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Preface

In early 1993, E.J. Freireich, M.D., asked me to edit a book on statistical
methods in clinical trials. Initially, I felt my job would be to assemble a
group of biostatisticians, each willing to contribute a chapter to the book.
The goal was to provide descriptions of some of the more modern develop
ments in statistical methods for clinical trials, for both medical and bio
statistical readers. Dr. Freireich's request presented a challenge to me,
because the proposed book was to appear in a series that previously had
consisted entirely of medical papers directed at a medical audience. I chose
biostatisticians currently doing cutting-edge research and asked each to write
a survey, possibly including new research, with a combined medical-bio
statistical audience in mind. The collection of chapters in this book is
the result.
Scientists tend to communicate within their own areas of expertise,

typically using a specialized language that often seems incomprehensible to
those outside their field. The problem of interdiscipline communication 
communicating ideas between distinct groups of people who think differently
and use different languages - is one of the most difficult and important
problems in science. When one of the fields is statistics, the problem can be
even more difficult and challenging than usual. It is more difficult because
statistical concepts have their foundation in mathematics, in particular
probability, and translating mathematical concepts into language under
standable by nonmathematicians is, in my experience, one of the most
intellectually demanding activities that can be undertaken.
Communicating statistical concepts to biomedical scientists who have had

little or no statistical training is critically important, however. Clinical trials
have two purposes - to treat the patients in the trial, and to obtain
information that increases our understanding of the disease and especially of
how patients respond to treatment. Statistical design provides a means to
achieve both these aims, while statistical data analysis provides methods for
extracting useful information from the trial data.
Recent advances in statistical computing, both in the computers them

selves and in conceptual devices such as computational algorithms, have
enabled statisticians to implement very rapidly a broad array of methods

IX



that previously were either impractical or impossible. Biostatisticians thus
have become able to provide much greater support to medical researchers
working in both clinical and laboratory settings. As our collective toolkit of
techniques for analyzing data and designing clinical trials and laboratory
studies has grown, however, it has become increasingly difficult for each of
us biostatisticians to keep up with all the developments in our own field. The
task of communicating these advances to our medical colleagues thus has
become doubly difficult just as we are entering a new age in which so many
truly powerful statistical methods are becoming practical realities.
This book is one attempt, among many currently ongoing, to explain

some of the more recent developments in biostatistics to clinicians and
scientists who work in clinical trials. Each of the chapters describes a very
recent development in statistical methodology that is a powerful tool for
planning or analysis. The chapters are written at a variety of technical levels,
reflecting the individual styles of the contributors. Thus, I think unavoidably,
some chapters will be more accessible than others. If these chapters make
you aware of even one new method that you find useful, however, then I
have achieved my goal.

Peter F. Thall

x



1. The alpha spending function approach to
interim data analyses

David L. DeMets and Gordon Lan

Introduction

Over the past three decades, clinical trials have become one of the major
standards for evaluating new therapies and interventions in medicine [1-3].
Numerous clinical trials have been conducted during this period across a
wide variety of diseases, evaluating drugs, procedures, devices, and biologic
materials. The fundamentals of the design, conduct, and analyses of clinical
trials have been developed and refined during this period as well. One such
fundamental is that clinical data should be carefully monitored during the
course of the trial so that unexpected or unacceptable toxicity can be
detected as soon as possible in order to minimize patient exposure; in
addition, trials should not be continued longer than necessary to prove the
benefits of the therapy or intervention under study, or to understand the
trade-offs between the benefits and risks of the therapy. In order to accomp
lish this goal, the National Institutes of Health sponsored a committee in the
1960s to develop guidelines for the conduct of clinical trials. The chair of
this committee was Dr. Bernard Greenberg from the University of North
Carolina, and the report, which was issued in 1967, has become known as
the Greenberg Report [4], although it was only recently published in the
literature. This report endorses the concept of interim review of data by an
independent Data and Safety Monitoring Board (DSMB), a committee that
has no conflict of interest for the study. This typically means that committee
members should not be investigators entering patients into the trial. The
Coronary Drug Project (CDP) [5] was one of the first trials to implement
the Greenberg model.
The decision to terminate a trial early due to unacceptable toxicity or

substantial and convincing evidence of benefit is complex and must account
for many factors [5-17]. These include possible imbalances in risk factors
between treatment groups, whether the patients have the risk profile assumed
in the design, patient compliance to therapy, quality and timeliness of data,
possible sources of bias, consistency of primary and secondary outcome
variables, the benefit-to-risk ratio, consistency of results with external data,
and the impact of early termination on the medical community as well as the



public. Evaluation of these issues goes beyond routine statistical tests and
requires the collective judgment of experts, such as those represented by a
OSMB. That is, the OSMB usually has members with clinical, laboratory,
statistical, and epidemiological expertise and often someone with a back
ground in ethics related to patient research.
One of the issues identified in the COP experience was that repeated

analysis of accumulating data raises the chances of false-positive claims if
standard statistical methods are used at each analysis with no adjustments
for the repetition. The problem of repeated or sequential testing of data was
already well known by that time due to previous or ongoing work [18-25].
Canner [25] describes some of the methodology used in the COP interim
analyses. While many statistical methods were available, the COP experience
clearly indicated that the decision-making process to terminate a trial early
due to evidence of toxicity or benefit is complex, and statistical methods
alone are not sufficient [5]. Several trials conducted since then have con
firmed this principle [6-12].
Nevertheless, while statistical methods cannot be used as termination

rules, they can be very helpful as termination or stopping guidelines [8-17].
A great deal of statistical research has occurred during the past 15 years

to develop, adapt, or modify existing statistical methods in order to provide
better tools for this complex decision process, including a recent text by
Whitehead [26]. This research has spanned frequentist, Bayesian, and
decision-theoretic points of view. We shall focus our attention on the fre
quentist viewpoint. In particular, the frequentist approach attempts to
minimize false-positive claims by controlling the type I error probability or
'alpha level.' Haybittle [27] and Canner [25] introduced the idea of using a
very conservative criterion at each interim analysis. Work by Pocock [28]
and O'Brien and Fleming [29] introduced an approach referred to as 'group
sequential' analyses of interim data, which can be viewed as an extension
of work pioneered by Armitage and others [22] on repeated significance
testing. The Pocock modification focused on the idea that when the DSMB
meets periodically, an additional group of subjects or events has been
observed. The number of interim analyses must be specified in advance,
and the number of patients or events must be divided equally between
analyses. However, how many times or exactly when a DSMB might meet
to conduct the safety and benefit assessment is not always easy to predict or
prescribe exactly. For example, the number of events observed between
successive meetings of the DSMB typically vary, i.e., are not equal. More
over, the DSMB might spot a worrisome trend and request additional
meetings.
Lan and OeMets [30] extended the group sequential concept to a very

flexible method that controls the overall alpha level while allowing for the
number and exact timing of the interim analyses to remain unspecified a
priori. This general approach which has been used in a number of clinical
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trials, will be described here. This chapter is an expanded version of summary
papers published previously [31-35], and it also summarizes numerous other
papers on this topic.

The alpha spending function concept

In fixed-sample, classical nonsequential designs, the allowed alpha level
corresponds to a single, final analysis. However, in repeated interim analy
ses, the cumulative Type I error rate increases with each interim evaluation.
Armitage, McPherson, and Rowe [22] provided quantitative results showing
the actual cumulative type I error for various numbers of interim analyses
while using the conventional fixed-sample critical values each time. For
example, if the conventional critical value of 1.96 is used, corresponding to a
fixed-sample two-sided 0.05 significance level, the actual type I error rate is
nearly 0.15 for five interim analyses and almost 0.20 for 10 analyses. Five to
ten interim analyses are not uncommon for larger, longer-term follow-up
trials, but clearly type I error rates of 15% to 20% are unacceptably high for
critical or pivotal clinical trials.
The goal of the general group sequential approaches [28-30] is to control

the type I error rate. The alpha spending function, which will be formally
defined in the next section, allocates some of the prespecified type I error to
each interim analyses. The specific models proposed by Pocock [28] and
O'Brien and Fleming [29] are special cases of this approach. The alpha
spending function allocates the total allowable type I error rate through a
function based on the information accrued during the trial, such as the total
number of observed patients or events. That is, the spending function
depends on the fraction of patients or events observed at a particular interim
analysis out of the total number of patients or events expected or designed
for. This fraction, t*, referred to as the information fraction, indicates how
much of the trial has been completed in terms of the accumulated infor
mation, and thus indicates how much of the allowable type I error rate
should be allocated. The value of the information fraction must be between
oand 1. The alpha spending function must be equal to 0 at t* == 0 and equal
to alpha at t* == 1.0, and it is nondecreasing in between. An example of a
spending function is given in figure 1 for a spending function that corresponds
approximately to an O'Brien-Fleming group sequential model. For each
interim analyses, the allocated type I error is determined by the alpha
spending function, which in turn corresponds to an adjusted critical value
for the test statistic computed at that analysis.
One limitation of previous group sequential methods is the requirement

that both the number and the exact time be specified in advance. For
example, a trial design might specify that five interim analyses are planned
at information fractions 0.20,0.40,0.60,0.80, and 1.0. However, as the trial
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Spending Function a (t*)

.025

.0 *t 1 t 2

Information Fraction

1

Figure 1. Alpha spending function indicating additional type I error rate, D.a, allocated
between interim analyses t~ and t~.

progresses, the DSMB may not be able to meet when the information
fraction is exactly those prespecified fractions, or may need to meet more
frequently due to emerging toxicity or beneficial trends. This issue was
raised by one of the early cardiovascular trials that used the O'Brien
Fleming group sequential model [6,10]. However, the alpha spending func
tion does not require either a specific number of interim analyses or specific
times when they must occur. It does however require that the particular
spending function be specified in advance and that we know how many total
patients or events to expect in the trial. That is, the trial sample size must be
specified in advance, which most well-designed trials will in fact require.
Details regarding this flexible alpha spending function will be described in
the remainder of this chapter. When the number of patients or the number
of events for the whole study is uncertain, we need some modifications to
apply the spending function approach. This is illustrated below in the section
on survival analysis.

Formal alpha spending function a(t)

Since the Lan-DeMets alpha spending function approach was introduced
in 1983 [30], a decade of research on this flexible method has emerged,
indicating how it can be used in a variety of settings. These include com
parison of proportions, means, survival curves, and repeated measures, as
well as methods for computing confidence intervals and p-values. In the
following sections, we shall first formally define the alpha spending function
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[30,33-37] and discuss issues related to it and then illustrate the design and
analysis methods listed above.

Definition

In the fixed sample setting, we often wish to evaluate the null hypothesis of
no treatment effect using a test statistic Z compared to a critical value Zc
that corresponds to a prespecified type I error or alpha level. We shall
consider only two-sided symmetric sequential tests, but extensions to one
sided or asymmetric tests are self-evident and straightforward [38,39]. A
more theoretical development of this approach may be found in Lan and
Zucker [35]. The group sequential method for interim analyses defines a
critical value for each analysis Zc(k), k = 1,2, ... , K, such that the overall
type I error rate is maintained. In the Lan and DeMets [30] approach, the
total type I error is allocated to each analysis through the spending function,
which in turn determines the value of Zc(k). The trial continues to accrue
patients or events if, at the kth interim analysis,

IZ(k)1 < Zc(k) for k = 1,2, ... , K - 1,

where Z(k) is the test statistic for the kth analysis. If the test statistic
exceeds the boundary or critical value, then early termination of the trial
should be considered, after careful consideration of all the -evidence as
discussed above. At the final planned analysis, the null hypothesis of no
treatment difference would be accepted if IZ(K)I < Zc(K). The null hypo
thesis would be rejected if the test statistic IZ(K)I ~ Zc(K).
The test statistic Z(k) for all the groups at the kth interim analysis is

obtained from a summary of the results from each of the previous k groups;
that is,

Z(k) = {~Z*(1) + vr;Z*(2) + ... + vr;;Z*(k)}1

YUI + 12 + ... + I k ) ,

where Ii and Z*(i) respectively represent the amount of information and
the summary statistic for the ith group, which is comprised of the data points
accumulated between the (i) - lth and ith DSMB meetings.
Consider the clinical trial to be completed in calendar time t between

[O,T], where T is the scheduled recruitment time for an immediate-response
study or follow-up time for an event-based study [34,40,41]. During the trial
at calendar time t, let t* denote the information fraction, which is the
observed information divided by the total information expected or designed
for. If at the kth interim analysis, we observe information II + lz + ... + I k

and expect to have total information of I at the scheduled end of the study,
then the information fraction tZ at calendar time tZ is (II + 12 + ... + h)II.
For comparing means or proportions, tZ is approximated by nlN, the
observed sample size divided by the expected maximum sample size N. For
survival studies, tZ is approximated by diD, the number of observed deaths
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divided by the total expected number of deaths D. The information fraction
will be more formally defined in the next section. The Lan and DeMets
alpha spending function, a(t*) is defined such that a(O) = 0 and a(l) = a.
Group sequential boundaries or critical values for the test statistic computed
at the kth interim analysis can be determined according to the spending
function a(t*). Let analysis times and information times be defined such that
0< tl < t2 < ... < tK::::; T and 0 < ti < ti ... < tk = 1, where K denotes
the last and final analysis. Then we can determine the boundary values
Zdk) at tk for a(tk) by solving successively, under the null hypothesis of no
treatment effect,

Po{IZ(I)1 ~ Zdl)

or IZ(2)1 ~ IZd2)1 or ... or jZ(k)1 ~ Zdk)} = a(tk)

for a two-sided test of the hypothesis. Note that Zdk) is determined by the
spending function and the information fractions ti, ti, ... tk, but does not
depend on future information fractions or on the value of K.
The increment a(tk) - a(tk-I) represents the additional type I error rate

or alpha level that is allocated to the kth interim analysis. For a single fixed
sample design,

PoHZ(K = 1)1 > ZdK = I)} = a(l) = a.

That is, the total alpha is spent all at once at the end of the trial. By
examining the data at various intervals of information, we allocate the total
alpha to each analyses such that

~k{a(tk) - a(tk-I)} = a, k = 1,2, ... , K.

Evaluation of the probability Po requires knowing the distribution of the
sequence of test statistics {Z(I), Z(2), , Z(k)} under the null hypothesis.
If each group statistic Z*(i), i = 1, 2, , k is normal with mean zero and
unit variance and if they are independent, then the summary statistic Z(k)
also has a normal distribution with mean zero and unit variance. For this
case, the distribution function has a special form as a recursive density
function that can be numerically integrated to obtain the value of the type I
error rate spent up to that point for a given set of critical values [22,28,30].
If the individual group statistics do not have this independent increment
structure but still have some known or approximated multivariate distri
bution, the spending-function approach can still be implemented, but it is
somewhat more complicated. Fortunately, most of the common applications
have this independent increment structure, as will be described below in the
section on applications.
The Pocock [28] boundary corresponds to a constant critical value for

each interim analysis, Zdk) = Zp. The O'Brien - Fleming [29] boundary
decreases in absolute value as the information fraction increases such that
Zdk) = ZOBFrV(nIN) = ZOBF/Y(t*), where ZOBF is a constant value.
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Spending functions can be defined that approximate O'Brien-Fleming [29]
or Pocock [28] boundaries, or something in between [30], as follows:

(11(t*) = 2 - 2<1>(Zu/z/Y(!*)) O'Brien-Fleming type

(1z(t*) = (1' In(1 + (e - 1() Pocock type

(13(t*) = (1' t* Uniform

where <I> denotes the standard normal cumulative distribution function. The
shape of the spending functions for these three functions are shown in figure
2 with an overall 0.05 type I error rate - for example, 0.025 allocated to a
positive trend and 0.025 to a negative trend.
In table 1, we have indicated the comparison of the critical values or

monitoring boundaries for the test statistic computed in this manner to those
provided in the Pocock [28] and O'Brien-Fleming [29] papers for a total of
K = 5 analyses at equally spaced information fractions t* = 0.2, 0.4, 0.6,
0.8, and 1.0. Note that the boundaries are not exactly equivalent, since they
are defined differently, but they are very close. Pocock's method yields a
constant critical value of 2.41 in comparison to a naive boundary value of
1.96. The O'Brien-Fleming coefficient is 2.04, which provides the critical
values when adjusted by the information fraction. It should be emphasized
that these two methods initially required equally spaced increments of infor
mation, with the number of interim analyses to be specified in advance. The
Lan-DeMets version does not have these constraints. The boundaries for (11

Spending Functions
Alpha

.05

.04

.03

.02

.01

o .2 .4 .6 .8

Information Fraction
1

Figure 2. Comparison of spending functions al(I*), az(t*), and a3(1*) at information fractions
1* = 0.2, 0.4, 0.6, 0.8, and 1.0.
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Table 1. Comparison of boundaries using spending functions
with Pocock (P) and O'Brien-Fleming (OBF) methods (a =
0.05, t* = 0.2, 0.4, 0.6, 0.8, 1.0)

t* at (t*) OBF a2(t*) P

0.2 4.90 4.56 2.44 2.41
0.4 3.35 3.23 2.43 2.41
0.6 2.68 2.63 2.41 2.41
0.8 2.29 2.28 2.40 2.41
1.0 2.03 2.04 2.39 2.41

Group Sequential Boundaries

Reject "0
4.0

3.0

2.0

.~-'"<:: 1.0~-rJ.J
"Cl
~ 0N:c
l.
~

"Cl -1.0c
~-rJ.J
-2.0 -

-3.0
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Figure 3. Upper boundary values corresponding to the Ut(t*) spending function for U - 0.05 at
information fraction t* = 0.25, 0.50, 0.75, and 1.0 and for a truncated version at a critical value
of 3.0.

are shown in figure 3 for interim analyses at t* = 0.25,0.50,0.75, and 1.0.
Since the early boundary values may be very extreme, we can also truncate
these extreme boundaries at some large value such as ± 3.0 without affecting
the rest of the boundary. More general classes of spending functions have
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also been developed [36,37], but the three spending functions described here
represent the range of alternatives. Nonsymmetric boundaries are also
possible [37-39] by setting different alpha levels to be spent for positive or
negative treatment effects. The generalizations from the methods described
here are straightforward.

Information fraction

A simple way to describe 'statistical information' is that each patient rando
mized in a clinical trial contributes up to one unit of 'statistical information'
to a specific endpoint [40-42]. When the data are analyzed, a patient's
contribution is 'one' if his or her endpoint has been completely measured
and 'less than one' if it was only partially measured. The exact amount of
information contributed by a patient depends on the nature of the endpoint,
the patient's follow-up time, the statistical test used for treatment group
comparisons, and possibly some other factors. Let us use some examples to
elaborate on this point. Suppose 'one-week mortality' is the endpoint being
considered. A patient, one week after randomization, is either dead or alive
and contributes one unit of information to the study. Another patient, three
days after randomization, can also contribute one unit of information if he
or she is dead by then. If still alive, he or she contributes no information to
one-week mortality. If an endpoint can be measured completely soon after a
patient enters a study, then 'the amount of information observed' practically
has the same meaning as 'the number of patient randomized into the study.'
Other examples of immediate outcomes are 24-hour blood pressure change
or 90-minute reperfusion rate.
The situation is more complicated when we are interested in the exact

survival time of the patients [40,41]. In most clinical trials, we do not follow
all the patients until their deaths before we analyze data. Therefore, the
amount of information available when the data are analyzed is usually less
than the number of patients in the study. Obviously, the longer the follow
up, the more information a patient contributes to the study. Similarly, if we
are interested in, say, the change of FEY! (forced expiratory volume in one
second) of lung disease patients, we do not measure the patients' lung
functions continuously. Instead, we ask the patients to come back for
periodic checkups and take their FEY! measures then. In this case, the
amount of information a patient contributes depends on the frequency and
spacings between visits of this specific patient.
When we design a two-group clinical trial, we assume a specific treatment

difference and then compute the amount of information required to reach a
certain power. If the data are analyzed only once after all the information
has been accumulated, we have only one chance to make a type I error or to
make a false-positive decision. We consider this design to be 'spending' all
the alpha at the end of the study. In many large-scale clinical trials, data are
monitored periodically, and decisions on treatment comparisons are made
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sequentially [42]. In order to maintain the overall alpha at a desired level,
we 'spend' this fixed amount of alpha as information is being accumulated.
In other words, the 'spending function' specifies the proportion of alpha to
be spent as a function of 'information accrued.' However, the total infor
mation varies from study to study, and it is more convenient to express the
spending of alpha as a function of the information fraction

(amount of information contributed by all the
* _ patients when data are analyzed)

t - (amount of total information for the study) ,

which varies from 0 to 1 as the study proceeds.
Since the total amount of alpha is fixed for a study, a conservative

monitoring plan would spend a small amount of alpha at the beginning of
the study so that more can be reserved for the later part of the study.
Conversely, an aggressive monitoring scheme spends a large amount of
alpha at the beginning and leaves a small amount of alpha for later, such as
U2(t*). Note that this general concept can be visualized as the 'shape' of the
spending function. Roughly speaking, an aggressive monitoring spending
function results in earlier stopping when a treatment difference is large, but
has less power to detect a treatment difference when compared to a more
conservative spending function. Conservative spending functions do not
easily allow for early termination, and their final critical value is close to the
fixed-sample critical value as in Ul(t*). If the amount of total information is
uncertain, but the duration of the trial is fixed, then the information fraction
at the time of data monitoring has to be estimated. An illustration is given
below in the section on survival analysis.

Change offrequency and overruling

The methods initially proposed by Pocock [28] and O'Brien and Fleming
[29] assumed that the number and timing of the interim analyses are fixed in
advance. While most of the information can be captured in a few interim
analyses [12,13,37,43], the DSMB may request additional interim analyses
due to emerging trends. When the alpha spending function approach was
introduced by Lan and DeMets [30], concern was expressed that this very
flexible approach could be abused if the frequency of interim analyses were
changed due to emerging trends. This concern was addressed by several
researchers, including Lan and DeMets [44] and Proschan et al. [45]. Lan
and DeMets simulated several scenarios in which the frequency of interim
analyses would be doubled if the emerging trends got to within 80% of the
current critical value or boundary. The results of one simulation study are
given in table 2 and, as shown, there is a negligible increase in the type I
error. Proschan et al. [45] considered more intense strategies to abuse the
spending function. In their worst case, the alpha level or type I error rate
was doubled, but for the more common spending functions, such as the
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Table 2. Simulation results for impact of changing frequency on
the alpha level and power

Spending function

u,(t*) 
O'Brien-Fleming

e Rule 1 Rule 2 Rule 1 Rule 2

0 0.024 0.025 0.025 0.026
2 0.508 0.511 0.431 0.432
4 0.845 0.846 0.782 0.782
5 0.976 0.976 0.960 0.959

Rule 1: Interim analysis at t* = 0.25,0.50,0.75.
Rule 2: If test statistic at interim analysis is within 80% of a

boundary per rule 1, double the frequency of interim
analyses.

e = tJ.VK, where tJ. is the noncentrality parameter of the test
statistic.

O'Brien-Fleming type spending function, the alpha level did not inflate
noticeably. It is, of course, not permissible to change the spending function
during the course of the trial. This point needs to be emphasized because, if
spending functions are changed, there is no longer any control over type I
error, and serious abuse is possible - that is, the interim monitoring process
would have little credibility.

Application: design and analysis

So far, we have described the alpha spending function in terms of a general
test statistic Z evaluating a treatment effect. In this section, we shall describe
how this general approach can be applied to a few specific test statistics. For
each case, we shall describe the test statistic, the design approach, and the
implementation for the interim analysis.
Although the alpha spending function provides the desired flexibility in

the analysis phase, for design purposes, it does require some prior specifica
tion of the number of interim analyses and the times. OnCe the design,
including the target sample size, has been established, the frequency and
timing of the interim analyses may vary using the alpha spending approach
without any significant impact on the overall type I error rate [44]. Thus, the
design strategy or alpha spending function [46] is essentially the same as that
described by Pocock [28].

Comparison of means

Some clinical trials compare mean levels of response. The basic hypothesis
being tested is that there is no difference in mean values, Jl (i.e., no
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treatment effect). We have some treatment effect in mind that we would
like to detect (the alternative hypothesis). More formally, let the null hypo
thesis Ho be defined

H o: Ilc - IlT = 0
H A : Ilc - IlT = (5 i= 0

where Ilc and IlT represent the true control and treatment group means, and
(5 represents the value of hypothesized treatment effect compared to a
control. We would obtain a sample mean from each group, control and
treatment, and then compare means as follows:

Z = Xc - XT
crVlIm + 11m

assuming equal sample size m for each group for simplicity, where cr denotes
the population standard deviation. Since cr is unknown, we may estimate cr
by 6, the sample standard deviation. For a large enough sample size, this
statistic has approximately a normal distribution with mean 0 and unit vari
ance under the null hypothesis. Under the alternative hypothesis «5 i= 0),
this statistic has a normal distribution with mean Ll and unit variance, where

Ll = (Ilc - IlT)/(crVlIm + 111m).

In the design phase, we might specify a total of K planned interim analyses
after every increment of n patients per group. The test statistic after the kth
such group is

Z
- Xc - XT

k - ~~ k = 1,2, ... , K,
V 2cr2/nk

where Xc and XT are the means across all k groups.
For this case, we can write the value of the parameter Ll, the expected

value of the statistic under the alternative hypothesis, as

Ll = ~(Ilc - IlT)/~ = ~(5/~
so that

In order to design our studies, we evaluate the previous equation for n, the
sample size per treatment per sequential group. Since the plan is to have K
groups each of size 2n, the total sample size 2N equals 2nK. Now, in order
to obtain the sample size in the context of the alpha spending function, we
proceed as follows:
1. Fix the number of planned interim analyses K at equally spaced incre-
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ments of information (i.e., 2n subjects). It is also possible to specify
unequal increments, but equally spaced is sufficient for design purposes.

2. Obtain the boundary values of the K interim analyses under the null
hypothesis Ho to achieve a prespecified overall alpha level, u, for a
specific spending function u(t*).

3. For the boundary obtained, obtain the value of Ll to achieve a desired
power (1 - ~).

4. Determine the value of n that determines the total sample size 2N =
2nK.

5. Having computed these design parameters, one may conduct the trial
with interim analysis to be done based on the information fraction tZ
approximated by

tZ = Number of subjects observed/2N
at the kth analysis. The number of actual interim analyses may not be
equal to K, but the alpha level and the power will be affected only
slightly [46].

As a specific example, consider using an O'Brien-Fleming-type alpha
spending function Ul(t*) with a two-sided 0.05 alpha level and 0.90 power.
We wish to test an alternative hypothesis HA : Ilc - IlT = 8 = 0.5a, a
difference of half a standard deviation. We also plan to perform five (K = 5)
interim analyses at t* = 0.2, 0.4, 0.6, 0.8, and 1.0. Using previous publica
tions [29] or available computer software, we obtain boundary values 4.56,
3.23, 2.63, 2.28, and 2.04. Using these boundary values and available soft
ware, we again find that Ll = 1.28 provides the desired power of 0.90 to
detect 8 = 0.5a. Thus, substituting for Ll, we find

2Ll2a2

n = (~a)2 = 8(1.28)2 = 13.1;

i.e., we would require a total sample size of 2N = 2nk = 2(13)5 = 130
patients.
As we conduct the kth interim analysis, we will compute the exact group

sequential boundary Zc(k) through the use function Ul(tk), where the infor
mation fraction tZ will be approximated by the observed sample size divided
by 130.

Comparison ofproportions

Many trials also compare the frequency of events between two treatment
groups. The process for design and interim analyses proceeds in a similar
fashion to that described for the comparison of means. Here,

Ho: Pc - PT = 0
HA : Pc - PT = 8 '* 0
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where Pc and PT denote the unknown response rates in the control and new
treatment groups, respectively. We would estimate the unknown parameter
by Pc and PT, the observed event rates in our trial. For a reasonably large
sample size, we often use the following test statistics:

Z = Pc - PT
YP(l - p)(lImc + lImT)

to compare event rates where P is the combined event rate across treatment
groups. For sufficiently large mc and mT, this statistic has an approximate
standard normal distribution with mean ~ and unit variance under the null
hypothesis Ho: ~ = O. In this case,

~ = Y!;Z(Pc - PT)rV2p(1 - p) = Y!;Z8/Y2p(1 - p)

and

Similarly to the example given above in the section on comparison of means,
we might design a trial for K = 5 interim analyses using an O'Brien
Fleming-type spending function UI(t*) at equally spaced increments for a
two-sided alpha level of 0.05. If we specify Pc = 0.6, PT = 0.4 (p = 0.5)
under the alternative hypothesis, then we can obtain a sample size as
follows. For ~ = 1.28,

= 2(1.28)2(0.5)(0.5) = 20 5
n (0.2)2 . ,

and we have a total sample size of 2(21)5 = 210 subjects. We can then
proceed to conduct interim analysis times at information fraction t't: equal to
the observed number of subjects divided by 210.

Survival analysis

In survival analysis, linear rank statistics, which include the logrank statistic
and the Wilcoxon statistic, are commonly used for two-group comparisons
of survival curves [47]. The logrank statistic takes the form Li(°i - Ei ),

where the sum is over all the events. The observed value Oi indicates
whether the ith event comes from group 1. To be more specific, 0i = 1 (or
0) if the ith event is for a group 1 (group 2) patient, respectively. The
expected value E i corresponds to the proportion of group 1 patients at risk
when the ith event occurs. A linear rank statistic takes the form LiWi(Oi 
E i ), where WI corresponds to the 'weight' of the ith event. For the logrank
test, the weights are equal to 1. The Wilcoxon statistic, for example, puts
more weight on earlier events than later events [48]. In the 1980s there were
some important developments in group sequential monitoring of survival
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data [49-56]. It has been shown that the sequential methods developed for
the comparison of two means also apply to the comparison of two survival
distributions. The concept of information, however, needs some modifica
tion. The term information corresponds to the variance of the linear rank
statistic; hence it has different interpretations for different tests. We use the
logrank test, which is the logrank statistic normalized by its standard devia
tion, to illustrate the concept of information in the survival setting.
First of all, sample size alone is not enough to reflect the amount of

information in a survival study. Suppose we plan to recruit 2000 patients,
1000 each in group 1 (standard treatment) and group 2 (new treatment). If
each patient is followed for just one day, we may end up with few or
even no events at all. Despite the large sample size, we will not have
much information to distinguish the effects of the two treatments. In this
setting, the information provided by each patient can be explained through
the distribution function of the survival time. Consider the following
hypothetical example:

Follow-up time
Probability of death

1 month
0.3

2 months
0.4

3 months
0.45

4 months
0.5

Suppose, at the first day of each month, we recruit 100 patients into the
study. (A more realistic recruiting scenario will be discussed later.) After
four months, we have recruited 400 patients. The first 100 patients in the
study have been randomized for four months and we expect 100 x 0.5 = 50
events. The next 100 patients recruited have been in the study for three
months, and we expect 100 x 0.45 = 45 events. Similarly, for the 100
patients recruited in the third and fourth months, we expect 100 x 0.4 = 40
and 100 x 0.3 = 30 events, respectively. The total expected number of
events, 165 = 50 + 45 + 40 + 30, represents the amount of information
available for the comparison of survival times for the two treatment groups.
Note that the amount of information contributed by a patient depends on
the 'time since randomization,' which is the duration between randomization
and data analysis. A patient's contribution of information to the study is 0.3
after one month of randomization, 0.4 after two months, 0.45 after three
months, and 0.5 after four months. The number 165 = (100 x 0.3) + (100 x
0.4) + (100 x 0.45) + (100 x 0.5) is the total of the contributions from the
400 patients in the study. In practice, we recruit patients every day; we need
an extension of the above table to evaluate information accurately, but the
fundamental principle is the same. When survival data are compared at
calendar time t, the corresponding information fraction is

* _ (expected number of events by t)
t - (expected number of events in the entire study)'

Since the expected number of events is not observable, we must use the
observed number of events to replace them in practice. With this modification
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of information, the sequential boundaries presented earlier apply to the
monitoring of the logrank test for comparisons of two survival curves. Note
that the sequential boundaries are employed to control the type I error rate
under the null hypothesis - namely, that there is no treatment difference.
Under the alternative, we assume that the new treatment is 'better,' a term
that in most practical situations is not very well defined [42]. However,
under the proportional hazards model, the sequentially computed logrank
statistics {Zt} behave like the {Zt} for the comparison of two means. That
is, the methods involved in the design and data monitoring for the com
parison of two means also apply to the comparison of two survival curves
using the logrank test [49,50,53-57].
To design a study using the logrank test to compare the survival patterns

of two treatment groups, the concept of information is expressed as the
(expected) number of events, which corresponds to the number of patients
in the comparison of two means. The treatment difference (l-lc - l-lT)/cr in
the comparison of means is replaced by log(hazard ratio) for the survival
setting. If we can use a maximum information design, where the trial ends
when a specified number of events is observed, then the evaluation of the
information fraction at data monitoring is relatively straightforward. The
information fraction may be estimated in one of three ways. We might
estimate it by the fraction of observed control (placebo) group deaths of the
total expected control group deaths. We might also compute the ratio of
total observed deaths in both groups to that expected, where the expected
number of deaths is estimated under the null hypothesis of no treatment
difference. Alternatively, we might estimate the information fraction as the
ratio of the total number of observed deaths to the total number of expected
deaths, estimated under the alternative hypothesis. Any of these approaches
is, valid, but the latter is preferred.
Due to budgeting or other logistical reasons, many studies are design to

last for a specified period of calendar time. Such a design is called a
maximum duration design, in contrast to a maximum information design.
Here, we may not observe a prespecified number of events in the fixed time
of follow-up. We could, of course, guess the total number of events to be
observed, but we might over- or underestimate the number of expected
events. For a maximum information design in a survival setting, several
approaches to estimating the information fraction have been proposed [53].
One simple way is to estimate t* by the fraction of study calendar time.
Another more dynamic approach is to estimate the information fraction by
the patient exposure time. For simplicity, we consider only the calendar
time fraction estimate in this chapter.
We illustrate these methods for estimating t* with data from the Beta

blocker Heart Attack Trial (BHAT) [6]. The BHAT [6] trial was a randomized
double-blind multicenter trial evaluating the effectiveness of a beta-blocker
drug, propranolol, in reducing mortality in patients who had recently suffered
a myocardial infarction. With a two-sided significance level of 0.05 and a
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90% power to detect a 20% reduction in mortality over a three-year follow
up, adjusting for noncompliance, a target sample size of 4000 patients was
established. Recruitment was to be completed in two years and began in
June of 1978. Follow-up was to end in June 1982. After a mean follow-up of
almost two years, the trial was terminated nearly a year early due to a
significant reduction in total mortality. Details of the decision process, given
in [10], included the fact that the logrank statistic crossed the O'Brien
Fleming boundary. As already indicated, the numbers of deaths between
analyses were not equal, and the frequency of analyses could have changed
toward the end, although in fact it did not. The method we will present here
was developed after the BHAT termination and does not reflect what
actually happened. For our present purposes, we shall apply the O'Brien
Fleming-type spending function, Ul(t*), with a two-sided 0.05 alpha level to
monitor this trial in retrospect.
As indicated in table 3, BHAT was scheduled to be monitored seven

times, each approximately six months apart. In practice, the BHAT trial was
monitored at calendar times l; = 11, 16,21,28, 34, and 40 months. BHAT
was stopped early at t6 = 40 (October 1981) with a logrank Z-value of Z(6)
= 2.82 favoring propranolol. The observed numbers of events at data
monitoring were d; = 56,77, 126, 177,247, and 318, respectively. The total
number of events, D, expected at calendar time t7 = 48 months (June 1982)
was estimated to be 400, based on the lifetable available in October 1981
under the alternative assumption of a 20% reduction in mortality. The
logrank Z-values at the six data-monitoring interim analyses were Z(i) =
1.68, 2.24, 2.37, 2.30, 2.34, and 2.82, respectively.
Had the BHAT been designed to follow all the randomized patients until

400 events were observed - a maximum information trial - then the
information fractions would have been 56/400 = 0.14, 77/400 = 0.19, 126/400
= 0.32, 177/400 = 0.44, 247/400 = 0.62, and 318/400 = 0.80. The cor
responding monitoring boundary values for the six observations would have

Table 3. Interim analyses for the BHAT [10) trial using the alpha spending function UI(t*) with
D = 400, T = 48

Maximum information Maximum duration

Calendar Total Information Information
Planned time observed Logrank fraction Boundary fraction Boundary
analysis (t months) deaths (d) Z (dID) value (tiT) value

1 11 56 1.68 0.14 5.88 0.23 4.53
2 16 77 2.24 0.19 5.04 0.33 3.73
3 21 126 2.37 0.32 3.79 0.43 3.24
4 28 177 2.30 0.44 3.19 0.58 2.74
5 34 247 2.34 0.62 2.64 0.70 2.49
6 40 318 2.82 0.80 2.30 0.83 2.27
7 48
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been 5.88,5.04,3.79,3.19,2.64, and 2.30. Again, this boundary would have
been crossed at t = 40, or t* = 0.80, with logrank statistic Z = 2.82.
However, since the BHAT was a maximum-duration trial of 48 months,

we shall consider other ways to estimate the information fraction t*. As
indicated previously, one simple way to estimate t* is by the fraction of
calendar time. Let us reset calendar time t = 0 at June 1987, with the study
ending in June 1982 when t = 48 (months). When data were monitored at
time t between 0 and 48, we estimate t* by t/48. This estimate may not be
perfectly accurate, but it is simple to use. A slightly more accurate method
for estimating t* in a maximum-duration trial may be found in Lan and
DeMets [40]. Note that the information fractions differ depending on which
approach is used to design the trial.
In the original analysis, assuming equal increments from the O'Brien

Fleming [29] paper, the sixth of seven critical values was 2.20. If the test
statistic had not exceeded the boundary value, it is possible that the DSMB
might have called for another interim analysis at t* = 0.9, for example. With
this methodology, the exact boundary value could be computed.
The concept of information for the Wilcoxon test involves the joint

distribution of censoring and survival time. When the mortality rate is low in
a study, the information fraction of the logrank test gives a good appro
ximation to the information fraction of the Wilcoxon test. In general, there
is no simple interpretation of information for the Wilcoxon test. The
interested reader should consult Lan, Rosenberger, and Lachin [57].

Repeated measures

Many trials consider outcomes other than a single mean value, an event, or
time to failure. Trials may be designed in which a specific outcome (e.g.,
bone density, visual acuity) is measured repeatedly during the follow-up
period. This design area, referred to as repeated measure design, has also
been the subject of group sequential methods. Lee [58] provides an overview
of this general class of methods. We shall focus on the most basic of
repeated measures designs, namely, those that compare changes in a con
tinuous response variable over time [59-64]. Wu and Lan [62] describe both
linear and nonlinear mixed effects models.
Consider a trial in which, for each patient, several responses YI, Yz, ... ,

Yj are measured at successive follow-up times Xl, XZ, •.. , Xj' and a least
squares slope is computed to summarize the patient's response over time.
A common model to analyze such a design would be a linear random
effects model

Yj = Po + PIXj + Cj j = 1, 2, ... , J

for a specific patient, with Po being the intercept or constant, PI being the
slope or change over time, and C the deviation from the linear model. The
c/s are assumed to be independent and normally distributed with mean 0
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and variance cr;.The slope ~l is assumed to be a random variable representing
change over time, which varies from patient to patient. If ~l varies across
patients according to a normal distribution with mean B1 and variance cr~,
then

J

2: (Xj - i)(Yj - y)
A j=l
~l = J

2: (Xj - i)2
j=l

is an unbiased estimator of B1 with variance

V(~l) = cr~{1 + "E(Xj~ X)2}'

where R = cr;/crl The information from a single patient is

{
R }-l

1 + "E(x) + i)2

If we estimate a slope for each patient and take weighted averages across
patients in the control group, then the estimated slope is

A _ "EwS~l,s
PC - "Ews

where Ws = V(~l,S)-l. Expressions for the treatment group (T) are similar.
In this case, the information fraction at the kth interim analysis would be

tic = {Var(~d-l + Var(~T)-l}/I

where I is the anticipated total information at the end if all observations are
obtained. This figure is estimated in such a repeated-measures design. The
test statistics Zk is the standardized difference between the slope ~c and ~,
computed across all patients and observations available at the point in time
of the kth interim analysis:

Z - ~CCk) - ~T(k)
k - VVCPCCk) - ~T(k)'

These test statistics are compared to the critical values obtained from the
alpha spending function determined by the information fraction tic for k =
1, ... , K.
An example of sequential monitoring under a simple linear mixed-effects

model is provided by Lee and DeMets [60]. Bone density was repeatedly
measured in a population of postmenopausal women to evaluate a calcium
supplement treatment compared to a placebo control. Thirty-seven women
were randomly assigned to receive calcium and thirty-seven to receive
placebo. Bone density was measured on each woman 10 or 11 times over a
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five-year period [65]. Lee and DeMets [60] reanalyzed these data sequentially
using a mixed-effects model fitting simple linear regression with a random
slope coefficient for each woman. However, in their analysis, the number of
measurements observed divided by the number expected was used as a
surrogate for information fraction. Reboussin, Lan, and DeMets [66]
repeated the analysis, but estimated the information fraction as described
above. The expected total information was estimated by summing over the
planned measurement times for each individual and then across individuals.
Variances were estimated from these data, but would have had to be
estimated from another source in the actual design of this trial. At each of
five interim analyses, the observed information was computed using the
variance estimates, and the information fraction was computed by dividing
the observed the total expected. The test statistic computed at each interim
analysis compares the two linear slope estimates of bone density decline.
The spending function, Cll(t*), was used but the corresponding boundary
was truncated at a maximum value of 3.5. The results of these analyses are
shown in table 4. As indicated, the test statistic exceeds the corresponding
boundary for the spending function at t* = 0.77 in the fourth interim
analysis. Note that the information fractions are not equally spaced. If this
monitoring procedure had been available, early termination of this trial
might have been considered, although other factors might have argued for
continuation. Note also the extreme value of the test statistic at the second
analysis, which did not cross the monitoring boundary at that time and
diminished in value at subsequent analyses.

Repeated confidence intervals

Above we have discussed the frequentist approach to group sequential
monitoring from the hypothesis-testing point of view. An equally relevant
approach is to calculate a confidence interval for the parameter of interest
for treatment effect (e.g., difference in proportions, ratio of hazards) at
each interim analysis [12,67-69]. As confidence intervals are computed,
specific treatment differences of interest can be ruled in or out as possible
values of the parameter. If all values of possible interest fall outside the

Table 4. Sequential analysis of repeated measurement of bone density study [65) (alpha = 0.05,
U)(I*) spending function)

Interim Information Information Test statistic Boundary
analysis observed fraction (1*) (Z) value (Zc)

1 0.24 0.01 0.38 3.50
2 2.61 0.11 3.14 3.50
3 8.83 0.37 2.33 3.50
4 18.48 0.77 2.49 2.31
5 24.15 1.00 2.19 2.02
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confidence interval, the trial might be stopped with the conclusion that no
difference of interest exists. However, if 0 should not be in the interval, we
might stop and declare a treatment difference.

If the parameter representing treatment differences is denoted by 8, a
nominal 95% confidence interval for a fixed sample design would have the
general form 8 ± 1.96 SE(8), whe!e 8 is our estimate of 8 and SE(8) is the
standard error of the estimate 8. However, to use this nominal form
repeatedly creates a similar type of problem as in the repeated testing
approach: this nominal confidence interval will not have appropriate cover
age. Thus, some adjustment must be made in order to compensate for the
repeated application.
Jennison and Turnbull [67,68] have developed a repeated confidence

interval (RCI) approach for the group sequential setting, modifying earlier
sequential confidence interval approaches (see, for example, Robbins [23]).
Formally, we want to construct a sequence of confidence intervals [~k> 8k ]

for 8 such that

Pe{8 c [~k> 8k ] for all k} ~ 1 - u.

That is, this sequence of intervals will collectively cover or include the
unknown parameter with probability 1 - u.
Jennison and Turnbull [67,68] construct the repeated confidence intervals

by inverting the group sequential test in which the critical value at the kth
analysis Zc(k) is determined by the alpha spending function. These RCIs
are of the form

8k = 8k - Zc(k)SE(8 k )

8k = 8k + Zc(k)SE(8k )

The coefficients Zc(k) are the same critical values used for the repeated
hypothesis testing. For example, for a 0.05 O'Brien-Fleming type boundary
(as discussed above in the section on comparison of means), at the third
(k = 3) interim analysis, the critical value was 2.63. Thus our RCI for 8
would be 83 ± 2.63 SE(83). The RCI and sequential test of Ho will yield the
same conclusions regarding the null hypothesis Ho:8 = O. However, RCIs
provide more information about other possible values of the unknown
parameter. For example, a DSMB may not want to terminate a trial unless
they are sure that 8 > 80 > 0; that is, the lower limit ~k > 80 > O. This
might occur if they judged that the treatment would have to have a differ
ence much greater than 0 to compensate for coexisting toxicity.
This particular alpha spending approach to RCI has similar advantages as

described for group sequential testing in that neither the timing nor the
number of interim analyses needs to be specified in advance. The total
expected information, I (e.g., a sample size of 2N) must be determined for
the design and used to calculate the information fraction for a specified
alpha spending function. The RCIs are especially useful for equivalence
trials [12,70-72] that are designed to test if two treatments have an effect
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within a specified acceptable difference and thus may be interchanged. That
is, the treatments are 'equivalent' with respect to benefit, but one might be
less expensive, less toxic, or less invasive.
The repeated confidence interval approach has been utilized in cancer

and AIDS trials to establish equivalency [70-72]. For example, Fleming [72]
describes the use of this concept by the Oncology Advisory Committee for
the Food and Drug Administration (FDA). Federal regulations require
cancer drugs to show' an effect on survival, quality of life, or pain. Oncol
ogists continue to seek new treatments or treatment combinations that may
be 'equally effective' to the standard therapy but that offer an additional
advantage such as being less toxic, less invasive, or more convenient to the
patient. However, to establish a treatment as 'equally effective' requires
setting a range of therapeutic equivalence - that is, a range of values for a
relative risk (e.g., ratio of mortality in the new therapy compared to the
standard) that oncologists would consider an even trade to gain the advantage
of the new treatment. Often, the range of 0.8 to 1.2 for the relative risk is
suggested as the definition of 'equally effective' or therapeutic indifference.
Meier [24] discussed this idea, but did not adjust the confidence interval for
repeated testing.

In this setting, we can imagine an equivalence trial in which RCIs are
computed for each interim analysis. The trial would continue until the upper
confidence limit for the relative risk was less than 1.2, meaning that we are
reasonably (e.g., using 95% RCI for a 5% level alpha spending function)
sure that the new treatment is not more than 20% worse than standard
therapy. We might not have yet ruled out the possibility that the new
therapy might even be superior; that is, the upper confidence limit is less
than 1. However, if the RCI were contained in the rage (0.8, 1.2), we could
terminate the trial, ruling out both a therapeutic advantage or disadvantage.

Sequential estimation

Once a trial has been completed, we would like to estimate the treatment
effect. In the comparison of two means, the treatment difference is expressed
by the difference between the mean responses (sometimes standardized by
the standard deviation) from the two groups. In the survival setting, the
hazard ratio is one way to indicate treatment difference, if it remains
constant over time:

hazard ratio = (hazard of group l)(hazard of group 2).

For a fixed sample size or fixed information study, the observed treatment
difference, which we will call the naive point estimate, at the end of the
study is unbiased. The (l-2a) confidence intervals can also be constructed
in the traditional way as

(point estimate) ± za(standard deviation of point estimate).
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In general, construction of the point estimate or confidence intervals in the
sequential setting is not so straightforward [73-83]. Naive estimates are
biased after a sequentially designed trial has been completed, and appro
priate adjustments for unbiased point estimates involve parameters whose
values are typically unknown. Different proposals have been made to con
struct confidence intervals with correct coverage probability following a
sequential test [73,74,77,79]. The authors of these proposals suggest different
ways to order the sample space for sequential trials. The question is how to
determine a treatment difference at one time point so that it is either more
or less extreme than a difference at a second time point. In the Siegmund
scheme [73], any result that exceeds the group sequential boundary at one
time point is more extreme than any result that exceeds the boundary at any
later time point. None of these methods is considered to be universally
better than the others [79,82]. However, while the ordering suggested by
Siegmund [73] and adopted by Tsiatis et al. [74] can break down, these cases
are quite unusual [82]. Thus, we suggest using the method outlined in Tsiatis
et al. [74].
Hughes and Pocock [83] pay particular attention to the fact that clinical

trials that stop early are prone to exaggerate the magnitude of the treatment
difference. They propose a Bayesian 'shrinkage' method, which uses a prior
distribution to adjust the point and interval estimates. This approach requires
a general agreement on the choice of prior distribution, however.
For sequentially designed trials, where there is a possibility of early

termination, the amount of information obtained in the study may be less
than that specified in the protocol. As a result, the power of a fixed design is
greater than the power of a sequential design with the same maximum
amount of information. Roughly speaking, there are two different types of
strategy in sequential data monitoring. The aggressive one (the Pocock
boundary is an example) puts more emphasis on early termination, and the
conservative one (the O'Brien-Fleming boundary is an example) puts more
emphasis on preserving power. The O'Brien-Fleming-type boundary is
more commonly used for sequential data monitoring in many clinical trials.
Such a conservative sequential plan is similar to a fixed-sample plan, and
naive point and interval estimates are often adequate in practice. For
aggressive sequential plans, one of the above-mentioned methods can be
employed to reduce estimation bias. Sequential estimation is an important
issue, and further research is still necessary.

Final remarks

In our experience over a variety of clinical trials, the alpha spending function
implementation of group sequential interim monitoring has proven to be
very helpful. It can be applied to most of the typical designs and analyses
required in clinical trials and still has the necessary flexibility to meet the
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scientific and ethical needs of a data monitoring committee. Not all issues
are totally resolved, however. One example is point estimation, described
earlier. Another issue is what to do if the boundary values are crossed for
the primary outcome, but the DSMB finds overwhelming reasons to continue
[9,33,34,84]. From a statistical point of view, we can reject the null hypo
thesis no matter what Z-value is observed in the future. However, we find
that most people feel uncomfortable with this approach and prefer to reject
the null hypothesis only when the future Z-value exceeds a certain boundary.
One suggestion [33,34] is to recapture all the previous alpha that has been
spent and to redistribute it over the remainder of the trial.
In general, the alpha spending function approach is a generalization of

previous versions of the group sequential approach, which provides not only
control of the type error but also the flexibility required by the data moni
toring process. If the alpha spending function with the total information or
total duration is prespecified, the approach, while flexible for changes in the
frequency and timing of analyses, is not subject to abuse. The alpha spending
function approach has been used successfully in a wide variety of clinical
trials that have often taken advantage of its inherent flexibility. While the
decision to terminate or to continue a trial is a complex decision process, we
recommend the alpha spending function as one factor in that process.
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2. Issues in the design and analysis of
AIDS clinical trials

Dennis O. Dixon and Jeffrey M. Albert

Introduction

The AIDS epidemic has provoked a massive response from the worldwide
scientific community. To address the need for rapid evaluation of
new treatments for the primary viral infection and related opportunistic
infections, malignancies, and other illnesses, the Federal Government
established the largest publicly-sponsored program of clinical trials ever
undertaken. As intended, these resources made it possible to enlist
many gifted academic and government scientists in the effort, including
biostatisticians and other clinical trialists. There have been advances in
connection with several aspects of clinical trial design and analysis, and the
body of this chapter highlights a few of these. Before beginning, however,
we consider the question of why it is necessary, or at least useful, to focus
on advances in methodology for AIDS clinical trials.
The short answer is that it is not necessary at all; trials methodology

applies regardless of disease. On the other hand, issues inevitably rise to
prominence earlier in one disease area than another, according to sometimes
surprising external considerations.
An indication of the way in which innovations in methodology developed

in HIV-related clinical research affects research on other diseases is the
following comment by Dr. Anthony S. Fauci, then Director of the National
Institutes of Health Office of AIDS Research:

... new approaches for conducting clinical trials have been developed,
including community-based trials, which capture the expertise of com
munity physicians. Similarly, AIDS clinical trials have demonstrated the
importance of providing ancillary services to recruit and ensure the
continued participation of underserved populations such as women,
children, minorities, and injecting drug users (IDUs) in clinical trials for
other diseases.... Community advisory boards assist clinical trials sites in
ensuring close cooperation with community constituency groups.



Other innovations brought about by AIDS-related research include the
identification of surrogate markers that reliably provide valid information
for determining the outcome of clinical studies....
In all of these efforts an integral role is played by AIDS activists and

advocates for HIV-infected individuals. AIDS-community representatives
serve on all AIDS-related advisory committees and on protocol design
teams of clinical trials in an unprecedented collaboration between
researchers and those affected and infected by HIV ([1], pp. 5-6).

In this chapter we review work in several areas. We discuss in some detail
research on the identification and use of surrogate markers, methods related
to the study of quality of life, and methods for dealing with noncompliance,
since these areas are so important in HIV/AIDS trials. Next, we issue an
appeal for fresh thinking and new approaches with regard to the effort to
improve the efficiency of clinical trials, not from the point of view of
experimental design, but by improving the process of obtaining accurate and
complete data to analyze. Finally, we comment more briefly on several
other topics that have received significant attention.
Other recent reviews and commentaries include those by Byar et al. [2],

Green et al. [3], Ellenberg et al. [4], Ellenberg, Finkelstein, and Schoenfeld
[5], Dixon et al. [6], and Ellenberg and Dixon [7].

Surrogate endpoints

The efficacy of a potential HIV/AIDS therapy would ideally be assessed
through clinical endpoints such as survival or the occurrence of an op
portunistic infection (01). However, the use of clinical endpoints, except for
populations in an advanced disease stage, requires a very lengthy follow-up
period and/or large sample sizes. Furthermore, dropouts and treatment
changes or withdrawals often occur before death or progression to AIDS,
obscuring the assessment of treatment efficacy. In light of the urgent need to
rapidly identify and evaluate potential HIV disease therapies, as well as to
utilize limited resources optimally, more quickly attainable 'surrogate
endpoints' have been sought.
In a broad sense, a surrogate endpoint may be any variable chosen to

replace a desired endpoint, usually for expediency or cost reduction. Thus,
for example, quality of life or occurrence of opportunistic infection may be
considered as surrogates for death due to AIDS. Of course, such measures
of well-being can be justified as primary endpoints in their own right. On the
other hand, nonclinical (usually laboratory) measurements are not of direct
concern to the patient and thus provide the more contentious (and hence
prototypical) class of surrogate endpoints.
Laboratory variables used in the study of AIDS include virological

markers, such as peR assay for HIV DNA, plasma viremia, and level
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of HIV p24 core antigen; and immunological markers, such as CD4+
lymphocyte counts, serum ~rmicroglobulin and serum neopterin levels.
CD4 counts (sometimes relative to CD8+ or total lymphocyte numbers)
have received the most attention as a potential surrogate endpoint. Already
in the AIDS Clinical Trials Group (ACTG), CD4 counts have been used in
the definition of primary endpoints in phase III clinical trials. Indeed, the
recently updated definition of AIDS by the Centers for Disease Control and
Prevention (CDC) allows for determination to be based in part on the
CD4 count.
Much discussion in the AIDS literature regarding surrogate endpoints

has been given to defining criteria for determining the desirability and/or
acceptability of their use. A broad perspective is given by Amato and
Lagakos [8], who provide a list of considerations in choosing an endpoint for
a clinical trial. Briefly, these include 'relevance' (how well the endpoint
indicates actual treatment benefit), time needed to evaluate the endpoint,
verifiability or objectivity, variability, and implementability. Laboratory
measurements such as CD4 counts, in addition to being relatively quickly
responsive to drug therapy, have the advantage of being objectively
obtainable, as opposed to 'softer' endpoints such as quality of life or even
the presumptive diagnosis of AIDS. Among the disadvantages of laboratory
markers are their requirement of expensive, 'high tech', equipment (this is
particularly the case for virological markers and especially problematic
for community-centered clinical trials); high variability; and questionable
relevance to the patient's well-being.
The question of relevance is perhaps the most critical when considering a

laboratory marker as a surrogate endpoint (or 'surrogate marker') and has
been the central focus of marker 'validation.' Another way of expressing this
requirement is that a surrogate marker should be a 'measure central to the
pathogenesis of disease' and should furthermore have a causal connection to
clinical outcome [9]. Meeting this criterion would imply, as desired, that the
marker would predict the clinical benefit of a wide range of drugs. Merigan
(see [10]) proposed three quantitative criteria that would support such a
causal connection: (1) the marker should be monotonically affected by drug
dose; (2) it should correlate with disease progression in untreated patients;
and (3) changes due to treatment should correlate with clinical effect. In
practice, as suggested by Merigan's criteria, the validation of a surrogate
marker is tied to a given drug, or at best, a class of drugs. Evidence of a
marker's causal connection to outcome does not preclude the possibility that
other drugs might affect the clinical endpoint via a mechanism that does not
involve the marker.
For some purposes, an endpoint that fulfills some but not all of Merigan's

criteria may be of interest. A variable satisfying condition (2) would be
considered a prognostic factor or 'type 0' marker [11] and may be useful in
monitoring the course of disease. Conditions (1) and (2) may be sufficient to
define an 'activity' or 'type l' marker [11] that may be deemed an adequate
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endpoint for a phase I or phase II clinical trial. The presence of all
three conditions establishes a surrogate endpoint in the present sense
(also referred to as an 'efficacy' or 'type II' marker [11]). In particular, as
demonstrated in a simulation study by Machado et al. [12], a variable that is
highly prognostic for a clinical endpoint, but does not satisfy condition 3,
may in fact be misleading with regard to treatment effect on the clinical
endpoint.
A criterion intended to validate a surrogate endpoint was delineated and

operationalized by Prentice [13]. Prentice's criterion (roughly indicated
by condition 3 above) essentially requires that the clinical endpoint be
independent of treatment given the surrogate outcome. This condition (if, in
addition, the marker is prognostic for the clinical outcome) implies that the
surrogate produces a valid test of the null hypothesis of no association
between treatment and clinical outcome.
Several investigators have examined CD4 level as a surrogate marker in

AIDS clinical trials employing this criterion. In an analysis of data from
ACTG Protocol 019, Choi et al. [14] found, using a Cox regression model,
that only a small proportion of the effect of ZDV on the progression to
AIDS of asymptomatic HIV-infected patients was explained by its effect on
CD4 counts. An estimated 'explained' proportion was obtained as the
proportional reduction in the regression coefficient for the treatment
assignment after controlling for CD4 levels. These proportions were 0% for
current CD4 counts and 37% using net CD4 counts (percentage of CD4+
lymphocytes among all leukocytes). Choi et al. concluded that CD4 levels
provide an 'incomplete' surrogate marker for disease progression in the
context of ZDV treatment of asymptomatic HIV-infected patients.
Lin et al. [15] also utilized a Cox regression model with CD4 counts as a

time-varying covariate, but 'censored' the CD4 count if it was not taken
within a sufficiently recent time window (specified according to the pattern
of available data). They found that CD4 counts fail (by Prentice's criterion)
as a surrogate endpoint for progression to 01 or AIDS in advanced disease
populations. They also note that the same result is obtained using change in
CD4 count relative to baseline rather than current CD4 count. Similar
conclusions, using a model accounting for CD4 measurement error, were
obtained by DeGruttola et al. [16].
While the Prentice criterion may be regarded as too stringent and

unrealistic, it leads, as we have seen, to a useful measure of the adequacy of
a marker as a surrogate endpoint, namely, the percentage of treatment
effect on clinical outcome explained by the treatment effect on the marker.
One limitation of this perspective based on hypothesis testing is that it does
not address the use of a marker to provide information about the magnitude
of the effect of treatment on the clinical endpoint.
The inadequacy of the most promising surrogate marker in the AIDS

arena (and the likely failure of future markers) in meeting the ideal of the
Prentice criterion reinforces doubts about this usage of laboratory variables.
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Of course, this concern is greatest in phase III trials that are intended
to yield definitive conclusions about treatment benefit, though it is also
relevant to earlier phase trials. What is more, past experience in AIDS and
other disease areas has induced a wariness about the use of surrogate
endpoints. As continued study of ZDV and other anti-HIV treatments has
dampened the initial enthusiasm for these drugs, there is question as to how
much we may have been misled due to the widespread and early reliance on
surrogate endpoints, and on the CD4 levels in particular (see, e.g., [17]).
With this increasingly cautious attitude about surrogate endpoints has

come an increased interest in methods that use prognostic laboratory
observations other than as outright substitutes for clinical endpoints. In one
approach, associated with efforts to evaluate quality of life, marker informa
tion is combined with information on clinical endpoints. As a simple
example, a treatment failure may be considered to occur if either the
primary clinical endpoint occurs or the marker variable meets a specified
threshold. This combined endpoint gives equal weight to the clinical and
laboratory variables. More generally, weights may be assigned to reflect the
relative importance of the respective outcomes.
An alternative is to use laboratory markers as auxiliary information to

strengthen an analysis based on the desired clinical endpoint. Kosorok and
Fleming [18] consider a situation in which patients are randomized both to
treatment and to either limited or extended follow-up. Patients in the former
group are either followed for a shorter period of time or are followed for a
secondary failure endpoint (a generally earlier-occurring surrogate to the
primary endpoint). In such a design, a cost reduction is achieved by the
shorter follow-up of a subgroup of patients, but this advantage must be
weighed against the loss of information about the primary endpoint. Kosorok
and Fleming present a nonparametric test statistic (representing a linear
combination of statistics based on the two endpoints) that utilizes infor
mation on the auxiliary variable without introducing bias. From their
simulation study, they find that correlations greater than 0.7 are needed to
gain substantially improved power from the use of the auxiliary variable.
Fleming et al. [19] (see also [20,21]) developed other approaches that

allow more flexibility in the definition of the auxiliary variable; for example,
CD4 counts over time may be utilized rather than time to a defined failure
endpoint, as in the Kosorok and Fleming method.
An approach by Finkelstein and Schoenfeld [22] incorporates information

on an auxiliary failure-time endpoint in a modified Kaplan-Meier estimator
and use this estimator to obtain a modified logrank statistic to test for
treatment effect. This approach does not rely upon randomization to dif
ferent lengths of follow-up. Simulation results indicate at best modest gains,
and in some situations losses, in efficiency relative to standard methods.
Thus, while gains in power may be realized, they are largely confined to

special cases in which the auxiliary endpoint occurs much earlier than and is
highly predictive of the primary endpoint. Kosorok and Fleming suggest that
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the use of multiple secondary endpoints (readily accommodated by their
methodology) might further improve statistical power, though one must be
attentive to possible multicollinearity.
As a final consideration, the use of surrogate markers should reflect the

regulatory and administrative processes through which treatment assessment
takes place. For example, surrogate endpoints may be used to provide
tentative decisions regarding drug approval or treatment recommendation,
under the condition that follow-up be continued to allow validation based on
long-term clinical outcomes. Implications of the use of surrogate markers in
interim monitoring also require further study.

Quality of life methodology

Increase in the length of life, the health-related quality of life, or both is the
universal aim of therapeutic intervention. Sometimes, however, a treatment
may prolong survival but diminish quality of life through toxicity, or may
even lack survival benefit but postpone symptoms of advanced disease at a
cost of short-term toxicity. HIV infection is invariably fatal with presently
available treatments, but Iifespans are measured in years. It is thus especially
important to address impact of treatments upon quality of life, and there is a
great deal of interest at present in methodology for evaluating treatments
for HIV infections from this perspective.
Quality of life improvement, suitably defined, might serve as a surrogate

marker for subsequent clinical outcome in the sense of the last section, or as
a therapeutic objective in its own right. In the latter case, it may then be
necessary to synthesize results of several types of comparisons of treatments
in some formal way, including multivariate analysis.
'Quality of life' has been a difficult concept to measure, or even to define.

For some purposes, a simple overall indicator of performance status, or the
extent to which a person can carry out normal activities of daily living, may
be sufficient. In other cases, it may be of interest to develop multidimen
sional, context-specific, self-assessment scales in order to adequately express
quality of life numerically. Guyatt et al. [23] propose a taxonomy of
measures and discuss the advantages and disadvantages of generic in
struments, including both health profiles and utility measurements, and
situation-specific choices.
Among those advocating the use of multidimensional questionnaires,

Fitzpatrick et al. [24] assert, 'In clinical trials many scientific questions
cannot be answered properly without adequate measurement of quality
of life,' and list several requirements of such measurements. These are
reliability, validity, sensitivity to change, appropriateness, and practicality.
Elsewhere [25], the same group recommended use of a validated standard
measuring instrument supplemented with customized additions relevant to a
particular situation.
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Williams and Rabkin [26] evaluated a Quality of Life Index (QLI) that
Spitzer et al. [27] had devised for cancer patients, in a cohort of 50 gay men,
29 of whom were HIV positive. QLI summarizes self-assessments of levels
of activity, daily living, health, support, and outlook. By comparing it with
other standard measures of functioning, Williams and Rabkin concluded
that QLI succeeds in capturing relevant information important to this
population, thus establishing validity and appropriateness. They had not
yet examined sensitivity to changes attributable to treatment for the
HIV infection.
Wu et al. [28] proposed a 30-item questionnaire addressing 10 aspects of

health developed by adding items to the Medical Outcomes Study short
form General Health Survey. They recognized that many health status
instruments are too lengthy for use in clinical trials in HIV disease, but that
no single observation could reliably capture health status.
In order to evaluate the proposed questionnaire, Wu et al. [28] studied 73

volunteers with asymptomatic HIV infection and 44 volunteers with early
AIDS-related complex (ARC), all of whom had enrolled in controlled
clinical trials carried out by the AIDS Clinical Trials Group (ACTG). To
assess validity they compared responses between groups on the 10 scales
using rank-sum tests. Asymptomatic patients had significantly better overall
health, better physical and role function, less pain, better cognitive func
tioning, and better quality of life than patients with early ARC; marginally
significantly better energy/less fatigue; and similar social functioning, mental
health, health distress, and health transition.
Each of the various health status scales, as well as many other indicators

of physical condition, provide a basis for comparing groups receiving dif
ferent treatments. While it is possible to make such comparisons one at a
time, the ultimate decision made by the individual, together with his or her
physician, requires a balancing of advantages and disadvantages of the
treatment alternatives.
Glasziou, Simes, and Gelber [29] discuss methods for synthesizing results

of comparing groups on the basis of several outcome measures. They
consider situations in which quantitative differences can be expressed on a
single scale and assume that one can specify weights corresponding to the
relative utilities of advantages of the different outcomes. An important
special case occurs when health-related quality of life data can be reduced to
a small number of clearly ordered health states, and individuals are observed
to spend varying amounts of time in the different states.
Gelber, Gelman, and Goldhirsch [30] discuss the statistical properties of

quality-adjusted time without disease symptoms or treatment toxicity (q
TWiST), i.e., overall survival discounted for periods of time spent with
reduced quality of life. Two large clinical trials of antiretroviral treatments
for HIV have recently been reanalyzed using q-TWiST.
ACTG 016 provided evidence that persons with mildly symptomatic HIV

infections remained progression-free longer if they received zidovudine
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(1200mg/d) than if they received placebo [31]. On the other hand, they
spent longer times with severe symptomatic adverse events. Gelber et al.
[32] found that over the 18-month observation period of the trial, 'treatment
provided more q-TWiST than placebo if the quality of life after HIV disease
progression was assumed to be 10% to 20% worse than the quality of life
after a severe symptomatic adverse event.'
A trial in persons with asymptomatic HIV infections and less than 500

CD4-positive cells per mm3 had also demonstrated a delay in clinical pro
gression associated with zidovudine (500mg/d) [33]. In this case, however,
Lenderking et al. [34] have concluded, on the basis of q-TWiST analysis,
that 'a reduction in the quality of life due to severe side effects of therapy
approximately equals the increase in the quality of life associated with a
delay in the progression of HIV disease.'

Noncompliance

Patient noncompliance is a heterogeneous and multidimensional phenome
non. It may involve any of the multitude of components of a typical
treatment regimen: taking too little (or too much) of the prescribed
medication, failure to adhere to the assigned schedule, taking prohibited
medications, or missing scheduled clinic visits. The problem of patient
noncompliance with study regimen has been recognized in many disease
areas (see, e.g., [35]). It is of particular concern in HIV/AIDS, where an
atmosphere of rapidly alternating hopes and disappointments adds to the
difficulty of keeping patients on a fixed, long-term treatment schedule.
Inspired in part by AIDS activists, potential study participants in AIDS and
other disease areas are increasingly active and assertive in opposing study
designs or violating protocol rules not deemed to be in their best interest.
Although the label noncompliant is generally perceived as pejorative,

the broader concern is with any departure from intended treatment,
whether capricious or justified and intelligent. For example, for the current
antiretroviral drugs, high levels of toxicity often require early treatment
withdrawal. Furthermore, a treatment arm may be stopped early or modified
due to interim analysis results or other information about treatments in the
study. This occurred in the Concorde Trial [17] in which patients originally
assigned to delayed zidovudine were offered the drug early as a result of
positive findings in a separate trial.
Noncompliance, in the general sense of departure from intended treat

ment, has serious implications for the analysis and interpretation of clinical
trials results. One consequence is that the standard biologic interpretation of
treatment effect may no longer be appropriate. The presence of treatment
noncompliance implies that the test comparing treatment groups as
randomized may not adequately reflect the effect of a therapy taken as
intended ('efficacy').
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The intent-to-treat or as randomized analysis provides an assessment of
treatment effectiveness. Treatment effectiveness, so defined, is determined
by compliance on treatment, as well as its biologic effect. The issue of
noncompliance with regard to the intent-to-treat analysis is one of statistical
power. Often, power is determined for the detection of specified treatment
efficacy. Noncompliance generally erodes this power; thus, larger sample
sizes are required to detect the same level of efficacy. Equivalently, desired
power is obtained by calculating the sample size to detect a given effective
ness rather than efficacy. Methods for adjusting sample sizes in the presence
of noncompliance are provided, for example, by Schork and Remington [36]
and Lachin and Foulkes [37].
The estimation of efficacy is not so straightforward and is generally

approached by some sort of as-treated analysis, which uses information on
the amount or pattern of treatment actually received. Statisticians, in
particular, have warned of the likely bias in an analysis that compares
treatments on the basis of a postrandomization variable such as compliance
[38-40]. As in one classic example [41], it is often the case that compliers on
placebo have better outcomes on average than placebo noncompliers. It is
generally advisable to present an intent-to-treat analysis, even if treatment
efficacy is of primary interest. An as-treated approach may be considered in
addition as a secondary, exploratory analysis.
Apart from simple descriptive statistics, few as-treated analyses of AIDS

clinical trials data have been published. However, we review here some
recently proposed methods that provide the most promising directions for
AIDS and perhaps other clinical trials.
To begin, we reflect on the problems of a naive analysis (such as a simple

comparison of compliers on active treatment and placebo) that a more
sophisticated as-treated analysis would seek to overcome. First, there may
be heterogeneity of treatment effects so that the benefit of active treatment
for people who tend to comply may be different from the benefit that would
have been obtained by the noncompliers had they taken the full treatment.
Secondly, proportions of compliers (more generally, the compliance dis
tribution) may be different for different treatments (or placebo). Often this
will undermine the comparability of compliers on different treatments. For
example, due to drug toxicity, there may be a reduced proportion of com
pliers on an active drug relative to placebo. Since compliers on the drug are
those less vulnerable to or more tolerant of side effects, they are apt to be
healthier as a group than compliers on placebo. Finally, there may be
different relationships between compliance and a confounding variable
(health at baseline, say) for the different treatments. As an example, com
pliers on a given active treatment may be healthier than compliers on
placebo (even if there are the same number in both groups), possibly
because compliers on active treatment are better able to tolerate side effects,
while compliers on placebo may be the sicker patients who are more
motivated to adhere to a treatment regimen.
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The method of Efron and Feldman [42] deals with the first two of these
problems. They address the situation involving quantitative response and
compliance variables that are obtained for patients randomized both to
treatment and placebo. The second problem ('marginal noncomparability')
is handled by transforming compliance on placebo so that it takes the value
corresponding to the same percentile of compliance on treatment. Thus, an
individual at, say, the 75th percentile for compliance on placebo is given the
score at the 75th percentile of treatment compliance. This device produces
the same distribution of compliance for both treatment groups. The Efron
and Feldman approach then essentially compares average treatment
responses based on individuals at the same percentile of compliance for the
different randomization groups.
Generally, this transformation will not assure comparability. In particular,

the resulting estimators (of conditional expected treatment effect for a given
drug dose or compliance level) are prone to bias in the presence of unknown
confounding factors (the third problem above). The possible bias was
illustrated in a hypothetical example by Mark and Robins [43] and was
related to the degree of departure from assumptions in a simulation study by
Albert and DeMets [44].
Efron and Feldman attempt to deal with possible heterogeneity by

utilizing a model that describes the causal treatment effect for an individual
as a linear function of placebo response and possibly baseline covariates.
Consequently, estimates of conditional expected treatment effect for patients
at a given compliance percentile are used to draw inference on the expected
treatment effect for the whole population (of primary interest but not
directly estimable). The difficulty arises from the fact that drug and placebo
responses are not both observed for a given individual, as would be required
to directly measure a causal effect. Thus, the available data cannot entirely
distinguish between heterogeneity (differences in patients who comply at
different levels) and the effect of varying drug dose, so the (realistic) causal
model will be nonidentifiable.
An alternative approach was proposed by Mark and Robins [43] (see

also [45]) for the context of a failure-time endpoint. This method also
involves a causal model - in this case, one describing the failure time
for an individual as a function of his or her (possibly unobserved) com
pliance level. However, this approach avoids comparisons based on po
tentially noncomparable subgroups. Instead, it relies on the compar
ability induced by randomization to assess the causal impact of treatment
(according to its measured level) on failure time. Mark and Robins provide
a logrank-type test for efficacy that maintains the nominal false-positive
rate under the null hypothesis of no treatment effect (however, this is in
the strong sense of no effect on any individual). Thus, a valid statistical
test of efficacy is available; however, the estimate of efficacy must be viewed
with caution, given the speculative nature of the model on which it is
based.
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Other approaches to the assessment of efficacy for a failure-time endpoint
are discussed by Peduzzi et al. [38]. These methods also construct logrank
statistics, but unlike the Mark and Robins approach essentially alter
individual treatment categorizations over time depending on the actual
(observed) treatment received. The most important of these methods are
the censoring method, which censors an individual at the time of treatment
change or withdrawal, and the transition method, in which the comparison
at a given point in time is based on the treatments individuals are observed
to be on at that time point. As with the Efron and Feldman method, these
approaches are prone to bias in the presence of confounding variables.
Whereas the Efron and Feldman method summarizes information to obtain
a single compliance score, the censoring and transition methods make use of
the pattern of compliance over time. Consequently, the sort of transforma
tion used by Efron and Feldman to improve comparability is not directly
applicable to the latter methods.
In an approach that attempts to avoid the biases of most estimators of

efficacy, Lagakos et al. [46] proposed a method for improving the power of
an intent-to-treat type analysis that takes into account the expected pattern
of noncompliance (i.e., the probability of withdrawing from treatment as a
function of time). They developed a weighted logrank statistic that is
weighted (in a manner to optimize power) according to this expected
non-compliance. This test retains the nominal false-positive rate, and
simulation results demonstrated its potential under certain circumstances for
decreasing required sample sizes by up to 30%. The statistic does not use
contemporaneous compliance data, but relies on relevant compliance
information obtained a priori. The use of such a method thus motivates the
routine collection of compliance information. While the method preserves
the unbiasedness of the intent-to-treat analysis, it is not really directed at
treatment effectiveness. Rather, it attempts to weight more heavily those
periods of time when effectiveness is less dampened by noncompliance and
thus to be more reflective of treatment efficacy. The method does have
its potential for abuse and should accordingly be accompanied by the
hypothesized patterns of noncompliance and efficacy.
An obvious remaining issue is the problem of accurately capturing com

pliance or treatment actually received. A number of methods have been
proposed, and most have already been used in AIDS clinical trials. These
methods include pill counts; electronic medication event monitoring (e.g.,
MEMS caps); pharmacological testing for drug, drug metabolites, or
markers; records of missed appointments; and patient or physician reports.
Such measurement tools have been extensively studied and reviewed (see,
e.g., [47]).
Several novel approaches to constructing compliance variables and

estimating compliance have been proposed for AIDS clinical trials. Lim [48]
developed an estimate of the overall compliance rate using serum drug
levels that corrects for false positivity and false negativity in drug determina-
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tions. This estimate makes use of information about error rates of the assay
and the pharmacokinetics of the drug.
Richardson et al. [49], proposed a method using uric acid as a marker for

ddI serum levels. Uric acid levels are elevated by ddI and would potentially
provide a less expensive measurement of ddI compliance than ddI serum
levels. In discriminant analyses intended to validate this use of uric acid
(against ddI serum levels), these investigators showed that a linear function
utilizing uric acid levels correctly identified as compliers or noncompliers
84% and 75%, respectively, of the patients in two test groups.
The assessment of compliance may be greatly enhanced though the use of

multiple measuring tools. In a substudy of ACTG 175, a multicenter clinical
trial involving asymptomatic HIV-infected patients, compliance on ZDV
and ddI is being investigated using both MEMS caps and serum concentra
tion determinations. Serum concentrations are measured at one randomly
chosen site each week. MEMS caps are used at two specially selected sites.
Using prior knowledge of the pharmacokinetics of ZDV and ddI as well as
methods of population pharmacokinetics, overall estimates of compliance
can be obtained. In addition, the investigators proposed to use Bayesian
techniques to estimate a compliance profile for each patient. Subsequently,
as-treated analyses may be performed to relate estimated drug exposure
to outcome.
As we have suggested, efforts to monitor compliance may be worthwhile

whether the primary question is one of efficacy or effectiveness. While
compliance data are used directly in inference regarding efficacy, they
provide information for the design of future trials intended to assess
effectiveness. Furthermore, compliance is an interesting endpoint in its own
right and may provide important information about the willingness of
patients to carry out a prescribed therapeutic regimen.

Thoughts on data quality in clinical trials

Especially in multicenter clinical trials systems, large amounts of resources
are devoted to editing and correcting data in preparation for analysis. These
efforts are, in our view, somewhat misguided; many of the most critical
errors found at this stage cannot be corrected. In what follows, we argue for
redirection of most resources to improve data quality early - that is, to
clarify protocols, simplify forms, and, most importantly, improve training.
Clinic staff need procedures to help them find errors while there is still time
for correction and to permit them to reduce error rates generally. We must
devise methods to document the high quality of data leaving the research
units in a way that is convincing, so that inspection on a large scale
is unnecessary.
Responsibility for data quality is shared by those designing studies, those

conducting studies, coordinating centers, sponsors, and arbiters (such as
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journal editors and the U.S. Food and Drug Administration). Each takes
certain steps to control, assure, or enhance quality. It must be clear that the
sharing of responsibility risks the abdication of responsibility.
There is very little attention paid to study of the effectiveness of pro

cedures for quality control. What evidence is available that protocols and
forms are well constructed, that research centers are following protocols,
that coordinating centers are detecting problems early with good effect, that
data entry errors are avoided, or that FDA approval to market a new drug
for a particular indication is based on data of high quality?
Most multicenter trials, including almost all sponsored by NIH, involve a

coordinating center, which conducts centralized as well as on-site reviews of
data at some time after submission. Reviews may consist of any combination
of computerized edit checks, review of cases by data managers, and item-by
item scrutiny of research records in comparison with source documents. The
checking is inevitably delayed from the actual clinic visit, laboratory testing,
and completion and submission of forms.
The pharmaceutical industry sponsors many trials and takes primary

responsibility for data quality for most of them. The usual arrangement
is for regionally based company employees (often with the title Clinical
Research Associate) to visit each research unit every 1 to 4 weeks to check
all data generated since the last visit. To the extent possible, corrections are
made before data ever enter the research data base. The CRAs in effect
supplement the research unit staff. The company may also conduct separate
quality assurance reviews by staff from an administratively independent part
of the company.
The industry model can be thought of as an attempt to make inspections

more complete and, especially, more timely.
If results of a study form a critical part of an application for FDA

approval to promote a treatment for a specified condition, FDA staff will
ordinarily review records at one or more participating research units in
order to verify the quality of data.
In order to evaluate the usefulness and the limitations of the systems

described above, it is first necessary to understand the kinds of problems
that occur with clinical trial data, how they can be detected, and what can be
done about them if detected.
In many ways a clinical trial is meant to be a scientific experiment with as

many features as possible in common with a laboratory experiment. The
protocol is the experimental plan, complete with detailed specification of the
types of volunteers who will participate, the treatment(s) to be given, and
the types of evaluations to be performed. Interpretation of results is more
or less straightforward according to the degree to which investigators and
volunteers follow the protocol.
Potential departures from the protocol include enrollment of volunteers

not meeting eligibility criteria, failure to administer treatments according to
instructions (including those for managing adverse experiences), failure to
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carry out specified follow-up visits, failure to conduct specified clinical or
laboratory tests, failure to abide by specified decision algorithms (e.g., for
assessing response to or failure of treatment), and failure to report observa
tions completely, accurately, and promptly. Ultimately, the investigators
need to be able to assert that they conducted a true evaluation of the
specified experimental treatment(s).
When departures do occur, as they inevitably will, it is helpful to know

why. Occasionally, departures occur because the protocol fails to make
provision for some aspect of disease presentation or some reaction
to the interventions under study. In such cases, best clinical judgment
takes precedence.
More often, however, the problem is that clinic staff simply do not clearly

understand what the protocol intends. For example, a laboratory test result
might be missed because the individual responsible for scheduling clinic
visits overlooked the requirement to order a particular test at the time of a
particular visit. Or the protocol might specify that, after an initial period of
time, follow-up visits change from every two weeks to every three weeks. If
the volunteer is asked to return in two weeks, by mistake, it might be too
great an imposition to ask him or her to come back one week later in order
to be tested 'on time.'
Of course, it might also happen that the test was done but that the result

was not recorded on a study form.
Data checking is the effort to discover errors of all kinds in the research

data. Other than filling out report cards, however, there is effectively no
opportunity to correct most errors, even if they are found. Returning to the
earlier example, a test not done when specified cannot be made up.
The retrospective and remote checking of data does not necessarily

eliminate all or even most errors, as illustrated in a fascinating study
reported by Pritzker [50] (and recounted in [SID. Government checkers
reviewing numerical codes assigned to categories of commodities by business
importers introduced nearly as many errors as they detected, reducing the
overall error rate only from 8% to 7%.
More generally, Naus [51] pointed out that there are three ways to

proceed if one suspects that an observation may be erroneous: resolution,
deletion, and imputation. (If only extreme values provoke suspicion, some
would argue that a fourth possibility - merely reporting the frequency of
such observations without altering them - is preferable on the grounds that
any corrective action introduces bias.) The first of these may involve a great
deal of effort and expense, but maximizes the final data quality. The
second costs nothing, but minimizes the amount of usable data. It would
be worthwhile to have more information about the circumstances in
which the third, imputation of corrected observations, is the most
reasonable alternative.
Some level of data auditing by a party independent of investigators and

sponsors clearly is needed for several reasons. As a recent, highly publicized
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example reminds us [52], there is the possibility of outright fraud. Certainly
it is only by checking that one can discover where further clarification or
training is needed. The question is how to meet these objectives with a
focused program involving inspection of a small fraction of the data.

In the clinical trials setting, error detection early enough that correction is
still possible inevitably means redundant processing wherever the potential
for mistakes is significant. It will be necessary to analyze and monitor
the entire data management environment in enough detail that one can
determine where improved planning and training can reduce error rates
effectively to zero even without double processing, and where they cannot.
(The concept here, that inspection cannot produce data of high quality, is
derived from the quality management and quality improvement ideas of
Deming ([53]; see especially chapters 2, 3, 4, and 15).
An example of the latter case may be the decision to modify dose of study

medication in light of an adverse experience on the part of the volunteer.
While the protocol will contain guidelines for such occurrences, these
guidelines do not cover all possibilities. If the success of the trial depends on
consistency of decision making, the way to achieve it is to provide for
independent assessment by two clinicians with comparable qualifications,
followed if necessary by discussion to resolve disagreements.
To begin, double processing might be employed extensively, being

reduced as evidence accumulates that particular steps are error free. To
make the best use of the information available, formal tracking and analysis
of error rates are desirable.
West and Winkler [54] proposed a method for estimating the number of

errors remaining in a data set that consists of a set of independent observa
tions made on the same binary variable. Discrepant pairs of observations are
identifiable instances of error and provide a basis for estimating the error
rates for the observers (or recorders). If both observers make the same
error, it will not be discovered. In a Bayesian formulation, West and
Winkler develop a technique for predicting the number of such errors
remaining in the data set.
This is a promising approach, but it needs generalization in several

directions to be really useful in multicenter clinical trials. First, most
observations are not binary; for this and other reasons, one must consider a
more elaborate model for the error probabilities. It is also desirable to
account for the possibility of error rates that differ according to type and
source of observation. From the viewpoint of managing resources, it would
be important to construct methods that are useful in promptly detecting
changes in error rates.

Discussion

Identification and use of surrogate markers, assessment of health-related
quality of life, and treatment noncompliance will continue to require
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development of new clinical trial methodology in the context of AIDS
clinical trials. New statistical methods for monitoring and assuring the quality
of clinical trials data could perhaps have an even greater impact on clinical
research, making it substantially more efficient - and not only in HIV/
AIDS research, of course.
Although there has not been space to discuss it at length, methodology

has been developed to deal with other issues and types of data in AIDS
clinical trials. Given the long time course of HIV disease, the evaluation of
patient response generally involves repeated measurements over time.
While a well-established methodology exists for failure-time endpoints,
there is less consensus about how to analyze response profiles such as might
be obtained from CD4 counts. The naive approach of conducting repeated
tests over time introduces the problem of multiple comparisons and
(especially given the lack of independence of such tests) tends to yield
results that are difficult to interpret. A simple alternative discussed by
Matthews et al. [55] uses a summary measure of the multiple responses for
each individual. Useful functions for HIV laboratory markers have included
the slope, area under the curve (AUC), and the mean. The measure can be
chosen to capture aspect(s) of the response pattern of primary interest. This
topic was further studied by Frison and Pocock [56].
Many AIDS clinical trials involve multiple agents: patients in an advanced

disease state may be at risk for any of a number of opportunistic pathogens
that may require different prophylaxes; the use of multiple anti-HIV
drugs has been emphasized as a possible way to overcome the problems of
resistance and toxicity that have hampered current monotherapies. Often a
full factorial design must be ruled out. For example, ethical considerations
may preclude a placebo group, or placebos may be allowed for some but not
all active drugs in the study. Such constraints suggest the use of a restricted
factorial design. Some implications of such a design for analysis of treatment
effects were discussed by Byar [2].
The circumstances of the current state of AIDS treatments has motivated

a rethinking of the desired goals and emphases of clinical trials. The long
term treatment of HIV-infected patients often entails many therapy changes
and adjustments involving an assortment of therapeutic and prophylactic
agents. Treatment thus represents a complex and reactive strategy that is
difficult to capture or handle in a conventional 'explanatory' clinical trial.
Many questions remain regarding optimal treatment strategies using available
drugs; such effects will generally not be expected to be of great magnitude
but may still be clinically important. Such considerations have led to the
development of the concept of the large, simple trial (see [57,58]). Large,
simple trials focus on the effectiveness of a treatment strategy and are
characterized by broad entrance criteria and minimal, 'low-tech' data
collection; these features allow larger samples and thus greater power to
detect modest effects.
The rapidly changing understanding of AIDS continues to generate new
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challenges for the development of suitable methodology. Statisticians
involved in AIDS clinical trials have drawn on experiences in other disease
areas, notably cancer. Some of the circumstances of AIDS appear to be
unique, but may reveal analogous problems in other research areas. We
hope, therefore, that the insights and developments from AIDS are in
structive and inspiring to statisticians working in other areas, and urge
that the methodological challenges of AIDS continue to be met by the
statistical community.
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3. Recent developments in the design of phase II
clinical trials

Peter F. Thall and Richard M. Simon

Introduction

Clinical trials of new medical treatments may be classified into three succes
sive phases. Phase I trials typically are small pilot studies to determine the
therapeutic dose of a drug, biological agent, radiation schedule, or a com
bination of these regimens (cf. [1]). In cancer therapeutics, the underlying
idea is that a higher dose of the therapeutic agent kills more cancer cells but
also is more likely to harm and possibly kill the patient. Consequently,
toxicity is the usual criterion for determining a maximum tolerable dose
(MTD), and most phase I cancer trials involve very small groups of patients,
usually three to six patients per dose, with each successive group receiving a
higher dose until it is likely that the MTD has been reached. A more refined
approach that continually updates an estimate of the probability of toxicity
has also been proposed by O'Quigley, Pepe and Fisher [2].
Once a dose and schedule of a new experimental regimen E have been

determined, its therapeutic efficacy is evaluated in a phase II trial. Phase II
trials are usually single-arm studies involving roughly n = 14 to 90 patients
treated with E, with n usually well under 60. These studies typically are
carried out within a single institution and are most prominent in clinical
environments where there are many new treatments to be tested. The
primary goal is to determine whether E has a level of antidisease activity
sufficiently promising to warrant its evaluation in a subsequent phase III
trial (described below). Phase II results also frequently serve as the basis for
additional single-arm studies involving E in other combination regimens or
dosage schedules. The main statistical objective of a phase II trial thus is to
provide an estimator of the response rate associated with E (cf. [3]). Treat
ment success generally is characterized by a binary patient response, such as
50% or more shrinkage of a solid tumor or complete remission of leukemia,
and the scientific focus is p, the probability of response with E. Patient
response usually is defined over a relatively short time period in phase II,
based on the underlying idea that short-term response is a necessary pre
cursor to improved long-term survival and reduction in morbidity. Phase
II trials are important because they are the primary means of selecting



treatments for phase III evaluation, and moreover, many patients receive
treatment within the context of a phase II trial.
The ultimate standard for evaluation of medical treatments is the ran

domized comparative phase III clinical trial. Phase III trials generally are
large, multi-institutional studies with treatments evaluated in terms of long
term patient response, such as survival or time to disease progression. Phase
III trials are designed and conducted to evaluate the effectiveness of a
treatment relative to an appropriate control and with regard to endpoints
that represent patient benefit, such as survival. To achieve such objectives,
the trial design is based on statistical tests of one or more hypotheses and
may require approximate balance and minimal sample size within important
patient subgroups. Because they are larger and of longer duration than
phase II trials, and typically involve multiple institutions, phase III trials are
usually much more costly and logistically complicated. The results of phase
III trials are broadly disseminated within the medical community and fOTm
the basis for changes and advances in general medical practice.
The simplest phase II design is a single-arm, single-stage trial in which it

patients are treated with E. The data consist of the random variable Yn ,

namely, the number of successes after n patients are evaluated, which is
binomial in nand p. The sample size is determined so that, given a fixed
standard rate Po that is of no clinical interest, a test of Ho: P ;::::; Po versus
HI: P ~ PI has type I error probability (significance level) ;::::; a and type'!1
error probability ;::::; ~ for a given target response probability PI = Po + D.
The test is determined by a cutoff r, with Ho rejected if Y n ~ r and Hi
rejected if Yn < r. A type I error occurs if it is concluded that E is promising
compared to standard therapy, i.e., if HI is accepted, when in fact P;::::; Po.
The consequences of this are that an uninteresting or even inferior treat
ment is likely to become the basis for a "phase III trial, and that if future
phase II trials using a combination therapy based on E are conducted, the
patients in those trials will be treated with an inferior agent while. phase II
trials of other potentially promising new treatments ~re delayed. A type II
error occurs if it is concluded that E is not promising compared to standard
therapy, i.e., if Ho is accepted when in fact P ~ Po + D. The power of the
test is 1 - ~, the probability of correctly accepting HI when E really has
success rate Po + D. The consequence of a type II error is that a promising
treatment has been lost or its detection delayed. The required sample size n
and test cutoff r are determined by specifying a, ~,Po, and D. Since there is a
trade-off between type I and type II error, in practice' typically. (a,~) =
(0.10,0.10), (0.05,0.20), or (0.05,0.10). We shall refer to a and ~, and more
generally any parameters that describe a design's behavior, as its operating
characteristics.
Smaller treatment advances D are harder to detect, i.e.; they require a

larger sample size for given Po, a, and ~. A very large.Drequires a trivially
small sample size, ie. ,it is easy to detect a large treatment advance.
Reasonable values are thus D=0.15to 0;20,since D< 0.15 usually leads to
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unrealistically large n while () > 0.20 leads to a trial yielding very little
information about E and in many cases is intellectually dishonest. Parameters
of some typical single-stage designs are given in table 1.
An alternative to designing a single-stage trial in terms of hypothesis

testing, which is a formal method for deciding whether E is promising
compared to the fixed-standard success probability Po, is to choose n to
obtain a confidence interval of given width and level (coverage probability)
to estimate p. A good approximate confidence interval, due to Ghosh [4], is

p + An ± z{p(1 - p)/n + A/(4n)}1/2
l+A

where p = Yn/n, z = 1.645, 1.96, or 2.576 for a 90%,95%, or 99% coverage
probability, respectively, and A = Z2/n . The exact binomial confidence
interval of Clopper and Pearson [5] also may be used, although the above
approximation is quite adequate for planning purposes. An important caveat
is that the commonly used approximate interval p ± z{p(l - p)/n}1I2 is
rather inaccurate for many values of nand p encountered in phase II trials
[4] and is not recommended. Table 2 gives the sample sizes needed to obtain
90% or 95% confidence intervals for p of given width, based on values of p
from 0.20 to 0.50. The sample sizes for p = 0.50 + L1 and 0.50 - L1 are
identical. For example, if it is anticipated that the empirical rate Yn/n will be
approximately 0.30 or 0.70, then a sample of 34 patients is required to
obtain a 90% confidence interval for p having width at most 0.25. Given an
observed rate of 10/34, one could be 90% certain that the true success
probability of E is somewhere between 0.185 and 0.434.
Although the single-stage design is easy to understand and implement, it

has several severe practical limitations. Each of the designs described in the
following sections was created to address one or more of the following
problems.

Table 1. Single-stage designs Conclude P '" PI at level 11 and
power 1 - ~ if Ynln '" rln.

(11,~)

1) Po PI (0.10,0.10) (0.05,0.20) (0.05,0.10)

0.20 0.10 0.30 5/25 6/25 7/33
0.20 0.40 11/36 12/35 15/47
0.30 0.50 16/39 17/39 22/53
0.40 0.60 21/41 23/42 29/56

0.15 0.10 0.25 7/40 8/40 10/55
0.20 0.35 17/61 17/56 22/77
0.30 0.45 27/71 27/67 36/93·
0.40 0.55 36/75 36/71 46/94
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Table 2. Single-stage n to obtain confidence interval of given
level and width ""W

Anticipated p = Yn/n

Level W 0.20 0.30 0.40 0.50

90% 0.20 44 55 63 66
0.25 26 34 40 42
0.30 19 24 26 28

95% 0.20 64 78 89 94
0.25 39 48 56 58
0.30 26 33 38 40

1. The most serious limitation of the single-stage design is that it ignores
all data prior to observation of Yn , and in particular has no provision for
early termination if the interim observed response rate is unacceptably low.
For example, if Po = 0.30 is the established response rate with standard
treatment and E also has rate p = 0.30, then an initial run of 12 failures
should occur with probability 0.014, and if p > 0.30 then such a run has
probability close to O. Most clinicians would be strongly inclined to dis
continue use of E at or before this point, especially in trials of treatments for
rapidly fatal diseases or other circumstances where early failure increases
morbidity or reduces survival. Designs with early stopping rules address this
problem (ct. [6-14]).
2. Reporting results of a phase II trial entails augmenting or replacing

significance test results with a confidence interval for p, since the real goal of
a phase II trial is estimation [3]. If rules for early stopping are included in
the design, however, then computation of the confidence interval for p
based on the final data must account for the fact that the trial continued
through its intermediate stages, since the usual unadjusted confidence
intervals are biased in this case. Methods for computing a confidenc~ interval
for p after a multistage trial have been given by numerous authors, including
Jennison and Turnbull [15], Tsiatis, Rosner, and Mehta [16], Atkinson and
Brown [17], and Duffy and Santner [18].
3. Another problem, addressed by Thall and Simon [19], is that Po often

is estimated from historical data and hence is a statistic Po, not a fixed value.
Since this estimator has an associated variance, the usual test statistic Yn/n
- Po has variance p(1 - p)/n + var(po). The sample size computation that
ignores var(po) is incorrect, and the actual type I and type II error rates are
larger than their nominal values.
4. In some settings several new treatments may be ready simultaneously

for phase II evaluation. The question then arises of whether to carry out a
sequence of single-arm trials or one randomized trial, and in either case
strategies are needed for prioritizing treatments and for selecting one or

52



more promising treatments from those tested. Several approaches to this
general problem have been proposed. Simon, Wittes, and Ellenberg [20]
propose a randomized phase II trial; Whitehead [21] proposes a combined
phase II-III strategy; Thall, Simon, and Ellenberg [22,23] propose 'select
then test' designs for comparing the best of several experimental treatments
to a standard; and Strauss and Simon [24] examine properties of a sequence
of 'play the winner' randomized phase II trials.
5. The assumption that patient response can be characterized effectively

by a single variable is rather strong, even for short-term response, and it
may be necessary to monitor more than one patient outcome. For example,
in most cancer chemotherapy trials, toxicity is an important issue, and it is
highly desirable to have an early stopping rule to protect future patients
from unacceptably high rates of toxicity. Many phase II trials include such a
rule either formally or informally in their protocols, but they ignore the
interdependence between toxicity and response in the design. Designs
accounting for multiple outcomes have been proposed by Etzioni and Pepe
[25] and Thall, Simon, and Estey [26].
6. Patient-to-patient variability is often high, even in clinical trials

with very specific entry criteria. Since phase II trials are relatively small,
a study with an unusually high proportion of either poor-prognosis or
good-prognosis patients may give a misleadingly pessimistic or optimistic
indication of how E would behave in the general patient population.
7. Although most phase II designs regard treatment response rate P

as a fixed unknown quantity, many clinicians regard P as random. For
example, when asked to specify Po, the clinician may respond by giving a
range rather than a single value, and may even describe the probability
distribution of Po within that range. In such circumstances, a Bayesian
design, based on random values of Po and P, may be more appropriate.
Bayesian phase II designs have been proposed by Sylvester and Staquet
[27,28] Sylvester [29], Etzioni and Pepe [25], and Thall and Simon
[12-14], and Thall, Simon and Estey [30].

Refinements of the phase I - II- III paradigm

When the best available therapy has little or no effect against the disease,
the phase II trial's objective is to determine whether E has any antidisease
activity at all. This is a phase IIA trial. Since Po = 0 or possibly 0.05 in this
case, type II error is the main consideration. Gehan [6] proposed the first
phase IIA design, a two-stage design in which ni patients are treated at stage
1, the trial is stopped if Yn , = 0, and an additional n2 patients are treated in
stage 2 if Yn , > O. The stage 1 sample size is chosen to control type II error,
specifically ni ~ 10g(P)/log(1 - PI) for targeted success rate Pl' The stage 2
sample size is chosen to obtain jJ having standard error no larger than a
given magnitude, and n2 also depends on Yn,~ For example, if P = 0.05 and
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PI = 0.20, then nI = 14 patients are required at stage 1. If YI4 > 0, then to
obtain an estimate of P having standard error 0.10 requires n2 = 1, 6, 9, or
11 if YI4 is 1, 2, 3, or ~4, respectively.
When there exists a standard treatment, say S, having some level of

activity (i.e., when Po > 0), then the goal is to identify new treatments that
are promising compared to Po. This is a phase lIB trial. In this case, there
are compelling data,arising from clinical trials or in vitro testing, indicating
that E is likely tobe active at a level exceeding Po. An important considera
tion in lIB trials is that it is clinically undesirable to continue a trial of an
experimental treatment that proves to be not promising compared to S. For
example, when Po = 0.40 and PI = 0.55, if interim trial results strongly
indicate that P < 0.40, then it is unethical to continue; if it is likely that 0.40
~ P < 0.55, then it may be desirable to terminate the trial to make way for
other, potentially more promising new treatments. It is also important to
recognize the comparative aspect of phase lIB trials, which may lead to
formal use of historical data on S in the evaluation of E, and possibly to a
randomized trial [19]. This issue will be discussed below.

If several new treatments are simultaneously available for phase II test
ing, then the problem of choosing among them arises. Since the number of
patients in any clinic is limited, this situation frequently occurs in institutions
with high levels of research activity in growth factors or pharmacologic
agents. Thall and Estey [30] propose a pre-phase II Bayesian strategy in
which patients having a prognosis more favorable than that of phase I
patients but less favorable than that of the target group of the subsequent
phase II trial are randomized among several experimental treatments. The
r~sponse rate, distribution in each treatment arm is updated continually
during the trial and is compared to early termination cutoffs, and the best
final treatment must satisfy a minimal posterior efficacy criterion before it is
evaluated in a subsequent phase II trial. This type of study, the phase 1.5
trial, bridges the gap between phase I and phase lIB. It provides an ethical
means of giving poor-prognosis patients experimental treatments while
replacing the usual informal pre-phase II treatment selection process with a
fair comparison formally based on a combination of prior opinion and
clinical data.
As an example, a phase 1.5 trial might be carried out in patients who have

acute myelogenous leukemia (AML) with ~1 prior relapse and poor
prognosis cytogenetic characteristics, in order to select a treatment for phase
II testing in untreated AML patients who have good-prognosis cytogenetics.
If the accrual rate is 40 per year in the poor-prognosis group, then a phase
1.5 trial of three treatments with up to 10 patients per treatment arm could
be carried out in nine months. Assuming a prior mean response rate of 0.40
for all three arms, Thall and Estey [30] recommend a design in which a
treatment arm is terminated if there are 0 responses in the first 4 patients;
otherwise, 10 patients are accrued in that arm. The best treatment, among
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those not terminated, must have ?=4 responses to be selected for the phase
II trial.
The response rates obtained in different phase II trials of the same

treatment often vary widely. Simon, Wittes, and Ellenberg [20] cite a
number of factors as the sources of this variability, including patient selec
tion, definition of response, interobserver variability in response evaluation,
drug dosage and schedule, reporting procedures, and sample size. To deal
with these problems, these authors propose randomizing patients among
several experimental treatments in phase II, with ranking and selection
methods rather than hypothesis testing used to evaluate treatments. They
recommend the use of conventional phase II sample sizes and early stopping
criteria in each treatment arm, and that a standard treatment arm not be
included. Specifically, they propose that sample size be computed to ensure
that, if one group of treatments has response rate Po + 0 and the rest have
rate Po, then a 'select the best' strategy will choose one of the superior
treatments with a desired probability. For example, if Po = 0.20 and 0 =
0.15,then 44 patients in each of three arms will ensure a 90% chance of
choosing a treatment with response rate 0.35.
Strategies for phase II evaluation of new treatments that become available

sequentially over time have been considered by Whitehead [31] and by
Strauss and Simon [24]. Whitehead is motivated in part by the desire to
examine the properties of small sample sizes for phase II studies. He as
sumes that the success rates of the experimental treatments are random and
may be considered as independent draws from a beta prior distribution.
Given N equal to the total number of patients for all the trials, he derives
the number of trials k and number of patients per trial n that maximize the
expected success probability E(it) of the selected treatment, subject to nk =
N. For example, if N = 60 and the mean experimental success rate is 0.20,
then depending upon prior variability, the optimal integer values of (n, k)
and E(n) vary from (4,15) with E(n) = 0.426, to (6,10) with E(n) = 0.292.
Strauss and Simon [24] study properties of a sequence of comparative

phase II trials. At each of k stages, 2n patients are randomized between a
new experimental treatment and the better of the two treatments from the
previous stage, starting with a known standard S at stage 1. The better of
the two treatments at each stage (the 'winner') thus becomes the new
standard, and is then compared to the next experimental treatment. The
goal is to select a single treatment for phase III evaluation. Similar to
Whitehead [31], Strauss and Simon assume that the success probabilities
of the experimental treatments are independent draws froni. a beta prior
distribution, either with fixed mean equal to that of S or with distribution
adapted to the data in that its mean equals that of the latest winner. This
approach, however, is more robust against time trends in the selection of
patients. Given a total of N = nk patients, they examine the manner in
which the expected success probability E(p) of the final selected treatment
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varies with n, k, and N. They identify conditions under which such a
sequence of phase II trials is more likely than a single phase II trial to
identify a promising experimental treatment.
Whitehead [21] also proposes an integrated approach to the problem of

evaluating several new treatments. A sequence of single-arm phase II trials
is conducted; the most promising experimental treatment among them is
selected, and it is then compared to the standard in a phase III trial.
Assuming that the success rates of the experimental treatments are random
and may be considered as independent draws from a beta prior distribution,
Whitehead derives strategies for dividing patients between the two phases
(given the number of phase II trials and the total number of patients) that
maximize the probability 1t of obtaining a significant result in the phase III
trial. For example, if N = 300 patients are available and there are five new
agents to be tested, then allocating 18 patients to each of the five phase II
trials and 210 to phase III ensures that 1t = 0.52. If instead N = 500, then
the optimal allocation is 31 with 345 in phase III, which ensures that 1t =
0.63. Whitehead notes that, when using this strategy, the main trade-off is
between the total numbers of patients allocated to the two phases.

Some practical considerations

Because phase II trials are developmental, their design and conduct must
include several ethical and logistical considerations. These include the
appropriateness of treating patients with E, the relevance of the trial within
the larger context of treatment development, the patient accrual rate, defini
tion of patient response, and the monetary cost of the trial. In any phase II
setting, a priori there must be a reasonable basis for the belief that E may
provide an improvement over the standard, whether Po = 0 or Po > O. If in
the course of the trial it becomes clear that this is unlikely, then it may be
desirable to terminate early, and here the unavoidable conflict between type
I and type II error comes into play. The trade-off is between protecting
patients from an ineffective or dangerous experimental regimen and risking
the loss of a treatment advance. If an adverse outcome, such as toxicity,
is monitored along with the usual efficacy outcome, then an alternative
goal may be to decrease the adverse event rate while maintaining a given
response rate. Designs which monitor multiple events, such as response and
toxicity, are discussed in a later section.
Ethical considerations are most pressing for rapidly fatal diseases, and the

standards of clinical conduct for such diseases may provide a basis for
analogous decisions in less extreme circumstances. The desirability of a
particular treatment E in a phase II trial must be assessed from the view
points of the individual patient, all patients in the trial taken as a group, and
future patients after the trial is completed. A general consideration is that
patients are more likely to choose a physician rather than a treatment and to
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rely on their physician's advice regarding treatment choice. The centuries
old process of entrusting one's life and well-being to one's physician is a
fundamental part of medicine, informed consent notwithstanding. Thus, the
trial must be designed so that trial objectives and individual patient benefit
are not in conflict. The situation is most desperate in phase IIA trials of
treatments for rapidly fatal diseases for which no effective treatment exists.
The trade-off for both the individual patient and for the trial is between the
risk of adverse treatment effects and the likelihood of any therapeutic
benefit. For nonfatal diseases, the potential severity of adverse effects first
must be weighed against the effects of the disease itself, and it is inappro
priate to conduct a trial of E if its effects are likely to be worse than those of
the disease. Phase lIB trials often evaluate combination therapies whose
components are already known to have antidisease activity. Consequently, a
new combination regimen with an activity level below that of the standard is
usually not promising for future development. Two exceptions are a trial in
which a reduced likelihood of early response may be an acceptable trade-off
for improved overall survival, and a trial in which the real goal is to reduce
toxicity and a small reduction in response rate is considered an acceptable
trade-off. Examples of such trials are given in a later section.
Patient accrual and monetary cost are absolute limits on the size of any

clinical trial. If either the number of patients or the available resources are
insufficient to achieve initial goals, then a smaller trial may be appropriate.
However, the magnitudes of a and ~ and the reliability of the final estimate
of p should be kept in mind when reducing sample size due to low accrual
rate or limited resources. The results of very small trials often are of limited
value and, due to their high variability, are potentially misleading. If re
sources are inadequate to conduct a trial that will produce useful results,
then it is inappropriate to conduct the trial.
A simple but critical issue in trial design and conduct is definition of

patient outcome. For example, in AML, treatment response is typically
complete remission (CR), which is defined in terms of several parameters
(e.g., blast count, platelet recovery, white cell count, etc.), as measured
within a given timeframe. It is essential that CR be defined formally in the
protocol and that, however CR is defined, all clinicians involved in the trial
adhere to that definition. Otherwise, one clinician's CR may be another's
failure, which renders the recorded trial results virtually meaningless. The
same considerations apply to definition of adverse outcomes, since there are
various grades of toxicity, etc. This problem is potentially more severe in
multi-institutional phase II trials; hence, an even stronger effort must be
made to define and score patient outcomes consistently.
Short-term response in a phase II trial is used as the measure of treatment

effect. For solid tumors, however, partial response often is not a validated
measure of patient benefit. In general, the comparison of survival between
responders and nonresponders is not valid for demonstrating that treatment
has extended survival for responders [32]. Because response is often viewed
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as a necessary but not sufficient condition for extending survival, response
may be used in phase II trials for screening promising treatments. To
evaluate the effectiveness of a regimen in prolonging survival, however, a
phase III trial of survival is required.

Historical data and Bayesian designs

Most phase II trials evaluate one or more new treatments relative to a
standard therapy S; hence, they are inherently comparative, even though a
standard treatment arm usually is not included. In designing the single
stage, single-arm trial described inthe introduction to this chapter, a common
practice is to assume that Po is a known constant (and hence that the statistic
P - Po = (Yn!n) - Po has variance var(p) = p(l - p)!n) and to determine n
to obtain a test of p = Po versus P = Po + () having given type I and type II
error rates a and ~. For phase lIB trials, where Po represents the activity
level of available regimens, the numerical value of Po used in this computa
tion is often a statistical estimate Po based on historical data, rather than a
known constant. The empirical difference PI - Po, which is the basis for the
test, is thus the difference between two statistics and has variance larger
than the assumed p(l - p)/n. Consequently, the sample size computed
under a model ignoring the fact that Po is a statistic is incorrect. This
common practice may be due to the belief that the variability of Po is of no
practical consequence or to the absence of a theoretical basis and associated
statistical software for computing sample sizes correctly.
Thall and Simon [19] derive optimal single-stage phase II designs that

incorporate historical data from one or more trials of S and account for the
variability inherent in Po. They consider both binary and normally distributed
responses. Because the variability between historical pilot studies sometimes
exceeds what is predicted by a binomial model for binary responses, they
use a beta-binomial model to account for possible extrabinomial variation.
Their results indicate that it is sometimes best to randomize a proportion of
patients to S, and they derive the total sample size and optimal proportions
for allocation to E and S that minimize var(PI - Po). Their results indicate
that an unbalanced randomization may be superior to a single-arm trial of
E alone, and that ignoring var(po) may lead to trials with actual values of
a and ~ much higher than their nominal values. For example, consider a
trial in which Po = 0.20 is based on three historical trials of 20 patients
each. To obtain a test that detects an improvement of () = 0.20, i.e., for
alternative PI = 0.40, with a = 0.05 and ~ = 0.20, the optimal design
requires 85 patients with 27 allocated to Sand 58 to E. If the variability
in Po is ignored and a single-arm trial of E is conducted, the standard
computation yields n = 35, and the resulting test will have actual a = 0.14
and ~ = 0.27. Since the numerical computations to incorporate the his
torical data and obtain the optimal design are somewhat complicated,
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a menudriven computer program written In Splus has been made
available.
The above method for dealing with the variability of an estimate of Po

may be regarded as a particular approach to a more general problem. Given
that in a phase II trial the success rate of £ ultimately must be compared
to that of S, and that uncertainty regarding the response rate of S will always
exist, the general problem is to account for this uncertainty when planning
the trial and interpreting its results. A different statistical approach is based
on the Bayesian framework, in which the success probabilities of £ and S
are regarded as random rather than fixed parameters. To underscore this
distinction, we denote the random response probabilities by Bs and BE.
Although the theoretical basis for Bayesian methods is well established,
practical methods for clinical trials have been proposed only recently, notably
by Freedman and Spiegelhalter [33,34], Spiegelhalter and Freedman [35,36],
Racine et at. [37], and Berry [38,39].
Sylvester and Staquet [28] and Sylvester [29] propose decision-theoretic

Bayesian methods for phase II clinical trials. They optimize the sample size
and decision cutoff of a single-stage design where n is fixed, to determine
whether a new drug is active, by minimizing the Bayes risk. Their approach
assumes that Pr [BE = pd = 1 - Pr [BE = P2], with P2 > PI> where P2 and
PI are response rates at which £ would and would not be considered
promising, respectively - i.e., they assume that BE may take on two pos
sible values.
Herson [7] proposes the use of predictive probability (PP) as a criterion

for early termination of phase II trials to minimize the number of patients
exposed to an ineffective therapy. The PP of an event, such as concluding
that £ is or is not promising according to some decision rule, is the condi
tional probability of that event given the current data, computed by first
averaging over the prior distributions of the parameters, which are Bs and
BE in the present context. Mehta and Cain [9] provide charts of early
stopping rules based on the posterior probability of [BE> Po], where Po is a
fixed level at which £ would be considered active.
Palmer [40] proposes a· Bayesian procedure for identifying the best

of three treatments £1,£2,£3. He assumes that their respective success
probabilities are 1l:1 = (a,b,b), 1l:2 = (b,a,b), or 1l:3 = (b,b,a) with prior pro
bability 1/3 each, where b < a are known fixed standards, analogous to Po
and Po + 8 in the hypothesis-testing context. Given a maximum sample size
N, patients are first randomized among the treatments in triplets, and based
on the posterior probabilities of {1l:1,1l:2,1l:3} the worst treatment may be
dropped. Patients are then randomized between the two remaining treat
ments in pairs, and the worse of the two is subsequently dropped based
on the posterior distribution. The optimality criterion is to maximize the
expected number of future treatment successes. Palmer gives an idealized
example in which the respective true response rates of £1,£2'£3 are 0.40,
0.35,0.31, and N = 300. At the first stage, 42 patients are randomized in
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triplets before E3 is rejected, and then 58 more patients are randomized in
pairs between E1 and E2 before E1 is chosen. As with any selection pro
cedure, this method is subject to the error of choosing an inferior treatment,
and Palmer provides numerical tables of operating characteristics.
Thall and Simon [12-14] present a Bayesian approach to phase II clinical

trials in which patient response is binary and the accumulating data are
monitored continuously. Their designs require an informative beta prior for
8s , a flat or weakly informative beta prior for 8E , a targeted improvement
for 8E over 8s, and lower and upper bounds m and M on the allowable
sample size. The maximum sample size M is chosen to obtain a given level
of reliability in the posterior distribution of 8E. Depending upon the specific
objectives, the posterior distribution of 8E is updated when each patient
response is observed. The trial may be terminated if E is shown with high
posterior probability to be either promising or not promising compared to S,
or if the predictive probability of either conclusion is small. Otherwise, the
trial continues. Although the framework for determining early termination
bounds and M is Bayesian, the operating characteristics of the design are
evaluated using frequentist criteria, and the design parameters are deter
mined on that basis. Since the trial may be terminated early on the basis of
interim results, the sample size is random and on average is smaller than
M. This is the case for all designs with interim stopping rules, including
multistage designs.
For example, suppose that the prior on 8s has mean I1s = 0.30 and WS ,90

= 0,20, i.e" the width of the 90% central prior interval for 8s is 0.20
(formally, Pr [0.20 < 8s < 0.40] = 0.90). This corresponds to a beta distribu
tion with parameters 16,62 and 38,78, which might arise from a previous
study of S with roughly 55 patients and a 30% response rate. To obtain a
posterior distribution such that Pr[0.40 < 8E< 0,60 IYM] = 0.90 requires M
= 65 patients. This would ensure that once the trial is completed, one may
be 90% certain that the success rate with E is within 0.10 of its mean value.
Monitoring begins at m = 10 patients. For a targeted improvement of 0.20,
the decision criteria after the nth patient outcome is observed are to stop the
trial and declare E promising compared to S if Pr[8s < 8E I Y n ] > 0.95, or to
stop the trial and declare E not promising compared to S if Pr[8s + 0.20 <
8E I Yn ] < 0.05, and otherwise to continue to accrue patients up to the
maximum of 65. These criteria yield upper and lower stopping boundaries
Un and L n for n = m, ... , M such that E is declared promising if Yn ;::: Un,
E is declared not promising if Y n ~ L n, and the trial continues if L n < Yn <
Un- In the example, at the tenth outcome (LIO,UIO) = (2,6), so the trial is
stopped and E is declared not promising if YIO ~ 2, E is declared promising
if YIO ;::: 6, and the trail continues if 2 < YIO < 6. Likewise, (Lll,Ull ) =
(2,7), (L 12 ,U12) = (3,7), etc.; so in practice, once the stopping rules are
established, conduct of the trial is straightforward.
The operating characteristics of the design may be evaluated by comput

ing the probabilities of declaring E promising, declaring E not promising, or
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accruing all 65 patients without either conclusion under fixed values PE of
the response rate of E. Important values are PE = J..ls and PE = J..ls + 8, the
mean standard and targeted success rates, respectively. In the example, if
the true success probability of E is the standard mean rate 0.30, then under
this design the trial is terminated early and E is declared not promising with
probability p_ = 0.88; if the true success probability of E is 0.50, then E is
declared promising with probability P+ = 0.84. In either case, the median
sample size is 12.
An alternative design stops early only if E is not promising compared to

S, and does not stop early if E is promising. This design would be preferred
when it is desirable to continue the trial if the new treatment is promising
rather than to terminate it early. With this design, if E has true success rate
0.30, then p_ = 0.94; if E has true success rate 0.50, then the design accrues
all 65 patients with probability 0.85. In practice, P+ and p_ are computed
when planning the trial, and the values ofPL, Pu, 8, m, or M are modified as
appropriate in order to obtain a design with desirable operating charac
teristics. Since the numerical computations necessary to implement this
design are quite complicated, a menu-driven computer program written in
Splus has been made available.

Multistage designs

Designs that provide criteria for early termination based on each outcome
Yn may be regarded as extreme versions of multistage designs, which pro
vide early stopping rules at one or more interim points in the triab Schultz et
al. [41] and Fleming [8] provide a general multiple-testing framework for
phase II trials in which nj patients are accrued at the jth stage, j = 1, ... , K,
and a decision is made to stop the trial or continue based on a test of Ho:
P ~ Po versus HI: P ~ Pl' Let (ab ... , aK) and (rt> ... , rK) be sequences
of lower and upper test cutoffs. At stage j, HI is rejected and the trial is
terminated if Sj = Yn,+ ... +n

j
~ aj, H o is rejected and the trial is terminated if

Sj ~ rj, and the trial continues to the next stage if aj < Sj < rj. If the trial
continues to the Kth (final) stage, then one of the two hypotheses must be
rejected; hence, aK = rK - 1. The maximum sample size M = nl + ... +
nK and test cutoffs must be chosen to provide overall test error rates a and
~. The actual sample size N is thus random, taking on possible values nl,nl
+ nz, ... , M, depending upon the interim test results.
Fleming [8] provides an explicit method for determining the test cutoffs,

although the number of stages and division of patients among the stages are
somewhat arbitrary, aside from the error rate constraints. For example, a
Fleming design to test P ~ 0.30 versus P ~ 0.50 with a = 0.05 and ~ = 0.11
may be conducted with three stages of sizes nl = 20 and nz = n3 = 15, and
test cutoffs (Lzo,Uzo) = (5,12), (L3S ,U3S) = (12,17) and (Lso,Uso) = (20,21).
If P = 0.30, the expected number of patients under this design is Eo(N) =
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35.5. A two-stage Fleming design with the same size and power has nl ;:: nz
= 25 with test cutoffs (7,14) and (20,21), and null expected sample size
Eo(N) = 40.8.
Therneau, Wieand, and Chang [42] provide an enumeration algorithm

that derives Fleming designs for given K, nl, ... , nK, a, ~, Po, and PI that
are optimal in that they have minimal expected sample size. In practice, this
algorithm may easily be extended to determine optimal interim sample sizes
nI> ... , nK, as well, and a computer program to derive the optimal designs
is available. Since much of the advantage of multistage designs over a single
stage trial is achieved for K = 2, Simon [11] derives two-stage designs
that either (1) minimize Eo(N) (the optimal design) or (2) minimize the
maximum sample size M (the minimax design) for given a, ~,Po, and Pl. An
important distinction between the two-stage version of the Fleming design
and Simon's designs is that the latter allow only rejection of HI or con
tinuation but not rejection of Ho at the interim test. For the hypotheses
considered above, the optimal Simon two-stage design requires nl = 24
patients initially, stops after stage 1 and rejects HI if YZ4 :::; 8, and otherwise
accrues an additional nz = 39 patients with final test cutoffs (24,25). The
corresponding minimax design has nl = 24 with stage 1 cutoff 7 and nz = 29
with final test cutoffs (21,22). For these designs, Eo(N) = 34.7 and 36.6,
respectively. Simon (1989) tabulates design parameters and operating
characteristics for a broad range of parameter values, and a computer
program to obtain these values is also available.
Garnsey-Ensign et al. [43] provide an optimal three-stage design that is

essentially a combination of the Gehan [6] and optimal Simon [11] designs.
At stage 1, the design stops with rejection of HI if there is an initial run of
nl failures; otherwise, it continues to stage 2 and (possibly) stage 3, which
have decision rules analogous to those in stages 1 and 2 of Simon's designs.
Rejection of HI is thus possible at any stage, but HI may be accepted only at
the final test. The design is optimal in that Eo(N) is minimized for given a,
~, Po, and PI> subject to the constraint nl ;:::, 5. To test the hypotheses in the
above examples at a = 0.05 and ~ = 0.10, the optimal three-stage design
requires nl = 8 and rejects HI if the first eight outcomes are all failures. If
Ys > 0, then nz = 16 additional patients are treated, and HI is rejected if
YZ4 :::; 8, whereas an additional n3 = 39 patients are treated if YZ4 > 8. The
final test has cutoffs (24,25). This design has Eo(N) = 33.7, and this slight
gain over the analogous Simon optimal two-stage design is typical for small
to moderate values of Po.
Bellisant, Benichou, and Chastang [44] present a simulation study eval

uating several multistage phase II designs, including those of Fleming [8]
and Herson [7], and designs based on the sequential probability ratio test
(SPRT) and the triangular test (IT), and they compare these to the single
stage design. They document the reduction in average sample size obtained
by interim monitoring compared to the single-stage approach, as well as the
increase in average sample size as the number of patients per stage is
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increased. Their investigation includes designs based on the SPRT and
IT with continuous monitoring, which might be considered hypothesis
test-based alternatives to the Bayesian strategy proposed by Thall and
Simon [13,14].

It may be argued that the real purpose of a phase II trial is to obtain a
reasonably reliable estimate of the response rate of E, and that interim
stopping rules should be imposed mainly to protect patients from inferior
treatments. Even for a trial based on tests of hypotheses, a confidence
interval for p is of interest at its conclusion. The confidence interval pro
cedure, say at 95%, regards the success probability p as a fixed unknown
parameter and the computed interval as a single realization of a random
phenomenon that, if it were repeated many times, would contain p between
its upper and lower limits 95% of the time. If the success probability is
considered to be random rather than fixed, a Bayesian posterior probability
interval for the random probability 8E is appropriate. Alternatively, a
frequentist might summarize a Bayesian trial by a confidence interval for the
unknown fixed parameter p, with the Bayesian decision rules simply viewed
from a frequentist point of view.
When computing a confidence interval, one must account for interim

decision rules, since the probability distribution of the confidence interval
bounds depends upon the sequences of patient responses and failures pos
sible in the trial. Methods for adjusting confidence intervals computed after
trials with interim stopping rules have been discussed by a number of
authors, including Jennison and Turnbull [15], Tsiatis, Rosner, and Mehta
[16], Atkinson and Brown [17], and Duffy and Santner [18]. For example, if
the three-stage Fleming design described above were to run to conclu
sion with 20 total successes out of M = 50 patients, then the correct 95%
confidence interval for p that accounts for the interim stopping rules
is [0.268-0.556]. If the interim rules are incorrectly ignored, then the
corresponding exact Clopper-Pearson [5] confidence interval would be
[0.282-0.548]. Continuous monitoring may produce even larger descre
pancies. Consider a Bayesian phase II design with only a lower stopping
bound, specifically a trial with M = 42 that stops if Ynln ~ OlIO, 1/15, 2/21,
3/27, 4/33, or 5/38. If the trial runs to completion with Y42 = 7 responses,
then the correct 95% confidence interval for p is [0.076-0.360], while the
interval that ignores the lower stopping bound is [0.086-0.314].
In contrast, a Bayesian probability interval is based solely on the final

data and ignores any interim stopping rules. Based on a noninformative beta
(0.4,1.6) prior, i.e., having mean 0.20 and a + b = 2, the 95% probability
interval running from the 2.5th to 97.5th percentiles of the posterior dis
tribution of 8E in the above example would be [0.074-0.341]. That is,
Pr[0.074 < 8E < 0.341 I Y42 = 7] = 0.95, and this would be the posterior
probability interval regardless of the design that produced the final 7/42.
The fundamental difference is that the (frequentist) confidence interval for p
must be adjusted for interim stopping rules, whereas the Bayesian posterior
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probability interval for 0E requires no such adjustment. Also, the unad
justed confidence interval, appropriate following a single-stage design, is
nearly identical to the Bayesian probability interval based on a flat prior
with a + b = 2.
Although multistage and continuous-monitoring designs require a con

iderably greater effort in the conduct of the trial, this approach makes use of
information ignored by single-stage designs. In particular, continuous
monitoring is most protective in the case of a treatment having poor efficacy
or an unacceptably high rate of an adverse event. The decision to use a
design with continuous monitoring, a multistage design with several interim
decisions, a two-stage design with one interim decision, or a single-stage
design with a test only at the end should be based in part upon practical
considerations and the feasibility of conducting the trial as designed.
An overriding consideration in designing any clinical trial is the logistical

aspects of its conduct; hence, the design must provide a balance between
scientific goals and what realistically may be implemented in the clinic. A
design that either is overly complex or ignores important clinical phenomena
is likely to be violated in practice, often out of clinical necessity. The data
resulting from such a trial may be unreliable or misleading. A simple
example is a cancer chemotherapy trial design that provides rules for moni
toring tumor shrinkage but no formal rules for monitoring toxicity. This
example is discussed in the next section.

Multiple outcomes

The designs discussed in the preceding sections are based on a single binary
outcome. Patient response in clinical trials is an inherently multidimensional
phenomenon, however, with the possibility of both adverse events and
efficacy outcomes. In addition to evaluating treatment efficacy, a phase II
trial must determine whether an experimental treatment is sufficiently safe
to allow its evaluation in a large randomized trial. Moreover, responses may
occur at two or more stages of the trial, often reflecting the interaction
between patient response and subsequent treatment selection in certain
clinical settings, as in the case of bone marrow transplantation.
The simplest example is that of a typical cancer chemotherapy trial in

which efficacy is evaluated in terms of the usual binary response variable,
and acute toxicity is also monitored. If both variables are recorded and
toxicity, like response, is scored as a binary variable, then four outcomes are
possible. This example illustrates the more general setting in which one
efficacy event and one adverse event must be monitored. An important issue
in constructing interim stopping rules corresponding to both response and
toxicity is the degree of interdependence between these two events, since
they are seldom independent. From the viewpoint of safety monitoring,
since a high toxicity rate often is associated with a high response rate, a
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stopping rule that terminates the trial early if the observed toxicity rate is
unacceptably high is also likely to terminate a trial of an agent with a high
response rate. A common practice in the conduct of phase II trials is to
construct the design solely in terms of response, but also to include an
informal and often vaguely defined stopping rule for toxicity. This practice
results in trials having operating characteristics that are very different from
the nominal values obtained from decision rules based on response but
ignoring toxicity.
Table 3 presents two hypothetical examples, each having the same

marginal probabilities Pr[Response] = 0.40 and Pr[Toxicity] = 0.25, but
very different joint probabilities. In case 1, the toxicity rates among re
sponders and nonresponders are very different: 50% of responders suffer
toxicity, compared to only 8.3% of nonresponders. This illustrates a double
bind typical of chemotherapy and radiotherapy trials, where decreasing
dosage or intensity to reduce toxicity is also likely to reduce the response
rate as well, and increasing dosage is likely to increase both the response
and toxicity rates. Case 2 illustrates an unlikely scenario in which the
toxicity rates of the responders and nonresponders both are identical to
the overall rate of 25%, so that the two events are independent. In this
unrealistic case, monitoring the two outcomes would not be problematic in
that the two monitoring rules could be treated independently. In practice,
the nature and degree of interdependency between patient outcomes can be
assessed only from historical data, and it is appropriate to use this informa
tion in constructing monitoring procedures for multiple events.
Thall, Simon, and Estey [26] present a general Bayesian strategy for

monitoring multiple outcomes in single-arm clinical trials. Each patient's
response is characterized as a multinomial variable that records the specific
combination of events occurring for that patient in the course of the trial,
as illustrated by table 3. This includes both adverse events and efficacy
outcomes, possibly occurring at different study times. The authors use a
Dirichlet-multinomial model to accommodate general discrete multivariate
responses, and they provide Bayesian decision criteria for early termination
of studies with unacceptably high rates of adverse outcomes or with low

Table 3. Possible outcomes in a trial monitoring both response
and toxicity

Hypothetical
probabilities

Patient response

Al = [Response and No Toxicity]
A z = [Response and Toxicity]
A 3 = [No Response and No Toxicity]
A 4 = [No Response and Toxicity]

Case 1

0.20
0.20
0.55
0.05

Case 2

0.30
0.10
0.45
0.15
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rates of desirable outcomes. Each stopping rule is constructed either to
control the rate of an adverse event or to achieve a specified level of
improvement of an efficacy event rate for the experimental treatment,
compared with that of standard therapy. They avoid explicit specification of
costs and a loss function, and evaluate the joint behavior of the multiple
decision rules using frequentist criteria. Their approach accommodates a
broad range of clinical situations, including settings in which observation of
certain endpoints is conditional on the occurrence of earlier events. They
illustrate the approach with a variety of single-arm cancer trials, including
acute leukemia biochemotherapy trials, bone marrow transplantation trials,
and an anti-infection trial.
For a simple application of this method, consider the example given in

table 3. Denote the vector of random probabilities of the elementary out
comes by 9 = (8b 82 ,83), with 84 = 1 - 81 - 82 - 83, and let Xn =
(Xn ,I,Xn ,2,Xn ,3,Xn ,4), the numbers of patients with each combination of
outcomes out of n scored. Thus, X n ,1 + X n ,2 equals the number of patients
who respond, and X n ,2 + X n ,4 equals the number of patients who experience
toxicity; likewise, 81 + 82 = Pr[Response] and 82 + 84 = Pr[Toxicity]. The
total X n ,1 + X n ,2 + X n ,3 + X n ,4 = n, and Xn I9 is multinomially distributed
in nand 9.
Suppose that the event rates in case 1 are obtained from a previous study

of 60 patients given 'standard' therapy in which the numbers of patients in
the four respective outcome categories were (12,12,33,3). Using these data
as the parameters of a Dirichlet prior for the standard-treatment success
probability vector 9s , and using a noninformative prior distribution for the
experimental probability vector 9E , the Thall, Simon and Estey approach
might proceed as follows: a 90% posterior probability interval of width 0.20
for Pr[Response], i.e., such that at the end of the trial Pr[L < 8E ,1 + 8E ,2 <
U] = 0.90 with U - L = 0.20, requires a maximum of 63 patients. Suppose
that a 0.15 increase in the mean response rate is desired, and an increase of
at most 0.05 in the toxicity rate is considered an acceptable trade-off for
achieving the desired improvement in response rate. The trial is terminated
early if

Pr[8S ,1 + 8S ,2 + 0.15 < 8E ,1 + 8E ,2 IXn ] ::::; 0.05

or

Pr[8S ,2 + 8S ,4 + 0.05 < 8E ,2 + 8E ,4 IXn ] ?; 0.90.

These determine stopping rules based on the comparison of X n ,1 + X n ,2 and
X n ,2 + X n ,4 to explicit numerical boundaries. The criterion probabilities PL

= 0.05 and Pu = 0.90 were determined by examining various values of PL
and Pu and selecting those giving desirable operating characteristics. For this
design, if true probabilities of response and toxicity are the standard mean
values 0.40 and 0.25, then the probability of early termination (PET) is 0.80
and the median sample size is 18. If the toxicity rate is ?;0.30, i.e., an

66



increase of 0.05 or more, then PET ~ 0.85, with a median sample size of at
most 18 patients; the PET is larger and the sample size is smaller if the
toxicity rate is >0.30. If the response rate is 0.55, the targeted 0.15 im
provement, and the toxicity probability is maintained at the null rate of
0.25, then PET = 0.19 and the median sample size is the trial maximum
of 63.
The general approach of Thall, Simon, and Estey [26] can accommodate

considerably more complicated settings; their examples include trials in
which the number of elementary patient outcomes varies from three to
seven, with as many as four monitoring boundaries running simultaneously.
Since the computations necessary to obtain the stopping bounds and operat
ing characteristics are quite complicated, a menu-driven computer program
in Splus is available. Simulation of each design takes 5 to 10 seconds on a
Solbourne 5/600 computer, so stopping bounds for rather complicated set
tings may be derived and their properties evaluated rather quickly.
Etzioni and Pepe [25] propose a Bayesian criterion for monitoring two

adverse outcomes in a pilot toxicity study, in the case where the occurrence
of one event precludes occurrence of the other. The probabilities of the
adverse events, 81 and 82 , are considered to be random quantities, and
Etzioni and Pepe assume that, given 81 and 82 , the numbers of patients Xl
and X 2 who suffer them are binomially distributed. Etzioni and Pepe define
excessive toxicity as the event A = [81 > a1 or 82 > a2], where a1 and a2 are
fixed critical thresholds. For a prior distribution on (8 b 82), Etzioni and Pepe
use the piecewise uniform distribution on the unit square [0,1] x [0,1],
which takes on the values {2(1 - a1a2)} -I if (8 b 82) is in A and {2a1a2} -1 if
(81,82) is not in A so that, in particular, a priori Pr[A] = 1/2. Their
monitoring strategy is to stop the trial if the posterior probability of exces
sive toxicity exceeds a specified cutoff. For example, if a1 = 0.30, a2 = 0.50,
and the cutoff is 0.90, then the trial would be terminated at n = 4 patients if
either all four patients suffer the first event or three suffer the first event and
one suffers the second. Etzioni and Pepe also discuss methods for carrying
out frequentist inferences at the end of the trial, including computation of a
confidence region for (81,82) and a p-value corresponding to a test of
hypothesis.

Discussion

In oncology, nearly any clinical trial that is not a dose-finding study and that
does not contain a randomized control group is called a phase II trial.
Consequently, the phase II category is quite heterogeneous with regard to
objectives and characteristics. Unfortunately, these differences are not
always recognized, and statistical designs developed for one type of phase II
trial are sometimes inappropriately applied to another type.
Many phase II trials ate conducted to evaluate the activity of a new drug
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against a particular kind of cancer. We have called these phase IIA clinical
trials. The main objectives of such trials are to determine whether the drug
is active and to obtain a rough estimate of the degree of activity. Often,
other drugs have previously been shown to be active. The objective of the
trial is not to determine whether the new drug is more active than the other
drugs. If the new drug is sufficiently active, the next step may be to combine
the new drug with one or more existing drugs to try to identify a regimen
that is effective in reducing mortality. The decision of which drugs to include
in the combination regimen and whether or not to pursue such an approach
depends on several factors. These factors include the level of activity of the
new drug, the toxicity profile of the new drug in relation to those of other
active drugs, and the levels of activity of available active drugs.
Until recently, most statistical designs developed for phase II clinical

trials were applicable primarily to the objectives of phase IIA trials. These
include the designs of Gehan [6], Schultz et al. [41], Fleming [8], Simon
[11], and Therneau et al. [42]. It is particularly important in this setting that
the trial be terminated early if the drug is inactive against the disease,
so that patients are not subjected unnecessarily to a toxic agent with no
evidence of antitumor activity. Whether or not the trial should continue to a
target maximum sample size if the drug has been shown to be active will
depend on the clinical setting. Often this is useful for gaining additional
experience with the drug in a variety of patients to help plan its incorpora
tion into a combination regimen and to plan subsequent trials. When the
drug is in short supply, however, proceeding directly to phase III may be
preferable. Also, there is a 'window of opportunity' when it is feasible to
conduct a phase III trial of a promising new drug, and prolonging the phase
II portion of development may be problematic.
Phase lIB trials have the objective of determining whether a new regimen

has a level of antidisease activity that is promising relative to the best
available regimens. In dealing with combination regimens, sometimes in
volving a complex sequential treatment program for the patient, it is not
relevant to show that the regimen is 'active'. Moreover, it is generally not
feasible to incorporate such complex combinations into other treatment
programs. Rather, the focus often is on determining whether the combina
tion regimen under test is sufficiently active, compared to the activity level
of best available standard therapy, to warrant a phase III trial. Hence, phase
lIB trials are inherently comparative. Usually, however, these comparative
aspects are suppressed, or at least not addressed directly. This can have
two undesirable effects. The first is that the results with the experimental
regimen may appear so promising that a phase III trial is difficult to con
duct, since randomization to a control arm appears unethical. The second is
that the results are misleadingly promising and a phase III trial is conducted
when it is not warranted. There are, of course, other possibilities. In general,
we believe that the comparative aspects of phase lIB trials should be ad
dressed directly, that specific control groups should be identified, and that
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uncertainties arising from the use of nonrandomized control groups of finite
size should be quantified. The designs of Thall and Simon [12-14,19], and
Thall, Simon, and Estey [26] address this. These designs are, however, quite
different from those developed for the simple phase IIA trials.
An alternative to conducting a phase lIB trial is to use a phase III

randomized design, allowing one or several experimental regimens, with
early termination of a treatment arm if early results with that regimen
are sufficiently discouraging. The designs described by Ellenberg, and
Eisenberger [45], Thall, Simon, Ellenberg, and Shrager [46], Thall, Simon,
and Ellenberg [22,23], Wieand and Therneau [47], Schaid, Wieand, and
Therneau [48], and Storer [49] are of this type. It is often difficult to
organize a phase III trial of an experimental regimen, however, without
some earlier phase II experience with that regimen.
The designs discussed here accommodate a broad range of clinical set

tings and goals for phase II trials. Some issues remain, however. A major
problem in phase II trials is that between-patient variability is typically very
large, even given specific entry criteria, while phase II trials are relatively
small compared to phase III. Consequently, a phase II trial is not unlikely to
have a disproportionate number of patients having relatively poor prognosis
within the larger patient group being considered. This in turn is likely to
lead to the conclusion that the experimental regimen is not promising as a
consequence of the patients' characteristics, rather than due to the effects of
the regimen itself. Likewise, a large proportion of good-prognosis patients
in the trial, which also is not unlikely, might lead to an overly optimistic
conclusion regarding the experimental regimen. A design with interim
monitoring rules adjusted for observed patient prognostic variables thus
would be highly desirable. Our future research will address this issue.
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4. Multivariate failure time data

D.Y. Lin

Introduction

The term multivariate usually refers to multiple explanatory variables in
clinical literature and to multiple response variables in statistics. In this
chapter, the latter interpretation is taken. By multivariate failure time data,
we thus mean that each patient may experience several events of clinical
interest, or that there exists some natural or artificial clustering of obser
vational units that induces dependence among failure times of the same
cluster; we shall refer to the former as multiple events data and the latter as
clustered data. Examples of multivariate failure time data include the
sequence of tumor recurrences or infection episodes, the developments of
physical symptoms or diseases in several organ systems, the experiences of
visual loss in the left and right eyes, the onsets of a genetic disease among
family members, and the appearances of tumors in littermates exposed to a
carcinogen. We describe below three clinical trials and one epidemiologic
study that involve multivariate failure times.

Example 1: The Colon Cancer Study. A national intergroup trial was
conducted in the 1980s to study the drugs levamisole and fluorouracil for
adjuvant therapy of resected colon carcinoma [1,2]. Nine hundred and
twenty-nine patients with stage C disease were randomly assigned to obser
vation, levamisole alone, or levamisole combined with fluorouracil. The
time to cancer recurrence and the survival time were both considered
important outcome measure.

Example 2: The CCD Study. Chronic granulomatous disease (CGD) is a
group of inherited rare disorders of the immune function characterized by
recurrent pyogenic infections that may lead to death. In order to study the
ability of gamma interferon to reduce the rate of infections, a placebo
controlled randomized trial was conducted by the International CGD
Cooperative Study Group in the late 1980s. Each patient had the potential
to experience multiple infections. By the end of the trial, 30 of 65 placebo
patients and 14 of 63 patients on gamma interferon had experienced at least
one infection. Of the 30 placebo patients who experienced at least one



infection, 5 experienced two, 4 others experienced three, and 3 had four or
more. Of the 14 gamma interferon patients with at least one infection, 4
experienced two and another had a third event. This study was described at
greater length by Fleming and Harrington ([3], pp. 162-163). The data are
listed in their appendix D.2.

Example 3: The Diabetic Retinopathy Study. The Diabetic Retinopathy
Study was conducted by the National Eye Institute to assess the effectiveness
of laser photocoagulation in delaying the onset of blindness in patients with
diabetic retinopathy [4]. Seventeen hundred and forty-two patients entered
the study between 1972 and 1975. One eye of each patient was randomly
selected for photocoagulation, and the other eye was observed without
treatment. The patients were followed over several years for the occurrence
of blindness in the left and right eyes. One anticipates some dependence
between a patient's two eyes.

Example 4: The Schizophrenia Study. Dr. Ann E. Pulver of Johns Hopkins
University has been conducting a genetic epidemiologic study of schizo
phrenia [5]. Four hundred and eighty-seven first-degree relatives (273 males,
214 females) of 93 female schizophrenic probands enrolled in the study. (In
human genetics, proband means the member of the family that brings a
family under study.) The number of relatives of a single proband ranges
from 1 to 12. An important question is whether the risk of affective illness
(depression or mania or both) in the relatives is associated with the age at
onset of schizophrenia of the proband. Here, the times to affective illness
are expected to be correlated among relatives of the same proband.

In the above examples, the scientific interests center on the effects of
covariates (e.g., treatment) on the risk offailure. For univariate failure time
data, i.e., a single failure time variable with independent observations,
such effects are studied almost exclusively by the Cox [6] proportional
hazards model, which includes the commonly used log-rank test as a special
case. The analysis of multivariate failure time data is complicated by the
dependence of related failure times. With censoring, this dependence poses
a greater statistical challenge than (uncensored) longitudinal data. One
useful solution that has gained increasing popularity is the marginal hazard
approach originated by Wei, Lin, and Weissfeld [7] and Lee, Wei and
Amato [8] (hereafter referred to as WLW and LWA) , which formulates
the marginal distributions of multivariate failure times with the familiar Cox
proportional hazards models while leaving the nature of dependence among
related failure times completely unspecified. As in the case of longitudinal
data [9], simple estimating equations can be constructed to yield con
sistent and asymptotically normal estimators for the regression parameters,
provided only that the marginal models correctly specified, and robust
variance-covariance estimators can be obtained that properly account for
the dependence.
The purpose of this chapter is to present an overview of the marginal
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approach with an emphasis on the designs and analysis of clinical trials. This
general methodology is described in the next section. In the Examples
section, we provide detailed illustrations with the four real examples cited
above. A number of related issues are considered in the Discussion section.

Methods

Univariate failure time data

We first review the basic results for the univariate case. Under the pro
portional hazards model [6], the hazard function for the failure time T
associated with a p x 1 vector of possibly time-varying covariates Z =
(Z1> ... , Zp)' is

A(t;Z) = Ao(t)eP'Z(t),

where ~ is a p x 1 vector of unknown regression parameters, and AO(t)
is an unspecified baseline hazard function. When T is subject to right
censorship, we observe X = min(T,C) and ~ = I(T ~ C), where C is the
censoring time and I(d) indicates, by the values 1 versus 0, whether or not
the eventd occurs. Assume that T and C are independent conditional on Z.
Let (Xi' ~i, Zi) (i = 1, ... , n) be n independent replicates of (X,~,Z).
Then the partial likelihood function [10] for ~ is

n { eP' Zi(Xi) }/),.i
L(~) = I~ L1=! Y/Xi)eP'Zj{Xi) ,

where Yj(t) = I(Xj ~ t). The corresponding score function a log L(~)/a~
equals

n { S(1l(~,X;)}
U(~) = i~~i Zi(X;) - S(O)(~,Xi) ,

where S(O)(~,t) = ~7=lY/t)eP'Zj{I) and S(1)(~,t) = ~1=!Y/t)eP'Zj{I)Z/t). The
maximum partial likelihood estimator pis the solution to {U(~) = O}. Given
p, we estimate the cumulative baseline hazard function Ao(t) = fb AO(u )du
by Ao(t) = ~i=l I(Xi ~ t)~;lS(O)(P,Xi) [11]. The corresponding estimator for
the baseline survival function So(t) is So(t) = e-AO(I).
For large n, the score statistic U(~) is approximately p-variate normal

with mean 0 and with (estimated) covariance matrix A(P), and Pis approxi
mately p-variate normal with mean ~ and with (estimated) covariance matrix
A -!(~), where

A(r:l) = a2 10g L(~) _ n {S(2)(~,Xi) S(1)(~,Xi)S(l)(~,Xi)l}
I-' a~2 - i~l~i S(O)(~,Xi) - S(0)(~,X;)2 '
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and S(2)(~,t) = ~t=l Yit)eP'Zll)Zj(t)Zit)' [12]. In addition, the survival func
tion estimator So(t) is approximately normal with mean So(t) and with a
variance that can be easily estimated [13]. If the assumed Cox model is
incorrect, then the estimator ~ is approximately normal with a well-defined
mean vector and with covariance matrix A -l(~)B(~)A -l(~) [14], where
B(~) = ~i=l WiW)Wi(~)' and

{
S(l)(~,Xi)}

Wi(~) = IJ.i ZlXi) - S(O)(~,xi)

n IJ..y.(X)eJ3'Z;(Xj) { S(l\~ X)}
j~ z ;(O)(~,~) Zi(Xj ) - S(O)(~:~) .

If P = 0, then the survival function estimator So(t) is equivalent to the
renowned Kaplan-Meier estimator. For testing ~ = 0, the nonparametric
statistic U'(O)A -l(O)U(O) is known as the logrank statistic, especially when
Z is a dichotomous variable. Due to these connections, the Cox regression
methodology described above encompasses all the commonly used tech
niques in survival analysis.

Marginal approach for multivariate failure time data

We now consider the multivariate case. Suppose that there are n units and
that each unit can potentially experience K different types of failures. The
unit corresponds to the patient in the case of multiple events data and to the
cluster for clustered data. Specifically, in examples 1 to 3 above, each
patient constitutes a unit, and in example 4 the unit is the proband. In the
case of multiple events (e.g., examples 1 and 2), there is generally a clear
distinction between different failure types so that the numbering of failure
types needs to be consistent across units, whereas for clustered data (e.g.,
examples 3 and 4), the failure types are indistinguishable, so that the
ordering of failure types within a unit is arbitrary. To be more specific,
cancer recurrence is very different from death in example 1, whereas a left
eye is biologically the same as a right eye in example 3. In the latter case, it
would be more precise to say that there are K failures of the same type
rather than K different types of failures. To keep our statements concise,
however, we will allow ourselves to abuse the language. If there are unequal
numbers of failure types among the units, as in example 4, we let K be the
maximum number of failure types in a unit.
Let Tik be the time when the kth type of failure occurs on the ith unit,

and let Ck be the corresponding censoring time. Define Xik = min(TibCk)
and IJ.ik = I(Tik ~ Cik). Also, let Zik = (Zlik,"" Zpik)' denote the
covariate vector for the ith unit with respect to the kth type of failure. For
each i, the failure time vector Ti = (Til,' .. , TiK) and the censoring time
vector Ci = (Cil , ... , CiK) are assumed to be independent conditional on
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(1)

the covariate vector Zi = (ZiI, ... , ZiK)' We further assume that (Xi,ChZi)
(i = 1, ... , n) are independent and identically distributed random elements.
If Tik or Zik is missing, we set Cik = 0, which ensures that X ik =°and d ik =
0. Naturally, such cases make no contribution to the calculation of the
statistics. We require that data are missing completely at random [15].
It is natural to formulate the marginal distribution for each type of failure

with a proportional hazards model. Depending on whether the baseline
hazard functions are identical or are different among the K types of failures,
the hazard function of the ith unit for the kth type of failure is

A (t· Z· ) = A (t)eJ3' Zik(t)k "k 0 ,

or

A (t· Z· ) = A (t)eJ3' Zik(t)k "k Ok , (2)

(3)

(4)

where AO(t) and AOk(t) (k = 1, ... , K) are unspecified baseline hazard
functions, and ~ = (~1" .. , ~p)' is a p x 1 vector of unknown regression
parameters. In the case of multiple events data (e.g., examples 1 and 2), it is
generally necessary to allow AOk(t) (k = 1, ... , K) to be different, whereas
for clustered data (e.g., examples 3 and 4), it is often sufficient to assume a
common baseline hazard function. In both models (1) and (2), we take ~

to be the same among the marginal submodels. This entails no loss of
generality, since the assumption can always be achieved by introducing
appropriate type-specific covariates, as elaborated in the Examples section
below. Note that WLW considered model (2) with type-specific regression
parameters, whereas LWA studied model (1).
For the moment, pretend that the observations within the same unit are

independent. Then the 'partial likelihood functions' for ~ are

_ n K { ef3'Zik(Xik) }!'>.ik

L(~) = TI TI ~n ~K y. (X )e f3 'Zji(Xik),=1 k=l ]=1 1=1]1 ,k

under model (1) and

_ n K { eJ3'Zik(X,k) }!'>.ik

L(~) = TI TI ~n y. (X )eJ3'Zj k(Xik),=1 k=l ]=l]k ,k

under model (2), where Yik(t) = I(Xik ~ t). Note that equation (3) is
the partial likelihood function for Kn independent observations with a
common baseline hazard function, whereas equation (4) is obtained by
multiplying the partial likelihood functions for the K marginal submodels.
The corresponding 'score functions' are

(5)

and
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(6)
_ n K { S~l)(~,Xik)}
U(P) = 2: 2: dik Zik(Xik) - s~O)(~ X) ,

1=1 k=1 , Ik

where S~O)(~,t) = I:l=1 Yjk(t)eI3'Zjk(I), S~I)(P,t) = I:7=1 Yjk(t)el3'Zjk(l)Zik(t) (k =
1, ... , K), and s(r)(~,t) = I:~IS~)(~,t) (r = 0,1). In both cases, we obtain
the unique estimator ~ by solving {O(p) = O}.
Although observations are generally correlated within the same unit, the

estimator ~ can be proven to be consistent for ~ as long as the marginal
models are correctly specified. The derivative matrix -a210gL(~)/a~21J3=ii,
however, does not provide a valid variance-covariance estimator for U(~).
As shown in WLWand LWA, by approximating O(~) with a sum of n
independent and identically distributed random vectors, we can establish the
asymptotic normality of O(~) and obtain its limiting covariance matrix. Then
the asymptotic distribution of ~ follows from the Taylor series expansion.
The main results are stated in the following paragraph.
For large n and relatively small K, the statistic U(~) is approximately p

variate normal with mean 0 and with (estimated) covariance matrix B(~) =
K K - - - -I:i=1 I:k=1 I:I=I Wik(~)WuC~)', where under models (1) and (2), respectively,

{

-(I) }- S (~,Xik)
Wik(~) = d ik Zik(Xik) - S(O\~,Xik)

n KAy (X) P'Z'k(XjI) { S-(I)(A X )}_ 2: 2: Ujl ik jl e Z. (X) _ 1-', jl
j=II=1 S(O)(~,Xjl) Ik II S(O)(~,Xjl)

and

- { S~l)(~,xik)}
Wik(~) = dik Zik(Xik) - S~O)(P,Xik)

n d Y (X )eP'Z'k(Xjk) { S (1)(~ X )}
- j~1 lk ;~O)(t,Xjk) Zik(Xjk) - S:(O)(~:~:) .

Furthermore, the estimator ~ is approximately p-variate pormal with mean ~
and with (estimated) covariance matrix L5(~) = A-I(~)B(~)A-I(~), where

n K {-(2) -(1) -(I) '}A(~) - 2: 2: d. S (~,Xik) _ S (~,Xik)S (P,xik)
- i=1 k=1 Ik S(O)(~,xik) S(O)(~,Xik)2

under model (1) and

A(~) = i f d ik {S~~(~,xik) _ SP)(P'~~k)S~I)(~;Xik)'}
i=1 k=1 S~ (~,Xik) S~ (~,Xik)

under model (2), S~2)(~,t) = I:l=1 Yjk(t)eI3'Zjk(I)Zjk(t)Zjk(t)' (k = 1, ... , K)
and S(2)(~,t) = I:f=1 S~2)(p,t).
Note that A(~) = -a210g l(~)/a~2. In the case of K = 1, the matrix V(P)

reduces to the Lin-Wei robust variance-covariance estimator given at the
end of the previous section. If the marginal models are correctly specified
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and if the failure times within the same unit are independent, then 8(~) is
asymptotically equivalent to A(~). In the sequel, we refer to A-1(~) and
D(~) as, respectively, the naive and robust variance-covariance estimators
for ~, and call 0'(0)A- 1(0)0(0) and O'(0)8- 1(0)U(0) the naive and robust
logrank statistics, respectively. Incidentally, a two-sample robust logrank
test was previously studied by Wei and Lachin [16]. It is important to realize
that the robust logrank test is always valid, i.e., free of any model assump
tions, since the marginal models are guaranteed to hold under ~ = O.
In addition to drawing inferences about individual covariate effects, it is

often of interest to test hypotheses involving several components of ~. The
multivariate general linear hypothesis can be expressed as Ho:L~ = d,
where L is an r X p matrix of constants and d is an r X 1 vector of constants.
The robust Wald statistic for testing Ho is (L~ - d)'{LD(~)L'} -\L~ - d),
which has an approximate X2 distribution with r degrees of freedom.
Under the independence working assumption, the Breslow-type estimators

for Ao(t) in models (1) and (2) are, respectively, Ao(t) = l:~1 l:f=lI(Xik ::::: t)
-(0) - '_ n (0) - _,1iklS (~,Xik) and AOk(t) - l:i=lI(Xik ::::: t),1ik/Sk (~,Xik) (k - 1, ... , [().

These e§timators and the corresponding survival function estimators e-Ao(t)

and e-AOk(t) (k = 1, ... , K) are approximately unbiased and normally
distributed [17].

Simulation results

Monte Carlo simulations were conducted to evaluate the aforementioned
inference procedures. Paired failure times with marginal hazard rates ef3Zik

(i = 1, ... , n; k = 1,2) were generated from Gumbel's [18] bivariate expo
nential distribution with correlation coefficient equal to 0.25. Note that only
one covariate per failure type was used. Since the failure times were
generated with a common baseline hazard function, both models (1) and (2)
were true. The covariate values were generated by two different designs.
Under the first design, Zil = 1 or 0 with equal probability, and Zi2 = 0 if Zi1 =
1 and Zi2 = 1 if Zil = O. Under the second design, Zil = Zi2 = 1 or 0 with
equal probability. Note that the first design corresponds to the matched
pairs study and the second design to the group randomization study, in
which the group is the randomization unit. Under both designs, the paired
failure times were censored independently by a uniform random variable on
(0,3), resulting in about 30% censored observations. Table 1 summarizes the
results for the combinations of n = 50, 100, and 200 and ~ = 0 and 5. For
each combination, 10,000 data sets were generated. We draw the following
conclusions from table 1 and related studies:
1. The bias of ~ is negligible. There is also little bias for the robust standard
error estimator, at least for large n. The robust Wald (or logrank) test
has proper size, though it may be slightly anticonservative in small and
moderate samples. These conclusions hold for both designs under both
models (1) and (2).
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Table 1. Summary statistics for the simulation studies'

Model (I) Model (2)

SEE Size/Power SEE Size/Power

Design p n Bias SSE Na. Ro. Na. Ro. Bias SSE Na. Ro. Na. Ro.

0 50 0.002 0.211 0.245 0.206 0.022 0.055 0.001 0.216 0.252 0.205 0.021 0.060
100 0.001 0.148 0.172 0.146 0.021 0.056 0.001 0.150 0.175 0.145 0.021 0.057
200 0.001 0.103 0.121 0.103 0.021 0.051 0.001 0.104 0.122 0.103 0.021 0.053

0.5 50 0.008 0.209 0.240 0.203 0.575 0.707 0.005 0.215 0.246 0.203 0.541 0.697
100 0.004 0.147 0.168 0.143 0.891 0.942 0.003 0.148 0.171 0.143 0.878 0.939
200 0.002 0.103 0.118 0.101 0.997 0.999 0.002 0.104 0.119 0.101 0.996 0.999

2 0 50 0.000 0.285 0.249 0.275 0.081 0.055 0.000 0.287 0.252 0.275 0.079 0.058
100 -0.002 0.198 0.174 0.194 0.083 0.052 -0.002 0.198 0.175 0.194 0.083 0.053
200 -0.001 0.139 0.122 0.137 0.085 0.054 -0.001 0.139 0.122 0.137 0.085 0.054

0.5 50 0.007 0.279 0.243 0.267 0.546 0.473 0.007 0.282 0.246 0.268 0.539 0.471
100 0.003 0.192 0.170 0.189 0.823 0.762 0.002 0.193 0.171 0.189 0.818 0.759
200 0.002 0.134 0.119 0.133 0.980 0.968 0.002 0.135 0.119 0.133 0.979 0.966

'Bias and SSE are, respectively, the sampling bias and sampling standard error of~. SEE is the sampling
mean of the standard error estimates. Na. and Ro. stand for the naive and robust statistics, respectively.
The size and power pertain to the 0.05 nominal significance level.

2. The analysis under model (1) tends to be more efficient than that of
model (2), as reflected by the sampling standard error of ~ and by the
power of the Wald test. The difference, however, is very small, especially
for large n.

3. The naive variance estimator considerably overestimates the true sampling
variance under the first design and seriously underestimates the true
sampling variance under the second design. Consequently, the naive
Wald (or logrank) test has much lower power than the robust test under
the first design, and the naive test is not valid under the second design.

Marginal vs. conditional approaches for recurrent events

The choice of time scales for recurrence data needs some discussion. In the
marginal approach, Tik is defined as the time from study entry to the kth
recurrence for the ith patient (i = 1, ... , n; k = 1, ... , K). This time scale,
termed total time, is particularly appealing when the recurrences are of
different natures. In some applications, it is of interest to study the times
between consecutive recurrences. i.e., gap times. The main difficulty in
analyzing gap times is that the patients who have not experienced the kth
recurrence have to be excluded from the analysis of the gap times between
the kth and (k + l)th recurrences, which violates the assumption of missing
completely at random.
Andersen and Gill [19] and Prentice, Williams, and Peterson [20] (here

after referred to as AG and PWP) have suggested two alternative approaches
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(8)

to analyzing recurrence data. Under the AG multiplicative intensity model,
the risk of a recurrent event for a patient satisfies the usual proportional
hazards model, and is unaffected by the patient's earlier events unless
terms that capture such dependence are included explicitly in the model as
covariates. PWP specified that the hazard function at time t for the kth
recurrence of the ith unit, conditional on the entire failure, censoring, and
covariate history prior to time t in the unit, takes the form

Aik(t) = AOk(t)e13 'Zik(t) (7)

or

A· (t) = A (t - t )e13'Zik(t)lk Ok k-l ,

where tk - 1 is the time of the (k - l)th failure (to = 0). Model (7) pertains to
total times whereas model (8) uses gap times. The interpretation of the
parameters in models (7) and (8) is somewhat awkward because they are
conditional on the failure and censoring information. Both the AG and
PWP models are analyzed by the partial likelihood principle. As demon
strated by WLW, the AG and PWP procedures are sensitive to misspeci
fication of the dependence structure.
For computational purposes, one may cast the AG and PWP methods

within the general framework for the marginal approach described previously.
By redefining the risk-set indicators Yik(t) as I(Xi,k-l < t ~ X ik), instead of
I(Xik ~ t), with X iO = 0 (i = 1, ... , n; k = 1, ... , K), equations (3) and (4)
become the partial likelihood functions for the AG model and model (7) of
PWP, respectively. The partial likelihood function for model (8) can be
obtained from equation (4) by replacing Yjk(Xik) with Y/k (Gik) and Zjk(Xik)
with Zjk(Xj,k-l + Gik), where Gik = Xik -_Xi,k~l and Y}k(t) = I(Gjk ~ t). In
either the case of AG or that of PWP, A -l(B) is the variance-covariance
estimator for the resulting parameter estimator ~.
Which of these three approaches should be used to analyze recurrent

events? If one is only interested in the overall rate for recurrences of the
same nature, the easiest to use seems to be the AG model (with appropriate
time-dependent covariates to capture the dependence), especially when there
are only a few second recurrences. If the main interest lies in gap times,
then the PWP approach may be used. On the other hand, the marginal
approach is the most robust for analyzing total times. It is recommended
that each of the three types of models be fit to the same data set, since they
provide somewhat different insights.

Monitoring clinical trials

Most clinical trials are monitored periodically for early evidence of treat
ment difference. In this subsection, we show how to monitor clinical trials
with multivariate failure time observations. Much of the material presented
here is similar to that given by Lin [21), but several extensions are provided.

81



Let D(~;t) and Wik(~;t) (i = 1, ... , n; k = 1, ... , K) be the statistics
D(~) and Wik(~) (i = 1, ... , n; k = 1, ... , K) calculated from the data
available at the calendar time t. Suppose that interim analyses are conducted
at calendar times t1 < t2 < ... < tM. Then, under Ho: ~ = ~o, the pM
dimensional random vector {D'(~o;t1)"'" D'(~o;tM)}' is approximately
zero-mean normal, the (estimated) covariance matrix between D(~o;t) and
D(~ol) being [21]

n K K

B(~o;tl) = L L L Wik(~o;t)Wil(Pol)' (tl = t1, ... , tM)'
i=lk=l/=l

The foregoing joint distribution provides the basis for constructing various
stopping rules.
Suppose for the moment that 0 is one-dimensional. For an a-level

sequential test, we reject Ho at time tm if the observed absolute value of the
standard normal statistic D(~o;tm)/B1I2(~o;tm,tm) exceeds dm. The boundary
values dm (m = 1, ... , M) are determined recursively by the following
equations:

Pr{IG11 < d1, ... , /Gm-ll < dm- l , IGml > dm} = am,
m = 1, ... , M,

where (ab ... , aM) are a sequence of exit probabilities such that ~~=l am
= a, and (Gb ... , Gm ) is a zero-mean multivariate normal with covariance
matrix {B(~o;t,tt)/(B(~o;t,t)B(~o;tt,tt))l/2; t,tt = tb ... , tm}. The above
probabilities are evaluated by numerical integration [22] for small M and by
simulation for large M. The choice of (aI, ... , aM) was discussed by Slud
and Wei [23] and Lin [21].

It is less straightforward to deal with the case of p > 1. The simplest
solution is to use a one-dimensional summary number such as the maximal
absolute value of or a linear combination of the p (standardized) components
of D(~o;t) at each look. Since the joint distribution over the M analyses
for the resulting summary statistics follows readily from the known distribu
tion of {D' (~o;tl)' ... , 0' (PO;tM)} ' , the boundary values may be obtained in
a manner similar to that given in the preceding paragraph. The choice of the
linear combination was discussed in great detail by Lin [21].

Software availability

All the methods described in the above subsections on regression models
have been implemented in a general FORTRAN program called MULCOX2
[24]. Arbitrary patterns of time-dependent covariates and risk-set indicators
are allowed in that program. Dr. Terry Therneau of the Mayo Clinic has
also developed some SAS and S macros that serve similar purposes to those
of MULCOX2. The sequential methods presented in the previous subsec
tion have been implemented in a FORTRAN program called MULSEQ. All
the aforementioned programs are available through StatLib.
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Examples

In this section, we apply the techniques described in the last section to the
four biomedical studies described in the introduction to this chapter. For
comparison, both the naive and robust statistics are presented, though the
former are generally inappropriate. All the results reported in this section
were obtained from MULCOX2 and MULSEQ (except for the last two
columns of table 4).

The colon cancer study

In this trial, 315, 310, and 304 patients with stage C colon cancer received
observation, levamisole alone, and levamisole combined with fluorouracil,
respectively. Patients were enrolled between March 1984 and October 1987.
The study was terminated following an interim analysis in September 1989,
when levamisole+fluorouracil was found to be significantly more effective in
prolonging survival and reducing the risk of cancer recurrence. By the end
of the study, 155 patients in the observation group, 144 in ihe levamisole
alone group, and 103 in the levamisole+fluorouracil group had experienced
recurrences, and there had been 114, 109, and 78 deaths in the observation,
levamisole alone, and levamisole+fluorouracil groups, respectively. For
simplicity, we focus only on the comparison between the observation and
levamisole+fluorouracil (Lev+5-FU) groups. Thus, the number of units n is
619 and the number of failure types K is 2. We treat recurrence as the first
failure type and death as the second. Since recurrences can only occur
before deaths, A01(t) must be different from A02(t).
Let us first consider model (2) with type-specific covariates Zit = (R,O)'

and Zi2 = (O,Ry (i = 1, ... , 619), where
R. = {I if the ith patient was on Lev+5-FU,

I 0 if the ith patient was on observation.

Note that WZit = ~lRi and ~;Zi2 = ~2Ri so that ~1 and ~2 pertain to the
treatment effects on recurrence and death, respectively. This parameteriza
tion illustrates the fact alluded to in the above discussion of the marginal
approach for multivariate failure time data that assuming a common ~

for the K marginal submodels does not preclude the use of typespecific
parameters. We are essentially fitting two separate standard Cox models to
recurrence and death with the treatment indicator as the single covariate in
each model, but formulation (2) permits simultaneous estimation of ~1 and
~2 as well as direct estimation of the correlation between the two estimators.
We obtain ~ = (-0.517, -0.398)', with naive and robust standard error
estimates of (0.1273,0.1471)' and (0.1266,0.1475)', respectively. The
closeness between these two sets of standard error estimates is not surprising,
because they are asymptotically equivalent under the current parameteriza
tion if the assumed marginal models are correct. The standardized parameter
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estimates (i.e., estimate/standard error) based on the robust variance
estimates are (-4.08, - 2.70). The naive and robust variance-covariance
estimates for ~ are

A--1(A) = [00.0162 0 J -(-) [0.0160 0.0144J
fJ 0.0216 ' D ~ = 0.0144 0.0218'

Because of the high correlation between ~l and ~2' the naive and robust
tests for a multivariate hypothesis (involving both ~l and ~2) can be quite
different. For example, the logrank statistic for testing ~ = 0 is 24.27 using
A(~) and 17.23 using B(~). The robust Wald statistic for testing ~l = ~2 is
1.57 whereas the naive test statistic is 0.37. Apparently, there is no convinc
ing evidence for different sizes of treatment effects on cancer recurrence
and death.
We now suppose that ~l = ~2 = ~. Note that the null hypothesis of no

treatment effect on either recurrence or death corresponds to ~l = ~2 = ~ =
O. As long as ~l and ~2 are not too far apart, the estimator of ~ provides a
useful summary of the overall treatment difference. By letting Zit = Z;2 =
R;, which implies that WZ;l =WZ;2 = ~R;, we obtain ~ = -0.466 with naive
standard error estimate of 0.096 and robust standard error estimate of 0.128,
the corresponding standardized parameter estimates being -4.84 and
-3.65, respectively. Unlike the estimation of separate treatment effects
discussed in the preceding paragraph, the naive and robust standard error
estimators for the common treatment effect are not asymptotically equivalent
if the two failure types are correlated. The use of the robust standardized
estimate or the robust log rank statistic (the latter being 13.54) for the
common parameter ~ would enable one to make a single probability
statement regarding the overall benefit of Lev+5-FU.
There were some imbalances between the observation and Lev+5-FU

groups with respect to certain prognostic factors. Thus, it is desirable to run
a confirmatory analysis that adjusts for the prognostic variables. To this end,
we fit model (2) with Z;l = Z;2 = (R;,S;,D;,N;)', where

if the surgery for the ith patient took place ::::;20 days
prior to randomization,
if the surgery for the ith patient took place >20 days
prior to randomization;

1
1 if the depth of invasion for the ith patient was sub

D; = 0 mucosa or muscular layer,
if the depth of invasion for the ith patient was serosa;

1
1 if the number of nodes involved in the ith patient was

N; = 0 1-4,
if the number of nodes involved in the ith patient >4.

This analysis yields -0.483 as the estimate for the common treatment effect
with robust standard error estimate of 0.131. The corresponding standardized
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parameter estimate is -3.69, so the treatment effect remains significant after
adjusting for the prognostic factors. The depth of invasion and the number
of nodes are both highly significant.
Eleven of the 619 patients in the observation and Lev+S-FU groups died

without cancer recurrences. In the above analyses, recurrence times on
those patients were censored at deaths. Strictly speaking, the assumption of
conditional independence between the failure time and the censoring time
may not be completely satisfied in such cases. To avoid this problem, one
may consider deaths without recurrences as events for the first failure type.
Then the first failure time variable is interpreted as recurrence-free survival
time, i.e., time to either cancer recurrence or death, whichever occurs
first. For this study, very similar results were obtained between the two
approaches, mainly because less than 2% of the patients died without
recurrences, compared to 42% who had recurrences first. For the model
considered in the preceding paragraph, i.e., model (2) with Zil = Zi2 =
(R,Si,Di,NJ', we obtain PI = -0.467 with robust standard error estimate of
0.130 when deaths without recurrences are treated as events for the first
failure type.
In this study, four interim analyses were planned, but the study was

terminated at the second analysis. The formal stopping rule was defined on
mortality, though recurrence was also taken into consideration in the decision
making. Here we demonstrate how the approach described above in the
section on monitoring clinical trials might have been employed to construct
a formal stopping rule based on both recurrence and death. Let OI(P;t) and
02(P;t) be" respectively, the components of the score function for recur
rence and death calculated at calendar time t, and let Bj/(Po;ti) be the
covariance between 0lPo;t) and O/(Poi) under Ho:P= Po. Table 2 displays
the observed values of OI(O;t) and 02(0;t) along with the variance-covariance
estimates for the first two interim looks. Assume that al = a2 = 0.005, a3 =
0.01, and a4 = 0.03. Let R(t) be the sum of the two standardized score
statistics at time t divided by its variance. Note that the sum of the non
standardized OI(O;t) and 02(0;t) is equivalent to the one-dimensional score

Table 2. Observed score statistics and variance-covariance estimates at the first two interim
looks for the Colon Cancer Study

Bji (0;1,1')

j OJ (0;1) OJ (O;I)/B}? (0;1,1)

I, 1 -23.646 -3.842
I, 2 -5.099 -1.169
12 1 -32.868 -4.097
12 2 -18.870 -2.725

1= 1

37.876

1=2

16.383
19.025

1 = 1

37.732
16.434
64.353

1=2

29.866
19.465
42.704
47.949
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statIstIc U(O;t) for testing Ho: ~ = 0, where ~ is the common regression
parameter discussed in the 3rd paragraph of this subsection. From table 2,
we obtain R(tl) = -2.792 and R(t2) = -3.627 with 0.764 as the estimated
covariance or correlation. By numerical integration, the boundary values
associated with the specified al and a2 and the correlation estimate are d1 =
2.807 and d2 = 2.721. Thus, IR(tl)1 < dl and IR(t2)/ > d2. For further
illustration, let Q(t) be the maximum of the absolute values of the two
standardized score statistics at time t. The covariance matrix for the four
standardized statistics is easily obtained from table 2. Given this covariance
matrix and the aforementioned al and a2, the boundary values for the two
maxima are found to be d l = 3.006 and d2 = 2.915. Clearly, both Q(t1) and
Q(t2 ) exceed the boundary values. Thus, one would have terminated the
trial at the first look because of the early evidence for the benefit of Lev+5
FU in reducing the risk of cancer recurrence.

The CGD study

The main statistical analysis of the CGD study was based on time to the first
infection. By fitting the standard Cox model with the treatment indicator R
(Ri = 1 if the ith patient was on gamma interferon and Ri = 0 otherwise) as
the single covariate, we obtain ~ = -1.094 with standard error estimate
of 0.335. Note that our numbers are different from those of Fleming and
Harrington ([8], p. 163) because they used only the infections that had
occurred by the interim analysis cutoff, whereas we make use of the addi
tional data on occurrence of infections between the interim analysis cutoff
and the final study visit for each patient. Appendix D.2 of Fleming and
Harrington [3] contains the full data set used here.
Since the investigators were interested in how gamma interferon reduces

the rate of infections, it seems desirable to incorporate into the analysis the
additional data on recurrent events. The simplest way is to fit the AG
multiplicative intensity model for all infection episodes with R as the single
covariate. Under this Markov model, the estimate of treatment effect is
-1.097 with an estimated standard of 0.261. This analysis assumes that the
patient's risk for a new infection at a given time is not altered by the pattern
of prior infections. As an attempt to accommodate the dependence of in
fection patterns, we add to the preceding model a time-dependent covariate,
which indicates by the value 1 versus 0 whether or not the patient had an
infection within the previous 60 days. The parameter estimate for this
covariate is 0.712 with standard error estimate of 0.293, which is highly
significant. In this semiMarkov model, the estimate for the treatment
parameter becomes -0.989 with standard error estimate of 0.266.
The representation of the infection history by simple time-dependent

covariates may be inadequate. To avoid specifying the nature of dependence,
we use the marginal approach. In this application, Tik is the time from study
enrollment to the kth infection for the ith patient, and Ck is the time from
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study enrollment to the final study visit for the ith patient. Since there were
very few fourth infections, we will study only the first three infections. To
estimate separate treatment effects for the three failure types, we fit model
(2) with Zil = (Ri,O,O)' , Zi2 = (O,R,O)', and Zi3 = (O,O,Ri)' (i = 1, ... ,
128); to estimate an overall treatment effect, we fit model (2) with Zik = Ri
(i = 1, ... , 128; k = 1,2,3). The results of these analyses are summarized in
table 3. For comparison, we also display the results for the PWP approach
using the same covariates as the marginal approach, as well as those of the
two AG models. Note that the last column in table 3 pertains to a common
regression parameter. Note also that the results for the AG models reported
in the last paragraph were based on all infections, whereas those of table 3
are restricted to the first three infections only.
As shown in table 3, using any of the three approaches, one arrives at the

conclusion that gamma interferon indeed reduces the infection rate sub
stantially. Compared to the PWP and AG methods, the marginal approach
gives a somewhat larger estimate of the common treatment parameter along
with a larger standard error estimate. Note that, for testing no overall
treatment benefit, the marginal approach is always valid, whereas the validity
of PWP and AG methods depends on correct specification of the dependence
structure. It is interesting to observe that the PWP approach does not yield
significant treatment effects for the second and third infections.

The Diabetic Retinopathy Study

We confine our attention to a subset of the data from the Diabetic Re
tinopathy Study (DRS) that was previously analyzed by Huster, Brookmeyer,
and Self [25] and Liang, Self, and Chang [26]. The analysis subset is a 50%
sample of the high-risk patients as defined by DRS criteria (n = 197). By the

Table 3. Estimates of treatment effects for the CGD Studya

Infection number

Methods 2 3 1-3

Marginal -1.094 -1.231 -2.063 -1.215
(0.335) (0.538) (1.019) (0.353)

PWP
Total time -1.094 0.151 -1.279 -0.859

(0.335) (0.566) (1.084) (0.280)
Gap time -1.094 -0.090 -1.077 -0.872

(0.335) (0.537) (1.084) (0.279)
AG
Markov -1.020

(0.267)
Semi-Markov -0.943

(0.269)

aThe standard error estimates are given in parentheses.
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end of the study, 54 treated eyes and 101 control eyes in this subsample had
developed blindness.

In this example, each patient could potentially experience blindness in
both eyes; therefore, there are two failure types, with k = 1 and 2 denoting
the left and right eyes, respectively. Since there are no biological differences
between the left and right eyes, it is natural to assume a common baseline
hazard function for the two failure types.
As mentioned in the introduction to this chapter, the main hypothesis of

interest is whether laser photocoagulation delays the occurrence of blindness.
Because juvenile and adult diabetes have very different courses, it is desira
ble to examine how the age at onset of diabetes may affect the time to
blindness. Following Huster et al. and Liang et al., we consider model (1)
with Zik = (Zlik,Z2ik,Z3ik)' (iI, ... , 197; k = 1,2), where

{
I if the kth eye of the ith patient was on treatment,

Zlik = 0 otherwise;

{
I if the ith patient had adult onset diabetes,

Z2ik = 0 if the ith patient had juvenile onset diabetes;

and Z3ik = Zlik * Z2ik' The results of our analysis are presented in table 4
along with those of Huster et al. and Liang et al.
The robust standard error estimates are appreciably smaller than the

naive estimates. The treatment appears to be effective, and this effect is
much stronger for adult onset diabetes than for juvenile diabetes. The Liang
et al. estimating function is similar to our equation (5), but they replaced
5(1)/5(0) by an analogue that exploits pairwise comparisons of independent
observations. Their method produced very similar parameter estimates to
ours, and their standard error estimates are almost identical to our robust
ones. Huster et al. specified a Weibull baseline hazard function for model
(1). Their parameter estimates are fairly close to ~, whereas their standard
error estimates are similar to be naive estimates.

Table 4. Estimates of regression parameters for the Diabetic
Retinopathy Studya

Methods

Covariate Naive Robust Liang Huster

Treatment (21) -0.425 -0.425 -0.422 -0.43
(0.218) (0.185) (0.185) (0.22)

Diabetic type (22) 0.341 0.341 0.340 0.37
(0.199) (0.196) (0.196) (0.20)

Interaction (21 * 2 2) -0.846 -0.846 -0.844 -0.84
(0.351) (0.304) (0.303) (0.35)

aThe standard error estimates are given in parentheses.
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The Schizophrenia Study

if the kth relative of the ith proband is male,
if the kth relative of the ith proband is female.

Note that we set K = 12, the maximal number of relatives for a proband.
Since the ordering of relatives within a family is arbitrary, we suppose that
the missing components occupy the tail portion of the failure vector Ti =
(Til," ., Ti,d' for each i. We obtain ~ = (-0.238,-1.244)' with naive and
robust standard error estimates of (0.489,0.411)' and (0.517,0.408)', respec
tively. Therefore, the proband's age at onset is not significant, whereas the
relative's gender is. The failure to establish an association between the
familial risk and the proband's age at onset may be due to the small number
of events. We intend to reanalyze the data after further follow-up.

In this ongoing genetic epidemiologic study, the failure time is the age at
diagnosis of affective illness for the relative. There are only 31 events out of
the 487 relatives in the current database. The covariate of major interest,
the proband's age, has been dichotomized at 16 years. The gender of the
relative is also expected to be predictive. We assume that gender is the only
characteristic that differentiates relatives of the same proband. It is then
natural to consider model (1) with Zik = (Zlik,Z2ik) , (i = 1, ... , 93; k =
1, ... , 12), where

{
I if the age at onset of the ith proband ~ 16,

Zlik = ° otherwise;

Z2ik = { ~

Discussion

The estimating functions (5) and (6) were derived under the independence
working assumption. As in the case of longitudinal data [9], it may be more
efficient to use estimating functions that take into account the nature of
dependence explicitly. This amounts to forming certain linear combinations
of the contributions to functions (5) or (6) from the K types of failures. The
resulting estimators remain consistent and asymptotically normal with
estimable covariance matrices under mild regularity conditions on the
weight matrices. Because of the censoring and the nonlinear nature of the
Cox model, however, it is difficult to construct optimal weight matrices. In
her Ph.D. dissertation, Cai [27] suggested the use of the inverse matrix of
the covariance functions between counting process martingales [28] for
model (2). Her simulations, however, indicated that the efficiency improve
ments of the resulting estimators are small unless the correlations of failure
times are unusually high. For estimating a common regression parameter,
WLW used a linear combination of type-specific parameter estimators that
achieved the smallest asymptotic variance among all linear combinations.
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For the CGD study, the WLW method estimates the overall treatment
effect at -1.103 with standard error estimate of 0.333. In a similar spirit,
Lin [21] proposed a weighted sum of the marginal logrank statistics which
maximizes asymptotic power against certain local alternatives. Further
research into dependent working models is warranted.

It is important to assess the adequacy of the marginal models. A simple
method for examining the key proportional hazards assumption is to test for
the significance of interaction terms between covariates and tor logt, as was
originally suggested by Cox [6]. One may also compare parameter estimators
with different weight matrices [29]. Recently, elaborate techniques for
checking (univariate) survival models have been developed by using martin
gale-based residuals [30-32]. Generalizations of these methods to the
multivariate setting are currently being investigated by C. Spiekerman in his
University of Washington Ph.D. dissertation.
When designing clinical trials, one is often faced with the task of sample

size calculation. Due to the complicated nature of the robust variance, it is
difficult to derive a simple sample-size formula. The easiest solution is to use
the formula for the independence case [33] and then adjust the sample size
upward or downward depending on whether it is a clustered or matched
study. A more precise approach is simulation. Under the latter approach,
one would, as in the above subsection on simulation results, specify the
joint distribution of the multivariate failure times along with the usual
design parameters and then obtain the empirical powers of the resulting
robust logrank test for various sample sizes.
In many applications, failure times are broadly grouped. Most commonly,

they arise when the (continuous) failure time is subject to interval grouping.
In other instances, the time measurement may be truly discrete, as, for
example, when the time represents the number of attempts required to
successfully perform a certain task. For the univariate failure time variable,
Prentice and Gloeckler [34] studied a grouped data version of the Cox
proportional hazards model. Recently, Guo and Lin [35] extended the work
of Prentice and Gloeckler to the multivariate setting. Their procedures are
essentially the discrete versions of those described above in the section
about multivariate failure time data.
A useful alternative to the proportional hazards model is the accelerated

failure time model, which relates the logarithm of the failure time linearly to
the covariates. Semiparametric inference for this model has received con
siderable attention in the last few years [36,37]. Recently, Lin and Wei [38]
and Lee, Wei, and Ying [39] applied the ideas of WLW and LWA, respec
tively, to the case of accelerated failure time models.
As mentioned above, a few patients in the colon cancer study died

without cancer recurrences. In most of the analyses reported here, the
recurrence times of those patients were censored at their death times.
Strictly speaking, the resulting relative risk estimators pertain to the so
called cause-specific hazard function ([40], p. 167) rather than the usual net

90



hazard function. Pepe and Mori [41] discussed the limitations of cause
specific hazard functions and advocated the use of cumulative incidence
functions and conditional probabilities. Recently, Lin, Robins, and Wei
[42] proposed a bivariate accelerated failure time model for the times to
cancer recurrence and death for the two treatment groups and constructed
semiparametric procedures for comparing the two marginal distributions of
recurrence.
The marginal approach exploited in this chapter treats the dependence of

related failure times as a nuisance. In contrast, a number of authors [43-46]
have studied the so-called frailty models, which explicitly formulate the
nature of dependence. To be specific, the hazard function for the ith unit
with respect to the kth type of failure, given the frailty Q;, takes the form

A;k(t;Z;bQ;) = Q;Ao(t)eP'Zik(t) , (9)

where the frailty variables Q; (i = 1, ... , n) are postulated to follow a given
parametric distribution. Conditional on Q; (i = 1, ... , n), the failure times
are assumed to be independent. Note that ~ in equation (9) generally needs
to be interpreted conditionally on the unobservable frailty. There has been
considerable controversy over whether the unconditional specification of the
marginal hazard approach or the conditional specification of the frailty
model approach is more naturally related to the underlying mechanisms.
The latter approach is expected to be more efficient than the former,
provided that the frailty distribution is correctly specified. However, the
types of dependence encompassed by frailty models are quite limited, and
the model fitting is rather cumbersome. So far there has not been a general
large-sample theory for frailty models, though significant progress is being
made. The interested reader is referred to the recent text of Andersen et al.
[19] for an excellent exposition of frailty models.
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5. Goodness-of-fit and diagnostics for proportional
hazards regression models

Patricia M. Grambsch

Introduction

A common clinical study design follows patients over time, recording end
point events as they occur for each individual. In a cancer clinical trial with
death as the endpoint, there can be at most one event per patient. In other
cases, multiple events are possible - for example, studies of recurrent
infections in bone marrow transplantation recipients. The study goal is to
model the event rate as a function of covariates measured at baseline. In a
clinical trial, these would typically include the treatment group, measures of
disease severity, patient age, and other sociodemographic variables. The
proportional hazards regression model is a popular tool.

In counting process notation [1] the data consist of n independent triples

{N;(t),Y;(t),Z;; i = 1, ... ,n, t E [O,t]}

observed over the time period [O,t]. The counting process N;(t) is the
number of events observed for subject i in the interval [O,t]. The predictable
process Y;(t) is a 1-0 indicator process showing whether or not subject i is at
risk and under observation at time t. Its sample paths are left-continuous
step functions. Z; is a p-vector of covariates measured on subject i at
baseline. Let {Ft , t ~ O} be the right-continuous filtration, specifying the
process history:

Ft = cr{Z;(u),N;(u),Y;(u+): 0 ~ u ~ t, i = 1, ... , n}.

The proportional hazards regression model assumes that the intensity process
(with respect to the process history) for individual i can be written

h;(t)dt = Y;(t) expttl~Jj(Z;j) }AO(t)dt.

The h's are known functions of the covariates and the ~/s are parameters to
be estimated. The function Ao(t), the baseline intensity function, is an
unspecified function of time to be estimated. The intensity process can be
interpreted as the probability of an event in the next brief time period, dt. In



the case of survival data, exp{l:f=l ~jjj(Z;j)}Ao(t) is the hazard function. The
expected number of events for individual i can be found by integrating the
intensity process:

(2)

There are two basic assumptions for this model. The first is the assumption
of proportional hazards. This means that the hazard ratio h;(t)/hj(t) for any
two individuals i and j does not depend on time. The second assumption is
that of the functional form of the covariates. The model assumes that the
impact on the log hazard for the jth covariate is linear in jj(Zj)' There are
numerous statistical techniques for assessing these two assumptions. Good
reviews can be found in Andersen et al. ([2], chapter VII.3), Kay [3], and
Lin and Wei [4]. It is not our purpose to provide another encyclopedic
review. Rather, we will focus on a few simple graphical techniques that we
have found useful in indicating departures from the assumptions. These
techniques are based on residuals computed after fitting a proportional
hazards regression model to the data. We will use suitably scaled martingale
residuals to assess the functional form for covariates, and suitably scaled
Schoenfeld residuals to detect departures from proportional hazards.

Martingale and Schoenfeld residuals

Inference for the proportional hazards model typically proceeds by maxi
mizing the log partial likelihood to estimate ~ [5]. Let/; be the p-vector with
jth element Ii(Z;). The log partial likelihood is

(3)

Define

n

s(r)(~,t) = L Y;(t) exp{W/;}/;0r
;=1

for r = 0, 1, 2 where, for a column vector a, a02 denotes the outer product
aa', a01 denotes the vector a and a00 denotes the scalar 1. The conditional
weighted mean and variance of the covariate vector at time tare

and
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The score vector process a~~) is

U(~,t) = i r'{Ji -l(~,s)} dNiCt) ,
,=1 Jo

(4)

and the maximum partial likelihood estimator ~ is the solution to the
estimating equation U(~,'t) = O. Under suitable regularity conditions [6], it
has the usual properties of a maximum likelihood estimator. It is consistent
and asymptotically normally distributed with mean equal to the true value of
~ and variance/covariance matrix consistently estimated by the inverse of
the observed information matrix,

n r'
f(~) = ~1 J

o
V(~,s)dNiCs).

The cumulative baseline intensity function Ao(t)
by [7]

(5)

= fhAo(s)ds is estimated

(6)

A r 'LdN;(s)
Ao(t) = Jo'LY;(s)exp{~'fi},

The martingale residuals [8] are motivated by counting process
martingales. If the assumed model is correct, then

M;(t) = N;(t) - {Y;(s)e f3 '[;Ao(S)dS (i = 1, ... , n)

is a subject-specific martingale. The martingale residual is defined as

M;(t) = N;(t) - J:Y;(s)efi'fidA.o(S), (7)

with M; as shorthand for M;(t). The residual can be interpreted as the
observed number of events minus the conditional expected number, given
the at-risk process, for the time period [O,t]. These residuals have many of
the properties of residuals from normal theory linear models:

'LM;(t) = 0 for any t,

and asymptotically

E(M;) = Cov(M;,M) = O.

The partial residuals introduced by Schoenfeld [9] are the increments in
the score process (equation (4)). Suppose the d events in the study occur at
ordered times 0 < t1 < t2 < ... < tk < ... < td < t. Let f(k) be the covariate
vector of the subject with an event at time tk' Let rk{P) = f(k) - l(~,tk) and
Vk(~) = V(~,tk)' Then the Schoenfeld residuals are given by rk = rk(~)' k =
1, ... , d. This residual can be interpreted as the difference between the
covariate vector observed to have an event at t and its conditional expecta-
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tion, given those at risk at that time. If the assumed model is correct, then
the rk(~)'s are uncorrelated with mean 0 and conditional variance matrix
V(~,tk) given flAk-. Clearly, r.kYk = O. The Schoenfeld residuals, YI, ... ,rd,
have means that are asy~mpto~ically 0 apd cov(Y/,r!r')' wh~ch may be consis
tently estimated by ()/m V/ - V/Y'(~) -1Vm where V/ =V(~,t/) [9]. Note that
f(~) = r./V/.

Assessing proportionality

Suppose the proportional hazards assumption is not met. A simple way to
conceptualize this departure is to allow one or more covariates to have a
time-varying effect on the intensity process, thus forcing hazard ratios to
vary with time. An example is a treatment effect decreasing over time. Let
~j(t) == ~j + 8jgit); j = 1, ... , p, where each git) is a predictable process
with respect to the history filtration. Informally, this means that its behavior
at t is determined by its behavior on (O,t) for any t. Examples include
continuous deterministic functions of time and left-continuous stochastic
processes that are functions of the counting processes up to t-. For identi
fiability, we assume that g varies about O. The intensity process becomes

hi(t)dt = Yi(t) exp[{~ + G(t)8} 'f;] A.o(t)dt, (8)

where G(t) is a p x p diagonal matrix with Gjit) = git) and 8 is a p-vector
with jth element 8j • The model follows proportional hazards when 8 = 0;
otherwise, it has time-varying coefficients.
We generalize Schoenfeld's approach [9], which considered a time-varying

coefficient for only one covariate. Using his Taylor's expansion argument,
we get

E(Ykl9?;.-) = V(~,tk)Gk8,

where Gk = G(tk)' Further, if 181 is not too large,
cov(Y/,rm) = ()/mV/ - V/r.Vk)-IVm

for large samples. Let r% = V;;IYk be the scaled Schoenfeld residual. Then

E(rk) = E(Gk)8, (9)
var(rk) = V;;I - f(~)-I, (10)

cov(r%,rt) = -f(~)-I. (11)

Equations (9) to (11) suggest a standard linear model for r%. Generalized
least squares gives

e= D-Ir.GkYk> (12)

with

(13)
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Under d"t'o, the asymptotic variance of n-1I2r.GkYk can be consistently
estimated by n-1D, leading to an asymptotic X2 test statistic on p degrees of
freedom:

(14)

For any single variate, this derivation shows that on average, rZ is propor
tional to g(tk), a rescaling of the time axis, suggesting a plot of rZ versus
g(tk)' The test is essentially a test for a nonzero slope in a generalized linear
regression of the scaled residuals on the chosen rescaling of time.
These results, motivated by least-squares heuristics, can be formalized.

The estimator (12) is a one-step Newton-Raphson estimator of e, starting
from the estimated proportional hazards model with ~ at ~ and e = O. The
test statistic is the Rao score test of proportionality (d"t'o: e = 0) based on
the partial likelihood. A proof of the asymptotic distribution of T(G) under
d"t'o follows from standard results for score processes using counting process
theory. The fully iterated maximum partial likelihood estimator of ej could
be obtained by additional Newton-Raphson steps. The connection between
score tests and generalized least squares has been observed in many settings.
It is useful to note that it holds in this less standard framework as well.
Many of the standard tests for proportionality are, in fact, T(G) tests for

particular choices of G. Typically, G is diagonal, so we will refer to a
univariate function get). When get) is a user-specified function of time, T(G)
is the score test for the addition of the time-dependent variable g(t)f(2) to
the model, the test suggested by Cox [5]. Letting g be piecewise constant on
nonoverlapping time intervals (with the interval boundaries and constants
prespecified by the investigator) gives the score test proposed by O'Quigley
and Pessione [10], which generalizes tests proposed by Schoenfeld [11] and
Moreau, O'Quigley, and Mesbah [12]. If get) = r.Ni(t-), one obtains essen
tially the test proposed by Harrell [13], who tested the correlation between
the Schoenfeld residuals and the rank of the event times. Lin [14] suggested
comparing ~ to the solution ~g of the weighted estimating equation

r.Gkrk(~g) = 0
with get) one of the scalar weight functions commonly chosen for weighted
logrank tests, such as the left-continuous version of the Kaplan-Meier
estimator. He showed that asymptotically ~- ~g is multivariate normal with
mean 0 and a variance matrix derived from martingale counting process
theory. If the estimator, ~g were based on a one-step Newton-Raphson
algorithm starting from ~, his test would be identical to T(G). Finally, let
git1) = 0 and gitk+1) = aJYjk, where j = 1, ... , p. This gives the test
statistic of Nagelkerke, Oosting, and Hart [15], who suggested using the
serial correlation of the Schoenfeld residuals for a univariate predictor, or,
for multivariate covariates, the correlation of a weighted sum, a'Yk' They
proposed a = ~ as a natural choice for the weights, followed by examination
of individual covariates if the test is significant.
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The T(G) tests provide a general regression framework for tests of pro
portionality. In turn, they are themselves a special case of more general
weighted score tests. The numerator of the test, r.Gkrb can be written as

fa' it! Yi(s)G(s) [fi -l(~,s)] dNi(s),

which is a multivariate version of the nonparametric test of Jones and
Crowley [16,17]. They show that many of the commonly used tests in
survival analysis, including the Harrington and Fleming [18] family of tests
for comparing two groups, the Tarone and Ware family of tests for com
paring k groups, the s-sample trend test of Tarone and Ware [19], and the
logit rank test [20] have this form.
These statistical tests can be supplemented by graphical diagnostics.

Schoenfeld [9] and Lin [14] proposed plotting the components of the
Schoenfeld residuals against event times. Pettitt and Bin Daud [21] plotted
the Schoenfeld residual components scaled by the corresponding inverse
diagonal elements of the Vk's. Redefine the scaled Schoenfeld residuals as
~ + r%. Equations (8) and (9) imply that the p componentwise plots of
scaled residuals versus tk with a scatterplot smooth superimposed to estimate
the mean will suggest the functional form of ~(t). The mean scaled residual
is a one-step Taylor approximation to the functional form.
Many scatterplot smoothers are readily available. Typically, they are

linear smoothers. For a scatterplot of two n-vectors, x and y, a linear
smoother gives the fitted smooth as j = Ly, where the n x n smoothing
matrix L depends on x, the smoothing bandwidth, and possibly user-specified
weights, but not on y. Examples include kernel smooths, regression splines,
smoothing splines and locally weighted regression (e.g., loess [22,23,24,25]).
The use of a smoother introduces an unavoidable element of subjectivity,

since the user must choose the type of smoother and the bandwidth. The
type of smoother is usually not very important, so long as the smoother is
sensitive to local rather than global features of the data set ([26], chapters 3
and 4).
Computer-intensive algorithms based on cross-validation can be used to

optimize the choice of smoothing bandwidth. A simpler approach is to use
the equivalent degrees of freedom of the smooth, as defined by Hastie and
Tibshirani [26]. By analogy with linear regression, one can use tr(LL') - 1
as the degrees of freedom. The matrix L corresponds to the projection
matrix of multiple linear regression and, in the case of regression including
an intercept term, tr(LL') - 1 gives the 'degrees of freedom for regression'
familiar from regression ANOVA tables. The equivalent degrees of freedom
term is inversely proportional to the bandwidth of the smooth. The analogy
to linear regression can often suggest a reasonable amount of smoothing for
any particular data set. When one expects fairly smoothly time-varying
coefficients and has a moderate number of events (at least 30), smoothers
with 3 to 5 degrees of freedom are often adequate, we have found.
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Another computational simplification is frequently possible when plotting
scaled Schoenfeld residuals. The computation of Vk at each event time may
not be necessary; for most data sets, the covariance matrix of the at-risk
covariates is fairly stable until the last few events. One can substitute the
average value V = f(~)/d. This estimate may even be preferable, because
the last Vk's are based on only a few subjects each and may even be
singular. A refinement is to consider f(~)/d*, where d* is the number of
events where Vk is invertible. The computations for V and the rk's are
unchanged if there are tied events, but the usual caveats about biased
estimates apply if the proportion of ties is large.
We illustrate the performance of these techniques on some data sets. The

first example [12] comes from a clinical trial comparing chemotherapy alone
to chemotherapy plus radiation for patients with locally advanced nonre
sectable gastric carcinoma, using death as the endpoint. A proportional
hazards model with treatment as a binary covariate (chemotherapy with
radiation = 0, chemotherapy alone = 1) gave ~ = -0.267 with standard
error = 0.23. The test of Moreau, O'Quigley, and Mesbah [12] led to a
rejection of proportional hazards. Figure 1 shows the scaled Schoenfeld
residuals plotted against death times. As is typical for data with a single
binary covariate, the residuals fall into two bands. Positive values mark
death times for chemotherapy patients, and negative values mark chemo
therapy plus radiation deaths. Two three-degrees-of-freedom scatterplot
smooths are superimposed, namely, linear gaussian loess (solid line) and a
cubic natural spline (dotted line) with two knots at the tertiles of the death
times. Stablein, Carter, and Novak [27] fit a time-varying coefficient model
to these data:

hi(t) = Ao(t)exp[{~o + 81(;0) + 82(;oY}zl
They found ~(t) = -1.866 + 0.1768(t/30) - 0.0028(t/30)2, and this estimate
is also shown on the plot (dashed line). The three curves are quite similar.
All suggest that the beneficial effect of radiation on relative risk decreases
over time and has effectively disappeared by about one year.
Approximate confidence intervals for the smooths can be computed under

the null hypothesis of proportional hazards and can be used to assess any
departures from proportional hazards observed on the plots. Let Y= LR*
+ ~, where L is the d x d smoothing matrix and R* has kth row r'k =
Vk -Irk' Under the null hypothesis of proportional hazards, each column j
of R* is asymptotically multivariate normal with mean 0 and variance
covariance Sj, say. Note that conditioning o~ the event times and risk
sets, var(rk), can be estimated consistently by V;;I - f- I and cov(r'k in by
-f-1. Therefore, we estimate Sj by A j - .Yj~1J, where A j is a d x d
diagonal matrix whos~ kth diagonal element is ':';;,},j, J is a d x d matrix of
l's. The variance of Y involves the variance of ~j' Due to the optimality of
the partial likelihood score equation under d'C'o [28], ~ and the Schoenfeld
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Figure 1. Scaled Schoenfeld residuals +p. A loess smooth, three degrees of freedom (solid
line), a natural spline smooth, three degrees offreedom (dotted line), and the quadratic time x
covariate interaction model of Stablein, Carter, and Novak (dashed line) are superimposed.

residuals are asymptotically uncorrelated. Conditioning on the observed
failure times so that we can treat L as deterministic, the jth column of Y is
asymptotically normal with mean ~j1 and variance matrix LAjL'. Confidence
intervals can be formed by standard linear model calculation, e.g., Scheffe
intervals using the rank of LSjL' for simultaneous confidence bands or z
intervals for pointwise estimates.
As a simplification, one might consider using V = d-lJ in place of Vk .

Then Sj becomes Ji/{(d + 1)1 - J}. For smoothers based on linear re
gression against a basis matrix X, such as splines, the calculation is very
similar to that for the ordinary regression hat matrix H = X(X' X) -1X', in
that a d x d matrix need not ever be explicitly constructed. The problem is
computationally more complex for the loess smoother [23]. However, one
typically wants pointwise confidence intervals at only a few time points, and
therefore only the rows of L corresponding to those points are needed. As a
practical matter, we have rarely found the simplified approach to lead to
conclusions different from those obtained using the Vk's. Therneau [29] has
written a set of S [30] or S-Plus [31] functions that will implement these
diagnostics.
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The second example comes from a study comparing stage II and stage
IIA ovarian cancer patients on time from treatment initiation to disease
progression [32]. There were 35 patients (15 stage II and 20 stage IIA) with
22 events. Gill and Schumacher's test [33], a version of Lin's test for a scalar
covariate, showed that one could reject the proportional hazards assumption
for. these data. Figure 2 shows the scaled Schoenfeld residuals from a
proportional hazards model with stage as a binary covariate (stage II = °
and stage IIA = 1). The two methods for scaling, event-specific variance
Vi;lPk (right panel) and average varianceJ-1Pk/d* (left panel), give similar
residuals. The loess scatterplot smoother with three equivalent degrees of
freedom was used. It was modified for event-specific variance scaling to
include weights, with each point weighted inversely by its estimated variance
under dC'o, Vi; 1 - J- 1. Superimposed on each plot are 90% pointwise con
fidence intervals at t = 34, 199, 270, 370, and 451 days. The smooths and
confidence intervals for the two scaling techniques are virtually identical and
suggest that the risk of progression for stage IIA relative to stage II increases
over time, particularly after 200 days. Simulation results for other models,
including multiple covariates, are given by Grambsch and Therneau [34].

Assessing functional form

The intensity process

h;(t)dt = Y;(t)expC~l~jjj(Z;j) }A.o(t)dt

requires specification of the jj(Z)'s, the functional forms for the covariates.
In the case of quantitative covariates, standard practice involves using the
identity function and assuming that the intensity is log-linear in Zj. However,
the true functional form may involve ZJ, In Zj, I{zj>c}, or some other
transform. This issue was examined by Therneau, Grambsch, and Fleming
[35]. They suggested assessing covariates one at a time. To examine any
particular covariate, one would fit a proportional hazards model omitting
that covariate and compute the martingale residuals scaled by dividing by
the proportion of failures in the data set. A plot of the scaled martingale
residuals against the covariate of interest with a scatterplot smooth super
imposed would reveal the functional form for that covariate. However, as
the authors pointed out, this plot did not work well when the covariate
effects were large. A careful reading of their proof shows that it also
requires that the covariate of interest be uncorrelated with other covariates
in the model.
A refinement of their diagnostic plot can be motivated from two direc

tions. The first is the close relationship between counting process models
and Poisson regression. Poisson regression can be viewed as a special case of
the generalized linear model (GLM), and the GLM partial residual plot for
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assessing functional form in Poisson regression ([36], p. 402) suggests a
modification of the martingale plot for counting process data. Let X denote
the covariate of interest. GLM partial residuals are computed after fitting a
model that includes X. This requires an initial guess for the functional form
for X. If one expects a monotonic relationship between X and the intensity,
a log-linear form is often adequate, and we use that form for illustration.
The investigator fits the model:

{

P-1 }
h;(t)dt = Y;(t) exp j~1 PJj(Z;j) + yX; A.o(t)dt

Let

E; = f'Y;(s)ex p{Pi1~jt(Z;j) + YX;}i..o(t)dt
o J=1

denote the expected count for the ith individual and let M; = N; - E; be the
martingale residual. Then the GUM partial residual is

M; AXE. + Y ;.
I

McCullagh and Neider [36] recommend plotting the partial residual against
X as an informal check for the correctness of the initial guess: 'The partial
residual plot, if smoothed, can be remarkably informative even for binary
data.'
For counting process data, it is important to use a weighted scatterplot

smooth with E/s as weights. This procedure corresponds to weighting
inversely as the variance because the variance of M; is the expected value of
E;. More importantly, the weights offer a bias correction. Even if the initial
guess as to functional form is correct, an unweighted approach can have
serious bias. As an instructive example, consider the case where there are a
large number of replicates at each unique value of X. Let the replicates be
indexed by the additional subscript j, j = 1, ... , n;, at each unique value X;.
A simple smooth would just take the mean of the replicates at each X;. The
weighted smooth involves the weighted average of M;/E;j with weights E;j,
which is

I.j~ij/n; _ 1.
I.jE;/n;

The unweighted smooth is

The smoothed partial residual then adds yX; to each mean. Let the number
of replicates increase. If the postulated model is correct, the weighted
smooth will converge to yX;, since I.jN;/n; and I.jEij/n; both converge to
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E(E;). The correct functional form will be seen. The unweighted smooth
may be poorly behaved, since nj-I"ijNj/Ejj need not converge to 1. It is easy
to construct examples where it becomes unbounded.

If the postulated functional form for X is not correct, but the other
covariates are scaled correctly, a Taylor expansion argument shows that the
weighted smoothed partial residual plot can suggest the true functional
form, provided the smoother is reasonably unbiased for the true functional
form and the initial guess is not too poor (see Grambsch, Therneau, and
Fleming [37] for more details).
A Monte Carlo experiment was done to compare the smoothed weighted

GLM partial residuals to smoothed unweighted GLM partial residuals and
to the original proposal of Therneau, Grambsch, and Fleming [35]. The
experiment involved censored survival data with hazard rate Aaexp{!J(21) +
h(22)} with !J(21) = 1.721 and 12(22) = 0.63(22 - 0.6)3. The covariates
were bivariate normal with common mean 1.5, common standard deviation
0.3, and two different correlations: 0.0 and 0.90. We set Aa = exp{ -!J(J..l) 
fiJ..l)}. Censoring was independent of failure time and uniform on [O,c], with
C chosen to give a censoring rate of roughly 27%. One thousand data sets of
133 observations were generated for each correlation. To compute GLM
partial residuals, a Cox model with hazard rate log-linear in 2 1 and 2 2 was
fit to each data set. For the martingale residuals, a Cox model with hazard
rate log-linear in 2 1 but ignoring 2 2 was fit. In each case, the functional
form was correct for 2 1 but not for 2 2 .
The smoother was a linear gaussian loess with four degrees of freedom.

Because the Cox model is semparametric, the intercept in a diagnostic plot
is not identifiable. Therefore, each smooth was adjusted by vertical transla
tion to pass through the point (1.5, 2). The smooth for each diagnostic plot
was computed at 41 points spaced equally in [1,2]; i.e., 1.00, 1.025, ... ,
2.00. This interval covered 90% of the data. The simulations were sum
marized by the 41 pointwise means of the 1000 smooths for each correlation.
Figure 3 shows residual plots for the functional form for 2 2 . The weighted

smoothed GLM partial residual plot (long dash line) performs well; the
mean smooth tracks the true functional form (solid line) closely, if not
exactly, regardless of the covariate correlation. The smoothed martingale
residual plot ignoring 2 2 (dotted line) performs well only with uncorrelated
covariates. With highly correlated covariates, it shows substantial bias. The
unweighted smoothed GLM partial residual plot (short dash line) has poor
performance with both correlated and uncorrelated covariates. Simulation
results for other models and smoothers lead to similar conclusions [37].
The second motivation for the weighted GLM partial residuals comes

from the penalized likelihood approach of Hastie and Tibshirani [38].
They considered simultaneous estimation of the functional form of all the
covariates. They assumed that the hazard is AaU) exp{"if=lJj(2j )} where the
Jj are unspecified smooth functions. The resulting partial likelihood cannot
be maximized directly without leading to overfitting and identifiability pro-
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blems. Instead, they maximized the penalized partial likelihood with penalty
function r.f=lAJfl(s)2ds, where Ai ~ 0 (i = 1, ... , p) are user-specified
smoothing parameters. Let

P

11i = "2JiZ ij) ,
j=l

and

n

N.(t)= 'LNi(t).
i=l

Then the derivatives of their partial likelihood are

= Mi'

a
2

l f'- -;2 = Pi(t)[l - Pi(t)]dNi(t)
U11i a

= Ei - {PT(t)dN.(t)

= Vi'

Their algorithm is a doubly iterated modified Newton-Raphson scheme
involving repeated application of a weighted cubic smoothing spline to the
scaled martingale residual, M;lvi' plus the current estimated functional form
Ji' with weights given by the v/s. The first step is effectively the weighted
smooth of the GLM partial residual plot proposed here, but with a particular
smoother and with weights that differ from Ei by a factor of 0 (~).
Iteration of our procedure should lead to approximately the same solution

as Hastie and Tibshirani's method. An advantage of our approach is that
special regression software is not necessary. Related techniques for esti
mating smooth f/s include the local full likelihood approach of Gentleman
and Crowley [39] and the penalized regression splines with a moderate
number of knots from Gray [40). These also require special software, since
the optimization is done within the kernel of partial likelihood.
We apply our technique to a malignant melanoma data set [2], a histori

cally prospective clinical study of 205 patients with malignant melanoma
operated on at Odense University Hospital in 1962-1977 and followed until
the end of 1977. The survival endpoint was death from malignant melanoma,
and there were 57 such deaths. Andersen et al. [2] considered a Cox model
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with three predictors - two binary indicators, gender, and the presence or
absence of ulceration in the tumor - and one quantitative predictor, tumor
thickness (mm). Their analysis concluded with a model omitting gender,
stratified on ulceration, and with tumor thickness as a proportional hazards
covariate entered on the log scale. They decided on the log scale by starting
with a model with tumor thickness untransformed. Adding other functions
of tumor thickness, namely, 2 x I (2 ~ 2 mm) and 2 x I (2 ~ 5mm),
produced a statistically significant improvement in fit and suggested that the
influence of thickness on the log hazard was a concave function. A model
with log (thickness) was not significantly improved by adding other functions
of thickness.
We used the weighted smooth GLM partial residuals to examine the

functional form for tumor thickness in a model stratified on ulceration. We
considered two models, one with thickness and the other with log (thick
ness). Figure 4 presents the residual plots for the two models. As is typical
for censored failure time data, the partial residuals are heavily skewed with
long right-hand tails. In fact, a few very large residuals were omitted from
each plot. A weighted linear loess smooth with three equivalent degrees of
freedom was applied. The functional form as estimated from each model
(linear in thickness for the first model and linear in log thickness for the
second) was also superimposed. The residual smooth for the linear model
departs markedly and systematically from the linear fit, suggesting that a
concave transformation would be better. The smooth for the log-linear
model is closer to the linear fit. The partial residual plots lead to the same
conclusion as Andersen et al. [2].
We also included the result of two additional iterations, where the

smoothed weighted partial residual plus the fit from iteration i was used as
the covariate for iteration (i + 1). In this data set, as in several others
examined by the authors, the iterated fit leads to the same conclusion as the
initial smoothed residual plot.

Conclusion and summary

We have presented simple graphical techniques for assessing the two key
assumptions of proportional hazards regression models for counting process
data. Smoothed plots of suitably scaled Schoenfeld residuals can reveal
departures from proportional hazards, and smoothed plots of martingale
residuals can reveal departures from the postulated functional form. These
techniques have two major advantages. The first is that they are computa
tionally simple. They require only the Schoenfeld and martingale residuals,
standard summary statistics from the Cox model such as the information
matrix, and a plotting routine with scatterplot smoothing. The second
advantage is that the plots do not simply show problems with the model but
also suggest remedies. The smoothed scaled Schoenfeld residual plot suggests
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the functional form for a time-varying coefficient model. The smoothed
scaled martingale residual plot suggests the functional form for a covariate
in a proportional hazards model. Of course, the plots should be treated with
due caution since, at base, they are based on one-step approximations to the
true functions. At the cost of computational complexity, they could be
iterated. Another drawback is that the two assumptions are treated in
isolation. The martingale residual plot assumes that the proportional hazards
assumption is met. Poorly specified functional form for covariates in a
proportional hazards model may suggest lack of proportionality in diagnostic
plots for proportionality. Further research into the relationships and interac
tions of these two plotting techniques will be beneficial. A possible approach
involves simultaneously smoothing estimated hazard rates as functions of
both time and covariates [41].
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6. A review of tree-based prognostic models

Michael LeBlanc and John Crowley

Introduction

Tree-based methods are adaptive nonparametric statistical procedures that
are gaining popularity in applied fields such as artificial intelligence, pattern
recognition, and medicine. An important attraction of tree-based models is
their interpretation in terms of a partition of the covariate space and their
binary decision tree representation.
Tree-based regression models are typically constructed by partitioning the

data recursively into groups that minimize some measure of impurity - for
instance, the residual sum of squares for a continuous response variable or
binomial deviance for a binary response variable. Alternatively, the data are
split based on some measure of dissimilarity between two groups appropriate
for the response distribution, such as a two-sample test statistic. The splitting of
the data continues until there are only a few observations in each region,
leading to a model that overfits the data. Then the tree is pruned back, and
the 'best' model is selected.
Tree-based models were first introduced by Morgan and Sonquist [1].

However, they gained popularity due to the work of Breiman et al. [2], who
developed the Classification and Regression Tree (CART) algorithm. The
CART algorithm includes important improvements to the methodology,
including first growing a large tree, an optimal pruning algorithm, and cross
validation to estimate prediction error and to select the tree size. Statistical
software for the CART algorithm and other flexible tools for tree-based
models in the S statistical language [3] by Clark and Pregibon [4] have
further increased interest in the methodology.
Whereas the methodology was developed for categorical or continuous

outcome data, there is also interest in using this methodology for censored
survival data, where investigators frequently want to find groups of patients
with differing prognosis. While Cox's [5] proportional hazards model is a
flexible tool for the study of covariate associations with survival time, it does
not directly lead to models for prognostic groups. It seems reasonable that a
model for prognostic groups should describe groups of patients with relatively
homogeneous survival probabilities. Such a model is piecewise constant over



regions of the covariate space with a single survival function corresponding
to each region. Some examples of tree-based methods for forming prognostic
groups with survival data are given in Albain et al. [6], Ciampi et al. [7], and
Kwak et al. [8].
In addition to identifying prognostic groups, tree-based methods have

other desirable statistical attributes. These include invariance to monotonic
transformations of the predictor variables, flexibility to adjust to nonlinear
or nonadditive covariate effects, and the potential to include good methods
to deal with missing covariate values.
Much of the recent methodological work on tree-based methods for

survival data has concentrated in three main areas:
• Tree-based methods have been developed that use some measure of
impurity suitable for censored survival data. This enables one to incor
porate most of the 'good' engineering aspects of the CART algorithm
[9-12]. Davis and Anderson [9] use an exponential model loglikeli
hood to define impurity for a node. LeBlanc and Crowley [11] use
an approximation to the full likelihood for the proportional hazards
model. Gordon and Olshen [10] use Lp and Lp Wasserstein metrics [13],
which focus on vertical and horizontal differences between distribution
functions, respectively. Therneau et al. (12] propose growing trees on
residuals from the Cox [5] model.

• Methods that focus on the separation between nodes have also been
developed. The logrank test statistic is used to partition the data recur
sively and to develop the models (14,15]. LeBlanc and Crowley [16]
develop an optimal pruning algorithm based on between-node test
statistics, and they propose various resampling techniques to aid in the
selection of tree size.

• Graphical and analytical methods for studying a single split in a tree
based model for survival data have also been studied. Graphical methods
have been discussed in LeBlanc [17] and LeBlanc and Crowley [18].
Asymptotic properties for splitting data based on the logrank test statistic
have been studied by Jesperson [19], Lausen and Schumacher [20], and
LeBlanc and Crowley [18].
In this chapter, we discuss some of the general methodological aspects of

tree-based models for survival data as cited in the first two points above.
Finally, we show an example based on data from a clinical trial for myeloma.

Data and model

The data are assumed to consist of failure times and covariates that may be
associated with failure times. An observation is distributed as the vector
(T,L1,X), where T is the time under observation, L1 is an indicator of failure,
and X is a vector of p covariates. The learning sample consists of the set of
independent observations {(ti,bi,Xi): i = 1, 2, ... , N}.
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The techniques for growing tree-based models are described in the fol
lowing section. However, a tree-based model for survival can be expressed
by a step-function regression model

S(tlx) = 2: Sh(t)I{x E Bh},
hEf

where t is the set of terminal nodes (nodes with no daughter nodes) of a
binary tree T and {Bh , h E t} forms a partition of the predictor space. The
function Sh(t) is the survival curve corresponding to region Bh. Therefore,
the mean or median function corresponding to the survival model would be
a simple piece-wise constant function over the covariate space. Note that
one could choose a simple parametric model such as the exponential model
Sh(t) = exp(-Aht) (e.g., [9]) or a more general proportional hazards model
where Sh(t) = SO(t)6h and So(t) is a nonparametric baseline survival func
tion (e.g., [11]). Other general models may be useful in some situations.
However, models should allow computationally efficient parameter esti
mation because many partitions need to be evaluated to construct a tree
based model.

Growing a tree

A tree-based model is grown by first splitting the covariate space into two
regions and the data into two groups. The same splitting rule is applied
recursively to each of the resulting regions until a large tree has been grown.
Typically, splits on a single covariate are used because they are easier to

evaluate and interpret. For an ordered covariate, splits are of the form 'Xj :::::;

c' or 'Xj > c' and for a nominal covariate splits are of the form 'Xj E S' or '~
E 5,' where B = {bi> b2 , ... , br } and S is a subset of B. All possible splits
are evaluated for each of the covariates, and the covariate and split point
resulting in the greatest reduction in impurity is chosen. In addition, there is
typically a rule limiting the minimum number of observations in a node to
control the amount of adaptiveness of the algorithm.
A useful measure of impurity for a node is the deviance corresponding to

the data for the node and the assumed survival model. The deviance for
node h is defined to be

R(h) = 2{Lh(saturated) - Lh(8h)},

where Lh(saturated) is the log-likelihood for the saturated model that uses
one parameter for each observation, and L h (8h ) is the maximized log
likelihood for node h with maximum Iikelhood estimate 8h . For instance, the
exponential model deviance for node h is

R(h) = 2:2[ 0; log (~~;t) - (0; - ~ht;)l
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where 5..h is the maximum likelihood estimate of the hazard rate in node h.
The improvement for split s at node h into left and right daughter nodes

l(h) and r(h) is

G(s,h) = R(h) - [R(l(h) + R(r(h))].

Alternatively, the best split can be based on maximizing the separation
in survival times between two groups. These methods use the logrank
test statistic

where

G(s,h) = Go(s,h)21V(s,h), (1)

fco Yj(u)Y2(u) , ,
Go(s,h) = 0w(u) Yj(u) + y

2
(u)(dAI (u) - dA2(u)),

and where A/t) and Y/t) are the Nelson [21] cumulative hazard estimator
and number of individuals at risk for each of the two groups defined by the
split s at time t. V(s ,h) is an estimate of the variance of the logrank
numerator, Go(s,h). In figure 1, an example of a single split on a continuous
covariate is given in the left panel, and the right panel shows the Kaplan
Meier [22] estimates of the survival curves for two of the groups data
corresponding to the regions generated by the split, where the lower
curve corresponds to data with Xl < 1.64 and the upper curve to data with
Xj ?;: 1.64.
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Figure 1. Hypothetical split on a covariate (left panel) and survival function estimates for each
group (right panel). In the left panel, open circles represent censored times and shaded symbols
represent deaths. In the right panel, '+' symbols represent censored times.
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It is also important that the splitting statistic can be efficiently updated for
all possible split points for continuous covariates. Simple updating algorithms
exist for exponential deviance and approximations to the logrank test
statistic [9,16].
The binary splitting continues until a relatively large tree has been grown.

Figure 2 shows a partition and tree representation for a small tree-based
model developed on a data set with two covariates.

Pruning and tree selection

Several different methods have been proposed for pruning trees and for the
selection of one or a few models. The methods that use within-node error or
deviance usually adopt the CART pruning algorithm directly.

Within-node methods

In the CART algorithm, the cost-complexity measure

Ra(T) = "ZR(h) + alfl
hEr

is used to assess the performance of a tree-based model, where f is the set
of terminal nodes in a binary tree T, Ifl is the number of terminal nodes, a
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Figure 2. Partition of a two-dimensional covariate space (left panel) and binary tree repre
sentation (right panel). The numbers at the bottom of the tree correspond to labels for the
regions defined.
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is a nonnegative parameter, and R(h) is the impurity or estimated cost of
node h defined above.
A subtree (a tree obtained by removing branches) T 1 is an optimally

pruned subtree for any penalty a of the tree initially grown if

Ra(T1) = min Ra(T),
T',,;;T

where '~' means 'is a subtree of,' and T1 is the smallest optimally pruned
subtree if T1 ~ Til for every optimally pruned subtree, Til.
The cost-complexity pruning algorithm efficiently obtains the optimally

pruned subtree for any a. This algorithm finds the sequence of optimally
pruned subtrees by repeatedly removing branches for which the average
reduction in impurity per split in the branch is small. The process yields a
nested sequence of subtrees. The cost-complexity pruning algorithm is
necessary for finding optimal subtrees because the number of possible
subtrees grows rapidly as tree size increases. A tree with only 32 terminal
nodes can have almost 460,000 potential subtrees [2].
After the pruning algorithm yields a sequence of trees; the selection of

the best tree is guided by a cross-validation estimate of deviance. The data,
L, are divided up into V test samples Lv and training samples L(v) = L - Lv,
v = 1, ... , V of about equal size. Trees are grown with each of the training
samples L(v); each test sample Lv is sent down the tree to estimate the
deviance using the parameter estimates from the training sample L(v)' The
results are summed over the V test samples to obtain the cross-validation
estimate of deviance. The tree that minimizes the cross-validation estimate
of deviance (or a slightly smaller tree) is selected. The CART algorithm
includes the '1 standard error rule,' which selects the smallest tree that
does not perform significantly worse than the tree that minimizes the cross
validated estimate of prediction error. In addition to giving a smaller tree
that is easier to interpret, the trees selected by the '1 standard error rule'
have less variability in size than those selected without the rule.

Between-node methods

Methods that only use between-node separation [14,15] adopt more ad hoc
methods for pruning trees and selecting tree size than the cost-complexity
pruning and cross-validation used in the CART algorithm. However, for
trees that are based on between-node separation, LeBlanc and Crowley [16]
develop an optimal pruning algorithm similar to the cost-complexity pruning
algorithm of CART. They define the split-complexity of a tree as

Ga(T) = G(T) - alS I,
where G(T) is the sum over the standardized splitting statistics, G(h), in the
tree T:
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G(T) = L G(h),
hES

where S represents the internal nodes (or splits) T.
One can interpret G(T) as the amount of prognostic structure represented

by the tree-based model. Such an interpretation can be motivated by con
sidering the logrank test statistic in equation (1) as a standardized distance
between empirical hazard functions of adjacent nodes in the tree.
A tree T1 is an optimally pruned subtree of T for complexity parameter

a if

GU(T1) = max Gu(T'),
T,;;T

and it is the smallest optimally pruned subtree if T1 :-;::; Til for every optimally
pruned subtree, Til.
A pruning algorithm analogous to the cost-complexity pruning algorithm

leads to the best tree for any a, just as with the cost-complexity pruning
algorithm. The algorithm repeatedly prunes off branches with smallest
average logrank test statistics in the branch. Either bootstrap or permutation
sampling methods are used to select the tree size. Some permutation
sampling methods are presented in the following example.

Example: prognostic groups for myeloma

This example is based on data from 614 patients who were entered on a
randomized clinical trial of the Southwest Oncology Group between 1982
and 1987. The subset of the patient characteristics and laboratory values
considered here are~, sex;~, age;#, performance status; cal, serum
calcium; C1'6, serum creatinine; aa, albumin; ~2, serum ~2 microglobulin;"n-,
percent proplasmacytes;,na, percent plasmablasts;,.Mo, acid phosphate;F'
beta glucuronidase; +, percent mature plasma cells;~, hemoglobin.
Analyses of other subsets of variables and earlier versions of the data are
presented in Saeed et al. [23] and LeBlanc and Crowley [11].
A tree-based model was grown on the data using an algorithm based on

between-node separation with logrank test statistics. The full unpruned tree
has 20 terminal nodes and is not displayed. A nested sequence of optimally
pruned subtrees was generated by the pruning algorithm referenced in the
previous section and developed in LeBlanc and Crowley [16].
Permutation samples are used to determine approximate p-values and

degrees of freedom for an adaptively chosen split. We permute the responses
{(Ti,Oi): i E Bh } over the covariate values within the node and calculate the
maximal text statistic, Gb , for each permutation sample b = 1, ... , B.
Under the assumption that the censoring and survival distribution are not
associated with the covariates in the node, an approximate p-value for an
adaptively chosen split is
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Ph = _1_[~ I{Gb(h) ~ G(h)} + 1],
B + 1 k=l

where G(h) is the maximal test statistic for the original sample.
We define approximate degrees of freedom for an adaptively chosen

split as

1 B

dh = 2 x "B"{;.lGb(h).

Here, dh is an estimate of the expected value of the logrank test statistic if
the survival and censoring times are not associated with the covariates, for
observations in node h. Note that dh = 1 if there were no adaptive selection
of the split point.
A model performance analogous to the Akaike Information Criterion

(Ale) [24], defined as

GC(T) = G(T) - 2 x L dh ,
hET

is used to assess the performance of the tree.
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Figure 3. Model performance GC(T) and the pruned sequence of trees for the myeloma data.
The tree with 13 terminal nodes yields the best model performance.
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A plot of CCCT) for the nested sequence of optimally pruned subtrees is
given in figure 3. The tree with best model performance has 13 terminal
nodes and is presented in figure 4. In addition to the logrank test statistic,
degrees of freedom and approximate p-values based on 1000 permutation
samples are presented below each split. The logarithm of the relative
risk estimates and the number of observations are presented below each
terminal node.
The development of a small number of prognostic groups was an im

portant goal of the analysis. Hence, the relative risk estimates given below
each terminal node shown in figure 4 were used to order the nodes from best
to worst prognosis:

3,10,5,12,1,4,6,9,8,2,11,13,7
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35.46
4.48
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Figure 4. Pruned tree for the myeloma data. The split value, the logrank test statistic, approx
imate degrees of freedom, and approximate p-value (based on 1000 permutation samples) are
given for each split. The logarithm of relative risk estimates (with the leftmost node as baseline)
and the number of observations are given below each terminal node. The number of obser
vations at the terminal nodes is less than the total sample size because of missing values for
some covariates.
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Figure 5. Survival function estimates corresponding to four-groups stratification of the pruned
tree. The nodes for the groups for best to worst prognosis are (3,10,5), (12,1,4), (6,9,8,2),
and (11,13,7), where the numbers indicate the node indices (numbered from left to right in
figure 4).

(nodes are numbered consecutively from left to right in figure 4). These
nodes were divided to construct four groups of approximately equal sample
size. The survival function estimates and the nodes labels are given in figure
5 and its legend.
For the data presented, it was also of interest to determine close

competitor splits for the first split of the data. A simple graphical tool gives
logrank test statistics for all possible splits on four of the covariates, namely,
serum ~2 microglobulin, serum creatinine, percent mature plasma cells, and
age. The results are presented in figure 6. The best competitor split on a
different covariate is «fI8 ::s 67. The same technique could be used to
assess the 'stability' of splits and to look for competitor splits for other parts
of the tree.
Software for growing the tree-based models presented in this section and

other interactive graphical tools for developing partitions for survival
have been written in the S statistical language and are available from the
first author.
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7. Decision analysis and Bayesian methods
in clinical trials

Donald A. Berry

Introduction

The standard statistical approach to designing and analyzing clinical trials is
frequentist. A purpose of this chapter is to describe a Bayesian approach as
an alternative, or perhaps as a supplement. The two approaches have
focuses so different that they can be viewed as distinct disciplines. And yet
both deal with empirical evidence and both use probability, so the distinc
tion is poorly understood by nonstatisticians. The distinction is further
blurred when frequentists and Bayesians act and think alike - which
they are wont to do, despite 'anti' rhetoric coming from both sides. Both
approaches have good characteristics. The most important advantage of the
Bayesian approach is attitude, which is consistent with the scientific method.
An example will help show an important difference in the approaches.

A clinical trial has been carried out to compare an experimental with a
standard therapy. One type of frequentist conclusion is a p-value: the
probability of results more extreme than those observed in the trial given
the null hypothesis Ho that the two therapies have identical effectiveness. In
symbols, p-value = P(DATA I Ho), where DATA refers to the totality of
data more extreme than that observed. (The reason for including 'more
extreme' data is that the probability of any particular observation is usually
tiny, regardless of the hypothesis assumed.) Another type of frequentist
conclusion is the probability of results more extreme than those observed in
the trial under the particular alternative hypothesis that the new therapy
indeed has a particular benefit - 20% say. These probabilities depend on
the results of the trial at hand and so are descriptors of the trial results.
(Which data are more extreme depends on the way the trial was conducted
- on the stopping rule, for example [1,2] - but this matter will not be
addressed in this chapter.)
A Bayesian conclusion is the probability that the experimental and

standard therapies are equally effective given the results of the trial at hand
- in symbols, P(Ho I data). Another Bayesian conclusion is the probability
that the experimental therapy is at least 20% more effective than the



standard, again given the trial's results. These are called posterior pro
babilities in that they apply after the trial. Probabilities that refer to future
observations on individual patients or on finite sets of patients (again
given the trial's results) are called predictive probabilities. So Bayesians
use probabilities of hypotheses given the results while frequentists use
probabilities of sets of results given hypotheses.
The results of the trial are known, and so it seems reasonable to condition

on them. The Bayesian approach is so natural that users interpret frequentist
measures as though they were Bayesian probabilities. For example, if the p
value for a therapy comparison is small, people tend to conclude that there
probably is a difference in therapies. It is difficult to give a p-value any
other interpretation!

Bayes'theorem

Calculating a posterior probability of any hypothesis H requires Bayes'
theorem:

P(H Idata) = P(data IH)/P(data).

In terms of a parameter - say w, which we can think of as the difference in
effect between experimental and standard therapy - Bayes' theorem says
that the posterior probability or density of any w is

pew Idata) = P(data Iw)p(w)/P(data).

The factor P(data IH) or P(data Iw) is the likelihood function evaluated at
H or w. So Bayes' theorem relates the conditional density pew Idata) of a
parameter w with its unconditional density pew). Since the latter depends on
information present before the experiment, it is a prior probability. Think of
11P(data) as a factor that makes the total probability equal to 1 when adding
over all possible w's - that is, the denominator P(data) is the sum (or
integral) of the numerator over all w's. So rewriting Bayes' theorem:

posterior. probability oc likelihood x prior.probability,

where oc means 'proportional to.' Bayes' theorem provides a formalism
for learning: That's what I thought before (prior), this is what I just saw
(likelihood), so here's what I now think (posterior) - and I may change
my views tomorrow.

In a Bayesian analysis, prior information about a parameter w is assessed
as a probability distribution on w. This distribution depends on the assessor,
and so is subjective. Since posterior probabilities depend on prior pro
babilities, they too are subjective. A subjective probability can be calculated
any time a person has an opinion. Counting ignorance as an opinion, though
obviously a very weak one, this includes every setting.
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The prior distribution of a parameter w includes all information that was
available before the current trial. Interpreting this information in the
context of the current trial and assessing prior probabilities is subjective.
This is so even if some of the prior information itself arose from clinical
trials. The patients in earlier trials may not have been similar to those in the
current trial, and in any case we cannot know whether they were similar. So
prior information has to be partially discounted (subjectively) when applied
to the current setting.

Bayesian vs. frequentist approaches

Subjectivity is the principal objection to a Bayesian approach. Different
people can draw different conclusions from the same results. While it is
conforting when two analysts give the same answer, I regard subjectivity to
be an advantage: differences of opinion are the norm in medicine
and science generally, and so an approach that explicitly recognizes such
differences is realistic.
Bayesian and frequentist probabilities are inverses of each other in the

sense that the roles of the arguments and the conditions are exchanged.
While this is an important distinction, it is not the most important. A more
important difference is that a Bayesian conclusion depends on all available
evidence, while the frequentist conclusion is restricted to the trial at hand.
Bayesians assess evidence other than that in the trial and incorporate it into
their analysis through a subjective assessment of prior probabilities. This
makes the posterior probabilities relevant scientifically and medically, but it
makes the Bayesian approach more difficult to use because it places an extra
burden on an investigator and on consumers of experimental information.
The principal advantage of the Bayesian approach is its attitude toward
evidence. Bayesian analysis is not data analysis per se, since its conclusions
are not restricted to any particular data set. The Bayesian approach attempts
to bring possibly different types of evidence to bear on questions of
importance - questions such as whether a therapy is beneficial.

Decisions and utilities

Another important difference is that the Bayesian approach is decision
oriented. A trial's results affect one's state of knowledge concerning the
various therapies. But knowledge without application is specious. How
should Ms. Smith be treated? Should another trial be designed? What type
of trial? The answers depend on one's knowledge, but they also depend on
the consequences of the various decisions. In a Bayesian approach, con
sequences are evaluated explicitly by associating a utility with each. Also,
each consequence of a decision has a predictive probability. So the
utility of a decision can be found by averaging utilities of consequences
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with respect to these predictive probabilities (see the section below on
decision problems).
Much of the Bayesian clinical trial literature does not consider utilities

or exploit the decision-analytic aspects of the Bayesian approach (see
Spiegelhalter, Freedman, and Parmar [3] and many of their references). I
will distinguish what I call a fully Bayesian approach from partial Bayesian
approaches, without meaning to imply that less than fully Bayesian is less
than good. A fully Bayesian approach is decision theoretic, and posterior
probabilities are based on all available evidence, including evidence separate
from the trial at hand. There are at least two ways to be less than fully
Bayesian. First, one can calculate posterior distributions as data summaries
without incorporating them into a decision analysis. Second, one can
calculate posterior distributions using canonical prior distributions rather
than prior distributions based on the available evidence. Bayesian ap
proaches that are missing both of these characteristics are similar to the
standard frequentist approach that focuses on data summary. But there are
differences. The main one is flexibility: accumulating data from a clinical
trial can be used to update Bayesian measures, independent of the design of
the trial. Frequentist measures are tied to the design, and interim analyses
must be planned for frequentist measures to have meaning. Its flexibility
makes the Bayesian approach ideal for analyzing data from clinical trials.
The purpose of this chapter is to give examples of the use of Bayesian and

decision theoretic methods. Other examples and further descriptions are
given in Berry [4], Spiegelhalter, Freedman, and Parmar [3], Berry and
Stangl [5], and their references.
A basic part of all Bayesian problems is the prior probability distribution

of any unknowns. The next section gives a method for assessing prior
probabilities.

Assessing probabilities

Subjective probability is based on degrees of belief. Consider an event
whose occurrence is uncertain. How strongly an individual feels that this
event will occur (or has occurred) depends on the individual as well as on
the event. The purpose of this section is to show how to assess probabilities
as degrees of belief. Anyone can assess his or her probabilities. For the
purposes of designing clinical trials, the most important subjects are the
investigators or other experts whose beliefs can be elicited. When results of
clinical trials are published, the reader is the appropriate subject.

Calibrating for probability assessment

A basic requirement for assessing one's probabilities is the existence of a
calibration scale. One must be able to imagine experiments in which the
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outcomes are exchangeable, in the following sense. Suppose the person gets
to choose anyone from among a set of outcomes and will receive $100 if the
outcome chosen occurs. Outcomes in the set are exchangeable if the person
is indifferent among the various outcomes, and in particular, would strictly
prefer anyone outcome over all others if the reward on it were increased by
an arbitrarily small amount, say one cent. (Statements about preferences are
always somewhat delicate because other people set the ground rules. The
assessor should be able to imagine that there's no chicanery afoot.)
An experiment is a calibration experiment for someone if all outcomes

of the experiment are exchangeable for that person. There are many
candidates. But whether a particular experiment serves to calibrate depends
on the assessor. What's required is that the assessor be indifferent and not
that the probabilities are equal in a catholic sense. One convenient set of
possibilities is to select a chip from a bowl that contains chips of the same
size and shape.
Consider a specific setting. I'd like to know your probability that for a

particular population, the average drop in diastolic blood pressure on a
certain drug is less than 10mmHg - call this event A. Consider a (calibra
tion) bowl with one green and one red chip. I offer you the choice of getting
$100 if a chip selected from the bowl is green or $100 if A is true; if you
choose to select from the bowl and the chip is red or if you choose A and it
turns out that A is false, then you receive nothing. Suppose you choose A;
then I take this to mean that your P(A) is at least 1/2. Now consider a
(calibration) bowl with three green chips and one red chip. Again you get to
choose between $100 if a chip selected from the bowl is green and $100 if A
is true. If you now prefer the chip, then, taken together, your two answers
mean that 1/2 ~ P(A) ~ 3/4. Proceeding in this way, each time halving the
interval by doubling the total number of chips in the bowl, will give P(A)
sufficiently accurately.
There are several problems with this approach. The most obvious is that I

cannot be serious about the money. And the problem is not that I have
limited financial resources. I could be serious only if we could find out
whether A is true. Luckily, in most practical circumstances, the assessor is
motivated to take the assessment procedure seriously by imagining rewards
in the comparison of events with calibration experiments.
Another problem is that the assessor soon faces very difficult decisions.

By the time the bowl contains 16 chips, most assessors will have a hard time
deciding between green and A. Again, luckily, a high degree of accuracy in
specifying P(A) is seldom required.

Probability distributions

Most problems require a probability distribution and not a single probability.
The above process can be carried out for various events A of the form:
average drop in diastolic blood pressure on the drug is less than x mmHg.
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The prior distribution of drop in blood pressure can be determined within a
specified accuracy by varying x. For example, figure 1 shows the result of
carrying out this process for seven different changes in blood pressure. The
assessor in question has probabilities 0 to 1/16, 1/16 to 2/16, 3/16 to 4/16,
5/16 to 6/16, 10/16 to 11/16, 14/16 to 15/16, and 15/16 to 1, for X = -5,0,
5, ... , 25, respectively. The corresponding density is shown in figure 2, and
a smoothed version is shown in figure 3. The advantage of the version in
figure 3 over that in figure 2 is only cosmetic; in particular, it has no
computational advantage.
Extreme values are of special importance in assessing probabilities. For

example, suppose the drug is given to 20 subjects and the diastolic blood
pressure of all 20 subjects increases by more than 10mmHg (that is they
drop by less than -10). Because the prior probability for the density in
figure 2 gives all its probability to the right of -10, the posterior density

16/16 _.

12/16 _:

6/16 _:

4/16-:

-5 o 5 10 IS 20 25
Drop in blood pressure (mmHg)

Figure 1. Subjective distribution function of change in blood pressure. Vertical lines show
range indicated by the assessor. The curve drawn goes through the middle of the range at each
point and so approximates the assessor's opinion.

-10 -5 o 5 10 15 20 25
Drop in blood pressure (mmHg)

30

Figure 2. Subjective density function of drop in blood pressure estimated from figure 1.
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Drop in blood pressure (mmHg)
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Figure 3. Smoothed version of density function from figure 2.

would give all its probability to the region just to the right of -10. This may
not be appropriate and is likely due to a somewhat cavalier assessment. As a
rule of thumb, be openminded to the extent that you give some probability
with all possibilities, even if it is small.

Beta densities for proportions

A common type of problem is when there are two possible observations,
such as success/failure or response/nonresponse or lives/dies. The parameter
of interest is the proportion w of successes in the population. Suppose in a
sample of n patients there are s successes and f = n - s failures. Assuming
independence of the observations conditional on w, the likelihood of w is
proportional to

wS (1 - w)f.

Bayes' theorem says to multiply the prior density by this likelihood. There is
a very convenient updating formula when the prior density is in the beta
family. The beta(a,b) density is proportional to

wa - 1(1 _ W)b-l.

By Bayes' theorem, the posterior density is the product of these, namely,

wS (1 - w)f wa - 1(1 - W)b-l = wa+s - 1(1 - W)b+f-l,

and is itself a beta density, with a replaced by a+s and b replaced by b+f.
Beta prior distributions for ware said to be conjugate because the new
distribution of w stays in the beta family.
Assessing a prior density in the beta(a,b) family means finding a and b.

Two assessments are required. The first is the assessor's probability of
success on the first trial. This is the mean of the beta density - call it r 
which has the simple form
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a
r=--.

a+b

For the second requirement, imagine that the first trial is a success, and
assess the probability of success on the second trial:

+ a + 1
r =

a + b + 1

Solving simultaneously gives

_ r(l - r+) d
a - + ,an

r - r

b = (1 - r)(l - r+)
r+ - r .

Consider an example. The most important prognostic factor in early
breast cancer is the number of axillary lymph nodes testing positive during
pathological review. The number of lymph nodes dissected during surgery
varies. (This number and the nodes dissected may depend on clinical charac
teristics, but it is assumed here that the sampling is random and therefore
that nodes selected are no different from those not selected.) The probability
that any particular node is positive is 3%, and so r = 0.03. However, if the
first one sampled tests positive, then the probability that the next is also
positive increases dramatically to 20%: r+ = 0.20. Therefore,

= 0.03(1 - 0.2) = 0 14 d b = (1 - 0.03)(1 - 0.2) = 4 56
a 0.2 _ 0.03 ., an 0.2 - 0.03 ..

So the prior density of w is beta(0.14,4.56), shown in figure 4.

o 0.2 0.4 0.6 0.8 1
w =proportion positive

Figure 4. Beta(0.14,4.56) density for proportion of positive axillary lymph nodes. The mean is
0.03, which is also the probability of a positive lymph node when not conditioned on w.
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Checking for consistency

Assessors should make consistency checks of their prior probabilities.
Various checks are possible. For the beta case, one can assess probabilities
of intervals as in the general case and compare these probabilities with areas
under the beta density. If they disagree, then some adjustment in a and b
may be in order. Another consistency check in the beta case is to assess the
probability of success on the second trial, assuming that the first trial results
in a failure. This probability is

r
a

a + b + l'

Finding r- using this expression with a and b as found from the formulas for
rand r+ can be compared with the assessed value of r-. If the two disagree,
the a and b should be adjusted until they do agree.
Another consistency check in the beta case involves a + b. Probabilities

change less radically when a + b is large. The updating rule for beta
densities says that when s successes and f failures are observed, the new
density is beta(a+s,b+f). So the new sum of the parameters is the old sum
plus n, the sample size. This gives an interpretation for a + b as a 'prior
sample size.' Suppose the assessor had experienced a number of observations
deemed to be roughly exchangeable with the current observations. Then the
assessor might use these observations in setting a to be the number of prior
successes and b to be the number of prior failures. So a + b is a measure of
reliability in the prior distribution that compares directly with the number
of observations in the experiment. This might provide a good primary means
of assessing a and b, or at least a + b. However, people cannot remember
their prior observations very well. Also, prior observations should seldom if
ever be regarded as exchangeable with current observations. A possible
solution is to discount prior observations as compared with current observa
tions, taking a and b smaller than they would be otherwise. This reflects
greater openmindedness and may be a reasonable tack.

Predictive probabilities

A probability distribution of parameters allows for calculating probabilities
of responses of future observations. Consider a patient with a particular set
of characteristics. How will that patient respond to therapy A? The patient's
response is unknown. Like all unknowns in the Bayesian approach, it has a
probability distribution. Because it refers to future observations, it is
predictive. Predictive probabilities are useful for deciding whether to make
the observations.
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Number ofpositive lymph nodes

To continue the example of the previous section, suppose a surgeon
removes three axillary lymph nodes from a woman with breast cancer and
none test positive. Another doctor questions the surgeon, suggesting that
had more been removed, perhaps some would have been positive. Given
what we now know, should the surgeon have removed more? Should the
patient have another surgery? These are complicated questions that require
addressing the purpose and utility of nodal dissection - will therapy be
different if the patient is node-positive, and how beneficial would it be? It
will not be possible to do justice to this issue here. But the probability
can be addressed that, if, for example, ten additional lymph nodes were
removed, none would be positive.
Let w be the proportion of the patient's lymph nodes that would test

positive. As in the previous section, suppose w has a beta(0.14,4.56) prior
density. The posterior density of w is then beta(0.14,7.56). For notational
convenience, take a and b to be the current values of the beta parameters:
a = 0.14 and b = 4.56. The probability that the next (i.e., fourth) node
selected would be negative is b/(a + b) = 4.56/4.70. Given that the fourth is
negative, the probability that the fifth would also be negative is (b + l)/(a +
b + 1) = 5.56/5.70. And so on. So the probability that everyone of the next
10 are negative is

b b + 1 b + 9 4.565.56 13.56
=----

a + ba + b + 1 ... a + b + 9 4.705.70" . 13.70

= 0.970 x 0.975 x ... x 0.990 = 0.84.

(The individual factors in this sequence show how the probability of 'negative'
increases as additional negative evidence accrues.) So this patient is very
likely to continue to be regarded as node-negative, even if an additional 10
nodes are tested. Whether an 84% chance is small enough to recommend
more surgery is open to question; the point is that this calculation is an
appropriate consideration in such a decision.

Calculations during a phase II trial

Predictive probabilities help in choosing from among possible clinical trial
designs. When calculated during the course of a trial, they aid in deciding
whether to alter the trial's design - for example, in deciding whether to
stop the trial. Consider a phase II trial for evaluating a new agent in the
treatment of breast cancer that is newly diagnosed as metastatic. (1 have a
particular agent in mind.) Now let w be the true rate of response (complete
plus partial) in this population. Numerous first-line agents exist. While their
response rates are imperfectly known, it is safe to say that some are as large
as 30% but that no currently available agents have a response rate much
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greater than 30%. The probabilities for w have been assessed as described in
the above section on beta densities and they are well approximated by a
beta(2,4) density, shown in figure 5. The mean of this density is 2/(2 + 4) =
1/3, which is the probability of response on the first patient. This is rather
large as compared with existing agents, but previous experience with this
agent in patients with other types of solid tumors is promising.
Suppose the trial is ongoing and 10 patients have been treated, with

1 of 10 responding and the other 9 not (and so are either stable or have
progressed). In deciding whether to continue this trial and include 10 more
patients, say, it would be important to know the predictive probabilities for
the number of future responders. Using the result of the previous section,
the updated distribution of w is the beta(2+1,4+9) = beta(3,13) density.
The predictive probabilities of the number k of successes in the next 10 trials
are easy to find:

~ 1O! (2 + k)!(22 - k)!
2!l2! k!(l0 - k)! 25!

These are shown in table 1. Also shown in table 1 are the observed response
rates after 20 patients, (k + 1)/20. With the addition of 10 patients, k of
whom are responders, the posterior density of w will be beta(k+3,23-k).

o 0.2 0.4 0.6

w = response nIle
1

Figure 5. Beta(2,4) prior density for response rate w of an experimental therapy for metastatic
breast cancer. The mean of 1/3 is shown as a triangle.
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The mean of this density is (k + 3)/26, which is also shown in table 1. This is
another estimate of the response rate, one which includes the prior informa
tion as well as the results of the trial. Hence, they are shrunk toward the
prior mean of 2/(2 + 4) = 1/3.
The question of whether the trial should continue will be addressed

below. The point here is that the predictive probabilities of these various
estimated response rates can be calculated and are relevant for the
decision problem.

Calculations during a phase III trial

In May 1984, the Cancer and Leukemia Group B opened a phase III clinical
trial for patients with stage III non-small cell lung cancer. The design called
for randomizing 240 patients equally to two treatment regimens: radiotherapy
alone (RT) and radiotherapy after chemotherapy (RT+CT). Using a
truncated O'Brien-Fleming stopping rule, the trial was stopped at the fifth
interim analysis in May 1987 after 155 eligible patients had been entered.
George et al. (1994) review statistical and other considerations leading to
the decision to stop the trial and give Bayesian alternatives to the standard
frequentist approaches. Their use of predictive probabilities will be
summarized here.
Suppose exponential distributions of the survival times, with Al the death

rate on RT and 1..2 the death rate on RT+CT. Then the sufficient statistics
are the numbers of patients assigned (nl and n2), the numbers of deaths (d1
and d2), and the total time patients had survived on the treatments (TI and
T2). These are shown in table 2 for the five interim analyses and also for
the final analysis. (Though 155 eligible patients had entered the study by the
fifth interim analysis, information was available on only 105 of them.) The

Table 1. Predictive probabilities of the number of responses in
next 10 patients given one response in first 10

k+l k+3

k Prob of k Total #resp. 20 26

0 0.198 1 0.05 0.12
1 0.270 2 0.10 0.15
2 0.231 3 0.15 0.19
3 0.154 4 0.20 0.23
4 0.085 5 0.25 0.27
5 0.040 6 0.30 0.31
6 0.016 7 0.35 0.35
7 0.005 8 0.40 0.38
8 0.001 9 0.45 0.42
9 0.000 10 0.50 0.46
10 0.000 11 0.55 0.50
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Table 2. Sufficient statistics for Al and A.z assuming exponential
model, by analysis time

OnRT On RT+CT

Analysis nl d l T] n2 dz T2

1st Interim 25 7 122.0 25 3 164.4
2nd Interim 41 12 240.6 38 4 341.1
3rd Interim 41 20 298.5 47 14 432.8
4th Interim 46 24 376.0 49 18 532.7
5th Interim 51 32 441.8 54 24 611.1
As of 1992 77 71 1135.7 78 65 1737.6

Table 3. Various posterior probabilities for log hazard ratio wand the posterior mean survival
times at the interim and latest analyses

Posterior probabilities for w Mean survival (mos)

Analysis w<O w < -0.25 w < -0.5 RT CT+RT

1st Interim 0.976 0.911 0.794 17.9 52.9
2nd Interim 0.997 0.984 0.940 20.1 77.7
3rd Interim 0.987 0.916 0.720 15.6 31.5
4th Interim 0.985 0.895 0.650 16.2 30.2
5th Interim 0.990 0.909 0.637 14.2 25.9
As of 1992 0.999 0.939 0.523 16.2 27.0

notable early difference in the numbers of deaths in the two groups was
maintained through the latest analysis, with the benefit in favor of RT+CT.
Consider the log hazard ratio, W = InU"211"I) , and assume Al and ware

independent. A conjugate prior for Al is the gamma: for Al > 0,

f(A Ila,b) ex:: Al-Ie-bAI

Evidence available in 1984 is consistent with a = 2 and b = 20. Regarding
w, George et al. take the prior distribution when finding the posterior
distribution of v to be standard normal and argue that this distribution is
open-minded in the sense that the likelihood function dominates the prior
distribution when finding the posterior distribution. This is good and bad. It
is bad because a small number of observations may seem more persuasive
than is appropriate. One should carefully assess the available information on
the relative benefits of the treatments, and use an open-minded prior only if
there is essentially none.
The current distribution of Al and of W can be found at any time and used

to influence the future course of the trial. Table 3 shows various calculations
from the current distribution at each of the interim analysis times and also as
of 1992.
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That the trial stopped early created something of a controversy. In a
letter to the editor commenting on the original publication, Souhami et al.
[6] concluded: 'In our view, no firm conclusions can be drawn from such a
small study presented in this way. It is a great pity that this otherwise
excellent trial was not left unanalyzed and allowed to reach a size
at which any difference in survival could have been quantified with
reasonable certainty.'
Before concluding that a trial should continue, one should ask what will

happen if it does. Obviously, this is random. The distribution of various
measures that will be available at the time of a future analysis (including P
values) can be found from the predictive distribution of the future observa
tions. If this trial had continued beyond the fifth interim analysis, additional
information would have come from (1) the 99 survivors who were in the trial
(including the 50 patients in the trial but for whom there was no information
available) and who would be followed as usual, (2) the additional 85 patients
who would be randomized and subsequently followed (assuming the same
accrual rate as for the first 155 patients). This information can be simulated
using the information available in May 1987 at the fifth interim analysis. Li
[7] does this by assuming exponential survival and Qian [8] does it by
assuming Weibull survival (showing that the answers are not sensitive to
assuming exponential survival).
From the perspective of Souhami et al. [6], a more interesting comparison

is whether there would be a different conclusion today. For such a com
parison, the 99 survivors in the study in 1987 would have been followed.
George et al. [9] assume the information to have been available in 1992 and
ask how different it would have been had the trial not stopped. Figure 6
shows the predictive distributions of the mean lifetimes on RT and on
RT+CT. The triangles show their current values, 16.2 and 27.0 months, as
indicated in table 3. These are the means of the predictive distributions. An
interesting aspect of the densities shown in this figure is that the variances
are small. So the conclusions concerning the survival times on the two
treatments would not have been very different had the study accrued 240
patients. Regarding treatment comparison, figure 7 shows the predictive
densities of the posterior distribution of log hazard ratio w: w < 0, W <
-0.25, and w < -0.5. The first of these is the probability that survival time
is longer on RT + CT than on RT alone; this probability would have
changed very little from its current value of 0.999 (see table 3).
Finding predictive distributions is relatively straightforward. Using them

is more involved. This is the subject of the next section.

Decision problem

This section will indicate how to address two types of decision problems in a
Bayesian fashion: deciding whether to stop a clinical trial, and allocating

138



15~O 7
Means

30 35 months

Figure 6. Predictive densities of the posterior mean lifetimes on the two treatment regimens.
The triangles indicate the means of the densities, which are also the current values from the
fifth interim analysis row of table 3.

patients to therapy to achieve an overall measure of successful health care
delivery. For other examples, see [10].
Whether to stop a clinical trial depends on the available information

(from the trial and otherwise), given as the current probability distribution
of any unknowns. The utility of stopping can be evaluated by weighing the
utilities of the various consequences of the status quo by their probabilities.
Continuing the trial has the additional randomness provided by the future
observations. The utility of continuing can be evaluated by weighing the
utilities of the various consequences of future observations by their predictive
probabilities. Allocating patients to therapy on the basis of currently
available information is a similar problem, one in which predictive
probabilities again playa pivotal role.
Three examples of stopping clinical trials are given below. The first is a

continuation of the phase II trial example given in an earlier section, and the
second is a brief discussion of the non-small cell lung cancer example of the
previous section. The third is a randomized vaccine study.
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Figure 7. Predictive densities of the posterior probability of various intervals of values of w.
(These densities are not shown in the same scale.) The triangles indicate the means of the
densities, which are also the current values from the fifth interim analysis row of table 3.

Stopping a phase II clinical trial

Deciding whether and when to stop a clinical trial is a common problem,
especially since it includes stopping a trial before it starts! In this section I
will consider the phase II trial example given in an earlier section, making
assumptions about utilities. Recall that one patient responded among the
first 10 patients in the trial. I will consider only two possibilities: stopping
immediately and adding another 10 patients to the trial. I will consider
utilities measured in terms of effective treatment of breast cancer patients.
Since there are therapies with 30% response rates and this agent has an
estimated 3/16 = 19% response rate, continuing the trial may not be in the
best interests of the patients in the trial.

If the trial stops, then I assume this agent will not be investigated further.
What would be the resulting impact for the women who have or will have
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metastatic breast cancer? This is not easy to evaluate, but I will delay the
problem by taking it to be 0 and considering other eventualities relative
to it. So continuing is appropriate if it has utility greater than 0 and
not otherwise.
Now suppose the trial continues to the full 20 patients. The predictive

probabilities for the 11 possible numbers of responses in the second 10
patients are given in table 1. I need to specify a utility for each, and I will do
so in terms of (my estimates of) the increment in number of responses over
the next several years (as compared with the currently available therapies)
effected by having a trial in 20 patients with that number of responses.
(There is almost certainly a positive relationship between response and
survival, but the exact relationship is not clear.) To assess utilities requires
addressing several issues. For patients in the trial, how serious is a delay in
treatment should it turn out that the experimental agent is not very effective?
What other therapies are available, and how effective are they? What are
the possibilities that other, perhaps more effective experimental agents will
be developed? in what time frame? If the experimental agent turns out to be
pomising, what other trials will be necessary before the agent becomes
commonly used? As a function of the results from this trial and from other
trials, how extensively will the agent be used?
My assessments are shown in table 4. Such assessments should be made

by a team of oncologists, pharmacologists, and other experts. But these
enable me to demonstrate the method. The first number listed under
'incremental utility' refers to expected difference in responses among next
10 patients in the current trial if they receive this agent as opposed to some
other therapy. The second number, the one following the '+', corresponds
to patients who present after the trial. This is 0 when the response rate is
sufficiently low that, in my estimation, the agent would not be pursued. If

Table 4. Predictive probabilities from table 1 along with the
utilities of the various possible number k of responses in the
next 10 patients

k Mean rate Pred. prob. Incremental utility Product

0 0.12 0.198 -3 + 0 -0.59
1 0.15 0.270 -2 + 0 -0.54
2 0.19 0.231 -1 + 0 -0.23
3 0.23 0.154 0+0 0
4 0.27 0.085 1 + 10 0.94
5 0.31 0.040 2 + 20 0.87
6 0.35 0.016 3 + 60 0.98
7 0.38 0.005 4 + 150 0.77
8 0.42 0.001 5 + 500 0.63
9 0.46 2E-4 6 + 2000 0.44
10 0.50 2E-5 7 + 5000 0.10

sums: 1.0000 3.37
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the response rate is sufficiently high, then later patients are more likely to
receive the agent (depending on the results of further clinical trials, an
uncertainty I have included in my assessment), and hence the benefit will
be greater. Again, the utility is relative to not having this agent available
for use.
The (expected) incremental utility of continuing is the average of the

fourth column of table 4 - with respect to the predictive probabilities in the
third column. The result is 3.37, shown as the sum of products in the fifth
column. Units are number of responses, and so this is not a dramatic
improvement. But the sum is positive, and so continuing is appropriate.
The sensitivity of the decision (though not its utility) can be judged by

varying the utilities in table 4 and also considering prior distributions for w
other than the beta(2,4). Such considerations show that the decision to
continue the trial is not really close. The sum of the negative products in the
fifth column of table 4 is -1.36; the sum of the positives is 4.73. The overall
sum would be positive even if the utilities were greatly reduced - with all
numbers greater than 10 set equal to 10, say. Only an assessment as extreme
as ignoring the patients who present after the trial would make the sum
negative. (Because of the evident trade-off, the assessment team should
include a medical ethicist.) Also, changing the prior distribution (and hence
the predictive probabilities) has little effect on the final result. Prior distribu
tions with more variability (more open-minded) give more probability to
smaller values of k but also to larger values of k; because of the asymmetry
in the utilities, the net effect is positive. Prior distributions with less
variability give less probability to smaller and larger values of k; again the
effect is positive, because an agent with a response rate near 30% has
positive utility. The only type of prior distribution that results in a negative
utility for continuing is one that has a smaller mean and not a very
large variance.

Stopping a randomized trial ofRT vs. RT+CT in non-small cell lung cancer

The phase III trial discussed above compared RT+CT with RT alone in
patients with non-small cell lung cancer. It provides an example of calculating
predictive probabilities for survival data. Predictive probabilities aid in
deciding whether to stop a trial. I will not address this quantitatively, but my
analysis is in line with the decision analysis of the previous example. And
the conclusion is the same and is clear: despite the obvious and startling
differences between the two therapy regimens and despite the fact that
continuing the trial would have had minimal impact on the conclusion, the
trial should not have been stopped. My analysis is retrospective. The
necessary information was available in 1987, but assembling it would have
been difficult at that time. So I suspect that I would have agreed with the
investigators in 1987 and come to the wrong conclusion.
In deciding whether to stop a trial, one should assess utilities of the
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consequences - that is, a cost-benefit analysis. For this, one should consider
the impacts on public health, including quality of life of the patients
involved. Important considerations are the effects on clinical practice and
the impact of study on regulatory officials. A well-designed and well
executed study that is discounted by practitioners is in retrospect not a good
study - even if the reasons for discounting are wrong. The non-small cell
lung cancer trial showed that adding CT to RT increases lifetime by about
11 months, more than a 60% increase. In 1987 these estimates were about
12 months and more than 80%. Continuing the study means treating half the
patients with a regimen that is clearly inferior. Under the circumstances,
continuing would be difficult and has questionable ethics.
But how will these and other patients be treated if the study stops?

Apparently, most current patients are treated with RT alone. So the trial
has not had broad impact, and stopping was unnecessary. Whether it would
have had greater impact had it continued is open to question. But it would
not have been subject to the specious criticism that it was stopped too early.
This would have caused less confusion among practitioners, but mayor may
not have increased its impact. (The National Cancer Institute has directed a
repetition of this trial, which is still ongoing.)

In judging the possible impact of a trial on medical practice, it is
important to assess costs and benefits. In the trial discussed here, RT+CT
has both monetary costs and toxicity costs (weight loss, infections, vomiting)
that partially offset the gain in survival. On the other hand, and 11-month
increase in survival may be worth the additional cost, at least for some
patients. Cost and benefits should be considered in both the design and
analysis of clinical trials.

In general, the question of stopping a clinical trial should depend on
whether the interim results will be convincing to the medical community.
Whether the results are statistically significant - however that is judged 
is relevant only in that it may affect practitioners. Ultimately, one conducts
a clinical trial in the hope that the results will influence medical practice. If it
were known beforehand that the results of the trial, whatever they might be,
would have no influence on practice, most investigators would consider it
futile to proceed. The same is true of an ongoing trial at any interim
analysis. Investigators should consider the probability that a trial will
influence medical practice. Bayesian decision analysis is an appropriate way
for making this consideration.

Sequential randomized vaccine efficacy trial

Berry, Wolff, and Sack [11,12] consider a vaccine trial of ha?mophilus
influenza? type b (HIE). The vaccine was designed to be effective in infants,
and the trial led to the licensure of the vaccine for children as young as two
months of age. Because Amerind and Eskimo children are at very high risk,
the trial was conducted on the Navajo reservation, and the subjects
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were Navajo children between 2 and 18 months of age. All subjects were
vaccinated, with children in the control group received placebo vaccinations.
Berry, Wolff, and Sack [11,12] take the goal of the trial to be minimizing

the number of HIE cases among Navajo children over a horizon of 20 years.
They assess prior information concerning the rates of HIB and model
occurrence among infants as a Poisson process. (Qian [8] generalizes this
assumption and models the population as a mixture of two groups: in one
the occurrence is Weibull, and the other is not susceptible.) They consider
historical information about the regulatory process and assess probabilities
of licensure and time required for licensure as a function of the available
data. They also assess the possibility that competing vaccines will become
available, and the timing of such (for specific assumptions, refer to [12]).
Accumulating information is evaluated ad libitum. At the beginning of

the trial and bimonthly thereafter, a decision is made whether to continue
the trial or not. The preferred action is the one with smaller expected
number of future cases - determined by dynamic programming and
exploiting predictive probabilities. (See the following section for a somewhat
more detailed discussion of dynamic programming.) Figure 8 is taken from
[12] and shows the decision schema. The predetermined maximum length of
the trial is N months. At each decision time prior to the Nth month, the trial
must be continued or stopped. If it is stopped, a decision is made to seek
licensure or not. If licensure is sought, the vaccine will be approved or not.
Table 5 gives the data - the numbers of cases over time in the two

treatment groups. Approximately 450 Navajo infants are born each month
on the reservations in question. Not all of these were randomized, but they
are all at risk for HIE, and we assume they would all receive an approved
vaccine. The average accrual rate was 105 children per treatment group per
month, so about 240 Navajo infants per month do not participate in the
trial. The number of current subjects in each treatment group increased
linearly until month 16; when it remained constant at 16*105 = 1680.
The last two columns of table 5 show the results of the dynamic pro

gramming. These columns give the expected numbers of future cases of
HIE when stopping and when continuing. 'Continuing' assumes that sub
sequent decisions to stop or continue are optimal. The smaller number is in
boldface type. In particular, starting the trial is optimal because 439 is
smaller than 608. (For comparison, the expected number of future cases
using a fixed rather than sequential design is 553.)

Adaptive allocation in clinical trials

A standard way to compare two therapies is to randomize patients equally
to them. For any fixed sample size, this procedure gives maximal informa
tion about the difference in their effectivenesses. This in turn will help in
treating patients who present once the trial's results become known. In
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Figure 8. Schema of the decision process. The trial is stopped once the predetermined maximum
number N of months is reached. It is also stopped if the expected number of cases over the
subject horizon is greater for continuing than for stopping.

designing a trial using a decision approach, one can explicitly consider
effective treatment of patients - those in the trial and those not.
Consider a trial in which information accrues relatively quickly concerning

each patient's response. (It will be clear that adaptive allocation has no
benefit when there are long delays in deciding whether a patient is a
responder.) Suppose the objective is to maximize the number of patients
who respond, over some patient horizon N. Also, suppose the number of
patients in the trial is n. The patients in the trial can be allocated to either
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Table 5. Bimonthly results of the trial and expected numbers
of future cases (numbers in boldface type indicate the better
decision)

Expected number of
Cumulative cases future cases if

Month Vaccine Placebo Stop Continue

0 0 0 608 439
2 0 2 807 505
4 0 4 954 498
6 0 6 1042 442
8 0 7 997 366
10 0 7 864 299
12 0 8 496 246
14 0 10 238 200
16 1 12 364 313
18 1 13 297 269
20 1 15 242 234
22 1 18 200 201
24 1 21 172 176
26 1 22 153 158

therapy, depending on the accumulating results, and the N-n patients
outside the trial will receive the therapy that performs between during the
trial. How should the patients in the trial be allocated? To demonstrate the
method of finding the optimal procedure, consider an example using n = 7
and N = 100. A small value of n might be considered in a phase II study,
but the reason for choosing such a small n is to be able to draw figures
showing the method in a manageable space. In general, increasing n
increases the expected number of responses (except that in example below,
there is no benefit in increasing an odd n by 1, and so n = 7 gives the same
expected number of responses as does n = 8).
Label one therapy A and the other B. Take the two-population pro

portion of responses to be WA and WB' Take them to be independent, both
having a uniform prior distribution on the interval (0,1), which is beta (1,1).
Dynamic programming proceeds from the last step of the decision process,
which in this case is at the end of the trial. But it requires that all possibilities
be considered. Suppose nA is the number of patients assigned to A and nB is
the number assigned to B. At the end of the trial, n = nA + nB' One
possibility is nA = 5 and nB = 2. Let SA be the number of responses among
the nA patients assigned to A and SB the number of responses among the nB

patients assigned to B; SA takes values 0, 1, ... , nA and SB takes values 0,
1, ... , nB' For nA = 5 and nBB = 2, the 18 possible combinations are
shown as shaded cells in figure 9.
Consider possibility nA = 5, nB = 2, SA = 3, and SB = 1. The updated

mean of WA is (3 + 1)/(5 + 2) = 4/7 and that of WB is (1 + 1)/(2 + 2) = 2/4.
Since 4/7 > 2/4, the remaining N - n = 93 patients are assigned to A, with
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Figure 9. Beginning the dynamic program, for each of the cell with nA + nB = (cells that are
shaded), the expected number of future responses are calculated and entered into this tableau.
These entries are shown for those cells with n A = 5 and nB = 2.

an expected future number of successes of 93*417 = 53.14. This value
(rounded to 53) is shown shaded in figure 9. The other values in the figure
and the values for cells with nA + ns = 7 are calculated similarly. Entering
these numbers into the tableau initializes the dynamic program.
Now consider those cells for which nA + ns = 6. Figure 10 shows the one

with nA = 4, ns = 2, SA = 3, and Ss = 1 The expected number of future
responses from this cell is calculated under the two possibilities: use A and
use B. If A, then the process moves to one of the two cells shaded in the
figure. Referring back to figure 9, the maximal expected number of future
responses is 66.43 (with probability 4/(4 + 2)) and 53.14 (with probability
2/(4 + 2)). In the first case, the patient being treated is a responder. So the
expected number of future responses when using A is (1 + 66.43)*2/3 +
53.14*1/3 = 62.67. This is compared with the expected number of future
responses when using B, and the larger number is entered in the tableau.
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Figure 10. The next steps of the dynamic program are to fill in the tableau for those cells with
nA + nB = 6. The solid cell in the figure has nA = 4, nB = 2, SA = 3, and SB = 1. Using
treatment A moves the process to one of the two shaded cells to the right, and using treatment
B moves down to one of the two shaded cells. The distribution of W A for this cell is beta(4,2)
and that of WB is beta(2,2). If treatment A is used, then the distribution of W A changes to
either beta(5,2) (with probability 4/(4 + 2) = 2/3) or beta(4,3) (with probability 1/3), and the
distribution of WB stays the same.

After those cells with nA + nB = 6 come those with nA + nB = 5, etc., until
we reach nA = nB = O. The entry for this cell is 63.05, as indicated in figure
11. This is then the maximal expected number of responses among the N =
100 patients. Keeping track of the treatment that gives the larger number of
future responses for each cell provides the optimal allocation procedure.
This is shown in figure 12.
For comparison, letting N = n = 100 gives a maximal expected number of

responses of 64.92. (When N = n, the decision problem is a classical bandit
- see [13]). For a randomized trial with n = 7 with 3 patients assigned to A
and 4 to B, or vice versa, the expected number of responses in 62.4.
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Figure 11. The last step of the dynamic program gives the expected number of responses over
the N = 100 patients, namely, 63.05.

Berry and Eick [14] call the optimal Bayesian procedure for uniform prior
distributions found above the 'robust Bayes' procedure. They compare it
with various adaptive procedures and with a balance randomized controlled
trial with sample size n. No procedure can perform better than the robust
Bayes procedure, on the average. But they compare procedures for fix W A

and WB'

For example, suppose N = 10,000 and n = 100. Figure 13 shows the
expected number of responses lost as compared with robust Bayes, for two
particular procedures. One is ReT, the randomized controlled trial in which
patients are assigned equally to A and to B. The other is PW, which is play
the-winner procedure, one of several adaptive procedures by Berry and Eick
[14]. Under PW, the first patient is randomized, and then the same treat
ment is used after a response (play the winner) and the other treatment is
used after a nonresponse (switch on a loser). For all three procedures,
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Figure 12. The optimal decisions, depending on the currently available data, as given by nA,

nB, SA' and SB'

following the experimental phase (the first n patients), the better-performing
treatment is used exclusively. The figure considers three values of WB, and
W A varies from 0 to 1. An interesting aspect of the curves is that they stay
positive, indicating that robust Bayes is better than both alternatives for
given W A and WB as well as on the average - hence, 'robust Bayes.'
More generally, RCT loses to robust Bayes for all n, N, WA, and WB; but

it fares relatively well when patient horizon N is very large. So from a
decision-analytic perspective, an RCT is a reasonable choice when a disease
or condition is at least moderately common.
A decision approach is an alternative to choosing a significance level, an

alternative hypothesis, and a power level. For those interested in power, it
may be difficult to evaluate analytically for an adaptive design. However, it
is rather easy to evaluate power for any design using simulation.
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Figure 13. Expected successes lost by RCT and PW as compared with robust Bayes.

Other topics

This chapter provides an introduction to Bayesian methods and decision
making in clinical trials. But it barely scratches the surface of some issues,
and so far a number of important topics have not been discussed. This
section will briefly address some of the latter.
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Using posterior probabilities for design

As mentioned above, much of the Bayesian clinical trial literature uses
posterior probabilities to play the role usually played by p-values, but does
not explicitly address decision issues. Examples include Spiegelhalter ,
Freedman, and Parmar [3] Carlin et al. [15], and Rosner and Berry [16].
This last paper describes a design of multiple-arm clinical trials in which
an arm is dropped if the probability that other arms are better becomes
sufficiently large. The motivating example is a trial in metastatic breast
cancer patients comparing various infusion schedules and doses of taxol.

Modeling historical information

In interpreting results of clinical trials, historical information is widely
regarded as unreliable. However, individual clinicians must place historical
information in the context of current information. As I have discussed
above, the usual way to incorporate historical information is subjectively,
through the prior distribution. Eddy, Hasselblad, and Schachter [17], Berry
and Hardwick [18], and Lin [19] introduce methods for discounting historical
data through modifications of the likelihood function of the historical data.
Such discounting is in part subjective. And it depends partly on the historical
data and partly on the current data - especially on the comparability of
the two.

Hierarchical models

Hierarchical models are ideally suited for and are commonly used in
Bayesian analysis [20,21]. Berry and Stangl [5] provide numerous examples.
A typical problem in which a hierarchical model is appropriate is meta
analysis [17,22]. Individual studies are viewed as having unknown charac
teristics that set them apart from the others. Each study is regarded as
having a particular distribution of patient responses for each therapy.
Selecting a study means selecting one of these distributions - a random
effects model. If the distribution of the selected study were to be revealed,
this would give direct information about how the study distributions are
themselves distributed, and there is no hierarchy. But the study's distribution
is not revealed. Instead, we get only indirect information about the distribu
tion of study distributions - namely, we get to observe a sample from that
distribution by observing the data from that study. We may be interested in
a comparison of therapies within a particular study or in the distribution of
studies. Difficulties in making computations can be overcome using recent
simulation-based calculational advances.
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8. A Bayesian model for evaluating specificity of
treatment effects in clinical trials

Richard M. Simon, Dennis O. Dixon, and Boris Freidlin

Introduction

Prognostic factors provide important information for counseling individual
patients and for the design of clinical trials. For example, cancer trials of
good-prognosis patients may be oriented to reducing toxicity, whereas trials
of poor-prognosis patients may focus on improving outcome. Ultimately,
one wants to identify factors that permit the selection of appropriate treat
ments for individual patients. In this way, one could avoid treating many
patients with toxic treatments when only a few of those treated would
actually derive benefit. Statisticians have often been critical of subset
analyses of clinical trials in which one attempts to identify such selectivity of
treatment effects. There are several good reasons for this caution. Sometimes
subset analyses are merely 'fishing expeditions' attempting to find some
subset that appears to give 'positive results' in a clinical trial where there is
no overall treatment benefit. Also, because most clinical trials are only sized
for detecting overall effects, the power of the trial for detecting true specifi
city effects is often poor. The probability of claiming specificity by chance
alone when none exists is determined by the number of subsets examined
and is not limited by the sample size. Consequently, many subset claims are
false positives, and the true positives often go undetected.
Several statistical methods have been developed for evaluating whether

there is evidence of treatment specificity [1]. Here we shall describe a new
method that provides a unified approach to this question in the context of
analyzing a clinical trial. The method described here is a Bayesian method
based on a relatively simple statistical model. It can be used with time-to
event, binary, or continuous endpoints. Although the method is based on
that previously described by Dixon and Simon [2,3], it differs from that
method in that it does not require specialized software and is not limited to
binary covariates. In this chapter, we first describe a clinical trial for patients
with HIV disease that will be used to illustrate the method. Then we provide
a standard proportional-hazards-model analysis of the results of this clinical
trial. The method itself is described next. We then present the results of the
Bayesian analysis and contrast this with the results of the proportional-



hazards-model analysis. We then conclude with a discussion of extensions
of the model and comparisons to the previously published Dixon-Simon
model.

The clinical trial

The AIDS Clinical Trials Group (ACTG) is a national clinical trials organ
ization sponsored by the AIDS Division of the National Institute of Allergy
and Infectious Diseases. Study ACTG 155 was started in December 1990 to
compare three antiretroviral therapy regimens for persons with advanced
HIV disease. The regimens were zidovudine (ZDV, 200mg three times per
day), zalcitabine (ddC, 0.75 mg three times per day), and combined ZDV
and ddC. The primary objective was to compare the treatment groups in
terms of times to occurrence of an AIDS-defining event or death.
Randomizations were stratified on the basis of HIV disease status (sym

ptomatic or asymptomatic), length of previous treatment with ZDV (up to
one year or more than one year), and type of prophylaxis for pneumocystis
carinii pneumonia (PCP) (local only versus systemic only versus neither or
both local and systemic). One thousand and one volunteers had been enrolled
from 51 sites by the time accrual stopped in August 1991. Follow-up ended
on January 15, 1993. The randomization was weighted 2: 2: 3 in favor of the
combination therapy group.
A detailed presentation of study design and results has been published

[10]. Groups were well balanced with respect to pretreatment level of CD4+
T-cells as well as all stratification factors. Investigators intended from the
start to examine results in subsets of patients defined by these four charac
teristics. Figure 1 shows the Kaplan-Meier estimates of the distribution of
time without progression or death for the three treatment groups. The
logrank test of the homogeneity of these three curves gives a nonsignificant
result (p = 0.28).

Cox proportional hazards analysis

For the analysis of this clinical trial, we used Cox's proportional hazards
(PH) model in the following way. The four covariates were those described
above. Each was represented as a binary variable: Xl = 0 for CD4 positive
T-cell count less than 100 and 1 otherwise; Xz = 0 for patients without
symptoms and 1 otherwise; X3 = 0 for patients not receiving systemic PCP
prophylaxis and 1 otherwise; and X4 = 0 for patients who have received
ZDV for at least one year and 1 otherwise. Binary representation for CD4
count and PCP prophylaxis was used because the Dixon-Simon method
requires binary covariates. The cutoff of 100 for CD4 count was based on
this being a commonly used threshold. Two treatment indicators were
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Figure 1. Kaplan-Meier estimators of distributions of time to progression for the three treat-
ment groups. 0 0 0, ZDV; I I I I I I I I I, ddC;. • ., combination.

defined; Z1 = 1 for patients receiving ZDV and 0 otherwise; and Z2 = 1
for patients receiving ddC and 0 otherwise. Thus patients receiving the
combination had both indicators equal to 1.

In the absence of a group receiving neither ZDV nor ddC, 'main effect of
ZDV' here represents the contribution of ZDV to the combination, that is,
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the comparison of combination therapy to ddC monotherapy. Similarly.
'interaction between CD4 count and use of ddC' represents the extent to
which the contribution of ddC to the combination depends on CD4 count. It
is potentially very misleading to interpret main effect terms when the fitted
model also includes interaction terms, as in any regression analysis with
cross-product terms. The hazard function of the model used was

(1)

where x is a vector of the four covariates, al and az are regression coefficients
corresponding to the main effects of the treatments, ~ is a vector of re
gression coefficients corresponding to the main effects of the covariates, and
YI and Yz are vectors corresponding to the interactions between the covariates
and the treatments. Thus ~x = ~IXI + ~zxz + ~yX3 + ~4X4 and likewise YIZtX

and yzzzx are each the sum of four terms. A.(t) and A.o(t) represent the hazard
function for AIDS-free survival and baseline hazard at time t.
Table 1 shows the results of this analysis. The only regression coefficients

that are statistically significant at the 0.05 two-sided level are the main effect
of CD4 cell count (Xl) and the interaction between CD4 count and use of
ddC (ZZXI)' We performed a likelihood ratio test of the global hypothesis
that all treatments by covariate interactions are zero. The value of the test
statistic is 10.937, which has a chi-squared distribution with eight degrees of
freedom under the null hypothesis. This yields a significance level greater
than 0.25, and hence the hypothesis of homogeneity would not be rejected.
The reduced model without interaction terms is shown in table 2. For this

model, the main effect of CD4 count (Xl) is highly significant, the main
effect of HIV symptoms (xz) is highly significant, and the main effect
of ZDV (Zt) is also significant.

Table 1. Proportional hazard regression: Foil model
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Variable

Zl

Zz

Xl

Xz

X3

X4

Zl * Xl

Zl * Xz

Zl * X3

Zl * X4

Zz * Xl

Zz * Xz

Zz * X3

Zz * X4

Parameter
estmate

-0.243
-0.358
-1.091
0.312
-0.078
-0.606
0.041
-0.061
-0.077
0.198
-0.543
0.241
0.166
0.471

Standard error

0.338
0.340
0.327
0.424
0.306
0.351
0.268
0.341
0.242
0.268
0.259
0.342
0.246
0.286

Statistical
significance

0.47
0.29
0.0009
0.46
0.80
0.08
0.88
0.86
0.75
0.46
0.036
0.48
0.50
0.10



Table 2. Proportional hazards regression: main effects model

Variable
Parameter
estmate

-0.256
-0.154
-1.431
0.436
0.003
-0.123

Standard error

0.120
0.121
0.108
0.141
0.101
0.114

Statistical
significance

0.032
0.20
0.0001
0.002
0.98
0.28

Table 3. Proportional hazards regression: reduced model

Variable

Z,
Z2

Xl

X2

X3

X4

Z2 * Xl

Parameter
estmate

-0.261
-0.047
-1.038
0.445
0.009
-0.124
-0.577

Standard error

0.119
0.149
0.187
0.141
0.101
0.114
0.228

Statistical
significance

0.029
0.75
0.0001
0.0016
0.93
0.28
0.012

Table 3 shows the result of the PH regression analysis when the CD4 by
ddC interaction is retained in the model. Here we obtain significant main
effects of CD4 count, HIV symptoms, and the combination versus ddC
contrast, as well as a significant interaction between CD4 count and the
combination versus ZDV contrast. The results of both reduced models must
be interpreted with caution, however, because they are models selected
based on the data. Hence, the regression coefficients and significance levels
may be distorted. Tables 1 to 3 are the types of results that are often shown
for PH model analysis.
Because of multiple comparison issues, dependence of the regression

coefficients on variable selection, and the difficulty of interpreting regression
coefficients for models containing interactions, the conclusion to be reached
from these analyses is somewhat ambiguous. If we accept the results of table
2, then the conclusion seems to be that the combination is superior to ddC
but not superior to ZDV, and there is no statistically significant evidence of
treatment effect specificity. Table 1, on the other hand, appears to indicate
that the only treatment difference is one between the combination and
ZDV, and that difference depends on the CD4 cell count. The benefit of the
combination over ZDV is greater for patients with CD4 cell counts above
100. If we accept the results of table 3, however, then we would conclude
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that the combination is superior to ddC and that there is also evidence that
the relative benefit of the combination over ZDV depends on the CD4 cell
count.

The Bayesian model

Dixon and Simon [2] introduced a Bayesian model for the analysis of
clinical trials with binary covariates. Their approach applies equally to linear
models or to the linear combination of covariates used in many nonlinear
models, such as logistic models or proportional hazards models. Consider
the following proportional hazards model:

A(t) = Ao(t) exp(az + ~x + yzx) , (2)

where x denotes a vector of binary (0,1) covariates, ~ is a vector of regression
coefficients corresponding to these covariates, z is a binary (0,1) treat
ment indicator variable, a represents the main effect of treatment, y is a
vector of regression coefficients corresponding to the treatment by covariate
interactions, and Ao(t) represents the baseline hazard function.
Dixon and Simon assumed that

(3)

This incorporates an assumption of exchangeability of interaction effects, in
that it assumes that no interactions are a priori more likely than any others
and that interactions in one direction are no more likely than those in the
opposite direction. Because of this exchangeability assumption, all covariates
are required to be of the same scale, e.g., binary.
Dixon and Simon used flat priors for the main effects a and ~ but

introduced a modified Jeffreys hyper-prior for the variance component ~2. A
hyper-prior is a prior distribution on a parameter of a lower-level prior. The
Jeffreys' prior distributions have two properties that are often desirable.
They provide little information about the parameter relative to that provided
by the experiment. A Jeffreys prior for a parameter also defines a Jeffreys
prior for any well-defined transformation of the parameter. Using this
hyper-prior, Dixon and Simon derived an expression for the posterior density
of any linear combination of the parameters e = (a, ~, y) = (a, ~l' ... , ~p,
Yb' .. , Yp), where p denotes the number of covariates.
In this chapter, we will investigate a Bayesian model for the analysis of

equation (1) that does not involve a hyper-prior for ~2. Like the original
Dixon-Simon model, this approach is applicable to any model, linear or
nonlinear, that incorporates the covariates through a linear functional. These
includes linear, generalized linear, logistic, and proportional hazards models.
The model to be developed will be used to analyze a clinical trial with three
treatment arms. Consequently, we extend model (2) to that shown in (1),
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where ZI, Z2 are binary (0,1) treatment indicators and Yl, Y2 are vectors of
treatment by covariate interaction effects.
Let 8 denote the vector of parameters (Ul' U2, ~, Yl, Y2) and let edenote

the maximum partial likelihood estimate of 8 obtained in the usual way by
fitting Cox's proportional hazards model (1). Then approximately

el8 - N(8, C) (4)

where the covariance matrix C will be assumed known. We shall assume
that 8 has a normal prior distribution with zero mean vector and covariance
matrix D; that is,

8 - N(O, D). (5)

The assumption of zero prior mean for the main effects will be of no
consequence because we will use flat independent priors for these parameters
by letting the corresponding diagonal elements of D approach infinity. It
follows from Lindley and Smith [4] that the posterior distribution of 8 is also
normal:

81e - N(Bb, B), (6)

where

B- 1 = C- l + D- l (7)

and

b = c- l e. (8)

If independent priors are assumed, if flat priors are used for the main
effects, and if the vectors Y1 and Y2 are exchangeable, then D- l becomes a
diagonal matrix with main diagonal equal to

(9)

where, if there are p covariates, Op+2 is a vector of p + 2 zeros corresponding
to the reciprocals of the prior variances of the main effects, and di denotes
the prior variance of the ith component of both Y1 and Y2'
Given any linear combination 11 = a8 of the parameters, the posterior

distribution of 11 is also normal:

1118 - N(aBb, aBa),

where band B are given above.

Specification of priors

(10)

In order to compute the posterior distributions, we must specify the prior
variances d l , d2 , ... , dp of the interaction terms. Consider the effect of the

161



combination relative to treatment 2 alone for a patient with a covariate
vector with all components zero. This effect is al' Let x(i) be a covariate
vector with all components zero except the ith. Let the ith component have
value Xi' For binary covariates, Xi = 1. The effect of the combination relative
to treatment 2 for a patient with covariate vector xU) is al + Yli Xi' Let ~
denote the smallest treatment difference that is considered clinically
significant. Define

(11)

(12)

Thus 1t is the probability of a clinically significant treatment effect for a
patient with all covariates zero except for the ith component, given that
there is no treatment effect for a similar patient with all covariates zero. A
~ symbol is used in equation in (11) because a negative log-hazard cor
responds to a beneficial treatment effect in the proportional hazards model.
Since the prior distributions of the main effects and interactions are assumed
independent, we obtain

1t = Pr[Yli Xi ~ ~]

= <I>(~/Xi~)

For binary covariates, Xi = 1, and by specifying 1t and ~, we can solve
equation (12) for d i . For example, ~ = log(0.5) = -0.69 corresponds to a
halving of the hazard of failure. A skeptical prior for interaction might
correspond to specifying a priori that the probability of halving the hazard in
one elementary subset, given that the effect is zero in an 'adjacent' subset, is
0.05. This gives d i = 0.177. In the results to be presented here, we have used
~ = -0.69 and have evaluated results for 1t = 0.05 and 0.01. We have
used the same prior variance for all interaction terms, although this is not
necessary. For a continuous covariate, Xi could be taken as the inter-quartile
range. Because the model is invariant to adding a constant to a covariate for
all patients, the prior may be specified in this manner.
The computations required for using this approach to analysis are thus

rather straightforward and require no specialized software. The maximum
likelihood estimates eand covariance matrix C are obtained from a standard
Cox proportional-hazards-model analysis. The quantities 1t and ~ are
specified, and then equation (12) is back-solved for di . This is repeated for
different covariates (i) if different prior variances are desired. These values
(or value) of di define the diagonal matrix D using equation (9); the com
ponents of the main diagonal of D corresponding to the main effects are set
equal to zero. Equations (7) and (8) are then used to compute the matrix B
and the vector b. The posterior distribution of any linear combination of
parameters a8 has a normal distribution, with mean and variance specified
by equation (10). The analysis then consists of selecting the linear combina
tions of interest and computing the corresponding posterior statistics, as in
tables 4 to 6 below.
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Linear combinations and qualitative interactions

Three types of linear combinations are of interest. In one type, the vector a
contains a single 1, and all the other components are 0. This is used for
computing the posterior distribution of a particular parameter. The second
type of linear combination is for evaluating the posterior distribution of a
treatment contrast within an elementary subset of patients. An elementary
subset is a subset defined by the simultaneous specification of all four
covariates. For example, to evaluate the posterior distribution of the log
hazard ratio of failure for the combination versus ddC for patients with
CD4 count greater than 100, no HIV symptoms, receiving systemic PCP
prophylaxis who have received ZDV for at least one year, then the linear
combination is a = (1,0,0,0,0,0, 1,0,1,0,0,0,0,0). This is because for such a
patient the covariates are x = (1,0,1,0) and the treatment indicators
are (1,1) for the combination and (0,1) for ddC alone. There are 24

elementary subsets.
We are also interested in evaluating treatment contrasts for subsets deter

mined by each covariate separately - for example, patients with CD4 count
greater than 100. Such quantities are not uniquely determined without
specifying the values of the other covariates or the distribution of those values.
For example, let Wi denote the proportion of cases with Xi = 1 and Xl = 1,
of those with Xl = 1, for i = 2,3,4. Then the average treatment effect of
the combination versus ddC alone for cases with CD4 > 100 is taken as a8
with a = (1,0, 0,0,0,0, 1,wz,w3,w4, 0,0,0,0). This type of linear combination
is also used to evaluate treatment contrasts for the patient sample as a
whole. The average treatment effect of the combination versus ddC alone
overall is taken as a8 with a = (1,0, 0,0,0,0, Wl,WZ,W3,W4, 0,0,0,0), where
(WI ,WZ,W3,W4) are the average values of the covariates for the sample overall.
Two treatments exhibit a qualitative interaction over a class of subsets if

one treatment is preferable for some of the subsets and the other treatment
is preferable for other of the subsets. Peto [5] has argued that only qualitative
interactions are important because the usual quantitative interactions are
scale dependent and there is no reason to expect that treatment effects
should be exactly the same for different subsets. Gail and Simon [6] and
Piantadosi and Gail [7] have developed significance tests of the hypothesis
that there is no qualitative interaction for disjoint subsets. Russek-Cohen
and Simon [8] have developed such tests for multiway classifications. Here
we shall show how to calculate the probability that a qualitative interaction
does or does not exist for a specified treatment contrast and class of subsets.
We shall derive this for the case of two subsets, but the results generalize
directly to any number of subsets.
Let 111 = ale and 11z = az8 denote linear combinations that represent the

same treatment contrast for two different subsets. The subsets may be of
any type, either disjoint elementary subsets or composite subsets, each
determined by the level of a single covariate (e.g., individuals with CD4 >
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100). A qualitative interaction for the treatment contrast over these two
subsets is said to exist if the linear combinations are not of the same sign.
The probability that both linear combinations are positive is easily computed
because 111 and 112 are jointly normal. The means and variances of 111 and 112
are given by equation (10) and the covariance is alBa2. Consequently, the
probability that both linear combinations are positive can be computed fairly
easily. Similar calculations provide the probability that they are both negative
as well as the probability that one is positive and the other is negative.
The approach described above can also be used to calculate the probability

that the combination is better than both single agents either overall or for a
particular subset of patients. To do this, we define the two linear combina
tions to represent the contrast of the combination treatment versus ZDV
and the combination versus ddC for the same group of patients. For example,
to determine whether the combination is better than both single agents on
the average for the overall population, we use the linear combinations (1,0,
0,0,0,0, 0.56,0.83,0.41,0.27, 0,0,0,0) and (0,1, 0,0,0,0, 0,0,0,0, 0.56,0.83,
0.41,0.27).

Results

Table 4 shows results of the Bayesian analysis for the overall group of
patients studied and for subsets determined by the level of a single covariate.
Since there are four binary covariates, there are eight such subsets. Three
treatment contrasts are defined in table 4 for each set of patients: the
combination versus ZDV alone, the combination versus ddC alone, and ddC
versus ZDV. Each treatment contrast for each set of patients is defined by a
linear combination 11 of the model parameters. Table 4 shows the mean and
standard deviation of the posterior distribution of 11 as well as the posterior
probability that 11 > 0. The latter corresponds to inferiority of the combina
tion compared to single agents and to inferiority of ddC compared to ZDV.
The first row of numbers in table 4 indicates that the combination achieves

a lower hazard rate than either single agent. The posterior probabilities that
these linear combinations are positive are 0.03 and 0.04, respectively, for
ZDV and ddC. That is, the posterior probabilities that the combination is
better than ZDV or ddC overall are 0.97 and 0.96, respectively. The
average reduction in log hazard is approximately 0.24 for each contrast.
Although not shown in the table, we also computed the posterior probability
that the combination is better than both single agents. This probability is
0.883. There is no evidence that there is a difference in efficacy between
single-agent ddC and single-agent ZDV for patients overall. The mean
difference is -0.005, and the probability that the difference is positive
is 0.49.
The remaining rows of table 4 show the results for subsets determined by

the levels of individual covariates. For the combination versus ddC, it is
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seen that the mean difference is relatively consistent across subsets. There is
also substantial consistency for superiority of the combination compared to
ZDV, but there is little evidence for superiority of the combination over
ZDV for patients with initial CD4 counts below 100 or for patients who
either have not received ZDV or have received it for less than one year.
There is little evidence for the superiority of either single agent compared to
the other single agent for any of these sets of patients.
Table 4 was computed using It = 0.05 in the notation of the above section

about specification of priors. Table 5 presents the same results using It =
0.01, which represents a somewhat more skeptical a priori view of the
likelihood that there exist major treatment by subset interactions. The
results in these two tables are quite similar, however.
Table 6 shows summary results for the comparison of the combination

versus the single agents in each of the 16 elementary subsets. The covariate
values are coded 'y' for yes and 'n' for no in an attempt to simplify reading
this complex table. The symbol 'sx' denotes symptoms. The table shows the
number of patients in each subset, the posterior mean of the linear combina
tion representing the treatment comparison, and the 95% highest posterior
density (HPD) interval. The latter is simply the posterior mean, plus or
minus 1.96 times the posterior standard deviation. These intervals contain
the true value of the treatment contrasts with 95% probability.
For the contrasts between the combination and ddC alone, the results are

relatively uniform favoring the combination. The most extreme mean values
tend to correspond to the smallest subsets (some of which contain very few
patients), and this is reflected in the width of the highest posterior density
interval.
For the contrasts between the combination and ZDV alone, the results

appear less uniform. Evidence for the superiority of the combination is
strongest for patients with CD4 counts>100 who have received ZDV for
more than one year, but the posterior intervals for most other subsets
are wide and consistent with either a uniform effect or with differential
effects.
The usual regression coefficients, standard errors and statistical signifi

cance values, based on standard frequentist model regression analyses,
provide limited information. In our Bayesian analysis, we have emphasized
the presentation of posterior distributions of treatment contrasts for subsets
of patients or for averages across subs~ts. In fact, we will not even present
the posterior distributions or 'significance' of individual regression coef
ficients in our model. Although we have rarely seen such presentations,
frequentist analyses could present point estimates and confidence intervals
for such linear combinations.
Table 7 shows frequentist results for the elementary subsets using the full

model of table 1. The symbol 'mle' denotes the 'maximum likelihood
estimate' of treatment contrast within the subset computed from the pro
portional hazards model. In computing confidence intervals, one must decide
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Table 7. Maximum likelihood estimates, 95% confidence intervals, and bonferroni adjusted
95% confidence intervals for comparing the combination to ZDV in elementary subsets

Unadjusted Adjusted
Systemic confidence confidence

cd4> 100 sx PCP proph. zdv < 1yr mle interval interval

y n n n -0.90 (-1.63, -0.17) (-2.13, 0.33)
Y Y n n -0.66 (-1.13, -0.19) (-1.45,0.13)
Y Y Y n -0.49 (-1.01, 0.02) (-1.36, 0.38)
Y Y Y Y -0.02 (-0.70, 0.65) (-1.16,1.11)
Y n Y n -0.73 (-1.52, 0.05) (-2.06,0.59)
Y n n y -0.43 (-1.30, 0.44) (-1.90,1.04)
Y n Y y -0.26 (-1.19,0.67) (-1.83,1.30)
Y Y n Y -0.19 (-0.82, 0.44) (-1.24, 0.87)
n y n n -0.12 (-0.54, 0.30) (-0.82, 0.59)
n y y n 0.05 (-0.38, 0.48) (-0.68, 0.78)
n y y y 0.52 (-0.06, 1.10) (-0.46, 1.50)
n y n y 0.35 (-0.21,0.92) (-0.59, 1.30)
n n y n -0.19 (-0.90,0.51) (-1.37,0.99)
n n y y 0.28 (-0.56, 1.12) (-1.13,1.69)
n n n y 0.11 (-0.68,0.91) (-1.23, 1.45)
n n n n -0.36 (-1.02,0.31) (-1.48,0.76)

how to deal with the multiple comparison problem, since there are numerous
subsets of interest. That is, frequentist analyses often attempt to ensure that
the confidence intervals presented will simultaneously cover the unknown
parameters 95% of the time or that the probability that any type 1 error is
made in an experiment is no greater than 5%. Table 7 shows only those
elementary subsets and only contrasts between the combination and single
agent ZDV, but there are many other contrasts and subsets of interest.
There is, of course, an extensive literature on multiple comparison pro
cedures for linear contrasts in analysis of variance problems. In table 7
we show two types of confidence intervals. One column gives intervals
unadjusted in any way for multiplicity. The other column gives confidence
intervals incorporating a Bonferroni adjustment for the 48 combinations
resulting from three treatment contrasts for 16 elementary subsets. Clearly,
there are at least this many contrasts of interest.

In a comparism of the corresponding entries in table 7 and the columns of
table 6 corresponding to the combination versus ZDV, several points become
apparent. The maximum likelihood estimates of the treatment effects are
more variable among subsets than the posterior means. The values of the
posterior mean are 'shrunken' toward the overall posterior mean. This
generally, but not always, implies shrinkage of the mean towards zero.
Some of the mle values are quite extreme. Another difference is that the
95% highest posterior density intervals are considerably narrower than
the unadjusted confidence intervals. The Bonferroni adjusted confidence
intervals are so broad as to be useless.
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Table 8 presents results for the same contrasts as shown in table 6 based
on the hierarchical Bayesian model of Dixon and Simon. The hierarchical
model provides even greater attenuation of subset differences than the
normal model described here. It borrows information external to a subset to
a much greater degree, as can be seen from the relative narrowness of the
widths of the posterior intervals for subsets containing very few patients.
Table 9 shows results analogous to those shown in table 4 when CD4

count is modeled linearly as a continuous variable rather than as a binary
indicator of > 100 or <100. The prior variance for the interaction effects
corresponding to CD4 are specified using equation (12) with Xi - xY) equal
to the difference between the average CD4 count for patients with CD4
values greater than 100 and the average CD4 count for patients with CD4
values less than 100. These averages were similar to the 75th and 25th
percentiles. We also used 1t = 0.05 in computing the values in table 9. The
results are generally similar to those in table 4, except that the effect of the
combination compared to ZDV overall is somewhat less significant (0.09
instead of 0.03).

Discussion

One of our objectives has been to extend the method of analysis introduced
by Dixon and Simon for use with clinical trials having more than two
treatment groups. Both of the clinical trials previously used to illustrate this
method were multiarm trials, although the analysis was limited to only two
of the arms [2,3]. The ability to analyze all arms in one unified model is
important for efficiently estimating the main effects of covariates and for
providing a consistent interpretation of treatment contrasts. With three
treatment groups, there are two independent contrasts, and hence two
indicator variables were used for treatment. In general, K-1 indicator vari
ables should be used with K treatment groups. The coding of these indicator
variables is not critical. Although the coding determines the interpretation
of individual regression coefficients, such interpretations are problematic
in any case. Average treatment effects either overall or for subsets can
be obtained by appropriate specification of linear combinations for any
coding. Since we place a locally uniform prior on the regression coefficients
associated with the treatment indicators, a similar locally uniform prior
distribution results for all linear combinations of these indicators. Hence,
the parameterization is only a matter of convenience. For special designs in
which locally uniform priors may not be desired, the parameterization is
more important, and other approaches may be needed. This is the case, for
example, with factorial designs if a priori one expects small interactions or
for dose-response designs if monotone relationships are expected.
For the antiretroviral trial, our analysis suggests that, for averages over

all patients, the combination appears more effective than either single agent.
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The posterior probability that the average log hazard for the combination is
lower than that for ddC is 0.96; for the combination versus ZDV, the figure
is 0.97. For the comparison of the combination to ddC, the effect appeared
consistent across the subsets of patients. For the comparison of the combina
tion to ZDV, the effect was only conclusive for patients with CD4 counts
greater than 100 who had received ZDV for more than one year. The results
were less conclusive in the other subsets, but in none was there an indication
that ZDV was more effective than the combination. The conclusion that the
combination is superior to ZDV overall is somewhat weakened when CD4 is
modeled as a continuous variable rather than as a binary indicator, as seen
in table 9.
Has this analysis produced greater insight or different conclusions than

the Cox proportional hazards analyses described above? This is primarily for
the reader to decide. The usual presentation of the full model, as shown in
table 1, provides little information and invites possibly erroneous conclu
sions. One is tempted to conclude that there are no main effects of either
ZDV or ddC because neither regression coefficient approaches statistical
significance. One is cautioned from this interpretation by the nominally
significant interaction between the ddC effect and CD4 cell count, but there
are no interactions that approach significance involving the ZDV effect.
Usually, frequentist analyses do not stop with full models retaining

numerous nonsignificant variables. Model reduction and variable selection
procedures are quite varied and ad hoc, however (e.g., [9]). One approach
often used in clinical trials where treatment by subset interactions is not
expected is to test the global null hypothesis that all interactions are zero.
This provides protection against the possibility that at least one interaction
will appear significant by chance. As noted in the earlier discussion of Cox
proportional hazards analyses, this approach results in the main effect model
shown in table 2. In this model, there is a significant main effect of ZDV
that was not apparent in the full model. There is also a significant main
effect of symptoms that was not apparent in the full model. Alternatively,
one may ignore the multiple comparison issue of eight interaction terms and
eliminate all interactions except the one showing nominal significance in the
full model. This model, shown in table 3, has significant main effects of
ZDV, CD4, and symptoms, as well as the retained ddC by CD4 interaction.
One might have obtained a similar model from one of the many types of
variable selection regression procedures. But results may have depended on
whether forward addition or backward elimination was used, on the nominal
significance level cutoffs used for determining whether variables are retained,
on rules for whether main effects are permitted to be eliminated if interac
tions are retained or on whether variables are tested in groups for elimination.
Consequently, one can have little confidence in the appropriateness of a
model reduced from the full model using variable selection procedures or in
the statistical properties of the regression coefficients and covariance matrix
of the selected model.
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We had two main motivations for investigating the model described here
as a potential competitor to the hierarchical model previously described by
Dixon and Simon. First, the computations are simpler for this model. Since
the posterior distributions are normal, no special software is needed.
Secondly, the hierarchical model is limited to binary covariates for which the
interaction effects are exchangeable. These restrictions are easily avoided
with the model described here. The results (equations (6), (7), (8), and (10))
do not depend on these assumptions. The diagonal form of the D matrix
given in equation (9) depends only on the exchangeability of the interaction
vectors for the two treatments, not on exchangeability of the components
corresponding to different covariates. The price of this generality is, how
ever, the need to specify priors for all the interaction effects not in an
exchangeable set. We have assumed that these effects have zero mean, but
that assumption is also not inherent in the approach. As we have illustrated
for the CD4 variable, this approach to calibration is also applicable to
continuous covariates. Hence, the model described here is readily applied to
a wide variety of experiments.
Evaluating treatment effects for heterogeneous populations of patients is

a complex endeavor that requires a variety of good tools. Issues of specificity
of effects in patient subsets are of increased importance for several reasons,
however. First is the development of molecular and genetic characterizations
of the differences in disease characteristics among patients. There is increased
expectation that these covariates will be important treatment-selection
factors, and there is increased emphasis on evaluating such interactions in
clinical trials. Second is the increased emphasis on evaluating whether there
are gender or minority group differences in treatment effects. We believe
that the model examined here may be found useful in other clinical trials.
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9. The exact analysis of contingency tables
in medical research

Cyrus R. Mehta

Introduction

Modern statistical methods rely heavily on nonparametric techniques for
comparing two or more populations. These techniques generate p-values
without making any distributional assumptions about the populations being
compared. However they rely on asymptotic theory that is valid only if the
sample sizes are reasonably large and well balanced across the populations.
For small, sparse, skewed, or heavily tied data, the asymptotic theory may
not be valid. See Agresti and Yang [1] for some empirical results, and Read
and Cressie [2] for a more theoretical discussion.
One way to make valid statistical inferences in the presence of small,

sparse, or imbalanced data is to compute exact p-values, based on the
permutational distribution of the test statistic. This approach was first
proposed by R.A. Fisher [3] and has been used extensively for the single 2
x 2 contingency table. In the past, exact tests were rarely attempted for
tables of higher dimension than 2 x 2, primarily because of the formidable
computing problem involved in their execution. As we shall see below,
these computations are orders of magnitude more difficult that any others
previously encountered in statistical inference. Two developments over
the past 10 years have removed this obstacle. First, the easy availability
of immense quantities of computing power in homes and offices has revo
lutionized our thinking about what is computationally affordable. Second,
many new, fast, and efficient algorithms for exact permutational inference
have recently been published. Thus computations that would previously
have taken several hours or even days to carry out now take only a few
minutes. It only remained to incorporate these algorithms into friendly,
well-documented statistical packages. Now this step also has been ac
complished. In this chapter, we present a unified framework for exact
nonparametric inference, anchored in the permutation principle. We de
monstrate that exact statistical inference for a very broad class of non
parametric problems can be accomplished by permuting the entries in

Reprinted from Statistical Methods in Medical Research, Vol. 3, No.2, 1994 with kind permission from
Edward Arnold (Publisher) Ltd., London.



a contingency table subject to fixed margins. Exact and Monte Carlo
algorithms for solving these permutation problems are referenced but not
described. We then apply these algorithms to several data sets in the form of
unordered, singly ordered, and doubly ordered contingency tables. Both
exact and asymptotic p-values are computed for these data so that one may
assess the accuracy of the asymptotic methods. Finally, we discuss the
availability of software to implement the algorithms. Readers primarily
interested in applications rather than in the theory behind the permutational
principle may skip the next section, and go directly to the section on the
analysis of data sets.

Nonparametrics and the permutation principle

For a broad class of statistical tests, the data can be represented in the form
of the r x c contingency table x displayed below:

Rows CoLI CoL2 CoLc Row_Total

Row_l Xli XIZ Xlc ml
Row-l XZI XZZ XZc mz

ROWJ Xrl XrZ X rc m r

CoLTot nl nz nc N

The entry in each cell of this r x c table is the number of subjects falling in
the corresponding row and column classifications. The row and column
classifications may be based on either nominal or quantitative variables.
Nominal variables take values that cannot be positioned in any natural
order. An example of a nominal variable is profession - medicine, law,
business. In some statistical packages, nominal variables are also referred to
as class variables, or unordered variables. Quantitative variables take values
that can be ordered in a natural way. An example of a quantitative variable
is drug dose - low, medium, high. Quantitative variables may, of course,
assume numerical values as well (for example, the number of cigarettes
smoked per day).

Unconditional sampling distributions

The exact probability distribution of x depends on the sampling scheme that
was used to generate x. When both the row and column classifications are
categorical, Agresti [4] lists three sampling schemes that could give rise to x;
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full multinomial sampling, product multinomial sampling, and Poisson
sampling. Under all three schemes the probability distribution of x contains
unknown parameters relating to the individual cells of the r x c table.
Under full multinomial sampling, a total of N items are sampled in

dependently, and Xij of them are classified as belonging to row-category i

and column-category j, each with probability 'Tr.ij' Thus the probability of
observing the table x is

r c N' X;j

Pr(x) = IT IT ---.:.!:!L.
i=lj=l Xij!

(1)

Full multinomial sampling might arise, for example, if one were to sample N
hospital patients and classify them according to their race (White, Black,
Other) and their major medical insurance (Blue Cross, HMO, Other). One
would be interested in testing the null hypothesis that race and insurance
plan were independent. Formally, let 'Tr.i' be the marginal probability of
falling in row-category i, and 'Tr..j be the marginal probability of falling in
column-category j. The null hypothesis assumes that 'Tr.ij = 'Tr.i. 'Tr..j.

Under product multinomial sampling, a predetermined number, mi, of
items are sampled independently from population i, and Xij of them are
classified as falling into category j. Let 'Tr.ij be the conditional probability that
an item will fall into category j given that it was sampled from population i.
Thus the probability of observing table x is

r 'TIc X;j

P ( ) = IT mi' j=l'Tr.ij
r x TIc I'

i=1 j=I Xij'
(2)

(3)

Product multinomial sampling might arise, for example, if r drug therapies
were being tested in a clinical trial, mi patients were treated with drug i, and
each patient fell into one of c possible categories of response. One would be
interested in testing the null hypothesis that the probability of falling into
response category j was the same for all i, i.e., the drugs are all equivalent in
terms of response. Formally, let 'Tr.ij be the probability that an individual
treated with drug i manifests the response j. The null hypothesis assumes
that 'Tr.ij = 'Tr.j, for all j = 1, 2, ... c, independent of i.

Under Poisson sampling, cell (i, j) of the contingency table accumulates
events at a Poisson rate of N'Tr.ij, so the probability of observing table x is

r C (N'Tr.ijY;je-Nrt;j

Pr(x) = IT IT , .
i=lj=1 Xij'

Poisson sampling might arise, for example, if the entry in cell (i, j) re
presented the number of induced abortions in district i in year j. One would
be interested in testing the null hypothesis that the abortion rate did not
change from year to year within a district. Formally, the null hypothesis
would assume that the Poisson parameter 'Tr.ij = 'Tr.i. 'Tr..j, where 'Tr.i. is the
marginal rate for district i and 'Tr..j is the marginal rate for year j.

179



(4)

(5)

Notice that the above probability distributions for x depend on a total of
rc unknown parameters, 1tij, (i = 1, 2, ... r), (j = 1, 2, ... c). Since stati
stical inference is based on the distribution of x under the null hypothesis of
independence of row and column classifications, the number of unknown
parameters is reduced (1tij being replaced by 1ti.1t.j or 1tj depending on the
sampling scheme) but not eliminated. Unknown nuisance parameters still
remain in equations (1) to (3), even after assuming that the null hypothesis
is true. Asymptotic inference relies on estimating these unknown parameters
by maximum likelihood and related methods. But in exact inference we
eliminate nuisance parameters by conditioning on their sufficient statistics.
This is discussed next.

Exact conditional sampling distributions

The key to exact nonparametric inference is eliminating all nuisance para
meters from the probability distribution of x. This is accomplished by
restricting the sample space to the set of all r x c contingency tables that
have the same marginal sums as the observed table x. Specifically, define the
reference set

r = {Y: Y is r x c; ±Yij = mi;
j=1

i~Yij = nj; for all i, j}.
Then one can show that, under the null hypothesis of no row and column
interaction, the probability of observing any y E r is

TIc n·'TIr m·I
(yl ) = () _ J=1 !' 1=1 l'

Pr y E r - P y - N'ne nr ..1'
. J=1 ,=IY,!,

Equation (5), which is free of all unknown parameters, holds for categorical
data whether the sampling scheme used to generate x is full multinomial,
product multinomial, or Poisson [5].
Since equation (5) contains no unknown parameters, exact inference is

possible. However, the nuisance parameters were eliminated by conditioning
on the margins of the observed contingency table. Now these margins were
not fixed when the data were gathered. Thus it is reasonable to question the
appropriateness of fixing them for purposes of inference. The justification
for conditioning at inference time on margins that were not naturally fixed at
data sampling time has a long history. R.A. Fisher [3] first proposed this
idea for exact inference on a single 2 x 2 contingency table. At various
times since then, prominent statisticians have commented on this ap
proach. The two reasons most cited for conditioning are convenience and
ancillarity.
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Convenience. The margins of the contingency table do not contain any
information about the hypothesis under test. Since they are the sufficient
statistics for the nuisance parameters, conditioning affords a convenient
way to eliminate nuisance parameters and thereby perform exact inference
without loss of information.
Ancillarity. The principle underlying hypothesis testing is to compare what
was actually observed with what could have been observed in hypothetical
repetitions of the original experiment, under the null hypothesis. In these
hypothetical repetitions, it is a good idea to keep all experimental con
ditions unchanged as far as possible. The margins of the contingency
table are representative of the nuisance parameters. Fixing them in hypo
thetical repetitions is the nearest we can get to fixing the values of the
nuisance paramters themselves in hypothetical repetitions, since the latter
are unknown.

An excellent exposition of the conditional viewpoint is available in Yates
[6]. For a theoretical justification, refer to Cox and Hinkeley [7]. Throughout
this chapter, we shall adopt the conditional approach. It provides us with a
unified way to perform exact inference and thereby compute accurate p
values and confidence intervals, even when the observed r x c contingency
table has small cell counts.

Exact p-value computation

Having assigned an exact probability P(y) to each y E r, the next step is to
order each contingency table in r by a test statistic or 'discrepancy measure'
that quantifies the extent to which that table deviates from the null hypo
thesis of no row and column interaction. Let us denote the test statistic by a
real valued function D: r ~ f!Jl mapping r x c tables from r onto the real
line f!Jl. The functional form of D for some important nonparametric tests is
specified in the next subsection.
The p-value is defined as the sum of null probabilities of all the tables in

r that are at least as extreme as the observed table, x, with respect to D. In
particular, if x is the observed r x c table, then the exact p-values are
obtained by computing

p = 2: P(y) = pr{D(y) ~ D(x)}.
D(y);;;'D(x) (6)

Classical nonparametric methods rely on the large-sample distribution of D
to estimate p. For r x c tables with large cell counts, it is possible to show
that D converges to a chi-square distribution with appropriate degrees of
freedom. Thus p is usually estimated by p, the chi-square tail area to the
right of D(x). Modern algorithmic techniques have made it possible to
compute p directly instead of relying on p, its asymptotic approximation.
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This is achieved by powerful recursive algorithms [8] that are capable of
generating the actual permutation distribution of D instead of relying on its
asymptotic chi-square approximation. We shall see later that p and j5 can
differ considerably for contingency tables with small cell counts.

Choosing the test statistic

As stated previously, the reference set r is ordered by the test statistic D.
Here we define D for three important classes of problems; general tests on
r X c contingency tables, linear rank tests on 2 x c contingency tables, and
odds ratio tests on stratified 2 x 2 contingency tables.

Tests on r X c contingency tables. Different test statistics are appropriate for
different types of r x c contingency tables. When both the row and column
classifications of the table are nominal, the Fisher, Pearson, and Likelihood
ratio statistics are the most appropriate. Tests based on these three statistics
are known as omnibus tests, because they are powerful against any general
alternative to the null hypothesis.

FISHER. Fisher's exact test orders the tables in r in proportion to their
hypergeometric probabilities. Specifically, the test statistic for each y E r is

where

D(y) = -210g (yP(y))

r C

Y = (21t)(r-l)(C-l)p(N)-(rC-l)pn (myc-l)/2 n (nyr-l)/2.
/=1 j=1

(7)

Fisher [3] originally proposed this test for the single 2 x 2 contingency
table. The idea was extended to tables of higher dimension by Freeman
and Halton [9]. Thus, this test is also referred to as the Freeman-Halton
test. Asymptotically, under the null hypothesis of row and column indepen
dence, the Freeman-Halton statistic has a chi-squared distribution with
(r - l)(c - 1) degrees of freedom [10].

PEARSON. The Pearson test orders the tables in r according to their Pearson
chi-squared statistics. Thus, for each y E r, the test statistic is

D(y) =±±(Y/j - m/n/N? (8)
/=lj=1 m/n/N

Asymptotically, under the null hypothesis of row and column independence,
the Pearson statistic has a chi-squared distribution with (r - l)(c - 1)
degrees of freedom [4].

LIKELIHOOD RATIO. The Likelihood Ratio test [4] orders the tables in r
according to the likelihood ratio statistic. Specifically, for each y E r, the
test statistic is

182



D(y) = 2itlj~YijIOg(m;;IN)' (9)

In many textbooks this statistic is denoted by GZ
• Asymptotically, under the

null hypothesis of row and column independence, D(y) has a chi-squared
distribution with (r - 1) (c - 1) degrees of freedom [4].

(10)

D(y) = N(N + 1) [1 - ('A/(N3 - N))]
r

L[Rb) - mi(N + 1)/2F/mi'
i=1

KRUSKAL-WALLIS. When there is a natural ordering of the columns of the
r x c table, but the row classifications are based on nominal categories, the
appropriate test is the Kruskal-Wallis [4]. One can think of the Kruskal
Wallis test as the nonparametric version of one-way ANOVA. It is used to
test the equality of r populations with ordered outcomes. For example,
suppose that the r rows represent r different drug therapies, and the c
columns represent c distinct ordered responses (such as no response, mild
response, moderate response, severe response, etc). The Kruskal-Wallis
statistic is more powerful than the Fisher, Pearson, or Likelihood Ratio
statistics for detecting shifts in response among the r populations. When
there are only two rows in the contingency table, the Kruskal-Wallis test
specializes to the Wilcoxon-rank-sum test.
The Kruskal-Wallis test orders the tables in r according to the Kruskal

Wallis statistic. Specifically, for each y E r, the test statistic is
12

where 'A is the tie correction factor f.J=I(nJ - n), and

R(y) = Yil(nl + 1)/2 + YiZ[nl + (nz + 1)/2]

[

c-I ]
+ ... + Yic L nj + (nc + 1)/2 .

J=I

Asymptotically, under the null hypothesis that the r populations are the
same, D(y) has a chi-squared distribution with (r - 1) degrees of freedom.
When the r x c contingency table has a natural ordering along both its

rows and its columns, the Jonckheere-Terpstra test [11] and the Linear-by
Linear association test [4] have more power than the Kruskal-Wallis test.
For example, suppose the r rows represent r distinct drug therapies at
progressively increasing doses and the c columns represent c ordered
responses. Now one would be interested in detecting alternatives to the null
hypothesis in which drugs administered at larger doses produce greater
responses than drugs administered at smaller doses. The Jonckheere
Terpstra and Linear-by-Linear association test statistics cater explicitly to
such alternatives, for they are better able to pick up departures from the

183



null hypothesis in which the response distribution shifts progressively towards
the right as we move down the rows of the contingency table.

JONCKHEERE-TERPSTRA. The tables in r are ordered according to the
Jonckheere-Terpstra statistic, which is really just a sum of r(r - 1)/2
Wilcoxon- Mann- Whitney statistics. Specifically, for each y E r, the test
statistic is

r i-I c

D(y) = L L L [WijkYik - mi(mi + 1)12],
i=2j=1 k=1

(11)

where the Wijk values are the Wilcoxon scores corresponding to a 2 x c table
formed from rows i and j of the full r x c table. Thus, for k = 1, ... , c,

Wijk = [(Yn + Yjl) + ... + (Yi.k-l + Yj,k-l) + (Yi,k + Yj,k + 1)12].

Under the null hypothesis that the r populations are the same, the
Jonckheere-Terpstra statistic has a mean

r

E(D(y» = (N 2
- LmT)/4
i=1

and a variance

1 [ rvar(D(y» = 72 N(N - 1)(2N + 5) - i~lmi(mi - 1)(2mi + 5)

- j~n;Cnj - 1)(2nj + 5)]

+ 36N(N _ll)(N _ 2) Ltlmi(mi - l)(mi - 2)]

x [tln;cnj - l)(nj - 2)]
+ 8N(~ - 1) L~mi(mi - 1)] [jtln;Cnj -1)].

The asymptotic distribution of

Z = D(y) - E(D(y»
Vvar(D(y»

is normal with mean 0 and variance 1.

(12)

(13)

LINEAR-BY-LINEAR ASSOCIATION. The tables in r are ordered according to the
linear rank statistic
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D(y) = L LUiVjYij,
i=lj=1

(14)



where Uj, i = 1,2, ... r, are arbitrary row scores, and Vj, j = 1,2, ... C, are
arbitrary column scores. Under the null hypothesis of no row by column
interaction, the test statistic has mean

E(D(y» = N-
1(tlUjmj) (tl Vjnj)

and variance

var(D(y» = (N - 1)-1[~ Urmj _ (LjU~mj)2]

[
'" 2 (LjVjnj )2]

x L.. Vj nj - N .
J

(15)

(16)

(17)

(Agresti [4], pp. 284 and 303 (problem 8.29), for additional details). The
asymptotic distribution of

Z = D(y) - E(D(y»
Vvar(D(y»

is normal with mean 0 and variance 1.
The freedom to select the Uj and Vj scores arbitrarily is a powerful feature

of the Linear-by-Linear test [12]. If the u's and v's represent the original raw
data, the Linear-by-Linear test is a test of significance for Pearson's cor
relation coefficient. On the other hand, if the raw data are replaced by ridit
or mid-rank scores, we have a test of Spearman's correlation coefficient. For
the special case of the 2 x C contingency table, the Linear-by-Liilear test
statistic yields a rich class of linear rank tests. These are defined next.

Linear Rank Tests. For the special case of the 2 x C contingency table, the
Linear-by-Linear association test reduces to the family of linear rank tests

c

D(y) = L VjYlj'
j=1

(18)

(19)

Since we are conditioning on the column sums, it is not necessary to sum
over the second row. The scores {uJ have therefore been dropped from the
expression for D without any loss of generality.
The mean and variance of D, under the null hypothesis of no row and

column interaction, and conditional on y E r, can be derived from equations
(5) and (18). The mean is

(
m1) c

E(D) = N j~lVjnj'

The variance is

(20)
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By the Chernoff-Savage theorem [13], the standardized test statistic

Z = D - E(D)
cr

(21)

(24)

converges in distribution to the standard normal distribution with a mean of
oand unit variance, under suitable regularity conditions on the scores.
Different choices of scores {vJ yield different linear rank tests. These

scores and the conditions under which to use each test are specified below.

WILCOXON SCORES. The Wilcoxon scores

Vj = nl + ... + nj-l + (nj + 1)/2 (22)

are the ranks (midranks in the case of tied observations) of the underlying
responses. The Wilcoxon rank-sum test [14] is one of the most popular
nonparametric tests for detecting a shift in location between two populations.
It has an asymptotic relative efficiency of 95.5%, relative to the t test when
the underlying distributions are normal. If there is censoring in the data, the
scores defined by equation (22) are replaced by the generalized Wilcoxon
Gehan scores, as discussed in Kalbfleisch and Prentice [15]. In particular, let
ab a2, ... a g be the g distinct death times. Let nl, n2, ... n g be the cor
responding numbers of deaths and rb r2? ... rg be the numbers at risk at
these death times. The score assigned to all nj subjects who die at time aj is

Va = 1- .?- [ f Ii (N - l+ 1)], (23)
J nj j=cj_I+II=I N - l + 2

where Cj = nl + n2 + ... + nj' For all subjects who are censored between
the two death times aj and aj+ I, the corresponding scores are

Cj (N - l+ 1)]
Vaj+ = 1 - I~ N - l + 2 .

Scores for all subjects censored prior to the first failure time are zero. Scores
for all subjects censored past the last failure time are computed by equation
(23). This convention ensures that the sum of Wilcoxon-Gehan scores over
all subjects, and hence the expected value of the Wilcoxon-Gehan statistic,
is always zero.

NORMAL SCORES. The scores for the Normal scores (or Van der Waerden)
test are the percentiles of the standard normal distribution:

1 [ f <I>-l( i )]
Vj = nj i=cj_l+l N + 1 ' (25)

where <I>-l(a) is the 100ath percentile of the standard normal distribution.
The Normal scores test [14] is an alternative to the Wilcoxon rank-sum
test for comparing two populations. It is a nonparametric test with 100%
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asymptotic relative efficiency relative to the t test when the underlying
distributions are normal with shifted means. If the tails of the distributions
are diffuse, however, this test is less powerful than the Wilcoxon.

SAVAGE SCORES. The scores for the Savage test, also known as the ex
ponential scores test, are defined by

1 [ Cj i ( 1 )]
Vj = - L L - 1.

nj i=Cj~1+11=1 N - l + 1

The Savage test is a locally most powerful test [16].

(26)

(27)

(28)

LOGRANK SCORES. Logrank scores are used for censored survival data [15].
They are defined as follows. Let {aj}, {nj}, {rj}, and {cJ be defined as for
the Wilcoxon scores. The score assigned to all nj subjects who die at time
aj is

1 [ Cj i 1 ]
Va = - L L - 1.

I nj i=cj_ 1+11=1 N - l + 1
For all subjects who are censored between the two death times aj and aj+ 1,
the logrank scores are

CI 1
v -~---

al + - l~l N - l + 1

Scores for all subjects censored prior to the first failure time are zero. Scores
for all subjects censored past the last failure time are computed by equation
(27). This convention ensures that the sum of logrank scores over all sub
jects, and hence the expected value of the logrank statistic, is always zero. It
can easily be seen that for uncensored data, the logrank scores specialize to
the Savage scores defined previously. The Logrank test is a competitor to
the Wilcoxon-Gehan test for censored data. It is the optimal test against
proportional hazard alternatives. However, for nonproportional hazards
with early differences in the hazard rates or crossing hazard functions, the
Wilcoxon-Gehan test is more powerful.

TREND. The Trend test [17] uses the equally spaced scores

Vj = j. (29)

It is also known as the Cochran-Armitage trend test and is a very popular
test of a dose-response relationship among c binomial populations, where
the jth population is sampled nj times and each member of the sample is
exposed to dose Wj' The probability of a response for each sample is 1[j' The
null hypothesis is that

1[1 = 1[2 = ... = 1[c·
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The alternative hypothesis is that there is a trend whereby the binomial
probabilities, nj, increase with increasing dose Wj. A variant of the Cochran
Armitage trend test uses the actual doses, Wj, or their logarithms, as the
scores instead of replacing them by the equally spaced scores.

Tests on stratified 2 x 2 contingency tables. A very important class of exact
nonparametric tests and confidence intervals is defined on data in the form
of several 2 x 2 contingency tables. The ith table is of the form

Rows CoLI CoL2 Row_Total

Row_l Yi Xi mi
Row_2 yj X' m'I I

CoLTot Ni - ni ni Ni

for i = 1,2, ... s. We may regard the two rows of each table as arising from
two independent binomial distributions. Specifically, let (Xi, xi) represent
the number of successes in (mi' mi) Bernoulli trials, with respective success
probabilities (ni, ni). The odds ratio for the ith table is defined as

(30)

Stratified 2 x 2 contingency tables arise commonly in prospective studies
with binary endpoints as well as in retrospective case-control studies. Thus,
although we have specified that the two rows of the 2 x 2 table represent
two independent binomial distributions, this is just a matter of notational
convenience. We could equivalently assume that the two rows represent the
disease status and the two columns represent the exposure status in a
case-control setting.
We shall be interested in testing the null hypothesis that

'Pi='P for i=I,2, ... s.

This is known as the homogeneity test. Next, under the assumption of
homogeneity, we shall be interested in estimating the common odds ratio,
'P. In order to formulate these two problems, we need to extend the
notation developed previously for the reference set r of r x c contingency
tables with fixed margins. Accordingly, let, denote a generic set of s 2 x 2
tables. Let '0 denote a specific realization of ,. Exact inference, both for
testing that the odds ratio across s 2 x 2 tables is constant as well as for
estimating the common odds ratio, is based on determining how extreme the
observed '0 is relative to other ,'s that could have been observed in some
reference set. Different reference sets are used for testing the homogeneity
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of odds ratios and for estimating the common odds ratio. Define the re
ference set

(31)

Also, define the more restricted reference set

Q{ = {, E Q: Xl + X2 + ... + X s = t}. (32)

An exact test for homogeneity of the odds ratios is based on ordering the ,'s
in Q(, while exact inference about the common odds ratio is based on
ordering the ,'s in Q. These two exact procedures are discussed next. For
completeness, a corresponding asymptotic procedure is also provided next
to each exact procedure.

HOMOGENEITY TEST. Zelen [18] developed an exact test for the null hypothesis

Ho: 'Pi = 'P, i = 1,2, .. . s.

Zelen's test is based on the fact that under Ho the probability of observing
any , from the conditional reference set Q( is a product of hypergeome
tric probabilities, which does not depend on the nuisance parameter 'P.
Specifically, the conditional probability of obtaining any, E Q( is

(33)

In addition to its probabilistic interpretation, equation (33) may be used to
order each , E Q( so as to determine how extreme or discrepant the
observed '0 is under Ho. Thus, Pr(,lt) may also be used as the test statistic
for the homogeneity test. Its observed value, Pr('olt), defines the critical
region of the exact two-sided p-value. Let

Q~ = {, E Q(: Pr(,lt):;::; Pr('olt)}.

The p-value for Zelen's test of homogeneity is

p = 2: Pr(,lt).
"CE.Q7

(34)

(35)

There is no well-accepted large-sample theory for this problem. Breslow and
Day [17] propose the statistic

2 ±[X, - A,('P)F (36)
XSD = ,=1 var(X,I'P)

where Ai('P) is the positive root of the quadratic equation
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A_...::..;.o..(N---,--;_-_m----=--;_-_n,,--'_+_A......:::..;) = '¥
(m; - A;)(n; - A;) ,

formed by expressing the ith table as

(37)

m;-A;
N; - m; - n; + A;

and equating its empirical odds ratio to the Mantel-Haenszel common
odds ratio

'¥ = ~f=l x;(N; - m; - n; + x;)/N,
. ~f=l(n; - x;)(m; - x;)/N;

The variance of X; is estimated by

(38)

(39)

I, [1 1 1var(X; '1') = -,- + , + '
A;('P) m; - A;('P) n; - A;('P)

1 ]-1+ ,
N, - m, - n, + A,('P)

In large samples, X~D is chi-squared distributed with s - 1 degrees of free
dom, and the p-value for testing H o is

PBD = Pr(X~D ~ X5), (40)

where X5 is the observed value of X~D' The chi-squared approximation to
the X~D statistic is rather poor for skewed or sparse contingency tables.

COMMON ODDS RATIO ESTIMATION. Exact inference about the common odds
ratio, '1', is based on the fact that the probability of any 't E Q may be
expressed as a product of noncentral hypergeometric probabilities in which
'I' is the only unknown parameter. As shown in Gart [19], this probability is

n~ (m;)( mi )'PXi
P ( ) = ,=1 X; n; - X; (41)

r 't ~ n~_ ( m; ) ( mi )'PXi '
tEn ,-I X; n; - X;

To make inferences about '1', we require the distribution of its sufficient
statistic

t = Xl + Xz + ... + Xs '

This distribution can be derived from equation (41) as

ct'Pt

Pr(T = tl'P) = ~tm..:, C 'Pu'
u-tmin U

where
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s

tmin = 2:max(O,n; - m;),
;=1

s

tmax = 2:min(mi, n;).
;=1

(44)

(45)

(46)

(47)

It is straightforward to test the hypothesis 'P = 'Po based on the conditional
distribution (equation (43)). The test has critical regions of the form T ~ t
(T ~ t) for alternatives of the form 'P > 'Po ('P < 'Po). An exact confidence
interval for 'P may be constructed by inverting this test, as discussed in Cox
and Snell [20]. An efficient numerical algorithm for generating the distribu
tion (equation (43)) is given in Mehta, Patel, and Gray [21].
An asymptotic confidence interval for 'P is usually computed by the

Mantel-Haenszel [22] method. The Mantel-Haenszel point estimate, '1', is
computed by equation (38). The inference is then based on the large-sample
approximation to the distribution of log '1'. This distribution is normal, with
mean log 'P. There has been a great deal of research on the appropriate
variance estimator for log '1'. The most satisfactory candidate is the Robins,
Breslow, and Greenland (RBG) variance [23]. This variance estimator is
known to perform well both when s is small but (m;, n;) are large, and when
s is large but (m;, n;) are small. The RBG variance is

(I \TJ) ~ (a;c; aid; + b;c; bid;)var og T = L.. - + + --
;=1 2ci 2c+d+ 2di

where a; = (x; + yi)/N;, b; = (xi + y;)/N;, c; = (x;yD/N;, d; = (xiy;)/N;, c+ =
L7=1 C;, and d+ = Lt:1 d;. A 100(1 - a)% confidence interval for log 'P
is then

, , 112
CIRBG = 10g'P ± ZU/2[var(log 'P)] .

Computational issues

(48)

Computing equation (6) is a nontrivial task. This is because the size of the
reference set grows exponentially, so explicit enumeration of all the tables in
r soon becomes computationally infeasible. For example, the reference set
of all 5 x 6 tables with row sums of (7, 7,12,4,4) and column sums of (4,5,
6,5, 7, 7) contains 1.6 billion tables. Yet, the tables in this reference set are
all rather sparse and unlikely to yield accurate p-values based on large
sample theory. Network algorithms have been developed by Mehta and
Patel [8,10,21,24,25] to enumerate the tables in r implicitly. This makes it
feasible to compute exact p-values for tables with the above margins. A
different approach to implicit enumeration is provided by Pagano and
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Halvorsen [26], Pagano and Tritchler [27], Baglivo, Olivier, and Pagano
[28], and Streitberg and Rohmel [29]. Sometimes a data set is too large even
for implicit enumeration, yet it is sufficiently sparse that the asymptotic
results are suspect. For such situations, a Monte Carlo estimate and as
sociated 99% confidence interval for the exact p-value may be obtained. In
the Monte Carlo method, tables are sampled from r in proportion to their
hypergeometric probabilities (equation (5)), and a count is kept of all the
sampled tables that are more extreme than the observed table. For details,
refer to Agresti and Wackerly [30], Patefield [31], and Mehta, Patel, and
Senchaudhuri [31].

Analysis of data sets

In this section, we will illustrate the techniques developed in the previous
section with some data analysis. Each example will highlight the different
conclusions one might draw if an asymptotic analysis were performed in
stead of an exact analysis.

Unordered contingency tables

In house-to-house surveys in three geographic regions of rural India by
Gupta, Mehta, and Pindborg [33], data were obtained on the location of
oral lesions. Consider a hypothetical subset of these data in the form of a 9
x 3 contingency table in which each count is the number of patients with
oral lesions per site and geographic region.

Site of lesion Kerala Gujarat Andhra

Labial mucosa 0 1 0
Buccal mucosa 8 1 8
Commissure 0 1 0
Gingiva 0 1 0
Hard palate 0 1 0
Soft palate 0 1 0
Tongue 0 1 0
Floor of mouth 1 0 1
Alveolar ridge 1 0 1

The question of interest is whether the distribution of the site of the oral
lesion is significantly different in the three geographic regions. The row and
column classifications for this 9 x 3 table are clearly unordered, making it
an appropriate data set for either the Fisher, Pearson, or Likelihood Ratio
tests. The contingency table is so sparse that the usual chi-squared asymptotic
distribution with 16 degrees of freedom is not likely to yield accurate p
values. The exact and asymptotic p-values are displayed below.
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Three tests of independence

Type of
inference

Value of D(x)
Asymptotic p-value
Exact p-value

Likelihood
Pearson Fisher Ratio

22.1 19.72 23.3
0.1400 0.2331 0.1060
0.0269 0.0101 0.0356

For each test, the asymptotic p-value was obtained by looking up the tail
area to the right of D(x) (displayed on the first line of the table) from a chi
square distribution with 16 degrees of freedom. The exact p-value was
obtained by actually permuting the observed 9 x 3 table in all possible ways,
subject to fixed margins, and summing the probabilities of permutations y
for which D(y) ~ D(x). There are striking differences between the exact
and asymptotic p-values. The exact analysis suggests that the row and
column classifications are highly dependent, but the asymptotic analysis fails
to show this.

Singly ordered contingency tables

The tumor regression rates of five chemotherapy regimens - Cytoxan
(CTX) alone, Cyclohexyl-chloroethyl nitrosurea (CCNU) alone,
Methotrexate (MTX) alone, CTX+MTX, and CTX+CCNU+MTX - were
compared in a small clinical trial of non-small cell lung cancer. Tumor
regression was measured on a three-point scale: no response, partial re
sponse, or complete response. The results are tabulated below.

Partial Complete
Chemo No resp. resp. resp.

CTX 2 0 0
CCNU 1 1 0
MTX 3 0 0
CTX+CCNU 2 2 0
CTX+CCNU+MTX 1 1 4

Small pilot studies like this one are frequently conducted as a preliminary to
planning a large-scale randomized clinical trial. The columns of the observed
5 x 3 contingency table are ordered by the magnitude of the response.
However, the rows of the table do not have any natural ordering, but simply
represent five different treatments. For such data, the Kruskal-Wallis test
may be used to determine whether or not the five drug regimens are
significantly different with respect to their tumor regression rates. The
observed value of the Kruskal-Wallis statistic for this table is 8.682. Refer
ring this value to a chi-square distribution with four degrees of freedom
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yields an asymptotic p-value of 0.0695, which is not significant at the 0.05
level. However, the exact test based on the permutation distribution of
equation (10) reveals that the exact p-value is 0.039, which is statistically
significant at level 0.05. The small sample size and the presence of ties
caused the asymptotic approximation to be nearly twice as large as the exact
p-value.

Doubly ordered contingency tables

Dose-response example. Patients were treated with a drug at four dose
levels (100mg, 200mg, 300mg, 400mg) and then monitored for toxicity.
The data are tabulated below.

Drug toxicity

Drug dose Mild Moderate Severe Drug death Row_Score

100mg 100 0 0 UI

200mg 18 1 0 Uz

300mg 50 1 0 U3

400mg 50 1 1 U 4

Column...Score VI Vz V3 V4

Notice that there is a natural ordering along the rows as well as the columns
of the above 4 x 4 contingency table. Thus the Jonckheere-Terpstra test
and the Linear-by-Linear association test each are appropriate for determin
ing if the increase in drug dose leads to greater toxicity.
We first perform the Jonckheere-Terpstra test. The exact two-sided

p-value of 0.1134 closely matches the corresponding asymptotic two-sided p
value of 0.1210, indicating that the dose-response relationship between
drug dose and toxicity is not statistically significant. Next we perform the
Linear-by-Linear association test, using the equally spaced scores, U = i,
Vj = j, for i, j = 1, 2, ... 4. Now the exact two-sided p-value is 0.0866 and
the corresponding asymptotic two-sided p-value is 0.0812, confirming that
the dose-response relationship is at best marginally statistically signifi
cant. The Linear-by-Linear association test does give us some added flexi
bility over the Jonckheere-Terpstra test, however. We are free to choose
the row and column scores arbitrarily. Suppose, for instance, that the toxic
event 'Drug death' was deemed to be catastrophic, and orders of magnitude
more serious than a 'Severe toxicity.' In that case, it might be reasonable to
maintain the equally spaced row scores, Ui = i, i = 1,2, ... 4, but to assign
unequally spaced column scores VI = 1 for 'Mild toxicity,' V2 = 2 for
'Moderate Toxicity,' V3 = 3 for 'Severe toxicity,' and V4 = 10,000 for 'Drug
Death.' Because of this severe discontinuity in the column scores, the
asymptotic theory breaks down. Now the two-sided asymptotic p-value is
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0.1604, implying that there is no association between drug dose and toxicity,
while the two-sided exact p-value is 0.0372, implying that the dose-response
relationship is indeed statistically significant.

Space shuttle ChaLLenger example. Professor Richard Feynman, in his de
lightful book What Do You Care What Other People Think? [34], recounted
at great length his experiences as a member of the Presidential Commis
sion formed to determine the cause of the explosion of the space shuttle
Challenger in 1986. He suspected that the low temperature at take-off
caused the O-rings to fail. On page 137 of his book, he has published the
data on temperature versus the number of O-ring incidents on 24 previous
space shuttle flights. These data are tabulated below.

O-ring
incidents Temperature (Fahrenheit)

None 66 67 67 67 68 68 70 70 72
73 75 76 76 78 79 80 81

One 57 58 63 70 70
Two 75
Three 53

These data may be represented as a contingency table whose rows are the
number of O-ring incidents and whose columns are the temperatures at
take-off. Thus both the rows and columns are ordered, and the Jonckhere
Terpstra test is an appropriate one for determining if take-off temperature is
correlated with O-ring failures. The exact p-value is 0.0241, while the
asymptotic p-value is 0.0262. Both are indicative of a significant association
between take-off temperature and O-ring incidents.
The Linear-by-Linear association test may also be used to test the as

sociation between temperature and O-ring incidents. Using the number of
O-ring incidents as the row scores and the take-off temperature as the
column scores, the exact p-value is 0.0272. The corresponding asymptotic
p-value is 0.0175. These results confirm the conclusions of the Jonckheere
Terpstra test.

Linear rank tests

A cohort of Hiroshima atomic bomb survivors was followed to determine
the relationship between deaths from leukemia during 1950-1970 and
estimated radiation dosage from the bombing. Subjects were stratified
according to their age at the time of the bombing. Below we tabulate a
subset of the data, namely, children in the 0-9 age group exposed to
radiation doses ranging from 0 to 99 rads. Cases are subjects who died from
leukemia during the follow-up. Controls are subjects who did not die from
leukemia during the follow-up.
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Radiation dose (rads)
Survival
status 0 1-9 10-49 50-99

Case 0(0%) 7 (0.07%) 3 (0.1%) 1 (0.14%)
Control 5015 10,752 2989 694

Total 5015 10,759 2992 695

Two additional dose groups, 100-199 rads and 200+ rads, are excluded
from the present analysis. Their inclusion increased the standardized value
of the test statistic from 3 to 16, strongly suggesting that their effect on the
risk of leukemia is nonlinear and should be considered in a more general
model. The full data set is on page 285 of Agresti [4].
In absolute terms, the leukemia death rates are rather low. Only 11

deaths were observed in a cohort of size 19,461, amounting to a death rate
of 0.06%. However, the rates increase from 0% in the lowest dose group to
0.14% in the highest. It is therefore interesting to ask whether this increas
ing trend is real, or merely due to chance fluctuations in the data. Our
intuition cannot help much with these extremely low death rates, and we
must resort to a formal statistical test of significance.
One way to determine if there is a statistically significant association

between leukemia deaths and radiation exposure is to perform the
Cochran-Armitage trend test [14]. The test statistic is given by equation
(18), with Vj being the midrange of the jth radiation dose. For these data,
VI = 0 rads, V2 = 4.5 rads, V3 = 30 rads, and V4 = 75 rads. Previously the
only way to perform this trend test was to assume that the linear rank
statistic, D, is normally distributed. Figure 1 displays the true distribution of
D. It is not even close to normal. Its distinct values are unequally spaced;
the distribution has an unusually long right tail, extending all the way out to
D = 825 even though E(D) = 107.6. In addition, the distribution is multi
modal. Not surprisingly, the exact and asymptotic p-values for the Cochran
Armitage trend test differ. The results are tabulated below.

p-values

Exact
Asymptotic

Stratified 2 x 2 tables

One-sided

0.0653
0.0465

Two-sided

0.0682
0.0929

We present two examples in this section, one for a test of homogeneity of
odds ratios and one for estimating the common odds ratio.
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Figure 1. Exact probability density for Hiroshima data.

Homogeneity of odds ratios. The binary response data tabulated below
compare a new drug with a control drug at 22 hospital sites. (At the request
of the drug company conducting the study, the names of the two agents are
not reported here.)

New drug Control drug

Test site Response No Response No

1 0 15 0 15
2 0 39 6 32
3 1 20 3 18
4 1 14 2 15
5 1 20 2 19
6 0 12 2 10
7 3 49 10 42
8 0 19 2 17
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New drug Control drug

Test site Response No Response No

9 1 14 0 15
10 2 26 2 27
11 0 19 2 18
12 0 12 1 11
13 0 24 5 19
14 2 10 2 11
15 0 14 11 3
16 0 53 4 48
17 0 20 0 20
18 0 21 0 21
19 1 50 1 48
20 0 13 1 13
21 0 13 1 13
22 0 21 0 21

The data can be thought of as 22 2 x 2 contingency tables, one for each site.
If you examine the 2 x 2 tables carefully, you notice that site 15 appears to
be different from the others. Whereas all the other sites have a low response
rate for both the new drug and the control drug, the response rate of the
control drug is 79% at site 15. The Homogeneity test can tell you whether
the observed difference at site 15 is a real difference or whether it is just a
chance fluctuation due to a small sample. Because of the sparseness in the
data, the asymptotic (Breslow-Day) statistic might not yield an accurate p
value. The exact (Zelen) test is preferred. The exact p-value is 0.0135. Thus
we reject the null hypothesis that there is a common odds ratio across the 22
sites. The data strongly suggest that the odds ratio at site 15 is different from
the other odds ratios. The asymptotic (Breslow-Day) p-value is much larger
(0.0785) and is only marginally significant.

Estimating the common odds ratio. The court case of Hogan v. Pierce [35]
involved the following hiring data, by race.

Whites Blacks

Date of hire Hired Not Hired Not

7/74 4 16 0 7
8/74 4 13 0 7
9/74 2 13 0 8
4/75 1 17 0 8
5/75 1 17 0 8
10/75 1 29 0 10
11/75 2 29 0 10
2/76 1 30 0 10
3/76 1 30 0 10
11/77 1 33 0 13
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The most notable feature of these data is that at each hiring opportunity,
not a single black was hired, whereas small numbers of whites were hired.
This makes it impossible to use the usual large-sample maximum likelihood
or Mantel-Haenszel [22] methods for estimating the odds of being hired for
whites relative to blacks. These methods simply fail to converge. Only the
exact method provides a valid answer, and it shows that the odds of being
hired for a white relative to a black are no lower than 2.3 to 1, with 95%
confidence.

Concluding remarks

We have presented the essential idea behind exact nonparametric inference,
referenced numerical algorithms and software for its implementation, and
shown through several examples that exact inference is a valuable supple
ment to corresponding asymptotic methods.
The methods described here extend naturally to continuous data. In

principle, such data can also be represented as contingency tables, but the
columns of these tables will sum to 1. Thus these methods provide a unified
approach to handling nonparametric data both for the categorical case and
the more traditional continuous case. For example, consider the following
two-sample problem involving continuous data. The two groups are 'males'
and 'females.' The continuous variable being compared in the two groups is
'monthly income.'

M M M M F F F F

2010 3100 2555 2095 1990 2122 1875 2550

These data can be represented by the following 2 X 8 contingency table,
which may then be permuted in the usual way for exact inference.

Rows

Male
Female

CoLTot

CoLI CoL2 CoL3 CoL4 CoLS CoL6 CoL7 CoL8 Row_Total

001 100 1 1 4
1 100 1 1 004

8

CoLScore 1875 1990 2010 2095 2122 2550 2555 3100

For both representations of the data, the exact two-sided p-value is 0.3429,
while the asymptotic two-sided p-value is 0.2965.
In conclusion, exact methods are now an integral part of nonparametric

inference. Software support for these methods is available in many standard
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packages, including SAS. Some of the newer textbooks on nonparametric
methods, for example, Sprent [36], devote considerable space to exact
methods. Thus one expects that exact methods will replace corresponding
asymptotic ones as the standard approach for small, sparse, or unbalanced
data sets.

Appendix: software for exact inference

So far as we are aware, there are only five statistical packages meeting
commercial standards of reliability and documentation that offer exact
inference capabilities beyond the single 2 x 2 contingency table.

EGRET (1989). The EGRET [37] package is available from Statistical-and
Epidemiology Research Corporation, 1107 NE 45, Suite 520, Seattle, WA
98105. It offers exact inference for stratified 2 x 2 contingency tables and
for the Pearson test for a 2 x c contingency table. Exact inference for the
general r x c problem is not provided.

Epi Info (1989). Epi Info [38] is a series of programs used to create and
analyze questionnaires and perform other common epidemiological tasks.
One of the statistical capabilities provided by Epi Info is exact inference
for the common odds ratio in stratified 2 x 2 contingency tables. It is
available from the Division of Surveillance and Epidemiologic Studies,
Epidemiology Program Office, Centers for Disease Control, Atlanta,
GA 30333.

SAS (1987). SAS [39] is available from the SAS Institute, 100 SAS Campus
Drive, Cary, NC 27513. Versions 6 and up offer the exact p-value capa
bility for Fisher's exact test for r x c tables, but not for any of the other
tests described here. A special module, StatXact for SAS (1993), devel
oped by Cytel Software Corporation, Cambridge, MA, extends the exact
capabilities of SAS by making it possible to call the StaXact package
(described below) from within SAS, read in SAS data sets, and take the
results back into SAS so as to make use of SAS's powerful graphics and
report generation capabilities.

StatXact (1993). The StatXact [40] package is available from Cytel Software
Corporation, 675 Massachusetts Avenue, Cambridge, MA 02139. Version
2 was released in 1991. Version 3 is currently in beta test. It is a complete
nonparametrics package with exact tests for one-sample, two-sample, and
k-sample problems, measures of association, r x c contingency tables,
stratified 2 x 2 and 2 x c contingency tables, multiple comparisons, exact
onec and two-sample Hodges-Lehmann confidence intervals, and exact
confidence intervals for odds ratios, risk ratios, and differences in two
binomial parameters. It provides software support for standard textbooks
on nonparametric statistics such as Lehmann [41], Hollander and Wolfe
[11], Gibbons [14], Seigel and Castellan [42], and Sprent [36]. A com-
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panion package, LogXact [43], provides exact inference capabilities for
logistic regression.

Testimate (1992). The Testimate [44] package is available from IDV,
Datenanalyse und Versuchsplanung, Wessobrunner Strasse 6, D-8035
Gauting, Munich, Germany. It offers exact one- and two-sample tests and
Hodges-Lehmann confidence intervals. Fisher's exact test is provided for
the 2 x c contingency table. Only asymptotic tests are available for r x c
contingency tables where r > 2.
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10. Stratified-adjusted versus unstratified
assessment of sample size and power for
analyses of proportions

John M. Lachin and Oliver M. Bautista

Introduction

In any scientific investigation, it is important to evaluate the adequacy of
sample size with regard to one's ability to provide clear answers to the
questions posed. In many cases, this assessment is based upon the power of
a statistical test for the comparison of two groups with respect to the
probability of some event or characteristic in two independent samples of
subjects. In the simplest case, the proportions of subjects with some charac
teristic are compared between the two groups using a standard chi-square or
Z-test for a 2 x 2 table. Various authors have described expressions for the
approximate power of the large sample chi-square test, the most widely used
being the expression based upon the large sample Z-test for two proportions
of Halperin et al. [1]. This and other widely used procedures for the
evaluation of sample size on the basis of power are reviewed by Lachin [2]
and Donner [3], among others. This approach is based upon an uncondi
tional or marginal assessment of the treatment group difference without
consideration of other covariate effects.
For a single 2 x 2 table, the magnitude of the treatment effect can be

expressed in terms of the odds ratio. To adjust for another qualitative
covariate, or for the grouped categories of a quantitative covariate, the
Mantel and Haenszel [4] procedure can be employed to obtain a stratified
adjusted estimator of the overall odds ratio and a stratified-adjusted test. A
similar test, proposed by Cochran [5], employs the large-sample uncondi
tional variance for the 2 x 2 table rather than the conditional variance as
employed by Mantel-Haenszel. The Cochran-Mantel-Haenszel test was
shown by Radhakrishna [6] to be asymptotically efficient against a sequence
of local alternatives with a common odds ratio within each of the multiple 2
x 2 tables. Birch [7] described the noncentral distribution of the large
sample Mantel-Haenszel test from which the asymptotic power of the test
could be assessed. More recently, Woolson, Bean, and Rojas [8] and Wittes
and Wallenstein [9] described expressions for the power function of the



Mantel-Haenszel test under different sampling designs by considering the
expected values of the components of the test statistic under the null and
alternative hypotheses. For the case of a single 2 x 2 table without stratifica
tion, these expressions reduce to the simple Halperin et al. [1] expression.
These methods, therefore, allow for the assessment of sample size and
power for a stratified-adjusted analysis of two proportions.
An alternate method for obtaining an adjusted assessment of treatment

effect is to employ a regression model. A logistic regression model with
binary indicator for treatment group provides the maximum likelihood
estimate of the log odds ratio adjusting for the other covariate effects in the
model. The power of the large sample Wald test for treatment effect can be
approximated by the noncentral chi-square distribution with a noncentrality
parameter based on the expected value of the Wald test [10,11]. Whittemore
[12] provides an approximate solution for the power function of a logistic
regression analysis in general, but this approach requires knowledge of the
moment generating function of the covariates. Hsieh [13], Wilson and
Gordon [14], and Self and Mauritsen [15] present generalizations of
this method. All require either knowledge of or assumptions about
the distribution of the covariate values that will form the design matrix
in such models.
With these methods, it is possible to assess the power of a test for two

proportions using stratification adjustment for other covariates or using a
regression model adjustment for a collection of covariates. However, there
has been little work to describe the conditions under which it is important,
rather than superfluous, to consider a covariate adjustment for the assess
ment of sample size and power. Beach and Meier [16] and Canner [17], both
using a model initially proposed by Canner [18], considered the effect of a
covariance adjustment on a measure of treatment effect. Beach and Meier
considered the difference between the adjusted and unadjusted Z-value for
2 x 2 x 2 tables, but only under the null hypothesis. Canner [17] considered
the difference between the Z-statistics in a multiple regression model with a
quantitative outcome measure. Both considered the case of a single baseline
covariate, binary in the case of Beach and Meier [16], quantitative in the
case of Canner [17]. Each showed that the difference between the adjusted
and unadjusted Z-values is a function of the Z-values for the association
between the covariate and the outcome, and of the Z-value for the as
sociation between the covariate and treatment group membership. These
models, however, did not assess the impact of a treatment by covariate
interaction on the response. In the case of multiple 2 x 2 tables, a treatment
by covariate interaction is manifested by heterogeneity of the odds ratios
among the 2 x 2 tables.
In this chapter, we describe extensive computations to assess the factors

that affect the power of a test for two proportions with and without a
stratification adjustment. These assessments will evaluate the effects of
a covariate association with the response, covariate imbalance among
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treatment groups (covariate association with treatment group membership),
and the extent of treatment by covariate interaction (heterogeneity of odds
ratios over strata). We shall perform this evaluation using the large sample
expression for the power of a Mantel-Haenszel test provided by Wittes and
Wallenstein [9] for the case of two independent groups versus the unadjusted
power from the marginal 2 x 2 table using the expression of Halperin
et al. [1].
In the remainder of this chapter, we first describe the various measures of

association and heterogeneity for multiple 2 x 2 tables. Then we describe
the adjusted and unadjusted power functions for the test for two proportions.
Next we describe the model under which the powers of these tests are
compared. Then we describe the effects of different characteristics of a set
of multiple 2 x 2 tables on the power of the adjusted and unadjusted tests.
Finally, we present a discussion of the implications of the results obtained
from these various computations.

Odds ratios for S 2 X 2 tables

Let nijk refer to the cell frequency for the jth response (success (+) or failure
(-» in the ith treatment group (experimental treatment (e) or control (c»
for subjects in the kth stratum (k = 1, ... , S). The total sample size is N =
"i.ijknijk, and E(nijk) = NTtijk, where Ttijk is the probability associated with the
ijkth cell in the 2 x 2 x S table. Throughout we employ the '.' notation
to designate summation over the corresponding index of the three-way
table.
Conditionally, within the kth stratum, the 2 x 2 table is of the form

group
e c

+ ne+k nc+k n.+k (1)response
ne-k nc-k n.-k

ne.k nc.k n ..k

We assume that the total sample size, n..b is known or is fixed by design,
with stratum sample fraction rk = n ..kIN; "i.krk = 1.0. Likewise, for the kth
stratum, each treatment group sample size ni.k has a corresponding fixed
sample fraction Qik = ni.k1n••k (i = e, c) where Qek + Qck = 1.
The conditional association between the treatment and response in

stratum k is represented by the conditional odds ratio

(2)

205



For the case of only two strata (5 = 2), the heterogeneity of treatment
group-response association among strata is represented by

'I' = 8c ,/8c2· (3)

Three different 2-way marginal tables can then be constructed. One
describes the pooled or unadjusted association between treatment
and response

group
e c

+ ne+. nc+. n.+. (4)response

ne-. nc-. n._.

ne•• nc•• N

with cell expectations {N1tij.}' Here the total sample sizes ni•• are assumed
known or fixed by design with corresponding sample fractions Qi = ni•• /
N (i = e, c). Also, E(n.+.) = N1t.+., where 1t.+. is the overall probability
or prevalence of a positive response in the population. The unadjusted odds
ratio is provided by

(5)

The 5 x 2 marginal table of stratum-by-group describes the imbalance
between treatment groups among strata:

group
e c

stratum

1

2

5

ned nc.l

ne.2 nc.2

ne.s nc.S n••S

(6)

where n..k = rkN (k = 1, ... , 5) and ni•• = QiN (i = e, c). For only two
strata, the group-by-stratum imbalance can be measured by the odds ratio

(7)

For 5 strata, the association can be described by a vector of 5-1 odds ratios
of the first stratum versus each of the remaining strata (k = 2, ... , 5).
Likewise, the 5 x 2 marginal table of stratum-by-response describes the

association between stratum and response:
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stratum

1

2

s

response
+

ne+l ne-l

ne+2 ne-2

ne+S ne-S

(8)

where E(ne+e) = N1T.e+e. For only two strata, the stratum-response
association is measured by

(9)

Each of the odds ratios can be estimated by the corresponding cross
product ratio of the cell frequencies. However, if we assume that the
conditional odds ratios have a common expectation such that ec = ec_ _.1 2

= ... = ec, = e, then the maximum likelihood estimate of In(e) can be
obtained from a logistic regression model adjusting for stratum. This
requires an iterative solution, even for the 2 x 2 x 2 table. In general,
under the stratified model, this odds ratio will differ from the unadjusted
(pooled) odds ratio, even when where is a common odds ratio 8 within
strata.

Sample size and power: adjusted vs. unadjusted

The Mantel and Haenszel [4] and Cochran [5] test statistics for a stratified
adjusted analysis of S 2 x 2 tables each employ a weighted average of the
differences in the sample proportions in each 2 x 2 table, dk = (ne+k/neek) 
(nc+dncek) , rather than the sample odds or log odds ratios. Similarly,
Wittes and Wallenstein [9] described an approximation to the power of the
Mantel-Haenszel test that is also based on a weighted sum of the differences
within strata:

Ok = 1T.e+k _ 1T.c+k = 1T.e+k _ 1T.c+k
1T.eek 1T.cek rkQek rkQck

(10)

An equivalent expression for the power of this test was also presented by
Woolson, Bean, and Rojas [8] in the setting of a stratified case-eontrol
study.
In general, the equation relating sample size and power for a normally

distributed test statistic with expectation 11 is of the form
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VN I~lll = 2 1- aLO + 2 1-/3L1 (11)

(cf. Lachin [2]), where ~ll is the location difference under the alternative,
and the variance of the test statistic is L6/N under the null hypothesis, LI/N
under the alternative.
The unadjusted test for two proportions is based on the treatment-by

response marginal table (4). For this table, let Pe. = (Tte+./Qe) and Pc. =
(Ttc+./Qc)' Then the sample size and power of the test are provided by
equation (11) with

~ll = Pe. - Pc.

LI = Pe. (1 - Pe.) + Pc. (1 - Pc.) (12)
Qe Qc

which yields the expression of Halperin et al. [1].
For the stratified-adjusted test, within the kth table let Pik = Tti+k/(Qikrk)

(i = e, c). Then the sample size and power of the stratified-adjusted Mantel
Haenszel test are provided by equation (11) with

~ll = LkrkQekQck(Pek - Pck)

L6 = LkrkQekQckPk (1 - h), h = QePek + QcPck

L6 = LkrkQekQck[QckPek(1 - Pek) + QekPck(1 - Pck)]' (13)

For a single 2 x 2 table, equations (13) reduce to equations (12).
For the calculation of sample size a priori, one specifies the stratum

sample fractions {rk} and the stratum experimental treatment group frac
tions {Qed (or control {Qcd) and the cell probabilities {Ttijd subject to
these marginal constraints. One then solves for N. Alternatively, and more
accurately, the computations could be performed in terms of the cell
frequencies {nijd. Greenland [19] used this approach, assuming that the
relative risk Tte+k/Ttc+k is the same for each k. Minor discrepancies may arise
because for a given N, the expected frequency NTtijk generally is not integer
valued. One can generate the table of expected frequencies under some
model, and then assess sample size or power using the corresponding sample
proportions fc ijk = nijk/N.

Power of the unadjusted versus stratified-adjusted tests

In some instances, the power of the unadjusted test equals that of the
stratified-adjusted test, while in other cases the two can be vastly different.
We now describe a model for multiple 2 x 2 tables under which we will
assess the factors that affect the power of the adjusted versus the unadjusted
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test. For simplicity, we consider only the case of two strata (a 2 x 2 x
2 table).
For a given N, a 2 x 2 x 2 table can be parameterized as a function of

the following quantities:
a. the group sample size ne.. = QeN
b. the overall prevalence of a positive response ne+. = 1[.+.N
c. the unadjusted odds ratio eu in equation (5) in terms of the {1[ij.} or the
corresponding {nij.}

d. the sample size of the first stratum n..1 = rlN (and thus n••2 = N -
n..l).

e. the odds ratio for the imbalance 81 in equation (7)
f. the odds ratio for stratum-response association 8A in equation (9)
g. the heterogeneity ratio of within-stratum odds ratio \jI in equation (3).

From these seven quantities, the complete 2 x 2 x 2 table of probabilities
or expected frequencies can be generated (see the appendix). Briefly, from
(a), (b), and (c), the pooled table entries (4) are obtained. From (d) and
(e), the stratum-by-group table (6) is generated. From (f) and the other
known margins, the stratum-by-response table (8) is generated. From (g),
the nel+ cell is obtained, from which the two separate 2 x 2 tables are also
generated, with corresponding odds ratios {ec).
From the pooled table entries given in table (4), the power of the

unadjusted test can be computed from equations (11) and (12). Let this
power be denoted by /3U = 1 - ~u, where ~u is the unadjusted type II
error. Similarly, from the stratum 1 and stratum 2 tables given in (1), the
power of the Mantel-Haenszel test adjusted for strata can be computed
using Wittes and Wallenstein's procedure from equations (11) and (13). Let
this stratified-adjusted power be denoted by ~1 = 1 - ~A' where ~A is the
adjusted type II error. The following investigation evaluates the influence of
the above seven quantities on the difference in power of the unadjusted
versus the stratified-adjusted analyses. In all cases, the probability of type I
error is fixed at 0.05 (two-sided).
An initial investigation was conducted to determine the effect, if any, of

the degree of stratum-by-group imbalance 81, stratum-by-response associa
tion 8A , and heterogeneity of the treatment effect over strata \jI, on the
difference between the unadjusted and stratified-adjusted powers. To
investigate a reasonably wide range of possible situations, while controlling
the overall size of the initial investigation, we considered the following
parameter values:

N = 100, 200, 400, 800

Qe = 0.5

1[.+. = 0.1,0.2,0.3,0.4,0.5

rl = 0.25, 0.5, 0.75

8u = 1, 1.25, 1.5, 1.75,2,3,4,5

81 = 0.2, 1, 5

8A = 0.2, 1,5

'IjJ = 0.2, 1, 5
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For a given combination of the values for N, Qe, 7tH ., '1, SU, Sf, SA, and 1jI,
the pooled, stratum 1 and stratum 2 tables were constructed as outlined in
the appendix. From these tables, the unadjusted and stratified-adjusted
powers I)U and ~X were obtained. The following working definition of a
"difference" between ~0 and ~X was adopted:

Definition 1. Let L1pc = ~X - ~0. For a fixed N, Qe, 7t.+., '1> and 1jI, a
'difference' between ~X and ~0 is defined to exist if for at least one Su in
{1,2,3,4,5}, the corresponding lL1pcl is greater than 0.1.

This approach attempts to capture those situations in which there is an
algebraic difference of at least 10% between the unadjusted and stratified
adjusted powers. Here, the focus is on whether a moderate difference in
power exists, not on its magnitude.
For each of the possible combinations of N, Qe, 7t.+., and '1 in the range

given above, table 1 gives a summary of the values of Sf, SA, and IjI where a
difference does and does not exist between the unadjusted and stratified
adjusted powers. Table 1 suggests that a certain degree of stratum-by-group
imbalance and stratum-by-response association are required in order to have
a difference of more than 10% between the unadjusted and stratified-

Table 1. Result of initial investigation

e] eA IV Power difference?

0.2 Yes
0.2 1.0 Yes

5.0 Yes
0.2 No

0.2 1.0 1.0 No
5.0 No
0.2 Yes

5.0 1.0 Yes
5.0 Yes
0.2 No

0.2 1.0 No
5.0 No
0.2 No

1.0 1.0 1.0 No
5.0 No
0.2 No

5.0 1.0 No
5.0 No
0.2 Yes

0.2 1.0 Yes
5.0 Yes
0.2 No

5.0 1.0 1.0 No
5.0 No
0.2 Yes

5.0 1.0 Yes
5.0 Yes
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adjusted powers. Table 1 also shows that a difference exits between the
adjusted and unadjusted powers for values of 'V equal to 0.2, 1, and 5 only
when there is a certain degree of imbalance and association. In fact, when
there is no imbalance (Qek = Qe for all strata), for the stratified and
unstratified assessment of power in equations (12) and (13), it is readily
shown that the location shifts LlJl are equal and that there is only a slight
difference in the variance components l:1' Thus, the presence or absence of
heterogeneity between strata alone does not materially affect whether there
is a difference between the adjusted and unadjusted powers.

Maximum likelihood estimate of the common stratum odds ratio aand the
unadjusted odds ratio au

As mentioned in an earlier section, w~en the conditional odds ratios 8c, and
8c, have a common expectation, say 8, in general, this common odds ratio
will differ from the unadjusted odds ratio 8u . In the case of a substantial
difference, in most cases one would infer that the unadjusted odds ratio is
biased and that the adjusted odds ratio provides an unbiased assessment of
the treatment group effect. For a given set of 2 x 2 tables, e can be
obtained from a logistic regression model as follows. Let T be an indicator
variable for treatment group (T = +1 if e, 0 if c) and let X be another
indicator for stratum (0 if stratum 1, 1 if stratum 2). Then in a logistic model
of the form In[p/(1 + p)] = a + ~T + yX, expW) provides the maximum
likelihood estimate of e.
The relationship between the common or adjusted odds ratio eand the

unadjusted odds ratio 8u is now investigated for the cases when N = 800,
Qe = 0.5, 1t.+. = 0.5, 'I = 0.5, 'V = 1,8, = {1/5,1/3,1,3,5}, and 8A = {1/5,
1/3,1,3,5}. Since 'IjI = 1 by design, eis the maximum likelihood estimate of
the common odds ratio of stratum 1 and stratum 2.
Figure 1 shows the plots of eversus 8u , with the solid line being the line

of equality. When no covariate imbalance or association is present, as shown
by the '(8" 8A ) = (5, 1) or (1, 5)' curve, the common odds ratio e is
always greater than the unadjusted odds ratio 8u . However, when there is
substantial covariate imbalance and association, the common odds ratio eis
always less than the unadjusted odds ratio 8u . In general, e increases with
8u - and furthermore, the difference between eand 8u also increases. This
indicates that the bias in the unadjusted odds ratio increases linearly as 8u
increases. However, as will be shown in the next section, this does not
translate into a monotonic difference in the stratified-adjusted versus
unadjusted powers as 8u increases.
Note that the direction of the covariate imbalance or association does not

change the relationship between the adjusted and unadjusted odds ratio.
For instance, the same e x 8u curve is obtained for both (8,,8A ) = (3,3)
and (8,,8A ) = (113,1/3).
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Figure 1. Plots of the adjusted odds ratio a versus the unadjusted odds ratio au for N = 800,
Qe = 0.5, 1t.+. = 0.5, rl = 0.5, and IV = 1.

Effect of the unadjusted odds ratio 9u on the power difference

We now consider the effect of the value of the unadjusted odds ratio 8u ,
and indirectly that of the adjusted odds ratio, on the difference between the
unadjusted and stratified-adjusted powers. In general, for a fixed value of
the other parameters, the difference between the adjusted and unadjusted
powers varies as a function of the unadjusted odds ratio 8u . Figure 2 shows
the plot of the power difference ~Il' = BA - ~v as a function of the
unadjusted odds ratio 8u , 8J, and 8A when N = 800, Qe = 0.5, 7[.+e = 0.5,
r1 = 0.5, and \jf = 1. As in the plot of e versus 8u , the direction of the
imbalance or association does not affect the power difference ~Il' as shown,
for example, by the same curve for (8j,8A ) = (5,5) and (8J,8A ) = (115,115).
Also, virtually identical values are obtained when there is heterogeneity
among strata (\jf = 5).
The largest absolute power difference generally occurs when 8u E [1,2]

and becomes negligible for higher values of 8u . When (8I ,8A) = (5,5), the
largest absolute power difference occurs when 8u = 1, while when (8I ,8A )
= (3,3), the largest absolute difference occurs when 8u = 1.5.
A positive difference indicates that the stratified-adjusted power is greater
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Figure 2. Plots of the power difference ~~, versus the unadjusted odds ratio eu for N = 800,
Qe = 0.5, 1t.+. = 0.5, r, = 0.5, and'll = 1.

than the unadjusted power. Figure 2 indicates that for (Sr,SA) = (5,5) 
and for (Sr,SA) = (1/5,1/5) - a positive difference occurs (approximately)
when Su E [1.0,1.35], while a negative difference occurs (approximately)
when Su E [1.4,3.0]. When Su > 3.0, the difference is already negligible.
Thus, for the case when N = 800, Qe = 0.5, 1t.+. = 0.5, Tl = 0.5, \II = 1,
and SI = SA = 5, when the unadjusted odds ratio is less than 1.4, the
unadjusted approach will tend to underestimate power and overestimate
the required sample size relative to the more accurate stratified approach.
For values above 1.4, the opposite occurs. Here the unstratified approach
provides greater power due to the positive bias of the unadjusted estimate,
i.e., power is overestimated and sample size underestimated, this difference
reaching a maximum at about Su = 1.79.

It is instructive to examine some specific cases when SI = SA = 5. When
the unadjusted odds ratio is 1, due to the substantial covariate imbalance
and association, the stratified-adjusted odds ratio is substantially different
from 1, and thus substantial power is lost by not adjusting for the stratum
effect. For example, when N = 800, Qe = 0.5, 1t.+. = 0.5, Tl = 0.5, SI =
SA = 5, \II = 1, and Su = 1, the corresponding stratum 1, stratum 2, and
pooled 2 x 2 tables are as follows:
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Sl e c Total

+ 176 100 276 ec, = 0.4224 = stratum 1 odds ratio
100 24 124

Total 276 124 400

S2 e c Total

+ 24 100 124 eC2 = 0.4224 = stratum 2 odds ratio
100 176 276

Total 124 276 400

e c Total

+ 200 200 400 eu = 1.0 = pooled table odds ratio
200 200 400

Total 400 400 800

Both stratum 1 and stratum 2 have an odds ratio of 0.4224. For the
Mantel-Haenszel test, this yields an adjusted location difference ~llA of
0.03636 in equations (13). However, when the two tables are combined,
the resulting pooled table produces an odds ratio of 1 and an unadjusted
location difference ~llu in equations (12) of zero. Therefore, these dis-
crepancies in the odds ratios and location differences for the stratum-specific
tables are reflected in the unadjusted and stratified-adjusted powers.
On the other extreme, the lowest point of the '(eI,eA) = (5,5)' curve in

figure 2 occurs when eu = 1.79. The corresponding stratum 1, stratum 2,
and pooled 2 x 2 tables are as follows:

Sl e c Total

+ 191 85 276 ec, = stratum 1 odds ratio = 1.0
85 39 124

Total 276 124 400

S2 e c Total

+ 38 86 124 eC, = stratum 2 odds ratio = 1.0
86 190 276

Total 124 276 400
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e c Total

+ 229 171 400
8u = pooled table odds ratio::::: 1.79

171 229 400

Total 400 400 800

In this case, both stratum 1 and stratum 2 have an odds ratio of 1, whereas
the pooled table has an odds ratio of 1.79. In this case, due to the extreme
imbalance of treatment group and stratum (81 = 5), most would agree that
the true odds ratio is 1.0, not 1.79. Thus, the unadjusted analysis is biased
away from the null. As a result, the unadjusted analysis severely over
estimates power relative to an unbiased stratified-adjusted analysis.
Even though the unadjusted odds ratio is nearly constantly positively

biased when 81 and 8A are not equal to 1, the difference in the adjusted and
unadjusted powers becomes negligible beyond some point. This suggests
some difference either in the location shift parameters or variances from
which the power functions are estimated.
Figure 3 shows the plots of the difference Oil. = I~~IA - 1~~lu as a

function of the unadjusted odds ratio 8u for N = 800, Qe = 0.5, 1t.+e =

°6"0.04 ..-'-----------------------------,
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Figure 3. Plots of the difference 860 vs. the unadjusted odds ratio au for N = 800, Qe = 0.5,
1t.+. = 0.5, rl = 0.5, and IJI = 1. •

215



0.5, rl = 0.5, 'II = 1, and a range of values for (8[,8A ). It shows the range of
8u where the difference between ILlJlIA and ILlJll u contributes a large part
to the difference between the adjusted and unadjusted powers. For the
case when (8[,8A ) = (5,5), the positive difference when 8u E [1.0,1.3]
corresponds to the cases in which the adjusted power is larger than the
unadjusted power. Figure 1 shows that the adjusted odds ratio eis actually
less than the null value 1.0 in this range of 8u . This reflects the case in which
the unadjusted analysis is biased towards the null. The negative difference
when 8u E [1.30,1.79] corresponds to those cases in which the unadjusted
power is larger than the stratified-adjusted power. Again, Figure 1 shows
that in this range, the adjusted odds ratio e approaches 1.0 while the
unadjusted odds ratio 8u is biased away from 1.0.
The difference ()~ for the case when (81,8A ) = (5,5) is already constant

"when 8u > 1.79. In figure 1, this is the point at which both the adjusted
odds ratio eand the unadjusted odds ratio 8u are greater than 1.0, away
from the null. Thus, for these cases, the difference between the adjusted
and unadjusted location shifts is constant.
The point 8u where the LlW curve in figure 2 reaches its lowest point

differs for different degrees of covariate imbalance and association. Note
that the shapes of the LlW curve in figure 2 and of the ()~ curve in figure 3
shift to the left and taper off when 81 or 8A or both decrea;e from 5 to 3. The
point 8u , where the largest absolute power difference occurs, also differs for
different degrees of covariate imbalance and association. In cases where a
substantial difference is observed between the adjusted and unadjusted
power, a substantial covariate imbalance and association is also present.
When no substantial covariate imbalance or association is present, there is
also no substantial difference in the adjusted and unadjusted powers.
We now examine the influence of the variance components. Let I:L

denote the unadjusted variance component I:i in equations (12), and let I:L
denote the adjusted variance component I:i in equations (13). Figure 4
shows plots of the difference Lll; = I:1A - I:l u as a function of 8u when N =
800, Qe = 0.5, TC.+. = 0.5, rl = 0.5, and", = 1. In the particular cases
investigated, although Ll:E is strictly increasing as a function of 8u when there
is substantial covariate imbalance and association, the increasing part of the
curves, say in the range [1.0,1.79] when (8h 8A ) = (5,5), is not reflected in
figure 2 because this part is dominated by the decreasing value of ()~ . For

"8u > 1.79, when (81,8A ) = (5,5), ()~ is constant, so the increasing value of
Ll:E is now reflected in the plot of Llp,"in figure 2.
The difference in the variance component I:o in (14) for the unadjusted

and stratified-adjusted analysis does not contribute to the Llp, curve in figure
2. If we denote by I:6u and I:6A the unadjusted and adjusted variance
components I:6 in equations (12) and (13), respectively, the difference I:OA 
I:ou is constant as a function of 8u -
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Figure 4. Plots of the difference ~I: YS. the unadjusted odds ratio au for N = 800, Qe = 0.5,
1t.+. = 0.5, rl = 0.5, and IjI = 1.

Effect of the overall prevalence rate 1t.+. and the stratum fraction r.

When there is substantial covariate imbalance and association, it can be seen
in figure 2 that there is a point 8t beyond which the difference between the
unadjusted and stratified-adjusted powers approaches O. For example, for
the (8b 8A ) = (5,5) case shown in figure 2, 8t = 3.20. Let the point 8t be
referred to as the 'asymptote.' Some of the variables that influence the
magnitude of this asymptote are explored in this section. As before, we fix
Nat 800 and Qe at 0.5.
The investigations conducted in the previous section regarding the effect

of 8r and 8A on the LlI3' curve showed that the deflections in the curve shift
to the right as 8r or 8A or both increase, and to the left as they decrease. In
order to investigate the effects of the other factors on the asymptote 8t, 8r
and 8A are both fixed at 5.
Investigations in the previous sections showed that 'I' does not materially

affect the difference between the unadjusted and stratified-adjusted powers.
This translates to a negligible effect on the Ll 13, curve in figure 2. Since 'I' has
no apparent 'shifting' effect on the LlI3' curve, for fixed values of N, Qe,
7tH ., and '1> with 8r = 8A = 5, changing 'I' will not materially affect the
value of the asymptote 8t. For this reason, only the case in which 'I' = 5 is
considered for this particular investigation.
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To investigate the effect of 1t.+. and fl on et, 1t.+. is varied in the
interval [0.2,0.9] in increments of 0.1, while fl is varied in the interval
[0.1,0.9] in increments of 0.1. For N = 800, Qe = 0.5, e l = eA = \jf = 5, and
for a fixed 1t.+. and fl, the following working definition of 'asymptote' is
adopted.

Definition 2. Let eu vary between 1.0 to 4.0 in increments of 0.05. For
each eu, compute the corresponding dl3' = ~~ - ~u. Define the set S
as the collection of all eu such that the Idl3,1 associated with all such
eu is greater than 0.005. The set S consists of all points eu where
the unadjusted and stratified-adjusted power differ algebraically by
(approximately) at least 1%. The asymptote is then defined as et =
max{eu}·
ElUES

Figure 5 shows the surface plot of et corresponding to the points (fl,1t.+.),
for N = 800, Qe = 0.5, eI = eA = \jf = 5. The surface plot is an asymmetric
saddle. As fl varies, the asymptote et is maximum at fl :::::: 0.50, while as
1t.+. varies, it is minimum at 1t.+. :::::: 0.50. Thus the saddle point occurs in
the neighborhood of the point (0.5,0.5). Note that et ranges from a low of
2.19 to a high of 4.98.

4.98

4.05

3.12

2.19
0.900

0.100 0.200

0.900

Figure 5. Surface plot of the asymptote 8ucorresponding to points (rl,n.+.) for N = 800, Qe =
0.5, and 81 = 8A = IjI = 5.
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From figure 5, one can infer the effect of the stratum fraction '1 and the
overall prevalence rate 1t.+. on the difference dl3' between the stratified
adjusted and unadjusted powers. An increase in 8uwould translate to a
right-shift of the dl3' curve in figure 2, while a decrease in 8uwould translate
to a left-shift of the dJ3c curve. For a fixed stratum fraction '1, a maximal left
shift occurs when 1t.+. = 0.50. The opposite effect occurs when 1t.+. is fixed
and '1 is varied. For a fixed overall prevalence rate 1t.+., a maximal right
shift occurs at '1 = 0.50. The principal effect of these shifts in the curve in
figure 2 is to affect extrema with respect to 8u with little effect on the extent
of the amplitudes of the curve.

Discussion

These computations showed that a substantial difference in power between
the unadjusted versus a stratified-adjusted analysis arises only when there is
a certain degree of stratum-by-group imbalance and stratum-by-response
association (table 1). A stratified-adjusted analysis will not provide a sub
stantially different power when a covariate imbalance exists, but there is
little or no covariate association with response. Similarly, there is no dif
ference in power when covariate association exists, but there is no covariate
imbalance. The presence or absence of heterogeneity between the stratum
odds ratios does not materially affect the difference between the unadjusted
and stratified-adjusted powers.
When both a covariate association and a covariate imbalance exists,

however, the unadjusted odds ratio is positively biased relative to the
stratum-adjusted odds ratio (figure 1). This bias is nearly constant over the
range of the values of the unadjusted odds ratio and increases as a function
of the extent of imbalance and association. Both imbalance and association
must be present to some degree for there to be a substantial bias for
relatively small values of 8u .
This bias in the unadjusted odds ratio translates into a difference in the

location shift parameters d~ as 8u increases, but only to a point beyond
which no further change occurs (figure 3). Again, the shape of these curves
depends on the extent of imbalance and association, there being no differ
ence in these location shift parameters when there is no covariate association
or no covariate imbalance (either 81 or 8A equal to 1.0). On the other hand,
the expressions for the variance under the alternative hypothesis show an
increasing difference as a function of 8u when there is covariate association
and imbalance, and a slightly declining difference when there is either no
association or no imbalance (figure 4).
These two effects yield a sinusoidal-like curve for the difference between

the power of the adjusted versus the unadjusted test as a function of 8u
(figure 2). Since an unadjusted odds ratio equal to 1.0 (the null, unadjusted)
is positively biased, the stratified-adjusted test will yield greater power
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because the adjusted odds ratio in fact differs from the null in the opposite
direction (figure 1). As 8u increases, the adjusted odds ratio 8 approaches
the null and then exceeds it, but 8A is less than 8u by a nearly constant
amount. Thus, at some point in the neighborhood of 8u E [1.25,1.50] for the
values shown, the unadjusted analysis provides greater power. However,
the difference in the location shifts becomes a constant for a value of 8u E

[1.5, 1.8] (figure 3) and thereafter the difference in powers is a function of
the difference in the variance components (figure 4). Eventually, for some
value of 8u greater than 2.0, there is no difference between the adjusted
versus the unadjusted power. The point at which there is no further dif
ference between these powers (8t) is a function of the overall prevalence
and the stratum sample fractions (figure 5).
This investigation has important implications for the evaluation of sample

size a priori for clinical trials and epidemiologic investigations. In a ran
domized clinical trial, randomization on the whole protects against a severe
covariate imbalance. Thus, any difference between the unadjusted and the
adjusted odds ratio should be negligible. Although other covariates may be
strongly associated with the outcome, this alone will have a trivial effect on
power if there is no covariate imbalance to accompany it. Further, the
power is largely unaffected by the presence of heterogeneity of treatment
effect among strata. Thus, for a randomized clinical trial, the sample size
and power can be accurately determined on the basis of an unstratified
assessment.
For a nonrandomized study, however, the situation is entirely different.

Again, heterogeneity among strata will not materially affect power. How
ever, in a nonrandomized study, a covariate imbalance or confounding is not
only possible but also a major concern. In this case, a stratified assessment
of power that accounts for the potential for both a covariate imbalance and
covariate association is preferred. However, if there are only two strata
and the sample fraction in one stratum is very small (less than 0.1) and the
prevalence of response is close to 0.50, then there will be a negligible
difference between the adjusted and the unadjusted power if one wishes to
detect an unadjusted odds ratio in the order of 2.2 or greater.

Appendix A. Constructing the pooled table given N, Qe, 1t.+., and 9u

The row and column totals of the pooled table are obtained as follows:

n••• = Nne.. = Qe . N;

Given 8u , the cell (1,1) entry ne+. is obtained by solving the equation

8
u
= ne+.([l - Qe - n.+.]N + ne+e) (A.l)

(QeN - ne+.) (n.+. N - ne +.)
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for ne+•. When 8u = 1, then ne+. = N· Qe . 1t.+•. When Ou =1= 1, equation
(A. 1) is quadratic in ne + •. In this case, choose the positive root (rounded to
the nearest whole number) that best approximates equation (A.1) as the cell
(1,1) entry neh' After n e+. and the row and column totals are obtained, the
rest of the entries automatically follow.

Appendix B. Constructing the stratum.by-group table given rl and {h

The column totals ne.. and ne.. have already been obtained in appendix A.
Given 81, the cell (1,1) entry ne.1 is obtained analogous to how n eh is
obtained. In equation (A.1), substitute 81 for 8u , ne.1 for ne+., and 'I for
1t.+.; then solve for ne.I' The rest of the table entries follow after ne.1
is obtained.

Appendix C. Constructing the stratum-by-response table given 9A

The row and column totals have already been obtained in appendices A and
B. The cell (1,1) entry n.+1 is obtained as follows: In equation (A.1),
substitute 8A for 8u , 1t.+. for Qe, 'I for 1t.+., and n.+1 for ne+.; then slove
for n.+I' The rest of the table entries follow after n.+1 is obtained.

Appendix D. Constructing the stratum 1 and stratum 2 tables given 'JI

Stratum 1 and stratum 2 tables can be expressed in terms of the entries of
the pooled, stratum-by-group, and stratum-by-response tables as follows:

Sl e c Total

+ ne+1 n.+1 - ne+1 n.+1

ne.1 - ne+1 ne.1 - n.+1 + ne+1 n._1

Total ne.1 nee! n ••1

S2 e c Total

+ ne+. - ne+1 n.+2 - ne +. + ne+1 n.+2

ne .2 - ne +. + ne+1 ne.2 - n.+2 + ne+. - ne+1 n.-2

Total ne .2 ne.2 n••2

After constructing the pooled, stratum-by-group, and stratum-by-response
tables, only the cell (1,1) entry of the stratum 1 table, ne+l, is needed in
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order to completely determine the two tables. Given \fI, ne +l is obtained by
solving the equation

ne+l (ne.l - n.+l + ne +l)(ne .2 - ne +. + ne+l)
(n.+2 - ne+. + ne+l)

\fI=--,--------,-'--,:-:--=----.::....:...:'---:---,--::~'---:------,---

(ne.l - ne+l) (n.+l - ne+l) (ne+. - ne+l)
(ne.2 - n.+2 + ne+. - ne+l)

(0.1)

for ne + l' Equation (0.1) is a third-degree polynomial in ne +1 when \fI = 1
and a fourth-degree polynomial in ne + 1 when \fI "* 1. Pick the positive real
root of equation (0.1) (rounded to the nearest whole number) as the
cell (1,1) entry of the stratum 1 table. If more than one positive real root
exist, pick the root that, when rounded to Ie nearest whole number, best
approximates equation (0.1). Once ne +l is specified, the rest of the table
entries follow.

Appendix E. Specified odds ratios versus attained odds ratios

Given a specified unadjusted odds ratio, say OU(speeitied), the solution ne+.
obtained from equation (A.1) mayor may not be integer valued. In con
structing the pooled 2 x 2 table, the solution ne+. obtained is rounded to
the nearest integer. The resulting odds ratio from the constructed 2 x 2
table, say OU(attained), mayor may not be exactly the same as OU(speeitied) due
to the rounding of the solution ne +. of equation (A. 1).
The same is true for the constructed stratum-by-group, stratum-by

response, stratum 1, and stratum 2 tables. Hence there may be distinctions
between OI(specitied) and OI(attained), OA(speeitied) and OA(attained), and \fI(speeitied)
and \fI(attained)'
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11. Quality-of-Iife assessment in clinical trials

Richard D. Gelber and Shari Gelber

Introduction

Within the context of clinical trials, quality of life (QOL) is a multidi
mensional concept that encompasses health-related constructs, but excludes
other dimensions such as economics, housing, or education. Most QOL
research has been based on the World Health Organization (WHO) definition
of health [1]: 'Health is not only the absence of infirmity and disease but
also a state of physical, mental and social well-being.' Thus QOL encom
passes all health-related outcomes beyond those of survival and physiological
responses. Diseases and their treatments affect not only patients' physical
functioning and level of pain, but also their cognitive, emotional, and social
functioning. QOL measures have also included assessments of sexual func
tioning, family and marital relationships, role performance, vitality, sleep,
health perceptions, general life satisfaction, and symptoms such as nausea
and fatigue. QOL assessment has been employed in developing individual
patient treatment plans, performing cost-benefit analyses, making health
policy decisions, and conducting clinical trial evaluations. Health status,
functional status, and health-related quality of life have become synonyms
for QOL in the clinical trials literature.
This chapter will focus on methodological issues pertaining to the use

of QOL assessments in the evaluation of clinical trial results. We will first
discuss the purpose of QOL in clinical trials and then summarize the his
torical background. Next we provide a detailed overview of the available
instruments and the standards for their selection. Then we focus on the
special features of the design and conduct of clinical trials that incorporate
QOL assessments, and we also outline the criteria for selecting a statistical
methodology. Finally, we review some of these statistical approaches.

The purpose of QOL in clinical trials

The increasing importance of a QOL assessment has become well recognized
[2,3]. Medical therapies sometimes compromise patients' physical, psycho-



logical, and social functioning. If a particular treatment offers a minimal
gain in survival, it is especially important to assess the net benefit after the
toxicity is considered. These QOL considerations may differ among the
prognostic subgroups or may change over time. The joint working party of
the Food and Drug Administration and the National Cancer Institute has
developed recommendations for treatment endpoints in QOL [4].
There are four types of clinical trials in which the use ofQOL assessments as

clinical outcomes is crucial [5]. First are trials in which the treatment is not
expected to alter the course of the disease, but instead to provide symptom
relief. Then there are the trials of potentially toxic drugs expected to decrease
disease morbidity and mortality. Third are prevention trials that assess
interventions on asymptomatic participants. Finally, there are comparisons
of new drugs that are hoped to be less costly or to have fewer side effects
than the standard therapy.
Coates et al. [6] used QOL assessments as predictors of outcome rather

than as endpoints in a clinical trial. Measurements at baseline of these
predictive factors may allow clinicians to better select appropriate treatments
for their patients.

Historical background

Karnofsky is generally credited with introducing the first measure of physical
functioning in 1948 [7]. The Karnofsky Performance Status evaluates patients'
physical daily functioning on an 11-point scale from 0% (death) to 100%
(completely normal), representing 'approximate percentage of normal
physical performance.' This measure has been used extensively in cancer
clinical trial evaluations, despite the fact that its psychometric properties
were not formally analyzed until 1980 [8]. In 1960 the Eastern Cooperative
Oncology Group (ECOG) reduced the Karnofsky index into a six-point
performance scale, often referred to as the Zubrod scale [9].
In 1949 Steinbroker et al. introduced an index for measuring functional

status in rheumatoid arthritis [10], and in 1964 The Criteria Committee of
the New York Heart Association recommended a classification system
for patients with cardiac disease, utilizing four functional classes and five
therapeutic categories [11]. In 1975 Patterson [12] suggested a three-level
survival quality index based on the duration of the clinical response, sym
ptomatic or functional QOL impairment, usefulness of the response, and
cost of the treatment. Thus the earliest evaluations of QOL identified and
quantified the physical effects of disease and its treatment. Subsequent
measures have incorporated the patients' perspectives of their illnesses and
therapeutic regimens.
The medical literature contains several early clinical trials that included

multidimensional QOL measurements. In 1971 Izsak and Medalie [13] de
veloped a multidimensional scale that measured physical, social, and
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psychological variables in cancer patients. The scale was tailored to specific
cancers and designed to assist clinicians in determining rehabilitation needs
and evaluating patient progress. In 1975 a trial for patients with acute
myelogenous leukemia used a six-level assessment of QOL ranging from
'hospital stay throughout illness' to 'no symptoms, normal life' [14]. The
assessments were based on patient reports of their symptoms and functioning.
Given the usefulness of these early studies, one wonders why they did not
stimulate other investigators to include QOL measures routinely in clinical
trials. This may be due in part to the difficulty of dealing simultaneously
with both QOL and response measures. Researchers tend to be more com
fortable with 'objective' endpoints than with 'subjective' measures.
The modern era of QOL in cancer clinical trials research is generally cited

to have begun in 1976 with Priestman and Baum's study of breast cancer
treatment [15]. They used a linear analogue self-assessment scale to measure
QOL, with 10 questions assessing general feeling of well-being, mood, level
of activity, pain, nausea, appetite, ability to perform housework, social
activities, general level of anxiety, and overall treatment assessment. Their
results indicated that this instrument could be used to assess the subjective
benefit of treatment in individual women, to detect changes over time, and
also to compare different treatments within a clinical trial.

Instruments

Selection

During the past two decades, numerous instruments have been developed
and successfully used in the evaluation of cancer treatments in clinical trials.
There are several issues that need to be considered when selecting an
appropriate instrument for assessing QOL within a clinical trial: (1) the
purpose of the clinical trial, (2) the patient population, (3) the treatments
and their potential toxicities, and (4) the resources of the investigators and
the participating clinicians. These issues will determine the type of instru
ment selected and the method of administration. For example, if the disease
being studied or its treatment toxicities severely compromise functioning, an
instrument should be selected that requires minimal effort on the part of
the patient.

Global and specific functioning

The purpose for which the assessment will be used within the clinical trial
will determine which domains will be measured and whether the assessment
will be of global or specific functioning, or of both. For the purpose of
clinical trial research, the most frequently assessed domains are physical,
cognitive, and social functioning, patient satisfaction, and emotional well-
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being. A global measure provides a single composite score that encompasses
multiple domains. Specific measures provide data on one or more symptoms
or on a single domain.

Generic instruments

A second classification of instruments is generic versus disease specific.
Generic instruments assess general domains of health rather than particular
symptoms. They permit comparisons among different diseases and between
different patient groups. Since generic measures are developed to assess
general populations, they are less sensitive to the small but clinically sig
nificant differences that may be relevant when comparing treatment arms for
a specific disease setting.
Generic instruments can be either health profiles or utility measures. A

health profile evaluates the major domains of general health. Examples of
health profiles are the Medical Outcomes Study 36-Item Short-Form Health
Survey (SF-36) [16], Spitzer's Quality of Life-Index (QL-Index) [17], and
the Quality of Well-Being (QWB) Scale [18].
Utility measures were developed in the fields of economics and decision

science. They provide a numeric measure for patients' assessments of QOL
outcomes on a scale of 0.0 (death) to 1.0 (perfect health). Since utilities are
single measures of a health state, they can be used to evaluate overall
changes in patients, but do not indicate in which domains these changes
have occurred. A frequently used method for estimating utilities is the 'time
trade-off' (ITO) [19], in which patients choose between a length of life in
their current state of health and a lesser lifetime in perfect health. Utilities
are used to calculate quality-adjusted life-years (QALYs), which can be
used to determine quality-adjusted life expectancies [20].

Disease-specific instruments

Disease-specific measures are designed to evaluate outcomes in a particular
disease and thus are narrower in focus. These instruments are less likely to
be generalizable to other patient populations. They generally measure areas
that are of greatest concern to the patients and clinicians and are more
sensitive to the relevant differences in the comparison of therapies. The
Breast Cancer Chemotherapy Questionnaire (BCQ) [21] is an example of a
disease- and treatment-specific instrument.
To ensure that the assessment is comprehensive enough to measure

all possible side effects, it may be necessary to create a new disease-specific
questionnaire. However, it is very time-consuming to validate a new in
strument and establish its reliability and responsiveness to the clinically
relevant differences. Frequently a test battery, combining generic and disease
specific measures, is used to provide a more comprehensive evaluation of
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patient responses. For example, the Functional Assessment of Cancer
Therapy scale (FACT) [22] consists of a core set of generic questions and
disease-specific modules.

Instrument administration

Another decision is whether the assessment is obtained directly from the
patients or provided by family members or health care professionals.
Changes in clinical status assessed by clinicians may not provide good in
dications about how the patients are functioning or feeling. Research has
shown poor correlation between patient and clinician responses [1]. Part of
this discrepancy is due to the patients' ability to accommodate to or cope
with the limitations imposed by their illness.
There are three main methods for collecting QOL data: self-administered

questionnaires, telephone interviews, and face-to-face evaluations. Self
administered instruments are less expensive, but must be constructed with
careful attention to reading levels, clarity, length, and patient characteristics.
A brief questionnaire will increase respondent compliance. Telephone and
face-to-face interviews are more costly due to the administration time and
the need to train the interviewers. However, they generally produce better
data quality than self-administered instruments and are more accessible to
patients who have limited physical functioning. Self-administered question
naires are most often employed in the clinical trial setting because they are
less expensive and more efficient than the other forms of data collection.
Trials are underway in which patients use computers to directly enter their
responses to QOL questions [23]. This may improve the data quality for
those patients who can utilize this method.

Item selection

Questions can be asked either in closed or open-ended form. Open-ended
questions permit the patients to provide more personal responses, but
these are difficult to code and quantify. Thus the closed form is most
commonly used. Questions can be in the form of yes/no or true/false or on a
scale. These scales are generally divided into two categories: the Likert,
a categorical scale, and the continuous visual or Linear Analogue Self
Assessment (LASA) scale. The Likert scale provides the patient with a
limited choice of clearly defined response categories. The labeling of these
categories can sometimes lead to confusion when the ordering appears to be
out of sequence. The number of categories will influence the patients'
answers; too many can be confusing, and too few may be too restrictive.
There is some disagreement as to whether to include a middle or neutral
response category [24]. The most frequently employed scales use either four
or five categories [25].
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In contrast to the Likert scale, the analogue scale is an unmarked line,
generally 10 cm long, which is anchored on either end with antonym adjec
tives or descriptions. It is most often used for subjective measures such as
mood. The respondents place a mark anywhere along the line that best
reflects their answer. Although the true linear analogue scale provides for
fine discrimination, its administration has several practical limitations. It
requires an extra step for the data manager to measure and code each
response for analysis.
There are many advantages to using multiple items to measure a particular

construct. Multiple items will make the instrument more sensitive to small
treatment differences. The stability of responses also increases when more
than one question is used to create a summary score. The validity of the
scale is improved when the group of items are carefully selected to be
representative of the attribute being measured. Missing responses can also
be replaced by a summary score of the completed answers in the same area.
These advantages must be weighed against the additional resources

required to administer and analyze lengthy, multiple-item scales. These
longer instruments also increase the time and energy needed by the patients
to complete the questionnaire.

Cross-cultural studies

Instruments to be used in cross-cultural studies have additional criteria that
require special attention. Different cultures often have different attitudes
toward concepts such as illness and pain [26]. Different cultural beliefs
about privacy will impact on the responses patients provide. Willingness to
admit feeling pain will also vary.
The first step in developing instruments to be used cross-culturally is to

translate the questionnaires. This should be done by native speakers of the
second language and 'back-translated.' The translated instrument must then
be piloted to assure that the translation maintains the intent of the original
instrument. Cultural differences may still strongly influence the meaning of
the responses, despite an accurate translation. The anchoring of Likert
scales is especially difficult to reproduce in a new language, or even with the
same language but in a different cultural context. Measures should always
be normed when applying them in different cultures. In one norming strategy,
the results obtained from administering the new instrument to two different
patient populations are compared to the differences that would have been
expected based on known influences or characteristics of the two subgroups.

Psychometric properties

The instrument must have been proven reliable, valid, and responsive in
comparable populations. Guyatt, Feeny, and Patrick [27], Stewart [28], and
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Deyo, Diehr, and Patrick [29] provide detailed discussions of these concepts.
Reliability refers to the stability of the response under the same stimulus
from one occasion to another. Reliability should be measured using one or
more of the following: test-retest, internal consistency (Cronbach's alpha)
[30], and interrater reliability. Validity refers to the ability of the instrument
to measure the constructs that it purports to measure. There are no gold
standards against which health outcome assessments can be compared. It is
therefore necessary to use content, criterion, and construct validity. Con
tent validity is the association between the scale and all the appropriate
theoretical domains. Criterion validity is the extent to which the instrument's
responses correspond to those of a criterion standard. And construct validity
is the relationship between the results of the measure and what would be
expected from particular patient groups. In addition, in clinical trials the
measure must be shown to be responsive to the clinically important dif
ferences between the treatments being compared. Responsiveness is in
fluenced by the number of items pertaining to each area being measured and
the number of response category levels per item. For example, one yes/no
question concerning physical functioning will be much less responsive then
six items rated on a five-point Likert scale.

Examples of instruments used in cancer clinical trials

Some of the most frequently used instruments in cancer clinical trials are
Karnofsky Performance Status [7], ECOG (Zubrod) [9], Breast Cancer
Chemotherapy Questionnaire (BCQ) [21], Cancer Rehabilitation Evaluation
System (CARES) [31], European Organization for Research and Treatment
of Cancer (EORTC) scale [32], Functional Assessment of Cancer Therapy
(FACT) [22], Functional Living Index-Cancer (FUC) [33], International
Breast Cancer Study Group Quality of Life questionnaire (IBCSG-QL)
[34], Linear Analogue Self Assessment (LASA)-Priestman and Baum [15],
QU-Coates [6], Quality of Life Index (QL-Index) [17], and the MOS 36
Item Short-Form Health Survey (SF-36) [16]. An annotated list of these
instruments is presented in table 1.

Design and conduct of clinical trials

Clinical trials that evaluate QOL endpoints must adhere to the rigorous
design criteria required for any effective study. The need for randomization
and double blinding is especially crucial when measuring subjective outcomes.
The sample size must be large enough to permit detection of clinically
significant differences. However, QOL issues can often be studied with
sample sizes smaller than those required for the primary efficacy analysis.
The power to detect differences in QOL is often increased by using methods
for longitudinaldata analysis - for example, repeated measures [35].
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Table 1. Instruments frequently used in cancer clinical trials

Number
Instrument of items Scale

Karnofsky Performance Likert
Status

ECOG (Zubrod) Scale 1 Likert

BCQ 30 Likert

CARES 93-132 Likert

EORTC: QLQ-C30 42 Likertl
binary

FACT 36-40 Likert

FLIC 22 Analogue

IBCSG-QL 10 Analogue

LASA- Priestman 25 Analogue
and Baum

QLI-Coates 4-5 Analogue

QL-Index 5 Likert

SF-36 36 Likert

Domains assessed

Physical

Physical

Attractiveness, fatigue, physical symptoms,
inconvenience, emotional, hope, social
support

Physical, psychosocial, medical interaction,
marital, sexual, symptom-and treatment
specific items

Five functional scales (physical, role,
cognitive, emotional, and social), three
symptom scales (fatigue, pain, nausea) with
additional disease-specific items and a
global QOL scale

Physical, social/family, relationship with
doctor, emotional, functional, well-being,
and additional disease-specific items

Psychological, social, disease symptoms,
global well-being, treatment and disease
issues, and physical functioning

Physical well-being, mood, fatigue,
appetite, coping, social support, symptoms,
overall health

Physical, psychological, social

Physical, psychological

Physical activity, daily living, health
perceptions, psychological, social support,
outlook on life

Physical functioning, role physical, pain,
general health perceptions, vitality, social
functioning, role emotional, mental health,
well-being

Scheduling of assessments

The schedule and frequency of QOL assessments should be defined to
optimally detect treatment differences. The timing should reflect anticipated
disease progression and treatment toxicities. All treatment arms must be
assessed at the same time points. The specifics of administration of the
measure at each visit might also influence the response. For instance, is the
questionnaire completed before, during, or at the end of the clinic visit? Is
the instrument presented to the patient by the doctor, by the nurse, or by
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other clinic staff? If they are administered too often, patients may refuse to
complete the questionnaires, and the clinic staff may find the effort
too burdensome.
In general, there should be a minimum of three administrations: one at

baseline, once when the treatment toxicities are the most prominent, and
finally one at the end of treatment when the therapeutic benefit is most
likely to be present. A baseline measurement that precedes therapy allows
for assessment of treatment-related changes within an individual patient.
Measurements during the therapeutic regimen permit patients to report
pertinent side effects. It must be clear to the patients whether they should
describe their experiences of the effects of the therapy, the rest periods, or
both. The specific time period to which each question refers (e.g., today,
within the last two weeks, or since the last clinic visit) must also be specified.
It is important to have a sufficiently long period of follow-up to allow for the
treatment effect and potential late sequelae to be recorded.

Data quality and completeness

Obtaining complete data from patients is critical inorder to achieve an
accurate comparison of the treatment arms. To avoid problems with data
collection, it is important to designate one or more individuals at each site to
be responsible for completion of the troms. The importance of the trial and
of the infromation that they are providing should be stressed to all patients.
If possible, it is also useful to obtain measurements on those patients who
discontinue the protocol study. For the QOL assessment to be successful, it
must be incorporated as a routine function within the clinic visit, having the
same status as laboratory studies for clinical monitoring of toxicities and
disease progression.

Criteria for selecting statistical methodology

There are a number of statistical methodologies employed in the analysis of
QOL data. Each method requires specific assumptions and yields different
summary measures. The analyses should be understood by clinicians so they
can utilize the trial results in their practices. The reporting and interpreting
of the results must be clear and concise and must highlight clinically relevant
differences. Most QOL questionnaires generate multiple measurements on
one or more dimensions. Some instruments are designed to provide summary
scores for particular domains, but often multiple domains are assessed. It
would be difficult to base a clinical decision on conflicting conclusions from
numerous QOL factors in a single study. It is particularly useful to incor
porate survival data into the QOL analysis. The evaluation of different
treatment arms requires the assessment of quantity as well as quality gains.
The analysis should be able to handle missing data. Infromation is
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frequently lost due to adverse outcomes such as death or disease progression
that prevent the collection of QOL data. Therefore, the missing data are not
missing at random but rather are informatively censored, and an adjustment
must be made in the analysis. Finally, the treatment comparison should
include a sensitivity analysis so that patient preferences can be incorporated.
Individual patients will have a variety of approaches to the trade-offs that
are often relevant when making therapeutic choices.

Statistical analysis

Statistical methods used for the analysis of QOL data have been reviewed
by Fayers and Jones [25], Olschewski and Schumacher [36], Schumacher et
aI. [37], and Cox et aI. [38]. Many of the usual methods of data analysis are
applicable. In this section, we discuss some of the statistical methods
developed specifically for QOL clinical trial treatment comparisons (see
table 2).

Descriptive statistics

A descriptive summary of the data is most often used to evaluate QOL
assessments. Schumacher, Olschewski, and Schulgen [37] reviewed articles
published between 1985 and 1989 and found that about one third used only
descriptive statistics to analyze the data. The QOL results were reported as
frequencies, mean differences, and correlations between different item
responses, or between a response and a clinical measure.
When the data collected are continuous (for example, from an analogue

scale), then the results may be presented as a distribution with means and
standard errors reported. Patient-group mean changes over time may also

Table 2. Some methods for QOL statistical analysis

Descriptive
Means, standard errors, frequencies, correlations, graphs

Analytic-univariate
t-tests, ANOVA, nonparametric methods
Life table analyses of QOL endpoints

Analytic-multivariare
Repeated measures ANOVA
MANOVA
Mixed effects models
Growth curve analysis
Global statistics

Analytic multivariate, incorporating survival data
Markov and semi-Markov models
Q-TWiST
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be plotted. Very often the QOL scores on a continuous scale cluster toward
the extremes or at discrete points along the scale.
Categorical scales (e.g., Likert scales) are also used for QOL assessments.

The distributions of these scores should be examined and nonparametric
methods used if the assumption of normality is violated. Descriptive results
from either discrete or continuous scales can be compared over time and
reported graphically, as presented by Nou and Aberg [39].

Analytic univariate methods

The second general category is an analytic approach using either a univariate or
multivariate analysis. In a univariate analysis, no attempt is made to jointly
analyze the multiple endpoints. Each endopint is analyzed and reported
separately. The review of articles published between 1985 and 1989 revealed
that 50% of the articles used univariate analyses [37].
QOL assessments can be used to define an occurrence of an endpoint.

For example, deterioration below a specified level of minimal functioning
can be used to indicate treatment failure. Life table methods can then be
applied to estimate the risk of failure and to compare treatments with
respect to the time to reach this QOL-oriented endpoint [40]. Rosenman
and Choi [41] are credited with the first application of a Kaplan-Meier
analysis for an endpoint based on QOL (alive but with Karnofsky Index less
than 60).
Univariate treatment comparisons are made on a single factor to deter

mine if one group has better QOL than the others. If the underlying
distribution of the QOL parameter, or its transform, is assumed to be
normal, a t-test or ANOVA may be used for the comparison. Otherwise, a
nonparametric approach should be used. The multiple comparison problem
is the major disadvantage of univariate analyses. Multiple endpoints analyzed
separately can lead to false positives. The Bonferroni method can be used to
protect the type 1 error, but this represents a very conservative approach
when there are a large number of endpoints.

Analytic multivariate methods

Treatment groups within a clinical trial may be compared using repeated
measures over time (longitudinal analysis), multiple endpoints of an in
dividual patient at a single point in time, or multiple endpoints gathered at
several time points. Multivariate techniques include repeated measures
ANOVA, MANOVA (multivariate analysis of variance), mixed effects
modeling, and growth curve analysis. While these provide general com
parisons of treatments, other methods have been proposed specifically to
use multivariate QOL data.

Global statistics. One approach to the analysis of multiple endpoints is the
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use of global statistics [42,43]. A treatment comparison is performed for
each of the multiple items, and the results are combined to form a single
global statistic. O'Brien [42] developed both parametric (using t-tests) and
nonparametric (using Rank Sum tests) approaches employing a weighted
combination of the individual test statistics using the covariance matrix for
the derivation of the weights. Pocock et al. [43] extended the approach to
any set of asymptotically normal individual test statistics. Tandon [44] applied
global statistics to QOL data. The usual multivariate analysis tests the
hypothesis that treatments are different, without requiring that the direction
of the effect be the same for each dimension. Global statistics, however, test
the more relevant hypothesis: is one treatment consistently better than the
other based on each of multiple dimensions assessed in the QOL instrument?
Global statistics are especially useful when the sample size is small and the
QOL instrument has a large number of closely related measures.

Repeated measures. An example of repeated-measures modeling was pro
posed by Zwinderman [45] to assess QOL when comparing two or more
treatment groups in a clinical trial. The QOL data were multidimensional
dichotomous variables measured at different time points. He used a latent
trait stratified logistic regression model with parameters for the time process,
the treatment effect, and the interaction between the two. The latent trait is
a factor, not directly observable, that is estimated through its theoretical
link with a set of measurable behaviors.
Under this model, if the interaction is not statistically significant, then the

time process and treatment effects can be estimated independently of the
baseline QOL measurements. Thus it is possible to ignore differential
mortality, censoring mechanisms, and other missing data problems. The key
assumption is that the lack of an interaction implies that patients' treatment
response is not dependent upon their baseline QOL measures. Zwinderman
comments that the model is biased when a trade-off exists between QOL
and mortality and suggests performing a survival analysis concurrently.

Markov and semi-Markov models. Markov and semi-Markov models have
been used to compare treatments based on estimates of the time spent in
different health states and the probabilities of transitions between these
states. The relevant health states must be identified, and then each is
weighted to reflect the relative value of a health state compared to perfect
health. The treatments are then compared in terms of the total quality
adjusted time, i.e., the weighted sum of the health state durations.

In general, to calculate the transition probabilities, an underlying model
must be assumed. The most commonly used model is the Markov chain,
which assumes that the transitions from one QOL state to another are
independent and continuous and only depend upon the previous state. This
requires that the assessments are made at time points independent of the
patients' treatment schedule or health state.
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Several investigators have used these stochastic models to evaluate QOL
data. Gore [46] used health state transitions to create a 'grid of quality
adjustments' to evaluate trade-offs between different radiation schedules for
cancer. This grid is a chart of logrank tests comparing the quality-adjusted
survival times for varying utility weights assigned to different health states.
Loewy et al. [47] used survival data to distinguish two attributes of utility,

namely, prolongation of life and QOL, for evaluating beta-blockers for
heart disease. Discrete-time transient semi-Markov processes were used to
model the health state transition probabilities corresponding to the pro
longation of life, while a simple recurrent Markov process was used to
derive the QOL state transition probabilities. In a semi-Markov process, the
state changes form an embedded Markov chain, and the times spent in
different health states are mutually independent and depend only on the
adjoining states [48]. Researchers have used Markov models to study sys
temic lupus ertematosus [49], recurrences of headaches [50], prostate cancer
[51], and hepatocellular carcinoma [52].
An alternative approach proposed by Pepe [53] uses a qualifier Q for the

survival function that estimates the prevalence of a transient condition
among surviving patients over time. This nonparametric estimator can be
used in conjunction with the survival curves to describe a major aspect of
QOL. It was applied to estimate the prevalence of chronic graft-versus-host
disease among patients receiving bone marrow transplantation and was
contrasted with Markov and semi-Markov estimates using the same data set.

Q-TWiST methodology. The objective of the Q-TWiST method is to in
corporate QOL aspects into treatment comparisons in clinical trials so that
the evaluation of therapies is based on both quantity and quality of life. The
starting point is the overall Kaplan-Meier survival curve, which is often
used as the primary endpoint in clinical trials. Q-TWiST can be used not
only in treatment evaluations, but also to facilitate individual therapy choices
incorporating patient preferences regarding treatment toxicity and efficacy.
Q-TWiST stands for Quality-adjusted Dme Without ~ymptoms of disease
and Ioxicity of treatment [54]. It is based on the concept of quality-adjusted
life-years (QALYs) [20] and represents a utility-based approach to QOL
assessment in clinical trials [55].
The development of the method was motivated by a medical controversy

in which the study of adjuvant therapy in breast cancer patients demonstrated
an improved disease-free survival but not overall survival [56,57]. Q-TWiST
provided an opportunity to balance the improved QOL associated with
delayed recurrence against the diminished QOL associated with toxic side
effects of the adjuvant therapy. The technical aspects of the method were
described by Goldhirsch et al. [54] and Glasziou et al. [58]. The method has
been applied to address treatment comparisons for patients with node
positive [59] and node-negative breast cancer [60] as well as patients with
HIV infection [61,62].
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METHODOLOGY. The application of the Q-TWiST method involves the fol
lowing three steps.
1. The first step is to define QOL-oriented health states that highlight the

differences between the regimens being compared for the specific disease
under study. Included among these states is TWiST, a period of relatively
uncompromised QOL, representing the best QOL available for the study
patients. Patients progress through the health states chronologically, possibly
skipping one or more states, but never backtracking. These states can be
defined retrospectively at the time of data analysis or can be specified
prospectively in the protocol document in anticipation of performing a
Q-TWiST analysis.
2. In the second step, Kaplan-Meier curves for health state transi

tion times are used to partition the area under the overall survival curves
separately for each treatment. The average time a patient spends in each
health state through the follow-up period is calculated using restricted
means [62]. These are restricted because they represent the mean health
state duration up to a finite time determined by the follow-up interval for
the study. For example, if the median follow-up of patients in a breast
cancer study was seven years, than it would be reasonable to calculate
estimates of time spent in each health state within seven years from rando
mization (i.e., average times restricted to seven years.)
3. The third step is to compare the treatment regimens using the weighted

sum of the mean durations of each health state as calculated in step 2. This
quality-adjusted survival comparison offers the opportunity to include utility
weights to reflect the assumed relative value to the patient of the different
health states. On a scale of 1.0 to 0.0, these utility coefficients represent the
worth of the different states, where TWiST is assigned the value of 1.0 and
death is assigned the value of 0.0. Thus a weight of 0.5 reflects a health state
that is valued half as much as time spent in TWiST. Treatment comparisons
can be made using sensitivity analyses, also called threshold utility analyses.

AN EXAMPLE. Lenderking et al. [62] recently published a Q-TWiST analysis
to evaluate the QOL associated with zidovudine treatment in asymptomatic
HIV-infected patients. The original study performed by the AIDS Clinical
Trials Group (ACTG 019) was a double-blind, randomized, placebo-con
trolled clinical trial designed to study the efficacy and safety of two different
doses of zidovudine (1500mg and 500mg daily) in asymptomatic HIV
infected patients [64]. The Q-TWiST analysis evaluated the trade-off between
the potential delay in disease progression and the toxicities associated with
the use of the two doses of zidovudine in patients who were experiencing
little or no disease-related symptoms at the time of study entry.
In step 1 of the Q-TWiST analysis, the following three health states were

identified: (1) TWiST, the number of months preceding the development of
a grade 3 or worse symptomatic adverse event or HIV disease progression,
whichever occurred first; (2) AE, the period after the first occurrence of a
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TWiST AE PAOG DEATH

severe adverse event; and (3) Prog, the period after the progression of the
HIV disease. The Q-TWiST survival model used the utility coefficients UAE

and uProg to reflect the value of these states of health (time after adverse
event and time after disease progression). TWiST was assigned a weight of
1.0 and death a weight of 0.0. Thus the QOL-adjusted survival relative to
TWiST (Q-TWiST) was calculated as:

Q-TWiST = TWiST + (UAE * AE) + (uProg * Prog)
Figure 1 shows an example of the different time periods with arbitrary utility
coefficients of 0.75 for AE and 0.5 for Prog.
Step 2 used the collected data to calculate separate Kaplan-Meier curves

for the adverse event-free survival (AEFS), progression-free survival (PFS),
and overall survival (OS). These curves partition the OS into periods of time
in TWiST, time after an adverse event, and time after disease progression.
The partitioned survival analyses for the standard-dose zidovudine group
(500 mg daily) and for the placebo group are shown in figure 2. The results
were restricted to the first 18 months of follow-up. Patients treated with
zidovudine therapy spent less time in Prog, but more time in AE than
patients in the placebo group. The two groups had approximately equal
amounts of TWiST.
In step 3, the two treatment groups (zidovudine 500mg daily versus

placebo) were compared using a threshold utility analysis of the amount of

Quality-Adjusted Time Without Symptoms
and Toxicity (Q-TWiST)

Q-TWIST = TWIST + (UAE X AE) + (UPROG X PROG)

Utility

1.00
.75
.50
.25
o

Time from Randomization

Figure 1. Health states for a Quality-adjusted Time Without Symptoms and Toxicity (Q
TWiST) analysis of zidovudine for asymptomatic HIV-infected patients. This illustrates the
division of overall survival time into TWiST, AE (time after a severe adverse event), and Prog
(time after HIV disease progression), and the weighting of these time periods using utility
coefficients UAE and Uprog'
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Figure 2. Partitioned survival plots for the 500-mg zidovudine group (panel A) and for the
placebo group (panel B). In each graph, the area under the overall survival curve (OS) is
partitioned by the Kaplan-Meier curves for HIV progression-free survival (PFS) and adverse
event-free survival (AEFS). The areas between the Kaplan-Meier curves up to 18 months of
follow-up give the restricted mean times spent in the health states TWiST, AE, and Prog.

Q-TWiST for all possible combinations of values of UAE and uProg (ranging
from 0.0 to 1.0; see figure 3). The solid line in figure 3 indicates the pairs of
utility coefficients for which the Q-TWiST was equal for the two treatment
groups. Pairs of utility coefficients above this line are those values of UAE

and uProg for which the Q-TWiST was greater for the zidovudine group,
while those below the line favor placebo. The 95% confidence interval for
the threshold utility line (upper boundary shown as the dashed line in figure
3) was calculated using the bootstrap method.
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Figure 3. Threshold utility analysis comparing a 500-mg dose of zidovudine with placebo within
18 months of follow-up. The vertical axis shows the value of the time after an adverse event
(UAE)' and the horizontal axis shows the value of the time after disease progression (uprog). The
values for both range from 0.0 to 1.0, with a value of 1.0 indicating that the time is worth the
same as TWiST and a value of 0.0 indicating that the time is worth nothing. The solid line is
the threshold (based on values of UAE and uProg) for which zidovudine and placebo groups have
equal amounts of Q-TWiST. The dashed line shows the upper 95% confidence boundary for the
threshold line (the lower confidence boundary is out of the possible range of utility values and
hence is not shown). The lines divide the plot into three a'reas showing the utility values for
which Q-TWiST was significantly longer in the zidovudine group (upper left), the values for
which Q-TWiST was longer but not significantly so for the zidovudine group (middle region),
and the values for which Q-TWiST was longer but not significantly so in the placebo group
(lower right).

Subjective patient judgments provide the weights for the components of
Q-TWiST influencing treatment comparisons. A traditional efficacy analysis,
considering the delay of disease progression as the main endpoint, would
assign a value of 1.0 to the coefficient UAE and 0.0 to the coefficient uProg'

For these utility values, the zidovudine yielded the better result. In fact,
zidovudine provided significantly more Q-TWiST than placebo for all
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patients with utility coefficients in the upper left corner of figure 3, those
with higher values for UAE and lower values for uProg. The trade-off shifted
away from zidovudine for patients who value time after adverse events as
less than 1.0 and time after disease progression as greater than 0.0.

EXTENSIONS. The Q-TWiST method is very general, since it can be applied
for any treatment comparison involving progressive health states that differ
with respect to the patients' QOL. Current research is underway to apply a
Q-TWiST analysis for treatment comparisons in rectal cancer, colon cancer,
pediatric malignancies, cardiology, and neurologic diseases such as multiple
sclerosis. In addition, techniques for eliciting utility coefficients directly
from patients and incorporating these in the Q-TWiST analysis are being
developed [65]. A Q-TWiST gain function has been introduced to display
the treatment comparison over time [66]. The Q-TWiST method has been
extended to incorporate prognostic factors using a Cox proportional hazards
regression model [67]. Parametric estimates for the tails of the survival
distributions have been used to project future treatment gains that might be
achieved [68,69]. A version of Q-TWiST has also been developed for use in
meta-analysis.

Conclusion

Although overall survival remains the most important single endpoint for
evaluating treatment effectiveness, QOL evaluation plays an increasingly
important role for therapeutic choice. The use of QOL assessments
in clinical trials has suffered because these endpoints require special effort
that is not yet a routine part of patient care or protocol conduct. The
specific choice of QOL instruments is less important than a recognition and
endorsement that QOL assessments in clinical trials represent an essential
component of the research strategy.
Missing data, the censoring of QOL measurements by death, and the

multiplicity of endpoints represent special methodological challenges in the
analysis of QOL. Some of the methods used to handle these problems have
been described. When designing a clinical trial, it is important to consider
the type of QOL analysis that will be performed.
The Q-TWiST method was specifically developed to provide treatment

comparisons within clinical trials that incorporate both quantity and quality
of survival. These comparisons are based on a utility approach to weighting
different health states according to patient preferences. Q-TWiST integrates
the subjective aspects of QOL assessment into a survival-time analysis to
provide a range of outcomes useful for patient care decision making.
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61-62,66
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Eastern Cooperative Oncology Group
(ECOG),226

ECOG (Zubrod) scale, 226, 231, 232
Effectiveness of treatment, 37, 40
Efficacy, 32, 40, 56,237
ddC vs. ZDV, 164
failure-time endpoint, 36, 37, 38-39
multiple outcomes, 64, 66
zidovudine for HIV infection, 241
Efron and Feldman approach, 38, 39
EGRET (1989) (software), 200
Electronic medication event monitoring, 39
Empirical difference, 58
Enumeration algorithm, 62
Epi Info (1989) (software), 200
Error rates, 43
Eskimo children, HIB vaccine, 143-144
Estimating functions, 89
Estimator for the baseline survival
function, 75

European Organization for Research and
Treatment of Cancer (EORTC) scale,
231,232

Event times rank, 99
Exact algorithms, 177-178
Exact analysis of contingency tables in
medical research, 177-201
analysis of data sets, 192-199
choosing the test statistic, 182-191
computational issues, 191-192
exact conditional sampling distributions,
180-181
exact p-value computation, 181-182
introduction, 177-178
nonparametrics and the permutation
principle, 178-192
software available, 200-201
unconditional sampling distributions,
178-180

Exchangeability assumption, 160
Expected number of events for individual i,
96

Expected number of future responses, 147,
148-149

Expected success probability, 55-56
Experimental probability vector, 66
Exponential model, 115
Exponential model deviance for node h,
115-116

Exponential modelloglikelihood, 114
Exponential scores (Savage) test, 187
Exponential survival, 138

Failure time, 85



Failure time vector, 76-77
Failure vector, 89
False-positive claims, chances of, 2, 9
Fisher's exact test, 182, 183, 192-193
software, 200, 201
Fixed-standard success probability Po, 51
Fleming designs, 61, 62
Fleming three-stage design, 63
Fleming two-stage design, 62
Fluorouracil, 73, 83-86
Forced expiratory volume (FEY)
measurements, 9

Formal stopping rule, 85
Frailty models, 91
Frailty variables, 91
Fraud, 42-43
Freeman-Halton test, 182
Frequentist analyses, 173
confidence intervals, 169
Frequentist criteria, 66
Frequentist inferences at the end of the
trial,67

Frequentist model regression analysis, 166
Frequentist point of view, 2, 63
Frequentists, 125-128, 136
Full multinomial sampling, 178-180
Fully Bayesian approach, 128
Fully iterated maximum partial likelihood
estimator, 99

Functional Assessment of Cancer Therapy
(FACT) scale, 229, 231, 232

Functional Living Index-Cancer (FUC),
231,232

Gamma interferon, 73-74, 86, 87
Gap times, 80, 81
Gastric carcinoma, locally advanced
nonresectable, 101

Gehan design, 62
Generalized least squares, 98, 99
Generalized linear model (GLM), 103, 160
partial residuals, 105, 106, 107, 109
Generic instruments, 228
GUM partial residual, 105
plots, 110
weighted smoothed, 110
Global null hypothesis, 173
Goodness-of-fit and diagnostics for
proportional hazards regression
models, 95-111
assessing functional form, 103-109
assessing proportionality, 98-103
conclusion and summary, 109-111
introduction, 95-96

Martingale and Schoenfeld residuals,
96-98

Greenberg Report, 1
Grid of quality-adjustments, 237
Group-by-stratum imbalance, 206
'Group sequential' analyses of interim data,
2, 24

Group sequential boundaries, 8
Group sequential method for interim
analyses, 5

Growth curve analysis, 234, 235
Gumbel's bivariate exponential
distribution, 79

Haemophilus influenzae type B (HIB),
143-144

Harrington and Fleming family of tests, 100
Hastie and Tibshirani's method, 108
Hazard function, 77, 96,158
Hazard rate, 106, 164
Hazard rate log-linear, 106
Hazard ratios, 22, 96, 98
Headaches, recurrences of, 237
Health, defined by World Health
Organization, 225

Heart disease, beta-blocker evaluation, 237
Hepatocellular carcinoma, 237
Herson design, 62
Heterogeneity, 219, 220
Heterogeneity of treatment group-response
association among strata, 206

Highest posterior density (HPD) intervals,
166, 171

Hodges-Lehmann confidence intervals,
software, 200, 201

Hogan v. Pierce, 198-199
Homogeneity of odds ratios, 196-198
Homogeneity test, 188-190, 198
Human immunodeficiency virus
(HIY) infection

IAIDS, patient noncompliance, 36
p24 core antigen level, 30-31
Q-TWiST methodology, 237, 238
quality of life, 34-36
treatment specificity, 155
Hypergeometric probabilities, 182, 189, 190
Hyper-prior, 160

Immunological markers, 30-31
Improvement for split s at node h into
left and right daughter nodes, 116

Impurity or estimated cost of node h,
117-118

Incremental utility, 141, 142
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Information concept, 15, 16
Information fraction (t*), 3-5, 7-10,13,
17-18,20-21

Information matrix, 109
Intensity process, 96, 98, 103
Intent-to-treat type analysis, 39
Intercept term, 100
Interim monitoring rules, 69
Interim stopping rules, 60, 63
Internal consistency (Cronbach's alpha), 231
Internal nodes, 118-119
International Breast Cancer Study Group
Quality of Life questionnaire
(IBCSGQL), 231, 232

International CGD Cooperative Study
Group, 73-74

Interrater reliability, 231
Issues in the design and analysis of AIDS
clinical trials, 29-45
data quality in clinical trials, 40-43
noncompliance, 36-40
quality of life methodology, 34-36
Iteration, 109

Jeffreys hyper-prior, modified, 160
Jeffreys' prior distributions, 160
Jonckheere-Terpstra test, 183-184, 194, 195
Juvenile onset diabetes, 88

Kaplan-Meier analysis, 235
Kaplan-Meier estimates, 116
of time distribution, 156, 157
Kaplan-Meier estimator, 76
left-continuous version, 99
modified, 33
Kaplan-Meier survival curve, 237-240
Karnofsky Performance Status, 226, 231,
232,235

Kernel of partial likelihood, 108
Kernel smooths, 100
Knots, 108
Kosorok and Fleming method, 33-34
Kruskal-Wallis test, 183-184, 193

Lan and DeMets alpha spending function
a(t*), 6, 7, 10

Lan and DeMets approach, 5
Large-sample maximum likelihood
method, 199

Large sample theory, 191
Laser photocoagulation, 74, 88
Latent trait, 236
Least-squares heuristics, 99
Leukemia, related to atomic bomb radiation
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dosage, 195-196,197
Levamisole, 73, 83-86
Liang et al. estimating function, 88
Life table analyses of QOL endpoints,
234,235

Likelihood function, 126, 137, 152
Likelihood Ratio test, 158, 182-183,
192-193

Likert scale, 229-230, 235
Linear Analogue Self Assessment (LASA)
Priestman and Baum, 231, 232

Linear Analogue Self Assessment (LASA)
scale, 229-230

Linear-by-Linear association test, 183-185,
194, 195

Linear gaussian loess (solid line), 101
Linear mixed-effects model, 18, 19,20
Linear models, 160
Linear random effects model, 18-19
Linear rank statistics, 14-18
Linear rank tests, 185-186, 195-196
Linear smoothers, 100
Lin's test for a scalar covariate, 103
Lin-Wei robust variance-covariance
estimator, 78-79

Locally weighted regression, 100
Loess scatterplot smoother, 103
Loess smoother, 102
Log hazard ratio, 16, 137, 138
Logistic model, 160
Logistic regression model, 204
Log-likelihood for the saturated model, 116
Log odds ratio, 204
Log partial likelihood, 96
Logrank scores, 187
Logrank statistic, 14-17,76,79,84,90
weighted, 39
Logrank test, 14-18,74,79,90, 100, 156,
187,237

Logrank test statistic, 114
between-node methods, 119
growing a tree, 116
prognostic groups for myeloma, 120
121, 123

Logrank-type test, Mark and Robins
approach, 38
LogXact,200-201
Lp and L p Wasserstein metrics, 114

MANOVA (multivariate analysis of
variance), 234, 235

Mantel-Haenszel common odds ratio, 190
Mantel-Haenszel method, 191, 199,
203-204



Mantel-Haenszel point estimate, 191
Mantel-Haenszel test, 205, 207, 208,
209, 214

Marginal hazard approach, 74, 91
Marginal hazard rates, 79
Marginal noncomparability, 38
Marginal probability, 179
Marginal rate, 179
Mark and Robins approach, 38
Markov chain, 236
Markov models, 86, 236-237
Martingale counting process theory, 99
Martingale residuals, 96-98,106,107,109
Maximal test statistic, 119-120
Maximized loglikelihood for node h, 115
Maximum duration design, 16, 17, 18
Maximum information design, 16, 17
Maximum likelihood estimate (mle), 162,
166-167,169,204,211

Maximum likelihood estimate of the
hazard rate in node h, 115-116

Maximum partial likelihood estimate, 161
Maximum partial likelihood estimator,
75, 97

Maximum tolerable dose (MTD), 49
Mean, linear rank tests, 185
Mean levels of response, 11-13
Mean of the beta density, 131-132
Medical Outcomes Study 36-Item Short-
Form Health Survey (SF-36), 35, 228,
231,232

Melanoma, malignant, 108-109, 110
MEMS caps, 39, 40
Merigan's criteria, 31-32
Methotrexate (MTX), 193-194
Minimax design, 62
Missed appointment records, 39
Mixed effects models, 234, 235
Monetary cost, 57
Monte Carlo algorithms, 177-178
Monte Carlo estimate, 192
Monte Carlo simulations, 79-80
MULCOX2 (software) FORTRAN
program, 82, 83

MULSEQ (software) FORTRAN program,
82, 83

Multicollinearity, 34
Multiple events data, 73, 76, 77
Multiple sclerosis, Q-TWiST
methodology, 242

Multistage designs, phase II trial, 61-64
Multivariate covariates, 99
Multivariate failure time data, 73-91
CaD study, 86-87

definition, 73
Diabetic Retinopathy Study, 87-88
examples, 83-89
marginal approach for, 76-79
marginal vs. conditional approaches for
recurrent events, 80-81
methods, 75-82
monitoring clinical trials, 81-82
schizophrenia study, 89
simulation results, 79-80
software availability, 82
univariate failure time data, 75-76
Multivariate general linear hypothesis, 79
Multivariate hypothesis, 84
Multiway classifications, tests for, 163
Myeloma, 119-123

Naive point estimate, 22-23
Naive standard error estimates, 84, 88
Naive variance-covariance estimate, 84
Naive variance estimator, 80
Naive Wald (or logrank) test, 80
National Cancer Institute, repetition of
non-small cell lung cancer trial, 142

National Eye Institute, 74
National Institute of Allergy and Infectious
Diseases, 156

National Institutes of Health (NIH),
guidelines for conduct of clinical
trials, 1

Navaho children, HIB vaccine, 143-144
Nelson cumulative hazard estimator,116
Net hazard function, 90-91
Neurologic diseases, Q-TWiST
methodology, 242

Newton-Raphson algorithm, one-step, 99
Newton-Raphson estimator of 0, 99
Newton-Raphson scheme, doubly iterated
modified, 108

Nodal dissection, 134
Nodes labels, 122
Nominal variables, 178
Noncompliance, 36-40
Nonparametric baseline survival
function, 115

Nonparametric statistic, 76
Non-small cell lung cancer, 139
singly ordered contingency tables
correlating tumor regression rates and
chemotherapy, 193-194
stage III, 136-138
stopping a randomized trial of RT vs.
RT+CT,142

Normal scores test, 186-187
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Nuisance parameters, 180-181, 189
Null expected sample size, 62
Null hypothesis, 32, 125, 158
ancillarity of conditioning, 181
exact p-value computation, 181
Freeman-Halton statistic, 182
homogeneity test, 188, 189
in full multinomial sampling, 179, 180
in Poisson sampling, 179, 180
in product multinomial sampling, 179, 180
Jonckheere-Terpstra statistic, 184
Kruskal-Wallis test, 183-184
Iinear-by-linear association test, 185
linear rank tests, 185
Mantel-Haenszel test, 204
Pearson test, 182
trend test, 187-188
Null hypothesis Ho, 12, 13, 14, 21, 24
Null hypothesis of no treatment effect, 5, 6
colon cancer study, 84
Null hypothesis of proportional hazards, 101

O'Brien-Fleming boundary, 6-8,17,21,23
O'Brien-Fleming coefficient, 7
O'Brien-Fleming group sequential model, 3,
4, 18

O'Brien-Fleming stopping rule,
truncated, 136

O'Brien-Fleming-type spending function,
10-11,13,14,17

Odds ratios, 203, 206, 207, 209
Oncology Advisory Committee for the Food
and Drug Administration (FDA), 22

1 standard error rule, 118
Operating characteristics, 50
Opportunistic infection (01), 30
Optimal design, 62
Optimality criterion, 59
Optimally pruned subtree, 118, 119
Optimal pruning algorithm, 114, 118
Optimal Simon design, 62
Optimal three-stage design, 62
Oral lesions, patients in rural India,
192-193

O-ring incidents, 195
Outer product, 96
Ovarian cancer, 103
Overall prevalence rate, 219
Overall survival (OS), 239

Parameterization, 170
Partial Bayesian approaches, 128
Partial likelihood, 108
Partial likelihood function, 75, 77, 81
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Partial likelihood principle, 81
Partial likelihood score equation, 101-102
Patient accrual, 57
Patient noncompliance, 36-40
Patient reports, 39
PCR assay for HIV DNA, 30
Pearson's correlation coefficient, 185
Pearson test, 182, 183, 192-193
software, 200
Pediatric malignancies, Q-TWiST
methodology, 242

Penalized likelihood approach, 106
Penalized regression splines, 108
Penalty function, 108
Permutational distribution of the test
statistic, 177, 182, 194

Permutation principle, 177, 178-192
Permutation sampling methods, 119
Pharmacological testing for drug, drug
metabolites, or markers, 39

Phase I clinical trials, 49
Phase I.5 clinical trial, 54
Phase II clinical trials, 49-52
decision-theoretic Bayesian methods, 59
multi-institutional, 57
randomized, 53
single-arm, 56
stopping of, 140-142
Phase II clinical trials design, recent
developments in, 49-69
historical data and Bayesian designs,
58-61
introduction, 49-53
multiple outcomes, 64-67
multistage designs, 61-64
refinements of the phase I- II- III
paradigm, 53-56
some practical considerations, 56-58

Phase IIA clinical trials, 53, 57, 68
Phase lIB clinical trials, 54, 57, 58, 68
Phase II- III combined strategy, 53
Phase III trial, 50, 56, 68, 136-138
Photocoagulation, 74, 88
PH regression analysis, 159
Physican reports, 39
Pill counts, 39
Play-the-winner procedure, 149, 151
'Play the winner' randomized phase III
trials, 53

Plasma viremia, 30
Pneumocystis carinii pneumonia (PCP), 156
prophylaxis, 163, 165, 167-169, 171, 172
Pocock boundary, 6-7, 8, 11,23



Point estimates, 166
Poisson process, 144
Poisson regression, 103-105
Poisson sampling, 178-179, 180
Pooled association, 206
Pooled odds ratio, 207
Pooled table, 221-222
construction of, 220-221
Posterior density, 160
Posterior distributions, 60, 137-138,
161-164,166,174

Posterior means, 166, 168, 169, 171
Posterior probabilities, 59, 126-127, 137,
140,152,164-165,167-168

intervals, 63-64, 168
Posterior standard deviation, 166
Power difference, 212-217
Predictive probabilities (PP), 59, 126-128,
135-136,141-142,144

Predictor space partition, 115
Prentice criterion, 32
Prephase II Bayesian strategy, 54
Prior, 170
locally uniform, 170
Prior distributions, 137, 142
Prior probability, 126, 127
Probability of early termination (PET),
66-67

Probands, 74, 76
age, and schizophrenia study, 89
Product multinomial sampling, 178-180
Progression-free survival (PFS), 239-240
Proportional hazards models, 16,99, 101,
103, 160. See also Cox proportional
hazards model
analysis, 155- i56
vs. Bayesian model, 160
Proportional hazards regression models, 95,
96,109-111

Propranolol, effectiveness evaluated in
Beta-blocker Heart Attack Trial
(BHAT),16-18

Prostate cancer, 237
p-value, 67,119-121,152,177,181,191
doubly ordered contingency tables,
194-195
exact and asymptotic, 178
homogeneity test, 190
Kruskal-Wallis test, 193-194
unordered contingency tables, 192-193
Zelen's test of homogeneity, 189
PWP model, 81

QLI-Coates, 231, 232

Q-TWiST gain function, 242
Q-TWiST methodology, 237-242
Quality-adjusted-life-years
(QALYs), 228, 237

Quality-adjusted time without disease
symptoms or treatment toxicity
(Q-TWiST),35-36

Quality of life
mv infections, 34-36
measurement of, 34
methodology, 34-36
Quality of life assessment in clinical trials,
225-242
analytic multivariate methods, 234, 235
analytic univariate methods, 234, 235
criteria for selecting statistical
methodology, 233-234
descriptive statistics, 234-235
design and conduct of clinical trials,
231-233
FDA and NCI recommendations for
treatment endpoints in QOL, 226
global statistics, 234, 235-236
historical background, 226-227
instruments, 227-231
introduction, 225
purpose of QOL in clinical trials, 225-226
Q-TWiST methodology, 237-242
statistical analysis, 234-242
Quality of Life Index (QLI) (QL-Index),
35,231,232

Quality of Well-Being (QWB) Scale, 228
Quantitative covariates, 204
Quantitative variables, 178

Radiation
atomic bomb radiation dosage and
leukemia incidence, 195-196, 197
plus chemotherapy, vs. chemotherapy
alone, 101

Radiotherapy, 136-138
for non-small cell lung cancer, 142-143
trials, 65
Randomized controlled trial (RCT), 149,
150, 151

Random response probabilities, phase II
trial,59

Rank-sum tests, 35
Rao score test of proportionality, 99
Rectal cancer, Q-TWiST methodology, 242
Recurrence-free survival time, 85
Recursive algorithms, 182
Reference sets, 180, 188-189, 191
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Regression coefficients, 158, 159, 160, 166,
170, 173

Regression parameter, 89
CGD study, 87
Regression splines, 100
Relevance, 31
Reliability of quality of life assessment
instruments, 231

Repeated confidence interval (RCI), 21-22
Repeated measure design, 18-20
Repeated measures, 231, 236
Repeated measures ANOVA, 235
Resected colon carcinoma, 73
Response, probability of, 66-67
Response rate, 52, 56-57, 63, 66-67,
134-136,140-142
multiple outcomes monitored, 65
Rheumatoid arthritis, functional status
assessment, 226

Risk-set indicators, 81
Robins, Breslow, and Greenland (RBG)
variance, 191

'Robust Bayes' procedure, 149-150, 151
Robust log rank statistic, 84
Robust logrank test, 79, 90
Robust standard error estimate, 84, 88
Robust standard error estimator, 79
Robust standardized estimate, 84
Robust variance-covariance estimate, 84
Robust Wald (or logrank) test, 79
Robust Wald statistic, 79, 84
rxc contingency tables, software, 200, 201

Saddle point, 218
Safety monitoring, 64-65
Sample size, 50
Sampling mean of the standard error
estimates, 80

SAS (1987) (software), 199-200
Savage test, 187
Scalar 1, 96
Scalar weight functions, 99
Scaled martingale residuals, 103, 108
Scaled Schoenfeld residuals, 102, 103,
104,109

Scatterplot smoothers, 100
Scatterplot smoothing, 109
Scatterplot smooths, 101, 103
Scheffe intervals, 102
Schizophrenia Study, 74, 89
Schoenfeld residuals, 96-102, 109
scaled, 101
serial correlation, 99
Score functions, 77-78, 85
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Score statistic, 75, 85-86
Score tests, 99
Score vector process, 97
'Select the best' strategy, 55
'Select then test' designs, 53
Semi-Markov models, 86, 236-237
Sensitivity of the decision, 142
Sequential probability ratio-test (SPRT),
62-63

Serum B2-microglobulin level, 31
Serum drug levels, 39
Serum neopterin level, 31
S functions, 102
Short-term response, 57
Siegmund scheme, 23
Simon designs, 62
Simon optimal two-stage design, 62
Simon two-stage design, 62
Simple Z-intervals for pointwise
estimates, 102

Simultaneous confidence bands, 102
Single-arm clinical trials, 65
Single-stage design, 51
Singly ordered contingency tables, 178,
193-194

Smoothed scaled martingale residual
plot, III

Smoothed scaled Schoenfeld residual plot,
109-110

Smoothers, 102, 106
Smoothing splines, 100
Sociodemographic variables, 95
Software, 82
statistical packages for exact inference,
200-201

Southwest Oncology Group, 119-123
Spearman's correlation coefficient, 185
Specified odds ratio, vs. attained odds
ratios, 222

Spending function u. See Alpha
spending function

Spitzer's Quality of Life-Index
(QL-Index),228

Splines, 102
Spline smooth, 102
Split-complexity of a tree, 118

I Splits, 118-120, 121, 123
Splitting statistic, 117
S-Plus functions, 102
Splus menu-driven computer program,
58-59,61,67

s-sample trend test, 100
Stage C colon cancer, 83-86
Stage C disease, 73



Standard errors, 166
Standard sampling error, 80
Standard treatment (S), 54, 55, 58-60
Standard-treatment success probability
vector, 66

Statistical significance values, 166
StatXact (1993) (software module), 200-201
Step-function regression model, 115
Stratified-adjusted odds ratio, 213
Stratified-adjusted test, 208
Stratified-adjusted versus unstratified
assessment of sample size and power
for analyses of proportions, 203-222
discussion, 219-220
effect of the overall prevalence rate and
the stratum fraction, 217-219
effect of the unadjusted odds ratio on the
power difference, 212-217
introduction, 203-205
maximum likelihood estimate of the
common stratum and unadjusted odds
ratios, 211-212
odds ratios for S 2 x 2 tables, 205-207
pooled table construction, 221-222
power of the unadjusted versus stratified-
adjusted tests, 208-211
sample size and power: adjusted vs.
unadjusted, 207-208
specified odds ratios vs. attained odds
ratios, 222
stratum-by-group table construction, 221
stratum-by-response table construction,
221
stratum 1 and stratum 2 tables
construction, 221-222

Stratified 2 x 2 contingency tables, 188
software, 200
Stratified 2 x 2 tables, 196-199
Stratum-adjusted odds ratio, 219
Stratum-by-group table, 221-222
construction, 221
Stratum-by-response table, 221-222
construction, 221
Stratum fraction, 219
Stratum odds ratios, 219
Stratum 1 and stratum 2 tables
construction, 221-222

Stratum-response association, 207
Stratum sample fraction, 205
Subjective density function, 130-131
Subjective probability, 126-127
Subject-specific martingale, 97
Subtree, 118
Success rate of E, 59

Summary statistic Z(k), 6
Surrogate endpoints, 30-34
Surrogate markers, 30-34
Survival analysis, 14-18
Survival function estimates, myeloma, 122
Survival function estimators, 76, 79
Survival quality index, 226
Systemic lupus ertematosus, 237

Tarone and Ware family of tests, 100
Taxol,152
Taylor approximation, one-step, 100
Taylor series expansion, 78
Taylor's expansion argument, 98, 106
Terminal nodes, 115, 117-118, 120-121
Test cutoff, 50
Testimate (1992) (software), 201
Test-retest, 231
Test statistic, 52, 181, 182-191
Test statistic for the k'h analysis, 5, 19,20
Threshold utility analyses, 238-241
Tie correction factor, 183
Time scales, 80-81
Time since randomization, 15
Time trade-off (TTO), 228
Total lymphocyte numbers, 31
Total time, 80, 81
Toxicity, 56-57, 64-65,155,237
cancer chemotherapy trials, 53
doubly ordered contingency tables,
194-195
excessive, 67
probability of, 66-67
quality of life assessment, 227
scheduling of assessments and, 233
Transition method, 39
Treatment effect, eGD study, 86, 87
Treatment effectiveness, 37
Treatment specificity, 155
Tree-based methods
areas of methodological work, 114
definition of, 113
statistical attributes, 114
Tree-based prognostic models, review of,
113-123
between-node methods, 118-119
data and model, 114-115
example: prognostic groups for myeloma,
119-123
growing a tree, 115-117
introduction, 113-114
pruning and tree selection, 117-119
Tree-based regression models, 113
Triangular test (TT), 62-63
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True rate of response, 134
Trend test, 187-188
t-test, 234, 235
Tumor shrinkage, 64
2 x c contingency tables, software, 200, 201
'Type 0' marker, 31
Type I error probability, 2-6, 9-11, 50,209
Type I error rate, 52, 58
'Type l' marker, 31-32
Type II error, 50, 52, 58
Type II error rate, 52, 58
'Type II' marker, 32

Unadjusted association, 206
Unadjusted location difference, 214
Unadjusted odds ratio, 206-207, 209,
211-213,215-217,219

Unadjusted test, 208
Unconditional density, 126
Unique estimator, 78
Univariate failure time data, 74-76
Univariate function, 99
Univariate predictor, 99
Univariate survival models, 90
Unknown confounding factors, 38
Unknown nuisance parameters, 180
Unknown regression parameters, 77
Unordered contingency tables, 178,
192-193

Unordered variables, 178
Unspecified baseline hazard function, 75, 77
Unweighted smooth, 105
Uric acid as marker, 40
Uric acid levels, 40
Utilities, 141-143
Utility of a decision, 127-128

Vaccine, randomized study, 139, 143-144
Van der Waerden test, 186-187
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Variance
Jonckheere-Terpstra test, 184
linear rank tests, 185
Variance-covariance estimates, 84
Variance-covariance estimators, 78, 79, 81
Variance/covariance matrix, 97
Variance of test statistic, 52
Variance of the logrank numerator
estimate, 116

Virological markers, 30-31

Wald statistic, robust, 79
Wald test, 80, 204
Weibull baseline hazard function, 88
Weibull survival, 138
Weighted linear loess smooth, 109
Weighted logrank tests, 99
Weighted scalterplot smooth, 105-106
Weighted score tests, 100
Weighted sum correlation, 99
West and Winkler technique, 43
Wilcoxon-Gehan scores, 186
Wilcoxon-Gehan test, 187
Wilcoxon-Mann-Whitney statistics, 184
Wilcoxon rank-sum test, 183, 186
Wilcoxon scores, 184, 186, 187
Wilcoxon statistic, 14, 18
Wilcoxon test, 14, 18
WLW method, 89-90

Zalcitabine (ddC), 156-160, 163-174
Zelen's test, 189
exact, 198
Zidovudine (ZDV), 32, 33, 35-36, 40,
156-160,163-174
for asymptomatic HIV-infected patients,
238-242

Z-test,203
Zubrod scale, 226, 231, 232
Z-values, 204
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