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Nomenclature

 

, , , 

 

= 

 

state-space representation (standard form)

 

= 

 

Schur product of matrices (element-by-element multiplication: 

 

= 

 

lift-curve slope
, , 

 

= 

 

accelerometer components along the body axes (longitudinal, 
lateral, vertical)

 

= 

 

frequency resolution ( )

 

= 

 

half-power bandwidth

 

= 

 

with subscript, a bias error parameter (e.g.,  error 
in )

 

= 

 

thrust coefficient 

 

= 

 

constant to account for spectral window overlap

 

= 

 

Carpenter–Fridovich inflow constant

 

= 

 

Cramér–Rao bound of the 

 

i

 

th identified parameter ( ) of the 
converged solution ( )

 

= 

 

rotor-blade chord

 

= 

 

matrix of gradients , where 

 

= 

 

time derivative in an Eulerian (body-fixed) frame of reference

 

= 

 

time derivative in an inertial frame of reference

 

= 

 

decade span, defined as  to 
characterize the fraction of a decade for which acceptable data 
are available

 

= 

 

offset of the rotor-blade flapping hinge from the center of 
rotation of the rotor shaft

 

= 

 

external force vector

 

= 

 

frequency, Hz
, 

 

= 

 

theoretical minimum/maximum frequency that can be identified

 

= 

 

resonance peak frequency

 

= 

 

sampling rate (frequency), defined as 
, , 

 

= 

 

input autospectrum, output autospectrum, and cross spectrum

 

= 

 

example of conditioned spectrum: cross spectrum between 
rudder input  and roll response , conditioned to remove 
effects of partially correlated aileron input 

 

= 

 

Hessian matrix for the cost function 
, 

 

= 

 

unbiased frequency-response estimate when noise is present 
only at output, unbiased frequency-response estimate when 
noise is present only at input

 

= 

 

frequency-response function

 

= 

 

transfer function

 

= 

 

height of the rotor hub above the fuselage center of gravity

 

= 

 

identity matrix
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Ĥ1 f( ) Ĥ2 f( )
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= 

 

inertia tensor 

 

= 

 

moment of inertia of the rotor blade about the flapping axis

 

= 

 

insensitivity of the 

 

i

 

th identified parameter  of the 
converged solution 

, , 

 

= 

 

roll, pitch, yaw moments of inertia

 

= 

 

product of inertia

 

= 

 

cost function for frequency-response error

 

= 

 

cost function for time-response error

 

= 

 

rotor-blade flapping spring

 

= 

 

number of time-history points in a spectral window
  

 

= 

 

external moments about the aircraft center of gravity 
(roll, pitch, and yaw)

 

= 

 

primed roll derivative, defined by 
 for 

 

= 

 

example of stability derivative; 

 

= 

 

rotor flap-stiffness constant

 

= 

 

example of control derivative; 
    

 

= 

 

generalized equation-of-motion matrices (CIFER® form)
= test stand rolling moment
= first mass moment of rotor blade
= number of discrete frequency points in identified spectrum
= vehicle scale ratio
= primed yaw derivative, defined by 

 for 

= noise at output accounting for both process and output 
measurement noise

= number of states in a multiple-input/multiple-output 
(MIMO) linear time-invariant system

= number of rotor blades
= number of control inputs
= number of independent time-history averages
= number of response outputs
= number of identification parameters
= number of transfer functions included in the identification
= number of time-history points in the verification data 

record
= number of windows
= number of frequency points included in the identification 

cost function
, = total value and perturbation value (in this case fuselage roll 

rate)
, , = fuselage angular rates (roll rate, + right wing down; pitch 

rate, + nose up; yaw rate, + nose right)
= example of a frequency-response pair; roll-rate response  

to aileron input 
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= example of a transfer function; roll-rate response  to aileron 
input 

= example of a conditioned frequency response: the single-input/
single-output (SISO) solution for , conditioned to eliminate 
the linear effects of partially correlated aileron input 

= rotor radius
= signal-to-noise ratio

s = Laplace variable
= time constant
= total length of concatenated records

, = minimum and maximum period of interest
= length of a flight-test record
= time duration or “width” of a spectral window
= Theil inequality coefficient
= frequency-response of SISO transfer-function model
= MIMO frequency-response matrix of identification model
= time to double (the amplitude)

, = Laplace transform of the input and output vectors (  and )
= control input vector consisting of  control inputs 

,  = input measurement noise, output measurement noise, 
and process noise

, , = velocity components (longitudinal, + forward; lateral, + right; 
vertical, + down)

= diagonal weighting matrix consisting of the weighting 
parameters , , and   in the cost function calculation

, , = identification weighting for magnitude, phase, and coherence 
functions

  = external forces on the aircraft center of gravity (longitudinal, 
lateral, vertical)

, = Fourier coefficients of input  and output 
, = Laplace transform of the input and output vectors 

( , , respectively)
= state vector consisting of  states 

, , = offsets of the accelerometer package relative to the center of 
gravity

= constant acceleration bias vector (also )
, , = offsets of nose boom location relative to the center of gravity
, = system input (excitation) and output time signals

= measurement (or output) vector consisting of  available 
measurement signals  

= constant reference-shift vector (also )
= angle of attack
= noise-to-signal (PSD) ratio for the input
= angle of sideslip
= noise-to-signal ratio (PSD) for the output

, , = rotor flap angles for coning, longitudinal, lateral tip path plane 
coordinates (+ up; + flap down to left; + flap up over rear)

p
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, = lock number and effective (reduced) Lock number
= partial coherence for frequency response ( ) with the 

effects of remaining  controls removed
= coherence function between input x and output y
= multiple coherence showing contribution of multiple 

controls (  and  in this case) to a single output (  in 
this case)

= variation or perturbation
= frequency resolution
= jump in the reconverged average cost function
= control input

, , , = control inputs for fixed-wing aircraft (roll, pitch, yaw, 
and throttle controls)

, = components of the secondary aileron input that are 
uncorrelated correlated (uc) and correlated (c) with the 
primary input

= lagged collective control to account for engine dynamics
= computer generated sweep input, enriched with white noise

, , , = control inputs for rotorcraft (roll, pitch, yaw, 
and vertical control)

= control input for engine rpm
= computer-generated frequency-sweep input
= vector of magnitude and phase errors for the identified 

model
= bias error in frequency-response estimate
= random error in frequency-response estimate
= simulation error response function: 

= damping ratio for second-order system 
, , = rotor lead-lag angles for collective, cosine, sine degrees of 

freedom (+ all blades deflect clockwise; + blades deflect 
to left side; + blades deflect to aft of helicopter)

= shorthand notation for , a second-order 
factor of a transfer function

= identification vector , consisting of all

of the parameters to be identified in the model matrices  
  

= scaled confidence ellipsoid vector associated with a specific 
Cramér–Rao bound  

  = fuselage attitudes (pitch, + nose up; roll, + right wing down; 
yaw, + nose right)

= error between the current pitch of the aircraft  and the 
commanded pitch 

= identification parameters
, , = rotor swashplate deflection angles (collective, cosine, sine)

= with subscript, a scale factor error parameter 
(e.g.,  error in )
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= eigenvalue
= output noise-to-excitation (PSD) ratio
= atmospheric density
= correlation coefficient between the two identified parameters  and 

 of the converged solution 
= rotor solidity
= rms value 
= rms noise level
= time delay
= engine time constant
= equivalent time delay
= rotor flap time constant
= phase delay
= rotor inflow velocity
= trim inflow ratio
= rotor lead-lag natural frequency in the rotating frame normalized by 

the rotor rotational speed 
= phase value at twice frequency of  phase lag
= phase shift
= rotor rotation speed, rad/s (U.S. convention is counter-clockwise as 

viewed from above) 
= frequency, rad/s
= angular velocity vector of the body-fixed axis system
= bandwidth frequency (handling-qualities definition)
= crossover frequency
= pilot operating frequency or cutoff frequency
= filter cutoff frequency (also referred to as the filter bandwidth)

, = minimum and maximum frequency of interest (and of excitation)
= nyquist frequency
= undamped natural frequency for second-order system
= sample rate
= frequency at which the phase of the attitude response is 
= shorthand notation for , a first-order factor of a transfer 

function
= magnitude, dB
= phase, deg

Subscripts
= average value
= crossfeed (piloted or via control system)
= composite window value
= value at center of gravity
= flight data value
= magnitude of a complex function expressed in decibels (e.g., 

); power variables are expressed in “power 
decibels” [e.g., ]

= argument of a complex function expressed in degrees
= Dutch roll mode
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= estimated, or corrected, value of a flight measurement 
= effective (or quasi-steady derivative) value
= error value

, , = rotor flapping modes (regressing, advancing, coning)
, , = rotor lead-lag modes (regressing, advancing, collective)

= flight measurement
= maximum value
= minimum value
= model value
= mixer input value
= measurement made at the nose boom

, = real/imaginary parts of a complex number
= roll mode
= spiral mode
= total value
= trim value, converged value

Superscripts and Overmarks
= the transpose of a matrix
= complex conjugate value
= weighted average
= normalized value
= smooth spectral estimate
= rough spectral estimate
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Acronyms

ACAH = attitude command, attitude hold
ADOCS = Advanced Digital Optical Control System
AFCS = Automatic Flight Control System
AFDD = U.S. Army Aeroflightdynamics Directorate (Ames Research 

Center)
AGARD = Advisory Group for Aerospace Research and Development
AIAA = American Institute of Aeronautics and Astronautics
ARI = aileron-to-rudder interconnect
ASE = aeroservoelastic, also automatic stabilization equipment 

(SH-2G)
CIFER® = Comprehensive Identification from Frequency Responses 

software package
COMPOSITE = CIFER® program that combines multiple spectral windows to 

achieve a final frequency response
CONDUIT® = Control Designer’s Unified Interface software package
CZT = chirp z-transform
DERIVID = CIFER® program used to identify a state-space model 

structure that best fits the MIMO frequency-response database 
DFT = discrete Fourier transform
DLR = Deutsche Forshungsanstalt für Luft- und Raumfahrt 

(until 1989: DFVLR)
DOF = degree(s) of freedom
FCS = Flight control system 
FFT = fast Fourier transform
FRESPID = CIFER® program that calculates SISO frequency responses 

using a chirp z-transform (an advanced FFT) 
GENHEL = Sikorsky general helicopter flight dynamics simulation 

program
GTR = generic tilt-rotor simulation
HQR = Cooper–Harper handling-qualities rating
IMU = inertial measurement unit
LOES = lower-order equivalent system
LTI = linear time invariant
MCLAWS = modernized control laws
MIL-STD-nnnn = military requirements standard
MIMO = multiple-input/multiple-output
MISO = multiple-input/single-output
MISOSA = CIFER® program that determines frequency responses when 

multiple inputs are present
MUAD = maximum unnoticeable added dynamics
NASA = National Aeronautics and Space Administration (US)
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NAVFIT = CIFER® program used to a identify a pole-zero transfer-function 
model

PIO = pilot-induced oscillations
PM = phase margin
PSD = power spectral density
RASCAL = Rotorcraft Aircrew Systems Concepts Airborne Laboratory, a 

JUH-60 Black Hawk helicopter with digital fly-by-wire control 
system (operated by AFDD)

rms = root mean square
rpm = revolutions per minute
SAS = stability augmentation system
SBMR = Sikorsky bearingless main rotor
SCAS = stability and control augmentation system
SISO = single-input/single-output
SMACK = smoothing from aircraft kinematics program, used to check the 

time-history data prior to identification
STOVL = Short take-off/vertical landing aircraft 
TIC = Theil inequality coefficient
TM = real-time telemetry
UAV = unmanned air vehicle
VERIFY = CIFER® program (state-space model verification) used to check the 

time-domain predictive accuracy of an identified model
VMS = vertical motion simulator
VSRA = V/STOL (vertical/short takeoff and landing) system research aircraft
XV-15 = tilt-rotor demonstrator aircraft
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Preface

 

Aircraft system identification is a highly versatile procedure for rapidly and effi-
ciently extracting accurate dynamic models of an aircraft from the measured
response to specific control inputs. Models might be desired to characterize the
aircraft dynamics as a whole or to characterize an aircraft subsystem, such as an
actuator, rotor system, or the engine. Key applications of aircraft system-identifi-
cation results include piloted simulation models, comparison of wind-tunnel vs
flight measurements, validation and improvement of physics-based simulation
models, flight-control system development and validation, and handling-qualities
specification compliance testing.

As indicated by the title, this book addresses the system identification of both

 

aircraft

 

 and 

 

rotorcraft

 

, focusing on 

 

engineering methods 

 

and 

 

flight-test examples

 

.
Specialized testing and data-analysis methods, as well as considerable physical
insight, are required to obtain models that are accurate and reasonable in terms of
the underlying physics. This book presents the 

 

frequency-response method

 

 for
system identification as developed by the leading author and his colleagues from
the U.S. Army Aeroflightdynamics Directorate (AFDD) and NASA at Ames
Research Center over the past more than 20 years, drawing on practical experi-
ence from many and varied individual flight projects cited in the reference list.
The analysis methods are embodied in the software package 

 

Comprehensive
Identification from Frequency Responses 

 

(CIFER

 

®

 

), also developed at Ames
Research Center (and distributed commercially). System-identification projects
have ranged from small (9-in. diam) ducted-fan unmanned air vehicles (UAVs) to
large (100-ft wing span) solar-powered UAVs, including a wide range of manned
fixed-wing aircraft and rotary-wing aircraft (

 

rotorcraft

 

) configurations. There
have also been many applications involving the extraction of subsystem models
from wind-tunnel data (e.g., rotor system response) and bench-test data (e.g.,
actuators and other flight control components). Examples are given in the over-
view of Sec. 2.4 and throughout the book.

The identification of dynamics models of flight vehicles from flight-test data is
made difficult by many factors, as explained in this book. These are associated
with the limitations of the flight-data measurement system, test inputs, signal-to-
noise ratio, and test record length. The determination of rotorcraft response mod-
els is perhaps the most challenging application of system identification. These
vehicles have a wide range of possible configurations—from small ducted fans to
tilt-rotor aircraft, single and tandem helicopters, and helicopter/sling-load config-
urations. Many rotorcraft exhibit a high-order dynamic response because of the
tightly coupled dynamics of the fuselage/rotor/inflow/engine, so that typical
lower-order approximations of fixed-wing aircraft responses often do not apply.
Inputs in one axis generally produce responses of comparable magnitude in all
axes—referred to as 

 

cross coupling

 

—in which case the fixed-wing assumption of
decoupled longitudinal and lateral/directional responses is no longer valid.
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Additional complicating factors in the case of rotorcraft are the typically very
low signal-to-noise ratios for near-hovering flight maneuvers, unstable pitch and
roll dynamics, and high levels of noise in the measurements (e.g., caused by
vibration and atmospheric disturbances). System-identification techniques and
typical results for rotorcraft are emphasized in this book and presented through-
out for comparison with the fixed-wing examples.

Many excellent books are available that cover the theory of system identifica-
tion with some general applications and example results. The analysis methods
and software tools are often demonstrated with simple examples commonly
drawn from lower-order systems and numerical simulations. In most cases, a new
analyst has little guidance on the important practical aspects of instrumentation,
flight-testing methods, flight-data conditioning, model structure determination,
and model validation. For the difficult and highly specialized problem of aircraft
and rotorcraft system identification from flight-test data, it is most certainly true
that the “devil is in the details.” System identification of flight vehicles has long
had the reputation of being “more art than science.” This is caused in large part
by the uncertainty in how to properly set the many “knobs” in the analysis in
order to obtain a satisfactory model from real flight-test data. Despite the
immense power of system identification to help rapidly solve dynamics and con-
trols problems, expertise tends to be concentrated at only a handful of research
centers worldwide. 

This book presents validated methods and guidelines for the specialized appli-
cation of aircraft and rotorcraft system identification. The frequency-response
method developed at Ames Research Center (and embodied in the CIFER

 

®

 

 anal-
ysis tool) provides a robust and systematic approach that is highly effective in
addressing the difficult problems of flight-vehicle system identification from
flight-test data. Engineering methods and flight-test results are demonstrated
herein with a wide range of flight examples worked on at the Ames Research
Center, including UAVs, aircraft, rotorcraft, and vehicles subsystems. Through-
out the book—and summarized in an appendix—are many specific guidelines for
flight vehicle testing, data analysis, modeling, and interpretation of results. This
book emphasizes the importance of physical insight in model development and
interpretation. Many specialized identification techniques that allow a significant
improvement in the quality of the results are discussed in the book. These meth-
ods and much of the practical guidance are embodied in CIFER

 

®

 

, which is used
to obtain all of the results presented herein. A student version of the software and
user’s manual is available with this book via the AIAA Web site. The student ver-
sion provides all of the functionality of the professional version (http://
uarc.ucsc.edu/flight-control/cifer) but only allows the identification of models of
limited complexity (two control inputs, four dynamics states), which is sufficient
for the student exercises that follow each chapter. Also included is access to the
flight-test data for the XV-15 tilt-rotor aircraft and simulated data for a typical
helicopter as needed to complete the student exercises.

This book grew out of a short course on aircraft and rotorcraft system identifi-
cation taught by the leading author for several years. The book addresses the
entire process from instrumentation and flight testing to model determination and
validation. The emphasis is placed on the fundamental principles, engineering
methods, and interpretation of the flight-test results, with ample citations of more
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in-depth theoretical treatments. Two detailed case studies are tracked throughout
the identification process in order to address the specific problems of aircraft and
rotorcraft. Many additional examples are included in each chapter to illustrate the
wide-ranging roles of system identification, including the analysis of flight
mechanics, automatic control, vibration, structural analysis, handling qualities,
and simulation. This book is intended for use in an advanced undergraduate or
graduate level course on system identification. The exercises give the student
hands-on experience with a wide range of aircraft and rotorcraft applications
using flight-test and simulation data. The material herein assumes some familiar-
ity with basic concepts of aeronautics, Laplace transforms, flight dynamics, and
classical control, as presented at a typical undergraduate level.

The main concepts of system identification and a historical overview are pre-
sented in Chapter 1. A schematic diagram (

 

road map

 

) of the frequency-response
method and typical flight-test results for aircraft and rotorcraft are presented in
Chapter 2. The succeeding chapters trace the steps of the roadmap from flight-
test planning and instrumentation to data checking, appropriate choice of model
structure, and then the central topics of model identification and verification.
Each chapter presents the theory, engineering methods, practical guidelines for
application, examples, and flight-test results for the particular step in the road
map. A section of each chapter discusses the implementation of the methods in
the CIFER

 

®

 

 software, but the methods and guidelines in the book are meant to be
useful independently from this tool, and they can also be implemented in other
software tools, such as MATLAB

 

®

 

. 
The basic methods and results are first illustrated using a numerical simulation

of an inverted pendulum to provide a simple example with known (theoretical)
dynamic response results. Most of the examples in the book, however, are based
on flight-test results because it is the authors’ experience that many methods and
guidelines which work well using simulated data break down for real flight-test
applications. Flight-test results for the XV-15 tilt-rotor aircraft are used to illus-
trate the methods in each chapter, thereby providing a consistent example from
the start to the finish of the system-identification road map. The results for the
XV-15 in forward flight illustrate typical results for an aircraft configuration,
whereas the results for the same vehicle in hovering flight illustrate typical results
for a helicopter configuration. Many additional flight-test examples—including
those of the solar Pathfinder, the Fire Scout P2 demonstrator (based on the Sch-
weitzer 333 helicopter), the Shadow™ 200 fixed-wing UAV, and the SH-2G heli-
copter—demonstrate the utility of system-identification methods for a broad
scope of dynamics and control applications.

The material in Chapters 1–11 covers basic identification concepts, instrumen-
tation and flight testing, frequency-response identification for multi-input/multi-
output and closed-loop systems, and transfer-function modeling. This material is
at a technical level that is suitable for a one-semester course for undergraduate
students. These methods and many example applications also cover the needs for
system identification by many practicing engineers. Chapters 12–14 present the
advanced topics of state-space model identification and verification for aircraft
and rotorcraft. Chapter 15 discusses the identification of higher-order models for
helicopters; these models are needed to accurately characterize more agile
manned rotorcraft configurations and, especially, for small UAV helicopters. 
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The complete book is suitable for a more advanced undergraduate or graduate
level course in system identification and as a resource for practicing engineers
and researchers. There are extensive problem sets to be worked at the end of each
chapter that give the reader (and student) hands-on experience with the system-
identification methods and interpretation of the results. These are based on the
numerical simulation of the inverted pendulum, XV-15 flight-test data, and simu-
lated flight data for a typical helicopter (provided via the AIAA website). A solu-
tions manual is also available by contacting the publisher.

A frequency-response perspective is at the center of the system-identification
approach presented herein and embodied in the CIFER

 

®

 

 software. The genesis
for this was based on a wonderful period spent by the leading author at Systems
Technology, Inc., from 1980–1982. Aircraft and rotorcraft system identification
has been a passion and focus of this author since coming to the AFDD in 1983.
The AFDD laboratory, part of the U.S. Army Aviation Missile Research Develop-
ment and Engineering Center (AMRDEC), has provided an ideal environment to
pursue and apply this technology to a wide range of projects, both at the Ames
Research Center and in cooperative efforts with U.S. and international industry
and research colleagues. The support and encouragement of the AFDD Director,
Andrew W. Kerr, and the Chief of the AFDD Flight Control and Cockpit Integra-
tion Branch, Barry R. Lakinsmith, has made possible the long-term pursuit of this
research topic. Their support and encouragement for writing this book is also
greatly appreciated. The CIFER

 

®

 

 software has been developed and supported
over the years thanks to the outstanding effort and dedication of Joseph G.M.
Leung, Mavis G. Cauffman, Gary L. Villere, Lawrence E. Pierce, Dexter L.
Hermstad, and Paul S. Salchak. A special thanks go to my father, Morris Tischler,
for his lifelong encouragement and for being my greatest fan.

The second author came to the subject matter of this book from a very different
direction. The experience gained while teaching mathematics to undergraduate
and graduate students provided invaluable insights into how to explain difficult
subjects to students with varying levels of education. His work at Ames Research
Center over a period of more than 26 years on a wide variety of projects produced
an eclectic background that was well suited to the task of helping to distill the
technical knowledge and experience of the leading author into a book that would
convey the concepts to as wide an audience as possible, both students and estab-
lished engineers. A key role for this author was to be the “reality check” on
whether the information was written in a manner that would be clear and under-
standable to the target audience.

The ideas and results presented herein draw heavily on many research collabo-
rations over the years. Thanks go foremost to the many AFDD and NASA col-
leagues that have worked with the leading author and whose results are presented
and referenced throughout this book. Especially important international research
collaborations were with Juergen Kaletka (DLR) under the U.S./FRG Memoran-
dum of Understanding (MOU) and with the AGARD Flight Mechanics Panel
Working Group 18 and Lecture Series 178 on Rotorcraft System Identification
(under the outstanding leadership of Peter G. Hamel). In addition, many photos
and results presented herein reflect long and successful research collaborations
with numerous companies and research organizations in the United States and
internationally.
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Special thanks go to several individuals for their help in the development of
this text. Howard C. (“Pat”) Curtiss, Jr., spent many hours reviewing the draft and
providing a wealth of feedback and perspective. The leading author has benefited
from a career-long close working relationship with Pat, who has been a wonder-
ful colleague and mentor. A careful and detailed review was also provided by M.
Hossein Mansur, a close colleague and friend. The suggestions of Jeffery A.
Schroeder in the early stage of the book were very valuable. Many excellent con-
tributions to the exercise sections were made by Christina M. Ivler, who also
authored the instructor’s solution manual. Thanks go to Thomas J. Esposito for
his care in preparing all of the final graphics material. Special thanks go to
Jeffery A. Lusardi and Colin R. Theodore for their help in proofing the final gal-
leys. Thanks again from both of us to everyone that helped and encouraged us in
this project.

The second author expresses deep gratitude to a number of people who were
critical to his successful participation in writing this book. Management support
from the University of California at Santa Cruz and Ames Research Center, espe-
cially Bassam Musaffar and Larry Hogle, created ideal conditions for working on
the book while balancing the scheduling demands of other important projects. A
special thanks goes to Mark Tischler for the invitation to collaborate in writing
the book and for being an outstanding mentor, a stimulating colleague, and a
good friend. Finally, the second author wishes to thank his wife, Evelynn Brown
Remple, and their son, Jonathan Remple, for the support, encouragement, and
understanding that he received from them while working on this book. They both
tolerated with good spirits the long hours of work and the stacks of papers that
sometimes intruded on the family's time and space. 

 

Mark B. Tischler
Robert K. Remple

 

December 2005
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1
Introduction and Brief History of System

Identification in the Frequency Domain

 

This chapter presents both a general introduction to system identification and a
brief history of the development of frequency-domain-based methods. The follow-
ing topics will be covered in this chapter: 1) basic terminology and concepts of
system identification of aircraft and rotorcraft, 2) special challenges of rotorcraft
system identification, 3) role of nonparametric vs parametric models, 4) how sys-
tem identification supports the aircraft development process, 5) comparison of fre-
quency-response vs time-response methods, 6) brief history of the development of
frequency-domain methods for aircraft and rotorcraft system identification, and
7) organization of this book.

 

1.1 Basic Concepts of System Identification of Aircraft 
and Rotorcraft

 

This section introduces the basic terminology and concepts of system identifi-
cation (as highlighted in italics), with special emphasis on aircraft and rotorcraft
applications. An aircraft can be considered as an input-output system, as shown
in Fig. 1.1.

 

 

 

The vehicle dynamics are excited by the 

 

control inputs

 

, which in the
current case are the conventional aerodynamic surfaces: aileron  for roll con-
trol, elevator  for pitch control, rudder  for yaw control, and throttle  for
speed control. We can record the aircraft 

 

dynamic response

 

 to the control inputs
in numerical form using an onboard measurement system. Typical flight-vehicle
measurements for flight dynamics consideration are shown in the figure: transla-
tional velocities, angular velocities, attitudes, linear accelerometers, and aerody-
namic angles. Additional measurements could include the engine response, wing
strain, and aircraft position.

A 

 

dynamic model

 

 relates the control inputs to the vehicle dynamic response. This
model can be as simple as a graph of the input-to-output response or as complex as
a set of differential equations of motion. Dynamic models are needed for many appli-
cations, including analysis of aircraft stability and control, pilot simulations, flight-
control design, and analysis of aircraft handling characteristics (

 

handling qualities

 

). 
An analogous illustration of the input-output process for a helicopter is shown

in Fig. 1.2. Now the inputs are the controls for the main rotor and tail rotor: lateral
cyclic  for roll control, longitudinal cyclic  for pitch control, pedal  to
command tail rotor collective for yaw control, and collective pitch  for vertical
speed control. The output signals listed for flight dynamics considerations are the
same as in the aircraft case, although aerodynamic angle measurement is not used
at low-speed (and hover). Again, additional measurements that might be available
include rotor-blade deflections, main rotor shaft rpm, and structural strains.

δa
δe δr δt

δlat δlon δped
δcol
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2 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

 

Aircraft 

 

system identification

 

 is a highly versatile procedure for rapidly and effi-
ciently extracting accurate dynamic models of the aircraft from the measured
response to specific control inputs. Models might be desired to characterize the air-
craft system as a whole (e.g., as shown in Figs. 1.1 and 1.2) or to characterize an
aircraft subsystem, such as an actuator or the engine. So at its most simple definition,
system identification is a process that provides a model that best characterizes (in
some least-squares sense) the measured responses to controls. Specialized flight-
test maneuvers are used to 

 

excite 

 

the dynamics of concern for a particular applica-
tion, such as the study of flight dynamics and control (low frequencies of interest) or
structural stability (higher frequencies of interest). Typical excitations for system-
identification purposes are 

 

frequency sweeps 

 

(Fig. 1.3) and 

 

doublets 

 

(Fig. 1.4). 

 

1.1.1 Frequency-Response Model

 

A 

 

frequency response

 

 is a data curve identified from the flight-test data that
displays the ratio of the response (e.g., roll rate) per unit of control input (e.g.,
aileron) as a function of control input frequency. The frequency response is
obtained using the 

 

fast Fourier transform

 

 and associated 

 

windowing

 

 techniques.
We are concerned with both the output/input amplitude ratio and the phase shift. An

3 translational 
velocities,
u, v, w

3 angular 
velocities,
p, q, r

3 linear
accelerometers,
ax, ay, az

 Fig. 1.1 Aircraft as an input-output system.

3 translational 
velocities,
u, v, w
3 angular 
velocities,
p, q, r

3 linear
accelerometers,
ax, ay, az

 Fig. 1.2 Helicopter as an input-output system.
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effective format, used exclusively herein for presenting identification results in the
frequency domain, is the 

 

Bode plot

 

 of the frequency-response function , which
displays log-magnitude ( , dB) and phase ( , deg) vs log-frequency
( , rad/s herein) on a semilog scale. A typical example is the Bode plot for aircraft
sideslip response to rudder  obtained from flight-test data shown in the solid
curve of Fig. 1.5. The bottom plot is the associated 

 

coherence

 

 function , which
is an excellent indicator of the frequency-response accuracy. A coherence value
greater than  , which in this example is true for all but the highest
frequencies, indicates an accurate frequency-response identification result.

A frequency-response data curve that characterizes a single-input/single-output
(SISO) subsystem such as an actuator can easily be obtained from the measure-
ment data of the excitation (electrical input) and response (actuator displacement)

 

.

H

 Fig. 1.3 Typical frequency-sweep input.

20 log10 H

 Fig. 1.4 Typical doublet input.
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However, flight tests of aircraft and helicopters usually involve multiple inputs and
multiple outputs (also denoted as multi-input/multi-output, or 

 

MIMO

 

), and special

 

conditioning 

 

techniques are required to obtain a MIMO frequency-response
matrix that characterizes the overall dynamic system response. The frequency-
response data fully characterize the dynamics of the complete input-to-output
system. In the terminology of system identification, the frequency-response data
curve constitutes a 

 

nonparametric model

 

1,2

 

 because it characterizes the input-
to-output process at a large number of data points (i.e., discrete frequencies). For
this type of model, there is no need for a set of model parameters, such as the
coefficients of the differential equations of motion. 

 Fig. 1.5 Typical Bode plot and transfer-function model.
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1.1.2 Transfer-Function Model

 

With some additional effort, we can extract a closed-form equation that is a
good representation (i.e., an accurate curve fit) of the frequency-response data.
One such example is a transfer-function model

(1.1)

where the system identification determines the values of the numerator coeffi-
cients ( ) and denominator coefficients ( ). An example of
a transfer-function representation for the frequency-response  is shown in
the dashed curve of Fig. 1.5. The transfer function is one type of 

 

parametric
model

 

1,2

 

 because it is composed of a limited set of characteristic quantities, or

 

parameters

 

—in this case the numerator and denominator coefficients of the
transfer function.

 

1.1.3 State-Space Model

 

The ultimate product of a more intensive system-identification effort can be a
parametric model composed of the complete differential equations of motion that
characterize the MIMO behavior of a fixed-wing or rotary-wing aircraft. The lin-
ear equations of motion for small perturbations about a trim flight condition are
represented in state-space form as

(1.2)

where the control vector  is composed of the control-surface deflections (inputs)
of Figs. 1.1 or 1.2, and the vector of aircraft states  is composed of the response
quantities (speeds, angular rates, and attitude angles). The time-delay vector 
allows a separate time-delay value for each control axis as a lumped representation
of the higher-order dynamics (e.g., actuators, linkages, etc.) that are not explicitly
included in the state-space model. Typically, the set of available flight-test mea-
surements  is composed of a subset of the states;  can also include combina-
tions of the states, such as the angles of attack and sideslip as measured by a nose
boom sensor. The measurement vector can also include additional quantities, such
as the accelerometers shown in (Fig. 1.1), which respond directly to control
inputs. The general form of the measurement vector can therefore be written as

(1.3)

System identification determines the values of the matrices  and the
vector  that define the state-space model.

The level of complexity of the state-space model required to characterize the air-
craft response depends on the vehicle configuration and intended application of the
model result. Tables 1.1 and 1.2 show that models can range from three degrees of free-
dom (DOF) for a typical fixed-wing configuration to 13 DOF for an agile rotorcraft
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configuration. The tables summarize the key applications of the various levels of
model complexity and specific examples presented in this book. These models are
explained in greater detail in the context of various examples throughout this book.

 

1.2 Relationship Between Simulation and System Identification

 

In contrast to system-identification-based modeling, the simulation-based
approach to aircraft modeling involves adopting many a priori assumptions about
the vehicle characteristics. The model is typically built up from aerodynamic,
inertial and structural characterizations of the aircraft’s individual component
elements, such as the wing, tail, fuselage, rotor, etc. A simple approach to aero-
dynamic modeling can be based on first principles such as finite-wing theory or
from empirical data of similar aircraft components using DATCOM (Data Com-
pendium).

 

3

 

 More complex aerodynamic models might make use of wind-tunnel
data or computational-fluid-dynamics (CFD) calculations. Estimates of the mass
and inertia properties of the aircraft components can involve coarse approxima-
tions or accurate CAD/CAM drawings. More complex structural models may be
based on NASTRAN calculations. A mathematical model is thus built up in
modular fashion. When incorporated into a simulation, the model is expected to
predict the aircraft dynamic response that results from given control inputs. 

This physics-based modeling approach can be very labor intensive, requiring
the estimation or measurement of the aerodynamic, inertial, and structural proper-
ties of the many elements of the aircraft, but certainly it is a significant advantage

 

 Table 1.1 Models of fixed-wing aircraft dynamics 

 

Model DOF Assumptions
Applications/examples

in book (*)

Fully-coupled rigid 
body

Six DOF:
Three translations 

(longitudinal, 
lateral, vertical)

Three rotations 
(pitch, roll, yaw)

Vehicle is treated as a 
single rigid-body 
(fuselage/wing/tail)

Significant coupling 
among all degrees-of-
freedom

Asymmetric trim 
flight condition

Asymmetric 
configuration 
(e.g., yawed 
wing)

Decoupled 
longitudinal

Three DOF:
Two translations 

(longitudinal, 
vertical)

One rotation (pitch)

Vehicle is treated as a 
single rigid-body 
(fuselage/wing/tail)

Longitudinal and 
lateral-directional 
degrees-of-freedom 
have little or no 
coupling

Aircraft has planar 
symmetry

Symmetric trim flight 
condition

Most conventional 
fixed-wing 
aircraft

XV-15 cruise flight*
Pathfinder UAV*
Shadow™ 200 

fixed-wing UAV*
STOVL*

Decoupled lateral 
directional

Three DOF:
One translation 

(lateral)
Two rotations 

(roll, yaw)
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 Table 1.2 Models of rotary-wing aircraft dynamics 

 

Model DOF Assumptions
Applications/examples 

in book (*)

Hybrid fully 
coupled

13 DOF:
Coupled fuselage/

regressive-flap 
dynamics 
(eight DOF)

Coupled coning-
inflow dynamics 
(two DOF)

Lead-lag dynamics 
(two DOF)

Engine torque 
response 
(one DOF)

Short-term regressive 
flap/coning/inflow 
dynamics are modeled 
using first-principles 
physics equations.

Lead-lag modeled in 
canonical form

Advancing rotor flap/lag 
modes are beyond 
frequency of interest.

Low-frequency rotor 
response is captured 
using quasi-steady 
derivatives.

Applicable to all 
rotorcraft

Required for 
configurations with 
high flap stiffness 
(i.e., low roll inertia 
and/or large flap 
hinge-offsets)

Bo-105*
UH-60*
OH-58D*
SH-2G* 
S-92*

Quasi steady Six DOF:
Three translations 

(longitudinal, 
lateral, vertical)

Three rotations 
(pitch, roll, yaw)

Transient rotor dynamics 
are modeled as 
equivalent time delays.

Rotor steady-state 
response is modeled 
as equivalent quasi-
steady fuselage 
derivatives.

Applicable to 
helicopters with 
small effective flap 
stiffness

Fire Scout P2 
demonstrator*

UH-1H*

Quasi-steady 
longitudinal

Three DOF:
Two translations 

(longitudinal, 
vertical)

One rotation (pitch)

Transient rotor dynamics 
are modeled as 
equivalent time delays

Rotor steady-state 
response is modeled as 
equivalent quasi-steady 
fuselage derivatives.

Longitudinal and lateral-
directional degrees of 
freedom are not 
coupled.

Aircraft has planar 
symmetry.

Tilt-rotor 
configuration:
V-22
XV-15 hover*

Tandem-rotor 
configuration:
CH-47Quasi-steady 

lateral 
directional

Three DOF:
One translation 

(lateral)
Two rotations 

(roll, yaw)
Rotor dynamics are 

treated as 
uncoupled from 
the fuselage.
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that this can be done before the aircraft has been built. In some cases the agree-
ment between the predicted and measured dynamic behavior is unsatisfactory, at
least initially, before “tuning,” because of the accumulated uncertainties and mod-
eling simplifications. The approach is less suitable for small unmanned air vehi-
cles (UAVs), which often have unique designs that are not similar to any existing
database.

System identification and simulation modeling can be seen as inverse proce-
dures, as shown in Fig. 1.6. In system identification the aircraft response is mea-
sured, and a dynamic model is extracted from the data, the reverse of developing
a simulation. This extracted model can be compared directly with the simulation
model, thereby providing greatly increased physical understanding about the
nature of the characteristics of the physical systems that are being modeled. One
role of system identification is to quantify where the actual and predicted motions
do not match and to provide information on proper tuning for improved predic-
tion accuracy. In that respect the two procedures, one forward and one inverse,
are highly complimentary.

Key applications of system-identification results include piloted simulation
models, comparison of wind-tunnel vs flight measurements, validation and
improvement of physics-based simulation models, flight-control system develop-
ment and validation, and handling-qualities specification compliance testing. For
example, the U.S. Army’s modern specification for the handling qualities of
rotorcraft (ADS33E Ref. 4) requires the use of system-identification procedures
to extract parameters such as bandwidth and phase delay directly from flight-test
frequency-response data. Handling-qualities criteria acceptance testing for U.S.
fixed-wing aircraft (MIL-STD-1797 Ref. 5) involves using system identification
to extract transfer-function models, also referred to as 

 

equivalent system models

 

,
from flight-test frequency responses. System-identification procedures and exam-
ple results of handling-qualities and flight-control analyses of rotorcraft and
fixed-wing aircraft are presented extensively in this book. 

 

1.3 Special Challenges of Rotorcraft System Identification 

 

There are special problems and challenges in system identification from rotor-
craft flight data as compared to data from fixed-wing aircraft. Rotorcraft data
generally exhibit a reduced signal-to-noise ratio in the measurement data, espe-
cially for low-speed and hovering flight regimes. In such regimes, the com-
manded vehicle motions (signal) are often the same order of magnitude as the
noise contributions to the measurements arising from vibrations (rotor, engine,

 Fig. 1.6 Simulation vs system identification.
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and drive train), fuselage structural response, and unsteady air mass (inflow)
passing through the rotor.

Further complications for rotorcraft applications arise from the high-order
nature of the vehicle dynamics as compared to a fixed-wing aircraft. The rotorcraft
cannot generally be considered as a single rigid body (i.e., fuselage/wing/tail) and
must be modeled as a coupled multibody dynamics system. There is strong cou-
pling between the dynamics of the rotor blades and the dynamics of the air flow
passing through the rotor (

 

inflow

 

) with those of the fuselage, control system, and
engine, so that as many as 13 degrees of freedom (or even more) are often neces-
sary to model the dynamic response accurately. The planar symmetry of a fixed-
wing aircraft also leads to considerable simplification of system-identification
model structures, decoupling into a three-DOF model for the longitudinal dynam-
ics and a separate three-DOF model for lateral/directional dynamic characteristics.
Such simplifying assumptions are generally not possible with single-rotor helicop-
ters, and the fully coupled lateral/longitudinal dynamic system must be taken into
account in order to extract a model that is accurate for predicting the responses to
control inputs. The various assumptions for fixed-wing aircraft and rotorcraft lead
to the range of state-space models as summarized in Tables 1.1 and 1.2.

A last and very important characteristic of both rotorcraft and many modern and
high-performance fixed-wing aircraft is that these vehicles generally exhibit
dynamically unstable response characteristics. This is reflected by important
eigenvalues of the short-term response in the right half-plane. As a result, the flight
tests have to be completed with feedback by the pilot or with the automatic flight-
control system active (

 

closed-loop testing

 

) to keep the responses within a reason-
able range of amplitudes. As will be discussed later, this aspect can impact the
suitability of the identification methodology selected: time domain vs frequency
domain.

The AGARD Flight Mechanics Panel Working Group 18, under the able lead-
ership of Peter G. Hamel (DLR), researched and developed system-identification
methods suitable for the rotorcraft. The product of this effort was the comprehen-
sive report AR 280 (Hamel

 

10

 

) that covers international activities, flight-test and
identification techniques, detailed results, and key applications. There is a wealth
of useful information in this report for further study on rotorcraft applications of
system identification.

 

1.4 More About the Role of Nonparametric vs Parametric Models 
in Flight-Vehicle System Identification

 

As we introduced in Sec. 1.1, there are two types of models to consider when
discussing system identification: nonparametric and parametric models. This sec-
tion describes the key roles for each type of model and some important distinc-
tions, as summarized in Table 1.3. 

In the case of nonparametric models, we are concerned with characterizing
only the measured input-to-output behavior of the aircraft dynamics, not the
nature of the aircraft equations of motion. Examples of nonparametric modeling
are impulse responses (time domain) and frequency responses (frequency
domain), which are both derived directly from the test data. In either case no
assumptions are required about the structure of the dynamic model.
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 Table 1.3 Nonparametric vs parametric models 

 

Characteristic Nonparametric models Parametric models

Examples Include impulse responses (time 
domain) and frequency 
responses (frequency 
domain)

Include transfer-function and 
state-space models (time and 
frequency domain)

SISO systems Fully characterized by the 
frequency-response curve

Fully characterized by the transfer-
function model

MIMO coupled 
systems 

Fully characterized by the 
frequency-response matrix

Fully characterized by the state-
space model

A priori 
assumptions

Nonparametric models are 
based on measured input-to-
output behavior of the 
aircraft dynamics. No other 
a priori assumptions about 
the model are required.

Parametric models require a priori 
assumptions about the model, 
such as its order, degree of 
coupling, structure of the equations 
of motion, and initial estimates of 
key parameters.

Frequency-response 
method of system 
identification

Starts by identifying a non-
parametric model 
(a frequency response 
or a matrix of frequency 
responses)

Uses the information obtained from 
the nonparametric models as the 
basis for identifying parametric 
models (either a transfer-function 
model or a state-space model)

Applications 
include

Handling-qualities analysis in 
terms of the bandwidth and 
phase-delay parameters

Pilot-in-the-loop analysis
Stability margin determination
Classical control system 

design
Validation and tuning of 

physics-based simulation 
models.

For transfer function (SISO): 
Short-term response to control 

inputs (e.g., roll-rate response to 
aileron input)

Obtaining information about the 
stability, transient behavior, and 
key time constants of a system

Control system synthesis based on 
root-locus techniques applied to 
bare-airframe response

Handling-qualities analysis using 
equivalent system models of the 
closed-loop response of an 
aircraft to piloted inputs with the 
AFCS active

For state-space model (MIMO): 
Determination of simulation 

models for piloted simulation
MIMO control system design
Comparison of wind-tunnel vs 

flight values of stability/control 
derivatives

Direct determination of correction 
factors for tuning physics-based 
simulation models
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In contrast, parametric modeling requires that certain assumptions must be
made, including the following:

1) What model order is necessary to capture the key dynamics? 
2) How highly coupled are the dynamics degrees of freedom?
3) What is the proper structure of the equations of motion?
4) What are good initial guesses for identification parameters?

For new or unconventional aircraft configurations, there might not be a good
basis for making these modeling assumptions at the start of system identification.
But once a model structure is known, what remains is to determine the values of
the unknown coefficients in the model equations. Here the general problem of
system identification reduces to the more restricted problem of 

 

parameter
estimation

 

.

 

6

 

Nonparametric system-identification modeling provides excellent insight into
the key aspects of the aircraft dynamics before moving on to the more complex
parametric modeling stage. For example, the nonparametric results can be used to
great benefit in selecting the appropriate order of the transfer-function and/or state-
space models. The frequency-response identification method presented in this
book is an integrated two-stage process of nonparametric followed by parametric
modeling. 

There are many applications based solely on the frequency-response character-
izations, including handling-qualities analysis in terms of the bandwidth and
time-delay parameters, pilot-in-the-loop analysis, stability margin determination,
classical control system design, and validation and tuning of physics-based simu-
lation models. For these and many other applications, the nonparametric model is
often sufficient.

The parametric modeling stage generally involves a more intensive effort, with
added focus on the physical understanding of the system being modeled to ensure
that the appropriate model structure is adopted. Parametric modeling in the fre-
quency domain can take two forms: transfer-function and state-space models. The
simplest form uses transfer functions, which are the pole-zero representations of
individual SISO frequency-response pairs. For example, simple low-order transfer
functions can often be used in fixed-wing applications to accurately model the
short-term response to control inputs (e.g., roll-rate response to aileron). These
transfer-function models provide the key dynamic modes and control sensitivities.
Transfer-function models of the 

 

bare-airframe response

 

 can be used directly for
control system synthesis based on root-locus techniques, whereas equivalent sys-
tem models of the 

 

closed-loop response

 

 with the automatic flight-control system
(AFCS) active are widely used for handling-qualities analyses.

In some applications, it might be necessary to proceed to the ultimate identifi-
cation step of extracting a state-space description in terms of identified stability and
control derivatives. An example of a 

 

stability derivative

 

  is the rolling moment
caused by roll rate, normalized by the roll moment of inertia .
The units of this angular response derivative are , which is
the response inverse time constant . An example of a 

 

control derivative

 

 ( )
is the rolling moment caused by aileron deflection, normalized by the roll moment
of inertia . This has units of , which is the
initial angular acceleration response per deg of aileron deflection. System identi-
fication can also provide a 

 

physical model 

 

given in terms of basic vehicle mechanical

Lp
[Lp 1/Ixx( ) ∂L/∂p( )]≡

rad/s2( ) rad/s( )⁄ s 1–=
1 T⁄ Lδa

Lδa
1/Ixx( ) ∂L/∂δa( )≡[ ] rad/s2( ) deg-ail⁄
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and aerodynamic quantities such as spring constants or the aerodynamic lift-curve
slope that appear in the physical equations of motion of the aircraft. State-space
model determination is the most sophisticated and labor intensive of the modeling
techniques, and much of the CIFER® system-identification facility is designed to
support this step. Applications requiring identification of state-space models
include the determination of simulation models for piloted simulations, MIMO con-
trol system design, the comparison of wind-tunnel vs flight values of stability and
control derivatives, and the direct determination of correction factors for tuning
physics-based simulation models.

A tradeoff exists for model complexity vs model variability.2 Retaining extra-
neous parameters in a model can incrementally reduce the fitting error, but result
in a higher variability of the estimated parameters. Further, models that are over-
parameterized or overmodeled can result in a model with poorer predictive capa-
bility.7 This tradeoff reflects the general principle of parsimony,8 for which
we quote a good definition given by Klein and Morelli6: “Given two models fitted
to the same data with nearly equal residual variances (i.e., errors), choose the
model with the fewest parameters.” Considerable emphasis is given in this book
to systematic methods of model structure reduction that achieve this goal.

1.5 Frequency-Response Identification Method Is Well Suited 
to Flight-Vehicle Development

System identification is a key technology for modern fly-by-wire flight-vehicle
development and integration. Frequency-response-based methods in particular
provide a unified flow of information regarding system performance around the
entire life cycle from specification and design through development and flight
test, as seen in Fig. 1.7. 

This theme is addressed at length by Tischler,9 with examples based on many
flight- and ground-based applications. Specific roles are shown in the highlighted
boxes at each step in the cycle, including the definition of system requirements,
specification and analysis of handling qualities, evaluation of proposed control-
law concepts, validation and improvement of complex simulation models, valid-
ation of subsystem components and development facilities, and flight-test
optimization of control laws. A similar road map for the application of system-
identification methods to rotorcraft development was previously proposed by
Schrage (Ref. 10, Section 3.1). Examples of system-identification applications in
recent international manned flight-vehicle programs are described in Tischler’s
volume on aircraft flight control.11 System-identification techniques have proven
highly effective in supporting UAV development for a wide range of vehicle sizes
and configurations, including the important role for modeling and flight-control
development when schedules are highly compressed, as is often the case for
smaller-sized vehicles. When significant modifications to vehicle inertia charac-
teristics and configuration are made on an almost daily basis, physics-based mod-
eling become impractical. Instead, a quick frequency-sweep test and system
identification can rapidly provide the needed dynamic models for flight mechan-
ics characterization and control law tuning. This is discussed in a survey paper by
Theodore et al.,12 which covers UAV experience at the Ames Research Center
during the period 1995–2003.
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This book presents a frequency-response-based approach illustrated in
Fig. 1.8. As discussed in the detailed presentation of the approach (Chapter 2),
there are fundamental aspects of the frequency-response identification method
that make it especially well suited for system identification of aircraft and rotor-
craft dynamics models from flight-test data. Although many system-identification
methods can be shown to produce satisfactory results using simulation (i.e., syn-
thesized) data or test data from simple second-order systems, they often prove
unreliable when applied to real flight data of aircraft and rotorcraft. The fre-
quency-response identification method was developed and refined in numerous
applications to aircraft and rotorcraft flight data, as illustrated in the many exam-
ples and references in this book. 

Differences between the frequency-response and time-response methods that
are especially significant for aircraft and rotorcraft applications are summarized
in Table 1.4. Similarities between the methods are as follows: good results

Fig. 1.7 Roles of system identification in the flight-vehicle development process 
(Ref. 9).
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14 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

depend on satisfactory excitation of key dynamic modes; multiple inputs must
not be fully correlated; identification of parametric models—transfer-function
models (SISO) and state-space models (MIMO); and models are ultimately veri-
fied in the time domain. These aspects are discussed in more detail in Sec. 2.2
and throughout the book. Comparative studies of time- and frequency-domain
methods were conducted under a U.S./German memorandum of understanding
(MOU) using flight-test data from the XV-15 tilt-rotor aircraft13 and the Bo-105
helicopter.14

The frequency-response identification method is particularly well suited to
support the development and validation of flight-vehicle dynamic systems. The
direct comparison between flight-test frequency responses and those from simu-
lation models provides an excellent means of model validation and update for the
system components (e.g., actuators, sensors, airframe, flight-control software) as
well as the end-to-end behavior. Feedback stability and noise amplification prop-
erties are determined from the broken-loop frequency response and characterized
by metrics such as crossover frequency and associated gain-and-phase margins.
Command tracking performance is determined from the closed-loop frequency
response and characterized by metrics such as bandwidth, time delay, and
equivalent-system eigenvalues. The system-identification approach presented in
this book allows the direct and rapid (including real-time) identification of these
frequency responses and metrics without the need to first identify a parametric
(state-space) model structure, as is required when applying time-domain meth-
ods. Careful tracking of the broken-loop and end-to-end closed-loop frequency-
response behavior, from the preliminary design studies through detailed design
and simulation and into the flight test, provides an important “paper trail” for

 Fig. 1.8 Flowchart of frequency-response method for system identification.
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 Table 1.4 Comparison of frequency-response and time-response methods 

Characteristic Frequency-response methods Time-response methods

Method for linear and 
nonlinear models

Frequency-response methods 
provide a linearized 
characterization of system 
dynamics. For nonlinear 
systems, this produces a 
describing function model.

Time-response methods can be 
used to obtain linear or 
nonlinear models.

Initial data Consist of frequency responses 
(derived from time-history data)

Consist of time-history data

How models are 
identified

By matching predicted frequency 
responses against measured 
frequency responses

By matching predicted time 
histories against measured 
time histories

Starting the method Frequency-domain methods start 
by calculating frequency 
responses, getting some 
preliminary information about 
the model structure, and then (if 
necessary) identifying a more 
detailed and accurate parametric 
model structure.

Time-domain methods must start 
by assuming or otherwise 
identifying the parametric 
model structure.

Noise Bias effects of noise in response 
measurements and process noise 
are eliminated from the analysis.

Noise models must be identified. 
If the presence of noise is 
ignored (either output error or 
equation error formulation), it 
will introduce biases in the 
identification results.

Independent measure 
provided

Coherence function provides a 
direct and independent measure 
of system excitation, data 
quality, and system response 
linearity.

No independent metric to assess 
system excitation and linearity.

Responses Response pairs are fit only in the 
frequency range over which the 
data are accurate.

Fit over the same time (and 
frequency) ranges

Time delays Direct and precise identification of 
time delays caused by linear 
phase shift with frequency

Not identified directly

Bias or reference shifts No biases or reference shifts to be 
identified

Must be identified and can be 
correlated with aerodynamics 
parameters

(Continued)
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documenting system performance and solving problems that might appear in the
later phases of development. 

The availability of comprehensive and reliable computational tools has sub-
stantially enhanced the acceptability of frequency-domain techniques in the
flight-control and flight-test communities. Benefits derived from applying these
techniques include the reduction of flight-test time required for control-system
optimization and handling-qualities evaluation, especially for complex control-
law architectures, as well as improvements in the final system performance.
Frequency-domain methods offer a transparent understanding of component and
end-to-end response characteristics that can be critical in solving system integra-
tion problems encountered in flight test.

The Army/NASA Rotorcraft Division (Ames Research Center) jointly devel-
oped the Comprehensive Identification from Frequency Responses (CIFER®;
Ref. 15) integrated facility for system identification based on the frequency-
response approach of Fig. 1.8. This tool is composed of six core analysis pro-
grams built around a sophisticated database, along with a set of user utilities to
provide a highly interactive, graphics-oriented environment for dynamics studies.
The foundation of the CIFER® approach is the high-quality extraction of a com-
plete MIMO set of nonparametric input-to-output frequency responses. These
responses fully characterize the coupled characteristics of the system without a
priori assumptions. Advanced chirp z-transform (CZT) (Chapter 7), multi-input

Table 1.4 (continued)

Characteristic Frequency-response methods Time-response methods

Number of points Small number of points are 
included in iterative 
identification criterion, which 
improves computational 
efficiency.

Large number of points are 
included in iterative 
identification criterion 
(e.g., factor of 30 increase).

Algorithms or 
equations used

Identification algorithms are very 
efficient because frequency 
responses are determined 
algebraically from updated 
parameters.

Equations of motion must be 
numerically integrated in time 
for each iterative update in the 
parameters.

Unstable systems Good results are obtained with 
unstable systems (e.g., 
rotorcraft, high-performance 
fighter aircraft).

Special techniques for 
application to unstable 
systems can degrade the 
quality of the results.

Typical input Frequency sweep (broadband 
input) involving longer flight-
test records than multistep 
inputs

Multistep (e.g., doublets, 
3-2-1-1) involving shorter 
record lengths

Parameter accuracy 
bounds

Accurate estimates Very optimistic estimates 
(factor of 5–10)
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conditioning (Chapter 9), and composite window techniques (Chapter 10), devel-
oped and exercised with over 20 years worth of flight project applications, provide
significant improvements in frequency-response quality relative to standard fast
Fourier transforms (FFTs). Sophisticated nonlinear search algorithms are used to
extract parametric models of varying complexity from this MIMO frequency-
response database that are used in simulation, handling-qualities, and flight-
control studies.

The key features of the CIFER® tool are as follows: 1) identification algorithms
that have been extensively applied and proven on many flight projects; 2) imple-
mentation of frequency-response identification in a step-by-step sequence of core
programs; 3) checks of user inputs against key guidelines (as summarized in
Appendix A); 4) chirp z-transform and composite window optimization for high-
quality frequency-response identification; 5) multi-input frequency-response solu-
tion; 6) highly flexible and interactive definition of identification model structures;
7)  fully automated weighting-function selection based on frequency-response
accuracy; 8) reliable parameter accuracy metrics; 9) integrated procedure for iden-
tification and model-structure determination; 10) time-domain verification of
models, including identification of offsets and biases; and 11) a suite of specialized
utilities that support many of the applications just mentioned, which is uniquely
suited to the difficult problems associated with flight-test data analysis.

CIFER® is the first such integrated package for the end-to-end frequency-
response identification method, and it has proven to be a very effective tool for
the difficult problems of rotorcraft system identification. CIFER® has seen wide
use for a range of fixed-wing, rotary-wing, and UAV programs.

1.6 Role and Limitations of Flight-Mechanics Models Determined 
with the System-Identification Method

Physics-based simulation models provide the first estimates of vehicle
response prior to first flight. Developing a simulation model entails a comprehen-
sive effort to determine the many geometric, aerodynamic, and mechanical
parameters required for the input deck. As demonstrated herein and in many
other validation studies (e.g., Ref. 10, 16, and 17), key physical parameters (such
as inertias) or physical effects (such as cross coupling or rotor/fuselage aerody-
namic interaction) are poorly known. Thus, for example, even after the comple-
tion of an expensive blade-element-type modeling effort for a helicopter
simulation, there ensues an intensive “validation effort” to bring the simulation
closer to flight. The accurate determination of flight-control parameters and the
rapid solution of complex flight-control interactions on modern aircraft demand a
degree of model precision that can quickly (and perhaps only) be achieved using
system identification (e.g., Refs. 17–20) in the early flight-test stage. System-
identification results can then be used to update the physics-based simulation
models (as in Tischler et al.17).

The compressed development schedule of UAV compared to manned aircraft
(e.g., 6–12 months rather than 5–10 years) and unusual configurations often pre-
clude the physics-based modeling approach; as a consequence, flight-control
development can depend entirely on system-identification models obtained from
dedicated flight tests at the start of the program, as was the case in the development
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of the Northrop-Grumman vertical takeoff UAV (VTUAV) demonstrator19 and
other recent UAV projects.12

An often-cited deficiency of the system-identification approach is that the
identified parameters reflect the “lumped” contributions of numerous physical
mechanisms. For a rotorcraft application, the identified rotor flap stiffness 
has key contributions as a result of hinge offset, rotor hub height above the c.g.,
and roll inertia. The identified stability derivative parameters such as  or 
reflect even more numerous and offsetting contributions. This lumping of aerody-
namics and dynamics contributions in a single effective parameter often makes it
difficult to track down the individual physical contributions as a means to
improve the fidelity of physics-based simulation models. However, as far as the
pilot or the flight-control system is concerned, the dynamic response characteris-
tics depend solely on these lumped parameters, such as the dependency of
response bandwidth and other handling-qualities metrics on the rotor flap stiff-
ness  (Ref. 21). Pilot opinion of the dynamic response is largely a function of
the crossover characteristics, which emphasize the importance of input-to-output
frequency-response accuracy rather than the individual contributions of modular
elements of the aircraft.

Another concern often raised in conjunction with system identification is the
range of variations in flight condition over which the models are accurate. The fre-
quency-response identification method produces a describing function that is a
linear model which best models the nonlinear responses. The aircraft and rotor-
craft results presented herein show that these identified models accurately predict
the response for fairly large aircraft motions (e.g., as large as 30 deg/s in roll) and
thus are not small-perturbation models in the classical sense. Therefore, models
identified at a limited number of conditions with a common model structure might
be sufficient to characterize the dynamic variations for flight-control design and
allow interpolation for continuous flight simulation and control system gain
scheduling at intermediate speeds. This approach to simulation model determina-
tion has been used widely in the fixed-wing community.22 Ultimately, the integra-
tion of physics-based simulation modeling and system-identification-based model
extraction will yield the high-fidelity full-flight envelope predictions needed for
flight control and handling-qualities applications.23 

1.7 Brief History of the Development of Frequency-Domain 
Methods for Aircraft and Rotorcraft System Identification

This section summarizes key milestones in the development of frequency-
domain methods for aircraft and rotorcraft system identification. An excellent
and in-depth historical survey that covers the development of both time- and
frequency-domain methods of flight-vehicle system identification was published
by Hamel and Jategaonkar.24

The earliest reported research in frequency-response identification of aircraft
dynamics from flight-test data was conducted at the Cornell Aeronautical Labora-
tory beginning in 1945 (summarized in Milliken25). Steady-state sine-wave
inputs were used to (laboriously) extract the frequency responses of the North
American B-25J fixed-wing aircraft. Lower-order transfer-function models were
then derived from a least-squares fit of the frequency responses displayed on a
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polar plot. Fourier transform methods were subsequently developed25,26 to allow
frequency-response identification from shorter-duration discrete maneuver data,
such as those obtained from step and pulse inputs. These techniques were applied
in flight research activities at the Air Force Flight Test Center (Edwards Air Force
Base) during the 1950s (see Schofield et al.27 for a list of references). Various
methods for determining frequency responses and transfer functions from aircraft
flight-test data were also developed in the same time period at the NASA Langley
Research Center.28 These methods included steady sine waves, Fourier analysis,
and a mechanical rolling sphere harmonic analyzer. Donegan et al.29 used a fitting
method to extract aircraft lateral-directional stability derivatives from the identi-
fied frequency responses. Early experience with helicopter frequency-response
identification was reported by Kaufman and Peress,30 who used a constant fre-
quency flight-test method to (laboriously) obtain frequency responses of the S-55
helicopter. Schultz31 mentions the use of the rolling sphere harmonic analyzer to
extract frequency responses from transient-response flight data of the XH03S-2
helicopter. The helicopter stability derivatives for longitudinal motion were then
determined from these frequency responses using fitting methods. As pointed out
by Schofield et al.,27 all of the early efforts in frequency-response identification
suffered from the lack of large-scale computing power. The development of the
FFT algorithms in the 1960s and the significantly improved computing capabili-
ties of this period led to much greater interest and success in frequency-response
identification.

Marchand and Koehler,32 of the Institute for Flight Mechanics (DFVLR, now
DLR) in Braunschweig, Federal Republic of Germany, developed an equation-
error method for state-space model identification from frequency-transformed
data. Flight data were obtained with prescribed multistep control inputs known as
the “3-2-1-1” excitation, developed by the DFVLR and now widely used, in a key
outgrowth of research in optimal input design. Klein,33 from the George Washing-
ton University Joint Institute for Advancement of Flight Sciences at the NASA Lan-
gley Research Center, formalized a frequency-domain-based maximum-likelihood
(ML) method for aircraft parameter identification. The frequency-domain ML
method was further developed by Marchand and Fu34 at the DLR and applied in
many flight-vehicle programs, including the X-31 fixed-wing35 and the Bo-105
helicopter.36,37 Rotorcraft identification in the frequency domain using equation-
error and output-error methods has also been a dedicated focus in the United
Kingdom,38,39 including unique flight-test applications to autogyros.40 Morelli, a
colleague of Klein at the NASA Langley Research Center, advanced equation-
error/output-error methods in the frequency domain and compared his lower-order
system identification results on the Tu-144LL with those of CIFER® (Ref. 41).
Morelli has also developed methods for optimal input design and recursive methods
for online frequency-response determination and parameter estimation.6 

A comprehensive tool for multivariable frequency-response (matrix) identifica-
tion and analysis (frequency-response analysis, or FRA) was developed by Twis-
dale and Ashurst42 of the Air Force Flight Test Center at Edwards Air Force Base.
One key feature of the FRA identification approach was the incorporation of the
ordinary, partial, and multiple coherence function calculations, which provide
important measures of spectral estimation accuracy for multi-input excitations (see
Chapter 9). Twisdale’s flight-testing approach, system identification from tracking
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(SIFT), achieved frequency-response identification from handling-qualities eval-
uations of air-to-air tracking and flight refueling. Frequency-response identifica-
tion from flight data obtained with the prescribed frequency-sweep input was
pioneered by Systems Technology, Inc. (STI) for applications that included
research aircraft,43 manned-powered aircraft,44 and simulators.45 The STI fre-
quency-sweep testing technique was a simplification of an earlier flight-test
method by Hall,46 which used a metronome-like paced command (via earphones)
to signal the pilot to reverse the control input with variable duration square waves.
STI also developed specialized packages for frequency-response identification
(Frequency Domain Analysis Routine, FREDA; Magdaleno47) and for extracting
parametric state-space models by simultaneously fitting several frequency-
response data curves (Multiple-Response Fitting Program, MFP; DiMarco and
Magdaleno48). Advancements in lower-order transfer-function modeling were also
made by Hodgkinson et al.,49 Bischoff and Palmer,50 and Mitchell and Hoh51 in
support of the development of an updated handling-qualities specification for
military fixed-wing aircraft.52

Tischler of the U.S. Army Aeroflightdynamics Directorate (Ames Research
Center) was the first to extensively identify frequency-response and transfer-func-
tion models of rotorcraft from flight tests using frequency-sweep inputs. The initial
applications were to the XV-15 tilt-rotor aircraft53 and the Bell 214ST helicopter.54

Tischler and Cauffman15 developed CIFER® (Comprehensive Identification from
Frequency Responses), an integrated facility for system identification using a fre-
quency-response method that embodies several key innovations. Significant
improvements in frequency-response identification accuracy were achieved with
the chirp z-transform and a numerical optimization procedure that combines the
results of individual spectral window calculations. The use of a robust secant-pat-
tern search algorithm, rather than a gradient search method, allows the extraction
of complex models of up to 100 unknown parameters, simultaneously matching up
to 80 multi-input/multi-output frequency responses, with constraints among the
identification parameters easily included. Another unique innovation in CIFER® is
the integration of coherence function information and theoretical-accuracy metrics
into a powerful unified approach for parametric model-structure determination and
identification.

1.8 Organization of this Book

The frequency-response method for system identification flowchart in Fig. 1.8
is also the road map for the organization of the remainder of this book. Each
block in Fig. 1.8 is covered sequentially by one or more chapters and is also sup-
ported by a specific function in CIFER®. At the end of each chapter is an exercise
set intended to give the students hands-on experience with a wide range of appli-
cations of the techniques covered therein. The flight-test and simulation data for
aircraft and rotorcraft configurations needed for these exercises can be down-
loaded from the publisher’s website along with a student version of CIFER®.

Chapter 2 explains in detail the frequency-response method for system
identification, which is the focus of this book, and is implemented in CIFER®.
Typical results of the frequency-response identification method as obtained for
the XV-15 tilt-rotor aircraft are presented for hover and cruise flight conditions.
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The system-identification methods presented throughout this book make use of
three case study examples, which are introduced in Chapter 3. The first case
study is of a simple inverted pendulum, and it provides a convenient demonstra-
tion of the system-identification methods, accuracy, and interpretation of the
results for a known set of dynamics. The main case studies of system identifica-
tion of flight vehicles are based on flight-test data for the XV-15 tilt-rotor aircraft
in hover and cruise conditions. The hover results are typical of rotorcraft applica-
tions, whereas the cruise results are typical of fixed-wing aircraft applications.
The XV-15 presents a useful case study, using a single vehicle, to illustrate key
aspects of aircraft and rotorcraft system identification as presented in this book.
Many other examples, drawn from the leading author’s system identification
experience with a broad range of flight-test, bench-test, simulation, and wind-
tunnel programs, are also presented throughout the book.

Chapter 4 serves as an introduction to the CIFER® software, which is used
throughout the book to develop and illustrate the example results. The material
in this chapter is not intended to be a user’s manual. A student version of the
CIFER® software and a primer are available without charge via the AIAA web-
site or by contacting the leading author. Chapter 5 focuses on the first step in
the system identification process of Fig. 1.8: the collection of a well-suited time-
history database. The ultimate quality of the identification results is highly
dependent on 1) properly designed and executed flight tests of the aircraft being
studied and 2) properly selected and well-documented characteristics of the
instrumentation system. Regardless of how much care is taken in instrumenta-
tion and flight testing, there will often exist kinematic inconsistencies between
independent measurements of dynamically related variables. Chapter 6 covers
typical sources of data inconsistencies and presents both sophisticated and sim-
ple methods for isolating and correcting for such errors. The basic concepts of
single-input/single-output (SISO) frequency-response identification theory are
presented in Chapter 7. The importance of windowing and the tradeoff associ-
ated with window length selection is discussed at length. An understanding of
these concepts is an important prerequisite to the success of the system identifi-
cation process. 

Chapter 8 addresses the identification of bare-airframe dynamics from flight-
test data with feedback regulation active. The greatest concern here is that the
stability and control augmentation system (SCAS) feedback introduces correla-
tion between the output noise and the bare-airframe excitation signal. Depending
on the noise-to-signal ratio, this correlation can cause significant bias errors in
the frequency-response estimate. Chapter 9 discusses the identification of
MIMO systems from flight-test records where there is excitation from more than
one control surface (input) and coupling between the multiple inputs and out-
puts. In this case the use of SISO identification methods can result in consider-
able errors in the frequency-response identification results. Instead, the MIMO
frequency-response matrix must be determined. The composite window tech-
nique presented in Chapter 10 combines the frequency-response results obtained
with various window sizes into a single, MIMO frequency-response matrix of
exceptional quality and dynamic range. This optimization-based technique is
unique to the CIFER® identification procedure. The need for manual optimiza-
tion of window size and the compromise involved in selecting a single window
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size are drawbacks of other frequency-domain methods, drawbacks that are
overcome by CIFER®.

Chapter 11 discusses the determination of transfer-function representations,
which are input-to-output descriptions of the dynamic system. For many applica-
tions these rather simple transfer-function models are found to be quite sufficient,
including handling-qualities analysis, actuator and other subsystem models,
aeroelastic mode determination, and models for root-locus-based control system
design. Even if the ultimate goal is the determination of a fully coupled state-
space representation, the transfer-function models are a useful intermediate step
in that they provide information on the fundamental dynamic characteristics and
good estimates of key parameter values. 

Direct identification of state-space models is covered in two chapters (Chap-
ters 12 and 13). Chapter 12 presents the basic concepts, the implementation
method in CIFER®, and applications to canonical representation of SISO sys-
tems. Chapter 13 extends the discussion to the identification of physical structure
representations of MIMO systems. An important assessment of the model fidel-
ity, robustness, and the limitations of the linear model is provided by evaluating
the predictive capability in the time domain for test inputs, such as steps or dou-
blets, which are dissimilar from those used in the identification. In this last step in
the system-identification procedure, covered in Chapter 14, the model parameters
are held fixed, and only the flight data offsets and biases are determined. Then the
predicted response of the model is compared with the flight data. 

To improve their maneuverability, modern helicopters often feature designs with
higher flap stiffness, achieved with increased equivalent hinge offset (including
hingeless and bearingless rotors) and/or low fuselage moments of inertia. An accu-
rate characterization of the dynamic response requires an extended model structure
that explicitly includes the states of the rotor. Chapter 15 presents the hybrid model
structure that is applicable for a range of flap stiffness values and is suitable across
the flight envelope. Flight-test results for the SH-2G helicopter show that the hybrid
model provides an excellent characterization of the coupled rotor/fuselage dynam-
ics and is a suitable common model structure for the entire flight envelope. The for-
mulation and methods presented in this final chapter provide a general template for
helicopter system identification. The student problems at the end of this chapter use
simulated test data for a typical helicopter and give the student experience with the
most challenging aspects of state-space model formulation and identification.

Problems
System-identification concepts

1.1 How could system-identification techniques be used to improve a simula-
tion model? 

1.2 Provide some examples of dynamic subsystems on an aircraft that could be
identified with system identification. 

1.3 What types of measuring devices could be used to measure the inputs and
outputs for system identification of an aircraft? 
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Nonparametric vs parametric models

1.4 What is a nonparametric model? What is a parametric model? Give an
example of a situation for which each model type would be appropriately used. 

1.5 What types of information about system dynamics (i.e., types of metrics)
can be determined from parametric models? From nonparametric models?

1.6 How could a nonparametric frequency-response model be used to assess the
validity of a simulation model? How is this different than comparing the two
responses in the time domain?

Chapter 1.fm  Page 23  Friday, June 16, 2006  3:15 PM



This page intentionally left blank



 

25

 

2
Frequency-Response Method for

System Identification

 

This chapter presents a general overview of the frequency-response method for
system identification, which is the focus of this book and is implemented in
CIFER

 

®

 

. We also present results of the frequency-response method obtained for
the XV-15 tilt-rotor aircraft, which, depending on its configuration, has flight
dynamics behavior typical of fixed-wing or rotary-wing aircraft. The following
topics will be covered in this chapter: 1) basic components of the frequency-
response method for aircraft system identification; 2) key features of the fre-
quency-response approach; and 3) overview of the frequency-response method
applied to the XV-15, including results for hover and cruise flight configurations.

 

2.1 Road Map of Frequency-Response Method for 
System Identification

 

The overall road map for system identification using the frequency-response
method, illustrated by the flowchart in Fig. 2.1, is the basis for much of the orga-
nization of this book. Each of the elements of the flowchart will be briefly
described in this section, with the individual block names referenced in italics
within parenthesis. 

The frequency-response method for system identification was developed to
accurately characterize the dynamic response behavior of fixed-wing aircraft and
rotorcraft from flight data. The models are intended for use in a wide range of
applications (

 

Applications

 

), including control system design, handling-qualities
analysis, and the determination and validation of simulation math models. The
method uses dynamic response time-history test data (e.g., from flight, piloted
simulation, bench tests) generated from pilot- or computer-generated inputs, such
as sweeps or other inputs with good spectral content (

 

Frequency Sweep Inputs

 

).
These inputs excite the system vehicle dynamics (

 

Aircraft

 

), which could be an air-
craft or any other physical system or subsystem (e.g., actuators, filters) of interest. 

After conducting the aircraft tests and collecting measurement data, the next
step is to check that the database is internally consistent and, to the extent possi-
ble, free of spurious noise (

 

Data Consistency & Reconstruction

 

) before actually
starting the identification process per se. The effects of known scale-factor errors
in the measurement system (a type of 

 

deterministic error

 

) should be removed
from the data. For example, if there is a scale-factor error in a rate gyro measure-
ment of aircraft roll-rate response, this will show up as a scale-factor error in
aerodynamic roll-control sensitivity . Other sources of deterministic errors
that can be introduced by the data system and should be corrected prior to system
identification include time skews, inconsistencies in units and sign conventions,
and biases. These will all introduce bias errors in the identified model parameters,

Lδa
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and later it will be impossible to tell that the seemingly incorrect or physically
unexpected results were in fact caused by a corruption or inconsistency intro-
duced by the measurement system.

Random or 

 

nondeterministic

 

 errors, such as dropouts and spikes, should also
be removed prior to identification. If there are dropouts, estimates should be
made using state reconstruction methods of what the signal values should be dur-
ing the time of the dropout, based on redundant measurement sources. Obvious
data spikes should also be removed at this time using a wild-point removal algo-
rithm. Untreated dropouts and spikes show up as uncorrelated high-frequency
noise and degrade the overall accuracy of the identified model. 

These various data issues are well understood by the instrumentation engi-
neers, but they are often ignored by the “users” of the data and must be
addressed. Before proceeding with the system identification, it is crucial to stop
and perform a sanity check on the data to ensure that the various signals in the
data are kinematically consistent. For example, the integral of angular-rate mea-
surements should be consistent with Euler roll-angle measurements, the integral
of acceleration measurements should be consistent with the speed measurements,
and so forth. A small amount of effort at this early stage will save countless hours
trying to understand otherwise “mysterious” identification results later.

The next step is to perform a multivariable spectral analysis of the data
(

 

Multivariable Spectral Analysis

 

). This analysis, which is a multi-input/
single-output (MISO) generalization of the simple SISO FFT, is necessary for
most aircraft system-identification applications because real flight-test data
inevitably involve multiple, partially correlated control inputs during a single
excitation maneuver. Repeating this process for each of the aircraft outputs
yields a MIMO frequency-response database. The MIMO frequency-response
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 Fig. 2.1 Flowchart of frequency-response method for system identification.
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matrix constitutes a 

 

nonparametric model

 

 of the aircraft response because it
fully characterizes the input-to-output behavior without the need for defining a
model structure or determining model parameters. As shown in Fig. 2.1, these
nonparametric modeling results support many direct applications (

 

Applica-
tions

 

), including the design and analysis of flight control systems, stability
margin determination, piloted handling-qualities analysis, and the validation
and improvement of simulation models.

The frequency response is a 

 

linear

 

 model of the input-to-output process under
examination. The parametric models extracted later to fit these responses are also
linearized representations. When the dynamics contain nonlinear behavior, the
frequency-response function as extracted using the Fourier transform is the

 

describing function

 

, which is the linear model that best characterizes the nonlin-
ear behavior of the system.

 

55

 

 Although there might often be significant localized
nonlinear characteristics in some of the aircraft subsystems (e.g., local airfoil
stall, mechanical linkage hysteresis, or even an actuator that reaches a transient
limit), the input-to-output dynamic response can almost always be well modeled
using linear models or describing function concepts. This is largely because the
inertial (i.e., ) response of a system truncates the higher-harmonic remnants
associated with the nonlinearities in the local forcing functions (Sec. 7.7.4). The
overall flight dynamics response of aircraft and rotorcraft can also most often be
well characterized by these linearized describing function models as well. Sys-
tems design and analysis methods that use the products of system identification
are also almost entirely based on linear modeling concepts (e.g., transfer func-
tions, state-space design and analysis, root locus, handling qualities). Finally, the
subsystems and overall aircraft behavior are designed to provided a mostly linear
input-to-output response that minimizes the potential for undesirable limit cycles
and provides for optimum piloted handling.

 

56

 

 When true nonlinear models are
required, system identification must be completed in the time domain.

 

6

 

 An exam-
ple is the identification of aerodynamics models for stall and spin regimes, where
the derivatives can follow a highly nonlinear function of angle of attack, sideslip,
and products of states and controls. Nonlinear model structure selection and vali-
dation has not been widely studied.

As described in later chapters, two key features of the spectral analysis
described herein, and implemented in CIFER

 

®

 

, are the chirp z-transform and
composite window optimization. The chirp z-transform is an advanced and
flexible FFT algorithm that provides an accurate frequency response over the fre-
quency range of interest. Spectral windowing is a process by which the time-his-
tory data are segmented, and the frequency response is determined for each
segment or 

 

window

 

. By averaging the frequency responses from individual win-
dow segments, the effect of noise is reduced significantly. In composite window-
ing, repeated frequency-response determinations are carried out with varying
window lengths, and these results are then combined using a numerical optimiza-
tion procedure into a single result. Together, the chirp z-transform and composite
window optimization methods produce a frequency-response database of excep-
tionally high accuracy and resolution over a broad dynamic range for real flight-
test data. An important byproduct of this analysis is the coherence function,
which provides key information about the frequency-response accuracy (

 

Condi-
tioned Frequency Responses & Partial Coherences

 

).
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All of the data analysis setup options and results are stored in the database for
rapid processing of batch cases, and the database is supported by CIFER

 

®

 

 with a
variety of tools for plotting, searching, analyzing, and bookkeeping. Without this
integrated database, it would be easy to become overwhelmed by the large quantity
of spectral data generated for real-world applications. Flight-test studies typically
involve large numbers of inputs, outputs, flight conditions, aircraft configurations,
and spectral processing options, which together can result in hundreds or even
thousands of individual frequency responses.

When 

 

parametric models

 

 are required, transfer-function modeling is a rapid
and logical next step in the system-identification procedure (

 

Transfer-Function
Modeling

 

). The values of the transfer-function gain, pole locations, and zero loca-
tions are determined numerically to provide a best match (in a least-squares sense)
to the frequency-response data. Transfer-function models are often sufficient end-
products of system identification for many applications (

 

Applications

 

). Classical
procedures for synthesizing flight-control systems track the movement of the
transfer-function eigenvalues using root-locus plots. A large body of literature on
piloted handling-qualities analyses is based on simple (i.e., first- or second-order)
representations of the aircraft dynamic response, referred to as 

 

lower-order equiv-
alent systems

 

 (LOES). Many (perhaps most) applications of system-identification
methods in the aircraft dynamics and control field involve frequency-response
identification followed by transfer-function modeling as a final product.

The next step, if desired, involves the extraction of state-space or physical
model structures. These model structures are formulated directly from the linear-
ized first-order differential equations of motion as derived from Newton’s Second
Law. State-space and physical model identification can be much more involved
than transfer-function identification and requires significantly more insight into
the dynamics of the system being modeled. Much of material in this book and the
capabilities of CIFER

 

®

 

 address state-space model identification. The overall goal
of this step is to determine a set of linear first-order differential equations consti-
tuting a model (

 

Mathematical Model

 

) whose frequency responses match the mea-
sured MIMO frequency-response data. The accuracy of this identified math
model is quantified in terms of the weighted sum of the magnitude and phase
errors (

 

Frequency-Response Identification Criterion

 

). Initial guesses for the
model parameters can be obtained from the transfer-function identification
results, from a priori estimates based on first principles, or from rapid equation-
error regression methods.

 

6,10

 

 A powerful and highly robust secant optimization
algorithm (

 

Identification Algorithm

 

) is used to tune the identification parameters
in the model structure (e.g., stability and control derivatives, time constants, time
delays) to minimize the identification cost function and thereby drive the model
responses to the best match of the flight-test responses. The optimization stops
when a minimum cost function value is reached that provides the best choice of
identification parameters for the assumed model structure. 

At this stage in the process, we have achieved a state-space model that best
matches the MIMO frequency-response database. But there are still a number
of important issues to consider before the model can be considered to adequately
characterize the physics of the aircraft dynamics (

 

Sensitivity Analysis & Model
Structure Determination

 

). For example, if the model structure selected contains
too many identification parameters for the aircraft dynamics or available
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measurements, there will be redundant parameters in the model that trade off one
against the other. Thus the model might match the input-to-output frequency-
response data very well, but the individual identification parameters might not
have any real physical meaning. Model structure determination finds the model
that matches the test data with minimum model redundancy. The basis for this
step is a sensitivity analysis to determine the accuracy and correlation of the
parameters that have been identified. This can show, for example, that certain
parameters are known accurately and should be retained in the model, whereas
others have to be discarded because it is impossible to determine or isolate their
values caused by parameter correlation. Model structure determination, sensitiv-
ity analysis, and model reconvergence constitute an iterative loop that refines the
structure of the model to ensure that it is both physically appropriate and accurate
to within specified error bounds.

With the completion of the model 

 

identification

 

 in the frequency domain, it is
necessary to 

 

verify

 

 that the model has good predictive capability and robustness
to input shape in the time domain (

 

Verification

 

). For this, we would like to see an
accurate and direct comparison of predicted and measured time responses to
measured control inputs that are completely different in character from those
used in the identification (

 

Dissimilar flight data not used in identification

 

). For
example, if flight-test data from frequency-sweep inputs were used for the identi-
fication, then data from step or multistep inputs might be used for verification.
Evaluating the predictive accuracy for various input amplitudes is useful for
assessing the acceptability of the identified

 

 linear

 

 model. Once the model has
been verified, it can be used in the various applications shown (

 

Applications

 

).

 

2.2 Key Features of the Frequency-Response Method for 
Flight-Vehicle System Identification

 

There are eight important features of the frequency-response identification
method that make it especially well suited to system identification of flight-vehi-
cle dynamics from flight-test data: 1) unbiased frequency-response estimates
when flight data contain process and output measurement noise; 2) access to the
coherence function as an unbiased measure of nonparametric identification accu-
racy and system response linearity; 3) the wealth of knowledge concerning
appropriate model structure provided by the nonparametric identification results;
4) frequency ranges selected individually for each input/output pair to include
only accurate data; 5) direct and accurate identification of time delays; 6) elimi-
nation of biases and reference shifts as identification parameters; 7) significant
improvement in computational efficiency; and 8) identification of systems with
unstable dynamics. Each of these features will now be described in detail.

 

Unbiased frequency-response estimates when flight data contain process and
output measurement noise:

 

 As described in more detail in Chapter 7, the fre-
quency-response estimate is determined from the ratio of the input autospectrum
estimate  to the cross-spectrum estimate  at each discrete frequency :

(2.1)

Ĝxx Ĝxy f

Frequency-response estimate Ĥ f( ) Ĝxy f( )
Ĝxx f( )
-----------------= =
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This specific choice of spectral ratios eliminates potential biases in the fre-
quency-response calculation caused by process noise (e.g., turbulence) and out-
put measurement noise (e.g., sensor electrical noise)—subject to the assumption
that the noise is uncorrelated with the prescribed excitation inputs, which is usu-
ally the case. This drops the requirement to identify a noise model structure and
associated parameters, a necessary step when using time-domain maximum-like-
lihood identification methods. Alternatively, a common simplification adopted in
time-domain identification studies is to assume that the process noise is not
important (

 

output-error method

 

) or that the measurement noise is not important
(

 

equation-error method

 

), as discussed by Hamel.

 

10

 

 In situations involving
reduced signal-to-noise content in the test data, which is often the case for real
flight data, ignoring the noise will introduce biases in the identified parameters.
By using the frequency-response calculation of Eq. (2.1), the bias effects of the
noise will drop out, thus greatly reducing the number of identification parameters
without compromising identification accuracy. Also, with the effects of noise
eliminated, the parameter error bounds are determined with much greater accu-
racy. Still, the presence of these noise sources introduces random scatter in the
identification results and degrades the accuracy of the identified parameters.

 

Access to the coherence function as an unbiased measure of nonparametric
identification accuracy and linearity:

 

 The coherence function estimate

(2.2)

is obtained directly from the measurements. [The estimate symbol  and the
dependency on discrete frequency  are generally dropped for notational con-
venience, but are implied throughout.] The coherence provides a key measure of
the frequency-response accuracy as a function of frequency, without any depen-
dency on parametric model structures (as is the case for the innovations metric in
the time-domain methods). It indicates whether the system has been satisfactorily
excited across the entire frequency ranges of interest and shows whether the sys-
tem being modeled is well characterized as a linear process in this frequency
range. Coherence data can be evaluated in real time from the telemetry stream to
determine the level and effect of noise in the instrumentation system, the adequacy
of the flight-testing inputs in exciting dynamics of interest, and the influence of
atmospheric disturbances. During the parametric system identification step, the
coherence function determines the appropriate frequency range for model fitting
and is used effectively to weight the data to emphasize the frequency-response
points that have higher accuracy. The availability of the coherence function is one
of the primary advantages of the frequency-response identification method.

 

The wealth of knowledge concerning appropriate model structure provided by
the nonparametric identification results:

 

 The frequency-response data provide a
nonparametric model, exposing many key aspects of the vehicle dynamics with-
out requiring that a parametric (transfer-function or state-space) model first be
identified. The frequency responses expose the estimates of control derivatives,
key dynamic modes, degree of stability, order of system response, presence of
time delays, and degree of coupling. This information provides important insight

coherence γ̂ xy
2
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Ĝxx f( ) Ĝyy f( )
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into vehicle dynamics needed for the selection of an appropriate parametric (e.g.,
state-space) model structure. Using the method explained in Sec. 13.5.3, the
state-space model structure can be significantly simplified when a particular fre-
quency response exhibits no significant input-to-output energy transfer (as indi-
cated by very low coherence over the entire frequency range). Model structure
selection and reduction are perhaps the most important and difficult aspects of
system identification for aircraft and rotorcraft, especially so for unique configu-
rations (such as UAVs).

 

Frequency ranges selected individually for each input/output pair to include
only accurate data:

 

 In system identification, state-space models that best fit the
multi-input/multi-output flight-test database are determined. For the frequency-
response method, this database is composed of the pair-wise (input/output) fre-
quency responses and associated coherence functions. The frequency ranges for
the identification criterion are selected individually for each input/output pair
according to the range of good coherence. For example, the velocity responses
(e.g., ) will generally be most accurate (good coherence) at low frequencies
(0.1–1 rad/s) in the frequency range of the phugoid response and be much less
accurate (unacceptable coherence) at higher frequencies. On the other hand, the
angular-rate responses (e.g., ) will often exhibit good coherence over a
broad frequency (0.1–10 rad/s), which includes both phugoid and short-period
responses. The frequency points included in the identification criterion are then
selected linearly across the logarithmic scale of the appropriate frequency range
for each response pair. By including only the most accurate data, a more reliable
model is obtained. In time-domain methods, the identification criterion includes
all responses over the same time (and equivalent frequency) ranges.

 

Direct and accurate identification of time delays:

 

 Time delays and equivalent
time delays are commonly found in various components of a flight vehicle, and
their accurate determination is crucially important, both for achieving overall
model parameter accuracy and as a key aspect of handling-qualities and flight-
control applications. There are “pure” digital delays associated with flight control
and flight-data processing. Frequently, there are many sources of high-
order/high-frequency dynamics (e.g, the dynamics of linkages/hydraulics, con-
trol system and instrumentation filters, and the rotor/inflow dynamic system in
the case of rotorcraft) that yield phase lags in the frequency range of interest and
contribute to the “equivalent delay.” In the frequency-response identification
method, these important time delays are identified directly and very accurately
owing to the linear relationship between the time delay  and frequency-
response phase shift with frequency (rad/s):

(2.3)

Because the identification cost function is based on the weighted sum of the mag-
nitude and phase error, the cost function is a linear function of the time delay and
can thus be identified very accurately. (This is not true in the time-domain identi-
fication cost function.) In fact, an accurate estimate of time delay can be made
directly from the identified frequency-response plots; this is a key aspect of
handling-qualities analysis for rotorcraft.

u δe⁄

q δe⁄

τ
ω

ϕ τ– ω   rad=
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Elimination of biases and reference shifts as identification parameters:

 

 This
important feature of the frequency-response identification method (and frequency-
domain methods in general) results from eliminating the need to determine many
biases and measurement offsets in the real flight data, as is necessary in time-
domain identification methods. To see why this is so, we consider the identification
of state-space models.

The model to be identified is represented as a set of first-order linear differen-
tial equations of motion representing the transient response from trim of the state
vector  to control input :

(2.4)

In these equations, the unknowns of interest for system identification are the ele-
ments of  (stability derivatives),  (control derivatives), and  (equivalent time
delays). The time-delay vector is a lumped model of the high-order dynamics not
explicitly included in the state-space model. We must also include a vector of
constant unknown biases ( ) in Eq. (2.4) to accommodate unmeasurable
inputs (e.g., turbulence), initial conditions in the dynamic states, biases in the
assumed values of trim-control inputs, and errors in the model structure, all of
which are prevalent in applications of system identification to real flight data.
Regardless of their physical sources, the biases drive the aircraft through the
equations of motion, and their effects on model matching error can become very
difficult to distinguish from the elements of  and .

Generally, not all of the state variables can be measured, and so we define a
measurement vector , 

(2.5)

to relate the measured quantities in terms of the states and controls. The equation
includes the vector of constants 

 

yref

 

, associated with the steady-state offsets that
are often present in the measurement devices, such as rate gyros (that measure
angular rates) and accelerometers (which measure specific aerodynamic forces).
For example, there is a  (up) trim bias in the vertical-acceleration measure-
ment for a level flight condition. The elements of  and  are usually known
from kinematics or are repeated values of the same stability and control deriva-
tives contained in  and  (for the accelerometer measurements). In the time-
domain output-error identification method, the elements of , , , , and

 are adjusted, and the equations of motion are time integrated until the error
between the model output  and the flight-data measurements is minimized. The
state-space model parameters of interest are contained in , , and . The
elements of  and  are referred to as 

 

nuisance parameters

 

6

 

 because they
complicate the time-domain identification process and they must be included,
even though they are later discarded. 

In the frequency-response identification method, the error function between the
measured and model frequency responses is minimized. The MIMO frequency-
response matrix of the identified model for control-surface inputs is obtained by

x u

ẋ Ax Bu t ττττ–( ) bias+ +=

A B ττττ

bias

A B

y

y Cx Du t ττττ–( ) yref+ +=

1g–
C D

A B
A B ττττ bias

yref
y

A B ττττ
bias yref
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taking the Laplace transform of Eqs. (2.4) and (2.5), yielding

(2.6)

The frequency-response matrix isolates the forced response to control inputs, so
that the influence of initial conditions, biases, and offsets drops out of the prob-
lem. Now the solution of the identification problem using the frequency-response
identification method involves tuning only the elements of , , and  over a
specified frequency range of interest ( ) until the error
between the model and flight-data frequency responses is minimized.

Let us now examine the resulting number of unknowns in a typical identifica-
tion of the flight dynamics. If we choose to neglect the transient response of the
rotor (in the case of helicopters), the flight dynamics of the aircraft are composed
of six degrees of freedom (three angular and three linear). As described in detail
in Sec. 13.4, the formulation of the equations of motion in state-space form
results in eight states, four control inputs, and generally nine measurements.
When the air-vehicle configuration has symmetrical geometric and response
properties, as in the case of fixed-wing aircraft, the equations can be separated
into two decoupled sets of three-DOF systems. This is not the case for single
rotor helicopters, which must consider the six-DOF system as fully coupled. The
dynamic parameters of interest in the identification are the aerodynamic stability
and control derivatives (36 contained in the  matrix and 24 contained in the 
matrix for the coupled six-DOF case) and the four time-delay parameters (con-
tained in the  matrix), for a total of 64 unknowns. 

In time-domain identification methods we also need to identify eight bias
terms, one for each state in Eq. (2.4). In addition, the multiple records of flight
data need to be linked together, one record for a maneuver in each of the four
control axes, to form a single database that ensures identifiability. This adds nine
output reference shifts for each time-history record, for a total of 36 additional
terms ( ) to be identified. In all, there are 44 extraneous bias and reference-
shift terms that can be highly correlated with the identification parameters of
interest, thereby making the identification analysis much more difficult. As the
order of the dynamic system being modeled increases—as happens, for example,
in the case of rotorcraft—the time-domain algorithms become significantly bur-
dened by these extra nuisance parameters that must be identified, and the fre-
quency-response identification method becomes increasingly attractive and much
more widely used. 

Significant improvement in computational efficiency: An identification crite-
rion  is a single parameter that characterizes the error between the flight data
and the identified model. In frequency-domain methods, it is based on the
squared errors between the frequency-response functions obtained from the
model and the flight data. In time-domain methods, it is based on the squared
errors between the time histories of the model predictions and the flight data. The
identification algorithm varies the identification parameters to minimize the value
of the identification criterion. In the frequency domain, the cost function is an
algebraic function of the identification parameters, so that each iterative update is
computationally very fast. In contrast, the time-domain cost function requires the

T s( ) C sI A–[ ] 1– B D+( )e ττττs–=

A B ττττ
s jω; ω ωmin to ωmax= =
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J
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integration of the equations of motion, so that each iterative update is computa-
tionally intensive. This difference in computational efficiency is increased greatly
as a result of the difference in the number of points included in the two identifica-
tion criteria, as will be discussed next.

It is instructive to compare in detail the number of data points to be included in
the identification criteria  for frequency-domain vs time-domain methods
applied to the same aircraft. Consider the case discussed earlier of identifying a
six-DOF state-space model for a rotorcraft. The flight-test data might typically be
composed of four distinct maneuvers—one 50-s maneuver for each of the four
control inputs (roll, pitch, yaw, and heave). There are typically nine response
variables of interest (three angular rates, three velocities, and three accelerome-
ters). These four inputs and nine outputs result in 36 frequency-response pairs to
be considered in the frequency-response identification method. The identification
criterion includes both magnitude and phase errors at each of (typically) 20 dis-
crete frequency values, for a total of  data points to be
included in the cost function. The analogous time-domain cost function works
directly with the four flight-data records. For a typical data rate of 50 samples/s
(50 Hz) and the same nine outputs, the time-domain cost function will be com-
posed of  data points as part of the identification of the
stability and control derivatives (and extraneous biases and offsets). This amounts
to a considerable increase in the computational complexity as compared to the
frequency-response method. 

It is important to remember that we must process just as many flight-data
points whether the analysis is carried out in the time domain or in the frequency
domain. The difference is that in the frequency-domain methods the conversion
from time-history flight data to frequency-response data is done as a batch (nonit-
erative) calculation using FFT methods and is not linked to the identification of
the stability and control derivatives. The same 90,000 points are processed using
FFT techniques to extract the MIMO frequency-response database. But from that
point on, the iterative identification of the parametric model is based only on the
1440 points in the frequency-domain cost function, a reduction factor of about 60
compared to the time-domain analysis, which will require the iterative processing
of the original 90,000 data points.

This difference in computational burden can be quite significant when a high
sample rate is needed, such as for higher-order systems (e.g., rotorcraft) or for
aircraft model identifications that include widely spaced structural modes, and it
gives a considerable advantage to the frequency-response identification method
(as also pointed out by Raisinghani and Goel57). 

The example presented herein is based on the assumption that the same input
signal is used for time-domain and frequency-domain identification methods. The
3-2-1-1 multistep input, commonly adopted for time-domain identification, is
typically about half the duration of a frequency sweep, used for frequency-domain
identification methods. This can be seen in the AGARD flight-test database for the
Bo-105 helicopter identification.10 Thus the actual reduction in the number of
points is probably closer to about 30.

Identification of systems with unstable dynamics: Modern fixed-wing aircraft,
especially high-performance aircraft, are typically designed with neutrally stable

J

36 20 2⋅ ⋅ 1440=

50 50 9 4⋅ ⋅ ⋅ 90,000=
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or unstable bare-airframe characteristics for improved agility and reduced trim
drag. The bare-airframe characteristics of rotorcraft are unstable as a result of the
vehicle configuration. The identification of the bare airframe must be capable of
working with the unstable characteristics associated with the vehicle response to
control-surface deflections.

The frequency-response identification method, and frequency-domain-based
identification methods in general, are especially well suited to the identification of
systems with unstable dynamics. Because the model matching is conducted
entirely in the frequency domain, we avoid the need to conduct time-history inte-
grations during the identification process. An unstable dynamic mode shows up
simply as a phase increase at the relevant mode, as compared to a phase decrease
for stable modes. By contrast, the time-domain identification methods involve for-
ward time integration of the trial model response to the measured inputs. Because
there will always be some modeling or measurement errors present, right half-
plane eigenvalues will cause the time integration of the model to diverge rapidly
from the flight-test responses, and the identification process will break down. This
weakness of time-domain system identification can be overcome by mapping the
model and the data through a stabilizing transformation,58 but only at the expense
of reduced accuracy in the identification of the unstable modes. As a result,
frequency-domain methods are widely used for system identification of flight
vehicles with unstable dynamic characteristics—such as rotorcraft and high-
performance fighter aircraft. The flight-testing procedure must include some sta-
bilization from the pilot or the stability augmentation system in order to provide
flight-test data with bounded inputs and outputs as is required (Sec. 7.2). But the
identification of the bare-airframe characteristics uses the control surface inputs
(rather than the piloted inputs) together with the corresponding vehicle responses.

2.3 Frequency-Response Identification Method Applied to the 
XV-15 Tilt-Rotor Aircraft

So far this chapter has presented a general overview of the frequency-response
identification method and typical applications to fixed-wing and rotary-wing air-
craft dynamics and control. We now turn our attention to the specific example of
the system identification of XV-15 tilt-rotor aircraft dynamics, which has been
studied extensively with CIFER® and is used throughout the book to illustrate the
key steps in the frequency-response identification method (Fig. 2.1). The follow-
ing summary of XV-15 identification for hover and cruise gives the reader a sense
of the typical identification results and achievable accuracy, with the analysis
details examined in the following chapters of this book.

The XV-15 tilt-rotor aircraft can be operated over a broad speed range from
hover to 300 kn by tilting the prop-rotor nacelle from 90 deg (prop rotation axis
vertical) to 0 deg (prop rotation axis horizontal). In its hover configuration, shown
in Fig. 2.2, the XV-15 tilt rotor has many of the key flight dynamics properties of
a hovering helicopter and vertical/standard takeoff and landing (V/STOL) aircraft,
albeit without the strong degree of dynamic coupling seen with single-rotor heli-
copters. Figure 2.3 shows the aircraft in a forward flight or cruise configuration in
which it has many of the key characteristics of a typical fixed-wing aircraft. 
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2.3.1 XV-15 Frequency-Sweep Data:  V = 170 kn

As an illustration of the first two blocks in Fig. 2.1 (Frequency Sweep Inputs
and Aircraft), the basic input used for identification of the XV-15 in cruise is a
frequency sweep. Figure 2.4 shows flight-test data recorded at an indicated air-
speed of 170 kn. The first plot shows the pilot lateral input  and the second the
roll-rate response .

There are some basic dos and don’ts that will be discussed later regarding how
this frequency-sweep maneuver should be executed for best identification results,

 Fig. 2.2 XV-15 tilt-rotor aircraft in hover configuration (NASA photo).

 Fig. 2.3 XV-15 tilt-rotor aircraft in cruise configuration (NASA photo).

δlat
p
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but it should be clear that in order to get a good identification the dynamics must
be excited well. Figure 2.4 shows two pilot sweeps that have been concatenated
(linked) together along with the roll-rate response. The graphs show that the
flight-test method produced a sizeable excitation, as can be seen by the actual
response of the aircraft, with roll-angle variations of up to ±15 deg/s. This
ensures that the identified model will be accurate for typical maneuvering flight
involving large excursions, as shown later in Figs. 2.9 and 2.10, and will not be
limited to small (perturbation) inputs. 

2.3.2 Simulation Model Validation
As shown in the block labeled Applications in Fig. 2.1, the validation of a

simulation model is one of the applications that can be performed directly from
the nonparametric (frequency-response) results. Figure 2.5 shows the roll-rate
response  to aileron input  in hover. The ailerons are actuated by the same
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 Fig. 2.4 Two lateral-stick frequency sweeps in cruise.
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signal as the differential rotor collective, the latter being the source of roll
control in hover. Therefore, the aileron measurement provides a consistent
measurement of roll-control input for the entire flight envelope from hover
through forward flight. The solid lines in the first two subplots (Fig. 2.5) present
the aircraft frequency-response  in magnitude and phase vs frequency
derived from the block labeled Conditioned Frequency Responses & Partial
Coherences in Fig. 2.1. The third subplot (Fig. 2.5) shows the coherence func-
tion , which is a good indicator of the accuracy of the identified response.
When the coherence exceeds ( ), the response is considered accurate
(low scatter). This is also seen in the very smooth frequency response over a
wide range of frequencies. 

 Fig. 2.5 Roll-response comparison of flight vs simulation.
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The dotted lines in Fig. 2.5 show the results of a detailed physics-based simu-
lation model, namely, the generic tilt-rotor (GTR) simulation, a math model
developed by Bell Helicopter. The cruise flight condition results of Fig. 2.5 show
that the GTR math model matches the flight-test data very well. In general, the
match between an aircraft math model and the flight-test data might not be this
close. The GTR math model, however, is very detailed and uses many aero-
dynamic force and moment look-up tables obtained from full-scale XV-15 wind-
tunnel test data. Figure 2.5 provides a clear indication that the GTR model is very
accurate. The (small) magnitude and phase errors can be quantified in terms of
allowable “mismatch” tolerances to demonstrate satisfactory frequency-domain
simulation validity.

2.3.3 Transfer-Function Model Identification
Next, we will consider the transfer-function model identification (Transfer-

Function Modeling in Fig. 2.1) of the roll-rate response in cruise for handling
qualities or flight-control applications. The flight response of Fig. 2.5 is repeated
in the solid line of Fig. 2.6.

Recall that a transfer-function model is one of the two types of parametric
models discussed in Sec. 1.4, and so it is necessary to assume an identification
model structure. For example, we can choose to assume that the lateral-direc-
tional response of a fixed-wing test aircraft in cruise flight exhibits the classical
flight-dynamics modes of response. The lateral-directional transfer functions will
have a common denominator, containing the spiral, Dutch-roll, and roll-subsis-
tence modes. The numerator dynamics are distinct for each input-to-output pair,
and they will each include an aerodynamic control derivative, zeros, and a time
delay.59

In our cruise-flight example, the preceding assumptions lead to the following
transfer-function model for roll-rate response to aileron:

(2.7)

where we have adopted the shorthand notation for factors of the transfer-functions:

(2.8)

The model parameters that best characterize the XV-15 flight-data response for
cruise are determined using CIFER® (as described in Sec. 11.6.2):

deg/s/deg-ail (2.9)

This identified transfer-function model is plotted in the dashed line of Fig. 2.6
and is seen to match the flight-test data very well. 
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The extracted parameters provide important information about the aircraft
dynamics characteristics. First of all, the time delay is small ( ) and
is associated mostly with the control linkage dynamics in the system. There is a
stable low-frequency spiral mode (nearly at the origin), which is characterized
by a very long period response in roll and sideslip. The roll convergence mode,
with a frequency of 1 rad/s, dominates the on-axis roll response to aileron
inputs. Finally, we see that the lightly damped Dutch-roll mode ( ,

 rad/s) is nearly cancelled by a nearby zero, and therefore does not
contribute significantly to the roll response to aileron inputs. All of this informa-
tion about the dynamic characteristics of the system is contained in the identi-
fied transfer function.

τ 0.053 s=

ζdr 0.24=
ωdr 1.7=

 Fig. 2.6 Roll-response transfer-function model identification (XV-15, cruise).
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2.3.4 Handling-Qualities Specifications
Handling-qualities analysis and handling-qualities specification compliance

testing for fixed-wing aircraft (e.g., Ref. 5) are based heavily on the results of
transfer-function system identification modeling. Consider Fig. 2.7, which shows
the s-plane location of roll-rate transfer-function parameters of Eq. (2.9), corre-
sponding to the XV-15 cruise response for roll . The boundary for minimum
roll mode ( ) shown in this chart is an example of the fixed-wing specifica-
tion for satisfactory (i.e., level 1) handling; the location of the corresponding pole
shows that the criterion has been met. The amount of separation between the

 pole and the  zero is specified to limit the level of roll-yaw
coupling in the Dutch-roll response. Finally, there are bounds on the minimum
damping of the low-frequency spiral mode ( ).

2.3.5 Stability and Control Derivative Model Identification 
in Cruise

Transfer-function model identification provides a parametric description of the
input-to-output behavior in terms of poles and zeros, which characterize the
dynamic modes of motion and responses to controls. These methods are best
suited to SISO system modeling and become cumbersome for systems with
higher levels of coupling. Further, there are many applications that require a com-
plete model of the system in terms of the differential equations of motion as rep-
resented in state-space form. The coefficients of the differential equations

p δa⁄
1 Tr⁄

ζdr ωdr,[ ] ζφ ωφ,[ ]

1 Ts⁄

 Fig. 2.7 Location of roll-rate transfer-function parameters in the s-plane.
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(elements of the state-space matrices) are the stability and control derivatives to
be identified. This section will present an overview of the results for stability and
control identification (Mathematical Model . . . in Fig. 2.1) of the XV-15 in a
cruise flight condition of  (true airspeed).

Incorporating a mass matrix  in the conventional state-space representation
of Eqs. (2.4) and (2.5) adds greater flexibility in the defining the identification
model structure:

(2.10)

The measurement output equation is

(2.11)

The stability and control parameters, contained in the , , , and  matri-
ces of the state equation, are identified by simultaneously matching the eight fre-
quency-response pairs. For the cruise condition, the inputs are aileron  and
rudder . The outputs are roll rate , yaw rate , lateral accelerometer , and
sideslip angle . Four of the response pairs ( , , , ) are
shown in the magnitude and phase plots of Figs. 2.8. In each graph, the flight-test
data are indicated by solid lines, and the response obtained from the identified
stability and control derivative model is indicated by the dashed lines.

In forward flight, the flight database for system identification is typically of
higher quality than for a hovering condition. This is because of the combination of
generally larger inputs in cruise and reduced gust response—resulting in a high
signal-to-noise ratio, and therefore high values of coherence as seen in Fig. 2.8.
High levels of coherence reflect low random error (i.e., low scatter), consistent
with the smooth identified frequency responses seen in the plots.

Table 2.1 shows the parameters of the F matrix, the stability derivatives, such
as the key parameters of lateral dihedral , roll damping , and yaw damping

, all of which have typical values for fixed-wing aircraft. Shown in Table 2.2
are the parameters of the  matrix, the control derivatives, such as roll control

 and yaw control . We also note that the identified value of the roll control
derivative 

(2.12)

nearly matches the high frequency (acceleration response) gain of the roll-rate
response transfer-function model identified in Eq. (2.9), as expected.

As will be discussed in Chapter 12, the Cramér–Rao bound, given in the last col-
umn in the table, is a reliable measure of parameter accuracy for the frequency-
response identification method. In general, if the flight-test data are reasonably
good (i.e., light turbulence, good excitation, kinematically consistent data), it is
possible to identify most parameters to within a 10–20% accuracy, as in this case,
which we consider quite acceptable.       
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 Fig. 2.8 Frequency responses for XV-15 in cruise.
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 Fig. 2.8 Frequency responses for XV-15 in cruise (continued).
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2.3.6 Time-Domain Verification of Cruise Model
Next we demonstrate the time-domain verification of the identified state-space

model for cruise (Verification in Fig. 2.1). The verification is conducted with
cruise flight data not used in any way in the identification process (Dissimilar
flight data not used in identification in Fig. 2.1). Recall that frequency sweeps
were used (Fig. 2.4) in the model identification process. It is also important to
remember that the model is already identified, and no adjustments are made at
this step to any of the parameters of , , , and . A simple least-squares
algorithm (Sec. 14.3) first determines the needed constant biases and reference
shifts in Eqs. (2.10) and (2.11), and then the model is driven open loop and com-
pared to the flight-test data.

The verification for a step input in roll is shown in Fig. 2.9. The measured
responses to this input, namely, roll rate , yaw rate , lateral acceleration ,
sideslip , and roll angle , are shown by the solid line. Next, the same step input

 Table 2.1 F-matrix identification for XV-15 in cruisea 

Derivative Parameter value Cramér–Rao, %

–0.2797 3.64
–1.984 31.32

16.44 9.65
–8.119E-03 4.23
–0.6780 6.03

0.000b  ——
7.240E-03 2.85

–0.2308 7.57
–0.9759 5.05

aAll results in English units.
bEliminated during model structure determination.

 Table 2.2 G-matrix identification for XV-15 in cruisea 

Derivative or symbol Parameter value Cramér–Rao, %

 0.000b ——
–0.2173 8.35
 –0.07775 4.27
–7.024E-03 10.09
 –0.02166 4.66

0.02213 3.14

Time delays
 0.08920 11.84
 0.03276 25.10

aControl deflections in degrees.
bEliminated during model structure determination.
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 Fig. 2.9 Verification of identified model for XV-15 in cruise (aileron input).
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 Fig. 2.10 Verification of identified model for XV-15 in cruise (pedal input).

–5

5

0

–20

0

0

20

–20

20

–5

0

5

–5

0

5

1086420 12 14 16 18 20
Time (sec)

–10

10

30

a y
 (

ft
/s

ec
2 )

r 
(d

eg
/s

ec
)

p
 (

d
eg

/s
ec

)

Flight data

Identified model

Chapter 2.fm  Page 47  Friday, June 16, 2006  3:16 PM



48 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

is used to drive the extracted state-space model; the output generated by the
model is the dashed line of the figures. The analogous verification for a yaw input
is shown in Fig. 2.10. The results show that the model achieves excellent time-
response predictions for step inputs in aileron and rudder. Both on-axis and
coupling responses to each input are predicted very well.

Note that the roll-angle variations for the verification response are as large
as 30–40 deg, which again underscores the fact that the validity of the model
identified using the frequency-response method is not restricted to small-
perturbation motions. Indeed, the extracted frequency response and the associ-
ated state-space models constitute linearized describing functions, or optimal
linear models, of the nonlinear systems. Clearly, a 40-deg roll-angle transient
is not generally considered to be within the linear response range, and yet the
prediction is excellent. 

2.3.7 Stability and Control Derivative Model Identification and 
Verification in Hover

A state-space model was also identified from the XV-15 flight data for the
hover condition, as is shown in Fig. 2.11. The responses shown are the roll atti-
tude response to aileron input ( ), lateral velocity response to aileron input
( ), yaw-rate response to aileron input ( ), and yaw-rate response to rud-
der input ( ). For hovering and low-speed flight, the sideslip vane reading 
is not meaningful, and instead we use the lateral velocity  that is reconstructed
from the lateral accelerometer  and roll angle  measurements (Sec. 6.2.3).

In hovering flight, the flight database for system identification is typically of
poorer quality than for cruise flight. The reduced coherence and larger random
error is evident in the “jaggedness” seen in some of the responses of Fig. 2.11. This
is caused by the reduced signal-to-noise ratio that is typical for hovering flight tests
as compared to the cruise condition. The resulting identified models are therefore
generally less accurate for hover than for cruise (compare Figs. 2.8 and 2.11).

As before, in each graph the flight-test data are shown with the solid line.
Because the identification is based on the control-surface inputs, we obtain the
XV-15 SCAS-off response in hover, so that the data reflect the bare-airframe
response characteristics. The dashed lines in the graphs represent the correspond-
ing frequency responses obtained from the identified state-space model. The
results show a generally good comparison between the flight-test data and the
model in all of the degrees of freedom.

Tables 2.3 and 2.4 show the identified stability and control derivatives and
associated parameter accuracies in the hover condition. As in the cruise case,
most of the parameters are seen to be accurate to within 10–20%, which is in the
desired range, except for the derivative .

The time-domain accuracy of the identified MIMO model is checked as before
using a doublet input in  and , as shown in Fig. 2.12. The measured
responses in the hover case are roll angle, roll rate, yaw rate, and lateral accelera-
tion, as shown in the figure. As usual, the flight-test data are displayed as a solid
line, and the model prediction as a dashed line. 

Again, as in cruise, the responses are large, with roll angles approaching
20 deg, well beyond what we might consider as small perturbation,   and yet the

φ δa⁄
v δa⁄ r δa⁄

r δr⁄ β
v

ay φ

Np

δa δr
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 Fig. 2.11 Frequency responses for XV-15 in hover.
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 Fig. 2.11 Frequency responses for XV-15 in hover (continued).

–100

–60

–20

–350

–150

–250

–50

.2

.6

1

–100

–60

–20

–250

–150

–50

50

.1 1 10
Frequency (rad/sec)

.2

.6

1

Flight data

Identified model

M
ag

n
it

u
d

e 
(d

B
)

P
h

as
e 

(d
eg

)
C

o
h

er
en

ce
M

ag
n

it
u

d
e(

d
B

)
P

h
as

e 
(d

eg
)

C
o

h
er

en
ce

Chapter 2.fm  Page 50  Friday, June 16, 2006  3:16 PM



FREQUENCY-RESPONSE METHOD FOR SYSTEM IDENTIFICATION 51

response prediction is quite good. All of the key dynamics characteristics, includ-
ing the control response coupling, are well captured by the identified linear
model. In general, we would expect the model to be accurate for the range of
motions that were experienced during the identification maneuvers—roughly
± 20 deg in attitude, ± 20 deg/s in attitude rate, and ± 20 kn in airspeed.

2.4 Examples of CIFER® Applications

This chapter has presented a brief overview of the frequency-response identifi-
cation method and some typical flight dynamics results as obtained by using
CIFER®. There is a very broad range of documented applications of CIFER®,
including over 30 flight-test projects by the Flight Control Technology Group
(Army Aeroflightdynamics Directorate) at Ames Research Center starting from

 Table 2.3 F-matrix identification for XV-15 in hovera 

Derivative Parameter value Cramér–Rao, %

– 0.09755 6.65
 –1.489 12.78

 0.000b  ——
 –4.374E-03 5.38
 –0.2365 15.41

 0.000b ——
7.152E-04 7.67
 0.03862 29.86

 –0.1416 13.17

aAll results in English units.
bEliminated during model structure determination.

 Table 2.4 G-matrix identification for XV-15 in hovera 

Derivative or symbol Parameter value Cramér–Rao, %

 –0.04523 5.83
0.000b ——

 –0.05777 2.41
0.000b  ——
 5.910E-03 5.13
 0.01187 4.58

Time delays
 0.000b ——
 0.000b ——

aControl deflections in degrees.
bEliminated during model structure determination.
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 Fig. 2.12 Verification of identified model for XV-15 in hover.
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the initial development of this tool in 1987. Documented CIFER® applications in
the United States include the following:

1) Fixed-wing (manned) aircraft: Navion, B-2, TIFS, Tu-144LL, A/STOVL,
VSRA (fly-by-wire Harrier), and Boeing JSF demonstrator;

2) Rotorcraft (manned): CH-47, XV-15, ADOCS, RASCAL, MD900, MH53J,
B214ST, B205, Schweitzer 333, UH-60, V-22, OH58D, AH-64, Bo-105, RAH-66,
SH-2G, S-92, CH-47, and helicopter/sling-load configurations;

3) Unmanned air vehicle (UAV): Shadow™ 200, Solar Pathfinder, Kmax-
BURRO, R50, RMAX, iStar, and OAV (ducted-fan configurations); and

4) General dynamic systems-identification applications: actuator dynamics,
structural modes, flutter margins, mixer/linkage systems, rotor system dynamics
in wind-tunnel tests, and simulators (including the motion and visual systems of
the Ames Vertical Motion Simulator).

Problems
Review of second-order systems

2.1a Overlay Bode plots (using MATLAB® or another suitable tool) for sec-
ond-order systems with  rad/s and  at intervals of 0.25.

2.1b Overlay Bode plots (using MATLAB® or another suitable tool) for
second-order systems with  and  rad/s at intervals of
0.5 rad/s. 

2.2a Overlay step responses for the transfer functions in Problem 2.1a for
 at intervals of 0.25 (using MATLAB® or another suitable tool). Discuss

the relationships between the time domain and frequency domain for these
responses. Calculate percent overshoot, peak time, and settling time for each case
using known analytical expressions. 

2.2b Overlay step responses for the transfer functions in Problem 2.1b for
 rad/s at intervals of 1.0 rad/s (using MATLAB® or another suit-

able tool). Discuss the relationships between the time-domain and frequency-
domain characteristics for these responses. Calculate percent overshoot, peak
time, and settling time for each case using known analytical expressions.

Transfer-function identification concepts

2.3a Given the Bode plot for  shown in Fig. P2.3, what is the steady-state
response (rad/s/deg-ail)?

2.3b Fit a first-order transfer function to the Bode plot in Problem 2.3a by
using asymptote approximation. 

2.4 If the Bode plot in Problem 2.3a represents , what are  and ?
[Hint: Use the first-order approximation ].

2.5 What is the short-term roll-rate response (per degree of aileron) of Eq. (2.9)
for frequencies between 1 and 1.67 rad/s? What is the initial roll acceleration for
Eq. (2.9)?

ωn 1= 1– ζ 1< <

ζ 0.3= 0.5 ωn 5< <

0 ζ 1< <

0.5 ω< n 4.5<

p δa⁄

p δa⁄ Lp Lδa
p/δa Lδa

/ s Lp–( )=
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2.6 Propose a simple transfer-function model of Eq. (2.9) for frequencies
between 0.1 and 10 rad/s.

State-space model review

2.7 Given the state-space representation in the following equation for the sim-
plified longitudinal dynamics of the A4-D,56 determine the transfer function ,
and generate the corresponding Bode plot (with MATLAB® or another suitable
tool). 

(P2.13)

2.8 Discuss the natural modes associated with the longitudinal dynamics of the
A4-D from Problem 2.7. 

 Fig. P2.3 Example Bode plot of roll-rate response.
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3
Description of Example Cases

 

A basic understanding of the dynamic characteristics and available flight-data
measurements for the aircraft under study is necessary as a starting point for
system-identification studies. The system-identification analyst should be asking
throughout, “Do the identified models make physical sense based on the known
vehicle characteristics?” 

The system-identification methods presented throughout this book make use of
three example cases. We start with a simple example involving the simulation
(using SIMULINK) of a simple inverted pendulum, stabilized with attitude and
rate feedbacks. This example demonstrates the accuracy and interpretation of the
methods and tools for known dynamic characteristics and perfect measurements.
The basic inverted pendulum exhibits an aperiodic, unstable behavior, while the
closed-loop system exhibits well-damped, second-order dynamics. This example
is useful to demonstrate the ability to extract unstable bare-airframe characteris-
tics from closed-loop data. 

Two key examples that are developed as case studies throughout this book are
based on flight-test data for the XV-15 tilt-rotor aircraft for hover and cruise con-
ditions. We have specifically chosen to illustrate most of the system-identification
methods and results using real flight data. Although identification studies based
on synthesized data from simulations are useful for illustrating basic concepts,
such studies do not expose the practical problems of aircraft system-identification
applications for real-world flight data. The effects of measurement/process noise,
multiple inputs, input correlation, piloting technique, high-order modes, and non-
linearities can present considerable challenges. Many of these factors are present
in the XV-15 flight data, thereby allowing the demonstration and discussion of
the methods and guidelines presented in this book for a realistic application. The
reader should refer back to this overview of the example cases to ensure that the
models extracted via system identification reflect the key dynamic characteristics
of each configuration.

The following topics are covered in this chapter: 1) pendulum example prob-
lem description, 2) key aspects of XV-15 flight dynamic characteristics in hover
and cruise, 3) review of XV-15 measurement signals, and 4) XV-15 hover and
cruise flight databases.

 

3.1 Pendulum Example Problem

 

The simple inverted pendulum problem depicted in Fig. 3.1 provides a conve-
nient example of system-identification methods and tools for a known set of
dynamics. The dynamics of the bare inverted pendulum (without the spring and
damper feedbacks) are characterized by two aperiodic modes at equal spacing
from the origin—one stable and one unstable ( ). By including as1 2, g/l±=
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spring moment feedback ( ) and a damper moment feedback ( ), the
closed-loop dynamic characteristics can be stabilized. For small angular dis-
placements the response to external moment inputs  is linear and corre-
sponds to a standard, simple spring-mass-damper system. For larger angular
displacements, the nonlinear gravity term becomes more important.

The governing equation for the inverted pendulum is obtained by applying
Newton’s Second Law. The time rate of change of the angular momentum about
the pivot point is equal to the sum of the external moments about the pivot point:

(3.1)

(3.2)

l
mg

m

Mext

y

x

 Fig. 3.1 Pendulum example case.

K– θ C– θ̇

Mext

I θ̇̇ ΣM=

ml2 θ̇̇ mgl  θsin   K– θ  C– θ̇ Mext+=
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Dividing through by the inertia ( ),

(3.3)

where we have defined

, , (3.4)

The nonlinear dynamics are simulated using the feedback architecture of
Fig. 3.2. The stabilized pendulum response is characterized by the closed-loop
transfer-function . 

The linearized form (about the  reference condition) results in the
transfer-function model

(3.5)

For an example case to be used in this book, we take

, , , (3.6)

This results in a transfer function from Eq. (3.5) of

(3.7)
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 Fig. 3.2 Block diagram realization of pendulum dynamics.
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where we recall that the shorthand notation  in Eq. (3.7) implies
, with  and undamped natural fre-

quency (rad/s). So this is a lightly damped (

 

) 

 

second-order system with
a natural frequency of .

Some examples in this book illustrate the extraction of the unstable inverted
pendulum dynamics that result when only rate damping feedback is included, as
characterized by  of Fig. 3.2. The associated analytical result for this case
is obtained from Eq. (3.5) by setting :

 (3.8)

This equation displays two real poles, one unstable and one stable. The extraction
of these unstable dynamics is achieved from the simulation data for the stable
closed-loop system (with both attitude and rate feedbacks active) using the
measurement of .

 

3.2 XV-15 Tilt-Rotor Aircraft

 

Many of the lab exercises and illustrative examples that are presented through-
out the remainder of this text are based on lateral-directional data from dedicated
system-identification flight tests of the XV-15 tilt-rotor aircraft.

 

60,61

 

 The XV-15
presents a useful case study for illustrating key aspects of system identification
for aircraft and helicopters using a single vehicle. In a hover configuration, the
XV-15 exhibits helicopter-like dynamics, without the high level of dynamic cou-
pling and complexity of a single-rotor helicopter. The key roll-damping deriva-
tive  in hover has a value about an order of magnitude smaller than is typical
for conventional helicopters. This is caused by the large roll inertia of the tilt
rotor, associated with the wing-tip mounted engine nacelles. In a cruise configu-
ration, the XV-15 exhibits classical fixed-wing dynamic modal characteristics,
but once again at reduced frequencies, as a result of the large relative inertias. By
using the tilt-rotor aircraft, capable of both hovering (rotor borne) and cruise
flight (wing borne), we can highlight the differences in analysis techniques and
dynamic characteristics as they relate to conventional aircraft vs rotorcraft.
Detailed engineering information on the XV-15 tilt-rotor aircraft is available in
the aircraft familiarization document.

 

62

 

The hover flight-test condition (Fig. 3.3) corresponds to zero flight speed, out-
of-ground effect, 90-deg nacelle angle, and a gross weight of 13,000 lb. This
hover data set will also be referred to in some of the tables in this book as data-
base #1. The data for the XV-15 forward-flight condition (Fig. 3.4) are an indi-
cated speed of 170 kn (corresponding to a true airspeed of 182 kn), altitude of
2500 ft, zero nacelle angle, and the same gross weight of 13,000 lb. This cruise
data set will also be referred to as database #2.

 

3.3 XV-15 Dynamic Characteristics in Hover

 

As shown in Fig. 3.5, roll control in hover is achieved via differential rotor
thrust, that is, increasing the thrust on one rotor and decreasing it on the other.

ζ ωn,[ ]
s2 2ζωns ωn

2+ +[ ] ζ damping ratio= ωn =
ζ 0.35=

ωn 3 rad/s=

θ Minv⁄
K 0=

θ
Minv

---------- 1
1.66–( ) 3.76( )

----------------------------------        rad/(rad/s2 )=

Minv

Lp
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Yaw control in hover is achieved by tipping the plane of one rotor forward and
the other one backward via cyclic rotor pitch. Pilot inputs are made via conven-
tional centerstick and pedals.

In the XV-15, the lateral-directional dynamics are well decoupled from the
longitudinal dynamics, caused primarily by the side-by-side prop-rotor configu-
ration, so that database #1 contains only lateral-directional measurement signals.
Also, the rotor transient flapping response is not a significant aspect of the flight
dynamics and can be treated as an actuator-type delay. These characteristics

 Fig. 3.3 XV-15 in hover (helicopter configuration) (NASA photo).

 Fig. 3.4 XV-15 in cruise (fixed-wing configuration) (NASA photo).
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allow a significant simplification of the system-identification model’s structure as
compared to a conventional single-rotor helicopter. One unique aspect of the XV-
15 dynamics is the strong roll/yaw coupling in hover. This is associated with the
torque split for differential rotor thrust used in roll control. 

With the stability and control augmentation system (SCAS) disengaged (also
referred to as “SCAS-off”), the roll dynamics of the bare airframe are dominated
by a low-frequency unstable phugoid-type mode, as is the case for hovering heli-
copters. The unstable lateral mode for the XV-15 in hover has an associated time-
to-double amplitude of . Furthermore, the yaw damping in hover is
essentially negligible because the tilt-rotor configuration has no tail-rotor unit.
(The tail rotor is the primary source of hover yaw damping on a conventional
helicopter.) Finally, the bare-airframe response exhibits very small time delays in
roll and yaw control because the input measurements are at the control surfaces,
thus excluding the actuator dynamics, as will be seen in the next section. When
the SCAS is engaged (also referred to as “SCAS-on”), the closed-loop XV-15
hover dynamics are well damped, and the aircraft exhibits good handling-
qualities characteristics. The roll response is now dominated by the closed-loop
time constant . 

 

3.4 Measurements for Closed-Loop Hover Flight Testing

 

The measurement signals for the flight test in hover are indicated in Fig. 3.6.
All variables refer to total measured quantities. The tests were completed with the
SCAS engaged. Pilot inputs are via the lateral stick  for roll control and pedals

 for yaw control. In hover, these pilot inputs command differential rotor col-
lective (roll) and differential longitudinal flapping (yaw). At the same time that
the inputs drive the rotor system, they also actuate the conventional aerosurfaces
(aileron  and rudder ) via a mechanical mixing box, which can be considered
as a simple matrix of gains. Clearly, although the aileron and rudder aerosurfaces
do not produce control moments in hover, they provide an (indirect) measure-
ment of the commanded inputs to the rotor. So the airframe control inputs can be
calibrated in terms of the motions of these surfaces rather than the rotor controls.

Roll control Yaw control

 Fig. 3.5 Roll and yaw control of XV-15 in hover.

tdouble 4.4 s=

T 1 ζωn( )⁄ 0.27 s= =

δlat
δped

δa δr
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This is useful because the available test-flight database does not include the rotor
controls. Also, the use of the aerosurface measurements provides a consistent
measure for control inputs for both hover and forward-flight conditions. The
identified hover model will therefore have control derivatives scaled to units of
aerosurface deflection [e.g., (rad/s

 

2

 

)/(deg-aileron)], rather than scaled to differen-
tial rotor swashplate collective deflection. 

The outputs shown in Fig. 3.6 are the flight dynamics measurements of the air-
craft lateral-directional response in terms of roll rate , roll angle , yaw rate ,
and lateral accelerometer (i.e., specific aerodynamic force ). A final output of
interest is the lateral body-axis acceleration , which is obtained by state recon-
struction using CIFER

 

® (Sec. 6.2). The SCAS (Fig. 3.6) combines pilot stick
inputs and aircraft response measurements to generate rotor commands for
maneuvering and stabilization.

Piloted handling qualities and closed-loop simulation are concerned solely
with the vehicle response to piloted control inputs, as characterized by the overall
transfer function of SCAS-on response to pilot stick inputs. Here we use the pilot
stick measurements as the inputs and vehicle responses as the outputs, and we
can ignore the internal aspects of the SCAS feedback and bare-airframe aerody-
namics. This approach allows the rapid identification of a rather simple, but accu-
rate, closed-loop lower-order equivalent system model of the SCAS-on flight
dynamics, which is sufficient for many applications. 

When we seek to specifically model the bare-airframe response, then the mea-
surements of the rotor controls (Fig. 3.6) are now the inputs of concern, not the
pilot stick deflections. Even when the flight tests are conducted with the SCAS-
on, the bare-airframe system can be identified directly, provided we have a mea-
surement of the bare-airframe inputs. In this case we use the aerosurfaces (e.g.,

 and ) rather than the pilot inputs (  and ) as inputs into the system-
identification procedure. The extracted model is exactly the same result that
would be obtained from SCAS-off flight tests. Finally, flight (or ground) data
measurements of the response of the aerosurfaces to pilot control inputs with the
SCAS-off allows the determination of the control mixing block (Fig. 3.6). Once
this is done, it is possible to express the bare-airframe control derivatives in units
of equivalent pilot stick inputs.

Control Mixing

XV-15
BARE-AIRFRAME

SCAS

Rotor
controls

Aerosurfaces: δa , δr

Outputs:

(also reconstructed v)

Pilot inputs:

–+δlat , δped

 Fig. 3.6 Measurements for closed-loop hover flight testing.

p φ r
ay

v̇

δa δr δlat δped
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3.5 XV-15 Test Case Database for Hover

Table 3.1 presents a listing of parameters contained in the hover database
(database #1). For each parameter, the table lists the flight-test instrumentation
channel name (column 1), engineering name (column 2), engineering symbol
(column 3), sign convention (column 4), and the units of measurement
(column 5). Again, all variables refer to total measured quantities. When working
with the database, it is important to pay close attention to the sign conventions
and the units for the parameters to avoid errors. For example,  is provided
in degrees, but it will have to be converted to radians for state-space model iden-
tification. Similarly, , provided in g, will be converted to . If the proper
units are not used in the analysis of the data, scale factors will appear in the state-
space derivatives, and these errors can be difficult to isolate later.

As shown in Table 3.1, data events 882, 883, and 884 refer to lateral fre-
quency-sweep maneuvers. Note that event 882 is a poor quality run that should
not be used for basic results, but it is included in the database to provide the
reader with an example of how to detect the presence of bad data using the meth-
ods described in Chapter 6. Events 889, 890, and 891 refer to directional sweep
maneuvers. Asterisks are used to indicate that data for a given channel are present
for a particular event. These six events provide all of the data needed to identify
both a closed-loop model and a lateral-directional bare-airframe state-space
model for hover. Event 743 is a roll step input to be used in the model verification
process (i.e., dissimilar data). 

The hover trim conditions [subscript ] are
Pitch and roll angles: 

(3.9)

Body-axis velocities: 

(3.10)

Table 3.2 shows the configuration of the SCAS for the flight-test maneuvers.
For example, the lateral sweeps were conducted with both the roll SCAS-on and
the yaw SCAS-on. As discussed in Sec. 3.4, the availability of aerosurface mea-
surements make it possible to extract the bare-airframe response for these various
SCAS configurations.

Additional important information concerning the flight-data measurement sys-
tem is presented in Table 3.3. Based on these measurement system characteris-
tics, we see that the frequency content of the identification database will not
exceed 20 Hz. However, because the test pilots were instructed to terminate the
sweep inputs at about 1.5 Hz to avoid structural excitation, we would not expect
useful information content for frequencies above 2 Hz or so. This is suitable for
determining flight dynamics models for application to piloted simulation, han-
dling qualities, and flight control, but the database does not have the information
content at higher frequencies needed for detailed models of rotor transient
dynamics (beyond an equivalent time-delay representation).

φ

ay ft/s2

( )0

Θ0 Φ0 0 deg= =

U0 W0 0= =
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3.6 XV-15 Dynamic Characteristics in Cruise

Database #2 contains the flight-test data for the XV-15 in the 170-kn (indicated
airspeed) cruise condition. For cruise flight, the ailerons and rudder are the source
of the aerodynamics control moments, and the rotor controls are disabled (see
Fig. 3.7). The pilot commands roll via the lateral stick, which moves the aileron
surfaces, producing roll moments. Yaw control is commanded via the pedals,
which moves the rudder, producing yaw moments. 

As was the case with the XV-15 in hover, the lateral-directional dynamics are
well decoupled from the longitudinal dynamics, and we will consider only the
lateral-directional dynamics in the examples and lab exercises of this book.
The tilt rotor in cruise exhibits the classical fixed-wing flight dynamics modes.
There is a stable, aperiodic roll mode, with a time constant of  s, a lightly
damped Dutch-roll mode ( ), and a stable spiral
mode with a time constant of  s. 

In forward flight the XV-15 exhibits favorable (or proverse) aileron-to-yaw
coupling ( ). This means than when the pilot commands a right-roll
input the aircraft will also yaw nose right into the turn. This tilt-rotor response is
the opposite of the adverse coupling, resulting from differential aileron drag that
is common to most fixed-wing aircraft. The XV-15 also has a significant amount
of sideslip-roll coupling caused by a stable dihedral effect ( ). As a result, a
positive sideslip deviation (i.e., wind from the right side) will cause the aircraft to
roll to the left (negative). Finally, the time delays for both roll and yaw are very
small, on the order of , which reflects the small effects of the rotor con-
trol linkage dynamics or hysteresis. 

3.7 Measurements for Open-Loop Cruise Flight Testing

The block diagram for the cruise condition (Fig. 3.8) is very simple because
these flight tests were conducted entirely SCAS-off. The pilot inputs (  and

) are processed through the control mixing to produce differential aileron

 Table 3.2 SCAS configurations for hover maneuvers (database #1) 

Maneuver Roll SCAS Yaw SCAS

Lateral sweeps ON ON
Directional sweeps ON OFF
Roll step OFF ON

 Table 3.3 System characteristics for databases #1 and #2 

System characteristics Value

Sample rate 250 Hz
Filtering 50 Hz matched input/output 

anti-aliasing
Measurement system bandwidth 20 Hz

Tr 1≅
ζdr 0.24, ωdr 1.7 rad/s= =
Ts 10≅

Nδa
Lδa

⁄ 0>

Lv 0<

τ 0.05 s≅

δlat
δped
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deflections  and rudder deflections , respectively. These aerosurface deflec-
tions generate the aerodynamics roll and yaw moments that drive the bare-
airframe response. The outputs of interest for lateral-directional flight dynamics
are sideslip angle at the center of gravity , roll rate , yaw rate , and lateral
accelerometer . Note that sideslip is actually measured by a wind angle vane at
the boom . The sideslip angle at the center of gravity is obtained by

(3.11)

System identification based on pilot stick measurements yields bare-airframe
control derivatives in units of percent pilot stick, with the (small) influence of the
pilot stick linkage dynamics and control mixing included (Fig. 3.8). Identifica-
tion based on the aerosurface measurements yields control derivatives in terms of
aileron and rudder deflection in degrees, excluding the control linkage dynamics.
Finally, the mixer/linkage dynamics can be isolated using pilot stick measure-
ments as inputs and aerosurface deflections as outputs. 

3.8 XV-15 Test Case Database for Cruise

Table 3.4 presents a listing of parameters contained in the cruise database
(database #2). Again, all variables refer to total measured quantities. Events 799
and 800 refer to lateral (roll) frequency-sweep maneuvers, and events 801 and
802 refer to directional (yaw) maneuvers. Events 795 and 798 refer to step input
data for roll and yaw, respectively, and are used for model verification.

δa δr

βcg p r
ay

βnb

Roll control Yaw control

 Fig. 3.7 Roll and yaw control of XV-15 in cruise.

βcg( )deg βnb( )deg 0.06( ) r( )deg/s–=

Control Mixing
XV-15

BARE-AIRFRAME
Aerosurfaces

δa , δr

OutputsPilot inputs

δlat , δped

 Fig. 3.8 Measurements for open-loop cruise flight testing.

Chapter 3.fm  Page 65  Friday, June 16, 2006  3:17 PM



66 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION
   

   
   

 T
ab

le
 3

.4
X

V
-1

5 
cr

ui
se

 t
es

t 
ca

se
 (

da
ta

ba
se

 #
2)

 

Fl
ig

ht
16

9 
tim

e 
hi

st
or

y

L
at

er
al

sw
ee

p 
m

an
eu

ve
rs

D
ir

sw
ee

p 
m

an
eu

ve
rs

R
ol

l s
te

p 
m

an
eu

ve
rs

Y
aw

 s
te

p 
m

an
eu

ve
rs

E
ve

nt
79

9
E

ve
nt

80
0

E
ve

nt
80

1
E

ve
nt

80
2

E
ve

nt
79

5
E

ve
nt

79
8

C
ha

nn
el

s
E

ng
in

ee
ri

ng
 

na
m

e
E

ng
in

ee
ri

ng
 

sy
m

bo
l

Si
gn

 
co

nv
en

tio
n 

U
ni

t

10
5.

9 
s

re
co

rd
 

le
ng

th

11
1.

9 
s

re
co

rd
 

le
ng

th

10
1.

7 
s

re
co

rd
 

le
ng

th

10
8.

0 
s

re
co

rd
 

le
ng

th

16
.5

 s
re

co
rd

 
le

ng
th

16
.5

 s
re

co
rd

 
le

ng
th

A
30

0
C

.G
. l

at
er

al
 v

ib
ra

tio
n

+
: r

ig
ht

 a
cc

el
g

*
*

*
*

*
*

D
00

9
R

ol
l a

tti
tu

de
 -

 c
ab

in
+

: r
ol

l r
ig

ht
de

g
—

—
—

—
—

—
—

—
*

*
D

02
2

L
at

er
al

 s
tic

k 
po

si
tio

n
+

: r
ol

l r
ig

ht
%

*
*

*
*

*
*

D
02

4
Pe

da
l p

os
iti

on
+

: y
aw

 r
ig

ht
%

*
*

*
*

*
*

D
28

4
R

ud
de

r 
po

si
tio

n
+

: y
aw

 r
ig

ht
de

g
*

*
*

*
*

*
D

64
5

R
ig

ht
 w

in
g 

ai
le

ro
n 

po
si

tio
n

+
: r

ol
l l

ef
t 

(n
eg

at
iv

e 
)

de
g

*
*

*
*

*
*

V
01

2
R

ol
l r

at
e 

- 
ca

bi
n

+
: r

ol
l r

ig
ht

de
g/

s
*

*
*

*
*

*
V

01
4

Y
aw

 r
at

e 
- 

ca
bi

n
+

: y
aw

 r
ig

ht
de

g/
s

*
*

*
*

*
*

D
00

7
Si

de
sl

ip
 a

ng
le

 a
t 

no
se

 b
oo

m
 v

an
e

+
: w

in
d 

fr
om

 
ri

gh
t

de
g

*
*

*
*

*
*

a y φ δ l
at

δ p
ed δ r δ a

p
p r β n

b

Chapter 3.fm  Page 66  Friday, June 16, 2006  3:17 PM



DESCRIPTION OF EXAMPLE CASES 67

The trim conditions [subscript ] based on the true airspeed and trim attitude
are as follows:

Flight velocity: 

(3.12)

Pitch angle: 

(3.13)

The resulting body-axis velocity components are as follows:
Longitudinal velocity: 

(3.14)

Vertical velocity: 

(3.15)

Table 3.5 shows that the SCAS is off in all channels for all maneuvers, as men-
tioned earlier. The sample rate, filtering, and measurement system bandwidth val-
ues are the same as for the hover condition (see Table 3.3).

Problems
Inverted pendulum model 

3.1 Develop a simulation model (using SIMULINK or another suitable tool) to
represent the nonlinear dynamics of the pendulum example of Sec. 3.1.

3.2 Compare the time responses of the nonlinear model [Eq. (3.3)] and linear
transfer-function model [Eq. (3.7)] for a small step input (  rad/s2).
Repeat for a larger step input (  rad/s2). For what size input and associ-
ated maximum angular displacement  does the steady-state error exceed 5%?

3.3 Derive the linearized pendulum equation from Eq. (3.3), resulting in
Eq. (3.5). Why does this break down for large inputs?

 Table 3.5 SCAS configurations for cruise maneuvers (database #2) 

Maneuver Roll SCAS Yaw SCAS

Lateral sweeps OFF OFF
Directional sweeps OFF OFF
Roll step OFF OFF
Yaw step OFF OFF

( )0

Vtot( )0 307.7 ft/s=

Θ0 4.57 deg=

U0 306.7 ft/s=

W0 24.5 ft/s=

Mext 0.7=
Mext 3.5=

θ
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3.4 Analytically determine the response to initial conditions  deg and
 rad/s2. Does this response match simulation? 

3.5 Introduce a deadband of  rad into the spring. Compare the response
(time domain) of the pendulum to a small external moment (0.8 rad/s2) with and
without the deadband. Based on the comparison, what can you say about using a
linear model to approximate a system that has localized nonlinear elements? 

Measurements for system identification with SCAS engaged

3.6 What inputs and outputs should be measured in order to identify a closed-
loop longitudinal model of a fixed-wing aircraft with the SCAS engaged? 

3.7 What inputs and outputs should be measured in order to identify a bare-
airframe longitudinal model of a fixed-wing aircraft when the SCAS is engaged? 

XV-15 test case database

3.8 Use FREPSID to save the XV-15 conditioned time histories (for all nine
signals) of the concatenated hover lateral sweeps (events 883, 884) to an ASCII
file. (Hint: this option is on FRESPID page 7.) Do not use the filtering option
within FRESPID. Then load the time histories into MATLAB or another suit-
able plotting program. 

3.9 Plot the concatenated time history for each measured signal (nine total). Is
the response in the linear range? 

3.10 Which signals from Problem 3.9 are noisy? In general, do the input or the
output signals contain more noise using the rms utility? Estimate the noise-to-
signal ratio  for the roll-rate output signal. Note that ,
where  represents rms. Assume that noise constitutes all frequency content
above 15 rad/sec and use 300 rad/sec as the maximum frequency in your analysis.

θ 0( ) 5=
Mext 0=

0.004±

βn βn σnoise σsignal⁄( )2≈
σ
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4
Overview of CIFER

 

®

 

 Software

 

The goal of this chapter is to help the reader develop a basic understanding of
CIFER

 

®

 

 software. This material does not serve as a user’s manual. The student ver-
sion of CIFER

 

®

 

 and a user’s primer is available without charge via the AIAA web-
site or by contacting the leading author. Information on the professional version of
CIFER

 

®

 

 is available from the Web site http://uarc.ucsc.edu/flight-control/cifer
or by contacting the leading author. The following topics are covered in this
chapter: 1) overview of the structure of CIFER

 

®

 

 software, 2) user interface, 3)
frequency-response naming conventions, and 4) support utilities. Key attention is
paid to explaining the relationship between the structure of CIFER

 

®

 

 and the vari-
ous components in the system identification flowchart of Fig. 2.1.

 

4.1 Basic Characteristics of the CIFER

 

®

 

 Software

 

At the highest level, CIFER

 

®

 

 is an integrated set of system-identification pro-
grams and utilities linked to relational databases. Figure 4.1 shows the six core
CIFER

 

®

 

 programs that carry out the basic computations of the frequency-
response identification method of Fig. 2.1. These programs are for conditioning
the data and performing FFTs (FRESPID), multi-input conditioning (MISOSA),
window combination (COMPOSITE), transfer-function model identification
(NAVFIT), state-space model identification (DERIVID), and verification
(VERIFY). In conjunction with these programs, there is a comprehensive set of
utilities that perform many types of related and useful tasks, such as searching/
deleting/compressing elements of the database, creating plots, receiving input
from and sending output to other common engineering software, and generating
reports.

Data storage, organization, and retrieval within an integrated database manage-
ment system is an important requirement for large-scale system identification and
is a distinguishing aspect of CIFER

 

®

 

. CIFER

 

®

 

 has utilities to allow direct links to
many standard databasing formats (e.g., MATLAB

 

®

 

, Excel

 

®

 

, and ASCII tab
delimited) as well as to a user’s external flight-test database, without requiring
the user to convert the data format prior to processing. Furthermore, the many
frequency responses generated during the course of the system-identification pro-
cedure are stored and cataloged in the CIFER

 

®

 

 database. The database entry con-
tains all of the information on how the frequency response was determined (e.g.,
flight records, sampling, filtering, spectral windows). This database is available to
all of the CIFER

 

®

 

 programs and utilities, many of which in turn generate addi-
tional frequency-response and parametric modeling results that are then written
back into the database. As a consequence, the database grows as the user
progresses through the steps of the identification process, but it is easily managed
with the many database utilities integral to the CIFER

 

®

 

 software. In addition, the
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database can be shared by multiple users of CIFER

 

®

 

, and multiple databases can
be combined and compressed.

The parameter selections for the core calculations are entered interactively via
a graphical user interface (GUI). For example, in order to run FRESPID, which is
the first program used in the identification process, the data channel names must
be specified, along with information about the flight numbers and events to be
used, how each event should be included in the analysis, and whether correction
factors (e.g., units, signs) should be applied. Additional choices include deciding
what window sizes should be used in the FFT and whether to create a combined
channel that is the arithmetic combination of other flight measurement channels.
Also at the GUI level, the software checks the user inputs against the many sug-
gested data-processing guidelines that are presented throughout this book. [An
example of such a guideline is Eq. (7.61); the label 

 

Guideline:

 

 is used in this text
to highlight these guidelines]. Finally, the GUI prepares a batch command file for
the actual batch job calculations and stores the user’s selections as 

 

case names

 

 in
the CIFER

 

®

 

 database for future retrieval. The ability to retrieve current or prior
cases produces a setup process that, to a large extent, is greatly streamlined
because the initial setup information used to start up the first program can be
saved and then reused with the other programs. 

Frequency
Responses

Model Matrices

Frequency
Response

Identification

(FRESPID)

Multi-Input
Conditioning

(MISOSA)

Window
Combination

(COMPOSITE)

Derivative
Identification

(DERIVID)

State Space
Verification

(VERIFY)

Plot and Report
Utilities

Frequency
Response

Fitting

(NAVFIT)

Comprehensive Identification from 
FrEquency Responses (CIFER®)

Data Consistency
(SMACK)

Time History
Data

 Fig. 4.1 Software and database components used in CIFER®.
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The CIFER

 

®

 

 GUI itself is a sequence of graphical screens that displays the
needed information in a linear and intuitive sequence that follows the system-
identification methods presented herein. The user can quickly input or edit the
parameters as needed. The screens are presented as a series of easily navigated
interactive forms. The user can step forward, backward, or jump back and forth
among the screens in the programs. This method of user-interface navigation is
standardized throughout the core programs, so that once the user is comfortable
with the look, feel, and the mechanics of using the screens, the experience will be
similar for all of the programs in CIFER

 

®

 

. 
FRESPID, MISOSA, COMPOSITE, and DERIVID, the most computationally

intensive programs in CIFER

 

®

 

, are run by first setting up the problem in the prob-
lem definition database and then sending off the computations for batch process-
ing. Any errors or other significant events that occur during the batch
computations are recorded in a log file. It is important to check the log file
because it is possible for a job to complete successfully even though there might
be computational warnings or errors.

By the time a number of the CIFER

 

®

 

 programs and utilities have been run as
part of a particular project, the amount of data and the number of generated files
can be daunting. The situation becomes even more challenging if the tools are
being applied to more than one project. Fortunately, CIFER

 

®

 

 allows the user to
set up multiple sets of projects in such a way that it is easy to specify which
project is the active one (i.e., the one that is to be used when executing the pro-
grams and utilities in CIFER

 

®

 

) and which database the software will read from
and write to and use for generating plots. In general, CIFER

 

®

 

 assists the user with
the multitude of bookkeeping chores necessary to deal with all of this complexity
in an organized and correct manner. 

Finally, CIFER

 

®

 

 is quite flexible in terms of the definition and size of the
problems it can handle. For example, the problem can have up to 10 control
inputs, 20 outputs, five spectral windows, 40 states, 80 simultaneous frequency-
response matches, and 100 unknown state-space identification parameters.
Furthermore, it is possible to specify whether the identification parameters
are free or fixed and whether there are arithmetic constraints between them (see
Sec. 13.4.6).

CIFER

 

®

 

 is available for the range of common operating systems: UNIX, LINUX,
and WINDOWS. The reader should check the website (http://uarc.ucsc.edu/flight-
control/cifer) for more information on the software and computer requirements.

 

4.2 Dataflow Through CIFER

 

®

 

Figure 4.1 presents a picture of the various software and database components
of CIFER

 

®

 

. The left side of the diagram illustrates that time-history data enters
the system at two different points. The first set of time-history data is processed
into frequency responses at the start of the CIFER

 

®

 

 procedures. At the end of the
procedure, a second set of time-history data, from inputs dissimilar to those used
for the identification, is used to verify the identified model.

Within CIFER

 

®

 

, there are three programs that are run sequentially to generate
the MIMO frequency-response database. Starting with the time-history data,
FRESPID calculates SISO frequency responses for a range of spectral windows
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using a chirp z-transform (an advanced FFT). These results are written into the
frequency-response database. Next, MISOSA reads in the SISO data from the
frequency-response database and conditions these responses for the effects of
multiple, partially correlated controls that might have been present in the same
maneuver record. Again, the results are written back out to the database. Lastly,
COMPOSITE performs optimization across the multiple spectral windows to
achieve a final frequency-response database with excellent resolution, broad
bandwidth, and low random error. 

Two programs support parametric model identification. NAVFIT is used to a
identify a pole-zero transfer-function model that best fits a selected SISO fre-
quency response. DERIVID is used to identify a completely generic state-space
model structure [ , , , and  of Eqs. (2.10) and (2.11)] that best fits the
MIMO frequency-response database. Various DERIVID utilities are available to
generate the many plots and tables associated with the state-space model identifi-
cation results. Finally, VERIFY is used to check the identified model’s time-
domain response based on time-history data from maneuvers dissimilar to those
used for the identification. Again, various utilities are available to document the
verification results.

The smoothing from aircraft kinematics (SMACK) program shown in Fig. 4.1
is not actually part of the CIFER

 

®

 

 software package; it is used to preprocess the
time-history data prior to identification, as discussed in Chapter 6. For example,
SMACK is used to interpolate the time-history channels to a common sample
rate, start time, and end time, as required by CIFER

 

®

 

. The Kalman filter/
smoother routines in SMACK are used to isolate measurement system biases and
scale factors that will otherwise corrupt the identification. Finally, SMACK is
also used for wild-point removal and data reconstruction before starting the
CIFER

 

®

 

 identification. 
The software components of CIFER

 

®

 

 shown in Fig. 4.1 are each covered in
detail in later chapters in this book. The mapping between the components and
the corresponding chapters is summarized in Table 4.1.

Another way to think about the software components of CIFER

 

®

 

 is to map
them onto the blocks in the system-identification block diagram, as in Fig. 4.2.
The software components are shown in italics, with arrows pointing to the blocks
in which they are used.

 

 Table 4.1 Mapping between the components of Fig. 4.1 and chapters in this book 

 

Component Function Chapter

Time-history data Input to FRESPID and SMACK 5
SMACK Data consistency 6
FRESPID Frequency-response identification 7
MISOSA Multi-input conditioning 9
COMPOSITE Window combination 10
NAVFIT Transfer-function identification 11
DERIVID State-space model identification 12, 13
VERIFY State-space model verification 14

M F G ττττ
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4.3 CIFER

 

®

 

 Menu

 

Figure 4.3, the first screen displayed after typing

 

 

 

CIFER

 

 at the computer,
presents a menu listing all of the programs and utilities that are part of CIFER

 

®

 

.
The core programs, numbered 1 through 6, are listed first: FRESPID, MISOSA,
COMPOSITE, DERIVID, VERIFY, and NAVFIT.

The supporting utilities fall into several broad categories. The 

 

frequency-
response analysis utilities

 

 (Table 4.2) support the frequency-response analyses
performed by the main CIFER

 

®

 

 programs. The 

 

program parameter utilities

 

(Table 4.3) provide a variety of ways to interrogate or manipulate the frequency-
response database. The 

 

results utilities

 

 (Table 4.4) allow the user to display the
state-modeling results in either plot or tabular form. Finally, the 

 

database and
setup utilities

 

 (Table 4.5) allow extensive manipulation of the database (search-
ing, deleting, merging) and also support user selection of directory tree structures
and various terminal/graphical emulation choices.

 

4.4 CIFER

 

®

 

 User Interface

 

The CIFER

 

®

 

 user interface consists of a sequence of screens that control the
actions of the various programs and utilities. For example, Fig. 4.4 shows the first
screen that appears when FRESPID is started. It is a very simple screen that allows
the user to input a new case name to be used in the subsequent analysis or to
retrieve a previous case stored in the database. Note that this screen is identified in
the upper-right-hand corner with the label 

 

FRESPID:1

 

, indicating that the screen

Frequency
Sweep Inputs

Aircraft
Data Compatibility

&
State Estimation

Transfer-Function
Modeling

Conditioned
Frequency-Responses

&
Partial Coherences

Identification
Algorithm

Eqn-error
or

a priori values

Mathematical Model
Stability and Control Derivatives

and Time Delays
Sensitivity Analysis

&
Model Structure
DeterminationDissimilar flight

data not used in
identification

Verification

APPLICATIONS: Flight Control System (FCS) design, handling-qualities, simulation validation

Freq.-Response
Identification

Criterion

FREQUENCY
RESPONSE
DATABASE

NAVFIT

+

–

Multi-varible
Spectral
Analysis

SMACK

DERIVID

FRESPID   MISOSA   COMPOSITE

VERIFY

 Fig. 4.2 Software components of CIFER®.

 

Chapter 4.fm  Page 73  Friday, June 16, 2006  3:18 PM



 

74 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

 

is the first screen of the FRESPID program. This convention is followed with the
other main CIFER

 

®

 

 programs as well.
Once the case name has been typed in, the user can navigate to other screens

using the 

 

F

 

 keys of the keyboard. The use of the function keys 

 

F1

 

 through 

 

F4

 

 is
summarized in Table 4.6. All of the CIFER

 

®

 

 programs and utilities use this
method of navigating between screens. 

Following the current example a bit further, once the case name has been
entered in the first FRESPID screen (Fig. 4.4), the user presses 

 

F1

 

 and moves on
to the second screen (Fig. 4.5). The first field shows the case name 

 

XVLATSWP

 

that was entered in the previous screen. The other fields allow the user to enter
additional details about this case. 

In this example, the user has chosen the control inputs to be 

 

AIL

 

 and 

 

RUD

 

 (i.e.,
 and ), and the outputs are 

 

P

 

, 

 

R

 

, 

 

AY

 

, and 

 

VDOT

 

 (i.e.,

 

 

 

, , , and ), but in

 

 Table 4.2 Frequency-response analysis utilities 

 

No. Utility Function

7 RMS util Determines the rms value of a signal by 
integrating the autospectrum over a desired 
frequency range

8 Handling qual and 
stab marg

Computes handling-qualities and crossover 
characteristics

9 Freq. resp. arith Computes a frequency response as the 
product, ratio, difference, or sum of two 
input responses

  Computational programs:
  1  FRESPID             2  MISOSA          3  COMPOSITE
  4  DERIVID             5  VERIFY          6  NAVFIT

  Frequency response analysis utilities:
  7  RMS Util     8 Handling Qual & Stab Marg     9  Freq. Resp. Arith

 Program Parameter Utilities:           Results Utilities:
 14 Read ASCII Matrix File(s)           31 Plot DERIVID Results
 15 Read ASCII Response into the D/B    32 Plot VERIFY Results
 19 Plot Frequency Responses            33 Tabular DERIVID Reports
 20 Print Frequency Response Values     34 Tabular VERIFY Reports
                                        35 Print DERIVID or VERIFY Results
 Database and Setup Utilities:          36 Case Plotting Utility
 10 Database Utilities...               37 DERIVID or VERIFY matrix reports
 91 User Interface & Graphics...        38 Eigenvalue Utility
 93 Configuration Summary               39 DERIVID Parameter Dump

 (Enter a number to select a program or utility.  Enter <CR> when finished.)
 Input:

 Fig. 4.3 CIFER® menu of programs and utilities.

δa δr p r ay v̇
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 Table 4.3 Program parameter utilities 

 

No. Utility Function

14 Read ASCII matrix file(s) Reads ASCII files containing , , ,  and 
 matrices and stores them in case files for 

CIFER

 

®

 

15 Read ASCII response into 
the D/B

Reads ASCII files containing frequency-response 
arrays and enters the data into the CIFER

 

®

 

 
frequency-response database

19 Plot frequency responses Generates overlay plots of data for up to five 
frequency responses

20 Print frequency-response 
values

Prints all stored frequency-response values for a 
single response

 

 Table 4.4 Results utilities 

 

No. Utility Function

31 Plot DERIVID results Generates overlay plots of up to five sets of 
DERIVID results

32 Plot VERIFY results Generates overlay plots of up to five sets of 
VERIFY results

33 Tabular DERIVID reports Generates tables comparing the results of up to 
five DERIVID cases

34 Tabular VERIFY reports Generates tables comparing the results of up to 
five VERIFY cases

35 Print DERIVID or 
VERIFY results

Prints DERIVID or VERIFY results

36 Case plotting utility Generates overlay plots of up to five arrays out of 
14 available arrays (e.g., mag, pha, coh, gxx, 
etc.)

37 DERIVID or VERIFY 
matrix reports

Writes matrix values in LaTeX tabular format

38 Eigenvalue utility A stand-alone version of the eigenvalue/
eigenvector computations in DERIVID

39 DERIVID parameter 
dump

Generates an ASCII output file containing a 
summary of a DERIVID case

 

 Table 4.5 Database and setup utilities 

 

No. Utility Function

10 Database utilities.. . Used to create, search, delete, copy, etc., various 
items in the database

91 User interface and 
graphics.. .

Set up keyboard mapping and terminal emulation 
preferences

93 Configuration summary Shows current preferences

M F G H
ττττ
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general up to 10 different controls and 20 outputs can be named. Additional
options include whether the channels are to be cross correlated, which is needed
for MIMO frequency-response matrix identification, and whether the results of
the frequency-response analysis should be saved in separate ASCII files in addi-
tion to the more compact CIFER

 

®

 

 database. In the case shown in Fig. 4.5, the
user has decided to work entirely within CIFER

 

®

 

 (highly recommended).
Navigating around a screen with multiple input fields is accomplished in a con-

sistent way in all of the CIFER

 

®

 

 programs and utilities. The arrow keys will move
the cursor to the left, right, up, or down. The tab key will move the cursor to the
beginning of the next field. The carriage return key 

 

<CR>

 

 has the same effect as
the down-arrow key. Wraparound is active, which means that if the cursor is, for
example, already at the top of the screen, then pressing the up arrow will move
the cursor to the bottom of the screen. When working in a complex screen of

 

 Table 4.6 Navigating between CIFER

 

®

 

 screens using the 

 

F

 

 keys 

 

F key Function

 

F1

 

Accepts the current screen and moves on to the next screen

 

F2

 

Opens a menu bar at the bottom of the screen that presents a number of 
navigation options: continue, backup, main, exit, and update; select 
option with the arrow keys and then press F1 to activate the selection

 

F3

 

Turns off prompting, allowing for “fast forwarding” through the screens

 

F4

 

Presents a prompt to enter which screen number to jump to

                                                     
FRESPID:1

******************************************

*                              *

*           Program FRESPID  *

* *

*   Frequency Response Identification  *

* *

******************************************

For FRESPID initialization, enter a CASE name.

(Press the F1 key to accept a screen, F2 for options.)

Case:       

Aircraft:   703

 Fig. 4.4 Example of CIFER® screen: screen 1 of FRESPID.
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arrays or tables, the software moves the cursor to the nearest editable field in the
current row or column. 

Throughout CIFER

 

®

 

 there is a convention for naming frequency responses.
The procedures for system identification involve generating, conditioning, fitting,
and combining frequency responses, leading to a large number of related files,
and so it is very important to follow a standard naming convention in order to
keep track of all of the data and avoid confusion. 

The standard CIFER

 

®

 

 frequency-response name consists of five fields:
casename_pgm_winds_ctrl_outc
where

casename = user-defined case name (up to eight characters),
pgm = source program (always three characters),
winds = string indicating the window(s) used (five characters),
ctrl = user-defined control name (up to four characters),
outc = user-defined output name (up to four characters).

In our current example, a frequency response generated by FRESPID could have
the following name: 

 

XVLATSWP_FRE_0B000_LAT_P.

 

The case name previously entered in screen 1 was 

 

XVLATSWP

 

, so that appears
in the first field of the frequency-response name. The data were produced by the

 Fig. 4.5 Example of CIFER® screen: screen 2 of FRESPID.

                                             FRESPID:2

Case:   XVLATSWP

Comments:  Lateral frequency sweep for XV-15 in Hover

Controls: AIL               Outputs:   P

          RUD                          R

                                       AY

                                       VDOT

Freq response output name:   XVLATSWP

Cross-correlate controls? (Y/N):  Y

Save results in file? (Y/N):      N

Save results in d/b? (Y/N):       Y

Generate plots? (Y/N):            Y
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FRESPID program, and this is indicated in the second field by 

 

FRE

 

. (A different
abbreviation would be used for a different program, such as MIS for MISOSA,
COM for COMPOSITE, DER for DERIVID, etc.) The windows field, 0B000,
indicates which window (B in this case) was used in calculating this frequency
response in FRESPID), or which windows were combined in the case of COM-
POSITE. (For example, XVLATSWP_COM_ABC00_LAT_P indicates the combi-
nation of the A, B, and C windows in COMPOSITE.) Finally, LAT and P are the
control and output channels, respectively, used in this frequency response.

4.5 Examples of CIFER® Utilities

The lists of utilities in Table 4.2–Table 4.5 give an indication of the broad
range of the analysis, plotting, and database utilities available in CIFER®. A few
of these utilities will be briefly discussed in this section to illustrate further their
potential uses.

The screen for Utility 93, the “configuration summary” utility, is shown in
Fig. 4.6. The fields on this screen show the current preferences that the user has
set up for a particular project, such as the aircraft name, units used, terminal type,
the location of the CIFER® database files, etc. Until these preferences are
changed, these default values will be used every time the CIFER® software is run.

The first screen of utility 19, the “plot frequency responses” utility, is shown in
Fig. 4.7. In this example, the frequency-response names that have been entered
indicate that the user has decided to overlay three different frequency responses.
The first response is COMPOSITE response for five windows (A, B, C, D, E) as
obtained from the multi-input/single-output analysis of MISOSA. The second
response is the multi-input/single-output result for spectral window (A), and the last
response is for spectral window (C), two of the five windows making up the COM-
POSITE response. In this case we have elected to plot only the magnitude, and no
corrections are going to be made to the data (i.e., no corrections will be made to the

CIFER Configuration Summary

 Active CIFUI        (Terminal setup ): mac_versaterm
 Active CIFERTERM    (Terminal keymap): vt100
 Keymap description  (from TERMINFO  ): (none defined)
 Graphics setting                     : versaterm

 Active SIFDEF     (Aircraft.analysis): 703.default
 CIFER database directory             : /u3/tischler/cifer/data/db

 Units                                : RAD
 Plot directory                       : /u3/tischler/cifernew/jobs/plots
 Batch directory                      : /u3/tischler/cifernew/jobs
 Time history root directory          : /u3/tischler/cifer/data/th

 TRENDS database                      :
 TRENDS tail id                       :

Hit return to continue:                                   

 Fig. 4.6 Utility 93: configuration summary.
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gain, phase shift, or Laplace variable power shift ). The data are retrieved from
the CIFER® database. 

The result is the plot shown in Fig. 4.8. As requested, magnitude, phase, and
coherence functions are plotted against frequency, and the three curves represent
the three different frequency responses that had been specified. 

Finally, Fig. 4.9 shows an example of the tabular TeX output that can be gener-
ated by CIFER® utilities. In this case, the table of F matrix identification results
from DERIVID was generated by utility 33, “tabular DERIVID reports.” 

For more details on CIFER® software functionality, the reader is referred to the
student version primer (available via the AIAA website and http://uarc.ucsc.edu/
flight-control/cifer) and the detailed CIFER® user’s manual.63

4.6 Interfaces with Other Tools

Interfaces have been developed and are available to allow communication of
data between CIFER® and several other tools. Key among these are MATLAB®

and the control system analysis and optimization tool CONDUIT®.64

CIFER® can access time-history data for identification (FRESPID) and model
verification, (VERIFY), which is stored a variety of formats, such as MATLAB®,
UNC3, CIFER (binary), and TRENDS (NASA database). The user can also mod-
ify a simple stub subroutine (READMIS) to access data in any arbitrary format or
from a native database.

Matrices and frequency responses stored in MATLAB® or ASCII text format
can be read into the CIFER® database for processing, and all identification results
can be dumped out in MATLAB®, Excel, and ASCII text formats.

Rupnik65 developed a library of MATLAB® functions for the frequency-
response determination modules (FRESPID, MISOSA, COMPOSITE) and many

sn

  **********************************************************   QPLOT:1
  *                      Program QPLOT                     *
  *           Frequency Response Overlay Utility           *
  *                   Press F3 to exit.                   *
  *        ^A or ^D to move to field beginning/end.        *
  *       ^G or ^L to move left/right one character.       *
  * ^O/ESC (ESC/ESC on Solaris) toggles insert/overstrike. *
  **********************************************************

  Which array?: 1,2,3        (1:mag, 2:phas, 3:coh, 4:GXX, 5:GYY, 6:GXY, 7:err,
                              8:pcoh2,  9:pcoh3, 10:pcoh4, 11:pcoh5, 12:pcoh6,
                             13:pcoh7, 14:pcoh8, 15:pcoh9, 16:mcoh)
  Corrections?: 0,0,0,0,0    (For each array type enter 0 to skip, 1 to apply)
  Freq Resp Names:                            Gain      Ph Shift  Power
  XVLATSWP_COM_ABCDE_AIL_P                        1.00      0.00     0
  XVLATSWP_MIS_A0000_AIL_P                        1.00      0.00     0
  XVLATSWP_MIS_00C00_AIL_P                        1.00      0.00     0
                                                  1.00      0.00     0
                                                  1.00      0.00     0
                                                  1.00      0.00     0
  Aircraft:     BOOK
  Input from?:  D             (F(ile) or D(atabase))  

 Fig. 4.7 Utility 19: plot frequency responses.
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of the associated utilities. The user creates a template case, for example, in
FRESPID, using the standard CIFER® database. Thereafter, the CIFER® library
can be called within standard MATLAB® scripts to automate system-identification
processing. Rupnik also developed a prototype MATLAB® GUI that provides the
user with a more modern browser-type interface, while preserving the same
CIFER® screen organization and flow.

XVLATSWP_COM_ABCDE_AIL_P

XVLATSWP_MIS_A0000_AIL_P

XVLATSWP_MIS_00C00_AIL_P
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 Fig. 4.8 Example frequency-response plots generated by utility 19.
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Tischler et al.20 have integrated CIFER® and the control system design tool
CONDUIT®. The CONDUIT® tool can access directly the identified models and
accuracy bounds from the CIFER® database to allow control-system optimization
and robustness analysis, as described in the cited reference.

Problems
CIFER® installation, setup, and navigation

4.1 Download the student version of CIFER® provided with this book via the
AIAA website. Install the software for use with the LINUX operating system.

4.2 Create a new “aircraft” (e.g., XV15), using utility 17, which sets up a data-
base under this name for running the problems in this book.

 Fig. 4.9 Example TeX report generated by CIFER® results utility.
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4.3 Setup the defaults (utility 11) to allow printing and access of time-history
data from your computer.

4.4 Check the configuration summary (utility 93) to be sure the defaults were
set up satisfactorily.

Reading and plotting utilities

4.5 Save the frequency, magnitude, and phase of the A4-D transfer-function
 that you determined in Problem 2.7 in ASCII format, using a frequency

range of 0.1–10 rad/s. (Hint for MATLAB® users: use the “bode” function, then
save in ASCII format using “dlmwrite”.) Then read in the frequency, magnitude,
and phase into CIFER® using utility 15. Use the database utilities to determine
that this response has been stored in the database. Then plot the response with
utility 19.

4.6 Make a hard copy of the figure plotted in Problem 4.5. (Hint: Use the “P”
option within utility 19).

Naming convention for frequency responses

4.7 Explain the meaning of the following case names: 
(a) XVLATSWP_FRE_A0000_AIL_R
(b) XVLATSWP_MIS_0000E_AIL_R
(c) XVLATSWP_COM_AB000_AIL_R

4.8 Is XVLATSWP_FRE_ABCDE_AIL_R a valid case name? 

q δe⁄
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5
Collection of Time-History Data

 

This chapter will focus on the first step in the system-identification process of
Fig. 2.1, which is the collection of a well-suited time-history database. The ulti-
mate quality of the identification results is highly dependent on 1) properly
designed and executed flight tests of the aircraft being studied and 2) properly
selected and well-documented characteristics of the instrumentation system. The
recommended input for frequency-domain identification is a frequency sweep
because it provides a fairly uniform spectral excitation over the frequency range
of interest for good frequency-response identification and is robust to uncertain-
ties in a priori knowledge of the system dynamics.

The key points covered in this chapter include the following: 1) general aspects
of data requirements for system identification, 2) instrumentation system require-
ments, 3) optimal inputs, 4) frequency-sweep input, 5) flight-testing consider-
ations, and 6) computer-generated sweeps. Excellent resource material on flight-
data collection for system identification is included in the publications by Hamel
and Aiken,

 

66

 

 Hamel,

 

10

 

 Williams et al.,

 

67

 

 and Klein and Morelli.

 

6

 

5.1 Overview of Data Requirements for System Identification 
(Time Domain and Frequency Domain)

 

An overarching principle of system identification is that the flight-test records
must include the information content of the dynamic characteristics that you wish
to capture in the model. Succinctly stated, “For particular dynamic characteristics
to be identified in the model, they must be apparent in the data.” Conversely, “If
it’s in not in the data, don’t expect to be able to identify it in the model!” This basic
principle impacts all aspects of flight-test preparation and conduct; critical among
these are the selection of instrumentation, test inputs, and test conditions. This
principle applies regardless of whether the identification is conducted in the time
domain or the frequency domain, and although it seems obvious enough the prin-
ciple is often ignored. Two key considerations determine much of the test prepa-
rations and conduct: frequency range of applicability for the identified model and
dynamic coupling to be represented in the identified model. These terms and the
implications for flight testing are considered in the following paragraphs.

 

5.1.1 Frequency Range of Applicability

 

Each modeling result of system identification (i.e., a frequency response, a
transfer-function model, or a state-space model) has associated with it a 

 

fre-
quency range of applicability

 

. Chen and Tischler

 

68

 

 defined this to be the fre-
quency range over which the identified model can be expected to be valid. This
frequency range of applicability is a function both of 1) the range over which
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the frequency response can be accurately identified (i.e., good coherence) and
2) the range over which the selected parametric model structure can accurately
track the identified frequency responses. The intended application of the system-
identification model determines the required frequency range of applicability. For
example, the identification or validation of a flight-dynamics simulation model
for piloted evaluation will typically require a frequency range of applicability of
about 0.3–12 rad/s, while a model to be used in closed-loop flight-control appli-
cations must be accurate near the intended closed-loop bandwidth frequency.
Subsystem models, such as models of the rotor flapping dynamics or actuator
response, must be accurate near their respective natural frequency (e.g., the
regressive flap mode rad/s for a typical manned helicopter, as discussed
in Sec. 15.2.1), but they can be less accurate at lower frequencies. 

 

Implications for piloted excitation inputs.

 

If certain dynamic modes within
the frequency range of applicability are not well excited by the test inputs, then
those modes will not appear in the data and therefore will not show up in the final
identified model. In the terminology of the identification literature, the input
signal must be 

 

persistently exciting

 

, which roughly means that all of the modes
(of interest) of a system are excited.

 

1

 

 A piloted frequency sweep conducted for
helicopter system identification is generally limited to a maximum frequency of a
about 2–3 Hz (typical of handling qualities and flight dynamics testing). Natural
spillover of excitation energy occurs as a result of the irregularities in the piloted
inputs and for rotorcraft allows reliable identification of regressive rotor-flap/lag
dynamics (up to about 3–4 Hz). Excitations of the high-frequency structural (and
rotor) modes (e.g., up to 5 Hz and beyond) are commonly and best conducted
using automated sweep inputs and can include real-time monitoring of structural
loads (Sec. 5.11). 

 

Implications for record length.

 

Even when care has been taken to properly
excite the aircraft, the data record lengths must be consistent with the modal peri-
ods of interest. As a general rule of thumb, an individual sweep record length
should be at least two and ideally about four to five times the maximum dynamic
period of interest [Eqs. (5.11) and (7.63)]. Although in theory an individual mode
can be identified from a record length corresponding to a single period of the
mode of interest, the practical issues of measurement noise, atmospheric turbu-
lence, multiple closely spaced modes, and model structure uncertainty all drive
the need for longer record lengths. For example, helicopters exhibit an unstable
phugoid mode with a typical period of oscillation of about 20 s, corresponding to
a phugoid mode frequency of , or . For
an accurate identification of the phugoid parameters from flight-test data, a data
record length of about 80 s ( ) is desirable. This is a typi-
cal record length in frequency-sweep flight tests of aircraft and rotorcraft for the
purpose of identifying a flight-mechanics model. On the other hand, the accurate
identification of aircraft short-period dynamics for typical handling-qualities
applications can be accomplished with much shorter records because the
dynamic modes of interest are concentrated in the frequency range of 1–10 rad/s.
This was demonstrated for the Tu-144LL aircraft using two frequency-domain
methods (equation-error/output-error and CIFER

 

®

 

) with 20-s flight records.

 

41

 

Finally, if the primary interest is only for modeling the dynamics response at

ωfr
14≅

f 1 20⁄ 0.05 Hz= = ωn 0.314 rad/s=

four phugoid periods=
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higher frequencies, as would be the case for the identification of structural
dynamics or control system linkages and actuator dynamics, then a sweep of only
5–10 s might be quite sufficient.

 

5.1.2 Dynamic Coupling

 

Dynamic coupling,

 

 also sometimes called 

 

interaxis coupling,

 

 is present when a
control input intended to produce a response in one axis also results in responses
in another axis. For example, the deflection of aileron produces a 

 

primary

 

 (also
called 

 

on-axis

 

) response in roll rate. But because of the dihedral effect, the aircraft
will also respond in yaw, which is considered a 

 

secondary

 

 (also called 

 

off-axis

 

)
response. 

Consider the implications of dynamic coupling on flight-test procedures. For
example, the lateral/directional dynamics of a fixed-wing aircraft with the stabil-
ity and control augmentation system disengaged (SCAS-off) will typically
exhibit a lightly damped Dutch-roll motion that appears most clearly in the on-
axis sideslip and yaw-rate responses to rudder inputs. However, the Dutch-roll
mode is also present as a secondary coupling characteristic in the roll-rate
response to aileron inputs. If a roll sweep test is conducted with a high-gain
SCAS engaged, or the pilot acts to suppress all sideslip excursions using pedal
inputs, all evidence of Dutch-roll coupling in the roll excitation data for aileron
inputs will be eliminated. The resulting identified bare-airframe model will indi-
cate that the yaw and roll dynamic motions are decoupled. Thus it is essential 

 

not
to mask or suppress

 

 important aspects of the dynamics of concern. In this exam-
ple, the SCAS can be disengaged in the yaw axis, and the pilot can be instructed
to conduct the roll sweeps with “feet on the floor”—that is, with no pedal inputs,
or with pulsed pedal inputs to bound yaw/sideslip excursions but that are not cor-
related with the primary (lateral stick) inputs. 

If these important issues are not adequately addressed during flight-test plan-
ning, the flight-test data will not have sufficient information content to identify
the characteristics of interest, and the overall quality of the system identification
results will be severely compromised.

 

5.2 Optimal Input Design

 

Excitation inputs for system identification have been widely studied, and this
has produced an extensive literature on optimal input design.

 

10,69–72

 

 Optimal
inputs are prescribed input forms designed to maximize information content
(e.g., power spectral density) for minimum maneuver time or minimum peak
response. There are limitations in the strict use of these optimal inputs because
the input design process is based on a priori knowledge of the model structure
and dynamic response characteristics. Although the model structure and dynamic
modes might not be well known in advance, especially for unique UAV configu-
rations or helicopters, rough guesses can provide a good initial estimate for the
input design procedure, and this can be refined as the identification progresses.
These optimal inputs are often excellent starting points for system-identification
flight testing. 

Multistep inputs, such as the “3-2-1-1” test input developed by the German
DLR Research Laboratory,

 

32,73

 

 maximize the power-spectral-density function
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over a particular frequency range given an estimate of the model characteristics of
interest. The 3-2-1-1 test signal and its variants have been highly successful in
conjunction with time-domain system-identification applications such as the
widely used maximum likelihood (ML) method. Researchers of the DLR (for-
merly the DFVLR) are world leaders in the ML identification of helicopters and
fixed-wing aircraft using 3-2-1-1 type inputs and have published their work exten-
sively.

 

37,74,75

 

 Morelli (NASA Langley Research Center) has also contributed sig-
nificantly to the flight-test validation of optimal input designs based on multisteps,
with extensive applications to high-performance aircraft.

 

71,72

 

 
Another optimal input well suited to frequency-domain identification methods

is the Schroeder-phase signal. This is a multifrequency wave form composed of a
large number of harmonics at equal frequency spacing. Young

 

76,77

 

 presents a clear
explanation of Schroeder-phased input and compares it with linear and log-rate
frequency-sweep inputs, as well as the multistep input. This Schroeder-phase
input design minimizes the peak excitation amplitude and results in a very flat
power spectral density, characteristics that are ideal for frequency-domain identi-
fication methods. Young also demonstrates that the Schroeder-phase signal less-
ens the potential for frequency-response error because of transients effects.
Further, Young shows that there is little difference in the accuracy of the fre-
quency-response estimates as obtained from the log-rate sweep (also used herein,
Sec. 5.11) vs the Schroeder-phased signal. Morelli

 

78

 

 presents an optimal input
design based on the Schroeder-phase signal that involves multiple control inputs
for real-time parameters estimation in the frequency domain.

 

5.3 Recommended Pilot Inputs for the Frequency-Response 
Identification Method

 

Following the principles discussed earlier, the pilot maneuvers for system
identification must be designed to suitably excite the aircraft modes that we wish
to model. The piloted (or automated) frequency-sweep inputs presented in this
chapter, and widely used by the leading author and many others, are not optimal
per se (as are the inputs of Sec. 5.2), but they have proven to be an easy, safe, and
reliable flight-test method for accurate and robust identification of fixed-wing and
rotorcraft dynamics using the frequency-response method. Frequency-response
identification of aircraft using piloted frequency-sweeps was pioneered by Sys-
tems Technology, Inc.,

 

43

 

 in applications to fixed-wing aircraft. Tischler was the
first to apply frequency-sweep testing methods to rotorcraft, with the identifica-
tion of the XV-15 tilt rotor

 

53

 

 and the B214-ST helicopter,

 

54

 

 and subsequently to
system-identification tests in more than 30 aircraft programs to date.

The 

 

frequency sweep

 

 refers to a class of control inputs that has a quasi-sinusoidal
shape of increasing frequency. An example from flight tests for a UH-60 helicopter
is shown in Fig. 5.1. The frequency-sweep input is particularly well suited for the
frequency-response method for a number of reasons:

1) The excitation spectral content has a very uniform distribution (also called

 

power spectral density

 

) across the desired frequency range. Satisfactory spectral
density over the frequency range of interest guarantees persistent excitation

 

1

 

 and
results in a consistent level of frequency-response coherence (accuracy) across the
frequency range of interest. Thus, the frequency-sweep input yields an accurate
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and reliable identification of model parameters, even when detailed a priori infor-
mation of the dynamic modes is not available. 

2) Response time histories are roughly symmetric. This means that the devia-
tions in the inputs are generally equal (i.e., positive and negative) around the ref-
erence (trim). This symmetry is important both for maintaining the transients
centered around the reference flight condition and for determining and subtract-
ing out the nominal trim value of the input and output signals in the FFT analysis.
In a well-executed piloted frequency sweep, the aircraft test will start in trim and
end in trim, with the deviation in the inputs and outputs generally symmetric
around the trim condition.

3) The frequency range of excitation is strictly controlled during the test. The
frequency sweep test starts at a predefined minimum frequency and ends at a pre-
defined maximum frequency. Both the minimum and maximum frequencies are
easily monitored and reported to the test pilot in real time. Controlling the fre-
quency range of the test in this way can be a quite important aspect of the safety
of the flight-test procedure. For example, it might be undesirable to execute sharp
step or multistep inputs that can “ring” lightly damped structural modes or that
can overstress aircraft systems such as the transmission and drive train. The pre-
ferred sweep technique of slowly 

 

increasing

 

 the frequency and stopping at a
predetermined maximum avoids these risks. 

The frequency sweep is an ideal input for frequency-domain system 

 

identifica-
tion

 

 of an accurate and complex state-space model. Frequency sweeps are gener-
ally less time efficient than the optimal inputs.

 

6,10

 

 For example, record lengths for
sweeps are about twice as long as the comparable 3-2-1-1 input, typically used for
identifying the same aircraft using time-domain methods (see Hamel

 

10

 

 for the Bo-
105 system-identification program). The longer record lengths, needed for accu-
rate broad-band conversion of the data from the time to the frequency responses,
are sometimes cited as a drawback to using frequency-response methods for
applications where only short “bursts” of data can be collected. This limitation
can be overcome and good results obtained by concatenating several repeated
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 Fig. 5.1 Typical frequency-sweep input.
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multistep inputs, as was demonstrated in an application to the Tu-144LL aircraft

 

41

 

and illustrated for a rotorcraft application in Sec. 5.12. 
The goals for model verification are 1) to check the time-domain response pre-

dictions vs measured flight data to assess the importance of model mismatch in the
identification process and 2) to ensure the robustness of the identified model for
other input forms. The first goal can be achieved by using the same identification
inputs for model verification (i.e., a frequency sweep for the frequency-response
method). The second goal requires a flight-test input dissimilar from the identifi-
cation maneuver. The recommended input for verification is a two-sided doublet,
illustrated in Fig. 5.2. This is a common type of flight-test input, and it is a regular
aspect of training for experimental test pilots. The fairly simple form of the doublet
permits a good visualization of key aircraft dynamic characteristics and model
performance. Further, the maneuver is characteristic of flight transients during
typical maneuvering for which model fidelity is desired. The input is again roughly
symmetric, which keeps the aircraft dynamics restricted to the range of transients
over which the model is expected to be valid. Also, the doublet is different enough
from a frequency sweep that it is a good check to ensure against overtuning of the
model, wherein the model is accurate only for specific types of inputs. 

 

5.4 Instrumentation Requirements

 

For a given type of air vehicle, for example, a helicopter, the desired model to
be obtained from system identification could range from a SISO frequency
response (Bode plot) to a simple lower-order equivalent-system transfer-function
model for handling-qualities analysis, a six-DOF quasi-steady stability and con-
trol derivative model, or a complete high-order state-space model that includes the
physical equations of motion of the dynamics of the air mass, rotor, fuselage,
actuators, and engine. The flight-test instrumentation requirements in each case
are very different. In particular, the choice of model determines the input and
output channels, associated filters, and sample rates that are needed. These various
instrumentation characteristics must be determined and set up as part of the pre-
flight-test preparations. 
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 Fig. 5.2 Typical doublet input.
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Input channels commonly required for flight mechanics model identification
are pilot stick inputs and aerodynamic control surface deflections. Only the pilot
stick inputs are needed if the application is limited to demonstrating handling-
qualities specification compliance [e.g., MIL-STD-1797 (Ref. 5) for fixed-wing
aircraft and ADS33E (Ref. 4) for rotorcraft], which is based on the end-to-end
vehicle response to piloted inputs. On the other hand, system-identification mod-
eling of the bare-airframe dynamics requires measurements of the aircraft aero-
dynamic control surfaces or at least the commands to the actuators. 

The output channels needed to identify a six-DOF flight mechanics simulation
model are as follows: air boom data [ , , ] (or equivalently an inertial mea-
surement unit [ , , ]) for nonhovering conditions; attitudes [ , , ]; angular
rates [ , , ]; and linear accelerometers [ , , ]. Handling-qualities speci-
fication compliance applications can be achieved from measurements of only the
angular rates and vertical acceleration. In contrast, all four types of the preceding
outputs are needed to identify a six-DOF stability and control derivative model.
Specialized identification studies might require measurement of the structural,
engine, and rotor response parameters to determine models and interactions of
these subsystems.

The selection of the appropriate data collection sample rate and data system fil-
ters flows directly from the frequency range of applicability of the identified
model. We start by first considering signal processing filters, such as noise or anti-
aliasing filters. 

 

It is highly desirable that an identical filter be implemented on all
input and output signals.

 

 Consider the situation that arises if, for example, one fil-
ter is used on the roll-rate signal and a lower cutoff frequency filter is used on the
pilot stick signal. The resulting models obtained from system identification will
reflect an additional (spurious) high phase lead (rising phase curve) that will be
reflected as biased identified parameter values in the aircraft dynamics equations.
This spurious phase result is directly related to the difference between the filter
cutoff frequencies, and it can be different for each input/output pair depending on
the filters used for each channel. The phase error can be corrected in the fre-
quency-response results as part of the analysis, but it is much easier and more pre-
cise to avoid this problem altogether by making sure ahead of time that the input
and output filters match on all channels. Instrumentation engineers often select fil-
ter cutoff frequencies separately for each data channel as appropriate to that sen-
sor’s bandwidth. So, for example, potentiometer measurements of the pilot stick
inputs might be typically filtered at lower frequencies (e.g., 5 Hz), angular rate
gyro measurements at intermediate frequencies (e.g., 20 Hz), and linear acceler-
ometers at higher frequencies (e.g., 50 Hz), unless the system-identification
engineer specifies that all channels should be conditioned with the same filter. 

As a good rule of thumb, it is recommended to select the filter cutoff frequency
 (also referred to as the filter bandwidth) to be at least five times the desired

maximum frequency of model applicability :

 

Guideline:

 

(5.1)

With the filter selected, we next choose a sample rate , the same for all of the
signals, with a value of at least another factor of five above the filter frequency:

V α β
u v w φ θ ψ

p q r ax ay az

ωf
ωmax

ωf   5 ωmax⋅≥

ωs
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Guideline:

 

(5.2)

A typical six-DOF flight mechanics model for simulation and handling-qualities
applications will require a frequency range of applicability that extends to

. Applying these rule-of-thumb formulas yields a filter
frequency of  and a data sample rate of . These are
common instrumentation characteristics for aircraft and helicopter flight testing.
In the case of the XV-15 flight-test program, there was an interest in modeling
structural modes up to frequencies of about 10 Hz, so that the filters were set at
50 Hz and the sample rate was 250 Hz, in accordance with the rules of thumb.
The resulting factor of 25 between the sampling rate and the maximum frequency
of interest [combine Eqs. (5.1) and (5.2)] is conservative in the sense that a some-
what smaller value could probably be used. In fact, theoretically the sample rate
could be reduced to 2

 

ω

 

max

 

, which puts the Nyquist frequency ( ) at
the maximum frequency of interest. However, this low sample rate will not allow
accurate identification near  because of real-world sensor noise, atmospheric
turbulence, and other effects. So the factor of 25 rule of thumb is still preferred
whenever possible. 

Obtaining an accurate model using system identification depends on the care-
ful selection and documentation of instrumentation system filter characteristics
and the sample rates for each signal. Even if the instrumentation system charac-
teristics are not the optimum and do not match values recommended here, correc-
tions can be made for this later on, but only if the exact values are known. A
commonly faced problem is that once the flight-test instrumentation system is
removed from the vehicle at the end of the test it becomes very difficult to recon-
struct the exact characteristics for each input and output signal, and therefore
there is a high risk of introducing spurious dynamics in the identified model.
Other important factors not discussed herein are the range and resolution require-
ments for the sensors.

 

6,10,67

 

5.5 Overview of Piloted Frequency Sweeps

 

Figure 5.3 shows an example of two piloted frequency sweeps that are well
suited to system identification. Although they are shown as a single time history
in the graph, the records were not collected as a continuous maneuver. The two
runs are 

 

concatenated

 

 into a single (“linked maneuver”) record within CIFER

 

®

 

.
These data were collected for basic handling-qualities (HQ) specification testing
of a conventional single-rotor helicopter (Bell 214ST) in hover.

 

54

 

 Note that the
record starts and ends with the aircraft in a trim state. The pilot followed preflight
briefing instructions to provide a trim record of 3 s before starting the maneuver,
then perform the maneuver, and finally return to trim and remain there for 3 s
before turning off the data recorder. Again, this record of the trim condition
before and after the maneuver is important for the spectral analysis, which sub-
tracts the trim state from the data.

The next point to observe in Fig. 5.3 is that the sweep starts with two low-
frequency input cycles and then progresses smoothly to the mid and higher

ωs  5 ωf⋅≥

ωmax 12 rad/s 2 Hz≅=
ωf 60 rad/s= fs 50 Hz=

ωNyq 0.5ωs≡

ωmax
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frequencies. In this example, the low frequency of interest in the frequency range
of applicability was 0.05 Hz, which is equivalent to a maximum period of interest
of . So the pilot was advised to execute two 20-s input
cycles at the start of the maneuver. The low-frequency input is not a pure sine
wave, and so this part of the sweep actually ensures good identification over a
range of frequencies around 0.05 Hz. Then the pilot slowly increases the fre-
quency of the input. The pilot has some discretion in how rapidly to increase the
frequencies. In this example, the first sweep has fewer cycles at low frequency,
more in the midrange, and fewer in the high frequencies, as compared to the sec-
ond sweep. The exact nature of the increase in frequencies is not important; in
fact, some irregularity in the input is actually beneficial because it improves the
richness of the excitation power spectrum and thus improves the identification.
Concatenating the signals ensures a rich spectral content.

The input amplitude also does not have to be exactly symmetric or constant,
either. Sometimes the pilot can instinctively increase the input amplitude at
midfrequencies and decrease it again at higher frequencies. The frequency-
response identification method has been found to be very robust to such varia-
tions in piloting technique. What is important, however, is that 1) the maneuver
starts and ends in trim, 2) there are two good low-frequency cycle inputs, 3) there
is a regular and smooth increase in frequency, and 4) the aircraft oscillations are
roughly symmetric about the trim condition.

Figure 5.4 illustrates the roll-rate response for the frequency-sweep input of
Fig. 5.3. Aircraft responses for the frequency sweep are in the range of 
in angular attitudes and  in angular rates, as can be seen in the figure.
Responses of this typical magnitude are desirable because if the responses are too
small the corresponding signal-to-noise ratio will be low and the identification
quality will be degraded. If the amplitudes are too large, the aircraft will depart
too much from the reference trim condition for the identified model to remain rel-
evant and linear modeling assumptions to remain valid. The test pilot must be
adequately briefed prior to the flight test as to the required amplitudes of the fre-
quency-sweep maneuvers.
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 Fig. 5.3 Frequency-sweep input for handling-qualities testing (Bell 214ST, hover).
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5.6 Detailed Design of Frequency-Sweep Inputs

 

A key part of designing a frequency sweep is determining the needed minimum
 and maximum  frequencies in the sweep required to ensure that the

coherence and associated frequency-response accuracy will be acceptable over
the frequency range of applicability of the model. As an example, for handling-
qualities specification compliance applications, accurate frequency responses are
needed over a range of frequencies of

(5.3)

where  is the bandwidth frequency, which is defined in the handling-qualities
community (e.g., Ref. 4) as the frequency at which the phase of the attitude
response (e.g., ) is . The parameter  is the frequency at which
the phase of the attitude response is , or, in other words, exactly out of
phase. 

Estimates of the bandwidth and the 

 

−

 

180-deg phase frequency can be obtained
from analytical sources such as simulation models or basic flight mechanics cal-
culations of the stability and control derivatives. Estimates of  and  can
also obtained from step response time-history data, using the relationships
between frequency-domain and time-domain response metrics for a second-order
system (e.g., Ref. 79). Finally, a sample frequency sweep can be conducted in a
flight test based on expected, typical, or conservative values of these parameters,
and then the identification results can be used to refine the choice of frequency-
sweep start and stop frequencies. As an example, a lower value for the expected
bandwidth frequency for (SAS-off) rotorcraft is about 1 rad/s, and the 

 

−

 

180-deg
phase frequency is typically about 6 rad/s. The starting (i.e., minimum) frequency
of the sweep is then selected as

(5.4)
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 Fig. 5.4 Roll-rate response: Bell 214ST during hover sweeps.

ωmin ωmax

0.5ωBW ω 2.5ω180≤ ≤

ωBW

φ δlat⁄ 135 deg– ω180
180 deg–

ωBW ω180

ωmin 0.5ωBW 0.5 1⋅ 0.5 rad/s= = =

Chapter 5.fm  Page 92  Friday, June 16, 2006  3:18 PM



COLLECTION OF TIME-HISTORY DATA 93

corresponding to

(5.5)

As will be discussed in Sec. 5.9, there should be two complete long-period inputs
at the beginning of the sweep, corresponding to the minimum frequency:

(5.6)

For our current example, because the minimum frequency of interest is 0.5 rad/s,

(5.7)

The ending (i.e., maximum) frequency of the sweep is thus

(5.8)

corresponding to

(5.9)

and

(5.10)

System-identification flight tests to be conducted for the determination or vali-
dation of six-DOF simulation models intended for flight mechanics and piloted
applications generally emphasize a frequency range that includes lower frequen-
cies (0.3–12 rad/s). For flight-control design, the test frequencies typically cover
the range of 1–20 rad/s, in order to provide the needed high-accuracy data from
near the intended broken-loop crossover frequency  (at which the magnitude is
0 dB for determination of phase margin) to the −180-deg phase crossing (for
determination of gain margin). 

Experience for a wide range of flight dynamics and control applications has
shown the total sweep record length  should be about as follows:

Guideline:

(5.11)

Thus about 40% of the sweep maneuver is associated with the two low-fre-
quency inputs (at ). The remaining time is used to complete the buildup to

fmin
ωmin

2π
---------- 0.08 Hz= =

Tmax
2π

ωmin

----------=

Tmax
2π
0.5
------- 12 s≅=

ωmax 2.5ω180 2.5 6⋅ 15 rad/s= = =

fmax
ωmax

2π
-----------= 2.4 Hz=

Tmin
1
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------- 0.4 s≅=
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the maximum frequency  and to establish trim at the start and end of the
record. For the handling-qualities and flight-mechanics modeling examples
(  = 12–20 s), this guideline would mean an individual frequency-sweep
record length of about  = 60–90 s, which is typical of frequency-sweep test-
ing, as seen, for example, in the AGARD databases.10

Finally, the magnitude of the input is typically in the range of ±10–20% of
control inputs or ± 0.5–1.0 in. for a typical center stick. The resulting aircraft
angular response is typically in the range of ± 5–15 deg (attitude variations),
± 5–15 deg/s (attitude rate variations), and ± 5–10 kn (velocity variations). This
produces a time-history database for a system-identification model that is accu-
rate for typical dynamic maneuvers during flight.

5.7 Flight-Testing Considerations

A detailed report was published by Williams et al.67 covering the background
of rotorcraft frequency-sweep testing, instrumentation requirements, and many
important safety and testing aspects. Issues related to the safety of frequency-
sweep flight testing are addressed by Tischler et al.80 Some key flight-test
considerations are as follows:

1) Real-time telemetry (TM): A real-time readout of telemetered aircraft atti-
tudes, angular rates, airspeeds, and pilot inputs is desirable. This allows flight-test
engineers and test directors to monitor the progress of the sweep test and critical
aspects such as the start and cutoff frequencies, off-axis inputs, and the deviations
from the trim condition. The data should be reviewed and pilot input technique
critiqued after each sweep. Cockpit control position indicators visible to the test
pilot are helpful if available, but not essential.

2) Flight-test planning: Allow approximately 1.0 h per flight condition, once
the pilot has completed several practice runs. Three good sweeps and two dou-
blets should be conducted in a particular control axis before the test proceeds to
the next axis. The two best sweeps will generally be concatenated in the identifi-
cation analysis. The doublet is executed with a sharp input in one direction until
the maximum angular rate is achieved, followed by the same type of input in the
opposite direction.

3) Flight-test conditions: For rotorcraft flight testing in hover, the steady winds
should be 5 kn or less. For forward-flight tests of rotorcraft and fixed-wing aircraft,
it is desirable to have no more than light turbulence (e.g., ). If the winds or
turbulence are too strong, there will be significant reduction in the signal-to-noise
ratio and an associated degradation in the quality of the identification results.

4) Flight-test conduct: The copilot or a member of the flight-test team in the
TM station should help coach the test pilot for proper timing of the sweep inputs.
The copilot should use a simple stopwatch to count off every quarter-cycle for the
two low-frequency periods . For the example case of Eq. (5.7),
the copilot would call out “3, 6, 9, and 12,” thereby indicating to the pilot when
the input should be at maximum (positive), center, maximum (negative), and
back to center for the first low-frequency cycle. This count is repeated for the sec-
ond low-frequency cycle, and then every 10 s thereafter until the end of the sweep
A flight-test engineer should monitor the sweep inputs based on the TM data
stream and notify the pilot if excessive correlation of inputs is apparent and when

fmax

Tmax
Trec

5 kn±

T1 4⁄
1
4
--- Tmax( )≡
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the maximum frequency has been achieved. In typical aircraft and rotorcraft fre-
quency-sweep tests, the pilot is signaled with a call at “1 Hz” and “2 Hz knock-it-
off.” The flight-test engineer should provide feedback and comments concerning
the quality of the maneuver following each sweep.

5.8 Open-Loop vs Closed-Loop Testing for Bare-Airframe 
Identification

Data from SCAS-on flight tests (i.e., closed loop) can be used for bare-
airframe identification as long as the control-surface deflections are measured.
But, if possible, it is generally preferable to conduct the test with the SCAS off
(open-loop) or with the SCAS gains reduced. The main reason is that the SCAS
typically suppresses much of the low-frequency pilot inputs, leading to reduced
signal-to-noise content in the data and a degradation in the identification accu-
racy at low frequencies. 

Figure 5.5 is a schematic diagram for a helicopter pitch SCAS. The “control sur-
face” in this case is the pitch-axis mixer input , which commands a pitch
response from the rotor system. Figure 5.6 presents coherence functions for the
bare-airframe pitch-rate response identification of the AH-64 helicopter 
in hover. In the case marked “open-loop test,” the flight tests were conducted with
the SCAS disengaged, so that the bare-airframe input  and the piloted sweep
input  have the same excitation characteristics. In the second case (“closed-
loop test”), the sweep tests were conducted with the SCAS on, but the bare-
airframe response was again extracted using the mechanical control measurements

 as inputs. At frequencies of about 0.6 rad/s and higher, the coherence levels
are essentially the same, indicating equivalent identification accuracy for SCAS-
off and SCAS-on tests. At the lower frequencies, the coherence drops more quickly
(reduced identification accuracy) for the SCAS-on case because of the suppression
of the low-frequency excitation. So even though the pilot executes a good sweep
with satisfactory low-frequency excitation of the cockpit stick input , the SCAS
feedback suppresses the low-frequency content of the bare-airframe input ,
thereby degrading the coherence in this frequency range. This suppression of
the low-frequency excitation is a common and often problematic occurrence for
SCAS-on flight testing.

A second problem with bare-airframe identification from closed-loop test data
is that the SCAS can induce significant correlation between the control inputs. As
will be discussed in Chapter 9, this control correlation can significantly degrade
the quality of off-axis response identification. A common and particularly difficult
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 Fig. 5.5 Schematic of helicopter pitch SCAS.
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circumstance arises for bare-airframe identification in fixed-wing applications if
an aileron-to-rudder interconnect (ARI) is present in the control system.81 The
ARI is a mechanical or computer crossfeed that moves the rudder in direct rela-
tionship to aileron commands to achieve coordinated turns. This produces total
correlation of the rudder and aileron surface movements for the aileron sweep and
makes bare-airframe identification of the responses to aileron impossible (see
Sec. 9.3.2, limiting condition # 1).

If flight testing is conducted with the SCAS engaged, special provisions must
be made for the multiple aerodynamic surfaces to be independently actuated in
order to achieve an identification of the aerodynamic control derivatives. For
example, in the case of a typical high-performance aircraft configuration, there
are typical control surfaces distributed along the wings and tail (or canard). A
simple schematic of a notional pitch control system is depicted in Fig. 5.7. Pilot
input  and measured pitch-rate response  are processed with the flight con-
trol system to determine an effective pitch input at the mixer . The pitch
mixer distributes the input as a simultaneous (symmetric) actuation of multiple
control surfaces ( ) based on a control allocation algorithm, as indicated
in the figure. Pitch control surfaces might include canards, symmetric aileron
deflection, and elevators. This renders the time histories of the control surfaces
fully correlated. As a result, the individual bare-airframe control derivatives (e.g.,

 and ) cannot be reliably determined, even though the measurements of
the individual surfaces  are available. Alternatively, a lumped pitch
control derivative  can be identified.

This control surface correlation problem was encountered in the initial identifi-
cation studies on the X-31A experimental aircraft. In this project the moment
commands were distributed to the various control surfaces resulting in nearly
complete control correlation. The problem was overcome by repeating the flight
tests with a special excitation system capable of actuating individually the aero-
dynamic control surfaces (e.g.,  alone) as discussed by Weiss et al.82
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 Fig. 5.6 Degradation of bare-airframe identification with SCAS-on flight testing.
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A final problem that can arise with bare-airframe identification from closed-
loop test data is the potential for feedback of the disturbance response to the con-
trol input signals. In this case, some of the bare input excitation will be correlated
with the disturbance response (e.g., turbulence) in addition to the primary
response to the piloted (sweep) input. As will be discussed in detail in Chapter 8,
this feedback correlation of noise results in a biased estimate of the bare-airframe
response. The bias error can be minimized by ensuring a suitable ratio of sweep-
to-disturbance input.

There are many situations when it is not practical or prudent to perform an
open-loop test. For example, the bare-airframe dynamics might be too unstable or
too highly coupled, leading to SCAS-off handling qualities that are not suitable
for achieving good sweep inputs. If there is a high level of instability in a particu-
lar axis and if a “split-axis” SCAS configuration is possible, then the SCAS
should be engaged only in those channels for which it is needed. Another useful
technique is to reduce the feedback gains, if possible, thereby lessening the
potential for control correlation and dynamic response suppression. In summary,
open-loop testing is the preferred approach for bare-airframe system identifica-
tion when the aircraft dynamics permit, but it is not mandatory.

5.9 Piloted Frequency Sweeps: What IS and What IS NOT Important

Test pilots and engineers are often trained in conventional flight-testing tech-
niques (steps, pulses, controllability, etc.) and are often new to the concept of
frequency-sweep testing. Sometimes it is not obvious as to what are the important
aspects of frequency-sweep testing that translate into good frequency-domain
identification results. The following short list of key dos and don’ts is based on the
leading author’s experience with system-identification testing involving more than
30 aircraft programs to date.

The following points summarize what IS important in the conduct of piloted
frequency-sweep tests:

1) Sweeps should start and end in trim, with 3 s of trim data contained in the
test record. This is important for the determination of the trim values of the con-
trols and responses as part of the subsequent spectral analysis.
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 Fig. 5.7 Simultaneous actuation of multiple aerodynamic control effectors.
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2) After the initial trim period, execute two complete long-period inputs .
This part of the maneuver is generally the most challenging because the aircraft
will generally experience larger amplitude responses that might also be consider-
ably out of phase with the pilot inputs. Good piloting technique is rapidly learned
with some ground and flight practice prior to formal data collection. Timing indi-
cations, provided by a copilot or ground station engineer, can be very helpful for
this part of the sweep (see item 6).

3) Maintain a smooth increasing progression in frequency, without rushing
through the midfrequencies. Along with some coaching based on real-time telem-
etry, the pilot rapidly learns not to rush through the midfrequencies on the way to
the higher frequency inputs.

4) Adjust the input to maintain the aircraft response transients to be roughly
symmetric about the trim flight condition. For hover tests (rotorcraft and V/STOL),
attitude and ground position provide good center references. In cruise condition
tests (fixed wing and rotorcraft), roll attitude and aircraft airspeed provide good
center references. Even if the input is symmetric, the aircraft response will not be
symmetric because of atmospheric disturbances and off-axis inputs, causing the
aircraft to tend to drift away from the reference condition. Configuration asymme-
tries or nonlinearities will also contribute to this drift. So, for example, the aircraft
might start to drift slowly to the right during a roll sweep. The pilot should be
advised to migrate the center point of the control input to the left during the sweep,
so that the overall response is roughly symmetric about the reference flight condi-
tion. Pilots often use small pulse-type inputs to achieve the needed correction.

5) Nonswept controls are applied to “bound” the off-axis responses to be roughly
symmetric with respect to the reference flight condition. This off-axis regulation
should constitute a low-frequency or secondary task. For example, left uncorrected,
a helicopter will develop significant yawing oscillations during a roll (lateral stick)
sweep test. Although it is desirable to capture the coupling response of yaw caused
by lateral stick inputs, large yawing motion is not desirable. Therefore some pulse-
type off-axis inputs will be required to keep the yaw within reasonable bounds, say,
±10–20 deg. However, these secondary pedal inputs should not be highly corre-
lated with the primary lateral stick sweep input. Excessive correlation of secondary
controls is generally avoided with clear preflight instructions and real-time feed-
back to the pilot during the conduct of the sweep. The pilot should be advised to
concentrate on the primary sweep input; maintaining the response to be roughly
symmetric about the reference condition should be treated as a secondary or low-
frequency trim task. Another effective technique is for the copilot to take care of the
needed off-axis corrections. This pulsing correction technique for maintaining the
transients centered about the reference flight condition generally ensures that
the secondary and primary inputs will not be highly correlated. 

6) The flight-test engineer (in the aircraft or ground station) or copilot should
provide timing indicators to the pilot to assist in the frequency-sweep tests. For
example, suppose the long-period inputs for a lateral stick frequency sweep are
selected as 16 s ( ) corresponding to a minimum frequency of

 rad/s, typical for flight-mechanics applications. The flight-test engi-
neer should call out “4, 8, 12, 16” to signal the pilot when the lateral stick posi-
tion should be roughly at maximum right, center, maximum left, and center for
the first long-period cycle. The flight test continues with “20, 24, 28, 32” for the

Tmax

Tmax 16=
ωmin 0.39=
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second long-period cycle. After this, the count to the pilot continues at every 10 s,
“40, 50, ...,” until the end of the sweep, to help pace the pilot as to where the
frequency progression is relative to the overall desired sweep record length . 

7) Telemetry data are useful in monitoring the frequency progression and high-
frequency cutoff point. Running the strip charts at a fast speed (e.g., 5 mm/s) allows
the frequency of the stick inputs to be easily monitored in real time. Piloting tech-
nique to achieving a slow and steady buildup from the minimum to maximum fre-
quencies benefits from some practice and coaching based on the TM data. Also, the
pilot should be signaled as the maximum frequency is approached. For example,
suppose that the high-frequency limit for the sweeps is selected as  Hz.
The flight-test engineer should signal the pilot with call-outs of “1 Hz,” “1.5 Hz,”
and “2 Hz, knock it off” to ensure that maximum frequency is not exceeded. After
the sweep is completed, the strip charts can be reviewed to ensure that the sweep
was completed as desired (e.g., amplitudes, frequencies, centered about trim, etc.),
and feedback can be given to the pilot before the next sweep is conducted.

The following points summarize what IS NOT important in the conduct of
piloted frequency-sweep tests:

1) Constant input amplitude is not important. The pilot does not have to be
concerned about maintaining constant input amplitude with changing frequency.
The important consideration should be the frequency content of the input.

2) Exact sinusoidal input shape is not important and in fact is not desirable.
Irregularity ensures a broader bandwidth of excitation, and nonrepeatability of
the input wave form improves the overall information content when the repeat
sweep records are concatenated (linked) in the analysis. The input does not have
to be precisely defined or controlled by jigs or other techniques. The frequency-
response identification method has been found to be very robust to considerable
variations in input excitation.

3) Exact frequency progression is not important. Experiments have been per-
formed using tones and lights and other means to help the pilot to track an exact
frequency progression. Often the pilot is confused by these timing cues because
the response of the aircraft will require nonsinusoidal (e.g., pulse type) input to
maintain the aircraft generally centered about the reference flight condition. Fre-
quency sweeps are best conducted without detailed external cues, beyond the
general timing prompts discussed in Sec. 5.7 and in items 6 and 7 of the preced-
ing subsection (i.e., “What IS important”).

4) Exact repeatability is not important and indeed is not desired. The pilot will
naturally perform the sweep a little differently each time, thereby improving the
information content of the linked records.

5) Increased input amplitudes at higher frequencies are not needed. As the
higher-frequency inputs are reached, the aircraft response generally lessens
(because of the  rigid-body rate-response behavior). The test pilot might feel
it necessary to overcome this lack of perceived response by increasing the ampli-
tude of the control inputs with increasing frequency. This is neither prudent nor
required, and the pilots should be coached to avoid increasing amplitude inputs
beyond the recommend limits of about ± 10–20%. Instead, they should allow the
aircraft response to attenuate naturally with increasing frequency.

6) High-frequency inputs are not needed. The maximum frequency for piloted
sweeps of aircraft and rotorcraft is typically limited to about 2 Hz, which results in

Trec

fmax 2=

k s⁄
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good identification models for flight mechanics and control applications. This cut-
off frequency generally corresponds to the bandwidth for typical piloted and con-
trol system inputs during maneuvering flight. So by staying within these
guidelines, aircraft loads during sweep tests typically do not exceed those expected
for normal flight maneuvering and are usually much less than those encountered
for typical controllability tests involving rapid control reversals. However, it is
physically easy for a pilot to execute roll and pitch sweep inputs to frequencies as
high as 4–5 Hz. Such high-frequency piloted inputs are neither necessary nor
prudent and can lead to excessive structural loads on the aircraft. As already men-
tioned, the input frequency is easily monitored from telemetry of piloted control
deflections. Frequency-sweep testing can be accomplished safely without teleme-
try, following some ground-based practice to sensitize the pilot to the issues
around higher-frequency inputs and amplitudes. System-identification testing of
high-frequency, lightly damped dynamics, such as flutter modes (fixed-wing air-
craft) and rotor modes (helicopters), is a common and effective technique for
modal determination, but it should be accomplished with computer-generated
inputs and include provisions for automated sweep termination based on real-time
monitoring of critical loads (Sec. 5.11).

5.10 Summary of Key Points in Piloted Frequency-Sweep Technique

The following points summarize the key considerations in the piloted frequency-
sweep technique as discussed in the preceding sections:

1) The sweeps should start and end in a trim condition.
2) Nonswept controls should be applied as a secondary input to reduce large

off-axis responses, but must not be excessively correlated with the primary input.
3) Large asymmetrical shifts in aircraft response should be countered by low-

frequency shifts in the center control position.
4) The sweep technique should be practiced on the ground and in flight with

timing cues provided by the copilot. 
5) The required frequency range of the test should be determined in advance.

The test engineer should monitor the input frequency and call “knock it off”
when the maximum desired frequency is achieved.

6) All parties should be aware that pilots can easily generate large-amplitude
inputs at frequencies of up to 5–6 Hz. This is generally not necessary and can be
potentially damaging to the aircraft.

Modern aircraft employ high levels of command and feedback augmentation
that greatly improve handling qualities and make the frequency-sweep testing
easy to learn and very efficient to perform. An excellent example of this was the
Advanced Digital Optical Control System Demonstrator (ADOCS), which incor-
porated a model-following control law and a sidestick controller in a UH-60A
helicopter (Fig. 5.8). Piloted frequency-sweep testing and system-identification
analyses using CIFER® were conducted to document the response characteristics
and to compare handling-qualities characteristics with the (proposed at that time)
ADS-33 design specifications.83 Aircraft excitation, achieved via the side-stick
controller, and the associated pitch-rate response are shown in Fig. 5.9. Real-time
telemetry of pilot inputs and aircraft responses ensured that preestablished air-
craft flight limits were not exceeded. A complete discussion of the ADOCS
flight-test results is given by Tischler et al.84

Chapter 5.fm  Page 100  Friday, June 16, 2006  3:18 PM



COLLECTION OF TIME-HISTORY DATA 101

  

 Fig. 5.8 ADOCS Demonstrator.
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 Fig. 5.9 Piloted frequency-sweep flight testing of the ADOCS Demonstrator.
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5.11 Computer-Generated Sweeps

Computer-generated frequency-sweep inputs can be both effective and time
efficient in many ground and flight applications, but they must be properly syn-
thesized in order to obtain the desired frequency spectrum. The Schroeder-phase
signal discussed earlier (Sec. 5.2) has shown promise for system-identification
applications.77 Tischler developed an automated frequency-sweep testing
approach, using an exponential sweep and white noise, for the frequency-
response identification of an off-line simulation model of the UH-60.85 The expo-
nentially increasing sweep frequency is used to ensure that more time is spent at
the lower frequencies (longer characteristic periods) and less time at the higher
frequencies (shorter characteristic periods). Young76 and Young and Patton77 also
found that the logarithmic sweep was preferable to the linear sweep. They further
concluded that the log-sweep and Schroeder-phase (optimal) inputs yielded com-
parable identification results for flight-dynamics applications. 

At first glance, it would seem that the frequency sweep would simply be
implemented as

(5.12)

A sweep generated using this algorithm will exhibit frequencies that increase
much faster than the function because the product of  in Eq. (5.12) is
now actually time modulated . To solve this problem, the frequency-sweep
component is generated by the equation

(5.13)

where A is the sweep amplitude, typically 10% of the maximum deflection limits,
and

(5.14)

The frequency progression is given by

(5.15)

where

(5.16)

The values  and  have been found to be suitable for a wide
range of applications. 

The general implementation of the automated sweep should include several
additional features, such as trim duration, where zero input at beginning and end
ensures a good steady-state condition; constant frequency of  for one full
period, which ensures sufficient spectral content at the starting frequency before
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starting the progression of Eq. (5.15); fade in and fade out, which avoids sharp
inputs at the start and the end of sweep; and selectable notches, which attenuate
magnitude, if desired, at known structural modes.

The values of the sweep parameters depend on the frequency range of interest
and the units of the control input. Typical values for documenting aircraft flight
dynamics are

, , , (5.17)

The frequency progression plotted in Fig. 5.10 starts with a  period corre-
sponding to the starting frequency ( ) and then progresses according to
the exponential function [Eq. (5.16)]. The complete frequency-sweep input 

Trec 90 s= A 1.0= ωmin 0.3 rad/s= ωmax 12.0 rad/s=

 Fig. 5.10 Frequency progression for typical automated sweep [Eq. (5.17)].
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for this example [Eq. (5.17)] is plotted in Fig. 5.11; it includes the trim duration
( ) and fade in during the initial starting frequency.

Computer-generated sine sweeps alone might sometimes not constitute an
excitation signal with sufficient spectral richness because they will not have any
of the irregularities in input shape that are evident in a pilot-generated sweep. So,
if necessary, a band-limited white-noise component can be added to the sweep to
enrich the spectral content:

(5.18)

A typical rms (1σ) level of the noise signals is selected as

(5.19)

The white-noise component should be processed with a low-pass filter
( ) to suppress high-frequency content in the excitation. 

This computer-generated input signal, which combines an exponential sweep
and white noise, has proven highly effective for both flight- and ground-based
testing purposes for a wide range of vehicles and subsystems (e.g., actuators). In
flight-test and ground hardware applications, two repeat runs of the identical

3 s

 Fig. 5.11 Typical automated frequency-sweep input [Eq. (5.17)].
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sweep in Eq. (5.17) will allow an averaging out of the effect of random turbu-
lence and provide a concatenated record length of , which is ideal for
typical flight-mechanics applications (e.g., , , and

; see Sec. 7.10.1). For applications involving system-identification analy-
sis of simulation math models, identical repeated inputs will yield identical
responses and not contribute any averaging benefit. For these applications, two
automated sweeps cases can be generated with different start and stop frequen-
cies to provide the needed averaging effect and overall record length. An easier
alternative for ground-based testing is a longer-duration single sweep of

.
Automated data collection with computer-generated frequency sweeps has

seen widespread use for both ground-based and flight-test applications. Examples
of ground-based applications are bench testing of flight-control actuators and
sensors, validation of feedback control algorithms in flight computers, wind-
tunnel testing of rotor system dynamic response, extraction of linearized simula-
tion models from complex nonlinear simulations, and testing of simulator motion
and visual drive systems. Examples of flight-test applications of automated
sweeps are stability margin testing, structural mode identification, rotor dynamics
identification, and unmanned-air-vehicle (UAV) testing. Several interesting
examples of automated frequency-sweep testing are presented in the next sec-
tions. A complete description of parameters included in the automated sweep
implementation is given by Tischler et al.86 for an application to a full-scale rotor
test in the wind tunnel.

5.11.1 System-Identification Testing of Off-Line Simulation Models
Figure 5.12 shows a schematic diagram for extracting the bare-airframe

response of an off-line (batch mode) simulation model of a helicopter.16 The
bare-airframe (i.e., aerosurface) inputs are the total (pilot + feedback) mechanical
(mixer) inputs to the main rotor control for pitch , roll , heave ,
and the tail-rotor control  for yaw. The feedback loops in pitch, roll, and
yaw are needed to ensure that the aircraft oscillations remain centered about the
trim flight condition during the sweeps. Suppose the bare-airframe roll-rate
response to pitch input ( ) is to be extracted from  (input) and  (out-
put) data collected from a sweep of the lateral stick . When dynamic coupling
(i.e., off-axis response) exists in the bare-airframe dynamics, the secondary
response variables ( , , ) will be excited in a manner that is fully correlated
with the primary control input . The feedbacks of the pitch, roll, and yaw
signals in the control system will result in a complete correlation of the associ-
ated aerosurface inputs ( , , ). As discussed in Chapter 9, this will
cause the identification solution to become singular (breakdown).

To overcome this problem, distinct white-noise excitations (with different
seeds) must be added into each of the off-axis pilot controls ( , , and )
in order to ensure that the aerosurface deflections are not fully correlated by the
feedback system. The rms (1σ) level of the noise signals is selected in the range
of

(5.20)
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where we recall that  is the amplitude of the on-axis sweep signal [Eq. (5.13)].
Figure 5.13 shows the input time histories ( , , , ) for a lateral
sweep case used to obtained the AH-64 bare-airframe response ( ) from
simulation.

5.11.2 Structural-Response Determination
Automated frequency-sweep testing has also seen wide application to aircraft

and rotorcraft to determine structural stability margins. A complete test program
is generally a very time- and cost-intensive effort because of the many test condi-
tions (e.g., flight speeds, aircraft loading, external store configuration) needed to
demonstrate adequate margins over the expected flight envelope. These tests
require a great deal of care because structural damping ratios can be as low as
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Fig. 5.12 Feedback loops to maintain reference condition during simulation model
testing. 
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1 or 2% and the possibility of dynamic resonance and flutter (complete loss of
structural damping) exists. Carefully tailored computer-generated inputs can be
used that slowly build up the frequency, with notches to attenuate input ampli-
tudes for particularly lightly damped modes and a rapid drop-off as the frequen-
cies get higher. Key structural response parameters are monitored using strain
gauges, with provisions for automatic termination of the test if the sensed loads
or dynamic responses exceed safety limits. As discussed in detail in Sec. 7.10.4,
the sweep record lengths for structural-response testing are also increased, as
compared to the guideline of Eq. (5.11), to ensure that the modal characteristics
are determined with sufficient accuracy.

Time (sec)
0 20 40 60 80

–1

0

1

–.4

– .2

0

.2

– .2

0

.2

.4

– .2

0

.2

Fig. 5.13 Simulation inputs for lateral frequency sweep including off-axis white-
noise inputs.
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Tilt-rotor aircraft can be susceptible to coupling of the engine nacelle/prop and
rotor/wing, resulting in a phenomenon called whirl-mode instability. Acree and
Tischler87 used automated frequency-sweep testing and system identification to
determine the characteristics of the key modes over the airspeed envelope and
compared these results with analysis and other test techniques. Modern fixed-
wing aircraft with high-bandwidth feedback flight-control systems are suscepti-
ble to a lightly damped dynamic coupling of the aerodynamics, flight control, and
wing structure, referred to as aeroservoelastic coupling. An excellent discussion
of aeroservoelastic testing and system-identification analysis is presented for the
European Aircraft Program (EAP) and the Eurofighter by Caldwell.88,89 In heli-
copters, the aeroservoelastic coupling of the lightly damped in-plane rotor
response, fuselage roll mode, and the flight control can lead to a flutter-type
response referred to as air resonance. Automatic frequency-sweep testing was
conducted extensively in the development of the RAH-66A Comanche helicopter
to determine aeroservoelastic stability margins, validate comprehensive math
models, and develop feedback control methods for improving the damping of the
air resonance modes. The automated inputs were introduced via the flight-test
interface panel (FTIP) as described by Kothmann and Armburst,90 and the analy-
ses were conducted using CIFER®.

An extensive flight research effort was conducted at the NASA Dryden Flight
Research Center to evaluate various testing and analysis methods for identifying
the structural modes of a fixed-wing aircraft. This work, summarized by Brenner
et al.,91 used a specially modified F/A-18 aircraft. The frequency range of interest
for these tests was 3–40 Hz. Identification results were compared for various
sweep signals such as using logarithmic vs linear frequency progression and
decreasing vs increasing frequency progression. The results show improved low-
frequency excitation for logarithmic as compared to linear sweeps. Also, the
analysis showed that there was no advantage to sweep records with greater than a
30-s duration for this structural-response application. Improved results were
obtained when up to four repeated 30-s sweeps were conducted and concatenated
in the analysis.

Figure 5.14 shows a generic example of the automated sweep signal capability
that was developed for the wind-tunnel test of a full-scale helicopter rotor
(Fig. 5.15), as described by Tischler.92 Two notches were included to avoid exces-
sively exciting some of the lightly damped structural modes. Note also the fade-
in and fade-out function (indicated in Fig. 5.14) to avoid sharp inputs to the rotor
that could have potentially excited lightly damped modes of the test stand. The
excitation signal consisted of a sweep plus white noise, using Eqs. (5.18) and
(5.20). Figure 5.16 shows the time-history data that was collected during this test.
The rotor swashplate deflection  is measured downstream of the actuator
response, and it reflects some attenuation of the commanded sweep input at
higher frequencies. The input autospectrum of the rotor swashplate 
shown in Fig. 5.17 reflects a uniform distribution of the computer excitation as
defined herein, with the desired attenuation at the selected notches and a roll off
at higher frequencies. Two key response variables shown in Fig. 5.16 are the test
stand rolling moment  and rotor blade lead-lag deflections . By tailoring
the inputs carefully and monitoring the response so that no load limits were
exceeded, the test was successfully and safely completed.

θ1c

Gθ1cθ1c

Mx ζ1c
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 Fig. 5.14 Automated excitation signal for rotor test.

Fig. 5.15 Sikorsky bearingless main rotor (SBMR) test in the NASA Ames 40 ×××× 80-ft
subsonic wind tunnel. 
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5.11.3 Unmanned Air Vehicles
Automated frequency-sweep testing has seen wide and successful application

in support of UAV development. The highly unusual configurations of UAVs and
the rapid configuration development and modification process means that there
often are no available (or sufficiently accurate) physics-based simulation models.
System identification has seen wide and highly successful utility for UAV devel-
opment, supporting airframe dynamic model determination and control system
validation and tuning.12 
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 Fig. 5.16 Sample time-history data from frequency-sweep wind-tunnel tests (SBMR).
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One very interesting application of CIFER® was to the Pathfinder solar UAV
aircraft93 pictured in Fig. 5.18. A flight-data record for a typical automated sweep
test is shown in Fig. 5.19. Sweeps conducted early in the flight-testing program
were used for bare-airframe response identification and to optimize control sys-
tem architecture and gain settings. During the high-altitude trials, which reached
a record-breaking altitude of 71,500 ft, automated sweeps were conducted at
every 10,000 ft of altitude during both ascent and descent to check the stability-
margin sensitivity to the large changes in atmospheric density and temperature
(which affected actuator performance) and to adjust the gain settings appropri-
ately in real time.
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 Fig. 5.17 Autospectrum of swashplate pitch input (SBMR).

 Fig. 5.18 Pathfinder in flight over Hawaii (NASA photo by Nick Galante).
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5.11.4 Important Issues for Automated Frequency-Sweep 
Testing

Two important issues with computer-generated sweeps should be remembered:
1) Computer-generated symmetrical sweep inputs do not ensure symmetry in

aircraft response. The SCAS or pilot can add the necessary trim inputs to keep
the aircraft response centered near the reference flight condition.

2) Automated frequency-sweep tests for flight-dynamics identification can
involve sizable response variations at low frequencies. Pilots generally do not like
to “go for a ride” while the computer flies the sweep, especially for larger excita-
tions. The pilot will generally allow larger excitations if they are executing the
sweep input. Flight-test experience to date indicates that, for this reason, pilot-
generated sweeps are preferable for handling-qualities tests of piloted vehicles. 

5.12 Frequency-Response Identification from Other Types of Inputs

Sometimes flight-test data available for system-identification studies are from
maneuvers other than a frequency sweep. These can be dynamic maneuver data
from flight tests not conducted specifically for frequency-domain identification
purposes or from other commonly used identification inputs, such as steps, dou-
blets, or time-optimal multisteps (e.g., 3-2-1-1 input). These flight data can be
successfully used for the frequency-response method of system identification, but
often with some (limited) loss in spectral content as compared to a frequency

45

50

55

10

0

–10

2

0

–2

5

0

–5

4

0

–4

0 30 60 90
Time (sec)

FS
Va

l
r 

(d
eg

/s
ec

)
q 

(d
eg

/s
ec

)
u 

(f
t/

se
c) True Airspeed

Pitch Rate

Yaw Rate

Sweep Command

Elevator Command

 Fig. 5.19 Automated frequency sweep for Solar Pathfinder.
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sweep. This is demonstrated next using flight-test data from a UH-60A helicop-
ter. Lateral-stick frequency sweeps and doublets were flown SCAS off in hover.
The lateral-stick  time histories for three repeat records for each type of
maneuver are shown in Figs. 5.20 and 5.21. Notice that the doublet records are
significantly shorter in duration than the sweep records.

Figure 5.22 compares the system-identification results of the on-axis roll-rate
response ( ) from the standard pilot sweeps (dashed lines) vs those from
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 Fig. 5.20 Lateral frequency-sweep flight tests (UH-60A, hover).
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 Fig. 5.21 Lateral-stick doublet flight tests (UH-60A, hover).
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Fig. 5.22 Comparison of on-axis identification results from sweep and doublet
maneuvers (UH-60A, hover).
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linked-control doublet records (solid lines). The first two graphs show the input
autospectrum  and the output autospectrum , which are the frequency dis-
tributions of the excitation and response signal power. The next two graphs show
the frequency-response ( ) magnitude and phase. The last graph shows the
coherence, which is a good indicator of identification accuracy. The identification
results for the linked sweeps extend to very low frequency (0.13 rad/s) because of
the long record lengths, as compared to the doublet data (identification starts at
0.8 rad/s). But in any case there is insufficient spectral content in the data to
obtain good identification results from the sweeps at the lower frequencies (poor
coherence at frequencies below 0.8 rad/s).

The input autospectrum for the sweep maneuver is quite uniform over a wide
frequency range, indicating that the spectral content of the excitation is good over
the frequency range of interest. The input autospectrum for the doublet data is
slightly higher in the frequency range of 0.8–2.0 rad/s, and then falls off quite
noticeably beyond 3.0 rad/s as compared to the sweep. The aircraft response (out-
put) autospectrum also falls off more rapidly at high frequencies for the doublet
input as compared to the sweep input, reflecting the differences in the excitation
autospectrum.

The coherence values are high for both maneuvers over the wide frequency
range of 0.8–12 rad/s, which indicates a common high degree of identification
accuracy over this frequency range. The coherence drops for the doublet maneu-
ver beyond 12 rad/s because of the greatly reduced input excitation. The fre-
quency-response curves are essentially identical for the two types of maneuvers
over the broad range of frequencies associated with the short-term response, with
only minor differences in the phase response. Overall, the linked doublet maneu-
vers are seen to be equally effective as the frequency sweep for system identifica-
tion of the on-axis response ( ) using the frequency-response method.

The frequency-response identification results for the off-axis response ( )
using the same data records are shown in Fig. 5.23. For this response pair there is
no acceptable identification result for the linked doublet maneuver, as seen in the
coherence function of less than 0.6 over the entire frequency range of identifica-
tion. The identification result from the sweep input is satisfactory over a frequency
range of 0.5–4.5 rad/s, and this will provide important dynamic response data for
the helicopter coupling response. In general, the sweep maneuver is a superior test
input for the identification of a fully coupled vehicle dynamics model.

Keller et al.94 compared on-axis frequency-response identification results and
handling-qualities metrics for a hovering helicopter as obtained from 1) linked
records of dedicated frequency sweeps, 2) linked records of common flight-test
pulse inputs, and 3) linked records of hovering flight. The results obtained using
CIFER® showed generally excellent agreement between the results obtained
from sweeps and from pulses. A poorer result was obtained for the data from
hovering flight because of the reduced excitation for this mostly passive task. The
study concludes that pulse inputs can be used for on-axis frequency-response
analysis of handling qualities, thereby reducing the number of overall frequency
sweeps that are required for ADS-33 compliance testing. Similarly, Twisdale and
Ashurst42 developed a fixed-wing aircraft flight-testing approach, System Identi-
fication from Tracking (SIFT), that achieved frequency-response identification
from handling-qualities evaluations of air-to-air tracking and flight refueling.

Gxx Gyy
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p δlat⁄
q δlat⁄
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In Hamel,10 CIFER® identification results for the Bo-105 helicopter were
compared for three different inputs (doublet, 3-2-1-1, sweep). Each result was
based on concatenated repeat runs. As expected, the frequency sweep displays a
more uniform input autospectrum across the frequency range of identification
(0.4–30 rad/s). The identified roll frequency response obtained from the sweeps
shows higher coherence and lower random error as compared the other inputs,
especially at the lower and higher frequencies (i.e., below 1 rad/s and above
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Fig. 5.23 Comparison of off-axis identification results from sweep and doublet
maneuvers (UH-60A, hover).
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10 rad/s). These results are consistent with the results of the preceding UH-60
example.

Morelli41 compared lower-order equivalent system identification of the on-axis
responses from frequency sweeps vs multisteps (2-1-1 input) for flight-test data
from the Tu-144LL aircraft. The on-axis frequency responses and short-period
transfer-function models were again adequately determined by CIFER® for a
linked set of multistep inputs, showing close agreement to the results obtained
using frequency sweeps.

As can be seen, a wide range of inputs can be satisfactory for the identification
using the frequency-response method. The key concern is whether the input pro-
vides the needed excitation content over the frequency range of interest. Many
alternative inputs have been found to provide results of comparable accuracy as
the frequency sweeps for the on-axis response, but are often degraded for the
off-axis responses.

Problems
Instrumentation requirements

5.1 How can filtering of the data affect the system identification? Consider the
effect of common filters in input and output signals vs when different filters are
used.

5.2 How would you determine the dynamic characteristics of an aircraft engine
from a ground test? What would you measure? 

Collection of time-history data from a simulation model for system identification

5.3 Generate an automated sweep using Eqs. (5.13–5.17), but for a record dura-
tion of  and a sample rate of .

5.4 Exercise your pendulum simulation model (Problem 3.1) with your auto-
mated sweep generator (Problem 5.3), and plot the results ( ) to ensure that
the response stays in the linear range.

5.5 Store the input  and output ( ) time-history data from Problem 5.4
in a format suitable for analysis using CIFER®. (Hint for MATLAB® users: use
the ‘save’ command for a ‘.mat file’ or ‘fprint’ to print to a CIFER® text format.)

Piloted frequency-sweep design

5.6 Why is it important not to suppress coupling responses (i.e., off-axis
responses) in frequency-sweep maneuvers for system identification?

5.7 You are a flight-test engineer and are given a UAV helicopter to test. Simu-
lation results indicate that the modes are spread between 0.5–30 rad/s. Design the
frequency-sweep characteristics, sampling rate, and filter cutoff frequency. Use
your frequency-sweep generator to generate this frequency sweep. 

Trec 180 s= fs 100 Hz=

θ θ̇,

Mext θ, θ̇
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Verification maneuvers

5.8 When verifying a system-identification model obtained with a frequency
sweep, why is it necessary to use a dissimilar input (i.e., an input different from
the frequency sweep in this case)? What are some maneuvers that would make
good dissimilar inputs?

5.9 Generate and plot a doublet input similar to the one shown in Fig. 5.2, using
a series of step inputs in external moment of amplitude 0.75 rad/s2 (5 s trim, 5 s
positive, 5 s negative, 5 s trim). Produce and save the time history of the doublet
and the corresponding response of the inverted pendulum in a format suitable for
using CIFER®.
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6
Data Consistency and Reconstruction

 

The preceding chapter examined in considerable detail how to properly design
and conduct a flight test to generate a high-quality database for use in system
identification and model validation. Regardless of how much care is taken in
instrumentation and flight testing, there will often exist kinematic inconsistencies
between independent measurements of dynamically related variables. This chap-
ter covers typical sources of data inconsistencies and presents both sophisticated
and simple methods for isolating and correcting for such errors.

Inconsistencies arising from systematic or 

 

deterministic 

 

sources can range in
complexity from simple differences in sign convention or measurement system
calibration errors to a difficult combination of unknown biases and drifts in atti-
tude and rate gyro measurements. Random or 

 

nondeterministic

 

 sources of data
inconsistency include data dropouts, electrical noise, and air data disturbances,
just to name a few of the practical glitches to be expected in the flight database.
Data consistency and reconstruction techniques evaluate the flight-test data set as
a whole to detect, model, and resolve these potential problems prior to formal
system identification (Fig. 2.1). If not resolved at this point, countless hours can
be wasted in an attempt to identify a consistent mathematical model from a kine-
matically inconsistent data set.

Pioneering work in the field of kinematic consistency analysis and flight data
reconstruction was done by Gerlach,

 

95

 

 Wingrove,

 

96

 

 Klein and Schiess,

 

97

 

 and
Breeman and Simons.

 

98

 

 Methods of instrumentation error modeling, data consis-
tency, and data reconstruction with excellent flight-test examples are well covered
in the AGARD Report on Rotorcraft System Identification.

 

10

 

 The use of the
SMACK Kalman filter/smoother tool,

 

99

 

 developed on the basis of Wingrove’s
work, is discussed in detail by Fletcher

 

100

 

 in an application to the system-identifi-
cation analysis of the AGARD Bo-105 helicopter data and is summarized herein.
A fixed-wing example showing the importance of data consistency on system-
identification results is presented by Friehmelt

 

101

 

 based on X-31 flight data.
The following topics are covered in this chapter: types of measurement errors

in flight-test data, basic concept of kinematic data consistency, case study using
SMACK: Bo-105 flight-test data, simple methods for data consistency and recon-
struction using CIFER

 

®

 

, and conclusions and recommendations.

 

6.1 Modeling Measurement Errors in Flight-Test Data

 

Measurement errors are broadly classified as 

 

deterministic

 

 (systematic) or 

 

non-
deterministic 

 

(random). Common sources of deterministic errors in one or more
of the measurements include bias, scale factor, and drift. These errors can arise
from misalignment in the measurement devices relative to the body axes and
either steady-state or slowly growing offsets in the output of the measurement
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device. Another deterministic error is caused by time shifts that can arise from
asynchronous sampling of the data or nonuniform filtering of the various data
channels. Each sketch in Fig. 6.1 depicts hypothetical “error-free” (i.e., ideal)
signals shown as dotted lines vs “actual” measurement signals as solid lines that
have one of these types of deterministic errors.

Examples of random errors are shown in Fig. 6.2. The first sketch shows an
instrumentation dropout caused by an unpredictable loss of telemetry or tracking
data. The second error is associated with a random disturbance or interference—
mechanical, electrical, or atmospheric. A common aerodynamic disturbance in
rotorcraft is associated with the impingement of the rotor wake on an air data sys-
tem measurement sensor, such as a flow angle vane. The third sketch shows that
finite sensor resolution leads to a quantization type of random error, whose char-
acteristics resemble white noise.

 

6.1.1 Using Kinematic Consistency Methods to Remove 
Measurement Errors from Flight-Test Data

 

There are two main steps to the process of removing measurement errors:
1) formulate a model of measurement errors in the flight-test data and 2) deter-
mine error parameters based on kinematic relationships to reconstruct error-free
signals. The error model should be physically realistic in the sense that the model
is parameterized in terms of the physical properties of the measurement system,
such as instrument bias errors or scale factors. A single error model is sought that
is valid for the entire data set, based on the assumption, generally acceptable, that
the measurement system and environmental characteristics are sufficiently con-
stant over the flight-test period (e.g., several days).

The theoretical basis for data consistency analysis is the set of first-order dif-
ferential equations (e.g., Ref. 56) that relates the kinematic measurements for the
translational and rotational degrees of freedom in an Eulerian (body-fixed) frame
(Fig. 6.3).

The equations for the translational degrees of freedom are

(6.1)

(6.2)

(6.3)

For the rotational degrees of freedom, the equations are

(6.4)

(6.5)

(6.6)

U̇ RV QW– Axcg
g  Θsin–+=

V̇ PW RU– Aycg
g  Θ  Φsincos+ +=

Ẇ QU PV– Azcg
g  Θ  Φcoscos+ +=

Φ̇ P Q  Φ  Θtansin R  Φ  Θtancos+ +=

Θ̇ Q  Φcos R  Φsin–=

Ψ̇ R  Φ  Θseccos Q  Φ  Θsecsin+=

 

Chapter 6.fm  Page 120  Friday, June 16, 2006  3:19 PM



 

DATA CONSISTENCY AND RECONSTRUCTION 121

bias

scale factor

R
es

p
o

n
se

R
es

p
o

n
se

R
es

p
o

n
se

R
es

p
o

n
se

drift

time shift

0 5 10 15 20 25 30 35
Time (sec)

Measured (actual) signal

Error-free (ideal) signal

 Fig. 6.1 Deterministic measurement errors.
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The right side of these six equations involves the measured quantities of trans-
lational velocities (

 

U

 

, 

 

V

 

, and 

 

W

 

), Euler rotation angles (

 

Φ

 

, 

 

Θ

 

, and 

 

Ψ

 

), body
angular rates (

 

P

 

, 

 

Q

 

, and 

 

R

 

), and accelerometer measurements corrected to the
center of gravity ( , , ); the three accelerometer signals are measure-
ments of the specific external forces excluding gravity.

 

102

 

 By substituting these
flight-test measured quantities into Eqs. (6.1–6.6), we can obtain time histories
of the translational state rates ( , , and ) and the Euler rates ( , , and

). Then, in principle, the time integration of these rate variables’ time histories

 

should

 

 produce derived states that match the original measurements. In practice,
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 Fig. 6.2 Random measurement errors.
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however, errors in the original flight-test data will result in an imperfect match, a

 

kinematic inconsistency, 

 

between the calculated quantities and those measured in
the flight test. 

A simple parametric model can be formulated that encompasses both deter-
ministic and random-error contributions to the kinematic inconsistency. As an
example, consider the measurement of the Euler roll angle . In most cases, we
can express the flight measurement  in terms of the estimated (i.e., corrected)
value  by the parametric equation

(6.7)

where the error parameters lumped as , , and
 to account for the deterministic errors, such as sensor misalign-

ment, calibration error, and zero offset. The last parameter, , is gener-
ally modeled as zero-mean white noise and encompasses all three types of
random (nondeterministic) errors. 

The general error-model structure would consist of a set of equations similar
to Eq. (6.7), one for each of the measured quantities. The error-model parame-
ters are determined by minimizing the least-squares error between the measured
and estimated state variables in Eqs. (6.1–6.6). However, it is not possible to
determine an error model that contains scale factors and biases on all measured
parameters because this results in a high correlation in the error parameters,
causing the least-squares solution to become singular (indeterminate). For
example, the effects of a pitch attitude bias 

 

 

 

and a longitudinal accelerometer
bias  on the longitudinal kinematics solution of Eq. (6.1) will be the same
(i.e., correlated), so that they can not be independently determined. Therefore,
engineering judgement must be used to select the types of errors expected to
occur in the measurement signals and avoid correlating effects. For example, in
the AGARD study,

 

10

 

 the researchers included scale factors on the attitude angles
and translational speeds and/or biases on the angular rates and translational

y
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 Fig. 6.3 Body-axis coordinate system.
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accelerations. During the analysis process, some of the error parameters in the
initial selection are sequentially eliminated from the model structure if they are
found to make insignificant contributions to the overall fit cost function. The
resulting “error-free” data [e.g.,  in Eq. (6.7)] are then used for the actual sys-
tem identification.

The SMACK (smoothing for aircraft kinematics) program developed by
Bach

 

99

 

 is a highly effective tool for kinematic consistency analysis, error param-
eter determination, and data reconstruction. In addition, SMACK is useful for
correcting sensor measurements to the aircraft c.g. and estimating winds and
gusts. The SMACK algorithms are based on the Kalman filter/smoother formula-
tion of Wingrove.

 

96

 

 In his work with the AGARD Bo-105 flight database,
Fletcher

 

100

 

 developed a systematic approach based on SMACK for helicopter
kinematic consistency analysis and data reconstruction as a preprocess to system
identification with CIFER

 

®

 

. The results of the Bo-105 case study are summa-
rized in the next section.

 

6.1.2 Bo-105 Flight-Test Analysis Using SMACK

 

Fletcher

 

100

 

 made extensive use of the SMACK tool to examine and correct data
consistency errors in a flight-test database of the Bo-105 helicopter at a flight
condition of 80 kn. This flight-test database was collected by the DLR Institute
for Flight Mechanics, Braunschweig, Germany, with the specific application of
system identification in mind. Flight tests were conducted with several features
that made the resulting database excellent for comprehensive and comparative
studies by the AGARD Working Group 18 members.

 

10

 

 There were 52 separate
flight-test events, sufficient to provide valuable statistical variation, and the runs
were all made within a single week, which meant that the data system character-
istics were likely to be fairly stationary. 

The initial selection of the error model by Fletcher had 24 parameters, but the
data consistency analysis reduced this number to only five important parameters:
scale factors in the three velocity component measurements and small biases in 

 

P

 

and Q. Each of these error parameters varied less than 11% over the entire data-
base, which indicates that they were all physically meaningful and consistent.
The results of the analysis were applied to the flight-test data, and the estimated
data (i.e., with corrected variables) were then used for the system identification.

Figure 6.4 compares the time-history data before and after the flight-test data
were reconstructed by removing the measurement errors. The measured data are
shown by the solid line, and the reconstructed data are shown by the dashed line.
The first three graphs show that for roll angle, roll rate, and lateral acceleration
the measured and reconstructed data are virtually the same. In the case of lateral
velocity, there are periods of time where the corrected estimate is quite different
from the measurement. This discrepancy is caused by the impingement of the
rotor-wake vortices on the air data system vanes that measure angle of attack and
sideslip. These sections of “bad data” were visually identified (vertical dotted
lines in Fig. 6.4) and given zero weighting in the Kalman filter/smoother solu-
tion, allowing the SMACK algorithm to ignore the flight data in these sections
and estimate what the lateral velocity should have been during the periods of
rotor-wake interference.

Φe
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Figure 6.5 compares the lateral velocity frequency response to pedal input
( ) using the original (measured) flight data vs the reconstructed data. The
magnitude plots show a scale factor difference of about 3 dB, which corre-
sponds to the 30% scale factor error ( ) in the velocity component 
that was identified (and corrected) in the SMACK data consistency analysis and
reconstruction. This scale factor reflects the influence of the fuselage on the
local airflow measured by the sideslip vane  as compared to the freestream
sideslip. 
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 Fig. 6.5 Lateral velocity response identification using flight vs reconstructed data.
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The coherence plot of Fig. 6.5 shows that the frequency response from the
reconstructed data has improved identification accuracy over a much broader fre-
quency range. The removal of errors in the velocity measurements associated
with the rotor-wake disturbances increases the signal-to-noise ratio, as reflected
in the improved coherence. Another contributing factor is the complementary fil-
ter action of the Kalman filter, which merges the lateral velocity measurements
with lateral acceleration measurements. The velocity measurements generally
have improved signal to noise at higher frequencies, whereas the roll attitude
measurements generally have improved signal to noise at lower frequencies. The
resulting reconstructed signal has excellent spectral content over a much greater
frequency range than that of the original velocity measurement.

Fletcher found that the accuracy in determining the error-model parameters
was significantly enhanced when the SMACK analysis was conducted on
concatenated data files, each file containing four maneuvers, one in each of the
four control axes—lateral, longitudinal, directional, and collective. From the
original 52 separate events, this resulted in 13 distinct runs, each run now with
good information content in all axes. To demonstrate the benefit of this concate-
nation process, consider first Fig. 6.6, which shows the average value and the
scatter of the lateral velocity scale factor  as estimated by individually analyz-
ing each of the 52 separated runs. The average and statistical values are com-
puted by grouping the results by axis. As expected, the scatter in lateral velocity
scale factor is the least for the directional runs, in which there was the most exci-
tation of the lateral variables. Conversely, the scatter was the greatest for the lon-
gitudinal runs, which had the least excitation of the lateral variables. This clearly

.9
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.7

.5

.3
Control axis

 Fig. 6.6 Effect of excitation on lateral velocity scale factor.
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shows that there must be sufficient information content in the lateral degrees of
freedom to estimate the lateral velocity scale factor. Analogous results were
obtained for the error parameters in the other axes. Therefore, to accurately
extract a single integrated error model that includes parameters for all axes it is
crucial that each data run has sufficient information content in all of the degrees
of freedom.

Figure 6.7 compares the identification results obtained from the individual
records with those obtained from the 13 linked runs—each linked run containing
four maneuvers, one maneuver for each of the control axes. The average values
and variances of the scale factors  and biases  are shown, organized by
dynamic variable: , , , , and . The parameter scatter is significantly
reduced in each case for the linked records. 

The results of Fletcher’s analysis of the Bo-105 database show the following:
1) A fairly simple stationary error model is valid for data collected over a rela-

tively short time span (e.g., several days).
2) Linking the maneuvers to ensure good information content in all axes

reduces the variability of the identified error parameters.
3) Signals should be weighted according to their accuracy, with bad sections of

data deweighted.
4) The action of Kalman filter/smoother extends the bandwidth of the recon-

structed data.

λ b
u v w p q

.9

1.1

.7

.5

Variable

.11

.13

.09

.07

B
ia

s,
 b

 (
d

eg
/s

ec
)

 scale factor, unlinked records
 scale factor, linked records
 bias error, unlinked records
 bias error, linked records

u v w p q

 Fig. 6.7 Effect of linking on scale factor and bias determination.
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6.1.3 Further Experience with Data Consistency Analysis 
Using SMACK

Additional examples of data consistency analysis using SMACK are documen-
ted in system-identification studies of the UH-60 RASCAL103 and the S-9217

helicopters. In all cases, the system-identification results were highly improved
by using the error-free (corrected) data in place of the raw flight data. In one
undocumented study, some difficulties with the analysis were encountered with a
linked single-axis approach when the vehicle’s states at the end of one maneuver
were significantly different from those at the beginning of the next. A single
dedicated multi-axis kinematic consistency maneuver, consisting of a doublet in
each of the four control axes, would avoid this problem. 

The following are general recommendations for data consistency analysis as a
preprocessing step to system identification:

1) Effective data consistency analysis requires that the flight maneuvers excite
all of the kinematic variables.

2) Dedicated data consistency maneuvers should be flown whenever calibra-
tion changes are made, or at least every 10 flight hours.

a) A single continuous flight record with doublet excitations in each of the
control axes is recommended.

b) Single-axis maneuvers can be concatenated to effectively create runs that
excite all of the kinematic variables if care is taken to start and stop each
flight-test maneuver at the same trim condition.

3) Air data signals (angle-of-attack and angle-of-sideslip vanes and airspeed
probe) should be augmented with tracking data whenever possible because these
measurements can often be noisy as a result of aerodynamic disturbances and
subject to considerable hysteresis (as illustrated in Section 6.2.3). Also, air data
signals are unreliable for flight helicopter testing in hovering and low-speed con-
ditions.

4) The data consistency analysis should use an optimal filter/smoother.

6.2 Simple Methods for Data Consistency and State 
Reconstruction

The Kalman filter/smoother data consistency and reconstruction methods of
SMACK demonstrated in Sec. 6.1.2 analyze the entire data set as a whole using
the nonlinear kinematics equations to determine a multivariable error model and
reconstruct data when the measurements are subject to dropouts and distur-
bances. The SMACK tool was developed by NASA at Ames Research Center to
support flight data reconstruction and accident investigations for extreme aircraft
maneuvers (e.g., high angle-of-attack stalls and spins) and extreme weather con-
ditions. When dynamic maneuvers are restricted to the range of linear kinematics
and the winds are calm, the relationships simplify greatly, and frequency-
response identification methods can be used to provide a rapid means for consis-
tency checking and response reconstruction. These procedures will quickly
reveal, for example, the presence of sign errors or calibration scale factors that
might be present in the data. These simple methods are a good precursor to the
more sophisticated Kalman filter/smoother methods and in many cases might
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suffice by themselves. An example illustration of velocity-response reconstruc-
tion is presented for a hovering flight condition in Section 6.2.3. 

The following topics are covered in this section: angular consistency, correc-
tion for instrumentation system dynamics, translational consistency, detection of
faulty data, and control rigging calibration.

6.2.1 Angular Consistency
If we assume small trim angles and small perturbation motion during system-

identification maneuvers, the Euler relationships of Eqs. (6.4–6.6) simplify
greatly to the linearized equations:

(6.8)

(6.9)

(6.10)

where the lower-case notation (e.g., , etc.) refers to small perturbation vari-
ables. The Laplace transform of these linearized equations yields

(6.11)

(6.12)

(6.13)

So the integral relationship of dynamics variables (e.g., φ and p) becomes simply
an algebraic one involving the Laplace variable s.

We adopt an error model that includes scale factors on both the rates and atti-
tudes and (uncorrelated) random noise on the rate measurements only. Figure 6.8

p φ̇=

q θ̇=

r ψ̇=

p φ,

p sφ=

q sθ=

r sψ=

sφ

φmλφ +

np

pmλp

p

 Fig. 6.8 Roll-axis error model.
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illustrates this model for the roll axis. So for the roll-angle measurement,

(6.14)

and for the roll-rate measurement,

(6.15)

where  and  are the measurements of the “true” values  and .
Taking the measured roll angle  as the input and measured roll rate  as

the output, we can determine the frequency response:

(6.16)

where the constant  is the ratio of scale factors,

(6.17)

and any relative time shift in the data caused by filtering or skewing will be
absorbed in , the effective time delay. The values of  and  are determined
from a transfer-function fit of the frequency response .

This analysis method yields the scale factor ratio , but it cannot separate the
roll-angle scale factor  vs roll-rate scale factor . However, the analysis will
show if the measurements, as provided, are kinematically consistent. If they are
consistent, then the error-model parameters will be very nearly , . If
they are not consistent, then it might be possible to isolate the source of error by
conducting the same analysis on redundant sources of the same measurement—
for example, by comparing the measurement of roll rate from the flight-test iner-
tial measurement unit (IMU) vs an aircraft-based system, such as the SCAS.

Figure 6.9 shows a consistency check for roll measurements from the AGARD
Bo-105 flight-test database described earlier (Sec. 6.1.2). The identified fre-
quency response  is shown in the solid line of Fig. 6.9. The very
high coherence over a wide range of frequencies (0.30–12 rad/s) verifies the lin-
earity assumption and indicates a lack of significant measurement noise.
Remember that the dynamic response being identified in this case is simply the
kinematic relationship between the related variables and not the vehicle response
to control inputs. The transfer-function model of Eq. (6.16), shown as the dashed
line in the figure, fits the flight response perfectly. The identified error-model
parameters are

(6.18)

(6.19)

φm t( ) λφφ t( )=

pm t( ) λpp t( ) np+=

φm t( ) pm t( ) φ t( ) p t( )
φm pm

pm

φm

------ s( ) Kse τs–=

K

K
λp

λφ
-----=

τ K τ
pm/φm

K
λφ λp

K 1= τ 0=

1/s( ) pm/φm( )

K 1.006=

τ 0.003 s–=

Chapter 6.fm  Page 131  Friday, June 16, 2006  3:19 PM



132 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

s (s)1( () )20

0

M
ag

n
it

u
d

e 
(d

B
)

–20

100

–50

P
h

as
e 

(d
eg

)

–200

1

.6

C
o

h
er

en
ce

.2

1
Frequency (rad/sec)

Range of fit

10.1

φm

pm

Flight data

Transfer function model

 Fig. 6.9 Roll-response consistency check for Bo-105 (80 kn).
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indicating essentially perfect angular data consistency. This agrees with the ear-
lier SMACK analysis of the AGARD Bo-105 data set, in which no scale factors
were found to be needed in the angular measurements (Sec. 6.1.2).

In summary, frequency-response methods provide a straightforward way of
evaluating the kinematic consistency of the angular measurements. It is difficult
to quantify the nature of these differences by comparing time histories, as is done
when using time-domain methods. The next example demonstrates that instru-
mentation system dynamics can cause relative phase shifts between the data sig-
nals and distort the extracted values of important handling qualities and flight-
control performance metrics. 

6.2.2 Correction for Instrumentation System Characteristics
So far, we have ignored the influence of the dynamics and filtering characteris-

tics of the measurement devices (stick sensors, gyros, noise filters, etc.) on the
identification results. For example, when filter characteristics differ between the
input and output signals, the identified responses will contain spurious lags or
leads. These spurious characteristics introduced by the instrumentation system
elements can be isolated and corrected to extract the actual aircraft response to
control inputs. 

The block diagram in Fig. 6.10 depicts the instrumentation system used in an
actual flight-test program to document helicopter handling-qualities characteris-
tics vs ADS-33. Referring to the center path of the block diagram, the lateral stick
input  drives the aircraft (as represented by the response block ) to pro-
duce the true roll rate . We seek to identify the roll-rate response ( ), but
we only have access to the digitized measurements of pilot stick  and roll rate

 for analysis. The upper path of the diagram shows the analog measurement of
lateral stick deflection as obtained from a potentiometer (labeled as “stick sen-
sor” in the figures). This signal is low-pass filtered within a data conditioning
system to avoid aliasing prior to sampling. The sampled measurement signal

 is used as the input for frequency-response identification. Clearly, the
dynamic characteristics of the final digital signal available for analysis will be
altered from actual pilot inputs . This observation applies to roll rates and all
other measured quantities as well. In our example, the digital data available for

δlat

sampling

pm

p

sampling
Anti-alias

filter

Anti-alias
filter

Stick
sensor

TIMEX
rate gyro

 Fig. 6.10 Instrumentation system elements for handling-qualities flight testing.
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analysis are not the actual aircraft roll-rate response  observed by the pilot, but
rather a signal , which is the filtered version of the output of the TIMEX rate
gyro instrument. The rate gyro instrument will often contain embedded filtering
and signal processing that adds additional lags to the measured signal. So the
identified frequency response  can be a significantly distorted character-
ization of true aircraft response ( ). 

In this actual flight-test example, the sample rate was , and the
stick sensor was a simple string pot with no appreciable added dynamics. The
anti-alias filter bandwidth frequency was 20 Hz, but fortunately these filters
were the same for input and output (as recommended in Sec. 5.4), and so their
influence drops out of the analysis. The dynamic characteristics of the mechani-
cal rate gyro were provided by the manufacturer as

(6.20)

An embedded filter was also contained in the rate gyro package, with characteris-
tics provided as

(6.21)

The product of Eqs. (6.20) and (6.21) gives the dynamics of the box marked
TIMEX rate gyro in Fig. 6.10:

(6.22)

The CIFER® transfer-function fitting tool (NAVFIT, Sec. 11.4) can be used
to extract a simple model that is accurate over the frequency range of interest (1–
15 rad/s): 

(6.23)

which is a time delay of . This is a significant fraction (20%) of the
end-to-end aircraft response delay, determined from  to be .

Using this instrumentation system model, we can correct  to allow a
handling-qualities analysis of , which is what the pilot experiences:

(6.24)

In other words, the actual transfer function is the measured transfer function back-
corrected for the effective time delay ( ), as introduced by the
TIMEX rate gyro unit. This correction is easily accomplished by direct arithmetic

p
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manipulation of the frequency-response data files. A dedicated function is pro-
vided in CIFER® to facilitate frequency-response arithmetic calculations.

Table 6.1 summarizes the results of the sensor dynamics correction for the cur-
rent example. After accounting for the distortion caused by instrumentation sys-
tem dynamics, the key HQ parameters (Sec. 7.14.3) of bandwidth  are
increased, and the phase delay  is reduced. Based on the ADS-33 requirements,
the helicopter handling qualities are actually level 1 (“satisfactory without
improvement”) rather than borderline level 2 (“deficiencies warrant improve-
ment”), as would have been indicated by the uncorrected response. 

6.2.3 Translational Consistency
In this section, we examine the kinematic consistency of the translational data

signals. We adopt the same body-fixed axis system of Fig. 6.3. It is important to
recognize that, owing to the test-mass measuring device, the accelerometers can
be considered as measuring all specific external forces (≡ force/mass) excluding
gravity.102 So if the total external X-force component is represented as follows:

Total X-external:

(6.25)

then the x-axis accelerometer sensor measures the specific external X-force,
excluding gravity:

(6.26)

Similarly, the total external z-force component is represented as follows:
Total Z-external:

(6.27)

and the z-axis accelerometer sensor measures specific external Z force, excluding
gravity:

(6.28)

So, for example, when the aircraft is sitting on the ground, the vertical acceler-
ometer registers a constant value from Eq. (6.3) of 

Table 6.1 Effect of correcting for instrumentation system dynamics 

Parameters Uncorrected Corrected

Bandwidth 2.24 rad/s 2.48 rad/s
Phase delay 0.182 s 0.154 s

ωBW
τp

Xtot Xaero Xlanding-gear X...+ +( ) Xgrav+=

Axcg

Xaero Xlanding-gear X...+ +( )
m

------------------------------------------------------------   ft/s2=

Ztot Zaero Zlanding-gear Z...+ +( ) Zgrav+=

Azcg

Zaero Zlanding-gear Z...+ +( )
m

-----------------------------------------------------------   ft/s2=

Azcg
g– Θ Φ 1– g≈coscos=
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(up, because of the ground pressing up on the landing gear), not  (down), as
might otherwise be expected. This subtlety is sometimes missed and leads the
measurement system engineer to introduce a sign error in the accelerometer cali-
bration.

The translational acceleration in the inertial frame (e.g.,  in the z axis)
can now be related to the external forces using Newton’s Second Law.
We express the linear acceleration in rotating body-axis coordinates and linearize
the equations for small-perturbation motion about the reference condition. The
measurements are also expressed as small-perturbation values about a reference
(rectilinear) trim condition:

(6.29)

where as in the preceding:

(6.30)

Then the linearized equation for small-perturbation motion simplifies to

(6.31)

which gives finally the following:
z accelerometer:

(6.32)

The other accelerometer signals are as follows:
x accelerometer:

(6.33)

y accelerometer:

(6.34)

The body-axis accelerations can then be reconstructed from the measurements
using

(6.35)

(6.36)

(6.37)

+1g
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which are linearized small-perturbation versions of Eqs. (6.1–6.3), with the com-
ponents , ,  included to represent the accumulated measurement biases in
the component signals. These biases drop out in the frequency-response calcula-
tion of [ , , ]. Kinematic consistency of the translational signals
is then checked by comparing the reconstructed velocity responses [e.g.,

] with the measured velocity responses as obtained using the
actual airspeed measurement or GPS data. 

A kinematic consistency check of frequency-sweep flight data from the
Shadow™ 200 fixed-wing UAV (Sec. 13.11) was completed on the vertical
velocity frequency response ( ). Figure 6.11 compares the response

bx by bz
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 Fig. 6.11 Kinematic consistency check for the Shadow™ 200 fixed-wing UAV.
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[ ] based on the reconstructed body-axis acceleration of Eq. (6.37)
with the response [ ] obtained from air boom angle-of-attack data
corrected to the c.g. The coherence functions are good for both responses in the
frequency range of 1–10 rad/s, which corresponds to the short-period response
where the vertical velocity response to elevator input is greatest. The results shown
in the figure generally reflect good kinematic consistency for these flight-test data
in this frequency range. The magnitude curves are in excellent agreement, while
the phase curves track well except for a small offset. The increased phase lag seen
for the air data measurement amounts to an equivalent time delay of 
(compared to the inertial measurement) and is associated with the response lag/
hysteresis of the angle-of-attack vane device.
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 Fig. 6.12 Reconstructed lateral velocity response for XV-15 in hover.
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Three-axis air data measurements are often not available or reliable, especially
for low-speed flight conditions (e.g., helicopters near hover). When GPS data are
also unavailable, we can use the reconstructed body-axis accelerations of
Eq. (6.35–6.37) to obtain the velocity frequency responses that are needed for
system identification. Figure 6.12 shows the reconstructed velocity response
[ ] for the XV-15 roll sweeps at the hover reference condition
( ). The response is accurately identified over the wide fre-
quency range of 0.14–5.5 rad/s, as indicated by the good coherence function
value ( ). This rather simple method of velocity-response reconstruction
has been to found to be quite satisfactory for many identification studies of low-
speed and hovering vehicles.

6.2.4 Detection of Faulty Data
The analysis of kinematic consistency ensures that the proper relationships

hold between the various response (output) signals. Additional data problems that
are associated with the bad input data are commonly encountered, and these will
go undetected in such an analysis. For example, string potentiometers (“string
pots”) are generally used for measurement of pilot stick, actuators, and control
surface deflections. These string pots can start to exhibit slippage or cease to
function altogether. Another common problem is inadvertent swapping of input
signals in the processing and digital storage of data or the mislabeling of data
channels. An excellent and quick method to detect these various sources of faulty
data is to examine the frequency responses and, especially, the associated coher-
ence functions for the primary input-output pairs on a record-by-record basis. 

The detection of faulty data is illustrated in Fig. 6.13, which shows the
accelerometer frequency-response identification results ( ) for three pitch-
sweep events. The data are from a flight test of an AH-64 helicopter at a flight
condition of 120 kn (documented in the AGARD study10). Note that the magni-
tude and phase plots for two records (events 3 and 5) are virtually identical, but
the results for event 6 show that these data clearly were bad. The high coherence
for events 3 and 5 indicates a linear system response from longitudinal input to
longitudinal accelerometer response, as would be expected. The very low coher-
ence for event 6 confirms that these data were bad. Further checking of the data
showed that either the data for the input signal  were incorrectly processed or
the signal was bad for this event. When all three records were concatenated (per
Sec. 7.11), the overall coherence was reduced, but, more importantly, the charac-
ter of the frequency-response phase was corrupted significantly (because of the
phase difference seen in Fig. 6.13 for event 6). It was only by examining plots of
the individual records that the faulty data were isolated and the phase response
problem corrected.

In this case, all three records showed good kinematic consistency between the
response channels, including the accelerometers, and the problem could only be
revealed by checking for a linear relationship (high coherence) between the input
and the output for each record. In this example, the check was based on an analy-
sis of the primary translational response ( ). The primary angular
responses (e.g., ) should also be checked.
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 Fig. 6.13 Detection of faulty data (AH-64).
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6.2.5 Control Rigging Calibration
In a final application of data consistency analysis, we can use frequency-

response identification to quickly and accurately determine control rigging and
unit conversions and check these against mechanical drawings and simulation
models. For example, in the XV-15 with SCAS off, the measurements of pedal
input  and rudder deflection  are related through control gearing and
mechanical linkage dynamics, as represented in the block diagram of Fig. 6.14.

Engineering documentation for the XV-15 (Ref. 62) indicates theoretical travel
limits of ± 20 deg for rudder associated with  of pedal input, or

(6.38)

Inconsistencies between this expected gearing and actual flight-test data can
occur for a variety of reasons. The control calibration (referred to as control rig-
ging) could have been conducted using ground tests, with no load, or perhaps
there was some “give” or flexure in the control linkages. Rigging checks for com-
plicated control mechanical mixers (mixer boxes in rotorcraft) often expose con-
siderable differences relative to simulation schematic drawings. Regardless of the
cause, these control calibration scale-factor errors propagate as errors in the iden-
tified aerodynamic control sensitivity (e.g., ).

An effective test method for determining all of the relevant rigging constants is
to perform frequency-sweep tests of the pilot controls. This can be done in flight
or on the ground, with proper control surface loading, in a hangar test. The fre-
quency response of  identified from XV-15 flight data is shown in
Fig. 6.15. The transfer-function identification method (Chapter 11) is used to
determine a simple model of the form

(6.39)

which models the data very accurately, as seen in Fig. 6.15. The identified param-
eters are

(6.40)

(6.41)

The rigging factor  is 12% above the theoretical value given in Eq. (6.38). The
small equivalent time delay  indicates there are no significant linkage dynamics
(i.e., no hysteresis).
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 Fig. 6.14 System representation of gearing and linkage dynamics.
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 Fig. 6.15 Yaw control rigging identification for the XV-15.
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Problems
Equations of motion for data consistency analysis

6.1 Derive (a) the translational equations of motion from Newton’s laws and (b)
the rotational equations of motion from Euler’s equation. 

6.2 The accelerometers on your aircraft are located distance vector [ ]
from the center of gravity of the aircraft. Derive the equations that relate the
accelerations at the center of gravity  to the accelerations measured

. 

6.3 The nose boom from which angle-of-attack  and angle-of-sideslip  mea-
surements are taken is located at a distance x forward of the center of gravity of
the aircraft. Derive the relationships between the measured angle of attack 
and measured angle of sideslip  to the  and  at the center of gravity. 

Angular consistency 

6.4 Create and upload an integral response ( ) into the CIFER database
(using utility 15). Plot your integral response using utility 19.

6.5 Check the angular consistency of the pendulum simulation data ( ) vs
the ideal response ( ), which was created in Problem 6.4.

6.6 Check the angular consistency of the XV-15 roll response data ( ) for
hover (database 1, use Tables 3.1–3.3 for setup) using the lateral sweep data. Plot
the flight data vs the ideal case . Over what frequency range is the
data consistency satisfactory? 

Instrumentation dynamics

6.7 Consider an instrumentation system that samples and filters the input and
output data for a system to be identified. Suppose that the filter for the input data
has a transfer function  and that the output data filter is

. Overlay Bode plots of the two filters, calculate the phase offset at
10 rad/s, and then determine the relative time delay. 

Translational consistency 

6.8 Check the translational consistency of the lateral velocity data for the XV-15
by comparing the reconstructed lateral velocity [using Eq. (6.36) and then inte-
grating with SIMULINK or another tool] vs the aerodynamic measurement cor-
rected to the center of gravity [ ]. Link the roll and yaw step data
(database 2, use Tables 3.4 and 3.5 for setup) for this analysis, and export the con-
ditioned time histories. Then compare the two velocity signals in the time domain
using overlaid plots. 

Control gearing identification

6.9 Determine the control gearing from pilot lateral stick to aileron surface
deflection ( ) for the XV-15 in cruise using the lateral sweep data (database
2, use Tables 3.4 and 3.5 for setup). 

x y z, ,

ax ay az, ,( )
axm aym azm, ,( )

α β

αm
βm α β

1 s⁄

θ̇ vs θ
θ θ̇⁄ 1 s⁄=

p vs φ

φ/p 1/s=( )

100/ s 100+( )
30/ s 30+( )

βcg Vtot( )0

δa δlat⁄

Chapter 6.fm  Page 143  Friday, June 16, 2006  3:19 PM



This page intentionally left blank



 

145

 

7
Single-Input / Single-Output

Frequency-Response Identification Theory

 

This chapter introduces the basic concepts of single-input/single-output (SISO) fre-
quency-response identification theory. An understanding of these concepts is an
important prerequisite to the success of the system-identification process. The
reader is referred to many excellent textbooks on Laplace transform analysis of
dynamic systems (for example, see Franklin et al.

 

104

 

). A clear and succinct primer
that presents a physical interpretation of the frequency-domain, time-series anal-
yses, and the fast Fourier transform (FFT) is that of Ramirez.

 

105

 

 The details of spec-
tral analysis and frequency-response identification principles are covered in books
by Bendat and Piersol

 

106,107

 

 and Otnes and Enochson.

 

108

 

 The method of tapered

 

overlapped windows

 

 or 

 

periodograms

 

 is key to achieving spectral estimates with
low random error from real test data. Analytical and computational results can be
found in the very useful reports by Nuttall

 

109,110

 

 and Carter et al.

 

111

 

The analysis of a signal or input-to-output process as a function of frequency
(rather than time) is referred to as 

 

spectral analysis

 

. Spectral analysis is often
considered “more art than science” because of the many aspects of sampling, fil-
tering, windowing, and FFT calculations that require user selection of processing
parameters. CIFER

 

®

 

 incorporates into its graphical user interface many practical
guidelines for aircraft, rotorcraft, and subsystem identification, based on exten-
sive practical experience. With much of the nuts and bolts of the analysis machin-
ery taken care of, the analyst can focus more on the correct interpretation of the
frequency-domain results.

To put this chapter into the proper context, refer to the system-identification
block diagram in Fig. 2.1. This chapter deals with the block labeled multi-
variable spectral analysis. Additionally, as shown in Fig. 4.2, this chapter
discusses the CIFER

 

®

 

 module FRESPID; it also will touch on MISOSA and
COMPOSITE, although the latter two modules are discussed more fully in later
chapters. FRESPID, MISOSA, and COMPOSITE, three of the main components
of CIFER

 

®

 

, are all used in performing a multivariable spectral analysis of flight-
test data, which is the key to the rest of the system-identification process.

The following topics are covered in this chapter: 1) definition of frequency
response, including information conveyed about system dynamics and relation-
ship to physical system parameters; 2) methods of calculating frequency response,
such as Fourier transform, discrete Fourier transform (DFT), fast Fourier
transform (FFT), and chirp z-transform (CZT); 3) interpretation of frequency
response and related functions, such as spectral density, coherence, and random
error; 4) frequency response in CIFER

 

®

 

 using FRESPID; and 5) applications.
The mathematics and algorithm details of the Fourier transforms will be sum-

marized at a high level only because these are covered well in the literature (e.g.,
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Bendat and Piersol,

 

107

 

 Otnes and Enochson,

 

108

 

 and Rabiner and Gold

 

112

 

) and the
mechanics of the CZT calculation is fully automated in CIFER

 

®

 

 and other stan-
dard tools (e.g., MATLAB

 

®

 

, IMSL

 

®

 

). We focus herein on the key concepts, selec-
tion of important parameters in the algorithms, and flight-vehicle applications.

 

7.1 Definition of Frequency Response

 

For the purposes of defining the frequency response, it is convenient to perform
a “thought experiment” on a very simple dynamic system that is single-input/
single-output, linear, stable, and time invariant. Suppose we excite this system
with a sine-wave (periodic) input  of amplitude  and frequency :

(7.1)

where  is the frequency in hertz. 
After the transient response has died out, the system output  will also be a

sine (periodic) wave of the same frequency , but with an associated amplitude
 and a phase shift :

(7.2)

In other words, for this linear and time-invariant system a constant sine-wave
input results in a constant sine-wave output at the same frequency , also
referred to as the 

 

first harmonic frequency

 

. For linear systems, we do not need to
consider the higher harmonics in the response (e.g., , , , . . .). Because the
time function is the same for the input and output [i.e., ], the depen-
dency on time 

 

 

 

drops out of this 

 

harmonic analysis

 

, and we can focus solely on
the amplitudes ,  and phase shift , which can be obtained from the time-his-
tory plots. For the present case of periodic input and output signals, the parameter
values , , and  can also be calculated numerically using the Fourier series,
including only the first harmonic (sine and cosine) terms.

 

105

 

The frequency-response function  is a complex-valued function defined
by the data curves for the magnification and phase shift at each frequency :

(7.3)

and

(7.4)

The frequency response can be obtained experimentally using this method of
exciting the system with discrete sine-wave inputs. This quite tedious method
was used to obtain frequency responses in the early flight-test experiments, such
as on the S-55 helicopter, as reported by Kaufman and Peress.

 

30
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The frequency response  fully characterizes the system’s dynamic behav-
ior, in terms of the best linear description of the input-to-output behavior, without
imposing a requirement for any a priori knowledge about the internal structure of
the system’s governing equations of motion. However, in this simple example we
made certain simplifying assumptions, namely, that the system is single-input/
single-output, linear, stable, and time invariant. 

 

7.2 Relating the Fourier Transform of the Time Signals to the 
Frequency Response 

 

H

 

(

 

f

 

)

 

Next we will extend the simple concepts presented in the preceding section
from a constant sine-wave input to arbitrary, nonperiodic inputs, and we will con-
sider systems with stable or unstable dynamic response characteristics. We will
make use of the Fourier transform,

 

107

 

 which is closely related to the Fourier
series

 

105

 

 but is also applicable to nonperiodic wave forms. The Fourier transform
takes nonperiodic time-based input and output signals  and , respectively,
and transforms them into two equivalent frequency-based signals  and

, where

(7.5)

and

(7.6)

are referred to as the 

 

Fourier coefficients. 

 

The frequency response  is now
the complex-valued function that relates Fourier coefficients of the input 
and output  by means of the equation

(7.7)

This is the same function that was obtained for constant sine-wave inputs
[Eqs. (7.3) and (7.4)].

The frequency-response function  is just the ratio of the output to the
input transforms. Expressed in terms of the real and imaginary parts, we have

(7.8)

which is consistent with the sign convention for the phase angle  in Eq. (7.2).
The magnification factor of Eq. (7.3) can now be obtained as

(7.9)

H f( )

x t( ) y t( )
X f( )

Y f( )

X f( ) x t( )e j2πft–  dt
∞–

∞

∫=

Y f( ) y t( )e j2πft–  dt
∞–

∞
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H f( )
X f( )

Y f( )

Y f( ) H f( )X f( )=

H f( )

H f( ) Y f( )
X f( )
------------ HR f( ) jHI f( )+= =

ϕ
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and the phase shift of Eq. (7.4) is obtained by calculating the argument of :

(7.10)

The key restriction we encounter

 

107

 

 in applying Eqs. (7.5) and (7.6) in practical
applications is that the area under the input and output curves in the time domain
must remain bounded (referred to as the 

 

Dirichlet condition

 

; Ref. 105):

and (7.11)

Clearly, this condition eliminates 

 

open-loop

 

 frequency-sweep testing of unstable
systems. A bounded sweep excitation of a system with unstable dynamic modes
will result in an unbounded response and thus violate Eq. (7.11). 

Recall that the guidelines for the execution of the frequency-sweep test require
1) starting and ending in trim and 2) regulating the aircraft dynamics to ensure
that the transients are bounded and roughly symmetric about the reference flight
condition. When conducting a frequency-sweep test as described herein, the pilot
(or control system) will provide the needed feedback regulation to ensure that the

 

closed-loop

 

 response is bounded, regardless of the inherent stability properties of
the bare-aircraft dynamics. Thus for systems with 

 

inherently stable or unstable
bare-airframe dynamic characteristics, the Dirichlet condition of Eq. (7.11) will
be satisfied, and therefore the frequency-response function can be determined
using frequency-sweep testing techniques. Conducting frequency-sweep tests
under closed-loop conditions will introduce some bias error in the frequency-
response estimate, as described in Chapter 8, but in practice the level of bias
errors is not significant when the noise levels are a small fraction of the forced
excitation.

The bounding requirement of Eq. (7.11) does eliminate certain types of pilot
maneuvers from consideration for frequency-response testing. Suppose, for
example, that the pilot executes a pure forward step input of longitudinal
stick, and the aircraft response is an associated constant angular rate. The aircraft
responses will build up (e.g., speed, rate of descent) until the maneuver is
abruptly terminated by the pilot. This would not be a good input to use for
frequency-response identification because the integral of  in Eq. (7.11) is
diverging until the point of record termination, which is analogous to the problem
with frequency-response identification for unstable system dynamics without
feedback. 

In summary, subject to the test guidelines (1 and 2), and given only the experi-
mental measurements of the forcing function (input) and associated system
response (output), the frequency response can be determined, thus providing a
wealth of information about the dynamic system characteristics without making
any a priori assumptions about the system structure or stability properties. These
frequency-response functions readily support dynamic system analysis, control
system design, and simulation model validation, using standard Bode, Nichols,
and Nyquist methods, without resorting to parametric (i.e., transfer-function and

H f( )

Phase shift ϕ f( ) H f( )∠ tan 1– HI f( )
HR f( )
----------------= = =

x t( )  t ∞<d
∞–

∞

∫ y t( )  t ∞<d
∞–

∞

∫

x t( )

Chapter 7.fm  Page 148  Friday, June 16, 2006  3:20 PM



SINGLE-INPUT / SINGLE-OUTPUT FREQUENCY-RESPONSE 149

state-space) models. Further, when the system dynamics are nonlinear, the fre-
quency response extracted using Fourier transform methods will be a first har-
monic describing function, which is the best linear model of the nonlinear
behavior,55 as discussed in more detail later (Sec. 7.7.4).

7.3 Simple Example of Frequency-Response Interpretation

To illustrate the interpretation of the frequency response in an actual system,
consider a simple one-DOF model of the aircraft roll-rate response,

(7.12)

Taking the Laplace transform yields

(7.13)

We are concerned with the response to control inputs, so that the initial condition
is set equal to 0,

(7.14)

and Eq. (7.13) is rewritten as a transfer function:

(7.15)

The frequency response is obtained by substituting  for the Laplace variable 
to yield

(7.16)

where the frequency  (rad/s) is related to the frequency  (Hz) used in the defi-
nitions of the frequency-response function [Eqs. (7.3), (7.4), and (7.7)] by

(7.17)

So the physical model description of Eq. (7.12) allows the use of the Laplace
transform to achieve a closed-form expression for the frequency response .
This is the same frequency response that would be produced from the Fourier
transform of the time-history data [  and ] as obtained from the time inte-
gration of Eq. (7.12).

A convenient graphical visualization of the frequency-response function is a
Bode plot,104 which is a semilog plot of the magnitude of  in decibels ( ) and
the phase of  in degrees ( ), both vs frequency, herein usually in
radians/second. The vertical axis (dB, deg) uses a linear scale, and the horizontal
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axis (frequency) uses a log scale. These quantities are obtained using Eqs. (7.9)
and (7.10) and the defining equations:

(7.18)

and

(7.19)

When the frequency is taken as  (rad/s), simple rules are available for sketching
the asymptotes of the Bode diagram.104

Figure 7.1 shows the Bode plot that was obtained for the system transfer func-
tion of Eq. (7.16). The asymptotic sketch for the magnitude curve is shown in the
short dashes. In this example,  and  will be assumed to be either ,
which would be a stable system, or , which would be an unstable system. 
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Consider first the magnitude plot. The magnitude has a flat (constant) charac-
teristic at low frequencies. The asymptotic magnitude value is obtained by setting

 in Eq. (7.15)

(7.20)

The magnitude begins to decrease or roll off for frequencies above the break
point in the asymptotic curve:

(7.21)

The asymptotic line that closely approximates the high-frequency magnitude
curve is obtained by setting  in Eq. (7.15),

(7.22)

and is anchored at a frequency of  rad/s, with a magnitude from Eq. (7.22) of

(7.23)

Notice in Fig. 7.1 that the magnitude plot is the same in both cases (  or
).

Next, consider the phase plot in Fig. 7.1. In the case of the stable system
( ), shown with the solid line, the phase starts near  and
rolls off to . At the break frequency in the magnitude plot
( ), there is a  phase shift. For the unstable system
( ), shown with the dashed line, the phase starts near 
and then rises to ; the phase shift at the break frequency is now

 relative to the start. 
So the key observation is the difference in phase-curve change for stable vs

unstable system dynamics. When the phase rolls off (becomes more negative) in
the frequency range where the magnitude breaks downward, a stable dynamic
mode is indicated. Alternatively, if the phase increases (becoming more positive)
at the magnitude break frequency, an unstable dynamic mode is indicated. The
phase characteristic becomes more complicated when there are zeros (numerator
terms in the transfer function) in the same proximity.

Given the Bode plot, we could reverse engineer, or “identify,” the parametric
transfer-function model of the aircraft dynamics in terms of  and . That is,
starting with a Bode plot of the frequency response that was extracted from test
data, the aerodynamic parameters  and  could be estimated by a quick
examination of the graphs of Fig. 7.1. The Bode plot could also be used to
update and validate a math model of an aircraft system. For the simple example
of Eq. (7.15), suppose that the magnitude plots of the flight-test data and the
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simulation (i.e., transfer-function) model are offset from each other across the
frequency range, but the phase curves agree well. Then the error must be in the
control effectiveness parameter  rather than in the damping parameter . On
the other hand, if both the break frequency and associated phase characteristic are
in error, then this indicates that , and not , should be updated. 

7.4 General Observations

Summarizing what has been covered so far, a number of general observations
can be made about the frequency response of a system:

1) It fully characterizes the dynamics of the aircraft.
2) It contains no inherent assumptions about the structure or order of the sys-

tem. Some simplifying assumptions were made for the purposes of illustration,
but in general no a priori assumptions about the aircraft other than linearity and
time invariance are necessary. The frequency-response function constitutes a
nonparametric model.

3) It is defined for stable or unstable systems. Frequency-domain methods are
especially well suited to the identification and analysis of unstable systems.

4) When aircraft dynamics are nonlinear (e.g., aerodynamic nonlinearities,
hysteresis, or even an actuator limit), the frequency-response function, as
extracted using the Fourier transform, constitutes a describing function, namely,
the linear model that best characterizes the nonlinear behavior of the system.55

Rotorcraft and other aircraft generally possess nonlinear response characteristics,
but they can most often be well characterized by these linearized describing func-
tion models.

7.5 Calculating the Fourier Transform and Spectral Functions

Although Eqs. (7.5–7.7) serve to define the frequency response of a system in
terms of the Fourier transforms of the input and output frequency signals, the
equations do not convey a practical method for actually calculating the frequency
response. First of all, the time signal does not exist for all time, .
Instead, the record will start at  and end at , leading to the finite Fou-
rier transform106

(7.24)

which is based on continuous time, but with a finite flight data record length
( ). Next, we recognize that the data are collected from instruments
reporting at a certain sample rate, resulting in a time-history data record  at a
sequence of discrete time points, rather than a continuous stream in time  as
in Eq. (7.24). The discrete Fourier transform (DFT) determines  at discrete
frequencies  from a finite record of sampled data106:

(7.25)
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where 

, for k = 0, 1, 2, . . ., N − 1
, for n = 0, 1, 2, . . ., N − 1

 

Notice that in the DFT calculation of Eq. (7.25), the number of discrete fre-
quency points in the identified Fourier transform  is the same as the number
of discrete time points in the time-history data record , namely, . The fre-
quency points are distributed evenly from  to the sample rate
( ).

7.5.1 Spectral Functions
The products of the Fourier transform computation are the Fourier coefficients

of the input (excitation)  and output (response) . From these, three
important spectral functions are defined by the equations that follow. Following
the terminology of Bendat and Piersol,107 a rough estimate (denoted by ) of the
input autospectrum is determined from the Fourier coefficients by

(7.26)

where again for a single flight record . The input autospectrum, also
referred to as the input power spectral density (PSD), displays the distribution of
the squared input  or excitation power as a function of frequency . Note the use
of the symbol  for the one-sided spectral function following the convention of
Bendat and Piersol.106,107 (Note also that the book by Klein and Morelli6 adopts the
symbol  for the one-sided spectral function.)

A rough estimate of the output autospectrum, or output PSD, determined by

(7.27)

displays the distribution of the squared output  or response power as a function
of frequency. Finally, a rough estimate of the cross spectrum, or cross PSD, is
determined by

(7.28)

where  denotes the complex conjugate value. The cross spectrum displays the
distribution of the product of input times output  or input-to-output power
transfer as a function of frequency. The cross spectrum is a complex-valued func-
tion and thus also conveys input-to-output phase information.
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The PSD magnitude functions are plotted in decibels. For power variables, the
decibel is expressed in terms of power decibels defined as, for example,108,113

(7.29)

This is equivalent to displaying the frequency distribution of the input rms in
conventional . For example, a 6-dB drop in  corresponds
to a factor of 2 reduction in the rms of  at that frequency. Analogous defining
equations and interpretations apply to  and .

7.5.2 Bias and Random Errors in Spectral Function Identification
The estimation and minimization of errors in the spectral-function calculations

[Eq. (7.26–7.28)] and the associated frequency response (Sec. 7.7) are the key to
the practical application of system identification. This is especially true for
obtaining useful results for flight vehicles from measured data with high noise
contamination. An excellent reference that covers engineering methods for
addressing errors in spectral analyses is that of Bendat and Piersol.107 The current
chapter summarizes some of the key concepts, with an emphasis on engineering
methods and flight-test results.

Errors that arise in the estimation of the spectral functions can be broadly clas-
sified as deterministic (systematic) or nondeterministic (random)—just as was
the case in the time domain (Sec. 6.1). Systematic or bias errors are average dif-
ferences (or offsets) of magnitude and/or phase characteristics between the esti-
mated quantity (e.g., spectral function or frequency response) and the true
quantity. Key sources of bias errors in system identification of flight vehicles are
the following: extraneous noise in the measurements of the input (excitation)
(Sec. 7.7), insufficient frequency resolution for identifying lightly damped modes
(Sec. 7.10.4), and correlation between the atmospheric disturbances and control
excitation caused by feedback (Chapter 8). Random error is seen as a haphazard
scatter in the estimated magnitude and/or phase characteristics around the true
response. The error is statistical in nature and is characterized by a standard devi-
ation in the estimated response about its expected value. Key sources of random
errors in system identification of flight vehicles are the following: extraneous
noise in the measurement of the output (response) (Sec. 7.7.1, Sec. 7.8) and
unmeasured inputs (e.g., gusts) that contribute to the output and are uncorrelated
with the measured input (Sec. 7.8). Random error can be greatly reduced using
windowing methods as discussed next.

7.5.3 Windowing
The method of overlapped windowing, also called the method of peri-

odograms, is a key technique in practical spectral analysis that greatly reduces
the level of random error in the spectral estimates (as quantified later in Sec. 7.9).
This technique produces smooth spectral estimates by averaging the rough esti-
mates (Sec. 7.5.1) for multiple segments of data.

The original time-history record (duration ) is segmented into a sequence
of  shorter overlapping time segments or windows of length , each window

G̃xxdB
f( ) 10 log10G̃xx f( )=
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( ) containing  points, as depicted for a lateral stick record  in
Fig. 7.2 (adapted from Bendat and Piersol106). The illustration of Fig. 7.2 is for a
50% overlap of  windows. So, the first window ( ) spans the time
interval from  to , the second ( ) from  to , and so on.
The time history for the last window ( ) is filled out to its completion by
appending the trim value (i.e., zero values after the mean has been subtracted) to
the time history beyond the flight record duration ( ). 

The time-history data in each window segment are weighted by the window
shaping function  to form the weighted time-history segment .
This window tapering reduces the spectral errors associated with side-lobe leak-
age that is a characteristic of strict rectangular windowing. There are many possi-
ble choices of window tapering functions, and CIFER® employs the commonly
used (1–cos) window shape, also referred to as a Hanning window106 and
depicted in Fig. 7.2. The Fourier transforms  [and ] for each weighted
time-history window segment  are then determined from Eq. (7.25)
with . Window overlap, shown in Fig. 7.2, counteracts the increased
variability introduced by the window edge tapering.106

The smooth estimate107 of the input autospectrum, denoted by , is the
average of the rough estimates over the  overlapped window segments 

(7.30)

with a correction  to the overall spectral density magnitude for the energy loss
associated with the taper function . For the Hanning window, the correction
is given by Bendat and Piersol107 as .

The number of window segments [  in Eq. (7.30)] depends on the overlap
fraction

(7.31)
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where

= time duration or width of the spectral window
= length of the extended record that we filled out with trim values (e.g.,

 in Fig. 7.2)
= overlap fraction, with a range ( ) (the lower value for no over-

lap and the upper limit representing 100% overlap)

The smooth spectral estimates for the output autospectrum  and cross-
spectrum  are determined from analogous equations with 
replaced in Eq. (7.30) by  and , respectively:

(7.32)

(7.33)

The window width  determines directly the minimum frequency  and
frequency resolution  of the DFT:

(7.34)

where the sampling frequency is . 
As an example, suppose that we have a flight-test record with a length

. If the record is segmented into 20-s segments or windows, the min-
imum frequency that can be identified is . There is no
information content for periods greater than the length of the window  or for
corresponding frequencies of less than  (0.05 Hz in this case). A sometimes
held misconception is that increased (or even arbitrary) frequency resolution can
be achieved by simply “padding” the input sequence with zeros (thereby artifi-
cially increasing ). Padding with zeros, however, only allows interpolation
between true frequency resolution points ( ) and does not increase the
frequency resolution.108 The only way to increase the true frequency resolution of
the identification is to increase the width of the window (up to a maximum of the
record length), which decreases the number of averages included in the calcula-
tion of the smoothed spectra [e.g., ] and so increases the random error
(Sec. 7.9). Further increases in window length require a longer data record.

Viewed in the z plane,79 the  discrete frequency points of  are dis-
tributed evenly around the entire unit circle up to the sampling frequency . The
z transform is a mirror image with respect to the Nyquist frequency
( ), so that the useful spectrum is composed of the first  fre-
quency points. The second half of the spectrum ( ), composed of the
remaining  frequency points, is redundant and is not actually calculated in
the Fourier transform procedure. In summary, identification results obtained from
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the Fourier transform cover the frequency range from the minimum frequency
 of Eq. (7.34) up to the maximum frequency

(7.35)

Reference to Eq. (7.35) indicates that identification results are achievable at
 based on only two data points for an excitation sine wave at this

frequency. As a practical matter, experience with flight-test data indicates a
somewhat lower effective frequency for which accurate identification is achieved:

(7.36)

which amounts to five data points for a sine wave with a frequency of . Even
so, this maximum effective identification frequency is always well beyond the
frequency range of modeling interest, considering the factor of 25 separation
guideline of Sec. 5.4. Therefore, many of the  frequency points that are calcu-
lated up to  are wasted in the DFT (or FFT) in the sense that they provide no
additional information in the frequency range of interest.

Some authors (e.g., Otnes and Enochson108 and Klein and Morelli6) discuss an
additional processing step referred to as frequency averaging or binning. In this
approach the time-domain data are padded with zeros to provide (interpolated)
spectral estimates over a finer mesh around each actual frequency point . Then
the neighboring frequency points are averaged to yield a single spectral estimate
for a band, or bin, of frequencies. This procedure reduces random error, but at the
expense of reduced effective spectral resolution, and is not recommended herein.
The combination of spectral overlapped tapered windowing and multirun concat-
enation, discussed in this chapter and adopted in CIFER®, provides low random
error without compromising spectral resolution. Then composite windowing (pre-
sented in Chapter 10) achieves a final overall frequency-response identification
with excellent dynamic range, low random error, and maximum resolution with-
out the compromise of a single window size selection.

7.5.4 Fast Fourier Transform and Chirp z Transform
Frequency-response determination using the discrete Fourier transform (DFT)

of Eq. (7.25) is computationally intensive, requiring  complex multiplication-
addition operations for each window of  data points.106 The fast Fourier trans-
form (FFT) is a numerically more efficient algorithm for determining the Fourier
transform, involving the equivalent of only  computations.106 For a
typical calculation involving  data points (e.g., approximately 20-s
windows of data at a 50-Hz sample rate), this is a 25-to-1 efficiency advantage of
the FFT over the DFT. 

A specialized implementation of the FFT is the chirp z-transform (CZT), also
known as the zoom transform.112,114 Developed at Bell Labs for noise spectrum
identification, the CZT is capable of a highly accurate frequency-response deter-
mination over an arc of the unit circle. The following key properties of the CZT
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algorithm make it highly flexible and particularly well suited to frequency-
response identification from flight-test data:

1) For the CZT, the number of frequency points  is specified independently
of the number of time-history points , subject only to the conditions that 
and that the sum  must be a power of 2. This relaxes the rather severe FFT
restriction that  and that  and  must each be a power of 2.

2) The  frequency points of the CZT are distributed over an arbitrary arc of
the unit circle (i.e., only in the frequency range of interest), not over the fre-
quency range of the entire unit circle [limited only by the frequencies given in
Eqs. (7.34) and (7.35)] as in the case of the FFT. Consider again the example of a
50-Hz sample rate time-history record and a window with 
( ). The FFT will return a frequency response with a uniform fre-
quency resolution . The response will comprise

 from  to 
. However, for handling-qualities applications the fre-

quency range of interest (and frequency range of suitable excitation) is typically
0.3–12 rad/s (i.e., 0.0478–1.910 Hz), which includes only 39 frequency points,
so that most of the 1024 total frequency points are wasted. For the CZT, the
computation produces the same number of frequency points (1024) but distrib-
uted only from 0.3–12 rad/s, which improves the resolution by a factor of 27, to

.
3) The CZT is subject to reduced leakage, or digital contamination, and it has

improved accuracy as compared to the FFT.112 This has been confirmed by the
leading author in many back-to-back tests of the CZT vs the FFT using aircraft
flight-test data. 

Taken together, these three key characteristics of the chirp z-transform provide
excellent flexibility in the selection of sample rates, window length, and fre-
quency resolution, with improved frequency-response accuracy for aircraft flight-
test data analysis. The CZT, as implemented in CIFER®, has provided consistent
and reliable frequency-response identification from flight-test data, even in cases
of low signal-to-noise ratios (typical of helicopters in hover). 

7.6 Interpreting Spectral Functions

A direct application of the PSD functions is in the evaluation of the excitation
and vehicle-response frequency content for a system-identification maneuver.
For example, the frequency point beyond which the input autospectrum drops by
6 dB (i.e., a 50% drop in rms) defines the bandwidth of the excitation. A “hole”
in the input autospectrum indicates that the pilot input might have passed
through that frequency too quickly. Calculated in real time using telemetered
data,115 the input autospectrum can be a highly useful tool in evaluating the qual-
ity of the test maneuvers and determining if the recommended limits on turbu-
lence levels have been reached [Eq. (8.20)]. As an example of their utility in
postflight analysis, the PSDs provide valuable information for selecting the best
individual records for linking in the identification and for uncovering possible
resonances in the structure and sensor systems.

Figure 7.3 shows an example of the lateral stick PSD  for concatenated
roll-axis frequency-sweep tests of the XV-15 in hover ( ). The excitation
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is seen to be fairly uniform with frequency, dropping off rapidly beyond  7 rad/s,
and the associated output autospectrum  (based on roll rate in rad/s) rolls off
even faster at this point. This reflects preflight instructions to the pilot to terminate
the sweep when a frequency of about 1.0–1.5 Hz was reached. These data flights
were among the first sweeps conducted on the experimental XV-15 aircraft, and so
the maximum excitation frequency was intentionally selected to be very conserva-
tive. It is clear from the PSD curves that the frequency sweep provides a good exci-
tation in the frequency range of interest, rolling off rapidly once the selected
“knock-it-off” frequency is reached. The presence of excitation power at higher fre-
quencies (beyond 1.5 Hz) reflects the irregularities in the wave form of the piloted
sweep (Sec. 5.5).

7.7 Frequency-Response Calculation

The frequency-response function  can be estimated directly from the
smooth spectral function estimates [Eqs. (7.30), (7.32), and (7.33)] at each fre-
quency point  using one of two expressions. The standard expression is

(7.37)
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Fig. 7.3 Spectral density functions for SCAS-on roll sweep (XV-15, hover).
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also referred to herein by simply . An alternate expression is

(7.38)

Both give the same answer for the frequency-response estimate when the mea-
surements are noise free.

In practical applications of system identification, noise will be present in the
input and output measurements  and , as depicted in Fig. 7.4. Process noise
and other unmeasurable (secondary) inputs will also be present (denoted as  in
Fig. 7.4) and pass through the system and thus can be reflected to the output.
These can be considered to contribute to the output noise  and appear in the
measured output , but they do not contribute to the measured input . So, in
the discussion that follows the process noise  is not considered separately—its
effect on the spectral analysis is the same as the output noise . Finally, all noise
signals , , and  are considered to be uncorrelated with the true signals 
and .

The appropriate expression to use for estimating the frequency response
[ , , or a combination of these] depends on whether the key source of
measurement noise is associated with the inputs or outputs (  or , respectively).
In the next sections, we evaluate the influence of measurement noise at the output

 and the input  on the proper choice (and accuracy) of the frequency-response
calculation.

7.7.1 Effect of Output Noise on H1(f ) Estimate, with Noise-Free 
Input Measurements

The frequency-response estimate based on the measurements  and  and
using  [Eq. (7.37)] is

(7.39)

H(f)

u(t)
xm (t)

x(t)

w(t)

y(t)

+
v(t)

ym (t)+

+

Fig. 7.4 Measurement noise at the input and output.
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The assumption commonly made is that extraneous noise is present at the out-
put measurement only (e.g., vehicle response) and that the input (e.g., control
surface) measurement is noise free [ ]. In this situation, 

(7.40)

and

 (7.41)

because the noise is uncorrelated [ ]. From Eqs. (7.40) and (7.41), we
see that

(7.42)

so that  provides an unbiased estimate of the true frequency response
. An interesting result by Bendat and Piersol106 is that  is the least-

squares estimator for

(7.43)

and thus provides an optimum model for Eq. (7.7) when output noise is present.
Figure 7.5 shows an example Bode plot for the roll-rate response to lateral

stick ( ; rad/s/%) of the XV-15 in hover with SCAS-on (a continuation of
the analysis results of Fig. 7.3, ). The frequency response was esti-
mated using the standard expression for  given in Eq. (7.37).

The use of Eq. (7.37) ensures that the frequency-response estimate is unbi-
ased for all uncorrelated output measurement noise [  in Fig. 7.4], as
long as the inputs are noise free. The assumption of noise-free input measure-
ments is appropriate for most system-identification tests and is a standard
implementation in most automated analysis tools, including CIFER®. It gener-
ally is a good assumption because typical input signals, such as the measure-
ment of the deflection of pilot stick, actuators, and irreversible control-surface
deflections, are largely free of disturbances and can be measured with consider-
able accuracy. On the other hand, there are many sources of noise at the output.
Vehicle responses caused by atmospheric disturbances, secondary inputs, and
the effect of nonlinearities are important sources of process noise and are
reflected as contributions to the output measurement noise . Typical vehicle
dynamic response measurements, such as angular-rate gyros, accelerometers,
and aerodynamic sideslip and angle of attack, are subject to considerable con-
tamination from mechanical, electrical, and aerodynamic disturbances and are
key sources of output measurement noise . In summary, the assumption of
noise at the output and noise-free input measurements is a very good one for
most applications.
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7.7.2 Effect of Input Noise on the H1(f ) Estimate
The assumption of noise-free input made in the preceding section, though gen-

erally valid, is not necessarily true in every situation. In this section we will exam-
ine the effect of input noise on the  frequency-response estimate. The output
will initially be assumed to be noise free; then, in Sec. 7.7.3 we will extend the dis-
cussion to the case of noise being present in both input and output measurements.

Let us assume, then, that there is noise contamination to the input measure-
ments only [ , ], arising from, for example, electrical or struc-
tural disturbances. The input noise  is assumed to be uncorrelated with the
excitation input , so that

(7.44)

which shows that an unbiased estimate of the true cross spectrum (and therefore
the frequency-response phase) is obtained. The autospectrum of the measured
input signal is

(7.45)
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Fig. 7.5 Roll-rate response to lateral stick: SCAS on (XV-15, hover).
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Thus the  frequency response as estimated from the measurements will be

(7.46)

or

(7.47)

This result shows that the estimated magnitude response is biased with respect to
the true response . We define the normalized bias error  as

(7.48)

and substitute Eq. (7.47) to obtain

(7.49)

where we have defined the noise-to-signal (PSD) ratio of the input signal, follow-
ing Bendat and Piersol,107 as

(7.50)

This analysis shows that input measurement noise will result in an underestimate
of the frequency-response magnitude [because ], but an unbiased esti-
mate of the phase angle [Eq. (7.44)]. To ensure that the bias error in the estimate
is as low as possible, the noise-to-signal ratio must be minimized. This is accom-
plished by a good choice of sensor placement and careful ground-based calibra-
tions of the sensors. For the XV-15 flight data, the noise-to-signal ratio is about

 (Ref. 87), and the resulting bias error is very small
( ), especially in comparison to the typical random errors
( , Sec. 7.9). 

So far we have assumed that all measurement noise is uncorrelated with the
true signals. Correlated measurement noise at the input or output, or both, is an
additional cause of bias in the estimate and therefore must also be minimized.
One such source of correlated output noise arises when the pilot or flight control
introduces a feedback to counteract the effect of process noise (e.g., gusts). In
this case, the excitation signal  will contain a component that is correlated with
the gust. This will introduce a bias in the frequency-response estimate that is a
function of the noise-to-excitation signal ratio, as discussed at length in
Chapter 8. By conducting the flight tests in conditions of low winds and turbu-
lence (Sec. 5.7), these bias errors can be minimized.
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7.7.3 Alternate Forms for Frequency-Response Calculation
There are special applications of frequency-response testing where alternate

forms for the frequency-response estimate are used. One such application is the
identification of structural responses using ground-based rigs and shakers.116 For
frequencies near structural resonances, the measured excitation signal level is
small and highly contaminated by noise, and the response signal is large, so that
we can assume that noise exists in the input measurement only, with no output
measurement noise [  in Fig. 7.4]. When there is no output measurement
noise, an unbiased frequency-response estimate can be obtained using  of
Eq. (7.38). However, Bendat and Piersol107 caution against using this expression
in all but certain special situations because output noise caused by measurements,
secondary inputs, and nonlinearities will all result in a biased estimate when

 is used. Fabunmi116 also shows that the  estimate is preferred to
obtain an accurate response at antiresonances (where the signal-to-noise ratio of
the response will be very small). 

Rocklin et al.117 point out as herein that the  and  forms
[Eqs. (7.37) and (7.38), respectively] provide different estimates of frequency-
response magnitude but the same estimate of phase. The conventional 
estimate minimizes the error caused by noise at the output, but is susceptible to
noise at the input, resulting in an underestimation of the true response , as
seen from reference to Eq. (7.47). Conversely, the  estimate minimizes the
error caused by noise at the input, but is susceptible to noise at the output, thus
resulting in an overestimation of the true response. In the case where noise is
present in both the input and output signals, Rocklin et al.117 propose the robust
transfer-function estimate , which for the SISO case is simply the geomet-
ric mean of the  and  estimates.

Brenner et al.91 compared the various frequency-response estimates in a flight-
test study of the F/A-18 structural responses. In-flight excitation was achieved
using a specially designed aerodynamic force generator system mounted at the
wing tips. The excitation drive signal (i.e., torque or equivalent aerodynamic sur-
face deflection) could not be measured directly; instead, a strain measurement
was used as the input for the spectral analysis. This strain signal was an indirect
measurement of the true excitation and was subject to noise arising from
aeroelastic responses of the aircraft and excitation systems. The output signals
were wing-tip mounted accelerometer measurements, which were subject to
noise arising from vibration, electrical, and atmospheric disturbances. In this
application, where both input and output measurements were subject to consider-
able noise, the  calculation provided improved estimates of the structural
frequency response. Fabunmi116 developed an algorithm based on a modification
to the  estimate that demonstrates improved accuracy at both resonances
and antiresonances for ground-based structural response testing.

7.7.4 Interpretation of Frequency Response When Nonlinear 
Effects Are Present: Describing Functions

In the context of nonlinear systems analysis, the  frequency-response
estimate is a classical describing function55 because it determines that part of the
output that can be linearly related to the input. More precisely, the result of

v t( ) 0=
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Eq. (7.37) is the equivalent linear system model that is optimum in the sense that
it minimizes the mean square difference between the actual output signal and its
approximation by the fundamental harmonic (first sinusoidal component of the
Fourier series). Nonlinear effects in the input-to-output response that cannot be
characterized as an equivalent linear function are associated with higher harmon-
ics terms in the Fourier series expansion. These will appear as an effective noise
remnant in the measured outputs and thus reduce the coherence, but they will not
bias the frequency-response estimate. This is the same result as in Eq. (7.43) for
the case of output measurement noise. Most of these remnants are largely filtered
out by the low-pass nature of the aircraft dynamics.

The piloted sweep technique and the concatenation of repeat time-history
records result in input amplitudes that are not constant over the frequency range.
Therefore the resulting describing function is representative of the average input
amplitude over the ensemble time history. Because the pilot inputs are typical of
those experienced during normal flight operations, this approximation produces a
satisfactory description of the vehicle in its normal operating environment.
System-identification experience by the leading author, associated with many and
varied flight-vehicle programs, has shown that the frequency responses extracted
using these procedures and the resulting parametric models (transfer-functions
and state-space representations) are highly accurate over a large range of maneu-
ver amplitudes and deviations from the reference flight condition. This can be
seen, for example, in the excellent prediction of XV-15 control response achieved
by the identified models in cruise (Figs.  2.9 and 2.10) and hover conditions
(Fig. 2.12).

7.8 Coherence Function

Another important product of the smooth spectral functions of Eqs. (7.30),
(7.32), and (7.33) is the coherence function estimate , defined at each fre-
quency  by

(7.51)

The coherence function  can be interpreted physically as the fraction of the
output spectrum  that is linearly attributable to the input spectrum  at fre-
quency  (Ref. 106). The values of  will range between 0 and 1. If the process
under investigation were perfectly linear, and all of the output spectrum were
attributable to all of the input spectrum, the coherence would have the constant
ideal value of 1. In practical applications, there are several reasons why the
coherence function will always be less than 1:

1) Noise contamination in the measured output signal [  in Fig. 7.4]
causes a reduction in coherence. Following Bendat and Piersol,107 the coherence
function can be expressed as 

(7.52)
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where we have defined the output noise-to-signal (PSD) ratio in a manner analo-
gous to the input noise ratio of Eq. (7.50):

(7.53)

2) There are nonlinearities in the input-to-output system that cannot be
described by the frequency response , which is a linear (first harmonic)
describing function relating the input spectrum to the output spectrum. Nonlin-
earities enter the analysis as a remnant component in the output noise . Once
again, this lowers the coherence [Eq. (7.52)].

3) Process noise associated with unknown or unmeasured inputs, such as
gusts or off-axis control activity (Fig. 7.6) that are not correlated to the measured
input, is present. These secondary inputs pass through the system and can be
considered as contributing an effective output noise component to , which is
reflected in reduced coherence [Eq. (7.52)]. Associated with this reduced coher-
ence will be random error or scatter in the frequency-response estimate
(Sec. 7.9), which is a variability in the estimate about the true response. How-
ever, on average the frequency-response estimate of Eq. (7.37) tracks the true
response, and so does not produce a bias error, which is an offset with respect to
the true response.

The spectral quantities in the coherence calculation must be obtained using the
method of windowing (Sec. 7.5.3). If only one window section is used ( ),
in which case there is no averaging, then the coherence calculation produces a
degenerate (meaningless) result of , regardless of the presence of noise or
nonlinearities (see also Ref. 107).

Following some basic rules of thumb, we can use the coherence function to
effectively and rapidly assess the accuracy of the frequency-response identifi-
cation. Generally speaking, as long as the coherence function satisfies the con-
dition

Guideline:

(7.54)
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Fig. 7.6 Secondary inputs in single-input/single-output identification.
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and is not oscillating, the frequency response will have acceptable accuracy.
A rapid drop or oscillation in the coherence function for a particular range of fre-
quencies indicates poor frequency-response identification accuracy in that region. 

Figure 7.7 shows the coherence function corresponding to the  frequency
response of Fig. 7.5. For frequencies in the region of , the coherence
function begins to oscillate dramatically, and so the frequency-response identifi-
cation would be considered unreliable starting at that point, despite the fact that
the coherence, though dropping, has not yet fallen below the rule of thumb that

. The poor coherence for frequencies above 8 rad/s reflects the drop in
excitation and associated response, as can be seen in the input and output PSDs
(Fig. 7.3). Figure 7.5 shows that rather than the expected smooth roll off in phase
for a rigid-body-type behavior, the phase curve oscillates (an example of random
error) starting at roughly the same frequency point ( ), confirming a
loss of frequency-response identification accuracy. This relationship between a
drop or oscillation in coherence and an accompanying oscillation in phase is
commonly observed in a frequency range where there is a loss of adequate signal-
to-noise ratio in the experimental data. There is a reduction in coherence for fre-
quencies below about 0.7 rad/s, but for frequencies above 0.3 rad/s, the coherence
value remains above the guideline and does not oscillate. Overall, the coherence
function indicates that the frequency-response identification result can be consid-
ered reliable in the frequency range of 0.3–8 rad/s, as can also be seen in the
smooth frequency-response function (Fig. 7.5).

7.9 Random Error in the Frequency-Response Estimate

In the preceding section, the coherence function has been shown to provide
excellent qualitative insight into the reliability of the identified frequency
response. A quantitative estimate of the expected normalized random error  in
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Fig. 7.7 Coherence function for roll-rate response identification: SCAS-on (XV-15, 
hover).
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the magnitude of the frequency-response identification can be calculated at each
frequency point107 as follows:

(7.55)

where  is a constant to account for window overlap and  repre-
sents the number of independent (i.e., nonoverlapping) time-history averages.
The uncertainty in the phase estimate of the frequency response  is the
same numerical value (in radians) as the normalized magnitude error:

(7.56)

Window overlap, illustrated in Fig. 7.2, counteracts the increased variability
introduced by the window edge tapering.106 A detailed analysis showing the error
reduction for increasing overlap fraction  was developed by Nuttall and is
explained in his highly insightful reports.109,110 There is close agreement between
the analytical results of Nuttall109 and the numerical results of his colleague
Carter.111 A significant (26%) reduction in random error is achieved for a 50%
window overlap ( ), with only small additional improvements realized
for increased overlap fractions. For an overlap fraction of 80%, Carter et al.’s
results111 reach an asymptotic improvement in random-error reduction (29% and
a corresponding ), or about an additional 3% reduction compared to
the 50%-overlap case. 

The increased window overlap reduces random error but comes at a cost of a
rapidly growing number of calculations [caused by increasing , the number of
overlapping window sections, in Eq. (7.31)]. However, the greatly improved
computational capability of modern computers makes the use of larger overlap
fractions feasible, especially for off-line data processing.89 Numerical experi-
ments using CIFER® have shown some benefit in random-error reduction for an
overlap ratio of up to 80%, in agreement with the findings of Carter et al.111 The
improvements are most apparent for flight dynamics applications at low frequen-
cies (e.g., 0.1–1 rad/s), which require larger windows and thus a small number of
independent, nonoverlapping window sections . Based on these results, the
80% overlap value is used in CIFER®. 

It is easy to see from Eq. (7.55) that for the ideal case of  the random
error would be eliminated ( ), and the frequency-response estimate would
match perfectly the true frequency response of the tested system. However, for
reasons discussed in the preceding section the coherence will never be unity for
real-world applications of system identification.

With a knowledge of the key sources of coherence loss and their relationships
to the noise-to-signal ratio [Eq. (7.52)] and random error [Eq. (7.55)], we can
infer means of enhancing frequency-response identification accuracy. For exam-
ple, flight tests should be conducted on days of minimum winds and turbulence
(per Sec. 5.7, 5 kn or less, typical of conditions early in the morning at many test
sites) to achieve the smallest possible noise-to-signal ratios and maximize coher-
ence [Eq. (7.52)]. Repeat data records of frequency-sweep tests for a given axis
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(Sec. 5.7) should be concatenated to form a single linked record ( ) for
analysis. This increases the number of independent time-history averages (now
that ), and therefore the random error is reduced, per Eq. (7.55).
Shorter windows  also increase , but compromise the identification at low
frequency. If the minimum coherence is restricted per the guideline of Eq. (7.54)
to , we can ensure that  (i.e., the random error will always be
less than 20% error in magnitude and 11.5-deg error in phase, which is generally
considered acceptable) by selecting  such that the following is true:

Guideline:

(7.57)

Consider the handling-qualities example discussed in Sec. 5.6, with a maxi-
mum period of interest of . A typical window width would be twice
that, or . Suppose that the available flight database consists of two
typical repeat frequency-sweep records of  each, for a total
of . This results in  segments of data across two
concatenated records, which achieves the preceding guideline. Setting a stricter
requirement on the coherence of  results in , or errors in the fre-
quency-response estimate that are less than 10% and 5.7 deg for the same .
These parameters are close to those of the XV-15 SCAS-on identification of roll-
rate response to lateral stick (Fig. 7.5). The random-error function for this case is
shown in Fig. 7.8. As expected, the random error remains less than 10% over the
frequency range (0.4–9.4 rad/s), which corresponds closely to the frequency
range of good coherence (Fig. 7.7), and also corresponds to the frequency range
of good piloted excitation ( , Fig. 7.3).

7.10 Window Size Selection and Tradeoffs

This section presents additional guidelines on window size selection and dis-
cusses the tradeoffs that are encountered as window size is varied.
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7.10.1 Nominal Window Size Selection (Twin )
According to Eq. (7.34), the theoretical minimum frequency  that can be

identified is the reciprocal of the selected window length . In practical appli-
cations, test data are subject to the effects of measurement/process noise, nonlin-
earities, and secondary control inputs. Therefore, satisfactory coherence will
generally be seen starting from frequencies that are about twice the theoretical
minimum frequency, so that two periods of oscillation are captured in the
window:

(7.58)

We wish to achieve good coherence (good identification accuracy) starting at the
longest period of interest :

(7.59)

so a good choice of nominal window size is the following:
Guideline:

(7.60)

Using this guideline,  was selected for the handling-qualities applica-
tion example ( ) presented in Sec. 7.9. As mentioned in
Sec. 5.11, flight-mechanics applications might require accuracy to lower frequen-
cies (e.g., ) resulting in a larger window size
of .

The guideline of Eq. (7.60) shows a dependency only on modal period (i.e.,
inverse dependency on modal frequency). More precisely, however, the required
window length for accurate identification is inversely proportional to total modal
damping , as shown for example in the application to structural systems
(Sec. 7.10.4). So, the accurate frequency-response identification of a lightly
damped low-frequency mode might require a significantly larger window length.
But, the guideline is a good starting point. The main effect of further increasing
the window length can be seen in better identification of the effective damping
ratio, with a more accurate determination of the peak magnitude value and rate of
change in phase response near the low-frequency mode of interest. The modal
frequency will be well determined using the preceding guidelines.

7.10.2 Maximum Window Size
Choosing larger windows will allow the accurate identification of the frequency

response to lower frequencies. However, the window size cannot be greater than
the individual record length , as discussed in Sec. 7.5. When multiple records
of varying lengths are concatenated, the maximum window size is limited to the
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shortest of the individual record lengths and not the overall concatenated record
length . Analogous to the padding-with-zeros caution (Sec. 7.5), linking short
records together cannot provide information content for a period longer than the
individual record length . For example, a single record of length 
has information content starting at a minimum frequency . Link-
ing together five repeat maneuvers to achieve  allows more averaging
(i.e., larger ) and thus reduced random error [Eq. (7.55)], but the information
content in the linked record still has a minimum frequency ( ) associated
with the individual record length. Experience with flight data analyses indicates
that maximum window size should usually be further limited to about 50% of the
individual record length:

Guideline:

(7.61)

This provides at least  time-history segments for each individual record.
The two relationships [Eqs. (7.58) and (7.61)] can be combined to yield

(7.62)

Combining this with Eq. (7.59) yields

(7.63)

which is satisfied by the rule of thumb for individual record lengths [Eq. (5.11)]. 
Finally, for acceptable levels of random error the recommended number of

segments [ , in Eq. (7.57)] limits the maximum window size as a function of the
concatenated record length :

Guideline:

(7.64)

In summary, the maximum window size is determined by Eq. (7.61) or
Eq. (7.64), whichever is lesser. By linking two or three of the recommended indi-
vidual records of length  to make up the total concatenated record length, we
can easily ensure that these guidelines are achieved.

The use of these guidelines is now demonstrated based on the XV-15 flight-
test databases. The starting period of the all of the sweeps is about ,
and the individual record lengths are about . By linking two repeat
sweeps, the concatenated record length is . A nominal window
length to achieve the broadest bandwidth of flight dynamics identification is

, which is twice the starting period of excitation [Eq. (7.60)]. This
satisfies the maximum window length guideline [Eq. (7.61)] for a single record
( ) and nearly meets the window requirement [Eq. (7.64)] for the linked
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172 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

records ( ). For handling-qualities and flight-control analysis, where the
emphasis is on higher accuracy for short-term response identification, a smaller
window  yields twice as many averages ( ), thereby
improving accuracy while sacrificing some of the identification at the lowest
frequencies. 

The various rules of thumb discussed in this chapter for the relationships
between the maximum window sizes, individual record lengths, and concate-
nated record lengths are all automatically checked within the CIFER® graphical
user interface (GUI) for the FRESPID program. The user is alerted if one or more
of the guidelines are not met.

7.10.3 Minimum Window Size
A typical choice of window size would provide at least a decade of data band-

width between the minimum effective frequency [Eq. (7.58)] and the maximum
frequency of interest . Based on these considerations, the minimum window
size should be at least the following:

Guideline:

(7.65)

7.10.4 Window Size Requirements for Structural Response 
Identification

System identification of structural system responses seeks to extract accurate
estimates of the damping ratio  and the undamped natural frequency  for
each critical mode from frequency-sweep tests. Excitation inputs can be mass
shakers for ground tests, aerodynamic flapperons for fixed-wing aircraft, and
high-frequency small-amplitude swashplate inputs for rotorcraft. The response
variables are generally structural strains as measured by strain gauges or wing-tip
accelerometers (e.g., Acree and Tischler87).

Modal damping ratios and frequencies are determined from the fit of a second-
order transfer-function model to the extracted frequency response at each mode.
Nominal damping ratios for structural modes are small (e.g., ).
For some flight and loading conditions, this might leave only a small margin
before flutter occurs ( ). So accurate tracking of these modal estimates with
flight conditions can be of the utmost importance for flight vehicles, thus impos-
ing a requirement for small bias errors in the identified frequency response near
each modal peak .

Bias errors in the frequency-response estimate are introduced because of the
finite resolution of the FFT calculation [ , Eq. (7.34)]. The normalized bias
error is determined89 by

(7.66)

where . For the small damping ratios typical of a structural response,
the half-power bandwidth  can be estimated106 from the resonance peak
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frequency  by

(7.67)

Referring to Eq. (7.66), if we wish to limit the normalized error to 5%
( ), the required resolution is

(7.68)

For a standard FFT, this indicates fewer than four data points over the bandwidth
of concern, which would seem to be too coarse. 

Young76 suggests a finer resolution of

(7.69)

Combining Eqs. (7.69) and (7.67),

(7.70)

from which we finally obtain the required window size, , and the
restriction on minimum window size of

(7.71)

This should be a conservative result for the chirp z-transform used in CIFER®,
which is capable of a much greater frequency resolution for the same window
size  than a standard FFT, as discussed in Sec. 7.5.

The influence of window size selection for structural response identification is
clearly seen in the results of Fig. 7.9. System-identification tests were conducted
to determine the structural modes of a rotor test stand used in wind-tunnel tests. A
frequency-sweep excitation was applied using a heavy hydraulic shaker mounted
on top of the test stand. The results of the analysis using three window sizes of
10, 5, and 2 s are shown in Fig. 7.9.

The coherence functions show that the large window produces good results at
low frequencies but very noisy results at high frequencies. The small window,
which provides a much larger number of averages , greatly attenuates the ran-
dom error and associated fluctuations and is preferable at higher frequencies.
Referring to the results for the second structural peak at  rad/s, it can be
seen that the 5-s and 10-s windows produce the same magnitude and phase results.
For the 2-s window, significant bias errors in the estimated response characteris-
tics are seen. These results indicate that the 5-s window can be considered as the
minimum acceptable window size for identification of the mode at 55 rad/s.
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Assuming a typical structural damping ratio of , we arrive at the follow-
ing guideline for structural system identification:

Guideline:

(7.72)

which is nearly the same as the first (coarser) guideline in Eq. (7.68). This
confirms that the resolution bias estimates for the standard FFT are somewhat
conservative when applied to the CZT. In the case of identifying multiple struc-
tural modes with a single spectral window, the guideline [Eq. (7.72)] should be
applied to the lowest-frequency mode of interest. As can be seen in Fig. 7.9 and
in accordance with Eq. (7.66), the bias errors are reduced for each increasing
modal frequency. So if the resolution is satisfactory for the lowest-frequency
mode, the errors will be even smaller for each higher-frequency mode.

By combining the window length requirement of Eq. (7.72) and the associated
record length requirement of Eq. (7.61), we obtain the single sweep record length
guideline in terms of the minimum structural mode:

Guideline:

(7.73)
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and the concatenated record length requirement based on Eq. (7.64) and Eq. (7.72):
Guideline:

(7.74)

Structural response tests of the F/A-1891 sought to determine modal character-
istics beginning with the symmetric wing bending mode (5.72 Hz). To obtain
accurate identification of the symmetric wing bending mode for conditions close
to the flutter boundary (e.g., ), the required sweep duration and concat-
enated record lengths are obtained from Eqs. (7.73) and (7.74) as  s
and  s, respectively. The flight-test study evaluated sweep durations of
15, 30, and 60 s, as well as the concatenation of repeated 30-s sweeps. The identi-
fication results were improved when the sweep duration was increased from 15 s
to 30 s, but showed little advantage for longer records. Also, the concatenation of
repeated 30-s records provided improved results compared to single, longer
sweeps. The flight-test results are seen to be fully consistent with the guidelines
recommend herein.

7.10.5 Window Selection Tradeoffs
Increasing the window size lowers the effective minimum frequency of identi-

fication, thereby yielding data at lower frequencies of interest. However, the use
of larger windows reduces the number of time-history averages  and thereby
increases the random error . This is especially problematic at the higher fre-
quencies where the noise-to-signal ratio is greater, resulting in low coherence and
thus higher random error [Eq. (7.55)]. Increased random error is usually mani-
fested by an oscillation in the magnitude and phase curves at higher frequencies,
as seen, for example, in Fig. 7.5. Adopting larger windows generally improves
the low-frequency identification but degrades the accuracy of the high-frequency
identification. Choosing smaller windows will result in the opposite tradeoff.
Thus, in conventional single-window methods of spectral analysis a compromise
is made to balance the requirements for satisfactory low- and high-frequency
identification quality. Manual optimization of window size can involve a tremen-
dous amount of iterative tuning, which contributes to a perception by some that
frequency-domain identification methods are more an art than a science.

Multiwindow optimization, discussed in Chapter 9, is a key and unique innova-
tion in CIFER® that provides a much more flexible alternative to the single-
window compromise already discussed. Up to five window sizes can be selected,
ranging from small windows (for accurate identification at higher frequencies) to
large windows (for accurate identification at lower frequencies). The individual
window results are then automatically merged using a numerical optimization pro-
cedure to give a single, highly accurate frequency response (i.e., high coherence,
low random error) over a very broad frequency range. 

7.11 Frequency-Response Identification in CIFER® Using FRESPID

Figure 7.10 shows a flowchart summarizing the computational and data-
handling procedures carried out by the FRESPID function of CIFER® to perform
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frequency-response identification. The user specifies the individual records to be
concatenated and processed into frequency-domain data. FRESPID determines
and removes the average value and linear drift from each individual record and
then concatenates these perturbation time histories into a single linked record
with length . The concatenated input and output time histories are then digi-
tally filtered to eliminate potential aliasing of high-frequency noise by the chirp
z-transform. Digital filtering is also used as a precursor to data decimation, which
improves the computational speed of the CZT. 

Next, the linked records are segmented and weighted using the overlapped
windowing method (Sec. 7.5.3) for the (first) window size specified by the user.

Fig. 7.10 Flowchart of computational procedures performed by the FRESPID
program.
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These overlapped windows of data are transformed into the frequency domain,
using the chirp z-algorithm, and the resulting rough spectral functions are aver-
aged to obtain the smooth spectra. Finally, the frequency-response and associated
coherence functions are obtained for the given window size. This process is
repeated for each of the user-selected window sizes. Finally, at the end of the pro-
cessing the software generates plots of the data and stores the frequency-domain
data in a relational database.

7.12 Summary of Guidelines for Frequency-Response Identification

The recommended approach for vehicle dynamics-response identification
includes the following key guidelines:

1) Identify the angular rate responses (e.g., ), and apply a  correction
in the frequency domain to easily calculate the associated attitude responses:

, . (There is a frequency-response arithmetic function
in CIFER® that automates this correction.) This amounts to a rotation of the 
frequency-response plot about the  rad/s point. Similarly, for the transla-
tional responses it is preferable to identify the response  and calculate the
speed response: . The reason to do this is that for test data
analysis the higher-derivative measurements (angular rates and translational
accelerations) generally have better signal-to-noise content over a wider fre-
quency range than do the attitude and speed measurements.

2) Always remove the mean and drift prior to performing the frequency-
response calculations (This is the default selection in CIFER®.)

3) Make appropriate selections of conditioning parameters: a) for digital fil-
ters, use ; and b) to maximize data-rate decimation for increased
computational speed, use .

4) Select a window size  that is about twice the maximum period of inter-
est ( ), and evaluate all of the sweeps individually to select the
records with satisfactory coherence. 

5) Pick out the best sweeps, based on coherence, and concatenate them
together. The total linked record length  should ensure  for acceptable
random error in the frequency-response estimate. Remember that overall frequency-
response accuracy can never be improved by adding in bad data (i.e., data with
poor coherence), even if doing so increases the number of averages . 

7.13 Pendulum Example 

In this section, the frequency-response identification concepts are demon-
strated using the pendulum example problem of Sec. 3.1. The time-history data
are those obtained for the 180-s record sweep obtained in Problems 5.3–5.5. The
angular variations of the pendulum for this case are limited to , which
are well within the linear range ( ), so that good agreement with the
ideal linearized model [Eq. (3.7)] can be expected. A nominal window of

 is selected for the identification. Before proceeding, we will check
that the various guidelines are satisfied:

1) The frequency range of interest for this example is from  to , or
0.9–9.0 rad/s [ , Eq. (3.7)]. The dynamics in this range are well
excited by the sweep (0.3–12 rad/s).
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2) The starting period of the sweep  is compatible with
the record length ( ), per the guideline of Eq. (5.11).

3) We select a nominal window length of  to provide a minimum fre-
quency of identification of . This is satisfactory for the
frequency of interest for our pendulum case, but the minimum effective frequency
for this window as obtained from Eq. (7.58) is 0.84 rad/s, which is somewhat above
the starting frequency of the sweep. The  window provides

, thereby amply satisfying the guideline of Eq. (7.57).
The identification results for the stable pendulum response  are pre-

sented in Fig. 7.11, as obtained from CIFER®. The frequency range of the identi-
fication is 0.42–12 rad/s. The lower limit is determined by , and the upper
limit is user selected (for the CZT) to cover the frequency range of interest and
corresponds to the maximum frequency of the autosweep. The autosweep
(Sec. 5.11) provides a uniform excitation with no holes, as can be seen from the
input PSD . The output PSD  rolls off beyond the natural frequency of the
pendulum dynamics ( ). The magnitude curves show the expected
characteristics, with a peak at the natural frequency and a  roll
off thereafter. The phase curve has a corresponding roll off to . The
coherence function shows excellent identification accuracy, exceeding

 for all frequencies. The associated random error is less than 4%,
again indicating excellent identification accuracy. 

Figure 7.12 shows perfect agreement between the identified frequency
response obtained from the nonlinear simulation and the ideal (linearized)
transfer-function model (3.7), as expected. These results verify the SIMULINK
implementation of the pendulum simulation model, the autosweep testing
method, and the identification procedures presented thus far for the application to
known (and simple) dynamics.

7.14 Applications and Examples

The remainder of this chapter presents typical examples of flight dynamics and
controls analyses of air vehicles using power-spectral density and frequency-
response methods that build on the concepts presented in the preceding sections.

7.14.1 Spectral Analysis of Time-History Signals
Spectral analysis of time-history signals is a key application of frequency-

domain identification, providing valuable insight into the dominant frequency com-
ponents in a signal. For example, as illustrated earlier, the input autospectrum of the
aerodynamic control surface (e.g.,  for aileron) provides information about the
frequency distribution and bandwidth of the dynamic excitation, whereas the out-
put autospectrum reveals the frequency distribution and bandwidth of the measured
response and the contribution of noise sources to the measured signal content.

The integral of the input autospectrum  over the entire range of frequencies
provides the mean square of the time-domain vibration signal  (Ref. 106):

(7.75)
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By calculating the integral of the input autospectrum  over the frequency
range  to , we obtain the mean square of the time signal  about its mean
value within this frequency band:

(7.76)

Such an analysis of the autospectrum can isolate the vibration levels associated
with individual structural modes. 
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Fig. 7.12 Comparison between identified and ideal frequency responses (pendulum).
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In an example of this analysis method, Fig. 7.13 shows the vertical acceleration
autospectrum  of the AH-64 helicopter at a flight condition of 130 kn. The
four peaks in the autospectrum plot are dominant vibration components in the sig-
nal and occur at integer multiples of the rotor revolution frequency , given in
radians/second: , 2 , 4 , and 8 . Denoting the time interval for one rotor rev-
olution as “rev” leads to the common expression for integer multiples of
the  rotational frequency in hertz as 1/rev, 2/rev, 4/rev, and 8/rev, where
1/rev . The dominant frequency corresponds to the number of blades

, or 4/rev for a four-bladed helicopter such as the AH-64. For the AH-64, the
rotational frequency is  or . The CIFER® rms util-
ity is used to perform the spectral integration of Eq. (7.76) between two frequen-
cies that bracket the 4.8-Hz peak. In this case, we have selected the frequency
range of 25–35 rad/s. The resulting rms for 1/rev vibration is 0.00856 g, as shown
in Table 7.1. The rms vibration for the 2/rev, 4/rev, and 8/rev peaks are also listed
in Table 7.1. As expected, the dominant vibration component is associated with the

Table 7.1 AH-64 vibration analysis (130 kn) 

/rev Hz
ωωωω1–ωωωω2,
rad/s

σσσσ,,,,
g

Typical limit,
g

1 4.8 25 – 35 0.00856 0.0234
2 9.6 50 – 80 0.00932 0.0469
4 19.2 100 – 170 0.0705 0.0937
8 38.4 220 – 260 0.0316 0.1875
Total —— 25 – 260 0.0796 ——
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Fig. 7.13 AH-64 vertical vibration autospectrum (130 kn).
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4/rev peak (   =  0.0705 g). The total (i.e., overall) rms of the vibration signal
is determined by integrating over the entire frequency range ( ),
which matches the time-domain result using Eq. (7.75).

Maintenance specifications on helicopter rotor tracking and vibration limits
are typically defined in terms of aircraft velocities at the rotor harmonic frequen-
cies in units of inches/second or ips. The associated acceleration , expressed in
terms of g, is calculated as

(7.77)

A typical limit on vertical vibrations is 0.3 ips for forward-flight conditions. The
associated acceleration limits g at each rotor harmonic are listed in Table 7.1. As
can be seen, the measured vibrations fall well within these limits for the 130-kn
test condition.

7.14.2 Pilot Cutoff Frequency Determination
This next application shows a spectral analysis method for determining the

pilot operating frequency or cutoff frequency , a good estimate of the pilot
crossover frequency  for pilot-in-the-loop flying tasks. 

The block diagram in Fig. 7.14 represents a simplified representation of the
closed-loop pilot-vehicle system, in which the pilot attempts to fly a commanded
pitch profile . The pilot senses the error  between the current pitch of the air-
craft  and the commanded pitch  and applies a proportional correction to the
pitch stick . The aircraft response is denoted . Manual control studies118 show
that the pilot will adopt a compensation strategy  over a broad frequency range
such that 

(7.78)

where  is the pilot’s crossover frequency, defined as the frequency at which the
gain of the product   ( ) is the pilot’s fundamental frequency of
closed-loop regulation.

The rms of the stick input signal  for the frequency range of 0–  is defined
as . Applying Eq. (7.76), we have

(7.79)
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Fig. 7.14 Block diagram for pilot-in-the-loop analysis.
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The total stick mean square is determined from Eq. (7.75):

(7.80)

Next we define the pilot cutoff frequency  as the half-power frequency113; that
is,  is the frequency  such that

(7.81)

or 

 (7.82)

Subject to the manual control theory result of Eq. (7.78), the pilot cutoff fre-
quency as obtained from the spectral analysis of the cockpit control input  is
also a good estimate of the pilot/vehicle broken-loop gain crossover frequency

 of Eq. (7.78). This analytical result has also been confirmed in analyses of
flight data by Anderson and Klyde.119

Atencio120 conducted a detailed fidelity assessment study of the Ames Verti-
cal Motion Simulator vs flight for the UH-60 helicopter based on common fly-
ing tasks. The study used the Sikorsky General Helicopter flight-dynamics
simulation program (GENHEL), a blade-element math model, which represents
accurately the UH-60 aircraft dynamics.85 Every effort was also made to set up
the task and visual representation in the simulator to duplicate actual flight cue-
ing as closely as possible. The test pilots gave a subjective report that the simu-
lator environment was in fact a very good representation of the flight
environment of the UH-60. The cutoff frequencies for the simulation and flight
test were determined and compared to make a quantitative assessment of pilot
cueing fidelity.

Figure 7.15 plots the ratio  vs  for simulation and flight for one of
the evaluation tasks. The pilot cutoff frequency  is determined by reading off
the value of frequency corresponding to . The pilot cutoff fre-
quency is approximately , which is a representative value of
piloted crossover frequency.118 The cutoff frequency is essentially the same for
both the flight-test and simulation data, thereby indicating that the pilot operat-
ing frequency is the same in both flight and simulation environments. 

Even when the simulation math model is accurate, as in the present case, the
motion or visual cues introduce spurious dynamics that can subtly alter the pilot’s
perception of the task and thus cause a change in the operating frequency. In this
case, the cutoff frequency agreement confirms the excellent simulation fidelity of
the UH-60 VMS experiment. Additional examples showing the use of the pilot
cutoff frequency in interpreting piloting comparisons between simulator and
flight studies are presented by Blanken and Pausder121 and Lusardi et al.122
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7.14.3 Handling-Qualities Specification Compliance 
A key application of frequency-response identification methods to aircraft is for

checking compliance of the closed-loop dynamic response with modern frequency-
domain handling-qualities criteria. The fixed-wing5 and rotary-wing4 design stan-
dards give acceptable values for the two important parameters considered herein:
bandwidth  and phase delay . These parameters are determined from the on-
axis attitude responses to piloted control inputs (e.g., , , ). As
discussed in Sec. 7.12, the identification is best conducted using the rate responses
(e.g., ), and then a  correction is applied to the data in the frequency
domain to give the needed attitude response. A typical result for the pitch response
of the OH-58D helicopter (see photo in Fig. 11.12) is shown in Fig. 7.16. Detailed
system-identification results for this helicopter are presented by Ham et al.123
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Fig. 7.15 Pilot control activity: simulation vs flight (UH-60, hover).
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An examination of the coherence curve indicates that the identification accu-
racy is quite good for frequencies between 0.5 and 12 rad/s (that is, up to 2 Hz),
which was the frequency at which the pilot was instructed to terminate the man-
ual sweep. The determination of the bandwidth and phase-delay metrics has
specific definitions for handling-qualities analysis as shown in the figure. The
bandwidth  is based on the  phase (corresponding to  phase
margin) frequency , or the  gain margin frequency , which-
ever is less. The phase delay  is determined from the frequency , where the
phase has a value of  and the phase value  is measured at twice
this frequency :

(7.83)

An examination of Fig. 7.16 shows that the range of good coherence encom-
passes all of the frequencies needed to determine important handling-qualities
metrics. A utility in CIFER® (utility 8: handling qual & stab marg) extracts the
needed metrics from the frequency-response data, and the results are shown for
the OH-58D pitch response in Table 7.2.
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A least-squares determination of phase delay, as shown by the dashed line in
Fig. 7.17, is more reliable than the two-point calculation of Eq. (7.83); it is
obtained by the bandwidth utility in CIFER®. The least-squares calculation
includes a weighting function based on the coherence to emphasize the most
accurate data. For the present case, the least-squares value of phase delay is

, which is close to the value from the two-point calculation.
Finally, the extracted handling-qualities metrics are plotted against the ADS-

33E rotorcraft specification for level 1 (satisfactory without improvement), level
2 (deficiencies that warrant improvement), and level 3 (deficiencies that require
improvement). The pitch-response specification boundaries shown in Fig. 7.18

Table 7.2 Handling-qualities characteristics for the OH-58D pitch 
response in hover (SCAS-off) 

HQ characteristics Identified value

–180-deg frequency 4.22 rad/s
–135-deg bandwidth frequency 2.52 rad/s
6-dB bandwidth frequency 1.9 rad/s
Bandwidth frequency 1.9 rad/s
Two-point phase delay 0.143 s
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Fig. 7.17 Least-squares determination of phase delay.
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are for target acquisition and tracking tasks, which involve precise pilot-in-the-
loop regulation. Some examples of such tasks (also referred to as high-gain
tasks) are precision hover, the pirouette, and a slope landing. The identification
results show that the OH-58D SCAS-off handling qualities are on the borderline
between levels 1 and 2 for high-gain piloting tasks, which is consistent with the
pilot evaluations.123

7.14.4 Numerical Extraction of Linear Models
Numerical perturbation methods are commonly used to extract linear state-

space models from complex nonlinear simulation models. Two common applica-
tions of the state-space models are for control system design and pilot-in-the-
loop handling-qualities analyses. For both applications, the extracted model
should exhibit frequency-response characteristics that track those of the nonlin-
ear simulation over the frequency range of interest [e.g., Eq. (5.3)].

The first step in the extraction process is to trim the nonlinear simulation
model for a desired flight condition. Then small perturbations are applied sequen-
tially to each element of the state vector (e.g., ), and the resulting state rate 
is obtained from the nonlinear equations of motion to provide the corresponding
value of the  matrix in Eq. (2.4), which in this case is . Applying
a perturbation to the control input  provides the corresponding value of the 
matrix (in this case, ). The same approach provides the  and 
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Fig. 7.18 OH-58D SCAS-off hover comparison with ADS-33E.
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matrices of the measurement equation (2.5). Although this approach is straight-
forward in principle, the extraction of a linear model using numerical perturba-
tion can be very problematic for complex nonlinear simulations (see also
Capone, Ref. 124).

In practice, real-time simulation models of aircraft and rotorcraft flight mechan-
ics are typically structured as libraries of individual modules, one for each major
component of the aircraft (e.g., wing, fuselage, tail, engine, control system).
Computational constraints often preclude the simultaneous update of the all of the
modules, and a series update or “daisy chain” time-integration approach can be
used. Further complications arise when the individual modules are not updated at
a common sample rate. These considerations result in embedded integrations
within individual modules and iterative solutions for the coupled interactions
between the modules. Simulation models that are structured in this manner are
generally accurate in the time domain as long as the integration rates are suffi-
ciently fast (small time steps). However, the numerical extraction of higher-order
linear models from such models is no longer straightforward. 

The issues just discussed are commonly encountered in rotorcraft flight-
dynamics simulations. Often, specialized embedded integrations are adopted for
the rotor system states to retain the periodic dynamics at real-time sample rates
(UH-60 GENHEL).85 Linear model extraction is accomplished by perturbating
the six-DOF fuselage states and allowing the higher-frequency (e.g., rotor and
engine) modules to reach steady-state conditions. This results in a six-DOF or
quasi-steady linear representation of the helicopter (rotor/body) dynamic system.
Another technique involves coupling the linear results obtained from extracting
isolated models of the individual modules; the overall model that results will be
high order, but might not capture accurately the fully coupled dynamics of the
nonlinear simulation. The model extraction algorithms, perturbation step sizes,
and final linear model accuracy can best be checked by comparing the frequency
responses of the linear model [Eq. (2.6)] with system-identification results
obtained from frequency sweeps of the nonlinear simulation.

Mansur and Tischler16 present an example of the limitations of linear model
extraction for the simulation model of the AH-64 helicopter dynamics. This
application was introduced in Sec. 5.11.1. The nonlinear model implementation
used the series update structure and thus precluded the possibility of high-order
model extraction beyond a six-DOF quasi-steady model. However, system identi-
fication can be used to extract accurate frequency responses from the time
responses of the nonlinear simulation. As discussed in Sec. 5.11.1, feedback
loops are added the stabilize the bare-airframe dynamics. Then, the simulation
model is exercised using frequency sweeps and white noise. The total (pilot +
feedback) mechanical (mixer) inputs and helicopter response are used to deter-
mine the complete high-order frequency responses for the bare-airframe inputs
(e.g., ). This provides the true dynamic response for comparison with the
results obtained from perturbation methods.

As can be seen in Fig. 7.19, there are significant errors in the key on-axis ( )
and off-axis ( ) responses of the six-DOF model, as compared with those
obtained from the nonlinear simulation using system identification. Of particular
concern for handling-qualities and control system applications is the additional
phase lag associated with the rotor transient response and actuators that appears in

p δlatmx
⁄

q δ⁄ lon
p δ⁄ lon
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Fig. 7.19 Comparison of six-DOF perturbation and nonlinear simulation models
(AH-64, hover).
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the nonlinear model but is missing from six-DOF quasi-steady linearmodel. The
roughly 70-deg ( ) additional phase lag at 10 rad/s is equivalent to a
considerable amount of added time delay of , associated
with the dynamics of the rotor ( , Sec. 11.7.1) and actuator systems. Substantially
improved accuracy can be achieved by appending transfer-function model repre-
sentations for these dynamics as demonstrated by Tischler.125 Alternatively, the
real-time rotorcraft simulation can be rearchitected (with considerable effort) so that
the state-integration updates are completed simultaneously (as opposed to the
series approach of the daisy chain). Kim et al.126 rearchitected the GENHEL model
to allow the extraction of an accurate fully coupled high-order model of the UH-60
from the nonlinear simulation model using the direct numerical perturbation
method. The extracted higher-order linear model tracked accurately the frequency
responses as obtained from system identification of the nonlinear simulation.

7.14.5 Flight Simulation Validation
The overlay of flight-test and simulation frequency responses is a direct and

efficient means to validate model fidelity and assess model improvements. After
making modifications to the simulation model, the comparison is repeated to
determine whether or not the validity of the model has been improved. The same
approach is highly effective in assessing the dynamic performance of simulator
motion and visual systems.45,120

The simulation vs flight comparison can be evaluated effectively by defining
the simulation error response function as

(7.84)

which is easily accomplished in CIFER® by dividing the two data curves using
the frequency-response arithmetic utility.

The magnitude and phase of the error response functions for the XV-15 GTR
simulation model in cruise (data from Fig. 2.5) are shown as the dashed curves in
Fig. 7.20. Here, 0-dB magnitude and 0-deg phase indicate perfect tracking of the
flight and simulation results. Also shown in the figure are the solid curves that are
math model mismatch boundaries proposed herein for the highest-fidelity train-
ing simulators (FAA Level D). These boundaries correspond to limits on
maximum unnoticable added dynamics, or MUAD, beyond which a pilot will
detect a deviation in the aircraft response characteristics127; they are used in the
fixed-wing handling-qualities criteria5 to evaluate the mismatch criteria between
an actual aircraft response and a lower-order equivalent system (LOES) model
(Sec. 11.2).

Tischler11,128 proposed the use of the MUAD boundaries as FAA level D simu-
lation fidelity criteria. The same approach of mismatch boundaries in the fre-
quency domain was also independently proposed and applied by DLR
researchers to detect the effects of unnoticeable dynamics in the case of
helicopters24 and for evaluating the fidelity of in-flight simulation.129

The XV-15 simulation math model for cruise complies with the proposed Level
D (high-fidelity) criteria. This result is consistent with the very favorable pilot

1.22 rad=
τ 1.22/10 0.122 s= =

τf

εsim f( ) Hsim f( )
Hflight f( )
----------------------≡
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comparison of simulator and flight behavior.130 Other examples of helicopter
simulation validation using the proposed criteria have been published by Cicolani
et al.131 and Strope et al.132

A comprehensive simulation model was developed in conjunction with the
solar Pathfinder project (Fig. 5.18) to support flight dynamics and control studies
and for preflight planning. The model included a detailed treatment of structural
elasticity and unsteady aerodynamics, which are both very important for this
vehicle’s light wing-loading (0.7 lb/ft2). The comparison of flight-test data and
simulation for the bare-airframe directional response presented in Fig. 7.21
(reproduced from Lisoski and Tischler93) shows that significant discrepancies
remained even after model improvements were made. Flight-control analysis and
optimization during development tests were based on direct manipulations of the
frequency-response data plots using classical control techniques. Then gain
adjustments were made in real time from an assessment of the identified broken-
loop responses (and stability margins) as obtained from frequency-sweep testing
conducted at every 10,000 ft in altitude.

7.14.6 Stability-Margin Testing
The stability characteristics of aircraft rigid-body and structural dynamics can

be greatly affected by the feedback loops of the flight control system. Feedback
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Fig. 7.20 XV-15 error functions (cruise) and proposed level D simulation fidelity
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can degrade the stability margins for the structural modes at the same time that it
improves the rigid-body stability and handling qualities. Military specification
9490D (Ref. 133) defines minimum levels of control system gain-and-phase mar-
gin as determined from the broken servoloop frequency response

(7.85)

shown in Fig. 7.22. The test procedure involves exciting the dynamic response
using a piloted or automated sweep input . Then the direct estimate of the
broken-loop response is determined from the measurements  and  and
Eq. (7.37):

(7.86)

When noise (  of Fig. 7.22) contributes to the measured output, such as
caused by measurement system noise or process noise (e.g., turbulence and sec-
ondary inputs), it becomes correlated with the error signal , because of the pres-
ence of feedback (Chapter 8). This correlation yields a biased estimate of the
broken-loop response based on Eq. (7.86). Alternatively, the broken-loop
response can be determined using an indirect estimate from the error response
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Fig. 7.21 Comparison of flight and simulation directional responses for solar
Pathfinder. 
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(  of Fig. 7.22):

(7.87)

This response, determined from the measurements  and  by the equation

(7.88)

is unbiased for output noise because the sweep input  and the noise signal  are
uncorrelated.134 The required broken-loop response is then obtained by manipu-
lating the frequency-response data at each frequency:

(7.89)

The gain-margin calculation is based on the frequency-response data beyond
the crossover frequency [where ], so that there is a reduced
signal/noise level and thus reduced coherence and greater data scatter. In con-
trast, the error function of Eq. (7.87) approaches a value of unity at higher fre-
quency and thus maintains a higher coherence and reduced scatter. McCoy135

compared the direct and indirect methods for stability-margin determination of
the UH-60A helicopter using piloted sweeps and found that the indirect method
produced a more reliable result. Dryfoos et al.134 also found the indirect method
preferable for the stability-margin analysis of the RAH-66 Comanche helicopter
using automated sweeps. 

The MIL-F-9490D specifications are given as a function of frequency range,
with larger gain margins required for the aeroservoelastic (ASE) modes
(Table 7.3). 
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Figure 7.23 shows the broken servoloop frequency response  of a large
single-rotor helicopter as obtained by computer-generated frequency-sweep
flight-test procedures. A utility in CIFER® (utility 8: handling qual & stab marg)
analyzes the frequency-response data to determine a table of stability margins
corresponding to each 0-dB gain and –180-deg phase crossing. The 0-dB gain

Table 7.3 MIL-F-9490D gain-and-phase margin requirements (dB, deg) 
(from Ref. 88)

Air Speed

Mode freq., Hz Below Vo min

Vo min to 
Vo max

At limit 
speed VL At 1.15* VL

fM < 0.06 GMa = 6 db
No phase reqt. 

below Vo min

GM = ± 4.5
PMb = ± 30

GM = ± 3.0
PM = ± 20

GM = 0.0
PM = 0.0
Stable at 

nominal 
phase and 
gain

0.06 fM 1st ASE GM = ± 6.0
PM = ± 45

GM = ± 4.5
PM = ± 30

1st ASE  <  fM GM = ± 8.0
PM = ± 60

GM = ± 6.0
PM = ± 45

aGM = gain margin.
bPM = phase margin.
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Fig. 7.23 Stability-margin determination for a large helicopter.
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crossover frequency at  is associated with the closed-loop rigid
body and shows an associated phase margin of . This margin is
substantially below the recommended specification value.

The gain margin is checked at each crossing of the  ( ,
) phase line as shown in the figure, with the values listed in

Table 7.4. The critical margin is the minimum value (GM5), which is 14.2 dB at a
frequency of . This frequency corresponds to the first vertical
bending mode for the tail boom of this aircraft. Reference to Table 7.3 indicates
that this gain margin is well within accepted design specifications.

Table 7.4 Stability-margin results for a large helicopter 

Critical frequencies, rad/s Gain margin, dB

7.8 17.8
13.0 32.1
17.1 22.8
21.8 36.0
23.4 14.2

ωc 2.0 rad/s=
PM 28 deg=

180 deg– k360±
k 1 2 3 …, , ,=

ω 23.4 rad/s=

Fig. 7.24 Real-time CIFER® interface.
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The coherence function of Fig. 7.23 shows excellent identification accuracy
for this flight test across the broad frequency range of interest (1–30 rad/s).
Sharp drops (holes) or peaks in the coherence function reflect structural anti-
nodes and nodes, respectively. Examples of fixed-wing programs using fre-
quency-domain system identification for elastic mode stability-margin
evaluation include the X-29,136 the European Aircraft Programme (EAP88), Euro-
fighter high-performance manned aircraft,89 and the Pathfinder solar-powered
unmanned aircraft.93 

Sahai and her colleagues developed and demonstrated a specialized inter-
face for CIFER® (Fig. 7.24) for automated determination of stability margins
(and transfer-function models) from real-time telemetry data.115,131 This inter-
face implemented the indirect method [Eq. (7.89)] for determining the broken-
loop response. Excellent agreement was seen between real-time results based
on telemetered data containing noise and dropouts with postflight analysis
based on the cleaner onboard recorded data, thus validating the analysis tech-
nique.

7.14.7 Control System Model Validation
Stability and control augmentation systems for modern aircraft and helicop-

ters are developed directly in block diagram form using tools such as SIM-
ULINK®. These block diagrams also serve as control system models for
piloted-simulation evaluation, stability analysis, troubleshooting, and flight-test
optimization of control system performance. The accurate prediction of broken-
loop and closed-loop frequency responses for an initial (baseline) control sys-
tem configuration establishes a critical anchor point for the control system
model.

Tischler et al.20 documented the development of modernized control laws
(MCLAWS) to provide an attitude-command/attitude-hold response type for the
UH-60 and thereby afford improved handling qualities for near-Earth operation
in night and poor weather. Initial flight tests of the baseline gain set showed sig-
nificant qualitative discrepancies with the predicted characteristics based on the
SIMULINK® analysis model. An immediate project decision was made to con-
duct ground and flight tests to establish the source of these discrepancies and
achieve a reliable anchor point for further analysis design optimization using the
CONDUIT® (Control Designer’s Unified Interface) tool.64

A simplified schematic for the roll axis, shown in Fig. 7.25, illustrates the
flight-test measurements that were available. As can be seen by the mnemonic
labels indicated next to signal arrows, many of the internal flight-control-
computer (FCC) signals were recorded in the flight tests—a result of careful
preflight planning. This allowed frequency-response identification of the key
elements of the block diagram, which proved invaluable for isolating and cor-
recting several modeling discrepancies. Some examples that demonstrate the
excellent agreement for the roll axis once these discrepancies were resolved fol-
low.

The roll-rate command-model response [  of Fig. 7.25] is identified
from the recorded time histories

sMφ s( )
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(7.90)

and is seen in Fig. 7.26 to match the ideal command model as represented in the
CONDUIT® analysis

 deg/s/in. (7.91)

The coherence is nearly unity, indicating excellent accuracy, as would be
expected for identifying software elements as compared to airframe dynamics.
The roll-rate SAS dynamics  of Fig. 7.25 are identified [Psas(s) =

] and again match the CONDUIT® model precisely, as shown
in Fig. 7.27, validating this branch of the block diagram model. 

The broken-loop response [indicated as BL(s) in Fig. 7.25] is fundamental to
stability and performance of the system. The crossover frequency  defines the
speed with which the closed loop will reject disturbances, whereas the broken-
loop stability margins define robustness to uncertainty and closed-loop damping
ratio. Therefore, accurate prediction of the broken-loop response is a critical
aspect of control system model validation. Validation based only on the closed-
loop response is inadequate because the feedback loops suppress the dynamic
responses (especially the frequencies up to crossover).

The broken-loop response is commonly obtained in flight test by injecting an
electronic chirp signal at the actuator command, such as indicated by  in
Fig. 7.22 and, for example, in control law development of the Comanche heli-
copter as discussed by Dryfoos et al.134 In the current flight-test program such a

sMφ s( ) pc s( )
δlat s( )
--------------=

sMφ[ ]CONDUIT
7.16s

0.625s 1+( ) 0.625s 1+( )
-------------------------------------------------------------=

+

+ +
irsasrfbirsasafb

perr

pc

irsascmd

idsol

Broken loop

–

–+

BL(s)

s s

1.0

p

SAS
servos, A(s) AirframePrimary

servos

psas

Fig. 7.25 Simplified schematic of roll-axis modernized control system (UH-60
MCLAWS). 
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Fig. 7.26 Command model comparison for roll axis (UH-60 MCLAWS).
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Fig. 7.27 Roll-rate SAS compensation comparison (UH-60 MCLAWS).
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specialized input was not available, and model validation was based only on the
data obtained from piloted sweeps (  input in Fig. 7.25). In the MCLAWS
model-following architecture of Fig. 7.25, the piloted input is introduced in two
places in the feedback path (  and ). This precludes the identification of
the broken-loop response using the direct method [  error response of
Eq. (7.86)] or the indirect estimate [based on  of Eq. (7.88)]. Instead, from
reference to Fig. 7.25, the broken-loop response can be built up from its compo-
nents as

(7.92)

making direct use of the frequency-response data for the identification of the var-
ious elements in the equation (e.g., Fig. 7.27). The calculation is performed using
the frequency-response arithmetic function in CIFER®. 

As seen in Fig. 7.28, the analysis model shows very good agreement with the
identified response in the frequency range of interest for flight control (1–10 rad/s).
This ensures that the key control system metrics of crossover frequency, gain
margin, and phase margin will be well predicted. Errors at low frequency (below
1 rad/s) are associated with modeling inaccuracies in the bare-airframe response
simulation .

Control law optimization can also be conducted using this frequency-response
arithmetic approach, without having access to an identified state-space model of
the bare airframe (i.e.,  herein). As demonstrated by in-flight tests of
the  solar Pathfinder93 and in a simulation-based study of a ducted fan UAV by
Spaulding et al.,137 the bare-airframe frequency response is determined, and then
the gains and filters of the control system components [  and , in this
case] can be tuned to achieve the desired broken-loop response characteristics
[BL(s)].

Finally, the overall closed-loop response  shows good agreement, as can
be seen in Fig. 7.29, thereby ensuring that the handling-qualities parameters
(bandwidth and phase delay) will be well predicted.

This analysis established that the MCLAWS model provided a satisfactory
prediction of broken-loop and closed-loop response characteristics, thus estab-
lishing a solid anchor point from which design optimization using CONDUIT®

was conducted. This ensured that the improvements seen in analysis and simula-
tion would be realized in flight. A full discussion of control law validation and
final handling-qualities performance is presented in Tischler et al.20

Numerical linearization of complex block diagram models (e.g., using the
MATLAB® function linmod) for the purpose of obtaining a state-space repre-
sentation can be problematic and should be checked before using the result in
linear analyses. Time integration of the block diagram model can be consid-
ered to be accurate. Thus, an effective means to validate the linearization
results is to compare the Bode plots obtained using the numerical pertubation
model with those obtained using system identification for an automated sweep
input.

δlat

φerr perr
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Fig. 7.28 Roll broken-loop response comparison (UH-60 MCLAWS).

Chapter 7.fm  Page 201  Friday, June 16, 2006  3:20 PM



202 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION
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 Fig. 7.29 Roll closed-loop response comparison (UH-60 MCLAWS).

Chapter 7.fm  Page 202  Friday, June 16, 2006  3:20 PM



SINGLE-INPUT / SINGLE-OUTPUT FREQUENCY-RESPONSE 203

Problems
Assumptions of SISO frequency-response identification with FRESPID

7.1 Is the assumption of noise-free input measurements reasonable for the XV-
15 flight data in both the piloted input signals and the control effector input sig-
nals? Use the input and output time histories plotted in Problem 3.9 for these
analyses. 

Identification of XV-15 closed-loop SISO frequency responses using FRESPID

7.2 Obtain the closed-loop frequency-response  for the XV-15 in hover
using the two concatenated records (883 and 884 in database 1). Process with a
single 20-s window, and generate the following plots: filtered input and output
time histories, input autospectrum, frequency response, and coherence. 

7.3 Examine the log file generated in Problem 7.2, and verify that all of the
anticipated actions occurred during the FRESPID run. Notice the calculation of
the average and rms values of the input and output signals. If any errors occurred,
make the appropriate corrections and repeat the run.

7.4 Based on the autospectrum plots generated in Problem 7.2, what is the fre-
quency range over which the excitation can be considered satisfactory? What is
the range for which the coherence indicates satisfactory frequency-response iden-
tification? 

Closed-loop handling qualities of the XV-15 in hover

7.5 Starting with the closed-loop frequency-response data generated in Problem
7.2, use the CIFER® Bandwidth Utility (#8), or direct reference to the frequency-
response plots, to determine the following handling-qualities parameters following
the example of Sec. 7.14.3. Remember that the analysis is based on

: (a) −135-deg frequency (phase bandwidth frequency),
(b) 6-dB gain bandwidth frequency, (c) handling-qualities bandwidth , which
is minimum of (a) and (b), and (d) phase delay  using the two-point calculation.

7.6 Continuing the handling-qualities analysis, generate linear frequency plots
of the phase and coherence and perform a least-squares fit for phase delay using
utility 8. Compare the two-point phase delay with the least-squares phase delay.

Calculating the rms of the XV-15 piloted input signal 

7.7 Starting with the closed-loop frequency-response data generated in
Problem 7.2, use the CIFER® RMS Utility (#7) to determine the rms of  from
the autospectrum  for the entire frequency range of data available.

7.8 Compare the rms value obtained in the frequency domain (Problem 7.7)
with the standard deviation result obtained from the time history of . (The

p δlat⁄

φ δlat⁄ p δlat⁄[ ] s⁄( )=
ωBW

τp

δlat
Gδlatδlat

δlat
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time-domain rms is given in the log file examined in Problem 7.3.) Explain
any differences between the frequency-domain and time-domain determination
of the rms.

7.9 Return to utility 8, and calculate the rms of  over a smaller range of fre-
quencies (than in Problem 7.7). Explain why the resulting rms is smaller than
that obtained in Problem 7.7.

7.10 Determine the pilot cutoff frequency (  of Sec. 7.14.2) for the lateral
sweep. Is this consistent with the autospectrum curve? What does this value tell
you about the piloted sweep?

SISO frequency-response identification of an inverted pendulum 
using FRESPID

7.11 Identify the frequency-response  using your pendulum simulation
time histories from Problem 5.5. Use three windows: 35 s, 25 s, and 20 s. Com-
pare your results with those presented in Sec. 7.13. 

7.12 Identify the frequency response of . Apply a  correction in the
frequency domain and compare with the identified  from Problem 7.11. 

7.13 Overlay the ideal frequency response [Eq. (3.7)] with the system-
identification result from the nonlinear simulation for .

7.14 Look at the effect of measurement noise (try once in the input and again in
the output) and process noise on the frequency response . Add noise to the
pendulum system as shown in Fig. P7.14. Then overlay the identified response
(use the 35-s window) with the noise-free case from Problem 7.11. What is the
effect on coherence? What are reasonable guidelines for allowable noise-to-signal
levels?
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Fig. P7.14 Diagram showing insertion of input measurement noise, output mea-
surement noise, and process noise.
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7.15 Look at the effect of nonlinearity on system identification of  by
including (a) spring limiting of rad/s2, (b) spring backlash with deadband
width of rad/s2, and (c) large-amplitude frequency sweeps of  rad/s2

in your pendulum simulation. Figure P7.14 depicts where nonlinear elements
should be introduced into the simulation. Use the frequency-sweep generator spec-
ifications from Problem 5.3 to exercise your pendulum. Coplot the identified fre-
quency responses (35-s window) with the ideal pendulum frequency response
(Problem 7.11). What are the effects of the nonlinear elements on the magnitude,
phase, and coherence of the identified frequency responses?

SISO bare-airframe frequency-response identification of the XV-15

Students should choose to work on either the hover configuration (Prob-
lem 7.16) or the cruise configuration (Problem 7.17) and then continue with
the chosen configuration when working on the problems in the rest of this
book.

7.16 Hover configuration: Using the XV-15 hover data in database 1, create
separate FRESPID cases, each with two inputs  and , and four outputs , ,

, and . The first case will use the lateral sweep data (except for record 882,
which was of poor quality), and the second case will use the yaw sweep data. Set
up FRESPID to run with plots turned off and control cross correlation on (the lat-
ter so as to generate data that will be used in the next chapter for multi-input con-
ditioning). Use three windows with 45, 30, and 20 s. Determine the SISO
frequency responses from all of the inputs to all of the outputs, making sure that
the outputs are in the following units:  and  in ft/s2 and  and  in rad/s.

7.17 Cruise configuration: Using the XV-15 cruise data in database 2, create
separate FRESPID cases, each with two inputs  and , and four outputs , ,

, and . The first case will use the lateral sweep data, and the second case will
use the yaw sweep data. Set up FRESPID to run with plots turned off and control
cross correlation on (the latter so as to generate data that will be used in the next
chapter for multi-input conditioning). Use three windows with 45, 30, and 20 s.
Determine the SISO frequency responses from all of the inputs to all of the out-
puts, making sure that the outputs are in the following units:  and  in rad/s, 
in ft/s2, and  in rad. Do not forget to correct the sideslip data to take into account
the difference between measurements taken at the nose boom instead of the
center of gravity.

Window-size selection

7.18 Compare the  frequency responses of windows A, B, and C from
Problem 7.16 or Problem 7.17 by overlaying plots of magnitude, phase, and
coherence. How is the identified frequency response affected by window length? 

7.19 A UAV helicopter project has two frequency-sweep records that can be
concatenated; one 85 s long, and one 92 s long. The dynamic modes of interest
are between 0.5 and 30 rad/s. What are the five window lengths you would
choose for this project? 
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Control system model validation

7.20 Identify the frequency responses  and  from your pen-
dulum simulation as shown in Fig. P7.20. Validate the identified response for the
feedback block (which is just a simple gain in this case). Then, using frequency-
response arithmetic reconstruct  using the known transfer function for a
closed-loop system with feedback; 

(P7.20)

compare the reconstructed  with the identified  frequency response
from Problem 7.11.

7.21 Use frequency-response arithmetic and the frequency responses identified
in Problem 7.20 to reconstruct the broken-loop response  using the
known equation for a broken-loop system: 

(P7.21)

Calculate the crossover frequency and phase margin using utility 8. Then using
frequency-response arithmetic, add a 0.1-s time delay to the pendulum feedback.
The time delay can be modeled using a Padé filter [Eq. (15.23)]. Examine the
effect of the time delay on phase margin. What is the gain margin? 
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Fig. P7.20 Signals for control system validation and design.
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7.22 Design a new feedback gain  for the pendulum feedback with 0.1s time
delay from Problem 7.21 to achieve a larger phase margin. Use only frequency-
response arithmetic to construct a new feedback transfer function  that
incorporates the new feedback gain. Use utility 8 to show that the phase margin
has improved.

7.23 Using frequency-response arithmetic, determine the closed-loop transfer-
function  for the system with the new feedback gain  design (and added
time delay) from Problem 7.22. Then use utility 8 to determine the bandwidth
for the new closed-loop pendulum and compare to the value for the nominal pen-
dulum.

K

FdBk θ⁄( )

θ Mext⁄ K
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8
Bare-Airframe Identification from Data

with Feedback Regulation Active

 

The identification of bare-airframe dynamics from flight-test data with feedback
regulation active raises some important issues and limitations. The SCAS feed-
backs generally suppress the bare-airframe excitation signal, especially at lower
frequencies (Fig. 5.6), and introduce cross-control correlation that also reduces
the effective input autospectrum for multi-input analyses (Chapter 9).

Perhaps the greatest concern in the identification of the bare-airframe response
under closed-loop test conditions is that the SCAS feedback introduces correla-
tion between the output noise and the bare-airframe excitation signal (  and ,
respectively, in Fig. 7.4). This correlation leads to bias errors in the frequency-
response estimate. The analytical and numerical simulation results presented
herein show that bare-airframe dynamics can be determined without incurring
significant bias errors, subject to modest restrictions on the noise-to-signal ratio.
These restrictions are consistent with the flight-testing guidelines discussed pre-
viously (Sec. 5.7). Although this chapter refers to SCAS feedback, the same con-
siderations also apply to piloted feedback regulation as well.

The following topics are covered in this chapter: situations requiring closed-
loop testing, theoretical analysis of bias errors caused by feedback, and numeri-
cal study of bias errors in closed-loop testing.

 

8.1 Limiting Conditions in Closed-Loop Identification

 

Some situations require that the identification of bare-airframe dynamics be
based on test data collected with one or more of the SCAS channels engaged.
Possible reasons for these circumstances to arise include the following:

1) The bare-airframe dynamics might have lightly damped, unstable, or highly
coupled modes that make it too difficult for the pilot to execute a satisfactory fre-
quency sweep with the SCAS disengaged. For example, the unaugmented char-
acteristics of high-performance fixed-wing aircraft exhibit a rapid pitch diverge
(with a typical time-to-double amplitude of less than 1 s) because of a large
unstable static margin. This precludes the possibility of piloted frequency-sweep
testing without engaging the SCAS pitch channels. Helicopters typically exhibit
an unstable low-frequency oscillation in hover (20-s period), and so the sweeps
are often conducted with the SCAS engaged in one or more channels.

2) Computer-generated sweeps will cause the aircraft to drift away from the
trim condition. This is true both for flight testing and ground-based simulation
studies. When automated sweep inputs are used, low-gain SCAS (or pilot) feed-
backs will generally be required to keep the aircraft variations centered about the
reference condition (as illustrated in Sec. 5.11.1).

v x
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3) Sometimes the only data available for use in system identification are from
prior flight tests conducted for an entirely different reason and flown with the
SCAS engaged. 

Figure 8.1 illustrates the identification of the single-input/single-output roll-
rate response to aileron  under closed-loop conditions. The block diagram
includes a noise input , which, as discussed in Chapter 7, accounts for the pres-
ence of response measurement noise and process noise as reflected to the output.
Typical sources of process noise are turbulence, response to neglected secondary
inputs, remnants associated with nonlinearities in the response, and even integra-
tion errors in the case of off-line simulation studies. 

The closed-loop system responds to the piloted-sweep input  and noise .
Measurement of the control surface input  and response  allows the direct
identification of the bare-airframe response

(8.1)

even when the SCAS is engaged, as discussed previously in Sec. 3.4. [Note that
Eq. (8.1) is an application of Eq. (7.37).] However, the problem that arises when
noise is present is that feedback of noise via the SCAS (and/or the pilot) causes
the frequency-response estimate  to be biased relative to the true frequency
response . This can be easily seen by observing that the (total) surface
deflection  is made up of components from the pilot  and the SCAS feed-
back . Thus the frequency response being identified  is also expressed as

(8.2)
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 Fig. 8.1 Single degree-of-freedom closed-loop roll-response model.
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For the limiting situation when there is no noise ( ), the spectral calcula-
tion of Eq. (8.1) gives us the true (i.e., unbiased) estimate, independent of the
level of feedback . However, when the feedback is dominated by the response
to noise , then

(8.3)

(8.4)

which is the troublesome result of identifying the inverse feedback frequency-
response ( ) in closed-loop pilot tracking tasks when there is no signifi-
cant exogenous input.

 

138

 

 The 

 

limiting condition

 

 of Eq. (8.4) is reached only in the
case when there is no pilot input ( ) and the system excitation is com-
pletely caused by output noise  (e.g., effects of turbulence). However, biases in
the open-loop response estimate obtained from Eq. (8.1) will occur even with
nonzero pilot input ( ) whenever output noise is present; this occurs
because the feedback loop causes the surface deflection to be partially correlated
with the noise. The amount of bias error depends on the noise-to-signal ratio at
each frequency, as shown in the following sections.

 

8.2 Quantification of Bias Errors

 

In practice, the actual closed-loop situation will fall somewhere between the
two limiting cases of zero noise ( ) or zero piloted inputs ( ) just dis-
cussed. By quantifying the level of bias error, we can establish testing guidelines
that will ensure adequate identification accuracy. 

This section presents analysis and numerical simulation results for the extrac-
tion of the bare-airframe response from closed-loop data as given by Tischler.

 

61

 

Consider the identification of the single-input/single-output bare-airframe roll-
rate response to aileron presented in Fig. 8.1, but now formulated for conve-
nience with a unity feedback architecture as shown in Fig. 8.2. 

The elements of the block diagram are as follows:

 

 

=

 

 pilot lateral stick input
 

 

=

 

 SCAS compensation dynamics
 

 

=

 

 measured roll rate resulting from control surface and noise 
inputs

 

 =

 

 aircraft response to the controls
 

 

=

 

 total aileron surface deflection, resulting from piloted input 
and SCAS feedback

 

 

=

 

 bare-airframe roll-rate response
 

 

=

 

 roll-rate measurement noise and process noise reflected to 
the output, where the noise and external inputs from the
pilot are assumed to be uncorrelated, that is to say,
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The bare-airframe frequency-response estimate  is determined from Eq. (8.1)
using the available (measured) quantities  and . The resulting cross spectrum

 from Fig. 8.2 (Ref. 106) is

(8.5)

Substituting Eq. (8.5) into Eq. (8.1),

(8.6)

which can also be expressed as

(8.7)

The first term on the right side of Eq. (8.7) is the true frequency response, and the
second term is a bias error. In other words,

(8.8)

This result shows that the estimate is 

 

biased

 

 by correlation between the aileron
surface and output noise signals. (This bias term is zero for 

 

open-loop

 

 systems
because in this case the control surface and noise signals are uncorrelated, and
thus .) The undesirable correlation results from the feedback of the noise
around the loop. This correlation causes  and results in the bias in the
estimate of Eq. (8.7). The true (unbiased) bare-airframe frequency response
[ ] is identified for 

 

stable 

 

or

 

 unstable bare-airframe dynamics

 

 as
long as 1) the airframe excitation  is recorded and 2) no output noise is present
( ), so that . If these conditions hold, the frequency-response esti-
mate obtained is unbiased 

 

regardless of the level of feedback compensation

 

.
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 Fig. 8.2 Analysis model of closed-loop identification.
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For the general case that includes both noise and feedback, Tischler61

expanded the relationship of Eq. (8.7) to derive the result

(8.9)

When the closed-loop system is excited only by process noise (i.e., no pilot
inputs), , and hence

(8.10)

This expression reduces to

(8.11)

which is the limiting condition of identifying the inverse compensation, as was
shown in the simple analysis leading to Eq. (8.4). Clearly, the estimated
frequency response  of Eq. (8.11) bears no relation to , the true bare-airframe
response . This is a general problem for bare-airframe identification from
closed-loop test data, and it applies equally to time-domain and the frequency-
domain methods.

8.3 Bias Errors Defined

The normalized bias error in the identified frequency response  is defined as
in Eq. (7.48) based on the true (unbiased) frequency response :

(8.12)

Tischler61 derived a simple approximation for the bias error that is accurate below
crossover frequency (  and  is frequency where at which ):

(8.13)

where

(8.14)
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is the excitation signal-to-noise (PSD) ratio. If we define the output noise-to-
excitation signal ratio

(8.15)

then

(8.16)

and

(8.17)

which is the same form as Eq. (7.49). This result shows that the increase of bias
error with feedback of output noise has the same characteristic as that caused by
input measurement noise. Also, in both cases the bias error produces an underes-
timate of the true frequency response. As before, the noise-to-signal ratio (  in
this case) must be minimized to obtain an accurate estimate.

When the signal-to-noise level is very high ( ), the bias error will be very
small. In the limiting case of no noise ( ), the bias error will be zero regard-
less of the level of feedback, as stated earlier. On the other hand, as the external
excitation vanishes ( ), then , that is, the bias error is 100% and the
identification of the bare-airframe frequency response  is not possible, again as
stated earlier.

As a general guideline, Eq. (8.13) shows that if the signal-to-noise ratio
is greater than 3, then the frequency-response bias error will be less than 0.1
that is,

Guideline:

(8.18)

results in . This reflects a bias in the magnitude of 10% (about 0.9 dB).
Alternatively, by defining the frequency distribution of the noise-to-excitation
signal rms ratio to be

(8.19)

The guideline of Eq. (8.18) can be expressed as
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Guideline:

(8.20)

and results in . Because a bias error of less than 10% is generally accept-
able, this leads to the conclusion that the external input amplitude, whether gen-
erated by a pilot or by computer, must exceed the noise amplitude by at least a
factor of three. The approximate analytical solution is seen to be independent of
the level of feedback gain .

8.4 Numerical Study of Identification Results Obtained Under 
Closed-Loop Conditions

In this section, the closed-loop identification concepts will be demonstrated
using a numerical simulation based on the XV-15 dynamics in hover. Referring to
the block diagram in Fig. 8.2, the vehicle dynamics are approximated by

(8.21)

This system has unstable dynamics, with a right half-plane pole at 
and a small time delay ( ). For this example, two very simple control
system configurations will be considered. The first case is for a control system
with a moderate gain, representative of the XV-15 tilt-rotor SCAS:

(8.22)

The second case is representative of a high-gain SCAS:

(8.23)

Both feedback gains produce a stable closed-loop roll-rate response:

(8.24)

and . For the purposes of calculating the analytical result  from
Eq. (8.24), the time delay in Eq. (8.21) is represented by a Padé approximation.104

In the following analysis based on a numerical simulation, the identification
results for the closed-loop and bare-airframe responses are compared for the two
gain levels and checked against the analytical results of Eqs. (8.21) and (8.24),
respectively. Initially, the analysis will be performed assuming that no noise is
present. Then the effect of low and high noise ratios on the bare-airframe identifi-
cation will be examined.
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8.4.1 Identification of Closed-Loop Response p/δδδδlat and 
Bare-Airframe Response p/δδδδa for Noise-Free Case (n ==== 0)

Figure 8.3 shows the identification results for the (stable) closed-loop response
(  of Fig. 8.2) with moderate feedback gain ( ) and no noise ( ).
The identified closed-loop frequency response matches the analytical (true
response) as obtained from Eqs. (8.22) and (8.24). The coherence function is very
nearly unity, indicating excellent identification accuracy, as expected for this
simple linear case with no noise.

Next, the (unstable) bare-airframe response  of Fig. 8.2 is identified
[using Eq. (8.1)] under the closed-loop test conditions with the low-gain control
system and no noise. In this case, the system is still excited via the exogenous
sweep input , but the identification is completed using the surface actuator 
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 Fig. 8.3 Verification of closed-loop response (K = 3.0, no noise).
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as the input. The analytical (true) response of Eq. (8.21) plotted in Fig. 8.4 shows
a phase shift of (positive) 45 deg at the break frequency ( ), as
expected for the unstable response. The identification result essentially matches
that of the true response. The coherence remains very high, as expected, indicat-
ing excellent identification accuracy for the linear (and unstable) response. This
demonstrates again that the frequency response for the unstable bare-airframe
system can indeed be accurately identified from a closed-loop experiment. The
SCAS (or piloted) feedback ensures that the input  and output  remain
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 Fig. 8.4 Identification of unstable bare airframe (K = 3.0, no noise).
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bounded. Therefore, the Dirichlet condition (7.11) is met for the desired
frequency-response calculation.

Figure 8.5 shows the identification of the (stable) closed-loop response 
for the high-gain case ( ), but still with no noise ( ). As was the case
for the moderate-gain configuration, the identified closed-loop response matches
the true response [Eqs. (8.23) and (8.24)] exactly.

Finally, the identification of the (unstable) bare-airframe response is repeated,
this time using the high-gain feedback ( ) control system, but still with no
noise ( ). As shown in Fig. 8.6, there continues to be nearly perfect agree-
ment between the identified and the true response of Eq. (8.21). The coherence
also remains very high. There is no significant difference in the bare-airframe
identification results obtained for the moderate-gain compared to the high-gain
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 Fig. 8.5 Verification of closed-loop response (K = 6.5, no noise).
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feedback systems (Fig. 8.4 vs Fig. 8.6), in agreement with the discussion of
Sec. 8.2.

Summarizing the results of this section, it is clear that for the case without
noise the unstable bare-airframe response  can be accurately extracted from
data obtained under closed-loop test conditions. The only requirements are that
the feedback stabilizes the test configuration (to satisfy the Dirichlet condition)
and that the control surface deflections (bare-airframe inputs) are recorded. Fur-
ther, the level of feedback gain has no significant influence on the result. 
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 Fig. 8.6 Identification of bare airframe (K = 6.5, no noise).
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8.4.2 Effect of Noise on Identification of Bare-Airframe Response 
Under Closed-Loop Conditions

So far, we have demonstrated the identification of the bare-airframe response
under closed-loop test conditions, but with no external noise. Next, we will exam-
ine the effect of noise ( , in Fig. 8.2) on the bare-airframe identification results.
Figure 8.7 shows the effect of relatively low noise levels for the moderate-
feedback-gain case ( ). The rms noise levels  are normalized by the pilot
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 Fig. 8.7 Effect of low noise ratios on bare-airframe identification (K = 3.0).
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excitation rms levels  to obtain the noise-to-excitation signal rms ratio
introduced in Eq. (8.19):

(8.25)

Three noise levels are shown in Fig. 8.7:  (i.e., no noise, repeated from
Fig. 8.4 for comparison purposes), , and .

As shown earlier in Fig. 8.4, the solid line corresponds to no noise and reflects
an accurate identification of the bare-airframe response. When the noise level
rises to 10%, some scatter or random error is apparent. However, on average the
identification tracks the true response, so that there is no significant bias error.
There is a loss in coherence, reflecting the increased noise-to-signal ratio [from
Eq. (7.52)] and associated random error [from Eq. (7.55)].

For the 30% noise level ( ), the random error is now considerable, as
reflected in the oscillations in magnitude and phase. There is an associated sig-
nificant drop in coherence. Note, however, that the bias error remains small
[which can be seen only a slight underestimate in the response in accordance
with Eq. (8.13)]. So on average an accurate estimate of the response is still
obtained. This case can be considered as the maximum acceptable noise level,
and it is in good agreement with the upper-limit guideline Eq. (8.20) obtained
from the earlier theoretical analysis.

Figure 8.8 shows the effect of higher noise ratios on the identification of the
bare airframe under closed-loop conditions. The solid line still represents no
noise, but the other two lines correspond to  and 10. In the latter case
there is nearly total noise and no piloted excitation.

For the case of , there is increased random error, as reflected in the
large oscillation in the frequency-response plots and the considerable oscillation
in the coherence function. More importantly, major differences are now seen
between the average identified response and the true response. Thus the bias
error has grown considerably. For frequencies below crossover (i.e., ), there
is a significant underestimation that becomes more pronounced with decreasing
excitation signal-to-noise ratio as predicted [Eq. (8.13)]. These results clearly
demonstrate a breakdown in the bare-airframe identification under closed-loop
conditions.

The plots corresponding to the high noise case of  demonstrate what
happens close to the limiting condition of no piloted excitation signal, when the
noise-to-signal ratio becomes infinite. Note that the magnitude and the phase
plots have both become quite flat. The magnitude for this case is approximately

 with a corresponding constant phase of , in agreement
with the limiting condition  of Eq. (8.11). What is quite unsettling is
that the coherence is now close to unity, which could create the false impression
that the bare-airframe identification was in fact quite accurate, and that the identi-
fied “aircraft dynamics” correspond to those of a simple constant gain system.
Clearly, this identification result does not reflect the bare-airframe response at all.

For a physical system response, the frequency-response plots associated with
the linear and angular velocities of the aircraft fuselage should show some roll-off
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or low-pass characteristic, such as that seen, for example, in the asymptotic
response of Eq. (7.22) and illustrated in Fig. 7.1. When the magnitude and phase
curves are flat over a wide frequency range and the phase remains at  or

, coupled with an unexpectedly high coherence value of the function, a
significant noise feedback correlation problem in the closed-loop test setup should
be suspected. When these telltale signs appear, it is likely that the bare-airframe
identification will contain serious bias errors.
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 Fig. 8.8 Effect of high noise ratios on bare-airframe identification (K = 3.0).
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8.4.3 Quantifying the Bias Errors in Parametric Identification
Parametric models (transfer-function or state-space representations), often the

ultimate goal of the system-identification process, are determined from the fre-
quency responses. Therefore bias errors that occur in the identified frequency
response will also be manifested as bias errors in the identified parametric mod-
els. For transfer-function modeling (Chapter 11), the identification structure
appropriate to the present example is

(8.26)H s( ) ke τs–

s a+
-----------=
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 Fig. 8.9 Bias errors in identification of model parameters (K, a).
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where a bias-free model extraction would return the true response of Eq. (8.21):

, , (8.27)

Transfer-function models can be determined for each of the bare-airframe fre-
quency responses of Figs. 8.7 and 8.8 using NAVFIT (Chapter 11). The normal-
ized bias error in the identified value of the gain  is then defined as

 (8.28)

and similarly for the other parameters. The normalized errors for the transfer-
function gain  and modal frequency  are plotted in Fig. 8.9 as a func-
tion of the noise-to-signal rms ratio . The small bias errors for no noise are
associated with the accumulated errors of the numerical simulation and overall
identification procedure. The increase in bias error for the high-gain case at low
noise levels ( ) probably results from integration errors in generating the
simulation data, which become more significant at the higher closed-loop natural
frequencies (for a fixed time step). Restricting the maximum bias error (gain and
modal frequency) to within 10% indicates a requirement for noise-to-excitation
signal ratios limits of , which is in good agreement with the theoretical
results of Eq. (8.20). The trends are generally independent of gain level (at least
for noise up to 30%), which is also in agreement with the earlier analytical results.

8.5 Flight-Test Implications

We now consider how the preceding results can be applied in practice. Suppose
a flight test is carried out on a day with moderate wind gusts that cause the aircraft
in a trim state to oscillate in roll with an amplitude of about  deg/s. This oscil-
lation can be thought of as the roll-rate noise component. To ensure that the bias
error will be acceptably small, the response to the piloted sweep inputs should
exceed those of the noise inputs by at least a factor of three, resulting in a forced
response of  deg/s. In practical terms, this will not represent a difficult require-
ment because for a typical sweep the response amplitudes are about 
(Sec. 5.5). When winds are light, as required for frequency-sweep testing
(Sec. 5.7), the trim variations must remain within the 1/3 guidelines of . 

On the other hand, if the winds are considered sizeable and gusty, the aircraft
might already be oscillating considerably (e.g., ) just because of the tur-
bulence. The SCAS (or pilot) will provide feedback proportional to the gust dis-
turbances, which produces correlated noise that can result in significant bias
errors. In the limiting case of large disturbance inputs and small piloted excitation
inputs, the frequency response that is identified will approach the inverse feed-
back response of Eq. (8.11). In general, it is advantageous to disengage as many
SCAS channels as possible for bare-airframe identification testing, as was also
recommended in Sec. 5.8. While conducting the sweep, the piloted regulation of
response caused by turbulence is a secondary, lower-frequency task (Sec. 5.9) and
so does not generally introduce a high degree of correlation to turbulence inputs.
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Therefore piloted feedback is generally much less problematic than the true
SCAS feedbacks as considered herein.

8.6 Identification of Unstable Inverted Pendulum Dynamics

The unstable dynamics of the inverted pendulum with rate damping only
 were identified using the simulation data from the stable closed-loop sys-

tem of Fig. 3.2. Here the sweep input  excites the system, but the input for
identification is the time history of . As seen in Fig. 8.10, there is perfect
agreement between the identified response (15-s window) and theory [Eq. (3.8)].
This result again validates the concept of identifying unstable system dynamics
under closed-loop test conditions. The effect of output noise on these results is
evaluated in Problem 8.5.
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Fig. 8.10 Comparison between identified and ideal responses for (unstable) inverted
pendulum.
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8.7 Conclusions

This chapter can be summarized with the following conclusions:
1) The bare-airframe frequency response for stable or unstable system dynam-

ics can be accurately extracted from data obtained under closed-loop test condi-
tions when no noise is present. The only requirements are that the feedback
(piloted or SCAS) stabilizes the test configuration (to satisfy the Dirichlet condi-
tion) and that the control surface deflections (bare-airframe inputs) are recorded.
Further, under these conditions the level of feedback gain has no significant influ-
ence on the accuracy of the result.

2) Bias errors will arise in the identification of the bare-airframe response
under closed-loop test conditions when noise is present, but they do not become
important until noise ratios reach . The coherence is a reliable indi-
cator of bare-airframe identification accuracy for noise levels in this range.

3) Be aware of the potential for large bias errors caused by the correlated feed-
back of noise. This situation is often detected visually when the identified
response approaches  rather than the expected low-pass-type charac-
teristic of the aircraft rigid-body response.

Problems
Identification of an unstable system from closed-loop frequency sweep tests

8.1 Simulate the response of the inverted pendulum system with feedback sta-
bilization using the configuration parameters:  = 13,  = 1.2, and l = 4. Gener-
ate simulation time histories using a sweep excitation with appropriate minimum
and maximum frequencies, making sure to store the channel data for , ,
and .

8.2 Identify the closed-loop (stable) response  from the time-history
data saved in Problem 8.1, and check the result against the analytical transfer
function [Eq. (3.5)]. Process the data with 35-, 25-, and 20-s windows. 

8.3 Identify the frequency response for the unstable subsystem associated with
the inverted pendulum and rate damping  from the time-history data
stored in Problem 8.1. Process the data with 35-, 25-, and 20-s windows. If you
did not already know that the subsystem was unstable, how could you determine
that from a visual inspection of the identification result?

8.4 Compare the identified response  from Problem 8.3 with the analyt-
ical result. 

8.5 Now, we will introduce varying levels of process noise into the pendulum
simulation and look at the effect on the identified frequency response .
Continue using the pendulum configuration parameters given in Problem 8.1 and
insert process noise into the system as shown in Fig. P8.5. Overlay these identified
responses (35-s window) with the ideal response obtained in Problem 8.3. How
does the presence of process noise affect the identification? 
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8.6 Derive Eq. (8.13). Hint: Start with Eq. (8.6), and use the identities
 , where * represents the complex conjugate and .

Also note that for frequencies , we can approximate .

8.7 Introduce process noise with a very high noise-to-signal ratio in the pendu-
lum simulation (continuing with configuration parameters given in Problem 8.1).
Add the noise to the attitude feedback as shown in Fig. P8.7. Does 

 as Eq. (8.4) predicts?

8.8 Look at the effect of nonlinearity on system identification for  by
including (a) spring limiting of  rad/s2, (b) spring backlash with deadband
width of  rad/s2, and (c) large-amplitude frequency sweeps of  rad/s2

in your pendulum simulation. Use the pendulum configuration parameters given
in Problem 8.1 and the frequency-sweep generator specifications from
Problem 5.3. Figure P8.5 depicts how nonlinear elements should be introduced
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 Fig. P8.5 Process noise for unstable pendulum problem.
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into the simulation. Coplot these frequency responses (35-s window) with the
ideal unstable pendulum frequency response. What is the effect of the nonlinear
elements on the magnitude, phase, and coherence of the identified frequency
responses? How does this compare to the closed-loop (stable) pendulum case of
Problem 7.15

Identification of broken-loop frequency-responses 

8.9 Determine the broken-loop response  of the pendulum simulation
(using the configuration parameters given in Problem 8.1). Use the signal
labeled “E” in Fig. P8.9. as the input to the broken-loop response, and use the
signal labeled “F” as the output of the broken-loop response. Use utility 19 to
create a hard copy of the broken-loop response. 

8.10 Use CIFER utility 8 to determine the phase margin of the pendulum
broken-loop frequency response identified in Problem 8.9.
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 Fig. P8.9 Pendulum broken-loop exercise.
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9
Multi-Input Identification Techniques

 

The frequency-response identification techniques of Chapters 7 and 8 were lim-
ited to the consideration of single-input/single-output (SISO) systems (e.g.,

). Of course, aircraft systems and subsystems generally consist of several
inputs and outputs, and generally more than one input is present during the test
maneuvers. For example, whereas a typical flight-test record can be characterized
as a lateral stick frequency sweep, there will be secondary inputs in the remaining
axes as supplied by the pilot and/or SCAS to maintain a roughly constant refer-
ence condition (Sec. 5.9). The response will be influenced by both the primary
and secondary inputs. So we need techniques that are applicable to the identifica-
tion of multi-input/multi-output (MIMO) systems from flight-test records with
multiple channels of excitation.

In this chapter, we will see that the starting point for MIMO system identifica-
tion is the single-input/single-output (SISO) frequency-response identification
method of Chapter 7. The SISO analysis is first conducted on the pair-wise com-
binations of inputs and outputs. Additional procedures are then necessary to 

 

con-
dition

 

, or correct, these frequency responses to take into account the effects of
multiple partially correlated inputs. These procedures are referred to as 

 

multi-
input identification techniques

 

. The results of the multi-input identification are
the 

 

conditioned frequency responses and partial coherence

 

 shown in the system-
identification flowchart (Fig. 2.1). Bendat and Piersol

 

106

 

 provide an excellent der-
ivation and physical insight into this conditioning process and the relationship of
the conditional spectral quantities to the SISO or 

 

ordinary

 

 equivalents. Twisdale
and Ashurst

 

42

 

 implemented the multi-input frequency-response identification for
aircraft in the FRA tool of the Air Force Flight Test Center. The reference pro-
vides a succinct explanation of the key multi-input identification concepts and
insightful flight-test examples. The CIFER

 

®

 

 module for multi-input frequency-
response determination is MISOSA (Multiple-Input/Single-Output System Anal-
ysis), as shown in Fig. 4.1. The CIFER

 

®

 

 algorithm is based on the compact
matrix formulation of Otnes and Enochson.

 

108

 

This chapter covers the following topics: reasons to be concerned about the
presence of multiple inputs, analytical solution for identification with two inputs,
example with two inputs using the XV-15 flight data, general matrix solution for
arbitrary number of inputs, multiple-input identification in CIFER

 

®

 

 using
MISOSA, and additional flight-test examples.

 

9.1 Multi-Input Terminology

 

This section defines some basic terminology in order to facilitate the discus-
sion of multi-input identification. Consider the example of an aileron frequency-
sweep test of a fixed-wing aircraft in cruise. For simplicity, we consider only the

p δlat⁄
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lateral-directional controls and responses. The aileron  is referred to as the 

 

pri-
mary control 

 

for these sweep tests. Rudder control inputs are associated with
maintaining a relatively constant reference condition during the sweep (Sec. 5.9),
and so the rudder  is therefore referred to as the 

 

secondary control

 

.
We conduct the aileron sweep  to obtain the lateral-directional responses to

aileron inputs ( , , , ). Aileron inputs mostly produce a rolling
moment (about the fuselage 

 

x axis, 

 

Fig. 6.3), so that the 

 

primary

 

 response of the
aircraft is in roll rate 

 

p, 

 

which is a motion also about the fuselage 

 

x axis 

 

(Fig. 6.3).
Therefore we refer to  as the 

 

on-axis

 

 response. If the aerodynamic center of
the vertical tail is located above the c.g., an aircraft roll rate will induce a yawing
moment (about the fuselage 

 

z axis, 

 

Fig. 6.3). In addition, the aileron deflection
causes a differential drag on the wing, which also contributes a yawing moment.
These yawing moments will cause associated responses in yaw rate 

 

r

 

, lateral
accelerometer , and sideslip . Because these responses are all about axes other
than that of the primary roll control moment (

 

x axis)

 

, we refer to , , and
 as 

 

off-axis

 

 responses. In this case, we describe the aircraft as exhibiting

 

dynamic coupling 

 

because a moment input about one axis produces responses
about other axes.

 

9.2 Need for Multiple-Input Identification Technique

 

System-identification analysis from aircraft data nearly always involves con-
sideration of multiple inputs. Flight-test data, whether obtained using a piloted
input or an automated excitation signal, usually involve both primary and second-
ary controls. Similarly, data from off-line simulation models usually involve
inputs in all control axes because of the need to artificially stabilize the system
about the reference trim condition (Sec. 5.11.1). 

The presence of multiple inputs, however, does not necessarily mean that the
usual single-input/single-output identification procedures will be inadequate. The
SISO solution explained in Sec. 7.7 [Eq. (7.37)] is satisfactory for multi-input/
multi-output system identification if 

 

at least one

 

 of the following conditions is
satisfied:

1) Interaxis dynamic coupling is negligible.
2) Secondary inputs are uncorrelated with the primary input

 

9.2.1 Interaxis Dynamic Coupling (Condition 1)

 

The influence of the secondary inputs on the identification of the 

 

off-axis
response

 

 is generally very significant. For example, as will be demonstrated in
Sec. 9.5, identification of the 

 

off-axis bare-airframe response

 

  from rudder
frequency-sweep  data is distorted by the presence of secondary aileron inputs

 if they are at least partially correlated with the primary (rudder) input. Yet the
identification of the 

 

on-axis bare-airframe response

 

  from the same sweep
data will be much less influenced by the secondary inputs. The influence of cou-
pling is further reduced for the identification of the 

 

on-axis closed-loop (SCAS-
on) response

 

 (e.g.,  of Fig. 7.5). These last two cases illustrate situations
where the interaxis coupling is low (condition 1) and the SISO solution (for the
on-axis response) is generally satisfactory.
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9.2.2 Control Input Correlation (Condition 2)

 

When the secondary inputs are essentially uncorrelated with the primary
(sweep) input, the SISO solution is also applicable to MIMO system identifica-
tion. Consider again the case of SCAS-off frequency-sweep testing of the fixed-
wing directional response. Using the flight-test technique described in Sec. 5.9,
the pilot might be responsible solely for the primary input (rudder ), while the
copilot (or pilot) pulses the secondary controls (i.e, aileron  and elevator ) as
necessary to maintain a constant reference condition. This renders the secondary
inputs uncorrelated with the primary sweep input, thereby satisfying condition 2.
In this case, the SISO solution is thus applicable to the determination from the
rudder-sweep record of each of the responses to rudder inputs, namely (for
cruise), , , , and .

 

9.2.3 General Considerations

 

When the closed-loop response is to be identified (e.g., ), conditions 1
and 2 can both be largely satisfied. By design, the SCAS systems for modern
flight vehicles are intended to suppress off-axis response coupling and achieve
diagonalized closed-loop response to control inputs. The requirement for piloted
regulation in the off axes is also minimized by the high-bandwidth feedback
loops that suppress the response to disturbances. Therefore the SISO solution is
often satisfactory for the identification of the 

 

closed-loop

 

 on-axis response
needed for bandwidth and phase-delay analysis of handling qualities
(Sec. 7.14.3). Handling-qualities requirements for the on-axis responses based on
frequency-response characterizations are given in ADS-33

 

4

 

 for rotorcraft and
MIL-STD-1797

 

5

 

 for fixed-wing aircraft. Although these documents do not
refer to multi-input flight-data analysis methods, the solution method presented
herein should be used to ensure an accurate identification even though the effects
of secondary inputs are less for the on-axis responses.

In the case of MIMO identification of the coupled 

 

bare-airframe

 

 dynamics, the
dynamics generally exhibit interaxis coupling for some input/output combina-
tions 

 

and

 

 the inputs are partially correlated. In other words, neither condition 1
nor condition 2 is satisfied. As demonstrated in the next section, the SISO solu-
tion for such cases can give a very inaccurate identification result, so that the
multi-input identification methods of this chapter are required to achieve a correct
solution. Fortunately, the multi-input analysis is completed very rapidly, and there
is usually no harm in performing the identification using MIMO solution condi-
tioning. As already mentioned, when at least one of the two conditions apply, the
multi-input solution simply reduces to the SISO solution without modification.
Thus it is generally recommended to always run the MIMO solution rather than
trying to decide in advance whether the conditions actually require its use.

 

9.3 Simple Two-Input Example

 

In this section, a simple two-input/one-output identification problem is pre-
sented. This simple case can be solved analytically, thereby illustrating the rela-
tionship to the SISO solution and the limiting conditions (i.e., conditions 1 and 2)
already discussed.
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Consider the simple dynamic model for the bare-airframe roll-rate response 
to rudder  and aileron  inputs, as shown in the schematic of Fig. 9.1. The
aircraft dynamics are represented by two (unknown) transfer functions  and

, whose combined response produces the aircraft roll rate . The two con-
trol inputs present during the tests  and  produce the measured roll-rate
response . The schematic also includes a crossfeed path between the two
inputs . This crossfeed can be a model of the pilot strategy for using some
secondary aileron input to maintain an average zero-roll-rate reference condition
during the rudder sweeps, or it can be an actual block in a SCAS, or both. So
this transfer function , which is assumed to be composed of unknown
dynamics, can range in complexity from a simple constant to a higher-order
dynamic function of frequency owing to a combination of SCAS/pilot feedbacks
and crossfeeds. 

Following the flight-testing procedures of Chapter 5, a set of rudder frequency
sweeps  will be conducted for the purpose of identifying the off-axis frequency
response , and then a set of aileron sweeps  will be conducted for the pur-
pose of identifying the on-axis frequency response . The analysis that fol-
lows addresses the identification of the off-axis response  from the rudder-
sweep flight data.

As shown in the block diagram for this system (Fig. 9.1), the (secondary) aileron
input can be considered as being made up of two components:

(9.1)

where  is the component of the aileron input that is 

 

correlated

 

 with the rudder
input and  is the component of the aileron input that is 

 

uncorrelated

 

 with the
rudder. First, the results of using the SISO solution to identify  are illus-
trated. In this case, the influence of  is ignored.
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 Fig. 9.1 Schematic model of roll-rate response to rudder and aileron inputs.
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9.3.1 Using the Single-Input/Single-Output Solution

 

A SISO estimate of the desired response  is easily obtained from the mea-
sured rudder and roll-rate signals:

(9.2)

The cross spectrum  can be expressed in terms of the input autospectrum
 and the transfer function from the input to the output (as obtained from an

inspection of Fig. 9.1):

(9.3)

which shows that the SISO solution can also be expressed as

(9.4)

which simplifies to

(9.5)

In other words,

(9.6)

where

(9.7)

Reference to Eq. (9.5) demonstrates precisely the conditions of Sec. 9.2 under
which the SISO solution will produce the correct results even though two inputs

 and  are present. The estimated frequency response will be 

 

correct (i.e.,
unbiased) if and only if either of the following two conditions is true:

1) The first condition is , which means the roll response is fully
decoupled from the secondary aileron input (not possible herein because this is
the on-axis response for aileron input). This corresponds to condition 1 of
Sec. 9.2.
or

2) , which implies , and hence the two inputs are completely
uncorrelated. This corresponds to condition 2 of Sec. 9.2.

p δr⁄

p

δr

----
ˆ Gδrp

Gδrδr

-----------=

Gδrp
Gδrδr

Gδrp
Gδrδr

p

δr

---- KCF
p

δa

----+ 
 =

p

δr

----
ˆ

Gδrδr

p
δr

---- KCF
p
δa

----+ 
 

Gδrδr

------------------------------------------=

p

δr

----
ˆ p

δr

---- KCF
p

δa

----+=

Estimated response true response= bias error+

bias error KCF
p

δa

----=

δr δa

p δa⁄ 0=

KCF 0= δaC
0=

Chapter 9.fm  Page 233  Friday, June 16, 2006  3:23 PM



234 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

In either situation, the bias error of Eq. (9.5) will be zero, and a simple SISO
analysis [based on Eq. (9.2)] would yield the true response . Expressing this
in the reverse manner, frequency-response calculations using single-input/single-
output methods will be incorrect whenever both of the following conditions are
true: 

1) The MIMO system exhibits interaxis coupling.
and

2) The inputs are partially correlated.

9.3.2 Two-Input/Single-Output Solution
When the system to be identified exhibits interaxis coupling and the inputs are

partially correlated, a multiple-input/single-output (MISO) procedure is used to
determine the true (unbiased) response from the measured control inputs. In the
present case, we want to determine accurately the off-axis response  from rud-
der-sweep data in which both control inputs  and  are present. The solution
method starts with the equations for the cross spectra:

(9.8)

(9.9)

Simultaneous solution of Eqs. (9.8) and (9.9) provides the relationships for esti-
mating the two unknown frequency responses in terms of the spectral SISO spec-
tral quantities:

(9.10)

(9.11)

The solution of these equations involves several spectral quantities that are calcu-
lated using SISO identification: cross spectra between each input and the output

 and ; cross spectra between the two inputs  and the complex con-
jugate ; input autospectra  and ; and cross coherence between the
inputs , also called the cross-control coherence.

Next, each spectral quantity is expressed analytically—for the present case
using the aileron input, as defined in Eq. (9.1). By definition, the uncorrelated
part of the aileron input has no correlation with the rudder input, so that

(9.12)
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and therefore

(9.13)

Furthermore,

(9.14)

The cross-control coherence is defined as

(9.15)

Substituting Eqs. (9.13) and (9.14) into Eq. (9.15) results in

(9.16)

which simplifies to

(9.17)

There are two limiting cases for the cross-control coherence, each with an
important consequence for the identification:

1) Complete correlation of the controls: In this case, there is no uncorrelated
component, so that , and hence . Reference to Eqs. (9.10)
and (9.11) immediately shows that the solution breaks down and the two aircraft
dynamics responses  and  can not be separately identified. This is the
same multipath propagation problem illustrated in Fig. 5.7, and it cannot be
solved without independent excitation inputs. Clearly, complete correlation
between the control inputs is undesirable. In practice, it is generally possible to
avoid high levels of cross coherence between the inputs by directing the pilot to
treat the secondary control regulation as a lower priority (Sec. 5.9). The use of
uncorrelated pulse-type inputs for the secondary control generally achieves this
goal as well. If the aircraft has a wing-leveling system, then a rudder frequency-
sweep input generates a fully correlated aileron input (i.e., KCF of Fig. 9.1). In this
case the pilot or copilot can introduce some uncorrelated aileron inputs via the
lateral stick  to reduce the otherwise high levels of cross-control coherence.
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As a rule of thumb, the average value of the cross-control coherence between two
control inputs ,  should be limited by the following:

Guideline:

(9.18)

to ensure a satisfactory MIMO solution.
2) No control cross correlation: In this case,  (i.e., condition 2), and

hence . The simultaneous solution of Eqs. (9.10) and (9.11) will now
reduce to the single-input/single-output solution. To see why this is so, it is con-
venient to rewrite Eq. (9.10) as

(9.19)

When there is no control cross correlation, , and , and so
Eq. (9.19) reduces to

(9.20)

demonstrating, as expected, that the MISO result reduces to the SISO solution of
Eq. (9.2) when there is no correlation between the inputs. 

9.3.3 Two-Input/Multi-Output Solution
The MISO solution for two inputs described in Sec. 9.3.2 can be extended to

multiple outputs by by using two sets of flight data: one set for the rudder sweeps
and the other for the aileron sweeps. First, the MISO solution of Eqs. (9.10) and
(9.11) is carried out using the data from rudder sweeps for each of the aircraft
outputs (e.g., in a fixed-wing aircraft, , , , and ). This yields a set of four
frequency responses for the primary rudder input ( , , , ) and
four frequency responses for the secondary aileron input ( , , ,

). However, for rudder sweeps the spectral energy of the secondary aileron
input is much less than that of the primary rudder input. Therefore, in this case of
the rudder sweeps, the aileron data are only used for the multi-input solution of
the rudder frequency responses [e.g., Eq. (9.10)], and the frequency responses
corresponding to the aileron inputs [e.g., Eq. (9.11)] are discarded. This com-
pletes the identification of frequency responses for the rudder inputs ( ,

, , ).
This procedure is repeated, this time using the aileron-sweep data. Once again,

the MISO calculations applied to each output generate a set of four frequency
responses for the rudder input ( , , , ) and four frequency
responses for the aileron input ( , , , ), but this time the rud-
der input is secondary, and the aileron input is primary. Because the rudder input
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has much lower spectral content in this case, the frequency responses obtained
for the rudder inputs are discarded, but we retain the frequency responses for the
aileron inputs ( , , , ).

Thus, we have carried out the MISO calculations for each output, using one set
of flight data records for sweeps of each input. In each analysis, we save the fre-
quency responses only for the dominant input because these will have the most
accuracy (i.e., highest coherence). This completes the MIMO identification of the
lateral-directional frequency-response matrix. The MIMO procedure presented in
this section, based on two inputs, will be generalized for an arbitrary number of
inputs in Sec. 9.6.

9.4 Conditioned Spectral Quantities

The form of Eq. (9.19) allows the definition of spectral quantities for the
MISO solution in terms of the familiar SISO quantities. The numerator of
Eq. (9.19) is defined as the conditioned cross spectrum:

(9.21)

which can be seen as the SISO or ordinary106 cross spectrum , conditioned
with the correction term

(9.22)

This conditioning, indicated (from Ref. 106 by the notation ( ), eliminates the
linear effects of the partially correlated aileron inputs. Similarly, the conditioned
rudder input autospectrum is defined from the denominator of Eq. (9.19)

(9.23)

which is seen as the ordinary autospectrum , conditioned with the correction
term

(9.24)

to eliminate the linear effects of the partially correlated aileron inputs ( ).
Finally, the conditioned frequency response is obtained by rewriting Eq. (9.19)
using the conditioned spectral quantities

(9.25)
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238 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

which has exactly the same form as the SISO solution of Eq. (9.2), but now using
the conditioned spectral quantities rather than the SISO spectral quantities. So the
conditioned frequency response is the SISO solution conditioned to eliminate the
linear effects of partially correlated aileron inputs ( ).

The multi-input identification begins with the calculation of the SISO spectral
quantities, including the cross-control spectra and cross-control coherence.
The SISO spectral quantities are then conditioned to remove the effect of any
correlation between the inputs, leading to the final corrected spectral quantities
and frequency responses.

The conditioned frequency response  can also be thought of as the
frequency response that would have been identified from the flight-test data if
there had been no partially correlated component of aileron during the maneu-
ver (i.e., ). In particular, the conditioned frequency response is the
SISO frequency-response solution that would have been obtained if the pilot
had been instructed to use only the rudder for input, with no use of the aileron
at all. 

The magnitude of the conditioned autospectrum  is reduced from the
unconditioned value in direct proportion to the cross-control coherence
[Eq. (9.23)]. This is the result of removing the component of  that is partially
correlated with . In other words, the effective rudder excitation level is only the
part that is uncorrelated with the aileron input. When the average cross-control
coherence is limited to 50% [i.e., , per the guideline of Eq. (9.18)],
the reduction in average effective rudder autospectrum will be limited to 50%.
This is equivalent to a 30% reduction in the primary control rms (  in this case)
because  [Eq. (7.75)].

A generalization of the ordinary coherence function concept of Sec. 7.8 allows
the accuracy and quality of the conditioned frequency-response estimate to be
assessed. The partial coherence function (  in this case) is obtained106 from
the definition for the ordinary coherence [Eq. (7.51)], with the ordinary spectral
quantities now replaced by the conditioned spectral quantities:

(9.26)

where the conditioned roll autospectrum is defined as

(9.27)

which is seen as the SISO output autospectrum , conditioned with the correc-
tion term

(9.28)

to eliminate the linear effects of the partially correlated aileron inputs. 
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The partial coherence is that fraction of the output  that can be linearly
related to the primary (rudder) input in the test data, with the linear effects of par-
tially correlated aileron inputs removed. The partial coherence is interpreted in
exactly the same way as the ordinary coherence for SISO systems.

Similarly, the partial coherence for the aileron inputs ( ) indicates that
fraction of the output  which can be related to the secondary (aileron) input for
the test data, with the linear effects of partially correlated rudder inputs removed.
This secondary input partial coherence is obtained by reversing the controls in
Eq. (9.26) and is useful in showing the importance of the secondary control  on
the identification of .

The normalized random error  associated with the conditioned frequency-
response estimate  can be determined directly from Eq. (7.55), using the
partial coherence  instead of the ordinary coherence:

(9.29)

A final useful quantity for MIMO system identification is the multiple
coherence:

(9.30)

where the * denotes the complex conjugate. The multiple coherence is the frac-
tion of the output that is linearly related to all of the inputs included in the analy-
sis (  and  in our current two-input example). The multiple coherence will be
less than unity when noise at the output or nonlinearities are present, or when
additional secondary control inputs contribute to the aircraft response but are not
included in the multi-input analysis.

9.5 Example of a Two-Input Identification Solution Using the XV-15 
Flight Data

In this section, the two-input solution is demonstrated for the identification of
the bare-airframe off-axis (coupling) response  of the of XV-15 in cruising
flight (database 2, Table 3.4). The flight-test data are from directional sweeps,
which were completed with the SCAS off in both the yaw and roll channels. The
primary input is rudder , but secondary aileron inputs  are also present in
these piloted sweeps to keep the aircraft motions centered about the reference
condition (i.e., roughly wings level). As will be seen, the identification of the
off-axis response  will be significantly influenced by secondary control
inputs , so that the SISO solution must be conditioned to obtain an unbiased
identification. 
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240 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

Figure 9.2 shows the rudder  and aileron  inputs. The aileron inputs are
less than 20% of the rudder inputs. (Note the expanded scale for the aileron plot
to provide a clearer view of the waveform.) Although the time-history plot
appears to show some correlation between the two inputs, it is difficult to tell how
significant this is just from a visual inspection.

As seen in Fig. 9.3, the cross-control coherence has a maximum value of
 at low frequency, where it is associated with piloted trim (i.e., sec-

ondary) inputs. There is also an increase in the cross-control coherence near
the Dutch-roll mode (about 2 rad/s), where roll-yaw dynamic coupling is the
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Fig. 9.2 Rudder and aileron control inputs during directional sweep (XV-15,
cruise).
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most significant, resulting in piloted roll regulation. The average value is calcu-
lated as , which is well within the guideline of Eq. (9.18). The
cross-control coherence situation for these data is definitely not at either
extreme (  or ). The cross correlation is high enough that it
should not be ignored, but not so high that it will make the identification
impossible. 

Figure 9.4 shows the input autospectrum for . The SISO solution  is
shown as the dashed line. The conditioned MISO solution , which takes
out the correlated part of , is shown as the solid line. The input autospectrum is
lower for the MISO solution than for SISO solution, illustrating that the condi-
tioning process reduces the effective energy of the identification excitation
[Eq. (9.23)].
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242 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

The same characteristic of energy reduction is seen in the output autospectrum
of Fig. 9.5. The conditioned cross spectrum is compared to the SISO solution in
Fig. 9.6.

The frequency-response identification results for the SISO ( , long dashes)
vs MISO ( , solid line) solutions are shown in Fig. 9.7. In this case, the con-
ditioning process results in an increase in the coherence compared to the SISO
result. The partial coherence is well above 0.6, indicating an accurate identification.

Also shown in Fig. 9.7 is the GTR simulation response (short dashes)
obtained directly from the stability and control derivative model. The simulation
model is seen to track the MISO (i.e., correct) flight response nearly perfectly, as
would be expected, because the aerodynamic look-up tables that are the basis for
the simulation model were obtained from full-scale wind-tunnel tests. The
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results show a significant phase error in the SISO results at frequencies below
1 rad/s and some magnitude error near the Dutch-roll mode (1–2 rad/s). These
errors reflect the considerable influence of the piloted secondary inputs  dur-
ing the sweep and are largest in the region of high cross-control coherence
(Fig. 9.3). If the SISO data were used to evaluate the off-axis response of the
XV-15 simulation, one might conclude that there was a problem with the math
model, but in reality the problem would be with the use of the SISO identifica-
tion analysis.
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The partial coherence for aileron inputs (Fig. 9.8) is strongest in the same low
frequency range, reflecting the significant on-axis response .

Finally, as shown in Fig. 9.9, the multiple coherence  is high over the
frequency range of piloted sweep excitation (up to 8 rad/s). This indicates that
most of the output is attributable to the two measured inputs included in the anal-
ysis  and , with little influence from other inputs (e.g., pitch controls and tur-
bulence) or from nonlinearities.

The key on-axis response for handling-qualities analyses  was identified
using the same directional sweep data. Figure 9.10 compares the results for the
SISO and MISO analyses. As expected from the discussion of Sec. 9.2, there is
much less influence of the secondary control inputs on the on-axis response iden-
tification. The influence of secondary inputs is further reduced for the identifica-
tion of the on-axis closed-loop responses (as is demonstrated in Problem 9.6)
bacause the feedback loops suppress the sideslip/roll response coupling and ren-
der the system essentially as SISO (per condition 1).    
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9.6 General MIMO Solution

The method for solving the general MIMO problem, presented in this section,
is a generalization of the techniques for two inputs discussed in Sec. 9.3.2. First
we will present the equations used to solve the general MISO problem
(Sec. 9.6.1). The general MIMO problem can then be solved by repeated applica-
tion of the MISO analysis, once for each of the  outputs (Sec. 9.6.2). 

There are two flight-test procedures that can be used to generate the data appro-
priate for the MIMO identification. The most common approach is to use a series
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246 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

of data sets, each one consisting of sweep maneuvers for one of the  inputs. In
this approach, the  MISO solutions are successively calculated for each of these
data sets, and the frequency responses with the highest coherence are obtained
(MIMO extension of Sec. 9.3.3). Alternatively, the calculations can be made using
a single data set if it contains sufficient information content for all inputs. This can
be achieved by employing appropriate multi-input maneuvers during the flight test
(Sec. 9.10).

9.6.1 General MISO Solution
The generalized MISO identification problem can be solved numerically at

each frequency point  in a direct matrix formulation108:

(9.31)

which can be seen to be directly analogous to the  scalar solution in the SISO
case [Eq. (7.37)]. [From here on we again drop the estimate designation ( ) for
notational convenience, though it is implied.] The solution of Eq. (9.31) is an 
column vector of conditioned frequency responses  for a selected output :

, for (9.32)

where  are the control inputs. The quantity denoted  in Eq. (9.31) is an
 column vector of SISO cross spectra between each control input and the

single output . 
The quantity denoted  in Eq. (9.31) is an  matrix of auto- and

cross spectra between the  control inputs. The diagonal terms of  are the
control autospectra, such as 

, , , (9.33)

and the off-diagonal terms are pair-wise control cross spectra and their complex
conjugates, such as

, , , (9.34)

If any two of the inputs exhibit a cross-control coherence of near unity, then the
autospectrum matrix  becomes nearly singular (“ill conditioned”), and the
MISO solution of Eq. (9.31) breaks down at this frequency . This is a direct exten-
sion of the guideline [Eq. (9.18)] for the two-input solution. Further, if all of the
controls are fully uncorrelated, then the  matrix is diagonal, and the inverse is
just the reciprocal of the diagonal elements. This renders the MIMO matrix solution
the same as the SISO solution of Eq. (7.37)(Sec. 9.2, condition 2). When the output
is only affected by the primary input, only one element of the cross-spectrum vector

 and the associated element of the frequency response vector  have non-
zero values. Once again, this reduces the MIMO matrix solution to the SISO solu-
tion, even for a fully populated input autospectrum matrix (Sec. 9.2, condition 1).
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Each of the  frequency responses in  [Eq. (9.31)] has an associated partial
coherence:

(9.35)

where each quantity in this equation involves fairly complex manipulations of the
spectral matrices.108 Note that Eq. (9.35) is a generalization of Eq. (9.26) from
two inputs to  inputs. Further, the factorial notation used in expressions such as

 is not to be taken as a literal factorial, but to indicate that the spectral
quantity for one input  is conditioned by each of the other  inputs. 

The associated conditioned random error is obtained using the partial coher-
ence functions:

(9.36)

A matrix formulation for the multiple coherence function (to show the combined
influence all  inputs) is also given by Otnes and Enochson108.

9.6.2 Combining MISO Analyses to Obtain the MIMO Solution
The MIMO solution, consisting of the frequency-response vectors  for each

output, is obtained by repeating the MISO calculation of Eq. (9.31) for each of
the  outputs. However, in order to achieve an accurate identification (high
coherence) of the frequency responses in the MIMO solution, there are some
important issues to consider with respect to the flight data used in these calcula-
tions. This is directly analogous to the two-input discussion of Sec. 9.3.3.

In most testing procedures for system identification, a maneuver is executed with
a dominant input. Consider the MIMO bare-airframe identification of a hovering
helicopter with fully coupled dynamics. There are four primary controls ( , ,

, and ) and generally (Sec. 13.4.3) nine outputs ( ).
When a roll-sweep maneuver (or 3-2-1-1, Schroeder phase, etc.) is conducted, the
flight-test data involve mostly lateral stick inputs . There will also be consider-
able control activity for the remaining inputs , , and . These are associ-
ated with piloted (or augmentation system) stabilization of the off-axis excursions
as a result of the highly coupled nature of the helicopter system dynamics. The
information content for the dominant input (  in this case) will also be the great-
est for the roll sweep data. Therefore, although the calculation of Eq. (9.31) will
return the frequency responses of the outputs for all four control inputs, only the
nine responses to lateral stick input (i.e., , , , etc.) will have high
coherence. The partially correlated effect of the secondary controls will be removed
from these lateral stick frequency responses, and these will be accurately identified
from the roll-sweep data. But the frequency responses for the other inputs (e.g.,

, , , etc.) available from Eq. (9.31) will generally not exhibit
acceptable coherence from the roll-sweep data and are discarded. The lateral-stick
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responses will constitute the first column (corresponding to the first control ) of
the ( ) of the MIMO frequency-response estimate matrix . 

The identification is next repeated for yaw sweep data, where the pedal input
 is dominant. In this yaw-sweep case, the responses to pedal (i.e., ,

, , etc.) will now have high coherence and will be corrected for the
presence of secondary inputs. These pedal responses will constitute the second
column (corresponding to the second control ) of the MIMO frequency-
response estimate matrix . The responses to lateral stick, although available
from Eq. (9.31), will exhibit poor coherence for the yaw-sweep data and are gen-
erally discarded. This procedure is continued for each of the four sweep axes, and
a complete MIMO frequency-response estimate matrix  of dimension  is
compiled (  in this case).

The preceding approach is based on a set of flight-data records, each consisting
of frequency sweeps with a primary input limited to one of the control axes. In
the special case of a multi-input maneuver, sufficient information content is
achieved for all controls in a single maneuver (Sec. 9.10), and the frequency
responses for all inputs can be determined from Eq. (9.31) from the single data set.

9.7 High Control Correlation
In some situations, the secondary inputs can be highly correlated with the primary

inputs, but the amplitude of the secondary inputs can still be quite small. This will
render the MISO solution indeterminate [  of Eq. (9.31) is nearly singular],
although the secondary controls have little real importance in the test data and can
be safely ignored. Such situations are detected by high values of the average cross-
control coherence functions, together with very low levels of the input autospectrum
for the secondary inputs as compared to the primary inputs. So, for example, if the
primary input is denoted  and the secondary input is denoted , high cross-con-
trol coherence can be reflected [e.g., ], while the secondary input
autospectrum  has a low value (e.g., 20 db lower) compared to the primary
input autospectrum . In such situations, it might be necessary (and sufficiently
accurate) to drop one (or more) of the secondary controls from the MISO analysis. 

One common cause of this problem occurs when a pilot sweep in one control
bleeds into a secondary control input as a result of mechanical rigging—some-
times referred to as mechanical cross talk. This can cause a small, inadvertent,
but highly correlated, off-axis input. A similar situation occurs as a result of pilot
biodynamic effects, where the pilot’s body can transmit a very small but highly
correlated secondary input—sometimes referred to as a bob-weight effect. For
example, the pilot might execute a pedal sweep, but inadvertently transmit via his
body motions a small, but highly correlated input to the lateral cyclic axis. In the
case of the biodynamic coupling, the problem can be eliminated by the pilot brac-
ing his/her arm against the cockpit to avoid the inadvertent cyclic inputs. The
small off-axis inputs will be seen as a very low power-spectrum as compared to
the primary inputs, and can be ignored in the analysis.

The problem of high control correlation has also been encountered by the leading
author in the identification of the bare-airframe response of small highly coupled
ducted-fan rotorcraft UAVs under closed-loop test conditions.12 In this case the
high cross-control coherence was the result of gyroscopic coupling induced by the
large rotational momentum of the fan. Again, the MISO identification could not be
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conducted because a cross-control coherence of nearly unity was detected—even
though the amplitudes of the off-axis inputs were small. An accurate analysis was
completed by dropping the secondary inputs and reverting to the SISO solution.

9.8 Multiple-Input Identification in CIFER® Using MISOSA

The MIMO frequency-response matrix identification of Sec. 9.6 is imple-
mented in the CIFER® module MISOSA (Multi-Input/Single-Output Spectral
Analysis) shown in Fig. 4.1. The solution for a typical flight vehicle (e.g., four con-
trol inputs, nine outputs) involves a large number of spectral matrix calculations
and poses a significant bookkeeping challenge for which the CIFER® database is
an important resource. At the user interface level, MISOSA is quite simple and
only requires the selection of primary and secondary inputs, outputs, and SISO
spectral windows. This section reviews some key aspects of the overall MIMO
frequency-response identification using CIFER®.

Consider again the MIMO bare-airframe identification of a hovering helicop-
ter. The identification starts with one FRESPID (SISO) case named LATSWP for
a linked set of time histories associated with the first primary control . The
FRESPID case should be run with “control cross-correlation on,” so that the
needed cross-control spectral quantities are determined. An associated MISOSA
(MISO) case (also named LATSWP for ease of bookkeeping) is processed, with
one control designated as “primary” (  in this case) and the remaining controls
designated as “secondary” ( , , and ). The users also select the desired
outputs. As explained in Sec. 9.6.2, the output of this MISOSA case will be only
those responses associated with the primary input. This FRESPID / MISOSA
process is then repeated for the linked record associated with the next primary
control (LONSWP case for the linked set of  sweep records), with the remain-
ing controls designated as secondary. This process continues for each of the 
controls in the MIMO analysis to arrive at the  (  in this case) fre-
quency-response estimate matrix . Identification of the closed-loop responses
will be based on the piloted controls as inputs, whereas the identification of the
bare-airframe response will be based on the aerodynamic surface deflections as
inputs.

Tables 9.1 and 9.2 illustrate the solution of the two-input bare-airframe identi-
fication problem  and  for the XV-15 cruise condition (discussed in Sec. 9.5).
Table 9.1 tracks the analysis for the lateral-stick sweep data, which produces all

 Table 9.1 Lateral-sweep-data analysis (cruise) 

Time-history set FRESPID MISOSA

Lateral-sweep data FRESPID case: LATSWP MISOSA case: LATSWP

Two inputs Two inputs (cross 
correlation on)

Primary input: 
Secondary input: 

Four outputs Four outputs Four outputs

Number of frequency 
responses generated
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of the conditioned frequency responses for the primary aileron  input ( ,
, , ). Similarly, Table 9.2 tracks the analysis for the pedal-sweep

data, which produces all of the conditioned frequency responses for the primary
rudder  input ( , , , ). Note that the assignment of primary
and secondary inputs is reversed for the two cases.

The MISOSA software calculates the conditioned frequency responses for the
primary input only, following theapproach of Sec. 9.6.2. The remaining inputs are
designated as the secondary inputs for this analysis and are used for conditioning
purposes only. The order of the secondary inputs is immaterial in the solution, so
that there is no need to be concerned with ordering the controls in terms of most
important. Furthermore, there is no disadvantage to including controls that turn
out to be totally uncorrelated, and so it is generally best to include all of the
controls that are active in the flight record rather than trying to make an a priori
judgement about which secondary controls are important in the solution and
which secondary controls could be ignored. The cross-control coherences for each
pair-wise combination of controls are checked to ensure that they are within the
guideline of Eq. (9.18), and the user is alerted if this guideline is exceeded.

The MISO frequency-response solution of Eq. (9.31) is completed at each dis-
crete frequency . If a numerical singularity is encountered for a particular fre-
quency (e.g., because of high cross-control coherence), then the program will
drop that frequency point, issue a warning message, and then continue on with
the remaining frequency points in the analysis. This procedure is repeated for all
of the selected SISO spectral windows.

9.9 Example of MISO Solution for a Hovering Helicopter

Tischler and Tomashofski139 identified accurate high-order models of the SH-
2G helicopter over a range of flight conditions from hover to 100 kn to support
flight-control system development. The results are presented in detail in
Sec. 15.3. This helicopter exhibits a high level of cross coupling between pitch
and roll, resulting in considerable cross-control correlation for the piloted
sweeps. Figure 9.11 shows the MISO identification of SH-2G helicopter bare-
airframe dynamics in a hover flight condition. The analysis shown is for the roll-
sweep flight data, so that the primary input in this case is . The key frequency
responses of interest are associated with the on-axis response (roll rate )
and the main off-axis response (pitch rate ).

 Table 9.2 Pedal-sweep-data analysis (cruise) 

Time-history set FRESPID MISOSA

Pedal-sweep data FRESPID case: PEDSWP MISOSA case: PEDSWP

Two inputs Two inputs (cross 
correlation on)

Primary input: 
Secondary input: 

Four outputs Four outputs Four outputs

Number of frequency 
responses generated

δr

δa

nc no⋅( ) nc 2⁄( ) nc 1–( )+ 9= no 4=

δa p δa⁄
β δa⁄ r δa⁄ ay δa⁄

δr p δr⁄ β δr⁄ r δr⁄ ay δr⁄

f

δlat
p δlat⁄

q δlat⁄
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Figure 9.11 shows the frequency-response identification of the conditioned on-
axis roll-rate response . There is good (partial) coherence for on-axis
response to the primary input  in the frequency range of interest for flight con-
trol (1.5–7 rad/s). The noticeable “hole” in the coherence function at about 0.8 rad/s
is associated with a peak in the lateral-to-longitudinal cross-control coherence.

Figures 9.12a–9.12e show the partial coherence for each secondary control, with
the effects of the other three inputs taken out. There are important contributions
arising from the roll response to pitch inputs ( , Fig. 9.12a) at lower frequency
and to pedal inputs ( , Fig. 9.12b) in the frequency range of the Dutch-roll mode.
Not surprisingly, there is little partial coherence associated with the roll response
because of the secondary collective (i.e., vertical) control ( , Fig. 9.12c). The

 response is not significant unless the helicopter has a canted tail rotor (e.g.,
UH-60). Figure 9.12d shows that the multiple coherence is very high, indicating
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Fig. 9.12 Partial coherences for secondary inputs and multiple coherence.
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that nearly all of the roll-rate response is caused by the four pilot control inputs, and
the effects of other excitations (such as wind gusts) and nonlinearities are minimal.

The significance of secondary inputs to the identification of the on-axis
response  is demonstrated in Fig. 9.13. The solid line shows the MISO,
result and the dashed line shows the SISO result. The differences between these
two results are fairly minor in the frequency range over which the coherence is
good (1.5–7 rad/s) and could be ignored in this case. The differences are much
more important for the off-axis response identification , as can be seen in
Fig. 9.14. Although the coherence is still poor for the MISO analysis at the low
and high frequency ends of the plotted results, it is acceptable in the important
frequency range of the short-term response (2–5 rad/s). The magnitude and
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Fig. 9.13 Comparison of MISO and SISO solutions for on-axis roll-rate response.
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phase response for the MISO solution is the correct result and much different
from the SISO solution. These results emphasize the need for the multi-input
solution for identification of dynamics where response coupling is significant
(consistent with Sec. 9.2 and the XV-15 results of Sec. 9.5).

9.10 MIMO Identification Using a Multi-Input Maneuver

In some cases, the flight-test technique might involve a sequenced series of iden-
tification inputs in a single flight record. Figure 9.15 shows a multi-axis maneuver
for an experimental aircraft involving a sequenced individual excitation of six
independent controls in a single flight record.140 The aircraft tests were conducted
under closed-loop conditions, and the leading author used CIFER® to identify a
MIMO bare-airframe flight-dynamics model, as indicated in the aircraft dynamics
block of Fig. 5.7.

The multi-axis maneuver contains all of the  primary control excitations in the
same maneuver; consequently, a single FRESPID case is used to analyze the linked
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set of repeat records. Next, there are  MISOSA cases: each case designates one
of the controls as primary and the remaining controls as secondary. The identifi-
cation of the complete frequency-response matrix is completed by repeating the
solution method of Sec. 9.6.1  times, using a different control as the primary input
for each pass. This process was used to provide the complete MIMO frequency-
response estimate matrix  from flight data from a single multi-axis maneuver and
yielded an accurate MIMO state-space model of this aircraft using CIFER®.

9.11 Determination of Broken-Loop Response for MIMO 
Control System

A special situation arises in the determination of the broken-loop response for a
MIMO closed-loop system. Consider again the MIMO helicopter control system
of Fig. 5.12 repeated in Fig. 9.16. In stability-margin determination for MIMO
system, we wish to determine the stability margins for one loop at a time, with the
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remaining loops closed. For example, in Fig. 9.16 we would like to determine the
stability margin for the pitch loop [indicated as BL(s)], with the roll and yaw loops
closed. So, in this analysis, we specifically want to include the effect of the sup-
pression of the off-axis responses by the remaining loops. 

The desired response is now the equivalent bare-airframe response [ ].
This is the bare-airframe SISO pitch response with the remaining closed, as
indicated by the box in Fig. 9.16. The relevant feedback controller is , also
indicated in Fig. 9.16. Then, using the direct method of Eq. (7.86), we determine
the broken-loop pitch response using the SISO analysis method with 
and , where both signals are shown in the figure. We specifically do not
use the MIMO identification solution. The equivalent bare-airframe frequency
response  as obtained in this SISO analysis is well approximated by the
pitch response with roll and yaw degrees of freedom constrained obtained using
the method of coupling numerators (for example, see Tischler125).

Problems
Methods and guidelines for multi-input identification techniques

9.1 Given flight data, explain how you could use the SISO frequency responses
and autospectrum data to determine that a SISO solution for a MISO system is
sufficient. 

9.2 Using Eq. (9.10), show what happens to an off-axis response when cross-
control correlation is zero. What happens when cross-control correlation is one? 

9.3 Plot the cross-control correlation of the control deflections (the coherence
of the aileron to the rudder, for example) for the lateral and directional sweeps
for either the cruise or hover data from the XV-15. Would you say that the cross-
control correlation meets the guideline given in Eq. (9.18)? 

Conditioning of bare-airframe XV-15 frequency responses for multiple inputs
with MISOSA

Students who worked with the hover configuration in Problem 7.16 should
continue with that configuration in Problem 9.4a. Those who worked with
the cruise configuration in Problem 7.17 should continue with that configu-
ration in Problem 9.4b.

9.4a Hover configuration: Use MISOSA (no plots) to condition the frequency-
responses generated in Problem 7.16. Choose MISOSA case names that corre-
spond to those of the FRESPID cases. For the lateral-sweep case  is the pri-
mary input and  is the secondary input, whereas for the directional-sweep case
the reverse is true. The outputs ( , , , and ) will be the same for both cases.

9.4b Cruise configuration: Follow instructions for Problem 9.4a, except the
outputs will now be , , , and  from Problem 7.17.

G′ s( )

H s( )

e δlonmx
=

f flonmx
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G′ s( )

δa
δr
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258 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

9.5 Compare the SISO and MISO solutions of either Problem 9.4a or Problem
9.4b using utility 19. Plot the magnitude, phase, and coherence for the off-axis
bare-airframe responses  and . Repeat the comparison for the on-axis
bare-airframe responses  and . What can you conclude from these
results?

Conditioning of closed-loop XV-15 frequency responses for multiple inputs with
MISOSA

9.6 Compare the SISO and MISO solutions for the closed-loop roll response in
hover . First, return to your FRESPID case (Problem 7.2), and add the
input , making sure to indicate that you want the analyze the cross correlation
of the controls. Then run MISOSA to condition out  from the response. Com-
pare the SISO and MISO results for the closed-loop response. How much do the
bandwidth and phase delay change from the SISO calculations of Problem 7.5?

9.7 Plot cross-control coherence of the piloted inputs for the hover lateral-
sweep case from Problem 9.6. Is there considerable control correlation at any
frequency? How can you explain that the closed-loop MISO solution is nearly
identical to the SISO solution at all frequencies that are within the region of good
coherence? 

r δa⁄ p δr⁄
p δa⁄ r δr⁄

p δlat⁄
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δped
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10
Composite Windowing

 

Data windowing was introduced in Chapter 7 as a standard method of spectral
analysis to reduce the random error in the spectral estimates. Repeat maneuvers
are first linked into concatenated records, which are then segmented into a
sequence of shorter overlapping time records called 

 

windows

 

 or 

 

periodograms

 

.
The guidelines for window-size selection (Sec. 7.10) provide a range of possible
window lengths . The ultimate choice of window length is a balance between
increased information content at low frequency (larger windows) vs better ran-
dom error suppression which is important at higher frequencies (smaller win-
dows). Hence no single window size selection will produce optimal results over
the entire frequency range of interest. Furthermore, a window that is best suited
to a particular input/output frequency-response pair might be much less desirable
for other input/output pairs in the MIMO frequency-response estimate matrix . 

To obtain the most accurate identification estimates for a particular situation, the
spectral calculations (SISO and multi-input conditioning) would have to be per-
formed repeatedly using several different window sizes. The best window size
could then be selected based on the compromise just discussed and an individual
assessment based on each frequency-response pair. Clearly, this would be a
manually intensive exercise, and in the end it would still be a compromise. The
optimization-based 

 

composite-windowing

 

 technique both eliminates the need for
manual assessment and overcomes the compromises entailed with a single window-
size selection. This technique merges the results obtained from the range of window
sizes into a single, MIMO composite frequency-response estimate matrix  of
exceptional quality and dynamic range. The COMPOSITE program in CIFER

 

®

 

integrates the composite-windowing technique with the automated management of
the large amount of spectral data for the various window sizes. This completes the
database of 

 

conditioned frequency responses and partial coherences, 

 

shown in
Fig. 2.1, and it is the last step in the nonparametric identification process (Sec. 1.4).
From this point, more detailed analyses can be conducted on the frequency
responses, or more detailed parametric models can be determined (Fig. 2.1).

Key topics to be covered in this chapter include the following: background for
the composite-windowing method, composite-windowing approach, choice of
windows, composite windowing in CIFER

 

®

 

 using COMPOSITE, and examples.

 

10.1 Background

 

Section 7.5.3 introduced the standard technique of windowing in spectral anal-
ysis to reduce the random error in the frequency-response estimates. The problem
of choosing a suitable window size was investigated at some length in Sec. 7.10.
It involves a fundamental balance between dynamic range vs random error, as
illustrated in Fig. 10.1 and summarized in the following.

Twin
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For larger window sizes, the effective minimum frequency of identification is
reduced, thereby yielding better information content at lower frequencies of
interest. However, the number of window sections is also reduced, which means
fewer windows to be averaged in the spectral calculations (lower ), resulting in
higher random error . There is an increased oscillation of the magnitude and
phase curves, especially at higher frequencies, where noise-to-signal ratios are
generally higher and there is a need for more averaging.

Smaller windows means more averaging, which reduces the random error. This
greatly improves the identification accuracy at higher frequencies, but at the
expense of diminished information content at the lower frequencies of interest
(higher effective minimum frequency). Smaller windows can also cause resolu-
tion bias error in the identification of lightly damped modes (e.g., in Fig. 7.9).

Selecting a single window size thus requires that a compromise be made in
order to improve the accuracy of the frequency response at some frequencies at
the expense of other frequencies. The window selection depends on the specific
identification application at hand and is likely to be different for each pair in the
MIMO frequency-response estimate matrix . For a typical helicopter, the
MIMO system model consists of four inputs and nine outputs, yielding a total of

 frequency responses. A range of windows would need to be manu-
ally evaluated to arrive at an optimum window size for each frequency response.
Yet even after all of this work, the selected window would be best suited to only a
limited portion of the overall frequency range of interest. All of these consider-
ations have led to a widespread perception that frequency-response analysis is
somewhat of a “black art.”

Clearly, what is needed is a method that does the following: eliminates the
need for repeated, manual optimization of window sizes and produces a single,
optimized frequency response that is accurate over the entire frequency range of
interest. The composite-windowing method discussed herein achieves these two
objectives. This technique merges the results obtained with a range of window
sizes into a single MIMO 

 

composite frequency-response estimate matrix

 

  of
exceptional quality and dynamic range. 

 

10.2 Composite-Window Approach

 

Windowing with a single window produces a smoothed spectrum (e.g.,
;Sec. 7.5.3) from a rough spectrum ( ; Sec. 7.5.1). Composite windowing

refines the spectral calculations by combining the smooth results for multiple
windows to produce the 

 

composite spectral estimate

 

 .
Composite windowing starts with the selection of a range of windows sizes to

be combined. Upper and lower limits of window size are selected based on the
guidelines of Sec. 7.10. Additional windows are then selected to span these two

Broad
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random error Smaller

windows
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 Fig. 10.1 Fundamental tradeoff in window-size selection.
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limits. We denote the total number of window sizes selected as . The SISO
frequency-response identification is then performed for each of the selected win-
dow sizes. For MIMO system analysis, this is followed by multi-input condition-
ing to produce the conditioned frequency responses for each selected window size.

Next, a weighting function  is determined for each window  and frequency
 to be used for combining the windows into a single composite result. To

emphasize the windows with the most accurate data, we select a function that
varies inversely with , the random error for that window and frequency-
response pair [Eq. (7.55) for SISO or Eq. (9.36) for MISO applications]. The
function used in CIFER

 

®

 

 is

(10.1)

so that the data with the minimum error  are given a weight of  and
the windows with higher errors are deweighted accordingly. The weighting func-
tion is also tapered at the start and end of the frequency range over which the data
for the particular window are used to avoid discontinuities in the composite
result.

An initial solution for the composite values of each of the spectral functions is
based on a simple weighted average.

 

141

 

 For example, the weighted-average solu-
tion for the composite input autospectrum  at each discrete frequency  is
obtained from the  individual (smooth) window results at the same frequency

:

(10.2)

The data used in this calculation start at the minimum identification frequency
, Eq. (7.34)] for the largest window and the minimum effective frequency

[ , Eq. (7.59)] for the remaining (smaller) windows. This ensures the
use of the most accurate data in the averaging process. 

The weighted-average calculation of Eq. (10.2) is repeated to provide the anal-
ogous results for the remaining three spectral quantities: the output autospectrum

, the real part of the cross spectrum , and the imaginary part of the
cross spectrum . 

Next, the coherence based on the weighted-average spectral quantities is deter-
mined from Eq. (7.51):

(10.3)

nw

Wi i
f

εr( )i

Wi

εr( )i

εr( )min

---------------
4–

=

εr( )min Wi 1=

Gxx

)

f
nw
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The final 

 

composite values

 

 for spectral functions are those that minimize the
weighted least-squares cost function  at each discrete frequency :

(10.4)

where  is the 

 

composite 

 

input autospectrum estimate at frequency , and the
analogous notation is used for the other composite spectral quantities. Including
the last term (coherence) in the cost function of Eq. (10.4) ensures that the coher-
ence function of the composite frequency response will track the coherence of the
most reliable windows over the entire frequency range. 

The cost function  of Eq. (10.4) has a nonlinear dependency on the
(unknown) composite spectral quantities (because of the coherence term), and so
the minimization must be determined iteratively. A quick and robust solution is
obtained using standard gradient-based methods. The startup values are the
weighted-average results [e.g., Eq. (10.2)], which correspond to the exact solu-
tion for the minimization of 

 

 

 

when the last term in Eq. (10.4) is dropped. The
optimization returns composite spectral functions and a composite frequency-
response result that tracks the windows with the highest coherence and lowest
random error (most reliable data) over the entire frequency range.

The composite frequency-response estimate is then determined using
Eq. (7.37) and the composite auto- and cross spectra

(10.5)

and the associated coherence function, determined from Eq. (7.51), is

(10.6)

An estimate of the random-error function for the composite window result is
obtained from Eq. (7.55), using the composite-window coherence result of
Eq. (10.6). In this case, the calculation of window section parameter 

 

 

 

is calcu-
lated at each frequency  based on the weighted-average window length  at
each frequency:

(10.7)
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10.3 Choice of Window Sizes

The selection of window sizes for the composite window procedure is easily
accomplished based on the guidelines in Sec. 7.10. The maximum window length
is defined as the lesser value from the guidelines of Eqs. (7.61) and (7.64). The
minimum window length is given in Eq. (7.65). Once the maximum and mini-
mum window sizes are chosen, the remaining windows are selected to provide a
fairly uniform distribution for the total number of window sizes selected (maxi-
mum: ). With the computer processing capability currently available, the
processing time for additional windows is negligible, and the maximum number
of window sizes is usually selected. Experience with this technique has consis-
tently shown that the composite result is robust to changes in the specific distri-
bution of windows. Thus the choice of window distribution is not crucial. Finally,
it is best to set the maximum frequency for all windows at the same value ,
rather than trying to second guess the best frequency ranges for each window.

10.4 Composite-Window Calculations in CIFER® using COMPOSITE

The CIFER® module that implements the composite-window calculations of
Sec. 10.2 is named COMPOSITE. The user has only to specify the source of the
frequency-response data (SISO or MIMO calculations) and which windows (up
to five max) are to be used. The solution algorithm in COMPOSITE is based on
an unconstrained optimization using quasi-Newton–Raphson methods.142 

For particular frequencies, numerical problems can occur during the solution
for the optimum cost function of Eq. (10.4). For example, the optimization might
not converge for certain frequencies, or the process might converge to a local
minimum where the resulting composite curves exceed the allowable deviation
from the individual curves. Extensive experience has shown that such numerical
problems generally occur in frequency ranges where the data quality is very poor
(as indicated by low coherence and large oscillations in frequency-response
curves). When this happens, the optimizer simply drops the particular frequency
point from the frequency-response calculation and continues on to the next point.
For typical flight-data-analysis applications, the number of dropped points is
small (generally 1–5%) relative to the number of points that are generated for the
final composite frequency response.

Extensive experience to date has shown the composite-windowing method to
be highly robust and effective for a wide range of applications, including flight
data, ground testing, and simulation. This technique for frequency-response esti-
mation dependably outperforms standard (single window) frequency-response
identification tools and eliminates the tedious manual optimization of window
sizes. The composite-windowing technique is illustrated in the next section using
the simple pendulum example.

10.5 Composite-Window Results for Pendulum Example

The SISO frequency response for the closed-loop (stable) pendulum example
 was identified from simulation time-history data in Sec. 7.13 using a

nominal window, . The identification was repeated for four addi-
tional windows ( ). For clarity in the plot, Fig. 10.2
compares the results for only three windows ( ).

nw 5=

ωmax

θ Mext⁄
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 Fig. 10.2 Identification results for pendulum example using three window sizes.
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The larger window is seen to be effective down to lower frequencies, and it pro-
vides for the highest coherence (nearly unity) and lowest random error over most
of the frequency range. At the highest end of the identification frequency range,
the smallest window provides slightly lower random error. The composite
window result (five windows) is compared with the nominal (15-s) window in
Fig. 10.3. The composite result tracks the individual windows in the frequency
range over which they are most accurate. The result is an identification of great
dynamic range, improved coherence (seen especially at the closed-loop pendulum
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 Fig. 10.3 Comparison of composite and nominal (15-s) window for pendulum.
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frequency of 3 rad/s), and reduced random error at higher frequencies. The differ-
ences between the individual and composite-window frequency-response results
are insignificant for this case of noise-free simulation data. However, there is con-
siderable improvement in the results using the composite-windowing method for
flight-test data as will be demonstrated in examples later in this section.

The next section will discuss composite windowing as an integrated step in the
overall CIFER® approach.

10.6 COMPOSITE Windowing in Single-Input and Multi-Input 
Analyses

The work-flow path to identify frequency responses from a linked test record
based on the single-input solution (FRESPID) is shown in Fig. 10.4. A good
example of this work flow is the identification of the closed-loop (SCAS-on)
response to a pitch control input (e.g., , , ) as needed for
handling-qualities analyses. In this case, the time histories are a linked set of
repeated longitudinal stick sweeps, and the small secondary control inputs are
ignored. If  window sizes are selected, the SISO analysis will produce a total
of  frequency responses. The COMPOSITE program combines the results
for the  windows, to achieve a final set of  optimized frequency responses
that forms the  composite frequency-response estimate matrix . Another
application of the use of the single-input analysis work path is the determination
of the broken-loop response for a MIMO control system (Sec. 9.11). Here, the
single-input solution provides the response of one loop broken, with the remain-
ing control loops closed.

The analogous workflow for a multi-input analysis of the same identification
problem (e.g., , , ) is shown in Fig. 10.5. In this case, both
the (one) primary and ( ) secondary controls (for  controls in total) are
included in the analysis. This SISO (FRESPID) step now produces many addi-
tional frequency responses associated with the secondary inputs as well as the
cross-control spectra needed to condition the responses (MISOSA). After multi-
input conditioning, there are the same number of frequency-response files as in
the SISO case ( ) and seen from reference to Fig. 10.4. As before, the last
step is composite windowing, which combines the results for the  windows to
achieve the final  optimized (and conditioned) frequency responses that form
the  composite frequency-response estimate matrix .  In both cases
(single-input and multi-input analysis), composite windowing is the final step in
the generation of the frequency-response database.

In the process of generating the frequency-response database, a large number of
intermediate frequency responses are generated. The CIFER® modules (FRESPID,
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no nw⋅
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no 1× Tc

ˆ
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nc 1– nc
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ˆ
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  outputs
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 Fig. 10.4 COMPOSITE windowing in single-input analyses.
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MISOSA, and COMPOSITE) are highly integrated and provide a transparent pro-
gression from one step to the next. For example, the unique naming and database
storage of all of the generated frequency-response files are automatically handled by
the software. 

The work-flow path for the more complex problem of bare-airframe 2 input
MIMO identification is illustrated in Tables 10.1 and 10.2 for the XV-15 in
cruise. The work-flow path of Table 10.1 is for the analysis of the lateral sweeps;
it is a continuation of Table 9.1, which completed the multi-input conditioning
step. This work-flow path, which carries the case name LATSWP, starts with con-
catenated time-history records for lateral frequency sweeps: the primary input is
aileron , and the secondary input is rudder . Processing with MISOSA con-
ditions the response to the primary input by removing the linear effect of the par-
tially correlated secondary input . So, the influence of the secondary control
input is removed from the system-identification results. In other words, by the
time the COMPOSITE windowing step is reached, there is only one input to con-
sider for the LATSWP cases, namely, , as seen in Table 10.1. The number of
frequency responses generated for the LATSWP case by MISOSA and COM-
POSITE is  and , respectively, shown in the last row of the table.

The work-flow path for the analysis of the pedal sweeps is shown in
Table 10.2, which is a continuation of Table 9.2. In this case the primary input is

, and the secondary input is . As in the first work-flow path, COMPOSITE
works with only a single input (  in this case), because the effects of the

 Table 10.1 Lateral-sweep-data analysis (cruise) 

Time-history set FRESPID MISOSA COMPOSITE

Lateral-sweep case: LATSWP case: LATSWP case: LATSWP

Two inputs Two inputs 
(cross correlation on)

Primary input: 
Secondary input: 

Input: 

Four outputs Four outputs Four outputs Four outputs

Number of 
frequency 
responses 
generated

Time Histories

1   primary input

secondary
inputs

no

no • nw

outputs

FRESPID MISOSA

no

COMPOSITE

(nc • no) +      (nc – 1) nc – 1 nw[ ]nc
2

 Fig. 10.5 COMPOSITE windowing in multi-input analysis.
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partially correlated secondary input  have been conditioned out by MISOSA.
Once again, the number of frequency responses generated by MISOSA and
COMPOSITE are  and , respectively.

Summarizing this section, one work-flow path (single-input or multi-input anal-
ysis) yields  final frequency responses for the primary input of that path. The
completion of all work-flow  paths generates the set of  frequency
responses. This can be expressed as the  MIMO composite frequency-
response estimate matrix  used for state-space model identification (Chapters 12
and 13).

10.7 Composite-Windowing Results for XV-15 Closed-Loop SISO 
Identification in Hover p/δδδδlat

In this example, the XV-15 closed-loop roll response  for hover is deter-
mined using composite windowing for comparison with the single (nominal)
window results of Chapter 7. As seen in Problem 9.6, the influence of secondary
inputs on the closed-loop on-axis response identification is small and can be
ignored, so that COMPOSITE windowing is completed using the SISO workflow
of Fig. 10.4.

The individual lateral sweep records are  (record 883) and
 (record 884) in length (Table 3.1). A maximum window size of
 was selected based on the guidelines of Eqs. (7.61) and (7.64). The

maximum frequency of interest in this case was selected as ,
resulting in a minimum window of  [consistent with Eq. (7.65)]. The
SISO frequency-response results for the 40-s and 10-s windows are shown in
Fig. 10.6. The larger window ( ) is seen to provide data with good
coherence starting at a frequency of about . However, the limited
amount of spectral averaging at higher frequencies causes an increase in random
error, as is seen in Fig. 10.6 and reflected in the oscillations in the magnitude and
phase characteristics. Good coherence for the smaller window ( ) is
achieved starting at about , with a reduced random error seen at
higher frequencies. The results for the nominal ( ) window used in
Figs. 7.5, 7.7, and 7.8 lie as expected in between the smaller and larger windows.

 Table 10.2 Pedal-sweep data analysis (cruise) 

Time-history set FRESPID MISOSA COMPOSITE

Pedal-sweep case: PEDSWP case: PEDSWP case: PEDSWP

Two inputs Two inputs 
(cross correlation on)

Primary input: 
Secondary input: 

Input: 

Four outputs Four outputs Four outputs Four outputs

Number of 
frequency 
responses 
generated

 

δr

δa

δr

nc no⋅( ) nc 2⁄( ) nc 1–( )+[ ]nw

9nw=
no nw⋅ 4nw= no 4=

δa

no nw⋅ no

no
nc nc no⋅

no nc×
Tc
ˆ

p δlat⁄

Trec 99 s=
Trec 95 s=
Twin 40 s=

ωmax 12 rad/s=
Twin 10 s=

Twin 40 s=
ω 0.4 rad/s=

Twin 10 s=
ω 1 rad/s=

Twin 25 s=
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 Fig. 10.6 Closed-loop roll-rate response for 40-s and 10-s windows (XV-15, hover).
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270 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

A composite-window result for this response was generated using five win-
dows uniformly spanning the range from the largest to the smallest (Twin =

). The resulting composite frequency response 
is shown in Fig. 10.7. An excellent identification is obtained over a wide fre-
quency range (0.3–12 rad/s). In an improvement to the single (nominal) window
results of Fig. 7.7, acceptable coherence is maintained even out to higher frequen-
cies (8–12 rad/s), where excitation results only from the nonsinusoidal details of
the piloted inputs (Sec. 5.9). The composite response is seen to generally track
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 Fig. 10.7 Composite closed-loop roll-rate response using five spectral windows 
(XV-15, hover).
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both the good coherence (and low random-error) results of the large window at
low frequencies and the low random-error (smaller oscillations) results of the
small window at higher frequencies. The composite frequency response is rapidly
determined and is clearly an improved result compared to the single (nominal)
window results of Chapter 7. Further analysis is not required to manually evaluate
the potential tradeoffs in window size selection.

The next example demonstrates composite windowing for a MIMO bare-
airframe identification application.

10.8 Composite-Windowing Results for Bo-105 Helicopter MIMO 
Identification

The MIMO work-flow of Fig. 10.5 is illustrated using lateral frequency-sweep
data for the Bo-105 helicopter. This data set, obtained by the DLR in support of
AGARD Flight Mechanics Panel Working Group 18 on Rotorcraft System Iden-
tification,10 provides a dynamically rich and challenging example. The helicopter
exhibits a high level of interaxis coupling, unstable flight-dynamics modes,
highly coupled rotor and fuselage dynamics, and lightly damped rotor modes.15

Figure 10.8 shows the coherence functions that were obtained for three typical
windows ( ) from the MISO analysis of the on-axis roll-rate
response . The minimum frequency for each window corresponds to

 [from Eq. (7.34)]. As seen from the 50-s window, the sweep
excitation produces a satisfactory identification starting at about ,
which is above the minimum effective frequency [ ]. As
expected, the coherence for the 25-s and 5-s windows rises to roughly meet the
coherence for the 50-s window at their respective effective minimum frequencies. 

The results of Fig. 10.8 show that no single window size produces a fully satis-
factory coherence across the entire frequency range. The 5-s window produces
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 Fig. 10.8 Coherence functions for three different window sizes (Bo-105 helicopter).
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272 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

good results for the higher frequencies, but the coherence drops off at lower
frequencies. Conversely, the 50-s window works well for low frequencies, but the
frequency response shows considerable random error at higher frequencies. The
intermediate window size of 25 s might be considered as a good compromise in
this case, but it does not produce the best coherence at most frequencies.

Figure 10.9 shows the COMPOSITE result obtained by combining five spectral
windows ( ) into a single, optimized frequency-
response identification. The coherence function indicates that the identification is
of very high quality across the entire range of excitation frequencies. The lightly
damped mode at about 16 rad/s, well captured in the composite-window fre-
quency response, is associated with the lead-lag rotor dynamics of the hingeless
rotor design (no lag dampers), as discussed in Sec. 15.2.2.
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 Fig. 10.9 Frequency response and coherence for composite window result (Bo-105 
helicopter).
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10.9 Composite Results for Structural System Identification

The structural system response of a rotor test stand was presented in
Sec. 7.10.4. The result for three different window sizes, as illustrated in Fig. 7.9,
showed that no single window produced a fully satisfactory result over the entire
frequency range of interest. Although the 10-s window is free of bias errors, it
produced considerable random error at higher frequencies because of the lack of
sufficient averaging. The 5-s and 2-s windows resulted in frequency-response
estimates with significant bias errors for the lower-frequency modes.

The COMPOSITE result for the three windows is shown in Fig. 10.10. A sub-
stantial improvement is achieved, with good frequency-response resolution at the
modal peaks (no bias error) and good suppression of the high-frequency random
error. The coherence plot for the composite-window result shows generally
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 Fig. 10.10 Structural system identification using composite windowing.
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excellent identification accuracy over the broad frequency range of the identifica-
tion. The dips in coherence correspond to the antinodes in the structural response,
where the signal-to-noise ratio is greatly reduced.

10.10 Composite Windowing in Spectral Analysis of Time-History 
Signals

Many applications of system identification seek to extract a mathematical
description of the vehicle input-to-output response dynamics from flight-test
data. For such applications, the composite windowing algorithm of Sec. 10.2
combines the individual window results to achieve a set of consistent spectral
functions ( , , and ) that together yield a frequency response of mini-
mum random error that tracks the coherence of the most reliable frequency-
response data. By contrast, spectral analysis applications such as those illustrated
in Secs. 7.14.1 and 7.14.2 require an accurate estimate of the autospectrum of an
isolated signal; the coherence of the input-to-output pair process is not relevant.
Then the optimization of Eq. (10.4) is reduced to the weighted-average solution
of Eq. (10.2). In this case, the weighting function of Eq. (10.1) retains only the
window length dependency ( ) of Eq. (7.55). This is triggered in
COMPOSITE by designating the same time-history signal for both the input and
the output. 

Lusardi et al.122 extracted accurate models of UH-60 helicopter response to tur-
bulence from specially conducted flight tests. Figure 10.11 shows an example
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 Fig. 10.11 Composite-window result for spectral analysis.
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from this flight-test work of the autospectrum for lateral stick . The figure
plots the autospectrum  for five individual window sizes along with the
result of composite-window processing using COMPOSITE. The figure clearly
illustrates that a smooth autospectrum has been achieved that tracks the larger
windows at low frequencies and the smaller windows at high frequencies.

10.11 Summary

It is important to reiterate that the improved accuracy of the composite fre-
quency responses as demonstrated for the examples herein was obtained without
having to select/optimize a single optimum window size. In fact, no single win-
dow could have produced these excellent results. It was only necessary to specify
the minimum and maximum window sizes, together with a few other intermedi-
ate sizes spread roughly uniformly across this range. The composite-windowing
optimization algorithm is fast and robust to specific choice of intermediate win-
dow sizes.

Problems
Use of COMPOSITE to combine multiple windows for the inverted pendulum
system identification

10.1 Revert to the original pendulum parameters given in Eq. (3.6), and repeat
the SISO identification (Problem 8.3) of the unstable response  using a
range of windows, and combine the windows using COMPOSITE windowing.
Use the guidelines given in Chapter 7 to choose the window sizes. 

10.2 Repeat the SISO identification (Problem 7.11) of the stable pendulum
response  using a range of windows, and then combine the windows
using COMPOSITE windowing. Be sure to revert to the original pendulum
parameters given in Eq. (3.6). Use the guidelines given in Chapter 7 to choose the
window sizes. 

Use of COMPOSITE to combine multiple windows for closed-loop XV-15 system
identification

10.3 Repeat the SISO identification of the closed-loop XV-15 response 
for hover performed in Problem 7.2 for a range of windows, and then combine
the windows using COMPOSITE. (Hint: Use guidelines in Chapter 7 for choos-
ing window sizes.)

10.4 Use the general plotting utility (19) to compare the result of the composite
window with that obtained from a single window.

10.5 Rerun your FRESPID and COMPOSITE closed-loop  cases from
Problem 10.3 using the same minimum and maximum window lengths, but
change the intermediate window sizes. Examine the sensitivity of the COMPOS-
ITE result to the intermediate window lengths. 

δlat
Gδlatδlat

θ Minv⁄

θ Mext⁄

p δlat⁄

p δlat⁄
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Use of COMPOSITE to combine multiple windows for the open-loop XV-15 sys-
tem identification

Students should continue with their choice of configuration (hover or cruise)
made in the Chapter 7  Problems.

10.6 Rerun the FRESPID and MISOSA analyses obtained for the hover or
cruise configuration using a range of windows and adding  as an additional out-
put to the lateral-sweep hover case. Choose window sizes based on the Chapter 7
guidelines. Use COMPOSITE to combine the windows for a final set of eight
(cruise) or nine (hover) frequency responses. Generate hard-copy plots of these
optimized frequency responses.

10.7 Use utility 19 to coplot the composite window and individual MISO win-
dows for the  frequency responses obtained in Problem 10.6. Based on
analysis of this plot, describe how the individual windows are combined in
COMPOSITE to make one window. 

Use of COMPOSITE for spectral analysis of a signal

10.8 Rerun the SISO calculation of the lateral-stick autospectrum  from
the closed-loop XV-15 data in hover. This time use output = input =  and run
the results for five spectral windows. Use a different case name to avoid overwrit-
ing your old results.

10.9 Use COMPOSITE (and the results of Problem 10.8) to determine a new
lateral-stick autospectrum . Then compare the COMPOSITE result with
the SISO result from Problem 10.8. Why are these autospectra different? 

10.10 Determine the rms of the input , using the input autospectrum 
calculated with COMPOSITE (in Problem 10.9). Use utility 7 for this analysis,
and calculate the rms over the entire frequency range available. Is the rms value
the same as the SISO solution obtained in Problem 7.7? Is the COMPOSITE rms
a closer match to the time-domain calculation from the log file of Problem 7.3? 

φ

p δa⁄

Gδlatδlatδlat

Gδlatδlat

δlat Gδlatδlat
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11
Transfer-Function Modeling

 

The theory and procedures discussed through Chapter 10 address the identi-
fication of a high-quality MIMO frequency-response database from the initial
frequency-sweep time-history records. This MIMO database of 

 

conditioned fre-
quency responses and partial coherences

 

, shown in Fig. 2.1, constitutes the 

 

non-
parametric model

 

 of Sec. 1.4. As the flowchart in Fig. 2.1 shows, there are two
classes of 

 

parametric models

 

 that can be obtained at this point: transfer-function
and state-space representations. The detailed topics of parametric model identifi-
cation will be the focus of the next three chapters. 

This chapter discusses the determination of transfer-function representations,
which are the parametric model forms that are the simplest to extract from the
numerical frequency-response databases. Transfer-function models are (linear)
input-to-output descriptions of the dynamic system; they can be represented by
pole-zero descriptions. A transfer-function fit that best matches the frequency-
response data (magnitude and phase) on a Bode plot over the frequency range of
interest is obtained. 

For many applications these models are found to be quite sufficient, including
handling-qualities analysis, actuator and other subsystem models, aeroelastic
mode determination, and models for root-locus-based control system design.
Even if the ultimate goal is the determination of a fully coupled state-space repre-
sentation, as discussed in Chapters 12 and 13, obtaining transfer-function models
is a useful intermediate step that provides information on the fundamental
dynamic characteristics and a good estimate of key parameter values. 

The transfer-function identification approach presented in this chapter is based
on the lower-order equivalent system (LOES) concepts initially put forth by
Hodgkinson et al.,

 

49

 

 and later covered, for example, in Hodgkinson,

 

59

 

 Bischoff
and Palmer,

 

50

 

 and Bischoff.

 

143

 

 
The main topics to be covered in this chapter include the following: motivation

for transfer-function modeling, transfer-function model identification method,
selection of model structure, SISO transfer-function identification in CIFER

 

®

 

using NAVFIT, and applications and examples.

 

11.1 Motivations for Transfer-Function Modeling

 

Transfer-function models, that accurately match the flight-data frequency
responses and thus characterize the overall input-to-output response dynamics can
be identified. Although such models can be used to represent the complete MIMO
behavior, they are most commonly used to represent the single-input/single-output
on-axis response of the flight vehicle or subsystem (e.g., ). The system to be
modeled is, in essence, treated like a “black box” because there generally is no
attempt to represent the actual physics of the aircraft using force and moments

p δlat⁄
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equations and the associated physical constraints (e.g., gravity and kinematics).
Instead, transfer-function models are composed of a numerator and denominator
polynomial in the Laplace variable , and they can include an equivalent time
delay to account for additional, unmodeled, high-frequency dynamics, and actual
transport delays in the system. The transfer-function model results are best pre-
sented in factored form to expose the gain, poles and zeros (or time constants), and
time delay. Although the complete aircraft or helicopter dynamics for a bare-
airframe or closed-loop system can be composed of many states (even hundreds,
in the case of a modern fly-by-wire airframe), the overall end-to-end frequency
response can be well characterized over the frequency range of interest by a very
simple LOES transfer function composed of only a few dominant modes. In spite
of this apparent simplicity, these transfer-function models can provide a very
accurate representation of the system-response behavior, including the prediction
of time response to control inputs. Furthermore, these models constitute a
fully satisfactory “end result” of identification for many key applications, such
as handling-qualities analyses, flight-mechanics characterization, flight-dynamics
modeling for control system design, subsystem component modeling, and aeroelas-
ticity modeling. Examples of each of these applications are presented in this chapter. 

 

11.2 Transfer-Function Modeling Identification Method

 

A transfer-function model is sought that best fits the frequency-response data
for a given input-output pair over a selected frequency range. This chapter pre-
sents identification methods and results that are based, for the most part, on sin-
gle transfer-function fits. In MIMO system applications, this is directly
applicable to the on-axis (diagonal) response for largely uncoupled systems.
Transfer-function models based on coupled single-input/two-output and two-
input/two-output identification techniques are also commonly used in aircraft
handling-qualities and flight-mechanics analyses. These applications involve
simultaneous fits of two transfer functions, with constraints imposed to ensure
that the responses have the same denominators (as they must physically). These
topics are covered in excellent references by Bischoff and Palmer,

 

50

 

 MIL-STD-
1797,

 

5

 

 and Field et al.

 

144

 

 Extending the transfer-function fitting approach for
model structures beyond the two-input/two-output case becomes cumbersome.
The generalized modeling of coupled MIMO systems is best accomplished by
representing the dynamics in state-space form as covered in Chapters 12 and 13.

A transfer-function model of the generalized form

(11.1)

is sought that best matches the identification frequency-response data. For physi-
cal systems, the causality condition

 

145

 

 states that the response (output) cannot
depend on the input at a future time, which implies

(11.2)

s

T s( ) b0sm b1sm 1– … bm+ + +( )e
τeqs–

sn a1sn 1– … an+ + +( )
----------------------------------------------------------------------------=

m n≤
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The transfer-function model can also be displayed in the factored form

(11.3)

where the parameters of the model are as follows: 

 

=

 

high-frequency gain ( )

 

=

 

shorthand notation for the 

 

i

 

th zero, 

 

=

 

shorthand notation for the 

 

i

 

th pole, 

 

=

 

equivalent time delay

When the zeros (or poles) are complex conjugate pairs, they are displayed in
terms of the damping ratio and natural frequency as

The orders of the numerator  and denominator  are chosen so as to achieve
a good fit of the frequency-response data in the frequency range of interest and to
be consistent with the physics of the system and causality [Eq. (11.2)]. So transfer-
function models of fixed-wing flight dynamics typically have an order  of four or
less (LOES modeling), which corresponds to the classical flight-mechanics
modes. For rotorcraft applications, the order can reach as high as 10 or more, to
include the coupled fuselage/rotor responses.

 

18

 

 A satisfactory model of mechani-
cal linkage responses and other elements with dynamics at frequencies much
higher than the frequency-response data range can be as simple as . The
equivalent time delay  is a lumped parameter to account for the phase lag
caused by all unmodeled higher-frequency dynamics modes, but it can also
include actual transport delay (e.g., computational delays in the flight control and
navigation systems). 

In the transfer-function identification process, each of the coefficients  and
 of the polynomials and the equivalent time delay  can be individually fixed

or freed (in the latter case, to be optimized). For example, an examination of the
slope of the frequency-response magnitude data at high frequency can provide a
direct value of the high-frequency gain . Fixing this value can be effective to
ensure that it does not vary as a result of correlation with the other free parame-
ters. The low-frequency gain of the transfer-function  is the steady-state
response to control inputs and provides useful information on aircraft agility. For
example, the low-frequency gain of  indicates the steady-state roll rate per
degree of aileron input (deg/sec/deg-aileron).

A numerical optimization algorithm determines the set of unknown (i.e., freed)
quantities in Eq. (11.1) that minimizes the magnitude and phase errors between the
desired SISO transfer-function 

 

model

 

  and the associated composite frequency-
response estimate (i.e., 

 

data

 

) . Typically, the models of interest are for the key
on-axis response pairs (e.g., , , etc.) of the identified  composite
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frequency-response estimate matrix  introduced in Sec. 10.6. The quadratic
cost function 

 

J

 

 to be minimized is

(11.4)

where

 

=

 

magnitude (dB) at each frequency 

 

=

 

phase (deg) at each frequency 
 

 

=

 

number of frequency points (typically selected as )
 and 

 

=

 

starting and ending frequencies of fit (typically covering 1–2
decades)

By selecting the  frequency points  in a uniform spacing
over a log-frequency scale (rad/s), the minimization achieves a best fit as dis-
played on the Bode plot. The other parameters in Eq. (11.4) are as follows:

1)  is a weighting function dependent on the value of the coherence func-
tion at each frequency . The function used in CIFER

 

®

 

 is

(11.5)

thereby emphasizing the most reliable data. For a coherence of , this
function reduces the weight on the squared errors by 50%.

2)  and  are the relative weights for magnitude and phase squared-
errors. The normal convention

 

5

 

 is to use the values

(11.6)

(11.7)

which sets 1-dB magnitude error comparable with 7.57-deg phase error. As was
pointed out by S. Boyd of Stanford University,

 

125

 

 this choice of weighting is also
equivalent to equal weighting of the real and imaginary parts of the transfer-func-
tion error. However, the transfer-function fitting results are largely insensitive to
the exact choice of these weighting values.

 

5

 

 
As a guideline, a cost function of

 

Guideline:

 

(11.8)

generally reflects an acceptable level of accuracy for flight-dynamics modeling,
whereas a cost function  can be expected to produce a match that is nearly
indistinguishable from the flight data. 
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The transfer-function model accuracy can also be evaluated in terms of the
error-response function [Eq. (7.84)] defined as

(11.9)

or in terms of the magnitude (dB) and phase (deg) responses,

(11.10)

(11.11)

These functions are checked against the frequency-dependent envelopes of maxi-
mum unnoticed added dynamics (MUAD) provided in MIL-STD-17975 and
shown earlier in Fig. 7.20. If the error functions fall within these boundaries, then
the model response would be judged by a pilot as being indistinguishable from
the actual flight response, thereby providing a good basis for handling-qualities
analyses.

11.3 Model Structure Selection

The method for transfer-function identification as explained in Sec. 11.2 is quite
simple. The difficult aspect is the selection of the appropriate transfer-function
model structure for Eq. (11.1). The proper selection of the different aspects of
model structure depends on the ultimate application for the model, the frequency
range of interest, the quality of the available frequency-response data, and an
understanding of basic flight dynamics and linear systems. The considerations for
model structure selection are discussed in detail in the following paragraphs
because these same considerations are applicable to multi-input/multi-output
state-space identification, which is a direct extension of the transfer-function iden-
tification process.

The critical factors to be considered in selecting the model structure include
ultimate application of the model, selection of the input-output variable pair, fre-
quency range of the fit (  to ), order of numerator and denominator m  and
n, inclusion of equivalent time delay , and fixing or freeing specific coeffi-
cients in the fitting process.

11.3.1 Ultimate Application of the Model
The first step in model structure selection is to consider the ultimate applica-

tion of the model because this will have a major impact on the complexity of the
transfer-function form selected (i.e., the values of m and n) and the frequency
range of interest. The same physical system might require different model struc-
tures depending on the application. For example, when the ultimate application
of the model is for handling-qualities analysis, the model structure can be a clas-
sical lower-order equivalent system form, whereas flight-control applications
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such as SCAS design might require additional complexity for a more accurate
representation at higher frequencies.

11.3.2 Selection of the Input-Output Variable Pair
The next step is to select the input/output pair of concern. The dominant input/

output pair that best reflects the overall dynamics of the system is selected. For
example, in fixed-wing air vehicles (and rotorcraft at higher forward speeds) the
pairs  and  characterize well the aircraft lateral/directional flight
dynamics. The longitudinal response is characterized well by the pairs ,

, and . For rotorcraft in hover and low-speed flight, the transfer-func-
tion model identification will be based on the dominant angular-rate responses to
the pilot control input: , , or . In the vertical axis, the pair of
interest is . In each case, these response pairs reflect the dominant flight-
dynamic response to control input and as such are primary inputs for piloted or
automatic control. 

11.3.3 Frequency Range of the Fit (  to )

The frequency range of the fit (  to ) must be restricted to the frequency
range over which the coherence function is satisfactory [e.g., , per the
guideline in Eq. (7.54)], but it must also be consistent with the ultimate applica-
tion of the model. For example, a simple first- or second-order response model can
be selected to characterize the flight-dynamics response of a highly augmented
closed-loop helicopter for comparison with the LOES handling-qualities data-
base. This model can adequately capture the dynamics in the frequency range of
interest (0.1–10 rad/s). But such a model will not adequately capture the higher-
frequency dynamics of a rotor system (or structural) response, even though the
coherence might be adequate at such frequencies. Therefore the frequency range
of the fit must be restricted to exclude the rotor response. Transfer-function mod-
els needed to support flight-control analysis and design must be accurate for fre-
quencies near the crossover frequency , generally encompassing  to

. This will ensure that the key characteristics are accurately modeled, such
as stability margins, disturbance rejection, and aircraft and actuator responses to
commands. A typical range of fit for this application is 1–20 rad/s.

11.3.4 Order of Numerator and Denominator (m and n)
The selection of the appropriate order of the transfer-function model numerator
 and denominator  is based on a physical understanding of the response char-

acteristics in the frequency range of interest and an awareness of the ultimate appli-
cation of the model. For example, an appropriate transfer-function model for the
handling-qualities analysis of bare-airframe fixed-wing dynamics should be based
on the classical flight-mechanics response and will be composed of short-period,
roll aperiodic, Dutch-roll modes, etc. For rotary-wing aircraft in hovering and low-
speed flight, the analogous modes are the longitudinal and lateral hovering cubics
and decoupled heave and yaw modes. Excellent background on the classical trans-
fer-function forms for fixed-wing and rotary-wing vehicles is given by McRuer
et al.,56 Blakelock,146 Hodgkinson et al.,49 Hodgkinson,59 and Bischoff.143 
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Stability augmentation systems (SAS) are often implemented to improve the
handling qualities of the bare-airframe response while retaining the classical
response modes. In this case, these same classical forms would also be appropriate
to characterize the closed-loop response and are referred to as LOES. In contrast,
modern stability and control augmentation systems (SCAS) can provide closed-
loop responses that are greatly altered from the classical forms. For example, the
model-following architecture, commonly adopted for control system designs in
modern fixed- and rotary-wing aircraft, causes the closed-loop response to follow
a first- or second-order command model (e.g., ADOCS; Ref. 84). Here, transfer-
function model forms are better selected based on the command model response
rather than the classical forms.

The transfer-function model form used for the fit should be the lowest orders
 and  that adequately characterize the frequency-response behavior over the

frequency range of interest. In this case, a satisfactory model fit is indicated by
the value of the cost function ( ). Increasing the order of the transfer-
function model can provide incremental reductions in the cost function. However,
these extra parameters might not have any physical meaning, and they can result
in a model with poorer predictive capability.7 Models with extraneous parameters
are referred to as overparameterized or overmodeled, and they exhibit increased
uncertainty in the identified parameters.2 Thus a tradeoff exists between reduced
fitting error and increased parameter uncertainty. This can also be viewed as a
tradeoff of model complexity vs model variability.2 The goal of a model with the
minimum number of parameters is also consistent with the principal of parsi-
mony (Sec. 1.4).

Further, a model that accurately characterizes the response in the frequency
range of interest might not provide a good prediction when extrapolating to fre-
quencies well outside the frequency range of the fit. So while a LOES handling-
qualities model can track the frequency response well in the frequency range
important for the transient dynamics (e.g., 0.1–10 rad/s), it might not predict
accurately the steady-state (trim) response (at  rad/s) or the very high-
frequency response (i.e., well above 10 rad/s).

The ultimate selection of appropriate transfer-function models generally
requires a careful case-by-case consideration of the important dynamics modes
and data quality in the frequency range of interest.68 These various considerations
are best illustrated with the practical examples in the following sections.

11.3.5 Inclusion of Equivalent Time Delay 

The inclusion of an equivalent time delay  can be used to account for the
phase-lag effects caused by unmodeled high-frequency dynamics (e.g., high-
frequency filters and sensor dynamics) associated with a particular selection of
transfer-function model orders  and , as just discussed. For example, if the
aircraft dynamics contain a pole at frequency  that is well above the upper fit-
ting frequency , then

(11.12)
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where the time constant is simply . In the general case of multiple
zeros and poles at frequencies above the upper fitting frequency, the total equiva-
lent time delay [included in the expression  in Eq. (11.3)] is

(11.13)

The equivalent time delay accounts for the effect of these unmodeled high-
frequency dynamics via their contribution to the frequency-response phase lag:

(11.14)

Additional contributions to the identified value of equivalent time delay are the
true time lags (e.g., control and measurement processing delays). But the identi-
fied equivalent delay will also “absorb” modeling error and an incorrect model
structure, which can result in an identified transfer-function model with a lower
cost function but physically meaningless parameters. Therefore an initial transfer-
function model should be identified without the additional time delay, and
the  resulting model structure should be evaluated for correctness. If additional
phase lag is apparent at high frequency that cannot be captured by the appropriate
transfer-function model, then the equivalent delay should be included as a free
parameter, but only if it results in a significant reduction in the identification cost
function.

11.3.6 Fixing or Freeing Specific Coefficients in the Fitting Process
The parameters of the transfer-function model structure (numerator coeffi-

cients, denominator coefficients, and time delay) can be individually fixed or
freed during the identification process. Sometimes a priori knowledge that per-
mits a particular parameter value to be assigned to ensure that the physical signif-
icance of the results is maintained is available. For example, independent
knowledge of computational or throughput delays can allow the equivalent delay
to be assigned and fixed. Gravity and kinematic constants often appear as isolated
coefficients in transfer-function models and can be fixed. 

11.4 SISO Transfer-Function Identification in CIFER® Using NAVFIT

Transfer-function identification is accomplished in CIFER® using the NAVFIT
program developed by Hodgkinson and his colleagues at McDonnell Aircraft
Company.147 NAVFIT is a generalized tool for single-input/single-output transfer-
function model determination from frequency-response data. Cost-function mini-
mization is accomplished using Rosenbrock’s multivariable search method.148 The
program was originally developed to enable LOES fitting of fixed-wing aircraft
simulation models for handling-qualities analysis. NAVFIT was enhanced for
flight-test applications by Tischler with the incorporation of coherence weighting

. The first extensive identification of rotorcraft transfer-function models from
frequency-sweep flight-test data, reported by Tischler et al.53 and Tischler,54,61 used
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NAVFIT. This program was subsequently incorporated into CIFER® and has been
applied to many fixed-wing and rotorcraft flight-test data projects.

Considerable experience with NAVFIT by Tischler has shown the program to
be highly robust, even for difficult flight-test applications. For the typical prob-
lems involving the identification of relatively low-order transfer-function models
(e.g., up to fourth order), the algorithms in NAVFIT have been found to avoid
convergence to local minima, and they are quite insensitive to initial parameter
guesses. In fact, selecting default initial guesses of 1.0 for all of the coefficients is
usually quite satisfactory. Tilly149 published a comparative study of three algo-
rithms for SISO transfer-function model identification in the frequency domain,
of which NAVFIT was one. In applications where the structure (model order) was
known and reasonable initial parameter guesses were available, NAVFIT was
found to be the preferred tool. NAVFIT was also found to be especially well
suited to control system applications because it allows the explicit determination
of the zeros of the system (as well as the poles).

11.5 Pendulum Example

In this section, the transfer-function identification methods are illustrated for
the stable and unstable pendulum dynamics. The identified transfer functions are
compared with the analytical expressions to illustrate the accuracy of the overall
process.

The frequency-response data for the stable pendulum case were those obtained
using the composite-windowing results of Fig. 10.3. The transfer-function model
structure for this case is the second-order analytical expression [Eq. (3.5)], with

, . The identification results obtained using NAVFIT for a fitting
range of 0.3–12 rad/s are

(11.15)

yielding parametric values that are accurate to within 1% of the analytical result
[Eq. (3.7)]. The frequency response of the identified transfer-function model is
seen in Fig. 11.1 to be essentially identical to the simulated test data, which is
consistent with the very low value of the identification cost function ( ).
This verifies the end-to-end identification process for the simple stable case. The
influence of the model structure in obtaining the correct model parameters is
examined in Problem 11.3.

The frequency response of the unstable inverted pendulum  was deter-
mined in Problem 10.1. A transfer-function model was identified using NAVFIT
by fitting over the frequency range of excitation (0.3–12 rad/s):

(11.16)

which matches the analytical parameters of Eq. (3.8) to within 1%. As was the case
for the stable pendulum, the associated cost function is quite low ( ),
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indicating a near perfect fit. This result verifies again that the characteristics of an
unstable dynamic system can be determined accurately from closed-loop test
data (Chapter 8). The remainder of this chapter will present detailed flight-test
examples of transfer-function identification for a range of applications.

11.6 Handling-Qualities Applications

Transfer-function modeling is well suited to handling-qualities applications
because the pilot opinion of dynamic response and pilot-in-the-loop performance
both involve vehicle response to cockpit control inputs, not the detailed stability
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Fig. 11.1 Comparison of identified transfer-function model and frequency-response
data for stable pendulum.
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and control derivatives of a state-space representation. The transfer-function
models, also referred to as lower-order equivalent system or LOES models, are
typically fairly simple low-order approximations of the actual end-to-end
dynamic response. Such models allow handling qualities of highly varied and
dynamically complex vehicles to be characterized by a common set of fundamen-
tal flight-mechanics models.

A significant body of literature that provides guidance on desirable values of
LOES parameters for achieving good handling-qualities ratings is available. One
such excellent document is the background guide for the fixed-wing military
handling-qualities requirement.5 This comprehensive document is actually a
compilation of much of the extant data from flight-test and simulation studies in
terms of LOES parameters. Another excellent reference on this topic is Hodgkin-
son’s book.59 Practical issues that are encountered in LOES modeling and han-
dling-qualities analysis are discussed by Mitchell and Hoh.51 Morelli41 presented
LOES model identification and handling-qualities analysis from flight-test data
of the TU-144LL supersonic transport aircraft. Additional recent experience with
LOES identification for flying-qualities analysis of transport aircraft is presented
by Field et al.144 The characterization of helicopter handling qualities using
LOES models extracted from flight-test data is illustrated by Tischler61 and
Tischler et al.84 Handling-qualities analyses of vertical/short takeoff and landing
(V/STOL) aircraft based on LOES concepts is given by Franklin.150

11.6.1 LOES Handling-Qualities Evaluation of the ADOCS 
Demonstrator

The Advanced Digital Optical Control System (ADOCS) Demonstrator
(Fig. 5.8) was based on a UH-60A helicopter. The demonstrator featured a side-
stick controller, full-authority fly-by-wire/fly-by-light control system hardware
and an explicit model-following control system architecture to provide task-
tailored response characteristics and improved handling qualities compared to the
standard UH-60A Blackhawk.151 The many control system innovations that were
developed and flight validated under this program formed the basis of fly-by-wire
systems for a generation of modern rotorcraft, such as the RAH-66 (Comanche)
helicopter and the V-22 (Osprey) tilt rotor, as discussed by Landis et al.,152 and
the fly-by-wire variants of the AH-64D, UH-60M, and CH-53E helicopters that
are in current development.

The ADOCS explicit model-following flight control system provided an
attitude-command, attitude-hold (ACAH) response type for reduced workload at
low-speed and hovering conditions. An important feature was the automatic trim
follow-up function to null out any long-term force inputs needed to maintain
trim. System-identification studies on the ADOCS flight-test data were conducted
by Tischler et al.84 to document the performance of the system and to compare
the dynamic characteristics with the proposed military handling-qualities
requirements83 that evolved into ADS-33E (Ref. 4).

An example longitudinal frequency sweep from the ADOCS flight tests was
shown in Fig. 5.9. The identified pitch-rate response , as obtained from
CIFER® using concatenated sweeps, is shown in the solid curve of Fig. 11.2. The
associated coherence function, also shown in the figure, indicates an accurate

q δlon⁄
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Fig. 11.2 ADOCS pitch-rate response and transfer-function model (hover).
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identification in the frequency range of 0.2–7 rad/s. At higher frequencies, the
coherence drops, which reflects the intentionally reduced piloted inputs.

For an ACAH system, the mid-frequency (short-term) response (around 1 rad/s)
would be expected to produce a constant gain characteristic. The associated
pitch-rate response would then follow a derivative s characteristic (i.e.,
decade slope) because

(11.17)

This can be seen in the identified response of Fig. 11.2 for the frequency range
(0.3–2 rad/s). The rate-command characteristic at low frequency (below 0.3 rad/s)
is associated with the autotrim function84 for this side-stick controller. The rate
response follows a  roll off at frequencies above 2 rad/s, which reflects the
second-order ACAH control system.

An appropriate model structure for the ADOCS pitch-rate response is selected
based on the flight data response

(11.18)

where the response in the large parentheses is the attitude response  of
Eq. (11.17). The parameters in this model are as follows:

= stick gain
= trim follow-up
= short-term second-order attitude response
= equivalent time delay that accounts for the lumped effect of rotor

transient response and control-system dynamics

The transfer-function model was identified using NAVFIT with a fitting range
of 0.2–7 rad/s, corresponding to the range of good coherence. Further, this fitting
range is consistent with the frequency range of applicability of the short-term
attitude response representation. The dominant rotor-flap mode frequency at
approximately 10 rad/s (Ref. 153) causes an increasingly sharp roll off in the
magnitude curve for frequencies beyond about 8 rad/s (Fig. 11.2) that cannot be
adequately captured by the short-term attitude response representation. Explicit
identification of rotor dynamics using extended transfer-function model struc-
tures is demonstrated in Secs. 11.7 and 11.8.

The identified transfer-function model is based on Eq. (11.18):

 deg/s/%-lon (11.19)

The dashed line in Fig. 11.2 shows that this transfer-function model matches the
frequency response very well over the frequency range of the fit. The parameters
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in Eq. (11.19) reveal important aspects about the ADOCS response characteris-
tics. The closed-loop response is dominated by a well-damped second-order
short-term characteristic ( ,  rad/s). The integral term

 provides trim follow-up (self-trimming), with a time constant of
( ). The equivalent time delay of  reflects
the combined influences of the important higher-frequency dynamics, namely,
computer processing delays, filtering, and rotor dynamics.84 

Transfer-function modeling based on the classical short-period form of
Eq. (11.18) allows an evaluation of ADOCS handling qualities using the LOES
approach.59 For example, Fig. 11.3 presents a compilation of handling-qualities
results154 from flight and simulation experiments for low-speed and hovering
vehicles. These data are presented in terms of the effective (i.e., equivalent sys-
tem) total damping ( ) and natural frequency  for the short-term
response. The handling qualities are characterized using the Cooper–Harper rat-
ing scale and the associated levels of handling qualities (see also Sec. 7.14.3). An
average handling-qualities rating (HQR) of  indicates that the system
falls into the level 1 category or “satisfactory without improvement.” An average
rating from  indicates that the system falls into the level 2
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Fig. 11.3 Analysis of ADOCS handling qualities based on equivalent system data
(from Ref. 154).
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category or “deficiencies that warrant improvement,” and an average rating of
 or greater indicates level 3 handling qualities where “deficiencies

require improvement.” 
The LOES parameters for ADOCS are obtained directly from Eq. (11.19):

(11.20)

(11.21)

As indicated in Fig. 11.3, this places the ADOCS short-term pitch response in
hover well within the level 1 region.

A second important characteristic of the ADOCS transfer-function model is
the relatively large equivalent time delay, . Handling-qualities expe-
rience, summarized in Fig. 11.4,155 indicates that the equivalent time delay
should not greatly exceed , thereby suggesting degradation of
ADOCS handling qualities for high-gain tasks. Comparable levels of equivalent
time delay in the roll axis were considered to be a key contributor to pilot-
induced oscillations (PIO) and attendant level 2 HQRs for high-gain piloting
tasks such as slope landing.84 

The excellent predictive capability of this rather simple transfer-function model
is demonstrated in the time domain for a step input in Fig. 11.5. The first plot
shows the pilot input , which is used as a forcing function for the transfer-
function model. The model responses for pitch rate  and pitch attitude , shown
as a dashed line, track the flight data (solid line) very closely. It is remarkable that
the closed-loop response of this very complex system can be modeled accurately
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Fig. 11.4 Effect of equivalent time delay on handling qualities (from Ref. 155).

C
o

o
p

er
-H

ar
p

er
 p

ilo
t 

ra
ti

n
g

1

2

3

4

5

6

7

8

9

10

0 .05 .10 .15 .20 .25
Time delay (sec)

ADOCS

τeq 0.120=  s

δlon
q θ

Chapter 11.fm  Page 291  Friday, June 16, 2006  3:24 PM



292 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

0 5 10 15 20 25

–5

0

5

10

q
 (d

eg
/s

ec
)

–5

–2.5

2.5

0

5

–20

–10

0

10

Time (sec)

Flight data
Transfer function model

Fig. 11.5 ADOCS transfer-function model verification (hover).

Chapter 11.fm  Page 292  Friday, June 16, 2006  3:24 PM



TRANSFER-FUNCTION MODELING 293

with such a simple LOES transfer-function model. Further, the rather large ampli-
tudes seen in the time-response comparison demonstrate that the model is accu-
rate for sizeable maneuvers and is not restricted to small perturbations. Thus
system identification of LOES models provides a simple and very accurate
approach for obtaining closed-loop simulation models for flight dynamics and
handling-qualities studies.

11.6.2 Lateral / Directional Dynamics Identification for 
Fixed-Wing Aircraft

In this example, transfer-function models that accurately describe the bare-
airframe lateral-directional response of the XV-15 in the cruise flight condition
are extracted. The simplest model structure is obtained under the assumption that
the roll and sideslip dynamics are completely decoupled,50,59 that is, aileron
deflections produce pure aperiodic rolling motion (with no sideslip) and rudder
inputs produce pure sideslip/yaw Dutch-roll motions (with no roll rate). This
assumption results in the one-DOF model for roll response to aileron:

(11.22)

where

= aileron roll-control sensitivity
= roll mode time constant and inverse of the roll damping stability deriva-

tive ( )
= equivalent time delay for aileron inputs

The transfer-function model for the sideslip for rudder inputs (with no roll
motion) is

(11.23)

where

= rudder sideslip sensitivity
= Dutch-roll complex mode
= equivalent time delay for rudder inputs

Clearly, this decoupling simplification ignores both the control coupling ,
 and response coupling (primarily caused by ) in the roll and sideslip equa-

tions of motion, but it allows the identification to proceed using SISO transfer-
function identification tools. Bischoff and Palmer50 showed that transfer-function
identifications based on these simpler forms were easily obtained and resulted in
acceptable model matches both in the time and frequency domain as compared to
the completely coupled forms. They concluded that this approach was satisfac-
tory for determining the natural modes of lateral/directional motion ( ,

) and time delays that are important in handling-qualities evaluations.
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A simplified roll-rate model for the bare-airframe XV-15 response in cruise is
obtained using NAVFIT with a fitting range of 0.14–9 rad/s (good coherence):

 deg/s/deg-ail (11.24)

The associated cost function is somewhat higher than desirable ( ),
reflecting a considerable mismatch when compared with the flight data in
Fig. 11.6a (denoted as SISO model). This mismatch is more clearly seen in terms
of the magnitude and phase error functions [Eqs. (11.10) and (11.11)] as pre-
sented in Fig. 11.7. Also shown in this figure are allowable mismatch boundaries
from MIL-STD 1797,5 introduced earlier in Fig. 7.20. When the error functions
lie within these boundaries of unnoticeable dynamics, the pilots consider the
original response and the LOES transfer function as indistinguishable (see also
Sec. 7.14.5). In this case, both the magnitude and phase boundaries are slightly
exceeded (1–3 rad/s). The mismatch results from the omission of Dutch-roll cou-
pling in the simple roll-response model, as will be shown later [Eq. (11.29)].

The simplified model for the XV-15 sideslip response in cruise is obtained
using NAVFIT with a fitting range of 0.14–5.5 rad/s (good coherence):

 deg/deg-rud (11.25)

indicating a lightly damped Dutch-roll mode ( ), which is characteris-
tic of the bare-airframe dynamics. The associated cost function is very low
( ), reflecting the excellent model fit seen in Fig. 11.6b. The magnitude and
phase error functions are within the mismatch corridor limits of Fig. 11.7b, show-
ing the good suitability of the simplified sideslip model structure in this case.

An improved roll-response fit can be obtained using the complete transfer-
function model structure that includes both the Dutch-roll and spiral modes,59

with the Dutch-roll mode fixed from the sideslip response model obtained in
Eq. (11.25):

(11.26)

where  are complex zeros that determine the appearance of the Dutch-
roll mode in the roll response and  is the spiral mode time constant.

The model structure of Eqs. (11.23) and (11.26) comprise a one-way coupling
approximation, where we have accounted for the coupling of sideslip motion into
the roll response but have neglected the coupling of the roll motion into the
sideslip response. To fix the Dutch-roll mode and identify the remaining parame-
ters in Eq. (11.26) using NAVFIT, the roll-rate flight data  are
multiplied by the frequency response associated with the Dutch-roll mode

, as identified in Eq. (11.25). This is accomplished
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Fig. 11.6 Roll-rate and sideslip transfer-function models (XV-15, cruise).
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using arithmetic manipulation of the frequency-response functions at each identi-
fication frequency ω. The resulting roll-rate transfer-function model structure is

(11.27)

which can be obtained using SISO transfer-function identification. A very accu-
rate model ( ) is then achieved using NAVFIT:

(11.28)

Finally, the complete roll-rate transfer function is obtained as

 deg/s/deg-ail (11.29)

which fits the data very closely ( ), as seen in Fig. 11.6a (denoted as
constrained Dutch-roll model). The roll-response mismatch errors are consider-
ably reduced compared to the simplified model results and now stay within the
envelopes for both magnitude and phase (Fig. 11.7). This modeling method
achieves good fits for both the roll and sideslip responses, while preserving the
physical constraint of common poles. A comparison of Eqs. (11.29) with (11.24)
shows that the simplified roll-response model structure indeed provides a reason-
able estimate of the roll mode, roll sensitivity, and roll time delay, in agreement
with Bischoff and Palmer.50 

Table 11.1 compares the dynamic characteristics of the XV-15 bare-airframe
response in cruise with the handling-qualities recommendations of MIL-STD-
17975 for flight category B (gradual maneuvers; see reference for definitions). The
XV-15 parameters for the bare-airframe (SCAS-off) vehicle comply easily with all
of the recommendations for this category. Compliance is also achieved for the
most aggressive recommendations under category A (rapid maneuvering), except
for the Dutch-roll damping ratio specification. Improved Dutch-roll damping is
easily achieved with a simple Dutch-roll augmentation system, common on many
aircraft, including the XV-15.

 Table 11.1 Evaluation of XV-15 lateral-directional handling qualities in cruise 

Parameter
MIL-STD-1797A level I, 

cat. B requirement XV-15

Roll-mode time constant ≤ 1.4 s 1.0 s
Time-to-double for spiral mode ≥ 20 s Stable
Dutch-roll damping ratio ≥ 0.08 0.24
Dutch-roll frequency ≥ 0.4 rad/s 1.67 rad/s
Dutch-roll total damping ≥ 0.15 rad/s 0.40 rad/s
Roll time delay ≤ 0.10 s 0.053 s
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Transfer-function identification of the  and  responses based on
the complete forms for both roll and sideslip responses must be completed simul-
taneously to ensure that the denominators (poles) are the same, as they are physi-
cally. The identification package LATFIT, which was developed by the same
researchers156 that developed NAVFIT, provides such a capability. A third pack-
age LONFIT, developed by the same team, provides a simultaneous fit of 
and  for determination of longitudinal short-period dynamics, thereby
avoiding the “galloping  problem”157 that occurs in the SISO fit of .
The LATFIT and LONFIT tools were used in the original identification of XV-15
transfer-function dynamics in cruise.125 These tools evolved into the LOES analy-
sis package SLAP.144 Another modern tool for simultaneous LOES matching of
two transfer functions is included in CONDUIT® (Ref. 64).

Simultaneous transfer-function matching can also be accomplished using the
transfer-function model structure that is included in the state-space modeling
method (Sec. 12.2.2). The result for this case produces models with very low-cost
functions:

 deg/deg-ail with (11.30)

 deg/deg-rud with (11.31)

There is an additional (third) zero at high frequency that appears in the complete
high-order form for  (Ref. 50). However, in the present case the identified
value of this zero is well beyond the frequency range for which the data are reli-
able, and so it is dropped. A comparison of the simultaneous identification of
Eqs. (11.30) and (11.31) with the earlier results of Eqs. (11.29) and (11.25) dem-
onstrates the good accuracy of the approximate (one-way coupling) method.
Generalized matching of multiple degrees of freedom is more easily accom-
plished with a state-space formulation directly in terms of the stability and con-
trol derivatives. This is the primary role of DERIVID (Chapter 13).

Field et al.158 have made extensive use of LOES modeling and MUAD bound-
ary assessment to validate the implementation of large transport aircraft models
in an advanced motion-based simulator. Manual and automated frequency-sweep
testing was conducted to document the simulation math models, control loaders,
and simulator motion system drives and responses.

11.7 Flight-Mechanics Characterization Studies

Transfer-function models are a very useful intermediate result in the overall
flight-mechanics modeling process because they are minimum-parameter realiza-
tions of the input-to-output dynamic behavior of a system. In other words, a
transfer-function model contains the least possible number of parameters that
will characterize the system response. In contrast, state-space realizations are
nonunique and can take many possible forms. All realizations (e.g., controller
canonical form, observer canonical form, block diagonal form, as discussed in
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Sec. 12.5.1 and Chen159), will fit the frequency-response data equally well and
have the same eigenvalues as the transfer-function model. Physics-based state-
space models, characterized in terms of stability and control derivatives, might
again fit the measured response well, but they might have extraneous parameters
that offset one another and therefore can lose physical meaning. 

Thus initial models based on SISO transfer-function models can provide criti-
cal information on fundamental flight-mechanics response characteristics, appro-
priate state-space model structure (order and form), and initial values of the key
derivatives. They provide an important stepping stone in the overall system-
identification process, even when the ultimate goal is a MIMO state-space model
in stability and control derivative form. Examples of transfer-function modeling
for the study of basic rotorcraft flight mechanics are given by Chen and Tischler68

and Houston.160 This section uses the transfer-function identification method to
characterize the coupled rotor/fuselage dynamics of the OH-58D helicopter. The
example is drawn from the results presented by Ham et al.123

11.7.1 Helicopter Rotor-Body Coupling Fundamentals
The flight dynamics of the roll (and pitch) motion of helicopters are dominated

by the coupling of the fuselage inertia response and the rotor flapping. This leads
to a second-order response of roll (and pitch) rate to swashplate inputs. Very
insightful explanations of the coupled roll/fuselage dynamics are given by
Heffley et al.21 and Curtiss.161 Rotor flapping can be visualized as a deflection in
the rotor disc (referred to as the tip-path plane deflection). Following the nomen-
clature of Johnson162 and Tischler and Tomashofski,139 lateral flapping relative to
the shaft is denoted as  and is positive for flapping down to the left. Lateral
tip-path plane deflection imparts a proportional rolling moment, acting like a
spring between the fuselage and the rotor plane. This causes a negative (i.e., left
wing down) fuselage roll acceleration:

(11.32)

so that the effective flap-stiffness constant ( ) will have a negative value in
our notation, opposite from Heffley et al.21 The primary contributions to this con-
stant are the height of the rotor hub above the fuselage center of gravity , the off-
set (or effective offset) of the rotor-blade flapping hinge from the center of rotation
of the rotor shaft , and the rotor-blade flap spring stiffness . These contributions
are normalized by the fuselage roll moment of inertia , to give an estimate for

 as21 

(11.33)

where

= helicopter weight, lbs
= number of rotor blades
= first mass moment of rotor blade, slug-ft
= rotor rotation speed, rad/s
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Typical values are in the range of , as tabulated by Heffley
et al.21 The lower end of the range is representative of a helicopter with small or
no hinge offset, such as a teetering rotor design of the UH-1H or AH-1G. The
higher end of the range is representative of helicopters with a large effective
hinge offset, such as the Bo-105 (12%) and RAH-66 (10%) hingeless rotor sys-
tems or helicopters with a high rotor mast and low fuselage roll inertia. The anal-
ogous values for the pitch axis  will be considerably smaller because of the
increased moment of inertia in this axis (for example, see the SH-2G identifica-
tion results of Table 15.1).

If we ignore the coupling between lateral and longitudinal flap motion for
now (and the effect of the flapping spring), the primary lateral flap response
(referred to as the regressive flapping mode) is well approximated21 by the first-
order response:

(11.34)

where  is the rotor flap time constant and the control input  denotes the
(cosine) deflection of the swashplate that results in a positive lateral flapping
response and a (negative) fuselage roll response. Considering the rotor in isola-
tion ( ), the flapping equation (11.34) shows that one rad of control input
( ) with the shaft fixed results in one rad of cyclic lateral flapping
( ) at steady state.

Heffley et al.21 gives a useful expression for the inverse rotor-flap time constant
as a function of rotor geometry:

(11.35)

where , the Lock number representing the (nondimensional) ratio of aerody-
namic to centrifugal forces,163 is given by

(11.36)

with

= atmospheric density, slug/ft3

= lift-curve slope
= rotor chord, ft
= rotor radius, ft
= moment of inertia of the blade about the flapping axis, slug-ft2

Heffley provides a table of inverse rotor time constant values for many common
helicopters. However, the expression of Eq. (11.35) (and tabulated values) for the
inverse rotor-flap time constant must be corrected for the influence of dynamic
inflow (transient dynamics of airmass flow through the rotor). This correction,
based on the pioneering work in dynamic inflow theory by Curtiss,161 replaces the
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geometric Lock number  with an effective (reduced) Lock number :

(11.37)

where  is defined as the rotor solidity and  is the nondimensional
inflow ratio [Eq. (15.13)].

The effect of the correction is most significant in hover, increasing the value of
the rotor time constant by about 50%, and washes out in forward-flight conditions
(as seen in the SH-2G results of Sec. 15.3.4). For most hovering helicopters, the
rotor-flap time constant is in the fairly narrow range of  (cor-
rected table from Heffley et al.21). Teetering rotors and fully articulated rotors with
small hinge offset will have values at the lower end of this range, and large hinge-
offset (and hingeless) rotors will have values at the upper end of this range.

Finally, the linkage and actuator between the pilot cockpit stick  and the
swashplate is characterized by a gain and an equivalent time delay:

(11.38)

so that a negative value of linkage gain is needed to provide a positive roll-rate
response to a positive lateral-stick input (typical sign convention).

The coupling of Eqs. (11.32–11.38) can be visualized in a block diagram, as
seen in Fig. 11.8, remembering that , which results in a stable feedback
loop.

A typical root locus of the feedback loop as a function of the rotor-flap stiffness
 is illustrated in Fig. 11.9 using a nominal value of the rotor time constant,

. 
Many modern helicopters feature articulated or hingeless rotor designs with

associated higher values of flap stiffness. Then the fuselage and rotor responses
are a coupled second-order response as seen in Fig. 11.9 and discussed in depth
by Curtiss.161 The roll-rate response to swashplate inputs  is obtained from
Fig. 11.8 as

(11.39)

and

(11.40)
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Fig. 11.8 Block diagram representation of rotor-body coupling.
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which is the appropriate transfer-function model structure for system identifica-
tion of the coupled roll-flap dynamics. From this expression, we see that the
natural frequency for the roll-rate response is given as

(11.41)

The high values of flap stiffness (i.e., low roll inertia and large hinge offset)
common to most modern attack helicopters provide a faster (more agile) response
to controls, as characterized by an increased response frequency  and an asso-
ciated increase in response bandwidth .

Many helicopters do not require high levels of agility, so that rotor hub designs
with reduced flap stiffness (lower ) are incorporated. This reduces the struc-
tural moments and vibration on the airframe. When the condition

(11.42)

applies, the fuselage and rotor responses are only lightly coupled161 and the
second-order (oscillatory) response of Eq. (11.39) factors into two real roots. In
such cases, the roll-rate flight-mechanics response of Fig. 11.8 is well approxi-
mated by a cascade model combining the first-order rotor response and a first-
order quasi-steady roll-rate response, as depicted in Fig. 11.10. This can be seen
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as a one-way coupled (i.e., actuator-type) approximation of the two-way coupled
rotor-body dynamics.125 

The first-order rotor response is

(11.43)

A more accurate model of this rotor-response block is the first-order over fourth-
order transfer-function model, given by Landis and Glusman,164 that was used in
the flight-control design study based on the UH-60 helicopter.125

The first-order quasi-steady roll-rate response is 

(11.44)

where the quasi-steady parameters of equation Eq. (11.44) are determined by
dropping the  term in the denominator of the coupled response of Eq. (11.40).
The effective (or quasi-steady) roll-control sensitivity is

(11.45)

and the effective (or quasi-steady) roll-damping derivative is

(11.46)

So the condition of Eq. (11.42) simply ensures that the flap time constant is much
smaller than the quasi-steady roll time constant:

(11.47)

resulting in two distinct modes in Fig. 11.9. 
The simplest model of rotorcraft flight dynamics combines the time constant of

the rotor-flap response and the actuator/linkage delays into an equivalent time delay

(11.48)
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Fig. 11.10 Cascade model of rotor-body response applicable to small flap stiffness.
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and then

(11.49)

provides the required transfer-function model structure for identification.
The first-order model of Eq. (11.49) is referred to as the quasi-steady approxi-

mation because it accounts only for the influence of the steady-state rotor
response on the helicopter flight mechanics. The decoupled roll-rate model of
Eq. (11.49) has the same structure as the decoupled fixed-wing roll rate of
Eq. (11.22). Figure 11.11 compares the coupled model structure [Eq. (11.40)]
and the quasi-steady model [Eq. (11.49)] for the UH-1H helicopter, which has a
teetering rotor. As can be seen, the roll-rate response of the quasi-steady model is
fairly accurate over the range of frequencies of interest for flight mechanics (0.1–
10 rad/s) for this type of rotor system.

Consider now generalizing these modeling techniques to the fully coupled
motion of the fuselage degrees of freedom. The adoption of the quasi-steady
approximation results in a six-DOF representation for the complete helicopter
as indicated in Table 1.2. The quasi-steady model formulation is a very useful
starting point for helicopter system-identification and works well for a large
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number of helicopters. Colbourne et al.19 used the quasi-steady model structure
to identify very accurate models of the Fire Scout P2 demonstrator, a variant of
the Schweizer 333 helicopter (Sec. 13.12), which has a small hinge offset.
These models were shown to capture well the frequency-response and time-
domain response behavior, and they were subsequently used in control law
development for the unmanned version of this helicopter, as discussed in the
same reference.

When the coupling between the lateral/directional and longitudinal/vertical
rotorcraft dynamics is negligible, the six-DOF system reduces further to two
three-DOF systems of quasi-steady equations (Table 1.2) that are directly analo-
gous to the rigid-body dynamics of fixed-wing aircraft.165 This three-DOF
quasi-steady assumption is appropriate to the XV-15 tilt-rotor identification
because of the symmetrical configuration, high aircraft inertias, and gimballed
(zero hinge-offset) rotor system, and it provides a very accurate representation
of the flight-dynamics response in hovering flight (Chapters 13 and 14). It
is also appropriate for other symmetrical rotorcraft configurations (e.g., the
tandem-rotor CH-47).

As vehicle size is reduced, dynamic (Froude) scaling relationships166 show that
the flap stiffness increases: 

(11.50)

where  denotes the vehicle scale ratio. (For example,  refers to a one-
half-scale aircraft.) The flap stiffness then scales according to

(11.51)

These relationships show that a reduction in vehicle size by a factor of
5 ( ) results in a factor of 5 increase in the flap stiffness and a factor of 2.2
increase in response bandwidth (agility). This can be seen in the very agile
response of hobby-size radio-controlled helicopters. Consider the comparison of
the Yamaha R-50 small-scale unmanned helicopter to the UH-1H manned heli-
copter as discussed by Mettler et al.166 The R-50 has a large effective flap stiff-
ness ( ) as compared to the UH-1H ( ), which is
consistent with the scale ratio between these aircraft ( ). The quasi-steady
model was fully adequate for characterizing the roll/flapping dynamics of the
UH-1H, as was shown in Fig. 11.11. However, for the case of the much smaller
R-50, the condition of Eq. (11.42) no longer applies. The coupled rotor body
model of Eq. (11.40) must therefore be used for system identification of the R-50
and other small-scale UAV helicopters.167

11.7.2 Application to OH-58D Identification (High-Flap-Stiffness 
Example)

A good illustration of the helicopter flight-mechanics modeling concepts is the
identification study of the OH-58D helicopter, presented by Ham et al.123 and
summarized herein. The key characteristics of this helicopter (Fig. 11.12) are

ωn N∝

N N 2=

Lβ1s
N∝

N 5=

Lβ1s
142.5–= Lβ1s

19.2–=
N 5=
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given by Heffley et al.21; this helicopter exhibits a rather high value of rotor-flap
stiffness ( ) based on analytical predictions. The analytical value
of the flap time constant, corrected for dynamic inflow effects, is .
These values indicate that the condition of Eq. (11.42) for the use of the quasi-
steady model will no longer apply.

The solid line in Fig. 11.13 shows the frequency-response flight data for the
SAS-off roll response  in hover. The coherence is generally acceptable for
the entire range of the plot (1–16 rad/s). The two model structures of Eqs.
(11.40) and (11.49) were used to identify a transfer function for the fitting range
of 1–16 rad/s. This range excludes the rotor lead-lag (in-plane) response
(Sec. 15.2.2), visible for frequencies beyond 16 rad/s, because this is not
included in the model structure for this example.

The identified quasi-steady model using the structure of Eq. (11.49) was

(11.52)

This result is a poor fit of the flight response, as is shown by Fig. 11.13 and also
reflected in the high associated transfer-function cost ( ).

The identified coupled roll/flapping model using the structure of Eq. (11.40) was

(11.53)

resulting in a much better fit, as seen in Fig. 11.13 and reflected by the low cost
function ( ). The time delay included in the identification of the coupled
model  accommodates the effects of actuator and linkage dynamics.
The identified rotor-flap stiffness ( ) and rotor time constant
( ) compare well with the analytical values just given. Also, the rela-
tionship between the identified parameters of the coupled and quasi-steady mod-
els are in good agreement with Eqs. (11.46–11.48).

Lβ1s
47.4 s 2––=

τf 0.130 s=

 Fig. 11.12 OH-58D helicopter.
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p
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11.8 Flight-Dynamics Models for Control System Design

Classical design and analysis techniques using Bode plots, Nichols plots, and
root-locus plots continue to be in wide use in the aircraft and helicopter commu-
nities. These techniques are based on SISO transfer-function descriptions of end-
to-end dynamics, as obtained in this chapter. Examples of such applications are
found widely in the literature (e.g., Refs. 56 and 146). In the development of the
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Fig. 11.13 Roll-response transfer-function models (OH-58D, hover).
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Fire Scout P2 demonstrator (unmanned helicopter), SISO transfer-function
models were extracted from piloted flight tests of the test vehicle and then used in
the development of a flight-control system for autonomous operations, as
described by Colbourne et al.19

Tischler18 investigated the system-identification requirements for high-band-
width control system design, based on the roll-attitude response  of the Bo-
105 helicopter. The flight data were obtained by the DLR in support of AGARD
Flight Mechanics Panel Working Group 18. (Ref. 10). A range of identification
model structures was examined, with the simplest being the quasi-steady form of
Eq. (11.44). Accurate prediction of closed-loop flight-control performance (i.e.,
crossover frequency, stability margins, bandwidth, and phase delay) required that
the model needed to include the following: roll-angle integrator state (first order),
coupled body roll/regressive flap (second order), lead-lag air resonance (second
order), Dutch-roll dynamics (second order), and actuator dynamics (equivalent
time delay). The result is a seventh-order baseline model:

 rad/%-lat (11.54)

The identified transfer-function model provides an excellent characterization
of the frequency-response data, as is seen in Fig. 11.14, and as also reflected in a
very low cost function, . The transfer-function model indicates a highly
coupled roll/flapping model ( , ), as is expected for
the high flap stiffness ( ; Ref. 21) for the hingeless rotor system
(large effective hinge offset) of the Bo-105. The low damping value of regressive
lead-lag mode ( , ) reflects only the structural
damping of the hingeless rotor because there are no mechanical dampers for this
rotor system. The total modal damping ( ) agrees very
well with previously published experimental data.168 There is also a nearby com-
plex zero ( ) associated with the lead-lag response to control
inputs. This complex zero-pole pair (dipole) is a key characteristic of the dynam-
ics of the coupled flap/lag/fuselage system, as explained in detail by Curtiss.161

The Dutch-roll mode ( , ) is lightly damped, as is
also generally the case for the bare-airframe response of fixed-wing aircraft [e.g.,
Eq. (11.25)]. Significant roll-yaw coupling is apparent from the separation of the
complex zero ( , ) from the Dutch-roll mode. Finally,
the equivalent time delay corresponds well to the known control system hydrau-
lics and linkage lags.

Figure 11.15 shows a root-locus plot for variation of roll-rate feedback 
(%/rad/s). In the nominal case based on the identified roll-rate response, rotor/
flapping model stability is seen to set the limitation on rate feedback gain,
although lead-lag modal damping is clearly reduced for moderate gain levels.
When 50 ms of additional time delay is included to account for the filters
and computational delay in a practical digital control system implementation,125

the lead-lag mode becomes rapidly destabilized and sets the limit on rate
feedback—as also concluded by Curtiss.161 This result illustrates the need for

φ δlat⁄

φ
δlat

------- 2.62 0.413 3.07,[ ] 0.0696 16.2,[ ]e 0.0225s–

0( ) 0.277 2.75,[ ] 0.509 13.7,[ ] 0.0421 15.8,[ ]
-----------------------------------------------------------------------------------------------------------=

J 12.1=
ζrf 0.51= ωrf 13.7 rad/s=

Lβ1s
89.1s 2––=

ζllr
0.0421= ωllr

15.8 rad/s=

σ ζω– 0.665 rad/s–= =

ωn 16.2 rad/s=

ζdr 0.277= ωdr 2.75 rad/s=

ζφ 0.413= ωφ 3.07 rad/s=

Kp
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accurate knowledge of lead-lag dynamics in high-bandwidth control system
design. The coupling of lead-lag and roll/flapping dynamics was a key charac-
teristic of the integrated rotor/control system development for the RAH-66
(Comanche) bearingless rotor helicopter.169 Transfer-function model identifica-
tion methods have also been widely used to characterize the coupled heave/
rotor/inflow dynamics of helicopters, as demonstrated by Ham et al.123 for the
OH-58D and by Chen and Tischler68 for the CH-47B.

11.9 Aeroelastic Model Identification

The aeroelastic response of a flight-vehicle structure is generally characterized
by a series of modes, each represented by a second-order (spring-mass damper)
system with an associated modal frequency and damping ratio. These modal
characteristics are rapidly and accurately determined from frequency-sweep test
data by fitting the measured aircraft response in the frequency range over which
the mode is well excited. As demonstrated for the XV-15 by Acree and Tischler,87

plots of modal damping vs airspeed provide a basis for comparison with analyti-
cal models, and they provide important trends for predicting the potential onset
of wing flutter (zero damping).

The key advantages of this approach compared to the classical exponential
dwell-decay (time-domain) method are as follows87 1) elimination of the effects
of uncorrelated noise by using the frequency-response function, which is impor-
tant for the typically low signal-to-noise ratio of structural response testing;
2) isolation and identification of individual modes by fitting transfer functions to
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Fig. 11.15 Root-locus varying roll-rate gain (Bo-105, 80 kn).
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the frequency-response data with a narrow frequency band, which is important
for handling closely spaced modes; 3) availability of the coherence function as a
direct measure of the adequacy of modal excitation, level of random error, and
signal-to-noise ratio, which allows the identification to emphasize the most reli-
able data; and 4) concatenation of repeat records, which reduces random error in
frequency-response identification.

In the XV-15 tilt-rotor project, frequency-sweep flight-testing and transfer-func-
tion modeling methods were extensively used to establish aeroelastic mode stabil-
ity for a range of airspeeds.87 Automated frequency sweeps of the wing flapperons

, as shown in Fig. 11.16, were used to excite six primary aeroelastic modes of
interest. Symmetric excitations of the right and left flapperons were used to iden-
tify the symmetric modes, and asymmetric excitations were used to identify the
asymmetric modes. The direct measurement of the flapperon deflections provides

δf

Fig. 11.16 Frequency-sweep input and wing-bending strain-gauge response (XV-15,
180 kn).
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312 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

an essentially noise-free input signal, and so the standard frequency-response
estimate [Eq. (7.37)] is appropriate.

Data were collected from strain gauges that measured the wing-bending strain
 at the wing root. As described in detail in the cited reference, the symmetric

response was identified by using the summed (right and left) flapperon measure-
ments as the input and the summed (right and left) wing strain-gauge measure-
ments as the output. This technique greatly improved the coherence for the
symmetric mode identification. Similarly, the coherence for the asymmetric
mode identification was enhanced by using the differenced right- and left-wing
flapperons as the input and the differenced wing strain measurements as the out-
put. The time-history data for the symmetric response at 180 kn (true airspeed,
Fig. 11.16) clearly show a “ringing” of the structure as the sweep passed through
the symmetric beam-bending mode occurring at about 17 s. Notice also the
shorter records that are used in structural response identification compared to
typical flight-dynamics applications (Sec. 5.3) because of the higher modal fre-
quencies involved.

The frequency response for the symmetric strain response to summed flap-
peron inputs  is shown with the solid line of Fig. 11.17. This result was
achieved by concatenating several repeat flight records, of which Fig. 11.16 is
typical. The Bode plot clearly shows the first symmetric bending mode of the
wing. The coherence is good for the frequency range of interest, which includes
the frequencies from below to just above this peak. A second-order transfer-
function model provides the aeroelastic damping and natural frequency of the
first wing-bending (symmetric) mode:

(11.55)

where the rigid-body response of Eq. (11.22) can be ignored in this model
because it is well separated in frequency from the aeroelastic response (more than
a factor of 20). As seen in Fig. 11.17, there is very good agreement between the
transfer-function model (dashed line) and the flight response in the area of good
coherence. The low damping ratio ( ) is typical of aircraft structural
modes, and the natural frequency location ( ) reflects
the high cantilever inertia associated with the engine/prop-rotor systems that are
placed in the wing tips of the tilt-rotor configuration (Fig. 3.4).

This procedure was repeated several times at the baseline condition of 180 kn
to evaluate the scatter in the modal identification. As seen in Fig. 11.18, there is
very little scatter in the results obtained from CIFER® (less than 1% in natural
frequency and less than 9% in modal damping). Tests were then also conducted
over a range of airspeeds to assess aeroelastic stability over the flight envelope.
As also seen in Fig. 11.18, there is a linear (but small) effect of airspeed on the
symmetric mode damping ratio and frequency. An extensive statistical analysis87

showed that the CIFER® results exhibited significant reductions in scatter, both at
the baseline and as a function of airspeed, compared to the exponential decay
(Prony) analysis. 

εwb

εwb δf⁄

εwb

δf

------- s( ) k
0.026 20.74,[ ]

----------------------------------=

ζ 0.026=
ωn 20.74=  rad/s 3.3 Hz=
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11.10 Subsystem Component Modeling

A complete flight-vehicle analysis or simulation model can include a consider-
able library of subsystem components, including actuators, sensors, filters, link-
ages, and various sources of equivalent time delays (e.g., digital system zero-order
hold and throughput delays associated with onboard processing). Transfer-function
models are typically used to represent the input-to-output dynamic response of
subsystem components because for flight-dynamics applications there is no need
to model the detailed fluidic motion of a hydraulic actuator, the internal dynamics
of an angular rate gyroscope, or the exact kinematics of the linkage system. Here
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the only concern is an accurate model of the subsystem’s overall dynamics
response. 

As an example of subsystem modeling, actuators are generally characterized as
a second-order transfer function with given natural frequency, steady-state gain,
and performance limits (rate and position authority). An added time delay can be
included to account for additional unmodeled dynamics or an internal servoloop
control system. Rate gyros and other sensors can be modeled by a second-order
system, such as that of Eq. (6.20), and perhaps an added time delay to account for
embedded filtering. Linkage kinematics are well modeled by a simple gain and
perhaps an added time delay to account for deadband/hysteresis effects. Another
example of subsystem modeling is the measurement data consistency model
[Eq. (6.16)] of Sec. 6.2.1. Additional examples of typical subsystem models are
contained in the case studies compiled by Tischler.11 The following example dem-
onstrates the identification of an actuator model from helicopter flight data.

Actuator system response is a key aspect in the flight-control design process
and in determining overall flight-control performance.64 System stability margins
and overall closed-loop performance and handling qualities can be significantly
degraded if the actuator dynamics do not agree with the design models. Accurate
models of actuator dynamics have been found to be especially important for
small-scale UAV development,12 where flight-mechanics modes become faster
with decreasing vehicle size. An accurate model of actuator dynamics can be
quickly determined using a frequency sweep in a bench test under representative
loading conditions, or in flight if measurements of the actuator command input 
and position response  are available. An example of frequency-response identi-
fication and transfer-function modeling of a helicopter actuator from flight-test
data is shown in Fig. 11.19. Excellent coherence is achieved over a broad fre-
quency range (0.2–40 rad/s) using a computer-generated frequency-sweep exci-
tation. The actuator dynamics are seen to be characterized very accurately by the
well-damped second-order transfer-function model

(11.56)

 as confirmed by the very low cost function ( ).
A simulation model of the actuator for control system analysis combines these

linear dynamic response characteristics with the performance limits as shown in
Fig. 11.20. The gains in the simulation model are obtained directly from the iden-
tification results:

(11.57)

(11.58)

The rate limits  and position limits  are implemented in the limited
integrator blocks.

r
δ

δ
r
-- s( ) 42.22

ζ 0.74= ; ωn 42.2=[ ]
-----------------------------------------------------=
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k1
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11.11 Summary and a Look Ahead

There is a broad range of system-identification applications to fixed-wing
and rotorcraft projects that only require a model of the input-to-output process
that can be achieved using the frequency-response identification and transfer-
function models that have been discussed so far. These models, which are
generally obtained with a very modest level of effort, provide a wealth of infor-
mation about the characteristics of the system. They are often the “end goal”
for many users of system identification (actually, perhaps a majority of users).
Chapters 12 and 13 present the techniques for the identification of generalized
multi-input/multi-output models in a state-space formulation. These methods
build on the frequency-response fitting concepts of SISO transfer-function
modeling. The results that have been presented in this chapter are often a use-
ful intermediate step towards the more sophisticated MIMO response modeling
using the more advanced state-space identification techniques. Chapter 14 pre-
sents the time-domain verification of both transfer-function models and state-
space models.

Problems
SISO transfer-function fitting for the inverted pendulum system using NAVFIT 

11.1 Identify a transfer-function model of the stable closed-loop pendulum
frequency-response (Problem 10.2) , using the known model structure
of Eq. (3.5). Only use the frequency range of acceptable coherence in your
identification . Compare your identified model to the known analyti-
cal transfer function. Then, examine the sensitivity of the identification results
to the initial guesses for the parameters and the effect of process and measure-
ment noise (input and output) introduced into the simulation (continue with
frequency responses from Problem 7.14, remembering to use COMPOSITE
windowing). 

11.2 Obtain a transfer-function model for the unstable pendulum frequency
response (Problem 10.1) , using the known model structure. Only use the
frequency range of acceptable coherence in your identification . Com-
pare your identified model to the known analytical transfer function. Then exam-
ine the sensitivity of the identification to process noise for the unstable case
(remember to use COMPOSITE windowing). 

11.3 What would be the effect of using an incorrect model structure in Prob-
lems 11.1 and 11.2 that included (a) an extra pole? (b) an extra zero? (c) an extra
pole and an extra zero? What is the sensitivity to noise now? What does this tell
you about the importance of proper model structure selection?

11.4 Simulate the stable pendulum’s response to a doublet (amplitude of
0.75 rad/s2 as described in Problem 5.9) with the transfer-function model

 identified in Problem 11.1, using MATLAB® or another suitable tool.
Compare the time responses of your transfer-function model and the nonlinear
model. 

θ Mext⁄

γ xy
2 0.6≥( )

θ Minv⁄
γ xy

2 0.6≥( )

θ Mext⁄
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SISO transfer-function fitting of XV-15 open- and closed-loop frequency-
responses using NAVFIT

11.5 Identify a transfer-function model from the XV-15 closed-loop response
 in hover (Problem 10.3). Start with the model structure: , ,

and . Next, try the simpler model structure: , . Only use the fre-
quency range of acceptable coherence in your identification . Are
these models satisfactory in terms of the cost function and reasonableness of the
parameter values? Try alternative model structures, and look at the effect on the
cost function and model parameters.

11.6 Refer to the bare-airframe roll-attitude frequency response  as
obtained using the roll-attitude data  in Problem 10.6. Identify a bare-airframe
roll-attitude transfer-function model for hover using the model structure of the
hovering cubic56:

(P11.6)

Only use frequencies of acceptable coherence in your identification .
Reference to Table 3.1 shows that a positive input  produces a negative roll
rate . Therefore, we should choose an initial guess for numerator coefficients
(or steady-state gain) with negative values to achieve best results. Are the hover-
ing dynamics stable or unstable? If unstable, what is the time-to-double ampli-
tude for the unstable roots? 

11.7 Identify a transfer-function model for the cruise bare-airframe roll-rate
response  using the simple first-order model structure given in Eq. (11.22).
Then identify a transfer-function model for  using the model structure given
in Eq. (11.23). Only use the frequency range of acceptable coherence in your
identifications . Reference to Table 3.4 shows that a positive input 
produces a negative roll rate . Therefore, we should choose an initial guess for
numerator coefficients (or steady-state gain) with negative values to achieve best
results. Check your answers with Eq. (11.24) and Eq. (11.25). Are the cruise
dynamics stable or unstable? 

One-way coupling solution for the XV-15 bare airframe using NAVFIT

11.8 Identify a model for the decoupled yaw-rate response to rudder input for
hover using the structure [based on data with acceptable coherence ]:

(P11.8)

11.9 Identify a complete fourth-order bare-airframe model for roll at hover:

(P11.9)
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with the yaw response mode  fixed at the value obtained in Problem 11.8.
Only use frequencies of acceptable coherence in your identification .
Remember again, because of the sign convention of the data, to start with nega-
tive numerator coefficients or negative steady-state gain for your initial guess.
Compare the cost function and parameter values with those obtained using the
hovering cubic of Problem 11.6. What can you say about the level of roll-yaw
coupling in the XV-15 at hover?

11.10 Identify a complete fourth-order bare-airframe model for roll at the
cruise condition: 

(P11.10)

with the Dutch-roll mode fixed at the values obtained in Problem 11.7. Make
sure to choose a frequency range with acceptable coherence . Com-
pare your results with those given in Eq. (11.29). What can you say about the
level of roll-yaw coupling in the XV-15 at cruise? 
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321

 

12
State-Space Model Identification—

Basic Concepts

 

The previous chapter presented a parametric modeling approach using transfer-
function identification, with primary application to the characterization of single-
input/single-output decoupled responses. Transfer-function modeling is generally
accomplished in quick fashion and provides important insight into the appropri-
ate model structure and dynamic characteristics (i.e., dominant modes, time
delay, and key derivatives) required to track the primary responses. In the many
applications illustrated in Chapter 11, these transfer-function models provide the
needed endproduct of system identification. However, the transfer-function
model structure is not easily extended to generalized MIMO systems, where the
state-space representation is better suited. Also, state-space models are often the
needed final product of system identification for applications such as simulation
model development and control system design.

The frequency-response method for state-space model identification is a direct
extension of the transfer-function identification, using the same cost function
based on frequency-response error. Here we seek a state-space model that pro-
duces a frequency-response matrix  that best fits the (measured) MIMO
composite frequency-response estimate matrix  obtained from Chapter 10.
State-space model identification is covered in two chapters (Chapters 12 and 13).
This chapter presents the basic concepts of the frequency-response method for
state-space model identification and applications to canonical representation of
SISO systems. Chapter 13 extends the discussion to the identification of physical
structure representations of MIMO systems.

There is a wealth of reference material on state-space model identification of
aircraft and helicopter dynamics in the time and frequency domains. An excellent
overview and reference list of the maximum likelihood (ML) time-domain for-
mulation is given by Iliff.

 

170

 

 Aircraft state-space model identification based on
maximum likelihood in the frequency domain was developed by Klein

 

33

 

 and then
applied extensively for helicopters and aircraft by the DLR of Germany (e.g.,
Refs. 34 and 37) and others, as summarized in Chapter 1. The frequency-
response method for state-space model identification was developed by DiMarco
and Magdaleno

 

48

 

 and Tischler,

 

171

 

 and has some key advantages compared to the
other methods, especially for flight-vehicle identification from test data. A
detailed development of the parameter accuracy analysis and associated metrics
(such as the Cramér–Rao bounds and insensitivities used both in ML estimation
and herein) is presented by Maine and Iliff.

 

172

 

 
This chapter covers the following topics: background and motivation for using

state-space models, state-space identification method, accuracy analysis and
model structure determination, canonical vs physical model structures, state-space

T
Tc
ˆ
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model identification in CIFER

 

®

 

 using DERIVID, and example results for canoni-
cal model structures.

 

12.1 Background

 

The transfer-function identification method presented in Chapter 11 rapidly
provides an accurate lower-order equivalent system (LOES) parametric model
that is needed (and, in fact, sufficient) for many applications, as illustrated in
Sec. 11.6 to Sec. 11.10. LOES modeling also provides important insight into
model structure, dynamic modes, and key dynamic parameters. Though still
highly useful as a first modeling step, the transfer-function modeling method is
not well suited to the more complex flight-vehicle applications involving higher-
order or coupled MIMO behavior. Correlations can often occur among the identi-
fied transfer-function parameters that are not easily detected. The converged
solution might have a low cost function, but with poles and zeros that offset each
other and thus lack physical meaning. Also, it might be difficult to detect an
overparameterized model in which there is insufficient information content to
identify accurately some of the parameters, leading again to some values for the
identified poles and zeros that might not have any real physical meaning. Finally,
the identification of a consistent MIMO model based on a transfer-function struc-
ture becomes quite cumbersome beyond the two-input/two-output applications of
Chapter 11. These limitations are largely overcome by considering the complete
MIMO system response and recasting the identification model structure in state-
space form. 

In many applications the required endproduct of system identification is a
state-space model expressed in terms of the stability and control derivatives or
even the physical system parameters. For example, modern MIMO flight-
control–system design methods, such as LQR, , dynamic inversion, or eigen-
structure assignment,

 

11

 

 are based on state-space theory and require an accurate
state-space model. State-space identification results are also very useful for simu-
lation model validation and troubleshooting. Correction factors are
often incorporated to improve the fidelity of physics-based simulation models.
System-identification methods provide a systematic means for determining and
implementing these correction factors, as illustrated in Sec. 13.9.3. Many recent
flight-vehicle programs rely entirely on identified state-space models, rather than
physics-based models, for flight-control design and training simulators. This was
the case for the Burro (autonomous KMAX),

 

173

 

 Fire Scout P2 demonstrator
(autonomous variant of Schweizer 333),

 

19

 

 SH-2G,

 

139

 

 and the Autonomous Rotor-
craft Project RMAX.

 

174

 

 The identified state-space models are also useful for
comparison with stability derivatives derived from wind-tunnel test data, as dem-
onstrated for a fixed-wing aircraft application by Lewis and Catterall

 

175

 

 and a
helicopter application by Kaletka and Langer.

 

176

 

 Taking a completely general
view, the state-space methods described herein can be used to identify linear-
time-invariant (LTI) models for any dynamic system, once the equations of
motion are formulated and unknown constant coefficients are specified.

The space-space model structure is formulated from the first-order differential
equations of motion. The unknown parameters can be the stability and control
derivatives of the classical flight-mechanics equations, or physical constants

H∞
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(such as equivalent spring, mass, and damper constants) in a generalized system
representation. Initial guesses for the model parameters can be obtained from
previous transfer-function identification results, from a priori estimates based on
first principles, or from rapid equation-error regression methods.

 

6,10

 

 Constraints
on known relationships (e.g., kinematics) and a priori parameter values (e.g., lift-
curve slope or gravity constant) are included directly in the state-space formula-
tion. The SISO transfer-function models of Chapter 11 are also easily identified
using the state-space methods by simply adopting an equivalent canonical model
structure (Sec. 12.5.1). A sensitivity analysis provides reliable information on
parameter value accuracy and correlation that is critical for model structure
refinement.

In addition to providing a more general formulation for model 

 

identification

 

 in
the frequency domain, the state-space description also allows the direct 

 

verifica-
tion

 

 of the model in the time domain. The dynamic response of a state-space
model is obtained by direct time integration of the differential equations of motion
using the measured control inputs. Flight data for inputs dissimilar to the identifi-
cation maneuvers are used to verify the utility and robustness of the model. An
accurate prediction of the flight responses is an important gauge of the model’s
usefulness for many applications.

 

12.2 MIMO State-Space Model Identification Using 
the Frequency-Response Method

 

In this section, we adopt a general analytical model of a dynamic system in
terms of the differential equations of motion. These equations are then converted
into a state-space model structure with some known and some unknown coeffi-
cients. An identification algorithm for determining the unknown parameters in
the model structure is then presented.

The perturbation equations of motion of a MIMO linear-time-invariant (LTI)
system can be written in the form

(12.1)

This system of equations is composed of  states , and  control
inputs . This general formulation can accommodate model struc-
tures ranging from SISO canonical forms—equivalent to the transfer-function
models of Chapter 11—to complex representations of complete mechanical
systems. The mass terms  are included because some physical parameters show
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up on the left side of the equations of motion. An example is the rotor-flap time
constant  on the left-hand side of Eq. (11.34). Other situations where these mass
terms arise are for inclusion of forces and moments that depend on state rates and
the inclusion of algebraic states that often arise for physical model structures
(Sec. 15.2). In the case of the classical flight-mechanics equations, the mass
matrix is usually unity (but can also include rate terms like ). The  coeffi-
cients are the 

 

stability derivatives

 

, and the  coefficients are the 

 

control deriva-
tives

 

. The , , and  coefficients are the parameters to be determined by the
identification process.

 

12.2.1 State-Space Model Structure

 

The equations of motion (12.1) are written concisely in matrix form

(12.2)

The matrices  contain model parameters to be identi-
fied, but can also contain a priori model parameters and constants (e.g., gravity

). The time delays can be included to account for unmodeled dynamics. A 

 

mea-
surement

 

 (also called 

 

output

 

) vector  is introduced because the states  might
not be directly measurable or only a subset might be measurable. The  avail-
able measurement signals  depend on the states and controls, but
are conveniently expressed in matrix form as functions only of the state and state
rate

(12.3)

The matrices  and  are composed of known constants (e.g., units conver-
sions, gravity, kinematics). The state-rate term  allows a simple kinematic
relationship for the accelerometer measurements [Eqs. (6.32–6.34)]; 

 

it does not
contain the unknown stability and control derivatives

 

. Once the identification
parameters are determined, the model equations (12.2) and (12.3) are easily
expressed in conventional state-space form:

(12.4)

(12.5)

where

(12.6)

(12.7)

(12.8)

(12.9)

τf 

Nv̇ fij

gij
mij fij gij
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no
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y Cx Du t ττττ–( )+=

A M 1– F=

B M 1– G=

C H0 H1M+ 1– F=

D H1M 1– G=

Chapter 12.fm  Page 324  Friday, June 16, 2006  3:25 PM



STATE-SPACE MODEL IDENTIFICATION—BASIC CONCEPTS 325

We choose not to start with this standard state-space form because if mass matrix
terms exist [e.g., Eq. (11.34)], this would result in elements of the (  and )
matrices that are a complex combination of the desired physical parameters. 

The identification model structure and unknown parameters are defined
entirely in terms of the ordinary differential equations, which are expressed in
state-space form by Eqs. (12.2) and (12.3). The identification is conducted by com-
paring the resulting MIMO frequency responses of the state-space model with those
of the flight data. In Chapter 11, transfer-function identification was achieved by
minimizing a cost function [Eq. (11.4)] of the weighted sum of the squared errors
between the single-input/single-output (SISO) transfer-function model and the
frequency-response data. The identification of multiple-input/multiple-output
(MIMO) state-space models is achieved by a direct extension of the SISO cost
function to matrix form. The identification cost function for the complete MIMO
system is simply the sum of the individual cost functions [Eq. (11.4)].

The frequency-response matrix of the identification model  relates the
Laplace transform of the output vector  to the Laplace transform of the input
vector :

(12.10)

or, in expanded form

(12.11)

The frequency-response matrix of the model to be identified  is expressed as
a function of the state-space identification model matrices , , , , and 
by taking the Laplace transform of Eqs. (12.2) and (12.3) and performing some
matrix algebra. Ignoring the time delay,

(12.12)

In a generalization of the SISO equivalent time delay  concept of Sec. 11.3,
time delays  are included to account for unmodeled higher-order states. An indi-
vidual equivalent time delay can be included in the model structure for each indi-
vidual frequency-response pair resulting in a matrix

(12.13)
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However, in most cases a common time delay is included for all output responses
to a particular control. This corresponds to one time delay for each column (or 
time delays in total) reducing to a time-delay vector [Eq. (12.2)]. Equations
(12.12) and (12.13) can be combined to give

(12.14)

where the operator ‘o’ denotes the element-by-element multiplication of the
Schur product  (Ref. 145).

12.2.2 Including the Transfer-Function Model Form in the 
Complete Structure

As discussed so far in this chapter, MIMO bare-airframe dynamics are best
represented in a state-space model structure. Yet many subsystem components,
such as sensors, actuators, and filters, are more conveniently represented by
retaining the SISO transfer-function model structures of Eq. (11.1). An overall
identification model structure that combines these two model forms (state space
and transfer function) can represent a wide range of dynamic systems. In
CIFER®, an individual transfer-function modeling element can be appended to
each input-output pair of the state-space structure.

The overall model response is obtained by combining the state-space and
transfer-function (TF) responses:

(12.15)

Constraints can be introduced to ensure individual coefficients that comprise the
transfer-function model element  to have common values. This allows the
identification of LOES transfer-function models with common denominators, as in
the example of the lateral-directional model determination (Sec. 11.6.2). Individ-
ual transfer-function model coefficients can be free for identification or fixed at a
priori values. Accuracy analyses are conducted on the combined models, thereby
providing important data on parameter reliability and model structure selection
(Sec. 12.3). Time-domain verification of this model structure is also useful to
check the predictive accuracy (Chapter 14). The transfer-function model struc-
ture is referred to in CIFER® software as sensor dynamics because this is the
most common use of this capability.

If we choose the state-space model structure to be an input-to-output process
of unity, the overall model structure of Eq. (12.15) reduces to just that of a
MIMO transfer-function model structure . This is an extension of the
SISO transfer-function identification of Chapter 11. To accomplish this, a state-
space equation is introduced for each transfer-function pair,

(12.16)

The output equation is then defined as

(12.17)
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which results in

(12.18)

for each response pair. Hence the overall model reduces to

(12.19)

which is the transfer-function model structure. This capability was used to iden-
tify the two-input LOES transfer model with a common denominator [Eqs.
(11.30) and (11.31)].

12.2.3 Identification Cost Function and Solution Algorithm
The solution of the MIMO identification problem involves determining the

model matrices , , , and  that produce a frequency-response matrix 
that most closely matches the frequency responses obtained from the flight data
(  from Chapter 10). The associated cost function to be minimized is a direct
extension of the SISO formulation of Eq. (11.4) and is now simply the summed
cost for the  transfer functions:

(12.20)

which is analogous to the cost function for the maximum likelihood method.
In most cases, the matrix of flight-test responses will not have good data for

several of the theoretically possible ( ) input-to-output combinations, as
indicated by poor coherence for the entire frequency range of interest. Such
responses are dropped entirely from the cost function. So only a subset  of the
frequency-response pairs of Eq. (12.11) will be included in the cost function of
Eq. (12.20). The frequency-response pairs retained in the identification are
denoted by , .

The accuracy of the identified model is best characterized by the average over-
all cost function:

(12.21)

We note that all transfer functions included in the cost function of Eq. (12.20)
use a common number of frequency points . However, the choice of fre-
quency-range points ( ) is made separately for each response pair

, corresponding to the region of acceptable overall coherence of that response,
and in accordance with the frequency range of applicability of the overall model
structure —just as in the transfer-function identification method. Also, as before,
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the frequency points  are nominally selected to span the fre-
quency range in a linear distribution across a logarithmic frequency scale.
Although the overall frequency range is selected to ensure good coherence, it is
also useful to define a coherence cutoff parameter . The distribution of
points is then automatically adjusted to avoid data that exhibit local drops in
coherence below this threshold. Experience indicates that a good choice is the
following:

Guideline:

(12.22)

The weighting functions , , and  all retain the same definitions as in
the transfer-function identification method [Eqs. (11.5), (11.6), and (11.7),
respectively] and are evaluated at each frequency point ( ) for each
frequency-response pair .

The  parameters to be identified in the model matrices , , , and  are

collected into an identification vector . Because frequency-
response errors are a nonlinear function of the identification parameters, the solu-
tion for the minimum cost function  must be completed using an iterative
process. As mentioned earlier, initial guesses for the model parameters can be
obtained from the results of transfer-function identification (i.e., as obtained in
Chapter 11), from a priori estimates based on first principles, or from rapid
equation-error regression methods.6,10 

An optimization algorithm varies the identification parameters  until a mini-
mum value of the average cost  is obtained. Depending on the model struc-
ture, the cost function can be highly nonlinear in the state-space identification
parameters and can also involve correlated effects of multiple parameter varia-
tions. Therefore a gradient-based minimization method, as was used for transfer-
function identification, is not recommended. A pattern search method, such as the
secant method (Ref. 177; used in Tischler et al.178), is much better suited for this
application and is the method used in CIFER®. The secant method starts from a
set of trial guesses, which is obtained by perturbating the starting values of the
identification parameters . For each trial guess in this set, there is an associated
vector of magnitude and phase errors relative to the flight data and an overall
average cost function . The algorithm then selects the next estimate of the
parameter set that reduces the cost function, based on a weighted average of the
trial guesses. This process continues until a minimum cost function value is
achieved. The solution is then restarted at this point to ensure that the converged
solution is not just a local minimum, and eventually a final converged identifica-
tion solution is reached. 

The method can be thought of as a “crawling net,” and it is very robust to sharp
changes and discontinuities in the optimization space . The secant method
has been found to be especially adept at coping both with poor initial guesses and
local minima. The new estimate cannot “jump” far away from the best choice of
among the previous guesses, and so the minimum is generally reached in a smooth
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and reliable (if sometimes slow) manner to arrive at the converged identification
parameter set denoted by . Although the pattern method solution might involve
many more iterations than a corresponding gradient method, each evaluation is
computationally inexpensive because no matrix inversions are required. Extensive
experience covering a wide range of aircraft, rotorcraft, and subsystem applica-
tions shows the solution process is highly reliable and does not suffer from the
numerical problems that arise from the need to determine the inverse of the Jaco-
bian matrix in gradient methods. The solution method has been found to work
very well even for high-order model structures involving large numbers of identi-
fication parameters and frequency-response pairs. The restart method effectively
avoids getting “stuck” in local minima. Also, the converged identification results
are robust to large variations in the initial parameter guesses (Problems 13.3
and 13.7).

The interpretation of the converged MIMO cost function extends directly from
the transfer-function identification method [Eq. (11.4)]. An overall average cost
function that achieves 

Guideline: 

(12.23)

is generally considered as reflecting an acceptable level of accuracy for flight-
dynamics modeling and is typical of hovering helicopters. Some of the individual
cost functions, especially for the off-axis responses, can reach the guideline of

Guideline: 

(12.24)

without resulting in a noticeable loss of overall predictive accuracy. The measure-
ment data associated with fixed-wing and forward-flight helicopter applications
are typically of higher quality than for hovering helicopters. Also, the required
model structure is less complex because of the reduced coupling that is generally
present for air vehicles in forward flight. These factors result in average cost
functions that are usually much lower than the goals suggested herein. This is
seen in the XV-15 forward-flight examples of Sec. 13.8. An average cost function

 can be expected to produce time-response predictions that are nearly
indistinguishable from the flight data.

Finally, a note of caution is in order about model applicability, as was sounded
in the case of transfer-function model identification (Sec. 11.3.3). The identified
state-space model might exhibit a low cost function, reflecting excellent fre-
quency-response agreement within the frequency range for which accurate (i.e.,
acceptable coherence) test data are available. But the model might not predict
accurately the response for frequencies below the available test data [e.g., steady-
state (trim) response at  rad/s] or at frequencies well above the available
test data (e.g., structural resonances outside the test data range). These limitations
can be assessed using the time-domain verification methods of Chapter 14.
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12.3 Accuracy Analysis

The identification process returns the state-space model of Eqs. (12.2) and
(12.3) that best matches the frequency-response flight data. A measure of the
accuracy or relative degree of confidence of the identification parameters  is
needed for a number of reasons, including the following:

1) The model structure might need to be refined. If the confidence of a parame-
ter value is found to be very poor because of a lack of information content or cor-
relation with other parameters, then it is better to eliminate that parameter from
the model structure or replace it with a value that is reasonable from physical
concepts. This process of model structure determination increases the accuracy
and reliability of the final identified model. 

2) A measure of parameter accuracy is needed to design/analyze a control sys-
tem to ensure robustness. Many control design procedures use estimates of
expected uncertainties in the design process. Once a control system design is
completed, the estimated uncertainties are used to evaluate expected degradation
with respect to the nominal performance.20 

3) The evaluation of apparent differences between flight-test parameters and
simulation parameters requires knowledge of the level of confidence with which
both sets of parameters are known.

The two techniques for assessing identification parameter accuracy are scatter
analysis and theoretical accuracy analysis. When many repeated test maneuvers
are available, the statistical scatter in the converged estimates provides an impor-
tant measure of parameter accuracy. However, the reasons for large parameter
scatter are important for model structure determination, and these are not easily
exposed. Also, this approach is not suitable for most flight-test applications,
where the number of repeat maneuvers is generally too small to achieve a statisti-
cally significant result. 

In the frequency-response method, two or three repeated runs are concatenated
(Sec. 7.9) to achieve the most reliable frequency-response database and a single
converged parameter set . The theoretical accuracy analysis method then pro-
vides an estimate of the expected parameter variability, based on a sensitivity
analysis of the converged identification result. In theory, this is the same result as
the standard deviation of parameter estimates that would be obtained from
repeating the identification for multiple data sets. The theoretical accuracy analy-
sis also provides a wealth of additional information on the cause of parameter
variability that is valuable in refining the model structure. 

The pioneering report by Maine and Iliff172 provides a complete discussion of
the mathematical basis for the theoretical accuracy analysis. This widely refer-
enced work also demonstrates that time-correlated (or colored ) noise is the pri-
mary cause of the well-known underprediction of the estimated parameter
standard deviation based on the Cramér–Rao bounds. Morelli and Klein179 vali-
dated these concepts using flight-test data of the F-18 aircraft. Milne180 provides
an excellent discussion of the key equations for theoretical accuracy analysis,
physical interpretations of the metrics, and a systematic approach to model struc-
ture determination based on these results. The following sections summarize the
development of the theoretical accuracy concepts and metrics and the use of
these metrics in an integrated and reliable method for state-space model structure

ΘΘΘΘ0

ΘΘΘΘ0
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refinement. The reader is directed to the references for a more complete mathe-
matical development of the theory.

12.3.1 Cramér–Rao Inequality and Determining the 
Cramér–Rao Bounds 

The Cramér–Rao inequality provides the fundamental basis for the theoretical
accuracy analysis. This inequality establishes the Cramér-Rao bounds  as the
minimum expected standard deviation  in the parameter estimate  that would
be obtained from many repeated maneuvers. Thus 

(12.25)

The relative values of the Cramér–Rao bounds among the identification parame-
ters are of key significance for refining the model structure. Large relative
Cramér–Rao bounds for individual parameters indicate poor identifiability and
suggest that these parameters should be eliminated (or fixed) in the model
structure.

The Cramér–Rao bound of the ith identified parameter of the converged solu-
tion  is determined from the associated diagonal element of the inverse of the
Hessian matrix :

(12.26)

where the  matrix  is defined as

(12.27)

for the cost function , as defined in Eq. (12.20).
The Hessian matrix is thus seen to indicate the curvature of the cost function to

variations (and combination of variations) in each of the identification parame-
ters. At one extreme, if the cost function is nearly insensitive to a certain parame-
ter then there is little information content in the data set about that parameter, and
its Cramér–Rao bound [from Eq. (12.26)] would be large. The statistical scatter
for multiple runs would thus also be expected to be large for that parameter. Con-
versely, as the sensitivity of the cost function to a specific parameter increases
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(and hence its insensitivity decreases), the Cramér–Rao bound decreases, along
with the expected scatter for that parameter.

A numerical approximation for the Hessian matrix is determined by evaluating
the gradients of the cost function with respect to perturbations in the converged
parameter values. Consider the matrix formulation for the cost function in
Eq. (12.20):

(12.28)

where  is a vector of the magnitude and phase errors between the identified
model (dependent on the identification parameters ) and the flight data,
namely,

(12.29)

Each frequency-response row in Eq. (12.29) is associated with one frequency-
response pair  and is actually composed of  rows corresponding to the num-
ber of frequency points. The weighting parameters , , and  in the
cost function of Eq. (12.20) are collected into the single diagonal weighting
matrix  that is dependent on frequency  but not on the parameter set .

The cost function associated with the converged identification parameter set
 is expressed as

(12.30)

This cost function can be expanded with respect to perturbations  in the
converged identification parameters:

(12.31)

where  is a matrix of partial derivatives of the frequency-response
matching errors (magnitude and phase) at each frequency point with respect to per-
turbations in each of the converged identification parameter values. The notation
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( ) indicates that the partial derivatives are evaluated about the converged param-
eter set . Expanding the formulation of Eq. (12.31) and neglecting the higher-
order terms yields

(12.32)

which is further expanded to yield

(12.33)

The partial derivative of each term is evaluated with respect to the perturbations
in the identified parameters  using the rules for gradients of matrix prod-
ucts.181 When we note that , the first derivative result is

(12.34)

Taking the partial derivative again gives the following approximation for the Hes-
sian matrix HHHH :

(12.35)

which is also consistent with the result by Raisinghani and Goel.57 
As already mentioned, the Cramér–Rao inequality of Eq. (12.25) dictates that

the Cramér–Rao bound is always less than or equal to the standard deviation that
would be obtained from a scatter analysis. In ML identification methods, scale
factors of 5 to 10 are commonly needed in Eq. (12.26) to arrive at a reasonable
estimate of expected scatter (e.g., Section 5.5.3.1 of Ref. 10; Ref. 172; Ref. 6): 

(12.36)

Maine and Iliff172 show that these factors account for the effects of non-Gaussian
(i.e., colored) noise and modeling errors in the identification process. Even when
the noise is properly modeled, or eliminated as in frequency-response identifica-
tion, a scale factor of about 2 typically remains necessary:172

(12.37)

The factor of 2 in Eq. (12.37) is included in the Cramér–Rao results provided by
CIFER®:

(12.38)

0
ΘΘΘΘ0

J ∂ΘΘΘΘ( ) 20
nω
------ 

  εεεε0
T ∂ΘΘΘΘTDT+( )W εεεε0 D∂ΘΘΘΘ+( )[ ]=

J ∂ΘΘΘΘ( ) 20
nω
------ 

  εεεε0
TWεεεε0 εεεε0

TWD∂ΘΘΘΘ ∂ΘΘΘΘTDTWεεεε0 ∂ΘΘΘΘTDTWD∂ΘΘΘΘ+ + +[ ]=

∂ΘΘΘΘ
WT W=

∂J
∂ΘΘΘΘ
------- 20

nω
------ 

  0 2DTWεεεε0 2DTWD∂ΘΘΘΘ+ +[ ]=

HHHH
ΘΘΘΘ2

2

∂
∂ J 20

nω
------ 

  2DTWD[ ]≅=

σi (5  to  10)  CRi≈

σi 2CRi≈ 2 HHHH 1–( )ii=

CRi( )CIFER 2 HHHH 1–( )ii σi≈≡

Chapter 12.fm  Page 333  Friday, June 16, 2006  3:25 PM



334 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

In the remainder of this book, the symbol  refers to , with the fac-
tor of 2 in Eq. (12.38) included. 

The required matrix of partial gradients D in Eq. (12.35) is obtained numeri-
cally by applying small perturbations  to each of the  converged parameters
in  and determining the change in the fitting error  [in Eq. (12.29)] as a
function of frequency. Progressively smaller perturbations in the parameters are
used until successive calculations return the same partial gradient result to within
an acceptable tolerance, thus indicating that the accuracy results are valid.

The Cramér–Rao bounds are best expressed as a percentage of the converged
identification values:

(12.39)

Extensive experience with identification of state-space models from simulation
and flight-test data using the frequency-response method suggests a reasonable
guideline is to achieve Cramér–Rao bounds satisfying the following:

Guideline: 

(12.40)

which, together with a converged average cost function of , reflects a
highly reliable state-space model identification with good predictive accuracy.
Several of the largest Cramér–Rao bounds may be in the range of 20%–40%
without loss of reliability or cause for concern.

12.3.2 Validation of Cramér–Rao Bound Calculation
Table 12.1 shows the identification parameters and associated Cramér–Rao

bounds for the XV-15 identification in hover obtained from CIFER®

(Sec. 13.9.3). Also shown are the average parameters and sample standard devia-
tion obtained by the DLR using the time-domain (ML) identification method for
repeated maneuvers.13 The differences seen in some of the identified parameters
(note especially the angular damping derivatives  and ) arise from the inher-
ent weighting (magnitude vs phase weighting and frequency weighting) for the
frequency-domain and time-domain methods, as is explained in more detail in
the cited reference and by Kaletka et al.14 for the comparison of results for the
Bo-105 helicopter. Despite the differences in several of the individual derivatives,
there is excellent overall agreement of the model for the time-domain validation
maneuvers.13 There is also reasonable qualitative agreement between the
Cramér–Rao bounds obtained from CIFER® [Eqs. (12.38) and (12.39)] and the
ML sample standard deviation results.

Another case study is for the Bo-105 helicopter (80 kn), as shown in
Table 12.2. The identification results for the key on-axis angular parameters of
the Bo-105 helicopter obtained from CIFER® are compared with the time-
domain ML method (results obtained by the DLR; see Section 6.2.4 of Ref. 10).
Again, the identification parameters show reasonable overall agreement given the
considerable differences between the methods. The Cramér–Rao bounds (%) are

CRi CRi( )CIFER

∆θi np
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comparable between the two methods once the typical scale factor of 5–10 is
included in the ML results. 

The two examples presented herein provide empirical validation of the theoret-
ical accuracy metrics values and predicted standard deviations obtained from
Eq. (12.38). Similarly, Klein and Morelli6 demonstrate good agreement between
accuracy metrics obtained in the frequency domain and those obtained in the time
domain, once the latter were corrected for colored noise effects. 

12.3.3 Interpretation of the Cramér–Rao Bounds and 
Related Metrics

The level of confidence in the accuracy of an identified parameter is ascer-
tained directly from the Cramér–Rao percentage. A Cramér–Rao bound that sig-
nificantly exceeds the guideline of Eq. (12.40) reflects one or both of the
following problems: insensitivity and correlation.

 Table 12.1 Comparison of identification and parameter scatter 
results (XV-15, hover) 

Parameter
Value:

CIFER®
CR%:

CIFER®
Value: 

ML
Sample 

scatter, %

–0.0976 6.65 –0.0749 19.1
–1.49 12.78 0 ——
–0.00437 5.38 –0.0179 13.3
–0.237 15.41 –0.559 18.1

0 —— –0.349 33.0
0.00072 7.67 0.00141 132
0.0386 29.88 0 ——

–0.142 13.17 –0.0715 3.42
–0.0452 5.83 –0.0116 3.37
–0.0578 2.41 –0.0617 2.81

0.00591 5.13 0.00615 7.53
0.0119 4.58 0.0127 3.30

 Table 12.2 Comparison of key identification and parameter 
scatter results (Bo-105, 80 kn) 

Parameter
Value:

CIFER®
CR%:

CIFER®
Value: 

ML
Sample 

scatter, %

–8.78 7.3 –8.50 1.3
–4.49 5.2 –3.50 1.3
–1.07 5.7 –0.858 0.79

0.179 7.8 0.185 1.2
0.098 4.4 0.093 1.1
0.057 4.0 0.049 0.61

Yv

Yp

Lv

Lp

Lr

Nv

Np

Nr

Yδa
Lδa
Nδa
Nδr

Lp

Mq

Nr

Lδlat
Mδlon
Nδped
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High insensitivity occurs when changes in a single parameter  have little or
no effect on the converged cost function , indicating that the parameter is
not important in the selected model structure. Parameter insensitivity is deter-
mined from the diagonal elements of the Hessian matrix172: 

(12.41)

The parameter insensitivities are also best presented as normalized percentages
of the converged parameter values:

(12.42)

Maine and Iliff172 show that the insensitivity value is the lower limit of the
Cramér–Rao bound; thus,

(12.43)

Taking into account the Cramér-Rao scaling introduced in Eq. (12.38), the rela-
tionship becomes

(12.44)

Much experience shows that a reasonable goal for insensitivities as obtained from
the frequency-response method is as follows:

Guideline: 

(12.45)

which from reference to Eq. (12.44) is also consistent with the goal for the
Cramér–Rao bound [Eq. (12.40)]. Several of the largest insensitivities are typi-
cally in the range of 10–20% without loss of reliability or cause for concern.

A common situation that produces a value of insensitivity considerably in
excess of the guideline [Eq. (12.45)] is when a parameter is included in a selected
model structure but it turns out to be unimportant to the vehicle dynamics. For
example, coupling response derivatives are often initially included in a general-
ized model structure of a flight-vehicle response. These couplings will be of neg-
ligible importance in a flight vehicle with a largely decoupled response, and the
extraneous coupling derivatives will display large insensitivities and result in
large associated Cramér–Rao bounds.

Another situation that produces high insensitivities is when there is insuffi-
cient information content in the frequency-response database to determine an
identification parameter. For example, suppose that we have selected an identifi-
cation model structure that includes a high-frequency structural mode with asso-
ciated identification parameters  to account for expected flexible system
dynamics. If the test excitation and resulting frequency-response database is only

θi
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adequate at lower (rigid-body response) frequencies, the insensitivities of these
structural mode parameters will be very large. This indicates that the parameters
are not important in defining the responses in the frequency range over which the
data are available. The accurate determination of these parameters would require
the test excitation to be repeated out to higher frequencies.

High correlation occurs when two or more parameters can be simultaneously
varied in a linear relationship and have an offsetting effect on the cost function

. In such a situation, the parameters cannot be independently determined. To
illustrate this point with a very simple example, consider an algebraic SISO system

(12.46)

to be identified from input measurements  and output measurements . There is
just one physical parameter  that characterizes the input-to-output process. Sup-
pose that the identification model structure is (incorrectly) selected to include two
identification parameters  and  such that

(12.47)

Clearly the effects of modeling parameters  and  are fully correlated because

(12.48)

and the model structure parameters (  and ) cannot be independently deter-
mined. Any value of  with a corresponding value of  given in Eq. (12.48) will
produce a model that fits the data equally as well. The only way out of this prob-
lem is to assign a fixed value to one of the parameters (e.g., set ) and then
identify the remaining parameter ( ). 

The preceding example presents a very simple correlation problem. If the
actual physical system description of Eq. (12.46) were known a priori, then only
a single identification parameter  would be introduced in the model structure to
begin with, thus avoiding the correlation problem. However, identification is
based solely on the input and output data, and we seek to determine the underly-
ing model. The presence of pair-wise correlation can be detected numerically by
examining the correlation coefficients.172 For two identification parameters 
and  the correlation coefficient is

(12.49)

where

(12.50)

In the preceding simple case, the parameters  would display a correla-
tion coefficient of , indicating that the model structure needs to be
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reduced. However, this method of analysis is not reliable when there are correla-
tions among multiple parameters.172 

In more complex identification problems involving MIMO state-space model
structures, the physical system is represented by a set of differential equations
with many unknown coefficients as the identification parameters. The identifica-
tion parameters can have duplicating (i.e., correlated) effects on the frequency-
response fits, which can compromise greatly the accuracy of the results, as
reflected by high Cramér–Rao bounds. Reliable numerical tools are needed to
expose potential parameter correlations and provide guidance for model structure
determinations that are suitable for the often complex identification of flight vehi-
cles. High-order model structures and a large number of identification parameters
are characteristics of flight-vehicle identification, especially in the case of rotor-
craft. The confidence ellipsoid172 provides a reliable concept for analyzing corre-
lation among multiple parameters. The point on the scaled confidence ellipsoid180

associated with a specific Cramér–Rao bound  is determined by

(12.51)

In this equation, (:,i) denotes the ith column of  and 
 are the insensitivities of Eq. (12.41).

The elements of the confidence ellipsoid vector  are normalized to unity.
When the Cramér–Rao bound of an identification parameter exceeds considerably
the guideline of Eq. (12.40) and the associated insensitivity is within the guide-
line of Eq. (12.45), parameter correlation is indicated. The large relative compo-
nents of  reflect the contributions of the correlated parameters that are
responsible for a large Cramér–Rao bound . The confidence ellipsoid can be
thought of as a multidimensional generalization of the pair-wise correlation coef-
ficient result .

12.3.4 Systematic Model Structure Determination Using the 
Theoretical Accuracy Metrics

Milne180 presents a systematic approach for model structure determination
based on achieving a parameter set with all Cramér–Rao bounds within a com-
mon limit and therefore a roughly constant degree of confidence. An initial model
is identified, with all of the possible derivatives included in the model structure.
The converged solution is analyzed to determine the Cramér–Rao bounds and
insensitivities, which are then compared against the maximum values for the
Cramér–Rao bounds and insensitivities given in the guidelines of Eqs. (12.40)
and (12.43), respectively.

The identification parameter with largest insensitivity [greater than the guide-
line of Eq. (12.43)] is eliminated first from the model structure (i.e., it is set to
zero and fixed). For  there will be little discernible initial effect on the
cost function, and the reconverged solution will also not change significantly. The
reduced model structure and the insensitivities are then calculated again. This
procedure is repeated until all of the insensitivites are generally in accordance
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with the guideline. The converged cost function should be monitored with each
step in the model reduction. The process is terminated if dropping a parameter
and reconverging the model results in a jump increase in the average cost func-
tion of

Guideline: 

(12.52)

or a jump increase in the cost function of an individual frequency-response pair
 of
Guideline: 

(12.53)

This will usually occur when the largest insensitivity is close to the guideline of
Eq. (12.43). This last parameter is then reinserted, and the parameters with high
Cramér–Rao bounds are investigated next. 

All of the remaining parameters have acceptable sensitivities, and so individu-
ally they have an important effect on the cost function. However, parameters with
high Cramér–Rao bounds [in excess of the guideline Eq. (12.40)] have correlated
effects with other parameter(s), which compromises the reliability of the identi-
fied values. When two or more parameters are found to be correlated, as indicated
by large elements in the confidence ellipsoids [Eq. (12.51)], a decision must be
made as to which parameters should be dropped from the identification model
structure. The parameter that clearly has the largest Cramér–Rao is dropped. 

In many situations, however, several parameters are grouped with roughly the
same high Cramér–Rao bound values. The correlation analysis might show that a
single parameter shows up prominently in the confidence ellipsoids of several
parameters with high Cramér–Rao bounds. By dropping this single parameter,
the Cramér–Rao bounds of the remaining correlated parameters will be reduced.
When several parameters have close Cramér–Rao values, it is sometimes useful
to try several options in the sequence of model reduction steps, to see which
“path” has the smallest effect on the converged cost function. 

Experience shows the Cramér–Rao bounds and confidence ellipsoids to be
highly reliable metrics, and usually the alternate paths end at the same final
reduced model structure. Finally, the judgment of which parameter to drop next
can also be influenced by physical insights associated with the vehicle configura-
tion. For example, an on-axis derivative might be correlated with one or more off-
axis (coupling) derivatives. Generally the off-axis coupling derivatives are
dropped first if their Cramér–Rao bounds exceed the guidelines, even if the on-
axis derivative has the largest Cramér–Rao bound value. 

When a parameter with a high Cramér–Rao bound but acceptable insensitivity
is dropped, the cost function will initially jump. But after only a few iterations the
reduced model solution will rapidly reconverge to nearly the same original cost
function, as the correlated parameters readjust. Care must be taken to ensure that
the reduced model is fully reconverged, and then the Cramér–Rao bounds are cal-
culated again. The procedure is repeated until all of the Cramér–Rao bounds are
generally in accordance with the guideline. As before, the converged cost function

∆Jave  1  to  2≈

Tl

∆Jl  10  to  20≈
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should be monitored with each step in the model reduction. The model reduction
proceeds toward a maximum Cramér–Rao bounds within the target value of
Eq. (12.40). The model reduction process is finally terminated if dropping a
parameter and reconverging the model results in a jump according to the guide-
lines of Eqs. (12.52) and (12.53). At this point, this last parameter is retained in
the model structure, and the previous converged model constitutes the final iden-
tification result. This will usually occur when the largest Cramér–Rao bound is
close to the guideline of Eq. (12.40).

As discussed in Sec. 11.3, a tradeoff exists for model complexity versus model
variability.2 Retaining extraneous parameters can incrementally reduce the fitting
error, but result in a higher variability, as will be seen in the increased Cramér–
Rao bounds. Further, models that are overparameterized or overmodeled can
result in a model with poorer predictive capability.7 Therefore it is desirable to
reduce the model structure using the method presented here. This is also in accor-
dance with the principal of parsimony (Sec. 1.4).

12.4 Key Features of the Frequency-Response Method for 
State-Space Model Identification

There are several key features of the frequency-response method for state-
space model identification, as compared to other methods, that are advantageous
for flight-vehicle applications. Foremost among the advantages of this method is
that the identification cost function  of Eq. (12.20) is based on pair-wise fre-
quency-response fits. This makes it possible to select individually the fitting
range for each pair  to coincide with the range for which those data are reliable
(i.e., high coherence). In contrast, output and equation-error identification
approaches (both time and frequency domain) fit all responses over the same fre-
quency range, regardless of data quality. The measured translational velocity
responses are typically most accurate (highest coherence) at lower frequencies
(e.g., up to 1 rad/s), where the aircraft phugoid dynamics are dominant and the
resulting signal-to-noise ratio is typically highest. The measured angular responses
are typically most accurate at mid-frequencies (e.g., 1–10 rad/s), where the short-
period responses are most significant. Finally, for rotorcraft the flap and lag mea-
sured responses (if available) are typically most accurate from about 6 rad/s to
near the rotational frequency of the rotor (1/rev, typically about 27 rad/s), which
is the key resonant frequency. When all of the measured responses are included
over a common frequency range, reduced accuracy data are included in the cost
function, which can compromise the accuracy of the identified state-space model
parameters.

Using the pair-wise frequency-response fits in the cost function also provides
key information on the proper identification model structure. When a particular
pair-wise frequency response is dropped entirely for lack of coherence over the
entire frequency range of interest, this indicates a lack of information transfer in
this input-to-output pair. As explained in Sec. 12.5.3, associated control and
response derivatives are then dropped from the model structure. This permits a
considerable simplification in the model structure using a very transparent pro-
cess. Needed final simplifications in the model structure are easily assessed based
on the theoretical accuracy metrics (Sec. 12.3.4). 

J

Tl
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Another key strength of the frequency-response method is that the frequency
responses used in the identification process are unbiased in the presence of
uncorrelated process and measurement noise (Sec. 7.7). Therefore the identified
state-space parameters will also be unbiased for the presence of uncorrelated pro-
cess and measurement noise. This is a distinct advantage over output and equation-
error methods (time domain or frequency domain). In the case of the former
method, the process noise is ignored, whereas in the latter case the measurement
noise is ignored. Either case can result in biases in the identified parameters.10

Alternatively, the noise characteristics can be included in the time-domain solu-
tion, leading to the more complex maximum likelihood estimation method.180

Because the output and/or process noise is uncorrelated with the excitation input,
it drops out of the frequency-response calculations in the frequency-response
method. This also eliminates the primary cause for the larger scale factors in the
ML accuracy metric calculations (Sec. 12.3.1).

The MIMO frequency-response matching procedure for state-space model
identification is a direct extension of the lower-order equivalent-system concepts
for transfer-function model identification presented in Chapter 11. This makes it
straightforward to interpret the MIMO identification results, cost function levels,
and mismatch behavior. For example, if the Bode plot comparison corresponding
to a primary on-axis response pair shows that the magnitude break of the identi-
fied model is misplaced, this is an indication that the value for a key time constant
is incorrect. When the magnitude curve is offset by a constant value when com-
pared with the flight data, the source is an incorrect control derivative or inconsis-
tent units. Finally, an error in the high-frequency phase roll off is often caused by
the effects of time delays or unmodeled high-frequency dynamics. In the case of
output-error identification methods, it can be much more difficult to isolate the
modeling errors based on an examination of the output time histories (time
domain) or Fourier coefficients (frequency domain). The intuition, insight, and
extensive literature associated with SISO transfer-function model identification
scales up quite naturally to the more complex MIMO system identification.

As in SISO transfer-function identification, the cost function for the MIMO
state-space model identification is formulated in terms of fitting errors in decibels
(and phase in degrees). Thus the error reflects a percentage magnitude error and
phase shift. By minimizing the average of the individual cost functions, a roughly
uniform level of fitting accuracy is generally achieved, as seen in the various fre-
quency-response plots. The resulting model prediction, when viewed in the time
domain, demonstrates a balance of percentage errors among the various
responses.

The availability of the coherence function  provides another key advantage
to the frequency-response method for state-space model identification.
The frequency-response errors are weighted according to the associated coher-
ence value of the flight-data response  [Eq. (12.20)]. This identification scheme
returns stability and control derivative values that cause the model to best track the
accurate data at the expense of the less reliable data. The coherence weighting is
also an important aspect of the Hessian matrix that is the basis for the accuracy
metric calculations of Eq. (12.35). When the coherence drops for a particular fre-
quency response, or over a limited frequency range, the weighting  for the asso-
ciated data is reduced, and the model parameters that are key to this response also

γ xy
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W
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show an increased insensitivity and Cramér–Rao bound. In other words, as the data
quality drops, the calculated reliability of the relevant parameters for this fre-
quency range is also reduced, as would be expected. The result is that the accuracy
metrics, as calculated using the frequency-response method, closely reflect the
compatibility of the frequency-response database and the selected model structure.
Thus the accuracy metrics, as obtained from the frequency-response method, pro-
vide reliable tools for an integrated method of model structure determination even
when the data are noisy, as is often the case in flight-test applications, especially
for rotorcraft.

In the case of output-error identification methods, the relative fitting errors
are weighted by the inverse of the prediction-error covariance, also known as the
innovations covariance matrix.180 Because the innovations covariance matrix is
itself determined from the errors between the flight-data time histories and the
response of the identified model, the model parameters can be skewed to mini-
mize errors even for unreliable data. Errors in the model structure result in col-
ored noise in the innovations, so that the accuracy metrics might not be reliable
tools for model structure determination.

Clearly, however, the realization of the advantages of the frequency-response
method as discussed herein depends heavily on the availability of a MIMO fre-
quency-response database with the highest possible quality. The methods and
guidelines of Chapters 5–10 are essential to this aim.

12.5 State-Space Model Structure

The proper definition and refinement of the model structure is a critical aspect
in obtaining a satisfactory result from state-space model identification. This
applies whether the identification is carried out in the time domain or the fre-
quency domain. As has been emphasized throughout this book, the model struc-
ture must be both appropriate to the frequency range of interest and appropriate
to the information content of the test data. A model structure that excludes
dynamic modes within the frequency range of the test data will produce signifi-
cant variability and bias errors in the remaining identified parameters, as seen
clearly in the application to rotorcraft (Sec. 11.7.2 and Tischler18). Conversely,
extraneous degrees of freedom and/or identification parameters can result in an
improved fit (i.e., lower cost function), but can actually degrade the predictive
capability of the model and degrade the predictive quality of the basic (funda-
mental) parameters.170 

Model structure selection for transfer-function models of single-input/single-
output systems, as discussed at length in Sec. 11.4, is fairly simple owing to the
transparent relationship between the pole-zero description and the associated fre-
quency response. The state-space equivalents of the SISO transfer functions are
the various SISO canonical model structures (e.g., Sec. 12.5.1), which retain the
same transparency seen in the various applications in Chapter 11. Transfer-func-
tion model structure selection becomes more complex in the case of two-input/
two-output LOES models, where physical consistency requires that the denomi-
nators of the transfer-functions (i.e., natural modes of response) be the same
(Sec. 11.6.2). The parameters to be identified are the transfer-function gains,
zeros, and (common) poles. The analogous LOES state-space model structure is
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more easily formulated from the classical longitudinal or lateral/directional equa-
tions-of-motion (as in Hodgkinson59). Then, the unknown parameters are the
equivalent values of the stability and control derivatives (e.g., , etc.).
The resulting transfer functions will all “automatically” have a common denomi-
nator, from the common characteristic equation and thus be physically consistent.

In the most complex applications of system identification, model structure
selection for the complete MIMO flight vehicle response is based directly on the
higher-order dynamics equations of motion. Although many of the same consid-
erations discussed in Chapter 11 for transfer-function identification still apply,
the model selection and reduction process can be significantly more complex
(and crucial). As discussed by Hamel,10 these physical model structures involve
consideration of many important aspects, such as the degree of interaxis cou-
pling, the number of states and measurements to be included, the identifiability of
the parameters as a function of the available measurements, what parameters are
known and should be fixed (e.g., gearing, gravity, filter dynamics), and the physi-
cal constraints between the parameters (e.g., common actuator, aerodynamic
symmetry, geometry). Many on- and off-axis frequency responses are matched
simultaneously (typically up to 36 for a flight mechanics model of a helicopter),
and there are potentially a large number of unknown and multiply correlated
identification parameters. 

As can be seen, there is a wide range of possible model structures. Choosing
the appropriate model starts, as always, with the intended application, the associ-
ated frequency range of interest, and an assessment of the key physics to be rep-
resented. The converged identification cost function, accuracy analysis metrics,
and time-domain verification cost function (Chapter 14) are all important for
evaluating the many possible tradeoffs in model structure selection. The follow-
ing sections present an introduction to canonical and physical state-space model
structures.

12.5.1 Canonical Model Structure
Canonical models, as the state-space equivalents of transfer-function models,

are minimal realizations that contain exactly enough parameters to fully represent
the input-to-output process. The various canonical forms all contain the same
number of model parameters as the transfer-function model [i.e., Eq. (11.1) for
the SISO system]. If the model structure contained any fewer parameters, the
identified model response could not be made to track the test data. Including
additional parameters in the model would result in an overparameterized struc-
ture, and the identified parameter values would not be reliable.

As in the case of the transfer-function model structure, the parameters of a
canonical model are complex combinations of the physical parameters, such as
the stability and control derivatives. Therefore it can be difficult to assign a phys-
ical meaning to the individual canonical parameters. Many possible canonical
structures will produce the same input-output response, that is, they produce the
same transfer-function matrix . Common examples of canonical forms
include the observable-canonical form, the controllable-canonical form, and the
block-diagonal form, among others.159

Mw Mq Mδe
, ,

T s( )
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The transfer-function description for a SISO system,

(12.54)

is easily represented in the state-space form of Eqs. (12.2) and (12.3) using the
observable-canonical realization: 

(12.55)

where  and

(12.56)

In this case, , , and the matrix of time delays Eq. (12.13)
reduces to a scalar:

(12.57)

The number of states  in the SISO canonical form is seen to be the same as
the order of the transfer function, and the coefficients in the numerator and
denominator of the transfer function are columns in the state-space matrices. The
physical system output  is associated with the state . The other states are
internal canonical state variables and have no transparent physical relationship to
the aircraft motion degrees of freedom.
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ẋ1

ẋ2
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Because the parameters in the canonical model structure are the same as those of
the transfer-function model structure, it might seem pointless to go to the extra
work of setting up the problem in state-space form, when the much simpler trans-
fer-function identification method of Chapter 11 would have produced essentially
the same result. But there are several important advantages to using the methods
herein, even for SISO transfer-function model identification. The theoretical
accuracy metrics will expose the presence of nearly cancelling pole-zero pairs in
the transfer-function model structure and provide the accuracy bounds on the
final model parameters. The state-space representation also allows naturally for
simultaneous matching of two-input/two-output lower-order equivalent system
(LOES) handling-qualities models with common denominators (Sec. 11.6.2).
This technique was demonstrated in Eqs. (11.30) and (11.31). Finally, casting the
transfer function in state-space form allows the direct time-domain simulation of
the model for verification against the flight-data response (Chapter 14).

12.5.2 Physical Model Structures
A physical model structure for flight-vehicle dynamics relates the vehicle

response variables to control inputs as derived from the dynamics equations of
motion and linearized for small motions about the reference trim condition. The
state variables are now the physical motion perturbations of the aircraft, and they
typically include the angular rates, linear velocities, and attitudes, rather than the
canonical states of the earlier canonical model structure [Eq. (12.55)]. As sum-
marized in Tables 1.1 and 1.2, model structures used in state-space system identi-
fication vary considerably in complexity, depending on the assumed level of
interaxis coupling and the required modeling detail.

System identification of conventional fixed-wing aircraft generally assumes
that the longitudinal and lateral/directional rigid-body dynamics are decoupled.
This assumption leads to a three-DOF decoupled stability and control model
structure (Table 1.1) that is equivalent to the fourth-order LOES transfer-function
models, such as in Eq. (11.26). The stability and control derivative models, dis-
cussed in most classical flight-mechanics textbooks (e.g., Ref. 56) and commonly
used in aircraft vehicle identification, are obtained when the forces and moments
are expanded in a Taylor series of the state variables and controls. The equations
of motion are generally written in axes aligned either with the fuselage centerline
(body axes) or aligned with the trim airspeed vector (stability axes). For example,
the longitudinal acceleration equation is written in body axes as

(12.58)

to form the basis for the states equation (12.2). The terms in these equations include
reference velocities and pitch attitude [subscript ], the stability derivatives
(e.g., ), the control derivatives (e.g., ), and the gravity term [ ].
The unknown parameters to be identified are the stability and control derivatives.

The output equation (12.3) defines the measurements in terms of the state and
state rates. For example, the longitudinal acceleration equation is obtained from
Eq. (6.33) for symmetric flight conditions ( ) as

(12.59)

u̇ W0q– g  Θ0cos( )θ– Xuu Xww Xqq Xδe
δe+ + + +=

( )0
Xu Xδe

g Θ0cos( )θ–

V0 0=

axcg
u̇ W0q g  Θ0cos( )θ+ +=
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A single time delay is included for each of the control inputs to account for
mechanical linkage and other higher-order dynamics. In the current example, the
matrix of time delays [Eq. (12.13)] reduces to two column vectors associated
with the elevator and throttle control, respectively.

For helicopters with low flap stiffness, the rotor dynamics can be satisfactorily
modeled as quasi-steady (Sec. 11.7), resulting in a six-DOF identification model
structure10 as indicated in Table 1.2. The accurate modeling of the vertical response
to collective inputs might require the inclusion of an additional state to account
for dynamic inflow, as demonstrated in the seven-DOF model identification of the
AH-64 helicopter by Schroeder et al.182 For helicopters with high flap stiffness, the
rotor-body coupling becomes increasingly significant, as seen in Fig. 11.9, and
the model structure must be extended. An appropriate model in this case includes
the dynamics states for rotor flapping and lead-lag dynamics, vertical inflow, and
engine torque. The resulting (13-DOF) hybrid model structure139 is valid for a wide
range of helicopter configurations and flight conditions (see Table 1.2). Finally, in
the most complex case the model structure can be formulated in terms of the con-
stituent element springs, masses, and dampers, with constraint equations to enforce
commonality and kinematic interrelationships, such as the work completed by
Tischler92 for the identification of rotor dynamics from a wind-tunnel test.

12.5.3 Additional Aspects of Model Structure Definition
As in the case of transfer-function modeling (Chapter 11), there are a number

of additional aspects that define the state-space model structure. 
An important aspect is to decide which response pairs should be included in

the cost function [Eq. (12.20)]. Generally speaking, the accuracy of the identified
parameters will be improved as more frequency responses (with acceptable
coherence) are included in the identification (larger ). This results from the
increased information content, thereby allowing a separation of otherwise corre-
lated parameters and an improvement in the identification parameter accuracy
metrics (i.e., reduced Cramér–Rao bounds). However, including additional fre-
quency responses with poor coherence functions generally degrades the identifi-
cation results. 

The selected frequency range of the identification must be consistent with the
frequency range of acceptable coherence and the frequency of applicability of the
model structure. So, for example, a three-DOF model for fixed-wing aircraft
identification cannot capture the structural mode that might be apparent at higher
frequencies. In rotorcraft applications, a quasi-steady model is invalid for fre-
quencies near and beyond the regressive flapping mode (typically about 14 rad/s).
If the frequency range of identification is not consistent with the model structure,
the identification algorithm can result in a good match of the responses, but the
identified parameters might lack physical meaning.

Another aspect of the model structure is the designation of which parameters
should be fixed at known values, with the remaining parameters free to be deter-
mined in the course of the identification. Some physical parameters, such as gravity,
are known a priori and should be fixed. Other parameters might have been identi-
fied from input-output ground tests, such as gearing and filter parameters. It is

nTF
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always desirable to pare down the number of unknown parameters as much as
possible to simplify the MIMO identification problem statement.

A final aspect concerns the definition of known physical constraints among the
parameters. For example, if the same basic actuator is used for all of the control
axes, then the actuator time constants should be constrained to have the same
value (a single identification parameter). There might also be aerodynamic sym-
metry, such as pitch and roll dynamics that use some of the same aerodynamic
parameters (e.g., the same lift-curve slope or rotor time constant). If a force pro-
ducer is at the end of a moment arm, the moment and force equations can contain
the single force control derivative with the appropriate geometric constraint. The
introduction of constraints in the model structure that correspond to known phys-
ical constraints will reduce the level of correlation among the identification
parameters and improve the parameter reliability.

12.6 State-Space Model Identification in CIFER® Using DERIVID

Multi-input/multi-output state-space model identification, using the frequency-
response method, is accomplished in CIFER® with the DERIVID (from deriva-
tive identification) module. Model structure setup is facilitated with the generic
problem definition of Eqs. (12.2) and (12.3) and a highly flexible user interface.
A wide range of physical systems or subsystems that can be described by linear-
time-invariant (LTI) differential equations with an arbitrary set of constraints
among the parameters can be modeled with DERIVID. The parameters can be
given fixed values, allowed to vary freely in the course of the identification, or be
linearly constrained to free parameters. The model structure can accommodate up
to 40 states and 100 unknown parameters. Some components of the air-vehicle
system, such as actuators, sensors, and filters, can be more easily modeled using a
MIMO transfer-function structure in DERIVID. The simultaneous identification
of transfer-function model structures with a common denominator, as in Eqs.
(11.30) and (11.31) of the previous chapter, was easily formulated using
DERIVID. The SISO transfer-function definition in DERIVID replicates the
capability of NAVFIT (Sec. 11.4) but also includes the accuracy analysis to deter-
mine the reliability of the identification result.

The integration of model identification, theoretical accuracy analysis, and
model structure reduction (Sec. 12.3.4) in a systematic and reliable procedure is a
key aspect of DERIVID. The program uses an iterative, robust secant search
algorithm to determine the identification parameter vector  that minimizes the
errors between the state-space model and the frequency-response database. A
large number ( ) of frequency-response pairs can be included in the cost
function. The Cramér–Rao bounds and insensitivity levels are determined from
the method of numerical gradients (Sec. 12.3.1), and the values are checked
against the suggested guideline of Eqs. (12.40) and (12.45). When the Cramér–
Rao bound guidelines are exceeded, the corresponding confidence ellipsoids are
presented to help expose sources of correlation. The model structure is easily
adjusted, based on the theoretical accuracy results, and the model is reconverged.
This process is repeated until a highly reliable model structure is found. Detailed
listings and plots of the completed results are provided. Additional insight into

ΘΘΘΘ

nTF 80=
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the dynamic characteristics is achieved via reference to the eigenvalues, eigen-
vectors, and time vectors56 that are also presented for output. 

Finally, DERIVID is supported by an extensive set of CIFER® utilities. These
utilities are useful for examining the results, creating plots or tables of the results
in rough or report-quality form, comparing the results of different runs, and orga-
nizing the results in the CIFER® database.

12.7 Pendulum Example

The identification of the stable pendulum dynamics is accomplished using the
state-space model structure in this example. The identification results are then
compared with those obtained using the transfer-function model structure
(Sec. 11.5).

The analytical transfer-function model of Eq. (3.5) is rewritten in the form of
Eq. (12.54):

(12.60)

so that , , , , , and . This trans-
fer-function model is realized in observable-canonical form using Eqs. (12.55–
12.57):

(12.61)

(12.62)

(12.63)
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The state-space identification results are shown in Fig. 12.1, as obtained using
DERIVID for a fitting range of 0.3–12 rad/s, the same range that was used in the
transfer-function identification (Sec. 11.5). The frequency response of the identi-
fied model is indistinguishable from the frequency-response data. This is also
reflected in a very low value of the identification cost function ( ),
matching the transfer-function identification result as expected (Sec. 11.5). 

The parameter values and associated eigenvalues are listed in Tables 12.3 and
12.4. These results match the transfer-function identification result [Eq. (11.15)
and again agree to within 1% of the analytical result Eq. (3.7)].
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 Fig. 12.1 Frequency-response results for stable pendulum identification.
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The theoretical accuracy metrics for the identified parameters are also listed in
Table 12.3. The insensitivities and Cramér–Rao bounds are within the guideline
values, thus indicating that the model structure is appropriate. Note also that the
condition of Eq. (12.44) is met. Based on the Cramér–Rao bounds provided by
CIFER® [Eq. (12.38)], the identified parameters are reliable to an expected stan-
dard deviation of 10%. The good reliability (low expected standard deviation)
reflects the perfect model structure (matches the analytical form) and high coher-
ence of the simulation data.

12.8 Identification of a XV-15 Closed-Loop State-Space Model

This example demonstrates the identification of a canonical state-space model
to characterize the short-term closed-loop response  of the XV-15 in hover.
An initial choice of model structure can be selected by considering the transfer-
function form that is appropriate for the flight data of Fig. 10.7. In this case, we
start out by assuming a first-order over second-order characteristic, which pro-
vides a single excess pole, consistent with the -deg phase shift near 10 rad/s.
The transfer-function form

(12.70)

is realized in an observable canonical model structure using Eqs. (12.55–12.57).
Figure 12.2 shows a good fit between the identified model (CLROLL1) and the

flight-data frequency response over the selected fitting range (0.6–10 rad/s), as
reflected by the very low cost function ( ).

 Table 12.3 Identification results for stable pendulum examplea

Parameter
Parameter 

value
Cramér–Rao, 

%
Insensitivity, 

%

–9.081 4.88 1.94
–2.129 9.89 4.02

1.006 5.34 1.83

a  transfer-function cost is .

 Table 12.4 Eigenvalues for identified stable pendulum model
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The identified parameter values and accuracy metrics are shown in Table 12.5.
The insensitivities are all well below the 10% threshold. However, the Cramér–
Rao bounds for the  and  parameters are well above the 20% threshold,
indicating some parameter correlation. This is confirmed by reference to the con-
fidence ellipsoids shown in Table 12.6, which shows that these parameters are
highly correlated, with less contribution from the remaining parameters. The
problem can be seen as correlation (i.e., tradeoff) between the real zero and com-
plex pole locations in the transfer function of Eq. (12.70), which suggests that a
reduced-order model structure is warranted.

The identification model structure is reduced to the form

  (12.71)

.1 1 10
Frequency (rad/sec)

Flight data
Initial model structure (CLROLL1)
Reduced-order model (CLROLL2)
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 Fig. 12.2 Closed-loop roll-response identification (XV-15, hover).
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and the canonical model identification is repeated (CLROLL2). The frequency
response of the reduced model still tracks the test data, as seen in Fig. 12.2,
though not quite as well as the original model structure. The identification cost
function for this reduced model structure has increased as expected, but is still
acceptable ( ). The identified parameter values, accuracy metrics, and
eigenvalues are shown in Tables 12.7 and 12.8. Now the accuracy metrics are

 Table 12.5 Closed-loop roll identification results for initial model 
structure (XV-15, hover)a,b,c 

Parameter Parameter value Cramér–Rao, % Insensitivity, %

–a2 –13.72 30.51 2.52
–a1 –5.645 14.83 2.73
b2 0.1765 36.45 2.92
b1 0.08792 16.87 2.63
τ 0.0903 20.78 5.72

aCase name: CLROLL1; Case ID: initial model structure [Eq. (12.70)].
bAll results in English units and control deflections in %.
c  transfer-function cost is .

Table 12.6 Confidence ellipsoids for closed-loop response 
identification (XV-15, hover)

Parameter

–0.987 –0.9560 0.7648
0.0169 0.0169 –0.7476
1.000 1.000 –0.8871

–0.2434 –0.2432 1.000
–0.0964 –0.1068 0.7036

 Table 12.7 Closed-loop roll identification results for reduced 
model structure (XV-15, hover)a,b,c 

Parameter
Parameter 

value
Cramér–Rao,

%
Insensitivity,

%

–a2 –44.46 8.66 1.97
–a1 –7.297 12.51 3.35
b2 0.6687 10.38 1.88

aCase name: CLROLL2; Case ID: reduced model structure [Eq. (12.71)].
bAll results in English units and control deflections in %.
c  transfer-function cost is .
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well within the guidelines, indicating that a proper model structure has been
achieved.

12.9 Structural System Identification

The next example presents identification results for the NASA vertical/short
takeoff and landing (V/STOL) system research aircraft (VSRA), shown
in Fig. 12.3. This was essentially a YAV-8B Harrier aircraft equipped with a fly-
by-wire research flight-control system and integrated displays.183 System
identification flight testing using automated frequency sweeps of the ailerons
was conducted at a flight condition of 120 kn. The objective of the identifica-
tion effort was to determine state-space models of the structural responses in
support of control system design and stability-margin verification. The mea-
surement of interest in this case was the roll acceleration , as measured by an
angular accelerometer. The resulting flight-data response , shown in the
solid line of Fig. 12.4, exhibits high coherence for the frequency range of
excitation, 16.5–32 Hz. (The frequency response is plotted in

, and the units of aileron deflection are instrumen-
tation counts in this case.) The frequency response clearly exposes the first and
second bending modes.

A suitable model for the roll-rate response is based on the partial fraction sum-
mation of the one-DOF rigid-body roll model and the first two antisymmetric

 Table 12.8 Eigenvalues of final closed-loop model 
identification (XV-15, hover)

0.547 6.668
0.547 6.668

ζ ωn

λ1

λ2

ṗ
ṗ δa⁄

dB 20 deg/s2/aileron( )log=

 Fig. 12.3 NASA V/STOL system research aircraft (VSRA) (NASA photo).
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structural bending modes184: 

(12.72)

The first term on the right-hand side is the rigid-body roll response [same form
as Eq. (11.22)], followed by the first antisymmetric structural bending mode and
the second antisymmetric structural bending mode.

The identification model structure of Eq. (12.72) is conveniently realized in
block-diagonal form, with observer-canonical subblocks [Eq. (12.55)]: 
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 Fig. 12.4 Aeroelastic response identification (VSRA, 120 kn).
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(12.73)

(12.74)

(12.75)

The equation for the roll acceleration measurement is then

(12.76)

so that

(12.77)

(12.78)

The identified model shown in the dashed line of Fig. 12.4 matches the fre-
quency-response flight data quite well ( ). The model parameters and
accuracy metrics are listed in Table 12.9 (aileron deflection now in deg). The
rigid-body roll-rate damping parameter  was fixed at the known a priori values,
and it does not have any significant effect on the measured response in the fre-
quency range of test excitation (16–32 Hz). All parameter accuracy metrics are
within the guidelines, thereby confirming that the model structure is appropriate
and that the results are reliable.
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From the parameter values of Table 12.9, the eigenvalues corresponding to the
first antisymmetric structural mode are calculated as

(12.79)

The eigenvalues corresponding to the second antisymmetric structural mode are
calculated as

(12.80)

Referring to Eq. (12.72) and the results of Table 12.9, the residues show the fol-
lowing characteristics:

(12.81)

(12.82)

which indicates that roll-rate feedback to the aileron surfaces (roll control) will
destabilize the first structural mode and stabilize the second structural mode.184 

The combined roll-rate transfer function from Eq. (12.72) is

 deg/s2/deg-ail (12.83)

The root-locus plot of Fig. 12.5 confirms that roll-rate feedback destabilizes the
first structural mode and stabilizes the second structural mode.

 Table 12.9 Aeroelastic response identification (VSRA, 120 kn)a

Parameter
Parameter 

value
Cramér–Rao,

%
Insensitivity,

%

6.570 21.0 7.65

  –1.000 b —— ——

–3.546 8.80 3.14

–1.485E+04 1.08 0.53

–11.94 14.07 5.16

8.995 9.03 2.71

–3.579E+04 0.76 0.36

–11.82 14.58 5.63

a  transfer-function cost is ,  units are deg/sec2/deg-ail.
b fixed parameter in the identification.
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Lp

K1

ωn1

2–

2ζ1ωn1
–

K2

ωn2

2–

2ζ2ωn2
–

ṗ δa⁄ Jave 53.3= ṗ δa⁄

ζ1 = 0.049; ωn1
 = 19.4 Hz[ ]

ζ2 = 0.031; ωn2
 = 30.1 Hz[ ]

K1 0<

K2 0>

p

δa

---- 12.019 0.257 130.76,–[ ] 0.330 130.35,[ ]
1( ) 0.0490 121.86,[ ] 0.0312 189.18,[ ]

------------------------------------------------------------------------------------------------=
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Notch filters were included in the VSRA flight-control system to suppress the
coupling of the flight control and aeroelastic dynamics. These notch filters and
the control law gains were subsequently updated based on the identification
results.

Problems
Theoretical accuracy metrics

12.1 Compare the state-space identification results of Sec. 12.8 with those
obtained using transfer-function identification (Problem 11.5). You should be
able to appreciate the added value of the theoretical accuracy metrics in ascer-
taining the appropriate model structure.

Canonical model identification with DERIVID 

12.2 Identify a canonical model of the stable pendulum based on the analytical
transfer-function model of Eq. (3.5) using the COMPOSITE frequency-response
identified in Problem 10.2. Compare the results with the transfer-function identi-
fication results of Eq. (11.15). 
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 Fig. 12.5 Root locus for roll-rate feedback to aileron (VSRA, 120 kn).
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12.3 Plot the results of Problem 12.2 with utility 31. Then create tables of the
results with utility 33.

12.4 Identify a canonical model of the unstable pendulum based on the form of
the analytical result of Eq. (3.8) using the COMPOSITE frequency response
identified in Problem 10.1. Compare your results with the transfer-function iden-
tification results of Eq. (11.16).

12.5 Plot the results of Problem 12.4 with utility 31, and then create tables of
the results with utility 33.

12.6 Consider the effect of including an extraneous identification parameter in
the (1,1) element of the F matrix of Eq. (12.65) for the second-order unstable
pendulum response. Show analytically how this parameter shows up in the trans-
fer-function form of Eq. (12.60). Repeat the identification of the unstable system
including this extraneous parameter and examine the effect on the identification
cost, parameter values and accuracy metrics. If you started out using this model
structure with the extraneous parameter, what procedure would point you to the
appropriate reduced model structure? 
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13
State-Space Model Identification:

Physical Model Structures

 

The previous chapter presented the basic concepts of state-space model identifi-
cation using the frequency-response method. The example applications were
based on canonical model structures, which are state-space equivalents of SISO
transfer functions. In this chapter, the concepts and examples focus on the identi-
fication of physical model structures for flight-vehicle dynamics. This is the most
challenging aspect of system identification, and good results depend heavily on a
high-quality MIMO frequency-response database. All of the previous steps of the
overall methodology (see Fig. 2.1) must be carefully completed to ensure that the
extracted model has reasonable values for the identified parameters and provides
good predictive accuracy. Proper collection of flight-test data, kinematic consis-
tency and state reconstruction, advanced FFTs, multi-input conditioning, and
multiwindow optimization are all important to achieving the necessary fre-
quency-response database quality. The initial investigation of model structures
and key parameter values using SISO transfer-function and canonical identifica-
tion methods is also very important to establishing the correct physical model
structure and initial parameter guesses. Errors in any of these steps will degrade
the accuracy and utility of the MIMO physical model—an ultimate product of
many system identification studies.

The identification of physical models of flight-vehicle dynamics is discussed
extensively in the literature. Iliff

 

170

 

 is an excellent and succinct reference on the
stability and control derivative model structure and identification for fixed-wing
applications using time-domain methods. Examples of some recent fixed-wing
identification studies include the X-31

 

35, 82

 

, and the F-18.

 

179

 

 An excellent over-
view of fixed-wing and rotorcraft applications at the DLR is given by Jategaonkar
et al.

 

185

 

 The international effort by AGARD Flight Mechanics Panel Working
Group 18 on Rotorcraft System Identification

 

10

 

 involved comprehensive case
studies of three helicopters (Bo-105, SA-330 Puma, and AH-64 Apache) based
on quasi-steady (six-DOF) stability and control derivative model structures. This
is an excellent reference on model structure considerations and the system identi-
fication of helicopter flight dynamics using time- and frequency-domain meth-
ods. Higher-order models for helicopters that explicitly include the states of the
rotor system and dynamic inflow are discussed by Kaletka and Gimonet

 

37

 

 and
Tischler and Tomashofski.

 

139

 

 Identification of physical rotor parameters using a
model structure based on the complete rotor equations of motion is presented by
Fletcher and Tischler

 

103

 

 and Tischler.

 

92

 

 A recent compilation of practical identifi-
cation experience is available in two issues of the AIAA 

 

Journal of Aircraft

 

.

 

186, 187

 

 
This chapter relies heavily on the basic state-space model identification concepts

introduced in Chapter 12, but now with more emphasis on how the methodology

 

Chapter 13.fm  Page 359  Friday, June 16, 2006  3:26 PM



 

360 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

 

is applied to MIMO model structures based on the flight-vehicle equations of
motion. The topics covered in this chapter include the following: background and
general guidelines for physical model structures, equations of motion for flight
vehicles, state-space model structure definition, data preparation for system iden-
tification, and example applications. The identification of higher-order models of
helicopter dynamics is covered in Chapter 15.

 

13.1 Background

 

Physical model structures are direct implementations of the equations of motion
for the flight-vehicle system or subsystem components. These are wide ranging in
complexity, depending mostly on the assumed level of coupling and system
order. As always in system identification, the choice of model structure depends
on the end application of the model, the frequency range of applicability, and the
associated key vehicle dynamic characteristics. In the discussion of model struc-
tures that follows, the reader should refer back to Tables 1.1 and 1.2.

At the simpler end of the spectrum, the rigid-body flight dynamics of most con-
ventional fixed-wing aircraft, tilt-rotor (e.g., XV-15 and V-22), and tandem rotor
(e.g., CH-47) configurations are well represented by the decoupled classical
three-DOF longitudinal and three-DOF lateral-directional dynamics equations.
The unknown coefficients to be identified in the model structure are the conven-
tional stability and control derivatives, which result from a Taylor-series repre-
sentation of the aircraft aerodynamics. Model structures for fixed-wing aircraft
configurations are widely available in the flight-dynamics literature. They can be
expressed in either dimensional form (e.g., ), as by
McRuer, et al.

 

56

 

 and McLean,

 

81

 

 or in nondimensional form (
) as by Blakelock.

 

146

 

 (The dimensional form is in more
common use now because it provides greater insight into the key dynamic char-
acteristics.) These three-DOF model structures involve relatively few identifica-
tion parameters (fewer than 20) and are generally identified to good accuracy if
the recommended guidelines for flight testing and frequency-response database
identification are followed. Problems with parameter insensitivity and correlation
are generally not very significant. The identified stability and control derivatives
are the desired product for many key applications, such as wind-tunnel vs flight
comparison, math model validation, and, especially, MIMO flight-control design.

Conventional stability and control model structures can be extended to include
the dynamics of airframe flexibility. An example of this is the VSRA model of
Eq. (12.72), which appends two antisymmetric bending modes to the one-DOF
roll response. Generalized structural dynamics models can become considerably
more complex, as presented by McLean

 

81

 

 and Blakelock.

 

146

 

 The accurate identifi-
cation of models that include higher numbers of structural modes will require
more extensive structural instrumentation, such as a distributed array of strain
gauges and automated frequency-sweep inputs for excitation over a wide range of
frequencies.

In single-rotor helicopter configurations, the decoupled three-DOF assumption
is not suitable, and the rigid-body dynamics of the fuselage must be considered
fully coupled. For helicopters with a low value of flap stiffness, the assumption of

Xu, Xw M, u,  Mw,  Mq,  Mδ
CXu

,  CXα
,

CMu,  CMα
,  CMq

,  CMδ
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a quasi-steady rotor response is adequate (Sec. 11.7). The resulting six-DOF
model structure is composed of the body-axis stability and control derivatives,
with equivalent time delays included to represent the rotor system transient
response. Now the unknown parameters to be determined simultaneously will
number up to 64 in total, thus constituting a significantly more difficult identifica-
tion problem than in the fixed-wing case. Information content for rotorcraft
flight-test data is generally best for the on-axis midfrequency responses (i.e., the
dominant short-term response modes), and it degrades for the coupling responses
and at lower frequencies. This often results in increased parameter insensitivity
and correlation, making model structure selection and reduction much more cen-
tral to the identification process. Here the theoretical parameter accuracy analysis
of Sec. 12.3 is the key tool. 

The quasi-steady rotor-response assumption is invalid for rotorcraft with high
values of flap stiffness, as demonstrated in Fig. 11.13 for the OH-58D helicopter.
In this case, the rotor and fuselage dynamics are tightly coupled, and the hybrid
model structure of Chapter 15 is well suited. This higher-order model structure
combines a quasi-steady (stability and control derivative) model structure, accu-
rate for lower-frequency motion, with an explicit representation of the coupled
fuselage/rotor coupling to accurately model the responses at mid- and higher fre-
quencies (beyond 1 rad/s). The rotor equations include the key degrees of free-
dom of flap, lead-lag, and dynamic inflow. Formulation of these hybrid models
requires a good grasp of the fundamentals of rotorcraft flight mechanics. The
identification model setup is also more complex, owing to the additional degrees
of freedom and constraints among the identification parameters. However, the
completed model structure includes about the same number of identification
parameters as the six-DOF model, with no additional difficulty in model conver-
gence or model structure reduction.

The stability and control derivatives are actually complex combinations of the
aircraft geometric parameters (e.g., wing span, wing chord, tail volume), aerody-
namic parameters (e.g., lift-curve slope and control surface effectiveness), and
inertial parameters (mass and moments of inertia). So the model structure could
also be implemented in a physics-based formulation in terms of the many fewer
and more basic physical quantities, but it would require the implementation of
many constraints. For example, a common value of lift-curve slope or tail length
could be used in the various places and combinations that these parameters
appear throughout the dynamic equations of motion. The formulation and setup
of physics-based model structures can be a much more formidable task than what
is involved for the stability and control models just mentioned, but the identifica-
tion results can provide the fundamental parameters needed to update detailed
simulation models. An example of this approach was the identification study of
the Sikorsky Bearingless Main Rotor (SBMR), using frequency-sweep data
obtained from full-scale rotor tests in the NASA 40 

 

×

 

 80 ft wind tunnel.

 

92

 

 This
comprehensive effort provided specific values of 15 rotor physical parameters
(e.g., hinge offset, lift-curve slope, blade inertia) needed to update directly the
rotor dynamics model for a new developmental helicopter rotor system. The
identification results also helped resolve a long-standing problem in characteriz-
ing the off-axis rotor response of helicopters.

 

188,189
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13.2 Buildup Approach to Developing the Appropriate 
Physical Model Structure

 

The effort required for model setup, model structure determination, and
parameter identification increases, as expected, with the increasing degree of
complexity in the model structures of Sec. 13.1. The simpler three-DOF fixed-
wing models can involve several man-hours to a couple of days of effort, at least
for the first complete experience. Coupled six-DOF models of helicopters can
involve a week or more the first time. Formulating the hybrid models might
require background reading on rotorcraft flight dynamics and are more complex
to set up. Finally, the physics-based models of the SBMR

 

92

 

 and the UH-60

 

103

 

each involved several months for model structure derivation from first-principles
and parameter identification.

Given the potential complexity of the task, the best approach is to build up
knowledge about the appropriate model structure in stages. The frequency-
response method is ideally suited for this process. The first step is to study the
frequency responses generated from flight data in detail, looking for clues about
the model structure. Important aspects include locations of key break frequencies
and modes; presence of unstable dynamics, as seen by a phase rise where the
magnitude rolls off; and the importance of coupling, as detected by the coherence
in the off-axis responses.

In the next step, lower-order SISO transfer-function models should be identified
for the key on-axis responses to further establish the appropriate model structure
(e.g., quasi-steady vs coupled rotor-body model) and to determine the location of
the basic modes and dominant stability and control derivatives. These results pro-
vide initial values for the more complete state-space model structures. In some
studies, the identification of MIMO physical models can start with lower-order
representations (e.g., short-period models of fixed-wing longitudinal dynamics) to
“shake out” problems with model structure implementation, sign and units errors,
and data consistency before proceeding. In general, simpler models offer more
physical insight into the sources of major identification model discrepancies.

At this point, a complete state-space model structure can be implemented that
includes enough complexity (coupling and degrees of freedom) to track the
MIMO frequency-response data matrix . The model structure should provide
an initial converged solution with a cost function , which generally
reflects an acceptable level of accuracy for flight-dynamics modeling. Then the
selected model structure is refined by dropping unimportant or correlated param-
eters, following the procedure explained in Sec. 13.4.7, until a final identification
model is obtained.

 

13.3 Equations of Motion for Flight Vehicles

 

The six-DOF flight-dynamics equations of motion provide a general physical
model structure that is a useful basis for MIMO system identification of most
flight vehicles. As discussed in Sec. 13.1, this structure adequately characterizes
the flight dynamics of helicopters with small values of the rotor flap stiffness.
Also from this starting point, the equations can be easily simplified to the decou-
pled three-DOF model structures (longitudinal and lateral/directional) needed for
fixed-wing applications. The following derivation is presented in a brief form,

Tc
ˆ

Jave 100≤
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and the reader is referred to classical flight-mechanics references (e.g., Ref. 56)
for a more complete development.

 

13.3.1 Force Equations

 

The derivation of the force equations starts with the Newton’s Second Law,
expressed in the inertial frame of reference:

(13.1)

where 

 

F

 

 is the total external force vector. The flight dynamics are obtained in the
Eulerian (body-fixed) frame as

(13.2)

where  is the angular velocity vector of the body-fixed axis system. On the
right-hand side, we have separated the force vector into gravitational and aerody-
namic contributions. The body-axis accelerations are given as

(13.3)

with the specific gravity and aerodynamic force vectors defined as

(13.4)

(13.5)

The equations of motion for fixed-wing aircraft are commonly derived using a

 

stability-axis coordinate system

 

, which is a body-fixed frame initially aligned
with the trim velocity vector. For hovering and low-speed flight vehicles, it is
convenient instead to select the 

 

body-axis coordinate system

 

 of Fig. 6.3, which is
also a body-fixed frame but now aligned with the fuselage axes. When comparing
identification and analytical results, it is important to be sure that the same axis
system (body or stability axes) is used. 

Next, the vector equations are expanded in scalar form, and a trim condition is
defined by reference Euler angles

, , (13.6)

and reference velocities

, , (13.7)

dImV
dt

------------- F=

dBV
dt

--------- ωωωω V×( )+
Fgravity

m
---------------

Faero

m
----------+=

ωωωω

dBV
dt

--------- ωωωω V×( )– Fgravity Faero+ +=

Fgravity
Fgravity

m
---------------=

Faero
Faero

m
----------=
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The asymmetric reference state  accommodates helicopter trim in forward
flight. The small trim roll angles  that might be also present in hover and for-
ward flight can generally be neglected.

Next, the equations are linearized for small-perturbation motion about the trim
flight condition:

perturbation speeds: (13.8)

perturbation angular rates: (13.9)

perturbation Euler angles: (13.10)

perturbation control deflections: (13.11)

The specific aerodynamic forces [Eq. (13.5)] are expanded in a Taylor series for
perturbations in the states and controls. The resulting equations of motion from
Eq. (13.3) are

(13.12)

(13.13)

(13.14)

The parameters to be identified are the dimensional stability and control force
derivatives (e.g., ). These are the partial derivatives of the
specific aerodynamic forces with respect to variations in the states and controls:

. The trim condition values ( )

 

0

 

 are assumed known and are
entered as fixed values in the model structure. For example, in Eq. (13.14) the
terms involving  are  and , and so the associated response derivative for

 is . The DERIVID module for state-space system identifi-
cation in CIFER

 

®

 

 allows the user to specify a constant value for  and to indi-
cate that the parameter  is free and is to be identified.

 

13.3.2 Moment Equations

 

The moment equations are also derived starting from Newton’s Second Law in
the inertial frame of reference:

(13.15)

where 

 

M 

 

is the total external moment vector. Expressed in a body-fixed frame of

V0
Φ0

u v w, ,

p q r, ,

φ θ,

δa δe δr δt, , ,

u̇ W0q– V0r g cos Θ0( )θ– Xuu Xvv … Xqq …+ + + + + +=

Xδe
δe Xδa

δa
…+ + +

v̇ U0r– W0p g  Θ0cos( )φ Yuu Yvv Y
v̇
v̇ … Yqq …+ + + + + + + +=

+ Yδe
δe Yδa

δa
…+ +

ẇ V0p– U0q g  Θ0sin( )θ– Zuu Zvv … Zqq …+ + + + + +=

+ Zδe
δe Zδa

δa
…+ +

Xu, Xw,  Zw,  Zq,  Xδ

Xu 1 m⁄( ) ∂X ∂u⁄( )≡

q Zqq U0q
q ∂ẇ ∂q⁄ Zq U0+[ ]=

U0
Zq

dIIωωωω
dt

----------- M=
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reference, this becomes

(13.16)

where I is the inertia tensor and  is the vector of external aerodynamic
moments.

The vector equation is expanded into its components and linearized as before for
small-perturbation motion. The external aerodynamics moments are then
expressed in a Taylor series of the dimensional moment stability and control
derivatives (e.g., ). These are the partial derivatives of the
specific aerodynamic moments with respect to variations in the states and con-
trols: . The roll and yaw equations are coupled as a result of
the cross-product ( ) terms in the inertia tensor I. The equations-of-motion can
be re-arranged in standard first-order form as:

(13.17)

(13.18)

(13.19)

where primed derivatives  are defined following McRuer et al.56

(13.20)

and

(13.21)

for . These primed derivatives account for the
influence of the product of inertia . In the remainder of this book, the primed
notation ( ) is implied but is generally dropped for convenience.

13.3.3 Euler Angle Relationships
The small-perturbation equations for the Euler angle rates are

(13.22)

(13.23)

(13.24)
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13.4 Model Formulation in a State-Space Structure

The equations of motion from Sec. 13.3 are now cast in the state-space form

(13.25)

(13.26)

13.4.1 State and Control Variables
The six-DOF equations of motion are composed of eight states, describing the

motion of the fuselage center of gravity and the rotation of the body,

(13.27)

and four bare-airframe controls. (Here we have dropped heading angle 
because it does not influence the dynamic response of the aircraft.) For fixed-
wing aircraft, the control vector consists of the inputs for roll, pitch, yaw, and
throttle:

(13.28)

In the case of rotorcraft applications, the control vector consists of the inputs for
roll, pitch, yaw, and heave:

(13.29)
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x

u

v

w

p

q

r

φ
θ

=

ψ

u

δa

δe

δr

δt

=

u

δlat

δlon

δped

δcol

=

Chapter 13.fm  Page 366  Friday, June 16, 2006  3:26 PM



STATE-SPACE MODEL IDENTIFICATION 367

13.4.2 State and Control Matrices (M, F, G)

With the state and input vectors defined, it is a relatively simple matter to cast
the equations of motion (13.12–13.14), (13.17–13.19), (13.22), and (13.23) in
the form of Eqs. (13.25) and (13.26) and define the structure of the , , and 
matrices. The components of the  matrix reflect the force and moment gradi-
ents to state perturbations from trim and thus are stability derivatives (e.g.,

). The components of the  matrix reflect the gradients
to control perturbations from trim and thus are the control derivatives
(e.g., ).

The components of  include parameters that depend on the rates of change
of the state variables. In the case of the canonical models of Chapter 12, the 
matrix in Eq. (13.25) was the identity matrix ( ). For fixed-wing flight-
mechanics models, the  matrix allows the explicit identification of parameters
such as  in Eq. (13.13) and  in Eq. (13.18), which are associated with the
effects of sidewash lag and downwash lag.56 In the identification of more com-
plex integrated systems, the M matrix is also very useful for including algebraic
relationships in the model structure. Examples of this are control system sum-
ming junctions and the coupling of the rotor and body dynamics in the hybrid
model for rotorcraft (Sec. 15.2.3).

13.4.3 Measurement Vector
The measurement (or output) vector for most six-DOF flight-vehicle applica-

tions is nominally composed of

(13.30)

Euler angle measurements. The Euler angles are generally not included
in the measurement vector for the frequency-response method. The reason is that
the angular-rate frequency responses usually have higher coherence for the entire
frequency range of interest, and they have the identical dynamic information
because, for example, from Eq. (13.23) we have

(13.31)
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when the data are kinematically consistent. Sometimes measurement system
characteristics or signal-to-noise issues warrant including both angular rate and
attitude measurements. For example, in the case of the XV-15 in hover the data
show a degradation in the kinematic consistency between roll rate and roll angle
at lower frequencies (below 1.0 rad/s; Problem 6.6). Because the roll angle mea-
surement was found to provide a higher coherence frequency response in this fre-
quency range, it is also included in the measurement vector in this case
(Sec. 13.9). In other cases, the Euler angle responses  can be found to
have acceptable coherence at low frequencies (e.g., 0.1–1 rad/s), where the
coherence of the angular rate response  is not acceptable. This can occur
owing to the improved signal-to-noise ratio of the pitch-angle signal for the
phugoid response. Good angular response data (either attitude or rate) are espe-
cially important at low frequencies for an accurate identification of the rotorcraft
speed-stability derivatives  and  in hovering flight.

Velocity measurements. Translational velocities ( , , ) might be avail-
able as a measured or reconstructed signal from an onboard inertial measurement
unit (IMU) or an embedded GPS/INS (EGI), modern measurement systems that
fuse the aircraft measurements into one set of kinematically consistent signals.
Alternatively, the reconstructed body-axis accelerations [ , , , using Eqs.
(6.35), (6.36), (6.37), respectively] are used to calculate the acceleration fre-
quency responses [e.g., ]. Then the required velocity frequency responses
are easily obtained. For example,

(13.32)

An alternate implementation would be to include the body-axis accelerations
rather than the velocities in the measurement vector y:

(13.33)

(13.34)

(13.35)

which is realized using the  matrix of Eq. (13.26). Then the acceleration
responses [ , etc.] are used directly in the identification cost function. The
result is the same in either case.

Aerodynamic angle measurements. At forward-speed flight conditions,
aerodynamic angle of attack  and sideslip  measurements are often avail-
able for aircraft and rotorcraft applications from a flight-test air data system
(nose boom). If available, these provide reliable and independent measurements
of the perturbation translational velocities, and they would also be included in
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the measurement vector [Eq. (13.30)]. The linearized variations of the aerody-
namic angles as measured at the nose boom are related to the vehicle states by

(13.36)

(13.37)

where the coordinates , ,  give the nose-boom location relative to the
c.g. The total reference velocity is defined as

(13.38)

For the stability axes system used most commonly in fixed-wing applications, 
and  can be used interchangeably.

Accelerometer measurements. The accelerometer measurements are very
important for model identification because they provide a direct measurement of
the specific external forces excluding gravity. Thus they are key responses for
identifying the aerodynamic force derivatives (e.g., ). These
measurements are easily expressed in terms of the state and state rates, repeated
from Eqs. (6.33), (6.34), and (6.32), with correction terms included to account
for the offsets , ,  of the accelerometer package relative to the center of
gravity:

(13.39)

(13.40)

(13.41)

As before, the terms involving linear and angular accelerations are realized by
making use of the  matrix.

Additional measurements. Depending on the application, there are many
other measurements that can be included. Some examples are structural system
measurements (strain gauges), engine rpm, engine fuel flow, and rotor system
states (flapping, coning, and lead-lag).

13.4.4 Measurement Matrices (H0, H1)

The formulation of the measurement vector in terms of the  and  matri-
ces allows the body-axis accelerations [Eqs. (13.33–13.35)] and accelerometer
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H1

H0 H1

Chapter 13.fm  Page 369  Friday, June 16, 2006  3:26 PM



370 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

measurements [Eqs. (13.39–13.41)] to be expressed in terms of the states. This is
possible because in the frequency domain the differentiation is realized by the
simple arithmetic multiplication by the Laplace variable ( ). (When the
frequency response is presented on a Bode plot, the differentiation amounts to a
simple rotation of the data curve about the  rad/s point.) By adopting this
form, we avoid the repetition of the identification parameters in both the 
matrix and the conventional output expression ( ) and thereby avoid
the requirement to implement a constraint equation for each parameter.

13.4.5 Time-Delay Matrix  ττττ
As in the SISO transfer-function modeling method, time delays are often

included to account for unmodeled dynamics, such as actuator dynamics, control
linkages, or transient rotor dynamics. The time delay is most commonly associ-
ated with the control input, and so the effect will be the same on all outputs. Then
the same time-delay value is used for an entire column of the time-delay matrix
, [Eq. (12.13)]. For example, in the case of the four inputs for fixed-wing air-

craft [Eq. (13.28)], there are four time delays to be identified ( ).

13.4.6 Free, Fixed, and Constrained Parameters
The complete six-DOF model structure has 64 aircraft parameters: 36 stability

derivatives, 24 control derivatives, and four equivalent time delays. Symmetry
assumptions for fixed-wing aircraft reduce the identification problem to nine sta-
bility derivatives, six control derivatives, and two equivalent delays each for lon-
gitudinal and lateral/directional equations of motion. [Note that there is no
dependency of the aerodynamic coefficients on the Euler angles ( ).] 

In the general identification case, the parameters in the model structure matri-
ces M, F, G, ττττ can be categorized as free, fixed, or constrained. Parameters
should be designated as fixed when they are known a priori, thus reducing the
complexity of the identification problem and ensuring that the identified model
has realistic physical constants. Examples of fixed parameters include gravity ,
trim values , and known filters, time delays, etc. Most parameters
in the model structure are designated as free to be optimized by the identification
algorithm.

The initial values for the free parameters in the model structure are obtained
from a variety of sources. For example, they might be available from simulation
models, such as was the case for the XV-15.130 Satisfactory initial estimates of the
key on-axis rate damping and control moment derivatives (e.g., for rotorcraft, ,

, , , , , , ) can be made from the identification of sim-
ple transfer-function models, as obtained, for example, in Eq. (11.22). Guesses
for the remaining parameters can usually be made based on first principles esti-
mates, values for a similar type of aircraft, or simply initialized as zero. Excellent
compilations of stability and control derivatives are provided for fixed-wing
aircraft165 and helicopters.190 Experience indicates that the frequency-response
method and the secant algorithm (Sec. 12.2) are very robust to the choice of ini-
tial guesses, even for highly complex identification model structures. This is
demonstrated for the XV-15 identification in Problems 13.3 and 13.7.
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In many situations there is a common identification parameter that appears in
several places in the four identification matrices M, F, G, ττττ . For example, a
second-order representation of an actuator dynamics model can be included in
each of the control axes, but with a single (common) natural frequency (band-
width). When rotor system dynamics are included in an identification structure,
the rotor-response time constant is constrained to a single value in pitch and roll,
as it should be physically. 

Model structures derived from underlying physical equations of motion can be
formulated in terms of the constituent element springs, masses, and dampers,
with constraint equations to enforce commonality and kinematic interrelation-
ships. For example, Tischler92 identified a model of dynamic response of a full-
scale rotor in a wind tunnel. The highly complex model structure was formulated
in terms of the physical (aerodynamic, inertial, and control system) constants of
the rotor and required a system of 40 differential equations. The structure
included a large number of constraints because the physical constants (e.g., rotor
time constant, flap frequency) had to have the same identified values throughout.
Other examples of identification studies involving detailed constraint equations
are presented by Fletcher and Tischler103 for the UH-60 and by Colbourne et al.173

for the multibody dynamics of a helicopter and slung-load.

13.4.7 State-Space Model Structures for Generalized Identification
The model structure of Secs. 13.3–13.4.6 was developed to represent the six-

DOF aerodynamic model of a general flight vehicle. The same basic approach
can be followed to derive the appropriate state-space model structure for more
complex multibody systems by including the relevant dynamic degrees of free-
dom. One example of this was the coupled helicopter/slung-load multibody
model identification of the BURRO (Ref. 173) using CIFER®. Hui191 also used
CIFER® system identification methods to obtain an accurate state-space model of
the yaw response of the Bell 412HP helicopter in support of high-bandwidth
flight-control development. The model structure included a complex representa-
tion of the coupled dynamics of the engine, governor, and fuel control systems.
At the other end of the spectrum, lower-order physical model structures can be
derived for an actuator, control system gyro or filter, or any other dynamic sub-
system that can be described in the form of a linear-time-invariant (LTI) set of
first-order differential equations.

13.5 Frequency-Response Database and Frequency Ranges

In this section the frequency-response database and associated frequency
ranges are selected for incorporation in the identification cost function of
Eq. (12.20). This leads to a frequency-response table that is then used to elimi-
nate some of the control and response derivatives, thereby achieving an initial
reduction in the complexity of the model structure.

13.5.1 Frequency-Response Database
In the case of the six-DOF model structure, there are  inputs [Eqs. (13.28)

or (13.29)] and  outputs [Eq. (13.30)], yielding a total of 36 possible
frequency response pairs  to be included in the identification cost function.

nc 4=
no 9=

Tl
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(There are more if aerodynamic angles measurements  and  are also included.)
We recall from Table 10.1 that one work flowpath is used to determine one column
of the frequency-response (data) matrix . This is repeated for each primary con-
trol (four work flowpaths in total), corresponding to the  columns of .
Assuming that  spectral windows are used, the total number of frequency
responses that are calculated in creating the frequency-response database are 840
SISO frequency responses, 180 MISO (conditioned) frequency responses, and 36
composite window (final) frequency-response pairs comprising the  data
matrix . Thus a total of 1056 frequency responses are estimated to determine the
flight data matrix . Keeping track of this large number frequency responses can
be a bookkeeping challenge without an automated databasing capability such as
that provided by CIFER®. Corrections can be easily introduced in the frequency
domain to integrate/differentiate the response variable (multiply by a power of s)
or to perform units corrections (multiply by gain), sign change (shift of 180 deg in
phase), or phase wrap (shift of 360 deg of phase).

13.5.2 Table of Frequency Ranges
The frequency range to be included in the model identification is determined

for each of the 36 flight data frequency responses by examining the Bode plot and
coherence function. The selected frequency ranges are best compiled in a table
displaying the input-to-output frequency-response combinations, such as
Table 13.1. The on-axis responses are highlighted in bold and are key to the
model identification. This table is for the flight-test identification of a six-DOF
model of a helicopter in hover — the Fire Scout P2 demonstrator. For now we
will limit our discussion of this helicopter to the frequency-response table and its
use in the initial reduction of the model structure. We will complete the system
identification of this helicopter later, in Sec. 13.12, after we have illustrated some
key points with somewhat simpler examples. 

For each input/output pair in Table 13.1, the range of frequencies to be included
in the cost function calculation is established by examining the corresponding

 Table 13.1 Example of frequency-response table 
(Fire Scout P2 demonstrator, hover) 

Measurement 
(output)

Control (input)

None 0.7–12.0 None None
0.8–4.0 None None None

None None None 0.15–2.0
0.7–12 2.0–10.0 3.0–12.0 2.0–12.0

None 0.6–12.0 1.2–7.0 None
2.0–10.0 None 0.25–10.0 1.0–5.0

None 0.5–12.0 None 0.4–8.0
1.0–10.0 0.15–7.0 2.0–10.0 None

None None None 0.15–2.0

α β

Tc
ˆ

nc 4= Tc
ˆ
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no n× c
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magnitude, phase, and coherence plots of the flight data. If the coherence function
never reaches the threshold

Guideline:

(13.42)

within the frequency range of interest, or if the magnitude or phase plots indicate
other serious problems with the data, that pair should be excluded entirely (indi-
cated in the table by “none”). It is useful to also refer to the doublet time history
data to verify that this input-to-output response pair is not significant. 

For each pair that has acceptable coherence [i.e., Eq. (13.42) is met for some
frequencies], an associated fitting range from  to  [ ;

 of Eq. (12.20)] is selected based on the following:
Guideline:

(13.43)

Local coherence dips within this frequency range are not of concern because they
can be avoided by adjusting the distribution of frequency points [using the coher-
ence cutoff  described in Sec. 12.2.3]. The primary (on-axis) responses,
which are highlighted in bold in the table, all show good coherence in the frequency
range of interest for flight-dynamics modeling, so that the database is well suited
to this purpose. As can be seen in the table, most of the frequency-response pairs
that are dropped are associated with the off-axis (coupled) responses. Note also that
for a hover flight condition the frequency content of the vertical acceleration and
vertical accelerometer responses are the same [ , from Eq. (13.41)],
and only one is used in the identification cost function.

The maximum frequencies selected in the Table 13.1 must be consistent with
the frequency range of model applicability. For example, the quasi-steady model
for rotorcraft is not appropriate for frequency ranges that include the rotor modes
(flapping, lead-lag, and dynamic inflow)—even if the coherence functions for the
responses are acceptable in that higher range. (In CIFER®, the user can select a
global frequency range of model applicability that will override, if necessary, the
maximum frequencies selected based on coherence only.) The maximum frequen-
cies in Table 13.1 are limited to 12 rad/s, which corresponds to the frequency
range of applicability for the six-DOF helicopter model in this case, even though
the actual flight data showed good coherence out to somewhat higher frequencies
for some of the response pairs. The flight data for  and  have
high coherence to about 15 rad/s (as can be seen later in Fig. 13.11). However, as
seen in Table 13.1, the responses are restricted to 8 and 2 rad/s, respectively, to
avoid fitting the quasi-steady model structure to frequency-response data that
include the higher-order effect of dynamic inflow (Sec. 13.12.2).

For each input/output pair, a decade span can be defined as

(13.44)
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to characterize the fraction of a decade for which acceptable data are available.
Practical experience indicates that a frequency response should only be included
if

Guideline:

(13.45)

If this guideline is not met, “none” is entered for the usable frequency range.
Including small segments (less than this guideline) generally degrades the identi-
fication because frequency points are concentrated in a narrow frequency range,
thereby overemphasizing the importance of the limited data in the identification
cost function. The frequency responses are better dropped entirely in this case.
The final frequency ranges selected for the six-DOF helicopter model are shown
in Table 13.1.

13.5.3 Model Structure Reduction Based on Frequency-Response 
Table

When the coherence of a particular frequency-response pair is found to be very
low over the frequency range of interest, the corresponding entry in the fre-
quency-response table is designated as “none” and is therefore dropped from the
identification cost function of Eq. (12.20). One such case in Table 13.1, which is
typical for a hovering helicopter is the off-axis (i.e., coupling) response ,
indicating a lack of significant energy transfer from pitch control inputs  to
the yaw degree of freedom . From this we can deduce that

(13.46)

over the entire frequency range of pitch control excitation. Pitch inputs produce
primarily a response in the longitudinal degrees of freedom, with significant cou-
pling into roll. The level of coupling into yaw is generally very small, as in the
example of Table 13.1.

Considering pitch inputs only, the yaw equation-of-motion (13.19) can be
expressed in the frequency domain in terms of the other state responses as

(13.47)

where we recall that the primes ( ) are implied on the derivatives but are dropped
for notational convenience. The first term  is the on-axis yaw-rate
damping response and will not vanish, and so the remaining terms in the braces

 must sum to zero to satisfy Eq. (13.46). In general, each term in the braces
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[e.g., , ] will contribute a different magnitude and phase char-
acteristic as a function of frequency to the overall response. The vector sum of
these multiple terms will not produce cancelling effects over the entire frequency
range that could result in . So for the overall response to be neg-
ligible, the individual terms must each contribute a negligibly small magnitude. 

The first right-hand side term in the braces is the control coupling derivative
, which will dominate at higher frequencies—that is, beyond the break fre-

quencies of the short-term angular responses (typically 1–5 rad/s). Clearly, for
Eq. (13.46) to be satisfied,

(13.48)

and  should be eliminated from the model structure (i.e., given a fixed value
of zero). This conclusion can also be deduced by taking the reverse point of view:
if the control coupling had been significant, this would have resulted in a signifi-
cant yaw-rate response to pitch inputs, especially at higher frequencies and an
associated high value of coherence. Because this response pair has no coherence,
the control coupling derivative  must be negligible.

All of the remaining terms in the braces of Eq. (13.47) involve products of a
gain (response coupling derivative) and a frequency response to pitch input .
But two terms contain the dominant (on-axis) responses to longitudinal cyclic
(pitch control) input. In hovering flight these are pitch rate and longitudinal
velocity [  and ], which clearly cannot be small. This
can be checked by comparing the on-axis vs the off-axis frequency-response
plots, such as  vs  and . In the present
hover case, the latter two responses are negligible, and  is clearly the
dominant speed response for pitch inputs. Because the responses 
and  are the dominant responses, we can be sure that the coupling
derivatives matched with these responses in Eq. (13.47) must be negligible, that
is,

, (13.49)

which again is to be expected for a conventional helicopter in hover.
In the case of translational responses, only the dropped accelerometer fre-

quency responses should be considered because these reflect the isolated contri-
bution of the aerodynamic derivatives. The speed (or body-axis acceleration)
responses are dominated by gravity contributions through the pitch and roll atti-
tudes and so are not included in this initial model structure reduction analysis.
Referring again to Table 13.1, we see that  is negligible, as would be
expected for a hovering helicopter. From this result, we can conclude that

(13.50)

, (13.51)

and so these must also be eliminated from the model structure.
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For fixed-wing aircraft (and rotorcraft in forward flight), the dominant angular
state responses are the same as for rotorcraft in hover [i.e., ,

, ], whereas the dominant translational state responses are
now  and . For fixed-wing aircraft, the key state response
to throttle is speed [ ], whereas for rotorcraft in forward flight the
dominant state response to collective remains , the same as in hover.
Again, this can be checked by comparing the frequency-response plots.

Thus for each frequency-response pair that is dropped from the table as a result
of an overall lack of coherence, there will be one associated control derivative
and one or two associated response derivatives to be eliminated from the initial
identification model structure. The dropped derivatives are those that are matched
with the dominant responses for the particular control input. Table 13.2 shows the
derivatives that are dropped based on the frequency-response table (Table 13.1)
for the six-DOF lightweight helicopter example.

This process of initial model structure reduction is a key and unique feature of the
frequency-response method, made possible by access to the pair-wise coherence
functions. A considerable simplification of the initial model structure is clearly
achieved in this six-DOF example, reducing the number of control derivatives by
nine and the number of stability derivatives by 14. The overall initial model struc-
ture is thus reduced from 60 identification parameters in the F and G matrices to
37. This process is especially useful in the identification of complex flight vehi-
cles, such as helicopters and novel UAV configurations12 for which the appropri-
ate model structure is not known a priori.

In the next two sections (Secs. 13.6 and 13.7) we will discuss the rest of the
system-identification procedure: 1) checking the initial model setup, 2) running
the identification algorithm iteratively until a fully converged solution is
achieved, 3) checking the time-domain predictive accuracy of the initial identifi-
cation result, and 4) applying the parameter accuracy metrics to reduce the
model structure further and obtain the final system identification. Then, in Secs.
13.8–13.11, we will illustrate the complete system-identification procedure with

 Table 13.2 Dropped derivatives for hover example 
(Fire Scout P2 demonstrator) 
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frequency 
response
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control 

derivative
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response 
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several three-DOF examples: lateral/directional dynamics models of the XV-15
for cruise and hover, longitudinal dynamics model of STOVL from a nonlinear
simulation, and a longitudinal dynamics model of a fixed-wing UAV. Finally, we
will extend the concepts and techniques introduced to that point by completing
the six-DOF system identification of the Fire Scout P2 demonstrator; this exam-
ple was started in Sec. 13.5.2 with the discussion of the frequency-response table
and the corresponding initial model structure reduction.

13.6 Checking the Initial Model Setup

Difficulties in obtaining satisfactory results from system identification are
often caused by errors in setting up the problem statement. Typical errors are
associated with incorrect assumptions about the units and signs of the flight data
and incorrect derivation or implementation of the equations of motion in the
identification software. These problems are manifested by errors between the
flight-data frequency responses and those of the initial identification model. If
left uncorrected, the identification algorithm will either not converge, or it will
absorb these setup errors (e.g., units and signs) into incorrect values of the con-
verged identified parameters.

The frequency-response format allows the initial model structure and parame-
ter values to be readily evaluated and debugged. Large, consistent mismatches in
magnitude and phase comparisons between the initial model and the flight data
are easily seen in the individual response pairs and traced back to errors in sign
convention, units, and model structure implementation. This constitutes a “sanity
check” that should be completed before the optimization process is begun. Listed
next are some typical problems and suggested debugging methods:

1) The rate responses for a flight-mechanics model should typically exhibit a
 roll off at higher frequencies and an additional constant phase lag of

. If they do not, check to see that the equations of motion are correct and
properly implemented.

2) A consistent mismatch of  magnitude and  phase
between the flight-test response data and the initial model for the entire frequency
range often reflects an error in the measurement equations (Sec. 13.4.3) or the
need for a correction in the frequency-response data [e.g., Eq. (13.32)]. Check
that the measurement equation is correct. For example, the frequency-response
data might correspond to an angular rate , while the model output as imple-
mented in the  and  matrices produces a attitude response ( ).

3) A constant magnitude shift by 36.16 dB for the entire frequency-response
magnitude plot is equivalent to a scale factor of 57.3 and generally reflects deg vs
rad inconsistencies.

4) Phase shifts of 180 deg reflect sign inconsistencies.
5) Large cost functions or unexpected model stability properties (unstable vs

stable eigenvalues) might reflect very poor initial parameter guesses. It is often
useful to tune the initial parameter values to improve the frequency-response
agreement prior to optimization.

6) There might be errors in kinematic consistency. For example, the magnitude
and phase curves of the model (and flight data) should be the same for the  and

 responses at higher frequency (typically beyond 1 Hz for manned aircraft),

20 dB/dec–
90 deg–

20 dB/dec± 90 deg±

q δe⁄
H0 H1 θ δe⁄

u δe⁄
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where the gravity contribution to the  signal is negligible. If one response shows
good agreement between the model and data and the other does not, there
might be a problem with a scale factor, units, or kinematic consistency and state
reconstruction.

13.7 Model Identification and Structure Reduction

Once the model setup and implementation are checked out, we are ready to
apply the model identification and structure reduction procedures first introduced
in Chapter 12. The identification algorithm is run until a fully converged solution
is achieved. The Secant algorithm (Sec. 12.2.3) can require 500–1000 iterations
for more complex model structures to reach convergence, especially if there are
several insensitive or highly correlated parameters. The convergence process is
nonlinear and might appear to advance slowly for many iterations, but it is very
important to continue running the optimization until it reaches a fully converged
minimum average cost function . The identification algorithm is then
restarted from this point, and it often achieves improved convergence away from
this local minimum. A global minimum is reached if the solution then returns to
the same solution after a restart, thus indicating that a satisfactory identification
result is achieved for this model structure.

The guidelines for desirable cost functions are given in Eqs. (12.23) and
(12.24). The model and data frequency-response plots should also be checked to
verify that the key dynamic characteristics are well represented. If large mis-
matches occur in regions corresponding to poor coherence, the data might be
unreliable, and the associated frequency-response range should be trimmed back
(Sec. 13.5.2). Individual frequency-response pairs  with marginal coherence
and large costs [in excess of Eq. (12.24)] should sometimes be dropped alto-
gether and the corresponding derivatives removed from the model structure
(Sec. 13.5.3). The model setup is refined, and the solution is reoptimized until the
converged initial model structure meets the cost-function guidelines of Eqs.
(12.23) and (12.24).

The time-domain predictive accuracy of the initial identification result should
be checked at this point using the methods of Chapter 14. Problems with time-
domain agreement can often be easily traced back to poor frequency-response
agreement in a particular response pair. Adjustments can be made in the fre-
quency-response calculations (e.g., choice of flight records and spectral win-
dows) or selection of frequency-response ranges in order to correct this problem.

Next the parameter accuracy metrics should be determined for the initial
model result. The model structure is reduced following the method of
Sec. 12.3.4, working first on the parameters with the largest insensitivities, fol-
lowed by the parameters with the largest Cramér–Rao bounds. The sources of
parameter correlation are also reviewed at each step. Only one parameter should
be eliminated at each step of this process, and the solution should be fully con-
verged each time until the target Cramér–Rao bound is reached [Eq. (12.40)] or
there is a jump in the cost functions [Eq. (12.52) and Eq. (12.53)]. After recon-
verging the model for the last two to three model structure reduction steps, it is
also important to check that satisfactory time-domain predictive accuracy is still
achieved (Chapter 14).
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Tl
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The identification procedure is now complete. If the cost function and parame-
ter accuracy metrics are within the guidelines, the parameters that remain will
have reliable values, and the model should exhibit good predictive accuracy. Expe-
rience has shown that a complicated model at the current limits of the CIFER®

software (40 states, 80 simultaneous frequency-response matches, and 100 identi-
fication parameters) can be efficiently and reliably identified using this procedure.

13.8 Identification of Three-DOF Lateral/Directional Model 
for XV-15 in Cruise 

This section demonstrates the identification of a three-DOF lateral/directional
state-space model of XV-15 flight dynamics in cruise.

13.8.1 Model Structure
The lateral/directional states are , , , and , and the measurements are ,

, , and . In this case no center-of-gravity corrections are needed, because the
accelerometer measurements are provided at the center of gravity, and the angle
of sideslip has already been corrected to the center of gravity in the frequency-
response calculation Eq. (3.11).

The three-DOF equations of motion in body axes are obtained directly from
Secs. 13.3 and 13.4 and the assumption of an x-z plane of geometric, inertial, and
aerodynamic symmetry (as is common for fixed-wing aircraft):

(13.52)

(13.53)

(13.54)

(13.55)

There are nine stability derivatives and six control derivatives to be identified
in these equations of motion. Equivalent time delays are included for the aileron
input  and rudder input  to account for unmodeled high-order dynamics. 

The measurement (also referred to as the output or observer) equations relate
the measured quantities (shown on the left-hand side of the equations) to the
states (appearing on the right):

(13.56)

(13.57)

(13.58)

(13.59)

v p r φ p
r ay β

v̇ U0r– W0p g cos Θ0( )φ Yvv Ypp Yrr Yδa
δa Yδr

δr+ + + + + + +=

ṗ Lv′v Lp′p Lr′r Lδa
′δa Lδr

′δr+ + + +=

ṙ Nv′v Np′p Nr′r Nδa
′δa Nδr

′δr+ + + +=

φ̇ p r tan Θ0+=

τa τr

p p=

r r=

ay v̇ U0r W0p– g  Θ0cos( )φ–+=

β v
Vtot( )0

---------------=
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We note again the presence of the trim velocities  and  in the equations
of motion and the measurement equations. This reflects the fact that we have
adopted a body-axis coordinate system (Fig. 6.3) in this case, rather than a stabil-
ity-axis system. There is no requirement to use the body axes, and the identifica-
tion can be just as easily completed using a stability-axis system. Alternatively,
the stability-axis parameters can be determined from the body-axis identification
results via transformation equations.56 

The trim condition for the flight data is repeated from Eqs. (3.12–3.15):

(13.60)

(13.61)

(13.62)

(13.63)

The frequency-response ranges for acceptable coherence are listed in
Table 13.3, with the maximum values truncated at the upper limit of applicability
for the three-DOF model structure (10 rad/s). As can be seen, all of the frequency
responses are included in this case, and all meet the dec_span guideline of
Eq. (13.45). Therefore none of the identification parameters are dropped at this
initial model structure stage. The frequency-response database for the cruise con-
dition is of very high quality, as is typical of cruise conditions, and the frequency
ranges span the overall frequency range of interest for flight dynamics purposes.
Of special importance are the good frequency ranges for on-axis responses, shown
in bold, which ensure the accurate identification of the key flight-dynamics
modes.

Figure 13.1 and 13.2 show the identification model structure for the XV-15 in
cruise as summarized by CIFER® (and expressed in terms of the CIFER® mne-
monics rather than engineering symbols). As can be seen,  is the identity
matrix,  contains nine free stability derivatives,  contains six free control
derivatives, and  contains the two free time delays. Notice where the trim

 Table 13.3 Frequency-response ranges for cruise (XV-15) 

Response

Control (input)

0.14–9.0 0.16–6.0
0.14–9.0 0.6–9.0
0.14–3.0 0.14–10.0
0.14–3.0 0.14–5.5

U0 W0

Vtot( )0 307.7 ft/s=

Θ0 4.57 deg=

U0 306.7 ft/s=

W0 24.5 ft/s=

M
F G

ττττ

δa δr

p
r
ay

β
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M Matrix Structure G Matrix Structure

V P R PHI AIL RUD
V 1.00 0 0 0 V * YDA * YDR
P 0 1.00 0 0 P * LDA * LDR
R 0 0 1.00 0 R * NDA * NDR
PHI 0 0 0 1.00 PHI 0 0

F Matrix Structure Tau Matrix Structure

V P R PHI *AIL *RUD

V * YV * YP
+ 24.5

* YR
– 307.

32.07 P AIL RUD

P * LV * LP * LR 0 R AIL RUD
R *NV * NP * NR 0 AY AIL RUD
PHI 0 1.0 0.0799 0 BETA AIL RUD

* Indicates a free derivative
@ indicates a term tied to a free derivative

Fig. 13.1 Identification model structure for cruise (XV-15).

Summary of free derivative terms

Total
No. Free 
M Terms

No. Free 
F Terms

No. Free
G Terms

No. Free 
Tau Terms

No. Free 
Sensor 
Terms

17 0 9 6 2 0

Observer Structure ( )

V P R PHI
P 0.0 1.0 0.0 0.0
R 0.0 0.0 1.0 0.0
AY 0.0 + 1.0S –24.5 0.31E+03 –32.07
BETA 0.33E–02 0.0 0.0 0

Active Transfer Functions

P / AIL P / RUD
R / AIL R / RUD

AY / AIL AY / RUD
BETA / AIL BETA / RUD

All Sensor Coefficients are at default values

No parameter constraints have been defined

H0 H1s+

Fig. 13.2 Identification model structure for cruise (XV-15).
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velocities, gravity, and kinematics show up as fixed aspects of the model. For
example, the partial derivative  is implemented with the
aerodynamic contribution  as a free identification parameter (denoted with a *
in Fig. 13.1) and a fixed value for the trim velocity ( ). It should
be remembered that any small offsets in the assumed trim condition (i.e., an error
in the value of  in this case) will be absorbed in the free term of the partial
derivative . All of the transfer functions have been included in the cost function
(per Table 13.3), and there are no explicit sensor dynamics (no use of the trans-
fer-function model structure, Sec. 12.2.2) and no parameter constraints. 

13.8.2 Initial Identification Results and Model Structure Reduction
The initial guess values for the identification parameters are obtained from the

linearized output of the XV-15 GTR simulation program as determined using
numerical perturbations.192 An overview of the model is also provided by
Churchill and Dugan.130 Full-scale wind-tunnel data of the XV-15 aircraft were
obtained in the NASA Ames 40 × 80 ft wind tunnel and form the basis for the
simulation model. The GTR simulation model (GTRV170) tracks the flight data
well (Figs. 13.3) and provides a close initial guess in this case ( , as
seen later in Table 13.9). In most cases, such accurate initial guesses are neither
available nor necessary. The somewhat discretized nature of the response plots in
some cases reflects the fact that only 20 frequency points were used in the identi-
fication [  in Eq. (12.20)]. Note also that the only frequency points used
in the identification are those for which the coherence is greater than the cutoff
value .

The converged initial identification result (V170M1) is presented in Table 13.4,
and the corresponding cost functions are shown in the V170M1 column of
Table 13.5. The parameter values and cost functions are quite robust for wide vari-
ations in the choice of the initial parameter values (Problems 13.3 and 13.7). The
initial model structure converges to an excellent average cost function
( , Table 13.5), with a maximum individual cost function of
( ). These are well within the suggested guidelines of Eqs. (12.23) and
Eq. (12.24), respectively.

The accuracy analysis results for the initial model structure are also shown in
Table 13.4. We note again that the values of the insensitivities and Cramér–Rao
bounds meet the relationship of Eq. (12.44). The derivative  has a large insen-
sitivity (58.3%) and therefore is not important in matching the flight data. This
conclusion can be confirmed by looking at the effect of variations in this parame-
ter on the frequency-response plots (Problem 13.11). Because the insensitivity
for  is well in excess of the guideline (10%), it is dropped from the model
structure. The model is then reconverged (V170M2) with the parameter results
shown in Table 13.6 and cost functions in the V170M2 column of Table 13.5.

The V170M2 model shows little change in the average cost function
( ). Now the response coupling derivative  is seen in Table 13.6 to
have the largest insensitivity (26.0%), still well in excess of the guideline, and so
this parameter is now also dropped from the model structure. The model structure
with  dropped is reconverged, and the result is V170M3. As shown in Table 13.5,
the average cost function for V170M3 ( ) is only slightly higher than

∂v̇ ∂r⁄ Yr U0–[ ]=
Yr

U0 306.7 ft/s=

U0
Yr

Jave 130.1=

nω 20=

γ xy
2( )cut 0.4=

Jave 32.8=
Jmax 77.6=

Yδa

Yδa

Jave 32.9= Lr

Lr
Jave 33.3=
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previously obtained for V170M2, and there are no significant jumps in the indi-
vidual cost functions. The converged model is shown in Table 13.7. The insensi-
tivities are nearly within the guidelines, and so we turn our attention to the Cramér–
Rao values.

As seen in Table 13.7, the parameter  has the largest Cramér–Rao bound
(31.3%), which is somewhat above the guideline (20%). The associated normal-
ized confidence ellipsoid ( ), shown in Table 13.8, indicates that the ele-
vated Cramér–Rao value results from some correlation (0.6) between the roll-rate
derivatives  and . The results also show some correlation with several other
derivatives. Next we try eliminating the  parameter from the model structure
and reconverge the model (V170M4); the associated cost function results are
shown in Table 13.5. There is a jump both in the reconverged average cost func-
tion ( ) and in several  of the individual cost functions in the range of

 Table 13.4 Initial identification results for cruise (XV-15)a,b,c

Engineering 
symbols

CIFER® 
mnemonic

Value
(V170M1)

CR,
%

Insens,
%

F-matrix 

YV –0.2805 3.64 1.20
YP –2.203 33.00 10.34
YR 15.23 11.91 4.02
G 32.07 d —— ——
LV –8.003E-03 4.44 1.34
LP –0.6896 6.12 1.25
LR –0.09566 79.36 24.63
NV 7.333E-03 2.97 0.92
NP –0.2280 7.69 2.24
NR –0.9796 5.11 1.54

G-matrix 
YDA –0.02825 159.1 58.31
YDR –0.2165 8.42 3.57
LDA –0.07927 4.53 0.99
LDR  –6.554E-03 11.88 4.25
NDA –0.02193 4.74 1.59
NDR 0.02235 3.23 1.03

Time delays
AIL 0.09049 11.73 5.36
RUD 0.03078 27.24 12.44 

aCase name: V170M1; Case ID: converged initial model.
bAll results are in English units.
cControl deflections in degrees.
dFixed parameters in model structure.

Yv

Yp

Yr

g Θ0cos
Lv

Lp

Lr

Nv

Np

Nr

Yδa
Yδr
Lδa
Lδr
Nδa
Nδr

τa

τr

Yp

ΘΘΘΘCRYp

Yp Lp
Yp

∆Jave 2.5=
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384 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

 Table 13.5 Cost functions for cruise model identification (XV-15) 

Engineering 
symbols

CIFER® 
mnemonics V170M1 V170M2 V170M3 V170M4

P/AIL 37.5 37.4 36.3 40.5
R/AIL 77.6 78.1 79.3 81.6
AY/AIL 20.7 20.9 21.7 32.9
BETA/AIL 40.2 39.8 41.0 36.8
P/RUD 39.2 39.5 39.2 39.6
R/RUD 18.9 18.9 18.3 20.4
AY/RUD 12.4 12.4 12.0 16.1
BETA/RUD 16.2 16.5 18.4 18.1
Average 32.8 32.9 33.3 35.8 

Case name: V170M1; Case ID: Converged initial model.
Case name: V170M2; Case ID: DROP YDA.
Case name: V170M3; Case ID: DROP LR.
Case name: V170M4; Case ID: DROP YP.

 Table 13.6 Intermediate model (V170M2) for cruise (XV-15)a

Engineering 
symbols

CIFER® 
mnemonic

Value
(V170M2) CR, % Insens, %

F-matrix
YV –0.2802 3.64 1.20
YP –1.962 31.34 11.62
YR 15.54 11.35 3.97
G 32.07 b —— ——
LV –8.004E-03 4.43 1.35
LP –0.6883 6.12 1.25
LR –0.09110 83.04 26.00
NV 7.324E-03 2.97 0.91
NP –0.2281 7.73 2.24
NR –0.9832 5.09 1.53

G-matrix
YDA 0.000 c —— ——
YDR –0.2178 8.34 3.56
LDA –0.07907 4.52 0.99
LDR –6.562E-03 11.87 4.25
NDA –0.02188 4.74 1.60
NDR 0.02234 3.23 1.03

Time delays
AIL 0.09024 11.74 5.37
RUD 0.03101 27.04 12.35 

a Case name: V170M2; Case ID: DROP YDA.
b Fixed parameters in model structure.
c Eliminated from model structure.

p δa⁄
r δa⁄
ay δa⁄
β δa⁄
p δr⁄
r δr⁄
ay δr⁄
β δr⁄
Jave

Yv

Yp

Yr

g Θ0cos
Lv

Lp

Lr

Nv

Np

Nr

Yδa
Yδr
Lδa
Lδr
Nδa
Nδr

τa

τr
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 Table 13.7 Final identified model and GTR simulation for cruise (XV-15)a,b 

Engineering 
symbols

CIFER® 
mnemonic

Value
(V170M3) CR, % Insens,% GTRV170

F-matrix

YV –0.2797 3.64 1.19 –0.2424
YP –1.984 31.32 11.54 0.7883
YR 16.44 9.65 3.76 7.794
G 32.07c —— —— 32.07c

LV –8.119E-03 4.23 1.32 –6.605E-03
LP –0.6780 6.03 1.27 –0.7628
LR 0.000d —— —— –0.1138
NV 7.240E-03 2.85 0.92 8.484E-03
NP –0.2308 7.57 2.22 –0.2206
NR –0.9759 5.05 1.54 –0.9246

G-matrix
YDA 0.000d —— —— –1.400E-03
YDR –0.2173 8.35 3.57 –0.1793
LDA –0.07775 4.27 1.00 –0.08314
LDR –7.024E-03 10.09 4.03 –4.810E-03
NDA –0.02166 4.66 1.61 –0.01940
NDR 0.02213 3.14 1.03 0.02920

Time delays
AIL 0.08920 11.84 5.43 0.000
RUD 0.03276 25.10 11.69 0.000

a Case name: V170M3; Case ID: DROP LR. bAll results in English units.
c Fixed parameters in model structure. d Eliminated from model structure.

 Table 13.8 Confidence ellipsoid for parameter  
with largest Cramér–Rao bound (V170M3) 

Engineering 
symbols

CIFER® 
mnemonics

 YV 0.0674 
 YP 1.0000
 YR –0.0585
 LV 0.2135
 LP 0.6093
 NV –0.0673
 NP –0.2834
 NR 0.0492
 YDR –0.0765
 LDA 0.2437
 LDR 0.0212
 NDA 0.2971
 NDR – 0.0901
 AIL 0.0438
 RUD –0.0695 

Yv

Yp

Yr

g Θ0cos
Lv

Lp

Lr

Nv

Np

Nr

Yδa
Yδr
Lδa
Lδr
Nδa
Nδr

τa

τr

Yp

ΘΘΘΘCRYp

Yv

Yp

Yr

Lv

Lp

Nv

Np

Nr

Yδr
Lδa
Lδr
Nδa
Nδr
τa

τr
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386 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

Eqs. (12.52) and (12.53). Specifically, the cost function for  jumps by
. So the previous model (V170M3), which retains , is taken as the

final identification result. The final identification parameters can be varied about
the converged values based on the Cramér–Rao bounds to see how these metrics
relate to the frequency-response error behavior (Problem 13.12). 

13.8.3 Final Identification Results
The parameter results and accuracy metrics for the final identification model

(V170M3) are shown in Table 13.7. Also shown in the table are the GTR simula-
tion model values (GTRV170). The cost functions for the final identified model
and the GTR simulation are listed in Table 13.9. 

There is a good match for most of the derivatives, validating the primary aero-
dynamics and inertia simulation modeling for this flight condition. The seemingly
large discrepancies in the derivatives  and  most likely reflect small errors in
the assumed flight-test trim velocities (  and , respectively) because from
Eq. (13.13) it can be seen that  and . The
identified model shows substantial improvements compared to the simulation in
all individual cost functions as well as the overall average cost .

The frequency responses of the final identified model and XV-15 simulation
are compared with the flight data in Fig. 13.3. The identification results track the
flight data very accurately, as expected from the low cost function. The simula-
tion model is only modestly degraded, as reflected by the higher cost function.
Overall, however, the simulation model is seen to be quite accurate, as would be
expected, because it is largely based on full-scale wind-tunnel data.

The  eigenvalues  of the identified model in standard state-space form [ ,
Eq. (12.6)] are the natural modes of motion of the dynamic response. The associ-
ated eigenvectors  show which state variables are dominant in each mode.

 Table 13.9 Cost functions for identification and GTR simulation 
models (XV-15, cruise)

Engineering 
symbols

CIFER® 
mnemonics V170M3a GTRV170b

P/AIL 36.3 75.8
R/AIL 79.3 261.5
AY/AIL 21.7 222.9
BETA/AIL 41.0 158.7
P/RUD 39.2 51.9
R/RUD 18.3 123.9
AY/RUD 12.0 58.5
BETA/RUD 18.4 87.4
Average 33.3 130.01

a Case name: V170M3; Case ID: DROP LR.
b Case name: GTRV170; Case ID: gtrsim v = 170.

ay δa⁄
∆J 11= Yp

Yp Yr
W0 U0

∂v̇ ∂p⁄ Yp W0+= ∂v̇ ∂r⁄ Yr U0–=

Jave

n λi A

vi

p δa⁄
r δa⁄
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β δa⁄
p δr⁄
r δr⁄
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 Fig. 13.3 GTR simulation and final identification models for cruise (XV-15).
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Fig. 13.3 GTR simulation and final identification model for cruise (XV-15) 
(continued).
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Fig. 13.3 GTR simulation and final identification model for cruise (XV-15) 
(continued).
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 Fig. 13.3 GTR simulation and final identification model for cruise (XV-15) 
(continued).
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These are determined from the solution of the eigenvalue-eigenvector problem104: 

(13.64)

To aid in the interpretation of the eigenvector results, the state variables are
scaled to more balanced units (e.g., ).
Finally, each eigenvector is normalized, so that the largest component is unity.

The eigenvalue and eigenvector results for the cruise model (V170M3) are
shown in Tables 13.10 and 13.11, respectively. All of the eigenvalues have nega-
tive real parts, and so the dynamics are stable. Notice that the eigenvector compo-
nents ( , , ) corresponding to the angular states ( , respectively) for
the ith eigenvalue ( ) are related according to the Euler rate equation (13.55), so
that

; (13.65)

The lowest-frequency eigenvalue  is associated with the spiral mode. This
corresponds to the  pole in the transfer-function model of Eq. (11.26). The
associated eigenvector shows that this mode is characterized by the aperiodic variation
dominated by roll attitude and lateral velocity (sideslip). The roll convergence
mode  is an aperiodic response in roll rate [corresponding to  in
Eq. (11.26)], with some sideslip contribution caused by Dutch-roll coupling. The
Dutch-roll mode is periodic (so  and  are complex conjugates, as are the asso-
ciated eigenvectors), and it involves lightly damped oscillations in sideslip, roll
rate, and yaw rate. This corresponds to the complex  mode in the transfer-
function model in Eq. (11.26). The eigenvector for this mode shows that the roll
and yaw-rate oscillations are equal in magnitude and opposite in phase. This char-
acteristic can be seen in the time response to a rudder step input (Fig. 14.5).

The state-space identification results are based on a complete stability and con-
trol derivative model formulation that correctly accounts for the interrelationship
between the transfer-function parameters. This is in contrast to the earlier LOES
transfer-function model identification method that treats the poles and zeros as
independent parameters. The close agreement of these models, as seen in the
comparison of the eigenvalues of Table 13.10 with the denominator of
Eq. (11.29), validates the LOES transfer-function fitting method widely used in
handling-qualities analyses.

 Table 13.10 Eigenvalues of identified cruise model (XV-15): 
Eigenvalues ( ) of [M_inverse][F]

–0.1060 0.0000 —— ——
–0.9382 0.0000 —— ——
–0.4447 1.477 0.2883 1.543
–0.4447 –1.477 0.2883 1.543

λiI A–( )vi 0=

u v w, , ft/s; p q r, , deg/s; φ θ, deg∼∼∼

vpi vφi vri p φ r, ,
λi

vpi λivφi vri tan Θ0–= i 1 2 3 4, , ,=

λ1
1 Ts⁄

λ2 1 Tr⁄

λ3 λ4

ζdr, ωdr[ ]

λλλλi

λi( )R λi( )I ζi ωi

λ1
λ2
λ3
λ4
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The time vector diagram56 provides a useful illustration of the relative phasing
and contribution of each term in the equations of motion for a selected modal
response. For example, the unforced (i.e., controls fixed) yaw-rate response is
obtained from Eq. (13.54) as

(13.66)

Then we take the Laplace transform to obtain

(13.67)

The time vector for the yaw rate  equation that is associated with the Dutch-
roll mode is calculated from Eq. (13.67) by substituting the eigenvalue
( ), the associated unnormalized eigenvector , and the identified
values of the stability derivatives. Finally, the resulting time vector is normalized
by the largest component.

As shown in Fig. 13.4, the plot of the time vector is a closed polygon and illus-
trates the balance of the inertial moment  with the relative importance and
phasing of each aerodynamic term in the unforced equation of motion (13.67).

ṙ Nv′v Np′p Nr′r+ +=

sr Nv′v– Np′p– Nr′r– 0=

r

s λdr λ3= = vdr
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 Fig. 13.4 Yaw-equation time vector for Dutch-roll mode.
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The primary contributions are from , , and a smaller contribution
from  that is out of phase with . Elimination of the roll-rate contribu-
tion leads to the decoupled two-DOF Dutch-roll approximation of Eq. (11.23).

13.9 Identification of Three-DOF Lateral/Directional Model 
for XV-15 in Hover

The identification of a stability and control derivative model for the three-DOF
lateral/directional dynamics of the XV-15 in hover is demonstrated in this example.

13.9.1 Model Structure
The equations of motion are the same ones used in the cruise example [Eqs.

(13.52–13.55)]. The trim condition in hover is

(13.68)

Analysis of the roll response measurements (Problem 6.6) shows a degrada-
tion in data consistency (  vs ) at low frequency (0.14–0.5 rad/s). Full
data reconstruction using SMACK (Sec. 6.1.1) was not possible because a third
independent source of response information (e.g., GPS or Doppler radar velocity)
was not available. However, in this frequency range the attitude response has
improved coherence (as compared to the roll-rate response) and is therefore
considered more reliable. So in this case the roll angle  was included in the
measurement vector ( ). As in cruise, the equivalent time
delays (for aileron input  and rudder input ) are included to account for
unmodeled high-order dynamics.

The frequency-response table for the XV-15 for the hover flight condition is
shown in Table 13.12. The information content of the data (up to about 9 rad/s)
spans the frequency range of applicability for the three-DOF model (about 10 rad/s).
Of special importance are the good frequency ranges for on-axis responses,
shown again in bold, which ensure the accurate identification of the key flight-
dynamics modes. Notice that the roll-rate response ( ) is only included for
frequencies beyond 0.5 rad/s, because the lack of data consistency in the fre-
quency range of 0.14–0.5 rad/s makes it impossible for an identified model to
simultaneously track both the roll-rate and roll-attitude responses. In the mid-
frequency range the roll-attitude and roll-rate responses (  and ) are

 Table 13.12 Frequency-response ranges 
for hover (XV-15) 

Control (input)

Response

0.14–5.5 None
0.5–9.0 None

0.15–8.0 0.14–8.0
0.14–9.0 None
0.14–8.0 None

N– v′v N– r′r
N– p′p N– r′r

U0 V0 W0 Θ0 0= = = =

p δa⁄ φ δa⁄

φ
y v  p, r, ay, φ,[ ]= T

τa τr

p δa⁄

φ δa⁄ p δa⁄

δa δr

v̇
p
r
ay
φ

Chapter 13.fm  Page 394  Friday, June 16, 2006  3:26 PM



STATE-SPACE MODEL IDENTIFICATION 395

identical, and both show the same high coherence. Then at high frequencies the
improved signal-to-noise ratio of the roll-rate response provides better coherence.

The off-axis responses to rudder input (  and ) display no acceptable
coherence and therefore are dropped from the table. This is as expected for the
tilt-rotor configuration, where yaw control (Fig. 3.5) generates a pure yawing
moment in hover. Following the procedure in Sec. 13.5.3, the associated control
and angular response derivatives ( ) are dropped from the initial
model structure and fixed at zero. The reduced initial model structure shown in
Figs. 13.5 and 13.6 contains seven free stability derivatives in , four free con-
trol derivatives in , and two time delays in .

13.9.2 Initial Identification Results and Model Structure Reduction
The initial values for the identification parameters are obtained again from the

linearized output of the XV-15 simulation model as determined using numerical
perturbations (listed in Table 13.13). The GTR simulation model (GTRV0) tracks
the flight data fairly well (Fig. 13.7) for the responses , , , and

, but is degraded for the responses  and . The initial guesses for
the parameter values, as obtained from the simulation model, results in a very
high cost function of  (Table 13.13), which is reflected in the dis-
crepancies in the frequency-response plots. These clearly show that the simula-
tion model is not as accurate in hover as was the case for the cruise condition.

Despite the poor initial guess, a fully converged identification solution
(HVMODM1) is achieved in 239 iterations. The average cost function is

, as shown in Table 13.13. The associated accuracy analysis shows that
the aileron time delay  has the largest insensitivity (233%) and is therefore
dropped from the model structure. As expected for the large insensitivity, dropping 

p δr⁄ ay δr⁄

Lδr
 , Lr , Yδr

 , Yr

M Matrix Structure G Matrix Structure

V P R PHI AIL RUD
V 1.00 0 0 0 V * YDA YDR
P 0 1.00 0 0 P * LDA LDR
R 0 0 1.00 0 R * NDA * NDR

PHI 0 0 0 1.00 PHI 0 0

F Matrix Structure Tau Matrix Structure

V P R PHI *AIL * RUD
V * YV * YP YR 32.174 V  AIL  RUD
P * LV * LP LR 0 P  AIL  RUD
R *NV * NP * NR 0 R AIL RUD

PHI 0 KIN 0 0 PHI AIL RUD
* Indicates a free derivative
@ Indicates a term tied to a free derivative

 Fig. 13.5 Identification model structure for hover (XV-15).

F
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Jave 2717.0=
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 Table 13.13 Cost functions for identification and GTR simulation models 
(XV-15, hover)a 

Engineering 
symbols

CIFER® 
mnemonics

HV
MOD
M1

HV
MOD
M2

HV
MOD
M3

HV
MOD
M4

GTR
V0

V/AIL 139.1 139.1 139.0 138.2 235.8
P/AIL 70.6 71.1 71.1 72.2 54.7
R/AIL 78.9 79.3 81.2 97.5 5541
AY/AIL 109.4 108.8 108.9 111.1 10201
PHI /AIL 122.5 122.4 122.4 120.7 129.6
R/RUD 62.1 62.1 67.4 73.0 139.3
Average 97.1 97.1 98.3 102.1 2717

aCase name: HVMODM1; Case ID: GTRSIM CONVERGED.
Case name: HVMODM2; Case ID: DROP TAU-AIL.
Case name: HVMODM3; Case ID: DROP TAU-RUD.
Case name: HVMODM4; Case ID: DROP NP.
Case name: GTRV0; Case ID: GTRSIM model.

Summary of free derivative terms

Total

No. Free
M Terms

No. Free 
F Terms

No. Free 
G Terms

No. Free 
Tau Terms

No. Free 
Sensor Terms

13 0 7 4 2 0

Observer Structure ( )

V P R PHI
V 1.0 0.0 0.0 0.0
P 0.0 1.0 0.0 0.0
R 0.0 0.0 1.0 0.0
AY 0.0 + 1.0S 0.0 0.0 –32.174
PHI 0.0 0.0 0.0 1.0

Active Transfer Functions

V / AIL
P / AIL
R / AIL R / RUD

AY / AIL
PHI / AIL

All Sensor Coefficients are at default values
No parameter constraints have been defined

H0 H1s+

 Fig. 13.6 Identification model structure for hover (XV-15).
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p δa⁄
r δa⁄
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this derivative results in no change in the reconverged cost function (HVMODM2,
Table 13.13). Now the rudder time delay  has the largest insensitivity (26%) and
is dropped from the model structure. The reconverged model (HVMODM3) shows
only a small increase in the cost function ( ). The identification results
and accuracy metrics for this model are given in Table 13.14.

All insensitivities are now satisfactory, and so we turn our attention now to the
Cramér–Rao bounds. As seen in Table 13.14 for the HVMODM3 model, the cou-
pling response derivative  has a satisfactory insensitivity and a somewhat ele-
vated Cramér–Rao bound (29.9%). The associated confidence ellipsoid indicates
this is caused by a high correlation (0.79) with the derivative . Based on these
results, we next drop the  parameter from the model structure. Now, however,
the reconverged model (HVMODM4, Table 13.13) shows a jump in both the
average cost function ( ) and the cost function for the  response

 Table 13.14 Final identified model and GTR simulation for hover (XV-15)a,b 

Engineering 
symbols

CIFER® 
mnemonics

HVMODM3
value

CR, 
%

Insens, 
%

GTRV0
value

 F-matrix

YV –0.09755 6.65 2.52 –0.02060
YP –1.489 12.78 5.71 –1.736
YR 0.000c —— —— –0.6140
G 32.17d —— —— 32.17d

LV –4.374E-03 5.38 1.24 –3.700E-03
LP –0.2365 15.41 5.44 –0.4270
LR 0.000c —— —— 0.1031
NV 7.152E-04 7.67 1.80 1.300E-03
NP 0.03862 29.86 10.64 0.1672
NR –0.1416 13.17 5.54 –0.02550
KIN 1.000d —— —— 1.000d

 G-matrix
YDA –0.04523 5.83 2.79 8.470E-03
YDR 0.000c —— —— 0.02940
LDA –0.05777 2.41 0.91 –0.05960
LDR 0.000c —— —— 1.890E-03
NDA 5.910E-03 5.13 2.06 5.190E-03
NDR 0.01187 4.58 2.14 0.01240

Time delays
AIL 0.000 —— —— 0.000
RUD 0.000 —— —— 0.000

a Case name: HVMODM3; Case ID: Drop TAU = RID.
Case name: GTRV0; Case ID: GTRSIM model.

b All results in English units.
c Eliminated from model structure.
d Fixed parameters in model structure.
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( ). Therefore the derivative  must be retained in the model structure
(HVMODM3), and the identification is now complete.

13.9.3 Final Lateral / Directional Model in Hover 
The parameter results and accuracy metrics for the final identification model

(HVMODM3) are listed in Table 13.14. There is a fairly significant level of yaw
coupling with roll input . This arises because the differential prop-rotor thrust
command used to command a roll moment also produces a torque split—and thus
a yawing moment. The pilot crossfeed  that is needed to maintain a fixed
heading during lateral maneuvering in hover is approximately

(13.69)

This high level of required piloted crossfeed probably contributed to the poor
SCAS-off handling qualities for lateral translation in hover.193

The identification results are also compared with the simulation parameters in
Table 13.14. There are considerable discrepancies in several of the stability and
control derivatives for the simulation model, as reflected in the large differences in
the cost functions (Table 13.13). Direct comparisons of stability and control deriv-
atives identified from flight tests with values identified from simulation math mod-
els can be used to derive correction factors for significantly improving the model
fidelity. For example, the correction to the rolling moment equation is of the form

 (13.70)

where  denotes the rolling moment as produced by the original nonlinear
simulation equations. The identification method provides a systematic and accu-
rate approach to determining these correction factors that are routinely used by
the simulator industry to improve dynamic fidelity.

The frequency responses for the final identification model are compared with
the flight data and the six-DOF simulation model in Fig. 13.7. The large
mismatches in the simulation responses (  and ) are substantially
improved in the identification result, as reflected in the much reduced associated
cost functions. The sign error in the GTR simulation model control derivative 
is responsible for the large phase error in the lateral acceleration response ,
whereas the error in the simulation response coupling derivatives  and  is
responsible for the large error in the coupling response .

The eigenvalues of the identified hover model are shown in Table 13.15. The
low-frequency stable aperiodic mode  is associated with the decoupled damped
yaw response and has a frequency that corresponds to the damping derivative .
The remaining three eigenvalues ( , , ) constitute the hovering cubic for the
lateral/directional dynamics and involve lateral translation and roll motion (a lat-
eral phugoid). The unstable quadratic pair ( , ) has a period of oscillation

, which is common to hovering V/STOL aircraft (e.g.,

∆J 16.3= Np

Nδa

GCF

GCF

Nδa

Nδr

-------
 
 
 

– 0.50–  deg-rud/deg-ail= =

Lcorrected  Loriginal Lp( )flight Lp( )sim–[ ]p Lδa
( )

flight
Lδa

( )
sim

–[ ]δa …+ + +=

Loriginal

ay δa⁄ r δa⁄

Yδa
ay δa⁄

Nv Np
r δa⁄

λ1
Nr
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 Fig. 13.7 GTR simulation and final identification model for hover (XV-15).
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 Fig. 13.7 GTR simulation and final identification model for hover (XV-15) 
(continued).
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 Fig. 13.7 GTR simulation and final identification model for hover (XV-15) 
(continued).
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Ref. 56) and helicopters.163 The positive real part of these eigenvalues 
indicates that disturbances in the states will double in amplitude in a duration of 

(13.71)

This falls in the level 3 region (“deficiencies require improvement”) of the
ADS33E4 handling-qualities requirements and is probably the primary cause of
the poor reported handling qualities for the SCAS-off lateral flight maneuvers.193

The stable aperiodic roll mode  is at a lower frequency than for typical heli-
copters, owing to the high roll inertia of the tilt-rotor configuration.

13.10 Accurate Determination of Stability and Control Derivatives 
from Nonlinear Simulation Using System Identification

Detailed flight-control design efforts are based on very complex high-order
and nonlinear simulation models. Force and moment descriptions are developed
for each of the aircraft elements, such as the wings or rotors, propulsion system,
and flight-control systems, based on wind-tunnel look-up tables, component
bench-test data, and analytical theory. The simulation of multiple rigid-body sys-
tems or flexible bodies involves sets of dynamic equations of motion linked by
constraint conditions. In many simulations these sets of equations are numeri-
cally integrated in serial form to reduce the complexity of deriving a fully cou-
pled multibody simulation. The distributed or serial nature of these complex
simulations thus might preclude the extraction of an integrated high-order linear
model of the fully coupled system that is needed for accurate control design stud-
ies. Also, when the simulation models include control system nonlinear elements
such as deadzone, hysteresis, saturation, and even Boolean logic, the numerical
perturbation methods will often give the wrong result.

Even when the simulation architecture allows for the direct extraction of higher-
order linear models using classical numerical perturbation methods, the assump-
tion of independent perturbation results in incorrect phasing of the state variables
within the multidimensional look-up tables. For example, the look-up table for
aerodynamic pitching moment might depend both on angle of attack and pitch rate,
so that . Thus the correct determination of phugoid dynamics depends
on maintaining representative phasing of  and  within the linearization process.
Selection of perturbation size can also strongly influence the linearization results.
These effects can significantly degrade the predictive accuracy of the extracted

 Table 13.15 Eigenvalues of identified hover model (XV-15): 
Eigenvalues ( ) of [M_inverse][F]

–0.1416 0.0000 —— ——
0.1559 –0.4400 –0.3339 0.4668
0.1559 0.4400 –0.3339 0.4668

–0.6458 0.0000 —— ——

λλλλi

λi( )R λi( )I ζi ωi

λ1

λ2

λ3

λ4

λR 0.156=

tdouble
0.693

λR

------------- 
  4.44 s= =

λ4

Cmq
f α( )=

q α

Chapter 13.fm  Page 402  Friday, June 16, 2006  3:26 PM



STATE-SPACE MODEL IDENTIFICATION 403

linear model. Much more accurate linear models are obtained by simulating piloted
frequency-sweep inputs and extracting state-space models using system identifi-
cation, just as if flight-test data had been used. The improvement obtained by “fly-
ing” the simulation model is especially apparent at low frequencies, where the
dynamic responses are larger, and correct phasing of the representative motion vari-
ables for entry into the multidimensional look-up tables is important.

Engelland et al.194 extracted accurate stability and control derivative models of
a conceptual STOVL aircraft from a complex nonlinear off-line simulation to
support control system design studies. The excitation input consisted of com-
puter-generated frequency sweeps and white noise. Using the procedure
described in Sec. 5.11.1, artificial feedback control loops were included to keep
the aircraft flight condition near the reference trim point during the inputs. Start-
ing from the perturbation model structure and derivative values, CIFER® was
used to identify a more accurate six-DOF bare-airframe model.

The perturbation and identified derivatives are compared in Table 13.16. Lon-
gitudinal frequency responses of the two linear models are compared with the
complete simulation responses in Fig. 13.8 for a flight condition of 120 kn. The
control inputs are unique to V/STOL configurations and include the following:

 Table 13.16 Comparison of STOVL perturbation derivatives and 
identification results (from Engelland et al194) 

Engineering 
symbols

Perturb. 
value

CIFER® 
value CR, % Insens, % 

–0.03471 –0.03602 5.66 2.29
0.03958 0.02852 6.91 2.84
6.764E-04 6.764E-04a —— ——
0.2451 0.2451a —— ——

–7.690E-03 –8.303E-03 7.50 3.58
0.02270 0.02229 3.73 1.84

–0.5150 –0.5586 2.35 1.01
–0.04596 –0.03312 13.62 4.58
–0.3704 –0.2817 4.39 1.38
–0.01023 –0.01023a —— ——
–3.754 –3.754a —— ——

0.1389 0.1551 5.57 2.70
–0.3800 –0.3305 2.25 1.02
–0.01724 –0.03055 4.65 2.24

1.661E-04 –1.059E-03 6.02 1.75
1.222E-03 3.715E-03 5.26 1.28

–1.286E-03 –1.286E-03a —— ——
–0.4971 –0.6852 5.56 1.87

0.02494 0.02818 2.52 0.98
4.993E-04 4.993E-04a —— ——
2.502E-04 4.953E-04 10.16 4.26

 aPerturbation value used.
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 Fig. 13.8 Frequency-response comparison of STOVL perturbation and identifica-
tion models (from Engelland et al194).
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= total pitching-moment command to be distributed among the pitch con-
trol effectors (i.e., equivalent to  of Fig. 5.12)

= power lever angle that commands total thrust from the propulsion system
(i.e., equivalent to  of Fig. 5.12)

= total thrust deflection that is distributed appropriately among the thrust-
deflecting nozzles

The linear model obtained using system identification is seen to be much
more accurate than the numerical perturbation model for the on-axis pitch-rate
response  at higher frequencies (note phase for 3.0–20 rad/s) and for
the longitudinal-acceleration response  at lower frequencies (note mag-
nitude and phase for 0.1–1.0 rad/s). The models are essentially identical in the
midfrequency range. A time-domain comparison of the two linear models with
the nonlinear simulation response is shown in Fig. 13.9 for a small (1-deg)
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 Fig. 13.9 Time-response comparison of STOVL perturbation and identification 
models (from Engelland et al194).
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pitch-doublet input. The system identification model is seen to track the nonlin-
ear behavior much more closely than the numerical perturbation model. The
improvements are most noticeable for the long-term response (low-frequency)
behavior, which is consistent with the frequency-response comparison of
Fig. 13.8. The very close agreement of the system-identification model with the
nonlinear simulation shows that the method of linear model extraction is much
more important in this case than the nonlinear characteristics of the simulation.

Success in achieving maximum control system performance and robustness in
flight depends heavily on the predictive accuracy of the linear-design models.
The system-identification approach provides highly accurate design models for
design at specific flight conditions, but it is clearly more time intensive than the
simple numerical perturbation method, so the identification-based approach is
not practical for checking control system behavior at the tens or hundreds of off-
nominal conditions.

Spaulding et al.137 evaluated the accuracy of state-space models of a ducted-fan
UAV extracted using perturbation methods from a nonlinear simulation model
that was also based on extensive multidimensional look-up tables. This work
showed that significant errors in the predicted frequency responses resulted from
this method. Further, the control system robustness and closed-loop performance,
which was indicated as having been acceptable based on the linearized state-
space model, was found to degrade considerably when evaluated in the nonlinear
simulation. Instead, the frequency responses were identified based on automated
sweeps of the nonlinear model, and the control system was optimized by direct
manipulation of the broken-loop characteristics [e.g., as in Eq. (7.92)].

13.11 Identification of a Three-DOF Longitudinal Model 
of a Fixed-Wing UAV

Flight tests were conducted on the Shadow™ 200 Block IB fixed-wing UAV
(Fig. 13.10) for the purposes of extracting a state-space model of the bare-airframe
dynamics in support of simulation development and fidelity assessment.195 This
vehicle has a wing span of approximately 11 ft and gross weight for these flight
tests of about 350 lb. Test data from piloted frequency sweeps were used for model
identification, and doublet test data were used for model verification. A three-DOF
state-space model for the longitudinal dynamics was identified. The state vector is

(13.72)

and the bare-airframe controls are elevator and engine rpm, so that

(13.73)

and the measurement vector is

x

u

w

q

θ

=

u δe

δrpm

=
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(13.74)

The frequency-response comparisons of Fig. 13.11 show that the identified
model accurately characterizes the short-period responses. The excellent
frequency-response agreement is reflected in a very low value for the identifica-
tion cost function, .

The identified parameters and accuracy results are listed in Tables 13.17 and
13.18. The low values of the insensitivities (all less than 10%) and Cramér–Rao
bounds (all less than 20%) for the stability and control derivatives, together with
the low cost function, indicate that an accurate and reliable model has been
achieved. The key characteristic of the model is the identified short-period mode:
[  rad/s].

The time-response verification for an elevator  and engine rpm doublet 
is shown in Figs. 13.12 and 13.13, respectively. Overall, the model predicts the
longitudinal dynamic response of the vehicle with excellent accuracy. For the ele-
vator doublet, there is a discrepancy in the longitudinal acceleration  prediction
at about 7 s, which is probably caused by an atmospheric disturbance as reflected
in the flight data. But the magnitude of this discrepancy is very small in compari-
son with the primary response, which is in the normal acceleration .

y

α
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ax

az
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 Fig. 13.10 Shadow™ 200 fixed-wing UAV (U.S. Army photo).
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 Fig. 13.11 Identification of Shadow™ 200 UAV longitudinal dynamics.
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 Fig. 13.11 Identification of Shadow™ 200 UAV longitudinal dynamics (continued).
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 Fig. 13.11 Identification of Shadow™ 200 UAV longitudinal model (continued).
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 Fig. 13.12 Time-response verification of Shadow™ 200 UAV model for elevator input.
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Fig. 13.13 Time-response verification of Shadow™ 200 UAV model for engine RPM input.
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13.12 System Identification of a six-DOF MIMO Model of a 
Lightweight Manned Helicopter

Fully coupled MIMO models of the Fire Scout P2 demonstrator—a variant of
the Schweitzer 333 (Fig. 13.14)—were identified using CIFER® from piloted
frequency-sweep flight-test data. The initial model structure for this helicopter
was developed earlier in this chapter in Sections 13.5.2 and 13.5.3, based on the
analysis of the frequency-response tables. We now return to this example in order
to present some of the advanced concepts that were used in completing the iden-
tification.

The results summarized herein for the hover flight condition were used in sup-
port of flight-control development and simulation modeling. This lightweight
helicopter features an articulated rotor design and a small hinge offset, resulting
in a small value of flap stiffness. The condition of Eq. (11.42) applies, and so the
six-DOF quasi-steady model structure of Secs. 13.3 and Sec. 13.4 is well suited

 Table 13.17 Identification results for three-DOF longitudinal model 
of Shadow™ 200 UAVa,b 

Engineering 
symbols Value CR, % Insens, %

–0.07903 18.12 6.55
0.1731 5.25 1.60

–1.882 4.28 1.66
–0.1404 6.43 1.47
–4.293 11.02 2.06

2.721E-03 3.59 1.75
–5.626E-03 4.83 2.19
–0.6607 7.25 1.00

Time delays

0.000c —— ——
0.03557 25.65 8.65

a All results in English units.
c Eliminated from model structure.

 Table 13.18 Transfer-function costs

Engineering symbols Costs
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414 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

to this configuration and captures the important vehicle dynamics for frequencies
up to about 12 rad/s. The example presented in this section is an excellent general
template for system identification of six-DOF helicopter flight-dynamics models.
The complexity of the identification problem for this fully coupled model struc-
ture is significantly greater than that of the three-DOF models for the XV-15
(Secs. 13.8 and 13.9) and STOVL (Sec. 13.10). A general template for system
identification of higher-order models of helicopters (as is required for larger val-
ues of flap stiffness) is presented in Chapter 15.

Flight-test data for this helicopter were collected in the hover flight condition
using piloted frequency sweeps and doublets in accordance with the guidelines of
Chapter 5. The data were then filtered and processed to remove wild points and
dropouts. Next, a complete kinematic consistency analysis was completed using
the SMACK facility (Chapter 6). This analysis indicated that the data consistency
as provided by the IMU was of excellent quality. Therefore there was little differ-
ence between the frequency responses obtained from the raw data and recon-
structed data.

13.12.1 State-Space Model Structure
The basic six-DOF equations of motion are those of Sec. 13.3. The complete

model structure has the eight states of Eq. (13.27), the four control inputs
of Eq. (13.29), and the outputs of Eq. (13.30). There are a total of 64 aircraft
parameters from Sec. 13.4.6, but we introduce the constraint that the lateral and
longitudinal rotor delays are the same ( ) because physically they
should be. This results in a model structure with a maximum of 63 identification
parameters.

The frequency-response database was generated from the flight data using the
MIMO methods of Chapters 7, 9, and 10. As presented in Sec. 13.5, the resulting

Fig. 13.14 Fire Scout P2 demonstrator — a variant of the Schweitzer 333 (Northrop 
Grumman photo).

τlat τlon=
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frequency ranges for acceptable coherence are shown in Table 13.1. Many of the
responses are not important, indicated by “none,” and the associated derivatives
that were dropped are shown in Table 13.2. Although the initial model structure
had 63 identification parameters (60 stability and control derivatives and three
time delays), this initial model reduction results in dropping 23 parameters for a
total of 40 identification parameters in the initial model structure.

13.12.2 Effect of Dynamic Inflow
The vertical acceleration response to collective  in hover exhibits an

increase in the magnitude and phase for frequencies greater than about 2.0 rad/s,
as seen in Fig. 13.15. The same characteristic is also seen in the axial response to
collective . This lead or overshoot in the initial vertical acceleration
response to collective inputs is associated with the vertical dynamic inflow .
Dynamic inflow accounts for the fact that the induced velocity change at the rotor
does not occur instantaneously.196 Without this effect, the magnitude and phase
would remain constant at the higher frequencies (i.e., beyond about 2.0 rad/s). A
complete physical model for coupled fuselage/coning/inflow is presented in
Sec. 15.2.3. A simple model that captures this effect is a lead/lag dipole that can
be appended to the collective input182: 

(13.75)

where the augmented collective input  is then used in place the actual control
input  in the equations of motion. In the present case, the six-DOF model
structure was retained, and the frequency-response range for  was
trimmed to exclude the data beyond 2 rad/s. The frequency-response range for
the  was trimmed to exclude the databeyond 8 rad/s.

13.12.3 Effect of Engine/Governor/RPM Dynamics
The engine/governor/rotor rpm dynamics for helicopters have a typical time

constant of about 0.25–1 s (depending on size of the aircraft). The main influence
of these dynamics is seen in a larger phase roll-off in angular-rate responses to col-
lective inputs ( , , ) than would be expected for a six-DOF
response (i.e., in excess of ). Additional state equations can be included to
represent explicitly the engine/torque response and coupling to the aircraft dynam-
ics, as demonstrated by Harding and Moody.197 A simpler approach is to include
the engine time constant as a Padé transfer function on the collective inputs to the
angular response equations, as explained in Sec. 15.2.4. In the context of the six-
DOF model structure, an adequate representation is to include an equivalent time
delay  on the angular responses to collective ( , , ). 

13.12.4 Isolation of the Speed Derivatives
In many single-rotor helicopter identification studies, it is difficult to achieve a

good identification (i.e., satisfactory coherence) of the angular-rate (or attitude)
frequency response at frequencies much below 1 rad/s. This is often due to poor
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416 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

low-frequency excitation and high cross-control correlation. The poor low-fre-
quency coherence can compromise the accuracy in the identification of the
speed-damping derivatives ( , ) and speed-stability derivatives ( , ).
Further, there is significant coupling in the flapping response to longitudinal and
lateral speed perturbations and therefore strong correlation among the speed
derivatives ( , , , , , , etc.), which makes the accurate identifica-
tion of these derivatives very difficult to achieve from dynamic response data.
These problems are most significant for hovering flight. This section presents
approaches to isolate the speed damping and speed-stability derivatives.
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 Fig. 13.15 Vertical acceleration response to collective in hover (Fire Scout P2).
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Speed-damping derivatives. The initial identification studies of the Fire
Scout P2 demonstrator for hover indicated that the on-axis speed-damping deriv-
atives ( , ) could not be accurately determined, showing high insensitivities,
caused by the lack of coherence for low-frequency data (below 1 rad/s) in the key
on-axis responses ( , , , and ), as seen in Table 13.1.
Further analysis showed that although the frequency responses to control inputs
was inadequate at low frequency because of poor coherence there was good
energy content in the signals , , , and  and good kinematic consistency
between the signals. This allows for the use of an alternate method for isolating
these derivatives based on the frequency responses  and . 

The simplified model of the lateral force response for a hover trim condition

(13.76)

ignores all off-axis contributions and the influence of roll rate and lateral control
inputs. However, this model is quite accurate at low frequencies. The transfer-
function result

(13.77)

allows the direct identification of  from the roll-sweep data, using the SISO
analysis method of Sec. 10.4. As shown in Fig. 13.16, the frequency-response
data  have excellent coherence, including at low frequencies. The simple
model of Eq. (13.77) is implemented using the transfer-function structure of
Sec. 12.2.2 with the single identification parameter . The model is seen in
Fig. 13.16 to be quite accurate ( ) for a wide range of frequencies, and
the parameter value  is identified to excellent accuracy
( ). The same approach can be used to isolate the value for . The
isolated speed-damping derivatives can be fixed in the overall model structure,
and the identification and model structure reduction proceed as usual. 

A better approach, used herein, is to include the additional state equation of
Eq. (13.76) (and an analogous equation for longitudinal speed) in the overall
state-space identification model structure. Then the value of  in Eq. (13.76) is
constrained to the same parameter in the  equation of motion (13.13). The
resulting identified value will both match the simplified force equation and
ensure a good overall model. In the present case, the insensitivity for  was
excessive because of a lack of information content at the very low frequencies
(i.e., 0.01 – 0.05 rad/s) needed to accurately determine this parameter. Instead, a
constraint of  was implemented based on data for similar helicopters.
This provided both an excellent fit of the available frequency-response data and
excellent time-domain predictive agreement. 

The technique of isolating the speed-damping derivatives in hover presented
herein as discussed has been found by the leading author to be highly effective
for many helicopter applications.

Speed-stability derivatives. Trim control data can be used to determine the
relationships between the speed-stability derivatives and the remaining identified
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418 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

derivatives. This additional information content can be useful to achieve a
dynamic model that has good predictive accuracy at very low frequency (where
the frequency-response data are generally degraded) and that is compatible with
the trim characteristics. For example, the pitching acceleration must be zero for
all changes in trim condition (which we denote by ):

(13.78)
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 Fig. 13.16 Identification of lateral speed damping for hover (Fire Scout P2).
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Solving for the speed derivative , we have

(13.79)

where the terms in parentheses are the flight-test measurements of the trim state
gradients and trim control gradients with respect to airspeed. 

Standard practice for helicopter flight testing to determine static speed
stability198 requires that the off-axis controls remain fixed, so that the only
remaining control gradient term is . If we ignore the coupling deriva-
tive  and the vertical force derivative  in the vertical equation of motion
(13.14), a simplified expression is obtained (see also Refs. 198–200): 

(13.80)

where the first term dominates the expression. The relationship of Eq. (13.80)
provides an independent estimate of the speed-stability derivative  to check
that the identified model as based on the dynamic response is consistent with the
static trim behavior.

The same approach provides an independent estimate of the lateral speed
derivative , based on the measured trim gradients for pure sideward flight. A
simplified expression retaining the key terms is

(13.81)

In forward flight, the steady-heading sideslip test technique198 is used to deter-
mine the required gradients in Eq. (13.81). 

Finally, in hovering flight, the directional static-stability derivative  is small
and can be difficult to determine. This derivative produces a yaw-moment (and
resulting yaw-rate) response to lateral velocity. Therefore, in hover, the main
source of information content to determine  is the  (off-axis) response,
which generally has poor coherence. This derivative can be estimated from the
trim pedal gradient data using the simplified expression:

(13.82)

The relationships of Eqs. (13.80–13.82) can be implemented directly as con-
straint equations in the identification structure. An alternate approach is to obtain
an initial identification model (prior to model structure reduction) with , ,
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and  as free parameters. This provides the values of the control derivatives
needed to obtain independent estimates of the speed-stability derivatives from
Eqs. (13.80–13.82). These trim-based estimates of the speed-stability derivatives
are then fixed in the initial model, and model structure reduction proceeds as usual
from this point. In either approach (i.e., constrained or fixed parameters), the
inclusion of trim test data in the identification process can be important to make
up for the lack of low-frequency coherence in the angular response data that is
typical of helicopter flight tests in hover. Also, achieving consistency of the iden-
tified model with the trim data is important when identified models at several
flight conditions are “stitched together” to form a full flight envelop model.201,202 

We note that because of practical testing issues helicopter flight-test data for
the trim control gradients , ,  are often not obtained
with high precision or might not be well defined, especially for hover/low-speed
flight. Using these gradients as just discussed might then mean that trim gradient
errors are reflected directly in the constraint relationships between the key control
derivatives and the speed-stability derivatives, and thus might degrade the match
of the dynamic response. Further, some small-scale rotorcraft measurements
using a dynamic response rig (discussed further in Sec. 15.3.2) show that incon-
sistencies between trim and dynamic values of the speed-stability derivatives
(even a sign change) can reflect the presence of additional low-frequency
dynamic states and nonlinear effects not correctly captured in the trim gradient
relationships. The recommended approach, therefore, is to first identify the
speed-stability derivatives as free parameters in the model structure, and then
compare the results with the independent estimates based on the trim data, and
assess the impact on the frequency- and time-response agreement of introducing
the constraints (or fixed values) into the model structure. Generally, the identifi-
cation of the speed-damping and speed-stability derivatives for forward-flight
conditions is accomplished with good accuracy from the frequency-response data
alone.

In the present case, a very limited amount of trim data was available, and the
constraints were implemented only on  and . The implementation of the
speed derivative constraints [Eqs. (13.80) and (13.81)] resulted in a modest
increase in the frequency-domain cost function as compared to allowing the
derivatives to be free, while retaining good time-domain predictive characteris-
tics (e.g., as shown later in Fig. 13.17). For this application, compatibility with
the trim control gradients was desired to build a full flight-envelope simulation
model of the Fire Scout P2 demonstrator from identification results at several
flight conditions.

13.12.5 Final Identification Results
The final identification results are shown in Tables 13.19 and 13.20, and the

associated cost functions in Table 13.21. The Cramér–Rao bounds have low val-
ues (most are less than 20%), indicating very good reliability of the identified
model. These results are with the trim gradient constraints included in the model
structure. An examination of these tables illustrates a number of points made in
the preceding sections. For example, two time delays associated with main rotor
flapping responses were constrained by the equation , as discussed in

Nv

∆δlon ∆u⁄ ∆δlat ∆v⁄ ∆δped ∆v⁄

Mu Lv

τlat τlon=

Chapter 13.fm  Page 420  Friday, June 16, 2006  3:26 PM



STATE-SPACE MODEL IDENTIFICATION 421

 Table 13.19 Identification results for six-DOF helicopter model in hover 
(Fire Scout P2): F-matrixc

Engineering 
symbols Value CR, % Insens, %

–0.01277a —— ——
0.000b —— ——
0.000b —— ——
0.000b —— ——
0.6326 29.82 13.72
0.000b —— ——

–0.01022 17.29 6.56
–0.1277 7.02 3.13

0.000b —— ——
0.000b —— ——
0.000b —— ——
0.000b —— ——
0.000b —— ——
0.000b —— ——

–0.2656 10.90 4.65
0.000b —— ——
0.000b —— ——
0.000b —— ——
3.295E-03 8.39 1.73

–0.01671a —— ——
–0.1592 12.97 3.84
–3.883 5.51 1.15
–0.2891 30.93 7.13
–0.4211 17.40 4.69

5.098E-03a —— ——
0.000b —— ——
0.000b —— ——
0.000b —— ——

–0.8167 7.43 2.76
0.000b —— ——
0.000b —— ——

–0.01747 18.14 3.69
–0.08342 15.65 5.09
–1.225 6.90 2.44

0.000b —— ——
–0.3224 18.56 6.56

a Constrained parameter.
b Eliminated from model structure.
c All results in English units.
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 Table 13.20 Identification results for six-DOF helicopter model 
in hover (Fire Scout P2)d 

Engineering 
symbols Value CR, % Insens, %

G-matrix

0.000a —— ——
–0.1018 3.18 1.46
–0.02810 4.26 2.13

0.000a —— ——
0.05825 4.96 2.43
0.02227 8.31 4.12
0.000a —— ——

–0.04715 4.07 2.02
0.000a —— ——
0.000a —— ——

–0.3697 4.95 1.82
0.000a —— ——
0.1333 4.33 0.76
0.04050 5.10 1.46
0.01544 7.83 3.18
0.03673 4.34 1.19
0.000a —— ——
0.05106 3.19 1.32
0.000a —— ——
9.103E-03 5.69 2.81
0.02565 7.01 2.74
0.000a —— ——
0.02861 5.60 2.49
0.08727 4.14 1.85

32.17b —— ——

Time delays

0.04251 8.52 3.74
0.04251c —— ——
0.2523 4.91 1.67
0.000a —— ——

a Eliminated from model structure
b Fixed parameter
c Constrained parameter
d All results in English units
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Sec. 13.12.1. The equivalent time delay  was added to the model to account
for the engine response, as discussed in Sec. 13.12.3. The speed-damping and
speed-stability derivatives , ,  were constrained, as discussed in
Sec. 13.12.4. Finally, the accuracy analysis led to the eventual elimination of five
stability derivatives (in addition to the nine control derivatives and the 14 stability
derivatives that were eliminated in the initial model reduction, as discussed in
Secs. 13.5.2 and 13.5.3). 

The identified six-DOF quasi-steady state-space model generally provides a
good characterization of the frequency-response flight data, as seen in the exam-
ples of Fig. 13.17 and is consistent with the overall cost function ( ),
which is within the guideline of Eq. (12.23). We note that the dominant off-axis
(angular coupling) response  has a high cost function ( ), though
it is within the guidelines of Eq. (12.24). As seen in Fig. 13.17, the phase
response cannot be adequately characterized by a six-DOF model structure.16 

The on-axis damping parameters , , , , , and  all have reason-
able values (stable and of typical magnitude for helicopters with low hinge offset;
Ref. 190), indicating that there is good translational and angular rate damping
for the vehicle. The final value of the lateral speed-damping derivative
( ) is close to the value obtained from the isolated identification. The

 Table 13.21 Cost functions for six-DOF helicopter model 
in hover (Fire Scout P2): Transfer-function costs

Engineering 
symbols Costs

56.1
68.2

145.1
90.5

172.2
96.5

104.9
126.1
93.3
54.6

132.6
82.1
68.8
31.0
43.0

134.9
176.6
30.0
7.3

90.2

p δlat⁄
r δlat⁄
ay δlat⁄
v̇ δlat⁄
p δlon⁄
q δlon⁄
ax δlon⁄
ay δlon⁄
u̇ δlon⁄
p δcol⁄
r δcol⁄
ax δcol⁄
az δcol⁄
p δped⁄
q δped⁄
r δped⁄
ay δped⁄
v φ⁄
u θ⁄
Jave

τcol

Xu Lv Mu

Jave 90.2=

p δlon⁄ J 172.2=

Xu Yv Zw Lp Mq Nr

Yv 0.1277–=
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 Fig. 13.17 Identification of six-DOF helicopter model in hover (Fire Scout P2) .
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 Fig. 13.17 Identification of six-DOF helicopter model in hover (Fire Scout P2) 
(continued).
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Fig. 13.17 Identification of six-DOF helicopter model in hover (Fire Scout P2) 
(continued).
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speed-stability derivatives are obtained from the constraint equations (13.80) and
(13.81) and are very small:  and . The positive
(stable) longitudinal speed derivative  reflects the positive longitudinal control
derivative (stick aft results in a pitch-up moment, ) and a negative trim
gradient (stick forward with airspeed results in ).The analogous
situation for lateral flight produces the negative (stable) value of lateral speed
derivative . There is a very small but negative (i.e., unstable) static direc-
tional-stability derivative  for motions near hover and reflects the combined
contributions from the tail rotor, vertical fin, engine, and fuselage. A small sta-
ble (positive) overall value would be expected from the trim data, but the intro-
duction of the constraint [Eq. (13.82)] was found to degrade the identification in
this case and was dropped; this indicates some inconsistency between the frequency-
response data and the static behavior for this off-axis response pair (likely
because of the coupled engine dynamics omitted from the model). The many
other off-axis stability and control derivatives (e.g., , , , etc.) are asso-
ciated with the lateral/directional response coupling for a pitch control input,
but not the reverse. This is caused by the large pitch inertia compared to the roll
inertia.

The identified values for the rotor time constant ( )
and roll-damping derivative  satisfy the requirement of Eq. (11.47) well, so that
the quasi-steady approximation (six-DOF model) that was adopted is justified.
The collective input time delay  provides good phase tracking for
the angular rate responses included in the identification ( , ). Both the
rotor and engine response delays are very close to the identified values for the
OH-58D helicopter,123 which is of similar size.

The predictive capability of this model in the time domain is shown, for exam-
ple, in the longitudinal stick doublet of Fig. 13.18. The prediction of the primary
responses (pitch rate, longitudinal accelerator, and pitch angle) is excellent. The
significant coupling into the roll rate and roll angle response is also predicted
with reasonable fidelity— even though the cost function was higher than desir-
able for the associated frequency response , as seen in Table 13.21. Clearly
a decoupled longitudinal state-space model would omit significant characteristics
of the flight data response.

The identification results can be used to illustrate the contribution of each term
in the equations of motion to an overall frequency-response pair. For example,
consider the pitching equation for longitudinal control inputs [Eq. (13.18)]:

(13.83)

Taking the Laplace transform and dividing the equation by the control input
, we obtain

(13.84)

Mu 0.005098= Lv 0.01671–=
Mu
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 Fig. 13.18 Time-response verification for longitudinal stick doublet (Fire Scout P2, 
hover).
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The individual terms (except for the last one) are composed of products of the
identification parameters and the state-space model frequency-response func-
tions. For example, the term  is obtained from the identified deriva-
tive (  from Table 13.19) and the state-space frequency-response [  from

 of Eq. (12.12)]. The total response on the left-hand side [ ] and
each contributing term are presented on the Bode plot of Fig. 13.19 (where the
effect of the time delay  has been excluded for illustrative purposes herein).

The figure shows that the contribution of  to the pitch-rate response is
important only at low frequencies (i.e., below 0.5 rad/s). At very low frequency

Mq q δlon⁄( )
Mq q δlon⁄

T s( ) s q δlon⁄( )

τlon

 

.1

–200

0

200

1 10
Frequency (rad/sec)

P
h

as
e 

(d
eg

)

–70

–30

10

M
ag

n
it

u
d

e 
(d

B
)

sq

Mu
Mq
Mlon
Total

 Fig. 13.19 Component contributions to overall pitch response.
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(below 0.2 rad/s), this term is nearly cancelled by a nearly equal and opposite
contribution from the control moment . This can be seen in nearly equal
magnitudes, but phase contributions differing by about 180 deg. The speed stabil-
ity is seen to dominate the overall pitch response only in the narrow frequency
range of about 0.2–0.4 rad/s. Thus a reliable identification of the  derivative
requires accurate flight-test data ( ) in this critical frequency range. Yet, as
can be seen from reference to Fig. 13.17, the coherence for  is poor in this
frequency range. This contributes to the need to introduce the trim control gradi-
ent constraint Eq. (13.80) as a supplemental source of dynamic information. The
pitch damping  is seen to contribute an equal but opposite moment to  at
the pitch response peak, dominating the pitch-rate response in the frequency
range of 0.5–0.9 with continued influence up to about 2 rad/s. There are sufficient
dynamic response data to ensure an accurate identification of this derivative
( ). Finally, the control derivative  entirely dominates the pitch-
rate response at frequencies greater than 1 rad/s, leading to an accurate identifica-
tion of this derivative ( ). The calculation is checked by comparing
the complex sum of the three separate components with the overall response
[ ] as shown in the figure (except for small round-off errors in the identi-
fication parameters).

The methods and quality of results obtained are typical of helicopter model
identification using six-DOF model structures. Additional examples of helicopter
state-space model identification with CIFER® using quasi-steady (six-DOF)
model structures include the Bo-105,10 AH-64,182 and Kmax.173 

Problems
State-space identification of stability and control derivative models with DERIVID

13.1 Complete a table of frequency-response ranges of acceptable coherence
for state-space model identification of the XV-15 at cruise using your MIMO fre-
quency-response database developed in Problem 10.6. 

13.2 Load the GTR simulation model F and G matrices “f_gtrsimv170.dat”
and “g_gtrsimv170.dat” into the CIFER® database using utility 14. These matri-
ces should be read using the “CIFER” format. 

13.3 Complete the stability and control derivative model identification for the
cruise condition using your MIMO frequency-response database over the fre-
quency ranges deemed acceptable in Problem 13.1. Use the GTR simulation val-
ues for the F and G matrices loaded into the database in Problem 13.2 as your
initial guess. Check that all cost and theoretical accuracy guidelines are met in
the final converged model. Evaluate the influence of poor initial conditions on the
identification results. Compare the state-space model results with your transfer-
function results for cruise from Problem 11.10.

13.4 Plot your state-space model identified in Problem 13.3 against the flight
data using utility 31. Then output your results in a table using utility 33. 

Mδlon

Mu
q δlon⁄

q δlon⁄

Mq Mu

CR 7.4%= Mδlon

CR 3.2%=

s q δlon⁄( )
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13.5 Complete a table of frequency-response ranges of acceptable coherence
for state-space model identification of the XV-15 at hover using your MIMO fre-
quency-response database developed in Problem 10.6. Perform a model structure
reduction based on the frequency-response range table. 

13.6 Load the GTR simulation model F and G matrices “f_gtrsimv0.dat” and
“g_gtrsimv0.dat” into the CIFER® database using utility 14. These matrices
should be read using the “CIFER” format. 

13.7 Complete the stability and control derivative model identification for the
hover condition using your MIMO frequency-response database over the fre-
quency ranges deemed acceptable in Problem 13.5. To resolve data consistency
issues discovered in Problem 6.6, use frequency responses for both  and

 in the system identification. Fit  for the full frequency range of good
coherence, but fit  only at frequencies of good coherence above 0.5 rad/s
(where data consistency is acceptable). Use the GTR values for the F and G
matrices loaded into the database in Problem 13.6 as your initial guess. Check
that all cost and theoretical accuracy guidelines are met in the final converged
model. Evaluate the influence of poor initial conditions on the identification
results. Compare the results of your state-space model with your transfer-func-
tion modeling results of Problem 11.9.

13.8 Plot your state-space model identified in Problem 13.7 against the flight
data using utility 31. Then output your results in a table using utility 33. 

13.9 Calculate the eigenvalues and eigenvectors for your hover (Problem 13.7)
or cruise (Problem 13.3) model, and analyze the various modes. Make sure to
introduce proper scaling in the eigenvectors (Sec. 13.8.3).

13.10 Use the method of Sec. 13.12.4 to isolate the speed-damping derivative
 in hover and compare the result with the complete identification (Problem

13.7).

Theoretical accuracy metrics

13.11 Go back to the interim model results for cruise or hover (Problem 13.3 or
Problem 13.7). First consider the parameters with the larger insensitivities. Try
changing these parameters, and watch to what extent the frequency-response
errors change (look at the plots). Determine if the behavior is consistent with the
values of the insensitivities.

13.12 Look at the final model identification for either cruise or hover (Problem
13.3 or Problem 13.7). Introduce variations in the final parameters for the
response derivative  and the control derivative  based on the Cramér–Rao
results ( ). Compare the resulting frequency-
response plots with the identification results (model and flight data). Are the
results consistent with the estimates of parameter accuracy?

φ δa⁄
p δa⁄ φ δa⁄

p δa⁄

Yv

Lp Lδa
0.2± σ , 0.5σ ,  1.0σ ,  2.0σ±±±
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13.13 Now take one of your intermediate models for either cruise or hover
(Problem 13.3 or Problem 13.7) in which there are large Cramér–Rao bounds
but low insensitivities. Examine the confidence ellipsoid, and see if you can use
this to introduce variations in two parameters that should have an offsetting
effect. Confirm your result by evaluating the frequency-response plots.

Time vectors and component contributions for the XV-15 

13.14 Determine the time vector of the identified roll mode ( ) for cruise or
for the identified lateral “phugoid-type” mode in hover. (This can be performed
within DERIVID or utility 38.) Then plot the roll-equation time vector (in MAT-
LAB®, by hand, or another suitable tool). 

13.15 Plot the component contributions to the overall roll response [ ]
for the XV-15 in hover or cruise similarly to Fig. 13.19. Based on this plot,
explain why it is difficult to accurately identify .

Model reduction based on frequency-response table

13.16 In most single rotor helicopters in hovering flight, the coupling response
 is important, but often the  coupling response is small because of

large pitch inertia that subdues gyroscopic coupling in the pitch response. In the
case where  has zero coherence, which stability derivatives would be elim-
inated? 

Isolation of speed-damping derivatives

13.17 How would you isolate the longitudinal speed-damping derivative 
using relationships similar to Eqs. (13.76) and (13.77)?

1 Tr⁄

s p δa⁄( )

Lv

p δlon⁄ q δlat⁄

q δlat⁄

Xu
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14
Time-Domain Verification of

Identification Models

 

The frequency-response method for system identification, as illustrated in
Fig. 2.1, starts with flight-test data collected in the time domain. From that point
on, the identification method of Chapters 5 through 13 has been carried out
entirely in the frequency domain, with the goal of identifying an accurate mathe-
matical model of the system. The assessment of parametric identification results
is based entirely on a comparison of the flight-data frequency responses with
those of the model and the resulting frequency-domain cost function . An
important assessment of model fidelity, robustness, and the limitations of the lin-
ear model is provided by evaluating its predictive capability in the time domain
for test inputs, such as steps or doublets, that are dissimilar from those used in the
identification. 

Time-domain verification is accomplished by the direct integration of the
equations of motion, using the flight-test measurements of the control inputs. The
identification parameters are held fixed at this point. Only the flight-data biases
and reference shifts are determined in the time domain because these cannot be
found from the frequency domain analysis. The predicted response of the model
is then compared with the flight data.

The key topics to be covered in this chapter include the following: motivation
for time-domain verification, time-domain verification method, time-domain
verification in CIFER

 

®

 

 using VERIFY, and example results.

 

14.1 Motivation for Time-Domain Verification

 

Time-domain verification is an important method for assessing the predictive
accuracy and reliability of the identified model. Confidence must be gained that
the model is not “overly tuned” to the identification test data and the flight condi-
tion at which the data were collected. When the identification test data are largely
based on frequency sweeps, as recommended herein, the verification uses dissim-
ilar input forms, such as steps and doublets. Checking the fidelity of the model
for a range of input amplitudes and off-nominal flight conditions allows an
assessment of the limitations of the linearity assumption in the identification.

Time-domain verification is also useful in assessing the significance of model
structure alternatives and the choices that were made during the model structure
reduction process (Sec. 13.7). For example, we might consider increasing the
model order or adding dynamic coupling to improve a particular frequency-
response match. This often comes at the expense of considerable complexity,
while offering only marginal overall improvement in the time-response predictive
accuracy. On the other hand, we might consider dropping a particular frequency

Jave
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response showing low coherence. This results in reduced model complexity
because the associated primary derivatives are dropped (Sec. 13.5.3). However, if
the predictive accuracy in the time domain is degraded, then the flight tests or the
frequency-response identification might need to be adjusted/repeated to obtain
higher coherence for the offending response pair. Repeated flight testing might
involve closer attention to achieving good signal-to-noise and reduced cross-
control correlation. Improving the identification results might involve a closer
scrutiny of individual sweep records to eliminate repeat maneuvers that were
conducted in the presence of high levels of winds and turbulence.

 

14.2 Time-Domain Verification Method

 

In time-domain verification, direct numerical integration is conducted on the
equations of motion of the identified model using the measured control inputs from
flight data. The predicted outputs obtained from the model [Eq. (12.3)] are com-
pared with the flight-data measurements. The time-domain verification method
that follows also determines bias and reference-shift corrections to account for sev-
eral sources of error: untrimmed reference conditions, disturbances, measurement
noise, numerical integration errors, and unmeasured secondary controls.

The state equations of motion of the identified model are repeated from
Eq. (12.2):

(14.1)

These equations are augmented with canonical representations of the transfer-
function structure (Sec. 12.2.2). The control input vector is the perturbation value
from trim

(14.2)

where  is the time history of the measured control vector and  is the trim
(steady-state) value of the control input vector.

An estimate of the trim control value  is obtained from the initial condition
or the average of the initial few seconds at the start of the test input. For actual test
data, the start of the record is rarely a steady-state condition, and the pilot or SCAS
is usually moving the control in a continuous manner to maintain a reference con-
dition in the presence of turbulence and other disturbances. So this estimate is
rarely accurate enough. Residual errors in the estimate of the reference control are
included as an unknown acceleration bias vector  in the state equation:

(14.3)

This constant bias term also provides a first-order correction for the effects of
process noise in the estimate obtained from Eq. (14.1), such as turbulence,
unmeasured secondary controls, and numerical integration errors. Because this
correction is a constant vector, it does not change the dynamic characteristics of
the predicted response.

Mẋ Fx Gu t ττττ–( )+=

u Udata U0–=

Udata U0
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The output equation form, repeated from Eq. (12.3), is

(14.4)

but now it will include 

 

only measured data channels

 

. The perturbation output
vector for six-DOF model verification in a cruise condition will be

(14.5)

which includes all of the measured signals, including the roll and pitch attitudes,
and so is different from the output vector used in identification [Eq. (13.30)].

The perturbation time history of the flight data, needed for comparison with
the identified model response of Eq. (14.5), is obtained by subtracting the trim
(reference) output value  from the flight record:

(14.6)

As in the earlier case of the control input, an estimate of the reference output
value  is obtained from the initial condition or the average of a few seconds of
flight-test data just prior to the start of the test input. But this is generally not suf-
ficiently accurate because the start of the record rarely corresponds to a steady-
state condition. Additional contributions to the measured output can also be
present because of sensor biases, misalignments of the instrumentation, and vari-
ous other influences such as aerodynamic interference during the record.

Residual errors in the output estimate are included as a constant (unknown)
reference-shift vector  in the perturbation model output equation of Eq. (14.4),

(14.7)

for comparison with the perturbation flight data . An accurate value of out-
put reference shift  must be identified. As in the case of the bias correction
of Eq. (14.3), the reference correction is a constant vector and does not change
the dynamics of the identified model response.
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The basic procedure for time-domain verification is to numerically integrate
(fourth-order Runge–Kutta method herein) the equations of motion (14.3) and
(14.7) using the measured (perturbation) control vector [ , defined in Eq. (14.2)]
and then compare the model response [  of Eq. (14.7)] with the perturbation air-
craft response  of Eq. (14.6). The matrices , , , and  have already
been identified, and the matrices  and  are part of the model structure defi-
nition (Chapters 12 and 13). These matrices are all fixed in the time-domain veri-
fication process. However, the constant vectors  and  are unknown, and
they must be determined to achieve an accurate assessment of the identified
model.

When the modes of the identified model are stable, all of the eigenvalues
, , are in the left half-plane ( ). In this case, the

influence of small errors in trim controls and measured outputs as obtained from
the start of the record will die out at a rate of  and can be neglected. However,
if the identified model contains unstable modes ( ), the effects of even small
errors will increase at a rate , eventually swamping the response prediction
and making a valid assessment of model fidelity difficult to achieve. Even if the
bias and reference-shift vectors associated with the flight condition at the begin-
ning of the flight-data record are known with a high deg ree of accuracy, the
buildup of errors from numerical integration alone would cause divergence for
unstable models. This is a key reason that the unknown vectors  and  must
be identified with procedures that utilize all of the flight data, not just estimated
based on the first 2 sec of flight data.

Sophisticated data reconstruction tools such as SMACK (Chapter 6) can be
used to estimate the needed vectors  and . However, the simple output-error
minimization method presented in the next section is noniterative (thus computa-
tionally very fast) and easily implemented, and it provides fully satisfactory
results.

 

14.3 Estimating the Constant Bias and Reference Shift

 

The residual bias  and reference-shift  vectors are collected into a single
identification parameter vector :

(14.8)

There are  elements in the identification vector, corresponding to the sum
of the number of states and outputs. The parameter value of  is sought, which
minimizes the sum of the squares of the output errors. In other words, the cost
function to be minimized is

(14.9)
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ẋb yref

λi σi jωi+= i 1 2 … n, , ,= σi 0<

e
σit

σi 0>
e

σit
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xḃ yref
ΘΘΘΘ

ΘΘΘΘ ẋb
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where

= perturbation time-history vector from the verification flight data [Eq. (14.6)]
= perturbation model time-history response vector [Eq. (14.7)] obtained

from the integration of the model equations
= number of time-history points in the verification data record
=  diagonal matrix of weighting factors for each output, as in

(14.10)

These weighting factors balance the relative output amplitudes of the various sig-
nals in the cost function. A good rule of thumb is to select these based on the
approximate amplitudes of the variables. For flight mechanics applications, a
good choice is

1 deg-error : 1 deg/s-error : 1 ft/s-error : 1 ft/s

 

2

 

-error (14.11)

For a longitudinal model example, the weights will all be unity when the output
errors are calculated as follows:  in deg,  in deg/s,  in ft/s, and  in ft/s

 

2

 

.
When the output of the attitudes and attitude rates are in radians and radians/
second, respectively, then the weights are .

Reference to Eqs. (14.3) and (14.7) shows that changes in the bias and refer-
ence shift parameter vector  will have a linear influence on the cost function of
Eq. (14.9). So, unlike the model identification problem of Eq. (12.20), the calcu-
lation for the parameter vector  reduces to a simple linear least-squares solu-
tion. The solution is obtained in a single pass using the pseudo-inverse

 

141

 

:

(14.12)

where  is the vector of perturbation output errors obtained with no
corrections ( ) and  is the matrix of gradients  calculated
numerically. The values for the elements of the bias  and the reference-shift

 vectors determined by this calculation are substituted into Eqs. (14.3) and
(14.7) to obtain the final perturbation model time histories  for comparison
with the perturbation flight data .

The solution of Eq. (14.12) minimizes the weighted least-squares error func-
tion of Eq. (14.9). The 

 

rms fit error

 

 is expressed as

(14.13)

which provides a useful overall measure of model time-domain accuracy. Experi-
ence shows that a value in the range of
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Guideline:

(14.14)

generally reflects an acceptable level of accuracy for flight-dynamics modeling
when the error function is calculated based on the units of Eq. (14.11). So, for
example, a cost function of  reflects an overall rms error of 1 deg,
1 deg/s, 1 ft/s, and 1 ft/s2. A predictive cost value in the range of Eq. (14.14) is
typical when the model identification meets the guidelines of Chapter 12:

 [Eq. (12.23)] and  [Eq. (12.40)]. The recommended range
is typical for verification of coupled models of helicopters, where the inputs and
outputs of all degrees of freedom are included for a single maneuver. For exam-
ple, the six-DOF model of the lightweight helicopter (Sec. 13.12) has an associ-
ated cost function for pitch inputs of ( ). This indicates good
predictive accuracy, consistent with the plotted results of Fig. 13.18.

Fixed-wing studies usually involve a decoupled (three-DOF) model structure
and often higher quality flight-test data. Lower cost functions are then achievable:

(14.15)

reflecting a higher degree of predictive accuracy, as for the identified models of
the XV-15 (Secs. 14.7–14.9). The rms cost functions for the Shadow™ fixed-
wing UAV results are  for the pitch input (Fig. 13.12) and

 for the throttle input (Fig. 13.13), which are well within these
guidelines, and consistent with the plotted time-domain results.

The Theil inequality coefficient ( ), adopted by Jategaonkar et al.,185 pro-
vides a normalized criterion ( ) for assessing model predictive accu-
racy. By including the relative weighting of [Eq. (14.10)], we have

(14.16)

A value of  corresponds to a model with perfect predictive capability,
and a value close to  corresponds to no predictive capability. Jatega-
onkar et al185 propose the following guideline:

Guideline: 

(14.17)

for good predictive agreement. The calculation of  in Eq. (14.16) normalizes
the rms error by the perturbation response magnitudes (  and ) and hence
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reflects the errors as expressed in percentage terms. When the verification analysis
includes many outputs [e.g.,  in Eq. (14.5)], some of the off-axis response
variables can exhibit small absolute variations. Thus a large percentage error in a
response variable with a small absolute variation can result in a large overall value
of —even when the rms cost function  is within an acceptable range.

In the case of the pitch-response verification for the lightweight helicopter
example of Sec. 13.12, the result is , well within the guideline of Eq.
(14.17), and again consistent with the good agreement of the plotted results of
Fig. 13.18. The identified model for the Shadow™ produces  and

 for the pitch and throttle inputs, respectively. The larger value for
the throttle input verification reflects very small amplitudes for all of the
responses except for longitudinal acceleration (Fig. 13.13), and so large relative
percentage errors (and higher TIC).

A low time-domain cost function can sometimes be accompanied by large
biases and reference shifts. This can be an indication of excessive error in the
identified model or the presence of correlation effects in  as discussed next.

14.4 Correlation Problem

The solution for the correction vector  becomes ill conditioned when vary-
ing two or more of the parameters has the same effect on the cost function. This is
another example of the parameter correlation problem that was addressed in
Sec. 12.3.3. Consider the following simple model of the longitudinal dynamics of
a hovering helicopter:

(14.18)

(14.19)

(14.20)

The measured signals included in the perturbation output vector are

(14.21)

The vector of bias corrections are included in the equations of motion (14.3),
resulting in

(14.22)
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The vector of reference shifts is added to output equation as in Eq. (14.7) for
comparison with the perturbation flight data measurements:

(14.23)

The bias and reference-shift values make up the unknown parameter vector

(14.24)

We seek the value  that minimizes the cost function of Eq. (14.9). For this
model structure, the bias term  in Eq. (14.22) and the reference shift  in
Eq. (14.23) produce the same change in the cost function and thus are fully cor-
related. This situation will cause the solution to be ill conditioned. As in the case
of model identification, one parameter must be fixed (at zero or an a priori
value), and the other can be retained in solution for . In practice, it has been
found that a good approach is to include biases on all of the rigid-body state
equations and include the reference shifts for all rigid-body measurements except

, , and . This approach generally avoids all correlation problems in the
solution. In the current example, we would fix  and include  in the
correction parameter vector  of Eq. (14.24).

14.5 Data Conditioning for Time-Domain Verification

The test data included in the cost function should be based on an appropriate
segment of the overall record. The verification record should start with about 2 s
of the trim condition, to ensure that the reference-shift can be accurately deter-
mined, and finish with control recovery back to trim. Once the data segment is
selected, the test data should be processed with a low-pass filter to eliminate sig-
nal content that is beyond the frequency range of applicability of the identified
model. This step is important so that the comparison between the flight responses
and model responses is for frequencies consistent with the identification process.
For example, when validating a six-DOF quasi-steady flight-mechanics model,
the flight input and output data should be processed with a low-pass filter having
a bandwidth of about 12 rad/s.

14.6 Time-Domain Verification in CIFER® Using VERIFY

Time-domain model verification is carried out in CIFER® using the VERIFY
module. As was the case with FRESPID (Sec. 7.11), the data source for VERIFY
is time histories, and the same data conditioning options are available (e.g., filtering,
scaling, decimation, start and end time). The user interface allows the individual
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components of the bias  and reference-shift  terms to be included in the iden-
tification vector . Values for the weighting matrix [Eq. (14.10)] are also user defin-
able, as appropriate to the units of the output variables [e.g., Eq. (14.11)]. The
identification vector  and resulting cost function are determined and displayed.
Finally, all of the results are presented in plot and tabular form and then stored in
the database. Results are presented as total (i.e., original) flight data  and 
vs total model prediction ( ). Note that for notational convenience we retain
the same notation on the time-history plots (e.g., ), but are
referring to total quantities in this case. The comparison of results between various
cases stored in the database is useful in evaluating alternative model structures and
in determining the sensitivity to input form, shape, and polarity (as an indication
of the significance of nonlinearities).

14.7 Closed-Loop Transfer-Function Model Verification for XV-15

This example demonstrates the verification of the XV-15 closed-loop roll-
response model in hover as obtained in Sec. 12.8 (CLROLL2). Recall that this
final (reduced) model is a second-order canonical structure representation of Eq.
(12.71). The flight-test data were collected for a lateral step input  with the
roll and yaw SCAS-on. As shown in Fig. 14.1a, the record consists of about 2 s of
trim, followed by a 2-s step, and then a recovery to trim.

ẋb yref
ΘΘΘΘ

ΘΘΘΘ

Udata Ydata
y Y0+

δlat δlon … u v w p …, , , , , , ,

δlat

Fig. 14.1 Lateral step input for closed-loop model verification (XV-15, hover).
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The predicted model response and flight-test data for roll rate  are shown in
Fig. 14.1b. The trim values were determined by examining the first 2-s of data.
The dashed curve is the model response as obtained with no bias or reference
corrections. The dotted line shows the model result including these corrections.
The effect of the bias and reference-shift corrections is small because the closed-
loop response is well damped. The correction values themselves are small, as
shown in Table 14.1. The reference shift  is less than 1 deg/s. The simple sec-
ond-order (LOES) model is seen to provide a satisfactory prediction of the short-
term closed-loop response, as also reflected in the good rms cost function value

 and very low associated . Both cost functions are well
within the guidelines.

14.8 Bare-Airframe Model Verification for Cruise (XV-15)

This example shows the time-domain verification of the XV-15 bare-airframe
model in cruise obtained in Sec. 13.8.3 (Table 13.7, V170M3).

The roll-step flight data were collected for the SCAS-off configuration
(Fig. 13.1). The control input is dominated by the aileron surface deflection 
for most of the record, as shown in Fig. 14.2. The deflection of the rudder  at
about 10 s is associated with the piloted recovery when the roll input is removed.
Both input time histories are included in the calculation of the model response for
comparison with the flight data.

The aircraft response is shown in Fig. 14.3. Note that the model verification
involves a large maneuver (40-deg roll angle), rather than small perturbations, to
demonstrate fidelity for typical piloted flying tasks. The responses with no bias/
reference-shift correction are shown again in dashes in Fig. 14.3, and they are
already in good agreement with the flight data. Including the bias/reference-shift
terms (dotted lines) corrects the small drift in roll rate . The model now exhibits
excellent overall predictive capability, even for this large transient maneuver.
Clearly, the identified model is valid well beyond small perturbation motions.
The results are consistent with the good time-domain cost functions

 Table 14.1 Roll-response verification results for closed-loop model 
(XV-15, hover)a 

Engineering 
symbols CIFER® mnemonic

Identified bias and 
reference shift values

 X1 0.881
 X2 –0.081
 P –0.707

Cost summary table

 Cost 0.69
 TIC 0.068

aCase name: CLROLL2#741.

ẋ1b

ẋ2b

pref

Jrms

TIC

p

pref

Jrms 0.69= TIC 0.068=

δa
δr

p
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( , , of Table 14.2), frequency-response identification
cost function ( ), and with the parameter accuracy metrics all being
within the recommended guidelines.

The control inputs for a yaw-step input are shown in Fig. 14.4. While the
dominant input is seen in the rudder surface , both control channels are
included in the calculation of the model response. The aircraft data and model
predictions are shown in Fig. 14.5. Again, the transient motion is quite large,
with a maximum roll angle of nearly 30 deg. The model responses with the
bias/reference-shift correction included are shown in Fig. 14.5. There is excel-
lent overall agreement of the model, as again reflected in the time-domain cost
functions shown in Table 14.2. The coupled motions in roll, yaw, and sideslip
associated with the Dutch-roll response (caused primarily by ) are well
predicted by the identified model, consistent with the good frequency-response
fits.

Table 14.2 lists the identification biases and reference shifts for roll- and yaw-
step response verifications. The  bias term reflects small differences in the trim
condition between the identification and verification flight conditions because
this correction is correlated with the trim velocities in the Coriolis terms
[  of Eq. (13.52)]. With the  bias term excluded, there is only a mini-
mal change in the cost functions (  and  for the aileron
and rudder steps, respectively). This confirms that the  bias correction term is of
little importance for the model response with the stable dynamics of the cruise
condition (Table 13.10).

Jrms 0.64= TIC 0.038=
Jave 33.3=

δr

 Fig. 14.2 Control inputs for roll-response verification (XV-15, cruise).

10842 60

–5

0

5

–5

0

5

12 14 16 18 20
Time (sec)

Flight data

Lv

v̇

U0r, W0 p v̇
Jrms 0.64= Jrms 0.59=

v̇

Chapter 14.fm  Page 443  Friday, June 16, 2006  3:28 PM



444 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

 Fig. 14.3 Roll-response verification of bare-airframe model (XV-15, cruise).
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 Table 14.2 Verification results for bare-airframe model (XV-15 cruise)a

Identified bias and 
reference-shift values

Engineering symbols CIFER® mnemonic Roll step Yaw step

 V 0.778 3.001
 P –0.005 0.016
 R –0.017 –0.006
 PHI 0.021 0.007
 P 0.000 0.000
 R 0.000 0.000
 AY 0.365 0.250
 BETA 0.013 –0.193
 PHI 0.158 –1.051

Cost summary table
Cost 0.64 0.55
 TIC 0.038 0.049

aCase name: V170M3; Case ID: final cruise model.
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 Fig. 14.4 Control inputs for yaw-response verification (XV-15, cruise).
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 Fig. 14.5 Yaw-response verification of bare-airframe model (XV-15, cruise).
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14.9 Bare-Airframe Model Verification for Hover (XV-15)

This example shows the verification of the bare-airframe hover model obtained
in Sec. 13.9.3 (HVMODM3, Table 13.14) for a piloted roll input. The test data
were taken with SCAS-off in the roll channel but SCAS-on in the yaw channel.
The yaw channel responds during the roll step input, so that the verification must
include both bare-airframe control surfaces (  and ) as the inputs to the model
(Fig. 14.6).

The measured responses ( , , , ) are shown in Fig. 14.7. As in the earlier
examples, the solid line shows the flight-test data, the dashed line shows the
results predicted without correcting for bias and reference shifts, and the dotted
line shows the results with the corrections included.

Without the bias and reference-shift correction, the  response exhibits a
clear offset. This reflects an inconsistency between the accelerometer alignment
and the roll-angle measurement, as would be expected based on Eq. (6.34).
Open-loop time integration of the unstable bare-airframe dynamics
[ , Eq. (13.71)] causes the divergent behavior that is apparent in the
angular responses. However, when the small bias and reference-shift corrections
(Table 14.3) are included, the characteristics of the model response match the
flight-test data very well, as also seen in the low values of the cost functions

, . The model demonstrates good predictive capability,
even for the rather large transient roll angle (20 deg) of this maneuver. In
addition, the yaw-response coupling is well captured. The ability to accurately
identify an unstable bare-airframe state-space model from closed-loop test data
using the frequency-response method (Chapter 8) is also verified in this example.

δa δr

p r ay φ

 Fig. 14.6 Control inputs for roll-response verification (XV-15, hover).

6420

–5

0

5

–5

0

5

8 10 12
Time (sec)

Flight data

ay

tdouble 4.44 s=

Jrms 0.61= TIC 0.065=

Chapter 14.fm  Page 447  Friday, June 16, 2006  3:28 PM



448 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

6420

–5

15

5

25

–4

0

a y
 (

ft
/s

e
c

2
)

4

8 10 12
Time (sec)

–4

0

r 
(d

eg
/s

ec
) 4

–5

0

p
 (

d
eg

/s
ec

)
20

Flight data
Model, no correction
Model, with bias/reference correction

 Fig. 14.7 Verification of bare-airframe model (XV-15, hover).
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Problems
Time-domain verification for the identified pendulum canonical model

14.1 Compare the nonlinear response of the stable pendulum to the prediction
for the linearized (canonical) model (Problem 12.2) with VERIFY, using the
simulated doublet response of the nonlinear pendulum saved in Problem 5.9.
Introduce a small constant control input bias in the nonlinear simulation at the
summing junction where process noise is added in Fig. P8.5. Compare the non-
linear response again to the identification model. Now repeat the verification and
include the identification of the correction terms. How much does the cost 
change?

14.2 Obtain hard copies of the results of Problem 14.1 by utilizing CIFER®

utilities 32 and 34. 

14.3 Compare the nonlinear response of the unstable pendulum to the predic-
tion for the linearized (canonical) model (Problem 12.4) with VERIFY, using the
simulated doublet response of the nonlinear pendulum saved in Problem 5.9.
Introduce a small constant control input bias in the nonlinear simulation at the
summing junction where process noise is added in Fig. P8.5. Compare the non-
linear response again to the identification model. Now repeat the verification, and
include the identification of the correction terms. Do you see the need for the
correction terms in unstable model verification? For best results use only the first
8–10 s of your doublet record.

14.4 Obtain hard copies of the results of Problem 14.3 by utilizing CIFER®

utilities 32 and 34.

 Table 14.3 Roll-response verification results for closed-loop 
model (XV-15, hover)a

Engineering 
symbols

CIFER® 
mnemonic

Identified bias and 
reference shift values

 V 0.875
 P –0.004
 R 0.003

 PHI 0.018
 PHI –0.227

 P 0.000
 R 0.000
AY –0.772

Cost summary table
Cost 0.61

TIC TIC 0.065

aCase name: HVMODM3#743; Case ID: final hover model.
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14.5a Add process noise (as described in Problem 7.14) to the pendulum simu-
lation of a verification doublet maneuver. How does the presence of the noise
affect cost, bias, and offset for the stable pendulum time-domain verification as
compared to Problem 14.1? Based on this analysis of noise vs cost, what can you
say about the meaning of ? 

14.5b How does the presence of process noise in the verify maneuver affect
cost, bias, and offset for the unstable pendulum time-domain verification as com-
pared to Problem 14.3? For best results use only the first 8–10 s of your doublet
record.

Time-domain verification of the identified XV-15 state-space model

14.6 Complete the time-domain verification of your intermediate and final XV-
15 models (hover or cruise) to demonstrate that the model structure reduction
steps were correct and did not significantly degrade the predictive accuracy.

14.7 Look at the final model identification of the XV-15 (hover or cruise).
Introduce variations in the final identification parameters based on the Cramér–
Rao results ( ), and rerun the time-response verifi-
cation for each case. Are the results consistent with the estimates of parameter
accuracy?

14.8 Compare the predictive capability of the identification model with the sim-
ulation (GTR) model at cruise or hover. Is the comparison of the time-response
plots and the cost functions for identification vs simulation consistent with the
frequency-response behavior?

Jrms 1=

0.2± σ, 0.5σ,  1.0σ,  2.0σ±±±
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15
Higher-Order Modeling of Coupled Rotor/

Fuselage Dynamics

 

Modern helicopters often feature rotor designs with larger equivalent hinge off-
sets and/or reduced moments of inertia to increase the effective flap stiffness for
improved maneuverability and agility. The fuselage and rotor responses become
fully coupled, and the quasi-steady assumption used in the model structures of
Chapter 13 is no longer suitable. The accurate characterization of these configu-
rations requires an extended model structure that includes explicitly the regres-
sive flapping, coupled inflow/coning, and regressive lead-lag states of the rotor.

The 

 

hybrid model structure

 

 for coupled fuselage/rotor dynamics identification
was proposed initially by Tischler and Cauffman

 

15

 

 and is presented in its com-
plete form in this chapter. The formulation is a general template for helicopter
system identification, applicable to a wide range of design configurations and
flight conditions. Flight-test identification results using this model structure are
presented for the SH-2G helicopter (updated from Tischler and Tomashofski

 

139

 

).
A series of models spanning the flight envelope was identified using a common
model structure. 

The key topics covered in this chapter include the following: background and
literature on the identification of extended helicopter models, hybrid model struc-
ture for coupled rotor/fuselage identification, hybrid model identification of SH-2G
helicopter dynamics, and lead-lag dynamics identification of S-92 helicopter.

 

15.1 Background and Literature on Identification of Extended 
Helicopter Models

 

The rotorcraft identification results of Chapters 13 and 14 were based on
quasi-steady model structures, which characterize the aircraft forces and
moments solely in terms of the fuselage states. For flight vehicles with symmetric
configurations, such as fixed-wing, tilt-rotor, and V/STOL aircraft, the quasi-
steady assumption results in three-DOF model structures for decoupled longitu-
dinal and lateral/directional motion. The quasi-steady assumption is valid for
helicopters with low flap stiffness rotors because in this case the dynamic system
decouples into distinct fuselage and rotor model modes, as discussed in
Sec. 11.7.1 and illustrated in Figs. 11.9 and 11.11. In state-space identification,
the fuselage motions are embodied in a fully coupled six-DOF quasi-steady
model structure, and the transient rotor response is included as equivalent time
delays on the control inputs. For the light helicopter example of Sec. 13.12,
which features a small hinge offset, the six-DOF model structure was seen to
generally be satisfactory, except for the mismatch in the off-axis angular response

.p δlon⁄
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As the flap stiffness increases, the rotor and fuselage modes become coupled,
as seen in the root-locus plot of Fig. 11.9, and the angular-rate response is now
second-order [Eq. (11.40)] in the frequency range of interest. Transfer-function
modeling results for the OH-58D helicopter (Sec. 11.7.2) clearly show the
requirement for a coupled rotor/fuselage flap response. The transfer-function
identification results for the Bo-105 helicopter (Sec. 11.8) show that the lead-lag
air resonance dynamics must also be included for an accurate characterization of
the coupled response to about 30 rad/s. The control system design study of
Sec. 11.8 shows that the stability behavior of the lead-lag mode sets the limit on
roll-rate feedback.

A general state-space model structure for helicopter flight mechanics that is
applicable for a range of flap stiffness values and that can be applied across the
flight envelope is needed. Such a model must include the explicit dynamics of
rotor flapping, coning, dynamic inflow, lead-lag, and the engine torque response.
The hybrid model structure

 

139

 

 presented herein is well suited to this purpose. A
detailed example for the SH-2G helicopter is given to illustrate the modeling
methods and typical results.

Many excellent examples of helicopter identification results using coupled
fuselage/rotor formulations are found in the literature, and they provide much
additional background information for the material in this chapter. Kaletka and
his colleagues from the DLR developed extended model structures and identifica-
tion methods in a comprehensive effort involving the Bo-105 helicopter. This
helicopter exhibits highly coupled dynamics of the fuselage and rotor systems,
owing to the large equivalent hinge offset (12%). Some excellent examples of this
work are Kaletka and von Gruenhagen,

 

74

 

 Fu and Kaletka,

 

36

 

 and Kaletka and
Gimonet.

 

37

 

 These references compare six-DOF (quasi-steady) vs higher-order
model identification, showing the need for extended models to capture the high-
frequency response characteristics that are critical for control system design
applications. Houston and Black

 

39

 

 examined aspects of identifying extended
models of the vertical/coning/inflow degrees of freedom from flight-test data of
the Puma helicopter.

The identification of higher-order helicopter models using CIFER

 

®

 

 is
reported widely in the literature, including application to the Bo-105,

 

15

 

B412HP,

 

203

 

 AH-64,

 

197,204

 

 OH-58D,

 

123

 

 UH-60,

 

103

 

 SBMR wind-tunnel test,

 

92

 

S-92,

 

17

 

 SH-2G,

 

139

 

 R50 UAV,

 

205

 

 and RMAX UAV.

 

206

 

 
This chapter presents the key rotor equations used in the hybrid model

structure, without detailed derivation or discussion. Recommended reading cov-
ering helicopter flight mechanics is available in a number of excellent references:
Chen,

 

207,208

 

 Heffley et al.,

 

21

 

 Curtiss,

 

161

 

 Newman,

 

209

 

 and Padfield.

 

200

 

 A comprehen-
sive treatment of helicopter analysis is that of Johnson.

 

162

 

15.2 Hybrid Model Formulation

 

A general formulation for helicopter flight-dynamics identification, referred to
as the 

 

hybrid model structure

 

, that is applicable to a range of configurations
(low to high flap stiffness) and is suitable for application across the entire flight
envelope (hover to high forward-flight speeds) has been developed. The model
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structure includes the key dynamic characteristics in the frequency range of
about 0.2–30 rad/s and achieves good predictive accuracy for supporting the pri-
mary applications of flight mechanics, simulation, flight-control design/analy-
sis, and handling qualities. Having a single model structure facilitates the
interpolation of the identification parameters with airspeed, which is useful for
flight-control design at intermediate conditions and for implementation in a con-
tinuous, full-envelope, piloted simulation (e.g., Aiken

 

201

 

 and Tischler

 

202

 

).
The important dynamic characteristics in the frequency range of interest

include (at least) the following 13 DOF: coupled fuselage/regressive-flap dynam-
ics (eight DOF), coupled coning-inflow dynamics (two DOF), lead-lag dynamics
(two DOF), and engine torque response (one DOF).

Kaletka and von Gruenhagen

 

74

 

 included coupled fuselage/regressive-flapping
dynamics in the identification of an eight-DOF dynamic model of the Bo-105 for
high-bandwidth flight-control applications. Tischler and Cauffman

 

15

 

 introduced
the 

 

hybrid model

 

 concept for identifying coupled fuselage/regressive-flapping
dynamics in a physically consistent model structure as an extension of the 

 

pri-
mary analysis model

 

 of Heffley et al.

 

21

 

 This concept was further developed in
CIFER

 

®

 

 identification studies of the OH–58D

 

123

 

 and UH–60

 

153,210

 

 helicopters,
and then formalized in a uniform identification model structure for the full flight
envelope identification of the SH-2G helicopter.

 

139

 

 Additional applications are
mentioned in Sec. 15.1.

In the pitch and roll degrees of freedom, the hybrid model structure combines a
physical model of coupled fuselage/regressive-flap dynamics and a canonical
model of the regressive lead-lag dynamics for accuracy in the mid- to high-
frequency range (1–30 rad/s), with a quasi-steady stability derivative (i.e.,

 

lumped parameter

 

) model for accurate low-frequency dynamics modeling. The
inclusion of explicit flapping dynamics takes the place of all of the conventional
lumped quasi-steady rotor derivatives associated with angular motion and control
inputs ( , , , , etc.), which are dropped. This hybrid formulation is
much more accurate than the standard six-DOF model formulation and is physi-
cally consistent by avoiding “double-booking” the rotor dynamics effects.

In an analogous hybrid modeling approach for the vertical response, a physical
parametric model of coupled coning/inflow, providing an accurate response at
higher frequencies, is combined with a stability derivative (quasi-steady) formu-
lation that accurately characterizes the conventional heave damping  and the
other fuselage speed derivatives at lower frequencies. The responses to pedal
inputs are well modeled by a conventional quasi-steady formulation. A simple
model of the yaw response to collective inputs is included to account for the
engine dynamics.

The present hybrid model structure 1) ensures that the coupled rotor and fuse-
lage dynamics of the short-term response are correctly captured in the explicit
rotor and inflow equations, 2) retains the response to translational motion and the
many coupling effects in the quasi-steady speed derivatives, 3) improves model
robustness by minimizing parameter correlation, and 4) achieves identification
values that are physically meaningful. Note that the sign conventions adopted
herein for flap and lead-lag motion are based on rotor rotation counter-clockwise
as viewed from above, which is a U.S. standard.

Lp Lq Lδlat
Xq

Zw
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15.2.1 Coupled Fuselage/Rotor Flapping Dynamics

 

In flight-dynamics applications, the flap dynamics of the rotor blades are best
considered from the nonrotating frame of reference (e.g., from the fuselage). The
motion of the rotor system can be represented as a disc or 

 

tip-path plane

 

. Chen

 

208

 

provides a succinct derivation of the complete coupled tip-path plane dynamic
equations for flight-dynamics applications. The three tip-path plane degrees of
freedom of concern are defined relative to the shaft axis. These degrees of free-
dom are the longitudinal tilting or 

 

longitudinal flap angle 

 

, 

 

lateral flap angle

 

, and vertical motion or 

 

coning angle 

 

, as depicted in Fig. 15.1. Positive lat-
eral flapping is for blade flap up over the right side (disc tilts to left), and positive
longitudinal flapping is for blade flap up over rear (disc tilts forward). The pri-
mary rotor forces and moments transferred to the helicopter fuselage are associ-
ated with these three tip-path-plane angles.

The tip-path-plane dynamics are composed of three second-order flapping
modes—excluding the 

 

reactionless

 

 mode for a four-bladed rotor, as it does not

β1c
β1s β0

rightleft

lateral
flapping

coning angle

shaft axis

REAR VIEW

frontback

longitudinal
flapping

coning angle

shaft axis

RIGHT SIDE VIEW

 Fig. 15.1 Rotor tip-path-plane degrees of freedom.
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affect the vehicle response.

 

208

 

 Useful approximate expressions for the rotor mode
characteristics are given by Heffley et al.

 

21

 

 The lower frequency (regressing) flap-
ping mode (involving  and ) is well damped (typically ); it has a
natural frequency of about 1/2rev ( ), or about 14 rad/s for a typical
manned helicopter (  rad/s for the UH-60). This is the primary rotor mode
of concern for helicopter flight dynamics and control. The higher-frequency
(advancing) flap mode (again involving  and ) is less well damped (typi-
cally ); it has a frequency of about 2/rev ( ), or about 
rad/s for a typical manned helicopter. This rotor mode is well above the fre-
quency range of interest for most flight dynamics and control applications.
Finally, the coning flap response (involving ) is well damped (typically

) and has a natural frequency of about 1/rev ( ), or  rad/s
for a typical helicopter. This mode is important for dynamics and control consid-
erations of the vertical degree of freedom.

As illustrated clearly by Heffley et al.,

 

21

 

 there is a first-order 

 

zero

 

 in the on-axis
cyclic flap response to cyclic control input that has nearly the same frequency as
the well-damped second-order regressive flapping mode. Therefore, the regres-
sive flap responses to cyclic inputs are accurately modeled as 

 

two coupled first-
order equations

 

 for system-identification purposes. This is accomplished by
dropping the terms involving flap acceleration and fuselage angular acceleration
from Chen’s equations. The rotor equations are further simplified for consider-
ation of angular shaft motion by dropping the terms involving the translational
degrees of freedom:

(15.1)

(15.2)

When the response and control coupling terms (  and ) are neglected
and the lateral control input  is given in terms of radians of swashplate deflec-
tion (i.e., ; ), the roll/flap equation of Eq. (15.1) reduces to
that of Eq. (11.34). Note that the notation  is adopted to distinguish the flap-
ping moments (on the rotor) from the fuselage moments .

The rotor-flap time constant  can be estimated from the hinge offset and
effective Lock number [Eqs. (11.35) and (11.37)]. The rotor-flap time constant is
left as a free parameter in the identification, although it is constrained to a single
common value in both the longitudinal and lateral flapping equations. Similarly,
the rotor-dynamics cross-coupling terms  and  have analytic expres-
sions and constraints in terms of the Lock number, but much recent experience
has shown that these ideal expressions yield very poor off-axis prediction,

 

16

 

 as is
apparent for example from off-axis response correlation of the SH-2F analytical
simulation model,

 

211

 

 as shown in Section 15.3. Therefore these cross-coupling
parameters are left as free and unconstrained in the identification. The on-axis
control derivatives  and  are the principle longitudinal and lateral flap
moments arising from swashplate deflection. These largely reflect the gearing
between the cockpit control input and equivalent blade cyclic pitch angles 
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and . For the (single-axis) roll response model of Sec. 11.7.1, the roll control
derivative reduces to  because the theoretical coefficient on  in the flap
equation (11.34) is unity.

The rotor is coupled to the fuselage through the key rotor moment and force
stiffness terms (  and  for the roll and lateral degrees of freedom, 
and  for the pitch and longitudinal degrees of freedom). The force springs are
constrained,

(15.3)

as would be expected from physical considerations, but the numerical value, the-
oretically equal to  (  ft/s2), is left as an identification parameter
because of the uncertainty in the exact location of the vertical center of gravity.
Alternatively, these can be constrained to the gravity constant, and the center-of-
gravity location can be determined in the identification.206

The state equations of Eqs. (13.12), (13.13), (13.17), and (13.18) become

(15.4)

(15.5)

(15.6)

(15.7)

where again the primed notation ( ) of Sec. 13.3.2 is implied (e.g., ) but is
dropped for notational convenience. Also, the  derivative of Eqn 13.13 is not
generally included in helicopter applications.

There are two important aspects to note in this hybrid formulation. The first
observation is the absence of the conventional quasi-steady rotor moment deriva-
tives ( , , , ), quasi-steady rotor force derivatives ( , , ), and
quasi-steady rotor cyclic control derivatives ( , , , , , ,

, ). These conventional quasi-steady terms are a result of the six-DOF
assumption that models the rotor as a simple time delay. With the current explicit
representation of the rotor flapping response, these quasi-steady derivatives are
omitted. Instead, the cyclic inputs ( , ) produce tip-path-plane flap
responses ( , ) as modeled in eqns 15.1 and 15.2. These flap responses
transmit forces and moments to the fuselage via the associated flap spring terms
(e.g., , , etc.) in eqns 15.4–15.7. Effective values for the quasi-
steady derivatives can be obtained from the steady-state rotor response, such as

θ1s
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given in Eqs. (11.45) and (11.46). One quasi-steady force angular derivative  is
retained explicitly [Eq. (15.5)] to account for tail-rotor effects. 

The second observation about the hybrid formulation is that the rotor equations
consider the flapping response to angular shaft motions only (i.e.,  and ). The
flapping response to translation ( , , ) and the resulting rotor contributions to
the forces and moments on the fuselage are contained in the quasi-steady speed
derivatives (e.g., , , , , ). These speed derivatives are associated with
low-frequency motions, and consequently the rotor time lag is not important
here. This approach retains the many coupling terms that are needed to accurately
match the low-frequency responses while maintaining a fairly simple (yet very
accurate) formulation for the short-term flapping response.

15.2.2 Lead-Lag Dynamics
In addition to flapping motions, which are perpendicular to the tip-path plane,

the rotor blades also experience in-plane or lead-lag motion about the lead-lag
hinges. As in the case of flapping, these are best viewed in the nonrotating frame,
and again there are three degrees of freedom of concern. (As in flapping, the reac-
tionless mode for a four-bladed rotor is ignored, as it does not affect the vehicle
response.) The lead-lag displacements, depicted in Fig. 15.2 with the appropriate
sign conventions, reflect a lateral shift of the rotor blades , a longitudinal shift
of the rotor blades , and a collective rotation . The lateral shift of the blades
results in a lateral shift of the rotor c.g. from the rotor shaft axis of rotation, causing
an associated sheer and rolling moment to be imparted to the fuselage. There is
an analogous contribution in longitudinal shear and pitching moment for sine lag

 displacement. Thus lead-lag motion can be visualized as a whirling of the
rotor c.g. about the axis of rotation.169 The collective lead-lag motion contributes
a torque about the rotor shaft. The fundamental dynamic parameter  is the lag
natural frequency in the rotating frame normalized by the rotor rotational speed

. This parameter has a value in the range of  for a typical articu-
lated rotor helicopter. 

When viewed in the nonrotating frame (i.e., from the fuselage), the lead-lag
motion of the rotor system is composed of three lightly damped second-order
modes (excluding the reactionless mode). The lower-frequency or regressive lead-
lag mode (involving  and ) is lightly damped (e.g.,  for an articu-
lated rotor system with mechanical lag dampers, and much lower damping for a
hingeless rotor system, as seen in Sec. 11.8 for the Bo-105) with a natural fre-
quency in the nonrotating frame of approximately , or about , to
give  rad/s for a typical manned helicopter. The higher-frequency or
advancing lead-lag mode (also involving  and ) is more lightly damped
with a natural frequency in the nonrotating frame of about , or about

, to give rad/s for a typical manned helicopter. Finally the collec-
tive lag mode (involving ) has the same natural frequency in the nonrotating and
rotating frames of ( ), or a value of , to give  rad/s for a typical
articulated helicopter. This mode couples into the shaft-torsion/engine/governor
dynamics and is important in the design of engine/rotor-rpm controllers. The
influence of the collective lag mode is absorbed in the effective time delay (Padé
transfer function) for the engine response to collective input (Sec. 15.2.4).
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The importance of coupled flap/lag/fuselage motion for helicopter flight
mechanics and control analyses is addressed in depth by Curtiss.161 The example
application based on an articulated rotor configuration showed that the lead-lag
dynamics add a closely spaced complex zero/pole pair (dipole) to the fuselage roll-
rate responses. A limit on maximum roll-rate feedback gain arises from the desta-
bilization of the cosine lead-lag dynamics. Tischler,18 Tischler and Cauffman,15

and the results summarized in Sec. 11.8 demonstrate this same characteristic using
system-identification results for the Bo-105 (hingeless rotor) helicopter. The
coupling of lead-lag and roll/flapping dynamics was a key aspect of the integrated
rotor/control system development for the RAH-66 (Comanche) bearingless rotor
helicopter.134 In the excellent flight-mechanics analysis of coupled fuselage/flap/
lag motion by Sahasrabudhe and Gold,169 the lightly damped regressive lead-lag
mode of the RAH-66 was successfully stabilized using feedbacks of the off-axis
fuselage angular rates. 

collective lag

rightleft

Top view

sine lag

rightleft

Top viewTop view

cosine lag

rightleft

 Fig. 15.2 Rotor lead-lag degrees of freedom.
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The complete coupled state-space equations for flap/lag motion are
complex92,162 and are not readily simplified for inclusion into the hybrid model
structure. However, as already mentioned, the analysis by Curtiss161 showed that
the main flight-mechanics’ influence on the regressive lead-lag dynamics is to
contribute a closely spaced complex zero/pole (dipole) to the roll and pitch
responses. Tischler (Ref. 18; summarized in Sec. 11.8) identified a transfer-func-
tion model of the Bo-105 roll response that included this dipole representation of
the lead-lag influence. This extends the frequency range of applicability from
about 12 rad/s (or about 0.6 regressive lag frequency) to about 30 rad/s, as is
required for high-bandwidth flight-control applications. A complex dipole is
appended to the roll-rate response that results from Eq. (15.6),

(15.8)

and similarly to the pitch response that results from Eq. (15.7),

(15.9)

with a common second-order denominator. This adds eight-identification param-
eters to the model structure. These dipoles are implemented in canonical form
and contribute four additional canonical states to the overall hybrid model struc-
ture, as demonstrated by Fletcher153 and denoted herein as , , , .

As seen in the example of the Bo-105 (Fig. 11.14), the influence of these
dipoles is restricted to a fairly narrowband near the regressive lead-lag frequency.
For rotor systems with mechanical lead-lag dampers, the frequency range of
influence is somewhat wider

(15.10)

or about 12–28 rad/s for a typical articulated rotor helicopter. An effective
approach is to first identify the hybrid model structure for frequencies up to

, excluding the lead-lag dipoles. Then the hybrid model structure is
fixed, and only the lead-lead dipoles are identified by fitting the on-axis roll-rate
and pitch-rate responses  and  in the frequency range of Eq. (15.10). 

This rather simple modeling approach has been found by the leading author to
be quite accurate for many identification studies, including a flight-test study of
the RAH-66 (Comanche), where the sensitivity of the regressive lead-lag response
was tracked precisely for variations in flight condition and rotor system hardware.
Examples of including lead-lag dynamics using the dipole modeling approach are
well documented by Fletcher,153 Tischler et al.,17 and Harding and Moody197 in
identification studies of articulated-rotor helicopters, and by Dryfoos et al.134 in a
control system analysis of the RAH-66 bearingless rotor response. The identifica-
tion of a complete state-space model of flap/lag/inflow dynamics of the Sikorsky
bearingless main rotor (SBMR), using frequency-sweep data obtained from full-
scale rotor tests in the NASA 40 × 80 ft wind tunnel, was presented by Tischler.92
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15.2.3 Coupled Fuselage/Coning-Inflow Dynamics
The vertical response to collective  is dominated at low frequencies

(below 1 rad/s) by the first-order heave damping characteristic,

(15.11)

with typical values of  for hovering flight. At mid to high fre-
quencies (in the range of about 1–12 rad/s), the influence of the heave damping
mode is essentially negligible, and the vertical response is dominated by a lead
term (a transfer-function zero) associated with the coupled dynamics of dynamic-
inflow/coning. At higher frequencies, the vertical response is dominated by the
second-order coning dynamics, which exhibit a natural frequency of about 1/rev,
or  for a typical manned helicopter. Chen and Hindson196 have developed
analytical models for the coupled inflow/coning/heave dynamics. By ignoring the
aircraft heave motion, a simplified physical model of coupled inflow/coning
response that is quite accurate at mid and high frequencies (above 1 rad/s) is
obtained. The inflow dynamics equation can be written as

(15.12)

and the trim inflow ratio is obtained from momentum theory for hovering flight
as163

(15.13)

where the trim thrust coefficient is defined as

(15.14)

For hovering flight, an analytical expression is available for the  coefficient:

(15.15)

We adopt the Carpenter–Fridovich inflow constant (  = 0.639) based on the
results of Tischler and Tomashofski.139 The control gain  transforms the col-
lective stick input to the collective component of the blade-root pitch angle . 
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The coning dynamics, ignoring the influence of hinge offset, are expressed as a
second-order differential equation:

(15.16)

resulting in the two states of coning angle  and coning rate . 
Finally the coning/inflow dynamics are coupled to the fuselage through the

perturbation thrust coefficient  and the aircraft mass m. The hybrid model
structure for the vertical dynamics is obtained from Eq. (13.14):

(15.17)

where the perturbation thrust coefficient CT is given by196

 (15.18)

Note here again the absence of the quasi-steady collective control force deriva-
tive  from the expression for the vertical acceleration [Eq. (15.17)]. Rather,
control inputs cause an increase in blade angle of attack that increases coning
[Eq. (15.16)] and inflow [Eq. (15.12)]. The associated dynamic variations in
thrust [Eq. (15.18)] are transmitted to the fuselage [Eq. (15.17)], resulting in ver-
tical acceleration.

We implement the algebraic equation for perturbation thrust coefficient
[Eq. (15.18)] by introducing a fictitious state derivative ( ):

(15.19)

This equation is rearranged as

(15.20)

and implemented using the M matrix. Finally, the vertical acceleration is written as

(15.21)

which again is implemented by making use of the M matrix.
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15.2.4 Yaw and Engine Dynamics
The yaw degree of freedom follows the standard quasi-steady form from

Eq. (13.19):

(15.22)

The effect of the engine dynamics on the fuselage response primarily mani-
fests itself as a large additional phase lag in the , , 
responses. In a comprehensive identification model study of the UH–60 helicop-
ter, Fletcher153 showed that an accurate prediction of the response coupling
requires a complete representation of torque, rpm, and engine governor dynam-
ics in the model structure. The complexity of an explicit engine/governor model
is generally not warranted for a flight-dynamics identification model. However,
identification studies on the SH-2G139 and the Sikorsky S-92 helicopter17 have
shown that the influence of the engine dynamics on the yaw response to collec-
tive can be captured well as a Padé filter on the collective input ( ) in
Eq. (15.22): 

(15.23)

where  is the engine time constant,  is the actual (pilot) collective control,
and  is the lagged or effective collective control included in pitch, roll, and yaw
equations of motion to account for engine dynamics. [The six-DOF identification
of the Fire Scout P2 demonstrator (Sec. 13.12.3) represented this Padé filter as an
equivalent time delay on the collective input to angular rate responses .] 

The Padé filter can be written as

(15.24)

or, equivalently, as

(15.25)

We need to express this last equation in state-space form. First, we define the
quantity in the square bracket in terms of an engine state , so that

(15.26)
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which is expressed in the observable canonical form [from Eqs. (12.54) and
(12.55)] as

(15.27)

or, more conveniently for identification, as

(15.28)

and  is implemented as an identification parameter in the M matrix. Finally,
then,

(15.29)

We again introduce a fictitious state and implement this algebraic equation for the
lagged collective control in state-equation form:

(15.30)

Finally, the yaw acceleration equation from Eq. (15.22) becomes

(15.31)

and is implemented using the M matrix. The lagged collective is also introduced in
place of the actual collective in the pitch and roll equations, just as in Eq. (15.31).
The coning/inflow equations (15.12) and (15.16) use the unlagged collective as the
input .

Harding and Moody197 implemented a simple second-order model of the rotor
rpm/governor system in an identification of the AH-64 helicopter that accurately
characterized the dynamic response and is an excellent alternative approach to
the Padé filter of Eq. (15.23). 

15.2.5 Complete State-Space Hybrid Model Structure
The complete hybrid model structure consists of 20 states:

(15.32)

Two of the states are algebraic ( , ), so that there are actually 18 dynamic
states and 18 eigenvalues in the hybrid model.
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As before [Eqs. (13.29) and (13.30)], there are four bare-airframe controls, 

(15.33)

and nine measurements,

(15.34)

15.2.6 Hybrid Model Structure for Forward Flight
The hybrid model structure is unchanged for the forward-flight conditions. The

fuselage aerodynamics contribute significantly, as does the rotor, to the quasi-
steady speed derivatives in Eqs. (15.4–15.7), (15.17), and (15.22). The horizontal
tail also contributes an aerodynamic damping moment derivative  that is
absorbed as an incremental increase in the effective rotor moment spring con-
stants . This term can only be independently identified when
rotor state measurements are available.103 There is an associated increment to the
rotor force springs as a result of horizontal tail force contributions . For
forward flight, the inflow constant [ , Eq. (15.12)] is included as a free identifi-
cation parameter.

15.3 Hybrid Model Identification of SH-2G Helicopter

The H-2series helicopter (Fig. 15.3), manufactured by Kaman Aerospace Cor-
poration, has been in the U.S. Navy fleet for over 30 years. Most notable among the
H-2 series’ features is the unique servoflap method of main rotor control. The flaps
are separate airfoils riding aft of the blade trailing edge. They produce pitching-
moment changes, which impel the main blade to free fly against the soft feathering
spring to achieve aerodynamic equilibrium, thereby producing the desired collec-
tive and cyclic blade lift. This method provides a crisp and responsive control on
a stable platform with very low vibration. The low control forces permit the
helicopter to be flown easily with or without hydraulic boost.
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An accurate flight-mechanics model over the entire speed range was needed to
support the development of the AFCS and for use in piloted training simulators.
Analytic models for the SH-2F configuration with the vertical/longitudinal
dynamics uncoupled from the lateral/directional dynamics had previously been
developed by Kaman. Two comprehensive, full-envelope, nonlinear simulation
models of the SH-2F were also developed in support of the U.S. Navy NAVTO-
LAND program and are referred to in this chapter as the STI model212 and the
NASA model.211 The references provide tables of six-DOF perturbation deriva-
tives for a range of speed conditions. There are significant differences between
the latter two models for the key control and response derivatives. More impor-
tantly, there are significant discrepancies in the bare-airframe dynamic response
comparisons between the simulation model and the flight-test data.211

A flight-test and system-identification program was conducted on the SH-
2G helicopter to determine an accurate series of models in support of the
development of a new digital flight-control system and piloted simulation.
Higher-order state-space models, based on the hybrid model structure, were
identified using CIFER® at three airspeeds that span the flight envelope (hover,
60 kn, and 100 kn). The results are summarized in the following sections.
More detail on this project is available in Tischler and Tomashofski.139

15.3.1 SH-2G Flight Testing
A complete battery of sweeps and doublets was performed using the flight-test

methods of Chapter 5 at each of three trimmed airspeeds that spanned the flight
envelope: hover, 60 kn, and 100 kn. The longitudinal and lateral sweeps were per-
formed with the automatic stabilization equipment (ASE) engaged. This improved

 Fig. 15.3 U.S. Navy version of the SH-2G (Kaman Aerospace Corporation photo).
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the handling qualities for the conduct of the frequency-sweep tests and also pro-
vided information for ASE characterization. Pedal and collective sweeps were per-
formed with the ASE off, as it was determined that isolation of bare-airframe
characteristics in those axes was compromised if sweeps were done with the ASE
engaged. The total inputs to the airframe (pilot + ASE) were recorded to allow the
identification of the bare-airframe response characteristics. The control deflections
were normalized to maximum deflection (  unit = full deflection). All sweeps
were done with the optional hydraulic boost engaged. This provided a differential
measurement to identify the second-order dynamics of the boost hydraulics.

15.3.2 Hover Flight Condition Identification
The frequency-response data were generated from the flight data using the

MIMO methods of Chapters 7, 9, and 10. The resulting frequency ranges for
acceptable coherence were determined. As with the results of Chapter 13, many
of the responses were not important, and the associated derivatives were dropped,
greatly simplifying the initial model structure.

The hybrid model structure of Sec. 15.2 was implemented with only minor
modifications for application to the SH-2G configuration. In this study, the angu-
lar response modeling was limited to 12 rad/s, below the regressive lead-lag fre-
quency, so that the lead-lag dynamics of Sec. 15.2.2 were ignored. Also, in the
conventional rotor control method, the 1/rev blade-root pitch is fixed, as defined
by the direct linkage inputs (i.e.,  in Sec. 11.7.1). With servoflap control of
the SH-2, the blade-root pitch angle is not a directly controlled parameter but
rather is free to pitch so as to maintain aerodynamic equilibrium. Thus blade-root
pitch is generated via the dynamic response of the soft blade-torsion spring to
aerodynamic moments generated from the servoflaps. The steady-state change in
blade pitch with change in servoflap deflection is thus accounted for in the identi-
fied parameters  and  of Eq. (15.1),  and  of Eq. (15.2), and

 of Eqs. (15.12) and (15.16). The lagged collective  was introduced only
into the yaw-rate equation (Sec. 15.31) herein, though a small improvement was
seen by introducing this into the pitch and roll equations as well. 

The initial hover model structure was converged to a cost function of
, which is considered an excellent fit. The identification results

clearly showed that the Carpenter–Fridovich value for the inflow constant (  =
0.639) of Eq. (15.12) provided the best fit of the flight-test data at hover (and for-
ward flight), and so it was subsequently fixed at this value. This agrees with the
findings of previous researchers.196

The model structure determination method of Sec. 12.3.4 was followed, result-
ing in a considerable reduction in the number of identified parameters, as seen in
the final hover identification results of Table 15.1. The parameter insensitivities
and Cramér–Rao bounds are nearly all within the suggested guidelines. The over-
all final cost function is low ( , Table 15.2) and reflects the excellent
agreement of the identified model with the flight data, as shown in Fig. 15.4. The
hybrid model structure thus very accurately captures the key dynamic characteris-
tics of the SH-2G flapped-rotor configuration. Including the simple engine dynam-
ics of Eq. (15.23) results in an excellent characterization of the yaw response to
collective , as seen in the low-cost function for this pair ( ).  

1±
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 Table 15.1 Hybrid model identification results (SH-2G, hover)a 

Engineering
symbols Value

CR,
%

Insens,
%

M-matrix 
0.2051 2.55 0.56

0.8886 9.07 3.41

F-matrix 
−0.06415 12.66 5.71

0.000b —— ——
0.000b —— ——
0.000b —— ——

−32.20c —— ——
35.30 2.39 0.53
–0.1592 11.86 1.37
–0.3593 3.92 0.88

0.000b —— ——
1.216 7.77 3.37
0.000b —— ——

–35.30d —— ——
0.000b —— ——
0.000b —— ——

–0.06857 12.94 6.39
0.000b —— ——
0.000b —— ——
0.000b —— ——

–0.04063 9.46 0.74
–0.08868 2.61 0.52

0.000b —— ——
–0.3296 26.84 9.68

–22.38 2.41 0.47
–4.484E-03 11.35 0.83
–8.806E-03 10.21 0.85

0.000b —— ——
0.000b —— ——

–8.257 2.81 0.64
0.000b —— ——
0.000b —— ——
0.000b —— ——
0.000b —— ——
0.000b —— ——

–0.6688 15.75 5.23
–0.4171 7.05 1.21

0.6807 6.30 1.59
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 Table 15.1 Hybrid model identification results (SH-2G, hover)a (continued)

Engineering 
symbols Value

CR,
%

Insens,
%

–165.1c —— ——

0.08268 2.92 1.44

0.6390c —— ——

G-matrix 

0.000b —— ——
3.288 4.68 2.25

–5.369 3.57 1.71
0.000b —— ——
0.000b —— ——
0.000b —— ——
0.000b —— ——

–0.7305 5.77 2.58
0.000b —— ——
0.000b —— ——
0.2251 11.11 2.40
0.000b —— ——
0.000b —— ——
1.725 5.12 2.33
0.3577 6.04 2.72
0.1769 4.31 0.77

–0.09724 4.53 1.59
0.2727 4.03 0.94
0.1142 4.92 1.39

Time delays

0.000b —— ——
0.000b —— ——
0.03624 20.96 9.79
0.03409 12.61 6.24

aAll results in English units.
bEliminated from model structure.
cFixed parameter in model structure.
dConstrained parameter in model structure.

, normalized units 0–2 (+ve right turn).
, normalized units 0–2 (+ve up collective).
, normalized units 0–2 (+ve right stick).
, normalized units 0–2 (+ve forward stick).

υβ̇
Kθ0

C0

Xδped

Xδcol

Yδped

Yδcol

Zδlon

Zδlat

Zδped

Lδped

Lδcol

Mδped

Mδcol

Nδlon

Nδlat

Nδped

Nδcol

Lfδlon

Lfδlat

Mfδlon

Mfδlat

τlon

τlat

τped

τcol

δped
δcol
δlon
δlat

Chapter 15.fm  Page 468  Friday, June 16, 2006  3:28 PM



HIGHER-ORDER MODELING OF COUPLED ROTOR 469

The theoretical value for the rotor time constant is obtained from Eqs. (11.35)
and (11.37), based on the SH-2G geometric characteristics:

(15.35)

which agrees very closely with the identified value ( ). The theoretical
value of flapping stiffness for the SH-2F configuration is given by Heffley et al.21

based on an assumed inertia:

(15.36)

which also agrees well with the CIFER® identification results
( ). The ratio of the pitch and roll flapping stiffness terms

(15.37)

 Table 15.2 Hybrid model identification 
cost functions (SH-2G, hover) 

Engineering 
symbols Costs

85.5
147.8
34.2
43.3

123.0
43.5

110.8
168.2
87.5

107.2
168.6

3.3
30.8
55.0
51.2
73.5
21.5
25.1
45.2
50.2
21.5
71.3
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 Fig. 15.4 Identification and simulation models for hover (SH-2G).
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 Fig. 15.4 Identification and simulation models for hover (SH-2G) (continued).
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 Fig. 15.4 Identification and simulation models for hover (SH-2G) (continued).
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is the SH-2G ratio of pitch-to-roll moment of inertia and corresponds closely to
the estimated value for the aircraft of 2.57. The flapping force stiffness deriva-
tives  and  are nearly equal to the gravity constant, which confirms that
the data are kinematically consistent and that the placement of the accelerometers
at the assumed c.g. is close to the actual c.g.

Finally, referring again to Table 15.1, the engine time constant is identified with
a value of . Adding the collective stick input delay ( )
gives a total engine response delay to collective of 0.92 s. This result corresponds
well with the approximately 1-s rise time seen in the rpm step response to collective
for the UH-60 T700 engine,153 which is the same engine as in the SH-2G.

Table 15.3 presents the 14 eigenvalues associated with the hover model (recall
that the lead-lag canonical states are omitted in this example). The heave  and
yaw  responses are first-order and are dominated by the damping derivatives

 and , respectively. The engine rpm mode ( ) again corresponds
closely with the value given by Fletcher153 for the UH-60 T700 engine.

The lateral dihedral stability has a small stable characteristic ( ), which
contributes to the stable lateral low frequency (phugoid) oscillation mode  and

. The identified  derivative value compares well with the NASA simulation,
as shown later in Section 15.3.3. The analogous low-frequency longitudinal trans-
lational dynamics are characterized by two real (aperiodic) modes — one unstable
and one stable (  and , respectively). These dynamics reflect the identified
very small, but unstable, longitudinal speed stability derivative ( ). The low
associated Cramér–Rao bound (about 11%) indicates that the estimated value is
reliable. A positive value of the derivative  would be expected with a first prin-
ciples analyses of the steady-state response of an isolated rotor to speed perturba-
tions (i.e., caused by blowback; see Prouty163 and Padfield200). This would be

 Table 15.3 Eigenvalues for identified hybrid model (SH-2G, hover): Eigenvalues 
( ) of [M_inverse][F] 

Mode

0.06595 0.0000 —— —— Pitch
–0.06857 0.0000 —— —— Heave
–0.1268 0.0000 —— —— Pitch
–0.6688 0.0000 —— —— Yaw
–0.07817 0.8950 0.08701 0.8984 Roll
–0.07817 –0.8950 0.08701 0.8984 Roll
–2.251 0.0000 —— —— Engine
–1.729 –1.551 0.7445 2.323 Pitch/flap
–1.729 1.551 0.7445 2.323 Pitch/flap
–3.249 4.901 0.5525 5.880 Roll/flap
–3.249 –4.901 0.5525 5.880 Roll/flap

–19.31 0.0000 —— —— Inflow/coning
–7.386 –27.24 0.2617 28.22 Coning
–7.386 27.24 0.2617 28.22 Coning

Xβ1c
Yβ1s
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consistent with a forward stick migration with airspeed in trim flight, as indicated
in the first (dominant) term of Eq. (13.80). The simulation models do show a small
but positive value of , as shown later in Section 15.3.3.

Apparently there are other contributing factors that produce a slightly negative
value of  as needed to match the longitudinal dynamic responses at low fre-
quency ( ) rad/s. Yet, the same value of  is inconsistent with an
expected stable trim control gradient with velocity. The identified negative value
of  could arise from the transient effects of the rotor wake and its impinge-
ment on the airframe and tail rotor, as well as the engine response to speed per-
turbations. Another possible contributor to this discrepancy is the assumption of a
quasi-steady representation for the velocity derivatives. Dynamic measurements
of rotorcraft in the Princeton longtrack (e.g., Curtiss et al.213) show a strong hys-
teresis effect in the pitching-moment response to velocity perturbations. The
pitching moment is seen to change sign for accelerating vs decelerating flight.
This characteristic also suggests the presence of unmodeled dynamics that could
contribute to the inconsistencies between trim (static) and system-identification
(dynamics) results for .

The speed-stability constraint equations implemented for the six-DOF model
[Eqs. (13.80) and (13.81)] can be extended to the hybrid model structure to
enforce consistency with the measured trim control gradients. For example, using
Eq. (11.45) and noting that  for the hybrid model

(15.38)

and from Eq. (13.81),

(15.39)

The analogous formulation can be adopted to constrain  using Eq. (13.80). A
small improvement to the hover results presented herein was also noted by intro-
ducing the (s) and (s) responses and the associated constraints on  and

, as discussed in Sec. 13.12.4. These speed-stability and speed-damping con-
straint techniques were implemented in the identification of the RMAX UAV
small-scale helicopter by Cheng et al.206 and resulted in an excellent hybrid
model for the hover condition. 

The dominant body-pitch/longitudinal flapping  and  and body-roll/lateral
flapping dynamics  and  are characterized by well-damped second-order
systems and thus cannot be modeled accurately in a classical six-DOF quasi-
steady model structure. This same result was seen earlier for the OH-58D
(Sec. 11.7.2) and the Bo-105 (Sec. 11.8). There are three modes associated with
the coning/inflow dynamics ( , , ). The lightly damped second-order
coning mode has a natural frequency of 0.9/rev, which is reduced from the 1/rev
frequency as a result of the influence of the inflow dynamics. This follows the
analytical results of Chen and Hindson.196

Another noticeable aspect of the identification results is the pitch-roll response
coupling of the SH-2G rotor. For a given pitch rate q, the resulting roll acceleration
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exceeds the pitch acceleration, as seen from the effective roll-response coupling
derivative ratios (determined from a quasi-steady reduction of the identified
model; parameters listed in Section 15.3.3):

(15.40)

This indicates a large roll-response coupling to pitch inputs, as is typical for most
helicopters. The analogous quasi-steady pitch-response coupling ratio for the
SH-2G is

(15.41)

Finally, we can compare the pitch acceleration caused by roll rate (off-axis
response) with the pitch acceleration caused by pitch rate (on-axis response)
based on the quasi-steady ratio:

(15.42)

The pitch-response coupling ratios [Eqs. (15.41) and (15.42)] are larger than
would be expected for the small hinge offset of the SH-2G ( ),
based on a comparison with other helicopters for which hover identification data
are available (e.g., Refs. 10, 37, 153, and 182). The effective response coupling
ratio  is nearly double the value for the large hinge-offset Bo–105
( ), and it would appear to be as a result of the unique characteristics
of the servoflap control system. The shaft angular rates appear to change the tor-
sional control moments of the SH-2G flap-controlled rotor with a phasing that
increases the effective coupling ratio beyond that level expected based solely on
the hinge offset.

These identification results are consistent with the work of Curtiss and Gao,214

who developed a detailed flight-mechanics model of the SH-2 servoflap system.
Their analysis demonstrated that a significant increase in angular response cou-
pling arises from the soft torsional stiffness of this rotor. The amount of coupling
is quite sensitive to the location of the blade aerodynamic center and center of
gravity relative to the blade-pitch rotation axis. Padfield200 also showed a signifi-
cant increase in pitch-roll response coupling for soft torsional rotor configura-
tions, in agreement with the SH-2G identification results.

15.3.3 Comparison of Identification and Simulation Models for Hover
Also shown in Fig. 15.4 is the comparison of the NASA simulation model211

with the flight data and identified model for the hover flight condition. Equiva-
lent time delays are included in the (six-DOF) NASA simulation models to
approximate the identified rotor time constant and pedal and collective input
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delays and thereby provide a fairer comparison of results. The NASA simula-
tion model exhibits considerable discrepancies, including the key on-axis
responses ( , , , ). The off-axis (coupling) response

 displays a large error in phase, as is common for helicopter simulation
models.16

Tables 15.4 and 15.5 present a direct comparison of the identification parame-
ters and cost functions of the identification model and the six-DOF simulation
models from Ringland and Clement212 and Paulk et al.211 The identification
parameters listed in Table 15.4 are the quasi-steady derivatives obtained by
numerically reducing the identified flapping and coning/inflow state-equations to
quasi-steady form. There is reasonable agreement of the quasi-steady identifica-
tion values with the simple expressions from Sec. 11.7.1. For example, the
numerically reduced values for the key parameters of roll control effectiveness
and roll damping are listed in Table 15.4 as  rad/s2/unit-control and

 rad/s, respectively. Equation (11.45) gives an estimate of the effec-
tive control derivative of

 rad/s2/unit-control (15.43)

and Eq. (11.46) gives an estimate of the effective roll damping of

 rad/s (15.44)

The differences are caused by the significant inter-axis coupling in the identified
MIMO model as compared to the simple analysis, which is based on a two-DOF
(roll-flap) dynamics model.

As expected from the plotted results, the frequency-response cost functions of
Table 15.5 show that the identified model demonstrates substantially improved
accuracy as compared to the simulation models of Ringland and Clement212 and
Paulk et al.211 Although in many cases there is fair agreement between one or the
other of the simulations and the identified model in terms of parameter values
or  cost functions, there is no consistent trend as to which of the two simulation
models gives the more accurate prediction. Clearly, the system-identification
approach provides a much more accurate model for flight-control applications
than had been available from the previous simulation models.

One noticeable aspect of the comparison in Table 15.4 is that the heave damp-
ing is significantly overestimated by both simulation models, as reflected in the
low-frequency phase discrepancy in heave response  of the simulation
models as compared to the flight data (Fig. 15.4). This is a failure in momentum
theory that has been consistently reported in rotorcraft flight-mechanics studies
(e.g., Refs. 54, 68, 196 and 215). Houston and Tarttelin215 have conducted wind-
tunnel measurements, flight tests, and system-identification modeling in a com-
prehensive study of this problem. Their study concluded that the conventional
simulation theories do not capture the influence of unsteady wake aerodynamics
and blade flexibility that are the source of the lower value for  seen in the
actual test data. 

p δlat⁄ q δlon⁄ r δped⁄ az δcol⁄
p δlon⁄

Lδlat
2.526=
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 Table 15.4 Simulation and (equivalent six-DOF) identification 
parameters (SH-2G, hover)a 

Engineering 
symbols STI model NASA model

Identification
(reduced)

F-Matrix 

–0.02910 –0.03021 –0.06415
–8.500E-03 –0.4091 0.000

0.02630 0.06350 0.000
–2.323 –0.03290 3.839

4.352 4.988 5.640
–0.1616 –0.8409 0.000

9.900E-03 7.800E-03 –0.1592
–0.1032 –0.1981 –0.3593
–0.02740 –0.01620 0.000
–4.809 –4.139 –4.424
–1.230 –2.059 2.352

4.447 2.584 0.000
–0.03840 –0.03344 0.000
–0.02270 –0.02580 0.000
–0.3299 –0.3209 –0.06857
–0.9867 1.476 0.000

1.631 –0.5120 0.000
1.082 0.1905 0.000
3.000E-04 –1.860E-03 –0.04063

–0.03300 –0.07077 –0.08868
–0.01400 –5.696E-03 0.000
–6.068 –3.791 –3.577

2.580 2.347 1.492
1.814 0.4536 –0.3296
9.700E-03 0.01484 –4.484E-03

–1.000E-04 0.05106 –8.806E-03
8.000E-04 –1.997E-03 0.000

–0.9792 –0.2121 –0.8981
–1.822 –3.899 –1.319

0.1785 0.2577 0.000
–4.300E-03 –2.077E-03 0.000

0.02450 0.05242 0.000
8.700E-03 4.974E-03 0.000
6.000E-03 0.1757 0.000

–0.07240 0.03235 0.000

(continued)
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 Table 15.4 Simulation and (equivalent six-DOF) identification 
parameters (SH-2G, hover)a (continued)

Engineering 
symbols STI model NASA model

Identification
(reduced)

–2.481 –1.796 –0.6688

G-matrix
4.937 4.968 10.81

0.04980 0.05451 1.321

0.000 0.000 0.000

2.806 3.461 3.288

–0.2292 –0.3980 –1.736

4.390 4.279 3.983

–6.988 –6.955 –5.369

–1.977 –2.355 0.000

1.647 0.04438 0.000

0.04710 –2.917E-03 0.000

0.000 0.000 0.000

–32.13 –32.00 –23.63

–0.03280 –0.09352 –1.101

3.974 4.078 2.526

–2.452 –2.443 –0.7305

–0.5744 –0.8653 0.000

–1.671 –2.736 –2.528

8.000E-03 0.02671 –0.3090

0.08620 0.09305 0.000

0.1449 0.09190 0.2251

–0.07670 –6.419E-03 0.000

–3.000E-03 0.06116 0.000

4.368 4.256 1.725

2.076 2.006 –0.3577

Times delays

0.2000 0.2000 0.2000
0.2000 0.2000 0.2000

0.06265 0.06265 0.05000

0.03482 0.03482 0.05000

aAll results in English units.
, normalized units 0–2 (+ve right stick). 
, normalized units 0–2 (+ve forward stick).
, normalized units 0–2 (+ve right turn).
, normalized units 0–2 (+ve up collective).
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15.3.4 Identification Results for 60 and 100 kn
The identification process for 60 and 100 kn closely followed the hover

approach just detailed. One aspect of the forward-flight identification is the high
insensitivity of the speed-damping derivative  because of the lack of sufficient
low-frequency longitudinal response data content. Therefore, the simulation
values212 were fixed in the identification for 60 and 100 kn. A second aspect for
forward flight is that there is no significant  response, as indicated both in
the time response to collective inputs and the lack of coherence for this pair.
Therefore the engine dynamics were also dropped for forward flight.

Tables 15.6 and 15.7 compare the identification results for all three flight con-
ditions. The average cost functions are  and  for 60 and
100 kn, respectively, again indicating excellent characterization of the flight data.

There are generally quite smooth trends of the identification parameters
with airspeed. This is seen, for example, in the monotonic increase in the rotor
spring parameters  and , which reflect increasing rate damping with speed
and include the influence of the horizontal tail, as discussed earlier. An interesting
result is that the rotor time constant reduces at the highest flight speed (100 kn) to
an identified value  of , which agrees very closely with the theoretical

 Table 15.5 Simulation and identification model cost functions  (SH-2G, hover)

Engineering 
symbols STI model NASA model Identification

99.6 308.4 85.5
5477 6228 147.8
3048 2280 34.2
341.2 513.5 43.2
886.8 2035 123.0

1668 977.6 43.5
384.7 2001 110.8
830.8 7342 168.2
126.0 227.2 87.5
656.4 2042 107.2

1752 2036 168.6
5.9 123.5 3.3

920.2 314.0 30.8
470.6 563.1 55.0
377.3 109.3 51.2

1379 1338 73.5
198.9 188.9 21.5

8313 7095 25.1
2925 2968 45.2
104.6 92.3 50.2
198.9 188.9 21.5

1436 1856 71.3

u δlon⁄
v δlon⁄
p δlon⁄
q δlon⁄
ax δlon⁄
ay δlon⁄
u δlat⁄
v δlat⁄
p δlat⁄
q δlat⁄
ay δlat⁄
v δped⁄
p δped⁄
r δped⁄
ay δped⁄
u δcol⁄
w δcol⁄
q δcol⁄
r δcol⁄
ax δcol⁄
az δcol⁄
Jave

Xu

r δcol⁄

Jave 100= Jave 93=

Lβ1s
Mβ1c

τf 0.13 s=

Chapter 15.fm  Page 479  Friday, June 16, 2006  3:28 PM



480 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

 Table 15.6 Identification results for three flight conditions (SH-2G)a 

Engineering 
symbols Hover 60 kn 100 kn

M-matrix
0.2051 0.2090 0.1279
0.8886 —— ——

F-matrix
–0.06415 –0.06036 –0.03760b

0.000c 0.000c 0.000c

0.000c 0.000c 0.000c

0.000c 0.000c 0.000c

35.30 35.08 48.28

–0.1592 –0.2202 0.2160

–0.3593 –0.1153 –0.07071

0.000c 0.000c 0.000c

1.216 1.730 –2.605

0.000c 3.297 0.000c

–35.30d –35.08d –48.28d

0.000c 0.2954 0.2064

0.000c 0.000c 0.000c

–0.06857 –0.3532 –0.3130

0.000c 0.000c 0.000c

0.000c 0.000c –11.74

0.000c –11.43 0.000c

–0.04063 –8.644E-03 0.02068

–0.08868 –0.02272 –5.527E-03

0.000c 0.000c 6.633E-03

–0.3296 0.000c 0.000c

–22.38 –25.48 –27.36

–4.484E-03 –6.052E-03 –8.669E-03

–8.806E-03 2.726E-03 2.939E-03

0.000c 3.922E-03 2.230E-03

0.000c 0.000c 0.5622

–8.257 –10.09 –10.15

0.000c 0.01966 –0.01581

0.000c 0.01836 4.872E-03

0.000c 0.000c 0.000c

0.000c –0.1380 0.000c

τf
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 Table 15.6 (continued)

Engineering 
symbols Hover 60 kn 100 kn

0.000c 0.000c 0.000c

–0.6688 –1.352 –1.609

–0.4171 –0.2656 0.000c

0.6807 0.5145 0.000c

–165.1b 1.054E+03 788.6
0.08268 0.06116b 0.06076

G-matrix

0.000c 0.000c 0.000c

3.288 0.000c 0.000c

–5.369 –5.330 –6.515
0.000c 0.000c 0.000c

0.000c 17.17 21.54
0.000c 5.991 0.000c

0.000c 0.000c 0.000c

–0.7305 –1.126 –1.497
0.000c 0.000c 1.460
0.000c 0.1191 0.000c

0.2251 0.6818 0.9268
0.000c 0.000c 0.000c

0.000c 0.3669 0.000c

1.725 1.802 2.053
0.3577 0.000c 0.000c

0.1769 0.1360 0.07245
–0.09724 –0.1087 –0.09909

0.2727 0.2751 0.2605
0.1142 0.06323 0.03182

Time Delays

0.000c 0.000c 0.000c

0.000c 0.000c 0.000c

0.03624 0.05201 0.05542
0.03409 0.09272 0.08263

a All results in English units.
b Fixed parameter in model structure.
c Eliminated from model structure.
d Constrained parameter in model structure.

, normalized units 0–2 (+ve right turn).
, normalized units 0–2 (+ve up collective).
, normalized units 0–2 (+ve right stick).
, normalized units 0–2 (+ve forward stick).

Nq
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482 AIRCRAFT AND ROTORCRAFT SYSTEM IDENTIFICATION

value ( ) based on the geometric Lock number . This should be
expected at this flight condition ( ), where dynamic inflow
effects on the rotor time constant are not significant [ , Eq. (11.37)].

A key feature is the monotonic reduction with airspeed of SH-2G pitch-roll
coupling, as evidenced by the reduction in the control coupling derivatives 

 Table 15.7 Identification cost functions (SH-2G)

Engineering 

symbols Hover 60 kn 100 kn

85.5 72.7 194.1
147.8 352.4 ——a

——a 48.0 135.6
34.2 147.3 106.9
43.2 23.6 53.1

123.0 66.2 43.4
43.5 ——a ——a

——a 129.9 42.6
——a 22.7 ——a

110.8 166.6 ——a

168.2 ——a ——a

——a 107.6 98.1
87.5 43.0 88.2

107.2 112.3 194.5
——a 141.9 ——a

168.6 104.8 60.3
——a 67.5 92.7
——a 84.7 109.8

3.3 114.6 110.1
——a 63.5 15.9
30.8 64.6 36.4

——a 71.6 17.7
55.0 174.3 166.2
51.2 33.1 54.6

——a 46.7 ——a

73.5 ——a ——a

21.5 ——a 128.2
——a ——a 46.6
25.1 273.2 208.2
45.2 ——a ——a

50.2 ——a ——a

21.5 25.1 35.6
71.3 100.0 92.7 

a Excluded from identification.
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and  and the reduction to zero at 100 kn of the flap response coupling
parameters  and . The flap response coupling derivatives result in an
equivalent reduction to zero in the six-DOF pitch-response coupling ratios

 and . This trend was also verified by a direct comparison of the
off/on-axis frequency-response ratios (e.g., ) for the three air-
speeds. Neither simulation model predicts this significant level of coupling
reduction with airspeed.

There is a monotonic decrease in the primary lateral speed-damping derivative
; this decrease is correctly captured by the STI simulation model,212 but the

NASA model predicted the reverse trend.211 Finally, for forward flight the simu-
lation values for heave damping more closely track the flight-test results (the
average identified value for 60 and 100 kn is ), as has previ-
ously been reported, for example, in Houston and Tarttelin.215

15.3.5 Time-Response Verification
The predictive capability of the identified models is assessed by driving each

model with doublet data not used in the identification process. As explained in
Chapter 14, the identified stability and control derivative parameters are held
fixed, and only the bias and reference-shift corrections are determined. The dou-
blet response comparisons for all flight conditions are shown in Figs. 15.5–15.7
for each of the four inputs. The results show that the identified model generally
has excellent predictive accuracy ( ), even for the rather large
responses in the verification records (up to 30 deg/s). Notice again that these ver-
ification plots reflect the total response variables as can be seen for example in
the starting value of vertical acceleration (  ).

The large roll-response coupling is apparent, as expected for a longitudinal
input in hover ( ), and is well captured by the equivalent six-
DOF cross-coupling ratio ( ). The pitch-response coupling is about
30%, which is also well predicted by the identified model and is consistent with
the reduced six-DOF coupling ratio .

15.3.6 Summary of SH-2G Identification Project
The frequency-domain system-identification methods commonly used on con-

ventional helicopters are seen to be well suited to the SH-2G flap-controlled rotor
configuration. Although key SH-2G response characteristics are not adequately
modeled by existing analytical simulations, the flight-identified models for the
SH-2G closely match the frequency-response flight-test database and accurately
predict the time-domain response to control doublet inputs. The identified models
are characterized by highly coupled fuselage-rotor dynamics, a high degree of
pitch-roll interaxis control coupling, and important effects of engine dynamics.
The identified derivatives are shown to vary smoothly with airspeed and are con-
sistent with theoretical predictions for standard hinge-offset rotors.

The hybrid model structure provides a consistent and accurate characterization
of the coupled fuselage/rotor/inflow/engine dynamics across the entire flight
envelope. This model structure is well suited to system identification of all
helicopters, but is required for configurations that feature larger values of rotor
flap stiffness.

Mfδlat
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 Fig. 15.5 Time-response verification of identified model for hover (SH-2G).
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Fig. 15.5 Time-response verification of identified model for hover (SH-2G) (continued).
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 Fig. 15.6 Time-response verification of identified model for 60 kn (SH-2G).
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Fig. 15.6 Time-response verification of identified model for 60 kn (SH-2G) (continued).
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 Fig. 15.7 Time-response verification of identified model for 100 kn (SH-2G).
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Fig. 15.7 Time-response verification of identified model for 100 kn (SH-2G) (continued).
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15.4 Lead-Lag Dynamics Identification for S-92 Helicopter

The coupled rotor/fuselage/engine dynamics of the S-92 helicopter in hover
were identified by Tischler et al.17 using the hybrid model structure. The regres-
sive lead-lag dynamics were included in the model, using the dipole characteriza-
tion of Eqs. (15.8) and (15.9). The influence of these dynamics can be seen in the
notch characteristic at a frequency of about 20 rad/s in the roll and pitch
responses (Fig. 15.8). The coherence drops at this frequency because of the
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 Fig. 15.8 Hybrid model identification including lead-lag dynamics (S-92, hover).
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reduction in signal to noise associated with the drop in the magnitude response at
the notch center. The identified hybrid model, shown in the dashed line, agrees
well with the frequency-response data. The regressive lead-lag mode is identified
as . The UH-60A helicopter has a similar rotor
system to the S-92. Fletcher210 identified the regressive lead-lag mode for the
UH-60A as , which is in close agreement with the
results herein. 

Problems

Analytical calculations of Bo-105 lateral flapping dynamics

15.1 The Bo-105 helicopter has the following characteristics21: 1/rad,
, ft, ft, rad/s, lb, 

slug-ft2, slug/ft3, and s-1. Calculate the geometric Lock
number [Eq. (11.36)]. Compare the geometric Lock number with that of the SH-2G
( ). What does this indicate about the SH-2G rotor as compared to the Bo-105?
Then determine the effective (reduced) Lock number of the Bo-105 with Eq. (11.37)
and correct the rotor-flap time constant with the corrected Lock number. 

15.2 Determine the theoretical value of  [Eq. (11.33)] for the Bo-105 if
lb, ft, slug-ft2, , slug-ft,

rad/s, ft, and ft-lb/rad (Ref. 21). What is the
largest contribution to flapping stiffness : the height of the rotor-hub, the
hinge offset, or the rotor-blade flap spring? 

Identification of Bo-105 lateral coupled fuselage/rotor dynamics with measure-
ments of fuselage states

15.3 You are an engineer, and you are given flight data for Bo-105 lateral
sweeps for the purpose of system identification. These “flight” data are simu-
lated from a simple simulation model and provided on the AIAA website with
a readme file containing flight numbers and signal names/units. Perform a
SISO identification of ,  with FRESPID, and then combine the
windows using COMPOSITE windowing. Note that the simulation data con-
tain process noise to simulate real flight data that an engineer might be given
for identification. 

15.4 Identify a three-DOF coupled fuselage/rotor model using DERIVID with
states , , , and . Select outputs  and , and use the frequency responses
of the fuselage states  and  determined in Problem 15.3. Use the
theoretical parameters for  and  calculated in Problems 15.1 and 15.2 as
initial guesses, and use the identified SH-2G parameters of Chapter 15 as initial
guesses for all other derivatives. Do the theoretical accuracy parameters fall
within the guidelines given in Chapter 12? How well do  and  match the
theoretical values calculated in Problems 15.1 and 15.2? Hint: Try fixing  to
the theoretical value (−g). 

ζll r
0.183 ωllr

19.0 rad/s=,=[ ]

ζllr
0.175 ωllr

18.9 rad/s=,=[ ]

a 5.73=
σ 0.070= R 16.11= c 0.89= Ω 44.4= W 4620= Ib 142=

ρ 0.00237= 1 τf⁄ 10.8=

γ 5=

Lβ1s
W 4620= hr 5.0= Ix 1330= nb 4= Mβ 10.3=
Ω 44.4= e 1.92= Kβ 8900=

Lβ1s

p δlat⁄ v̇ δlat⁄

p v φ β1s p v
p δlat⁄ v̇ δlat⁄

τf Lβ1s

τf Lβ1s
Yβ1s
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15.5 Identify the frequency-response . Then build on Problem 15.4, and
include this frequency response in the identification by adding the constraint on
the speed-damping derivative  as detailed in Sec. 13.12.4. How does the con-
straint affect the theoretical accuracy parameters? Now how well do  and 
match the theoretical values calculated in Problems 15.1 and 15.2? 

15.6 As in Sec. 13.12.4, use the trim data shown in Table P15.6 to estimate
the lateral speed derivative  from the identified values as obtained from
Problem 15.5. Use a curve-fitting technique to determine . Fix  to its
calculated value in your identified model, and reconverge the solution. How does
the constraint affect the theoretical accuracy parameters? How well do  and

 match the theoretical values calculated in Problems 15.1 and 15.2? What is
a possible explanation as to why this constraint causes the identified model to
move further away from the theoretical values of  and ? 

Identification of Bo-105 lateral coupled fuselage/rotor dynamics with measure-
ments of fuselage and rotor states

15.7 Now, suppose that the Bo-105 has been instrumented with a rotor flap-
angle measurement sensor. Using the simulated flight data for  for the same
Bo-105 lateral sweep “flight test,” perform a SISO identification of  with
FRESPID, and then combine the windows using COMPOSITE windowing. 

15.8 Repeat the system identification of Problem 15.4 including rotor flap-
angle  as an additional output in your DERIVID identification. Incorporate the
frequency response  into the identification. How does this affect the theo-
retical accuracy parameters? How well do  and  match the theoretical val-
ues calculated in Problems 15.1 and 15.2? 

15.9 Determine the eigenvalues and eigenvectors of the system identified in
Problem 15.7, and analyze the identified helicopter modes. 

Quasi-steady lateral model identification for Bo-105

15.10 Use DERIVID to identify a quasi-steady model for the Bo-105 lateral
hover dynamics (with states , , ) from frequency responses identified in
Problem 15.3. The delay  is used to represent effectively the rotor delays

 Table P15.6 Trim data 

Velocity, ft/s , %

−10 −2.0313
−5 −0.1065
0 0.09
5 0.9151
10 3.103

v̇ p⁄

Yv
τf Lβ1s

Lv
∆δlat ∆v⁄ Lv

τf
Lβ1s

τf Lβ1s

δlat

β1s
β1s δlat⁄

β1s
β1s δlat⁄

τf Lβ1s

p v φ
τlat
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associated with flapping. How does the average cost compare to the coupled
rotor-fuselage model (Problem 15.8)? What does this say about the level of
rotor-body coupling? How does the identified value of  compare to the
theoretical effective value  [Eq. (11.46)] as obtained from the identifi-
cation results of Problem 15.8? How does the identified value of  compare to
the theoretical effective value  [Eq. (11.45)] as obtained from the
identification results of Problem 15.8?

15.11 Do you think that the quasi-steady (two-DOF) model identified in Prob-
lem 15.10 is an adequate model structure? Is the condition for lightly coupled
fuselage and rotor responses given in Eq. (11.42) met? 

15.12 Determine the eigenvalues and eigenvectors of the quasi-steady model
identified in Problem 15.10, and analyze the identified helicopter modes. How
does this compare to the coupled fuselage/rotor model from Problem 15.9?

15.13 Determine the sensitivity of the identified value of  to the frequency
range of fit for the system identification of Problem 15.10. 

Time-domain verification of coupled fuselage/rotor model and quasi-steady
model for Bo-105

15.14 Complete the time-domain verification of your coupled fuselage/rotor
model identified in Problem 15.8. Use the doublet “flight” data that are provided
on the AIAA website for your verification. Use the appropriate utilities to obtain
hard copies of your results.

15.15 Complete the time-domain verification of your quasi-steady model iden-
tified in Problem 15.10. Use the doublet “flight” data that are provided on the
AIAA website for your verification. Use the appropriate utilities to obtain hard
copies of your results. Then compare the predictive capability of the quasi-steady
model to that of the coupled fuselage/rotor model (Problem 15.14). Can you
attribute the discrepancies in the time-domain response of the quasi-steady model
to any specific characteristics of its frequency-domain fit (Problem 15.10)?

Lp
Lp( )effective

Lδlat
Lδlat

( )effective

Lp
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Appendix A
Summary of Suggested Guidelines

 

 Table A.1 Suggested guidelines 

 

Guideline Topic Chap. Page Eq.

Select the filter cutoff frequency , also 
referred to as the filter bandwidth, to 
be at least five times the maximum 
frequency of interest of model 
applicability 

5 89 5.1

Choose a sample rate , the same for 
all of the signals, with a value of at 
least a factor of 5 above the filter 
frequency 

5 90 5.2

For frequency sweeps, the minimum total 
record length  relative to the length 
of the longest period  in a record

5 93 5.11

Lower limit of the coherence function  
to achieve acceptable accuracy in a 
frequency-response identification (In 
addition, the coherence function 
should not be oscillating.)

7 166 7.54

Minimum number of independent time-
history averages  in a concatenated 
record

7 169 7.57

Nominal window size  relative to 
the length of the longest period of 
interest 

7 170 7.60

Maximum window size  relative to 
the length of the record 

7 171 7.61

Maximum window size  relative to 
the concatenated record length 

7 171 7.64

Minimum window size  relative to 
the maximum frequency of interest

7 172 7.65

(continued)

ωf 5 ωmax⋅≥ ωf

ωmax

ωs 5 ωf⋅≥ ωs

ωf

Trec 4 to 5( )Tmax≥
Trec

Tmax

γ xy
2 0.6≥ γ xy

2

nd 5≥
nd

Twin 2Tmax= Twin

Tmax

Twin 0.5Trec≤ Twin
Trec

Twin 1 5⁄( )TF≤ Twin
TF

Twin 20 2π ωmax⁄( )≥ Twin
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For structural system identification, the 
minimum window size  relative to 
the structural damping ratio  and the 
undamped natural frequency 

7 174 7.72

For structural system identification, the 
minimum record length  relative to 
the structural damping ratio  and the 
undamped natural frequency 

7 174 7.73

For structural system identification, the 
concatenated record length  relative 
to the structural damping ratio  and 
the undamped natural frequency 

7 175 7.74

Minimum signal-to-noise ratio [ ] 
needed to achieve a satisfactory 
frequency-response bias error 
( )

8 214 8.18

Maximum noise-to-signal rms ratio 
[ ] needed to achieve a 
satisfactory frequency-response bias 
error ( )

8 215 8.20

Maximum average value of the cross-
control coherence  to 
achieve a satisfactory MIMO solution

9 236 9.18

Maximum value of cost function  to 
achieve satisfactory accuracy for SISO 
transfer-function model

11 280 11.8

Suggested value for the coherence cutoff 
parameter , used to avoid data 
that exhibit local drops in coherence 
below this threshold

12 328 12.22

Maximum value of overall average cost 
function  for MIMO state-space 
model to achieve an acceptable level of 
accuracy

12 329 12.23

Upper limit of individual cost functions 
 to achieve satisfactory overall 

predictive accuracy (applies mostly to 
off-axis responses) 

12 329 12.24

(continued)

 

 Table A.1 Suggested guidelines (continued)

 

Guideline Topic Chap. Page Eq.

Twin 11 ζωn( )⁄≥
Twin

ζ
ωn

Trec 22 ζωn( )⁄≥
Trec

ζ
ωn

TF 55 ζωn( )⁄≥
TF

ζ
ωn

S ω( ) 3> S ω( )

εb 0.1<
σn ω( ) 0.33<

σn ω( )

εb 0.1<
γ δ1δ2

2( )
ave

0.5<
γ δ1δ2

2( )
ave

J 100≤ J

γ xy
2( )cut 0.4=

γ xy
2( )cut

Jave 100≤
Jave

Jl 150 to 200≤
Jl
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Upper limit of the Cramér–Rao bounds 
 that (together with ) 

reflects a highly reliable state-space 
model identification with good 
predictive accuracy. (Several of the 
largest Cramér–Rao bounds can be in 
the range of 20–40% without loss of 
reliability or cause for concern.)

12 334 12.40

A reasonable goal for insensitivities  
for the frequency-response method. 
(Several of the largest insensitivities 
can be in the range of 10–20% without 
loss of reliability or cause for concern.)

12 336 12.45

Magnitude of jump increase  in the 
average cost function that indicates 
that the process of reconverging the 
cost function should be terminated; the 
previous result should be used

12 339 12.52

Magnitude of jump increase  in the 
cost function of an individual 
frequency-response pair  that 
indicates that the process of 
reconverging the cost function should 
be terminated; the previous result 
should be used

12 339 12.53

A frequency-response pair  should be 
excluded if the coherence function  
for that pair never rises above the 
threshold 

 

within the frequency range of 
interest

 

. (The data for that pair should 
also be excluded if the magnitude or 
phase plots indicate other serious 
problems with the data.)

13 373 13.42

Coherence function threshold used to 
select the fitting range (  of 
Sec. 12.2.3) for a frequency-response 
pair that has acceptable coherence [i.e., 
the pair satisfies the threshold specified 
in the guideline of Eq. (13.42)]

13 373 13.43

(continued)

 

 Table A.1 Suggested guidelines (continued)

 

Guideline Topic Chap. Page Eq.

CRi 20%≤
CRi Jave 100≤

Ii 10%< Ii

∆Jave  1 to 2≈ ∆Jave

∆Jl  10 to 20≈ ∆Jl

l

γ xy
2( )

threshold
0.6= Tl

γ xy
2

γ xy
2( )fitting range 0.5≥

ω1 ωnω
,
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Frequency-response pair should be 
excluded from the analysis if 

, where 

13 374 13.45

Range of values for the rms fit error that 
generally reflects an acceptable level of 
accuracy in the time domain for flight-
dynamics modeling

14 438 14.14

Range of values for the Theil inequality 
coefficient that generally reflects an 
acceptable level of accuracy in the 
time domain for flight-dynamics 
modeling

14 438 14.17

 Table A.1 Suggested guidelines (continued)

Guideline Topic Chap. Page Eq.

dec_span 0.3≥

dec_span 0.3<
dec_span ωmax ωmin⁄( )log=

Jrms 1.0 to 2.0≈

TIC  0.25 to 0.3≤
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accelerometer measurements, 369
accuracy analysis

DERIVID, 347
state-space models, 330–340
validation, 334–335

actuators, 315
aerodynamic angle measurements, 368
aeroelastic models, 310–312
aircraft dynamics, fixed wing, 

 

see 

 

decoupled 
lateral directional; decoupled longitudinal

aircraft dynamics, rotary wing, 

 

see 

 

hybrid fully 
coupled; quasi-steady; quasi-steady 
longitudinal; quasi-steady lateral 
directional

automated sweeps, 

 

see 

 

frequency sweeps, 
automated

autospectrum, input and output,

 

153

 

see also 

 

conditioned: autospectrum

bare-airframe identification, 226
bias error, 211–215, 221, 226
closed-loop testing, 35, 61, 95, 97, 

209
no noise, 216–219
open-loop, 65, 95–97
with noise, 220–222

 

see also 

 

XV-15 identification in hover; 
closed-loop flight testing

bias error
bare-airframe identification, 211–215, 221, 

226
bias, 15, 25, 32
normalized bias error,

 

172

 

, 

 

213

 

parametric identification, 223–224
parametric identification, 223–224
signal-to-noise ratio, 213–215
spectral function identification, 154
window size, 173, 260

bias vector, 32, 436–439
binning, 157
Bode plot, 3

interpretation, 149–152
body-axis coordinate systems, 363
broken-loop response, 197, 256–257

canonical models
observable canonical structure, 344
pendulum, 348–350

regressive lead-lag dynamics, 453
structural response identification, 353–357
structure,

 

343

 

–345
XV-15 in hover, 350–353

case studies, 

 

see 

 

pendulum; XV-15 
identification in cruise; XV-15 
identification in hover

chirp z-transform (CZT),

 

27

 

, 157–158
CIFER

applications, 51
database, 69
dataflow, 71–72
description, 16–17
interface to other tools, 79–81
naming convention, 77
programs, 69–73
utilities, 73–75, 78–79

 

see also 

 

COMPOSITE; DERIVID; 
FRESPID; MISOSA; NAVFIT; 
VERIFY

CIFER, using
menu, 73
navigation, 74
user interface, 70–71, 73–78

closed-loop flight testing, 9, 60
bare-airframe identification, 95–97, 209
XV-15 in hover, 60–61

coherence function, 30, 

 

165

 

–167
cutoff parameter,

 

328

 

guidelines, 373
threshold,

 

373

 

collective rotation, 457
COMPOSITE, 263

FRESPID and MISOSA, workflow in SISO 
and MIMO analyses, 266–268

composite frequency-response estimate, 260, 

 

262

 

composite spectral estimates, 262
composite windowing, 27

closed-loop SISO identification of XV-15 in 
hover, 268–271

COMPOSITE, 263
MIMO identification of Bo-105 

helicopter, 271–272
pendulum, 263–266
structural system identification, 273–274

concatenated record length, 171

 

CIFER TextbookIX.fm  Page 515  Friday, June 16, 2006  5:08 PM



 

516 INDEX

 

conditioned
autospectrum,

 

237

 

cross spectrum,

 

237

 

frequency response,

 

237

 

spectral quantities, 237–239
CONDUIT, 196, 298
confidence ellipsoid

used in structure determination, 339
vector,

 

338

 

coning (rotor), 452, 460–461
angle, 454, 461
dynamics, 461
flap response, 455
flapping mode, 455
rate, 461

consistency, 

 

see 

 

data consistency
constrained parameters, 370
control correlation, high, 248
control derivatives, 11, 32, 42, 324, 361

nonlinear simulation, 403
control input correlation, 231
control rigging calibration, 141
control system design, 452

rotorcraft, models for, 307–310
control system model, validation, 196–200
control system, MIMO, broken-loop 

response, 256–257
coordinate systems

body-axis, 363
stability-axis, 363

correlated inputs, 232
correlation coefficient, 337
cost function

average, for state-space models, 327
composite, 262
guidelines for state-space models, 329, 339
matrix form for state-space model, 332
rms fit error,

 

437

 

state-space models, 327–329
structure determination, 339
transfer-function models, 280

coupled dynamics
coning-inflow, 453
fuselage/regressive-flap, 453
fuselage/rotor, 452
inflow/coning/heave, 460–461
rotor/fuselage/engine, 490–491

coupling
dynamic, 85
one-way, 294, 303
rotor-body, 299

Cramér–Rao bounds, 42, 

 

331

 

correlation, 335
estimated, 333
guideline, 334
insensitivity, 335
interpretation, 335–338
structure determination, 339

validation, 334–335
Cramér–Rao inequality,

 

331

 

cross spectrum, 153
cross talk, 248
cross-control coherence,

 

234

 

cross-over frequency, 182
cutoff frequency, 182–183
data collection, 89
data conditioning

verification, 440
data consistency, 25, 119

angular, 130–133
control rigging calibration, 141
faulty data, 139
simple methods, 129–141
translational, 135–139

database
CIFER, 69
database #1 (XV-15 in hover),

 

58

 

, 62
database #2 (XV-15 in cruise),

 

58

 

, 65–67
frequency response, 371–377

dataflow, CIFER, 71–72
decade span,

 

373

 

decoupled lateral directional model, 6
decoupled longitudinal model, 6
DERIVID, 347–348

accuracy analysis, 347
model structure reduction, 347

describing functions, 18, 27, 149, 152, 164
deterministic errors (systematic), 25, 119

frequency domain, 154
time domain, 121

digitized measurements, 133
Dirichlet condition, 148
discrete Fourier transform (DFT),

 

152

 

, 

 

157

 

doublets, 2, 16, 88
dynamic coupling, 85, 

 

230

 

dynamic inflow, 415, 452
dynamic inflow/coning, 460–461
dynamics, 

 

see 

 

models

eigenvalues, 349, 386–391
eigenvectors, 386–391
engine

dynamics, 415, 462–463
Padé filter representation, 462
torque, 452

response, 453
equation-error method, 30
equations of motion, 16, 345

coordinate systems, 363
differential equations, 323
Euler angles, 365
force equations, 363–364
matrix form, 32, 324
moment equations, 364–365
physical model structure, 362–365
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state and control matrices, 367
state and control variables, 366
state-space form, 366, 371

error model, 130
error parameters, 123
errors

deterministic (systematic), 25, 119
measurement, 119
nondeterministic (random), 26, 119

Euler angles
measurements, 367
relationships, 365

excitation, 

 

see 

 

input signals for identification

fast Fourier transform (FFT), 157–158
filter cut-off frequency,

 

89

 

filters, 89
Kalman, 124

fixed parameters, 279, 346, 370
fixed-wing configuration, XV-15, 58, 64
fixed-wing dynamics model, 6
flap

stiffness, 361
flapping (rotor), 299, 346, 452

angles, 454
dynamics, 453–457
lateral flap angle, 454
lateral flapping, 299
longitudinal flap angle, 454
regressive modes, 300, 455
stiffness, 346, 451–452

flight test
data, measurement errors in, 119–120
instrumentation, 88
procedures, 85, 94, 224

flight-mechanics models, 17–18, 298–306
flight-vehicle development, 12–16
force equations, 363–364
Fourier coefficients, 147
Fourier transform, 147

calculating, 152
free parameters, 279, 346, 370
frequency

averaging, 157
content, 158
effective minimum frequency, 260
maximum frequency, 93
minimum frequency, 170, 260

frequency-domain methods
history, 18–20

frequency range
of applicability, 31, 83–85, 282, 329, 346, 373
of interest, 30–31, 342, 373, 453

frequency resolution and window size, 156
frequency response,

 

146

 

alternate expression,

 

160

 

, 164
database, 371–377
matrix, 325

nonlinear effects, 164
physical model, 149
properties, 152

frequency-response estimate, 29, 212–213
composite,

 

262

 

FRESPID, 175–177
input noise, 160, 162–163
normalized bias error,

 

163

 

, 

 

213

 

normalized random error,

 

167

 

conditioned frequency response,

 

239

 

optimum model, 161
output noise, 160
random error, 167–169

frequency-response method of 
identification, 13–16

advantages, 12–16, 340–342
applications, 8, 11–12, 25, 28, 51–53, 

178–200, 453
examples, 178–200
guidelines, 177
key features, 29–35
pendulum example, 177–178
roadmap, 26–29
time response methods, compared to, 13, 

15–16
XV-15 tilt-rotor, 35–51

frequency-response models, 2–4
frequency-response table, 372–377

lightweight manned helicopter (Fire Scout 
P2 demonstrator), 372

XV-15 in cruise, 380
XV-15 in hover, 394

frequency sweeps, automated (computer 
generated), 25, 102–112

issues, 112
UAV development, 110–111

frequency sweeps, piloted, 2, 16, 25, 86–88
detailed design, 92–94
key points, 97–100
maximum frequency, 93
minimum frequency, 92
overview, 90–91
secondary (non-swept) controls, 98, 100
trim condition, 97–98, 100
XV-15 in cruise, 36–37

frequency-response method of 
identification, 145

FRESPID, 175–177
computations, 175–176

fuselage modes, 452

handling qualities
closed-loop flight testing, 61
specifications, 41, 184–187
transfer-function model, 286–298

harmonic analysis, 146
heave damping mode, 460
helicopter configuration, XV-15, 58
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Hessian matrix,

 

331

 

, 336
approximation, 332
correlation coefficient, 337

hinge offset, 451, 455, 461
hybrid fully coupled model, 7
hybrid model identification, S-92 

helicopter, 490–491
hybrid model identification, SH-2G 

helicopter, 464–483
compared to simulation, 475–476
cruise, 479
flight testing, 465–466
hover, 466–483
summary, 483
verification, 483

hybrid model structure, 346, 361, 451
complete, 463–464
engine dynamics, 462–463
formulation, 452–464
forward flight, 464
state equations, 456
vertical dynamics, 461
yaw dynamics, 462–463

identification vector
model identification,

 

328

 

model verification,

 

436

 

inflow, 460–461
constant, 460
dynamics equation, 460
ratio,

 

460

 

input signals for identification
3-2-1-1 inputs, 16, 85, 112
doublets, 2, 16, 88, 112
frequency range of applicability, 83–85
multi-input maneuver, 254–256
multistep inputs, 16, 85, 112
optimal input design, 85, 112
overview, 83–85
piloted inputs, 84
Schroeder-phased input, 86

 

see also 

 

frequency sweeps, automated 
(computer generated); frequency 
sweeps, piloted; pilot inputs

input vector, 32, 325
input-output pairs

faulty data, 139
transfer-function models, 282

input-output system, 1
inputs

fixed-wing, 1–2
helicopter, 1–2
instrumentation of, 89

 

see also 

 

excitation
insensitivity,

 

336

 

correlation, 337
Cramér–Rao bounds, relationship with, 336
guideline, 336

implications, 336
interpretation, 336
unnecessary parameters, 336

instrumentation
bias, 123
errors, 133–135
requirements, 88–90

interaxis dynamic coupling, 230–231
interfaces, CIFER, 79–81

Kalman filter, 124
kinematic consistency

maneuver, 129
methods, 120–124

Laplace transform, 33, 149, 325, 393
lateral-directional dynamics, fixed wing,

293–298
LATFIT, 298
lead-lag (rotor), 452

displacements, 457
dynamics, 453, 457–459, 490–491
natural frequency, 457
Padé transfer function representation,

457
regressive mode, 457
sine lag displacement, 457

linear models
describing functions, 18, 27, 149
frequency response, 27
frequency sweep, 91
methods for, 15
numerical extraction from nonlinear, 48, 

187–406
system identification, 27, 48

Lock number, 300, 455
LONFIT, 298
lower-order equivalent system (LOES),

277–278, 287, 342

maneuvers
kinematic consistency, 129
multiple inputs for MIMO solution, 247, 

254–256

 

see also 

 

piloted inputs
mass (

 

M

 

) matrix, 42, 324, 461, 463
maximum likelihood (ML) method, 86, 321
maximum unnoticeable added dynamics 

(MUAD)
boundaries, 190

MCLAWS, 196
measurement matrices, 369
measurement vector, 32, 324, 367

accelerometer, 369
aerodynamic angles, 368
Euler angles, 367
miscellaneous measurements, 369
velocity, 368
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measurements
closed-loop hover flight test, 60–61
digitized, 133
errors, 119–120
open-loop cruise flight test, 64–65

menu, CIFER, 73
MIMO frequency-response data matrix, 362
MIMO frequency-response database, 28, 34, 

71, 277, 342
MIMO state-space model identification

basic concepts, 323–329
fixed-wing UAV (Shadow™ 200 Block 

IB), 406–407
lightweight manned helicopter (Fire Scout 

P2 demonstrator), 413–430
nonlinear simulation, 402–406
physical models, 359
S-92 helicopter, 490–491
SH-2G helicopter, 464–483
XV-15 in cruise, 379–394
XV-15 in hover, 394–402

MISOSA, 249–250
model structure

decoupled stability and control, 345
examples, 360
fully coupled 6-DOF quasi-steady, 451
hybrid (high-order helicopter model), 346, 

361, 451–452
quasi-steady, 346, 361, 451

model structure determination, 28
confidence ellipsoids, 339
Cramér–Rao bounds, 339
overparameterized, 340
state-space models, 338–340

model structure reduction, 338–340, 347, 
378–379

based on frequency-response table, 374–377
XV-15 in cruise, 382–386
XV-15 in hover, 395, 398

model structures
canonical, 342
key points, 346–347
lower-order equivalent system (LOES), 342
physical, 343
types of, 342

model verification, 

 

see 

 

 verification, 88
models, 

 

see 

 

aeroelastic; control system; 
decoupled lateral directional; decoupled 
longitudinal; fixed-wing dynamics; 
flight-mechanics; frequency-response; 
hybrid fully coupled; linear; nonlinear; 
nonparametric; parametric; physical; 
quasi-steady; quasi-steady: 
longitudinal; quasi-steady: lateral 
directional; rotary-wing dynamics; 
simulation; state-space; subsystem; 
transfer-function

moment equations, 364–365

multi-input / multi-output, 

 

see 

 

MIMO
multi-input / single-output, 

 

see 

 

MISO
multi-input frequency response 

identification, 229
from MISO analyses, 247–248
general solution, 245–248
hovering helicopter, 250–254
MISOSA, 249–250
two inputs, 234–237, 239–244
XV-15 in cruise, 239–244

multiple coherence,

 

239

 

multiple inputs
bias error, 233
correlated inputs, 231–232
SISO solution, limiting conditions, 230, 233
two-input example, 231–237, 239–244

 

see also 

 

MIMO; MISO

naming convention, CIFER, 77
NAVFIT, 284–285
navigation, CIFER, 74
noise, 15

in closed-loop identification, 210–222
effect on bare-airframe identification in 

closed-loop testing, 210–222
effect on bias error, 148
effect on bias error in spectral function 

identification, 154
effect on coherence function, 165
effect on frequency-response accuracy,

162–163, 168, 177, 210
effect on random error in spectral function 

identification, 154
effect on spectral analysis of time-history 

signals, 178
feedback through SCAS, 210
flight testing, implications for, 224
at input, 154, 160, 162–164, 166, 210
at output, 154, 160–161, 164–165, 193, 

210–211
process noise, 15, 30, 55, 160–161, 163, 

166, 170, 192, 210–211, 213, 341, 434
noise to signal ratio, 163
nondeterministic errors (random), 26, 119

frequency domain, 154
time domain, 122

nonlinear models, 152, 187–190, 402–406
methods for, 15
system identification, 27

 

see also 

 

describing functions
nonlinear simulation, 402
nonparametric models, 9–12, 152

 

see also 

 

frequency-response models

off-axis response, definition of,

 

230

 

on-axis response, definition of,

 

230

 

one-way coupling, 294, 303
open-loop flight testing
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bare-airframe identification, 65, 95, 97
measurements, 64–65

 

see also 

 

XV-15 in cruise
optimal input design, 85
organization of book, 20–22
output error method, 30, 342
output vector, 324
outputs

fixed-wing, 1–2
helicopter, 1–2
instrumentation of, 89

overlapped windowing, 154
overparameterized, 12, 283, 340

parameters
dropped, 338–340
fixed and free, 346
physical constraints, 347

parametric models, 5, 9–12, 25, 28, 
277

 

see also 

 

state-space models; transfer-function 
models

partial coherence,

 

238

 

pendulum
canonical state-space model, 348–350
composite windowing, 263–266
frequency-response identification, 177–178
problem description, 55–58
transfer-function model, 285–286
unstable dynamics, 225

periodograms, 154
perturbation methods, classical, 402
physical model structure, 11, 149, 343, 

345–346, 359, 362
3-DOF lateral/directional, 379–402
3-DOF longitudinal, 406–407
6-DOF MIMO, 413–430
background, 360–361
complex multibody systems, 371
coupled fuselage/regressive-flap 

dynamics, 453
equations of motion, 362–365
fixed, free, and constrained 

parameters, 370–371
fixed-wing UAV (Shadow™ 200 Block 

IB), 406–407
initial setup, 377–378
lightweight manned helicopter (Fire Scout 

P2 demonstrator), 413–430
dynamic inflow, 415
engine/governor/rpm dynamics, 415
final results, 420–430
speed derivatives, 415, 417–420

measurement matrices, 369
measurement vector, 367
state and control matrices, 367
state and control variables, 366
time delay matrix, 370

pilot cross-over frequency, 182
pilot cutoff frequency, 182–183
pilot inputs

non-sweep maneuvers, 112–117
recommended, 86–88

 

see also 

 

frequency sweeps, piloted; 
excitation

poles, 279
power decibels, 154
primary control,

 

230

 

quasi-steady derivatives, 461, 476
speed, 453
stability, 453

quasi-steady model, 7, 188, 303, 346, 361, 451
lateral directional, 7
longitudinal, 7

random error, 26, 119, 175, 221
window size, 260

reactionless mode, 4-bladed rotor, 454, 457
real-time telemetry, 94, 99
record length, 84, 93, 154, 171

concatenated, 171
reduction, model structure, 378–379
reference shift, 15, 32
reference-shift vector, 32, 436–439
rms fit error,

 

437

 

roadmap, frequency-response method, 25–29
rotary-wing dynamics model, 7
rotor equations, 455
rotor flapping,

 

see 

 

flapping (rotor)
rotor modes, 452
rotor-body coupling, 299
rotorcraft dynamics

flap stiffness, 305–306
quasi-steady approximation, 304
simple roll-response model, 303
transfer-function models, 299–310

rotorcraft system identification, 8–9
rotor-flap time constant, 455

sample rate, 89
scale factor, 123
SCAS, 95–97

bare-airframe identification, 209
noise feedback, 210

Schur product, 326
secondary control,

 

230

 

sensitivity analysis, 28
sensor dynamics, 326
servoelastic modes, 193
sign conventions, 453–454, 457
signal-to-noise ratio

effect on bias error, 213–215
simulation

closed-loop, 61
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compared to system identification, 6–8
simulation models, 188

error bounds (fidelity criteria), 190
error response function,

 

190

 

GENHEL, 183, 188
GTR, 382, 386, 395, 398
off-line testing, 105–106
SH-2G helicopter, 475–476
stability and control derivatives, 403
validation, 37–39, 190–191

SIMULINK, 196
single-input / single-output, 

 

see 

 

SISO
SMACK, 124–129
spectral analysis, 26–27

applications and examples, 178–200
frequency content, 158
of time histories, 178–182

spectral estimates
calculating, 152
composite, 260, 262
conditioned, 237–239
rough, 153, 260
smooth,

 

155

 

, 260
weighted average, 261

stability derivatives, 11, 32, 324, 361
nonlinear simulation, 403–406

stability margin
direct estimate, 192
indirect estimate, 192
specification, 192–193
testing, 191–196

stability-axis coordinate systems, 363
state equations, 32, 42

engine/governor/rotor rpm dynamics, 415
hybrid model, 456

state vector, 32
state-space model identification, 5, 321

accuracy, 327
accuracy analysis, 330–340
advantages, 322–323
canonical models, 343–345
cost function, 327–329

matrix form, 332
DERIVID, 347–348
frequency range, 329
frequency-response database, 371–377
frequency-response method, 

advantages, 340–342
frequency-response table, 372–377, 380, 

394
identification algorithm, 328
initial setup, 377–379, 382, 394–395
key features, 340–342
matrices, 324
model definition, 342–347
model structure, 324, 359
model structure reduction, 374–379, 

382–386, 395, 398

parameters, 324
physical models, 345–346, 359
speed-stability derivatives, 417–420
structure determination, 338–340
transfer-function model included, 326–327

 

see also 

 

canonical models; MIMO state-
space model identification; physical 
model structure

state-space model identification, examples
3-DOF lateral/directional, 379–402
closed-loop response, 350–353
fixed-wing UAV (Shadow™ 200 Block 

IB), 406–407
lightweight manned helicopter (Fire Scout 

P2 demonstrator), 413–430
nonlinear simulation, 403
pendulum, 348–350
S-92 helicopter, 490–491
SH-2G helicopter, 464–483
structural response, 353–357
XV-15 in cruise, 379–394
XV-15 in hover, 350–353, 394–402

state-space models

 

see also 

 

model structures
structural response identification, 353–357

automated frequency sweeps, 106–108
composite windowing, 273–274
window size, 172–175

subsystem models, 314–315
swashplate deflection, 455
system identification

basic concepts, 1–6
compared to simulation, 6–8
special challenges for rotorcraft, 8–9

system identification methods, 

 

see 

 

frequency 
domain; frequency response; output 
error; time-domain

systematic errors, 119

telemetry, real-time, 94, 99
Theil inequality coefficient (TIC),

 

438

 

thrust coefficient,

 

460

 

–461
tilt-rotor, 

 

see 

 

XV-15 characteristics; XV-15 
configurations; XV-15 identification in 
cruise; XV-15 identification in hover

time delay, 15, 31
equivalent, 32, 279
matrix,

 

325

 

, 370
time histories

spectral analysis, 178–182
time shift, 123
time vector diagram, 393
time-domain methods, 33–34
time-domain verification, 

 

see 

 

verification
time-response methods, 15
tip-path plane, 454

deflection, 299
transfer-function models, 5
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cost function, 280
equivalent time delay, 279
factored form, 279
free and fixed parameters, 279, 284
frequency range of fit, 282
generalized form, 278
identification method, 39–40, 277–281
identification with NAVFIT, 284–285
input-output pairs, 282
magnitude and phase weights, 280
order of numerator and denominator,

282–283
overparameterized, 283
parameters, 41, 279
poles and zeros, 41–42, 279
state-space model, included in, 326–327
structure, 281–284
time delay, equivalent, 283–284

transfer-function models, examples
1-DOF aircraft model, 149–152
aeroelastic, 310–312
control system design, 307–310
flight mechanics, 298–306
handling qualities, 286–298
handling qualities evaluation of ADOCS 

demonstrator, 287–293
lower-order equivalent system (LOES),

287
OH-58D with high flap stiffness, 305–306
pendulum, 285–286
rotorcraft dynamics, 299–310
simultaneous identification, 298
subsystems, 314–315
XV-15 in cruise, 293–298

turbulence, 224

unbiased estimate, 161

 

see also 

 

maximum unnoticeable added 
dynamics (MUAD)

unnoticeable dynamics, 294
unstable system, 16, 148, 152

dynamics, 9, 34
identification, 225–226

user interface, CIFER, 70–71, 73–78
utilities, CIFER, 73–75, 78–79

validation
control system model, 196–200
criteria, 190
simulation model, 190–191

velocity measurements, 368
verification, 29, 88, 433

bias vector, 436–439
correlation problem, 439–440
data conditioning, 440
identification vector,

 

436

 

method, 434–436
motivation, 433–434

reference-shift vector, 436–439
rms fit error,

 

437

 

Theil inequality coefficient (TIC),

 

438

 

VERIFY, 440–441
verification, examples

fixed-wing UAV (Shadow™ 200 Block 
IB), 407

SH-2G helicopter, 483
XV-15 in cruise, 45–48
XV-15 in cruise, physical model, 442–443
XV-15 in hover, 48–51
XV-15 in hover, canonical model, 441–442
XV-15 in hover, physical model, 447

VERIFY, 440–441
vibration analysis, 178–182

weights
composite windowing, 261
state-space models, 328
transfer-function models, 280
verification, 437
window shaping function, 155

white noise, 104–105
wind, 224
window overlap, 168
window shaping function, 155
window size, 154

bias error, 173
maximum, 170–172, 263
minimum, 172, 263
nominal, 170
range for composite windowing, 260
selecting, 263
structural response identification, 172–175
tradeoffs, 169, 175, 259–260
weighted average,

 

262

 

windowing, 154–157
composite, 259–262
number of windows, 154–156

wing bending, 311

XV-15 characteristics
cruise, 64
hover, 58–61

XV-15 configurations, 35–36, 58
XV-15 identification in cruise

3-DOF lateral/directional model, 379–394
database #2, 58
dynamic characteristics, 64
final identification results, 386–394
flight-test conditions, 58
frequency sweeps, 36–37
frequency-response table, 380
initial model structure, 379, 382
measurements, 64–65
MISO solution, two inputs, 239–244
model structure reduction, 382–386
roll and yaw controls, 64
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stability and control derivative model 
identification, 41–42

transfer-function model, 39–40, 293–298
verification, 45–48
verification of physical model, 442–443

XV-15 identification in hover
3-DOF lateral/directional model, 394–402
bare-airframe identification, 215–222
canonical model, 350–353
composite windowing for closed-loop SISO 

identification, 268–271
database #1, 58
dynamic characteristics, 58–60
final identification results, 398–402
flight-test conditions, 58

frequency-response table, 394
initial model structure, 394–395
model structure reduction, 395, 398
roll and yaw controls, 58–60
stability and control derivative model 

identification, 48–51
verification, 48–51
verification of canonical model, 441–442
verification of physical model, 447

yaw dynamics, 462–463

zeros, 279
zoom transform,

 

see 

 

chirp z-transform (CZT)
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Supporting Materials

 

To download your software and any software updates, please go to http://www.aiaa.org/
publications/supportmaterials. Follow the instructions provided and enter the fol-
lowing password: 

 

velocity

 

.

A complete list of titles in the AIAA Education Series and other AIAA publica-
tions is available at http://www.aiaa.org.
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