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Preface

When	 lightning	 strikes	 a	 building	 or	 transmission	 tower,	 a	 lightning	 current	 flows	 into	 its
structures,	which	are	made	of	electrically	conducting	materials,	such	as	steel	and	copper.	The
lightning	current	produces	a	high	voltage	called	“overvoltage”	(or	“abnormal	voltage”)	that
can	damage	or	break	electrical	equipment	installed	in	the	building	or	the	power	transmission
system.	 The	 breakdown	 of	 equipment	 may	 shut	 down	 the	 electrical	 room	 of	 the	 building,
resulting	in	a	complete	blackout.	If	the	breakdown	occurs	in	a	substation	within	a	high-voltage
power	 transmission	 system,	 a	 city	 that	 receives	 its	 electricity	 from	 the	 substation	 can	 also
experience	a	blackout.
An	overvoltage	can	also	be	generated	by	switching	operations	of	a	circuit	breaker	or	a	load

switch,	both	of	which	are	electrically	identical	to	breakers	found	in	the	homes	of	customers.
A	 period	 in	 which	 a	 short-lived	 overvoltage	 appears	 due	 to	 lighting	 and	 switching

operation	is	called	a	“transient,”	while	an	equilibrium	condition	of	electricity	being	supplied
is	 called	 a	 “steady	 state.”	 In	 general,	 a	 transient	 dies	 out	 and	 reaches	 a	 steady	 state	 within
approximately	10	µs	(10−6	 s)	 in	 the	 lighting	 transient	 case	 and	within	 approximately	10	ms
(10−3	 s)	 in	 the	 switching	 transient	 case.	 Occasionally,	 a	 transient	 sustains	 itself	 for	 a	 few
seconds	 if	 it	 involves	 the	 resonant	 oscillation	 of	 circuit	 parameters	 (mostly	 inductance	 and
capacitance)	 or	 mechanical	 oscillation	 of	 the	 steel	 shaft	 of	 a	 generator	 (called
“subsynchronous	resonance”).
A	transient	analysis	is	a	crucial	subject	for	electrical	engineers	and	researchers,	especially

in	 the	 field	 of	 electric	 power	 engineering	 when	 determining	 the	 strength	 of	 equipment	 in
order	to	maintain	safety.
First,	this	book	will	illustrate	a	transient	on	a	single-phase	line	from	a	physical	viewpoint,

and	 how	 it	 can	 be	 solved	 analytically	 by	 an	 electric	 circuit	 theory.	 The	 impedance	 and
admittance	 formulas	of	an	overhead	 line	will	also	be	described.	Approximate	 formulas	 that
can	be	computed	using	a	pocket	calculator	will	be	explained	 to	show	that	a	 transient	can	be
analytically	 evaluated	via	hand	calculation.	Since	 a	 real	power	 line	 contains	 three	phases,	 a
theory	 to	deal	with	a	multiphase	 line	will	be	developed.	Finally,	 the	book	describes	how	 to
tackle	a	real	transient	in	a	power	system.	A	computer	simulation	tool	is	necessary	for	this—
specifically	 the	 well-known	 simulation	 tool	 ElectroMagnetic	 Transients	 Program	 (EMTP),
originally	developed	by	the	U.S.	Department	of	Energy,	Bonneville	Power	Administration—
which	is	briefly	explained	in	Chapter	1.
In	Chapter	2,	wave	propagation	characteristics	and	transients	 in	an	overhead	transmission

line	are	described.	The	distributed	parameter	circuit	 theory	is	applied	to	solve	the	transients
analytically.	The	EMTP	is	then	applied	to	calculate	the	transients	in	a	power	system	composed
of	the	overhead	line	and	a	substation.	Various	simulation	examples	are	demonstrated,	together
with	the	comparison	of	field	test	results.



Chapter	3	 examines	 the	 transients	 in	 a	 cable	 system.	A	 cable	 system	 is,	 in	 general,	more
complicated	than	an	overhead	line	system,	because	one	phase	of	the	cable	is	composed	of	two
conductors	called	a	metallic	core	and	a	metallic	sheath.	The	former	carries	a	current	and	the
latter	 behaves	 as	 an	 electromagnetic	 shield	 against	 the	 core	 current.	Another	 reason	why	 a
cable	system	is	complicated	 is	 that	most	 long	cables	are	cross-bounded,	 that	 is,	 the	metallic
sheaths	on	phases	“a,”	“b,”	and	“c”	in	one	cable	section	are	connected	to	that	of	phases	“b,”
“c,”	and	“a”	in	the	next	section.	Each	section	is	called	a	“minor	section”	and	the	length	of	each
normally	 ranges	 from	 some	 100	 m	 to	 1	 km.	 Three	 minor	 sections	 comprise	 one	 major
section.	The	sheath	impedances	of	three	phases	thus	become	nearly	equal	to	each	other.	As	a
result,	a	transient	on	a	cable	system	is	quite	different	from	that	on	an	overhead	line	system.
As	 in	 Chapter	 2,	 a	 basic	 characteristic	 of	 wave	 propagation	 on	 a	 cable	 is	 explained

analytically	 based	 on	 the	 distributed	 parameter	 circuit	 theory,	 along	with	EMTP	 simulation
examples.
Two	 of	 the	 most	 attractive	 subjects	 in	 recent	 years	 are	 the	 so-called	 clean	 energy	 (or

sustainable	energy)	and	smart	grids;	as	a	result,	wind	farms	and	“mega	solar”	energy	plants
have	 become	 well-known.	 In	 Chapter	 4,	 transients	 in	 a	 wind	 farm	 are	 explained	 based	 on
EMTP	 simulations.	 Since	 the	 output	 voltage	 of	most	wind	 generators	 is	 about	 600	V,	wind
generators	 are	 connected	 to	 a	 low-voltage	 transmission	 (distribution)	 line.	 Because	 their
individual	generating	capacity	is	small,	a	number	of	wind	generators	are	connected	together,
thus	 the	 term	 “wind	 farm,”	 in	 a	 substation	 where	 the	 voltage	 is	 stepped	 up	 for	 power
transmission.	In	the	case	of	an	offshore	wind	farm,	the	generated	power	is	sent	to	an	onshore
connection	 point	 through	 submarine	 cables.	 A	 transient	 analysis	 in	 wind	 farms,	 the	 “mega
solar”	 or	 the	 smart	 grid	 requires	 a	 vastly	 different	 approach	 in	 comparison	 to	 that	 for	 an
overhead	line	or	a	cable.	A	transient	in	an	overhead	line	or	a	cable	is	directly	associated	with
traveling	waves	whose	traveling	time	is	on	the	order	of	10	µs	up	to	1	ms	in	most	cases;	the
maximum	overvoltage	 appears	within	 a	 few	milliseconds.	 In	 contrast,	 a	 transient	 in	 a	wind
farm	 involving	 power	 electronics	 circuits	 is	 affected	 by	 the	 dynamic	 behavior	 of	 power
transistors/thyristors,	which	are	a	basic	element	of	the	power	electronic	circuit.	In	the	case	of
photovoltaic	 (PV)	 generation,	 the	 output	 voltage	 and	 power	 generation	 vary	 by	 time
according	 to	 the	 amount	 of	 sunshine	 the	 photo	 cells	 receive,	 which	 depends	 on	 time	 and
weather.	 A	 power	 conditioner	 and	 a	 storage	 system	 such	 as	 a	 battery	 are	 thus	 essential	 to
operate	the	PV	system.	In	the	last	section	in	Chapter	4,	voltage	regulation	on	equipment	in	a
DC	railway	is	described	when	a	Li-ion	battery	is	adopted,	since	the	Li-ion	battery	is	expected
to	be	a	storage	element	of	the	PV	and	wind	farm	generation	systems.
In	Chapters	1	to	4,	a	transient	analysis/simulation	is	based	on	a	circuit	theory	derived	by	the

TEM	mode	of	wave	propagation.	When	a	 transient	 involves	non-TEM	mode	propagation,	a
circuit-theory-based	 approach	 cannot	 give	 an	 accurate	 solution.	 A	 typical	 example	 is	 the
arcing	horn	flashover	considering	the	mutual	coupling	between	power	lines	and	tower	arms,
a	transient	in	a	grounding	electrode,	and	an	induced	voltage	from	a	lightning	channel.
For	 solving	 these	 kinds	 of	 transients,	 a	 numerical	 electromagnetic	 analysis	 (NEA)	 is	 the

most	commonly	used	approach.	In	Chapter	5,	 the	basic	theory	of	the	NEA	is	described	first.
There	are	various	methods	of	NEA,	either	 in	a	 frequency	domain	or	 in	a	 time	domain,	 for



example.	 A	 brief	 summary	 of	 the	 methods	 is	 given,	 and	 application	 examples	 are
demonstrated.	Some	of	the	examples	compare	field	test	results	with	EMTP	simulation	results.
Chapter	6	deals	with	problems	related	 to	electromagnetic	compatibil-ity	 (EMC)	 in	a	 low-

voltage	 control	 circuit	 in	 a	 power	 station	 and	 a	 substation.	 Electromagnetic	 disturbances
experienced	 in	 Japanese	 utility	 companies	 within	 a	 span	 of	 10	 years	 are	 summarized	 and
categorized	depending	on	 the	cause,	 that	 is,	a	 lightning	surge	or	a	 switching	surge,	and	 the
incoming	 route.	 The	 influence	 of	 the	 disturbances	 on	 system	 operation	 and	 the
countermeasures	are	explained	 together	with	case	 studies.	Lightning-based	disturbances	 that
affect	both	utility	companies	and	private	customers	and	also	home	appliances	are	explained
based	on	the	collected	statistical	data,	measured	results,	and	EMTP/FDTD	simulation	results.
Finally,	 an	 analytical	 method	 for	 evaluating	 electromagnetic-induced	 voltages	 on	 a
telecommunication	line	or	a	gas	pipeline	from	a	power	line	is	described.
Chapter	 7	 describes	 “grounding”	 for	 electric	 power	 equipment	 and	 systems.	 Practical

grounding	methods	in	a	gas	pipeline,	a	transmission	tower,	GW,	underground	cable,	etc.	are
explained	in	Section	7.2.	In	Section	7.3,	modeling	of	grounding	is	explained	for	a	steady-state
and	 transient	analysis.	First,	analytical	and/or	 theoretical	model	of	a	grounding	electrode	 is
described.	 Second,	 modeling	 methods	 used	 in	 EMTP	 simulations	 are	 described.	 Also,	 the
effect	of	 simulation	model	 in	 a	 finite-difference	 time-domain	 (FDTD)	method	 is	 explained.
Then,	measurement	of	a	grounding	 impedance,	measured	 results,	 theoretical	 investigations,
the	effect	of	the	electrode	shape,	etc.	on	the	grounding	impedance	are	described	in	Section	7.4.
At	 this	 time,	 there	 are	 a	 number	 of	 numerical	 simulation	 tools	 that	 are	 widely	 used

throughout	the	world	to	analyze	a	transient	in	a	power	system.	Among	them,	the	most	well-
known	and	widely	used	tool	is	EMTP.	The	accuracy	and	reliability	of	the	original	EMTP	has
been	confirmed	by	a	number	of	test	cases	since	1968.	However,	there	is	no	perfect	simulation
tool	 in	 this	 world.	 Any	 simulation	 tool	 has	 its	 own	 application	 limits	 and	 restrictions.	 As
previously	 discussed,	 the	EMTP,	 based	 as	 it	 is	 on	 a	 circuit	 theory	 under	 the	 assumption	 of
TEM	mode	propagation,	cannot	give	an	accurate	solution	of	a	transient	associated	with	non-
TEM	mode	propagation.	Such	application	 limits	and	 restrictions	are	discussed	 in	Chapter	 8
for	both	circuit-theory-based	approaches	and	NEA	methods.
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Theory	of	Distributed-Parameter	Circuits	and
Impedance/Admittance	Formulas
	

	
	

1.1					Introduction
When	investigating	transient	and	high-frequency	steady-state	phenomena,	conductors	such	as
a	 transmission	 line,	 a	 machine	 winding,	 and	 a	 measuring	 wire	 demonstrate	 a	 distributed-
parameter	 nature.	 Well-known,	 lumped-parameter	 circuits	 are	 an	 approximation	 of	 a
distributed-parameter	circuit	for	describing	a	low-frequency,	steady-state	phenomenon	of	the
conductor.	That	is,	a	current	in	a	conductor,	even	a	short	conductor,	needs	time	to	travel	from
its	sending	end	to	its	remote	end	because	of	its	finite	propagation	velocity	(300	m/µs	in	a	free
space).	From	this	fact,	it	should	be	clear	that	a	differential	equation	expressing	the	behavior	of
current	 and	 voltage	 along	 the	 conductor	 involves	 variables	 of	 distance	 x	 and	 time	 t	 or
frequency	 f.	 Thus,	 it	 becomes	 a	 partial	 differential	 equation.	However,	 a	 lumped-parameter
circuit	is	expressed	by	an	ordinary	differential	equation	since	no	concept	of	the	length	or	the
traveling	time	exists.	This	is	the	most	significant	difference	between	the	distributed-parameter
circuit	and	the	lumped-parameter	circuit.
In	 this	 chapter,	 a	 theory	 of	 distributed-parameter	 circuits	 is	 explained	 starting	 from	 the

approximate	impedance	and	admittance	formulas	of	an	overhead	conductor.	The	derivation	of
the	approximate	formulas	is	described	from	the	viewpoint	of	the	physical	behavior	of	current
and	voltage	on	a	conductor.
Then,	 a	 partial	 differential	 equation	 is	 derived	 to	 express	 the	 behavior	 of	 current	 and

voltage	 in	 a	 single	 conductor	 by	 applying	 Kirchhoff’s	 laws	 based	 on	 a	 lumped-parameter
equivalence	 of	 the	 distributed-parameter	 line.	 The	 current	 and	 voltage	 solutions	 of	 the
differential	 equation	 are	 derived	 by	 assuming	 (1)	 sinusoidal	 excitation	 and	 (2)	 a	 lossless
conductor.	From	the	solutions,	the	behavior	of	current	and	voltage	is	discussed.	For	this,	the
definition	and	the	concept	of	a	propagation	constant	(attenuation	and	propagation	velocities)
and	a	characteristic	impedance	are	introduced.
As	 is	 well	 known,	 all	 alternating	 current	 (AC)	 power	 systems	 are	 basically	 three-phase

circuits.	This	fact	makes	voltage,	current,	and	impedance	a	3-D	matrix	form.	A	symmetrical
component	transformation	(i.e.,	Fortescue	and	Clarke	transformations)	is	well	known	to	deal
with	three-phase	voltages	and	currents.	However,	the	transformation	cannot	diagonalize	an	n
×	 n	 impedance/admittance	 matrix.	 In	 general,	 modal	 theory	 is	 necessary	 to	 deal	 with	 an
untransposed	transmission	line.	In	this	chapter,	modal	theory	is	explained.	By	adopting	modal



theory,	an	n-phase	line	is	analyzed	as	n-independent	single	conductors	so	that	the	basic	theory
of	a	single	conductor	can	be	applied.
To	analyze	a	transient	in	a	distributed-parameter	line,	a	traveling-wave	theory	is	explained

for	both	single-	and	multiconductor	systems.	A	method	to	 introduce	velocity	difference	and
attenuation	 in	 the	 multiconductor	 system	 is	 described	 together	 with	 field	 test	 results.
Impedance	and	admittance	formulas	of	unusual	conductors,	such	as	finite-length	and	vertical
conductors,	are	also	explained.
Application	 examples	of	 the	 theory	described	 in	 this	 chapter	 are	given	 so	 the	 reader	 can

understand	the	need	for	the	theory.
Finally,	the	ElectroMagnetic	Transients	Program	(EMTP),	which	is	widely	used	all	over	the

world,	is	briefly	explained.
It	 should	 be	 noted	 that	 all	 of	 the	 theories	 and	 formulas	 in	 this	 chapter	 are	 based	 on

transverse	electromagnetic	(TEM)	wave	propagation.

	
	

1.2					Impedance	and	Admittance	Formulas
In	 general,	 the	 impedance	 and	 admittance	 of	 a	 conductor	 are	 composed	 of	 the	 conductor ’s
internal	 impedance	 Zi	 and	 the	 outer-media	 impedance	 Zo.	 The	 same	 is	 applied	 to	 the
admittance	[1]:

where
Zi	is	the	conductor	internal	impedance
Zo	the	conductor	outer-media	(space/earth	return)	impedance

	the	conductor	internal	admittance
	the	conductor	outer-media	(space/earth	return)	admittance

P	the	potential	coefficient	matrix

It	should	be	noted	that	the	impedance	and	admittance	in	this	equation	become	a	matrix	when
a	conductor	system	is	composed	of	multiconductors.	Remember	that	a	single-phase	cable	is,
in	general,	a	multiconductor	system	because	the	cable	consists	of	a	core	and	a	metallic	sheath
or	 a	 screen.	 In	 an	 overhead	 conductor,	 no	 conductor	 internal	 admittance	Yi	 exists,	 except	 a
covered	conductor.

1.2.1				Conductor	Internal	Impedance	Zi



1.2.1.1				Derivation	of	an	Approximate	Formula

Let	 us	 obtain	 the	 impedance	of	 the	 cylindrical	 conductor	 illustrated	 in	Figure	1.1	 [1,2].	We
know	 that	 the	 direct	 current	 (DC)	 resistance	 of	 the	 conductor	 is	 as	 given	 in	 the	 following
equation:

where
S	is	the	cross-sectional	area	(m2)
ri	the	inner	radius	of	the	conductor	(m)
r0	the	outer	radius	of	the	conductor	(m)
ρc	=	σc	the	resistivity	of	the	conductor	(Ω	m)
σc	the	conductor	conductivity	(S/m)
µc	the	permeability	(H/m)

Also,	it	is	well	known	that	currents	concentrate	near	the	outer	surface	area	of	the	conductor
when	the	frequency	of	an	applied	(source)	voltage	(or	current)	to	the	conductor	is	high.	This
phenomenon	is	called	the	“skin	effect.”	The	depth	dc	of	the	cross-sectional	area	where	most	of
the	currents	flow	is	given	approximately	as	the	(complex)	penetration	depth	or	the	so-called
skin	depth	in	the	following	form:

FIGURE	1.1	A	cylindrical	conductor.



Penetration	depth	is	physically	defined	as	the	depth	of	an	electro-magnetic	wave	penetrating
a	conductor	when	the	wave	hits	the	conductor ’s	surface.	The	physical	concept	of	penetration
depth	 is	very	useful	 for	explaining	 the	behavior	of	current	and	voltage	on	a	conductor	and
also	 for	 deriving	 impedance	 and	 admittance	 formulas	 of	 various	 conductor	 shapes	 and
geometrical	configurations.	However,	keep	 in	mind	 that	 the	concept	 is	based	on	TEM	wave
propagation	and	thus	is	not	applicable	to	non-TEM	propagation.	Also,	remember	that	it	is	just
an	approximation.
By	considering	the	penetration	depth,	the	internal	impedance	Zi	in	a	high-frequency	region

can	be	derived	in	the	following	manner.
Following	the	definition	of	conductor	resistance	in	Equation	1.3,	the	internal	impedance	is

given	by	the	ratio	of	the	resistivity	ρc	and	the	cross-sectional	area	S,	which	is	expressed	as

In	a	high-frequency	region,	dc	is	far	smaller	than	the	conductor ’s	outer	radius	r0.	Thus,	the
following	approximation	is	satisfied:

S	≅	2πr0dc	for	r0	≫	dc

Substituting	this	equation	and	Equation	1.5	into	Equation	1.3	gives

This	 formula	 for	 transmission	 lines,	 power	 engineering,	 and	 transients	 can	 be	 found	 in
many	textbooks.
Knowing	the	low-frequency	and	high-frequency	formulas,	the	internal	impedance	formula

at	any	frequency	can	be	given	in	the	following	form	by	applying	Rolle’s	averaging	theorem
[2]:

where
S	is	the	cross-sectional	area	of	the	conductor	(m2)
l	the	circumferential	length	of	the	conductor	outer	surface	(m)

It	 is	 clear	 that	 this	 equation	becomes	 identical	 to	Equation	1.3	 in	 a	 low-frequency	 region
when	assuming	a	small	ω	and	to	Equation	1.6	when	assuming	a	large	ω.	It	is	noteworthy	that
Equation	 1.7	 is	 applicable	 to	 an	 arbitrary	 cross-sectional	 conductor,	 not	 necessarily	 to	 a
circular	or	cylindrical	conductor,	because	the	equation	is	defined	by	the	cross-sectional	area	S
and	the	circumferential	length	of	the	conductor	l	but	not	by	the	inner	and	outer	radii.



At	 low	 frequency,	 Rdc	 is	 much	 greater	 than	 Zhf	 in	 Equation	 1.7.	 By	 adopting	 the
approximation:

Equation	1.7	is	approximated	in	the	following	form:

This	formula	is	commonly	known	as	conductor	impedance	at	a	power	frequency.

EXAMPLE	1.1
Calculate	 the	 internal	 impedance	 (Rc	 and	 Lc)	 of	 a	 conductor	 with	 r1	 =
1.974	 mm,	 r2	 =	 8.74	 mm,	 ρc	 =	 3.78	 ×	 10−8	 Ω	 m,	 and	 µc	 =	 µ0	 at
frequencies	f	=	50	Hz	and	100	kHz.

Solution

To	calculate	the	square	root	of	a	complex	number	a	+	jb,	 it	 is	better	to
rewrite	 the	 number	 in	 the	 following	 form	 so	 that	 we	 need	 only	 a	 real
number	calculation:

Thus,

In	the	internal	impedance	case,	a	=	1,	b	=	ωµcS/Rdc	l2.
At	50	Hz:



If	we	use	Equation	1.8,	that	is,	Zc	=	Rdc	+	jωLc	∴	Rc	=	0.166	Ω/km,	then

Using	the	same	method	at	100	kHz,

b	=	359.19,	Zc	=	3.1452∠44.92°	=	2.227	+	j2.221	Ω/km.
Lc	=	3.53	×	10−3	mH/km

In	this	case

It	is	clear	that	further	approximation	at	low	and	high	frequencies	gives	a
satisfactory	accuracy.
These	 results	 correspond	 to	 those	 given	 in	 Table	 1.1	 for	 the	 500	 kV

transmission	line	shown	in	Figure	1.25.	Because	a	phase	wire	is	composed
of	 four	 bundles,	 the	 analytical	 results	 are	 four	 times	 the	 internal
impedance	given	in	the	table.	The	analytical	results	agree	well	with	those
in	 the	 table,	 which	 are	 calculated	 using	 the	 accurate	 formula	 in	 Section
1.2.1	(Equation	1.9).

1.2.1.2				Accurate	Formula	by	Schelkunoff

The	accurate	 formula	 for	 the	 internal	 impedance	of	 the	cylindrical	 conductor	 in	Figure	 1.1
was	derived	by	Schelkunoff	in	1934	[3].

1.	Inner	surface	impedance	zi	is



2.	Mutual	impedance	between	the	inner	and	outer	surfaces	zm	is

TABLE	1.1	Self-Impedance	of	Phase	a	(Figure	1.25:	hp	=	16.67	m,	he	=	23.33	m)

3.	Outer	surface	impedance	z0	is

where

In(x)	and	Kn(x)	are	the	modified	Bessel	functions	of	the	first	and	second	kind,	respectively,
with	order	n.
As	 is	 clear	 from	 Equation	 1.9,	 three-component	 impedances	 exist	 for	 a	 cylindrical

conductor.	In	the	case	of	a	circular	solid	conductor,	zi	=	zm	=	0	for	ri	=	0,	and	z0	becomes

The	conductor	internal	impedance	Zi,	which	means	z0,	is	the	outer	surface	impedance	given
in	Equation	1.9—or	in	Equation	1.10	as	far	as	an	overhead	line	is	concerned.	However,	in	the
case	of	a	cable,	Zi	is	composed	of	a	number	of	component	impedances,	as	in	Equation	1.9,	and
also	 an	 insulator	 impedance	 between	 metallic	 conductors	 because	 the	 cable	 is,	 in	 general,
composed	of	a	core	conductor	carrying	current	and	a	metallic	sheath	(shield	or	screen)	for	a
current	return	path	[4,5].



1.2.2				Outer-Media	Impedance	Z0

1.2.2.1				Outer-Media	Impedance

The	outer	media	of	an	overhead	conductor	are	the	air	and	the	earth	since	the	conductor	is
isolated	by	the	air	from	the	earth,	which	is	a	conducting	medium.	Therefore,	the	outer-media
impedance	Z0	of	the	overhead	conductor	is	composed	of	the	following	component:

where
Zs	is	the	space	impedance
Ze	the	earth-return	impedance

The	outer-media	impedance	of	an	underground	cable	(insulated	conductor)	is	the	same	as
the	earth-return	impedance	because	the	underground	cable	is	surrounded	by	only	the	earth:

When	 considering	 the	 mutual	 impedance	 between	 an	 overhead	 conductor	 and	 an
underground	cable	or	a	buried	gas	and/or	water	pipeline,	the	self-impedance	of	the	overhead
conductor	 is	 given	 by	 Equation	 1.11,	while	 that	 of	 the	 underground	 conductor	 is	 given	 by
Equation	1.12.	Mutual	impedance	will	be	explained	in	Section	1.2.2.3.

1.2.2.2				Overhead	Conductor

1.2.2.2.1				Derivation	of	an	Approximate	Formula
Using	 the	 penetration	 depth	 he	 for	 the	 earth,	 the	 outer-media	 impedance	 of	 an	 overhead
conductor	is	readily	obtained	based	on	image	theory.	Figure	1.2	illustrates	a	single	overhead
conductor	and	its	image:

where
ρe	is	the	earth	resistivity
µe	the	earth	permeability

In	most	cases,	µe	=	µ0.



FIGURE	1.2	A	single	overhead	conductor	and	its	image.

Because	 the	 earth	 is	 not	 perfectly	 conducting,	 its	 surface	 is	 not	 a	 zero	 potential	 plane.
Instead,	the	zero	potential	plane	is	located	at	a	depth	he	from	the	earth’s	surface.	Then,	image
theory	gives	the	following	inductance	Le	[6]:

Thus,	the	outer-media	impedance	of	a	single	overhead	conductor	is	given	by

For	the	multiconductor	illustrated	in	Figure	1.3,	the	outer-media	impedance	is	obtained	in
the	same	manner	as	Equation	1.15	[6]:

where

In	this	equation,	hi	and	hj	are	the	heights	of	the	ith	and	jth	conductors,	respectively,	and	yij	is
the	horizontal	separation	between	the	ith	and	jth	conductors.



Remember	that	the	penetration	depth	is	not	a	real	value	but	rather	a	complex	value;	thus,	the
zero	potential	plane	at	depth	he	is	just	a	concept	and	does	not	exist	in	physical	reality.

FIGURE	1.3	A	multiconductor	overhead	line.

When	the	earth	is	perfectly	conducting,	that	is,	ρe	=	0,	then	he	=	0	in	Equation	1.13.
Therefore,	Equation	1.16	becomes

where

This	impedance	is	well	known	as	the	space	impedance	of	an	overhead	conductor,	that	is

For	a	single	conductor:

Dij	=	2hi,	dij	=	r

This	is	the	reason	space	impedance	is	often	confused	with	earth-return	impedance.	In	fact,
when	earth-return	 impedance	 is	derived	from	Maxwell’s	equation,	space	 impedance	appears
as	a	part	of	earth-return	impedance	[7,8].

EXAMPLE	1.2



Calculate	the	earth-return	impedance	of	a	conductor	with	r	=	0.1667	m,	h
=	16.67	m,	and	ρe	=	200	Ω	m	at	f	=	50	Hz.

Solution
Similar	 to	 Example	 1.1,	 the	 impedance	 formula	 is	 rewritten	 in	 the
following	form	so	that	only	a	real	number	calculation	is	necessary:

where

For	self-impedance,	d	=	r,	D	=	H1	=	2h,	a	=	H1(H1	+	2He).

The	result	agrees	with	that	in	Table	1.1,	which	is	calculated	by	Carson’s
accurate	 formula	 using	 EMTP	 cable	 constants	 (see	 Section	 1.8,	 Table
1.14b	[5,9]).
Earth-return	 impedance	at	 a	 low	 frequency	can	be	easily	evaluated	by

an	approximate	formula	derived	from	Equation	1.16	under	the	assumption
that	he	≫	h1,	h2:

This	approximate	result	agrees	with	that	calculated	by	Deri’s	formula.

1.2.2.2.2				Accurate	Formula	by	Pollaczek



Pollaczek	derived	the	following	earth-return	impedance	in	1926	[7]:

where

In	Equation	1.21,	Q	−	jP	 is	often	called	 the	correction	 term	of	earth-return	 impedance,	or
the	earth-return	impedance	correction.	It	should	be	clear	that	Poij	gives	the	space	impedance.
m1	is	called	the	intrinsic	propagation	constant	of	the	earth.
The	 infinite	 integral	 of	 Pollaczek’s	 impedance	 is	 numerically	 very	 unstable	 and	 often

results	 in	 numerical	 instability.	 However,	 the	 integral	 can	 be	 numerically	 calculated	 by
commercial	 software	 such	 as	 MAPLE	 and	 MATLAB®	 if	 special	 care	 is	 taken	 (e.g.,
logarithmic	integration)	[10].

1.2.2.2.3				Carson’s	Earth-Return	Impedance
There	were	no	computers	in	the	1920s;	thus,	it	was	impossible	to	use	Pollaczek’s	impedance
[8].	Carson	derived	the	same	formula	as	Pollaczek,	neglecting	the	earth	permittivity	(i.e.,	εe	=
ε0	 in	 Equation	 1.23),	 and	 he	 further	 derived	 a	 series	 expansion	 of	 the	 infinite	 integral	 in
Equation	1.21.	The	details	of	Carson’s	expansion	formula	are	explained	in	many	publications,
for	example,	Reference	11.

1.2.2.2.4				Admittance
Almost	 always,	 the	 following	 well-known	 admittance	 is	 used	 in	 steady-state	 and	 transient
analyses	of	overhead	lines:

For	a	single	conductor:



Wise	derived	an	admittance	formula	considering	an	imperfectly	conducting	earth	in	1948
[12]:

where

Because	 of	 the	 complicated	 infinite	 integral	 in	 Equation	 1.26,	 similar	 to	 Pollaczek’s
impedance,	 Wise’s	 admittance	 is,	 in	 most	 cases,	 neglected.	 However,	 depending	 on	 earth
resistivity	and	conductor	height,	the	admittance	for	the	imperfectly	conducting	earth	should	be
considered,	 especially	 in	 a	 high-frequency	 region,	 say,	 above	 a	 few	 megahertz.	 When	 a
transient	 involves	 a	 transition	between	 a	TEM	wave	 and	 a	TM/TE	wave,	Wise’s	 admittance
should	be	considered.	Then,	the	attenuation	constant	differs	significantly	from	that	calculated
with	Equation	1.24.
The	numerical	integration	of	Equation	1.26	can	be	carried	out	in	a	similar	manner	to	that	of

Pollaczek’s	impedance	using	MAPLE	or	MATLAB.

1.2.2.2.5				Impedance	and	Admittance	Formulation	of	an	Overhead	Conductor	System
Summarizing	 Sections	 1.2,	 1.2.1,	 1.2.2.1,	 and	 1.2.2.2.1,	 1.2.2.2.2,	 1.2.2.2.3	 and	 1.2.2.2.4,
impedance	and	admittance	of	an	overhead	conductor	system	are	given	in	the	following	form:

Zijj:	Equation	1.7	or	the	last	equation	of	Equation	1.9
Zijk	=	0
Zeij:	Equation	1.15,	Equation	1.21,	or	Carson’s	formula
Yij:	Equation	1.24	or	Equation	1.25

Remember	that	Equations	1.7	and	1.15	are	approximate	formulas	for	Zi	and	Ze,	respectively.
Also,	Equation	1.24	is	used	almost	always	as	an	outer-media	admittance.



1.2.2.3				Pollaczek’s	General	Formula	for	Overhead,	Underground,	and
Overhead/Underground	Conductor	Systems

Pollaczek	derived	a	general	formula	that	can	deal	with	earth-return	impedances	of	overhead
conductors,	 underground	 cables,	 and	 multiconductor	 systems	 composed	 of	 overhead	 and
underground	conductors	in	the	following	form	[7,13]:

where
m1	=	jωµ0	(σ1	+	jωε1)	=	jωµ0σ1	−	ω2µ0ε1
m2	=	jωµ0	(σ2	+	jωε2)	=	jωµ0σ2	−	ω2µ0ε2
σ	is	the	conductivity
ε	the	permittivity
µ0	the	permeability	in	free	space
y	the	horizontal	separation	between	conductors	a	and	b
h	the	conductor	height/depth,	d2	=	(ha	−	hb)2	+	y2,	D2	=	(ha	+	hb)2	+	y2

i,	j	are	subscripts	corresponding	to	media	1	and	2	in	Figure	1.4

Assuming	medium	1	is	air,	σ1	=	0	and	ω2	µ0	ε1	=	ω2	µ0ε0	≪	1	yield	m1	=	0.
Thus,

where	m2	=	jωµ0	(σe	+	jωϵe)	≅	jωµ0σe	=	jα	for	soil.
Equation	1.30	is	rewritten	depending	on	the	positions	of	conductors	a	and	b.	For	example,

1.	Overhead	lines	ha,	hb	≥	0;	i	=	j	=	1	(air)



FIGURE	1.4	A	conductor	system.

2.	Underground	cable	ha,	hb	≤	0;	i	=	j	=	2	(soil)

3.	Overhead/underground	ha	≥	0,	hb	≤	0;	i	=	j	=	2

It	should	be	noted	that	Pollaczek	and	Carson	assumed	uniform	current	distribution	along	a
conductor	and	neglect	 the	earth	permittivity.	If	 those	are	considered,	 the	denominator	of	 the



integral	 in	 Equation	 1.33	 is	 to	 be	 rewritten	 by	 	 as

explained	in	References	14	and	15.

PROBLEMS
1.1			Calculate	resistance	Rc	(Ω/km)	and	inductance	Lc	(mH/km)	of	the	conductor	in	Figure

1.1	with	radius	r0	=	1	cm,	r1	=	0,	resistivity	ρc	=	2	×	10−8	Ω	m,	and	permeability	µc	=	µ0
=	4π	×	10−7	(H/m)	at	frequency	f	=	50	Hz	and	100	kHz.

1.2			Calculate	resistance	Rc	(Ω/km)	and	inductance	Lc	(mH/km)	of	a	conductor	with	a	cross-
sectional	area	S	=	3.14	×	10−4	(m2),	circumferential	length	ℓ	=	6.28	cm,	ρc	=	2	×	10−8	Ω
m,	and	µc	=	µ0	at	f	=	50	Hz	and	100	kHz.

1.3			Obtain	a	cylindrical	conductor	equivalent	to	a	square	conductor	of	2	×	2	cm.
1.4			Calculate	Re	(Ω/km)	and	Le	(mH/km)	of	the	earth-return	impedance	for	an	overhead

line	with	radius	r	=	1	cm,	h	=	10	m,	ρe	=	100	Ω	m,	and	µe	=	µ0	at	f	=	50	Hz	and	100	kHz.
1.5			Discuss	the	difference	between	conductor	internal	impedance	and	earth-return

impedance	based	on	the	results	of	Problems	1.1	and	1.4.
1.6			Derive	a	low-frequency	approximate	formula	of	the	earth-return	impedance	from

Equation	1.15	under	the	condition	that	|he|		 hi,	hj.
1.7			Derive	a	high-frequency	approximate	formula	of	Equation	1.15	under	the	condition

that	|he| ≪	hi,	hj.	by	using	the	relation	of	ln(1	+	x)	≒	x	for	x	≪	1.

	
	

1.3					Basic	Theory	of	Distributed-Parameter	Circuit
1.3.1				Partial	Differential	Equations	of	Voltages	and	Currents
Considering	 the	 impedance	 and	 admittance	 explained	 in	 Section	 1.2,	 the	 single	 distributed-
parameter	line	in	Figure	1.5a	is	represented	by	a	lumped-parameter	equivalence,	as	in	Figure
1.5b.
Applying	 Kirchhoff’s	 voltage	 law	 to	 the	 branch	 between	 nodes	P	 and	Q,	 the	 following

relation	is	obtained:

Rearranging	this	equation	results	in	the	following:



By	taking	the	limit	of	Δx	to	zero,	the	following	partial	differential	equation	is	obtained:

FIGURE	1.5	A	single	distributed-parameter	line.	(a)	A	distributed-parameter	line.	(b)	A	lumped-parameter	equivalence.

Similarly,	applying	Kirchhoff’s	current	law	to	node	P,	the	following	equation	is	obtained:

A	general	solution	of	Equations	1.36	and	1.37	is	derived	in	Section	3.2.1.

1.3.2				General	Solutions	of	Voltages	and	Currents

1.3.2.1				Sinusoidal	Excitation

Assuming	 v	 and	 i	 as	 sinusoidal	 steady-state	 solutions,	 Equations	 1.36	 and	 1.37	 can	 be
differentiated	with	respect	to	time	t.	The	derived	partial	differential	equations	are	converted	to
ordinary	differential	equations,	which	makes	it	possible	to	obtain	solutions	to	Equations	1.36
and	 1.37.	 By	 expressing	 v	 and	 i	 in	 a	 polar	 coordinate,	 that	 is,	 in	 an	 exponential	 form,	 the
derivation	of	the	solution	becomes	straightforward.
By	representing	v	and	i	in	a	phasor	form,	then

Either	real	or	imaginary	parts	of	these	equations	represent	v	and	i.	 If	 imaginary	parts	are
selected,	then

where



Substituting	Equations	1.36	and	1.37	and	differentiating	partially	with	respect	to	time	t,	 the
following	ordinary	differential	equations	are	obtained:

where

Differentiating	Equation	1.40	with	respect	to	x	gives

Substituting	Equation	1.40	into	this	equation	gives

where

When	Z	and	Y	are	matrices,	the	following	relation	is	given	in	general:

Only	 when	 Z	 and	 Y	 are	 perfectly	 symmetrical	 matrices	 (symmetrical	 matrices	 whose
diagonal	and	nondiagonal	entries	are	equal),	 is	 [Γν]	=	[Гi]	 satisfied.	 In	 the	case	of	 a	 single-
phase	line,	because	Z	and	Y	are	scalars,	then

Substituting	this	equation	into	Equation	1.42	gives



A	general	solution	is	obtained	by	solving	one	of	these	equations.	Once	it	is	solved	for	V	or
I,	Equation	1.40	can	be	used	to	derive	the	other	solution.
The	general	solution	of	Equation	1.46	with	respect	to	voltage	is	given	by

where	 	are	the	integral	constants	determined	by	a	boundary	condition.
The	 first	 part	 of	 Equation	 1.40	 gives	 the	 general	 solution	 of	 current	 in	 the	 following

differential	form:

The	coefficient	of	this	equation	is	rewritten	as

where

In	general	cases,	when	Z	and	Y	are	matrices,	then

Substituting	Equation	1.49	 into	Equation	1.48,	 the	 general	 solution	 of	 Equation	 1.46	with
respect	to	current	is	expressed	as

Exponential	functions	in	Equations	1.47	and	1.51	are	convenient	for	dealing	with	a	line	of
infinite	length	(infinite	line),	but	hyperbolic	functions	are	preferred	for	dealing	with	a	line	of
finite	length	(finite	line).	To	obtain	an	expression	using	hyperbolic	functions,	new	constants	C
and	D	are	defined	as



Substituting	this	into	Equations	1.47	and	1.51	gives

From	the	definitions	of	hyperbolic	functions:

Constants	 A,	 B,	 C,	 and	D	 defined	 here	 are	 arbitrary	 constants	 determined	 by	 boundary
conditions.

1.3.2.2				Lossless	Line
When	a	distributed	 line	 satisfies	R	=	G	=	0,	 the	 line	 is	 called	 a	 “lossless	 line.”	 In	 this	 case,
Equations	1.36	1.37	can	be	written	as

Differentiating	these	equations	with	respect	to	x	gives

Similar	to	the	sinusoidal	excitation	case,	the	following	equations	are	obtained	for	voltage
and	current:

where	
From	Equation	1.14,	with	he	=	0,	and	Equation	1.24:



Thus,

The	parts	of	Equation	1.54	are	linear	second-order	hyperbolic	partial	differential	equations
called	 wave	 equations.	 The	 general	 solutions	 for	 the	 wave	 equations	 were	 given	 by
D’Alembert	in	1747	[16]	as

where

Surge	impedance	Z0	and	surge	admittance	Y0	 in	these	equations	are	extreme	values	of	the
characteristic	impedance	and	admittance	in	Equation	1.49	for	frequency	f	→	∞.
This	solution	is	known	as	a	wave	equation,	which	behaves	as	a	wave	traveling	along	the	x-

axis	with	velocity	c0.	 It	 should	be	clear	 that	 the	values	of	 functions	ef,	eb,	Ef,	and	Eb	 do	not
vary	 if	x	 −	c0t	 =	 constant	 and	x	 +	c0t	 =	 constant.	 Since	 ef	 and	Ef	 show	 a	 positive	 traveling
velocity,	 they	 are	 called	 “forward	 traveling	waves”:	 c0	 =	 x/t	 along	 the	 x-axis	 in	 a	 positive
direction.
On	the	contrary,	eb	and	Eb	are	“backward	traveling	waves,”	which	means	the	waves	travel

in	the	direction	of	−x,	that	is,	the	traveling	velocity	is	negative:

Having	defined	the	direction	of	the	traveling	waves,	Equation	1.56	is	rewritten	simply	as



where
ef,	eb	are	the	voltage	traveling	waves
if,	ib	are	the	current	traveling	waves

This	is	a	basic	equation	to	analyze	traveling-wave	phenomena,	and	the	traveling	waves	are
determined	by	a	boundary	condition.	More	details	are	given	in	Section	1.6.

1.3.3				Voltages	and	Currents	on	a	Semi-Infinite	Line
Here,	we	consider	the	semi-infinite	line	shown	in	Figure	1.6.	The	AC	constant	voltage	source
is	connected	to	the	sending	end	(x	=	0),	and	the	line	extends	infinitely	to	the	right-hand	side	(x
=	+∞).

1.3.3.1				Solutions	of	Voltages	and	Currents
From	the	general	solutions	in	Equations	1.47	and	1.51,	the	solutions	of	voltages	and	currents
on	 the	 semi-infinite	 line	 in	 Figure	 1.6	 are	 obtained	 by	 using	 the	 following	 boundary
conditions:

The	boundary	condition	in	the	second	part	of	Equation	1.60	is	obtained	from	the	physical
constraint	in	which	all	physical	quantities	have	to	be	zero	at	x	→	∞.
Substituting	the	condition	into	Equation	1.47	gives

Since	 ,	constant	B	has	to	be	zero	in	order	to	satisfy	this	equation:

Thus,

Substituting	the	first	part	of	Equation	1.60	into	this	equation,	constant	A	is	obtained	as



FIGURE	1.6	Semi-infinite	line.

Substituting	constants	A	and	B	 into	 the	general	solutions,	 that	 is,	Equations	1.47	and	1.51,
voltages	and	currents	on	a	semi-infinite	line	are	given	in	the	following	form:

where	

1.3.3.2				Waveforms	of	Voltages	and	Currents
Since	 is	a	complex	value,	it	can	be	expressed	as

Substituting	this	into	the	voltage	of	Equation	1.62,	then

If	the	voltage	source	at	x	=	0	in	Figure	1.6	is	a	sinusoidal	source,	then

The	voltage	on	a	semi-infinite	line	is	expressed	by	the	following	equation:



FIGURE	1.7	Three-dimensional	waveforms	of	the	voltage.

Figure	 1.7	 shows	 the	 voltage	waveforms	whose	 horizontal	 axes	 take	 different	 values	 of
time	when	the	observation	point	is	shifted	from	x	=	0	to	x1,	x2,	….
The	 figure	 illustrates	 that	 as	 the	 observation	 point	 shifts	 in	 the	 positive	 direction,	 the

amplitude	of	the	voltage	decreases	due	to	exp(−αx),	and	the	angle	of	the	voltage	lags	due	to
exp(−jβx).
The	horizontal	axis	is	changed	to	the	observation	point,	and	voltage	waveforms	at	different

times	can	be	seen	in	Figure	1.8.
Rewriting	Equation	1.66,	then;

Figure	1.8	illustrates	how	the	voltage	waveform	travels	in	the	positive	direction	of	x	as	time
passes,	according	to	Equation	1.67.

1.3.3.3				Phase	Velocity
Phase	velocity	is	found	from	two	points	on	a	line	whose	phase	angles	are	equal.	For	example,
in	Figure	1.8,	x1	(point	P1)	and	x2	(point	Q1)	determine	the	phase	velocity.



FIGURE	1.8	Voltage	waveforms	along	the	x-axis	at	different	times.

From	Equation	1.67,	the	following	relationship	is	satisfied	as	the	phase	angles	are	equal:

The	phase	velocity	c	is	found	from	Equation	1.67	as

This	equation	shows	 that	 the	phase	velocity	 is	 found	from	ω	and	β	and	 is	 independent	of
location	and	time.
For	a	lossless	line,

From	Equation	1.45:



As	a	result,	for	a	lossless	line,	the	phase	velocity	(Equation	1.55)	is	found	from	Equations
1.68	and	1.70.
The	phase	velocity	in	a	lossless	line	is	independent	of	ω.

1.3.3.4				Traveling	Wave
When	a	wave	travels	at	constant	velocity,	it	is	called	a	traveling	wave.	The	general	solutions
of	 voltages	 and	 currents	 in	 Equations	 1.56	 and	 1.57	 are	 traveling	 waves.	 In	 more	 general
cases,	 	 and	 in	 the	general	 solutions,	 that	 is,	Equations	1.47	 and	 1.51,	 also
express	traveling	waves.
The	existence	of	traveling	waves	is	confirmed	by	various	physical	phenomena	around	us.

For	example,	when	we	drop	a	pebble	in	a	pond,	waves	travel	in	all	directions	from	the	point
where	the	pebble	was	dropped.	These	are	known	as	traveling	waves.	If	a	leaf	is	floating	in	the
pond,	 it	does	not	 travel	along	with	 the	waves;	 it	only	moves	up	and	down	according	 to	 the
height	of	the	waves.	Figure	1.9a	shows	the	movement	of	the	leaf	and	the	water	surface	on	the	x
and	y	axes.	Here,	x	is	the	distance	from	the	origin	of	the	wave	and	y	is	the	height.	Figure	1.9b
illustrates	the	movement	of	the	leaf	with	time.	Figure	1.9	also	demonstrates	that	the	movement
of	the	leaf	coincides	with	the	shape	of	the	wave.
This	 observation	 implies	 that	 the	water	 in	 the	 pond	 does	 not	 travel	 along	with	 the	wave.

What	 is	 traveling	 in	 the	water	 is	 the	energy	from	the	dropping	of	 the	pebble,	and	 the	water
(medium)	 in	 the	 pond	 only	 transmits	 the	 energy.	 In	 other	words,	 traveling	waves	 represent
traveling	energy—the	medium	itself	does	not	travel.

FIGURE	1.9	Movement	of	a	leaf	on	a	water	surface.	(a)	Position	of	the	leaf	as	a	function	of	x,	y,	and	t.	(b)	y	−	t	curve	of	leaf
movement.

Maxwell’s	wave	equation	can	thus	be	considered	an	expression	of	traveling	energy,	which
means	 that	 the	 characteristics	 of	 energy	 transmission	 can	be	 analyzed	 as	 those	 of	 traveling



waves.	 For	 example,	 the	 propagation	 velocity	 of	 traveling	 waves	 corresponds	 to	 the
propagation	velocity	of	energy.

1.3.3.5				Wavelength
Wavelength	 is	 found	 from	 two	 points	 on	 a	 line	 whose	 phase	 angles	 are	 360°	 apart	 at	 a
particular	 time.	 For	 example,	 x1	 (point	P1)	 and	 x3	 (point	 P2)	 in	 Figure	 1.8	 determine	 the
wavelength	λ	at	t	=	0:

Since	the	phase	angles	of	the	two	points	are	360°	apart,	the	following	equation	is	satisfied
from	Equation	1.66:

The	wavelength	is	found,	from	this	equation	and	Equation	1.71,	as

Equation	1.72	shows	that	 the	wavelength	 is	a	 function	of	β	and	 is	 independent	of	 location
and	time.
For	a	lossless	line,	using	Equation	1.70,	then

1.3.4				Propagation	Constants	and	Characteristic	Impedance

1.3.4.1				Propagation	Constants

The	propagation	constant	Γ	is	expressed	as	follows:

where
α	is	the	attenuation	constant	(Np/m)
β	is	the	phase	constant	(rad/s)

Let	us	look	at	the	meaning	of	the	attenuation	constant	using	the	semi-infinite	line	case	as	an
example.	From	Equation	1.62	and	the	boundary	conditions:



The	attenuation	after	the	propagation	of	x	is

From	this	equation:

The	attenuation	per	unit	length	is

This	 equation	 shows	 that	 the	 attenuation	 constant	 gives	 the	 attenuation	 of	 voltage	 after	 it
travels	for	a	unit	length.
Now,	we	will	find	propagation	constants	for	a	line	with	losses,	that	is,	a	line	whose	R	and	G

are	positive.	From	Equation	1.63:

Also,

From	these	equations,	the	following	results	are	obtained:

Since	αβ	is	positive,	α	and	β	have	to	have	the	same	sign,	that	is,	both	positive:



Here,	we	find	the	characteristics	of	α	and	β	defined	earlier.	First,	when	ω	=	0,	then

For	ω	→	∞,	using	the	approximation	 	for	x	≪	1,	then

Substituting	this	into	Equation	1.77	gives

Considering	 Equations	 1.78	 and	 1.79,	 the	 frequency	 responses	 of	 α	 and	 β	 are	 found	 as
shown	in	Figure	1.10.
Equation	1.79	shows	that	the	propagation	velocity	at	ω	→	∞	is

The	 propagation	 velocity	 c0	 in	 this	 equation	 is	 equal	 to	 the	 propagation	 velocity	 for	 a
lossless	line	in	Equation	1.55.

1.3.4.2				Characteristic	Impedance
For	a	single-phase	 lossless	overhead	 line	 in	air,	 the	characteristic	 impedance	 is	 found	from
Equations	1.49	and	1.69:



FIGURE	1.10	Frequency	characteristics	of	α	and	β.

This	equation	 shows	 that	 the	characteristic	 impedance	becomes	 independent	of	 frequency
for	a	lossless	line,	and	it	is	called	surge	impedance,	as	defined	in	Equation	1.58.
For	a	line	with	losses,	the	characteristic	impedance	is	found	as

which	is	defined	as

The	real	part	r	 and	 the	 imaginary	part	x	 of	 the	characteristic	 impedance	are	 found	 in	 the
same	way	as	we	found	α	and	β	earlier:

From	this	equation:



Equation	1.85	shows	that	the	characteristic	impedance	for	ω	→	∞	coincides	with	the	surge
impedance	of	a	lossless	line	in	Equation	1.81.

1.3.5				Voltages	and	Currents	on	a	Finite	Line

1.3.5.1				Short-Circuited	Line

In	this	section,	we	consider	a	line	with	a	finite	length	(finite	line)	whose	remote	end	is	short-
circuited	to	ground,	as	illustrated	in	Figure	1.11.
To	deal	with	a	 finite	 line,	 the	general	 solution	 in	 the	 form	of	hyperbolic	 functions,	 as	 in

Equation	1.52,	is	convenient.	The	boundary	conditions	in	Figure	1.11	are

Substituting	these	conditions	into	Equation	1.52,	unknown	constants	C	and	D	are	determined
as	 :

FIGURE	1.11	A	short-circuited	line.

Substituting	C	and	D	into	Equation	1.52,	the	following	solutions	are	obtained:



Similarly,

The	current	at	the	sending	end	(x	=	0)	is

The	solution	for	the	current	in	Equation	1.88	is	rewritten	by	using	I0:

The	current	at	the	remote	end	(x	=	l)	is

The	impedance	of	 the	finite	 line	observed	from	the	sending	end	is	given	as	a	function	of
line	length	l:

Figure	1.12	shows	an	example	of	 .	For	l	→	∞,	since	tanh	(∞)	→	1:



FIGURE	1.12	Input	impedance	|Z(l)|	of	a	short-circuited	line	r	=	1.3	mm,	h	=	30	cm,	and	f	=	800	Hz.

For	a	lossless	line:

Using	the	relationships	sinh	jx	=	j	sin	x	and	cosh	jx	=	cos	x,	 the	solutions	for	voltage	and
current	are	expressed	as

In	Equation	1.93,	voltage	and	current	become	infinite	when	the	denominators	are	zero.	This
condition	is	referred	to	as	the	resonant	condition.	The	denominators	become	zero	when

Therefore,	natural	resonant	frequencies	are	found	as

Infinite	numbers	of	 fSn	 exist	 for	 different	n.	 The	 natural	 resonant	 frequency	 for	n	 =	 1	 is
called	the	fundamental	resonant	frequency.



Let	us	define	τ	as	the	propagation	time	for	voltage	and	current	on	a	line	with	length	l,	which
is	given	by

Using	the	propagation	time	τ,	the	natural	resonant	frequency	and	the	fundamental	resonant
frequency	are	expressed	as

The	input	impedance	Z(l)	of	the	finite	line	seen	from	the	sending	end	is	also	rewritten	for	a
lossless	line	as	follows:

Figure	1.13	 shows	 the	 relationship	between	 	 and	 	 (or	 l)	 for	 a	 lossless	 line.
The	 relationship	 coincides	 with	 Foster ’s	 reactance	 theorem.	 The	 line	 is	 in	 a	 resonant
condition	for	θ	=	nπ;	n:	positive	integers,	and	the	line	is	in	an	antiresonant	condition	for	θ	=
(2n	−	1)π/2.

1.3.5.2				Open-Circuited	Line
In	this	section,	we	consider	a	finite	line	whose	remote	end	is	open,	as	shown	in	Figure	1.14.

FIGURE	1.13	|Z(l)|	−	θ	characteristic	of	a	lossless	short-circuited	line.



FIGURE	1.14	An	open-circuited	line.

For	this	line,	the	boundary	conditions	are	defined	as

In	 a	 similar	 manner	 to	 a	 short-circuited	 line,	 the	 solutions	 of	 voltage	 and	 current	 are
obtained	in	the	following	forms:

The	input	impedance	of	the	finite	line	seen	from	the	sending	end	is	expressed	as

Figure	1.15	shows	an	example	of	the	relationship	between	|Z(l)|	and	l.
For	a	lossless	line,	the	solutions	for	voltage	and	current	are	expressed	as



FIGURE	1.15	Input	impedance	of	an	open-circuited	line.	r	=	1.3	mm,	y	=	60	cm	between	conductors,	and	f	=	800	Hz.

The	line	is	in	a	resonant	condition	when	the	denominator	of	Equation	1.102	is	zero:

Therefore,	the	natural	resonant	frequency	is	found	as

The	fundamental	resonant	frequency	is

As	fs1	=	1/2τ	for	a	short-circuited	line,	then	fs1	=	2fO1.
The	input	impedance	for	a	lossless	line	seen	from	the	sending	end	is

Figure	1.16	shows	the	relationship	between	 	and	 	for	a	lossless	line.	As	for	a
short-circuited	line,	the	relationship	coincides	with	Foster ’s	reactance	theorem.	The	line	is	in
a	resonant	condition	for	θ	=	(2n	−	1)π/2;	n:	positive	integers,	as	in	Equation	1.103.



FIGURE	1.16	|Z(l)|	−	θ	characteristic	of	a	lossless	open-circuited	line.

PROBLEMS
1.8			Prove	α(ω	=	0)	<	α(ω	=	∞)	in	Figure	1.10.
1.9			Obtain	the	characteristic	impedance	Z0(ω)	for	ω	→	0	in	R,	L,	C,	and	G	lines.
1.10	Obtain	the	sending-end	current	Is	in	R,	L,	C,	and	G	lines	for	ω	=	0	in	a	short-circuited

(finite	length)	line.	In	a	real	overhead	line,	G	≒	0	in	general.	Then,	what	is	the	current
Is?

1.11	Calculate	Vr	for	E	=	1000	•	cos(ωt)	(V)	with	f	=	50	(Hz),	and	 	on
a	lossless	line	with	length	l	=	300	km	by	using	(a)	F-parameter	and	(b)	π-equivalent
circuit	in	the	following	case:

(1)Zr	=	1(Ω),	(2)Zr	=	300(Ω),	(3)Zr	=	∞.

	
	

1.4					Multiconductor	System
1.4.1				Steady-State	Solutions
Equations	1.40	 through	1.42	hold	 true	 for	 the	multiconductor	 system	shown	 in	Figure	 1.17,
provided	that	the	coefficients	Z,	Y,	R,	L,	G,	and	C	are	now	matrices	and	the	variables	V	and	I
are	vectors	of	the	order	n	in	an	n-conductor	system.



FIGURE	1.17	A	multiconductor	system.

The	matrix	P	is	defined	as

where	P	=	[P]:	n	×	n	matrix	and	in	general	P	≠	YZ.
Since	Z	and	Y	are	both	symmetrical	matrices,	the	transposed	matrix	of	P	is	found	as

Here,	the	subscript	t	means	the	matrix	is	transposed,	and	Pt	=	[P]t:	n	×	n	matrix.
From	Equations	1.42	and	1.10,

As	in	Equation	1.47,	the	general	solution	of	Equation	1.109	is	expressed	as

where	Vf	and	Vb	are	arbitrary	n-dimensional	vectors.
The	first	term	on	the	right-hand	side	of	Equation	1.110	expresses	wave	propagation	in	the

positive	 direction	 of	 x	 (forward	 traveling	 wave).	 The	 second	 term	 on	 the	 right-hand	 side
corresponds	 to	wave	propagation	 in	 the	negative	direction	of	x	 (backward	 traveling	wave).
Equation	 1.110	 shows	 that	 voltage	 at	 any	 point	 on	 a	 line	 is	 the	 sum	 of	 the	 forward	 and
backward	traveling	waves.
Since	I	=	−Z−1	dV/dx	as	in	Equation	1.48,	current	can	be	given	as



For	 a	 semi-infinite	 line,	 since	 Vb	 =	 0,	 Equations	 1.110	 and	 1.116	 are	 simplified	 to	 the
following	form:

Equation	 1.112	 shows	 that	 the	 proportion	 of	 current	 to	 voltage	 at	 any	 point	 on	 a	 semi-
infinite	line,	that	is,	the	characteristic	admittance	matrix,	is	defined	as	follows:

Since	Z0	=	Y0−1,	the	characteristic	impedance	matrix	is

The	general	solution	for	current	can	also	be	found	from	the	second	part	of	Equation	1.109:

Using	the	second	part	of	Equation	1.40,	the	voltage	in	a	semi-infinite	line	can	also	be	found
as	follows,	since	Ib	=	0:

From	this	equation,	the	characteristic	impedance	and	admittance	matrices	are

In	 general,	 the	 characteristic	 impedance	 and	 admittance	 matrices	 are	 expressed	 by
Equations	1.113	and	1.109	using	P	instead	of	Pt.
Another	 way	 to	 express	 the	 characteristic	 impedance	 and	 admittance	 matrices	 is	 by

integrating	the	second	part	of	Equation	1.109:

For	a	semi-infinite	line,	substituting	the	first	equation	of	Equation	1.112	into	Equation	1.118
gives

Therefore,	the	characteristic	impedance	and	admittance	matrices	are	found	as



This	 equation	 produces	 the	 same	 matrices	 as	 in	 Equation	 1.113.	 For	 example,	 for	 the
characteristic	admittance	matrix:

The	 characteristic	 impedance	 and	 admittance	 matrices	 are	 symmetrical	 matrices.	 For
example,	for	the	characteristic	impedance	matrix:

Here,	Y	=	Yt	since	Y	is	a	symmetrical	matrix.
Therefore,

P	is	not	a	symmetrical	matrix	in	general,	but	Z0	and	Y0	are	always	symmetrical	matrices.

1.4.2				Modal	Theory
Modal	 theory,	which	was	established	by	L.	M.	Wedepohl	 in	1963	[17],	provides	an	essential
technique	 to	 solve	 for	 voltages	 and	 currents	 in	 a	 multiconductor	 system.	 Without	 modal
theory,	 propagation	 constants	 and	 characteristic	 impedances	 of	 a	 multiconductor	 system
cannot	be	precisely	found,	except	for	an	ideally	transposed	line.	One	may	assume	an	ideally
transposed	line	or	a	perfectly	conducting	earth	and	find	solutions	of	voltages	and	currents	in	a
multiconductor	 system	 using	 symmetrical	 coordinate	 transformation	 [18,19].	 However,	 it
does	not	produce	precise	solutions	of	voltages	and	currents	since	an	ideally	transposed	line
and	a	perfectly	conducting	earth	do	not	exist	 in	an	actual	 system.	Before	modal	 theory	was
established,	 propagation	 constants	 and	 characteristic	 impedances	 were	 found	 by	 expanding
matrix	functions	to	a	series	of	polynomials.
This	section	discusses	propagation	constants	and	characteristic	 impedance	and	admittance

matrices	in	the	modal	domain	after	reviewing	modal	theory.

1.4.2.1				Eigenvalue	Theory
Let	us	define	matrix	P	as	a	product	of	series	impedance	matrix	Z	and	shunt	admittance	matrix
Y	for	a	multiconductor	system:

where	[Z]	and	[Y]	are	n	×	n	off-diagonal	matrices.
Applying	 eigenvalue	 theory,	 the	 off-diagonal	 matrix	 P	 can	 be	 diagonalized	 by	 the

following	matrix	operation:



where
[Q]	is	the	n	×	n	eigenvalue	matrix	of	[P]
[A]	is	the	n	×	n	eigenvector	matrix	of	[P]
(Q)	is	the	eigenvalue	vector
[U]	is	the	identity	(unit)	matrix

The	notations	matrix	[	]	and	vector	(	)	are	hereafter	omitted	for	simplification.
Rewriting	Equation	1.125	gives

Since	Q	is	the	diagonal	matrix,	only	the	kth	column	of	A	is	multiplied	by	the	kth	diagonal
entry	of	Q	when	calculating	AQ.	Therefore,	the	following	equation	is	satisfied	for	each	k:

The	following	equation	is	obtained	for	the	kth	column	by	substituting	Equation	1.127	 into
Equation	1.126:

This	equation	is	a	set	of	n	equations	with	n	unknowns.	The	determinant	of	(P	−	QkU)	must
be	zero	in	order	to	obtain	the	solution	Ak	≠	0:

Equation	1.129	is	an	nth-order	polynomial	with	unknown	Qk	and	is	called	a	characteristic
equation.	Eigenvalues	of	P	(i.e.,	Qk)	can	be	found	as	the	solution	of	the	characteristic	equation.
Eigenvector	 Ak	 is	 found	 from	 Equation	 1.126	 for	 each	 eigenvalue	 of	 P.	 Since	 the

determinant	 of	 (P	 −	 QkU)	 is	 zero	 for	 the	 obtained	 Qk,	 eigenvector	 Ak	 is	 not	 uniquely
determined.	Thus,	one	element	of	Ak	can	 take	an	arbitrary	value,	and	the	other	elements	are
determined	according	to	it,	satisfying	the	proportional	relationship	that	eigenvectors	Ak	have
to	be	linearly	independent	of	each	other.	This	is	especially	important	when	some	eigenvalues
of	P	are	equal,	that	is,	when	the	characteristic	equation	has	repeated	roots.
As	discussed	 in	Section	1.4.1,	 analysis	 of	 a	multiconductor	 system	 requires	 a	 number	 of

computations	 of	 functions.	 The	 application	 of	 eigenvalue	 theory	makes	 it	 easy	 to	 calculate
matrix	functions.	This	is	a	major	advantage	of	eigenvalue	theory.
One	 way	 to	 calculate	 matrix	 functions	 without	 eigenvalue	 theory	 is	 to	 use	 series

expansions.	The	following	series	expansions	are	often	used	to	calculate	matrix	functions:



Using	this	equation,	the	exponential	function	of	matrix	P	is	found	as

Using	eigenvalue	theory,	a	matrix	function	is	given	by

where	Q	and	A	are	the	eigenvalue	matrix	and	the	eigenvector	matrix	of	P,	respectively.
For	example,	[P]1/2	can	be	calculated	simply	with

where

The	exponential	function	exp	([P])	can	be	calculated	as

where	exp([Q])	=	[U]exp(Q);	exp	(Q)	=	(exp	Q1,	exp	Q2,…,	exp	Qn)t.
Assuming	eigenvalue	matrix	Q,	eigenvector	matrix	A,	and	 its	 inverse	A−1	are	 found,	 then

the	propagation	constant	matrix	can	be	calculated	as	in	Equation	1.133:

where
Γ	is	the	actual	propagation	constant	matrix	(off-diagonal)



γ	=	α	+	jβ	is	the	modal	propagation	constant	matrix	(diagonal)

Here,	 α	 is	 the	modal	 attenuation	 constant	 and	 β	 is	 the	modal	 phase	 constant.	 In	Equation
1.135:

and

The	exponential	function	of	the	propagation	constant	matrix	is	found	from	Equation	1.134:

As	a	result,	the	voltage	in	a	semi-infinite	line	given	by	Equation	1.112	can	be	calculated	as

Note	 that	 the	 computation	 of	 Equation	 1.112	 is	 made	 possible	 only	 by	 using	 eigenvalue
theory,	as	in	Equation	1.138.
In	 this	 section,	 we	 have	 discussed	 the	 method	 that	 directly	 applies	 eigenvalue	 theory.

However,	it	 is	not	efficient	in	terms	of	numerical	computations	as	it	requires	the	product	of
off-diagonal	matrices.	The	method	will	be	more	complete	with	modal	theory.

1.4.2.2				Modal	Theory
Equation	1.138	is	rewritten	as:

Mode	 voltage	 (voltage	 in	 a	modal	 domain)	 and	modal	 forward	 traveling	wave	 (forward
traveling	wave	in	a	modal	domain)	are	defined	as	follows:

where	 lowercase	 letters	 are	 modal	 components	 (components	 in	 a	 modal	 domain)	 and
uppercase	 letters	 are	 actual	 or	 phasor	 components	 (components	 in	 an	 actual	 or	 phasor
domain).
Using	modal	components,	Equation	1.139	can	be	expressed	as

In	 this	 equation,	 all	 components	 are	 expressed	 in	 a	 modal	 domain,	 including	 voltage
vectors.	Note	that	this	equation	in	a	modal	domain	takes	the	same	form	as	Equation	1.112	in	an



actual	 domain.	 Similarly,	 relationships	 in	 an	 actual	 domain,	 for	 example,	 Ohm’s	 law,	 are
satisfied	in	a	modal	domain.
Using	these	relationships,	the	solutions	in	a	modal	domain	are	first	derived,	which	can	then

be	 transformed	 to	 the	 solutions	 in	 an	 actual	 domain.	 For	 example,	 once	 the	 solution	 of
Equation	1.141,	that	is,	v,	is	found,	its	solution	in	the	actual	domain	is	found	as

Applying	modal	theory,	the	solutions	are	derived	as	explained	in	Section	1.3.	With	modal
theory,	since	the	coefficient	matrix	in	Equation	1.141	is	a	diagonal	matrix,	the	equation	is	also
written	as

This	 equation	 shows	 that	 each	 mode	 is	 independent	 of	 the	 other	 modes;	 therefore,	 a
multiconductor	system	can	be	 treated	as	a	single-conductor	system	in	a	modal	domain.	The
solutions	in	a	modal	domain	can	be	found	by	n	operations,	whereas	solving	Equation	1.138	in
an	actual	domain	 requires	 time	complexity	of	o(n2)	 since	 the	coefficient	matrix	 is	an	n	 ×	n
matrix.	Matrix	A	is	called	the	voltage	transformation	matrix	as	it	transforms	the	voltage	in	a
modal	domain	to	that	in	an	actual	domain.

1.4.2.3				Current	Mode
In	Section	1.4.2.2,	we	discussed	voltage	in	a	modal	domain;	in	this	section,	we	discuss	current
in	a	modal	domain.	We	first	need	to	find	the	eigenvalues	of	Pt	=	YZ	as	the	second	equation	of
Equation	1.115	indicates.	Since	Pt	≠	P	in	general,	we	define	Q′	as	the	eigenvalue	matrix	of	Pt
and	B	as	the	eigenvector	matrix	of	Pt:

Since	a	matrix	returns	to	its	original	form	when	it	is	transposed	twice,	then

Considering	(Pt)t	=	P	and

This	equation	shows	that	the	eigenvalues	for	voltage	are	equal	to	those	for	current.	Since	
	 propagation	 constants	 for	 voltage	 are	 also	 equal	 to	 those	 for	 current.	 These	 are

important	 characteristics	 to	 consider	 when	 analyzing	 a	 multiconductor	 system,	 and	 they
correspond	to	TEM	mode	propagation.



However,	 the	 current	 transformation	matrix	B	 is	 not	 equal	 to	 the	 voltage	 transformation
matrix	A.	Transposing	the	first	equation	of	Equation	1.144	gives

Also,	from	Equation	1.125:

where	D	is	an	arbitrary	diagonal	matrix.
Comparing	Equations	1.147	1.148	gives

This	 shows	 that	 the	 current	 transformation	 matrix	 can	 be	 found	 from	 the	 voltage
transformation	 matrix.	 In	 general,	 D	 is	 assumed	 to	 be	 an	 identity	 matrix.	 Under	 this
assumption:

1.4.2.4				Parameters	in	Modal	Domain
By	applying	modal	transformation,	differential	equations	in	a	multiconductor	are	given	as:

Modifying	this	set	of	equations	gives

where

or	Z	=	AzB−1,	Y	=	B	•	yA−1.
Equation	 1.152	 in	 a	modal	 domain	 takes	 the	 same	 form	 as	 that	 in	 a	 phase	 domain.	 In	 a

modal	domain,	the	impedance	and	admittance	are	defined	by	Equation	1.153.
From	Equation	1.152:



From	previous	discussions,	we	already	know	that

In	order	for	the	product	of	two	matrices	to	be	a	diagonal	matrix,	the	two	matrices	have	to
be	diagonal	matrices.	Since	Q	is	a	diagonal	matrix,	z	and	y	are	diagonal	matrices	[17].
For	a	semi-infinite	line,	the	following	equation	is	satisfied:

Applying	modal	transformation	to	this	equation	gives

The	characteristic	impedance	and	admittance	in	a	modal	domain	are	defined	as	follows:

Rewriting	 these	 equations,	 the	 actual	 characteristic	 impedance	 and	 admittance	 (in	 phase
domain)	are	given	by

From	Equations	1.114	and	1.158:

z0	=	A−1p−1/2ZB

Using	the	relationships	in	Equations	1.135	and	1.153:

This	equation	shows	that	z0	is	a	diagonal	matrix	since	γ	and	z	are	diagonal	matrices.	In	the
same	way,	it	can	be	shown	that	y0	is	a	diagonal	matrix.
Equation	1.160	also	shows	 that	z0	can	be	found	from	γ	and	z.	Substituting	Equation	1.155

into	Equation	1.160	gives;

Therefore,	the	modal	characteristic	impedance	and	admittance	are	also	found	by



1.4.3				Two-Port	Circuit	Theory	and	Boundary	Conditions
The	unknown	coefficients	Vf	and	Vb	 in	 the	general	solution	expressed	as	Equation	1.110	are
determined	 from	 boundary	 conditions.	 There	 are	 many	 approaches	 to	 obtain	 voltage	 and
current	 solutions	 in	 a	 multiconductor	 system.	 The	 most	 well-known	 method	 is	 the	 four-
terminal	 parameter	 (F-parameter)	 method	 of	 two-port	 circuit	 theory.	 The	 impedance
parameter	 (Z-parameter)	and	 the	admittance	parameter	 (Y-parameter)	methods	are	also	well
known.	It	should	be	noted	that	the	F-parameter	method	is	not	suitable	for	application	in	high-
frequency	regions,	while	 the	Z-	and	Y-parameter	methods	are	not	 suitable	 in	 low-frequency
regions	because	of	the	nature	of	hyperbolic	functions.

1.4.3.1				Four-Terminal	Parameter
The	F-parameter	of	a	two-port	circuit,	illustrated	in	Figure	1.18,	is	expressed	in	the	following
form:

FIGURE	1.18	An	impedance-terminated	multiconductor	system.

where
Vs	 and	Vr	 are	 the	 voltage	 vectors	 at	 the	 sending	 and	 receiving	 ends	 in	 a	multiconductor

system
Is	and	Ir	are	the	current	vectors	at	the	sending	and	receiving	ends



The	coefficients	F1–F4	 in	a	multiconductor	system	are	obtained	in	the	same	manner	as	in
Equation	1.87,	considering	a	matrix	form	from	Equations	1.110	and	1.111:

F3	=	Y0	sinh(Γl),	F4	=	Y0	cosh(Γl)	·	Z0

In	this	equation,	Γ,	Z0,	Y0	are	an	n	×	n	matrix	for	an	n-conductor	system.
It	should	be	noted	that	the	order	of	the	products	in	this	equation	cannot	be	changed	as	has

been	done	for	a	single	conductor.	That	is

Equation	 1.163	 cannot	 be	 solved	 directly	 from	 a	 given	 boundary	 condition	 unless	 the
coefficients	in	Equation	1.164	are	calculated.	By	applying	the	modal	transformation	explained
in	Section	1.4.2,	Equation	1.163	is	rewritten	as

Matrix	form	is;

In	this	equation,	modal	F-parameters	are	given	by

where	z0,	y0,	and	γ	are	defined	in	Section	1.4.2.4.
These	modal	parameters	are	easily	obtained	because	every	matrix,	γ,	z0,	and	y0	=	1/z0,	is	a

diagonal	matrix.	Then,	the	parameters	in	an	actual	phase	domain	are	evaluated	by

It	should	be	clear	from	these	equations	that	F1	is	in	the	dimension	of	a	voltage	propagation
constant,	 F4	 in	 the	 dimension	 of	 a	 current	 propagation	 constant,	 F2	 in	 the	 impedance
dimension,	and	F3	in	the	admittance	dimension.
From	Equations	1.167	and	1.168,	the	following	relation	is	obtained:



In	comparison	with	Equation	1.164:

This	 relation	means	 that	F2	 is	a	 symmetrical	matrix.	Similarly,	F3	 is	 symmetrical	 and	F1
and	F4	have	the	following	relations:

Note	that	F1	and	F4	are	not	the	same	in	a	multiconductor	system,	but	they	are	the	same	in
the	case	of	a	single-conductor	system.

1.4.3.2				Impedance/Admittance	Parameters
The	F-parameter	formulation	in	Equation	1.163	is	rewritten	considering	matrix	algebra	in	the
following	forms:

Until	now,	current	has	been	positive	when	it	flows	in	the	positive	direction	of	x.	It	is	more
comprehensible	 to	 set	 the	 positive	 direction	 of	 the	 current	 to	 the	 direction	 of	 inflow
(injection)	to	the	finite	line	as	shown	in	Figure	1.19.

FIGURE	1.19	A	multiconductor	system	for	Z-	and	Y-parameters.

Since	the	positive	direction	of	current	has	changed	at	the	receiving	end,	Ir	in	Equation	1.171
has	to	be	changed	to	−Ir:



Matrix	form	is

Here,	Zij	(i,	j	=	1,	2)	are	Z-parameters.
Taking	the	inverse	of	the	matrix	gives

Here,	Yij	(i,	j	=	1,	2)	are	Y-parameters.	Y-parameters	are	used	more	often	than	Z-parameters
since	a	voltage	source	is	typically	given	as	a	boundary	condition.
Given	 the	 voltage	 source	 E	 in	 Figure	 1.19,	 the	 voltage	 and	 current	 at	 the	 sending	 and

receiving	ends	are	found	from	Equation	1.174	and	the	boundary	conditions:

where
Ys	=	Zs−1

Yr	=	Zr−1

The	Z-	and	Y-parameter	methods	are	stable	for	θ	→	∞	since	it	is	based	on	the	convergence
functions	coth(θ)	and	cosech(θ).	Thus,	the	method	is	suitable	for	transient	analysis.	However,
it	 should	 not	 be	 used	 for	 analyzing	 low-frequency	 phenomena	 since	 cosech(θ)	 becomes
infinite	for	θ	→	0,	that	is,	ω	→	0.

1.4.4				Modal	Distribution	of	Multiphase	Voltages	and	Currents

1.4.4.1				Transformation	Matrix

When	 a	 three-phase	 transmission	 line	 is	 completely	 transposed	 or	 the	 impedance	 and
admittance	matrices	are	completely	 symmetrical,	 the	 following	 transformation	matrices	are
widely	used	for	both	voltages	and	currents:



1.	Fortescue’s	transformation	[18]:

2.	Clarke’s	transformation	[19]:

3.	Karrenbauer ’s	transformation	[11]:

4.	Traveling-wave	transformation	[1]:

Fortescue’s	 transformation	 is	 well	 known	 in	 conjunction	 with	 symmetrical	 component
theory	[18].	Although	 it	 involves	complex	numbers,	 it	has	 the	advantage	of	generating	only
one	nonzero	modal	voltage	(positive-sequence	voltage)	if	the	source	voltage	is	a	three-phase
symmetrical	AC	 source.	 Clarke’s	 transformation	 is	 also	 related	 to	 symmetrical	 component
theory	and	is	known	as	 the	α	–	β	–	0	transformation	[19].	It	 involves	only	real	numbers	but
generates	positive-	and	negative-sequence	voltages.	Karrenbauer ’s	transformation	is	adopted
in	the	famous	EMTP	[11]	and	is	easily	extended	to	an	n	phase	completely	transposed	line.	This
is	 also	 true	 for	 Fortescue’s	 transformation.	 However,	 there	 are	 no	 transposed	 lines	 with	 a
phase	 number	 greater	 than	 three.	 The	 traveling-wave	 transformation	 is	 often	 used	 when
analyzing	 traveling	waves	on	a	 three-phase	 line	 [1].	 Its	 advantage	 is	 that	 the	 transformation
can	deal	with	not	only	a	completely	transposed	line,	but	also	an	untransposed	horizontal	line.



1.4.4.2				Modal	Distribution
Let	us	discuss	modal	current	(voltage)	distribution	on	a	completely	transposed	line.	It	should
be	 noted	 that	 modal	 voltage	 distribution	 is	 the	 same	 as	 that	 of	 current	 in	 the	 completely
transposed	 line	 case	 because	 the	 impedance	 and	 admittance	 matrices	 are	 completely
symmetrical.	Assume	 that	 the	 phase	 currents	 are	 Ia,	 Ib,	 and	 Ic	 as	 illustrated	 in	 Figure	 1.20.
Using	traveling-wave	transformation,	we	obtain	the	following	relation:

FIGURE	1.20	Actual	phase	current.

Assuming	Ia	=	Ib	=	Ic	=	I	for	simplicity,	the	following	characteristics	of	the	modal	current
are	observed:

1.	Mode	0	(earth-return	mode):	The	current	of	I/3	flowing	in	the	positive	direction	on	each
phase	and	the	return	current	I	have	to	flow	back	through	the	earth.	Because	the	return
current	flows	through	the	earth,	the	mode	0	component	is	called	the	earth-return
component.	A	circuit	corresponding	to	mode	0	can	be	drawn	as	shown	in	Figure	1.21a.
The	mode	0	component	involves	the	earth-return	path	with	an	impedance	that	is	far
greater	than	the	conductor	internal	impedance	as	explained	in	Section	1.5.1;	the	mode	0
propagation	constant	is	much	greater,	that	is,	the	mode	0	attenuation	is	much	greater;	and
the	mode	0	propagation	velocity	is	smaller	than	that	of	the	other	modes.

2.	Mode	1	(first	aerial	mode):	The	current	of	I/2	flows	through	phase	a	returning	through
phase	c,	with	no	current	on	phase	b.	Thus,	the	mode	1	circuit	is	composed	of	phases	a
and	c	as	shown	in	Figure	1.21b.	Because	the	mode	involves	no	earth-return	path	in	ideal
cases,	the	mode	is	called	the	“aerial	mode.”

3.	Mode	2	(second	aerial	mode):	The	current	of	I/6	flows	through	phases	a	and	c,	and	the
return	current	of	I/3	flows	back	through	phase	b	as	illustrated	in	Figure	1.21c.	The
propagation	characteristics	of	mode	2	are	identical	to	those	of	mode	1	in	the	case	of	a
completely	transposed	line.	If	the	line	is	untransposed,	the	characteristics	are	different.



FIGURE	1.21	Modal	current	distribution	for	Ia	=	Ib	=	Ic	=	I.	(a)	Mode	0,	(b)	mode	1,	and	(c)	mode	2.

The	 modal	 distribution	 can	 also	 be	 explained	 by	 applying	 the	 transformation	 matrix	 A
rather	than	its	inverse	A−1:

For	example,	the	mode	0	current	has	a	distribution	equal	to	the	actual	current	on	each	phase
from	Equation	1.181.
This	same	explanation	can	be	given	by	applying	the	transformation	matrices	in	Equations

1.176,	Equations	1.177	and	1.178	in	 the	case	of	a	completely	transposed	line.	When	a	 line	 is
untransposed,	 the	 transformation	 matrices	 are	 no	 longer	 useful	—	 except	 Equation	 1.179,
which	 can	 be	 used	 as	 an	 approximation	 of	 a	 transformation	 matrix	 of	 an	 untransposed
horizontal	 line.	 In	 the	case	of	an	untransposed	 line,	 the	 transformation	matrix	 is	 frequency-
dependent	as	explained	in	Section	1.5.1;	thus,	the	modal	voltage	and	current	distributions	vary
as	the	frequency	changes.	Also,	the	current	distribution	differs	from	the	voltage	distribution.

PROBLEMS
1.12	Obtain	a	condition	of	reciprocity	in	Equation	1.163.
1.13	Obtain	the	eigenvalues	and	eigenvectors	of	the	following	matrices:



1.14	Explain	why	the	modal	propagation	constants	and	the	modal	characteristic	impedances
for	modes	1	and	2	(aerial	modes)	on	a	transposed	three-phase	line	become	identical.

1.15	Discuss	how	to	obtain	the	inverse	matrix	of	A	when	the	transformation	matrix	A	is
singular.
Remember	that	a	numerical	calculation	on	a	computer	can	give	its	inverse	matrix.

	
	

1.5					Frequency-Dependent	Effect
It	 is	well	known	 that	current	 is	distributed	near	a	conductor ’s	 surface	when	 its	 frequency	 is
high.	Under	 such	 a	 condition,	 the	 resistance	 (impedance)	 of	 the	 conductor	 becomes	 higher
than	that	at	a	low	frequency	because	the	resistance	is	proportional	to	the	cross	section	of	the
conductor.	This	is	called	frequency	dependence	of	the	conductor	impedance.	As	a	result,	the
propagation	constant	and	the	characteristic	impedance	are	also	frequency	dependent.

1.5.1				Frequency	Dependence	of	Impedance
Figure	 1.22	 illustrates	 a	 500	 kV	 horizontal	 transmission	 line,	 and	 Table	 1.1	 shows	 the
frequency	dependence	of	its	impedance.	It	should	be	noted	that	Figure	1.22	is	only	for	one	of
the	towers	in	the	500	kV	line	with	length	about	83	km.	The	geometrical	configuration	of	one
tower	 differs	 from	 other	 ones	 because	 of	 the	 geographical	 features	 along	 the	 line.	 For
example,	separation	distance	y	varies	from	22	m	to	25	m,	although	only	25	m	is	specified	in
Figure	1.22.	It	is	observed	that	the	resistance	increases	nearly	proportional	to	 	where	f	 is
the	frequency.	On	the	contrary,	the	inductance	decreases	as	f	increases.	This	phenomenon	can
be	explained	analytically	based	on	the	approximate	impedance	formulas	in	Equations	1.7	1.15:

1.	For	a	low	frequency:	f	≪	fc	(fc:	critical	frequency,	which	will	be	defined	later):

2.	For	a	high	frequency:	f	≫	fc:



where	ωcµcS/Rdc	⋅	l2	=	1.

FIGURE	 1.22	 A	 500	 kV	 untransposed	 horizontal	 line.	 (a)	 Line	 configuration.	 (b)	 Phase	 wire	 (4	 bundles).	 (c)	 Bundle
conductor.	rg	=	6.18	mm,	ρg	=	5.36	×	10

−8	Ω	m,	ρp	=	3.78	×	10
−8	Ω	m,	ρe	=	200	Ω	m.

Thus,

For	ρ	≒	2	×	10−8	(Ω	m),	µ0	=	4π	×	10−7	(H/m):	ωc	=	0.2/πr2	(rad/s):

For	example,	with	r	=	0.5	cm:

Considering	 this	 equation,	 the	 frequency	 characteristics	 of	R	 and	L	 may	 be	 drawn	 as	 in
Figure	1.23.
Similar	 to	the	conductor	 internal	 impedance	explained	earlier,	 the	earth-return	impedance

in	Equation	1.15	 is	 frequency	dependent	as	 the	penetration	depth	he	 is	 frequency	 dependent.
Equation	1.15	is	approximated	considering	ln(1	+	x)	for	a	small	x	by



FIGURE	1.23	Frequency	dependence	of	Z	=	R	+	jωL.

1.5.2				Frequency-Dependent	Parameters

1.5.2.1				Frequency	Dependence

Propagation	 constant	 Γ	 and	 characteristic	 impedance	 Z0	 of	 a	 conductor	 are	 frequency
dependent	as	they	are	functions	of	the	impedance	of	the	conductor,	as	explained	in	Section	1.2.
It	should	be	noted	that	α	and	β	in	Section	1.3.4.1	(see	Figure	1.10)	are	not	frequency	dependent
(in	the	sense	discussed	in	this	section).	The	frequency	dependence	of	the	attenuation	constant
α(ω)	and	phase	constant	β(ω)	in	Section	1.3.4.1	comes	from	the	definition	of	impedance	Z	and
admittance	Y	of	a	conductor:

Z	=	R	+	jωL,	Y	=	jωC

In	this	section,	we	discuss	frequency	dependence,	which	comes	from	R	=	R(ω)	and	L	=	L(ω)
as	in	Equation	1.183.
Figure	1.24	shows	an	example	of	 the	frequency	dependence	of	attenuation	constant	α	and

propagation	velocity	c	for	the	earth-return	mode	and	the	self-characteristic	impedance	Z0	for
a	phase	of	a	500	kV	overhead	transmission	line.
It	is	observed	that	α	increases	exponentially	as	frequency	increases.	Since	a	dominant	factor

of	 determining	 the	 attenuation	 constant	 is	 the	 conductor	 resistance,	 α	 is	 somehow
proportional	to	 	as	explained	in	Section	1.5.1.	The	propagation	velocity	converges	to	the
light	 velocity	 c0	 as	 frequency	 increases.	 On	 the	 contrary,	 the	 characteristic	 impedance
(absolute	 value	 |Z0|)	 decreases	 as	 frequency	 increases.	 This	 is	 readily	 explained	 from
Equation	1.183	as



FIGURE	1.24	Frequency	dependence	of	α,	c,	and	Z0	of	a	500	kV	line.	(a)	α	(dB/km).	(b)	c	(m/µs).	(c)	|Z0|1	(Ω).

In	 a	 multiconductor	 system,	 the	 transformation	 matrix	 A	 is	 also	 frequency	 dependent.
Frequency	 dependence	 is	 significant	 in	 the	 cases	 of	 an	 untransposed	 vertical	 overhead	 line
and	an	underground	cable.	In	the	former,	more	than	50%	difference	is	observed	between	Aij	(i,
jth	element	of	matrix	A)	at	50	Hz	and	1	MHz.	In	an	untransposed	horizontal	overhead	line,	the
frequency	dependence	is	less	noticeable.
Frequency	 dependence	 is	 very	 significant	 when	 an	 accurate	 transient	 simulation	 on	 a

distributed-parameter	 line,	 such	 as	 an	 overhead	 line	 and	 an	 underground	 cable,	 is	 to	 be
carried	 out	 from	 the	 viewpoint	 of	 insulation	 design	 and	 coordination	 in	 a	 power	 system.
However,	 a	 simulation	 can	 be	 carried	 out	 neglecting	 frequency	 dependence	 if	 a	 safer-side
result	 is	 required	 because	 simulation	 with	 frequency	 dependence,	 in	 general,	 results	 in	 a
lower	overvoltage	than	that	neglecting	frequency	dependence.

1.5.2.2				Propagation	Constant
The	 frequency-dependent	 effect	 is	 most	 noticeable	 in	 the	 propagation	 constant.	 Table	 1.2
shows	the	frequency	dependences	of	modal	attenuations	and	velocities	for	untransposed	and
transposed	 lines.	 Figure	 1.25	 illustrates	 a	 vertical	 twin-circuit	 line.	 Figure	 1.26	 shows	 the
frequency	 dependence	 of	 the	 modal	 propagation	 constant	 for	 the	 vertical	 twin-circuit	 line
illustrated	in	Figure	1.25.
Large	 frequency	 dependence	 of	 the	 attenuation	 is	 clear	 from	 the	 table	 and	 figures.	 The

propagation	velocity	of	mode	0	 shows	significant	 frequency	dependence,	while	 the	mode	1



velocity	 is	not	 that	 frequency	dependent.	When	a	 line	 is	 transposed,	 all	 of	 the	aerial	modes
become	identical.	Thus,	the	number	of	different	characteristic	modes	is	reduced	to	two	in	the
three-phase	line	case	and	to	three	in	the	twin-circuit	line	case.	The	different	velocities	of	the
aerial	modes	in	an	untransposed	line	cause	a	voltage	spike	on	a	transient	voltage	waveform,
which	is	characteristic	of	an	untransposed	line.

1.5.2.3				Characteristic	Impedance
The	definition	of	the	characteristic	impedance	of	a	single-phase	line	is

TABLE	1.2	Frequency	Responses	of	Modal	Propagation	Constant	for	the	Horizontal	Line	in	Figure	1.25



FIGURE	1.25	An	untransposed	vertical	twin-circuit	line.	(a)	Line	configuration.	(b)	Phase	wire.

FIGURE	1.26	 Frequency	 responses	 of	modal	 propagation	 constants	 for	 the	 untransposed	vertical	 twin-circuit	 line	 in	Figure
1.25.	(a)	Attenuation.	(b)	Velocity.



where

For	R,	ωL	≥	0,	0	≤	φ	≤	90°.	Thus,

This	fact	in	Equation	1.189	should	be	noted.

TABLE	1.3	Frequency	Responses	of	Characteristic	Impedances	for	the	Horizontal	Line	in	Figure	1.22



Table	1.3	shows	the	actual	characteristic	impedance	of	the	horizontal	line	in	Figure	1.27	for
the	 vertical	 twin-circuit	 line	 illustrated	 in	 Figure	 1.25.	 It	 is	 clear	 that	 the	 characteristic
impedance	 is	 significantly	 frequency	 dependent.	 The	 variation	 reaches	 about	 10%	 for	 self-
impedance	and	about	50%	for	mutual	impedance	in	the	frequency	range	of	100	Hz	to	1	MHz.
The	 characteristic	 impedance	 decreases	 as	 frequency	 increases	 and	 tends	 to	 approach	 the
value	as	in	the	case	of	the	perfectly	conducting	earth	and	conductor.
In	the	case	of	a	vertical	line,	it	should	be	noted	that	the	relation	of	magnitudes	changes	as

frequency	changes.	For	example,	self-impedance	is	present	in	the	following	relations:

FIGURE	1.27	Frequency	responses	of	characteristic	impedance	on	an	untransposed	vertical	twin-circuit	line.

This	 phenomenon	 is	 due	 to	 the	 variation	 of	 return	 current	 distribution	 in	 ground	 wires
(GW)	and	earth.	In	a	very	high-frequency	region,	if	all	of	the	currents	are	returning	through



the	earth	 surface	and	 the	earth	 surface	potential	 is	becoming	zero,	 then	 the	 image	 theory	 is
applicable.	Thus,	the	magnitude	of	self-impedance	becomes	proportional	to	the	height	of	the
conductor,	that	is,	Zaa	>	Zbb	>	Zcc.
The	 characteristic	 impedance	 of	 a	 transposed	 line	 becomes	 a	 mean	 value	 of	 that	 of	 an

untransposed	line.

1.5.2.4				Transformation	Matrix
The	 importance	of	 the	 frequency-dependent	 transformation	matrix	was	not	well	 recognized
until	recently,	although	it	has	been	suggested	for	a	long	time	[20,21].

1.5.2.4.1				Untransposed	Horizontal	Three-Phase	Line
Table	 1.4	 shows	 the	 frequency-dependent	 transformation	 matrix	 of	 the	 untransposed

horizontal	line	in	Figure	1.22,	neglecting	GWs.	The	transformation	matrix	has	the	following
form:

TABLE	1.4	Frequency	Responses	of	a	Transformation	Matrix	for	the	Horizontal	Line	Shown	in	Figure	1.22

It	 is	 observed	 that	 the	 frequency	 dependence	 of	A2	 in	Table	1.4	 is	 less	 than	 10%	 for	 the
range	 of	 frequencies	 from	 100	 Hz	 to	 1	 MHz.	 The	 change	 is	 small	 compared	 with	 the
parameters	 explained	 earlier;,	 thus,	 the	 frequency-dependent	 effect	 of	 the	 transformation
matrix	 in	 the	case	of	an	untransposed	horizontal	 line	can	be	neglected.	Then,	 the	 following
approximation	 is	 convenient	 because	 it	 agrees	 with	 the	 traveling-wave	 transformation	 of
Equation	1.179,	explained	in	Sections	1.4.4.1	and	1.4.4.2:

In	 this	 case,	 the	 modal	 distribution	 is	 the	 same	 as	 that	 explained	 in	 Section	 1.4.4.1.	 The
current	transformation	matrix	is	given	from	Equation	1.179	by



It	is	observed	from	these	equations	that	the	modal	current	distribution	is	basically	the	same
as	 the	 voltage	 distribution.	 Therefore,	 the	 modal	 circuit	 given	 in	 Figure	 1.21	 is	 also
approximately	applicable	to	the	untransposed	horizontal	line.
Table	1.5	shows	 the	 transformation	matrix	of	 the	untransposed	horizontal	 line	with	GWs.

No	significant	difference	from	Table	1.4	with	the	GWs	is	observed.

TABLE	1.5	Frequency	Responses	of	a	Transformation	Matrix	for	a	Horizontal	Line	with	No	GW

1.5.2.4.2				Untransposed	Vertical	Twin-Circuit	Line
The	 current	 transformation	 matrix	B	 is	 given	 in	 the	 following	 form	 in	 the	 case	 of	 the

untransposed	vertical	twin-circuit	line	shown	in	Figure	1.25:

where
(i)	is	the	modal	current
(I)	is	the	actual	current

and

It	 is	clear	 from	 this	equation	 that	modal	currents	 (II),	group	 I,	are	currents	when	 there	 is
only	one	circuit,	which	is	called	the	“internal	mode.”	The	currents	(III)	are	generated	due	to
the	existence	of	the	second	circuit,	which	is	called	the	“intercircuit	mode.”	The	internal	mode



has	 a	 plane	 of	 symmetry	 at	 the	 earth’s	 surface,	 while	 the	 intercircuit	mode	 has	 a	 plane	 of
symmetry	at	the	vertical	center	of	the	two	circuits.	Therefore,	the	polarities	of	currents	on	a
phase	of	circuit	I	and	the	corresponding	phase	of	circuit	II	are	the	same	in	the	internal	mode,
and	 the	polarities	are	opposite	even	 though	 the	amounts	of	 the	currents	are	 the	 same	 in	 the
intercircuit	mode,	as	presented	 in	Table	1.6.	 In	 this	way,	 the	 transformation	matrix	given	 in
Equation	1.193	is	obtained.
In	 Table	 1.6,	 the	 first	 kind	 of	 distribution	 corresponds	 to	 the	 so-called	 “zero-sequence

mode”	and	is	mode	0	in	the	same	polarity	case	and	mode	3	in	the	opposite	polarity	case.	If	the
line	is	single	circuit,	 there	is	no	opposite	polarity	mode,	and	the	first	kind	of	distribution	is
the	 same	 as	 mode	 0	 distribution,	 which	 was	 explained	 in	 Section	 1.4.4.1.	 Mode	 0	 is	 often
called	the	“first	zero-sequence	mode”	(earth-return	mode),	and	mode	3	is	called	the	“second
zero-sequence	mode”	(intercircuit	zero-sequence	mode).

TABLE	1.6	Frequency	Responses	of	a	Transformation	Matrix	for	a	Horizontal	Line	with	No	GW

The	second,	third,	and	fourth	distributions	correspond	to	an	aerial	mode.	The	second	is	the
positive-sequence	mode	and	the	third	is	the	negative-sequence	mode.	However,	the	pattern	of
current	distribution	varies	 as	 frequency	changes;	 thus,	 the	 fourth	distribution	can	become	a
negative-sequence	mode	at	a	certain	frequency.
In	the	single-circuit	case,	no	opposite	polarity	mode	exists,	and	also	the	second	and	fourth

distributions	are	 the	 same.	Thus,	 the	number	of	current	distribution	patterns,	 that	 is,	natural
modes,	is	reduced	to	three.
Table	 1.7	 presents	 the	 frequency	 responses	 of	 the	 submatrices	 BI	 and	 BII	 of	 the

transformation	matrix	given	 in	Equation	1.193	only	 for	 the	 real	part	because	 the	 imaginary
part	is	much	smaller.
Rewriting	Table	1.7	 in	 the	 form	of	Equation	1.193	 for	 f	 =	 50	Hz,	 the	 following	 result	 is

obtained:



From	this,	it	is	clear	that	each	mode	has	the	following	closed	circuit:

Mode	0:	all	the	phases	to	earth
Mode	3:	first	circuit	to	second	circuit
Mode	1:	phases	a	and	b	to	phase	c
Mode	2:	phases	a	and	c	to	phase	b
Mode	4:	phases	a,	b,	and	c′	to	phases	a′,	b′,	and	c
Mode	5:	phases	a,	c,	and	b′	to	phases	a′,	c′,	and	b

TABLE	1.7	Frequency	Responses	of	Current	Transformation	Matrix	B−1	(Real	Part)



It	is	observed	from	Table	1.7	that	the	frequency	dependence	of	the	transformation	matrix	in
the	 untransposed	 vertical	 twin-circuit	 case	 is	 significantly	 large.	 The	 largest	 frequency
dependence	 is	observed	 in	BII(2,2)	=	B(5,2)	=	−B(5,5),	 and	 the	variation	 reaches	about	50%
with	reference	to	the	smallest	value,	that	is,	the	value	at	f	=	1	kHz.	Also,	it	should	be	noted	that
the	value	of	the	intercircuit	mode	(modes	3–5),	that	is,	the	value	of	the	submatrix	BII,	exhibits
an	oscillating	nature.	These	may	make	transient	calculations	difficult.

1.5.2.5				Line	Parameters	in	the	Extreme	Case
It	has	already	been	proved	that	line	parameters	at	an	infinite	frequency	are	the	same	as	those
in	 the	 perfectly	 conducting	 earth	 and	 conductor	 case.	 It	 is	 quite	 useful	 to	 know	 the	 line
parameters	in	such	extreme	cases	because	the	parameters	are	a	good	approximation	to	the	line
parameters	at	a	finite	frequency	with	imperfectly	conducting	earth	and	conductor.
From	what	we	have	studied	in	Sections	1.1,	1.2,	1.3	and	1.4,	1.5.1,	and	1.5.2.1,	1.5.2.2,	1.5.2.3

and	1.5.2.4,	the	following	parameters	have	been	known	to	exist	at	the	infinite	frequency	or	in
the	perfectly	conducting	media	case.



1.5.2.5.1				Line	Impedance	and	Admittance

where

and

From	 this	 impedance	and	admittance,	we	can	derive	 the	 following	 line	parameters	 in	 the
actual	phase	domain.

1.5.2.5.2				Actual	Propagation	Constant

Therefore,

Thus,	the	propagation	velocity	is

From	 these	 results,	 it	 is	 clear	 that	 the	 product	 Z	 ·	 Y	 or	 the	 actual	 propagation	 constant
matrix	is	diagonal	and	purely	imaginary	at	infinite	frequency	or	in	the	perfect	conductor	case.
This	results	in	the	attenuation	being	zero	and	the	propagation	velocity	being	a	light	velocity	in
free	space	in	any	phase.	Also,	it	is	noteworthy	that	modal	theory	is	not	necessary	as	long	as
the	propagation	constant	alone	is	concerned	since	it	is	already	diagonal.



1.5.2.5.3				Actual	Characteristic	Impedance
Equation	1.159	gives

or

It	is	clear	that	the	actual	characteristic	impedance	is	constant	independent	of	frequency.

1.5.2.5.4				Modal	Parameters
Line	 impedance,	 admittance,	 and	 characteristic	 impedance	 matrices	 involve	 nonzero,	 off-
diagonal	elements	or	mutual	coupling,	although	the	propagation	constant	matrix	is	diagonal.
If	one	needs	to	diagonalize	these	matrices,	modal	transformation	is	required.
In	the	case	of	a	completely	transposed	three-phase	line,	any	of	the	transformation	matrices

explained	in	Section	1.4.4.1	can	be	used.	The	current	transformation	matrix	is	the	same	as	the
voltage	transformation	matrix.	Let	us	apply	the	traveling-wave	transformation:

or

z0	=	Zs	+	2Zm′z1	=	z2	=	Zs	−	Zm

In	the	same	manner:

This	same	result	can	be	obtained	by	applying	the	other	transformation	in	Section	1.4.4.1.



1.5.2.5.5				Time-Domain	Parameters
The	parameters	explained	in	Sections	1.1	through	1.5.2.5.4	are	in	the	frequency	domain.	The
parameters	 in	 the	 time	domain	are	 the	same	as	 those	 in	 the	frequency	domain	in	 the	perfect
conductor	case	because	they	are	frequency	independent	and,	thus,	time	independent.	In	the	case
of	the	imperfectly	conducting	earth	and	conductor,	only	the	parameters	at	infinite	frequency
are	known	analytically.	These	parameters	should	correspond	to	the	parameters	at	t	=	0	in	the
time	domain	from	the	initial	value	theorem	of	the	Laplace	transform,	that	is

Thus,	we	can	obtain	the	time-domain	parameters	at	 t	=	0	or	 in	 the	perfect	conductor	case
using	the	same	methods	as	in	Equations	1.198	and	1.199.

1.5.3				Time	Response

1.5.3.1				Time-Dependent	Responses

The	time	response	of	the	frequency	dependence	explained	in	Section	1.5.2	 is	calculated	by	a
numerical	Fourier	or	Laplace	inverse	transform	in	the	following	form	[1,20]:

1.	Propagation	constant:

where
s	=	α	+	jω	is	the	Laplace	operator
L−1	is	the	Laplace	inverse	transform

2.	Characteristic	impedance:

3.	Transformation	matrix:

1.5.3.2				Propagation	Constant:	Step	Response
The	frequency	dependence	of	the	propagation	constant	appears	as	a	wave	deformation	in	the
time	domain.	This	is	measured	as	a	voltage	waveform	at	distance	x	when	a	step	(or	impulse)
function	voltage	is	applied	to	the	sending	end	of	a	semi-infinite	line.	The	voltage	waveform,



which	 is	 distorted	 from	 the	 original	waveform,	 is	 called	 “step	 (impulse)	 response	 of	wave
deformation”	and	is	defined	in	Equation	1.201.
Figures	1.28	 and	 1.29	 show	modal	 step	 responses	 on	 the	 lines	 in	 Figures	 1.22	 and	 1.25,

respectively.	It	is	clear	from	the	figures	that	the	wave	front	is	distorted	especially	in	mode	0,
which	has	the	largest	attenuation	and	lowest	velocity	in	the	frequency	domain.	As	time	passes,
the	distorted	waveform	tends	to	reach	1	pu,	the	applied	voltage.	Figure	1.28	shows	that	wave
deformation	is	greater	when	line	length	is	greater.	This	is	reasonable	since	an	increase	in	line
length	 results	 in	 greater	 distortion.	 Also,	 greater	 earth	 resistivity	 causes	 greater	 wave
deformation	because	line	impedance	becomes	greater.	A	GW	reduces	the	wave	deformation
of	mode	0	significantly.	This	is	due	to	the	fact	that	the	earth-return	current	is	reduced	by	the
GW;	thus,	the	line	impedance	is	reduced.
The	reason	for	the	much	smaller	wave	deformation	in	the	aerial	modes	than	in	the	earth-

return	modes	 is	 that	 the	 conductor	 internal	 impedance	 that	 contributes	mainly	 to	 the	 aerial
modes	is	far	smaller	than	the	earth-return	impedance	that	mainly	contributes	to	mode	0.
The	 line	 transportation	 does	 not	 significantly	 affect	 mode	 0	 wave	 deformation.	 It	 does,

however,	cause	a	noticeable	effect	on	the	aerial	modes,	as	can	be	observed	from	Figure	1.29.
The	difference	between	transposed	and	untransposed	lines	is	already	clear	from	the	frequency
responses	 given	 in	 Table	 1.2	 and	 Figure	 1.25.	 The	 significant	 difference	 in	 mode	 1
propagation	velocity	in	Figure	1.25b	results	 in	a	difference	 in	mode	1	wave	deformation	 in
Figure	1.29.

1.5.3.3				Characteristic	Impedance
It	 should	 be	 noted	 that	 the	 definition	 of	 Equation	 1.202	 proposed	 by	 the	 author	 in	 1973	 is
effective	only	for	a	semi-infinite	line	or	for	a	time	period	of	2τ,	where	τ	is	the	traveling	time
of	 a	 line	 [20,21].	 Also,	 the	 definition	 requires	 further	 study	 in	 conjunction	 with	 the	 wave
equation	in	the	time	domain	because	it	has	not	been	proved	that	this	definition	expresses	the
physical	behavior	of	the	time-dependent	characteristic	impedance.



FIGURE	1.28	Modal	step	responses	of	wave	deformation	for	a	horizontal	line.



FIGURE	1.29	Modal	step	responses	of	wave	deformation	for	a	vertical	line.

Table	 1.8	 shows	 the	 time	 response	 of	 the	 frequency-dependent	 characteristic	 impedance
given	in	Table	1.3.	The	time-dependent	characteristic	impedance	increases	as	time	increases.
This	is	quite	reasonable	because	of	the	inverse	relation	of	time	and	frequency.
Figure	 1.30	 shows	 the	 time	 response	 of	 the	 characteristic	 impedance	 of	 a	 vertical	 twin-

circuit	 line	 illustrated	 in	Figure	1.25.	The	 relation	of	magnitudes	corresponds	 to	 that	 in	 the
frequency	 domain	 explained	 for	 Figure	 1.27	 considering	 the	 inverse	 relation	 of	 time	 and
frequency.	It	is	observed	from	comparing	Figure	1.25	with	the	frequency	response	of	Figure
1.27	 that	 the	 time	dependence	 is	greater	 than	 the	 frequency	dependence	of	 the	characteristic
impedance.	For	example,	the	variation	of	Zcc	is	8.5%,	Zac	26.8%,	and	Z′ac	31.3%	for	2	µs	≤	t	≤
500	µs,	while	the	variations	of	those	in	the	frequency	domain	are	7.9%,	23.4%,	and	27.8%	for
500	kHz	≥	f	≥	2	kHz.	Also,	it	should	be	noted	that	the	time-dependent	impedance	is	greater	by
about	5–15	Ω	than	the	frequency-dependent	one	in	general.	The	calculated	result	agrees	with
the	measured	result.



FIGURE	1.30	Time	response	of	the	characteristic	impedance	corresponding	to	Figure	1.27.

TABLE	1.8	Time	Responses	of	the	Characteristic	Impedances	in	Table	1.3



1.5.3.4				Transformation	Matrix
The	 frequency	 dependence	 of	 the	 transformation	matrix	 appears	 as	 time	 dependence	 in	 the
time	domain.	The	time-dependent	transformation	matrix	is	defined	in	Equation	1.203.
Table	1.9	shows	the	time	response	of	the	transformation	matrix	given	in	Equation	1.190	and

Table	1.4	for	the	untransposed	horizontal	line	in	Figure	1.22	without	GWs.	A	comparison	of
Table	 1.9	 and	 Table	 1.4	 shows	 that	 the	 time	 dependence	 is	 smaller	 than	 the	 frequency
dependence	as	far	as	the	results	in	the	table	are	concerned.	Also,	it	is	clear	that	the	values	of
A1	and	A2	in	Table	1.9	are	not	very	different	from	the	real	values	of	A1	and	A2	in	Table	1.4.
Time	dependence	is	inversely	related	to	frequency	dependence,	that	is,	A1	and	A2	decrease	as
time	increases,	while	they	increase	as	frequency	increases.
Figure	1.31	shows	the	frequency	and	time	dependence	of	the	voltage	transformation	matrix

of	an	untransposed	vertical	 single-circuit	 line.	 It	 is	 clear	 from	 the	 figure	 that	 the	 frequency
dependence	is	greater	than	the	time	dependence	of	the	transformation	matrix.	The	maximum
deviation	from	the	average	value	is	about	10%	for	the	time	dependence	and	about	30%	for	the
frequency	 dependence.	 Also,	 the	 frequency	 and	 time	 dependencies	 are	much	 greater	 in	 the
vertical	line	case	than	in	the	horizontal	line	case.

TABLE	1.9	Time	Response	of	the	Transformation	Matrix	Given	in	Table	1.4

Time	(µs) A1 A2
10 1.0290 −2.1850
50 1.0108 −2.2151
100 1.0047 −2.2248
150 1.0018 −2.2296
200 0.9998 −2.2326



FIGURE	1.31	Time/frequency	dependence	of	the	transformation	matrix	of	an	untransposed	vertical	single-circuit	line.

TABLE	1.10	Time	Response	of	the	Transformation	Matrix	Given	in	Table	1.7



Table	1.10	shows	 the	 time	response	of	 the	 transformation	matrix	given	 in	Equation	1.203
and	Table	1.7	for	the	untransposed	vertical	twin-circuit	line	in	Figure	1.25.
The	matrix	deviation	of	each	vector	for	10	µs	<	t	<	500	µs	from	the	value	at	t	=	10	µs	is

Mode	0:	11%,	mode	1:	21%,	mode	2:	30%
Mode	3:	11%,	mode	4:	5.2%,	mode	5:	35%

Assuming	 frequency	 is	 given	 as	 the	 inverse	 of	 time,	 this	 time	 range	 corresponds	 to	 the
frequency	 range	 of	 100	 kHz	>	 f	 >	 2	 kHz.	 In	 this	 frequency	 range,	 the	maximum	 deviation
from	the	value	at	f	=	100	kHz	is

Mode	0:	10%,	mode	1:	21%,	mode	2:	18%
Mode	3:	13%,	mode	4:	33%,	mode	5:	40%

From	these	results,	it	can	be	said	that	time	dependence	of	the	internal	mode	is	greater	and
the	 intercircuit	 mode	 is	 smaller	 than	 the	 frequency	 dependence	 for	 an	 untransposed	 twin-
circuit	 line.	In	general,	 the	frequency	dependence	is	greater	 than	the	 time	dependence	of	 the
transformation	matrix.

PROBLEMS



1.16	Explain	why	it	is	not	easy	to	obtain	a	transformation	matrix	in	the	cases	of	an	infinite
frequency	and	a	perfectly	conducting	system.

1.17	Discuss	the	differences	in	modal	components	between	three-phase	transposed	and
untransposed	horizontal	lines.

	
	

1.6					Traveling	Wave
1.6.1				Reflection	and	Refraction	Coefficients
When	an	original	traveling	wave	e1f	(equivalent	to	a	voltage	source)	comes	from	the	left	 to
node	P	 along	 line	1	 in	Figure	1.32,	 the	wave	partially	 refracts	 to	 line	2,	 and	 the	 remaining
reflects	to	line	1,	similar	to	light	reflecting	off	a	water	surface	[1,22].

FIGURE	1.32	A	conductor	system	composed	of	lines	1	and	2.

Let	 us	 define	 the	 refracted	 wave	 as	 e2f,	 the	 reflected	 wave	 as	 e1b,	 and	 the	 characteristic
(surge)	 impedance	 of	 lines	 1	 and	 2	 as	Z1	 and	Z2,	 respectively.	 Then,	 current	 I	 on	 line	 1	 is
given	from	Equation	1.56	as

On	line	2,	which	has	no	backward	wave:

Voltage	V	at	node	P	on	line	1	is	given	from	Equation	1.91	by



On	line	2:

Substituting	Equations	1.207	and	1.206	into	Equation	1.205	gives

Substituting	this	equation	into	Equation	1.204,	e1b	is	obtained	as

where

Similarly,	e2f	is	given	as

where

It	should	be	clear	from	Equations	1.208	and	1.210	that	the	reflected	and	refracted	waves	are
determined	 from	 the	 original	 wave	 using	 reflection	 and	 refraction	 coefficients,	 which
represent	the	boundary	conditions	at	node	P	between	lines	1	and	2	with	surge	impedances	Z1
and	Z2.	The	coefficients	θ	and	λ	give	a	ratio	of	the	original	wave	(voltage)	and	the	reflected
and	refracted	voltages.	For	example:

1.	Line	1	open-circuited	(Z2	=	∞):	θ	=	1,	λ	=	2,	I	=	0,	V	=	2e1f,

2.	Line	1	short-circuited	(Z2	=	0):	θ	=	−1,	λ	=	0,	I	=	2e1f,	V	=	0,	and

3.	Line	1	matched	(Z2	=	Z1):	θ	=	0,	λ	=	1,	I	=	e1f/Z1,	V	=	e1f.

These	 results	 show	 that	 the	 reflected	 voltage	 e1b	 at	 node	P	 is	 the	 same	 as	 the	 incoming
(original)	voltage	e1f,	and	 the	current	 I	becomes	zero	when	 line	1	 is	open-circuited.	On	 the
contrary,	under	the	short-circuited	condition,	e1b	=	−e1f,	and	the	current	becomes	maximum.
Under	the	matching	termination	of	line	1,	there	is	no	reflected	voltage	at	node	P.



1.6.2				Thevenin’s	Theorem

1.6.2.1				Equivalent	Circuit	of	a	Semi-Infinite	Line

In	Figure	1.33a,	the	following	relation	is	obtained	from	Equations	1.205	and	1.207:

FIGURE	1.33	(a)	A	semi-infinite	line.	(b)	An	equivalent	circuit.

This	equation	is	the	same	as	Ohm’s	law	for	a	lumped-parameter	circuit	with	resistance	R.
Thus,	the	semi-infinite	line	is	equivalent	to	that	in	Figure	1.33b.

1.6.2.2				Voltage	and	Current	Sources	at	the	Sending	End
A	voltage	source	at	the	sending	end	of	the	line	illustrated	in	Figure	1.34a	is	equivalent	to	that
in	Figure	1.34b	because	the	traveling	wave	on	the	right	in	(b)	is	the	same	as	that	in	(a).	Then,
(b)	 is	 rewritten	 based	 on	 Figure	 1.34c,	 that	 is,	 the	 voltage	 source	 at	 the	 sending	 end	 is
represented	by	a	voltage	source	at	the	center	of	an	infinite	line.
Similarly,	the	current	source	in	Figure	1.35a	is	represented	by	Figure	1.35b.	Furthermore,

by	applying	 the	result	 in	Section	1.6.2.1,	 the	voltage	and	current	sources	 in	Figure	1.34	 and
1.35	are	represented	by	Figure	1.36.



FIGURE	1.34	Equivalent	circuit	of	a	voltage	source	at	the	sending	end.	(a)	A	voltage	source.	(b)	Equivalent	circuit	of	(a).	(c)
Equivalent	circuit	of	(b).

FIGURE	1.35	Equivalent	circuit	(b)	of	a	current	source	(R	=	Z0)	(a)	at	the	sending	end.

FIGURE	1.36	Lumped-parameter	equivalent	of	a	source	at	the	sending	end.	(a)	Voltage	source.	(b)	Current	source	(R	=	Z0).

1.6.2.3				Boundary	Condition	at	the	Receiving	End

1.	Open-circuited	line:	An	open-circuited	line	Z0	with	an	incoming	wave	e(x	−	ct)	from	the
left	in	Figure	1.37a	is	equivalent	to	an	infinite	line	with	the	incoming	wave	from	the	left
and	another	incoming	wave	e(x	+	ct)	from	the	right	with	the	same	amplitude	and	the
same	polarity	as	in	Figure	1.37b.



2.	Short-circuited	line:	A	short-circuited	line	with	an	incoming	wave	e(x	−	ct)	as	in	Figure
1.38a	is	equivalent	to	an	infinite	line	with	e(x	−	ct)	and	−e(x	+	ct).

3.	Resistance-terminated	line:	A	resistance	is	equivalent	to	a	semi-infinite	line	whose	surge
impedance	is	the	same	as	the	resistance	as	explained	in	Section	1.6.2.1	and	in	Figure	1.33.
If	the	surge	impedance	of	the	semi-infinite	line	is	taken	to	be	the	same	as	that	of	the	line
to	which	the	resistance	is	connected,	then	a	backward	traveling	wave	eb(x	+	ct)	=	eb	is	to
be	placed	on	the	semi-infinite	line:

FIGURE	1.37	(a)	An	open-circuited	line.	(b)	An	equivalent	circuit.

FIGURE	1.38	(a)	An	open-circuited	line.	(b)	An	equivalent	circuit.

FIGURE	1.39	A	capacitance-terminated	line.

4.	Capacitance-terminated	line:	When	a	semi-infinite	line	Z0	is	terminated	by	a	capacitance
C	as	shown	in	Figure	1.39,	node	voltage	V	and	current	I	are	calculated	in	the	following



manner:

Substituting	er	into	I	and	multiplying	with	Z0	gives

Solving	this	differential	equation,	the	following	is	obtained:

Considering	the	initial	condition,	V	=	0	for	t	=	0,	then

In	 a	 similar	 manner,	 an	 inductance-terminated	 line	 either	 at	 the	 receiving	 end	 or	 at	 the
sending	end	can	be	solved.

1.6.2.4				Thevenin’s	Theorem
Thevenin’s	Theorem	is	very	useful	when	only	voltage	and	current	at	a	transition	(boundary)
point	 between	distributed-parameter	 lines	 are	 to	 be	 obtained.	 In	Figure	1.40,	 the	 impedance
seen	from	nodes	1	and	1′	to	the	right	is	Z0,	and	the	voltage	across	the	nodes	is	V0.

FIGURE	1.40	Thevenin’s	Theorem.

When	an	impedance	Z	is	connected	to	the	nodes,	a	current	I	flowing	into	the	impedance	is
given	by	Thevenin’s	Theorem	as:



When	an	original	traveling	wave	e	comes	from	the	left	along	a	line	Z0	as	in	Figure	1.41a,
voltage	V	and	current	I	at	node	P	are	calculated	in	an	equivalent	circuit	(Figure	1.41b)	where	a
voltage	source	V0(t)	is	given	as	2e(t)	by	Thevenin’s	Theorem.
There	 is	 no	 straightforward	 method	 to	 obtain	 a	 reflected	 traveling	 wave,	 er,	 when

Thevenin’s	 Theorem	 is	 applied	 to	 calculate	 node	 voltage	 and	 current.	 In	 such	 a	 case,	 the
following	relation	is	very	useful	to	obtain	the	reflected	wave	er	from	the	node	voltage	V	and
the	original	incoming	wave	e:

By	applying	this	relation,	reflected	waves	in	Figure	1.42	are	easily	evaluated:

e1b	=	V	−	e1f,	e2b	=	V	−	e2f,	e3b	=	V	−	e3f

FIGURE	1.41	A	resistance-terminated	line	with	a	voltage	traveling	wave.	(a)	Original	circuit.	(b)	Equivalent	circuit.

FIGURE	1.42	Reflected	waves	at	a	node	with	three	lines.

1.6.3				Multiple	Reflection
In	a	distributed-parameter	circuit	composed	of	three	distributed	lines	as	in	Figure	1.43,	node
voltages	V1	and	V2	and	currents	I1	and	I2	are	evaluated	analytically	in	the	following	manner.



The	refraction	coefficients	λ	at	nodes	1	and	2	are	given	by

1.	0	≤	t	<	τ
For	simplicity,	assume	that	a	forward	traveling	wave	e1f	on	line	1	arrives	at	node	1	at	t	=
0	Then,	node	voltage	V1	is	calculated	by

V1(t)	=	λ12e1f(t)

FIGURE	1.43	A	three-line	system.

The	reflected	wave	er	on	line	1	is	evaluated	by	Equation	1.216	as

er(t)	=	V1(t)	−	e1f	(t)

The	same	is	applied	to	the	traveling	waves	on	line	2:

e12(t)	=	V1(t)	−	e2b(t)

For	the	moment,	only	an	incoming	wave	from	line	1	is	assumed,	and	thus:

e2b(t)	=	0,	e12(t)	=	V1(t)

Current	I1	is	evaluated	by:



The	refracted	wave	e12	travels	to	node	2	on	line	2.

2.	τ	≤	t	<	2τ
At	t	=	τ,	e12	arrives	at	node	2	and	becomes	e2f	(incoming	wave	to	node	2):

e2f	(t)	=	e12(t	−	τ)

e2f	produces	a	voltage	V2	at	node	2,	a	reflected	wave	e21	on	line	2,	and	a	refracted	wave
e23,	 which	 never	 returns	 to	 node	 2	 because	 line	 3	 is	 semi-infinite.	 Therefore,	 we	 can
ignore	e23	for	now,	giving

The	reflected	wave	e21	travels	to	node	1.

3.	2τ	≤	t	<	3τ

Repeating	this	procedure,	node	voltages	V1	and	V2	and	currents	I1	and	I2	are	calculated.
The	procedure	is	formulated	in	general	as	follows	[1,20]:
a.	Node	equations	for	node	voltages:

b.	Node	equations	for	traveling	waves:

e12(t)	=	V1(t)	−	e2b(t),	e21(t)	=	V2(t)	−	e2f	(t)

c.	Continuity	equations	for	traveling	waves:

e2f(t)	=	e12(t	−	τ),	e2b	=	e21(t	−	τ)

d.	Current	equations:



This	 procedure	 to	 calculate	 a	 traveling-wave	 phenomenon	 is	 called	 the	 “refraction
coefficient	method,”	which	can	be	used	 to	easily	deal	with	multiphase	 lines,	 and	 it	 requires
only	 a	 precalculation	 of	 the	 refraction	 coefficient	 [20].	 The	 “Lattice	 diagram	 method”
[22,23–24]	 is	 a	 well-known	 method,	 but	 it	 requires	 both	 the	 refraction	 and	 reflection
coefficients;	 furthermore,	 it	 cannot	 be	 used	 for	 multiphase	 lines.	 There	 is	 a	 more
sophisticated	 approach	 called	 the	 Schnyder–Bergeron	 (or	 simply	 Bergeron)	 method	 [25],
which	has	been	adopted	in	the	well-known	software	EMTP	[9,26]	originally	developed	by	the
Bonneville	 Power	 Administration	 (BPA),	 U.S.	 Department	 of	 Energy.	 The	 method	 is	 very
convenient	for	numerical	calculation	by	a	computer	but	not	convenient	for	hand	calculation
that	requires	physical	insight	into	the	traveling-wave	phenomenon.

EXAMPLE	1.3
Let	us	obtain	voltages	V1	 and	V2	 and	current	 I1	 for	0	≤	 t	 <	 6τ	 in	Figure
1.44a.

Solution



FIGURE	1.44	Voltage	and	current	responses	on	an	open-circuited	line.	(a)	An	open-
circuited	line.	(b)	V2(t).	(c)	I1(t).

1.	0	≤	t	<	τ

2.	τ	≤	t	<	2τ

3.	2τ	≤	t	<	3τ



4.	3τ	≤	t	<	4τ

e2f(t)	=	e12(t	−	τ)	=	0(V),	V2(t)	=	0(V),	I2(t)	=	0(A),	e21(t)	=	0(V)

5.	4τ	≤	t	<	5τ

e2b(t)	=	0(V),	V1(t)	=	100(V),	e12(t)	=	100(V),	I1(t)	=	0.5(A)

6.	5τ	≤	t	<	6τ

e2f(t)	=	100(V),	V2(t)	=	200(V),	I2(t)	=	0(A),	e21(t)	=	100(V)

Based	on	these	results,	V1,	V2,	and	I1	are	drawn	as	in	Figure	1.44b	and
c.

1.6.4				Multiconductors

1.6.4.1				Reflection	and	Refraction	Coefficients

The	 refraction	 and	 reflection	 coefficient	matrices	 are	 given	 in	 the	 following	 form	 for	 the
circuit	in	Figure	1.45:

where
i,	j	are	the	ith	and	jth	lines
[U]	is	the	unit	matrix

1.6.4.2				Lossless	Two-Conductor	Systems
Let	us	consider	the	lossless	two-conductor	system	illustrated	in	Figure	1.46.
The	surge	impedance	matrices	of	the	lines	are	given	by



FIGURE	1.45	A	multiconductor	system.

The	incoming	traveling	wave	is	given	by

The	refraction	coefficient	matrix	at	each	node	is

Applying	these	refraction	coefficients	and	the	incoming	wave,	the	node	voltages	in	Figure
1.46	are	calculated	at	every	time	step	by	using	the	refraction	coefficient	method	discussed	in
Sections	1.6.3.1	and	1.6.3.2:

1.	0	≤	t	<	τ



FIGURE	1.46	A	lossless	two-conductor	system.

2.	τ	≤	t	<	2τ

3.	2τ	≤	t	<	3τ

Repeating	this	procedure,	voltages	(V1)	and	(V2)	and	current	(I1)	are	calculated.

EXAMPLE	1.4
Assuming	that	R	=	100	Ω,	Zs	=	400	Ω,	Zm	=	100	Ω,	and	E	=	1	pu,	calculate
(V1),	and	(V2)	for	0	≤	t	<	5τ:

Solution

1.	0	≤	t	<	τ



2.	τ	≤	t	<	2τ

3.	2τ	≤	t	<	3τ

4.	3	≤	t	<	4τ

5.	4	≤	t	<	5τ

From	these	results,	the	drawing	in	Figure	1.47	is	obtained.

1.6.4.3				Consideration	of	Modal	Propagation	Velocities
In	a	real	transmission	line,	the	line	impedance	becomes	frequency	dependent	due	to	the	skin
effects	of	the	conductor	and	the	earth	as	explained	in	Section	1.5.	The	propagation	velocity	is
also	 frequency	 dependent;	 furthermore,	 the	modal	 velocities	 differ	 from	 one	 another.	 This
velocity	difference	causes	a	significant	effect	on	the	voltage	and	current	waveshapes	along	the
line.	The	effect	is	included	analytically	in	a	calculation	of	voltage	and	current	in	the	following
manner:



1.	Traveling	wave	at	the	sending	end:

Transforming	the	traveling	waves	in	the	phase	domain	to	the	modal	domain	gives



FIGURE	1.47	Analytical	voltage	waveforms	on	a	two-conductor	system.

2.	Propagation	of	modal	traveling	waves	to	the	receiving	end:	Modal	traveling	waves	e10
and	e11	propagate	to	the	receiving	end	by	propagation	velocities	c0	and	c1,	respectively.
The	traveling	time	of	each	is	given	by



where	τ0	>	τ1	because	c0	<	c1.
Thus,	the	modal	traveling	wave	at	the	receiving	end	is

Transforming	this	traveling	wave	back	to	the	phase	domain	gives

3.	Receiving-end	voltage:	The	receiving-end	voltage	(V2)	is	obtained	using	traveling	waves
in	the	same	manner	as	in	Section	1.6.4.2:

The	differences	in	modal	velocities	obtained	by	repeating	these	steps	are	included	in
transient	voltage	and	current	calculations.

EXAMPLE	1.5
Assuming	that	c0	=	250	m/µs,	c1	=	300	m/µs,	and	line	length	ℓ	=	750	m	in
Example	1.4,	calculate	(V1),	(V2)	for	0	≤	t	<	2τ1.

Solution

Traveling	wave	at	t	=	0	at	the	sending	end	is

The	 voltage	 transformation	matrix	A	 for	 a	 symmetrical	 two-conductor
system	is	given	by

Modal	traveling	waves	e10	and	e11	at	the	sending	end	are



Modal	 traveling	waves	at	 the	 receiving	end	are	given	 in	 the	 following
forms:

Transforming	 these	 modal	 components	 into	 an	 actual	 phase	 domain
(phasor)	component	gives

Thus,	the	receiving-end	voltage	(Vr)	is	given	by

The	reflected	waves	at	the	receiving	end	are

In	the	modal	domain:

Backward	traveling	waves	at	the	sending	end	are	given	by

Transforming	into	the	actual	phase	domain	gives

Thus,	the	sending-end	voltages	are



These	results	are	shown	in	Figure	1.48	by	a	real	line	in	comparison	with
those	 in	 Figure	 1.47,	 with	 constant	 velocity	 c	 =	 300	 m/µs	 (τ	 =	 2.5	 µs)
indicated	 with	 a	 dotted	 line.	 It	 can	 be	 observed	 from	 the	 figure	 that	 a
negative	voltage	 appears	 first	 at	 the	 receiving	 end	on	 the	 induced	phase
(Vb)	because	the	mode	1	traveling	wave	arrives	at	the	receiving	end	at	t	=
τ1	=	2.5	µs.	Then,	0.5	µs	 later,	 the	mode	0	wave	arrives,	and	voltage	Vb
becomes	positive	 and	 equal	 to	 the	voltage	neglecting	 the	modal	 velocity
difference	 (dotted	 line).	 The	 negative	 voltage	 appears	 on	 the	 induced
phase	 at	 the	 sending	 end	when	 a	 refracted	wave	 from	 the	 receiving	 end
comes	 back	 to	 the	 sending	 end.	 The	 following	 phenomenon	 is	 clearly
observed	 from	 these	 analytical	 calculations:	 phase	 b	 voltage	 becomes
negative	 when	modal	 voltages,	 which	 are	 positive,	 are	 transformed	 into
the	actual	phase	domain	(see	the	transformation	matrices).



FIGURE	1.48	Analytical	surge	waveforms	when	considering	modal	velocities.

This	phenomenon	was	also	observed	in	the	field	measurement	of	a	500
kV	 untransposed	 horizontal	 line	 [27],	 the	 line	 configuration	 of	 which	 is
given	in	Figure	1.22.	The	measured	result	is	shown	in	Figure	1.49.
The	negative	voltages	on	phases	b	and	c	in	Figure	1.49	are	explained	by

the	 analytical	 evaluation	given	 earlier.	The	distorted	waveform	observed
in	 the	measured	 result	 is	 caused	by	 the	 frequency-dependent	 attenuation
and	propagation	velocities,	as	already	explained	in	Figure	1.28,	which	 is,
in	fact,	a	step	response	on	the	same	line	as	that	of	Figure	1.49,	that	is,	the
500	kV	untransposed	horizontal	line	in	Figure	1.22.



Similar	 but	 more	 complicated	 behaviors	 are	 observed	 in	 an
untransposed	vertical	 twin-circuit	 line,	as	discussed	 in	References	28	 and
29.

1.6.4.4				Consideration	of	Losses	in	a	Two-Conductor	System
Traveling-wave	 deformation	 at	 a	 distance	 x	 from	 the	 sending	 end	 is	 defined	 in	 frequency
domain	by

FIGURE	1.49	field	test	circuit	and	test	result	from	Reference	27.	(a)	Test	circuit.	(b)	Test	result	Vr.

Ex(ω)	=	exp{−Γ(ω)x}E0(ω)

or	in	Laplace	domain	with	Laplace	operator	s	=	jω	+	α	as

where



Ex(s)	is	the	traveling	wave	at	distance	x
E0(s)	is	the	original	wave	at	x	=	0

The	inverse	Laplace	transform	of	this	equation	gives	the	following	time	response:

or

where

s(t)	=	L−1	exp{−Γ(s)x/s}	is	the	step	response	of	wave	deformation
*	is	the	real-time	convolution

Figure	1.50	illustrates	the	step	responses	of	wave	deformation.
Figure	1.49	 is	 a	measured	 result	of	 the	 step	 response	on	a	 three-phase	 line,	when	a	 step-

function	voltage	e0(t)	=	1	is	applied	to	phase	a	at	the	sending	end	(x	=	0)	of	the	line.
Let	us	assume	that	the	propagation	constant	Γ(ω)	is	given	as	a	constant	value	at	a	frequency:

FIGURE	1.50	Step	response	of	wave	deformation.

Then,	s(t)	is	given	by

where



Assuming	e0(t)	to	be	e0	•	u(t),	Equation	1.228	is	rewritten	as

where

For	a	multiconductor	system,	this	equation	is	applied	to	each	modal	wave.

EXAMPLE	1.6
For	 the	 problem	 in	 Example	 1.5,	 calculate	 voltages	 considering
attenuations	k0	=	0.8	and	k1	=	0.98.

Solution
From	the	solution	of	Example	1.5	at	t	=	0:

Modal	traveling	waves	at	the	receiving	end	considering	attenuation	are
given	by

In	an	actual	phase	domain:

Thus,	the	receiving-end	voltage	is	given	as	follows:

The	reflected	wave	at	the	receiving	end	is



Transforming	into	a	modal	domain	gives

At	the	sending	end,	the	traveling	wave	is	attenuated	as

Transforming	into	a	phasor	domain	gives

Thus,	the	sending-end	voltage	for	2τ1	≤	t	<	4τ1	is	obtained	as

These	results	are	illustrated	in	Figure	1.51.

1.6.4.5				Three-Conductor	Systems
Let	us	consider	the	field	test	circuit	in	Figure	1.49a.	The	parameters	of	the	line	are	given	as

Characteristic	impedance:	Zaa	=	Zcc	≅	Zbb	=	331,	Zab	=	Zbc	=	72,	Zac	=	34	(Ω)
Modal	velocity:	c0	=	270.4,	c1	=	296.4,	c2	=	299.5	(m/µs)
Modal	attenuation:	α0	=	7.94	×	10−2,	α1	=	3.5	×	10−3,	α2	=	6.8	×	10−4	(dB/km)
Attenuation	ratio:	k0	=	0.468,	k1	=	0.967,	k2	=	0.994,	(see	Equation	1.234)
Line	length:	ℓ	=	83.212	km
Modal	traveling	time:	τ	=	ℓ/c:	τ0	=	307.7,	τ1	=	280.7,	τ2	=	277.8	(µs)
Assume	E	=	1000	(V)



FIGURE	1.51	Analytical	results	of	surge	voltages	on	a	two-phase	line.

When	a	circuit	breaker	(CB,	a	switch)	is	closed	at	t	=	0,	the	phase	a	voltage	at	the	sending
end	is	calculated	as	the	ratio	of	source	resistance	R	and	the	phase	a	characteristic	impedance
Zaa	as

Then,	the	phase	a	current	at	the	sending	end	is



Phase	b	and	c	currents	are	zero	because	of	the	open-circuit	condition:

Isb	=	Isc	=	0.

Thus,	 the	 sending-end	 voltage	 (Vs)	 is	 calculated	 by	 using	 the	 characteristic	 impedance
matrix	from	the	three-phase	currents:

Thus,	the	following	results	are	obtained:

Vsb	=	97,	Vsc	=	53	(V)

Assume	that	the	voltage	transformation	matrix	is	given	by

Then,	the	modal	traveling	wave	at	the	sending	end	is	calculated	as

es0	=	197,	es1	=	193.5,	es2	=	49.8	(V).

Each	 modal	 wave	 arrives	 at	 the	 receiving	 end	 at	 different	 times	 (τi)	 and	 with	 different
attenuations	(ki):

The	refraction	coefficient	at	the	receiving	end	is	given	by	a	unit	matrix	multiplied	by	factor
2	because	the	three	phases	at	the	receiving	end	are	open-circuited.	Thus,



FIGURE	1.52	Analytical	results	of	surge	voltages	on	a	three-phase	line	corresponding	to	Figure	1.49.

Transforming	these	modal	voltages	to	phase	voltages	by	V	=	Av	gives

In	drawing	these	results	while	considering	the	time	difference	τi,	Figure	1.52	is	obtained.	It
can	be	observed	from	the	figure	that	a	positive	voltage	spike	appears	on	phase	c	 for	a	 time
period	of	0	≤	t	≤	τ1	−	τ2	=	2.9	µs.	This	explains	the	voltage	spike	A	in	the	measured	results	of
Figure	1.49b.	Similarly,	the	negative	voltage	B	on	phase	b	in	Figure	1.49b	is	explained	by	the
analytical	calculation	as	in	Figure	1.52.

1.6.4.6				Cascaded	System	Composed	of	Different	Numbers	of	Conductors
It	is	often	observed	in	practice	that	the	number	of	conductors	changes	at	a	boundary,	as	shown
in	Figure	1.53,	where	 phases	a	 and	b	 are	 short-circuited	 at	 node	 1.	 In	 the	 case	 of	 a	 cross-
bonded	cable,	three-phase	metallic	sheaths	are	rotated	at	every	cross-bonding	point.	In	such	a
case,	 it	 is	 required	 to	 reduce	 the	 order	 of	 an	 impedance	matrix	 and/or	 to	 rotate	 the	matrix
elements.
In	Figure	1.53,	the	following	relations	of	voltages	and	currents	are	obtained:



FIGURE	1.53	A	single-conductor	system	connected	to	a	three-conductor	system.

By	applying	the	relation	V	=	Z	•	I,	I′,	this	equation	is	rewritten	as	(I′)	=	[T](I)	=	[T][Z]−1	(V)
=	[T][Z]−1	[Tt](V)′	=	[Z′]−1(V′):

In	this	equation,	Z	is	an	original	3	×	3	matrix	on	the	right	of	node	1,	while	Z′	is	reduced	to	a
2	 ×	 2	 matrix	 considering	 the	 short	 circuit	 of	 phases	 a	 and	 b.	 By	 using	 Z′,	 the	 refraction
coefficient	 at	 node	 1,	 for	 example,	 can	 be	 calculated.	 Remember	 the	 fact	 that	 no	 inverse
matrices	 exist	 for	 matrices	 T	 and	 Tt,	 so	 the	 correct	 sequence	 should	 be	 followed	 for
calculating	Equation	1.238.

PROBLEMS
1.18	Obtain	voltage	V,	current	I,	and	reflected	voltage	traveling	wave	er	at	node	P	when

step-function	voltage	traveling	wave	e0	arrives	at	node	P	at	t	=	0	in	Figure	1.54	for	I(0)
=	0.

1.19	Obtain	voltage	V	at	node	P	when	step-function	voltage	wave	e0	arrives	at	node	P	at	t	=
0	in	Figure	1.55	for	V(0)	=	0.

1.20	When	switch	S	is	closed	at	t	=	0	in	Figure	1.56,	obtain	voltages	V2	and	V3	and	current	I2
for	conditions	(a)	and	(b),	and	draw	curves	for	V2,	V3,	and	I2	for	0	0	≤	t	≤	15	µs:

a.	Z2	=	60	Ω,	c2	=	150	m/µs,	l2	=	150	m.

b.	c2	=	c1,	Z2	=	Z1,	l2	=	300	m.

c.	Discuss	the	effect	of	a	cable	connected	to	an	overhead	line,	assuming	a	surge
impedance	300	Ω	for	the	overhead	line	and	60	Ω	for	the	cable.



FIGURE	1.54	Inductance	L	terminated	line.

1.21	Obtain	receiving-end	voltage	(Vr)	when	a	source	voltage	is	applied	to	phase	b	in	Figure
1.49a.

	
	

1.7					Nonuniform	Conductors
There	are	a	number	of	papers	on	nonuniform	lines	[30,31,	32,	33,	34,	35,	36,	37,	38,	39,	40,
41,	 42,	 43,	 44,	 45,	 46,	 47,	 48–49].	 EMC-related	 transients	 or	 surges	 in	 a	 gas-insulated
substation	 and	 on	 a	 tower	 involve	 nonuniform	 lines,	 such	 as	 short-line,	 nonparallel,	 and
vertical	conductors.	Pollaczek’s	[7],	Caron’s	[8],	and	Sunde’s	[50]	impedance	formulas	for	an
overhead	 line	 are	 well	 known	 and	 have	 been	 widely	 used	 in	 the	 analysis	 of	 the	 transients
mentioned	earlier.	However,	it	is	not	well	known	that	these	formulas	were	derived	assuming
an	 infinitely	 long	 and	 thin	 conductor,	 that	 is,	 a	 uniform	 and	 homogeneous	 line.	 Thus,
impedance	formulas	are	restricted	to	the	uniform	line	where	the	concept	of	“per-unit-length
impedance”	is	applicable.

FIGURE	1.55	A	tower	model.



FIGURE	1.56	Two	cascaded	lines.

This	 section	 explains	 impedance	 and	 admittance	 formulas	 of	 nonuniform	 lines,	 such	 as
finite-length	 horizontal	 and	 vertical	 conductors	 based	 on	 a	 plane	 wave	 assumption.	 The
formulas	are	applied	to	analyze	a	transient	on	a	nonuniform	line	by	an	existing	circuit	theory-
based	simulation	tool	such	as	the	EMTP	[9,11].	The	impedance	formula	 is	derived	based	on
Neumann’s	inductance	formula	by	applying	the	idea	of	complex	penetration	depth	explained
earlier.	 The	 admittance	 is	 obtained	 from	 the	 impedance	 assuming	 the	 wave	 propagation
velocity	 is	 the	 same	 as	 the	 light	 velocity	 in	 free	 space	 in	 the	 same	manner	 as	 an	 existing
admittance	formula,	which	is	almost	always	used	in	steady-state	and	transient	analyses	on	an
overhead	line.

1.7.1				Characteristic	of	Nonuniform	Conductors

1.7.1.1				Nonuniform	Conductors

First,	it	is	necessary	to	clarify	a	problem	to	be	discussed	in	this	section,	that	is,	a	nonuniform
line	 or	 a	 nonhomogeneous	 line.	 Figure	 1.57	 shows	 a	 typical	 example	 of	 transient	 voltage
responses	 measured	 on	 a	 vertical	 conductor	 with	 radius	 r	 =	 25	mm	 and	 height	 h	 =	 25	 m
[41,42].
Figure	1.57a	is	the	current,	(b)	the	voltage	at	the	top	of	the	conductor,	and	(c)	the	voltage	at

a	height	of	12	m.	It	should	be	clear	from	the	figure	that	the	voltage	waveforms	of	(b)	and	(c)
are	 distorted	 before	 a	 reflection	 from	 the	 bottom	 (earth	 surface)	 comes	 back.	 Also,	 the
waveform	in	(c)	is	different	from	that	in	(b).	The	reason	for	these	phenomena	can	be	either
the	frequency-dependent	effect	of	the	conductor	or	the	reflection	of	the	traveling	wave	due	to
discontinuities	of	 the	characteristic	(surge)	 impedance	along	a	vertical	conductor	other	 than
the	 earth’s	 surface.	 Radiation	 is	 another	 cause	 of	 the	 distortion	 in	 such	 high-frequency
regions.	Also,	 the	 electromagnetic	 field	 is	 not	 perpendicular	 to	 the	 conductor	 surface.	This
chapter,	however,	is	restricted	to	the	TEM	mode	of	propagation,	and	these	phenomena	can	be
translated	or	interpreted	as	the	reflection/refraction	of	a	traveling	wave.	It	is	hard	to	receive
such	noticeable	frequency	dependence	when	the	distance	between	(b)	and	(c)	is	less	than	10	m.



Thus,	it	can	be	said	that	the	voltage	waveform	at	a	vertical	conductor	is	distorted	due	to	the
nonuniformity	of	the	vertical	conductor	at	every	height	(position).	That	is,	the	characteristic
impedance	 (impedance	 and	 admittance	 in	 general)	 of	 the	 vertical	 conductor	 is	 position
dependent.

FIGURE	1.57	Measured	transient	responses	at	various	positions	of	an	artificial	tower	(h	=	15	m,	r	=	25	mm).	(a)	Current	at	the
top.	(b)	Voltage	at	the	top.	(c)	Voltage	at	the	height	of	12	m.	(d)	Voltage	at	the	height	of	9	m.

Figure	 1.58	 shows	 another	 example	 of	 a	 transient	 voltage	 at	 the	 top	 of	 a	 1100	 kV
transmission	tower	(height	140	m,	average	radius	6.3	m)	[43].	Figure	1.58a	 is	 the	measured
result	of	an	injected	current	and	the	voltage	at	the	top	of	the	tower,	and	(b)	is	the	step	response
of	 the	voltage	at	 the	 top	of	 the	 tower	numerically	evaluated	 from	 the	measured	current	and
voltage	in	(a).	The	step	response	is	heavily	distorted	before	reflection	from	the	bottom	of	the
tower,	 that	 is,	 time	 t	 is	 less	 than	 0.933	 µs.	 Although	 tower	 arms	 exist,	 their	 effect	 on	 the
average	 distortion	 is	 estimated	 to	 less	 than	 that	 in	 Figure	 1.58	 [42].	 Most	 distortion	 is
estimated	based	on	the	position-dependent	surge	impedance	of	the	tower.
Figure	 1.59	 shows	 a	 transient-induced	 voltage	 at	 the	 sending	 end	 of	 a	 horizontal

nonparallel	 conductor	when	 a	 steplike	 voltage	 is	 applied	 to	 the	 other	 conductor	 through	 a
resistance	 nearly	 equal	 to	 the	 conductor	 surge	 impedance.	 All	 of	 the	 other	 ends	 of	 the
conductors	 are	 terminated	 by	 the	 surge	 impedance.	 The	 radius,	 length,	 and	 height	 of	 the
conductor	are	5	mm,	4	m,	and	40	cm.



FIGURE	1.58	Measured	transient	response	at	the	top	of	a	1100	kV	transmission	tower.	(a)	Injected	current	and	voltage	at	the
top	of	the	tower.	(b)	Step	response	of	the	voltage	at	the	top	of	the	tower.

FIGURE	1.59	Measured	transient	induced	voltages	on	a	horizontal	nonparallel	conductor	(y2	=	10	cm,	y1	=	20–300	cm).



The	separation	y2	at	the	receiving	end	between	the	conductors	is	10	cm	and	that	(y1)	at	the
sending	end	varies	between	10	and	300	cm.	A	typical	characteristic	of	a	nonparallel	conductor
is	 observed	 in	 the	 figure	 due	 to	 a	 position	 (distance	 from	 the	 sending	 end)-dependent
impedance	 [40].	 The	 induced	 voltage	 gradually	 increases	 with	 time	 because	 the	 mutual
impedance	 increases	with	 time,	 and	 a	 positive	 reflection	 comes	 back	 to	 the	 sending	 end	 at
every	instance	until	a	large	negative	reflection	appears	at	about	t	=	27	ns	from	the	receiving
end.

1.7.1.2				Difference	from	Uniform	Conductors
Carson’s,	 Pollaczek’s,	 and	 Sunde’s	 formulas	 are	 well	 known	 and	 widely	 used	 for	 the
impedances	 of	 overhead	 lines	 and	 underground	 cables	 isolated	 from	 the	 earth	 (soil).
However,	that	the	formulas	are	applicable	only	to	a	uniform	or	homogeneous	line	of	which
the	 impedance	 can	 be	 defined	 by	 per	 unit	 length	 does	 not	 seem	 to	 be	 understood.	 These
formulas	are	based	on	an	infinitely	long	line	or	an	assumption	that	line	length	x	is	far	greater
than	 line	 height	h	 and	 separation	 y	 between	 two	 lines	 and	 that	h	 and	y	 are	 far	 greater	 than
radius	r.	The	basic	form	of	earth-return	impedance	is	given	by

Assuming	x2	is	infinite,	the	second	integral	is	carried	out,	and	the	following	expression	is
obtained:

Again,	assuming	x1	is	infinite,	Pollaczek’s,	Carson’s,	or	Sunde’s	impedance	is	obtained:

It	 should	 be	 noted	 that	 Equations	 1.240	 and	 1.241	 already	 contain	 the	 effect	 of	 mutual
coupling	 due	 to	 the	 infinitely	 long	 line	 2,	 or,	 in	 a	 single-line	 case,	 that	 is,	 in	 the	 self-
impedance	cases,	the	section	of	length	dx1	has	contained	the	mutual	coupling	effect	due	to	the
remaining	part	(infinitely	long)	of	the	line.	Because	Equation	1.241	has	contained	the	mutual
coupling	effect	 of	 all	 the	 remaining	parts	 of	 the	 line	on	 the	 line	 section,	we	 can	define	 the
impedance	per	unit	length.
It	 should	 be	 clear	 from	Equation	 1.239	 that	 the	 line	 impedance	 is	 a	 function	 of	 the	 line

length	x,	and



Therefore,	 it	 is	 not	 possible	 to	discuss	wave	propagation	on	 a	 finite	 line	by	Pollaczek’s,
Carson’s,	or	Sunde’s	formulas	in	Equation	1.241.
The	characteristic	 impedance	 seen	 from	an	arbitrary	position	 (distance	x	 from	origin)	 is

always	the	same	on	an	infinitely	long	line,	as	already	explained,	while	it	cannot	be	defined	on
a	finite	line.	If	we	define	the	characteristic	impedance	Z0(ω)	as	the	ratio	of	voltage	V(ω)	and
current	I(ω)	in	a	frequency	domain	at	the	sending	end	of	the	finite	line	within	a	time	region	of
two	travel	times	2τ	(τ	=	x/c,	c	=	c(ω):	velocity),	we	find	a	difference	between	the	characteristic
impedances	Z1(ω)	and	Z2(ω)	of	two	lines	with	the	same	configuration	but	different	lengths	x1
and	x2,	that	is,	length	dependence,	because	the	series	impedance	of	the	two	lines	is	different,	as
explained	earlier.	The	situation	 is	more	noticeable	 in	a	vertical	conductor	because	 the	finite
length	of	 the	vertical	 line	 shows	 the	height	 (distance)-dependent	 impedance/admittance,	 and
the	nonhomogeneity	is	easily	understood	from	the	physical	viewpoint	as	explained	in	Section
1.7.1.1.	It	should	be	noted	that	“distance”	(dependence)	means	the	distance	from	the	origin	in	a
strict	sense,	not	the	distance	from	the	earth’s	surface.

1.7.2				Impedance	and	Admittance	Formulas

1.7.2.1				Finite-Length	Horizontal	Conductor

1.7.2.1.1				Impedance
The	mutual	 impedance	 of	 a	 nonparallel	 conductor	 above	 the	 imperfectly	 conducting	 earth
illustrated	in	Figure	1.60	is	obtained	in	the	following	equation	by	applying	the	concept	of	the
complex	penetration	depth	to	Neumann’s	inductance	formula	[39,44]:



FIGURE	1.60	Nonparallel	multiconductor	system.

where

Integrating	Equation	1.244,	the	following	solution	is	derived:



where

In	 the	 case	 of	 perfectly	 conducting	 earth	 (ρe	 =	 0),	 the	 substitution	 of	 he	 =	 0	 into	Mi	 in
Equation	1.246	gives	the	following	expression:

Substituting	xi1	=	0	and	xi2	=	xi	and	taking	the	limit	of	angle	θ	to	zero	with	tan−1z	=	π/2	−	1/z
(|z|	 >	 1)	 in	 Equation	 1.245,	 the	 impedance	 formula	 of	 a	 parallel	 horizontal	 conductor	 is
obtained	in	the	following	form:



When	xj1	is	taken	to	be	zero,	this	equation	becomes	identical	to	that	given	in	Reference	39.
Also,	the	substitution	of	xj1	=	0	and	xj2	=	xj	into	this	equation	gives	the	same	formula	as	that
derived	in	Reference	44.
In	the	case	that	xi1	=	xj1	=	0	and	xi2	=	xj2	=	x	in	Equations	1.245	and	1.246,	that	is,	the	case	of

a	parallel	horizontal	conductor	with	the	same	length,	the	formula	is	simplified	as	follows:

Taking	a	limit	of	distance	x	 to	infinity,	the	per	unit	length	in	Equation	1.249	 is	 reduced	 to
only	the	second	term,	that	is:

This	equation	is	identical	to	the	impedance	derived	for	an	infinite	horizontal	conductor	in
Reference	 6,	 which	 is	 an	 approximation	 of	 Carson’s	 earth-return	 impedance,	 as	 already
explained	in	Section	1.2.2.2.
From	this	observation,	 it	 should	be	clear	 that	 the	 impedance	formulas	 in	Equations	 1.245

and	 1.246	 are	 the	 most	 generalized	 forms	 for	 a	 horizontal	 conductor,	 although	 they	 are
approximate	formulas	based	on	the	concept	of	penetration	depth.



1.7.2.1.2				Admittance
The	admittance	of	a	finite-length	horizontal	conductor	is	evaluated	by	the	potential	coefficient
of	a	perfectly	conducting	earth	[1]:

The	element	P0ij.	of	matrix	[P0]	is	given	in	Equation	1.247.

1.7.2.2				Vertical	Conductor
Let	 us	 consider	 the	 vertical	 multiconductor	 system	 illustrated	 in	 Figure	 1.61.	 In	 the	 same
manner	 as	 the	 finite-length	 horizontal	 conductor,	 the	 following	 impedance	 formula	 is
obtained:



FIGURE	1.61	Vertical	multiconductor	system.

where



When	conductors	i	and	j	are	at	the	same	vertical	position,	that	is,	hs	=	hn,	hr	=	hm,	Equation
1.253	is	simplified	to	the	following	form:

where
H	=	2(h	+	he)
h	=	hn	=	hs
h	−	X	=	hm	=	hr

If	the	earth	is	assumed	to	be	perfectly	conducting,	this	equation	can	be	further	simplified	as
follows:

When	the	bottom	of	a	single	conductor	(d	=	r)	is	on	the	earth’s	surface,	that	is,	h	−	X	=	0,
then



The	admittance	of	the	vertical	conductor	system	is	evaluated	from	Equation	1.251.

1.7.3				Line	Parameters

1.7.3.1				Finite	Horizontal	Conductor

Figure	 1.62	 shows	 measured	 results	 (exp.)	 of	 the	 self-impedance	 and	 capacitance	 of	 a
conductor	with	radius	1	cm	and	length	4	m	above	a	copper	plate,	when	a	step	voltage	with	rise
time	2	ns	is	applied,	as	a	function	of	height	h	together	with	calculated	results	by	the	proposed
formula	(cal.	fin.)	of	a	finite-length	conductor,	Carson’s	formula	(cal.	fin.)	of	a	finite-length
conductor,	and	Carson’s	formula	(cal.	inf.)	of	an	infinitely	long	conductor.	In	the	figure,	the
calculated	 results	 by	 the	proposed	 formula	 (average	 error	 5.1%)	 show	more	 accuracy	 than
those	by	Carson’s	formula	(average	error	10.9%).	It	should	be	noted	that	the	accuracy	of	the
proposed	formula	increases	as	the	conductor	height	increases.	The	degree	of	finite	length	is
defined	 by	 the	 ratio	 of	 the	 conductor ’s	 length	 x	 and	 height	 h,	 x/h.	 As	 x/h	 decreases,	 the
accuracy	of	the	finite	conductor	formula	increases.	It	should	be	noted	that	the	inductance	per
unit	length	decreases	as	the	length	decreases.	The	reason	for	this	is	that	the	inductance	of	an
infinitely	 long	 conductor	 includes	 the	 mutual	 inductance	 between	 the	 reference	 part	 of	 a
conductor	and	the	remaining	part	with	infinite	length	as	explained	in	Section	1.7.2.2.



FIGURE	 1.62	 Self-inductance	 and	 capacitance	 of	 a	 finite	 horizontal	 conductor.	 (a)	 Inductance.	 (b)	 Capacitance.	 exp.:
experimental	 result.	 cal.-fin.:	 calculated	 result	 of	 finite	 line	 impedance.	 cal.-inf.:	 calculated	 result	 of	 Carson’s	 infinite	 line
impedance.

Figure	1.63	shows	the	mutual	inductance	between	two	conductors	with	different	lengths	x1
and	x2.
Because	 Carson’s	 formula	 cannot	 deal	 with	 conductors	 of	 different	 lengths,	 three

approaches	to	determine	an	effective	length	x	are	investigated:	(a)	x	=	shorter	 length	x2,	 (b)
arithmetic	mean	distance	x	=	(x1	+	x2)/2,	and	(c)	geometrical	mean	distance	 .	It	can
be	observed	from	Figure	1.63	that	the	proposed	formula,	in	general,	is	accurate.	For	Carson’s



formula,	approach	 (a),	 shorter	 length,	 seems	 to	be	best	among	 the	 three.	 It	 should	be	noted
that	Carson’s	 inductance	evaluated	even	by	approach	(a)	 is	greater	 than	the	measured	result.
The	 reason	 for	 this	 is	 as	 explained	 in	 Section	 1.7.2.2.	 This	 observation	 is	 for	 a	 perfectly
conducting	earth,	that	is,	for	a	high	frequency.	In	power	frequency	regions,	Carson’s	formula
shows	a	rather	poor	accuracy.	It	has	been	pointed	out	in	Reference	44	that	the	average	error	of
Carson’s	formula	was	about	21%,	while	that	of	the	proposed	formula	was	4%.
Table	1.11	shows	measured	and	calculated	results	of	 the	surge	 impedance	of	a	horizontal

conductor.	 It	 is	 clear	 that	 the	 proposed	 formula	 shows	 more	 accuracy	 than	 Carson’s.	 The
accuracy	 of	 the	 proposed	 formula	 increases	 as	 x/h	 decreases,	 corresponding	 to	 the
characteristic	 of	 the	 inductance.	 A	 similar	 observation	 has	 been	 made	 in	 different
measurements	in	Reference	44.

1.7.3.2				Vertical	Conductor
Table	1.12	 shows	a	 comparison	of	measured	and	calculated	 surge	 impedances	of	 a	vertical
single	 conductor	with	 height	h	 and	 radius	 r.	 Included	 in	 the	 table	 are	 results	 calculated	 by
various	formulas	given	in	References	31,32,34,41.	It	is	clear	from	the	table	that	the	accuracy
of	the	proposed	formula	is	higher	than	the	other	formulas	in	comparison	with	the	measured
results.	Jordan’s	formula	[31]	also	shows	a	high	accuracy.	It	is	worth	noting	that	the	proposed
formula,	Equation	1.256	for	a	single	conductor,	is	identical	to	Jordan’s	formula.	With	r	≪	h,
Equation	1.256	is	further	simplified	as	follows:



FIGURE	1.63	Mutual	inductance	between	different-length	horizontal	conductors.	(a)	Inductance.	(b)	Capacitance.

where	e	=	2.71828.
For	the	surge	impedance	case:



TABLE	1.11	Surge	Impedance	of	an	Overhead	Conductor	with	Length	x	=	4	m

Results	 calculated	 by	 the	 formula	 in	 Reference	 42	 also	 agree	with	 the	measured	 results.
This	is	quite	reasonable	because	the	formula	has	been	derived	empirically	from	the	measured
results.	It	is	interesting	that	the	empirical	formula	agrees	with	Equation	1.258	by	rewriting	it
as	follows:

The	 fact	 that	 the	 empirical	 formula	 differs	 from	 the	 proposed	 formula	 (Equation	 1.258)
only	with	 2.4	Ω	 is	 proof	 of	 the	 high	 accuracy	of	 the	 proposed	 formula	 compared	with	 the
measured	results.
As	observed	in	Table	1.12,	the	measured	surge	impedance	Zmes	is	roughly	proportional	to

the	parameter	ln(h/er).	This	fact	is	further	proof	of	the	high	accuracy	of	the	proposed	formula
since	the	formula	is	directly	proportional	to	ln(h/er).

1.7.3.3				Nonparallel	Conductor
Figure	1.64	 shows	measured	mutual	 inductance	and	capacitance	of	 an	overhead	nonparallel
conductor	with	radius	r1	=	r2	=	1	cm,	length	x1	=	x2	=	4	m,	and	height	h1	=	h2	=	0.4	m	as	a
function	 of	 separation	 y2	 at	 the	 receiving	 end	 with	 the	 parameter	 of	 separation	 y1	 at	 the
sending	end.	Included	are	calculated	results	by	 the	proposed	formula	 in	Section	1.7.2.1.	The
calculated	results	agree	satisfactorily	with	the	measured	results.
Figure	1.65	shows	the	mutual	impedance	of	a	nonparallel	conductor	as	a	function	of	y2	−

y1.	In	the	figure,	“fin”	is	the	impedance	evaluated	by	the	formula	proposed	in	this	book	and



“inf”	 is	 that	 of	 the	 nonparallel	 conductor	 impedance	 derived	 from	 an	 infinite-length
impedance	[37,51].	The	mutual	 impedance	decreases	 as	y2	 −	y1	 and	y1	 increase.	The	 finite-
length	impedance	is	far	smaller	than	that	of	the	infinite	length.	This	agrees	with	the	tendency
observed	 between	 the	 impedances	 of	 finite	 and	 infinite	 conductors	 in	 Sections	 1.7.3.1	 and
1.7.3.2.

TABLE	1.12	Measured	and	Calculated	Surge	Impedances	of	Vertical	Conductors



FIGURE	1.64	Mutual	inductance	and	capacitance	of	a	nonparallel	conductor.	(a)	Inductance.	(b)	Capacitance.



FIGURE	1.65	Mutual	impedance	of	a	nonparallel	conductor.	(a)	Resistance.	(b)	Inductance.

PROBLEMS
1.22	Calculate	the	surge	impedances	of	the	horizontal	conductor	with	length	x	=	4	m	given

in	Table	1.11	by	using	the	following	approximation,	and	confirm	the	results	in	the
table:

Zs	=	60Pij,	Sij	≅	2h,	dij	=	r	=	1	cm

Finite:	Equation	1.249,	infinite:	Equation	1.250.
1.23	Calculate	the	surge	impedance	of	a	vertical	conductor	given	in	Table	1.12	by	using	the

following	approximation,	and	discuss	the	results	in	comparison	with	measured	results,
as	well	as	Wagner ’s	and	Sargent’s	formulas,	in	the	table:



FIGURE	1.66	A	tower	model.

1.24	Calculate	voltage	Vt	at	the	top	of	the	tower	in	Figure	1.66	for	0	≤	t	<	40	ns,	taking	λ01	=
λ10	=	1,	and	compare	with	the	measured	result	shown	in	Figure	1.57b.

1.25	All	the	formulas	in	Section	1.7.2	are	an	approximation	based	on	penetration	depth.
Discuss	theoretical	problems	and	engineering	advantages	of	the	formulas.	If	possible,
develop	a	new	formula	that	is	theoretically	better	than	those	in	Section	1.7.2.

	
	

1.8					Introduction	to	EMTP
1.8.1				Introduction

1.8.1.1				History	of	Transient	Analysis

As	is	well	known,	many	physical	phenomena	are	expressed	mathematically	as	a	second-order
partial	 differential	 equation.	 Electrical	 transients	 associated	 with	 a	 wave-propagation
characteristic	 are	 mathematically	 represented	 by	 a	 hyperbolic	 partial	 differential	 equation.



Therefore,	 solving	 electrical	 transients	 necessitates	 the	 solution	 of	 the	 differential	 equation
with	the	given	initial	and	boundary	conditions.
The	earliest	solution	of	 the	partial	differential	equation	was	given	by	D’Alembert	 for	 the

case	of	a	vibrating	string	in	1750	[16].	At	the	same	time,	Bernoulli	found	a	solution	that	was
quite	different	from	D’Alembert’s	solution.	Bernoulli’s	solution	is	based	on	the	eigenfunction
and	is	comparable	with	the	Fourier	series.
Traveling-wave	 concepts	 and	 theories	 have	 been	 well	 developed	 since	 D’Alembert’s

solution.	Allievi	first	applied	the	theory	to	the	field	of	hydraulic	engineering	and	established
the	 general	 theory	 and	 idea	 of	 a	 graphical	 method,	 which	 was	 a	 direct	 application	 of	 the
traveling-wave	 concept	 to	 engineering	 fields	 [52].	 At	 a	 later	 stage,	 Bewley	 developed	 the
traveling-wave	theory	and	its	application	to	various	electrical	transients	[22].	The	propagation
of	the	traveling	wave	has	been	well	analyzed	using	the	modified	Heaviside	transform	and	the
Sylvester	theorem,	which	is	the	same	as	the	eigenvalue	theory	of	matrix	algebra	by	Hayashi
[53].
The	 graphical	 method	 developed	 by	 Allievi	 has	 been	 applied	 to	 the	 analysis	 of	 a	 water

hammer	 by	 Schnyder	 [54],	 Bergeron	 [55],	 and	 Angus	 [56].	 This	 was	 originally	 called	 the
Schnyder–Bergeron	method	in	 the	electrical	engineering	field.	The	name	of	 the	method	has
since	been	 abbreviated,	 and	 it	 is	 nowadays	 called	 the	Bergeron	method,	 although	Schnyder
originated	 it.	 The	 detail	 and	 application	 of	 the	 graphical	 method	 are	 well	 described	 by
Parmakian	 [57].	 The	 graphical	 method	 corresponds	 to	 the	 method	 of	 characteristic	 to
mathematically	solve	Maxwell’s	equation	[58].	Similarly,	the	lattice	diagram	method	based	on
the	traveling-wave	concept	was	developed	by	Bewley	to	solve	electrical	transients	[22].	At	a
later	stage,	both	the	graphical	method	and	the	lattice	diagram	method	were	implemented	on	a
digital	computer	for	calculating	electrical	transients	[25,26,59,60,	61,	62,	63,	64,65–66].	This
technique	is	generally	called	the	“traveling	wave	technique”	or	the	“time	domain	method.”
The	 numerical	 Fourier	 transform	 appeared	 in	 the	 electrical	 engineering	 field	 in	 the	 late

1950s	 [67],	 although	 the	 basis	 of	 the	 method	 was	 given	 by	 Bernoulli	 in	 1750.	 Gibbs’
phenomena	and	instability	in	a	transform	process,	which	are	the	inherent	nature	of	the	discrete
Fourier	 transform,	 were	 greatly	 reduced	 with	 the	 development	 of	 the	 modified	 Fourier
(Laplace)	 transform	 [68,69].	 At	 a	 later	 stage,	 the	 modified	 Fourier/Laplace	 transform	 was
applied	 to	 transient	 calculations	 by	 various	 authors	 [70,	 71,	 72–73].	 Since	 the	 modified
Fourier/Laplace	transform	provides	high	accuracy	for	obtaining	a	time	solution,	the	analysis
of	 a	 partial	 differential	 equation	 is	 rather	 easy	 in	 the	 frequency	 domain,	 and	 the
implementation	 of	 the	 fast	 Fourier	 transform	 procedure	 into	 the	modified	 Fourier/Laplace
transform	greatly	improves	computational	efficiency	[72].	The	method	has	become	one	of	the
most	accurate	and	efficient	computer	techniques	for	transient	calculations.

1.8.1.2				Background	of	the	EMTP
The	EMTP	has	been	widely	used	all	over	the	world	as	a	standard	simulation	tool	for	transient
analysis	 not	 only	 in	 a	 power	 system,	 but	 also	 in	 an	 electronic	 circuit.	 The	BPA	of	 the	U.S.
Department	of	 the	 Interior	 (later	U.S.	Department	of	Energy)	 started	 to	develop	a	computer
software	 for	 analyzing	 power	 system	 transients,	 especially	 switching	 overvoltage	 from	 the



viewpoint	of	insulation	design	and	coordination	of	transmission	lines	and	substations	in	1966,
by	inviting	Dr.	H.	W.	Dommel	from	Germany	to	be	part	of	BPA’s	permanent	staff.	The	EMTP
development	 was	 a	 part	 of	 system	 analysis	 computerization,	 including	 a	 power/load	 flow
analysis	program	and	a	stability	analysis	program	in	the	BPA	System	Analysis	Department	led
by	Dr.	W.	Tinny.	Before	the	EMTP,	a	transient	network	analyzer	was	used	in	the	BPA.
The	 EMTP	 was	 based	 on	 the	 Schnyder–Bergeron	 method	 [54,55]	 of	 traveling-wave

analysis	 in	a	hydraulic	system,	well	known	as	a	water	hammer	 [52,	53,	54,	55,	56–57].	 The
Schnyder–Bergeron	method	was	 introduced	 to	 the	 field	of	 electrical	 transients	by	Frey	 and
Althammer	[25].	The	method	was	incorporated	with	a	nodal	analysis	method	by	representing
all	of	the	circuit	elements	by	a	lumped	resistance	and	the	current	source	by	Dommel	[26].	This
is	the	origin	of	the	EMTP	[9,11].

1.8.1.3				EMTP	Development
Dommel	 developed	 a	 transient	 program	 at	 the	 Technical	 University	 of	 Munich	 based	 on
Reference	 25	 for	 a	 distributed	 line	 and	 on	 the	 numerical	 integration	 of	 an	 ordinary
differential	equation	for	a	lumped-parameter	circuit.	In	1966,	he	moved	to	the	BPA	to	develop
a	 generalized	 transient	 analysis	 program,	 and	 the	 original	 version	 of	 the	 EMTP	 called
“transient	 program”	 was	 completed	 in	 1968.	 In	 1972,	 Scott-Meyer	 joined	 the	 BPA,	 and
Dommel	 left	 the	BPA	 in	 1973.	After	 that,	 the	work	 on	 the	EMTP	was	 accelerated.	 Semlyen
[74],	 Ametani	 [5,75],	 Brandwajn	 [76],	 and	 Dube	 [77]	 joined	 Scott-Meyer ’s	 team,	 and	 the
EMTP	Mode	31,	which	is	basically	the	same	as	the	present	EMTP,	was	completed	in	1981	[9].
Currently,	 four	 versions	 of	 the	 EMTP	 exist:	 (1)	 Alternative	 Transients	 Program	 (ATP)
(royalty	 free)	 originated	 by	 Scott-Meyer	 and	 developed/maintained	 by	 the	 BPA,	 European
EMTP	User	Group	(EEUG)	[78];	(2)	EMTP	RV	(commercial)	developed	by	Mahseredjian	in
Hydro-Quebec	sponsored	by	EMTP	Development	Coordination	Group	(DCG)/EPRI	[79];	(3)
EMTDC/PSCAD	 (commercial)	 developed	 by	 Woodford	 and	 Goni	 at	 the	 Manitoba	 HVDC
Research	 Center,	 which	 was	 founded	 by	Wedepohl	 during	 his	 presidency	 of	 the	Manitoba
Hydro;	and	(4)	the	original	EMTP	(in	public	domain)	developed	by	the	BPA,	the	source	code
of	which	is	available	only	from	the	Japanese	EMTP	Committee.
SPICE,	 similar	 to	 EMTP,	 is	 a	 well-known	 software,	 especially	 in	 the	 field	 of	 power

electronics.	The	strength	of	SPICE	is	that	the	physical	parameters	of	semiconductors	are	built
into	the	software.
Table	1.13	summarizes	the	history	of	the	EMTP	from	1966	to	1991.	Since	the	early	1990s,

there	 have	 been	 many	 simulation	 tools	 related	 to	 or	 similar	 to	 the	 EMTP	 and	 many
publications	related	to	its	development,	which	are	not	covered	in	this	book.

1.8.2				Basic	Theory	of	the	EMTP
The	basic	procedure	of	an	EMTP	transient	simulation	involves	the	following	steps:

1.	Represent	all	the	circuit	elements	including	a	distributed-parameter	line	by	a	current
source	and	resistance.



TABLE	1.13	History	of	the	EMTP

1961 Schnyder–Bergeron	method	by	Frey	and	Althammer
1964 Dommel’s	PhD	thesis	in	Tech.	Univ.	Munich
1966 Dommel	started	EMTP	development	in	BPA
1968 Transients	Program	(TP	=	EMTP	Mode	0),	4000	statements
1973 Dommel	moved	to	Univ.	British	Columbia

Scott-Meyer	succeeded	EMTP	development
1976 Universal	Transients	Program	File	(UTPF)	and	Editor/Translator	Program	(E/T)

completed	by	Scott-Meyer.	UTPF	and	E/T	made	by	EMTP	could	be	used	in	any
computers	because	those	solved	machine-dependent	problems	and	prepared	a	platform
for	any	researchers	able	to	join	EMTP	development,	not	necessary	to	visit	BPA
Japanese	EMTP	Committee	founded

1976 Semlyen,	Ametani,	Brandwajn,	and	Dube	joined	the	team
1982 Marti	joined	EMTP	development
1978 First	EMTP	workshop	during	IEEE	PES	meeting
1981 First	EMTP	tutorial	course	during	IEEE	PES	meeting

DCG	proposed	by	BPA
1982 DCG	5-year	project	started,	Chairman	Vithayathil	of	BPA

Members:	BPA,	Ontario	Hydro,	Hydro-Quebec,	U.S.	Bureau	of	Reclamation,	WAPA
1983 EPRI	joined	DCG,	and	DCG/EPRI	started.	Copyright	of	EMTP	to	be	given	to

EPRI/DCG
EMTP	Mode	39	completed	and	distributed

1984 EMTP	development	in	BPA	terminated	Final	version	EMTP	Mode	42
Scott-Meyer	started	to	develop	ATP-EMTP	independently	on	BPA	and	EPRI/DCG

1985 ATP	development	transferred	to	Leuven	EMTP	Center	(LEC)	in	Belgium
ATP	ver.	2	completed.	BPA	joined	LEC

1986 DCG/EPRI	EMTP	ver.	1	completed
1987 DCG/EPRI	5	year	project	to	be	terminated	but	DCG/EPRI	project	continued

BPA	resigned	from	DCG/EPRI
1991 ATP	copyright	transferred	to	Can/Am	ATP	User	Group.	BPA	joined	Can/Am	User

Group
DCG/EPRI	ver.	2	completed

2.	Produce	a	nodal	conductance	matrix	representing	the	given	circuit.

3.	Solve	the	nodal	conductance	matrix	from	given	voltage	sources	(or	current	sources).

The	 procedure	 is	 the	 same	 for	 both	 steady	 states	 and	 transients.	 For	 transients,	 the
procedure	 is	 repeated	at	 every	 time	step	 t	=	n	 based	on	 the	known	voltages	 and	 currents	 at
time	 t	 =	 t	 −	 Δt	 in	 the	 circuit.	When	 the	 circuit	 configuration	 is	 changed	 due	 to	 switching



operations,	 for	 example,	 the	 node	 conductance	 matrix	 is	 reproduced	 from	 a	 new	 circuit
configuration.

1.8.2.1				Representation	of	a	Circuit	Element	by	a	Current	Source	and	Resistance
Figure	1.67	 illustrates	 inductance	L,	capacitance	C,	 and	a	distributed-parameter	 line	Z0	 by	 a
current	source	and	resistance.
The	representation	is	derived	in	the	following	manner.	The	voltage	and	the	current	of	the

inductance	are	related	by

Integrating	this	equation	from	time	t	=	t	−	Δt	to	t	gives

By	applying	the	trapezoidal	rule	to	the	left-hand	side	of	the	equation,	then

From	these	two	equations,

where
J(t	−	Δt)	=	v	(t	−	Δt)/RL	+	i(t	−	Δt)
RL	=	2L/Δt,	Δt:	time	step

It	 is	 clear	 from	 this	 equation	 that	 current	 i(t)	 at	 time	 t	 flowing	 through	 the	 inductance	 is
evaluated	by	voltage	v(t)	and	current	source	J(t	−	Δt),	which	was	determined	by	the	voltage
and	 current	 at	 t	 =	 t	 −	 Δt.	 Thus,	 the	 inductance	 is	 represented	 by	 current	 source	 J(t)	 and
resistance	RL	as	illustrated	in	Figure	1.67a.



FIGURE	 1.67	 Representation	 of	 circuit	 elements	 by	 resistance	 and	 current	 source.	 (a)	 Inductance.	 (b)	 Capacitance.	 (c)
Distributed	line.

Similarly,	Figure	1.67b	for	capacitance	is	derived	from	a	differential	equation	expressing
the	relation	between	the	voltage	and	the	current	of	the	capacitance.
Figure	1.67c	 is	 for	 a	 distributed-parameter	 line	whose	 voltage	 and	 current	 are	 related	 in

Equation	1.57:



where	Z0	is	the	characteristic	impedance.
This	equation	is	rewritten	at	nodes	1	and	2	as

where
τ	=	l/c	is	the	traveling	time	from	node	1	to	node	2
l	is	the	line	length
c	is	the	propagation	velocity

It	can	be	observed	 from	Equation	1.263	 that	voltage	v1(t)	 and	current	 i1(t)	 at	 node	 1,	 the
sending	end	of	the	line,	influence	v2(t)	and	i2(t)	at	the	receiving	end	for	t	≥	τ,	where	τ	is	the
traveling	time	from	node	1	to	node	2.	Similarly,	v2(t)	and	i2(t)	influence	v1(t)	and	 i1(t)	with
time	delay	τ.	In	a	lumped-parameter	element,	the	time	delay	is	Δt,	as	can	be	seen	in	Equation
1.261.	In	fact,	the	time	delay	Δt	is	not	due	to	traveling-wave	propagation,	but	it	is	a	time	step
for	 time	 discretization	 to	 numerically	 solve	 a	 differential	 equation	 describing	 the	 relation
between	 voltage	 and	 current	 of	 the	 lumped	 element.	 From	 Equation	 1.263,	 the	 following
relation	is	obtained:

where

These	results	give	the	representation	of	the	distributed-parameter	line	in	Figure	1.67c.
In	Equation	1.263,	Z0	is	the	characteristic	impedance,	which	is	frequency	dependent.	When

the	frequency	dependence	of	a	distributed-parameter	line	as	explained	in	Section	1.5	is	to	be
considered,	frequency-dependent	line	models	such	as	Semlyen’s	and	Marti’s	line	models	are
prepared	as	a	subroutine	in	the	EMTP.

1.8.2.2				Composition	of	Nodal	Conductance
In	 the	 EMTP,	 the	 nodal	 analysis	method	 is	 adopted	 to	 calculate	 voltages	 and	 currents	 in	 a
circuit.	Figure	1.68	shows	an	example.	By	applying	Kirchhoff’s	current	law	to	nodes	1–3	in
the	circuit:

where	Gi	=	1/Ri,	i	=	1	to	6.



Rearranging	this	equation	and	writing	in	matrix	form	gives

or

where
Ji	=	GiEi,	i	=	1,	2,	4,	6
[G]	is	the	node	conductance	matrix

It	 is	 clear	 from	Equation	 1.265	 that	 once	 the	 node	 conductance	matrix	 is	 composed,	 the
solution	of	the	voltages	is	obtained	by	taking	the	inverse	of	the	matrix,	as	the	current	vector
(J)	is	known.	In	the	nodal	analysis	method,	the	composition	of	the	nodal	conductance	is	rather
straightforward,	as	is	well	known	in	circuit	theory.	In	general,	nodal	analysis	gives	a	complex
admittance	matrix	because	of	jωL	and	jωC.
However,	in	the	EMTP,	since	all	of	the	circuit	elements	are	represented	by	a	current	source

and	resistance,	it	becomes	a	real	matrix.

FIGURE	1.68	Nodal	analysis.

1.8.3				Other	Circuit	Elements
Table	1.14	shows	circuit	elements	and	subroutines	prepared	in	the	EMTP.	As	observed	from
the	table,	most	circuit	elements	are	prepared	for	steady-state	and	transient	simulations	by	the
EMTP.
TACS	and	MODELS	are	computer	languages	by	which	a	user	can	produce	a	computer	code

to	 use	 as	 an	 input	 data	 in	 the	 EMTP.	 These	 were,	 in	 a	 sense,	 pioneering	 software	 before



MATLAB,	MAPLE,	and	the	like.	If	a	user	needs	to	develop	a	model	circuit	that	is	not	available
in	the	EMTP,	it	can	be	achieved	by	using	TACS	or	MODELS.
The	 usage	 of	 circuit	 elements	 and	 supporting	 routines	 in	 the	 EMTP	 is	 explained	 in	 the

EMTP	rule	books	[9,78,79–80],	and	the	theory	is	described	in	the	theory	book	[11].

SOLUTIONS	TO	PROBLEMS
1.1	S	=	πr2	=	π	×	10−4,	ℓ	=	π	×	2	×	10−2:

At	50	Hz:	Zc	=	Rdc	+	jωLc,	Rdc	=	0.0637	Ω/km:

At	100	kHz:

1.2	Same	as	Problem	1.1
1.3	

TABLE	1.14	Circuit	Elements	and	Subroutines	Prepared	in	the	EMTP





1.4	For	f	=	50	Hz,	a	low-frequency	approximation	is	good	enough	(see	Example	1.5):

For

1.5	The	earth-return	impedance	is	far	greater	than	the	conductor	internal	impedance;	thus,
the	latter	can	be	neglected.	However,	in	a	steady-state	analysis	such	as	fault	and	load
flow	calculations	in	a	multiphase	line,	the	positive-sequence	(mode	1)	component	is
important,	and	the	conductor	internal	impedance	is	dominant	for	the	positive-sequence
component.

1.6	he	≫	hi,	Sij	=	2he:



1.7	ln	{2	(h	+	he)/r}	=	ln	(2h/r)	+	ln	(1	+	he/h)	≒	ln	(2h/r)	+	he/h	=	P0	+	he/h}

1.8	
1.9	In	Section	1.3.4.1,	ω	=	2αβ/(LG	+	CR).	For	ω	→	0(ω	=	0),	 .	Thus,	

.
1.10	 	for	ω	=	0.	From	Equation	1.124,	Is	=	Y0	•	E	coth	(Γℓ)	=	Y0E	coth

(θ).
For	G	→	0,	θ	→	0;	exp	(θ)	→	1	+	θ,	coth	(θ)	→	1/θ

1.11	Vr	=	(A	−	BC/A)E	−	(B/AZr)Vr	=	E	−	(B/AZr)Vr;	A	≠	0	∴Vr	=	ZrE/(AZr	+	B)
1.	



2.	A	=	1	+	zℓ	•	yℓ/2	=	1	−	ω2LCℓ2/2	=	1	−	θ2/2,	B	=	Z	ℓ	=	jωLℓ	=	jZ0θ,	Z	=	jωL,	y	=	jωC

a.	Zr	=	1	Ω:	Vr	=	E/(cos	θ	+	jZ0	sin	θ),	

b.	Z1	=	Z0:	Vr	=	E/(cos	θ	+	j	sin	θ)Z0	=	E	•	e−jθ)/Z0,

c.	Zr	=	∞:	Vr	=	E/cos	θ,
f	=	50	Hz,	ω	=	100π,	ℓ	=	300	km,	 τ	=	1	ms	=	10−3,	 θ	=	0.1π	=	0.3142,	cos	θ	=	0.9511,
sin	θ	=	0.3090,	1	−	θ2/2	=	0.9506

1.12	BC	−	A	•	Dt	=	U

1.13	

a.	A1n	=	1(n	=	1	-	3),	A31	=	A33	=	1,	A32	=	-1,	 ,	A22	=	0,	A32	=	-1,	A23	=	-2

b.	Q1	=	48,	Q2	=	30,	Q3	=	24,	An1	=	1(n	=	1	−	3),	A12	=	A13	=	A33	=	1,	A22	=	0,	A32	=	−1,
A23	=	−2

c.	Q1	=	50,	Q2	=	30,	Q3	=	25,	A1n	=	1,	A31	=	A33	=	1,	A32	=	−1,	

1.14	Modal	impedances	and	admittances	for	modes	2	and	3	are	identical	because	all	the	off-
diagonal	elements	of	the	series	impedance	and	shunt	admittance	matrices	are	the	same,
and	the	diagonal	elements	are	also	the	same	in	a	transposed	line.

1.15	Add	a	very	small	value	to	an	element	of	matrix	A.	In	a	numerical	calculation	by	a
computer,	Aij	≠	Aji	if	one	observes	the	values	of	Aij	and	Aji	for	more	than	a	certain
number	of	digits.

1.16	At	infinite	frequency,	an	element	of	the	impedance	and	admittance	matrices	becomes
infinite.	In	a	perfectly	conducting	system,	Z ⋅ Y	becomes	diagonal.

1.17	Mode	0	(earth-return	mode):	no	significant	difference.
Modes	1	and	2	(aerial	modes)	are	identical	in	transposed	lines,	but	they	are	different

in	untransposed	lines.



1.18	I	=	(2e0/Z0){1	−	exp(−t/τ)},	V	=	2e0	•	exp(−t/τ),	er	=	2e0,	er	=	2e0{2	•	exp(−t/τ)	−	1},	τ	=
L/Z0

1.19	V	=	(2e0/a){R1	+	R2	−	(Z0R1/b)exp(−t/τ)},	τ	=	CR1b/a,	a	=	Z0	+	2(R1	+	R2)	b	=	Z0	+	2R2
1.20

(c)	 Because	 of	 lower	 surge	 impedance	 in	 a	 cable,	 the	 cable	 end	 voltage	 gradually
increases	with	multiple	reflections	within	the	cable.

1.21	Vrb:	similar	waveform	to	Vra	in	Figure	1.52
Vra	=	Vrc:	similar	waveform	to	the	average	of	Vrb	and	Vra	in	Figure	1.52

1.22	Results	calculated	by	Equations	7.11	7.12	are	given	in	Table.	1.11.
1.23	Calculated	results	are	given	in	Table	1.12	as	Approx.	=	Jordan.
1.24



1.25	Formulas	in	Section	1.7.2	show	a	satisfactory	accuracy	in	comparison	with	a	number
of	measured	results,	and	these	are	good	enough	from	the	viewpoint	of	engineering
practice	similar	to	the	results	in	the	Electrician	Handbook.	However,	the	concept	of
penetration	depth	is	based	on	the	theory	of	“electrostatics”	within	the	TEM	mode	wave
propagation.	Thus,	the	formulas	cannot	be	applied,	in	principle,	to	electromagnetic
phenomena	and	non-TEM	mode	wave	propagation.
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Transients	on	Overhead	Lines
	

	
	

2.1 Introduction
There	are	various	kinds	of	transients	in	a	power	system.	In	general,	overvoltages	caused	by
transients	 are	 important	 in	 a	 power	 system	 because	 of	 its	 insulation	 against	 overvoltages.
Table	2.1	summarizes	overvoltages	in	a	power	system	[1,2].	A	temporary	overvoltage	is	one
caused	by	an	abnormal	system	condition	such	as	a	line	fault,	and	is	evaluated	by	the	steady-
state	 solution	 of	 an	 abnormal	 system	 condition.	 Thus,	 temporary	 overvoltage	 is	 not
considered	a	transient	overvoltage.	A	typical	example	of	temporary	overvoltage	caused	by	a
line-to-ground	 fault	 is	 shown	 in	 Figure	 2.1.	 Immediately	 after	 the	 initiation	 of	 the	 line-to-
ground	fault,	a	transient	called	“fault	surge”	occurs,	but	dies	out	in	a	few	milliseconds.	Then,
a	sustained	dynamic	overvoltage	is	observed.	This	is	called	the	“temporary	voltage.”
A	transient	on	a	distributed	parameter	line	is	called	a	“surge”	because	the	transient	is	caused

by	 traveling	 waves.	 An	 overvoltage	 due	 to	 a	 surge	 is,	 in	 general,	 much	 greater	 than	 the
temporary	 overvoltage,	 and	 thus,	 the	 insulation	 of	 a	 transmission	 system	 is	 mainly
determined	by	the	surge	overvoltage	[3].
In	this	chapter,	the	following	surges	on	overhead	lines	are	explained:

Switching	surges
Fault	initiation	and	fault-clearing	surges
Lightning	surges

In	 addition,	 theoretical	 analyses	 of	 transients	 (using	 hand	 calculations)	 are	 explained.
Finally,	 this	 chapter	 describes	 a	 frequency-domain	 (FD)	method	 of	 transient	 simulations,	 a
computer	code	of	which	can	be	readily	developed	by	the	reader.

TABLE	2.1
Classification	of	Overvoltages



FIGURE	2.1
A	temporary	overvoltage	due	to	a	line-to-ground	fault.

	
	

2.2					Switching	Surge	on	Overhead	Lines
2.2.1					Basic	Mechanism	of	A	Switching	Surge
In	a	single	distributed	parameter	line	the	remote	end	of	which	is	open-circuited,	as	illustrated
in	Figure	2.2,	the	remote-end	voltage,	V2,	 is	given	in	the	following	equation	as	described	in
Section	1.6.1,	when	switch	S	is	closed	at	t	=	0:

V2	=	λ2f	⋅	E	=	2E for	τ	≤	t	<	3τ



FIGURE	2.2
An	open-circuited	single	conductor.

This	 voltage	 is	 called	 the	 “switching	 (surge)	 overvoltage,”	which	 reaches	 2	 pu	 (per	 unit
voltage	=	V/E)	in	a	single	lossless	line:

In	reality,	the	voltage	is	reduced	to	less	than	2	pu	because	of	the	traveling-wave	attenuation
from	the	sending	end	to	the	remote	end	caused	by	a	resistance	in	the	conductor	(see	Section
1.6.4.4).	 However,	 a	 real	 transmission	 line	 has	 three	 phases,	 and	 a	 switching	 operation
involves	switching	of	 three	phase	switches.	Then,	a	switching	surge	on	one	phase	 induces	a
switching	surge	on	the	other	phases.	In	addition,	traveling	waves	are	reflected	at	a	boundary,
such	 as	 a	 transformer	 or	 a	 series	 capacitor,	 and	 overlap	 the	 original	 waves.	 Thus,	 the
maximum	switching	overvoltage	can	be	higher	 than	3	pu,	depending	on	 the	circuit	breaker
(CB)	 operation	 sequence,	 the	 phase	 angles	 of	 three-phase	 alternate	 current	 (AC)	 source
voltages,	line	length,	etc.
A	switching	surge	voltage	on	a	lossless	line	is	given	by	a	solid	line	in	Figure	2.3	for	a	long

time	 period.	When	 attenuation	 constant	 α	 due	 to	 a	 line	 resistance	 is	 considered,	 the	 surge
waveform	is	distorted	by	exp(–αt)	as	time	passes,	and	the	dotted	line	in	Figure	2.3	is	obtained.
After	a	certain	time	period,	the	oscillating	surge	voltage	converges	to	the	steady-state	voltage
of	1	pu	(=	E).

2.2.2					Basic	Parameters	Influencing	Switching	Surges

2.2.2.1				Source	Circuit

2.2.2.1.1					Source	Impedance	Zs
The	voltage	source	E	in	Figure	2.2	has	none	of	 the	 internal	 impedance	 that	an	 ideal	voltage
source	with	infinite	capacity	would	have.	In	practice,	no	ideal	source	exists,	and	every	source
has	 its	own	internal	 impedance.	Also,	a	 transformer	 is	connected	 to	a	generator	 to	supply	a
higher	 voltage	 to	 a	 transmission	 line.	 The	 transformer	 has	 an	 inductance	 and	 is	 often
represented	in	a	transient	calculation	by	its	leakage	inductance	L	[H],	which	is	evaluated	by	its
capacity	P	[W],	rated	voltage	V	[V],	and	percent	impedance	(%Z)	as



FIGURE	2.3
Switching	surge	waveforms	on	a	single	conductor.

where	ω	=	2πf,	f:	source	(power)	frequency	of	50	or	60	(Hz).
For	example,	P	=	1000	MW,	V	=	275	kV,	%Z	=	15,	and	f	=	50	Hz:

When	there	is	a	source	inductance	as	illustrated	in	Figure	2.4,	a	switching	surge	waveform
differs	significantly	from	those	shown	in	Figure	2.3.	The	sending	and	receiving	end	voltages
in	Figure	2.4	are	obtained	in	a	manner	similar	to	that	 in	Section	1.6.2.3(4)	or	Problem	1.18,
when	the	source	voltage	e(t)	=	E,	the	step	function	voltage,	is	applied	to	the	sending	end:

FIGURE	2.4
A	single-phase	line	with	an	inductive	source	e(t)	=	E	cos(ωt).



where	τ	=	L/Z0,	t′	=	t	–	τ.
For	example,	if	τ	=	0.12	ms	for	L	=	36	mH	and	Z0	=	300	Ω,	then

Considering	this	result,	V1	and	V2	are	drawn	as	in	Figure	2.5,	assuming	that	2τ	=	0.5	ms.
A	 case	 of	 no	 source	 inductance	 is	 included	 in	 Figure	2.3,	which	 is	 shown	 by	 the	 dashed

lines	(–	–	–).	Because	of	the	inductance,	the	rise	time	of	the	wave	front	becomes	longer,	and
the	surge	waveform	is	observed	to	be	highly	distorted.
When	a	number	of	generators,	transformers,	and/or	transmission	lines	are	connected	to	the

bus	in	Figure	2.4,	the	source	impedance	Zs	≒	jωL	becomes	very	small.	Such	a	bus	is	called	an
“infinite	bus,”	and	the	source	circuit	becomes	equivalent	to	the	ideal	source	in	Figure	2.2.	A
switching	 overvoltage	 generated	 in	 the	 infinite	 bus	 case	 is	 the	 severest,	 as	 observed	 from
Figure	2.3.

2.2.2.1.2					Sinusoidal	AC	Source
Equation	2.3	shows	that	a	switching	overvoltage	increases	as	the	source	voltage	E	increases.	A
sinusoidal	 AC	 source	 voltage	 is	 often	 approximated	 by	 its	 amplitude	E	 as	 a	 step	 function
voltage	because	 the	 time	period	of	 the	switching	surge	 is	much	smaller	 than	 the	oscillating
period	T	of	the	AC	voltage.

FIGURE	2.5
Effect	of	the	source	inductance	on	the	switching	surge.



where	ω	=	2πf,	f	=	50	or	60	(Hz):

In	such	a	time	period,	the	AC	voltage	in	Equation	2.4	can	be	regarded	as	a	step	voltage	with
amplitude	E.
When	 calculations	 for	 a	 much	 longer	 time	 period	 are	 required,	 a	 source	 should	 be

represented	 as	 a	 sinusoidal	 AC	 source.	 In	 the	 case	 of	 fault	 clearing	 and	 load	 rejection
overvoltages,	 the	 observation	 time	 exceeds	 1	 s,	 and	 the	 mechanical	 and	 electrical
characteristics	(including	generator	control)	of	the	generator	should	be	considered.	In	such	a
case,	the	sinusoidal	AC	source	is	not	appropriate,	and	Park’s	generator	model	is	often	used.

2.2.2.1.3					Impulse/Pulse	Generator
An	impulse	generator	(IG)	and	a	pulse	generator	(PG)	are	often	used	to	measure	the	transient
response	 of	 a	 transmission	 line	 or	 cable,	 a	 grounding	 electrode,	 or	 a	machine.	 The	 IG	 is
composed	of	capacitors,	and	the	recent	PG	is	composed	of	a	coaxial	cable,	which	is	a	kind	of
capacitor.	An	impulse	voltage	and	a	pulse	voltage	are	generated	by	charging	the	capacitors,
which	become	a	capacitive	source.	The	simplest	IG	and	PG	model	is	an	ideal	source	voltage
with	a	given	wave	shape,	that	 is,	 the	wave	front	time	Tf	and	tail	Tt,	or	rise	time	Tf	and	pulse
width	Tw.	When	 the	 IG	 is	 to	 be	modeled	 accurately,	 all	 the	 elements	 of	 the	 IG,	 that	 is,	 the
capacitances,	resistances,	and	inductances,	should	be	considered	based	on	the	circuit	diagram.
The	PG	is	represented	accurately	as	a	charged	cable	in	a	transient	calculation.

2.2.2.2					Switch
There	are	various	types	of	switches.	In	a	transmission	system,	a	CB	to	interrupt	current	is	the
most	 common.	For	 an	ordinary	 switching	 surge	calculation,	 the	CB	 is	modeled	as	 an	 ideal
switch	 controlled	 by	 time.	When	 recovery	 and	 restriking	 transients	 are	 to	 be	 analyzed,	 the
dynamic	 characteristics	 of	 a	CB,	 especially	 for	 a	 vacuum	CB	or	 an	 interrupter,	 have	 to	 be
considered.	These	characteristics	are	highly	dependent	on	the	material	of	the	electrode	and	the
CB’s	operation	mechanism.
A	 line	 switch	 (LS)	 or	 a	 disconnector	 (DS)	 is	 used	 in	 a	 substation	 to	 interrupt	 voltage.

Because	the	operating	speed	of	an	LS/DS	is	generally	slow,	it	cannot	be	modeled	as	a	time-
controlled	 switch	 like	 a	 CB.	 Instead,	 an	 LS/DS	 is	 modeled	 as	 a	 voltage-controlled	 switch
enabling	it	to	handle	a	restriking	voltage	during	a	transient.
For	analyzing	a	very	fast	front	surge	(switching	surge	in	a	gas-insulated	bus)	or	a	lightning

surge,	stray	capacitances	of	a	CB	between	poles	and	the	ground	have	to	be	considered.

2.2.2.3					Transformer
As	explained	 in	Section	2.2.2.1.1,	a	 transformer	 is	 represented	by	 its	 leakage	 inductance	for
most	switching	surge	analyses.	When	dealing	with	a	fault	surge,	especially	in	a	low	voltage



system	 with	 a	 transformer	 of	 high	 resistance	 grounding	 or	 an	 isolated	 neutral,	 the
transformer	winding,	either	the	Y	or	Δ	connection,	has	to	be	taken	into	account.	Occasionally,
the	magnetizing	impedance	of	the	iron	core	has	to	be	considered.
For	 a	 lightning	 surge	 analysis,	 stray	 capacitances	 between	 the	 primary	 and	 secondary

windings,	windings	to	the	ground,	and	between	phases,	are	to	be	considered	especially	in	the
case	of	a	transferred	surge.

2.2.2.4					Transmission	Line
As	described	in	Section	2.2.1,	the	attenuation	of	a	traveling	wave	due	to	conductor	resistance
along	a	transmission	line	affects	a	switching	surge	waveform	(see	Figure	2.3).	It	is	explained
in	 Section	 1.5.2	 that	 the	 series	 impedance	 of	 a	 transmission	 line	 is	 notably	 frequency
dependent,	 and	 so	 are	 the	 attenuation	 and	 propagation	 velocity	 of	 the	 traveling	wave.	As	 a
result,	the	traveling	wave	is	distorted	as	it	travels	along	the	line,	as	shown	in	Figures	1.28	and
1.49.	 Frequency	 dependence	 has	 a	 sig-nificant	 effect	 on	 the	 switching	 surge	 waveform.
Therefore,	the	frequency-dependent	effect	should	be	included	in	an	accurate	calculation	of	a
switching	surge.	This	can	be	done	by	using	the	method	explained	in	Section	1.5.3.1.
However,	a	source	 inductance	also	causes	significant	wave	deformation,	as	 in	Figure	2.5.

Then,	considering	only	the	resistance	of	a	trans-mission	line	can	give	a	reasonable	result	of	a
switching	surge	waveform.	This	is	a	safer	option	from	the	viewpoint	of	the	insulation	design
and	 coordination	 of	 a	 transmission	 system	 and	 a	 substation,	 because	 the	 switching
overvoltage	is	estimated	to	be	more	severe	than	that	in	an	accurate	calculation.

2.2.3					Switching	Surges	in	Practice

2.2.3.1				Classification	of	Switching	Surges

Switching	surges	are	generated	by	a	switching	operation	of	a	CB	and	are	classified	as	follows
[1]:

a.	Closing	surge—CB	closing (1)	energization	of	a	line
(3)	reenergization	(reclosing	surge)

b.	Clearing	surge—CB	opening (2)	fault	clearing

(1),	(2),	and	(3)	indicate	the	sequence	of	a	CB	operation.



FIGURE	2.6
A	model	circuit	of	a	switching	surge	analysis.

Closing	surges	are	caused	by	closing	switch	contact	S1	of	the	CB,	as	illustrated	in	Figure
2.6,	and	the	resultant	overvoltage	is	called	the	“closing	surge	overvoltage.”	Reclosing	surges
are	 generated,	 in	 practice,	 after	 fault	 clearing,	 as	 explained	 earlier.	 That	 is,	 when	 a	 fault
occurs	in	a	power	system,	the	faulty	line	has	to	be	cleared	from	the	source	as	soon	as	possible
to	avoid	damage	to	the	line	and	machineries	in	the	system	from	a	large	fault	current.	Thus,	the
CB	connected	to	the	faulty	line	is	opened.	In	most	cases,	a	line	fault	is	referred	to	as	a	“line-
to-ground	fault,”	originally	due	to	lightning,	and	is	sustained	by	an	electrical	arc	the	energy
for	 which	 is	 supplied	 by	 a	 generator	 in	 the	 system.	 Therefore,	 when	 the	 energy	 from	 the
generator	 is	 shut	down	by	making	 the	CB	off,	 the	arc	 is	distinguished	and	 the	 fault	 itself	 is
cleared.	At	this	stage,	the	fault-clearing	surge	is	generated.
After	 the	 fault	 clearing,	 the	 system	 generally	 has	 to	 be	 returned	 to	 normal	 operation	 as

soon	as	possible.	As	a	consequence,	the	CB	may	be	reclosed.	When	the	time	period	from	the
fault	 clearing	 to	 the	 reclosing	 of	 the	CB	 is	 not	 long	 enough	 for	 the	 trapped	 charge	 on	 the
faulted	line	to	be	discharged,	there	will	be	a	“residual	charge	voltage”	on	the	line.	This	means
that	the	reclosing	surge	requires	the	initial	condition	of	the	line	to	be	closed.	In	other	words,
the	difference	between	the	reclosing	and	closing	surges	is	the	presence	of	an	initial	charge,	or
voltage.
It	is	a	common	practice	to	classify	the	fault-clearing	surge	not	as	a	closing	surge	but	as	a

fault	surge	since	it	occurs	as	a	consequence	of	a	fault.
It	 is	 clear	 from	 Section	 2.1	 that	 the	 maximum	 closing	 overvoltage	 is	 2	 pu	 on	 an	 ideal

lossless	 single	 phase	 line.	 However,	 the	 reclosing	 overvoltage	 easily	 reaches	 4	 pu	 due	 to
mutual	coupling	of	the	phases,	CB	closing	time	differences	between	the	phases,	and	residual
voltages	in	an	actual	multiphase	line.

2.2.3.2					Basic	Characteristics	of	a	Closing	Surge:	Field	Test	Results
Figure	2.7b	shows	a	field	test	result	of	a	closing	surge	on	the	untransposed	horizontal	line	in
Figure	1.22	for	the	middle	phase	closing	illustrated	in	Figure	2.7a	[4,5].	The	source	voltage
has	a	waveform	of	1/4000	µs.





FIGURE	2.7
Switching	surge	waveforms	on	a	500	kV	untransposed	horizontal	line.	(a)	Test	circuit:	ℓ	=	83.212	km	(line	configuration	Figure
1.22).	(b)	Measured	and	calculated	results.	(c)	Analytical	waveforms	corresponding	to	(b).

At	 the	 receiving	 end,	 phase	b	 voltage	 rises	 very	 rapidly	 (A	 in	 Figure	 2.7b)	 immediately
after	the	arrival	of	the	traveling	wave	(t	=	0	in	Figure	2.7b)	and	becomes	nearly	flat	for	about
20	µs	(B).	Then,	it	rises	again	gradually	(C)	as	observed	in	Figure	2.7b.	The	induced	phase	(a,
c)	voltage	becomes	negative	at	the	beginning	and	gradually	increases	to	a	positive	value.	This
condition	is	a	typical	characteristic	of	a	closing	surge	at	the	wave	front	and	is	due	to	different
propagation	 velocities	 of	 the	 earth	 return	 and	 aerial	 modes,	 as	 explained	 in	 Section	 1.6.4.
Figure	2.7c	shows	 the	analytical	 results	obtained	by	 the	method	 in	Section	1.6.4.	The	 figure
clearly	explains	the	characteristics	of	the	closing	surge	observed	in	Figure	2.7b.
In	Figure	2.7b,	the	dotted	line	is	the	result	calculated	by	an	FD	method	based	on	the	steady-

state	solution	and	the	numerical	Laplace	transform	[6].	The	calculated	result	agrees	quite	well
with	the	field	test	result.
A	field	test	result	for	the	phase	“a”	application	in	the	test	circuit	of	Figure	2.7a	can	be	found

in	Chapter	1,	Section	1.6.4.	Additional	explanations	of	this	field	test	are	given	in	Appendices
2A.1	and	2A.2.
Figure	2.8b–d	shows	another	field	test	result	on	the	test	circuit,	illustrated	in	Figure	2.8a,	of

an	untransposed	vertical	double-circuit	line	[7,8].	The	applied	source	voltage	has	a	waveform
of	1/5000	µs.	In	Figure	2.8,	the	source	resistance	R	was	403	Ω	in	tests	(b)	and	(c)	and	150	Ω	in
test	(d),	in	which	all	six	phases	were	short-circuited	at	the	sending	end.
It	is	observed	in	Figure	2.8b	that	twice	the	traveling	time	of	the	fastest	wave	is	about	681	µs,

which	results	in	a	propagation	velocity	of	101.13	km/681	µs	=	297	m/µs.	Also,	it	is	observed
that	the	rising	part	of	the	wave	front	during	the	time	period	of	680–700	µs	has	two	events	of



voltage	increase.	The	first	rise	is	due	to	the	arrival	of	the	fastest	traveling	wave	at	the	sending
end,	which	corresponds	to	modes	2,	4,	and	5,	as	explained	in	Section	1.5.2.	Then,	the	second-
fastest	wave	corresponding	to	mode	1	arrives	at	the	sending	end,	causing	another	rise	in	the
sending	end	voltage.	The	modal	velocity	for	modes	2,	4,	and	5	is	estimated	at	about	299.2	m/
µs,	 and	 that	 of	 mode	 1	 is	 estimated	 at	 about	 298.4	 m/µs	 at	 1	 kHz	 from	 Figure	 1.26.	 The
difference	is	the	1.8-µs	delay	in	the	arrival	time	of	mode-1	wave	from	those	of	modes	2,	4,
and	5.	This	delay	is	the	cause	of	the	“stair	case”	rise	in	the	sending	end	voltage	observed	in
Figure	2.8b.



FIGURE	2.8
Field	test	results	of	closing	surges	on	an	untransposed	vertical	twin-circuit	line	in	Figure	1.25	with	a	length	of	101.13	km.	(a)
Test	circuit.	 (b)	Phase	a	sending	end	voltage	for	phase	a	 application.	 (c)	Receiving	end	voltages	 for	phase	c	 application.	 (d)
Receiving	end	voltages	for	a	source	application	to	all	the	phases	in	the	short	circuit.



Figure	2.8c	shows	the	receiving	end	voltages	when	the	source	voltage	is	applied	to	phase	c.
On	phases	a′	and	b′,	a	voltage	spike	is	observed	just	after	 the	arrival	of	 the	fastest	 traveling
wave.	This	phenomenon	is	the	same	as	that	explained	in	Section	1.6.4.5	for	the	induced	phase
(phase	 c)	 voltage	 on	 an	 untransposed	 horizontal	 line.	 An	 analytical	 result	 of	 the	 phase	 a′
voltage	based	on	the	parameters	at	f	=	2	kHz	of	Figure	1.26	is	given	by

where	
The	voltage	waveforms	are	illustrated	in	Figure	2.9,	which	clearly	shows	the	voltage	spike.

No	voltage	spike	occurs	on	phase	c′	because	the	voltages	of	modes	2,	4,	and	5	are	canceled
out.
Figure	2.8d	indicates	that	aerial	mode	voltages	exist	even	in	the	case	of	voltage	application

to	all	phases.	This	cannot	be	explained	by	conventional	symmetrical	component	theory.	Modal
theory	 predicts	 aerial	 mode	 components	 at	 28%	 on	 the	 upper	 phase,	 7.6%	 on	 the	 middle
phase,	and	13%	on	the	lower	phase,	which	agrees	well	with	the	field	test	results	of	20%,	4.3%,
and	11%,	respectively.

FIGURE	2.9
Analytical	voltage	waveform	of	phase	a′	corresponding	to	Figure	2.8c.

2.2.3.3					Closing	Surge	on	a	Single	Phase	Line
Figure	2.10	shows	closing	surges	on	a	single	phase	line.	The	broken	line	in	the	figure	is	the
case	of	neglecting	 the	frequency-dependent	effect	 (wave	deformation)	explained	 in	Sections
1.5.2	and	1.5.3.	It	is	observed	that	an	oscillating	surge	voltage	is	sustained	for	a	long	time	and
the	 maximum	 overvoltage	 reaches	 –2.67	 pu	 at	 t	 =	 10.2	 ms.	 In	 the	 case	 where	 the	 wave



deformation	given	by	the	dotted	line	is	included,	the	oscillation	is	damped	as	time	increases,
and	the	maximum	voltage	is	reduced	to	about	2.0	pu.	This	clearly	indicates	the	significance	of
the	frequency-dependent	effect	on	a	switching	surge	analysis.	If	it	is	neglected,	the	insulation
level	 against	 the	 switching	 surge	 will	 be	 overestimated,	 resulting	 in	 an	 economical
inefficiency.

FIGURE	2.10
Single-phase	closing	surges.	(a)	Circuit	diagram.	(b)	Calculated	result.

In	 extra-high-voltage	 (EHV)	 and	 ultra-high-voltage	 (UHV)	 transmission	 systems,	 it	 is	 a
common	practice	to	control	the	closing	surge	overvoltage	by	means	of	an	insertion	resistor



(closing	resistor)	or	by	synchro-nized	switching	of	the	CB.	The	effect	of	the	closing	resistor
is	 shown	by	 the	dashed-dotted	 line	 (–.–.–)	 in	Figure	2.10.	 It	 is	 quite	 clear	 how	effective	 the
closing	resistor	 is	 in	damping	 the	overvoltage;	 the	maximum	overvoltage	 is	 reduced	 to	1.2
pu.	 The	 resistor	 is	 also	 used	 to	 damp	 a	 fault-clearing	 surge	when	 necessary.	 Synchronized
switching	 means	 that	 every	 phase	 is	 closed	 when	 the	 phase	 voltage	 is	 zero.	 Thus,	 no
overvoltage	appears	in	theory.	Such	CBs	are	widely	used	in	Europe.

2.2.3.4					Closing	Surges	on	a	Multiphase	Line

2.2.3.4.1					Wave	Deformation
Figure	 2.11	 shows	 a	 closing	 surge	 due	 to	 a	 sequential	 closing	 of	 a	 three-phase	 CB	 on	 an
untransposed	horizontal	line.	The	effect	of	wave	deformation	on	the	switching	surge	is	also
clear	even	in	the	multiphase	line.

FIGURE	2.11
Switching	surges	at	the	receiving	end	for	sequential	closing.	(a)	Line	configuration—PW:	radius	=	0.1785	m,	resistivity	=	3.78	×
10−8	Ω	m;	GW:	radius	=	8.8	mm,	resistivity	=	5.36	×	10−8Ω	m,	 line	 length	=	150	km,	and	source	 inductance	=	50	mH.	 (b)
Calculated	results:	phase	1	closed	at	90°	 (t	=	0,	v	=	1	pu),	phase	2	at	150°,	phase	3	at	180°,	no	wave	deformation;	——:
phase	1,	–.–.–:	phase	3	wave	deformation,	earth	resistivity	=	100	Ω	m;	……:	phase	1,	×:	phase	3.

2.2.3.4.2					Closing	Angle	Distribution



It	is	assumed	in	Figure	2.11	that	each	phase	of	the	CB	is	closed	sequentially	at	electrical	angles
of	 90°,	 150°,	 and	 180°.	 In	 reality,	 it	 is	 not	 clear	 if	 a	 pole	 of	 any	CB	 is	 closed	 as	 planned,
because	 of	 the	mechanical	 structure	 of	 the	CB.	 Figure	2.12	 shows	 a	 distribution	 of	 the	CB
closing	 angles.	 Figure	 2.12a	 and	 b	 is	 an	 analytical	 distribution	 often	 used	 for	 a	 statistical
analysis,	 and	 Figure	 2.12c	 shows	 the	 measured	 distributions.	 Figure	 2.12c1	 is	 a	 measured
result	of	time	dispersion	of	the	three	phases	of	a	CB.	Figure	2.12c2	is	another	measured	result
of	the	time	delay	between	the	phases.
The	 calculated	 results	 of	 the	 statistical	 distribution	 of	 closing	 overvoltages	 for	 the	 four

previously	mentioned	 distributions	 of	 CB	 closing	 angles	 are	 shown	 in	 Figure	 2.13.	 In	 the
cases	of	uniform	and	Gaussian	dis-tributions,	the	maximum	time	delay	of	the	closed	first	and
third	phases	 is	assumed	 to	be	 less	 than	7.5	ms.	The	 total	number	of	 switching	operations	 is
taken	as	100	for	simplicity.	For	an	insulation	design,	at	least	1000	operations	are	required	to
obtain	more	detailed	data	of	an	overvoltage	distribution.	The	calculated	results	 indicate	 that
the	difference	in	the	CB	closing-angle	distribution	causes	noticeable	differences,	especially	in
the	maximum	and	minimum	overvoltages.	For	example,	the	maximum	overvoltage,	that	is,	an
overvoltage	 that	 has	 the	 lowest	 probability	 of	 occur-rence,	 in	 Figure	 2.12c1	 is	 greater	 by
about	0.3	pu	than	that	in	Figure	2.12a	and	c2.	In	the	case	of	Gaussian	distribution,	a	difference
of	0.12	pu	is	ob-served	in	the	maximum	overvoltage	for	6σ	=	7.5	ms	and	5	ms,	where	σ	is	the
standard	 deviation.	 This	 observation	makes	 it	 clear	 that	 the	 distribution	 of	 the	 CB	 closing
angles	 affects	 the	maximum	overvoltage	 significantly,	 and	 thus	one	has	 to	be	 careful	when
choosing	the	distribution.



FIGURE	2.12
Various	 distribution	 characteristics	 of	 closing	 angles.	 (a)	 Uniform	 distribution.	 (b)	 Gaussian	 distribution.	 (c1,	 c2)	 Measured
distribution	in	a	field	test.



FIGURE	2.13
Statistical	 distribution	 curves	 of	 maximum	 switching	 overvoltages	 (ℓ	 =	 150	 km,	 Ls	 =	 50	 mH	 in	 Figure	 1.22).	 (a)	 Uniform
distribution	(Figure	2.12a),	where	×	measured	distribution	(Figure	2.12c1),	⦁	measured	distribution	(Figure	2.12c2).	(b)	Gaussian
distribution	(Figure	2.12b).



FIGURE	2.14
Distribution	characteristics	of	maximum	switching	overvoltages	(θa	=	90°,	ℓ	=	150	km,	and	Ls	=	50	mH).

Figure	2.14	shows	a	contour	 line	expression	of	maximum	overvoltages	when	the	phase	a
closing	angle	θa	 is	fixed	at	90°.	It	can	be	observed	from	the	figure	that	higher	overvoltages
distribute	 along	 the	 axes	 of	 θc	≒	 150°	 and	 θb	 ≒	 210°.	 It	 can	 also	 be	 seen	 that	 higher
overvoltages	appear	along	the	axis	of	θa	≒	90°	when	θa	is	varied.	Thus,	it	can	be	concluded
that	 severe	 overvoltages	 appear	 along	 the	 axes	 of	 θa	≒	 90°,	 θb	 =	 210°,	 and	 θc	≒	 150°,	 as
illustrated	in	Figure	2.15	in	3D	space.	This	is	quite	reasonable	because	the	source	voltage	on
each	phase	peaks	at	the	angle,	and	the	voltage	difference	across	the	CB	terminals	of	the	source
and	line	sides	becomes	the	largest	before	closing	the	CB	of	the	phase	if	the	mutual	coupling
and	the	residual	voltage	are	neglected.	It	is	clear	that	the	most	severe	overvoltage	is	generated
when	the	CB	is	closed	with	the	largest	voltage	difference	across	the	CB.	In	reality,	however,
the	closing	angle	 that	generates	 the	most	severe	overvoltage	 is	 somewhat	different	 to	some
degree	due	 to	 the	effects	of	 the	mutual	 coupling	between	 the	phases,	 the	 source	 inductance,
and	the	residual	voltage	(if	any).

2.2.3.4.3					Resistor	Closing
It	 is	a	common	practice	 to	 insert	a	closing	resistor	 into	a	CB	on	EHV	and	UHV	systems	 in
Japan.	 Figure	 2.16	 shows	 the	 effect	 of	 resistor	 closing	 on	 the	 closing	 surge	 on	 the
untransposed	vertical	double-circuit	line	in	Figure	1.25	with	a	line	length	of	101.13	km.	It	is
quite	clear	that	the	overvoltage	with	no	closing	resistor	is	reduced	to	about	half	of	that	with	a
closing	resistor.



FIGURE	2.15
3D	expression	of	maximum	switching	overvoltages.

Figure	 2.17	 shows	 the	 effect	 of	 closing	 resistors	 on	 maximum	 overvoltages	 for	 both
closing	and	reclosing	surges.	It	is	observed	that	the	surge	overvoltage	generated	by	resistor
closing	decreases	as	the	value	of	the	resistor	increases.	However,	the	overvoltage	generated
from	short-circuiting	the	resistor	increases	as	the	value	of	the	resistor	increases.
Thus,	 an	 optimum	value	 of	 the	 closing	 resistor	 exists.	 It	 is	 300	Ω	 in	 the	 closing	 case	 in

Figure	2.17a.	Resistor	 closing	 is	more	 effective	 in	 the	 reclosing	 case	 in	 Figure	 2.17b.	 The
maximum	overvoltage	of	3.5	pu	is	reduced	to	1.3	pu	in	the	reclosing	case,	while	it	is	2.2–1.2
pu	in	the	closing	case.

2.2.3.4.4					Closing	Surge	Suppression	by	an	Arrester
The	 original	 purpose	 of	 an	 arrester	 is	 to	 protect	 power	 apparatuses	 from	 a	 lightning
overvoltage.	But	it	can	also	be	applied	to	suppress	a	switching	overvoltage	on	a	UHV	system
thanks	 to	 the	 ZnO	 arrester,	 the	 development	 of	 which	 has	 greatly	 improved	 arrester
performance.	Figure	2.18a	shows	a	typical	characteristic	of	a	ZnO	arrester.	Figure	2.19	shows
an	 application	 example	 of	 the	 ZnO	 attester,	 which	 has	 the	 voltage–current	 characteristic
shown	in	Figure	2.18b	to	control	 the	closing	surge	overvoltage.	The	maximum	overvoltage
of	2.03	pu	is	suppressed	to	1.56	pu	by	the	arrester.

2.2.3.5					Effect	of	Various	Parameters	on	a	Closing	Surge
As	explained	in	Section	2.2.3.4.2,	the	maximum	overvoltage	is	dependent	on	the	closing	angle
of	 each	 phase,	 which	 in	 reality	 is	 probabilistic.	 Therefore,	 a	 deterministic	 analysis	 of	 the
switching	 overvoltage	 is	 often	 found	 to	 be	 inadequate	 to	 investigate	 an	 insulation	 level.
Nowadays,	 it	 is	 a	 common	 practice	 to	 analyze	 the	 switching	 overvoltage	 from	 a	 statistical
viewpoint	 taking	 into	 account	 the	 probabilistic	 nature	 of	 the	 closing	 angles	 and	 insulation



failure	due	to	overvoltage.	Thus,	statistical	analysis	of	the	effect	of	various	parameters	on	the
closing	overvoltage	will	be	studied	in	this	section.

FIGURE	2.16
Three-phase	closing	surges	on	a	500	kV	untransposed	vertical	line.	(a)	No	resistor	closing.	(b)	Resistor	closing.





FIGURE	2.17
Effect	of	closing	resistors	on	maximum	overvoltages.	(a)	Closing	surge.	(b)	Reclosing	surge	residual	voltages	(–1,	–1,	1	pu).

FIGURE	2.18
Voltage–current	characteristic	of	a	ZnO	arrester.	(a)	Actual	characteristic.	(b)	Linear	approximation.

2.2.3.5.1					Effect	of	Earth	Resistivity
Figure	2.20	shows	statistical	overvoltage	distribution	curves	for	various	earth	resistivities.	It
is	 clear	 that	 the	 highest	 overvoltages	 occur	 for	 the	 case	 of	 ρe	 =	 0,	 that	 is,	 a	 perfectly
conducting	 earth	 corresponding	 to	 no	 wave	 deformation.	 Also,	 it	 is	 observed	 that	 the
overvoltage	increases	as	the	earth	resistivity	increases.	The	lowest	overvoltage	distribution	is
observed	 for	 ρe	 =	 10	Ω	m.	 Thus,	 it	 should	 be	 clear	 that	 a	 resistivity	 that	 gives	 the	 lowest
overvoltage	distribution	exists.	This	is	explained	by	the	fact	that	an	increase	in	the	attenuation
constant	 due	 to	 the	 increase	 in	 earth	 resistivity	 reduces	 the	 current	 flowing	 into	 the	 soil,



thereby	 decreasing	 the	 overall	 attenuation	 of	 the	 overvoltages.	 This	 results	 in	 a	 higher
overvoltage.	Conversely,	 a	 decrease	 in	 the	 attenuation	 constant	 due	 to	 the	 decrease	 in	 earth
resistivity	 increases	 the	 current	 flowing	 into	 the	 soil,	 thereby	 increasing	 the	 overall
attenuation	of	the	overvoltages.	This	also	results	in	a	higher	overvoltage.	This	means	that	an
earth	resistivity	that	gives	the	lowest	overvoltage	distribution	exists.

FIGURE	2.19
Water	molecule,	depicting	polarity.

2.2.3.5.2					Effect	of	Line	Length
Figure	 2.21	 shows	 a	 statistical	 distribution	 of	 overvoltages	 for	 various	 line	 lengths.	 In
general,	 the	overvoltage	 increases	 as	 line	 length	 increases.	 In	practice,	 a	 long	 transmission



line	is	compensated	by	a	shunt	reactor,	and	thus	the	overvoltage	distribution	differs	from	that
shown	in	Figure	2.21.

2.2.3.5.3					Effect	of	Source	Inductance
Figure	2.22	shows	the	effect	of	source	inductance	on	a	statistical	distribution	of	overvoltages.
No	clear	tendency	is	observed	in	the	figure.

FIGURE	2.20
Effect	of	earth	resistivity	on	statistical	overvoltage	distribution	curves.

FIGURE	2.21
Effect	of	line	length.



FIGURE	2.22
Effect	of	source	inductance.

The	 effect	 of	 the	 line	 length	 is	 dependent	 on	 the	 source	 inductance,	 and	 the	 following
observations	can	be	made:

1.	Sending	end:

a.	The	voltage	tends	to	increase	as	the	inductance	increases.
b.	For	a	small	inductance,	the	overvoltage	tends	to	decrease	as	the	line	length	increases.
For	a	large	inductance,	the	opposite	tendency	is	observed.

2.	Receiving	end:

a.	For	a	long	line,	the	overvoltage	tends	to	increase	as	the	inductance	increases.	No	clear
tendency	is	found	for	a	short	line.

b.	The	overvoltage	increases	as	the	line	length	increases.

The	 reason	 the	 overvoltage	 tends	 to	 increase	 as	 the	 source	 induct-ance	 and	 line	 length
increase	is	that	the	natural	oscillating	frequency	of	the	line	approaches	the	power	frequency
due	to	the	increase	in	the	inductance	and	line	length.	This	results	in	a	resonant	oscillation	of
the	 system,	 and	 the	 overvoltage	 increases.	 This	 resonant	 overvoltage	 is	 a	 temporary
overvoltage	rather	than	a	closing	surge	overvoltage.

2.2.3.5.4					Line	Transposition
An	 untransposed	 line	 shows	 a	 noticeable	 difference	 in	 the	 voltage	 waveform	 from	 the
transposed	line	case	at	the	very	beginning	of	the	waveform.	However,	a	statistical	distribution
of	 the	 overvoltages	 shows	 no	 significant	 difference,	 as	 observed	 from	 Figure	 2.23.	 The
difference	is	more	noticeable	at	the	sending	end	than	at	the	receiving	end.	If	surge	waveforms
with	 a	 specific	 sequence	 of	 closing	 angles	 are	 compared,	 a	 rather	 significant	 difference	 is
often	observed.



FIGURE	2.23
Effect	of	line	transposition	on	statistical	overvoltage	distribution	curves.

FIGURE	2.24
Effect	of	line	charge	voltage.

2.2.3.5.5					Reclosing	Overvoltage
Figure	 2.24	 shows	 a	 statistical	 distribution	 of	 reclosing	 overvoltages.	 It	 is	 clear	 that	 the
reclosing	 generates	 a	 higher	 overvoltage	 distribution.	 In	 general,	 the	 higher	 the	 residual
charge	voltage,	 the	more	severe	 the	overvoltage	distribution.	The	figure	shows	 the	polarity
effect.	This	may	vanish	if	the	number	of	samples	is	large	enough.

2.2.3.5.6					Effect	of	Closing	Resistor
Figure	2.25	shows	the	effect	of	a	closing	resistor	on	a	statistical	distribution.	It	is	clear	how
the	closing	resistor	is	effective	in	reducing	the	overvoltage	in	both	the	closing	and	reclosing



cases.	The	damping	effect	is	especially	noticeable	in	the	region	of	higher	overvoltages.	The
500-Ω	resistor	is	effective	in	reducing	the	overvoltage	by	1.7	pu.

	
	

2.3					Fault	Surge
A	 fault	 surge	 is	 generated	 by	 a	 line	 fault.	 Fault	 surges	 are	 classified	 into	 two	 types:	 fault
initiation	 surge	 (fault	 surge)	 and	 fault-clearing	 surge.	 The	 most	 probable	 fault	 is	 a	 phase
single	line-to-ground	(SLG)	fault.	In	this	section,	the	SLG	fault	will	be	explained.

2.3.1					Fault	Initiation	Surge
The	 fault	 initiation	 surge	 (fault	 surge)	 is	generated	on	a	 sound	phase	due	 to	a	 single	phase
fault	(faulty	phase	or	line)	[1].	The	maximum	overvoltage	is	generally	much	lower	than	that
of	a	closing	surge.	Figure	2.26	is	an	example	of	a	typical	fault	surge.	The	maximum	voltage
observed	is	–1.32	pu,	which	is	far	lower	than	the	voltages	discussed	in	Sections	2.1	and	2.2.
Figure	2.1	is	another	example	of	a	fault	surge	measured	in	an	actual	EHV	transmission	line.
The	maximum	overvoltage	in	the	measurement	was	1.7	pu,	as	shown	in	the	figure.



FIGURE	2.25
Effect	of	closing	resistors	on	statistical	overvoltage	distribution	curves.	(a)	Closing	surges.	(b)	Reclosing	surges	(initial	charge
0.5,	0.5,	–0.5	pu).

Figure	 2.27	 shows	 the	 calculated	 results	 of	 the	 fault	 surge	 on	 a	 1100	 kV	 transmission
system.	A	 single	 phase-to-ground	 fault	 occurs	 at	 the	mid-point	 of	 the	 first	 circuit	 of	 line	 1
(node	L1-13)	as	illustrated	in	Figure	2.27a.	Figure	2.27b	shows	the	faulty	circuit	voltages	and
Figure	2.27c	the	sound	circuit	voltages.	The	maximum	overvoltage	is	observed	to	be	1.67	pu
(=	1500	kV)	on	phase	c	of	the	faulty	circuit.	These	results	are	for	the	case	where	arresters	are
installed.
In	general,	 the	maximum	fault	overvoltage	 is	expected	 to	be	 less	 than	1.7	pu	for	a	 rather

simple	 system.	 In	 a	 complicated	 system,	 such	 as	 that	 shown	 in	 Figure	 2.27a,	 the	maximum
overvoltage	 may	 reach	 1.8	 pu.	 As	 the	 overvoltage	 is	 much	 lower	 than	 the	 closing
overvoltages	 explained	 in	 Section	 2.2,	 the	 fault	 surge	 is	 not	 an	 essential	 factor	 for
determining	 the	 switching	 impulse	 withstanding	 level	 (SIWL)	 or	 the	 switching	 impulse
insulation	level	(SIL)	of	a	conventional	transmission	line	below	700	kV.	Howev-er,	it	becomes



quite	significant	in	a	UHV	system	since	the	SIWL	or	SIL	is	expected	to	be	lower	than	1.7	pu,
which	is	easily	achieved	by	using	a	clos-ing	resistor	as	far	as	the	closing	surge	is	concerned.
The	fault	surge,	on	the	other	hand,	is	hard	to	control,	because	it	is	impossible	to	predict	where
and	when	a	 fault	might	occur,	or	where	 the	highest	overvoltage	occurs.	Currently,	 the	only
way	 to	 control	 fault	 overvoltage	 is	 by	 installing	 so-called	 line	 arresters	 along	 the
transmission	line.

FIGURE	2.26
A	fault	surge.

2.3.2					Characteristic	of	a	Fault	Initiation	Surge
2.3.2.1				Effect	of	Line	Transposition
Figure	 2.28	 compares	 the	 effect	 of	 a	 fault	 surge	 on	 untransposed	 and	 transposed	 double-
circuit	 lines.	 The	 fault	 is	 initiated	 at	 the	 re-ceiving	 end	 of	 one	 circuit	 as	 illustrated	 in	 the
figure.	The	circuit	configuration	is	equivalent	to	the	model	circuit	illustrated	in	Figure	2.26	in
which	the	fault	occurs	at	the	middle	of	the	line.
The	 figure	clearly	 shows	 that	 there	 is	no	 significant	difference	between	 the	untransposed

and	transposed	lines.	The	observation	is	the	same	as	that	made	for	the	closing	surge	case.	As
far	as	the	surge	overvoltage	or	line	insulation	is	concerned,	the	effect	of	line	transposition	is
not	significant.



FIGURE	2.27
Calculated	results	of	fault	surge	on	a	1100-kV	circuit.	(a)	A	1100-kV	model	circuit.	(b)	Faulty	circuit.	(c)	Sound	circuit.

2.3.2.2					Overvoltage	Distribution
Figure	2.29	illustrates	a	maximum	overvoltage	due	to	a	phase	a-to-ground	fault	surge,	when
the	fault	position	is	changed	from	the	sending	end	to	the	receiving	end	along	an	untransposed
500-kV	line	with	a	length	of	200	km.



In	the	case	of	source	inductances	of	50	mH	at	both	ends,	Figure	2.29a,	the	highest	maximum
overvoltage	 of	 1.56	 pu	 occurs	 at	 the	 middle	 of	 the	 line,	 and	 the	 overvoltage	 decreases
symmetrically	 toward	 the	 ends	 of	 the	 line.	 The	 reason	 for	 this	 condition	 is	 that	 positive
reflected	waves	from	both	ends	arrive	at	 the	middle	of	 the	line	at	 the	same	instance	and	are
superposed.

FIGURE	2.28
Effect	 of	 line	 transposition	 on	 a	 fault	 surge–fault	 circuit	 voltage.	 (a)	 A	 500	 kV	 model	 circuit.	 (b)	 Untransposed	 line.	 (c)
Transposed	line.



When	 an	 infinite	 source	 is	 connected	 to	 the	 right-hand	 side	 of	 the	 line,	 the	 highest
overvoltage	of	1.56	pu,	the	same	as	that	in	Figure	2.29a,	occurs	on	the	right-hand	side,	rather
than	the	middle,	of	the	line.	This	is	due	to	the	asymmetry	of	the	circuit,	that	is,	the	electrical
center	being	shifted	to	the	right	of	the	line.
Figure	 2.30	 shows	 a	 maximum	 overvoltage	 distribution	 along	 the	 line	 when	 the	 fault

position	is	fixed.	Figure	2.30a	illustrates	the	case	of	the	fault	at	the	middle,	and	Figure	2.30b	at
the	 1/4	 length	 from	 the	 sending	 end.	 In	 Figure	 2.30b,	 the	 highest	 overvoltage	 of	 1.53	 pu
occurs	 at	 the	 fault	 point	 and	 its	 symmetrical	 position	 to	 the	 center	 of	 the	 line,	 and	 the
overvoltage	distribution	is	flat	within	the	two	points.	In	Figure	2.30a,	the	highest	overvoltage
of	1.56	pu	occurs	at	the	center,	and	the	overvoltage	decreases	rapidly	toward	both	ends	of	the
line.	This	observation	demonstrates	that	the	region	of	the	line	where	the	overvoltage	is	higher
than	a	certain	 level	 is	wider	 in	 the	case	of	 the	fault	occurring	at	a	point	apart	 from	the	 line
center,	 while	 the	 highest	 overvoltage	 occurs	 in	 the	 case	 of	 the	 middle	 point	 fault.	 This
information	may	prove	important	in	the	design	of	future	protection	systems.

FIGURE	2.29
Overvoltages	at	the	fault	points.	(a)	50-mH	source.	(b)	50	mH	and	an	infinite	bus.

Table	 2.2	 shows	 the	maximum	 overvoltage	 at	 various	 nodes	 of	 the	 system	 illustrated	 in
Figure	2.27a.	It	is	observed	that	the	highest	overvoltage	occurs	at	the	fault	point	on	the	sound
phase	 of	 the	 faulty	 circuit.	 The	 overvoltage	 decreases	 as	 the	 distance	 from	 the	 fault	 point
increases.



2.3.3					Fault-Clearing	Surge
A	fault-clearing	surge	is	generated	by	clearing	a	fault	by	a	CB.	Generally,	its	overvoltage	is
smaller	 than	 a	 closing	 surge	 overvoltage	 and	 greater	 than	 that	 of	 a	 fault	 initiation	 surge
overvoltage.
Figure	 2.31	 shows	 an	 example	 of	 a	 fault-clearing	 surge.	 The	 maximum	 overvoltage	 is

observed	to	be	1.5	pu,	which	is	greater	than	that	of	the	1.32	pu	fault	surge	in	Figure	2.26.	The
overvoltage	increases	to	about	1.6	pu	in	the	two	phase-to-ground	fault	cases	and	to	about	2.0
pu	in	the	three	phase-to-ground	fault	cases.

FIGURE	2.30
Overvoltage	distribution	along	the	line.	(a)	Fault	at	the	middle.	(b)	Fault	at	the	1/4	point.

Figure	 2.32	 shows	 the	 effect	 of	 line	 transposition	 on	 fault-clearing	 overvoltage.	 It	 is
observed	that	in	both	untransposed	and	transposed	lines	the	maximum	overvoltage	exceeds	2
pu,	which	is	greater	by	about	0.6	pu	than	the	fault	initiation	overvoltages	observed	in	Figure
2.28.	The	line	transposition	does	not	significantly	affect	the	overvoltage,	but	affects	the	wave
shape	 significantly	 as	 is	 clear	 from	 the	 figure.	 This	 phenomenon	 occurs	 because	 the
attenuation	of	the	aerial	mode	is	greater	and	the	velocity	is	lower	in	a	transposed	line	than	in
an	 untransposed	 line,	 as	 explained	 in	 Section	 1.5.2.	 As	 a	 result,	 the	 waveform	 is	 more
distorted	 as	 time	 increases	 in	 the	 transposed	 line	 case.	 The	 difference,	 however,	 is	 not
noticeable	if	an	opening	resistor	of	a	CB	is	used.



TABLE	2.2
Maximum	Overvoltages	at	Various	Points	in	the	1100-kV	System	in	Figure	2.27a

FIGURE	2.31
A	fault-clearing	overvoltage	in	the	same	circuit	as	in	Figure	2.26.

Figure	 2.33	 shows	 the	 effect	 of	 the	 opening	 resistor	 of	 the	 CB	 on	 the	 fault-clearing
overvoltage	on	a	Japanese	1100-kV	system.	At	 t	=	0,	 the	system	is	 in	a	steady	state	of	 three
phase-to-ground	 fault	 at	 the	middle	 of	 line	 2	 (140	 km).	At	 t	 =	 1	ms,	 a	 resistor	 is	 inserted
between	the	contacts	of	the	CB,	and	the	main	contact	is	opened.	Then,	at	t	=	30	ms,	the	resistor
is	opened,	and	the	three	phase-to-ground	fault	is	completely	cleared.
The	fault-clearing	surge	voltages	at	the	middle	of	line	1	(230	km)	on	the	faulty	circuit	are

shown	in	Figure	2.33,	from	which	it	is	clear	that	the	maximum	overvoltage	reaches	1.71	pu	in
the	case	where	the	resistor	is	not	opened	(a).	The	overvoltage	is	decreased	to	1.31	pu	by	the
opening	 resistor	 in	 Figure	 2.33b.	 Also,	 the	 voltage	 waveform	 tends	 to	 rapidly	 attain	 a
sinusoidal	steady	state.
Table	2.3	shows	the	maximum	overvoltages	at	various	positions	of	the	circuit	illustrated	in

Figure	2.33.	It	is	observed	from	the	table	that	the	highest	voltage	occurs	at	the	middle	of	line	1
instead	 of	 the	 faulty	 line.	This	 fact	 should	 be	 noted	when	 a	 fault-clearing	 surge	 analysis	 is
carried	out.	Otherwise,	the	highest	overvoltage	may	be	missed.



Figure	 2.34	 shows	 a	 relation	 between	 the	 fault-clearing	 overvoltage	 and	 an	 opening
(insertion)	 resistor	on	 the	1100-kV	system	discussed	earlier.	 It	 is	observed	 that	an	optimum
resistor	to	control	the	overvoltage	exists,	similar	to	the	closing	overvoltage	case.	The	degree
of	overvoltage	 reduction	 is	 lower	 in	 the	 fault-clearing	surge	case	 than	 in	 the	closing	surge
case	shown	in	Figure	2.17.	This	 is	due	to	 the	fact	 that	 the	highest	overvoltage	occurs	within
the	switched	line	in	the	closing	surge	case,	while	it	may	occur	in	the	other	line	connected	to
the	faulty	line	in	the	fault-clearing	surge	case.	In	this	circumstance,	the	effect	of	the	insertion
resistor	would	be	minimal.



FIGURE	2.32
Effect	of	line	transposition-sound	circuit	voltage.	(a)	Untransposed.	(b)	Transposed.

The	overvoltage	in	Figure	2.34	is	reduced	to	1.42	pu,	which	is	still	greater	than	the	1.36	pu
given	in	Table	2.3,	the	reason	being	that	the	overvoltage	in	Figure	2.34	takes	into	account	all
the	voltages	in	the	system	studied.



FIGURE	2.33
Effect	of	an	opening	resistor	on	a	fault-clearing	overvoltage.	(a)	No	resistor.	(b)	Opening	resistor.

A	 significant	 difference	 of	 the	 opening	 resistor	 from	 the	 closing	 resistor	 is	 its	 thermal
requirement.	 Since	 a	 large	 fault	 current	 flows	 through	 the	 opening	 resistor,	 the	 resistance
cannot	 be	 too	 small.	 Therefore,	 an	 optimum	 value	 of	 the	 opening	 resistor	 has	 to	 be
determined	 not	 only	 by	 the	 degree	 of	 overvoltage	 reduction	 but	 also	 by	 the	 thermal
requirement.



Figure	2.35	shows	an	example	of	a	possible	combination	of	opening	and	closing	resistors.
It	is	observed	from	the	figure	that	a	400-Ω	resistor	is	optimum	for	the	closing	surge	(I-a,	b)
and	 the	 fault-clearing	 surge	 (II).	 In	 the	 reclosing	 case	 (I-a′	 and	 I-b),	 where	 the	 reclosing
overvoltage	is	always	higher	than	the	fault-clearing	overvoltage,	the	optimum	resistor	value
may	be	determined	by	the	resistor	corresponding	to	the	lowest	reclosing	overvoltage,	that	is,
about	800	Ω	for	1.6	pu.

TABLE	2.3
Maximum	Overvoltages	at	Various	Points	in	the	1100-kV	System	in	Figure	2.27a



FIGURE	2.34
Relation	between	fault-clearing	overvoltages	and	an	insertion	resistor.



FIGURE	2.35
Reduction	 of	 surge	 overvoltages	 by	 an	 insertion	 resistor.	 I:	 closing	 surge.	 a:	 resistor	 insertion.	 b:	 resistor	 off.	 a′:	 resistor
insertion,	residual	voltage.	II:	fault-clearing	surge.	(a)	Model	circuit.	(b)	Calculated	results.

	
	

2.4					Lightning	Surge
Of	all	surges,	lightning	to	a	tower	or	line	causes	the	highest	overvoltage.	Numerous	studies
have	been	carried	out	[9,	10,	11,	12,	,	13,	14,	15,	16,	17,	18,	19,	20,	21–22],	but	there	are	still	a
number	 of	 unknown	 factors	 in	 the	 analysis	 of	 a	 lightning	 surge	 in	 power	 systems,	 for
example:	 the	 tower	 footing	 impedance	 model,	 which	 is	 time-	 and	 current-dependent;	 the
lightning	 source;	 and	 the	 lightning	 channel	 impedance	 [23].	 Lightning	 surges	 are	 still	 a
fruitful	field	of	research.

2.4.1					Mechanism	of	Lightning	Surge	Generation
When	lightning	strikes	a	tower	(or	a	GW)	as	illustrated	in	Figure	2.36,	the	lightning	current
flows	 into	 the	 tower	 and	 causes	 a	 sudden	 increase	 in	 tower	 voltage.	 When	 the	 voltage
difference	between	the	tower	and	a	phase	wire	(PW)	reaches	its	electrical	withstand	voltage,	a
flashover	from	the	tower	 to	 the	PW	occurs.	This	 is	called	“back	flashover”	(BFO),	because



the	 tower	 voltage	 is	 higher	 than	 the	 PW	 voltage,	 unlike	 normal	 power	 system	 operation.
Then,	 the	 lightning	 current	 flows	 into	 the	 PW	 and	 a	 traveling	 wave	 due	 to	 the	 current
propagates	to	a	substation.	The	traveling	wave	is	partially	reflected	at	and	refracted	into	the
substation.	The	trav-eling	wave	or	its	successive	reflection	generates	a	severe	overvoltage	at
the	substation.

FIGURE	2.36
A	representative	model	system	for	a	lightning	surge	simulation.

2.4.2					Modeling	of	Circuit	Elements
2.4.2.1				Lightning	Current
Lightning	is	often	modeled	by	a	current	source	with	a	parallel	resistance	that	represents	 the
lightning	channel	impedance,	as	illustrated	in	Figure	2.36	[23].	Although	the	waveform	of	the
current	source	is	not	conclusively	known,	it	is	defined	by	the	waveform	shown	in	Figure	2.37.
In	the	figure,	Tf	is	the	time	from	the	origin	to	the	peak,	called	the	“wave	front	length	(time),”
and	Tt	is	the	time	from	the	origin	to	a	half	of	the	peak	voltage,	called	the	“wave	tail	length.”	In
general,	Tf	is	less	than	10	µs,	and	Tt	is	less	than	100	µs.	A	1/40	µs	(Tf	=	1	µs,	Tf	=	40	µs)	or	a
2/70-µs	wave	 is	 the	usual	 standard.	 It	 should	be	clear	 from	 this	 condition	 that	 the	 sustained
time	period	of	the	lightning	surge	is	in	the	order	of	microseconds	as	explained	in	Table	2.1.



FIGURE	2.37
Waveforms	of	a	lightning	current.	(a)	Lump.	(b)	Double	exponent.	(c)	CIGRE.

There	 are	 three	different	 definitions	of	 current	waveforms	 as	 shown	 in	Figure	2.37.	 The
first	definition	is	the	“lump	wave,”	which	is	expressed	by	two	linear	lines.	The	second	is	the
“double	exponential	wave,”	expressed	by

The	exponential	wave	has	been	widely	used,	especially	when	an	insulation	test	of	a	power
apparatus	 is	 carried	 out,	 because	 an	 IG	 inherently	 produces	 the	 exponential	 waveform.
However,	 the	exponential	wave	gives	an	excessive	overvoltage	compared	 to	 the	 lump	wave
and	CIGRE	 if	 it	 is	 adopted	 in	 a	 lightning	 surge	 analysis.	 Thus,	 it	 is	 recommended	 that	 the
double	 exponential	 wave	 not	 be	 used	 in	 the	 lightning	 surge	 analysis,	 or	 to	 take	Tf	 =	 2	 µs
instead	 of	 1	 µs	 in	 the	 case	 of	 a	 1/40	 µs	 waveform.	 The	 third	 waveform,	 called	 “Conseil
International	Des	Grands	Réseaux	Electriques	 (CIGRE)	wave,”	 is	 based	on	 the	 study	of	 the
CIGRE	 and	 is	 characterized	 by	 its	 negative	 di/dt	 at	 the	 wave	 front	 as	 in	 Equation	 2.7.	 In
contrast,	 other	 characterizations	 are	 di/dt	 =	 0	 for	 the	 lump	 wave	 and	 di/dt	 >	 0	 for	 the
exponential	wave.



Measured	examples	of	 lightning	current	amplitudes	are	shown	in	Figure	2.38	[20,	21,	22,
23,	 24,	 25–26].	 It	 can	 be	 observed	 from	 the	 figure	 that	 the	 frequency	 of	 occurrence	 of	 a
current	greater	than	50	kA	is	about	20%,	and	that	of	a	current	greater	than	100	kA	is	about	5%.
Therefore,	 assuming	 a	 lightning	 current	 of	 100	 kA	 is	 sufficient	 for	 analysis	 on	 an	 EHV
transmission	line	[22,26].	In	Japan,	a	current	of	200	kA	has	been	used	for	the	insulation	design
of	 a	 1100	 kV	 transmission	 system	 [26].	 Table	 2.4	 lists	 the	 recom-mended	 amplitudes	 of
lightning	currents	for	various	voltage	classes	[26,27].

2.4.2.2					Tower	and	Gantry
A	transmission	tower	is	represented	by	four	distributed	parameter	lines	[28]	as	illustrated	in
Figure	2.39,	where	Zt1	is	the	tower	top	to	the	upper	phase	arm	=	upper	to	middle	=	middle	to
lower	and	Zt4	is	the	lowest	to	the	tower	bottom.
Table	2.4	gives	a	typical	value	of	the	surge	impedance.



FIGURE	2.38
Measured	results	of	lightning	current	amplitudes.	(From	IEEE	Guide	for	Improving	the	Lightning	Performance	of	Transmission
Lines.	 1997;	 Ametani,	 A.	 et	 al.	 2002.	 IEE	 Japan	 WG	 Report.	 Technical	 Report	 No.	 872;	 CRIPEI	 WG.	 2003.	 Guide	 to
transmission	line	protection	against	lightning.	Report	T72;	Ametani,	A.	and	T.	Kawamura.	2005.	IEEE	Trans.	Power	Deliv.	20
(2):867–875;	Anderson,	R.	B.	and	A.	J.	Eriksson.	1980.	Electra	69:65.)

The	propagation	velocity	c	of	a	traveling	wave	along	a	tower	is	taken	to	be



To	represent	the	traveling-wave	attenuation	and	distortion,	an	RL	parallel	circuit	is	added	to
each	part,	 as	 illustrated	 in	Figure	2.39.	The	values	 of	R	 and	L	 are	 defined	 in	 the	 following
equation:

TABLE	2.4
Recommended	Values	for	Lightning	Parameters

FIGURE	2.39
A	tower	model.



where
τ	=	h/c0	is	the	traveling	time	along	the	tower
α1	=	α4	=	0.89	is	the	attenuation	along	the	tower
h	is	the	tower	height
The	RL	parallel	circuits	in	Figure	2.39	can	be	neglected	in	most	lightning	surge	analyses,	as

explained	later.
A	substation	gantry	is	represented	by	a	single	distributed	line	with	no	loss.

2.4.2.3					Tower	Footing	Impedance
In	 Japan,	 modeling	 a	 tower	 footing	 impedance	 as	 a	 simple	 linear	 resistance	 Rf	 is
recommended,	 although	 a	 current-dependent	 nonlinear	 resistance	 is	 recommended	 by	 the
IEEE	and	 the	CIGRE	[16,18,20].	The	 inductive	and	capacitive	characteristics	of	 the	 foot-ing
impedance,	 as	 shown	 in	 Figure	 2.40,	 are	 well	 known	 [10].	 The	 recom-mended	 value	 of
resistance	for	each	voltage	class	is	given	in	Table	2.4.

2.4.2.4					Arc	Horn
The	maximum	voltage	on	a	line	and	a	substation	due	to	lightning	is	highly	dependent	on	the
flashover	voltage	of	an	arc	horn,	which	is	installed	between	a	tower	arm	and	a	PW	along	an
insulator,	as	illustrated	in	Figure	2.36.	The	purpose	of	the	arc	horn	is	to	control	the	lightning
overvoltage	 on	 the	 line	 and	 the	 substation,	 and	 also	 to	 protect	 the	 insula-tor	 against
mechanical	 damage	 due	 to	 electrical	 breakdown	 (=	 flashover).	 In	 general,	 an	 arc	 horn	 gap
length	(the	clearance	between	the	tower	arm	and	the	PW)	that	is	shorter	than	the	length	of	the
insulator	 is	 considered	 so	 that	 the	 arc	 horn	 gap	 flashovers	 before	 the	 voltage	 between	 the
tower	arm	and	the	PW,	that	is,	voltage	across	the	insulator,	reaches	its	break-down	voltage	(=
insulator	withstand	voltage).	Thus,	in	theory,	the	insulator	never	breaks	down	and	is	protected
from	mechanical	damage.	Also,	the	voltages	on	the	line	and	in	the	substation	are	dependent	on
the	flashover	voltage	of	the	arc	horn.	Therefore,	it	should	be	noted	that	the	so-called	lightning
overvoltage	observed	on	a	PW	or	in	a	substation	is	not	the	voltage	of	the	lightning	itself	but
the	voltage	dependent	on	or	controlled	by	the	arc	horn.	If	the	gap	length	of	the	arc	horn	is	too
small,	too	many	lightning	surges	appear	in	the	substation,	resulting	in	excessive	insulation	of
the	 substation	 apparatuses.	 On	 the	 other	 hand,	 if	 the	 gap	 is	 too	 large	 but	 smaller	 than	 the
clearance,	 then	 the	 insulation	 of	 PWs	 from	 the	 tower	 (the	 clearance),	 becomes	 excessive.
Therefore,	determining	an	optimum	gap	length	for	an	arc	horn	is	quite	difficult.	It	is	entirely
dependent	 on	 the	 overall	 construction	 cost	 of	 the	 transmission	 system	 and	 the	 philosophy
behind	the	overall	insulation	design	and	coordination	of	the	system.



FIGURE	2.40
Footing	impedance	models	and	step	responses.	(a)	Inductive.	(b)	Resistive.	(c)	Capacitive.

An	arc	 horn	 flashover	 is	 represented	 either	 by	 a	 piecewise	 linear	 inductance	model	with
time-controlled	switches	as	illustrated	in	Figure	2.41a,	or	by	a	nonlinear	inductance	as	shown
in	Figure	2.41b,	based	on	a	leader	progression	model	[29,30].	The	parameters	Li	(i	=	1–3)	and
ti	 –	 ti−1,	 assuming	 the	 initial	 time	 t0	 =	 0	 in	 Figure	 2.41a,	 are	 determined	 from	 a	measured
result	of	the	V–I	characteristics	of	an	arc	horn	flashover.	Then,	the	first	simulation	with	no	arc
horn	flashover	 is	carried	out,	as	 in	Figure	2.36,	and	 the	first	 flashover	phase	and	 the	 initial
time	t0	are	determined	from	the	simulation	results	of	the	voltage	waveforms	across	all	the	arc
horns.	By	considering	these	parameters,	the	second	simulation	with	the	first	flashover	phase
is	carried	out	 to	determine	the	second	flashover	phase.	By	repeating	this	procedure	until	no
flashover	 occurs,	 the	 lightning	 surge	 simulation	 by	 a	 piecewise	 linear	 model	 will	 be
complete.	 Thus,	 a	 number	 of	 precalculations	 are	 necessary	 in	 the	 case	 of	 multiphase
flashovers,	 while	 the	 nonlinear	 inductance	 model	 needs	 no	 precalculations	 and	 is	 easily
applied	 to	multiphase	 flashovers.	Details	 of	 the	 leader	 progression	model	 are	 explained	 in
Reference	29	and	the	non-linear	inductance	model	is	explained	in	Reference	30.



FIGURE	2.41
Arc	horn	flashover	models.	(a)	A	linear	inductance	model.	(b)	A	nonlinear	model.

2.4.2.5					Transmission	Line
Most	 transmission	 lines	 in	Japan	are	of	double-circuit	vertical	configuration	with	 two	GWs
and	are	thus	composed	of	eight	conductors.	The	use	of	a	frequency-dependent	line	model	is
recommended	in	a	numerical	simulation,	but	a	distributed	line	model	with	fixed	propagation
ve-locity,	 attenuation,	 and	 surge	 impedance,	 that	 is,	 the	 fixed-parameter	 dis-tributed	 line
model	explained	in	Reference	23,	is	often	used.

2.4.2.6					Substation

1.	Gas-insulated	bus	and	cable:	A	cable	and	a	gas-insulated	bus	are	represented	either	as
three	single-phase	distributed	lines	with	their	coaxial	mode	surge	impedance	and
propagation	velocity	or	as	a	three	phase	distributed	line	system.	As	a	gas-insulated
substation	involves	a	significant	number	of	gas-insulated	buses/lines,	the	pipes	are,	in
most	cases,	eliminated	by	assuming	zero	voltage.

2.	CB,	DS,	transformer,	and	bushing:	A	CB	and	a	DS	are	represented	by	lumped
capacitances	between	the	poles	and	to	the	soil.	A	transformer	is	also	represented	by	a
capacitance	to	the	soil	unless	a	transferred	surge	to	the	secondary	circuit	must	be
calculated.	A	bushing	is	represented	by	a	capacitance	or,	occasionally,	a	distributed	line.

3.	Grounding	mesh:	A	grounding	mesh	is	in	general	not	considered	in	a	lightning	surge
simulation	and	is	regarded	as	a	zero	potential	surface.	When	dealing	with	an	incoming
surge	to	a	low-voltage	control	circuit,	the	transient	voltage	of	the	grounding	mesh
should	not	be	assumed	to	be	zero,	and	its	representation	becomes	an	important	but
difficult	task.

2.4.3					Simulation	Result	of	A	Lightning	Surge
2.4.3.1				Model	Circuit
Figure	2.36	shows	a	representative	model	circuit	for	lightning	surge	analysis	[23].	Lightning
strikes	the	top	of	tower	No.	1	in	the	substation	vicinity.	The	lightning	stroke	is	represented	by



a	 current	 source	 with	 a	 peak	 value	 of	 200	 kA	 and	 a	 waveform	 of	 2/70	 µs,	 which	 is	 the
Japanese	standard	for	a	1100-kV	line,	in	the	form	of

where	I0	=	200	kA,	K0	=	1.0224,	a	=	1.024	×	104	s−1,	and	b	=	2.8188	×	106	s−1.
Five	towers	are	included	in	the	model.	The	span	distance	of	the	transmission	line	between

adjacent	towers	is	450	m,	and	that	from	tower	No.	1	to	the	substation	is	100	m.	The	end	of	the
transmission	 line	 is	 terminated	 with	 the	 surge	 impedance	 matrix	 or,	 approximately,	 with
matching	resistances:	Rp	=	350	Ω	for	a	PW	and	Rg	=	560	Ω	for	a	GW.

FIGURE	2.42
A	1100	kV	twin-circuit	line.

The	transmission	line	is	of	double-circuit	vertical	configuration	with	two	GWs,	as	shown
in	 Figure	 2.42.	 The	 total	 number	 of	 conductors	 is	 eight.	 The	 tower	model	 is	 explained	 in
Section	2.4.2	(see	also	Figure	2.39).	It	is	divided	at	the	cross-arm	positions	into	four,	and	each
section	is	modeled	by	a	lossless	distributed	parameter	line	neglecting	the	RL	par-allel	circuit.
Data	for	the	elements	are	given	in	Table	2.5.	The	tower	cross-arms	are	neglected.	The	tower
footing	resistance	is	taken	as	10	Ω.	Figure	2.43	is	a	model	of	a	UHV	substation	for	one	phase.



Cb	 and	 Cs	 in	 the	 figure	 are	 capacitances	 that	 represent	 bushings	 and	 shunt	 reactors,
respectively.	A	gas-insulated	bus	is	represented	by	a	lossless	distributed	parameter	line	with	a
surge	impedance	of	70	Ω	and	a	velocity	of	270	m/µs.

TABLE	2.5
Parameters	of	a	1100-kV	Tower	and	a	Structure

Tower Structure
Zt1	=	210	Ω Zt3	=	125	Ω
Zt2	=	170	Ω Zt4	=	125	Ω
c	=	300	m/μs c	=	300	m/μs

FIGURE	2.43
Single-phase	expression	of	a	substation	model.

Figure	2.41a	shows	a	lumped	circuit	model	of	an	arc	horn	flashover	proposed	by	Shindo
and	 Suzuki	 [29].	 Inductance	 and	 resistance	 values	 and	 closing	 times	 of	 switches	 are
determined	from	a	given	voltage	wave-form	across	the	arc	horn	gap	based	on	a	theory	of	a
discharge	mechanism.

2.4.3.2					Lightning	Surge	Overvoltage
Figure	2.44	shows	a	typical	result	of	a	lightning	surge.	It	should	be	clear	from	the	figure	that
the	 overvoltage	 generated	 by	 a	 lightning	 surge	 is	 far	 greater	 than	 the	 insulation	 level
estimated	 from	a	switching	surge	overvoltage.	For	example,	 the	 insulation	 level	against	 the
switching	 surge	 on	 the	 Japanese	 1100-kV	 line	 is	 considered	 to	 be	 less	 than	 1.7	 pu.	 The
lightning	 overvoltage	 on	 the	 PW	 observed	 in	 Figure	 2.44a	 is	 7.04	 MV.	 For	 the	 nominal
operating	voltage	of	 the	line	is	 ,	 the	previous	overvoltage	is	about	7.4
pu.	If	the	lightning	current	is	assumed	to	be	100	kA	rather	than	200	kA,	the	overvoltage	is	still
3.7	pu,	which	is	much	greater	than	the	switching	surge	insulation	level	of	1.7	pu.
It	can	be	observed	from	Figure	2.44b	that	the	overvoltage	at	the	substation	entrance	is	about

4.6	MV,	 which	 exceeds	 the	 insulation	 of	 the	 substation	 apparatuses,	 such	 as	 a	 transformer.
Thus,	the	apparatuses	are	protected	by	lightning	arresters	from	the	excessive	overvoltage.	If
no	flashover	is	assumed,	the	PW	overvoltage	at	the	substation	entrance	is	reduced	to	about	0.4
MV	=	400	kV,	which	is	low	enough	for	substation	insulations.	However,	the	voltage	difference
between	the	tower	arm	(or	GWs)	and	the	PW	reaches	about	7–8	MV.	The	tower	size	might	be



too	large	to	economically	insulate	the	PW	from	the	tower	and	GWs	against	the	overvoltage.
Therefore,	 analyzing	 lightning	 surges	 is	 very	 important	 when	 finding	 an	 optimum	 and
economically	feasible	insulation	design	for	a	power	system.

FIGURE	2.44
Lightning	surge	on	the	circuit	of	Figure	2.36.	(a)	Tower	No.	1.	(b)	Substation	entrance.

2.4.3.3					Effect	of	Various	Parameters

2.4.3.3.1					Frequency	Dependence	of	Line	Parameters
It	 is	well-known	that	 the	frequency	dependence	of	a	 transmission	 line	due	 to	an	 imperfectly
conducting	earth	causes	a	significant	effect	on	surges	traveling	through	a	long	transmission
line.	The	frequency-dependent	effect	on	a	lightning	surge	can	generally	be	neglected	because
the	line	length	is	short.	This	effect	is	investigated	in	this	section.
The	 results	 obtained	 from	 using	 a	 frequency-dependent	 (distributed)	 line	 model	 and	 a

frequency-independent	line	model	are	shown	in	Figure	2.45	for	the	case	of	no	flashover	of	an
arc	 horn.	 In	 the	 latter	 model,	 line	 parameters	 are	 calculated	 at	 the	 dominant	 transient
frequency	given	by

where	 τ0	 =	 l/c,	 l	 is	 the	 distance	 from	 tower	No.	 1	 to	 the	 substation	 =	 100	m,	 and	 c	 is	 the
velocity	of	light	in	free	space.
Table	 2.6	 shows	 the	 maximum	 voltages	 calculated	 by	 the	 frequency-dependent	 Semlyen

model	 and	 the	 frequency-independent	 distributed	 parameter	 line	 model	 of	 the	 EMTP.	 It	 is
clear	from	Figure	2.45	and	Table	2.6	that	the	results	neglecting	the	frequency-dependent	effect
show	a	mi-nor	difference	from	the	results	including	the	effect.	Thus,	it	can	be	con-cluded	that
the	frequency-dependent	model	does	not	have	a	significant	effect	on	a	lightning	surge.
The	effect	of	various	earth	resistivities	was	also	investigated,	and	it	appears	that	there	is	no

significant	difference	between	the	calculated	results	with	the	50–1000	Ω	m	earth	resistivity.



From	 this	 observation,	 it	 can	 be	 concluded	 that	 the	 frequency-dependent	 effect	 of	 a
transmission	line	due	to	 the	 imperfectly	conduct-ing	earth	 is	negligible	 in	a	 lightning	surge
calculation.	Thus,	the	lightning	surge	can	be	calculated	with	a	reasonable	accuracy	using	the
frequency-independent	 distributed	 parameter	 line	 model.	 This	 approach	 is	 much	 more
efficient	 in	 the	computation	of	 lightning	surges,	and	it	also	becomes	quite	easy	to	explain	a
simulation	result	from	a	physical	viewpoint.

FIGURE	2.45
Effect	of	frequency	dependence	on	lightning	surge	for	the	no-flashover	case.	(a)	Frequency-dependent	model.	(b)	Frequency-
independent	model.

2.4.3.3.2					Tower	Impedance	and	Footing	Impedance
It	 is	well	known	 that	 tower	 surge	 impedance	and	 footing	 impedance	affect	 lightning	surges
significantly.	Tower	 surge	 impedance	 is	a	 function	of	 the	height	and	 radius	of	 the	 tower	as



explained	in	Section	1.7.2.2,	but	in	reality,	it	ranges	from	80	to	250	Ω,	as	shown	in	Table	2.4,
for	towers	of	various	voltage	classes.
The	 tower-footing	 impedance	 is	 always	 represented	 as	 a	 resistance	 as	 in	 Table	 2.4

recommended	 by	 guides	 on	 insulation	 design	 and	 coordination	 of	 transmission	 lines	 and
substations	 [26].	However,	 it	 is	 not	 pure	 resistance,	 but	 shows	 an	 inductive	 or	 a	 capacitive
nature	(see	Figure	2.40)	as	investigated	by	many	authors	[10,15,23,31].
Figure	2.46	 shows	 the	effect	of	 tower	 footing	 impedance	on	 the	voltage	at	 the	 top	of	 the

tower	 in	 comparison	with	 a	measured	 result	 on	 a	 500	 kV	 transmission	 tower	 [23,31].	 The
inductive	footing	impedance	shows	a	reasonable	agreement	with	the	measured	result,	but	the
resistive/capacitive	 impedance	 shows	 far	 more	 oscillatory	 wave	 shapes.	 In	 fact,	 many
measured	results	of	the	grounding	electrode	impedance	show	the	inductive	characteristic	[32].
It	 should	 be	 noted	 that	 the	 effect	 of	 the	 tower	 surge	 impedance,	 that	 is,	 the	 effect	 of	 the
attenuation	 and	 the	 frequency	 dependence	 of	 the	 tower,	 is	 not	 significant	 if	 the	 footing
impedance	is	inductive,	as	observed	in	Figure	2.46,	although	a	number	of	papers	discuss	the
modeling	of	tower	surge	impedance.

TABLE	2.6
Maximum	Voltages	for	the	No-BFO	Case



FIGURE	2.46
Influence	 of	 a	 tower	 model	 on	 a	 tower	 top	 voltage.	 (a)	 Measured	 results.	 (b)	 Frequency-dependent	 tower	 model	 with	 a
resistive-footing	impedance.	(c)	Distributed	line	tower	model	with	various	footing	impedances.

Figures	2.47	 and	2.48	 show	 the	 effect	 of	 tower	 footing	 resistance	 as	 a	 function	 of	 tower
impedance	on	the	tower-top	voltage.	When	the	footing	impedance	is	modeled	as	a	resistance,
the	effect	of	the	tower	surge	impedance	is	clear.	It	should	be	noted	that	the	effect	of	the	surge
impedance	is	less	noticeable	when	the	wave	front	duration	Tf	of	the	lightning	current	is	large,
and	 also	 when	 the	 footing	 resistance	 is	 high.	 Furthermore,	 the	 effect	 of	 the	 tower	 surge
impedance	on	a	surge	voltage	at	a	substation	becomes	less	than	that	on	the	tower	voltage,	as
observed	in	Figure	2.49.



FIGURE	2.47
Effect	of	tower-footing	resistance	Rf	on	the	tower	top	voltage	for	a	66-kV	line.	(a)	Rf	=	10	Ω.	(b)	Rf	=	50	Ω.



FIGURE	2.48
Effect	of	tower-footing	resistance	Rf	on	the	tower	top	voltage	for	a	275-kV	line.	(a)	Rf	=	10	Ω.	(b)	Rf	=	50	Ω.

2.4.3.3.3					AC	Source	Voltage
An	AC	source	voltage	is	often	neglected	in	a	lightning	surge	simulation.	However,	it	has	been
found	 that	 the	AC	source	voltage	affects	a	 flashover	phase	of	an	arc	horn,	especially	 in	 the
case	of	a	rather	small	lightning	current.	Figure	2.50	is	a	measured	result	of	arc	horn	flashover
phases	as	a	 function	of	 the	AC	source	voltage	on	a	77	kV	transmission	 line	 in	Japan	 in	 the
summertime	 [33].	 The	 measurements	 were	 carried	 out	 in	 two	 77-kV	 substations	 by	 surge
recorders	 installed	at	 the	 substations.	From	 the	 recorded	voltages	and	currents,	Figure	 2.50
was	obtained.	The	figure	clearly	shows	that	the	arc	horn	flashover	phase	is	notably	dependent
on	the	AC	source	voltage,	that	is,	a	flashover	occurs	at	a	phase	where	the	AC	voltage	is	in	the
opposite	polarity	of	a	lightning	current.	Table	2.7	shows	a	simulation	result	of	arc	horn	peak
voltages	(arc	horn	not	operating)	on	a	77-kV	line	and	a	500-kV	line	[34].	The	simulation	was



carried	 out	 in	 a	 circuit	 similar	 to	 that	 in	 Figure	 2.36,	 but	 another	 five	 towers	 were	 added
instead	of	a	gantry	and	substation.

FIGURE	2.49
Effect	of	tower	surge	impedance	Z0	on	the	substation	overvoltage	for	a	66-kV	line.	(a)	Rf	=	10	Ω.	(b)	Rf	=	50	Ω.

The	 parameters	 were	 the	 same	 as	 those	 in	 Table	 2.4	 for	 a	 77-kV	 system,	 except	 for	 a
lightning	current	of	40	kA	based	on	 the	 field	measurement	 [33].	The	 lower	phase	 arc	horn
voltage	 was	 relatively	 smaller	 than	 those	 of	 the	 other	 phases	 on	 the	 500-kV	 (EHV)	 line
compared	with	those	on	the	77-kV	line.	Thus,	an	arc	horn	flashover	phase	on	an	EHV	line	is
independent	 of	 the	AC	 source	 voltage,	 and	 the	 lower	 phase	 flashover	 is	 less	 probable	 than
those	of	 the	other	phases.	On	 the	contrary,	 flashover	probability	 is	 the	same	on	each	phase,
and	a	flashover	is	dependent	on	the	AC	source	voltage	on	a	low	voltage	line.



FIGURE	2.50
Measured	results	of	arc	horn	flashover	phases	on	a	77	kV	transmission	line.	*	Single-phase	FO,	×	two-phase	FO,	and	O	three-
phase	FO.

Figure	 2.51	 shows	 the	 simulation	 results	 of	 arc	 horn	 flashover	 phases	 by	 a	 simple
distributed	 line	 “tower	 model,”	 that	 is,	 neglecting	 the	 RL	 circuit	 in	 Figure	 2.39	 with	 the
parameters	in	Table	2.4,	and	by	the	recommended	model	illustrated	in	Figure	2.39.	When	this
figure	 is	 compared	 with	 the	 field	 test	 result	 shown	 in	 Figure	 2.50,	 it	 is	 clear	 that	 the
recommended	model	 cannot	 duplicate	 the	 field	 test	 result,	while	 the	 simple	 distributed	 line
model	shows	good	agreement	with	the	field	test	result.	The	reason	for	the	poor	accuracy	of
the	recommended	model	[28]	is	that	the	model	was	developed	originally	for	a	500-kV	line	on
which	the	lower	phase	flashover	was	less	probable,	as	explained	in	Section	2.4.2	 [23].	Thus,
the	recommended	tower	model	 tends	 to	result	 in	a	 lower	flashover	probability	of	 the	 lower
phase	 arc	 horn.	 An	 R–L	 parallel	 circuit	 between	 the	 two	 distributed	 lines	 in	 Figure	 2.39
represents	 the	 traveling	wave	 attenuation	 and	 distortion	 along	 a	 tower.	The	R	 and	L	 values
were	determined	originally	based	on	a	field	measurement	(α	in	Equation	2.9),	and	thus,	they
are	correct	only	for	the	tower	on	which	the	measurement	was	carried	out.	Sometimes	the	R–L
circuit	 generates	 unreal	 high	 frequency	 oscillations.	 This	 indicates	 a	 necessity	 of	 further
investigation	of	the	R–L	circuit	if	the	model	is	to	be	adopted.

TABLE	2.7
Maximum	Arc	Horn	Voltages	and	the	Time	of	Appearance



FIGURE	2.51
Simulation	results	of	arc	horn	flashover	phases	corresponding	to	Figure	2.50.	•	Single-phase	FO,	×	two-phase	FO.	(a)	A	simple
distributed	line	model.	(b)	Recommended	tower	model.

	
	

2.5					Theoretical	Analysis	of	Transients:	Hand	Calculations
In	 this	 section,	 examples	 of	 hand	 calculations	 of	 transients	 with	 a	 pocket	 calculator	 are
explained	 by	 adopting	 (1)	 the	 traveling-wave	 theory	 described	 in	 Section	 1.6	 and	 (2)	 the
Laplace	transform	by	using	a	lumped	parameter	circuit	equivalent	to	the	distributed	line	[2].
These	two	approaches	are	the	most	powerful	to	analyze	a	transient	theoretically	by	hand	and
they	also	correspond	to	the	following	representative	simulation	meth-ods:

1.	Time-domain	method:	EMTP	[35]



2.	FD	method:	frequency	domain	transient	analysis	program	(FTP)	[36]

2.5.1					Switching	Surge	on	an	Overhead	Line

2.5.1.1				Traveling	Wave	Theory

EXAMPLE	2.1
Obtain	switching	surge	voltages	at	the	sending	end	and	the	open-circuited
receiving	end	of	the	untransposed	horizontal	line	illustrated	in	Figure	2.52.

Solution
The	surge	impedance	matrix	[Zs]	of	the	source	circuit	and	[Zr]	at	the	right
of	node	r	are

Thus,	the	refraction	coefficient	matrices	are

FIGURE	2.52
An	untransposed	horizontal	line:	x	=	100	km.



The	propagation	time	of	the	line	is

The	time	delay	is

Because	of	the	symmetry	of	the	line	surge	impedance	[Z0],	the	voltage
transformation	matrices	are

phasor-traveling	waves

Model-traveling	waves	

2.	The	modal	traveling	waves	arrive	at	the	receiving	end	at	t	=	τn,	and
the	modal	waves	at	the	receiving	end	are	given	with	traveling	time	τn
and	attenuation	kn	by	efn	=	kn	⋅	esn	⋅	(t	–	τn),	where	u(t	–	τ)	is	the	unit
step	function	with	time	delay	τ,	and	k0	=	0.48,	k1	=	0.90,	and	k2	=
0.96	for	modes	0–2:

The	receiving	end	voltage



The	reflected	waves	at	 the	receiving	end	are	(Er)	=	2(Ef)	–	(Ef)	=	(Ef).
Thus,	(er)	=	(ef).
3.	t	=	2τn:

Thus,	

The	sending	end	voltage	is	given	in	the	following	form:

These	results	are	drawn	in	Figure	2.53.

EXAMPLE	2.2



In	Example	1.1,	consider	 the	 transposition	of	 the	 line	with	c1	=	c2	=	298
m/µs.

Solution
Considering	the	transposition,	the	surge	impedance	is	given	by
:	x	=	100	km,	c0	=	270,	c1	=	295,	and	c2	=	300	(m/µs)



FIGURE	2.53
Analytical	surge	waveforms	on	a	horizontal	line.	———	untransposed,	----	transposed
(Vb	=	Vc).	(a)	Vr,	(b)	Vs.



The	propagation	time	is	τ0	=	370.4	µs,	τ1	=	τ2	=	335.6	µs,	and	t01	=	τ0	–
τ1	=	34.8	µs.
The	 transformation	 matrix	 is	 the	 same	 as	 that	 in	 Example	 1.1	 (see

Section	1.4.4):

1.	

2.	

3.	



The	 results	 are	 shown	 in	 Figure	 2.53	 by	 a	 dotted	 line	 considering	 the
difference	in	time	delays	between	the	untransposed	and	transposed	lines.

EXAMPLE	2.3
The	 calculation	 of	 the	 receiving	 end	 voltage	 (Vr)	 in	 an	 untransposed
vertical	twin-circuit	line	is	illustrated	in	Figure	2.42	for	τ1	≤	t	<	3τ1	under
the	condition	that	the	source	voltage	E	=	1	pu	is	applied	to	phase	c	of	the
first	circuit	at	t	=	0	with	c0	=	251.2,	c1	=	298.4,	c3	=	297.4,	c2	=	c4	=	c5	=
299.2	(m/µs),	x	=	101.13	km,	R	=	403	Ω,	and	the	attenuation	is	zero.	The
surge	impedance	[Z0]	and	the	voltage	transformation	matrices	[A]	are

Solution



When	the	phase	c	pole	is	closed	at	t	=	0,	voltage	Vsc	=	Z0ccE/(R	+	Z0cc)	=
0.466	pu.
Thus,	current	Isc/Z0cc	=	1/728.
The	 sending	 end	 voltage	 (Vs)	 at	 t	 =	 0	 is	 obtained	 by	 using	 surge

impedance	[Z0]	as

(Vs)	=	[Z0	](Is)

where	the	currents	on	the	phases,	except	that	on	phase	c,	are	zero	for	the
open-circuited	case:

The	modal	traveling	wave	is	as	follows:

where	t	is	the	transposed	matrix.
The	modal	propagation	time	is	τ0	=	x/c0	=	402.6	(µs),	τ1	=	x/c1	=	338.9,

τ2	=	τ4	=	τ5	=	338.0,	and	τ3	=	340.0.
Neglecting	the	attenuation	of	the	line,	the	modal	traveling	waves	at	the

receiving	end	are	the	same	as	those	at	the	sending	end.
As	the	receiving	end	is	open-circuited,	the	refraction	coefficient	matrix

becomes	 a	 diagonal	 matrix	 of	 which	 all	 diagonal	 elements	 are	 equal	 to
two.	Thus,	the	modal	voltages	Vr	are

or



Transform	these	modal	voltages	into	actual	phasor	voltages	by	using	the
transformation	matrix	[A]:

In	the	same	manner:

Figure	2.54	illustrates	these	analytical	surge	waveforms.

2.5.1.2					Lumped	Parameter	Equivalent	with	Laplace	Transform
It	 is	 well-known	 that	 a	 distributed	 parameter	 line	 is	 approximated	 by	 a	 lumped	 parameter
circuit	 such	as	a	PI	 equivalent	 and	 an	L	 equivalent.	For	 example,	 the	 open-circuited	 line	 in
Figure	2.2	is	approximated	by	Figure	2.55	with	the	L	equivalent.	Let	us	analyze	the	switching
surges	in	this	circuit.



FIGURE	2.54
Analytical	surge	waveforms	at	the	receiving-end	on	a	vertical	twin-circuit	line.

2.5.1.2.1					Single-Phase	Line
In	an	L	equivalent	of	the	single-phase	line	illustrated	in	Figure	2.55,	current	I,	when	switch	S
is	closed	at	t	=	0,	is	defined	with	Laplace	operator	s	as



FIGURE	2.55
An	L	equivalent	of	an	open-circuited	line.

where
E(s)	=	E/s,	L0	=	Ls	+	L
Ls	is	the	source	inductance	(in	most	cases,	transformer	inductance)
L,	R,	and	C	are	the	inductance,	resistance,	and	capacitance	of	the	line	with	length	x

Then,	the	sending	and	receiving	end	voltages,	Vs(s)	and	Vr(s),	are	given	by

Solving	these	equations	and	transforming	them	into	the	time	domain	by	using	the	inverse
Laplace	transform,	the	following	solutions	are	obtained:

where	φ	=	tan−1(ω2/α),	ω2	=	

2.5.1.2.2					Single-Phase	Line	with	a	Residual	(Line	Charge)	Voltage:	Reclosing	Surge
When	there	is	a	residual	voltage	V0	(or	charge	Q0)	on	the	open-circuited	line,	a	closing	surge
overvoltage	 becomes	 much	 higher	 than	 that	 with	 no	 residual	 voltage	 and	 is	 called	 a
“reclosing	 surge”	 as	 explained	 in	 Section	 2.2.3.5.5;	 see	 Figure	 2.24.	 The	 derivation	 of	 the
reclosing	surge	voltage	is	similar	to	the	case	of	the	closing	surge,	except	that	an	initial	value
of	the	line	voltage	exists,	and	the	following	results	for	vr(t)	are	obtained:



In	most	real	transmission	lines,	the	following	condition	is	satisfied:

	line	surge	impedance	(see	Section	1.3.4.2)

In	such	a	case,	Equations	2.13	and	2.14	are	simplified	by	considering	ω1	 to	be	far	greater
than	α	and	nearly	equal	to	ω2.	For	example,	Equation	2.14	is	rewritten	as

It	is	easily	observed	from	this	equation	that

This	 result	 is	a	proof	of	 the	 reason	why	 the	 reclosing	surge	overvoltage	 is	much	higher
than	the	closing	surge	overvoltage.

2.5.1.2.3					Sinusoidal	AC	Voltage	Source
In	the	previous	theoretical	analysis,	the	source	voltage	was	assumed	to	be	a	step	function	(or
DC)	 voltage.	 This	 assumption	 is	 accurate	 enough	 as	 long	 as	 the	 observation	 time	 of	 a
switching	 surge	 is	 less	 than	 1	 ms.	 If	 the	 observation	 time	 exceeds	 5	 ms,	 a	 sinusoidal	 AC
voltage	 source	 should	 be	 taken	 into	 account.	 This	 makes	 the	 Laplace	 transform	 quite
complicated.
Assume	the	following	AC	voltage	source:

where
ω0	=	2πf0,	f0	is	the	power	frequency
θ	is	the	closing	angle	of	a	CB

Considering	that	the	overall	solution	is	given	as	a	superposition	of	the	source	voltage	and
the	transient	voltage	at	the	instance	of	CB	closing,	the	following	result	is	obtained:



where
τ	≒	ℓ/c0	is	the	traveling	time	of	the	line
c0	is	the	light	velocity
ℓ	is	the	line	length

2.5.1.2.4					Three-Phase	Line
In	the	case	of	a	three-phase	line,	Equation	2.11	becomes	a	matrix,	and	we	need	to	apply	modal
theory,	described	in	Section	1.4.
Assuming	that	the	line	is	transposed	and	all	the	phases	are	simultaneously	closed	at	t	=	0,

the	positive	sequence	(aerial	mode)	voltage	at	the	receiving	end	is	given	by

where
α1	=	R1/2L01,	 ,	τ1	=	ℓ/c1,	and	L01	=	Ls	+	L1
R1,	L1,	and	C1	are	the	positive	sequence	components	of	the	line	resistance,	inductance,	and

capacitance	matrix
τ1	is	the	propagation	time	of	the	positive	sequence	traveling	wave
c1	is	the	positive	sequence	propagation	velocity

After	 transforming	 Equation	 2.19	 into	 a	 phase	 domain	 by	 (V)	 =	 [A](v),	 the	 following
voltages	for	the	three	phases	are	obtained:

An	example	of	switching	surges	on	a	three-phase	line	calculated	by	this	equation	is	shown
in	Figure	2.56.

2.5.2					Fault	Surge
A	theoretical	derivation	of	a	fault	surge	voltage	is,	in	principle,	the	same	as	that	of	a	closing
surge	 voltage,	 provided	 that	 the	 steady	 state	 voltage	 at	 t	 =	 0	 is	 superposed	 to	 the	 transient
voltage	similar	to	a	reclosing	surge.



FIGURE	2.56
Switching	surges	due	to	simultaneous	CB	closing	on	a	three-phase	line.

Let	us	consider	 the	multiphase	circuit	 illustrated	 in	Figure	2.57a.	As-sume	 that	phase	a	 is
short-circuited	 to	 the	 ground	 (SLG)	 at	 node	P	 at	 t	 =	 0.	 Then	 the	 original	 circuit	 in	 (a)	 is
represented	by	Figure	2.57b	for	a	 transient	component.	By	applying	an	L-equivalent	 lumped
parameter	circuit	to	the	distributed	line	circuit,	Figure	2.57c	is	obtained.	In	the	circuit,	[L],	[R],
and	[C]	are	the	inductance,	resistance,	and	capacitance	matrices	of	the	original	distributed	line
with	length	x.	[Z0]	is	its	surge	impedance	matrix.	The	circuit	is	similar	to	that	of	Figure	2.55
except	that	the	source	voltage	–Ea	 is	applied	to	node	P.	Thus,	 it	 is	quite	possible	to	obtain	a
transient	voltage	(Vp)	at	node	P	 in	a	similar	manner	to	the	switching	surge	on	a	three-phase
line,	as	discussed	in	Section	2.5.1.
For	example,	neglecting	the	source	inductance	Ls	and	the	surge	impedance	[Z0]	at	the	right

of	 node	P	 with	 the	 source	 voltage	Ea	 =	E	 cos(ω0t),	 the	 following	 phase	 b	 (sound	 phase)
voltage	is	derived:

where
	is	the	attenuation	constant

τ	is	the	propagation	time	of	a	traveling	wave	for	the	line	length	x1
C0,	C1	are	zero-	and	positive-sequence	capacitances	for	the	line	length	x1

Considering	that	(ω0/ω1)2	is	much	smaller	than	1	and	φ	=	2π/3,	the	following	approximate
solutions	of	the	sound	phases	b	and	c	voltages	are	obtained:



where	K	=	Lab/Laa	is	the	ratio	of	the	mutual	and	self-inductances.

FIGURE	2.57
A	circuit	for	a	fault	surge	analysis.	(a)	Original	circuit.	(b)	An	equivalent	circuit.	(c)	An	L	equivalent	of	(b).

In	Equations	2.22	and	2.23,	the	damping	factor	exp(–αt)	is	neglected.	If	this	is	included,	the
oscillating	 term	 in	 Equation	 2.23	 will	 die	 out	 for	 t	→	∞.	 Then,	 the	 equation	 becomes	 the
steady-state	voltage	during	the	phase	a-to-ground	fault.	For	example,	if	k	=	0.4,	the	maximum
phase	b	voltage	is	given	as

2.5.3					Lightning	Surge



2.5.3.1				Tower-Top	Voltage
The	transient	voltage	at	a	tower	top,	at	which	lightning	strikes,	is	easily	calculated	by	applying
traveling	wave	theory.	An	example	has	been	explained	in	Section	1.7	(see	Problem	1.19).

2.5.3.2					Two-Phase	Model
Lightning	 strikes	 a	 tower	 or	 a	 GW	 in	 most	 cases.	 Occasionally	 it	 strikes	 a	 PW	when	 the
lightning	 current	 is	 small	 [37].	 In	 field	 measurements	 of	 lightning	 strikes	 on	 a	 1100	 kV
transmission	system,	it	was	found	that	lightning	strikes	a	PW	when	the	current	is	less	than	35
kA	[25].
When	 a	 tower	 is	 struck	 by	 lightning,	 a	 large	 lightning	 current	 flows	 into	 the	 tower,	 the

tower	voltage	exceeds	the	PW	voltage,	and	BFO	occurs.	Then,	a	part	of	the	lightning	current
flows	 through	 the	PW	and	 travels	 toward	 a	 substation.	This	 traveling	wave	 produces	more
overvoltage	 in	 the	 substation.	 Therefore,	 the	 analysis	 of	 the	 BFO	 and	 the	 resultant
overvoltages	are	critical	from	the	viewpoint	of	the	insulation	design	and	coordination	of	the
substation	and	the	transmission	line.	For	this,	it	is	imperative	to	consider	both	the	PW	and	a
GW	including	the	tower.	Thus,	the	analysis	involves	the	two-phase	circuit	composed	of	a	PW
and	a	GW	as	illustrated	in	Figure	2.58,	where

I0,	R0	are	the	lightning	current	and	channel	impedance
It,	Vt,	Zt,	xt	are	the	tower	current,	voltage,	surge	impedance,	and	height	(length)
Vf,	Rf	are	the	tower	foot	voltage	and	footing	impedance



FIGURE	2.58
A	two-phase	model	circuit	for	a	BFO	analysis.

Ig,	Zg	are	the	GW	current	and	surge	impedance
Ia,	Va,	Za	are	the	PW	current,	voltage,	and	surge	impedance
Zm	is	the	mutual	impedance	between	GW	and	PW

For	 an	 original	 eight-conductor	 (two	GWs	 and	 six	 PWs)	 system,	 the	 following	 relation
exists:

where	g	stands	for	GWs,	1	stands	for	circuit-1	PWs,	and	2	stands	for	circuit-2	PWs.
Assuming	that	a	BFO	occurs	on	phase	a	of	circuit-1,	the	following	relation	is	derived	from

Equation	2.24:



This	equation	is	reduced	to	a	2	×	2	matrix	for	Vg1	=	Vg2	=	Vg	and	Ig1	=	Ig2	=	Ig

where	Zg	=	(Z11	+	Z12)/2,	Zm	=	(Z13	+	Z23)/2,	Za	=	Z33,	and	Ig	=	2Ig.
This	equation	is	for	a	two-phase	circuit	model	used	to	analyze	a	lightning	surge.

2.5.3.3					No	BFO
The	GW	voltage	Vg	and	the	GW	current	Ig	are	easily	obtained	from	the	following	relation,
keeping	in	mind	that	Zg	is	an	equivalent	impedance	of	two	GWs	as	in	Equation	2.26:

Solving	these	equations,

where	1/Zin	=	1/R0	+	1/Zt	+	2/Zg	is	the	impedance	seen	from	the	current	source	I0	and	τ	=	xt/c
is	the	traveling	time	along	the	tower.
If	no	channel	impedance	exists,	that	is,	R0	=	∞,	then

At	t	=	τ,	a	traveling	wave	generated	at	t	=	0	arrives	at	the	tower	bottom	and	is	reflected	back
to	the	tower	top:

The	refraction	coefficient	λb	is	given	by



Thus,	 the	 following	 voltage	 appears	 at	 the	 tower	 bottom,	 that	 is,	 at	 the	 tower	 footing
resistance:

Then,	the	following	reflected	wave	ebt	at	the	bottom	travels	back	to	the	tower	top	arriving	at
t	=	2τ:

The	refraction	coefficient	seen	at	the	tower	top	is

where	1/Z′in	=	1/R0	+	2/Zg	.
Thus,	the	tower-top	voltage	Vg(t)	is	changed	to	the	following	value:

From	Equations	2.28,	2.35,	and	2.34,	an	analytical	wave	is	drawn	as	shown	in	Figure	2.59.
The	waveform	explains	a	numerical	simulation	result	of	the	tower-top	voltage	when	lightning
strikes	the	tower	top.	This	data	has	been	published	in	many	papers	[14,	15,	16,	17,	18,	19,	20,
21−22].

2.5.3.4					Case	of	a	BFO
When	a	BFO	occurs	on	phase	a,	the	GW	in	Figure	2.58	is	short	circuited	to	phase	a.	Then,	the
total	impedance	ZBF	seen	from	the	current	source	is	given	by



FIGURE	2.59
Analytical	waveform	of	the	tower	top	voltage.

where	Zin	is	the	total	impedance	in	the	case	of	no	flashover	(see	Equations	2.28	and	2.29).
The	tower-top	voltage	is	obtained	by

2.5.3.5					Consideration	of	Substation
When	 lightning	 hits	 a	 tower	 or	 a	GW,	 traveling	waves	 generated	 by	 the	 lightning	 currents
propagate	 to	 a	 substation	 along	 the	 ground	 and	 the	 PWs.	 When	 the	 waves	 arrive	 at	 the
substation,	they	produce	lightning	surge	overvoltages	on	the	substation	equipment.
Let	us	analyze	lightning	surges	at	a	substation.	Assume	that	lightning	strikes	the	first	tower

next	to	the	substation.	The	refraction	coefficient	matrix	[λs]	from	the	line	to	the	substation	is
given	by



where
[Zs]	is	the	substation	impedance
[Z0]	is	the	line	impedance	defined	in	Equation	2.26
Rg	is	the	surge	impedance	of	the	substation	gantry
Rs	is	the	phase	a	surge	impedance	of	the	sub-station

Then,	the	substation	voltage	(Vs)	is	calculated	by

Esg	and	Esa	are	the	traveling	waves	propagating	from	the	tower	and	are	given	by

where
Etg	is	the	traveling	wave	on	the	GW	at	the	tower
Eta	is	the	traveling	wave	on	the	PW	at	the	tower
u(t	–	τ)	is	the	unit	step	function	with	time	delay	τ

EXAMPLE	2.4
Calculate	the	substation	entrance	voltage	under	the	following	conditions:
I0	=	100	kA	step	function,	Zg	=	332	Ω,	Zm	=	128	Ω,	Za	=	349	Ω,	Zt	=

210	Ω,	Rg	=	125	Ω,	Rs	=	70	Ω:	gas-insulated	bus,	and	R0	=	400	Ω

Solution
1.	At	the	tower
a.	No	BFO:	Equations	2.28	and	2.26:

b.	BFO:



2.	At	the	substation:	Equations	2.38,	2.39	and	2.40:

a.	No	BFO:

Vsg	=	4.0	MV,	Vsa	=	0.32MV

b.	BFO:

Vsg	=	2.2	MV,	Vsa	=	1.42MV

It	is	observed	from	the	refraction	coefficient	[λs]	at	the	substation	that	37%	of	the	incoming
traveling	 wave	 Eta	 on	 the	 PW	 enters	 the	 substation	 and	 determines	 overvoltages	 in	 the
substation	 equipment.	 The	 remaining	 63%	 reflects	 back	 to	 the	 transmission	 line.	 Of	 the
traveling	wave	Etg	on	 the	GW,	–10%	is	 induced	 to	 the	PW	at	 the	substation	entrance,	which
decreases	 the	 PW	 voltage.	 This	 effect	 has	 not	 been	well	 realized	 but	 is	 very	 significant.	 If
there	is	no	negative	induced	voltage,	the	insulation	of	the	substation	equipment	becomes	much
severe.	This	kind	of	an	arrester	is	sometimes	referred	to	as	“nature’s	gift.”
This	analysis	is	based	on	a	step	function	current.	In	reality,	the	lightning	current	has	a	much

slower	rise	time	at	 the	wave	front,	and	thus	the	lightning	overvoltage	becomes	much	lower.
Such	an	analysis	can	be	carried	out	considering	the	wave	front,	but	a	hand	calculation	of	this
would	be	quite	tedious.
These	analytical	results	clearly	show	that	the	PW	voltage	in	the	BFO	case	is	much	higher

than	that	in	the	case	of	no	flashover.	This	is	the	reason	the	insulation	design/coordination	of	a
substation	is	based	on	the	result	in	the	flashover	case.
The	 GW	 (=	 tower)	 voltage	 is	 certainly	 much	 higher	 in	 the	 no-flashover	 case.	 In	 fact,

because	of	this	higher	voltage,	a	BFO	oc-curs	in	reality.	Remember	that	we	are	assuming	that
there	is	no	flash-over	in	this	analytical	study	for	the	purpose	of	clarity.	It	is	noteworthy	that	a
direct	strike	to	a	PW	occasionally	occurs.	The	magnitude	of	a	lightning	current	is	far	smaller
than	that	of	a	lightning	strike	to	a	tower	or	a	GW.	In	a	field	test	on	a	1100-kV	line	in	Japan,	the
lightning	current	was	found	to	be	less	than	30	kA	[25].	Assuming	a	direct	strike	with	I0	=	30
kA	to	phase	a,	the	following	results	are	obtained:



The	results	have	indicated	that	the	direct	strike	to	a	PW	with	30	kA	produces	an	overvoltage
at	 a	 substation	 comparable	 to	 that	 in	 the	 BFO	 case	with	 I0	 =	 100	 kA.	 This	 fact	 should	 be
carefully	investigated,	because	this	has	not	been	considered	in	the	standard	insulation	design
and	coordination	of	a	substation.

	
	

2.6					Frequency-Domain	(FD)	Method	of	Transient	Simulations
2.6.1					Introduction
There	exist	powerful	simulation	tools	such	as	the	EMTP	[35].	These	tools,	however,	involve	a
number	of	complex	assumptions	and	application	limits	that	are	not	easily	understood	by	the
user,	and	often	lead	to	incorrect	results.	Quite	often,	a	simulation	result	is	not	correct	due	to
the	user ’s	misunderstanding	of	the	application	limits	related	to	the	assumptions	of	the	tools.
The	best	way	to	avoid	this	type	of	incorrect	simulation	is	to	develop	a	custom	simulation	tool.
For	 this	 purpose,	 the	 FD	 method	 of	 transient	 simulations	 is	 recommended,	 because	 the
method	is	entirely	based	on	the	theory	explained	in	Section	2.5,	and	requires	only	numerical
transformation	 of	 a	 frequency	 response	 into	 a	 time	 response	 using	 the	 inverse
Fourier/Laplace	 transform	 [2,6,36,	 37,	 38,	 39,	 40,	 41–42].	 The	 theory	 of	 a	 distributed
parameter	 circuit,	 transient	 analysis	 in	 a	 lumped	parameter	 circuit,	 and	 the	Fourier/Laplace
transform	 are	 included	 in	 undergraduate	 course	 curricula	 in	 the	 electrical	 engineering
department	of	most	universities	throughout	the	world.	This	section	explains	how	to	develop	a
computer	code	of	the	FD	transient	simulations.

2.6.2					Numerical	Fourier/Laplace	Transform
A	 numerical	 calculation	 code	 of	 the	 Fourier/Laplace	 transform	 is	 prepared	 in	 commercial
software	 such	 as	MATLAB,	MAPLE,	 or	 even	 Excel.	 Therefore,	 it	 is	 easy	 to	 carry	 out	 an
inverse	transform	provided	that	all	frequency	responses	are	given	by	the	user.	Similarly,	if	the
user	 can	prepare	 the	 time	 response	of	 a	 transient	 voltage,	 for	 example,	 as	 digital	 data	 of	 a
measured	 result,	 then	 the	 user	 can	 easily	 obtain	 its	 frequency	 response	 using	 the	 software.
However,	it	is	better	to	first	understand	the	basic	theory	of	the	Fourier/Laplace	transform.

2.6.2.1					Finite	Fourier	Transform
Let	us	consider	the	following	Fourier	transform:



A	finite	transform	for	[–Ω,	Ω]	is	defined	as

where
F(ω)	is	the	frequency	response	for	–Ω	≤	ω	≤	Ω.
f1(t)	 is	 the	 time	 response	 at	 time	 t	 evaluated	 by	 this	 equation,	 which	 is	 not	 accurate.	 An

accurate	solution	f(t)	is	obtained	by	the	original	infinite	integral	in	Equation	2.41.

Assuming	the	following	frequency	function	G(ω):

Equation	2.42	can	be	rewritten	as

The	time	response	g(t)	of	G(ω)	is	given	by

Expressing	f1(t)	by	using	time	convolution	(Duhamel’s	integral)	of	f(t)	and	g(t)	under	 the
condition	that	f(t)	=	0	for	<	0,

or	replacing	t	–	τ	by



it	is	possible	to	estimate	the	error	of	the	approximate	time	solution	f1(t)	defined	by	Equation
2.42	in	comparison	with	the	accurate	one	f(t)	in	Equation	2.41,	which	cannot	be	evaluated	by
numerical	 integration.	When	 f(u)	 changes	 suddenly,	 a	 noticeable	 oscillation,	 called	 “Gibbs
oscillation,”	 appears	 in	 f1(t).	 This	 is	 the	 error	 caused	 by	 the	 finite	 Fourier	 transform.	 A
countermeasure	to	this	is	to	take	the	average	of	the	time	region	[t	–	a,	t	+	a]	in	the	following
form:

where	a	=	π/Ω.
Substituting	Equation	2.42	 into	 this	equation	and	 rearranging	 it,	 the	 following	 formula	 is

obtained	[38,39]:

σ(ω)	in	this	equation	is	called	a	“sigma	factor	(weighting	function)”	and	is	expressed	by

By	taking	Equation	2.49	rather	than	Equation	2.42	as	a	finite	Fourier	transform,	the	Gibbs
oscillation	 due	 to	 the	 finite	 interval	 in	 a	 numerical	 calculation	 of	 the	 Fourier	 transform	 is
reduced.

2.6.2.2					Shift	of	Integral	Path:	Laplace	Transform
In	 the	Fourier	 transform,	 integration	 is	carried	out	along	 the	 imaginary	axis	 jω,	as	 is	 clear
from	Equations	2.41	and	2.42.	Thus,	the	integration	hits	a	singular	point	along	the	jω	axis.	To
avoid	this,	the	integral	path	can	be	shifted	to	j(ω	–	jα)	=	α	+	jω	rather	than	jω:



This	 formulation	 is	 similar	 to	 the	 Laplace	 transform	 and,	 thus,	 can	 be	 called	 the	 “finite
Laplace	 transform.”	The	 following	 value	 has	 been	 known	 to	 be	 empirically	 optimal	 as	 the
constant	α	in	Equation	2.51	[40]:

where	T	is	the	observation	time.

2.6.2.3					Numerical	Laplace	Transform:	Discrete	Laplace	Transform
On	 the	 basis	 of	 the	 explanations	 in	 Sections	 2.6.2.1	 and	 2.6.2.2,	 the	 following	 form	 of	 the
Laplace	transform	is	obtained	[6,40]:

For	numerical	calculations,	the	following	equation	is	used:

where	ω0	=	Ω/N,	N	is	the	total	number	of	frequency	(=	time)	samples	t	=	k	⋅	t0,	t0	=	T/N,	T	is
the	observation	time,	and	k	=	1,	2,	…	,	N.
The	discretization	of	F(ω)	by	ω0	in	the	numerical	Laplace	transform	causes	an	error.	The

details	of	the	numerical	discretization	error	are	discussed	in	References	38	and	39.

2.6.2.4					Odd-Number	Sampling:	Accuracy	Improvement
In	principle,	 the	numerical	Fourier	 transform	is	a	kind	of	numerical	 integration.	Therefore,
the	 accuracy	 of	 the	 numerical	 Fourier	 transform	 is	 greatly	 dependent	 on	 its	 integration
method.	 In	 this	 section,	 various	 methods	 of	 integration,	 including	 odd-number	 sampling
developed	by	Wedepohl	that	gives	quite	a	high	accuracy	but	is	not	well-known	[6,40,41],	are
investigated,	and	a	method	with	 the	highest	accuracy	 is	 introduced	 into	 the	discrete	Laplace
transform	(DLT).
The	 accuracy	 of	 various	 integration	 methods	 is	 investigated	 for	 the	 case	 of	 the

conventional	Fourier	 transform	[41].	The	conventional	discrete	Fourier	 transform	(DFT)	 is
given	in	the	following	form:



The	numerical	evaluation	of	this	equation	is	carried	out	by	the	following	methods:

1.	Method	(a):

This	is	shown	in	Figure	2.60a.	If	the	sampling	of	G(ω,	t)	shown	in	Figure	2.60b	is
applied,	Equation	2.55	can	be	evaluated	by

FIGURE	2.60
Various	methods	of	integration.	(a)	Tropezoidal-1,	(b)	Tropezoidal-2,	(c)	Simpson's	method,	and	(d)	Odd-number	sampling.

2.	Method	(b):



Using	Simpson’s	method	of	integration	shown	in	Figure	2.60c,	Equation	2.55	can	be
evaluated	by

3.	Method	(c):

The	following	method	of	odd-number	sampling	was	developed	by	Wedepohl	[6,40,41]:
4.	Method	(d):

 This	is	shown	in	Figure	2.60d.	This	method	can	cover	a	frequency	range	twice	as	wide
as	that	in	methods	(a)	through	(c)	with	the	same	number	of	frequency	samples.	If	the
maximum	frequency	is	the	same	as	in	methods	(a)	through	(c),	then	in	method	(d)	the
number	of	samples	is	halved.
The	results	of	a	unit	step	function	calculated	by	these	integration	methods	are	shown	in
Figure	2.61	[41].	In	the	calculations,	the	weighting	function	is	included.	Table	2.8	shows	a
comparison	of	accuracy	between	the	various	methods.	From	the	results,	it	is	obvious	that
the	odd-number	sampling	method	(d)	is	the	most	accurate	and	efficient.

5.	Application	of	the	odd-number	sampling:	modified	Laplace	transform	(MLT)
Integration	method	(d),	explained	earlier,	is	introduced	into	Equation	2.54	in	the
following	form:



FIGURE	2.61
Results	 of	 unit	 step	 responses	 calculated	 by	 various	 methods	 of	 integration.	 (a)	 Tropezoidal-1,	 (b)	 Tropezoidal-2,	 (c)
Simpson's	method,	and	(d)	Odd-number	sampling.

TABLE	2.8
Comparison	of	Accuracy	(Tmax	=	5	ms)

2.6.2.5					Application	of	Fast	Fourier	Transform	FFT:	Fast	Laplace	Transform	(FLT)

2.6.2.5.1					Principle	and	Algorithms	of	the	FFT
The	complex	DFT	is	defined	in	the	following	form	[42]:



where
Fn	is	the	nth	coefficient	of	the	DFT
fk	denotes	the	kth	sample	of	the	time	series	that	consists	of	N	samples

The	inverse	transform	of	Equation	2.61	is

where

fk	can	be	a	complex	number,	but	usually	it	is	real	in	the	field	of	electrical	engineering,	and	Fn
is	almost	always	complex.
The	 principle	 and	 the	 algorithms	 of	 the	 FFT	 for	 the	 inverse	 DFT	 of	 Equation	 2.62	 are

explained	next.
Let	us	consider	the	case	of	N	=	8	=	23.	Then	W	becomes

Using	W8	=	1	and	Wr	=	Ws,	where	s	=	r	mod	8,	and	also	W2	=	j,	W4	=	–1,	W5	=	–W,	etc.,
Equation	2.62	is	rewritten	in	the	following	form:



Changing	 the	 columns	 and	 rearranging	 for	 (F0,	F2,	F4,	 F6)	 and	 (F1,	 F3,	 F5,	 F7),	 these
matrices	can	be	rewritten	as

These	matrices	include	the	following	matrix:



Defining	matrix	[En]	by

Matrix	[fk]	is	expressed	in	the	following	form:

In	 matrix	 [T],	 by	 interchanging	 the	 second	 and	 third	 columns,	 the	 following	 matrix	 is
obtained:

Using	this	orthogonal	matrix,	we	can	write

The	[En]	matrix	is	expressed	in	the	following	form:



Therefore,	[fk]	can	be	obtained	using	the	following	procedure:

Expressing	the	subscripts	of	each	matrix	by	the	binary	code,

Fn	=	F(rqp)

then	Dn	from	Equation	2.67	is	given	in	the	following	form:

Second,	En	is	given	by

Finally,	fk	is	obtained	from	these	equations	as	follows:

The	inverse	Fourier	transform	of	Equation	2.62	can	be	calculated	in	 this	manner.	A	more
general	description	is	given	in	many	publications	(see,	for	example,	Reference	42).



2.6.2.5.2					Computation	Time
The	total	number	of	calculation	units	by	repeated	application	of	the	FFT	becomes	[6]

TF	=	N(p1	+	p2	+…+	pn)

In	the	case	of

p1	=	p2=…=pn	=	m

n	being	given	by

n	=	logm	N

the	total	number	of	calculation	units	becomes

The	ratio	between	TF	and	Tc	is

Table	 2.9	 shows	 the	 value	 of	m/log2	m.	 This	 becomes	 a	minimum	 at	m	 =	 3.	 Table	 2.10
shows	Tc/TF	with	m	=	2.	From	the	table,	it	is	obvious	that	the	FFT	is	highly	efficient	compared
with	the	conventional	Fourier	transform.

2.6.2.5.3					Application	of	the	FFT	to	MLT
The	application	of	the	FFT	to	the	MLT	in	Equation	2.60	may	be	rather	difficult	compared	with
the	application	of	the	DFT	because	the	integer	term	(2k	–	1)	in	the	exponent	of	Equation	2.60
is	 an	 odd	 number	 [6].	 Therefore,	we	 need	 to	modify	 this	 equation	 so	 that	 the	 integer	 term
takes	on	sequential	values	of	1,	2,	3,	4…	Thus,	the	following	form	is	obtained,	in	which	the
FFT	can	be	applied:

TABLE	2.9
m/log2	m



where

TABLE	2.10
Theoretical	Comparison	of	Computation	Time	(m	=	2)



FIGURE	2.62
Complete	program	for	computing	the	DLT	of	Equation	2.54	by	the	FFT	method-subroutine	FLT.

Figure	2.62	gives	a	complete	program	for	computing	the	DLT	in	Equation	2.54	by	the	FFT.
Figure	2.63	shows	a	calculation	example	in	comparison	with	the	exact	solution.

2.6.3					Transient	Simulation



A	computer	program	for	transient	simulation	by	an	FD	method	can	be	easily	produced	by	a
university	student.	Figure	2.64	 illustrates	 its	 flow	chart.	The	program	 is	 composed	of	 three
procedures	[2,6],	discussed	next.

FIGURE	2.63
Results	calculated	by	the	DLT	and	the	FLT	in	comparison	with	the	exact	solution.

2.6.3.1					Definition	of	Variables
N	is	the	number	of	frequency	samples	for	F(ω)	=	number	of	time	samples	f(t)
DF	is	the	frequency	step;	FMAX	=	N*DF	is	the	maximum	frequency
DT	=	1/FMAX	is	the	time	step
TMAX	=	N*DF	=	1/DF	is	the	observation	time	corresponding	to	the	sampling	theorem:

DW	=	2π*	DF,W	=	n	*	DW



ALFA	=	2π/TMAX,	CJ	=	exp(jπ/2)	is	the	symbol	of	the	imaginary	variable:

S	=	CJ	*W	+	ALFA

FIGURE	2.64
Flow	chart	of	the	FD	method.

2.6.3.2					Subroutine	to	Prepare	F(ω)
F(ω)	containing	N	samples	of	frequency	responses	needs	to	be	prepared.	For	example,	let	us
obtain	transient	(time)	responses	of	v(t)	in	the	RLC	parallel	circuit	illustrated	in	Figure	2.65.
Voltage	V(s)	in	the	s-domain	is	given	by



FIGURE	2.65
Switching	of	RLC	parallel	circuit.	R1	=	500	Ω,	R	=	1000	Ω,	L	=	10	mH,	and	C	=	1	μF.	R2	=	10	Ω,	E	=	Step	function	1.

These	frequency	responses	are	produced	for	n	=	1	to	N,	where

s	=	jω	+	α,	ω	=	n	·	ω0

2.6.3.3					Subroutine	FLT
The	frequency	responses	I(s)	and	V(s)	are	sent	to	subroutine	FLT	given	in	Figure	2.62.	Then,
the	FLT	carries	out	the	inverse	Laplace	transform	and	the	time	solutions	are	obtained.	Figure
2.63	 shows	an	example	of	a	calculated	 result	v(t)	 in	 comparison	with	 the	 accurate	 solution.
Note	that	the	accuracy	of	the	FLT	is	quite	high.

2.6.4					Remarks	of	the	FD	Method



The	advantage	of	the	FD	method	is	that	any	frequency	dependent	effect	is	easy	to	handle	as	it
is	based	on	the	frequency	response	of	a	transient	to	be	solved.	Thus,	the	frequency-dependent
effect	 of	 a	 transmission	 line	 or	 cable,	 explained	 in	 Chapter	 1,	 is	 very	 easily	 included	 in	 a
simulation.
On	the	contrary,	a	sudden	change	in	the	time	domain,	such	as	switching,	causes	a	difficulty

because	 the	 change	 involves	 an	 initial	 condition	 problem	 that	 requires	 repeated
time/frequency	 transforms.	 A	 nonlinear	 element	 (e.g.,	 an	 arrester)	 requires	 a	 number	 of
time/frequency	 transforms.	Thus,	 the	FD	method	 is	often	used	 to	 check	 the	 accuracy	of	 the
time-domain	method,	such	as	the	EMTP,	on	the	frequency-dependent	effect.

	
	

Appendix	2A
2A.1					Setup	of	the	Field	Test	in	Section	2.2.3.2
Section	2.2.3.2	introduces	field	test	results	on	the	single-circuit	horizontal	line	and	the	double-
circuit	vertical	line.	This	appendix	introduces	additional	information	regarding	the	test	setup
and	test	results	on	the	former	field	test.



FIGURE	2A.1
Field	test	circuit	with	the	IG.

The	test	line	is	a	500	kV	transmission	line	of	the	Tokyo	Electric	Power	Company.	It	is	an
untransposed	single-circuit	 line	with	two	GWs.	The	tower	configuration	and	conductor	data
are	already	shown	in	Figure	1.22.
The	test	circuit	is	shown	in	Figure	2A.1.	The	test	voltage	was	applied	to	the	test	line	by	an

IG	 through	 series	 resistance	 R.	 The	 test	 voltages	 with	 various	 wave	 shapes	 were	 applied
according	 to	 the	 standard	wave	 shapes	 defined	 in	 the	 Japanese	Electrotechnical	Committee.
Table	2A.1	shows	circuit	constants	of	the	IG	and	the	series	resistance	for	each	wave	shape.

2A.2					Results	of	the	Field	Test
This	section	discusses	the	results	of	the	field	test	introduced	in	Section	2A.1.	The	first	result	is
the	attenuation	of	the	applied	voltage	at	the	receiving	end.	The	attenuation	is	evaluated	by	the
following	definition	and	summarized	in	Table	2A.2:

TABLE	2A.1
Circuit	Constants	of	the	Field	Test



TABLE	2A.2
Attenuation	of	the	Voltage	Magnitude

where
Vs:	magnitude	of	the	voltage	at	the	sending	end
Vr:	magnitude	of	the	voltage	at	the	receiving	end

The	attenuation	is	more	significant	when	α	is	smaller.
Here,	 phase	 a	 is	 the	 left	 phase,	 and	 phase	 b	 is	 the	 middle	 phase.	 There	 are	 only	 minor

differences	 between	 phase	 a	 energization	 and	 phase	 b	 energization	 with	 regard	 to	 the
attenuation.
The	results	in	Table	2A.2	show	that	the	attenuation	is	highly	dependent	on	the	wave	tail,	and

not	on	the	wave	front.	The	attenuation	is	more	significant	for	wave	shapes	with	a	shorter	wave
tail.	For	 the	wave	tail	of	4000	µs,	 the	difference	of	a	wave	front	does	not	have	a	noticeable
effect	on	the	attenuation.
The	 second	 result	 is	 the	 length	 of	 a	wave	 front	 of	 the	 voltage	 at	 the	 receiving	 end.	 The

definition	of	the	wave	front	is	shown	in	Figure	2A.2.	The	voltage	wave	shape	at	the	receiving
end	has	two	voltage	spikes	as	explained	in	Section	1.6.4.5.	The	magnitude	of	the	two	voltage
spikes	is	named	as	Af 1	and	Af 2,	respectively.	Two	wave	fronts	Tf 1	and	Tf 2	are	defined	using
two	lines	that	connect	0.3Afn	and	0.9Afn	(n	=	1,	2).
Table	2A.3	shows	 the	 two	wave	fronts	 for	phase	a	energization	and	phase	b	 energization

when	the	wave-shape	of	 the	applied	voltage	 is	1/4000.	The	phase	b	energization	has	shorter
wave	fronts,	as	can	be	expected	from	the	analytical	calculation.
The	last	result	is	the	comparison	of	field	test	results	with	the	analytical	calculation.	Figure

2A.3	 shows	 the	 comparison	 for	 phase	 a	 energization	 when	 the	 wave-shape	 of	 the	 applied
voltage	 is	 1/4000.	 The	 analytical	 calculation	 agrees	 well	 with	 the	 field	 test	 results.	 The
comparison	 for	 phase	 b	 energization	 is	 shown	 in	 Figure	 2.7.	 Comparing	 with	 phase	 b
energization	 in	Figure	2.7,	 the	wave	 front	 of	 the	 first	 voltage	 spike	 at	 the	 receiving	 end	 is
longer	as	shown	in	Table	2A.3.



FIGURE	2A.2
Definition	of	the	wave	front.

TABLE	2A.3
Length	of	Wave-Front

	 Tf1	(µs) Tf2	(µs)

Phase	a	energization 6.9 71
Phase	b	energization 2.8 67



FIGURE	2A.3
Comparison	of	the	measured	and	calculated	results	for	phase	a	energization.	(a)	Sending-end	voltages	and	(b)	receiving-end
voltages.
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Transients	on	Cable	Systems
	

	
	

3.1					Introduction
This	 chapter	 focuses	 on	 transient	 phenomena	 specifically	 related	 to	 cables.	 Transients	 on
cable	systems	are	characterized	by	the	large	charging	capacities	of	cables	and	the	presence	of
a	metallic	sheath	around	 the	phase	conductor.	Temporary	overvoltages	 (TOVs),	 such	as	 the
overvoltage	caused	by	system	islanding	and	the	resonance	overvoltage	observed	on	the	cable
system,	contain	 low-frequency	components	due	 to	 large	charging	capacities.	Because	of	 the
low	 frequency,	 namely	 low	 damping,	 these	TOVs	 can	 be	 sustained	 for	 extended	 durations,
posing	challenges	to	the	insulation	performance	of	related	equipment.	This	chapter	introduces
examples	of	such	studies.
Other	 issues,	such	as	 the	zero-missing	phenomenon,	 the	 leading	current	 interruption,	and

the	 cable	 discharge,	 also	 stem	 from	 the	 large	 charging	 capacities	 of	 cables.	 The	 effects	 of
these	issues	on	the	cable	system	design	are	discussed	in	Section	3.5.	The	discussion	includes
countermeasures	for	the	problems	and	suggestions	for	equipment	selection.
Sheath	bonding	 and	grounding	 is	 another	 important	 issue	 in	 cable	 system	design.	Sheath

overvoltage	 requires	 careful	 study	 not	 only	 to	 avoid	 failures	 of	 sheath	 voltage	 limiters
(SVLs)	and	sheath	interrupts,	but	also	to	ensure	the	safety	of	maintenance	crews.	Sections	3.2
and	3.3	cover	all	the	major	aspects	of	sheath	bonding	and	grounding,	thus	providing	a	wide
variety	 of	 information	 from	 fundamentals	 to	 applications.	 In	 addition,	 impedance
calculations,	wave	 propagation	 characteristics,	 and	 transient	 voltage	 behaviors	 discussed	 in
these	sections	provide	grounding	for	the	transient	phenomena	discussed	in	the	later	sections.

	
	

3.2					Impedance	and	Admittance	of	Cable	Systems
3.2.1				Single-Phase	Cable
3.2.1.1				Cable	Structure
The	 most	 significant	 difference	 between	 a	 cable	 and	 an	 overhead	 line	 is	 that	 a	 cable	 is
generally	 composed	 of	 two	 conductors	 for	 one	 phase,	while	 an	 overhead	 line	 is	 generally



composed	 of	 one	 conductor.	 Thus,	 a	 three-phase	 cable	 consists	 of	 six	 conductors,	 while	 a
three-phase	overhead	line	consists	of	three	conductors.
Figure	 3.1	 illustrates	 the	 cross	 section	 of	 a	 typical	 coaxial	 cable.	 The	 core	 conductor

carries	current	 in	 the	same	way	the	phase	conductor	of	an	overhead	 line	does.	The	metallic
sheath	 is	 grounded	 at	 both	 ends	 of	 the	 cable	 in	 order	 to	 shield	 the	 core	 current.	 Thus,	 the
metallic	sheath	is	often	called	the	“shield.”

3.2.1.2				Impedance	and	Admittance

The	impedance	and	admittance	of	a	single-phase	cable	are	presented	in	matrix	form	because
the	cable	contains	two	conductors:

Each	element	of	the	impedance	matrix	is	composed	of	the	cable	internal	impedance	and	the
cable	outer	media	(earth-return)	impedance,	as	explained	in	Chapter	1	of	 this	volume.	In	the
overhead	 line	 case,	 the	 conductor	 internal	 impedance	 is	 composed	 of	 only	 one	 impedance
(i.e.,	 the	outer	surface	 impedance	of	a	conductor).	The	cable	 internal	 impedance	consists	of
the	following	six	components	[1]:

FIGURE	3.1
Cross	section	of	a	typical	coaxial	cable.

1.	Core	outer	surface	impedance	(same	as	the	internal	impedance	of	an	overhead	line)
2.	Core-to-sheath	insulator	impedance
3.	Sheath	inner	surface	impedance
4.	Mutual	impedance	between	the	sheath’s	inner	and	outer	surfaces
5.	Sheath	outer	surface	impedance
6.	Sheath	outer	insulator	(the	outer	cover	shown	in	Figure	3.1)	impedance

It	is	quite	clear	that	cable	impedance	is	far	more	complicated	than	overhead	line	impedance
[1,2].
The	 admittance	matrix	 is	 expressed	 in	 the	 following	 form	using	 the	 potential	 coefficient

matrix:

where



3.2.2				Sheath	Bonding
Before	we	 discuss	 the	 impedance	 and	 admittance	 of	 a	 three-phase	 cable,	 it	 is	 necessary	 to
learn	 about	 sheath	 bonding.	Underground	 cables	 that	 are	 longer	 than	 2	 km	normally	 adopt
cross-bonding	to	reduce	sheath	currents	and	to	suppress	sheath	voltages	at	the	same	time	[3].
Figure	3.2	shows	a	representative	cross-bonding	diagram	of	a	cable.	In	the	figure,	one	of	the
three	sheath	circuits	 is	highlighted	with	a	dotted	 line.	Starting	 from	 the	 left	 termination,	 the
sheath	 circuit	 goes	 along	 the	 phase	 a	 conductor	 in	 the	 first	 minor	 section,	 the	 phase	 b
conductor	in	the	second	minor	section,	and	the	phase	c	conductor	in	the	third	minor	section.
Theoretically,	the	vector	sum	of	the	induced	voltage	of	the	sheath	circuit	in	these	three	minor
sections	becomes	zero	when	three	phase	currents	in	the	phase	conductors	are	balanced	and	the
three	minor	 sections	 are	 of	 the	 same	 length.	 This	 is	why	 cross-bonding	 can	 reduce	 sheath
currents	and	suppress	sheath	voltages	at	the	same	time.

FIGURE	3.2
Example	of	a	cross-bonding	diagram	of	a	cable.

If	the	lengths	of	the	three	minor	sections	are	different,	an	imbalance	in	the	induced	voltages
will	 result	 that	 causes	 sheath	 currents.	 However,	 when	 there	 are	 more	 than	 a	 few	 major
sections,	it	is	a	common	practice	to	design	cross-bonding	after	considering	the	best	balance
for	the	induced	voltage.	This	results	in	the	socalled	homogeneous	nature	of	cable	impedance
[4,5].
For	submarine	cables,	 it	 is	more	common	 to	adopt	 solid	bonding	due	 to	 the	difficulty	 in

constructing	 joints	 offshore,	 as	 shown	 in	 Figure	3.3.	Hence,	 submarine	 cables	 have	 higher
sheath	currents	compared	to	underground	cables	that	are	normally	crossbonded.	In	order	to
reduce	the	loss	caused	by	higher	sheath	currents,	 the	sheath	conductors	of	submarine	cables
often	have	a	lower	resistance	(i.e.,	a	larger	cross	section).
Single-point	bonding	has	an	advantage	in	terms	of	reducing	the	sheath	currents.	The	sheath

current	 loss	can	be	reduced	virtually	to	zero	by	applying	single-point	bonding,	as	shown	in
Figure	3.4.	However,	 it	 can	only	be	applied	 to	 short	cables	or	 short	cable	 sections	due	 to	a
limitation	 in	 the	 acceptable	 sheath	 voltage.	 In	 order	 to	 prevent	 the	 sheath	 voltage	 from
exceeding	 the	 limitation,	SVLs	are	 installed	 at	 the	unearthed	 end	of	 the	 sheath	 circuit.	 (The



installation	of	SVLs	 is	discussed	 in	greater	detail	 in	Section	3.3.)	Additionally,	 installing	an
earth	continuity	cable	(ECC)	is	highly	recommended	in	order	to	suppress	sheath	overvoltage.

FIGURE	3.3
Solid	bonding	of	a	cable.

FIGURE	3.4
Single-point	bonding	of	a	cable.

Figure	3.5	shows	an	example	in	which	single-point	bonding	is	employed	in	a	long	cable.	As
discussed	 earlier,	 cross-bonding	 is	 adopted	 for	 the	 long	 cable.	 In	 the	 figure,	 the	 first	 three
minor	sections	from	the	left	termination	compose	one	major	section	of	cross-bonding.	Since
the	 number	 of	 minor	 sections	 is	 four,	 which	 is	 not	 a	 multiple	 of	 three,	 the	 fourth	 minor
section	 from	 the	 left	 termination	 cannot	 become	 a	 part	 of	 cross-bonding.	 In	 this	 situation,
single-point	bonding	 is	applied	 to	 the	 remaining	minor	 section	 (as	 shown	 in	Figure	3.5)	 as
long	as	the	sheath	voltage	allows	it.

FIGURE	3.5
Single-point	bonding	as	part	of	a	cross-bonded	cable.

This	situation	is	often	observed	in	actual	installations,	as	the	number	of	minor	sections	is
not	determined	by	the	cross-bonding.	Rather,	it	is	determined	to	reduce	the	number	of	joints
as	much	as	possible	as	an	aspect	of	cost	consideration.



The	 joint	 labeled	 EJ/SSJ	 functions	 both	 as	 an	 earthing	 joint	 (EJ)	 and	 as	 a	 sheath-
sectionalizing	joint	(SSJ).	The	left	side	of	the	joint	is	solidly	grounded	as	in	an	earthing	joint.
The	 left	and	right	sides	of	 the	 joint	are	 insulated	as	 in	a	sheath-sectionalizing	 joint,	and	 the
right	side	of	the	joint	is	unearthed.	Since	the	grounding	resistance	at	the	EJ/SSJ	is	normally
much	 higher	 than	 the	 resistance	 at	 the	 termination	 (substation),	 this	 addition	 of	 the	 single-
point-bonding	 section	may	 significantly	 increase	 the	 zero-sequence	 impedance	 of	 the	 cable
without	the	ECC.

3.2.3				Homogeneous	Model	of	a	Cross-Bonded	Cable

3.2.3.1				Homogeneous	Impedance	and	Admittance

Section	3.2.1	 addressed	 the	 impedance	 and	 admittance	 of	 a	 single-phase	 cable.	This	 section
addresses	the	impedance	and	admittance	of	a	cross-bonded	three-phase	cable	and	how	6	×	6
impedance	and	admittance	matrices	can	be	reduced	to	4	×	4	matrices.
Figure	3.6	illustrates	a	major	section	of	a	cross-bonded	cable.	The	bold	solid	line	and	the

broken	 line	 express	 the	 core	 and	 sheath,	 respectively.	 The	 sheaths	 are	 grounded	 through
grounding	impedance	Zg	at	both	sides	of	the	major	section.	The	core	and	sheath	voltages	Vk
and	 	 and	 currents	 Ik	 and	 	 at	 the	 kth	 cross-bonded	 node	 are	 related	 as	 in	 the	 following
equations:

FIGURE	3.6
Major	section	of	a	cross-bonded	cable.

The	 second	 subscripts	 c	 and	 s	 denote	 the	 core	 and	 sheath,	 respectively,	 and	 the	 third
subscripts,	a,	b,	and	c,	express	the	phases.	The	other	voltage	and	current	vectors	 	and

	have	the	same	form	as	(Vk).
The	sheath-sectionalizing	joint	is	mathematically	expressed	by	a	rotation	matrix	[R]:



where	[0]	and	[U]	denote	a	3	×	3	null	and	unit	matrix,	respectively.
The	rotation	matrix	has	the	following	characteristics:

where	the	subscript	t	represents	the	transposed	matrix.
When	 defining	 the	 voltage	 difference	 ΔVk−1	 between	 nodes	 k−1	 and	 k′,	 the	 following

equation	is	used:

The	 voltage	 difference	 between	 the	 major	 section	 ΔV	 (between	 nodes	 0	 and	 3)	 is
represented	by

From	Equations	3.3	to	3.8,	ΔV	is	expressed	by	ΔVk	(k	=	1,	2,	3)	in	the	following	form:

Voltage	 and	 current	 deviations	 are	 expressed	 by	 using	 the	 cable	 impedance	 [Z]	 and
admittance	[Y]	in	the	following	example:

where	lk	is	the	length	of	the	kth	minor	section.
The	voltage	difference	between	the	terminals	of	the	major	section	(ΔV)	gives	an	equivalent

impedance	of	a	cross-bonded	cable.	It	is	obtained	(3.13)	by	applying	the	following	relations:

If	the	lengths	of	the	minor	sections	are	identical	(lk	=	l),	an	equivalent	series	impedance	[Z′]
can	be	obtained:

The	physical	meaning	of	this	equation	can	be	explained	using	the	following	calculation:



where	[Zcc],	[Zcs],	and	[Zss]	are	the	submatrices	of	the	cable	impedance	matrix.
The	 submatrix	 for	 the	 cores	 [Zcc]	 remains	 unchanged	 based	 on	 the	 operation	 shown	 in

Equation	3.14.

Equations	3.18	and	3.19	show	that	the	operation	to	the	submatrix	for	the	mutual	impedance
between	the	cores	and	sheaths	[Zcs]	is	averaging	within	the	rows:

The	diagonal	and	mutual	element	 	of	the	submatrix	for	sheaths	[Zss]	is	the
mean	of	the	self-	and	mutual	impedance	of	the	sheath.	The	shape	of	the	matrix	is	identical	to
that	of	a	transposed	overhead	line:

In	 this	 same	manner,	 the	 equivalent	 admittance	 of	 a	 cross-bonded	 cable	 can	 be	 obtained
from	the	current	difference	(ΔI):



The	admittance	matrix	of	the	cable	can	be	expressed	as	follows:

The	core	admittance	 submatrix	 [Ycc]	 is	 a	diagonal	matrix	determined	by	 the	 capacitances
between	the	cores	and	the	sheath,	because	a	sheath	encloses	a	core.	The	admittance	submatrix
of	the	cores	for	the	cross-bonded	cable	is	identical	to	the	solidly	bonded	cable:

Equations	 3.18	 and	 3.19	 show	 that	 the	 operation	 sheaths	 to	 the	 submatrix	 for	 the	mutual
admittance	between	the	cores	and	sheaths	[Ycs]	is	averaging	within	the	rows:

The	sheaths	diagonal	and	mutual	element	 	of	the	submatrix	for	the	sheaths
[Zss]	is	the	mean	of	the	self-	and	mutual	impedances	of	the	sheath:

3.2.3.2				Reduction	of	the	Sheath

The	lengths	of	the	minor	sections	can	have	imbalances	due	to	constraints	on	the	locations	of
joints.	 The	 imbalances	 are	 designed	 to	 be	 as	 small	 as	 possible,	 since	 they	 increase	 sheath
currents	 and	 raise	 sheath	 voltages.	 When	 a	 cable	 system	 has	 multiple	 major	 sections,	 the
overall	balance	is	considered	for	minimizing	sheath	currents.	As	a	result,	when	a	cable	system
has	 more	 than	 two	 major	 sections,	 sheath	 currents	 are	 generally	 balanced	 among	 three
conductors,	which	allows	for	the	reduction	from	three	metallic	sheaths	to	one	conductor	[4,5].
Since	 three-phase	 sheath	 conductors	 are	 short-circuited	 and	 grounded	 in	 every	 major

section	(as	illustrated	in	Figure	3.6),	the	sheath	voltages	of	the	three	phases	are	equal	at	each



earthing	joint.	Assuming	that	the	sheath	currents	are	balanced	among	the	three	conductors,	the
sheath	currents	do	not	flow	into	the	earth	at	each	earthing	joint:

By	applying	connection	matrix	[T],	this	equation	can	be	rewritten	as

where

From	Equations	3.14,	3.23,	and	3.31,	the	following	relation	is	obtained:

where

The	impedance	matrix	[Z″]	and	the	admittance	matrix	[Y″]	are	4	×	4	matrices	composed	of
three	cores	and	a	reduced	single	sheath.
Because	the	propagation	mode	of	the	cable	can	be	expressed	by	both	-coaxial-	and	sheath-

propagation	 mode,	 in	 a	 high-frequency	 region	 where	 skin	 depth	 is	 smaller	 than	 sheath
thickness,	the	impedance	matrix	is	composed	of	the	following	two	submatrices:

where

The	reduced	impedance	in	a	high-frequency	region	becomes:



The	 core	 impedances,	 including	 their	 mutual	 impedances,	 are	 identical	 to	 the	 original
impedances:

The	mutual	impedance	between	the	kth	core	and	the	reduced	sheath	 	is	the	average	of	the
impedances	between	the	core	and	the	three-phase	sheaths:

Finally,	 the	 sheath	 impedance	 is	 the	 average	 of	 all	 the	 elements	 of	 the	 original	 sheath
impedance	matrix:

In	the	same	manner,	the	reduced	admittance	matrix	becomes:

3.2.4				Theoretical	Formula	of	Sequence	Currents
The	sequence	 impedance/current	calculation	of	overhead	lines	 is	wellknown	and	introduced
in	 textbooks	 [2].	 For	 underground	 cables,	 theoretical	 formulas	 are	 proposed	 for	 the	 cable
itself	[6,	7,	8−9].	However,	in	order	to	derive	accurate	theoretical	formulas,	it	is	necessary	to
consider	the	whole	cable	system,	including	sheath	bonding,	because	the	return	current	of	an
underground	 cable	 flows	 through	 both	 the	 metallic	 sheath	 and	 the	 ground.	 Until	 now,	 no
formula	existed	for	sequence	impedances	or	currents	that	consider	sheath	bonding	and	sheath-
grounding	 resistances	 at	 substations	 and	 earthing	 joints.	 As	 a	 result,	 it	 became	 a	 common
practice	 to	 measure	 these	 sequence	 impedances	 or	 currents	 after	 installation,	 as	 it	 is
considered	difficult	to	predict	these	values	in	advance.
As	 mentioned	 earlier,	 it	 is	 a	 common	 practice	 for	 underground	 cable	 systems	 that	 are

longer	 than	approximately	2	km	to	cross-bond	 the	metallic	sheaths	of	 three-phase	cables	 to
simultaneously	 reduce	 sheath	 currents	 and	 suppress	 sheath	 voltages	 [3].	 Submarine	 cables,



which	 are	 generally	 bonded	 solidly,	 are	 now	 gaining	 popularity	 due	 to	 the	 increase	 in
offshore	wind	farms	and	cross-border	transactions.
In	this	section,	we	derive	theoretical	formulas	of	the	sequence	currents	for	the	majority	of

underground	 cable	 systems:	 that	 is,	 a	 cross-bonded	 cable	 that	 has	 more	 than	 two	 major
sections.	 We	 also	 derive	 theoretical	 formulas	 for	 a	 solidly	 bonded	 cable	 considering	 the
increased	use	of	submarine	cables.

3.2.4.1				Cross-Bonded	Cable

3.2.4.1.1				Impedance	Matrix
One	cable	system	corresponds	 to	six	conductor	systems	composed	of	 three	cores	and	 three
metallic	 sheaths.	 As	 in	 the	 last	 section,	 the	 6	 ×	 6	 impedance	matrix	 of	 the	 cable	 system	 is
represented	by	the	following	equation	[1]:

where
c	is	the	core
s	is	the	sheath
t	is	the	transpose

In	Equation	3.47,	cable	phase	a	is	assumed	to	be	laid	symmetrically	to	phase	c	and	against
phase	b.	 The	 flat	 configuration	 and	 the	 trefoil	 configuration,	 which	 are	 typically	 adopted,
satisfy	this	assumption.
By	reducing	the	sheath	conductors,	the	six-conductor	system	is	reduced	to	a	four-conductor

system	composed	of	three	cores	and	one	equivalent	metallic	sheath,	as	shown	in	Figure	3.7.
The	4	×	4	reduced	impedance	matrix	can	be	expressed	as



FIGURE	3.7
Cross-bonded	cable	and	its	equivalent	model:	(a)	a	cross-bonded	cable	system	with	m-major	sections	and	(b)	an	equivalent
four-conductor	system.

Here,	Z″(4,	 j)	=	Z″(j,	 4)	 can	 be	 calculated	 from	 the	 6	 ×	 6	 impedance	matrix	Z	 shown	 in
Equation	3.41.	 	stands	in	the	flat	configuration	and	the	trefoil	configuration.

3.2.4.1.2				Zero-Sequence	Current
The	 following	 equations	 are	 derived	 from	 Figure	 3.8.	 Here,	 sheath	 grounding	 at	 earthing
joints	is	ignored,	but	sheath	grounding	at	substations	can	be	considered	through	Vs:

where

FIGURE	3.8
Setup	for	measuring	sequence	currents	for	a	cross-bonded	cable:	(a)	zero-sequence	current	and	(b)	positive-sequence	current.



Figure	3.8a	 shows	 the	 setup	 for	measuring	 the	zero-sequence	current	 for	 a	 cross-bonded
cable.
Assuming	the	grounding	resistance	at	substations	Rg,	the	sheath	voltage	Vs	can	be	obtained

by:

The	following	equations	can	be	obtained	by	solving	Equations	3.49	and	3.50:

where

The	zero-sequence	current	can	be	obtained	from	Equation	3.51	as	follows:

When	three-phase	cables	are	laid	symmetrically	to	each	other,	the	following	equations	are
satisfied:

Using	 symmetrical	 impedances	Zc,	Zm,	 and	Zn	 in	Equation	3.53,	Z11,	Z22,	 and	Z12	 can	 be
expressed	as

Substituting	Z11,	Z22,	 and	Z12	 in	Equations	 3.51	 and	 3.52	 by	 the	 symmetrical	 impedances
will	result	in:

where	

3.2.4.1.3				Positive-Sequence	Current



In	Figure	3.8b,	 the	 equation	 Isa	 +	 Isb	 +	 Isc	 =	 0	 is	 satisfied	 at	 the	 end	 of	 the	 cable	 line.	 The
following	equations	are	obtained	since	Vs	=	0:

where	α	=	exp(j2π/3).
Solving	Equation	3.56	for	Ia,	Ib,	and	Ic	yields	results	in	the	following:

Here,

The	positive-sequence	current	is	derived	from	Equation	3.57:

where	
When	three-phase	cables	are	laid	symmetrically	to	each	other,	Equation	3.58	can	be	further

simplified	using	Equation	3.53:

3.2.4.2				Solidly	Bonded	Cable

3.2.4.2.1				Impedance	Matrix
Equation	3.47	and	Figure	3.9:



FIGURE	3.9
Setup	for	measuring	sequence	currents	for	a	solidly	bonded	cable:	(a)	zero-sequence	current	and	(b)	positive-sequence	current.

Here,	(I)	=	(Ia	Ib	Ia)t	is	the	core	current	and	(Is)	=	(Isa	Isb	Isa)t	is	the	sheath	current:

From	Equation	3.61,	sheath	current	(Is)	is	found	using:

After	eliminating	the	sheath	current	(Is)	in	Equation	3.60,	core	current	(I)	can	be	derived	as

3.2.4.2.2				Zero-Sequence	Current
From	Figure	3.9a,	(E)	and	(I)	are	expressed	as

The	 core	 current	 (I)	 is	 obtained	 from	 Equations	 3.63	 and	 3.64;	 and	 the	 zero-sequence
current	is	calculated	as	I0	=	(Ia	+	Ib	+	Ic)/3.
Since	 the	 relationship	 [Zcs]	 ≈	 [Zss]	 generally	 stands,	 Equations	 3.60	 and	 3.61	 can	 be

simplified	to	Equation	3.65	using	Equation	3.53:

where	[U]	is	the	3	×	3	unit	(identity)	matrix.
Hence,

Using	Equation	3.66,	the	core	current	(I)	in	Equation	3.61	can	be	eliminated,	which	yields

After	adding	all	three	rows	in	Equation	3.67,	the	result	is



After	solving	Equation	3.68	for	Vs	and	 then	eliminating	Vs	 from	Equation	3.66,	 the	 zero-
sequence	current	becomes

3.2.4.2.3				Positive-Sequence	Current
From	Figure	3.9b,	(E)	and	(I)	are	expressed	as

The	 core	 current	 (I)	 is	 obtained	 from	Equations	 3.63	 and	 3.70.	Once	 the	 core	 current	 is
solved	for,	the	positive-sequence	current	can	be	calculated	as

I1	=	(Ia	+	αIb	+	α2Ic)/3.

Using	Equation	3.65,	the	theoretical	formula	of	the	positive-sequence	current	simplifies	to

Equation	3.71	shows	that	the	positive-sequence	current	can	be	approximated	by	the	coaxial
mode	 current.	 It	 also	 shows	 that,	 in	 a	manner	 similar	 to	 that	 of	 a	 cross-bonded	 cable,	 the
positive-sequence	current	remains	unaffected	by	the	substation-grounding	resistance	Rg.

3.2.4.2.4				Example
Figure	3.10	shows	the	physical	and	electrical	data	of	a	400-kV	cable	used	for	comparison.	An
existence	of	semiconducting	layers	introduces	an	error	in	the	charging	capacity	of	the	cable.
The	 relative	 permittivity	 of	 the	 insulation	 (XLPE)	 is	 converted	 from	 Equations	 2.4	 to	 2.7,
according	 to	 Equation	 3.72,	 in	 order	 to	 correct	 the	 error	 and	 achieve	 a	 reasonable	 cable
model	[10]:



FIGURE	3.10
Physical	and	electrical	data	of	the	cable.

where
Rsi	is	the	inner	radius	of	the	insulation
Rso	is	the	outer	radius	of	the	insulation

The	total	 length	of	 the	cable	 is	assumed	to	be	12	km.	Figure	3.11	shows	 the	 layout	of	 the
cables.	It	is	assumed	that	the	cables	are	directly	buried	at	a	depth	of	1.3	m	with	a	separation	of
0.5	m	between	the	phases.	Earth	resistivity	is	set	to	100	Ω	m.
The	calculation	process	in	the	case	of	a	cross-bonded	cable	using	the	proposed	formulas	is

shown	as	follows	(the	6	×	6	impedance	matrix	Z	is	obtained	using	cable	constants	[1,11,12]):

[Z′]	(upper:	R,	lower:	X,	unit:	Ω)
0.71646353 0.59136589 0.59136589 0.5913705
8.44986724 6.28523815 5.76261762 6.63566685
0.59136589 0.71646353 0.59136589 0.5913705
6.28523815 8.44986724 6.28523815 6.80987369
0.59136589 0.59136589 0.71646353 0.5913705
5.76261762 6.28523815 8.44986724 6.63566685
0.5913705 0.5913705 0.5913705 0.83438185
6.63566685 6.80987369 6.63566685 6.63485268

Zero-sequence	current
Δ0	=	−3.9605900	+	j12.489448
Z11	=	4.0641578	+	j2.2224336
Z22	=	2.1959039	+	j2.1450759



FIGURE	3.11
Layout	of	the	cable.

Z12	=	2.0193420	+	j0.1372637
Z21	=	4.0386840	+	j0.2745275
I0	(rms)	=	81.814700	−	j31.778479

Positive-sequence	current
Δ2	=	−4.8574998	−	j1.8394591
Z11	=	0.3670612	+	j1.8221556
Z22	=	0.3801952	+	j1.4707768
Z12	=	0.2482475	−	j0.5159115
Z13	=	0.2419636	−	j0.8650940
I1	(rms)	=	14.118637	−	j251.86277

Table	3.1	 shows	 zero-	 and	 positive-sequence	 currents	 derived	 by	 the	 proposed	 formulas.
Grounding	 resistances	at	 substations	are	assumed	 to	be	1	Ω.	 In	 the	calculations,	 the	applied
voltage	 is	 set	 to	 	 (angle:	0°)	 and	 the	 source	 impedance	 is	not	 considered.	Here,
sequence	 currents	 are	 determined	 according	 to	 the	 setups	 for	measuring	 sequence	 currents
shown	in	Figures	3.8	and	3.9.	The	assumptions	regarding	the	applied	voltage	and	the	source
impedance	match	 the	 condition	 in	 the	 actual	 setups	 for	measuring	 sequence	 currents,	 since
testing	sets	are	generally	used	in	such	measurements.

TABLE	3.1
Comparison	of	Proposed	Formulas	with	EMTP	Simulations

The	 proposed	 formulas	 are	 known	 to	 have	 a	 satisfactory	 accuracy	 for	 planning	 and
implementation	studies.	An	acceptable	 level	of	error	 is	 introduced	by	 the	 impedance	matrix
reduction	 discussed	 earlier.	Owing	 to	 the	matrix	 reduction,	 unbalanced	 sheath	 currents	 that
flow	into	the	earth	at	earthing	joints	are	not	considered	in	the	proposed	formulas.
Table	3.1	shows	that	the	positive-sequence	impedance	is	smaller	for	a	solidly	bonded	cable

than	 for	 a	 cross-bonded	 cable,	 and	 the	 positive-sequence	 current	 is	 larger	 for	 a	 solidly
bonded	 cable.	 Because	 of	 this	 size	 differential,	 the	 return	 current	 flows	 only	 through	 the



metallic	 sheath	of	 the	 same	cable	 and	 earth	 in	 the	 solidly	bonded	 cable,	whereas	 the	 return
current	flows	through	the	metallic	sheath	of	all	three-phase	cables	in	a	cross-bonded	cable	(Zc
−	Zm	>	Zc	−	Zs).
The	 impedance	 calculation	 in	 IEC	 60909-2	 assumes	 solid	 bonding.	 As	 a	 result,	 if	 the

positive-sequence	 impedance	 of	 a	 cross-bonded	 cable	 is	 derived	 based	 on	 IEC	 60909-2,	 it
might	be	smaller	than	the	actual	positive-sequence	impedance.
The	 phase	 angle	 of	 the	 zero-sequence	 current	 mentioned	 in	 Table	 3.1	 demonstrates	 that

grounding	 resistance	 at	 substations	 in	 both	 cross-bonded	 and	 solidly	 bonded	 cables
significantly	 affects	 the	 zero-sequence	 current.	 As	 a	 result,	 there	 is	 little	 difference	 in	 the
zero-sequence	impedance	of	the	cross-bonded	cable	and	the	solidly	bonded	cable.	The	results
indicate	 the	 importance	 of	 obtaining	 an	 accurate	 grounding	 resistance	 at	 the	 substations	 to
derive	accurate	zero-sequence	impedances	of	cable	systems.

	
	

3.3					Wave	Propagation	and	Overvoltages

3.3.1				Single-Phase	Cable

3.3.1.1				Propagation	Constant

As	explained	in	Chapter	1,	the	evaluation	of	wave	propagation-related	parameters	necessitates
eigenvalue/eigenvector	 calculations.	 Because	 of	 the	 coaxial	 structure	 of	 a	 cable	 core	 and
metallic	sheath,	 the	propagation-related	parameters	show	the	following	characteristics	when
in	a	high-frequency	region	[2]:

1.	Impedance	matrix
In	a	high-frequency	region,	the	following	relation	is	satisfied	in	Equation	3.1:

Zcs	=	Zss	=	Zs

or

2.	Voltage	transformation	matrix

where
 (v)	is	the	modal	voltage



 (V)	is	the	actual	phase	voltage

3.	Modal	propagation	constant
The	modal	 propagation	 constant	 γ	 is	 given	 in	 the	 following	 equation	 from	 the	 actual
propagation	constant	matrix	[Г]	explained	in	Chapter	1:

where	[Г]2	=	[Z][Y].
Considering	Equation	3.74	with	Equations	3.71	and	3.73:

where
 γe	=	Zs(Ys	−	Yc)	is	the	earth-return	mode	(mode	1)
 γc	=	Yc(Zs	−	Zc)	is	the	coaxial	mode	(mode	2)

4.	Characteristic	impedance
The	modal	characteristic	impedance	[z0]	is	given	as

where
 z0e	=	Z0s	is	the	earth-return	mode	(mode	1)
 z0c	=	Z0c	−	Z0s	is	the	coaxial	mode	(mode	2)

The	actual	characteristic	impedance	[Z0]	is	obtained	from	these	equations	in	the	following
form:

where	[B]−1	=	[A]t	is	the	current	transformation	matrix.
From	 these	 equations,	 it	 should	be	 clear	 that	 the	 coaxial	mode	current	 flows	 through	 the

core	conductor	and	returns	through	the	metallic	sheath	in	a	high-frequency	region.	In	fact,	a
communication	 signal	 cable	 and	 a	 measuring	 cable	 intentionally	 use	 coaxial	 mode
propagation	 for	 signal	 transmission	 because	 the	 propagation	 characteristic	 is	 entirely
dependent	on	the	insulator	between	the	core’s	outer	surface	and	the	sheath’s	inner	surface.	In
such	a	case,	propagation	velocity	cc	and	characteristic	impedance	Z0c	of	the	coaxial	mode	are
evaluated	approximately	by:

3.3.1.2				Example	of	Transient	Analysis



Figure	 3.12	 illustrates	 a	 circuit	 diagram	 of	 a	 single-phase	 coaxial	 cable.	 In	 the	 figure,	 the
characteristic	impedance	of	each	section	is	defined	as	follows:

FIGURE	3.12
Circuit	diagram	of	a	single-phase	coaxial	cable.

where
R0	is	the	source	impedance
Rs	is	the	sheath-grounding	resistance
Rc	is	the	core-terminating	resistance

The	 sheath-grounding	 resistance	Rs	 generally	 ranges	 from	0.1	 to	20	Ω	depending	on	 the
earth	resistivity	and	the	grounding	method.	The	source	impedance	is	either	the	bus	impedance
or	the	transformer	impedance.	If	the	cable	is	connected	to	an	overhead	line,	R0	and	Rc	are	the
surge	impedances	of	the	overhead	line.	If	the	cable	is	extended	beyond	node	2,	Rc	is	the	core
self-characteristic	impedance	Z0c	or	the	coaxial	mode	characteristic	impedance	z0c.
As	explained	in	Chapter	1,	the	refraction	coefficient	matrices	at	nodes	1	and	2	are	given	in

the	following	forms:

where

Now,	we	consider	the	transient	response	of	a	coaxial	cable	to	connect	a	PG	to	a	circuit	(that
is,	 a	 current	 lead	wire).	Then,	 the	 following	condition	 is	given	assuming	 that	 the	 receiving
end	of	the	core	is	open-circuited	and	the	sheath	is	perfectly	grounded:

Going	by	this	result,	Equation	3.89	becomes



Since	the	traveling	wave	voltage	at	node	1	is	E/2	in	Figure	3.12	from	Thevenin’s	theorem
(as	explained	in	Chapter	1),	the	node	1	voltage	(v1)	at	t	=	0	is	calculated	as

Traveling	 wave	 (E12)	 from	 node	 1	 to	 node	 2	 is	 transformed	 into	 modal	 wave	 (e12)	 as
follows:

Equation	3.85	indicates	that	a	coaxial	mode	wave	carries	E/2	 to	 the	receiving	end;	 that	 is,
the	cable	works	as	a	coaxial	mode	signal	transfer	system.
The	coaxial	mode	wave	arrives	at	node	2	at	 t	=	 ta.	The	wave	 is	 then	 transformed	 into	an

actual	phase-domain	wave	(E2f)	as	follows:

The	voltage	E	from	the	PG,	therefore,	appears	at	the	open	end	of	the	coaxial	cable	at	t	=	ta.

3.3.2				Wave	Propagation	Characteristics
We	will	now	discuss	the	wave	propagation	characteristics	of	a	three-phase	single-core	cable.
Figure	3.13	and	Table	3.2	show	a	cross	section	and	the	parameters	of	a	tunnelinstalled	cable.
Assuming	that	the	tunnel	is	a	pipe	conductor,	the	propagation	parameters	are	evaluated	by

using	a	pipetype	(PT)	cable	option	of	the	EMTP	cable	constants.
Table	 3.3a	 shows	 the	 calculated	 results	 of	 the	 impedance,	 the	 admittance,	 the	 modal

attenuation	 constant,	 and	 the	 propagation	 velocity	 on	 the	 solidly	 bonded	 case;	 Table	 3.3b
shows	the	results	on	the	cross-bonded	case	with	the	homogeneous	model	at	frequency	f	=	100
kHz.

3.3.2.1				Impedance:	R,	L

In	Equation	3.41.



FIGURE	3.13
Tunnelinstalled	cable	represented	by	a	PT	cable:	(a)	configuration	of	a	three-phase	single-core	cable	and	(b)	cross	section	of
a	single-core	cable.

TABLE	3.2
Cable	Parameters

r1 0 ε1 3.1
r2 30.45	mm ε2 4.0
r3 71.15	mm µc 1.0
r4 74.80	mm µs 1.0
r5 81.61	mm ρc 1.82	×	10−8	Ω	m
ρe 100	Ω	m ρs 2.83	×	10−8	Ω	m

TABLE	3.3
Parameters	of	a	Tunnel-Installed	Cable	at	100	kHz



The	above	results	correspond	to	the	fact	that	the	cross-bonding	acts	as	a	transposition	of	an
overhead	 transmission	 line,	 and	 the	 three	 sheath	 conductors	 are	 reduced	 to	 one	 equivalent
conductor	as	explained	in	Section	3.2.3.2.

3.3.2.2				Capacitance:	C



The	 capacitance	 matrix	 looks	 similar	 to	 the	 impedance	 matrix	 in	 Table	 3.3a-2.	 The
capacitance	between	the	core	and	sheath	Cck	of	the	homogeneous	model	is	identical	to	that	of
the	solidly	bonded	cable.	The	equivalent	capacitance	 	of	 the	cross-bonded	cable	 in	Table
3.3b-2	is	given	as	the	sum	of	the	elements	as	shown	in	Equations	3.44	and	3.45.

3.3.2.3				Transformation	Matrix

The	 role	 of	 the	 transformation	matrix	 [Ti]	 in	 Table	 3.3a-3	 and	 b-3,	 is	 to	 transform	modal
current	(i)	to	phasor	current	(I),	that	is

In	the	solidly	bonded	cable,	the	first	three	modes	(columns)	shown	in	Table	3.3	a-3	express
coaxial-propagation	 modes	 (that	 is,	 the	 “core-to-sheath”	 mode	 [2]).	 The	 other	 modes
(columns)	correspond	to	one	of	the	transformation	matrices	of	an	untransposed	three-phase
overhead	 line	 [2].	 In	 this	 case,	mode	 4	 expresses	 an	 earth-return	mode	 and	modes	 5	 and	 6
correspond	to	aerial	modes.
The	reduced	transformation	matrix	of	a	cross-bonded	cable	is	shown	in	Table	3.3b-3.	The

composition	 of	 the	 top	 left	 3	 ×	 3	 matrix	 (the	 first	 three	 modes)	 is	 similar	 to	 that	 of	 an
overhead	transmission	line.	The	current	of	the	third	mode	returns	from	the	equivalent	sheath
instead	of	the	earth.	The	fourth	mode	expresses	the	equivalent	earth-return	mode	of	the	cross-
bonded	cable	system.

3.3.2.4				Attenuation	Constant	and	Propagation	Velocity

Modes	1−3	in	the	solidly	bonded	cable	shown	in	Table	3.3a-4	are	coaxial	modes	and	are	the
same	as	mode	3	in	the	homogeneous	cross-bonded	cable	model.	Although	the	attenuations	of
the	inter-core	modes	(modes	1	and	2)	shown	in	Table	3.3b-4	are	almost	identical	to	that	of	the
coaxial	mode	of	the	solidly	bonded	cable,	the	velocities	are	lower.	The	velocity	of	the	coaxial
mode	vc	is	determined	by	the	permittivity	of	the	main	insulator	ε1	=	2.3	shown	in	Table	3.2:

where	c0	is	the	speed	of	light.
The	velocity	converges	to	this	value	as	the	frequency	increases.
The	attenuation	and	velocity	of	 the	earth-return	mode	(mode	4)	 in	both	cable	models	are

identical.
Because	the	cable	is	installed	in	a	tunnel	(that	is,	the	cable	is	in	air),	the	attenuation	constant

and	the	propagation	velocity	of	mode	4	(earth	return)	and	modes	5	and	6	(the	first	and	second
inter-sheath)	in	the	solidly	bonded	cable	show	similar	characteristics	to	those	of	an	overhead
line	[1].	The	 attenuation	 constants	of	modes	5	 and	6	 are	much	 smaller	 and	 the	propagation
velocity	is	much	greater	in	the	solidly	bonded	cable	than	those	in	the	other	modes.



3.3.3				Transient	Voltage
Figures	3.14	and	3.15	show	transient	voltage	waveforms	at	the	sending-end	core	voltages	and
the	first	cross-bonding	point	of	a	cross-bonded	cable	system	with	five	major	sections	(l1	=	l2
=	l3	=	400	m	with	total	length	l	=	5	×	3	×	0.4	=	6	km)	when	a	step	voltage	of	1	pu	is	applied	to
a	 sending-end	 core	 (phase	 a)	 through	 a	 resistor	 of	 Rs	 =	 200	 Ω.	 This	 resistor	 models	 a
backward	surge	impedance.	The	physical	parameters	of	the	cable	are	shown	in	Figure	3.6	and
Table	3.2.	Each	receiving-end	core	is	grounded	through	a	resistor	of	Re	=	200	Ω.	The	sheaths
are	 short-circuited	 and	 grounded	 by	 a	 resistor	 of	Rs	 =	 0.1	 Ω	 at	 both	 ends	 of	 each	 major
section.	The	cable	is	represented	by	a	constant	parameter,	Dommel’s	model.



FIGURE	3.14
Calculated	transient	core	voltages	on	a	tunnel-installed	cable:	(a)	cross-bonded,	(b)	mixed.	Calculated	transient	core	voltages
on	a	tunnel-installed	cable:	(c)	homogeneous,	and	(d)	solidly	bonded.



FIGURE	3.15
Calculated	transient	sheath	voltages	on	a	tunnel-installed	cable:	(a)	cross-bonded	and	(b)	mixed.

The	 calculated	 results	 for	 minor	 sections	 exactly	 modeled	 by	 multi-phase-distributed
parameter	lines	are	shown	in	Figures	3.14a	and	3.15a.	The	induced	voltages	on	the	cores	are
observed	 in	 Figure	 3.14a.	 The	 voltage	 is	 generated	 by	 the	 reflections	 at	 the	 cross-bonded
points.	 After	 70	 µs,	 the	 voltage	 on	 the	 applied	 phase	 is	 gradually	 increased.	 The	 time	 is
determined	based	on	the	round-trip	time	of	the	coaxial	traveling	wave:

where	lt	and	vc	denote	the	total	cable	length	and	the	traveling	velocity,	respectively,	of	the
coaxial	mode	shown	in	Table	3.3a-4	or	b-4.
The	time	constant	τ1	of	the	voltage	increase	is	determined	by	the	sending-end	resistance	Rs,

the	terminating	resistance	Re,	and	the	total	cable	capacitance	Cclt.	The	capacitance	is	obtained
from	Table	3.3a-2	or	b-2.

The	maximum	sheath	voltage	at	the	first	cross-bonded	joint	shown	in	Figure	3.15a	becomes
0.05	pu,	which	 is	about	40%	of	 the	core	voltage	at	 the	 time.	This	voltage	 is	generated	by	a
reflection	 at	 the	 cross-bonded	 joint.	 This	 is	 an	 inherent	 characteristic	 of	 the	 cross-bonded



cable.	The	high	voltage	(HV)	is	a	key	factor	in	the	insulation	design	of	a	cross-bonded	cable
system.
Although	the	exact	model	of	the	cross-bonded	cable	is	useful	for	the	simulation	of	a	simple

grid,	 the	 simulation	 of	 a	 large-scale	 cable	 system	 with	 a	 cross-bonded	 cable	 is	 too
complicated	 and	 difficult.	 The	 homogeneous	 model	 explained	 in	 Section	 3.2.3	 is
comparatively	simple	and	useful.	Figures	3.14	and	3.15b	illustrate	the	transient	voltages	when
the	first	major	section	is	expressed	accurately	and	the	other	major	sections	are	expressed	by
pi-equivalent	 circuits	 whose	 parameters	 are	 determined	 by	 the	 homogeneous	 model.	 By
comparing	 the	 results	 from	 the	 exact	 model	 (a),	 a	 simplification	 is	 possible,	 providing
sufficient	information	for	an	insulation	design	of	the	cable	system.	Figure	3.14c	illustrates	the
result	 of	 a	 case	 in	 which	 all	 major	 sections	 are	 expressed	 by	 homogeneous	 pi-equivalent
circuits.	 It	 is	 clear	 from	 the	 figure	 that	 the	 calculated	 result	 has	 enough	 accuracy	 for	 the
simulation	 of	 the	 switching	 surge,	 although	 the	 sheath	 voltages	 at	 the	 cross-bonded	 joints
cannot	be	obtained.
Figure	3.14d	shows	the	transient	response	of	the	core	voltage	in	a	solidly	bonded	cable.	It

shows	a	stair-like	waveform	with	a	length	of	70	μs.	This	length	is	determined	by	the	round-
trip	 time	 shown	 in	 Equation	 3.89.	 Sheath	 voltages	 of	 the	 solidly	 bonded	 cable	 are	 much
smaller	 than	 those	of	 the	 cross-bonded	cable.	The	 results	 indicate	 that	not	 all	 cross-bonded
cables	can	be	simplified	by	a	solidly	bonded	cable	from	the	viewpoint	of	not	only	the	sheath
voltages	but	also	the	core	voltages.

3.3.4				Limitations	of	the	Sheath	Voltage
As	 mentioned	 in	 Section	 3.2.2,	 the	 limitations	 of	 the	 sheath	 voltage	 are	 key	 for	 making
decisions	 regarding	 sheath	 bonding	 and	 other	 cable	 system	 designs	 related	 to	 the	 sheath.
There	are	two	types	of	limitations	in	the	sheath	voltage:	(1)	continuous	voltage	limitation	and
(2)	short-term	voltage	limitation.
Continuous	voltage	limitation	is	the	limitation	of	the	sheath	voltage	induced	by	the	normal

load	 flow	 in	 phase	 conductors	without	 any	 faults.	 It	 is	 enforced	 by	 government	 or	 district
regulations	 in	 many	 countries	 and	 differs	 in	 each	 area	 based	 on	 said	 regulations.	 This
limitation	was	enforced	for	the	safety	of	the	maintenance	crews	who	may	come	into	contact
with	 the	 sheath	 circuit.	 Even	 if	 this	 limitation	 is	 not	 enforced,	 utilities	 follow	 their	 own
standards	for	continuous	voltage	limitation.
Since	 SVLs	 are	 designed	 not	 to	 be	 operated	 by	 continuous	 sheath	 voltages,	 continuous

voltage	 limitation	 is	 maintained	 mainly	 by	 cable	 layouts,	 cross-bonding	 designs,	 and
grounding	 resistances.	 The	 cable	 span	 length	 (minor	 length)	 is	 more	 often	 limited	 by
restrictions	in	transportation,	but	can	also	be	limited	by	a	continuous	voltage	limitation.
A	short-term	voltage	limitation	is	specified	in	IEC	62067	Annex	G	(informative)	as	impulse

levels	[13].	Considering	short-term	voltage	limitation,	the	following	phenomena	are	studied:

•		SLG	faults	(external	to	the	targeted	major	section)
•		Three-phase	faults	(external	to	the	targeted	major	section)
•		Switching	surges



•		Lightning	surges

When	only	power-frequency	components	are	considered,	SLG	faults	and	three-phase	faults
are	studied	using	theoretical	formulas.	Some	utilities	study	SLG	faults	and	three-phase	faults
using	 EMTP	 in	 order	 to	 consider	 transient	 components	 of	 the	 sheath	 voltage.	 Switching
surges	rarely	become	an	issue	for	the	sheath	overvoltage.
Lightning	surges	have	to	be	studied	for	a	mixed	overhead	line/underground	cable	as	shown

in	Figure	3.16.	A	lightning	strike	on	 the	GW	can	propagate	 into	 the	sheath	circuit,	since	 the
transmission	 tower	 and	 cable	 sheath	 often	 share	 the	 grounding	 mesh	 or	 electrode	 at	 the
transition	 site.	 The	 level	 of	 the	 sheath	 overvoltage	 is	 highly	 dependent	 on	 the	 grounding
resistance	 at	 the	 transition	 site.	 The	 space	 of	 the	 transition	 site	 is	 sometimes	 limited;	 it	 is
necessary	to	achieve	a	low	grounding	resistance	in	order	to	lower	the	sheath	overvoltage.

FIGURE	3.16
Lightning	surge	in	a	mixed	overhead	line/underground	cable.

A	BFO	can	occur	when	lightning	strikes	the	GW.	In	addition,	a	lightning	strike	can	directly
hit	the	phase	conductor	due	to	shielding	failure.	In	these	cases,	the	lightning	surge	in	the	phase
conductor	can	directly	propagate	into	the	cable	core	leading	to	sheath	overvoltage.	Since	the
lightning	surge	is	not	highly	attenuated	in	this	case,	the	voltage	across	the	sheath	interrupts	at
the	first	SSJ	needs	to	be	studied	in	addition	to	the	sheath-to-earth	voltage	at	the	transition	site.
Lightning	 surges	 are	 also	 studied	when	 a	 limited	 number	 of	 feeders	 are	 connected	 to	 a

substation	 together	 with	 a	 cable.	 In	 Figure	 3.17,	 the	 substation	 has	 only	 two	 lines	 and	 one
transformer	 considering	 the	maintenance	 outage.	The	 lightning	 surge	 on	 the	 overhead	 line
can	propagate	into	the	cable	core	without	significant	attenuation	depending	on	the	substation
layout.

3.3.5				Installation	of	SVLs
SVLs	are	 installed	at	SSJs	 in	order	 to	suppress	short-term	sheath	overvoltages.	Figure	 3.18
shows	the	connection	of	SVLs	when	the	sheath	circuit	is	cross-bonded	in	a	link	box.	SVLs	are
often	arranged	in	a	star	formation	with	their	neutral	points	earthed.	If	study	results	show	that
the	sheath	overvoltage	exceeds	the	TOV	rating	of	SVLs,	the	ECC	can	be	installed	as	shown	in



Figure	3.18.	Other	countermeasures	 include	changing	the	neutral	point	from	solidly	earthed
to	unearthed	and	changing	the	SVL	connection	from	a	star	formation	to	a	delta	formation.

FIGURE	3.17
Example	of	a	substation	with	a	limited	number	of	feeders.

When	 the	 link	 box	 is	 not	 installed,	 SVLs	 are	 located	 immediately	 next	 to	 sheath-
sectionalizing	joints	as	shown	in	Figure	3.19.	In	this	connection,	SVLs	are	arranged	in	a	delta
formation.	This	formation	has	an	advantage	in	suppressing	short-term	sheath	overvoltage,	as
bonding	leads	to	SVLs	can	be	much	shorter	than	when	using	the	link	box.

FIGURE	3.18
Connection	of	SVLs	in	a	link	box.

FIGURE	3.19
Connection	of	SVLs	without	a	link	box.

	
	

3.4					Studies	on	Recent	and	Planned	EHV	AC	Cable	Projects



This	section	introduces	recent	and	planned	EHV	AC	cable	projects	and	cable	system	transients
studied	for	the	projects.	In	order	to	compensate	for	the	large	charging	capacity	of	EHV	AC
cables,	 shunt	 reactors	 are	 often	 installed	 together	 with	 these	 cables.	 The	 large	 charging
capacity	and	large	shunt	reactors	lower	the	natural	frequency	of	the	network	which,	at	times,
make	it	necessary	to	conduct	resonance	overvoltage	studies.	Load-shedding	overvoltages	and
the	 zero-missing	 phenomena	 are	 the	 other	 power	 system	 transients	 specifically	 related	 to
cable	systems.
Similar	to	overhead	line	projects,	switching	transients	such	as	cable	energization,	ground

fault,	 and	 fault	 clearing	 are	 also	 studied	 for	 EHV	 AC	 cable	 projects	 as	 standard	 work.
However,	severe	overvoltages	related	to	these	switching	transients	on	cable	systems	have	not
been	reported	in	the	literature.
This	 section	 focuses	 on	 well-known	 long	 cable	 projects,	 which	 normally	 require	 shunt

compensation,	since	the	TOVs	discussed	can	only	be	observed	with	these	cables.	Therefore,
this	section	includes	only	cross-bonded	land	cables	and	submarine	cables.	It	does	not	include
short	 cables,	 typically	 installed	 inside	 power	 stations	 and	 substations,	 since	 power	 system
transients	specifically	related	to	cable	systems	are	normally	not	included	in	the	study	of	short
cables.

3.4.1				Recent	Cable	Projects
Table	3.4	 lists	 long	500-/400-kV	cables	 that	are	currently	 in	operation.	The	number	of	 long
400-kV	cable	projects	is	larger	than	the	number	of	500-kV	cable	projects	[14,	15,	16,	17,	18,
19,	20,	21−22].	The	system	voltage	of	400	kV	is	adopted	mainly	based	on	 the	geographical
area	such	as	in	Europe	and	the	Middle	East.

TABLE	3.4

Installed	Long	500/400-kV	Cablesa



The	world’s	 first	 long	 500-/400-kV	 cable	was	 installed	 in	Canada	 by	BC	Hydro	 in	 1984
[23,24−25].	This	500-kV	AC	submarine	cable	is	a	double-circuit	line	that	connects	Vancouver
Island	to	mainland	Canada	through	Texada	Island.	The	distance	between	Vancouver	Island	and
Texada	 Island	 is	 approximately	 30	 km;	 the	 distance	 between	 Texada	 Island	 and	 mainland
Canada	is	approximately	8	km.	In	between,	the	line	has	an	overhead	section	on	Texada	Island.
Shunt	 reactors	 totaling	 1080	 MVar	 were	 installed	 to	 compensate	 for	 the	 large	 charging
capacity.
The	longest	500-kV	cable	in	the	world,	the	Shin-Toyosu	line,	was	installed	in	Japan	by	the

Tokyo	Electric	Power	Company	in	2000.	This	dou-ble-circuit	 line	has	four	300-MVar	shunt
reactors	for	the	compensation	of	the	large	charging	capacity.	This	is	the	first	500-kV	cable	on
which	 extensive	 power	 system	 transient	 studies	 are	 available	 in	 the	 literature	 [26,27].	 In
addition	 to	 ordinal	 switching	 transients,	 the	 overvoltage	 caused	 by	 system	 islanding,	 series
resonance	overvoltage,	leading	current	interruption,	and	zero-missing	phenomenon	was	also
studied.
Here,	we	introduce	the	overvoltage	caused	by	system	islanding,	studied	on	the	Shin-Toyosu

line.	When	one	end	of	a	long	cable	is	open,	a	part	of	the	network	can	be	separated	from	the
main	grid	and	connected	with	 the	 long	cable,	which	can	 lead	 to	 severe	overvoltage.	Figure
3.20	 illustrates	 the	 equivalent	 circuit	where	 one	 end	 of	 the	 long	 cable	 is	 open	 due	 to	 a	 bus



fault.	A	cable	fault	will	not	lead	to	overvoltage	since	it	results	in	the	removal	of	the	long	cable
from	the	equivalent	circuit.
From	this	equivalent	circuit,	the	overvoltage	caused	by	system	islanding	can	be	expressed

using	the	following	equations:

FIGURE	3.20
Equivalent	circuit	of	the	overvoltage	caused	by	system	islanding.

where
L0	is	the	source	impedance	of	the	islanded	system
Em	is	the	source	voltage	behind	L0

The	charging	capacity	of	 the	 long	cable	and	 the	 inductance	of	 the	 shunt	 reactors	directly
connected	to	the	cable	are	expressed	as	C	and	L,	respectively.
Equation	3.91	shows	that	the	overvoltage	contains	two	frequency	components:	the	nominal

frequency	 ω	 and	 the	 resonance	 frequency	 ω0.	 Since	 the	 overvoltage	 is	 caused	 by	 the
superposition	of	 two	 frequency	components,	 the	 resulting	overvoltage	 is	oscillatory	and	 its
level	is	often	difficult	to	estimate	before	the	simulation.	The	result	of	a	simulation	performed
on	the	Shin-Toyosu	line	is	shown	in	Figure	3.21.
Most	of	the	500-/400-kV	cables	shown	in	Table	3.4	are	installed	in	highly	populated	areas,

hence	 the	 route	 lengths	 are	 limited	 to	 10−20	 km.	 These	 cables	 are	 equipped	 with	 shunt
reactors	 for	 the	 compensation	 of	 the	 charging	 capacity,	 but	 their	 unit	 size	 and	 the	 total
capacity	are	not	as	large	due	to	the	shorter	route	lengths.	For	these	cables,	only	studies	such	as
the	 reactive	 power	 compensation,	 the	 design	 of	 the	 cable	 itself,	 and	 the	 laying	method	 are
discussed	in	the	literature.	Transient	studies	on	these	cables	are	not	available.



FIGURE	3.21
Example	of	an	overvoltage	caused	by	system	islanding.

3.4.2				Planned	Cable	Projects
Table	3.5	lists	planned	lengthy	400-kV	cable	projects	that	will	be	operational	within	a	couple
of	 years.	 There	 is	 no	mention	 of	 planned	 500-kV	 cable	 projects	 in	 any	 publicly	 available
sources.
Various	transient	studies	have	been	performed	on	the	400-kV	cable	that	will	connect	Sicily

to	 mainland	 Italy	 [28,29].	 In	 addition	 to	 switching	 transients,	 these	 studies	 include	 the
harmonic	 overvoltage	 caused	 by	 line	 energization,	 leading	 current	 interruption,	 and	 zero-
missing	 phenomena.	 The	 studies	 identified	 the	 resonant	 condition	 at	 the	 second	 harmonic
when	 the	 cable	 is	 energized	 from	Sicily’s	 side	 under	 a	 particular	 condition.	 The	 harmonic
overvoltage	caused	by	the	resonant	condition	is	avoided	by	the	operational	constraint.

	
	

3.5					Cable	System	Design	and	Equipment	Selection

3.5.1				Study	Flow
This	section	discusses	the	cable	system	design,	except	for	overvoltage	analysis	and	insulation
coordination.	 The	 cable	 system	design	 includes	 the	 selection	 and	 specification	 of	 the	 cable
itself	 and	 the	 related	 equipment	 such	 as	 CBs	 and	 voltage	 transformers	 (VTs).	 The	 cable
system	design	related	to	the	sheath	is	discussed	in	Section	3.2.
During	 the	 planning	 stage,	 transmission	 capacity	 and	 reactive	 power	 compensation	 are

normally	 studied.	 These	 studies	 mainly	 determine	 the	 cable	 route,	 the	 voltage	 level,	 the
conductor	size,	and	the	amount	and	locations	of	shunt	reactors.



TABLE	3.5

Planned	Long	400-kV	Cablesa

When	the	transmission	development	plan	is	designed	for	the	cable,	the	cable	route	will	be
studied	further.	One	characteristic	of	cables,	compared	to	overhead	lines,	is	that	the	laying	of
the	cables	 and	 soil	 conditions	of	 the	 location	affect	planning	 studies	 in	 addition	 to	 the	 land
availability.	These	factors	affect	the	burial	depth,	soil	thermal	resistivity,	and	cable	separation
between	 phases,	 which	 may	 necessitate	 changes	 to	 the	 conductor	 size	 and	 the	 amount	 and
locations	of	shunt	reactors	initially	deter-mined	in	the	planning	studies.
Figure	3.22	 illustrates	 the	 study	 flow	 and	 the	 relationship	 of	 studies	 on	 the	 cable	 system

design.	In	the	figure,	the	boxes	show	study	items,	and	the	following	bullets	list	the	items	that
are	mainly	evaluated	in	these	studies.	The	figure	explains	how	the	transmission	capacity	and
the	 reactive	 power	 compensation	 studied	 during	 the	 planning	 stage	 affect	 the	 other	 studies
conducted	for	the	cables.
The	amount	of	shunt	reactors	(that	is,	the	compensation	rate	of	a	cable)	is	a	key	figure	that

has	 a	major	 impact	 on	 the	 following	 studies.	 A	 compensation	 rate	 close	 to	 100%	 is	 often
preferred	since	it	can	eliminate	the	reactive	power	surplus	created	by	the	introduction	of	the
cable.	It	also	offers	a	preferable	condition	for	the	TOV	but	causes	a	severe	condition	for	the
zero-missing	 phenomenon.	 The	 negative	 effect	 on	 the	 zero-missing	 phenomenon	 is	 not	 a
primary	concern	as	there	are	countermeasures	established	for	tackling	this	effect.

FIGURE	3.22
Study	flow	and	the	relationship	of	studies.

Usually,	shunt	reactors	for	500-/400-kV	cables	are	directly	connected	to	the	cables	in	order
to	mitigate	the	TOV	when	one	end	of	the	cable	is	opened.	Shunt	reactors	for	other	cables	are



often	 connected	 to	 buses	 as	 the	 area	 compensation	 is	 applied	 at	 these	 voltage	 levels.	When
shunt	reactors	are	connected	 to	buses,	 the	zero-missing	phenomenon	does	not	occur.	 In	 this
case,	 however,	 the	 inductive	 VT	 connected	 to	 the	 cable	 needs	 to	 have	 enough	 discharge
capability,	and	the	line	breaker	needs	to	have	sufficient	leading	current	interruption	capability.

3.5.2				Zero-Missing	Phenomenon
A	 DC	 offset	 current	 (zero-missing	 current)	 appears	 when	 an	 EHV	 underground	 cable	 is
energized	with	its	shunt	reactors	[30,	31,	32,	33,	34−35].	In	this	case,	an	AC	component	of	a
charging	current	has	an	opposite	phase	angle	to	the	AC	component	of	a	current	flowing	into
the	 shunt	 reactors.	 If	 the	 compensation	 rate	 of	 the	 cable	 is	 100%,	 the	 sum	 of	 these	 AC
components	 becomes	 zero	 and	 only	 the	 DC	 component	 remains.	 Since	 the	 DC	 component
decays	gradually	with	 time,	 it	 can	 take	more	 than	1	 s,	depending	on	 the	compensation	 rate,
before	a	current	that	flows	through	the	line	breaker	crosses	the	zero	point.
Figure	3.23	shows	an	example	of	current	waveforms	when	an	EHV	cable	is	energized	with

its	 shunt	 reactors.	 In	 this	 example,	 the	 AC	 component	 of	 the	 energization	 current	 is	 very
small,	since	the	compensation	rate	is	close	to	100%.	The	simulation	was	run	for	0.2	s,	but	the
energization	current	did	not	cross	the	zero	point	during	this	duration.	Since	the	zero-missing
phenomenon	 is	 caused	 by	 a	 DC	 component	 of	 an	 energization	 current,	 it	 reaches	 its	 peak
when	the	cable	is	energized	and	the	maximum	DC	component	is	contained	in	the	current.	In
order	to	realize	this	condition	in	phase	a,	the	cable	was	energized	at	the	zero-voltage	point	of
phase	a.

FIGURE	3.23
Zero-missing	current	in	underground	cable	energization.

When	a	line	breaker	is	used	to	interrupt	this	current	without	zero	crossing,	the	arc	current
between	the	contacts	cannot	be	extinguished	within	a	couple	of	cycles	and	may	continue	for	an
extended	duration.	This	extended	duration	may	lead	to	the	line	breaker ’s	failure	depending	on
the	amount	of	arc	energy	generated.	The	duration	is	mainly	determined	by	the	magnitude	of
the	DC	component	and	the	relationship	between	the	arc	resistance	and	arc	current	 inside	the
line	 breaker.	Typical	 durations	 for	EHV	cables	 can	 be	 several	 hundreds	 of	milliseconds	 in
severe	conditions.



The	zero-missing	phenomenon	can	theoretically	be	avoided	by	limiting	the	compensation
rate	 to	 lower	 than	 50%,	 but	 this	 is	 not	 the	most	 common	way	 of	 addressing	 the	 problem.
Normally,	a	compensation	rate	near	100%	is	adopted	(especially	for	500-/400-kV	cables)	and
the	countermeasures	 listed	 in	Table	3.6	are	applied	 to	 the	cables.	All	 these	countermeasures
(except	 for	 Countermeasure	 (4))	 have	 already	 been	 applied	 to	 the	 cable	 line	 in	 operation.
Countermeasure	(1)	in	particular	has	a	number	of	application	records	to	long	EHV	cable	lines
and	is	discussed	in	detail	later	in	this	section.
Countermeasure	 (3)	will	 be	 applied	 to	 the	 400-kV	Sicily–mainland	 Italy	 cable	 [29].	 This

countermeasure	can	be	implemented	rather	easily	as	long	as	a	cable	line	is	installed	together
with	single-phase	CBs	and	current	differential	relays.	For	this	reason,	Countermeasure	(3)	is
more	suited	for	EHV	cable	lines	than	HV	cable	lines.
In	this	countermeasure,	the	faulted	phase	is	opened	instantly	and	healthy	phases	are	opened

about	10	s	 later	when	the	DC	component	has	decayed	enough.	When	this	countermeasure	 is
applied	near	a	generator	(especially	when	the	cable	line	offers	a	radial	path	to	the	generator),
it	 is	 necessary	 to	 evaluate	 the	 negative	 sequence	 current	 capability	 of	 the	 generator	 as
Countermeasure	(3)	causes	an	unbalanced	operation	for	a	pro-longed	duration.

TABLE	3.6
Countermeasures	of	Zero-Missing	Phenomenon

Countermeasures Notes

1.		Sequential	switching •		Requires	higher	leading	current
interruption	capability

•		Requires	single-phase	CB	and	current
differential	relay

2.		Point-on-wave	switching
(synchronized	switching)

•		May	cause	higher-switching	overvoltage
•		Requires	single-phase	CB

3.		Delayed	opening	of	healthy	phases •		Requires	single-phase	CB	and	current
differential	relay

•		May	not	be	possible	to	apply	near
generators

4.		Breaker	with	preinsertion	resistor •		May	be	necessary	to	develop	a	new	CB
(expensive)

5.		Additional	series	resistance	in	the
shunt	reactor	for	energization

•		Requires	special	control	to	bypass	the
series	resistance	after	energization

6.		Energize	the	shunt	reactor	after	the
cable

•		Causes	higher	steady-state	overvoltage	and
voltage	step

In	Countermeasure	(5),	a	resistance	is	connected	in	a	series	to	shunt	reactors	when	a	cable
line	is	energized.	The	resistance	needs	to	be	sized	sufficiently	for	the	DC	component	to	decay
fast	enough.	After	the	cable	line	is	energized,	the	resistance	is	bypassed	in	order	to	reduce	the
losses.	Considering	the	additional	cost	for	the	resistance,	this	countermeasure	is	more	suited
for	HV	cable	lines	than	EHV	cable	lines.



Countermeasure	(6)	cannot	always	be	applied;	it	is	especially	difficult	to	apply	to	long	EHV
cables	due	to	their	steady-state	overvoltage.

3.5.2.1				Sequential	Switching

Figure	3.24	shows	a	zero-missing	current	with	an	SLG	fault	 in	phase	b.	This	assumes	that	a
cable	 failure	 exists	 in	phase	b	 before	 energization,	 but	 it	 is	 not	 known	 to	 system	operators
until	the	cable	is	energized.
The	zero-missing	current	is	observed	only	in	a	healthy	phase	(phase	a).	The	current	in	the

faulted	phase	(phase	b)	crosses	the	zero	point	as	it	contains	a	large	AC	component	due	to	the
fault	current.	Hence,	the	line	breaker	of	the	faulted	phase	can	interrupt	the	fault	current.

FIGURE	3.24
Zero-missing	phenomenon	with	an	SLG	fault.

Figure	 3.25	 shows	 the	 time	 sequence	 of	 sequential	 switching	 when	 the	 cable	 line	 is
energized	from	Substation	A.	In	Step	1,	the	line	breaker	of	phase	b	is	opened	at	60	ms	after	the
fault	 and	 the	 fault	 is	 cleared	 by	 tripping	 this	 CB.	 Since	 the	 fault	 is	 already	 cleared	 by	 the
opening	 of	 the	 phase	 b	 line	 breaker,	 some	 time	 can	 be	 allowed	 before	 opening	 the	 line
breakers	of	other	healthy	phases.



FIGURE	3.25
Time	sequence	of	sequential	switching.

FIGURE	3.26
Zero-missing	phenomenon	with	sequential	switching.

In	 Step	 2,	 shunt	 reactors	 are	 tripped	 before	 the	 line	 breakers	 of	 healthy	 phases.	 It	 is
necessary	to	trip	the	shunt	reactors	of	only	healthy	phases.	At	this	time,	it	is	not	necessary	or
recommended	 to	 trip	 shunt	 reactors	 of	 the	 faulted	 phase	 since	 the	 current	 through	 shunt
reactor	breakers	of	the	faulted	phase	does	not	cross	the	zero	point.
It	is	recommended	to	trip	at	least	half	of	the	shunt	reactors	of	healthy	phases	as	shown	in

Figure	 3.25	 as	 the	 tripping	 will	 normally	 lower	 the	 compensation	 rate	 below	 50%.	 The
remaining	shunt	reactors	will	be	useful	in	maintaining	the	charging	current	within	the	leading
current	interruption	capability	of	the	line	breakers.



In	Step	3,	it	is	possible	to	open	the	line	breakers	of	the	healthy	phases.	Figure	3.26	shows
that	 the	current	 in	 the	healthy	phases	contains	 the	AC	component	and	crosses	 the	zero	point
after	tripping	the	shunt	reactors.

3.5.3				Leading	Current	Interruption
When	the	leading	current	is	interrupted	at	current	zero,	it	occurs	at	a	voltage	peak	assuming
that	the	current	waveform	is	leading	the	voltage	waveform	by	90°.	After	the	interruption,	the
voltage	on	the	source	side	of	the	CB	changes	according	to	the	system	voltage;	the	voltage	on
the	other	side	is	fixed	at	peak	voltage	E	as	shown	in	Figure	3.27.	The	most	severe	overvoltage
occurs	during	a	restrike	after	half	cycle	when	the	voltage	on	the	source	side	becomes	–E.	As
the	voltage	difference	between	the	source	side	and	the	other	side	is	2E,	the	overvoltage	can	go
as	high	as	−3E.	The	restrike	can	be	repeated	to	cause	a	very	severe	overvoltage.

FIGURE	3.27
Overvoltage	caused	by	leading	current	interruption	and	restrike.

TABLE	3.7
Leading	Current	Interruption	Capability	According	to	IEC	62271-100

Rated	Voltage	(kV) Rated	Capacitive-Switching	Currentsa	(Cable)	(A)

420 400
550 500
a			Preferred	values,	voltage	factor:	1.4	pu.
The	leading	current	interruption	capability	of	CBs	is	specified	in	IEC	62271-100	(see	Table

3.7)	considering	the	severe	overvoltage	that	it	can	cause.
When	the	charging	capacity	of	a	long	EHV	cable	line	is	not	compensated	by	shunt	reactors

that	 are	 directly	 connected	 to	 the	 cable,	 the	 leading	 current	 interruption	 capability	 requires
careful	 attention	 [30].	Considering	 the	 typical	 capacitance	 of	 0.2	µF/km,	 the	maximum	 line
length	for	a	400-kV	cable	line	is	limited	approximately	below	26	km	without	shunt	reactors
directly	connected	 to	 the	cable.	Here,	 it	 is	 assumed	 that	 the	 leading	current	 is	 interrupted	at
one	end,	and	the	other	end	is	opened	before	the	interruption.
Usually,	 long	 EHV	 cable	 lines	 are	 compensated	 by	 shunt	 reactors	 that	 are	 directly

connected	 to	 the	 cable.	 When	 the	 compensation	 rate	 is	 high	 enough,	 the	 leading	 current
interruption	capability	is	not	a	concern.	If	sequential	switching	is	applied	to	a	cable	line	as	a



countermeasure	to	the	zero-missing	phenomenon,	however,	the	tripping	of	shunt	reactors	will
lower	the	compensation	rate.	This	is	the	only	situation	that	requires	careful	attention.

3.5.4				Cable	Discharge
If	 a	 shunt	 reactor	 is	 directly	 connected	 to	 a	 cable,	 the	 cable	 line	 is	 discharged	 through	 the
shunt	reactor	when	it	is	disconnected	from	the	network.	In	this	case,	the	time	constant	of	the
discharge	process	is	determined	by	the	quality	factor	(Q	factor)	of	the	shunt	reactor.	Since	the
Q	factor	is	around	500	for	EHV	shunt	reactors,	the	time	constant	of	the	discharge	process	is
around	8	min.
If	 the	 cable	 is	 disconnected	 from	 the	 network	 and	 energized	 again	 within	 a	 couple	 of

minutes,	 a	 residual	 charge	 remains	 in	 the	 cable	 line,	which	can	be	highly	dependent	on	 the
time	 separation	between	 the	 disconnection	 and	 the	 reenergization.	Under	 this	 condition,	 the
reenergization	overvoltage	can	exceed	the	switching	impulse	withstand	voltage	(SIWV)	when
the	residual	voltage	has	an	opposite	sign	to	the	source	voltage	at	the	time	of	reenergization.
This	is	usually	an	issue	for	overhead	lines	since	autoreclose	is	applied	to	them.	For	cables,

it	is	uncommon	to	apply	autoreclose	as	they	may	experience	higher	overvoltages	because	of
their	 higher	 residual	 voltage.	 System	 operators	 should	 be	 aware	 that	 they	 need	 to	wait	 for
about	10	min	(perhaps	more	to	be	conservative)	before	reenergizing	a	cable,	though	it	is	not
common	to	reenergize	a	cable	after	a	failure.
If	 a	 shunt	 reactor	 is	 not	 directly	 connected	 to	 the	 cable	 line,	 the	 cable	 line	 is	 discharged

through	 inductive	VTs.	 In	 this	 case,	 the	discharge	process	will	 be	 completed	within	 several
milliseconds.	The	inductive	VTs	need	to	have	enough	discharge	capability	for	a	cable	line	to
be	operated	(a)	without	a	shunt	reactor	or	(b)	if	all	the	shunt	reactors	are	tripped	by	sequential
switching.	 It	 takes	 several	hours	 for	 the	 inductive	VTs	 to	dissipate	heat	after	dissipating	 the
cable	 charge.	 If	 the	 inductive	 VTs	 are	 required	 to	 dissipate	 the	 cable	 charge	 twice	 within
several	hours,	the	required	discharge	capability	will	be	doubled.

	
	

3.6					EMTP	Simulation	Test	Cases

PROBLEM	1
3.1.			Assume	that	the	sample	cable	in	Section	3.2.4	is	buried	as	a	single-phase	cable.	Find	the

impedance	and	admittance	matrices	for	the	single-phase	example	cable	using	EMTP.
Use	the	Bergeron	model	and	calculate	the	impedance	and	admittance	matrices	at	1	kHz.

3.2.			From	the	impedance	and	admittance	matrices	found	in	(1),	find	the	phase	constants	for
the	earth-return	mode	and	the	coaxial	mode	using	the	voltage	transformation	matrix	

.



3.3.			Find	the	propagation	velocity	for	the	coaxial	mode	and	calculate	the	propagation	time
when	the	cable	length	is	12	km.

FIGURE	3.28
Propagation	time	of	the	12-km	cable	obtained	by	EMTP	simulation.

3.4.			Using	the	cable	data	created	in	(1),	find	the	propagation	time	for	a	12-km	cable	with
EMTP	and	compare	it	with	the	propagation	time	theoretically	found	in	(3);	assume	that
the	sheath	circuit	is	solidly	grounded	with	zero-grounding	resistance	at	both	the	ends.

Solution	1

3.1.				

3.2.			βe	=	3.4446	×	10−4	(Np/m):	earth-return	mode
βc	=	j3.5733	×	10−5	(Np/m):	coaxial	mode

3.3.			cc	=	1.7584	×	108	(m/s),	t	=	0.0682	(ms)
3.4.			A	step	voltage	of	1.0	kV	is	applied	at	one	end	of	the	12-km	cable	at	0	s.	The	coaxial

mode	arrives	at	the	other	end	at	0.0682	ms.	As	shown	in	Figure	3.28,	the	propagation
time	found	in	EMTP	exactly	matches	the	time	found	in	(3).

PROBLEM	2
Calculate	zero-	and	positive-sequence	currents	using	EMTP	for	 the	sample	cable	 in	Section
3.2.4.	For	this	calculation,	assume	that	the	lengths	of	a	minor	section	and	a	major	section	are
400	and	1200	m,	respectively.	As	the	total	length	of	the	cable	is	12	km,	the	cable	will	have	10
major	sections.	Grounding	resistance	at	earthing	joints	should	be	set	to	10	Ω.

Solution	2
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Transient	and	Dynamic	Characteristics	of	New	Energy
Systems
New	energy,	or	the	socalled	green	and	sustainable	energy,	is	gaining	significance	because	of
problems	 related	 to	CO2	 in	 thermal	 power	 generation	 and	 nuclear	waste	 in	 nuclear	 power
generation.	At	the	same	time,	the	“smart	grid”	is	becoming	a	very	attractive	research	subject.
In	this	chapter,	the	transient	and	dynamic	characteristics	of	a	wind	farm	composed	of	many

wind-turbine	generators	are	described	first.	The	model	circuit	of	the	wind	farm,	steady-state
analysis,	and	transient	calculations	are	described.
Next,	 the	 modeling	 of	 power-electronics	 circuit	 elements	 is	 described,	 and	 thermal

calculations	using	the	EMTP	are	explained.
Photovoltaic	 and	 wind	 power	 generation	 of	 energy	 necessitates	 energy	 storage	 using

batteries.	 As	 an	 application	 example	 of	 a	 lithiumion	 (Li-ion)	 battery,	 voltage-regulation
equipment	for	a	direct	current	(DC)	railway	system	is	developed	based	on	EMTP	simulations.
EMTP	simulation	is	explained	in	detail,	and	a	comparison	with	the	measured	results	is	carried
out.	EMTP	data	lists	are	also	given	in	this	chapter.

	
	

4.1					Wind	Farm

4.1.1				Model	Circuit	of	a	Wind	Farm
Figure	 4.1	 illustrates	 a	 model	 circuit	 of	 a	 wind	 farm.	 The	 plant	 has	 ten	 generators	 with	 a
capacity	of	3	MW.	Each	generator	is	connected	to	a	cable	head	through	a	step-up	transformer,
whose	 voltage	 ratio	 is	 22/1	 kV.	 The	 total	 capacity	 of	 the	 plant	 is	 30	 MW.	 The	 generated
voltage	is	stepped	up	to	66	kV	at	Substation-L	(S/S-L),	and	the	plant	is	connected	to	a	grid	at
S/S-K	 through	 a	 12-km-long	 cable	 (Cable	 #1).	 The	 cable	 lengths	 in	 the	 plant	 are	 listed	 in
Table	 4.1.	 The	 parameters	 required	 for	 a	 circuit	 simulation	 by	 the	 EMTP	 are	 evaluated	 as
follows.
The	amplitude	of	the	phase-to-ground	voltage	for	the	backward	system	is



FIGURE	4.1
Circuit	diagram	of	a	wind	farm.

The	rated	terminal	voltage	of	the	generator	is

The	 grid	 impedance	%	 Z	 is	 assumed	 to	 be	 j2.5%	 (10-MVA	 base).	 The	 inductance	 LB	 is
obtained	as	follows:

TABLE	4.1
Cable	Lengths

Cable	# Size	(mm2) Length	(km)

1 600 12.00
2 250 5.00
3 150 1.50
4 150 0.50
5 60 0.50
6 60 1.00
7 250 2.50
8 150 0.50
9 150 1.50
10 60 1.00
11 60 0.50

The	capacity	and	 impedance	of	every	 transformer	 installed	 in	 the	substation	S/S-L	are	18
MVA	and	j10%,	respectively.	Those	of	the	step-up	transformer	are	assumed	to	be	3.5	MVA	and
j10%.
The	 transformer	model	 installed	 in	 the	EMTP	 requires	 leakage	 inductances	 and	winding

resistances.	Although	leakage	inductances	can	be	entered	as	winding	data	in	theory,	that	of	the
secondary	winding	has	to	be	nonzero	in	the	EMTP.	In	this	section,	the	winding	resistances	are



combined	and	entered	as	 the	primary	 resistance.	The	 leakage	 inductances	are	entered	 into	a
data	column	for	the	secondary	winding.
The	leakage	inductance	referred	to	the	low-voltage	side	is	obtained	as	follows:

The	winding	resistance	is	assumed	to	be	1%	of	the	leakage	reactance,	that	is,	the	resistive
component	is	almost	neglected	in	this	simulation.	The	resistance	referred	to	the	high-voltage
side	is

The	leakage	inductance	of	the	step-up	transformer	for	each	generator	referred	to	the	low-
voltage	side	is	obtained	as	follows:

The	 winding	 resistance	 is	 assumed	 to	 be	 1%	 of	 the	 leakage	 reactance.	 The	 resistance
referred	to	the	high-voltage	side	is

4.1.2				Steady-State	Analysis
Voltage	 fluctuation	 caused	 by	 the	 charging	 current	 of	 cables	 is	 an	 important	 factor	 for	 the
design	of	a	wind	farm.	The	voltage	fluctuation	can	be	simulated	by	steady-state	analysis.	In	the
analysis,	the	cable	can	be	approximately	expressed	by	a	lumped	parameter	equivalent	circuit.
Since	the	steady-state	behavior	of	a	three-phase	circuit	is	determined	by	its	positive	sequence
component,	the	wind	farm	can	be	expressed	by	a	single-phase	circuit.

4.1.2.1				Cable	Model

A	 three-phase	 cable	 system	 consisting	 of	 three	 single-core	 (SC)	 cables	 becomes	 a	 six-
conductor	 circuit.	 If	 its	 sheath	 voltages	 can	 be	 neglected,	 the	 cable	 can	 be	 expressed	 by	 a
three-phase	circuit.	The	voltage	drop	due	 to	 the	cable-series	 impedance	 is	 expressed	by	 the
following	equation:



where	the	first	subscripts	C	and	S	denote	the	core	and	the	sheath,	and	the	second	subscripts	A,
B,	and	C	indicate	the	phases.	The	voltage	and	current	vectors	in	Equation	4.8	are	defined	as

If	the	sheath	voltages	are	negligible	((VS)	=	(0)),	the	6	×	6	impedance	matrix	[Z]66	can	be
reduced	to	a	3	×	3	matrix	[Z]33.

In	the	same	manner,	the	admittance	matrix	of	the	line	can	be	reduced	to	a	3	×	3	matrix:

For	a	steady-state	analysis,	a	cable	can	be	expressed	by	a	single	or	a	cascaded	π-equivalent
circuit	instead	of	a	distributed	parameter	line.	In	the	EMTP,	even	if	a	cable	is	represented	by	a
constant-parameter	line	model	(Dommel’s	line	model)	or	a	frequency-dependent	line	model
(Semlyen’s	or	Marti’s	line	model),	the	distributed	parameter	line	is	internally	converted	into	a
π-equivalent	circuit	and	is	passed	to	a	steady-state	analysis	routine.

TABLE	4.2
Technical	Data	for	a	Cable

Example

Nominal	cross	section	of	the	conductor S 600 mm2



Outer	diameter	of	the	conductor 2r2 29.5 mm
Insulation	thickness di 10 mm
Thickness	of	the	metallic	sheath	(screen) ds 	 	
Thickness	of	the	corrosion-proof	layer dc 4 mm
Outer	diameter	of	the	cable 2r5 67 mm
Conductor	resistance Rdc 30.8 mΩ/km

If	 the	 cable	 impedance	 and	 admittance	 per	 unit	 length	 are	 provided	 by	 the	 cable
manufacturer,	the	data	of	the	π-equivalent	circuit	can	be	easily	calculated	with	the	cable	length.
The	cable	impedance	and	admittance	can	be	calculated	by	cable	constants	or	cable	parameters
installed	 in	 the	EMTP	using	 the	physical	parameters	of	 the	cable.	The	parameters	 shown	 in
Table	4.2	are	generally	provided	by	the	manufacturer.
Although	 the	 cross	 section	of	 the	 conductor	S	 is	 given,	 the	 radius	of	 the	 conductor	 r2	 is

obtained	from	the	outer	diameter	of	the	conductor	 .	The	inner	radius	of	the	metallic
sheath	r3	is	obtained	from	the	radius	of	the	conductor	and	the	thickness	of	the	insulator	as	r3	=
r2	+	di.	The	outer	 radius	of	 the	metallic	 sheath	r4	 is	obtained	 from	 the	 inner	 radius	and	 the
thickness	 of	 the	 sheath	 as	 r4	 =	 r3	 +	ds.	 If	 the	 sheath	 (screen)	 consists	 of	metallic	wires,	 its
thickness	is	assumed	to	be	the	diameter	of	the	wire	screen.	The	outer	radius	of	the	cable	r5	can
be	directly	obtained	from	the	diameter	of	the	cable.	If	 the	thickness	of	the	metallic	sheath	is
not	given	and	 the	 thickness	of	 the	corrosion-proof	 layer	 is	given,	 the	outer	diameter	of	 the
metallic	sheath	is	obtained	from	the	cable	radius	and	thickness	as	r4	=	r5	–	ds.
The	 resistivity	of	 the	conductor	ρc	 is	 obtained	 from	 the	 conductor	 resistance	Rdc	 and	 the

cross	section	of	 the	conductor	 .	 In	general,	 the	resistivity	 is	greater
than	that	of	the	intrinsic	resistivity	of	the	conductor	(e.g.,	copper:	1.8	×	10−8	Ω	m)	because	of
the	gap	within	the	stranded	conductor.	If	the	resistivity	of	the	metallic	sheath	is	not	provided
by	 the	manufacturer,	 it	 is	 obtained	by	 the	 resistance	 and	 its	 cross	 section	 is	 obtained	 in	 the
same	manner	as	the	main	conductor.	The	relative	permittivities	of	the	main	insulator	and	the
corrosion-proof	 layer	 are	 determined	 by	 their	 materials.	 For	 example,	 the	 relative
permittivity	 of	 cross-linked	 polyethylene	 (XLPE)	 is	 2.3.	 The	 permittivity	 of	 the	 corrosion-
proof	 layer	 ranges	 widely.	 However,	 the	 value	 has	 no	 effect	 on	 the	 positive	 sequence
impedance	and	admittance	of	the	cable.
The	data	for	cable	impedance	and	admittance	calculation	using	the	EMTP	are	shown	in	List

4.1.	Table	4.3	lists	the	calculated	cable	parameters	of	the	XLPE	cables.	The	parameter	of	the
positive	sequence	is	employed	for	the	steady-state	voltage	simulation.	If	the	cable	parameters
are	 provided	 by	 the	 cable	manufacturer,	 parameter	 calculation	 by	 cable	 constants	 or	 cable
parameters	is	not	required.	The	model	parameters	are	obtained	from	the	cable	parameters	and
length	as	shown	in	Table	4.4.

TABLE	4.3
Cable	Parameters



TABLE	4.4
Cable	Parameters	for	π-Equivalent	Circuit

List	4.1:	Data	for	Cable	Parameter	Calculation

4.1.2.2				Charging	Current

Table	4.5a	shows	the	analytical	charging	currents	of	the	cables

where
V	is	the	system	voltage,	which	is	22	or	66	kV
C	is	the	capacitance	of	each	cable
f	is	the	power	frequency



The	 charging	 current	 of	Bank-A	 in	S/S-L	 is	 6.984	A	 (0.266	MVA)	 and	 that	 of	Bank-B	 is
4.672	A	(0.178	MVA).	Their	ratio	is	almost	identical	to	the	ratio	of	the	cable	length.	The	total
charging	current	of	the	system	is	35.513	A	(4.060	MVA),	which	is	mainly	determined	by	the
cable	connecting	S/S-K	and	S/S-L.	The	calculated	charging	currents	shown	in	Table	4.5b	are
slightly	larger	than	those	derived	from	the	analytical	calculation.	The	difference	comes	from
the	voltage	increase	due	to	charging,	that	is,	the	leading	current.	From	the	calculated	voltage
shown	in	Table	4.6,	it	can	be	seen	that	a	voltage	rise	of	1%	increases	the	charging	current	by
1%.
The	calculation	is	carried	out	by	the	EMTP	using	the	data	shown	in	List	4.2.

TABLE	4.5
Charging	Current

TABLE	4.6
Node	Voltages

Node W/O	Gen. With	Gen.

KB66_A 1.0114 0.9951
LB66_A 1.0118 0.9994
AB22_A 1.0133 0.9901
AH01_A 1.0136 1.0099
AH02_A 1.0136 1.0168
AH03_A 1.0136 1.0186
AH04_A 1.0136 1.0209
AH05_A 1.0136 1.0231
BB22_A 1.0128 0.9904
BH01_A 1.0129 1.0005
BH02_A 1.0129 1.0028
BH03_A 1.0129 1.0081



BH04_A 1.0129 1.0127
BH05_A 1.0129 1.0138

List	4.2:	Voltage	Distribution	by	Cable	Charging

4.1.2.3				Load-Flow	Calculation



It	 can	 be	 easily	 estimated	 that	 the	 voltage	 distribution	 within	 a	 wind	 farm	 depends	 on	 the
operation	of	the	generators.	The	effective	power	of	each	generator	is	mainly	determined	by
the	phase	difference,	 and	 the	 reactive	power	 is	 determined	by	 the	 amplitude	of	 the	voltage.
However,	the	correct	values	cannot	be	obtained	by	a	linear	calculation.	The	EMTP	has	a	load-
flow	feature	called	“FIX	SOURCE.”	In	this	section,	an	example	is	shown	assuming	that	every
generator	operates	at	its	rated	capacity	and	the	reactive	power	is	controlled	to	be	zero.
The	 key	 word	 “FIX	 SOURCE”	 should	 be	 inserted	 before	 the	 miscellaneous	 data

(uncomment	 Line	 4	 in	 List	 4.2).	 The	 source	 data	 expressing	 the	 generators	 (List	 4.3)	 are
inserted	before	Line	85	in	List	4.2.	The	amplitudes	and	angles	of	the	sources	are	automatically
corrected	by	 the	FIX	SOURCE	 routine.	The	 entered	values	 are	used	 as	 initial	 values	of	 the
nonlinear	calculation	in	the	FIX	SOURCE	routine.	In	general,	each	amplitude	of	the	source	is
specified	as	 the	amplitude	of	 the	phase-to-ground	voltage	given	 in	Equation	4.2.	 The	 phase
angle	is	given	by	the	angle	of	the	source	of	the	backward	grid	specified	by	Line	84	in	List	4.2,
because	 the	 system	 is	 expressed	 by	 a	 single-phase	 system,	 in	 this	 case.	 If	 the	 system	 is
expressed	by	a	three-phase	system,	the	phase	shift	by	a	transformer	winding,	that	is,	Y-Δ	or	Δ-
Y	connection	should	be	taken	into	account.

List	4.3:	Source	Data	for	Generators

The	 generator	 powers	 have	 to	 be	 present	 in	 the	 data	 shown	 in	 List	 4.4,	 followed	 by	 a
BLANK	line	for	terminating	the	source	data	(after	Line	85	in	List	4.2).	The	power	is	one-third
of	the	generated	power,	because	the	system	is	expressed	by	a	single-phase	model,	in	this	case.
The	power	of	the	3-MW	generator	is	specified	by	Line	3	of	the	data	shown	in	List	4.4.

List	4.4:	Additional	Data	for	FIX	SOURCE

The	 miscellaneous	 data	 for	 the	 load-flow	 calculation	 (Line	 14	 in	 List	 4.4)	 should	 be
specified,	 followed	by	 the	generator	powers.	The	calculated	result	 is	shown	in	List	4.5.	The
outputs	of	the	generators	are	converged	to	the	specified	data	within	1%	error.



List	4.5:	Calculated	Load	Flow

FIGURE	4.2
Calculated	steady-state	voltage.

In	 general,	 the	 load-flow	 calculation	 requires	 a	 long	 computational	 time.	 If	 the	 initial
voltages	 and	 angles	 are	 specified	 by	 the	 data	 shown	 in	List	 4.5,	 the	 time	 of	 the	 subsequent
calculations	will	be	fairly	reduced.
Figure	4.2	illustrates	a	calculated	result	of	cable	energization,	 that	 is,	when	all	generators

are	 disconnected	 (w/o	 gen.,	 Table	 4.6)	 and	when	 the	 generators	 are	 operated	 at	 their	 rated
capacity	 (with	 gen.).	 Voltage	 increase	 in	 the	 case	 without	 generators	 is	 due	 to	 the	 leading
current	 for	 cable	 charging.	The	minor	 voltage	 differences	within	 the	 plant	 indicate	 that	 the
voltage	is	increased	by	the	cable	between	the	grid	and	the	substation	S/S-K.	When	generators
are	operated,	each	voltage	increases	as	the	distance	between	the	substation	and	the	generator
increases.	This	is	due	to	the	voltage	drop	caused	by	cable	impedance.

4.1.3				Transient	Calculation
Figure	4.3	illustrates	the	calculated	transient	responses	when	the	CB	at	Bank-B	is	closed	for
charging	the	cables	at	Bank-B	while	the	generators	at	Bank-A	are	fully	operated.	The	initial
conditions	 are	 determined	by	 the	 load-flow	 feature	 of	 the	EMTP	by	 specifying	 each	output
power	of	the	Bank-A	generator	to	be	3	MW,	that	is,	1	MW	for	each	phase.	Although	the	effect
of	 the	 closing	 on	 the	 66	 kV	 bus	 voltage	 is	minor,	 the	maximum	bus	 voltage	 of	Bank-B	 is
increased	 to	 2	 pu	 and	 oscillates	with	 a	 frequency	of	 1.6	 kHz.	The	 oscillation	 is	 principally
generated	by	 a	 resonance	between	 the	 leakage	 inductance	of	 the	 transformer	LTrB	 shown	 in
Equation	4.4	and	the	total	cable	capacitance	of	Bank-B	shown	in	Table	4.4	(cable	No.	7–11).



FIGURE	4.3
Calculated	 transient	voltage:	 (a)	66	kV	bus	voltages	and	(b)	22	kV	bus	voltages.	Calculated	 transient	voltage:	 (c)	Bank-A
voltages	and	(d)	Bank-B	voltages.

	
	



4.2					Power-Electronics	Simulation	Using	the	EMTP
The	 simulation	 of	 a	 switching	 circuit	 is	 important	 while	 designing	 equipment	 using	 the
power-electronics	 technique.	 For	 the	 simulation	 of	 an	 electronics	 circuit,	 numerical
simulators	 specialized	 in	 the	 circuit,	 such	 as	 simulation	 program	 with	 integrated	 circuit
emphasis	(SPICE),	are	widely	used.	Although	they	have	accurate	semiconductor	models	and
high	functionality	 to	simulate	 the	behavior	of	 the	electronics	circuit,	 they	have	no	model	of
power-system	equipment,	such	as	accurate	multiphase	transmission	line	models,	synchronous
machines,	etc.	The	programs	cannot	be	applicable	to	power-system	analysis	involving	power-
electronics	equipment,	such	as	an	inverter.
The	 solutions	 are	 the	 following:	 (1)	 expansion	 of	 the	 electronics	 simulator	 to	 power-

system	analysis	 by	developing	 some	modes	of	 power	 apparatuses	 and	 (2)	 expansion	of	 the
power-system	 simulator,	 such	 as	 the	 EMTP,	 by	 developing	 some	modes	 of	 semiconductor
devices.	In	this	section,	the	latter	method	is	employed	[1,	2,	3,	4,	5,	6,	7–8].
Models	of	 a	bipolar	 transistor	 and	of	 a	metal	oxide	 semiconductor	 field-effect	 transistor

(MOSFET),	along	with	simulation	techniques	using	the	EMTP	are	explained	with	EMTP	data
in	 this	 section.	 The	 techniques	 of	 these	 devices	 are	 applicable	 to	 model	 an	 insulated-gate
bipolar	transistor	(IGBT).	Transient	analysis	of	controlled	systems	(TACS)	or	MODELS	(see
Section	 1.8.3)	 installed	 in	 the	 EMTP	 are	 indispensable	 for	 modeling.	 These	 features	 were
originally	 developed	 for	 modeling	 a	 control	 circuit	 of	 a	 power	 system.	 They	 can	 be
applicable	to	express	the	characteristics	of	the	semiconductor	because	their	functionality	and
generality	 are	 quite	 high.	 In	 general,	 the	 required	 accuracy	 of	 the	 semiconductor	model	 is
lower	 than	 that	of	an	electronics-circuit	 simulator	 for	power-system	simulation.	The	model
should	be	as	simple	as	possible	if	the	accuracy	requirement	of	the	power-system	simulation	is
satisfied.

4.2.1				Simple	Switching	Circuit
Figure	4.4	 illustrates	a	 logical	 inverter	 (NOT)	circuit	using	a	bipolar	 transistor.	The	source
voltage	VCC	and	the	collector	resistance	RC	are	assumed	to	be	5	V	and	4.7	kΩ,	respectively.
The	collector	current	IC	becomes

If	 the	current	gain	of	 the	 transistor	hFE	 is	100,	 the	base	current	should	be	greater	 than	10
µA:

An	input	signal	is	applied	by	a	signal	source	with	an	internal	impedance	of	50	Ω	(Rsig).	The
base	current	IB	is	obtained	from	the	amplitude	of	the	input	voltage	VSigout	and	base	resistance
Rb1:



FIGURE	4.4
Switching	circuit.

Equation	4.17	gives	the	maximum	base	resistance	Rb1:

In	this	section,	base	resistance	Rb1	is	assumed	to	be	47	kΩ.	Rb2	is	required	for	discharging
the	charge	remaining	in	the	transistor.	The	resistance	is	47	kΩ.

4.2.2				Switching	Transistor	Model
In	this	section,	a	simulation	method	for	a	basic	switching	circuit	using	the	EMTP	is	explained.
The	technique	can	be	applied	to	a	power-switching	device.
The	base–emitter	characteristic	can	be	expressed	by	a	nonlinear	resistor	model	installed	in

the	 EMTP.	 Although	 both	 TYPE-92	 and	 TYPE-99	 models	 accept	 point-by-point	 data
expressing	its	current–voltage	characteristic,	only	the	true	nonlinear	resistor	model	(TYPE-
92)	is	suitable	for	the	simulation	from	the	viewpoint	of	stability.	This	characteristic	is	easily
obtained	from	the	data	sheet	of	the	transistor.

4.2.2.1				Simple	Switch	Model

The	simplest	 switching	 transistor	model	of	 the	EMTP	 is	 the	TACS-controlled	switch	model
(TYPE-13)	illustrated	in	Figure	4.5.

FIGURE	4.5
Simplest	switching	transistor	model.



If	 the	saturation	voltage	between	 the	collector	and	 the	emitter	 is	not	negligible,	a	 resistor
Ron	is	inserted	in	series	with	the	switch.	The	resistor	Rib	and	the	capacitor	Cib	represent	a	base-
spreading	resistance	and	a	base	input	capacitance,	respectively.
The	“OPEN/CLOSE”	signal	of	 the	TYPE-13	switch	 is	 synthesized	within	 the	TACS	from

the	 base–emitter	 voltage	 of	 the	 transistor.	 Figure	 4.6	 shows	 the	 flow	 chart	 of	 the	 control
signal.	List	4.6	and	Figure	4.7	show	the	input	data	for	the	simple	model.	The	EMTP	data	are
given	as	a	 text	 file,	 that	 is,	by	character	user	 interface	 (CUI).	ATP-Draw	was	developed	 for
data	input	by	a	graphical	user	interface	(GUI).	Although	the	latter	method	is	easy	to	use	and	to
grasp	 the	 configuration	 of	 the	 circuit,	 the	 circuit	 parameters	 cannot	 be	 obtained	 from	 the
graphics.	In	this	section,	the	data	are	explained	using	the	original	data	format,	CUI.

FIGURE	4.6
Flow	chart	for	the	simplest	switching	transistor	model.

FIGURE	4.7
EMTP	data	for	a	simple	switching	circuit	(ATP-Draw,	GUI):	(a)	without	delay	and	(b)	with	delay.



List	4.6:	EMTP	Data	for	Simple	Switching	Circuit	(Conventional	Format,
CUI)

The	 data	 of	 the	 EMTP	 are	 divided	 into	 two	 parts:	 a	 TACS	 or	 MODELS	 part	 for	 the
controlling	circuit	and	an	electrical	part.
At	first,	a	square-wave	signal	source,	with	an	amplitude	of	5	V	and	a	frequency	of	40	kHz,

is	defined	in	Line	10	in	List	4.6,	just	after	“TACS	HYBRID”	declaration.	The	signal	is	defined
by	the	TYPE-23	built-in	source	and	a	first-order	transfer	function	(s-block)	(Lines	12–14)	to
represent	its	rise	and	fall	times.	The	output	“SIGIN_”	is	sent	to	the	electrical	part	of	the	EMTP
and	is	expressed	as	a	voltage	source	by	a	TACS-controlled	source	(TYPE-60,	Line	79).



The	base	and	collector	voltages	(VB1___and	VC1___)	in	the	electrical	part	are	sent	to	the
TACS	using	TYPE-90	TACS	sources	(Lines	18	and	19).	In	this	case,	the	voltages	are	identical
to	 the	 base–emitter	 and	 the	 collector–emitter	 voltage	 (VBE1__and	 VCE1__)	 because	 the
emitter	is	directly	grounded.	If	a	circuit	has	an	emitter	resistor,	that	is,	the	emitter	voltage	is
different	from	zero,	the	definitions	should	be	modified	by	subtraction	of	the	emitter	voltage,
VE1___,	from	the	base	and	collector	voltages,	respectively	(Lines	20,	22,	and	23).
The	 threshold	voltage	VBeon	 in	Figure	4.6	can	be	obtained	 from	 the	 IB–VBE	 characteristic

provided	by	the	manufacturer	or	by	an	experimental	result.	The	threshold	value	(Line	25)	is
determined	as	the	voltage	where	the	base	current	becomes	the	minimum	base	current	given	in
Equation	4.16.
The	 IF-Devices	 (Device	 60)	 of	 the	 TACS	 (Lines	 28	 and	 29)	 are	 used	 for	 the	 logical

judgments	 illustrated	 in	 the	 flow	 chart	 (Figure	 4.6).	 The	 output	 SW1CTL	 is	 used	 for	 the
“OPEN/CLOSE”	signal	of	the	TYPE-13	switch	in	the	electrical	part	(Line	77).
The	next	commented-out	data	by	$DISABLE	and	$ENABLE	(Lines	31–39)	are	for	a	delay

model,	which	will	be	described	in	Section	4.2.2.2.
The	nonlinear	characteristic	between	the	base	and	emitter	of	the	transistor	is	expressed	by	a

nonlinear	 resistor	 Rbeq.	 This	 characteristic	 can	 be	 expressed	 by	 a	 TYPE-92	 ZnO	 arrester
model	 installed	 in	 the	 EMTP	 (Lines	 42–58).	 The	 current–voltage	 characteristic	 is	 almost
identical	to	that	of	a	diode,	and	is	given	by	point-by-point	data.
The	 resistors	 and	 the	 capacitor	 illustrated	 in	 Figures	 4.4	 and	 4.5	 are	 specified	 as	 RLC

branches	(Lines	66–72).	In	this	simulation,	the	base-spreading	resistance	Rib	and	the	base	input
capacitance	Cib	are	assumed	to	be	50	Ω	and	20	pF,	respectively.
The	MEASURING	switch	between	nodes	IB1___	and	VB1INT	is	used	for	detecting	the	base

current	 (Line	 75).	 The	 TYPE-13	 switch	 expresses	 the	 switching	 operation	 of	 the	 transistor
(Line	77).	The	“OPEN/CLOSE”	signal	SW1CTL	is	defined	in	the	TACS	(Line	29).
The	TYPE-60	source	(SIGIN_)	expresses	the	signal	source	and	the	TYPE-11	source	is	for

the	power	source,	VCC	(Lines	79	and	81).
Figures	4.8	and	4.9	illustrate	the	measured	and	the	calculated	results	of	the	switching	circuit.

The	 switching	 operation	 can	 be	 simply	 expressed	 by	 the	 simple	 model,	 although	 the	 time
delay	at	the	turn	off	cannot	be	reproduced	by	the	model.	The	model	is	accurate	enough	if	the
switching	frequency	is	much	lower	than	the	transition	frequency	fT	of	the	transistor.

4.2.2.2				Switch	with	Delay	Model

The	accuracy	of	 the	simple	switch	model	decreases	as	 the	frequency	of	 the	signal	source	 is
increased	due	 to	 the	delay	of	 the	 transistor.	The	 turn-off	delay	 is	generally	greater	 than	 the
turn-on	delay.	The	turn-off	delay	is	easily	included	into	the	model	using	a	pulse-delay	device
(Device	53)	and	an	instantaneous-maximum	device	(Device	63)	of	the	TACS.	Figure	4.10	and
List	4.7	(Lines	33–38	in	List	4.6)	illustrate	the	control	algorithm.



FIGURE	4.8
Measured	result.

FIGURE	4.9
Calculated	result	by	a	simple	switch	model:	(a)	Cib	=	2	0	pF	and	(b)	Cib	=	0.

The	transistor	model	represented	by	a	switch	cannot	express	the	fall	time	of	the	collector–
emitter	voltage	VCE,	 although	 it	 reproduces	 the	switching	delay	 time	 (Figure	4.11).	The	 fall
time	 is	 quite	 important	 for	 the	 thermal	 design	 of	 a	 switching	 circuit.	 A	 more	 generalized
transistor	model	can	be	expressed	by	nonlinear	resistances	as	shown	in	Figure	4.12.



FIGURE	4.10
Block	diagram	of	an	off-delay	representation.

FIGURE	4.11
Calculated	result	with	the	turn-off	delay.

List	4.7:	Turn-Off	Delay	by	Device	53

FIGURE	4.12
Nonlinear	resistor	model	of	a	transistor.

The	nonlinear	characteristic	between	the	collector	and	emitter	cannot	be	expressed	by	any
conventional	 nonlinear	 resistor	 model,	 such	 as	 the	 TYPE-92	 resistor,	 because	 its
characteristic	depends	not	only	on	its	terminal	voltage	VCE	but	also	on	the	base	current	IB.	The
resistor	 Rceq	 is	 expressed	 by	 the	 TYPE-91	 TACS-controlled	 resistor.	 Its	 resistance	 is
calculated	 in	 the	TACS	according	 to	 the	collector–emitter	voltage	VCE,	base	current	 IB,	 and
transient	characteristic	of	a	transistor.	This	modeling	technique	is	explained	in	Section	4.2.3.



4.2.3				Metal	Oxide	Semiconductor	Field-Effect	Transistor
MOSFET	 is	 widely	 used	 as	 a	 switching	 device	 for	 high-frequency	 operations.	 The	 drain
current	 of	 the	MOSFET	 is	 controlled	 by	 its	 gate-source	 voltage	VGS.	 Generally,	MOSFET
comes	with	a	built-in	reverse	diode.	Two	MOSFET	models	are	introduced	in	Sections	4.2.3.1
and	4.2.3.2.

4.2.3.1				Simple	Model

The	simplest	model	of	a	MOSFET	with	a	reverse	diode	can	be	expressed	using	a	switch	and	a
diode	as	illustrated	in	Figure	4.13.	The	switch	status	is	controlled	by	the	gate-source	voltage
VGS.	 If	 the	voltage	is	greater	 than	its	 threshold	voltage	VP,	 the	switch	 is	closed.	The	control
signal	 is	 easily	 produced	 by	 the	 TACS.	 If	 the	 gate-source	 voltage	VGS	 is	 smaller	 than	 the
threshold	 voltage	VP,	 the	MOSFET	 acts	 as	 a	 diode	 for	 bypassing	 its	 reverse	 current.	 The
model,	which	consists	of	a	switch	and	a	diode,	can	be	simply	expressed	by	a	Type-11	switch
(diode)	model	of	the	EMTP.	The	diode	model	has	an	“OPEN/CLOSE”	signal	for	controlling
the	switch	status.	If	the	signal	is	positive,	the	switch	is	closed	as	long	as	the	signal	is	active.	If
the	 signal	 is	 zero,	 the	 switch	 acts	 as	 an	 ideal	 diode.	 The	 series-connected	 resistor	 Ron
expresses	the	on-resistance	of	the	MOSFET.

FIGURE	4.13
MOSFET	simple	model.

However,	the	model	cannot	be	used	from	the	ATP-Draw,	because	there	is	no	input	column
for	the	“OPEN/CLOSE”	signal.	The	switch	and	the	diode	have	to	be	separately	entered.	In	this
case,	the	switch	and	the	diode	are	required	to	have	their	own	on-resistance,	because	the	EMTP
cannot	handle	parallely	connected	switches.

4.2.3.2				Modified	Switching	Device	Model

The	 transistor	 model	 described	 in	 Section	 4.2.3.1	 is	 simple	 and	 useful	 for	 low-frequency
switching	circuits.	However,	the	accuracy	of	the	model	is	reduced	as	the	switching	frequency
increases.	A	modified	MOSFET	model	is	illustrated	in	Figure	4.14.
The	input	(gate-source)	circuit	of	a	MOSFET	can	be	simply	illustrated	by	a	capacitor	Ciss.

The	output	(drain-source)	circuit	is	expressed	by	an	equivalent	resistor	Rdseq	and	a	capacitor
Coss.	The	resistance	of	the	equivalent	resistor	Rdseq	 is	controlled	by	the	gate-source	voltage,



VGS.	The	static	coupling	between	 the	gate	and	 the	drain	 is	expressed	by	 the	 reverse	 transfer
capacitance	Crss.
Figure	4.15	illustrates	an	example	of	the	drain-current	versus	gate-source	voltage	(ID–VGS)

characteristic.	The	characteristic	should	be	expressed	as	accurately	as	possible	for	a	precise
simulation.	A	function	approximation	of	the	characteristic	is	useful	for	this	purpose.
In	 a	 high-voltage	 region	 (VGS	 ≥	Vlh),	 the	 ID–VGS	 characteristic	 can	 be	 expressed	 by	 the

following	linear	equation:

FIGURE	4.14
MOSFET	model.

FIGURE	4.15
ID–VGS	characteristic	of	MOSFET	2SK2844.

In	 a	 low-voltage	 region	 (VGS	 <	 Vlh),	 the	 characteristic	 is	 approximated	 by	 a	 quadratic
function

where	Vp	is	the	threshold	voltage	(ID	=	0	at	VGS	=	VP).
The	coefficient	al	 is	obtained	by	a	condition	in	which	both	curves	are	 in	contact	at	VGS	=

Vlh:



Figure	4.16	illustrates	a	drain-current	versus	drain-source	voltage	(ID–VDS)	characteristic.
Although	 the	 saturating	characteristic	has	no	significant	effect	on	switching	operations,	on-
resistance	 is	 an	 important	 factor.	Resistance	 is	 expressed	 as	 the	 inverse	 of	 the	 slope	 of	 the
ID–VDS	characteristic	in	a	low-voltage	region.

FIGURE	4.16
ID–VDS	characteristic	of	MOSFET	2SK2844.

The	on-resistance	taken	from	the	data	sheet	of	the	MOSFET	is	shown	in	Table	4.7.
It	is	clear	from	Table	4.7	and	Figure	4.16	that	the	on-resistance	depends	on	the	gate-source

voltage	and	it	decreases	as	the	voltage	increases.	The	resistance	can	be	approximated	by	the
following	equation:

TABLE	4.7
Drain	Source	on	Resistance	Ron

Typ. Max.

VGS	=	4	V,	ID	=	18	A 26 35 mΩ
VGS	=	10	V,	ID	=	18	A 16 20 mΩ

If	the	saturation	on	the	ID–VDS	characteristic	has	to	be	expressed,	it	can	be	approximated	by
the	following	function	involving	an	exponential	function:



where	IDmax	is	the	maximum	drain	current	given	by	Equation	4.19	or	4.20.
Table	4.8	shows	the	parameters	of	2SK2844	MOSFET	for	its	static	characteristics.
The	transient	(dynamic)	characteristics	of	a	MOSFET	are	determined	by	capacitors	and	by

the	 behavior	 of	 carriers	 in	 the	 device.	 In	 general,	 the	 capacitance	 is	 larger	 than	 that	 of	 a
bipolar	 transistor.	 Table	 4.9	 shows	 the	 capacitances	 taken	 from	 the	 data	 sheet	 of	 2SK2844
MOSFET.
The	capacitance	is	not	negligible	in	high-frequency	switching	operations.	In	most	cases,	the

transient	 overvoltage	 generated	 in	 a	 switching	 circuit	 is	 caused	 by	 resonance	 between	 the
capacitors	and	stray	inductors	in	the	switching	circuit.

TABLE	4.8
Model	Parameters

al 12.2	A/V2 ah 28.3	A/V

Vp 1.93	V bh −71.1	A
Vlh 3.09	V Vτ 0.15	V
Ron0 60	mΩ Ronτ 0.59

TABLE	4.9
Typical	Capacitance

Input	capacitance Ciss 980	pF
Reverse-transfer	capacitance Crss 270	pF
Output	capacitance Coss 580	pF

VDS	=	10	V,	VGS	=	0	V,	and	f	=	1	MHz.

TABLE	4.10
Typical	Switching	Time

Rise	time tr 14	ns
Turn-on	time ton 23	ns
Fall	time tf 64	ns
Turn-off	time toff 190	ns

The	 switching	 characteristic	of	MOSFET	 is	 expressed	by	 the	parameters	 shown	 in	Table
4.10.	 Although	 the	 physical	 behavior	 of	 a	 MOSFET	 is	 too	 complicated	 for	 an	 EMTP
simulation,	the	operational	characteristic	can	be	reproduced	with	satisfactory	accuracy	from
the	 viewpoint	 of	 the	 numerical	 simulation	 of	 a	 power	 system	 including	 power-electronics
apparatuses.	A	simple	representation	method	of	the	dynamic	characteristic	is	proposed	in	this



section.	 Figure	 4.17	 illustrates	 the	 signals	 used	 for	 representing	 the	 transient-switching
characteristic	of	a	MOSFET.	The	gate-source	voltage	VGS	is	delayed	by	ton	and	by	toff	using	a
transport	delay	device	(Device	53).	The	rise	time	tr	is	expressed	by	an	s-block	F(s)	from	the
delayed	signals:

FIGURE	4.17
Control	signal	for	Rdseq.

The	time	constant	τ	is	obtained	as	a	solution	of	the	following	equations:

The	time	constant	τ	becomes

In	the	same	manner,	the	time	constant	for	the	fall	time	tf	is	obtained.
An	 instantaneous-maximum	 device	 (Device	 63)	 gives	 an	 equivalent	 gate-source	 voltage

from	the	deformed	signals	(VGS1d	and	VGS2d).

4.2.3.3				Simulation	Circuit	and	Results

Figure	4.18	 illustrates	a	switching	circuit	using	MOSFET	2SK2844,	and	List	4.8	and	Figure
4.19	 show	 the	 input	 data	 for	 an	 analysis	 using	 the	 switch	 (diode)	 model.	 A	 square-wave
voltage,	whose	amplitude	is	10	V	and	the	frequency	is	200	kHz	(Lines	10–14,	and	63	in	List
4.8),	 is	 applied	 to	 the	 gate	 through	 resistors	Rsig	 and	Rg1	 (Lines	 48	 and	 49	 in	 List	 4.8).	 A
voltage	source	(Vcc)	of	15-V	amplitude	 is	 applied	 to	 the	drain	 through	 resistor	Rd	 of	 15	Ω
(Lines	 54	 and	 65	 in	 List	 4.8).	 Thus,	 the	 drain	 current	 becomes	 1	 A.	 The	 sum	 of	 the	 stray
inductance	of	the	drain	resistor	Rd	and	the	source	Vcc	is	1.6	µH	(Line	54	in	List	4.8).



FIGURE	4.18
Switching	circuit.

FIGURE	4.19
MOSFET	switching	circuit	(switch	model,	ATP-Draw,	GUI).

List	4.8:	MOSFET	Switching	Circuit	(Switch	Model,	Conventional	Format,
CUI)



The	commented-out	data	by	$DISABLE	and	$ENABLE	(Lines	32–39	in	List	4.8)	express	the
turn-off	delay	of	 the	MOSFET.	The	 technique	 is	 identical	 to	 that	of	 the	 switching	 transistor
explained	in	Section	4.2.2.2.
List	 4.9	 and	 Figure	 4.20	 show	 input	 data	 for	 the	 switching	 circuit	 using	 the	 nonlinear

resistor	model.	 In	 these	 data,	 the	 dynamic	 on-resistance	 (Equation	 4.23)	 and	 the	 saturation
characteristic	 (Equation	 4.24)	 are	 neglected	 because	 they	 might	 have	 minor	 effects	 on	 the
result.	The	data	also	include	a	thermal	model,	described	in	Section	4.2.4.

FIGURE	4.20
MOSFET	switching	circuit	(nonlinear	model	with	heat	sink,	GUI).



List	4.9:	MOSFET	Switching	Circuit	(Nonlinear	Model	with	Heat	Sink,	CUI)



Figure	 4.21a	 illustrates	 a	 measured	 result	 of	 the	 switching	 circuit.	 High-frequency
oscillations	 are	 observed	 on	 the	 drain	 voltage	 just	 after	 the	 MOSFET	 is	 turned	 off.	 Its
frequency	is	determined	by	the	stray	inductance	of	the	drain	circuit	and	the	capacitance	of	the
MOSFET.	The	oscillation	is	induced	on	the	gate	voltage	through	the	transfer	capacitance	Crss.
Figure	4.21b	shows	the	results	obtained	by	the	simplified	switch	model.	The	amplitude	of

the	 high-frequency	 oscillation	 is	 far	 greater	 than	 that	 of	 the	 measured	 result,	 because	 the
model	 cannot	 correctly	 represent	 the	 resistance	 within	 the	 MOSFET,	 which	 attenuates	 the
oscillation.	The	switching	delay	is	not	represented	in	this	case,	because	the	Type-11	switch	is
directly	controlled	by	the	gate-source	voltage	VGS.	If	the	delayed	signal	explained	in	Section
4.2.2.1	 is	 used	 as	 the	 control	 signal,	 the	 delay	 could	 be	 approximately	 introduced.	 In	 the
simulation	 case,	 the	 transfer	 capacitor	 Crss	 is	 neglected	 for	 a	 stable	 calculation.	 If	 high-
frequency	oscillations	are	induced	on	the	gate-source	voltage	at	around	the	threshold	voltage
Vp	through	the	transfer	capacitor,	the	switching	operation	becomes	unstable.



FIGURE	4.21
Responses	 of	 the	 switching	 circuit:	 (a)	 measured	 result	 and	 (b)	 calculated	 result	 by	 the	 switch	 model.	 Responses	 of	 the
switching	circuit:	(c)	calculated	result	by	the	switch	model	(with	delay)	and	(d)	calculated	result	by	the	proposed	model.

Figure	4.21c	illustrates	the	results	obtained	using	the	switch	model	with	the	turn-off	delay.
Even	if	the	switching	delay	is	included	into	the	simulation,	the	accuracy	is	not	improved.



Figure	4.21d	illustrates	 the	results	obtained	using	the	accurate	model.	The	high-frequency
oscillation	as	well	as	the	switching	delay	is	accurately	reproduced.	The	loss	of	the	MOSFET
reduces	the	oscillation.

4.2.4				Thermal	Calculation
The	EMTP	has	been	widely	used	for	estimating	transient	overvoltages	on	a	power	system.	In	a
power-electronics	field,	the	prediction	of	temperature	rise	and	overvoltages	in	the	switching
circuit	 is	one	of	 the	 important	goals	of	numerical	simulations.	The	result	provides	valuable
information	for	designing	power-electronics	apparatuses.
The	 thermal	 equation	 is	 analogous	 to	 the	 electrical-circuit	 equation.	 Electrical	 power

consumption	P	 corresponds	 to	 a	 current	 source.	 Static	 heat-transfer	 properties	 are	 usually
specified	using	a	thermal	resistance	Rθ	that	defines	a	relation	between	heat	flow	per	unit	time
Q	and	temperature	difference	θ	=	T	–	T0:

The	 thermal	 capacitance	Cθ	 is	 specified	 to	 model	 the	 dynamical	 properties	 of	 the	 heat
transfer:

An	 equivalent	 equation	 can	 be	 derived	 using	 electrical	 quantities	 instead	 of	 thermal
quantities.	The	relations	between	electrical	and	thermal	quantities	are	given	in	Table	4.11.

TABLE	4.11
Relations	between	Thermal	and	Electrical	Quantities

Thermal	Quantity Electrical	Quantity

Heat	flux	Q Current	I
Temperature	difference	θ Voltage	V
Thermal	resistance	Rθ Resistance	R
Thermal	capacitance	Cθ Capacitance	C

FIGURE	4.22
Thermal-equivalent	circuit.

The	equivalent	voltage	V	is	proportional	to	the	difference	between	an	absolute	temperature
T	 and	 a	 reference	 temperature	T0.	Usually,	T0	 is	 selected	 to	 represent	 ambient	 temperature.



The	 equivalent	 current	 source	 I	 transfers	 heat	 to	 the	 thermal	 circuit,	 and	 its	 value	 is
proportional	to	power	dissipation	P	in	an	electrical	component.
The	 time	 constant	 of	 a	 thermal-equivalent	 circuit	 is	 usually	 far	 greater	 than	 that	 of	 an

electrical	 circuit.	 An	 accelerating	 coefficient	 at	 is	 introduced	 to	 compress	 the	 difference.
Equation	4.30	is	transformed	into	an	“accelerated	domain”:

In	 the	 accelerated	 domain,	 the	 thermal	 capacitance	 is	 inversely	 proportional	 to	 the
accelerating	coefficient	at.
Figure	4.22	illustrates	a	thermal-equivalent	circuit	for	a	switching	device.	The	resistor	Rthca

expresses	the	heat	resistance	between	the	channel	of	the	MOSFET	and	the	ambient	air,	and	the
resistor	Rthch	expresses	the	heat	resistance	between	the	channel	and	the	package.	The	resistor
Rthrh	 expresses	 the	 heat	 radiation	 from	 the	 package	 to	 the	 ambient	 air.	 The	 resistance	 is
generally	 determined	 by	 a	 heat	 sink.	 The	 capacitor	 Cthh	 corresponds	 to	 the	 thermal
capacitance	of	the	heat	sink.	If	dynamic	heat	characteristics	are	not	important,	the	capacitor	is
negligible.	 The	 current	 source	 Pth	 represents	 power	 dissipation	 within	 the	 channel.	 The
voltage	across	the	capacitor	V	expresses	the	temperature	rise	of	the	MOSFET.
In	 this	 section,	 two	 cases	 are	 investigated:	 (a)	without	 the	 heat	 sink	 and	 (b)	with	 the	 heat

sink.	 Tables	 4.12	 and	 4.13	 show	 the	 circuit	 parameters	 used	 in	 this	 section.	 Figure	 4.23
illustrates	 the	 results	 calculated	 by	 the	 proposed	 model.	 The	 voltage	 across	 the	 thermal
capacitor	with	a	sawtooth	oscillation	is	smoothed	by	a	first-order	s-block	with	a	time	constant
of	 5	µs.	 Figure	 4.23a	 shows	 the	 result	when	 the	 heat	 sink	 is	 removed	 and	 the	 acceleration
coefficient	at	of	106	 is	 applied.	Although	 the	maximum	observation	 time	Tmax	 is	 50	µs,	 the
smoothed	waveform	expresses	the	change	in	temperature	up	to	50	s	(=	Tmax	×	at).	The	result
of	the	heat	sink	is	obtained	with	at	=	107	and	is	illustrated	in	Figure	4.23b.

TABLE	4.12
Thermal	Characteristics	of	2SK2844	MOSFET

Characteristics Symbol Max Unit

Channel	to	case Rthch 2.08 °C/W
Channel	to	ambient Rthca 83.3 °C/W

TABLE	4.13
Thermal	Characteristics	of	Heat	Sink

Characteristics Symbol Max Unit

Thermal	resistance Rthha 17.3 °C/W



Surface	area Sh 42 cm2

Weight Mh 7.6 g
Specific	heat	of	aluminum 	 0.877 J/g°C
Thermal	capacity Cths 6.67 J/°C

The	power	 consumption	of	 the	MOSFET	 is	determined	by	 its	 switching	 loss,	 because	 its
on-resistance	is	small	enough	for	the	application.	The	periodic	power	consumption	causes	the
oscillations	 in	 the	 results.	 The	 oscillations	 are	 not	 observed	 in	 practical	 situations.	 The
difference	is	caused	by	the	acceleration	introduced	for	saving	computational	time.	The	error
can	 be	 easily	 suppressed	 by	 a	 smoothing	 filter.	 The	 calculated	 results	 show	 that	 the
temperature	rise	is	20°C	when	the	heat	sink	is	removed.	The	measured	surface	temperature	of
the	MOSFET	 is	 46.2°C	when	 the	 ambient	 temperature	 is	 25.7°C.	 The	 difference	 is	 20.5°C,
which	 agrees	 with	 the	 calculated	 result.	 Figure	 4.23b	 shows	 that	 the	 heat	 sink	 reduces	 the
temperature	rise	to	3°C	and	the	temperature	converges	at	about	500	s	(=	Tmax	×	at).

	
	

4.3					Voltage-Regulation	Equipment	Using	Battery	in	a	DC	Railway	System

4.3.1				Introduction
A	numerical	simulation	method	of	a	voltage	regulator	using	Li-ion	battery	 in	a	DC	railway
system	using	the	EMTP	with	TACS	is	proposed	in	this	section.	A	couple	of	TACS-controlled
resistors	are	used	for	representing	each	line	resistance	within	a	feeding	section	for	expressing
a	train’s	operation.	In	addition,	a	power	compensator,	which	regulates	the	line	voltage,	can	be
expressed	by	the	functions	installed	in	the	TACS.	The	calculated	result	of	the	system	including
the	 voltage	 regulator	 agrees	well	with	 the	measured	 result	 of	 a	 practical	 train	 system.	The
proposed	method	 indicates	 the	 optimal	 installing	 position	 and	 capacity	 of	 the	 compensator.
The	 numerical	 simulation	 using	 the	 EMTP	 enables	 a	 computer-aided	 design	 of	 feeding
circuits	of	a	DC	train	system.



FIGURE	4.23
Calculated	results	of	temperature	rise:	(a)	without	heat	sink	(at	=	10

6)	and	(b)	with	heat	sink	(at	=	10
7).

The	voltage	distribution	along	 the	 feeding	 line	of	 a	DC	 railway	 system	 is	determined	by
output	voltages	of	substations	and	 line	voltage	drops.	Voltage	drops	are	proportional	 to	 the
train’s	 current,	 feeding	 line	 resistance,	 and	 line	 length	between	 the	 substation	 and	 the	 train,
that	is,	the	train’s	position.	The	line	voltage	is	lowered	by	the	current	of	a	powering	train	and
is	 increased	 by	 the	 regenerative	 current	 of	 a	 braking	 train.	 In	 recent	 years,	 line-voltage
fluctuation	of	the	feeding	system	has	become	larger	because	the	train	current	is	increased	for
increasing	the	transportation	capacity.
The	line	voltage	should	be	kept	at	its	rating	voltage	as	much	as	possible.	The	voltage	drop

caused	by	train	operation	is	proportional	to	the	distance	between	the	substation	and	the	train.
Some	 apparatuses	 for	 stabilizing	 the	 line	 voltage	 have	 been	 proposed.	 A	 substation	with	 a
voltage	regulator,	which	consists	of	thyristors	and	a	controller,	is	effective	for	compensating
the	voltage	drop	caused	by	the	powering	train.
Recently,	 power	 compensators	 with	 some	 kind	 of	 electrical	 storage	 device	 have	 been

developed	 to	 stabilize	 voltage	 and	 to	 increase	 the	 efficiency	 of	 DC	 train	 systems	 [9].	 The
regenerative	energy	is	stored	in	Li-ion	batteries	or	electrical	double-layer	capacitors.	Power
compensators	can	be	installed	on	the	ground	or	in	a	train.	A	verification	test	of	a	prototype	of
the	storage	system	installed	on	the	ground	is	currently	being	carried	out	[10,	11,	12–13].	The
compensator	releases	the	stored	energy	to	powering	trains	and	has	the	capability	to	store	the
regenerative	energy	of	a	braking	train.



To	design	 an	 efficient	 feeding	 system	 including	 the	voltage	 regulator	 and/or	 the	various
compensators,	 an	 estimation	 of	 the	 voltage	 and	 current	 distributions	 is	 indispensable.
Numerical	simulation	is	one	of	the	solutions	for	estimation.	For	an	accurate	simulation	of	the
train-feeding	 system,	 the	 movement	 of	 trains	 has	 to	 be	 taken	 into	 account.	 Thus,	 the	 line
resistance	should	be	expressed	by	time-dependent	resistors	for	expressing	the	train	operation.
A	 flexible	 modeling	 capability	 is	 also	 required	 for	 a	 circuit-simulation	 program	 for
expressing	various	characteristics	of	compensators.
The	EMTP	has	been	widely	used	 as	 a	 standard	 transient-analysis	 program	 in	 the	 field	of

power-system	 simulation.	TACS,	which	 is	 installed	 in	 the	EMTP	 as	 a	modeling	 tool	 of	 the
control	 system,	 is	 suitable	 for	 the	 simulation	 of	 a	 train-feeding	 system.	The	 line	 resistance
taking	into	account	the	moving	train	is	expressed	by	a	TACS-controlled	resistor.	In	addition,
the	power	compensators	can	be	expressed	by	the	functions	installed	in	the	TACS.

4.3.2				Feeding	Circuit
Figure	 4.24	 illustrates	 the	 feeding	 circuit	 investigated	 in	 this	 chapter.	 The	 circuit	 has	 five
substations.	The	substations	S/S2	and	S/S3	have	conventional	voltage	regulators,	which	consist
of	 thyristors.	A	power	 compensator	 is	 installed	between	 these	 substations.	 In	 the	 figure,	 the
line	 length	 is	 expressed	 by	 lk	 and	 the	 train	 position	 is	 represented	 by	 distance	 lt	 from	 the
substation	S/S1	as	a	function	of	time.	The	line	lengths	are	shown	in	Table	4.14.	These	values
are	 taken	 from	 a	 practical	 feeding	 system.	 The	 total	 length	 of	 the	 system	 is	 47.4	 km.	 The
resistance	of	the	feeding	line	Rl,	including	the	rail	resistance,	is	assumed	to	be	40	mΩ/km.

FIGURE	4.24
Feeding	circuit.

TABLE	4.14
Distance	between	Substations

Section l1,2 l3,4 l5,6 l7,8
Distance 6.3	km 7.4	km 5.05	km 4.95	km

The	rated	voltage	of	the	system	Vr	is	1500	V,	and	the	capacity	of	the	substation	is	assumed
to	be	4000	kW.	The	rated	current	of	the	substation	Ir	is

Figure	4.25	 illustrates	a	numerical	model	of	 the	single	section	of	 the	feeding	circuit.	The
substation	is	expressed	by	a	series	circuit	of	a	diode	Dm,	an	internal	resistor	Rm,	and	a	voltage



source	Em.

FIGURE	4.25
Feeding-circuit	model.

If	the	backward	impedance,	that	is,	the	voltage-fluctuation	ratio	of	the	substation,	is	9%	(=
Zpu),	the	internal	voltage	Em	of	the	substation	model	becomes

The	internal	resistance	Rm	is	obtained	from	the	backward	impedance:

If	a	voltage	 regulator	 is	 installed	 into	a	 substation,	 the	 substation	can	be	 simply	modeled
with	a	small	internal	resistor	Rm	=	1	mΩ	and	an	ideal	source	Em	of	1690	V,	which	is	the	target
voltage	of	the	voltage	regulator.
A	diode	is	inserted	in	series	for	preventing	the	reverse	current	of	substations	S/S2,	S/S3,	and

S/S4.	 There	 are	 no	 diodes	 in	 the	 substations	 at	 both	 ends	 (S/S1	 and	S/S5)	 to	 approximately
express	the	currents	flowing	out	from	the	model	sections	(i0	and	i9	in	Figure	4.24)	as	reverse
currents.
The	train	operation	is	modeled	by	the	current	sources	and	nonlinear	resistors	illustrated	in

Figure	 4.25.	 Train	 position	 lt	 is	 obtained	 from	 train	 velocity	 v(t)	 using	 an	 integrator	 (1/s)
illustrated	in	Figure	4.26:

The	comparator	 in	the	figure	determines	the	section	where	the	train	op-erates	at	 the	time.
The	comparator	is	represented	by	a	nonlinear	function	(Device	56)	and	a	truncation	function
TRUNC()	installed	in	the	TACS.
The	resistances	of	the	feeding	line	are	determined	by	Equation	4.36.	These	resistances,	Rka

and	Rkb,	are	modeled	by	TACS-controlled	resistors	(Type-91)	as	time-varying	resistors:



FIGURE	4.26
Train	model.

The	 movement	 of	 the	 train	 is	 modeled	 by	 current	 sources	 Ik(t)	 with	 these	 nonlinear
resistors.	A	current	source	in	the	section,	where	the	train	is	running,	is	activated,	and	the	other
sources	are	deactivated

where	It(t)	is	the	train	current.

4.3.3				Measured	and	Calculated	Results

4.3.3.1				Measured	Results
Figure	4.27	illustrates	the	measured	feeding	line	voltages	at	node	#4	and	the	output	current	of
the	substation	S/S3	for	Cases	a	and	b	shown	in	Table	4.15.	The	voltage	regulators	installed	in
substations	S/S2	and	S/S3	are	 turned	on	 in	Case-a,	and	 the	regulator	 in	S/S2	at	node	#2	only
operates	in	Case-b.
A	 pulse-like	 current	waveform	 is	 observed	 in	 both	 the	 results.	 The	 time	 region	where	 a

high	 current	 is	 observed	 indicates	 that	 the	 train	 is	 powering,	 and	 the	 low-current	 region
indicates	 that	 the	 train	 is	coasting.	The	difference	between	 the	current	waveforms	 in	Figure
4.27a	and	b	mainly	comes	from	the	variations	 in	 train	operation.	The	base	current	of	about
100	 A	 observed	 in	 Figure	 4.27a	 expresses	 the	 power	 sent	 to	 trains	 operating	 in	 the	 other
sections.
If	 the	 voltage	 regulator	 at	 observation	 node	 #4	 is	 turned	 on,	 the	 feeding	 line	 voltage	 is

stabilized	by	the	regulator	and	the	output	voltage	of	 the	substation	becomes	1690	V	(Figure
4.27a).	The	maximum	current	of	the	substation	is	2.1	kA.	The	current	linearly	increases	as	the
train	 comes	 close	 to	 the	 substation	 and	decreases	 after	 the	 train	 passes	 the	 substation,	 indi-
cated	with	a	broken	 line.	The	decreasing	rate	 is	greater	 than	 the	 increasing	rate	because	 the
length	between	the	substations	on	the	left-hand	side	of	the	substation	S/S3	(l3	+	 l4)	 is	greater
than	that	on	the	right-hand	side	(l5	+	l6).	The	slope	is	determined	by	the	re-sistances	between
the	substations.
Figure	 4.27b	 illustrates	 the	 result	 when	 the	 voltage	 regulator	 at	 observation	 node	 #4	 is

turned	off.	The	output	voltage	 fluctuates	due	 to	 the	 train	current	even	 if	 the	other	 regulator
operates.	 The	 maximum	 current	 is	 1.56	 kA,	 which	 is	 smaller	 by	 25%	 compared	 to	 the
previous	result.	The	maximum	current	depends	on	the	voltage	regulator	as	well	as	 the	 train
operation.	No	current	 is	observed	during	coasting,	although	a	current	of	100	A	flows	when



the	 voltage	 regulator	 at	 the	 substation	 operates.	 The	 feeding	 line	 voltage	 at	 the	 coasting
operation	is	about	1.64	kV.

4.3.3.2				Calculated	Results	of	the	Conventional	System

Investigation	 on	 the	 electrical	 characteristics	 of	 the	 feeding	 system	 using	 numerical
simulations	 is	helpful	 rather	 than	 that	using	measurements,	because	voltage	and	current	are
affected	 by	 many	 parameters	 and	 their	 simultaneous	 measurement	 is	 quite	 difficult.	 Some
numerical	simulations	by	the	proposed	method	are	carried	out	using	the	EMTP	in	this	section.

FIGURE	4.27
Measured	feeding	line	voltages	at	node	#4	and	output	current	of	substation	S/S3:	(a)	with	voltage	regulators	(Case-a)	and	(b)
with	a	single	voltage	regulator	(Case-b).

TABLE	4.15
Circuit	Conditions

Voltage	Regulator Compensator

Case-a S/S2	and	S/S3	(#2	and	#4) No
Case-b S/S2	(#2) No
Case-c No No
Case-d No #3



FIGURE	4.28
Train-current	waveform.

The	train-current	waveform	is	assumed	as	illustrated	in	Figure	4.28,	in	the	simulations.	Its
amplitude,	duty	ratio,	and	period	are	assumed	to	be	2.1	kA,	5/8,	and	120	s,	respectively.	The
turn-off	period	expresses	 that	 the	 train	 runs	 in	 coasting	operation.	This	waveform	 is	 easily
generated	using	a	square-wave	source	(Type-23)	installed	in	the	TACS.	The	rise	and	fall	times
of	 the	 current	 are	 assumed	 to	 be	 2.2	 s	 and	 they	 are	 represented	 by	 an	 s-block	with	 a	 time
constant	 of	 1	 s.	 The	 regenerative	 current	 is	 neglected	 in	 this	 simulation.	 If	 the	 current	 is
required,	it	is	simply	realized	by	including	negative	current	pulses	into	the	waveform.	In	this
chapter,	a	constant	train	speed	of	54	km/h	is	assumed	in	the	simulations.
Figure	4.29	illustrates	the	calculated	results	at	node	#4	(S/S3).	It	is	clear	from	Figure	4.29a

that	 there	 is	 no	 voltage	 fluctuation,	 if	 the	 conventional	 voltage	 regulator	 installed	 in	 S/S3
operates.	The	maximum	current	is	2.1	kA	and	is	identical	to	the	maximum	train	current.	The
minimum	current	is	65	A,	which	is	observed	while	the	train	is	coasting.	This	result	expresses
that	substation	S/S3	 feeds	power	 to	 trains	 running	 in	 the	other	 sections.	No	pulse	 current	 is
observed	 before	 0:15,	 because	 the	 current	 while	 the	 train	 is	 running	 in	 the	 first	 section
(between	 nodes	 #0	 and	 #2)	 is	 fed	 by	S/S1	 and	 S/S2,	 which	 has	 a	 voltage	 regulator.	On	 the
contrary,	pulse	currents	are	observed	after	0:43	when	the	 train	 is	 running	 in	 the	 last	section
(between	nodes	#6	and	#8),	because	the	feeding	line	voltage	at	node	#4	(S/S3)	is	kept	high	by
the	voltage	regulator	and	no	voltage	regulator	is	installed	in	the	section	on	the	right	(S/S4	and
S/S5).
It	is	clear	from	Figure	4.29b	that	the	maximum	current	of	the	substation	is	reduced	from	2.1

to	1.63	kA	(–22%),	if	the	voltage	regulator	at	S/S3	is	turned	off.	The	remaining	current	(0.47
kA)	 is	 fed	 from	 S/S2,	 which	 has	 a	 voltage	 regulator.	 No	 current	 is	 observed	 while	 in	 the
coasting	periods,	although	some	current	is	observed	in	the	previous	result.	There	is	no	pulse
current	observed	before	0:15,	because	substation	S/S2	with	the	voltage	regulator	feeds	to	the
train	running	in	the	first	stage.	On	the	contrary,	small	pulse	currents	are	observed	after	0:43,
that	is,	the	train	is	running	in	the	last	section	(between	nodes	#6	and	#8).	Substation	S/S3	feeds
a	minor	current	to	the	train	running	in	the	next	section,	if	the	next	substation	has	no	voltage
regulator.



FIGURE	4.29
Calculated	results	of	a	conventional	system:	(a)	with	voltage	regulators	(Case-a),	(b)	with	a	single	voltage	regulator	(Case-
b),	and	(c)	without	voltage	regulators	(Case-c).

TABLE	4.16
Minimum	Voltages

Node	# #3 #4	(S/S3) #5

Case-a 1386	V 1688	V 1433	V
Case-b 1340	V 1553	V 1379	V
Case-c 1284	V 1548	V 1376	V
Case-d 1451	V 1548	V 1376	V

The	voltage	while	the	train	is	coasting	is	1.67	kV,	which	is	greater	than	the	open-circuited
voltage	of	1.64	kV	shown	in	Equation	4.33.	This	result	also	shows	that	the	feeding	line	voltage
is	maintained	 by	 the	 voltage	 regulator	 operating	 at	 the	 adjoining	 substation.	The	minimum
voltage	 is	 1.55	 kV,	 and	 is	 determined	 by	 the	 voltage	 drop	 mainly	 caused	 by	 the	 internal
impedance	of	substation	S/S3.
Figure	 4.29c	 indicates	 that	 the	 current	 flowing	 from	 substation	 S/S3	 is	 increased	 by	 a

disconnection	 of	 the	 voltage	 regulator	 at	 S/S2.	 The	 maximum	 current	 is	 1.72	 kA.	 The
difference	in	the	train	current	(0.38	kA	=	2.1–1.72)	is	fed	by	adjoining	substations	(S/S2	and



S/S4).	For	 the	 same	 reason,	 the	pulse	currents	are	observed	before	0:15	 in	Case-b	and	after
0:43	in	Case-c.	The	minimum	voltage	is	almost	identical	to	that	of	Case-b.
Table	4.16	shows	the	minimum	voltages	obtained	by	simulations.	Nodes	#3	and	#5	denote

halfway	points	of	the	feeding	sections.	The	minimum	voltage	in	the	table	is	observed	at	node
#3	in	Case-c	(without	voltage	regulators).	The	voltage	at	node	#3	(1.28	kV)	is	lower	than	that
at	node	#5	(1.38	kV),	because	the	line	resistance	between	substations	S/S2	and	S/S3	 is	higher
than	 that	 between	S/S3	 and	 S/S4.	 The	minimum	 voltage	 at	 the	 substation	 is	 1.55	 kV,	 and	 is
almost	 identical	 to	 the	 result	of	Case-b.	 If	 the	 regulator	 at	node	#4	 (S/S3)	 is	 also	 turned	on
(Case-a),	 the	middle-point	voltages	at	nodes	#3	and	#5	are	 increased.	Comparisons	between
the	results	of	Cases	b	and	c	and	between	the	results	of	Cases	a	and	b	indicate	that	the	voltage
regulator	is	effective	in	increasing	the	voltage	of	the	feeding	line	connected	to	the	regulator.

4.3.3.3				Calculated	Results	with	Power	Compensator

A	 power	 compensator	 has	 been	 developed	 for	 the	 DC	 railway	 system	 to	 compensate	 the
voltage	drop	by	the	line	resistance	[10,	11,	12–13].	The	power	compensator	 installed	on	 the
ground	 is	 composed	 of	 some	 parallely	 connected	 units,	 and	 each	 unit	 consists	 of	 a
bidirectional	DC/DC	converter	and	a	Li-ion	battery	bank.	Table	4.17	shows	the	specifications
of	the	unit.	The	battery	bank	consists	of	182	cells	connected	in	series.	The	capacity	of	a	cell	is
60	Ah	and	the	maximum	discharging	current	is	600	A.	In	this	simulation,	the	number	of	units
Nu	 is	 assumed	 to	 be	 8.	 The	maximum	power	 of	 the	 compensator	 is	 3145	 kW	 (=	 393	×	 8),
which	is	79%	of	that	of	the	substation.

TABLE	4.17
Specifications	of	a	Power	Compensator

Maximum	battery	bank	voltage 746	V

Nominal	battery	bank	voltage 655	V
Minimum	battery	bank	voltage 564	V
Number	of	cells	in	a	battery	bank 182
Battery	capacity 60	Ah
Maximum	discharging	current 600	A	(10	C)
Maximum	discharging	capacity 393	kW
Internal	resistance	of	a	battery	cell 0.8	mΩ

The	 information	 of	 the	 train	 operation	 cannot	 be	 accessed	 by	 the	 ground-based
compensator.	The	operational	characteristic	is	determined	according	to	the	line	voltage	at	the
installed	point	as	shown	in	Figure	4.30.	The	vertical	axis	is	scaled	in	the	charging	current	into
a	battery	bank	installed	in	a	unit	of	the	compensator.	Because	the	voltage	conversion	ratio	of
the	DC/DC	converter	γ	is	2.3	(≈	1500/655),	the	maximum	injecting	current	to	the	feeding	line
becomes	130	A	(=	300/2.3	=	IBd/γ)	per	unit.



All	conventional	voltage	regulators	are	turned	off	in	the	following	simulation.	Figure	4.31
illustrates	the	result	of	the	proposed	model	[10,11],	when	the	compensator	is	installed	at	node
#3	where	 the	minimum	 voltage	 is	 observed	 in	 Case-c.	 Pulse	 currents	 are	 injected	 into	 the
feeding	line	from	the	compensator	at	node	#3	as	illustrated	in	Figure	4.31a,	and	the	current	is
determined	 by	 the	 control	 characteristic	 illustrated	 in	 Figure	 4.30.	 The	 maximum	 injected
current	Iimax	is	about	1	kA,	which	is	calculated	from	the	maximum	discharge	current	IBd	(300
A)	illustrated	in	Figure	4.30,	voltage	conversion	ratio	γ,	and	the	number	of	units	Nu	installed
in	the	compensator:

FIGURE	4.30
Control	characteristic	of	a	compensator	unit.

FIGURE	4.31
Calculated	results	with	a	compensator:	(a)	with	a	compensator	(Case-d)	and	(b)	pantograph	voltage.

A	 comparison	 between	 the	 results	 shown	 in	 Figures	 4.29c	 and	 4.31a	 indicates	 that	 the
minimum	 voltage	 at	 node	 #4	 and	 the	 maximum	 current	 flowing	 from	 substation	 S/S3	 are
almost	 identical.	 The	 voltage	 and	 current	 wave	 forms	 in	 the	 period	 from	 0:17	 to	 0:27	 are
however	slightly	different	from	the	results	in	the	case	without	the	compensator.	Voltage	drop
in	and	current	flowing	from	the	substation	are	reduced	by	the	compensator.



Figure	4.31b	shows	a	comparison	of	the	pantograph	voltages.	The	figure	clearly	indicates
that	 the	 voltage	 fed	 to	 the	 train	 is	 improved	 by	 the	 compensator.	 The	 improvement	 is	 also
observed	in	Table	4.16.
The	numerical	simulation	shows	that	the	parameters	used	in	this	chapter	are	optimal	from

the	viewpoint	of	voltage	equalization.	If	further	reduction	of	the	feeding	voltage	fluctuation	is
required,	 the	 maximum	 discharging	 current	 (IBd)	 should	 be	 increased	 and	 also	 the
compensators	should	be	installed	in	the	other	sections.

	
	

4.4					Concluding	Remarks
Numerical	simulations	of	a	wind	farm	using	the	EMTP	are	explained	in	this	chapter.	Voltage
increase	due	 to	 the	charging	current	of	 the	cables	 is	easily	obtained	by	 the	EMTP’s	 steady-
state	analysis	routine.	The	load-flow	calculation	option	of	the	EMTP	called	“FIX	SOURCE”
enables	an	estimation	of	the	steady-state	behavior	of	the	wind	farm,	which	has	plural	gener-
ators.	These	techniques	are	applicable	to	a	simulation	of	conventional	grids.
Simulation	 models	 of	 a	 switching	 transistor	 and	 a	 MOSFET	 are	 also	 explained	 in	 this

chapter.	The	model	parameters	of	the	device	are	easily	obtained	from	a	data	sheet	supplied	by
its	manufacturer	or	from	a	simple	experiment	without	complicated	physical	parameters	of	the
semiconductor.	The	proposed	model	also	enables	temperature	estimation.	The	accuracy	of	the
models	is	satisfactory	for	the	design	of	a	switching	circuit,	such	as	a	DC/DC	converter	and	an
inverter.
A	numerical	simulation	model	of	a	train-feeding	system	for	the	EMTP	is	proposed	in	this

chapter.	The	feature	of	TACS	installed	 in	 the	EMTP	is	suitable	 for	 the	simulation.	A	TACS-
controlled	 nonlinear	 resistor	 is	 used	 for	 representing	 the	 movement	 of	 the	 train.	 The
calculated	 results	 of	 the	 system	 including	 the	 voltage	 regulator	 agree	 with	 the	 measured
results	of	a	practical	train	system.	This	proves	the	accuracy	of	the	proposed	method.	Both	the
voltage	 regulator	 and	 the	 power	 compensator	 installed	 for	 stabilizing	 the	 line	 voltage	 are
effective	for	regulating	the	feeding	line	voltage.	If	the	compensator	is	installed	in	the	middle
of	a	feeding	section,	its	effectiveness	is	greater	than	that	of	the	conventional	voltage	regulator.
For	an	optimal	feeding	system	design,	the	proposed	simulation	method	is	useful	to	confirm
the	 effectiveness	 and	 to	 determine	 the	 parameters	 of	 the	 control	 characteristics.	 Although
conventional	 regulators	 are	 effective	 in	 increasing	 the	 feeding	 line	 voltage,	 they	 cannot
decrease	the	voltage	rise	caused	by	the	regenerative	brake	because	a	substation	generally	has
no	reverse	power	flow	capability.	The	line	voltage	has	to	be	kept	below	the	maximum	rating
voltage	 of	 the	 feeding	 system.	 The	 voltage	 rise	 caused	 by	 the	 regenerative	 brake	 is
proportional	 to	 the	 distance	 between	 the	 braking	 and	 powering	 train,	 which	 consumes	 the
regenerated	power.	The	proposed	simulation	model	 is	also	useful	 in	 the	analysis	of	voltage
rise,	because	the	model	is	capable	of	taking	the	regenerative	current	into	account.



These	 techniques	 are	useful	 for	numerical	 simulations	 in	 the	new	energy	 system	and	 for
expanding	the	application	of	the	EMTP	in	various	other	fields.
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Numerical	Electromagnetic	Analysis	Methods	and	Their
Application	in	Transient	Analyses
	

	
	

5.1					Fundamentals

5.1.1				Maxwell’s	Equations
Before	 going	 into	 NEA	 methods,	 let	 us	 look	 at	 Maxwell’s	 equations,	 which	 are	 the

fundamentals	of	electromagnetics.	They	are	stated	in	the	time	domain	as

where
E(r,	t)	is	the	electric	field
H(r,	t)	is	the	magnetic	field
D(r,	t)	is	the	electric-flux	density
B(r,	t)	is	the	magnetic-flux	density
J(r,	t)	is	the	conduction	current	density
ρ(r,	t)	are	the	volume	charge	density,	each	at	space	point	r	and	at	time	t

Equation	5.1	represents	Faraday’s	law,	and	Equation	5.2	represents	Ampere’s	law.	Equations
5.3	and	5.4	represent	Gauss’s	laws	for	electric	and	magnetic	fields,	respectively.
In	the	frequency	domain	(FD),	Maxwell’s	equations	are	expressed	as

where



j	is	the	imaginary	unit
ω	is	the	angular	frequency

The	 relations	 between	 the	 electric-	 and	 magnetic-flux	 densities	 and	 the	 electric	 and
magnetic	fields	are	given	as

where
ε0	is	the	permittivity	of	the	vacuum	(8.854	×	10−12	F/m)
µ0	is	the	permeability	of	the	vacuum	(4π	×	10−7	H/m)
εr	is	the	relative	permittivity	of	the	medium
µr	is	the	relative	permeability	of	the	medium
ε	is	the	permittivity	of	the	medium
µ	is	the	permeability	of	the	medium

In	 a	 conductive	 medium,	 the	 following	 relation	 between	 the	 electric	 field	 and	 the
conduction	current	density,	known	as	Ohm’s	law,	is	fulfilled:

where	σ	is	the	conductivity	of	the	medium.

5.1.2				Finite-Difference	Time-Domain	Method
The	finite-difference	 time-domain	(FDTD)	method	[1]	 is	one	of	 the	most	 frequently	used

techniques	 in	 electromagnetics.	 It	 involves	 space–time	 discretization	 of	 the	whole	working
space	 and	 the	 finite-difference	 approximation	 to	 Maxwell’s	 differential	 equations.	 For
analyzing	the	electromagnetic	response	of	a	structure	in	an	unbounded	space	using	the	FDTD
method,	 an	 absorbing	boundary	 condition,	which	 suppresses	 unwanted	 reflections	 from	 the
surrounding	 boundaries	 that	 truncate	 the	 unbounded	 space,	 needs	 to	 be	 applied.	 To	 avoid
numerical	 instabilities	 or	 spurious	 resonances,	 a	 time	 increment,	 or	 step	 Δt,	 needs	 to	 be
determined	following	the	Courant–Friedrichs–Lewy	(CFL)	criterion	[2]:	 	in
three-dimensional	 (3-D)	 computations,	where	Δs	 is	 the	 (cubic)	 cell-side	 length	 and	c	 is	 the
speed	of	light.
The	advantages	of	 this	method	are:	 (1)	 it	 is	based	on	a	simple	procedure	 in	electric-	and

magnetic-field	 computations,	 making	 its	 programming	 relatively	 easy;	 (2)	 it	 is	 capable	 of
treating	complex	geometrical	shapes	and	inhomogeneities;	(3)	it	is	capable	of	incorporating
nonlinear	effects	and	components;	and	(4)	 it	can	yield	wideband	data	from	one	run	with	the
help	of	a	time-to-frequency	transforming	tool.
The	disadvantages	are:	(1)	it	is	inefficient	compared	with	the	method	of	moments	(MoM);

(2)	it	cannot	deal	with	oblique	boundaries	that	are	not	aligned	with	the	Cartesian	grid;	and	(3)



it	 would	 require	 a	 complex	 procedure	 for	 analyzing	 the	 electromagnetic	 response	 of
dispersive	materials	(materials	with	frequency-dependent	constitutive	constants).
The	method	 requires	 that	 the	whole	working	 space	 be	 divided	 into	 cubic	 or	 rectangular

cells.	 The	 cell	 size	 should	 not	 exceed	 one-tenth	 of	 the	 wavelength	 corresponding	 to	 the
highest	frequency	in	the	excitation.	The	electromagnetic	field	components	Ex,	Ey,	Ez,	Hx,	Hy,
and	Hz	are	located	in	each	cell	in	the	3-D	Cartesian	coordinate	system,	as	shown	in	Figure	5.1.
Time-updating	equations	for	electric	and	magnetic	fields	are	derived	next.
Considering	Equations	5.9	and	5.11,	Ampere’s	law	(Equation	5.2)	is	rewritten	as

FIGURE	5.1
FDTD	cell	with	x-,	y-,	and	z-directed	vectors	of	electric	and	magnetic	fields.

where	 n	 −	 (1/2)	 is	 the	 present	 time	 step.	 If	 the	 time-dependent,	 partial-differential	 term	 in
Equation	5.12	is	approximated	by	its	central	finite	difference,	Equation	5.12	is	expressed	as

where	 Δt	 is	 the	 time	 increment.	 Note	 that	En−(1/2)	 in	 Equation	 5.13	 is	 approximated	 by	 its
average	value,	(En	+	En−1)/2.
Rearranging	Equation	5.13,	the	updated	equation	for	the	electric	field	at	time	step	n	from	its

value	En−1	at	 the	previous	time	step	and	magnetic-field	rotation	Hn−(1/2)	at	 the	previous	half
time	step	is	obtained	as	follows:

∇	×	H	is	given	by

where	i,	j,	and	k	are	x-,	y-,	and	z-directed	unit	vectors,	respectively.



From	Equations	5.14	and	5.15,	the	updated	equation	for	 	at	the	space	point	(i	+	(1/2),	 j,
k),	for	example,	is	expressed	as

where	 the	 spatial,	 partial-differential	 terms	 in	 the	 first	 equation	 are	 approximated	 by	 their
central	 finite	 differences.	 In	 the	 same	 manner,	 updated	 equations	 for	 	 and	 	 can	 be
derived.
Considering	Equation	5.10,	Faraday’s	law	(Equation	5.1)	is	rewritten	as

where	n	 is	 the	present	 time	 step.	 If	 the	 time-dependent,	 partial-differential	 term	 in	Equation
5.17	is	approximated	by	its	central	finite	difference,	Equation	5.17	can	be	expressed	as

Rearranging	 Equation	 5.18,	 the	 updated	 equation	 for	 the	magnetic	 field	 at	 time	 step	 n	 +
(1/2)	 from	 its	 value	Hn−(1/2)	 at	 the	 previous	 time	 step	 and	 electric-field	 rotation	En	 at	 the
previous	half	time	step	is	obtained	as	follows:

From	Equations	5.19	and	5.15,	 the	updated	equation	 for	 	 at	 the	 location	 (i,	 j	 +
1/2,	k	+	(1/2)),	for	example,	is	expressed	as	follows:

where	 the	 spatial,	 partial-differential	 terms	 in	 the	 first	 equation	 are	 approx-imated	 by	 their
central	 finite	 differences.	 In	 the	 same	 manner,	 updated	 equations	 for	



	can	be	derived.

The	updated	equations	for	 ,	are
summarized	in	the	following	equations:



By	updating	Equations	5.21,	5.22,	5.23,	5.24,	5.25	and	5.26	at	every	point,	transient	electric
and	magnetic	fields	throughout	the	working	space	are	obtained.
For	analyzing	lightning	surges	on	power	systems,	it	is	necessary	to	appropriately	represent

thin	 wires,	 which	 include	 overhead	 transmission-line	 conductors,	 distribution-line
conductors,	and	steel	frames	of	towers	and	buildings.	Noda	and	Yokoyama	[3]	have	found	that
a	thin	wire	in	air	has	an	equivalent	radius	of	r0	=	0.23Δs	(Δs	is	the	side	length	of	cubic	cells
used	in	FDTD	simulations),	when	the	electric	field	along	the	axis	of	the	thin	wire	is	set	to	zero
in	an	orthogonal	and	uniform	Cartesian	grid	for	FDTD	simulations.	They	further	showed	that
a	 thin	wire	with	 an	 arbitrary	 radius	 r	 could	 be	 equivalently	 represented	 by	 placing	 a	 zero-
radius	wire	in	an	artificial	rectangular	prism,	coaxial	with	the	thin	wire,	with	a	cross-sectional
area	of	2Δs	×	2Δs	and	modified	permittivity	mε0	and	permeability	µ0/m	given	by

For	 example,	 in	 representing	 a	 thinner	 wire	 with	 radius	 r	 (<r0),	 the	 permittivity	 of	 its
enclosed	cells	is	decreased	and	the	permeability	is	increased.	This	modification	increases	the
characteristic	 impedance	 of	 the	 wire,	 but	 the	 speed	 of	 the	 electromagnetic	 wave	 in	 the
enclosed	artificial	cells	remains	equal	to	the	speed	of	light.
Lumped	voltage	and	current	sources	are	represented	as	follows.	A	lumped	voltage	source

in	 the	z	direction	at	 the	space	point	 (i,	 j,	k	+	 (1/2)),	which	generates	a	 time-varying	voltage
Vz(nΔt),	is	represented	by

A	 lumped	 current	 source	 in	 the	 z	 direction	 at	 the	 space	 point	 (i,	 j,	 k	 +	 (1/2)),	 which
generates	a	time-varying	current	Iz	[(n	−	1/2)Δt],	is	realized	by



Voltage	and	current	sources	in	x-	and	y-directions	can	be	represented	in	a	similar	manner.
The	representation	of	lumped	elements,	a	resistor	R,	a	capacitor	C,	and	an	inductor	L,	are

described	here.	For	voltage	Vz	[(n	−	1/2)Δt]	across	a	resistor	R	in	the	z	direction,	the	current
flowing	 through	 it,	 Iz	 [(n	 −	 1/2)Δt],	 has	 the	 relation	

.	 If	 this	 relation	 is	 substituted	 into	 Equation
5.29,	the	following	updated	equation	for	a	z-directed	resistor	located	at	the	space	point	(i,	j,	k
+	1/2)	is	obtained:

For	 voltage	Vz	 [(n	 −	 1/2)Δt]	 across	 a	 capacitor	C	 in	 the	 z	 direction,	 the	 current	 flowing
through	 it,	 Iz	 [(n	 −	 1/2)Δt],	 has	 the	 relation	

.	 If	 this	 relation	 is	 substituted	 into
Equation	5.29,	the	following	updated	equation	for	a	z-directed	capacitor	at	the	space	point	(i,	j,
k	+	(1/2))	is	obtained:

For	 voltage	Vz	 [(n	 −	 1/2)Δt]	 across	 an	 inductor	L	 in	 the	 z	 direction,	 the	 current	 flowing
through	 it,	 Iz	 [(n	 −	 1/2)Δt],	 has	 the	 relation	

.	 If	 this	 relation	 is

substituted	into	Equation	5.29,	the	following	updated	equation	for	a	z-directed	inductor	at	the
space	point	(i,	j,	k	+	1/2)	is	obtained:



Lumped	elements	in	x	and	y	directions	can	be	represented	in	a	similar	manner.

5.1.3				Method	of	Moments
The	MoM	[4]	is	also	frequently	employed	in	transient	electromagnetic	computations.	This

method	 is	based	on	an	electric-field	 integral	equation	 in	either	a	 frequency	or	 time	domain
that	 relates	 the	 induced	 current	 on	 a	 conductor	 to	 the	 incident	 electric	 field.	 Only	 the
conducting	 structure	 to	 be	 analyzed	 has	 to	 be	 represented	 as	 a	 combination	 of	 short
cylindrical	segments.
The	advantages	of	this	method	are:	(1)	it	is	computationally	more	efficient	than	the	FDTD

method;	 (2)	 it	 requires	 no	 absorbing	 boundary	 condition;	 (3)	 it	 can	 represent	 oblique
conductors	 easily	 without	 any	 staircase	 approximation;	 (4)	 it	 is	 capable	 of	 considering
dispersive	materials	in	the	FD	MoM;	and	(5)	it	is	capable	of	incorporating	nonlinear	effects
and	components	in	the	time-domain	MoM.
Its	disadvantages	are:	(1)	it	cannot	deal	with	complex	boundaries,	compared	with	the	FDTD

method;	(2)	in	the	time-domain	MoM,	it	would	require	a	complex	procedure	for	considering
dispersive	materials;	and	(3)	in	the	FD	MoM,	it	would	be	impossible	to	incorporate	nonlinear
effects	and	components.
Next	 we	 will	 look	 at	 an	 electric-field	 integral	 equation	 in	 the	 FD,	 and	 then	 the

corresponding	electric-field	integral	equation	in	the	time	domain.
The	electric	field	at	the	space	point	r	is	generally	expressed	in	the	FD	as

where
A(r)	is	the	magnetic	vector	potential
φ(r)	is	the	electric	scalar	potential

If	the	Lorenz	gauge	given	as

is	applied	to	Equation	5.33,	the	following	wave	equations	for	each	potential	are	obtained:



Each	of	 these	wave	equations,	excited	by	a	 source	at	 the	 location	r′	 in	 the	 form	of	Dirac
delta	function	δ	(r,	r′),	can	be	expressed	as

If	the	source	is	assumed	to	be	located	at	the	origin	r′	=	0,	Equation	5.37	can	be	rewritten	in
the	spherical	coordinate	as

The	 solution	of	Equation	5.38	 is	 expressed	 as	g(r)	=	e−jkr/(4πr).	Thus,	 the	 solution	 at	 the
location	r	for	the	arbitrary	source	point	r′	is	expressed	as

On	the	basis	of	the	superposition	principle,	the	potential	generated	by	arbitrary	sources	can
be	written	as

The	total	electric	field	E	at	the	space	point	r	is	the	sum	of	the	incident	electric	field	Ei	and
the	scattered	electric	field	Es.	This	relation	can	be	written	as

Also,	the	total	electric	field	follows	Ohm’s	law,	which	is

where	σ	is	the	conductivity	of	the	material	of	interest.
If	Equations	5.40	and	5.41	are	substituted	into	Equation	5.33,	the	scattered	electric	field	Es	at

the	space	point	r	due	to	the	current	J	at	the	space	point	r′	is	expressed	as

If	Equation	5.44	is	substituted	into	Equation	5.43,	the	relation	of	the	incident	electric	field	to
the	induced	current	density	and	volume	charge	density	is	obtained	as

The	volume	charge	density	ρ	is	related	to	the	current	density	J	via	the	charge	conservation
equation,	which	is	as	follows:



If	Equation	5.46	is	substituted	into	Equation	5.45,	the	following	form	is	obtained:

When	a	perfect	conductor	is	analyzed,	the	tangential	component	of	the	total	electric	field	on
the	 conductor ’s	 surface	 is	 zero.	 Therefore,	 the	 follow-ing	 relation	 is	 fulfilled	 on	 the
conductor	surface:

Furthermore,	 the	 current	 and	 charge	 are	 distributed	 only	 on	 the	 surface	 of	 a	 perfect
conductor.	Thus,	Equation	5.48	is	rewritten	as

where
n	is	a	unit-normal	vector	on	the	conductor	surface
JS	is	the	surface	current	density

When	 the	 radius	 of	 a	 perfectly	 conducting	wire	 is	much	 smaller	 than	 the	wavelength	 of
interest,	the	current	I	and	charge	q	could	be	assumed	to	be	confined	to	the	wire	axis,	as	shown
in	Figure	5.2.	This	 assumption	 is	 called	 thin-wire	 approximation.	With	 this	 assumption,	 the
electric-field	 integral	 equation,	 Equation	 5.47	 or	 Equation	 5.49,	 for	 a	 perfectly	 conducting
thin	wire	in	air,	is	simplified	to:

where
s	is	the	unit	tangential	vector	along	the	wire	surface	C(r)
s’	is	the	unit	tangential	vector	on	the	wire	axis

The	incident	electric	field,	which	is	tangential	to	the	wire	surface	and	parallel	with	the	wire
axis,	is	given	as	a	dot	product	s⋅Ei,	as	follows:



FIGURE	5.2
Thin-wire	approximated	conductor.

or

where	k	=	ω	(µ0ε0)1/2	and	η	=	(µ0/ε0)1/2.
Next	 we	 examine	 an	 electric-field	 integral	 equation	 in	 the	 time	 domain.	 Electric	 scalar

potential	and	magnetic	vector	potential	are	expressed	in	the	time	domain	as	follows:

where
R	=	|r	−	r′|
t′	=	t	−	R/v
v	is	the	speed	of	the	electromagnetic	wave	in	the	medium	of	interest

The	electric	field	at	the	space	point	r	is	expressed	as

If	Equations	5.53	and	5.54	are	substituted	into	Equation	5.55,	the	scattered	electric	field	Es	at
the	space	point	r	due	to	the	current	J	at	the	space	point	r′	is	expressed	as

The	 volume	 charge	 density	 in	 Equation	 5.56	 is	 evaluated	 by	 the	 following	 continuity
equation:

When	a	perfect	conductor	 is	analyzed,	 the	current	and	charge	are	distributed	only	on	 the
surface	of	the	perfect	conductor	and	the	tangential	component	of	the	total	electric	field	on	the



conductor ’s	 surface	 is	 zero.	Therefore,	 the	 following	 relation	 is	 fulfilled	 on	 the	 conductor
surface:

where	ρs	is	the	surface	charge	density,	which	is	evaluated	by

The	electric-field	integral	equation	in	the	time	domain	for	a	perfectly	conducting	thin	wire
in	air	is	obtained	similarly	to	that	in	the	FD,	as	follows:

where

The	last	term	in	Equation	5.60	is	converted	into

With	the	continuity	equation	in	one-dimensional	form,	which	is	given	as

the	last	term	is	expressed	as

If	Equation	5.63	is	substituted	into	Equation	5.60,	the	electric-field	integral	equation	in	the
time	domain	for	a	thin-wire	perfect	conductor	is	obtained	as

In	solving	Equation	5.52	or	Equation	5.64,	a	mathematical	function	for	approximating	the
distribution	of	current	along	the	wire	axis	is	employed.	The	function	is	usually	expressed	as	a
linear	 combination	 of	 basis	 functions	 having	 unknown	 coefficients,	 and	 the	 unknown
coefficients	are	evaluated	numerically.	Equation	5.52	can	be	written	as	follows:



where
L	is	a	linear	operator
E	is	the	excitation	function
f	is	the	unknown	current	function

The	unknown	function	f(x)	can	be	expanded	as

where
an	is	an	unknown	coefficient
fn(x)	is	a	known	basis	function	that	is	illustrated	in	Figure	5.3

If	Equation	5.66	is	substituted	into	Equation	5.65,	the	following	equation	is	obtained:

To	solve	Equation	5.67,	the	dot	product	of	weight	function	 fm	 is	applied	 to	Equation	5.67.
Then	the	following	equation	is	obtained:

FIGURE	5.3
MoM	typical	basis	functions	for	approximating	the	distribution	of	current	along	the	wire	axis.	(a)	Piecewise	triangular	function
and	(b)	piecewise	sinusoidal	function.

Equation	5.68	can	be	written	in	matrix	form	as

with

and

where



Zmn	is	an	element	of	matrix	Z	at	row	m	and	column	n
bm	is	an	element	of	vector	b	at	row	m

The	unknown	coefficients	of	the	current	function	are	obtained	by	solving	Equation	5.69.
The	 numerical	 electromagnetic	 code	 (NEC)	 [5,6],	 the	widely	 used	 computer	 program,	 is

based	on	 the	MoM	in	 the	FD.	The	 thin-wire	 time	domain	 (TWTD)	code	 [7]	 is	based	on	 the
MoM	in	the	time	domain.

	
	

5.2					Applications

5.2.1				Grounding	Electrodes
The	 role	 of	 grounding	 electrodes	 is	 to	 effectively	 drain	 fault	 currents	 into	 the	 soil	 and

thereby	 mitigate	 the	 damage	 of	 installations	 of	 telecommunication	 systems	 and	 electrical
power	 systems.	 Thus,	 the	 performance	 of	 such	 a	 system	 is	 influenced	 by	 the	 transient
characteristics	 of	 its	 grounding	 electrodes.	 It	 is	 therefore	 important	 to	 study	 these
characteristics.	Recently,	NEA	methods	have	been	successfully	applied	in	analyzing	transient
responses.
Tanabe	[8]	analyzed	the	transient	response	of	a	vertical	grounding	electrode	of	0.5	m	×	0.5

m	 ×	 3	m,	 shown	 in	 Figure	 5.4,	 using	 the	 FDTD	method	 [1].	 For	 FDTD	 computations,	 the
conductor	system	shown	in	the	figure	is	accommodated	in	a	working	volume	of	27.5	m	×	61
m	×	 55	m,	which	 is	 divided	 uniformly	 into	 cubic	 cells	 of	 0.25	m	×	 0.25	m	×	 0.25	m.	The
working	 volume	 is	 surrounded	 by	 six	 planes	 of	 Liao’s	 second-order	 absorbing	 boundary
condition	[9]	to	minimize	unwanted	reflections.	The	time	incre-ment	is	set	to	0.481	ns,	which
is	 determined	 following	 the	 CFL	 criterion	 [3].	 The	 conductivity,	 relative	 permittivity,	 and
relative	permeability	of	the	ground	are	set	to	σ	=	1.9–2.7	mS/m	(based	on	the	low-frequency
meas-urement),	 εr	 =	 50,	 and	 µr	 =	 1,	 respectively.	 Figure	 5.5	 shows	 the	 FDTD-computed
voltage	 and	 current	 waveforms	 for	 a	 vertical	 grounding	 electrode	 and	 the	 corresponding
measured	waveforms	[8].	The	FDTD-computed	waveforms	are	 in	good	 agreement	with	 the
corresponding	measured	ones.
Tanabe	 et	 al.	 [10]	 studied	 the	 transient	 response	 of	 a	 horizontally	 placed,	 square-shaped

grounding	electrode	of	7.5	m	×	7.5	m,	buried	0.5	m	deep,	using	the	FDTD	method.	For	FDTD
computations,	the	conductor	system,	consisting	of	a	50	m-long,	horizontal	voltage	reference
wire,	 a	 26.25	 m-long	 horizontal	 current	 lead	 wire,	 and	 the	 grounding	 electrode,	 is
accommodated	in	a	working	volume	of	83.75	m	×	67.5	m	×	30	m,	which	is	divided	uniformly
into	cubic	cells	of	0.25	m	×	0.25	m	×	0.25	m.	The	working	volume	is	surrounded	by	six	planes
of	Liao’s	second-order	absorbing	boundary	condition.	The	time	increment	is	set	to	0.481	ns,
which	is	determined	on	the	basis	of	the	CFL	criterion.	The	conductivity,	relative	permit-tivity,



and	relative	permeability	of	the	ground	are	set	to	σ	=	3.8	mS/m	(based	on	the	low-frequency
measurement),	εr	=	50,	and	µr	=	1,	respectively.	Figure	5.6	shows	the	FDTD-computed	voltage
and	 current	 waveforms	 for	 the	 square-shaped	 electrode	 and	 the	 corresponding	 measured
waveforms	[10].	 The	 overall	waveforms	 of	 voltage	 and	 current	 computed	 using	 the	 FDTD
method	 agree	 reasonably	 well	 with	 the	 measured	 ones.	 Note	 that	 Miyazaki	 and	 Ishii	 [11]
reproduced	the	measured	waveforms,	shown	in	Figure	5.6a,	reasonably	well	using	the	MoM
in	the	FD.

FIGURE	5.4
Configuration	of	 a	 3	m-long	vertical	 grounding	 electrode	 and	 its	 auxiliary	wires	 for	 the	measurement	 of	 its	 surge	 response.
(Tanabe,	K.,	Novel	method	for	analyzing	dynamic	behavior	of	grounding	systems	based	on	the	finite-difference	time-domain
method,	IEEE	Power	Eng.	Rev.	21(9):55–577.	©	2001	IEEE.)

FIGURE	5.5
(a)	Measured	waveforms	 of	 voltage	 and	 current	 for	 the	 3	m-long	 vertical	 grounding	 electrode	 and	 (b)	 the	 corresponding
FDTD-computed	waveforms.	(Tanabe,	K.,	Novel	method	for	analyzing	dynamic	behavior	of	grounding	systems	based	on	the
finite-difference	time-domain	method,	IEEE	Power	Eng.	Rev.	21(9):55–57.	©	2001	IEEE.)



Ala	 et	 al.	 [12]	 considered	 soil	 ionization	 around	 a	 grounding	 electrode	 in	 their	 FDTD
computations.	The	 ionization	model	 is	based	on	 the	dynamic	soil-resistivity	model	of	Liew
and	Darveniza	[13].	Figure	5.7	shows	the	resistivity	profile	in	the	dynamic	model	proposed	by
Liew	and	Darveniza	[13]	and	employed	by	Ala	et	al.	[12].	In	the	model,	the	resistivity	of	each
soil-representing	cell	is	controlled	by	the	instantaneous	values	of	the	electric	field	and	time.
When	the	instantaneous	value	of	the	electric	field	E	at	a	soil-representing	cell	 is	 lower	 than
the	critical	electric	field	Ec,	the	resistivity	ρ	is	equal	to	its	steady-state	value	ρ0:

FIGURE	5.6
(a)	Measured	waveforms	of	voltage	at	each	corner	of	a	horizontally	placed	7.5	×	7.5	m	square-shaped	grounding	electrode
and	 injected	 current	 and	 (b)	 the	 corresponding	FDTD-computed	waveforms.	 (Reprinted	 from	Tanabe,	K.	 et	 al.,	 IEEJ	 Trans.
Power	Energy,	123(3),	358–367,	2003.	With	permission	from	IEEJ.)

FIGURE	5.7
Resistivity	profile	 in	 the	dynamic	model	proposed	by	Liew	and	Darveniza	 [13]	and	employed	by	Ala	et	 al.	 [12]	 for	 FDTD
computations.

When	E	at	a	soil-representing	cell	exceeds	the	critical	electric	field	Ec,	ρ	begins	to	decrease
with	time,	as	follows:



where
t	is	the	time	defined	so	that	t	=	0	at	the	instant	of	E	=	Ec
τ1	is	the	ionization	time	constant

This	decreasing	resistivity	with	time	represents	the	soil	ionization	process.
When	E	at	a	cell	in	the	ionized	soil	region	falls	below	Ec,	ρ	begins	to	increase	with	time,	as

follows:

where
ρi	is	the	minimal	value	reached	by	the	ionization	process
t	is	the	time	defined	so	that	t	=	0	at	the	instant	of	E	=	Ec
τ2	is	the	deionization	time	constant

This	increasing	resistivity	with	time	from	ρi	to	ρ0	represents	the	deionization	process	of	the
soil.
Figure	5.8	shows	a	0.61	m-long,	vertical	grounding	rod	buried	in	the	homogeneous	soil	of

resistivity	ρ0	=	50	Ω-m,	 relative	permittivity	 εr	 =	 8,	 and	 relative	permeability	µr	 =	 1,	 to	 be
analyzed	 using	 the	 FDTD	 method.	 The	 vertical	 grounding	 rod	 is	 energized	 by	 a	 lumped
current	source	whose	other	terminal	is	connected	to	four	auxiliary	grounding	electrodes	via
overhead	wires.	The	current	 source	generates	 a	 current	with	 a	magnitude	of	 approximately
3.5	kA	and	a	rise	time	of	approximately	5	µs,	as	shown	in	Figure	5.9a.	The	working	volume	is
divided	uniformly	into	61	mm	×	61	mm	×	61	mm	cubic	cells	and	is	surrounded	by	six	planes
of	an	absorbing	boundary	condition	to	minimize	unwanted	reflections.	The	equivalent	radius
of	the	vertical	grounding	rod	is	14	mm	(=	0.23Δs	=	0.23	×	61	mm)	[3,14].
Figure	 5.9b	 shows	 the	 waveform	 of	 voltage	 at	 the	 top	 of	 the	 vertical	 grounding	 rod,

computed	using	 the	FDTD	method	with	 the	soil	 ionization	model.	 In	 this	computation,	Ec	 =
110	kV/m,	τ1	=	2.0	µs,	and	τ2	=	4.5	µs	were	employed	for	the	soil	 ionization	model.	Figure
5.9b	also	shows	the	voltage	waveform	computed	without	the	soil	ionization	model.	The	peak
voltage	computed	with	the	soil	ionization	model	is	about	40%	less	than	that	computed	without
the	soil	ionization	model.



FIGURE	5.8
Configuration	 of	 a	 0.61	m-long	 vertical	 grounding	 electrode	 and	 its	 auxiliary	wires	 for	 the	measurement	 of	 the	 electrode’s
surge	response.	(Reprinted	from	Ala,	G.	et	al.,	IET	Sci.	Meas.	Technol.,	2(3),	134–145,	2008.	With	permission	from	IET.)

FIGURE	5.9
Waveform	of	current	injected	into	the	top	of	the	0.61	m-long	vertical	grounding	rod	and	waveforms	of	the	voltage	at	the	top	of
the	grounding	rod,	computed	using	the	FDTD	method	with	and	without	 the	soil	 ionization	model.	 (a)	Current	 injected	and	(b)
voltages	computed	with	and	without	soil	 ionization.	 (Reprinted	 from	Ala,	G.	et	al.,	 IET	Sci.	Meas.	Technol.,	 2(3),	134–145,
2008.	With	permission	from	IET.)

5.2.2				Transmission	Towers
Lightning	overvoltages	in	overhead	power	transmission	systems	are	mainly	caused	by	back

flashovers	 (BFOs)	 of	 tower	 insulations.	 The	 electromagnetic	 field	 around	 a	 transmission
tower	 when	 it	 is	 hit	 by	 lightning	 changes	 dynamically,	 while	 electromagnetic	 waves	make
several	round	trips	between	the	shield	wire	and	the	ground.
During	this	interval,	the	waveforms	of	insulator	voltages	exhibit	complex	variations.	For	a

tall	 structure	 such	 as	 an	 extra-high-voltage,	 double-circuit	 transmission	 tower,	 the
contribution	 of	 the	 tower-surge	 characteristic	 to	 the	 insulator	 voltages	 becomes	 dominant
because	the	travel	time	of	a	surge	along	the	tower	is	comparable	to	the	rise	time	of	a	lightning
current.	Therefore,	it	is	important	to	investigate	the	surge	characteristics	of	tall	towers.



Mozumi	 et	 al.	 [15],	 using	 the	 MoM	 in	 the	 time	 domain	 [7],	 computed	 voltages	 across
insulators	 of	 a	 500-kV,	 double-circuit	 transmission-line	 tower	 with	 two	 overhead	 ground
wires	located	above	a	flat,	perfectly	conducting	ground	when	the	top	of	the	tower	is	struck	by
lightning,	 resulting	 in	 a	 BFO	 across	 the	 insulator	 of	 one	 phase.	 In	 order	 to	 analyze	BFOs
using	 the	 MoM	 in	 the	 time	 domain,	 they	 incorporated	 a	 flashover	 model	 developed	 by
Motoyama	[16]	into	the	MoM.	For	computation	purposes,	the	lightning	return-stroke	channel
is	 represented	by	a	vertical,	perfectly	conducting	wire	 in	air.	The	 lightning	channel	and	 the
tower	are	excited	by	a	lumped	voltage	source	in	series,	with	a	5	kΩ	lumped	resistance	inserted
between	 them.	Figure	5.10	 shows	 the	 structure	 of	 the	 tower	 to	 be	 analyzed.	This	 conductor
system	is	divided	into	thin,	cylindrical	segments	of	about	4	m	in	length.	The	time	increment	is
set	to	20	ns.

FIGURE	5.10
Structure	 of	 a	 500-kV	 transmission-line	 tower	 analyzed	 using	 the	MoM	 in	 the	 time	 domain.	 (Mozumi,	 T.	 et	 al.,	 Numerical
electromagnetic	field	analysis	of	archorn	voltages	during	a	back	flashover	on	a	500	kV	twin-circuit	line,	IEEE	Trans.	Power
Deliv.	18(1):207–213.	©	2003	IEEE.)

Figure	5.11	shows	waveforms	of	 insulator	voltages	computed	using	 the	MoM	in	 the	 time
domain	and	using	the	electromagnetic	transients	program	(EMTP)	[17]	when	an	upper-phase
BFO	occurs	for	a	current	having	a	magnitude	of	150	kA	and	a	rise	time	of	1	µs.	Note	that,	in
the	EMTP	computation,	a	multistory	transmission-line	tower	model	[18]	is	employed	and	the
characteristic	 impedance	 of	 the	 top	 of	 the	 tower	 is	 set	 to	 245	Ω	 and	 the	 impedance	 of	 the
bottom	 is	 set	 to	 180	Ω.	MoM-computed	waveforms	 are	 reasonably	well	 reproduced	 by	 the
corresponding	EMTP	computed	waveforms.
Noda	[19],	using	the	FDTD	method	[1],	computed	voltages	across	 insulators	of	a	500-kV,

double-circuit	 transmission-line	 tower,	 located	 on	 flat	 ground	 with	 a	 conductivity	 of	 10
mS/m,	 when	 the	 top	 of	 the	 tower	 is	 struck	 by	 lightning.	 In	 his	 computation,	 the	 lightning
return-stroke	 channel	 is	 represented	 by	 a	 vertical,	 perfectly	 conducting	 wire	 with	 an
additional	distributed	series	inductance	of	10	µH/m.	The	resultant	speed	of	the	current	wave
propagating	 along	 the	wire	 is	 0.33c.	 The	 lightning	 channel	 and	 the	 tower	 are	 excited	 by	 a
lumped	current	 source	 inserted	between	 them.	Figure	5.12	 shows	 the	 structure	 of	 the	 tower
analyzed	 using	 the	 FDTD	 method.	 This	 conductor	 system	 is	 accommodated	 in	 a	 working



volume	of	250	m	×	250	m	×	150	m,	which	is	divided	uniformly	into	cubic	cells	of	1	m	×	1	m
×	1	m.	The	working	volume	 is	 surrounded	by	six	planes	of	Liao’s	 second-order	absorbing
boundary	condition	[9]	to	minimize	unwanted	reflections.
Figure	5.13	shows	waveforms	of	insulator	voltages	computed	using	the	FDTD	method	and

using	 the	 EMTP	when	 a	 ramp	 current	with	 a	magnitude	 of	 1	A	 and	 a	 rise	 time	 of	 1	 µs	 is
injected.	 Note	 that	 in	 Noda’s	 EMTP	 computation,	 a	 new	 circuit	 model	 for	 a	 tower	 [19]	 is
employed,	with	 the	 characteristic	 impedance	 set	 to	 192	Ω.	 FDTD-computed	waveforms	 are
reasona-bly	well	reproduced	by	the	corresponding	EMTP-computed	waveforms.	Also,	Noda
[19]	 showed	 that	 his	 FDTD-computed	 waveforms	 of	 the	 tower-top	 voltage	 and	 the	 tower
current	 for	 a	 similar	 tower	 agree	 reasonably	 well	 with	 the	 corresponding	 measured
waveforms.

FIGURE	5.11
Waveforms	of	insulator	voltages	computed	using	the	MoM	in	the	time	domain	and	using	EMTP,	in	the	case	of	an	upper-phase
BFO	for	a	current	with	a	magnitude	of	150	kA	and	a	rise	time	of	1	µs.	(a)	TWTD	and	(b)	EMTP.	(Mozumi,	T.	et	al.,	Numerical
electromagnetic	field	analysis	of	archorn	voltages	during	a	back	flashover	on	a	500	kV	twin-circuit	line,	IEEE	Trans.	Power
Deliv.	18(1):207–213.	©	2003	IEEE.)

FIGURE	5.12
Structure	 of	 a	 500-kV	 transmission-line	 tower	 analyzed	 using	 the	 FDTD	 method.	 (Reprinted	 from	 Noda,	 T.,	 IEEJ	 Trans.
Power	Energy,	127(2),	379–388,	2007.	With	permission	from	IEEJ.)



FIGURE	5.13
Waveforms	of	insulator	voltages	computed	using	FDTD	and	EMTP	methods,	in	the	case	of	a	ramp	current	with	a	magnitude	of
1	A	and	a	rise	time	of	1	µs	is	injected.	(a)	FDTD	and	(b)	EMTP.	(Reprinted	from	Noda,	T.,	IEEJ	Trans.	Power	Energy,	127(2),
379–388,	2007.	With	permission	from	IEEJ.)

5.2.3				Distribution	Lines:	Lightning-Induced	Surges
In	order	to	optimize	ways	to	protect	telecommunication	and	power	distribution	lines	from

lightning,	 one	 needs	 to	 know	 voltages	 that	 can	 be	 induced	 on	 overhead	wires	 by	 lightning
strikes	 to	 the	 ground	 or	 to	 nearby	 grounded	 objects.	 NEA	 methods	 have	 recently	 been
employed	 to	analyze	 lightning-induced	voltages	on	overhead	 telecommunication	and	power
distribution	lines.
Using	the	MoM	in	the	FD	[2],	Pokharel	et	al.	[20]	reproduced	lightning-induced	voltages	on

an	overhead	horizontal	wire	of	radius	0.25	mm,	length	25	m,	and	height	0.5	m,	which	were
measured	by	Ishii	et	al.	[21].	Figure	5.14	shows	the	configuration	of	Ishii	et	al.’s	small-scale
experiment.	 In	 the	 experiment,	 the	 vertical	 return-stroke	 channel	 is	 represented	 by	 a	 coiled
wire	along	which	a	current	wave	propagates	upward	at	a	speed	of	approximately	125	m/µs.
The	close	(to	the	simulated	channel)	end	of	the	overhead	horizontal	wire	is	either	terminated
in	a	430-Ω	 resistor	or	 left	 open,	 and	 the	 remote	end	 is	 terminated	 in	 a	430-Ω	 resistor.	The
lightning-induced	voltages	at	both	ends	of	 the	wire	are	measured	using	voltage	probes	with
20	 pF	 input	 capacitance.	 Figure	 5.15	 shows	 MoM-computed	 and	 measured	 waveforms	 of
induced	voltages.	Note	that	in	the	MoM	computations	the	lightning	channel	is	represented	by	a
vertical	 wire	 with	 1	 Ω/m	 series-distributed	 resistance	 and	 3	 µH/m	 series-distributed
inductance,	and	 the	ground	conductivity	and	 its	 relative	permittivity	are	set	 to	σ	=	0.06	S/m
and	εr	=	10,	 respectively.	The	conductor	system	is	modeled	as	a	combination	of	cylindrical
segments	 that	 are	 either	1	m	or	0.5	m	 long.	Computation	 is	 carried	out	over	 the	 frequency
range	of	195.3	kHz	to	50	MHz	with	an	increment	step	of	195.3	kHz.	This	corresponds	to	the
time	interval	from	0	to	5.12	µs	with	a	time	increment	of	10	ns.	In	Figure	5.15,	MoM-computed
voltage	 waveforms	 for	 the	 case	 of	 a	 perfectly	 conducting	 ground	 are	 also	 shown	 for
reference.	Owing	to	the	finitely	conducting	ground,	the	polarity	of	the	remote-end	voltage	is
opposite	to	that	of	the	close	end.



FIGURE	5.14
Configuration	of	a	small-scale	experiment	for	measuring	lightning-induced	voltages.	(Ishii,	M.,	Michishita,	K.,	and	Hongo,	Y.,
Experimental	study	of	lightning-induced	voltage	on	an	overhead	wire	over	lossy	ground,	IEEE	Trans.	Electromagn.	Compat.
41(1):39–45.	©	1999	IEEE.)

FIGURE	5.15
MoM-computed	 and	 measured	 waveforms	 of	 lightning-induced	 voltages	 at	 both	 ends	 of	 an	 overhead	 wire;	 each	 end	 is
terminated	with	a	430-Ω	resistor.	(a)	Voltages	at	the	close	end	and	(b)	voltages	at	the	remote	end.	(Pokharel,	R.	K.,	Ishii,	M.,
and	Baba,	Y.,	Numerical	electromagnetic	analysis	of	lightning-induced	voltage	over	ground	of	finite	conductivity,	IEEE	Trans.
Electromagn.	Compat.	45(4):651–656.	©	2003	IEEE.)

Note	 that	 Ishii	 et	 al.	 [21]	 reproduced	 lightning-induced	 voltages	 measured	 in	 their
experiment	with	Agrawal	et	al.’s	field-to-wire	electromagnetic	coupling	model	[22],	and	Baba
and	Rakov	[23]	reproduced	the	same	measured	waveforms	using	the	FDTD	method	[1].
Using	the	MoM	in	the	time	domain	[7],	Pokharel	and	Ishii	[24]	computed	lightning-induced

voltages	on	a	500	m	long	overhead	wire,	which	is	located	above	a	flat,	perfectly	conducting
ground.	The	overhead	wire	is	terminated	with	a	540-Ω	resistor	at	each	end	and	is	connected	to
the	ground	in	the	middle	of	the	wire	via	a	surge	arrester.	The	surge	arrester	is	represented	by
a	nonlinear	 resistor	whose	 characteristics	 are	 shown	 in	Figure	5.16.	 Figure	 5.17	 shows	 the
computed	waveforms	of	lightning-induced	voltage	in	the	middle	of	the	wire	with	or	without
the	surge	arrester	and	the	arrester	current.	Note	that	the	simulated	lightning	channel	is	located



100	m	away	from	the	middle	of	the	overhead	wire,	the	magnitude	of	the	lightning	current	is
set	to	10	kA,	and	its	rise	time	is	set	to	1	µs.

FIGURE	5.16
Approximate	voltage	versus	current	characteristics	of	nonlinear	resistance	representing	a	surge	arrester,	employed	by	Pokharel
and	 Ishii	 [24]	 in	 their	 computations	 using	 the	MoM	 in	 the	 time	 domain.	Vd	 is	 set	 to	 30	 kV.	 (Pokharel,	 R.	 K.	 and	 Ishii,	M.,
Applications	of	 time-domain	numerical	electromagnetic	code	to	lightning	surge	analysis,	IEEE	Trans.	Electromagn.	Compat.
49(3):623–631.	©	2007	IEEE.)

FIGURE	5.17
Waveforms	of	lightning-induced	voltage	in	the	middle	of	a	500	m–long	overhead	wire	with	or	without	a	surge	arrester	and	the
arrester	 current	 computed	 using	 the	MoM	 in	 the	 time	 domain.	 (Pokharel,	 R.	 K.	 and	 Ishii,	M.,	 Applications	 of	 time-domain
numerical	 electromagnetic	 code	 to	 lightning	 surge	 analysis,	 IEEE	 Trans.	 Electromagn.	 Compat.	 49(3):623–631.	 ©	 2007
IEEE.)

Using	 the	 same	 time-domain	 method,	 Moini	 et	 al.	 [25]	 performed	 a	 computation	 of
lightning-induced	 voltages	 on	 vertically	 arranged	 and	 horizontally	 arranged	 multiphase
conductors	above	a	flat,	perfectly	conducting	ground.

5.2.4				Transmission	Lines:	Propagation	of	Lightning	Surges	in	the
Presence	of	Corona

When	 the	 overhead	 shield	 wire	 of	 a	 transmission	 line	 is	 struck	 by	 lightning,	 corona
discharge	 occurs	 on	 the	 wire.	 Corona	 discharge	 around	 a	 shield	 wire	 reduces	 its
characteristic	 impedance	 and	 increases	 the	 coupling	 between	 the	 shield	 wire	 and	 phase
conductors.	The	reduced	characteristic	impedance	of	the	shield	wire	results	in	a	lesser	tower
current,	 and	 the	 increased	 coupling	 to	 the	 phase	 conductors	 increases	 their	 voltages.	 As	 a
result,	corona	discharge	leads	to	reduced	insulator	voltages.	Also,	it	distorts	the	wave	fronts



of	propagating	lightning-surge	voltages.	Thus,	it	is	important	to	consider	corona	effects	when
computing	 lightning	surges	on	 transmission	 lines	and	designing	ways	 to	protect	 lines	 from
lightning	surges.
Thang	et	al.	[26]	proposed	a	simplified	corona	discharge	model	for	FDTD	computations.

They	represent	the	radial	progression	of	corona	streamers	from	energized	wires	by	the	radial
expansion	of	the	cylindrical	conducting	region.	The	critical	electric	field	E0	on	the	surface	of
a	cylindrical	wire	of	radius	r0	for	the	initiation	of	corona	discharge	is	given	by	Hartmann’s
[27]	equation,	which	is	reproduced	as	follows:

where	m	of	Equation	5.75	 is	 the	coefficient	depending	on	 the	wire	 surface	conditions.	Note
that	this	coefficient	was	not	employed	by	Hartmann,	but	was	later	introduced	by	Guillier	et	al.
[28].	Since	radial	electric-field	computation	points	closest	to	the	wire	are	located	not	at	0.23Δx
and	0.23Δz	(which	are	equal	to	the	equivalent	wire	radius)	from	the	wire	axis,	but	at	0.5Δx	and
0.5Δz,	 they	 assume	 that	 corona	 streamers	 start	 emanating	 from	 the	 wire	 when	 the	 radial
electric	field	at	0.5Δx	(and	0.5Δz)	exceeds	0.46E0	(=E0	×	0.23Δx/0.5Δx).	They	set	 the	critical
background	 electric	 field	 necessary	 for	 streamer	 propagation	 (which	 determines	 the
maximum	 extent	 of	 the	 radially	 expanding	 corona	 region)	 for	 positive	 (Ecp)	 and	 negative
(Ecn)	polarities	as	follows:

The	corona	radius	rc	was	obtained	using	the	analytical	expression	(5.77),	based	on	Ec	 (0.5
or	1.5	MV/m,	depending	on	polarity;	see	Equation	5.76)	and	the	FDTD-computed	charge	per
unit	length	(q).	Then	the	conductivity	of	the	cells	located	within	rc	was	set	to	σcor	=	20	or	40
µS/m:

The	simulation	of	corona	discharge	implemented	in	the	FDTD	procedure	is	summarized	as
follows:

1.	If	the	FDTD-computed	electric	field	Ezbn,	at	time	step	n	and	at	a	point	located	below	and
closest	to	the	wire	(at	0.5Δz	from	the	wire	axis	shown	in	Figure	5.18a),	exceeds	0.46E0,
the	conductivity	of	σcor	=	20	or	40	µS/m	is	assigned	to	x-	and	z-directed	sides	of	the	four
cells	closest	to	the	wire.

2.	The	radial	current	In	per	unit	length	of	the	wire	at	y	=	jΔy	from	the	excitation	point	at
time	step	n	is	evaluated	by	numerically	integrating	the	radial	conduction	and
displacement	current	densities	as	follows:



FIGURE	5.18
FDTD	representations	of	(a)	the	inception	of	corona	discharge	at	the	wire	surface	and	(b)	radial	expansion	of	corona	discharge.
(Thang,	T.	H.	et	al.,	FDTD	simulation	of	lightning	surges	on	overhead	wires	in	the	presence	of	corona	discharge,	IEEE	Trans.
Electromagn.	Compat.	54(6):1234–1243.	©	2012	IEEE.)

where	Exl,	Exr,	Eza,	and	Ezb	are	 the	radial	electric	 fields	closest	 to	 the	wire	shown	in	Figure
5.18b.
The	total	charge	(charge	deposited	on	the	wire	and	the	emanated	corona	charge)	per	unit

length	of	the	wire	at	y	=	jΔy	from	the	excitation	point	at	time	step	n	is	calculated	as	follows:

From	qn,	yielded	by	Equation	5.79,	and	Ec,	given	by	Equation	5.76,	the	corona	radius	
at	time	step	n	+	1	is	calculated	using	Equation	5.77.	The	conductivity	of	σcor	=	20	or	40	µS/m
is	assigned	to	x-	and	z-directed	sides	of	all	cells	located	within	 .
Figure	5.19a	shows	a	3-D	view	of	a	12.65	mm-radius,	1.4	km-long,	overhead,	horizontal,

perfectly	conducting	wire	 located	22.2	m	above	 the	ground	with	a	conductivity	of	10	mS/m
and	a	1.4	km-long	bundled	perfect	 conductor	 (four	 conductors	 in	 the	bundle)	 located	14	m
above	the	same	ground	and	horizontally	2	m	away	from	the	single	wire.	This	configuration
represents	one	of	Inoue’s	experiments	[29].	The	radius	of	each	conductor	of	the	bundle	is	11.5
mm	and	the	distance	between	the	conductors	is	0.4	m.	One	end	of	the	single	wire	is	energized
by	 a	 lumped	 voltage	 source	 and	 the	 other	 end	 is	 connected	 to	 the	 ground	 via	 a	 490-Ω
(matching)	 resistor.	 For	 FDTD	 computations,	 this	 conductor	 system	 is	 accommodated	 in	 a
working	volume	of	60	m	×	1460	m	×	80	m,	which	is	divided	nonuniformly	into	rectangular
cells	and	is	surrounded	by	six	planes	of	Liao’s	second-order	absorbing	boundary	condition



[9]	to	minimize	unwanted	reflections.	At	each	ground	connection	point,	a	20	m	×	20	m	×	10	m
perfectly	conducting	grounding	electrode	is	employed.

FIGURE	5.19
(a)	3-D	and	(b)	cross-sectional	views	of	a	horizontal	single	wire	of	radius	12.65	mm	and	length	1.4	km,	located	22.2	m	above
the	ground	with	a	conductivity	of	10	mS/m,	and	a	four-conductor	bundle	of	length	1.4	km,	located	14	m	above	the	ground	and
horizontally	2	m	away	from	the	single	wire	[30].	One	end	of	the	single	wire	is	energized	by	a	lumped	voltage	source	and	the
other	end	is	connected	to	the	ground	via	a	490-Ω	resistor.	(Thang,	T.	H.	et	al.,	A	simplified	model	of	corona	discharge	on	an
overhead	wire	for	FDTD	computations,	IEEE	Trans.	Electromagn.	Compat.	54(3):585–593.	©	2012	IEEE.)

The	side	length	in	the	y-direction	of	all	of	the	cells	is	1	m	(constant).	Cell	sides	along	the	x-
and	 z-axes	 are	 not	 constant;	 the	 sides	 are	 5.5	 cm	 in	 the	 vicinity	 (220	 ×	 220	 cm)	 of	 the
horizontal	single	wire,	increasing	gradually	(to	10,	20,	and	100	cm)	beyond	that	region	except
for	 a	 region	 around	 the	 bundled	 conductor,	 and	 5	 cm	 in	 the	 vicinity	 (80	 ×	 80	 cm)	 of	 the
bundled	 conductor	 except	 for	 a	 region	 around	 the	 horizontal	 single	 wire,	 increasing
gradually	 (to	 10,	 20,	 and	 100	 cm)	 beyond	 that	 region,	 as	 shown	 in	 Figure	 5.19b.	 The
equivalent	 radius	of	 the	horizontal	 single	wire	used	 in	 this	experiment	 is	r0	≈	12.65	mm	(=
0.23Δx	 =	 0.23Δz	 =	 0.23	 ×	 5.5	 cm),	 which	 is	 equal	 to	 those	 used	 in	 the	 corresponding
experiment	of	Inoue	[29].	The	time	increment	was	set	to	Δt	=	1.75	ns.
Figure	5.20	shows	waveforms	of	a	positive	surge	voltage	at	d	=	0,	350,	700,	and	1050	m

from	the	energized	end	of	the	horizontal	single	wire	above	the	ground	whose	conductivity	is
10	mS/m,	computed	using	the	FDTD	method	for	corona	region	conductivity	σcor	=	40	µS/m
[30].	The	critical	electric	field	for	corona	onset	on	the	wire	surface	was	set	at	E0	=	2.4	MV/m
(for	m	 =	 0.5).	 The	 corresponding	measured	waveforms	 [29]	 are	 also	 shown	 in	 this	 figure.
FDTD-computed	waveforms	 agree	 reasonably	well	with	 the	 corresponding	measured	 ones.
Both	 FDTD-computed	 and	 measured	 waveforms	 of	 surge	 voltage	 suffer	 from	 distortion,



which	becomes	more	significant	when	the	applied	peak	voltage	and	propagation	distance	are
increased.
The	maximum	corona	radii	for	positive	peak	voltages	of	1580,	1130,	and	847	kV	are	66,

44,	and	27.5	cm,	respectively.
Figure	 5.21	 shows	 FDTD-computed	 waveforms	 of	 surge	 voltages	 without	 considering

corona	discharge	for	847	kV	positive	voltage	application.	The	measured	waveforms	[29]	with
corona	discharge	are	also	shown	in	this	figure.	In	the	absence	of	corona,	the	FDTD-computed
surge	 voltages	 suffer	 little	 distortion	 with	 propagation	 and	 significantly	 differ	 from	 the
corresponding	measured	waveforms	with	corona	discharge.
Figure	5.22	shows	FDTD-computed	waveforms	of	induced	voltages	at	d	=	700	and	d	=	1050

m	on	 a	 1.4	 km-long,	 horizontal,	 four-conductor	 bundle,	which	 is	 located	 horizontally	 2	m
away	from	the	energized	horizontal	wire	and	14	m	above	the	ground	[30].	The	corresponding
measured	 waveforms	 [29]	 are	 also	 shown	 in	 Figure	 5.22.	 The	 computed	 waveforms	 of
voltages	 induced	 on	 the	 bundled	 conductor	 also	 agree	 fairly	 well	 with	 the	 corresponding
measured	waveforms.

FIGURE	5.20
FDTD-computed	(for	σcor	=	40	µS/m	and	E0	=	2.4	MV/m)	and	measured	waveforms	of	surge	voltage	at	d	=	0,	350,	700,
and	1050	m	from	the	energized	end	of	the	12.65	mm-radius,	1.4	km-long	horizontal	wire,	located	22.2	m	above	the	ground
with	a	conductivity	of	10	mS/m	[30].	The	applied	voltage	is	positive	and	Ecp	=	0.5	MV/m.	The	applied	peak	voltages	are	(a)
1580	kV,	(b)	1130	kV,	and	(c)	847	kV.	(Thang,	T.	H.	et	al.,	A	simplified	model	of	corona	discharge	on	an	overhead	wire	for
FDTD	computations,	IEEE	Trans.	Electromagn.	Compat.	54(3):585–593.	©	2012	IEEE.)



FIGURE	5.21
Same	as	Figure	5.20c,	but	computed	without	corona	discharge.	(Thang,	T.	H.	et	al.,	A	simplified	model	of	corona	discharge	on
an	overhead	wire	for	FDTD	computations,	IEEE	Trans.	Electromagn.	Compat.	54(3):585–593.	©	2012	IEEE.)

5.2.5				Power	Cables:	Propagation	of	Power	Line	Communication	Signals
Power	line	communication	(PLC)	systems	use	power	distribution	lines	and	cables	for	data

communication	 in	 frequency	 ranges	 up	 to	 30	MHz.	Within	 a	 power	 cable,	 semiconducting
layers	 are	 usually	 incorporated	 between	 the	 core	 conductor	 of	 the	 power	 cable	 and	 the
insulating	 layer	 and	 between	 the	 insulating	 layer	 and	 the	 sheath	 conductor.	 Because	 power
cables	 are	 not	 designed	 for	 effectively	 transmitting	 the	 PLC	 signals,	 they	 might	 attenuate
significantly	along	the	cables	due	to	the	presence	of	semiconducting	layers.
Okazima	 et	 al.	 [31]	 investigated	 the	 propagation	 characteristics	 of	 a	 PLC	 signal	 of

frequency	 30	MHz	 along	 a	 single-core	 power	 cable	with	 two	 3	mm–thick,	 semiconducting
layers	 using	 the	 FDTD	 method	 [1]	 in	 the	 two-dimensional	 (2-D)	 cylindrical-coordinate
system.	Figure	5.23	shows	a	130	m–long,	single-core	power	cable	analyzed	using	the	FDTD
method.	 The	 radius	 of	 the	 core	 conductor	 is	 5	 mm	 and	 the	 inner	 radius	 of	 the	 sheath
conductor	 is	25	mm.	The	core	 and	 sheath	conductors	 are	perfectly	 conducting.	Figure	 5.23
also	shows	a	14	mm–thick	insulating	layer	with	semiconducting	layers	of	3-mm	thickness	on
both	inner	and	outer	surfaces.	The	relative	permittivity	εr	of	the	insulating	layer	and	of	each
semiconducting	layer	is	set	to	εr	=	3.	The	conductivity	of	each	semiconducting	layer	is	set	to	a
value	ranging	from	σ	=	10−5	to	105	S/m.	Note	that	this	power	cable	is	rotationally	symmetric
around	 its	 axis	 and	 has	 a	 circular	 cross	 section.	 It	 is	 represented	 without	 the	 staircase-
approximated	contour	in	the	FDTD	method	using	a	2-D	cylindrical-coordinate	system	with	a
working	 space	 of	 130	 m	 ×	 27	 mm	 rectangle,	 contoured	 by	 the	 thick	 black	 line	 shown	 in
Figure	5.23.	At	one	end	of	the	cable,	a	10	V,	positive	half-sine	pulse	of	frequency	f	=	30	MHz
is	 applied	 between	 the	 core	 and	 sheath	 conductors.	 The	 other	 end	 of	 the	 cable	 model	 is
terminated	using	Liao’s	second-order	absorbing	boundary.	The	working	space	of	130	m	×	27
mm	for	the	FDTD	computation	is	divided	into	1	×	1	mm	square	cells.	The	time	increment	is
set	to	2.3	ps.



FIGURE	5.22
FDTD-computed	(for	σcor	=	40	µS/m	and	E0	=	2.4	MV/m)	and	measured	waveforms	of	voltage	induced	on	a	nearby	four-
conductor	bundle	at	d	=	700	and	1050	m,	located	14	m	above	the	ground	with	a	conductivity	of	10	mS/m	[30].	The	applied
voltage	is	positive	and	Ecp	=	0.5	MV/m.	The	applied	peak	voltage	is	1580	kV.	(a)	d	=	700	m	and	(b)	d	=	1050	m.	(Thang,	T.
H.	 et	 al.,	A	 simplified	model	 of	 corona	discharge	on	 an	overhead	wire	 for	FDTD	computations,	 IEEE	 Trans.	 Electromagn.
Compat.	54(3):585–593.	©	2012	IEEE.)

Figure	5.24	shows	waveforms	of	the	voltage	between	the	core	and	sheath	conductors	of	the
power	 cable	 at	 different	 distances	 of	 20,	 40,	 60,	 80,	 and	 100	m	 from	 the	 excitation	 point.
Figure	5.25	 shows	how	σ	 affects	 the	magnitude	of	 the	voltage	between	 the	 core	 and	 sheath
conductors	 at	 a	 distance	 that	 is	 100	 m	 from	 the	 excitation	 point.	 It	 can	 be	 observed	 from
Figures	5.24	and	5.25	that	the	magnitude	of	the	voltage	pulse	decreases	when	the	propagation
distance	 is	 increased	 in	 all	 cases	 considered.	 However,	 the	 dependence	 of	 the	 signal
attenuation	on	σ	is	not	monotonic;	the	attenuation	is	significant	around	σ	=	10−3	and	103	S/m,
while	it	is	not	significant	when	σ	is	lower	than	10−5	S/m	or	σ	is	around	1	S/m.	When	σ	=	10−3
and	103	S/m,	dispersion	is	also	marked.	Therefore,	it	is	quite	difficult	to	conduct	PLC	signals
in	a	power	system	cable	with	semiconducting	layers	that	have	conductivity	of	approximately	σ
=	10−3	or	103	S/m,	but	there	are	more	possibilities	if	a	≤	10−5	S/m	or	σ	=	1	S/m.



FIGURE	5.23
A	130	m-long,	single-core	power	cable	with	semiconducting	layers	analyzed	using	the	FDTD	method.	The	130	m	×	27	mm
rectangle	space,	contoured	by	a	 thick	black	 line,	 is	 the	actual	working	space	for	 the	present	FDTD	computations	 in	 the	2-D
cylindrical-coordinate	 system.	 (Okazima,	N.	 et	 al.,	 Propagation	 characteristics	 of	 power	 line	 communication	 signals	 along	 a
power	cable	having	semiconducting	layers,	IEEE	Trans.	Electromagn.	Compat.	52(3):756–759.	©	2010	IEEE.)

The	 signal	 attenuation	 around	 σ	 =	 10−3	 S/m	 is	 caused	 by	 the	 capacitive	 charging	 and
discharging	of	the	semiconducting	layers	in	a	radial	direction.	For	σ	=	103	S/m,	axial	current
propagation	 in	 the	 semiconducting	 layers	 is	 the	 dominant	 cause	 of	 attenuation.	 These	 are
quantified	as	follows.
The	time	constant	τ	of	each	semiconducting	layer	is	given	by

where
C	=	2πεrε0/ln(r2/r1)	is	the	per-unit	length	capacitance	of	each	semiconducting	layer
R	=	ln(r2/r1)/(2πσ)	is	its	radial	direction	per-unit	length	resistance
r2	is	the	outer	radius	of	the	semiconducting	layer
r1	is	its	inner	radius
ε0	is	the	permittivity	of	the	vacuum
εr	is	the	relative	permittivity	of	the	semiconducting	layer
σ	is	its	conductivity



FIGURE	5.24
Waveforms	of	the	voltage	between	the	core	and	sheath	conductors	at	different	distances	from	the	excitation	point	when	a	30
MHz	and	10	V	half-sine	pulse	is	 injected	and	the	semiconducting-layer	conductivity	σ	is	(a)	10−5,	(b)	10−3,	 (c)	1,	 (d)	103,
and	(e)	105	S/m.	 (Okazima,	N.	 et	 al.,	Propagation	characteristics	of	power	 line	communication	 signals	 along	a	power	cable
having	semiconducting	layers,	IEEE	Trans.	Electromagn.	Compat.	52(3):756–759.	©	2010	IEEE.)

For	 εr	 =	 3	 and	 σ	 =	 10−3	 S/m,	 the	 time	 constant	 is	 τ	 =	 27	 ns.	 Charging	 and	 discharging
processes	 in	 the	radial	direction	of	 the	semiconducting	 layer	with	σ	=	10−3	S/m	will	have	a
strong	effect	on	a	30-MHz	signal	with	17-ns	half-cycle,	leading	to	significant	attenuation	and
distortion.	Note	 that	 in	 this	condition,	 the	magnitude	of	 the	radial	conduction	current	across
the	semiconducting	layer	is	close	to	that	of	the	radial	displacement	current.	In	other	words,	the
conductance	of	the	semiconducting	layer	is	close	to	its	susceptance.

FIGURE	5.25
Dependence	 of	 the	 magnitude	 of	 the	 voltage	 between	 the	 core	 and	 sheath	 conductors	 at	 a	 distance	 of	 100	 m	 from	 the
excitation	point	on	the	semiconducting-layer	conductivity	σ	when	a	30	MHz	and	10	V	half-sine	pulse	is	injected.	(Okazima,	N.
et	 al.,	 Propagation	 characteristics	 of	 power	 line	 communication	 signals	 along	 a	 power	 cable	 having	 semiconducting	 layers,
IEEE	Trans.	Electromagn.	Compat.	52(3):756–759.	©	2010	IEEE.)

At	a	high	conductivity	of	σ	=	103	S/m,	 the	depth	d	 of	penetration	 for	 an	 electromagnetic
wave	of	frequency	f	into	a	medium	of	conductivity	σ	and	permeability	µ0	is	relevant	for	loss



calculations.	This	depth	is	given	by

For	µ0	=	4π	×	10−7	H/m,	 f	=	30	MHz,	and	σ	=	103	S/m,	Equation	5.81	yields	d	 =	 2	mm,
which	 is	close	 to	 the	 thickness	of	 the	semiconducting	 layer	 (3	mm).	Therefore,	most	of	 the
axial	current	flows	in	the	semiconducting	layers	rather	than	on	the	core	and	sheath	conductor
surfaces.	This	results	in	significant	signal	attenuation	and	dispersion.

5.2.6				Air-Insulated	Substations
In	 order	 to	 estimate	 the	 voltage	 level	 that	 substations	 can	 withstand	 from	 lightning

impulses,	 lightning	 overvoltages	 that	 would	 be	 generated	 in	 3-D	 complex-structure
substations	need	to	be	known.
Using	 the	 FDTD	 method	 [1],	 Watanabe	 et	 al.	 [32]	 computed	 surge	 voltages	 on	 an	 air-

insulated	 substation.	 They	 applied	 an	 impulse	 voltage	 to	 the	 substation	 and	 compared	 the
FDTD-computed	voltage	waveforms	with	the	corresponding	waveforms	measured	on	a	1/10-
scale	model,	shown	in	Figure	5.26.	Figure	5.27	shows	the	plan	view	of	the	FDTD	model	and
the	reduced-scale	experimental	model.	An	impulse	voltage	is	applied	to	the	terminal	of	line	B-
2,	 and	 surge	 voltages	 are	 measured	 at	 the	 voltage	 application	 point	 and	 at	 the	 No.	 2
transformer.

FIGURE	5.26
1/10-scale	model	of	an	air-insulated	substation.	(Reprinted	from	Watanabe,	T.	et	al.,	The	measurement	and	analysis	of	surge
characteristics	 using	miniature	model	 of	 air	 insulated	 substation,	Paper	 presented	 at	 IPST	2005,	Montreal,	 Quebec,	 Canada,
2005.	With	permission	from	IPST.)



FIGURE	5.27
Plan	view	of	the	small-scale	model	and	the	FDTD	simulation	model:	An	impulse	voltage	is	applied	to	the	terminal	of	line	B-2,
and	surge	voltages	are	measured	at	the	voltage	application	point	and	at	the	No.	2	transformer.	(Reprinted	from	Watanabe,	T.	et
al.,	The	measurement	and	analysis	of	surge	characteristics	using	miniature	model	of	air	insulated	substation,	Paper	presented	at
IPST	2005,	Montreal,	Quebec,	Canada,	2005.	With	permission	from	IPST.)

FIGURE	5.28
Measured	and	FDTD-computed	waveforms:	The	plots	on	the	left	show	voltages	at	the	voltage	application	point,	and	the	plots
on	the	right	show	voltages	at	the	No.	2	transformer.	(a)	Measured	voltages	and	(b)	FDTD-computed	voltages.	(Reprinted	from
Watanabe,	T.	 et	 al.,	The	measurement	and	analysis	of	 surge	characteristics	using	miniature	model	of	 air	 insulated	 substation,
Paper	presented	at	IPST	2005,	Montreal,	Quebec,	Canada,	2005.	With	permission	from	IPST.)

Figure	5.28	shows	the	measured	and	FDTD-computed	voltage	waveforms.	FDTD-computed
waveforms	 agree	 with	 the	 corresponding	 measured	 waveforms.	 Note	 that	 de	 Oliveira	 and
Sobrinho	[33]	performed	a	similar	FDTD	computation	for	an	air-insulated	substation	struck
by	lightning.

5.2.7				Wind-Turbine	Generator	Towers
Wind-turbine	 generator	 towers	 are	 frequently	 struck	 by	 lightning.	 In	 order	 to	 optimize

ways	 to	protect	wind-turbine	generator	 systems	 from	 lightning,	 it	 is	 important	 to	 know	 the
mechanism	of	lightning	overvoltages	generated	in	the	systems.
Yamamoto	 [34]	 and	 Yamamoto	 et	 al.	 [35]	 investigated	 lightning-protection	 methods	 for

wind-turbine	generator	systems	using	the	FDTD	method	[1]	experimentally	with	a	small-scale
model	of	a	wind-turbine	generator	tower	struck	by	lightning.	Figure	5.29	shows	a	3/100-scale
model	of	a	50	m-high	wind-turbine	tower	with	25	m-long	blades,	one	of	which	is	connected
to	 a	 lightning	 channel-representing,	 vertical	 current	 lead	 wire	 or	 the	 core	 conductor	 of	 a



vertical	coaxial	cable.	The	grounding	resistance	is	set	to	9.4	Ω.	In	the	FDTD	simulation,	this
conductor	 system	 is	 accommodated	 in	 a	working	 volume	 of	 6	m	×	 5	m	×	 7.5	m,	which	 is
divided	 uniformly	 into	 cubic	 cells	 of	 25	mm	×	 25	mm	×	 25	mm.	 The	working	 volume	 is
surrounded	by	six	planes	of	Liao’s	second-order	absorbing	boundary	condition	[9].	V11	to	V14
in	Figure	5.30	represent	the	voltage	differences	between	the	incoming	conductor	connected	to
a	 distant	 point	 and	 equipment	 at	 the	 tower	 base.	The	 voltage	 difference	 is	 generated	 by	 the
voltage	rise	at	the	tower	base.	This	voltage	difference	might	lead	to	an	overvoltage	between
the	power	line	and	the	power	converter	or	transformer	installed	inside	the	tower.	Figure	5.31
shows	the	measured	and	FDTD-computed	voltages	for	an	injected	current	with	a	rise	time	of
4	ns.	The	FDTD-computed	waveforms	agree	well	with	the	corresponding	measured	ones.

FIGURE	5.29
3-D	 view	 of	 a	 3/100-scale	 model	 of	 a	 wind-turbine	 generator	 tower,	 blades,	 nacelle,	 current	 lead	 wire,	 and	 a	 voltage
reference	 wire.	 (Reprinted	 from	 Yamamoto,	 K.,	 A	 study	 of	 overvoltages	 caused	 by	 lightning	 strokes	 to	 a	 wind	 turbine
generation	system,	PhD	thesis,	Doshisha	University,	Kyoto,	Japan,	2007.	With	permission.)

FIGURE	5.30
Configuration	of	incoming	conductors	to	the	wind-turbine	tower	base	for	measuring	and	computing	overvoltages	between	the
incoming	 conductors	 and	 equipment	 at	 the	 tower	 base.	 (Reprinted	 from	Yamamoto,	K.,	A	 study	 of	 overvoltages	 caused	 by
lightning	strokes	to	a	wind	turbine	generation	system,	PhD	thesis,	Doshisha	University,	Kyoto,	Japan,	2007.	With	permission.)



FIGURE	5.31
Voltage	differences	between	the	incoming	conductor	and	equipment	in	the	tower	base.	The	grounding	resistance	is	9.4	Ω	and
the	wave	 front	of	 the	 injected	current	 is	4	ns.	 (a)	Voltage	V11–V14	of	 the	measured	 results	 and	 (b)	voltage	V11	of	FDTD-
computed	 results.	 (Reprinted	 from	 Yamamoto,	 K.,	 A	 study	 of	 overvoltages	 caused	 by	 lightning	 strokes	 to	 a	 wind	 turbine
generation	system,	PhD	thesis,	Doshisha	University,	Kyoto,	Japan,	2007.	With	permission.)
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Electromagnetic	Disturbances	in	Power	Systems	and
Customer	Homes
	

	
	

6.1					Introduction
Since	 the	 mid-1980s,	 a	 number	 of	 analog	 control	 circuits	 have	 been	 replaced	 by	 digital
control	circuits	in	power	stations	and	substations	in	Japan.	This	is	the	case	for	any	industrial
product,	such	as	automobiles	and	home	appliances,	due	to	the	advancement	of	digital	circuit
technologies.	However,	 electromagnetic	compatibility	 (EMC)	environments	are	becoming	a
significant	problem	for	digital	circuits,	which	are	sensitive	to	high-frequency	electromagnetic
waves	such	as	switching	surges	(SS)	and	lightning	surges	(LS).
Consequently,	in	1990	the	Japanese	Electrotechnical	Research	Association	began	a	10-year

investigation	 of	 digital	 control	 circuit	 disturbances	 experienced	 by	 Japanese	 utilities	 in
generator	 stations	 and	 substations	 [1].	 There	 was	 a	 total	 of	 330	 disturbances,	 one-third	 of
which	 were	 protective	 relays.	 Protective	 relays	 made	 up	 the	 majority	 of	 the	 disturbances
(details	of	these	protective	relay	disturbances	are	presented	in	References	2	and	3).
Similarly,	 electromagnetic	 disturbances	 that	 affect	 users	 have	 become	 a	 significant

problem,	 and	 a	 number	 of	 surveys	 have	 been	 conducted	 by	 utility	 companies	 and	 public
organizations	related	to	home	appliances	[4,	5,	6,	7,	8–9].	For	example,	 it	was	reported	 that
there	were	more	than	1000	cases	of	damage	to	home	appliances	over	the	course	of	1	year	for
one	Japanese	utility	company.
This	 chapter	 summarizes	 the	 disturbances	 experienced	 in	 Japan,	 including	 the	 disturbed

equipment,	 incoming	 surge	 routes,	 and	characteristics	of	 the	disturbances	 [1,10].	Results	 of
these	disturbances	 in	power	system	operations,	 such	as	countermeasures	and	costs,	are	also
explained,	and	some	case	studies	are	presented.
Additionally,	this	chapter	includes	measurement	and	simulation	results	to	describe	how	LSs

due	to	nearby	activity	and	communication	lines	can	strike	customers.
Finally,	an	analytical	method	is	discussed	for	calculating	the	induced	voltage	in	a	pipeline

or	communication	line	from	a	power	line.

	
	

6.2					Disturbances	in	Power	Stations	and	Substations



6.2.1				Statistical	Data	of	Disturbances
6.2.1.1				Overall	Data
In	 total,	 330	 cases	 of	 disturbances	 occurred	 in	 substations	 and	 generator	 stations	 over	 the
course	of	10	years,	beginning	in	1990	[1].	Table	6.1	classifies	the	disturbances	by	(a)	troubled
equipment	 and	 (b)	 causes.	 As	 shown	 in	 Table	 6.1a,	 one-third	 of	 the	 disturbances	 affected
protection	equipment,	a	quarter	affected	 telecontrol	equipment,	and	another	quarter	affected
control	equipment.	Table	6.1b	shows	that	two-thirds	of	the	disturbances	were	caused	by	LSs,
one-sixth	 by	 SSs	 in	 the	 main	 circuits	 (high-voltage	 side),	 and	 one-twelfth	 by	 SSs	 in	 DC
circuits	that	are	part	of	control	circuits	(low-voltage	side).

Table	6.1	Total	Number	of	Disturbances	and	Failures	Collected	over	10	Years

The	disturbances	recorded	in	Table	6.1	that	were	caused	by	LSs	(220	cases)	and	main-circuit
SSs	(47)	were	noticed	in	the	following	ways:

1.	Malfunction	with	no	reaction	of	equipment—LS:	fifty-six	cases,	SS:	twenty-one	cases
2.	Indication	of	abnormal	supervision	(alarms,	etc.)—LS:	124	cases,	SS:	eighteen	cases
3.	Routine	maintenance—LS:	twenty	cases,	SS:	three	cases
4.	Other—LS:	twenty	cases,	SS:	six	cases

The	307	cases	of	disturbed	control	equipment	recorded	in	Table	6.1	were	installed	as	follows:

1.	Centralized	(control	room):	275	cases	(89.6%)
2.	Dispersed:	twenty-one	cases	(6.8%)
3.	Unknown:	eleven	cases	(3.6%)



This	shows	that	electromagnetic	disturbances	were	far	less	frequent	in	the	dispersed	control
equipment	than	in	the	centralized	equipment.	While	a	surge	can	cause	many	disturbances,	the
dispersed	 control	 equipment	 limits	 the	 incoming	 surge	 route.	 Furthermore,	 there	 are	more
incoming	surge	routes	for	centralized	equipment	than	for	dispersed	control	equipment.

6.2.1.2				Disturbed	Equipment
The	 details	 of	 the	 disturbed	 equipment	 listed	 in	 Table	 6.1a	 are	 summarized	 in	 Table	 6.2.
According	 to	 Table	 6.2,	 more	 than	 80%	 of	 the	 equipment	 disturbed	 by	 lightning	 are
protection,	control,	and	telecommunication	circuits,	and	another	15%	are	measuring	circuits
and	indicators.	These	circuits	should	be	well	protected	from	LSs,	and	the	incoming	routes,	as
discussed	 in	Section	6.2.1.3,	 should	be	designed	 to	 reduce	surges.	Table	6.2	also	 shows	 that
more	 than	 70%	 of	 the	 equipment	 disturbed	 by	 SSs	 are	 protection	 and	measuring/indicator
circuits,	but	only	a	few	disturbances	occur	in	the	control	and	telecommunication	circuits.	The
difference	might	be	caused	by	a	characteristic	of	an	SS,	which	is	different	from	that	of	an	LS.
Table	6.2b	also	clearly	shows	that	the	number	of	disturbances	in	digital	control	equipment	is
much	greater	than	that	in	analog	equipment;	the	ratio	is	4:1	for	SSs	(see	Table	6.2c),	whereas
the	 ratio	 is	 1:1	 for	 LSs	 (see	 Table	 6.2b).	 The	 rate	 of	 disturbances	 in	 mechanical	 control
circuits	reached	nearly	10%,	which	suggests	that	an	LS	can	cause	a	disturbance	to	any	type	of
control	 equipment	 due	 to	 its	 high	 overvoltage	 and	 current,	 whereas	 an	 SS	 causes	 more
disturbances	in	digital	equipment	due	to	its	high	frequency.
This	 observation	 suggests	 that	 overvoltage/current	 reduction	 (using	 arresters	 and	 surge

absorbers)	is	more	effective	against	LSs,	while	reducing	frequency	(using	surge	capacitors)
is	effective	against	SSs.

TABLE	6.2	Details	of	Disturbed	Equipment

TABLE	6.3	Surge	Incoming	Routes	Resulting	in	Disturbances



Table	 6.2d	 shows	 that	 nearly	 half	 of	 the	 disturbed	 equipment	 are	 integrated	 circuit	 (IC)
boards;	of	these,	digital	processors	and	input	circuits	have	the	highest	risk	of	disturbance.

6.2.1.3				Incoming	Surge	Routes
Table	 6.3	 summarizes	 incoming	 surge	 routes	 that	 were	 determined	 from	 corresponding
disturbances.	 It	 is	 not	 easy	 to	 find	 the	 incoming	 route	of	 a	 surge;	 however,	 the	most	 likely
route	 for	 an	 LS	 and/or	 SS	 is	 a	 control	 cable.	 Communication	 circuits	 and	 voltage
transformers	 (VT)	are	also	at	high	 risk	of	being	 incoming	 surge	 routes	 for	LSs.	Table	 6.3
suggests	a	position	where	a	surge	protector	can	be	installed.	From	the	table	and	References	11
and	12,	the	incoming	route	of	a	surge	can	be	drawn,	as	shown	in	Figure	6.1.

6.2.2				Characteristics	of	Disturbances

6.2.2.1				Characteristics	of	LS	Disturbances

Table	6.4	categorizes	 the	 isokeraunic	 level	 (IKL)	of	 substations	 in	which	disturbances	were
found.	Table	6.2	indicates	that	the	number	of	disturbances	tends	to	be	proportional	to	the	IKL
for	 substations	 of	 154	 kV	 and	 below.	 However,	 no	 correlation	 to	 the	 IKL	 is	 observed	 in
substations	 of	 187	 kV	 and	 above,	 because	 countermeasures	 against	 LSs	 are	 performed	 for
these	substations.
Table	6.5	shows	the	types	of	disturbances	caused	by	LSs.	Table	6.5a	shows	that	more	than

70%	 of	 the	 disturbances	 are	 permanent—that	 is,	 they	 lead	 to	 the	 complete	 breakdown	 of
equipment	and	thus	result	in	a	permanent	halt/lock	and	malfunction.

6.2.2.2				Characteristics	of	SS	Disturbances
One	of	 the	main	causes	of	electromagnetic	disturbances	 in	control	 circuits	of	gas-insulated
substations	(GIS)	is	an	SS	due	to	a	disconnect	switch	(DS)—or	occasionally	a	circuit	breaker
(CB)—operation.	Because	of	the	complex	combination	of	short	gas-insulated	buses	and	lines
in	the	GIS,	multiple	reflections	and	refractions	of	traveling	waves	at	the	boundaries	between
the	 buses	 and	 the	 lines	 generate	 a	 high-frequency	 surge.	 This	 surge	 invades	 low-voltage
control	 circuits	 via	 a	 capacitor	 voltage	 transformer	 and	 a	 current	 transformer	 (CT)	 and
results	 in	malfunction	 and	occasionally	 insulation	 failure	of	digital	 elements	of	 the	 control
circuits	[13,14].



FIGURE	6.1	Incoming	routes	of	SSs	and	LSs	via	a	control	cable.

Table	 6.6	 shows	 the	 relationship	 between	 operating	CBs/DSs	 and	 disturbances.	 The	 total
number	 of	 GISs	 is	 11,102,	 and	 the	 total	 number	 of	 non-GISs	 is	 27,456;	 the	 ratio	 of	 the
disturbances	in	the	GISs	is	0.0017,	which	is	higher	than	that	in	the	non-GISs,	0.00087.

Table	6.4	Number	of	Disturbances	and	the	Ratio	Categorized	by	IKL

IKL Higher	Than	20 Less	Than	20

187	kV/above 9	(0.056) 7	(0.043)
154	kV/below 108	(0.671) 37	(0.230)
Total 117 44

Table	6.5	Types	of	Disturbances	Due	to	LSs

Table	6.6	Number	of	Disturbances	Due	to	SSs



The	disturbances	are	categorized	as	follows:
Malfunction	 15	 (7),	 malfunction	 (not	 operated)	 3	 (2),	 halt/lock	 14	 (11),	 erroneous

indication	 8	 (3),	 others	 6	 (1),	 unknown	 1	 (1),	 total	 47	 (25)	 cases,	 the	 number	 in	 ()	 for
protection	relays.
The	impact	of	disturbances	is	summarized	as	follows:

DS	operation:	seven	permanent	failures,	fourteen	temporary	failures
CB	operation:	seven	permanent	failures,	seventeen	temporary	failures

Figure	6.2	summarizes	the	overall	results	of	the	voltage–frequency	relationship	for	SSs	at
CT	 secondary	 circuits	measured	 in	 thirteen	 different	GISs	 in	 Japan	 (fifty-eight	 cases).	 The
figure	 shows	 that	 the	 frequency	of	 the	SSs	 ranges	 from	2	 to	 80	MHz	 and	 the	 peak-to-peak
voltage	ranges	from	10	to	600	V.	It	is	important	to	note	that	no	frequency	component	from	20
to	40	MHz	is	observed.	Thus,	two	average	values	of	the	frequency	exist:	approximately	10	and
60	MHz.	The	results	suggest	 that	 it	 is	necessary	 to	 revise	 the	oscillating	 frequency	of	a	 test
wave	 in	 the	 existing	 International	 Electrotechnical	 Commission	 standard	 61,000-4-12	 [15].
The	average	of	the	peak-to-peak	voltage	is	100–200	V.

FIGURE	6.2	Voltage-frequency	characteristic	of	GIS	surges.

Figure	6.3	shows	surge	voltages	at	various	parts	of	control	circuits:	(1)	VT	secondary;	(2)
CT	secondary;	(3)	source	circuit	DC	110	V	P-E;	and	(4)	CB	control	(pallet)	circuit.	In	general,
the	figure	depicts	the	following	trend	of	the	voltage	amplitude:

CT	secondary	>	VT	secondary	>	source	circuit	>	CB	control	circuit.

This	trend	makes	sense	as	the	CT	and	VT	circuits	are	connected	directly	to	the	main	(high-
voltage)	circuit	of	a	GIS,	and	the	number	of	turns	of	the	CT	is	less	than	that	of	the	VT.



Figure	 6.4	 shows	 the	 frequency	 of	 surge	 voltages	 due	 to	 a	 DS	 operation	 (o)	 and	 a	 CB
operation	(x).	The	frequency	due	to	 the	DS	operation	tends	to	be	higher	 than	that	of	 the	CB
operation.
Generally,	a	DS	produces	a	surge	voltage	with	a	higher	frequency	than	that	produced	by	a

CB,	because	the	operating	speed	of	the	DS	is	slow	and	the	polarity	of	the	source-side	voltage
can	 become	 opposite	 to	 that	 of	 the	 disconnected	 side.	 Thus,	 a	 discharge	 across	 the	 poles
occurs	due	to	a	sufficiently	high	voltage	across	the	poles.	Such	a	phenomenon	cannot	occur	in
the	 CB	 operation,	 because	 its	 operating	 speed	 is	 high	 and	 the	 voltage	 across	 the	 poles	 is
reduced	by	a	stray	capacitance.	Also,	the	circuit	length	is	shorter	in	the	DS	operation	than	in
the	CB	operation.

FIGURE	6.3	Voltages	at	various	parts	of	control	circuits.

FIGURE	6.4	Frequency	of	surge	voltages	due	to	CBs	and	DSs.

6.2.2.3				SSs	in	DC	Circuits
1.	Basic	characteristics:	twenty-one	total	cases;	thirteen	cases	due	to	SSs	within	DC	circuits.
2.	Disturbed	equipment:
a.	Types	of	equipment:	nine	digital,	three	analog,	and	one	unknown;	thirteen	total	cases.	It
is	clear	that	there	are	more	disturbances	(three	times	as	many)	in	digital	equipment
than	in	analog	equipment.	The	ratio	(3:1)	is	similar	to	that	due	to	main-circuit	SSs
(thirty-six	digital,	nine	analog)	in	Section	6.2.1.2.

b.	Voltage	class:	All	disturbances	are	in	the	voltage	class	of	154	kV	and	below	because	of
countermeasures	to	reduce	surges	in	a	higher	voltage	class.

c.	Disturbed	equipment:	seven	telecommunication,	three	protection,	and	three	control.
There	are	more	disturbances	in	telecommunication	equipment	because	it	is	connected



to	CB	control	circuits	and	auxiliary	relays,	which	are	the	sources	of	DC	SSs.
d.	Relationship	to	standards:	The	seven	disturbances	in	the	telecommunication	equipment
resulted	from	either	switching	overvoltages	that	exceeded	the	voltage	defined	in	the
standard	or	the	inclusion	of	parts	not	defined	in	the	standard	[15,16].

e.	Disturbed	elements:	six	IC	base	plates,	three	auxiliary	relays,	one	lamp,	one	source
circuit,	two	others,	and	thirteen	total.	This	ratio	of	disturbed	elements	is	similar	to	that
of	the	disturbances	due	to	main-circuit	SSs,	excluding	auxiliary	relays,	which	are
characteristic	of	DC	SSs.

3.	Types	of	disturbances:
a.	Types	of	disturbances:	three	malfunctions,	one	malfunction	(not	operated),	three
halts/locks,	one	erroneous	indication,	four	others,	one	unknown,	and	thirteen	total.

b.	Aspects	of	disturbances:	three	permanent,	ten	nonrepetitive.
4.	Surge	voltage	and	frequency:
a.	Surge	voltage:	3–3.6	kV.
b.	Surge	frequency:	lower	than	the	frequency	of	main-circuit	SSs.

6.2.3				Influence,	Countermeasures,	and	Costs	of	Disturbances
This	section	investigates	the	disturbances	that	influenced	power	system	operation.	While	some
of	the	disturbances	caused	no	trouble	in	power	system	operation,	one	control	circuit	element
did	break	down.	Therefore,	the	total	number	of	disturbances	is	not	the	same	as	that	explained
in	 Section	 6.2.	 In	 fact,	 forty-three	 of	 the	 total	 330	 cases	 listed	 in	 Table	 6.1a	 resulted	 in
disturbances	in	power	system	operation.

6.2.3.1				Influence	of	Disturbances	on	Power	System	Operation
The	types	of	disturbances	for	each	type	of	equipment	are	categorized	in	Table	6.7a.	It	is	clear
from	 the	 table	 that	 halts	 and	 locks	 (freezes)	 of	 equipment	make	 up	 about	 half	 of	 the	 total
disturbances,	and	those	including	malfunctions	(not	operated	too)	constitute	70%	of	the	total
disturbances.	These	disturbances	result	 in	troubles	of	power	supply	and	system	operation	as
shown	in	Figure	6.5.	For	example,	more	 than	10%	of	 the	control	circuit	disturbances	cause
power	 system	 troubles.	 As	 long	 as	 a	 control	 equipment	 disturbance	 is	 contained	 within	 a
control	 circuit,	 the	 disturbance	 does	 not	 cost	 much.	 However,	 if	 it	 affects	 power	 system
operation,	 it	 becomes	 an	 urgent	 and	 significant	 problem.	 More	 than	 one-third	 of	 control
equipment	 disturbances	 affect	 generation,	 power	 supply,	 and	 system	 operation	 at	 the	 same
time.
The	causes	and	incoming	routes	of	the	disturbances	listed	in	Table	6.7a	are	categorized	in

Table	6.7b.	While	an	LS	is	more	likely	to	cause	disturbances	in	power	generation	and	supply,
an	SS	can	also	result	in	these	disturbances.	It	makes	sense	that	SS	disturbances	occur	only	in
substations.	The	incoming	routes	for	surges	are	through	control	circuits	(29%)	and	CTs/VTs
and	 others	 (40%),	 as	 shown	 in	 Table	 6.7b.	 It	 is	 important	 to	 consider	 these	 routes	 while
establishing	countermeasures.



Table	6.7	Influences	of	Control	Circuit	Disturbances	on	Power	Systems

FIGURE	 6.5	 Power	 system	 disturbances	 resulting	 from	 Table	 6.10a:	 (A)	 generation:	 seventeen	 cases;	 (B)	 power	 supply:
seventeen	cases;	and	(C)	system	operation:	twenty-three	cases.

6.2.3.2				Conducted	Countermeasures
Countermeasures	were	established	for	153	cases	(51%)	of	the	total	279	disturbances	listed	in
Figure	6.6.	There	were	twenty-eight	cases	for	which	it	is	unclear	whether	countermeasures	or
repairs	were	used.
Countermeasures	 were	 taken	 for	 thirty-nine	 cases	 (85%)	 of	 main-circuit	 SSs.	 The	 high

percentage	 is	primarily	due	 to	repetitive	disturbances.	The	maximum	switching	overvoltage
in	 the	main	circuit	 can	be	predicted	by	a	numerical	 simulation,	and	 the	 incoming	 route	can
also	be	estimated.	Countermeasures	against	SSs	involve	the	modification	of	software	used	for
digital	control	equipment.	For	example,	software	that	refreshes	the	contents	of	stored	memory
is	 installed	 to	 counteract	 malfunction	 of	 the	 central	 processing	 unit	 (CPU)	 board,	 and
recovery	processing	is	added	to	protect	against	freezing	of	a	keyboard	controller.
Ninety-four	countermeasures	were	taken	against	disturbances	caused	by	LSs,	only	43%	of

the	total	disturbances	(220	cases);	this	percentage	is	relatively	low	because	disturbances	due	to
lightning	are	mostly	permanent	and	involve	the	breakdown	of	the	disturbed	circuit	(element).
Thus,	 118	 circuits	 are	 replaced	by	 a	 new	one	 or	 repaired,	 as	 shown	 in	Figure	 6.6.	 Remind
some	countermeasures	and	repair	are	overlapped.

6.2.3.3				Cost	of	Countermeasures



6.2.3.3.1				Flow	of	Countermeasures
The	first	stage	in	the	flow	of	countermeasures	is	restoration	of	the	disturbed	equipment.	Only
when	the	restoration	is	not	effective,	 the	manufacturer	 is	 involved.	The	second	stage	occurs
when	(1)	similar	disturbances	occur	repeatedly,	(2)	the	disturbances	have	a	significant	impact
on	 equipment,	 or	 (3)	 the	 cause	 and	 incoming	 route	 of	 the	 surge	 are	 unclear.	 The
countermeasure	is	investigated	by	both	the	utility	company	and	manufacturer.	The	third	stage
involves	estimating	the	number	of	similar	disturbances	and/or	which	disturbances	appear	 to
occur	repeatedly.	Occasionally,	the	third	stage	results	in	the	revision	of	an	existing	standard
[16],	a	summary	of	which	is	provided	in	Appendix	6A.1.	Of	the	153	countermeasures,	twenty-
five	 cases	 reached	 the	 third	 stage.	 Figure	 6.7	 shows	 the	 ratio	 of	 the	 number	 of	 third-stage
countermeasures	 to	 the	 total	number	of	disturbances.	The	 third-stage	countermeasures	were
taken	 against	 equipment	 that	 significantly	 affected	 power	 system	 operation.	 Many	 of	 the
countermeasures	 involved	 IC	 boards	 of	 CPUs,	 digital	 input/output	 circuits,	 and	 analog-to-
digital	conversion	circuits.

FIGURE	6.6	Countermeasures	carried	out.

FIGURE	6.7	Ratio	of	the	third-stage	countermeasures	to	the	total	number	of	disturbances.

Restoration	 was	 frequently	 needed	 for	 the	 disturbances	 caused	 by	 lightning,	 while
countermeasures	were	normally	taken	for	disturbances	caused	by	main-circuit	switching	due
to	their	repetitive	nature.

6.2.3.3.2				Manpower	and	Cost	of	Countermeasures
It	 appears	 that	 the	 average	 manpower	 spent	 was	 50	 man-days	 per	 countermeasure.	 The
average	cost	per	countermeasure	was	$10,000	(see	Figure	6.8).



6.2.4				Case	Studies
This	section	presents	case	studies	on	the	experienced	disturbances	[1].
Each	case	study	is	categorized	by	cause	and	includes	the	following	items:

FIGURE	6.8	Manpower	and	material	 costs	 for	utilities	 and	manufacturers:	 (A)	utilities,	 (B)	manufacturers,	 and	 (C)	material
costs.

1.	Simulation	of	disturbances:	(a)	the	voltage	class	of	a	generator	station	or	a	substation	in
which	the	disturbance	was	found;	(b)	the	cause	of	the	disturbance	(i.e.,	LS	or	SS);	and	(c)
the	impact	of	the	disturbance,	such	as	the	breakdown	of	a	diode	or	the	freezing	of	control
equipment

2.	Disturbed	equipment
3.	Incoming	surge	routes	to	the	disturbed	equipment
4.	Countermeasures	taken	against	the	disturbance
5.	Investigation	and	analysis	of	the	disturbance	if	necessary

6.2.4.1				Case	No.	1
When	lightning	strikes	the	tower	nearest	to	a	substation,	the	diode	that	protects	the	relay	of	CB
enclosure	equipment	against	surges	(52X1	in	Figure	6.9a)	 is	broken,	and	the	auxiliary	relay
contact	 is	melted.	Also,	 the	 auxiliary	 relay	 coil	 for	 indication	 of	 the	 telecontrol	 equipment
(79SX1	in	Figure	6.9a)	breaks.	The	following	outline	corresponds	to	the	template	provided	in
Section	6.2.4	and	presents	the	details	of	this	case	study:

1.	(a)	77	kV,	(b)	lightning,	(c)	DC	short	circuit,	erroneous	indication.
2.	77-kV	line	CB	enclosure	equipment.
a.	Diode	for	surge	protection	broken.
b.	Auxiliary	relay	contact	melted.
c.	Telecontrol	equipment’s	auxiliary	relay	coil	for	indication	broken.

3.	Lightning	to	the	tower	nearest	to	the	substation:	A	lightning	current	flowed	into	a	ground
mesh	and	induced	a	surge	voltage	in	a	control	cable.	A	differential	mode	voltage	was
induced	in	the	diode.



FIGURE	6.9	A	disturbed	circuit	for	Case	No.	1:	(a)	disturbed	circuit,	(b)	flow	of	the	surge	voltage,	and	(c)	countermeasures.

Table	6.8	Recommended	Values	of	Lightning	Currents	Flowing	into	a	Ground	Mesh

4.	Countermeasures:
a.	Varistor	installation	for	auxiliary	relays	in	reclosure.
b.	Installation	of	independent	molded	case	circuit	breakers	for	DC	circuits	in	reclosure.

5.	Reclosing	terminal.

Assuming	that	a	lightning	current	of	30	kA	strikes	a	tower	of	a	66-kV	system,	the	current
flowing	into	the	mesh	is	estimated	as	shown	in	Table	6.8.
A	lightning	current	of	6	kA	that	strikes	the	ground	wire	(GW)	(see	Table	6.8)	and	flows	into

a	ground	mesh	would	result	in	a	surge	voltage	at	the	reclosing	terminal,	which	is	estimated	in
Table	6.9	as

CVV	cable	case	0.24	V/A	×	6	kA	=	1,440	V
CVVS	cable	case	(with	metallic	sheath)	0.036	V/A	×	6	kA	=	220	V



The	voltage	exceeds	the	surge	strength	of	the	broken	diode	that	was	manufactured	in	1975.

Table	6.9	Induced	Voltage	to	a	Control	Cable	Due	to	Lightning

A	lightning	overvoltage	 induced	 in	a	 relay	 terminal	 (i.e.,	at	 the	end	of	a	control	cable)	 is
given	in	Table	6.9.	The	figure	included	in	Table	6.9	is	a	schematic	diagram	of	an	experiment
for	which	 the	results	are	 listed	 in	 the	 table.	With	a	cable	 length	of	200	m,	 the	voltage	at	 the
relay	terminal	is	estimated	to	be	11,082	V	=	2.42	V/A	×	10.9	kA	×	0.5/1.2	µs	under	the	worst
conditions	 in	an	experiment.	However,	when	considering	 the	 real	 length	of	 the	cable,	50	m
(see	Figure	6.9b),	the	estimated	voltage	at	the	relay	terminal	becomes

11,	082	V	×	150/200	m	=	8422	V

6.2.4.2				Case	No.	2
Figure	6.10	shows	a	circuit	configuration	in	a	GIS	for	Case	No.	2.
CB1	and	CB2	were	opened	in	the	substation	where	Line	1	and	Line	2	were	charged	from	the

other	end	in	Figure	6.10.	When	DS1	(or	DS2)	was	opened	(or	closed),	relay	(for	66	kV	line
protection	 equipment)	 malfunction	 occurred,	 and	 no	 CB	 was	 tripped.	 The	 surge	 was
transferred	through	the	control	cable	via	a	CT.	As	a	countermeasure,	the	CVV	control	cable
(without	a	metallic	shield)	for	the	CT	circuits	was	replaced	by	a	CVVS	control	cable	(with	a
metallic	shield)	with	grounded	ends.	Then,	the	frequency	of	the	malfunction	decreased.	Ferrite
cores	were	also	installed	at	the	secondary	circuit	of	an	internal	auxiliary	transformer	for	the
CT.	No	malfunctions	occurred	after	this	countermeasure.
Figure	6.11	 shows	 the	 test	 results	 of	 surge	propagation	 along	 a	 201	m	CVVS	cable	with

both	 terminals	 of	 the	 metallic	 shield	 grounded	 [1].	 The	 test	 results	 show	 that	 the	 surge
transferred	 through	 a	 CT	 was	 weakened	 and	 the	 oscillating	 frequency	 decreased	 during
propagation	along	the	CVVS	cable,	and	the	surge	at	the	relay	terminal	became	low	enough	to
cause	a	disturbance,	as	expected	in	the	countermeasure.



FIGURE	6.10	Circuit	configuration	for	Case	No.	2:	66/6.6	kV	distribution	substation.

FIGURE	6.11	A	 test	 result	of	 surge	propagation	along	a	CVVS	control	 cable:	 (a)	CT	secondary	 terminal,	 (b)	GIS	control
box,	and	(c)	relay	terminal.

6.2.4.3				Case	No.	3
The	following	outline	provides	the	details	for	Case	No.	3:

1.	(a)	275	kV,	(b)	DC	SS,	and	(c)	flicker	of	light-emitting	diodes	(LEDs)	for	system-state
indicator	and	measurement

2.	Numerical	control	equipment	(6.6	kV	distribution	system)
3.	a.	6.6	kV	vacuum	circuit	breaker	(VCB)	closing
b.	DC	SS	appeared	in	the	DC	110-V	circuit	(700	V/0-peak,	10–30	kHz)
c.	LEDs	connected	to	the	DC	5-V	circuits	were	affected	by	the	DC	SS

4.	a.	Separation	of	DC	110-V	circuit	from	the	DC	5-V	circuit
b.	Replacement	of	wires	used	in	the	DC	5-V	circuit	by	twist-pair	type
c.	Installation	of	noise	filters	in	the	DC	5	V	power	circuit

6.2.5				Concluding	Remarks
Thus	far,	this	chapter	has	detailed	10	years	of	electromagnetic	disturbances	in	control	circuits
in	Japanese	power	stations	and	substations,	beginning	in	1990.	The	collected	data	have	been



categorized	 by	 cause,	 incoming	 surge	 route,	 disturbed	 equipment,	 and	 additional	 elements.
Disturbance	 characteristics,	 case	 studies,	 the	 impact	 on	 power	 system	 operation,
countermeasures,	and	costs	were	also	presented.
Average	manpower	and	material	cost	per	countermeasure	totaled	50	man-days	and	$10,000,

respectively.	LSs	often	result	in	permanent	failure,	including	the	breakdown	or	burnout	of	a
control	 element	 such	 as	 diodes	 (155	 permanent	 failures	 out	 of	 220	 cases),	 which	makes	 it
rather	 easy	 to	 identify	 the	 disturbance.	 On	 the	 contrary,	 SSs	 tend	 to	 be	 nonrepetitive
disturbances,	such	as	freezes	(thirty-one	temporary	failures	out	of	forty-five	cases),	because
the	surge	overvoltage	is	low	but	the	oscillating	frequency	of	the	surge	is	high.	Although	the
number	 of	 disturbances	 due	 to	 LSs	 (220	 cases)	 is	 much	 higher	 than	 the	 number	 of
disturbances	 caused	 by	 SSs	 (sixty-eight	 cases	 including	 the	 DC	 circuit),	 the	 nonrepetitive
nature	 of	 SSs	 makes	 it	 difficult	 to	 identify	 the	 disturbances;	 this	 suggests	 that	 such	 a
disturbance	may	have	severe	consequences,	such	as	system	shutdown.
Considering	the	increase	in	digital	control	equipment	and	compact	substations,	an	SS	could

be	significant	for	an	EMC	disturbance	in	control	circuits	in	power	stations	and	substations.

	
	

6.3					Disturbances	in	Customers’	Home	Appliances
Insulation	 design	 and	 coordination	 of	 high-voltage	 systems	 are	 quite	 effective,	 and	 the
systems	are	well	protected	against	various	voltage	surges.	However,	low-voltage	distribution
and	 service	 systems	 for	 customers	 are	 not	 well	 protected	 against	 overvoltages,	 and
disturbances	 in	 customers’	 home	appliances	have	often	been	 reported	 [4,	5,	6,	 7,	 8–9].	 The
increasing	 use	 of	 digital	 appliances	 makes	 their	 protection	 from	 overvoltages	 and
electromagnetic	disturbances	an	important	issue.

6.3.1				Statistical	Data	of	Disturbances
Figure	 6.12	 shows	 statistical	 data	 for	 the	 number	 of	 damaged	 home	 electric	 appliances
(HEAs)	from	a	Japanese	utility	company	from	1987	to	1991	and	1996	to	2006	[8,9].	The	data
were	based	on	information	from	more	than	2,000	monitors.	There	were	21–34	thunderstorm
days	per	year	from	1987–1991	(included	in	Figure	6.12a),	15–23	thunderstorm	days	per	year
in	1996–1997,	and	24	thunderstorm	days	in	2004–2005	(included	in	Figure	6.12b).



FIGURE	6.12	Number	of	damaged	HEAs:	(a)	1987-1991	and	(b)	1996-1997,	2004-2005,	and	2006.

Between	1987	and	1991,	228	HEAs	were	damaged	in	129	houses:	49%	TV/video	antennas,
18%	communication	equipment,	and	16%	grounding.	In	the	data	from	1996	to	1997,	32%	of
the	damaged	appliances	were	antennas,	40%	communication	equipment,	and	30%	grounding.
The	results	indicate	that	the	protection	of	TV/video	players	against	lightning	was	improved.
However,	 because	 of	 the	 increasing	 number	 of	 digital	 circuits	 used	 in	 communication
equipment	 and	 their	weakness	 and	 sensitivity	 to	 LSs,	 the	 ratio	 of	 damaged	 communication
equipment	increased.	Figure	6.13	shows	the	ratio	of	the	connecting	circuits	of	damaged	HEAs.

FIGURE	6.13	Ratio	of	the	connecting	circuits	of	damaged	HEAs.



FIGURE	6.14	Expenses	(Insurance)	Paid	For	Damages.	(From	Ieej	Wg.	2002.	Ieej	Tech.	Report	902.)

Figure	6.14	shows	the	compensation	paid	to	customers	by	an	insurance	company	[17].	The
figure	shows	that	82	of	the	1,417	cases	from	1987	to	2000	paid	more	than	10	million	Japanese
yen.

6.3.2				Breakdown	Voltage	of	Home	Appliances

6.3.2.1				Testing	Voltage

A	voltage	waveform	with	1.2/50	µs	(wave	front	Tf	=	1.2	µs,	wave	tail	Tt	=	50	µs)	and	a	current
waveform	with	8/20	µs	are	used	as	lightning	impulses	to	test	the	withstand	voltage	of	home
appliances	or	electronic	equipment	in	general.	The	impulse	voltage	is	mainly	used	for	high-
impedance	equipment,	and	its	maximum	value	is	taken	as	6	kV.	On	the	other	hand,	the	impulse
current	is	mainly	for	low-impedance	equipment,	and	its	peak	value	is	taken	as	3	kA	[18,19].
In	addition,	 ring	waves	of	6	kV/500	A	with	0.5	µs/100	kHz	and	of	0.6	kV/120	A	with	1.5

µs/5	 kHz	 are	 recommended	 by	 the	 Institute	 of	 Electrical	 and	 Electronics	 Engineers	 for
insulation	tests	of	home	appliances	[4,18].
As	for	an	induced	LS	in	a	communication	line,	an	impulse	voltage	with	10/200	µs	is	used

[18],	and	an	impulse	voltage	of	1.5	kV	with	10/700	µs	is	widely	recommended	for	lightning
impulse	tests	of	home	communication	equipment	[20].
The	testing	voltages	of	home	appliances	surveyed	in	this	chapter	are	summarized	in	Table

6.10a.	In	general,	the	testing	voltage	of	a	home	appliance	ranges	from	1	to	1.5	kV	[21].

6.3.2.2				Breakdown	Test
An	experiment	was	conducted	to	determine	the	actual	breakdown	voltage	of	home	appliances.
Impulse	voltages	of	about	1.0/23	µs	were	applied	to	home	appliances,	and	the	test	results	are
recorded	 in	 Table	 6.10b.	 As	 shown	 in	 the	 table,	 the	 breakdown	 voltages	 of	 the	 home
appliances	 are	 greater	 than	 5	 kV	 for	 line-to-ground	 and	 greater	 than	 7	 kV	 for	 line-to-line,
although	 the	 recommended	 testing	voltage	 is	about	1.5	kV.	The	 test	 results	agree	with	 those
obtained	in	Reference	4,	where	the	breakdown	voltages	were	found	to	be	4–6	kV.

6.3.3				Surge	Voltages	and	Currents	to	Customers	Due	to	Nearby	Lightning



6.3.3.1				Introduction

This	 section	 investigates	 incoming	paths	of	LSs	 to	customers/users	due	 to	nearby	 lightning
[12,22].	 Four	 incoming	 paths	 exist:	 (1)	 a	 low-voltage-distribution	 line	 (feeder)	 through	 a
distribution	pole,	(2)	a	 telephone	line,	(3)	a	TV	antenna,	and	(4)	 the	grounding	electrode	of
the	 customer ’s	 electrical	 equipment.	A	 lightning	 strike	 and	 an	 induced	 lightning	 voltage	 to
the-distribution	 line	 result	 in	path	 (1).	A	 lightning	 strike	 to	 a	 telephone	 line	and	an	 induced
lightning	voltage	result	in	path	(2),	and	the	same	applies	to	path	(3)	when	lightning	hits	a	TV
antenna.	A	lightning	strike	to	the	ground,	wood,	or	a	distribution	pole	near	a	customer/user
results	in	a	ground	potential	rise	(GPR)	as	the	lightning	current	flows	into	the	ground	[23,24].
In	path	 (4),	 the	current	 causes	 a	potential	 rise	 to	 the	grounding	electrode	of	 the	 customer ’s
equipment.
Based	 on	 the	measured	 results,	modeling	 of	 electrical	 elements	 related	 to	 these	 paths	 is

developed	for	an	LS	simulation,	and	electromagnetic	transients	program	(EMTP)	simulations
are	 demonstrated	 in	 the	 model.	 The	 simulation	 results	 are	 compared	 with	 the	 measured
results,	and	the	accuracy	of	the	modeling	method	is	discussed.

Table	6.10	Withstand	Voltages	of	Home	Appliances

6.3.3.2				Model	Circuits	for	Experiments	and	EMTP	Simulations

6.3.3.2.1				Experimental	Conditions
Kansai	 Electric	 Power	 Co.	 (KEPCO)	 has	 conducted	 experiments	 to	 investigate	 lightning
currents	 that	 flow	 into	 a	 house	 [25,26].	 An	 impulse	 current,	 which	 represents	 a	 lightning
current,	is	injected	into	an	antenna,	distribution	pole,	and	the	ground	from	an	impulse	current
generator	(IG,	maximum	voltage	3	MV,	maximum	current	40	kA).	An	impulse	current	from
500	to	5,000	A	is	applied	to	the	following:



1.	An	antenna	(see	Figure	6.15a)
2.	A	distribution	pole	(see	Figure	6.15b)
3.	A	structure	near	a	house	(see	Figure	6.15c)
4.	A	messenger	wire	of	a	telephone	line	(see	Figure	6.15d)

At	 a	KEPCO	 test	 site,	 three	 distribution	 poles	 and	 two	 poles	 of	National	 Telephone	 and
Telecommunication	(NTT)	company	were	constructed,	and	6600/220/110	V	distribution	lines
with	 a	 pole	 transformer	 were	 installed	 as	 depicted	 in	 Figure	 6.15.	 A	 telephone	 line	 and	 a
messenger	wire	were	also	installed.	A	model	house	was	built	near	the	pole	transformer,	and	a
feeder	 line	 from	 the	 transformer	 led	 into	 the	 house.	 In	 the	 house,	model	 circuits	 of	 an	 air
conditioner	and	a	fax	machine	were	installed,	as	shown	in	Figure	6.16,	and	included	a	surge
protection	device	 (SPD)	and	surge	arrester	 (air	 conditioner,	operating	voltage	2670	V;	 fax,
2800	V;	and	NTT	SPD,	500	V).	The	poles,	the	transformer,	the	telephone	line	(NTT),	and	the
air	conditioner	(home	appliance)	were	grounded	individually,	as	in	shown	Figure	6.16.
Table	6.11	summarizes	the	measured	results	of	maximum	voltages	and	currents	through	the

grounding	resistances.

FIGURE	6.15	Lightning	and	its	path	 to	a	house.	Lightning	to	(a)	an	antenna,	(b)	a	pole,	(c)	 the	ground,	and	(d)	a	 telephone
(messenger)	line.

6.3.3.2.2				Modeling	for	EMTP	Simulations
The	distribution	line,	the	pole,	and	the	home	appliances	in	the	house	shown	in	Figure	6.16	can
be	 represented	 by	 horizontal	 and	 vertical	 distribution	 line	 models	 and	 lumped	 parameter
circuits	[27,28].	The	grounding	electrodes	of	the	pole,	the	telephone	line	SPD,	and	the	home
appliances,	 if	 grounded,	 are	modeled	 by	 a	 combination	 of	 a	 distributed	 line	 and	 a	 lumped
parameter	circuit	 to	simulate	the	transient	characteristic	[29].	However,	 this	section	adopts	a
simple	 resistance	 model	 with	 a	 resistance	 value	 taken	 from	 the	 experiments	 discussed	 in
References	29	and	30,	as	the	vertical	grounding	electrode	used	for	a	home	appliance	is	short
and	 the	 transient	 period	 is	much	 shorter	 in	 the	 phenomenon	 investigated	 in	 this	 chapter.	A
protection	device	(PD)	is	installed	in	a	home	appliance,	and	the	NTT	SPD	is	represented	by	a
time-controlled	switch	prepared	in	the	EMTP	[31].



FIGURE	6.16	Experimental	circuit	and	lightning	current	path:	(a)	lightning	to	antenna	and	(b)	lightning	to	a	distributed	line.	(c)
lightning	to	the	ground.

A	model	circuit	 for	an	EMTP	simulation	 is	 shown	 in	Figure	6.17.	 In	 the	figure,	Zp	 is	 the
surge	impedance	of	a	distribution	pole,	which	is	represented	by	a	lossless	distributed	line	with
a	 propagation	 ve-locity	 of	 300	 m/µs.	 The	 surge	 impedance	 is	 evaluated	 by	 the	 following
formula	of	a	vertical	conductor	[27]:

where
hp	is	the	height	of	the	pole
rp	is	the	radius	of	the	pole

rp	=	17–19	Ω	is	the	grounding	resistance	of	the	pole.	The	value	is	given	by	a	utility	company
[25,26].	 Tr	 is	 a	 pole-mounted	 distribution	 transformer,	 which	 is	 represented	 by	 an	 ideal



transformer	with	the	voltage	ratio	of	6600:110	V	and	stray	capacitances.
In	 Figure	 6.17,	 TRN-TRNB	 is	 a	 grounding	 lead	 of	 the	 transformer	 represented	 by	 a

lossless	 distributed	 line	 (the	 surge	 impedance	 is	 explained	 in	 Reference	 32).	 Rt	 is	 the
grounding	resistance	of	the	transformer	grounding	lead,	and	its	values	by	utility	are	provided
in	Table	6.11	[25,26].	PW	represents	a	phase	wire	of	a	distribution	line	and	is	modeled	by	a
lossless	 distributed	 line	with	 the	 surge	 impedance	Zpw	 =	 530	Ω.	 The	 other	 end	 of	 PW1	 is
terminated	by	the	matching	impedance	Zpw.

Table	6.11	Test	Conditions	and	Results



FIGURE	6.17	Model	circuits	for	EMTP	simulations:	(a)	Lightning	to	an	antenna,	(b)	lightning	to	a	pole.	PW:	power	line;	CW:
communication	(NTT)	line.	(c)	lightning	to	a	ground.

TRAL-FAX	and	TRAL-HOME1	are	a	feeder	line	from	the	pole	transformer	to	the	house.
For	the	transformer,	A	represents	phase	A,	and	N	indicates	neutral.	The	standard	steady-state
AC	voltage	between	phase	A	and	neutral	is	114	V	in	Japan.	When	lightning	struck	the	antenna,
case	A,	a	flashover	between	the	transformer	grounding	lead	and	the	steel	of	the	distribution
pole	was	observed.	The	flashover	 is	represented	by	short-circuiting	the	transformer	and	the
pole	by	resistance	Rp	in	Figure	6.17a.
The	feeder	line	is	represented	by	a	lossless	distributed	line	with	a	surge	impedance	of	560

Ω	and	a	velocity	of	300	m/µs.	Ra	is	the	grounding	resistance	of	an	air	conditioner	(the	value
is	 provided	 in	 Table	 6.11).	 Za	 represents	 the	 air	 conditioner	 expressed	 by	 a	 lead	 wire
inductance	of	1	µH	and	by	a	time-controlled	switch	representing	a	surge	arrester	that	operates



when	the	voltage	exceeds	2670	V	in	parallel	with	the	resistance.	Zb	represents	a	fax	machine.	It
is	 expressed	 in	 the	 same	 manner	 as	 Za,	 except	 the	 other	 terminal	 of	 Zb	 is	 connected	 to	 a
telephone	line	through	an	NTT	SPD,	a	surge	arrester	valve	with	an	operating	voltage	of	500	V
represented	 by	 a	 time-controlled	 switch.	 The	 telephone	 line	 is	 represented	 by	 a	 lossless
distributed	line	with	a	surge	impedance	of	560	Ω	and	a	propagation	velocity	of	200	m/µs;	the
other	end	is	terminated	by	a	resistance	matching	a	grounding	resistance	of	153	Ω.
An	IG	is	the	impulse	current	source	used	in	the	experiment.	It	is	represented	by	a	charged

capacitance	and	a	resistance	[25,26].	Rm	is	the	mutual	grounding	impedance	between	various
grounding	electrodes,	and	a	value	of	2–10	Ω	is	used	[24,30].

6.3.3.3				Experimental	and	Simulation	Results

6.3.3.3.1				Experimental	Results
Figures	 6.18,	 6.19	 and	 6.20	 show	 the	 experimental	 and	 simulation	 results	 in	 the	 case	 of
lightning	to	(a)	an	antenna,	(b)	a	pole,	and	(c)	the	ground.	From	the	experimental	results,	the
following	observations	were	made:

1.	Lightning	to	antenna:	When	lightning	strikes	the	antenna	of	a	house	(see	Figure	6.16a),
the	lightning	current	flows	out	(1)	to	a	distribution	line	I1	(In,	It)	through	feeders	in	the
house,	and	(2)	to	the	ground	I2	(Ia,	Inp)	through	the	grounding	electrodes	of	home
appliances.	The	ratio	of	I1	and	I2	is	dependent	on	the	grounding	resistances	of	(1)	the
house	feeder	to	the	distribution	line,	(2)	the	house	to	the	telephone	line,	and	(3)	the
grounding	electrodes	of	the	home	appliances.	In	the	experimental	results	(for	example,
see	Figure	6.18	with	the	applied	current	I0	=	739	A),	about	85%	of	the	current	that	strikes
the	antenna	flows	out	to	the	distribution	line.	The	remaining	15%	presumably	flows	into
other	houses.	A	large	current	of	543	A	flowing	into	the	distribution	pole	is	caused	by	a
flashover	between	the	transformer	grounding	lead,	the	steel	pole,	and	the	low	grounding
resistance	of	the	pole.



FIGURE	6.18	Experimental	and	simulated	results	in	the	case	of	lightning	to	an	antenna:	(a)	voltage	and	(b)	current.

FIGURE	6.19	Experimental	and	simulation	results	in	the	case	of	lightning	to	a	pole:	(a)	voltage	and	(b)	current.



FIGURE	6.20	Experimental	and	simulation	results	in	the	case	of	lightning	to	the	ground.

2.	Lightning	to	distribution	pole:	Figure	6.19	shows	a	measured	result	when	I0	is	2,416	A.	In
this	case,	8.1%	of	I0	flows	into	the	grounding	resistance	Rt	of	the	neutral	transformer,
8.5%	flows	into	the	grounding	resistance	Ra	of	the	air	conditioner,	and	2.8%	flows	into
the	grounding	resistance	Rnp	of	the	telephone	line	SPD.

3.	Lightning	to	grounding:	Part	of	the	applied	current	I0	flows	into	the	air	conditioner	(Ia
max	=	58.2	A	for	I0	=	2815	A)	and	the	NTT	SPD	(Inp	max	=	56.6	A)	in	Figure	6.20	(case
C1).	The	current	flowing	into	the	air	conditioner	flows	out	to	a	distribution	line.	The
current	flowing	into	the	NTT	SPD	flows	out	through	the	telephone	line.	No	current	flows
into	the	fax	machine	because	the	operating	voltage	of	2,800	V	of	the	surge	arrester	within
the	fax	machine	is	higher	than	the	voltage	across	it	(i.e.,	the	voltage	difference	between
the	feeder	line	in	the	house	and	the	telephone	line).

Compared	with	case	C2,	which	has	no	air	conditioner	grounding,	the	currents	flowing	into
the	house	increased	rapidly.

6.3.3.3.2				Simulation	Results



Table	6.12	summarizes	the	simulation	conditions	and	results,	and	Figures	6.18,	6.19	and	6.20
show	a	comparison	of	the	simulated	voltage	and	current	waveforms	and	the	measured	results.
From	the	figures,	the	following	observations	were	made:

1.	In	Figure	6.18,	when	lightning	struck	the	antenna,	the	simulation	results	of	transient
voltages	and	currents—except	the	wave	front	of	the	applied	current	and	voltage	at	the	top
of	the	pole	and	the	voltage	at	the	primary	winding	of	the	transformer—were	similar	to
the	measured	results.

2.	When	lightning	struck	the	top	of	the	pole	(as	shown	in	Figure	6.19),	voltage	differences
between	the	top	and	the	bottom	of	the	pole	and	at	the	air	conditioner	grounding	electrode
were	smaller	than	those	of	the	measured	results.	Otherwise,	the	simulation	results	agreed
with	the	measured	results.

3.	For	lightning	that	struck	the	ground	near	a	house,	the	simulation	results	in	Figure	6.20
show	close	agreement	with	the	measured	results,	and	thus	the	proposed	approach	to	use
mutual	impedance	to	protect	equipment	against	a	GPR	is	proved	effective.

Table	6.12	Simulation	Results	Corresponding	to	Table	6.11

However,	 further	 improvement	 of	 the	 overall	 simulation	 method	 is	 needed	 to	 achieve
quantitative	 agreement	with	 the	measured	 results.	 For	 example,	 an	 SPD	has	 to	 be	 carefully
represented	 based	 on	 its	 circuit	 and	 nonlinear	 characteristics.	 Also,	 grounding	 impedance
should	be	modeled	based	on	its	transient	characteristics	rather	than	the	simple	resistance	used
in	this	section.

6.3.3.4				Concluding	Remarks
This	 section	has	 shown	 the	experimental	 and	EMTP	simulation	 results	of	 an	LS	at	 a	house.
The	 simulation	 results	 agree	 qualitatively	 with	 the	 experimental	 results,	 and	 thus	 the
simulation	models	in	the	chapter	are	adequate.	Because	measurements	were	calculated	during
different	 time	 periods	 over	 the	 course	 of	 3	 years,	 experimental	 conditions	 such	 as	 the	 soil
resistivity,	 the	 voltage	 probe	 used,	 and	 the	 reference	 voltage	 line	 for	 each	 measurement
varied,	 and	 these	 differences	 were	 not	 considered	 in	 the	 simulations.	 Some	 oscillations
observed	 in	 the	 measured	 results	 are	 presumably	 caused	 by	 mutual	 coupling	 between	 the
measuring	wires	and	feeder	lines	in	the	experiments.	Also,	a	grounding	electrode	may	couple



with	 other	 electrodes.	 Further	 improvements	 for	 modeling	 the	 experimental	 circuits	 are
required	to	achieve	greater	accuracy.
LS	voltages	to	a	customer/user	and	lightning	currents	flowing	out	to	distribution	lines	can

be	determined	from	the	experimental	and	simulation	results.	The	results	should	assist	 in	 the
protection	coordination	of	SPDs	for	customers/users	and	telephone	lines	and	investigate	the
necessity	of	home	appliance	grounding.

6.3.4				LS	Incoming	from	a	Communication	Line

6.3.4.1				Introduction

Many	digital	appliances,	such	as	PCs,	are	used	at	home.	Thus,	protection	of	such	appliances
against	 LSs	 is	 essential.	 However,	 the	 characteristics	 of	 an	 LS	 to	 devices	 connected	 to
communication	 lines	 are	 not	 well	 investigated.	 Therefore,	 incoming	 LSs	 have	 been
investigated;	installation	of	a	PD	is	recommended	for	significant	LSs	[33].	In	this	section,	the
characteristics	 of	 PDs	 and	 incoming	 LSs	 are	 examined	 through	 experiments	 and	 finite-
difference	 time-domain	 (FDTD)	 simulations	 [34].	 Also,	 the	 optimum	 method	 to	 protect
appliances	and	the	adequacy	of	the	FDTD	simulation	are	discussed.

6.3.4.2				Protective	Device

6.3.4.2.1				Experiment
Figure	6.21a	shows	the	experimental	circuit.	A	step-like	voltage	from	a	pulse	generator	(PG)
is	applied	to	a	discharge	tube	through	a	3D	2-V	cable	and	a	resistor.	The	circuit	is	grounded
by	an	aluminum	plate.



FIGURE	 6.21	 Experimental	 circuit	 and	 results	 for	 PD	 characteristics:	 (a)	 experimental	 circuit	 for	 a	 PD	 characteristic,	 (b)
measured	results	of	the	V–t	characteristic,	and	(c)	measured	results	of	the	V–I	characteristic.

Figure	6.21b	and	c	show	the	measured	results	of	the	V–t	and	the	V–I	characteristics	of	PDs
and	their	approximate	curves.	The	V–t	characteristic	is	approximated	by	three	equations,	and
the	V–I	characteristic	is	approximated	by	six	equations.

6.3.4.2.2				Simulation
Figure	6.22	shows	a	simulation	circuit.	The	analytical	space	of	an	FDTD	simulation	is	31	cm
×	21	cm	×	23	cm,	and	the	cell	size	is	1	cm.	The	time	step	is	19	ps,	and	an	absorbing	boundary
condition	of	Berenger ’s	perfectly	matched	layer	is	used	[34].
The	model	circuit	of	the	PD	is	developed	based	on	measured	results.	Until	the	PD	flashes

over,	 its	 performance	 follows	 the	 V–t	 characteristic,	 and	 its	 resistance	 is	 1	MΩ.	 First,	 the
threshold	voltage	is	calculated	based	on	the	V–t	characteristic	in	Figure	6.21b.	When	the	PD’s
voltage	 reaches	 the	 threshold	 voltage,	 it	 flashes	 over	 and	 the	 calculation	 based	 on	 the	V–t
characteristic	is	shifted	to	that	based	on	the	V–I	characteristic	in	Figure	6.21c.	The	value	of	the
variable	 resistance	 is	 the	 gradient	 of	 the	 linear	 approximation	 indicated	 as	Vvi1	 to	 Vvi6	 in
Figure	6.21c.	For	example,	the	resistance	is	333	Ω	corresponding	to	Vvi1	when	Vdis	=	180	V.
The	resistance	is	12.4	Ω	corresponding	to	Vvi6	when	Vdis	=	250	V.



FIGURE	6.22	Simulation	circuit	for	a	PD	characteristic:	(a)	simulation	circuit	and	(b)	PD	model.

FIGURE	6.23	Experimental	and	simulation	results	of	PD	voltages:	(a)	an	applied	voltage	of	400	V	with	a	waveform	of	50	ns
and	(b)	an	applied	voltage	of	600	V	with	a	wave	front	of	50	ns.

Figure	6.23	 shows	 an	 applied	 voltage	 and	 a	 comparison	 of	 the	measured	 and	 simulation
results.	As	 shown	 in	 the	 figure,	 the	 initial	 rise	corresponds	well	with	 the	 steady-state	value.
However,	 the	waveform	 before	 the	 steady	 state	 shows	 a	 difference,	which	 is	 caused	 by	 the
approximation	of	the	discharge	characteristic.

6.3.4.3				Lightning	Surges

6.3.4.3.1				Model	Circuit
Figure	6.24	shows	the	experimental	circuit.	The	voltage	from	the	PG	is	applied	to	the	circuit
through	a	3D	2-V	cable.	 In	 the	case	of	 the	current	source,	a	voltage	 is	applied	 to	a	resistor.
The	 circuit	 is	 grounded	 on	 an	 aluminum	 plate.	 Experimental	 cases	 include	 individual
grounding,	 common	 grounding,	 and	 a	 proposed	 method	 of	 individual	 grounding	 with	 a
bypass	installed	on	an	appliance.



FIGURE	 6.24	 Experimental	 circuit	 for	 a	 transient:	 (a)	 individual	 grounding,	 (b)	 common	 grounding,	 and	 (c)	 the	 proposed
grounding	method.

6.3.4.3.2				Measured	Results
Figure	6.25	shows	the	experimental	results.	In	the	case	of	the	current	source,	the	results	of	the
common	and	individual	methods	are	the	same,	so	only	the	results	of	the	individual	method	are
shown.	 Figure	 6.25a	 shows	 that	 the	 maximum	 and	 steady-state	 values	 of	 the	 common	 and
proposed	methods	are	lower	than	those	of	the	individual	method.	Also,	the	maximum	voltage
of	the	proposed	method	is	lower	than	that	of	the	common	method.	In	the	common	method,	a
larger	current	flows	to	the	resistor,	because	the	PD	experiences	a	discharging	lag.	However,
in	 the	 proposed	 method,	 the	 current	 flowing	 to	 the	 resistor	 rapidly	 decreases	 because	 the
varistor	 works	 quickly.	 Therefore,	 the	 proposed	method	 can	 reduce	 the	maximum	 voltage
more	efficiently	than	the	common	method	can.



FIGURE	6.25	Experimental	results	of	VR	in	Figure	6.24:	(a)	voltage	source	case	and	(b)	current	source	case.

Figure	6.25b	 indicates	 that	 the	maximum	and	 steady-state	 values	 of	 the	 proposed	method
are	 lower	 than	 those	 for	 individual	 grounding.	 Because	 the	 varistor	 has	 a	 capacitance	 of
hundreds	of	picofarads,	the	initial	rise	slows	down,	which	indicates	that	the	proposed	method
can	reduce	an	LS	better	than	individual	grounding	can.

6.3.4.3.3				Simulation
Figure	6.26	shows	the	model	circuit.	The	analytical	space	of	the	FDTD	simulation	is	5.85	m	×
0.2	m	×	0.21	m	for	the	individual	and	common	groundings,	and	5.87	m	×	0.2	m	×	0.21	m	for
the	 proposed	 method.	 The	 cell	 size	 is	 1	 cm.	 The	 time	 step	 is	 15	 ps,	 and	 the	 absorbing
boundary	condition	is	the	same	as	that	in	Section	6.3.4.2.2.
Figures	6.27	and	6.28	show	the	simulation	results.	According	to	the	figures,	the	initial	rise

and	 steady-state	 values	 are	 in	 agreement.	 However,	 the	 waveform	 before	 the	 steady	 state
exhibits	 a	 difference,	 because	 the	 characteristics	 could	 not	 be	 simulated	 well	 enough	 to
develop	the	PD.



FIGURE	6.26	Model	circuits	for	transient	simulations:	(a)	individual	grounding,	(b)	common	grounding,	and	(c)	the	proposed
grounding	method.

FIGURE	6.27	Effect	of	grounding	on	VR	for	the	voltage	source	case:	(a)	individual	grounding,	(b)	common	grounding,	and
(c)	the	proposed	method.

6.3.4.4				Concluding	Remarks
The	 characteristics	 of	 the	 PD	 are	 determined	 by	 the	 experimental	 results.	 The	 FDTD
simulation	results	based	on	those	characteristics	corresponds	well	with	the	measured	results.



Therefore,	 the	 PD	 model	 can	 be	 used	 to	 simulate	 a	 communication	 system	 of	 a	 home
appliance.

FIGURE	6.28	Effect	of	grounding	on	VR	for	the	current	source	case:	(a)	individual	grounding	and	(b)	the	proposed	method.

An	 experiment	 was	 conducted	 to	 investigate	 the	 characteristics	 of	 an	 LS	 as	 well.	 At	 the
steady-state	 voltage,	 the	 common	 grounding	 and	 the	 proposed	 method	 can	 reduce	 the
lightning	 voltage	 equally	 well.	 However,	 at	 maximum	 voltage,	 the	 proposed	 method	 can
reduce	the	lightning	overvoltage	better	than	common	grounding	can.	Therefore,	the	proposed
method	is	well	suited	for	protecting	communication	appliances.	The	FDTD	simulation	results
agree	 well	 with	 the	measured	 results.	 The	 FDTD	 simulation	 can	 thus	 be	 used	 to	 study	 LS
characteristics	from	a	communication	line.

	
	

6.4					Analytical	Method	of	Solving	Induced	Voltages	and	Currents
6.4.1				Introduction
Numerical	 simulation	 software	 is	 widely	 used	 by	 engineers,	 researchers,	 and	 university
students	and	is	a	powerful	tool	for	solving	various	problems.	However,	users	of	the	software
are	frequently	not	well	versed	in	it.	Physically	nonexistent	input	data	may	provide	erroneous
results,	which	can	go	unnoticed	if	 the	user	does	not	understand	practical	problems	that	may
arise.	 This	 lack	 of	 knowledge	 is	 partially	 due	 to	 the	 complexity	 of	 the	 software,	 which	 is
highly	 advanced	 and	 does	 not	 require	 an	 understanding	 of	 the	 underlying	 mechanisms.
Furthermore,	the	software	technology	is	too	intricate	and	complex	to	be	easily	explained	by
physical	and	engi-neering	theories.
This	section	discusses	the	analytical	formulation	and	the	investigation	of	induced	voltages

and	currents	in	conductors	such	as	telephone	lines	and	pipelines	from	power	lines.	There	are



many	studies	 that	discuss	 the	 in-duced	voltages	 and	currents:	Carson	and	Sunde	 [35,36]	 are
pioneers	in	this	field,	especially	of	induced	voltages	in	telephone	lines.	Taflov	and	Dabkowski
[37]	developed	an	analytical	method	to	predict	the	induced	voltages	in	a	buried	pipeline	based
on	the	reflection	coefficient	method	(details	of	this	theory	are	described	in	References	38	and
39).	This	method	was	adopted	in	the	CIGRE	Guide	[39].	There	are	many	textbooks	explaining
the	 theory	 of	 electromagnetic	 coupling	 [40,	 41,	 42,	 43,	 44–45].	 Additionally,	 many
publications	describe	numerical	simulations	of	voltages	and	currents	through	either	a	circuit-
theory-based	simulation	tool,	such	as	the	EMTP,	or	a	recent	electromagnetic	analysis	method
such	as	the	finite-element	method	and	the	FDTD	method	[31,46,	47,	48,	49,	50,	51,	52,	53,	54,
55,	56,	57,	58,	59–60].	Ametani	[45]	and	Christoforidis	et	al.	[58]	have	proposed	an	approach
that	 combines	 numerical	 electromagnetic	 analysis	 with	 the	 circuit-theory-based	 simulation
tool	to	calculate	the	impedance	and	admittance	of	a	given	circuit	and	the	induced	voltages	and
currents	in	the	circuit.	This	hybrid	approach	is	able	to	solve	problems	in	which	the	impedance
and	admittance	are	either	unknown	or	difficult	 to	obtain	and	allows	researchers	 to	consider
the	physical	dimensions	of	the	phenomenon.
This	section	describes	an	analytical	method	of	calculating	the	induced	voltages	and	currents

in	a	complex	induced	circuit,	such	as	a	cascaded	pipeline	with	several	power	lines,	based	on	a
conventional	 four-terminal	 parameter	 (F-parameter)	 formulation.	 The	 F-parameter
formulation	 itself	 is	well	known,	 so	writing	a	 theoretical	 formula	of	 the	F-parameter	 for	 a
multiphase	 circuit	 [38,45]	 is	 relatively	 straightforward.	 Thus,	 calculation	 of	 the	 induced
voltages	 and	 currents	 requires	 a	 computer,	 specifically	 software	 such	 as	 the	 EMTP.	 The
method	 explained	 in	 this	 section	 replaces	 the	multiphase	F-parameter	 with	 a	 sin-gle-phase
parameter	by	introducing	an	artificially	induced	current.	The	method	is	applied	to	a	cascaded
pipeline	where	the	circuit	parameters,	the	induced	currents,	and	the	boundary	conditions	are
different	in	each	section	of	the	pipeline.	The	basic	characteristics	of	the	induced	voltage	and
current	 distribution	 along	 the	 pipeline	 are	 explained	 based	 on	 the	 analytical	 results.	 The
calculated	results	are	compared	with	the	EMTP	simulations	from	Taflov	and	Dabkowski	[37],
the	CIGRE	Guide	[39],	and	field	results	[60].

6.4.2				F-Parameter	Formulation	for	Induced	Voltages	and	Currents

6.4.2.1				Formulation	of	F-Parameter

Two	 basic	 approaches	 exist	 to	 handle	 electromagnetic	 induction	 from	 a	 power	 line	 (the
inducing	 circuit)	 to	 a	 pipeline	 (the	 induced	 circuit)	 [35,36,40,	 41,	 42,	 43,	 44–45].	 The	 first
approach	 represents	 the	 inducing	 and	 induced	 circuits	 as	 a	 multiphase	 line	 system.	 The
alternative	 method	 considers	 the	 induction	 from	 the	 inducing	 circuit	 as	 a	 voltage	 source
[35,37]	or	as	a	current	source	[61]	so	 that	 the	system	becomes	a	single-phase	circuit	source
approach.	As	noted	 in	Reference	46,	 a	multiphase	 line	 approach	 becomes	 too	 complicated;
one	 solution	 is	 to	 apply	 an	F-parameter	 formulation	 to	 the	 current	 source	 [45,62].	 The	F-
parameter	can	easily	handle	the	cascaded	line	that	appears	frequently	in	real	pipelines	during
electromagnetic	induction.



In	a	distributed	parameter	line	composed	of	a	power	line	and	a	pipeline	that	are	parallel	to
each	other	 (as	 illustrated	 in	Figure	6.29),	 the	 following	 solution	 for	voltage	Vx	 and	 current
distance	x	from	the	sending	end	of	the	pipeline	in	Appendices	6A.2	and	6A.3	is	obtained:

where

	is	the	propagation	constant
	is	the	characteristic	admittance

FIGURE	6.29	A	pipeline	parallel	to	a	power	line	for	0	≤	x	≤	1.

z	is	the	series	impedance	of	the	pipeline	(Ω/m)
zm	is	the	mutual	impedance	between	the	power	line	and	the	pipeline	(Ω/m)
y	is	the	shunt	admittance	of	the	pipeline	(S/m)
E	=	–zmIp	is	the	electromagnetically	induced	voltage	(V/m)
Ip	is	the	inducing	current	=	power	line	current	(A)

The	following	equation	is	obtained	when	written	as	a	matrix:

where
Ax	=	Dx	=	cosh(Г	⋅	x)
Bx	=	Z0	sinh(Г	⋅	x)
Cx	=	Y0	sinh(Г	⋅	x)

The	following	form	is	obtained	when	this	equation	is	rewritten	for	x	=	l:



where

This	formulation	is	identical	to	the	well-known	F-parameter	equation,	except	the	current	I
is	replaced	by	I	–	I0	considering	the	induction	from	a	power	line.

6.4.2.2				Approximation	of	F-Parameters
The	analytical	evaluations	of	 sinh	and	cosh	 functions	 in	Equation	6.6	 are	difficult,	 and	 it	 is
useful	 to	adopt	approximate	F-parameters	 that	 can	be	easily	evaluated	by	hand	calculations.
Similar	to	a	conventional	F-parameter	approximation	by	assuming	|Г	•	l|	to	be	much	less	than
1,	the	following	result	is	given:

6.4.2.3				Cascaded	Connection	of	Pipelines
Assume	a	system	consists	of	two	cascaded	sections	of	a	pipeline	as	illustrated	in	Figure	6.30.
In	section	1,	a	pipeline	is	parallel	to	power	line	1	with	current	IP1	for	the	parallel	length	x1.	In
section	2,	the	same	pipeline	is	parallel	to	power	line	2	with	current	IP2.	The	mutual	impedance
is	zm1	and	zm2	in	sections	1	and	2,	respectively.	Then,	the	following	F-parameter	equations	are
given:

FIGURE	6.30	Cascaded	connection	of	a	pipeline.

and

where
I01	=	E1/z	=	Zm1,	IP1/z	=	Zm1	IP1/Z1,	I02	=	E2/z	=	Zm2,	IP2/z	=	Zm2	IP2/Z2
Z1	=	z	•	x1,	zm1	=	zm1	•	x1,	z2	=	z	•	x2,	zm2	=	zm2	•	x2
Ai	=	cosh(Г	•	xi),	Bi	=	Z0	•	sinh(Г	•	xi),	Ci	=	Y0	•	sinh(Г	•	xi)
Di	=	Ai;	i	=	1,	2



Voltage	Vi	and	current	Ii	in	the	pipeline	are	obtained	by	solving	Equations	6.8	and	6.9.

6.4.3				Application	Examples
6.4.3.1				Single	Section	Terminated	by	R1	and	R2
Applying	the	same	boundary	conditions	as	Equation	6.9	to	the	circuit	illustrated	in	Figure	6.31
produces	the	following	relationship:

-R1I1	=	AR2I2	+	B(I2	-	I0),				I1	-	I0	=	CR2I2	+	A(I2	-	I0)

FIGURE	6.31	Voltage	profile	along	a	gas	pipeline.	(a)	Circuit	configuration,	(b)	R1	>	R2,	(c)	R1	>	R2	=	z0,	and	(d)	the	effect
of	grounding	resistance	R1	and	R2.

By	solving	these	equations	simultaneously,	the	following	result	is	ob-tained:

where	K	=	(R1	+	R2)	A	+	B	+	R1R2C.
Substituting	 Equations	 6.3	 and	 6.6	 into	 these	 equations	 and	 rearranging	 results	 in	 the

following:



where	K	=	(Z0	+	R1R2/Z0)	sinh(Г	•	l)	+	(R1	+	R2)	cosh(Г	•	l).

6.4.3.1.1				Approximation	of	Vx	and	Ix
It	 is	 hard	 to	 observe	 the	 characteristics	 of	Vx	 and	 Ix	 based	 on	 Equation	 6.11.	 By	 applying
Equations	6.7,	6.8,	6.9	and	6.10,	the	following	approximate	solution	is	obtained:

where	z	•	l	=	Z	(Ω),	z	(Ω/m),	l	(m).
The	voltage	along	the	pipeline	in	Figure	6.31a	is	drawn	as	in	Figure	6.31b,	where

It	should	be	noted	that	the	voltage	profile	along	the	pipeline	appears	to	be	linear	due	to	the
approximation	given	in	Equation	6.7.	If	Equation	6.11	is	used,	the	profile	becomes	nonlinear,
as	 in	 Figure	 6.31c,	 due	 to	 the	 nature	 of	 hyperbolic	 functions	 or	 exponential	 functions;
however,	it	is	continuous	in	the	region	of	0	≤	x	≤	1.	Thus,	a	position	x	exists	where	the	voltage
of	the	pipeline	becomes	zero	(as	shown	in	Figure	6.4	of	Reference	37	or	Figure	6.31b	in	this
chapter).	However,	this	is	often	forgotten	by	engineers.	To	understand	the	phase	angle	of	the
pipeline	voltage	(that	is,	the	polarity	at	both	ends),	it	may	be	helpful	to	consider	the	physical
nature	 of	 the	 induced	 voltage	 and	 how	 it	 relates	 to	 the	 theoretical	 analysis.	 However,	 this
practice	is	conventionally	neglected.

FIGURE	6.32	Configuration	of	a	pipeline:	ρg	=	1.5	×	10
−7	Ω-m,	µg	=	280,	εi	=	2.3,	ρe	=	50	Ω-m,	R1	=	19.13	cm,	R2	 =

20.32	cm,	R3	=	20.64	cm,	and	hg	=	–1.8	m.

The	applicable	range	of	Equation	6.7	needs	to	be	discussed.	Figure	6.32	illustrates	a	typical
gas	pipeline	used	 in	 Japan	 [59,60].	 Its	 impedance	and	admittance	can	be	easily	evaluated	by



hand	based	on	approximate	formulas	[45,59,63],	which	are	given	in	Appendix	6A.4,	and	are
provided	here	as

z	=	0.61378.6°(Ω/km),	y	=	2.57290°	(ms/km)

Г	•	l	is	evaluated	for	l	=	10	km	as

It	is	clear	that	the	approximation	of	|Г	⋅	l|	≪	1	is	generally	valid	up	to	several	kilometers.	If
a	pipeline	is	long	(around	10	km),	then	it	is	divided	into	sections	so	that	each	section	satisfies
this	 condition.	 In	 practice,	 the	 pipeline	 is	 divided	 into	 many	 sections	 corresponding	 to
different	power	lines	and	groundings.

6.4.3.1.2				R1	=	R2	=	Z0
R1	 =	R2	 =	 z0	 corresponds	 to	 the	 matching	 condition	 (Z0	 =	 characteristic	 impedance)	 of	 a
pipeline	and	is	identical	 to	the	semi-infinite	pipeline	connected	at	nodes	1	and	2.	The	power
line	 is	 parallel	 to	 the	pipeline	only	 for	 the	 section	between	 the	nodes.	Although	 the	CIGRE
Guide	[39]	states	that	the	pipeline	extends	several	kilometers	beyond	the	parallel	route,	these
additional	 kilometers	 should	 be	 replaced	 by	 a	 semi-infinite	 pipeline	 or	 a	 length	 l	 of	 the
parallel	route	that	is	much	shorter	than	a	few	kilometers.	With	R1	=	R2	=	z0,	Equation	6.11	 is
simplified	as	follows:

The	voltage	profile	along	the	pipeline	is	shown	in	Figure	6.31c.	Equation	6.11	provides	the
same	results	as	those	in	Reference	37	and	the	CIGRE	Guide	[39].	However,	the	guide	does	not
deal	with	 the	 effect	 of	 grounding	 resistances	 of	 a	 pipeline.	 These	 results	 are	 simplified	 by
using	the	approximation	in	Equation	6.7	or	exp(–Г	•	x)	≒	1	–	Γ	•	x	as

It	 should	be	noted	 that	 the	maximum	 induced	voltage	 in	 this	 approximation	 is	 nearly	 the
same	 as	 that	 of	 the	 accurate	 solution	 for	 exp	 (–Г	 •	 l)	≪	 1.	 The	 same	 assumption	was	 also
adopted	 in	Reference	37	 for	a	 short	pipeline	and	exp(–Г	 •	 l)	≅	 0.1	 for	 a	 long	 line	 so	 as	 to
make	analysis	possible.

6.4.3.1.3				Effect	of	Grounding	Resistances	of	a	Pipeline



The	formulas	in	Table	6.13	for	various	grounding	resistances	are	derived	from	the	general
solution	of	Equation	6.11.	The	voltages	in	Table	6.13	and	6.14	are	normalized	by	I0.

Table	6.13	Voltages	and	Currents	for	Various	Grounding	Resistances:	Exact	Solution

Table	6.14	Voltages	and	Currents	for	Various	Grounding	Resistances:	Approximate	Solution

It	is	difficult	to	evaluate	the	voltage	and	current	in	a	pipeline	from	these	formulas	without
numerical	 calculations.	By	 applying	 the	 approximation	 in	Equation	6.7,	 the	 results	 listed	 in
Table	6.14	and	maximum	voltage	Vmax	 are	obtained.	The	analytical	 results	 from	Table	 6.14
are	shown	in	Figure	6.31d.
It	 is	clear	from	the	table	and	Figure	6.31	 that	 the	severest	voltage,	ZI0,	appears	when	one

end	of	a	pipeline	 is	open-circuited	while	 the	other	end	 is	grounded	by	a	resistance	R	 that	 is
neither	 zero	 nor	 infinite.	 Considering	 R	 =	 0	 is	 practically	 impossible,	 both	 ends	 of	 the
pipeline	 should	 be	 grounded	 so	 that	 the	 maximum	 voltage	 becomes	 less	 than	 half	 of	 the
severest	case,	as	provided	by	the	ratio	R2/(R1	+	R2	+	Z).	If	the	pipeline	length	l	is	greater	than
10	km,	the	ratio	becomes	less	than	one-third	with	R1	=	R2	≒	10	Ω.

6.4.3.2				Two-Cascaded	Sections	of	a	Pipeline	(Problem	6.1)
The	induced	voltage	and	current	in	the	system	in	Figure	6.30	can	be	obtained	by	solving	the
equations	in	Equations	6.8	and	6.9	simultaneously.	The	solution	is	given	in	Appendix	6A.4.	By
using	 the	 approxi-mation	 in	 Equation	 6.7,	 Equation	 6.8	 is	 simplified,	 and	 the	 following
equations	are	given	in	the	system	in	Figure	6.31:

where	Z1	=	z	•	x1,	z2	=	z	•	x2.
By	solving	Equations	6.15	and	6.9,	the	following	results	are	easily	ob-tained:



where	K1	=	R1R2	+	R2R3	+	R3R1	+	R3Z1	+	R1Z2	+	R2Z	+	Z1Z2,	Z	=	Z1	+	Z2.
One	of	the	reasons	for	developing	the	F-parameter	approach	for	cascaded	connections	of

pipeline	sections	 is	 to	find	effective	grounding	resistances	and	separation	distances	between
them.	Grounding	 resistance	 and	 separation	 distance	 play	 important	 roles	when	 it	 comes	 to
Japanese	 gas	 pipelines.	 Based	 on	 the	 approximate	 results,	 the	 characteristics	 of	 induced
voltages	and	currents	and	the	effect	of	grounding	resistances	can	be	discussed.

1.	I01	=	I02	=	I0:	Equation	6.16	is	further	simplified	as	follows:

a.	R2	=	∞

This	result	 is	 the	same	as	Equation	6.13	for	a	single-section	pipeline,	considering
that	node	2	in	Equation	6.13	now	becomes	node	3.

b.	R3	=	∞

These	results	show	similar	characteristics	to	those	in	Section	6.4.3.1.3	as	far	as	V1
and	V3	are	concerned.

Equation	 6.17	 corresponds	 to	 a	 case	 of	 grounding	 an	 intermediate	 position	 of	 a
pipeline,	 both	 ends	 of	which	 are	 grounded	 through	 resistances	R1	 and	R3.	 Thus,	 the
effect	 of	 the	 grounding	 resistance	 R2	 on	 an	 induced	 voltage	 can	 be	 discussed	 in
comparison	to	no	grounding,	that	is,

The	assumption	of	R1	=	R2	=	R3	=	R	leads	to	the	following	results:

R2	≠	∞:	V1	=	–R{R(Z1	+	Z)	+	Z1Z2}I0/K2

V3	=	–R{R(Z2	+	Z)	+	Z1Z2}	I0/K2	K2	=	3R2	+	2RZ	+	Z1Z2

Furthermore,	assume	that	x1	=	x2	=	l/2,	then



This	 result	 is	 the	same	as	 that	of	a	 single-pipeline	section	 in	Section	6.4.3.1.	 This
indicates	that	a	grounding	resistance	(R2	in	Figure	6.30)	at	the	middle	of	a	pipeline	is
not	 effective	 enough	 to	 reduce	 the	 induced	 voltage	 if	 the	 circuit	 parameter	 and
inducing	current	are	constant;	 the	voltage	at	 the	center	of	 the	pipeline	V(l/2)	 is	 zero
when	R1	=	R3	=	R.	Even	in	the	case	of	R1	≠	R3,	the	grounding	resistance	R2	shows	no
reduction	of	the	maximum	voltage.

2.	I02	=	0:

This	 case	 is	 a	 more	 general	 condition	 of	 Section	 6.4.3.1	 and	 the	 calculation
examples	discussed	in	the	CIGRE	Guide	[39],	in	which	the	pipeline	extends	beyond	the
zone	 of	 influence	 but	 no	 grounding	 resistance	 is	 considered.	 Figure	 6.33	 shows	 the
system	 diagram	 and	 analytical	 results	 of	 the	 induced	 voltages.	 Figure	 6.33b	 is	 the
result	of	Equation	6.18,	where	it	should	be	noted	that	V2	>	V3.

a.



FIGURE	6.33	Case	of	I02	=	0.	(a)	System	diagram,	(b)	R1	≠	R2	≠	R3	≠	0,	(c)	R2	=	∞,	and	(d)	R3	=	∞.

b.

As	explained	in	Section	6.4.3.1.1	and	Figure	6.31c,	all	of	the	curves	shown	in	Figure
6.33	are	exponential	or	hyperbolic,	not	linear;	therefore,	V3	should	be	expressed	as

V3	=	V2	exp(−‘x)	for	x	>	x1	in	the	case	of	R3	=	∞

The	 result	 of	R2	 =	R3	 =	 ∞	 clearly	 equals	 that	 in	 Figure	 6.31c	 if	R1	 =	 z0,	 which
corresponds	to	a	semi-infinite	pipeline	to	the	left	of	node	1.

3.	I01	≠	I02:	When	I01	is	much	greater	than	I02,	results	similar	to	those	for	I02	=	0	are
obtained.	Figure	6.34	shows	analytical	results	in	the	case	of	(a)	I01	=	0.1	I02	=	0.5I0	and
(b)	I01	=	0.5I02	under	the	condition	that	x1	=	x2	=	1/2,	that	is,	z1	=	z2	=	Z/2.	Characteristics
of	the	induced	voltage	that	are	similar	to	those	explained	for	I01	=	I02	=	I0	are	observed
when	I01	=	0.1I02,	that	is,	when	I02	is	far	greater	than	I01.	On	the	contrary,	the	in-duced
voltage	characteristics	for	I02	>	I01	>	0.5I01	are	significantly	different	from	those	when
I01	or	I02	is	zero,	as	shown	in	Figure	6.33.



The	 proposed	 approach	 has	 proved	 effective	 in	 observing	 basic	 and	 qualitative
characteristics	of	an	induced	voltage.	It	is	easy	to	produce	a	computer	code	based	on	the
proposed	approach	that	can	define	the	quantitative	characteristics	of	the	induced	voltage.

4.	Effect	of	I01	relative	to	I02	=	I0:	Assume	that	R1	=	R2	=	R3	=	R,	x1	=	x2,	and	I01	=	mI02,
where	m	<	1.	Then,	the	following	results	of	induced	voltag-es	V1	to	V3	are	derived	from
Equation	6.16:

These	analytical	results	are	illustrated	in	Figure	6.34c.	The	result	for	m	=	0	is	the	same
as	 that	 in	 Equation	 6.18,	 and	 that	 for	m	 =	 1	 is	 identical	 to	 that	 in	 Figure	 6.38.	 It	 is
reasonable	that	the	induced	voltages	|V1|	and	V3	increase	as	the	ratio	m	increases.	On	the
contrary,	the	voltage	V2	 reaches	zero,	corresponding	to	 the	characteristics	explained	in
Section	6.4.3.1.	The	simplified	formula	in	Equation	6.19	 is	useful	 for	 inves-tigating	 the
effect	of	inducing	currents	from	many	power	lines	that	are	observed	quite	often.

FIGURE	6.34	Case	of	I01	≠	I02	=	I0.	(a)	I01	=	0.1I02,	(b)	I01	=	0.5I02,	and	(c)	the	effect	of	I01,	relative	to	I01I02	=	mI02.



FIGURE	6.35	Effect	of	x1	relative	to	x2.	Z1	=	nZ2	=	nZ′,	Z	=	(n	+	1)Z′.

5.	Effect	of	x1	relative	to	x2:	Assuming	that	R1	=	R2	=	R3	=	R,	I01	=	0.5I02	=	0.5I0,	and	x1	=
nx2,	that	is,	z1	=	nZ2	=	nZ′,	the	following	results	are	obtained	from	Equation	6.16:

where	K2	=	3R2	+	2R(n	+	1)Z′	+	n2Z′.
This	analytical	result	 is	 illustrated	in	Figure	6.35.	 It	 is	clear	 from	Equation	6.20	and

Figure	 6.35	 that	 the	 induced	 voltages	 are	 linearly	 proportional	 to	 the	 length	 of	 x1.
Therefore,	the	induced	voltages	are	proportional	to	the	total	mutual	impedance	zm1	=	zm1
•	x1.

6.4.3.3				Three-Cascaded	Sections	of	a	Pipeline	(Problem	6.1)
Let	us	now	obtain	currents	I1,	I2,	I3,	 Ir1,	 Ir2	and	voltage	V1	 in	Figure	6.36	and	draw	voltage
profiles	along	the	line	for	(a)	I02	=	0,	I01	=	I03	=	I0,	R1	=	R2	=	R3	=	R4	=	R	and	(b)	R2	=	R3	=	∞,
I01	>	I02	>	I03.
Figure	6.36	illustrates	three-cascaded	sections	of	a	pipeline	where	each	section	is	parallel	to

a	 different	 power	 line	 and	 has	 an	 induced	 current	 I0i	 (i	 =	 1–3).	 In	 this	 case,	 we	 use	 the
approximation	 in	 Equation	 6.7	 to	 easily	 obtain	 the	 solution	 of	 the	 induced	 voltages	 and
currents	on	each	section.	Based	on	the	equations	in	Equation	6.15	and	two	more	equations	for
nodes	3	and	4,	the	solutions	of	the	currents	and	voltages	can	also	be	obtained.

FIGURE	6.36	Three-cascaded	sections	of	a	pipeline.	z1	=	z	•	x1	=	Z′,	Z2	=	Z	•	x2,	and	Z3	=	z	•	x3.

6.4.4				Comparison	with	a	Field	Test	Result
6.4.4.1				Comparison	with	EMTP	Simulations
Table	6.15	shows	a	comparison	of	analytical	 results	evaluated	by	an	accurate	 formula	from
Equation	6.11	 and	 by	 an	 approximate	 formula	 from	Equation	6.13	 to	 determine	whether	 to
include	 (power	 line)	current	 IP	=	1000∠0°,	 separation	distance	y	=	50–500	m,	 and	pipeline



lengths	x	=	1	and	10	km	in	Figure	6.31a.	Grounding	resistances	R1	and	R2	vary	from	zero	to
infinity,	which	corresponds	to	the	highest	induced	voltage	on	the	pipeline.	The	highest	voltage
is	necessary	to	investigate	the	effect	of	pipe	grounding.	The	cross	section	of	the	pipeline	is	z	=
0.613∠78.6°	(Ω/km),	and	the	mutual	impedance	to	the	power	line	is	Zm	=	0.0592∠49.9°	for	y
=	500	m.	Thus,	 the	artificially	 induced	current	 in	 this	case	 is	evaluated	as	 I0	 =	 96.57∠28.7°
(A/km)	by	Equation	6.4.
The	 analytical	 results	 show	 a	 maximum	 error	 of	 less	 than	 5%	 in	 comparison	 with	 the

EMTP	 simulation	 results	 in	 Table	 6.15,	 and	 thus	 the	 accuracy	 of	 the	 analytical	 formula	 is
satisfactory.
Table	 6.16	 shows	 a	 comparison	 of	 the	 approximate	 formula	 and	 the	 EMTP	 simulation

results	for	the	three-cascaded	section	of	a	pipeline	in	Figure	6.36	with	a	separation	distance	of
y	 =	 500	m.	 Case	 10	 in	 the	 table	 corresponds	 to	 Figure	 6.37a,	 and	 case	 32	 corresponds	 to
Figure	6.37b.	The	maximum	error	of	the	analytical	results	is	3.3%	in	case	30.
From	 this	 observation,	 the	 accuracy	 of	 the	 analytical	method	 proposed	 in	 this	 chapter	 is

satisfactory,	and	thus	the	method	is	useful	in	practice.	It	should	be	noted	that	the	node	voltages
in	 Table	 6.15	 and	 6.16	 are	 the	 maximum	 voltages	 on	 the	 pipeline,	 and	 thus	 the	 maximum
voltage	is	accurately	calculated	even	with	the	approximation.

6.4.4.2				Field	Test	Results
The	field	test	results	of	induced	voltages	in	an	underground	gas	pipeline	in	Japan	are	given	in
Reference	60.	Figure	6.38a	illustrates	the	system	configuration.	The	solid	line	represents	the
pipeline,	and	the	dotted	line	represents	an	overhead	transmission	line.	Figure	6.38b	shows	the
configuration	of	a	500	kV	vertical	twincircuit	line.	The	system	is	simplified	by	five	cascaded
sections,	as	shown	in	Figure	6.38c.	 In	a	section	where	 the	separation	distance	y	between	 the
power	line	and	the	pipeline	exceeds	300	m,	the	power	line	is	neglected.	Thus,	the	power	line
and	 its	 inducing	 current	 are	 considered	only	 in	 sections	2	 and	4.	Both	 ends	 of	 the	 pipeline
(nodes	1	and	6)	are	grounded	by	R1	=	R2.	The	pipeline	cross	section	is	given	in	Figure	6.32.
The	500	kV	power	 line	 has	 a	 twincircuit	 vertical	 configuration	with	 two	GWs	 (depicted	 in
Figure	6.38b).	Soil	resistivity	along	the	line	ranges	from	50	to	200	Ω-m.

Table	6.15	Comparison	with	EMTP	Simulation	Results:	Single	Section	(Ip	=	1000∠0°	A)



Table	6.16	Comparison	with	EMTP	Simulation	Results:	Three	Sections	(y	=	500	m)

FIGURE	6.37	Solutions	for	the	three-cascaded	sections	of	a	pipeline	in	Figure	6.36.	(a)	I02	=	0,	I01	=	I03	=	I0,	R1	=	R2	=	R3
=	R4	=	R.	(b)	R2	=	R3	=	∞,	I01	>	I02	>	I03.

As	explained	in	Section	6.3,	the	node	voltages	are	given	in	the	following	equation:

where	Z	=	Z1	+	Z2	+	Z3	+	Z4	+	Z5.



FIGURE	6.38	System	of	the	configuration	of	a	field	measurement.	(a)	Field	test	circuit,	(b)	vertical	 twincircuit	500-kV	line,
and	(c)	model	circuit	for	an	analytical	calculation.

In	Equation	6.21,	as	in	Equation	6.3,	the	original	induced	currents	I01	and	I02	are	given	by
the	induced	voltage	E.	The	original	induced	voltage	E	is	determined	by	the	vector	sum	of	the
induced	voltages	due	to	the	phase	currents	of	the	transmission	line	[60],	or	approximately	by
the	 zero-sequence	 current	 of	 a	 transmission	 line	 and	 the	GW	 currents	 (as	 explained	 in	 the
CIGRE	 Guide)	 [39].	 The	 mutual	 impedance	 between	 a	 transmission	 line	 and	 a	 pipeline	 is
calculated	 either	 numerically	 by	 the	 EMTP	 cable	 parameters	 [63]	 or	 analytically	 by	 the
approximation	formulas	in	Appendix	6A.4.	The	following	is	the	EMTP	result	for	section	4	in
Figure	6.38c,	with	a	soil	resistivity	of	50	Ω-m,	where	the	separation	between	the	center	of	the
500	kV	power	line	and	the	pipeline	is	66	m.	The	mutual	impedance	estimated	from	the	curve
in	Figure	3.4	of	the	CIGRE	Guide	[39],	agrees	well	with	the	EMTP	result:

Zm1	=	0.1428∠71.7°(Ω/km):	phase	1	to	pipeline
zm2	=	0.1446∠71.7°,Zm3	=	0.1459∠71.0°,Zm4	=	0.1530∠72.2°,Zm5	=	0.1557∠72.4°
Zm6	=	0.11578∠72.4°,Zm7	=	0.1407	∠71.0°	:	GW	1	to	pipeline,	Zm8	=	0.1498	∠72.1°

The	current	in	each	phase	of	the	500-kV	line	is	1000	A.	The	GW	currents	are	calculated	in
the	 same	manner	as	 those	 for	a	pipeline.	The	original	 induced	voltage	E	 in	Equation	6.3	 is
analytically	calculated	using	mutual	impedance	in	the	following	manner:

Ei	=	Zmi	•	IP1i



For	 example,	E1	 is	 calculated	 as	E1	 =	 zm1	 •	 IP1	 =	 0.1428∠71.7°	 ×	 1000	 =	 142.8∠71.7°
(V/km).
The	total	induced	voltage	E	is	evaluated	as	the	vector	sum	of	the	voltages.

Then,	the	original	induced	current	I02	in	section	4	of	Figure	6.38b	is	given	by

where	z	=	0.592∠78.2°	(Ω/km)	is	the	self-impedance	of	the	pipeline	with	ρe	=	50	(Ω-m).
Similarly,	current	I01	in	section	2	is	calculated	as

Substituting	I01	and	I02	into	Equation	6.22	yields	the	following	results:

1.	R1	=	z0	=	15.1	Ω,	R2	=	∞	V1	=	V2	=	0,
V3	=	V4	=	0.5047∠151.6°
V5	=	V6	=	2.340∠–137.9°

2.	R1	=	R2	=	z0:	V6	=	–V1	=	1.026∠23.	0°,
V2	=	–1.17∠42.4°,	V3	=	–1.159∠68.9°
V4	=	1.2101∠–109.6°,	V5	=	1.092∠–144.9°

The	 measured	 result	 was	 1.17–2.48	 V	 in	 the	 system	 shown	 in	 Figure	 6.38a	 [60].	 The
analytical	 results	 agree	 with	 the	 measured	 result,	 even	 with	 the	 approximation	 explained
previously.	A	number	of	distribution	lines	(6.6	kV,	3.3	kV)	exist	near	the	pipeline,	which	may
have	contributed	to	the	discrepancy.

6.4.5				Concluding	Remarks
An	analytical	method	to	calculate	induced	voltages	and	currents	in	a	complex	pipeline	system
by	 applying	 an	F-parameter	 is	 described	 in	 this	 section.	 The	 approach	makes	 handling	 the
system	parameters	easy,	as	inducing	currents	and	boundary	conditions	differ	in	each	section
of	the	pipeline	system.	The	profile	of	the	induced	voltages	and	currents	along	the	pipeline	can
be	 evaluated	 by	 hand	 calculations,	 especially	 if	 a	 wellknown	 approximation	 of	 hyperbolic
functions	 of	 the	F-parameter	 is	 used.	 Even	 with	 the	 approximation,	 the	maximum	 induced
voltage	is	accurately	calculated.	Analytical	test	results	were	compared	with	EMTP	simulation
and	field	test	results,	and	it	was	concluded	that	even	manual	calculation	agrees	well	with	the
test	results.
Analytical	results	of	the	induced	voltages	clearly	show	that	the	maximum	voltage	appears	at

one	 end	 of	 a	 pipeline	 when	 the	 other	 end	 is	 grounded,	 and	 at	 both	 ends	 when	 they	 are



grounded	 by	 the	 same	 resistance	 (as	 discussed	 in	 various	 reports	 and	 textbooks
[36,37,39,40,44,45]).	Also,	 a	 po-sition	 exists	where	 the	pipeline-to-ground	voltage	becomes
zero.	Engineers	in	the	field	should	keep	this	in	mind.	The	effect	of	grounding	resistance	and
induced	currents	on	the	induced	voltages	has	been	explained	based	on	the	analytical	results.
The	approach	based	solely	on	knowledge	of	electrical	circuit	theory,	as	taught	in	university

undergraduate	courses,	is	expected	to	be	very	useful	for	qualitative	and	predictive	analyses	of
induced	voltages	and	currents.

SOLUTION	TO	PROBLEM	6.1

where

Based	 on	 this	 equation,	 various	 investigations	 into	 induced	 voltages	 and	 currents	 can	 be
conducted.	It	is	clear	that	the	assumptions	I01	=	I02	=	I03	=	I0,	R2	=	R3	=	∞,	and	Z1	+	Z2	+	Z3	=	Z
yields	the	same	formula	as	Equation	6.13,	and	the	assumptions	I01	=	I02,	R2	=	∞,	and	Z1	+	Z2
replaced	by	Z2	provide	results	identical	to	Equation	6.16.
Some	examples	are	demonstrated	in	Figure	6.36b	and	c.

1.	I02	=	0,	I01	=	I03	=	I0:	In	Figure	6.37a,	–V1	=	V4	≒	–Z′I0	for	R	≫	Z′.	When	I02	=	0,	a
similar	result	to	Figure	6.36b	is	obtained,	even	in	the	case	of	R2	=	R3	=	∞	due	to	the	finite
length	of	section	2	(i.e.,	x2)	and	the	fact	that	the	polarity	of	the	voltage	at	node	2	induced
by	current	I01	is	opposite	to	that	at	node	3	induced	by	current	I03.	This	clearly	indicates
the	significance	of	the	induced	voltage	polarity	that	has	been	neglected	in	most
conventional	studies	[39].	When	x2	is	very	long	or	semi-infinite,	the	inducing	currents
IP1	(correspondingly	I01)	and	IP3	(I03)	do	not	affect	each	other,	and	thus	a	well-known
characteristic	explained	in	Section	6.4.3.1	for	the	single-section	case	is	observed.

2.	R1	=	R4	=	∞:	Figure	6.37b	shows	the	analytical	result	in	the	case	of	R1	=	R4	=	∞	with	I01	=
I0	>	I02	>	I03.	The	gradient	of	the	voltage	profile	along	the	x-axis	in	section	i	is
proportional	to	current	I0i.

	



	

Appendix	6A
6A.1				Test	Voltage	for	Low-Voltage	Control	Circuits	in	Power	Stations	and

Substations	[16]

6A.2				Traveling-Wave	Solution
In	a	distributed-parameter	line	system	composed	of	a	power	transmission	line	and	a	pipeline
that	are	parallel	to	each	other	(as	illustrated	in	Figure	6.1),	the	following	differential	equation
is	given,	assuming	that	current	IP	along	the	power	line	is	constant	[37,39,40]:

where
z	is	the	series	impedance	of	the	pipeline	(Ω/m)
zm	is	the	mutual	impedance	between	the	power	line	and	the	pipeline	(Ω/m)
y	is	the	shunt	admittance	of	the	pipeline	(S/m)
E	=	−zmIP	is	the	electromagnetically	induced	voltage	(V/m)



IP	is	the	inducing	current	=	power	line	current	(A)
Vx	=	V(x),	Ix	=	I(x)	is	the	pipeline	voltage	and	current	at	position	x

Similar	to	an	ordinary	distribution	line,	the	following	traveling-wave	solutions	for	voltage
and	current	are	easily	obtained	[45]:

where	k1	and	k2	are	the	constants	to	be	determined	by	boundary	conditions

where
Γ	=	√(z	•	y)	is	the	propagation	constant
γ0	=	√(y/z)	=	1/Z0	is	the	characteristic	admittance

6A.3				Boundary	Conditions	and	Solutions	of	Voltage	and	Current
In	general,	the	boundary	conditions	in	Figure	6.29	are	given	by

Substituting	Equation	6.26	into	Equation	6.24,	the	unknown	constants	k1	and	k2	are	given	as
functions	of	V1	and	I1.

Similarly,	k1	and	k2	are	defined	as	functions	of	V2	and	I2	by	applying	Equation	6.27.
When	no	pipeline	exists	 to	 the	 left	of	node	1	and	 the	right	of	node	2,	Equations	6.26	and

6.27	are	rewritten	as

This	condition	leads	to	the	following	results	of	k1	and	k2:

where
k1	=	exp(2Γl)	–T1	•	T2
T1	=	(R1	–	Z0)/(R1	+	Z0)	is	the	reflection	coefficient	to	the	left	of	node	1



T2	=	(R2	–	Z0)/(R2	+	Z0)	is	the	reflection	coefficient	to	the	left	of	node	2

Equation	 6.30	 agrees	 with	 those	 provided	 in	 Reference	 37	 and	 the	 CI-GRE	 Guide	 [39],
although	errors	exist	in	the	derivation	of	the	formula	in	the	appendix	of	the	guide.
By	substituting	Equation	6.28	into	Equation	6.24	and	rewriting	as	a	 function	of	V1	and	 I1,

the	following	equation	is	obtained:

6A.4				Approximate	Formulas	for	Impedance	and	Admittance
1.	Conductor	internal	impedance:	See	Equation	1.7
2.	Earth-return	impedance	of	an	underground	cable	[45,64]

where

dij	=	R1	=	r2
hi,	hj	are	the	buried	distances	between	cable	i	and	j
yij	is	the	separation	distance	between	cable	i	and	j

	is	the	complex	penetration	depth
ρe	is	the	soil	resistivity
µe	is	the	free-space	permeability	for	earth

3.	Mutual	impedance	between	overhead	and	underground	cables	[65]

where	
4.	Pipeline	admittance

where
ε*	=	εi	+	1/jωρi	is	the	complex	permittivity
εi	is	the	coating	permittivity
ρi	is	the	coating	resistivity

6A.5				Accurate	Solutions	for	Two-Cascaded	Sections



Considering	the	characteristic	of	hyperbolic	functions,	for	example,	B1C2	=	C1B2	and	A1B2
+	B1A2	=	Z0	 sinh	θ,	 these	equations	can	be	 rewritten	 in	 the	 form	of	hyperbolic	 functions	as
follows:

where	θ1	=	Γ	•	x1,	θ2	=	Γ	•	x2,	θ	=	Γ	(x1	+	x2)	=	Γ	•	l.
These	 solutions	 become	 identical	 to	 those	 in	 Equation	 6.16	 when	 the	 approximation	 in

Equation	6.7	is	used.
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7.1					Introduction
The	 significance	 of	 grounding	 for	 electric	 power	 equipment	 and	 systems	 such	 as
transformers,	 substations,	buildings,	home	appliances,	etc.,	 is	well-known,	and	a	number	of
books	and	papers	have	been	published	on	the	subject	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	 ,	13,
14,	15,	16,	17,	18,	19,	20,	21,	22,	23,	24,	25,	26,	27,	28,	29–30].	Grounding	 is	done	 for	 the
following	reasons:

1.	To	maintain	the	ground	terminal	voltage	at	zero	which	is,	strictly	speaking,	soil	potential.
2.	It	makes	an	abnormally	large	current,	such	as	a	lightning	strike,	dissipate	into	the
ground.

3.	To	obtain	a	reference	voltage	to	define	(measure)	voltage	of	equipment	and	systems.

Without	 grounding,	 human	 safety	 during	 maintenance	 work,	 for	 example,	 cannot	 be
guaranteed,	and	the	voltage	of	a	circuit	to	be	tested	or	to	be	simulated	cannot	be	measured.
There	are	two	basic	grounding	approaches:

1.	Single-point	grounding.
2.	Multiple-point	grounding.

When	 considering	 a	 distributed-parameter	 circuit	 such	 as	 an	 overhead	 or	 underground
transmission	 line,	 it	 should	 be	 noted	 that	 single-point	 grounding	 and	 multiple-point
grounding	present	entirely	different	phenomena.
The	most	significant	difference	between	the	two	approaches	is	whether	or	not	 the	current

flows.	 Single-point	 grounding	 prevents	 a	 current	 from	 flowing	 in	 the	 conductor,	 while
multiple-point	 grounding	 allows	 a	 current	 to	 circule	 between	 the	 grounding	 points	 on	 the
conductor.	 The	 circulating	 current	 results	 in	 electrochemical	 corrosion	 of	 the	 conductor,	 a
well-known	 occurrence	 in	 steel	 railroad	 lines	 and	 steel	 pipelines	 for	 oil	 and	 gas
transportation	[31].	Therefore,	single-point	grounding	should	be	used	in	such	systems.	If	the
train	rail	and	pipeline	are	very	 long,	 the	pipeline,	 for	example,	 is	divided	 into	a	number	of
sections,	 each	 of	 which	 is	 isolated	 from	 adjacent	 sections.	 Thus,	 each	 isolated	 section	 has
single-point	grounding.



Multiple-point	 grounding	 functions	 differently.	 The	 metallic	 sheath	 (shield)	 of	 an
underground	cable	is	grounded	at	certain	specific	distances,	usually	about	a	few	km.	Most	of
the	GWs	(called	earth	wires	or	sky	wires	in	different	countries)	of	an	overhead	transmission
line	are	grounded	at	every	transmission	tower.	The	purpose	of	the	multiple-point	grounding
in	the	metallic	sheath	of	the	underground	cable	is	to	reduce	any	electromagnetic	effects	that
might	 travel	 from	 the	 cable	 core	 to	 the	 external	 circuits,	 and	 also	 to	 reduce	 possible
overvoltages	 that	might	 affect	 on	 the	 sheath.	A	GW	 is	 grounded	 at	 every	 tower.	Whenever
lightning	strikes	the	tower	and/or	the	GW,	the	current	of	the	lightning	flows	into	the	soil	at	the
nearest	grounding	position.	Thus,	a	large	lightning	current	is	prevented	from	flowing	into	a
substation.
In	 this	 chapter,	 the	 practical	 grounding	 methods	 used	 in	 a	 gas	 pipeline,	 a	 transmission

tower,	GWs,	an	underground	cable,	etc.,	are	explained	in	Section	7.2.	In	Section	7.3,	modeling
of	 the	 grounding	 is	 explained	 for	 a	 steady-state	 and	 transient	 analysis.	 First,	 the	 analytical
and/or	theoretical	model	of	a	grounding	electrode	is	described.	Then,	the	modeling	methods
used	in	EMTP	simulations	are	described	and	the	effect	of	the	simulation	model	in	an	FDTD
method	 is	 explained.	 Then,	 the	measurement	 of	 a	 grounding	 impedance,	measured	 results,
theoretical	investigations,	the	effect	of	the	electrode	shape,	etc.,	on	the	grounding	impedance
are	described	in	Section	7.4.

	
	

7.2					Grounding	Methods
7.2.1				Gas	Pipeline
Once	an	underground	gas	pipeline	is	installed,	it	is	typically	used	for	more	than	30	years.	In
the	case	of	a	 trunk	 line,	 its	 lifetime	 is	estimated	 to	be	more	 than	50	years,	because	 it	 is	 too
costly	to	replace	the	pipeline.	For	example,	a	gas	trunk	line	across	Tokyo	with	a	length	of	40
km	was	constructed	a	few	years	ago:	it	 is	impossible	to	check	the	leakage	current	along	the
pipe	 and,	 furthermore,	 it	 is	 impossible	 to	 replace	 a	 part	 of	 the	 line,	 because	 it	 is	 installed
underground	 at	 a	 depth	 of	 50–100	 m	 beneath	 the	 greater	 Tokyo	 megalopolis	 and	 it	 is
completely	 encased	 in	 concrete.	 Therefore,	 it	 is	 imperative	 to	 try	 and	 prevent	 any	 current
flows	 along	 the	 pipe.	 Figure	 7.1	 illustrates	 the	 basic	 configuration	 of	 a	 pipeline	 and	 its
grounding.	Every	pipeline	section	with	length	x0	 is	 insulated	from	the	adjacent	sections	and
the	pipeline	 itself	 is	coated	with	an	 insulating	material	so	as	 to	 isolate	 it	 from	the	soil	as	 in
Figure	7.2	[31,32].	The	inner	radius	r1	and	the	outer	radius	r2	 range	from	15	to	50	cm.	The
insulator	coating	thickness	(r3	–	r2)	is	of	2–8	mm.	The	physical	parameters	ρs,	µs,	and	εi	are
dependent	on	each	pipeline	and	its	manufacturer.



FIGURE	7.1
Gas	pipeline	and	its	grounding	(single-point	grounding):	total	length	n	⋅	x0,	where	n	=	the	number	of	insulated	pipeline	sections.

FIGURE	7.2
Cross	section	of	a	pipeline.

Over	time,	acidic	water	can	cause	a	pinhole	to	develop	within	a	coating	insulator.	When	this
occurs,	 a	 current	 can	 flow	 through	 the	 pinhole	 into	 the	 ground	 and	 return	 through	 the
grounding	 resistance	R.	 This	 circulating	 current	 results	 in	 electrochemical	 corrosion	 and,
finally,	a	hole	may	be	produced	in	the	steel	pipe	[31].
Based	on	this	scenario,	it	may	seem	wiser	not	to	create	any	grounding.	However,	it	is	quite

common	 for	 a	 power	 transmission	 line	 to	 run	 along	 a	 gas	 pipeline.	 This	 can	 generate	 an
induced	voltage	along	the	pipeline.	When	the	induced	voltage	exceeds	a	certain	limit,	it	may
cause	 a	 flashover	 that	 results	 in	 a	 gas	 explosion	 [31].	 To	 prevent	 the	 induced	 voltage,	 a
shielding	 conductor	 (steel)	 plate	 is	 occasionally	 installed	 in	 between	 the	 pipeline	 and	 the
transmission	 line.	 However,	 this	 plate	 be	 limited	 to	 a	 very	 short	 length	 because	 of	 its
installation	cost	and	the	potential	for	corrosion	of	the	steel	plate.	Thus,	for	a	long	distance,	it
is	 common	 to	 adopt	 the	 method	 of	 grounding	 shown	 in	 Figure	 7.1.	 A	 grounding	 rod	 is
installed	underground	and	embedded	into	a	cubic	hole	filled	with	Mg	powder.	[31].	It	should
be	 noted	 that	 Mg	 is	 easily	 dissolved	 into	 soils	 so	 must	 therefore	 be	 carefully	 maintained
(replaced)	at	regular	intervals.
It	should	be	noted	that	induced	voltage	described	above	cause	a	voltage	difference	between

two	 sections	 of	 the	 pipeline	 as	 illustrated	 in	 Figure	 7.1.	 If	 the	 voltage	 difference	 becomes
higher	than	the	flashover	voltage	across	the	insulating	joint,	a	flashover	occurs	between	the
joint.	This	is	another	reason	to	install	the	grounding,	that	is,	to	prevent	a	flashover	across	an
insulating	joint	between	two	sections	of	the	pipeline.

7.2.2				Transmission	Towers	and	GWs
When	“grounding”	is	mentioned	in	the	power-engineering	field,	the	most	common	meaning
is	 the	 grounding	 of	 a	 transmission	 tower	 when	 a	 GW	 is	 grounded	 to	 the	 tower.	 The



impedance	of	the	tower	grounding	is	often	called	the	“tower	footing	resistance	(impedance),”
and	there	are	a	number	of	publications	discussing	this	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	,	13,
14,	15,	16,	17,	18,	 19,	 20,	 21,	 22–23].	 Figure	 7.3a	 illustrates	 the	 configuration	 of	 a	 typical
tower	structure	and	footing.	Figure	7.3b	is	a	simplified	model	circuit	of	the	tower	(structure)
and	 the	 footing.	 For	 a	 steady	 state,	 the	 tower-footing	 impedance	 is	 represented	 simply	 by
resistance,	 and	 a	 recommended	 value	 of	 resistance	 is	 specified	 in	 the	 standard	 of	 a
transmission	 line.	 For	 example,	 in	 Japan,	 the	 resistance	 should	 be	 lower	 than	 5	 Ω	 for
transmission	voltage	that	is	higher	than	250	kV	and	10	Ω	for	voltage	lower	than	that	[33,34].
For	a	 transient	analysis,	 the	 footing	 impedance	 is	 represented	either	by	a	 resistor–capacitor
circuit	(RC	circuit)	or	a	resistor–inductor	circuit	(RL	circuit),	as	in	Figure	7.4	[1].
The	 tower	 footing	 is	 composed	 of	 steel	 structures	 and	 concrete.	 The	 length	 h2	 of	 the

footing	is	about	5	m	of	a	tower	with	a	height	of	30	m.	In	general,	the	ratio	of	the	tower	height
h1	and	h2	 is	about	6:1.	This	structure	is	heavily	dependent	on	the	mechanical	strength	of	 the
tower	 and	must	 be	 designed	 to	 take	 into	 account	 the	 natural	 environment,	 for	 example,	 the
highest	possible	wind	velocity.

FIGURE	7.3
Tower	footing.	(a)	Tower	structure	and	footing	and	(b)	simplified	model	circuit	of	(a).



FIGURE	7.4
Model	circuit	of	tower-footing	impedance.	(a)	RC	circuit	and	(b)	RL	circuit.

7.2.3				Underground	Cable
Figure	 7.5	 illustrates	 a	 cable	 system	 with	 grounding.	 Figure	 7.5a	 is	 called	 “single-bonded
cable,”	which	means	 that	 the	metallic	 sheaths	 of	 three-phase	 cables	 are	 grounded	 only	 at	 a
single	point.	Figure	7.5b	shows	a	“solidly-bonded	(normal-bond)	cable,”	in	which	both	ends
of	the	cable	are	grounded.	Figure	7.6	shows	the	cross-bonded	cables,	in	which	the	steady-state
currents	 induced	 to	 the	metallic	 sheaths	are	cancelled	out.	There	are	 two	methods	of	cross-
bonding:	 (a)	 sheath	 cross-bonding,	 and	 (b)	 core	 cross-bonding.	The	 choice	 between	 sheath
cross-bonding	or	core	cross-bonding	varies	by	country	and/or	utility	company.

FIGURE	7.5
Grounding	of	a	cable.	(a)	Single-bonded	cable	and	(b)	solidly	bonded	cable.



FIGURE	7.6
Cross-bonded	cable.	(a)	Sheath	cross-bonding	and	(b)	core	cross-bonding.

In	a	cross-bonded	cable,	both	ends	of	three-phase	sheaths	are	short-circuited	and	are	always
grounded	 at	 every	major	 section,	 because	 the	 cross-bonding	 becomes	 a	 transition	 point	 of
traveling	 waves	 during	 a	 transient,	 and	 a	 high	 overvoltage	 appears	 on	 the	 sheath.	 For	 the
grounding	of	the	sheaths,	long	grounding	rods	and/or	a	small	grounding	mesh	are	adopted.
However,	it	is	not	easy	to	get	a	low-enough	impedance,	especially	in	a	mountainous	area.	The
sending	and/or	receiving	ends	are	grounded	to	a	substation	grounding	mesh.

7.2.4				Buildings
Figure	7.7	illustrates	grounding	options	for	buildings.	Figure	7.7a	shows	the	grounding	of	an
ordinary	 building	 in	 which	 the	 steel	 poles	 of	 the	 building’s	 structure	 become	 part	 of	 the
grounding.	 If	 necessary,	 a	 grounding	mesh	 is	 installed	 and	 a	 down	conductor	 attached	 to	 a
lightning	 rod	 on	 the	 top	 of	 the	 building	 is	 connected	 to	 the	 mesh.	 Figure	 7.7b	 shows	 the
grounding	of	 an	earthquake-proof	building.	The	earthquake-proof	 equipment	 is	 electrically
isolated	from	the	building’s	foundation,	and	therefore	a	copper	(Cu)	conductor	connects	the
steel	poles	of	the	building’s	structures	and	its	foundation	structures.

7.2.5				Distribution	Lines	and	Customer’s	House
Figure	7.8	 illustrates	 a	 distribution	 system	 composed	 of	 (a)	 the	 distribution	 pole	 and	 (b)	 a
customer ’s	house.	A	distribution	pole	is	made	up	of	a	steel	pipe,	a	steel	frame	with	concrete
cement,	 or	wood	with	 a	 down	 conductor.	The	 ratio	 of	 the	 pole	 height	h1	 and	 the	 basement
length	h2	 is	about	1:3.	A	customer	house	involves	the	groundings	of	home	appliances	and	a
telephone	line,	that	are	made	up	of	either	copper	or	a	steel	rod	with	a	length	of	about	1	m.



FIGURE	7.7
Grounding	of	a	building.	(a)	Building	and	(b)	earthquake-proof	building.

FIGURE	7.8
A	distribution	system:	distribution	pole	and	customer’s	house.



	
	

7.3					Modeling	for	Steady-State	and	Transient	Analysis
7.3.1				Analytical/Theoretical	Model

7.3.1.1				Steady-State

In	a	steady-state	analysis,	a	grounding	impedance	is	almost	always	modeled	by	the	grounding
resistance	R.	There	are	a	number	of	resistance	formulas	proposed	in	various	References	1,	2,
3,	4	and	5.	Among	these,	Sunde’s	formulas	are	well-known	and	widely	used	[3,21]:

1.	Single	vertical	grounding	electrode:	The	grounding	resistance	and	capacitance	of	a
single	grounding	electrode	(rod)	with	length	x	and	radius	r	within	soil	with	resistivity	ρ
and	permittivity	ε	is	given	in	the	following	formula	(Formula	7.1):

where

When	x	is	far	greater	than	r,	Equation	7.2	is	simplified	as

2.	Single	horizontal	electrode:	When	a	grounding	electrode	with	length	x	and	radius	r	is
buried	horizontally	in	soil	at	depth	h,	Sunde’s	formula	for	resistance	R	and	capacitance	C
is	modified	as

where



When	b	is	far	smaller	than	1,

3.	Multiple	vertical	electrodes:	When	the	number	of	vertical	electrodes	described	in
Equation	7.1	is	n,	the	total	resistance	of	the	electrodes	is	given	by	Sunde	as	follows:

where	D:	diameter	of	a	circumferential	circle	of	n	vertical	rods.
4.	Plate	electrode	with	cross	section	S:	In	a	theoretical	analysis	of	a	grounding	mesh,	a	plate
electrode	representation	is	adopted.	Assuming	that	the	cross	section	area	of	the	mesh	is	S
and	the	buried	depth	below	ground	level	is	h,	the	following	equivalent	resistance	is
derived	[21,28]:

where

Neglecting	the	buried	depth	h,	the	above	formula	agrees	with	Sunde’s	approximation.

7.3.1.1.1				Transient
When	the	transient	phenomenon	on	a	grounding	electrode	is	solved	analytically,	a	RC	parallel
circuit	(as	in	Figure	7.4a)	or	an	RL	circuit	(as	in	Figure	7.4b)	is	often	adopted.	The	value	of
the	 resistances	 in	 Figure	 7.4	 is	 given	 in	 Equations	 7.1,	 7.2,	 7.3	 and	 7.4	 with	 the	 following
relations:

R	=	R1	+	R2

If	a	horizontal	grounding	electrode	shows	a	capacitive	nature,	the	value	of	C	in	Figure	7.4a
is	 necessary	 and	 is	 given	 by	Sunde	 as	 in	Equation	7.4.	 If	 a	 horizontal	 grounding	 electrode
shows	an	inductive	nature,	inductance	L	in	Figure	7.4b	derived	by	Sunde	is	modified	[28]:



When	the	electrode	is	at	ground	level,	that	is,	h	=	0,	the	following	formula	is	obtained:

The	 above	 assumes	 a	 lumped-circuit	 equivalence	 of	 a	 grounding	 electrode.	 When	 a
frequency	component	 involved	 in	a	 transient	 is	high	and	 the	wave	 length	 is	shorter	 than	 the
electrode	length,	it	is	impossible	to	assume	the	lumped	equivalence.	Instead,	we	have	to	adopt
a	distributed-parameter	line	to	represent	the	grounding	electrode	[26,28].

7.3.2				Modeling	for	EMTP	Simulation
Because	any	EMTP-type	simulation	 tool	 is	based	on	circuit	 theory,	 the	formulas	and	values
explained	 in	 the	 previous	 section	 are	 adopted.	 If	 the	 distributed-parameter	 nature	 of	 a
horizontal	 or	 vertical	 electrode	 is	 to	 be	 taken	 into	 account,	 a	model	 circuit	 such	 as	 that	 in
Figure	 7.9	 can	 be	 used	 [22,24].	 The	 electrode	 is	 represented	 by	 an	 underground	 cable
composed	of	a	core	conductor	(electrode)	and	an	artificial	insulator.	This	makes	it	possible	to
evaluate	 the	 series	 impedance	 and	 the	 capacitance	 of	 the	 electrode	 by	 a	 subroutine	 called
“Cable	Constants”	of	the	EMTP	[35,36–37].	Then,	the	equivalent	capacitance	in	Figure	7.9b	is
defined	as

FIGURE	7.9
Distribution	line	model	of	a	grounding	electrode.	(a)	Representation	of	a	horizontal	electrode	with	length	x	=	n	⋅	Δx	 and	 (b)
model	circuit.

where
C	=	ΔC	⋅	x	given	in	Equation	7.4



Cc	≒	ΔCc	⋅	x	calculated	by	“Cable	Constants”
Ce	≒	ΔCe	⋅	x	equivalent	capacitance

G	is	the	grounding	electrode	conductance	that	is	given	by

7.3.3				Numerical	Electromagnetic	Analysis
A	transient	response	on	a	grounding	electrode	is	easily	calculated	in	the	time	domain	by	an
FDTD	method	as	explained	 in	Chapter	5	 of	 this	 book.	However,	 it	 should	be	noted	 that	 the
accuracy	of	an	FDTD	simulation	is	highly	dependent	on	the	sizes	of	a	working	space	and	cells
used	in	the	simulation,	as	is	well-known.	Additionally,	the	simulation’s	accuracy	depends	on
the	absorbing	boundary	conditions.	Figure	7.10	shows	the	effect	of	stabilization	coefficient	d
and	 the	 floating	point	operation	of	FDTD	simulation	 results	of	 current	waveforms,	when	a
lumped	voltage	source	with	amplitude	E	=	2	kV	and	a	rise	time	of	1	µs	is	applied	to	the	center
of	 an	 infinite	 horizontal	 conductor	 with	 height	 h	 =	 50	m	 and	 radius	 r	 =	 115	mm	 above	 a
perfectly	conducting	earth.	Because	the	surge	impedance	of	the	conductor	is	evaluated	as	Zs	=
60	ln(2	h/r)	=	406	Ω,	the	current	amplitude	should	be	I	=	E/2Zs	=	2.46	A.	The	results	in	Figure
7.10	are	far	from	the	theoretical	estimation	with	the	exception	of	case	1-4,	d	=	0	with	double
precision.	 In	 fact,	 an	 FDTD	 simulation	 depends	 heavily	 on	 the	 absorbing	 boundary
conditions,	the	accuracy	of	which	is	a	function	of	the	stabilization	coefficient,	floating	point
operation,	 time	 step,	 etc.	 [38],	 when	 the	 working	 space	 and	 cell	 size	 are	 fixed.	 Therefore,
preliminary	 simulations	 to	 investigate	 the	 effect	 of	 the	 working	 space	 and	 cell	 sizes	 are
inherent	in	an	FDTD	simulation.

FIGURE	7.10
Effect	of	the	stabilization	coefficient	d	on	current	waveforms	with	the	lumped	voltage	source	for	Cases	1-1	to	1-4.	Case	1-1:	d
=	7.5	×	10−3,	single	precision	Case	1-2:	d	=	0,	single	precision	Case	1-3:	d	=	7.5	×	10−3,	double	precision	Case	1-4:	d	=	0,
double	precision.



A	 frequency	 response,	 that	 is,	 a	 steady-state	 analysis,	 of	 a	 grounding	 electrode	 can	 be
performed	by	 an	FEM,	NEC,	MoM,	 etc.	 [38].	However,	 a	 user	 should	 be	 reminded	 that	 the
accuracy	is	highly	dependent	on	the	simulation	conditions	and	the	model	circuit,	as	explained
above	for	the	FDTD	simulation.

	
	

7.4					Measurement	of	Transient	Responses	on	Various	Grounding
Electrodes

In	 general,	 it	 is	 not	 easy	 to	measure	 transient	 responses	 in	 a	 test	 field,	 because	 there	 is	 no
power	source	(AC	voltage	source)	and	no	voltage	reference	(no	ground	terminal).	Therefore,
one	has	to	prepare	all	the	apparatus	required	for	the	measurement.	For	example,	one	needs:

1.	An	AC	voltage	source	to	supply	power	to	the	measuring	equipment.
2.	At	least	ten	grounding	rods	for	grounding	the	AC	source,	an	oscilloscope,	etc.,	and	for	a
voltage	reference.

3.	IG,	oscilloscopes,	voltage	and	current	probes,	and	lead	wire(s)	(more	than	100	m
depending	on	the	space	of	a	test	site).

4.	Insulating	rods	for	suspending	the	lead	wires	for	source	application,	voltage,	and	current
measurement.

5.	Related	handicraft	and	manufacturing	tools.

It	 is	 particularly	 difficult	 to	 perform	 a	 transient	 measurement	 of	 grounding	 electrodes,
because	 a	 grounding	 electrode	 is	 the	 measuring	 object	 but	 the	 voltage	 reference	 itself	 is
another	grounding	electrode.	Thus,	it	can	occur	that	one	measures	the	voltage	of	the	voltage
reference,	but	not	 the	 target	 electrode.	Also,	 the	 length	of	 the	grounding	electrode	 is	 short,
often	less	than	a	few	meters	in	the	case	of	a	vertical	electrode,	thus	the	observed	time	period	is
very	small.	Assume	that	the	electrode	length	is	1	m;	that	gives	the	traveling	time	of	about	10
ns	with	 the	wave	 propagation	 velocity	 at	 a	 soil	 of	 100	m/µs.	 Then,	 the	 dominant	 transient
frequency	is	higher	than	10	MHz.	If	a	lead	wire	from	the	target	electrode	to	the	oscilloscope
is	1	m,	then	the	lead	wire	inductance	becomes	about	1	µH;	that	results	in	the	impedance	of	ωL
=	 2πf	 ⋅	L	 =	 2π	 ×	 25	 ×	 106	 ×	 1	 ×	 10−6	 =	 157	 Ω.	 This	 impedance	 is	 much	 higher	 than	 the
grounding	electrode	impedance,	and	thus	the	measured	voltage	might	be	the	voltage	drop	due
to	 the	 lead	 wire’s	 inductance.	 Figure	 7.11	 shows	 photos	 of	 transient	 measurements	 on
grounding	electrodes	in	a	field.
In	 the	 following	 section,	 typical	 examples	 of	 transient	 response	 measurements	 on

grounding	electrodes	are	explained.



FIGURE	7.11
Test	equipment	and	arrangements	 for	 transient	measurement	on	a	grounding	electrode.	 (a)	Basic	circuit	 for	measurement:	 test
electrode,	voltage	source,	current	lead	wire,	voltage	reference	wire,	oscilloscope,	voltage	probe,	high-voltage	probe,	current
probe,	 soil	 resistivity	 meter,	 wire	 reel,	 color	 corn,	 and	 grounding	 rods,	 (b)	 PG	 (voltage	 source)	 grounding,	 (c)	 voltage
reference	wire	runs	from	the	right	bottom	corner	of	the	photo	(c)	to	the	top,	the	other	side	of	the	field	in	the	photo,	(d)	installing
grounding	rods,	and	(e)	power	source	and	PG.

7.4.1				Transient	Response	Measurements	on	Multiple	Vertical	Electrodes
and	FDTD	Simulations

7.4.1.1				Experimental	Conditions



Figure	7.12	illustrates	an	experimental	setup	for	measuring	transient	voltages	at	the	top	of	an
electrode	[30].	The	radius	of	the	electrode	is	10	mm,	and	the	length	is	1	and	1.5	m.	An	output
voltage	from	a	PG	is	applied	to	the	electrode	through	a	resistance	of	5	kΩ	so	that	the	source
can	 be	 regarded	 as	 a	 current	 source.	 Figure	 7.13	 shows	 an	 injected	 current	 waveform.	 A
current	lead	wire	and	a	voltage	reference	wire	are	kept	perpendicular	to	each	other	and	to	the
electrode	so	as	to	avoid	mutual	coupling	between	those	as	much	as	possible.	A	vinyl-covered
conductor	is	used	for	the	wires.	The	PG	is	set	at	the	distance	of	30	m	from	the	electrode.

FIGURE	7.12
Experimental	setup.

FIGURE	7.13
Injected	current.

TABLE	7.1
Experimental	and	Simulation	Conditions	and	Results.



Table	 7.1	 summarizes	 the	 experimental	 conditions,	 the	 parameters	 of	 the	 electrodes,	 the
separation	distance,	and	the	peak	voltage.	The	peak	voltage	corresponds	to	the	impedance	for
the	applied	current	is	1	A	with	the	rise	time	Tf	≒	10	ns,	that	is,	nearly	a	step	function.	In	the
measurement,	I	is	the	injected	current,	V1	is	the	potential	difference	between	the	voltage	of	the
inducting	 electrode	 “1”	 and	 the	 voltage	 reference	 wire,	 and	 V2	 is	 the	 potential	 difference
between	the	voltage	of	the	inducted	electrode	“2”	and	the	reference	wire.
The	soil	resistivity	of	the	test	site	was	measured	by	Wenner ’s	four-electrode	method.	It	was

found	that	the	test	site	was	bilayered.	The	resistivity	of	the	upper	layer	with	a	depth	of	1.9	m
was	measured	at	11.5	Ωm,	and	that	of	the	second	layer,	from	a	depth	of	1.9	m	to	infinity,	was
345	Ωm.	The	 steady-state	 resistance	of	a	vertical	grounding	electrode	with	a	 length	of	1	m
was	measured	to	be	9.4	Ω	by	a	Yokogawa	resistivity	meter,	and	that	with	the	length	of	1.5	m
was	7.1	Ω.

7.4.1.2				Measuring	Instruments
1.	PG:	Noiseken	INS-4040,	input	impedance	50	Ω.
2.	Oscilloscope:	Tektronix	DPO-4104,	frequency	band	DC	to	1	GHz.
3.	Voltage	probe:	Tektronix	P6139A,	frequency	band	DC	to	500	MHz,	input	capacitance	8
pF.



4.	Current	probe:	Tektronix	CT-1,	frequency	band	25	kHz	to	1	GHz,	sensitivity	5	mV/mA.
5.	Resistivity	meter:	Yokogawa	M&C,	IM3244.

7.4.1.3				Measured	Results
Figure	 7.14	 illustrates	 the	 measured	 results	 together	 with	 the	 FDTD	 simulation	 results.
Transient	voltage	V1	of	the	inducing	electrode	(electrode	1)	shows	a	steep	voltage	rise	at	the
beginning	 due	 to	 the	 electrode	 inductance,	 and	 converges	 to	 the	 steady-state	 voltage
determined	 by	 the	 product	 of	 the	 steady-state	 grounding	 resistance	 and	 the	 current.	 The
steady-state	resistance	is	given	in	Equation	7.1.



FIGURE	7.14
Measured	and	FDTD	simulation	results	for	the	cases	in	Table	7.1.	(a)	V1	and	(b)	V2.	(1)	Case	1-1	(x1:	1	m,	x2:	1.5	m,	y:	1	m);
(2)	Case	1-2	(x1:	1.5	m,	x2:	1	m,	y:	1	m);	(3)	Case	2-1	(x1:	1	m,	x2:	1.5	m,	y:	2	m);	(4)	Case	2-2	(x1:	1.5	m,	x2:	1	m,	y:	2	m).

The	 steady-state	 resistance	 Rs	 evaluated	 by	 Equation	 7.1	 is	 given	 in	 Table	 7.1a.	 The
resistance	 in	 the	 table	 is	 9.1	Ω	 for	 the	 1-m	electrode,	 and	6.6	Ω	 for	 the	 1.5-m	electrode.	A
difference	of	Rs	from	the	measured	result	is	15%	at	most.	This	difference	seems	to	be	caused
by	(1)	the	fact	that	Sunde	neglects	the	earth	permittivity	in	the	resistance	formula,	and	(2)	the
nonhomogeneous	 real	 earth	 and	 the	 measuring	 system.	 In	 Reference	 28,	 a	 number	 of



measured	 results	were	 compared	with	 Sunde’s	 formulas	 and	 it	was	 concluded	 that	 Sunde’s
formulas	involve	20%–100%	difference	from	the	measured	results.
Induced	voltage	V2	 to	 electrode	2	becomes	negative	 at	 the	wavefront	 and	 converges	 to	 a

steady-state	after	some	oscillations.	The	negative	voltage	is	greater	with	a	separation	distance
of	2	m	than	with	that	of	1	m,	as	observed	in	Figure	7.14b.	The	negative	voltage	is	caused	by	a
potential	 rise	 of	 a	 voltage	 reference	 wire	 and	 a	 lead	 wire	 to	 a	 probe.	 The	 details	 of	 this
phenomenon	 are	 investigated	 in	 Appendix	 7A.1.	 As	 the	 separation	 distance	 between	 two
electrodes	becomes	larger,	the	induced	voltage	becomes	smaller.	Because	the	voltages	of	the
reference	wire	 and	 the	 lead	wire	 are	 not	 dependent	 on	 the	 separation	distance,	 the	negative
voltage	is	more	pronounced	in	the	case	of	greater	separation.
The	mutual	resistance	Rm	is	defined	by	Sunde	in	the	following	form	[3]:

where	 x1:	 the	 length	 of	 the	 inducing	 electrode	 (electrode	 1),	 x2:	 the	 length	 of	 the	 induced
electrode	(electrode	2),	and	y:	separation	distance.
The	mutual	resistance	Rm	evaluated	by	Equation	7.14	is	given	in	Table	7.1b.	A	difference	of

30%–50%	is	observed	between	the	measured	results	and	Rm	in	Equation	7.14.
Figure	7.15a	shows	the	measured	results	of	induced	voltage	V2	for	Cases	1-1	and	1-2,	and

Figure	7.15b	for	Cases	2-1	and	2-2.	The	results	agree	with	each	other	except	for	the	negative
voltage	at	around	t	=	20	ns,	and	thus,	the	symmetry	between	the	two	electrodes	is	clear.

7.4.1.4				Experiments	and	FDTD	Simulations

7.4.1.4.1				Simulation	Conditions
Figure	7.16	shows	a	working	space	for	an	FDTD	simulation.	The	dimensions	of	the	space	are
x	=	5.0	m,	y	=	6.0	m,	z	=	4.1	m,	and	 the	cell	 size	 is	0.02	m.	Liao’s	 second-order	absorbing
boundary	is	set	at	the	boundaries	of	the	working	space.	The	soil	is	modeled	by	two	layers,	the
upper	layer	with	resistivity	of	11.5	Ωm	to	a	depth	of	1.9	m,	and	the	lower	layer	with	resistivity
of	345	Ωm	from	a	depth	of	1.9	m.	The	relative	permittivity	is	taken	to	be	10.	The	grounding
electrodes	are	assumed	to	be	a	perfect	conductor,	and	are	arranged	in	the	same	manner	as	the
experimental	 setup.	 The	 current	 lead	 wire	 and	 the	 measuring	 system	 are	 represented	 as	 a
conductor	with	a	radius	of	1	mm,	covered	by	vinyl	with	a	thickness	of	0.5	mm	by	a	thin-wire
model	 [38].	 A	 current	 waveform	 in	 Figure	 7.13	 is	 applied	 to	 the	 top	 of	 the	 electrode	 as
illustrated	in	Figure	7.16.	The	time	step	Δt	of	an	FDTD	simulation	is	taken	to	be	0.027	ns,	and



the	maximum	observation	time	is	1000	ns.	VSTL	(Visual	Surge	Test	Lab)	[39]	is	used	for	the
FDTD	simulation.

FIGURE	7.15
Symmetry	of	mutual	coupling.	(a)	y	=	1	m	and	(b)	y	=	2	m.

FIGURE	7.16
FDTD	simulation	setup.

7.4.1.4.2				Comparison	with	Measured	Results
Figure	7.14	shows	measured	voltage	waveforms	for	(a)	Case	1-1,	(b)	Case	1-2,	(c)	Case	2-1,
and	 (d)	 Case	 2-2,	 respectively	 together	 with	 simulation	 results.	 Figure	 7.17	 shows	 the
simulation	 results	 for	Case	1-1	up	 to	Tmax	=	1000	ns.	 It	 is	 observed	 that	 the	voltage	 is	 in	 a
steady	state	at	t	=	200	ns.	Thus,	the	results	in	Figure	7.14	are	shown	only	for	the	time	of	200
ns.	 Table	 7.1	 summarizes	 the	 transient	 and	 steady-state	 voltages,	 and	 self-resistance	Rs	 and
mutual	resistance	Rm	of	the	electrode	calculated	by	Sunde’s	formulas	given	in	Equations	7.1
and	7.4.



FIGURE	7.17
FDTD	simulation	results	for	Case	1-1	(Tmax	=	1	µs).	(a)	V1	and	(b)	V2.

We	can	observe	in	Figure	7.14	and	Table	7.1	that	the	simulation	results	agree	well	with	the
measured	results,	with	the	exception	of	the	negative	voltage	in	V2.	(This	detail	is	explained	in
Appendix	7A.1.)	Therefore,	FDTD	simulation	can	be	used	to	investigate	the	mutual	coupling
between	the	vertical	grounding	electrodes	in	the	following	section.

7.4.1.5				A	Study	of	Mutual	Coupling	by	FDTD	Simulations

7.4.1.5.1				Simulation	Conditions
Figure	 7.18	 illustrates	 a	 working	 space	 for	 an	 FDTD	 simulation.	 The	 dimensions	 of	 the
working	space	are	x	=	40	m,	y	=	30	m,	and	z	=	20.2	m	with	the	cell	size	Δs	=	0.1	m.	The	soil
resistivity	is	taken	to	be	ρ	=	100	Ωm	and	the	relative	permittivity	εr	=	10.	An	electrode	voltage
is	 calculated	 by	 integrating	 the	 electric	 field	 from	 the	 absorbing	 boundary	 without
considering	 a	measuring	 system.	The	 remaining	 conditions	 are	 the	 same	 as	 those	 given	 in
Section	 7.4.1.4.	 Simulations	 are	 carried	 out	 by	 varying	 the	 electrode	 length	 x1	 and	 x2	 and
separation	distance	y	from	1	to	10	m.	A	current	source	with	the	waveform	of	Figure	7.19	 is
applied	through	5	kΩ	from	the	top	of	the	lead	wire.

7.4.1.5.2				Relation	between	Inducing	Electrode	Length	and	Induced	Voltage
Figure	7.20	shows	the	FDTD	simulation	results	when	the	separation	distance	y	from	1	to	10	m
with	the	length	x2	=	1	m	of	electrode	2	(the	induced	electrode)	is	varied.	Figure	7.21	shows	the
simulation	result	with	x2	=	1	m	for	x1	=	1–10	m.	Table	7.2	summarizes	the	results.
It	 is	 clear	 from	Figure	 7.20b	 that	 the	 induced	 voltage	V2	 becomes	 smaller	 as	 separation

distance	y	becomes	greater.	This	characteristic	is	the	same	as	that	of	an	overhead	line.	On	the
other	 hand,	 voltages	 V1	 and	V2	 become	 smaller	 as	 the	 electrode	 length	 x1	 increases.	 It	 is
reasonable	that	V1	decreases	as	x1	increases,	because	the	electrode	impedance	decreases	as	x1
increases	as	was	demonstrated	in	Equation	7.1.	This	characteristic	is	the	basis	of	grounding.
However,	the	initial	rise	of	the	voltage	is	kept	somewhat	independent	of	the	electrode	length,
because	of	the	electrode	inductance.



FIGURE	7.18
A	model	circuit	for	FDTD	simulation.

FIGURE	7.19
Applied	current	waveform.

It	is	observed	in	Figure	7.21b	that	the	induced	voltage	V2	at	t	=	1	µs	is	decreased	by	60%	in
the	case	of	x1	=	10	m	from	that	in	the	case	of	x1	=	1	m.	However,	the	peak	value	is	relatively
unchanged,	as	we	saw	with	V1.
For	y	greater	than	5	m,	no	significant	influence	of	the	electrode	length	is	observed.
In	 summary,	 the	 induced	 voltage	 is	 noticeably	 influenced	 by	 the	 separation	 distance,	 and

tends	 to	be	decreased	 inversely	proportional	 to	 the	electrode	 length	unless	 the	separation	 is
not	large.



FIGURE	7.20
Effect	of	separation	distance	y.	(a)	V1	at	electrode	1	and	(b)	V2	at	electrode	2.	(1)	x1	=	x2	=	1	m,	(2)	x1	=	5	m,	x2	=	1	m,	and
(3)	x1	=	1	m,	x2	=	5	m.

7.4.1.5.3				Difference	from	an	Overhead	Conductor
Figure	 7.20	 shows	 the	 simulation	 results	 for	 varying	 the	 separation	 distance	 y.	 It	 has	 been
made	 clear	 that	 the	 steady-state	 induced	 voltage	 is	 inversely	 proportional	 to	 the	 electrode
length,	as	seen	in	Figures	7.20	and	7.21.	However,	the	induced	voltage	in	an	overhead	line	is
proportional	to	the	line	length.

The	electrostatic	(capacitive)	induced	voltage	is	independent	of	the	line	length:



FIGURE	7.21
Effect	of	electrode	length	x1	(x2	=	1	m	).	(a)	V1,	(b)	V2	with	y	=	1	m,	(c)	V2	with	y	=	2	m,	(d)	V2	with	y	=	5	m,	and	(e)	V2	with
y	=	10	m.

where	zm:	mutual	impedance	(Ω/m),	x:	line	length,	I0:	inducing	current,	V1:	inducing	voltage,
C12:	mutual	capacitance	(F/m),	and	C2:	capacitance	of	the	induced	line	to	the	soil	(F/m).
Let	 us	 investigate	 the	 mutual	 resistance	 of	 grounding	 electrodes	 in	 Equation	 7.14.	 By

assuming	x1	=	x2	=	x,

It	should	be	clear	in	the	above	equation	that	the	resistance	is	inversely	proportional	to	the
electrode	 length.	 It	 is	 the	 same	 for	 self-resistance.	This	 characteristic	 is	 exactly	opposite	 to
that	of	an	overhead	line,	and	is	the	basic	principle	of	the	grounding	electrode.



TABLE	7.2
Parameters	Used	for	FDTD	Simulations	and	Simulation	Results

When	the	separation	y	becomes	very	large,	Equation	7.17	becomes

The	above	result	indicates	that	the	induced	voltage	and	the	mutual	resistance	are	inversely
proportional	to	y.	Thus,	the	electrode	length	has	no	influence.
The	reason	for	 this	significant	difference	between	an	 insulated	conductor	 (overhead	 line)

system	and	a	grounding	system	is	that	currents	flowing	into	the	grounding	electrode	penetrate
soils	and,	after	a	certain	distance,	no	current	flows	through	the	electrode.	This	phenomenon
has	 been	 experimentally	 confirmed	 in	 Reference	 23.	 Correspondingly,	 it	 is	 shown	 in
Reference	26	 that	 a	grounding	electrode	can	be	 regarded	as	 an	open-circuited	conductor.	 It
should	 be	 noted	 that	 there	 are	 inductive,	 capacitive,	 and	 conductive	 coupling	 between	 the
grounding	electrodes,	while	only	the	former	two	exist	in	the	isolated	conductor	system.	This
fact	 is	 a	cause	of	 the	difference	observed	between	 the	grounding	 electrode	 and	 the	 isolated



conductor	 system	 and,	 because	 of	 this,	 the	 grounding	 electrode	 shows	 a	 traits	 of	 a
nonuniform	conductor	[26].

7.4.1.5.4				Reciprocity	between	the	Electrodes
Figure	7.22	shows	 the	simulation	 results	of	 induced	voltage	V2	 for	 two	different	electrodes
lengths,	that	is,	x1	=	5	m	and	x2	=	1	m	(Cases	311–314)	with	y	=	1–10	m,	together	with	Cases
131–134	 (x1	 =	 1	 m,	 x2	 =	 5	 m).	 It	 is	 clear	 that	 the	 voltages	 of	 the	 inducing	 and	 induced
electrodes	 are	 the	 same	 for	 the	 different	 electrode	 lengths,	 that	 is,	 there	 exists	 reciprocity
between	the	electrodes,	just	as	with	an	insulated	conductor	system.

7.4.1.5.5				Effect	of	the	Separation	Distance
Figure	 7.23	 shows	 the	 simulation	 results	 of	 induced	 voltage	V2	 for	 varying	 the	 separation
distance	y.	 It	can	be	seen	that	 the	induced	voltage	is	 inversely	proportional	 to	the	separation
distance,	which	is	the	same	as	an	isolated	conductor	system.

FIGURE	7.22
Comparison	between	x1	=	1	m,	x2	=	5	m	and	x1	=	5	m,	x2	=	1	m.

FIGURE	7.23
Characteristic	of	the	induced	voltage	at	1	µs	versus	the	separation	distance	(x2	=	1	m).



7.4.1.5.6				Effect	of	Relative	Soil	Permittivity
Figure	7.24	 shows	 induced	voltage	V2	 for	 εr	 =	 30	 and	x1	 =	x2	 =	 1	m.	When	 the	 separation
distance	y	 is	greater	 than	2	m	no	influence	of	permittivity	 is	observed,	as	 in	Figure	7.20.1b.
Figure	7.25	shows	the	propagation	velocity	for	the	soil	relative	permittivity	εr	=	1,	10,	and	30.
The	propagation	velocity	v	is	evaluated	by

where	τ:	time	of	voltage	V2	appearance	at	the	electrode	top.
It	is	observed	that	the	velocity	becomes	independent	of	soil	permittivity	for	the	separation

distance	greater	than	6	m	in	Figure	7.25.
In	the	FDTD	simulations,	the	intrinsic	propagation	constant	is	defined	as	 	by	(σ:

soil	conductivity,	ε	=	εr	ε0:	soil	permittivity,	µ:	soil	permeability,	and	ω:	angular	frequency).
Thus,	 the	 propagation	 velocity	 is	 dependent	 on	 σ,	 ε,	 and	 µ.	When	 the	 separation	 distance
becomes	 large,	 currents	 in	 the	 soil	 concentrate	 at	 ground	 level,	 and	 thus,	 the	 propagation
velocity	converges	to	the	light	velocity	in	free	space.

FIGURE	7.24
Transient	voltage	V2	with	εr	=	30	(x1	=	x2	=	1	m).



FIGURE	7.25
Time	delay	characteristic	with	εr	=	1,	10,	and	30,	○:	εr	=	1,	×:	εr	=	10,	and	△:	εr	=	30.

7.4.2				Theoretical	Analysis	of	Transient	Response
A	model	circuit	of	a	grounding	electrode	composed	of	a	RC	parallel	circuit	and	a	distributed-
parameter	line	is	illustrated	in	Figure	7.26a	[28].	The	impedance	ωL	being	far	greater	than	the
resistance	R	of	the	distributed	line	in	general,	the	model	circuit	of	Figure	7.26a	is	simplified
as	Figure	7.26b	where	L0	is	the	series	inductance	of	the	distributed	line	and	L′	is	the	inductance
of	a	lead	wire	when	measuring	an	electrode	voltage	v′(t).	In	practice,	a	measured	voltage	v(t)
by	 a	 voltage	 probe	 differs	 from	 the	 electrode	 voltage	v′(t).	 This	 is	 true	 for	 any	 voltage	 of
power	equipment	in	a	substation	and/or	a	power	facility.	The	main	concern	of	this	section	is
v(t)	rather	than	v´(t).

7.4.2.1				Analytical	Formula	of	Electrode	Voltage
1.	Impulse	current	application
An	electrode	voltage	is	derived	when	the	following	impulse	current	is	applied:



FIGURE	7.26
A	simple	equivalent	circuit	of	a	grounding	electrode.	(a)	An	original	model	and	(b)	a	simplified	model.

The	frequency	response	of	the	above	is	given	by	using	Laplace	operator	s.

The	impedance	seen	from	the	sending	end	in	Figure	7.26b	is

where	γ	=	1/τ,	τ	=	RC:	time	constant.
A	 product	 of	 Equations	 7.21	 and	 7.22	 gives	 V(s),	 that	 is	 transformed	 into	 a	 time

domain.	Thus,



It	 is	 clear	 in	 the	 above	 equations	 that	 measured	 voltage	 v(t)	 consists	 of	 three
exponential	 functions,	 exp(−αt),	 exp	 (−βt),	 and	 exp(−γt).	 α	 and	 β	 are	 dependent	 on	 the
applied	current,	and	γ	=	1/τ,	is	a	function	of	R	and	C	that	represents	the	soil.

2.	The	case	of	α	=	0
For	simplicity,	when	α	=	0	in	Equation	7.20	is	assumed,	that	is,	i(t)	=	 I0{1	−	exp(−βt)},
the	following	result	is	obtained:

where	δ(t)	=	∞:	t	=	0,	δ(t)	=	0:	t	≠	0	Dirac’s	delta	function.
The	 second	 term	 of	 Equation	 7.26	 is	 produced	 by	 inductance	 L	 of	 the	 circuit	 and

corresponds	to	Equation	7.24	when	an	impulse	current	is	applied.	The	maximum	voltage
of	vL(t)	appears	theoretically	at	t	=	0,	as	is	clear	from	Equations	7.24,	7.25	and	7.26.	In	the
circuit	of	Figure	7.26a	with	a	distributed-parameter	 line,	 a	voltage	given	by	L’I0δ(t)	 is
produced	by	 the	 inductance	L’	 of	 a	 lead	wire.	 In	 reality,	 the	maximum	voltage	appears
after	 t	 =	 0	 because	 of	 the	 surge	 impedance	 of	 the	 lead	wire	 and	 the	 resistance	 of	 the
circuit.

Equation	7.27	corresponds	to	a	charged	voltage	of	a	RC	circuit,	as	is	well-known.	Its
maximum	voltage	is	given	by

VRmax	=	VR(„)	=	RI0	for	t	=	∞

7.4.2.2				Transient	Voltage	Waveform

7.4.2.2.1				Maximum	Current	IP	and	Time	of	Its	Appearance	Ti



By	substituting	zero	into	the	time	derivative	of	Equation	7.20,	the	maximum	current	IP	and	the
time	of	its	appearance	Ti	are	given	as

In	general,	the	above	Ti	is	greater	than	the	wavefront	duration	Tf	of	an	impulse	waveform
expressed	by	double	exponential	functions.

For	example,	in	the	case	of	Tf	=	1	µs	and	Tt	=	70	µs,	that	is,	a	standard	impulse	waveform,
Ti	in	Equation	7.29	is	given	as	Ti	=	1.8	µs.

7.4.2.2.2				Maximum	Value	of	υL(t)	and	Time	of	Its	Appearance	TV
From	the	time	derivative	of	Equation	7.20,	the	following	result	is	obtained:

VLP	=	LI0{βexp(−βTV2	)	−	αexp(−αTV2	)}	<	0

It	is	interesting	to	note	that

The	 above	 relation	 is	 reasonable	 for	VL(t)	 =	Ldi/dt.	 The	 following	 result	 is	 clear	 from
Equation	7.24	at	t	=	0:

It	is	readily	determined	from	Equations	7.31	and	7.33	that

VL(0)	>	|VLP|

The	 above	 relation	 means	 that	 VL(t)	 takes	 its	 maximum	 value	 at	 t	 =	 0.	 This	 is	 just
theoretical.	In	reality,	VL(t)	becomes	the	maximum	at	t	=	TV1	>	0,	as	in	Equation	7.28.



7.4.2.2.3				Maximum	Value	of	vR(t)	and	the	Time	of	Its	Appearance

As	is	clear	from	Equation	7.25,	vR	is	given	as	a	sum	of	vR1	due	to	resistance	R	and	vR2	with	the
time	constant	τ	determined	by	capacitance	C.	Because	ατ	and	ατ	are	far	smaller	than	1,	A	and	B
become	nearly	equal	to	1.	Thus,

The	 above	 equation	means	 that	 the	 transient	 response	of	 the	RC	circuit	 in	Figure	 7.26	 is
dominated	by	R,	and	the	maximum	voltage	VRmax	and	its	time	of	appearance	are	given	by

7.4.2.2.4				Maximum	Value	of	v(t)	and	the	Time	of	Appearance
Considering	 VR(0)	 and	 Equation	 7.32,	 the	 maximum	 value	 of	 v(t)	 and	 the	 time	 of	 its
appearance	are	given	either	by	Equations	7.33	or	7.35.

FIGURE	7.27
Qualitative	wave-shapes	of	transient	current	and	voltages.

7.4.2.2.5				Transient	Voltage	Waveforms
Considering	the	above,	the	voltage	waveform	is	qualitatively	drawn	from	Equations	7.23	and
7.26	as	in	Figure	7.27.
The	dotted	line	in	Figure	7.27	is	the	current	given	in	Equation	7.20.

7.4.2.3				Analytical	Investigation
The	 first	 term	 of	Equation	 7.26	 becomes	 infinite	when	 a	 pulse	waveform	 is	 applied	 to	 the
circuit	in	Figure	7.26b.	However,	 this	 is	 just	mathematical.	 In	reality,	v′(t)	 in	Figure	7.26a	at
around	t	=	0	is	determined	by



It	 is	 not	 easy	 to	 obtain	 the	 transient	 voltage	 in	 Figure	 7.26a	 because	 of	 the	 distributed-
parameter	 line.	Assuming	 that	 a	 pulse-like	 current	 (α	 =	 0	 in	 Equation	 7.20)	 is	 applied,	 the
transient	voltages	for	0	≤	t	≤	2	T	(T	=	x/c:	traveling	time	along	an	electrode	with	the	length	of
x)	are	obtained	analytically	by	adopting	a	traveling-wave	theory

where	t′	=	t	−	T.
The	 above	 solution	 involves	 δ(t)	 similarly	 to	Equation	 7.26	 in	 the	 case	 of	 Figure	 7.26b.

That	is,	v(0)	at	the	measured	position	becomes	very	large	due	to	L′I0{δ(0)	+	β},	although	v′(0)
at	the	sending	end	of	the	electrode	is	Z0i(0).	Again,	this	is	merely	mathematical,	because	there
exists	no	ideal	current	source.	In	practice,	a	current	source	is	represented	by	a	voltage	source
and	 a	 large	 resistance.	Also,	 a	 lightning	 channel	 involves	 an	 impedance.	 Thus,	 the	 internal
impedance	of	a	current	source	representing	a	lightning	current	can	never	be	infinite.	Thus,	the
term	L′I0δ(0)	never	appears	in	reality,	but	v′(0)	is	roughly	given	by	βL′	I0.	This	is	also	true	in
Figure	7.26b.
In	summary,	Figure	7.26b	gives	the	same	solution	as	that	in	Figure	7.26a	if	 the	time	delay

due	 to	 traveling-wave	propagation	along	a	distributed	 line	 is	neglected.	Thus,	Figure	 7.26b
can	be	used	as	an	approximation	of	Figure	7.26a.
In	 Figure	 7.26a,	 if	 a	 lead	 wire	 is	 represented	 by	 its	 surge	 impedance	 	 rather	 than	 the

inductance,	v(t)	at	around	t	=	0	is	given	by

The	above	surge	impedance	 	is	not	easily	obtained	because	of	its	finite	length.	Instead,	
	is	approximately	given	from	the	formulation	explained	above	by

From	 the	above	 investigation,	 the	characteristics	of	 transient	voltage	v(t)	of	 a	grounding
electrode	are	theoretically	summarized	as	follows:



1.	The	maximum	voltage	appears	due	to	an	inductive	component	of	a	circuit	including	a
lead	wire	inductance	as

VLmax	–	(β	−	α)LI0	at	t	=	T1	–	Tv1

2.	The	following	voltage	appears	due	to	R	and	C	components	of	the	circuit:

VRmax	–	RI0{exp(−αTi)	−	exp(−βTi)}	at	t	≈	Ti

3.	The	maximum	electrode	voltage	is	determined	either	by	VLmax	when	the	inductance	is
relatively	large	or	by	VRmax	when	R	is	relatively	large.	Because	of	Tv1	>	Ti	in	general,	the
electrode	shows	an	inductive	characteristic	when	VLmax	gives	the	maximum	electrode
voltage,	and	a	resistive/capacitive	characteristic	when	VRmax	becomes	the	maximum.

7.4.2.4				Circuit	Parameters

7.4.2.4.1				Electrode
To	evaluate	the	above-explained	characteristics,	the	well-known	Sunde’s	steady-state	formulas
described	in	Section	7.3.1.1	are	adopted	for	R	and	C	of	the	electrode.

1.	Vertical	electrode

2.	Horizontal	electrode

where
x:	electrode	length
r:	radius
h:	buried	depth



	
Time	constant	τ	of	the	RC	circuit	is	thus	obtained.

It	is	clear	from	the	above	equation	that	τ	=	RC	is	independent	of	the	shape	and	configuration
of	an	electrode,	but	is	determined	only	by	the	soil	resistivity	ρ	and	permittivity	ε.	This	is	the
assumption	and/or	 the	 condition	when	Sunde	derived	 resistance	R	 and	capacitance	C	 of	 the
electrode.	The	same	is	applied	to	a	propagation	velocity	c	along	the	electrode:

The	above	formula	is	quite	often	used	to	determine	the	soil	permittivity:

Equation	 7.44	 corresponds	 to	 the	 propagation	 constant	 in	 the	 case	 of	 neglecting	 series
resistance	R	and	shunt	conductance	G	of	the	electrode,	and	series	impedance	Z	of	the	electrode
in	this	case	becomes

Sunde	gave	the	following	inductance:

The	 above	 equation	 corresponds	 to	 Equation	 7.46	 under	 the	 assumption	 that	 the	 buried
depth	h	 =	 r/2	where	 r	 is	 the	 electrode	 radius,	 and	 the	 inductance	 becomes	 one	 half	 of	 that
buried	completely	underground.
In	 general,	 the	 soil	 resistivity	 ranges	 from	 10	 to	 5000	 Ωm	 and	 the	 relative	 permittivity

ranges	from	1	to	40.	Then,	the	time	constant	ranges	are	in	the	following	region:

7.4.2.4.2				Current	Waveform
The	 coefficients	 α	 and	 β	 of	 the	 current	 waveform	 in	 Equation	 7.20	 are	 determined	 by	 its
wavefront	duration	Tf	and	tail	Tt	in	the	following	form:



where	a	and	b	are	given	as	a	function	of	k	=	Tt/Tf	in	a	book	of	High-Voltage	Engineering,	and
range	in	the	following	region:

0.5	<	a	<	1.0,	1.8	<	b	Ÿ	3.2

Assuming	that	0.01	µs	≤	Tf	≤	5	µs,	1	µs	≤	Tt	≤	100	µs,	then	α	and	β	are	given	by

7.4.2.4.3				Coefficients	of	Voltage	Formula
From	Equations	7.48	and	7.49,	the	following	relation	is	obtained:

Thus,	0.01	µs	≤	Tf	≤	5	µs:	βτ	≪	1

It	 is	 confirmed	 that	A	 ≈	B	 ≈	 1	 in	Section	7.4.2.2	 and	 thus,	 the	 theoretical	 investigation	 in
Section	7.4.2.3	is	appropriate.

7.4.2.5				Wave	Propagation	Characteristic
Based	 on	 Equations	 7.42	 and	 7.46,	 the	 wave	 propagation	 characteristic	 on	 a	 grounding
electrode	is	discussed.

7.4.2.5.1				Surge	Impedance	Zs
At	 the	 time	nearly	 equal	 to	 zero,	 or	 in	 a	 very	high-frequency	 (VHF)	 region,	 the	 following
surge	impedance	is	given	as	an	approximation	of	characteristic	impedance	Z0(ω)	[40]:

7.4.2.5.2				Characteristic	Impedance	Z0
The	characteristic	impedance	Z0	is	defined	as	a	function	of	frequency	by



The	 series	 resistance	R0	 being	 far	 smaller	 than	 ωL0,	 the	 following	 equation	 is	 obtained
from	Equations	7.42	and	7.46:

where	σ	=	1/ρ.
The	above	equation	is	approximated	by

where

7.4.2.5.3				Propagation	Constant	Γ
Neglecting	the	series	resistance	R0,

The	above	equation	is	approximated	as

where	 .
It	is	observed	in	Equations	7.54	and	7.56	that	the	surge	impedance	and	propagation	velocity

are	functions	of	the	soil	permittivity	in	a	frequency	region	higher	than	the	critical	frequency
fe.	 However,	 in	 a	 frequency	 region	 lower	 than	 fe,	 those	 are	 dependent	 only	 on	 .	 This	 is
reasonable	 because	 ωεe	 ≪	 σe	 =	 1/ρe	 for	 f	 ≪	 fe.	 Thus,	 when	 discussing	 a	 transient
characteristic	 for	 f	≪	 fe,	 the	 effect	 of	 soil	 permittivity	 on	 electrode	 capacitance	C	 can	 be
neglected	approximately.	This	frequency	region	is	given	as

4.5MHz	<	f	<	180MHz	for	ρe	=	100	Ωm,	εr	=	1	~	40



0.22MHz	<	f	<	9MHz	for	ρe	=	2000	Ωm,	εr	=	1	~	40

FIGURE	7.28
Approximate	 frequency	 responses	 of	 characteristic	 impedance	 and	 propagation	 velocity.	 (a)	 Surge	 impedance	 Z0e	 and	 (b)
velocity	c.

Considering	 the	above	equation,	Figure	7.28	 is	drawn	from	Equations	7.54	and	7.55.	 The
results	 in	 the	 figure	 agree	 with	 measured	 results	 in	 References	 26	 and	 28,	 and	 thus,	 the
analytical	 investigation	 in	 this	 section	 is	 confirmed	 to	 be	 adequate.	 The	 characteristic
impedance	is	dependent	on	the	coefficient	K	that	is	a	function	of	electrode	length	x,	radius	r,
and	buried	depth	h.	However,	K	ranges	from	6	to	7	for	10	≤	x	≤	100	m,	2	≤	r	≤	10	mm,	and	0.5
≤	d	≤	2	m.	Therefore,	it	is	clear	that	K	is	significantly	dependent	on	ρ	and	f.	The	propagation
constant	is	not	dependent	on	K.

7.4.2.6				Concluding	Remarks
This	section	derives	an	analytical	equation	for	the	transient	voltage	and	current	at	the	sending
end	of	a	grounding	electrode	by	adopting	an	approximate	circuit	of	the	electrode.	Based	on
the	 equation,	 transient	 voltage	 and	 current	 responses	 of	 the	 electrode	 are	 explained
analytically.
It	 is	 made	 clear	 that	 the	 so-called	 inductive	 characteristic	 of	 a	 grounding	 impedance	 is

caused,	in	many	cases,	by	the	inductance	of	a	current	lead	wire	used	in	the	measurement.	The
wave	propagation	 characteristic	 on	 the	 electrode	 is	 determined	by	 the	 soil	 permittivity	 in	 a
VHF	 region,	 but	 is	 determined	 by	 	 in	 a	 lower-frequency	 region,	 where	 ρ	 is	 the	 soil
resistivity	 and	 f	 is	 the	 frequency.	 Although	 the	 characteristic	 impedance	 of	 an	 electrode	 is
proportional	to	ln	 	where	r	is	the	electrode	radius,	h	the	buried	depth,	and	x	the	length,	the
effect	of	 	is	more	pronounced.

7.4.3				Investigation	of	Various	Measured	Results

7.4.3.1				Test	Circuit



Figure	 7.29	 illustrates	 a	 typical	 circuit	 to	 measure	 a	 transient	 response	 on	 a	 grounding
electrode	generalized	 from	 those	 in	References	26	and	40,	41,	42,	43,	44	 and	45.	 In	 all	 the
collected	cases,	including	a	scaled-down	experiment	and	a	real	field	test,	the	electrode	length
x	ranges	from	2	to	100	m.	The	electrode	radius	r	is	from	2	to	10	mm	with	a	hard	copper	rod
in	most	cases.	The	buried	depth	h	ranges	from	0.1	to	1	m.	As	the	source,	a	current	IG	was	used
in	 the	 case	 of	 a	 high-amplitude	 current,	 and	 a	 PG	 was	 often	 used	 in	 the	 case	 of	 a	 low-
amplitude	current.	In	most	experiments,	a	resistance	of	some	kΩ	is	connected	to	the	IG	or	PG
to	 represent	 a	 lightning	 current.	As	 a	 current	 lead	wire,	 a	 strand	 copper	wire	 covered	with
vinyl	 insulation	layer	(IV)	was	most	common,	but	a	coaxial	cable	was	occasionally	used.	In
all	 the	 measured	 results,	 the	 soil	 resistivity	 was	 clearly	 specified,	 but	 only	 a	 few	 cases
specified	the	soil	permittivity.

FIGURE	7.29
Experimental	circuit.

7.4.3.2				Measured	Results
Table	7.3	summarizes	the	experimental	conditions	and	results	in	the	collected	data	[41,	42,	43,
44–45].	The	parameters	in	the	table	are	as	follows:

1.	Current
IP:	maximum	value,	Ti:	the	time	of	IP	appearance

Tf/Tt:	wavefront	and	wave	tail	duration	following	the	30/90%	definition

Ts:	maximum	observation	time	specified	in	the	reference

i(t):	current	amplitude	at	time	t
In	some	cases,	the	wave	tail	duration	Tt	is	not	given,	that	is,	Tt	>	Ts.	In	such	a	case,	Tt	is

determined	by	extrapolation.
2.	Voltage
Tv:	the	time	of	the	first	peak	appearance	of	a	voltage	waveform,	which	is	not	necessarily
the	time	corresponding	to	the	maximum	voltage

v(t):	voltage	at	time	t

In	 Table	 7.3,	 all	 the	 voltages	 and	 currents	 except	 IP	 are	 normalized	 by	 IP,	 and	 thus
correspond	 to	 the	 case	 in	which	 a	 unit	 of	 1	A	 is	 applied.	Based	 on	 the	 theory	 explained	 in



Section	7.4.2,	estimated	various	parameters	are	given	in	Table	7.4.	In	the	table,	the	parameters
are	defined	as	follows:

TABLE	7.3
Test	Conditions	and	Results.



Here,	the	following	approximation	is	adopted:

In	this	case,	L	is	given	as

As	is	clear	from	Equation	7.58,	(β–α)	corresponds	to	1/Ti	or	1/Tv	in	Equation	7.59,	and	also
corresponds	to	δ(t)	when	a	pulse	current	is	applied.	If	k	=	β/α	>	70,	β	becomes	much	greater
than	α,	and	Equation	7.58	is	approximated	by

7.4.3.3				Discussion
Based	 on	 the	 analytical	 study	 in	 the	 previous	 sections,	 the	 characteristic	 of	 a	 grounding
electrode	are	estimated	as	follows:

1.	Inductive:	Vmax	=	VLmax	>	VRmax,	and	Tv	<	Ti	(or	Rv	>	Ri,	Rs	and	Tv	<	Ti)
2.	Resistive:	Vmax	=	VRmax	>	VLmax,	Vs	(Ri	>	Rv,	Rs)
3.	Capacitive:	Vmax	=	Vs	>	VLmax,	VRmax	(Rs	>	Rv,	Ri)

where

Vs	=	υ(Ts),	Rυ	=	R(Tυ),	Ri	=	R(Ti),	Rs	=	R(Ts)

TABLE	7.4
Estimated	Parameters	and	Characteristics.



Thus,	the	maximum	voltage	is	produced	predominantly	by	the	inductive	component	of	an
electrode	circuit	when	Tv	is	smaller	than	Ti,	and	the	voltage	converges	to	that	determined	by
the	electrode	resistance.	On	the	contrary,	when	the	RC	component	is	dominant,	the	maximum
voltage	appears	at	Tv	which	is	greater	than	Ti.	The	case	of	Tv	≈	Ti	corresponds	to	v	=	Ri,	and
thus	indicates	the	resistive	characteristic.	Tv	being	greater	than	Ti	means	that	the	time	constant
τ	=	RC	is	greater	and,	thus,	the	influence	of	the	capacitance	is	dominant,	that	is,	the	electrode
impedance	is	capacitive.
The	above	theoretical	 investigation	agrees	with	most	of	the	measured	results	 in	Table	7.3

and	 7.4	 and,	 thus,	 a	 model	 circuit	 in	 Figure	 7.26b	 is	 useful	 to	 analyze	 the	 impedance
characteristics	of	a	grounding	electrode.
The	characteristics	of	some	cases	in	Table	7.4	are	not	clear,	and	are	explained	as	follows:

1.	Only	cases	H4-1	and	V2-2	show	Tv	<	Ti	but	Rv	>	Rs	>	Ri,	and	a	capacitive	characteristic	in
a	longer	time	period.	All	other	cases	show	an	inductive	characteristic	when	Tv	<	Ti.



2.	Cases	H1	and	H6-2	show	Ti	≤	Tv	and	a	capacitive	characteristic	when	Rs	>	Rv,	Ri,	while
H1-1	to	H1-3	look	resistive	for	Rv	≈	Rs.	Case	H1-4	shows	both	inductive	and	capacitive
characteristics	for	Rv	>	Rs	>	Ri.

In	the	case	of	an	impulse-like	current	waveform,	v(t)	starts	to	decrease	corresponding
to	a	current	decrease	for	t	>	Tf.	As	a	result,	Rs	becomes	smaller	than	Ri	and	Rv.	Thus,	it
becomes	 hard	 to	 observe	 a	 capacitive	 characteristic.	 In	 other	 words,	 the	 capacitive
characteristic	 is	 clearly	 observed	 only	 in	 the	 case	 of	 a	 step-function	 waveform	 of	 a
current.	The	above	observation	agrees	with	the	theoretical	analysis	in	Section	7.4.2.5.

3.	When	Tf	is	small,	β	becomes	large	and	vL	=	Ldi/dt	≈	BLI0.	Thus,	it	looks	inductive	except
for	Case	H-1.	However,	it	is	not	clear	if	inductance	L	is	due	to	an	electrode	or	a	lead	wire
when	measuring	the	voltage.	If	the	latter,	then	the	electrode	impedance	may	not	be
inductive.	In	this	case,	it	is	necessary	to	confirm	if	the	measured	result	is	correct,	and	to
carry	out	a	measurement	with	a	lead	wire	of	which	the	inductance	is	far	smaller	than	the
electrode	inductance.	For	example,	Case	H-7	in	Table	7.4	shows	an	inductive
characteristic	independently	of	the	electrode	radius	and	the	buried	depth.	Tf	of	Case	H-7
is	30	ns,	and	the	time	to	the	crest	is	about	10	ns.	The	derivative	of	the	current	at	this	time
period	is	di/dt	=	10	ns	=	0.5	A/10	ns	=	0.5	×	107.	Assuming	that	the	length	of	a	lead	wire
to	the	electrode	is	0.5–1	m,	which	yields	L′	=	0.5	µH,	the	voltage	produced	by	this
inductance	becomes	VL′	=	L′	⋅	di/dt	=	0.5	×	10−6	×	0.5	×	107	=	25	V.	When	this	voltage	is
deducted	from	the	peak	voltage	VLmax	in	Table	7.4,	the	inductive	characteristic	does	not
become	clearer.	If	the	length	is	1	m	and	L′	=	1	µH,	V′L	=	50	V.	Then	VLmax	≈	VRmax,	and
thus	it	becomes	resistive.	The	above	observation	has	indicated	that	the	electrode
impedance	in	Case	H-7	may	not	be	inductive.

7.4.3.4				Effect	of	Lead	Wire
To	confirm	 the	 theoretical	analysis	 in	Section	7.4.2	and	 the	observation	 in	Section	7.4.3,	 an
NEA,	 which	 is	 the	 most	 accurate	 method	 for	 analyzing	 a	 transient	 [38],	 is	 carried	 out	 by
adopting	an	FDTD	method	[20,39].
Figure	7.30	 illustrates	an	experimental	circuit	with	electrode	 length	x	=	8	m,	 radius	r	=	1

mm,	and	buried	depth	h	=	0.22	m.	The	soil	resistivity	was	measured	to	be	140	Ωm.	An	impulse
current	with	the	amplitude	I0	=	1	A	and	the	wavefront	duration	Tf	=	20	ns	is	applied.	To	make
an	 FDTD	 simulation	 easy,	 the	 same	 conductor	 as	 the	 electrode	 is	 used	 as	 a	 lead	wire	with
length	x1.	Figure	7.31	shows	a	comparison	of	 the	simulation	 results	 for	x1	=	0.22	m	with	 a
measured	result.	It	should	be	clear	that	the	FDTD	simulation	gives	a	satisfactory	accuracy.
Figure	7.32	shows	FDTD	simulation	results	for	x1	=	0.22,	0.5,	and	1.0	m.	It	is	clear	in	the

figure	 that	 the	 maximum	 voltage	 becomes	 greater	 and	 thus	 the	 inductive	 characteristic
becomes	more	noticeable	as	the	lead	wire	length	increases.



FIGURE	7.30
A	detail	of	an	experimental	setup.

FIGURE	7.31
Comparison	of	an	FDTD	simulation	with	measured	results:	r	=	1	mm,	electrode	length	x	=	8	m,	buried	depth	h	=	0.2	m,	ρ	=	140
Ωm,	and	lead	wire	length	x1	=	0.22	m.

FIGURE	7.32
Influence	of	the	lead	wire	length	x1	from	0.22	to	1.0	m.



FIGURE	7.33
Influence	of	the	lead	wire	length	for	ρ	=	2000	Ωm.

Figure	 7.33	 shows	 a	 simulation	 result	 for	 ρ	 =	 2000	 Ωm.	 As	 is	 well-known,	 electrode
impedance	tends	to	be	capacitive	in	the	case	of	a	higher	soil	resistivity,	and	thus	the	lead	wire
does	not	affect	the	characteristic.
Figure	7.34	shows	a	comparison	of	simulation	results	for	the	case	of	Tf	=	20	and	300	ns.	It

is	clear	that	the	inductive	characteristic	for	Tf	=	20	ns	is	no	longer	observed	for	Tf	=	300	ns.
Instead,	it	becomes	capacitive.	It	should	be	noted	that	the	voltage	at	t	=	500	ns	is	the	same,	24
V,	for	both	Tf	=	20	ns	and	300	ns.	The	observation	clearly	indicates	that	electrode	impedance
shows	an	inductive	characteristic	due	to	the	lead	wire’s	inductance	when	wavefront	duration	Tf
of	an	applied	current	is	small.

7.4.4				Reduction	of	Grounding	Impedance:	Effect	of	Electrode	Shape

7.4.4.1				Introduction

There	 are	 a	number	of	publications	 that	discuss	 the	 reduction	of	grounding	 impedances.	 In
recent	years	it	has	become	common	to	install	digital	circuits	not	only	in	power	system	control
equipment	 but	 also	 in	 buildings	 and	 home	 appliances.	 Thus,	 it	 becomes	more	 important	 to
reduce	 the	grounding	 impedances	 to	 guarantee	 reliable	 operation	of	 the	digital	 circuits	 for
both	steady	and	transient	states	as	observed	in	References	47,	48,	49	and	50.	From	the	above,
KEPCO	carried	out	a	series	of	field	tests	to	measure	the	grounding	impedances.



FIGURE	7.34
Influence	of	the	wavefront	duration

A	measured	result	involves	noise	due	to	mutual	coupling	between	a	current	lead	wire	and	a
voltage	 reference	 wire,	 and	 also	 the	 unknown	 parameters	 such	 as	 soil	 resistivity	 and
permittivity.	 An	 NEA	 method	 [38]	 can	 simulate	 a	 transient	 only	 by	 the	 geometrical	 and
physical	parameters	of	a	given	system,	and	thus,	the	NEA	method	is	very	effective	to	analyze
the	 transient	 responses	 of	 a	 grounding	 electrode	 buried	 in	 soil	 of	which	 the	 resistivity	 and
permittivity	are	unknown.
This	 section	 shows	 field	 test	 results	of	 transient	and	 steady-state	 responses	on	grounding

electrodes	with	various	shapes,	that	is,	a	vertical	rod,	a	rectangular	plate,	a	circular	plate,	etc.
[29].	The	field	tests	were	carried	out	 in	different	seasons	over	a	period	of	3	years	to	obtain
reliable	results.	Then,	NEA	simulations	were	carried	out	using	VSTL	[39]	that	is	based	on	an
FDTD	method.	A	comparison	with	the	measured	results	is	first	made	to	confirm	the	accuracy
of	 the	 VSTL.	 Then,	 the	 VSTL	 is	 applied	 to	 investigate	 the	 reduction	 of	 the	 grounding
impedances	with	various	electrodes.

7.4.4.2				Field	Measurements

7.4.4.2.1				Experimental	Setup
Field	 measurements	 were	 carried	 out	 three	 times	 in	 a	 test	 yard	 located	 at	 the	 foot	 of	 a
mountain	in	different	years	and	seasons.	The	test	field	is	placed	in	Hyogo	Prefecture,	Japan
and	owned	by	KEPCO.	The	soil	resistivity	of	the	test	yard	varies	from	80	to	200	Ωm.	Figure
7.35	 illustrates	 an	 experimental	 setup.	 A	 PG	 (PG1,	 2.6	 kV/rise	 time	 50	 ns)	 and	 a	 noise
simulator	 (PG2,	 1.9	 kV/rise	 time	 less	 than	 1	 ns)	 were	 used	 as	 a	 voltage	 source,	 and	were
terminated	by	a	matching	resistance	of	470	Ω	to	a	grounding	electrode	for	 the	PG.	The	PG
was	connected	to	a	test	electrode	through	a	resistance	of	2	kΩ	to	represent	a	lightning	current.
An	applied	current	was	measured	by	a	 surge	CT,	and	electrode	voltage	was	measured	by	a
voltage	probe.	The	specifications	of	the	PGs,	the	CTs,	and	the	probe	are	given	in	Table	7.5.	A
current	lead	wire	(IV2sq	50	m	+	AC22sq	90	m),	a	voltage	reference	wire	(IV2sq	150	m),	and



the	test	electrode	were	set	to	be	perpendicular	to	each	other.	The	shapes	of	the	test	electrodes
are	shown	in	Figure	7.36.

FIGURE	7.35
Circuit	configuration	of	experiments.	(a)	Overview	and	(b)	circuit	configuration.

7.4.4.2.2				Measured	Results
Table	7.6	 shows	 the	 shapes	 of	 tested	 electrodes	 and	 the	 corresponding	measured	 results	 of
peak	voltages	and	converged	voltages	at	the	end	of	the	measurement	(PG1:	t	=	4.5	µs,	PG2:	t	=
450	 ns)	 normalized	 by	 the	 peak	 current.	 Figures	7.37	 and	7.38	 show	measured	 current	 and
voltage	waveforms	in	the	cases	of	PG1	(Tf	≈	0.5	µs)	and	PG2	(Tf	≈	10	ns),	respectively.	It	is
observed	 in	Figure	7.37	 that	 the	grounding	 impedance	 is	mostly	 resistive.	 In	Figure	7.38,	 it
shows	a	capacitive	characteristic.	In	fact,	the	steady-state	resistance	Rg	measured	separately	is
greater	than	the	converged	value	at	t	=	450	ns	as	observed	in	Table	7.6b.



TABLE	7.5
Specifications	of	Voltage	Sources	and	Measuring	Instruments

Measuring
Equipment

Specifications

Voltage
source

(Pulse	Generator:	PG1)
Manufacturer:	Cosmotec,	maximum	output	voltage:	5	kV,
waveform:	0.05/100	µs,	power	capacity:	50	VA
(Noise	Simulator:	PG2)
Manufacturer:	NoiseKen,	model:	INS-4040,	maximum	output	voltage:	4	kV,
pulse	rise	time:	<1	ns,	maximum	pulse	width:	1	µs

Oscilloscope Manufacturer:	Tektronix,	model:	TPS2024,	isolated	channels:	4	ch,	sample
rate:	2	GS/s,	bandwidth:	DC	~200	MHz

Voltage
probe

Manufacturer:	Yokogawa	Electric,	model:	701944,	attenuation	ratio	100:1,
bandwidth:	DC	~400	MHz,	maximum	input	voltage:	1000	Vrms.	6000-V	peak

CT	(1) Manufacturer:	Pearson,	model:	2100,	output:	1	V/1	A,
rise	time:	<20	ns,	maximum	peak	current:	500	A,
option:	BNC	Cable	(50	Ω),	feed-through	terminal	(50	Ω)

CT	(2) Manufacturer:	Pearson,	model:	2877,	output:	1	V/1	A,
rise	time:	<2	ns,	maximum	peak	current:	100	A,
option:	BNC	Cable	(50	Ω),	feed-through	terminal	(50	Ω)

It	 is	 clear	 that	 the	 peak	 and	 converged	 (called	 “steady-state”	 hereafter)	 values	 of	 the
grounding	resistance	are	significantly	reduced	when	a	rectangular	plate	is	used	(Cases	2	and	3
in	Figure	7.36).	For	example,	the	peak	and	steady-state	resistances	of	Cases	2-1	and	3-1	(x	=	1
m)	are	reduced	to	1/2	to	1/3	of	those	of	the	rod	case,	Case	1-1.	The	steady-state	resistance	of
Case	6	is	half	of	that	of	Case	4-3	(pipe	electrode)	as	observed	in	Table	7.6b	and	Figure	7.38.
However,	the	circular	plate	used	in	Case	7	shows	no	reduction	of	the	grounding	resistance.	It
is	reasonable	that	the	grounding	resistance	becomes	smaller	as	the	electrode	length	becomes
longer.	 For	 Cases	 1	 and	 4	 in	 Table	 7.6,	 the	 steady-state	 resistance	 evaluated	 by	 Sunde’s
formula	[3]	is	given	as	a	reference.	For	the	evaluation	of	the	resistance	for	the	L-type	rod	in
Case	1,	 it	 is	represented	by	an	equivalent	circular	cylinder	with	 the	radius	of	re	 that	gives	a
surface	area	equivalent	to	that	of	the	L-type	rod.	This	equivalence	has	been	confirmed	to	be
reasonable	from	a	comparison	of	the	measured	and	simulation	results.	It	looks	an	interesting
subject	 to	 develop	 a	 theoretical	 formula	 of	 the	 grounding	 impedance	 for	 the	 electrodes	 in
Cases	2-7	in	Figure	7.36.
Any	measured	 result	 of	 a	 grounding	 impedance	 involves	 unknown	 physical	 parameters,

such	 as	 soil	 resistivities	 along	 the	 earth’s	 surface,	 depth	 at	which	 the	 impedance	 is	 buried,
irregular	waveforms	of	 an	applied	current,	 and	possible	noise	during	a	measurement.	As	a
result,	it	is	not	possible	to	discuss	uniformity	of	the	measured	results.	A	numerical	simulation,
however,	is	a	very	effective	way	to	determine	uncertainties.



FIGURE	7.36
Electrode	shapes.	(a)	L-type	rod:	Case	1,	(b)	rectangular	plate	(width	0.45	m):	Case	2,	(c)	rectangular	plate	(width	0.25	m):
Case	 3,	 (d)	 vertical	 pipe	 (radius	 0.025	m):	Case	 4,	 (e)	H-type	 rod:	Case	 5,	 (f)	 four	 plates	 (fin-type):	 Case	 6,	 and	 (g)	 four
circular	plates:	Case	7.



TABLE	7.6
Transient	Peak	Voltages	and	the	Converged	Values.

7.4.4.3				FDTD	Simulation

7.4.4.3.1				Simulation	Model



Figure	7.39	 illustrates	 an	 example	of	 a	model	 circuit	 for	 an	FDTD	simulation	using	VSTL
[39].	For	x	=	1	m,	the	analytical	space	is	taken	to	be	x1	=	1.82	m.	x2	=	z	=	y	=	1.42	m	with	a	cell
size	 of	 Δs	 =	 0.01	m.	 The	 boundaries	 of	 the	 space	 are	 represented	 by	 Liao’s	 second-order
absorbing	boundary	[38].	The	electrode	is	assumed	to	be	perfectly	conducting.	The	voltage	of
the	 electrode	 at	 the	 sending	 end	 is	 calculated	 by	 integrating	 the	 electric	 field	 from	 the
absorbing	boundary.

FIGURE	7.37
Measured	results	of	electrode	transient	voltages	with	a	PG:	Cases	1-3.	(a)	Injected	current,	(b)	Case	1-1:	L-type	rod,	x	=	1	m,
(c)	Case	1-2:	L-type	rod,	x	=	2	m,	(d)	Case	2-1:	Plate	(w	0.45	m),	x	=	1	m,	(e)	Case	2-2:	Plate	(w	0.45	m),	x	=	2	m,	(f)	Case
3-1:	Plate	(w	0.25	m),	x	=	1	m,	and	(g)	Case	3-2:	Plate	(w	0.25	m),	x	=	2	m.



7.4.4.3.2				Comparison	with	Measured	Results
Figures	7.40	and	7.41	show	FDTD	simulation	results	corresponding	to	the	measured	results	in
Figures	7.37	and	7.38.	The	simulation	 results	of	peak	and	steady-state	voltages	are	given	 in
Table	7.6.	In	the	simulation,	the	soil	resistivity	is	set	at	150	Ωm	and	the	relative	permittivity	is
10.	It	can	be	observed	in	the	table	and	figures	that	the	simulation	results	agree	reasonably	well
with	the	measured	results.	Thus,	it	is	possible	to	investigate	the	effect	of	electrode	shapes	on
the	reduction	of	grounding	impedances.



FIGURE	7.38
Measured	results	of	electrode	transient	voltages	with	a	noise	simulator:	Cases	4-7.	(a)	Injected	current,	(b)	Case	4-1:	Pipe,	x	=



1	m,	(c)	Case	4-2:	Pipe,	x	=	2	m,	(d)	Case	4-3:	Pipe,	x	=	4	m,	(e)	Case	5-1:	H-type	rod,	x	=	1	m,	(f)	Case	5-2:	H-type	rod,	x	=
2	m,	(g)	Case	5-3:	H-type	rod,	x	=	4	m,	(h)	Case	6:	four	plates	(fin-type),	and	(i)	Case	7:	4	circular	plates.

FIGURE	7.39
A	model	circuit	for	an	FDTD	simulation.

7.4.4.3.3				Effect	of	Electrode	Shapes	on	Grounding	Impedance	Reduction
Figure	7.42	illustrates	the	shapes	in	FDTD	simulations.	The	electrode	length	is	set	to	x	=	1	m,
the	soil	resistivity	is	ρe	=	42	Ωm,	and	the	relative	permittivity	is	εr	=	10	as	a	reference	case.
Figure	7.43	shows	an	injected	current	waveshape	with	the	amplitude	1	A	and	rise	time	Tf	=	10
ns.	 Table	 7.7	 gives	 the	 simulation	 conditions,	 the	 peak,	 and	 the	 steady-state	 values	 of
calculated	transient	voltages.

1.	Vertical	rectangular	plate:	Figure	7.44	shows	the	simulation	results	for	the	electrodes	of
Case	0	(vertical	rod)	in	Figure	7.42a	and	the	rectangular	plates	in	Figure	7.42b–e.	It	is
clear	from	Table	7.7	and	Figure	7.44a	that	the	peak	and	steady-state	voltages	in	the	plate
cases	are	significantly	reduced	in	comparison	with	those	in	the	rod	case.	When	the	width
of	the	plate	is	w	=	0.6	m	(Case	A1),	both	the	peak	and	the	steady-state	voltages	are
reduced	to	1/3	of	those	of	the	rod	case	(Case	0).	Even	with	w	=	0.3	m	(Case	A0),	those	are
reduced	to	1/2	of	the	rod	case.

Case	A2	further	reduces	the	voltages	by	about	10%	in	comparison	with	those	in	Case
A1.	Case	A3	with	four	plates	reduces	the	voltage	to	1/4	of	those	in	Case	0.	The	reduction
effect	 is	 observed	 to	 saturate	 when	 the	 number	 of	 plates	 and	 the	 surface	 area	 are
increased.



FIGURE	7.40
FDTD	simulation	results	corresponding	to	Figure	7.37.	(a)	Injected	current,	(b)	Case	1-1:	L-type	rod,	x	=	1	m,	(c)	Case	1-2:	L-
type	rod,	x	=	2	m,	(d)	Case	2-1:	Plate	(w	0.45	m),	x	=	1	m,	(e)	Case	2-2:	Plate	(w	0.45	m),	x	=	2	m,	(f)	Case	3-1:	Plate	(w
0.25	m),	x	=	1	m,	and	(g)	Case	3-2:	Plate	(w	0.25	m),	x	=	2	m.

2.	Horizontal	circular	plate:	Figure	7.45a	shows	a	comparison	of	transient	impedance
between	the	horizontal	circular	plate	electrodes	in	Figure	7.42g–i.	The	peak	and	steady-
state	values	are	given	in	Table	7.7.	It	is	observed	that	the	steady-state	resistance	is	reduced
to	nearly	the	same	value	as	that	in	the	vertical	rectangular	plate	case	in	Figure	7.44.
However,	the	transient	peak	value	demonstrates	little	reduction.	In	fact,	those	in	Cases
B11	and	B21	match	those	of	the	rod	electrode.	The	reason	for	this	is	that	the	impedance
seen	from	the	current	injected	terminal	at	t	=	0	in	Cases	B11	and	B21	is	the	same	as	that



of	the	rod	electrode.	The	reduction	effect	of	the	horizontal	circular	plate	appears	after
the	current	reaches	the	plate,	that	is,	after	t	=	h/c,	where	h	is	the	depth	of	the	plate	from
ground	level	and	c	is	the	traveling	velocity.	The	same	characteristic	is	observed	in	Cases
B12	and	B11	in	Figure	7.45a	and	in	Cases	B21	and	B22	in	Figure	7.45b.	For	example,	in
Case	B12,	the	voltage	starts	to	decrease	at	t	=	6.8	ns	due	to	negative	reflection	from	the
plate,	and	the	peak	voltage	therefore	stays	at	about	28	V,	while	in	Case	B11,	the	peak
voltage	has	already	reached	35	V,	when	the	negative	reflection	comes	back	at	t	=	11.8	ns.



FIGURE	7.41
FDTD	simulation	results	corresponding	to	Figure	7.38.	(a)	Injected	current,	(b)	Case	4-1:	Pipe,	x	=	1	m,	(c)	Case	4-2:	Pipe,	x	=
2	m,	(d)	Case	4-3:	Pipe,	x	=	4	m,	(e)	Case	5-1:	H-type	rod,	x	=	1	m,	(f)	Case	5-2:	H-type	rod,	x	=	2	m,	(g)	Case	5-3:	H-type
rod,	x	=	4	m,	(h)	Case	6:	four	plates	(fin-type),	and	(i)	Case	7:	four	circular	plates.



FIGURE	7.42
Electrode	shapes	investigated.	(a)	Case	0:	Vertical	rod	only,	(b)	Case	A0:	Vertical	rectangular	plate,	(c)	Case	A1:	Rectangular
plate	with	w	=	0.6	m,	(d)	Case	A2:	Vertical	rod	+	2	rectangular	plates,	(e)	Case	A3:	Vertical	rod	+	4	rectangular	plates,	(f)
Case	B0:	Horizontal	circular	plate,	(g)	Case	B11:	Vertical	rod	+	a	circular	plate	at	the	center,	(h)	Case	B12:	Vertical	rod	+	a



circular	plate	at	an	upper	position,	(i)	Case	B13:	Vertical	rod	+	ground	level	circular	plate	rod,	(j)	Case	B21:	Vertical	rod	+	2
circular	plates	at	a	lower	position,	(k)	Case	B22:	Vertical	rod	+	2	circular	plates	at	upper	and	lower	positions,	(l)	Case	C0,	(m)
Case	C12,	and	(n)	Case	C13.

FIGURE	7.43
Injected	current	with	Tf	=	20	ns.

TABLE	7.7
Transient	Peak	Voltages	(Peak)	and	the	Steady-State	Voltages	(Converged)	for	Each	Electrode	Shape

It	is	obvious	from	the	above	observation	that	the	horizontal	plate	should	be	installed	as	near
to	ground	level	as	possible,	that	is,	the	buried	depth	h	should	be	as	small	as	possible.	This	is
clearly	observed	in	Case	B13	in	Figure	7.45a,	that	shows	a	resistive	characteristic	with	a	 far
smaller	peak	voltage	in	comparison	with	those	of	Cases	B11	and	B12.	However,	it	should	be
noted	 that	 the	 steady-state	 resistance	 is	 nearly	 double	 of	 those	 of	 Cases	 B11	 and	B12.	 The



reason	for	this	is	that	the	surface	area	facing	the	soil	in	Case	B13	(only	the	lower	face)	is	half
of	that	in	Cases	B11	and	B12	(both	the	upper	and	lower	faces).

FIGURE	7.44
Reduction	of	a	grounding	resistance	by	a	vertical	rectangular	plate:	Case	A.	(a)	Vertical	plate	and	(b)	vertical	rod	and	plate.

3.	Multiple	horizontal	plates:	Figure	7.45b	shows	the	transient	voltage	of	an	electrode
composed	of	two	horizontal	circular	plates.	The	voltage	waveform	is	similar	to	that	of
an	electrode	with	one	horizontal	plate	as	shown	in	Figure	7.45a.	Thus,	it	is	concluded	that
an	electrode	with	multiple	horizontal	plates	has	no	practical	value.

4.	Rectangular	plate	versus	a	circular	plate:	Currents	flowing	into	the	ground	from	an
electrode	tend	to	be	proportional	to	the	surface	area	facing	the	soil	[21,28].	An	electrode
with	a	rectangular	plate	with	a	surface	area	the	same	as	that	of	a	circular	plate,	is
estimated	to	show	a	similar	transient	characteristic	to	that	circular	plate.	Figure	7.46	is	a
comparison	of	the	rectangular	and	the	circular	plates;	it	is	obvious	that	they	are	almost
identical.	The	observation	has	made	it	clear	that	the	ground	impedance	tends	to	be
proportional	to	the	surface	area	of	an	electrode	facing	soils	independent	of	its	shape,
which	is	either	circular	or	rectangular.

FIGURE	7.45
Reduction	 of	 a	 grounding	 resistance	 by	 a	 horizontal	 circular	 plate:	Case	B.	 (a)	A	 single	 circular	 plate	 and	 (b)	 two	 circular
plates.



FIGURE	7.46
Comparison	of	a	horizontal	rectangular	plate	with	a	circular	plate.

The	above	discussion	is	based	on	a	horizontal	plate.	It	was	explained	in	Section	7.4.4.2
that	the	grounding	impedance	of	a	vertical	rectangular	plate	is	far	smaller	than	that	of	a
horizontal	 circular	 plate.	 Figure	 7.47	 shows	 a	 comparison	 of	 the	 impedance	 of
horizontal	circular	plates,	Case	B12	in	Figure	7.42h	and	Case	B13	 in	Figure	7.42i,	and
those	 of	 equivalent	 (same	 surface	 area)	 vertical	 plates,	Case	C12	 in	Figure	 7.42m	 and
Case	 13	 in	 Figure	 7.42n.	 The	 vertical	 plate	 shows	 a	 smaller	 impedance	 than	 that	 of	 a
horizontal	plate	if	the	surface	areas	are	the	same,	that	is,	the	equivalent	surface	area	of	a
vertical	plate	is	smaller	than	that	of	a	horizontal	plate	that	gives	the	same	impedance.

Thus,	it	is	recommended	to	make	a	plate	electrode	vertical	rather	than	horizontal	when	an
additional	plate	is	installed	to	reduce	the	grounding	impedance.

7.4.4.3.4				Effect	of	Soil	Resistivity	and	Rise	Time	of	a	Current
In	 the	 previous	 investigations,	 the	 soil	 resistivity	 was	 42	Ωm.	 Figure	 7.48	 shows	 transient
voltage	waveforms	for	a	rod	electrode	(Case	0)	and	vertical	plate	electrodes	(Cases	A0–A3)
in	 the	 case	 of	 soil	 resistivity	 of	 2000	Ωm.	 A	 capacitive	 characteristic	 of	 the	 impedance	 is
observed	in	all	the	cases	in	Figure	7.48.	The	impedance	of	the	plate	electrode	(Cases	A0–A3)
is	less	than	1/3	of	that	of	the	rod	electrode	(Case	0).	This	means	that	the	vertical	plate	is	very
effective	 in	 reducing	 the	grounding	 impedance	even	 in	 the	case	of	high	soil	 resistivity.	The
soil	 permittivity	 has	 almost	 no	 influence	 on	 the	 reduction	 of	 the	 impedance.	 Figure	 7.49
shows	 a	 comparison	 of	 transient	 voltages	 in	 the	 case	 of	 current	 rise	 time	 Tf	 =	 1	 µs.	 It	 is
observed	 that	 the	 grounding	 impedance	 is	 reduced	 by	 nearly	 half	 by	 a	 vertical	 plate	 in
comparison	with	the	reduction	achieved	by	a	rod	electrode.



FIGURE	7.47
Comparison	of	vertical	and	horizontal	plates.

FIGURE	7.48
A	transient	voltage	for	ρe	=	2000	Ωm.	(a)	Vertical	plate	and	(b)	a	vertical	rod	with	a	vertical	plate.

FIGURE	7.49
Transient	voltage	when	Tf	=	1	µs.

7.4.4.4				Summary
This	 section	 has	 investigated	 grounding	 impedance	 reduction	 using	 various	 shapes	 of
grounding	 electrodes	 in	 comparison	 with	 a	 conventional	 vertical	 rod	 based	 on	 field
measurements	and	FDTD	simulations.	We	have	 found	 that	a	vertical	 rectangular	conducting
plate	is	effective	in	reducing	the	transient	and	steady-state	impedance	to	less	than	half	of	the
reduction	achieved	by	a	vertical	rod.	A	circular	conducting	plate	parallel	to	the	soil	surface	is
also	effective	in	reducing	the	steady-state	impedance,	but	the	transient	impedance	is	nearly	the



same	 as	 that	 of	 a	 vertical	 rod.	 The	 rate	 of	 the	 reduction	 is	 somehow	 proportional	 to	 the
surface	 area	 of	 the	 electrode,	 but	 tends	 to	 saturate	 as	 the	 area	 increases.	 The	 transient
impedance	 is	 somewhat	 independent	 of	 the	 soil	 resistivity	 and	 permittivity,	 but	 tends	 to	 be
inversely	proportional	to	the	wavefront	duration	of	an	applied	current.

7.4.5				Transient	Induced	Voltage	to	Control	Cable	from	Grounding	Mesh

7.4.5.1				Introduction

Electromagnetic	 interference	 becomes	 more	 and	 more	 significant	 in	 control	 circuits	 of
generator	stations	and	substations	as	the	amount	of	digitally	controlled	equipment	increases.
A	survey	of	failures	and	malfunctions	of	low	voltage	control	equipment	in	generator	stations
and	 substations	 shows	 that	 nearly	 70%	 of	 the	 failures	 are	 caused	 by	 lightning	 surges
[46,47–48].	The	 lightning	 current	 flows	 into	 a	 grounding	mesh	 in	 a	 station	 and	 the	 current
causes	 an	 induced	 transient	 voltage	 on	 a	 control	 cable.	 Because	 the	 metallic	 sheath	 of	 the
control	 cable	 is	 grounded	 to	 the	mesh	 as	 recommended	 by	 a	 standard	 and	 a	 guideline	 for
electromagnetic	interference	[48,49–50],	the	cable	sheath	voltage	becomes	the	same	as	that	of
the	 grounding	 mesh.	 If	 both	 the	 ends	 of	 the	 metallic	 sheath	 are	 grounded	 following
IEC/CIGRE	recommendations	[48,49],	a	current	is	circulating	in	a	closed	loop	composed	of
the	 cable	 sheath	 and	 the	 grounding	mesh.	 The	 circulating	 current	 induces	 a	 voltage	 to	 the
cable	core,	 and	 the	core	voltage	 is	given	as	a	vector	 sum	of	 the	 induced	voltages	 from	 the
lightning	current	along	the	grounding	mesh	and	the	circulating	current.	The	lightning	current
traveling	 along	 conductors	 of	 the	mesh,	 flows	 into	 the	 soil,	 and	becomes	 a	 function	of	 the
length	 of	 the	 conductor	 [51].	 Thus,	 the	 induced	 voltage	 to	 the	 cable	 is	 a	 function	 of	 the
conductor ’s	length.
The	above	fact	seems	to	be	poorly	understood,	and	a	detailed	analysis	of	the	components,

that	 is,	 (1)	 the	 induced	voltage	due	 to	mutual	coupling	 from	the	 lightning	current	along	 the
grounding	mesh,	 (2)	 the	counterpoise	voltage	 transferred	 to	 the	cable	sheath	because	of	 the
sheath	grounding,	and	(3)	 the	circulating	current	due	 to	sheath	both-end	grounding,	has	not
been	 done.	 This	 is	 because	 all	 the	 measured	 results	 have	 involved	 the	 components	 named
above	[51,	52,	53–54].
This	section	investigates	induced	voltages	to	a	control	cable	based	on	EMTP	simulations.	It

is	easy	to	evaluate	the	above-mentioned	components	separately	using	the	EMTP	[35,	36–37].
That	 is,	 a	 simulation	 neglecting	mutual	 coupling	 between	 a	 control	 cable	 and	 a	 grounding
mesh	 gives	 voltages	 on	 the	 cable	 by	 grounding	 the	 cable	 sheath	 to	 the	 mesh.	 An	 induced
voltage	from	the	lightning	current	along	the	grounding	mesh	is	also	investigated,	taking	into
account	 the	 current	 flowing	 into	 the	 soil.	 The	 effect	 of	 cable	 sheath	 grounding	 and	 a
grounding	lead	is	also	discussed.

7.4.5.2				Model	Circuit
Figure	7.50	 illustrates	a	model	circuit	 for	 investigating	 transient	voltages	and	currents	on	a
control	cable.	A	counterpoise	representing	a	part	of	a	grounding	mesh	is	buried	at	the	depth



of	hg	 =	 0.3	m	 from	 the	 ground	 level.	 The	 counterpoise	 is	 a	 copper	 cylinder	with	 an	 outer
radius	of	rg	=	2.5	cm,	and	the	soil	resistivity	is	100	Ωm.	As	a	control	cable,	a	3D2	V	cable,	of
which	the	cross	section	and	the	physical	parameters	are	given	in	Figure	7.51,	is	suspended	at	a
height	of	hc	=	0.1	m	above	ground	level.	A	step	function	current	with	the	amplitude	of	1	A	is
applied	 to	 the	 sending	 end	 of	 the	 counterpoise	 as	 in	 Figure	 7.50.	 Transient	 voltages	 and
currents	on	the	control	cable	and	the	counterpoise	are	calculated	by	EMTP.
A	 counterpoise	 is	 represented	 by	 a	 model	 circuit	 illustrated	 in	 Figure	 7.52a	 that	 is

composed	of	a	distributed	 line	with	surge	 impedance	Z0,	propagation	velocity	v0,	and	shunt
admittance	Yg	as	explained	in	Section	7.3.2	[22,24].	Variables	“m“	and	“n“	in	Figure	7.52a	are
set	as	1	and	5,	respectively.	Figure	7.53	shows	a	comparison	of	the	experimental	and	EMTP
simulation	results	using	the	model	circuit	of	Figure	7.52	for	 transient	voltages	and	currents
along	the	counterpoise	with	the	total	length	of	6	m	in	Figure	7.50.	The	figure	shows	that	the
accuracy	 of	 the	 counterpoise	 model	 in	 Figure	 7.52	 is	 satisfactory	 in	 comparison	 with	 the
measured	results.

FIGURE	7.50
A	model	circuit.

FIGURE	7.51
A	control	cable	(3D2	V).



FIGURE	7.52
A	model	circuit	of	a	counterpoise.	(a)	Counterpoise	model	and	(b)	Yg.

In	a	simulation	of	an	induced	voltage	to	an	overhead	control	cable	from	a	counterpoise,	the
control	 cable	 and	 the	 counterpoise	 are	 represented	 as	 a	 distributed-parameter	 line	 in	 the
EMTP	 [35,	 36–37].	 The	 parameters	 of	 the	 line	 models	 are	 evaluated	 by	 the	 EMTP	 Cable
Parameters	(CP)	[37].	First,	the	model	system	is	evaluated	as	an	overhead	line	system	by	the
CP	with	a	negative	sign	of	the	depth	of	the	counterpoise.	Initially,	the	input	data,	the	CP	gives
the	 self-impedance/admittance	 of	 the	 overhead	 cable	 and	 the	 mutual	 impedance	 to	 the
counterpoise.	 Then,	 the	 self-impedance/-admittance	 of	 the	 counterpoise	 is	 calculated	 as	 an
underground	 cable.	 Finally,	 the	 self-impedance/admittance	 of	 the	 counterpoise	 in	 the	 first
calculation	is	replaced	by	those	in	the	second.

FIGURE	7.53
Comparison	of	measured	and	simulation	results	of	counterpoise	voltages	and	currents.	(a)	Voltage	and	(b)	current.

Table	7.8	gives	the	simulation	conditions,	such	as	the	grounding	of	the	metallic	sheath	of	a
control	 cable,	 and	 results	 of	 the	 maximum	 voltages	 and	 currents.	 In	 the	 table,	 case	 Xi-Lj
represents

X	=	A:	x	=	2	(m),	B:	x	=	10	(m),	and	C:	x	=	20	(m)
D:	x	=	2	(m)	and	two	more	counterpoises	connected	to	node	GC1
i	=	0:	no	mutual	coupling	between	the	control	cable	and	the	counterpoise



i	=	1:	mutual	coupling	between	the	control	cable	and	the	counterpoise
L	=	0:	no	inductance	considered	for	a	grounding	lead
L	=	1:5	µH	for	a	lead	wire
j	for	grounding	of	the	metallic	sheath	to	a	counterpoise
j	=	1:	no	grounding,	j	=	2:	sending	end	grounded
j	=	3:	receiving	end,	j	=	4:	both	ends

Figures	 7.54,	 7.55,	 7.56,	 7.57,	 7.58,	 7.59,	 7.60	 and	 7.61	 show	 the	 simulation	 results	 of
transient	voltages	and	currents.	The	peak	values	are	summarized	in	Table	7.8.

7.4.5.3				No	Mutual	Coupling	(Case	X0-Lj)

7.4.5.3.1				Case	A0-0j:	x	=	2	m,	L	=	0
Figure	 7.54	 is	 the	 case	 of	 neglecting	 the	 mutual	 coupling	 between	 a	 control	 cable	 and	 a
counterpoise	with	the	parallel	length	x	=	2	m.	Thus,	the	voltages	and	currents	on	the	control
cable	in	the	figure	are	caused	only	by	connecting	(grounding)	the	metallic	sheath	of	the	cable
to	the	counterpoise.
No	voltage	and	no	current	appear	on	the	control	cable	in	Figure	7.54a,	for	there	is	neither

connection	nor	mutual	coupling	between	the	cable	and	the	counterpoise.	When	one	end	of	the
sheath	is	grounded	to	the	counterpoise,	a	voltage	and	a	current	appear	on	the	grounded	node.
In	Case	A0-02	(sending	end	sheath	to	the	counterpoise),	the	sheath	voltage	at	the	sending	end
S1	becomes	nearly	the	same	as	the	counterpoise	voltage	of	about	20	V	at	the	grounded	node
G1,	and	the	core	voltage	at	the	sending	end	C1	reaches	4	V	as	observed	in	Figure	7.54b.2;	a
small	 voltage	 of	 about	 1	 V	 is	 observed	 at	 the	 core	 receiving	 end.	 The	 core	 voltages	 are
produced	by	electrostatic	and	magnetic	coupling	between	the	cable	core	and	the	sheath	during
an	 initial	 transient	 period	 up	 to	 about	 300	 ns	 as	 a	 small	 current,	 about	 0.1	A,	 on	 the	 cable
sheath	at	the	sending	end	observed	in	Figure	7.54b-(1)	during	the	time	period.	A	similar	trend
is	observed	for	the	receiving	end	sheath	grounded	to	the	counterpoise	(Case	A0-03),	that	is,
the	sheath	voltage	becomes	nearly	the	same	as	the	counterpoise	voltage	at	the	receiving	end.
Small	voltages	appear	on	both	ends	of	the	core	and	a	very	small	current	is	observed	on	the
sheath	 in	Figure	7.54c.	 It	 should	 be	 noted	 that	 the	 core	 voltages	 and	 the	 sheath	 current	 are
much	smaller	than	those	in	Case	A0-02.

TABLE	7.8
Simulation	Conditions	and	Results.





FIGURE	7.54
Simulation	 results	 neglecting	 mutual	 coupling	 between	 the	 control	 cable	 and	 the	 counterpoise	 (x	 =	 2	 m).	 (a)	 Sheath	 not
grounded	to	the	counterpoise	(Case	A0-01),	(b)	sending	end	sheath	grounded	to	the	counterpoise	(Case	A0-02),	(c)	receiving
end	sheath	grounded	to	the	counterpoise	(Case	A0-03),	and	(d)	sheath	both	the	ends	grounded	to	the	counterpoise	(Case	A0-
04):	(1)	current	and	(2)	voltage.

When	both	ends	of	the	cable	sheath	are	grounded	to	the	counterpoise	a	large	current,	nearly
0.25	A,	which	 is	 about	 30%	of	 the	 current	 IG0	 flowing	 into	 node	GC1	of	 the	 counterpoise,
flows	into	the	sheath	as	in	Figure	7.54d-(1),	and	results	in	nearly	5	V	at	the	core	sending	end
and	 −3.5	 V	 at	 the	 receiving	 end	 as	 observed	 in	 Figure	 7.54d-(2).	 The	 core	 voltages	 are



generated	by	electromagnetic	coupling	between	the	sheath	and	the	core.	It	should	be	noted	that
the	counterpoise	voltages	and	currents	are	relatively	unaffected	by	the	sheath	grounding.

FIGURE	7.55
Effect	of	parallel	length	x	with	no	mutual	coupling	(x	=	20	m).	(a)	Sending	end	sheath	grounded	to	the	counterpoise	(Case	C0-
02),	 (b)	 receiving	 end	 sheath	 grounded	 to	 the	 counterpoise	 (Case	 C0-03),	 and	 (c)	 Both	 sheath	 ends	 grounded	 to	 the
counterpoise	(Case	C0-04):	(1)	current	and	(2)	voltage.

In	summary,	grounding	the	metallic	sheath	of	a	control	cable	to	a	counterpoise	results	in	a
current	flowing	into	the	sheath	and	generating	core	voltages	due	to	electromagnetic	and	static
coupling	between	the	cable	core	and	the	sheath.	The	grounding	of	both	ends	of	the	sheath	to
the	counterpoise,	 in	particular,	produces	a	 sheath	current	of	 about	30%	of	 the	counterpoise
current	and	the	voltage	proportional	to	the	current	appears	on	the	core	during	the	initial	time
period	of	a	transient.	Grounding	the	sending	end	sheath	to	the	counterpoise	also	produces	a
rather	high	voltage	to	the	core	at	the	sending	end.

7.4.5.3.2				Effect	of	Length	x



Figure	7.55	shows	the	case	of	no	mutual	coupling	with	the	parallel	length	x	=	20	m	between	a
control	cable	and	a	counterpoise.	It	is	clear	that	currents	at	the	sending	end	of	the	counterpoise
are	greater,	and	the	voltages	smaller,	than	those	in	Figure	7.54	for	x	=	2	m,	because	the	longer
counterpoise	 length	 decreases	 its	 impedance	 seen	 from	 the	 sending	 end.	Also,	 the	 currents
along	 the	 counterpoise	 show	 a	 smooth	 increasing	 characteristic,	 while	 the	 voltage	 at	 the
sending	 end	 shows	a	peak	 at	 around	 t	 =	 250	ns	 and	 then	 converges	 to	 a	 certain	 value.	The
characteristics	explained	above	for	the	counterpoise	agree	with	those	for	the	measured	results
shown	in	References	51,	52,	53	and	54.



FIGURE	7.56
Simulation	 results	 considering	 mutual	 coupling	 between	 the	 control	 cable	 and	 the	 counterpoise	 (x	 =	 2	 m).	 (a)	 Sheath	 not
grounded	to	the	counterpoise	(Case	A1-01),	(b)	sending	end	sheath	grounded	to	the	counterpoise	(Case	A1-02),	(c)	receiving
end	sheath	grounded	to	the	counterpoise	(Case	A1-03),	and	(d)	sheath	both	the	ends	grounded	to	the	counterpoise	(Case	A1-
04):	(1)	current	and	(2)	voltage.



FIGURE	7.57
Effect	 of	 parallel	 length	 (x	 =	 20	 m).	 (a)	 Sheath	 not	 grounded	 to	 the	 counterpoise	 (Case	 C1-01),	 (b)	 sending	 end	 sheath
grounded	 to	 the	 counterpoise	 (Case	 C1-02),	 (c)	 receiving	 end	 sheath	 grounded	 to	 the	 counterpoise	 (Case	 C1-03),	 and	 (d)
sheath	both	the	ends	grounded	to	the	counterpoise	(Case	C1-04).

The	sheath	currents	in	Figure	7.55	for	x	=	20	m	show	a	remarkable	difference	from	those
in	 Figure	 7.54	 for	 x	 =	 2	 m.	 The	 current	 in	 Figure	 7.55a-(1)	 for	 the	 sending	 end	 sheath
grounded	to	 the	counterpoise	 is	nearly	 twice	 that	 in	Figure	7.54b-(1),	and	 is	sustained	up	 to



160	ns,	corresponding	to	twice	the	propagation	time	of	a	traveling	wave	on	the	sheath	from
the	sending	end	to	the	receiving	end.	Corresponding	to	this	fact,	the	sending	end	core	voltage
reaches	 8	V,	which	 is	 about	 two	 times	 that	 in	 Figure	 7.54b.	A	 similar	 trend	 is	 observed	 in
Figure	7.55c	for	x	=	20	m	in	comparison	with	Figure	7.54d	for	x	=	2	m.	 It	 is	quite	clear	 in
Figure	7.55	c-(1)	 that	 there	exists	a	circulating	current	between	 the	control	cable	sheath	and
the	counterpoise,	that	is,	current	S1	at	the	sheath	sending	end	and	current	S2	at	the	receiving
end.	The	sheath	current	produces	the	core	voltages	of	about	8	V	at	the	sending	end	and	−6	V	at
the	receiving	end,	much	greater	than	those	in	Figure	7.54d-(2).	The	cable	voltages	and	current
in	Figure	7.55b,	where	 the	 receiving	end	 sheath	 is	 connected	 to	 the	counterpoise,	 are	much
lower	 than	 those	 in	 Figure	 7.54c,	 because	 the	 counterpoise	 current	 at	 the	 receiving	 end
becomes	much	 smaller	 due	 to	 current	 penetration	 into	 the	 soil.	 It	 should	 be	 noted	 that	 the
voltage	difference	between	the	cable	core	and	the	counterpoise	is	large	at	the	sending	end	as
in	Table	7.8a,	but	becomes	much	smaller	at	the	receiving	end	in	comparison	with	the	case	of	x
=	2	m.

FIGURE	7.58
Currents	along	the	counterpoise	at	the	distance	x	from	the	sending	end.



FIGURE	7.59
Crossing	counterpoises	at	node	G1.	(a)	A	single	counterpoise	and	(b)	counterpoises	connected	at	node	G1.



FIGURE	7.60
Effect	of	lead	wire	inductance	on	cable	voltages.	(a)	sending	end	grounding,	(1)	No	mutual	coupling	(Case	C0-12),	(2)	mutual
coupling	(Case	C1-12),	(b)	receiving	end	grounding,	(1)	no	mutual	coupling	(Case	C0-13),	(2)	mutual	coupling	(Case	C1-13),
(c)	both-end	grounding,	(1)	no	mutual	coupling	(Case	C0-14),	(2)	mutual	coupling	(Case	C1-14).

7.4.5.4				With	Mutual	Coupling	(Case	X1-Lj)

7.4.5.4.1				Case	A1-0j:	x	=	2	m,	L	=	0
Figure	7.56	shows	the	simulation	results	with	mutual	coupling	between	a	control	cable	and	a
counterpoise	corresponding	to	Figure	7.54	with	no	mutual	coupling.	It	is	clear	in	Figure	7.56a
that	only	an	induced	voltage	of	about	2.5	V,	due	to	a	counterpoise	current,	appears	on	the	core



and	 the	 sheath,	 because	 the	 sheath	 is	 not	 grounded	 to	 the	 counterpoise.	 The	 polarity	 at	 the
receiving	end	is	opposite	to	the	sending	end	as	in	Reference	40.	It	can	be	observed	in	Figure
7.56b	 that	 the	 current	 on	 the	 sheath	 is	 nearly	 the	 same	 as	 that	 in	Figure	7.54b	 and	 the	 core
voltages	 at	 both	 the	 ends	 are	 given	 as	 the	 sum	 of	 those	 in	 Figure	 7.54b	 and	 the	 induced
voltages	in	Figure	7.56a.	The	same	observation	is	made	for	Figure	7.56c	in	comparison	with
Figure	7.54c.	 It	 should	 be	 noted	 that	 Figure	7.56d	 is	 nearly	 the	 same	 as	 Figure	 7.54d.	 This
means	that	the	core	voltage	in	Figure	7.56d	is	generated	by	a	circulating	current	between	the
sheath	 and	 the	 counterpoise,	 although	 the	 induced	 voltage,	 2.5	 V.	 The	 current	 on	 the
counterpoise	is	decreased	by	the	grounding	at	both	ends.	If	the	sheath	is	grounded	to	another
counterpoise	on	which	no	lightning	current	flows,	the	sheath	grounding	at	both	ends	results	in
the	 smallest	 voltage	 on	 the	 cable	 core	 as	 recommended	 by	 standards	 and	 guides	 [47,
48,49–50].	 The	 recommendation	 is	 correct	 only	 in	 the	 case	 of	 no	 lightning	 current	 on	 a
counterpoise	 to	which	 the	 sheath	 is	grounded.	No	significant	difference	 is	observed	 for	 the
counterpoise	voltages	and	currents	between	Figures	7.54	and	7.56.



FIGURE	7.61
Core	voltages	to	the	sheath	and	counterpoise.	(a)	Sending	end	grounding,	(1)	No	lead	wire	inductance	(Case	C1-02)	and	(2)
lead	wire	inductance	considered	(Case	C1-12).	(b)	Receiving	end	grounding,	(1)	No	lead	wire	inductance	(Case	C1-03)	and
(2)	Lead	wire	inductance	considered	(Case	C1-13).	(c)	Grounding	at	both	ends,	(1)	No	lead	wire	inductance	(Case	C1-04)	and
(2)	Lead	wire	inductance	considered	(Case	C1-14).

In	summary,	the	sending	end	voltage	is	the	largest	in	the	case	of	the	sending	end	and	both
the	ends	that	are	grounded.	The	receiving	end	voltage	becomes	the	largest	in	the	case	in	which
both	 ends	 are	 grounded	because	 of	 a	 circulating	 current	 in	 a	 closed	 loop	 composed	of	 the



cable	metallic	 sheath	 and	 the	 counterpoise.	 Thus,	 receiving	 end	 grounding	 is	 preferable	 to
sending-end	 or	 grounding	 at	 both	 ends.	 The	 observations	 qualitatively	 agree	 with	 the
measured	results	in	References	46	and	51,	52	and	53,	especially	in	Reference	53	for	the	same
3D2	V	cable.

7.4.5.4.2				Effect	of	Length	x
Figure	7.57	shows	the	simulation	results	of	voltages	for	x	=	20	m.	Current	waveforms	are	not
shown	because	those	are	nearly	the	same	as	Figure	7.55-(1).	It	is	clear	in	Figure	7.57a	for	the
sheath	not	grounded	to	the	counterpoise	that	the	induced	voltages	to	the	core	and	sheath	from
the	counterpoise	 are	 far	greater	 than	 those	 in	Figure	7.56a	 for	x	 =	 2	m.	This	 is	 reasonable
because	an	induced	voltage	is	proportional	to	the	parallel	length	of	the	inducing	circuit,	as	is
well-known	[40].	The	length	for	Figure	7.57	being	20	m,	a	10-times-greater	induced	voltage
than	that	in	Figure	7.56	is	expected	if	it	is	in	a	steady-state,	but	the	induced	voltage	at	node	C1
is	 about	2	V	 in	Figure	7.57a,	which	 is	 smaller	 than	 that	 in	Figure	7.56.	 The	 reason	 for	 the
smaller-than-expected	induced	voltage	based	on	the	theory	of	steady-state	induction	is	that	the
inducing	 current	 on	 the	 counterpoise	 decreases	 as	 the	 distance	 from	 the	 sending	 end
increases,	 as	 shown	 in	 Figure	 7.58.	 It	 is	 clear	 in	 Figure	 7.58	 that	 the	 current	 along	 the
counterpoise	is	decreasing	exponentially	as	the	distance	increases.	Furthermore,	the	rise	time
of	the	current,	that	is,	di/dt,	decreases	rapidly.	The	transient	induced	voltage	is	given	as

where	M:	mutual	inductance.
It	 should	 be	 clear	 from	 the	 above	 equation	 that	 the	 transient	 induced	 voltage	 decreases

rapidly	in	proportion	to	the	rise	time	decrease	of	the	inducing	current.
The	core	voltages	in	Figure	7.57b–d	are	given	as	the	sum	of	the	induced	voltage	in	Figure

7.57a	and	the	voltage	in	Figure	7.55	due	to	the	sheath	grounding	to	the	counterpoise.	Thus,	the
sending	end	core	voltage	reaches	nearly	8	V	in	Figure	7.57b	and	d,	and	the	receiving	end	core
voltage	is	about	−7	V	in	Figure	7.57d,	and	−6	V	in	Figure	7.57c.

7.4.5.4.3				Effect	of	Crossing	Counterpoises	(Part	of	a	Mesh)
In	practice,	the	metallic	sheath	of	a	control	cable	may	be	grounded	to	a	node	of	a	grounding
mesh	where	mesh	branches,	that	is,	counterpoises,	are	connected	to	each	other	as	illustrated	in
Figure	7.59.	The	impedance	at	node	G1	seen	from	the	left	in	Figure	7.59b	becomes	about	1/3
of	 that	 in	 Figure	 7.59a	 on	which	 all	 the	 previous	 investigations	 are	 based.	 The	 impedance
variation	 in	Figure	7.59b	 results	 in	 current	 distribution	different	 from	 that	 in	Figure	 7.59a,
and	thus,	a	current	flowing	into	the	cable	sheath	connected	to	node	G1	differs.	An	example	is
presented	in	the	figure.	It	is	observed	in	Figure	7.59	that	the	current	flowing	into	the	sheath	is
about	30%	of	the	original	current	IG0	on	the	counterpoise	when	the	sheath	is	grounded	to	an
intermediate	 node	 of	 a	 single	 counterpoise	 as	 in	 7.59a,	while	 it	 is	 less	 than	 20%	when	 the



sheath	is	grounded	to	the	mesh	node	as	in	7.59b.	This	difference	results	in	dissimilar	transient
voltages	and	currents	on	a	control	cable	as	shown	in	Table	7.8.
A	comparison	of	Case	D1-04	with	Case	A1-04	and	D0-04	with	A0-04	in	Table	7.8	makes	it

clear	that	the	cable	voltages	are	reduced	to	less	than	half	by	grounding	the	sheath	to	the	node
of	 a	 grounding	 mesh	 where	 counterpoises	 are	 connected	 to	 each	 other.	 The	 result	 is
reasonable	because	a	current	flowing	into	the	sheath	(IS1)	and	a	current	flowing	through	the
counterpoise	 to	 the	 right	 of	 node	 G1	 (IG1)	 become	 smaller.	 IG1	 is	 the	 inducing	 current	 to
produce	the	cable	voltage	when	the	sheath	is	not	grounded	to	the	counterpoise.
The	above	result	indicates	that	an	analysis	of	the	induced	voltage	to	the	control	cable	can	be

carried	out	assuming	a	single	counterpoise	as	the	severest	case.	Also,	it	should	be	mentioned
that	 counterpoises	 that	 are	 a	 part	 of	 the	 grounding	mesh	 parallel	 to	 a	 control	 cable	 induce
voltages	 on	 the	 cable.	 The	 voltage	 induced	 by	 the	 counterpoise	 nearest	 to	 the	 cable	 is	 the
largest,	and	those	due	to	the	other	counterpoises	are	much	smaller	because	of	the	distance	to
the	 cable,	 and	 are	 somehow	 cancelled	 out	 because	 of	 the	 symmetrical	 configuration	 of	 the
counterpoises	 to	 the	 cable.	Therefore,	 it	 is	 expected	 that	 only	 the	 induced	voltage	 from	 the
nearest	 counterpoise	 is	 enough	 to	 be	 considered	 in	 the	 transient	 analysis	 of	 the	 induced
voltage.

7.4.5.4.4				Effect	of	Lead	Wire	Inductance
It	 is	 well-known	 that	 a	 transient	 response	 in	 a	 circuit	 is	 significantly	 influenced	 by	 the
impedance	 of	 a	 lead	 wire	 used	 for	 grounding,	 connecting	 circuits,	 and	 measurements	 as
explained	in	Section	7.4.2.	In	Reference	47,	it	is	said	that	the	grounding	of	the	metallic	sheath
of	a	control	cable	may	not	be	effective	at	all	during	a	high-frequency	transient	because	of	the
grounding	lead	inductance.
Figure	 7.60	 shows	 the	 effect	 of	 the	 grounding	 lead	 inductance	 assuming	 1	 µH/m	 on

voltages	and	currents	of	a	control	cable.	 It	 is	observed	 in	Table	7.8	 that	 the	 inductance	of	5
µH,	corresponding	to	the	5	m	grounding	lead,	reduces	a	current	flowing	into	the	sheath	and
the	 core	voltages	 to	nearly	half	 of	 that	 seen	 in	 the	 case	without	mutual	 coupling.	However,
Figure	7.60	with	mutual	coupling	shows	that	the	cable	voltages	do	not	differ	much	from	those
in	Figure	7.57.	The	reason	for	this	is	readily	explained	by	the	fact	that	the	high	impedance	of
the	grounding	lead	due	to	the	inductance	decreases	the	current	flowing	into	the	sheath	and	thus
the	current	on	the	counterpoise	increases,	which	induces	higher	voltages	on	the	cable	core.	In
a	manner	similar	to	that	discussed	in	Section	7.4.5.3,	the	largest	core	voltage	at	the	receiving
end	 is	 observed	when	 both	 ends	 of	 the	 sheath	 are	 grounded.	 Thus,	 it	 is	 concluded	 that	 the
receiving	end	grounding	is	preferred	even	when	lead	wire	inductance	is	considered.
The	above	observations	agree	with	those	explained	in	Reference	47	that	sheath	grounding

does	not	become	effective	for	a	transient	due	to	the	inductance	of	a	lead	wire.

7.4.5.4.5				Core	Voltages	to	Sheath	and	Counterpoise
The	previous	sections	studied	voltages	to	the	zeropotential	surface	to	investigate	the	effect	of
sheath	 grounding.	 In	 practice,	 a	 voltage	 difference	 from	 the	 core	 of	 a	 control	 cable	 to	 the



sheath	 or	 to	 a	 counterpoise	 is	 used	 as	 the	 core	 voltage.	 Figure	 7.61	 shows	 the	 voltage
difference.	It	is	clear	that	the	voltage	difference	from	the	core	to	the	sheath	is	nearly	the	same
as	that	to	the	counterpoise	independently	from	the	lead	wire	inductance.	However,	the	voltage
difference	to	the	sheath	is	entirely	dependent	on	the	sheath	grounding,	and	is	greater	than	that
to	 the	counterpoise.	The	voltage	difference	 is	greatest	 in	 the	case	of	 the	sheath	sending	end
grounding,	and	the	receiving	end	grounding	shows	the	smallest	difference.	The	results	again
suggest	that	the	receiving	end	grounding	is	better	than	grounding	at	both	ends.

7.4.5.5				Conclusion
The	Section	7.4.5	has	investigated	the	effect	of	sheath	grounding	on	a	control	cable	based	on
EMTP	simulations,	when	a	lightning	current	flows	into	counterpoises	representing	part	of	a
grounding	 mesh.	 Voltages	 and	 currents	 observed	 on	 the	 control	 cable	 are	 given	 as	 a
superposition	of	a	well-known	 induced	voltage	due	 to	 the	 lightning	current	on	 the	counter-
poise,	 of	 a	 voltage	 transferred	 from	 the	 counterpoise	 to	which	 the	 cable	metallic	 sheath	 is
grounded,	and	of	a	 lightning	current	circulating	 in	a	closed	 loop	composed	of	 the	metallic
sheath	and	the	counterpoise	when	both	ends	of	 the	cable	are	grounded.	The	induced	voltage
from	 the	counterpoise	 is	not	necessarily	dominant	even	 in	a	 long	cable	because	 the	current
along	 the	 counterpoise	 decreases	 rapidly	 as	 the	 distance	 from	 the	 sending	 end	 increases.
However,	the	sheath	grounding	decreases	the	node	voltage	due	to	the	induced	voltage,	but	at
the	 same	 time	 increases	 voltage	 transferred	 from	 the	 counterpoise.	 The	 inductance	 of	 a
grounding	 lead	 reduces	 a	 current	 flowing	 into	 the	 cable	 sheath	 during	 a	 high	 frequency
transient,	 and	 thus	 more	 current	 flows	 through	 the	 counterpoise.	 This	 results	 in	 a	 higher
induced	voltage	to	the	control	cable	from	the	counterpoise.

	
	

Appendix	7A

7A.1				Negative	Voltage	at	the	Front	of	an	Induced	Voltage
1.	Investigation	of	voltage	measuring	wire	arrangement:	Figure	7A.1	shows	various	voltage
measuring	wire	arrangements.
a.	Connection	A:	The	measuring	wire	is	connected	only	with	the	ground	of	a	voltage
probe	for	an	induced	electrode	as	in	Figure	7A.1a.

b.	Connection	B:	The	measuring	wire	is	branched	into	two	wires	and	each	branched	wire
is	connected	with	the	ground	of	voltage	probes	for	the	inducing	and	induced	voltages
as	in	Figure	7A.1b.
Figure	 7A.2	 shows	 the	 measured	 results	 of	 inducing	 and	 induced	 voltages	 for	 the

above	 two	 arrangements	 of	 the	 measuring	 wire	 connection.	 It	 is	 observed	 that	 the
negative	 induced	voltage	 is	greater	 in	Connection	A	 than	 in	Connection	B.	The	 reason



for	the	difference	is	clear,	that	is,	Connection	B	cancels	out	noise	induced	by	the	voltage
measuring	wire.

2.	Investigation	of	the	negative	voltage:	Measured	results	in	Section	7.4.1.3	were	obtained
by	a	simultaneous	measurement	of	inducing	and	induced	voltages.	Figure	7A.3	shows	a
measured	result	of	the	induced	voltage	when	only	the	induced	voltage	is	measured.	No
negative	voltage	is	observed	in	Figure	7A.3.

FIGURE	7A.1
Position	of	a	voltage	measuring	wire.	(a)	Connection	A	and	(b)	Connection	B.

FIGURE	7A.2
Effect	of	a	voltage	measuring	wire.	(a)	V1	and	(b)	V2.

FIGURE	7A.3
Experimental	result	of	V2.



Thus,	it	should	be	clear	now	that	the	negative	voltage	is	caused	by	noise	induced	by
the	voltage	measuring	wire.

3.	Investigation	by	FDTD	simulations:	Figure	7A.4	shows	an	FDTD	simulation	model	of	a
measuring	system.	gFigure	7A.5	shows	the	simulation	results	of	voltages	at	nodes	A	to	E
in	Figure	7A.4.	The	voltages	are	calculated	by	integrating	the	electric	field	from	the
absorbing	boundary	to	the	node.	It	is	observed	in	Figure	7A.5a	and	b	that	the	induced
voltage	waveform	is	similar	to	the	inducing	voltage	waveform.	Similarly,	the	voltage	is
induced	to	the	measuring	wire	as	in	Figure	7A.5c.	Owing	to	the	measuring	wire	voltage,
ground	potential	rise,	and	electromagnetic	induction	from	the	current	lead	wire,	the
voltage	probe	shows	the	waveform	in	Figure	7A.5d,	and	the	ground	of	the	oscilloscope
in	Figure	7A.5e.	A	difference	between	the	voltages	VP	and	VE	gives	the	waveform	in
Figure	7A.5f,	which	is	the	same	as	that	in	Figure	7.14b.

FIGURE	7A.4
The	detail	of	a	measurement	system.

Figure	7A.6	shows	the	effect	of	the	current	lead	wire	height,	which	is	10	and	60	cm.
The	lower	height	gives	a	lower	negative	voltage	at	the	front	part	of	the	induced	voltage.
Thus,	 it	 should	 be	 clear	 that	 the	 negative	 part	 of	 the	 induced	 voltage	 is	 caused	 by
coupling	of	the	current	lead	wire,	the	voltage	measuring	wire,	and	the	probe	wire.



FIGURE	7A.5
Simulation	result	at	various	nodes	in	Figure	7A.4.	(a)	Point	A	(top	of	electrode	1),	(b)	Point	B	(top	of	electrode	2),	(c)	Point	C
(end	 of	 the	 measuring	 wire),	 (d)	 Point	 D	 (end	 of	 voltage	 probe	 1),	 (e)	 Point	 E	 (the	 ground	 of	 an	 oscilloscope)	 and	 (f)
Comparison	between	V2	and	VD	–	VE.



FIGURE	7A.6
Effect	of	a	current	lead	wire.
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Problems	and	Application	Limits	of	Numerical
Simulations
	

Because	the	electromagnetic	transients	program	(EMTP)	is	based	on	circuit	theory	assuming
transverse	electromagnetic	(TEM)	mode	propagation,	it	cannot	give	an	accurate	solution	for
a	high-frequency	transient	that	involves	non-TEM	mode	propagation.	Additionally,	the	EMTP
cannot	 deal	 with	 a	 circuit	 of	 unknown	 parameters.	 A	 numerical	 electromagnetic	 analysis
(NEA)	method,	on	the	other	hand,	can	deal	with	a	transient	associated	with	both	TEM	and	non-
TEM	 mode	 propagations.	 Furthermore,	 it	 requires	 no	 circuit	 parameters.	 However,	 this
method	 results	 in	 numerical	 instability	 if	 the	 analytical	 space,	 the	 boundary	 conditions,	 the
cell	 size,	 etc.,	 are	 not	 appropriate.	 Also,	 it	 requires	 massive	 computer	 resources,	 and	 the
existing	codes	are	not	generalized	enough	to	deal	with	various	types	of	transients,	especially
in	a	large	network.

	
	

8.1					Problems	with	Existing	Impedance	Formulas	Used	in	Circuit	Theory-
Based	Approaches

8.1.1				Earth-Return	Impedance
8.1.1.1				Carson’s	Impedance
The	 reason	 Carson’s	 impedance	 is	 very	 popular	 and	 widely	 used	 is	 simply	 due	 to	 its
asymptotic	expression	[1].	During	the	early	days	of	computing,	the	calculation	of	Pollaczek’s
infinite	 integral	 [2]	was	very	difficult	because	of	 limited	computation	capability.	Therefore,
Carson’s	 asymptotic	 formula	was	 the	only	possible	way	 to	 evaluate	 earth-return	 impedance
[3].	However,	the	asymptotic	expression	inherently	necessitates	formulas	for	a	small	variable
—for	example,	low	frequency—and	for	a	large	variable,	and	this	results	in	a	discontinuity	of
the	 calculated	 impedance	 as	 a	 function	 of	 frequency.	 Also,	 the	 accuracy	 in	 the	 boundary
region	 is	not	high	enough.	The	 same	holds	 true	 for	Schelkunoff’s	 formula	 for	 the	 internal
impedance	of	a	conductor	[4].
In	this	day	and	times,	advancements	in	computing	capabilities	make	it	possible	to	calculate

an	 infinite	 integral	 and	 various	 methods	 of	 evaluating	 Pollaczek’s	 impedance	 have	 been
proposed.	 A	 typical	 example	 is	 the	 work	 by	 Noda	 [5].	 This	 author,	 however,	 doubts	 even
Pollaczek’s	formula.



8.1.1.2				Basic	Assumptions	of	Impedance

Pollaczek’s	and	Carson’s	formulas	were	derived	under	the	assumption	that

It	should	be	noted	that	most	formulas	for	capacitance	and	inductance	of	conductors	given	in
textbooks	are	based	on	this	condition.	It	can	be	easily	confirmed	that	any	capacitance	formula
gives	 an	 erroneously	 large	 value	 when	 the	 radius	 equals	 the	 height.	 Correspondingly,	 the
inductance	of	an	infinite	conductor	becomes	larger	than	that	of	a	real	finite	conductor	[6,7].
Furthermore,	the	formulas	neglect	displacement	currents

where
ρe	is	the	earth	resistivity
εe	is	the	permittivity
ω	=	2πf

For	example,	the	applicable	range	of	a	frequency	in	the	case	of	ρe	=	1000	Ω	m	and	εe	=	ε0	is
given	by

f	≪18	MHz	or	t≫	50ns

Even	in	the	case	of	ρe	=	100	Ω	m,	a	transient	of	a	10	ns	time	region	cannot	be	simulated	by
Pollaczek’s	and	Carson’s	 impedances	 [8,	9,	10–11].	 It	 should	 be	 noted	 that	most	 frequency-
dependent	 line	 models	 are	 not	 applicable	 in	 these	 models	 because	 they	 are	 based	 on
Pollaczek’s	and	Carson’s	impedances.
Under	 conditions	 in	 which	 Equations	 8.1	 and	 8.2	 are	 not	 satisfied,	 only	 Kikuchi’s	 and

Wedepohl’s	 impedance	 formulas	 are	 applicable	 [8,	 9–10].	 These	 require	 more	 advanced
numerical	integration	than	that	applied	to	Pollaczek’s	formula.

8.1.1.3				Nonparallel	Conductors
Pollaczek’s	 and	Carson’s	 impedances	 are	 for	 a	 horizontal	 conductor.	 In	 reality,	 there	 are	 a
number	 of	 nonhorizontal	 conductors,	 such	 as	 vertical	 and	 inclined	 ones.	 Although	 many
papers	 have	 been	 published	 on	 the	 impedance	 of	 vertical	 conductors	 such	 as	 transmission
towers,	 it	 is	 still	 not	 clear	 if	 the	 proposed	 formulas	 are	 correct.	 The	 empirical	 formula	 in
Reference	12	 is	almost	 identical	 to	an	analytical	 formula	[13],	which	agrees	quite	well	with
the	 measured	 results.	 However,	 the	 analytical	 formula	 requires	 further	 investigation	 to
confirm	if	the	derivation	is	correct.
Impedance	 formulas	 for	 inclined	 and	 nonparallel	 conductors	 have	 been	 proposed	 in

References	6,	7,	and	14.	Since	 the	 formulas	 have	been	derived	 from	 the	 idea	of	 a	 complex



penetration	depth	[15]	using	Neumann’s	 inductance	formula,	 they	require	 further	 theoretical
analyses.

8.1.1.4				Stratified	Earth
Earth	 is	 stratified,	 as	 is	 well-known,	 and	 its	 resistivity	 varies	 significantly	 at	 the	 top	 layer
depending	on	the	weather	and	climate.	The	earth-return	impedance	of	an	overhead	conductor
above	 the	 stratified	 earth	 was	 derived	 in	 Reference	 16,	 and	 the	 stratified-earth	 effect	 was
investigated	in	Reference	17.	The	stratified-earth	effect	may	be	far	more	significant	than	the
accurate	evaluation	of	the	homogenous	earth-return	impedance	of	Pollaczek	and	Carson,	and
this	requires	further	investigation.

8.1.1.5				Earth	Resistivity	and	Permittivity
Earth	resistivity,	as	mentioned	earlier,	 is	weather/climate	dependent.	The	resistivity	after	 the
rains	is	lower	than	that	measured	during	dry	days.	Also,	it	may	be	frequency	dependent.	The
frequency	 dependence	 of	 earth	 permittivity	 may	 be	 far	 more	 significant	 than	 that	 of	 earth
resistivity.	 Furthermore,	water	 (H2O),	 which	 is	 a	 dominant	 factor	 for	 earth	 permittivity,	 is
extremely	 temperature	dependent	 [18].	As	 a	 result,	 the	 error	 due	 to	 the	uncertainty	of	 earth
resistivity	 and	 permittivity	might	 be	 far	 greater	 than	 that	 due	 to	 the	 incompleteness	 of	 the
earth-return	 impedance	 derived	 by	Carson	 and	Pollaczek.	This	 should	 be	 remembered	 as	 a
physical	reality	that	is	important	in	engineering	practice.

8.1.2				Internal	Impedance
8.1.2.1				Schelkunoff’s	Impedance
Schelkunoff’s	impedance	was	derived	under	the	condition	that	a	conductor	must	be	in	a	free
space	 corresponding	 to	 Equation	 8.1.	 Therefore,	 the	 impedance	 is	 not	 applicable	 to	 finite-
length	conductors	in	proximity.	This	suggests	that	the	internal	impedance	of	such	conductors
is	yet	to	be	derived.

8.1.2.2				Arbitrary	Cross-Section	Conductor
Schelkunoff’s	impedance	assumes	that	a	conductor	is	circular	or	cylindrical.	In	reality,	many
conductors	exist	withcross	sections	are	not	circular	or	cylindrical.	The	internal	impedance	of
a	 conductor	 with	 an	 arbitrary	 cross	 section	 was	 derived	 in	 Reference	 19,	 which	 has	 been
implemented	in	the	EMTP	cable	parameters	program	[20].
Reference	21	shows	an	approximation	of	a	conductor	with	a	T	or	hollow	rectangular	shape

by	a	 cylindrical-shaped	conductor.	Although	 the	 internal	 impedance	of	 a	 conductor	with	 an
arbitrary	cross	section	can	be	accurately	evaluated	by	a	 finite-element	method	of	numerical
calculation,	 this	 requires	 a	 great	 deal	 of	 time	 and	 computer	memory.	 Either	 an	 analyti-cal
formula	or	an	efficient	numerical	method	needs	to	be	developed.

8.1.2.3				Semiconducting	Layer	of	Cables



It	is	well-known	that	a	semiconducting	layer	exists	on	the	surface	of	a	cable	conductor,	which
occasionally	 produces	 a	 significant	 effect	 on	 a	 cable	 transient.	 The	 impedance	 of	 the
semiconducting	 layer	 was	 derived	 in	 Reference	 22	 and	 may	 be	 implemented	 into	 a	 cable-
impedance	calculation.	 It	 should	be	noted	 that	 the	admittance	of	 the	semiconducting	 layer	 is
far	more	important	than	its	impedance,	from	a	transient	analysis	viewpoint.

8.1.2.4				Proximity	Effect
The	significance	of	the	proximity	effect	on	conductor	impedance	is	well-known.	There	are	a
number	of	papers	that	derive	a	theoretical	formula	of	impedance	and	admittance	[23,	24,	25,
26,	 27,	 28–29]	 and	 discuss	 impedance	 variation	 due	 to	 proximity	 based	 on	 numerical
simulations	 [30,	 31,	 32–33].	 The	 proximity	 effect	 may	 be	 very	 important	 in	 a	 steady-state
power	 system’s	 performance	 from	 a	 power	 loss	 viewpoint;	 some	 quantitative	 results	 at	 a
frequency	of	50	or	60	Hz	have	been	published	[34,	35,	36–37].
It	 has	 been	 pointed	 out	 that	 the	 proximity	 effect	 is	 also	 significant	 in	 a	 transient	 state

because	a	surge	waveform	is	noticeably	distorted	by	the	increase	in	conductor	resistance	due
to	the	proximity	effect.	Unfortunately,	almost	no	data	exist	investigating	the	proximity	effect
on	a	transient	[33].
A	 formula	 is	 available	 that	 considers	 the	 proximity	 or	 the	 eccentricity	 of	 a	 conductor

enclosed	within	a	conducting-pipe	enclosure	[24];	that	is,	a	PT	cable	[20,38].	However,	there
is	no	formula	that	considers	the	proximity	between	two	conductors	above	the	earth.

8.1.3					Earth-Return	Admittance
Earth-return	 impedance	 has	 been	 well	 discussed,	 and	 its	 effect	 on	 the	 wave-propagation
characteristic	 and	 the	 transient	 waveform	 is	 well-known,	 as	 is	 clear	 from	 a	 number	 of
publications.	 Earth-return	 admittance	 [8,9,39,40],	 however,	 is	 neglected	 in	 most	 studies	 on
wave	propagation	and	surge	characteristics,	and	 its	significant	effect	 is	not	well	understood
[8,9,40,	41,	42–43].
It	has	been	pointed	out	in	References	8,9,40,	and	43	that	attenuation	starts	 to	decrease	at	a

critical	frequency	that	 is	 inversely	proportional	to	the	earth’s	resistivity	and	the	conductor ’s
height.	This	phenomenon	is	caused	by	negative	conductance	and	corresponds	to	the	transition
between	the	TEM	mode	propagation,	called	“earth-return	wave,”	and	the	transverse	magnetic
(TM)	mode	propagation,	called	“surface	wave,”	as	discussed	by	Kikuchi	 in	1957	[9].	When
earth-return	 admittance	 is	 neglected,	 attenuation	 increases	 monotonously	 as	 the	 frequency
increases.	 The	wave-propagation	 velocity	 and	 the	 characteristic	 impedance	 become	 greater
when	 earth-return	 admittance	 is	 considered.	 The	 study	 of	 earth-return	 admittance	 may	 be
another	 challenging	 and	 prospective	 field	 for	 transient	 analysis,	 including	 the	 transition
among	TEM,	TM,	and	TE	modes	of	propagation	[44].

	
	



8.2					Existing	Problems	in	Circuit	Theory-Based	Numerical	Analysis
8.2.1				Reliability	of	a	Simulation	Tool
Quite	 often,	 a	 problem	 appears	 unexpectedly	 for	 a	 user	 but	 not	 for	 the	 developers	 of	 a
simulation	tool;	it	is	hard	for	developers	to	predict	such	problems	at	the	development	stage.
These	 problems	 are	 caused	 quite	 often	 by	 the	 misuse	 of	 the	 tool	 by	 the	 user.	 Therefore,
reliability	 and	 severity	 tests	 of	 simulation	 tools	 are	 very	 important.	 For	 example,	 it	 took
nearly	10	years	 to	carry	out	 reliability	and	severity	 tests	on	 tens	of	 thousands	of	cases	with
EMTP	cable	constants.	It	should	be	noted	that	the	reliability	of	a	tool	(that	is,	the	probability	of
a	 problem	 occurring)	 is	 proportional	 to	 the	 number	 of	 elements	 (that	 is,	 the	 number	 of
subroutines	and	options)	although	each	individual	element	has	very	high	reliability.	Input	data
often	cause	numerical	instability	when	the	data	physically	do	not	exist;	this	problem	is	related
to	the	assumption	of	formulas	adopted	in	the	simulation	tool	as	explained	in	Section	8.1.	To
avoid	such	a	problem,	a	“KILL	CODE”	is	prepared	in	the	EMTP.	The	kill	code	judges	whether
the	input	data	are	beyond	the	limits	of	assumption.	It	may	be	noteworthy	that	nearly	half	of	the
EMTP	codes	are	kill	codes.	This	may	be	considered	by	developers	in	another	simulation	tool.

8.2.2				Assumptions	and	Limits	of	a	Simulation	Tool
It	should	be	noted	that	most	of	the	existing	or	well-known	formulas	of	conductor	impedances
and	 admittances	 are	 derived	 based	 on	 the	 assumption	 of	 an	 infinitely	 long	 conductor.	 The
frequency	 of	 discovery	 of	 new	 electrical	 phenomena	 is	 increasing	 year	 after	 year,
corresponding	 to	 the	 advancement	 in	 measuring	 equipment.	 For	 example,	 the	 sampling
frequency	of	an	oscilloscope,	which	is	1	GHz	today,	was	approximately	10	MHz	10	years	ago.
The	length	is	inversely	proportional	to	the	frequency,	and	therefore	it	becomes	necessary	to
deal	with	a	transient	on	a	1-m	conductor	whose	natural	resonant	frequency	is	on	the	order	of
100	MHz.	Schelkunoff’s,	Pollaczek’s,	and	Carson’s	impedances	adopted	in	any	circuit	theory-
based	 simulation	 tool,	 such	as	 the	EMTP,	may	not	be	applied	 [3].	The	 limits	 of	 assumption
should	 be	 clearly	 explained	 in	 the	 rule	 book	 of	 a	 simulation	 tool,	 and	 the	 kill	 codes
corresponding	 to	 the	 impedance	 and	 admittance	 limits	 should	 be	 prepared	 in	 the	 tool.
Problems	often	appear	when	the	user	adopts	a	commercial	software,	unless	a	developer	or	a
user	group	gives	a	guide	for	its	usage.	Even	in	the	case	of	a	well-known	simulation	tool	such
as	 the	 EMTP,	 problems	 occur	 frequently.	 The	 best	 solution	 to	 avoid	 such	 problems	 is	 for
electrical	engineers	to	realize	that	such	phenomena	need	to	be	simulated	in	physical	terms	to
be	clearly	understood—that	is	engineering.	We	are	not	computer	engineers,	nor	information
technology	(IT)	engineers.

8.2.3				Input	Data
As	was	mentioned	in	above,	a	simulation	tool	user	should	be	careful	about	input	data.	Quite
often,	input	data	beyond	the	limits	of	assumption	of	the	tool	are	used,	and	users	then	complain
that	 the	 tool	gives	erroneous	output—this	was	the	author ’s	experience	as	a	developer	of	 the
original	EMTP	beginning	in	1976.	At	the	same	time,	both	the	user	and	the	developer	should



recognize	 that	 there	 are	 a	 number	 of	 uncertain	 physical	 parameters,	 typically	 dealing	with
earth	 resistivity,	 that	 vary	 along	 a	 transmission	 line	 and	 also	 along	 the	 depth	 of	 the	 earth
[16,17].	The	stratified-earth	effect	on	a	transient	may	be	far	more	influential	than	the	accuracy
of	numerical	 calculations	of	Pollaczek’s	 and	Carson’s	earth-return	 impedances,	 assuming	a
homogenous	earth.	It	 is	 interesting	to	note	 that,	since	1978,	 the	stratified-earth	option	of	 the
EMTP	cable	constants	has	never	been	used.	In	addition,	data	on	stray	capacitances	and	residual
inductances	 of	 a	 power	 apparatus	 are,	 in	 general,	 not	 available	 from	 a	 manufacturer.	 The
same	is	the	case	with	regard	to	the	nonlinear	characteristic	of	the	apparatus	and	the	resistivity
and	permittivity	of	a	cable	insulator	and	a	semiconducting	layer	[18].

	
	

8.3				NEA	for	Power	System	Transients
The	 numerical	 electromagnetic	 analysis	 (NEA)	method	 [45,	46,	 47,	 48,49–50]	 is	 becoming
one	 of	 the	most	 promising	 approaches	 to	 solve	 transient	 phenomena	 that	 are	 very	 hard	 to
solve	 using	 existing	 circuit	 theory-based	 simulation	 tools	 such	 as	 the	 EMTP.	 The	 existing
circuit	 theory-based	 approaches	 cannot	 solve	 a	 three-dimensional	 (3-D)	 transient	 or	 a
transient	involving	a	sphere-wave	propagation	and	a	scattered	field,	such	as	a	transient	across
an	archon,	a	wave	front	transient	at	a	transmission	tower	due	to	lightning,	or	the	voltage	and
current	 at	 the	 corner	 or	 across	 the	 spacer	 of	 a	 gas-insulated	 bus	 due	 to	 a	 switching	 surge.
Also,	 the	 circuit	 theory-based	 approach	makes	 it	 difficult	 to	 solve	 a	 transient	 in	 a	 complex
medium,	such	as	the	transient	on	a	grounding	electrode	and	that	on	a	semiconducting	layer	of
a	cable	Furthermore,	 the	circuit	 theory	approach	cannot	be	applied	 if	 the	circuit	parameters
are	not	 known.	The	NEA	method	 can	 solve	 such	problems,	 because	 it	 calculates	Maxwell’s
equation	directly.
A	working	 group	 of	 the	 IEE	 Japan	was	 founded	 in	April	 of	 2004,	 and	 it	 carried	 out	 an

investigation	on	the	NEA	and	its	applications.	The	results	derived	by	the	working	group	were
published	as	a	book	by	IEE	Japan	[49].	CIGRE	working	group,	WG	C4.	501,	was	established
[50]	in	2009,	and	a	CIGRE	technical	brochure	(TB)	has	been	published	[38].
The	NEA	method	is	useful	in	dealing	with	power	system	transients,	such	as	in	the	following

topics:

•	Surge	characteristics	of	overhead	transmission-line	towers.
•	Surge	characteristics	of	vertical	grounding	electrodes	and	horizontally	placed	square-
shaped	grounding	electrodes.

•	Surge	characteristics	of	air-insulated	substations.
•	Lightning-induced	surges	on	overhead	distribution	lines.
•	Surge	characteristics	of	a	wind-turbine	tower	struck	by	lightning	and	its	interior	transient
magnetic	field.

•	Very	fast	transients	in	gas-insulated	switchgears.
•	Three-dimensional	(3-D)	electromagnetic	field	analysis.



The	details	of	the	NEA	are	explained	in	Chapter	5.
In	 summary,	 NEA	methods	 can	 provide	 greater	 accuracy	 when	 compared	 to	 simulation

results	obtained	using	circuit	theory-based	approaches.
However,	as	massive	computation	resources	are,	in	general,	required,	NEA	methods	can	be

considered	 useful	 tools	 to	 set	 reference	 cases	 and	 study	 specific	 problems.	Also,	 a	 perfect
conductor	 assumption	 in	 a	 finite-difference	 time-domain	 (FDTD)	 method,	 for	 example,
results	in	the	difficulty	in	analyzing	TEM,	TM,	and	TE	transition	of	wave	propagation	along	a
lossy	conductor	above	a	lossy	earth	[8,9,43,44].
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A
AC,	see	Alternating	current
AC	source	voltage,	191

arc	horn	flashover	phases,	193,	194
EHV,	192

AC	submarine	cable,	276
Actual	characteristic	impedance,	48,	63,	70,	260
Actual	phase	current,	54
Actual	propagation	constant,	69–70
Admittance,	13–14,	17,	112

homogeneous,	240
parameters,	51–53
surge,	22

Admittance	formulas,	2,	109
conductor	internal	impedance,	3–8
finite-length	horizontal	conductor,	109–112
outer-media	impedance,	8–16
overhead	conductor	system,	14
problems,	16–17
vertical	conductor,	112–115

Admittance	of	cable	systems
homogeneous	model	of	cross-bonded	cable,	240–247
sheath	bonding,	237–240
single-phase	cable,	236–237
theoretical	formula	of	sequence	currents,	248–258

Aerial	mode,	55
Air-insulated	substations,	384–386
Alternating	current	(AC),	1–2,	143
Alternative	Transients	Program	(ATP),	124
Ampere’s	law,	347
Analytical	method

approximate	formulas	for	impedance	and	admittance,	461–462
boundary	conditions	and	solutions	of	voltage	and	current,	460–461
comparison	with	EMTP	simulations,	450
in	complex	induced	circuit,	435
F-parameter	formulation,	436–438



field	test	results,	450–546
numerical	simulation	software,	434–435
single	section	termination,	438–443
solutions	for	two-cascaded	sections,	462–463
test	voltage	for	low-voltage	control	circuits,	457–459
three-cascaded	sections	of	pipeline,	449–450,	453,	456–457
traveling-wave	solution,	460
two-cascaded	sections	of	pipeline,	443–449,	456–457

Analytical/theoretical	model,	474
multiple	vertical	electrodes,	475
plate	electrode	with	cross	section,	475
single	horizontal	electrode,	474–475
single	vertical	grounding	electrode,	474
steady-state	analysis,	474
transient	analysis,	475–476

Arbitrary	cross-section	conductor,	551–552
Arc	horn,	182–183
ATP,	see	Alternative	Transients	Program
Attenuation	constant,	266

B
Back	flashovers	(BFOs),	178,	210–211,	367
Backward	traveling	waves,	22,	40
Bernoulli’s	solution,	123
BFOs,	see	Back	flashovers
Bonneville	Power	Administration	(BPA),	86
Breakdown	voltage	of	home	appliances

breakdown	test,	413
testing	voltage,	412–413

C
Cable	model,	294

admittance	matrix,	295
data	for	cable	parameter	calculation,	297–298
parameters,	297
π-equivalent	circuit,	297
technical	data	for	cable,	296

Cable	parameters	(CP),	529
Cables



discharge,	286
semiconducting	layer	of,	552
structure,	236

Cable	system	design	and	equipment	selection
cable	discharge,	286
leading	current	interruption,	284–285
study	flow,	278–280
zero-missing	phenomenon,	280–284

Capacitance,	117,	127,	265
capacitance-terminated	line,	82
of	finite	horizontal	conductor,	115,	120
stray,	147

Carson’s	Earth-return	impedance,	13
Carson’s	formulas,	108,	550
Carson’s	impedance,	549–550
Cascaded	system,	102–104
CB,	see	Circuit	breaker
Central	processing	unit	(CPU),	403
CFL	criterion,	see	Courant–Friedrichs–Lewy	criterion
Characteristic	equation,	43
Characteristic	impedance,	30–32,	60–64,	72–75
Character	user	interface	(CUI),	308
Charge	conservation	equation,	356
Charging	current,	298,	299

node	voltages,	299
voltage	distribution	by	cable	charging,	300–301

CIGRE	wave,	see	Conseil	International	Des	Grands	Réseaux	Electriques	wave
Circuit	breaker	(CB),	100,	143,	395

operation,	398
Circuit	elements

arc	horn,	182–183
lightning	current,	178–181
representation	by	current	source	and	resistance,	126–128
substation,	184
tower	and	gantry,	179–182
tower	footing	impedance,	182
transmission	line,	184

Circuit	parameters,	498;	see	also	Line	parameters
current	waveform,	499
electrode,	498–499
voltage	formula,	coefficients	of,	500



Circuit	theory-based	approaches
earth-return	admittance,	552–553
earth-return	impedance,	549–551
internal	impedance,	551–552
problems	with	impedance	formula	in,	549

Circuit	theory-based	numerical	analysis,	problems	in
assumptions	and	limits	of	simulation	tool,	553–554
input	data,	554
reliability	of	simulation	tool,	553

Clarke’s	transformation,	53,	54
Closing	angle	distribution,	155–158
Closing	resistor	effect,	165,	166
Closing	surge	characteristics,	148

analytical	voltage	waveform,	152
effect	of	closing	resistor,	165,	166
earth	resistivity,	effect	of,	161–162,	163
line	length,	effect	of,	162,	163
line	transposition,	164
on	multiphase	line,	154–158
effect	of	parameters,	158
reclosing	overvoltage,	165
on	single	phase	line,	153–154
source	inductance,	effect	of,	162–164
statistical	analysis,	159
traveling	wave,	149–150
untransposed	vertical	twin-circuit	line,	151

Closing	surge	overvoltage,	148
Coaxial	traveling	wave,	270
Conductor	internal	impedance,	3;	see	also	Outer-media	impedance

accurate	formula	by	Schelkunoff,	6–8
conductor	impedance	at	power	frequency,	5
cylindrical	conductor,	3
derivation	of	approximate	formula,	3–6
example,	5–6
self-impedance	of	phase,	7

Conseil	International	Des	Grands	Réseaux	Electriques	wave	(CIGRE	wave),	179
Continuity	equations	for	traveling	waves,	86
Continuous	voltage	limitation,	271
Conventional	system,	calculated	results	of,	336

minimum	voltages,	340
train-current	waveform,	338



voltage	regulators,	339
Copper	(Cu),	472
Core	admittance	submatrix,	244
Corona

discharge,	380
propagation	of	lightning	surges	in,	374–380

Correction	term	of	earth-return	impedance,	12
Countermeasures,	403

cost,	403,	404
flow,	403–404
manpower,	404,	405

Counterpoise,	528–529
Courant–Friedrichs–Lewy	criterion	(CFL	criterion),	347
CP,	see	Cable	parameters
CPU,	see	Central	processing	unit
Cross-bonded	cables,	270,	471

homogeneous	impedance	and	admittance,	240–245
impedance	matrix,	248–250
positive-sequence	current,	252–253
reduction	of	sheath,	245–247
zero-sequence	current,	250–252

CT,	see	Current	transformer
CUI,	see	Character	user	interface
Current

current	source,	circuit	element	representation	by,	126–128
equations,	86
rise	time	of,	525–526
waveform,	499

Current	transformer	(CT),	396
Customers’	home	appliances,	disturbances	in,	410

breakdown	voltage,	412–413
LS	from	communication	line,	426–434
statistical	data	of	disturbances,	410–412
surge	voltages	and	currents,	413–426

D
D’Alembert’s	solution,	123
DC,	see	Direct	current
DCG,	see	Development	Coordination	Group
Development	Coordination	Group	(DCG),	124



DFT,	see	Discrete	Fourier	transform
Dirac	delta	function,	355
Direct	current	(DC),	3,	291

feeding	circuit,	333–336
measured	results,	336,	337
numerical	simulation,	332
results	of	conventional	system,	336–340
results	with	power	compensator,	340–343
voltage-regulation	equipment,	331

Disconnect	switch	(DS),	395
operation,	398

Discrete	Fourier	transform	(DFT),	218
Discrete	Laplace	transform	(DLT),	217
Distributed-parameter	circuits	theory,	1

characteristic	impedance,	30–32
EMTP,	122
frequency-dependent	effect,	57–77
multiconductor	system,	38–56
nonuniform	conductors,	104–122
partial	differential	equations	of	voltages	and	currents,	17–18
propagation	constants,	28–30
solutions	of	voltages	and	currents,	18–23
traveling	wave,	77–104
voltages	and	currents	on	finite	line,	32–38
voltages	and	currents	on	semi-infinite	line,	23–28

Distribution	lines	and	customer ’s	house,	472–474
DLT,	see	Discrete	Laplace	transform
Dommel′s	line	model,	295
Double	exponential	wave,	179
DS,	see	Disconnect	switch

E
Earth	continuity	cable	(ECC),	238
Earthing	joint	(EJ),	240
Earth	permittivity,	551
Earthquake-proof	equipment,	472
Earth-return	admittance,	549,	552–553;	see	also	Internal	impedance

assumptions	of	impedance,	550
Carson’s	impedance,	549–550
correction,	see	Correction	term	of	earth-return	impedance



earth	resistivity	and	permittivity,	551
nonparallel	conductors,	550–551
Pollaczek	formula	for,	12Earth-return	mode,	see	First	zero-sequence	mode
stratified	earth,	551

Earth-return	mode,	55
Earth-return	wave,	553
Earth	resistivity,	551

effect	of,	161–162,	163
ECC,	see	Earth	continuity	cable
EEUG,	see	European	EMTP	User	Group
EHV,	see	Extra-high-voltage
EHV	AC	cable	projects,	274

equivalent	circuit	of	overvoltage,	276
installed	long	500/400-kV	cables,	275
overvoltage	caused	by	system	islanding,	277
planned,	278
recent,	274

Eigenvalue	theory,	42–45
EJ,	see	Earthing	joint
Electrical-circuit	equation,	329
Electrode,	498–499
Electrode	shape	effect,	511

digital	circuits,	511–512
FDTD	simulation,	516–527
field	measurements,	512–516

Electrode	voltage,	analytical	formula	of,	492–494
Electromagnetic	compatibility	(EMC),	391
Electromagnetic	disturbances

affecting	users,	391
approximate	formulas	for	impedance	and	admittance,	461–462
boundary	conditions	and	solutions	of	voltage	and	current,	460–461
characteristics	of	LS	disturbances,	395
characteristics	of	SS	disturbances,	395–400
circuit	configuration	in	GIS,	408
cost	of	countermeasures,	403–404
countermeasures,	403
in	customers’	home	appliances,	410–434
disturbed	circuit,	406
home	appliances,	391
influence	of	disturbances	on	power	system	operation,	401–402
lightning,	405



lightning	currents	flowing	into	ground	mesh,	407
lightning	overvoltage,	408
in	power	stations	and	substations
simulation,	405
solutions	for	two-cascaded	sections,	462–463
SSs	in	DC	circuits,	400–401
statistical	data	of	disturbances,	392–395
surge	propagation	with	CVVS	control	cable,	409
system-state	indicator	and	measurement,	409
test	voltage	for	low-voltage	control	circuits,	457–459
traveling-wave	solution,	460
voltage	to	control	cable,	407

Electromagnetic	transients	program	(EMTP),	2,	122,	195,	291,	369,	413–414,	435,	549,	555
circuit	elements,	126–128,	130–136
development,	124–125
metal	oxide	semiconductor	field-effect	transistor,	315–331
nodal	conductance,	128–129
power-electronics	simulation	using,	305
Schnyder–Bergeron	method,	124
simple	switching	circuit,	306–307
simulation	modeling,	416–420,	476–477
simulation	test	cases,	286–288
standard	simulation	tool,	124
switching	transistor	model,	307–315
theory	of,	125–126
transient	analysis,	122–123

EMC,	see	Electromagnetic	compatibility
EMTP,	see	Electromagnetic	transients	program
European	EMTP	User	Group	(EEUG),	124
Extra-high-voltage	(EHV),	154

F
Faraday’s	law,	345
Fast	Fourier	Transform	(FFT),	220

application	to	MLT,	224–226
computation	time,	224
principle	and	algorithms,	220–224

Fast	Laplace	Transform	(FLT),	220–226
subroutine,	229

Fault-clearing	surge,	170



line	transposition-sound	circuit	voltage,	173
maximum	overvoltages,	175
opening	resistor,	174
overvoltage	in	same	circuit,	172
overvoltages	and	insertion	resistor,	175
reduction	of	surge	overvoltages,	176
two	phase-to-ground	fault	cases,	171

Fault	initiation	surge,	165–167,	168
effect	of	line	transposition,	167–168,	169
overvoltage	distribution,	168–170,	171

Fault	surge,	141,	165,	205–207
FD	method,	see	Frequency-domain	method
FDTD	simulation,	see	Finite-difference	time-domain	simulation
Feeding	circuit,	333,	334

distance	between	substations,	334
train	model,	335–336

FFT,	see	Fast	Fourier	Transform
Field	measurements,	512

experimental	setup,	512–513
measured	results,	513–516

Finite-difference	time-domain	simulation	(FDTD	simulation),	346,	384,	426,	477,	516;	see
also	Numerical	simulations

advantages,	347
cell	with	vectors	of	electric	and	magnetic	fields,	347
comparison	with	measuring	results,	484–485,	517–519
current	sources,	352
disadvantages,	347
electrode	shapes	effect	on	grounding	impedance	reduction,	519–525
in	electromagnetic,	346
experimental	conditions,	480–481
experiments	and,	483
grounding	impedance	reduction,	529–527
lightning	surges	on	power	systems,	351–352
lumped	elements,	354
lumped	voltage	sources,	352
measuring	instruments,	481–482
measuring	results,	482
mutual	coupling	by,	485
overhead	conductor,	487–490
partial-differential	term,	349
reciprocity	between	electrodes,	490



relationship	with	inducing	electrode	length	and	induced	voltage,	485–487
relative	soil	permittivity	effect,	491–492
representations,	376
separation	distance	effect,	490
simulation	conditions,	483–485
simulation	model,	516–517
soil	resistivity	effect	and	current,	rise	time	of,	525–526
transient	responses	measurement,	480

Finite-length	horizontal	conductor,	109
admittance,	112
impedance,	109–112

Finite	Fourier	transform,	214–216
Finite	line,	voltages	and	currents	on,	32

open-circuited	line,	35–38
short-circuited	line,	32–35

First	zero-sequence	mode,	67
FLT,	see	Fast	Laplace	Transform
Footing	impedance,	188–191,	192
Fortescue’s	transformation,	53
Forward	traveling	waves,	22,	39
Four-terminal	parameter	method	(F-parameter	method),	49

approximation,	437
cascaded	connection	of	pipelines,	437–438
formulation,	435–437
modal	parameters,	51
multiconductor	system,	50

Fourier	transform,	123
F-parameter	method,	see	Four-terminal	parameter	method
Frequency-dependent	effect,	57
Frequency-dependent	line	model,	295
Frequency-dependent	parameters

characteristic	impedance,	60–64
frequency	dependence,	59–60
line	parameters	in	extreme	case,	68–71
propagation	constant,	60
transformation	matrix,	64–68

Frequency-domain	method	(FD	method),	141,	214,	346
advantage,	229
numerical	Fourier/Laplace	transform,	214–226
transient	simulation,	226–229

Frequency	dependence,	59–60



of	conductor	impedance,	57
of	line	parameters,	187–188,	189

Frequency	domain	transient	analysis	program	(FTP),	195
FTP,	see	Frequency	domain	transient	analysis	program
Fundamental	resonant	frequency,	35,	37

G
Gantry,	179–182
Gas-insulated	substations	(GIS),	395

voltage–frequency	characteristic,	398
Gas	pipeline,	468–469
Gibbs	oscillation,	216
Gibbs’	phenomena,	123
GIS,	see	Gas-insulated	substations
GPR,	see	Ground	potential	rise
Graphical	method,	123
Graphical	user	interface	(GUI),	308
Green	energy,	see	New	energy
Grounding,	467

distribution	lines	and	customer ’s	house,	472–474
gas	pipeline,	468–469
mesh,	184
negative	voltage	at	front	of	induced	voltage,	542–545
options	for	buildings,	472
resistances	of	pipeline,	442–443
single-point,	467–468
steady-state	and	transient	analysis,	modeling	for,	474–478
transient	responses	measurement,	478
transmission	towers	and	GWs,	470–471
underground	cable,	471

Grounding	electrodes,	361,	478
configuration,	362,	366
FDTD-computed	waveforms,	363,	364
resistivity	profile	in	dynamic	model,	365
role,	361–362
soil	ionization	in	FDTD	computation,	364
waveform,	367

Grounding	impedance	reduction,	511
comparison	of	horizontal	rectangular	plate,	525
digital	circuits,	511–512



electrode	shapes	effect	on,	519
electrode	shapes	investigation,	522
FDTD	simulation,	516–527
field	measurements,	512–516
horizontal	circular	plate,	520–521
reduction	of	a	grounding	resistance,	524
transient	peak	voltages,	523

Ground	potential	rise	(GPR),	413
Ground	wires	(GW),	64,	208,	213,	407,	468,	470–471
GUI,	see	Graphical	user	interface
GW,	see	Ground	wires

H
Hand	calculations,	194
Hartmann’s	equation,	374–375
High	voltage	(HV),	270
Home	electric	appliances	(HEAs),	410,	412
Homogeneous	model	of	cross-bonded	cable

homogeneous	impedance	and	admittance,	240–245
reduction	of	sheath,	245–247

I
IC,	see	Integrated	circuit
IG,	see	Impulse	generator
IGBT,	see	Insulated-gate	bipolar	transistor
IKL,	see	Isokeraunic	level
Image	theory,	10
Impedance,	109–112,	262–265

assumptions,	550
characteristic,	500–501
formulation,	14
frequency	dependence,	57–58
homogeneous,	240
parameters,	51–53

Impedance	formulas,	2,	109
conductor	internal	impedance,	3–8
earth-return	admittance,	552–553,	549–551
finite-length	horizontal	conductor,	109–112
internal	impedance,	551–552



outer-media	impedance,	8–16
problems,	16–17,	549
vertical	conductor,	112–115

Impedance	matrix
cross-bonded	cable,	248–250
solidly	bonded	cable,	253–254

Impedance	of	cable	system
homogeneous	model	of	cross-bonded	cable,	240–247
sheath	bonding,	237–240
single-phase	cable,	236–237
theoretical	formula	of	sequence	currents,	248–258

Impulse	current,	414
Impulse	generator	(IG),	146
Impulse	response,	see	Step	response
Induced	voltage,	negative	voltage	at	front	of,	542–545
Induced	voltages	and	currents,	analytical	method	of	solving,	434–435

approximate	formulas	for	impedance	and	admittance,	461–462
boundary	conditions	and	solutions	of	voltage	and	current,	460–461
comparison	with	EMTP	simulations,	450
in	complex	induced	circuit,	435
F-parameter	formulation,	436–438
field	test	results,	450–546
single	section	termination,	438–443
solutions	for	two-cascaded	sections,	462–463
test	voltage	for	low-voltage	control	circuits,	457–459
three-cascaded	sections	of	pipeline,	449–450,	453,	456–457
traveling-wave	solution,	460
two-cascaded	sections	of	pipeline,	443–449,	456–457

Inner	surface	impedance,	6
Insulated-gate	bipolar	transistor	(IGBT),	306
Integrated	circuit	(IC),	395
Intercircuit

mode,	66
zero-sequence	mode,	see	Second	zero-sequence	mode

Internal	impedance,	551;	see	also	Earth-return	impedance
arbitrary	cross-section	conductor,	551–552
proximity	effect,	552
Schelkunoff	formula	for,	6–8
Schelkunoff’s	impedance,	551
semiconducting	layer	of	cables,	552

Internal	mode,	66



Intrinsic	propagation	constant	of	earth,	12
Ionization	model,	364
Isokeraunic	level	(IKL),	395

disturbances	and	ratio	categorization	by,	396

K
Kansai	Electric	Power	Co.	(KEPCO),	414
Karrenbauer ’s	transformation,	53
Kirchhoff’s	laws,	1

current	law,	18
voltage	law,	17

L
Laplace	transform,	123,	216–217

inverse,	97,	229
lumped	parameter	equivalent	with,	201–205
time	domain	from	initial	value	theorem,	71

Lattice	diagram	method,	86
Leading	current	interruption,	284–285
Lead	wire	inductance	effect,	540–541
Leakage	inductance,	293
LEDs,	see	Light-emitting	diodes
Light-emitting	diodes	(LEDs),	409
Lightning

to	antenna,	421–423
to	distribution	pole,	424
to	grounding,	424
lightning-induced	surges,	371–374

Lightning	surges	(LS),	176,	177,	391
AC	source	voltage,	191–194
Case	of	BFO,	210–211
from	communication	line,	426
consideration	of	substation,	211–214
digital	appliances,	426
disturbance	characteristics,	395
frequency	dependence	of	line	parameters,	187–188,	189
measuring	results,	430–432
mechanism,	176
modeling	circuit,	184–186,	429–430



modeling	of	circuit	elements,	178–184
No	BFO	case,	209–210
overvoltage,	186–187
PD,	426–429
simulation,	432–433
tower-top	voltage,	207
tower	impedance	and	footing	impedance,	188–191,	192
two-phase	model,	208–209
types	of	disturbances,	397

Li-ion	battery,	see	Lithium-ion	battery
Line-to-ground	fault,	141,	142,	148
Line	charge	voltage,	203
Line	impedance	and	admittance,	69,	70
Line	length	effect,	162,	163
Line	parameters,	115;	see	also	Circuit	parameters

finite	horizontal	conductor,	115–116
nonparallel	conductor,	118–122
vertical	conductor,	116–118

Line-to-ground	fault,	141,	142,	148
Line	transposition,	164
Lithium-ion	battery	(Li-ion	battery),	291
Load-flow	calculation,	301

additional	data	for	FIX	SOURCE,	302–303
source	data	for	generators,	302

Lorenz	gauge,	355
Lossless	line,	21–23
Lossless	two-conductor	systems,	88–91
LS,	see	Lightning	surges
Lumped	parameter	equivalent	with	Laplace	transform,	201

reclosing	surge,	203–204
single-phase	line,	202–203
sinusoidal	AC	voltage	source,	204–205
three-phase	line,	205

Lump	wave,	179

M
Maxwell’s	equations,	123,	345–346

wave	equation,	28
Metal	oxide	semiconductor	field	effect	transistor	(MOSFET),	306,	315,	328,	332

modified	switching	device	model,	316–321



simple	model,	315–316
switching	circuit,	321–329
thermal	calculation,	329–331

Method	of	moments	(MoM),	347,	354
advantages,	354
basis	functions,	361
computer	program,	361
disadvantages,	354
MoM-computed	and	measured	waveforms,	372
thin-wire	approximated	conductor,	357
total	electric	field,	356
in	transient	electromagnetic	computations,	354
volume	charge	density,	358

MLT,	see	Modified	Laplace	transform
Modal	distribution,	54

actual	phase	current,	54
characteristics	of	modal	current,	55–56
multiphase	voltages	and	currents,	53
transformation	matrix,	53–54
traveling-wave	transformation,	54–55
untransposed	line,	56

Modal	theory,	41
coefficient	matrix,	46
current	mode,	46–47
eigenvalue	theory,	42–45
modal	components,	45
mode	voltage,	45
parameters	in	modal	domain,	47–49

Model	circuit,	184–186
Modified	Laplace	transform	(MLT),	219

FFT	application	to,	224–226
Modified	switching	device	model,	316

drain	source	on	resistance,	319
ID–VGS	characteristic,	317
instantaneous-maximum	device,	321
model	parameters,	319
MOSFET	2SK2844,	318
typical	capacitance,	319
typical	switching	time,	320

MoM,	see	Method	of	moments



MOSFET,	see	Metal	oxide	semiconductor	field	effect	transistor
Multiconductors,	38,	39;	see	also	Nonuniform	conductor

cascaded	system,	102–104
losses	in	two-conductor	system,	96–99
lossless	two-conductor	systems,	88–91
modal	distribution	of	multiphase	voltages	and	currents,	53–56
modal	propagation	velocities,	91–96
Modal	theory,	41–49
reflection	coefficients,	88
refraction	coefficients,	88
steady-state	solutions,	38–41
three-conductor	systems,	99–102
two-port	circuit	theory	and	boundary	conditions,	49–53

Multiphase	line,	closing	surges	on
closing	angle	distribution,	155–157,	158
resistor	closing,	157–158,	159,	160
suppression	by	arrester,	158,	161,	162
wave	deformation,	154

Multiple-point	grounding,	468
Multiple	reflection,	84–88
Multiple	vertical	electrodes,	475

experimental	conditions,	480–481
experiments	and	FDTD	simulations,	483–485
measuring	instruments,	481–482
measuring	results,	482
mutual	coupling	by	FDTD	simulations,	485–492
transient	responses	measurement	on,	480

Mutual	coupling
core	voltages	to	sheath	and	counterpoise,	541
effect	of	crossing	counterpoises,	540
by	FDTD	simulations,	485–492
effect	of	lead	wire	inductance,	540–541
effect	of	length,	539–540
with	mutual	coupling,	537
no	mutual	coupling,	530–537
effect	of	sheath	grounding,	541–542
simulation	results,	537–539

N
National	Telephone	and	Telecommunication	(NTT),	415



NEA,	see	Numerical	electromagnetic	analysis
NEC,	see	Numerical	electromagnetic	code
Negative	voltage	at	front	of	induced	voltage,	542–545
New	energy,	291
Nodal	conductance,	128–129
Node	equations

for	node	voltages,	86
for	traveling	waves,	86

Nonuniform	conductors,	104,	105–108
characteristic	of,	105
impedance	and	admittance	formulas,	109–115
line	parameters,	115–122
uniform	conductors	vs.,	108–109

NTT,	see	National	Telephone	and	Telecommunication
Numerical	electromagnetic	analysis	(NEA),	345,	477–478,	512,	549

air-insulated	substations,	384–386
applications,	361
distribution	lines,	371–374
FDTD,	346–354
grounding	electrodes,	361–367
Maxwell’s	equations,	345–346
MoM,	354–361
power	cables,	380–384
for	power	system	transients,	554–555
transmission	lines,	374–380
transmission	towers,	367–371
wind-turbine	generator	towers,	386–388

Numerical	electromagnetic	code	(NEC),	361
Numerical	Fourier/Laplace	transform,	214

discrete	Laplace	transform,	217
FFT	application,	220–226
finite	Fourier	transform,	214–216
odd-number	sampling,	217–220
shift	of	integral	path,	216–217

Numerical	integration,	217
Numerical	simulations;	see	also	Finite-difference	time-domain	simulation	(FDTD	simulation)

NEA	for	power	system	transients,	554–555
problems	in	circuit	theory-based	numerical	analysis,	553
problems	with	impedance	formula	in	circuit	theory-based	approaches,	549–553
software,	434–435



O
Odd-number	sampling,	217–220
Ohm’s	law,	45,	346
Open-circuited	line,	35–38
Outer-media	impedance,	8;	see	also	Conductor	internal	impedance

overhead	conductor,	9–14
Pollaczek’s	general	formula,	14–16

Overhead	conductor,	9
accurate	formula	by	Pollaczek,	12
admittance,	13–14
Carson’s	Earth-return	impedance,	13
derivation	of	approximate	formula,	9–12
impedance	and	admittance	formulation,	14
systems,	14–16

Overvoltage	distribution,	168–170,	171

P
Partial	differential	equations,	1,	123

hyperbolic,	123
linear	second-order	hyperbolic,	22
second-order,	122
voltages	and	currents,	17–18

PD,	see	Protection	device
Penetration	depth,	4
Per	unit	voltage	(pu),	143
PG,	see	Pulse	generator
Phase-to-ground	voltage,	291
Phase	velocity,	25–27
Phase	wire	(PW),	176–178
π-equivalent	circuit,	296
Pipe-type	(PT),	262,	263
Plate	electrode	with	cross	section,	475
PLC,	see	Power	line	communication
Pollaczek’s	formulas,	12,	14–16,	108,	550
Positive-sequence	current,	250,	257,	258

cross-bonded	cable,	252–253
solidly	bonded	cable,	255

Power-electronics	simulation,	305
metal	oxide	semiconductor	field-effect	transistor,	315–331,	332



simple	switching	circuit,	306–307
switching	transistor	model,	307–315

Power	cables,	380–384
Power	compensator,	calculated	results	with,	340,	341

control	characteristic,	341
numerical	simulation,	343
pantograph	voltage,	342

Power	distribution	lines,	371–374
Power	line	communication	(PLC),	380–384
Power	system

disturbances,	401–402
NEA	for	power	system	transients,	554–555

Propagation	constants,	28–30,	60,	71,	72,	258–260,	501–502
Propagation	velocity,	91–96,	266
Protection	device	(PD),	417,	426

characteristics,	433
experiment,	426–428
simulation,	428–429

Proximity	effect,	552
PT,	see	Pipe-type
Pulse	generator	(PG),	146,	426
PW,	see	Phase	wire

R
RC	circuit,	see	Resistor–capacitor	circuit
Reciprocity	between	electrodes,	490
Reclosing

overvoltage,	165
surge,	203–204

Reflection	coefficients,	77–79,	88
Refraction	coefficients,	77–79,	84,	88

method,	86
Residual	voltage,	203
Resistance,	circuit	element	representation	by,	126–128
Resistor–capacitor	circuit	(RC	circuit),	470
Resistor	closing,	157–158,	159,	160
Resistor–inductor	circuit	(RL	circuit),	470
Resonant	condition,	34
Resonant	overvoltage,	164
RL	circuit,	see	Resistor–inductor	circuit



Rolle’s	averaging	theorem,	4
Rotation	matrix,	241

S
SC	cables,	see	Single-core	cables
Schelkunoff	formula	for	internal	impedance,	6–8
Schelkunoff’s	impedance,	551
Schnyder–Bergeron	method,	86,	123
Second	zero-sequence	mode,	67
Semi-infinite	line,	40,	48

phase	velocity,	25–27
solutions	of	voltages	and	currents,	23–24
traveling	wave,	27–28
voltages	and	currents	on,	23
waveforms	of	voltages	and	currents,	24–25
wavelength,	28

Sequential	switching,	282–284
Sheath

bonding,	237–240
grounding	effect,	541–542
reduction,	245–247

Sheath-sectionalizing	joint	(SSJ),	240,	241
Sheath	voltage	limiters	(SVLs),	235

installation,	272–274
Sheath	voltages,	294

limitations,	271–272
Short-circuited	line,	32–35
Short-term	voltage	limitation,	271
Sigma	factor,	216
SIL,	see	Switching	impulse	insulation	level
Simple	switching	circuit,	306–307
Simple	switch	model,	307,	313

EMTP	data,	309–311
flow	chart,	308
TYPE-92	ZnO	arrester	model,	312

Simulation	program	with	integrated	circuit	emphasis	(SPICE),	124,	305–306
Simulation	tool

assumptions	and	limits,	553–554
reliability,	553

Single-bonded	cable,	471



Single-core	cables	(SC	cables),	294
Single	horizontal	electrode,	474–475
Single	line-to-ground	fault	(SLG	fault),	165
Single-phase	cable

cable	structure,	236
example	of	transient	analysis,	260–262
impedance	and	admittance,	236–237
propagation	constant,	258–260

Single-phase	line,	202–203
closing	surge,	153–154
with	residual	voltage,	203–204

Single-point
bonding,	238,	239
grounding,	467

Single	vertical	grounding	electrode,	474
Sinusoidal	AC	source,	145–146
Sinusoidal	excitation,	18–21
SIWL,	see	Switching	impulse	withstanding	level
Skin	depth,	3
Skin	effect,	3
SLG	fault,	see	Single	line-to-ground	fault
Smart	grid,	291
Soil

ionization	process,	365
permittivity	effect,	491–492
resistivity	effect,	525–526

Solidly	bonded	cable,	471
example,	255–258
impedance	matrix,	253–254
positive-sequence	current,	255
zero-sequence	current,	254–255

Source	circuit
IG,	146
PG,	146
sinusoidal	AC	source,	145–146
source	impedance,	143–145

Source	impedance,	143–145
effect,	162–164

SPD,	see	Surge	protection	device
SPICE,	see	Simulation	program	with	integrated	circuit	emphasis
SS,	see	Switching	surges



SSJ,	see	Sheath-sectionalizing	joint
S/S-L,	see	Substation-L
Statistical	data	of	disturbances

disturbed	equipment,	393–395
incoming	surge	routes,	395
number	of	disturbances	and	failures,	392

Steady-state	analysis,	294,	474
analytical/theoretical	model,	474–476
cable	model,	294–298
charging	current,	298–301
load-flow	calculation,	301–303
modeling	for	EMTP	simulation,	476–477
numerical	electromagnetic	analysis,	477–478
steady-state	solutions,	38–41

Step	response,	72
Stratified	earth	effect,	551
Substation-L	(S/S-L),	291
Substation	consideration,	211–214
Sunde’s	formulas,	108,	474–475
Surface	charge	density,	359
Surface	wave,	553
Surge,	141

admittance,	22
impedance,	22,	31,	117–118,	119,	500

Surge	protection	device	(SPD),	415
Surge	switching	on	overhead	line

lumped	parameter	equivalent	with	Laplace	transform,	201–205
traveling	wave	theory,	195–201

Surge	voltage	and	frequency,	401
Surge	voltages	and	currents

experimental	conditions,	414–415,	416
experimental	results,	421–424
incoming	paths	of	LSs,	413
modeling	for	EMTP	simulations,	416–420
modeling	of	electrical	elements,	413–414
simulation	results,	424–426

Sustainable	energy,	see	New	energy
SVLs,	see	Sheath	voltage	limiters
Switch,	146–147
Switching	impulse	insulation	level	(SIL),	167
Switching	impulse	withstanding	level	(SIWL),	167



Switching	surges	(SS),	391
classification,	147–148
closing	surge	on	single	phase	line,	153–154
closing	surges	on	multiphase	line,	154–158
in	DC	circuits,	400–401
disturbance	characteristics,	395–400
field	test	results,	148–152
mechanism,	142–143,	144
source	circuit,	143–146
switch,	146–147
transformer,	147
transmission	line,	147
effect	of	various	parameters	on	closing	surge,	158–165

Switching	transistor	model,	307
simple	switch	model,	307–312,	313
switch	with	delay	model,	312–315

Switch	with	delay	model,	312
nonlinear	resistor	model,	315
off-delay	representation,	314
thermal	design,	313
turn-off	delay,	314

Sylvester	theorem,	123
Symmetrical	component	transformation,	1–2

T
TACS,	see	Transient	analysis	of	controlled	systems
TB,	see	Technical	brochure
Technical	brochure	(TB),	555
Temporary	overvoltages	(TOVs),	235
Temporary	voltage,	141,	142
TEM	wave	propagation,	see	Transverse	electromagnetic	wave	propagation
Theoretical	formula	of	sequence	currents,	248

cross-bonded	cable,	248–253
solidly	bonded	cable,	253–258

Thermal	calculation,	329–331
Thevenin’s	theorem,	82–84

boundary	condition,	81–82
equivalent	circuit	of	semi-infinite	line,	79–80
voltage	and	current,	80–81

Thin-wire	approximation,	357



Thin-wire	time	domain	code	(TWTD	code),	361
Three-conductor	systems,	99–102
Three-line	system,	84
Threshold	voltage,	317
Time	constant,	382
Time-dependent	resistors,	333
Time-dependent	responses,	71–72
Time-domain	parameters,	71
Time	domain	method,	123
Time	response

characteristic	impedance,	72–75
propagation	constant,	72
time-dependent	responses,	71–72
transformation	matrix,	75–77

TM	mode	propagation,	see	Transverse	magnetic	mode	propagation
TOVs,	see	Temporary	overvoltages
Tower	footing	impedance,	182
Tower	impedance,	188–191,	192
Tower	model,	104,	179–182
Transformation	matrix,	53–54,	64,	72,	75–77,	266

untransposed	horizontal	three-phase	line,	64–66
untransposed	vertical	twin-circuit	line,	66–68

Transient	analysis,	122–123;	see	also	Numerical	electromagnetic	analysis	methods
analytical/theoretical	model,	474–476
EMTP	simulation,	modeling	for,	476–477
modeling	for,	474
numerical	electromagnetic	analysis,	477–478

Transient	analysis	of	controlled	systems	(TACS),	306,	333
Transient	and	dynamic	characteristics	of	new	energy	systems;	see	also	Power-electronics

simulation
voltage-regulation	equipment	using	battery,	331–343
wind	farm,	291–305

Transient	calculation,	303–305
Transient	induced	voltage

to	control	cable	from	grounding	mesh,	527
electromagnetic	interference,	527
EMTP,	527
model	circuit,	528–530
with	mutual	coupling,	537–542
no	mutual	coupling,	530–537

Transient	program,	124



Transient	responses	measurement
analytical	equation,	502
analytical	formula	of	electrode	voltage,	492–494
analytical	investigation,	496–497
circuit	parameters,	498–500
digital	circuits,	511–512
electromagnetic	interference,	527
EMTP,	527
estimated	parameters	and	characteristics,	507–508
experimental	conditions,	480–481
experiments,	483–485
FDTD	simulation,	483–485,	516–527
field	measurements,	512–516
grounding	electrode	characteristic,	506
on	grounding	electrodes,	478
grounding	impedance	reduction,	511
inductance,	509–510
investigation	of	various	measurement	results,	502
lead	wire,	effect	of,	510–511
maximum	voltage,	509
measured	results,	503–506
measuring	instruments,	481–482
measuring	results,	482
model	circuit,	528–530
on	multiple	vertical	electrodes	and	FDTD	simulations,	480
with	mutual	coupling,	537–542
mutual	coupling	by	FDTD	simulations,	485–492
no	mutual	coupling,	530–537
test	circuit,	502–503
test	equipment	and	arrangements	for,	479
theoretical	analysis	of,	492
transient	induced	voltage	to	control	cable,	527
transient	voltage	waveform,	494–496
wave	propagation	characteristic,	500–502

Transient	simulation,	226
definition	of	variables,	227–228
subroutine	FLT,	229
subroutine	to	preparation,	228–229

Transients	on	cable	systems,	235,	see	Admittance	of	cable	systems;	also	Impedance	of	cable
systems

attenuation	constant	and	propagation	velocity,	266



cable	system	design	and	equipment	selection,	278–286
capacitance,	265
characteristics,	262
EHV	AC	cable	projects,	274–278
EMTP	simulation	test	cases,	286–288
impedance,	262–265
installation	of	SVLs,	272–274
limitations	of	sheath	voltage,	271–272
single-phase	cable,	258–262
transformation	matrix,	266
transient	voltage,	266–271
wave	propagation	and	overvoltages

Transients	on	overhead	lines;	see	also	Lightning	surge;	Switching	surges	(SS)
classification	of	overvoltages,	142
fault	surge,	165–176
fault	surge,	205–207
FD	method	of	transient	simulations,	214–229
lightning	surge,	207–214
results	of	field	test,	230–233
setup	of	field	test,	229–230
switching	surge	on	overhead	line,	195–205
theoretical	analysis	of	transients,	194

Transient	voltage,	266
coaxial	traveling	wave,	270–271
transient	core	voltages,	267–268
transient	sheath	voltages,	269

Transient	voltage	waveform,	494,	496
maximum	current	and	time	of	appearance,	494
maximum	value	and	time	of	appearance,	494–496

Transmission	lines,	184,	374
corona	discharge,	374
corona	discharge,	380
FDTD-computed	and	measured	waveforms,	379
maximum	corona	radii,	378
simulation	of	corona	discharge,	375–376

Transmission	towers,	367,	470–471
electromagnetic	field	in,	367
FDTD-computed	waveforms,	371
MoM	in	time	domain,	368
Noda’s	EMTP	computation,	369–370
transmission-line	tower	analyzing,	368,	370



waveforms	of	insulator	voltages,	369,	370
Transposition,	effect	of	line,	167–168,	169
Transverse	electromagnetic	wave	propagation	(TEM	wave	propagation),	2,	549
Transverse	magnetic	mode	propagation	(TM	mode	propagation),	553
Traveling	wave,	27–28

multiconductors,	88
multiple	reflection,	84–88
phenomenon	calculation,	86
reflection	coefficients,	77–79
refraction	coefficients,	77–79
technique,	123
theory,	195–201
Thevenin’s	theorem,	79–84
transformation,	54

True	nonlinear	resistor	model,	307
ZnO	arrester	model,	312

Two-conductor	system
consideration	losses	in,	96–99
lossless,	88–91

Two-port	circuit	theory
and	boundary	conditions,	49
F-parameter	method,	49–51
impedance-terminated	multiconductor	system,	49
impedance/admittance	parameters,	51–53

TWTD	code,	see	Thin-wire	time	domain	code
TYPE-92,	see	True	nonlinear	resistor	model

U
Ultra-high-voltage	(UHV),	154
Underground	cable,	471
Underground	conductor	systems,	14–16
Uniform	conductors,	108–109

V
Vacuum	circuit	breaker	(VCB),	409
Vertical	conductor,	112–115,	119
Very	high-frequency	(VHF),	500
Voltage,	143

class,	400



fluctuation,	294
regulator,	333
transformation	matrix,	46
voltage	formula,	coefficients	of,	500
waveform,	72

Voltage-fluctuation	ratio,	335
Voltage-regulation	equipment,	331

conventional	system,	results	of,	336–340
feeding	circuit,	333–336
measurement	results,	336,	337
numerical	simulation,	332
power	compensator,	results	with,	340–343

Voltages	and	currents
on	finite	line,	32–38
lossless	line,	21–23
partial	differential	equations,	17–18
on	semi-infinite	line,	23–28
sinusoidal	excitation,	18–21
three-dimensional	waveforms,	25

Voltage	transformers	(VTs),	278,	395
Volume	charge	density,	358

W
Water	(H2O),	551
Wave	deformation,	154
Wave	equations,	22,	355
Wavelength,	28
Wave	propagation	characteristics,	123,	235,	262,	500,	502,	552

impedance	characteristic,	500–501
propagation	constant,	501–502
surge	impedance,	500

Weighting	function,	216
Wind	farm

model	circuit,	291–293
steady-state	analysis,	294–303
transient	calculation,	303–305

Wind-turbine	generator	towers,	386–388

Z



Zero-missing	phenomenon,	280
countermeasures,	281
sequential	switching,	282–284

Zero-sequence	current
cross-bonded	cable,	250–252
solidly	bonded	cable,	254–255

Zero-sequence	mode,	66
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