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To Mim,
The engineer is concerned to travel from the
abstract to the concrete. He begins with an
idea and ends with an object. He journeys
from theory to practice. The scientist’s job is
the precise opposite. He explores nature with
his telescopes or microscopes, or more
sophisticated techniques, and feeds into a
computer what he finds or sees in an attempt
to define mathematically its significance and
relationships. He travels from the real to the
symbolic, from the concrete to the abstract.
The scientist and the engineer are the mirror
image of each other.

—Gordon Lindsay Glegg, “The Development
of Design,” 1981



Preface

“… I repeat that you must lay aside all prejudice on both
sides, and neither believe nor reject any thing because any
other person, or description of persons have rejected
or believed it. Your own reason is the only oracle given
you …”

—Thomas Jefferson, letter to his nephew, Peter Carr,
August 10, 1787.

Electric power systems are a vital part of modern life. We are reminded of this
whenever there is a significant blackout in any of the world's developed economies.
Even in countries that have a minimal reliance on electricity, we see the powerful
impact of supply disruptions on the quality of daily life. The development of new
technologies, including new forms of electric power generation and storage and
new mechanisms to regulate the flow of power, is having an enormous impact on
power systems large and small. New and more widespread applications of electric
power such as vehicle propulsion and distributed and remote generation continue to
expand.

Society has become increasingly reliant on electric power and consequently
more vulnerable to service breakdowns. Recent events worldwide have brought
with them the startling realization that civil infrastructure systems are vulnerable to
assault by small organized groups with malicious intent. Whereas power systems
have traditionally been designed with a focus on protecting them from routine
component failures and atypical user demand, we now also confront the fact that
deliberat attacks intended to cause maximum disruption are a real possibility.

In response to this changing environment, new concepts and tools have emerged
that address many of the issues facing power system operation today. This book is
aimed at introducing these ideas to practicing power system engineers, control
system engineers interested in power systems, and graduate students in these areas.

This book is intended to provide sufficient information about power system
modeling and behavior, so that a control engineer without a background in power
systems can think coherently about power system control. But it is not intended to
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duplicate the material that would be found in a traditional power system course.
Similarly, the control system material is intended to provide a power system
engineer with sufficient information about new and emerging control-theoretic ideas
to encourage their application to power systems. But the material covered is far
from standard fare in a control system plan of study.

This book is focused on two main themes: the nonlinear dynamics of power
systems, and the discrete event mechanisms that are a dominating factor in power
system operations. Stability, voltage collapse, power transfer limits, power flow
oscillations, and other important aspects of power system behavior have been
elucidated through the application of advances in dynamical systems and nonlinear
control theory. The interaction of discrete protection systems and control actions
such as load shedding with the nonlinear continuous dynamics of the system are
central to the behavior of power systems, especially during emergencies. New
methods of modeling, analysis, and design of such hybrid systems continue to be a
central theme of present-day control systems research. In this work, we examine
these ideas and consider how they can be applied to improve our understanding of
power system behavior and how they can be used to design better control systems.

This book is supplemented by a software (Mathematica) package that will enable
the reader to work out nontrivial examples and problems. Also available is a set of
tutorial Mathematica notebooks that provide detailed solutions of the worked
examples in the text. Besides Mathematica, simulations are carried out using
Simulink with Stateflow. These can all be obtained at the Web site http://www.
pages.drexel.edu/~hgk22/.

The authors are fortunate to have had the opportunity to participate in research
aimed at improving power system operations. Support over many years from the
National Science Foundation, Department of Energy, Middle Atlantic Power
Research Council, Electric Power Research Institute, and the Office of Naval
Research is gratefully acknowledged. Many individuals have influenced our view
of power systems. We are indebted to all of them.

viii Preface

http://www.pages.drexel.edu/~hgk22/
http://www.pages.drexel.edu/~hgk22/


Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Goals and Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Basics of Electricity and Magnetism . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 The Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Electric Circuits and Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Circuits and Circuit Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Network Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 The Incidence Matrix and Tellegen’s Theorem . . . . . . . . . . . . . . 26
3.5 Generalized Lagrange Equations . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.2 State Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.3 Other Forms of Lagrange Equations . . . . . . . . . . . . . . . . 36
3.5.4 Excess Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Coupled Circuits and Electromechanical Devices . . . . . . . . . . . . . 51

4 AC Power Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Basics Concepts of AC Networks . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Impedance Models of Linear Networks . . . . . . . . . . . . . . 64
4.2.2 Active and Reactive Power. . . . . . . . . . . . . . . . . . . . . . . 66
4.2.3 Multi-port Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.4 Single-Phase Machines . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.5 Transmission Lines and Transformers . . . . . . . . . . . . . . . 79

ix

http://dx.doi.org/10.1007/978-0-8176-4674-5_1
http://dx.doi.org/10.1007/978-0-8176-4674-5_1
http://dx.doi.org/10.1007/978-0-8176-4674-5_1#Sec1
http://dx.doi.org/10.1007/978-0-8176-4674-5_1#Sec1
http://dx.doi.org/10.1007/978-0-8176-4674-5_1#Sec2
http://dx.doi.org/10.1007/978-0-8176-4674-5_1#Sec2
http://dx.doi.org/10.1007/978-0-8176-4674-5_2
http://dx.doi.org/10.1007/978-0-8176-4674-5_2
http://dx.doi.org/10.1007/978-0-8176-4674-5_2#Sec1
http://dx.doi.org/10.1007/978-0-8176-4674-5_2#Sec1
http://dx.doi.org/10.1007/978-0-8176-4674-5_2#Sec2
http://dx.doi.org/10.1007/978-0-8176-4674-5_2#Sec2
http://dx.doi.org/10.1007/978-0-8176-4674-5_2#Sec3
http://dx.doi.org/10.1007/978-0-8176-4674-5_2#Sec3
http://dx.doi.org/10.1007/978-0-8176-4674-5_2#Sec4
http://dx.doi.org/10.1007/978-0-8176-4674-5_2#Sec4
http://dx.doi.org/10.1007/978-0-8176-4674-5_3
http://dx.doi.org/10.1007/978-0-8176-4674-5_3
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec1
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec1
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec2
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec2
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec3
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec3
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec4
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec4
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec5
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec5
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec6
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec6
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec8
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec8
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec10
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec10
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec14
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec14
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec15
http://dx.doi.org/10.1007/978-0-8176-4674-5_3#Sec15
http://dx.doi.org/10.1007/978-0-8176-4674-5_4
http://dx.doi.org/10.1007/978-0-8176-4674-5_4
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec1
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec1
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec2
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec2
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec3
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec3
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec4
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec4
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec5
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec5
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec6
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec6
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec7
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec7


4.3 Three-Phase AC Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1 Principles of Three-Phase Transmission . . . . . . . . . . . . . . 84
4.3.2 Three-Phase Synchronous Machines . . . . . . . . . . . . . . . . 85

4.4 Balanced Three-Phase AC Power Networks . . . . . . . . . . . . . . . . 92
4.4.1 Synchronous Generator in Steady State . . . . . . . . . . . . . . 93
4.4.2 Synchronous Machine Simplified Dynamic Model. . . . . . . 94
4.4.3 Power Flow Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Power System Dynamics: Foundations . . . . . . . . . . . . . . . . . . . . . . 107
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3 Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.1 Existence and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.2 Invariant Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Lyapunov Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.1 Autonomous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.2 Basic Stability Theorems . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4.3 First Integrals and Chetaev’s Method. . . . . . . . . . . . . . . . 128
5.4.4 Remarks on Noether’s Theorem . . . . . . . . . . . . . . . . . . . 130
5.4.5 Stable, Unstable, and Center Manifolds . . . . . . . . . . . . . . 131

5.5 Analysis of Power System Stability . . . . . . . . . . . . . . . . . . . . . . 135
5.5.1 Properties of Classical Power System Models . . . . . . . . . . 136
5.5.2 Systems with Transfer Conductances . . . . . . . . . . . . . . . . 144

6 Power System Dynamics: Bifurcation Behavior . . . . . . . . . . . . . . . . 155
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2 Systems Described by Differential-Algebraic Equations . . . . . . . . 155
6.3 Basic Properties of DAEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.4 Singularities and Bifurcations of DAEs . . . . . . . . . . . . . . . . . . . 157
6.5 Bifurcation of Flows Near Equilibria . . . . . . . . . . . . . . . . . . . . . 160

6.5.1 Equivalence of Flows and Structural Stability . . . . . . . . . . 160
6.5.2 Bifurcation Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.5.3 Genericity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.5.4 Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.5.5 Deformations and Unfoldings . . . . . . . . . . . . . . . . . . . . . 165
6.5.6 Deformations and Unfoldings in Other Contexts . . . . . . . . 166

6.6 Numerical Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.6.1 Static Bifurcation Points. . . . . . . . . . . . . . . . . . . . . . . . . 168
6.6.2 Hopf Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7 Elements of Power Systems Control . . . . . . . . . . . . . . . . . . . . . . . . 191
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.2 Primary Voltage Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.2.1 Excitation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.3 Load Frequency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

x Contents

http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec9
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec9
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec10
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec10
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec12
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec12
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec17
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec17
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec18
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec18
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec19
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec19
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec20
http://dx.doi.org/10.1007/978-0-8176-4674-5_4#Sec20
http://dx.doi.org/10.1007/978-0-8176-4674-5_5
http://dx.doi.org/10.1007/978-0-8176-4674-5_5
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec1
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec1
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec2
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec2
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec3
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec3
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec4
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec4
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec6
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec6
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec9
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec9
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec10
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec10
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec12
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec12
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec15
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec15
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec16
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec16
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec17
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec17
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec19
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec19
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec20
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec20
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec24
http://dx.doi.org/10.1007/978-0-8176-4674-5_5#Sec24
http://dx.doi.org/10.1007/978-0-8176-4674-5_6
http://dx.doi.org/10.1007/978-0-8176-4674-5_6
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec1
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec1
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec2
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec2
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec3
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec3
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec4
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec4
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec5
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec5
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec6
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec6
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec7
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec7
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec8
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec8
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec9
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec9
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec10
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec10
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec11
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec11
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec12
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec12
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec13
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec13
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec14
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec14
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec15
http://dx.doi.org/10.1007/978-0-8176-4674-5_6#Sec15
http://dx.doi.org/10.1007/978-0-8176-4674-5_7
http://dx.doi.org/10.1007/978-0-8176-4674-5_7
http://dx.doi.org/10.1007/978-0-8176-4674-5_7#Sec1
http://dx.doi.org/10.1007/978-0-8176-4674-5_7#Sec1
http://dx.doi.org/10.1007/978-0-8176-4674-5_7#Sec2
http://dx.doi.org/10.1007/978-0-8176-4674-5_7#Sec2
http://dx.doi.org/10.1007/978-0-8176-4674-5_7#Sec3
http://dx.doi.org/10.1007/978-0-8176-4674-5_7#Sec3
http://dx.doi.org/10.1007/978-0-8176-4674-5_7#Sec4
http://dx.doi.org/10.1007/978-0-8176-4674-5_7#Sec4


7.4 Automatic Generation Control (AGC) . . . . . . . . . . . . . . . . . . . . 202
7.4.1 Elements of the Classical AGC Problem . . . . . . . . . . . . . 204
7.4.2 AGC Control Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.4.3 Coordination of Economic Dispatch and AGC . . . . . . . . . 214

8 Power System Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.2.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
8.2.2 The Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

8.3 Logical Specification to IP Formulas . . . . . . . . . . . . . . . . . . . . . 224
8.3.1 Logical Modeling Language . . . . . . . . . . . . . . . . . . . . . . 224
8.3.2 Transformation to IP Formulas . . . . . . . . . . . . . . . . . . . . 225
8.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.4 Constructing the Optimal Solution . . . . . . . . . . . . . . . . . . . . . . . 226
8.5 Example: Load Shedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

8.5.1 Network and Load Dynamics . . . . . . . . . . . . . . . . . . . . . 228
8.5.2 System Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.5.3 The Optimal Control Problem Without OLTC, n ¼ 1 . . . . 231
8.5.4 Incorporating Time Delays . . . . . . . . . . . . . . . . . . . . . . . 233

8.6 Induction Motor Load with UPS . . . . . . . . . . . . . . . . . . . . . . . . 234
8.6.1 Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
8.6.2 IP Formulas for UPS System . . . . . . . . . . . . . . . . . . . . . 238
8.6.3 Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

8.7 Ship Integrated Electric Power System . . . . . . . . . . . . . . . . . . . . 240
8.7.1 The Fuel Consumption Model . . . . . . . . . . . . . . . . . . . . 242
8.7.2 Optimal Response to Contingencies. . . . . . . . . . . . . . . . . 243
8.7.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Appendix A: Ship Hybrid Electric Propulsion System. . . . . . . . . . . . . . 251

Appendix B: Computational Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Contents xi

http://dx.doi.org/10.1007/978-0-8176-4674-5_7#Sec5
http://dx.doi.org/10.1007/978-0-8176-4674-5_7#Sec5
http://dx.doi.org/10.1007/978-0-8176-4674-5_7#Sec6
http://dx.doi.org/10.1007/978-0-8176-4674-5_7#Sec6
http://dx.doi.org/10.1007/978-0-8176-4674-5_7#Sec7
http://dx.doi.org/10.1007/978-0-8176-4674-5_7#Sec7
http://dx.doi.org/10.1007/978-0-8176-4674-5_7#Sec11
http://dx.doi.org/10.1007/978-0-8176-4674-5_7#Sec11
http://dx.doi.org/10.1007/978-0-8176-4674-5_8
http://dx.doi.org/10.1007/978-0-8176-4674-5_8
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec1
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec1
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec2
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec2
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec3
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec3
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec4
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec4
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec5
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec5
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec6
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec6
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec7
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec7
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec8
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec8
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec9
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec9
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec10
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec10
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec11
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec11
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec12
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec12
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec13
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec13
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec14
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec14
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec15
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec15
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec16
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec16
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec22
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec22
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec23
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec23
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec24
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec24
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec25
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec25
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec26
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec26
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec29
http://dx.doi.org/10.1007/978-0-8176-4674-5_8#Sec29


Chapter 1
Introduction

“There is scarcely a subject that cannot be mathematically
treated and the effects calculated or the results determined
beforehand from the available theoretical and practical data.”
—Nikola Tesla, “The Electrical Experimenter,” Volume VI, No.
70, February, 1919

1.1 Goals and Motivation

Electric power systems continue to evolve as new technologies for generation,
storage, delivery, and consumption take form. Accordingly, system management
practices are continually reexamined in terms of providing an efficient and reliable
supply. But most importantly, recent recognition that “severe weather is the lead-
ing cause of power outages in the United States”1 highlights the importance of an
accelerated focus on improving the resilience of the power grid to withstandweather-
related disturbances and to reduce the time it takes to restore service following an
outage. The report [160], along with an earlier report: A Policy Framework for the
21st Century Grid: Enabling Our Secure Energy Future [175], has fueled an already
ongoing discussion about grid modernization.

Modern communication and computational technologies that enable innovative
smart grid [153] capabilities and the increasing penetration of distributed genera-
tion [135] bring opportunity and complexity to the emerging power network. The
application of computational tools for real-time assessment and management of the
network requires computationally efficient models and a sound understanding of
how power systems work along with a clear, quantifiable notion of performance.
Real-time decision-making tools, including optimization that involves dynamical
constraints as well as logical constraints, are necessary, as are estimation tools for
situational assessment.

1Excerpt from the report [160] issued by the Executive Office of the President.
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2 1 Introduction

The goal of this book is to lay out a consistent modeling and analysis framework
that provides tools for building efficient power system models, provide the essen-
tial concepts for the analysis of static and dynamic network stability, review the
structure and design of basic voltage and load-frequency regulators, and provide an
introduction to power system optimal control with reliability constraints.

1.2 Content

A key premise of this book is that the design of successful control systems requires a
deep understanding of the processes to be controlled. Accordingly, the technical dis-
cussion begins with the physical foundations of electricity and magnetism. Chapter
2 provides a concise review of the basics of electricity and magnetism. It is fitting
that James Clerk Maxwell plays a major role in this discussion, as his extraordinary
contributions include the first major work on control theory [143].

The material of Chapter 2 forms a basis for the discussion on electric circuits
and devices in Chapter 3. The approach to network modeling is based on a form
of Lagrange equations referred to as the generalized Lagrange equations. Lagrange
methods are particularly useful when assembling models of devices that include
both electrical and mechanical elements such as electrical machines. But beyond
that, these techniques are linked to energy concepts that provide tools for stability
analysis. Other important aspects associated with symmetry and first integrals also
have implications with respect to power networks.

Chapter 4 is focused on AC power systems. The basic concepts are reviewed, and
models for the basic components, including transformers, transmission lines, and
machines, are derived. The load flow equations are assembled and explained, and
classical simplified models for balanced networks are constructed.

Chapters 5 and 6 address power system dynamics. Chapter 5 is focused on power
systems as ordinary differential equations (ODEs). The basic properties of ODEs are
reviewed, and then, stability analysis via Lyapunov techniques is considered. Chapter
6 treats the more complex, differential-algebraic equation (DAE) model of a power
network. The focus turns to bifurcation analysis and the behavior of a networks as it
approaches voltage instability.

Classical problems of power system control are the subject of Chapter 7. Two
classic control problems are addressed in this chapter—voltage regulation and load
frequency control. The classic voltage control system uses an excitation system
to adjust the field voltage in order to regulate the generator terminal bus voltage.
The Load frequency control (AGC) problem within a single area is also treated in
the classical way. Load frequency control has two goals—regulate the electrical
frequency supplied by each generator to synchronous frequency and insure that the
total real power supplied by the generators is distributed among them in specified
proportions. Automatic generation control (AGC) is intended to regulate frequency
as well as power interchanges between multiple interconnected control areas. The
AGC problem is also considered in this chapter. Economic dispatch, the allocation of

http://dx.doi.org/10.1007/978-0-8176-4674-5_2
http://dx.doi.org/10.1007/978-0-8176-4674-5_2
http://dx.doi.org/10.1007/978-0-8176-4674-5_3
http://dx.doi.org/10.1007/978-0-8176-4674-5_4
http://dx.doi.org/10.1007/978-0-8176-4674-5_5
http://dx.doi.org/10.1007/978-0-8176-4674-5_6
http://dx.doi.org/10.1007/978-0-8176-4674-5_5
http://dx.doi.org/10.1007/978-0-8176-4674-5_6
http://dx.doi.org/10.1007/978-0-8176-4674-5_7


1.2 Content 3

generation amongplantswithin an area in order to achieveminimal fuel consumption,
is also discussed from the point of view of coordinating dispatch with AGC.

Chapter 8 addresses a class of control problems that involve operation in highly
nonlinear regimes where failure events cause abrupt changes in the controlled system
which may require a corresponding discrete change in control strategy. This material
dealswith a class of control problemswhich is relatively newandparticularly relevant
to modern power system concerns about efficiency, reliability, and resilience.

http://dx.doi.org/10.1007/978-0-8176-4674-5_8


Chapter 2
Basics of Electricity and Magnetism

“My direct path to the special theory of relativity was mainly
determined by the conviction that the electromotive force
induced in a conductor moving in a magnetic field is nothing
more than an electric field.”

—Albert Einstein, message to the centennial of Albert
Michelson’s birth, December 19, 1952.

2.1 Introduction

This chapter provides a succinct review of the essential physics of electricity and
magnetism that forms the basis for understanding how electric power systems work.
Later chapters will use this foundational material to build models of power system
components and systems. Electric fields, magnetic fields, and Maxwell’s equations
are the topics of the three sections of this chapter. Examples are given that illustrate the
basic characteristics of core electrical components and electromechanical devices.

2.2 The Electric Field

Coulomb showed that two like point charges repel each other.1 In fact, the force
between two stationary particles of charge q1 and q2 a distance r apart in free space
is given by the formula

F = k
q1q2

r2
(2.1)

This is Coulomb’s law. A positive F is repulsion and a negative F is attraction. In
SI units, the unit of charge is the coulomb, the unit of distance is the meter, and the

1Material in this section can be found more fully discussed in any book on theoretical physics,
Example [162].

© Springer Science+Business Media New York 2016
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6 2 Basics of Electricity and Magnetism

unit of force is the newton. In this case, k = 1
/

4πε0, where ε0 is the permittivity of
free space, ε0 = 8.85 × 10−12 C2/N · m2.

A region in space contains an electrical field if a charge fixed in it experiences a
force. The electric intensity E at a point in the region is the force exerted on a unit
positive charge. Thus, the force F on a particle of charge q at a point of electrical
intensity E is

F = qE

Since the force between two stationary charges depends only on the distance between
them, it follows that the electrical intensity is derivable from a potential function;
i.e., it is the gradient of a scalar potential function ϕ(x, y, z). The work done in
moving a unit charge against the field by an amount dr is the increase in potential
dϕ, dϕ = E · dr, or

E = −∇ϕ

Example 2.1 We will compute the potential V produced by a point charge q. At any
distance r from q, from (2.1), we have

E = k
q

r2

r
r

so that

dV = −k
q

r3
r · dr = −k

q dr

r2

Integrating, we obtain

V (r) = V0 + k
q

r

If we impose the boundary condition V (0) = 0, then V0 = 0.

We will be interested in material media that can be classified as conductors or
dielectrics. Conductors contain free electrons which are under the influence of an
electric field can flow freely through conductors. So, conductors admit the flow of
current. A dielectric is an electrical insulator in that it is highly resistant to current
flow. An electrical field applied to a dielectric does cause motion of charges within
it. The resultant motion or current is composed of two parts, a negligible conduction
current and a displacement current. The neutrally charged atoms or molecules that
make up the dielectric typically have the center of positive charge and the center of
negative charge displaced. Such an arrangement constitutes an electrical dipole. Even
if the charge centers are not displaced, the application of an electric field generally
induces a displacement. If the dipole consists of a charge −q and a charge q separated
by a distance l, then we associate it with a dipole moment p, a vector of magnitude
ql (coulomb meter2) and direction pointing from −q to q. An applied electric field
imposes a force and a torque on the dipole. If the imposed field is constant over the
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domain of the dipole (which is ordinarily the case at the microscopic scale), then the
net force acting on a dipole is negligible and the torque is given by

τ = p × E

At the microscopic level, the stretching and twisting of the dipoles that occurs under
the influence of the applied electric field alters the potential function defining the
electric field within the dielectric, thereby modifying the field. The change in the
field is denoted P, called the polarization and the modified field is denoted D, called
the (displacement) electric flux density, so we have

D = E + P (2.2)

In isotropic media, the polarization is proportional to the electric field intensity,
P = χE and as a consequence D = εE. χ is known as the electric susceptibility and
ε as the permittivity of the dielectric. In free space P = 0.

2.3 The Magnetic Field

The movement of electrical charge gives rise to a force field known as a magnetic
field. The magnetic field is characterized by a vector field B known as the magnetic
flux density which has SI units weber/meter2, equivalently, volt-second/meter2. Such
fields arise on a macroscopic level, as when current flows through a wire, or on an
atomic scale, as electron spin in an atom. Consider that a current I flows along a
differential element dl, then the differential magnetic field produced is given by the
Biot–Savart law

dB = μ0

4π

I dl × (r/r)

r2
(2.3)

where μ0 is the permeability of free space, I is the current, r is the displacement
vector from the current element to the field point.

Example 2.2 Current in a Thin Wire. We can use the Biot–Savart law to compute the
field produced by a constant current i flowing in a long thin straight wire as shown
in Figure 2.1.

In accordance with Figure 2.1, the Biot–Savart law (2.3) can be written

B = μ0i

4π

∮
dz × r/r

r2

We can express dz and r in terms of ρ and α: dz = ρ sec2 α, r = ρ sec α, to obtain

B = μ0i

4π

∫ π/2

−π/2

cos αdα

ρ
uϕ = μ0

2π

i

ρ
uϕ
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Fig. 2.1 An infinite wire
carrying constant current

z

B

dz

i

ρ

r

α

P

Some materials have an atomic structure in which the electron spins are aligned,
thereby giving rise to a permanent magnet. The bar magnet is a familiar example
of a magnetic dipole. Magnetic dipoles on atomic or molecular scale are the basic
building blocks of all magnetic materials. We associate with a magnetic dipole its
magnetic dipole moment m, with units ampere-meter2. When a magnetic dipole is
placed in a magnetic field, it experiences a moment

τ = m × B

When a magnetic field is applied, the atomic scale magnetic dipoles in the mate-
rial tend to align with it. Materials can be classified in accordance with degree of
alignment produced by the field. Diamagnetic and paramagnetic materials have rel-
atively small alignment, whereas ferromagnetic materials have virtually complete
alignment. The dipole alignment in a material gives rise to a macroscopic dipole
moment per unit volume, M, called the magnetization of the material. So, for exam-
ple, if each atom in a material has a dipole moment m and there are N atoms per unit
volume, then M = Nm. M = 0 in free space.

The magnetic field intensity, H, is defined by the relation

1

μ0
B = H + M (2.4)

Notice the similarity of (2.4) with (2.2). For linear materials, the relationship between
H and M is

M = χmH,
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where χm is the magnetic susceptibility of the material. For paramagnetic materials,
χm is positive and for diamagnetic materials it is negative. Ferromagnetic materials
are generally not linear. For linear materials, we have

B = μ0 (H + M) = μ0 (1 + χm)H = μH,

where μ = μ0 (1 + χm) is the permeability of the material. The ratio μ/μ0, μr =
(1 + χm), is called the relative permeability.

2.4 Maxwell’s Equations

We will summarize some basic concepts about magnetic and electric fields.
Table 2.1 defines the symbols used in the following discussion.
Four basic equations, called Maxwell’s equations, describe the behavior of elec-

tromagnetic fields. These include the following:

1. Gauss law describes how charge produces an electrical field,

∇ · D = ρ or
∫

S
D · ds =

∫

V
ρdv

This implies that the integral of the electrical flux density over a surface S that
encloses a volume V must equal the total charge contained in V ,

Table 2.1 Electromagnetic Fields Nomenclature

Symbol Quantity Units

E electric field intensity volt per meter

D electric flux density coulomb per meter2

H magnetic field intensity ampere per meter

B magnetic flux density weber per meter2

Φ magnetic flux weber

ρ electric charge density coulomb per meter3

J current density ampere per meter2

ds differential vector element of
surface area with direction
perpendicular to surface S

meter2

dv differential element of volume
enclosed by surface S

meter3

dl differential vector element of
path length tangential to
contour C enclosing surface S

meter
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∫

S
D · ds = Qenclosed

2. Gauss law for magnetism asserts the absence of magnetic sources

∇ · B = 0 or
∫

S
B · ds = 0,

where the surface S again encloses a volume V . The magnetic flux density B is
a vector field defined in three-dimensional space. The integral curves of B are
the “magnetic flux lines” or “magnetic field lines.” The integral of magnetic flux
density over any closed surface must be zero implies that these lines are closed
loops.
The magnetic flux through area S bounded by a closed curve C , Φ, is defined as

Φ =
∫

S
B · ds

3. The Maxwell–Faraday equation describes how changing magnetic fields produce
electrical fields

∇ × E = −∂B
∂t

or
∮

C

E · dl = − d

dt

∫

S
B · ds,

where S is a surface bounded by the closed curve C . The equation shows how an
electric field is produced by varying the magnetic flux passing through a given
cross-sectional area. As will be seen, this is the fundamental principle underlying
the operation of electric motors and generators.

4. The Ampère–Maxwell law describes how the magnetic fields are produced by
currents and changing electrical fields

∇ × H = J + ∂D
∂t

or
∮

C

H · dl =
∫

S
J·ds + d

dt

∫

S
D · ds,

where C denotes the closed edge (or boundary) of an open surface S. Define the
encircled current

Iencircled =
∫

S
J·ds

If D is very slowly varying, then the Ampère–Maxwell law reduces to Ampère’s
law ∮

C

H · dl = Iencircled
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Another important result is the Lorentz force equation which describes the force
F acting on a particle of charge q moving through an electromagnetic field with
velocity v

F = q (E + v × B)

In addition, Ohm’s Law states that the current density in a conductor is proportional
to the electric field:

J = σE

where σ is the conductivity with units ohms per meter.

Remark 2.3 (Scalar and Vector Potentials) Gauss law for magnetism states that the
divergence of the magnetic field vanishes, thereby implying that B can be expressed

B = ∇ × A, (2.5)

where A is some magnetic vector potential. Then, Faraday’s law can be written

∇ ×
[
E + ∂A

∂t

]
= 0

But the fact that the curl of a vector vanishes implies that the vector can be expressed
as the gradient of a scalar potential, ϕ. Hence,

E = −∇ϕ − ∂A
∂t

(2.6)

Further substitutions in Maxwell’s equations and some algebra lead to partial differ-
ential equations for A and ϕ [167]:

με
∂2A
∂t2

− ∇2A = μJ

με
∂2ϕ

∂t2
− ∇2ϕ = ρ

ε

The implication of this is that the scalar potential ϕdepends on the charge distribution,
whereas the vector potential A depends on the current density.

Remark 2.4 (Electromotive Force) The electromotive force (EMF), E , produced by
some generating mechanism is the energy per unit charge, i.e., the voltage change,
made available by the generating mechanism. The energy required to move a unit
charge along a path from point a to point b through an electric field E is

E =
∫ b

a
F · d l =

∫ b

a
(E + v × B) · d l
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Remark 2.5 (Magnetomotive Force) The magnetomotive force (MMF), F , plays a
role in magnetic circuits similar to that of E in electrical circuits. F is defined by

F =
∫ b

a
H · d l

In a magnetic circuit comprised of a loop of uniform magnetic material of length l
and cross-sectional area A, it is useful to define the reluctance, R:

R = l

μ0μr A

Then

F =
∮

H · d l = R Φ

This formula is similar to Ohm’s law governing the flow of current through a resistor.

Remark 2.6 (Continuity of Charge) Note that the taking the divergence of the
Ampère–Maxwell law yields

∇ · J = −∂∇ · D
∂t

and using Gauss electric field law gives

∇ · J = −∂ρ

∂t
or

∫

S
J · ds = −

∫

V
ρdV

This of course asserts the principle of continuity (or conservation) of charge.

Example 2.7 Capacitor. A capacitor is a device that stores charge. A typical capac-
itor consists of two conductors separated by a dielectric. The simplest example is the
parallel plate capacitor shown in Figure 2.2.

In its uncharged state, both plates have zero charge. The capacitor can be charged
using a battery or other means to a charge level Q, in which case one plate becomes
positively charged with charge +Q and the other negatively charged with charge −Q.
The potential difference, ΔV , across the two plates can be obtained by integrating the
electric field along a path through the dielectric from the positively to the negatively
charged plate. Then, capacitance, C , of the device is the ratio of the charge to the
potential difference, C = Q

/
ΔV . The SI unit of capacitance is the farad (F). Thus,

one farad is one coulomb per volt.
To compute the capacitance of the capacitor in Figure 2.2, first compute the electric

field in the dielectric between the plates. Apply Gauss law

∫

S
εE · ds =

∫

V
ρdv
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Fig. 2.2 A two-plate
capacitor with very large
plate area

Q+

Q−

Area A

d

Gaussian box
cross-section area bA

path of integration

to the box shown in the figure to find

εE Ab = σAb,

where σ is the charge per unit area, Q/A, and ε is the permittivity of the dielectric.
Thus, E = σ/ε. Now integrate from the positive plate to the negative plate along the
integration path shown to get the potential difference:

ΔV = −
∫ −

+
E · dl = E d

Thus, the capacitance is

C = Q

ΔV
= εA

d

Example 2.8 Wire Revisited. From Example 2.2, we know that

H = i

2πρ
uϕ

Let us verify Ampère’s law. Choose for C a circular path of radius ρ in a plane with
z constant. ∮

C

H · dl =
∫ 2π

0

i

2πρ
ρdϕ = i

Example 2.9 Infinite Solenoid. Consider an infinite solenoid composed of a tightly
wound, thin wire coil with a core as shown in Figure 2.3. The solenoid has n turns per
unit length, cross-sectional area, A, length, l and a constant current i passes through
it. The core has permeability μ = μ0μr .

By symmetry, the induced magnetic field is horizontal, and in view of the winding
direction and current flow the field vectors point to the right. We can use Ampère’s
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Fig. 2.3 Solenoid

law to compute its magnitude. Choose a rectangular contour with horizontal lines
outside the coil, one on each side — above and below the coil. Since the net encircled
current is zero, the field outside of the coil is zero. To determine the field inside the
coil, choose a contour C as shown. Application of Ampère’s law yields Hl = nil.
Consequently, we have

H =
{

0 outside the coil
niuz inside the coil

Inside the coil, the magnetic flux density is B = μ0μr ni uz and the magnetic flux
through a cross section is Φ = μ0μr i A. The number of loops in a section of length l
i nl so the effective area through which B passes is nl A. Consequently, the effective
flux within the coil section is λ = μ0μr nli A. λ is called the flux linkage.

Example 2.10 Inductive Loop. A single, perfectly conducting wire loop encircles a
core of permeable magnetic material in Figure 2.4.

As in the previous example, application of Ampère’s law enables computation of
the magnetic flux density in the core, |B| = μ i (t). It follows that the induced back
EMF is

E = −dλ

dt
, λ = μAi (t)

and so the applied voltage is related to the current in the wire loop by

v (t) = μA
d i (t)

dt

Fig. 2.4 A single-wire loop
surrounds a magnetic core

v (t)

i (t)

B
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Fig. 2.5 A transformer
formed of two coupled coils
with a common core

2v

2i

2lΦ1lΦ

mΦ

1v

1i

1N 2N

For a tightly wound coil of N loops, the voltage–current relationship is

v (t) = d λ (t)

dt
= μN A

d i (t)

dt
= L

d i (t)

dt
,

where L is the inductance.

Example 2.11 Transformer. The transformer in Figure 2.5 has a primary coil with
N1 turns and a secondary coil with N2 turns.

Consider the ideal case, in which the transformer has the following characteristics:

1. no losses
2. zero leakage flux, i.e., Φl,1 = Φl,2 = 0
3. zero reluctance.

Faraday’s law yields

v1 = N1
dΦm

dt
, v2 = N2

dΦm

dt

which implies
v2

v1
= N2

N1

In addition, zero reluctance implies that the magnetomotive force around a closed
loop in the core sums to zero, so that

N1ii + N2i2 = 0

Thus,

i2 = − N1

N2
i1

Notice that v2i2 = −v1i1 which implies that the instantaneous power entering on the
left is the same as that exiting on the right, as expected for this lossless transformer.



Chapter 3
Electric Circuits and Devices

“Science is built up of facts, as a house is with stones. But a
collection of facts is no more a science than a heap of stones is a
house.”

—Henri Poincaré

3.1 Introduction

In this chapter, nonlinear circuits that include resistors, inductors, capacitors, and
memristors (RLCM) are discussed. Analysis of the individual elements is followed
by examination of basic circuit mathematical models and theorems. RLCM circuit
dynamic models are constructed using a Lagrange formulation based on the general-
ized Euler–Lagrange equations of Noble and Sewell [157]. The discussion is based
on the work reported in [117] which extended earlier work of [138, 54, 180, 150].
Alternative forms of the network equations, such as Brayton–Moser equations and
the generalized Hamilton equations, are also discussed.

The use of Lagrange equations has several benefits including the connection with
energy functions and other first integrals associated with stability analysis (to be
discussed in Chapter 5). The ability to model electromechanical devices within a
single coherent framework is another. The chapter ends with a discussion of such
devices including a basic motor generator.

3.2 Circuits and Circuit Elements

A two-terminal circuit element is a conducting path between two points a and b
called terminals. A two-terminal element is also called a one-port element. Various
types of two-terminal elements exist, each type associatedwith a specific relationship

© Springer Science+Business Media New York 2016
H.G. Kwatny and K. Miu-Miller, Power System Dynamics and Control,
Control Engineering, DOI 10.1007/978-0-8176-4674-5_3
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between the voltage across the terminals and the current through the element. We
will consider several lumped parameter elements below. A simple electrical circuit is
a closed conducting path composed of a finite number of serially connected one-port
elements. An electrical network is an arbitrary interconnection of circuit elements.
Usually, a network contains several circuits.

In electromagnetic circuits, there are four basic variables: current i , voltage v,
charge q, and flux linkage λ. Among these variables, there are two fundamental
(kinematic) relationships

dq (t)

dt
= i (t) ,

dλ (t)

dt
= v (t) (3.1)

From the four variables, it is possible to identify six distinct pairs, and consequently,
there can be six pairwise relationships of which two are already known (3.1). Thus,
four remain. These will be called constitutive relations and will be used to define the
basic circuit elements.

Two-terminal or one-port circuit elements are characterized by two port variables:
the voltage v across the terminal pair and the current i flowing through the element.
Each element will have an appropriate causality in which one of the port variables is
considered the input and the other the output of the device. Four different elements
can be defined in terms of the four constitutive relationships:

1. the resistor, defined by a relationship between v and i ,
2. the inductor, defined by a relationship between λ and i ,
3. the capacitor, defined by a relationship between v and q,
4. the memristor, defined by a relationship between λ and q.

The first three, of course, are the classical circuit elements. The existence of the fourth
was postulated by Leon Chua in [53] and recently confirmed in [179]. Actually, the
missing element was also anticipated by Paynter [165] who recognized the missing
constitutive relation as indicated by the dashed line in Figure 3.1.

A complete model of a circuit element is one in which specification of one of
the port variables (v or i) enables the determination of the other. A complete model

Fig. 3.1 The state
tetrahedron adapted from
[165]. The lines denoted R,
L, and C connect the
variables appearing in the
respective constitutive
relations. The dashed line
denotes the missing
relationship

v

i

qλ
R

C

L

∫

∫
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of each of the four circuit elements requires combining the appropriate constitutive
relation with, if necessary, one or more of the kinematic relations.

1. the resistor, φR (v, i) = 0,
2. the inductor, φL (λ, i) = 0, λ̇ = v,
3. the capacitor, φC (v, q) = 0, q̇ = i ,
4. the memristor, φM (λ, q) = 0, λ̇ = v, q̇ = i .

Remark 3.1 In the above definitions, the implicit relations are intended to define
a one-dimensional regular submanifold1 of R2. As an example, in the case of the
resistor, the manifold is implicitly defined by MR = {

(v, i) ∈ R2 |φR (v, i) = 0
}
. In

some instances, it might be more appropriate to define the manifold parametrically,
MR = {

(v, i) ∈ R2 |v = ϕ1 (s) , i = ϕ2 (s) , s ∈ [a, b] ⊂ R
}
.

An element is linear if its constitutive relationship is linear. In which case, for
the resistor, we have φR = v − Ri , for the inductor, φL = λ − Li , and for the
capacitor, φC = v − Cq. Here, R, L , C represent the usual resistance, inductance,
and capacitance, respectively. For the memristor, notice that upon differentiation
with respect to t yields

∂φM

∂λ
λ̇ + ∂φM

∂q
q̇ = 0 (3.2)

or

∂φM

∂λ
v + ∂φM

∂q
i = 0 (3.3)

Consequently, if φM is linear, i.e., φM = Aλ − Bq, (3.51) becomes

Av − Bi = 0

so that the memristor is simply a resistor with resistance R = B/A. This point is
noted in [53].

Example 3.2 (Linear capacitor) The capacitance of a parallel plate capacitor sepa-
rated by distance a and with dielectric permittivity ε is

ε

4πd
per unit area

The capacitance of a cylindrical capacitor of radii a, b with dielectric permittivity ε
is ε

2 log (b/a)
per unit length

1Throughout the book, basic terminology of differential geometry will be used. Basic references
are [186] and [28]
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Example 3.3 (Linear Inductor) Consider the solenoid of Example 2.9. The self-
inductance is

L = μ0μr ni A

i
= μ0μr n A

where L has units of henry per unit length.

In order to address nonlinear elements, we need some additional terminology.

Definition 3.4 (Controlled Elements)

(a) A resistor is current-controlled (voltage-controlled) if φR (v, i) = 0 is satisfied
by a single-valued function of the current v = ϕ (i) (of the voltage i = ϕ (v)).

(b) An inductor is flux-controlled (current-controlled) if φL (λ, i) = 0 is satisfied
by a single-valued function of the flux, i = ϕ (λ) (current, λ = ϕ (i)).

(c) A capacitor is charge-controlled (voltage-controlled) ifφC (v, q) = 0 is satisfied
by a single-valued function of charge, v = ϕ (q) (voltage, q = ϕ (v)).

(d) A memristor is flux-controlled (charge-controlled) if φM (λ, q) = 0 is satisfied
by a single-valued function of flux, q = ϕ (λ) (charge, λ = ϕ (q)).

It is well known that the inductor and capacitor are energy storage devices. This fact
is easily established. For example, consider a flux-controlled inductor. The energy
supplied to the device over a time interval (t0, t1) is

E =
∫ t1

t0

ivdt =
∫ λ

0
ϕ (λ) dλ

Now, if we assume that the graph of ϕ (λ) is confined to the first and third quadrants,
i.e., λϕ (λ) ≥ 0, then E ≥ 0. Furthermore, it is clear that any energy increase
obtained by changing the flux linkage from λ0 to λ1 is recovered when the flux
linkage is reduced to λ0. A similar conclusion is obtained for the capacitor. On the
other hand, for a current-controlled resistor, compute the power supplied to it

P = iv = i ϕ (i)

Thus, if the graph of ϕ (i) is confined to the first and third quadrants, i.e., i ϕ (i) ≥ 0,
it follows that P ≥ 0. Thus, power is always injected and cannot be retrieved, so the
resistor is purely dissipative.

Consider a charge-controlled memristor. Then,

λ = ϕ (q) ⇒ v = M (q) i, M (q) = ∂ϕ (q)

∂q

Consequently, if M (q) ≥ 0,∀q, it follows that

P = iv = M (q) i2 ≥ 0

http://dx.doi.org/10.1007/978-0-8176-4674-5_2
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Fig. 3.2 A current source
using a battery and
operational amplifier
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The memristor is purely dissipative. Recall that a one-port device is passive if the
energy that can be extracted from it with any initial state is x , i.e., the available energy
EA (x) is bounded [201]. Chua proved in [53] that a charge-controlled memristor is
passive if and only if M (q) ≥ 0. Similar conclusions can be made for a flux-
controlled memristor for which the constitutive relation is

q = ϕ (λ) ⇒ i = W (λ) v, W (λ) = ∂ϕ (λ)

∂λ

Sources provide the driving inputs in a circuit.Wewill be concernedwith two types of
sources.An ideal voltage source is a two-terminal element inwhich the voltage across
it is independent of the current through it. A battery is a common voltage source.
An ideal current source is a two-terminal element in which the current through it is
independent of the voltage across it.

Example 3.5 Current sources can be constructed in many ways. A simple one can
be constructed using a battery and an operational amplifier as shown in Figure 3.2.
The current supplied to the load is given by

I = K (EL O AD − E0) − EL O AD

R

∣
∣∣∣

K=1

= −E0

R

Notice that the current is constant and independent of the load.

3.3 Network Modeling

The classical formulation of electric network models is based on Kirchhoff’s two-
circuit laws. Given a network, consider an arbitrary node connecting n branches.
Kirchhoff’s current law (KCL) states that the sum of the currents into the node is
zero, i.e.,
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∑n

j=1
I j = 0 (3.4)

Kirchhoff’s current law can be obtained from Maxwell equations. Suppose S is a
closed surface. Then, the Ampère–Maxwell relation becomes

0 =
∫

S

J · ds + ∂

∂t

∫

S

D · ds

From Gauss law, this becomes

0 =
∫

S

J · ds + ∂

∂t

∫

V

ρdv

Assuming that the node is isolated, S can be chosen sufficiently small so that there
is no charge within S. Consequently,

0 =
∫

S

J · ds

This, of course, leads directly to (3.4).
Now consider a circuit within the network containing m elements. Kirchhoff’s

voltage law (KVL) states that the sum of the voltage drops across the elements around
the circuit is zero, i.e., ∑m

j=1
E j = 0 (3.5)

Kirchhoff’s voltage law can be derived from Faraday’s law under the assumption
that the circuit does not enclose a fluctuating magnetic field. In this case, Faraday’s
law states: ∮

C
E · dl = 0

which obviously leads to (3.5). Ordinarily, we assume that any varyingmagnetic field
influencing the circuit is concentrated within any inductors so that the only effect is
to produce the voltage drop across the inductor, thereby properly accounting for it.
When this is not the case, we need to include in (3.5) the back-electromotive force
induced by the field.

Example 3.6 Consider the RLC circuit shown in Figure 3.3. Notice that the network
has four branches and three nodes. The KCL applied to the three nodes leads to the
equations

IE = −IL

IL = IC + IR

IE = −IC − IR



3.3 Network Modeling 23

Fig. 3.3 A simple RLC
circuit
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Three circuits can be identified to which application of the KVL produces

E = EL + EC

E = EL + ER

ER = EC

These six equations are clearly redundant. Recall the element equations

1

C

d EC

dt
= IC

L
d IL

dt
= EL

ER = R IR

Now, we need only the second KCL equation and the first and third KVL equations
to obtain the closed system of differential equations that characterize the network

1

C

d EC

dt
= IL − 1

R
EC

L
d IL

dt
= E − EC

Kirchhoff’s laws along with the element constitutive relationships are used to for-
mulate the network equations. Consider a network consisting of m branches with
each branch identified with exactly one element. Clearly, the network is completely
solved if each branch voltage and current are known. In the above example, this is
accomplished with a subset of Kirchhoff equations. This is the usual case. So our
goal is to determine a systematic method to identify a necessary and sufficient set of
equations. To do this, we follow a graph theoretic approach.

A graph, like a network, is composed of nodes and branches. A directed graph
is one in which each branch is assigned a direction. It is connected if there is a
continuous path between every pair of nodes. A network can be associated with a
connected directed graph in which the branch directions denote positive current flow.



24 3 Electric Circuits and Devices

Positive voltage is the opposite so that positive branch current flows from the node
with higher voltage to the node with lower voltage.

A loop is a set of branches that form a closed path. A tree is a maximal set of
branches that do not contain any loops. For any tree, the remaining set of branches is
called a co-tree. The member branches of a co-tree are called links. Insertion of a link
in a tree forms a loop. A graph typically contains several trees. If a graph contains
n nodes, then each tree contains exactly n − 1 branches—the number of branches
needed to connect n nodes. If the graph contains m branches, then there are exactly
m − n + 1 links.

Consider a network with n nodes and m branches. Select a tree and remove all of
the links. The resulting network has no loops, so all of the branch currents are zero.
By inserting any link, the flow of current is enabled. In fact, each link can be used
to create a distinct flow. The set of loops created by inserting one link at a time is
called a tieset. We can state the following:

Proposition 3.7 A network having n nodes and m branches has m − n + 1 inde-
pendent current variables. The link currents of any co-tree provide a complete set of
current variables. The tieset loops provide m − n + 1 independent KVL equations.

Consider a graph with n nodes and a tree of the graph with n − 1 branches. The
voltage across each branch of the tree can be arbitrarily specified, so they form a set
of independent voltage variables. Insertion of a link forms a loop, and with the tree
branch voltages specified, KVL determines the link voltage. Specifically, if the tree
branch voltages are zero, then all branch voltages are zero.

Given a graph, a cutset is a set of branches that when cut divides the graph into
two disconnected pieces. Given a graph and a tree, a basic cutset is a cutset that
contains only one tree branch. In a graph with n nodes, each tree has n −1 branches,
so there are n − 1 basic cutsets.

Consider one of the two disconnected subnetworks associated with a basic cutset.
We can collapse all the nodes into one and apply the Ampère–Maxwell law, as
above, to obtain the generalized form of KCL, (3.4): The sum of the currents into
the subnetwork over the cutset branches is zero.

∑

cutset

I j = 0 (3.6)

Applying this formula to the n −1 basic cutsets, we obtain n −1 independent current
equations. They are independent because they each contain a unique tree branch.

Example 3.8 For example, consider the circuit graph in Figure 3.4.
One of the four basic cutsets consists of the branches {b, f, g} including the single

tree branch b. Consider the lower left subnetwork containing nodes {1, 2, 4}. These
are collapsed as shown. With respect to the indicated directions of positive current,
the resulting KCL is

ib = i f + ig

These results can be summarized in the following statement.
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Fig. 3.4 This simple graph
has 5 nodes, and hence, each
tree has 4 branches
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Proposition 3.9 An n-node network has n − 1 independent voltage variables. The
n − 1 branches of any tree provide a complete set of voltage variables. The basic
cutsets provide n − 1 independent KCL equations.

Example 3.10 Consider the circuit in Figure 3.3. Its graph is shown in Figure 3.5
alongwith two different choices of tree and co-tree. Based on the tree on the right, the
tieset includes two loops: {e, l, c} and {c, r}. Thus, we can write two KVL equations:

E = EL + EC

EC = ER

There are two basic cutsets: {e, l} and {l, c, r}. Thus, there are two KCL equations:

I = −IL

IL = IC + IR

These equations are a subset of the KVL and KCL equations derived previously in
Example 3.6. These and the element constitutive equations form a complete set in
that they completely define all voltages and currents in the network.

l

e c r

1

2 3
l

e c r

1

2 3 l

e c r

1

2 3

Fig. 3.5 The graph corresponding to the circuit in Figure 3.3 is shown on the left. Two different
trees and the corresponding co-trees are also shown
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Let us summarize the process of assembling the equations for a given network.
Consider a networkwith n nodes andm branches. Solution of the network requires the
determination of the m branch voltages and m branch currents. Construct a directed
graph for the network and identify a tree.

1. Identify the tieset with its m − n + 1 loops and construct the m − n + 1 KVL
equations, relating the m branch voltages.

2. Identify the n − 1 basic cutsets and construct the n − 1 KCL equations relating
the m branch currents.

3. Assemble the m circuit element constitutive relations relating branch voltage and
current.

4. Altogether, there are 2m equations relating the 2m variables.

3.4 The Incidence Matrix and Tellegen’s Theorem

Consider a network with n nodes and m branches. First, we define the network
incidence matrix.

Definition 3.11 The branch-to-node incidence matrix of a network withm branches
and n nodes is the matrix A ∈ Rm×n with elements

ai j =
⎧
⎨

⎩

1, if current i leaves node j
−1, if current i enters node j
0, if branch i is not incident on node j

The incidence matrix allows succinct determination of the KCL and KVL equations.
Let v be the n-vector of node voltages and I the m-vector of branch currents. Then,
KCL can be expressed

AT I = 0

The m vector of branch voltages, V , can be expressed in terms of the node voltages

V = Av

which can be interpreted as the KVL.

Example 3.12 Consider the example in Figure 3.6. The incidence matrix is

AT =
⎡

⎣
−1 0 −1 −1
1 1 0 0
0 −1 1 1

⎤

⎦



3.4 The Incidence Matrix and Tellegen’s Theorem 27

Fig. 3.6 A simple network
with 3 nodes and 4 branches
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producing the node equations

−I1 − I3 − I4 = 0
I1 + I2 = 0

−I2 + I3 + I4 = 0

The two independent loop equations are

V1 = V2 + V3

V1 = V2 + V4

The branch voltages are given by

⎡

⎢⎢
⎣

V1

V2

V3

V4

⎤

⎥⎥
⎦ = AT v =

⎡

⎢⎢
⎣

v2 − v1
v2 − v3
v3 − v1
v3 − v1

⎤

⎥⎥
⎦

which satisfy the loop equation.

Theorem 3.13 (Tellegen’s Theorem)Given a network with m branches and n nodes.
Let the branch potential differences V1, . . . , Vm satisfy KVL and the branch currents
I1, . . . , Im satisfy KCL. Then,

m∑

j=1

Vj I j = 0

Proof KVL provides
V T I = (Av)T I = vT AT I

But AT I = 0 by KCL, so
m∑

j=1

Vj I j = V T I = 0

�
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Remark 3.14 (Conservation of Energy) Tellegen’s theorem states that the sum of the
instantaneous power flows over all branches of a circuit is zero. Thus, it expresses a
concept of conservation of power. If the branches are divided into two subsets, one
consisting of independent sources and the other consisting of the remaining branches
referred to as components, then Tellegen’s theorem can be rephrased as “the sum of
the powers delivered by the independent sources is equal to the sum of the powers
absorbed by the components.” This statement is often interpreted as a statement of
conservation of energy.

3.5 Generalized Lagrange Equations

3.5.1 Introduction

The use of Hamilton’s principle and Lagrange equations, example [57], has a long
history. The traditional method chooses either capacitor charges or inductor flux
linkages as the independent coordinates. Thus, it is limited in the class of circuits that
can be addressed. This problem has been addressed in several publications including
[54, 139, 117]. The following discussion employs the method introduced in [117].
It is based on the generalized Lagrange equations [157], which can be viewed as
a variant of Poincaré equations [10, 45,46] also referred to as Lagrange equations
in quasi-coordinates [148, 155] or pseudo-coordinates [75], or the Euler–Poincaré
equations [172].

Poincaré equations preserve the underlying theoretical structure and elegance
of the Lagrange formulation. In the case of circuits, Poincaré equations take the
simplified form

q̇ = V p (3.7)

d

dt

∂L (p, q)

∂ p
− ∂L (p, q)

∂q
V = QT V (3.8)

where p is a vector of quasi-velocities and q is the generalized coordinate vector.
V is the velocity transformation matrix. It relates the coordinate velocities to the
quasi-velocities. Q is a vector of externally applied generalized forces and other
nonconservative forces. The function L(p, q) is the Lagrangian function. In the
general case, the velocity transformation matrix V is dependent on the coordinates q.

3.5.1.1 Energy Functions and the Classical Lagrange Equations

In Section 3.2, itwas shown that capacitors and inductors are energy storage elements.
The electrical energy stored in a charge-controlled capacitor is easily computed, given
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the constitutive relation v = v (q), by integrating the work done over time of the
power delivered

TC (q) =
∫

v i dt =
∫ q

0
v (q) dq

Similarly, if the capacitor is voltage-controlled, its co-energy can be computed as
Legendre transformation of the energy, given the constitutive relation q = q (v)

T ∗
C (v) = [

q v − TC (q)
]

q→ϕ(v)
=
∫ q

0
q (v) dv

In the same way, the inductor energy, UL (λ), and co-energy, U ∗
L (i) can be obtained

UL (λ) =
∫ λ

0
i (λ) dλ

U ∗
L (i) =

∫ i

0
λ (i) di

These definitionswere given in [44].A companion paper [151] provides the following
definitions of resistor content, G R (i), and co-content, G∗

R (v)

G R (i) =
∫ i

0
v (i) di

G∗
R (v) =

∫ i

0
i (v) dv

as well as voltage source content, G E (i, t), and current source co-content, G∗
J (v, t)

G E (i, t) =
∫ i

0
v (t) di

G∗
J (v, t) =

∫ v

0
i (t) dv

Hamilton’s principle of stationary action [85, 159] was originally stated for classical
mechanical systemsbut has been extended to other systems including electric circuits.
In its basic form, this principle states the natural evolution of a system described by
a set of configuration coordinates, q (t) from a fixed initial configuration at time t1
to another configuration at time t2 > t1 a stationary point of the action integral

S =
∫ t2

t1

L (q̇ (t) , q (t) , t) dt
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where L is the Lagrangian function. This means that the arbitrary small variation of
I from an admissible trajectory q (t) is zero

δS =
∫ t2

t1

[L (q̇ (t) + ε̇ (t) , q (t) + ε (t) , t) − L (q̇ (t) , q (t) , t) ] dt = 0

where ε (t) is an arbitrary small function of t . From this statement, it is possible to
derive the basic form of Lagrange equations

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 (3.9)

Also, the variational indicator can be expanded to account for nonconservative ele-
ments, example resistors and sources leading to Lagrange equations in the form:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= Q (3.10)

where the generalized forces Q are obtained from the variation of the total work
expression for all nonconservative elements

δW =
∑

q

Qi δqi

The ordinary application to circuits selects the coordinates to be either an independent
set of capacitor charges or an independent set of inductor flux linkages. For the
capacitor charge formulation, the Lagrangian is

L (q̇, q) = U ∗ (i) − T (q)

where U ∗ is the sum of all inductor co-energies and T is the sum of all capacitor
energies. In the case of inductor flux linkage formulation, the Lagrangian is

L
(
λ̇,λ

) = T ∗ (v) − U (λ)

where T ∗ is the sum of all capacitor co-energies and U is the sum of all inductor
energies.

Example 3.15 Simple Circuit Lagrange Equations. Consider the network shown in
Figure 3.7. Assume that all the inductors, capacitors, and resistor are linear. Choose
the capacitor charges, q1, q2 to be the coordinates. Then, the velocities are

i1 = dq1

dt
, i2 = dq2

dt
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Fig. 3.7 Network with 5
nodes and 6 branches
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Consequently, the Lagrangian is

L = 1
2 L1q̇

2
1 + 1

2 L2q̇
2
2 − q2

1

2C1
− q2

2

2C2

The work variation is

δW = E δq1 − R (q̇2 − q̇1) (δq2 − δq1)

Thus,
Q1 = E + R (q̇2 − q̇1) , Q2 = −R (q̇2 − q̇1)

Lagrange equations are

L1q̈1 + R (q̇1 − q̇2) + q1

C1
= E

L2q̈2 + R (q̇2 − q̇1) + q2

C2
= 0

3.5.2 State Variables

3.5.2.1 Selection of State Variables

Given a network N defines a normal tree (as in [139]):

Definition 3.16 A normal tree is a tree containing a maximum number of capacitors
and a minimum number of inductors.

Consider N and choose a normal tree T and let L be its co-tree. Define the
dynamic transformation matrix as follows:

Definition 3.17 Consider a network with n nodes and m branches. The chord to
tree branch dynamic transformation matrix is the matrix D ∈ R(n−1)×(n−m+1) with
elements



32 3 Electric Circuits and Devices

d jk =
⎧
⎨

⎩

1, tree branch j and chord k currents have the same direction
−1, tree branch j and chord k currents have opposite directions
0, tree branch j does not lie in a loop formed by insertion of chord k

Consequently, Kirchhoff’s laws imply

it = Dic (3.11)

vc = −DT vt (3.12)

where it , vt are the tree branch currents and voltages, respectively, and ic, vc are the
chord currents and voltages.

Example 3.18 Dynamical Transformation Matrix
Consider the circuit in Figure 3.6. Its graph is shown in Figure 3.8. Choose the tree

to be composed of two branches, 1 and 2. The co-tree is then composed of branches
3 and 4. According to Definition 3.17, the dynamic transformation matrix is

D =
[−1 −1

1 1

]

Notice that Equation (3.11) simply states

i1 = −i3 − i4
i2 = i3 + i4

Note that

−DT =
[
1 −1
1 −1

]

so that Equation (3.12) becomes

V3 = V1 − V2

V4 = V1 − V2

Fig. 3.8 Network directed
graph with 3 nodes and 4
branches

2

1 3 4

1

2 3
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Definition 3.19 Independent Sets of Capacitors and Inductors. If a set of capaci-
tors form a loop, then their voltages (and charges) are dependent. Thus, the set of
capacitors is said to be dependent. Otherwise, the set is called independent. If a set
of inductors form a cutset, then their currents are dependent and the set is said to be
dependent. Otherwise, the set is called independent.

In general, the elements of network can be divided into three categories: 1) state—
independent elements that store energy, but do not inject or dissipate energy from
the network, including ideal capacitors and inductors, which will be used to define
the dynamic state, 2) nonstate elements—elements that do change the network total
energy including resistors and sources, and 3) excess elements [139]. Accordingly,
it is useful to partition Equations (3.11) and (3.12):

⎡

⎣
its

itn

ite

⎤

⎦ =
⎡

⎣
Dss Dsn Dse

Dns Dnn Dne

Des Den Dee

⎤

⎦

⎡

⎣
ics

icn

ice

⎤

⎦ (3.13)

⎡

⎣
vcs

vcn

vce

⎤

⎦ =
⎡

⎣
−DT

ss −DT
ns −DT

es
−DT

sn −DT
nn −DT

en
−DT

se −DT
ne −DT

ee

⎤

⎦

⎡

⎣
vts

vtn

vte

⎤

⎦ (3.14)

Given a networkN chooses a treewith amaximumnumber of independent capacitors
and a co-tree with a maximal number of independent inductors [34, 139]. The only
situation preventing all of the network capacitors from being included in the tree
is the presence of capacitor-only loops. In this case, the loop is divided into a set
of independent capacitors and a set of dependent capacitors. The independent set is
included in the tree and the dependent set in the co-tree. Similarly, the only situation
preventing the inclusion of all inductors in the co-tree is the existence of an inductor-
only cutset. In this situation, the cutset is divided into an independent set of inductors
which is included in the co-tree and the set of excess inductors included in the tree.
The independent capacitors and independent inductors comprise the state elements
of the network.

By treating each capacitor-only loop and each inductor-only cutset in this way,
MacFarlane [139] defines a state tree for the network. For any given network, fol-
lowing this procedure a state tree and its co-tree are identified to have the following
properties:

ST1 The state tree contains a maximal independent set of capacitors and minimal
set of dependent inductors.

ST2 The co-tree contains a maximal independent set of inductors and a minimal
dependent set of capacitors.

ST3 The only type of loop that can be formed by the insertion of chord capacitor
into a state tree is a capacitor-only loop.



34 3 Electric Circuits and Devices

ST4 No loop formed by the insertion of a chord resistor into the state tree can contain
an inductor.

Note that item 4 follows from the fact that the inductor would not have belonged to
an inductor-only cutset and therefore should not have been included in the state tree.

It follows from (ST3) and (ST4) that the dynamic transformation matrix takes the
form:

D =
⎡

⎣
Dss Dsn Dse

Dns Dnn 0
Des 0 0

⎤

⎦ (3.15)

Now, the tree T and co-tree L are each divided into two parts, respectively, T1, T2,
and L1,L2 according to the following criteria:

A1 All independent voltage sources belong toT1, and all independent current sources
belong to L2.

A2 All resistors are divided between T1 and L2 such that all current-controlled
resistors belong to T1 and all voltage-controlled resistors belong to L2.

A3 All inductors in the tree are current-controlled and belong to T1. All capacitors
in the co-tree are voltage-controlled and belong to L2.

A4 Elements in L2 do not make fundamental loops with elements in T1. Elements
in T2 do not belong to cutsets with elements in L1.

A5 T1 does not contain any voltage-controlled capacitors, and T2 does not con-
tain any charge-controlled capacitors. Similarly, L1 does not contain any flux-
controlled inductors, and L2 does not contain any current-controlled inductors.

These conditions imply that all nonstate elements and excess elements belong to
T1 or L2. Since elements in L2 do not make fundamental loops with elements in T1,
it follows that under the above conditions, D has the form:

⎡

⎢⎢⎢
⎢
⎣

iCT1

iCT2

iET1

iRT1

iLT1

⎤

⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢
⎢
⎣

Dss11 0 0 0 0
Dss21 Dss22 Dsn21 Dsn22 Dse22

Dns11 0 0 0 0
Dns21 0 0 0 0
Des1 0 0 0 0

⎤

⎥⎥⎥
⎥
⎦

⎡

⎢⎢⎢
⎢
⎣

iLL1

iLL2

i JL2

iRL2

iCL2

⎤

⎥⎥⎥
⎥
⎦

(3.16)

⎡

⎢⎢
⎢⎢
⎣

vLL1

vLL2

vJL2

vRL2

vCL2

⎤

⎥⎥
⎥⎥
⎦

= −

⎡

⎢⎢
⎢⎢
⎣

DT
ss11 DT

ss21 DT
ns11 DT

ns21 DT
es1

0 DT
ss22 0 0 0

0 DT
sn21 0 0 0

0 DT
sn22 0 0 0

0 DT
se2 0 0 0

⎤

⎥⎥
⎥⎥
⎦

⎡

⎢⎢
⎢⎢
⎣

vCT1

vCT2

vET1

vRT1

vLT1

⎤

⎥⎥
⎥⎥
⎦

(3.17)

The perspective to be taken here is to view the capacitor charges inT1 and the inductor
fluxes inL2 as generalized coordinates. The capacitor voltages in T2 and the inductor
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1Cq 2Cv

1Li 2Lλ

• Current controlled capacitors
• Independent voltage sources
• Current controlled resistors
• Charge controlled memristors
• Excess current controlled 

inductors

• Flux controlled inductors
• Independent current sources
• Voltage controlled resistors
• Flux controlled memristors
• Excess voltage controlled 

capaciors

• Voltage controlled capacitors

• Current controlled inductors

Fig. 3.9 Tree and co-tree division of circuit elements and state coordinates

currents in L1 are generalized velocities. The distribution of circuit elements within
the tree and co-tree is summarized in Figure 3.9.

Remark 3.20 A Special Case. The notion of generalized coordinates and general-
ized velocities as used here can be clearly illustrated by considering a simple circuit
composed of linear inductors and capacitors without any excess elements or non-
conservative (dissipative or converter) elements. Then, in view of (3.15), (3.11) and
(3.12) are reduced to

it = Dssic, vc = −DT
ssvt (3.18)

Now, the tree and co-tree, each divided as specified above, are illustrated in
Figure 3.9. The tree, T , consists entirely of an independent set of capacitors. These
are divided into two sets T1, T2. The co-tree,L, consists entirely of an independent set
of inductors, also divided into two sets L1,L2. These divisions are arbitrary, except
that the elements in L2 do not make fundamental loops with elements in T1.

The capacitor charges in T1, denoted qC1, and the inductor fluxes in L2, denoted
λL2, are the generalized coordinates. The capacitor voltages in T2, vC2, and the
inductor currents in L1, iL1, are the generalized velocities. Equation (3.18) then can
be written as

[
iC1

iC2

]
=
[

Dss11 0
Dss21 Dss22

] [
iL1

iL2

]
(3.19)
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[
vL1

vL2

]
= −

[
DT

ss11 DT
ss21

0 DT
ss22

] [
vC1

vC2

]
(3.20)

Now, take the upper part of (3.19) and lower part of (3.20) to provide a relationship
between the coordinate derivatives and the generalized velocities

d

dt

[
qC1

λL2

]
= V

[
iL1

vC2

]
(3.21)

where

V =
[

Dss11 0
0 −DT

ss22

]
(3.22)

The remaining equations are

iC2 = Dss21iL1 + Dss22iL2 (3.23)

vL1 = −DT
ss11vC1 − DT

ss21vC2 (3.24)

Equation (3.21) relates the coordinate velocities and the generalized velocities. We
shall refer to (3.21) as the velocity transformation relation and to the matrix V
as the velocity transformation matrix. Moreover, (3.21) is to be used to uniquely
establish the generalized velocities as a function of the coordinate velocities. This is
trivially accomplished when V has an inverse, but when that is not the case, we led to
several important results which are discussed in the following paragraphs. Note that
Equations (3.23) and (3.24) are the network loop and node equations, respectively.

3.5.3 Other Forms of Lagrange Equations

3.5.3.1 Generalized Lagrange Equations

Consider, as in Remark 3.20, the case without excess or nonconservative elements.
The Lagrangian is assumed to take the form:

L (p, q) = W ∗ (p) − Z (q) + qT G p (3.25)

where

p =
[

iL1

vC2

]
, q =

[
qC1

λL2

]
(3.26)

and

W ∗ (p) = U ∗
L1

(iL1) + T ∗
T2

(vC2) (3.27)
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Z (q) = UL2
(λL2) + TT1 (qC1) (3.28)

Note the cross product term appearing in (3.25). It is unusual, but necessary to address
general circuits. The special case considered now lends insight into itsmeaning. Early
treatments of circuit models via Lagrange methods such as [138, 104] do not contain
a cross product term. However, [54, 117, 150] do.

Consider Poincarè equations (3.7), (3.8). In the present case, (3.7) is given by
(3.21) and (3.8) can be divided into two sets of equations

d

dt

(
∂L

∂iL1

)
− ∂L

∂qC1
Dss11 = 0 (3.29)

d

dt

(
∂L

∂vC2

)
− ∂L

∂λL2
DT

ss22 = 0 (3.30)

A few simple examples verify that the first of these equations is a set of voltage loop
equations, while the second is a set of current nodal equations.

The key to deriving the generalized Lagrange equations is understanding the
relationship between the coordinate time derivatives q̇ and the quasi-velocities p as
given by (3.21) and (3.22), or simply

q̇ = V p (3.31)

Suppose rank V = k ≤ min (m, n) where m is the dimension of q and n is the
dimension of p. Then, V can be factored to the form V = L R, L ∈ Rm×k, R ∈ Rk×n .
L and R are both of full rank k, and consequently, L possesses and left inverse Ll , and
R possesses a right inverse Rr . Consequently, V has a pseudo-inverse V + = Rr Ll ,
such that V V +V = V .

Now, the matrices (I − Rr R) and
(
I − L Ll

)
can be similarly rank-factored

(
I − Rr R

) = ΔΦ, Δ ∈ Rn×(n−k), Φ ∈ R(n−k)×n

(
I − L Ll

) = Γ �, Γ ∈ Rm×(m−k), � ∈ R(m−k)×m

The solution properties of (3.31) for p in terms of q̇ can be summarized in terms of
these matrices. A solution of (3.31) exists if and only if the compatibility constraints
hold

�q̇ = 0 (3.32)

If (3.32) holds, then all solutions of (3.31) are of the form:

p = V +q̇ + Δẇ (3.33)
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wherew (t) is an arbitrary differentiable (n − k) vector of quasi-coordinates. Notice
that (3.32) and (3.33) can be combined to yield

[
p
0

]
=
[

V + Δ

� 0

] [
q̇
ẇ

]
(3.34)

Its inverse is [
q̇
ẇ

]
=
[

V Γ

Φ 0

] [
p
0

]
(3.35)

As noted in [117], if the velocity transformation matrix V has a right inverse, then
there are no compatibility constraints, and if V has a left inverse, then no additional
coordinates are required.

For convenience in the following discussion, the following matrices are defined:

A =
[

V Γ

Φ 0

]
= [

Ṽ Λ
]

(3.36)

A−1 =
[

V + Δ

� 0

]
=
[

Ṽ l

Ψ

]
(3.37)

Proposition 3.21 (Generalized Lagrange Equations) Consider a network without
excess elements and having generalized coordinates qC1,λL2, generalized velocities
iL1, vC2, and velocity transformation matrix as given in (3.22) and Lagrangian (3.25),
then the generalized Lagrange equations are

˙̃q = Ṽ p, Ṽ =
⎡

⎣
Dss11 0
0 −DT

ss22
Φ1 Φ2

⎤

⎦ (3.38)

d

dt

∂L

∂ p
− ∂L

∂q̃
Ṽ = Q (3.39)

where q̃T = [
qT wT

]
and

L (p, q̃) = W ∗ (p) − Z (q) + q̃T Gp (3.40)

with

G =
⎡

⎣
0 0

−D+
ss22Dss21 0

ΔT
2 Dss21 0

⎤

⎦ (3.41)
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Proof Equation (3.39) is readily reduced by direct computation of the two relations

d

dt

(
∂L

∂iL1

)
− ∂L

∂qC1
Dss11 − ∂L

∂w
Φ1 = Q1 (3.42)

d

dt

(
∂L

∂vC2

)
+ ∂L

∂λL2
DT

ss22 − ∂L

∂w
Φ2 = Q2 (3.43)

In the absence of the cross product term, the first is a set of voltage loop equations and
the second is a set of current nodal equations. The cross product term is necessary,
however, to accommodate modeling of complex network topologies. Consequently,
the first step is to determine choices for G such that the loop nodal distinctions are
preserved. First, expand the cross product term so that the Lagrangian is in the form:

L (p, q) = W ∗ (p) − Z (q) + [
qT

C1 λT
L2 wT

]
⎡

⎣
G11 G12

G21 G22

G31 G32

⎤

⎦
[

iL1

vC2

]

Notice that the coordinates w appear only in the cross product term. The first two
terms represent “kinetic” energy minus “potential” energy and depend only on the
original generalized coordinates and velocities. A somewhat tedious calculation
shows that in order to insure that the loop nodal properties are retained with the
addition of the cross product term in the Lagrangian, G must satisfy the following
condition [117]:

Ṽ G = 1

2
(M + N )

where M is the skew symmetric matrix

M =
[

0 −DT
ss21

Dss21 0

]

and N is an arbitrary symmetric matrix. If N is chosen to be

N =
[

0 DT
ss21

Dss21 0

]

Then, using a left inverse of Ṽ , G is obtained as (3.41).
Now, as above, the generalized velocities, iL1, vC2, comprise a set of n variables,

the generalized coordinates, qC1, λL2, comprise a set of m variables, and w consists
of n + m − k quasi-coordinates (recall k is the rank of V ). Thus, there are a total
of 2n + 2m − k variables. Equation (3.38), along with Equations (3.42), (3.43) (or,
(3.39)), comprise a complete set of 2n + 2m − k first-order differential equations
that define the evolution of the network. �
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Remark 3.22 (Generalized Force Expressions) The generalized Lagrange equations
(3.39) reproduce the loop equations that specify the generalized velocity vL1 and the
node equations that specify the generalized velocity iC2, i.e., from (3.16) and (3.17)

iC2 = Dss21iL1 + Dss22iL2 + Dsn21i J2 + Dsn22iR2

vL1 = −DT
ss11vC1 − DT

ss21vC2 − DT
ns11vE1 − DT

ns21vR1

The last two terms of each of these relations come from nonconservative source and
resistance elements and must be produced by the generalized force Q. Thus, define

Q (p, t) =
[

Q1

Q2

]
=
[

Dsn21i J2 + Dsn22iR2

−DT
ns11vE1 − DT

ns21vR1

]

Amore convenient form of the generalized forces can be obtained by defining poten-
tial functions for the nonconservative elements. Following Cherry [44] define

1. resistor content: G RT1

(
iR1

) = ∫
vT

R1

(
iR1

)
diR1

2. voltage source content: G ET1

(
iE1 , t

) = ∫
vT

E1
(t) diE1

3. resistor co-content: G∗
RL2

(
vR2

) = ∫
i T

R2

(
vR2

)
dvR2

4. current source co-content: G∗
JL2

(
vJ2 , t

) = ∫
i T

J2 (t) dvJ2

In terms of these functions, the generalized forces can be expressed in the very
convenient form:

Q1
(
iL1 , t

) = ∂

∂iL1

[
G ET1

(
Dns1iL1 , t

)+ G RT1

(
Dns2iL1

)]
(3.44)

Q2
(
vC2 , t

) = ∂

∂vC2

[
G∗

JL2

(−DT
sn1vC2 , t

)+ G∗
RL2

(−DT
sn1vC2

)]
(3.45)

Remark 3.23 (Reduced Equations) Equations (3.42) and (3.43) can be further evalu-
ated to reveal interesting structure in the system equations. Consider the Lagrangian
(3.41). Notice that the cross product term reduces to

q̃T G p = −λT
L2D+

ss22Dss21iL1 + wT ΔT
2 Dss21iL1

Thus, (3.42) and (3.43) become

d
dt

(
∂W ∗
∂iL1

)
+ (

vT
C2Dss22D+

ss22Dss21 + (
i T

L1Φ
T
1 + vT

C2Φ
T
2

)
ΔT

2 Dss21
)

− ∂Z(q)

∂qC1
Dss11 − i T

L1DT
ss21Δ2Φ1 = Q1

d

dt

(
∂W ∗

∂vC2

)
− ∂Z (q)

∂λL2
DT

ss22 − (
D+

ss22Dss21iL1
)T

DT
ss22 − (

ΔT
2 Dss21iL1

)T
Φ2 = Q2
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Now, Equation (3.38) provides

λ̇L2 = −DT
ss22vC2 ẇ = Φ1iL1 + Φ2vC2

so that after substitution and some rearrangement, we obtain

d
dt

(
∂W ∗
∂iL1

)
+ vT

C2

[
Dss22D+

ss22Dss21 + ΦT
2 ΔT

2 Dss21
]

+ i T
L1

[
ΦT

1 ΔT
2 Dss21 − DT

ss21Δ2Φ1
]− ∂Z(q)

∂qC1
Dss11 = Q1

d

dt

(
∂W ∗

∂vC2

)
+ i T

L1

[
−DT

ss21

(
Dss22D+

ss22

)T − DT
ss21Δ2Φ2

]
− ∂Z (q)

∂λL2
DT

ss22 = Q2

Recall Equations (3.36) and (3.37) and note that A−1A = I . Thus,

[
V + Δ

� 0

] [
V Γ

Φ 0

]
=
[

V +V + ΔΦ V +Γ

�V �Γ

]
= I2n+2m−k

Take the upper left (n + m) × (n + m) block and write it as

V +V + ΔΦ =
[

D+
ss11Dss11 0

0
(
DT

ss22

)+
DT

ss22

]
+
[

Δ1Φ1 Δ1Φ2

Δ2Φ1 Δ2Φ2

]
= In+m

From which it can be seen that

D+
ss11Dss11 + Δ1Φ1 = In

Δ1Φ2 = 0n×m

Δ2Φ1 = 0n×n(
DT

ss22

)+
DT

ss22 + Δ2Φ2 = Im

These relations lead to the simplified equations

d

dt

(
∂W ∗

∂iL1

)
+ vT

C2Dss21 − ∂Z (q)

∂qC1
Dss11 = Q1 (3.46)

d

dt

(
∂W ∗

∂vC2

)
− i T

L1DT
ss21 − ∂Z (q)

∂λL2
DT

ss22 = Q2 (3.47)

It is interesting to observe that the iL1 and vC2 equations, (3.46) and (3.47), respec-
tively, are connected via an antisymmetric matrix. This interaction is conservative
and similar to the gyroscopic force interaction in mechanical systems.

Example 3.24 LinearRLCcircuit. Consider the circuit in Figure 3.10.All capacitors,
inductors, and resistors are assumed linear. The selected tree and co-tree are shown
in Figure 3.11.
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Fig. 3.10 The linear RLC
network includes a voltage
source and resistors

-
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Fig. 3.11 The graph shows
the selected tree (black) and
the chords (gray)

E

2R 1R

1C

1

32 4

56

2C

2L 1L

The tree and co-tree divisions are chosen to be

T1 = {C1, C2, E, R1, R2} , T2 = {}

L1 = {L1, L2} ,L2 = {}

Thus, the network generalized coordinates are the capacitor charges, qC1 , qC2 , and the
generalized velocities are the inductor currents, iL1 , iL2 . The dynamic transformation
relations are

⎡

⎢⎢⎢
⎢
⎣

iC1

iC2

iE

iR1

iR2

⎤

⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢
⎢
⎣

1 0
−1 1
0 1
1 0
0 1

⎤

⎥⎥⎥
⎥
⎦

[
iL1

iL2

]
,

[
vL1

vL2

]
= −

[
1 −1 0 1 0
0 1 1 0 1

]

⎡

⎢⎢⎢
⎢
⎣

vC1

vC2

vE

vR1

vR2

⎤

⎥⎥⎥
⎥
⎦

From the first two loop equations,

q̇ = V p ⇒ d

dt

[
qC1

qC2

]
=
[

1 0
−1 1

] [
iL1

iL2

]

For this setup, the Lagrangian is

L
(
iL1 , iL2 , qC1 , qC2

) = U ∗
L

(
iL1 , iL2

)− TC

(
qC1 , qC2

)

U ∗
L

(
iL1 , iL2

) = 1

2

(
L1i

2
L1

+ L2i
2
L2

)
, TC

(
qC1 , qC2

) = 1

2

(
q2

C1

C1
+ q2

C2

C2

)
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From which generalized Lagrange equations are derived

L1
d

dt
iL1 − qC1

C1
+ qC2

C2
= vE − iL1

R1
+ iL2

R2

L2
d

dt
iL2 − qC2

C2
= −vE − iL2

R2

Example 3.25 Example 3.15 Revisited. Consider once again the circuit in Figure
3.7. Select a tree and co-tree

T = {E, R, C1, C2} , L = {L1, L2}

There are several ways to partition T and L. Consider the following four partitions:
1. T1 = {E, R, C1, C2} , T2 = {} L1 = {L1, L2} ,L2 = {}
2. T1 = {E, R} , T2 = {C1, C2} L1 = {} ,L2 = {L1, L2}
3. T1 = {E, R, C1} , T2 = {C2} L1 = {L1} ,L2 = {L2}
4. T1 = {E, R, C2} , T2 = {C1} L1 = {L2} ,L1 = {L2}
Partitions 1. and 2. are classical. Partition 1. corresponds to the choice of capacitor
charges qC1, qC2 as generalized coordinates and inductor currents iL1, iL2 as gen-
eralized velocities. Alternatively, Partition 2. corresponds to choosing inductor flux
linkages λL1,λL2 as coordinates and capacitor voltages vC1, vC2 as velocities.

Partitions 3. and 4. are unusual. They are different because the coordinates are
mixed capacitor charge and inductor flux linkage. With partition 3., the coordinates
are qC1,λL2 and the corresponding velocities are iL1, vC2. Similarly, Partition 4.
produces coordinates qC2,λL1 and velocities iL2, vC1.

Consider Partition 3. The dynamic transformation relations are

⎡

⎢⎢
⎣

iE

iR

iC1

iC2

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0
1 −1
1 0
0 1

⎤

⎥⎥
⎦

[
iL1

iL2

]
,

[
vL1

vL2

]
=
[−1 −1 −1 0

0 1 0 −1

]
⎡

⎢⎢
⎣

vE

vR

vC1

vC2

⎤

⎥⎥
⎦

The Lagrangian is

L (iL1, vC2, qC1,λL2) = U ∗
L1

(iL1) + T ∗
C2

(vC2) − UL2
(λL2) − TC1 (qc1)

where

U ∗
L (i) = 1

2
Li2, UL (λ) = 1

2

λ2

L
, T ∗

C (v) = 1

2
Cv2, TC (q) = 1

2

q2

C
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Fig. 3.12 A simple
memristor circuit

V +
−

i

Example 3.26 Memristor Examples
Recall that the full model for the charge-controlled memristor is

v = M (q) i,
dq

dt
= i (3.48)

and for the flux-controlled memristor,

i = W (λ) v,
dλ

dt
= v (3.49)

Note that in the linear case, i.e., M, W are constant, the differential equations are
unnecessary and the memristor is essentially a resistor. The interesting case is the
nonlinear memristor. Consider the circuit in Figure 3.12.

Place the current-controlled inductor in L1 and the charge-controlled memristor
in T1. Thus, there are no generalized coordinates and the only generalized velocity
is the inductor current, iL . Define a single quasi-coordinate, qL ,

dqL

dt
= iL (3.50)

The Lagrangian is

L = U ∗ (iL) = 1

2
L1i

2
L

Note that the incremental work done by the memristor is δW = vL diL so that

L1
diL

dt
= −M (qL) (3.51)

Equations (3.2) and (3.3) form a complete description of the circuit.
As a slightly more complex example, consider the circuit in Figure 3.13. In this

case, the inductor and capacitor are considered to be linear, the voltage source is
constant, and the memristor is flux-controlled. Thus, the tree and co-tree can be
defined and partitioned in the following way:

T1 = {E} , T2 = {C}
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Fig. 3.13 A four element
memristor circuit

-
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L1 = {L} ,L2 = {M}

The state variables are the two generalized velocities vC and iL , so the Lagrangian is

L = U ∗
L (iL) + T ∗

C (vC) = 1
2 L1i

2
L + 1

2C1v
2
C

Now, the flux-controlled memristor is characterized by the work done by the voltage
source δWE = VE diL and by the memristor δWM = iM dvC = W (λM) vC dvC .
Thus, the Lagrange equations are

L
diL

dt
= VE , C

dvC

dt
= W (λM) vC (3.52)

Again, notice that Equations (3.49) and (3.52) provide a complete description of the
network.

3.5.3.2 Brayton–Moser Equations

If all capacitors are voltage-controlled and all inductors are current-controlled, then
it is possible to place all capacitors in T2 and all inductors in L1. In this case, the
capacitor voltages and inductor currents are viewed as generalized velocities and no
generalized coordinates are explicitly identified. Thus, q is vacuous and all of the
generalized coordinates are in fact quasi-coordinates, w, defined via

ẇ = p (3.53)

so that Φ = I and Δ = I . In this case, the Lagrangian assumes the form:

L = W ∗ (p) + wT Gp

and Lagrange equations are

d

dt

∂L

∂ p
− ∂L

∂w
= Q (3.54)
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Upon further evaluation, these become

[
∂2W ∗ (p)

∂ p2

]
dp

dt
+ pT

(
G − GT

) = [
Q1

(
iL1 , t

)
Q2

(
vC2 , t

) ]
(3.55)

with

G = [
ΔT

2 Dss21 0
] =

[
0 0

Dss21 0

]
(3.56)

In partitioned form, the Lagrange equations are reduced to
[

∂2U ∗
L1

(
iL1

)

∂iL1
2

]
diL1

dt
+ vT

C2
Dss21 = Q1

(
iL1 , t

)
(3.57)

[
∂2T ∗

T2

(
vC2

)

∂iL1
2

]
dvC2

dt
− i T

L1
DT

ss21 = Q2
(
vC2 , t

)
(3.58)

Now, define the mixed potential function

P
(
iL1 , vC2 , t

) = vT
C2

Dss21iL1 − G∗
JL2

(−DT
sn1vC2 , t

)

−G∗
RL2

(−DT
sn1vC2

)+ G ET1

(
Dns1iL1 , t

)+ G RT1

(
Dns2iL1

) (3.59)

Then, Equation (3.55) can be written as

[
∂2W ∗ (p)

∂ p2

]
dp

dt
= J

∂P

∂ p
, J = diag

(
InL1

, InC2

)
(3.60)

These are the Brayton–Moser equations [31]. They can also be written in partitioned
form:

[
∂2U ∗

L1

(
iL1

)

∂iL1
2

]
diL1

dt
= ∂P

∂iL1

(3.61)

[
∂2T ∗

T2

(
vC2

)

∂iL1
2

]
dvC2

dt
= − ∂P

∂vC2

(3.62)

Example 3.27 Degenerate RLC circuit. As an example of the special case described
above, consider the three-node, four-branch circuit in Figure 3.14. All capacitors,
inductors, and resistors are assumed linear. The selected tree and co-tree are shown in
Figure 3.15, i.e.,

T = {E, C}
L = {R, L}



3.5 Generalized Lagrange Equations 47

Fig. 3.14 The 4-element
RLC network includes a
voltage source

1

-+

2 3C R

L

E

Fig. 3.15 The graph shows
the selected tree (black) and
the chords (gray)

1 R

E

2 3

C

L

Tree and co-tree partitions that satisfy the criteria are

T1 = {E} , T2 = {C}

L1 = {L} ,L2 = {R}

The dynamic transformation relations are

[
iC

iE

]
=
[

Dss21 Dsn21

Dns11 Dnn12

] [
iL

iR

]

=
[

1 1
−1 −1

] [
iL

iR

]

[
vL

vR

]
=
[−1 1

−1 1

] [
vC

vE

]

Note that in this arrangement, the state variables are the quasi-velocities vC and iL .
A complete set of equations can be obtained in the form of Equations (3.57) and
(3.58).

3.5.3.3 Generalized Hamilton Equations

In the usual way, the Hamiltonian, H (π, q̃), can be obtained by Legendre transfor-
mation of the Lagrangian, L (p, q̃). The variable π is the generalized momentum
defined by
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π
Δ= ∂L (p, q̃)

∂ p
(3.63)

It is assumed that (3.63) admits a solution p = ϕ (π, q̃) for all admissible q̃ . Then,

H (π, q̃)
Δ= [

π p − L (p, q̃)
]

p→ϕ(π,q̃)
(3.64)

The transformation defined by Equations (3.63) and (3.64) possesses the properties

p = ∂H

∂π
(3.65)

∂H

∂q̃
= −∂L

∂q̃
(3.66)

In view of (3.63) and (3.64), the generalized Lagrange equations, Equations (3.38),
(3.39), and (3.65), can be written

dπ

dt
= −∂H

∂q̃
Ṽ + Q (3.67)

dq̃

dt
= Ṽ

∂H

∂π
(3.68)

λ = ∂H

∂q̃
Λ (3.69)

These constitute Hamilton equations for a general nonlinear circuit.
The Hamiltonian can be explicitly obtained from its definition (3.64) using the

Lagrangian (3.40). The momentum is

π = ∂L (p, q̃)

∂ p
= ∂W ∗ (p)

∂ p
+ q̃T G (3.70)

and the Hamiltonian is

H (π, q̃) = ∂W ∗ (p)

∂ p
p − W ∗ (p) + Z (q) (3.71)

Note that

W

(
∂W ∗

∂ p

)
= ∂W ∗

∂ p
p − W ∗ (p) (3.72)
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so that using (3.70), the Hamiltonian is

H (π, q̃) = W (π − q̃G) + Z (q) (3.73)

Note that

Ḣ (π, q̃) = π̇
∂H

∂π
+ ∂H

∂q̃
˙̃q = Qp (3.74)

There is an interesting alternative Hamiltonian approach. Define the momentum

μ = ∂W ∗ (p)

∂ p
= π − q̃T G (3.75)

In terms of μ, the Hamiltonian is

H̃ (μ, q̃) = H (π, q̃)|π→μ+q̃T G = W (μ) + Z (q) (3.76)

Now, Hamilton equations, (3.67) and (3.68), can be rewritten in the form:

dμ

dt
=
(

∂W (μ)

∂μ

)T (
GT Ṽ − Ṽ T G

)
− ∂Z (q)

∂q̃
Ṽ + Q (3.77)

dq̃

dt
= Ṽ

∂W (μ)

∂μ
(3.78)

Recall (
GT Ṽ − Ṽ T G

)
= MT

and note that since Z (q) does not depend on the quasi-coordinates w, Equation
(3.77) is independent of w and there is no need to compute them using (3.78). That
is, the quasi-coordinates are ignorable and (3.77) and (3.78) can be reduced to

dμ

dt
=
(

∂W (μ)

∂μ

)T

MT − ∂Z (q)

∂q
V + Q (3.79)

dq

dt
= V

∂W (μ)

∂μ
(3.80)

These equations provide a complete and minimal state description of the system.
Note also that H̃ = W (μ) + Z (q) is the total energy of the system.
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3.5.4 Excess Elements

Example 3.28 RLC System with Excess Elements. Consider the four-node, six-
branch circuit in Figure 3.16. All capacitors, inductors, and resistors are assumed
linear. Notice that the network has one excess capacitor and one excess inductor.

The selected tree and co-tree are shown in Figure 3.17, i.e.,

T = {a, c, e}
L = {b, d, f }

Now, voltage source c and inductor e must be assigned to T1 and capacitor b, and
resistor d must be assigned to L2. Consequently, capacitor a must be assigned to T2
to avoid fundamental loops formed by chords of L2. Inductor f can be placed either
in L1 or in L2. For now, it is placed in L1. Thus,

T1 = {c, e} , T2 = {a}
L1 = { f } , L2 = {b, d}

The chord–branch current relationship is

⎡

⎣
ia

ic

ie

⎤

⎦ =
⎡

⎣
1 1 −1

−1 −1 0
−1 0 0

⎤

⎦

⎡

⎣
i f

id

ib

⎤

⎦

Fig. 3.16 The 6-element
network includes 2 excess
elements
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-+

2 3 4

a

b

c

d

e

f

E

Fig. 3.17 The graph shows
the selected tree (black) and
the chords (gray) b d

c

1 2 3 4

a

e

f
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and the branch–chord voltage relationship is

⎡

⎣
v f

vd

vb

⎤

⎦ =
⎡

⎣
−1 1 1
−1 1 0
1 0 0

⎤

⎦

⎡

⎣
va

vc

ve

⎤

⎦

With this partition structure, the single generalized coordinate is the flux linkage of
inductor f, λ f . The corresponding generalized velocity is the capacitor a voltage va .

3.6 Coupled Circuits and Electromechanical Devices

Systems in which electrical and mechanical components interact are considered in
this section. Electromechanical transducers are central to electric power systems—
the most obviously important being generators and motors. A direct approach to
developing the equations describing the behavior of such devices is to applyLagrange
equations in some form. The generalized Lagrange equations are particularly con-
venient for the systems of interest herein where the mechanical dynamics are rather
simple and the complexity arises only in their integration with the electrical dynam-
ics. The key ideas for application of the generalized equations to such systems will
be illustrated with a series of examples.

Each example involves a coupled system that may include only electrical or both
electrical and mechanical components. The system interacts with the external world
by energy exchange through multiple ports. The first issue is to identify the idealized
system energy storage potential function and the constitutive relations that can be
derived from it. Then, the generalizedLagrange equations are derived for the nonideal
system.

Example 3.29 Solenoid.As a simple example, first consider the ideal solenoid shown
in Figure 3.18. The kinematic relationships are

dλ (t)

dt
= e (t) ,

dx (t)

dt
= v (t) (3.81)

( ) ( )d t
e t

dt

λ
=

( ) ( )dx t
v t

dt
=

( )i t

( )f t

Fig. 3.18 An ideal solenoid with movable core
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In addition, there are two constitutive relations

i = φi (λ, x) , f = φ f (λ, x)

The work done by the solenoid in an infinitesimal time dt is

δW = ei dt + f v dt = i dλ + f dx

Consider the displacement of the solenoid fromone static position to another. Assum-
ing a lossless system, the work delivered is stored as magnetic energy, Um (λ, x).
Thus,

dUm (λ, x) = i dλ + f dx (3.82)

or

Um (λ, x) =
∫

P
(i dλ + f dx) (3.83)

whereP is any path from (0, 0) to (λ, x). ChooseP to be composed of two segments:
first, a line along the x-axis from (0, 0) to (0, x) and second, a line parallel to the
λ-axis from (0, x) to (λ, x). Then, the integral is reduced to

Um (λ, x) =
∫ λ

0
φi (λ, x) dλ

Assuming the solenoid constitutive relation is linear in current, i = λ/L (x), Um is
reduced to

Um (λ, x) = λ2

2L (x)

Note that from (3.82),

i = ∂Um

∂λ
, f = ∂Um

∂x

Thus, if the magnetic energy function Um (λ, x) is known, the constitutive equations
can be obtained from it. Consequently, in this example, it is

f = −λ2L
′
(x)

2L2 (x)

Now consider the nonideal solenoid in Figure 3.19 for which Lagrange equations
will be derived.

The electrical part of the system consists of the simple circuit shown in Figure
3.20. The voltage source and the resistance form the tree, and as required, these
elements are placed in T1. The only chord is the inductor, and it must be placed in
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( ) ( )d t
e t

dt

λ
=

( ) ( )dx t
v t

dt
=

( )i t

( )E t

c

Fig. 3.19 A nonideal solenoid that includes electrical resistance and a mechanical damper

Fig. 3.20 The electrical part
of the system consists of a
three-element loop

R

( )E t ( )L x
1

2 3

L1 so as not to form loops with elements in T1. The only state variable in this setup
is the inductor current, i , which is a generalized velocity. The only coordinate is the
corresponding quasi-coordinate w, which is ignorable.

The mechanical subsystem contributes the coordinates x and its corresponding
velocity, v

dx

dt
= v (3.84)

The Lagrangian is

L (x, i, v) = U ∗
m (x, i) + T ∗ (v) − V (x)

with
U ∗

m (i) = 1
2 L (x) i2, T ∗ (v) = 1

2mv2, V (x) = 1
2kx2

The total infinitesimal work done by the external forces is

δW = (E (t) − Ri) δq − cv δx

Thus, the generalized Lagrange equations in the matrix form are

[
L (x) 0
0 m

]
d

dt

[
i
v

]
+
[

R Lx (x) i
− 1

2 Lx (x) i c

] [
i
v

]
+
[
0
k

]
x =

[
E (t)
0

]
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Note that
[

0 Lx (x) i
− 1

2 Lx (x) i 0

] [
i
v

]
=
[ 1

2 Lx (x) v 1
2 Lx (x) i

− 1
2 Lx (x) i 0

] [
i
v

]

So that the Lagrange equations can be written

[
L (x) 0
0 m

]
d

dt

[
i
v

]
+
[ 1

2 Lx (x) v + R 1
2 Lx (x) i

− 1
2 Lx (x) i c

] [
i
v

]
+
[
0
k

]
x =

[
E (t)
0

]

(3.85)
Equations (3.81) and (3.85) provide a complete characterization of the nonideal
solenoid. The form of the equations (3.85) is very useful as the inertia, stiffness,
gyroscopic, and dissipative terms are readily identifiable.

Example 3.30 Mutually Coupled Inductors
Mutually coupled inductors play an important role in motors and other devices.

Consider the mutually coupled ideal inductors shown in Figure 3.21. The flux link-
ages of each coil depend on the currents in both coils

λ1 = φ1 (i1, i2)

λ2 = φ2 (i1, i2)

Assume, for now, that these relationships are invertible so that

i1 = ϕ1 (λ1,λ2)

i2 = ϕ2 (λ1,λ2)

The instantaneous power flowing into the pair of coils is

P = e1i1 + e2i2

Fig. 3.21 Two mutually
coupled inductors

2L1L
1

1

d
e

dt

λ= 2
2

d
e

dt

λ=

1i 2i
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Thus, the work done by the system in an infinitesimal time interval dt is

δU = e1i1dt + e2i2 dt = i1 dλ1 + i2 dλ2 (3.86)

Since the ideal inductors are conservative, the infinitesimal work equals the increase
in magnetic stored energy in the pair of coils. Now, Equation (3.86) is an exact
differential, d U (λ1,λ2), only if the constitutive relations satisfy the integrability
conditions

∂ϕ1 (λ1,λ2)

∂λ2
= ∂ϕ2 (λ1,λ2)

∂λ1

If this is the case, the magnetic energy function U (λ1,λ2) exists for coupled pair.
If U (λ1,λ2) is known, then the constitutive equations can be obtained by differ-

entiation,

i1 = ∂U (λ1,λ2)

∂λ1
, i2 = ∂U (λ1,λ2)

∂λ2

Similarly, the co-energy U ∗ (i1, i2) exists provided the integrability conditions hold

∂φ1 (i1, i2)

∂i2
= ∂φ2 (i1, i2)

∂i1

In this case, and if U ∗ is known, the constitutive relations can be obtained in the
form:

λ1 = ∂U ∗ (i1, i2)

∂i1
, λ2 = ∂U ∗ (i1, i2)

∂i2

Furthermore, both U and U ∗ exist and they are related by Legendre transformation,
example

U ∗ (i1, i2) = λ1i1 + λ2i2 − U (λ1,λ2)

Consider the case where the constitutive relations are linear, i.e.,

λ1 = L11i1 + L12i2
λ2 = L21i1 + L22i2

Integrability requires L12 = L21, that is, the inductance matrix is symmetric. Con-
sequently, [

λ1

λ2

]
=
[

L11 L12

L12 L22

] [
i1
i2

]

and [
i1
i2

]
=
[

Γ11 Γ12

Γ12 Γ22

] [
λ1

λ2

]
,

[
Γ11 Γ12

Γ12 Γ22

]
=
[

L11 L12

L12 L22

]−1
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With the constitutive relations known, it is a simple matter to integrate along any path
to find the energy and co-energy functions. For example, to find the energy function,
take any path C from (0, 0) to (λ1,λ2)

U (λ1,λ2) = 1

2

[
λ1 λ2

] [Γ11 Γ12

Γ12 Γ22

] [
λ1

λ2

]
(3.87)

Similarly, integrate or use Legendre transformation to obtain

U ∗ (i1, i2) = 1

2

[
i1 i2

]
[

L11 L12

L12 L22

] [
i1
i2

]
(3.88)

Now consider the system shown in Figure 3.22. The network is composed of two
circuits coupled by the mutual inductance. All elements are assumed to have linear
constitutive relations. Each circuit has its own graph as illustrated in Figure 3.23. The
left circuit tree and co-tree are subdivided in accordance with the criteria in Section
3.5.2 as follows:

T1 = {E, R1, L3} , T2 = {} ,L1 = {L1} ,L2 = {}

Similarly, the right circuit tree and co-tree are divided as follows:

T1 = {} , T2 = {C2} ,L1 = {L2} ,L2 = {R2}

The significance of these tree and co-tree divisions is that they organize the choice
of state variables. Note that L3 is an excess element in the left circuit. From the left
circuit, inductor L1 contributes a velocity iL1 . From the right circuit, L2 contributes

( )E t
3L1R

2C 2R1L 2L

Fig. 3.22 Two circuits coupled through a mutual inductance

Fig. 3.23 Directed graphs
for the two distinct circuits in
Figure 3.22

E

1
R

1
L

3
L

2C2L 2
R

1
1

2
23

4
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a velocity iL2 and C2 contributes a velocity vC2 . As in the case of Section 3.5.3.2, all
generalized coordinates are quasi-coordinates, w, with ẇ = p, i.e.,

d

dt

⎡

⎣
w1

w2

w3

⎤

⎦ =
⎡

⎣
iL1

iL2

vC2

⎤

⎦ (3.89)

Consider the assembly of the Lagrangian. In this case, since all storage elements
contribute velocity states, the Lagrangian involves only co-energy functions. The
circuit cross-coupling terms, wT Gp, can be assembled independently for the left
and right circuits and then combined. First, the dynamic transformation relations for
the two circuits, respectively, are

⎡

⎣
iE

iR1

iL3

⎤

⎦ =
⎡

⎣
1
1
1

⎤

⎦ iL1 , iC2 = [
1 1

] [ iL2

iR2

]

Notice that for the left circuit, Dss21 is null, so the cross product term is absent. On
the other hand, for the right circuit, the cross product term is w3 iL2 . Consequently,
the Lagrangian is

L
(
iL1 , iL2 , iC2 , w3

) = U ∗
L1L2

(
iL1 , iL2

)+ U ∗
L3

(
iL1

)+ T ∗
C2

(
vC2

)+ w3 iL2 (3.90)

where

U ∗
L1L2

(
iL1 , iL2

) = 1

2

[
iL1 iL2

] [ L11 L12

L12 L22

] [
iL1

iL2

]

U ∗
L3

(
iL1

) = 1

2
L3i

2
L1

, T ∗
C2

(
vC2

) = 1

2
C2v

2
C2

The generalized forces are easily determined

Q = [
E (t) − R1iL1 0 −vC2

/
R2
]

(3.91)

Thus, Lagrange equations are obtained in the form of Equation (3.55)

⎡

⎣
(L11 + L3) L12 0

L12 L22 0
0 0 C2

⎤

⎦ d

dt

⎡

⎣
iL1

iL2

vC2

⎤

⎦+
⎡

⎣
R1 0 0
0 0 1
0 −1 R−1

2

⎤

⎦

⎡

⎣
iL1

iL2

vC2

⎤

⎦ =
⎡

⎣
E (t)
0
0

⎤

⎦ (3.92)

Equation (3.92) is a complete representation of the inductor-coupled network. All
three of the quasi-coordinates can be considered ignorable.
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a a'

N

θ

stator (armature)

rotor (field)

N

S

( )ai t

( )fi t

air gap

direct axis

quadrature 
axis

( )ae t ( )fe tτ

Fig. 3.24 A motor consisting of a single armature winding driven by a voltage source, ea (t), and
a single field winding with a voltage source, e f (t)

Example 3.31 Single-Phase Motor. Consider the ideal electric motor shown in
Figure 3.24. Because the rotor is free to rotate, the mutual inductance will vary
as a periodic function of rotor angle θ. The system can be viewed as having three
ports through which energy can be provided to or withdrawn from the system. They
include the electrical inputs to the rotor and stator and the mechanical input to the
rotor shaft.

The kinematic relations are

dλa (t)

dt
= ea (t) ,

dλ f (t)

dt
= e f (t) ,

dθ (t)

dt
= ω (t) (3.93)

The constitutive relations for the coupled inductors now take the form:

λa = φa
(
ia, i f , θ

)

λ f = φ f
(
ia, i f , θ

) (3.94)

or
ia = ϕa

(
λa,λ f , θ

)

i f = ϕ f
(
λa,λ f , θ

) (3.95)
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Now, the instantaneous power delivered to the system is

P (t) = ea (t) ia (t) + e f (t) i f (t) + τ (t)ω (t)

Thus, the work done in an infinitesimal time, dt , is

δW = eaiadt + e f i f dt + τωdt = iadλa + i f dλ f + τ dθ (3.96)

Consider the work done in displacing the rotor from one static position to another.
Since the system is conservative, the resultant energy input is stored as magnetic
energy. Thus, δU is an exact differential, and there exists a potential function
U
(
λa,λ f , θ

)
that can be obtained by integrating (3.96) over an arbitrary path P

beginning at (0, 0, 0) and terminating at
(
λa,λ f , θ

)

U
(
λa,λ f , θ

) =
∫

P

(
iadλa + i f dλ f + τ dθ

)
(3.97)

Formally, the differential (3.96) is exact only if the integrability condition is satisfied,
J = J T where

J =
⎡

⎢
⎣

∂ϕa

∂λa

∂ϕa

∂λ f

∂ϕa

∂θ
∂ϕ f

∂λa

∂ϕ f

∂λ f

∂ϕ f

∂θ
∂τ
∂λa

∂τ
∂λ f

∂τ
∂θ

⎤

⎥
⎦ (3.98)

Suppose the constitutive relations are linear in the currents and flux linkages so that
(3.95) takes the form:

[
ia

i f

]
=
[

Γ11 (θ) Γ12 (θ)
Γ12 (θ) Γ22 (θ)

] [
λa

λ f

]
(3.99)

Notice that in the absence of amagnetic field, the rotor can be displaced to the desired
position, θ, without any effort, i.e., τ = 0. Thus, integrate first along the θ-axis, so
that λa = 0,λ f = 0, from the origin to the desired θ. Then, with θ constant, integrate
in the λa direction with λ f = 0 to the desired λa . Finally, with θ and λa constant,
integrate in the λ f direction to the desired λ f . The result is

U
(
λa,λ f , θ

) = 1

2

[
λa λ f

] [Γ11 (θ) Γ12 (θ)
Γ12 (θ) Γ22 (θ)

] [
λa

λ f

]
(3.100)

As usual, Legendre transformation leads to the co-energy

U ∗ (ia, i f , θ
) = 1

2

[
ia i f

]
[

L11 (θ) L12 (θ)
L12 (θ) L22 (θ)

] [
ia

i f

]
(3.101)
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The constitutive relations can be recovered from the energy functions once they are
known. In this case, the mechanical torque can be obtained

τ
(
λa,λ f , θ

) = ∂U
(
λa,λ f , θ

)

∂θ
= 1

2

[
λa λ f

] [∂Γ11 (θ)
/

∂θ ∂Γ12 (θ)
/

∂θ
∂Γ12 (θ)

/
∂θ ∂Γ22 (θ)

/
∂θ

] [
λa

λ f

]

(3.102)

τ
(
ia, i f , θ

) = −U ∗ (ia, i f , θ
)

∂θ
= −1

2

[
ia i f

] [∂L11 (θ)
/

∂θ ∂L12 (θ)
/

∂θ
∂L12 (θ)

/
∂θ ∂L22 (θ)

/
∂θ

] [
ia

i f

]

(3.103)
Consider the nonideal motor shown in Figure 3.25 with electrical resistance and load
torque, Tload . The electric network consists of two coupled circuits. The armature
circuit consists of a single loop made up of the voltage source, Ea(t), the resistor, Ra ,
and the coupled inductor, La . The field is similar, composed of the voltage source,
E f (t). the resistor, R f , and the coupled inductor, L f . The armature circuit is divided

T1 = {Ea, Ra} , T2 = {} ,L1 = {La} ,L2 = {}

and the field circuit divided similarly

T1 = {
E f , R f

}
, T2 = {} ,L1 = {

L f
}
,L2 = {}

Thus, the armature circuit contributes a velocity, iLa , and the field circuit contributes
a velocity, iL f . The coordinates are quasi-coordinates characterized by

a a'

N

θ

( )fi t

( )fe tτ

LoadT

( )ai t

( )ae t
( )fE t

( )aE t

aR fR

Fig. 3.25 A single-phase motor with resistance and load
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d

dt

[
w1

w2

]
=
[

iLa

iL f

]
(3.104)

The mechanical subsystem contributes the generalized velocity, the angular velocity
of the rotor and shaft, ω, and the corresponding coordinate, θ. Since there are no
capacitors in either the armature or field circuits, a cross product will not appear in
the Lagrangian which takes the form:

L
(
ia, i f ,ω, θ

) = U ∗ (ia, i f , θ
)+ T ∗ (ω) (3.105)

U ∗ (ia, i f , θ
) = 1

2

[
ia i f

] [ L11 (θ) L12 (θ)
L12 (θ) L22 (θ)

] [
ia

i f

]
, T ∗ (ω) = 1

2
Jω2 (3.106)

The Lagrange equations are

M (θ)
d

dt

⎡

⎣
ia

i f

ω

⎤

⎦+ C
(
ia, i f ,ω, θ

)
⎡

⎣
ia

i f

ω

⎤

⎦ =
⎡

⎣
Ea (t)
E f (t)

−TLoad (t)

⎤

⎦ (3.107)

with

M (θ) =
⎡

⎣
L11 (θ) L12 (θ) 0
L12 (θ) L22 (θ) 0

0 0 J

⎤

⎦ (3.108)

C
(
ia , i f ,ω, θ

) =

⎡

⎢⎢⎢
⎣

Ra + 1
2ωLθ,11

1
2ωLθ,12

1
2

(
ia Lθ,11 + i f Lθ,12

)

1
2ωLθ,12 R f + 1

2ωLθ,22
1
2

(
ia Lθ,12 + i f Lθ,22

)

− 1
2

(
ia Lθ,11 + i f Lθ,12

)
− 1

2

(
ia Lθ,12 + i f Lθ,22

)
0

⎤

⎥⎥⎥
⎦

(3.109)

Equation (3.107) along with the kinematic relation

dθ

dt
= ω (3.110)

forms a complete systemof equations.Notice that thematrixC
(
ia, i f ,ω, θ

)
iswritten

in a form such that the symmetric (dissipative) and antisymmetric (conservative)
elements are easily identified.

The concepts developed in the above example will be expanded in Chapter 4 to
obtain models for multi-phase AC motors and generators.

http://dx.doi.org/10.1007/978-0-8176-4674-5_4


Chapter 4
AC Power Systems

“The enchanting charms of this sublime science reveal only to
those who have the courage to go deeply into it.”

—Carl Friedrich Gauss

4.1 Introduction

For our purposes, an AC network is simply a network, in which all voltage and
current sources are sinusoidal with a common frequency. An example is shown in
Figure 4.1. Most power systems involve AC circuits because AC systems provide
considerable benefits over DC in terms of cost to build, efficiency, and safety.

The chapter begins with a discussion of networks that are simple combinations
of linear, one-port elements, and then introduces the concepts of real and reactive
power. Multi-port models are introduced along with the reciprocity theorem. Models
for single-phase machines, transformers, and transmission lines are discussed.

A discussion of three-phase AC networks follows with a detailed examination
of models for synchronous machines, induction machines, and permanent magnet
synchronous machines. Again, the modeling framework is Lagrange equations. Bal-
anced operation of AC networks is discussed and, in this context, simplified machine
models are derived. Attention then turns to the network power flow equations after
which the classical simplified model is derived for balanced AC power systems.

© Springer Science+Business Media New York 2016
H.G. Kwatny and K. Miu-Miller, Power System Dynamics and Control,
Control Engineering, DOI 10.1007/978-0-8176-4674-5_4
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L

R( ) ( )1cosv t A tω θ= + ( ) ( )2cosi t B tω θ= +

Fig. 4.1 This simple network illustrates AC voltage and current sources

4.2 Basics Concepts of AC Networks

4.2.1 Impedance Models of Linear Networks

We will examine some basic characteristics of networks composed of linear time-
invariant components – resistor, capacitors, and inductors – in addition to controlled
voltage and current sources. Consider the source supplied voltages or currents as
inputs and all dependent voltages and currents as outputs. Then, as with any linear,
time-invariant system, one can define a transfer matrix relating inputs to outputs
[7, 41].

Specifically, consider the linear two-terminal or one-port network shown in
Figure 4.2. Assume the network has no internal sources. Two terminals constitute
a port if the current entering one-terminal equals the current leaving the other. The
port current into the network responds to the applied voltage. Accordingly, we can
express the input–output relationship in terms of a transfer function Y (s)

I (s) = Y (s) V (s)

where s is the Laplace variable.
Now, suppose

v (t) = √
2Ve jωt ⇒ V (s) =

√
2V

s − jω
,

where V is a complex number and ω is real. The scale factor
√

2 is introduced for
reasons to be discussed below. It follows that we can compute the current

Fig. 4.2 A linear one-port
network with voltage source

( )

( )

v t

i t
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I (s) = Y (s)

√
2V

s − jω
=

√
2VY (jω)

s − jω
+ transient terms

where the last expression is obtained from partial fraction expansion. If we assume
the network is stable, then as t → ∞ the transient vanishes and we obtain the
steady-state forced, periodic solution

lim
t→∞ i (t) = √

2 Iejωt = √
2VY (jω) ejωt

Consequently, we have
I = Y (jω)V, V = Z (jω) I,

where Z (jω) = Y−1 (jω) is called the impedance of the one-port network and Y (jω)

is the admittance.

Example 4.1 Simple calculations lead to the following impedances for the elemen-
tary linear R, L, C components:

• Resistor
v (t) = Ri (t) ⇒ ZR = R

• Inductor

L
di (t)

dt
= v (t) ⇒ ZL = jωL

• Capacitor

C
dv (t)

dt
= i (t) ⇒ ZC = 1

jωC

It is often necessary to compute the aggregate impedance of networks of elements
with known impedances. We will derive simple formulas for series and parallel
combinations elements. These can be applied to resolve arbitrary networks.

From KCL, each of the three elements shown in the series combination of
Figure 4.3 has the same current. Using this fact and applying KVL,

V = (Z1 + Z2 + Z3) I

1Z 2Z 3Z
( )i t

( )v t

Fig. 4.3 A series combination is easily addressed in terms of impedances
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Fig. 4.4 A parallel
combination is easily
addressed in terms of
admittances

1Y 2Y 3Y

( )

( )

i t

v t

Consequently, the equivalent impedance for the series connection is

Z = Z1 + Z2 + Z3

By KVL, each element in the parallel combination in Figure 4.4 has the same voltage.
KCL implies

I = (Y1 + Y2 + Y3)V

The equivalent impedance for the parallel connection is

Z = 1
1
Z1

+ 1
Z2

+ 1
Z3

4.2.2 Active and Reactive Power

In this section, we focus on steady-state analysis of AC circuits as described above.
By this, we mean that all currents and voltages have achieved a periodic behavior,
so that each voltage or current has the following form

x (t) = Xmax cos (ω t + θ) (4.1)

where the amplitude Xmax, frequency ω, and phase θ are all real numbers. The steady-
state approximation will be relaxed later to admit slowly varying amplitude, fre-
quency, and phase, where ‘slowly varying’ will be understood relative to the period
2π/ω.

Using Euler’s formula, we can also write

x (t) = ReXmaxej(ωt+θ) = Re
√

2Xejωt (4.2)
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where

X = Xmax√
2

ejθ (4.3)

The quantityX is the phasor representation for the sinusoid x (t). Now, let us compute
the root mean square value of x (t):

Xrms =
⎡

⎢
⎣

ω

2π

∫ 2π/ω

0
(Xmax cos (ωt + θ))

2

dt

⎤

⎥
⎦

1
2

= Xmax√
2

= |X| (4.4)

Thus, we see one benefit of the scale factor
√

2.
Consider, once again, the network of Figure 4.2. Suppose the applied voltage is

v (t) = Vmax cos (ωt + θv)

and the resulting current is

i (t) = Imax cos (ωt + θi)

The instantaneous power is

p (t) = v (t) i (t) = VmaxImax cos (ωt + θv) cos (ωt + θi)

Now, the average power injection over one period is

P = ω

2π

∫ 2π/ω

0
VmaxImax cos (ωt + θv) cos (ωt + θi) dt (4.5)

which evaluates to

P = VmaxImax

2
cos φ = |V| |I| cos φ (4.6)

where φ = θv − θi. P is called the real power or active power. The factor cos φ in
(4.6) is called the power factor. For more details and examples, see [27].

Notice that we could write

P = Re |V| ejθv |I| e−jθi = ReVI∗

The quantity VI∗ is defined as the complex power, S

S = VI∗ = |V| |I| ejφ = P + jQ (4.7)

where Q = ImVI∗ is called the reactive power.
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Example 4.2 Consider a load with impedance Z , then

S = VI∗ = ZII∗ = Z|I|2

from which we can obtain

P = |I|2 |Z| cos ∠Z, Q = |I|2 |Z| sin ∠Z

Now, suppose i (t) = √
2 |I| cos (ωt), in which case v (t) = √

2 |Z| |I| cos
(ωt + ∠Z). Then, the instantaneous power is

p (t) = v (t) i (t) = 2 |Z| |I|2 cos (ωt + ∠Z) cos (ωt)
= |Z| |I|2 (cos (2ωt + ∠Z) + cos (∠Z))

= |Z| |I|2 (cos (∠Z) + cos (2ωt) cos (∠Z) − sin (2ωt) sin (∠Z))

= P (1 + cos (2ωt)) − Q sin (2ωt)

Example 4.3 Consider the previous Example 4.2 in which the load corresponds to
linear resistance, inductance, or capacitance, with corresponding impedances

ZR = R, ZL = ωLejπ/2, ZC = e−jπ/2

ωC

The absorbed real and reactive powers for each case are:

1. resistor P = R|I|2, Q = 0
2. inductor P = 0, Q = ωL|I|2
3. capacitor P = 0, Q = −|I|2/ωC.

From this, we see that a resistor absorbs real power, whereas the inductor absorbs
reactive power. On the other hand, the capacitor actually exports reactive power.

Remark 4.4 (Implication of Reactive Power) An essential aspect of the complex
power S is shown in Figure 4.5 which summarizes the relationships in (4.7). Clearly,
if the voltage magnitude |V | and active power P are fixed, then increased reac-
tive power Q results in increased current. This, in turn, means that equipment must
be employed to accommodate the higher current requirements. Higher current also
implies increased I2R losses in generation and transmission equipment. As a result,
reactive power is a critically important consideration in the design and operation of
power systems.

An important property of AC circuits is conservation of instantaneous power
which can be derived from KVL and KCL (see Theorem 3.13). Similarly, it can be
shown that conservation of active power and conservation of reactive power hold
true.

http://dx.doi.org/10.1007/978-0-8176-4674-5_3
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Fig. 4.5 The reactive power
phasor shown as the sum of
its parts

S

jQ

P

S = V
I

φ

Proposition 4.5 (Conservation of Real and Reactive Power) Consider a network
with n branches. Let Vi, Ii, i = 1, . . . , n denote the branch voltage phasors and
branch current phasors, respectively. Then,

n∑

i=1

Pi = 0

n∑

i=1

Qi = 0

Proof The voltage phasors satisfy KVL and the current phasors satisfy KCL. If A is
the network incident matrix, KCL implies

AI = 0 ⇒ AI∗ = 0,

so that Tellegen’s theorem implies

n∑

i=1

ViI∗i = 0

so that
n∑

i=1

Si = 0 ⇒
n∑

i=1

Pi = 0 ∧
n∑

i=1

Qi = 0

�

4.2.3 Multi-port Networks

In this section, we will be particularly concerned with models of four-terminal or
two-port networks. However, we first discuss some properties of general multi-port
networks. As in any multi-port device [165], we associate two variables with each
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port, in our case voltage and current. One of the variables at each port is treated
as an input and the other as an output so the two-port device is a two input – two
output dynamical system. If the device is linear, we can model it with a 2×2 transfer
matrix. If, in addition, the device is stable and the inputs are sinusoids with a common
frequency, then we can focus on its steady state, periodic response.

Example 4.6 Consider the network in Figure 4.6. The relationship between the port
voltages and the currents can be written as

[
I1

I2

]
=

[
1

jωL − 1
jωL

1
jωL

1
R − 1

jωL

] [
V1

V2

]

or in reverse [
V1

V2

]
=

[
jωL − R R

−R R

] [
I1

I2

]

The first equation relates the voltages and currents with an impedance matrix, whereas
the second uses its inverse, an admittance matrix. These relations can be generalized
to arbitrary multi-ports composed of passive elements.

Example 4.7 A similar example that represents the simplest model of an AC trans-
mission line is the network in Figure 4.7. In this case, the relationship between the
port voltages and currents is

[
I1

I2

]
=

[
1

R+jωL − 1
R+jωL

− 1
R+jωL

1
R+jωL

] [
V1

V2

]

Fig. 4.6 A simple two-port
network composed of an
inductor and resistance

L

R
1I 2I

1V 2V

Fig. 4.7 A simple two-port
network composed of an
inductor and resistance

L R

1I 2I

1V 2V
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The power injected into port 1 is

P1 = ReV1I∗1 = R
R2+L2ω2

(|V1|2 − |V1| |V2| cos (θ1 − θ2)
)

+ Lω
R2+L2ω2 |V1| |V2| sin (θ1 − θ2)

Q1 = ImV1I∗1 = Lω
R2+L2ω2

(|V1|2 − |V1| |V2| cos (θ1 − θ2)
)

− R
R2+L2ω2 |V1| |V2| sin (θ1 − θ2)

And for port 2 the injected power is

P2 = R
R2+L2ω2

(|V2|2 − |V1| |V2| cos (θ1 − θ2)
)

− Lω
R2+L2ω2 |V1| |V2| sin (θ1 − θ2)

Q2 = Lω
R2+L2ω2

(|V2|2 − |V1| |V2| cos (θ1 − θ2)
)

+ R
R2+L2ω2 |V1| |V2| sin (θ1 − θ2)

For a general n-port, linear, passive circuit, we define the vector V of port voltages
and vector I of port currents. Typically, we can write

I = YV, V = ZI, Y = Z−1 (4.8)

where Z and Y are, respectively, the network impedance and admittance matrices.

Remark 4.8 There are situations in which only Z exists and not Y or vice versa. For
example, if the inductor is absent in the two-port of Example 4.6, then the admittance
model is [

V1

V2

]
=

[
R R
R R

] [
I1

I2

]

Thus, we see that the impedance matrix Z exists but it is singular so the admittance
matrix does not exist. Physically, this makes perfect sense. We could place a current
source on both ports, but certainly not voltage sources.

On the other hand, it is possible to place a current source on one port and a voltage
source on the other. For example, suppose a voltage source is applied to port 1 and
current source to port 2. Then

[
I1

V2

]
=

[
1 −1

/
R

0 1

] [
I2

V1

]

Thus, we have a ‘mixed’ representation.

Reciprocity is an important notion in circuit theory. It is discussed in the litera-
ture under several variations. We adopt the formulation in [43]. Consider an m-port
network with two different excitation signals as shown in Figure 4.8. At each port,
either variable, voltage or current may be the excitation and the other the response.
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1I
1V

mI
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1Î
1V̂

ˆ
mIˆ

mV

Network Network
m-Portm-Port

Fig. 4.8 An m-port network shown with two different excitations

Definition 4.9 (Reciprocal Network) An m-port network is reciprocal if

m∑

k=1

IkV̂k =
m∑

k=1

ÎkVk (4.9)

The meaning of the reciprocal property is most easily understood in terms of a 2-port
network in which case (4.9) reduces to

I1V̂1 + I2V̂2 = Î1V1 + Î2V2 (4.10)

Now, set
V1 = V̂2 = E, V2 = V̂1 = 0

So that (4.10) yields
Î1 = I2

In words, this means the following: Place a voltage sourceE at port 1 and short circuit
port 2. This will produce a current I2 = I at port 2. Now interchange the procedure
and place the source E at port 2 while short circuiting port 1. This will produce a
current at port 1, Î1 = I.

Alternatively, place a current source at port 1 and open circuit port 2. Then, reverse
the procedure and place the current source at port 2 while open circuiting port 1:

I1 = Î2 = I, I2 = Î1 = 0

Then (4.10) yields
V2 = V̂1

Theorem 4.10 (Reciprocity Theorem) An m-port network with well-defined admit-
tance matrix (impedance matrix) is reciprocal if and only if its admittance matrix
(impedance matrix) is symmetric.
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Proof Sufficiency is proved in [43]. To establish necessity note that reciprocity
requires

IT V̂ = ÎTV ⇒ VT YT V̂ = V̂T YTV

This must be true for all V and V̂. Thus, we conclude that Y = YT . �

Remark 4.11 (Two-Port Reciprocity) The classical reciprocity result for two-port
networks is often derived using Tellegen’s theorem. Consider a two-port network with
m internal branches as shown in Figure 4.9. Suppose that the m internal branches are
characterized by the voltage and current variables V1, . . . ,Vm and I1, . . . , Im in the
left excitation case and V̂1, . . . , V̂m, Î1, . . . , Îm in the right. Assume that the two-port
has linear, passive branch components, each characterized by an admittance model,
of the form Ij = YjVj. The port variables are designated Vm+1, Im+1,Vm+2, Im+2 and
V̂m+1, Îm+1, V̂m+2, Îm+2, respectively.

Now, since I, Î, and V, V̂ satisfy the KCL and KVL requirements of Tellegen’s
theorem, we can pair V and Î to obtain

m∑

j=1

Vj Îj + Vm+1Îm+1 + Vm+2Îm+2 = 0

and pair V̂ and I to obtain

m∑

j=1

V̂jIj + V̂m+1Im+1 + V̂m+2Im+2 = 0

Now, Vm+2 = 0, V̂m+1 = 0, so we have

m∑

j=1

Vj Îj + Vm+1Îm+1 = 0,

m∑

j=1

V̂jIj + V̂m+2Im+2 = 0

1m+V 1m+I 2m+I
1

ˆ
m+I

2
ˆ
m+V2

ˆ
m+I

m-branch
Network

m-branch
Network

Fig. 4.9 A 2-port network with m internal branches is shown with two different excitation
configurations
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and using the constitutive relations for the internal branches, Îj = YjV̂j, and Ij = YjVj

m∑

j=1

YjVjV̂j + Vm+1Îm+1 = 0,

m∑

j=1

YjVjV̂j + V̂m+2Im+2

Consequently,
Vm+1Îm+1 = V̂m+2Im+2

Suppose Vm+1 = V̂m+2, then
Îm+1 = Im+2

Thus, we have reciprocity of the port short circuit currents.

Remark 4.12 Consider a network with n nodes and m branches. Assume all branches
have a well-defined admittance. Choose two of the n nodes in order to create a port.
For convenience, suppose the two nodes are n − 1 and n. Denote the port current by
Im+1 and the voltage across it (from node n to node n − 1) by Vm+1. KCL is now
modified to

AT I =
⎡

⎣
0(n−2)×1

Im+1

−Im+1

⎤

⎦

and KVL to

V = Av = A

⎡

⎢
⎢⎢
⎣

v1
...

vn−1

Vm+1 + vn−1

⎤

⎥
⎥⎥
⎦

Now,
I = diag (Y1, . . . , Ym)V

So, premultiplying by AT and using KCL, KVL

⎡

⎣
0(n−2)×1

Im+1

−Im+1

⎤

⎦ =
[

B(n−2)×(n−2) C(n−2)×2

CT
(n−2)×2 D2×2

]
⎡

⎢⎢⎢
⎣

v1
...

Vm+1 + vn

vn

⎤

⎥⎥⎥
⎦

where the matrix on the right is a partitioning of the symmetric matrix AT diag
(Y1, . . . , Ym) A; which implies that B and D are symmetric matrices.
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4.2.4 Single-Phase Machines

Consider the motor of Example 3.31. Equation (3.107) can be written with mechan-
ical and electrical dynamics separated

L (θ)
d i
dt

+ ∂L (θ)

∂θ
iω + Ri = v (4.11)

J
dω

dt
+ 1

2
iT

∂L (θ)

∂θ
i = −TL (4.12)

with

i =
[

ia
if

]
, v =

[
va

vf

]

and

L (θ) =
[

Ls Mf cos (θ)
Mf cos (θ) Lf

]
, R =

[
R 0
0 Rf

]

Expanding (4.11) and (4.12) yields

[
Ls Mf cos (θ)

Mf cos (θ) Lf

]
d

dt

[
ia
if

]
+

[
R −ωMf sin (θ)

−ωMf sin (θ) Rf

] [
ia
if

]
=

[
va

vf

]

J
dω

dt
− Mf sin (θ) iaif = −TL

Now, consider the steady operation of the motor under constant load torque, TL, and
with AC stator voltage,

va (t) = Va cos (ωst)

where Va is the supply voltage magnitude and ωs is the network synchronous fre-
quency. In steady operation, it is assumed that the field current, if , is constant. In
general, the synchronous machine field voltage, vf , is used to regulate some vari-
able, such as power factor in the motoring case or terminal voltage in the generating
case, that results in a constant field current. These excitation control systems will
be addressed below. It is also assumed that the mechanical dynamics evolve on a
timescale much larger than the synchronous period 2π

/
ωs.

In order to efficiently study the steady behavior, assume that the motor angular
velocity, ω, is close to the synchronous frequency, ωs, so that

ω = ωs + υ, |υ| � ωs

http://dx.doi.org/10.1007/978-0-8176-4674-5_3
http://dx.doi.org/10.1007/978-0-8176-4674-5_3
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Under these conditions, the equations of motion can be rewritten

dia
dt

= −
(

R

Ls

)
ia + (ωs + υ) if

Mf

Ls
sin

(
ωst − π

2
+ δ

)
+ 1

Ls
Va cos (ωst) (4.13)

dυ

dt
=

(
if

Mf

J

)
sin

(
ωst − π

2
+ δ

)
ia − 1

J
TL (4.14)

dδ

dt
= υ (4.15)

Note that the mechanical variable θ and its velocity ω have now been replaced by δ
and υ, respectively. Recall that θ represents the counterclockwise rotation of the rotor
d-axis relative to the stator a-axis. The π/2 terms shift the rotation with reference
to the rotor q-axis. The variable δ should be viewed as the rotor angle relative to a
frame rotating with synchronous velocity ωs. The strategy to solve these equations
is to use the method of averaging as described in [84]. The process is as follows:

1. Solve the short timescale equation, (4.13), for ia (t). This is accomplished by
assuming the field current, if , is constant, treating the slowly varying υ as a small
parameter and generating the solution as a function of υ. The result in the limit
υ → 0 is a periodic, steady solution with frequency ωs.

2. Substitute the steady solution for ia into the long timescale equation (4.14) and
average the right-hand side over time. Solve the averaged equation for the speed
deviation, υ (t).

Remark 4.13 Averaging. The basis for the application of averaging is that the syn-
chronous rotor speed ωs is large when compared to the mechanical time constants.
Thus, once the short time periodic behavior of the phase current is obtained and
substituted into (4.14), the mechanical equations, (4.14) and (4.15), can be rewritten
by changing the timescale according to the relation t = ετ , where ε = ω−1

s is treated
as a small parameter. In this way, (4.14) and (4.15) take the form

dx

dτ
= εf (x, τ , ε) (4.16)

with f (x, τ , ε) almost periodic in τ . Define the averaged function

f0 (x) = lim
T→∞

1

T

∫ T

0
f (x, τ , 0) dτ (4.17)

and the averaged system
dx

dτ
= εf0 (x) (4.18)
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As shown in [84], there exists an almost periodic transformation x → y that is near
identity for small ε, such that (4.16) transforms to

dy

dτ
= ε

[
f0 (y) + f1 (y, τ , ε)

]

with f1 (y, τ , 0) ≡ 0. The significance of this is that the averaged system (4.18) is
the same as the original system (4.16) up through terms of order ε.

The steady solution for the stator current, Equation (4.13), is

īa = −if Mf ωs (R cos(ωst + δ) + ωsLssin(ωst + δ)) + Va (R cos (ωst) + ωsLs sin (ωst))
(
R2 + L2

s ω2
s
)

(4.19)

Substituting this result in (4.14) and averaging yields

dυ

dt
= if Mf

2J

if Mf Rωs − RVa cos(δ) + ωsLsVa sin(δ)
(
R2 + ω2

s L2
s

) − 1

J
TL (4.20)

With some tedious algebra, Equation (4.18) can be written

īa = (−if Mf ωse−jδ+Va)e−jωs t

2(R−jωsLs)
+ (−if Mf ωsejδ+Va)ejωs t

2(R+jωsLs)

= Re (−if Mf ωsejδ+Va)
(R+jωsLs)

ejωst

Thus, a phasor representation of (4.18) is

Ia = Va − Ea

(R + jωsLs)
, Ea = if Mf ωs√

2
ejδ (4.21)

Equation (4.21) leads to the equivalent circuit shown in Figure 4.10.

Remark 4.14 Motor Operation. Consider the case where the resistance R is negligi-
ble. Then Equations (4.20) and (4.21) reduce to

dυ

dt
= if Mf

2J

Va sin(δ)

ωsLs
− 1

J
TL (4.22)

Fig. 4.10 Equivalent circuit
for the single-phase
synchronous motor
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Ia = Va − Ea

jωsLs
(4.23)

From (4.22), it is clear that the electrical torque is

τ = if Mf Va sin(δ)

2ωsLs
(4.24)

Furthermore, in steady operation, υ̇ = 0 so

if Mf Va sin(δ)

2ωsLs
= TL (4.25)

Thus, for given constant load torque, the rotor angle δ can be obtained from (4.25).
Note also that the mechanical power delivered to the rotor shaft is

P = ωsτ = if Mf Va sin(δ)

2Ls
(4.26)

The electrical power delivered to the rotor can be obtained using (4.23)

Sr = −EaI∗a = if Mf ωs

2
ejδ Va − if Mf ωse−jδ

−jωsLs

which can be reduced to

Sr = P + jQ = if Mf Va sin δ

2Ls
+ j

((
if Mf ωs

)2 − Vaif Mf ωs cos δ

2ωsLs

)

(4.27)

Note that Equation (4.27) is consistent with Equation (4.26).

Remark 4.15 The Single-phase Generator. The single-phase synchronous motor
model given above could serve equally well as a model for the single-phase gener-
ator. However, it is convention to reverse the positive direction of the stator current,
ia as shown in Figure 4.11. Thus, the appropriate sign changes are required in the
motor equations.

Fig. 4.11 Equivalent circuit
for the single-phase
synchronous generator
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+
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The equivalent circuit phasor relation is

Ia = Ea − Va

(R + jωsLs)
(4.28)

and the instantaneous power supplied to the generator terminals is

Sa = Pa + jQa

with

Pa = R
(|Va| |Ea| cos δ − |Va|2

) + ωsLs |Va| |Ea| sin δ
(
R2 + (ωsLs)

2
) (4.29)

Qa = ωsLs |Va| |Ea| cos δ − R |Va| |Ea| sin δ − ωsLs|Va|2(
R2 + (ωsLs)

2
) (4.30)

In many large generators the resistance is negligible, in which case (4.29) and (4.30)
reduce to

Pa = |Va| |Ea| sin δ

ωsLs
, Qa = |Va| |Ea| cos δ − |Va|2

ωsLs
(4.31)

The situation examined above for both the motor and the generator is valid for slow
variations of the terminal voltage (relative to synchronous frequency, ωs).

4.2.5 Transmission Lines and Transformers

Here, we will discuss two essential two-port devices – transmission lines and trans-
formers. A transmission line can be viewed as a two-port as shown in Figure 4.12.
The transmission line is a continuous insulated conductor with relatively small diam-
eter and long length. It can be modeled by a partial differential equation with time
and one space dimension as independent variables—denoted t and x, respectively.
An infinitesimal element is shown in Figure 4.12. The element includes a series
resistance c, a series inductance l, a shunt resistance modeled by its susceptance
(admittance) g, and a shunt capacitance c.

It follows that the voltage and current along the line satisfy the partial differential
equations

∂V (x)

∂x
= − (r + jωl) I (x) ,

∂I (x)

∂x
= − (g + jωc)V (x) (4.32)
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ldxrdx

cdxgdx

dx

I

V

d+I I

d+V V

x

Fig. 4.12 An infinitesimal segment of a transmission line two-port of length �

It is easy to show that Equations (4.32) can be combined to yield the Telegraph
equations

∂2V (x)

∂x2
= γ2V (x) ,

∂2I (x)

∂x2
= γ2I (x) (4.33)

with
γ = √

(r + jωl) (g + jωc)

The solution of the first of Equations (4.33) is

V (x) = ae−γx + beγx (4.34)

where the constants a and b need to be determined from boundary conditions. Now
compute

I (x) = −1

(r + jωl)

∂V (x)

∂x
= 1

Z0

(
ae−γx − beγx

)
(4.35)

where

Z0 =
√

r + jωl

g + jωc

Z0 is called the characteristic impedance of the line. Now, suppose the voltage and
current at the boundary x = 0 are specified as V1, I1, respectively. Then

V1 = a + b, I1 = (a − b) /Z0
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from which a, b are obtained. Substitute these results into Equations (4.34) and (4.35)
with x = l and simplify to obtain

V2 = cosh (γ�)V1 − Z0 sinh (γ�) I1 (4.36)

I2 = 1

Z0
sinh (γ�)V1 − cosh (γ�) I1 (4.37)

where V2, I2 are the terminal voltage and current with sign convention as shown in
Figure 4.13.

The two-port model can be interpreted in several ways. One commonly used
model is the �–equivalent circuit shown in Figure 4.13. By computing the matrix
parameters for the �–circuit and comparing them with the coefficients in Equations
(4.36) and (4.37), the following parameters are identified:

Z = Z0 sinh (γ�) , Y = 1

Z0
tanh

(
γ�

2

)

A little algebra shows that the �–equivalent circuit for the transmission line can be
modeled by the relation

[
I1
I2

]
= Y�

[
V1

V2

]
, Y� =

[
Y + Z−1 −Z−1

−Z−1 Y + Z−1

]
(4.38)

An ideal transformer was illustrated in Example 2.11. A two-port network schematic
of the ideal transformer is shown in Figure 4.14. The two windings are shown as coils.
Since the actual coils could be wound clockwise or counterclockwise, dots are used to
identify the positive voltage side. The ideal transformer has a simple functional model
V2 = V1/n, where n = N1/N − 2, the turns ratio. The ideal transformer neglects
several important elements that are relevant to varying degrees in real transformers.
The equivalent circuit for a nonideal transformer shown in Figure 4.15 includes the
leakage reactance, jX1, jX2, and winding losses R1, R2. Also, included are core losses,
Rc, and magnetizing reactance jXm.

1V 1I 2I
2V

Transmission Line

Two Port
1V

1I 2I

2V

Z

Y Y

Fig. 4.13 Transmission line as a two-port. General form on the left and �–equivalent circuit on
the right

http://dx.doi.org/10.1007/978-0-8176-4674-5_2
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Fig. 4.14 The circuit diagram for an ideal transformer
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Fig. 4.15 The circuit diagram for a nonideal ideal transformer

4.2.5.1 Per-Unit Normalization

Single-phase and balanced three-phase1 power networks are conveniently analyzed
using a single-phase equivalent network defined using normalized variables with per-
unit dimensions. Using per-unit dimensions has three chief advantages: 1) Systems
containing transformers and operating with multiple voltage levels are significantly
simplified, 2) many network components have physical parameters that vary within
a relatively narrow range when expressed in per-unit dimension with respect to their
rating, and 3) numerical computations are more reliable. Thus, it is common practice
using a per-phase, per-unit equivalent circuit for power system analysis. The system
is composed of one- and multi-port elements.

Normalization means that the variables are scaled in accordance with specified
base values that are appropriate for the system. Then, for any specific quantity

quantity in per unit = quantity in SI units

base value of quantity

1A definition and discussion of balanced three-phase power network can be found in Section 4.4.



4.2 Basics Concepts of AC Networks 83

Base units need to be defined in a consistent fashion. In particular, we want to insure
that the complex relation, Ohms law,

V = ZI

remains true after the scaling. Consequently, it is necessary to choose real base values
Vb, Zb, Ib that satisfy

Vb = ZbIb

so that
V

Vb
= Z

Zb

I

Ib

Thus, the scaled quantities satisfy

Vp.u. = Zp.u.Ip.u.

Similarly, choose a power base Sb to preserve the relation S = V I∗

Sb = VbIb

yielding
Sp.u. = Vp.u.I

∗
p.u.

Note that from this relation, it follows that

Pp.u. = P

Sb
, Qp.u. = Q

Sb

Similarly,

Zp.u. = Rp.u. + jXp.u., Rp.u. = R

Zb
, Xp.u. = X

Zb

Consider the conservative transformer shown in Figure 4.16. It represents a sim-
ple circuit that operates with two voltage levels. The transformer model is shown
including the magnetizing inductance Xm, the primary side inductance X1, and the
secondary side inductance X2. A set of base quantities are chosen for the left side
of the network: V1b, I1b, Z1b, S1b. Now choose the secondary side base quantities as
follows:

V2b = nV1b, I2b = 1

n
I1b, Z2b = n2Z1b, S2b = S1b

The equivalent per-unit model is shown in Figure 4.17.
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Fig. 4.16 A conservative transformer is a simple circuit with two voltage levels

Fig. 4.17 Per-unit
representation of the above
transformer
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4.3 Three-Phase AC Systems

In most modern systems, electricity is generated and transported as three-phase alter-
nating current. Ideally, each phase carries identical, sinusoidal current and voltage
waveforms with each phase separated by precisely 120 degrees. Such systems have
advantages over alternatives such as DC or single-phase AC systems.

4.3.1 Principles of Three-Phase Transmission

4.3.1.1 The Single-Line Diagram

Complex power systems are frequently portrayed graphically as a single-line (one-
line) diagram. Multi-port elements are connected via single lines that join a port of
one element to a port of a second element. A typical single-line diagram is illustrated
in Figure 4.18.
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Fig. 4.18 A single-line diagram for a simple power network shows the graphical symbol for
frequently used components

4.3.2 Three-Phase Synchronous Machines

Synchronous motors and generators have similar principles of operation and con-
struction. In a generator, mechanical power is supplied to the rotor shaft and electrical
power is discharged from the electrical terminals. Motors operate in reverse with elec-
trical power supplied to the device through the electrical terminals and mechanical
power delivered by the rotor shaft. The machine consists of a stationary body, the
stator, and a rotating body, the rotor, as shown in Figure 4.19. In comparison with
Figure 3.24, note the addition of the b and c phase coils. The three coils are spaced
120 degrees apart.

The analysis proceeds along the lines of Example 3.31 except now there are four
coupled circuits instead of two. The following assumptions will be made:

1. Each stator circuit a, b, c has a terminal voltage, va (t) , vb (t) , vc (t) and each cir-
cuit has the same resistance, R. The corresponding phase currents are ia (t) , ib (t),
ic (t). For the motor, positive current is into the machine positive voltage terminal
and for the generator, positive current is out.

2. The rotor circuit is driven by a voltage source, vf (t) , and has resistance, Rf .
Again, for the generator case, the positive current direction is out of the positive
terminal.

3. Each of the stator coil windings is distributed around the inner circumference of
the stator, so that the induced flux density is sinusoidally distributed around the
air gap between the rotor and stator (for more details see [27, 82]).

4. The rotor has an external mechanical torque, T , acting positively in the θ direction.
Thus, T is positive when the machine acts as a generator and negative when the
machine acts as a motor.

5. The rotor is round. Consequently, the inductances take the form:

http://dx.doi.org/10.1007/978-0-8176-4674-5_3
http://dx.doi.org/10.1007/978-0-8176-4674-5_3
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Fig. 4.19 A three-phase machine

(a) stator coil self-inductances are independent of rotor position. They are all
the same and designated Ls > 0,

Ls = Laa = Lbb = Lcc

(b) stator coil mutual inductances are also independent of θ and equal to each
other with designation Ms > 0

Ms = −Lab = −Lbc = −Lca

(c) field inductances The field self-inductance is a constant denoted Lf > 0

Lff = Lf



4.3 Three-Phase AC Systems 87

The field mutual inductances with each of the stator coils are periodically
θ-dependent, with Mf > 0, they can be expressed

Laf = Mf cos (θ) , Lbf = Mf cos

(
θ − 2π

3

)
, Lcf = Mf cos

(
θ + 2π

3

)

4.3.2.1 The Lagrange Equations

In the case of three phases, the generalized velocities expand to p = (
ia, ib, ic, if ,ω

)
.

As before, all coordinates are ignorable except the rotor angle, θ. The magnetic
co-energy of Equation (3.106) generalizes to

U∗ (
ia, ib, ic, if , θ

) = 1
2

[
ia ib ic if

]
L (θ)

⎡

⎢⎢
⎣

ia
ib
ic
if

⎤

⎥⎥
⎦ = 1

2 i
T L (θ) i (4.39)

where

L (θ) =

⎡

⎢⎢⎢
⎣

Ls −Ms −Ms Mf cos (θ)
−Ms Ls −Ms Mf cos

(
θ − 2π

3

)

−Ms −Ms Ls Mf cos
(
θ + 2π

3

)

Mf cos (θ) Mf cos
(
θ − 2π

3

)
Mf cos

(
θ + 2π

3

)
Lf

⎤

⎥⎥⎥
⎦

(4.40)

The Lagrangian is

L
(
ia, ib, ic, if ,ω, θ

) = U∗ (
ia, ib, ic, if , θ

) + T∗ (ω) (4.41)

where T∗ (ω) is the rotor kinetic co-energy as defined in (3.106). The generalized
force vector, Q, can be obtained from the dissipation function

D
(
ia, ib, ic, if ,ω

) = 1
2 i

TRi + iTv + Tω, v = [
va vb vc vf

]
(4.42)

R = diag
(
R, R, R, Rf

)
(4.43)

Q = ∂D
∂p

(4.44)

Lagrange’s equations (3.39) are obtained in the form

d (L (θ) i)
dt

+ Ri = v (4.45)

http://dx.doi.org/10.1007/978-0-8176-4674-5_3
http://dx.doi.org/10.1007/978-0-8176-4674-5_3
http://dx.doi.org/10.1007/978-0-8176-4674-5_3
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J
dω

dt
− 1

2
iT

dL (θ)

dθ
i = T (4.46)

The instantaneous electromagnetic torque is

τ = −1

2
iT

dL (θ)

dθ
i = if iaMf sin (θ) + if ibMf sin

(
θ − 2π

3

)
+ if icMf sin

(
θ + 2π

3

)

(4.47)

In steady state, constant speed operation, of course, T = τ .
These equations can be greatly simplified by transforming the stator electrical

variables to the rotor coordinates. That will be done in the next section.

4.3.2.2 The Blondel-Park Transformation

The Park transformation, or Blondel transformation, is used to transforms the stator
abc voltages, currents, and flux linkages to rotor dqo coordinates. Thus,

⎡

⎣
id
iq
io

⎤

⎦ =
√

2

3

⎡

⎢
⎣

cos θ cos
(
θ − 2π

3

)
cos

(
θ + 2π

3

)

sin θ sin
(
θ − 2π

3

)
sin

(
θ + 2π

3

)

1√
2

1√
2

1√
2

⎤

⎥
⎦

⎡

⎣
ia
ib
ic

⎤

⎦ (4.48)

In general
idqo = Biabc, vdqo = Bvabc,λdqo = Bλabc

The inverse transformation is

B−1 = BT =
√

2

3

⎡

⎢⎢
⎣

cos θ sin θ 1√
2

cos
(
θ − 2π

3

)
sin

(
θ − 2π

3

)
1√
2

cos
(
θ + 2π

3

)
sin

(
θ + 2π

3

)
1√
2

⎤

⎥⎥
⎦ (4.49)

Now, after a somewhat tedious computation the Lagrange equations can be obtained
in the form

⎡

⎢
⎢
⎣

Ld 0 0 Lfd

0 Lq 0 0
0 0 Lo 0

Lfd 0 0 Lf

⎤

⎥
⎥
⎦

d

dt

⎡

⎢
⎢
⎣

id
iq
io
if

⎤

⎥
⎥
⎦ = −

⎡

⎢
⎢
⎣

R ωLq 0 0
−ωLd R 0 −ωLfd

0 0 R 0
0 0 0 Rf

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

id
iq
io
if

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

vd

vq

vo

vf

⎤

⎥
⎥
⎦ (4.50)

J
dω

dt
= Lfdif iq + T (4.51)
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Where
Ld = Lq ≡ Ls + Ms, Lo ≡ Ls − 2Ms, Lfd ≡

√
3
2 Mf

The electrical and mechanical equations can be combined to yield

⎡

⎢⎢⎢⎢
⎣

Ld 0 0 Lfd 0
0 Lq 0 0 0
0 0 Lo 0 0

Lfd 0 0 Lf 0
0 0 0 0 J

⎤

⎥⎥⎥⎥
⎦

d

dt

⎡

⎢⎢⎢⎢
⎣

id
iq
io
if
ω

⎤

⎥⎥⎥⎥
⎦

= −

⎡

⎢⎢⎢⎢
⎣

R ωLq 0 0 0
−ωLd R 0 0 −Lfdif

0 0 R 0 0
0 0 0 Rf 0
0 Lfdif 0 0 0

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

id
iq
io
if
ω

⎤

⎥⎥⎥⎥
⎦

+

⎡

⎢⎢⎢⎢
⎣

vd

vq

vo

vf

T

⎤

⎥⎥⎥⎥
⎦

(4.52)

The result of this transformation is the removal of the θ-dependency. Equation (4.52)
does not contain θ at all. It is also of note that the electromagnetic torque imposed
on the rotor is

τ (t) = Lfd if (t) iq (t) (4.53)

Remark 4.16 (Synchronous operation) Consider steady, synchronous operation
which means constant rotor speed at angular velocity, ωs, constant δ with θ = ωst+δ,
the currents id and iq are constant, and balanced phase voltage and currents so that
io = 0. The inverse Park transformation yields

ia =
√

2

3
id cos (ωst + δ) +

√
2

3
iq sin (ωst + δ)

In phasor form, this equation may be written

Ia = (
Iq + jId

)
ejδ (4.54)

where Id, Iq are the constants Iq = iq
/√

3, Id = id
/√

3. The geometry of this

relationship is exhibited in Figure 4.20.
Similarly, the voltage relationships can be derived

va =
√

2
3 vd cos (ωst + δ)

+
√

2
3 vq sin (ωst + δ)

and
Va = (

Vq + jVd
)

ejδ (4.55)

with Vq = vq

/√
3, Vd = vd

/√
3.



90 4 AC Power Systems

Fig. 4.20 The geometry of
the phasor relationship

δ

aI

j
q qI e δ=I

j
d djI e δ=I

Remark 4.17 (Salient rotor) The above analysis is specifically for a round rotor
synchronous motor. In the event of a salient pole machine, the upper left 3 × 3 block
of the matrix L(θ) in Equation (4.40) is

L11 (θ) =⎡

⎢⎢⎢
⎣

Ls + Lm cos 2θ −Ms − Lm cos 2
(
θ + π

6

) −Ms − Lm cos 2
(
θ + 5π

6

)

−Ms − Lm cos 2
(
θ + π

6

)
Ls + Lm cos 2

(
θ − 2π

3

) −Ms − Lm cos 2
(
θ − π

2

)

−Ms − Lm cos 2
(
θ + 5π

6

)
−Ms − Lm cos 2

(
θ + π

2

)
Ls + Lm cos 2

(
θ + 2π

3

)

⎤

⎥⎥⎥
⎦

with Lm > 0. Applying the Park transformation to L11 reduces it to

BL11B−1 =
⎡

⎣
Ld 0 0
0 Lq 0
0 0 Lo

⎤

⎦

However, in this case,

Ld = Ls + Ms + 3/2Lm, Lq = Ls + Ms − 3/2Lm, Lo = Ls + 2Ms

The important observation is that whereas in the round rotor case, Ld = Lq, that is
not the case with a salient rotor for which Ld > Lq.

4.3.2.3 Induction Machines

Induction machines are either of the wound rotor or squirrel cage type. In either
case, the rotor typically has multiple windings which are short-circuited so that the



4.3 Three-Phase AC Systems 91

excitation results from rotor winding currents induced by the rotating stator field. In
the wound rotor type, the rotor windings are closed through resistors via slip rings.
Squirrel cage devices have the rotor terminals directly connected. Thus, a model for
a squirrel cage motor with three stator phases and two rotor windings is obtained
by repeating the analysis above after adding a second rotor winding, identical and
orthogonally placed to the first, and with both field voltages set equal to zero. As a
result, the dynamic equations are

⎡

⎢⎢⎢
⎢
⎣

Ld 0 0 Lfd 0
0 Lq 0 0 Lfd

0 0 Lo 0 0
Lfd 0 0 Lf 0
0 Lfd 0 0 Lf

⎤

⎥⎥⎥
⎥
⎦

d

dt

⎡

⎢⎢⎢
⎢
⎣

id
iq
io
if1
if2

⎤

⎥⎥⎥
⎥
⎦

= −

⎡

⎢⎢⎢
⎢
⎣

R ωLd 0 0 −ωLfd

−ωLq R 0 ωLfd 0
0 0 R 0 0
0 0 0 Rf 0
0 0 0 0 Rf

⎤

⎥⎥⎥
⎥
⎦

⎡

⎢⎢⎢
⎢
⎣

id
iq
io
if1
if2

⎤

⎥⎥⎥
⎥
⎦

+

⎡

⎢⎢⎢
⎢
⎣

vd

vq

vo

0
0

⎤

⎥⎥⎥
⎥
⎦

(4.56)

J
dω

dt
= Lfd

(
if1 iq − if2 id

) + T (4.57)

As before, combining the electrical and mechanical equations can lead to insights
into the conservative and nonconservative internal forces

⎡

⎢⎢⎢⎢⎢
⎢
⎣

Ld 0 0 Lfd 0 0
0 Lq 0 0 Lfd 0
0 0 Lo 0 0 0

Lfd 0 0 Lf 0 0
0 Lfd 0 0 Lf 0
0 0 0 0 0 J

⎤

⎥⎥⎥⎥⎥
⎥
⎦

d
dt

⎡

⎢⎢⎢⎢⎢
⎢
⎣

id
iq
io
if1
if2
ω

⎤

⎥⎥⎥⎥⎥
⎥
⎦

=

−

⎡

⎢⎢⎢⎢
⎢⎢
⎣

R ωLd 0 0 0 −Lfdif2
−ωLq R 0 0 0 Lfdif1

0 0 R 0 0 0
0 0 0 Rf 0 0
0 0 0 0 Rf 0

Lfdif2 −Lfdif1 0 0 0 0

⎤

⎥⎥⎥⎥
⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎢⎢
⎣

id
iq
io
if1
if2
ω

⎤

⎥⎥⎥⎥
⎥⎥
⎦

+

⎡

⎢⎢⎢⎢
⎢⎢
⎣

vd

vq

vo

0
0
T

⎤

⎥⎥⎥⎥
⎥⎥
⎦

(4.58)

4.3.2.4 Permanent Magnet Synchronous Machines

In permanent magnet synchronous machines, the field coil of the synchronous device
is replaced by permanent magnets. Thus, there is no field circuit and one degree of
freedom is eliminated. The generalized velocity vector is now p = [ia, ib, ic,ω]T . If
the constant permanent magnet field intensity in flux linkages is λf , then the relevant
magnetic co-energy reduces to

U∗ (ia, ib, ic, θ) = 1
2 i

T LSi + λf
[

cos (θ) cos
(
θ − 2π

3

)
cos

(
θ + 2π

3

) ]
i (4.59)
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i =
⎡

⎣
ia
ib
ic

⎤

⎦ , LS =
⎡

⎣
Ls −Ms −Ms

−Ms Ls −Ms

−Ms −Ms Ls

⎤

⎦ (4.60)

The dissipation function is

D (ia, ib, ic,ω, t) = 1
2 i

T RSi + vT i + Tω, RS = diag(R, R, R) (4.61)

The Lagrangian is

L (ia, ib, ic,ω, θ) = U∗ (ia, ib, ic, θ) + T∗ (ω) (4.62)

from which the Lagrange equations are obtained

LS
di
dt

− λf

⎡

⎣
sin (θ)

sin
(
θ − 2π

3

)

sin
(
θ + 2π

3

)

⎤

⎦ ω = v (4.63)

J
dω

dt
+ λf

[
sin (θ) sin

(
θ − 2π

3

)
sin

(
θ + 2π

3

) ]
i = T (4.64)

Using Park’s transformation, the current coordinates can be converted from ia, ib, ic
to id, iq, io and combining the electrical and mechanical equations to obtain

⎡

⎢⎢
⎣

Ld 0 0 0
0 Lq 0 0
0 0 L0 0
0 0 0 J

⎤

⎥⎥
⎦

d

dt

⎡

⎢⎢
⎣

id
iq
io
ω

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

R −ωLq 0 0
ωLd R 0 −√

3/2 λf

0 0 R 0
0

√
3/2 λf 0 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

id
iq
io
ω

⎤

⎥⎥
⎦ +

⎡

⎢⎢
⎣

vd

vq

vo

T

⎤

⎥⎥
⎦ (4.65)

The electromagnetic torque induced on the rotor is

τ = √
3/2 λf iq (4.66)

4.4 Balanced Three-Phase AC Power Networks

A balanced three-phase AC circuit is essentially three separate, but equivalent, cir-
cuits as illustrated in Figure 4.21. In the circuit shown, the three sinusoidal voltages
have the same magnitude are separated in phase by 2π

/
3 rad, and the line and load

admittances are identical.
Because they are balanced, they can be depicted with a single-line diagram.
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Fig. 4.21 A three-phase
circuit with generator and
loads

aV

bVcV cY
bY

aY

ai

bici

return or neutral

4.4.1 Synchronous Generator in Steady State

Consider the three-phase synchronous machine of Equations. (4.45) and (4.46), or
(4.50) and (4.51), operating as a generator. Suppose, for now, that the system operates
in the steady-state condition where the speed ω = ωs and the field current if are both
constant. Also, the system is balanced which means the three-phase voltages and
currents are identical sinusoids except they are separated in phase by 2π/3 rad. Thus,

ia + ib + ic = 0, va + vb + vc = 0 (4.67)

It is also true that the total instantaneous electric power output is constant

P = idvd + iqvq + iovo = iava + ibvb + icvc = constant (4.68)

Equation (4.45) can be written

L (θ)
d i
dt

+ ∂L (θ)

∂θ
iω + Ri = v (4.69)

with

∂L (θ)

∂θ
=

⎡

⎢⎢⎢
⎣

0 0 0 −Mf sin (θ)

0 0 0 −Mf sin
(
θ − 2π

3

)

0 0 0 −Mf sin
(
θ + 2π

3

)

−Mf sin (θ) −Mf sin
(
θ − 2π

3

) −Mf sin
(
θ + 2π

3

)
0

⎤

⎥⎥⎥
⎦

(4.70)

Notice that the first (a-phase) of these equations can be written

Ls
dia
dt

+ Ms

(
dib
dt

+ dic
dt

)
+ Mf

dif
dt

− Mf sin (θ)ωsif + Ria = va
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Fig. 4.22 Circuit diagram for a three-phase generator

Since if is constant and ia = − (ib + ic) this simplifies to

(Ls + Ms)
dia
dt

− Mf sin (θ)ωsif + Ria = va (4.71)

Reversing the current sign convention, the generator relation is

− (Ls + Ms)
dia
dt

+ Mf sin (θ)ωs if − Ria = va (4.72)

A circuit equivalent to Equation (4.72) for all three phases is shown in Figure 4.22.
The voltage, ea (t), is defined by

ea (t) = ωsMf if cos (ωst + δ) , Ea = ωsMf if√
2

ejδ = Eaejδ (4.73)

4.4.2 Synchronous Machine Simplified Dynamic Model

Once again, consider a synchronous machine in balanced operation but not in steady-
state condition. In this case, the speed can vary with time but it will assume that ω
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remains close to ωs. Once again suppose ω = ωs + υ with |υ| � ωs. Recall that
balanced operation implies that io = 0, vo = 0. Equation (4.52) can be reduced to
the three electrical equations,

Ld
did
dt

+ Lfd
dif
dt

= −Rid − ωLqiq + vd (4.74)

Lq
diq
dt

= ωLdid − Riq + ωLfdif + vq (4.75)

Lfd
did
dt

+ Lf
dif
dt

= −Rf if + vf (4.76)

and one mechanical equation

J
dυ

dt
= Lfdif iq + T (4.77)

Now, suppose did
/

dt,diq
/

dt,dif
/

dt are small compared to ωsid,ωsiq,ωsif . Then
Equations (4.74) and (4.75) reduce to

0 = −Rid − ωsLqiq + vd (4.78)

0 = ωsLdid − Riq − ωsLfd if + vq (4.79)

These are the steady, synchronous motion equations, so the results and definitions
of Remark 4.16 apply. Thus, Equations (4.78) and (4.79) can be rewritten as the
equivalent complex relation

(
Vq + jVd

)
ejδ = R

(
Iq + jId

)
ejδ − ωsLdIdejδ + jωsLqIqejδ + ωsLfdIf ejδ

or
Va = RIa − ωs

(
LdId − jLqIq

)
ejδ + Ea (4.80)

Equation (4.80) can be used to solve for the real variables Id, Iq if the voltages Ea, Va

are known. This then allows determination of the real and reactive power flows into
the machine. To do this, first choose the rotor angle as a reference and set it arbitrarily
to zero, δ = 0. Relative to this reference, suppose the angle of the terminal voltage
Va is θ. Then

Ea = Ea, Va = Vaejθ = Va cos θ + jVa sin θ

and (4.80) can be written

Ea = Va cos θ + jVa sin θ − R
(
Iq − jId

) − jωs
(
LqIq + jLdId

)
(4.81)
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in which all variables are real. Equating real and imaginary parts of (4.81) leads to
two real equations

Ea = Va cos θ − RIq + ωsLdId

0 = Va sin θ + RId − ωsLqIq

These equations, linear in Id, Iq, are easily solved to yield

Id = Lqωs (Ea − Va cos θ) + RVa sin θ

LdLqω2
s − R2

(4.82)

Iq = −LdωsVa sin θ + R (Va cos θ − Ea)

LdLqω2
s − R2

(4.83)

The electric power delivered to the motor terminals, Sa = VaI∗a , and the power
delivered to the rotor, Se = EaI∗a , are both of interest. Proceed to evaluate Sa,Se by
using Equation (4.54) to replace Ia and employing (4.82) and (4.83). To simplify
matters, the resistance is neglected in the following expressions. The phase a real
and reactive power at the terminal bus are

Pa = EaVa

ωsLd
sin θ + V 2

a

2

(
1

ωsLq
− 1

ωsLd

)
sin 2θ (4.84)

Qa = V 2
a

2

(
1

ωsLq
+ 1

ωsLd

)
− EaVa

ωsLd
cos θ + V 2

a

2

(
1

ωsLd
− 1

ωsLq

)
cos 2θ (4.85)

and at the internal bus

Pe = EaVa

ωsLq
sin θ, Qe = EaVa cos θ − E2

a

ωsLd
(4.86)

Now, consider Equation (4.76). Premultiply by ωsMf /Rf and reorganize to obtain

Lf

Rf

d

dt

(
ωsMf Lfd

Lf
id + ωsMf if

)
= −ωsMf if + ωsMf

Rf
vf (4.87)

Define

E′
a = 1√

2

(
ωsMf Lfd

Lf
id + ωsMf if

)
ejδ = E′

aejδ (4.88)

Ea = ωsMf if√
2

ejδ = Eaejδ, Efd = ωsMf√
2Rf

vf (4.89)
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to obtain
Lf

Rf

dE′
a

dt
= −Ea + Efd (4.90)

From the definitions of Ea,E′
a, it can be seen that

Ea = E′
a − ωsMf Lfd

Lf
Id (4.91)

Resolving (4.92) along with the previous solutions for Id, Iq, Equations (4.82), (4.83)
and the definition of E′

a, (4.88), it is possible to obtain Id, Iq, If and Ea as functions
of E′

a. Ignoring the resistance, R, these relations are

Ea = E′
a + σVa cos θ

1 + σ
(4.92)

Id = E′
a
/
(ωsLd) − Va cos θ

/
(ωsLd)

1 + σ
(4.93)

Iq = Va sin θ

ωsLq
(4.94)

If = E′
a + σVa cos θ

ωsMf (1 + σ)
(4.95)

where

σ =
√

3

2

M2
f

Lf Ld

Finally, (4.90) can be written

τf
dE′

a

dt
= −E′

a − σVa cos θ + (1 + σ) Efd (4.96)

with

τf = (1 + σ) Lf

Rf

Recall that θ in (4.96) represents the relative angle between the voltage at the terminal
bus and the machine rotor. If both the bus angle and the rotor angle are measured
relative to some other common reference, then θ = θa − δ, where θa is the phase
angle of Va and δ is the rotor angle. Thus, (4.96) becomes

τf
dE′

a

dt
= −E′

a − σVa cos (θ − δ) + (1 + σ) Efd (4.97)
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where δ is obtained from the mechanical equations, rewritten here

dδ

dt
= υ

J
dυ

dt
= Lfdif iq + T

Premultiply the second of these equations by ω2, and notice that ωsT = Pm, the
mechanical power delivered to the rotating shaft, and ωsLfdif iq = 3Pe, the electrical
power delivered from the shaft. Then, the mechanical equations are

dδ

dt
= υ, ωsJ

dυ

dt
= Pm − 3Pe (4.98)

Equations (4.84), (4.85), (4.97), and (4.98) constitute a complete set of equations for
the synchronous machine acting as a motor. The generator equations are obtained by
reversing the positive direction of the stator currents, equivalent to changing (θ − δ)
to (δ − θ).

A summary of the generator equations in per-unit form is given below:

τf
dE′

a

dt
= −E′

a − σVa cos (δ − θ) + (1 + σ) Efd (4.99)

dδ

dt
= υ, M

dυ

dt
+ Dυ = Pm − PE, M = ωsJ

SG
(4.100)

Ea = E′
a

1 + σ
+ σ

1 + σ
Va cos (δ − θ) (4.101)

Id = E′
a
/
(ωsLd) − Va cos (δ − θ)

/
(ωsLd)

1 + σ
(4.102)

Iq = Va sin (δ − θ)

ωsLq

If = E′
a + σVa cos (δ − θ)

ωsMf (1 + σ)
(4.103)
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Generator Generator terminal bus
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,G GP Q

,aV θ
fdE

 or mPω

, ,a EE Pδ

Fig. 4.23 Input-output summary of the simplified generator dynamic model with network inter-
connection

PE = 3
EaVa

Xq
sin (δ − θ) (4.104)

QE = 3
EaVa cos (δ − θ) − E2

a

ωsLd
(4.105)

PG = 3

(
EaVa

Xd
sin (δ − θ) + V 2

a

2

(
1

Xq
− 1

Xd

)
sin 2 (δ − θ)

)
(4.106)

QG = 3

(
V 2

a

2

(
1

Xq
+ 1

Xd

)
− EaVa

Xd
cos (δ − θ) + V 2

a

2

(
1

Xd
− 1

Xq

)
cos 2 (δ − θ)

)

(4.107)

Here, a mechanical friction term with small parameter D has been added in (4.100).
All voltages, powers, and impedance are in per-unit values. A summary of the model
with its interconnection to a network is shown in Figure 4.23.

Remark 4.18 Voltage behind reactance model. In some instances, the time constant
τf is substantially larger than the time period of interest. In such circumstances, it is
appropriate to assume that E′

a is constant. Thus, Equation (4.101) can be dropped.
This is the classical and frequently used voltage behind reactance model.
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4.4.3 Power Flow Equations

4.4.3.1 Bus Admittance Matrix

Consider the ith bus within an N bus network. Let Ii denotes the bus current injected
into the network at bus i. Then, KVC applies in the form

Ii =
N∑

k=1

Iik, (4.108)

where Iik is the current flowing out of bus i over the transmission link connecting
bus i with bus k (if any). The current Iii is the flow out of bus i through any constant
admittance load to ground connected to bus i.

Define the vectors of bus currents and bus voltages

I =
⎡

⎢
⎣

I1
...

IN

⎤

⎥
⎦ , V =

⎡

⎢
⎣

V1
...

VN

⎤

⎥
⎦ (4.109)

If each transmission element is modeled by an admittance, then the relation between
I and V can be expressed

I = YbusV (4.110)

where the N × N bus admittance matrix Ybus is

Ybus =
⎡

⎢
⎣

Y11 · · · Y1N
...

. . .
...

YN1 · · · YNN

⎤

⎥
⎦ (4.111)

Each of the elements Yij can be defined in terms of the element admittances:

Yij =
{

yii + ∑
k �=i yik j = i

−yij j �= i
(4.112)

where yij = gij + j bij denotes the admittance between bus i and bus j.

Example 4.19 Consider, as a simple example, the three-bus system of Figure 4.24.
Note that transmission links are modeled as ideal inductors and the shunt elements as
ideal capacitors. The bus admittance matrix is easily computed using (4.112) to be:

Y =
⎡

⎣
−j19.98 j10 j10

j10 −j19.98 j10
j10 j10 −j19.98

⎤

⎦
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Fig. 4.24 Three-bus
example from [27]
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4.4.3.2 Power Flow Equations

Using (4.112) the bus power injection at bus i can be obtained in the form

Si = ViI
∗
i =

∑N

k=1
Y∗

ik ViV
∗

k =
∑n

k=1
(Gik − jBik) |Vi|

∣∣Vk

∣∣ej(δi−δk)

Replacing the exponential by equivalent trigonometric functions leads to

Si =
∑N

k=1
(Gik − jBik) |Vi|

∣∣Vk

∣∣ (cos (δi − δk) + j sin (δi − δk))

Separating this complex expression leads to expressions for real and reactive power
injections for bus i.

Pi =
∑N

k=1
|Vi|

∣∣Vk

∣∣ (Bik sin (δi − δk) + Gik cos (δi − δk)) (4.113)

Qi =
∑N

k=1
|Vi|

∣∣Vk

∣∣ (Gik sin (δi − δk) − Bik cos (δi − δk)) (4.114)

Equations (4.113) and (4.114), with i = 1, . . . , N , are called the power flow equa-
tions, represent a complete description of the network. Note that the left-hand side
of the equations, Pi, Qi, represent the real and reactive power injections into the bus,
whereas the right-hand expressions represent the total electric power flow out of the
bus into the transmission system. These expressions are functions of the network bus
voltage vector. Below, the right-hand expressions will be represented, respectively,
by pi (V) and qi (V).
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Example 4.20 Once again, consider the system of Figure 4.24. The power flow
equations are

P1 − 10 |V1| |V2| sin (δ1 − δ2) − 10 |V1| |V3| sin (δ1 − δ3) = 0
P2 + 10 |V1| |V2| sin (δ1 − δ2) − 10 |V1| |V3| sin (δ2 − δ3) = 0
P3 + 10 |V1| |V2| sin (δ1 − δ3) + 10 |V1| |V3| sin (δ2 − δ3) = 0
Q1 − 19.98 |V1|2 + 10 |V1| |V2| cos (δ1 − δ2) + 10 |V1| |V3|3 cos (δ1 − δ3) = 0
Q2 − 19.98 |V2|2 + 10 |V1| |V2| cos (δ1 − δ2) + 10 |V1| |V3| cos (δ2 − δ3) = 0
Q3 − 19.98 |V3|2 + 10 |V1| |V3| cos (δ1 − δ3) + 10 |V2| |V3| cos (δ2 − δ3) = 0

Notice that in an N bus network there are N pairs of equations, one pair for
each bus. Thus, there are in all 2N equations. Each bus has associated with it four
independent variables, Pi, Qi, |Vi| , δi. Thus, there are 4N independent variables if
it is assume that the admittance values are all given. It is to be anticipated that
with specification of 2N of the bus variable, the 2N equations could be solved for
the remaining 2N bus variables. To be precise, divide the 4N bus variables into
two sets: x ∈ R2N and y ∈ R2N . The 2N power flow equations, (4.113), (4.114),
i = 1, . . . , N , can be rewritten in the form 0 = f (x, y), f ∈ R2N . For a given solution
pair, y = y∗, x = x∗, for there to exist a local solution y = φ(x) with y∗ = φ(x∗), the
Implicit Function Theorem 5.2 requires

det
∂f (x∗, y∗)

∂y
�= 0

Consequently, the selection of a set of independent variables is not arbitrary. In fact,
notice that there is a translational symmetry in the power flow equations with respect
to the angle variables δi. In fact, if all N angles are included in y then it is easily
shown that

det
∂f (x∗, y∗)

∂x
≡ 0

As a result, it is standard practice to choose one bus called a slack bus or reference
bus at which the angle is specified.

The appropriate causality at each bus, that is the specification of the two inputs
and two outputs, depends on the device(s) attached to the bus. The network shown
in Figure 4.25 connects to external devices via three types of buses:

1. Generator bus. What is termed a generator bus refers to a classical generator
model, in which the bus is the generator internal bus, see Figure 4.11. This means
that the inductance and resistance of the equivalent circuit is included as a branch
within the network. At this type of bus, the bus (or port) inputs are voltage mag-
nitude and angle |V | , δ and the outputs are real and reactive power, P, Q. One
such generator could be a reference generator in which case δ is set to zero. Or the
attached device might be an “infinite bus” reference in which |V | , δ are specified
constants.

http://dx.doi.org/10.1007/978-0-8176-4674-5_5
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Fig. 4.25 Network interconnection diagram showing causality structure

2. PV bus. The causality for this bus is such that the bus inputs are P and V and the
outputs are δ and Q. A constant admittance load might be the attached device.

3. PQ bus. The inputs in this case are the real and reactive power P, Q and the bus
outputs are voltage magnitude and angle |V | , δ. Devices that could attach to this
bus include a generator (terminal bus), synchronous or asynchronous motors, or
constant P and Q loads.

4.4.3.3 The Classical Model

The classical model of a power system is defined as a system with n generator buses,
m PV buses, and k PQ bus. The voltage behind reactance generator model is assumed
valid. Each generator bus is taken to be the generator internal bus. Consequently, the
internal bus voltage magnitude is constant and θ is determined by the mechanical
swing equations (4.100). Assume the N = n + m + k buses are labeled in the order:
generator buses, PV buses, and PQ buses. Define the network input and out vectors,
respectively, U ∈ R2N and y ∈ R2N . First, note that

• All generator buses, in the classical model, take inputs V, θ and provide outputs
P, Q.

• All PV buses take inputs P, V and provide outputs θ, Q.
• All PQ buses take inputs P, Q and provide outputs V, θ.
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Thus,

U = (θ1, . . . , θn, V1, . . . , Vn+m, Pn+1, . . . , PN , Qn+m+1, . . . QN )

y = (θn+1, . . . , θN , Vn+m+1, . . . , Vn, P1, . . . , Pn, Q1, . . . , Qn+m)
(4.115)

Now, divide the input vector into two parts, U = (θ, u) where

θ = (θ1, . . . , θn) , u = (V1, . . . , Vn+m, Pn+1, . . . , PN , Qn+m+1, . . . QN )

The vector u is a vector of exogenous system inputs and the vector θ will become
part of the state vector, x ∈ R2n:

x = (θ1, . . . , θn, υ1, . . . , υn) , θ̇i = υi (4.116)

Define the functions f : Rn×R2N ×R2N−n → Rn and g : Rn×R2N ×R2N−n → R2N−n:

f (θ, y, u) = (
PM,1 − p1, . . . , PM,n − pn

)
(4.117)

g (θ, y, u) =
(

PL,n+1 − pn+1, . . . , PL,N − pN , QM,1 − q1, . . . , QM,n − qn,

− qn+1, . . . ,−qn+m, QL,n+m+1 − qn+m+1, . . . , QL,N − qN

)

(4.118)

The dynamics of the system can be written

θ̇ = υ
Mυ̇ + Dυ = f (θ, y, u)

0 = g (θ, y, u)

(4.119)

Remark 4.21 Reduced Network. If a network bus has nothing attached to it other than
transmission lines and a constant admittance load, then it can be eliminated resulting
in a smaller set of equations. This is easily accomplished as follows. Consider an N
bus network with admittance matrix Y. Suppose the network contains N2 buses to be
eliminated, and N1 = N − N2 that are to be retained. Suppose the buses are ordered
such that the last N2 buses are the constant admittance load buses. The network
admittance matrix and the current and voltage vectors can be partitioned so that

[
I1

I2

]
=

[
Y11 Y12

Y21 Y22

] [
V1

V2

]

but I2 = 0, so

I2 = −Y21V1 + Y22V2 = 0 ⇒ V2 = Y−1
22 Y21V1
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Now,
I1 = Y11V1 + Y21V2 = (

Y11 − Y21Y−1
22 Y21

)
V

or
I1 = YredV1, Yred = (

Y11 − Y21Y−1
22 Y21

)
(4.120)

It follows that if a system has n generators and all loads are constant admittance,
then all network buses other than the n generator internal buses can be eliminated by
this process. Thus, the dynamical equations (4.117) reduce to

θ̇ = υ
Mυ̇ + Dυ = f (θ, u)

(4.121)

with θ = (θ1, . . . , θn), υ = (ω1 − ωs, . . . ,ωn − ωs), and u = (V1, . . . , Vn), where
all of the n voltage magnitudes,Vi, are known.

More generally, suppose there are n generators, m constant admittance load buses,
and k PQ buses, for a total of N = n+ k +m buses including the n generator internal
buses. The m constant admittance buses can be eliminated to give a reduced network
with Nr = n + k buses. As above, assume the buses to be eliminated are the last
m, and assume the generator internal buses are the first n. The classical model now
reduces to the form

δ̇ = υ
Mυ̇ + Dυ = f1 (δ, y, u)

0 = f2 (δ, y, u)

(4.122)

with
δ = (θ1, . . . , θn)

u = (
V1, . . . , Vn, Pn+1, . . . , PNr , Qn+1, . . . , QNr

)

y = (
θn+1, . . . , θNr , Vn+1, . . . , VNr

)

Notice that f1 : R4Nr → Rn and f2 : R4Nr → R2Nr−n.



Chapter 5
Power System Dynamics: Foundations

“My methods are really methods of working and thinking; this is
why they have crept in everywhere anonymously.”

—Emmy Noether

5.1 Introduction

In this chapter, we briefly review basic material about nonlinear ordinary differen-
tial equations that is important background for later chapters. After a preliminary
discussion of the basic properties of differential equations including the existence
and uniqueness of solutions, we turn to a short discussion of stability in the sense
of Lyapunov. In addition to stating the most important theorems on stability and
instability, we provide a number of illustrative examples. As part of this discussion,
we introduce Lagrangian systems—a topic to be treated at great length later. This
chapter is concerned exclusively with dynamical systems with smooth systems. It is
presumed that the material discussed is not new to the reader, and we provide only
a short summary of those elements considered immediately relevant. For a more
complete discussion, many excellent textbooks are available. We reference a number
of them in the sequel.

5.2 Preliminaries

A linear vector space, V- over the field R, is a set of elements called vectors such
that:

1. For each pair x, y ∈ V , the sum x + y is defined, x + y ∈ V and x + y = y + x .
2. There is an element “0” in V such that for every x ∈ V , x + 0 = x .

© Springer Science+Business Media New York 2016
H.G. Kwatny and K. Miu-Miller, Power System Dynamics and Control,
Control Engineering, DOI 10.1007/978-0-8176-4674-5_5

107



108 5 Power System Dynamics: Foundations

3. For any number a ∈ R and vector x ∈ V , scalar multiplication is defined and
ax ∈ V .

4. For any pair of numbers a, b ∈ R and vectors x, y ∈ V: 1·x = x , (ab)x = a(bx),
(a + b)x = ax + bx .

A linear vector space is a normed linear space if for each vector x ∈ V , there
corresponds a real number ‖x‖ called the norm of x which satisfies:

1. ‖x‖ > 0, x �= 0, ‖0‖ = 0
2. ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality)
3. ‖ax‖ = |a| ‖x‖ ∀a ∈ R, x ∈ V
When confusion can arise as to which space a norm is defined in we replace ‖·‖ by
‖·‖V .

A sequence {xk} ⊂ V , V a normed linear space, converges to x ∈ V if

lim
k→∞

‖xk − x‖ = 0

A sequence {xk} ⊂ V is a Cauchy sequence if for every ε > 0, there is an integer,
N (ε) > 0 such that ‖xn − xm‖ < ε if n, m > N (ε). Every convergent sequence is a
Cauchy sequence but not vice versa. The space is complete if every Cauchy sequence
is a convergent sequence. A complete normed linear space is called a Banach space.

The most basic Banach space of interest herein is n-dimensional Euclidean space,
the set of all n-tuples of real numbers, denoted Rn . The most common types of norms
applied to Rn are the p-norms, defined by

‖x‖p = (|x1|p + · · · + |xn|p
)1/p

, 1 ≤ p < ∞

and

‖x‖∞ = max
i∈{1,...,n}

|xi |

An ε-neighborhood of an element x of the normed linear space V is the set S(x, ε) =
{ y ∈ V | ‖y − x‖ < ε}. A set A in V is open if for every x ∈ A there exists an ε-
neighborhood of x also contained in A. An element x is a limit point of a set A ⊂ V
if each ε-neighborhood of x contains points in A. A set A is closed if it contains all
of its limit points. The closure of a set A, denoted Ā, is the union of A and its limit
points. A set A is dense in V if the closure of A is V .

If B is a subset of V , A is a subset of R, and {Va, a ∈ A} is a collection of open
subsets of V such that∪a∈AVa ⊃ B, then the collection Va is called an open covering
of B. A set B is compact if every open covering of B contains a finite number of
subsets which is also an open covering of B. For a Banach space, this is equivalent
to the property that every sequence {xn}, xn ∈ B, contains a subsequence which
converges to an element of B. A set B is bounded if there exists a number r > 0
such that B ⊂ {x ∈ V |‖x‖ < r }. A set B in Rn is compact if and only if it is closed
and bounded.
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A function f taking a set A of a space X into a set B of a space Y is called a
mapping of A into B, and we write f : A → B. A is the domain of the mapping,
and B is the range or image. The image of f is denoted f (A). f is continuous if,
given ε > 0, there exists δ > 0 such that

‖x − y‖ < δ ⇒ ‖ f (x) − f (y)‖ < ε

A function f defined on a set A is said to be one-to-one on A if and only if for every
x, y ∈ A, f (x) = f (y) ⇒ x = y. If f is one-to-one, it has an inverse denoted
f −1. If the one-to-one mapping f and its inverse f −1 are continuous, f is called a
homeomorphism of A onto B.

Suppose X and Y are Banach spaces, and f : X → Y . f is a linear map if
f (a1x1 + a2x2) = a1 f (x1) + a2 f (x2) for all x1, x2 ∈ X and a1, a2 ∈ R (or C).
In general, we can write a linear mapping in the form y = Lx , where L is an
appropriately defined “linear operator.” A linear map f is said to be bounded if
there is a constant K such that ‖ f (x)‖Y ≤ K ‖x‖X for all x ∈ X . A linear map
f : X → Y is bounded if and only if it is continuous. A linear map from Rn → Rm

is characterized by an m × n matrix of real elements, example y = Ax . The “size”
of the matrix A can be measured by the induced p-norm (or gain) of A

‖A‖p = sup
x �=0

‖Ax‖p

‖x‖p

for which we write the following special cases

‖A‖1 = max
1≤ j≤n

m∑

i=1

∣∣ai j

∣∣

‖A‖2 =
√

λmax(AT A)

‖A‖∞ = max
1≤i≤m

n∑

j=1

∣∣ai j

∣∣

Here, λmax(AT A) denotes the largest eigenvalue of the nonnegative matrix AT A.
f is said to be (Frechet) differentiable at a point x ∈ A if there exists a bounded

linear operator L(x) mapping X → Y such that for every h ∈ X with x + h ∈ A

‖ f (x + h) − f (x) − L(x)h‖ / ‖h‖ → 0

as ‖h‖ → 0. L(x) is called the derivative of f at x . If f : Rn → Rm is differentiable
at x , then L(x) = ∂ f (x)

/
∂x , the Jacobian of f with respect to x . If f and f −1 have

continuous first derivatives, f is a diffeomorphism.
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A function f : A → B is said to belong to the class Ck of functions if it has
continuous derivatives up to order k. It belongs to the class C∞ if it has continuous
derivatives of any order. C∞ functions are sometimes called smooth. A function f
is said to be analytic if for each x0 ∈ A there is a neighborhood U of x0 such that
the Taylor series expansion of f at x0 converges to f (x) for all x ∈ U .

Consider a transformation T : X → X , where X is a Banach space. x ∈ X is a
fixed point of T if x = T (x). Suppose A is a subset of Banach space, X and T is a
mapping of A into a Banach space B. The transformation T is a contraction on A if
there exists a number 0 ≤ λ < 1 such that

‖T (x) − T (y)‖ ≤ λ ‖x − y‖ , ∀x, y ∈ A

Proposition 5.1 (Contraction Mapping Theorem) Suppose A is a closed subset of
a Banach space X and T : A → A is a contraction on A. Then

1. T has a unique fixed point x̄ ∈ A
2. If x0 ∈ A is arbitrary, then the sequence {xn+1 = T (xn), n = 0, 1, . . .} converges

to x̄ .
3. ‖xn − x̄‖ ≤ λn ‖x1 − x0‖ /(1 − λ), where λ < 1 is the contraction constant for

T on A.

Proof [84], page 5.

We will make use of the following important theorem.

Proposition 5.2 (Implicit FunctionTheorem) Suppose F : Rn×Rm → Rn has con-
tinuous first partial derivatives and F(0, 0) = 0. If the Jacobian matrix ∂F(x, y)

/
∂x

is nonsingular, then there exists neigborhoods U, V of the origin in Rn, Rm, respec-
tively, such that for each y ∈ V the equation F(x, y) = 0 has a unique solution
x ∈ U. Furthermore, this solution can be given as x = g(y), i.e., F(g(y), y) = 0
on V , where g has continuous first derivatives and g(0) = 0.

Proof [84], page 8.

5.3 Ordinary Differential Equations

5.3.1 Existence and Uniqueness

Let t ∈ R, x ∈ Rn , D an open subset of Rn+1, f : D → Rn amap and let ẋ = dx/dt .
We will consider differential equations of the type

ẋ = f (x, t), x ∈ Rn, t ∈ R (5.1)
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When t is explicitly present in the right-hand side of (5.1), then the system is said
to be nonautonomous. Otherwise, it is autonomous. A solution of (5.1) on a time
interval t ∈ [t0, t1] is a function x(t) : [t0, t1] → Rn , such that dx(t)/dt = f (x, t (t))
for each t ∈ [t0, t1].We can visualize an individual solution as a graph x(t) : t → Rn .
For autonomous systems, it is convenient to think of f (x) as a “vector field” on the
space Rn . f (x) assigns a vector to each point x ∈ Rn . As t varies, a solution x(t)
traces a path through Rn . These curves are often called trajectories or orbits. At each
point x ∈ Rn , the trajectory x(t) is tangent to the vector f (x). The collection of all
trajectories in Rn is called the flow of the vector field f (x). This point of view can
be extended to nonautonomous differential equations in which case the vector field
f (x, t) and its flow vary with time.

Example 5.3 (Phase portraits) For two-dimensional systems, the trajectories can be
plotted in a plane. We will consider two systems, the Van der Pol system

[
ẋ1
ẋ2

]
=
[

x2
−0.8(1 − x2

1 )x2 − x1

]

and the damped pendulum

[
ẋ1
ẋ2

]
=
[

x2
−x2/2 − sin x1

]

Both of these systems are in so-called phase variable form (the first equation, ẋ1 = x2,
defines velocity) so the trajectory plots are called phase portraits. These are shown
in Figures 5.1 and 5.2.

The above-mentioned examples illustrate several important properties of nonlin-
ear dynamical systems. In both cases, the flow directions are to the right in the upper
half plane and to the left in the lower half plane (recall ẋ1 = x2).

Fig. 5.1 Phase portrait for
the Van der Pol equation
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Fig. 5.2 Phase portrait for
the damped pendulum
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Thus, it is easily seen that trajectories of the pendulum ultimately converge to
rest points corresponding to the pendulum hanging straight down. These have the
property that f (x) = 0. Any point x ∈ Rn satisfying the condition f (x) = 0 is called
an equilibrium point. The pendulum has an infinite number of equilibria spaced π
radians apart. Some of these are attracting (the pendulum points straight down) and
some repelling (straight up).

In contrast, all trajectories of the Van der Pol equation approach a periodic trajec-
tory. Such an isolated periodic trajectory is called a limit cycle. Some systems can
exhibit multiple limit cycles, and they can be repelling as well as attracting. Equilib-
ria and limit cycles are two types of “limit sets” that are associated with differential
equations. We will define limit sets precisely below. As a matter of fact, these are
the only type of limit sets exhibited by two-dimensional systems. More exotic ones,
like “strange attractors,” require at least three-dimensional state spaces.

The existence and uniqueness of solutions to (5.1) depend on the properties of the
function f . In many applications, f (x, t) is continuous in the variables t and x . We
will impose a somewhat less restrictive characterization of f . We say that a function
f : Rn → Rn is locally Lipschitz on an open and connected subset D ⊂ Rn , if each
point x0 ∈ D has a neighborhood U0 such that

‖ f (x) − f (x0)‖ ≤ L ‖x − x0‖ (5.2)

for some constant L and all x ∈ U0. The function f (x) is said to be Lipschitz on the
set D if it satisfies the (local) Lipschitz condition uniformly (with the same constant
L) at all points x0 ∈ D. It is globally Lipschitz if it is Lipschitz on D = Rn . We
apply the terminology “Lipschitz in x” to functions f (x, t), provided the Lipschitz
condition holds uniformly for each t in a given interval of R.

Note that C0 functions need not be Lipschitz but C1 functions always are. The
following theorems relate the notion of Lipshitz with the property of continuity.

Lemma 5.4 Let f (x, t) be continuous on D × [a, b], for some domain D ⊂ Rn. If
∂ f/∂x exists and is continuous on D × [a, b], then f is locally Lipschitz in x on
D × [a, b].
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Proof (following Khalil [106], p. 77) For x0 ∈ D there is an r sufficiently small that

D0 = {x ∈ Rn |‖x − x0‖ < r
} ⊂ D

The set D0 is convex and compact. Since f is C1, ∂ f/∂x is bounded on [a, b]× D0.
Let L0 denote such a bound. If x, y ∈ D0, then by the mean value theorem, there is
a point z on the line segment joining x, y such that

‖ f (x, t) − f (t, y)‖ =
∥∥∥∥
∂ f (t, z)

∂x
(x − y)

∥∥∥∥ ≤ L0 ‖x − y‖

�

The proof of this lemma is easily adapted to prove the following.

Proposition 5.5 Let f (x, t) be continuous on [a, b] × Rn. If f is C1 in x ∈ Rn

for all t ∈ [a, b] then f is globally Lipschitz in x if and only if ∂ f/∂x is uniformly
bounded on [a, b] × Rn.

Let us state the key existence result.

Proposition 5.6 (Local Existence and Uniqueness) Let f (x, t) be piecewise con-
tinuous in t and satisfy the Lipschitz condition

‖ f (x, t) − f (t, y)‖ ≤ L ‖x − y‖

for all x, y ∈ Br = {x ∈ Rn |‖x − x0‖ < r } and all t ∈ [t0, t1]. Then there exists a
δ > 0 such that the differential equation with initial condition

ẋ = f (x, t), x(t0) = x0 ∈ Br

has a unique solution over [t0, t0 + δ].
Proof ([106], p. 74)A continuation argument leads to the following global extension.

Proposition 5.7 (Global Existence and Uniqueness) Suppose f (x, t) is
piecewise continuous in t and satisfies

‖ f (x, t) − f (t, y)‖ ≤ L ‖x − y‖

‖ f (x, t0)‖ < h

for all x, y ∈ Rn and all t ∈ [t0, t1]. Then the equation

ẋ = f (x, t), x(t0) = x0

has a unique solution over [t0, t1].
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5.3.1.1 Continuous Dependence on Parameters and Initial Data

Let μ ∈ Rk and consider the parameter-dependent differential equation

ẋ = f (x, t,μ), x(t0) = x0 (5.3)

We will show that a solution x(t; t0, x0,μ) defined on a finite time interval [t0, t1] is
continuously dependent on the parameter μ and the initial data t0, x0.

Definition 5.8 Let x(t; t0, ξ0,μ0) denote a solution of (5.3) defined on the finite
interval t ∈ [t0, t1] with μ = μ0 and x(t0; t0, ξ0,μ0) = ξ0. The solution is said to
depend continuously on μ at μ0 if for any ε > 0 there is a δ > 0 such that such that
for all μ in the neighborhood U = {

μ ∈ Rk |‖μ − μ0‖ < δ
}
, (5.3) has a solution

x(t; t0, ξ0,μ) such that

‖x(t; t0, ξ0,μ) − x(t; t0, ξ0,μ0)‖ < ε

for all t ∈ [t0, t1]. Similarly, the solution is said to depend continuously on ξ at
ξ0 if for any ε > 0 there is a δ > 0 such that for all ξ in the neighborhood X ={
ξ ∈ Rk |‖ξ − ξ0‖ < δ

}
, (5.3) has a solution x(t; t0, ξ,μ0) such that

‖x(t; t0, ξ,μ0) − x(t; t0, ξ0,μ0)‖ < ε

for all t ∈ [t0, t1].
The following result establishes the basic continuity properties of (5.3) on finite

time intervals.

Proposition 5.9 Suppose f (x, t,μ) is continuous in (x, t,μ) and locally Lipschitz
in x (uniformly in t and μ) on [t0, t1] × D × {‖μ − μ0‖ < c} where D ⊂ Rn is an
open and connected set. Let x(t; t0, ξ0,μ0) denote a solution of (5.3) that belongs
to D for all [t0, t1]. Then given ε > 0 there is δ > 0 such that

‖ξ − ξ0‖ < δ, ‖μ − μ0‖ < δ

implies that there is a unique solution x(t; t0, ξ,μ) of (5.3) defined on t ∈ [t0, t1]
and such that

‖x(t; t0, ξ,μ) − x(t; t0, ξ0,μ0)‖ < ε, ∀t ∈ [t0, t1]

Proof ([106], p. 86) We emphasize that the results on existence and continuity of
solutions hold on finite time intervals [t0, t1]. Stability, as we shall see below, requires
us to consider solutions defined on infinite intervals. We will often tacitly assume
that they are so defined. Continuity issues with respect to both initial conditions and
parameters for solutions on infinite time intervals are quite subtle.
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5.3.2 Invariant Sets

In the following paragraphs, we shall restrict attention to autonomous systems

ẋ = f (x), x(t0) = x0 (5.4)

In many instances, the results can be extended to nonautonomous systems by extend-
ing the nonautonomous differential equationwith the addition of a new state ẋn+1 = 1
to replace t in the right-hand side of the differential equation.

Let us denote by Ψ (t, x) the flow of the vector field f on Rn defined by (5.4),
i.e., Ψ (t, x) is the solution of (5.4) with Ψ (0, x) = x :

∂Ψ (x, t)

∂t
= f (Ψ (x, t)) , Ψ (0, x) = x

Definition 5.10 A set of points S ⊂ Rn is invariant with respect to f if trajectories
beginning in S remain in S both forward and backward in time, i.e., if s ∈ S, then
Ψ (t, s) ∈ S,∀t ∈ R.

Obviously, any entire trajectory of (5.4) is an invariant set. Such an invariant set
is minimal in the sense that it does not contain any proper subset which is itself an
invariant set.

A set S is invariant if and only if Ψ (t, S) 
→ S for each t ∈ R.

5.3.2.1 Nonwandering Sets

Definition 5.11 Apoint p ∈ Rn is anonwandering point with respect to theflowΨ if
for every neighborhoodU of p andT > 0, there is a t > T such thatΨ (t, U )∩U �= ∅.
The set of nonwandering points is called the nonwandering set and denotedΩ . Points
that are not nonwandering are called wandering points.

The nonwandering set is a closed, invariant set. For proofs and other details see, for
example, Guckenheimer and Holmes [83], Arrowsmith and Place [12], or Sibirsky
[177]. The detailed structure of the nonwandering set is an important aspect of the
analysis of strange attractors.

Obviously, fixed points and periodic trajectories belong to Ω .

5.3.2.2 Limit Sets

Definition 5.12 A point q ∈ Rn is said to be an ω-limit point of the trajectory
Ψ (t, p) if there exists a sequence of time values tk → +∞ such that

lim
tk→∞ Ψ (tk, p) = q
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q is said to be an α-limit point of Ψ (t, p) if there exists a sequence of time values
tk → −∞ such that

lim
tk→−∞ Ψ (tk, p) = q

The set of all ω-limit points of the trajectory through p is the ω-limit set, Λω(p), and
the set of all α-limit points of the trajectory through p is the α-limit set, Λα(p).

Hirsch and Smale [88] remind us that α andω are the first and last letters of the
Greek alphabet and, hence, the terminology.

Proposition 5.13 The α-, ω-limit sets of any trajectory are closed invariant sets and
they are subsets of the nonwandering set Ω .

Proof Hirsch and Smale [88] or Sibirsky [177] for closed, invariant sets. That they
are subsets of Ω is obvious.

We can make some simple observations:

1. If r ∈ Ψ (t, p), then Λω(r) = Λω(p) and Λα(r) = Λα(p), i.e., any two points
on a given trajectory have the same limit points.

2. If p is an equilibrium point, i.e., f (p) = 0 or p = Ψ (t, p), then Λω(p) =
Λα(p) = p.

3. If Ψ (t, p) is a periodic trajectory Λω(p) = Λα(p) = Ψ (R, p), i.e., the α and ω
limit sets are the entire trajectory.

Finally, let us state the following important result.

Proposition 5.14 A homeomorphism of a dynamical system maps ω-, α-limit sets
into ω-, α-limit sets.

Proof [177].

5.4 Lyapunov Stability

5.4.1 Autonomous Systems

In the following paragraphs, we consider autonomous differential equations and
assume that the origin is an equilibrium point:

ẋ = f (x), f (0) = 0 (5.5)

with f : D → Rn , locally Lipschitz in the domain D.
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Fig. 5.3 Definition of
Lyapunov stability

x0

Definition 5.15 The origin of (5.5) is

1. a stable equilibrium point if for each ε > 0, there is a δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε ∀t > 0

2. unstable if it is not stable, and
3. asymptotically stable if δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞ x(t) = 0

The concept of Lyapunov stability is depicted in Figure 5.3.
The next seemingly trivial observation is nonetheless useful. Among other things,

it highlights the distinction between stability and asymptotic stability.

Lemma 5.16 (Necessary condition for asymptotic stability) Consider the dynamical
system ẋ = f (x) and suppose x = 0 is an equilibrium point, i.e., f (0) = 0. Then
x = 0 is asymptotically stable only if it is an isolated equilibrium point.

Proof If x = 0 is not an isolated equilibrium point, then in every neighborhood U of
0 there is at least one other equilibrium point. Thus, that not all trajectories beginning
in U tend to 0 as t → ∞. �

For linear systems, the following result is easily obtained.

Proposition 5.17 The origin of the linear system ẋ = Ax is a stable equilibrium
point if and only if ∥∥eAt

∥∥ ≤ N < ∞ ∀t > 0

It is asymptotically stable if and only if, in addition,
∥∥eAt

∥∥→ 0, t → ∞
Proof Exercise (choose δ = ε/N )
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5.4.1.1 Positive Definite Functions

Definition 5.18 A function V : Rn → Rn is said to be

1. positive definite if V (0) = 0 and V (x) > 0, x �= 0,
2. positive semidefinite if V (0) = 0 and V (x) ≥ 0, x �= 0,
3. negative definite (negative semidefinite) if −V (x) is positive definite (positive

semidefinite)

For a quadratic form V (x) = xT Qx, Q = QT , the following statements are equiv-
alent:

1. V (x) is positive definite
2. The eigenvalues of Q are positive real numbers
3. All of the principal minors of Q are positive

|q11| > 0,

∣∣∣∣
q11 q12

q21 q22

∣∣∣∣ > 0, . . . , |Q| > 0

Definition 5.19 A C1 function V (x) defined on a neighborhood D of the origin is
called a Lyapunov function relative to the flow defined by ẋ = f (x) if it is positive
definite and it is nonincreasing along trajectories of the flow, i.e.,

V (0) = 0, V (x) > 0, x ∈ D − {0}

V̇ = ∂V (x)

∂x
f (x) ≤ 0

5.4.2 Basic Stability Theorems

Stability of a dynamical system may be determined directly from an examination
of the trajectories of the system or from a study of Lyapunov functions. The basic
idea of the Lyapunov method derives from the idea of energy exchange in physical
systems. A general physical conception is that stable systems dissipate energy so
that the stored energy of a stable system decreases or at least does not increase as
time evolves. The notion of a Lyapunov function is thereby an attempt to formulate
a precise, energy-like theory of stability.

Proposition 5.20 (Lyapunov Stability Theorem) If there exists a Lyapunov function
V (x) on some neighborhood D of the origin, then the origin is stable. Furthermore,
if V̇ is negative definite on D then the origin is asymptotically stable.

Proof Given ε > 0 choose r ∈ (0, ε] such that

Br = {x ∈ Rn |‖x‖ < r
} ⊂ D
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Fig. 5.4 Sets used in proof
of the Lyapunov stability
theorem, Proposition5.20

Now, we can find a level set Cα = {x ∈ Rn |V (x) = α } which lies entirely within
Br . Refer to Figure 5.4. The existence of such a set follows from the fact that since
V is positive and continuous on Br , it has a positive minimum, α, on ∂Br . The level
set Cα defined by V (x) = α must lie entire in Br .

Now, since V is continuous and vanishes at the origin, there exists a δ > 0 such
that Bδ lies entirely within the set bounded by Cα, i.e.,

Ωα = {x ∈ Rn |V (x) ≤ α
}

Since V is nonincreasing along trajectories, trajectories which begin in Bδ must
remain in Ωα, ∀t > 0. Hence, they remain in Bε. In the event that V̇ is negative
definite, V decreases steadily along trajectories. For any 0 < r1 < r , there is a β < α
such that Bβ lies entirely within Br1 . Since V̇ has a strictly negative maximum in
the annular region Br − Br1 , any trajectory beginning in the annular region must
eventually enter Br1 . Thus, all trajectories must tend to the origin as t → ∞. �

Unlike linear systems, an asymptotically stable equilibrium point of a nonlinear
system may not attract trajectories from all possible initial states. It is more likely
that trajectories beginning at states in a restricted vicinity of the equilibrium point
will actually tend to the equilibrium point as t → ∞. The above theorem can be
used to establish stability and also to provide estimates of the domain of attraction
using level sets of the Lyapunove function V (x).

The following theorem due to LaSalle allows us to more easily characterize the
domain of attraction of a stable equilibrium point and is a more powerful result than
the basic Lyapunov stability theorem because the conditions for asymptotic stability
do not require V̇ to be negative definite.

Proposition 5.21 (LaSalle Invariance Theorem) Consider the system defined by
equation (5.5). Suppose V (x) : Rn → R is C1 and let Ωc designate a compo-
nent of the region {x ∈ Rn |V (x) < c }. Suppose Ωc is bounded and that within Ωc

V̇ (x) ≤ 0. Let E be the set of points within Ωc where V̇ = 0, and let M be the largest
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invariant set of (5.5) contained in E. Then every solution x(t) of (5.5) beginning in
Ωc tends to M as t → ∞.

Proof (following [127]) V̇ (x) ≤ 0 implies that x(t) starting in Ωc remains in Ωc.
V (x(t)) nonincreasing and bounded implies that V (x(t)) has a limit c0 as t → ∞
and c0 < c. By continuity of V (x), V (x) = c0 on the positive limit set Λω(x0)
of x(t) beginning at x0 ∈ Ωc. Thus, Λω(x0) is in Ωc and V̇ (x) = 0 on Λω(x0).
Consequently, Λω(x0) is in E , and since it is an invariant set, it is in M . �

Note that the theorem does not specify that V (x) should be positive definite, only
that it has continuous first derivatives and that there exist a bounded region on which
V (x) < c for some constant c. A number of useful results follow directly from this
one.

Corollary 5.22 Let x = 0 be an equilibrium point of (5.5). Suppose D is a neigh-
borhood of x = 0 and V : D → R is C1 and positive definite on D such that
V̇ (x) ≤ 0 on D. Let E = {

x ∈ D
∣∣V̇ (x) = 0

}
and suppose that the only entire

solution contained in E is the trivial solution. Then the origin is asymptotically
stable.

Corollary 5.23 Let x = 0 be an equilibrium point of (5.5). Suppose

1. V (x) is C1

2. V (x) is radially unbounded (Barbashin-Krasovskii condition), i.e.,

‖x‖ → ∞ ⇒ V (x) → ∞

3. V̇ (x) ≤ 0, ∀x ∈ Rn

4. the only entire trajectory contained in the set E = {
x ∈ D

∣∣V̇ (x) = 0
}

is the
trivial solution.

Then the origin is globally asymptotically stable.

The stability theorems provide only sufficient conditions for stability, and con-
struction of a suitable Lyapunov function may require a fair amount of ingenuity.
The event that attempts to establish stability does not bear fruit, and it may be useful
to try to confirm instability.

Proposition 5.24 (Chetaev Instability Theorem) Consider equation (5.5) and sup-
pose x = 0 is an equilibrium point. Let D be a neighborhood of the origin. Suppose
there is a function V (x) : D → R and a set D1 ⊂ D such that

1. V (x) is C1 on D,
2. the origin belongs to the boundary of D1, ∂D1,
3. V (x) > 0 and V̇ (x) > 0 on D1,
4. On the boundary of D1 inside D, i.e., on ∂D1 ∩ D, V (x) = 0

Then the origin is unstable
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Fig. 5.5 Sets used in proof
of the Chetaev instability
theorem, Proposition5.24

D

U
x(t)

D
1

r

Proof Choose an r such that Br = {x ∈ Rn |‖x‖ ≤ r } is in D. Refer to Figure5.5.
For any trajectory beginning inside U = D1 ∩ Br at x0 �= 0, V (x(t)) increases
indefinitely from V (x0) > 0. But by continuity, V (x) is bounded on U . Hence,
x(t) must leave U . It cannot do so across its boundary interior to Br so it must
leave Br . �

5.4.2.1 Stability of Linear Systems

Consider the linear system

ẋ = Ax (5.6)

Proposition 5.25 Consider the Lyapunov equation

AT P + P A = −Q (5.7)

(a) If there exists a positive definite pair of symmetric matrices P, Q satisfying the
Lyapunov equation then the origin of the system (5.6) is asymptotically stable.

(b) If there exists a pair of symmetric matrices P, Q such that P has at least one
negative eigenvalue and Q is positive definite, then the origin is unstable.

Proof Consider (a) first. Choose V (x) = xT Px and compute V̇ = xT (AT P +
P A)x = −xT Qx . The assumptions and the LaSalle stability theorem lead to the
conclusion that all trajectories tend to the orgin as t → ∞. Case (b) requires applica-
tion of Chetaev’s instability theorem. In this case, consider V (x) = −xT Px . Recall
that for symmetric P the eigenvalues of P are real, they may be positive, negative,
or zero. On the positive eigenspace, V < 0, on the negative eigenspace, V > 0, and
on the zero eigenspace, V = 0. Since P has at least one negative eigenvalue, the
negative eigenspace is nontrivial and there is a set of points, D, for which V > 0. Let
Bε be an open sphere of small radius ε centered at the origin. Since V is continuous,
the boundary of D in Bε, ∂D ∩ Br , consists of points of points at which V = 0. It
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includes the origin and is never nonempty (even if all eigenvalues of P are negative).
For V (x) = −xT Px , V̇ = xT Qx , and it is always positive since Q is assumed
positive definite. Thus, the conditions of Proposition5.24 are satisfied. �

Suppose Q > 0 and the P has a zero eigenvalue. If the matrix P has a zero
eigenvalue, then there are points x �= 0 such that V (x) = xT Px = 0. But at such
points V̇ (x) = −xT Qx < 0. Since V(x) is continuous, this means that there must
be points at which V assumes negative values. Thus, P must also have a negative
eigenvalue. Thus, we have the following corollary to Proposition5.25.

Corollary 5.26 The linear system (5.6) is asymptotically stable if and only if for
every positive definite symmetric Q there exists a positive definite symmetric P that
satisfies the Lyapunov equation (5.7).

5.4.2.2 Lagrangian Systems

The Lyapunov analysis of the stability of nonlinear dynamical systems evolved from
a tradition of stability analysis via energy functions that goes back at least to Lagrange
andHamilton.Wewill consider a number of exampleswhich are physicallymotivated
and for which there are energy functions that serve as natural Lyapunov function
candidates. Consider the class of Lagrangian systems characterized by the set of
second-order differential equations

d

dt

∂L(q, v)

∂v
− ∂L(q, v)

∂q
= QT (5.8)

where

1. q ∈ Rn denotes a vector of generalized coordinates and v = dq/dt the vector
generalized velocities.

2. L : R2n → R is the Lagrangian. It is constructed from the kinetic energy function
T (q, v) and the potential energy function U (q), via L(q, v) = T (q, v) − U (q).

3. The kinetic energy has the form

T (q, v) = 1
2v

T M(q)v

where for each fixed q, the matrix M(q) is positive definite.
4. The potential energy is related to a force vector f (q) via

U (q) =
∫

f (q)dq

5. Q(q, v, t) is a vector of generalized forces.
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Equation (5.8) evaluates to

M (q) v̇ +
[

∂

∂q
(M (q) v) − 1

2

(
∂

∂q
(M (q) v)

)T
]

v + ∂U (q)

∂qT
= Q (5.9)

which can be written

M (q) v̇ + C (q, v) v + ∂U (q)

∂qT
= Q (5.10)

Remark 5.27 The total energy of the Lagrangian system (5.9) or (5.11) is

E (q, v) = 1

2
vT M (q) v + U (q)

We can readily compute the time rate of change of energy

Ė = 1

2
vT

(
∂M (q) v

∂q
− 2C (q, v)

)
v + vT Q

In general, if E(0, 0) = 0, E(q, v) > 0 otherwise, and Ė ≤ 0, then E is a Lyapunov
function.

Suppose that Q = 0 so that the system is conservative. Consequently, we expect

Ė = 1

2
vT

(
∂M (x) v

∂x
− 2C (x, v)

)
v ≡ 0

A useful first-order form derivable from (5.9) is Hamilton’s equations obtained as
follows. Define the generalized momentum as

pT = ∂L

∂q̇
= q̇T M(q) ⇒ q̇ = M−1(q)p (5.11)

Define the Hamiltonian H : R2n → R

H(q, p) = [pT q̇ − L(q, q̇)
]

q̇→M−1 p
= 1

2 pT M−1(q)p + U (q) (5.12)

The Hamiltonian is the total energy expressed in momentum rather than velocity
coordinates. Notice that Lagrange’s equation can be written

ṗT − ∂L

∂q
= QT (5.13)
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Now, using the definition of H , (5.12), write

d H = ∂H

∂q
dq + ∂H

∂ p
dp = dpT q̇ + pT dq̇ − ∂L

∂q
dq − ∂L

∂q̇
dq̇ = dpT q̇ − ∂L

∂q
dq

Using (5.13), we have

∂H

∂q
dq + ∂H

∂ p
dp = q̇T dp − ( ṗ − Q)T dq

Comparing coefficients of dp and dq, we have Hamilton’s equations.

q̇ = ∂H(q, p)

∂ pT
, ṗ = −∂H(q, p)

∂qT
+ Q (5.14)

Example 5.28 (Soft Spring) Consider a system of with kinetic and potential energy
functions

T = x2
2

2
, U = x2

1

1 + x2
1

Lagrange’s equations in first-order form (ẋ1 = x2) with viscous damping are

[
ẋ1
ẋ2

]
=
[

x1
−2 x1

(1+x2
1 )

2 − cx2

]

If we take the total energy as a candidate Lyapunov function,

V (x1, x2) = 1
2 x2

2 + x2
1

1 + x2
1

an easy calculation shows that V̇ = −c x2 ≤ 0 for c > 0. Furthermore, the set
V̇ = 0 consists of the x1-axis, and the only entire solution contained therein is the
trivial solution. We conclude that the origin is asymptotically stable. We cannot,
however, conclude global asymptotic stability because the Lyapunov function is not
radially unbounded. Let us look at the level sets of V , shown in Figure5.6. The state
trajectories are shown in Figure 5.7.

Example 5.29 (Variable Mass) Consider a system with variable inertia, typical of a
crankshaft. The kinetic and potential energy functions are

T = (2 − cos 2x1) x2
2 , U = x2

1 + 1
4 x4

1
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Fig. 5.6 Level sets soft
spring total energy
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Systems with variable mass are much easier to analyze using Hamilton’s equa-
tions, so we define the generalized momentum p = (2 − cos 2x1) x2 and the Hamil-
tonian

H(x1, p) = p2

2(2 − cos 2x1)
+ x2

1 + 1
4 x4

1

Again with viscous damping, Hamilton’s equations are

[
ẋ1
ṗ

]
=
[

p
2−cos 2x1

−2x1 − x3
1 − p2 sin 2x1

(2−cos 2x1)2
+ 2cp

(2−cos 2x1)2

]
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Fig. 5.8 Level curves for
variable mass total energy
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It is not difficult to compute Ḣ , indeed,

Ḣ = ∂H

∂x1
ẋ1 + ∂H

∂ p
ṗ = 2cp2

(cos 2x1 − 2)3

We conclude that Ḣ ≤ 0 for c > 0. Moreover, the only entire trajectory in the set
Ḣ = 0 is the trivial solution, and since H is radially unbounded, we can conclude
that the origin is globally asymptotically stable. Let us look at the level curves of H ,
Figure 5.8, and at the state space trajectories, Figure 5.9.

Example 5.30 (Multiple Equilibria) Consider the system

ẍ + ∣∣x2 − 1
∣∣ ẋ3 − x + sin

(π x

2

)
= 0

Notice that the system has three equilibria (x, ẋ) = (0, 0), (−1, 0), (1, 0). We can
determine their stability by examining the system phase portraits or using a Lyapunov
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Fig. 5.10 Phase portrait for
the multiple equilibria
system
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analysis based on total energy as the candidate Lyapunov function. First, let us
examine the phase portraits shown in Figure 5.10. We see that the equilibrium point
(0, 0) is unstable and that the other two, (±1, 0), are asymptotically stable.

Now, let us consider the Lyapunov viewpoint. The total energy is

V = ẋ2

2
+ x2

2
− 2

π

(
1 − cos

(π x

2

))

A straightforward calculation leads to

V̇ = − ∣∣x2 − 1
∣∣ ẋ2

The LaSalle theorem 5.21 can now be applied. Let us view the level surfaces shown
in Figure 5.11.

Notice that there are level surfaces that bound compact sets that include the equi-
librium point (1, 0). Pick one and designate it Ωc1 . Moreover, V̇ ≤ 0 everywhere,

Fig. 5.11 Level sets for the
multiple equilibria system
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hence specifically in Ωc1 , and the maximum invariant set contained in Ωc1 is the
equilibrium point. Consequently, all trajectories beginning in Ωc1 tend to (1, 0) so it
is an asymptotically stable equilibrium point. A similar conclusion can be reached
for the equilibrium point (−1, 0).

5.4.3 First Integrals and Chetaev’s Method

Identifying an appropriate Lyapunov function is not always a simple matter. Even if
a system can be associated with an energy function, the energy function itself may
not be a suitable Lyapunov function. There exist many approaches to systematize the
search for a Lyapunov function. One of these involves building a Lyapunov function
from first integrals.

Definition 5.31 (First Integral) A first integral of the dynamical system

ẋ = f (x, t)

is a scalar function φ (x, t) that is constant along trajectories, i.e., it satisfies

φ̇ (x, t) = ∂φ (x, t)

∂x
f (x, t) + ∂φ (x, t)

∂t
≡ 0

Remark 5.32 For simplicity, consider the system ẋ = f (x). Suppose the n functions
φ1 (x) , . . . ,φn (x) are locally independent around the point x0, i.e.,

det
∂

∂x

⎡

⎢
⎣

φ1 (x)
...

φn (x)

⎤

⎥
⎦

x=x0

�= 0

Then, we can define a coordinate transformation x → z via z = φ (x). Suppose
further that φ1 (x) is a first integral. Then, we can compute

ż =
[
∂φ (x)

∂x
f (x)

]

x=φ−1(z)

Thus, we have ż1 = 0 ⇒ z1 ≡ constant. Consequently, knowledge of one first
integral reduces the problem to solving a system of n − 1 differential equations.
Knowledge of n first integrals is tantamount to solving the original system of equa-
tions.

Now, consider the system

ẋ = f (x, t) , f (0, t) = 0
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which has an equilibrium point at x = 0. We wish to consider the stability of the
origin. If φ (x, t) is a first integral and it is also positive definite (in x), then it
is an obvious candidate for a Lyapunov function. Suppose, however, that φ is not
positive definite. Chetaev suggested the following approach. Suppose k first integrals
φ1 (x, t) , . . . ,φk (x, t) are known, with φi (0, t) = 0. Then, construct a candidate
Lyapunov function of the form

V (x, t) =
∑k

i=1
αiφi (x, t) +

∑k

i=1
βiφ

2
i (x, t)

where the α′s and β′s are constants.

Example 5.33 (Rigid Body) Consider a rigid body with a body-fixed coordinate
system x, y, z aligned along the principal axes. Suppose that the coordinates are
arranged so that the principal inertias satisfy Ix > Iy > Iz > 0. Let ωx ,ωy,ωz

denote the angular velocities in body coordinates. Euler’s equations take the form

ω̇x = −
(

Iz−Iy

Ix

)
ωzωy = a ωzωy

ω̇y = −
(

Ix −Iz

Iy

)
ωxωz = −bωxωz

ω̇z = −
(

Iy−Ix

Iz

)
ωyωx = cωyωx

with a, b, c > 0.
Note that any state

(
ω̄x , ω̄y, ω̄z

)
is an equilibrium state if any two of the angular

velocity components are zero. In other words, any constant velocity rotation aligned
with one of the body axis is an equilibrium point. Consider rotation about the x-axis
(ω̄x , 0, 0) with ω̄x > 0. Shift the coordinates ωx → ωx + ω̄x so that the equilibrium
point is at he origin of the new equations

ω̇x = a ωzωy

ω̇y = −b (ωx + ω̄x )ωz

ω̇z = c (ωx + ω̄x )ωy

Energy does not work as a Lyapunov function (obvious?). Consider what we wish
to achieve. We seek V

(
ωx ,ωy,ωz

)
with the properties:

i. V (0, 0, 0)= 0
ii. V

(
ωx ,ωy,ωz

)
> 0 if

(
ωx ,ωy,ωz

) �= (0, 0, 0)
iii. V̇ ≤ 0

Let us look at all functions that satisfy V̇ = 0, i.e., that satisfy the partial differential
equation

∂V

∂ωx
a ωzωy + ∂V

∂ωy
(−b (ωx + ω̄x )ωz) + ∂V

∂ωz
c (ωx + ω̄x )ωy = 0
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It is not difficult to confirm that all solutions take the form

f

(
bω2

x + 2bωx ω̄x + aω2
y

2a
,
−cω2

x + 2cωx ω̄x + aω2
z

2a

)

In other words, we have identified two first integrals

φ1 = bω2
x + 2bωx ω̄x + aω2

y

2a

φ2 = −cω2
x + 2cωx ω̄x + aω2

z

2a

In accordance with Chetaev’s method take

V
(
ωx , ωy , ωz

) = cφ1 + bφ2 + (cφ1 − bφ2)
2 = 1

2

(
8b2c2ω̄2

x

a2
ω2

x + cω2
y + bω2

z

)

+ h.o.t.

Thus, we have V (0) = 0 and on a neighborhood of the origin, V > 0 and V̇ = 0.
Using Lyapunov’s theorem, we conclude that spin about the x-axis is stable.

5.4.4 Remarks on Noether’s Theorem

Recall the Lagrangian systems of Section 5.4.2.2. Emmy Noether proved1 that for
every smooth symmetry possessed by a conservative Lagrangian, there is a cor-
responding first integral. The Lagrange equations are ordinarily derived from the
principle of least action which states that the path taken by the system between times
t1 and t2 is one for which the action integral, S, is stationary, where

S (q (t)) =
∫ t2

t1

L (q (t) , q̇ (t) , t) dt (5.15)

Thus, the contemporaneous variation must satisfy δS = 0. The contemporaneous
variation of q (t) is simply an arbitrary, small perturbation δq (t) , t ∈ [t1, t2].
Noether’s theorem can be obtained by applying a noncontemporaneous variation to
S. A noncontemporaneous variation allows a perturbation Δt of t , so that [195, 19]

Δq (t) = δq (t) + q̇ (t)Δt (5.16)

1See the translation of her 1918 paper, [158].
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This leads to the requirement that

d

dt

[
∂L

∂q̇
Δq +

(
L − ∂L

∂q̇
q̇

)
Δt

]
= ΔL (5.17)

Thus, if ΔL = 0, i.e., the Lagrangian is invariant with respect to the perturbation
(Δq,Δt), it must be true that

∂L

∂q̇
Δq +

(
L − ∂L

∂q̇
q̇

)
Δt = const. (5.18)

Tograsp the significance of this result, consider the following transformation, q̇ → p,
from Section 5.4.2.2, defined by

pT = ∂L (q̇, q, t)

∂q̇

and define the Hamiltonian

H(q, p) = [pT q̇ − L(q, q̇)
]

q̇→M−1(q)p

so that
pT Δq − H(q, p)Δt = const. (5.19)

Now, consider two special cases as examples:

1. Suppose L is invariant with respect to time, i.e., ΔL = 0 with Δq = 0 and
Δt = 1, then Equation (5.19) asserts H = const. implying conservation of
energy.

2. Suppose L is invariant with respect to a coordinate qi , i.e.,ΔL = 0 withΔqi = 1,
Δq j = 0, j �= i , and Δt = 0, then, again from (5.19), pi = const. implying
conservation of momentum.

These results for conservative systems have been extended to nonconservative sys-
tems and systems with constraints [195, 19].

5.4.5 Stable, Unstable, and Center Manifolds

Consider the autonomous system (5.5) and suppose x = 0 is an equilibrium point
so that f (0) = 0. Let A := ∂ f (0)/∂x . Define three subspaces of Rn:

1. The stable subspace, Es : the eigenspace of eigenvalues with negative real parts;
2. The unstable subspace, Eu : the eigenspace of eigenvalues with positive real parts;
3. The center subspace, Ec: the eigenspace of eigenvalues with zero real parts.

An equilibrium point is called hyperbolic if A has no eigenvalues with zero real
part; i.e., there is no center subspace, Ec. In the absence of center subspace, the
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linearization is a reliable predictor of important qualitative features of the nonlinear
system. The basic result is given by the following theorem. First, some definitions.

Let f, g be Cr vector fields on Rn with f (0) = 0, g(0) = 0. M is an open subset
of the origin in Rn .

Definition 5.34 Two vector fields f and g are said to be Ck-equivalent on M if
there exists a Ck diffeomorphism h on M , which takes orbits of the flow generated
by f on M ,Φ(x, t), into orbits of the flow generated by g on M , Ψ (x, t), preserving
orientationbut not necessarily parameterizationby time.C0-equivalence is referred to
as topological equivalence. If there is such an h which does preserve parameterization
by time, then f andg are said to be Ck-conjugate. C0-conjugacy is referred to as
topological-conjugacy.

Proposition 5.35 (Hartman-GrobmanTheorem)Let f (x) be a Ck vector field on Rn

with f (0) = 0 and A := ∂ f (0)/∂x. If A is hyperbolic then there is a neighborhood
U of the origin in Rn on which the nonlinear flow of ẋ = f (x) and the linear flow
of ẋ = Ax are topologically conjugate.

Proof (Chow & Hale [51], p. 108)

Definition 5.36 Let U be a neighborhood of the origin. We define the local stable
manifold and local unstable manifold of the equilibrium point x = 0 as, respectively,

W s
loc = {x ∈ U |Ψ (x, t) → 0 as t → ∞ ∧ Ψ (x, t) ∈ U ∀t ≥ 0 }

W u
loc = {x ∈ U |Ψ (x, t) → 0 as t → −∞ ∧ Ψ (x, t) ∈ U ∀t ≤ 0 }

Proposition 5.37 (Center Manifold Theorem) Let f (x) be a Cr vector
field on Rn with f (0) = 0 and A := ∂ f (0)/∂x. Let the spectrum of A be divided
into three sets σs,σc,σu with

Re λ =
⎧
⎨

⎩

< 0 λ ∈ σs

= 0 λ ∈ σc

> 0 λ ∈ σu

Let the (generalized) eigenspaces of σs,σc,σu be Es, Ec, Eu, respectively. Then
there exist Cr stable and unstable manifolds W s and W u tangent to Es and Eu,
respectively, at x = 0 and a Cr−1 center manifold W c tangent to Ec at x = 0. The
manifolds W s, W c, W u are all invariant with respect to the flow of f (x). The stable
and unstable manifolds are unique, but the center manifold need not be.

Proof [141].

Example 5.38 (Center Manifold) Consider the system

ẋ = x2, ẏ = −y
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Fig. 5.12 Center manifold
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from which it is a simple matter to compute

x(t) = x0
/
(1 − t x0), y(t) = y0e−t ⇒ y(x) =

[
y0e−1/x0

]
e1/x

The phase portrait is shown below. Observe that (0, 0) is an equilibrium point with:

A =
[
0 0
0 −1

]
⇒ Es = span

{
0
1

}
, Ec = span

{
1
0

}

Notice that the center manifold can be defined using any trajectory beginning with
x < 0 and joining with it the positive x-axis. Also, the center manifold can be
chosen to be the entire x-axis. This is the only choice which yields an analytic center
manifold (Figure5.12).

There are some important properties of these manifolds that will not be examined
here. See, for example, [83] and [12]. Let us note, however, that existence and unique-
ness of solutions insure that two stable (or unstable) manifolds cannot intersect or
self-intersect. However, a stable and an unstable manifold can intersect. The global
stable and unstable manifolds need not be simple submanifolds of Rn , since they
may wind around in a complex manner, approaching themselves arbitrarily closely.

5.4.5.1 Motion on the Center Manifold

Consider the system of differential equations

ẋ = Bx + f (x, y)

ẏ = Cy + g(x, y)
(5.20)
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where (x, y) ∈ Rn+m , f, g, and their gradients vanish at the origin, and the eigen-
values of B have zero real parts, those of C negative real parts. The center manifold
is tangent to Ec:

Ec = span

[
In

0m×n

]

It has a local graph

W c = {(x, y) ∈ Rn+m |y = h(x)
}
, h(0) = 0,

∂h(0)

∂x
= 0

Once h is determined, the vector field on the center manifold W c (i.e., the surface
defined by y = h(x)) can be projected onto the Euclidean space Ec as

ẋ = Bx + f (x, h(x)) (5.21)

These calculations lead to the following result (see [83]).

Proposition 5.39 (Center Manifold Stability Theorem) If the origin of (5.21) is
asymptotically stable (resp. unstable) then the origin of (5.20) is asymptotically
stable (resp. unstable).

To compute h, we use the fact that on W c it is required that y = h(x) so that

ẏ = ∂h(x)

∂x
ẋ = ∂h(x)

∂x
[Bx + f (x, h(x)]

But ẏ is also governed by (5.20) so we have the partial differential equation

∂h(x)

∂x
[Bx + f (x, h(x)] = Ch(x) + g(x, h(x) (5.22)

that needs to be solved along with the boundary conditions h(0) = 0, ∂h(0)
∂x = 0.

Example 5.40 Consider the following two-dimensional system from Isidori [100].

ẋ = cyx − x3

ẏ = −y + ayx + bx2

where a, b, andc are real numbers. It is easy to see that the origin is an equilibrium
point and that it is in the form of (5.20) with B = 0 and C = −1. To compute h, we
need to solve the partial differential equation
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∂h

∂x

[
cxh(x) − x3

]+ h(x) − ah(x)x − bx2 = 0 (5.23)

with boundary conditions h(0) = 0, ∂h(0)
∂x = 0.

Assume a polynomial solution of the form

h(x) = a0 + a1x + a2x2 + a3x3 + O(x4)

In view of the boundary conditions, we must have a0 = 0 and a1 = 0. Substituting
h into (5.23) leads to

(a2 − b) x2 + (a3 − aa2) x3 + O
(
x4
) = 0

From which it follows a2 = b, a3 = a2, so that

h = bx2 + abx3 + O
(
x4
)

Thus, the motion on the center manifold is given by

ẋ = (−1 + bc)x3 + abcx4 + O(x5)

Thus, we have the following results:

(a) If bc < 1, the motion on the center manifold is asymptotically stable,
(b) If bc > 1, it is unstable,
(c) If bc = 1 and a �= 0, it is unstable
(d) If bc = 1 and a = 0, the above calculations are inconclusive. But in this special

case, it is easy to verify that h(x) = x2 and the center manifold dynamics are
ẋ = 0. So the motion is stable, but not asymptotically stable.

5.5 Analysis of Power System Stability

Lyapunov methods of stability assessment have been an important tool in power sys-
tems stability analysis for many decades [140, 14, 163, 191]. The important problem
is to identify appropriate candidate Lyapunov functions. The total energy of the sys-
tem of interest is often a good starting point, if it is known. As noted in Section 5.4.3,
total energy may not have the desired properties, a problem that may be resolved by
combining energy with other first integrals. An essential advantage of natural func-
tions is the direct link between stability and the underlying physics of the system,
providing an understanding of why stability breaks down in a given situation.

The Lagrange constructs of Chapters 3 and 4 provide insight into the energy
functions associated with circuits and machines. In complex interconnected power
systems, various manipulations, simplifications, and approximations lead to models

http://dx.doi.org/10.1007/978-0-8176-4674-5_3
http://dx.doi.org/10.1007/978-0-8176-4674-5_4
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in which the connection to natural energy functions or other first integrals may be
lost. Thus, the notion of energy-like Lyapunov functions has been widely used in
power systems (example [14, 149, 154, 112, 123, 47, 178]). In this approach, energy
concepts motivate the form of the function. This formulation need not be entirely ad
hoc as there is an extensive area of thought regarding the inverse problem of analytical
mechanics, example [173, 9, 195, 19]. This perspective is taken in [112, 123].

In power system direct stability analysis, the importance of an energy function
is clearly evident. Beginning with the work of Magnusson [140], energy analysis
has been a recurrent theme over a span of many decades. Nevertheless, there remain
difficulties with the application of energy functions to systems with loads. Much of
the discussion in the literature centers on the issue of transfer conductances in the
formulation of energy-like Lyapunov functions. The essential difficulty is the same
whether constant admittance load models are employed and load buses eliminated,
or constant power load models are employed and load buses retained.

Intrinsically more fundamental than the question of the existence of energy-like
Lyapunov functions are questions about the energy function itself. If an energy func-
tion exists, then it is often convenient to use it as the basis for construction of a
candidate Lyapunov function. Typically, such a Lyapunov function leads to sharp
estimates of the domain of attraction of a stable equilibrium. Indeed, the energy
function can often attribute a useful physical interpretation to the stability boundary
and thereby suggest means of evaluating stability margins, example the potential
energy boundary surface (PEBS) method [50]. Moreover, such a Lyapunov function
can be used to study the affects of system parameter variations on the geometric
properties of the domain of attraction. Should the system lose stability under para-
meter variations, the energy function, although no longer a Lyapunov function, may
provide useful information about the mechanism of instability.

Attempts to construct exact global energy functions for power systems with loads
have not yet proved satisfactory, but recent proposals show promise [33, 6]. On the
other hand, local energy functions are easier to identify and they also can provide
useful information about the nature of impending instability. In fact, when operating
near stability limits, they may yield satisfactory estimates of the stability boundary
and, if not, they can be useful first approximations for refined Lyapunov functions
which provide improved estimates.

The following paragraphs discuss in more detail the use of energy functions in
power system stability analysis.

5.5.1 Properties of Classical Power System Models

Consider the classical power system model composed of n + m + k buses where
buses i = 1, . . . , n are the internal buses of n generators, buses i = n + 1,…, n + m
are m PV load buses, and buses i = n + m + 1, . . . , n + m + k are k PQ load buses.
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The interconnecting network is considered to be the equivalent reduced network
resulting from the elimination of the constant admittance loads and network internal
buses. It is convenient to write the dynamical equations of motion in the form

M δ̈g + Dδ̇g + f1
(
δg, δl , V,μ

) = 0
f2
(
δg, δl , V,μ

) = 0
(5.24)

where M denotes the diagonal matrix of generator rotor inertias, D is the diagonal
damping matrix, the vector of network bus angles is δT = (δT

g , δT
l

)
, where δg is the

n-vector of generator internal bus angles, δl is the (m + k)-vector of load bus angles,
V is the k-vector of PQ load bus vectors, and μ is a p-dimensional parameter vector.
The functions f1 and f2 are the classical load flow functions as defined in (4.122).

5.5.1.1 Translational Symmetry

The function f T = (
f T
1 , f T

2

)
has a translational symmetry in the angle variables,

i.e., f (δ +α1, V,μ) = f (δ, V,μ) for any real number α. The usual remedy for this
situation is to define a swing bus and refer all other bus angles to it. For example,
choose the first generator bus as the swing bus and define the transformation of angle
variables:

θ1 = δ1, θi = δi − δ1 f or i = 2, .., n

When this change of angle coordinates is made, the resultant equations are indepen-
dent of θ1. In the load flow problem, it is typical to make the change of variables,
then drop the first equation and solve the remaining equations for the n − 1 angle
variables θ2 . . . θn .

The dynamic problem is somewhat more delicate. There are two cases, either the
swing bus is an infinite bus or it is not. If the swing bus can be treated as an infinite bus,
the transformation of variables can be applied and then set θ1 ≡ 0. This effectively
results in dropping the first dynamic equation, precisely analogous to the load flow
case. If the swing bus cannot be treated as an infinite bus, the first equation cannot,
in general, be eliminated. Nevertheless, it is still useful to make a transformation of
the angle coordinates. Two transformations are commonly used: the one described
above or the so-called center of angle transformation which uses and average angle
reference, example [58]. To justify the above remarks, consider the transformation
δ = T θ in matrix form:

T =

⎡

⎢⎢⎢
⎢⎢
⎣

1 0 0 · · · 0
1 1 0 · · · 0
1 0 1 0
...

...
. . .

1 0 1

⎤

⎥⎥⎥
⎥⎥
⎦

, T −1 =

⎡

⎢⎢⎢
⎢⎢
⎣

1 0 0 · · · 0
−1 1 0 · · · 0
−1 0 1 0
...

...
. . .

−1 0 1

⎤

⎥⎥⎥
⎥⎥
⎦

http://dx.doi.org/10.1007/978-0-8176-4674-5_4
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The governing equations transform to

T T
11MT11θ̈g + T T

11DT11θ̇g + T T
11 f1(T11θg + T12θl, T12θg + T22θl , V,μ) = 0

f2(T11θg + T12θl, T12θg + T22θl , V,μ) = 0
(5.25)

where T is partitioned:

T =
[

T11 T12

T21 T22

]
∼
[

n × n n × (m + k)

(m + k) × n (m + k) × (m + k)

]

It is easy to confirm that setting θg,1 = 0 in (5.25) is equivalent to setting δ1 = 0 in
(5.24). But this is only appropriate when the swing bus can be treated as an infinite
bus. Otherwise, equation (5.25) can be used. By modifying the transformation T ,
one can obtain the equivalent to (5.25) in center of angle coordinates.

It is easy to overlook the significance of the translational symmetry because it has
such an obvious physical interpretation. Itmeans simply that only the relativemotions
of the angular displacements are unique. Thus, any equilibrium point of interest is
actually a point in a one-dimensional manifold of equilibria in the 2n-dimensional
state space, and it only makes sense to discuss the stability of the entire manifold.
The usual remedy is to measure displacement relative to an arbitrary selected swing
bus as above. In any case, the state space is reduced to dimension 2n − 1, and the
equilibrium manifold is collapsed to a point.

When the system is conservative, i.e., in the absence of damping and transfer
conductances, the translational symmetry is directly associated with a conservation
law or first integral: Total angular momentum is constant. Thus, a second reduction is
obtainable so that a reduction of the state space to dimension 2n −2 can be achieved
[126, 173].

As it turns out, this reduction is not restricted to purely conservative power sys-
tems. It is known [198] that it works when uniform damping is present (in the absence
of transfer conductances), an often used approximation. It does not work, however,
when arbitrary damping is present. The fact that various dimensions for the state
space have been employed in the literature has sometimes made comparison between
methods difficult. Willems [198]) describes the situation very well and builds a case
for conducting the analysis in the 2n-dimensional state space.

5.5.1.2 Stability of the Equilibrium Manifold

In the event that the network does not contain any load buses, the variables δl and V
are absent as is the second equation of (5.24), i.e., f collapses to f1. As a result, the
governing equation (5.24) reduces to

M δ̈ + Dδ + f (δ,μ) = 0 (5.26)



5.5 Analysis of Power System Stability 139

An equilibrium point of (5.26) is any point δ∗ ∈ Rn such that δ̇∗ = 0. Thus, equilibria
are roots of the equation

f (δ∗,μ) = 0 (5.27)

Let δ∗ be a solution of (5.27). Then because of the translational symmetry of f (δ,μ),
all points of the type

δ = δ∗ + c1

with c an arbitrary real constant are also equilibria. Consequently, any equilibrium
point belongs to a one-dimensional manifold of equilibrium points. Consider the
equilibrium manifold M ⊂ Rn associated with the equilibrium point δ∗.

M = δ∗ + c1, c ∈ R (5.28)

In the 2n-dimensional state space composed of points (ω, δ), the one-dimensional
equilibrium manifold is the set of points

M̃ = {(ω, δ) |ω = 0, δ ∈ M } (5.29)

Our interest is the stability ofM̃. For any setM̃ ⊂ R2n , an η-neighborhoodUη

(
M̃
)

is the set of points x ∈ R2n such that dist
(

x,M̃
)

< η, [84].

Definition 5.41 An invariant set M̃ of (5.26) is stable if for any ε > 0 there is an

η > 0 such that for any initial
(
ω0, δ0

)
in Uη

(
M̃
)
, the corresponding (ω (t) , δ (t))

is in Uε

(
M̃
)
for all t ≥ 0. M̃ is asymptotically stable if it is stable and in addition

each solution with initial state in Uη

(
M̃
)
approaches M̃ as t → ∞.

In the 2n dimensional state space, stability of a power system equilibrium point
corresponds to the study of stability of a one-dimensional invariant set. Lyapunov
methods are easily modified for this situation. Consider an autonomous system on
an m-dimensional state space, and suppose Ω is a p-dimensional invariant set. Fur-
thermore, suppose that Ω can be characterized in the following way. There exists a
continuous function g : Rm → Rm−p such that

Ω = {y ∈ Rm |g (y) = 0
}

(5.30)

This is the situation for the power system classical model with m = 2n and p = 1,
and the map g is linear.
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Definition 5.42 A scalar valued function V (y) is said to be positive definite with
respect to Ω in an open region U ⊃ Ω if

1. V (y) and its first partial derivatives are continuous on U .
2. V (y) = 0 for y ∈ Ω

3. V (y) ≥ W (g (y)), where W (g (y)) is an ordinary positive definite function on
Image of U under g, g (U )

If, in addition, V̇ ≤ 0 on U , V is called a Lyapunov function (with respect to Ω).

A straightforward extension of Lyapunov’s stability theorem is as follows:

Proposition 5.43 If a Lyapunov function exists in some open neighborhood U of an
invariant set Ω , then Ω is stable.

Willems [198] provides a variant of the LaSalle Invariance Theorem, 5.21.

Proposition 5.44 Suppose there exists a Lyapunov function V (y) on a open region
U ⊃ Ω such that

1. V (y) = a on the boundary of U and V (y) < a in U.
2. g (y) is bounded in U.
3. V̇ does not vanish identically on any trajectory in U that does not lie entirely in

Ω .

Then Ω is asymptotically stable and every trajectory in U tends to Ω as t → ∞.

5.5.1.3 Conservative Power Systems

In the event that the network does not contain any load buses, then the variable φ and
V are absent as is the second equation of (5.24). If, in addition D = 0, the equations
reduce to

M δ̈ + f (δ,μ) = 0 (5.31)

Note, if the reduced network does contain any transfer conductances, the system is
conservative (lossless). Moreover, it can be easily shown that the Jacobian of f with
respect to δ, i.e.,

∂ f (δ,μ)

∂δ
=
[
∂ f (δ,μ)

∂δ

]T

which implies that there is a scalar function U (δ,μ), called a potential function,
such that

f (δ,μ) = −∂U (δ,μ)

∂δ
(5.32)
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Fig. 5.13 Three-bus lossless
network
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It is common to refer to U (δ,μ) as the potential energy function and to define the
energy function as

E
(
δ̇, δ,μ

) = 1

2
δ̇T M δ̇ + U (δ,μ) (5.33)

It is also possible to define the Lagrangian

L
(
δ̇, δ,μ

) = 1

2
δ̇T M δ̇ − U (δ,μ) (5.34)

Note that (5.31) may be derived via Langrange’s equations using the Lagrangian
(5.29) (using an appropriate dissipation function if D �= 0). The energy function
(5.28) is the Jacobi first integral of the Lagrangian system associated with the
Lagrangian (5.29).

Example 5.45 Three Bus Lossless Network. Consider the three-bus system shown
in Figure 5.13. The three buses are generator internal buses. If uniform damping is
assumed and bus 1 is taken as the reference bus, the governing equations are

θ̈1 + γθ̇1 = ΔP1 − b13 sin (θ1) − b12 sin (θ1 − θ2)

θ̈2 + γθ̇2 = ΔP2 + b12 sin (θ1 − θ2) − b23 sin (θ2)
(5.35)

where

θ1 = δ2 − δ1, θ2 = δ3 − δ1,ΔP1 = P2 − P1,ΔP2 = P3 − P1

This systemwas studied by Aronovich and Neimark in 1961 as a Lagrangian system,
as reported by Aronovich and Kartvelishvili [11]. This is a Lagrangian system with
potential energy
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U (θ1, θ2) = −ΔP1θ1 − ΔP2θ2 − b13 cos (θ1) − b12 cos (θ1 − θ2) − b23 cos (θ2)
(5.36)

kinetic energy

T (ω1,ω2) = 1

2

(
ω2
1 + ω2

2

)
(5.37)

and generalized forces due to rotor friction

Qd = [−γω1 −γω2
]

(5.38)

To study stability, choose a candidate Lyapunov function

V = T (ω1,ω2) + U (θ1, θ2) (5.39)

and compute

V̇ = −γω2
1 − γω2

2 ≤ 0 (5.40)

The key to stability analysis in this case is the Lasalle Invariance Theorem, Propo-
sition 5.21. Accordingly, note that T (0, 0) = 0 and T (ω1,ω2) > 0 ∀ (ω1,ω2) �= 0
imply that equilibria corresponding to minimal extremal points of U (θ1, θ2) are
stable.

Clearly an understanding of the behavior of the potential energy is central to the
stability characteristics of the system. The potential energy as expressed in (5.35) is a
function of the angle coordinates θ1 and θ2 which are the configuration coordinates
of this Lagrangian system. The configuration is 2π periodic in each of the two angles.
Consequently, the configuration space can be envisioned as a torus. Consider the
domain [−π,π) × [−π,π) ⊂ R2. Bend around the θ2-axis so that the domain edges
θ1 = ±π meet to form a cylinder. Now bend the cylinder around the θ1-axis to form
a torus. Because configuration motion along any trajectory evolves along the surface
of the cylinder, the angular velocity at any point (θ1, θ2) belongs to the tangent plane
to the cylinder at (θ1, θ2). The collection of all tangent planes (called the tangent
bundle) is in fact the state space for this system.

Thepotential energywill be viewedas a functionon thedomain [−π,π)×[−π,π).
In the following illustrations, in Figures 5.14–5.16, the parameters bi j = 1 will be
fixed and the parametersΔP1,ΔP1 varied. Three different cases are considered, and
for each case, the potential energy surface and a potential energy contour plot are
shown.

Consider the case in Figure 5.14. It is easy to identify the six distinct equilibrium
points:

(0, 0) , (0,−π) , (−π, 0) , (−π,−π) , (−2π/3, 2π/3) , (2π/3,−2π/3)

Only one of these, the equilibrium at (0, 0) is stable. The level sets provide a clear
and precise indication of the domain of stability.
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Fig. 5.14 Contour plot with
ΔP1 = 0,ΔP2 = 0, b12 =
1, b13 = 1, b23 = 1
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Fig. 5.15 Contour plot with
ΔP1 = .25,ΔP2 = 0, b12 =
1, b13 = 1, b23 = 1
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Figure 5.15 also shows six equilibria, with locations somewhat perturbed from
those noted above:

(0.167251, 0.0836254) , (0.546935,−2.86813) , (−3.14159, 0.25268) ,

(−3.14159, 2.88891) , (−2.39283, 1.94518) , (1.67864,−2.30227)
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Fig. 5.16 Contour plot
with ΔP1 = π/5,
ΔP2 = −1, b12 = 1,
b13 = .5, b23 = 1
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Once again, the single stable equilibrium at (0.167251, 0.0836254) is clearly
evident. The contour lines create a more complex picture. Recall the torus picture,
which implies that the counter lines leaving the upper boundary of Figure 5.15
re-emerge by entering the lower boundary. The contour lines may be complex—not
necessarily forming a closed path. Even so, the there is a level set that defines the
boundary of the stability domain.

Figure 5.16 corresponds to a larger change in parameters which results in only
two equilibrium points with locations

(0.137867,−0.45604) , (1.99344,−0.974969)

The single stable equilibrium point, (0.137867,−0.45604), is again evident and the
boundary of the domain of stability can be easily envisioned as the limit of the
closed contour curves as they are expanded outward until the unstable equilibrium
is reached. It is interesting to note that this limit will not be smooth although the
energy function is. In general, the boundary of the domain of attraction of a stable
equilibrium point is a combination of the stable manifolds of neighboring unstable
equilibria.

5.5.2 Systems with Transfer Conductances

Power systems are nonconservative when energy is extracted from or added to
the system. In classical power systems, specifically (5.24), important sources of
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nonconservative behavior include the presence of transfer conductances, Gi j �= 0,
typically attributed to transmission line losses or constant admittance loads; machine
damping, D �= 0; and other types of loads or power sources. The main considera-
tion in the following discussion is the role of transfer conductances as well as the
interaction of transfer conductances with machine damping.

The arguments leading to the energy function (5.28) for the system (5.26) may
be extended to the more general case of the system (5.24) as described by Tsolas
et al [188]. In [188], load buses are included but transfer conductances are not. The
retention of load buses is intended to circumvent the introduction of transfer conduc-
tances, an approach suggested by Bergen and Hill [26]. The discussion below will
be concerned with the local characterization of energy functions to better understand
the role of transfer conductances. The matrix parameters of the linearized repre-
sentation involve the same complexity (notably asymmetry) regardless of the load
model employed. Therefore, the following analysis is constructed to admit any mix
of constant impedance, voltage controlled, and constant power loads.

5.5.2.1 Transfer Conductances

Consider, first, the essential issue raised by transfer conductances. In the classical
model, suppose the system is composed of n generator buses and no load buses so
that the dynamics are governed by (5.26) and fi takes the form

f1,i (δ,μ) =∑N
k=1 Vi Vk (Bik sin (δi − δk) + Gik cos (δi − δk)) − Pi ,

i = 1, . . . , n
(5.41)

and note that that the matrices Bi j and Gi j are symmetric (in the absence of phase-
shifting transformers). Now compute the Jacobian of f1 with respect to δ, denoted J ,

Ji j = ∂ f1,i
∂δ j

=
{∑N

k=1 Vj Vk
(
B jk cos

(
δ j − δk

)− G jk sin
(
δ j − δk

))
i = j

−Vi Vj Bi j cos
(
δi − δ j

)+ Vi Vj Gi j sin
(
δ j − δ j

)
i �= j

}

(5.42)
J is easily divided into a symmetric part Js = J T

s and an antisymmetric part Ja =
−J T

a :

[Js]i j =
{∑N

k=1 Vj Vk
(
B jk cos

(
δ j − δk

)− G jk sin
(
δ j − δk

))
i = j

−Vi Vj Bi j cos
(
δi − δ j

)
i �= j

}
(5.43)

[Ja]i j =
{

0 i = j
Vi Vj Gi j sin

(
δ j − δ j

)
i �= j

}
(5.44)

Clearly, if there are no transfer conductances, then Gi j = 0 i �= j , and the Jaco-
bian J is symmetric. Thus, f1 is derivable from a potential function, U , as in (5.27).
The fact that in the presence of transfer conductances f1 is not directly integrable is
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the essential difficulty in analyzing such systems. Notice that the self-conductances
Gii are not the issue. Transfer conductances come from losses in transmission lines,
which are typically small, and also from self-conductances associated with constant
admittance load buses that are removed using the network reduction process.

The asymmetry of J when transfer conductances are present means that f1 (δ,μ)

includes nonconservative forces of a type called circulatory forces in mechanics.
Circulatory forces introduce effects that are quite different from dissipative forces
and interact with dissipative forces in ways which are not intuitively obvious. The
stability of mechanical systems under the influences of circulatory forces has been
studied, most notably by Huseyin [93] and Leipholz [128]. The search for energy-
like Lyapunov functions is closely related to questions of the existence of variational
principles which produce a given set of differential equations. For an investigation
of such issues see [111] and [18].

5.5.2.2 Transfer Conductances and no Damping

Consider the lossless system (5.31), and suppose it has an equilibrium point at
(δ,μ) = (δ∗,μ∗). This system is readily linearized at this point and takes the form

Mẍ + K x = 0 (5.45)

where x = δ − δ∗, K = [
∂ f
/
∂δ
]∗
, M = MT > 0, and K = K T . Furthermore,

assume the a reference bus has not been defined so that f and hence K x have a
translational symmetry. A simple conclusion from the application of Proposition
5.44 is the following:

Proposition 5.46 Consider Equation (5.45) with M = MT > 0, K = K T and
suppose K x has a translational symmetry. The equilibrium manifold of (5.45) is
stable if and only if K ≥ 0 with precisely one zero eigenvalue.

We wish to discuss the effect of small perturbations of K . Let F denote the set of
real n × n matrices having the property of translational symmetry and ‖F‖ ≤ 1.

Definition 5.47 The equilibrium manifold of (5.45) is strongly stable if there exists
an ε0 > 0 such that the perturbed system

Mẍ + (K + εF) x = 0 (5.46)

is stable for each ε, |ε| < ε0 and each F ∈ F

The following theorem from [112] provides a characterization of strongly stability
of the equilibrium manifold of (5.45).

Proposition 5.48 The equilibrium manifold of system (5.45) is strongly stable iff
K ≥ 0 with precisely one zero eigenvalue and in addition, the eigenvalues of K are
distinct.
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Note that the requirements on K for stability of (5.45) admit repeated roots. Strong
stability does not allow repeated roots. This can be viewed as a very simple type of
resonance exclusion. Our notion of strong stability, tailored for the power system
stability problem, may be viewed as a special case of strong stability for linear recip-
rocal systems as defined by Hale [84]. The functions belonging to the perturbation
class used in [84] are periodic in time. As may be expected, the resulting resonance
conditions are considerably more complex. In the context of power system stability,
the use of time-varying (perhaps even stochastic) perturbations may be appropriate
in view of the fact that the reduced bus admittance parameters change with load
perturbations. Destabilization of the swing equations under stochastic perturbations
has been observed by Loparo and Blankenship [136].

The subsequent analysis depends on the notion of a symmetrizable matrix intro-
duced by Olga Taussky [182].

Definition 5.49 A real matrix A is symmetrizable if it be comes symmetric upon
multiplication by a real, symmetric, positive definite matrix, S.

The following theorem of Taussky [182] is stated without proof.

Proposition 5.50 The following properties are equivalent:

• AT = S AS−1, with S = ST > 0,
• A is similar to a symmetric matrix,
• A is the product of two symmetric matrices, one of which is positive definite,
• A is symmetrizable,
• A has real characteristic roots and a full set of eigenvectors.

The following corollary will prove useful.

Corollary 5.51 If A is symmetrizable by a matrix S such that S A = Q, S = ST > 0,
then A has real characteristic roots and these roots have the same sign as those of Q.

Proof That A has real roots follows from Proposition 5.50. Note that since S > 0,
we can write A = S−1Q and S−1 can be factored S−1 = B BT . Thus, A = B BT Q
and B−1AB = BT Q B so that A is similar to the symmetric matrix BT QT whose
eigenvalues obviously have the same signs as those of Q. �

The following proposition extends Proposition 5.46.

Proposition 5.52 Consider the system (5.45)

Mẍ + K x = 0

with M = MT > 0 and suppose K is real and K x has the translational symmetry
property. The equilibrium manifold of (5.45) is stable if and only if there exists there
exists a symmetric, positive definite matrix, S, such that SM−1K and satisfies the
conditions of Proposition 5.46.
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Proof Clearly (5.45) is unstable if there exists an nontrivial (eigen)vector, u,
satisfying

[
Mλ2 + K

]
u = 0

with corresponding eigenvalue λ having positive real part, or a repeated eigenvalue
with zero real part and without a complete set of eigenvectors (we except the double
root at the origin associated with the translational symmetry). It is easy to see that
the roots of det

[
Mλ2 + K

]
are distributed symmetrically with respect to both the

real and imaginary axes. It follows that the eigenvalues of a stable system must have
zero real part and they must be associated with a complete set of eigenvectors (trans-
lational symmetry excepted). Moreover, this implies that M−1K must have positive
real eigenvalues except for the single zero eigen value corresponding to the transla-
tional symmetry and a complete set of eigenvectors. It follows from Proposition5.50
that M−1K is symmetrizable by a matrix S, and from Corollary 5.51 that SM−1K
is nonnegative with the only zero eigenvalue corresponding to the translational sym-
metry. Thus, SM−1K satisfies the conditions of Proposition 5.46. �

5.5.2.3 Transfer Conductances and Damping

Consider the system

Mẍ + Dẋ + K x = 0 (5.47)

with MT = M > 0, DT = D > 0 and K has positive real eigenvalues except for
precisely one zero eigenvalue corresponding to a translational symmetry of K x . It
is convenient to write (5.47) in the form

ẍ + M−1Dẋ + M−1K x = 0 (5.48)

Definition 5.53 The system (5.47) or (5.48) is similar to a symmetric system if
there exists a real transformation of coordinates x → y, y = W x , W real and
nonsingular, such that the equations of motion have real symmetric coefficients in
the new coordinate system.

The following proposition was given by Inman [98].

Proposition 5.54 The system (5.47) is similar to a symmetric system if and only if
M−1D and M−1K have a common symmetrizing matrix.

For a system similar to a symmetric system, many well-known results apply. One
is noted here.
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Proposition 5.55 If (5.47) is similar to a symmetric system then the equilibrium
manifold M = {(ẋ, x) |ẋ = 0, x ∈ span (1) } is asymptotically stable.

Proof The proof is a straightforward application of Proposition 5.44. Let S be the
common symmetrizingmatrix of Proposition 5.54 and define the candidate Lyapunov
function

V (ẋ, x) = 1
2 ẋ T Sẋ + 1

2 xT
(
SM−1K

)
x (5.49)

Direct calculation leads to

V̇ = −ẋ T
(
SM−1D

)
ẋ (5.50)

Clearly, V satisfies the positive definiteness requirements of Proposition 5.44, where
M is the invariant set. Moreover, V̇ ≤ 0 and the equality holds only for ẋ = 0. But
all solutions satisfying ẋ = 0 lie entirely in M. �

One special case of interest is when M−1D and M−1K commute. This includes
the case of uniform damping, that is, M−1D = γ I , where γ is a positive scalar.When
M−1D and M−1K commute, they have a common set of eigenvectors (Gantmacher,
[76]) so that

M−1D = W −1ΣW, Σ = diag (σ1, . . . ,σn)

M−1S = W −1ΛW, Λ = diag (λ1, . . . ,λn)

and thus, the matrix S = W T W is a common symmetrizing matrix. It follows
that the conclusions of Proposition 5.55 apply. Thus, a power system with transfer
conductances which is stable in the absence of damping is asymptotically stable in
the presence of commutative (specially uniform) damping.

Suppose, however, that (5.48) is not similar to a symmetric system. We can still
utilize the symmetrizing matrix, S, for M−1K and rewrite (5.48) as

ẍ + (C + G) ẋ + SM−1K x = 0 (5.51)

where

C = 1
2

[(
SM−1D

)+ (SM−1D
)T
]

G = 1
2

[(
SM−1D

)− (SM−1D
)T
] (5.52)

so that C is symmetric and G is antisymmetric.
The stability of (5.51) can be characterized in terms of the matrix C , defined

(5.52).
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Proposition 5.56 If C ≥ 0, and the n2 × n matrix

⎡

⎢⎢⎢
⎣

C
C
(
SM−1K

)

...

C
(
SM−1K

)n−1

⎤

⎥⎥⎥
⎦

has rank n then the equilibrium manifold of (5.51) is asymptotically stable.

Remark 5.57 This theorem extends a result of Walker and Schmitendorf [196] to
the case G �= 0.

Proof Once again, we use the Lyapunov function defined in (5.49). A simple com-
putation shows that its time derivative along trajectories of (5.51) is

V̇ = −ẋ T (C) ẋ (5.53)

which is negative semidefinite. Thus, by Proposition 5.44, it is now necessary to show
that any solution of (5.51) satisfying xT Cx = 0 lies in the equilibrium manifold M̃ .
This will be accomplished by showing that under the hypothesis of the theorem only
the trivial solution of (5.51) can satisfy this condition.

Assume that

ẋ T C ẋ = 0 (5.54)

on some nontrivial time interval (t0, t1). Premultiply (5.51) by ẋ T to obtain

ẋ T Sẍ + ẋ T SM−1K x = 0 (5.55)

on (t0, t1). Now choose t , t0 < t < t1 and integrate by parts over (t0, t) to obtain

ẋ T Sẋ + xT SM−1K x =
∫ t

t0

ẍ T Sẍ dt +
∫ t

t0

ẋ T SM−1K ẋ dt (5.56)

The left-hand side is readily identifiable as V . Thus, a necessary condition that V is
nondecreasing is

ẋ T Sẋ + xT SM−1K x = 0 (5.57)

It is easy to prove that this condition is sufficient as well. Since SM−1K has a one-
dimensional null space spanned by the vector 1, the only solutions of (5.51) satisfying
(5.57) are of the form 1φ (t) where φ (t) is a scalar function of t . Direct substitution
into (5.51) and premultiplication by 1T lead to the conclusion that φ̈ (t) = 0, or
equivalently ẍ (t) = 0. It follows that the right-hand side of (5.56) is constant. Thus,
a solution of (5.51) satisfies (5.54) if and only if it satisfies (5.57).
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Note that (5.54) and (5.57) can be satisfied simultaneously if and only if there
exists a nontrivial vector q in the null spaces of both C and SM−K . The conditions
of the theorem preclude this as will be proved in the following. Assume that there
exists a nontrivial q in the null space of SM−K . It will be shown that it cannot lie in
the null space of C . Write the sequence of relations

Cq = Cq
C
(
SM−1K

) = 0
...

C
(
SM−1K

)n−1 = 0

(5.58)

Since the coefficient matrix on the left has full rank by hypothesis, it has a left inverse.
Let Σ denote the first n columns of the left inverse. Then

q = ΣCq (5.59)

Clearly, Cq �= 0. It follows that it does not possess a nontrivial solution satisfying
(5.54). �

IfC is indefinite, then the equilibriummanifold may be unstable. The significance
of this result arises from the fact that the definiteness properties of C do not directly
follow from those of D. It is true that if D has positive real eigenvalues, then so does
C+G. However,C may not have positive real eigenvalues, and it isC that determines
the stability of (5.51). This observationwasmade byHuseyin andHagedorn [94]. The
important implication is that a power system, with transfer conductances, which is
stable in the absence of dissipationmay be destabilized by the addition of dissipation.

In the absence of transfer conductances, the energy function represents the perfect
Lyapunov function in the sense that it globally characterizes the stability properties
of the system. The energy function itself precisely determines the domain of stability
of the stable equilibrium manifold. It is not known whether a global counterpart to
the energy function exists in the presence of transfer conductances. In this regard, it
is possible to give an interpretation of a Lyapunov function proposed by DiCaprio
[62, 63]. In view of the remark following Proposition 5.56, it is reasonable to con-
jecture that if a global energy-like potential function exists for a system with transfer
conductances, its local character will be that of (5.49). We can easily define a class of
candidate Lyapunov functions which possess the following two properties: 1) They
are locally equivalent to (5.49) and 2) they reduce globally to the conservative system
energy function in the absence of transfer conductances.

First, extend the model of (5.31) to include damping,

M δ̈ + Dδ̇ + f (δ) = 0 (5.60)
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where for convenience, the parameter μ has been suppressed. Denote an equilibrium
point of interest by δ∗ so that f (δ) = 0. The function f (δ) can be nonuniquely
separated

f (δ) = fa (δ) + fb (δ)

such that fa is integrable and fb is not necessarily so fa (δ∗) = fb (δ∗) = 0. faand fb

both have the translational symmetry property of f , and f reduces to fa in the
absence of transfer conductances. One simple choice for fa is obtained from f by
simply setting the transfer conductances to zero. There are many others. Let Ua (δ)
represent a potential function from which fa is derivable. As before, define the
potential function Va :

Va
(
δ̇, δ
) = 1

2 δ̇
T M δ̇ + (Ua (δ) − Ua

(
δ∗))

or in local coordinates, δ = x + δ∗

Va (ẋ, x) = 1
2 ẋ T Mẋ + 1

2 xT Ka x + Ga (x)

where

Ka =
[

∂2Ua

∂x∂xT

]∗
=
[
∂ fa

∂x

]∗
, Ga (x) = Ua

(
x + δ∗)− (Ua

(
δ∗)+ 1

2 xT Ka x
)

It follows directly from the construction ofUa that V1 has the desired global property;
i.e., it reduces to the conservative system energy function in the absence of transfer
conductances. However, in general, it is not locally equivalent to (5.49).

An alternative is to evaluate the Jacobian, K , of f , at δ∗ and compute the matrix
S that symmetrizes M−1K . Consider the system

δ̈ + SM−1Dδ̇ + SM−1 f (δ) = 0

This time divides SM−1 f (δ) into two parts

SM−1 f (δ) = fa (δ) + fb (δ)

where fa and fb satisfy the same conditions as above. Now take

V (ẋ, x) = 1
2 ẋ T Sẋ + 1

2 xT
[
SM−1Ka

]
x + G̃ (x)

where

Ka =
[
∂ f

∂δ

]∗
, G̃ (x) = Ua

(
x + δ∗)− (Ua

(
δ∗)+ 1

2 xT
[
SM−1Ka

]
x
)
.
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Remark 5.58 More General System Configurations. The discussion in this Section
5.5.2 has assumed that the system model was of the form (5.26), i.e., a n generator
buses and no load buses. Of course, many more general systems can be reduced to
this model by load bus elimination. But the local analysis discussed above applies to
even more general systems. Consider the system of (5.24). Let

(
δ∗
g , δ

∗
l , V ∗,μ∗) be

an equilibrium point. Suppose that it is strictly causal2 in the sense that there exist
unique functions δl

(
δg,μ

)
, V
(
δg,μ

)
satisfying f2

(
δg, δl (δ,μ) , V (δ,μ) ,μ

) = 0
on a neighborhood of

(
δ∗
g , δ

∗
l , V ∗,μ∗) with δl

(
δ∗
g ,μ

∗) = δ∗
l and V

(
δ∗
g ,μ

∗) = V ∗.
Under these circumstances, the linearized dynamics of (5.24) reduce to

Mẍ + Dẋ + K x = 0 (5.61)

where

K =
[

Dδg
f1 −

[
Dδl f1
DV f1

] [
Dδl f2
DV f2

]−1
]∗

(5.62)

and x = δg − δ∗
g .

2More discussion about this concept will be found below, particularly in Section 6.2.
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Chapter 6
Power System Dynamics: Bifurcation
Behavior

“.... the need is not so much for ‘more mathematics’ as for a
better understanding of the potentialities of its application.”

—Theodore v. Karman and Maurice Biot, “Mathematical
methods in Engineering”

6.1 Introduction

This chapter begins with a summary of the basic properties of systems described
by differential-algebraic equations (DAEs) and moves on to study singularities and
bifurcations of DAEs. The study of local behavior around bifurcation points of the
equilibrium equations is important as such points typically involve some sort of static
or dynamic instability phenomenon. Computational methods for finding these static
bifurcation points and generating models for examining local behavior are considered
next. Locating Hopf (dynamic) bifurcation points are also examined.

Power system applications occupy the final section of the chapter. Issues discussed
include static stability and voltage collapse, the relation between static bifurcation
and dynamic stability margins, bus variable sensitivity near bifurcation points, and
other. Several examples of static and Hopf bifurcation in power networks are given.

6.2 Systems Described by Differential-Algebraic Equations

As seen above in Chapter 4, a power system can often be described by the
(semi-explicit) differential-algebraic equation (DAE) model (example see [87]):

ẋ = f (x, y,μ)

0 = g(x, y,μ)
(6.1)
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where x ∈ Rn , y ∈ Rm and μ ∈ Rk . x and y are independent variables and μ is a
vector of system parameters. The functions f and g are assumed to be smooth, i.e.,
k times differentiable for some k ≥ 1.

An example is the classical power system model composed of n generators, m
PV load buses, and p PQ buses. As commonly expressed, these equations take the
form:

δ̇ = ω
Mω̇ + Dω + fg (δ, θ, V,μ) = 0

fl (δ, θ, V,μ) = 0
(6.2)

where ω, δ ∈ Rn , θ ∈ Rm+p, V ∈ R p and fl ∈ Rm+2p. The generator inertia matrix,
M , is nonsingular so (6.2) reduces to (6.1).

There are two essential features of the model (6.1) to be emphasized: 1) the explicit
parameter dependence, and 2) the differential-algebraic structure. Consideration of
the change in system behavior that occurs as a consequence of parameter variation is
central theme of the discussion below. This perspective is the key to formulating con-
cepts of stability that allow systematic examination of voltage collapse phenomenon
among other things. In addition to the obvious computational issues, a differential-
algebraic structure can produce behaviors not present in purely differential equations
[121, 193]. Examples will be given below.

Systems described by DAEs are frequently encountered in engineering and are
studied as dynamical systems that evolve on manifolds. An insightful introduction
to this point of view is the discussion of nonlinear RLC circuits in [89]. Numerical
methods for solving DAEs and other examples and references may be found in [32].
The conceptual framework within which (6.1) is to be considered will be discussed
below along with power system examples that illustrates the main issues.

6.3 Basic Properties of DAEs

For each fixed μ trajectories evolve on the state space, Mμ,

Mμ = {
(x, y) ∈ Rn+m | g(x, y,μ) = 0

}

Typically, Mμ is composed of one or more disconnected manifolds called compo-
nents [28]. In general, when referring to Mμ we mean one of these components
called the principal component.

Mμ is a regular n-dimensional manifold in Rn+m if

rank

[
∂g

∂x

∂g

∂y

]
= m (6.3)

The structure ofMμ depends on the parameter μ. Even for very simple power systems
(6.3) y not be satisfied for some values of μ.
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The manifold Mμ is the state space for the dynamical system defined by (6.1)
which induces a vector field on Mμ. If det[∂g/∂y] �= 0 at a point (x, y) ∈ Mμ, the
vector field is locally well defined at (x, y) by the relations

ẋ = f (x, y,μ) (6.4)

and

ẏ = −
[

∂g

∂y

]−1 ∂g

∂x
f (x, y,μ) (6.5)

As a matter of fact, the Implicit Function Theorem provides that it is possible to
locally solve the algebraic equation in (6.1) to obtain y = ϕ(x,μ) so that the flow
on Mμ is locally defined by the ordinary differential equation

ẋ = f (x,ϕ (x,μ) ,μ) (6.6)

If this is the case, then it is easy to show that the vector field defined by ẋ and ẏ lies
in the tangent space to Mμ at (x, y). On the other hand, if at the point (x, y) ∈ Mμ,
det[∂g/∂y] = 0, the vector field may not be well defined. Typically, such singular
points lie on co-dimension-1 submanifolds of singular points in Mμ.1

In power systems, such points were encountered by DeMarco and Bergen [60] in
connection with transient stability studies (“impasse points”), by Kwatny et al. [121]
in connection with bifurcation analysis (“noncausal points”) and others (“impasse
surfaces” in [90]; “singularity” in [194]).

Definition 6.1 Suppose Mμ is a regular manifold for all μ near μ∗ and that
det [∂g/∂y] �= 0 at the point μ = μ∗, (x, y) = (x∗, y∗) ∈ M. Then, (x∗, y∗,μ∗) is
said to be causal. Otherwise, it is noncausal.

If (x∗, y∗,μ∗) is causal, then the trajectories of the DAE (6.1) are locally defined
by the ordinary differential equation (6.6).

6.4 Singularities and Bifurcations of DAEs

Definition 6.2 The point (x∗, y∗,μ∗) is an equilibrium point of (6.1) if

f (x∗, y∗,μ∗) = 0
g (x∗, y∗,μ∗) = 0

(6.7)

Consider the set

M = {
(x, y,μ) ∈ Rn+m+k

∣
∣ g (x, y,μ) = 0

}
(6.8)

1The co-dimension of a k-dimensional submanifold of an n-dimensional manifold is n − k.
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3 2

V3,δ3

V2,δ2

P3,Q3

Z = jX Z = jX

Y = jB
1

V1,δ1

P1 P2

Fig. 6.1 A three-bus system with two-generator buses and a load bus

This set forms a regular manifold of dimension n + k in Rn+m+k provided

rank

[
∂g

∂x

∂g

∂y

∂g

∂μ

]
= m on M (6.9)

Similarly, the set

F = {
(x, y,μ) ∈ Rn+m+k

∣∣ f (x, y,μ) = 0
}

(6.10)

forms a regular manifold of dimension m + k in Rn+m+k provided

rank

[
∂ f

∂x

∂ f

∂y

∂ f

∂μ

]
= n on F (6.11)

Equilibria are the points in the intersection of these manifolds. It will be assumed
that the intersection of M and F is transversal. A transversal intersection implies
that either M and F do not intersect at all or that the intersection forms a regular k-
dimensional submanifold of Rn+m+k . Note that if the intersection is not transversal,
then an arbitrarily small perturbation of M or F will cause it to be. That is, a
nontransversal intersection is nongeneric [8].

In what follows, it is assumed that M and F are regular manifolds, i.e., that (6.9)
and (6.11) are true and that their intersection is transversal.

Example 6.3 Three-Bus Network. As an illustration of these concepts consider the
network illustrated in Figure 6.1. This network was used in [121] to illustrate some
of the properties of power systems described by DAEs. Although extremely simple,
configurations like this involving one or two generators feeding a remote load have
often been used in discussions of voltage stability and control [37, 59, 79, 91, 103].

P1, P2, P3 are the bus real power injections. Equilibrium solutions exist only if
P1 + P2 + P3 = 0. Assume that this is the case, for convenience, fix some of the
parameters as follows. The generator internal bus voltages are V1 = 1, V2 = 1,
and the generator inertia constants are M1 = 1, M2 = 1. Eliminate the translational
symmetry by using bus 1 as a reference bus and defining θ = δ2 −δ1 and φ = δ3 −δ1.
Finally, define ΔP = P2 − P1. The equations of motion can then be written
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θ̈ = −V (sin (θ − φ) + sin φ) + ΔP
0 = V (sin (φ − θ) + sin φ) − P3

0 = −V (cos φ + cos (φ − θ)) + (2 − B) V 2 − Q3

(6.12)

These three equations define the three independent variables (V, θ,φ) in terms of
four parameters (ΔP, P3, Q3, B). Any motion is constrained by the two algebraic
equations. Within the three-dimensional (3-D) space of independent variables, these
equations define a one-dimensional manifold called a configuration manifold. Each
point on this configuration manifold has a one-dimensional tangent space. At any
point in the configuration manifold, the velocity vector belongs to the tangent space
at that point. When these tangent spaces are collected together, they form a two-
dimensional state space (called the tangent bundle). Clearly, the configuration man-
ifold, and hence the state space, can change its shape as the system parameters vary.
In [121], it is shown that for almost all values of the parameters the configuration
space is a closed curve so that the state space is topologically equivalent to a cylinder.
Moreover, the noncausal points form two one-dimensional submanifolds that divide
the state space (cylinder) into two sheets. The parameter dependence of the system
equilibria is investigated for various values ΔP while the remaining parameters are
fixed: P3 = −1, Q3 = 0, B = 1.

As ΔP is decreased from 0 to −1, the system has two stable equilibria, one in
each of the two sheets, which move as indicated in Figure 6.2. As ΔP decreases

noncausal sets

stable equilibria

(a)

(c) (d)

(b)

Fig. 6.2 (a) The cylindrical state space is divided into two sheets by the noncausal sets or “impasse”
surfaces. (b) The cylindrical space is flattened out in order to illustrate the state trajectories on the
two sheets. (c) As ΔP decreases below −1, the left equilibrium point migrates into the right sheet
and changes from stable to unstable. (d) Further decreases in ΔP cause a bifurcation that leaves no
equilibria. The post-bifurcation trajectories are illustrated here
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below −1, the left equilibrium moves through the noncausal set into the adjacent
sheet and becomes unstable. Further decreases in ΔP cause the two equilibria to
meet and annihilate each other. As shown in [121], if the parameter B is reduced with
all others held fixed, then the radius of the cylindrical state space decreases so that
the state space shrinks to a line as B → 0. The crossing of the left equilibrium point
across the noncausal surface as ΔP is reduced is accompanied by an exchange of
stability from stable to unstable. It is called a singularity-induced bifurcation. Further
movement to the right of unstable equilibrium ultimately involves collision with the
stable equilibrium point and disappearance of both. This is a classical saddle-node
bifurcation.

Another, and quite different, example of a power system with DAE description
is given in [193, 194]. Here again, two-dimensional state space is divided by a
one-dimensional submanifold of noncausal points. The analysis in [193, 194] illus-
trates a one-parameter variation that causes an equilibrium point to pass through the
noncausal surface accompanied by an exchange of stability of one eigenvalue that
diverges through infinity.

6.5 Bifurcation of Flows Near Equilibria

An important factor contributing to improved understanding of nonlinear phenom-
enon is the simple notion that it is far more profitable to study families of nonlinear
systems rather than individual nonlinear systems. It is the differences in behavior that
exist between members of a family that is most revealing. For instance, the detailed
investigation of a system containing a limit cycle is not nearly so informative as the
study of a family that contains the system and that exhibits the birth and extinction
of the limit cycle.

6.5.1 Equivalence of Flows and Structural Stability

A model of a power system, such as (4.121), is at best an approximation and there is
always a concern that conclusions drawn from it may not be consistent with reality.
One basic question that should be asked is how sensitive are the predictions of
the model to small perturbations of it? We are particularly interested in qualitative
properties of the system – namely stability – hence, it is essential to know whether
qualitative features of the flow change under perturbations of the model. Thus, the
classical definition of equivalence of flows is appropriate [12, 83, 89].

For now, ignore the parameter μ and consider the DAE (6.1) with independent
variables x ∈ Rn and y ∈ Rm . The DAE defines a flow on the state space M =
{(x, y) |g (x, y) = 0 }. M ⊂ Rn+m is assumed to be a regular manifold of dimension
n. The flow defined on M will be designated Φt .

http://dx.doi.org/10.1007/978-0-8176-4674-5_4
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Definition 6.4 Two flows Φt and Ψt that evolve on an n-dimensional state space are
said to topologically equivalent if there exists a homeomorphism taking trajectories
of Φt into trajectories of Ψt , preserving their time orientation.

Roughly speaking, this implies that one flow can be transformed to the other by a
continuous deformation of the state space.

Let U be a bounded, open set in Rn+m and suppose F (U ) denotes the set of
all smooth (C1) maps F : U → Rn+m defined on U . The magnitude of any map
F ∈ F (U ) is taken to be its C1-norm, i.e.,

‖F‖ = sup
ξ∈U

{∑n+m

i=1
|Fi | +

∑n+m

i, j=1

∣
∣∣∣
∂Fi

∂ξ j

∣
∣∣∣+

}
(6.13)

An ε-neighborhood of F ∈ F (U ) is

Nε = {G ∈ F (U ) |‖G − F‖ < ε} (6.14)

The magnitude of a DAE or a neighborhood of a DAE can be characterized by
identifying F with { f, g}.
Definition 6.5 Consider a DAE { f, g} ∈ F (U ) with an equilibrium point (x∗, y∗) ∈
M, then { f, g} is locally structurally stable at (x∗, y∗) if there exists a neighborhood

U in M of (x∗, y∗) and an ε > 0 such that for every
{

f̃ , g̃
}

∈ Nε ({ f, g}) there is a

neighborhood Ũ of (x̃∗, ỹ∗) ∈ M such that ϕt |U and ϕ̃t

∣∣∣Ũ are locally topologically

equivalent.

The main results of interest here regarding structural stability are summarized in
the following proposition.

Theorem 6.6 Suppose the DAE { f, g} has an equilibrium point at (x∗, y∗) ∈ M.
Then, { f, g} is locally structurally stable at (x∗, y∗) if and only if the equilibrium
point is causal and hyperbolic.

Remark 6.7 Remarks on Proof. Sufficiency is very straightforward because the fact
that the system is causal at (x∗, y∗) implies that there is a local representation of
the dynamics as an ordinary differential equation and hence standard results apply
based on the Hartman–Grobman theorem [12, 83]. The only additional requirement
to establish necessity is to verify that a noncausal equilibrium point is not structurally
stable. But this is clearly true in view of Theorem 2 in [193].

6.5.2 Bifurcation Points

A k-parameter family of DAEs is a Cr , r ≥ 1, map φ : P ⊂ Rk → F (U ). P
represents a parameter space, and it is tacitly assumed that φ (P) is a k-dimensional
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submanifold ofF (U ). A family of DAEs will be denoted { f (μ) , g (μ)} where μ ∈ P
is the parameter. The immediate goal is to characterize the qualitative properties that
occur in the family when its parameters are varied. But a seen above, a small change
from a given parameter value μ0 can induce a behavioral change only if the system
{ f (μ0) , g (μ0)} is structurally unstable. Hence, we have the following definition of
a (local) bifurcation point [51, 83].

Definition 6.8 A value μ0 for which the flow of { f (μ) , g (μ)} is not locally struc-
turally stable near an equilibrium point

(
x∗

0 , y∗
0

)
of { f (μ0) , g (μ0)} is a bifurcation

value of μ. The pair (μ0, { f (μ0) , g (μ0)}) is called a bifurcation point.

This definition of a bifurcation point in the family { f (μ) , g (μ)} has a deficiency in
that the family may include a structurally unstable member, but may not exhibit any
distinctive behavior. For example, the trivial system { f (μ) , g (μ)} = {0, y − μ},
x, y,μ ∈ R, defines a flow that is structurally unstable and unchanged for all values
of μ.

An alternative definition of a bifurcation point is given in [12]: The family has
a bifurcation point at μ = μ0 if in every neighborhood of μ0, there are family
members that exhibit topologically different behaviors. While this definition ensures
the existence of dissimilar behaviors near bifurcation points, it suffers annoying
technicalities that arise from the fact that while all bifurcation points are structurally
unstable, not every structurally unstable point is a bifurcation point. Moreover, the
essential difficulty is not really eliminated, just postponed. The remedy is to introduce
the concept of a generic family.

6.5.3 Genericity

Given a well-defined set G of mathematical objects, such as a set of algebraic equa-
tions, vector fields, or DAEs, it is useful to identify properties that are common to
virtually all elements in the given set. Such properties are called generic properties.
Formally, a property is said to be generic if it is shared by a residual subset (a count-
able intersection of open dense sets) [193] of the set G. The elements in G which
exhibit a generic property (the generic points) form an open set in G, and typically
the nongeneric points lie on submanifolds of G with co-dimension ≥ 1. In some
contexts, structural stability is a generic property in which case structurally unstable
elements are referred to as nongeneric. When examining an arbitrarily selected indi-
vidual object from G, one expects to observe only generic properties. However, in
applications it is often necessary to consider a collection or family of objects within
which individual members that do exhibit nongeneric properties are encountered.
It is useful to distinguish between those nongeneric behaviors that are likely to be
found in families and those that are not. A k-parameter family in G is a C1 map
s : P ⊂ Rk → G. Here, it is again assumed that s (P) is a k-dimensional submani-
fold of G. The family s (P) contains nongeneric points if it intersects a manifold A of
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nongeneric points. If the intersection of s (P) and A is transverse then the intersec-
tion is stable in the sense that small changes in the family do not eliminate it. It can
be said that these nongeneric points contained in s (P) persist or are nonremovable
under perturbations.

In many important cases, it is possible to prove that the set of k-parameter families
that are transverse to a given submanifold A of P form a residual set (in the set of
all k-parameter families). Theorems of this type, called transversality theorems, are
important in bifurcation analysis. Transversality concepts are discussed at length
in [8, 78, 80, 88]. The important implication is that it makes sense to speak of
generic families relative to a generic property of interest. This is particularly useful
when structural stability is a generic property. In this case, generic families that
contain structurally unstable members (bifurcation points) have the property that
such members remain even when the family is perturbed. By focusing on bifurcations
contained in generic families, it is unnecessary to deal with special cases that can
be eliminated by a small change in the family. Roughly speaking, the main result of
significance here is that generic k-parameter families contain bifurcation points of
co-dimension k or less.

6.5.4 Normal Forms

A normal form is a convenient way of representing a class of equivalent systems. It
is a member of the class which is simple in some convenient and acceptable sense.
Unlike a canonical form, the normal form is not chosen to meet any specific cri-
teria; but the general idea is that it should clearly exhibit the essential features of
the system. In view of the Hartman–Grobman theorem, the local behavior of a non-
linear vector field at a hyperbolic equilibrium point is completely described by its
linearization. Indeed, there is a transformation of coordinates which establishes the
equivalence. Hence, we need only look at the linearization to determine whether two
such nonlinear systems have similar behavior. The linear dynamics (or perhaps its
Jordan form) represent a normal form for comparing local dynamics. But behavior
near a hyperbolic equilibrium is not particularly interesting because it is not sensitive
to perturbations. It is necessary to establish normal forms of vector fields for non-
hyperbolic equilibria.2 The basic idea is to seek a transformation of coordinates that
brings the given vector field into an almost linear form leaving only the nonlinear
terms that are not removable by any smooth transformation. These nonlinear terms
are essential to the complete characterization of the local behavior. Algorithms for
reduction of a flow defined by a differential equation to normal form and examples
can be found in [8, 12, 83] as well as many other sources. The key result is given
below following some necessary definitions.

2The present discussion of normal forms is confined to vector fields, which for DAEs means normal
forms near causal equilibria. However, there is an emerging theory for DAEs [168].
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Let X, Y be smooth vector fields on Rn . The Lie bracket of the vector field Y with
respect to the vector field X results in the map adX : Rn → Rn defined by

adX (Y ) = [X, Y ] = ∂Y

∂x
X − ∂X

∂x
Y

Following Arnold [8], consider the transformation of the linear differential equation
ẏ = Ay under the near-identity transformation x = y +h (y) where h (y) is a vector
field of polynomials of order r ≥ 2. Then direct computation yields

ẋ = ẏ + ∂h (y)

∂y
ẏ = Ay + ∂h (y)

∂y
Ay =

(
I + ∂h (y)

∂y

)
A
(
x − h (x) + O

(|x |r+1
))

which can be reduced to

ẋ = Ax + adL (h (x)) + O
(|x |r+1

)
(6.15)

This result can be inverted. Let v (x) be a vector field whose elements are homoge-
neous polynomials of degree 2. Consider the nonlinear differential equation

ẋ = Ax + v (x) + O
(|x |r+1

)
(6.16)

Then, (6.16) can be transformed by a near-identity transformation y = x + h (x),
h (x) a polynomial vector field of degree r ≥ 2, to

ẏ = Ay + O
(|y|r+1) (6.17)

provided the exists an h (x) that satisfies the homological equation

adAx (h (x)) = v (x) (6.18)

This approach can be extended to remove successively higher-order terms using the
same procedure. If the a solution of (6.18) does not exist it is possible to reframe the
question to eliminate as many of the polynomial terms as possible. This approach is
used to prove the Poincaré and Poincaré–Dulac Theorems.

Now, we are in a position to state these results in the form of the following theorem
from [83].

Theorem 6.9 Normal Form Reduction Theorem. Let ẋ = φ (x), x ∈ Rn, be a smooth
system of differential equations with φ (0) = 0 and L = Dxφ (0) x. Define Hk to be
the linear space of vector fields whose components are homogeneous polynomials of
degree k. Choose a complement Gk for adL (Hk) in Hk, so that Hk = adL (Hk)+Gk.
Then, there is an analytical change of coordinates, x → y, in a neighborhood of the
origin that transforms the system to
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Table 6.1 Examples of Normal Forms for Dynamic Bifurcations

Name Normal Form

Saddle-node ẋ = −x2 + O
(|x |3)

Hopf ẋ =
[

0 −1

1 0

]

x + (
x2

1 + x2
1

)
(

a

[
x1

x2

]

+ b

[
x1

x2

])

+ O
(|x |5) , a �= 0

Cusp, R ẋ = −x3 + O
(|x |4)

Cusp, R2 ẋ =
[

0 1

0 0

]

x +
[

a

b

]

x2
1 + O

(|x |3) , a �= 0, b �= 0

Generalized Hopf ẋ =
[

0 −1

1 0

]

x + a
(
x2

1 + x2
2

)2
x + O

(|x |7) , a �= 0

ẏ = Ay + g2 (y) + · · · + gr (y) + O
(|y|r+1

)

with
A = Dxφ (0) , gk ∈ Gk, 2 ≤ k ≤ r

A constructive proof and examples may be found in [83]. Some examples of
normal forms are given in Table 6.1.

6.5.5 Deformations and Unfoldings

Unfoldings provide an efficient characterization of all behaviors exhibited by systems
in the vicinity of a system that is locally structurally unstable at an equilibrium
point. The notion of a versal deformation or unfolding again goes back to Poincaré,
[8, 12, 83].

Consider the smooth DAE { f, g} defined in some neighborhood of (x∗, y∗) ∈
Rn × Rm . For convenience, take (x∗, y∗) = (0, 0). Any family { f (μ) , g (μ)}, locally
defined at (x, y,μ) = (0, 0, 0) in Rn × Rm × R p, with { f (0) , g (0)} = { f, g}, is
said to be a deformation of { f, g}.

Two deformations of { f, g}, { f (μ) , g (μ)} and
{

f̃ (μ) , g̃ (μ)
}

, are equivalent if

there is a continuous transformation of coordinates h : N ⊆ Rn × Rm × R p →
Rn × Rm , N a neighborhood of (0, 0, 0), with h (0, 0, 0) = 0, such that for each μ,
h is a homeomorphism that exhibits the topological equivalence of their flows.

A deformation
{

f̃ (μ) , g̃ (μ)
}

defined on Rn × Rm × R p is induced by a defor-

mation { f (γ) , g (γ)} defined on Rn × Rm × Rq if there is a continuous change

of parameters φ : Rq → R p, γ = φ (μ), 0 = φ (0), such that
{

f̃ (μ) , g̃ (μ)
}

=
{ f (φ (μ)) , g (φ (μ))}. A deformation { f (γ) , g (γ)} with q parameters is versal if
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Table 6.2 Examples of Unfoldings for Dynamic Bifurcations

Name Miniversal Unfolding

Saddle-node ẋ = μ − x2 + O
(|x |3)

Hopf ẋ =
[

μ −1

1 μ

]

x + (
x2

1 + x2
1

)
(

a

[
x1

x2

]

+ b

[
x1

x2

])

+ O
(|x |5)

Cusp, R ẋ = μ0 + μ1x − x3 + O
(|x |4)

Cusp, R2 ẋ =
[

0

μ0

]

+
[

μ1 1

0 0

]

x +
[

a

b

]

x2
1 + O

(|x |3)

Generalized Hopf ẋ =
[

μ1 −1

1 μ1

]

x + μ2
(
x2

1 + x2
2

)
x + a

(
x2

1 + x2
2

)2
x + O

(|x |7)

every other deformation is equivalent to one induced by it, and miniversal (sometimes
called universal [81]) if q is the smallest number of parameters needed to define a
versal deformation.

If { f, g} is structurally unstable, then a deformation of it is said to “unfold the sin-
gularity” and a deformation is often referred to as an unfolding. Versal deformations
or unfoldings are important because they reveal all possible behaviors that might
be observed in perturbations of { f, g}. Miniversal unfoldings are especially signifi-
cant because they do this with a minimum number of parameters. The dimension of
the γ-space (Rq ) is a measure of the degeneracy of the singularity. It follows from
analysis of the miniversal unfolding { f (γ) , g (γ)}, that there exists a neighborhood
of 0 in γ-space which is divided into open regions by surfaces of co-dimension 1
such that throughout each region { f (γ) , g (γ)} exhibits equivalent behavior. The
surfaces across which the behavior changes are called bifurcation surfaces. These
bifurcation surfaces can intersect, thereby defining (bifurcation) surfaces of higher
co-dimension. The origin lies at an intersection of co-dimension q. This bifurcation is
referred to as a singularity of co-dimension q. The miniversal unfoldings associated
with the singularities of Table 6.1 are given in Table 6.2.

6.5.6 Deformations and Unfoldings in Other Contexts

The concept of deformation, described above for DAEs, is frequently applied to
other mathematical objects. It is only necessary that it makes sense to speak of
parameter-dependent families of those objects and to have an appropriate concept
of equivalence. For example, in addition to DAEs and vector fields, we note the
following:

Algebraic equations – the study of zeros of equations f = 0 under perturbations
([51, 78]). Two deformations of a map f : Rn × R p → Rn , f (x,μ) and f̃ (x,μ) are
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Table 6.3 Bifurcations of Algebraic Equations up to Co-dimension 4

Name Codim Normal Form Unfolding

Saddle-node [78, 81, 185] 1 x2 μ0 + x2

Cusp [78, 81, 185] 2 x3 μ0 + μ1x + x3

Swallowtail [78, 81, 185] 3 x4 μ0 + μ1x + μ2x2 + x4

Butterfly [78, 81, 185] 4 x5 μ0 + μ1x + μ2x2 + μ3x3 + x5

Hilltop [81] 4

[
x2 − y2

2xy

] [
μ0 + μ1x + μ2 y + x2 − y2

μ3 + 2xy

]

Hilltop [81] 4

[
x2

y2

] [
μ0 + μ1 y + x2

μ2 + μ3x + y2

]

locally equivalent at (0, 0) if there exists a continuous, near-identity transformation
of coordinates x = h (y,μ) defined on a neighborhood of (0, 0), and a continuous,
invertible matrix S (y,μ) such that f (y,μ) = S (y,μ) f̃ (h (y,μ) ,μ). Since S is
invertible, the zeros of f (y,μ) correspond to those of f̃ (x,μ) (in the domain of
definition of h). Because of the relevance of this topic to the study of the solution
structure of load flow equations, we will discuss the bifurcation of algebraic equations
in some detail below.

Table 6.3 provides a summary of bifurcations of algebraic equations (called sin-
gularities) up to co-dimension 4. Bifurcations of algebraic equations are important to
because it is often useful to study the equilibrium point structure and parametrically
induced changes to it, separately from, or as an adjunct to, considering dynami-
cal issues. Notice that the bifurcations of co-dimension less than 4 in Table 6.3
involve only one independent variable, whereas bifurcations of co-dimension 4 may
involve two. Singularities involving two or more independent variables have not been
completely classified – see the interesting discussions in [51], Chapter 7 and [81],
Chapter 9. It is also useful to note that any singularity involving a single indepen-
dent variable directly corresponds to a “catastrophe” which gives some additional
interpretations [78, 81].

Matrices – the study of Jordan forms of matrices under perturbations [8]: Two
deformations of an n × n matrix A, Aμ, and Ãμ are equivalent if they are related by
a near-identity similarity. transformation, itself dependent on the same parameters,
T (μ) with T (0) = I .

Pencils – the study of the zero structure of linear systems under perturbations
[25]: Two deformations of an n × m pencil s A + B, s Aμ + Bμ, and s Ãμ + B̃μ are
equivalent if they are related to a near-identity, strict equivalence transformation [76],

i.e., s Aμ + Bμ = P (μ)
[
s Ãμ + B̃μ

]
Q−1 (μ), with P (0) = I, Q (0) = I .
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6.6 Numerical Computation

6.6.1 Static Bifurcation Points

Locating Bifurcation Points: Consider the load flow equations, rewritten here as

f (x, y,μ) = 0
g (x, y,μ) = 0

(6.19)

It is convenient to consolidate these by joining x and y to create the N -vector X ,
N = n +m, and joining the functions f and g to create the function F : RN × R p →
RN , so that (6.19) becomes

F (X,μ) = 0 (6.20)

The goal now is to investigate the roots of F as a function of the parameters μ.
Conventional methods for finding roots of algebraic equations, such as the Newton–
Raphson (NR) method, can be modified for this purpose. The continuation (or homo-
topy) method [107] enables tracing a root from an initial solution pair X0,μ0. Another
important tool, necessary when the solution structure (6.20) includes singular (bifur-
cation) points, is a modification of the Newton–Raphson method called the Newton–
Raphson–Seydel (NRS) method [176]. Applications of these computational con-
structs have been widely applied in power systems, example continuation methods
in [36, 48, 95, 105], and the NRS method in [3, 5, 17, 35, 39].

The basic idea of continuation is simple and has many applications. Consider a
one-parameter family of mathematical problems P (μ). Suppose solutions to P (μ)

are attainable by iteration, for any μ, provided a good initial estimate is available.
Moreover, suppose that a solution to the problem P (μ0) is known, but it is desired
to find a solution to P (μ∗). The idea is to sequentially solve a sequence of prob-
lems P (μ0), i = 0, . . . , K , terminating with μK = μ∗. Successive solutions are
extrapolated to get a starting value for an iterative solution of the next problem.

Consider the application of this approach to (6.20). Suppose that a solution
(X0,μ0) is known, i.e., F (X0,μ0) = 0. We wish to find the solution X∗ corre-
sponding to the parameter value μ∗. To apply the continuation method divide the
interval [μ0,μ

∗] into a large number K of subintervals and generate successive solu-
tions, Xi , i = 1, . . . , K , as follows. To generate the first solution, X1, take as a
starting value X0

1 = X0 and then apply Newton’s method (for example) to determine
X1. For subsequent starting values, X0

i , i > 1, we could continue the zeroth-order
extrapolation, i.e.,

X0
i = Xi−1 (6.21)
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or use a linear extrapolation (called the secant method in [48])

X0
i = Xi−1 + (Xi−1 − Xi−2)

μi − μi−1

μi−1 − μi−2
(6.22)

followed by Newton’s method.

Remark 6.10 Using a Differential Equation Solver. This method can be taken to
the extreme so that K → ∞, Δμ → 0, in which case the successive solutions are
connected by the differential equation

FX (X,μ) d X + Fμ (X,μ) dμ = 0

or

FX (X,μ)
d X

dμ
+ Fμ (X,μ) = 0 (6.23)

In principle, an implicit ordinary differential equation solver can be used, with μ as
the independent variable, to obtain the curve X (μ) for μ ∈ [μ0,μ

∗].

The computation method described, based on the NR iteration, breaks down at
(static) bifurcation points, i.e., when FX is singular (rank (FX ) < N ). In generic one-
parameter families, the dimension of ker (FX ) at a bifurcation point is precisely one
(rank (FX ) = N−1). Thus to locate such a point, we seek values for X ∈ RN ,μ ∈ R1

and nontrivial v ∈ RN or w ∈ RN that satisfy

F (X,μ) = 0 (6.24)

FX (X,μ) v = 0 or wT FX (X,μ) = 0 (6.25)

along with the nontriviality requirement, that can be expressed

‖v‖ = 1 or ‖w‖ = 1 (6.26)

The NR approach can be applied to (6.24), (6.25) and (6.26) to locate bifurcation
points. This is the NRS approach to locating static bifurcation points. Data that sat-
isfies these equations will be denoted Xb,μb, vb, wb. Note that the vectors vb, wb

have special significance. They are, respectively, the right and left eigenvectors cor-
responding to the zero eigenvalue of the Jacobian Jb = FX (X,μ). The vector vb

spans the kernel of Jb. It identifies those dependent variables that play a role in the
bifurcation. That is, only those elements of X that correspond to nonzero entries in
vb will exhibit the bifurcation behavior. wb is orthogonal to all of the columns. It will
be seen below to provide useful information in multi-parameter cases [64, 67].
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Once a bifurcation point is located, it is feasible to modify it to locate points on
the equilibrium surface that are near the bifurcation point by replacing (6.25) by

[FX (X,μ) − λI ] v = 0 (6.27)

for values λ ∈ [−ε1, ε2] with ε1, ε2 > 0. Thus, for a given λ, the 2N + 1 equations

F (X,μ) = 0
[FX (X,μ) − λI ] v = 0

‖v‖ = 1
(6.28)

are to be solved for the 2N +1 variables X,μ, v using the NR iteration. This approach
is applied in the voltage stability toolbox [17].

Remark 6.11 The bifurcation point Xb,μb, vb (corresponding to λ = 0 is a regular
solution of (6.24), (6.25) and (6.26) so that the implicit function theorem guarantees
existence of a unique solution X (λ) ,μ (λ) , v (λ) of Equation (6.28) on a neighbor-
hood of λ = 0.

Remark 6.12 There are variants of the continuation-NRS approach to improve com-
putational speed for large power systems. See, for example [39].

Now consider the multi-parameter case. In the following discussion, it will be
assumed that dim ker [FX (X,μ)] = 1. When the number of parameters is p =
1, 2, 3, this is the generic case (see the discussion [51], Chapter 7, and [81], Chapter 9).
The strategy is to locate the bifurcation parameter value closest to a given parameter
value μ0 Since coordinates used to define μ may be arbitrarily shifted, let us take μ0 =
0. The problem of locating the closest static bifurcation point in multi-parameter
power systems has been raised by several investigators including [66, 68, 102, 109,
137, 203].

A straightforward approach is minimized ‖μ‖2 subject to the constraints (6.24),
(6.25) and (6.26). Thus, to do this, combine the 2N + 1 constraints to form the
constraint function

ψ (X, v,μ) =
⎡

⎣
F (X,μ)

FX (X,μ) v

‖v‖ − 1

⎤

⎦ (6.29)

and introduce the 2N + 1-dimensional vector of Lagrange multipliers, λ ∈ R2N+1.
Construct the Lagrangian

L (X, v,μ,λ) = ‖μ‖2 + λT ψ (X, v,μ) (6.30)

The necessary conditions for a minimum are obtained from setting the variation of
L to zero, δL (X, v,μ,λ) = 0:

∂L

∂λ
= ψ (X, v,μ) = 0 (6.31)
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∂L

∂X
= λT ∂ψ

∂X
= 0 (6.32)

∂L

∂v
= λT ∂ψ

∂v
= 0 (6.33)

∂L

∂μ
= 2μT + λT ∂ψ

∂μ
= 0 (6.34)

Note that the last three equations can be written as

ΦT λ = b (6.35)

where
Φ =

[
∂ψ
∂X

∂ψ
∂v

∂ψ
∂μ

]
, b = [

01×N 01×N μT
]T

(6.36)

Let Φ∗ denote the right inverse of Φ3 and obtain from (6.35) the relations

λ = Φ∗b (6.37)

[
I − Φ∗Φ

]
b = 0 (6.38)

Notice that [I − Φ∗Φ] has only k − 1 linearly independent rows. Having eliminated
λ, the problem is now completely characterized by (6.38) along with (6.31). Thus, the
dimension of the system of equations to be solved has increased from 2N + 1 in the
one-parameter case to 2N + k. Points (X, v,μ) that satisfy the enlarged system are
the extremal bifurcation points. One way to compute them using numerical iteration
is given by the following algorithm. Let the parameter vector μ be expressed μ = me,
where m is a scalar and e is a unit vector that specifies a direction in parameter space.

Static Bifurcation Search Algorithm

Step 1, Initialize: Choose an initial search direction e0 ∈ Rk and initial values
x0 ∈ RN , v0 ∈ RN ,μ0 ∈ Rk . Set i = 1.

Step 2, Iterate: While ‖ei − ei−1‖ > ε and i ≤ imax

Step a, Solve: Recursively solve ψ (X, v, mei−1) = 0 for (Xi , vi , mi ) starting
with (Xi−1, vi−1, mi−1) using the NRS method.

Step b, Update Direction: Update the search direction ei−1 to ei in order to
reconcile [I − Φ∗Φ] b = 0. There are various ways to do this. See for example
[66, 68, 115, 137].

Step c, Update Index: Set i → i + 1 and return to Step 2.

3For a generic function ψ : R2N+k → R2N+1, the solution set of ψ = 0 is a smooth k − 1-
dimensional manifold and rank Φ = 2N + 1, its maximum rank on the set [10], Section 31. Thus,
for a generic family Φ∗ exists on a neighborhood of any solution of ψ = 0.
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Computing Unfoldings—The Lyapunov–Schmidt Reduction: When a bifurcation
point is located, the next step is to determine the normal form and its unfolding.
Once again, consider the map F : RN × R p → RN . and suppose, for convenience,
that (0, 0) ∈ RN × R p and it is a bifurcation point. Using the method of Lyapunov–
Schmidt, the study of the zeros of F(X,μ) can be reduced to the study of the zeros
of the so-called (reduced) bifurcation equation, which typically involves only a few
dependent variables. The essentials of the method of Lyapunov–Schmidt will be
briefly reviewed in a somewhat simplified version that is adequate for our immediate
needs. A more general construction will be discussed below when addressing the
Hopf bifurcation [51, 81].

Define J = FX (0, 0) so that

FX (X,μ) = J X + N (X,μ) (6.39)

where
N (0, 0) = 0, NX (0, 0) = 0 (6.40)

Now, the goal is to study the solution set of

J X + N (X,μ) = 0 (6.41)

in a neighborhood of (0, 0).
If J has rank r , then there exist full-rank matrices L , R of dimension N × r and

r × N , respectively, such that J = L R. Furthermore, L has a left inverse L∗ and R
has a right inverse R∗. Now, the space RN can be decomposed,

RN = ker
(
R∗T

) × image
(
R∗)

Let U be a matrix with N − r columns that span ker
(
R∗T

)
.4 Then new coordinates

X �→ (u, v) can be defined via the transformation

X = Uu + R∗v (6.42)

Proposition 6.13 Let W be a matrix with N − r columns that span ker L∗, then
(6.41) is equivalent to

v + L∗N
(
Uu + R∗v,μ

) = 0 (6.43)

W T N
(
Uu + R∗v,μ

) = 0 (6.44)

where u ∈ RN−r and v ∈ Rr are new coordinates as defined by (6.42).

4Take R∗ = RT
(
R RT

)−1
, then ker R∗T ∼ ker R. Similarly, if L∗ = (

LT L
)−1

LT then ker L∗ ∼
ker LT .
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Proof This is a well-known result that is easily obtained by substituting (6.42) into
(6.41) and then premultiplying by the nonsingular matrix

T =
[

L∗
W T

]

Note that nonsingularity follows from the fact that RN = ker R∗T × image R∗. �

Applying the implicit function theorem to (6.43), it follows that there is a unique,
smooth function v∗ (u,μ) defined n a neighborhood of (0, 0) that satisfies it. Thus,
on a neighborhood of (0, 0) (6.43) becomes

f (u,μ) = W T N
(
Uu + R∗v∗ (u,μ) ,μ

) = 0 (6.45)

Equation (6.45) is referred to as the reduced bifurcation equation.
The number of independent equations represented by (6.44) is r̃ = n − r . It is

easily verified that
f (0, 0) = 0, fu (0, 0) = 0 (6.46)

The zero structure of the family F (X,μ) = 0 is completely characterized near
the singular point (X,μ) = (0, 0) by the zero structure of f (u,μ) near the point
(u,μ) = (0, 0). The goal now is to investigate the zero structure of f (u,μ) near its
singular point (0, 0). One approach is to determine if the family f (u,μ) is equivalent
to its universal unfolding. If so, all of the properties f (u,μ) can be inferred by from an
established catalog of unfoldings. To make this determination, we seek an appropriate
(near-identity) transformation (u,μ) �→ (z, γ), which reduces f (u,μ) to ϕ (z, γ)

such that on a neighborhood of (0, 0), the zeros of ϕ coincide with those of f , the
parameter γ is of minimum dimension q, and ϕ is a polynomial of some degree in z.
Thus, the characterization of the zeros of the function F (X,μ) is ultimately reduced
to the study of the much simpler problem

ϕ (z, γ) = 0, ϕ : Rr̃ × Rq → Rr̃ (6.47)

In the case of r̃ = 1, the following theorem is well known.

Proposition 6.14 Suppose the reduced bifurcation equation (6.45) is smooth, and
the first nonvanishing derivative with respect to u is r ≥ 2;

Di
u f (0, 0) = 0, . . . i = 0, . . . , r − 1 and Dr

u f (0, 0) �= 0

Then

1. there exists a smooth change of variables z (u,μ) : R × R p → R and
γ (μ) : R p → Rq so that (6.45) is reducible to the following polynomial on
a neighborhood of (u,μ) = (0, 0).
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γ0 (μ) + γ1 (μ) z + · · · + γr−2 (μ) zr−2 + zr

2. if in addition, ∂γ (0)
/
∂μ, is of full rank, then (6.45) is locally equivalent to the

universal unfolding of f at (0, 0)

ϕ (z, γ) = γ0 + γ1z + · · · + γr−2zr−2 + zr (6.48)

Proof The proposition is a variant of well-known results [51], Section 6.8, and [12],
Section 4.1. Conclusion 1) follows from the Malgrange preparation theorem and 2)
from the implicit function theorem. �

Remark 6.15 The condition that ∂γ(0)/∂μ is of full rank is sometimes called a gener-
icity condition. If this condition obtains, then the original family is richly parame-
terized in the sense that variation of the original parameters can produce all possible
zero patterns that can be generated by small perturbations of . around the singular
point. If ∂γ(0)/∂μ is degenerated, then even small changes in the model F (X,μ)

are likely to alter the co-dimension of the singularity and change the way in which
bifurcations associated with the singularity manifest themselves. We say the singu-
larity is generic or nongeneric, respectively, if the genericity condition is satisfied or
not satisfied.

In applications, the transformations are typically approximated using the Taylor
expansion of f (u,μ) [51]. Sequentially compute5

αi (μ) = Di
u f (0,μ) = lim

X→0
Di

X

[
wT

0 F (X,μ)
]
, i = 0, . . . , r (6.49)

stopping at the index i = r corresponding to the first nonzero αi (0), i.e.,

α0 (0) = 0, . . . ,αr−1 (0) = 0,αr (0) �= 0 (6.50)

The following proposition provides the required construction.

Proposition 6.16 Suppose f (u,μ) is smooth and (6.50) holds. Then f (u,μ) = 0
is equivalent to g (z,μ) = 0, where

g (z,μ) = γ0 (μ) + γ1 (μ) z + · · · + γr−2 (μ) zr−2 + zr + O
(|z|r+1

)
(6.51)

and

z = u − αr−1 (μ)

αr (μ)
+ O

(‖μ‖2) (6.52)

γi (μ) = r ! δi (μ)

αr (μ)
, i = 0, . . . , r − 2 (6.53)

5In the following computation, with r̃ = 1, W has a single column denoted w0.

http://dx.doi.org/10.1007/978-0-8176-4674-5_4
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δi (μ) =
∑r

j=i

α j (μ)

j !
(

j
i

)(−αr−1 (μ)

αr (μ)

) j−i

+ O
(‖μ‖r−i+1

)
(6.54)

Proof Direct computation. �

Remark 6.17 Notice that the unfolding given above describes a bifurcation of co-
dimension r − 1. The bifurcation surfaces in the unfolding parameter (γ) space are
simply γi = 0, i = 0, . . . , r − 2. In the physical parameter (μ) space, the surfaces
are defined by γi (μ) = 0, i = 0, . . . , r − 2. Each of these r − 1 functions defines
a co-dimension one surface. These surfaces intersect to define higher co-dimension
manifolds, the highest co-dimension being r − 1 which is the intersection of all of
them.

6.6.2 Hopf Bifurcation

As will be discussed below, Hopf bifurcations are frequently encountered in power
system dynamics. Hopf bifurcations can be analyzed using the same basic tools as
static bifurcations, namely the Newton–Raphson–Seydel method and the Lyapunov–
Schmidt reduction. The required modifications will now be discussed.

Consider the DAE (6.1) under the assumption that the equilibrium point being
sought is causal. Thus, it is necessary to locate a causal solution of the equilibrium
equations (6.20), repeated here

F (X,μ) = 0

which has the property that the linearized dynamics of (6.1) has a pair of purely
imaginary conjugate roots, which implies

det
[
FX (X,μ) − jω In,m

] = 0, In,m = diag (In×n, 0m×m) (6.55)

As in the case of static bifurcation, it is preferable to reformulate (6.55) as

[
FX (X,μ) − jω In,m

]
ν = 0, ‖ν‖ = 1 (6.56)

In summary, when seeking Hopf bifurcation points the necessary conditions can be
expressed ψ (X, ν,μ) = 0, where

ψ (X, ν,μ) =
⎡

⎣
F (X,μ)[

FX (X,μ) − jω In,m
]
ν

‖ν‖ − 1

⎤

⎦ (6.57)

– a form that is comparable to (6.29) of the static case.
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There are a number of computational approaches to locating solutions satisfy-
ing (6.57). A straight forward approach, especially convenient in the one-parameter
case is to compute the equilibrium surface and then seek those points in which the
linearized dynamics have eigenvalues on the imaginary axis [15, 16, 123]. Variants
of the Newton–Raphson–Seydel method provide a direct approach to locating Hopf
bifurcation points [169, 170].

As in the case of static bifurcation, it is important to identify the key qualitative
characteristics associated with Hopf bifurcation, example the number and stability
characteristics of period trajectories, as well as to characterize the bifurcation surfaces
in the physical parameter space. There are two basic approaches: compute the center
manifold and normal form and study the unfolding of the normal form (see Tables
6.1 and 6.2), or use a variant of the Lyapunov–Schmidt reduction in which a reduced
bifurcation equation needs to be computed, and from which the desired information
can also be obtained. Hopf bifurcations are studied from the former point of view in
[12, 83] and from the latter in [51, 81].

Consider the Lyapunov–Schmidt Reduction. In dealing with Hopf bifurcations, a
more general formulation of the Lyapunov–Schmidt reduction that applies to map-
pings on infinite dimensional spaces is required. Let H and Y be complete linear
(possibly infinite) vector spaces and suppose Φ (x,μ) is a map Φ : H × R p → Y .
Furthermore, assume (0, 0) ∈ H×R p satisfies the necessary conditions for a bifurca-
tion point, Equation (6.57). The goal is to characterize the solution set of Φ (x,μ) = 0
(in this slightly more generalized context) around a Hopf bifurcation located at (0, 0).
As before, write

Φ (x,μ) = L x + N (x,μ) = 0, L = Dx F (0, 0) (6.58)

Let P : H → H and Q : Y → Y denote projection operators6 with ImP = ker L
and ImQ = ImL. Then, both H and Y can be divided into direct sums

H = ImP ⊕ Im (I − P) (6.59)

Y = ImQ ⊕ Im (I − Q) (6.60)

The following is a well-known theorem.

Proposition 6.18 Let P and Q be defined as above. Then

1. (6.58) is equivalent to
Lv + QN (u + v,μ) = 0 (6.61)

(I − Q) N (u + v,μ) = 0 (6.62)

6 Recall that if H = R ⊗ S, then there is a map Q : H → H such that for each X = R + S,
QX = R. Clearly, ImQ = R and KerQ = S. Q is the projection on ImR along KerQ if Q2 = Q.
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with
z = u + v, u = Px ∈ ImP, v = (I − P) x ∈ Im (I − P) (6.63)

2. There exists a linear map K : ImQ → Im (I − P) called the right inverse of L
such that L K = I on ImQ and K L = I − P on H so that (6.59) is equivalent to

v + K QN (u + v,μ) = 0 (6.64)

Proof proof See [51, 81]. �

Once again, the implicit function theorem applied to (6.64) assures the existence
of a unique function v∗ (u,μ) defined on a neighborhood of (0, 0) ∈ H × R p that
satisfies it. Moreover, v∗ (0, 0) = 0. Substituting this function in (6.62) yields the
reduced bifurcation equation

(I − Q) N
(
u + v∗ (u,μ) ,μ

) = 0 (6.65)

In applications below the subspaces, ImP of H and Im (I − Q) of Y will be of finite
dimension r̃ , in which case (6.66) reduces to r̃ equations in r̃ unknowns.

As shown in [81], the above theorems provide a generalization of the Lyapunov–
Schmidt method that can be applied to obtain the reduced bifurcation equation once
the Hopf bifurcation point has been located. For convenience, suppose the necessary
conditions for a Hopf bifurcation point (6.57) are satisfied at the point (X,μ) = (0, 0)

and that the frequency is ω = 1. Now rescale via the transformation s = (1 + τ ) t
is a new parameter introduced to adjust the timescale so as to keep the frequency
at unity as parameters vary. In terms of s, the system dynamical equations can be
written

Φ (X,μ, τ ) = − (1 + τ ) In,m
d X

dt
+ J X + N (X,μ) = 0 (6.66)

We seek a 2π-periodic solution of (6.66). To proceed, consider H and Y to be spaces
of smooth 2π-periodic functions of s and Φ is a map from H × R p × R to Y . Its
linear part is defined by the operator L : H → Y defined by

L = ΦX (0, 0, 0) = −In,m
d

dt
+ J (6.67)

so that (6.66) can be written

Φ (X,μ, τ ) = − (1 + τ ) L X + N (X,μ) = 0 (6.68)

To compute the reduced bifurcation equation, it is necessary to determine a basis for
each of the 2-D subspaces ImP of H and Im (I − Q) of Y . Recall that ImP = ker L ,
and note that the linear equation L X = 0 has two 2π-periodic solutions,

w1 (s) = Re
(
e jsw

)
, w2 (s) = Im

(
e jsw

)
(6.69)
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where w is a complex eigenvector that satisfies

[− j In,m + J
]
w = 0 (6.70)

Similarly, Im (I − Q) = ker L∗ where the adjoint map L∗ is

L∗ = j In,m + J T (6.71)

Let w∗ denote the eigenvector of L∗ associated with eigenvalue j so that the two
basis vectors for Im (I − Q) are

w∗
1 (s) = Re

(
e jsw∗) , w∗

2 (s) = Im
(
e jsw∗) (6.72)

Now, write u = w1 (s) u1 + w2 (s) u2 and consider the inner product

φi (u1, u2,μ, τ ) =
〈
w∗

i (s) , Ñ (w1 (s) u1 + w2 (s) u2, v
∗ (u1, u2,μ, τ ) ,μ, τ )

〉

i = 1, 2
(6.73)

where

Ñ (u, v,μ, τ ) = −τ In,m
d

ds
(u + v) + N (u + v,μ) (6.74)

and the inner product is defined as

〈v1, v2〉 = 1

2π

∫ 2π

o
vT

1 (s)vs (s) ds

The following proposition establishes the form of (6.73).

Proposition 6.19 The reduced bifurcation equation has the form

φ (u1, u2,μ, τ ) = p
(
u2

1 + u2
2,μ, τ

) [ u1

u2

]
+ q

(
u2

1 + u2
2,μ, τ

) [−u1

u2

]
(6.75)

where the scalar functions p (a,μ, τ ) , q (a,μ, τ )

p (0, 0, 0) = 0,
∂

∂a
p (0, 0, τ ) = 0 (6.76)

q (0, 0, 0) = 0,
∂

∂a
q (0, 0, τ ) = −1 (6.77)

Proof [81], see Proposition 2.3 in Chapter 8. �

http://dx.doi.org/10.1007/978-0-8176-4674-5_2
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It follows from (6.75) that nontrivial solutions of the reduced bifurcation equation
(φ = 0) exist only if p = q = 0. The form of p and q suggests a transformation to
polar coordinates: u1 = β cos θ, u2 = β sin θ so that solutions are defined by

p
(
β2,μ, τ

)
β = 0, q

(
β2,μ, τ

)
β = 0 (6.78)

These equations should be viewed as defining β and τ . In view of (6.62), the implicit
function theorem provides that q

(
β2,μ, τ

) = 0 can be solved for τ = τ
(
β2,μ

)

which leaves us with the requirement that

g (β,μ) = p
(
β2,μ, τ

(
β2,μ

))
β = r

(
β2,μ

)
β = 0 (6.79)

where
r
(
β2,μ

) = p
(
β2,μ, τ

(
β2,μ

))
(6.80)

Solutions of r (z,μ) = 0 with z > 0 are in one-to-one correspondence with the
nontrivial periodic solutions of (6.79). The function r (z,μ) can be approximately
computed using a combination of Fourier and power series expansions. This can be
accomplished using the above formulas, but there are many variants [37, Section
9.4]. Another alternative is based on the frequency domain formulation of the Hopf
theory [122, 147, 152].

The existence and number of solutions of (6.78), or (6.79), near the origin can be
investigated in terms of the unfolding parameters of Proposition 6.14. However, it
is also important to identify the stability of periodic solutions. Stability depends on
the sign of the first nonzero derivative g (β,μ) = r

(
β2,μ

)
β with respect to β, or

equivalently, its unfolding. The sign can be preserved by introducing the parameter
ε = ±1, then normal forms associated with r (z,μ) are as follows:

Normal form: εzk

Unfolding: γ0 + γ1z + · · · + γk−2zk−2 + εzk

for k ≥ 2, ε = ±1

and hence for g (β,μ)

Normal form: εβ2k−1

Unfolding: γ0β + γ1β
3 + · · · + γk−2β

2k−3 + εβ2k−1

for k ≥ 2, ε = ±1

Stability is established by the following proposition:

Proposition 6.20 Suppose that (β,μ) = (0, 0) is an equilibrium point with a simple
pair if imaginary eigenvalues, λ1,2 = ±i , and with all other eigenvalues having neg-
ative real parts. Then, the periodic solution corresponding to (β,μ) near (0, 0) and
satisfying g (β,μ) = 0 is stable if Dβg (β,μ) > 0 and unstable if Dβg (β,μ) < 0.
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μ

β

μ

β

1, supercriticalε = − 1, subcriticalε =

Fig. 6.3 Bifurcation diagrams for the co-dimension 1 supercritical and subcritical Hopf bifurca-
tions. β = 0 corresponds to the equilibrium point. Stable equilibria and orbits are indicated by solid
lines. Unstable by dashed

μ

β

μ

β

μ

β

μ

β

0 0γ >0 0γ <

1ε =

1ε = −

Fig. 6.4 Bifurcation diagrams for the co-dimension 2 (k = 3) Hopf bifurcations. Stable equilibria
and orbits are indicated by solid lines. Unstable by dashed. The adjustable parameter is μ = γ1.
Each diagram plots the oscillation amplitude a versus μ. Note that in some regions there are two
periodic trajectories, one stable and one unstable
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Proof This proposition follows from the results of [81], Section 8.5, and [51],
Section 9.5. �

Consider the case of the co-dimension one bifurcation, i.e., k = 2. There are two
cases, ε = ±1. μ = γ0 is the adjustable parameter. A pictorial depiction of the Hopf
bifurcation is provided by the bifurcation diagrams of Figure 6.3. The oscillation
amplitude β is plotted versus the parameter μ. Observe that in the supercritical case,
the stable equilibrium becomes unstable as μ changes from negative to positive and
a stable periodic trajectory emerges. In the subcritical case, the periodic trajectory is
unstable and exists for negative values of μ. For applications, this is a crucial distinc-
tion. In the supercritical case, even though the origin is unstable after bifurcation,
trajectories are still attracted into its vicinity if the oscillation amplitude is small. The
subcritical case can be very dangerous because the unstable limit cycle bounds the
domain of attraction of the stable origin and this domain shrinks as the bifurcation
point is approached from the left.

Graphical representations of the co-dimension 2 (k = 3) Hopf bifurcations are
shown in Figure 6.4.

6.7 Applications

Static Bifurcation and Voltage Stability: By the early 1980s, various factors had
caused power system operators to seek maximum utilization of the transmission
network. Previously unobserved stability-related difficulties emerged and a vigorous
effort was made to understand them and find remedies [96]. Typically, these problems
involved the inability to maintain load bus voltage magnitudes and became referred
to as voltage instabilities. Static bifurcation of the load flow equations is an appealing
formalization of voltage stability because it embodies key characteristics associated
with real-voltage instability events: the presence of multiple equilibria, a relationship
between dynamic stability and voltage collapse, a high degree of sensitivity of certain
bus variables to control parameters, and a relatively long period of drift prior to
collapse. Of course, static bifurcation intrinsically involves multiple equilibria so the
following remarks are confined to the latter three points.

Static Bifurcation and Dynamic Stability: Bifurcating equilibria can be (asymp-
totically) stable in the sense of Lyapunov. We have seen examples of this. This type
of stability is not meaningful in a practical sense because even an arbitrarily small
perturbation of the dynamics can render it unstable in the sense of Lyapunov or
can annihilate the equilibrium point altogether. A practical concept of stability of
an equilibrium point requires that the flow is locally structurally stable at the equi-
librium point and that the equilibrium point is stable in the sense of Lyapunov. The
term practical stability7 is used for equilibria that satisfy these conditions. Recall
that Theorem 6.6 states that local structural stability implies that the equilibrium

7Practical stability as used here is related to but not identical with the notion of practical stability
in [127].

http://dx.doi.org/10.1007/978-0-8176-4674-5_8
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point is causal and hyperbolic. Thus practical stability of an equilibria point implies
that it is causal and hyperbolic. But for a causal, hyperbolic equilibria (x∗, y∗,μ∗)
Lyapunov stability can be ascertained from the ordinary differential (6.11) which has
linearization

δẋ = A δx (6.81)

A =
[

Dx f − Dy f
(
Dyg

)−1
Dxg

]∗
(6.82)

where the right-hand side is evaluated at the equilibrium point as denoted by “*”.
The equilibrium point is stable in the sense of Lyapunov only if all of the eigenvalues
of A have nonpositive real parts, and hyperbolicity further restricts the eigenvalues
to the open left-hand plane. Thus, practical stability implies exponential stability.

It can easily be shown that static bifurcation points are not stable in the sense
of practical stability. Practical stability implies causality which allows us to apply
Schur’s formula to write the determinant of the load flow equations at the bifurcation
point

det
[
J ∗] = det [A] det

[(
Dyg

)∗]
(6.83)

From this, it is seen that a (causal) static bifurcation point corresponds to det [A] =
0 = det [−A]. Hence, static bifurcation points are not stable in the sense of practical
stability, since the latter requires det [−A] > 0.

Venikov et al. [192] recognized the significance of a degeneracy in J with respect
to the steady-state stability of a power system. They observed that under certain
conditions a change the sign of det [J ] during a continuous variation of system
states and parameters coincides with the movement of a real characteristic root of
the linearized swing equations across the imaginary axis into the right half of the
complex plane. Thus, they recommended tracking det[J] during load flow calculations
and proposed a modification of Newton’s method which allows precise determination
of the parameter value where such a sign change occurs. Tamura et al. [181] discuss
some computational experience using this method.

Bus Variable Sensitivities: A discussion of the significance of a degeneracy in J
in terms of bus variable sensitivities was given by Abe et al. [1]. It can be seen from
the Lyapunov–Schmidt analysis, that in the (u, v) coordinates, the sensitivities of
the v variables are well behaved. Simply differentiate the Equation (6.43) to obtain
(at (0,0))

Dμv (0, 0) = −L∗ DμN (0, 0)

However, derivatives Dμu are indeterminant at the bifurcation point - (0, 0). These
are the sensitive variables. It follows that the sensitive physical variables can be
identified from the basis vectors for ker J . Specifically, components of X that corre-
spond to nonvanishing elements in the basis vectors are highly sensitive to parameter
variations-indeed their sensitivities to parameter change tend to infinity as the para-
meter value approaches its bifurcation value. The magnitudes of the elements in
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the basis vectors are useful for identifying the relative participation of the system-
dependent variables.

Slow Timescale Behavior: Dobson and Chiang [65] discuss the dynamical behav-
ior associated with a saddle-node bifurcation. At a generic saddle-node bifurcation
point, the equilibrium point has a one-dimensional center manifold. Motion on the
center manifold is such that trajectories beginning on it from one side of the equilib-
rium point approach the equilibrium point, and trajectories on the other side diverge
from it. The convergent trajectory, of course takes infinite time to reach the equi-
librium, and the rate of divergence of the divergent trajectory approach zero near
the equilibrium. Trajectories that begin off the center manifold but near it exhibit
similar behavior-a slow approach followed by a slow divergence. Post-bifurcation
behavior is similar as well even though there is no longer an equilibrium point, its
“fingerprint” is clearly evident.

Example 6.21 Example 6.3 Revisited. Consider, once again, the three-bus network
of Figure 6.1 along with the governing equations (6.12), rewritten here as

θ̇ = ω

ω̇ = −V (sin (θ − φ) + sin (φ)) + ΔP

0 = V (sin (φ) + sin (φ − θ)) − P3

0 = −V (cos (φ) + cos (φ − θ)) + (2 − B) V 2 − Q3

Equilibrium requires that θ is constant and the load flow equations are satisfied, i.e.,

0 = −V (sin (θ − φ) + sin (φ)) + ΔP
0 = V (sin (φ) + sin (φ − θ)) − P3

0 = −V (cos (φ) + cos (φ − θ)) + (2 − B) V 2 − Q3

(6.84)

With the parameters (ΔP, B, P3, Q3) specified, it is possible to solve for the variables
(θ,φ, V ). Figure 6.5 shows three curves generated using a combination of NR and
NRS methods. The variable V is plotted versus the parameter P3 for three different
values of Q3 with ΔP and B set to zero. Voltage collapse occurs at the nose of each
curve which is a bifurcation point.

If the parameter vector is μ = (ΔP, B, P3, Q3) = (0, 0,−1, 0), it is easily

verified that (θ∗,φ∗, V ∗) =
(

0,−π/4, 1/
√

2
)

satisfies (6.84), and it is therefore

an equilibrium point. This is indeed the nose of the solid curve in Figure 6.5. The
Jacobian of the load flow equations is

J =
⎡

⎣
−V cos (φ − θ) V (cos (φ − θ) − cos (φ)) − sin (θ − φ) − sin (φ)

−V cos (φ − θ) V (cos (φ − θ) + cos (φ)) − sin (θ − φ) + sin (φ)

sin (θ − φ) −V (sin (θ − φ) − sin (φ)) 2 (2 − B) V − cos (φ − θ) − cos (φ)

⎤

⎦
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Fig. 6.5 Load bus voltage.
V as a function of load real
power, P3 with ΔP = 0,
B = 0, and three different
values of Q3: 1) dotted,
Q3 = −0.05; 2) solid,
Q3 = 0; and 3) dashed,
Q3 = 0.05
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which evaluates at the equilibrium point to

J =
⎡

⎣
−1/2 0 0
−1/2 1 −√

2
1/2 −1

√
2

⎤

⎦

Inspection of the last two rows shows the matrix to be degenerate. Thus, the equilib-
rium point is a static bifurcation point. Moreover, the null space is of dimension one,

and the null space spanning vector is v = [
0

√
2 −1

]T
. From this, it can be con-

cluded that the behavior around the bifurcation point under variation of the parameter
vector μ can be observed in the variables φ or V , but not in θ.

In terms of Proposition 6.16, direct construction of the reduced bifurcation equa-
tion and Taylor expansion shows that r = 2 (the bifurcation is of co-dimension 1)
and the unfolding (see Equation (6.51)) is

g (z,μ) = γ0 (μ) + z2

with

γ0 (μ) = −ΔP

4
− B

4

(
1 + B

4

)
+ P3 − 1

2
+ Q3

2

Notice that the equations are richly parameterized with respect to this bifurcation
point, as mentioned above, because the single parameter, γ0 can be changed by
manipulating any one of the four physical parameters.

Example 6.22 Four-Bus Example:Higher-Order Singularities and Load Models.
Consider the example from [123] that consists of three generators feeding a single-
load bus with combined constant admittance and P Q as shown in Figure 6.6.

With only the constant admittance load, the load bus can be treated as an internal
bus and eliminated in the usual way by defining a reduced network admittance matrix.
Uniform damping is assumed. The translational symmetry in the three resulting
second-order differential equations allows reduction to two equations by specifying
bus one as a swing bus and defining the relative angles
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Fig. 6.6 A four-bus network
with three generators feeding
a single complex load

1 2

3

4V4,δ4

V2,δ2
V1,δ1

V3,δ3

P,Q

24Y

34Y

Y12

13Y

LY

θ1 = δ2 − δ1, θ2 = δ3 − δ1

The reduced bus admittance matrix is symmetric and composed of elements

yik = gik + jbik, i, k = 1, 2, 3

The resulting equations are

θ̈1 + γθ̇1 + 2b12 sin θ1 + b23 sin (θ1 − θ2) + b12 sin θ2

+g23 cos (θ1 − θ2) − g13 cos θ2 = ΔP1
(6.85)

θ̈2 + γθ̇2 + 2b13 sin θ2 + b23 sin (θ2 − θ1) + b12 sin θ1

+g23 cos (θ1 − θ2) − g12 cos θ1 = ΔP2
(6.86)

where ΔP1 = P2 − P1 and ΔP2 = P3 − P1, P1, P2, P3 represent, respectively, the
real power supplied by generators 1,2, and 3.

Tavora and Smith [183, 184] analyze the equilibrium solution structure of these
equations without transfer conductances as a function of the two parameters ΔP1

and ΔP1. They show that the parameter space partitions into regions and within each
region the number of equilibrium solutions is 0, 2, 4, or 6.8 The system studied by

8Another approach to the study of equilibrium point structure of lossless power systems is given
by Baillieul and Byrnes in [20].
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Tavora and Smith is obtained from (6.85), (6.86) by ignoring transfer conductances
gik = 0 and setting bik = 1. The equilibrium equations are

2 sin θ1 + sin (θ1 − θ2) + sin θ2 − ΔP1 = 0
2 sin θ2 + sin (θ2 − θ1) + sin θ1 − ΔP2 = 0

(6.87)

There are several bifurcation points that appear as cusps in the ΔP1−ΔP2 plane. One
of these corresponds to θ1 = π/2, θ2 = π,ΔP1 = 1,ΔP2 = 2. The static bifurcation
search algorithm locates this point precisely from appropriate initial conditions. Next,
the Jacobian, J in (6.39) is computed

J =
[

0 −1
0 −2

]
=
[−1

−2

]
[

0 1
]

From this, it is clear that the kernel of J has dimension one (r̃ = 1). Now compute

L =
[−1

−2

]
, R = [

0 1
] ⇒ U =

[
1
0

]
, W = [−2 1

]

The objective now is to compute the reduced bifurcation equation by applying the
construction of Proposition 6.16. The first step is to compute the αi ’s of Equations
(6.49) and (6.50). In this case, it is found that it is not possible to find a k such that
αk (0) �= 0. This is a co-dimension ∞ bifurcation, indicating the high degree of
symmetry and degeneracy associated with this idealized system.

Now, we consider a case with transfer conductances, retaining Bi j = 1, set
Ci j = 0.15. A bifurcation point is found with θ1 = 1.64962, θ2 = 3.13274,ΔP1 =
1.16961,ΔP2 = 2.03570. The sequence of α coefficients are determined to be
α0 (0) = 0.000,α1 (0) = 0.000,α2 (0) = 0.000,α3 = 0.026, indicating a singular-
ity of co-dimension r − 1 = 2. Thus, the reduced bifurcation equation is of the form
(see Proposition 6.16)

g (z, u) = γ0 (μ) + γ1 (μ) z + z3 + O
(|z|4) (6.88)

The parameter sensitivity matrix can also be obtained

∂γ (μ∗)
∂μ

=
[

167.22 −100.22
0 0

]
, γ = [

γ0 γ1
]
, μ = [

ΔP1 ΔP2
]

(6.89)

Notice that although the singularity is of co-dimension 2, and hence, it is generic
in two parameter families, the particular two parameter family defined by (6.85),
(6.86) does not represent a versal unfolding of the singularity. This means that not
all changes in the equilibrium point structure that might be induced by small pertur-
bations of the equations will be observed by varying the parameters ΔP1,ΔP2.

Consider a combination of a (lossless) constant admittance load and a con-
stant power load on bus 4. In this case, the load bus must be retained, but the
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translational symmetry allows specification of a swing bus. Assume the transmission
lines themselves are lossless and the generator terminal bus voltages are regulated
so that V1 = V2 = V3 = 1. The resultant set of differential-algebraic equations take
the form

θ̈1 + γθ̇1 + 2b12 sin θ1 + b24V4 sin (θ1 − θ3) + b13 sin θ2 = ΔP1

θ̈2 + γθ̇2 + 2b13 sin θ2 + b34V4 sin (θ2 − θ3) + b12 sin θ1 = ΔP2

b42V4 sin (θ3 − θ1) + b43V4 sin (θ3 − θ2) − P4 = 0
b42V4 cos (θ3 − θ1) + b43V4 cos (θ3 − θ2) − b44V 2

4 + Q4 = 0

(6.90)

where again, ΔP1 = P2 − P1,ΔP2 = P3 − P1.
Consider the case in which b12 = b13 = 1, b24 = b34 = 2, b44 = −4, and

bi j = b ji . Computation identifies a singular point at θ1 = 1.5709005 (≈ π/2),
θ2 = 3.1415926 (≈ π), θ3 = 2.3562465, V4 = 0, 70714361, ΔP1 = 1,ΔP2 =
2, P4 = 0, Q4 = 0. The null space spanning vector of J is

v = [
0.8528 0.0000 0.4264 0.3015

]T

and the sequence of α-coefficients is α0 (0) = 0.000,α1 (0) = 0.000,α2 (0) =
0.000,α3 (0) = 0.372, indicating a singularity co-dimension 2. The parameter sen-
sitivity matrix is

∂γ (μ∗)
∂μ

=
[−8.596 4.298 −2.149 −6.446

0 0 0 0

]

μ = [
ΔP1 ΔP2 P4 Q4

]

Once again, the family defined by (6.90) is not versal since variation of the parameters
μ does not show all possible variations of the singular point. It is easy to vary that will
always be the case when the parameters enter the equations as an affine translation.

Finally, consider voltage-dependent reactive loading. It has long been recognized
that the constant admittance and constant power load models represent only crude
approximations to actual load behavior and that more precise load models may be
necessary for accurate characterization of voltage stability issues. Proposed refine-
ments include static representation of frequency and voltage dependence and, in some
cases, the inclusion of load dynamics. Such modifications are readily accommodated
within the bifurcation framework. In the present instance, we wish to show that even
a simple expansion of the load model can have a significant qualitative effect. To see
this, replace the constant reactive load with the voltage-dependent model

Q4 (V4) = kV4

with constant k. By so doing, it is determined that the singular point identified above
remains a singular point, the null space spanning vector and the co-dimension are
unchanged. However, the parameter sensitivity matrix is



188 6 Power System Dynamics: Bifurcation Behavior

∂γ (μ∗)
∂μ

=
[−8.596 4.298 −2.149 −11.005

0 0 0 −1.944

]

μ = [
ΔP1 ΔP2 P4 k

]

The significance of this result is that the system with the voltage-dependent load
represents a versal unfolding of the singularity.

Hopf and Generalized Hopf Bifurcation: Oscillations associated with instability in
the power systems are well known and frequently described in an extensive literature
which spans many decades. The connection with bifurcation analysis was made in the
1980s. Van Ness et al. [190] suggest that an observed oscillation is associated with
a Hopf bifurcation. Abed and Varaiya [2] illustrate subcritical Hopf bifurcations
in several electric power system models. Alexander [4] provides a thorough local
stability analysis of Hopf bi furcations for a model of two machines connected
with a lossy transmission line and demonstrates the occurrence of both subcritical
and supercritical Hopf bifurcations. An example of Hopf bifurcation in a three-
machine classical network with lossy lines is given by Kwatny et al. [123, 122].
Another example is given by Rajagopalan et al. [166] in which a three-machine
system is modeled with a two-axis representation and excitation is included. Iravani
and Semlyen [99] show Hopf bifurcation in a single machine system with a flexible
turbine generator shaft.

Chen and Varaiya [42] illustrate a degenerate Hopf bifurcation in a two-generator
network with excitation and an infinite bus. Venkatasubramanian et al. [194] illustrate
a different type of degenerate Hopf (double zero eigenvalues) in a single-line network
including a generator with voltage control (either excitation or a thyristor-controlled
reactance) and a constant power load. Subcritical and supercritical Hopf bifurcations
are naturally encountered in studies of chaos in power systems [49, 197].

One could justifiably conclude that Hopf bifurcations are pervasive in power
system dynamics.

Example 6.23 Example 6.22 Revisited. Return now to the system of Example 6.22
with constant admittance loads as characterized by Equations (6.85) and (6.86).
Hopf bifurcations occur in this system as described in [122, 123]. First, focus on
the static bifurcation point at (θ1, θ2,ΔP1,ΔP2) = (1.549, 0.759, 4.261, 2.794).
The Lyapunov–Schmidt reduction indicates that this bifurcation has co-dimension
1 and can be efficiently observed in the variable θ1 as the parameter ΔP1 is varied,
as shown in Figure 6.7. The bifurcation point noted above is a classical saddle-node
bifurcation. Thus, stability of the equilibrium solution changes from stable to unstable
at the fold. It should be emphasized that this example has constant admittance loads
and the system therefore reduces to a system of ordinary differential equations, so
the saddle-node is typical for a fold in the equilibrium manifold. This is not the case
in more power systems with general load models.

The curve in Figure 6.7 is extended by decreasing ΔP1. By computing the eigen-
values at equilibria along this curve, a dynamic bifurcation point is encountered at
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Hopf Bifurcation saddle-node bifurcation

Fig. 6.7 A portion of the equilibrium surface shows θ1 as a function of ΔP1

ΔP1 = 4.042 with damping parameter γ = 0.214. Another bifurcation is encoun-
tered by further decreasing the parameter ΔP1. Both are supercritical Hopf bifur-
cations, so that a stable limit cycle emerges as ΔP1 increases from 3.244, and as
ΔP1 decreases from 4.042. The above is information summarized in the bifurcation
diagram of Figure 6.7.



Chapter 7
Elements of Power Systems Control

“When you have a pair of interesting matrices study the pencil
that they generate, or even the algebra.”

—Olga Taussky, “How I Became a Torchbearer for Matrix
Theory”

7.1 Introduction

Control of voltage, frequency and load is central to power network operation. The fol-
lowing sections review the basics of these systems. Each generator has two basic con-
trollers, a frequency (or load frequency) controller and a voltage controller. The two
are generally analyzed independently. The primary voltage control system involves
using the generator excitation system to change the field voltage in order to regulate
the generator terminal bus voltage. This problem is treated first in Section 7.2. The
load frequency control problem has two goals: 1) regulate the electrical frequency
(equivalently, rotor speed) supplied by each generator to synchronous frequency, and
2) insure that the total real power supplied by the generators is distributed among
them in accordancewith a specified set of distribution factors. This problem is treated
in Section 7.3. Section 7.4 addresses the multi-area control problem of regulating
frequency along with the power flow exchanges between control areas, known as
automatic generation control (AGC). The integration of AGC with economic dis-
patch of generation within each area is considered in Section 7.4.3.

7.2 Primary Voltage Control

The central issue is control of voltage throughout the power network. This comes
down to the problem of controlling the voltage on a selection of network buses –
usually a large number.

© Springer Science+Business Media New York 2016
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Fig. 7.1 A generic block diagram for an excitation voltage control system shows the key compo-
nents and their interconnections

7.2.1 Excitation Systems

A first step is the control of voltage on the terminal bus of each generator. This is
typically accomplished using an excitation system associated with each generator.
The exciter itself supplies a (variable) DC voltage to the generator field winding.
The exciter itself can be thought of as some form DC generator. Associated with
the excitor are various control components such as the compensator and stabilizer as
shown in Figure 7.1.

For the purposes of voltage control, it is assumed that frequency is constant. The
generator model of Section 4.4.2 will be employed attached to a constant admittance
load. A single-line diagram illustrating the configuration is shown in Figure 7.2. Note
that the two impedance variables z12, z22 convert to admittance variables

y12 = − j/Xd , y22 = RL

R2
L + X2

L

− j
XL

R2
L + X2

L

and the bus admittance matrix can be written

Y =
[
Y11 Y12
Y21 Y22

]
=

[
y12 −y12

−y12 y12 + y22

]

Fig. 7.2 Single-line
depiction of a generator
feeding a constant
admittance load

Internal
bus

,aE δ′ ,aV θ
Terminal

bus

1 2

aI
12 dZ jX=

22 L LZ R jX= +

http://dx.doi.org/10.1007/978-0-8176-4674-5_4
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The bus current injection relation is

[
Ia
0

]
= Y

[
E′

a

Va

]

and the second equation yields

Va = y12

y12 + y22
E′

a

Substituting the admittance values produces

Va =
(
R2
L + XL (XL − Xd)

R2
L + (XL − Xd)

2 + j
RL Xd

R2
L + (XL − Xd)

2

)
E′

a (7.1)

from which

Va = kE ′
a, k =

√
R2
L + X2

L

R2
L + (XL − Xd)

2 (7.2)

θ = δ − arctan

(
RL Xd

R2
L + (XL − Xd)

2

)
(7.3)

Now, recall Equation (4.96), rewritten here

τ f
dE ′

a

dt
= −E ′

a − σVa cos θ + (1 + σ) E f d

In the feedback analysis of the excitation system, the term σVa cos θ can be treated as
a disturbance, or decoupled completely by redefining the field input voltage. In either
case, the voltage controller feedback system is reduced to the block diagram shown
in Figure 7.3. Conventional linear models are used for the various components.

-

NetworkCompensator

1
a

a

K

sτ +-

1
st

st

K s

sτ +

K k
aV

1
f

f

K

sτ +

Exciter Generator field

Stabilizer

aE′
aV

++ 1
e

e

K

sτ +

1

1msτ +

Measurement

E

Fig. 7.3 Block diagram of the excitation system

http://dx.doi.org/10.1007/978-0-8176-4674-5_4


194 7 Elements of Power Systems Control

A little block diagram algebra yields the voltage command to error (V̄a → E)
transfer function:

Ge (s) = 1

1 + KKaKeK f k

((τas+1)(τes+1)(τ f s+1)+KaKeKst s)(τms+1)

(7.4)

Now, the Final Value Theorem asserts [156], providing the closed loop is stable, that
the ultimate state error in response to a step command is

e (∞) = lim
s→0

sGe (s)
1

s
(7.5)

Thus,

e (∞) = 1

KKaKeK f k
= 1

Kdc
(7.6)

The first observation is that the error is inversely proportional to the loop zero fre-
quency (or DC) gain – as anticipated for a type zero system. Consequently, it is
desired to achieve as high a gain as possible without losing stability. The pur-
pose of the stabilizer is to increase the achievable gain. Note, by the absence of
kst in (7.6), that the stabilizer does not directly affect the loop DC gain because
of the presence of “s” in the stabilizer numerator. Nevertheless, it has a very pro-
found effect. To see this, take the numerical example with system time constants
τa = 0.05, τm = 0.075, τe = 1.0, τ f = 5.0. The controller design parameters are
K , kst and τst . The parameter K will establish the DC gain, which is ultimately lim-
ited by stability. Now, we will fix τst = 5 and consider various values of kst along
with its effect on the stability bound on the DC gain.

The value kst = 0 corresponds to the absence of the stabilizer. The root locus for
this case is shown in Figure 7.4. The maximum achievable gain is Kdc = 51.534.
Table 7.1 shows a range of kst values up to kst = 100. The root locus for this case
is shown in Figure 7.5. Obviously, the stabilizer can be very effective for increasing
the bound on the DC gain and thereby improving voltage regulator accuracy.

Example 7.1 Hybrid Electric Ship Power System. Consider the system described in
Appendix A. The no-load admittance matrix is given in Equations (A.1) and (A.2).
Identical resistive loads on buses 7 through 12 can accommodated with Equation
(A.3). Assume the system is operating with only generators 1 and 2 connected,
the resistive loading totals 0.60 p.u., and there is a 0.15 p.u. constant real power
propulsion loadonbus 3.Eachof the twogenerators is equippedwith identical voltage
controllers as depicted above in Figure 7.3, with the following parameters. The time
constants are τa = 0.2, τe = 0.314, τ f = 1, τst = 1. The measurement delay is
neglected, τm = 0. The gains are K = 1000, Ka = 1, Ke = 1, K f = 5, Kst = 500.

Selected responses from an arbitrary initial state near the equilibrium point are
shown in Figures 7.6, 7.7, and 7.8. Notice that Figure 7.6 shows the field voltage at
the internal buses of generators 1 and 2. These, of course, are the control variables
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Fig. 7.4 Root locus for the unstabilized system (kst = 0). The upper bound for DC gain is Kdc =
51.534

Table 7.1 Upper stability bound of Kdc for various values of stabilizer gain, kst
kst 0 1 10 50 100

Kdc 51.534 65.244 144.356 679.67 1621.7

Fig. 7.5 Root locus for the stabilized system with kst = 100. The upper bound for DC gain is
Kdc = 1621.7
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Fig. 7.6 The field voltages of generators 1 and 2 are shown
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Fig. 7.7 The top two figures show the generator 1 and generator 2 terminal voltages while the
bottom figure illustrates the voltage on bus 3, a load bus
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Fig. 7.8 The voltage transients on load buses 8, 10, and 12

that are beingmanipulated to control the terminal bus voltages for the two generators.
These controlled bus voltages are shown in the first two figures of Figure 7.7. The
generator field voltage is variation is intended to regulate the associated generator
terminal bus voltage (in this case, 1.05 p.u. is the target voltage for both terminal
buses. The ultimate intent is to keep all load bus voltages close to 1 p.u.

The third graph of Figure 7.7 shows the voltage on bus 3 which is the load bus
that supplies constant power to the electric propulsion drive. In other configurations,
it is the terminal bus of generator 3. In this example, generator 3 is disconnected. The
bus voltage is low, ultimately reaching a value of just over 0.9 p.u. Figure 7.8 shows
load buses 8, 10, and 12. Bus 8 reaches a steady-state voltage of about 1.05 p.u.—a
bit high, bus 10 achieves about 1.01 p.u. and bus 12 is somewhat low at 0.95 p.u. In
this example, the system is loaded symmetrically so it is no surprise that buses 7, 9,
and 11 mirror 8,10, and 12.

7.3 Load Frequency Control

The central goal of load frequency control (LFC) is to balance generation and load.
In this context, “load” should be understood as the total power consumed by the
totality of electrical devices and the transmission/distribution network together at
the synchronous frequency, ωs . “Generation” means the total power delivered to
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the network by all power supply components. The control of frequency and power
supply is inextricably connected as the typical load element’s power consumption is
frequency dependant.

Consider the case where power is supplied by steam turbine-driven generators.
Then in order to change the generator power output, it is necessary to change the
mechanical power into the turbine generator rotor which is accomplished by opening
or closing the throttle valve, thereby changing the flow rate of steam into the turbine.
The device that regulates the flow of steam into the turbine is referred to as a speed
governor or simply a governor. The earliest speed governors were purely mechanical
and contained both a speed-sensing mechanism and a valve actuator. The centrifugal
governor, patented by James Watt in 1787, is such a device. Such a governor, which
moves the valve in proportion to the speed error, gives rise to a proportional control
compensator. It was the now well-known deficiencies of proportional control that
inspired Maxwell to invent the proportional plus integral compensator described in
his pioneering paper “On Governors” [143].

Consider a system composed of two generators that feed a network of constant
admittance loads. If the voltage behind reactance generator model is employed, then
regardless of the size or complexity of the network it can be reduced to a two-bus
representation where the two buses correspond to the generator internal buses. The
network is then characterized by the 2 × 2 reduced bus admittance matrix:

Yred =
[

g11 g12
g21 g22

]
+ i

[
b11 b12
b21 b22

]
(7.7)

The admittance matrix, Yred , depends, of course, on the load. An example of this
dependency is shown in Table 7.2.

The dynamics of the system are described by the differential equations

θ̇1 = ω1

θ̇2 = ω2

Mω̇1 + Dω1 = Pm1 − g11V 2
1 − g12V1V2 cos (θ1 − θ2) − b12V1V2 sin (θ1 − θ2)

Mω̇2 + Dω2 = Pm2 − g22V 2
2 − g21V1V2 cos (θ1 − θ2) − b21V1V2 sin (θ2 − θ1)

(7.8)

Table 7.2 Reduced bus admittance matrix as a function of load (pu)

Load g11 g11 g11 g11 b11 b11 b11 b11

1.10 0.006605 0.008415 0.008415 0.019477 0.410675 0.234430 0.234430 0.644844

0.75 0.004920 0.005631 0.005631 0.014342 0.410769 0.234612 0.234612 0.645206

0.60 0.004197 0.004437 0.004437 0.012137 0.410798 0.234669 0.234669 0.645323

0.45 0.003474 0.003241 0.003241 0.009931 0.410820 0.234715 0.234715 0.645418

0.30 0.002750 0.002045 0.002045 0.007723 0.410836 0.234748 0.234748 0.645491
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Because these equations have a translation symmetry with respect to θ1, θ2, it is
useful to define δ1 = θ2 − θ1 so that these equations become

δ̇1 = ω2 − ω1

Mω̇1 + Dω1 = Pm1 − g11V 2
1 − g12V1V2 cos (δ1) + b12V1V2 sin (δ1)

Mω̇2 + Dω2 = Pm2 − g22V 2
2 − g21V1V2 cos (δ1) − b21V1V2 sin (δ1)

(7.9)

Now, assume that the system is in steady state, by which it is meant that δ̇1 = 0, ω̇1 =
0, ω̇2 = 0. This implies that the rotational speeds of both machines must be constant
and they must be equal since δ is also constant. If it is assumed that the equilibrium
speed is synchronous speed, then

ω1 = ω2 = ωs

It is also necessary that

Pm1 = Dωs + g11V 2
1 + g12V1V2 cos (δ1) − b12V1V2 sin (δ1)

Pm2 = Dωs + g22V 2
2 + g21V1V2 cos (δ1) + b21V1V2 sin (δ1)

Notice that if the last two equations are summed, then the result is

Pm1 + Pm2 = 2Dωs + (g11 + g22) V
2
1 + (g12 + g21) V1V2 cos (δ1) (7.10)

This result is as expected. The total mechanical power delivered to the turbine gen-
erators is equal to the total mechanical friction power (the first term on the right) and
the total electrical power consumption (the sum of the second and third terms on the
right). Table 7.2 clearly shows how the dissipative admittance terms, gi j , and, thus,
how electrical consumption vary with load.

The primary goals of load frequency control are to steer the system to a stable
equilibrium in which themachine speed is synchronous speed,ωs and the total power
PT = Pm1 + Pm2 as given in (7.10) is distributed such that

Pm1 = k1PT , Pm2 = k2PT , k1 + k2 = 1 (7.11)

The specified constants k1, k2 are called distribution factors. A conventional control
configuration that achieves these goals is shown in Figure 7.9. Here, linear models
(the transfer functions G1,G2) are used to characterize the steam turbines and the
governors. Such models can be of different orders of complexity. These include a
first-order lag characterizing the dominant turbine response time constant, or the
dominant time constant plus a first-order lag for the valve actuator. Occasionally, a
second-order turbine model is employed along with the actuator lag. The regulator
is shown as a proportional plus integral compensator.
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Fig. 7.9 A load frequency control configuration for two generators feeding a power network

Recall that the steady-state conditions insure ω1 = ω2. The integral compensator
requires the steady-state conditions:

β1 (ω1 − ω0) + (Pm1 − k1 (Pm1 + Pm2)) = 0
β2 (ω2 − ω0) + (Pm2 − k2 (Pm1 + Pm2)) = 0

(7.12)

Adding these equations, using the fact that the equilibrium frequencies are the same
and that k1 + k2 = 1, it is easy to see that in steady state ω1 = ω2 ≡ ωs . From the
swing equations, in steady state Pmi = Pei , i = 1, 2, so that

Pmi = ki PT , i = 1, 2

where PT is the total real power supplied and is the sumof turbinemechanical friction
losses plus the real power load including line losses.

Example 7.2 Example 7.1 Revisited. Once again, the system of Appendix A is used.
In the simulation of Example 7.1, a load frequency controller as shown in Figure 7.9
was employed. The generator p.u. mechanical parameters are M = 5, D = 0.5, the
compensator is proportional plus integral, and the turbine is modeled as first-order
lag, specifically

Gc = 2.2
s + 0.5

s
,Gt (s) = 1

0.5s + 1

The frequency bias parameters areβ1 = β2 = 5 and the participation factors are k1 =
k2 = 0.5. The same simulation as Example 7.1 produces the results for generator
frequency and power flow as shown below in Figures 7.10 and 7.11. As expected,
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Fig. 7.10 Generators 1 and 2 frequencies are shown for the same initial conditions as inExample 7.1
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Fig. 7.11 Thepower outputs ofGenerators 1 and2 are shown.Notice the somewhat longer timescale
than voltage or frequency responses
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Fig. 7.12 Illustrates a system with three independent control areas interconnected by tie-lines

Figure 7.10 shows both generator frequencies stabilize at 60 Hz. Similarly, in Figure
7.11 it is seen the total load power of 0.75 p.u. is ultimately equally divided between
the two generators at 0.375 p.u. each.

7.4 Automatic Generation Control (AGC)

The AGC problem involves two or more independently operated power systems
that are interconnected via transmission lines with scheduled real power transfers
[55, 56]1. Figure 7.12 illustrates a three-area system. The generation in each area is
independently regulated to provide inter-area tie flows tomatch a predefined schedule
negotiated by the participating areas.

There are four principle regulation goals of classical AGC address the steady-state
operating condition. They are:

1. match total generation to load
2. regulate system frequency error to zero

1An interesting discussion of AGC operations and issues some three decades after its first inception
can be found in [101]
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3. distribute generation to areas so that inter-area tie flows match a prescribed
schedule

4. distribute generation within areas to minimize area operating costs

The first of these objectives is classically associated with system governing or “pri-
mary speed control” and is usually achieved in a time span of several seconds. The
latter three objectives are accomplished by “supplementary” controls with objectives
2) and 3) associated with the “regulation” function and 4) with the “economic dis-
patch” function of these controls. The regulation and dispatch functions are executed
in a time span on the order of minutes.

On most modem interconnections, the basis for accomplishing the regulation
function is the tie-line bias control concept introduced in [55]. When operating in
accordance with the principles of tie-line bias control, each area attempts to regulate
its “area control error” (ACE), defined for area i by

ACEi = ΔPi + βiΔωi (7.13)

where for the i th area, ACEi is the area control error,ΔPi is the net tie flow error,Δωi

is the frequency error and βi is the frequency bias constant. The success of the tie-line
bias control strategy is based on the twofold premise that: 1) independent regulation
of its own ACE by each area implies achievement of the overall objectives of system
regulation, and 2) each area can, in fact, achieve its assigned subgoal (regulation of
its ACE) without some sort of inter-area coordination.

Originally,AGCwas viewed as a static problem.The objectives ofAGC regulation
were defined in terms of steady-state conditions and the first part of the above premise
was validated on the basis of this definition. In fact, from this point of view it is
merely necessary to show that the requirement of zero area control error for each
area is sufficient to establish the desired steady-state frequency and tie flows. The
second part of the premise is then verified by demonstrating that integral control of
ACE within each area results in a stable structure with the desired equilibrium state.

But interconnection does have its attendant problems and they are dynamical
in nature. The interconnection of neighboring systems establishes the possibility
for disturbances in one system to produce effects in others which may be quite
remote from the source of the difficulty. In view of this, the dynamic aspects of
power system AGC became the focus of considerable interest, for example [72, 73,
38, 61]. The underlying motivation was the growing recognition of the importance
of the control of bulk power flows across potential separation boundaries within
the network, particularly following large disturbances or during generation shifts
to accommodate security constraints or tie-line schedule changes. In addition, in
order that economic dispatch be effective it is necessary that each area generation
requirement be established quickly and this is essentially the function of AGC. Since
load is persistently changing, with rapid and sustained variations expected to occur
during certain periods of normal operation, AGC must provide a “load tracking”
capability [71].
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7.4.1 Elements of the Classical AGC Problem

The classical model used in the analysis of AGC is based on the central assumption
that electrical interconnections within a control area are very strong relative to the
tie-line interconnections between control areas. Thus, all machines within an area
operate at a common frequency and within each area all bus frequencies vary in
unison. As a consequence, all turbine generators in the area can be aggregated into
a single machine.

A second assumption is that voltage variations can be neglected. The justification
for this is that voltage regulation takes place on a much shorter timescale that AGC
regulation. This assumption can also be challenged in some applications.

Finally, the tie-lines themselves are considered external to the independent control
areas. As a consequence, the power that exits one area over the interconnection enters
the connecting area with losses. With these assumptions, a classical two-area model
is shown in Figure 7.13. Note the term a12 in the figure accounts for tie-line losses.
In the lossless case, a12 = −1.

Now, consider the steady state of a system with N independent control areas. In
equilibrium, the frequencies of all areas are identical,ω1 = ω2 = · · · = ωN , as would
be the case of any multi-machine interconnection. Furthermore, the integral action in
the secondary control compensation insures that ACEi = 0, i = 1, . . . , N . It will
be assumed that the tie-line power flow schedule accounts for losses in the tie-lines.
That is, P0

i j + P0
j i + Ploss

i j = 0, where P0
i j is the scheduled tie power flow from area i

to area j and Ploss
i j is the power loss associated with this power transfer. As a result,
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Fig. 7.13 The classical linear model of the dynamics of a two-area system
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the sum of the area net tie transfer deviations from schedule is zero,
∑N

i=1 ΔPi = 0.
These equations can be assembled into a set of N + 1 linear equations

∑N
i=1 ΔPi = 0

ΔPi + BiΔωi = 0, i = 1, . . . , N
(7.14)

in terms of the N + 1 independent variables Δω1 and ΔPi , i = 1, . . . , N . In matrix
form

⎡

⎢⎢⎢
⎢⎢⎢
⎣

1 1 · · · 1 0
1 0 · · · 0 B1

0 1
. . .

...
...

0
. . .

. . . 0 BN−1

0 · · · 0 1 BN

⎤

⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎢⎢
⎣

ΔP1
ΔP2

...

ΔPN

Δω1

⎤

⎥⎥⎥
⎥⎥
⎦

= 0 (7.15)

It is easily confirmed that the matrix is nonsingular so the unique solution is Δω1 =
0, ΔP = 0i , i = 1, . . . , N . Consequently, objectives 1), 2), and 3) will be achieved
in steady state provided the system is stable.

Objective 4) is relegated to a separate function of AGC called economic dispatch
[27]. Economic dispatch is the process of determining the distribution of power
among plants within a control area in order tominimize fuel cost. The earliest version
was a static optimization problem which distributed the total generation among m
plants to minimize the total area fuel cost,

C (P1, . . . , Pm) =
∑m

i=1
Ci (Pi ) (7.16)

under the constraint that the sum of the plant power outputs is equal to the required
area total demand real power

∑m

i=1
Pi = PTot (7.17)

and, in addition, each plant power is constrained according to a specified minimum
and maximum power output,

Pi,min ≤ Pi ≤ Pi,max, i = 1, . . . ,m (7.18)

Over the years, the dispatch function has evolved to accommodate changing realities
of the system [52, 202]. Thus, load dynamics, emission constraints, load manage-
ment, and other factors have become relevant considerations.
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7.4.2 AGC Control Strategies

While the goals of AGC as originally formulated focusedmainly on achieving certain
steady-state behaviors, dynamics and stability are central to any feedback control
structure. However, load varies substantially in the course of a day and depends on
many factors includingweather. Furthermore, formany systems dominated by steam-
powered generation systems, the generation response capability can be a significant
limiting factor in matching generation to load. So dynamical behavior as well as load
prediction and tracking is important as is the coordination of the economic dispatch
function with the ACE regulation function [171].

The dynamical behavior of the classicalmodel, Figure 7.13, was studied in [72]. In
another paper, [73], these authors proposed a new approach to controller design based
on the linear quadratic regulator (LQR) designmethod [13]. Although better dynamic
performance is achieved, a key deficiency of this approach is that it does not provide
the precise steady-state ACE zeroing objective of AGC because the LQR design
does not include the equivalent of integral control. The method was expanded in [38]
and [116] to remedy this. Moreover, in [116] generation plant response limitations
were considered and a form of load estimation was incorporated to improve load
tracking capabilities. The approach of [116] was further extended in [110] to include
coordination of economic dispatch and AGC.

Another distinction in the discussion below with respect to the early applications
of LQR design is that each control area has its own regulator that uses only local
information other than the shared tie flow schedule. This preserves an important
decentralized structure of the original AGC controllers.

The approach used in [116, 110] is based on the theory of the linear multivari-
able regulator as described in [103, 74, 124, 200]. The linear system dynamics are
augmented by a set of disturbance variables which are themselves described by a
systems of linear differential equations so that the augmented system is described by
the equations

ẋ = Ax + Ew + Bu
ẇ = Zw

e = Cx + Fw + Du
y = C̃x + F̃w + D̃u

(7.19)

In this model, x ∈ Rn is the state of the original dynamical system, u ∈ Rm is the
control input, e ∈ Rm is the error output to be regulated, y ∈ Rp is the measurement,
and w ∈ Rq is the disturbance vector. The goal was to design a feedback controller
that provides

1. internal stability: the feedback system is stable
2. regulation: lim

t→∞ e (t) → 0 for any w (t) generated by the disturbance model.

Before considering the regulator design details, consider the following example that
sets up an AGC regulator design problem in the framework of Equation (7.19).
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Fig. 7.14 The figure illustrates the system dynamics to be used in design of the area regulator. Note
the model of the aggregated steam plant involves an integrator whose input, u1, is the commanded
rate of change of power input. Disturbance inputs w1, w2, w3, w4, w5 are also shown

Example 7.3 AGC Regulator Design. Consider the two-area system of Figure 7.13.
An AGC controller will be designed for control area 1 based on the extracted model
shown in Figure 7.14. This system includes a single aggregated power plant, an
integrator, with input u1 represents the rate of change of power output. Thus, u1 can
be maintained below the allowable rate of change of power output. It is assumed that
this rate limit is sufficiently low that the power output responds accordingly. The goal
of the AGC regulator was to track the relatively slow variations in load demand by
regulating ACE1 to zero. It is not intended to manage the considerably faster inter-
area frequency oscillations. Consequently, the area 2 is not included in the model.
The effects of area 2 are included with the constant disturbance w3 that affects the
tie flow. Also, in view of the slower timescale of AGC relative to inter-area swings,
the areas are assumed to operate at the same frequency. The impact of internal and
external area load changes with frequency is included. The area 1 electrical load is
represented by a constant plus ramp disturbance with states w1, w2. The regulator
employs three measured outputs, Δω1, PL , δPT , and the commanded scheduled tie
flow P0

T . Note that a disturbance variablew4 is used to characterize P0
T as a constant,

measurable command.
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The system differential equations are

δω̇1 = (−βδω1 + PS1 − w1 − P0
T − (β/β)w3

)
/M

ṖS1 = u1

with error
e = ACE1 = δPT + Bδω1

and measurements

y1 = δω1

y2 = δPT = (β2/β)
(
PS1 − P0

T − w1
) + w3

y3 = PL = w1 + D1δω1

y4 = PS1

These equations can be written in the form of (7.19)

d
dt

[
x1
x2

]
=

[−β/M 1/M
0 0

] [
x1
x2s

]

+
[−1/M 0 −β/Mβ1 −1/M 0

0 0 0 0 0

]

⎡

⎢⎢
⎢⎢
⎣

w1

w2

w3

w4

w5

⎤

⎥⎥
⎥⎥
⎦

+
[
0
1

]
u1

(7.20)

d

dt

⎡

⎢⎢⎢⎢
⎣

w1

w2

w3

w4

w5

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

w1

w2

w3

w4

w5

⎤

⎥⎥⎥⎥
⎦

(7.21)

e = [
B β2

/
β

] [
x1
x2

]
+ [−β2

/
β 0 1 −β2

/
β B

]

⎡

⎢⎢
⎢⎢
⎣

w1

w2

w3

w4

w5

⎤

⎥⎥
⎥⎥
⎦

(7.22)

⎡

⎢
⎢
⎣

y1
y2
y3
y4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 0
0 β2

/
β

D1 0
0 1

⎤

⎥
⎥
⎦

[
x1
x2

]
+

⎡

⎢
⎢
⎣

0 0 0 0 1
−β2

/
β 0 1 −β2

/
β 0

1 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎦

⎡

⎢⎢
⎢⎢
⎣

w1

w2

w3

w4

w5

⎤

⎥⎥
⎥⎥
⎦

(7.23)
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The design of a regulator for the system (7.19) proceeds in three steps

1. Regulation: determination of an ultimate state trajectory,
2. Stabilization: design of a stabilizing state feedback controller,
3. Observation: design of a state and disturbance variable observer.

For step 1, regulation, a solution pair x̄ (t) , ū (t) is sought that satisfies the differential
equations in (7.19) for some initial state x (0), and insures that e (t) ≡ 0 for any initial
disturbance x (0). Hence, it is required that

˙̄x = Ax̄ + Ew + Bū
ẇ = Zw

0 = Cx̄ + Fw + Dū
(7.24)

Now, assume a solution of the form x̄ = Xw, ū = Uw, where X,U are matrices to
be determined. Substitution into (7.24) leads to the requirement that X and U must
satisfy the matrix equations

X Z − AX − BU = E
CX + DU = F

(7.25)

These equations constitute a large set of linear equations in the unknowns, i.e., the
elements of the matrices X andU . Furthermore, they are typically under determined
so there are multiple solutions. Define the variables δx = x − x̄ and δu = u − ū.
Upon substitution into (7.19), the state equations become

δẋ = Aδx + Bδu (7.26)

Thus, so long as (A, B) is a stabilizable pair it is a simplematter to determine amatrix
K , so that the control δu = K δx solves step 2 stabilization. Since u = ū + δu, we
have

u = Uw + K (x − Xw) = [
K (U − K X)

] [
x
w

]
(7.27)

Finally, for step 3, observation, consider the composite system

d

dt

[
x
w

]
=

[
A E
0 Z

] [
x
w

]
+

[
B
0

]
u (7.28)

y = [
C̃ F̃

] [
x
w

]
+ D̃u (7.29)
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If (7.28) and (7.29) comprise an observable system, then an observer is easily deter-
mined in the form

d

dt

[
x̂
ŵ

]
=

[
A E
0 Z

] [
x̂
ŵ

]
+

[
B
0

]
u + L

(
C̃ x̂ + F̃ŵ + D̃u − y

)
(7.30)

Thematrices K and L can be determined by pole placement or by solving the relevant
Riccati equations. Equations (7.30) and (7.27) constitute the controller as illustrated
in Figure 7.15.

Example 7.4 AGC Regulator Design, Continued. Consider the system of Example
7.3. The data provided in Table 7.3, for the system shown in Figure 7.14, is taken
from [72].

U

Disturbance

PlantK

X

-

Observer

uδxδ
u

u

x

x̂

ŵ

w

y

Fig. 7.15 This diagram illustrates the implementation of Equations (7.30) and (7.27)

Table 7.3 AGC Nomenclature

Symbol Quantity Value in Example 7.4

δω1, y1 frequency deviation from synchronous

δPT , y2 area net tie flow deviation from schedule

P0
T area net tie flow schedule

PL , y3 area electrical load at prevailing frequency

PS1, y4 area mechanical Power

M total system inertia 10 sec

β1,β2 local area regulation, βi = Di + R−1
i

β total system regulation β = β1 + β2

D1, D2 local area load characteristic 0.00833 pu MW/Hz

R1, R2 local area load characteristic 2.4 Hz/pu MW

B frequency bias constant
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Now, with this data, let us consider design of a regulator for the system defined
by equations (7.20) through (7.23).

7.4.2.1 Regulation

First, consider Equation (7.25). These equations are solved for X ∈ R2×5 and U ∈
R1×5:

X =
[
0 0 −0.85

0.425B+0.181 0 B
B+0.425

1 0 2(B−0.425)
B+0.425 1 0.85B

B+0.425

]
, U = [

0 1 0 0 0
]

All parameter values are as indicated in Table 7.3. Notice that the frequency bias
constant, B, has not been specified. A commonly used value is B = 1. In this case,

X =
[
0 0 −1.404 0 −0.702
1 0 0.807 1 −0.596

]
, U = [

0 1 0 0 0
]

7.4.2.2 Stabilization

Stabilization requires choosing a control matrix K , such that the matrix A+ BK has
poles in the left half plane. In this example,

A =
[−β/M 1/M

0 0

]
. B =

[
0
1

]

with numerical values for the parameters given above. First, consider the eigenvalues
of A which are

{−0.17, 0.}

The primary goal was to move the eigenvalue at the origin into the left half plane.
The remaining real eigenvalue represents relatively fast, stable dynamics of the sys-
tem. Modification of the fast dynamics is generally considered the function of the
primary controls (governors), not the AGC system. Although the AGC system could
be used for that purpose, to be effective would require high-speed interchange of
measurement data between areas. One of the key features of AGC is that its primary
goals can be achieved using only local area data. In other words, classical AGC is
a decentralized control structure. To preserve this desirable property, K should be
chosen, so that only the dynamics associated with the zero eigenvalue are affected
by the controller.

One simple approach to achieving the desired goal is based on determination of
the linear state feedback control, u = Kx , for the linear system

ẋ = Ax + Bu
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that minimizes the quadratic cost function

J (x) = lim
T→∞

1

T

∫ T

0

[
xT (τ )Qx(τ ) + uT (τ )Ru(τ )

]
dτ

with Q = QT ≥ 0, R = RT > 0. If the pair (A, B) is stabilizable, then the optimal
K exists and is given by

K = −R−1BT S (7.31)

where S = ST ≥ 0 satisfies the algebraic Riccati equation

AT S + SA − SBR−1BT S + Q = 0 (7.32)

In the application of this result to the current design problem, we set Q = 0, and
replace A in (7.32) by A + γ I , with the scalar γ > 0 to be specified. Note that the
addition of the term γ I shifts all the eigenvalues of A to the right by and amount γ.
Equation (7.32) now becomes

(A + γ I )T S + S (A + γ I ) − SBR−1BT S = 0 (7.33)

With S determined from (7.33) and K obtained from (7.31) the closed loop sys-
tem matrix (A + BK ) has some useful properties. First, only eigenvalues of A with
real parts to the right of −γ are affected by feedback. Note that all of these eigen-
values would be destabilized by the γ I shift. The feedback control stabilizes these
eigenvalues by reflection with respect to the line s = −γ in the complex s-plane.

As an example, by choosing γ = 0.0125, Equations (7.33) and (7.31) yield

K = [
0 −0.025

]

and the eigenvalues of (A + BK ) are

{−0.17,−0.025}

Thus, only the dynamics associated with the zero eigenvalue have been affected and
the eigenvalue has been shifted from 0 to −0.025 corresponding to a time constant
of 40 seconds.

Note that

K = [
K (U − K X)

] =
[
0 −0.025 0.025 1 0.05(B−0.425)

B+0.425 0.025 −0.02125B
B+0.425

]

(7.34)



7.4 Automatic Generation Control (AGC) 213

7.4.2.3 Observation

Implementation of the controller (7.34) requires only three states x5, w2, w3. Two of
these x5 and w3 are directly measured. The third, w2, is easily estimated. In general,
however, with different design parameters in (7.34) more states will be required to
implement the controller and an observer needs to be designed.

To design the observer, it is first necessary to assemble the composite system
(7.28) and (7.29). Label the composite matrices:

Ac =
[
A E
0 Z

]
, Cc = [

C̃ F̃
]

It is readily confirmed that the composite system is observable. There are several
alternatives to designing the observer L matrix in Equation (7.30). In this example,
the design process is essentially the same as that used above for stabilization. L is
given by

L = SCT
c V

−1 (7.35)

where S is the unique positive semi-definite solution of the Riccati equation

S(Ac + γ I )T + (Ac + γ I ) S − SCT
c V

−1CcS = −W, S ≥ 0 (7.36)

Here, the scalar parameters γ, V ∈ R5×5, V > 0, andW ∈ R7×7,W ≥ 0, are design
parameters. Note that γ plays the same role as in the stabilization problem. The
primary goal was to place the observer eigenvalues (the eigenvalues of (Ac + LCc))
sufficiently into the left half plane to insure that the observer dynamics are fast relative
to the stabilized plant dynamics.

For example, take γ = 2.0, V = I5×5, and W = 0.1I7×7. Then, obtaining S from
(7.38) and computing L from (7.37) yields

L =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

−9.911 0 0.151 0 5.304
0 −0.571 −0.159 −5.694 0

0.226 1.928 −9.319 −0.159 0
0.773 7.891 −21.674 −0.643 0
30.555 −3.323 −1.275 0.399 −7.378
60.874 4.924 2.754 −3.595 −14.709
−0.415 0 0 0 −5.719

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

The observer eigenvalues are

{−5.47,−5.05,−3.67,−3.04,−2.74,−2.26,−2.04}

The smallest observer eigenvalue, −2.04, is over 10 times larger that the fastest
stabilized plant eigenvalue, −0.17.
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7.4.3 Coordination of Economic Dispatch and AGC

The distribution of power generation within an area in order to achieve minimal
fuel consumption, i.e., economic dispatch, was originally formulated as a static opti-
mization problem as described above in Section 7.4.1. The realities of the evolving
power system, notably the significant variations in system load along with the plant
power output rate change limitations, prompted consideration of a dynamic dispatch
formulation [22, 113, 172, 202].

Optimal generation allocation typically evolves on a timescale significantly slower
than ACE regulation. Moreover, if load estimates used in the generation allocation
process are in error or if the generating plant outputs fail to follow their prescribed
trajectories, a mismatch between total generation and load will result. The regulation
function of AGC must then restore the generation-load balance by modification of
the plant outputs. This natural coupling between the dispatch and the regulation
functions can significantly degrade performance of the AGC system. One approach
to mitigating this problem is the application of a permissive control strategy [171].
This strategy assigns a priority to regulation with the central objective of maintaining
a balance of load and generation. Thus, any change in unit output commanded by the
economic dispatch computation is inhibited unless it is consistent with restoration
of the generation-load balance. The problem with this approach is that it can negate
any economic realignment of generation.

An alternative approach to coordinating dispatch and regulation was proposed
in [110]. It is an extension of the method described in Section 7.4.2 and will be
discussed in the following sections.

7.4.3.1 Modeling

In the discussion of Section 7.4.2, the steam-generating plant is represented by
a single unit, i.e., a single integrator, as shown in Figure 7.14. As a result, of
course, there is no discussion of economic dispatch. For the present discussion,
the model will be expanded to include multiple steam plants. The turbine generator
will remain as a single aggregated system. Thus, introduce the k plants with states
PS1 = x2, . . . , PSk = xk+1 and inputs uk with governing equations

ẋ2 = u1, ẋ2 = u2, . . . , ẋk+1 = uk

Define the vectors,

x2 =
⎡

⎢
⎣

x2
...

xk+1

⎤

⎥
⎦ , u =

⎡

⎢
⎣

u1
...

uk

⎤

⎥
⎦
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Now, Equations 7.20, 7.22 and 7.23 are replaced by

d
dt

[
x1
x2

]
=

[−β/M (1/M)1×k

0 01×k

] [
x1
x2

]

+
[−1

/
M 0 −β

/
Mβ1 −1

/
M 0

0k×1 0k×1 0k×1 0k×1 0k×1

]

⎡

⎢⎢⎢⎢
⎣

w1

w2

w3

w4

w5

⎤

⎥⎥⎥⎥
⎦

+
[
01×k

Ik×k

]
u

(7.37)

e = [
B

(
β2

/
β
)
1×k

] [
x1
x2

]
+ [−β2

/
β 0 1 −β2

/
β B

]

⎡

⎢⎢
⎢⎢
⎣

w1

w2

w3

w4

w5

⎤

⎥⎥
⎥⎥
⎦

(7.38)

and

⎡

⎢⎢
⎣

y1
y2
y3
y4

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 01×k
0

(
β2

/
β
)
1×k

D1 01×k
0k×1 Ik×k

⎤

⎥⎥
⎦

[
x1
x2

]
+

⎡

⎢⎢
⎣

0 0 0 0 1
−β2

/
β 0 1 −β2

/
β 0

1 0 0 0 0
0k×1 0k×1 0k×1 0k×1 0k×1

⎤

⎥⎥
⎦

⎡

⎢
⎢⎢
⎢
⎣

w1
w2
w3
w4
w5

⎤

⎥
⎥⎥
⎥
⎦

,

(7.39)

respectively. Equation 7.21 remains the same.

7.4.3.2 Control

Design of the controller proceeds via the three-step procedure as described above in
Section 7.4.2. The key distinction, other than the expansion of the model to include
multiple generating plants, is in the solution of the regulation step. The following
paragraphs discuss this step in detail.

The ultimate state trajectory is computed using the modified model of Equations
(7.37) and (7.38). The essential difference in the models of this Section 7.4.3 and
Section 7.4.2 is the expansion from 1 to k generating plants, so that x2 → x2 and
u1 → u. Consequently, it is easy to verify that the only change to the ultimate state
trajectory alters x̄2 and ū, so that the following relations are obtained.

x̄1 = [
0 0 −0.85

0.425B+0.181 0 B
B+0.425

]

⎡

⎢⎢⎢⎢
⎣

w1

w2

w3

w4

w5

⎤

⎥⎥⎥⎥
⎦
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x̄2 = η
[
1 0 2(B−0.425)

B+0.425 1 0.85B
B+0.425

]

⎡

⎢⎢⎢⎢
⎣

w1

w2

w3

w4

w5

⎤

⎥⎥⎥⎥
⎦

u = η
[
0 1 0 0 0

]

⎡

⎢⎢⎢⎢
⎣

w1

w2

w3

w4

w5

⎤

⎥⎥⎥⎥
⎦

where

= [
η1 · · · ηk

]T
, ηi ≥ 0, η1 + · · · + ηk = 1

Note that the generation is distributed among the k plants according to the distribution
vector η.

Lemma 7.1 [Superposition in Regulation]A key observation for the coordination of
economic dispatchwithinAGC is the following. Suppose x̄∗, ū∗ represent a particular
ultimate state trajectory corresponding to any particular disturbance trajectory w∗.
If X, U are known, then

x̄∗ = Xw∗, ū∗ = Uw∗

The ultimate state trajectory corresponding to an arbitrary disturbance trajectory,
w, is, similarly,

x̄ = Xw, ū = Uw

Thus, x̄ and ū can be written

x̄ = x̄∗ + X
(
w − w∗) , ū = ū∗ +U

(
w − w∗)

Lemma 7.1 provides a natural method to coordinate economic dispatch within AGC.
Suppose the economic distribution of generation is based on the disturbance trajec-
toryw∗, wherew∗ is consistent with the disturbance model being used. For example,
suppose the optimization is based on an estimated constant load andwith all other dis-
turbances assumed zero: w∗

1 = constant, w∗
2 ≡ 0, w∗

3 ≡ 0, w∗
4 = constant, w∗

5 ≡ 0.
Also assume the following:
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1. The plant generation commands generated by the economic dispatch function are
provided directly to the plant controllers and not through the rate restricted AGC
regulator, i.e., ū∗ = 0.

2. It is assumed that both the AGC regulator and the dispatch computation are
provided the same tie-line scheduling data, P0

T = w4. Since w4 is the scheduled
tie flow, it follows that w4 = w∗

4 .
3. At any time t , the electrical load at synchronous frequency is PL = w1. Economic

dispatch distributes generation based on an estimate of load, P∗
L = w∗

1 .

With w∗ specified as above, from Lemma 7.1 we obtain:

x̄1 = −0.85

0.425B + 0.181
w3 + B

B + 0.425
w5 (7.40)

x̄2 = (
x̄∗
2 − ηw∗

1

) + η

(
w1 + 2 (B − 0.425)

B + 0.425
w3 + 0.85B

B + 0.425
w5

)
(7.41)

ū = ηw2 (7.42)

The stabilizer and observer are designed as in Section 7.4.2, accounting for the
additional plant states. Again use the equation (7.33). When applied to the current
situation, k poles are shifted from zero to −0.025 with

K = [
0k×1 −0.025Ik×k

]

Fig. 7.16 Coordinated AGC and economic dispatch controller
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The result is that

u = K
[
x̂
ŵ

]
, K = [

Kx Kw

]

Kx = [
0k×1 −0.025Ik×k

]

Kw = 0.025η
[
1 1 2(B−0.425)

B+0.425 0 0.85B
B+0.425

]

The structure of the coordinating controller is illustrated in Figure 7.16.



Chapter 8
Power System Management

“It must be considered that there is nothing more difficult to
carry out, nor more doubtful of success, nor more dangerous to
handle, than to initiate a new order of things.”

— Niccolò Machiavelli, “The Prince and The Discourses”

8.1 Introduction

Many systems undergo reconfiguration or switching during normal and abnormal
operations. Such systems can function in different modes or discrete states in each
of which the system may exhibit distinct dynamical behavior. Transitions between
modes are defined by logical conditions that can depend on continuous dynamical
states or external signals. Such systems are called hybrid systems [174] or Mixed
Logical-Dynamical systems (MLD) [24, 77]. The relevance of such problems to
power systems was clearly noted by Dy Liacco in [131, 132, 133]. This chapter is
concerned with power systems that operate in this way.

The class of control problems described herein derives from specific applications
in power systems, specifically systems that involve operation in highly nonlinear
regimes where failure events cause abrupt changes in the controlled system behavior,
which, in turn, require a change in control strategy.

All of the applications of interest herein involve both continuous and discrete
dynamics and are conveniently conceived as a hybrid automaton. Such a model is
composed of a description of the discrete transition behavior from one mode to
another along with models of continuous dynamic behavior within each mode. The
hybrid automaton model has proved to be an important theoretical tool and is a
key conceptual device for model building. However, other forms of models, like the
MLD, are far more convenient for control system design. The ability to convert from
one form of model to another is important.

© Springer Science+Business Media New York 2016
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219



220 8 Power System Management

In the following approach, the transition behavior of a hybrid automaton is mod-
eled by a logical statement (or specification). The logical specification can be con-
verted into a set of mixed-integer formulas (IP formulas)1. Thus, the transition spec-
ification for the automaton is converted into a set of inequalities involving Boolean
variables. Logical constraints other than the transition dynamics can also be added
to the specification, making this a powerful approach to formulating an optimal con-
trol problem. The authors in [187] describe a tool for building MLD models that
allows the inclusion of Boolean equivalents to logical specifications. So one could
use the tools noted above tool to create those expressions from an arbitrary logical
specification.

The IP formulas are used in computing the optimal control strategy. Our approach
derives a feedback policy based on finite horizon dynamic programming [23].
Dynamic programming has been used extensively in control system design and has
recently been explored as a tool for designing hybrid system feedback controls. Its
popularity derives from the generality and broad applicability of the principle of
optimality on which it is based. A drawback of dynamic programming is the curse
of dimensionality - a term coined by Bellman about 50 years ago, well before the
advent of powerful desktop computers.

Branicky et al [30] laid the groundwork for the use of dynamic programming in
hybrid systems. They focused on the existence of optimal and near-optimal controls
and the establishment of a taxonomy for hybrid systems. In [86], the authors intro-
duced a discrete version of Bellman’s inequality to compute a lower bound on the
optimal cost function using linear programming. In this way, an approximation of the
optimal feedback control law is derived. Another innovative work, [134], considers
the problem of approximating the value function. They called their procedure value
iteration from which a suboptimal solution is found within a user-specified distance
from the optimal solution. They have applied this relaxed dynamic programming
approach to design a switched power controller for a DC-DC converter.

The hybrid systems studymost closely related to our approach is the one described
by Bemporad et al in their recent paper [29]. They consider the optimal control of
constrained discrete time linear hybrid systems with quadratic or linear performance
criteria. The associated Hamilton-Jacobi-Bellman equations are solved backward in
time using a multi-parametric quadratic (or linear) programming solver. Two cases
are considered, one without binary inputs and the other one with binary inputs. In
the latter case, all possible combinations of binary inputs are enumerated.

In our case, we consider nonlinear discrete time hybrid dynamics with a general
convex cost function with primarily binary controls. A central feature of our formu-
lation is that it applies to systems with complex logical constraints, defined either
by the transition system or by the auxiliary considerations. We exploit the fact that
the system is highly constrained and most of the constraints are linear in Boolean
variables. Thus, we use the Mathematica function Reduce to determine feasible
points from which we identify those of minimum cost by enumeration. Reduce is a

1A computational tool for this purpose has been constructed in Mathematica. This work, described
in [118, 119, 120], extends earlier work in this area reported in [130, 199].
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powerful function that finds feasible solutions by solving equations and inequalities
and eliminating quantifiers. The method used depends on the specific structure of
the expressions involved.

In Section 8.2, we provide a specific definition of the problems considered herein.
Sections 8.3 and 8.4 describe the main concerns of this paper, namely the reduction
of a logical specification for the discrete subsystem to a set of inequalities and the use
of this model of a hybrid system to design optimal feedback controllers via dynamic
programming. An example is given in Section 8.7.3. The example shows how addi-
tional logical constraints - other than the transition behavior - can be incorporated
into the control problem.

8.2 Problem Definition

8.2.1 Modeling

The class of hybrid systems to be considered is defined as follows. The system
operates in one of the m modes denoted q1, . . . , qm. We refer to the set of modes
Q = {q1, . . . , qm} as the discrete state space. The discrete time difference-algebraic
equation (DAE) describing operation in mode qi is

xk+1 = fi (xk, yk, uk)

0 = gi (xk, yk, uk)
i = 1, . . . , m (8.1)

where x ∈ X ⊆ Rn is the system continuous state, y ∈ Y ⊆ Rp is the vector of
algebraic variables, and u ∈ U ⊆ Rm is the continuous control. Transitions can
occur only between certain modes. The set of admissible transitions is E ⊆ Q×Q. It
is convenient to view the mode transition system as a graph with elements of the set
Q being the nodes and the elements of E being the edges. We assume that transitions
are instantaneous and take place at the beginning of a time interval. So, if a system
transitions from mode q1 to q2 at time k, we would write q(k) = q1, q(k+) = q2.
We do allow resets. State trajectories are assumed continuous through events, i.e.,
x(k) = x(k+), unless a reset is specified.

Transitions are triggered by external events and guards. We denote the finite set
of events Σ . It is convenient to partition the events into two types: those that are
controllable (they can be assigned a value by the controller) and those that are not.
The latter are exogenous and occur spontaneously. Such an event might correspond
to a component failure, or a high-level change of operational mode. We will use the
symbols s to represent controllable events and p to represent uncontrollable events.
Thus, Σ = S × P where s ∈ S and p ∈ P. A guard is a subset of the continuous state
space X that enables a transition. A transition enabled by a guard might represent
a protection device. Not all transitions have guards, and some transitions might
require simultaneous satisfaction of a guard and the occurrence of an event. The
guard assignment function is G : E → 2X .
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We consider each discrete state label, q ∈ Q, and each event, σ ∈ Σ , to be
logical variables that take the values true or false. Guards also are specified as logical
conditions. In this way, the transition system, including guards, can be defined by a
logical specification (formula) L.

In summary, a hybrid control system is composed of the following:

1. Q, discrete space,
2. X, continuous state space,
3. E, set of transitions,
4. Σ , event set,
5. G, guard assignment function,
6. L, logical specification,
7. F, family of controlled vector fields.

Example 8.1 (Three-mode system) Consider the simple three-mode hybrid system
shown in Figure 8.1. Each mode, q1, q2, q3, is characterized by continuous dynamics
xk+1 = fqi (xk, uk) , i = 1, 2, 3.

Discrete transitions are associated with the events represented by logical variables
p, s1, s2, s3, i.e., Σ = {p, s1, s2, s3}. For example, if the system is in mode q1 and
s1 evaluates to true, then a mode transition occurs in which the mode changes from
q1 to q2. In this example, we use two different symbols s and p to denote transition
variables to underscore the fact that some transitions are controllable and others
not so.

In our formulation, the transition system behavior is defined by the logical spec-
ification:

L = exactly (1, {q1 (t) , q2 (t) , q3 (t)}) ∧ exactly
(
1,

{
q1

(
t+

)
, q2

(
t+

)
, q3

(
t+

)}) ∧(
q1 (t) ∧ s1 ⇒ q2

(
t+

)) ∧ (
q1 (t) ∧ p ⇒ q3

(
t+

)) ∧ (
q1 (t) ∧ ¬ (s1 ∨ p) ⇒ q1

(
t+

))∧(
q2 (t) ∧ s2 ⇒ q1

(
t+

)) ∧ (
q2 (t) ∧ ¬s2 ⇒ q2

(
t+

))∧(
q3 (t) ∧ s3 ⇒ q2

(
t+

)) ∧ (
q3 (t) ∧ ¬s3 ⇒ q3

(
t+

))

(8.2)

Let us dissect this specification. The first line expresses the fact that the system can
only be in one discrete state before the transition (at time t) and after the transition

Fig. 8.1 Three-mode hybrid
system with controllable and
uncontrollable events

1s
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2q1q
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p
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( )1 3 ,k kx f x u+ =
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(at time t+). The next line describes all possible transitions from state q1. Similarly,
the last line characterizes all possible transitions from states q2 and q3, respectively.

For computational purposes, it is useful to associate with each logical variable,
say α, Boolean variable or indicator function, δα, such that δα assumes the values 1
or 0 corresponding, respectively, toα being true or false. It is convenient to define the
discrete state vector δq = [δq1 , . . . , δqm ], the control event vector δs = [δs1 , . . . , δsmS

],
and the exogenous event vector δp = [δp1 , . . . , δpmP

]. Precisely, one of the elements
of δq will be unity and all others will be zero.

Notice that with the introduction of the Boolean variables, we can replace the set
of dynamical equations (8.24) with the single relation

x (k + 1) = f
(
x (k) , δq (k) , u (k)

)

= δq1 fq1 (x (k) , u (k)) + · · ·
· · · + δqm fqm (x (k) , u (k))

0 = g
(
x (k) , δq (k) , u (k)

)

= δq1gq1 (x (k) , u (k)) + · · ·
· · · + δqmgqm (x (k) , u (k))

(8.3)

8.2.2 The Control Problem

Assume that the system is observed in operation over some finite time horizon T
that is divided into N discrete time intervals of equal length. A control policy is a
sequence of functions

π = {
μ0

(
x0, δq,0

)
, . . . ,μN−1

(
xN−1, δq,(N−1)

)}

such that [
uk, δs,k

] = μk
(
xk, δq,k

)

Thus, μk generates the continuous control uk and the discrete control δs,k that are to
be applied at time k, based on the state

(
xk, δq,k

)
observed at time k.

Consider the set of m-tuples {0, 1}m. Let Δm denote the subset of elements δ ∈
{0, 1}m that satisfy δ1 +· · ·+ δm = 1. Denote by Π the set of sequences of functions
μk : X × Δm → U × {0, 1}mS that are piecewise continuous on X.

Now, given the initial state (x0, δq,0), the problem is to find a policy, π∗ ∈ Π , that
minimizes the cost functional

Jπ

(
x0, δq,0

) = gN
(
xN , δq,N

) + ∑N−1
k=0 gk

(
xk, δq,k,μk

(
xk, δq,k

))
(8.4)

Specifically, the optimal feedback control problem is defined as follows. For each
x0 ∈ X, δq,0 ∈ Δm determine the control policy π∗ ∈ Π that minimizes the cost
(8.26) subject to the constraints (8.24) and the logical specification, L, i.e.,
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J∗
π

(
x0, δq,0

) ≤ Jπ

(
x0, δq,0

) ∀π ∈ Π̄ (8.5)

where Π̄ ⊂ Π is the subset of policies that steer (8.24) along trajectories that
satisfy L.

Notice that if a receding horizon optimal control is desired, once the optimal
policy is determined, we need only to implement the state feedback control

[u, δs] = μ0
(
x, δq

)
(8.6)

8.3 Logical Specification to IP Formulas

The first step in solving the optimal control problem is to transform the logical spec-
ification L into a set of inequalities involving integer (in fact, Boolean) variables and
possibly real variables, the so-called IP formulas. The idea of formulating optimiza-
tion problems using logical constraints and then converting them to IP formulas has
a long history. This concept was recently used as a means to incorporate qualitative
information in process control and monitoring [189] and generally introduced into
the study of hybrid systems in [24].

McKinnon, [145], proposed the inclusion of logical constraints in optimization
methods. They suggested a sequence of transformations that bring a logical spec-
ification into a set of IP formulas. Li, [130], presents a systematic algorithm for
transforming logic formulas into IP formulas. Those methods have been modified
and extended in order to obtain simpler and more compact IP formulas with other
modifications to enhance their applicability to hybrid systems.

8.3.1 Logical Modeling Language

We use a logical specification to describe the transition behavior of a hybrid automa-
ton. The specification is simply a logical formula. Here, we describe the set of formu-
las, i.e., the language, to be employed. A propositional variable is a variable that can
assume the values true or false. A propositional formula is composed of propositional
variables, logical connectives (specifically ∧, ∨, ⇒, ⇔, ¬), predicates (Boolean-
valued functions of propositional variables), and constraints. Specifically, we will
use the predicates: atleast(m, S), atmost(m, S), exactly(m, S), and none(S), where
m ≥ 1 is an integer and S is a list of propositional variables or formulas. A con-
straint is an arithmetic equality or inequality involving integer or real numbers and
variables. Constraints evaluate to true (satisfied) or false (not satisfied).

Formulas are defined by the following statements:

1. A propositional variable or a constraint is an atomic formula,
2. An atomic formula is a formula,
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3. F1 ∼ F2 is a formula if F1 and F2 are formulas and ∼ is one of the logical
connectives,

4. ¬F is a formula if F is a formula,
5. atleast(m, S), atmost(m, S), exactly(m, S), and none(S) are formulas if S is a list

of formulas and m ≥ 1 is an integer.

8.3.2 Transformation to IP Formulas

Logical formulas are convenient for problem formulation. However, in order to com-
pute efficiently, it is often convenient to convert a logical formula into a set of the
so-called IP formulas2, that is, a set of linear equalities or inequalities involving
Boolean variables. To do this, we use the transformation procedure defined in [129].
Following [145], the process involves first transforming the original formula into an
intermediate form called a Γ -form, and then, a series of transformations are applied
that reduce the Γ -form to a set of IP formulas.

The Γ -form is a logically equivalent normal form that leads to a more compact
set of IP formulas than better known normal forms like the CNF (conjunctive normal
form) or DNF (disjunctive normal form).

8.3.3 Implementation

The basic function in our Mathematica implementation is GenIP which takes as
two arguments, the specification and a list of variables, either propositional variables
or bounded real or integer variables. The latter are specified in the form a ≤ x ≤ b.
GenIP performs a series of transformations and simplifications and returns the IP
formulas. A typical usage would look like:

GenIP[(q1 ⊕ q2) ∧ (qq1 ⊕ qq2)∧((q1 ∧ (x > 0)) ⇒ qq2)∧
((q2 ∧ s) ⇒ qq1),{q1, q2, qq1, qq2, s,−2 ≤ x ≤ 2}]

{1 − δq1 − δq2 ≥ 0,−1 + δq1 + δq2 ≥ 0, 1 − δqq1 − δqq2 ≥ 0,

d7 − δq1 + δqq2 ≥ 0,−1 + δqq1 + δqq2 ≥ 0,

1 − δq2 + δqq1 − δs ≥ 0,−2 + 2d7 + x ≤ 0,−2 ≤ x ≤ 2,

0 ≤ d7 ≤ 1, 0 ≤ δq1 ≤ 1, 0 ≤ δq2 ≤ 1, 0 ≤ δqq1 ≤ 1,

0 ≤ δqq2 ≤ 1, 0 ≤ δs ≤ 1}

2While, generally, computing with IP formulas is preferred, [92] shows that there are instances
when it is an advantage to compute using the original logical constraint.
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Notice that propositional variables are replaced by Boolean indicator functions,
example q1 is replaced by δq1 and new auxiliary variables may be introduced, in this
case d7.

If all of the guards are linear (set boundaries are composed of linear segments),
then the IP formulas are system of linear constraints involving the Boolean variables
δq, δq+ , δs, δp, respectively, the discrete state before transition, the discrete state after
transition, the controllable events, and the exogenous events. They also involve a set
of auxiliary Boolean variables, d, introduced during the transformation process and
the real state variables, x. The general form is3

E5δq+ + E6d ≤ E0 + E1x + E2δq + E3δs + E4δp (8.7)

where the matrices have appropriate dimensions. As we will see in examples below,
with x, δq, δs, δp given, these inequalities typically provide a unique solution for the
unknowns δq+ and d. The system evolution is described by the closed system of
equations (8.7) and (8.25).

8.4 Constructing the Optimal Solution

An optimal policy π∗ is one that satisfies (8.27). Now, we are in a position to apply
Bellman’s principle of optimality: Suppose π∗ = {

μ∗
1, . . . ,μ

∗
N−1

}
is an optimal

control policy. Then, the subpolicy π∗
i = {

μ∗
i , . . . ,μ

∗
N−1

}
, 1 ≤ i ≤ N − 1 is optimal

with respect to the cost function (8.26).
Let us denote the optimal cost of the trajectory beginning at xi, δq,i as J∗

i

(
xi, δq,i

)
.

It follows from the principle of optimality that

J∗
i−1

(
xi−1, δq,(i−1)

) = min
μi−1

{
gi−1

(
xi−1, δq(,i−1),μi−1

) + J∗
i

(
xi, δq,i

)}
(8.8)

Equation (8.8) provides a mechanism for backward recursive solution of the opti-
mization problem. To begin the backward recursion, we need to solve the single-stage
problem with i = N . The end point xN , δq,N is free, so we begin at a general terminal
point

J∗
N−1

(
xN−1, δq,(N−1)

) = min
μN−1

{
gN−1

(
xN−1, δq,(N−1),μN−1

)

+gN
(
fN−1, δq+,(N−1)

)
}

(8.9)

Once the pair μ∗
N−1, J∗

N−1 is obtained, we compute μ∗
N−2, J∗

N−2. Continuing in this
way, we obtain

3Linearity only obtains if the conditions in the specification involving real variables are themselves
linear.
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J∗
N−i

(
xN−i, δq,(N−i)

) = min
μN−i

{
gN−i

(
xN−i, δq,(N−i),μN−i

)

+J∗
N−i+1

(
fN−i, δq+,(N−i)

)
}

(8.10)

for 2 ≤ i ≤ N .
We need to solve (8.10) recursively backward, for i = 2, . . . , N after initializing

with (8.9). We begin by constructing a discrete grid on the continuous state space.
The discrete space is denoted X̄. At each iteration, the optimal control and the optimal
cost are evaluated at discrete points in Q × X̄ . To continue with the next stage, we
need to set up an interpolation function to cover all points in Q × X.

We exploit the fact that the system is highly constrained, and almost all of the
constraints are linear in Boolean variables. The basic approach is as follows:

1. Before beginning the time iteration:

a. Separate the inequalities into binary and real sets, binary formulas contain
only binary variables, and real formulas can contain both binary and real
variables.

b. For each q ∈ Q, obtain all feasible solutions of the binary inequalities, a
list of possible solutions of pairs

(
δq+ , d

)
. Our implementation employs the

Mathematica function Reduce.
c. Define projection X̄ → X̄P where X̄P is the subspace of real states actually

appearing in the real equations.
d. For each xP ∈ X̄P

i. prescreen the binary solutions to eliminate those that do not produce
solutions to the real inequalities - typically a very large fraction is
dropped.

ii. for every feasible combination of binary variables obtained above, solve
the real inequalities for the real variables.

e. Lift real solutions to entire X̄.

2. For each i,

a. For each pair (q, x) ∈ Q × X̄
i. enumerate the values of the cost to go using the feasible sets of binary

and real variables.
ii. select the minimum.

In step 1b above, the number of solutions corresponding to each q can be very large
because there are numerous redundant solutions associated with nonactive transi-
tions. Thus, we add additional logical constraints that specify the inactive transitions.
Step 1c exploits the fact that some real states do not appear in the real formulas.
Because a large fraction of the binary solutions do not lead to real solutions, the
prescreening in step 1(d)i is very effective in reducing computing time. Finally, we
note that the inequalities are independent of the stage of the dynamic programming
recursion. Thus, step 1d, which is by far the most intensive computational element
of the optimization, is done only once before the recursion step 2a begins.
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8.5 Example: Load Shedding

This section provides a simple illustration of the formulation and solution of a power
management optimal control problem. For simplicity of exposition, load shedding is
used as a means for accommodating transmission line faults.

8.5.1 Network and Load Dynamics

A relatively simple system that is known to exhibit interesting voltage stability char-
acteristics is a single generator feeding an aggregated load composed of constant
impedance loads and induction motors. The system has been used to study the
effect of tap-changing transformers and capacitor banks in voltage control, example
[21, 161, 164].

Consider the system shown in Figure 8.2. The system consists of a generator, a
transmission line, an on-load tap-changing transformer (OLTC), and an aggregated
load. The generator is characterized by a “constant voltage behind reactance” model.
The generator internal bus voltage E is used to maintain the voltage at bus 2, as
long as E remains within the limits imposed by the excitation current limits. The
OLTC ordinarily moves in small discrete steps over a narrow range. The load is an
aggregate composed of parallel induction motors and constant impedance loads. An
inductionmotor can be characterized as an impedancewith slowly varying resistance;
consequently, the aggregate load is represented by constant impedance - actually, a
slowly varying impedance, where the impedance depends on the aggregate induction
motor slip.

The network equations are easily obtained. Suppose δ1, δ2 denote the voltage
angles at buses 1 and 2. Define the relative angle θ2 = δ2−δ1. The network equations
are

I1ω0ω̇ = Pg − cV 2
2

0 = (a/n) EV2 sin θ2 + cV 2
2

0 = (a/n) EV2 cos θ2 + dV 2
2

Fig. 8.2 System
configuration
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Fig. 8.3 Induction motor
equivalent circuit
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From the last two equations, we obtain

V2 = a/n√
c2 + d2

E, θ2 = tan−1 c

d

The power absorbed by the load is

PL = −V 2
2 c, QL = V 2

2 d

Now, let us turn to the induction motors. An equivalent circuit for an induction
motor is shown in Figure 8.3. Here, the parameters Rs, Xs denote the resistance
and inductance of the stator, Xm denotes the magnetizing inductance, and Rr, Xr the
rotor resistance and inductance, respectively. The resistance Rr (1 − s) /s represents
the motor electrical output power. We will neglect the small stator resistance and
inductance. We also assume the approximation of large magnetizing inductance is
acceptable.

Under these conditions, obtain the following. The real power delivered to the
rotor, Pd , and the power delivered to the shaft, Pe, are

Pd = V 2
s

Rr s
R2

r +s2X2
r

Pe = Pd (1 − s)

The dynamical equation for the motor (Newton’s law) is

ω̇m = 1

Imω0
(Pe − Pm)

Introducing the slip, s, s = (ω0 − ωm)/ω0, the motor dynamics take the form:

ṡ = 1

Imω2
0

(Pm − Pe) = 1

Imω2
0

(
Pm − V 2

s

Rrs (1 − s)

R2
r + s2X2

r

)

8.5.2 System Operation

In the following, we allow for shedding a fraction, η, of the load. In the present
example, we allow three different values of η including zero, so η ∈ {0, η1, η2}.
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1q

1s¬

2q
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3q
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Load shed level 0 Load shed level 1 Load shed level 2

Fig. 8.4 Transition diagram for load shedding optimization

Consequently, there is normal operation and two prioritized blocks of load that can
be dropped in accordance with the transition behavior defined in Figure 8.4. The
corresponding logical specification is

L = exactly (1, {q1 (t) , q2 (t) , q3 (t)}) ∧ exactly
(
1,

{
q1

(
t+

)
, q2

(
t+

)
, q3

(
t+

)}) ∧(
q1 (t) ∧ ¬s1 ⇒ q2

(
t+

)) ∧ (
q1 (t) ∧ s1 ⇒ q1

(
t+

)) ∧(
q2 (t) ∧ ¬s2 ⇒ q3

(
t+

)) ∧ (
q2 (t) ∧ s1 ⇒ q1

(
t+

)) ∧ (
q2 (t) ∧ ¬ (s1 ∨ ¬s2) ⇒ q2

(
t+

)) ∧(
q3 (t) ∧ s2 ⇒ q2

(
t+

)) ∧ (
q3 (t) ∧ ¬s2 ⇒ q3

(
t+

))

In the present case, assume the blocks are sized such that

q1 ⇒ η = 0, q2 ⇒ η = 0.4, q3 ⇒ η = 0.8

Assume also that the OLTC ratio is fixed, i.e., the OLTC is not being used for control,
so n = const. If the OLTC is to be employed, the dynamics of tap change must be
added.

I1ω0ω̇ = Pg − cV 2
2 (8.11)

E = (1 − η)

√
c20 + d2

0

a/n
V2 (8.12)

ṡ = (1 − η)

Imω2
0

(
Pm − V 2

2
Rrs (1 − s)

R2
r + s2X2

r

)
(8.13)

c = (1 − η) c0, c0 =
(

1

RL
+ Rrs

R2
r + s2X2

r

)
(8.14)

d = (1 − η) d0, d0 =
(

Xrs2

R2
r + s2X2

r

)
(8.15)

Equation (8.11) represents turbine generator dynamics. Ordinarily, the power input
Pg is adjusted to regulate the speed ω which is to be maintained at the value ω0.
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Assume that regulation is fast and accurate. It is possible to investigate the impact of
frequency variation on system behavior. If it were assumed that frequency variations
were small, then the effect on all impedances could be approximated, and this is
often done. That has not been included here, so there is no apparent coupling between
(8.11) and the remaining equations; consequently, it can be dropped. Equation (8.12)
represents the network voltage characteristic. The field voltage E is used to control
the load bus voltage V2. It will be assumed that it is desired to maintain V2 = 1. If
the exciter dynamics are ignored, then (8.12) allows the determination of the field
voltage that yields the desired load bus voltage. However, the field voltage is strictly
limited, 0 ≤ E ≤ 2. Assume that only the upper limit is a binding constraint. There
are two possibilities for satisfying (8.12):

V2 = 1, E =
√

c2+d2

a/n or E = 2, V2 = 2 a/n√
c2+d2

Equation (8.21) represents the aggregated motor dynamics, and the load admittance
is given by the last two equations. The system data are RL = 2, Rr = 0.25, Xr =
0.125, a = 1 (nominal) , Imω2

0 = 4.

8.5.3 The Optimal Control Problem Without OLTC, n = 1

The problem is formulated as an N step moving horizon optimal control problem,
in which the slip dynamics are written in discrete time form. The control variables
are E (k) , η (k). The goal is to keep the load voltage V2 close to 1; specifically, it is
required that 0.95 ≤ V2 ≤ 1.05. Our intent is to use the field voltage, E, to regulate
the terminal voltage, V2, to 1 p.u. Because 0 < E ≤ 2 is constrained, specify that
solutions must satisfy

(V2 = 1 ∧ 0 < E < 2) ∨ (E = 2)

If the field voltage saturates, the only remaining option is to shed some load. We
seek an optimal control policy, i.e., a sequence of controls u (0) , . . . , u (N − 1),
u (k) = η (k) that minimize the cost function

J =
∑N−1

k=0

(‖V2 (k) − 1‖2 + r1 ‖η (k)‖2)

subject to the system constraints. Some rough assessments of appropriate weighting
constants r1 can bemade. Load shedding should be avoidedwith respect to regulating
V2 unless the V2 tolerance is violated. Hence, it is desired that r1 > 0.252/0.052 =
1/25.
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In summary, the following equations are obtained:

1. The slip dynamics in discrete time form (with sk = s(tk), tk = tk−1 + h)

sk+1 = f (sk, V2, η)

2. The transition specification in IP form

1 − δq1 − δq2 − δq3 ≥ 0, −1 + δq1 + δq2 + δq3 ≥ 0
1 − δq+

1
− δq+

2
− δq+

3
≥ 0, −1 + δq+

1
+ δq+

2
+ δq+

3
≥ 0

1 − δq1 + δq+
1

− δs1 ≥ 0, 1 − δq2 + δq+
1

− δs1 ≥ 0
1 − δq2 + δq+

2
− δs2 ≥ 0, 1 − δq3 + δq+

2
− δs2 ≥ 0

−δq1 + δq+
2

+ δs1 ≥ 0
−δq2 + δq+

3
+ δs2 ≥ 0, −δq3 + δq+

3
+ δs2 ≥ 0

0 ≤ δq1 ≤ 1, 0 ≤ δq2 ≤ 1, 0 ≤ δq3 ≤ 1
0 ≤ δq+

1
≤ 1, 0 ≤ δq+

2
≤ 1, 0 ≤ δq+

3
≤ 1

0 ≤ δs
1

≤ 1, 0 ≤ δs
2

≤ 1

3. The IP formulas for the logical constraint

3 − d1 − E > 0, 1 − d1 + E > 0, −2d2 + E ≥ 0
−2d1 + V2 ≥ 0, −2 + d1 + V2 ≤ 0
0 ≤ d1, d2 ≤ 1, 0 ≤ E, V2 ≤ 2

4. And the IP formulas for the load shed parameter η

−0.4d4 + η ≥ 0, −0.8d5 + η ≥ 0,
d3 − δq+

1
≥ 0, d4 − δq+

2
≥ 0, d5 − δq+

3
≥ 0

−1 + d3 + η ≤ 0, −1 + 0.6d4 + η ≤ 0,
−1 + 0.2d5 + η ≤ 0

0 ≤ d3 ≤ 1, 0 ≤ d4 ≤ 1, 0 ≤ d5 ≤ 1, 0 ≤ η ≤ 1

One result is shown in Figure 8.5. It illustrates the optimal load shedding strategy
following a line failure represented as a reduction of a. The feedback control is given
as a function of the state - the latter composed of the continuous slip and the three
discrete states. At each state, the values of the control actions δs1 , δs2 are given. The
controlled transitions are also indicated.

Suppose immediately post-failure, the system is in mode q1, with a reduced slip
of 0.1, then the system will respond as follows. Given a mechanical power level of
0.7, the equilibrium slip is about 0.47. As slip increases toward its equilibrium value,
the first block of load is dropped at about s = 0.3 and the second at about s = 0.4.
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Fig. 8.5 Depiction of the feedback law obtained with a = 0.25, h = 0.5, and N = 20

8.5.4 Incorporating Time Delays

Sometimes, it is desirable to insure that there is a finite time duration between two
successive controlled transitions. It is easy to do this by incorporating a time “resi-
dence” requirement within a discrete state. For example, suppose we wish to insure
that a load shedding action will not be followed by another until at least a time Δ

has passed. This can be accomplished by requiring that after entry into state q2, the
system must remain in q2 for at least time Δ.

To accomplish this, we introduce a resetting “clock”

τ (k + 1) = τ
(
k+) + h

where τ (k+) = 0 upon entry into q2 from q1 or q3 or τ (k+) = τ (k) and replace the
specification L by

L = exactly (1, {q1 (t) , q3 (t) , q3 (t)})∧
exactly

(
1,

{
q1

(
t+

)
, q3

(
t+

)
, q3

(
t+

)})∧(
q1 (t) ∧ ¬s1 ⇒ q2

(
t+

) ∧ τ
(
t+

) = 0
) ∧(

q1 (t) ∧ s1 ⇒ q1
(
t+

) ∧ τ
(
t+

) = τ (t)
) ∧(

q2 (t) ∧ s1 ∧ τ (t) > Δ ⇒ q1
(
t+

) ∧ τ
(
t+

) = τ (t)
)∧(

q2 (t) ∧ ¬s2 ∧ τ (t) > Δ ⇒ q3
(
t+

) ∧ τ
(
t+

) = τ (t)
) ∧(

q2 (t) ∧ ¬ ((s1 ∧ τ (t) > Δ) ∨ (¬s2 ∧ τ (t) > Δ))

⇒ q2
(
t+

) ∧ τ
(
t+

) = τ (t)

)
∧

(
q3 (t) ∧ s2 ⇒ q2

(
t+

) ∧ τ
(
t+

) = 0
) ∧(

q3 (t) ∧ ¬s2 ⇒ q3
(
t+

)
τ

(
t+

) = τ (t)
)
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The control law now becomes a function of the discrete state, the two components
of the continuous state: the slip s and the clock variable τ . With time delay Δ = 1,
the control law is virtually identical to that shown in Figure 8.5 expect that the clock
dependence inhibits transitions from q2 as required.

We will not display the resulting IP formulas, but it is interesting to note that
the binary equations involve 24 binary variables, 3 of which are the current state.
Consequently, there are 221 = 2, 097, 152 possible solutions, but actually only 1000
- 2000 prove to be feasible (depending on the current discrete state). From these
emerge about 40-80 feasible real solutions. Finally, the associated cost for these few
solutions is enumerated and a minimum cost control is chosen.

8.6 Induction Motor Load with UPS

A relatively simple system that is known to exhibit interesting voltage stability char-
acteristics is a single generator feeding an aggregated load composed of constant
impedance loads and induction motors [164]. By expanding this system to include a
vital load with a UPS, as shown in Figure 8.6, we obtain one of interest to us.

The primary means for voltage control is the field voltage. However, in the event
of a transmission line fault, it may be necessary to shed load in order to avoid a
system collapse. This can be accomplished by dropping nonvital load in discrete
blocks and, if necessary, switching the vital load to battery supply.

Assume that two blocks of nonvital load can be dropped independently by opening
circuit breakers. Correspondingly, a load shed parameter is introduced η ∈ {0, η1, η2}
that denotes the fraction of load dropped.

Fig. 8.6 System with vital
load and UPS

1,E δ
2 2,V δ

/ja n−

Motor

Vital load
UPS
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Fig. 8.7 Transition behavior for system with UPS

The battery is connected to the DC load bus through a DC-DC converter. There
are three possible UPS operating modes:

1. Battery unconnected.
2. Battery discharging: The battery and vital load are detached from the rest of

the network. The battery supplies the load through a voltage-controlled DC-DC
converter set up to keep the load voltage constant.

3. Battery charging: In this mode, the battery is charged through a DC-DC converter
operated in current-controlledmode – the current is controlled to a specified value.

The overall system transition system is shown in Figure 8.7. It represents opera-
tional constraints that are imposed on the system.

8.6.1 Dynamics

8.6.1.1 Battery disconnected, modes q1, q2, q3

The voltage-regulated rectifier controls the voltage on vital load bus. We assume that
the rectifier is power factor-corrected so that from the AC side of the rectifier, the
vital load looks like a constant power load with unity power fact, P = Pv , Q = 0.
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Let δ1, δ2 denote the voltage angles at buses 1 and 2. Define the relative angle
θ2 = δ2 − δ1. The network equations are

Pv = a E V2 sin θ2 − c V 2
2

0 = a E V2 cos θ2 + d V 2
2

(8.16)

where Pv is the power consumed by the vital load and c − j d is the admittance of
the nonvital aggregate load.

The field voltage E is used to control the load bus voltage V2 to its desired nominal
value of 1. If we ignore the exciter dynamics, then (8.16) allows the determination
of the field voltage that yields the desired load bus voltage, provided the resultant
E is within its strict limits, 0 ≤ E ≤ 2. It is always the upper limit that is the
binding constraint. This implies two possibilities for satisfying (8.16): either V2 = 1
or E = 2. These are as follows:

V2 = 1, E =
√

(c+Pv)
2+d2

a , 0 < Pv
(8.17)

E = 2,

V2 =
√

2a2−cPv−
√

4a4−4a2cPv−d2P2
v

c2+d2 ,

0 < Pv < 2a2
(√

c2 + d2 − c
)

(8.18)

Once the excitation system saturates, there is an upper limit to Pv , as seen in
(8.18). This is the voltage collapse bifurcation point. Also, these relations are only
good for Pv > 0. When Pv = 0, we have

V2 = a√
c2 + d2

E (8.19)

Equation (8.17) (nonsaturated field) does approach the proper limit as Pv → 0, but
the Equation (8.18) (saturated field) does not. This is as it should be.

Remark 8.2 (Network Solution) As discussed in Remark 8.5, we can express the
network constraints in terms of the logical constraint

L0 = (V2 = 1 ⇒ E = z1) ∧ (E = 2 ⇒ V2 = z2) (8.20)

where z1, z2 are defined via (8.17), (8.18), and (8.19).

8.6.1.2 Battery Charging, mode q4

The batterymodel is composed of a differential equation describing the battery “state
of charge” σ and an output map that gives the battery terminal voltage vb as a function
of the state of charge.
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d

dt
σ = 1

C
i, vb = f (σ) , 0 ≤ σ ≤ 1

where i is the battery charging current and C is the battery effective capacitance. The
DC-DC converter operates in current control mode, so the battery is charged with
constant current, i = ic. While charging, we have

dσ

dt
= ic

C

Because the AC-DC rectifier maintains constant V3, from the AC side of the rectifier,
charging looks like an additional constant power load, Pc = V3ic. The network
supplies both the vital load and the power to charge the battery. Thus, the network
relation is given by Equations (8.17) and (8.18) with Pv replaced by Pv + Pc.

8.6.1.3 Battery Discharging, modes q5, q6

The vital loads and battery are separated from the rest of the system and draw no
power from the network. Consequently, the relationship between E and V2 is given
by Equation (8.19). The DC-DC converter now maintains constant voltage on bus 3,
so that the battery current is i = −Pv/V3 and

dσ

dt
= − Pv

C V3

In the following study, we take C = 0.5 and Pv = 10.

8.6.1.4 Induction Motors

If we neglect the small stator resistance and inductance and assume a large magne-
tizing inductance, the equivalent circuit for an induction motor consists of a series
rotor resistance and inductance Rr, Xr . Define the slip s = (ω0 −ωm)/ω0, and let Pm

denote the mechanical load power. Then, the motor dynamics take the form:

ṡ = 1

Imω2
0

(
Pm − V 2

s

Rrs (1 − s)

R2
r + s2X2

r

)
(8.21)

8.6.1.5 Load Shedding

We assume discrete load shedding blocks and define η to represent the fraction of
load shed. Thus, η can assume a finite number of values 0 ≤ η < 1. The nonvital
load admittances, taking into account the load shedding parameter, are as follows:
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c = (1 − η) c0, c0 =
(

1

RL
+ Rrs

R2
r + s2X2

r

)
(8.22)

d = (1 − η) d0, d0 =
(

Xrs2

R2
r + s2X2

r

)
(8.23)

Equation (8.21) represents the aggregated motor dynamics, and the load admit-
tance is given by the last two equations, (8.22), (8.23). The system data are
RL = 2, Rr = 0.25, Xr = 0.125, a = 1 (nominal) , Imω2

0 = 4.

8.6.2 IP Formulas for UPS System

Four logical constraints need to be converted to IP formulas:

1. the network specification, L0, Equation (8.20)
2. the transition specification, L1, of Figure 8.7

(3) the excitation shedding specification

L2 = (V2 = 1 ∧ 0 < E < 2) ∨ (E = 2)

(4) the load shedding specification

L3 = (q+
1 ⇒ η = 0) ∧ (q+

2 ⇒ η = 0.4)∧
(q+

3 ⇒ η = 0.8)

The corresponding IP formulas are generated automatically. We do not display them
here because of space limitations. All of the inequalities derived from L1 involve
only binary variables, while some of those derived from L0, L2, and L3 involve
both binary and real variables. The latter also contain auxiliary binary variables di

introduced during the conversion process. All of the inequalities are linear in all
variables.

8.6.3 Optimal Control

An optimal control policy is sought that minimizes the cost function

J =
∑N−1

k=0

( ‖V2 (k) − 1‖2 + r0 ‖σ − 1‖2
+r1 ‖ηL (k)‖2

)

subject to the system constraints. In the following, we take r0 = 1 and r1 = 1/25.
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Consider the optimal controller for a line fault that results in a line admittance of
a = 0.375. This is a severe fault, but one that is manageable. The state space includes
the 7 discrete states (modes) and two continuous states induction motor slip, s,
indicative of power, and battery state, σ, that represents the fractional battery charge.
For computational purposes, the continuous state is discretized s ∈ {.1, .2, .3, .4, .5}
and σ ∈ {.25, .5, .75.1.0}, and the feedback control is computed in terms of these
140 states. In implementation, an interpolation function is used for the continuous
states.

Figures 8.8, 8.9, and 8.10 illustrate a particular feedback trajectory in which the
initial battery state of charge is 0.1 and the initial slip is 0.
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Fig. 8.8 Because of the low battery charge, an initial switch into charging mode 4 occurs before
load is dropped, modes 2 and 3

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

Time − sec

Battery Charge
Slip

Fig. 8.9 The battery initially charges, but increasing slip, and hence, electrical power, eventually,
requires load shedding
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Fig. 8.10 After about 1 second, the excitation saturates and load bus voltage drops. Load voltage
regulation is re-established following load shedding

8.7 Ship Integrated Electric Power System

The number of power supply sources available on a ship power system is determined
by the need to supply the maximum anticipated electrical and propulsion load. On a
naval ship, operational modes that require high level of online resources persist only
for a small fraction of the total time a ship is in service. Consequently, a plan for fuel
reduction should focus on the low load, normal operations that dominate the ship’s
lifetime. A significant reduction of fuel consumption can result from running a small
number of turbine generators during these periods. However, there is a real risk of
contingencies that could lead to the need to curtail load. To insure an acceptable level
of reliability of power supply, it is necessary to maintain sufficient online generation
and to distribute it appropriately around the network.

In [69], the authors draw an important distinction between survivability and qual-
ity of service (QOS). Survivability addresses the prevention of fault propagation
and restoration of service under severe damage conditions, whereas QOS concerns
insuring a reliable supply of power to loads during normal operations (see also [70,
97]). QOS is an important consideration during normal operations because equip-
ment malfunction is a relatively common occurrence. Not all loads have the same
requirements for continuity of power supply. As used in [69], QOS is quantified as
the mean time between service interruptions where a service interruption is defined
as a degraded network condition that lasts longer than a load can tolerate before los-
ing functionality. In [97], loads are divided into four categories that depend on two
time parameters associated with the power network. T1 is the reconfiguration time:
the maximum time to reconfigure the network without bringing on additional gen-
erators. T2 is the generator start time: the time to bring online the slowest generator.
Accordingly, four categories of loads are defined:
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1. Uninterruptible loads: cannot tolerate a power loss of duration T1.
2. Short-term interruptible loads: can tolerate a power loss of duration T1, but not

T2.
3. Long-term interruptible loads: can tolerate a power loss of duration T2.
4. Exempt loads: loads not considered in evaluating QOS.

Because thisQOSmetric is intendedprimarily forDCdistribution systems, it does not
consider power quality measures such as harmonic content, or voltage fluctuations.
In fact, it does not consider dynamics at all. In AC systems, however, dynamics are
important.

In [125], the authors formulate the fuel optimization problem with QOS con-
straints, where QOS has a meaning appropriate for AC system power quality. The
problem is formulated as follows. Given a time interval, [0, T ], over which the ship
is to perform a specified mission with corresponding maximum load, �, having a
corresponding distribution over the network, determines a commitment, c∗

� , of gen-
eration resources that minimizes fuel costs, supplies the load, and also satisfies QOS
constraints. In this case, the QOS constraints are defined as follows.

Definition 8.3 Given

1. a set of contingency events, R = {ri, i = 1, · · · , m},
2. a set of performance variables (example bus voltages, line currents, frequency),

Y = {yi, i = 1, · · · , p}, each variable with a corresponding admissible range so
that Yi,min ≤ yi (t) ≤ Yi,max and a time duration, Ti, for which an out-of-range
value can be tolerated.

TheQOS constraints are satisfied if for every r ∈ R, occurring at any time tr ∈ [0, T ],
at which time the network is in equilibrium, none of the performance variables yi (t)
experience a constraint violation for a duration longer than its corresponding Ti.

The fuel optimization problem as formulated above is naturally a static optimiza-
tion problem as meaningful fuel cost savings are obtained when measured over a
long period of operation. QOS constraints, on the other hand, involve short-term
dynamics. They are incorporated by eliminating from consideration any otherwise
feasible commitment configuration. This is accomplished by evaluating the response
of the given configuration to the specified contingencies. No attempt is made to opti-
mize that response. In [108], that analysis is expanded to allow the temporary use
of load shedding and energy storage to avoid violating contingency constraints. The
proposed framework also allows inclusion of load scheduling as a means of fuel
conservation.

In the following discussion, an example based on the ship propulsion system
described in Appendix A will be employed. The electrical load is assumed constant
over the duration of the analysis. Its value varies with the mission and the season and
may range from about 2000 KW to 4500 KW.
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8.7.1 The Fuel Consumption Model

It is instructive to first consider the operation of the ship in its various configurations
in terms of fuel consumption without regard to QOS constraints. The only constraints
considered here are the generation capacity of each of the generators and the electric
power flow constraints of the network.

Fuel consumption data were obtained from the Navy’s Energy Conservation Pro-
gramWeb site http://www.i-encon.com. Based on the DDG 51 CLASS SHIPS data,
the associated fuel data and fuel curves for both Allison GTGs and GE LM2500
GTMs can be obtained. Curve fits were used to parameterize the data in terms of
ship speed, v, in knots. There are three propulsion alignments with distinct fuel
curves.

Trail Shaft One GTM engine online and one shaft windmilling.

fTS = 117.17 exp (0.1087 v)

Split Plant One GTM engine online on each shaft.

fSP = 181.74 exp (0.098 v)

Full Power Two GTM engines online on each shaft.

fFP = 334.48 exp (0.082 v)

For the Allison 501-K34 GTG fuel consumption, the curve was parameterized in
KW electric load, L, and the number of GTGs, NGTG.

fGTG = 0.068L + 97.4NGTG

Figures 8.11 and 8.12 show the fuel consumption at low speed (up to 8 knots)
and high speed (above 8 knots), respectively, assuming a constant electric load of
3000 KW. Split plant operation has two GTMs operational, one on each shaft with
all electric power supplied by two GTGs, as one would not be sufficient. This is the
most fuel-efficient configuration. Trail shaft operation is somewhat better as only
one GTM is operational. Note that one GTM can comfortably produce 22 knots.
The HED motoring configuration with 2 GTGs supplies 3000 KW and 1500 KW
(or 2011 HP) for propulsion – so that about 8 knots is achievable – with 500 KW
remining. This is the most fuel-efficient configuration for low-speed operation (see
Figure 8.11). The HED generation configuration allows all of the GTGs to be shut
down, but this configuration is not as efficient as motoring.

The HED motoring configuration can only be used above 8 knots with 3 GTGs
operational, thereby increasing fuel consumption and raising it to about the same
as trail shaft HED generation. With three GTGs and 3000 KW of electrical load, it
can only produce a maximum speed of about 12 knots. Consequently, it is omitted

http://www.i-encon.com
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Fig. 8.11 Low-speed fuel
consumption as a function of
speed in various
configurations. Electrical
load fixed at 3,000 KW

Fig. 8.12 High-speed fuel
consumption as a function of
speed in various
configurations. Electrical
load fixed at 3,000 KW

from the high-speed considerations in Figure 8.12. In the high-speed range, trail shaft
HED generation is the most fuel-efficient operating configuration. Also, note that the
optimal speed is in the range of 14-15 knots.

8.7.2 Optimal Response to Contingencies

From Section 8.7.1, it is clear that without consideration of supply reliability, the
most efficient operational configuration at low speed is trail shaft HED motoring,
and at high-speed operation, it is trail shaft HED generation. The question now
turns to how QOS constraints alter this picture. In accordance with Definition 8.3,
to answer this, it is necessary to evaluate the candidate configuration with respect
to all contingency events in R. This requires delineating the admissible corrective
actions to each contingency and then evaluating the corresponding response in terms
of continuity of supply variables Y .
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Example 8.4 Low-Speed Operation: Loss of Generator. As an example, consider
operation of the system described in Appendix A at 7 knots, so the trail shaft HED
motoring is the most fuel-efficient configuration. Suppose one of the specified con-
tingencies is loss of one of the two GTGs. Figure 8.13 illustrates the situation in
terms of a state diagram. The normal operating state q1 consists of two GTGs, each
producing 2250 KW. The system operating in state q1 experiences an external event
e1 corresponding to a GTG failure inducing a transition to state q2. From the failed
state, it is desired to restore the system back to the HED motoring state with two
GTGs and to do so without violating the QOS requirements. To accomplish this, the
controller should react with a sequence of corrective actions. In this example, the
actions to be taken include the following:

1. Start up the spare GTG (it takes 6 minutes to get from shutdown to full power).
2. Temporarily drop nonvital load (1000 KW),
3. Supply power, temporarily from the emergency storage module (ESM)
4. Use the generator crisis capacity (4500 KW for up to 5 minutes).

The discrete states qi, i = 2, . . . , 6 are illustrated along with admissible control-
lable transitions si, i = 1, . . . , 9. The contingency triggering event causes the system
to transition from q1 to q2. There are four controlled events leading to transition from

Fig. 8.13 Possible remedial strategies following loss ofGTGfrom trail shaftmotoring configuration
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q2. Any departure from state q2 initiates start-up of GTG 3. Now, it is proposed to
select the best sequence of controlled transitions aimed at satisfying the QOS con-
straints. If the best does indeed satisfy the constraints as specified in Definition 8.3,
then the same process can be followed for the other contingencies until one fails the
test. If all contingencies have an adequate response sequence, the mode is accepted
as a valid operating configuration.

In earlier publications [118, 120], the authors introduced an approach that uses
a nonlinear DAE model to describe the continuous state dynamics. In [108], new
concepts were introduced for improving the efficiency of the dynamic programming
computations. Logical specifications are used to define the admissible transition
behavior of the discrete system, to incorporate saturation of the continuous control,
and to characterize the algebraic constraints of theDAEmodel and in the definition of
the cost function. Conversion of the logical specifications to integer formulas using
symbolic computation enables the use of mixed-integer dynamic programming to
derive an optimal feedback control.

8.7.2.1 Modeling

The system operates in one of the m modes denoted as q1, . . . , qm. Q = {q1, . . . , qm}
is the discrete state space. The continuous time differential-algebraic equation (DAE)
describing operation in mode qi is

ẋ = fi (x, y, u)

0 = gi (x, y)
i = 1, . . . , m (8.24)

where x ∈ X ⊆ Rn is the system continuous state, y ∈ Y ⊆ Rp is the vector of
algebraic variables, and u ∈ U ⊆ Rl is the continuous control. Transitions can occur
only between certain modes. The set of admissible transitions is E ⊆ Q × Q. It is
convenient to view the mode transition system as a graph with elements of the set Q
being the nodes and the elements of E being the edges.We assume that transitions are
instantaneous. So, if a system transitions frommode q1 to q2 at time t, wewouldwrite
q(t) = q1, q(t+) = q2. We allow resets. State trajectories are assumed continuous
through events, i.e., x(t) = x(t+), unless a reset is specified.

Transitions are triggered by external events and guards. Events are designated
s and belong to a set Σ . A guard is a subset of the continuous state space X that
enables/disables a transition. A transition enabled by a guard might represent a pro-
tection device. Not all transitions have guards, and some transitions might require
simultaneous satisfaction of a guard and the occurrence of an event.

Each discrete state label, q ∈ Q, and each event label, s ∈ E , are considered
to be a logical variable that takes the value true or false. Guards also are specified
as logical conditions. In this way, the transition system can be defined by a logical
specification (formula) L.
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Fig. 8.14 The distribution network 12-bus configuration includes the generator internal buses

For computational purposes, it is useful to associate with each logical variable,
say α, a binary variable or indicator function, δα, such that δα assumes the values 1
or 0 corresponding, respectively, to α being true or false. It is convenient to define
the discrete state vector δq = [

δq1 , . . . , δqm

]
. Precisely, one of the elements of δq will

be unity and all others will be zero.
With the introduction of the binary variables, the set of dynamical equations (8.24)

can be replaced with the single DAE:

ẋ = f
(
x, y, δq, u

) = ∑m
i=1 δqi fqi (x, y, u)

0 = g
(
x, y, δq

) = ∑m
i=1 δqigqi (x, y)

(8.25)

Remark 8.5 (Power System DAE Models) Power systems are typically modeled by
sets of semiexplicit DAEs as given by (8.24). In any mode qi, the flow defined by
(8.24) is constrained to the set Mi ⊂ X × Y defined by 0 = gi (x, y). Ordinarily, it is
assumed that Mi is a regular submanifold of X × Y .

Example 8.6 Loss of Generator, Continued. The dynamical behavior in each of the
six discrete states shown in Figure 8.13will bemodeledwith reference to the network
illustrated in Figure 8.14. Note that the initial state involves two generators corre-
sponding to buses 1 and 2. The spare generator corresponds to bus 3. It is assumed
that the bus 2 generator fails. The difference between the initial state q1 and the final
state q6 in Figure 8.13 is that the replacement generator is on a different bus. In
summary, the reduced bus network models for the 6 states are as follows:
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State q1: Generator buses 1 and 2, PQ buses 4,5,6, full load.
State q2: Generator bus 1, PQ bus 4, full load,
State q3: Generator buses 1 and 3, PQ buses 4,6, vital load,
State q4: Generator buses 1 and 3, PQ buses 4,6, ESM, full load,
State q5: Generator buses 1 and 3, PQ bus 4,6, ESM, vital load
State q6: Generator buses 1 and 3, PQ bus 4,6, full load.

8.7.2.2 The Control Problem

The system is observed in operation over some finite time horizon T that is divided
into N discrete time intervals of equal length. A control policy is a sequence of
functions

π = {
μ0

(
x0, δq0

)
, . . . ,μN−1

(
xN−1, δq(N−1)

)}

such that [uk, δsk] = μk
(
xk, δqk

)
. Thus, μk generates the continuous control uk and

the discrete control δsk that are to be applied at time k, based on the state
(
xk, δqk

)

observed at time k.
Consider the set of m-tuples {0, 1}m. Let Δm denote the subset of elements δ ∈

{0, 1}m that satisfy δ1 +· · ·+ δm = 1. Denote by Π the set of sequences of functions
μk : X × Δm → U × {0, 1}mS that are piecewise continuous on X.

Theoptimal feedback control problem is defined as follows. For each x0 ∈ X, δq0 ∈
Δm determine the control policy π∗ ∈ Π that minimizes the cost

Jπ

(
x0, δq0

) =
gN

(
xN , δqN

)+∑N−1
k=0 gk

(
xk, δqk,μk

(
xk, δqk

)) (8.26)

subject to the constraints (8.24) and the logical specification, i.e.,

Jπ∗
(
x0, δq0

) ≤ Jπ

(
x0, δq0

) ∀π ∈ Π (8.27)

8.7.3 Example

Consider, again, the loss of generator 2. This event causes the transition from state q1
to q2 as indicated in Figure 8.13. The goal now is to determine an optimal response
strategy for this contingency. Departure from q2 to any of the states q3, . . . , q6 initi-
ates start-up of the spare generator (GTG3). It is assumed that the generator power
increases at a conservative rate of 250 KW/minute. In units of pu per sec,

Ṗ3 = 1/1200 (8.28)
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The goal is to steer the system from the initial state P3 = 0, q = q2 to the
terminal state P3 = 0.45, q = q6. This will take 9 minutes since P3 must reach
0.45 pu from 0 pu. The fast electrical dynamics will be neglected so that the only
dynamics are associated with equation (8.28). Each mode is described by (8.28) and
a set of algebraic equations describing the network.

The nine-minute interval is divided into nine one-minute segments, and (8.28) is
replaced by the discrete time equation

P3,i+1 = P3,i + 60/1200 (8.29)

The goal is to find a sequence of state transitions that steer the system from the
initial state {0, q2} to the final state {0.45, qr} such that QOS constraints are met. To
do this, an optimal control is sought that minimizes a cost defined to reflect the QOS
objectives. In this example, the cost J is

J =
∑12

i=4
|Vi − 1| + max [0, P1 − 0.5] + 0.3 δESM + 0.15 δNV L

where δESM and δNVL are binary variables that take the values 0 or 1. δESM = 1
denotes that the ESM is active and δNVL = 1 denotes that the nonvital load is dropped,
whereas in each case, the value zero denotes the opposite. Dynamic programming is
used to obtain the switching strategy illustrated in Figure 8.15. The weights assigned
to δESM = 1, δESM = 1 are selected to reflect a judgment of the relative cost of
employing these actions.

Notice that following the failure, the controller immediately switches to config-
uration q3, which means that the nonvital load is dropped and the ESM turned on
providing 1000 KW of supporting power. It is worth noting that the power provided
by GTG1 is P1 = 0.494 pu, which is still below the unit’s normal rating of 0.5 pu.
If no action is taken, GTM1 would provide 0.786 pu power, which is just below

2q

3q

4q

5q

6q

2q

3q

4q

5q

6q

2q

3q

4q

5q

6q

2q

3q

4q

5q

6q

2q

3q

4q

5q

6q

2q

3q

4q

5q

6q

2q

3q

4q

5q

6q

2q

3q

4q

5q

6q

2q

3q

4q

5q

6q

2q

3q

4q

5q

6q

Q

, sect 540180 360

0.15 3 , puP 0.30 0.45

Fig. 8.15 The optimal strategy is shown in terms of the time period and GTG3 power level
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Fig. 8.16 The optimal
strategy is shown as a
discrete state transition
diagram

the unit’s five-minute crisis capability (0.9 pu). However, the voltage levels are also
unacceptably low. After one minute, the optimal strategy switches to q5, in which
the ESM is turned off, but the nonvital loads remain disconnected. The GTG1 power
output increases to 0.642 pu. The system remains in this state for four minutes by
which time the GTG1 power output has dropped below its normal rating to 0.444 pu.
At this point, the configuration is switched to q6, the nonvital load is picked up, and
the GTG1 power output increases to 0.640 pu. The system remains in this configura-
tion and reaches the target state in four minutes as the GTG1 power output reduces
linearly to its target value. Throughout this trajectory, the bus voltages remain within
acceptable limits. The optimal recovery sequence is illustrated in Figure 8.16.

In summary, using the engine fuel consumption data, a set of possible operational
configurations, and mission-specific electric load and ship speed requirements, it is
a straightforward matter to compute the most fuel-efficient operating configuration.
However, when QOS constraints are imposed, the problem is more complicated.
In this case, it is necessary to delineate all credible contingencies and eliminate
any configuration which violates the QOS constraints for any one of the contingent
events. The occurrence of a contingency should trigger a remedial action designed to
prevent violation of theQOS constraints. The goal is to design an optimal sequence of
available remedial actions. The cost function is constructed from penalties associated
with QOS violations which are balanced against costs associated with using the
available remedial actions. With a remediation strategy defined, the response to a
contingency can be evaluated to determine whether a QOS constraint is violated.



Appendix A
Ship Hybrid Electric Propulsion System

Figure A.1 illustrates a ship electric power and propulsion system that is used to
demonstrate the concepts discussed throughout the text. The system is loosely based
on a notional DDG-51 class naval ship with a hybrid electric drive, example [40,
144, 146]. The system includes three gas turbine-driven electric generators (GTGs)
and four propulsion gas turbines (GTM), two on each of two propulsion shafts. Two
bidirectional permanent magnet synchronous machine (PMSM), one geared to each
propulsion shaft, can be used as motors to drive the shaft or as generators to provide
electric power to ship power network.

The system can be operated in six configurations defined as follows.

1. Full Power - 2 turbines (GTM)per shaft driving 2 shafts; 1 or more GTGs supply
the electric loads.

2. Split Plant - 1 turbine (GTM)per shaft driving 2 shafts; 1 or more GTGs supply
the electric loads.

3. Trail Shaft - 1 turbine (GTM) driving 1 shaft, other shaft free; 1 or more GTGs
supply the electric loads.

4. HED Motoring - 1 PMSM driving 1 shaft; 2 or more GTGs supply the electric
power.

5. HED generation Split Plant - 1 turbine (GTM) per shaft driving 2 shafts with
PSMS generators supporting 1 or more GTGs in supplying electrical loads.

6. HED Generation Trail Shaft - 1 turbine (GTM) driving 1 shafts with PSMS
generator supporting 1 or more GTGs in supplying electrical loads.

A.1 12-Bus Network

The electric power distribution network is shown as a single- line diagram in
FigureA.2. The system is designed to accommodate 5.0MW of load. All numbers
used below are on a per unit basis. The power basis is 5MVA, and the voltage basis
is 450V. The admittance parameter generator (YG) and transmission lines (YT 1,YT 2)
are assumed fixed with the following values:
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Fig. A.1 Notional hybrid electric power system based on a DDG 51 class naval ship with hybrid
electric propulsion drive
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Fig. A.2 The distribution network 12-bus configuration includes the generator internal buses
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YG = − j3.636,YT 1 = 0.40672 − j40.672,YT 2 = 0.2032 − j20.32

Notice that loads are shown on the six buses, numbers 7 through 12. It is assumed,
for now, that the loads are equal and they are purely resistive, with YLi = 1/R, for
i = 7, . . . , 12, and R variable.

The no load admittance matrix is

B =⎛

⎜⎜⎜⎜
⎜⎜
⎝

−3.636 0 0 3.636 0 0 0 0 0 0 0 0
0 −3.636 0 0 3.636 0 0 0 0 0 0 0
0 0 −3.636 0 0 3.636 0 0 0 0 0 0

3.636 0 0 −84.98 0 0 40.672 40.672 0 0 0 0
0 3.636 0 0 −84.98 0 0 0 40.672 40.672 0 0
0 0 3.636 0 0 −84.98 0 0 0 0 40.672 40.672
0 0 0 40.672 0 0 −60.992 0 20.32 0 0 0
0 0 0 40.672 0 0 0 −60.992 0 20.32 0 0
0 0 0 0 40.672 0 20.32 0 −81.312 0 20.32 0
0 0 0 0 40.672 0 0 20.32 0 −81.312 0 20.32
0 0 0 0 0 40.672 0 0 20.32 0 −60.992 0
0 0 0 0 0 40.672 0 0 0 20.32 0 −60.992

⎞

⎟⎟⎟⎟
⎟⎟
⎠

(A.1)

G =⎛

⎜
⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −0.81344 0 0 0.40672 0.40672 0 0 0 0
0 0 0 0 −0.81344 0 0 0 0.40672 0.40672 0 0
0 0 0 0 0 −0.81344 0 0 0 0 0.40672 0.40672
0 0 0 0.40672 0 0 −0.60992 0 0.2032 0 0 0
0 0 0 0.40672 0 0 0 −0.60992 0 0.2032 0 0
0 0 0 0 0.40672 0 0.2032 0 −0.81312 0 0.2032 0
0 0 0 0 0.40672 0 0 0.2032 0 −0.81312 0 0.2032
0 0 0 0 0 0.40672 0 0 0.2032 0 −0.60992 0
0 0 0 0 0 0.40672 0 0 0 0.2032 0 −0.60992

⎞

⎟
⎟⎟⎟⎟⎟
⎠

(A.2)

To accommodate the resistive loads simply add to G as follows

G → G + diag

(
0, 0, 0, 0, 0, 0,

1

R
,
1

R
,
1

R
,
1

R
,
1

R
,
1

R

)
(A.3)

Notice that full load corresponds R = 1
/
6.

A.2 The 5-Bus Network

In this section and the next, reduced order models are derived that are used in various
examples. The system ordinarily operates with two of the three generators. Assuming
the generators in use are generators 1 and 2, bus number 3 (the internal bus of
generator 3) can be eliminated by dropping the third row and column of the 12-bus
admittance matrix. This leaves an 11-bus system. Load buses 7 through 12 have only
constant admittance loads. There are no current injections. Consequently, they can
be eliminated. The result is a five-bus reduced network in which the retained buses
are 1, 2, 4, 5, and 6. With R = 0.10, i.e., the total resistive load is 0.60 per unit, the
reduced admittance matrix is
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B5bus =

⎛

⎜⎜⎜⎜
⎝

−3.636 0 3.636 0 0
0 −3.636 0 3.636 0

3.636 0 −25.3183 16.2635 5.41829
0 3.636 16.2635 −36.1635 16.2635
0 0 5.41829 16.2635 −25.3183

⎞

⎟⎟⎟⎟
⎠

G5bus =

⎛

⎜⎜⎜⎜
⎝

0. 0 0. 0 0
0 0. 0 0. 0
0. 0 −0.100345 0.218627 0.0817217
0 0. 0.218627 −0.237251 0.218627
0 0 0.0817217 0.218627 −0.100345

⎞

⎟⎟⎟⎟
⎠

A.3 The 2-Bus Network

When the generator internal bus is included in the network, as is done here, and the
generator terminal buses have no other current injections, it is possible to exclude
those as well. Normally, they would be retained because the terminal bus is usually
voltage controlled. In the 5-bus model, buses 4 and 5 were retained. Bus 6 was also
retained in the event that themotor load or battery supplywas to be used. It is possible
to eliminate these as well leaving a simple two-bus network. Of course, such a model
would have much more limited value in application, but is useful for illustration. The
admittance matrix for the two-bus network is

B2bus =
(−2.17074 1.12413

1.12413 −2.25972

)
,G2bus =

(
0.0648096 0.0671797
0.0671797 0.0649872

)



Appendix B
Computational Tools

This appendix provides information about computing tools and links toMathematica
notebooks and Simulink models of examples used through out the book.

B.1 ProPac - A Mathematica Toolbox

ProPac is a toolbox originally developed to support symbolic computations required
for modeling complex mechanical and electrical systems as linear and nonlinear
control system design. An early version was included with the book [114]. Functions
are provided for themanipulation of linear control systems in state space or frequency
domain forms and for the conversion of one form to the other. The software also
contains functions required to apply modern geometric methods of control system
design to nonlinear systems. These include tools for the design of adaptive as well as
variable structure control systems. Functions are provided that assist model building,
simulation in MATLAB/Simulink, control design, and implementation. Functions
are available to assemble optimized C-code that compiles as a Simulink S-function,
thereby enabling system models and controllers to be easily included in Simulink
simulations. The stand-alone control modules can be directly converted to real-time
code in a target DSP board. An updated version of ProPac is available at http://www.
pages.drexel.edu/~hgk22/. Mathematica notebooks that illustrate the application of
these tools can be found at http://www.pages.drexel.edu/~hgk22/notebooks/. These
notebooks include generator modeling examples and MEX function construction as
well as network modeling and MEX function construction. Simulink examples of a
complete simulation are also available.
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B.2 Power System Modeling

Electric power system dynamics can typically be represented by DAE models of the
semi-implicit form

ẋ = f (x, y, u, η)

0 = g(x, y, u, η)
(B.1)

where the variables include the state vector x ∈ Rn , a vector of auxiliary variables
y ∈ Rp, a vector of input variables u ∈ Rm , and a set of parameters denoted by the
vector η ∈ Rk . Ordinarily, the dynamical equations are associated with generation
and loads and the algebraic portions with the network. Some explanatory remarks
are given in the following paragraphs, and illustrative mathematica notebooks can
be found at http://www.pages.drexel.edu/~hgk22/notebooks/notebooks.htm.

B.2.1 Machine Simulation Models

Three phase machine models are considered in Section 4.3.2. The governing equa-
tions for synchronous, permanent magnet synchronous, and induction motors and
generators are derived. Balanced operation allows simplification of these models.
The simplified synchronous machine model is developed in Section 4.4.2. The gov-
erning equations are given in Equations (4.99) – (4.107). The interconnection of the
simplified model with the network is shown in Figure 4.23.

B.2.2 Power Network Simulation

Electric power system dynamics can typically be represented by DAE models in
the semi-implicit form of (B.1). The ability to run fast simulations of power net-
works is essential to the design and implementation of intelligent, high-performance
power management systems. However, fast simulation is impeded by the structure of
power systemDAEmodels. Simulink, for example, one of the most important model
building and simulation tools for control system designers, does not contain reliable
computational tools for large sets of DAEs. The approach described here provides a
method of addressing modeling and simulation of power networks within Simulink.

In the MATLAB-based voltage stability toolbox, [17], the fourth- and fifth-order
Runge–Kutta–Fehlberg method (one of MATLAB’s standard tools for solving ordi-
nary differential equations) was adapted to suit semi-implicit DAE models of power
systems. At each time step, a standard Newton-Raphson procedure was used to solve
the algebraic equations for y. This is feasible so long as the trajectory does not pass
through a “noncausal” point (see Chapter 6 and, in particular, Example 6.3 for a
discussion of noncausal points and the related “singularity-induced” bifurcation).

http://www.pages.drexel.edu/~hgk22/notebooks/notebooks.htm
http://dx.doi.org/10.1007/978-0-8176-4674-5_4
http://dx.doi.org/10.1007/978-0-8176-4674-5_4
http://dx.doi.org/10.1007/978-0-8176-4674-5_4
http://dx.doi.org/10.1007/978-0-8176-4674-5_4
http://dx.doi.org/10.1007/978-0-8176-4674-5_4
http://dx.doi.org/10.1007/978-0-8176-4674-5_6
http://dx.doi.org/10.1007/978-0-8176-4674-5_6
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This approach has been extended so that it can be used in the Simulink environ-
ment. This allows engineers to use Simulink graphical interface to build and share
models in a modular framework and to exploit Simulink computational capabilities
and its various toolboxes. While toolboxes exist for power system modeling within
Simulink, they solve the DAE computational issue by including enough parasitic
dynamics in the models to break all of the many algebraic loops, thus producing a
set of stiff differential equation instead of a DAE system of equations. The resulting
simulations are painfully slow and inadequate for many applications.

An electric power system is a collection of components including generators,
motors, storage devices, static and dynamic loads, and others connected together by
a network of transmission lines. Building a mathematical model of the system can
be facilitated by a graphical interface in which models of individual components
and the network can be connected together in the desired configuration. Simulink
provides such an interface where the system model can be assembled, modified, and
simulated. In the approach used here, the network is isolated thereby segregating all
of the algebraic loops in a single block that implements a specified number of Newton
iterations as a discrete time dynamical element. The simulation can be organized so
that one or more Newton iterations are performed during each continuous time step.
The result is a very fast simulation because there is no need to include artificial
parasitic dynamics.

This approach views the power system in terms of the “network” which embodies
the critical algebraic equations to which generators and loads of various types and
their controllers are attached. The network algebraic equations are implemented in
a single discrete time module. The assembly of the network model block is accom-
plished symbolically resulting in an optimized C-code program that compiles as a
Simulink S-function. The following paragraphs define the overall concept and pro-
vides examples of its application.

The general structure of the network is defined in Figure 4.25. It is viewed as a
multi-port block. Each port (or bus) interacts with the external world through four
variables P, Q, V, θ . Two of these are inputs, and two are outputs. Themost common
input pairs are P, Q, P, V ,and V, θ . Note that because of the translational symmetry
in the network equations, at least one-bus angle, θ , must be an input variable. This
would most likely be a reference generator, corresponding to a V, θ bus.

B.3 Power System Management

Computational tools are also available for mixed logical-dynamical optimization
problems associate with power system control problems. A tutorial notebook that
implements tools for converting logic statements to mixed-integer programming
formulas is available at http://www.pages.drexel.edu/~hgk22/, as is a notebook that
implements some elementary constructions for dynamic programming. Examples
are also included.

http://dx.doi.org/10.1007/978-0-8176-4674-5_4
http://www.pages.drexel.edu/~hgk22/
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B.4 Voltage Stability Toolbox

The Voltage Stability Toolbox (VST) is a stand-alone software environment that
implements computational methods for investigating power system voltage stabil-
ity. It allows the user to specify the system configuration from which the toolbox
assembles the relevant equations and computational algorithms. These techniques,
which include convergent load flow procedures that work near collapse points and
can locate the precise point of collapse (POC), involve computations that are more
complex than conventional load flow methods [17]. Compared to traditional meth-
ods, they require additional information (such as 2nd derivatives), which necessitates
far more elaborate code for their implementation and makes them computationally
intensive. For these reasons, key elements of the VST are automatic model assem-
bly, code generation, and code optimization. The current system integrates numerical
and symbolic computing. It is built in MATLAB and exploits its symbolic toolbox
(Maple) and GUI tools. VST is available at http://www.pages.drexel.edu/~hgk22/ or
at the Web site of the Center for Electric Power Engineering (CEPE) http://power.
ece.drexel.edu/VST/.

http://www.pages.drexel.edu/~hgk22/
http://power.ece.drexel.edu/VST/
http://power.ece.drexel.edu/VST/
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