµd(A) = µd(StA) � µd(A)/2 for larget . This is possible only forµd(A) = 0.
This argument shows thatd cannot be very large, therefore we have an estimate of the
dimension ofA, d � d∗. The ideas sketched above can be made absolutely rigorous; this
was proven by Mallet-Paret [286].

The following theorem that allows to get quantitative estimates is proven by Douady and
Oesterle [130].

THEOREM 2.1.1. Let SX = X, and letS be uniformly quasi-differentiable onX, with
uniformly bounded onX quasidifferentialsS′(u). Let d be such that for somek < 1 the
quantityω̄d defined by(20)satisfies the inequality

ω̄d � k < 1. (44)

Then the Hausdorff dimension ofX is finite and is not greater thand .

Theorems on the fractal dimension were proven by Constantin, Foias and Temam [120],
see also Constantin and Foias [117]. We give here the result of Chepyzhov and Ilyin [95].

THEOREM 2.1.2. Under the hypotheses of Theorem2.1.1suppose that the quasidifferen-
tials S′(u) continuously depend onu ∈X in the operator norm. Then the fractal dimension
ofX is not greater thand .

The statements of Theorems 2.1.1 and 2.1.2 can be illustrated as follows. Inequality (44)
means that the mappingS strictly decreases thed-dimensional Hausdorff measure with a
coefficientk < 1. SinceSX =X, this is possible only when the Hausdorff measure ofX is
zero. This sketch can be made rigorous (see [55,363]).

If S′t (u0) is the solution operator for the variation equation (18), then using a Liouville
type formula for solutions of linear equations of the form (18), we get the estimate

ωd
(
S′t (u0)

)
� sup
Ed

exp

[∫ t
0

tr
(
F ′(u(τ))ΠEd(τ))dτ], (45)

whereΠEd(τ) is the orthoprojection inH onto Ed(τ) = S′τ (u0)Ed , the supremum be-
ing taken over alld-dimensional subspaces andtr(F ′(u(τ ))ΠEd(τ)) being the trace of the
finite-dimensional operatorF ′

0(u(τ ))ΠEd(τ).
From (44) and (45), we obtain that dimHX � d if, for some t > 0 andk < 1, for all

trajectoriesu(t) onX

sup
Ed

[∫ t
0

tr
(
F ′(u(τ))ΠEd(τ))dτ]� ln k < 0. (46)
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Note that by (42)

tr
(
F ′(u(τ))ΠEd(τ))=−ν tr(AΠEd(τ))+ tr

(
F ′

0u(τ)ΠEd(τ)
)
, (47)

whereA is the linear operator. For a second-order elliptic operatorA in a bounded domain
Ω ⊂ RN the typical estimate of eigenvalues and the trace takes the form

λj � CAλ1j
2/N , tr(AΠEd(τ))� C′

Aλ1d
1+2/N , C′

A > 0. (48)

A typical estimate (see [25,55,363]) of the trace of the operatorS′t (u0)(t) generated
by (43), whereu(t)= Stu0 takes values in the attractorA=X, has the form

lim sup
t→∞

1

t

∫ t
0

tr
(
F ′(u(τ))ΠEd(τ))dτ � bA − νC′

Aλ1d
1+2/N . (49)

Here,bA is a constant that depends onF ′
0, on the attractor and the parameters of the

problem but not on a particular solutionu(t) on the attractor. Therefore, from (45) we get
the estimate

lim sup
t→∞

sup
u0⊂X

lnωd
(
S′t (u0)

)
� −νC′

Aλ1d
1+2/N + bA.

Whend is large enough, namely when

νC′
Aλ1d

1+2/N > bA (50)

(we can take the minimum integerd that satisfy this condition) we have (46),

lim sup
t→∞

sup
u0⊂X

lnωd
(
S′t (u0)(t)

)
< 0

and condition (44) holds.
One can apply Theorems 2.1.1 and 2.1.2 toS(t), t → ∞. In addition, the right-hand

side of (49) is convex with respect tod . This allows to apply the observation of Chepyzhov
and Ilyin [94] that (50) is sufficient for both Hausdorff and fractal dimension to be not
greater thand . (See Chepyzhov and Vishik [98] for optimization of estimates of fractal
dimension.) Therefore, we obtain the following theorem.

THEOREM 2.1.3. Let StX =X, St be quasidifferentiable onX and, for everyt , the qua-
sidifferentialsS′t (u0) be uniformly bounded onX. Let an integerd satisfy(50). Then the
Hausdorff dimension ofX is not greater thand . The fractal dimension ofX is not greater
thand .

REMARK. The above results can be extended to non-integer values ofd , see [55,94,363].
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REMARK. Estimates of dimension of attractors can be made in terms of the Lyapunov
exponents of the operatorsS′t (u0)(t). We define, forj � 2, a globalj th Lyapunov exponent
by

µj = ln(Λj ), Λj = lim
t→∞

[
ω̄j (t)

ω̄j−1(t)

]1/t
(see [363] for more detail). Condition (44) then is replaced by the following condition:

µ1 + · · · +µn+1< 0. (51)

Lower bounds of dimension of the global attractors are based on the following observa-
tion of Babin and Vishik [39].

THEOREM 2.1.4. Let A be the global attractor of a semigroup{St }, let z ∈ A be an
equilibrium. Assume that for someρ � 1 there exists a local invariant manifoldM+(z, ρ)
(see Subsection1.2)which is tangent to the invariant subspaceE+(ρ) of the linear semi-
groupS′t (z). Then Hausdorff and fractal dimension ofA are not less thandim(E+(ρ)).

2.2. More aspects of finite dimensionality

Parametrization of attractors. The first statements related to finite-dimensional parame-
trization of attractors of PDE were given by Foias and Prodi [175] and Ladyzhenskaya
[262,261]. Foias and Prodi [175] proved that the asymptotic behavior ast → ∞ of the
solutions of the two-dimensional Navier–Stokes system in many cases is determined by
the asymptotic behavior of their finite-dimensional projections. Ladyzhenskaya [262,261]
constructed the attractor of the two-dimensional Navier–Stokes system and proved that a
trajectory on the attractor is completely determined by its orthogonal projection onto the
space spanned by the firstn eigenfunctions of the Stokes operator ifn is large enough.

There are several ways to parametrize attractors. The first one is to project the attractor
onto a finite-dimensional linear subspace, and if the projection is injective, the subspace
gives a parametrization of the attractor. By Mañé’s theorem such a projection always ex-
ists. A related question, which arises in connection with spectral numerical methods is the
following: do lower Fourier modes give the parametrization and how many modes does one
have to take? A similar question, which arises in connection with finite-difference numeri-
cal methods, is the following: can one parametrize functions on the attractor by their values
at given points (determining nodes) and how many nodes does one need? More general,
when do values of a finite number of functionals determine the long-time dynamics? Such
problems, important for computational applications, are addressed in papers by Chueshov
[104,105,107], Chueshov and Kalantarov [109], Cockburn, Jones and Titi [111], Con-
stantin, Foias, Manley and Temam [118], Foias, Manley, Temam and Trève [172], Foias
and Temam [183], Jones and Titi [245,246], Ladyzhenskaya [266], Shao and Titi [354].
Recently Friz and Robinson [188] and Kukavica and Robinson [259] proved that, under
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analyticity-type conditions, functions on a global attractorA with a finite fractal dimen-
sion dimF(A) can be parametrized by their values on almost every finite set which includes
at least 16 dimF(A)+ 1 nodes.

Approximation of attractors and dynamics.A global attractor is a very complicated ob-
ject lying in an infinite-dimensional functional space. Exact analytic description of attrac-
tors is very difficult, even for low-dimensional systems of ordinary differential equations.
Therefore, it is important to develop methods of finding approximate attractors and approx-
imate dynamics. The simplest approach is to approximate infinite-dimensional system by
a finite-dimensional one and study the attractor of the finite-dimensional system. It follows
from (28) that the attractor ofN th-order Galerkin approximations for the two-dimensional
Navier–Stokes system lies in a small neighborhood of the attractor of the original system
whenN is large. Therefore, the attractor of approximations lies near the exact attractor.
But this property does not exclude that the exact attractor can be much larger than the at-
tractors of approximations. Therefore, one has to consider the original equation and find
ways to approximate its attractor and dynamics on it and near it. The approaches based on
the concepts of inertial manifold and approximate inertial manifolds are briefly discussed
in Subsection 1.3.

2.3. Structure of attractors with a global Lyapunov function

2.3.1. Basic properties. Semigroups that possess a global Lyapunov function are very
special. Their dynamics admits in many cases a very detailed description; sometimes it
is called gradient-like dynamics and their global attractors have very good properties. At
the same time wide classes of PDE have global Lyapunov functions, for example any 1D
scalar second-order parabolic semilinear equation and any multidimensional scalar par-
abolic second-order semilinear equation that does not include first-order derivatives.

We callL(u) a global Lyapunov functionif L(Stu) is a decreasing function oft for all
t � 0 and is strictly decreasing ifu is not an equilibrium, that isL(Stu)= L(u) for some
t > 0 impliesStu= u for all t � 0.

Sometimes semigroups that possess a global Lyapunov function are calledgradient sys-
temssince the simplest example is given by the equation∂tu=∇L(u).

Let N be the set of all equilibria ofSt . If {St } has a global attractor, thenN ⊂A. For
a positive half-trajectoryu(t), t � 0, and a negative half-trajectoryu(t), t � 0 (when it
exists) their omega-limit setω(u) and alpha-limit setα(u) are defined respectively by

ω(u)=
⋂
τ�0

closureE
⋃
t�τ
u(t), α(u)=

⋂
τ�0

closureE
⋃
t�τ
u(t).

THEOREM 2.3.1 (Invariance principle of La Salle).LetX be an invariant set of{St }. Let
{St } have a global Lyapunov function that is continuous onX and operatorsSt be con-
tinuous onX for everyt . Then for every pre-compact positive or negative half-trajectory
u(t)= Stu0 its omega-limit set or alpha-limit set lies in the set of equilibria,

ω(u)⊂N , α(u)⊂N .
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PROOF. One can easily prove thatω(u) andα(u) are invariant sets. By the monotonicity
of L(u(t)) it has a limitL(u(t))→ L0 as t →+∞. L equals the constantL0 on ω(u).
Therefore every trajectory onω(u) is an equilibrium. �

Toy model 1.8.4 shows thatω(u) may contain more than one equilibrium.

DEFINITION 2.3.2. IfN is the set of equilibria, the unstable setMun(N ) is the set that
includes all pointsu0 ∈ E such that there is a trajectoryu(t) defined for negativet such
that

δE
(
u(t),N

)→ 0 ast→−∞.

COROLLARY 2.3.3. If {St } has a global Lyapunov function then the global attractorA
coincides with the unstable setMun(N ).

Indeed, for anyu0 ∈ A there exists a trajectoryu(t) that lies in the attractor such that
u(0) = u0. Since attractor is compact the trajectory is pre-compact. Thereforeα(u) ⊂N
andδE(u(t),N )→ 0 ast→−∞.

COROLLARY 2.3.4. If the setN is finite, N ={z1, . . . , zN } andu(t)= Stu0 continuously
depend ont � 0 for everyu0 ∈E then

A=
N⋃
j=1

Mun(zj ). (52)

Moreover, every trajectory on the global attractorA is a connecting orbit of some two
equilibria zi , zj :

lim
t→∞u(t)= zi, lim

t→∞u(t)= zj .

More properties ofA are described in the following subsection.

REMARK. There are situations when a semigroup possesses a global Lyapunov function
but the invariance principle of La Salle is not applicable, for example the Lyapunov func-
tion is not continuous on the space where the semigroup is defined or the half-trajectories
are not compact. Nevertheless in many cases results on the structure of the attractors sim-
ilar to the above can be obtained for such semigroups, see, for example, Section 2.2, see
also [55].

REMARK. In many problems that admit a global Lyapunov function the setN is generi-
cally finite and consists of hyperbolic points (see [42]).
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2.3.2. Regular attractors of gradient-like systems.A global attractor has a special struc-
ture (we call it regular) when{St } has a global Lyapunov function, the equilibrium setN
is finite and every pointz ∈ N is hyperbolic. Then, in addition to (52), global attractors
have the properties we describe below. Let us order the equilibria so that

L(z1)� L(z2)� · · ·� L(zN).

Let

Mk =
k⋃
j=1

Mun(zj ), M0 = ∅. (53)

DEFINITION 2.3.5. Following [42,55] we callA a regular attractorif

A=MN, (54)

and fork = 1, . . . ,N the following statements hold
(1) Mk is closed and compact inE.
(2) For all t � 0 Mk is strictly invariant,StMk =Mk .
(3) Mk is a stable set.
(4) The boundary∂Mun(zk)= closure(Mun(zk))\Mun(zk) is invariant and∂Mun(zk)⊂

Mk−1 (here∂M = closure(M) \M).
(5) St∂(Mun(zk))=Mun(zk) for all t � 0.
(6) For every compact setK ⊂Mk \ zk , limt→+∞ δE(StK,Mk−1)= 0.
(7) Mun(zj )∩Mun(zi)= ∅ wheni �= j .
(8) Every setMun(zk) is aC1 manifold of a finite dimensionnj ; this manifold is diffeo-

morphic toRnj and the embeddingMun(zk)⊂ E is of classC1 in a neighborhood
of any pointv ∈Mun(zk).

A discussion of some of the above properties for the global attractor of the one-
dimensional Chaffee–Infante parabolic equation

∂tu= ∂2
xu+ a

(
u− u3), u(0, t)= u(π, t)= 0

was given by Henry [230]. He used methods of the bifurcation theory varyinga in the
region 0< a < 16 when the dimension ofA varies from 0 to 3 to give a detailed de-
scription of the attractor in terms of connecting orbits between equilibria; that was the first
description of the structure of a global attractor of a PDE with a global Lyapunov function.
Existence of regular attractors for general semilinear and strongly non-linear parabolic
and semilinear damped hyperbolic problems was proven by Babin and Vishik in [42] (see
also [55]).

REMARK. Hausdorff dimension of a regular attractor is given by the explicit formula
dimH(A)= maxj dimMun(zj ).
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Global smoothness of a regular attractor.Regular attractors are represented as a union
of locally smooth finite-dimensional manifolds. In a number of cases one can prove that
the attractor is a subset of a smooth finite-dimensional manifold, for example of an inertial
manifold. This is the case for 1D equations of the form (90) when the non-linearity does
not include dependence on the∂xu. In this case the gap condition (12) holds withp = 0 for
large enoughN sinceλN ∼N2. When the non-linearity includes the first derivative, there
exists a finite-dimensional manifold that is a graph of a continuous function, see [296]. In
general, for systems one cannot expect existence of a smooth manifold that contains the
attractor. Mora and Sola-Morales [321] proved that the global attractor of a damped wave
equation (101) with a smallγ cannot be included into aC1 manifold.

2.3.3. Global tracking property. A global attractor is an approximation for a solution
u(t) = Stu0 of the original equation at every fixed time, and the approximation becomes
better as time tends to infinity. A natural question is: do solutions on the attractor approxi-
mateu(t) as a function oft? Generally, the answer is negative. As an elementary example,
consider a system (40) of ODE. Note that (40) has a global Lyapunov functionL(u)= |u|2.

Such a behavior is impossible in the case when all equilibria are hyperbolic. Still we
cannot assert that for everyu(t) there exists a solutioñu(t) on the global attractorA such
that (11) holds. The situation is more complicated than in the case of a local invariant
manifold or an inertial manifold. Nevertheless, we can constructũ(t) such that (11) holds,
but we must allowũ(t) to have a few jumps when it switches from the finite-dimensional
unstable manifoldMun(zi) toMun(zj ). We give corresponding results of [51], for details
see [53–55].

DEFINITION 2.3.6. We callũ(t) a finite-dimensional composed trajectory(f.d.c.t.) on
the attractorA if we take a partition of the semiaxist � 0 into m + 1 (m � N ) non-
intersecting intervals[t0j , t0j+1), j = 0, . . . ,m, such thatt00 = 0, t0m+1 = +∞, t00 < t

0
1 <

· · ·< t0m < t0m+1. For everyt0j we choose an equilibrium pointzi , i = i(j), j = 0, . . . ,m.

We takeũ(t0j ) in a small neighborhoodO(zi) of one of zi, ũ(t0j ) ∈ M+(zi,1), and we

set ũ(t) = St−t0j ũ(t
0
j ), ũ(t) ∈Mun(zi) for t ∈ [t0j , t0j+1). The resulting finite-dimensional

composed trajectory (f.d.c.t.)̃u(t) lies on the attractorA.

We formulate the results of [51,53,54] skipping technical conditions of the theorem (for
details see [51,53–55]).

We say that the time of arrival of a bounded setB to the equilibrium setN is finite if
for any δ > 0 there existsT such that for anyv ∈ B there existst ∈ [0, T ] such thatStv
lies in theδ-neighborhood ofN . When the setN is finite and all equilibria are hyperbolic
the time of arrival of any bounded setB to the equilibrium setN is finite for parabolic
and damped hyperbolic equations and systems with a gradient non-linearity which satisfy
usual conditions on the existence of a global attractor. It follows from Lemma 7.1′ of [55]
for parabolic equations and from the proof of Lemma 3.4.1 of [55] for the hyperbolic
equations.
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THEOREM 2.3.7. Let {St } satisfy smoothness conditions and have a global Lyapunov
function. Let the time of arrival of any bounded setB to the equilibrium setN be finite.
Let the setN of equilibria be finite, N = {z1, . . . , zN } and all equilibria be hyperbolic.
Then there existsη > 0 such that for any bounded setB ⊂E for any solutionu(t)= Stu0
the following assertion holds. It is possible to chooset0j and to defineũ(t0j ) so that the
corresponding finite-dimensional composed trajectory satisfies the inequality∥∥u(t)− ũ(t)∥∥

E
� C(B)e−ηt for all t � 0. (55)

Note that the estimate (55) is uniform, it does not depend on a particular solution and
depends only on the norm of initial data in the spaceE. The right limit pointsũ(t0j+1 − 0)
lie in O(zi′), i′ = i(j + 1). The constantη depends on spectral properties ofS′1(zi).

REMARK. Inequality (55) implies that under conditions of Theorem 2.3.7 the global at-
tractor is an exponential attractor, namely the following estimate of [46] holds:

δE(StB,A)� C(B)e−ηt . (56)

Examples of equations for which the statements of Theorem 2.3.7 hold are given in [53–
55]; they include parabolic equations and systems and damped hyperbolic equations that
have a global Lyapunov function.

Now we give a generalization of this theorem, see [54,55]. This generalization allows to
increase the rate of decay in (55) at the expense of increasing the dimension of invariant
setsM+(zi ,1).

According to Theorem 1.2.4 whenS′1(z) has a circular spectral gap of radiusρ there
exists a local invariant manifoldM+(z, ρ)loc. This manifold may be extended to a global
invariant (not strictly whenρ � 1) finite-dimensional manifold

M+(z, ρ)=
⋃
t�0

StM+(z, ρ)loc.

Note thatMun(z) ⊂M+(z, ρ) whenρ � 1. The dimension ofM+(z, ρ)loc equals the di-
mension of the invariant subspace ofS′1(z) corresponding to the part of the spectrum out-
side the circle|ς | = ρ .

When the set of equilibria is finite, the attractorA lies in the larger set

A=
⋃
j

Mun(zj )⊂ M̃ =
⋃
j

M+(zj , ρj ),

where allρj � 1 (when all equilibria are hyperbolic and allρj = 1 or are close to 1,
A= M̃).

DEFINITION 2.3.8. Letρi be in circular gaps of the spectrum ofS′1(zi) andM+(zi , ρi)loc
be corresponding local invariant manifolds. We take a partition of the semiaxist � 0 into
m+ 1 (m�N ) intervals[t0j , t0j+1), j = 0, . . . ,m, such thatt00 = 0, t0m+1 =+∞, t00 < t

0
1 <
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· · ·< t0m < t0m+1. For everyt0j we choose an equilibrium pointzi , i = i(j), j = 0, . . . ,m.

We takeũ(t0j ) in a fixed small neighborhoodO(zi) of one of zi, ũ(t0j ) from the local

invariant manifoldM+(zi, ρi)loc, and on every interval[t0j , t0j+1) we setũ(t)= St−t0j ũ(t
0
j ),

ũ(t) ∈M+(zi, ρi) for t ∈ [t0j , t0j+1). We call the resulting piecewise continuous trajectory

ũ(t) a generalized finite-dimensional composed trajectory (g.f.d.c.t.),ũ(t) lies onM̃ .

THEOREM 2.3.9 [54]. Let conditions of Theorem2.3.7hold. For any bounded setB ⊂E
for any solutionu(t)= Stu0 the following assertion holds. It is possible to chooset0j and to

defineũ(t0j ) so that for the corresponding g.f.d.c.t. ũ(t) estimate(55) holds. The exponent
η in (55) is a decreasing function ofρi , η→∞ if maxi ρi → 0.

An explicit expression forη is given in [46,55].

3. Dynamical systems in function spaces

In this section we use the concepts introduced above to describe dynamical properties of
Partial Differential Equations.

3.1. Function spaces and regularity of solutions

3.1.1. Function spaces. Let Ω ⊂ Rd be a bounded domain. The spaceLp(Ω) of
Lebesgue integrable withpth power functions has the norm

‖u‖Lp(Ω) =
(∫
Ω

|u|p dx
)1/p

, p � 1 (57)

(whenu is a vector|u| is its magnitude). The Sobolev spaceWs
p(Ω) has the norm

‖u‖Wsp(Ω) =
(

s∑
|α|�s

∫
Ω

|∂αu|p dx
)1/p

,

where∂αu = ∂α1
1 · · · ∂αdd u, |α| = α1 + · · · + αd . Whenp = 2 Ws

p(Ω) = Hs is a Hilbert
space, this case is the most widely used in applications.

The spaceC0(Ω) of continuous functions has the norm

‖u‖C0(Ω) = sup
x∈Ω
∣∣u(x)∣∣. (58)

The spaceCα(Ω), 0< α < 1, of Hölder continuous functions has the norm

‖u‖Cα(Ω) = sup
x,y∈Ω
∣∣u(x)− u(y)∣∣/|x − y|α + ‖u‖C0(Ω). (59)
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The spaceCk+α(Ω), 0� α < 1, with integerk has the norm

‖u‖Ck+α(Ω) =
s∑

|β|�s
‖∂βu‖Cα(Ω). (60)

By Sobolev embedding theorem for bounded domains with Lipschitz boundary

Ws
p(Ω)⊂ Cl (Ω) whenl � s − d/p

and the embedding is compact when the inequality is strict, see [359].
The spaceC2+α,1+α/2(Ω × [0, T ]) consists of functions such that∂tu ∈ Cα,α/2(Ω ×

[0, T ]), ∂i∂ju ∈ Cα,α/2(Ω × [0, T ]) whereCα,α/2(Ω × [0, T ]) is the space of Hölder con-
tinuous functions. Namely, a function fromCα,α/2(Ω × [0, T ]) satisfies Hölder condition∣∣u(x, t)− u(x′, t ′)∣∣� C(|x − x′|α + |t − t ′|α/2).

The norm in the spaceLp([0, T ];Y) of functions defined on[0, T ] with the target space
Y is given by the formula

‖u‖Lp([0,T ];Y) =
(∫ T

0
‖u‖pY dt

)1/p

, ‖u‖L∞([0,T ],Y ) = vrai sup
0�t�T

‖u‖Y .

In particularLp([0, T ],W1
p) consists of functions that have

∫ T
0

‖u‖pLp(Ω) dt +
∫ T

0
‖∇u‖pLp(Ω) dt <∞.

The norm in the spaceC([0, T ];Y) of continuous functions defined on[0, T ] with the
target spaceY is given by the formula

‖u‖C([0,T ];Y) = sup
0�t�T

∥∥u(t)∥∥
Y
.

3.1.2. General framework. Here we describe a general framework of infinite-dimensional
dynamical systems which can be applied to wide classes of partial differential equations.
We consider equations that can be written in the form (1)

∂tu=F(u), (61)

whereF is a (non-linear) differential operator. The solution is assumed to satisfy the initial
condition

u|t=0 = u0, (62)



1022 A.V. Babin

whereu0 belongs to a function spaceE. It is assumed that the equation has a unique
solutionu(t)= u(x, t), t � 0, in an appropriate class̃E of functions of the spatial variable
x and timet . This class should be defined in such a way that for every fixedt0 the restriction
at t = t0 of u(x, t) produces a function ofx which belongs to the functional spaceE. So
we obtain a vectoru(t) ∈ E which depends on timet and initial datau0. In concrete
situations the operatorF(u) has to be specified as well as classes of solutionsu and initial
datau0. The definition of a solution should include appropriate boundary conditions and
smoothness conditions.

Generally speaking, we consider here classes of non-linear PDE for which the initial
value problem (61), (62) is locally well posed. Namely, for everyu0 ∈ E there exists a
time interval(0, T ), T = T (u0) and a unique solutionu(x, t) of (61) from Ẽ(0, T ) such
thatu(·, t) ∈ E for every t , 0 � t < T . Note that for finite-dimensional systems of ODE
with a locally LipschitzF(u) initial value problem is always well-posed. For equations
we consider in this chapter this question is not completely trivial. But for most problems
arising in applications one usually can find a classẼ(0, T ) and the spaceE such that
the problem is locally well-posed; as a rule, the choice of the class is non-unique; some-
times properties of dynamics in different classes are different. Usually one has to take for
Ẽ(0, T ) andE spaces of regular enough functions of the spatial variables. One of reasons
why regularity of solutions helps to get local solvability is the following. WhenE includes
non-regular functions definition ofF(u)may become non-trivial. For example, whenF(u)
includes(∂xu)3 one cannot take functionsu(x) that have a jump discontinuity since mul-
tiplication of delta functions is not well-defined. Another reason why regular classes are
more convenient is that very wide classes of solutions may lead to non-uniqueness. On the
other side, the existence of an absorbing ball usually is easily available in a weaker norm,
for example in the spaceL2(Ω) of square integrable functions. Very regular solutions also
may lead to non-linear compatibility conditions, see Subsection 2.1. We do not consider
in the main part of this paper equations that do not allow locally well-posed initial value
problems. Problems without uniqueness generate multi-valued semigroups, we consider
such semigroups in Section 4.

Solution semigroup. Since the solution is unique, and the classẼ(0, T ) is such that the
restriction ofu(x, t) for a fixed t belongs toE, the following solution mapping is well-
defined:

u0  → u(t), t � 0. (63)

We denote this solution mapping bySt , u(t) = Stu0, the mapping is defined on the set
of initial data. When the equation does not include explicit dependence on timet , the
mappingsSt satisfy the semigroup identity (2). We call the family of the operators{St } =
{St , t � 0} a (global) semigroup inE which corresponds to the evolution equation (61).

All partial differential equations we consider in this article possess some kind of dissipa-
tivity. That means that solutions after a long time elapses “forget” about their initial data.
In particular, they forget about the size of their data. The latter property can be formulated
rigorously as the existence of a bounded absorbing set.
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Weak solutions. When the class̃E(0, T ) includes functions which do not have all the
derivatives which are included in the equation a solution is understood in the weak sense
(or in the sense of distributions). For example, consider the parabolic equation

∂tu− ∂2
xu+ f (u)= 0, t > 0, x ∈ R, (64)

with 2π -periodic boundary conditions and initial conditionu(0) = u0. One can look for
the solution the class̃E(0, T ) which includes solutionsu(x, t) of (64) fromL∞([0, T ];
L2([0, T ])) ∩ L2([0, T ];H 1([0, T ])). The derivatives∂tu and ∂2

xu of such functions do
not exist in the classical sense. To determine the concept of weak solution the following
observation is used. Letϕ(x, t) be infinitely smooth 2π -periodic inx test function which
equals zero att = T . If u ∈ C2+α,1+α/2([0,L] × [0, T ]) we can multiply (64) byϕ(x, t)
and integrate over[0,L] × [0, T ]. After integration by parts we obtain∫ T

0

∫ L
0

[
∂tu− ∂2

xu+ f (u)
]
ϕ dx dt (65)

=−
∫ L

0
u0(x)ϕ(x,0) dx +

∫ T
0

∫ L
0

[−∂tϕ − ∂2
xϕ
]
udx dt

+
∫ T

0

∫ L
0
ϕf (u)dx dt.

The right-hand side of this equality does not include derivatives ofu(x, t) and is defined for
u ∈ Ẽ(0, T ) as long as the non-linearityf (u) satisfies certaingrowth conditions. A func-
tion u(x, t) is called a solution of (64) in the sense of distributions (or a weak solution) if
the right-hand side of (65) equals zero for every test functionϕ. Note that restriction of an
arbitrary functionu(x, t) from the spaceL∞([0, T ];L2([0, T ]))∩L2([0, T ];H 1([0, T ]))
to a fixed valuet = t0 is not well-defined; nevertheless, since Equation (64) gives an ex-
pression for∂tu the restriction is well-defined for solutions of (64) from this space. For
more details and applications of the concept of a solution in the sense of distributions to
non-linear problems see [277,361,55].

Below we give typical examples of equations that generate global semigroups of op-
erators. We do not intend to present the most general cases and give the most general
conditions for the existence of semigroups. Our purpose is to introduce ideas and methods
avoiding technicalities when possible.

3.1.3. Regularity properties of semigroup operators of PDE.Usually the dynamical ap-
proach is applied to PDE which have solutions which are defined for all non-negative times
and bounded in some sense uniformly in time.

Uniform boundedness.Semigroups generated by equations and systems from mathe-
matical physics and their generalizations usually have nice boundedness properties. When
the system admits global solvability, namely for any initial datau0 from a Banach spaceE
the system has a global solutionu(t), t � 0, with u(t) ∈ E for every t , usually estimates
that are required to prove the existence of the solution are uniform with respect to bounded
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u0 and the operatorsSt (may be multivalued if uniqueness is not proven) are bounded for
everyt � T for every fixedT . When an appropriate dissipation condition is imposed the
operators are uniformly bounded for all 0� t <∞. Such a dissipation condition usually
takes the form of asign conditionon the non-linearityf (u). Examples are given in this
chapter, for more examples see [55,363,98]. One of examples is the 3-dimensional Navier–
Stokes system in a bounded domainΩ ; its weak solutions which satisfy energy estimate
are uniformly bounded inL2(Ω) though their uniqueness is an open problem.

Continuity. Usually when the uniqueness of a solution is proven the proof gives some
kind of continuity ofStu0 with respect tou0. See [55,363,98] for numerous examples.

Smoothing property. OperatorsSt which correspond to parabolic equations and sys-
tems have a smoothing property, namely whent > 0 (Stu)(x), x ∈Ω , has better smooth-
ness properties with respect tox thanu(x). When the domainΩ is bounded this implies
compactness ofSt .

Differentiability. Usually differentiability of operators corresponding to semilinear
problems with a subcritical growth of the non-linearity can be proved under natural growth
conditions on derivatives of the same type as required for the existence and uniqueness.
But the verification is sometimes tedious. Detailed proofs of differentiability of semigroups
corresponding to different types of PDE are given in Chapter 3 of [55].

There are examples when the differentiability of operatorsStu with respect tou is not
proven even when the operatorsStu are continuous and the non-linearities are analytic.
For example, semigroup operators that correspond to monotone parabolic systems from
Subsubsection 3.2.2 are Lipschitz continuous but their differentiability is not proven.

Regularity of functions on the attractor.The attractors of parabolic and damped hyper-
bolic equations usually consist of functions that are more regular than the general functions
from the space where the semigroups act. As a rule, they are as regular as the equilib-
ria (time-independent solutions). Such results on regularity are proven in [44], see also
[55,363]. Babin and Vishik [44] proved higher regularity of functions on the attractors of
parabolic systems, scalar parabolic equations and hyperbolic equations and systems. For
results on infinite smoothness see Temam [363]. Hale and Scheurle [224] and Hale [208]
study time regularity of solutions on the attractor, see also [336].

3.2. Non-linear equations with a strong non-linearity

When the linear part of the differential operator is not dominant, one cannot reduce the
differential equation to an integral equations using the variation of constants formula and
the theory of sectorial operators, which is commonly used to study subcritical semilinear
problems (see [209,336,353]). Nevertheless, a rather complete theory can be developed in
many interesting cases, we discuss below some of them.
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3.2.1. Non-linear scalar parabolic equations.We consider a scalar parabolic equation in
a bounded domainΩ with a smooth boundary in thed-dimensional spaceRd . A general
non-linear second-order scalar parabolic equation has the form

∂tu=G
(∇2u,∇u,u, x) (66)

with appropriate boundary conditions and with the ellipticity conditions assumed. Here we
impose Dirichlet boundary condition

u|∂Ω = 0. (67)

Such equations and their attractors are considered in [36,55,268]. Note that when solutions
of (66) are inC2+α,1+α/2(Ω × [0, T ]) their restriction to the boundary together with (67)
imply the compatibility condition

G
(∇2u,∇u,0, x)∣∣

x∈∂Ω = 0. (68)

This condition is non-linear; therefore one has to consider dynamics in a space which is
not linear. If one wants to work in linear spaces, to make this condition linear one has to
impose certain restrictions on the non-linearity, see [36,55] for details; existence of global
attractors inC2+α,1+α/2(Ω) is proven there too. If such restrictions on the non-linearity are
not imposed, one still can consider semigroups in linear spaces. To this end one considers
wider classes of solutions such that∇2u(x, t), ∇u(x, t) and∂tu(x, t) are not continuous
with respect tox up to the boundary∂Ω and (68) does not have to hold. Such solutions in
the semilinear case

∂tu= ν&u+ b(x,u,∇u) (69)

can be found in Sobolev classes̃E(0, T )=W2,1
p (Ω × [0, T ]) with p > d . Note that func-

tions from this space have first time derivatives and second-order spatial derivatives in
Lp(Ω × [0, T ]). Derivatives of functions from the spaceW1

p(Ω) are understood in the
sense of distributions. This may create difficulties when we have to consider non-linear
functions of derivatives. These difficulties can be overcome whenp > d . The existence
of the solution operatorsSt , the differentiability of the operators, the existence of global
attractors for the equations is proven in [42,36,55,268].

3.2.2. Monotone parabolic equations and systems.The equation we consider here is in-
teresting since its principal part is non-linear and it cannot be studied from the point of
view of semilinear systems. For simplicity we consider here a specific example of a scalar
equation, all results can be extended to more general equations and systems (see [55]). We
consider inΩ ⊂Rd , d � 3, the equation with monotone non-linearity

∂tu=
d∑
i=1

∂i(∂iu)
p − |u|up0−2 + λu+ g(x) (70)
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with p � 1,λ� 0, 2d
d−2 >p0> 2. The boundary condition is (67). This equation is strongly

non-linear and in contrast to semilinear equations cannot be considered as a perturbation
of a linear equation. Note that Equation (70) is not strictly parabolic and in general case
theorems on smoothness of solutions for such equations and systems are not known. We
also cannot prove that operatorsSt are compact inE. Nevertheless, as we will see, a rather
complete theory can be built.

We assume thatg ∈ Lq(Ω) where

either 1/q + 1/p0 � 1 or 1/q + 1/p1 − 1/d � 1.

The space of solutions̃E(0, T )= Lp([0, T ],W1
p(Ω))∩L∞([0, T ],Lp(Ω)) consists of

functions that satisfy the boundary condition (67) and the inequality

‖u‖Lp([0,T ],W1
p(Ω))

+ ‖u‖L∞([0,T ],L2(Ω)) <∞.

THEOREM 3.2.1. Givenu(0) ∈ H there exists a unique solution of(70) from Ẽ(0, T ).
Operators of corresponding semigroup{St } are continuous bounded operators in the
Hilbert spaceH = L2(Ω) both in strong and in the weak topology. The spaceE =
Lp0(Ω) ∩ W1

p(Ω) is a reflexive Banach space, it is an invariant set forSt and the re-
striction ofSt to this space is continuous in the weak topology ofE.

For details and generalizations see [55, Section 2.3]. Note that operatorsStu are Lip-
schitzian inH but it is not known if they are differentiable with respect tou.

We denote byN the set of time-independent solutions of (70) that satisfy (67),N ⊂E.

THEOREM 3.2.2. The semigroup{St } in H possesses a global attractorA ⊂ H in the
weak topology, the attractor is bounded inE and compact in the weak topologyEw ofE.

The functional

F(u)=
∫
Ω

[
1

p+ 1

d∑
i=1

|∂iu|p+1 + 1

p0 + 1
|u|p0+1 − λ

2
|u|2 + gu

]
dx

is a global Lyapunov function forSt . The functionalF(u) is not continuous neither inH
nor in the weak topology ofE, and this causes technical difficulties; in particular invariance
principle of La Salle is not applicable. Nevertheless, one can prove the following theorem
on the structure of the attractorA.

THEOREM 3.2.3. The attractorA consists of values of bounded inE trajectoriesu(t),
−∞< t <+∞, such thatδEw(u(t),N )→ 0 as t→−∞ or t→∞.

The proof is given in [55], here we notice only that the proof uses the inequality

F
(
u(T )
)+ 1

2

∫ T
0

∫
D

|∂tu|2dx dt � F
(
u(0)
)
.
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This inequality implies that‖∂tu(t)‖ is small for larget , thereforeu(t) is close to a so-
lution of (70) with ∂tu = 0, that is to an equilibrium. For details and generalizations see
[55, Sections 1.3, 1.4, 2.3 and 3.6]. Note that the theorem on the description of unstable
manifolds of equilibriaz ∈N given in Subsection 1.2 is not applicable because of lack of
differentiability and an interesting open problem is to give a description of unstable man-
ifolds of equilibriaz of equations of the type (70). For results on dynamics of monotone
equations see also [101].

3.2.3. Semilinear equations with a supercritical non-linearity.Note that the methods
typical for the theory of monotone operators are useful not only in the case (70) when
the system includes non-linearity in the principal part but also when the system is semilin-
ear of the form (72) but with a high growth rate of the vector-functionf (u), for example
systems of the form

∂tu=&u− |u|up0−2 + λu+ g(x) (71)

with an arbitrary large, supercriticalp0. Standard methods based on the operator version
of the variation of constants formula (see [209,336,353]) are not applicable in this case.
Nevertheless, such equations possess global attractors, see [55,98,101]; the attractors upper
semicontinuously depend on parametersλ, g. Estimates of dimension of global attractors
for problems with a supercritical non-linearity are given by Zelik [390].

3.3. Semilinear equations

Semilinear equations include non-linearities only in the lower-order terms, they have the
form

∂tu=−Au+F0(u),

whereA is a linear operator which is in some sense positive,F(u) is the non-linearity
which is subordinate in some sense. Many important equations from applications have
such structure. Often (in particular in the subcritical growth case) one can apply the theory
of linear operators to invert the linear part using the variation of constant formula

u(t)= u(0)+F1(u)(t), F1(u)(t)=
∫ t

0
e−(t−τ)AF0

(
u(τ)
)
dτ.

When the operatorF1(v) is Lipschitz continuous in an appropriate space of functions
v(x, t) the proofs of basic properties of the semigroups, such as the existence of solutions,
compactness properties, smoothing property and differentiability are relatively simple (see
[209,336,353]). To provide good properties ofF1(u) the non-linearityF0(u) has to satisfy
certain regularity conditions, in particular subcritical growth conditions. Note that even for
the semilinear equations in the supercritical growth case this approach is not sufficient and
one has to use more specific methods from PDE, see the preceding Subsection 3.2, see also
[55,98].
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3.3.1. Parabolic semilinear systems (reaction–diffusion systems).In a bounded domain
Ω we consider the parabolic system

∂tu= νa&u− f (x,u)+ λu− g(x) (72)

with Neumann boundary condition

∂u

∂l
= 0 on∂Ω. (73)

(Equations with Dirichlet boundary conditions may be considered in a similar way.) Here
u = (u1, . . . , um), f = (f1, . . . , fm), g = (g1, . . . , gm), a is a positive diagonal matrix,
λ > 0. The diagonal matrixa is positive,g ∈H 0 = (L2(Ω))

m, ν > 0. Systems that involve
a certain dependence on∇u can be studied in a similar way. Properties of such systems
depend strongly on the structure off (x,u).

We assume thatf is continuously differentiable with respect to all arguments and satis-
fies the sign condition

f (x,u) · u� µ0|u|p0, µ0> 0,
∑
k,i

∂fk

∂ui
ξkξi � 0, ξk ∈ Rm. (74)

This condition implies, in particular, that ifλ = 0 the time-dependent solutions tend to a
steady-state solution ast→+∞, and the difference of any two steady state solutions is a
constant. Therefore all non-trivial dynamics in this example is generated by the instability
thanks toλ > 0. We also impose the growth condition∣∣f (x,u)∣∣� µ1|u|p0−1 +C, p0> 2. (75)

We considerλ. 1, ν2 1. The following typical results are proven in [55].

THEOREM 3.3.1. The semigroup{St } generated by(72), (73)in H 0 = (L2(Ω))
m has a

global (H 0,H 1
w) attractorA.

Note that the above theorem does not contain restrictions on the powersp0.
Now we give a simple and typical formal derivation of the existence of an absorbing

ball. We multiply (72) byu and integrate overΩ . After integration by parts we obtain

∂t‖u‖2 + ν
∫
Ω

a∇u · ∇udx �
∫
Ω

[−f (x,u) · u+ λ|u|2]dx. (76)

From (74) we infer using Young’s inequality that

−f (x,u) · u+ λ|u|2 + gu � −µ0|u|p0 +
(
λ+ 1

2

)
|u|2 + 1

2
|g|2

� −1

2
|u|2 + 1

2
|g|2 +C(λ+ 1)p0/(p0−2)µ

−2/(p0−2)
0

= −1

2
|u|2 + 1

2
|g|2 +C1.
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Using this inequality in the right-hand side of (76) we obtain the following differential
inequality

∂t‖u‖2 �−1

2
‖u‖2 + 1

2
‖g‖2 +C1|Ω|, (77)

where|Ω| is the volume ofΩ , which implies the estimate∥∥u(t)∥∥2 �
∥∥u(0)∥∥2e−t/2 + (‖g‖2 + 2C1|Ω|)(1− e−t/2).

This estimate implies that the set

B0 =
{
u ∈H 0: ‖u‖2 � 2

(‖g‖2 + 2C1|Ω|)}
is an absorbing ball forSt .

When the non-linearity satisfies the smoothness condition∣∣f (x,u+ z)− f (x,u)−∇uf (x,u)z
∣∣� C(1+ |u| + |z|)p1|z|1+γ , (78)

whereγ > 0 is sufficiently small and the growth is subcritical, namely

(d − 2)p1< 4 whend > 2 (79)

a stronger result holds.

THEOREM 3.3.2. The semigroup{St } generated by(72), (73)in H 0 = (L2(Ω))
m has a

global attractorA. Its Hausdorff dimension satisfies the estimate

dimH A � C′λd/2ν−d/2, (80)

and for ax-independentg we have a lower bound fordimH A:

C′′λd/2ν−d/2 � dimH A. (81)

The upper estimate in (80) is obtain by methods of Subsection 2.1. The lower estimate
in (80) is obtained based on Theorem 2.1.4. Namely, we can find an equilibrium point with
a large instability index as a constant vector. See Chapter 10 [55] for details.

REMARK. Consider a large domainΩr which is obtained byr-dilation of a fixed domain
Ω1,Ωr = rΩ1, letAr be the global attractor of (72), (73) in(L2(Ωr))

m. Note that wheng
is a constant rescalingx = ry reducesΩr toΩ1, but the coefficientν is replaced byνr−2.
Therefore the estimates (80), (81) imply that

C1|Ωr | � dimH Ar � C2|Ωr |, (82)
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that is the dimension of the attractor is roughly proportional to the volumerd |Ω1| = |Ωr |
of the domainΩr . This can be interpreted the following way: every degree of freedom on
the attractor requires some volume in the physical space.

A semilinear parabolic system (72) has a Lyapunov function when the functionf (x,u)

is a gradient,

fi(x,u)= ∂F (x,u)
∂ui

, i = 1, . . . ,m.

The global Lyapunov function for (72) is given by

L(u)=
∫
Ω

[
1

2
a∇u · ∇u+ F(x,u)− λ

2
|u|2 + g · u

]
dx.

Condition (74) implies thatF(x,u) � 0 and grows faster than quadratic as|u| → ∞.
ThereforeL(u) is bounded from below.

A typical theorem on the attractorA from Theorem 3.3.2 is the following

THEOREM 3.3.3. For a genericg the attractorA is a regular attractor described in Sub-
section2.3.It has the tracking property described in Theorem2.3.7.

REMARK. In many applications (see [276,290,358,115] and references therein) a natural
restriction on solutions is the positivity ofu1, . . . , un. We do not discuss here conditions
on f that lead to the positivity of componentsu1(t), . . . , un(t) whenu1(0), . . . , un(0) are
positive.

3.3.2. Semilinear scalar parabolic equations (multidimensional).The literature on dy-
namical properties of scalar parabolic equations of second order is extensive. A review
on the asymptotic behavior of semilinear equations is given by Poláčik [331], see also
Hale [211]. Semilinear parabolic equations have a linear principal part and a lower-order
non-linearity, a typical equation has the form

∂tu=&u+ f (x,u,∇u), (83)

where& is the Laplace operator andf (x,u,p) is a twice differentiable function of argu-
mentsx ∈Ω andu ∈ R, p ∈ Rd . For a more detailed discussion see [331]. We consider
here Dirichlet boundary condition

u(x)= 0 for x ∈ ∂Ω. (84)

Other types of boundary conditions, for example Neumann condition, can be imposed
leading to similar dynamics. There are two essentially different situations, namely when
f (u,∇u) depends on∇u and when it is independent of∇u, f (u,∇u) = f (x,u). In the
latter case Equation (83) takes the form

∂tu=&u− f (x,u). (85)
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We assume that the sign condition (the dissipativity condition) holds

f (x,u,∇u)u > 0 for |u| � b > 0. (86)

A very important property of a scalar parabolic second-order equation that does not hold
for general parabolic systems is theMaximum Principle. From the Maximum Principle in
particular follows that a natural space for a semigroup generated by a scalar parabolic
semilinear equation is the spaceC(Ω) of continuous functions inΩ .

THEOREM 3.3.4. Equation(85) generates a semigroup{St } in the spaceE = C(Ω) ∩
{u∂Ω = 0}. OperatorsSt of this semigroup are continuous and differentiable, they are
compact fort > 0. The set|u| � b is absorbing.

Now we consider dynamical properties ofSt .

Lyapunov function. The following functionalL(u) is a global Lyapunov function for
the semigroup{St } corresponding to (85):

L(u)=
∫
Ω

1

2
|∇u|2 + F(x,u)dx. (87)

HereF(u) is the antiderivative off (x,u),

F(u)=
∫ u

0
f (v) dv.

An example of an equation that has a global Lyapunov function but the right-hand side
is not a gradient but gradient-like is

∂tu= a(u)
(
&u+ f (x,u)), (88)

wherea(u) � a0 > 0, & is the Laplace operator anda(u) andf (x,u) are twice differ-
entiable functions of argumentsx ∈ Ω andu ∈ R. We consider here Dirichlet boundary
conditions.

When spatial dimensiond = 1 Equation (83) also has a Lyapunov function, but the
construction is more complicated, see [385].

THEOREM 3.3.5 [42]. Let f (x,u) be of classC1+α , be independent of∇u, let all equi-
libria be hyperbolic. Then the semigroup{St } in the spaceC0(Ω) generated by(88) has
a regular attractorA and the tracking property takes place. In particular, A is a union of
finite-dimensional smooth manifolds and dynamics on the attractor is described by move-
ment along connecting orbits of equilibrium points.

The proof uses the existence of the Lyapunov function (87), boundedness of the attractor
in C0(Ω), differentiability ofSt and spectral properties of linearized operators.
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REMARK. It is proven by Brunovský and Poláčik [73] that for a generic functionf (x,u)
stable and unstable manifolds of (85) intersect transversally, that is Morse–Smale property
holds.

Gradient-dependent non-linearity.When the non-linearityf (x,u,∇u) includes de-
pendence on∇u, in contrast to the case when the non-linearityf (x,u) does not depend
on the gradient, the attractor is not regular. Namely, when the non-linearity depends on
∇u the situation is completely different as it is shown by Poláčik [330] and Polá̌cik and
Rybakowski [332]. They consider Dirichlet problem for Equation (83). They prove that
for any given analytic vector field in a neighborhood of zero in a finite-dimensional vec-
tor space there exist a domainΩ and a non-linearityf (x,u,∇u) such that there exists
an equilibrium solution of (83) and dynamics of the parabolic equation restricted to the
finite-dimensional center-unstable manifold is arbitrarily close (in a certain sense) to the
dynamics described by the vector field.

Asymptotic symmetrization.One of properties specific to scalar parabolic equations is
asymptotic symmetrization. We consider a domainΩ with a piecewise smooth boundary
which is symmetric with respect to a reflectionQ in a plane. Without loss of generality
we may assume that the plane has equationx1 = 0. When the equation depends onx1 and
∂1u in an even way, then the change of variablesx1 to −x1 does not change the equation.
Certain monotonicity conditions on dependence of coefficients onx1 have to be imposed,
see [16,20,36] for details. We here for simplicity consider the case where the equations do
not depend onx explicitly and the equation is of the form

∂tu= νa&u− f (u,∇u), u|∂Ω = 0 (89)

(see [36] for a strongly non-linear case). First results on the asymptotic symmetrization for
generic semilinear equations in smooth domains were obtained by Hess and Poláčik [232],
see also [229,329]. The general case was considered in [16,20,36].

THEOREM 3.3.6. LetΩ and the equation be invariant with respect to reflectionsQ from
a family Q̃. Under conditions of Theorem3.3.4 the attractorA consists ofQ-symmetric
functionsv(x)= v(Qx) for everyQ ∈ Q̃.

COROLLARY 3.3.7. If the equation is radially symmetric andΩ is a ball, the attractorA
consists of radially symmetric functions.

The following theorem of Babin and Sell [36] shows that symmetrization is exponen-
tially fast.

THEOREM 3.3.8. Let the boundary ofΩ be smooth. LetΩ and the equation be invariant
with respect to reflectionsQ from a familyQ̃. Then there existsγ > 0 andC > 0 such that
for every solutionStu0 = u(x, t)∥∥u(t)−Q∗u(t)

∥∥� Ce−γ t



Global attractors in PDE 1033

uniformly inQ ∈ Q̃ whereQ∗u(x)= u(Qx).

The proofs of the symmetrization are based on the Maximum principle and the method
of moving planes.

Comparison principle. Maximum principle implies that if two solutionsu(x, t),
v(x, t) of (89) satisfy att = 0 the inequalityu(x,0) � v(x,0) thenu(x, t) � v(x, t) for
t � 0. This property implies non-trivial restrictions on the dynamics. For more details and
for references see [331].

REMARK. Dynamics of degenerate parabolic equations was studied by Feireisl and Si-
mondon [153] and Feireisl [154].

3.3.3. Semilinear one-dimensional scalar parabolic equations.One-dimensional semi-
linear scalar parabolic equations are of the form

∂tu= α∂2
xu− f (u, x, ∂xu), 0< x <L, (90)

with the Dirichlet boundary conditions

u(0)= u(L)= 0

at x = 0, x = L (the case of Neumann or Robin boundary conditions is similar). If (86)
and certain growth conditions with respect to|∂xu| hold, there exists a global attractor of
{St } generated by (90) inC([0,L]) (see [331,36] for details). In the 1D case the semigroup
generated by (90) has a global Lyapunov function (see [385]), therefore one can apply all
results of the section concerning scalar equations withf (x,u) independent on∇u. But
in the 1D case one can get much more detailed information. Solutions with one spatial
variable always have a limit ast→∞; the limit is an equilibrium point (see [385]). The
equilibrium points of this semigroup are solutions to the ODE

0= α∂2
x z− f (z, x, ∂xz) (91)

with the same boundary condition.
In the generic caseN is a finite set,N = {z1, . . . , zN } and every equilibrium point is

hyperbolic (see [42]). According to the results of the previous section there exists a global
attractor of this equation and it is regular, namely (53), (54) hold. Since the dynamics on
the attractor is invertible, everyMun(z) equals a union of trajectories connecting different
points ofN , thereforeA is a union of such trajectoriesu(t)

lim
t→−∞u(t)→ z ∈N , lim

t→+∞u(t)= z
′(u) ∈N .

There are two important properties of scalar 1D equations that make this case very
special. First property concerns equilibrium pointsz, namely differentialsS′t (z). Since



1034 A.V. Babin

points ρ of the spectrum ofS′t (z) equals exponentsρj = e−λj t of the eigenvaluesλj ,
A′(z)v =−λjv, of the ordinary differential operator

A′(z)v = α∂2
x v − f ′

u(z, x, ∂xz)v − f ′
∂xu
(z, x, ∂xz)∂xv,

the multiplicity of its eigenvalues for the Dirichlet or Neumann boundary conditions is
always one.

The second property is the possibility to introduce the numberN(v(t)) of nodal points
for a solutionv(x, t) of a linear parabolic equation

∂tv = a(x, t)∂2
x v − b(x, t)v − c(x, t)∂xv

and use the nodal number to study dynamics of (90) (see Matano [295], Angenent [5,6];
see [331] for more references). Using Maximum principle one deduces that if the number
N(v(t)) is finite att = t0 it stays finite and, moreover, it is a non-increasing function oft .
Under natural conditionsN(v(t)) is finite for t > 0.

The nodal property implies fulfillment of Morse–Smale property (Henry [231]):

Mun(zi)∩Ms(zj )= ∅ when dimMun(zi)� dimMun(zj ),

otherwise the intersection is transversal.
There is a remarkably detailed description of the structure of attractors of 1D scalar

problems in generic situations. Since the attractor is regular, it is a union of trajectories
that connect equilibriaz1, . . . , zN . A non-trivial problem is to determine which equilibria
are connected and which are not. When all equilibria are hyperbolic, a complete solution
of this problem is given by Brunovský and Fiedler [72] for Dirichlet boundary condi-
tions and Fiedler and Rocha [156,157] for Neumann boundary conditions. Brunovský and
Fiedler [72] gave complete rules determining connected equilibria of the Dirichlet prob-
lem in terms of nodal numbers of equilibria and order (magnitude with respect to nodal
number) of their slopes at the boundary. Fiedler and Rocha [156] gave complete rules de-
termining connected equilibria of the Neumann problem in terms of monotone ordering of
their values at both boundary points.

A detailed review of 1D results is given in [331,211] and [158].

3.3.4. Navier–Stokes equations and equations from mathematical physics.Here we give
a very brief sketch of the theory of global attractors of the Navier–Stokes equations which
in many respects determined the development of the theory of global attractors, see [25] for
details. The 2D Navier–Stokes (2DNS) equations for viscous incompressible fluids have
the form

∂tu+ u · ∇u− ν&u= f +∇p, ∇ · u= 0. (92)

Hereu = (u1, u2) is the velocity field,u = u(x, t) = u(x1, x2, t), ν > 0 is the kinematic
viscosity,f (x1, x2) represent volume forces. The Euler non-linearity for 2D Navier–Stokes
equations is given by

u · ∇v = u1∂1v + u2∂2v. (93)
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For simplicity we consider here periodic boundary conditions

u(x1 + 2πa1, x2)= u(x1, x2 + 2πa2)= u(x1, x2). (94)

We denote byHs , s � 1, the space of vector fields with a finite SobolevHs norm which
satisfy the divergence-free condition. We denote byΠ the orthogonal Leray projection
Π :H → H0, the projection can be explicitly written in terms of Fourier series. Gradient
fields are in the null-space of Leray projection. Applying the projection we can rewrite (92)
in the form

∂tu+B(u,u)+ νAu= f, (95)

where

B(u, v)=Π(u · ∇v), Au=−Π&u. (96)

We consider the initial value problem

u|t=0 = u0 ∈ H0. (97)

THEOREM 3.3.9. Let f ∈H−1. For anyu0 ∈H 0 there exists unique solutionu(t) of 2D
NS system(92)with initial data (97).This solution belongs toH 0 for all t � 0.

The solution mapping

ST :u|t=0  −→ u|t=T
determines a family of operators{ST }, T � 0. The operatorsST form a semigroup that acts
in the spaceH0.

Many important properties of NS equations can be formulated in terms of the solution
semigroup{St }. These basic properties are described in the following theorem (see [55] for
a detailed proof, see also [363]).

THEOREM 3.3.10. Let f ∈H 0. Then the semigroup{St } that corresponds to the2D NS
system(92), (94)and acts in the spaceH 0 has a global attractorA.

THEOREM 3.3.11. Letf ∈H 0. The attractorA is compact inH 2 andδH2(St (B),A)→
0 for any bounded inH 0 setB.

The following important theorem is proven by Constantin, Foias and Temam [121], see
also [94]. We give the formulation in the most important case when the Grasshof number

G= ‖f ‖0

ν2λ1
,

whereλ1 is the first eigenvalue of the Stokes operator, is not small,G� 1.



1036 A.V. Babin

THEOREM 3.3.12. If d � c′G2/3(1+ log(G))2/3 thend-dimensional volumes onA expo-
nentially decay ast→∞. WhenG� 1 Hausdorff and fractal dimension of the attractor
A satisfy the inequalitydimH A � dimFA � 2c′G2/3(1+ log(G))2/3.

REMARK. Lower bounds of the dimension ofA (which are almost precise as proved by
Ziane [396]) are obtained by Babin and Vishik [39] and Liu [282,283] based on Theo-
rem 2.1.4. See [25] for a discussion of related results.

3D Navier–Stokes equations.For the 3D Navier–Stokes equations global regularity of
solutions with large initial data and forcing terms is not proven. The global regularity of
solutions and existence of a finite-dimensional global attractor for the 3D Navier–Stokes
equations with general large initial data and forcing terms and a large Coriolis force is
proven by Babin, Mahalov and Nicolaenko, see [25] for details. The questions of existence
of a global attractor without assuming uniqueness of solutions were studied by Sell [351],
Ball [59], Chepyzhov and Vishik [97]. Existence of global attractors in thin domains was
proven by Raugel and Sell [337]. Sell [351] and Chepyzhov and Vishik [98] applied tra-
jectory approach to prove the existence of a global attractor for the 3D Navier–Stokes
equations (for a brief discussion of related methods see Subsection 4.1).

Attractors of equations of mathematical physics.The existence and properties of at-
tractors of equations of mathematical physics is the subject of intensive study. One of im-
portant issues is to obtain an estimate of the dimension of the attractor in terms of physical
parameters of the problem. The literature is extensive, see [363,55,103,106,98,25]. We add
here several recent references. For the dynamical theory of compressible Navier–Stokes
equations see Feireisl [150] and references therein. Attractors of the Cahn–Hilliard equa-
tion are studied by Miranville [314,312,313] and Carrive, Miranville, Piétrus and Rakoto-
son [77]. Attractors for the generalized Benjamin–Bona–Mahony equation are studied by
Celebi, Kalantarov and Polat [82].

3.3.5. Damped hyperbolic equations and systems.Semilinear wave equation which we
discuss here has the form

∂2
t u+ γ ∂tu=&u− f (u)− g(x), u|∂Ω = 0, (98)

with the damping termγ ∂tu with γ > 0. Hereg ∈ L2(Ω). We denote by

F(u)=
∫ u

0
f (v) dv

the antiderivative off . We assume that for someε > 0 the following sign condition holds:

F(u)� −
(
λ1

2
− ε
)
u2 −C, f (u)u�−c−

(
λ1

2
− ε
)
u2, (99)

whereλ1 is the minimum eigenvalue of−&. We also assume the growth condition∣∣f (u)− f (v)∣∣� C(1+ |u| + |v|)ρ+1−α|u− v|α
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with 0< α � 1; sometimes a similar growth condition is imposed onf ′(u). Whenα = 1
and

(d − 2)ρ � 2 (100)

(the last condition is obviously satisfied whend = 1,2) the solution of (98) with initial data
u(0)= u0, ∂tu(0)= p0 is unique. The valueρ = 2/(d − 2) is called critical. For example,
when the space dimensiond = 3 the cubic growth is critical.

Weak solutions of (98) exist whenρ is arbitrary; the uniqueness of weak solutions is not
known in the case of a general domainΩ when the growth is supercritical.

To write (98) in the form of a first-order equation (61) we introduce a new unknown
functionp = ∂tu and obtain from (98) an equivalent system

∂tu= p, ∂tp =−γp+&u− f (u)− g, u|∂Ω = 0. (101)

We introduce the spaces

E = {y = (u,p): u ∈W1
2 (Ω)∩ {u|∂Ω = 0},p ∈ L2(Ω)

}
, (102)

E1 =
{
y = (u,p): u ∈W2

2 (Ω)∩ {u|∂Ω = 0},p ∈W1
2 (Ω)∩ {u|∂Ω = 0}}.

THEOREM 3.3.13. If α = 1, (100)holds andy0 = (u0,p0) ∈ E then the problem(101)
has a unique solutiony(t)= (u(t),p(t)). OperatorsSty are continuous iny uniformly in
t � T andy, ‖y‖E �R. SolutionsSty are bounded uniformly fort <∞ and‖y‖ �R.

The semigroup{St } has a global Lyapunov function

L
(
(u,p)
)= ∫ [1

2
|p|2 + 1

2
|∇u|2 + F(u)+ gu

]
dx. (103)

The above Lyapunov function was used by Dafermos [124] to study dynamical behavior of
hyperbolic damped equations, in particular convergence of bounded solutions to equilibria.

To obtain the existence of an absorbing set we use another functional that depends on an
auxiliary parameterη

L1η(u,p)=
∫
Ω

[
1

2
|p|2 + 1

2
|∇u|2 + F(u)+ gu

]
dx + η

∫
Ω

pudx. (104)

For small enoughη we obtain (see [225,55]),

∂tL1η(u,p)� −δ1L1η(u,p)+C2

with δ1> 0. This inequality implies existence of a bounded absorbing set

B0 =
{
(u,p) ∈E: L1η(u,p)� 2C2/δ1

}
.
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The theory of attractors of hyperbolic equations is more difficult technically compared
with the theory of parabolic equations because the operatorsSt of the corresponding semi-
group are not compact whent > 0, for a discussion see [336].

The regular global attractorA of this Equation (98) was constructed by Babin and Vishik
for genericg in [38,42]; it was proven there thatA is (E1,E)-attractor. Haraux [225] and
Hale [208] proved the existence of(E,E)-attractor in the subcritical case(d−2)ρ < 2 for
generalf,g; their results imply in particular that the regular attractor constructed in [38,
42] is the global attractor inE. System (101) that generates the semigroup{St } involves the
solutiony(t) = (u(t), ∂tu(t)) that corresponds to the solutionu(t) of (98). Haraux [225]
and Hale [208] use the splitting of the solutiony(t)= Sty(0) in the form

y(t)= y1(t)+ y2(t),

wherey1(t) is a solution of thelinear equation obtained from (101) by settingf = g = 0
andy2 = y − y1 is a correction.∥∥y1(t)

∥∥
E

� Ce−γ t , γ > 0. (105)

Whenρ is subcritical,y2(t) belongs to a compact set inE wheny(0) is inB0. Such a split-
ting was used also by Webb [378,379] in the study of asymptotical behavior of individual
solutions.

There are several works which treat the case of the critical exponentρ when(d −2)ρ =
2, this case requires more refined techniques. Existence of the global attractor in the critical
case with the cubic growthf (u) for d = 3 was proven by Babin and Vishik in [44], but the
attraction was proven in the weak topology ofE =H 1 ×H 0. The existence of the global
attractorA in the norm-induced topology ofE in the critical case was proven in [46,52],
see also [55]. In these works the non-linearity was split in the formf (u)= f0(u)+ f1(u)

wheref0(u) is monotone andf1(u) has a lower rate of growth at infinity. The solution
respectively splitsy(t) = y1(t) + y2(t) wherey1(t) is a solution of anon-linear equa-
tion (101) withf (u) replaced byf0(u) andy2 = y − y1 is a correction. In this casey1(t)

again satisfies (105), andy2(t) belongs to a compact set inE wheny(0) is inB0. Note that
the setA is the same for the attractor in the weak topology and the norm-induced topology,
but the attraction in the norm-induced topology is stronger. It was proven in [55] that the
attractorA is compact inE1 and for genericg is regular and has the structure described in
Theorem 2.3.5.

Remaining technical restrictions of [46,52,55] on generalf (u) of critical growth were
removed by Arrieta, Carvalho and Hale [9], they improved the method of [52,55]. Time-
periodic equations with a critical growth were considered by Ceron and Lopes [83],
Lopes [284]. Ladyzhenskaya [264] in the critical case proved existence of the global at-
tractor in the spaceE1 =H 2 ×H 1.

REMARK. When the growth off (u) is supercritical, namely with the powerρ < 4
d−2

(that isp < 5 for d = 3) it was proven by Kapitanski in [248] that solutions of the damped
wave equation exist and are unique whenΩ is a compact Riemannian manifold without
boundary, and the equation has a global attractor. The proof uses Strichartz inequalities. In
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Rd global attractors were constructed by Feireisl [145,146]. For general bounded domains
existence of generalized attractors with supercritical growth of non-linearity with power
p < 4

d−2 + 1 was proven by Babin and Vishik [44]. Existence of a connected generalized
attractor was proven by Ball [60] where one can find a detailed exposition of the theory of
generalized global attractors of damped wave equations and more references.

Dimension of attractors. For a genericg the global attractorA is regular and its Haus-
dorff dimension is given by the formula

dimA= max
zj∈N

dimMu(zj ).

The asymptotic upper and lower estimates of dimA are given in [39]. For arbitrary sub-
critical f andg the finite dimensionality of the attractor was proved by Ghidaglia and
Temam [199] by a different method.

REMARK. The theory of attractors can be expanded to semilinear hyperbolic equations
with the damping more general than caused by the termγ ∂tu in (98). The damping terms
can be non-linear, can depend onx, in particular be localized on a set smaller than the
entire domain (see Feireisl and Zuazua [155], Feireisl [146]). The damping may include
differential operators (see Belleri and Pata [63], Carvalho and Cholewa [78], Zhou [395]).
Equations with a non-linear damping were studied by Haraux [226], Raugel [335]. Damp-
ing via the boundary dissipation was studied by Chueshov, Eller and Lasiecka [108].

3.4. Fragmentation complexity of attractors of PDE

In this subsection we give examples of equations which have global attractors with a large
fragmentation number and, therefore, high complexity.

3.4.1. Scalar parabolic equation with humpy coefficients.We consider here, following
[17] and [24], a scalar parabolic equation of the form

∂tu= a&u− F ′(u, x), t � 0, (106)

wherea > 0 is a constant,& is the Laplacian,x = (x1, . . . , xd) ∈ Rd , u = u(x, t). We
impose the Dirichlet boundary condition (84). In (106)F ′(u, x) is the derivative of the
potentialF(u,x) with respect tou, the potential is non-negative

F(u,x)� 0. (107)

We assume thatF ′(u, x) is continuously differentiable with respect to(u, x) and we as-
sume the following absorption condition:

sup
u�β1

F ′(u, x)� 0, inf
u�β2

F ′(u, x)� 0, (108)
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whereβ1 < β2. Everywhere in this subsection for simplicity we assumeβ1 = −β2. We
denote the class of functionsF(u,x) that satisfy the above conditions byNL(β1, β2). We
take asΩ the cubeΩN = {x: |xi |�N, i = 1, . . . , d} whereN > 0 is a (large) integer. We
consider smaller cubes with sideR � 1

Ω(j̄ ,R)= {x ∈ Rd : |x − x0(j̄ )|∞ �R/2
}
, |x|∞ = max

i
|xi |,

the cubes are centered at the pointsx0(j̄ ) ∈ Rd :

x0(j̄ )= 1

2
@1+ j̄ , j̄ ∈ Zd , @1= (1, . . . ,1).

Obviously, the domainΩN is a union of(2N)d cubesΩ(j̄ ,1).
From the Maximum Principle using (108) one can easily deduce that the set

E(β1, β2)=
{
u ∈ C0(Ω): β1 � u(x)� β2

}
is attracting and invariant.

THEOREM 3.4.1. WhenF ∈ NL(β1, β2), Equation(106) generates a semigroupSt in
C0(Ω) = C(Ω) ∩ {u|∂Ω = 0}, this semigroup possesses a global attractorA(F,N) in
C0(Ω). This attractor lies in the setE(β1, β2)⊂ C0(Ω).

We consider potentialsF(u,x) which have a graph with a hump in every boxΩ(j̄,R)
where|u| is small. As a particular example we consider the function

F(u,x)=ψ(x)[f (u)+ h(u, x)], (109)

where

ψ(x) = µsin2
(
πx1

L

)
· · ·sin2

(
πxd

L

)
+ q0a, (110)

f (u) = 1

4
u4 − 1

2
u2 + 1

4

with a fixedµ> 0 and a fixed smallq0> 0. The functionh(u, x) is a perturbation, it is an
arbitrary function that is twice differentiable inu, the derivatives are continuous inx and
the following condition holds:∣∣∂uh(u, x)∣∣+ ∣∣h(u, x)∣∣< q0a, u ∈ R, x ∈ Rd . (111)

We include this function to show that the lower estimates of complexity given below are
uniform with respect to perturbations.

The next theorem is a corollary of general results of Babin [24]. It shows that the frag-
mentation complexity of the attractor (see Definition 1.6.1) tends to infinity as the size
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of the domain tends to infinity, the complexity grows proportionally to the volume of the
domainΩN . We take in (108)β2 = 1+ q0a, β1 =−1− q0a.

THEOREM 3.4.2. Let F(u,x) be defined by(109), let q0 > 0 be sufficiently small. Then
for anyh satisfying(111),for any naturalN the global attractorA(F,ΩN) has the frag-
mentation complexitylog2 Fr(A(F,ΩN)) that satisfies the inequality

log2 Fr
(
A(F,ΩN)

)
� (2N)d (112)

and the average spatial complexitycmp(F ) defined by(25) satisfies the inequality
cmp(F )� 1.

Note that the potentialF = Fh defined by (109), (110) is aC2 perturbation ofF0 given
by (109), (110) withh = 0; according to (111) this perturbation is small inC1. If Θ =⋃
h{F } is the set of potentials defined by (109), (110), (111) then according to (112) the

fragmentation complexity of the family of attractorsA(Θ,ΩN) defined by (24) satisfies
the estimate

log2 Fr
(
A(Θ,ΩN)

)
� (2N)d

andcmp(Θ)� 1.
We present main ideas of the proof of Theorem 3.4.2. LetJ (N) be the set of indices̄j

that numerate the domainsΩ(j̄ ,R)⊂ΩN
j̄ ∈ J (N)= {−N, . . . ,N − 1}d .

We consider binary lattice functionsζ(j̄ ) on J (N) that take at every point̄j ∈ J (N) val-
ues 0 or 1. For every binary lattice functionζ(j̄ ) on J (N) following [24] we define an
invariant subset̃E(ζ )⊂E(β1, β2) with a non-empty interior. Note that graphs of functions
from E(β1, β2) lie in the slabD = [β1, β2] ×ΩN . Obviously,D =⋃j̄∈J (N) D(j̄ ) where

D(j̄)= [β1, β2]×Ω(j̄,1). The subset̃E(ζ ) is defined as follows. For every cubeΩ(j̄ ,1)
we find two barrier functionsU+

j̄
(x) andU−

j̄
(x) (solutions ofa&U − F ′(U,x)= 0) such

that

U+
j̄
|∂Ω(j̄ ,1) = β1, U+

j̄
(x) < β2 whenx ∈Ω(j̄ ,1),

U−
j̄
|∂Ω(j̄ ,1) = β2, U−

j̄
(x) > β1 whenx ∈Ω(j̄ ,1).

The existence of such functions is proven in [24]; it is the most technical part of the con-
struction. We introduce domains

D(0, j̄ )= {(u, x) ∈D(j̄): u < U−
j̄
(x)
}
,

D(1, j̄ )= {(u, x) ∈D(j̄): u > U+
j̄
(x)
}
.
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For a given binary functionζ(j̄ ) we define a connected setD(ζ)⊂Ω by the formula

D(ζ)=
⋃

j̄∈J (N)
D
(
ζ(j̄ ), j̄

)
.

We denote bỹE(ζ ) the subset of functions fromE(β1, β2) with graphs inD(ζ). Every set
Ẽ(ζ ) is closed, has a non-empty interior̃E0(ζ ) andẼ(ζ ) ∩ Ẽ(ζ ′) = ∅ whenζ �= ζ ′. By
the maximum principlẽE(ζ ) is invariant, the restriction of the semigroupSt to this set has
an attractorAζ ⊂ Ẽ0(ζ ) ∩A. Since the number of binary functions on the latticeJ (N)

equals 2(2N)
d

we obtain (112).
Now we give an example of a two-sided estimate of the fragmentation complexity.
Consider one-dimensional equation in the domainΩN = {x: −N < x <N},

∂tu= a∂2
xu− F ′(u, x), t � 0, −N < x <N, (113)

whereF is the same as in (109) withd = 1,x = x1, h= 0 and with the boundary conditions

u(−N, t)= 0, u(N, t)= ξ, (114)

|ξ |� 1
2. Now the parameter that defines the familyΘ is the boundary valueξ . For everyξ

we have a global attractorA(ξ) in the spaceC([−N,N ])∩ {u(−N)= 0, u(N)= ξ}.

THEOREM 3.4.3. LetΘ = {ξ : |ξ |< ε0}, whereε0> 0. We have for everyε0 � 1/2 for all
N = 1,2, . . . the following estimate

1� 1

2N
log2 Fr

(
A(Θ,ΩN)

)
� C0,

thereforeC0 � cmp(Θ)� 1.

The lower estimate is similar to (112). The upper estimate of the fragmentation complex-
ity is based on the following observations. First, since the semigroup has a global Lyapunov
function, by the invariance principle of La Salle every subattractor contains an equilibrium
and the fragmentation numberFr(A) is not greater than the number of equilibrium points.
Second, we use the following lemma.

LEMMA 3.4.4. Let f (u, x) be a differentiable function which satisfies the following sign
condition

f (u, x)u > 0 when|u| � 1, −∞< x <∞,

and the growth condition

sup
|u|�1

[∣∣f (u, x)∣∣+ ∣∣∂uf (u, x)∣∣+ ∣∣∂xf (u, x)∣∣+ ∣∣∂2
uf (u, x)

∣∣]� C1.
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Then there exist suchα > 0 andM0> 0 which depend only onC1 that for anyε > 0, for
anyN � 1 there exists a setΞ ⊂ [−1

2,
1
2] with its Lebesgue measure|Ξ | � ε/2 such that

if ξ /∈Ξ then the equation

∂2
xu− f (u, x)= 0 (115)

with boundary conditions(114)has no more thanM0e
αN/ε solutions.

Using Lemma 3.4.4 we see that the infimum overΘ of 1
2N log2 Fr(A(ξ,ΩN)) is not

greater thanα + log2(M0/ε0)= C0.

REMARK. More general parabolic equations of the form

a0(x)∂tu=
d∑

i,j=1

∂i
(
aij (x)∂ju

)− F ′(u, x) (116)

with a non-negative potentialF(u,x) are studied similarly to (106) in [24]. We discuss
here for simplicity only the special case (106), we also impose simplifying assumptions;
more general cases are considered in [24]. Note, in particular, that the variability ofa0(x),
aij (x) implies non-trivial effects; see [24] for details.

REMARK. Multiple stable, non-constant solutions of parabolic equations were constructed
in works [164,192,222,294,383,323,7,79,80,191,223,339,190,189]. The approach of [7,
339,79,80,191,223] is based on singular limit techniques. In the one-dimensional case it
is possible to give examples when the long-time dynamics is explicitly described in detail
by a reduction to a system of ordinary differential equations (see [7,191,223,339]). Meth-
ods of [79,80,191,223] are based on a reduction to a finite-dimensional invariant manifold.

REMARK. A damped hyperbolic equation of the form

∂2
t u+ γ ∂tu= a&u− F ′(u, x), γ > 0, (117)

with a humpy non-linearity (109), (110) and Dirichlet boundary condition (84) is consid-
ered in [26]. The attractor of this equation admits the same lower bound (112) of fragmen-
tation complexity.

Unbounded domain. When the equation is considered in the whole spaceRd we re-
place (108) by

sup
u�β1

F ′(u, x)� −ε, inf
u�β2

F ′(u, x)� ε, ε > 0, (118)

with an arbitrary smallε. We denote byCb(Rd) the space of uniformly bounded continuous
functions, the norm inCb(Rd) coincides with the norm inL∞(Rd). We use in this space
the topologyCloc(Rd) of uniform convergence on bounded sets inRd . This topology is
metrizable (one can use a formula similar to (171) to introduce the metric).
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THEOREM 3.4.5. WhenF ∈ NL(b1, b2) Equation(106) generates a semigroup{St } in
Cb(Rd). The operatorsSt are continuous in the topology ofCloc(Rd) and whent > 0 they
map sets bounded inCb(Rd) into compact sets inCloc(Rd). This semigroup possesses a
global attractorA(F ) in the topologyCloc(Rd). This attractor lies in the setE(b1, b2)⊂
Cb(Rd).

Using binary functionsζ(j̄ ) defined onj̄ ∈ Zd as in the proof of Theorem 3.4.2 we
obtain the following theorem.

THEOREM 3.4.6. LetF(u,x) be defined by(109)andq0> 0 be sufficiently small. Then
for anyh satisfying(111)A(F ) has the infinite fragmentation number: Fr(A(F ))=∞.

3.4.2. Complexity of attractors of spatially homogeneous systems.First we show that
global attractors ofscalar spatially homogeneous parabolic equations generically do not
have high fragmentation complexity. A spatially homogeneous scalar parabolic equation

∂tu= ∂2
xu− f (u), −L< x <L, (119)

with the periodic boundary conditions

u(L)= u(−L), ∂xu(L)= ∂xu(−L), (120)

wheref (u) satisfies the absorption condition

f (u)u� c > 0 for |u| � 1

generates in the Sobolev spaceH 1
per([−L,L]) a semigroup{St } that possesses a global

regular attractorA(f,L). The equilibria ofSt coincide with 2L-periodic solutions of the
steady-state equation

∂2
x z− f (z)= 0.

For a genericf this equation has a finite (modulo a spatial shift) number ofL-periodic
solutions; the number of corresponding curves (with a fixedL) in the phase plane is uni-
formly bounded asL→∞. Taking into account thatnl-periodic solution with an integer
n is l-periodic the number ofL-periodic solutions can not grow faster thanCL asL→∞.
Therefore the fragmentation numberFr(A(f,L)) � CL. Whenf ∈ Θ , Θ being a small
neighborhood of a givenf0 in C1(R), the average spatial complexity of the attractor of a
scalar equation

cmp(Θ)= lim
L→∞ inf

log2 Fr(A(Θ,L))
2L

= 0.

The simplest equation with positive average spatial complexity of the attractor is the
two-component parabolic system of the form

∂tu= ∂2
xu− F ′(u) (121)
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with the boundary condition (120). Hereu = (u1, u2) ∈ R2, F(u) = F(u1, u2) is a given
smooth non-negative potential function

F(u)� 0 (122)

which has the gradientF ′ = ∇F which is assumed to be Lipschitzian inu. Here we con-
sider a simple example ofF(u), for a more general and detailed treatment see Afraimovich,
Babin and Chow [3]. We consider here for simplicity a potential that satisfies for large|u|
the absorption condition, namely for somec > 0

F ′
0(u) · u� c|u|2 −C, u ∈ R2. (123)

The energy functional

EL(u)=
∫ L
−L

[
1

2
|∂xu|2 + F(u)

]
dx (124)

is the global Lyapunov function for this equation.
Under the above conditions (121) generates inH 1

per([−L,L]) a semigroup{St } that
possesses a global (regular for genericF ) attractorA(F,L). The equilibria ofSt coincide
with 2L-periodic solutions of the steady-state system

∂2
xU − F ′(U)= 0. (125)

Now we introduce conditions which guarantee that the attractorA(F,L) has a high frag-
mentation number and complexity for largeL. We assume that the graph of the potential
F(u) has two humps at two pointsP1 = (−R,0) andP2 = (R,0), R > 0. Namely,F(u)
is large in a disc of a smaller radiusr2<R near the pointPi

F (u)�M when|u− Pi | � r2, i = 1,2, (126)

and is smaller at the boundary of a larger disc

F(u)�m when|u− Pi | =R, i = 1,2, (127)

where the constantsm andM are chosen to satisfy the following condition

r2
√
M

R
√
m
> (π + 1). (128)

Now we introduce invariant classes of solutions, the classes are determined by how many
times, in what sequence and in which direction the graphs of solutions wind around the
pointsP1 andP2. More precisely, we consider the domainΩ ′′ in theu-plane obtained by
deletion of the pointsP1, P2 from R2, Ω ′′ = R2 \ (P1 ∪ P2). The fundamental homotopy
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groupπ1(Ω
′′, σ )= π1 of the setΩ ′′ is a free group with two generatorsgi , i = 1,2, cor-

responding to counterclockwise cycles inΩ ′′ around pointsPi starting from and ending at
the designated point, namely at the origin. Elements of the groupπ1 are uniquely repre-
sented by irreducible words of the formb=∏nl=1g

kl
il

with kl =±1; n= |b| is the length of
the wordb. Homotopy classes of closed curves without a designated point form the setπ ′

1;

the classes correspond to the words fromπ1 with the additional restrictiongk1i1 �= g−knin
, the

words obtained by cyclic permutations being equivalent. The set of classes of equivalence
with respect to the cyclic permutations of the words from the groupπ1 is also denoted
by π ′

1. For every fixedt a solutionu(x, t) that does not pass through the pointsP1, P2

is a closed curve inΩ ′′ and has a homotopy typeh(u(·, t)) ∈ π ′
1. We describe below sets

of initial datau on whichh(Stu) does not depend ont , that is the curveu(x, t) has the
same homotopy type for everyt � 0. First we have to introduce necessary definitions. We
introduce the Jacobian (or Fermat–Maupertuis) functional

J (u)=
∫ L
−L

√
2F
(
v(x)
)∣∣∂xv(x)∣∣dx � E(v), (129)

the value ofJ (v) is determined by the graph of the curvev and does not depend for a
given curve on itsx-parameterization and onL.

Jacobian distance between two pointsQ1,Q2 ∈ R2 is given by distJ (Q1,Q2) =
infv J (v) where the infimum is over the curvesv(s) that connectQ1,Q2.

DEFINITION 3.4.7. Let a smooth simple Jordan curveCi bound a domainΩi , Ci = ∂Ωi
(Ωi is an open domain andΩi is its closure). It is called a minimal cycle if it has the
following minimality property. For any closed cycleΓ which lies in anε-neighborhood
Oε(Ci) of the cycle in theu-plane,Γ ⊂ Oε(Ci) ∩Ωi , once encirclesPi ∈Ωi \Oε(Ci)
and has a pointQ ∈ Γ strictly insideΩi at the distanceε1 fromCi the following inequality
holds:J (Γ )� J (Ci)+ ε2 whereε2> 0 depends onε1 and does not depend onΓ .

DEFINITION 3.4.8. A cycleCi encircling a discΩi is calledη-stable (withη > 0) with

respect to a cycleC1
i = ∂Ω1

i ,Ω
1
i ⊂Ωi , if for any closed curveΓ 0 which lies inΩi \Ω1

i ,

once encirclesΩ
1
i and intersects withC1

i there exists a homotopyΓ t , 0 � t � 1, of this
curve inside the ringΩi \Ω1

i which does not move points ofΓ 0 ∩Ci such thatΓ 1 ⊂ Ci ,
J (Γ 0)� J (Γ 1)+ η.

THEOREM 3.4.9. Let (123), (126)–(128)hold. LetC1
i = {u: |u− Pi | = r2/(π + 1)}, η=

2
√

2Mr2π/(π + 1)− 2πR
√

2m. Then there exist two non-intersecting minimal cyclesCi ,
i = 1,2, that encirclePi , i = 1,2. The cyclesCi areη-stable with respect toC1

i .

DEFINITION 3.4.10. We denote byΞ the set of closed continuous curvesu(s) (parame-
trized bys ∈ [0,1], u(0)= u(1)) which do not intersect with both domainsΩ1

i encircled



Global attractors in PDE 1047

by C1
i and have a finite Jacobian length. We denote byΞb for a given homotopy class

b ∈ π ′
1(R

2 \⋃2
1Ω

1
i ) the set of curves fromΞ which belong tob and put

�∗(b)= inf
u∈Ξb

J (u).

We denote byΞ ′([−L,L]) andΞ ′
b([−L,L]) the set of functionsu ∈H 1

per([−L,L])which
graphs are curves fromΞ andΞb respectively.

We formulate two theorems that follow from Theorems 3.1 and 4.1 and Proposition 6.1
of [3].

THEOREM3.4.11. Let (123)–(128)hold. LetCi , i = 1,2,be theη-stable cycles described
above; let b ∈ π ′

1 be a homotopy class. Then the setsΞ ′
b([−L,L])∩ {u: EL(u)� λ} where

λ < �∗(b)+ η are invariant with respect to the flow defined inH 1
per([−L,L]) by the par-

abolic equation(121)with the periodic boundary conditions(120).

THEOREM 3.4.12. Let (123), (126)–(128)hold. For every non-trivial homotopy classb ∈
π ′

1 there existsL such thatL∗|b| � L� L∗|b| whereL∗ andL∗ do not depend onb and a
steady-stateL-periodic solutionU of Equation(125)such thatU ∈Ξ ′

b([−L,L]),

EL(U)= J (U)= �∗(b), (130)

U is a global minimizer ofEL(u) inΞ ′
b([−L,L]), its graph lies in the domain|u| � 2

√
C/c

and the following integral holds:√
2F
(
U(x)
)= |∂xu|, x ∈ [−L,L]. (131)

To estimate the number of global minimizers with a givenLwe use the following lemma.

LEMMA 3.4.13. LetCi , i = 1,2, be theη-stable cycles described above. LetM1 be the
maximum ofF(u) over |u| � 2

√
C/c whereC,c are defined in(123),δη = η/(4M1). Let

U ∈Ξ ′
b([−L,L]) be a global minimizer ofEL(U). LetL�L′ � L+ δη. Then there exists

a global minimizer ofEL′(U) in Ξ ′
b([−L′,L′]), EL′(U)� �∗(b)+ η.

Note that in Theorem 3.4.12L depends onb, L= L(b). To estimate the average frag-
mentation complexity of the attractor we have to find for a fixedL many stable equilibria
and then take a sequenceL→∞. According to [2] the number of classesb from π ′

1 with
a given length|b| equalsK|b| = 3|b| +2+ (−1)|b|. By Theorem 3.4.12 for everyb ∈ π ′

1 we
have a global minimizer of the periodic problem with the half-periodL(b) ∈ [L∗|b|,L∗|b|].
Using Lemma 3.4.13 we conclude that we have global minimizers of periodic prob-
lems with half periodsL′(b) that cover the segment[L(b),L(b) + δη] ⊂ [L∗|b|,L∗|b|].
Therefore we haveK|b| of intervals with lengthδη that lie in [L∗|b|,L∗|b|]. Hence there
is a pointL0 ∈ [L∗|b|,L∗|b|] that belongs to at leastδηK|b|/((L∗ − L∗)|b|) intervals
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[L(b),L(b) + δη]. The attractorA(F,L0) contains at leastδηK|b|/((L∗ − L∗)|b|) sub-
attractorsAb(F,L′

0) andFr(A(F,L0))� δηK|b|/((L∗ −L∗)|b|),

log2 Fr
(
A(F,L0)

)
� |b| log2 3−C1.

We takeL→∞, it contains a subsequenceL0 we constructed above with|b| →∞ and
we get

cmp
(
A(F )
)= lim

L→∞ inf
log2 Fr(A(F,L))

2L
� lim|b|→∞

|b| log2 3−C1

L∗|b| = log2 3

L∗ > 0.

(132)

COROLLARY 3.4.14. For everyF that satisfy(123)–(128) the average spatial fragmen-
tation complexity of the attractorA(F ) is positive: cmp(F )� c0> 0.

Note that the set of potentialsF which satisfy the above conditions is a set with a non-
empty interior inC2(R2) and this set is large.

REMARK. Similar results hold for hyperbolic equations, see [26].

REMARK. Lower bounds of the fragmentation number of attractors of strongly non-linear
systems are given in [18].

REMARK. We can consider (119) withF fixed and with the boundary conditions similar
to (114)

u(−L)= 0, u(L)= ξ,

whereξ lies in a small neighborhoodΘ of the origin in theu-plane. The attractorA(ξ)
depends onξ and similarly to (132) we obtain that its complexity is positivecmp(A(Θ)) >
0, we also obtain that for everyL for almost allξ (119) with the above boundary conditions
has a finite set of equilibria and its complexity is bounded,cmp(A(Θ))� C.

3.5. Equations in unbounded domains

Compactness properties of sets of functions defined on unbounded domains differ from
the properties of functions defined on bounded domains. According to Arzela–Ascoli the-
orem a sequence of functions in a bounded domain which are uniformly bounded and have
uniformly bounded derivatives contains a uniformly convergent subsequence. This is not
true in unbounded domains. Consider for example a smooth bounded non-constant func-
tion ϕ(x), −∞< x <+∞ with a bounded derivative which has limitsϕ(±∞) at plus and
minus infinity. Translations of this function

ϕ(x − ct), −∞< x <+∞, c �= 0 (133)
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when t → ∞ are bounded and derivatives are uniformly bounded inC(R). If t → ∞
ϕ(x − ct) tends to the same constantϕ(−c∞) for everyx. Sinceϕ is not constant, the
differenceϕ(x − ct) − ϕ(−c∞) is large on some interval, thereforeϕ(x − ct) does not
contain a subsequence withtj → ∞ which converges on the whole real line inC(R).
Therefore a set bounded inC1(R) is not compact inC(R). Similarly, the embedding of
Sobolev spacesHs(D) ⊂ Hσ (D) with s > σ is not compact. Therefore, in unbounded
domains additional smoothness does not imply compactness. If‖u‖ is any translation in-
variant norm such that convergence in this norm implies for almost everyx pointwise con-
vergence ofu(x) the above argument shows thatϕ(x− ctj ), tj →+∞, does not contain a
convergent subsequence in this norm. These properties of function spaces imply essential
differences between the dynamics generated by PDE in bounded and unbounded domains
and require introduction of Banach spaces with norms that are not translation invariant,
namely weighted spaces. Another possibility is to use weak convergence or convergence
on bounded intervals which leads to metric spaces where the metric is not translation in-
variant.

We consider here the parabolic system of equations

∂tu= ν&u−Λ0u− f (u)− g (134)

in an unbounded domain. Hereu= (u1, . . . , un), f = (f1, . . . , fn), g = (g1, . . . , gn). We
assume thatf (0)= 0. HereΛ0 is a positive matrix,

Λ0u · u� λ0|u|2, λ0> 0.

For simplicity we will consider equations inΩ = Rd and we consider for simplicity a
second-order operator of the formν&, though all results of [57] which we cite in the
beginning of this section hold for more general systems. Under some natural conditions
solutions of such equations exist and are unique in classes of functions that grow at spatial
infinity slower thaneε|x|2, ε > 0 (see [57] for details). Therefore a semigroup{St } is well-
defined in a corresponding spaceE of functions with a prescribed growth. One can choose
different weights and, therefore, different spacesE of initial data for the same equation.
The properties of semigroups and their attractors depend on the choice of the spaceE.

A way to describe the behavior of functions at spatial infinity is via weighted norms. We
introduce the norm‖ · ‖0,γ in the spaceH 0

γ (R
d)=H 0

γ by the formula

‖u‖0,γ =
[∫ (

1+ |x|2)γ ∣∣u(x)∣∣2dx]1/2.
Similarly,

‖u‖2
1,γ = ‖u‖2

0,γ + ‖∇u‖2
0,γ

etc. Whenγ > 0 the functions fromH 0
γ decay at infinity faster than functions fromL2(Rd).

Whenγ < 0 they decay slower, and whenγ <−d/2 the weight(1+ |x|2)γ is integrable
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and the spaceH 0
γ includes functions that do not decay at all, for example every bounded

overRd measurable function belongs toH 0
γ (R

d). Note that the weighted norms withγ �= 0
are not translation invariant, but the function spaces are translation invariant.

As always, we impose the sign conditions

f (u) · u� −C|u|2, f ′(u)�−CI (135)

and the growth condition∣∣f ′(u)
∣∣� C(1+ |u|p2

)
, 0� p2 � p0, p0 = min

(
4/d,2/(d − 2)

)
(136)

(whend � 2 the only condition onp2 is p2 � 0).

3.5.1. Dynamics in spaces that include non-decaying functions.The spacesH 0
γ with

γ < 0 are wider thanH 0
0 = L2(Rd), we discuss this case first (see [57] for more details

and variants).

THEOREM 3.5.1 [57]. Let γ < 0, g ∈ H0,γ , let (135)–(136) hold. Let γ1 =
max((γ − 1)/(p2 + 1), γ ). Then the semigroup{St } is well-defined onH = H 0

γ1
∩ H 1

γ

and operatorsSt are continuous onH in the weak topology of the Hilbert spaceH .

THEOREM 3.5.2. Letγ <−d/2, conditions of Theorem3.5.1hold and

f (u) · u� −C for all u. (137)

Then there exists a global attractorA of {St } in the weak topology ofH .

The proof is based on a construction of a bounded absorbing ball inH and uses the
compactness of a bounded ball in a reflexive space in the weak topology, see a sketch of an
analogous proof in the next subsection.

Now we discuss the caseγ < −d/2 in more detail. In this case the attractorA can be
very large (in the next subsection we give examples when it has infinite dimension). Note
that equations of the form (134) withg = const in the whole spaceRd are translation
invariant and there are examples oftraveling wave solutionsof such equations, that is
solutions of the form (133) which in the one-dimensional case solve the equation

ν∂2
xϕ + c∂xϕ − λ0ϕ − f (ϕ)− g = 0 (138)

obtained from (134) by plugging in solutionϕ(x − ct) in the form of (133). The traveling
wave solutions, in particular their stability were studied starting from Kolmogorov, Petro-
vski and Piskunov [256], for modern approaches and references see [376,163,160,194,193,
343]. Note that a bounded solution of (138) withc �= 0 has limitsϕ± asx→±∞, they
solve equationλ0ϕ± − f (ϕ±)− g = 0. Since solutionsϕ(x − ct) form a bounded, strictly
invariant set inH they lie in the global attractorA. The discussion of (133) in the begin-
ning of Subsection 3.5 shows that the existence of traveling wave solutions implies that the
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attractor cannot be compact in a Banach space which has the norm invariant with respect
to translations and containsL∞(R1).

The results of Theorems 3.5.1 and 3.5.2 can be improved in the following way. Bound-
edness of the norm‖g‖0,γ implies that∫

|x|�r
(
1+ |x|2)γ ∣∣g(x)∣∣2dx→ 0 asr→∞. (139)

The rate of decay may be very slow, but it allows to estimate the decay of steady-state
solutions and, asymptotically, solutions of parabolic and damped hyperbolic equations as
t→∞. The analysis is more technical than the straightforward weighted norm estimates,
but it allows to prove the attraction to the attractorA and its compactness in the norm-
induced topology ofH 0

γ . This approach was realized by Feireisl [147], see also [151,305,
303]. In these works the attraction to the attractor and the compactness of the attractor of
parabolic and damped hyperbolic equations is proven in the norm-induced topology ofH 0

γ .
The weighted norms‖u‖l,γ with γ �= 0 are not invariant with respect to the translations

Tyu(x) = u(x + y). One may introduce a translation-invariant norm based on weighted
norms as follows

sup
y

‖Tyu‖l,γ ,

whereTyu(x)= u(x+y) is a translation. Feireisl [147] applied similar translation invariant
spaces for the study of dynamics and global attractors of damped hyperbolic equations.
Mielke and Schneider [305] and Mielke [303] study dynamics of Ginzburg–Landau, Swift–
Hohenberg and Kuramoto–Shivashinsky equations in unbounded domains in such spaces
systematically using properties of spatial translations of solutions.

REMARK. For a review of the dynamical properties of Ginzburg–Landau equation

∂tu= a∂2
xu+ u− b|u|2u, −∞< x <∞,

wherea, b are complex numbers with positive real parts see [304].

REMARK. Feireisl [148] has proved convergence ast → ∞ of solution of a scalar par-
abolic equation inRd to steady-state solutions and to soliton-type solutions.

REMARK. Merino [301] studies the semigroup generated by scalar parabolic equations
and special systems in the Banach space of the form (134) with the coefficientΛ0 which
depends onx and vanishes at infinity. He studies dynamics in the space of bounded uni-
formly continuous functions onRd and proves the existence of the global attractor in the
norm-induced topology, the attractor has finite Hausdorff dimension.
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3.5.2. Dynamics in spaces of decaying functions.Now we consider the caseγ > 0. We
impose the sign conditions (135) and in addition to (136) we assume thatf (u) has the
second-order zero at the origin, that isf ′(u)= 0 and the growth condition holds∣∣f ′(u)− f ′(v)

∣∣� C|u− v|α(1+ |u| + |v|)q0, (140)

whereq0, α > 0 and ford > 2

q0 + α � p0, p0 = min
(
4/d,2/(d − 2)

)
, (141)

p0 = 4/d whend � 2. First we present two theorems from [57].

THEOREM 3.5.3. Let γ � 0, g ∈ H0,γ , (135)–(136), (140)hold. Then(134) generates
a semigroup{St } in H 0

γ andH 1
γ . OperatorsSt on H 0

γ are continuous onH in both the
norm-induced and weak topology ofH0,γ and onH1,γ in the weak topology ofH1,γ , they
possess the smoothing property, namely they are bounded fromH 0

γ toH 2
γ whent > 0.

THEOREM 3.5.4. Let γ � 0. Let conditions of Theorem3.5.3hold together with the sign
condition

f (u) · u� 0 for all u. (142)

Then{St } on H 1
γ has a global attractor in the weak topology ofH 1

γ . Whenγ > 0 the

semigroup{St } onH 0
γ has a global attractorA in the norm-induced topology ofH 0

γ .

REMARK. If the forcing termg(x) decays very fast asx→ ∞, it belongs toH 0
γg

with

largeγg . One may take initial data in a wider spaceH 0
γ with γ < γg . The attractorA =

A(γ ) could depend onγ . But the analysis shows thatA(γ )=A(γg), the rate of decay of
functions on the attractor is determined by the rate of decay ofg(x) (see [57]). Note that
this property is asymptotical ast→∞ only,Stu0 with a finitet belongs to the same space
H0,γ asu0, this can be explicitly verified for linear parabolic equations. In addition, the
attractor is bounded inH2,γg .

Now we give a theorem on existence of the attractor in the caseγ = 0 when the non-
linearity is gradient,f (u)= F ′(u) whereF(u) is a potential function, (134) takes the form
of (121) and the global Lyapunov function is given by

F(u)=
∫

Rd

[
ν

2
|∇u|2 + F(u)

]
dx. (143)

This theorem is similar to results of [18,21]. We also give a sketch of the proof since it is
typical (for details and generalizations to a strongly non-linear case and a multidimensional
case see [18]).
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THEOREM 3.5.5. Let γ = 0, let (135)–(136), (140)hold andg = 0. Let the potential
satisfy the conditions

F(u) > 0 when|u|> 0, F (0)= 0, F (u)→∞ as|u| →∞
(144)

and

f (u) · u� β|u|2 when|u| � r0 or |u| � r1, (145)

whereβ > 0, r0 < r1 are fixed. Then for everyµ� 0 the semigroup{St } restricted to the
invariant set{F(u)� µ} has an(H 0

0 , (H
0
0 )w) attractorAµ which is bounded inH 2

0 .

PROOF. SinceSt are continuous in the weak topology (see [57]) and a bounded ball is
compact in the weak topology ofH 0

0 = L2(Rd), it is sufficient to prove the existence of an
absorbing ball. Note that (144) implies that

F
(
u(x)
)
� c > 0 whenr0 � |u| � r1. (146)

Multiplying (134) by∂tu we obtain the identity

F
(
u(T )
)+ ∫ T

0
‖∂tu‖2

0,0dt =F
(
u(0)
)
. (147)

We denote

D1 =
{
x: r0 �

∣∣u(x)∣∣� r1}, D2 = Rd \D1.

Using (146) we conclude thatF(u(x))� c whenx ∈D1. Therefore (147) implies that for
everyT the Lebesgue measure of the setD1(T ) admits the estimate

|D1| � 1

c
F
(
u(0)
)
. (148)

We multiply (134) byu and obtain after integration by parts

1

2
∂t‖u‖2

0,0 + ν|∇u|2 +
∫

Rd
f (u) · udx = 0. (149)

From (148) and (145) we deduce that∫
Rd
f (u) · udx � β

∫
Rd

|u|2dx +
∫
D1

[
f (u) · u− |u|2β]dx � β‖u‖2

0,0 −C1,
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whereC1 does not depend onu andt . From (149) we obtain the differential inequality

∂t‖u‖2
0,0 � 2C1 − 2β‖u‖2

0,0

and

‖u‖2
0,0(t)� e−2βt‖u‖2

0,0(0)+
C1

β

(
1− e−2βt ).

Therefore the ball‖u‖2
0,0 � 2C1

β
is an absorbing ball and we can apply the theorem on

existence of a global attractor in the weak topology ofH 0
0 . �

REMARK. The union
⋃
µ�0Aµ =A is a closed attractor which attracts in the weak topol-

ogy all bounded sets. The attractorA is minimal among all such attractors. The attractorA
is, generally speaking, unbounded inH 0

0 . Unboundedness ofA for non-linearities similar
to considered in the next example can be proven based on results of Afraimovich, Babin
and Chow [3].

Below we give an example when the attractor (in the weak topology) constructed in
the above theorem cannot be a global attractor (on the invariant set{F(u) � µ}) in the
norm-induced topology.

EXAMPLE 3.5.6. We consider a special case of the above theorem whend = 1, the system
includes two components,ν = 1 and the potentialF(u) has a two-hump structure (126)–
(127), and (128) is replaced by the condition

√
Mr2> πR

√
m. (150)

This example essentially coincides with the example of diverging soliton-like solutions
in [18]. We consider system (121) which satisfies (122)–128), (144), (145) and additional
condition

F(−u)= F(u). (151)

Theorems 3.5.4 and 3.5.5 are applicable to this system. We take initial datau0 ∈ H 1
γ

which are odd inx, u0(−x) = −u0(x). From (147) we infer that for every solutionu(t)
there is a sequence‖∂tu(tj )‖2

0,0 → 0 with tj →∞. Using standard estimates for solutions

of ∂tu(tj )= ∂2
xu(tj )−F ′(u(tj )) like in Chapter 3.5 of [55] we conclude that a subsequence

u(tj ) converges weakly inL2(R) and strongly inC2 on every bounded interval to a solution
of the steady-state equation (equilibrium)

ν∂2
x z− F ′(z)= 0. (152)
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From (147)F(z) � F(u0). Sinceu(x, tj ) are odd inx z(x) is also odd andz(0) = 0.
Multiplication by ∂xz gives an integral

1

2

∣∣∂xz(x)∣∣2 − F (z(x))= 1

2

∣∣∂xz(0)∣∣2 − F (z(0)). (153)

SinceF(z) <∞ we have a sequencexj →∞ such thatF(z(xj ))→ 0, |∂xz(xj )|2 → 0.
Therefore

1

2

∣∣∂xz(0)∣∣2 − F (z(0))= 1

2

∣∣∂xz(0)∣∣2 = 0.

The only solution of (152) with∂xz(0) = z(0) = 0 is zero. Therefore every solutionu(t)
with odd initial data weakly converges to zero. If the attractorA is in the norm-induced
topology, one can choose from any sequenceu(x, tj ), tj →∞, a subsequence which con-
verges inL2(R) by the norm to a function on the attractor, this function must be zero and
we would have∥∥u(x, tj )∥∥L2

→ 0, tj →∞. (154)

Now we describe a specific way to chooseu0(x) such thatu(x, t) does not tend to zero in
L2(R) and gives rise to a pair of solitons slowly moving in opposite directions. To describe
the initial data we identifyu= (u1, u2) ∈ R2 with the complex numberu1 + iu2 ∈ C. We
setu0(x)= R(−1+ eixk) when−2π

k
� x � 0, u0(x)= 0 whenx <−2π

k
and for positive

x by symmetryu0(x)=−u0(−x). We choosek =√
2m/R to minimize the integral

1

2
F(u0)�

∫ 0

− 2π
k

[
1

2
|∂xu|2 +m

]
dx =
∫ 0

− 2π
k

[
1

2
R2k2 +m

]
dx = 2πR

√
2m,

wherem is from (127). The curveu0(x) in the plane starts (atx = −∞) at the origin,
goes around the point−R on the real axis counterclockwise, returns to the origin ant
turns around the pointR on the real axis clockwise. The curve corresponding tou(x, t)

depends ont continuously, it comes arbitrarily close to the origin asx→±∞ and passes
through origin atx = 0. From (129) it follows that the Jacobian lengthJ (u) of this curve
is bounded byF(u), J (u)� F(u). From results of [2,3] it follows that the curveu(x, t)
never gets to the points±R. In the particular case we consider here the proof is very
simple. Namely, if the closed curve connects the origin with the pointR it must at least
twice intersect the circle|R− u| = r2. The Jacobian length of the arc inside this circle that
passes through its center can be estimated as follows:

1

2
J (u)�

∫ x2

x1

√
2F(u)|∂xu|dx =

∫ s2
s1

√
2F(u)ds �

∫ s2
s1

√
2M ds � 2

√
2Mr2.

Therefore

2
√

2Mr2 � 1

2
F(u0)� 2πR

√
2m,

√
Mr2 � πR

√
m,
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which contradicts (150). Therefore the homotopy type of the curve is preserved and
maxx |u(x, t)| �R for all t . Note that

∣∣∣∣u(x1, t)
∣∣2 − ∣∣u(x2, t)

∣∣2∣∣ � ∫ x2

x1

∣∣∂x |u|2∣∣dx � 2
∫ x2

x1

|u||∂xu|dx

� 2

(∫ x2

x1

|∂xu|2dx
)1/2(∫ x2

x1

|u|2dx
)1/2

� 4F
(
u(t)
)1/2∥∥u(t)∥∥

L2
.

Since the supremum overx1, x2 of the left-hand side is greater thanR we conclude that
‖u(t)‖L2 is separated from zero. This contradicts (154), therefore for this non-linearity the
weak L2w attraction to the attractor takes place and theL2-norm-induced attraction does
not.

REMARK. In the one-dimensional scalar case Feireisl [148] proved that if conditions of
Theorem 3.5.5 are satisfied then every solution tends to an equilibrium in theL2(R) norm.
Example 3.5.6 shows that the dynamics in the case of two-component system is completely
different since the solution we constructed does not tend to an equilibrium even though
there exists a global Lyapunov function (143) and the set of equilibria is a single point.

Navier–Stokes equations in an unbounded domain.Attractors of the Navier–Stokes
equations in an unbounded channel-like domain were studied by Abergel [1] and Babin
[12–14], for a review see [25]. In particular, the existence of a finite-dimensional attractor
of the Navier–Stokes equations in a channel with a Poiseuille flow was proven in [12–14]
when the flux through the cross-section is not too large; a time-independent asymptotic
expansion near infinity of time-dependent solutions on the attractor was obtained in [14].
Note that the Poiseuille flow does not vanish at infinity, creating instability in the infinite
part of the channel if the flux is too large. Originally the existence of attractors of the two-
dimensional Navier–Stokes system in an unbounded channel-like domain was proven in
[1,12,14] in the norm-induced topology of a weighted space withγ > 0 (it is essentially a
condition on the decay of the forcing term) and whenγ = 0 the attraction and compactness
was proven in [12,14] in the weak topology. Rosa [340] proved attraction and compactness
in the norm-induced topology ofH 0

0 whenγ = 0; Ju [247] proved existence of the global
attractor inH 1

0 ; for a discussion of the techniques and more examples see Moise, Rosa and
Wang [318].

Note that whenγ > 0 solutions on the attractor admit asymptotic expansion as|x| →∞
(see [14,25] for details). The question of the existence of such expansion in the case when
γ = 0 is open.

Attractors in the norm-induced topology.In the important caseγ = 0 the existence
of the global attractorA (see Theorem 3.5.5) was proven in [57] in the weak topology.
Wang [377] proved that compactness and attraction forA holds in the strong topology
(under condition (142) which is stronger than (145), therefore it does not contradict Exam-
ple 1). Prizzi [333] proved that the compactness and attraction is inH 1

0 norm, that is under
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natural assumptionsA is (H 0
0 ,H

1
0 )-attractor. See also cited above works [340,247,318] on

the Navier–Stokes equations.

Damped hyperbolic equations.The theory of attractors of damped hyperbolic equa-
tions in unbounded domains combines ideas and methods of the theory of damped hyper-
bolic equations in bounded domains and the theory of parabolic equations and systems in
unbounded domains. For details we refer the reader to the works of Feireisl [147], Guo and
Li [204], Karachalios and Stavrakakis [251–253], Belleri and Pata [63], Zelik [389,392].

3.5.3. Finite and infinite dimension of attractors.Global attractors of parabolic equations
in unbounded domains in contrast to the case of bounded domain may have finite or infinite
dimension depending on the non-linearity and the class of solutions.

We give here the result of [57] on dimension of attractors.

THEOREM 3.5.7. Let γ � 0 and conditions of Theorem3.5.4hold. In addition we make
an assumption on the order of vanishingf ′(u) at zero, namely we assume that∣∣f ′(u)

∣∣� |u|α0C0(u). (155)

ThenA has a finite Hausdorff dimension

dimH A � Cν−d/2λ−3−2/α0
0 ‖g‖2

0,0.

If instead of(155)we assume that−f ′(u)� C|u|4/(d+2) then

dimH A � Cν−d/2λ−3
0 ‖g‖2

0,0.

In a few words, the above results on attractors in unbounded domains can be described
as follows. When the equations are linearly stable at the spatial infinity, the only source of
instability is the source termg(x) which decays (on average) at infinity. When the solution
are sought in a function space which consists of functions that decay at the infinity, the
attractors of non-linear equations are finite-dimensional and attract solutions in the norm-
induced metric, so they are in a way similar to equations in a bounded domain. When the
function spaces contain functions that do not decay at infinity, the non-linearity creates a
large perturbation at the infinity. Therefore, even when the linear part is stable, the non-
linear terms break the linear stability at the spatial infinity. The dimension of the attractor,
generally speaking, is infinite. When the equation is translation invariant, the attractor is
translation invariant too.

REMARK. In the situation of Theorem 3.5.5 of the previous subsection the functional
space consists of functions that decay at the infinity and the zero solution is stable. Never-
theless our conjecture is that for the non-linearity of the type given in Example 3.5.6 the
dimension of the attractor is infinite, more precisely it contains equilibria with arbitrary
large index of instability.
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REMARK. Efendiev and Miranville [136] prove existence of finite-dimensional global at-
tractors of reaction–diffusion equations with non-linearities that include dependence on the
spatial gradient.

When the domainΩ is unbounded, one can prove existence of attractors of semigroups
in the weak topology, or in the norm-induced topology of a wider space, but generally
speaking the attractors can be infinite-dimensional (see the discussion below, see also [57]).
The first example of an infinite-dimensional attractor of a parabolic equation was given
in [57]. Since the construction is elementary we present it here.

Let

f0(u)=
{−u for |u| � 1,
u− 2 for u� 1,
u+ 2 for u� −1

and consider the equation

∂tu=&u− f0(u).

This equation generates a semigroup{St } in the weighted Sobolev spaceH 0
γ (R

d), γ <
−d/2, and the semigroup has a global attractorA (see [57]). The dimension (fractal and
Hausdorff) of the attractor is infinite. This fact follows from the following observation.
Obviously,z(x)= 0 is an equilibrium of{St }. For|u| � 1 the dynamics of{St } is generated
by the linear equation

∂tu=&u+ u. (156)

The unstable manifold ofz includes bounded solutionsu(t), t � 0, of (156) that tend to
zero ast → −∞. Such solutions are given in terms of the Fourier transformũ(ξ, t) of
u(x, t) by the formula

ũ(ξ, t)= e(1−|ξ |2)t ũ0(ξ), t � 0, u(x, t)= (2π)−d
∫
e−ix·ξ ũ(ξ, t) dξ.

(157)

Now we describe the set of̃u0. Let Ũ be the set of Lebesgue integrable functionsṽ(ξ)
which satisfy the following conditions

Ũ = {ṽ ∈ L2
(
Rd
)
: ṽ(ξ)= 0 for |ξ | � 1/2,

∣∣ṽ(ξ)∣∣� 1 for |ξ | � 1/2
}
.

Note that the set̃U is infinite-dimensional, it includes the set of all functions from
L∞(B1/2) with theL∞ norm less than 1,B1/2 = {ξ : |ξ | � 1/2}. We take in (157)u0 ∈ U
where the setU is defined in terms of Fourier transforms of its elements

U = {u0: ũ0(ξ) ∈ Ũ
}
. (158)
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The functions fromU are analytic, they satisfy, in particular, the inequality|u(x)| � 1 for
all x ∈ Rd . It is proven in [57] thatU lies in the attractorA. Since the setU determined by
(158) is infinite-dimensional, the attractorA is infinite-dimensional.

Though the limit (17) is infinite and the fractal dimension is infinite, the massiveness
of the attractor can be described in terms of its Kolmogorov entropyHε. We can describe
quantitatively the behavior of Kolmogorov entropy asε→ 0. To take into account the
spatial behavior of the functionsu(x), u ∈ U , we, following Collet and Eckmann [112],
Zelik [388,389,391,394] and Efendiev and Zelik [138] consider the setUR of restrictions
u(x), |x| < R, of functionsu ∈ U to a ballBR of radiusR in Rd . The setU ⊂ L2(Rd)
given by (158) has the entropyHε(U) in the spaceC(BR) that admits the estimate

Hε(UR)� C
(
R+K ln

1

ε

)d
ln

1

ε
,

Hε(UR)� cαRd
(

ln
1

ε

)d+1−α
, cα > 0, α > 0.

Kolmogorovε-entropy of attractors. Estimates of Kolmogorovε-entropy of attractors
in large (with size tending to infinity) and in unbounded domains were obtained in papers
of Collet and Eckmann [112–114], Zelik [388,389,391,394] and Efendiev and Zelik [138].
They consider parabolic reaction–diffusion systems and damped hyperbolic equations. As
an example we give here one of results of Efendiev and Zelik [139]. Under natural condi-
tions they proved estimates of the Kolmogorovε-entropy of restriction of attractorsA of a
reaction–diffusion system in an unbounded domain to a ballBR that are of the form

Hε(A|BR )� CRd
(

ln
1

ε

)d+1

.

They obtain also a lower estimate ofA

Hε(A|BR )� cαRd
(

ln
1

ε

)d+1−α
, cα > 0, α > 0.

The proof of the lower bound is based on a general construction of large infinite-
dimensional submanifold of the unstable manifold of an equilibrium which is applicable
to reaction–diffusion systems in unbounded domains (see [388,389,391,138]).

4. Generalized attractors

4.1. Multivalued semigroups and trajectory dynamics

Multivalued semigroups. There are several situations when it is natural to consider
multivalued mappings, that is the mappingsSt which map sets into sets rather than el-
ements into elements. First example is given by equations with the non-linearity which
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does not satisfy the Lipschitz condition. When the weak solutions are considered, it is
rather common that even when the non-linearity is given by a very regular (analytic) ex-
pression, the corresponding operators are not Lipschitz continuous in the functional space
in which the existence of solutions is proven. The second example comes from the ellip-
tic equations when several solutions can exist with the same boundary conditions. One of
ways to overcome the difficulty of non-uniqueness of weak solutions is to use theory of
semigroups of multivalued operators. The theory of attractors of multivalued semigroups
generated by PDE was started by Babin and Vishik in [44]. Further works in this direction
are by Babin [15], Ball [59,60], Mel’nik [297,298], Valero [370]. Theory of global attrac-
tors of differential inclusions is studied by Mel’nik and Valero [299,369], Kapustyan and
Mel’nik [249].

Here we give a sketch of the theory developed in [44,15] since it is more elementary.
Let E be a complete metric space. An operator semigroup{St } acts on subsets ofE,

StB ⊂E whenB ⊂E. It is assumed that for everyt � 0

StB =
⋃
b

{Stb, b ∈ B}. (159)

We also assume the semigroup property

St+τB ⊂ StSτB. (160)

A setB0 is called absorbing if for any boundedB there existsT � 0 such thatStB ⊂ B0
for all t � T . We denote by[X]E the closure of the setX in the metric ofE.

A generalized semigroup of multivalued operators can be constructed as follows. We
denote byU the set of solutionsu(t), 0 � t <∞, of the equation∂tu = F(u(t)) with
initial data inE. The setStb = {v: ⋃u v = u(t), u(0) = b,u ∈ U} is the value of the
generalized operatorSt at the one-point set{b}.

DEFINITION 4.1.1. We callA a generalized global attractor of a generalized semigroup
{St } if the following three conditions are fulfilled:

(i) A is compact;
(ii) A is an attracting set that isδE(StB,A)→ 0 ast→+∞;

(iii) A is negative invariant, that isA ⊂ StA for everyt � 0.

A setA which has the above properties is unique.

THEOREM 4.1.2. Let {St } satisfy(159), (160)and have a compact absorbing setB0. Let
for any setX ⊂E

[StX]E ⊂ St [X]E. (161)

We also assume that for any pointy ∈ E and t � 0 its preimageS−1
t y restricted toB0 is

closed

S−1
t y ∩B0 =

[
S−1
t y ∩B0

]
E
.
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Then{St } has a generalized global attractor, it equals the omega-limit set ofB0, A =
ω(B0).

This concept can be applied to the following situation. Assume that the equation
∂tu= F(u(t)) has for everyu0 ∈ E a non-empty set of solutionsU(u0). Then the action
of the semigroup is defined by the formulaStu0 = {v: v = u(t), u ∈ U(u0)}. Examples
of generalized attractors for a damped hyperbolic equation when the non-linearity is su-
percritical or the Lipschitz condition does not hold are given by Babin and Vishik [44].
Ball [59] applied theory of multivalued semigroups to three-dimensional Navier–Stokes
equation and proved that if weak solutions are continuous functions of time from(0,∞)
to L2(Ω) there is a global attractor inL2(Ω). Ball [60] proved existence of a connected
generalized attractor of a damped wave equation.

Mel’nik [297,298] and Ball [59] developed variants of the theory of global attractors of
multivalued operators, see [59,60] for a detailed discussion of the theory.

Trajectory attractors. Another approach to equations without uniqueness uses the con-
cept of a trajectory attractor. We denote byU the set of solutionsu(t), 0� t <∞, of the
equation∂tu=F(u(t))with initial data inE. The semigroup{St } acts on a functionu(t) as
a translation,Sτ :u(·)  −→ u(· + τ). Under appropriate conditionsSτ has a global attractor
in the corresponding metric space (see Section 4.2 for the definitions, see [98] for details
of the theory of trajectory attractors). The global attractorAU ⊂ U consists of functions of
time which are defined for allt , −∞< t <∞. We set

A= {v: v = u(0), u ∈AU
}

(162)

and call A a global attractor. When the topology on the setU is strong enough,
namely when the convergence of functionsu in this topology implies the convergence in
C([0, T ];E) for everyT , the attractor defined by (162) is a global attractor in the sense of
Definition 4.1.1. The trajectory approach to construct global attractors of equations with-
out uniqueness was used by Chepyzhov and Vishik [96–98], Sell [351], Kapustyan and
Mel’nik [250], Feireisl [149].

Chepyzhov and Vishik [98] proved the existence of a global attractor for the damped
hyperbolic equation with arbitrary power growth of the non-linearity and without Lipschitz
condition on it.

4.1.1. Dynamical approach to elliptic equations.We consider a cylindrical domain
Ω = ω × R whereω ⊂ Rd is a bounded domain with a smooth boundary, we denote
@x = (x0, x1, . . . , xd) a point inΩ , (x1, . . . , xd) ∈ ω and−∞ < x0 <∞. Let U = {u} be
a given set of functionsu(@x) = u(x0, x) onΩ . For a setB of functionsv(x), x ∈ ω, we
consider the setBU = {v ∈ B: v = u(0, x), u ∈ U} of values taken inB by functions from
U at x0 = 0 (this set may be empty). Starting from correspondenceu(0, x1, . . . , xd)→
u(t, x1, . . . , xd) we can define a generalized operatorSt which for everyB mapsBU into
St (BU ), St (BU )= {v: v = u(t, ·), u(0, ·) ∈ BU }. If U is translation-invariant with respect
to shifts inx0, namelyu(x0 + t, x) ∈ U whenu(x0, x) ∈ U andt � 0 the operatorsSt form
a semigroup.
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As an example of the setU we consider the set of solutions of a non-linear elliptic
equation. We consider elliptic system

∂2
0u+ γ ∂0u+ ν&u− a0u− f (u)= g, (163)

u= (u1, . . . , um), hereγ anda0 are diagonal matrices,a0 is positive, elements ofγ may
have different signs,

γmin � γi � γmax.

Coefficientsa0, ν > 0. The functiong = g(x) does not depend onx0. We consider solu-
tions that satisfy Neumann boundary condition

∂u

∂l

∣∣∣∣
∂Ω

= 0 (164)

(the case of Dirichlet boundary conditions is similar). We assume that the following growth
conditions hold:

f (u)u� µ1|u|p1, µ1> 0, p1> 0,∣∣f (u)∣∣� C(1+ |u|)p2, µ1> 0, p2<max(2,p1),

where

p2 � 1+ 4

d − 2

whend > 2.
Now we define a multivalued semigroup that corresponds to (163) and acts on functions

that depend inx ∈ ω. First we introduce the function spaceE. A natural choice for the
spaceE is the Sobolev space of fractional orderH 3/2(ω). We introduce the spaceHs(ω)
by the formulaHs(ω) = (1− &)−s/2H0 whereH 0 = L2(ω), the Laplace operator& is
taken with Neumann boundary conditions. Since& is a negative self-adjoint operator, one
can define the above fractional powers using eigenfunction expansions. We take a fractional
power because according to the Sobolev trace theorem, if a functionu(x0, x) belongs to
H 2(R×ω), its restrictionu(t, x) with a fixedx0 = t belongs toH 3/2(ω).

Let u0 ∈ H 3/2(ω). Consider solutionsu(x0, x) of (163), x0 � 0 such thatu(0, x) =
u0(x) which satisfies the uniform boundedness condition

sup
τ�0

∫ τ+1

τ

∥∥u(x0, ·)
∥∥
H0 dx0<∞.

The set of such solutions we denote byU+(u0). It is proven in [15] that this set is not
empty for anyu0 ∈H3/2(ω). In the notation of the beginning of the subsection

BU = B for every setB ⊂H 3/2(ω). (165)
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For any givent � 0 the setStu0 is defined as restrictionsu(t, x) of all solutionsu ∈
U+(u0). ForB ⊂E we putStB =⋃b∈B Stb.
THEOREM 4.1.3 [15]. The operatorsSt corresponding to(163) map bounded sets into
bounded. The semigroup{St } has an absorbing setB0 that is compact inH 3/2(ω).

All conditions of Theorem 4.1.2 can be verified and we obtain the following theorem
from [15].

THEOREM 4.1.4. The semigroup{St } of multivalued mappings has a global attractorA
which is defined as an omega-limit set by(6). The attractor is compact inH 3/2(ω). The
attractor consists of valuesu(x0 = 0, ·) of solutionsu(x0, x) of (163) that are defined for
all x0, −∞< x0<+∞, their restrictionsu(t, x) are bounded inH 3/2(ω) uniformly in t0
and they belong toH 2([τ, τ + 1] ×ω) for everyτ ∈ R.

REMARK. Bounded solutions of (163) of the formV (x − ct) are called traveling wave
solutions. Such solutions are defined for allt . Therefore they lie on the attractorA.

REMARK. When there is a wide enough gap in the spectrum of& the attractorA lies in
the finite-dimensional inertial manifoldM. Therefore it is finite-dimensional itself. Inertial
manifolds for elliptic equations were constructed by different methods in [302] and [19].
The approach of [302] uses a reduction to a first-order system. Approach of [19] treats
second-order equation (163) directly and gives better estimates of the dimension of mani-
folds.

Now we consider the case whenf (u) is a gradient,f (u)=∇uF (u) and allγi are non-
zero and have the same sign. In this case the “dynamics” of{St } on any given full bounded
trajectoryu(x0, x), −∞< x0<+∞, on the attractor possesses a Lyapunov function∫ [

−1

2
|∂0u|2 + 1

2
ν∇u · ∇u+ F(u)− 1

2
a0u · u− g · u

]
dx.

Though it is not bounded from above or below on arbitrary functions, it is still very
useful. Using this function we obtain the following theorem on the structure of the attractor
(see Babin [15], see also Vishik and Zelik [375]. Schulze, Vishik, Witt and Zelik [347]
obtained similar results for a cylindrical domain with a piecewise smooth boundary).

THEOREM 4.1.5. Let f (u) be a gradient, and derivatives off satisfy the condition
|∇f (u)| � C(1+ |u|p3) with p3 � 4/(d − 3) whend > 3. Let the equation

ν&z− a0z− f (z)= g

for the equilibria of (163) have a finite set of solutions{z1(x), . . . , zN(x)}. Then the at-
tractor A consists of connecting orbits betweenz1, . . . , zN .
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REMARK. Fiedler, Scheel and Vishik [159] prove the existence of connecting orbits be-
tween the equilibria using Conley index theory. Whenf (u) is not a gradient they prove
existence of non-equilibrium solutions on the attractor which converge to an equilibrium
whenx0 →+∞ or x0 →−∞.

Cauchy data approach.Another approach to spatial dynamics generated by an ellip-
tic equation in a cylindrical domain is applied by Calsina, Mora and Solà-Morales [74].
They consider Cauchy problem for (163) prescribing(u(x,0), ∂tu(x,0)) and look for
(u(x, t), ∂tu(x, t)) for t � 0. The advantage is that a solution of the Cauchy problem is
unique. The difficulty is that a global (and a local) solution does not exist for arbitrary
initial data. They construct the semigroup in the following way. LetU = {u} be the set of
solutions of (163) which are defined and bounded for allx0 � 0. For the functionu ∈ U
we consider the mapping̃St : (u(0), ∂0u(0))→ (u(t), ∂0u(t)). Since the Cauchy data de-
termine solution uniquely this mapping is one-valued. The semigroupS̃t is defined on the
setU0 = {(u(0, ∂0u(0))): u ∈ U}. On this set the dynamics is well-defined and the attractor
exists. Unfortunately an explicit description ofU0 on which the semigroup is defined is not
available.

Trajectory approach. Vishik and Zelik [374,375], Schulze, Vishik, Witt and Ze-
lik [347], Fiedler, Scheel and Vishik [159], Zelik [387] applied theory of trajectory at-
tractors to elliptic equations in cylindrical domains. In [374,347] it was proven that there
exists a trajectory attractor of the translation semigroup. In [375] it was proven that the
attractor is regular.

In the trajectory approach the setU = {u} again is the set of solutions of (163) which
are defined and bounded for allx0 � 0. Now the dynamics is defined on the functions that
depend both onx0 andx by the formula

Št :u(x0, x)→ u(x0 + t, x).

The setU is endowed with the topology of the Fréchet spaceH 2
loc(ω × [0,∞]), which

corresponds to convergence (non-uniform inT ) in H 2(ω× [0, T ]) for everyT . The semi-
groupŠt defined onU has a global attractorAU . The attractorA is given by (162). Note
that sinceC(ω×[0, T ];H 3/2(ω))⊂H 2(ω×[0, T ]) so defined attractor coincides with the
attractor of the multivalued semigroup in Theorem 4.1.4.

REMARK. Note that both the Cauchy data approach and trajectory approach allow to avoid
multivalued operators. At the same time the domains in which the semigroups are defined
are not explicitly given, they are defined in terms of global solutions of non-linear elliptic
equations. The advantage of the multivalued approach is that the space in which the semi-
group is defined is explicitly given. An important advantage of the trajectory approach
is that it allows to endowU with weaker topologies, for example one can take spaces of
functions on(ω × [0, T ]) which do not includeC(ω × [0, T ];E) and the restriction for
fixed x0 from such spaces may not belong toE. Therefore the trajectory approach allows
to prove existence of attractors in weaker topologies in some situations when the multival-
ued approach does not work and can be applied to more general non-linearities. The same



Global attractors in PDE 1065

observation holds for parabolic and hyperbolic problems without uniqueness, see [98].
For a recent review of the theory of trajectory attractors of elliptic equations in cylindri-
cal domains, in particular for upper and lower bounds for Kolmogorovε-entropy of these
attractors see Mielke and Zelik [306].

Estimates of dimension and invariant manifolds.The dynamical approach to elliptic
problems in cylindrical domains was initiated by Kirchgässner [254], he constructed local
invariant manifolds for such problems, see [127] for a recent review of the local theory.
Mielke [302] proved existence of an invariant essential manifold of the form (163) in the
cased = 1 when the linear operatorν& has a wide enough gap. The essential manifold
contains all bounded solutions and consequently contains the attractor, but it lacks the
exponential attraction property of inertial manifolds, though it has a property of weak nor-
mal hyperbolicity which implies proximity to the essential manifold of solutions which
are bounded on long intervals. Scheel [345] studied the caseγ → ∞ and proved exis-
tence of invariant manifolds and convergence of the dynamics to the dynamics of the limit
parabolic equation. Shapoval [355] proved the existence of an integral manifold for the
non-autonomous case when in (163)f (u) depends onx0, f (u)= f (u, x0).

Babin [19] proved existence of finite-dimensional invariant inertial manifoldsM corre-
sponding to elliptic systems of the form (163) when the spectrum ofν& has a wide enough
gap. The gap condition is always satisfied whend = 1 and is satisfied in the multidimen-
sional case for special domains, see [287]. The gap condition in [19] has the following
form. There should exist two consecutive eigenvalues ofν& such that

λN+1 − λN � 5 max
|v|�R

f ′(v), whereR = max
u∈A

‖u‖C(ω×(−∞,∞)).

When the gap condition holds, the fractal dimension ofA is not greater thanN . The method
of [19] is based on construction of an extended dynamical systemSt in the spaceE×EN ,
whereEN is N -dimensional space with has firstN eigenfunctions ofν& as the basis.
The orthoprojection inE =H3/2(ω) ontoEN is denoted byPN . The extended semigroup
is defined in the following way. First, the non-linearityf ′(u) is reduced to a globally
Lipschitz by a modification for large|u| � R. Then the following semi-Cauchy problem
for (163) is considered:

u|x0=0 = u0 ∈E, PN∂x0u|x0=0 = u+ ∈EN.
It has a unique solution for all(u0, u+) ∈ E × E+ in the class of exponentially growing
functions with an appropriate rate of growth. The semigroupSt in E ×EN of one-valued,
continuous operators is defined by the formula

St : (u0, u+)  → (u,PN∂x0u)|x0=t .

This semigroupSt has a finite-dimensional, exponentially attracting inertial manifoldM
which enjoys the tracking property. This manifold contains trajectories of all bounded and
slowly exponentially growing solutions of the extended system defined for−∞< x0<∞.
In particular, the projection of this manifold toE containsA. Therefore, the attractorA
has dimension not greater thanN .
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4.2. Non-autonomous equations and trajectory attractors

For a detailed systematic treatment of the theory of attractors of non-autonomous equations
and for references see a recent book of Chepyzhov and Vishik [98], here we introduce only
basic concepts of the theory. When (61) includes explicit time dependence it becomes
non-autonomous and operatorsSt do not form a semigroup anymore. A non-autonomous
equation has a form

∂tu= F(u, t). (166)

The simplest example is given by the equations of the form

∂tu= F0(u)+ f (t), (167)

where the forcing termf depends ont , f = f (t). We now consider the situation when
for a givenu0 = u(0) and f the solution exists and is unique (in appropriate classes).
The solution depends onu0 andf , u = u(f,u0), whereu0 is a time-independent vector
andf = f (t) is time-dependent. Now the solution operatorsu(0)  → u(t) do not form a
semigroup, one has to consider a semiprocessS(s, t) :u(s)  → u(t), t � s � 0. Processes
and semiprocesses generated by non-linear PDE were studied in many papers, see [123,
227,98,353].

The shift operatorTs :f (t)  → f (t + s) plays important role in the theory of non-
autonomous equations.

If u(t), t � 0, is a solution of (167) the shifted function(Tsu)(t)= u(t + s), t � 0, is a
solution of the shifted equation∂tu= F0(u)+ Tsf . We define an operator

Šs :
(
u(0), f (t)

)  → (u(f,u(0))(s),Tsf ) (168)

the operators̃Ss , s � 0, form a semigroup. This family of operators gives an example
of skew-product dynamics, see Miller [307], Sell [349], Sacker and Sell [342] and for a
detailed discussion Sell and You [353].

Following [98] we call the time-dependent part of Equation (166) thesymbolσ of the
equation, in (167) the symbol isσ = f (t); symbols also may includeu-dependent func-
tions. Usually the set of symbolsσ is endowed with an appropriate topology. For examples
of symbols see [98,36].

Similarly to (168) we can consider the dynamics on the set of trajectories

S̃s :
(
u(t), f (t)

)  → (u(t + s), f (t + s)). (169)

One may consider functions(u(t), f (t)), t � 0, as elements of a topological spaceΘ+
of time-dependent functions. A topology in this space is defined by convergence in an ap-
propriate norm on bounded intervals[t1, t2], for example(

∫ t2
t1
‖u(τ)‖2

0dτ)
1/2 for all pos-

itive t1, t2. This convergence can be described similarly to (171) by a metric, therefore
results of Section 1 are applicable. The closure of shiftsf (t + s) is called the hull off .
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Under appropriate conditions one can prove existence of the global attractor of this semi-

group{S̃T }. The attractor is called trajectory attractor (see [96]). This attractor consists of
solutionsu(t) defined for−∞< t <∞ and corresponding to an elementf̃ (t) of the hull
that is defined for−∞ < t <∞. The construction is directly applicable to 2D NS equa-
tions with time-dependent forcing termf (t) and can be easily generalized to more general
non-autonomous equations.

To treat the shift operatorTs :f (t)  → f (t+ s) it is convenient to introduce local Banach
spacesBloc([0,∞], Y ) of Y -valued functions.

If Y is a Banach space thenLp,loc([0,∞], Y ), 1� p � ∞, is a space ofY valued func-
tionsu(t), 0� t <∞, with Lp([0, T ], Y )-convergence on finite intervals:

f → f0 in Lp,loc
([0,∞], Y ) when‖f − f0‖Lp([0,T ],Y )→ 0 for everyT > 0.

(170)

One can introduce the metric inLp,loc([0,∞], Y )

0Lp,loc([0,∞],Y )(u, v)=
∞∑
n=0

2−n
‖u− v‖Lp([n,n+1],Y )

1+ ‖u− v‖Lp([n,n+1],Y )
. (171)

Convergence (170) is equivalent to the convergence generated by (171). The metric space
Lp,loc([0,∞], Y ) is complete.

Similarly, one introducesCkloc([0,∞], Y ) as a space ofk times continuously differen-
tiable,Y valued functionsu(t) with the convergence

u→ u0 in Ckloc

([0,∞], Y ) when‖f − f0‖Ck([0,T ],Y )→ 0 for everyT > 0,
(172)

the metric0Ckloc([0,∞],Y )(u, v) is introduced similarly to (171). Other spacesBloc([0,∞], Y ),
can be similarly introduced, for example Sobolev spacesW1

p,loc([0,∞], Y ) of Y valued
functions etc.

Miller [307] and Sell [348] introduced compactification of time dependence in non-
autonomous equations with general time dependences to study their dynamics, an impor-
tant concept used for this purpose is the hull.

DEFINITION 4.2.1. For an elementf (τ) of a topological functional spaceBloc([0,∞], Y )
we take all shiftsf (T + τ), T � 0, and define thehull of f

H(f )= closureBloc([0,∞],Y )
⋃
T�0

(
f (T + τ)).

A usual condition for the existence of a global attractor ofS̃t defined by (169) is the
compactness of the hullH(f ) in Bloc([0,∞], Y ) (see [98] for examples and details). Con-
ditions of theorems on attractors of non-autonomous equations include also conditions that
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are similar to conditions for the existence of a global attractor of an autonomous equation,
for example the existence of a bounded absorbing ball.

Note that the action of̃St on symbols is explicit and independent on the dynamics of the
equation, therefore it is possible to describe separately theu-component of the attractor,
see [98] for details.

As a typical example we consider a reaction–diffusion system of the form (72) withg =
g(x, t). The non-linearity satisfies conditions of the type of (74) (see Section 6.2 of [98]
for optimal conditions and details).

THEOREM 4.2.2. Let (74), (78) hold and the set{Tsg, s � 0} be precompact in
L2,loc([0,∞], (L2(Ω))

m). ThenS̃t possesses a global attractor in(L2(Ω))
m ×H(f ).

Further examples include non-autonomous parabolic and damped hyperbolic equations
and systems, Navier–Stokes system, see [98].

Note that the global attractor of a non-autonomous equation is invariant with respect to
time translations, whereas the non-autonomous equation itself is not. That leads to new in-
teresting phenomena. One such phenomenon concerns the dimension of a global attractor.
First we consider an elementary example.

EXAMPLE 4.2.3. Let us consider a linear system of ODE inCN

∂tyj =−yj + bj eiωj t , j = 1, . . . ,N.

The solution of this system has the form

yj = Cje−t + gj eiωj t , gj = bj

1+ iωj .

Obviously, every solution tends ast→∞ to the uniquely defined solution

yj = gj eiωj t . (173)

When the frequenciesωj are non-commesurable, the closure of the set given by (173) with
t ∈ R coincides with theN -dimensional torus{y: |yj | = |gj |, j = 1, . . . ,N}.

The above example shows that the attractor may have a high dimension even when the
dynamics is stable. It was shown by Chepyzhov and Vishik that similar effects exist in
much more complex situations and significantly change the dimension of attractors. For
example, an estimate of dimension of the global attractor of 2D Navier–Stokes system
obtained by Chepyzhov and Vishik when the forcing term includesN incommesurable
frequencies has the form dimFA � d0(G)+N whereG is the Grasshof number andd0(G)

is a usual estimate of the dimension for the case when the forcing term is time-independent,
see [98] for details.

For a detailed treatment of the theory of trajectory attractors and non-autonomous dy-
namics and for the bibliography see Chepyzhov and Vishik [96–98], Sell [351], Sell and
You [353].



Global attractors in PDE 1069

REMARK. When we have an equation with time-periodic coefficients with a given pe-
riod T0, a discrete time semigroup{St } = {St , t = nT0, n= 0,1, . . .} naturally arises. Many
aspects of the theory of global attractors of PDE with periodic coefficients are similar to
the theory of autonomous equations. In the scalar case the main differences arise from the
absence of a global Lyapunov function; the dynamics is essentially different, see Babin
and Chow [28] where the tracking property from Subsection 2.3.3 is extended to the case
of non-autonomous periodic and non-periodic slow time dependence.
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1. Introduction

In this work we discuss qualitative properties of solutions for Hamiltonian partial differ-
ential equations in the finite volume case. That is, when the space-variablex belongs to a
finite domain and appropriate boundary conditions are specified on the domain’s boundary
(or x belongs to the whole space, but the equation contains a potential term, where the
potential growths to infinity as|x| →∞, cf. below Example 5.5 in Section 5.2). Most of
these properties have analogies in the classical finite-dimensional Hamiltonian mechanics.
In the infinite-volume case properties of the equations become rather different due to the
phenomenon of radiation, and we do not touch them here.

Our bibliography is by no means complete.

NOTATION. By Tn we denote the torusTn = Rn/2πZn and writeT1 = S1; by Rn+—the
open positive octant inRn; by Z0—the set of non-zero integers. ByBδ(x;X) we denote
an openδ-ball in a spaceX, centred atx ∈ X. Abusing notation, we denote byx both
the space-variable and an element of an abstract Banach spaceX. For an invertible linear
operatorJ we setJ̄ =−J−1. The Lipschitz norm of a mapf from a metric spaceM to a
Banach space is defined as supm∈M ‖f (m)‖ + supm1 �=m2

‖f (m1)−f (m2)‖
dist(m1,m2)

.

2. Symplectic Hilbert scales and Hamiltonian equations

2.1. Hilbert scales and their morphisms

Let X be a real Hilbert space with a scalar product〈 ·, ·〉 = 〈 ·, ·〉X and a Hilbert basis
{ϕk | k ∈ Z̃}, whereZ̃ is a countable subset of someZn. Let us take a positive sequence
{θk | k ∈ Z̃} which goes to infinity withk. For anys we defineXs as a Hilbert space with
the Hilbert basis{ϕkθ−sk | k ∈ Z̃}. By ‖ · ‖s and〈 ·, ·〉s we denote the norm and the scalar
product inXs (in particular,X0 = X and 〈 ·, ·〉0 = 〈 ·, ·〉). The totality{Xs} is called a
Hilbert scale, the basis{ϕk}—the basis of the scaleand the scalar product〈 ·, ·〉—the
basic scalar product of the scale.

A Hilbert scale may be continuous or discrete, depending on whethers ∈ R or s ∈ Z.
The objects we define below and the theorems we discuss are valid in both cases.

A Hilbert scale{Xs} possesses the following properties:
(1) Xs is compactly embedded inXr if s > r and is dense there;
(2) the spacesXs andX−s are conjugated with respect to the scalar product〈 ·, ·〉. That

is, for anyu ∈Xs ∩X0 we have

‖u‖s = sup
{〈u,u′〉 | u′ ∈X−s ∩X0,‖u′‖−s = 1

};
(3) the norms‖ · ‖s satisfy the interpolation inequality; linear operators in the spaces

Xs satisfy the interpolation theorem.
Concerning these and other properties of the scales see [77] and [59].
For a scale{Xs} we denote byX−∞ andX∞ the linear spacesX−∞ =⋃Xs andX∞ =⋂
Xs .
Scales of Sobolev functions are the most important for this work:
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EXAMPLE 2.1. Basic for us is the Sobolev scale of functions on thed-dimensional torus
{Hs(Td ;R)=Hs(Td)}. A spaceHs(Td) is formed by functionsu :Td → R such that

u=
∑
l∈Zd

ule
il·x, C " ul = ū−l , ‖u‖2

s =
∑
l

(
1+ |l|)2s |ul |2<∞.

The basis{ϕk} is formed by all distinct properly normalised functions Reeil·x and Imeil·x ,
l ∈ Zd .

We shall also use the sub-scale{Hs(Td)0}, where a spaceHs(Td)0 consists of functions
fromHs(Td) with zero mean-value.

EXAMPLE 2.2. Consider the scale{Hs0(0,π)}, where a spaceHs0 = Hs0(0,π) is formed
by the odd 2π -periodic functionsu=∑∞

k=1uk sinkx such that‖u‖2
s =
∑ |k|2s |uk|2<∞.

Since{sinnx} is a complete system of eigenfunctions of the operator−& in L2(0,π) with
the domain of definition{u ∈ H 2(0,π) | u(0) = u(π) = 0}, then an equivalent definition
of these spaces is thatHs0 =D(−&)s/2 (see [77]). In particular,

H 1
0 = {u ∈H 1(0,π) | u(0)= u(π)= 0

}
, H 2

0 =H 2(0,π)∩H 1
0 ,

(2.1)
H 3

0 = {u ∈H 3(0,π) | u(0)= uxx(0)= u(π)= uxx(π)= 0
}
.

Given two scales{Xs}, {Ys} and a linear mapL :X∞ → Y−∞, we denote by‖L‖s1,s2 �
∞ its norm as a mapXs1 → Ys2. We say thatL defines a (linear) morphism of orderd
of the two scales fors ∈ [s0, s1], s0 � s1,1 if ‖L‖s,s−d <∞ for every s ∈ [s0, s1]. If in
addition the inverse mapL−1 exists and defines a morphism of order−d of the scales{Ys}
and {Xs} for s ∈ [s0 + d, s1 + d], we say thatL defines anisomorphism of orderd for
s ∈ [s0, s1]. If {Xs} = {Ys}, then an isomorphism is called anautomorphism.

EXAMPLE 2.3. Multiplication by a non-vanishingCr -smooth function defines a zero-
order automorphism of the Sobolev scale{Hs(Tn)} for −r � s � r .

If L is a morphism of scales{Xs}, {Ys} of orderd for s ∈ [s0, s1], then adjoint mapsL∗
form a morphism of the scales{Ys} and{Xs} of the same orderd for s ∈ [−s1+d,−s0+d].
It is called theadjoint morphism.

If L = L∗ (L = −L∗) on the spaceX∞, then the morphismL is called symmetric
(antisymmetric).

If L is a symmetric morphism of{Xs} of orderd for s ∈ [s0, d − s0], wheres0 � d/2,
then the adjoint morphismL∗ is defined fors ∈ [s0, d − s0] and coincide withL onX∞;
hence,L∗ = L. We callL a selfadjoint morphism. Anti-selfadjoint morphisms are defined
similarly.

EXAMPLE 2.4. The operator& defines a selfadjoint morphism of order 2 of the Sobolev
scale{Hs(Tn)} for −∞< s <∞. The operators∂/∂xj , 1� j � n, define anti-selfadjoint
morphisms of order one. The automorphism in Example 1.1 is selfadjoint.

1Or s ∈ (s0, s1), etc.
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Let {Ys}, {Ys} be two scales andOs ⊂ Xs , s ∈ [a, b], be a system of (open) domains,
compatible in the following sense:

Os1 ∩Os2 =Os2 if a � s1 � s2 � b.

Let F :Oa → Y−∞ be a map such that for everys ∈ [a, b] its restriction toOs defines
an analytic (Ck-smooth) mapF :Os → Ys−d . ThenF is called an analytic (Ck-smooth)
morphism of orderd for s ∈ [a, b].

EXAMPLE 2.5. Let{Xs} be the Sobolev scale{Hs(Td)} andf (u, x) be a smooth function.
Then the mapF :u(x)  → f (u(x), x), Xa → Xa , is smooth ifa > d

2 , so on these spaces
ordF = 0. If f is analytic, then so isF .

Now let us assume thatd = 1, f is analytic,f (0, x) ≡ 0 and considerF as a map
in the scale{Hs0 = Hs0(0,π), s ∈ Z}. For s � 1 the mapF :Hs0 → Hs(0,π) is analytic.
SinceFu(0)= Fu(π)= 0, then due to (2.1) fors = 1 ands = 2 F(Hs0)⊂Hs0 . So on the
spacesH 1

0 andH 2
0 we have ordF = 0. Since in general foru ∈H∞

0 , F(u) ∈H 2
0 but /∈H 3

0
(see (2.1)), then on the spacesHs0 , s � 3, we have ordF > 0.

If f (u, x) is odd inu and even inx (e.g., isx-independent), or vice versa, thenF(Hs0)⊂
Hs0 for s � 1, so ordF = 0 for anys � 1.

Given aCk-smooth functionH :Xd ⊃ Od → R, k � 1, we consider itsgradient map
with respect to the paring〈 ·, ·〉:

∇H :Od →X−d,
〈∇H(u), v〉= dH(u)v ∀v ∈Xd.

The map∇H isCk−1-smooth.
If Od belongs to a system of compatible domainsOs , a � s � b, and the gradient

map∇H defines aCk−1-smooth morphism of orderdH for a � s � b, we write that
ord∇H = dH .

2.2. Symplectic structures

For simplicity we restrict ourselves to constant-coefficient symplectic structures. For the
general case see [59].

Let {Xs} be a Hilbert scale andJ be its anti-selfadjoint automorphism of orderd for
−∞< s <∞. Then the operator̄J =−J−1 defines an anti-selfadjoint automorphism of
order−d . We define a two-formα2 as

α2 = J̄ dx ∧ dx,

where by definitionJ̄ dx ∧ dx [ξ, η] = 〈J̄ ξ, η〉. Clearly, J̄ dx ∧ dx defines a continuous
skew-symmetric bilinear form onXr × Xr if r � −d/2. Therefore any spaceXr , r �
−d/2, becomes asymplectic(Hilbert) spaceand we shall write it as a pair(Xr,α2).

The pair({Xs}, α2) is called asymplectic(Hilbert) scale.
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EXAMPLE 2.6. Let us take the index-setZ to be the union of non-intersecting subsetsZ+
andZ−, provided with an involutionZ → Z which will be denotedj  → −j , such that
−Z± =Z∓. Let us consider a Hilbert scale{Xs} with a basis{φk , k ∈ Z} and a sequence
{θk, k ∈Z}, such thatθ−j ≡ θj . TakeJ to be the linear operator, defined by the relations

Jφk = φ−k ∀k ∈Z+, Jφk =−φ−k ∀k ∈Z−.

It defines an anti-selfadjoint automorphism of the scale of zero order, andJ̄ = J . The
symplectic scale({Xs}, α2 = J̄ dx ∧ dx = J dx ∧ dx) will be called aDarboux scale.

Let ({Xs}, α2 = J̄ dx∧dx) and({Ys}, β2 = Υ dy∧dy) be two symplectic Hilbert scales
andOs ⊂Xs , a � s � b, be a system of compatible domains. AC1-smooth morphism of
orderd1

F :Os → Ys−d1, a � s � b,

is symplecticif F ∗β2 = α2. That is, if〈ΥF∗(x)ξ,F∗(x)η〉Y ≡ 〈J̄ ξ, η〉X, or

F ∗(x)Υ F∗(x)= J̄ ∀x.

A symplectic morphismF as above is called asymplectomorphismif it is a diffeomor-
phism.

2.3. Hamiltonian equations

To aC1-smooth functionh on a domainOd ⊂Xd , the symplectic formα2 as above corre-
sponds theHamiltonian vector fieldVh, defined by the usual relation (cf. [2,43]):

α2
[
Vh(x), ξ

]=−dh(x)ξ ∀ξ.

That is,〈J̄ Vh(x), ξ 〉 ≡ −〈∇h(x), ξ 〉 and

Vh(x)= J∇h(x).

The vector fieldVh defines a continuous mapOd →X−d−dJ . Usually we shall assume that
Vh is smoother than that and defines a smooth morphism of orderd1 � 2d + dJ for all s
from some segment.

For anyC1-smooth functionh onOd ×R we denote byVh the non-autonomous vector
field Vh(x, t)= J∇xh(x, t), where∇x is the gradient inx, and consider the corresponding
Hamiltonian equation(or Hamiltonian system)

ẋ = J∇xh(x, t)= Vh(x, t). (2.2)

A partial differential equation, supplemented by some boundary conditions, is called
a Hamiltonian partial differential equation, or anHPDE, if under a suitable choice of a
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symplectic Hilbert scale({Xs}, α2), a domainOd ⊂ Xd and a Hamiltonianh, it can be
written in the form (2.2). In this case the vector fieldVh is unbounded, ordVh = d1 > 0.
That is,

Vh :Od ×R →Xd−d1.

UsuallyOd belongs to a system of compatible domainsOs , s � d0, andVh (as a function
of x) defines an analytic morphism of orderd1 for s � d0.

A continuous curvex : [t0, t1] → Od is called asolution of(2.2) in the spaceXd if it
defines aC1-smooth mapx : [t0, t1]→Xd−d1 and both parts of (2.2) coincide as curves in
Xd−d1. A solutionx is calledsmoothif it defines a smooth curve in each spaceXs .

If a solutionx(t), t � t0, of (2.2) such thatx(t0) = x0 exists and is unique, we write
x(t1) = St1t0x0, or x(t1) = St1−t0x0 if the equation is autonomous (we do not assume that
t1 � t0). The operatorsSt1t0 andSt are calledflow-mapsof the equation. Clearly,St1t0 equals

(S
t0
t1
)−1 on a joint domain of definition of the two operators.

A non-linear PDE is calledstrongly non-linearif its non-linear part contains as many
derivatives as the linear part. Strongly non-linear Hamiltonian PDEs may possess rather
unpleasant properties. In particular, for some of them, every non-zero solution develops a
singularity in finite time, see an example in Section 1.4 of [59].

We shall call a non-linear PDEquasilinearif its non-linear part contains less derivatives
then the linear one. A quasilinear equation can be written in the form (2.2) with

h(x, t)= 1

2
〈Ax,x〉 + h0(x, t), (2.3)

whereA is a linear operator which defines a selfadjoint morphism of the scale (so
∇h(x, t)=Ax +∇h0(x, t)) and ord∇h0< ordA.

The class of Hamiltonian PDEs contains many important equations of mathematical
physics, some of them are discussed below. The first difficulty one comes across when
studies this class is absence of a general theorem which would guarantee that (locally in
time) an equation has a unique solution.2 Such a theorem exists for semilinear equations,
where Equation (2.2) will be calledsemilinearif its Hamiltonian has the form (2.3) and
ordJ∇h0 � 0 (see [69] and Section 1.4 of [59]).

EXAMPLE 2.7 (Equations of the Korteweg–de Vries type). Let us take for{Xs} the scale
of zero mean-value Sobolev spacesHs(S1)0 as in Example 2.1 and chooseJ = ∂/∂x, so
dJ = 1. For a Hamiltonianhwe takeh(u)= ∫ 2π

0 (−1
8u

′(x)2+f (u)) dx with some analytic
functionf (u). Then∇h(u)= 1

4u
′′ + f ′(u) and the equation takes the form

u̇(t, x)= 1

4
u′′′ + ∂

∂x
f ′(u).

For f (u) = 1
4u

3 we get the classical Korteweg–de Vries (KdV) equation. The mapVh
defines an analytic morphism of order 3 of the scale{Xs}, for s > 1/2. The equation

2Still, see [47] for a theory which applies to some classes of quasilinear HPDEs.
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has the form (2.2), (2.3), where ordJA = 3 and ordJ∇h0 = 1. It is quasilinear, but not
semilinear.

EXAMPLE 2.8 (NLS—non-linear Schrödinger equation). Let Xs = Hs(Tn;C), where
this Sobolev space is treated as a real Hilbert space, and the basic scalar product of the
scale is〈u,v〉 = Re

∫
uv̄ dx. ForJ we take the operatorJu(x)= iu(x), so ordJ = 0 and

({Xs}, J̄ du∧ du) is a Darboux scale. We choose

h(u)= 1

2

∫
Tn

(|∇u|2 + V (x)|u|2 + g(x,u, ū))dx,
whereV is a smooth real function andg(x,u, v) is a smooth function, real ifv = ū. Then
∇h(u)=−&u+ V (x)u+ ∂

∂ū
g and (2.2) takes the form

u̇= i
(
−&u+ V (x)u+ ∂

∂ū
g(x,u, ū)

)
, u= u(t, x), x ∈ Tn. (2.4)

This is a semilinear Hamiltonian equation in any spaceXd0, d0> n/2, with ordA= 2 and
ord∇h0 = 0.

Non-linear Schrödinger equation (2.4) withn= 1,V (x)= const andg = γ |u|4, γ �= 0,
is called theZakharov–Shabat equation. The equation withγ > 0 is calleddefocusingand
with γ < 0—focusing.

EXAMPLE 2.9 (1D NLS with Dirichlet boundary conditions). Let us choose forXs the
spaceHs0(0,π;C) (see Example 2.2),Ju(x)= iu(x) and

h(u)= 1

2

∫ π
0

(|ux |2 + V (x)|u|2 + g(x, |u|2))dx,
whereg is smooth and 2π -periodic inx. Now ∇h(u) = −uxx + V (x)u + f (x, |u|2)u,
wheref = ∂g

∂|u|2 , and (2.2) becomes

u̇= i(−uxx + V (x)u+ f (x, |u|2)u), u(0)= u(π)= 0. (2.5)

For s = 1 and 2 the non-linear term defines a smooth mapXs →Xs (see Example 2.5), so
in these spaces this is a semilinear equation with ordA= 2 and ord∇h0 = 0. If in addition
f is even inx, then the non-linear term defines a smooth map for everys � 1. This map is
analytic iff is.

EXAMPLE 2.10 (Non-linear wave equations). Now letXs =Hs(Tn)×Hs(Tn) andα2 =
J̄ dη ∧ dη, whereη= (u, v) andJ (u, v)= J̄ (u, v)= (−v,u). Let

h(u, v)=
∫

Tn

(
1

2
v2 + 1

2
|∇u|2 − f (x,u)

)
dx. (2.6)
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The corresponding Hamiltonian equation is

u̇=−v, v̇ =−&u− f ′
u(x,u). (2.7)

Or

ü=&u+ f ′
u(x,u), u= u(t, x), x ∈ Tn. (2.8)

This is anon-linear wave equation(with the periodic boundary conditions). We have seen
that this equation can be re-written as the system (2.7) which is an HPDE. This Hamiltonian
form of the equation is inconvenient since the quadratic part of the Hamiltonian (2.6) cor-
responds to the linear operator(u, v)→ 1

2(−&u,v) which does not define an isomorphism
of the scale{Xs} (of some orderm). It turns out that the non-linear wave equation (2.8) ad-
mits another Hamiltonian representation (2.2), where the Hamiltonianh has the form (2.3),
the operatorA defines an isomorphism of the scale and ordA<ord∇h0 (so the equation is
quasilinear). We note that the corresponding linear operatorJA is notdifferential. See [52]
and [59], also see below Section 4.3, where the non-linear wave equationü= uxx − sinu
(the Sine-Gordon equation) is considered in details.

3. Basic theorems on Hamiltonian systems

Basic theorems from the classical Hamiltonian formalism (see [2,43]) remain true for
Hamiltonian equations (2.2) in Hilbert scales, provided that the theorems are properly for-
mulated. In this section we present three corresponding results. Their proofs can be found
in [52,59].

Let ({Xs}, α2 = J̄ dx ∧ dx) and({Ys}, β2 = Υ dy ∧ dy) be two symplectic scales and
(for simplicity) ordJ = ordΥ = dJ � 0. LetΦ :Q→O be aC1-smooth symplectic map,
whereQ andO are domains inYd andXd , d � 0. If dJ > 0, we have to assume that

(H1) for any|s| � d linearised mapsΦ∗(y), y ∈Q, define linear mapsYs →Xs which
continuously depend ony.

The first theorem states that symplectic maps transform Hamiltonian equations to Hamil-
tonian:

THEOREM 3.1. LetΦ :Q→O be a symplectic map as above(so (H1) holds ifdJ > 0).
Let us assume that the vector fieldVh of Equation(2.2) defines aC1-smooth mapVh :
O × R →Xd−d1 of orderd1 � 2d and that this vector field is tangent to the mapΦ (i.e.,
for everyy ∈Q and everyt the vectorVh(Φ(y), t) belong to the range of the linearised
mapΦ∗(y)). ThenΦ transforms solutions of the Hamiltonian equationẏ = Υ∇yH(y, t),
whereH = h ◦Φ, to solutions of(2.2).

COROLLARY 3.2. If under the assumptions of Theorem3.1 {Xs} = {Ys} andh ◦Φ = h,
Φ∗α2 = α2, thenΦ preserves the class of solutions for(2.2).
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For Hamiltonian PDEs (and for Hamiltonian equations (2.2)) Theorem 2.1 plays the
same role as its classical finite-dimensional counterpart plays for usual Hamiltonian equa-
tions: it is used to transform an equation to a normal form, usually in the vicinity of an
invariant set (e.g., of an equilibrium).

To apply Theorem 3.1 one needs regular ways to construct symplectic transformations.
For classical finite-dimensional systems symplectic transformations usually are obtained
either via generating functions, or as Lie transformations (i.e., as flow-maps of additional
Hamiltonians), see [2,43,40]. For infinite-dimensional symplectic spaces generating func-
tions play negligible role, while the Lie transformations remain an important tool. An easy
but important corresponding result is stated in the theorem below.

Let ({Xs}, α2) be a symplectic Hilbert scale as above andO be a domain inXd .

THEOREM3.3. Letf be aC1-smooth function onO×R such that the mapVf :O×R →
Xd is Lipschitz in(x, t) andC1-smooth inx. LetO1 be a subdomain ofO. Then the flow-
mapsSτt : (O1, α2)→ (O,α2) are symplectomorphisms(provided that they mapO1 toO).
If the mapVf is Ck-smooth or analytic, then the flow-maps areCk-smooth or analytic as
well.

The assumption that the mapVf is Lipschitz can be replaced by the much weaker
assumption that for a solutionx(t) of the equationẋ = Vf (x), the linearised equation
ξ̇ = Vf ∗(x(t))ξ is such that its flow maps are bounded linear transformations of the
spaceXd . See [59].

Usually Theorem 3.3 is applied in the situation when|f | 2 1, or |t − τ | 2 1. In these
cases the flow-maps are close to the identity and the corresponding transformations of the
space ofC1-smooth functions onO, H  →H ◦ Sτt , can be written as Lie series (cf. [40]).
In particular, the following simple result holds:

THEOREM 3.4. Under the assumptions of Theorem3.3, let H be aC1-smooth function
onO. Then

d

dτ
H
(
Sτt (x)
)= {f,H }(Sτt (x)), x ∈O1. (3.1)

In this theorem{f,H } denotes thePoisson bracketof the two functions:

{f,H }(x)= 〈J∇f (x),∇H(x)〉.
It is well defined sinceJ∇f = Vf ∈Xd by assumptions.

Theorem 3.3 and formula (3.1) make from symplectic flow-mapsSτt a tool which is
well suited to prove KAM-theorems for Hamiltonian PDEs, see the scheme of the proof of
Theorem 5.1 in Section 5.1 below.

An immediate consequence of Theorem 3.4 is that for an autonomous Hamiltonian equa-
tion ẋ = J∇f (x) such that ordJ∇f = 0, aC1-smooth functionH is an integral of mo-
tion3 if and only if {f,H } ≡ 0.

3That is,H(x(t)) is a time-independent quantity for any solutionx(t).
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If d ′ = ordJ∇f > 0 andO =Od belongs to a system of compatible domainsOs ⊂Xs ,
s ∈ [d0, d], whered0 = d − d ′, thenH such that{f,H } ≡ 0 is an integrable of motion for
the equatioṅx = J∇f (x), provided that

ordJ∇f = d ′ and ord∇H = dH for s ∈ [d0, d],

whered ′ + dH � 2d . Indeed, sinced0 − dH � −d0, thenH is a C1-smooth function
onOd0. Since any solutionx(t) is aC1-smooth curve inOd0 by the definition of a solution,
then

d

dt
H(x)= 〈∇H(x), ẋ〉= 〈∇H(x), J∇f (x)〉= {f,H }(x)= 0.

In particular,f is an integral of motion for the equatioṅx = J∇f (x) in Od if we have
ordJ = dJ and ord∇f = df for s = d and fors ∈ [d, d−df −dJ ], whered � df +dJ /2.
That is, if the equation is being considered in sufficiently smooth spaces.

EXAMPLE 3.5. Let us consider a non-linear Schrödinger equation (2.5) such that
g(u, ū) = g0(|u|2), and takeH(u) = ‖u‖2

0 = |u|2L2
. Now d ′ := ordJ∇f = 2 for s ∈

(n/2,∞), and ord∇H = 0. Elementary calculations show that{f,H } ≡ 0. SoL2-norm is
an integral of motion for solutions of (2.5) inXs if s > n/2+2. (In fact this result remains
true for solutions of much lower smoothness, see [15].)

4. Lax-integrable equations

4.1. General discussion

Let us take a Hamiltonian PDE and write it as a Hamiltonian equation in a suitable sym-
plectic Hilbert scale({Xs}, α2 = J̄ du∧ du):

u̇= J∇H(u). (4.1)

This equation is called Lax-integrable if there exists an additional Hilbert scale{Zs} (real
or complex), and finite order linear morphismsLu andAu of this scale which depend on
the parameteru ∈X∞, such that a curveu(t) is a smooth solution for (4.1) if and only if

d

dt
Lu(t) = [Au(t),Lu(t)]. (4.2)

The operatorsAu andLu, treated as morphisms of the scale{Zs}, are assumed to depend
smoothly onu ∈ Xd whered is sufficiently large, so the left-hand side of (4.2) is well
defined (for details see [59]). The pair of operatorsL, A is called theLax pair.4

4Due to a deep result by Krichever and Phong [48], any Lax-integrable PDE is a Hamiltonian system. The
corresponding symplectic structure belongs to a bigger class than that described in Section 2.2, so to apply our
techniques we need to assume a priori that the equation has the form (4.1).



1098 S.B. Kuksin

In most known examples of Lax-integrable equations the relation between the scales
{Xs} and {Zs} is the following: spacesXs are formed byT -periodic Sobolev vector-
functions, whileA andL are differential or integro-differential operators withu-dependent
coefficients, acting in a scale{Zs} of T L-periodic Sobolev vector-functions. HereL is
some fixed integer.

Let u(t) be a smooth solution for (4.1). We setLt = Lu(t) andAt =Au(t).

LEMMA 4.1. Letχ0 ∈ Z∞ be a smooth eigenvector ofL0, i.e.,L0χ0 = λχ0. Let us assume
that the initial-value problem

χ̇ =Atχ, χ(0)= χ0, (4.3)

has a unique smooth solutionχ(t). Then

Ltχ(t)= λχ(t) ∀t. (4.4)

PROOF. Let us denote the left-hand side of (4.4) byξ(t), the right-hand side—byη(t) and
calculate their derivatives. We have:

d

dt
ξ = d

dt
Lχ = [A,L]χ +LAχ =ALχ =Aξ

and

d

dt
η= d

dt
λχ = λAχ =Aη.

Thus, bothξ(t) andη(t) solve the problem (4.3) withχ0 replaced byλχ0 and coincide by
the uniqueness assumption. �

Due to this lemma the discrete spectrum of the operatorLu is an integral of motion for
Equation (4.1). In particular, a setT formed by all smooth vectorsu ∈ X∞ such that the
eigenvalues of the operatorLu belong to a fixed subset ofC × C × · · · , is invariant for
the flow of Equation (4.1). A remarkable discovery, made by Novikov [68] and Lax [61],
is that for integrable Hamiltonian PDEs, considered on finite space-intervals with suitable
boundary conditions, some setsT as above are finite-dimensional symplectic submanifolds
T 2n of all symplectic spaces(Xs,α2), and restriction of Equation (4.1) to anyT 2n is an
integrable Hamiltonian system. Moreover, for some integrable equations it is known that
the union of all these manifoldsT 2n is dense in every spaceXs . Solutions that fill a man-
ifold T 2n are calledfinite-gap solutions, and the manifold itself—afinite-gap manifold.
See, e.g., [32,83,8,59].
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4.2. Korteweg–de Vries equation

The KdV equation

u̇= 1

4

∂

∂x

(
uxx + 3u2), u(t, x)≡ u(t, x + 2π),

∫ 2π

0
udx ≡ 0, (4.5)

takes the form (4.1) in the symplectic Hilbert scale({Xs}, α2 = J̄ du ∧ du), whereXs is
the Sobolev spaceHs(S1)0 andJu= (∂/∂x)u, see Example 2.7. Due to Lax himself, this
equation is Lax-integrable and the corresponding Lax pair is

Lu =− ∂2

∂x2
− u, Au = ∂3

∂x3
+ 3

2
u
∂

∂x
+ 3

4
ux.

Taking for {Zs} the Sobolev scale of 4π -periodic functions and applying Lemma 4.1 we
obtain that smooth 4π -periodic spectrum of the operatorLu is an integral of motion. It is
well known that the spectrum ofLu is formed by eigenvalues

λ0< λ1 � λ2< λ3 � λ4< · · · ↗∞,

and that the corresponding eigenfunctions are smooth, provided that the potentialu is. Let
us take any integern-vectorV,

V = (V1, . . . , Vn) ∈ Nn, V1< · · ·<Vn.

Denoting∆j = λ2j − λ2j−1 � 0, j = 1,2, . . . , we define the setT 2n
V as

T 2n
V = {u(x) |∆j �= 0 iff j ∈ {V1, . . . , Vn}

}
.

ClearlyT 2n
V equals to the unionT 2n

V =⋃r∈Rn+ T
n
V(r), whereRn+ = {r | rj > 0∀j} and

T nV(r)=
{
u(x) ∈ T 2n

V |∆j = rj ∀j
}
.

Since the 4π -periodic spectrum{λj } is an integral of motion for (KdV), then the sets
T nV(r) are invariant for the KdV-flow. Due to the classical theory of the Sturm–Liouville
operatorLu, the setT 2n

V is a smooth submanifold of any spaceXs , foliated to the smooth
n-tori T nV(r). For all these results see, e.g., [46].

Due to Novikov and Lax, there exist an analytic mapΦ =ΦV : {(r, ξ)} = Rn+×Tn→Xs
(s is any integer), and an analytic functionh= hn(r) such thatT nV(r)=Φ({r} ×Tn), and
for any ξ0 ∈ Tn the curveu(t) = Φ(r, ξ0 + t∇h(r)) is a smooth solution for (4.5). As a
function oft , this solution is quasiperiodic.5 The celebrated Its–Matveev formula explicitly
representsΦ in terms of theta-functions, see in [32,31,8,59].

5A continuous curveu :R → X is quasiperiodic if there existn ∈ N, φ ∈ Tn, ω ∈ Rn and a continuous map
U :Tn→X such thatu(t)=U(φ + tω).
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4.3. Other examples

Sine-Gordon. The Sine-Gordon (SG) equation on the circle

ü= uxx(t, x)− sinu(t, x), x ∈ S1 = R/2πZ,

is another example of a Lax-integrable HPDE.
First the equation has to be written in a Hamiltonian form. The most straightforward

way to do this is to write (SG) as the system

u̇=−v, v̇ =−uxx + sinu(t, x).

One immediately sees that this system is a semilinear Hamiltonian equation in the sym-
plectic scale({Xs = Hs(S)×Hs(S)}, α2 = J̄ dη ∧ dη), whereη = (u, v) andJ (u, v) =
(−v,u).

Now we derive another Hamiltonian form of (SG), more convenient for its analysis. To
do this we consider the shifted Sobolev scale{Xs = Hs+1(S1) × Hs+1(S1)}, where the
spaceX0 is given the scalar product

〈ξ1, ξ2〉 =
∫
S1

(
ξ ′1x · ξ ′2x + ξ1 · ξ2

)
dx,

and any spaceXs—the product〈ξ1, ξ2〉s = 〈Asξ1, ξ2〉. Here A is the operatorA =
−∂2/∂x2 + 1. Obviously,A defines a selfadjoint automorphism of the scale of order one.
The operatorJ (u,w)= (−√

Aw,
√
Au) defines an anti-selfadjoint automorphism of the

same order. We provide the scale with the symplectic formβ2 = J̄ dξ ∧ dξ . We note that
(SG) can be written as the system

u̇=−√
Aw, ẇ =√

A
(
u+A−1f ′(u(x))), (4.6)

where f (u) = −cosu − 1
2u

2, and that (4.6) is a semilinear Hamiltonian equation in
the symplectic scale as above with the HamiltonianH(ξ) = 1

2〈ξ, ξ 〉 +
∫
f (u(x)) dx,

ξ = (u,w).
Let us denote byXos (Xes ) subspaces ofXs formed by odd (even) vector functionsξ(x).

Then({Xos }, β2) and({Xes }, β2) are symplectic sub-scales of the scale above. The spaceXos
andXes (with s � 0) are invariant for the flow of Equation (4.6). The restricted flows cor-
respond to the SG equation under the odd periodic and even periodic boundary conditions,
respectively.

The SG equation is Lax-integrable under periodic, odd periodic and even periodic
boundary conditions. That is, Equation (4.6) is Lax-integrable in the all three symplec-
tic scales defined above. See [8,59].
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Zakharov–Shabat equation.Let us take the symplectic Hilbert scale (Xs = Hs(S1,C),
J̄ du∧du) as in the Example 2.8. The defocusing and focusing Zakharov–Shabat equations

u̇= i(−uxx +mu± γ |u|2u), γ > 0, (4.7)

both are Lax-integrable, see [83,8].

5. KAM for PDEs

In this section we discuss the ‘KAM for PDEs’ theory. Here we cover all relevant top-
ics, except the theory of time-periodic solutions of Hamiltonian PDEs. The latter is re-
viewed in the Appendix, written by Dario Bambusi. We avoid completely the classical
finite-dimensional KAM-theory which deals with time-quasiperiodic solutions of finite-
dimensional Hamiltonian systems and instead refer the reader to the recent survey [78].

5.1. An abstract KAM-theorem

Let ({Xs}, α2 = J̄ du ∧ du) be a symplectic Hilbert scale,−dJ = ordJ̄ � 0; A be an
operator which defines a selfadjoint automorphism of the scale of orderdA � −dJ andH
be a Fréchet–analytic functional onXd0, d0 � 0, such that ord∇H = dH < dA:

∇H :Xd0 →Xd0−dH .

We assume thatdA � 2d0, so the quadratic form1
2〈Au,u〉 is well defined on the spaceXd0.

In this section we consider the quasilinear Hamiltonian equation with the Hamiltonian
Hε(u)= 1

2〈Au,u〉 + εH(u):

u̇(t)= J (Au(t)+ ε∇Hu(t)). (5.1)

We assume that the scale{Xs} admits a basis{ϕk, k ∈ Z0 = Z\{0}} such that

Aϕ±j = λAj ϕ±j , Jϕ±j =∓λJj ϕ±j ∀j � 1, (5.2)

with some real numbersλJj , λAj . In particular, the spectrum of the operatorJA is {±iλj |
λj = λJj λAj }. The numbersλj are called thefrequenciesof the linear system

u̇= JAu. (5.3)

Let us fix anyn� 1. Then the 2n-dimensional linear space

span
{
ϕ±j | 1� j � n

}
(5.4)
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is invariant for Equation (5.3) and is foliated to the invariant tori

T n = T n(I )=
{

n∑
j=1

u±j ϕ
±
j | uj+2 + uj−2 = 2Ij ∀j

}
. (5.5)

If I ∈ Rn+, thenT n(I ) is ann-torus. Providing it with the coordinatesq = (q1, . . . , qn),
whereqj = Arg(u+j + iu−j ), we see that Equation (5.3) defines onT n(I ) the motion

q̇ = (λ1, . . . , λn)=: ω. (5.6)

So all solutions for the linear equation inT n(I ) are quasiperiodic curves with the frequ-
ency-vectorω. Our goal in this section is to present and discuss a KAM-theorem which
implies that under certain conditions ‘most of’ trajectories of Equation (5.6) on the torus
T n(I ) persist as time-quasiperiodic solutions of the perturbed equation (5.1), ifε > 0 is
sufficiently small.

To state the result we assume that the operatorA and the functionH analytically depend
on an additionaln-dimensional parametera ∈ A, whereA is a connected bounded open
domain inRn. Thenλj = λj (a). We assume that the firstn frequenciesλl = ωl depend on
a in the non-degenerate way:

(H1) det{∂ωl/∂ak | 1� k, l � n} �≡ 0;
and that the following spectral asymptotic holds:

(H2) |λj (a)−K1j
d1 −K1

1j
d1

1 −K2
1j
d2

1 − · · · | �Kjd̃, Lip λj � j d̃ ,
whered1 := dA + dJ � 1, K1 > 0, d̃ < d1 − 1 and the dots stand for a finite sum with
exponentsd1> d

1
1 > d

2
1 > · · · .

Let us denote byXcs the complexification of a spaceXs and assume that Equation (5.1)
is quasilinear and analytic:

(H3) the setXd0 ×A admits inXcd0
× Cn a complex neighbourhoodQ such that the

map∇xH :Q→Xcd0−dH is complex-analytic and bounded uniformly on bounded

subsets ofQ. Moreover,dH + dJ � d̃ .
Finally, we shall need the following non-resonance condition:
(H4) For all integern-vectorss and(M2 − n)-vectorsl such that|s| �M1, 1� |l| � 2

we have,

s ·ω(a)+ ln+1λn+1(a)+ · · · + lM2λM2(a) �≡ 0, (5.7)

where the integersM1> 0 andM2> n are to be specified.
Relations (5.7) with|l| = 1 and|l| = 2 are called, respectively, the first and the second

Melnikov condition.
Let us fix anyI0 ∈ Rn+ and denote byΣ0 the mapTn ×A→Xd0 which sends(q, a) to

the point of the torusT n(I0) with the coordinateq.

THEOREM 5.1. Suppose the assumptions(H1)–(H3) hold. Then there exist integers
M1> 0 andM2 > n such that if(H4) is fulfilled, then for arbitraryγ > 0 and for suf-
ficiently smallε < ε̄(γ ), a Borel subsetAε ⊂A and a Lipschitz mapΣε :Tn×Aε →Xd0,
analytic inq ∈ Tn, can be found with the following properties:
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(a) mes(A\Aε)� γ ;
(b) the mapΣε isCε-close toΣ0|Tn×Aε in the Lipschitz norm;
(c) each torusΣε(Tn × {a}), a ∈ Aε, is invariant for the flow of Equation(5.1) and

is filled with its time-quasiperiodic solutions of the formuε(t;q)=Σε(q + ω′t, a),
q ∈ Tn, where the frequency vectorω′(a) isCε-close toω(a) in the Lipschitz norm;

(d) the solutionsuε are linearly stable.6

If ∇H defines an analytic map of orderdH on every spaceXd , d � d0, then the solutions
uε, constructed in the theorem, are smooth. Indeed, ifuε(t) is a solution, then due to the
equationJAuε(t) is a smooth curve inXd0−dH−dJ . SinceJA is an automorphism of the
scale of orderd1, thenuε(t) is a smooth curve inXd0−dH−dJ+d1 ⊂ Xd0+1. Iterating this
arguments we see thatuε is a smooth curve in each spaceXs .

In the semilinear case (i.e., whendH +dJ � d̃ < d1−1 andd̃ � 0) the theorem is proved
in [49,50] (see also [52,73]). The semilinearity restrictiond̃ � 0 was removed in [57]
(see also [59] and [46]). Simultaneously with [49,50] a related KAM-theorem for infinite-
dimensionalHamiltonian systems with short interactionswas proved by Pöschel [71] (fol-
lowing Eliasson’s work [33] on lower-dimensional invariant tori for finite-dimensional sys-
tems). The systems (5.1), defined by HPDEs, are not short-interacted, but results of [71] ap-
ply to some equations from non-equilibrium statistical physics. For systems with short in-
teraction a KAM-theory for infinite-dimensional invariant tori also is available, see [39,72]
and references in [72]. We note that [39] was the first work where the KAM theory was
applied to infinite-dimensional Hamiltonian systems.

For some specific HPDEs (5.1) the assertions of Theorem 5.1 can be proven for any
n� 1 even if the parametera is only one-dimensional. In particular, this can be done for
the non-linear wave equation as in Example 5.3 below, whereV (x)≡ a and the constanta
is the one-dimensional parameter. See [16] and [4].

The proof of Theorem 5.1 is rather technical. For its well-written outline in the semilin-
ear case see [28]. Below we present the proof’s scheme in the form which suits our further
purposes.

THE SCHEME OF THE PROOF OFTHEOREM 5.1. We start with the semilinear case and
assume for simplicity thatλJj ≡ 1. ThenI = (I1, . . . , In) and q = (q1, . . . , qn) form a

symplectic coordinate system in the space (2.3). We setY = span{ϕ±j , j > n} ⊂ X, and

denote byy±j , j > n, the coordinates inY with respect to the basis{ϕ±j }. To study the

vicinity of a torusT n(I0), we make the substitutionI = I0 + p. ThenJ̄ du ∧ du= dp ∧
dq + dy+ ∧ dy−, andT n(I0)= {p = 0, y = 0}. In the new variables Equation (2.1) takes
the form

q̇ =∇pHε, ṗ =−∇qHε, ẏ = J∇yHε,
with the Hamiltonian

Hε =H0(p, y)+ εH1(p, q, y), H0 = ω · p+ 1

2
〈Ay,y〉. (5.8)

6If Equation (5.1) is not semilinear (i.e., ifdJ +dH > 0), then this assertion is proved provided that the equation
satisfies some mild regularity condition, see Theorem 8.4 in [59].
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The vectorω and the operatorA depend on the parametera; the functionH1 depends on
a andI0. We callH0 the integrable part of the HamiltonianHε .

Retaining the terms ofH1 which are affine inp and quadratic iny, we writeH1 as

H1 =H 1
1 +H 3

1 , H 1
1 = h(q)+ hp(q) · p+ 〈hy(q), y〉+ 〈hyy(q)y, y〉,

H 3
1 = O

(|p|2 + ‖y‖3 + |p| ‖y‖)=:O(p, q, y).

Next in the vicinity of the torusT n = {p = 0, y = 0} we make a symplectic change
of variable to kill the partεH 1

1 of the perturbationεH1. This change of variable is a
transformationS1 which is the time-ε shift along trajectories of an additional Hamil-
tonian F . Here the recipe is that to killH 1

1 , F should be of the same structure, so
F = f (q) + f p(q) · p + 〈f y(q), y〉 + 〈f yy(q)y, y〉. Due to Theorem 3.4 we can write
the transformed HamiltonianHε ◦ S1 as

Hε ◦ S1=H0 + εH1 + ε〈J∇yF, ∇yH0〉 + ε∇pF · ∇qH0 − ε∇qF · ∇pH0

+O
(
ε2)+O.

Since∇pH0 = ω, ∇qH0 = 0 and∇yH0 = Ay, then the linear inε term vanishes if the
following relations hold:

(ω · ∇)f = h, (ω · ∇)f p = hp,
(ω · ∇)f y − JAf y = hy, (ω · ∇)f yy + [f yy, JA] = hyy.

We take these relations as equations forf , f p, f y andf yy (called‘the homological equa-
tions’) and try to solve them.

Since the equations have constant coefficients, then decomposingf , f p, . . . in Fourier
series inq, we find for their components (and for matrix components of the operatorf yy )
explicit formulae. Certain terms in these formulae contain small divisors, which vanish for
some values of the vectorω = ω(a). Careful analysis of these divisors show that all of
them are bounded away from zero ifa /∈ A1, whereA1 is a Borel subset ofA of small
measure. When the equations are solved, we get a symplectic transformation which in a
sufficiently small neighbourhood ofT n transforms the HamiltonianHε to a Hamiltonian
which differs from its integrable part by O(ε2).

The explanation above has some flows. The most important one is that the first and the
second homological equations can be solved only if the mean values ofh andhp vanish.
To fulfil the first condition we change the HamiltonianεH1 by a constant (this change is
irrelevant since it does not affect the equations of motion), while to fulfil the second we
subtract fromεH1 the averageε〈hp〉 ·p and add it to the integrable partH0, thus changing
the termω · p to ω2 · p, whereω2 = ω + ε〈hp〉. Similar, to solve the last homological
equation we subtract from the operatorhyy the average of its diagonal part and add the
corresponding quadratic form toH0. Thus, the transformed Hamiltonian becomes

H2 :=Hε ◦ S1 = ω2 · p+ 1

2
〈A2y, y〉 + ε2H2(p, q, y)+O(p, q, y).
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This transformation is calledthe KAM-step.
Next we perform the second KAM-step. Under the condition thata /∈A2 we find a trans-

formationS2 which sends the HamiltonianH2 to H3 =H2 ◦ S2 = ω3 · p + 1
2〈A3y, y〉 +

(ε2)2H2 +O(p, q, y), etc. Afterm steps we find transformationsS1, . . . , Sm such that

Hε ◦ S1 ◦ · · · ◦ Sm = ωm · p+ 1

2
〈Amy, y〉 + ε2mHm +O(p, q, y)=:Hm.

The torusT n = {p = 0, y = 0} is ‘almost invariant’ for the equation with the Hamil-
tonianHm. Hence, the torusS1 ◦ · · · ◦ Sm(T n) is ‘almost invariant’ for the original one.
Since the sequenceε2m converges to zero super-exponentially fast, we can choose the sets
A1,A2, . . . in such a way that mes(A∞ =A1∪A2∪ · · ·) < γ , for anya /∈A∞ the vectors
ωm(a) converge to a limiting vectorω′(a), and the transformationsS1 ◦ · · · ◦ Sm converge
to a limiting mapΣε(·, a), defined onT n. Then the torusΣε(T n, a) is invariant for Equa-
tion (5.1) and is filled with its quasiperiodic solutionst→Σε(q +ω′t, a). �

If the equation is not semilinear, then the situation is more complicated since to solve
the forth homological equation we have to remove from the operatorhyy the whole of its
diagonal part (not only its average). Because of that the operatorA in the integrable part of
the Hamiltonian gets terms which form a smallq-dependent diagonal operator of a positive
order. Accordingly, the forth homological equation becomes more difficult and cannot be
solved by the direct Fourier method. Its resolution follows from a non-trivial lemma, based
on properties of fast-oscillating Fourier integrals, proved in [57] (see also [59,46]).

5.2. Applications to 1D HPDEs

Theorem 1 well applies to parameter-depending quasilinear HPDEs with one-dimensional
space variable in a finite interval, supplemented by boundary conditions such that spectrum
of the linear operatorJA is not multiple. Indeed, for such equations assumption (H2)
follows from usual spectral asymptotics, (H3) is obvious if the non-linearity is analytic,
while (H1) and (H4) hold if the equation depends on the additional parameter in a non-
degenerate way. More explicitly it means the following. In the examples which we consider
below, the equations depend on a potentialV (x; a), which is analytic ina and smooth inx.
The non-degeneracy means that in a functional space, formed by functions ofx anda of the
required smoothness, the potentialV should not belong to some analytic subset of infinite
codimension.

Below we just list the examples. In each case application of Theorem 5.1 is straightfor-
ward. The theorem applies if dimension of the parametera is � n and dependence of the
potentialV on a is non-degenerate as it was explained above. In the first three examples
the potentialV (x;a) is real, smooth inx and analytic ina. The functionf (x, v;a) is real,
smooth inx and analytic inv anda. Details can be found in [52,53,59,57].

EXAMPLE 5.2. Non-linear Schrödinger equation (NLS), cf. Example 2.8:

u̇= i(−uxx + V (x;a)u+ εf (x, |u|2;a)u), u= u(t, x), x ∈ [0,π]; (5.9)

u(t,0)≡ u(t, π)≡ 0. (5.10)



1106 S.B. Kuksin

Now dJ = 0, dA = 2, d̃ = dH = 0 and we view the Dirichlet boundary conditions as the
odd periodic ones (cf. Example 2.9). The theorem applies in the scale of odd periodic
functions withd0 = 1 or 2. If f is even and 2π -periodic inx, then the theorem applies
with anyd0 � 1 and the constructed quasiperiodic solutions are smooth.

EXAMPLE 5.3. Non-linear string equation:w(t, x) satisfies (5.10) and

ẅ =wxx − V (x;a)w+ εf (x,w;a),
where nowV > 0 andf (x,w)= 0 if w = 0 orx = 0. Let us denoteU = (u,−(−&)−1/2u̇).
It is a matter of direct verification thatU satisfies a semilinear Hamiltonian equation (5.1)
in a suitable symplectic Hilbert scale, formed by odd periodic Sobolev vector-functions
(cf. Equation (4.6)). NowdA = 1, dJ = 0, d̃ = dH =−1. Cf. [79] and [16,4].

EXAMPLE 5.4 (KdV-type equations). KdV-type equation

u̇= ∂

∂x

(−uxx + V (x;a)u+ εf (x,u;a)); x ∈ S1,

∫
S1
udx ≡ 0, (5.11)

cf. Example 2.7. NowdJ = 1, dA = 2, d̃ = dH = 0.

Theorem 5.1 also applies ifx ∈ R1 and the potentialV (x; a) grows sufficiently fast
whenx→∞.

EXAMPLE 5.5. Non-linear Schrödinger equation on the line:

u̇= i(−uxx + (x2 +µx4 + V (x;a))u+ εf (|u|2;a)u), µ > 0,

u= u(t, x), x ∈ R, u→ 0 as|x| →∞.
Here the potentialV is smooth, analytic ina and vanishes as|x| →∞. The real-valued
functionf is analytic. NowdJ = 0, dA = 4/3, dH = 0. Another example of this sort see
in [52], Section 2.5.

The time-quasiperiodic solutions, constructed in Examples 5.2–5.5, are linearly stable.
Therefore they should be observable in numerical models for the corresponding equations.
Indeed, quasiperiodic behaviour of solutions for 1D HPDEs with small non-linearity was
observed in many experiments, starting from the famous numerics of Fermi, Pasta and
Ulam [36]; e.g., see [82].

5.3. Multiple spectrum

In Examples 5.2, 5.3 the equations are considered under the Dirichlet boundary conditions.
If we replace them by the periodic ones

u(t, x)≡ u(t, x + 2π),
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then Theorem 5.1 would not apply since now the frequencies of the corresponding linear
equations are asymptotically double: they have the form{λ±j , j � 1}, where|λ+j −λ−j | → 0

asj →∞. It is clear that the numbers{λ±j } cannot be re-ordered to meet the spectral as-
ymptotic condition (H2). Still, for some semilinear equations (5.1) assertions of the theo-
rem remain true if the frequenciesλj are not single, but asymptotically they have the same
multiplicity m� 2 and behave regularly. A corresponding result is proved by Chierchia and
You in [27], using the scheme, explained in Section 5.1. We do not give precise statement
of their theorem, but note that it applies to the non-linear string equation in Examples 5.3
under the periodic boundary conditions. The result is the same: if the non-degeneracy con-
dition holds, then forε small enough and for most (in the sense of measure) values of
then-dimensional parametera, solutions of the linear equation (5.3) which fill in a torus
T n(I ), I ∈ Rn+, persist as linearly stable time-quasiperiodic solutions of the corresponding
non-linear equation (5.1).

We note that this persistence result was proved earlier by Bourgain [16], who used an-
other KAM-scheme, discussed in the next section.

5.4. Space-multidimensional problems

The abstract Theorem 5.1 is a flexible tool to study 1D HPDEs, but itneverapplies to
space-multidimensional equations since the spectral assumption (H2) never holds in di-
mensions> 1. The first KAM-theorem which applies to higher-dimensional HPDEs, is
due to Bourgain [19]. In that work the 2D NLS equation as in Example 2.8 is considered.
For technical reasons the potential termV u is replaced there by the convolutionV ∗ u:

u̇= i
(
−&u+ V (x;a) ∗ u+ ε ∂

∂ū
g(u, ū)

)
, u= u(t, x), x ∈ T2. (5.12)

The potentialV (x;a) is real analytic andg(u, ū) is a real-valued polynomial ofu andū.
This equation has the form (5.1), whereAu = −&u + V ∗ u and Ju = iu. The basis
{ϕk} as in (5.2) is formed by normalised exponents{eis·x andieis·x, s ∈ Z2}, re-numerated
properly, and

λJs ≡ 1, λAs = |s|2 + V̂ (s;a),

where{V̂ (s;a)} are the Fourier coefficients ofV . For anyn, the linear equation (5.12)|ε=0
has quasiperiodic solutions

u=
n∑
j=1

zsj e
iλAsj

t
ϕsj (x) (5.13)

(these are trajectories of Equation (5.6) on then-torus (5.5), whereIj = 1
2|zsj |2 andIs = 0

if s differs from allsj ). For simplicity let us assume thataj = V̂ (sj ; a), j = 1, . . . , n. Then
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the result of [19] is that for most values of the parametera (in the same sense as in The-
orem 5.1), the solution (5.13) persists as a time-quasiperiodic solution of Equation (5.12).
In contrast to the 1D case it is unknown if the new solutions are linearly stable.

The proof in [19] is based on a KAM-scheme, different from that described in Sec-
tion 5.1. Originally this scheme is due to Craig and Wayne [29] who used it to construct
periodic solutions of non-linear wave equations, using certain techniques due to Fröhlich–
Spencer [38]. Also see [16].

Now we briefly describe the scheme, using the notations from Section 5.1. When the
perturbationεH1 is decomposed as in (5.8), we extract the termε〈hyy(q)y, y〉 from εH 1

1
and add it to the integrable partH0. After this the Hamiltonian to be killed is the sum
of the three termsh(q) + hp(q) + 〈hy(q), y〉; accordingly the HamiltonianF is a sum
of three terms as well. We have to find them from the first three homological equations.
The first two are not difficult, but the third one is a real problem since the operatorA no
longer has constant coefficients but equalsA0 + Â(q), whereÂ is a bounded operator of
orderε (it changes from one KAM-step to another). The resolution of this equation for
high KAM steps is the most difficult part of implementation the Craig–Wayne–Bourgain
KAM-scheme.

Recently Bourgain managed to develop this scheme father and applied it to high-
dimensional equations. We are not ready to discuss this and related results, and instead
refer the reader to the original publications [23]. Also see [34].

5.5. Perturbations of integrable equations

Let us consider a quasilinear HPDE on a finite space-interval, which is an integrable Hamil-
tonian equation (4.1) in some symplectic Hilbert scale ({Xs}, α2 = J̄ dx ∧ dx). As we ex-
plained in Section 4.1, this equation has invariant finite-gap symplectic manifoldsT 2n such
that restriction of (4.1) to any of them is integrable. In this section we discuss the results
on persistence of quasiperiodic solutions that fill in these manifolds, provided by the KAM
for PDEs theory. We shall see that they are very similar to the celebrated Kolmogorov
theorem, which states thatmost of quasiperiodic solutions of a non-degenerate analytic in-
tegrable(finite-dimensional) Hamiltonian system persist under small perturbations of the
Hamiltonian; see [1,65,78] and Addendum in [59]. We state the main result as a

THEOREM 5.6 (Metatheorem).Most of quasiperiodic solutions that fill in any finite-gap
manifoldT 2n as above persist under small Hamiltonian quasilinear analytic perturbations
of the integrable equation. If the finite-gap solutions inT 2n are linearly stable, then the
new solutions are linearly stable as well.

In the assertion above the statement ‘most of quasiperiodic solutions persist’ means the
following. Due to the Liouville–Arnold theorem [2,43], the manifoldT 2n can be cov-
ered by charts, diffeomorphic toB × Tn = {p,q} (B is a ball in Rn), with chart-maps
Φ0 :B × Tn → T 2n such thatΦ∗

0α2 = dp ∧ dq, and the curvesΦ0(p, q + t∇h(p)) are
solutions of the integrable equation, whereh(p) = H ◦Φ0(p, q). Let us denote byε the
small coefficient in front of the perturbation. Then for every chart there exists a Borel
subsetBε ⊂ B and a mapΦε :Bε ×Tn→Xd (d is fixed), with the following properties:
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(i) mes(B\Bε)→ 0 asε→ 0;
(ii) the mapΦε :Bε × Tn → Xd is C

√
ε-close toΦ0 in the Lipschitz norm and is

analytic inq ∈ Tn;
(iii) there exists a mapωε :Bε → Rn, Cε-close to the gradient map∇h in the Lipschitz

norm, such that the curvest  → Φε(p,q + tωε(p)), p ∈ Bε, q ∈ Tn, are solutions
for the perturbed equation.

The statement of Theorem 5.6 is proven under a number of assumptions (see [59,35]).
These assumptions are checked for such basic integrable HPDEs as KdV, Sine- and Sinh-
Gordon equations. There are no doubts that they also hold for the Zakharov–Shabat equa-
tions7 (but the theorem in [59,35] does not apply to the Kadomtsev–Petviashvili equation).
Below we present a scheme of the proof and discuss the restrictions on the integrable
HPDE which allow to implement it.

We view (4.1) as an equation in the Hilbert spaceXd , and denote the quasilinear Hamil-
tonian of the perturbed equation as

Hε = 1

2
〈Ax, x〉 + h0(x)+ εh1(x).

Accordingly,H0 = 1
2〈Ax, x〉+h0 is the HamiltonianH of the unperturbed equation (4.1).

Step1. Let us consider any finite-gap solutionu0(t) = Φ0(p0, q0 + t∇h(p0)) and lin-
earise (4.1) about it:

v̇ = J (∇H (u0(t)
))

∗v. (5.14)

The theory of integrable equations provides tools to reduce this equation to constant co-
efficients by means of a time-quasiperiodic substitutionv(t)=G(p0, q0 + t∇h(p0))ṽ(t),
whereG(p,q), (p, q) ∈ B × Tn, is a symplectic linear mapG(p,q) :Yd → Zd (see [59,
Sections 5, 6]). HereYd is a fixed symplectic subspace ofZd of codimension 2n. The
restriction, which we impose at this step, is that the operatorG(p,q) is a compact pertur-
bation of the embeddingYd →Zd , which analytically depends on(p, q).

Step2. The mapG from the Step 1 defines an analytic map

B ×Tn × Yd →Xd,

linear and symplectic iny ∈ Yd . This map defines a symplectomorphism

B ×Tn ×Bδ(Yd)→Xd, Bδ(Yd)=
{‖y‖d < δ}, (5.15)

such that linearisation iny aty = 0 of the latter equals the former ([59, Section 7]).
Step3. We use the map (5.15) to pass in the HamiltonianHε to the variables(p, q, y).

Retaining linear and quadratic iny terms we get

Hε(p, q, y)= h(p)+ 1

2

〈
A(p)y, y

〉+ h3(p, q, y)+ εh1(p, q, y), (5.16)

7See [41] for anad hocKAM-theorem for the defocusing equation.
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whereh3 = O(‖y‖3
d). Calculations show thath3(p, q, y) contains terms such that their

gradient maps have the same order as the operatorA(p). If this really was the case, then
the Hamiltonian equation would not be quasilinear, which would complicate its study a
lot. Fortunately, this does not happen due to a cancellation of a very general nature (see
Lemma 7.5 in [59]), and we have

ord∇h3< ordA(p)− 1. (5.17)

Step4. Invariant tori of the unperturbed system with the HamiltonianH0(p, q, y) have
the form {p = const, y = 0}. Let us scale the variables neara torus {p = a, y = 0}:
p = a + ε2/3p̃, q = q̃, y = ε1/3ỹ. In the scaled variables the perturbed equation has the
Hamiltonian

const+ω(a) · p̃+ 1

2

〈
A(a)ỹ, ỹ

〉+O
(
ε1/3), ω(a)=∇h(a). (5.18)

So we have got the system (5.1), written in the form (5.8), withε replaced byε1/3. If
Theorem 5.1 applies, then most of the finite-gap tori{p = const} persist in the perturbed
equation, as states the Metatheorem. To be able to use the theorem we have to check the
assumptions (H1)–(H4).

The condition (H2) holds if the integrable equation is 1D (if the spectrum is asymp-
totically double, e.g., if the unperturbed equation is the Sine-Gordon equation under the
periodic boundary conditions, then one should use a version of the Metatheorem, based
on the Chierchia–You result). The quasilinearity condition (H3) holds due to (5.17). The
assumption (H1) now takes the form

Hessh(p) �≡ 0. (5.19)

This is exactly Kolmogorov’s non-degeneracy condition for the integrable system onT 2n.
The assumption (H4) withω = ∇h(a) is the second non-degeneracy condition, which
needs verification.

Summing up what was said above, we see that Theorem 5.1 implies the Metatheo-
rem if the unperturbed integrable equation is 1D quasilinear, the linear operatorG(p,q)

from Step 1 possesses the required regularity properly and the non-degeneracy assump-
tions (5.19) and (5.7) hold true.

The scheme we have just explained was suggested in [51], where it was used to
prove an abstract KAM-theorem, which next was applied to Birkhoff-integrable infinite-
dimensional systems and to perturbed KdV equations. See [59,35] for a more general ab-
stract theorem, based on the same scheme.

Steps 1–2 are not the only way to reduce an integrable equation to the normal
form (5.16). Another approach to get it had been initiated by Kappeler [44]. It was de-
veloped further in a number of publications and finally in [45] it was proved that the
KdV equation is Birkhoff-integrable. It means the following. Let us take the Darboux scale
({Xs}, α2) with the index-setZ = Z0, andθk = |k| (see Example 2.6). Then there exists
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a mapΦ :X∞ → H∞(S1)0 which extends to analytic mapsXs → Hs(S1)0, s � 0, such
that

h ◦Φ(u)=
∞∑
j=1

j3(u2
j + u2−j

)+ 〈a function ofu2
l + u2−l , l = 1,2, . . .

〉
. (5.20)

Here {uk, k ∈ Z0} are coefficients of decomposition ofu ∈ Xs in the basis{ϕk} and h
is the KdV-Hamiltonian (see Example 2.7). Moreover, the Hamiltonian (5.20) defines an
analytic Hamiltonian vector field of order three in each spaceXd , d � 1. In the transformed
variables theN -gap tori of the KdV equation take the form (5.5), wheren�N and exactly
N numbersIj are non-zero. Now let us take a torus (5.5), whereI ∈ Rn+. Making a change
of variables as in Section 5.1, we arrive at the Hamiltonian (5.18). Detailed and readable
derivation of the normal form (5.20) see in [46].

Reduction to the Birkhoff normal form (5.20) uses essentially specifics of the KdV’s
L-operator. Still, similar arguments apply as well to the defocusing Zakharov–Shabat equa-
tion, see [41]. Presumably, the Birkhoff normal forms exist for some other integrable equa-
tions with selfadjointL-operators, but not for equations with non-selfadjoint operators. In
particular, the focusing Zakharov–Shabat equation cannot be reduced to the form (5.20)
since for this equation some finite-gap tori are linearly unstable [26], while all invariant
tori of the form (5.5) for the Hamiltonian (5.20) are linearly stable.

EXAMPLE 5.7 (Perturbed KdV equation). Consider the equation

u̇(t, x)= 1

4

∂

∂x

(
u′′ + 3u2 + εf (x,u)), x ∈ S1;

∫
S1
udx ≡ 0, (5.21)

wheref is smooth inx, u and analytic inu. The Metatheorem applies and implies that
most of finite-gap KdV-solutions persist as time-quasiperiodic solutions of (5.21). More-
over, these solutions are smooth and linearly stable.

This result was first stated in [51]. The proof contains some gaps. Two the most serious
of them are that Theorem 5.1, proved then only for semilinear equations, was used in a
quasilinear case, and that the non-degeneracy assumptions (5.19) and (5.7) were taken for
granted. These gaps were filled in later. The quasilinear version of Theorem 5.1 was proved
in [57] (preprint of this paper appeared in 1995), and the non-degeneracy conditions were
verified in [12]. Also see [59, Section 6.2.1]. The arguments in [12,59] are general and
applies to other equations.

For a complete proof of ‘KAM for KdV’ see [59,35] and [46].

The Metatheorem (in its rigorous form as in [59,35] and [46]), applies to quasilinear
Hamiltonian perturbations of any higher equation from the KdV-hierarchy, provided that
the non-degeneracy relations are checked for this equation. It can be done in the same way
as in Example 5.7. See [46], where the non-degeneracy of the second KdV equation is
verified.
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EXAMPLE 5.8 (Perturbed SG equation). Consider the equation

ü= uxx − sinu+ εf (u, x), u(t, 0)= u(t,π)= 0, (5.22)

wheref (0, x)≡ 0 (andf ∈ C∞ is analytic inu). The Metatheorem applies to prove per-
sistence most of finite-gap solutions of the SG-equation, see [11,59,35]. In general, due
to the phenomenon explained in Example 2.9, the persisted solutions are onlyH 2-smooth
in x. But if f is x-independent and odd inu, then they are smooth.

In difference with the KdV-case, large amplitude finite-gap SG-solutions, as well as the
corresponding persisted solutions of (5.22), in general are not linearly stable.

To end this section we note that since the persisted solutionsuε(t) have the form

uε(t)=Φε
(
p,q + tωε(p)

)=Φ0
(
p,q + tωε(p)

)+ O
(√
ε
)
,

then to calculate them with the accuracy
√
ε for all values of timet , we can use the “finite

gap map”Φ0 with the corrected frequency vector. Moreover,ωε(p)=∇h(p)+ εW1(p)+
O(ε2), where the vectorW1(p) can be obtained by averaging over the corresponding finite-
gap torus of some explicit quantity, see [59, p. 147].

5.6. Small amplitude solutions of HPDEs

Let us consider the non-linear string equation

utt = uxx −mu+ f (u), u= u(t, x), 0� x � π; u(t,0)= u(t,π)= 0.
(5.23)

Herem> 0 andf is an odd analytic function of the form

f (u)= κu3 +O
(
u5), κ > 0.

Sincem, κ > 0, then constantsa, b > 0 can be found such that−mu+ f (u)=−a sinbu.
Hence, Equation (5.23) can be written as

utt = uxx − a sinbu+O
(
u5).

After the scalingu= εw, ε2 1, the higher-order perturbation transforms to a small one,
and we can apply the Metatheorem (cf. Example 5.8) to prove that small-amplitude parts of
the finite-gap manifoldsT 2n, n= 1,2, . . . , for the SG equationutt = uxx − a sinbu with
the Dirichlet boundary conditions mostly persist in (5.23). To put this scheme through, the
small-amplitude parts

T 2n
δ = {(u, u̇) ∈ T 2n | ‖u‖ + ‖u̇‖< δ}, 0< δ2 1,
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of the manifoldsT 2n have to be studied in details. This task was accomplished in [14],
where the following results were proved:

(i) the setsT 2n
δ are smooth manifolds which contain the origin,

(ii) they are in one-to-one correspondence with their tangent spaces at the origin,
(iii) these tangent spaces are invariant spaces for the Klein–Gordon equationutt =

uxx − (ab)u.
Another proof of (i)–(iii) was suggested in [59]. It is based on some ideas from [44] and

applies to other integrable equations. After (i)–(iii) are obtained, a version of the Metathe-
orem (or a version of Theorem 5.1) applies to prove that most of finite-gap solutions from a
manifoldT 2n

δ persist in (5.23) in the following sense: the 2n-dimensional Hausdorff mea-
sure of the persisted part of the manifold, divided by a similar measure ofT 2n

δ , converges
to one asδ→ 0. See [13] for a proof and [53] for discussion.

Similar results hold for the NLS equation

iu̇= uxx +mu+ f
(|u|2)u, f (0)= 0, f ′(0)= γ �= 0, (5.24)

wheref is analytic, since it is a higher-order perturbation of the Zakharov–Shabat equa-
tion (4.7). But it turns out that it is easier to approximate (5.24) near the origin by its partial
Birkhoff normal form. The latter is an integrable infinite-dimensional Hamiltonian system
(which is not an HPDE), and a sibling of the Metatheorem applies to prove that most of its
time-quasiperiodic solutions persist in (5.24), see [60]. More on the techniques of Birkhoff
normal forms in HPDE see in [74] and [46]. The classical reference for finite-dimensional
Birkhoff normal forms is the book [65].

6. Around the Nekhoroshev theorem

The classical Nekhoroshev theorem [66] deals with nearly-integrable Hamiltonian sys-
tems with analytic HamiltoniansHε(p,q)= h(p)+ εH(p,q) on the phase-spaceP ×Tn,
P ⊂ Rn, given the usual symplectic structuredp ∧ dq. Under the assumption that the
Hamiltonianh(p) satisfies a mild non-degeneracy condition calledthe steepness, the the-
orem states that the action variables change exponentially slow along trajectories of the
system. Namely, there exist constantsa, b ∈ (0,1) such that for any trajectory(p(t), q(t))
of the system we have∣∣p(t)− p(0)∣∣� Cεa if |t | � exp

(
ε−b
)
. (6.1)

Strictly convex functionsh(p) form an important class of the steep Hamiltonians. An alter-
native proof of the theorem which applies in the convex case was suggested by Lochak [63].
It is based on clever approximation of a trajectory(p(t), q(t)) by a time-periodic solution
of the equation which is a high-order normal form forHε. So rational frequency-vectors
play for the Lochak approach very important role.

Original Nekhoroshev’s proof contains two parts, analytical and geometrical. The tech-
niques, developed in the analytical part of the proof, allow to get the following result,
which we call below the quasi-Nekhoroshev theorem: Let us consider the HamiltonianHε,
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depending on an additional vector-parameterω ∈Ω � Rn, Hε = p · ω+ εH(p,q). Then
for any γ > 0 there exists a Borel subsetΩγ ⊂ Ω (‘the Diophantine subset’) such that
mes(Ω\Ωγ ) < γ , and (6.1) withC = Cγ holds ifω ∈Ωγ . Note that in the Cartesian coor-
dinates(x, y), corresponding to the action-angle variables(p, q) (i.e., xj =

√
2pj cosqj ,

yj =
√

2pj sinqj ), the HamiltonianHε reeds as

Hε = 1

2

∑
ωj
(
x2
j + y2

j

)+ εH(x, y).
That is,Hε is a perturbation of the quadratic HamiltonianH0. So the quasi-Nekhoroshev
theorem implies long-time stability of the zero equilibrium for an analytical Hamiltonian

H(x,y)=H0 + h, h= O
(∣∣(x, y)∣∣3), (6.2)

provided that the vectorω belongs to the Diophantine set. In [67] Niederman used the
Lochak approach to get a stronger theorem on stability for (6.2). Namely, he proved that
the equilibrium is stable during the exponentially long time if the vectorω does not satisfies
resonant relations up to order four, andh is convex in a certain sense.8

To get a corresponding theorem which applies to all small initial data is a non-trivial
task, resolved by Niederman [67] by means of the Lochak approach.

No analogy of the Nekhoroshev theorem for HPDEs is known yet, but a number ofad
hocquasi-Nekhoroshev theorems for HPDEs were proved, mostly by Bourgain and Bam-
busi, see [3,4,22] and references therein. These works discuss stability of the equilib-
rium for HPDEs (mostly 1D) with Hamiltonians of the form (6.2). Under some restric-
tions on the quadratic partH0 and on the higher-order parth, it is proved that if the ini-
tial datau0 is an ε-small and ‘very’ smooth function, then a solution stays very close
to the corresponding invariant torus of the linear system with the HamiltonianH0, dur-
ing the time which is polynomially large inε−1, or even exponentially large. This re-
sult is obtained either under the ‘quasi-Nekhoroshev’ condition that the spectrum of the
operatorA is ‘highly non-resonant’, or under the opposite assumption (needed to ap-
ply the Lochak–Niederman technique) that the spectrum is ‘very resonant’. In particular,
the following result is proved in [3] (also see [75,22]): Let us consider the NLS equa-
tion (5.24) in the scale{Hs0(0, π)} of odd 2π -periodic functions. Assume thatu0(x) =∑N
k=1uk0 sinkx, denoteε = |u0(x)|L2 2 1 and write the solutionu(t, x) of (5.24) as

u=∑uk(t)sinkx. Then there existε∗ > 0 and constantsC1,C2> 0 such that forε < ε∗
and|t | � C1 exp(ε∗/ε)1/N =: Tε we have

∞∑
k=1

(∣∣uk(t)∣∣2 − |uk0|2
)2 � C2ε

4+1/N . (6.3)

Let us setT N = {u(x) =∑Nk=1uk sinkx | |uk| = |uk0|}. This is ann-torus of diameter
∼ ε and (6.3) implies that

distHs0
(
u(t), T n

)
� Csε1+1/N ∀|t | � Tε,

8Independently this result was obtained in [9] by means of the Nekhoroshev’s techniques.
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if s <−1/4. Thus, during the timeTε the trajectoryu(t) remains very close to its projection
to T N . The latter is a trajectory of anN -dimensional dynamical system, so the time of
its return to aρε-neighbourhood (ρ 2 1) of the initial point ‘should’ be of orderρ−N .
Same is true for the trajectoryu(t), if ε is small in terms ofρ. The phenomenon of the
pathologically good recurrence properties of small-amplitude trajectories of some non-
integrable 1D HPDEs is well known from numerics (e.g., see [82]). We have seen that the
quasi-Nekhoroshev theorems as above explain it up to some extend.

7. Invariant Gibbs measures

If Equation (4.1) is a finite-dimensional Hamiltonian system withu= (p, q) ∈ (R2n, dp∧
dq), then any measuref (H(p,q)) dp dq such that the functionf ◦ H is Lebesgue-
integrable, is invariant for the equation. The most important among these measures is
the Gibbs measuree−H dp dq (the HamiltonianH is assumed to grow to infinity with
|(p, q)|). Now let us consider an HPDE (4.1). Say, the zero-massφ4-equation

ü= uxx − u3, u= u(t, x), x ∈ S1.

This equation is equivalent to the system

u̇=−Bv,
(7.1)

v̇ = Bu+B−1(u3 − u),
whereB =√

1−&. Denotingξ = (u, v) we can see that this is a Hamiltonian system in
the symplectic scale({Zs =Hs+1/2(T2;R2)}, α2 = J̄ dξ ∧ dξ), whereJ (u, v)= (−v,u),
with the Hamiltonian

H(ξ)= 1

2
‖ξ‖2

0 +
∫ (

1

4
|u|4 − 1

2
|u|2
)
dx, ξ = (u, v).

Here‖ · ‖0 is the norm in the spaceH 1/2(S1;R2) (cf. Section 8.3). The natural question is
if the formal expression

µ= e−H(ξ) dξ (7.2)

defines a measure in a suitable function spaceΞ = {ξ(x)}, invariant for flow-maps of
Equation (7.1). Since the Lebesgue measuredξ does not exist in an infinite-dimensional
function space, then to make the right-hand side of (7.2) meaningful we write it as

µ= e−
∫
( 1

4 |u|4− 1
2 |u|2) dxe−

1
2‖ξ‖2

0 dξ.

Now exp−1
2‖ξ‖2

0dξ is a well-defined Gaussian measure, supported by a suitable
spaceΞ , formed by functions of low smoothness, and 0< p(ξ) � C, wherep(ξ) =
e−
∫
( 1

4 |u|4− 1
2 |u|2) dx . Therefore if
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(i) p(ξ) is a Borel function onΞ , thenµ is a well-defined Borel measure onΞ .
To check that it is invariant for Equation (7.1) we have to verify that
(ii) the flow-maps of (7.1) are well-defined on suppµ and preserve the measure.

The corresponding result was first stated by Friedlander [37]. Unfortunately, his arguments
contain serious flaws. Complete proofs appeared later in works of Zhidkov, McKean and
Vaninsky and Bourgain, see the books [20,84] and references therein. Similar arguments
apply to the 1D NLS equation (2.4), where the non-quadratic termq satisfies certain re-
strictions.

For higher-dimensional HPDEs the task of constructing the Gibbs measures becomes
much more difficult. The only known result is due to Bourgain who proved that for the
defocusing 2D NLS equation

iu̇=&u− |u|2u, x ∈ T2,

the Gibbs measure (7.2) exists and is invariant. The main difficulty here is the step (ii)
which is now based on highly non-trivial results on regularity of corresponding flow-maps
in Sobolev spaces of low smoothness; see in [20].

8. The non-squeezing phenomenon and symplectic capacity

8.1. The Gromov theorem

Let (R2n,β2) be the spaceR2n = {x1, x−1, . . . , x−n} with the Darboux symplectic form
β2 =∑dxj ∧ dx−j . By Br(x) = Br(x;R2n) andCjρ = Cjρ(R2n), 1 � j � n, we denote
the following balls and cylinders inR2n:

Br(x)=
{
y | |y − x|< r}, Cjρ =

{
y = (y1, . . . , y−n) | y2

j + y2−j < ρ2}.
The famous (non-)squeezing theoremby M. Gromov [42] states that iff is a symplecto-

morphismf :Br(x)→ R2n such that its range belongs to some cylinderx1+Cjρ , x1 ∈ R2n,
thenρ � r . For an alternative proof, references and discussions see [43].

8.2. Infinite-dimensional case

Let us consider a symplectic Hilbert scale({Zs}, α2) with a basis{ϕj | j ∈ Z0}. We assume
that this is a shifted Darboux scale (cf. Example 2.4 in Section 2.2). It means that the basis
can be renormalised to a basis{ϕ̃j | j ∈ Z0} (eachϕ̃j is proportional toϕj ) which is a
Darboux basis for the formα2 and a Hilbert basis of some spaceZd :

〈ϕ̃j , ϕ̃k〉d = δj,k, α2[ϕ̃j , ϕ̃−k] = sgnj δj,k ∀j, k. (8.1)

These relations imply that

α2[ξ, η] = 〈J̄ ξ, η〉d, J̄ ϕ̃j = sgnj ϕ̃−j ∀j. (8.2)
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In particular,J̄ = J .
Below we skip the tildes and re-denote the new basis back to{ϕj }.
In this scale we consider a semilinear Hamiltonian equation with the Hamiltonian

H(u)= 1
2〈Au,u〉d + h(u, t). Due to (8.2) it can be written as

u̇= JAu+ J∇dh(u, t), (8.3)

where∇d signifies the gradient inu with respect to the scalar product ofZd .
If a Hamiltonian PDE is written in the form (8.3), then the symplectic space(Zd,α2)

is called the (Hilbert) Darboux phase spacefor this PDE. Below we study properties of
flow-maps of Equation (8.3) in its Darboux phase space.

Let us assume that the operatorA has the form
(H1) Au =∑∞

j=1λj (ujϕj + u−j ϕ−j ) ∀u =
∑
ujϕj , whereλj ’s are some real num-

bers.
ThenJAu =∑∞

j=1λj (u−j ϕ−j − ujϕj ), so the linear operatorsetJA are direct sums of
rotations in the planesRϕj +Rϕ−j ⊂ Zd , j = 1,2, . . . .

We also assume that the gradient map∇dh is smoothing:
(H2) there existsγ > 0 such that ord∇dh=−γ for s ∈ [d − γ, d + γ ]. Moreover, the

maps

∇dh :Zs ×R →Zs+γ , s ∈ [d − γ, d + γ ],

areC1-smooth and bounded.9

For anyt andT we denote byOTt any open subset of the domain of definition of the
flow-mapSTt in Zd , such that for each bounded subsetQ⊂OTt the set

⋃
τ∈[t,T ] Sτt (Q) is

bounded inZd .10

In the theorem below the ballsBr and the cylindersCjρ, j � 1, are defined in the same
way as in Section 8.1.

THEOREM 8.1. Assume that(H1) and (H2) hold and that a ballBr = Br(u0;Zd) :=
{‖y − u0‖d < r} belongs toOTt together with someε-neighbourhood, ε > 0. Then the
relation

STt (Br)⊂ v0 +Cjρ(Zd) (8.4)

with somev0 ∈Zd andj � 1 implies thatρ � r .

PROOF. Without lost of generality we may assume that

v0 = 0, j = 1.

Arguing by contradiction we assume that (8.4) holds withρ < r and choose anyρ1 ∈
(ρ, r).

9I.e., they send bounded sets to bounded.
10This set should be treated as a ‘regular part of the domain of definition’.
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For n� 1 we denote byE2n the subspace ofZd , spanned by the vectors{ϕj , |j | � n},
and provide it with the usual Darboux symplectic structure (it is given by the formα2|E2n ).
By Πn we denote the orthogonal projectionΠn :Zd →E2n. We set

Hn = 1

2
〈Au,u〉d + h

(
Πn(u), t

)
and denote byST(n)t flow-maps of the Hamiltonian vector filedVHn . Any mapST(n)t decom-

poses to the direct sum of a symplectomorphism ofE2n and of a linear symplectomorphism
of Zd AE2n. So the theorem’s assertion with the mapSTt replaced byST(n)t follows from
the Gromov theorem, applied to the symplectomorphism

E2n→E2n, x  →ΠnS
T
(n)t

(
i(x)+ u0

)
,

wherei stands for the embedding ofE2n toZd .
Proofs of the two easy lemmas below can be found in [54].

LEMMA 8.2. Under the theorem’s assumptions the mapsST(n)t are defined onBr for n� n′
with some sufficiently largen′, and there exists a sequenceεn −→

n→∞ 0 such that

∥∥STt (u)− ST(n)t (u)∥∥� εn (8.5)

for n� n′ and for everyu ∈ Br .

LEMMA 8.3. For any u ∈ Br we have STt (u) = e(T−t)JAu + S̃Tt (u), where S̃Tt is a
C1-smooth map in the scale{Zs} andordS̃Tt =−γ for s ∈ [d − γ, d + γ ].

Now we continue the proof of the theorem. Since its assertion holds for any mapST(n)t
(n� n′) and since the ballBr belongs to this map’s domain of definition (see Lemma 8.2),
then for eachn� n′ there exists a pointun ∈ Br such thatST(n)t (un) /∈ C1

ρ1
(0). That is,∣∣Π1S

T
(n)t (un)

∣∣� ρ1. (8.6)

By the weak compactness of a Hilbert ball, we can find a weakly converging subsequence

unj ⇀ u ∈ Br, (8.7)

so

unj → u strongly inZd−γ .

Due to Lemma 8.3 this implies that̃STt (unj )→ S̃Tt (u) in Zd , and using (8.7) we obtain the
convergence:

STt (unj )⇀ STt (u). (8.8)
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Noting that|Π1S
T
t (un)| = |Π1S

T
(n)tun + Π1(S

T
t − ST(n)t )un| and using (8.6), (8.5) we

get: ∣∣Π1S
T
t (un)
∣∣� ρ1 − εn, n� n′. (8.9)

Since by (8.8) Π1S
T
t (unj ) → Π1S

T
t (u) in E2, then due to (8.9) we have

|Π1S
T
t (u)| � ρ1. This contradicts (8.4) becauseρ1> ρ. The obtained contradiction proves

the theorem. �

8.3. Examples

EXAMPLE 8.4. Let us consider the non-linear wave equation

ü=&u− f̃ (u; t, x), (8.10)

whereu = u(t, x), x ∈ Tn. The functionf̃ is a polynomial inu of a degreeD such that
its coefficients are smooth functions oft andx. We setf = f̃ − u, denote byB the linear
operatorB =√

1−& and write (8.10) as the system of two equations:

u̇ = −Bv,
v̇ = Bu+B−1f (u; t, x). (8.11)

Let us take for{Zs} the shifted Sobolev scaleZs = Hs+1/2(Tn;R2), where〈ξ, η〉s =∫
Tn
B2s+1ξ · η dx (its basic scalar product is the scalar product inH 1/2). We setα2 =

J̄ dξ ∧ dξ , whereJξ = (−v,u) for ξ = (u, v). Choosing for{ψj , j ∈ N} a Hilbert basis of
the spaceH 1/2(Tn), formed by properly normalised and enumerated non-zero functions
sins · x and coss · x (s ∈ Zn), we set

ϕ̃j = (ψj ,0), ϕ̃−j = (0,ψj ), j ∈ N.

The obtained symplectic scale({Zs}, α2) is a Darboux scale. It is easy to see that (8.11) is
a Hamiltonian equation with the Hamiltonian

H(u,v)= 1

2

〈
B(u, v), (u, v)

〉
0 +
∫
F(u; t, x) dx,

whereF ′
u = f . SoZ0 =H 1/2(Tn,R2) is the Darboux phase space for the non-linear wave

equation, written in the form (8.11).
To apply Theorem 8.1 we have to check the conditions (H1) and (H2). The first one (with

A= B) holds trivially sinceϕ̃j ’s are eigenfunctions of the Laplacian. The condition (H2)
holds in the following three cases:
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(a) n= 1,
(b) n= 2,D � 4,
(c) n= 3,D � 2.
The case (a) and the case (b) withD � 2 can be checked using elementary tools, see [54].

Arguments in the case (b) with 3�D � 4 and in the case (c) are based on a Strichartz-type
inequality, see [17].

In the cases (a)–(c), Theorem 8.1 applies to Equation (8.10) in the form (8.11) and
shows that the flow maps cannot squeezeH 1/2-balls to narrow cylinders. This result can
be interpreted as impossibility of ‘locally uniform’ energy transition to high modes, see
in [54].

EXAMPLE 8.5. For a non-linear Schrödinger equation

u̇= i&u+ if ′
u

(|u|2)u, x ∈ Tn (8.12)

(cf. Example 2.7), the Darboux phase space is theL2-spaceL2(Tn;C) with the basis,
formed by normalised exponents{eis·x, ieis·x}. Now the assumption (H2) fails (and it is
very unlikely that the flow-maps of (8.12) satisfy the assertions of Lemmas 8.2 and 8.3).
So we smooth out the Hamiltonian of (8.12) and replace it by

Hξ = 1

2

∫ (|∇u|2 + f (|U |2))dx, U = u ∗ ξ,

whereu ∗ ξ is the convolution ofu with a functionξ ∈ C∞(Tn,R). The corresponding
Hamiltonian equation is

u̇= i&u+ i(f ′(|U |2)U) ∗ ξ. (8.13)

This smoothed equation satisfies (H1), (H2), and Theorem 8.1 applies to its flow-maps.

8.4. Symplectic capacity

Another way to prove Theorem 8.1 uses a new object—symplectic capacity —which is
interesting on its own.

Symplectic capacity in a Hilbert Darboux space(Zd,α2) as in Section 8.2 (below we
abbreviateZd to Z), is a mapc which associates to any open subsetO ⊂ Z a number
c(O) ∈ [0,∞] and satisfies the following properties:

(1) Translational invariance: c(O)= c(O + ξ) for anyξ ∈Z;
(2) Monotonicity: if O1 ⊃O2, thenc(O1)� c(O2);
(3) 2-homogeneity: c(τO)= τ2c(O);
(4) Normalisation: for any ballBr = Br(x;Z) and any cylinderCjr = Cjr (Z) we have

c(Br)= c(Cjr )= πr2.

(We note that forx = 0 the cylinder contains the ball and is ‘much bigger’, but both sets
have the same capacity.)
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(5) Symplectic invariance: for any symplectomorphismΦ :Z→ Z and any domainO,
c(Φ(O))= c(O).

If (Z,α2) is a finite-dimensional Darboux space, then existence of a capacity with prop-
erties (1)–(5) is equivalent to the Gromov theorem. Indeed, if a capacity exists, then the
squeezing (8.4) withρ < r is impossible due to (2), (4) and (5). On the opposite, the quan-
tity

c̃(O)= sup
{
πr2 | there exists a symplectomorphism which sendsBr in O

}
obviously satisfies (1)–(3) and (5). Using the Gromov theorem we see thatc̃ satisfies (4)
as well.

If (Z,α2) is a Hilbert Darboux space, then the finite-dimensional symplectic capacity,
obtained in [43], can be used to construct a capacityc which meets (1)–(4). This capac-
ity turns out to be invariant under symplectomorphisms, which are flow-mapsSTt as in
Theorem 8.1, see [54]. This result also implies Theorem 8.1.

9. The squeezing phenomenon and the essential part of the phase-space

Example 8.4 shows that flow-maps of the non-linear wave equation (8.11) satisfy the Gro-
mov property. This means (more or less) thatflow of generalised solutions for a non-linear
wave equation cannot squeeze a ball in a narrow cylinder. On the contrary, behaviour
of the flow formed byclassicalsolutions for the non-linear wave equation in sufficiently
smooth Sobolev spaces exhibits ‘a lot of squeezing’, at least if we put a small parameterδ

in front of the Laplacian. Corresponding results apply to a bigger class of equations. Be-
low we discuss them for non-linear Schrödinger equations; concerning the non-linear wave
equation (8.10) see the author’s paper in GAFA 5:4.

Let us consider the non-linear Schrödinger equation:

u̇=−iδ&u+ i|u|2pu, (9.1)

whereδ > 0 andp ∈ N, supplemented by the odd periodic boundary conditions:

u(t, x) = u(t, x1, . . . , xj + 2π, . . . , xn)

= −u(t, x1, . . . ,−xj , . . . , xn), j = 1, . . . , n, (9.2)

wheren � 3. Clearly, any function which satisfies (9.2) vanishes at the boundary of the
cubeKn of half-periods,Kn = {0 � xj � π}. The problem (9.1), (9.2) can be written in
the Hamiltonian form (2.2) if for the symplectic Hilbert scale({Xs}, α2) one takes the
scale formed by odd periodic complex Sobolev functions,Xs = Hsodd(R

n/2πZn;C), and
α2 = i du∧ du (cf. Example 2.8).

Due to a non-trivial result of Bourgain (which can be extracted from [15]), flow-
mapsSt for (9.1), (9.2) are well defined in the spacesXs , s � 1. In particular, they are
well defined in the spaceC∞ of smooth odd periodic functions. Denoting by| · |m the
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Cm-norm, |u|m = sup|α|=m supx |∂αx u(x)|, we define below the setAm ⊂ C∞ which we
call the essential part of the smooth phase-space for the problem (9.1), (9.2) with respect
to theCm-norm, or just theessential part of the phase-space:

Am = {u ∈ C∞ | u satisfies (9.2) and the condition (9.3)
}
,

where

|u|0 �Kmδµ|u|1/(2pm3+1)
m , (9.3)

with a suitableKm = Km(3) andµ = m3/(2pm3 + 1). Here3 is any fixed constant
3 ∈ (0,1/3).

Intersection of the setAm with theR-sphere in theCm-norm (i.e., with the set{|u|m =
R}) has theC0-diameter� 2KmδµR1/(2pm3+1). Asymptotically (asδ→ 0 or R→ ∞)
this is much smaller than theC0-diameter of the sphere, which equalsCmR. Thus,Am is
an ‘asymptotically narrow’ subset of the smooth phase space.

The theorem below states that for anym � 2 the setAm is a recursion subset for the
dynamical system, and gives a control for the recursion time:

THEOREM 9.1. Let u(t)= u(t, ·) be a smooth solution for(9.1), (9.2)and |u(t0)|0 = U .
Then there existsT � t0 + δ−1/3U−4p/3 such thatu(T ) ∈ Am and 1

2U � |u(T )|0 � 3
2U .

SinceL2-norm of a solution is an integral of motion (see Example 3.5) and|u(t)|0 �
|u(t)|L2(K

n), then we obtain the following

COROLLARY 9.2. Let u(t) be a smooth solution for(9.1), (9.2)and |u(t)|L2(K
n) ≡W .

Then for anym� 2 this solution cannot stay outsideAm longer than the timeδ−1/3W−4p/3.

For the theorem’s proof we refer the reader to Appendix 3 in [58]. Here we explain
why ‘something like this result’ should be true. Presenting the arguments it is more con-
venient to operate with the Sobolev norms‖ · ‖m. Let us denote‖u(t0)‖0 = A. Arguing
by contradiction, we assume that for allt ∈ [t0, t1] = L, wheret1 = t0 + δ−1/3U−4p/3, we
have

Cδa‖u‖bm < ‖u‖0, (9.4)

wherem � 3 is a fixed number. Since‖u(t)‖0 ≡ A, then (9.4) and the interpolation in-
equality imply the upper bounds∥∥u(t)∥∥

l
� ClA1− l

m
+ l
mb δ−

la
mb , 0� l �m, t ∈ L. (9.5)

In particular, δ‖&u‖1 � C3A
1− 3

m
+ 3
mb δ1− 3a

mb . Therefore ifmb > 3a, then fort ∈ L Equa-
tion (9.1), treated as a dynamical system inH 1

odd, is a perturbation of the trivial equation

u̇= i|u|2pu. (9.6)
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Elementary arguments show that theH 1-norm of each non-zero solution for (9.6) grows
linearly with time. This implies a lower bound for supt∈L ‖u(t)‖1, whereu(t) is the so-
lution for (9.1), (9.2) which we discuss. It turns out that one can choosea andb in such
a way thatmb > 3a and the lower bound we have just obtained contradicts (9.5) with
l = 1. This contradiction shows that (9.4) cannot be true for allt ∈ L. In other words,
‖u(τ)‖0 � Cδa‖u(τ)‖bm for someτ ∈ L. At this momentτ the solution enters a domain,
similar to the essential partAm.

Let us consider any trajectoryu(t) for (9.1), (9.2) such that|u(t)|L2(K
n) ≡W ∼ 1, and

discuss the time-averages〈|u|m〉 and〈‖u‖2
m〉1/2 of itsCm-norm|u|m and its Sobolev norm

‖u‖m, where we set

〈|u|m〉= 1

T

∫ T
0

|u|m dt,
〈‖u‖2

m

〉1/2 = ( 1

T

∫ T
0

‖u‖2dt

)1/2

,

and the timeT of averaging is specified below. While the trajectory stays inAm, we have

|u|m �
(
WK−1

m δ
−µ)1/(1−2pµ)

.

One can show that this inequality implies that each visit toAm increases the integral∫ |u|m dt by a term bigger thanδ to a negative degree. Since these visits are sufficiently
frequent by the corollary, then we obtain a lower estimate for the quantity〈|u|m〉. Details
can be found in [55]. Here we present a better result which estimates the time-averaged
Sobolev norms. For a proof see Section 4.1 of [58].

THEOREM 9.3. Let u(t) be a smooth solution for Equation(9.1), (9.2) such that
|u(t)|L2(K

n) � 1. Then there exists a sequencekm ↗ 1/3 and constantsCm > 0, δm > 0
such that〈‖u‖2

m〉1/2 � Cmδ−2mkm , provided thatm� 4, δ � δm andT � δ−1/3.

The results stated in Theorems 9.1, 9.3 remain true for Equations (9.1) with dissipation.
I.e., for the equations withδ replaced byδν, whereν is a unit complex number such that
Reν � 0 and Imν � 0.11 If Im ν > 0, then smooth solutions for (9.1), (9.2) converge to
zero in anyCm-norm. Since the essential partAm clearly contains a sufficiently small
Cm-neighbourhood of zero, then eventually any smooth solution enterAm and stays there
forever. Theorem 9.3 states that the solution will visit the essential part much earlier, before
its norm decays. Moreover, results, similar to Theorem 9.3, are true for solutions of the
damped-driven equatioṅu+ δ&u− i|u|2u= η(t, x), where the forceη is a random field,
smooth inx, and stationary mixing int . See [56] and [58].
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Appendix. Families of periodic orbits in reversible PDEs, by D. Bambusi

A.1. Introduction

Some families of periodic solutions of PDEs can be constructed using KAM theory; how-
ever a different approach leading to stronger results and simpler proofs is available. It is
based on the Lyapunov–Schmidt decomposition combined with a suitable analysis of small
denominators. The main advantage of this approach is elimination of the second Melnikov
condition (see (5.7)). As a consequence it is applicable to problems with periodic boundary
conditions and to some equations in more than one space dimension. Most of the general
theory has been developed for equations that are of second order in time and we will mainly
deal with this case. Moreover, we will concentrate on problems involving small denomina-
tors and only briefly report on results of a different kind.

A.2. An abstract theorem for non-resonant PDEs

Let {Xs} be a scale of Hilbert spaces with norms‖ · ‖s and scalar product〈·; ·〉s . LetA be a
(linear) morphism of the scale, and assume that there exists a Hilbert basis{ϕj }∞j=1 of X0
such that

Aϕj = ω2
j ϕj , ωj > 0.

Let us fixs, consider a neighbourhoodU of the origin inXs and a smooth mapg :U →Xs ,
having at the origin a zero of second order. We are interested in families of small amplitude
periodic solutions of the equation

ẍ +Ax = g(x). (A.1)

EXAMPLE A.1. The non-linear wave equation with periodic boundary conditions:

wtt −wxx + V (x)w = f (x,w), (A.2)

w(x, t)=w(x + 2π, t), wx(x, t)=wx(x + 2π, t), (A.3)

where the potentialV and the non-linearityf are smooth periodic of period 2π in x, and
f (x,w) = O(|w|2). Let λj be the periodic eigenvalues of the Sturm–Liouville operator
−∂xx + V (x) and assumeλj > 0 ∀j . Then the frequencies areωj :=

√
λj . In this case

Xs =Hs(T), andf induces a smooth operator fromXs to itself, provided thats > 1/2.

EXAMPLE A.2. The non-linear plate equation in thed-dimensional cube:

wtt +&&w+ aw = f (w), x ∈Q, (A.4)

w|∂Q =&w|∂Q = 0, (A.5)
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wherea > 0, f (w)= O(|w|3) and

Q := {x = (x1, . . . , xd) ∈ Rd : 0< xi < π
}
.

Then the eigenfunctions of the linearised system are given by

ϕn = sin(n1x1)sin(n2x2) · · ·sin(ndxd)

and the corresponding frequencies areωn =
√
(n2

1 + · · · + n2
d)

2 + a, wheren ∈ Zd and
ni � 1. To fit the abstract scheme we order the basis in such a way that the frequencies are
in non-decreasing order. NowX0 = L2(Q), andXs = D((&&)s) ⊂ H 4s endowed with
the graph norm. If the non-linearityf is smooth and odd (i.e.f (−w)=−f (w)), then it
defines a smooth map fromXs to itself for anys > [d/2]/4 (see Example 2.5).

In the linear approximation (g ≡ 0) the general solution of (A.1) is the superposition of
the linear normal modes, i.e. of the families of periodic solutions

x(j)(t)= (aj cos(ωj t)+ bj sin(ωj t)
)
ϕj . (A.6)

Fix one of the families, sayx(1). To ensure its persistence in the non-linear problem we
make the following assumptions:

(H1) (Non-resonance) For small enoughγ > 0 there exists a closed setWγ ⊂ R+ hav-
ing ω1 as an accumulation point both from the right and from the left, and such
that for anyω ∈Wγ one has

|ωl −ωj |� γ

l
, ∀l � 1, ∀j � 2. (A.7)

(H2) (Non-degeneracy) Letgr(x) be the first non-vanishing (homogeneous) Taylor
polynomial ofg. Assume thatr � 3 andβ0 �= 0, where

β0 :=
{
〈gr(ϕ1), ϕ1〉0 if r is odd,

〈gr+1(ϕ1), ϕ1〉0 if r is even.
(A.8)

Denotingξ1(ω1t)= cos(ω1t)ϕ1 one has

THEOREM A.3. Suppose that assumptions(H1), (H2)hold. Then there exist a setE ⊂ R
having zero as an accumulation point, a positiveω∗, and a family of periodic solutions
{xε(t)}ε∈E of (A.1) with frequencies{ωε}ε∈E fulfilling

sup
t

∥∥xε(t)− εξ1(tωε)∥∥s � Cεr,
∣∣ωε −ω1

∣∣� Cεr−1. (A.9)

Moreover, the setE is in one to one correspondence either withWγ ∩ [ω1,ω1 + ω∗) if
β0< 0, or withWγ ∩ (ω1 −ω∗,ω1] if β0> 0.
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PROOF. We consider only the case of oddr , the general case can be obtained by a slightly
different treatment of the forthcoming equationω. We are looking for anXs -valued func-
tion q(t) which is 2π -periodic and reversible (i.e.q(t) = q(−t)), and for a positiveω,
close toω1, such thatq(ωt) is a solution of (A.1). They must satisfy the equation

Lωq = g(q), Lω := ω2 d
2

dt2
+A, (A.10)

which will be considered as anω-dependent functional equation in the spaceH ⊂
H 1(T,Xs), formed by the reversible periodic functions. Equation (A.10) is studied us-
ing the Lyapunov–Schmidt decomposition, namely by decomposing it into an equation on
KerLω1 ≡span(ξ1) and an equation on its orthogonal complementR. Precisely, denote by
Q the projector onξ1 and byP the projector onR and make the Ansatzq = εξ1 + εru,
whereu ∈R. Then (A.10) is equivalent to the system

ω2 = ω2
1 + βεr−1, (A.11)

Lωu= Pgr(ξ1)+ PG(ε,u), (A.12)

−βξ1 =Qgr(ξ1)+QG(ε,u) (A.13)

for the unknowns (ε,u,β). HereG contains all higher-order corrections andω ∈Wγ is a
parameter. Equations (A.11), (A.12) and (A.13) are called theω, theP and theQ equation,
respectively.

First one solves theP equation (A.12). To this end one has to invert the linear operator
Lω|R . Its eigenfunctions are cos(lt)ϕj , and the corresponding eigenvalues are

λjl =−l2ω2 +ω2
j = (lω+ωj )(ωj − lω), j � 2, l � 1.

By (A.7), |λjl |>Cγ . So(Lω|R)−1 exists and is bounded. Applying this operator to theP
equation and using the implicit function theorem one obtains a smooth functionu(ε) that
depends parametrically onω ∈Wγ and solves theP equation.

Insertingu(ε) in theQ equation one determines the parameterβ as a function ofε. In
particular one hasβ(ε)= Cβ0 + higher-order corrections, whereC > 0. Insertingβ(ε) in
theω equation one gets an equation forε (remember thatω is fixed), which is a perturbation
of the equationω2 −ω2

1 = Cβ0ε
r−1. By the non-degeneracy this can be reduced to a fixed

point equation forεr−1 which is solvable by the contraction mapping principle. �

REMARK A.4. The theorem holds also in the caser = 2, but in this case the non-
degeneracy condition takes a more complicated form.

Theorem A.3 was proved in [5]. The technique of the Lyapunov–Schmidt decomposition
was used for the first time to construct families of periodic solutions in PDEs by Craig
and Wayne [29] who considered the model problem of the wave equation with periodic
boundary conditions (see Example A.1); we will report on this work in Section A.4.
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EXAMPLE A.5. Consider the non-linear wave equation with periodic boundary conditions
(see Example A.1). Letω1 be such thatω1 �= ωj for eachj �= 1. DecomposeV into its
averagea and a part̃V of zero average, then condition (H1) is satisfied ifa belongs to
an uncountable set which is dense in a neighbourhood of the origin (for the proof see
Lemma 3.1 of [7]). Condition (H2) can be expressed in terms of the eigenfunctions of the
Sturm–Liouville operator. If it holds, then Theorem A.3 applies and ensures persistence
of the corresponding family of periodic orbits. Note that, in a difference with the case of
Dirichlet boundary conditions (see Example 5.3), the non-linearity does not need to have
some particular parity.

EXAMPLE A.6. Consider the non-linear plate equation (see Example A.2). In the case
d = 1 all the frequencies are simple and the assumption (H1) is satisfied ifa is chosen
in a subset ofR+ having full measure. In the cased > 1, all the frequencies are multiple
except the smallest one. Taking forω1 the smallest frequency, (H1) is fulfilled ifa be-
longs to a dense uncountable subset of[0,1/4]. (H2) holds trivially provided the Taylor
expansion off at zero does not vanish identically (remember thatf (−w)= f (w)). Then
Theorem A.3 ensures persistence of the corresponding family of periodic orbits (for details
see [7]).

A.3. The resonant case

It is possible to generalise the above theorem to the case when the frequencies satisfy some
resonance relations. We will consider only the Lagrangian case, wheng =−∇H .

Fix a frequencyω1 of the linearised system. We replace the assumption (H1) by the
following one:

(H1R) For any small enoughγ there exists a closed setWγ ⊂ R+ havingω1 as an
accumulation point both from the right and from the left, and such that for any
ω ∈Wγ one has

either |ωl −ωj |� γ

l
, or lω1 −ωj = 0. (A.14)

To pass to the non-degeneracy assumption, we define the resonant set as

IR := {k � 1: ∃l � 1: lω1 −ωk = 0}, (A.15)

consider the linear space generated by{ϕk}k∈IR , and denote byN its closure in the graph
norm ofD(A). Note that all solutions of the linearised system with initial datum inN and
vanishing initial velocity are periodic of period 2π/ω1. LetHr be the first non-vanishing
Taylor coefficient ofH . Forx ∈N define the average ofHr by

〈Hr 〉(x) := ω1

2π

∫ 2π/ω1

0
Hr
(
cos(At)x

)
dt.

Consider the hypersurfaceS ⊂N of the pointsx ∈N such that〈x;Ax〉0 = 1.
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(H2R) There exists a non-degenerate critical pointx0 of the functional〈Hr 〉|S . The
corresponding Lagrange multiplierβ0 does not vanish.

Denote byξ0(ω1t) the solution of the linearised system with initial datumx0 and van-
ishing initial velocity.

THEOREM A.7 [6]. Suppose the assumptions(H1R), (H2R)hold. Then there exists a fam-
ily of periodic solutions{xε(t)}ε∈E of (A.1) with frequenciesωε, satisfying

sup
t

∥∥xε(t)− εξ0(tωε)∥∥s � Cεr,
∣∣ωε −ω1

∣∣� Cεr−1. (A.16)

The setE has the same properties as in the non-resonant case.

The proof is obtained by proceeding as in the non-resonant case. The only difference is
that in this case the kernel ofLω1 is no longer one-dimensional, but is isomorphic toN
(the isomorphism being given by the mapx  → cos(At/ω1)x). So theQ equation can be
transformed into an equation inN . The latter turns out to be a perturbation of the equation
for the critical points of〈Hr 〉|S , and the non-degeneracy condition (H2R) allows to solve
it by the implicit function theorem.

Applying the above theorem, one can construct countably many families of periodic
solutions of theφ4-model

wtt −wxx =±w3 + higher-order terms

with Dirichlet boundary conditions, and also higher frequency periodic solutions of the
non-linear plate equation of Example A.2 (see [6,7], see also [62,21]).

In general it is difficult to check condition (H2R). In the case of Hamiltonian systems
with n <∞ degrees of freedom, topological arguments allow to avoid it. Indeed, the
Weinstein–Moser theorem (see [80,64]) ensures that close to a minimum of the energy,
on each surface of a constant energy there exist at leastn periodic orbit. In general they
do not form regular families. A corresponding result for PDEs is not available at present.
However there exists anad hocvariational result for the wave equation

wtt −wxx =±wp + higher-order terms, p � 2, (A.17)

which ensures that, having fixedj � 1, there exists a sequence of periodic orbits accumu-
lating at zero, whose frequencies accumulate atj (which plays here the role of thej th
linear frequency). The corresponding theorem is due to Berti and Bolle [10].

Periodic solutions in the non-linear wave equation

wtt −wxx + f (x,w)= 0, u(0, t)= u(π, t)= 0, (A.18)

where constructed for the first time by Rabinowitz [76] using global variational methods
and a Lyapunov–Schmidt decomposition. Rabinowitz proved that, under suitable assump-
tions onf , Equation (A.18) has at least one periodic solution with periodT = 2πp/q, for
any choice of the integersp andq. Note that, when the periodT is commensurable with
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2π , the operatorLω|R has a compact inverse, i.e. there are no small denominators. The
work [76] was followed by a series of papers, simplifying the proof and sharpening the
result (see [24] and references therein). In particular, we mention the paper [25] by Brezis,
Coron and Nirenberg, where existence of periodic orbits is proved by a particularly simple
method: the authors write a variational principle, dual to the usual one, and look for its
critical points, using the mountain pass lemma. It is remarkable that in this approach theQ

equation becomes trivial.

A.4. Weakening the non-resonance condition

The main limitation of the results presented in Sections A.2 and A.3 rests in the non-
resonance conditions (H1) and (H1R). Indeed, such conditions are fulfilled with large
probability (in a suitable parameter space) whenωj ∼ jν with ν > 1; whenν = 1 the
non-resonance conditions are satisfied typically on uncountable sets of zero measure, but
whenν < 1 they are satisfied only exceptionally (as in the plate equation). As a conse-
quence the results of Sections A.2 and A.3 are not applicable to general equations in more
than one space dimensions. Furthermore, the method of Lyapunov–Schmidt decomposition
can be extended to the case of reversible systems of first order in time, but the approach of
Section A.2 is no more applicable.

In order to avoid such limitations one would like to be able to work with the weaker
non-resonance condition “there exists aτ > 0 such that|lω−ωj |� γ /lτ ”. This was done
by Craig and Wayne [29] who used the Nash–Moser theorem to solve theP equation. The
application of the Nash–Moser theorem requires to construct and estimate the inverse of
the linear operator describing the linearisation of theP equation at an approximate solu-
tion. This is the main difficulty of Craig–Wayne’s approach. To overcome it they use the
techniques by Fröhlich and Spencer [38], performing a careful analysis of small denomina-
tors (cf. Section 5.3). The method by Craig and Wayne was extended by Bourgain in order
to construct periodic (and also quasiperiodic) solutions in higher-dimensional equations.
The resulting method seems very general, but at present a theorem “ready for application”
is not available. We present here the result obtained by Bourgain by applying this method
to the non-linear wave equation

wtt −&w+ aw+w3 = 0 (A.19)

on Td . Fix a multiindexn ∈ Zd different from zero, and let

ξn(ωnt, x) := cos(n · x +ωnt), ωn :=
√
n2

1 + · · · + n2
d + a,

be the corresponding symmetric reversible solution.

THEOREM A.8 [18]. If a belongs to a certain subset ofR+ of full measure, then there
exists a Cantor setE of positive measure, accumulating at zero, and a family of periodic
solutions{wε(t, x)}ε∈E of (A.19) with frequenciesωε, satisfying∣∣εξn(ωεt, x)−wε(t, x)∣∣� Cε3,

∣∣ωn −ωε∣∣� Cε2.
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In the cased = 1, the result was proved in [29]; subsequently, still in the cased = 1,
Kuksin introduced a simpler technique to find the “large measure result” of Theorem A.8
(see in [20, pp. 90–94]).

The Craig–Wayne–Bourgain method also allows to deal with first order in time equa-
tions. For example, it was applied to the Schrödinger equation in one [30] or two space
dimensions [19] (see Section 5.4).

A.5. The water wave problem

A particular problem that has attracted the attention of many researchers since the very
beginning of the theory of PDEs is that of existence of standing water waves. The first
rigorous proof of their existence was obtained only recently by Plotnikov and Toland [70];
we present here their result.

Consider a perfect fluid lying above a horizontal bottom, and confined between two
parallel vertical walls. The fluid is subject to gravity, and atmospheric pressure acts at the
free surface. This is a dynamical system governed by the Euler equations supplemented
by appropriate boundary conditions. It was pointed out by Zakharov that this system is
Hamiltonian (see [81]). The corresponding Hamiltonian function is the energy of the fluid,
and conjugated variables are given by the wave profile and the velocity potential at the free
surface.

In the linear approximation the general solution is given by the superposition of the nor-
mal modes. The problem is to continue the normal modes to families of periodic solutions
of the non-linear system (the standing waves). Fix one of the normal modes, and denote
by η(t, x1) the corresponding profile of the free surface (x1 being the horizontal variable).
Then it is possible to choose the depthh, the widthl of the region occupied by the fluid and
the gravitational constantg in such a way that the period of the solution is normalised to 2π

and the linear frequencies fulfil a suitable non-resonance condition. Denote by(g0, l0, h0)

a choice of the parameters realising such conditions, then one has

THEOREM A.9 [70]. There exists an infinite setE ⊂ R having zero as an accumulation
point and, for anyε ∈ E , there existgε, lε and a standing wave solution of the water wave
problem with gravitygε in a box of widthlε. Moreover, denoting byηε the corresponding
profile of the free surface, one has∣∣ηε(t, x1)− ε2η(t, x1)

∣∣<Cε3, |gε − g0| + |lε − l0| � Cε.
The main difficulties in proving this result are as follows: firstly, the linear frequencies

behave asωn ∼ n1/2, so the non-resonance conditions that can be satisfied are quite weak.
Secondly, the mathematical formulation of the problem involves an unbounded non-linear
and non-local operator. To overcome these difficulties, Plotnikov and Toland use the La-
grangian description of the fluid motion and apply the Lyapunov–Schmidt approach to
handle the resulting non-linear problem. TheP equation now is solved by means of the
Nash–Moser theorem. The required invertibility of the linearised operator is obtained in
two steps: first it is reduced to a suitable canonical form, and next this canonical form
(which is essentially a perturbation of an operator involving derivatives and Hilbert trans-
form) is studied in detail.
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1. Introduction

In this chapter we discuss Hamiltonian partial differential wave equations which are de-
fined on unbounded spatial domains, a class of so-calledextended Hamiltonian systems.
The examples we consider are the nonlinear Schrödinger and Klein–Gordon equations de-
fined onR3. These may be viewed as infinite-dimensional Hamiltonian systems, which
have coherent solutions, e.g., spatially uniform equilibria, spatially nonuniform solitary
standing waves. . . . Questions of interest include thedynamics in a neighborhood of these
states (stability to small perturbations), stability under small Hamiltonian perturbations of
the dynamical system, the behavior of solutions on short, intermediate and infinite time
scales and the manner in which these coherent states participate in the structure of solu-
tions on these time scales.

The contrast in dynamics between Hamiltonian systems of extended type and those of
compact type is striking. Compact Hamiltonian systems arising, for example, from finite-
dimensional Hamiltonian systems or Hamiltonian partial differential equations (PDEs)
governing an evolutionary process defined on a bounded spatial domain, are systems gov-
erned by finite or infinite systems of ordinary differential equations (ODEs) with adiscrete
set of frequencies. Many fundamental phenomena and questions here involve the persis-
tence or breakdown of regular (e.g., time periodic or quasiperiodic) solutions and their dy-
namical stability relative to small perturbations. A stable state of the system is one around
which neighboring trajectories oscillate. KAM theory implies states persist in the presence
of small Hamiltonian perturbations (structural stability) provided certain arithmeticnon-
resonanceconditions on the set of frequencies of the unperturbed state hold [1,27,11,3].

In contrast, extended Hamiltonian systems arising from Hamiltonian PDEs are systems
involving continuous as well as discrete spectra of frequencies. Stable states are expected
to beasymptotically stable; states initially nearby the unperturbed state remain close and
even converge to it in an appropriate metric. Since the flow is in an infinite-dimensional
space, this does not contradict the Hamiltonian character of the phase flow, which in finite-
dimensional spaces preserves volume. Convergence to an asymptotic state occurs through a
mechanism of radiating energy to infinity. It is also possible that some states of the system
are long-livedmetastable states. These are states which persist on long time scales, but
decay ast→∞. This structural instability due to Hamiltonian perturbations occurs due to
nonlinearity induce resonances of states associated with discrete and continuous spectra,
precisely that which is precluded in the setting of KAM theory.

2. Overview

We consider partial differential equations for which the linear part (the small amplitude
limit) has spatially localized and time-periodic “bound state” solutions, which are dynam-
ically stable. Such solutions of the linear dynamical system are associated with the dis-
crete spectrum of linear self-adjoint operator generating the flow. Also associated with this
operator, due to the unboundedness of the spatial domain, is continuous spectrum with
corresponding spatially extended (nondecaying) radiation states. These bound and radia-
tion states are central to the linear dynamics. Arbitrary finite energy initial conditions can,
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by the spectral theorem for self-adjoint operators, be decomposed into a superposition of
discrete and continuous spectral states. Their amplitudes evolve with time according to an
infinite system of decoupled linear ordinary differential equations. The discrete component
of the solution is quasiperiodic in time and localized in space, while the continuous spec-
tral component disperses to zero (e.g., in a localL2 sense) as time advances. We seek to
understand the dynamics in theweakly nonlinear regime, the regime where nonlinearity is
present and where the initial data are small in an appropriately chosen norm.

Except in very special cases of integrable systems where, in an appropriate “nonlinear
basis”, bound (soliton) and radiation states evolve decoupled from one another, nonlin-
earity induces coupling and exchange of energy among bound and radiation states. It is
this situation which interests us and we consider as examples the following two nonlinear
wave equations of Hamiltonian type: the nonlinear Schrödinger equation (NLS) and the
nonlinear Klein–Gordon equation (NLKG)1

NLS i∂tΦ = (−&+ V (x))Φ + g|Φ|2Φ,
Φ(t, x) ∈ C, (t, x) ∈ R1 ×R3, (2.1)

NLKG
(
∂2
t −&+m2 + V (x))u= gu3,

u= u(t, x) ∈ R, (t, x) ∈ R1 ×R3. (2.2)

The nonlinear coupling coefficient,g, is real and taken to be either zero or of order
unity. The particular nonlinear Schrödinger equation, (2.1), with a nontrivial potential is
also called the Gross–Pitaevskii equation (G–P). Applications, especially of the nonlin-
ear Schrödinger equation, abound. These range from the fundamental physics of Bose–
Einstein condensation [29,16] to nonlinear optics, e.g., nonlinear optical pulse propagation
in inhomogeneous media [30,19,18].

The remainder of the chapter is outlined as follows:
• In Section 3 we shall introduce solitary wave solutions of the nonlinear Schrödinger

equation, (2.1).
• We then discuss a variational approach toH 1 orbital Lyapunov stability of solitary

waves in Section 4.
• The detailed behavior of solutions containing solitary wave components requires a

detailed understanding of spectral properties of the solitary wave. The linearization
about a stable solitary wave may have (a) discrete spectrum consisting of eigenstates
with zero frequency associated with the equation’s symmetries, and neutral (“inter-
nal”) oscillatory eigenstates and (b) continuous spectrum associated with spatially
extended radiation states. The presence or absence of these neutral oscillatory states,
a property which is not derivable from the variational characterization the solitary
wave, has an important effect on the dynamics on all time scales. Section 5 contains a
discussion of asymptotic stability of solitary waves in the simple case where there are
no neutral oscillations.

1Two other examples are cited at the end of this section. We have not attempted a comprehensive survey in this
chapter.
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• The case where there are neutral oscillatory eigenstates is considerably more rich in
phenomena and requires deeper mathematical study. We shall see that these latter
states typically decay to zero on very large time scales. The mechanism for decay is
nonlinearity induced resonance of discrete and continuum states; the continuous spec-
tral modes act as an effective dissipative heat bath with computable dissipation rate.
In Section 6 the ideas and methods of analysis are introduced in the simpler context
of the nonlinear Klein–Gordon equation. Then, in Section 7 we return to NLS/G–P to
study the weakly nonlinear regime of multimode nonlinear Schrödinger equations.

A theme throughout this article is that we view each PDE as a Hamiltonian system com-
prised of two subsystems: (a) a finite-dimensional subsystem describing the evolution of
coherent spatially localized states and (b) an infinite-dimensional part, governing the radi-
ation of energy to spatial infinity. For a general small norm initial condition, the solution
has different behaviors on different time scales: “initial phase”, “large but finite time” and
“infinite time”. This behavior is elucidated by derivation of an appropriatenormal form,
which makes explicit the key mechanism for energy transfer among bound and radiation
states.The direction of energy flow is an emerging property, a consequence of the initial
condition being localized, resonant coupling of bound to dispersive waves due to nonlin-
earity and the property of local decay of dispersive waves.

There are close connections between these phenomena and their analysis with the com-
putation of lifetimes of quantum states (transition theory), the perturbation theory of em-
bedded eigenvalues in continuous spectra, and parametrically forced Hamiltonian systems;
see, for example, [42–44,24,25,38,39].

In conclusion we remark that the asymptotic stability and scattering of coherent struc-
tures for infinite volume Hamiltonian systems has been considered in other contexts as
well. Two important other studies are (i) the long time dynamics resulting from a classical
particle interacting with a scalar wave field; see, for example, [26] and (ii) the stability of
the Minkowski metric for the Einstein equations of the gravitational field [10].

3. Linear and nonlinear bound states

In this section we introduce bound states of the linear (g = 0) and nonlinear (g �= 0)
Schrödinger equation (2.1).

Bound states of the unperturbed problem

LetH =−&+V (x). We assume thatV (x) is smooth, real-valued and sufficiently rapidly
decaying, so thatH defines a self-adjoint operator inL2. Additionally, we assume that the
spectrum ofH consists of continuous spectrum extending from zero to positive infinity
and two discrete negative eigenvalues, each of multiplicity one2:

σ(H)= {E0∗,E1∗} ∪ [0,∞).
2The general case of any finite number of bound states can be considered as well. The case ofm � 2 bound

states captures all key phenomena we wish to discuss and keeps the presentation as simple as possible.
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Therefore, there exist eigenvaluesEj∗, with smooth, square-integrable normalized eigen-
functions,ψj∗(x), j = 0,1, such that

Hψj∗ =Ej∗ψj∗, 〈ψj∗,ψk∗〉 = δjk. (3.1)

We also introduce spectral projections onto the discrete eigenstates and continuous spec-
tral part ofH , respectively:

Pj∗f ≡ 〈ψj∗, f 〉ψj∗, j = 0,1,

Pc∗ ≡ I − P0∗ − P1∗.

Nonlinear bound states

We seek solutions of (2.1) of the form

φ = e−iEtΨE.

Substitution into (2.1) yields the following elliptic problem for the bound states of NLS

HΨE + g|ΨE |2ΨE =EψE, ψE ∈H 1. (3.2)

Note that ifΨE is any solution of (3.2) then for anyθ ∈ R, ΨEeiθ is a solution.

THEOREM 3.1 [36]. For eachj = 0,1 we have a one-parameter family, bound states
depending on the complex parameterαj and defined for|αj | sufficiently small:

Ψαj (x)≡ αj
(
ψj∗(x)+O

(|αj |2)),
Ej =Ej∗ +O

(|αj |2).
For αj complex and|αj | small, the set{Ψα0} is called the nonlinear ground state family and
{Ψαj : j � 1}, the family of nonlinear excited states. Below, we shall also use the notation
ΨEj to denote a real-valued nonlinear bound state and parametrize the family of states by
ΨEj (x)e

iθ , θ ∈ R.

The proof uses standard bifurcation theory [32], which is based on the implicit function
theorem. The analysis extends to the case of nonlocal nonlinearities.

In what follows we shall “time-modulate” these bound states. For convenience, we shall
use the notation:Ψj (t, x)= Ψαj (t) andEj(t)=Ej(|αj (t)|2).

An alternative approach to the construction of nonlinear bound states is byvariational
methods. The variational characterization is of particular interest in the case of the ground
state, due to its role in establishing itsdynamicstability. Our point of departure for the
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variational approach is the observation that NLS has the following two conserved integrals,
which are constant in time on solutions of NLS:

H[Φ] ≡
∫

|∇Φ|2 + V (x)|Φ|2 + 1

2
g|Φ|4dx, (3.3)

N [Φ] =
∫

|Φ|2dx, (3.4)

H is a Hamiltonian, which generates NLS;

i∂tΦ = δH[Φ,Φ∗]
δΦ∗ .

Its time-invariance for the NLS flow is associated with time-translation symmetry, while
the time-invariance ofN is related to the phase symmetryΦ  →Φeiγ , γ ∈ R.

Nonlinear bound states of NLS areH 1 solutions,F4, of the elliptic equation

HF4 + g|F4|2F4 =E4F4, (3.5)

for some choice ofE and can also be viewed as critical points of the functional

JE[f ] ≡H[F ] +EN [F ]. (3.6)

That is, we have that the first variation ofJE4 vanishes atE4, i.e.δJE4[F4] = 0.
The nonlinear ground state has a characterization as a constrained minimizer

Iθ = inf
{
H[F ]: F ∈H 1, N [F ] = θ}. (3.7)

For θ small, the minimum in (3.7) is attained at the ground state obtained in Theorem 3.1.
The value of the frequency parameter,E, of a ground stateΨE depends onθ .

4. Orbital stability of ground states

In this section we discuss the orbital Lyapunov stability of ground states of NLS. Note that
by the phase invariance of NLS, we have that theorbit of the ground state

Ogs=
{
ΨE0(x)e

iγ : γ ∈ [0,2π)} (4.1)

is a one-parameter family of ground states. The ground state is stable in the following
sense. If initiallyΦ(x, t = 0) is H 1 close to some phase-translate ofΨE0 then, for all
t �= 0,Φ(x, t) isH 1 close to some (typicallyt dependent) phase-translate ofΨE0. In order
to make this precise, we introduce a metric which measures the distance from an arbitrary
H 1 function to the ground state orbit:

dist(u,Ogs)= inf
γ

∥∥u−ΨE0e
iγ
∥∥
H1. (4.2)
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Thus a more precise statement of stability is as follows. For anyε > 0 there is aδ > 0 such
that if

dist
(
Φ(·,0),Ogs

)
< δ (4.3)

then for allt �= 0

dist
(
Φ(·, t),Ogs

)
< ε.

The proof of stability is now sketched. Letε be an arbitrary positive number. We have
for t �= 0, by choosingδ in (4.3) sufficiently small

ε2 ∼ JE0

[
Φ(·,0)]− JE0[Ψ0]

= JE0

[
Φ(·, t)]− JE0[Ψ0] by conservation laws

= JE0

[
Φ(·, t)eiγ ]− JE0[Ψ0] by phase invariance

= JE0

[
Ψ0 + u(·, t)+ iv(·, t)

]− JE0[Ψ0]
(definition of the perturbationu+ iv, u, v ∈ R)

∼ (L+u(t), u(t)
)+ (L−v(t), v(t)

)
(by Taylor expansion andδJE0[Ψ0] = 0). (4.4)

The operatorsL+ andL− are, respectively, the real and imaginary parts of the second
variational derivative ofJE0, the linearized operator about the ground state. IfL+ andL−
were positive definite operators, implying the existence of positive constantsC+ andC−
such that

(L+u,u)� C+‖u‖2
H1, (4.5)

(L−v, v)�C−‖v‖2
H1 (4.6)

for all u,v ∈ H 1, then it would follow from (4.4) that the perturbation about the ground
state,u(x, t)+ iv(x, t), would remain of orderε in H 1 for all time t �= 0. The situation is
however considerably more complicated. The relevant facts to note are as follows.

(1) L−ΨE0 = 0, with ΨE0 > 0. Hence,ΨE0 is the ground state ofL−, 0∈ σ(L−), and
L− is nonnegative with continuous spectrum[|E0|,∞).

(2) For smallL2 nonlinear ground states,L+ has exactly one strictly negative eigen-
value and continuous spectrum[|E0|,∞).

The zero eigenvalue ofL− and the negative eigenvalue ofL+ constitute twobaddirections,
which are treated as follows, noting thatu(·, t) andv(·, t) are not arbitraryH 1 functions
but are rather constrained by the dynamics of NLS.

To controlL−, we chooseγ (t) so as to minimize the distance of the solution to the
ground state orbit, (4.2). This yields the codimension one constraint onv: (v(·, t),ΨE0)=0,
subject to which (4.6) holds withC− > 0.
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To controlL+, we observe that sinceL2 is invariant on solutions, we have the codimen-
sion constraint onu: (u(·, t),ΨE0)= 0. AlthoughΨE0 is not the ground state ofL+, it can
be shown by constrained variational analysis that for small amplitude nonlinear ground
states,C+ > 0 in (4.5).

Thus, positivity (coercivity) estimates (4.5) and (4.6) hold andJE0 serves as a Lyapunov
functional which controls the distance of the solution to the ground state orbit. The argu-
ment presented here appears in greater detail and greater generality in [55], where it is
proved that

∂E‖ψE‖2
2> 0 (4.7)

implies orbital stability of any constrained energylocal minimizers. The approach is in-
spired by the seminal article [2], who refers to origins in the work of Boussinesq. A general
functional analytic setting is given in [20], where it is shown that (4.7) is necessary and suf-
ficient for stability. See also the related compactness-based variational approach to stability
in [9] for a proof of orbital stability of constrainedglobalminimizers.

5. Asymptotic stability of ground states I. No neutral oscillations

The type of stability discussed in the previous section is that encountered in the setting
of finite-dimensional Hamiltonian systems; if the initial conditions are close to the group
orbit of the ground state, then the solution remains close for all time.Asymptotic stability, in
which the solution asymptotically converges to the state of interest, cannot apply in finite-
dimensional Hamiltonian systems as this would violate the volume preserving constraint
on the phase flow. However, in an infinite-dimensional setting not all norms are equivalent
and there are processes, namely radiation of energy to infinity, which facilitate asymptotic
convergence to a preferred state.

We now discuss such a result for small amplitude ground states of NLS. The notion of
stability can be seen as a natural refinement of the ideas of Section 4. Instead of freezing
the “energy”E of the individual ground state, whose stability is under study, and allowing
the phase,θ to evolve in order toapproximatelytrack the solution, we instead construct
E(t) andθ(t) to evolve in time in such a way that the deviation of the solution,φ(·, t) and

themodulatedground stateΨE(t)e−i(
∫ t

0 E(s) ds−θ(t)) tends to zero in an appropriate norm.
Before stating a result along these lines we need to briefly discuss some spectral proper-

ties of the ground state. Recall that by stability of the ground state (in the Lyapunov sense)
it is necessary that all spectrum of the generator of the linearized flow,−iH0 about the
ground state lie on the imaginary axis. Zero is an isolated eigenvalue, arising from sym-
metries of the equation and the continuous spectrum consists of vertical semi-infinite lines
[i|E0|, i∞) and(−i∞,−i|E0|]. The key hypotheses are: (i) thatH0 has no nonzero eigen-
values in the gap between−i|E0| andi|E0|, and thus solutions of the linearized evolution
with periodic or quasiperiodic oscillations about the ground state are precluded (see(h3)
below), and (ii) thatH has neither an eigenvalue nor a “resonance” at zero energy [21],
a hypothesis on the behavior of(H − zI)−1 asz→ 0, which holds for genericV (x), and
ensures sufficiently strong dispersive time-decay estimates of the linearized evolution.



1144 M.I. Weinstein

THEOREM 5.1 [40,41,33].Consider NLS in spatial dimensionn= 3. Assume the follow-
ing

(h1) The multiplication operatorf  → 〈x〉σV (x)f , where σ > 3 is bounded on
H 2(R3).

(h2) The Fourier transform ofV , V̂ ∈ L1(R3).
(h3) Zero is neither an eigenvalue nor a resonance of the operatorH =−&+ V .
(h4) H0 acting onL2 has exactly one negative eigenvalueE0∗ < 0, with H0ψ0∗ =

E0∗ψ0∗, ‖ψ0∗‖2 = 1.
Let the initial conditionφ0 be sufficiently small inH 1 ∩ L2(〈x〉2dx). Then, there exist
smooth functionsE(t) andθ(t), such thatlimt→±∞E(t)= E± and limt→±∞ θ(t)= θ±
exist and

lim
t→±∞

∥∥φ(·, t)− e−i(∫ t0 E(s) ds−θ(t))ΨE(t)∥∥L4(R3)
= 0. (5.1)

To prove Theorem 5.1 we seek a solution in the form of a modulated nonlinear ground
state and a dispersive correction:

φ(x, t)= ΨE(t)e−i(
∫ t

0 E(s) ds−θ(t)) + η(t). (5.2)

Substitution into NLS and projection onto the subspaces associated with the discrete and
continuum modes of the linearized flow yields a coupled system of equations forE(t), θ(t)

andη(t). Asymptotic convergence ofE(t) andθ(t), and decay ofη(·, t) ast→±∞ are
proved using local decay [21] and dispersiveLp, p > 2, estimates [22].

We postpone further discussion of this analysis to our discussion of the case where the
linearized dynamics has neutral oscillations about the ground state, e.g., which may result
fromH possessing two or more eigenvalues; see Sections 6 and 7. The analogous coupled
ODE–PDE system requires considerably deeper study. In the next section, Section 6, we
discuss the metastability and decay of neutral oscillations in the context of the nonlinear
Klein–Gordon equation. Then, in Section 7 we turn to the case of NLS, where the same
mechanisms are at work.

6. Resonance and radiation damping of neutral oscillations—metastability of bound
states of the nonlinear Klein–Gordon equation

Consider the nonlinear Klein–Gordon equation (NLKG) with a potentialV (x), assumed
to be smooth and sufficiently rapidly decaying as|x| →∞ (x ∈ R3):(

∂2
t +B2)u= gu3. (6.1)

Here,B2 =−&+m2 + V (x), is a strictly positive operator with a single eigenvalue,Ω2,
satisfying 0< Ω2 < m2, with correspondingL2-normalized eigenfunctionϕ(x), which
satisfiesB2ϕ =Ω2ϕ. We also assume that the essential spectrum ofB2 is absolutely con-
tinuous and is given by the semi-infinite interval[m2,∞). The parameter,g, is taken to be
real and either zero or of order unity.
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Corresponding to the discrete spectral part ofB2 is a family of time-periodic and spa-
tially localized solutions:

ub(t, x;R,θ)=R cos(Ωt + θ)ϕ(x) (6.2)

of the linear Klein–Gordon equation(
∂2
t +B2)u= 0. (6.3)

For any sufficiently smooth and localized (finite energy) initial conditions, the solution
to (6.3) has the decomposition:

u(t, x)= ub(t, x;R0, θ0)+ η(t, x), (6.4)

whereR0 andθ0 are constants determined by the initial conditions andη(t, x) disperses to
zero ast tends to infinity.

QUESTION. What is the character of solutions to thenonlinearproblemg �= 0 for initial
data which are small in an appropriate norm?

REMARK 6.1. This question is of independent interest for the nonlinear Klein–Gordon
equation. We wish, however, to also point out the relation of this question to the large
time asymptotics of NLS. Recall our assumption in Theorem 5.1 thatH have only one
eigenvalue,E0∗, which by Theorem 3.1, gives rise to a branch of nonlinear ground states.
If H has two eigenvalues, then there is an additional branch of nonlinear excited states.
For NLKG, the role of the nonlinear ground state is played by the zero solution and the
dynamics of the nonlinear excited state can be understood by our analysis of how the un-
perturbed time-periodic bound state of the Klein–Gordon equation decays due to resonant
energy transfer to radiation modes under a nonlinear Hamiltonian perturbation.

The following result [45] gives a detailed description of solutions.

THEOREM 6.1. Consider the nonlinear Klein–Gordon equation(6.1), with V (x), real-
valued and satisfying

(h1) There existsδ > 5 such that for all|α| � 2, |∂αV (x)| � Cα〈x〉−δ .
(h2) (−&+ 1)−1((x · ∇)lV (x))(−&+ 1)−1 is bounded onL2 for |l| � 10.
(h3) Zero is not a resonance of the operator−&+ V , [21].
(h4) Nonlinear analogue of the Fermi Golden Rule resonance condition; see, for exam-

ple, [43].

Γ ≡ π

3Ω

(
Pcϕ

3, δ(B − 3Ω)Pcϕ
3)≡ π

3Ω

∣∣(Fcϕ3)(3Ω)∣∣2> 0.

Here, Pc denotes the projection onto the continuous spectral subspace ofB and
Fc denotes the Fourier transform relative to the continuous spectral part ofB.
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Assume that the initial datau(x,0) and∂tu(x,0) are such that their norms are sufficiently
small inW2,2 ∩W2,1 andW1,2 ∩W1,1, respectively. Then, the solution of the initial value
problem withg �= 0 decays to zero ast→±∞. In particular,

u(x, t)=R(t)cos
(
Ωt + θ(t))ϕ(x)+ η(x, t),∣∣R(t)∣∣� C|t |−1/4,
∥∥η(·, t)∥∥

L8 � C|t |−3/4. (6.5)

To prove this result, it is natural to first decompose the solution into its discrete and
continuous spectral components:

u(x, t)= a(t)ϕ(x)+ η(x, t), 〈ϕ,η(·, t)〉= 0. (6.6)

Then,a andη satisfy a coupled system equations, which in the zero amplitude limit is the
decoupled linear system:(

∂2
t +Ω

)
a(t)= 0,

(
∂2
t +B2)η(t, x)= 0. (6.7)

The latter has time-periodic and spatially localized solutiona(t)=R cos(Ωt + θ), η≡ 0,
corresponding to (6.2). For small norm solutions, the equations fora andη are coupled,
and can be analyzed by a variant of the arguments outlined in Section 7. We point out that
the slow decay of the solution,u(x, t), quantified in the estimates (6.5), is governed by the
effective oscillator equation

∂2
t a +
(
Ω2 +O

(|a|2))a ∼−Γ a4∂ta, Γ > 0. (6.8)

Equation (6.8) is adampedequation, which governs the transfer of energy from the oscil-
lator to the dispersive wave-field.Γ is the derived nonlinear friction coefficient.

7. Asymptotic stability II. Multiple bound states and selection of the ground state
in NLS

We now return to the nonlinear Schrödinger equation (NLS)

i∂tΦ =HΦ + g|Φ|2Φ, H =−&+ V, x ∈ R3. (7.1)

In Section 5 we saw, in the case whereH has exactly one bound state, that solutions with
small initial conditions asymptotically, ast→±∞, approach an asymptotic ground state.
In this section we consider the case where the Schrödinger operatorH =−&+ V (x) has
multiple bound states.

For the linear Schrödinger equation (g = 0), the solution can be expressed as

e−iH tφ0 =
∑
j

〈ψj∗, φ0〉ψj∗e−iEj∗t + e−iH tPc∗φ0, (7.2)
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wheree−iH tPc∗φ0 decays to zero ast→±∞. The time decay of the continuous spectral
part of the solution can be expressed, under suitable smoothness, decay and genericity
assumptions onV (x), in terms oflocal decay estimates[21,31]:∥∥〈x〉−σ e−iH tPc∗φ0

∥∥
L2(R3)

� C〈t〉−3/2
∥∥〈x〉σ φ0

∥∥
L2(R3)

, (7.3)

σ � σ0> 0, andL1 → L∞ decay estimates[22,56]∥∥e−iH tPc∗φ0
∥∥
L∞(R3)

�C|t |−3/2 ‖φ0‖L1(R3). (7.4)

Therefore, the large time behavior of typical solutions of the linear Schrödinger equation
(g = 0) is quasiperiodic.

Consider now the case of NLS withg �= 0 andV is such that the Schrödinger operator
H has exactly two bound states:ψ0∗e−iE0∗t andψ1∗e−iE1∗t , withHψj∗ =Ej∗ψj∗, ψj∗ ∈
L2. By Theorem 3.1 NLS has ground state and excited state branches of nonlinear bound
statesΨα0e

−iE0t andΨα1e
−iE1t , with Ψαj ∈ L2 satisfying

HΨαj + g|Ψαj |2Ψαj =EjΨαj . (7.5)

Here,αj denotes a coordinate along thej th nonlinear bound state branch and

Ej =Ej∗ +O
(|αj |2).

We are interested in the behavior of solutions to NLS with initial conditions of small
norm. In contrast to asymptotic quasiperiodic behavior (7.2)–(7.3), we find that the generic
long time behavior is a ground state plus dispersive radiation [47]:

THEOREM 7.1. Consider NLS with aV (x) a smooth and short range(sufficiently de-
caying) potential supporting two bound states as described above. Furthermore, assume
that the linear Schrödinger operator, H , has no zero energy resonance[21]. Assume the
(generically satisfied) nonlinear Fermi golden rule resonance condition3

Γω∗ ≡ g2π
〈
ψ0∗ψ2

1∗, δ(H −ω∗)ψ0∗ψ2
1∗
〉
> 0 (7.6)

holds, where

ω∗ = 2E1∗ −E0∗ > 0. (7.7)

Then, there exist constantsk0 � 3 and σ0 � 2 such that for anyσ � σ0 and k � k0, if
‖〈x〉σφ(0)‖Hk is sufficiently small, we have the following characterization of the large time
dynamics of the solutionφ(t) of the initial value problem for NLS with initial dataφ(0).

3The operatorf  → δ(H − ω∗)f projectsf onto the generalized eigenfunction ofH with generalized eigen-
valueω∗. The expression in (7.6) is finite by local decay estimates (7.3); see, e.g., [43].



1148 M.I. Weinstein

As t→∞
φ(t)→ e−iωj (t)Ψαj (∞) + ei&tφ+, (7.8)

in L2, whereeitherj = 0 or j = 1. The phaseωj satisfies

ωj (t)= ω∞
j t +O(logt). (7.9)

Here, Ψαj (∞) is a nonlinear bound state(Section3), with frequencyEj(∞) nearEj∗.
Whenj = 0, the solution is asymptotic to a nonlinear ground state, while in the casej = 1
the solution is asymptotic to a nonlinear excited state. Generically, j = 0.

See also the related results on [4–6,13,14,49,50]. Nongeneric solutions which converge
asymptotically to an excited state were constructed in [51].

We give a sketch of the analysis. In analogy with the approach discussed in Section 5 for
the one bound state case, we represent the solution in terms of the dynamics of the bound
state part, described through the evolution of thecollective coordinatesα0(t) andα1(t),
and a remainderφ2, whose dynamics is controlled by a dispersive equation. In particular
we have

φ(t, x)= e−i
∫ t

0 E0(s) ds−iΘ̃(t)(Ψα0(t) +Ψα1(t) + φ2(t, x)
)
. (7.10)

We substitute (7.10) into NLS and use the nonlinear equations (7.5) forΨαj to simplify.
Anticipating the decay of the excited state, we center the dynamics about the ground state.
We therefore obtain forΦ2 ≡ (φ2, φ2)

T the equation:

i∂tΦ2 =H0(t)Φ2 + G
(
t, x,Φ2; ∂t @α(t), ∂t @α, ∂t Θ̃(t)

)
, (7.11)

where H0(t) denotes the matrix operator which is the linearization about the time-
dependent nonlinear ground stateΨα0(t). The idea is that in order forφ2(t, x) to decay
dispersively to zero we must chooseα0(t) andα1(t) to evolve in such a way as to remove
all secular resonance terms fromG. Thus we require,

Pb
(
H0(t)
)
Φ2(t)= 0, (7.12)

wherePb(H0) andPc = I − Pb(H0) denote the discrete and continuous spectral projec-
tions of H0. Since the discrete subspace ofH0(t) is four-dimensional (consisting of a
generalized null space of dimension two plus two oscillating neutral modes), (7.12) is
equivalent to four orthogonality conditions implying four differential equations forα0, α1
and their complex conjugates. These equations are coupled to the dispersive partial differ-
ential equation forΦ2. At this stage we have that NLS is equivalent to a dynamical system
consisting of a finite-dimensional part governing@αj = (αj ,αj ), j = 0,1, coupled to an
infinite-dimensional dispersive part governingΦ2:

i∂t @α =A(t)@α + @Fα,
(7.13)

i∂tΦ2 =H0(t)Φ2 + @Fφ.
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We expectA(t) andH0(t) to have limits ast→±∞. We fix T > 0 arbitrarily large, and
to study the dynamics on the interval[0, T ]. In this we follow the strategy of [5,14]. We
shall rewrite (7.13) as:

i∂t @α =A(T )@α + (A(t)−A(T )
)@α + @Fα,

(7.14)
i∂tΦ2 =H0(T )Φ2 +

(
H0(t)−H0(T )

)
Φ2 + @Fφ

and implement a perturbative analysis about thetime-independentreference linear, respec-
tively, matrix and differential, operatorsA(T ) andH0(T ).

More specifically, we analyze the dynamics of (7.14) by using (1) the eigenval-
ues of A(T ) to calculate the key resonant terms and (2) the dispersive estimates of
e−iH0(T )tPc(T ) [13,17,34,35].

Next we explicitly factor out the rapid oscillations fromα1 and show that, after a near
identity change of variables(α0, α1)  → (α̃0, β̃1), that the modified ground and excited state
amplitudes satisfy the perturbeddispersive normal form:

i∂t α̃0 = (c1022+ iΓω)|β̃1|4α̃0 + Fα[α̃0, β̃1, η, t],
(7.15)

i∂t β̃1 = (c1121− 2iΓω)|α̃0|2|β̃1|2β̃1 + Fβ [α̃0, β̃1, η, t].

REMARK 7.1. For finite-dimensional Hamiltonian systems the normal form coefficients
are real. That they are complex here, with imaginary part∼ Γω, is to due NLS being
an infinite-dimensional Hamiltonian system with discrete spectral states resonating with
continuum spectral states. The positivity ofΓω reflects the energy flow from the excited
state to the ground state and continuum states, and the resulting damping of the nonlinear
excited state.

It follows from (7.15) that aNonlinear Master EquationgovernsPj = |α̃j |2, the power
in thej th mode:

dP0

dt
= 2Γ P 2

1P0 +R0(t),

(7.16)
dP1

dt
=−4Γ P 2

1P0 +R1(t).

Coupling to the dispersive part,Φ2, is through the source termsR0 andR1. The expression
“master equation” is used since the role played by (7.16) is analogous to the role of master
equations in the quantum theory of open systems [15].

REMARK 7.2. An interesting phenomenon is anticipated by the system obtained
from (7.16), by dropping the decaying correction termsRj (t):

dp0

dt
= 2Γp2

1p0,

(7.17)
dp1

dt
=−4Γp2

1p0.



1150 M.I. Weinstein

First, it is easy to see from (7.17) thatp1(t) decays to zero ast →∞ unlessp0(0) = 0.
Furthermore, note that the resulting equation has the conservation law 2p0(t)+ p1(t) =
2p0(0)+ p1(0), the “total energy”. Therefore, sincep1(t)→ 0 ast→∞, we have

p0(∞)= p0(0)+ 1

2
p1(0).

Thus we expect that half the energy in decaying excited state is transferred to the ground
state and half to continuum radiation.

The detailed behavior of the system (7.16) coupled to the dispersive part can be charac-
terized on short, intermediate and long time scales. We consider the system (7.16) on three
time intervals:I0 = [0, t0] (initial phase)I1 = [t0, t1] (embryonic phase) andI2 = [t1,∞)
(selection of the ground state). A careful analysis reveals an effective finite-dimensional
reduction to a system of equations for the “effective mode powers”:Q0(t) andQ1(t),
closely related toP0(t) andP1(t), whose character on different time scales dictates the
full infinite-dimensional dynamics, in a manner analogous to role of a center manifold
reduction of a dissipative system [7].

Initial phase—t ∈ I0 = [0, t0]. Here,I0 is the maximal interval on whichQ0(t)� 0. If
t0 =∞, thenP0(t)=O(〈t〉−2) and the ground state decays to zero. In this case, we show
that the excited state amplitude has a limit as well (which may or may not be zero). This
case is nongeneric.

Embryonic phase—t ∈ I1 = [t0, t1]. If t0<∞, then fort > t0:

dQ0

dt
� 2Γ ′Q0Q

2
1,

(7.18)
dQ1

dt
� −4Γ ′Q0Q

2
1 +O
(√
Q0Q

m
1

)
, m� 4.

Therefore,Q0 is monotonically increasing;the ground state grows. Furthermore, ifQ0 is
small relative toQ1, then

Q0

Q1
is montonically increasing,

in fact exponentially increasing;the ground state grows rapidly relative to the excited state.

Selection of the ground statet ∈ I2 = [t1,∞). There exists a timet = t1, t0 � t1<∞,
at which theO(

√
Q0Q

m
1 ) term in (7.18) is dominated by the leading (“dissipative”) term.

For t � t1 we have

dQ0

dt
� 2Γ ′Q0Q

2
1,

(7.19)
dQ1

dt
� −4Γ ′Q0Q

2
1.
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It follows thatQ0(t)→ Q0(∞) > 0 andQ1(t)→ 0 ast → ∞; the ground state is se-
lected.
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Appendix. Notation

Hs denotes the Sobolev space of functions obtain via the closure ofC∞
0 in a norm:

‖f ‖2
Hs =
∑

|α|�s ‖∂αf ‖2
L2.

Pb∗ = Pb∗(A) denotes the projection onto the discrete spectral subspace of bound
states (L2 eigenstates) of an operatorA. Pc∗ = I − Pb∗ denotes the projection onto
the continuous spectral subspace.
H = −& + V , self-adjoint Schrödinger operator onL2, with smooth, sufficiently
decaying potential,V (x).
H0 matrix linearization of NLS about the ground state.
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Świątek, G. 47, 102, 103, 126, 127, 151, 156, 162,

163, 194 [7]; 248, 310 [4]; 549, 586,596 [3];
632, 640–642, 644, 655, 657, 658,661 [B-4];
662[13]; 662[14]; 662[30]; 662[31]; 664[71];
664 [72]; 759 [S-JS]

Swinnerton-Dyer, H.P.F. 898, 901, 915,923 [38]
Szlenk, W.196 [56]; 574, 595,596 [5]; 597 [54];

604,663 [53]
Szulkin, A. 1101,1127[127]

Tabachnikov, S. 90, 176, 183, 186, 188, 191–193,
194 [11]; 202 [225]; 667, 759 [S-MT]; 816,
921 [4]; 1017,1088[65]

Takens, F. 276,317 [179]
Tamura, J.-I. 1081,1086[3]
Tanaka, K. 1108, 1110,1127[128]; 1127[129]
Tangerman, F. 437,452 [73]
Taniguchi, M. 127,201[180]
Tarallo, M. 1112, 1113, 1120,1127[121]
Taylor, J.C. 933, 974, 976,1013[25]
Tehrani, H. 1103,1124[30]
Tempelman, A. 50,202 [226]
Temperley, H.N.V. 777,811 [65]
Terracini, S. 1109, 1112, 1113, 1120,1126 [94];

1126[95]; 1126[102]; 1127[121]; 1127[122]
Thieullen, P. 628,664 [73]
Thomas, R.K. 224,237 [30]; 804,811[43]
Thouvenot, J.-P. 5, 8, 51, 59, 60, 64, 65, 68, 70–72,

77, 79, 81, 92, 151, 160, 161,194[14]; 195[19];
199 [145]; 226, 234, 236 [12]; 238 [60];
238 [61]; 362,404 [5]; 759 [S-T]

Thurston, W. 424,452 [47]; 584, 597 [37];
598 [64]; 604, 607, 609,661 [B-8]; 749,
763 [99]; 789, 793, 811 [66]; 1031, 1060,
1088[66]

Tian, G. 1137,1187[56]
Toll, C.H. 274, 283,319 [233]
Tomanov, G.M. 816, 837, 862, 867, 869, 896,

898, 899, 902,926 [147]; 926 [148]; 926 [149];
929 [243]; 929 [244]; 929 [245]

Török, A. 287,317 [173]
Tresser, C. 628,664 [73]
Troubetzkoy, S. 305,315 [137]; 328, 403, 404,

405 [25]; 405 [26]; 406 [47]; 406 [48]; 1053,
1077–1079, 1083–1085,1087 [12]; 1087 [23];
1087[33]; 1088[67]

Tsujii, M. 628,664 [74]
Tutubalin, V.N. 961,1014[64]

Ueda, T. 127,201 [180]
Uhlenbeck, K. 1109,1127[117]
Ulam, S. 1049,1088[58]
Urbanski, M. 646,662 [10]; 882,929 [246]

Valette, A. 706, 707,761 [45]
van Danzig, D. 718,760 [15]
van der Waerden, B.L. 718,760 [15]
van Groesen, E.W.C. 1102,1127[130]
van Strien, S. 47, 102, 126,196[43]; 601, 614, 616,

618, 628, 630, 632, 634, 636–639, 653,661 [B-
7]; 662 [9]; 663 [41]; 663 [47]; 663[57]

VanderVorst, R.C.A.M. 1122,1125[83]
Varadarajan, V.S. 85,202 [227]; 667, 672, 698,

763 [100]; 763 [101]; 763 [102]
Varapoulos, N.T. 964, 987,1014[65]; 1014[66]



Author Index of Volume 1A 1167

Veech, W. 90, 110,202 [228]; 202 [229]; 287,
319 [234]; 860, 886,929 [247]; 1033–1035,
1059, 1061, 1063, 1069, 1073, 1074,1089[68];
1089 [69]; 1089 [70]; 1089 [71]; 1089 [72];
1089[73]; 1089[74]

Velani, S.L. 884,925 [99]
Verjovsky, A. 272, 280,319 [235]; 319 [236]
Vershik, A.M. 60,202 [230]; 678,763 [103]; 808,

809,810[28]; 811[59]; 811[60]; 974, 980–984,
986, 987, 989, 990,1013[36]

Viana, M. 276,317 [180]
Vignéras, M.-F. 845,929 [248]
Vinberg, E.B. 672, 675,762 [83]; 762 [84]; 817,

929 [249]
Vinograd, R.È. 892,929 [250]
Virtzer, A.D. 944, 945, 961,1014[67]; 1014[68]
Viterbo, C. 1099,1127 [131]; 1137, 1186 [21];

1186[36]; 1187[37]; 1188[67]
Vorobets, Y.B. 1052, 1058, 1062, 1064, 1066,

1075, 1083,1087[24]; 1089[75]; 1089[76]
Vul, E.B. 650–652,664 [75]

Wagoner, J. 783,810 [32]
Walters, P. 69, 98, 147,196 [57]; 202 [231];

275, 298,319 [237]; 319 [238]; 487, 496, 536,
545 [83]; 625, 638,664 [76]; 1041,1089[77]

Wang, H. 775, 777,812 [67]
Wang, H.-C. 828,930 [251]
Ward, C. 1031, 1062,1089[78]
Ward, T. 802–804, 807,811 [42]; 812 [68];

812 [69]
Wayne, C.E. 245, 256, 260,316 [151]
Weil, A. 676,763 [104]
Weinstein, A. 1099, 1101, 1102,1127 [132];

1127 [133]; 1127 [134]; 1136, 1188 [68];
1188[69]

Weinstein, M.194 [15]
Weiss, B. 60, 65, 67, 71,197 [88]; 198 [110];

199 [149]; 201 [188]; 201 [190]; 214, 216, 223,
224, 230, 231, 234–236,236 [12]; 237 [36];
237 [37]; 237 [38]; 237 [39]; 237 [40]; 237[41];
330, 389,405[10]; 406[55]; 668, 697,760[14];
767, 809 [2]; 832, 867, 895, 896, 898, 900,
926 [128]; 927 [163]; 927 [169]; 928 [206];
930 [252]; 930 [253]; 994,1012[5]

Weiss, H. 274,315 [128]; 500, 501,545 [58];
545 [59]

Wells, J.C. 245, 256,319 [239]
Wen, L. 278,319 [240]
White, B. 1176,1187[60]
Wilkinson, A. 133, 150,197 [84]; 202 [232];

246, 261, 262, 264, 265, 276, 286,313 [74];
314 [101]; 318 [207]; 319 [241]

Willem, M. 1093, 1102, 1104, 1105,1126 [99];
1127[135]

Williams, R. 107, 145,198 [104]; 202 [233]; 254,
272, 280,313[69]; 378,405[33]; 560, 571, 579,
598 [61]; 598 [65]

Wilson, F.W. 1137,1188[70]
Witte, D. 748,763[105]; 763[106]; 828, 842, 849,

861, 870, 877, 889, 902,930 [254]; 930 [255];
930 [256]; 930 [257]; 930 [258]

Woess, W. 933,1014[69]
Wu, T.S. 842,930 [259]
Wysocki, K. 31, 97, 113, 117, 123, 124,

194 [6]; 759 [S-HZ]; 1101, 1110,1125 [79];
1125[80]; 1145, 1147–1149, 1155, 1158, 1159,
1161, 1162, 1164, 1165, 1169, 1172, 1173,
1176, 1177, 1180–1182,1187 [38]; 1187 [39];
1187 [40]; 1187 [41]; 1187 [42]; 1187 [43];
1187 [44]; 1187 [45]; 1187 [46]; 1187 [47];
1187[48]; 1187[49]

Xia, Z. 171,202 [234]; 270,319 [242]

Yano, K. 279,319 [243]
Yaskolko, S. 759,763 [107]
Yoccoz, J.-C. 128, 129, 138, 139, 163,202 [235];

203 [236]; 203 [237]; 241, 245, 254–256, 258,
266–268, 275, 303,312 [57]; 319 [244]; 550,
568,597 [42]; 643, 660,661 [B-10]; 664 [77]

Yomdin, Y. 103,203[238]; 550, 573,598 [66]
Young, L.-S. 102, 133, 148,199 [129]; 202 [214];

246, 265, 266, 283, 309,314 [113]; 316 [144];
318 [215]; 319 [245]; 397–401, 405 [14];
406 [45]; 406 [52]; 407 [79]; 407 [80]; 423,
452 [74]; 628,664[73]; 1000,1014[51]

Yue, C.B. 295,319 [246]
Yukie, A. 902,930 [258]; 930 [260]; 930 [261]
Yuri, M. 46, 201 [202]

Zeghib, A. 293,319 [247]; 726, 763 [108]; 893,
894,930 [262]; 930 [263]

Zehnder, E. 31, 97, 113, 116, 117, 123–125, 170,
194 [6]; 195 [36]; 550, 596 [19]; 759 [S-
HZ]; 1093, 1099–1102, 1104, 1105,1123 [11];
1123 [12]; 1124 [54]; 1125 [80]; 1125 [81];
1125 [82]; 1127 [136]; 1133, 1135, 1138,
1139, 1145, 1147–1149, 1155, 1158, 1159,
1161, 1162, 1164, 1165, 1169, 1172, 1173,
1176, 1177, 1180–1182,1186 [7]; 1187 [38];
1187 [39]; 1187 [40]; 1187 [41]; 1187 [42];
1187 [43]; 1187 [44]; 1187 [45]; 1187 [46];
1187 [47]; 1187 [48]; 1187 [49]; 1187 [50];
1187[51]; 1187[52]

Zemljakov, A.N. (Zemlyakov) 192,199 [146];
1022, 1026,1088[41]



1168 Author Index of Volume 1A

Zharnitsky, V. 166,203 [239]
Zhuzhoma, E.V. 48,201 [187]
Zierau, R. 902,930 [258]
Ziller, W. 1100, 1102,1125[73]
Zimmer, R. 15, 62, 63, 67,196 [58]; 667, 678,

683–685, 689, 690, 692, 694–696, 703, 705–
709, 719, 720, 726, 730, 731, 733, 735–739,
741–745, 747, 748, 750, 756–758,760 [29];
762[66]; 762[67]; 762[78]; 762[79]; 762[80];
763 [106]; 763 [109]; 763 [110]; 763 [111];

763 [112]; 763 [113]; 763 [114]; 763 [115];
763 [116]; 763 [117]; 763 [118]; 763 [119];
763 [120]; 763 [121]; 763 [122]; 763 [123];
763 [124]; 817, 844,930 [264]; 952, 964, 972,
975, 980, 989, 990, 1003, 1004,1014 [55];
1014[56]; 1014[70]; 1014[71]

Zippin, L. 724,762 [75]
Zorich, A. 1033, 1073, 1074,1088[49]; 1089[79];

1089[80]; 1089[81]; 1089[82]
Zygmund, A. 289,319[248]; 615,664 [78]



Subject Index of Volume 1A

α-invariant function, 690
α-limit set, 24
δ-distance, 209
δ-shadowed, 563
ε-chain, 550
ε-chainable, 552
λ-lemma, 658
µ-harmonic function, 967
µ-stationary measure, 937, 968
π -simple cocycle, 687
ψ -approximable, 905, 906, 910
ψ -multiplicatively approximable, 914
ω-limit set, 24
Ω-stability, 106, 277, 278
1-form, natural, 456
3-sphere, tight, 1165

Abramov formula, 79
absolute continuity, 262, 266
absolutely continuous spectrum, 72
accessibility, 144, 150, 272, 285, 286
action
– amenable, 695, 972, 975
– Anosov, 754, 755
– Bernoulli, 717
– functional, 119, 125
– homogeneous, 828
– induced, 13, 23, 688
– integral, 1095, 1100
– isometric, 718
– local, 723
– measurable, 677
– minimal, 954, 992
– projective, 714
– proper, 683
– proximal, 949
– standard, 751
– strongly proximal, 949, 954
action-angle coordinates, 117, 154
Ad-proper Lie group, 845
adapted

– metric, 248
– norm, 247
adjoint representation, 817
admissible
– lattice, 919
– manifold, 303
– measure, 967
affine
– action, 717
– equivalence, 848
algebra
– Pinsker, 79, 212
– semisimple Lie, 673
algebraic
– entropy, 39
– group, 676
– hull, 692, 728
– linear representation, 823
– Zd -action, 796
almostk-simple, 673
almost complex structure, 457
almost direct product, 819
almost existence, 1132 1133, 1137
almost-conjugacy, 21, 144
almost-isomorphism, 21, 127, 129
amenable, 15, 16, 81–83, 694, 705
– action, 695, 972, 975
– group, 694
analysis, local, 98
Anosov
– action, 754, 755
– alternative, 272
– closing lemma, 112, 138, 142, 148, 149, 268
– cocycle, 289, 291
– diffeomorphism, 132, 133, 144, 145, 248, 278,

284
– element, 747
– flow, 252, 850
– – anomalous, 254
– – geodesic, 473
– obstruction, 290

1169



1170 Subject Index of Volume 1A

aperiodic matrix, 334
approximable
–ψ -, 905, 906, 910
–ψ -multiplicatively, 914
– badly, 906, 907, 910
– – multiplicatively, 914
– very well, 906, 907
– – multiplicatively, 914
– well, 906, 910
approximable set, 883
arithmetic
– group, 676
– lattice, 825
Arnold diffusion, 170, 1122
Artin–Mazur zeta function, 411
asymptotic
– behavior, 26
– cycle, 27
– density, 49
– distribution, 56
– flag, 1073
– growth, 274
– limit, 1148
– orbit growth, 32
– to a fixed point, 250
asymptotically harmonic manifold, 493
attractor, 143, 371–373, 386, 387, 392, 400, 402,

551
Aubry–Mather set, 157, 164, 165, 174
Auslander subgroup of a Lie group, 835
automorphism, 251
– K-, 73, 212
average
– Birkhoff, 14, 49, 50, 87, 180
– ergodic, 14
Axiom A, 248, 278, 411, 635

badly approximable, 906, 907, 910
– multiplicatively, 914
Baire space, 684
Banach contraction principle, 255
barycenter of a measure, 503
basic set, 132, 248, 326–328, 330, 334, 368, 370–

372, 374, 378, 389, 401, 414, 564
basin, 21, 635
– of attraction, 373, 387, 392, 393, 399
behavior
– asymptotic, 26
– stable, 151
Bernoulli
– action, 717
– measure, 58, 73, 74, 77
– property, 361, 363, 373, 399

– shift, 58, 80, 361, 1179, 1180
billiards, 187–189, 191–193
birecurrent set, 890
Birkhoff
– average, 14, 49, 50, 87, 180
– ergodic theorem, 66, 85
– normal form, 166
– periodic orbit, 157
block
– isolating, 98, 557
– form, Lyapunov, 300, 302
blow up, 722
Boltzmann ergodic hypothesis, 242
bootstrap, 265, 291
Borel
– density theorem, 685, 824
–G-space, standard, 678
– measure, invariant, 56
Borel–Cantelli
– family, 885
– lemma, 886
boundary, 713
– entropy, 980
– Furstenberg, 713, 976
– map, 972
– Poisson, 971
bounded
–µ-harmonic function, 967
– distortion property, 622
– geometry, 657
Bowen measure, 95
Bowen–Margulis measure, 282, 492
box mapping, 654
brake orbit, 1101
branchwise equivalence, 657
Brjuno condition, 659
Brouwer’s translation theorem, 1158
bubbling off analysis, 1176
bunching, 253, 262, 264
Busemann
– density, 489, 490, 518
– functions, 485

C-map, 628
(C,α)-good, 857
canonical
– line bundle, 1132
– representation, 586
– transformation, 114
capacity
– c0, 1138, 1139
– symplectic, 116, 1138
capture of celestial bodies, 249



Subject Index of Volume 1A 1171

Cartan
– decomposition, 820, 827
– involution, 672
– subalgebra, 673
– subgroup of a Lie group, 819
Cauchy–Riemann equation, 1147, 1182
caustic, 166
CE condition, 644
– topological, 645
CE map, 644
CE2 condition, 644
celestial mechanics, 241
center, 25
– manifold, 141
center-stable manifold, 141
center-unstable manifold, 141
central limit theorem, 362–364, 390, 397, 961, 963,

995
chain
– heteroclinic, 1113, 1115
– recurrent, 550
– transitive component, 553
character,Q-, 822
characteristic flow, 121
circle, invariant, 164
classical Hamiltonian system, 1135
classification, 105, 130, 145, 187, 278, 291, 292
– Poincaré, 28
closed geodesic
– regular, 520, 527
– singular, 522, 536
closing lemma, 112, 268, 270, 277, 278, 306
– Anosov, 112, 138, 142, 148, 149, 268
– Mañé, 112, 146
– – ergodic, 113
– Pugh, 112, 146, 270
cluster property, 347, 361
co-orientation, 1136
coboundary, 11, 142, 171, 172, 187, 188, 363, 686,

789
cocycle, 11, 62, 108, 142, 162, 171, 187, 297, 686
– Anosov, 289–291
– identity, 681
– Lyapunov, 105, 286
– non-compact, 1002
– Radon–Nikodym, 55, 680
– reduction, 691, 730
– rigidity, 188
– stability, 110
– strongly irreducible, 1002
– superrigidity, 736
– tempered, 299
– Zariski dense, 1002
codimension one, 263, 279, 280

coding, 45, 189
cohomological equation, 354
cohomologous, 162, 352, 354, 364, 385, 387, 388,

686
cohomology, 142
Collet–Eckmann map, 636
commensurability, 675
commensurable subgroups, 824
commensurator, 824
compact
– (G,µ)-boundary, 969
– (G,µ)-space, 968
complementary series, 700
complete Lyapunov function, 554
completely
– integrable system, 117
– positive entropy, 80
complexity, 1080
– function, 45
component
– expansive, 772
– invariant, 585
condition
– Diophantine, 642
– Furstenberg, 943, 1002
conditional
– entropy, 74, 75
– information function, 75
– measures, 54
cone
– criterion, 253
– field, 248, 253, 256
– topology, 478
configuration, 335
– space, 118, 122
conjugacy, 753
– smooth, 103, 105
– topological, 18, 103, 768
conjugate points, 462
conjugation-approximation method, 161, 173
Conley index, 560
– homology, 561
Conley–Zehnder index, 1163, 1166, 1167
connecting lemma, 113, 146, 278
constant
– cocycle, 687
– expansivity (expansiveness), 30
– type, 602
contact
– form, 120, 1136
– – dynamically convex, 1162
– manifold, 120
– structure, 120, 272, 1136



1172 Subject Index of Volume 1A

– – overtwisted, 1151
– – tight, 1151, 1152
contact type hypersurface, 1134, 1135
continuous
– representation, 85
– sum, 701
contractible set, 713
contracting, 948
– (semi)group, 948
– sequence, 948, 956
conull set, 678
copying lemma, Ornstein, 218
correlation
– coefficient, 68
– function, 362, 363, 390, 391
correspondence principle, Furstenberg, 46, 85
countable spectrum
– Lebesgue, 72, 73, 80, 181
– Plancherel, 717
cover, Markov, 48
critical
– exponent, 489
– value, 554
cross-ratio, 612
– inequality, 639
cycle, 581
– asymptotic, 27
– heteroclinic, 1180
cylinder, 40, 333, 345, 354, 356, 359, 367
– orbit, 1145, 1148, 1173

d̄-distance, 209, 219
DA-map, 251
Dani
– correspondence, 907
– subgroup of a Lie group, 835, 837
DE-map, 107, 250
decay of
– correlations, 73, 150, 179, 181, 285, 444
– geometry, 656
decomposition
– Cartan, 820, 827
– ergodic, 50, 60, 79, 84, 85, 680, 838, 846
– Iwasawa, 819
– Jordan, 822
– Levi, 820
– polar, 827
– root space, 674
– spectral, 43, 132, 142, 143, 147–149, 271, 279
Denjoy theorem, 103, 153
density
– asymptotic, 49
– Busemann, 489, 490, 518

– of Axiom A, 636
derived from expanding, 107, 250
descending chain condition, 800
diffeomorphism, Anosov, 132, 133, 144, 145, 248,

278, 284
differentiable stability, 170
differential of the geodesic flow, 456
dimension group, 785
Diophantine, 158, 162, 163, 165–170, 174, 187,

188
– condition, 642
direct integral, 702
discrete
– series, 700
– spectrum, 69, 89, 704, 1003
discretization procedure, 976
disjoint transformations, 213
disk, Siegel, 661
distality, 28–30, 176, 181
distortion, 611
distribution
– asymptotic, 56
– invariant, 109, 179, 181, 182, 188
divergence type, 489
domino shift, 777
doubling transformation, 649
dual
– lattice, 920
– unitary, 699
– variational method, 1098
dynamical system
– Lagrangian, 118
– symbolic, 18, 41
dynamical zeta function, 433
dynamics
– elliptic, 151–175
– hyperbolic, 127–151
– parabolic, 175–194
– symbolic, 242

element of a Lie group
– R-diagonalizable, 818, 822
– partially hyperbolic, 818
– quasi-unipotent, 818
– semisimple, 818, 822
– unipotent, 818, 822
elliptic
– dynamics, 151, 175
– fixed point, 166
– solution, 1159
– system, 101
elvel, 587
endomorphism, exact, 80



Subject Index of Volume 1A 1173

energy
– free, 364, 397
– of interaction, 336
– surface
– – stable, 1134
– – star-like, 1135, 1153, 1158
engaging totally, 744
ensemble, Gibbs, 334, 337
entropy, 51, 74, 77, 80, 82, 91, 92, 95, 143, 145,

147, 148, 177, 193, 273, 283, 741, 1077
– algebraic, 39
– as dimension, 35
– boundary, 980
– comparison, 495
– conditional, 74, 75
– expansive, 532
– for random transformations, 995, 996
– formula, 487, 488, 624
– – Pesin, 309
– fundamental-group, 39
– Furstenberg, 716, 980
– Gibbs, 393, 394
– homological, 39
– homotopical, 40
– Kolmogorov–Sinai, 364
– measure-theoretic, 350, 364, 401
– minimal, 502
– of partition, 74
– profile, 983
– random walk, 982
– relative, 79
– relative or fiber, 996
– relative to a partition, 75
– rigidity, 294, 495, 500
– slow, 37, 80, 92
– topological, 34–37, 308, 365, 487, 609
– volume, 487
equation
– Jacobi, 252, 253, 459
– Riccati, 252
equilibrium state, 38, 143, 145, 147, 364, 365, 368,

383, 384
equivalence
– affine, 848
– finite, 786
– orbit, 8, 18, 59, 67, 686, 697, 739, 740
– shift, 560, 782
– topological, 848
equivalent cocycles, 299
ergodic, 679, 1049
– average, 14
– decomposition, 50, 60, 79, 84, 85, 680, 838, 846
– extension, 743
– measure, 679

– set, 85
– stable, 150
– strongly, 994, 1003
– theorem, Birkhoff, 66, 85
ergodicity, 50, 60, 67, 69, 71, 84, 88, 90, 135, 144,

147, 150, 156, 160, 170, 172, 175, 178, 181,
182, 185, 186, 191, 192, 266, 678, 704

escapable set, 882, 883
escape rate, 370, 401–404, 947
essential class, 595
Euclidean
– Lie group, 818
– manifold, 824
Euler product, 413
Euler–Lagrange equation, 118
even equivalence, 230
EWAS quadratic form, 904
exact
– endomorphism, 80
– symplectic form, 122
exit set, 556
expanding map, 621
expansive
– component, 772
– subdynamics, 771
expansivity (expansiveness), 30, 94, 95, 128, 140,

147, 149, 266, 273, 274, 282, 564, 768
– constant, 30
exponent
– critical, 489
– Hölder, 262, 263, 265, 276, 287
– Lyapunov, 147, 262, 298, 302, 304, 629, 935,

936, 977, 997
exponential
– growth rate, 32
– Lie group, 818
– type, 41
extension, 10, 21, 108, 586
– ergodic, 743
– isometric, 22, 62, 108, 182, 226
– Markov, 419, 631
– natural, 10, 22, 61, 80, 107
– of a pattern, 586
extremal process, 220
extreme point, 84

f̄ -distance, 229
factor, 10, 21, 52, 60, 72, 79, 144, 208
– orbit, 21
– Radon–Nikodym, 989
– topological, 36, 768
family
– Borel–Cantelli, 885



1174 Subject Index of Volume 1A

– of smooth maps, 627
fast stable manifold, 259, 265
Fell topology, 821
field
– cone, 248, 253, 256
– Jacobi, 252, 456, 459
filtration, 565
filtration pair, 556, 557
finitary (isomorphism), 225
finite
– energy
– – cylinder, 1157
– – foliation, 1169
– – – stable, 1171, 1172
– – plane, 1146, 1152
– – sphere, 1169
– – surface, 1146, 1181
– equivalence, 786
– exponential moment, 961
– first moment, 935, 946
– order, 584
finitely determined (process), 220
first moment, finite, 935, 946
first-entry map, 655
first-return map, 19, 59, 107
fixed point
– class, 594
– elliptic, 166
– point of theR-action, 1171
– theorem
– – hyperbolic, 137, 139, 255, 267, 275
– – Lefschetz, 567
– transverse, 111
flag, 696, 952
– asymptotic, 1073
– variety, 714, 952
flat
– strip theorem, 477
– surface, 1022
Floer’s homology theory, 1151
flow, 252–254, 260, 270–272, 274, 280
– Anosov, 252, 850
– geodesic, 120, 123, 135, 150, 242, 252, 253, 265,

272, 280, 441, 831, 833, 852
– Hamiltonian, 115, 252
– homogeneous, 828
– horocycle, 832, 851, 852
– horospherical, 859
– infra-homogeneous, 833
– partially hyperbolic, 880
– rectilinear, 850
– suspension, 382, 388, 391
– unipotent, 854
– Weyl chamber, 850

folding, 587
folklore theorem, 622
Følner set, 14, 83, 234
forces, 581, 582
forcing, 581–583
form
– contact, 120, 1136
– index, 463
– normal, 104, 145, 289
– symplectic, 114
formula
– entropy, 487, 488, 624
– Pinsker, 211
forward-matching method, 264
frame bundle, 726
Fredholm index, 1171
free
– energy, 364, 397
– particle motion, 252
frequency locking, 170
Fuchsian subgroup of a Lie group, 825
full shift, 633
function
–µ-harmonic, 967
– boundedµ-harmonic, 967
– complexity, 45
– correlation, 362, 363, 390, 391
– harmonic, 976
– left uniformly continuous, 967
– tempered, 299
– transfer, 11, 142, 287
fundamental cocycle, 790
fundamental-group entropy, 39
Furstenberg
– boundary, 713, 976
– condition, 943, 1002
– correspondence principle, 46, 85
– entropy, 716, 980

G-
– invariant function, 678
– map, 678
– – relative to a measure, 678
– representation
– – quasi-regular, 981
– space, 937
– – homogeneous, 712
– – irreducible, 708
(G,µ)-boundary, 969
– compact, 969
(G,µ)-space, 968, 981
– compact, 968
gap, spectral, 946, 965, 995, 1004



Subject Index of Volume 1A 1175

Gauss transformation, 624
Gaussian dynamical system, 720
generator, 61, 78, 81, 193, 207
– of cocycle, 297
– one-sided, 78
geodesic
– Anosov flow, 473
– flow, 120, 123, 135, 150, 242, 252, 253, 265, 272,

280, 441, 831, 833, 852
– length space, 483
– stretch, 496
geometric decomposition ofS3, 1174
geometric structure, rigid, 495, 724
Gibbs
– ensemble, 334, 337
– entropy, 393, 394
– measure, 334, 349, 352, 359, 361, 364, 369, 375,

377, 381, 385, 389, 390, 393
– state, 334, 339, 342, 345, 347, 348, 351, 352
global
– surface of section, 1155, 1162, 1164
– system of transversal sections, 1174
gluing, 587
good periodic approximation, 70, 160, 183
graph
– Lagrangian, 461
– shift, 779
– transform, 302
– – Hadamard method, 256
Gromov
– representation, 733
– width, 117, 1138
group
– algebraic, 676
– amenable, 694
– extension, 22, 182
– semisimple Lie, 673
– stable, 709
– unstable, 709
– Veech, 1059
growth
– asymptotic, 274
– volume, 520

H -
– reduction, 724
– representation, regular, 947
Haar measure, 57, 817, 823
Hadamard
– graph transform method, 256
– manifold, 476
Hadamard–Cartan theorem, 476
Hadamard–Perron theorem, 130, 132, 138, 139,

257

half-pinched Anosov diffeomorphism, 751
Hamiltonian
– flow, 115, 252
– system, 1131
– vector field, 115
Hamming metric, 81
harmonic function, 493, 976
Hartman–Grobman theorem, 139, 266
Hausdorff topology, 821
Hayashi connecting lemma, 270
Heisenberg group, 707
heteroclinic, 140, 158, 1109
– chain, 1113, 1115
– cycle, 1180
– orbit, 1180
higher rank Abelian action, 897
Hilbert bundle, 701
Hölder
– continuity, 40, 41, 73, 95, 133, 142, 143, 246,

261, 262, 265
– exponent, 262, 263, 265, 276, 287
holomorphic dynamics, 125
holonomy, 261, 266, 283
– semigroup, 99
homeomorphism of finite order, 584
homoclinic, 1109
– orbit, 1180
– point, 806
– – transverse, 249
– tangles, 241, 249
homogeneous
–G-space, 712
– action, 828
– flow, 828
– measure, 861
– space, 823
– subset, 824
homological entropy, 39
homology
– Conley index, 561
– zeta function, 570
homotopical entropy, 40
homotopy rotation class, 48
Hopf argument, 144
horizontal space, 455
horocycle flow, 89, 136, 181, 832, 851, 852
horosphere, 485
horospheric foliation, 265, 486, 491
horospherical
– flow, 859
– subgroup of a Lie group, 818, 819, 835
horseshoe, 134, 148, 248, 249, 308
Howe–Moore ergodicity theorem, 708
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hull, 581
– algebraic, 692, 728
hyperbolic, 561
– dynamics, 127, 151
– fixed point theorem, 137, 139, 255, 267, 275
– measure, 147, 304
– point, 303
– set, 131, 142, 144, 248, 257, 263, 561
– – for flow, 252
– solution, 1159
– system, 100, 110
hyperbolicity
– normal, 141
– partial, 149
hypersurface, 1134
– contact type, 1134, 1135
– star-like, 1135

iceberg model, 794
immediate basin, 635
in involution, 117, 154
In Phase Theorem, 565
independent partitions, 54
index, 595
– form, 463
– Lefschetz, 566
– lemma, 464
– of periodic solution, 1159
induced
– action, 13, 23, 688
– map, 19, 59
– representation, 703
– sequence, 656
inducing domain, 655
inequality
– cross-ratio, 639
– Rokhlin, 76
infinitesimal generator, 723
information function, 74
– conditional, 75
infra-homogeneous flow, 833
infranilmanifold, 251, 278
integrable system, 153, 154
– completely, 117
interaction, 335, 336, 343, 348, 351, 352
intermediate value theorem, 47, 607
interval exchange, 90, 176, 177, 183, 186, 187, 191,

192, 1027
invariant
– Borel measure, 56
– circle, 164
– component, 585
– curve theorem, 163
– distribution, 109, 179, 181, 182, 188

– manifold, 107
– mean, 994
– measure, 129, 273, 1034
– parabolic, 747
– reduction, 691
– set, 9
– spectral, 64, 698
– tori, 170, 1116
inverse limit, 10, 22, 61, 107
involution, Cartan, 672
irreducible, 698
–G-space, 708
– lattice, 825
– matrix, 333
– representation, 821
– subshift, 633
– totally, 940
isolated invariant set, 551
isolating
– block, 98, 557
– neighborhood, 551
isometric
– action, 718
– extension, 22, 62, 108, 182, 226
isometry, 88, 152
isomorphism, 7
– spectral, 69, 698
– theorem, Ornstein, 222
isotropic, 461
– subspace, 114
isotropy subgroup of a Lie group, 828
iterated logarithm law, 962
itinerary, 423
Iwasawa decomposition, 674, 819

Jacobi
– equation, 252, 253, 459
– field, 252, 456, 459
– tensor, 460, 470
Jacobian, unstable, 307
jet data, 288
joining, 59, 61, 71, 208
joint partition, 54, 75
Jordan decomposition, 822
Jordan curve theorem, 48
Julia set, 427

K-
– automorphism, 73, 212
– property, 73, 77, 79, 80, 991, 1001
k-prong singularity, 584
K-quasisymmetric, 640
Kakutani equivalence, 60, 63, 79, 80, 175, 228
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Kakutani–Markov fixed point property, 83
KAM theory, 155
Kanai connection, 492, 494
Katok entropy rigidity conjecture, 294
Kazhdan property, 706
kernel, tempering, 300
Khintchine–Groshev theorem, 886, 907
Killing field, 728
Klingenberg’s theorem, 475
kneading sequence, 606
knotted periodic orbit, 1159
Kolmogorov theorem, 169
Kolmogorov–Sinai entropy, 364
Kronecker factor, 69
Kryloff–Bogoliouboff theorem, 83, 88, 92
Kupka–Smale theorem, 110–112

L-functions, 438
labeled graph, 787
lag, 560
Lagrange equation, 118
Lagrangian
– dynamical system, 118
– graph, 461
– subspace, 461
large deviations, 364, 394, 396, 397
lattice, 675, 823
– admissible, 919
– arithmetic, 825
– dual, 920
– irreducible, 825
– unimodular, 826
law of large numbers, 934
leafwise regularity, 266
least action principle, 124
Lebesgue
– point, 53, 69
– space, 53, 296, 298, 301
– spectrum
– – countable, 72, 73, 80, 181
– – simple, 73
Lefschetz
– fixed point theorem, 567
– index, 566
– number, 566
– zeta function, 412
left uniformly continuous functions, 967
left-invariant mean, 694
Legendre transform, 119
lemma
– Borel–Cantelli, 886
– Morse, 123, 480
– Rokhlin, 64, 216
– shadowing, 138, 147–149, 268, 306, 371, 563

length space, geodesic, 483
Levi decomposition, 820
Levi-Civita connection, 455
Lie group
– Ad-proper, 845
– Euclidean, 818
– exponential, 818
– nilpotent, 818
– of type (I), 818
– Q-algebraic, 822
– Q-anisotropic, 822
– Q-split, 822
– R-algebraic, 821
– R-split, 819
– reductive, 822
– semisimple, 819
– simple, 819
– solvable, 818
– totally noncompact, 819
– triangular, 818
– unimodular, 817
Lie transformation group, 724
limit
– asymptotic, 1148
– quasi-projective, 951, 958
– set, 23
line bundle, canonical, 1132
line elements, projective, 953
linearizable map, 659
linearization, 97
linking arguments, 1105
Liouville measure, 120, 825
Liouville–Arnold theorem, 117, 154, 169
Liouvillian, 158, 160, 164, 166, 168, 171, 173, 174,

178, 187, 192
Lipschitz, 139, 173, 265, 277
Littlewood’s conjecture, 914
Livschitz theorem, 142, 143, 147, 148, 287, 306,

512
local
– action, 723
– analysis, 98
– maximality, 21, 130
– product structure, 144, 248, 260
– rigidity, 753
locally
– closed, 683
– maximal, 248
– – hyperbolic set, 248, 271
logarithm law, 885
logistic family, 627, 657
loosely Bernoulli, 229
Luzin theorem, 305
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Lyapunov
– block form, 300, 302
– cocycle, 105, 286
– exponent, 147, 262, 298, 302, 304, 629, 935, 936,

977, 997
– – upper, 298
– function, complete, 554
– metric, 132, 248, 299, 301
– norm, 247, 301, 302
– scalar product, 301
– spectrum, 935, 936, 942
– – simple, 1003

Mackey range, 13, 62, 689
Mahler
– compactness criterion, 826
– measure, 802
– problem, 911, 912
Mañé
– closing lemma, 112, 146
– – ergodic, 270
manifold
– admissible, 303
– asymptotically harmonic, 493
– contact, 120
– Hadamard, 476
– invariant, 107
– nondegenerate, 912
– rank-1, 282
– slow, 259
– stable, 112, 130, 140, 142, 148, 258, 260, 305,

306
– strong stable, 260
– strong unstable, 260
– symplectic, 114, 1131
– unstable, 112, 140, 258, 260, 306
map
– boundary, 972
–G-, 678
– induced, 19, 59
– Markov, 587
– natural, 503
– nondegenerate, 857, 912
– Poincaré, 59
– section, 187
– twist, 156, 164
Margulis
– arithmeticity theorem, 825
– measure, 282, 491
marked length spectrum, 510, 515
Markov
– chain, topological, 42, 82, 127, 129, 144, 330,

332–334, 338, 340, 368, 381, 632
– cover, 48

– extension, 419, 631
– map, 587
– measure, 58, 73, 78
– operator, 936, 955
– partition, 129, 144, 147, 149, 281, 325, 328, 330,

332, 334, 368, 370, 375, 380, 381, 396, 428
– process, 936, 955
– property, 325, 326
– section, 378, 380, 384, 386, 388, 390, 434
– shift, 773
Mather
– set, 1116
– spectrum, 131, 247, 259, 264, 272, 279
matrix
– aperiodic, 334
– coefficient, 844
– irreducible, 333
– primitive, 334
– transition, 332, 335, 381
– transitive, 44, 58
Mautner phenomenon, 710, 837, 841, 855
maximal spectral type, 64, 69, 71, 72, 74, 80, 160
mean, invariant, 994
measurable
– action, 677
– partition, 53
measurably isometric, 704
measure
–µ-stationary, 937, 968
– admissible, 967
– Bernoulli, 58, 73, 74, 77
– class, smooth, 97, 103, 108
– ergodic, 679
– Gibbs, 334, 349–352, 359–361, 364–369, 375,

377, 381–385, 389, 390, 393
– homogeneous, 861
– hyperbolic, 147, 304
– invariant, 129, 273, 1034
– Mahler, 802
– Margulis, 282, 491
– Markov, 58, 73, 78
– of maximal entropy, 82, 94, 282, 366, 487, 528,

532
– proper, 940, 956
– quasi-invariant, 677
– spectral, 68, 69
– transversal, 491
measure-theoretic entropy, 350, 364, 401
measured foliation, 183
measures, conditional, 54
method, variational, 123
metric
– adapted, 248
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– cylinder, 1024
– isomorphism, 58, 69, 70, 90
– Lyapunov, 132, 248, 299–301
– Rokhlin, 75
mild mixing, 71
Milnor–Thurston zeta function, 423
minimal
– action, 954, 992
– entropy, 502
– parabolic subgroup, 714
– set, 19, 88
minimality, 19, 88, 89, 91, 152, 156, 172, 175, 178,

181, 186, 192, 1024
minimizing property of Jacobi fields, 465
mirror equation, 167
mixing, 50, 72, 82, 95, 129, 142–145, 160, 173,

175, 178, 179, 183, 184, 186, 187, 191, 192,
633, 704, 1070

– multiple, 72
– subshift, 633
– topological, 26, 72, 271, 274
– weak, 71, 704
modular surface, 825
moduli space, 1032
momenta, 119
monotone maps,P -, 581
Moore subgroup of a Lie group, 835, 837
Morse
– lemma, 123, 480
– sequence, 44, 608
Moser–deLatte normal form, 290
Mostow rigidity, 502
multibump solutions, 1109, 1117, 1121
multiple
– mixing, 72
– Poincaré recurrence, 86
– weak mixing, 71
multiplicative ergodic theorem, 298
multiplicity
– function, 702
– of exponent, 298
multiply nonwandering, 46

natural
– 1-form, 456
– extension, 10, 22, 61, 80, 107
– map, 503
near action, 689
negative puncture, 1147
neighborhood
– isolating, 551
– regular, 302
– symmetric, 684
neutral subgroup of a Lie group, 835

Newton method, 159
Nielsen number, 595
Nielsen–Thurston theory, 183
nilmanifold, 824
nilpotent Lie group, 818
nilradical, 818
Noether theorem, 117
non-compact cocycle, 1002
non-squeezing, 1138
nonamenable group, 947, 965
nondegenerate
– manifold, 912
– map, 857, 912
nonflat critical point, 618
nonlinearity measure, 611
nonpositive curvature, 476
nonrandom filtration, 942, 998
nonstandard smooth realization, 153, 172
nonuniform hyperbolicity, 132
nonwandering
– multiply, 46
– point, 25
– set, 25
norm
– adapted, 247
– Lyapunov, 247, 301, 302
normal
– form, 104, 145, 289
– – Birkhoff, 166
– hyperbolicity, 141
– subgroup theorem, 757
normalized potential function, 359, 367, 368
NT homeomorphism, 585
nuclear operator, 437

obstruction, Anosov, 290
one-sided generator, 78
open book decomposition, 1157, 1180
operator
– Markov, 936, 955
– Riccati, 256
– Ruelle–Perron–Frobenius, 354
– transfer, 57, 108, 426
Oppenheim conjecture, 860, 901
– quantitative versions, 902
orbit
– complexity, 128
– cylinder, 1145, 1148, 1173
– equivalence, 8, 18, 59, 67, 686, 697, 739, 740
– factor, 21
– heteroclinic, 1180
– homoclinic, 1180
– periodic, 143, 1052
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– twisted, 413
orbit growth, asymptotic, 32
order of criticality, 618
Ornstein
– copying lemma, 218
– isomorphism theorem, 222
Oseledets multiplicative ergodic theorem, 147
overtwisted contact structure, 1152

P -
– monotone maps, 581
– stationary, 936
p-contracting, 948
– (semi)group, 948
– sequence, 948
p-irreducible, strongly, 940
Palais–Smale condition, 1098
parabolic
– dynamics, 175, 194
– invariant, 747
– Levi subgroup of a Lie group, 820
– subgroup, 703, 713
– – minimal, 714
– system, 101
partial hyperbolicity, 101, 133, 149, 284
partially hyperbolic
– element of a Lie group, 818
– flow, 880
particle motion, free, 252
partition
– function, 337, 343
– Markov, 129, 144, 147–149, 281, 325–328, 330,

332, 334, 368, 370, 375, 380, 381, 396, 428
– measurable, 53
past, 210
pattern, 581, 583
– twist, 585
Patterson–Sullivan measure, 490, 491
period-doubling bifurcations, 648
periodic
– data, 105, 287, 288
– orbit, 143, 1052
– – Birkhoff, 157
– point, 7, 31, 142, 145, 411
– – transverse, 111
– solution, 1095
periodic trajectory, stable, 1075
Perron number, 784
Perron–Frobenius operator, 108, 622
Perron–Irwin method, 256
perturbation, 155
Pesin
– entropy formula, 309
– set, 147, 305

– tempering kernel, 300
Pestov’s identity, 511, 537, 538
piecewise monotone, 603
pinching, 253, 264, 1101
Pinsker
– algebra, 79, 212
– formula, 211
Plancherel
– countable spectrum, 717
– formula, 703
Plykin attractor, 251
Poincaré
– classification, 28
– map, 59
– recurrence
– – multiple, 86
– – theorem, 59, 682
– section mapψ , 1162
– series, 489
Poincaré–Bendixson theory, 48
point
– homoclinic, 806
– hyperbolic, 303
– Lebesgue, 53, 69
– nonwandering, 25
– periodic, 7, 31, 142, 145, 411
– regular, 302, 629
pointed space map, 560
Poisson
– boundary, 971
– bracket, 117
– transform, 968
polar decomposition, 827
polygonal billiard, 1017
polynomial-like extension, 653
positive puncture, 1147
potential
– function, 349–352, 354, 364, 368, 369, 384
– – normalized, 359, 367, 368
– singular, 1106
pressure, 38, 92, 94, 95
– topological, 343, 349, 365, 384, 402
primary pattern, 592
prime number theorem, 275
primitive matrix, 334
principal series, 700
principle, variational, 93, 94, 125, 148, 374, 393,

402, 487, 770, 1141
process, Markov, 936, 955
product, 149
– relative, 56
– structure, local, 144, 248, 260
profile, entropy, 983
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profinitely dense, 744
projective
– action, 714
– line elements, 953
prongs, 584
proper
– action, 683
– measure, 940, 956
– rectangle, 324, 325, 328, 332, 333, 379
property
– Bernoulli, 361–363, 373, 399
– K-, 73, 77, 79, 80, 991, 1001
– Markov, 325, 326
– specification, 269
– T , 281, 705
property-(D), 855
proximal
– action, 949
– strongly, 713
proximality, 28, 713, 949
pseudo-Anosov, 186, 584, 585
– single-fixed point, 593
pseudo-orbit, 138, 268
pseudoholomorphic curve, 1141, 1153
Pugh closing lemma, 112, 146, 270
puncture
– negative, 1147
– positive, 1147
– removable, 1147
pure point spectrum, 70, 71, 89

Q-
– character, 822
– rank, 822
Q-algebraic
– Lie group, 822
– representation, 823
Q-anisotropic Lie group, 822
Q-split Lie group, 822
QNS, 617
quadratic differential, 191, 1022
quadrature, 154
quasi-geodesic, 479
quasi-invariant, 52
– measure, 677
quasi-isometry, 479
quasi-lattice, 824
quasi-negative Schwarzian, 617
quasi-projective
– limit, 951, 958
– transformation, 950
quasi-regular
–G-representation, 981

– representation, 945, 946, 981, 1004
quasi-unipotent
– element of a Lie group, 818
– subgroup of a Lie group, 818
quasiminimality, 184–186
quasisymmetric, 620

R-algebraic Lie group, 821
R-diagonalizable
– element of a Lie group, 818, 822
– subgroup of a Lie group, 822
R-rank, 819
R-split Lie group, 819
R-property, 861
radical, 818
Radon–Nikodym
– cocycle, 55, 680
– factor, 989
Raghunathan’s conjecture, 860
random ergodic theorem, 991, 993, 995
random walk entropy, 982
rank
– of a nonpositively curved manifold, 515
– Q-, 822
– real, 673
– rigidity, 515
rank-1
– manifold, 282
– space, 515
rate of convergence, 992
rational
– polygon, 1020
– zeta function, 414
Ratner’s theorem, 742, 861–863
Rauch’s comparison estimates, 465
real Fatou conjecture, 657
real rank, 673
rectangle, 324, 328, 370, 375, 379
– proper, 324–328, 332, 333, 379
rectifiable set, 892
rectilinear flow, 850
recurrence, 24, 129, 682
– uniform, 24
reducible, 585
reducing curves, 584
reduction theory, 826
reductive
– group, 672
– Lie group, 822
Reeb vector field, 1136, 1160, 1173
refinement, 54
region of instability, 165
regional recurrence, 25, 271, 272
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regular
– closed geodesic, 520, 527
–H -representation, 947
– neighborhood, 302
– point, 302, 629
– representation, 699, 820, 946, 947
regularity, 261
– of the horospherical foliation, 492
– of topological entropy, 500
relative
– entropy, 79
– product, 56
relatively independent joinings, 208
relaxation oscillations, 241, 249
removable puncture, 1147
renormalization, 610, 654
renormalized functional, 1114
repeller, 21, 251, 402, 403, 552
representation
– adjoint, 817
– algebraic linear, 823
– canonical, 586
– continuous, 85
– Gromov, 733
– induced, 703
– irreducible, 821
– Q-algebraic, 823
– quasi-regular, 945, 946, 981, 1004
– regular, 699, 820, 946, 947
– unipotent, 824
– unitary, 697, 698, 820
resonance, 158, 289
restricted root, 674
restrictive intervalI , 631
return
– map, 183, 1156
– probability, 965, 966
Riccati
– equation, 252
– operator, 256
Riemannian metric, 455
rigid
– geometric structure, 495, 724
– surface, 1173
rigidity, 70, 71, 160, 180
– cocycle, 188
– entropy, 294, 495, 500
– local, 753
– rank, 515
– smooth, 286, 292
– spectral, 509
Rokhlin
– inequality, 76
– lemma, 64, 216

– metric, 75
root space, 674
– decomposition, 674
rotation number, 27, 28, 602
– of constant type, 602
Ruelle zeta function, 424
Ruelle–Perron–Frobenius
– operator, 354
– theorem, 354

saddle connection, 184, 1024
Sasaki metric, 457
Schwarzian derivative, 614
section, 62, 107, 182, 183, 189
– map, 187
– Markov, 378, 380, 384–386, 388, 390, 434
sectional curvature, 252
self-joining, 59, 60
self-linking number, 1164, 1174
semisimple
– element of a Lie group, 818, 822
– Lie
– – algebra, 673
– – group, 673, 819
sensitive dependence, 127, 149
separated sets, 34
sequence
– contracting, 948, 956
– induced, 656
– Morse, 44, 608
– p-contracting, 948
– totally contracting, 948
series
– discrete, 700
– Poincaré, 489
set
– Aubry–Mather, 157, 164, 165, 174
– basic, 132, 248, 326–328, 330, 334, 368, 370–

372, 374, 378, 389, 401, 414, 564
– ergodic, 85
– hyperbolic, 131, 142–144, 248, 257, 263, 561
– invariant, 9
– Mather, 1116
– minimal, 19, 88
– nonwandering, 25
– Pesin, 147, 305
– symmetric, 684
shadowing, 94, 267
– lemma, 138, 147, 149, 268, 306, 371, 563
– theorem, 269, 275
Shannon–McMillan–Breiman theorem, 76, 214
Sharkovsky
– ordering, 582
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– theorem, 601, 610
sharp determinant, 430
shear, 176
shift, 18, 41–47, 73, 129
– Bernoulli, 58, 80, 361, 1179, 1180
– equivalence, 560, 782
– homeomorphism, 333, 354
– Markov, 773
Siegel
– disk, 661
– summation formula, 826
simple
– Lebesgue spectrum, 73
– Lie group, 819
– Lyapunov
– – exponent, 948
– – spectrum, 948, 949
– spectrum, 70, 160
Sinai–Ruelle–Bowen (SRB) measure, 143, 148,

283, 309, 369, 373–375, 385–387, 391, 392,
395–399, 402, 404

singular
– closed geodesic, 522, 536
– potential, 1106
– spectrum, 72
skew product, 12, 79, 970, 979, 991, 1004
sliding block code, 780
slow
– entropy, 37, 80, 92
– manifold, 259
– subbundle, 259
Smale attractor, 107, 134, 250
small denominator, 105, 162
smooth
– conjugacy, 103, 105
– measure class, 97, 103, 108
– rigidity, 286, 292
– stability, 170
sofic, 45, 94, 774, 787
solenoid, 107, 134, 250
solution
– elliptic, 1159
– hyperbolic, 1159
– periodic, 1095
solvable Lie group, 818
solvmanifold, 824
space
– average, 50
– homogeneous, 823
– Lebesgue, 53, 296, 298, 301
– of partitions, 76
– rank-1, 515
– Teichmüller, 1031
spanning set, 35

special flow, 13, 63, 172, 186, 187, 191, 229, 254
specification, 82, 94, 95, 143, 269, 273, 274, 282
– for flows, 270
– property, 269
– – for flows, 270
– weak, 769
spectral
– decomposition, 43, 132, 142, 143, 147, 149, 271,

279
– gap, 946, 965, 995, 1004
– invariant, 64, 698
– isomorphism, 69, 698
– measure, 68, 69
– rigidity, 509
– theorem, 702
spectrum
– discrete, 69, 89, 704, 1003
– Lyapunov, 935, 936, 942
– Mather, 131, 247, 259, 264, 272, 279
– simple, 70, 160
– singular, 72
sphere
– at infinity, 478
– topology, 478
spherical finite energy foliation, 1171
Sprindžuk’s conjectures, 912, 915
stability
– cocycle, 110
– of the solar system, 169, 170
– smooth, 170
– theorem, 146, 276
– topological, 106, 275
stable
– and unstable
– – foliations, 486
– – manifolds, 563
– – spaces, 472
– behavior, 151
– energy surface, 1134
– ergodicity, 286
– finite energy foliation, 1171, 1172
– group, 709
– manifold, 112, 130, 140, 142, 148, 258, 260, 305,

306
– – at periodic point, 112
– – strong, 260
– – theorem, 255, 563
– periodic trajectory, 1075
standard
– action, 751
– BorelG-space, 678
star-like
– energy surface, 1135, 1153, 1158
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– hypersurface, 1135
state, Gibbs, 334, 339, 342, 345, 347, 348, 351, 352
stationary measure, 715
stochastic, 58, 127
strange attractor, 127
stratum, 1032
stretch, geodesic, 496
strictG-map, 678
strictly convex energy surface, 1158, 1159
strong
– force condition, 1107
– shift equivalence, 781
– specification, 769
– stable manifold, 260
– unstable manifold, 260
strongly
– ergodic, 994, 1003
– irreducible
– – cocycle, 1002
– – group, 939, 940
– – measure, 939, 940
– – semigroup, 939, 940
– p-irreducible, 940
– proximal, 713
– – action, 949, 954
structural stability, 106, 127, 129, 139, 145, 275,

276, 484, 634
structure, contact, 120, 272, 1136
structures of finite type, 724
subalgebra, Cartan, 673
subbundles, 261
subgroup
– of a Lie group
– – Auslander, 835
– – Cartan, 819
– – Dani, 835, 837
– – epimorphic, 895
– – Fuchsian, 825
– – horospherical, 818, 819, 835
– – isotropy, 828
– – Moore, 835, 837
– – neutral, 835
– – parabolic Levi, 820
– – R-diagonalizable, 822
– – quasi-unipotent, 818
– – uniform, 823
– – unipotent, 818, 822
– parabolic, 703, 713
subshift, 633, 773
– irreducible, 633
– mixing, 633
– of finite type, 42
subspace
– isotropic, 114

– Lagrangian, 461
Sullivan conjecture, 295
sum, continuous, 701
support, 49
surface, 193
– flat, 1022
– of section, global, 1155, 1162, 1164
– rigid, 1173
– Veech, 1059
suspension, 11, 23, 62, 108, 253, 272, 688
– flow, 382, 388, 391
symbolic
– dynamical system, 18, 41
– dynamics, 242
symmetric
– neighborhood, 684
– set, 684
symplectic
– capacity, 116, 1138
– form, 114
– – exact, 122
– manifold, 114, 1131
– structure onTM , 457
syndetic, 24
system
– elliptic, 101
– Hamiltonian, 1131
– hyperbolic, 100, 110
– of transversal sections, global, 1174
– parabolic, 101
Szemerédi theorem, 85

(T ,T−1)-transformation, 228
tame, 683
tangles, homoclinic, 241, 249
Teichmüller
– space, 1031
– theory, 183
telescope construction, 646
tempered
– cocycle, 299
– function, 299
tempering, 299
– kernel, 300
– – Pesin, 300
tensor, Jacobi, 460, 470
tent maps, 607, 609
theorem
– Ruelle–Perron–Frobenius, 354
– shadowing, 269, 275
– Sharkovsky, 601, 610
– spectral, 702
– stability, 146, 276
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– transversality, 111
thermodynamic limit, 337–339
thick set, 882
tight
– 3-sphere, 1165
– contact structure, 1152
tightening, 587
time average, 14, 49
time change, 8, 188, 254
Toeplitz shift, 44
topological
– CE condition, 645
– conjugacy, 18, 103, 768
– entropy, 34–37, 308, 365, 487, 609
– – for noncompact spaces, 36
– – original definition, 36
– equivalence, 848
– factor, 36, 768
– Markov chain, 42, 82, 127, 129, 144, 330, 332,

334, 338, 340, 368, 381, 632
– mixing, 26, 72, 271, 274
– pressure, 343, 349, 365, 384, 402
– stability, 106, 275
– transitivity, 19, 26, 88, 89, 271, 272, 1026
– weak mixing, 433
topologically engaging, 744
topology
– cone, 478
– sphere, 478
– Zariski, 821
tori, invariant, 170, 1116
total Conley–Zehnder index, 1165
totally
– contracting, 948
– – (semi)group, 948
– – sequence, 948
– engaging, 744
– irreducible, 940
– noncompact Lie group, 819
transfer
– function, 11, 142, 287
– operator, 57, 108, 426
transform
– graph, 302
– Legendre, 119
– Poisson, 968
transformation
– canonical, 114
– quasi-projective, 950
transition
– matrix, 332, 335, 381
– probabilities, 936
transitive, 142, 144, 145
– matrix, 44, 58

transitivity, 150, 152, 156, 178, 182, 184
– topological, 19, 26, 88, 89, 271, 272, 1026
transversal, 107, 566
– measure, 491
transversality, 110, 139, 276
– theorem, 111
transverse
– fixed point, 111
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Niţică, V. 38, 39,54 [66]
Njamkepo, S.1082[324]; 1082[325]
Novikov, S.P. 1098, 1099, 1101,1132[32];

1133[68]; 1133[83]
Novo, J. 997,1077[195]
Nowicki, T. 290, 291, 316, 317,324[92];

325 [120]; 325 [121]; 325 [122]; 325 [123];
325 [124]

Numakura, K. 781,868 [108]

Oesterlé, J. 1012,1074[130]
Oh, H. 959,981 [117]; 981 [118]
Ohno, T. 438,498 [130]
Oka, H. 320,323[63]
Okounkov, A. 570,579 [15]; 587, 589,595[4];

595 [12]
Oliva, W.M. 987, 988,1077[214]
Oliveira, K. 454,494 [6]
Ollagnier, J.M. 922,981 [119]
Olshanskii, A. 828,868 [109]; 868 [110]
Olson, E. 999, 1000,1076[174]
Orendovici, D.54 [67]
Ormes, N.S. 642,647 [68]



1198 Author Index

Ornstein, D.S. 174,261 [191]; 644, 645,647 [69];
673, 684, 694, 695, 698, 701, 717, 718, 722,
740 [58]; 742 [117]; 742 [118]; 742 [119];
742 [120]; 742 [121]; 742[122]; 802, 805–807,
826,866 [61]; 868 [111]; 874, 972,981 [120];
981 [121]

Oseledets, V. 61, 65, 100, 115,261 [192]; 401,
498 [131]; 557, 573,580 [34]; 725,742 [123]

Oxtoby, J.C.377 [64]

Paccaut, F. 287,322 [53]
Pacifico, M.J. 369, 370,375 [8]; 375 [10];

376 [44]; 376 [53]; 376 [54]; 376 [56]; 377 [65]
Paleari, S. 1127, 1128,1131[6]; 1131[7]
Paley, R.E.A.C. 971,981 [122]
Palis, J. 335, 336,376 [57]; 377 [66]; 377 [67];

377 [68]; 377 [69]; 377 [70]; 377 [71]; 377 [72]
Palmer, K. 115,259 [130]
Pansu, P. 887, 888,981 [123]
Papanicolaou, G.1082[326]
Parreau, F. 609,647 [63]; 735,741 [107]
Parrott, M.E. 1006,1075[165], 1075[166]
Parry, W. 46,54 [47]; 54 [68]; 247,261 [193];

285,325 [125]; 386, 425, 426,498 [132]; 618,
647 [70]; 651, 727,740 [69]; 742 [124]

Pasta, J.R. 1106,1132[36]
Pata, V. 1039, 1057,1072[63]; 1077[197]
Paterson, A.L.T. 826, 828,868 [112]; 981 [124]
Pauwelussen, J.1082[327]
Pazy, A. 1093,1133[69]
Peletier, L.A. 1043,1069[7]; 1075[164]
Penrose, O. 274,325 [126]
Perekrest, V.T. 285,325 [127]
Perel’man, G.S. 1148, 1149,1151[4]; 1151[5]
Perreira, A.L. 1043,1072[80]
Perron, O.54 [69]; 61, 66, 134,261 [194];

261 [195]
Perry, P.A.1072[71]
Pesin, Y.B. 3–5, 7–9, 15–18, 20, 24, 26, 30, 31,

34, 35, 37–39, 41, 44, 47, 49, 50, 52,52 [1];
52 [13]; 53 [29]; 53 [31]; 53 [43]; 54 [54];
54 [61]; 54 [67]; 54 [70]; 54 [71]; 54 [72];
61–63, 66, 67, 74, 79, 80, 91, 100, 106, 124,
139, 141, 143–145, 150, 151, 154, 158–160,
162, 164–168, 172–175, 180, 181, 183, 185,
186, 193, 194, 200, 201, 219, 220, 223, 224,
226, 232, 237–243,254 [6]; 255 [13]; 256 [35];
256 [36]; 257 [64]; 257 [87]; 257 [88];
258 [117]; 259 [126]; 261[196]; 261 [197];
261 [198]; 261 [199]; 261[200]; 261 [201];
261 [202]; 261 [203]; 261[204]; 267–269, 315,
318,320 [1]; 321[5]; 321[27]; 322 [46];
325 [128]; 325 [129]; 331,375 [24]; 375 [25];

376 [34]; 382, 403, 409, 414, 424, 436,494 [1];
495 [19]; 495 [20]; 498 [133]; 499 [134]; 557,
573,578 [1]; 664,738 [1]; 738 [9]

Petersen, K. 607,647 [71]; 795,868 [113]
Petrovskii, I.G. 1050,1079[256]
Peyriére, J. 700,742 [125]
Phong, D.H. 1097,1132[48]
Pianigiani, G. 288,325[130]
Pier, J.-P. 826,868 [114]; 981 [125]
Piétrus, A. 1036,1072[77]
Pillet, C.-A. 1144,1152[33]
Pilyugin, S.Yu. 1006,1070[35]; 1082[328]
Pinheiro, V. 287, 301, 303, 304,321 [16];

321 [17]; 321 [18]
Piskunov, N.S. 1050,1079[256]
Pitaevskij, L.P. 1098, 1101,1133[83]
Pitt, H.R. 882, 906,981 [126]
Pittet, Ch. 891, 900,981 [127]
Plante, J.54 [73]
Plewik, S. 762,866 [37]
Pliss, V.A. 195,261 [205]; 339,377 [73]
Plotnikov, P. 1130,1133[70]
Poénaru, V. 71, 74,258 [95]; 519,525 [16]; 555,

579 [17]
Poincaré, H. 748,868 [115]
Polá̌cik, P. 985, 1030, 1032–1034,1072[73];

1073[91]; 1074[126]; 1075[152]; 1078[229];
1078[232]; 1082[329]; 1082[330];
1082[331]; 1082[332]

Polat, M. 1036,1072[82]
Pollicott, M. 46, 47,53 [33]; 54 [68]; 247,

249–251,261 [193]; 261 [206]; 261 [207]; 267,
288,321 [8]; 325 [131]

Pomeau, Y. 288,324 [114]
Pontryagin, L.S. 382,499 [135]; 652, 653,

742 [126]
Posch, H. 230,257 [78]
Pöschel, J. 1099, 1103, 1105, 1111, 1113, 1114,

1132[46]; 1133[60]; 1133[71]; 1133[72];
1133[73]; 1133[74]; 1133[75]

Prikhod’ko, A.A. 698,742 [127]
Prizzi, M. 1056,1082[333]
Prodi, G. 986, 1014,1076[175]
Protter, M.1082[334]
Przytycki, F. 179, 213,261 [186]; 261 [187]; 317,

325 [121]; 325 [132]; 325 [133]
Puchta, J.-Ch.526 [42]
Pugh, C.C. 3–5, 7, 8, 10, 17–23, 25–27, 33, 40, 42,

45, 47, 48,53 [34]; 53 [35]; 54 [49]; 54 [55];
54 [56]; 54 [74]; 55 [75]; 55 [76]; 55 [77];
55 [78]; 55 [79]; 55 [80]; 144, 145, 150, 158,
196,258 [118]; 262 [208]; 262 [209]; 331, 333,
343, 357, 374,376 [38]; 377 [74]; 377 [75];



Author Index 1199

377 [76]; 410, 412, 415, 434,499 [136];
499 [137]

Pujals, E.R. 3, 5, 10, 14, 34, 44,52 [4]; 52 [14];
52 [15]; 53 [40]; 62,255 [11]; 267,321 [9];
330, 336, 337, 345–347, 350, 352, 359, 361,
365–367, 369, 373,375 [5]; 375 [7]; 375[13];
375 [19]; 375 [20]; 375 [32]; 376 [41];
376 [53]; 376 [54]; 376 [55]; 377 [65];
377 [77]; 377 [78]; 377 [79]; 377 [80];
377 [81]; 377 [82]; 377 [83]

Putnam, I.F. 642,646 [31]

Qian, M. 145, 199,260 [166]; 262 [210]; 382,
400, 403, 405, 406, 408–411, 415–417, 419,
420, 424, 434, 436, 440, 441,498 [118];
498 [119]; 499 [138]

Qian, W.J. 997,1082[322]
Quas, A.N. 286,322 [56]; 325 [134]; 325 [135];

493,499 [139]; 499 [140]; 864,866 [38]
Queffelec, M. 651, 700, 706,742 [128]

Rabinowitz, P.H.1074[122]; 1128, 1129,
1133[76]

Rado, R. 753,868 [116]
Raghunathan, M. 102, 104,262 [211]
Rahe, A. 697,739[33]
Rahe, M. 608,647 [53]
Rakotoson, J.M. 1036,1072[77]
Ramagge, J. 962, 968,981 [128]
Rammaha, M.A.1072[76]
Ramsey, F.P. 747,868 [117]
Raoult, J.-P. 635,647 [47]
Rapinchuk, A.S. 921,982 [129]
Ratcliff, G. 941,978 [7]; 978 [8]
Ratner, M. 593, 594,595 [20]; 595 [21]; 595[22];

595 [23]; 595 [24]; 608, 609,647 [72];
729–731,742[129]; 742 [130]; 742 [131];
742 [132]; 922,982 [130]

Raugel, G. 985, 987, 990–992, 1004–1006, 1024,
1027, 1036, 1038, 1039, 1050,1077[194];
1077[213]; 1077[215]; 1077[216];
1077[217]; 1077[218]; 1077[219];
1078[220]; 1078[221]; 1078[237];
1082[335]; 1082[336]; 1082[337]

Rauzy, G. 551, 552, 558,580 [35]; 705,742 [133]
Reed, M. 249,262[231]; 1089, 1090,1133[77]
Rényi, A. 285,325 [136]
Ribenboim, P. 747,868 [118]
Ricci, F. 874,979 [38]
Riesz, F. 893, 894, 910,982 [131]
Rios, I. 316,322 [58]
Rivera-Letelier, J. 317,325 [132]
Robertson, G. 962, 968,981[128]

Robertson, J.B. 607,647 [58]
Robinson, E.A. 725,742 [134]; 742 [135]
Robinson, J.C. 985, 1014,1076[188]; 1079[259];

1082[338]
Rocha, C. 1034, 1043,1075[156]; 1075[157];

1078[222]; 1082[339]
Rocha, J. 367,375 [20]
Rödl, V. 754,868 [106]; 868 [119]; 868 [120]
Rodnianski, I. 1149,1152[34]; 1152[35]
Rodríguez-Bernal, A.1069[10]
Rodriguez Hertz, F. 42, 45, 48,55 [81]; 55 [82];

369,375 [6]; 377 [78]
Rodriguez Hertz, J. 42, 45,55 [82]
Rohde, S. 317,325[133]
Rokhlin, V.A. 273,325 [137]; 384–386, 399, 400,

410, 418, 419, 432,494 [2]; 499 [141];
499 [142]; 652, 673,742[136]; 742 [137]

Romero, N. 336,377 [84]
Rosa, R. 1056, 1057,1081[318]; 1082[340]
Rose, H.A. 1140,1152[36]
Rosenblatt, J. 810, 825, 836, 839, 841, 864,

865 [33]; 866 [34]; 868[121]; 868 [122]; 954,
982 [132]

Rosenblatt, M. 273,325 [138]
Ross, K. 780, 826,867 [81]
Rota, J.C. 972, 973,982 [133]
Rothschild, B. 747, 837,867 [72]
Rothstein, A. 694, 701,742 [138]
Royden, H.L. 794,868 [123]
Ruane, K. 968,978 [27]
Rubshtein, B.-Z. 464, 468,496 [73]; 499 [143]
Rudin, W. 734,742 [139]
Rudolph, D.J. 386,499 [144]; 608, 609, 622,

645 [11]; 646 [37]; 647 [54]; 647 [56];
647 [73]; 652, 684, 689–691, 698, 701, 737,
739 [34]; 740 [63]; 741 [101]; 742 [118];
742 [140]; 742 [141]; 874,982 [134]

Ruelle, D. 33, 34,55 [83]; 103, 115, 139, 145,
175, 191, 196, 197, 247, 249,262 [212];
262 [213]; 262 [214]; 262 [215]; 262 [216];
262 [217]; 262 [218]; 262 [219]; 268, 285, 290,
325 [139]; 325 [140]; 325 [141]; 325 [142];
352,377 [85]; 382, 401, 403, 410, 411, 414,
419, 434, 442, 443, 477, 479, 483,495 [37];
496 [59]; 499 [145]; 499 [146]; 499 [147];
499 [148]; 499 [149]; 499 [150]; 499 [151];
499 [152]; 499 [153]; 499 [154]; 985, 986,
1082[341]

Ruette, S. 632,646 [15]
Rugh, H.H. 352,377 [86]; 377 [87]; 377 [88]
Runga, B. 516, 518,526 [43]
Rybakowski, K. 1032,1082[332]
Rychlik, M.R. 247,262 [220]; 287, 305,

325 [143]; 325 [144]



1200 Author Index

Ryzhikov, V.V. 609,648 [74]; 688, 691, 698, 699,
723, 724,742 [127]; 742 [142]; 742 [143];
742 [144]

Sacker, R.J. 21,55 [84]; 115,262 [221];
262 [222]; 644,648 [75]; 1066,1082[342]

Sadovskaya, V. 220,259 [131]
Sakamoto, K. 1043,1078[223]
Saltzman, B. 368,377 [89]
Sambarino, M. 3, 5, 10, 14,52 [4]; 62, 255 [11];

267,321 [9]; 330, 336, 337, 345–347, 350, 352,
359,375 [7]; 377 [78]; 377 [79]; 377 [80];
377 [81]; 377 [82]; 377 [83]

Sánchez-Salas, F.J. 318,324 [105]; 325[145]
Sands, D. 316, 317,325 [122]; 325 [146]
Sandstede, B. 1050,1082[343]
Saprykina, M. 715,739 [49]
Sarig, O. 252–254,262 [223]; 287–289,322[54];

326 [147]
Sárközy, A. 758,868[124]
Sataev, E.A. 696, 704,740 [80]; 742 [145]
Sattinger, D.H. 985,1082[344]
Saussol, B. 247,262 [224]; 287, 288, 316,

321 [14]; 324 [102]; 326 [148]
Saut, J.-C.1076[176]; 1076[177]
Sbano, L. 477,498 [126]
Scappola, E. 477,498 [126]
Schacht, M. 754,868 [106]
Scheel, A. 1034, 1064, 1065,1075[158];

1075[159]; 1082[345]
Schenk-Hoppé, K.R. 382,499 [155]
Scheurle, J. 1024,1078[224]
Schlag, W. 1149,1152[17]; 1152[34]; 1152[35];

1152[37]
Schmalfuß, B. 382,496 [56]; 1076[167];

1076[168]; 1083[346]
Schmeling, J. 102, 154, 219, 220,256 [36];

256 [37]; 436,495 [20]
Schmidt, K. 882,982[135]
Schmidt, T.A. 507, 512, 515, 521–523,525 [7];

525 [18]; 525 [24]; 525 [25]; 525 [26];
525 [27]; 529–532, 534, 540, 541,546 [2]; 555,
572,579 [4]

Schmidt, W. 583,595 [25]; 748,868 [125]
Schmithüsen, G. 524,526 [44]
Schmitt, B. 247,258 [97]; 286, 287,322 [53];

323 [70]; 431,495 [16]
Schmoll, M. 523, 524,525 [14]; 594,595 [10]
Schneider, G. 993, 1051,1081[305]
Schulze, B.-W. 1063, 1064,1083[347]
Schur, I. 747, 749,868 [126]
Schwartz, J.T. 875, 878, 969,979 [44]
Schwartz, L. 574,580 [36]

Schweiger, F. 133,262 [225]
Seeger, A. 927,981 [101]
Seiringer, R. 1138,1152[29]
Seliverstoff, G. 971,980 [87]
Sell, G.R. 115,259[130]; 262 [221]; 262 [222];

262 [226]; 644,648 [75]; 985, 987, 990–992,
996, 997, 1024, 1025, 1027, 1032, 1033, 1036,
1061, 1065–1068,1070[36]; 1073[100];
1076[173]; 1076[178]; 1076[179];
1076[180]; 1080[287]; 1080[288];
1082[337]; 1082[342]; 1083[348];
1083[349]; 1083[350]; 1083[351];
1083[352]; 1083[353]

Senti, S. 305,326 [149]
Serafin, J. 642,646 [21]
Seregin, G.A.1080[274]
Sester, O. 304,322 [55]
Sevryuk, M.B. 1101, 1108,1133[78]
Shah, N. 545,546 [3]; 593, 594,595[2]; 664, 670,

671, 728, 730,738 [10]
Shao, Z.D. 1014,1080[288]; 1083[354]
Shapiro, D. 749, 837,866 [35]
Shapiro, L. 620,646 [30]
Shapoval, A.B. 1065,1083[355]
Shatah, J. 1143,1152[20]
Shen, W. 290, 291, 304,322 [43]; 324 [95];

326 [150]
Shen, Zh.1072[71]
Shields, P.S. 694, 701,742 [119]
Shil’nikov, L. 369,374 [2]
Shirikyan, A.1079[260]
Shklover, M. 719,743 [146]
Shub, M. 3–5, 7, 8, 10, 17–23, 25–27, 33, 40, 42,

45–48,52 [6]; 53 [34]; 54 [49]; 54 [55]; 54 [56];
54 [74]; 55 [75]; 55 [76]; 55 [77]; 55 [78];
55 [79]; 55 [80]; 55 [85]; 55 [86]; 55 [87]; 145,
150, 158, 196, 212, 213,258 [118]; 262 [209];
262 [227]; 262 [228]; 262 [229]; 262[230];
329, 331, 343, 355, 357, 367, 374,376 [38];
377 [76]; 377 [90]; 377 [91]; 410, 411, 415,
434,499 [137]; 499 [154]; 642,648 [76]

Shulman, E.I. 1128,1133[62]
Shur, L.N. 1106, 1115,1133[82]
Siegel, C.L. 585, 586,595 [26]; 1108, 1113,

1133[65]
Siemaszko, A. 632, 633,647 [55]
Sigal, I.M. 1139,1152[38]; 1152[39]
Sigmund, K. 621, 634,646 [18]
Sikora, A. 884,980 [69]
Sikorski, A. 696,741 [108]
Silvestrov, S.D. 602,648 [77]
Simányi, N. 170,260 [152]
Simó, C. 320,326 [151]



Author Index 1201

Simon, B. 249,262 [231]; 1089, 1090,1133[77];
1151[12]

Simondon, F. 1033, 1051,1075[151]; 1075[153];
1075[154]
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– leaf, 150, 166
– minimizer, 1143
– pointwise dimension, 218
– stable manifold, 22, 146, 407, 995
– transitivity, 35
– unstable manifold, 22, 145, 146, 413, 995
– weakly stable manifold, 193
localization conjecture, 891
locally rank one transformation, 695
Lochak approach, 1113

locus
– determinant, 554, 567
logarithmic
– law, 578
Lorenz attractor, 368
Lorenz type attractor, 240
lower
– box dimension, 218
– information dimension, 218
– local pointwise dimension, 219
– pointwise dimension, 219
– semicontinuous dependence of attractors on

parameters, 1006
Lozi type attractor, 242
Lyapunov, 586
– backward
– – exponent, 110
– – exponent of a cocycle, 95
– – exponent of a sequence of matrices, 81
– backward regular, 64
– change of coordinates, 105
– chart, 148
– dimension, 443
– dynamical system with nonzero
– – exponents, 122
– eventually strict
– – function, 127
– exact
– – exponent, 83
– exponent, 62, 80, 402, 557, 1014
– exponent of a diffeomorphism, 62
– exponent of a flow, 124
– f -regular, 120
– forward
– – exponent, 109, 112
– – exponent of a cocycle, 94
– – exponent of a sequence of matrices, 80
– –f -regular point, 120
– – regular point, 64
– function, 128
– function associated to a family of cones, 128
– function for a cocycle, 126
– function for an extension, 126
– infinitesimal eventually strict
– – function, 169
– infinitesimal eventually uniform
– – function, 169
– inner product, 8, 105, 111, 118
– multiplicity of a value of a
– – exponent, 63, 64
– norm, 8, 105, 111, 119, 404
– metric, 8, 11
– one-point
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– – spectrum, 102
– regular, 86, 98, 111
– regular point, 64
– regularity, 86
– spectrum, 63, 64, 81, 95, 96, 402, 439
– spectrum of a measure, 66, 122
– stability, 1138
– strict
– – function, 127
– value of a
– – exponent, 63, 81
Lyapunov–Schmidt decomposition, 1126

mk(y), 161
Malcev’s theorem, 887
Mañé’s projection, 999
manifold
– accessible, 190
– admissible(s, γ )-, 136
– admissible(u, γ )-, 136
– global stable, 234
– global unstable, 234
map
– γ -Lipschitz, 136
– billiard, 230
– holonomy, 154, 157
– homogeneous, 671
– nonexpanding, 114
– pseudo-Anosov, 71
– unipotent, 728
– with singularities, 227
Margulis–Ruelle’s inequality, 175
Markov
– chain, 460
– extension, 244
– induced map, 276
– map, 275
– measure, 452
– operators, 969
– partitions, 453
– shift, 452
martingale differences, 467
Masur’s criterion, 510
Mather spectrum, 15–17
matrices
– criterion of regularity for, 85
– sequence of, 80
matrix
– period, 566
Matthew–Nadkarni example, 727
maximal attractor, 986
maximal functions, 877
maximal spectral type, 656
mean distal, 644

mean distality, 644
mean ergodic theorem, 879, 894
mean ergodic theorem for Følner sequences, 907
mean proximal, 644
measurability of singular maximal functions, 926
measurable
– flow, 109
– foliation, 150
– vector bundle, 88
measurable recurrence, 833
measurably conjugated, 90
measure, 584, 587
– absolutely continuous, 658
– Dirichlet, 666
– distal, 619
– exact dimensional, 219
– Haar, 658
– hyperbolic, 66, 67, 122
– hyperbolic invariant, 66
– Kronecker, 734
– mildly mixing, 668
– mixing, 665
– natural, 197
– non-atomic, 668
– physical, 197
– preserving flow, 109
– Rajchman, 665
– rigid, 666
– singular, 658
– smooth, 67, 161
– SRB-, 61, 67, 197, 198
– stably ergodic, 194
– transverse, 72
– u-, 200
measured foliation, 71, 555
– with spines, 72
Melnikov condition, 1102, 1124
metastability, 1144
metastable states, 1137
method of rotations, 940
metric, 1141
– canonical, 77
– cylinder, 535
midpoint, 113
mildly mixing, 609
Milliken–Taylor theorem, 821
Milnor attractor, 197
minimal, 536, 537, 539, 540, 542, 545, 546, 601
minimal closed B-global attractor, 987
minimal idempotent, 784
minimal self-joinings, 608, 689
Misiurewicz conditions, 204
mixed hyperbolicity, 192
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mixing, 273, 881
mode powers, 1150
modulated ground state, 1143
modulated nonlinear ground state, 1144
moduli space, 533–535, 540–542, 544, 545, 583
– of translation surfaces, 583, 586, 593
modulus, 506
modulus of cylinder, 506
monotone equations, 1024, 1025, 1027
Morse sequence, 706
Morse–Smale property, 1032, 1034
multidimensional Szemerédi theorem, 754, 755,

810
multimodal maps, 291
multiplicative
– cocycle, 109
– ergodic theorem, 66, 97
multiplicatively large set, 834
multiplicity, 96, 110, 402
– forward
– – for cocycles, 95
– of a value of a Lyapunov exponent, 63, 64, 81
multivalued operators, 1024, 1059–1064
mutually singular, 542, 543

n-tower, 692
narrow sense, nonuniformly partially hyperbolic

diffeomorphism in the, 117
narrow topology, 398
natural measure, 197
Navier–Stokes system, 986, 988, 989, 998, 1005,

1011, 1014, 1015, 1024, 1034, 1036, 1056,
1057, 1061, 1068

negative
– central exponents, 193
– cone, 126
– generalized cone, 126
– invariant set, 990
– limit solution, 78
– rank, 126
neighborhood, regular, 148
Nekhoroshev theorem, 1113
Neumann boundary condition, 1028
neutral
– fixed points, 287
– oscillations, 1144
– oscillatory states, 1138
Newhouse phenomenon, 336
nilpotent Hales–Jewett theorem, 776
nilpotent Szemerédi theorem, 823
nilpotent van der Waerden theorem, 775
nodal number, 1034
nonabsolutely continuous foliation, 159
nonautonomous equations, 998, 1002, 1065–1068

noncommutative Hecke algebras, 953
nonergodic, 539, 540, 543
nonexpanding map, 114
nonhyperbolic robust transitivity, 353
– examples, 355
nonintegrability, 27, 28
nonlinear damping, 1039
nonlinear excited state, 1140, 1145, 1148
nonlinear friction coefficient, 1146
nonlinear ground state, 1140, 1141, 1145, 1148
Nonlinear Master Equation, 1149
nonlinear optical pulse propagation in

inhomogeneous media, 1138
nonlinear plate equation, 1124
nonlinear Schrödinger equation, 1094, 1105, 1106,

1137, 1138, 1146
nonlinear string equation, 1106, 1112
nonlinear wave equation, 1095, 1124, 1128, 1129
nonnegative contractions, 969
nonpositive curvature, 78
nonpositively curved space, 113
– in the sense of Busemann, 113
nonresonance condition, 30, 1102
nonuniform expansivity, 267
– verifying, 304, 318
nonuniform hyperbolicity, 268
nonuniformly
– completely hyperbolic diffeomorphism, 117
– expanding, 267, 301
– hyperbolic flow, 124
– hyperbolic sequence of diffeomorphisms, 135
– partially hyperbolic diffeomorphism, 117
– partially hyperbolic diffeomorphism in the broad

sense, 116
nonuniquely ergodic, 536
nonwandering, 37
nonzero Lyapunov exponents, dynamical system

with, 122
norm, Lyapunov, 111, 119
norm-like metric, 890
normal basis, 84
normal form, 1139
normal hyperbolicity, 22
normally hyperbolic, 22
number
– Diophantine, 670, 715
– Liouvillean, 715
numbersp-adic, 653

observable, 197
– attractor, 233
odometer, 668
omega-limit set, 986, 1015
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one-dimensional maps with critical points, 289
one-point Lyapunov spectrum, 102
one-sided canonical i.i.d. RDS, 437
one-sided cocycle, 112
open systems, 1149
operators
– Cauchy–Riemann, 561
Oppenheim conjecture, 584, 592, 593
orbit
– ε-, 206
– ε-pseudo-, 206
– pseudo-, 205
orbit equivalent (OE), 641
orbit of the ground state, 1141
orbital Lyapunov stability, 1141
orbital stability, 1141
Oseledets
– decomposition, 97
– manifold, 414
– space, 412
– splitting, 412
Oseledets–Pesin reduction theorem, 105

pair of complementary cones, complete, 128
Palis conjecture, 330
parabolic equations, 986, 992, 993, 996, 998,

1005, 1006, 1015, 1017, 1023, 1024,
1030–1034, 1039, 1043, 1044, 1047, 1049

– degenerate, 1033
– monotone, 1025
– one-dimensional, 1033
– scalar, 1025, 1030
parabolic system, 1028
parameter exclusion, 132, 304
parametrically forced Hamiltonian, 1139
partial dimension, 435
partial hyperbolicity, 8, 10, 353
– pointwise, 10
– relative, 10
partially hyperbolic, 8, 10–12, 22
– nonuniformly
– – diffeomorphism, 117
– – diffeomorphism in the broad sense, 116
partially hyperbolic attractor, 48
partition
– measurable, 652
– subordinate, 214
– subordinate to stable manifolds, 410
– very weakly Bernoulli, 174
path,us-, 193
pathological foliations, 33
period
– matrix, 566
periodic approximation, 675, 694, 707

– cyclic, 708
– of type(n,n+ 1), 709
– slowly coalescent, 711
– speed of, 708
– type of, 708
periodic boundary conditions, 1035
periodic flow, 507
periodic process, 707
permutation, 589
Pesin
– entropy formula, 180
– formula, 424, 440
– set, 94
– tempering kernel, 105
PET-induction, 814
phase symmetry, 1141
physical measure, 197
PI factor, 620
PI-system, 621
piecewise syndetic set, 784
Pinsker factor, 631
plaquation, 26
plaque, 26
plaque expansive, 26
Pliss lemma, 339
Poincaré recurrence theorem, 748, 749, 758, 782
Poincaré sequence, 603
point
– accessible, 193
– at infinity, 222
– conjugate, 77
– focal, 77
– Lyapunov backward regular, 64
– Lyapunov forward regular, 64
– Lyapunov regular, 64
– regular, 64
– singular, 71
pointwise dimension, 215, 218, 436
– stable local, 215
– unstable local, 215
polar coordinates, 946
Polish system, 400
polynomial Hales–Jewett theorem, 773
polynomial Szemerédi theorem, 812
polynomial van der Waerden theorem, 772
polynomial volume growth, 883
Pontrjagin duality, 653
positive
– central exponents, 193
– cone, 126
– generalized cone, 126
– invariant set, 990
– limit solution, 78
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– rank, 126
positively recurrent point, 601
power, 1149
prime system, 642
primitive extension, 811
primitive vector, 585
principal curvature, 226
– direction of, 226
principal series, 934, 938, 949
principally polarized Abelian variety, 516
probability measures, 542
product structure, hyperbolic, 201
prong, 72
– singularity, 72
– stable, 73
– unstable, 73
properly ergodic actions, 953
property
– ε-accessibility, 196
– accessibility, 193
– closing, 205
– dominated, 188
– essential accessibility, 193
– shadowing, 205
proximal, 620
proximal points, 787, 789
pseudo
– ε-
– – -orbit, 206
– π -partition, 172
pseudo-Anosov, 519
– automorphism, 48
– diffeomorphism, 72
– generalized
– – homeomorphism, 73
– map, 71
pseudo-orbit, 205
– respecting a plaquation, 26

Q(x), 163
Q�(x), 156
quadratic differential, 534, 589
quadratic family, 292
quadratic form, 587
quadrilateral argument, 38, 39
quantum states, 1139
quasidifferential, 1000, 1012, 1013
quasidiscrete spectrum, 680
quasiinvariant, 601
quasiisometric,seefoliation, quasiisometric
quasilinear PDE, 1093
quasimodular form, 589
quasi-Nekhoroshev theorem, 1113
quenched, 460

r�, 146
radiation modes, 1145
radiation states, 1137
Ramsey theory, 747
Ramsey’s theorem, 747
random
– Anosov diffeomorphism, 454
– base expansions, 471
– Cantor set, 474
– conformal map, 474
– cover, 392
– endomorphisms, 411
– hyperbolic attractor, 454
– hyperbolic set, 454
– invariant set, 492
– Markov partition, 457
– periodic orbit, 492
– periodic point, 492
– perturbations, 476
– repeller, 474
– set, 392
– transformation, 383
rank, 128, 225
– negative, 126
– positive, 126
rank one transformation, 695, 698
rate of convergence, 955
rational polygon, 592, 593
RatnerR property, 729
Ratner’s theorem, 593, 594
ray, 114
RDS, 381, 383
reaction–diffusion system, 1028
real multiplication by an order, 517
rectangle, 235
recurrence property, 1115
recurrence set, 602
recurrent transitive, 611
recursion time, 1122
reduction theorem, 104
region, trapping, 197
regular, 86, 98, 111, 113, 120
– attractor, 1017
– backward, 84, 111, 120
– – point, 64, 97
– Følner sequences, 906
– forward, 82, 111, 120
– geodesic, 225
– Lyapunov, 111
– Lyapunov backward
– –f -, 120
– – point, 64
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– Lyapunovf -, 120
– Lyapunov forward
– –f -, 120
– – point, 64
– neighborhood, 148, 405
– point, 64
– representation, 875
– set, 93, 94, 118
– set of level�, 118
regularity
– backward, 82
– forward, 82
– Lyapunov, 86
relative
– entropy, 383
– expansivity, 395
– generator, 385
– homology, 535, 586
– topological generator, 395
– topological pressure, 388
– variational principle, 391
residual set, 659
resonance, 668, 1144
“resonance” at zero energy, 1143
resonant coupling, 1139
return time, 91
RIC extension, 620
Riemann moduli, 533
Riemann moduli space, 540
Riemann–Liouville fractional integrals, 938
Riemannian volume, 157
Riesz product, 699
Riesz’s argument, 894
rigid cocycle, 90
rigid system, 609
robust transitivity, 14
robustly transitive, 353
Rokhlin lemma, 672
Rokhlin towers, 635
root space, 946
root system, 946
rotations, 506
RPF operator, 448
RPF theorem, 448
R property, 729
Rudin–Shapiro sequence, 706
Ruelle’s inequality, 175, 419, 440

SL(2,R)-action, 505
Spχ+(x), 63
Spχ−(x), 64
Spχν , 66
Spχ(ν), 122
(s, γ )-rectangle, admissible, 210

saddle connection, 508, 510, 530, 532, 535, 536,
541, 542, 584, 590, 592, 593

sample measures, 401
sampling error along group orbits, 876
sampling method along group orbits, 876
sampling process, 878
Sárközy–Furstenberg theorem, 758
scalar parabolic equations, 1025, 1030, 1033
Schrödinger operator, 1146, 1147
Schur’s theorem, 749
Schwarzian derivative, 204
scrambled, 632
sector, 170
– stable, 73
– unstable, 73
selection of the ground state, 1146, 1150
self-adjoint Markov operator, 971
self-adjoint morphism, 1090
semicontraction, 114
semidispersing billiard, 232
semigroup identity, 985
semilinear equation, 1010, 1011, 1015, 1017,

1024–1028, 1030, 1032, 1033, 1039
semiprocess, 1066
semisimple Lie group, 946
separating sieve, 619
separation time, 202
separatrix, 508
sequence
– nonuniformly hyperbolic
– – of diffeomorphisms, 135
– of matrices, 80
– of matrices, equivalent, 83
set
– admissible(s, γ )-, 136
– admissible(u, γ )-, 136
– Pesin, 94
– regular, 93, 94, 118
– singularity, 227, 230, 232
shadowing
– problem, 205
– property, 205
– trajectory, 996
shell averages, 937
shift transformation, 969
short interactions, 1103
Siegel formula, 584, 585
Siegel–Veech constant, 586, 589, 590
Siegel–Veech formula, 584, 586
Siegel–Veech transform, 584, 591
sign condition, 1024, 1028, 1031, 1036, 1042,

1052
simple roots, 946
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Sine-Gordon equation, 1100
singular hyperbolic set, 371
singular hyperbolic splitting, 369
singular hyperbolicity, 371
– dynamical consequences, 372
singular point, 71
singularities
– dynamical system with, 227
– hyperbolic attractor with, 232
– map with, 227
singularity, 71, 411
– prong, 72
– set, 227, 230, 232
size of local stable manifold, 139
skew product, 88, 969
– over Anosov maps, 13
– transformation, 383
Smillie’s Theorem, 515
smooth measure, 67, 161
smoothing property, 1024
Sobolev space, 1020
solenoid, 653, 668
solitary wave, 1138
soliton, 1138
solution mapping, 1022, 1035
solution of HPDE, 1093
space
– average, 877
– of Hölder continuous functions, 1020
– of lattices, 583, 585, 589
– Teichmüller, 554
space, nonpositively curved, 113
special flow, 717
special transformation, 722
spectral
– decomposition theorem, 174, 346
– gap, 953
– invariants, 651
– – essential value of, 660
– – function of, 658
– – maximal, 660
– projections, 1148
– properties, 651
– theorem, 932
– – for a unitary operator, 655
– – for Abelian group actions, 654
– transfer principle, 959
– types, 661
spectrum
– absolutely continuous, 659
– countable Lebesgue, 663
– homogeneous, 660
– Lyapunov, 63, 64, 81, 95, 96
– – of a measure, 66, 122

– pure point, 658
– simple, 660
– singular, 659
sphere averages on free algebras, 952
sphere averaging problem, 886
spherical averages, 923
spherical averages on free groups, 929
spherical differentiation problem, 886
spherical functions, 942, 944, 947
spine, 72
square functions, 937
square-tiled surface, 511
squeezing theorem, 1116
SRB-measure, 50, 51, 61, 67, 197, 198, 235, 236,

433
stability, 1137
stable, 1141
– global weakly
– – manifold, 151
– disk, 201
– distribution, 10
– foliation, 19, 73
– global
– – manifold, 149–151, 234
– local
– – manifold, 146
– – pointwise dimension, 215
– local weakly
– – manifold, 193
– manifold, 402, 415, 994
– manifold theorem, 144
– manifold theorem for flows, 145
– prong, 73
– sector, 73
– strongly
– – subspace, 192
– subspace, 8, 79, 118, 123
stably
– accessible, 38–40
– ergodic, 44–48
– ergodic measure, 194
– K, 47
– mixing, 45
standard symplectic cone, 130
standing water waves, 1130
stationary measure, 438
stochastic flow, 416
stochastic stability, 317
Stone–̌Cech compactification, 777
stratum, 533, 535, 544, 583, 586
strict
– eventually
– – family of cones, 128
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– – Lyapunov function, 127
– family of cones, 128
– Lyapunov function, 127
– polynomial volume growth, 889
– volume growth, 889
strictly ergodic, 633
strong maximal inequality, 877
strong orbit equivalence (SOE), 642
strongly
– stable subspace, 192
– unstable subspace, 192
strongly non-linear equations, 988, 1005, 1017,

1024–1026, 1032
strongly non-linear PDE, 1093
subadditive cocycle, 102
subattractor, 1003, 1042, 1048
subexponential volume growth, 883
subspace
– central, 118
– Lagrangian, 170
– stable, 79, 118, 123
– strongly stable, 192
– strongly unstable, 192
– transverse, 120
– unstable, 79, 118, 123
substitution
– map, 706
– primitive, 706
supercritical growth, 1027, 1038
supercritical non-linearity, 1027
surface
– translation, 551, 553, 554, 560, 570
– Veech, 572
Swift–Hohenberg equation, 1051
symmetric morphism, 1090
symmetric space, 534, 946
symplectic
– capacity, 1120
– cone, 130
– conformal, 229
– Hilbert scale, 1091
– Hilbert space, 1091
– morphism, 1092
– standard
– – cone, 130
symplectomorphism, 1092
syndetic set, 604, 611, 758, 762, 785, 794, 815
Szemerédi’s theorem, 754

T im(w,q), 158
tangencies
– far from, 336
Teichmüller
– disk, 565

– flow, 555
– geodesic flow, 540
– spaces, 554
tempered, 108, 112
– cocycle, 89
– equivalence, 89
– Følner sequences, 907
– function, 89
tempering kernel, 104
– lemma, 108
theorem
– absolute continuity, 157
– flat strip, 223
– multiplicative ergodic, 66
– spectral decomposition, 174
– stable manifold, 144
– – for flows, 145
– unstable manifold, 145
thermodynamic formalism, 444
thick sets, 611
tight, 644
time
– averages, 877
– change in a flow, 716
– hyperbolic, 195
– separation, 202
time-invariance, 1141
time-translation symmetry, 1141
topological
– Markov chain, 969
– model, 634
– – in one-dimensional dynamics, 316
– transitivity, 37, 38
topologically
– ergodic, 612
– mildly mixing, 614
– mixing, 446, 611
– transitive, 611
– weakly mixing, 606, 620
total ergodicity, 675
tower
– base of, 692
– height of, 693
– Rokhlin, 675
– roof of, 692
– size of, 693
tracking property, 988, 996–998, 1018, 1030,

1031, 1065, 1069
tracking trajectory, 996
trajectory, 991
trajectory attractors, 991, 998, 1061, 1064,

1066–1068
transfer function, 717
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transfer of energy, 1146
transfer principle, 897
transfer principle for amenable groups, 901
transform, graph, 136
transformation
– simple, 690
transition probability, 460
transitive, 611
translation surface, 505, 529, 531–534, 536, 540,

542, 543, 551, 553, 554, 560, 570, 583, 586,
587, 592, 593

transversal to family, 157
transverse
– foliation, 172
– measure, 72
– subspaces, 120
– uniformly
– – submanifold, 156
trapping region, 197
traveling wave, 1050, 1063
tree, 539
two-sided canonical i.i.d. RDS, 437

u-measure, 49–51, 200
(u, γ )-rectangle, admissible, 210
Ulam’s approximations, 488
ultrafilter, 778
unbounded attractor, 994
unfolding process, 503
uniform
– approximation, 694
– density, 610
– Følner sequence, 901
– partition, 635
– topology, 692
– visibility axiom, 224
uniformly
– convex space, 113
– expanding maps, 285
– partially hyperbolic cocycle in the broad sense,

92
– positive entropy (UPE), 621
– recurrent point, 785, 787, 789
– rigid system, 616
– transverse submanifold, 156
unimodal maps, 290
uniquely ergodic, 102, 536, 540, 542, 593, 633
unitary operator
– mixing, 666
– multiplicative, 652
– rigid, 667
unitary ring, 652
universal attractor, 987
unrestricted convergence, 911

unstable
– disk, 201
– distribution, 10
– foliation, 19, 73
– global
– – manifold, 150, 151, 234
– global weakly
– – manifold, 151
– local
– – manifold, 145, 146
– local pointwise dimension, 215
– manifold, 412, 413, 994
– manifold theorem, 145
– prong, 73
– sector, 73
– strongly
– – subspace, 192
– subspace, 8, 79, 118, 123
upper
– Banach density, 755
– box dimension, 218
– density, 751, 755, 808, 829
– information dimension, 218
– local pointwise dimension, 219
– pointwise dimension, 219
– semicontinuous dependence of attractors on

parameters, 1004, 1005, 1007
us-path, 193

V+
i
(x), 63

V−
x , 64
V−
i
(x), 64

value of a Lyapunov exponent, 63, 81
van der Corput trick, 759, 797
van der Waerden’s theorem, 752, 767, 785
variation equation, 1000, 1011
variation of constant formula, 1027
variational
– differential equation, 123
– formulas, 562
– linear
– – equation, 124
– methods, 1140
– principle, 392
vector bundle, measurable, 88
Veech
– dichotomy, 508, 541
– group, 506, 532
– surface, 508, 531, 532, 540, 544, 572, 594
very weakly Bernoulli partition, 174
Viana maps, 303
visibility axiom, uniform, 224
volume, 585, 586, 588, 589



1222 Subject Index

– growth, 883
– Riemannian, 157
volume-preserving, 1143
– flow, 881
von Neumann Isomorphism Theorem, 678
von Neumann’s ergodic theorem, 828
von Neumann’s mean ergodic theorem, 894

W(x), 149
Wuc(x), 151
Wsc(x), 151
wandering point, 600, 611
weak
– attractor, 987, 991–993, 1026, 1038, 1050, 1052,

1054, 1058
– solutions, 1023, 1024, 1037, 1060, 1061
– topology, 679, 692
weak mixing
– characterization of, 668
– relative, 687
– relative to a factor, 796
weak-type maximal inequality, 877
weakly,

– disjoint, 613
– – stable manifolds, 193
– mixing, 605
– mixing extension, 619, 804, 811
– mixing system, 795, 804
– nonlinear, 1138
weighted averages, 969
weighted norms, 1049–1051, 1058
Weinstein–Moser theorem, 1128
Weyl group, 946
Weyl’s Equidistribution Theorem, 880
Wiener lemma, 655
Wiener–Calderon covering argument, 895
Wiener’s Differentiation Theorem, 880
Wiener’s theorem, 881
word metric, 883

Zakharov–Shabat equation, 1094, 1101, 1113
zeroes of Abelian differential, 505
Zorich
– conjecture, 552, 560
– cycles, 553, 574
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